Automatic date update in version.in
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
1 /* 32-bit ELF support for ARM
2 Copyright (C) 1998-2020 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include <limits.h>
23
24 #include "bfd.h"
25 #include "libiberty.h"
26 #include "libbfd.h"
27 #include "elf-bfd.h"
28 #include "elf-nacl.h"
29 #include "elf-vxworks.h"
30 #include "elf/arm.h"
31 #include "elf32-arm.h"
32 #include "cpu-arm.h"
33
34 /* Return the relocation section associated with NAME. HTAB is the
35 bfd's elf32_arm_link_hash_entry. */
36 #define RELOC_SECTION(HTAB, NAME) \
37 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
38
39 /* Return size of a relocation entry. HTAB is the bfd's
40 elf32_arm_link_hash_entry. */
41 #define RELOC_SIZE(HTAB) \
42 ((HTAB)->use_rel \
43 ? sizeof (Elf32_External_Rel) \
44 : sizeof (Elf32_External_Rela))
45
46 /* Return function to swap relocations in. HTAB is the bfd's
47 elf32_arm_link_hash_entry. */
48 #define SWAP_RELOC_IN(HTAB) \
49 ((HTAB)->use_rel \
50 ? bfd_elf32_swap_reloc_in \
51 : bfd_elf32_swap_reloca_in)
52
53 /* Return function to swap relocations out. HTAB is the bfd's
54 elf32_arm_link_hash_entry. */
55 #define SWAP_RELOC_OUT(HTAB) \
56 ((HTAB)->use_rel \
57 ? bfd_elf32_swap_reloc_out \
58 : bfd_elf32_swap_reloca_out)
59
60 #define elf_info_to_howto NULL
61 #define elf_info_to_howto_rel elf32_arm_info_to_howto
62
63 #define ARM_ELF_ABI_VERSION 0
64 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
65
66 /* The Adjusted Place, as defined by AAELF. */
67 #define Pa(X) ((X) & 0xfffffffc)
68
69 static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
70 struct bfd_link_info *link_info,
71 asection *sec,
72 bfd_byte *contents);
73
74 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
75 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
76 in that slot. */
77
78 static reloc_howto_type elf32_arm_howto_table_1[] =
79 {
80 /* No relocation. */
81 HOWTO (R_ARM_NONE, /* type */
82 0, /* rightshift */
83 3, /* size (0 = byte, 1 = short, 2 = long) */
84 0, /* bitsize */
85 FALSE, /* pc_relative */
86 0, /* bitpos */
87 complain_overflow_dont,/* complain_on_overflow */
88 bfd_elf_generic_reloc, /* special_function */
89 "R_ARM_NONE", /* name */
90 FALSE, /* partial_inplace */
91 0, /* src_mask */
92 0, /* dst_mask */
93 FALSE), /* pcrel_offset */
94
95 HOWTO (R_ARM_PC24, /* type */
96 2, /* rightshift */
97 2, /* size (0 = byte, 1 = short, 2 = long) */
98 24, /* bitsize */
99 TRUE, /* pc_relative */
100 0, /* bitpos */
101 complain_overflow_signed,/* complain_on_overflow */
102 bfd_elf_generic_reloc, /* special_function */
103 "R_ARM_PC24", /* name */
104 FALSE, /* partial_inplace */
105 0x00ffffff, /* src_mask */
106 0x00ffffff, /* dst_mask */
107 TRUE), /* pcrel_offset */
108
109 /* 32 bit absolute */
110 HOWTO (R_ARM_ABS32, /* type */
111 0, /* rightshift */
112 2, /* size (0 = byte, 1 = short, 2 = long) */
113 32, /* bitsize */
114 FALSE, /* pc_relative */
115 0, /* bitpos */
116 complain_overflow_bitfield,/* complain_on_overflow */
117 bfd_elf_generic_reloc, /* special_function */
118 "R_ARM_ABS32", /* name */
119 FALSE, /* partial_inplace */
120 0xffffffff, /* src_mask */
121 0xffffffff, /* dst_mask */
122 FALSE), /* pcrel_offset */
123
124 /* standard 32bit pc-relative reloc */
125 HOWTO (R_ARM_REL32, /* type */
126 0, /* rightshift */
127 2, /* size (0 = byte, 1 = short, 2 = long) */
128 32, /* bitsize */
129 TRUE, /* pc_relative */
130 0, /* bitpos */
131 complain_overflow_bitfield,/* complain_on_overflow */
132 bfd_elf_generic_reloc, /* special_function */
133 "R_ARM_REL32", /* name */
134 FALSE, /* partial_inplace */
135 0xffffffff, /* src_mask */
136 0xffffffff, /* dst_mask */
137 TRUE), /* pcrel_offset */
138
139 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
140 HOWTO (R_ARM_LDR_PC_G0, /* type */
141 0, /* rightshift */
142 0, /* size (0 = byte, 1 = short, 2 = long) */
143 32, /* bitsize */
144 TRUE, /* pc_relative */
145 0, /* bitpos */
146 complain_overflow_dont,/* complain_on_overflow */
147 bfd_elf_generic_reloc, /* special_function */
148 "R_ARM_LDR_PC_G0", /* name */
149 FALSE, /* partial_inplace */
150 0xffffffff, /* src_mask */
151 0xffffffff, /* dst_mask */
152 TRUE), /* pcrel_offset */
153
154 /* 16 bit absolute */
155 HOWTO (R_ARM_ABS16, /* type */
156 0, /* rightshift */
157 1, /* size (0 = byte, 1 = short, 2 = long) */
158 16, /* bitsize */
159 FALSE, /* pc_relative */
160 0, /* bitpos */
161 complain_overflow_bitfield,/* complain_on_overflow */
162 bfd_elf_generic_reloc, /* special_function */
163 "R_ARM_ABS16", /* name */
164 FALSE, /* partial_inplace */
165 0x0000ffff, /* src_mask */
166 0x0000ffff, /* dst_mask */
167 FALSE), /* pcrel_offset */
168
169 /* 12 bit absolute */
170 HOWTO (R_ARM_ABS12, /* type */
171 0, /* rightshift */
172 2, /* size (0 = byte, 1 = short, 2 = long) */
173 12, /* bitsize */
174 FALSE, /* pc_relative */
175 0, /* bitpos */
176 complain_overflow_bitfield,/* complain_on_overflow */
177 bfd_elf_generic_reloc, /* special_function */
178 "R_ARM_ABS12", /* name */
179 FALSE, /* partial_inplace */
180 0x00000fff, /* src_mask */
181 0x00000fff, /* dst_mask */
182 FALSE), /* pcrel_offset */
183
184 HOWTO (R_ARM_THM_ABS5, /* type */
185 6, /* rightshift */
186 1, /* size (0 = byte, 1 = short, 2 = long) */
187 5, /* bitsize */
188 FALSE, /* pc_relative */
189 0, /* bitpos */
190 complain_overflow_bitfield,/* complain_on_overflow */
191 bfd_elf_generic_reloc, /* special_function */
192 "R_ARM_THM_ABS5", /* name */
193 FALSE, /* partial_inplace */
194 0x000007e0, /* src_mask */
195 0x000007e0, /* dst_mask */
196 FALSE), /* pcrel_offset */
197
198 /* 8 bit absolute */
199 HOWTO (R_ARM_ABS8, /* type */
200 0, /* rightshift */
201 0, /* size (0 = byte, 1 = short, 2 = long) */
202 8, /* bitsize */
203 FALSE, /* pc_relative */
204 0, /* bitpos */
205 complain_overflow_bitfield,/* complain_on_overflow */
206 bfd_elf_generic_reloc, /* special_function */
207 "R_ARM_ABS8", /* name */
208 FALSE, /* partial_inplace */
209 0x000000ff, /* src_mask */
210 0x000000ff, /* dst_mask */
211 FALSE), /* pcrel_offset */
212
213 HOWTO (R_ARM_SBREL32, /* type */
214 0, /* rightshift */
215 2, /* size (0 = byte, 1 = short, 2 = long) */
216 32, /* bitsize */
217 FALSE, /* pc_relative */
218 0, /* bitpos */
219 complain_overflow_dont,/* complain_on_overflow */
220 bfd_elf_generic_reloc, /* special_function */
221 "R_ARM_SBREL32", /* name */
222 FALSE, /* partial_inplace */
223 0xffffffff, /* src_mask */
224 0xffffffff, /* dst_mask */
225 FALSE), /* pcrel_offset */
226
227 HOWTO (R_ARM_THM_CALL, /* type */
228 1, /* rightshift */
229 2, /* size (0 = byte, 1 = short, 2 = long) */
230 24, /* bitsize */
231 TRUE, /* pc_relative */
232 0, /* bitpos */
233 complain_overflow_signed,/* complain_on_overflow */
234 bfd_elf_generic_reloc, /* special_function */
235 "R_ARM_THM_CALL", /* name */
236 FALSE, /* partial_inplace */
237 0x07ff2fff, /* src_mask */
238 0x07ff2fff, /* dst_mask */
239 TRUE), /* pcrel_offset */
240
241 HOWTO (R_ARM_THM_PC8, /* type */
242 1, /* rightshift */
243 1, /* size (0 = byte, 1 = short, 2 = long) */
244 8, /* bitsize */
245 TRUE, /* pc_relative */
246 0, /* bitpos */
247 complain_overflow_signed,/* complain_on_overflow */
248 bfd_elf_generic_reloc, /* special_function */
249 "R_ARM_THM_PC8", /* name */
250 FALSE, /* partial_inplace */
251 0x000000ff, /* src_mask */
252 0x000000ff, /* dst_mask */
253 TRUE), /* pcrel_offset */
254
255 HOWTO (R_ARM_BREL_ADJ, /* type */
256 1, /* rightshift */
257 1, /* size (0 = byte, 1 = short, 2 = long) */
258 32, /* bitsize */
259 FALSE, /* pc_relative */
260 0, /* bitpos */
261 complain_overflow_signed,/* complain_on_overflow */
262 bfd_elf_generic_reloc, /* special_function */
263 "R_ARM_BREL_ADJ", /* name */
264 FALSE, /* partial_inplace */
265 0xffffffff, /* src_mask */
266 0xffffffff, /* dst_mask */
267 FALSE), /* pcrel_offset */
268
269 HOWTO (R_ARM_TLS_DESC, /* type */
270 0, /* rightshift */
271 2, /* size (0 = byte, 1 = short, 2 = long) */
272 32, /* bitsize */
273 FALSE, /* pc_relative */
274 0, /* bitpos */
275 complain_overflow_bitfield,/* complain_on_overflow */
276 bfd_elf_generic_reloc, /* special_function */
277 "R_ARM_TLS_DESC", /* name */
278 FALSE, /* partial_inplace */
279 0xffffffff, /* src_mask */
280 0xffffffff, /* dst_mask */
281 FALSE), /* pcrel_offset */
282
283 HOWTO (R_ARM_THM_SWI8, /* type */
284 0, /* rightshift */
285 0, /* size (0 = byte, 1 = short, 2 = long) */
286 0, /* bitsize */
287 FALSE, /* pc_relative */
288 0, /* bitpos */
289 complain_overflow_signed,/* complain_on_overflow */
290 bfd_elf_generic_reloc, /* special_function */
291 "R_ARM_SWI8", /* name */
292 FALSE, /* partial_inplace */
293 0x00000000, /* src_mask */
294 0x00000000, /* dst_mask */
295 FALSE), /* pcrel_offset */
296
297 /* BLX instruction for the ARM. */
298 HOWTO (R_ARM_XPC25, /* type */
299 2, /* rightshift */
300 2, /* size (0 = byte, 1 = short, 2 = long) */
301 24, /* bitsize */
302 TRUE, /* pc_relative */
303 0, /* bitpos */
304 complain_overflow_signed,/* complain_on_overflow */
305 bfd_elf_generic_reloc, /* special_function */
306 "R_ARM_XPC25", /* name */
307 FALSE, /* partial_inplace */
308 0x00ffffff, /* src_mask */
309 0x00ffffff, /* dst_mask */
310 TRUE), /* pcrel_offset */
311
312 /* BLX instruction for the Thumb. */
313 HOWTO (R_ARM_THM_XPC22, /* type */
314 2, /* rightshift */
315 2, /* size (0 = byte, 1 = short, 2 = long) */
316 24, /* bitsize */
317 TRUE, /* pc_relative */
318 0, /* bitpos */
319 complain_overflow_signed,/* complain_on_overflow */
320 bfd_elf_generic_reloc, /* special_function */
321 "R_ARM_THM_XPC22", /* name */
322 FALSE, /* partial_inplace */
323 0x07ff2fff, /* src_mask */
324 0x07ff2fff, /* dst_mask */
325 TRUE), /* pcrel_offset */
326
327 /* Dynamic TLS relocations. */
328
329 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
330 0, /* rightshift */
331 2, /* size (0 = byte, 1 = short, 2 = long) */
332 32, /* bitsize */
333 FALSE, /* pc_relative */
334 0, /* bitpos */
335 complain_overflow_bitfield,/* complain_on_overflow */
336 bfd_elf_generic_reloc, /* special_function */
337 "R_ARM_TLS_DTPMOD32", /* name */
338 TRUE, /* partial_inplace */
339 0xffffffff, /* src_mask */
340 0xffffffff, /* dst_mask */
341 FALSE), /* pcrel_offset */
342
343 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
344 0, /* rightshift */
345 2, /* size (0 = byte, 1 = short, 2 = long) */
346 32, /* bitsize */
347 FALSE, /* pc_relative */
348 0, /* bitpos */
349 complain_overflow_bitfield,/* complain_on_overflow */
350 bfd_elf_generic_reloc, /* special_function */
351 "R_ARM_TLS_DTPOFF32", /* name */
352 TRUE, /* partial_inplace */
353 0xffffffff, /* src_mask */
354 0xffffffff, /* dst_mask */
355 FALSE), /* pcrel_offset */
356
357 HOWTO (R_ARM_TLS_TPOFF32, /* type */
358 0, /* rightshift */
359 2, /* size (0 = byte, 1 = short, 2 = long) */
360 32, /* bitsize */
361 FALSE, /* pc_relative */
362 0, /* bitpos */
363 complain_overflow_bitfield,/* complain_on_overflow */
364 bfd_elf_generic_reloc, /* special_function */
365 "R_ARM_TLS_TPOFF32", /* name */
366 TRUE, /* partial_inplace */
367 0xffffffff, /* src_mask */
368 0xffffffff, /* dst_mask */
369 FALSE), /* pcrel_offset */
370
371 /* Relocs used in ARM Linux */
372
373 HOWTO (R_ARM_COPY, /* type */
374 0, /* rightshift */
375 2, /* size (0 = byte, 1 = short, 2 = long) */
376 32, /* bitsize */
377 FALSE, /* pc_relative */
378 0, /* bitpos */
379 complain_overflow_bitfield,/* complain_on_overflow */
380 bfd_elf_generic_reloc, /* special_function */
381 "R_ARM_COPY", /* name */
382 TRUE, /* partial_inplace */
383 0xffffffff, /* src_mask */
384 0xffffffff, /* dst_mask */
385 FALSE), /* pcrel_offset */
386
387 HOWTO (R_ARM_GLOB_DAT, /* type */
388 0, /* rightshift */
389 2, /* size (0 = byte, 1 = short, 2 = long) */
390 32, /* bitsize */
391 FALSE, /* pc_relative */
392 0, /* bitpos */
393 complain_overflow_bitfield,/* complain_on_overflow */
394 bfd_elf_generic_reloc, /* special_function */
395 "R_ARM_GLOB_DAT", /* name */
396 TRUE, /* partial_inplace */
397 0xffffffff, /* src_mask */
398 0xffffffff, /* dst_mask */
399 FALSE), /* pcrel_offset */
400
401 HOWTO (R_ARM_JUMP_SLOT, /* type */
402 0, /* rightshift */
403 2, /* size (0 = byte, 1 = short, 2 = long) */
404 32, /* bitsize */
405 FALSE, /* pc_relative */
406 0, /* bitpos */
407 complain_overflow_bitfield,/* complain_on_overflow */
408 bfd_elf_generic_reloc, /* special_function */
409 "R_ARM_JUMP_SLOT", /* name */
410 TRUE, /* partial_inplace */
411 0xffffffff, /* src_mask */
412 0xffffffff, /* dst_mask */
413 FALSE), /* pcrel_offset */
414
415 HOWTO (R_ARM_RELATIVE, /* type */
416 0, /* rightshift */
417 2, /* size (0 = byte, 1 = short, 2 = long) */
418 32, /* bitsize */
419 FALSE, /* pc_relative */
420 0, /* bitpos */
421 complain_overflow_bitfield,/* complain_on_overflow */
422 bfd_elf_generic_reloc, /* special_function */
423 "R_ARM_RELATIVE", /* name */
424 TRUE, /* partial_inplace */
425 0xffffffff, /* src_mask */
426 0xffffffff, /* dst_mask */
427 FALSE), /* pcrel_offset */
428
429 HOWTO (R_ARM_GOTOFF32, /* type */
430 0, /* rightshift */
431 2, /* size (0 = byte, 1 = short, 2 = long) */
432 32, /* bitsize */
433 FALSE, /* pc_relative */
434 0, /* bitpos */
435 complain_overflow_bitfield,/* complain_on_overflow */
436 bfd_elf_generic_reloc, /* special_function */
437 "R_ARM_GOTOFF32", /* name */
438 TRUE, /* partial_inplace */
439 0xffffffff, /* src_mask */
440 0xffffffff, /* dst_mask */
441 FALSE), /* pcrel_offset */
442
443 HOWTO (R_ARM_GOTPC, /* type */
444 0, /* rightshift */
445 2, /* size (0 = byte, 1 = short, 2 = long) */
446 32, /* bitsize */
447 TRUE, /* pc_relative */
448 0, /* bitpos */
449 complain_overflow_bitfield,/* complain_on_overflow */
450 bfd_elf_generic_reloc, /* special_function */
451 "R_ARM_GOTPC", /* name */
452 TRUE, /* partial_inplace */
453 0xffffffff, /* src_mask */
454 0xffffffff, /* dst_mask */
455 TRUE), /* pcrel_offset */
456
457 HOWTO (R_ARM_GOT32, /* type */
458 0, /* rightshift */
459 2, /* size (0 = byte, 1 = short, 2 = long) */
460 32, /* bitsize */
461 FALSE, /* pc_relative */
462 0, /* bitpos */
463 complain_overflow_bitfield,/* complain_on_overflow */
464 bfd_elf_generic_reloc, /* special_function */
465 "R_ARM_GOT32", /* name */
466 TRUE, /* partial_inplace */
467 0xffffffff, /* src_mask */
468 0xffffffff, /* dst_mask */
469 FALSE), /* pcrel_offset */
470
471 HOWTO (R_ARM_PLT32, /* type */
472 2, /* rightshift */
473 2, /* size (0 = byte, 1 = short, 2 = long) */
474 24, /* bitsize */
475 TRUE, /* pc_relative */
476 0, /* bitpos */
477 complain_overflow_bitfield,/* complain_on_overflow */
478 bfd_elf_generic_reloc, /* special_function */
479 "R_ARM_PLT32", /* name */
480 FALSE, /* partial_inplace */
481 0x00ffffff, /* src_mask */
482 0x00ffffff, /* dst_mask */
483 TRUE), /* pcrel_offset */
484
485 HOWTO (R_ARM_CALL, /* type */
486 2, /* rightshift */
487 2, /* size (0 = byte, 1 = short, 2 = long) */
488 24, /* bitsize */
489 TRUE, /* pc_relative */
490 0, /* bitpos */
491 complain_overflow_signed,/* complain_on_overflow */
492 bfd_elf_generic_reloc, /* special_function */
493 "R_ARM_CALL", /* name */
494 FALSE, /* partial_inplace */
495 0x00ffffff, /* src_mask */
496 0x00ffffff, /* dst_mask */
497 TRUE), /* pcrel_offset */
498
499 HOWTO (R_ARM_JUMP24, /* type */
500 2, /* rightshift */
501 2, /* size (0 = byte, 1 = short, 2 = long) */
502 24, /* bitsize */
503 TRUE, /* pc_relative */
504 0, /* bitpos */
505 complain_overflow_signed,/* complain_on_overflow */
506 bfd_elf_generic_reloc, /* special_function */
507 "R_ARM_JUMP24", /* name */
508 FALSE, /* partial_inplace */
509 0x00ffffff, /* src_mask */
510 0x00ffffff, /* dst_mask */
511 TRUE), /* pcrel_offset */
512
513 HOWTO (R_ARM_THM_JUMP24, /* type */
514 1, /* rightshift */
515 2, /* size (0 = byte, 1 = short, 2 = long) */
516 24, /* bitsize */
517 TRUE, /* pc_relative */
518 0, /* bitpos */
519 complain_overflow_signed,/* complain_on_overflow */
520 bfd_elf_generic_reloc, /* special_function */
521 "R_ARM_THM_JUMP24", /* name */
522 FALSE, /* partial_inplace */
523 0x07ff2fff, /* src_mask */
524 0x07ff2fff, /* dst_mask */
525 TRUE), /* pcrel_offset */
526
527 HOWTO (R_ARM_BASE_ABS, /* type */
528 0, /* rightshift */
529 2, /* size (0 = byte, 1 = short, 2 = long) */
530 32, /* bitsize */
531 FALSE, /* pc_relative */
532 0, /* bitpos */
533 complain_overflow_dont,/* complain_on_overflow */
534 bfd_elf_generic_reloc, /* special_function */
535 "R_ARM_BASE_ABS", /* name */
536 FALSE, /* partial_inplace */
537 0xffffffff, /* src_mask */
538 0xffffffff, /* dst_mask */
539 FALSE), /* pcrel_offset */
540
541 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
542 0, /* rightshift */
543 2, /* size (0 = byte, 1 = short, 2 = long) */
544 12, /* bitsize */
545 TRUE, /* pc_relative */
546 0, /* bitpos */
547 complain_overflow_dont,/* complain_on_overflow */
548 bfd_elf_generic_reloc, /* special_function */
549 "R_ARM_ALU_PCREL_7_0", /* name */
550 FALSE, /* partial_inplace */
551 0x00000fff, /* src_mask */
552 0x00000fff, /* dst_mask */
553 TRUE), /* pcrel_offset */
554
555 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
556 0, /* rightshift */
557 2, /* size (0 = byte, 1 = short, 2 = long) */
558 12, /* bitsize */
559 TRUE, /* pc_relative */
560 8, /* bitpos */
561 complain_overflow_dont,/* complain_on_overflow */
562 bfd_elf_generic_reloc, /* special_function */
563 "R_ARM_ALU_PCREL_15_8",/* name */
564 FALSE, /* partial_inplace */
565 0x00000fff, /* src_mask */
566 0x00000fff, /* dst_mask */
567 TRUE), /* pcrel_offset */
568
569 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
570 0, /* rightshift */
571 2, /* size (0 = byte, 1 = short, 2 = long) */
572 12, /* bitsize */
573 TRUE, /* pc_relative */
574 16, /* bitpos */
575 complain_overflow_dont,/* complain_on_overflow */
576 bfd_elf_generic_reloc, /* special_function */
577 "R_ARM_ALU_PCREL_23_15",/* name */
578 FALSE, /* partial_inplace */
579 0x00000fff, /* src_mask */
580 0x00000fff, /* dst_mask */
581 TRUE), /* pcrel_offset */
582
583 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
584 0, /* rightshift */
585 2, /* size (0 = byte, 1 = short, 2 = long) */
586 12, /* bitsize */
587 FALSE, /* pc_relative */
588 0, /* bitpos */
589 complain_overflow_dont,/* complain_on_overflow */
590 bfd_elf_generic_reloc, /* special_function */
591 "R_ARM_LDR_SBREL_11_0",/* name */
592 FALSE, /* partial_inplace */
593 0x00000fff, /* src_mask */
594 0x00000fff, /* dst_mask */
595 FALSE), /* pcrel_offset */
596
597 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
598 0, /* rightshift */
599 2, /* size (0 = byte, 1 = short, 2 = long) */
600 8, /* bitsize */
601 FALSE, /* pc_relative */
602 12, /* bitpos */
603 complain_overflow_dont,/* complain_on_overflow */
604 bfd_elf_generic_reloc, /* special_function */
605 "R_ARM_ALU_SBREL_19_12",/* name */
606 FALSE, /* partial_inplace */
607 0x000ff000, /* src_mask */
608 0x000ff000, /* dst_mask */
609 FALSE), /* pcrel_offset */
610
611 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
612 0, /* rightshift */
613 2, /* size (0 = byte, 1 = short, 2 = long) */
614 8, /* bitsize */
615 FALSE, /* pc_relative */
616 20, /* bitpos */
617 complain_overflow_dont,/* complain_on_overflow */
618 bfd_elf_generic_reloc, /* special_function */
619 "R_ARM_ALU_SBREL_27_20",/* name */
620 FALSE, /* partial_inplace */
621 0x0ff00000, /* src_mask */
622 0x0ff00000, /* dst_mask */
623 FALSE), /* pcrel_offset */
624
625 HOWTO (R_ARM_TARGET1, /* type */
626 0, /* rightshift */
627 2, /* size (0 = byte, 1 = short, 2 = long) */
628 32, /* bitsize */
629 FALSE, /* pc_relative */
630 0, /* bitpos */
631 complain_overflow_dont,/* complain_on_overflow */
632 bfd_elf_generic_reloc, /* special_function */
633 "R_ARM_TARGET1", /* name */
634 FALSE, /* partial_inplace */
635 0xffffffff, /* src_mask */
636 0xffffffff, /* dst_mask */
637 FALSE), /* pcrel_offset */
638
639 HOWTO (R_ARM_ROSEGREL32, /* type */
640 0, /* rightshift */
641 2, /* size (0 = byte, 1 = short, 2 = long) */
642 32, /* bitsize */
643 FALSE, /* pc_relative */
644 0, /* bitpos */
645 complain_overflow_dont,/* complain_on_overflow */
646 bfd_elf_generic_reloc, /* special_function */
647 "R_ARM_ROSEGREL32", /* name */
648 FALSE, /* partial_inplace */
649 0xffffffff, /* src_mask */
650 0xffffffff, /* dst_mask */
651 FALSE), /* pcrel_offset */
652
653 HOWTO (R_ARM_V4BX, /* type */
654 0, /* rightshift */
655 2, /* size (0 = byte, 1 = short, 2 = long) */
656 32, /* bitsize */
657 FALSE, /* pc_relative */
658 0, /* bitpos */
659 complain_overflow_dont,/* complain_on_overflow */
660 bfd_elf_generic_reloc, /* special_function */
661 "R_ARM_V4BX", /* name */
662 FALSE, /* partial_inplace */
663 0xffffffff, /* src_mask */
664 0xffffffff, /* dst_mask */
665 FALSE), /* pcrel_offset */
666
667 HOWTO (R_ARM_TARGET2, /* type */
668 0, /* rightshift */
669 2, /* size (0 = byte, 1 = short, 2 = long) */
670 32, /* bitsize */
671 FALSE, /* pc_relative */
672 0, /* bitpos */
673 complain_overflow_signed,/* complain_on_overflow */
674 bfd_elf_generic_reloc, /* special_function */
675 "R_ARM_TARGET2", /* name */
676 FALSE, /* partial_inplace */
677 0xffffffff, /* src_mask */
678 0xffffffff, /* dst_mask */
679 TRUE), /* pcrel_offset */
680
681 HOWTO (R_ARM_PREL31, /* type */
682 0, /* rightshift */
683 2, /* size (0 = byte, 1 = short, 2 = long) */
684 31, /* bitsize */
685 TRUE, /* pc_relative */
686 0, /* bitpos */
687 complain_overflow_signed,/* complain_on_overflow */
688 bfd_elf_generic_reloc, /* special_function */
689 "R_ARM_PREL31", /* name */
690 FALSE, /* partial_inplace */
691 0x7fffffff, /* src_mask */
692 0x7fffffff, /* dst_mask */
693 TRUE), /* pcrel_offset */
694
695 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
696 0, /* rightshift */
697 2, /* size (0 = byte, 1 = short, 2 = long) */
698 16, /* bitsize */
699 FALSE, /* pc_relative */
700 0, /* bitpos */
701 complain_overflow_dont,/* complain_on_overflow */
702 bfd_elf_generic_reloc, /* special_function */
703 "R_ARM_MOVW_ABS_NC", /* name */
704 FALSE, /* partial_inplace */
705 0x000f0fff, /* src_mask */
706 0x000f0fff, /* dst_mask */
707 FALSE), /* pcrel_offset */
708
709 HOWTO (R_ARM_MOVT_ABS, /* type */
710 0, /* rightshift */
711 2, /* size (0 = byte, 1 = short, 2 = long) */
712 16, /* bitsize */
713 FALSE, /* pc_relative */
714 0, /* bitpos */
715 complain_overflow_bitfield,/* complain_on_overflow */
716 bfd_elf_generic_reloc, /* special_function */
717 "R_ARM_MOVT_ABS", /* name */
718 FALSE, /* partial_inplace */
719 0x000f0fff, /* src_mask */
720 0x000f0fff, /* dst_mask */
721 FALSE), /* pcrel_offset */
722
723 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
724 0, /* rightshift */
725 2, /* size (0 = byte, 1 = short, 2 = long) */
726 16, /* bitsize */
727 TRUE, /* pc_relative */
728 0, /* bitpos */
729 complain_overflow_dont,/* complain_on_overflow */
730 bfd_elf_generic_reloc, /* special_function */
731 "R_ARM_MOVW_PREL_NC", /* name */
732 FALSE, /* partial_inplace */
733 0x000f0fff, /* src_mask */
734 0x000f0fff, /* dst_mask */
735 TRUE), /* pcrel_offset */
736
737 HOWTO (R_ARM_MOVT_PREL, /* type */
738 0, /* rightshift */
739 2, /* size (0 = byte, 1 = short, 2 = long) */
740 16, /* bitsize */
741 TRUE, /* pc_relative */
742 0, /* bitpos */
743 complain_overflow_bitfield,/* complain_on_overflow */
744 bfd_elf_generic_reloc, /* special_function */
745 "R_ARM_MOVT_PREL", /* name */
746 FALSE, /* partial_inplace */
747 0x000f0fff, /* src_mask */
748 0x000f0fff, /* dst_mask */
749 TRUE), /* pcrel_offset */
750
751 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
752 0, /* rightshift */
753 2, /* size (0 = byte, 1 = short, 2 = long) */
754 16, /* bitsize */
755 FALSE, /* pc_relative */
756 0, /* bitpos */
757 complain_overflow_dont,/* complain_on_overflow */
758 bfd_elf_generic_reloc, /* special_function */
759 "R_ARM_THM_MOVW_ABS_NC",/* name */
760 FALSE, /* partial_inplace */
761 0x040f70ff, /* src_mask */
762 0x040f70ff, /* dst_mask */
763 FALSE), /* pcrel_offset */
764
765 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
766 0, /* rightshift */
767 2, /* size (0 = byte, 1 = short, 2 = long) */
768 16, /* bitsize */
769 FALSE, /* pc_relative */
770 0, /* bitpos */
771 complain_overflow_bitfield,/* complain_on_overflow */
772 bfd_elf_generic_reloc, /* special_function */
773 "R_ARM_THM_MOVT_ABS", /* name */
774 FALSE, /* partial_inplace */
775 0x040f70ff, /* src_mask */
776 0x040f70ff, /* dst_mask */
777 FALSE), /* pcrel_offset */
778
779 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
780 0, /* rightshift */
781 2, /* size (0 = byte, 1 = short, 2 = long) */
782 16, /* bitsize */
783 TRUE, /* pc_relative */
784 0, /* bitpos */
785 complain_overflow_dont,/* complain_on_overflow */
786 bfd_elf_generic_reloc, /* special_function */
787 "R_ARM_THM_MOVW_PREL_NC",/* name */
788 FALSE, /* partial_inplace */
789 0x040f70ff, /* src_mask */
790 0x040f70ff, /* dst_mask */
791 TRUE), /* pcrel_offset */
792
793 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
794 0, /* rightshift */
795 2, /* size (0 = byte, 1 = short, 2 = long) */
796 16, /* bitsize */
797 TRUE, /* pc_relative */
798 0, /* bitpos */
799 complain_overflow_bitfield,/* complain_on_overflow */
800 bfd_elf_generic_reloc, /* special_function */
801 "R_ARM_THM_MOVT_PREL", /* name */
802 FALSE, /* partial_inplace */
803 0x040f70ff, /* src_mask */
804 0x040f70ff, /* dst_mask */
805 TRUE), /* pcrel_offset */
806
807 HOWTO (R_ARM_THM_JUMP19, /* type */
808 1, /* rightshift */
809 2, /* size (0 = byte, 1 = short, 2 = long) */
810 19, /* bitsize */
811 TRUE, /* pc_relative */
812 0, /* bitpos */
813 complain_overflow_signed,/* complain_on_overflow */
814 bfd_elf_generic_reloc, /* special_function */
815 "R_ARM_THM_JUMP19", /* name */
816 FALSE, /* partial_inplace */
817 0x043f2fff, /* src_mask */
818 0x043f2fff, /* dst_mask */
819 TRUE), /* pcrel_offset */
820
821 HOWTO (R_ARM_THM_JUMP6, /* type */
822 1, /* rightshift */
823 1, /* size (0 = byte, 1 = short, 2 = long) */
824 6, /* bitsize */
825 TRUE, /* pc_relative */
826 0, /* bitpos */
827 complain_overflow_unsigned,/* complain_on_overflow */
828 bfd_elf_generic_reloc, /* special_function */
829 "R_ARM_THM_JUMP6", /* name */
830 FALSE, /* partial_inplace */
831 0x02f8, /* src_mask */
832 0x02f8, /* dst_mask */
833 TRUE), /* pcrel_offset */
834
835 /* These are declared as 13-bit signed relocations because we can
836 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
837 versa. */
838 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
839 0, /* rightshift */
840 2, /* size (0 = byte, 1 = short, 2 = long) */
841 13, /* bitsize */
842 TRUE, /* pc_relative */
843 0, /* bitpos */
844 complain_overflow_dont,/* complain_on_overflow */
845 bfd_elf_generic_reloc, /* special_function */
846 "R_ARM_THM_ALU_PREL_11_0",/* name */
847 FALSE, /* partial_inplace */
848 0xffffffff, /* src_mask */
849 0xffffffff, /* dst_mask */
850 TRUE), /* pcrel_offset */
851
852 HOWTO (R_ARM_THM_PC12, /* type */
853 0, /* rightshift */
854 2, /* size (0 = byte, 1 = short, 2 = long) */
855 13, /* bitsize */
856 TRUE, /* pc_relative */
857 0, /* bitpos */
858 complain_overflow_dont,/* complain_on_overflow */
859 bfd_elf_generic_reloc, /* special_function */
860 "R_ARM_THM_PC12", /* name */
861 FALSE, /* partial_inplace */
862 0xffffffff, /* src_mask */
863 0xffffffff, /* dst_mask */
864 TRUE), /* pcrel_offset */
865
866 HOWTO (R_ARM_ABS32_NOI, /* type */
867 0, /* rightshift */
868 2, /* size (0 = byte, 1 = short, 2 = long) */
869 32, /* bitsize */
870 FALSE, /* pc_relative */
871 0, /* bitpos */
872 complain_overflow_dont,/* complain_on_overflow */
873 bfd_elf_generic_reloc, /* special_function */
874 "R_ARM_ABS32_NOI", /* name */
875 FALSE, /* partial_inplace */
876 0xffffffff, /* src_mask */
877 0xffffffff, /* dst_mask */
878 FALSE), /* pcrel_offset */
879
880 HOWTO (R_ARM_REL32_NOI, /* type */
881 0, /* rightshift */
882 2, /* size (0 = byte, 1 = short, 2 = long) */
883 32, /* bitsize */
884 TRUE, /* pc_relative */
885 0, /* bitpos */
886 complain_overflow_dont,/* complain_on_overflow */
887 bfd_elf_generic_reloc, /* special_function */
888 "R_ARM_REL32_NOI", /* name */
889 FALSE, /* partial_inplace */
890 0xffffffff, /* src_mask */
891 0xffffffff, /* dst_mask */
892 FALSE), /* pcrel_offset */
893
894 /* Group relocations. */
895
896 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
897 0, /* rightshift */
898 2, /* size (0 = byte, 1 = short, 2 = long) */
899 32, /* bitsize */
900 TRUE, /* pc_relative */
901 0, /* bitpos */
902 complain_overflow_dont,/* complain_on_overflow */
903 bfd_elf_generic_reloc, /* special_function */
904 "R_ARM_ALU_PC_G0_NC", /* name */
905 FALSE, /* partial_inplace */
906 0xffffffff, /* src_mask */
907 0xffffffff, /* dst_mask */
908 TRUE), /* pcrel_offset */
909
910 HOWTO (R_ARM_ALU_PC_G0, /* type */
911 0, /* rightshift */
912 2, /* size (0 = byte, 1 = short, 2 = long) */
913 32, /* bitsize */
914 TRUE, /* pc_relative */
915 0, /* bitpos */
916 complain_overflow_dont,/* complain_on_overflow */
917 bfd_elf_generic_reloc, /* special_function */
918 "R_ARM_ALU_PC_G0", /* name */
919 FALSE, /* partial_inplace */
920 0xffffffff, /* src_mask */
921 0xffffffff, /* dst_mask */
922 TRUE), /* pcrel_offset */
923
924 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
925 0, /* rightshift */
926 2, /* size (0 = byte, 1 = short, 2 = long) */
927 32, /* bitsize */
928 TRUE, /* pc_relative */
929 0, /* bitpos */
930 complain_overflow_dont,/* complain_on_overflow */
931 bfd_elf_generic_reloc, /* special_function */
932 "R_ARM_ALU_PC_G1_NC", /* name */
933 FALSE, /* partial_inplace */
934 0xffffffff, /* src_mask */
935 0xffffffff, /* dst_mask */
936 TRUE), /* pcrel_offset */
937
938 HOWTO (R_ARM_ALU_PC_G1, /* type */
939 0, /* rightshift */
940 2, /* size (0 = byte, 1 = short, 2 = long) */
941 32, /* bitsize */
942 TRUE, /* pc_relative */
943 0, /* bitpos */
944 complain_overflow_dont,/* complain_on_overflow */
945 bfd_elf_generic_reloc, /* special_function */
946 "R_ARM_ALU_PC_G1", /* name */
947 FALSE, /* partial_inplace */
948 0xffffffff, /* src_mask */
949 0xffffffff, /* dst_mask */
950 TRUE), /* pcrel_offset */
951
952 HOWTO (R_ARM_ALU_PC_G2, /* type */
953 0, /* rightshift */
954 2, /* size (0 = byte, 1 = short, 2 = long) */
955 32, /* bitsize */
956 TRUE, /* pc_relative */
957 0, /* bitpos */
958 complain_overflow_dont,/* complain_on_overflow */
959 bfd_elf_generic_reloc, /* special_function */
960 "R_ARM_ALU_PC_G2", /* name */
961 FALSE, /* partial_inplace */
962 0xffffffff, /* src_mask */
963 0xffffffff, /* dst_mask */
964 TRUE), /* pcrel_offset */
965
966 HOWTO (R_ARM_LDR_PC_G1, /* type */
967 0, /* rightshift */
968 2, /* size (0 = byte, 1 = short, 2 = long) */
969 32, /* bitsize */
970 TRUE, /* pc_relative */
971 0, /* bitpos */
972 complain_overflow_dont,/* complain_on_overflow */
973 bfd_elf_generic_reloc, /* special_function */
974 "R_ARM_LDR_PC_G1", /* name */
975 FALSE, /* partial_inplace */
976 0xffffffff, /* src_mask */
977 0xffffffff, /* dst_mask */
978 TRUE), /* pcrel_offset */
979
980 HOWTO (R_ARM_LDR_PC_G2, /* type */
981 0, /* rightshift */
982 2, /* size (0 = byte, 1 = short, 2 = long) */
983 32, /* bitsize */
984 TRUE, /* pc_relative */
985 0, /* bitpos */
986 complain_overflow_dont,/* complain_on_overflow */
987 bfd_elf_generic_reloc, /* special_function */
988 "R_ARM_LDR_PC_G2", /* name */
989 FALSE, /* partial_inplace */
990 0xffffffff, /* src_mask */
991 0xffffffff, /* dst_mask */
992 TRUE), /* pcrel_offset */
993
994 HOWTO (R_ARM_LDRS_PC_G0, /* type */
995 0, /* rightshift */
996 2, /* size (0 = byte, 1 = short, 2 = long) */
997 32, /* bitsize */
998 TRUE, /* pc_relative */
999 0, /* bitpos */
1000 complain_overflow_dont,/* complain_on_overflow */
1001 bfd_elf_generic_reloc, /* special_function */
1002 "R_ARM_LDRS_PC_G0", /* name */
1003 FALSE, /* partial_inplace */
1004 0xffffffff, /* src_mask */
1005 0xffffffff, /* dst_mask */
1006 TRUE), /* pcrel_offset */
1007
1008 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1009 0, /* rightshift */
1010 2, /* size (0 = byte, 1 = short, 2 = long) */
1011 32, /* bitsize */
1012 TRUE, /* pc_relative */
1013 0, /* bitpos */
1014 complain_overflow_dont,/* complain_on_overflow */
1015 bfd_elf_generic_reloc, /* special_function */
1016 "R_ARM_LDRS_PC_G1", /* name */
1017 FALSE, /* partial_inplace */
1018 0xffffffff, /* src_mask */
1019 0xffffffff, /* dst_mask */
1020 TRUE), /* pcrel_offset */
1021
1022 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1023 0, /* rightshift */
1024 2, /* size (0 = byte, 1 = short, 2 = long) */
1025 32, /* bitsize */
1026 TRUE, /* pc_relative */
1027 0, /* bitpos */
1028 complain_overflow_dont,/* complain_on_overflow */
1029 bfd_elf_generic_reloc, /* special_function */
1030 "R_ARM_LDRS_PC_G2", /* name */
1031 FALSE, /* partial_inplace */
1032 0xffffffff, /* src_mask */
1033 0xffffffff, /* dst_mask */
1034 TRUE), /* pcrel_offset */
1035
1036 HOWTO (R_ARM_LDC_PC_G0, /* type */
1037 0, /* rightshift */
1038 2, /* size (0 = byte, 1 = short, 2 = long) */
1039 32, /* bitsize */
1040 TRUE, /* pc_relative */
1041 0, /* bitpos */
1042 complain_overflow_dont,/* complain_on_overflow */
1043 bfd_elf_generic_reloc, /* special_function */
1044 "R_ARM_LDC_PC_G0", /* name */
1045 FALSE, /* partial_inplace */
1046 0xffffffff, /* src_mask */
1047 0xffffffff, /* dst_mask */
1048 TRUE), /* pcrel_offset */
1049
1050 HOWTO (R_ARM_LDC_PC_G1, /* type */
1051 0, /* rightshift */
1052 2, /* size (0 = byte, 1 = short, 2 = long) */
1053 32, /* bitsize */
1054 TRUE, /* pc_relative */
1055 0, /* bitpos */
1056 complain_overflow_dont,/* complain_on_overflow */
1057 bfd_elf_generic_reloc, /* special_function */
1058 "R_ARM_LDC_PC_G1", /* name */
1059 FALSE, /* partial_inplace */
1060 0xffffffff, /* src_mask */
1061 0xffffffff, /* dst_mask */
1062 TRUE), /* pcrel_offset */
1063
1064 HOWTO (R_ARM_LDC_PC_G2, /* type */
1065 0, /* rightshift */
1066 2, /* size (0 = byte, 1 = short, 2 = long) */
1067 32, /* bitsize */
1068 TRUE, /* pc_relative */
1069 0, /* bitpos */
1070 complain_overflow_dont,/* complain_on_overflow */
1071 bfd_elf_generic_reloc, /* special_function */
1072 "R_ARM_LDC_PC_G2", /* name */
1073 FALSE, /* partial_inplace */
1074 0xffffffff, /* src_mask */
1075 0xffffffff, /* dst_mask */
1076 TRUE), /* pcrel_offset */
1077
1078 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1079 0, /* rightshift */
1080 2, /* size (0 = byte, 1 = short, 2 = long) */
1081 32, /* bitsize */
1082 TRUE, /* pc_relative */
1083 0, /* bitpos */
1084 complain_overflow_dont,/* complain_on_overflow */
1085 bfd_elf_generic_reloc, /* special_function */
1086 "R_ARM_ALU_SB_G0_NC", /* name */
1087 FALSE, /* partial_inplace */
1088 0xffffffff, /* src_mask */
1089 0xffffffff, /* dst_mask */
1090 TRUE), /* pcrel_offset */
1091
1092 HOWTO (R_ARM_ALU_SB_G0, /* type */
1093 0, /* rightshift */
1094 2, /* size (0 = byte, 1 = short, 2 = long) */
1095 32, /* bitsize */
1096 TRUE, /* pc_relative */
1097 0, /* bitpos */
1098 complain_overflow_dont,/* complain_on_overflow */
1099 bfd_elf_generic_reloc, /* special_function */
1100 "R_ARM_ALU_SB_G0", /* name */
1101 FALSE, /* partial_inplace */
1102 0xffffffff, /* src_mask */
1103 0xffffffff, /* dst_mask */
1104 TRUE), /* pcrel_offset */
1105
1106 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1107 0, /* rightshift */
1108 2, /* size (0 = byte, 1 = short, 2 = long) */
1109 32, /* bitsize */
1110 TRUE, /* pc_relative */
1111 0, /* bitpos */
1112 complain_overflow_dont,/* complain_on_overflow */
1113 bfd_elf_generic_reloc, /* special_function */
1114 "R_ARM_ALU_SB_G1_NC", /* name */
1115 FALSE, /* partial_inplace */
1116 0xffffffff, /* src_mask */
1117 0xffffffff, /* dst_mask */
1118 TRUE), /* pcrel_offset */
1119
1120 HOWTO (R_ARM_ALU_SB_G1, /* type */
1121 0, /* rightshift */
1122 2, /* size (0 = byte, 1 = short, 2 = long) */
1123 32, /* bitsize */
1124 TRUE, /* pc_relative */
1125 0, /* bitpos */
1126 complain_overflow_dont,/* complain_on_overflow */
1127 bfd_elf_generic_reloc, /* special_function */
1128 "R_ARM_ALU_SB_G1", /* name */
1129 FALSE, /* partial_inplace */
1130 0xffffffff, /* src_mask */
1131 0xffffffff, /* dst_mask */
1132 TRUE), /* pcrel_offset */
1133
1134 HOWTO (R_ARM_ALU_SB_G2, /* type */
1135 0, /* rightshift */
1136 2, /* size (0 = byte, 1 = short, 2 = long) */
1137 32, /* bitsize */
1138 TRUE, /* pc_relative */
1139 0, /* bitpos */
1140 complain_overflow_dont,/* complain_on_overflow */
1141 bfd_elf_generic_reloc, /* special_function */
1142 "R_ARM_ALU_SB_G2", /* name */
1143 FALSE, /* partial_inplace */
1144 0xffffffff, /* src_mask */
1145 0xffffffff, /* dst_mask */
1146 TRUE), /* pcrel_offset */
1147
1148 HOWTO (R_ARM_LDR_SB_G0, /* type */
1149 0, /* rightshift */
1150 2, /* size (0 = byte, 1 = short, 2 = long) */
1151 32, /* bitsize */
1152 TRUE, /* pc_relative */
1153 0, /* bitpos */
1154 complain_overflow_dont,/* complain_on_overflow */
1155 bfd_elf_generic_reloc, /* special_function */
1156 "R_ARM_LDR_SB_G0", /* name */
1157 FALSE, /* partial_inplace */
1158 0xffffffff, /* src_mask */
1159 0xffffffff, /* dst_mask */
1160 TRUE), /* pcrel_offset */
1161
1162 HOWTO (R_ARM_LDR_SB_G1, /* type */
1163 0, /* rightshift */
1164 2, /* size (0 = byte, 1 = short, 2 = long) */
1165 32, /* bitsize */
1166 TRUE, /* pc_relative */
1167 0, /* bitpos */
1168 complain_overflow_dont,/* complain_on_overflow */
1169 bfd_elf_generic_reloc, /* special_function */
1170 "R_ARM_LDR_SB_G1", /* name */
1171 FALSE, /* partial_inplace */
1172 0xffffffff, /* src_mask */
1173 0xffffffff, /* dst_mask */
1174 TRUE), /* pcrel_offset */
1175
1176 HOWTO (R_ARM_LDR_SB_G2, /* type */
1177 0, /* rightshift */
1178 2, /* size (0 = byte, 1 = short, 2 = long) */
1179 32, /* bitsize */
1180 TRUE, /* pc_relative */
1181 0, /* bitpos */
1182 complain_overflow_dont,/* complain_on_overflow */
1183 bfd_elf_generic_reloc, /* special_function */
1184 "R_ARM_LDR_SB_G2", /* name */
1185 FALSE, /* partial_inplace */
1186 0xffffffff, /* src_mask */
1187 0xffffffff, /* dst_mask */
1188 TRUE), /* pcrel_offset */
1189
1190 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1191 0, /* rightshift */
1192 2, /* size (0 = byte, 1 = short, 2 = long) */
1193 32, /* bitsize */
1194 TRUE, /* pc_relative */
1195 0, /* bitpos */
1196 complain_overflow_dont,/* complain_on_overflow */
1197 bfd_elf_generic_reloc, /* special_function */
1198 "R_ARM_LDRS_SB_G0", /* name */
1199 FALSE, /* partial_inplace */
1200 0xffffffff, /* src_mask */
1201 0xffffffff, /* dst_mask */
1202 TRUE), /* pcrel_offset */
1203
1204 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1205 0, /* rightshift */
1206 2, /* size (0 = byte, 1 = short, 2 = long) */
1207 32, /* bitsize */
1208 TRUE, /* pc_relative */
1209 0, /* bitpos */
1210 complain_overflow_dont,/* complain_on_overflow */
1211 bfd_elf_generic_reloc, /* special_function */
1212 "R_ARM_LDRS_SB_G1", /* name */
1213 FALSE, /* partial_inplace */
1214 0xffffffff, /* src_mask */
1215 0xffffffff, /* dst_mask */
1216 TRUE), /* pcrel_offset */
1217
1218 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1219 0, /* rightshift */
1220 2, /* size (0 = byte, 1 = short, 2 = long) */
1221 32, /* bitsize */
1222 TRUE, /* pc_relative */
1223 0, /* bitpos */
1224 complain_overflow_dont,/* complain_on_overflow */
1225 bfd_elf_generic_reloc, /* special_function */
1226 "R_ARM_LDRS_SB_G2", /* name */
1227 FALSE, /* partial_inplace */
1228 0xffffffff, /* src_mask */
1229 0xffffffff, /* dst_mask */
1230 TRUE), /* pcrel_offset */
1231
1232 HOWTO (R_ARM_LDC_SB_G0, /* type */
1233 0, /* rightshift */
1234 2, /* size (0 = byte, 1 = short, 2 = long) */
1235 32, /* bitsize */
1236 TRUE, /* pc_relative */
1237 0, /* bitpos */
1238 complain_overflow_dont,/* complain_on_overflow */
1239 bfd_elf_generic_reloc, /* special_function */
1240 "R_ARM_LDC_SB_G0", /* name */
1241 FALSE, /* partial_inplace */
1242 0xffffffff, /* src_mask */
1243 0xffffffff, /* dst_mask */
1244 TRUE), /* pcrel_offset */
1245
1246 HOWTO (R_ARM_LDC_SB_G1, /* type */
1247 0, /* rightshift */
1248 2, /* size (0 = byte, 1 = short, 2 = long) */
1249 32, /* bitsize */
1250 TRUE, /* pc_relative */
1251 0, /* bitpos */
1252 complain_overflow_dont,/* complain_on_overflow */
1253 bfd_elf_generic_reloc, /* special_function */
1254 "R_ARM_LDC_SB_G1", /* name */
1255 FALSE, /* partial_inplace */
1256 0xffffffff, /* src_mask */
1257 0xffffffff, /* dst_mask */
1258 TRUE), /* pcrel_offset */
1259
1260 HOWTO (R_ARM_LDC_SB_G2, /* type */
1261 0, /* rightshift */
1262 2, /* size (0 = byte, 1 = short, 2 = long) */
1263 32, /* bitsize */
1264 TRUE, /* pc_relative */
1265 0, /* bitpos */
1266 complain_overflow_dont,/* complain_on_overflow */
1267 bfd_elf_generic_reloc, /* special_function */
1268 "R_ARM_LDC_SB_G2", /* name */
1269 FALSE, /* partial_inplace */
1270 0xffffffff, /* src_mask */
1271 0xffffffff, /* dst_mask */
1272 TRUE), /* pcrel_offset */
1273
1274 /* End of group relocations. */
1275
1276 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1277 0, /* rightshift */
1278 2, /* size (0 = byte, 1 = short, 2 = long) */
1279 16, /* bitsize */
1280 FALSE, /* pc_relative */
1281 0, /* bitpos */
1282 complain_overflow_dont,/* complain_on_overflow */
1283 bfd_elf_generic_reloc, /* special_function */
1284 "R_ARM_MOVW_BREL_NC", /* name */
1285 FALSE, /* partial_inplace */
1286 0x0000ffff, /* src_mask */
1287 0x0000ffff, /* dst_mask */
1288 FALSE), /* pcrel_offset */
1289
1290 HOWTO (R_ARM_MOVT_BREL, /* type */
1291 0, /* rightshift */
1292 2, /* size (0 = byte, 1 = short, 2 = long) */
1293 16, /* bitsize */
1294 FALSE, /* pc_relative */
1295 0, /* bitpos */
1296 complain_overflow_bitfield,/* complain_on_overflow */
1297 bfd_elf_generic_reloc, /* special_function */
1298 "R_ARM_MOVT_BREL", /* name */
1299 FALSE, /* partial_inplace */
1300 0x0000ffff, /* src_mask */
1301 0x0000ffff, /* dst_mask */
1302 FALSE), /* pcrel_offset */
1303
1304 HOWTO (R_ARM_MOVW_BREL, /* type */
1305 0, /* rightshift */
1306 2, /* size (0 = byte, 1 = short, 2 = long) */
1307 16, /* bitsize */
1308 FALSE, /* pc_relative */
1309 0, /* bitpos */
1310 complain_overflow_dont,/* complain_on_overflow */
1311 bfd_elf_generic_reloc, /* special_function */
1312 "R_ARM_MOVW_BREL", /* name */
1313 FALSE, /* partial_inplace */
1314 0x0000ffff, /* src_mask */
1315 0x0000ffff, /* dst_mask */
1316 FALSE), /* pcrel_offset */
1317
1318 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1319 0, /* rightshift */
1320 2, /* size (0 = byte, 1 = short, 2 = long) */
1321 16, /* bitsize */
1322 FALSE, /* pc_relative */
1323 0, /* bitpos */
1324 complain_overflow_dont,/* complain_on_overflow */
1325 bfd_elf_generic_reloc, /* special_function */
1326 "R_ARM_THM_MOVW_BREL_NC",/* name */
1327 FALSE, /* partial_inplace */
1328 0x040f70ff, /* src_mask */
1329 0x040f70ff, /* dst_mask */
1330 FALSE), /* pcrel_offset */
1331
1332 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1333 0, /* rightshift */
1334 2, /* size (0 = byte, 1 = short, 2 = long) */
1335 16, /* bitsize */
1336 FALSE, /* pc_relative */
1337 0, /* bitpos */
1338 complain_overflow_bitfield,/* complain_on_overflow */
1339 bfd_elf_generic_reloc, /* special_function */
1340 "R_ARM_THM_MOVT_BREL", /* name */
1341 FALSE, /* partial_inplace */
1342 0x040f70ff, /* src_mask */
1343 0x040f70ff, /* dst_mask */
1344 FALSE), /* pcrel_offset */
1345
1346 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1347 0, /* rightshift */
1348 2, /* size (0 = byte, 1 = short, 2 = long) */
1349 16, /* bitsize */
1350 FALSE, /* pc_relative */
1351 0, /* bitpos */
1352 complain_overflow_dont,/* complain_on_overflow */
1353 bfd_elf_generic_reloc, /* special_function */
1354 "R_ARM_THM_MOVW_BREL", /* name */
1355 FALSE, /* partial_inplace */
1356 0x040f70ff, /* src_mask */
1357 0x040f70ff, /* dst_mask */
1358 FALSE), /* pcrel_offset */
1359
1360 HOWTO (R_ARM_TLS_GOTDESC, /* type */
1361 0, /* rightshift */
1362 2, /* size (0 = byte, 1 = short, 2 = long) */
1363 32, /* bitsize */
1364 FALSE, /* pc_relative */
1365 0, /* bitpos */
1366 complain_overflow_bitfield,/* complain_on_overflow */
1367 NULL, /* special_function */
1368 "R_ARM_TLS_GOTDESC", /* name */
1369 TRUE, /* partial_inplace */
1370 0xffffffff, /* src_mask */
1371 0xffffffff, /* dst_mask */
1372 FALSE), /* pcrel_offset */
1373
1374 HOWTO (R_ARM_TLS_CALL, /* type */
1375 0, /* rightshift */
1376 2, /* size (0 = byte, 1 = short, 2 = long) */
1377 24, /* bitsize */
1378 FALSE, /* pc_relative */
1379 0, /* bitpos */
1380 complain_overflow_dont,/* complain_on_overflow */
1381 bfd_elf_generic_reloc, /* special_function */
1382 "R_ARM_TLS_CALL", /* name */
1383 FALSE, /* partial_inplace */
1384 0x00ffffff, /* src_mask */
1385 0x00ffffff, /* dst_mask */
1386 FALSE), /* pcrel_offset */
1387
1388 HOWTO (R_ARM_TLS_DESCSEQ, /* type */
1389 0, /* rightshift */
1390 2, /* size (0 = byte, 1 = short, 2 = long) */
1391 0, /* bitsize */
1392 FALSE, /* pc_relative */
1393 0, /* bitpos */
1394 complain_overflow_bitfield,/* complain_on_overflow */
1395 bfd_elf_generic_reloc, /* special_function */
1396 "R_ARM_TLS_DESCSEQ", /* name */
1397 FALSE, /* partial_inplace */
1398 0x00000000, /* src_mask */
1399 0x00000000, /* dst_mask */
1400 FALSE), /* pcrel_offset */
1401
1402 HOWTO (R_ARM_THM_TLS_CALL, /* type */
1403 0, /* rightshift */
1404 2, /* size (0 = byte, 1 = short, 2 = long) */
1405 24, /* bitsize */
1406 FALSE, /* pc_relative */
1407 0, /* bitpos */
1408 complain_overflow_dont,/* complain_on_overflow */
1409 bfd_elf_generic_reloc, /* special_function */
1410 "R_ARM_THM_TLS_CALL", /* name */
1411 FALSE, /* partial_inplace */
1412 0x07ff07ff, /* src_mask */
1413 0x07ff07ff, /* dst_mask */
1414 FALSE), /* pcrel_offset */
1415
1416 HOWTO (R_ARM_PLT32_ABS, /* type */
1417 0, /* rightshift */
1418 2, /* size (0 = byte, 1 = short, 2 = long) */
1419 32, /* bitsize */
1420 FALSE, /* pc_relative */
1421 0, /* bitpos */
1422 complain_overflow_dont,/* complain_on_overflow */
1423 bfd_elf_generic_reloc, /* special_function */
1424 "R_ARM_PLT32_ABS", /* name */
1425 FALSE, /* partial_inplace */
1426 0xffffffff, /* src_mask */
1427 0xffffffff, /* dst_mask */
1428 FALSE), /* pcrel_offset */
1429
1430 HOWTO (R_ARM_GOT_ABS, /* type */
1431 0, /* rightshift */
1432 2, /* size (0 = byte, 1 = short, 2 = long) */
1433 32, /* bitsize */
1434 FALSE, /* pc_relative */
1435 0, /* bitpos */
1436 complain_overflow_dont,/* complain_on_overflow */
1437 bfd_elf_generic_reloc, /* special_function */
1438 "R_ARM_GOT_ABS", /* name */
1439 FALSE, /* partial_inplace */
1440 0xffffffff, /* src_mask */
1441 0xffffffff, /* dst_mask */
1442 FALSE), /* pcrel_offset */
1443
1444 HOWTO (R_ARM_GOT_PREL, /* type */
1445 0, /* rightshift */
1446 2, /* size (0 = byte, 1 = short, 2 = long) */
1447 32, /* bitsize */
1448 TRUE, /* pc_relative */
1449 0, /* bitpos */
1450 complain_overflow_dont, /* complain_on_overflow */
1451 bfd_elf_generic_reloc, /* special_function */
1452 "R_ARM_GOT_PREL", /* name */
1453 FALSE, /* partial_inplace */
1454 0xffffffff, /* src_mask */
1455 0xffffffff, /* dst_mask */
1456 TRUE), /* pcrel_offset */
1457
1458 HOWTO (R_ARM_GOT_BREL12, /* type */
1459 0, /* rightshift */
1460 2, /* size (0 = byte, 1 = short, 2 = long) */
1461 12, /* bitsize */
1462 FALSE, /* pc_relative */
1463 0, /* bitpos */
1464 complain_overflow_bitfield,/* complain_on_overflow */
1465 bfd_elf_generic_reloc, /* special_function */
1466 "R_ARM_GOT_BREL12", /* name */
1467 FALSE, /* partial_inplace */
1468 0x00000fff, /* src_mask */
1469 0x00000fff, /* dst_mask */
1470 FALSE), /* pcrel_offset */
1471
1472 HOWTO (R_ARM_GOTOFF12, /* type */
1473 0, /* rightshift */
1474 2, /* size (0 = byte, 1 = short, 2 = long) */
1475 12, /* bitsize */
1476 FALSE, /* pc_relative */
1477 0, /* bitpos */
1478 complain_overflow_bitfield,/* complain_on_overflow */
1479 bfd_elf_generic_reloc, /* special_function */
1480 "R_ARM_GOTOFF12", /* name */
1481 FALSE, /* partial_inplace */
1482 0x00000fff, /* src_mask */
1483 0x00000fff, /* dst_mask */
1484 FALSE), /* pcrel_offset */
1485
1486 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1487
1488 /* GNU extension to record C++ vtable member usage */
1489 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1490 0, /* rightshift */
1491 2, /* size (0 = byte, 1 = short, 2 = long) */
1492 0, /* bitsize */
1493 FALSE, /* pc_relative */
1494 0, /* bitpos */
1495 complain_overflow_dont, /* complain_on_overflow */
1496 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1497 "R_ARM_GNU_VTENTRY", /* name */
1498 FALSE, /* partial_inplace */
1499 0, /* src_mask */
1500 0, /* dst_mask */
1501 FALSE), /* pcrel_offset */
1502
1503 /* GNU extension to record C++ vtable hierarchy */
1504 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1505 0, /* rightshift */
1506 2, /* size (0 = byte, 1 = short, 2 = long) */
1507 0, /* bitsize */
1508 FALSE, /* pc_relative */
1509 0, /* bitpos */
1510 complain_overflow_dont, /* complain_on_overflow */
1511 NULL, /* special_function */
1512 "R_ARM_GNU_VTINHERIT", /* name */
1513 FALSE, /* partial_inplace */
1514 0, /* src_mask */
1515 0, /* dst_mask */
1516 FALSE), /* pcrel_offset */
1517
1518 HOWTO (R_ARM_THM_JUMP11, /* type */
1519 1, /* rightshift */
1520 1, /* size (0 = byte, 1 = short, 2 = long) */
1521 11, /* bitsize */
1522 TRUE, /* pc_relative */
1523 0, /* bitpos */
1524 complain_overflow_signed, /* complain_on_overflow */
1525 bfd_elf_generic_reloc, /* special_function */
1526 "R_ARM_THM_JUMP11", /* name */
1527 FALSE, /* partial_inplace */
1528 0x000007ff, /* src_mask */
1529 0x000007ff, /* dst_mask */
1530 TRUE), /* pcrel_offset */
1531
1532 HOWTO (R_ARM_THM_JUMP8, /* type */
1533 1, /* rightshift */
1534 1, /* size (0 = byte, 1 = short, 2 = long) */
1535 8, /* bitsize */
1536 TRUE, /* pc_relative */
1537 0, /* bitpos */
1538 complain_overflow_signed, /* complain_on_overflow */
1539 bfd_elf_generic_reloc, /* special_function */
1540 "R_ARM_THM_JUMP8", /* name */
1541 FALSE, /* partial_inplace */
1542 0x000000ff, /* src_mask */
1543 0x000000ff, /* dst_mask */
1544 TRUE), /* pcrel_offset */
1545
1546 /* TLS relocations */
1547 HOWTO (R_ARM_TLS_GD32, /* type */
1548 0, /* rightshift */
1549 2, /* size (0 = byte, 1 = short, 2 = long) */
1550 32, /* bitsize */
1551 FALSE, /* pc_relative */
1552 0, /* bitpos */
1553 complain_overflow_bitfield,/* complain_on_overflow */
1554 NULL, /* special_function */
1555 "R_ARM_TLS_GD32", /* name */
1556 TRUE, /* partial_inplace */
1557 0xffffffff, /* src_mask */
1558 0xffffffff, /* dst_mask */
1559 FALSE), /* pcrel_offset */
1560
1561 HOWTO (R_ARM_TLS_LDM32, /* type */
1562 0, /* rightshift */
1563 2, /* size (0 = byte, 1 = short, 2 = long) */
1564 32, /* bitsize */
1565 FALSE, /* pc_relative */
1566 0, /* bitpos */
1567 complain_overflow_bitfield,/* complain_on_overflow */
1568 bfd_elf_generic_reloc, /* special_function */
1569 "R_ARM_TLS_LDM32", /* name */
1570 TRUE, /* partial_inplace */
1571 0xffffffff, /* src_mask */
1572 0xffffffff, /* dst_mask */
1573 FALSE), /* pcrel_offset */
1574
1575 HOWTO (R_ARM_TLS_LDO32, /* type */
1576 0, /* rightshift */
1577 2, /* size (0 = byte, 1 = short, 2 = long) */
1578 32, /* bitsize */
1579 FALSE, /* pc_relative */
1580 0, /* bitpos */
1581 complain_overflow_bitfield,/* complain_on_overflow */
1582 bfd_elf_generic_reloc, /* special_function */
1583 "R_ARM_TLS_LDO32", /* name */
1584 TRUE, /* partial_inplace */
1585 0xffffffff, /* src_mask */
1586 0xffffffff, /* dst_mask */
1587 FALSE), /* pcrel_offset */
1588
1589 HOWTO (R_ARM_TLS_IE32, /* type */
1590 0, /* rightshift */
1591 2, /* size (0 = byte, 1 = short, 2 = long) */
1592 32, /* bitsize */
1593 FALSE, /* pc_relative */
1594 0, /* bitpos */
1595 complain_overflow_bitfield,/* complain_on_overflow */
1596 NULL, /* special_function */
1597 "R_ARM_TLS_IE32", /* name */
1598 TRUE, /* partial_inplace */
1599 0xffffffff, /* src_mask */
1600 0xffffffff, /* dst_mask */
1601 FALSE), /* pcrel_offset */
1602
1603 HOWTO (R_ARM_TLS_LE32, /* type */
1604 0, /* rightshift */
1605 2, /* size (0 = byte, 1 = short, 2 = long) */
1606 32, /* bitsize */
1607 FALSE, /* pc_relative */
1608 0, /* bitpos */
1609 complain_overflow_bitfield,/* complain_on_overflow */
1610 NULL, /* special_function */
1611 "R_ARM_TLS_LE32", /* name */
1612 TRUE, /* partial_inplace */
1613 0xffffffff, /* src_mask */
1614 0xffffffff, /* dst_mask */
1615 FALSE), /* pcrel_offset */
1616
1617 HOWTO (R_ARM_TLS_LDO12, /* type */
1618 0, /* rightshift */
1619 2, /* size (0 = byte, 1 = short, 2 = long) */
1620 12, /* bitsize */
1621 FALSE, /* pc_relative */
1622 0, /* bitpos */
1623 complain_overflow_bitfield,/* complain_on_overflow */
1624 bfd_elf_generic_reloc, /* special_function */
1625 "R_ARM_TLS_LDO12", /* name */
1626 FALSE, /* partial_inplace */
1627 0x00000fff, /* src_mask */
1628 0x00000fff, /* dst_mask */
1629 FALSE), /* pcrel_offset */
1630
1631 HOWTO (R_ARM_TLS_LE12, /* type */
1632 0, /* rightshift */
1633 2, /* size (0 = byte, 1 = short, 2 = long) */
1634 12, /* bitsize */
1635 FALSE, /* pc_relative */
1636 0, /* bitpos */
1637 complain_overflow_bitfield,/* complain_on_overflow */
1638 bfd_elf_generic_reloc, /* special_function */
1639 "R_ARM_TLS_LE12", /* name */
1640 FALSE, /* partial_inplace */
1641 0x00000fff, /* src_mask */
1642 0x00000fff, /* dst_mask */
1643 FALSE), /* pcrel_offset */
1644
1645 HOWTO (R_ARM_TLS_IE12GP, /* type */
1646 0, /* rightshift */
1647 2, /* size (0 = byte, 1 = short, 2 = long) */
1648 12, /* bitsize */
1649 FALSE, /* pc_relative */
1650 0, /* bitpos */
1651 complain_overflow_bitfield,/* complain_on_overflow */
1652 bfd_elf_generic_reloc, /* special_function */
1653 "R_ARM_TLS_IE12GP", /* name */
1654 FALSE, /* partial_inplace */
1655 0x00000fff, /* src_mask */
1656 0x00000fff, /* dst_mask */
1657 FALSE), /* pcrel_offset */
1658
1659 /* 112-127 private relocations. */
1660 EMPTY_HOWTO (112),
1661 EMPTY_HOWTO (113),
1662 EMPTY_HOWTO (114),
1663 EMPTY_HOWTO (115),
1664 EMPTY_HOWTO (116),
1665 EMPTY_HOWTO (117),
1666 EMPTY_HOWTO (118),
1667 EMPTY_HOWTO (119),
1668 EMPTY_HOWTO (120),
1669 EMPTY_HOWTO (121),
1670 EMPTY_HOWTO (122),
1671 EMPTY_HOWTO (123),
1672 EMPTY_HOWTO (124),
1673 EMPTY_HOWTO (125),
1674 EMPTY_HOWTO (126),
1675 EMPTY_HOWTO (127),
1676
1677 /* R_ARM_ME_TOO, obsolete. */
1678 EMPTY_HOWTO (128),
1679
1680 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1681 0, /* rightshift */
1682 1, /* size (0 = byte, 1 = short, 2 = long) */
1683 0, /* bitsize */
1684 FALSE, /* pc_relative */
1685 0, /* bitpos */
1686 complain_overflow_bitfield,/* complain_on_overflow */
1687 bfd_elf_generic_reloc, /* special_function */
1688 "R_ARM_THM_TLS_DESCSEQ",/* name */
1689 FALSE, /* partial_inplace */
1690 0x00000000, /* src_mask */
1691 0x00000000, /* dst_mask */
1692 FALSE), /* pcrel_offset */
1693 EMPTY_HOWTO (130),
1694 EMPTY_HOWTO (131),
1695 HOWTO (R_ARM_THM_ALU_ABS_G0_NC,/* type. */
1696 0, /* rightshift. */
1697 1, /* size (0 = byte, 1 = short, 2 = long). */
1698 16, /* bitsize. */
1699 FALSE, /* pc_relative. */
1700 0, /* bitpos. */
1701 complain_overflow_bitfield,/* complain_on_overflow. */
1702 bfd_elf_generic_reloc, /* special_function. */
1703 "R_ARM_THM_ALU_ABS_G0_NC",/* name. */
1704 FALSE, /* partial_inplace. */
1705 0x00000000, /* src_mask. */
1706 0x00000000, /* dst_mask. */
1707 FALSE), /* pcrel_offset. */
1708 HOWTO (R_ARM_THM_ALU_ABS_G1_NC,/* type. */
1709 0, /* rightshift. */
1710 1, /* size (0 = byte, 1 = short, 2 = long). */
1711 16, /* bitsize. */
1712 FALSE, /* pc_relative. */
1713 0, /* bitpos. */
1714 complain_overflow_bitfield,/* complain_on_overflow. */
1715 bfd_elf_generic_reloc, /* special_function. */
1716 "R_ARM_THM_ALU_ABS_G1_NC",/* name. */
1717 FALSE, /* partial_inplace. */
1718 0x00000000, /* src_mask. */
1719 0x00000000, /* dst_mask. */
1720 FALSE), /* pcrel_offset. */
1721 HOWTO (R_ARM_THM_ALU_ABS_G2_NC,/* type. */
1722 0, /* rightshift. */
1723 1, /* size (0 = byte, 1 = short, 2 = long). */
1724 16, /* bitsize. */
1725 FALSE, /* pc_relative. */
1726 0, /* bitpos. */
1727 complain_overflow_bitfield,/* complain_on_overflow. */
1728 bfd_elf_generic_reloc, /* special_function. */
1729 "R_ARM_THM_ALU_ABS_G2_NC",/* name. */
1730 FALSE, /* partial_inplace. */
1731 0x00000000, /* src_mask. */
1732 0x00000000, /* dst_mask. */
1733 FALSE), /* pcrel_offset. */
1734 HOWTO (R_ARM_THM_ALU_ABS_G3_NC,/* type. */
1735 0, /* rightshift. */
1736 1, /* size (0 = byte, 1 = short, 2 = long). */
1737 16, /* bitsize. */
1738 FALSE, /* pc_relative. */
1739 0, /* bitpos. */
1740 complain_overflow_bitfield,/* complain_on_overflow. */
1741 bfd_elf_generic_reloc, /* special_function. */
1742 "R_ARM_THM_ALU_ABS_G3_NC",/* name. */
1743 FALSE, /* partial_inplace. */
1744 0x00000000, /* src_mask. */
1745 0x00000000, /* dst_mask. */
1746 FALSE), /* pcrel_offset. */
1747 /* Relocations for Armv8.1-M Mainline. */
1748 HOWTO (R_ARM_THM_BF16, /* type. */
1749 0, /* rightshift. */
1750 1, /* size (0 = byte, 1 = short, 2 = long). */
1751 16, /* bitsize. */
1752 TRUE, /* pc_relative. */
1753 0, /* bitpos. */
1754 complain_overflow_dont,/* do not complain_on_overflow. */
1755 bfd_elf_generic_reloc, /* special_function. */
1756 "R_ARM_THM_BF16", /* name. */
1757 FALSE, /* partial_inplace. */
1758 0x001f0ffe, /* src_mask. */
1759 0x001f0ffe, /* dst_mask. */
1760 TRUE), /* pcrel_offset. */
1761 HOWTO (R_ARM_THM_BF12, /* type. */
1762 0, /* rightshift. */
1763 1, /* size (0 = byte, 1 = short, 2 = long). */
1764 12, /* bitsize. */
1765 TRUE, /* pc_relative. */
1766 0, /* bitpos. */
1767 complain_overflow_dont,/* do not complain_on_overflow. */
1768 bfd_elf_generic_reloc, /* special_function. */
1769 "R_ARM_THM_BF12", /* name. */
1770 FALSE, /* partial_inplace. */
1771 0x00010ffe, /* src_mask. */
1772 0x00010ffe, /* dst_mask. */
1773 TRUE), /* pcrel_offset. */
1774 HOWTO (R_ARM_THM_BF18, /* type. */
1775 0, /* rightshift. */
1776 1, /* size (0 = byte, 1 = short, 2 = long). */
1777 18, /* bitsize. */
1778 TRUE, /* pc_relative. */
1779 0, /* bitpos. */
1780 complain_overflow_dont,/* do not complain_on_overflow. */
1781 bfd_elf_generic_reloc, /* special_function. */
1782 "R_ARM_THM_BF18", /* name. */
1783 FALSE, /* partial_inplace. */
1784 0x007f0ffe, /* src_mask. */
1785 0x007f0ffe, /* dst_mask. */
1786 TRUE), /* pcrel_offset. */
1787 };
1788
1789 /* 160 onwards: */
1790 static reloc_howto_type elf32_arm_howto_table_2[8] =
1791 {
1792 HOWTO (R_ARM_IRELATIVE, /* type */
1793 0, /* rightshift */
1794 2, /* size (0 = byte, 1 = short, 2 = long) */
1795 32, /* bitsize */
1796 FALSE, /* pc_relative */
1797 0, /* bitpos */
1798 complain_overflow_bitfield,/* complain_on_overflow */
1799 bfd_elf_generic_reloc, /* special_function */
1800 "R_ARM_IRELATIVE", /* name */
1801 TRUE, /* partial_inplace */
1802 0xffffffff, /* src_mask */
1803 0xffffffff, /* dst_mask */
1804 FALSE), /* pcrel_offset */
1805 HOWTO (R_ARM_GOTFUNCDESC, /* type */
1806 0, /* rightshift */
1807 2, /* size (0 = byte, 1 = short, 2 = long) */
1808 32, /* bitsize */
1809 FALSE, /* pc_relative */
1810 0, /* bitpos */
1811 complain_overflow_bitfield,/* complain_on_overflow */
1812 bfd_elf_generic_reloc, /* special_function */
1813 "R_ARM_GOTFUNCDESC", /* name */
1814 FALSE, /* partial_inplace */
1815 0, /* src_mask */
1816 0xffffffff, /* dst_mask */
1817 FALSE), /* pcrel_offset */
1818 HOWTO (R_ARM_GOTOFFFUNCDESC, /* type */
1819 0, /* rightshift */
1820 2, /* size (0 = byte, 1 = short, 2 = long) */
1821 32, /* bitsize */
1822 FALSE, /* pc_relative */
1823 0, /* bitpos */
1824 complain_overflow_bitfield,/* complain_on_overflow */
1825 bfd_elf_generic_reloc, /* special_function */
1826 "R_ARM_GOTOFFFUNCDESC",/* name */
1827 FALSE, /* partial_inplace */
1828 0, /* src_mask */
1829 0xffffffff, /* dst_mask */
1830 FALSE), /* pcrel_offset */
1831 HOWTO (R_ARM_FUNCDESC, /* type */
1832 0, /* rightshift */
1833 2, /* size (0 = byte, 1 = short, 2 = long) */
1834 32, /* bitsize */
1835 FALSE, /* pc_relative */
1836 0, /* bitpos */
1837 complain_overflow_bitfield,/* complain_on_overflow */
1838 bfd_elf_generic_reloc, /* special_function */
1839 "R_ARM_FUNCDESC", /* name */
1840 FALSE, /* partial_inplace */
1841 0, /* src_mask */
1842 0xffffffff, /* dst_mask */
1843 FALSE), /* pcrel_offset */
1844 HOWTO (R_ARM_FUNCDESC_VALUE, /* type */
1845 0, /* rightshift */
1846 2, /* size (0 = byte, 1 = short, 2 = long) */
1847 64, /* bitsize */
1848 FALSE, /* pc_relative */
1849 0, /* bitpos */
1850 complain_overflow_bitfield,/* complain_on_overflow */
1851 bfd_elf_generic_reloc, /* special_function */
1852 "R_ARM_FUNCDESC_VALUE",/* name */
1853 FALSE, /* partial_inplace */
1854 0, /* src_mask */
1855 0xffffffff, /* dst_mask */
1856 FALSE), /* pcrel_offset */
1857 HOWTO (R_ARM_TLS_GD32_FDPIC, /* type */
1858 0, /* rightshift */
1859 2, /* size (0 = byte, 1 = short, 2 = long) */
1860 32, /* bitsize */
1861 FALSE, /* pc_relative */
1862 0, /* bitpos */
1863 complain_overflow_bitfield,/* complain_on_overflow */
1864 bfd_elf_generic_reloc, /* special_function */
1865 "R_ARM_TLS_GD32_FDPIC",/* name */
1866 FALSE, /* partial_inplace */
1867 0, /* src_mask */
1868 0xffffffff, /* dst_mask */
1869 FALSE), /* pcrel_offset */
1870 HOWTO (R_ARM_TLS_LDM32_FDPIC, /* type */
1871 0, /* rightshift */
1872 2, /* size (0 = byte, 1 = short, 2 = long) */
1873 32, /* bitsize */
1874 FALSE, /* pc_relative */
1875 0, /* bitpos */
1876 complain_overflow_bitfield,/* complain_on_overflow */
1877 bfd_elf_generic_reloc, /* special_function */
1878 "R_ARM_TLS_LDM32_FDPIC",/* name */
1879 FALSE, /* partial_inplace */
1880 0, /* src_mask */
1881 0xffffffff, /* dst_mask */
1882 FALSE), /* pcrel_offset */
1883 HOWTO (R_ARM_TLS_IE32_FDPIC, /* type */
1884 0, /* rightshift */
1885 2, /* size (0 = byte, 1 = short, 2 = long) */
1886 32, /* bitsize */
1887 FALSE, /* pc_relative */
1888 0, /* bitpos */
1889 complain_overflow_bitfield,/* complain_on_overflow */
1890 bfd_elf_generic_reloc, /* special_function */
1891 "R_ARM_TLS_IE32_FDPIC",/* name */
1892 FALSE, /* partial_inplace */
1893 0, /* src_mask */
1894 0xffffffff, /* dst_mask */
1895 FALSE), /* pcrel_offset */
1896 };
1897
1898 /* 249-255 extended, currently unused, relocations: */
1899 static reloc_howto_type elf32_arm_howto_table_3[4] =
1900 {
1901 HOWTO (R_ARM_RREL32, /* type */
1902 0, /* rightshift */
1903 0, /* size (0 = byte, 1 = short, 2 = long) */
1904 0, /* bitsize */
1905 FALSE, /* pc_relative */
1906 0, /* bitpos */
1907 complain_overflow_dont,/* complain_on_overflow */
1908 bfd_elf_generic_reloc, /* special_function */
1909 "R_ARM_RREL32", /* name */
1910 FALSE, /* partial_inplace */
1911 0, /* src_mask */
1912 0, /* dst_mask */
1913 FALSE), /* pcrel_offset */
1914
1915 HOWTO (R_ARM_RABS32, /* type */
1916 0, /* rightshift */
1917 0, /* size (0 = byte, 1 = short, 2 = long) */
1918 0, /* bitsize */
1919 FALSE, /* pc_relative */
1920 0, /* bitpos */
1921 complain_overflow_dont,/* complain_on_overflow */
1922 bfd_elf_generic_reloc, /* special_function */
1923 "R_ARM_RABS32", /* name */
1924 FALSE, /* partial_inplace */
1925 0, /* src_mask */
1926 0, /* dst_mask */
1927 FALSE), /* pcrel_offset */
1928
1929 HOWTO (R_ARM_RPC24, /* type */
1930 0, /* rightshift */
1931 0, /* size (0 = byte, 1 = short, 2 = long) */
1932 0, /* bitsize */
1933 FALSE, /* pc_relative */
1934 0, /* bitpos */
1935 complain_overflow_dont,/* complain_on_overflow */
1936 bfd_elf_generic_reloc, /* special_function */
1937 "R_ARM_RPC24", /* name */
1938 FALSE, /* partial_inplace */
1939 0, /* src_mask */
1940 0, /* dst_mask */
1941 FALSE), /* pcrel_offset */
1942
1943 HOWTO (R_ARM_RBASE, /* type */
1944 0, /* rightshift */
1945 0, /* size (0 = byte, 1 = short, 2 = long) */
1946 0, /* bitsize */
1947 FALSE, /* pc_relative */
1948 0, /* bitpos */
1949 complain_overflow_dont,/* complain_on_overflow */
1950 bfd_elf_generic_reloc, /* special_function */
1951 "R_ARM_RBASE", /* name */
1952 FALSE, /* partial_inplace */
1953 0, /* src_mask */
1954 0, /* dst_mask */
1955 FALSE) /* pcrel_offset */
1956 };
1957
1958 static reloc_howto_type *
1959 elf32_arm_howto_from_type (unsigned int r_type)
1960 {
1961 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1962 return &elf32_arm_howto_table_1[r_type];
1963
1964 if (r_type >= R_ARM_IRELATIVE
1965 && r_type < R_ARM_IRELATIVE + ARRAY_SIZE (elf32_arm_howto_table_2))
1966 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1967
1968 if (r_type >= R_ARM_RREL32
1969 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1970 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
1971
1972 return NULL;
1973 }
1974
1975 static bfd_boolean
1976 elf32_arm_info_to_howto (bfd * abfd, arelent * bfd_reloc,
1977 Elf_Internal_Rela * elf_reloc)
1978 {
1979 unsigned int r_type;
1980
1981 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1982 if ((bfd_reloc->howto = elf32_arm_howto_from_type (r_type)) == NULL)
1983 {
1984 /* xgettext:c-format */
1985 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
1986 abfd, r_type);
1987 bfd_set_error (bfd_error_bad_value);
1988 return FALSE;
1989 }
1990 return TRUE;
1991 }
1992
1993 struct elf32_arm_reloc_map
1994 {
1995 bfd_reloc_code_real_type bfd_reloc_val;
1996 unsigned char elf_reloc_val;
1997 };
1998
1999 /* All entries in this list must also be present in elf32_arm_howto_table. */
2000 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
2001 {
2002 {BFD_RELOC_NONE, R_ARM_NONE},
2003 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
2004 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
2005 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
2006 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
2007 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
2008 {BFD_RELOC_32, R_ARM_ABS32},
2009 {BFD_RELOC_32_PCREL, R_ARM_REL32},
2010 {BFD_RELOC_8, R_ARM_ABS8},
2011 {BFD_RELOC_16, R_ARM_ABS16},
2012 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
2013 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
2014 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
2015 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
2016 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
2017 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
2018 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
2019 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
2020 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
2021 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
2022 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
2023 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
2024 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
2025 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
2026 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
2027 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
2028 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
2029 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
2030 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
2031 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
2032 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
2033 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
2034 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC},
2035 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL},
2036 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL},
2037 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ},
2038 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ},
2039 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC},
2040 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
2041 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
2042 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
2043 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
2044 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
2045 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
2046 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
2047 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
2048 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE},
2049 {BFD_RELOC_ARM_GOTFUNCDESC, R_ARM_GOTFUNCDESC},
2050 {BFD_RELOC_ARM_GOTOFFFUNCDESC, R_ARM_GOTOFFFUNCDESC},
2051 {BFD_RELOC_ARM_FUNCDESC, R_ARM_FUNCDESC},
2052 {BFD_RELOC_ARM_FUNCDESC_VALUE, R_ARM_FUNCDESC_VALUE},
2053 {BFD_RELOC_ARM_TLS_GD32_FDPIC, R_ARM_TLS_GD32_FDPIC},
2054 {BFD_RELOC_ARM_TLS_LDM32_FDPIC, R_ARM_TLS_LDM32_FDPIC},
2055 {BFD_RELOC_ARM_TLS_IE32_FDPIC, R_ARM_TLS_IE32_FDPIC},
2056 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
2057 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
2058 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
2059 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
2060 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
2061 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
2062 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
2063 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
2064 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
2065 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
2066 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
2067 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
2068 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
2069 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
2070 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
2071 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
2072 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
2073 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
2074 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
2075 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
2076 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
2077 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
2078 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
2079 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
2080 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
2081 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
2082 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
2083 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
2084 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
2085 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
2086 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
2087 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
2088 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
2089 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
2090 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
2091 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
2092 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
2093 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
2094 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX},
2095 {BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC, R_ARM_THM_ALU_ABS_G3_NC},
2096 {BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC, R_ARM_THM_ALU_ABS_G2_NC},
2097 {BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC, R_ARM_THM_ALU_ABS_G1_NC},
2098 {BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC, R_ARM_THM_ALU_ABS_G0_NC},
2099 {BFD_RELOC_ARM_THUMB_BF17, R_ARM_THM_BF16},
2100 {BFD_RELOC_ARM_THUMB_BF13, R_ARM_THM_BF12},
2101 {BFD_RELOC_ARM_THUMB_BF19, R_ARM_THM_BF18}
2102 };
2103
2104 static reloc_howto_type *
2105 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2106 bfd_reloc_code_real_type code)
2107 {
2108 unsigned int i;
2109
2110 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
2111 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
2112 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
2113
2114 return NULL;
2115 }
2116
2117 static reloc_howto_type *
2118 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2119 const char *r_name)
2120 {
2121 unsigned int i;
2122
2123 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
2124 if (elf32_arm_howto_table_1[i].name != NULL
2125 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
2126 return &elf32_arm_howto_table_1[i];
2127
2128 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
2129 if (elf32_arm_howto_table_2[i].name != NULL
2130 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
2131 return &elf32_arm_howto_table_2[i];
2132
2133 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
2134 if (elf32_arm_howto_table_3[i].name != NULL
2135 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
2136 return &elf32_arm_howto_table_3[i];
2137
2138 return NULL;
2139 }
2140
2141 /* Support for core dump NOTE sections. */
2142
2143 static bfd_boolean
2144 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2145 {
2146 int offset;
2147 size_t size;
2148
2149 switch (note->descsz)
2150 {
2151 default:
2152 return FALSE;
2153
2154 case 148: /* Linux/ARM 32-bit. */
2155 /* pr_cursig */
2156 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2157
2158 /* pr_pid */
2159 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
2160
2161 /* pr_reg */
2162 offset = 72;
2163 size = 72;
2164
2165 break;
2166 }
2167
2168 /* Make a ".reg/999" section. */
2169 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2170 size, note->descpos + offset);
2171 }
2172
2173 static bfd_boolean
2174 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2175 {
2176 switch (note->descsz)
2177 {
2178 default:
2179 return FALSE;
2180
2181 case 124: /* Linux/ARM elf_prpsinfo. */
2182 elf_tdata (abfd)->core->pid
2183 = bfd_get_32 (abfd, note->descdata + 12);
2184 elf_tdata (abfd)->core->program
2185 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
2186 elf_tdata (abfd)->core->command
2187 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
2188 }
2189
2190 /* Note that for some reason, a spurious space is tacked
2191 onto the end of the args in some (at least one anyway)
2192 implementations, so strip it off if it exists. */
2193 {
2194 char *command = elf_tdata (abfd)->core->command;
2195 int n = strlen (command);
2196
2197 if (0 < n && command[n - 1] == ' ')
2198 command[n - 1] = '\0';
2199 }
2200
2201 return TRUE;
2202 }
2203
2204 static char *
2205 elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz,
2206 int note_type, ...)
2207 {
2208 switch (note_type)
2209 {
2210 default:
2211 return NULL;
2212
2213 case NT_PRPSINFO:
2214 {
2215 char data[124] ATTRIBUTE_NONSTRING;
2216 va_list ap;
2217
2218 va_start (ap, note_type);
2219 memset (data, 0, sizeof (data));
2220 strncpy (data + 28, va_arg (ap, const char *), 16);
2221 #if GCC_VERSION == 8000 || GCC_VERSION == 8001
2222 DIAGNOSTIC_PUSH;
2223 /* GCC 8.0 and 8.1 warn about 80 equals destination size with
2224 -Wstringop-truncation:
2225 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85643
2226 */
2227 DIAGNOSTIC_IGNORE_STRINGOP_TRUNCATION;
2228 #endif
2229 strncpy (data + 44, va_arg (ap, const char *), 80);
2230 #if GCC_VERSION == 8000 || GCC_VERSION == 8001
2231 DIAGNOSTIC_POP;
2232 #endif
2233 va_end (ap);
2234
2235 return elfcore_write_note (abfd, buf, bufsiz,
2236 "CORE", note_type, data, sizeof (data));
2237 }
2238
2239 case NT_PRSTATUS:
2240 {
2241 char data[148];
2242 va_list ap;
2243 long pid;
2244 int cursig;
2245 const void *greg;
2246
2247 va_start (ap, note_type);
2248 memset (data, 0, sizeof (data));
2249 pid = va_arg (ap, long);
2250 bfd_put_32 (abfd, pid, data + 24);
2251 cursig = va_arg (ap, int);
2252 bfd_put_16 (abfd, cursig, data + 12);
2253 greg = va_arg (ap, const void *);
2254 memcpy (data + 72, greg, 72);
2255 va_end (ap);
2256
2257 return elfcore_write_note (abfd, buf, bufsiz,
2258 "CORE", note_type, data, sizeof (data));
2259 }
2260 }
2261 }
2262
2263 #define TARGET_LITTLE_SYM arm_elf32_le_vec
2264 #define TARGET_LITTLE_NAME "elf32-littlearm"
2265 #define TARGET_BIG_SYM arm_elf32_be_vec
2266 #define TARGET_BIG_NAME "elf32-bigarm"
2267
2268 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
2269 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
2270 #define elf_backend_write_core_note elf32_arm_nabi_write_core_note
2271
2272 typedef unsigned long int insn32;
2273 typedef unsigned short int insn16;
2274
2275 /* In lieu of proper flags, assume all EABIv4 or later objects are
2276 interworkable. */
2277 #define INTERWORK_FLAG(abfd) \
2278 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
2279 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2280 || ((abfd)->flags & BFD_LINKER_CREATED))
2281
2282 /* The linker script knows the section names for placement.
2283 The entry_names are used to do simple name mangling on the stubs.
2284 Given a function name, and its type, the stub can be found. The
2285 name can be changed. The only requirement is the %s be present. */
2286 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2287 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2288
2289 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2290 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2291
2292 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2293 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2294
2295 #define STM32L4XX_ERRATUM_VENEER_SECTION_NAME ".text.stm32l4xx_veneer"
2296 #define STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "__stm32l4xx_veneer_%x"
2297
2298 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2299 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2300
2301 #define STUB_ENTRY_NAME "__%s_veneer"
2302
2303 #define CMSE_PREFIX "__acle_se_"
2304
2305 #define CMSE_STUB_NAME ".gnu.sgstubs"
2306
2307 /* The name of the dynamic interpreter. This is put in the .interp
2308 section. */
2309 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2310
2311 /* FDPIC default stack size. */
2312 #define DEFAULT_STACK_SIZE 0x8000
2313
2314 static const unsigned long tls_trampoline [] =
2315 {
2316 0xe08e0000, /* add r0, lr, r0 */
2317 0xe5901004, /* ldr r1, [r0,#4] */
2318 0xe12fff11, /* bx r1 */
2319 };
2320
2321 static const unsigned long dl_tlsdesc_lazy_trampoline [] =
2322 {
2323 0xe52d2004, /* push {r2} */
2324 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2325 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2326 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2327 0xe081100f, /* 2: add r1, pc */
2328 0xe12fff12, /* bx r2 */
2329 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
2330 + dl_tlsdesc_lazy_resolver(GOT) */
2331 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2332 };
2333
2334 /* NOTE: [Thumb nop sequence]
2335 When adding code that transitions from Thumb to Arm the instruction that
2336 should be used for the alignment padding should be 0xe7fd (b .-2) instead of
2337 a nop for performance reasons. */
2338
2339 /* ARM FDPIC PLT entry. */
2340 /* The last 5 words contain PLT lazy fragment code and data. */
2341 static const bfd_vma elf32_arm_fdpic_plt_entry [] =
2342 {
2343 0xe59fc008, /* ldr r12, .L1 */
2344 0xe08cc009, /* add r12, r12, r9 */
2345 0xe59c9004, /* ldr r9, [r12, #4] */
2346 0xe59cf000, /* ldr pc, [r12] */
2347 0x00000000, /* L1. .word foo(GOTOFFFUNCDESC) */
2348 0x00000000, /* L1. .word foo(funcdesc_value_reloc_offset) */
2349 0xe51fc00c, /* ldr r12, [pc, #-12] */
2350 0xe92d1000, /* push {r12} */
2351 0xe599c004, /* ldr r12, [r9, #4] */
2352 0xe599f000, /* ldr pc, [r9] */
2353 };
2354
2355 /* Thumb FDPIC PLT entry. */
2356 /* The last 5 words contain PLT lazy fragment code and data. */
2357 static const bfd_vma elf32_arm_fdpic_thumb_plt_entry [] =
2358 {
2359 0xc00cf8df, /* ldr.w r12, .L1 */
2360 0x0c09eb0c, /* add.w r12, r12, r9 */
2361 0x9004f8dc, /* ldr.w r9, [r12, #4] */
2362 0xf000f8dc, /* ldr.w pc, [r12] */
2363 0x00000000, /* .L1 .word foo(GOTOFFFUNCDESC) */
2364 0x00000000, /* .L2 .word foo(funcdesc_value_reloc_offset) */
2365 0xc008f85f, /* ldr.w r12, .L2 */
2366 0xcd04f84d, /* push {r12} */
2367 0xc004f8d9, /* ldr.w r12, [r9, #4] */
2368 0xf000f8d9, /* ldr.w pc, [r9] */
2369 };
2370
2371 #ifdef FOUR_WORD_PLT
2372
2373 /* The first entry in a procedure linkage table looks like
2374 this. It is set up so that any shared library function that is
2375 called before the relocation has been set up calls the dynamic
2376 linker first. */
2377 static const bfd_vma elf32_arm_plt0_entry [] =
2378 {
2379 0xe52de004, /* str lr, [sp, #-4]! */
2380 0xe59fe010, /* ldr lr, [pc, #16] */
2381 0xe08fe00e, /* add lr, pc, lr */
2382 0xe5bef008, /* ldr pc, [lr, #8]! */
2383 };
2384
2385 /* Subsequent entries in a procedure linkage table look like
2386 this. */
2387 static const bfd_vma elf32_arm_plt_entry [] =
2388 {
2389 0xe28fc600, /* add ip, pc, #NN */
2390 0xe28cca00, /* add ip, ip, #NN */
2391 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2392 0x00000000, /* unused */
2393 };
2394
2395 #else /* not FOUR_WORD_PLT */
2396
2397 /* The first entry in a procedure linkage table looks like
2398 this. It is set up so that any shared library function that is
2399 called before the relocation has been set up calls the dynamic
2400 linker first. */
2401 static const bfd_vma elf32_arm_plt0_entry [] =
2402 {
2403 0xe52de004, /* str lr, [sp, #-4]! */
2404 0xe59fe004, /* ldr lr, [pc, #4] */
2405 0xe08fe00e, /* add lr, pc, lr */
2406 0xe5bef008, /* ldr pc, [lr, #8]! */
2407 0x00000000, /* &GOT[0] - . */
2408 };
2409
2410 /* By default subsequent entries in a procedure linkage table look like
2411 this. Offsets that don't fit into 28 bits will cause link error. */
2412 static const bfd_vma elf32_arm_plt_entry_short [] =
2413 {
2414 0xe28fc600, /* add ip, pc, #0xNN00000 */
2415 0xe28cca00, /* add ip, ip, #0xNN000 */
2416 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2417 };
2418
2419 /* When explicitly asked, we'll use this "long" entry format
2420 which can cope with arbitrary displacements. */
2421 static const bfd_vma elf32_arm_plt_entry_long [] =
2422 {
2423 0xe28fc200, /* add ip, pc, #0xN0000000 */
2424 0xe28cc600, /* add ip, ip, #0xNN00000 */
2425 0xe28cca00, /* add ip, ip, #0xNN000 */
2426 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2427 };
2428
2429 static bfd_boolean elf32_arm_use_long_plt_entry = FALSE;
2430
2431 #endif /* not FOUR_WORD_PLT */
2432
2433 /* The first entry in a procedure linkage table looks like this.
2434 It is set up so that any shared library function that is called before the
2435 relocation has been set up calls the dynamic linker first. */
2436 static const bfd_vma elf32_thumb2_plt0_entry [] =
2437 {
2438 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2439 an instruction maybe encoded to one or two array elements. */
2440 0xf8dfb500, /* push {lr} */
2441 0x44fee008, /* ldr.w lr, [pc, #8] */
2442 /* add lr, pc */
2443 0xff08f85e, /* ldr.w pc, [lr, #8]! */
2444 0x00000000, /* &GOT[0] - . */
2445 };
2446
2447 /* Subsequent entries in a procedure linkage table for thumb only target
2448 look like this. */
2449 static const bfd_vma elf32_thumb2_plt_entry [] =
2450 {
2451 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2452 an instruction maybe encoded to one or two array elements. */
2453 0x0c00f240, /* movw ip, #0xNNNN */
2454 0x0c00f2c0, /* movt ip, #0xNNNN */
2455 0xf8dc44fc, /* add ip, pc */
2456 0xe7fcf000 /* ldr.w pc, [ip] */
2457 /* b .-4 */
2458 };
2459
2460 /* The format of the first entry in the procedure linkage table
2461 for a VxWorks executable. */
2462 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
2463 {
2464 0xe52dc008, /* str ip,[sp,#-8]! */
2465 0xe59fc000, /* ldr ip,[pc] */
2466 0xe59cf008, /* ldr pc,[ip,#8] */
2467 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
2468 };
2469
2470 /* The format of subsequent entries in a VxWorks executable. */
2471 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
2472 {
2473 0xe59fc000, /* ldr ip,[pc] */
2474 0xe59cf000, /* ldr pc,[ip] */
2475 0x00000000, /* .long @got */
2476 0xe59fc000, /* ldr ip,[pc] */
2477 0xea000000, /* b _PLT */
2478 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2479 };
2480
2481 /* The format of entries in a VxWorks shared library. */
2482 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
2483 {
2484 0xe59fc000, /* ldr ip,[pc] */
2485 0xe79cf009, /* ldr pc,[ip,r9] */
2486 0x00000000, /* .long @got */
2487 0xe59fc000, /* ldr ip,[pc] */
2488 0xe599f008, /* ldr pc,[r9,#8] */
2489 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2490 };
2491
2492 /* An initial stub used if the PLT entry is referenced from Thumb code. */
2493 #define PLT_THUMB_STUB_SIZE 4
2494 static const bfd_vma elf32_arm_plt_thumb_stub [] =
2495 {
2496 0x4778, /* bx pc */
2497 0xe7fd /* b .-2 */
2498 };
2499
2500 /* The entries in a PLT when using a DLL-based target with multiple
2501 address spaces. */
2502 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2503 {
2504 0xe51ff004, /* ldr pc, [pc, #-4] */
2505 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2506 };
2507
2508 /* The first entry in a procedure linkage table looks like
2509 this. It is set up so that any shared library function that is
2510 called before the relocation has been set up calls the dynamic
2511 linker first. */
2512 static const bfd_vma elf32_arm_nacl_plt0_entry [] =
2513 {
2514 /* First bundle: */
2515 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */
2516 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */
2517 0xe08cc00f, /* add ip, ip, pc */
2518 0xe52dc008, /* str ip, [sp, #-8]! */
2519 /* Second bundle: */
2520 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2521 0xe59cc000, /* ldr ip, [ip] */
2522 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2523 0xe12fff1c, /* bx ip */
2524 /* Third bundle: */
2525 0xe320f000, /* nop */
2526 0xe320f000, /* nop */
2527 0xe320f000, /* nop */
2528 /* .Lplt_tail: */
2529 0xe50dc004, /* str ip, [sp, #-4] */
2530 /* Fourth bundle: */
2531 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2532 0xe59cc000, /* ldr ip, [ip] */
2533 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2534 0xe12fff1c, /* bx ip */
2535 };
2536 #define ARM_NACL_PLT_TAIL_OFFSET (11 * 4)
2537
2538 /* Subsequent entries in a procedure linkage table look like this. */
2539 static const bfd_vma elf32_arm_nacl_plt_entry [] =
2540 {
2541 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */
2542 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */
2543 0xe08cc00f, /* add ip, ip, pc */
2544 0xea000000, /* b .Lplt_tail */
2545 };
2546
2547 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2548 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2549 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2550 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2551 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2552 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2553 #define THM2_MAX_FWD_COND_BRANCH_OFFSET (((1 << 20) -2) + 4)
2554 #define THM2_MAX_BWD_COND_BRANCH_OFFSET (-(1 << 20) + 4)
2555
2556 enum stub_insn_type
2557 {
2558 THUMB16_TYPE = 1,
2559 THUMB32_TYPE,
2560 ARM_TYPE,
2561 DATA_TYPE
2562 };
2563
2564 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2565 /* A bit of a hack. A Thumb conditional branch, in which the proper condition
2566 is inserted in arm_build_one_stub(). */
2567 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2568 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2569 #define THUMB32_MOVT(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVT_ABS, 0}
2570 #define THUMB32_MOVW(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVW_ABS_NC, 0}
2571 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2572 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2573 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2574 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2575
2576 typedef struct
2577 {
2578 bfd_vma data;
2579 enum stub_insn_type type;
2580 unsigned int r_type;
2581 int reloc_addend;
2582 } insn_sequence;
2583
2584 /* See note [Thumb nop sequence] when adding a veneer. */
2585
2586 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2587 to reach the stub if necessary. */
2588 static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2589 {
2590 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2591 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2592 };
2593
2594 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2595 available. */
2596 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2597 {
2598 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2599 ARM_INSN (0xe12fff1c), /* bx ip */
2600 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2601 };
2602
2603 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2604 static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2605 {
2606 THUMB16_INSN (0xb401), /* push {r0} */
2607 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2608 THUMB16_INSN (0x4684), /* mov ip, r0 */
2609 THUMB16_INSN (0xbc01), /* pop {r0} */
2610 THUMB16_INSN (0x4760), /* bx ip */
2611 THUMB16_INSN (0xbf00), /* nop */
2612 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2613 };
2614
2615 /* Thumb -> Thumb long branch stub in thumb2 encoding. Used on armv7. */
2616 static const insn_sequence elf32_arm_stub_long_branch_thumb2_only[] =
2617 {
2618 THUMB32_INSN (0xf85ff000), /* ldr.w pc, [pc, #-0] */
2619 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(x) */
2620 };
2621
2622 /* Thumb -> Thumb long branch stub. Used for PureCode sections on Thumb2
2623 M-profile architectures. */
2624 static const insn_sequence elf32_arm_stub_long_branch_thumb2_only_pure[] =
2625 {
2626 THUMB32_MOVW (0xf2400c00), /* mov.w ip, R_ARM_MOVW_ABS_NC */
2627 THUMB32_MOVT (0xf2c00c00), /* movt ip, R_ARM_MOVT_ABS << 16 */
2628 THUMB16_INSN (0x4760), /* bx ip */
2629 };
2630
2631 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2632 allowed. */
2633 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2634 {
2635 THUMB16_INSN (0x4778), /* bx pc */
2636 THUMB16_INSN (0xe7fd), /* b .-2 */
2637 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2638 ARM_INSN (0xe12fff1c), /* bx ip */
2639 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2640 };
2641
2642 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2643 available. */
2644 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2645 {
2646 THUMB16_INSN (0x4778), /* bx pc */
2647 THUMB16_INSN (0xe7fd), /* b .-2 */
2648 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2649 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2650 };
2651
2652 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2653 one, when the destination is close enough. */
2654 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2655 {
2656 THUMB16_INSN (0x4778), /* bx pc */
2657 THUMB16_INSN (0xe7fd), /* b .-2 */
2658 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */
2659 };
2660
2661 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2662 blx to reach the stub if necessary. */
2663 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2664 {
2665 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */
2666 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */
2667 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2668 };
2669
2670 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2671 blx to reach the stub if necessary. We can not add into pc;
2672 it is not guaranteed to mode switch (different in ARMv6 and
2673 ARMv7). */
2674 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2675 {
2676 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2677 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2678 ARM_INSN (0xe12fff1c), /* bx ip */
2679 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2680 };
2681
2682 /* V4T ARM -> ARM long branch stub, PIC. */
2683 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2684 {
2685 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2686 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2687 ARM_INSN (0xe12fff1c), /* bx ip */
2688 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2689 };
2690
2691 /* V4T Thumb -> ARM long branch stub, PIC. */
2692 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2693 {
2694 THUMB16_INSN (0x4778), /* bx pc */
2695 THUMB16_INSN (0xe7fd), /* b .-2 */
2696 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2697 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */
2698 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2699 };
2700
2701 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2702 architectures. */
2703 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2704 {
2705 THUMB16_INSN (0xb401), /* push {r0} */
2706 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2707 THUMB16_INSN (0x46fc), /* mov ip, pc */
2708 THUMB16_INSN (0x4484), /* add ip, r0 */
2709 THUMB16_INSN (0xbc01), /* pop {r0} */
2710 THUMB16_INSN (0x4760), /* bx ip */
2711 DATA_WORD (0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2712 };
2713
2714 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2715 allowed. */
2716 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2717 {
2718 THUMB16_INSN (0x4778), /* bx pc */
2719 THUMB16_INSN (0xe7fd), /* b .-2 */
2720 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2721 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2722 ARM_INSN (0xe12fff1c), /* bx ip */
2723 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2724 };
2725
2726 /* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2727 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2728 static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2729 {
2730 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */
2731 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */
2732 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2733 };
2734
2735 /* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2736 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2737 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2738 {
2739 THUMB16_INSN (0x4778), /* bx pc */
2740 THUMB16_INSN (0xe7fd), /* b .-2 */
2741 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */
2742 ARM_INSN (0xe081f00f), /* add pc, r1, pc */
2743 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2744 };
2745
2746 /* NaCl ARM -> ARM long branch stub. */
2747 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl[] =
2748 {
2749 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2750 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2751 ARM_INSN (0xe12fff1c), /* bx ip */
2752 ARM_INSN (0xe320f000), /* nop */
2753 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2754 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2755 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2756 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2757 };
2758
2759 /* NaCl ARM -> ARM long branch stub, PIC. */
2760 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic[] =
2761 {
2762 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2763 ARM_INSN (0xe08cc00f), /* add ip, ip, pc */
2764 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2765 ARM_INSN (0xe12fff1c), /* bx ip */
2766 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2767 DATA_WORD (0, R_ARM_REL32, 8), /* dcd R_ARM_REL32(X+8) */
2768 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2769 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2770 };
2771
2772 /* Stub used for transition to secure state (aka SG veneer). */
2773 static const insn_sequence elf32_arm_stub_cmse_branch_thumb_only[] =
2774 {
2775 THUMB32_INSN (0xe97fe97f), /* sg. */
2776 THUMB32_B_INSN (0xf000b800, -4), /* b.w original_branch_dest. */
2777 };
2778
2779
2780 /* Cortex-A8 erratum-workaround stubs. */
2781
2782 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2783 can't use a conditional branch to reach this stub). */
2784
2785 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2786 {
2787 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */
2788 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */
2789 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */
2790 };
2791
2792 /* Stub used for b.w and bl.w instructions. */
2793
2794 static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2795 {
2796 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2797 };
2798
2799 static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2800 {
2801 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2802 };
2803
2804 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2805 instruction (which switches to ARM mode) to point to this stub. Jump to the
2806 real destination using an ARM-mode branch. */
2807
2808 static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2809 {
2810 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */
2811 };
2812
2813 /* For each section group there can be a specially created linker section
2814 to hold the stubs for that group. The name of the stub section is based
2815 upon the name of another section within that group with the suffix below
2816 applied.
2817
2818 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2819 create what appeared to be a linker stub section when it actually
2820 contained user code/data. For example, consider this fragment:
2821
2822 const char * stubborn_problems[] = { "np" };
2823
2824 If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2825 section called:
2826
2827 .data.rel.local.stubborn_problems
2828
2829 This then causes problems in arm32_arm_build_stubs() as it triggers:
2830
2831 // Ignore non-stub sections.
2832 if (!strstr (stub_sec->name, STUB_SUFFIX))
2833 continue;
2834
2835 And so the section would be ignored instead of being processed. Hence
2836 the change in definition of STUB_SUFFIX to a name that cannot be a valid
2837 C identifier. */
2838 #define STUB_SUFFIX ".__stub"
2839
2840 /* One entry per long/short branch stub defined above. */
2841 #define DEF_STUBS \
2842 DEF_STUB(long_branch_any_any) \
2843 DEF_STUB(long_branch_v4t_arm_thumb) \
2844 DEF_STUB(long_branch_thumb_only) \
2845 DEF_STUB(long_branch_v4t_thumb_thumb) \
2846 DEF_STUB(long_branch_v4t_thumb_arm) \
2847 DEF_STUB(short_branch_v4t_thumb_arm) \
2848 DEF_STUB(long_branch_any_arm_pic) \
2849 DEF_STUB(long_branch_any_thumb_pic) \
2850 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2851 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2852 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2853 DEF_STUB(long_branch_thumb_only_pic) \
2854 DEF_STUB(long_branch_any_tls_pic) \
2855 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
2856 DEF_STUB(long_branch_arm_nacl) \
2857 DEF_STUB(long_branch_arm_nacl_pic) \
2858 DEF_STUB(cmse_branch_thumb_only) \
2859 DEF_STUB(a8_veneer_b_cond) \
2860 DEF_STUB(a8_veneer_b) \
2861 DEF_STUB(a8_veneer_bl) \
2862 DEF_STUB(a8_veneer_blx) \
2863 DEF_STUB(long_branch_thumb2_only) \
2864 DEF_STUB(long_branch_thumb2_only_pure)
2865
2866 #define DEF_STUB(x) arm_stub_##x,
2867 enum elf32_arm_stub_type
2868 {
2869 arm_stub_none,
2870 DEF_STUBS
2871 max_stub_type
2872 };
2873 #undef DEF_STUB
2874
2875 /* Note the first a8_veneer type. */
2876 const unsigned arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond;
2877
2878 typedef struct
2879 {
2880 const insn_sequence* template_sequence;
2881 int template_size;
2882 } stub_def;
2883
2884 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2885 static const stub_def stub_definitions[] =
2886 {
2887 {NULL, 0},
2888 DEF_STUBS
2889 };
2890
2891 struct elf32_arm_stub_hash_entry
2892 {
2893 /* Base hash table entry structure. */
2894 struct bfd_hash_entry root;
2895
2896 /* The stub section. */
2897 asection *stub_sec;
2898
2899 /* Offset within stub_sec of the beginning of this stub. */
2900 bfd_vma stub_offset;
2901
2902 /* Given the symbol's value and its section we can determine its final
2903 value when building the stubs (so the stub knows where to jump). */
2904 bfd_vma target_value;
2905 asection *target_section;
2906
2907 /* Same as above but for the source of the branch to the stub. Used for
2908 Cortex-A8 erratum workaround to patch it to branch to the stub. As
2909 such, source section does not need to be recorded since Cortex-A8 erratum
2910 workaround stubs are only generated when both source and target are in the
2911 same section. */
2912 bfd_vma source_value;
2913
2914 /* The instruction which caused this stub to be generated (only valid for
2915 Cortex-A8 erratum workaround stubs at present). */
2916 unsigned long orig_insn;
2917
2918 /* The stub type. */
2919 enum elf32_arm_stub_type stub_type;
2920 /* Its encoding size in bytes. */
2921 int stub_size;
2922 /* Its template. */
2923 const insn_sequence *stub_template;
2924 /* The size of the template (number of entries). */
2925 int stub_template_size;
2926
2927 /* The symbol table entry, if any, that this was derived from. */
2928 struct elf32_arm_link_hash_entry *h;
2929
2930 /* Type of branch. */
2931 enum arm_st_branch_type branch_type;
2932
2933 /* Where this stub is being called from, or, in the case of combined
2934 stub sections, the first input section in the group. */
2935 asection *id_sec;
2936
2937 /* The name for the local symbol at the start of this stub. The
2938 stub name in the hash table has to be unique; this does not, so
2939 it can be friendlier. */
2940 char *output_name;
2941 };
2942
2943 /* Used to build a map of a section. This is required for mixed-endian
2944 code/data. */
2945
2946 typedef struct elf32_elf_section_map
2947 {
2948 bfd_vma vma;
2949 char type;
2950 }
2951 elf32_arm_section_map;
2952
2953 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2954
2955 typedef enum
2956 {
2957 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2958 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2959 VFP11_ERRATUM_ARM_VENEER,
2960 VFP11_ERRATUM_THUMB_VENEER
2961 }
2962 elf32_vfp11_erratum_type;
2963
2964 typedef struct elf32_vfp11_erratum_list
2965 {
2966 struct elf32_vfp11_erratum_list *next;
2967 bfd_vma vma;
2968 union
2969 {
2970 struct
2971 {
2972 struct elf32_vfp11_erratum_list *veneer;
2973 unsigned int vfp_insn;
2974 } b;
2975 struct
2976 {
2977 struct elf32_vfp11_erratum_list *branch;
2978 unsigned int id;
2979 } v;
2980 } u;
2981 elf32_vfp11_erratum_type type;
2982 }
2983 elf32_vfp11_erratum_list;
2984
2985 /* Information about a STM32L4XX erratum veneer, or a branch to such a
2986 veneer. */
2987 typedef enum
2988 {
2989 STM32L4XX_ERRATUM_BRANCH_TO_VENEER,
2990 STM32L4XX_ERRATUM_VENEER
2991 }
2992 elf32_stm32l4xx_erratum_type;
2993
2994 typedef struct elf32_stm32l4xx_erratum_list
2995 {
2996 struct elf32_stm32l4xx_erratum_list *next;
2997 bfd_vma vma;
2998 union
2999 {
3000 struct
3001 {
3002 struct elf32_stm32l4xx_erratum_list *veneer;
3003 unsigned int insn;
3004 } b;
3005 struct
3006 {
3007 struct elf32_stm32l4xx_erratum_list *branch;
3008 unsigned int id;
3009 } v;
3010 } u;
3011 elf32_stm32l4xx_erratum_type type;
3012 }
3013 elf32_stm32l4xx_erratum_list;
3014
3015 typedef enum
3016 {
3017 DELETE_EXIDX_ENTRY,
3018 INSERT_EXIDX_CANTUNWIND_AT_END
3019 }
3020 arm_unwind_edit_type;
3021
3022 /* A (sorted) list of edits to apply to an unwind table. */
3023 typedef struct arm_unwind_table_edit
3024 {
3025 arm_unwind_edit_type type;
3026 /* Note: we sometimes want to insert an unwind entry corresponding to a
3027 section different from the one we're currently writing out, so record the
3028 (text) section this edit relates to here. */
3029 asection *linked_section;
3030 unsigned int index;
3031 struct arm_unwind_table_edit *next;
3032 }
3033 arm_unwind_table_edit;
3034
3035 typedef struct _arm_elf_section_data
3036 {
3037 /* Information about mapping symbols. */
3038 struct bfd_elf_section_data elf;
3039 unsigned int mapcount;
3040 unsigned int mapsize;
3041 elf32_arm_section_map *map;
3042 /* Information about CPU errata. */
3043 unsigned int erratumcount;
3044 elf32_vfp11_erratum_list *erratumlist;
3045 unsigned int stm32l4xx_erratumcount;
3046 elf32_stm32l4xx_erratum_list *stm32l4xx_erratumlist;
3047 unsigned int additional_reloc_count;
3048 /* Information about unwind tables. */
3049 union
3050 {
3051 /* Unwind info attached to a text section. */
3052 struct
3053 {
3054 asection *arm_exidx_sec;
3055 } text;
3056
3057 /* Unwind info attached to an .ARM.exidx section. */
3058 struct
3059 {
3060 arm_unwind_table_edit *unwind_edit_list;
3061 arm_unwind_table_edit *unwind_edit_tail;
3062 } exidx;
3063 } u;
3064 }
3065 _arm_elf_section_data;
3066
3067 #define elf32_arm_section_data(sec) \
3068 ((_arm_elf_section_data *) elf_section_data (sec))
3069
3070 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
3071 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
3072 so may be created multiple times: we use an array of these entries whilst
3073 relaxing which we can refresh easily, then create stubs for each potentially
3074 erratum-triggering instruction once we've settled on a solution. */
3075
3076 struct a8_erratum_fix
3077 {
3078 bfd *input_bfd;
3079 asection *section;
3080 bfd_vma offset;
3081 bfd_vma target_offset;
3082 unsigned long orig_insn;
3083 char *stub_name;
3084 enum elf32_arm_stub_type stub_type;
3085 enum arm_st_branch_type branch_type;
3086 };
3087
3088 /* A table of relocs applied to branches which might trigger Cortex-A8
3089 erratum. */
3090
3091 struct a8_erratum_reloc
3092 {
3093 bfd_vma from;
3094 bfd_vma destination;
3095 struct elf32_arm_link_hash_entry *hash;
3096 const char *sym_name;
3097 unsigned int r_type;
3098 enum arm_st_branch_type branch_type;
3099 bfd_boolean non_a8_stub;
3100 };
3101
3102 /* The size of the thread control block. */
3103 #define TCB_SIZE 8
3104
3105 /* ARM-specific information about a PLT entry, over and above the usual
3106 gotplt_union. */
3107 struct arm_plt_info
3108 {
3109 /* We reference count Thumb references to a PLT entry separately,
3110 so that we can emit the Thumb trampoline only if needed. */
3111 bfd_signed_vma thumb_refcount;
3112
3113 /* Some references from Thumb code may be eliminated by BL->BLX
3114 conversion, so record them separately. */
3115 bfd_signed_vma maybe_thumb_refcount;
3116
3117 /* How many of the recorded PLT accesses were from non-call relocations.
3118 This information is useful when deciding whether anything takes the
3119 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
3120 non-call references to the function should resolve directly to the
3121 real runtime target. */
3122 unsigned int noncall_refcount;
3123
3124 /* Since PLT entries have variable size if the Thumb prologue is
3125 used, we need to record the index into .got.plt instead of
3126 recomputing it from the PLT offset. */
3127 bfd_signed_vma got_offset;
3128 };
3129
3130 /* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
3131 struct arm_local_iplt_info
3132 {
3133 /* The information that is usually found in the generic ELF part of
3134 the hash table entry. */
3135 union gotplt_union root;
3136
3137 /* The information that is usually found in the ARM-specific part of
3138 the hash table entry. */
3139 struct arm_plt_info arm;
3140
3141 /* A list of all potential dynamic relocations against this symbol. */
3142 struct elf_dyn_relocs *dyn_relocs;
3143 };
3144
3145 /* Structure to handle FDPIC support for local functions. */
3146 struct fdpic_local {
3147 unsigned int funcdesc_cnt;
3148 unsigned int gotofffuncdesc_cnt;
3149 int funcdesc_offset;
3150 };
3151
3152 struct elf_arm_obj_tdata
3153 {
3154 struct elf_obj_tdata root;
3155
3156 /* tls_type for each local got entry. */
3157 char *local_got_tls_type;
3158
3159 /* GOTPLT entries for TLS descriptors. */
3160 bfd_vma *local_tlsdesc_gotent;
3161
3162 /* Information for local symbols that need entries in .iplt. */
3163 struct arm_local_iplt_info **local_iplt;
3164
3165 /* Zero to warn when linking objects with incompatible enum sizes. */
3166 int no_enum_size_warning;
3167
3168 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
3169 int no_wchar_size_warning;
3170
3171 /* Maintains FDPIC counters and funcdesc info. */
3172 struct fdpic_local *local_fdpic_cnts;
3173 };
3174
3175 #define elf_arm_tdata(bfd) \
3176 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
3177
3178 #define elf32_arm_local_got_tls_type(bfd) \
3179 (elf_arm_tdata (bfd)->local_got_tls_type)
3180
3181 #define elf32_arm_local_tlsdesc_gotent(bfd) \
3182 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
3183
3184 #define elf32_arm_local_iplt(bfd) \
3185 (elf_arm_tdata (bfd)->local_iplt)
3186
3187 #define elf32_arm_local_fdpic_cnts(bfd) \
3188 (elf_arm_tdata (bfd)->local_fdpic_cnts)
3189
3190 #define is_arm_elf(bfd) \
3191 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
3192 && elf_tdata (bfd) != NULL \
3193 && elf_object_id (bfd) == ARM_ELF_DATA)
3194
3195 static bfd_boolean
3196 elf32_arm_mkobject (bfd *abfd)
3197 {
3198 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
3199 ARM_ELF_DATA);
3200 }
3201
3202 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
3203
3204 /* Structure to handle FDPIC support for extern functions. */
3205 struct fdpic_global {
3206 unsigned int gotofffuncdesc_cnt;
3207 unsigned int gotfuncdesc_cnt;
3208 unsigned int funcdesc_cnt;
3209 int funcdesc_offset;
3210 int gotfuncdesc_offset;
3211 };
3212
3213 /* Arm ELF linker hash entry. */
3214 struct elf32_arm_link_hash_entry
3215 {
3216 struct elf_link_hash_entry root;
3217
3218 /* Track dynamic relocs copied for this symbol. */
3219 struct elf_dyn_relocs *dyn_relocs;
3220
3221 /* ARM-specific PLT information. */
3222 struct arm_plt_info plt;
3223
3224 #define GOT_UNKNOWN 0
3225 #define GOT_NORMAL 1
3226 #define GOT_TLS_GD 2
3227 #define GOT_TLS_IE 4
3228 #define GOT_TLS_GDESC 8
3229 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
3230 unsigned int tls_type : 8;
3231
3232 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
3233 unsigned int is_iplt : 1;
3234
3235 unsigned int unused : 23;
3236
3237 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
3238 starting at the end of the jump table. */
3239 bfd_vma tlsdesc_got;
3240
3241 /* The symbol marking the real symbol location for exported thumb
3242 symbols with Arm stubs. */
3243 struct elf_link_hash_entry *export_glue;
3244
3245 /* A pointer to the most recently used stub hash entry against this
3246 symbol. */
3247 struct elf32_arm_stub_hash_entry *stub_cache;
3248
3249 /* Counter for FDPIC relocations against this symbol. */
3250 struct fdpic_global fdpic_cnts;
3251 };
3252
3253 /* Traverse an arm ELF linker hash table. */
3254 #define elf32_arm_link_hash_traverse(table, func, info) \
3255 (elf_link_hash_traverse \
3256 (&(table)->root, \
3257 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
3258 (info)))
3259
3260 /* Get the ARM elf linker hash table from a link_info structure. */
3261 #define elf32_arm_hash_table(info) \
3262 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
3263 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
3264
3265 #define arm_stub_hash_lookup(table, string, create, copy) \
3266 ((struct elf32_arm_stub_hash_entry *) \
3267 bfd_hash_lookup ((table), (string), (create), (copy)))
3268
3269 /* Array to keep track of which stub sections have been created, and
3270 information on stub grouping. */
3271 struct map_stub
3272 {
3273 /* This is the section to which stubs in the group will be
3274 attached. */
3275 asection *link_sec;
3276 /* The stub section. */
3277 asection *stub_sec;
3278 };
3279
3280 #define elf32_arm_compute_jump_table_size(htab) \
3281 ((htab)->next_tls_desc_index * 4)
3282
3283 /* ARM ELF linker hash table. */
3284 struct elf32_arm_link_hash_table
3285 {
3286 /* The main hash table. */
3287 struct elf_link_hash_table root;
3288
3289 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
3290 bfd_size_type thumb_glue_size;
3291
3292 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
3293 bfd_size_type arm_glue_size;
3294
3295 /* The size in bytes of section containing the ARMv4 BX veneers. */
3296 bfd_size_type bx_glue_size;
3297
3298 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
3299 veneer has been populated. */
3300 bfd_vma bx_glue_offset[15];
3301
3302 /* The size in bytes of the section containing glue for VFP11 erratum
3303 veneers. */
3304 bfd_size_type vfp11_erratum_glue_size;
3305
3306 /* The size in bytes of the section containing glue for STM32L4XX erratum
3307 veneers. */
3308 bfd_size_type stm32l4xx_erratum_glue_size;
3309
3310 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
3311 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
3312 elf32_arm_write_section(). */
3313 struct a8_erratum_fix *a8_erratum_fixes;
3314 unsigned int num_a8_erratum_fixes;
3315
3316 /* An arbitrary input BFD chosen to hold the glue sections. */
3317 bfd * bfd_of_glue_owner;
3318
3319 /* Nonzero to output a BE8 image. */
3320 int byteswap_code;
3321
3322 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
3323 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
3324 int target1_is_rel;
3325
3326 /* The relocation to use for R_ARM_TARGET2 relocations. */
3327 int target2_reloc;
3328
3329 /* 0 = Ignore R_ARM_V4BX.
3330 1 = Convert BX to MOV PC.
3331 2 = Generate v4 interworing stubs. */
3332 int fix_v4bx;
3333
3334 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
3335 int fix_cortex_a8;
3336
3337 /* Whether we should fix the ARM1176 BLX immediate issue. */
3338 int fix_arm1176;
3339
3340 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
3341 int use_blx;
3342
3343 /* What sort of code sequences we should look for which may trigger the
3344 VFP11 denorm erratum. */
3345 bfd_arm_vfp11_fix vfp11_fix;
3346
3347 /* Global counter for the number of fixes we have emitted. */
3348 int num_vfp11_fixes;
3349
3350 /* What sort of code sequences we should look for which may trigger the
3351 STM32L4XX erratum. */
3352 bfd_arm_stm32l4xx_fix stm32l4xx_fix;
3353
3354 /* Global counter for the number of fixes we have emitted. */
3355 int num_stm32l4xx_fixes;
3356
3357 /* Nonzero to force PIC branch veneers. */
3358 int pic_veneer;
3359
3360 /* The number of bytes in the initial entry in the PLT. */
3361 bfd_size_type plt_header_size;
3362
3363 /* The number of bytes in the subsequent PLT etries. */
3364 bfd_size_type plt_entry_size;
3365
3366 /* True if the target system is VxWorks. */
3367 int vxworks_p;
3368
3369 /* True if the target system is Symbian OS. */
3370 int symbian_p;
3371
3372 /* True if the target system is Native Client. */
3373 int nacl_p;
3374
3375 /* True if the target uses REL relocations. */
3376 bfd_boolean use_rel;
3377
3378 /* Nonzero if import library must be a secure gateway import library
3379 as per ARMv8-M Security Extensions. */
3380 int cmse_implib;
3381
3382 /* The import library whose symbols' address must remain stable in
3383 the import library generated. */
3384 bfd *in_implib_bfd;
3385
3386 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
3387 bfd_vma next_tls_desc_index;
3388
3389 /* How many R_ARM_TLS_DESC relocations were generated so far. */
3390 bfd_vma num_tls_desc;
3391
3392 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
3393 asection *srelplt2;
3394
3395 /* The offset into splt of the PLT entry for the TLS descriptor
3396 resolver. Special values are 0, if not necessary (or not found
3397 to be necessary yet), and -1 if needed but not determined
3398 yet. */
3399 bfd_vma dt_tlsdesc_plt;
3400
3401 /* The offset into sgot of the GOT entry used by the PLT entry
3402 above. */
3403 bfd_vma dt_tlsdesc_got;
3404
3405 /* Offset in .plt section of tls_arm_trampoline. */
3406 bfd_vma tls_trampoline;
3407
3408 /* Data for R_ARM_TLS_LDM32/R_ARM_TLS_LDM32_FDPIC relocations. */
3409 union
3410 {
3411 bfd_signed_vma refcount;
3412 bfd_vma offset;
3413 } tls_ldm_got;
3414
3415 /* Small local sym cache. */
3416 struct sym_cache sym_cache;
3417
3418 /* For convenience in allocate_dynrelocs. */
3419 bfd * obfd;
3420
3421 /* The amount of space used by the reserved portion of the sgotplt
3422 section, plus whatever space is used by the jump slots. */
3423 bfd_vma sgotplt_jump_table_size;
3424
3425 /* The stub hash table. */
3426 struct bfd_hash_table stub_hash_table;
3427
3428 /* Linker stub bfd. */
3429 bfd *stub_bfd;
3430
3431 /* Linker call-backs. */
3432 asection * (*add_stub_section) (const char *, asection *, asection *,
3433 unsigned int);
3434 void (*layout_sections_again) (void);
3435
3436 /* Array to keep track of which stub sections have been created, and
3437 information on stub grouping. */
3438 struct map_stub *stub_group;
3439
3440 /* Input stub section holding secure gateway veneers. */
3441 asection *cmse_stub_sec;
3442
3443 /* Offset in cmse_stub_sec where new SG veneers (not in input import library)
3444 start to be allocated. */
3445 bfd_vma new_cmse_stub_offset;
3446
3447 /* Number of elements in stub_group. */
3448 unsigned int top_id;
3449
3450 /* Assorted information used by elf32_arm_size_stubs. */
3451 unsigned int bfd_count;
3452 unsigned int top_index;
3453 asection **input_list;
3454
3455 /* True if the target system uses FDPIC. */
3456 int fdpic_p;
3457
3458 /* Fixup section. Used for FDPIC. */
3459 asection *srofixup;
3460 };
3461
3462 /* Add an FDPIC read-only fixup. */
3463 static void
3464 arm_elf_add_rofixup (bfd *output_bfd, asection *srofixup, bfd_vma offset)
3465 {
3466 bfd_vma fixup_offset;
3467
3468 fixup_offset = srofixup->reloc_count++ * 4;
3469 BFD_ASSERT (fixup_offset < srofixup->size);
3470 bfd_put_32 (output_bfd, offset, srofixup->contents + fixup_offset);
3471 }
3472
3473 static inline int
3474 ctz (unsigned int mask)
3475 {
3476 #if GCC_VERSION >= 3004
3477 return __builtin_ctz (mask);
3478 #else
3479 unsigned int i;
3480
3481 for (i = 0; i < 8 * sizeof (mask); i++)
3482 {
3483 if (mask & 0x1)
3484 break;
3485 mask = (mask >> 1);
3486 }
3487 return i;
3488 #endif
3489 }
3490
3491 static inline int
3492 elf32_arm_popcount (unsigned int mask)
3493 {
3494 #if GCC_VERSION >= 3004
3495 return __builtin_popcount (mask);
3496 #else
3497 unsigned int i;
3498 int sum = 0;
3499
3500 for (i = 0; i < 8 * sizeof (mask); i++)
3501 {
3502 if (mask & 0x1)
3503 sum++;
3504 mask = (mask >> 1);
3505 }
3506 return sum;
3507 #endif
3508 }
3509
3510 static void elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
3511 asection *sreloc, Elf_Internal_Rela *rel);
3512
3513 static void
3514 arm_elf_fill_funcdesc(bfd *output_bfd,
3515 struct bfd_link_info *info,
3516 int *funcdesc_offset,
3517 int dynindx,
3518 int offset,
3519 bfd_vma addr,
3520 bfd_vma dynreloc_value,
3521 bfd_vma seg)
3522 {
3523 if ((*funcdesc_offset & 1) == 0)
3524 {
3525 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
3526 asection *sgot = globals->root.sgot;
3527
3528 if (bfd_link_pic(info))
3529 {
3530 asection *srelgot = globals->root.srelgot;
3531 Elf_Internal_Rela outrel;
3532
3533 outrel.r_info = ELF32_R_INFO (dynindx, R_ARM_FUNCDESC_VALUE);
3534 outrel.r_offset = sgot->output_section->vma + sgot->output_offset + offset;
3535 outrel.r_addend = 0;
3536
3537 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
3538 bfd_put_32 (output_bfd, addr, sgot->contents + offset);
3539 bfd_put_32 (output_bfd, seg, sgot->contents + offset + 4);
3540 }
3541 else
3542 {
3543 struct elf_link_hash_entry *hgot = globals->root.hgot;
3544 bfd_vma got_value = hgot->root.u.def.value
3545 + hgot->root.u.def.section->output_section->vma
3546 + hgot->root.u.def.section->output_offset;
3547
3548 arm_elf_add_rofixup(output_bfd, globals->srofixup,
3549 sgot->output_section->vma + sgot->output_offset
3550 + offset);
3551 arm_elf_add_rofixup(output_bfd, globals->srofixup,
3552 sgot->output_section->vma + sgot->output_offset
3553 + offset + 4);
3554 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + offset);
3555 bfd_put_32 (output_bfd, got_value, sgot->contents + offset + 4);
3556 }
3557 *funcdesc_offset |= 1;
3558 }
3559 }
3560
3561 /* Create an entry in an ARM ELF linker hash table. */
3562
3563 static struct bfd_hash_entry *
3564 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
3565 struct bfd_hash_table * table,
3566 const char * string)
3567 {
3568 struct elf32_arm_link_hash_entry * ret =
3569 (struct elf32_arm_link_hash_entry *) entry;
3570
3571 /* Allocate the structure if it has not already been allocated by a
3572 subclass. */
3573 if (ret == NULL)
3574 ret = (struct elf32_arm_link_hash_entry *)
3575 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
3576 if (ret == NULL)
3577 return (struct bfd_hash_entry *) ret;
3578
3579 /* Call the allocation method of the superclass. */
3580 ret = ((struct elf32_arm_link_hash_entry *)
3581 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3582 table, string));
3583 if (ret != NULL)
3584 {
3585 ret->dyn_relocs = NULL;
3586 ret->tls_type = GOT_UNKNOWN;
3587 ret->tlsdesc_got = (bfd_vma) -1;
3588 ret->plt.thumb_refcount = 0;
3589 ret->plt.maybe_thumb_refcount = 0;
3590 ret->plt.noncall_refcount = 0;
3591 ret->plt.got_offset = -1;
3592 ret->is_iplt = FALSE;
3593 ret->export_glue = NULL;
3594
3595 ret->stub_cache = NULL;
3596
3597 ret->fdpic_cnts.gotofffuncdesc_cnt = 0;
3598 ret->fdpic_cnts.gotfuncdesc_cnt = 0;
3599 ret->fdpic_cnts.funcdesc_cnt = 0;
3600 ret->fdpic_cnts.funcdesc_offset = -1;
3601 ret->fdpic_cnts.gotfuncdesc_offset = -1;
3602 }
3603
3604 return (struct bfd_hash_entry *) ret;
3605 }
3606
3607 /* Ensure that we have allocated bookkeeping structures for ABFD's local
3608 symbols. */
3609
3610 static bfd_boolean
3611 elf32_arm_allocate_local_sym_info (bfd *abfd)
3612 {
3613 if (elf_local_got_refcounts (abfd) == NULL)
3614 {
3615 bfd_size_type num_syms;
3616 bfd_size_type size;
3617 char *data;
3618
3619 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
3620 size = num_syms * (sizeof (bfd_signed_vma)
3621 + sizeof (struct arm_local_iplt_info *)
3622 + sizeof (bfd_vma)
3623 + sizeof (char)
3624 + sizeof (struct fdpic_local));
3625 data = bfd_zalloc (abfd, size);
3626 if (data == NULL)
3627 return FALSE;
3628
3629 elf32_arm_local_fdpic_cnts (abfd) = (struct fdpic_local *) data;
3630 data += num_syms * sizeof (struct fdpic_local);
3631
3632 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
3633 data += num_syms * sizeof (bfd_signed_vma);
3634
3635 elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
3636 data += num_syms * sizeof (struct arm_local_iplt_info *);
3637
3638 elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
3639 data += num_syms * sizeof (bfd_vma);
3640
3641 elf32_arm_local_got_tls_type (abfd) = data;
3642 }
3643 return TRUE;
3644 }
3645
3646 /* Return the .iplt information for local symbol R_SYMNDX, which belongs
3647 to input bfd ABFD. Create the information if it doesn't already exist.
3648 Return null if an allocation fails. */
3649
3650 static struct arm_local_iplt_info *
3651 elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
3652 {
3653 struct arm_local_iplt_info **ptr;
3654
3655 if (!elf32_arm_allocate_local_sym_info (abfd))
3656 return NULL;
3657
3658 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
3659 ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
3660 if (*ptr == NULL)
3661 *ptr = bfd_zalloc (abfd, sizeof (**ptr));
3662 return *ptr;
3663 }
3664
3665 /* Try to obtain PLT information for the symbol with index R_SYMNDX
3666 in ABFD's symbol table. If the symbol is global, H points to its
3667 hash table entry, otherwise H is null.
3668
3669 Return true if the symbol does have PLT information. When returning
3670 true, point *ROOT_PLT at the target-independent reference count/offset
3671 union and *ARM_PLT at the ARM-specific information. */
3672
3673 static bfd_boolean
3674 elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_table *globals,
3675 struct elf32_arm_link_hash_entry *h,
3676 unsigned long r_symndx, union gotplt_union **root_plt,
3677 struct arm_plt_info **arm_plt)
3678 {
3679 struct arm_local_iplt_info *local_iplt;
3680
3681 if (globals->root.splt == NULL && globals->root.iplt == NULL)
3682 return FALSE;
3683
3684 if (h != NULL)
3685 {
3686 *root_plt = &h->root.plt;
3687 *arm_plt = &h->plt;
3688 return TRUE;
3689 }
3690
3691 if (elf32_arm_local_iplt (abfd) == NULL)
3692 return FALSE;
3693
3694 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
3695 if (local_iplt == NULL)
3696 return FALSE;
3697
3698 *root_plt = &local_iplt->root;
3699 *arm_plt = &local_iplt->arm;
3700 return TRUE;
3701 }
3702
3703 static bfd_boolean using_thumb_only (struct elf32_arm_link_hash_table *globals);
3704
3705 /* Return true if the PLT described by ARM_PLT requires a Thumb stub
3706 before it. */
3707
3708 static bfd_boolean
3709 elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3710 struct arm_plt_info *arm_plt)
3711 {
3712 struct elf32_arm_link_hash_table *htab;
3713
3714 htab = elf32_arm_hash_table (info);
3715
3716 return (!using_thumb_only(htab) && (arm_plt->thumb_refcount != 0
3717 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0)));
3718 }
3719
3720 /* Return a pointer to the head of the dynamic reloc list that should
3721 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3722 ABFD's symbol table. Return null if an error occurs. */
3723
3724 static struct elf_dyn_relocs **
3725 elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3726 Elf_Internal_Sym *isym)
3727 {
3728 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3729 {
3730 struct arm_local_iplt_info *local_iplt;
3731
3732 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3733 if (local_iplt == NULL)
3734 return NULL;
3735 return &local_iplt->dyn_relocs;
3736 }
3737 else
3738 {
3739 /* Track dynamic relocs needed for local syms too.
3740 We really need local syms available to do this
3741 easily. Oh well. */
3742 asection *s;
3743 void *vpp;
3744
3745 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3746 if (s == NULL)
3747 abort ();
3748
3749 vpp = &elf_section_data (s)->local_dynrel;
3750 return (struct elf_dyn_relocs **) vpp;
3751 }
3752 }
3753
3754 /* Initialize an entry in the stub hash table. */
3755
3756 static struct bfd_hash_entry *
3757 stub_hash_newfunc (struct bfd_hash_entry *entry,
3758 struct bfd_hash_table *table,
3759 const char *string)
3760 {
3761 /* Allocate the structure if it has not already been allocated by a
3762 subclass. */
3763 if (entry == NULL)
3764 {
3765 entry = (struct bfd_hash_entry *)
3766 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
3767 if (entry == NULL)
3768 return entry;
3769 }
3770
3771 /* Call the allocation method of the superclass. */
3772 entry = bfd_hash_newfunc (entry, table, string);
3773 if (entry != NULL)
3774 {
3775 struct elf32_arm_stub_hash_entry *eh;
3776
3777 /* Initialize the local fields. */
3778 eh = (struct elf32_arm_stub_hash_entry *) entry;
3779 eh->stub_sec = NULL;
3780 eh->stub_offset = (bfd_vma) -1;
3781 eh->source_value = 0;
3782 eh->target_value = 0;
3783 eh->target_section = NULL;
3784 eh->orig_insn = 0;
3785 eh->stub_type = arm_stub_none;
3786 eh->stub_size = 0;
3787 eh->stub_template = NULL;
3788 eh->stub_template_size = -1;
3789 eh->h = NULL;
3790 eh->id_sec = NULL;
3791 eh->output_name = NULL;
3792 }
3793
3794 return entry;
3795 }
3796
3797 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
3798 shortcuts to them in our hash table. */
3799
3800 static bfd_boolean
3801 create_got_section (bfd *dynobj, struct bfd_link_info *info)
3802 {
3803 struct elf32_arm_link_hash_table *htab;
3804
3805 htab = elf32_arm_hash_table (info);
3806 if (htab == NULL)
3807 return FALSE;
3808
3809 /* BPABI objects never have a GOT, or associated sections. */
3810 if (htab->symbian_p)
3811 return TRUE;
3812
3813 if (! _bfd_elf_create_got_section (dynobj, info))
3814 return FALSE;
3815
3816 /* Also create .rofixup. */
3817 if (htab->fdpic_p)
3818 {
3819 htab->srofixup = bfd_make_section_with_flags (dynobj, ".rofixup",
3820 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3821 | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_READONLY));
3822 if (htab->srofixup == NULL
3823 || !bfd_set_section_alignment (htab->srofixup, 2))
3824 return FALSE;
3825 }
3826
3827 return TRUE;
3828 }
3829
3830 /* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3831
3832 static bfd_boolean
3833 create_ifunc_sections (struct bfd_link_info *info)
3834 {
3835 struct elf32_arm_link_hash_table *htab;
3836 const struct elf_backend_data *bed;
3837 bfd *dynobj;
3838 asection *s;
3839 flagword flags;
3840
3841 htab = elf32_arm_hash_table (info);
3842 dynobj = htab->root.dynobj;
3843 bed = get_elf_backend_data (dynobj);
3844 flags = bed->dynamic_sec_flags;
3845
3846 if (htab->root.iplt == NULL)
3847 {
3848 s = bfd_make_section_anyway_with_flags (dynobj, ".iplt",
3849 flags | SEC_READONLY | SEC_CODE);
3850 if (s == NULL
3851 || !bfd_set_section_alignment (s, bed->plt_alignment))
3852 return FALSE;
3853 htab->root.iplt = s;
3854 }
3855
3856 if (htab->root.irelplt == NULL)
3857 {
3858 s = bfd_make_section_anyway_with_flags (dynobj,
3859 RELOC_SECTION (htab, ".iplt"),
3860 flags | SEC_READONLY);
3861 if (s == NULL
3862 || !bfd_set_section_alignment (s, bed->s->log_file_align))
3863 return FALSE;
3864 htab->root.irelplt = s;
3865 }
3866
3867 if (htab->root.igotplt == NULL)
3868 {
3869 s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags);
3870 if (s == NULL
3871 || !bfd_set_section_alignment (s, bed->s->log_file_align))
3872 return FALSE;
3873 htab->root.igotplt = s;
3874 }
3875 return TRUE;
3876 }
3877
3878 /* Determine if we're dealing with a Thumb only architecture. */
3879
3880 static bfd_boolean
3881 using_thumb_only (struct elf32_arm_link_hash_table *globals)
3882 {
3883 int arch;
3884 int profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3885 Tag_CPU_arch_profile);
3886
3887 if (profile)
3888 return profile == 'M';
3889
3890 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3891
3892 /* Force return logic to be reviewed for each new architecture. */
3893 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
3894
3895 if (arch == TAG_CPU_ARCH_V6_M
3896 || arch == TAG_CPU_ARCH_V6S_M
3897 || arch == TAG_CPU_ARCH_V7E_M
3898 || arch == TAG_CPU_ARCH_V8M_BASE
3899 || arch == TAG_CPU_ARCH_V8M_MAIN
3900 || arch == TAG_CPU_ARCH_V8_1M_MAIN)
3901 return TRUE;
3902
3903 return FALSE;
3904 }
3905
3906 /* Determine if we're dealing with a Thumb-2 object. */
3907
3908 static bfd_boolean
3909 using_thumb2 (struct elf32_arm_link_hash_table *globals)
3910 {
3911 int arch;
3912 int thumb_isa = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3913 Tag_THUMB_ISA_use);
3914
3915 if (thumb_isa)
3916 return thumb_isa == 2;
3917
3918 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3919
3920 /* Force return logic to be reviewed for each new architecture. */
3921 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
3922
3923 return (arch == TAG_CPU_ARCH_V6T2
3924 || arch == TAG_CPU_ARCH_V7
3925 || arch == TAG_CPU_ARCH_V7E_M
3926 || arch == TAG_CPU_ARCH_V8
3927 || arch == TAG_CPU_ARCH_V8R
3928 || arch == TAG_CPU_ARCH_V8M_MAIN
3929 || arch == TAG_CPU_ARCH_V8_1M_MAIN);
3930 }
3931
3932 /* Determine whether Thumb-2 BL instruction is available. */
3933
3934 static bfd_boolean
3935 using_thumb2_bl (struct elf32_arm_link_hash_table *globals)
3936 {
3937 int arch =
3938 bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3939
3940 /* Force return logic to be reviewed for each new architecture. */
3941 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
3942
3943 /* Architecture was introduced after ARMv6T2 (eg. ARMv6-M). */
3944 return (arch == TAG_CPU_ARCH_V6T2
3945 || arch >= TAG_CPU_ARCH_V7);
3946 }
3947
3948 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3949 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
3950 hash table. */
3951
3952 static bfd_boolean
3953 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3954 {
3955 struct elf32_arm_link_hash_table *htab;
3956
3957 htab = elf32_arm_hash_table (info);
3958 if (htab == NULL)
3959 return FALSE;
3960
3961 if (!htab->root.sgot && !create_got_section (dynobj, info))
3962 return FALSE;
3963
3964 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3965 return FALSE;
3966
3967 if (htab->vxworks_p)
3968 {
3969 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
3970 return FALSE;
3971
3972 if (bfd_link_pic (info))
3973 {
3974 htab->plt_header_size = 0;
3975 htab->plt_entry_size
3976 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3977 }
3978 else
3979 {
3980 htab->plt_header_size
3981 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3982 htab->plt_entry_size
3983 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3984 }
3985
3986 if (elf_elfheader (dynobj))
3987 elf_elfheader (dynobj)->e_ident[EI_CLASS] = ELFCLASS32;
3988 }
3989 else
3990 {
3991 /* PR ld/16017
3992 Test for thumb only architectures. Note - we cannot just call
3993 using_thumb_only() as the attributes in the output bfd have not been
3994 initialised at this point, so instead we use the input bfd. */
3995 bfd * saved_obfd = htab->obfd;
3996
3997 htab->obfd = dynobj;
3998 if (using_thumb_only (htab))
3999 {
4000 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
4001 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
4002 }
4003 htab->obfd = saved_obfd;
4004 }
4005
4006 if (htab->fdpic_p) {
4007 htab->plt_header_size = 0;
4008 if (info->flags & DF_BIND_NOW)
4009 htab->plt_entry_size = 4 * (ARRAY_SIZE(elf32_arm_fdpic_plt_entry) - 5);
4010 else
4011 htab->plt_entry_size = 4 * ARRAY_SIZE(elf32_arm_fdpic_plt_entry);
4012 }
4013
4014 if (!htab->root.splt
4015 || !htab->root.srelplt
4016 || !htab->root.sdynbss
4017 || (!bfd_link_pic (info) && !htab->root.srelbss))
4018 abort ();
4019
4020 return TRUE;
4021 }
4022
4023 /* Copy the extra info we tack onto an elf_link_hash_entry. */
4024
4025 static void
4026 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
4027 struct elf_link_hash_entry *dir,
4028 struct elf_link_hash_entry *ind)
4029 {
4030 struct elf32_arm_link_hash_entry *edir, *eind;
4031
4032 edir = (struct elf32_arm_link_hash_entry *) dir;
4033 eind = (struct elf32_arm_link_hash_entry *) ind;
4034
4035 if (eind->dyn_relocs != NULL)
4036 {
4037 if (edir->dyn_relocs != NULL)
4038 {
4039 struct elf_dyn_relocs **pp;
4040 struct elf_dyn_relocs *p;
4041
4042 /* Add reloc counts against the indirect sym to the direct sym
4043 list. Merge any entries against the same section. */
4044 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
4045 {
4046 struct elf_dyn_relocs *q;
4047
4048 for (q = edir->dyn_relocs; q != NULL; q = q->next)
4049 if (q->sec == p->sec)
4050 {
4051 q->pc_count += p->pc_count;
4052 q->count += p->count;
4053 *pp = p->next;
4054 break;
4055 }
4056 if (q == NULL)
4057 pp = &p->next;
4058 }
4059 *pp = edir->dyn_relocs;
4060 }
4061
4062 edir->dyn_relocs = eind->dyn_relocs;
4063 eind->dyn_relocs = NULL;
4064 }
4065
4066 if (ind->root.type == bfd_link_hash_indirect)
4067 {
4068 /* Copy over PLT info. */
4069 edir->plt.thumb_refcount += eind->plt.thumb_refcount;
4070 eind->plt.thumb_refcount = 0;
4071 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
4072 eind->plt.maybe_thumb_refcount = 0;
4073 edir->plt.noncall_refcount += eind->plt.noncall_refcount;
4074 eind->plt.noncall_refcount = 0;
4075
4076 /* Copy FDPIC counters. */
4077 edir->fdpic_cnts.gotofffuncdesc_cnt += eind->fdpic_cnts.gotofffuncdesc_cnt;
4078 edir->fdpic_cnts.gotfuncdesc_cnt += eind->fdpic_cnts.gotfuncdesc_cnt;
4079 edir->fdpic_cnts.funcdesc_cnt += eind->fdpic_cnts.funcdesc_cnt;
4080
4081 /* We should only allocate a function to .iplt once the final
4082 symbol information is known. */
4083 BFD_ASSERT (!eind->is_iplt);
4084
4085 if (dir->got.refcount <= 0)
4086 {
4087 edir->tls_type = eind->tls_type;
4088 eind->tls_type = GOT_UNKNOWN;
4089 }
4090 }
4091
4092 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
4093 }
4094
4095 /* Destroy an ARM elf linker hash table. */
4096
4097 static void
4098 elf32_arm_link_hash_table_free (bfd *obfd)
4099 {
4100 struct elf32_arm_link_hash_table *ret
4101 = (struct elf32_arm_link_hash_table *) obfd->link.hash;
4102
4103 bfd_hash_table_free (&ret->stub_hash_table);
4104 _bfd_elf_link_hash_table_free (obfd);
4105 }
4106
4107 /* Create an ARM elf linker hash table. */
4108
4109 static struct bfd_link_hash_table *
4110 elf32_arm_link_hash_table_create (bfd *abfd)
4111 {
4112 struct elf32_arm_link_hash_table *ret;
4113 size_t amt = sizeof (struct elf32_arm_link_hash_table);
4114
4115 ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt);
4116 if (ret == NULL)
4117 return NULL;
4118
4119 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
4120 elf32_arm_link_hash_newfunc,
4121 sizeof (struct elf32_arm_link_hash_entry),
4122 ARM_ELF_DATA))
4123 {
4124 free (ret);
4125 return NULL;
4126 }
4127
4128 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
4129 ret->stm32l4xx_fix = BFD_ARM_STM32L4XX_FIX_NONE;
4130 #ifdef FOUR_WORD_PLT
4131 ret->plt_header_size = 16;
4132 ret->plt_entry_size = 16;
4133 #else
4134 ret->plt_header_size = 20;
4135 ret->plt_entry_size = elf32_arm_use_long_plt_entry ? 16 : 12;
4136 #endif
4137 ret->use_rel = TRUE;
4138 ret->obfd = abfd;
4139 ret->fdpic_p = 0;
4140
4141 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
4142 sizeof (struct elf32_arm_stub_hash_entry)))
4143 {
4144 _bfd_elf_link_hash_table_free (abfd);
4145 return NULL;
4146 }
4147 ret->root.root.hash_table_free = elf32_arm_link_hash_table_free;
4148
4149 return &ret->root.root;
4150 }
4151
4152 /* Determine what kind of NOPs are available. */
4153
4154 static bfd_boolean
4155 arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
4156 {
4157 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
4158 Tag_CPU_arch);
4159
4160 /* Force return logic to be reviewed for each new architecture. */
4161 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
4162
4163 return (arch == TAG_CPU_ARCH_V6T2
4164 || arch == TAG_CPU_ARCH_V6K
4165 || arch == TAG_CPU_ARCH_V7
4166 || arch == TAG_CPU_ARCH_V8
4167 || arch == TAG_CPU_ARCH_V8R);
4168 }
4169
4170 static bfd_boolean
4171 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
4172 {
4173 switch (stub_type)
4174 {
4175 case arm_stub_long_branch_thumb_only:
4176 case arm_stub_long_branch_thumb2_only:
4177 case arm_stub_long_branch_thumb2_only_pure:
4178 case arm_stub_long_branch_v4t_thumb_arm:
4179 case arm_stub_short_branch_v4t_thumb_arm:
4180 case arm_stub_long_branch_v4t_thumb_arm_pic:
4181 case arm_stub_long_branch_v4t_thumb_tls_pic:
4182 case arm_stub_long_branch_thumb_only_pic:
4183 case arm_stub_cmse_branch_thumb_only:
4184 return TRUE;
4185 case arm_stub_none:
4186 BFD_FAIL ();
4187 return FALSE;
4188 break;
4189 default:
4190 return FALSE;
4191 }
4192 }
4193
4194 /* Determine the type of stub needed, if any, for a call. */
4195
4196 static enum elf32_arm_stub_type
4197 arm_type_of_stub (struct bfd_link_info *info,
4198 asection *input_sec,
4199 const Elf_Internal_Rela *rel,
4200 unsigned char st_type,
4201 enum arm_st_branch_type *actual_branch_type,
4202 struct elf32_arm_link_hash_entry *hash,
4203 bfd_vma destination,
4204 asection *sym_sec,
4205 bfd *input_bfd,
4206 const char *name)
4207 {
4208 bfd_vma location;
4209 bfd_signed_vma branch_offset;
4210 unsigned int r_type;
4211 struct elf32_arm_link_hash_table * globals;
4212 bfd_boolean thumb2, thumb2_bl, thumb_only;
4213 enum elf32_arm_stub_type stub_type = arm_stub_none;
4214 int use_plt = 0;
4215 enum arm_st_branch_type branch_type = *actual_branch_type;
4216 union gotplt_union *root_plt;
4217 struct arm_plt_info *arm_plt;
4218 int arch;
4219 int thumb2_movw;
4220
4221 if (branch_type == ST_BRANCH_LONG)
4222 return stub_type;
4223
4224 globals = elf32_arm_hash_table (info);
4225 if (globals == NULL)
4226 return stub_type;
4227
4228 thumb_only = using_thumb_only (globals);
4229 thumb2 = using_thumb2 (globals);
4230 thumb2_bl = using_thumb2_bl (globals);
4231
4232 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
4233
4234 /* True for architectures that implement the thumb2 movw instruction. */
4235 thumb2_movw = thumb2 || (arch == TAG_CPU_ARCH_V8M_BASE);
4236
4237 /* Determine where the call point is. */
4238 location = (input_sec->output_offset
4239 + input_sec->output_section->vma
4240 + rel->r_offset);
4241
4242 r_type = ELF32_R_TYPE (rel->r_info);
4243
4244 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
4245 are considering a function call relocation. */
4246 if (thumb_only && (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
4247 || r_type == R_ARM_THM_JUMP19)
4248 && branch_type == ST_BRANCH_TO_ARM)
4249 branch_type = ST_BRANCH_TO_THUMB;
4250
4251 /* For TLS call relocs, it is the caller's responsibility to provide
4252 the address of the appropriate trampoline. */
4253 if (r_type != R_ARM_TLS_CALL
4254 && r_type != R_ARM_THM_TLS_CALL
4255 && elf32_arm_get_plt_info (input_bfd, globals, hash,
4256 ELF32_R_SYM (rel->r_info), &root_plt,
4257 &arm_plt)
4258 && root_plt->offset != (bfd_vma) -1)
4259 {
4260 asection *splt;
4261
4262 if (hash == NULL || hash->is_iplt)
4263 splt = globals->root.iplt;
4264 else
4265 splt = globals->root.splt;
4266 if (splt != NULL)
4267 {
4268 use_plt = 1;
4269
4270 /* Note when dealing with PLT entries: the main PLT stub is in
4271 ARM mode, so if the branch is in Thumb mode, another
4272 Thumb->ARM stub will be inserted later just before the ARM
4273 PLT stub. If a long branch stub is needed, we'll add a
4274 Thumb->Arm one and branch directly to the ARM PLT entry.
4275 Here, we have to check if a pre-PLT Thumb->ARM stub
4276 is needed and if it will be close enough. */
4277
4278 destination = (splt->output_section->vma
4279 + splt->output_offset
4280 + root_plt->offset);
4281 st_type = STT_FUNC;
4282
4283 /* Thumb branch/call to PLT: it can become a branch to ARM
4284 or to Thumb. We must perform the same checks and
4285 corrections as in elf32_arm_final_link_relocate. */
4286 if ((r_type == R_ARM_THM_CALL)
4287 || (r_type == R_ARM_THM_JUMP24))
4288 {
4289 if (globals->use_blx
4290 && r_type == R_ARM_THM_CALL
4291 && !thumb_only)
4292 {
4293 /* If the Thumb BLX instruction is available, convert
4294 the BL to a BLX instruction to call the ARM-mode
4295 PLT entry. */
4296 branch_type = ST_BRANCH_TO_ARM;
4297 }
4298 else
4299 {
4300 if (!thumb_only)
4301 /* Target the Thumb stub before the ARM PLT entry. */
4302 destination -= PLT_THUMB_STUB_SIZE;
4303 branch_type = ST_BRANCH_TO_THUMB;
4304 }
4305 }
4306 else
4307 {
4308 branch_type = ST_BRANCH_TO_ARM;
4309 }
4310 }
4311 }
4312 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
4313 BFD_ASSERT (st_type != STT_GNU_IFUNC);
4314
4315 branch_offset = (bfd_signed_vma)(destination - location);
4316
4317 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
4318 || r_type == R_ARM_THM_TLS_CALL || r_type == R_ARM_THM_JUMP19)
4319 {
4320 /* Handle cases where:
4321 - this call goes too far (different Thumb/Thumb2 max
4322 distance)
4323 - it's a Thumb->Arm call and blx is not available, or it's a
4324 Thumb->Arm branch (not bl). A stub is needed in this case,
4325 but only if this call is not through a PLT entry. Indeed,
4326 PLT stubs handle mode switching already. */
4327 if ((!thumb2_bl
4328 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4329 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4330 || (thumb2_bl
4331 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4332 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4333 || (thumb2
4334 && (branch_offset > THM2_MAX_FWD_COND_BRANCH_OFFSET
4335 || (branch_offset < THM2_MAX_BWD_COND_BRANCH_OFFSET))
4336 && (r_type == R_ARM_THM_JUMP19))
4337 || (branch_type == ST_BRANCH_TO_ARM
4338 && (((r_type == R_ARM_THM_CALL
4339 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
4340 || (r_type == R_ARM_THM_JUMP24)
4341 || (r_type == R_ARM_THM_JUMP19))
4342 && !use_plt))
4343 {
4344 /* If we need to insert a Thumb-Thumb long branch stub to a
4345 PLT, use one that branches directly to the ARM PLT
4346 stub. If we pretended we'd use the pre-PLT Thumb->ARM
4347 stub, undo this now. */
4348 if ((branch_type == ST_BRANCH_TO_THUMB) && use_plt && !thumb_only)
4349 {
4350 branch_type = ST_BRANCH_TO_ARM;
4351 branch_offset += PLT_THUMB_STUB_SIZE;
4352 }
4353
4354 if (branch_type == ST_BRANCH_TO_THUMB)
4355 {
4356 /* Thumb to thumb. */
4357 if (!thumb_only)
4358 {
4359 if (input_sec->flags & SEC_ELF_PURECODE)
4360 _bfd_error_handler
4361 (_("%pB(%pA): warning: long branch veneers used in"
4362 " section with SHF_ARM_PURECODE section"
4363 " attribute is only supported for M-profile"
4364 " targets that implement the movw instruction"),
4365 input_bfd, input_sec);
4366
4367 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4368 /* PIC stubs. */
4369 ? ((globals->use_blx
4370 && (r_type == R_ARM_THM_CALL))
4371 /* V5T and above. Stub starts with ARM code, so
4372 we must be able to switch mode before
4373 reaching it, which is only possible for 'bl'
4374 (ie R_ARM_THM_CALL relocation). */
4375 ? arm_stub_long_branch_any_thumb_pic
4376 /* On V4T, use Thumb code only. */
4377 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4378
4379 /* non-PIC stubs. */
4380 : ((globals->use_blx
4381 && (r_type == R_ARM_THM_CALL))
4382 /* V5T and above. */
4383 ? arm_stub_long_branch_any_any
4384 /* V4T. */
4385 : arm_stub_long_branch_v4t_thumb_thumb);
4386 }
4387 else
4388 {
4389 if (thumb2_movw && (input_sec->flags & SEC_ELF_PURECODE))
4390 stub_type = arm_stub_long_branch_thumb2_only_pure;
4391 else
4392 {
4393 if (input_sec->flags & SEC_ELF_PURECODE)
4394 _bfd_error_handler
4395 (_("%pB(%pA): warning: long branch veneers used in"
4396 " section with SHF_ARM_PURECODE section"
4397 " attribute is only supported for M-profile"
4398 " targets that implement the movw instruction"),
4399 input_bfd, input_sec);
4400
4401 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4402 /* PIC stub. */
4403 ? arm_stub_long_branch_thumb_only_pic
4404 /* non-PIC stub. */
4405 : (thumb2 ? arm_stub_long_branch_thumb2_only
4406 : arm_stub_long_branch_thumb_only);
4407 }
4408 }
4409 }
4410 else
4411 {
4412 if (input_sec->flags & SEC_ELF_PURECODE)
4413 _bfd_error_handler
4414 (_("%pB(%pA): warning: long branch veneers used in"
4415 " section with SHF_ARM_PURECODE section"
4416 " attribute is only supported" " for M-profile"
4417 " targets that implement the movw instruction"),
4418 input_bfd, input_sec);
4419
4420 /* Thumb to arm. */
4421 if (sym_sec != NULL
4422 && sym_sec->owner != NULL
4423 && !INTERWORK_FLAG (sym_sec->owner))
4424 {
4425 _bfd_error_handler
4426 (_("%pB(%s): warning: interworking not enabled;"
4427 " first occurrence: %pB: %s call to %s"),
4428 sym_sec->owner, name, input_bfd, "Thumb", "ARM");
4429 }
4430
4431 stub_type =
4432 (bfd_link_pic (info) | globals->pic_veneer)
4433 /* PIC stubs. */
4434 ? (r_type == R_ARM_THM_TLS_CALL
4435 /* TLS PIC stubs. */
4436 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
4437 : arm_stub_long_branch_v4t_thumb_tls_pic)
4438 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
4439 /* V5T PIC and above. */
4440 ? arm_stub_long_branch_any_arm_pic
4441 /* V4T PIC stub. */
4442 : arm_stub_long_branch_v4t_thumb_arm_pic))
4443
4444 /* non-PIC stubs. */
4445 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
4446 /* V5T and above. */
4447 ? arm_stub_long_branch_any_any
4448 /* V4T. */
4449 : arm_stub_long_branch_v4t_thumb_arm);
4450
4451 /* Handle v4t short branches. */
4452 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4453 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4454 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4455 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4456 }
4457 }
4458 }
4459 else if (r_type == R_ARM_CALL
4460 || r_type == R_ARM_JUMP24
4461 || r_type == R_ARM_PLT32
4462 || r_type == R_ARM_TLS_CALL)
4463 {
4464 if (input_sec->flags & SEC_ELF_PURECODE)
4465 _bfd_error_handler
4466 (_("%pB(%pA): warning: long branch veneers used in"
4467 " section with SHF_ARM_PURECODE section"
4468 " attribute is only supported for M-profile"
4469 " targets that implement the movw instruction"),
4470 input_bfd, input_sec);
4471 if (branch_type == ST_BRANCH_TO_THUMB)
4472 {
4473 /* Arm to thumb. */
4474
4475 if (sym_sec != NULL
4476 && sym_sec->owner != NULL
4477 && !INTERWORK_FLAG (sym_sec->owner))
4478 {
4479 _bfd_error_handler
4480 (_("%pB(%s): warning: interworking not enabled;"
4481 " first occurrence: %pB: %s call to %s"),
4482 sym_sec->owner, name, input_bfd, "ARM", "Thumb");
4483 }
4484
4485 /* We have an extra 2-bytes reach because of
4486 the mode change (bit 24 (H) of BLX encoding). */
4487 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4488 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4489 || (r_type == R_ARM_CALL && !globals->use_blx)
4490 || (r_type == R_ARM_JUMP24)
4491 || (r_type == R_ARM_PLT32))
4492 {
4493 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4494 /* PIC stubs. */
4495 ? ((globals->use_blx)
4496 /* V5T and above. */
4497 ? arm_stub_long_branch_any_thumb_pic
4498 /* V4T stub. */
4499 : arm_stub_long_branch_v4t_arm_thumb_pic)
4500
4501 /* non-PIC stubs. */
4502 : ((globals->use_blx)
4503 /* V5T and above. */
4504 ? arm_stub_long_branch_any_any
4505 /* V4T. */
4506 : arm_stub_long_branch_v4t_arm_thumb);
4507 }
4508 }
4509 else
4510 {
4511 /* Arm to arm. */
4512 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4513 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4514 {
4515 stub_type =
4516 (bfd_link_pic (info) | globals->pic_veneer)
4517 /* PIC stubs. */
4518 ? (r_type == R_ARM_TLS_CALL
4519 /* TLS PIC Stub. */
4520 ? arm_stub_long_branch_any_tls_pic
4521 : (globals->nacl_p
4522 ? arm_stub_long_branch_arm_nacl_pic
4523 : arm_stub_long_branch_any_arm_pic))
4524 /* non-PIC stubs. */
4525 : (globals->nacl_p
4526 ? arm_stub_long_branch_arm_nacl
4527 : arm_stub_long_branch_any_any);
4528 }
4529 }
4530 }
4531
4532 /* If a stub is needed, record the actual destination type. */
4533 if (stub_type != arm_stub_none)
4534 *actual_branch_type = branch_type;
4535
4536 return stub_type;
4537 }
4538
4539 /* Build a name for an entry in the stub hash table. */
4540
4541 static char *
4542 elf32_arm_stub_name (const asection *input_section,
4543 const asection *sym_sec,
4544 const struct elf32_arm_link_hash_entry *hash,
4545 const Elf_Internal_Rela *rel,
4546 enum elf32_arm_stub_type stub_type)
4547 {
4548 char *stub_name;
4549 bfd_size_type len;
4550
4551 if (hash)
4552 {
4553 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
4554 stub_name = (char *) bfd_malloc (len);
4555 if (stub_name != NULL)
4556 sprintf (stub_name, "%08x_%s+%x_%d",
4557 input_section->id & 0xffffffff,
4558 hash->root.root.root.string,
4559 (int) rel->r_addend & 0xffffffff,
4560 (int) stub_type);
4561 }
4562 else
4563 {
4564 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
4565 stub_name = (char *) bfd_malloc (len);
4566 if (stub_name != NULL)
4567 sprintf (stub_name, "%08x_%x:%x+%x_%d",
4568 input_section->id & 0xffffffff,
4569 sym_sec->id & 0xffffffff,
4570 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
4571 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
4572 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
4573 (int) rel->r_addend & 0xffffffff,
4574 (int) stub_type);
4575 }
4576
4577 return stub_name;
4578 }
4579
4580 /* Look up an entry in the stub hash. Stub entries are cached because
4581 creating the stub name takes a bit of time. */
4582
4583 static struct elf32_arm_stub_hash_entry *
4584 elf32_arm_get_stub_entry (const asection *input_section,
4585 const asection *sym_sec,
4586 struct elf_link_hash_entry *hash,
4587 const Elf_Internal_Rela *rel,
4588 struct elf32_arm_link_hash_table *htab,
4589 enum elf32_arm_stub_type stub_type)
4590 {
4591 struct elf32_arm_stub_hash_entry *stub_entry;
4592 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
4593 const asection *id_sec;
4594
4595 if ((input_section->flags & SEC_CODE) == 0)
4596 return NULL;
4597
4598 /* If the input section is the CMSE stubs one and it needs a long
4599 branch stub to reach it's final destination, give up with an
4600 error message: this is not supported. See PR ld/24709. */
4601 if (!strncmp (input_section->name, CMSE_STUB_NAME, strlen(CMSE_STUB_NAME)))
4602 {
4603 bfd *output_bfd = htab->obfd;
4604 asection *out_sec = bfd_get_section_by_name (output_bfd, CMSE_STUB_NAME);
4605
4606 _bfd_error_handler (_("ERROR: CMSE stub (%s section) too far "
4607 "(%#" PRIx64 ") from destination (%#" PRIx64 ")"),
4608 CMSE_STUB_NAME,
4609 (uint64_t)out_sec->output_section->vma
4610 + out_sec->output_offset,
4611 (uint64_t)sym_sec->output_section->vma
4612 + sym_sec->output_offset
4613 + h->root.root.u.def.value);
4614 /* Exit, rather than leave incompletely processed
4615 relocations. */
4616 xexit(1);
4617 }
4618
4619 /* If this input section is part of a group of sections sharing one
4620 stub section, then use the id of the first section in the group.
4621 Stub names need to include a section id, as there may well be
4622 more than one stub used to reach say, printf, and we need to
4623 distinguish between them. */
4624 BFD_ASSERT (input_section->id <= htab->top_id);
4625 id_sec = htab->stub_group[input_section->id].link_sec;
4626
4627 if (h != NULL && h->stub_cache != NULL
4628 && h->stub_cache->h == h
4629 && h->stub_cache->id_sec == id_sec
4630 && h->stub_cache->stub_type == stub_type)
4631 {
4632 stub_entry = h->stub_cache;
4633 }
4634 else
4635 {
4636 char *stub_name;
4637
4638 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
4639 if (stub_name == NULL)
4640 return NULL;
4641
4642 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
4643 stub_name, FALSE, FALSE);
4644 if (h != NULL)
4645 h->stub_cache = stub_entry;
4646
4647 free (stub_name);
4648 }
4649
4650 return stub_entry;
4651 }
4652
4653 /* Whether veneers of type STUB_TYPE require to be in a dedicated output
4654 section. */
4655
4656 static bfd_boolean
4657 arm_dedicated_stub_output_section_required (enum elf32_arm_stub_type stub_type)
4658 {
4659 if (stub_type >= max_stub_type)
4660 abort (); /* Should be unreachable. */
4661
4662 switch (stub_type)
4663 {
4664 case arm_stub_cmse_branch_thumb_only:
4665 return TRUE;
4666
4667 default:
4668 return FALSE;
4669 }
4670
4671 abort (); /* Should be unreachable. */
4672 }
4673
4674 /* Required alignment (as a power of 2) for the dedicated section holding
4675 veneers of type STUB_TYPE, or 0 if veneers of this type are interspersed
4676 with input sections. */
4677
4678 static int
4679 arm_dedicated_stub_output_section_required_alignment
4680 (enum elf32_arm_stub_type stub_type)
4681 {
4682 if (stub_type >= max_stub_type)
4683 abort (); /* Should be unreachable. */
4684
4685 switch (stub_type)
4686 {
4687 /* Vectors of Secure Gateway veneers must be aligned on 32byte
4688 boundary. */
4689 case arm_stub_cmse_branch_thumb_only:
4690 return 5;
4691
4692 default:
4693 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4694 return 0;
4695 }
4696
4697 abort (); /* Should be unreachable. */
4698 }
4699
4700 /* Name of the dedicated output section to put veneers of type STUB_TYPE, or
4701 NULL if veneers of this type are interspersed with input sections. */
4702
4703 static const char *
4704 arm_dedicated_stub_output_section_name (enum elf32_arm_stub_type stub_type)
4705 {
4706 if (stub_type >= max_stub_type)
4707 abort (); /* Should be unreachable. */
4708
4709 switch (stub_type)
4710 {
4711 case arm_stub_cmse_branch_thumb_only:
4712 return CMSE_STUB_NAME;
4713
4714 default:
4715 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4716 return NULL;
4717 }
4718
4719 abort (); /* Should be unreachable. */
4720 }
4721
4722 /* If veneers of type STUB_TYPE should go in a dedicated output section,
4723 returns the address of the hash table field in HTAB holding a pointer to the
4724 corresponding input section. Otherwise, returns NULL. */
4725
4726 static asection **
4727 arm_dedicated_stub_input_section_ptr (struct elf32_arm_link_hash_table *htab,
4728 enum elf32_arm_stub_type stub_type)
4729 {
4730 if (stub_type >= max_stub_type)
4731 abort (); /* Should be unreachable. */
4732
4733 switch (stub_type)
4734 {
4735 case arm_stub_cmse_branch_thumb_only:
4736 return &htab->cmse_stub_sec;
4737
4738 default:
4739 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4740 return NULL;
4741 }
4742
4743 abort (); /* Should be unreachable. */
4744 }
4745
4746 /* Find or create a stub section to contain a stub of type STUB_TYPE. SECTION
4747 is the section that branch into veneer and can be NULL if stub should go in
4748 a dedicated output section. Returns a pointer to the stub section, and the
4749 section to which the stub section will be attached (in *LINK_SEC_P).
4750 LINK_SEC_P may be NULL. */
4751
4752 static asection *
4753 elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
4754 struct elf32_arm_link_hash_table *htab,
4755 enum elf32_arm_stub_type stub_type)
4756 {
4757 asection *link_sec, *out_sec, **stub_sec_p;
4758 const char *stub_sec_prefix;
4759 bfd_boolean dedicated_output_section =
4760 arm_dedicated_stub_output_section_required (stub_type);
4761 int align;
4762
4763 if (dedicated_output_section)
4764 {
4765 bfd *output_bfd = htab->obfd;
4766 const char *out_sec_name =
4767 arm_dedicated_stub_output_section_name (stub_type);
4768 link_sec = NULL;
4769 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
4770 stub_sec_prefix = out_sec_name;
4771 align = arm_dedicated_stub_output_section_required_alignment (stub_type);
4772 out_sec = bfd_get_section_by_name (output_bfd, out_sec_name);
4773 if (out_sec == NULL)
4774 {
4775 _bfd_error_handler (_("no address assigned to the veneers output "
4776 "section %s"), out_sec_name);
4777 return NULL;
4778 }
4779 }
4780 else
4781 {
4782 BFD_ASSERT (section->id <= htab->top_id);
4783 link_sec = htab->stub_group[section->id].link_sec;
4784 BFD_ASSERT (link_sec != NULL);
4785 stub_sec_p = &htab->stub_group[section->id].stub_sec;
4786 if (*stub_sec_p == NULL)
4787 stub_sec_p = &htab->stub_group[link_sec->id].stub_sec;
4788 stub_sec_prefix = link_sec->name;
4789 out_sec = link_sec->output_section;
4790 align = htab->nacl_p ? 4 : 3;
4791 }
4792
4793 if (*stub_sec_p == NULL)
4794 {
4795 size_t namelen;
4796 bfd_size_type len;
4797 char *s_name;
4798
4799 namelen = strlen (stub_sec_prefix);
4800 len = namelen + sizeof (STUB_SUFFIX);
4801 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
4802 if (s_name == NULL)
4803 return NULL;
4804
4805 memcpy (s_name, stub_sec_prefix, namelen);
4806 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4807 *stub_sec_p = (*htab->add_stub_section) (s_name, out_sec, link_sec,
4808 align);
4809 if (*stub_sec_p == NULL)
4810 return NULL;
4811
4812 out_sec->flags |= SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_CODE
4813 | SEC_HAS_CONTENTS | SEC_RELOC | SEC_IN_MEMORY
4814 | SEC_KEEP;
4815 }
4816
4817 if (!dedicated_output_section)
4818 htab->stub_group[section->id].stub_sec = *stub_sec_p;
4819
4820 if (link_sec_p)
4821 *link_sec_p = link_sec;
4822
4823 return *stub_sec_p;
4824 }
4825
4826 /* Add a new stub entry to the stub hash. Not all fields of the new
4827 stub entry are initialised. */
4828
4829 static struct elf32_arm_stub_hash_entry *
4830 elf32_arm_add_stub (const char *stub_name, asection *section,
4831 struct elf32_arm_link_hash_table *htab,
4832 enum elf32_arm_stub_type stub_type)
4833 {
4834 asection *link_sec;
4835 asection *stub_sec;
4836 struct elf32_arm_stub_hash_entry *stub_entry;
4837
4838 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab,
4839 stub_type);
4840 if (stub_sec == NULL)
4841 return NULL;
4842
4843 /* Enter this entry into the linker stub hash table. */
4844 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4845 TRUE, FALSE);
4846 if (stub_entry == NULL)
4847 {
4848 if (section == NULL)
4849 section = stub_sec;
4850 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
4851 section->owner, stub_name);
4852 return NULL;
4853 }
4854
4855 stub_entry->stub_sec = stub_sec;
4856 stub_entry->stub_offset = (bfd_vma) -1;
4857 stub_entry->id_sec = link_sec;
4858
4859 return stub_entry;
4860 }
4861
4862 /* Store an Arm insn into an output section not processed by
4863 elf32_arm_write_section. */
4864
4865 static void
4866 put_arm_insn (struct elf32_arm_link_hash_table * htab,
4867 bfd * output_bfd, bfd_vma val, void * ptr)
4868 {
4869 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4870 bfd_putl32 (val, ptr);
4871 else
4872 bfd_putb32 (val, ptr);
4873 }
4874
4875 /* Store a 16-bit Thumb insn into an output section not processed by
4876 elf32_arm_write_section. */
4877
4878 static void
4879 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
4880 bfd * output_bfd, bfd_vma val, void * ptr)
4881 {
4882 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4883 bfd_putl16 (val, ptr);
4884 else
4885 bfd_putb16 (val, ptr);
4886 }
4887
4888 /* Store a Thumb2 insn into an output section not processed by
4889 elf32_arm_write_section. */
4890
4891 static void
4892 put_thumb2_insn (struct elf32_arm_link_hash_table * htab,
4893 bfd * output_bfd, bfd_vma val, bfd_byte * ptr)
4894 {
4895 /* T2 instructions are 16-bit streamed. */
4896 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4897 {
4898 bfd_putl16 ((val >> 16) & 0xffff, ptr);
4899 bfd_putl16 ((val & 0xffff), ptr + 2);
4900 }
4901 else
4902 {
4903 bfd_putb16 ((val >> 16) & 0xffff, ptr);
4904 bfd_putb16 ((val & 0xffff), ptr + 2);
4905 }
4906 }
4907
4908 /* If it's possible to change R_TYPE to a more efficient access
4909 model, return the new reloc type. */
4910
4911 static unsigned
4912 elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
4913 struct elf_link_hash_entry *h)
4914 {
4915 int is_local = (h == NULL);
4916
4917 if (bfd_link_dll (info)
4918 || (h && h->root.type == bfd_link_hash_undefweak))
4919 return r_type;
4920
4921 /* We do not support relaxations for Old TLS models. */
4922 switch (r_type)
4923 {
4924 case R_ARM_TLS_GOTDESC:
4925 case R_ARM_TLS_CALL:
4926 case R_ARM_THM_TLS_CALL:
4927 case R_ARM_TLS_DESCSEQ:
4928 case R_ARM_THM_TLS_DESCSEQ:
4929 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
4930 }
4931
4932 return r_type;
4933 }
4934
4935 static bfd_reloc_status_type elf32_arm_final_link_relocate
4936 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
4937 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
4938 const char *, unsigned char, enum arm_st_branch_type,
4939 struct elf_link_hash_entry *, bfd_boolean *, char **);
4940
4941 static unsigned int
4942 arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
4943 {
4944 switch (stub_type)
4945 {
4946 case arm_stub_a8_veneer_b_cond:
4947 case arm_stub_a8_veneer_b:
4948 case arm_stub_a8_veneer_bl:
4949 return 2;
4950
4951 case arm_stub_long_branch_any_any:
4952 case arm_stub_long_branch_v4t_arm_thumb:
4953 case arm_stub_long_branch_thumb_only:
4954 case arm_stub_long_branch_thumb2_only:
4955 case arm_stub_long_branch_thumb2_only_pure:
4956 case arm_stub_long_branch_v4t_thumb_thumb:
4957 case arm_stub_long_branch_v4t_thumb_arm:
4958 case arm_stub_short_branch_v4t_thumb_arm:
4959 case arm_stub_long_branch_any_arm_pic:
4960 case arm_stub_long_branch_any_thumb_pic:
4961 case arm_stub_long_branch_v4t_thumb_thumb_pic:
4962 case arm_stub_long_branch_v4t_arm_thumb_pic:
4963 case arm_stub_long_branch_v4t_thumb_arm_pic:
4964 case arm_stub_long_branch_thumb_only_pic:
4965 case arm_stub_long_branch_any_tls_pic:
4966 case arm_stub_long_branch_v4t_thumb_tls_pic:
4967 case arm_stub_cmse_branch_thumb_only:
4968 case arm_stub_a8_veneer_blx:
4969 return 4;
4970
4971 case arm_stub_long_branch_arm_nacl:
4972 case arm_stub_long_branch_arm_nacl_pic:
4973 return 16;
4974
4975 default:
4976 abort (); /* Should be unreachable. */
4977 }
4978 }
4979
4980 /* Returns whether stubs of type STUB_TYPE take over the symbol they are
4981 veneering (TRUE) or have their own symbol (FALSE). */
4982
4983 static bfd_boolean
4984 arm_stub_sym_claimed (enum elf32_arm_stub_type stub_type)
4985 {
4986 if (stub_type >= max_stub_type)
4987 abort (); /* Should be unreachable. */
4988
4989 switch (stub_type)
4990 {
4991 case arm_stub_cmse_branch_thumb_only:
4992 return TRUE;
4993
4994 default:
4995 return FALSE;
4996 }
4997
4998 abort (); /* Should be unreachable. */
4999 }
5000
5001 /* Returns the padding needed for the dedicated section used stubs of type
5002 STUB_TYPE. */
5003
5004 static int
5005 arm_dedicated_stub_section_padding (enum elf32_arm_stub_type stub_type)
5006 {
5007 if (stub_type >= max_stub_type)
5008 abort (); /* Should be unreachable. */
5009
5010 switch (stub_type)
5011 {
5012 case arm_stub_cmse_branch_thumb_only:
5013 return 32;
5014
5015 default:
5016 return 0;
5017 }
5018
5019 abort (); /* Should be unreachable. */
5020 }
5021
5022 /* If veneers of type STUB_TYPE should go in a dedicated output section,
5023 returns the address of the hash table field in HTAB holding the offset at
5024 which new veneers should be layed out in the stub section. */
5025
5026 static bfd_vma*
5027 arm_new_stubs_start_offset_ptr (struct elf32_arm_link_hash_table *htab,
5028 enum elf32_arm_stub_type stub_type)
5029 {
5030 switch (stub_type)
5031 {
5032 case arm_stub_cmse_branch_thumb_only:
5033 return &htab->new_cmse_stub_offset;
5034
5035 default:
5036 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
5037 return NULL;
5038 }
5039 }
5040
5041 static bfd_boolean
5042 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
5043 void * in_arg)
5044 {
5045 #define MAXRELOCS 3
5046 bfd_boolean removed_sg_veneer;
5047 struct elf32_arm_stub_hash_entry *stub_entry;
5048 struct elf32_arm_link_hash_table *globals;
5049 struct bfd_link_info *info;
5050 asection *stub_sec;
5051 bfd *stub_bfd;
5052 bfd_byte *loc;
5053 bfd_vma sym_value;
5054 int template_size;
5055 int size;
5056 const insn_sequence *template_sequence;
5057 int i;
5058 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
5059 int stub_reloc_offset[MAXRELOCS] = {0, 0};
5060 int nrelocs = 0;
5061 int just_allocated = 0;
5062
5063 /* Massage our args to the form they really have. */
5064 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
5065 info = (struct bfd_link_info *) in_arg;
5066
5067 /* Fail if the target section could not be assigned to an output
5068 section. The user should fix his linker script. */
5069 if (stub_entry->target_section->output_section == NULL
5070 && info->non_contiguous_regions)
5071 info->callbacks->einfo (_("%F%P: Could not assign '%pA' to an output section. "
5072 "Retry without --enable-non-contiguous-regions.\n"),
5073 stub_entry->target_section);
5074
5075 globals = elf32_arm_hash_table (info);
5076 if (globals == NULL)
5077 return FALSE;
5078
5079 stub_sec = stub_entry->stub_sec;
5080
5081 if ((globals->fix_cortex_a8 < 0)
5082 != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
5083 /* We have to do less-strictly-aligned fixes last. */
5084 return TRUE;
5085
5086 /* Assign a slot at the end of section if none assigned yet. */
5087 if (stub_entry->stub_offset == (bfd_vma) -1)
5088 {
5089 stub_entry->stub_offset = stub_sec->size;
5090 just_allocated = 1;
5091 }
5092 loc = stub_sec->contents + stub_entry->stub_offset;
5093
5094 stub_bfd = stub_sec->owner;
5095
5096 /* This is the address of the stub destination. */
5097 sym_value = (stub_entry->target_value
5098 + stub_entry->target_section->output_offset
5099 + stub_entry->target_section->output_section->vma);
5100
5101 template_sequence = stub_entry->stub_template;
5102 template_size = stub_entry->stub_template_size;
5103
5104 size = 0;
5105 for (i = 0; i < template_size; i++)
5106 {
5107 switch (template_sequence[i].type)
5108 {
5109 case THUMB16_TYPE:
5110 {
5111 bfd_vma data = (bfd_vma) template_sequence[i].data;
5112 if (template_sequence[i].reloc_addend != 0)
5113 {
5114 /* We've borrowed the reloc_addend field to mean we should
5115 insert a condition code into this (Thumb-1 branch)
5116 instruction. See THUMB16_BCOND_INSN. */
5117 BFD_ASSERT ((data & 0xff00) == 0xd000);
5118 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
5119 }
5120 bfd_put_16 (stub_bfd, data, loc + size);
5121 size += 2;
5122 }
5123 break;
5124
5125 case THUMB32_TYPE:
5126 bfd_put_16 (stub_bfd,
5127 (template_sequence[i].data >> 16) & 0xffff,
5128 loc + size);
5129 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
5130 loc + size + 2);
5131 if (template_sequence[i].r_type != R_ARM_NONE)
5132 {
5133 stub_reloc_idx[nrelocs] = i;
5134 stub_reloc_offset[nrelocs++] = size;
5135 }
5136 size += 4;
5137 break;
5138
5139 case ARM_TYPE:
5140 bfd_put_32 (stub_bfd, template_sequence[i].data,
5141 loc + size);
5142 /* Handle cases where the target is encoded within the
5143 instruction. */
5144 if (template_sequence[i].r_type == R_ARM_JUMP24)
5145 {
5146 stub_reloc_idx[nrelocs] = i;
5147 stub_reloc_offset[nrelocs++] = size;
5148 }
5149 size += 4;
5150 break;
5151
5152 case DATA_TYPE:
5153 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
5154 stub_reloc_idx[nrelocs] = i;
5155 stub_reloc_offset[nrelocs++] = size;
5156 size += 4;
5157 break;
5158
5159 default:
5160 BFD_FAIL ();
5161 return FALSE;
5162 }
5163 }
5164
5165 if (just_allocated)
5166 stub_sec->size += size;
5167
5168 /* Stub size has already been computed in arm_size_one_stub. Check
5169 consistency. */
5170 BFD_ASSERT (size == stub_entry->stub_size);
5171
5172 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
5173 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
5174 sym_value |= 1;
5175
5176 /* Assume non empty slots have at least one and at most MAXRELOCS entries
5177 to relocate in each stub. */
5178 removed_sg_veneer =
5179 (size == 0 && stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
5180 BFD_ASSERT (removed_sg_veneer || (nrelocs != 0 && nrelocs <= MAXRELOCS));
5181
5182 for (i = 0; i < nrelocs; i++)
5183 {
5184 Elf_Internal_Rela rel;
5185 bfd_boolean unresolved_reloc;
5186 char *error_message;
5187 bfd_vma points_to =
5188 sym_value + template_sequence[stub_reloc_idx[i]].reloc_addend;
5189
5190 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
5191 rel.r_info = ELF32_R_INFO (0,
5192 template_sequence[stub_reloc_idx[i]].r_type);
5193 rel.r_addend = 0;
5194
5195 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
5196 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
5197 template should refer back to the instruction after the original
5198 branch. We use target_section as Cortex-A8 erratum workaround stubs
5199 are only generated when both source and target are in the same
5200 section. */
5201 points_to = stub_entry->target_section->output_section->vma
5202 + stub_entry->target_section->output_offset
5203 + stub_entry->source_value;
5204
5205 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
5206 (template_sequence[stub_reloc_idx[i]].r_type),
5207 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
5208 points_to, info, stub_entry->target_section, "", STT_FUNC,
5209 stub_entry->branch_type,
5210 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
5211 &error_message);
5212 }
5213
5214 return TRUE;
5215 #undef MAXRELOCS
5216 }
5217
5218 /* Calculate the template, template size and instruction size for a stub.
5219 Return value is the instruction size. */
5220
5221 static unsigned int
5222 find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
5223 const insn_sequence **stub_template,
5224 int *stub_template_size)
5225 {
5226 const insn_sequence *template_sequence = NULL;
5227 int template_size = 0, i;
5228 unsigned int size;
5229
5230 template_sequence = stub_definitions[stub_type].template_sequence;
5231 if (stub_template)
5232 *stub_template = template_sequence;
5233
5234 template_size = stub_definitions[stub_type].template_size;
5235 if (stub_template_size)
5236 *stub_template_size = template_size;
5237
5238 size = 0;
5239 for (i = 0; i < template_size; i++)
5240 {
5241 switch (template_sequence[i].type)
5242 {
5243 case THUMB16_TYPE:
5244 size += 2;
5245 break;
5246
5247 case ARM_TYPE:
5248 case THUMB32_TYPE:
5249 case DATA_TYPE:
5250 size += 4;
5251 break;
5252
5253 default:
5254 BFD_FAIL ();
5255 return 0;
5256 }
5257 }
5258
5259 return size;
5260 }
5261
5262 /* As above, but don't actually build the stub. Just bump offset so
5263 we know stub section sizes. */
5264
5265 static bfd_boolean
5266 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
5267 void *in_arg ATTRIBUTE_UNUSED)
5268 {
5269 struct elf32_arm_stub_hash_entry *stub_entry;
5270 const insn_sequence *template_sequence;
5271 int template_size, size;
5272
5273 /* Massage our args to the form they really have. */
5274 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
5275
5276 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
5277 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
5278
5279 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
5280 &template_size);
5281
5282 /* Initialized to -1. Null size indicates an empty slot full of zeros. */
5283 if (stub_entry->stub_template_size)
5284 {
5285 stub_entry->stub_size = size;
5286 stub_entry->stub_template = template_sequence;
5287 stub_entry->stub_template_size = template_size;
5288 }
5289
5290 /* Already accounted for. */
5291 if (stub_entry->stub_offset != (bfd_vma) -1)
5292 return TRUE;
5293
5294 size = (size + 7) & ~7;
5295 stub_entry->stub_sec->size += size;
5296
5297 return TRUE;
5298 }
5299
5300 /* External entry points for sizing and building linker stubs. */
5301
5302 /* Set up various things so that we can make a list of input sections
5303 for each output section included in the link. Returns -1 on error,
5304 0 when no stubs will be needed, and 1 on success. */
5305
5306 int
5307 elf32_arm_setup_section_lists (bfd *output_bfd,
5308 struct bfd_link_info *info)
5309 {
5310 bfd *input_bfd;
5311 unsigned int bfd_count;
5312 unsigned int top_id, top_index;
5313 asection *section;
5314 asection **input_list, **list;
5315 size_t amt;
5316 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5317
5318 if (htab == NULL)
5319 return 0;
5320 if (! is_elf_hash_table (htab))
5321 return 0;
5322
5323 /* Count the number of input BFDs and find the top input section id. */
5324 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
5325 input_bfd != NULL;
5326 input_bfd = input_bfd->link.next)
5327 {
5328 bfd_count += 1;
5329 for (section = input_bfd->sections;
5330 section != NULL;
5331 section = section->next)
5332 {
5333 if (top_id < section->id)
5334 top_id = section->id;
5335 }
5336 }
5337 htab->bfd_count = bfd_count;
5338
5339 amt = sizeof (struct map_stub) * (top_id + 1);
5340 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
5341 if (htab->stub_group == NULL)
5342 return -1;
5343 htab->top_id = top_id;
5344
5345 /* We can't use output_bfd->section_count here to find the top output
5346 section index as some sections may have been removed, and
5347 _bfd_strip_section_from_output doesn't renumber the indices. */
5348 for (section = output_bfd->sections, top_index = 0;
5349 section != NULL;
5350 section = section->next)
5351 {
5352 if (top_index < section->index)
5353 top_index = section->index;
5354 }
5355
5356 htab->top_index = top_index;
5357 amt = sizeof (asection *) * (top_index + 1);
5358 input_list = (asection **) bfd_malloc (amt);
5359 htab->input_list = input_list;
5360 if (input_list == NULL)
5361 return -1;
5362
5363 /* For sections we aren't interested in, mark their entries with a
5364 value we can check later. */
5365 list = input_list + top_index;
5366 do
5367 *list = bfd_abs_section_ptr;
5368 while (list-- != input_list);
5369
5370 for (section = output_bfd->sections;
5371 section != NULL;
5372 section = section->next)
5373 {
5374 if ((section->flags & SEC_CODE) != 0)
5375 input_list[section->index] = NULL;
5376 }
5377
5378 return 1;
5379 }
5380
5381 /* The linker repeatedly calls this function for each input section,
5382 in the order that input sections are linked into output sections.
5383 Build lists of input sections to determine groupings between which
5384 we may insert linker stubs. */
5385
5386 void
5387 elf32_arm_next_input_section (struct bfd_link_info *info,
5388 asection *isec)
5389 {
5390 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5391
5392 if (htab == NULL)
5393 return;
5394
5395 if (isec->output_section->index <= htab->top_index)
5396 {
5397 asection **list = htab->input_list + isec->output_section->index;
5398
5399 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
5400 {
5401 /* Steal the link_sec pointer for our list. */
5402 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
5403 /* This happens to make the list in reverse order,
5404 which we reverse later. */
5405 PREV_SEC (isec) = *list;
5406 *list = isec;
5407 }
5408 }
5409 }
5410
5411 /* See whether we can group stub sections together. Grouping stub
5412 sections may result in fewer stubs. More importantly, we need to
5413 put all .init* and .fini* stubs at the end of the .init or
5414 .fini output sections respectively, because glibc splits the
5415 _init and _fini functions into multiple parts. Putting a stub in
5416 the middle of a function is not a good idea. */
5417
5418 static void
5419 group_sections (struct elf32_arm_link_hash_table *htab,
5420 bfd_size_type stub_group_size,
5421 bfd_boolean stubs_always_after_branch)
5422 {
5423 asection **list = htab->input_list;
5424
5425 do
5426 {
5427 asection *tail = *list;
5428 asection *head;
5429
5430 if (tail == bfd_abs_section_ptr)
5431 continue;
5432
5433 /* Reverse the list: we must avoid placing stubs at the
5434 beginning of the section because the beginning of the text
5435 section may be required for an interrupt vector in bare metal
5436 code. */
5437 #define NEXT_SEC PREV_SEC
5438 head = NULL;
5439 while (tail != NULL)
5440 {
5441 /* Pop from tail. */
5442 asection *item = tail;
5443 tail = PREV_SEC (item);
5444
5445 /* Push on head. */
5446 NEXT_SEC (item) = head;
5447 head = item;
5448 }
5449
5450 while (head != NULL)
5451 {
5452 asection *curr;
5453 asection *next;
5454 bfd_vma stub_group_start = head->output_offset;
5455 bfd_vma end_of_next;
5456
5457 curr = head;
5458 while (NEXT_SEC (curr) != NULL)
5459 {
5460 next = NEXT_SEC (curr);
5461 end_of_next = next->output_offset + next->size;
5462 if (end_of_next - stub_group_start >= stub_group_size)
5463 /* End of NEXT is too far from start, so stop. */
5464 break;
5465 /* Add NEXT to the group. */
5466 curr = next;
5467 }
5468
5469 /* OK, the size from the start to the start of CURR is less
5470 than stub_group_size and thus can be handled by one stub
5471 section. (Or the head section is itself larger than
5472 stub_group_size, in which case we may be toast.)
5473 We should really be keeping track of the total size of
5474 stubs added here, as stubs contribute to the final output
5475 section size. */
5476 do
5477 {
5478 next = NEXT_SEC (head);
5479 /* Set up this stub group. */
5480 htab->stub_group[head->id].link_sec = curr;
5481 }
5482 while (head != curr && (head = next) != NULL);
5483
5484 /* But wait, there's more! Input sections up to stub_group_size
5485 bytes after the stub section can be handled by it too. */
5486 if (!stubs_always_after_branch)
5487 {
5488 stub_group_start = curr->output_offset + curr->size;
5489
5490 while (next != NULL)
5491 {
5492 end_of_next = next->output_offset + next->size;
5493 if (end_of_next - stub_group_start >= stub_group_size)
5494 /* End of NEXT is too far from stubs, so stop. */
5495 break;
5496 /* Add NEXT to the stub group. */
5497 head = next;
5498 next = NEXT_SEC (head);
5499 htab->stub_group[head->id].link_sec = curr;
5500 }
5501 }
5502 head = next;
5503 }
5504 }
5505 while (list++ != htab->input_list + htab->top_index);
5506
5507 free (htab->input_list);
5508 #undef PREV_SEC
5509 #undef NEXT_SEC
5510 }
5511
5512 /* Comparison function for sorting/searching relocations relating to Cortex-A8
5513 erratum fix. */
5514
5515 static int
5516 a8_reloc_compare (const void *a, const void *b)
5517 {
5518 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
5519 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
5520
5521 if (ra->from < rb->from)
5522 return -1;
5523 else if (ra->from > rb->from)
5524 return 1;
5525 else
5526 return 0;
5527 }
5528
5529 static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
5530 const char *, char **);
5531
5532 /* Helper function to scan code for sequences which might trigger the Cortex-A8
5533 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
5534 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
5535 otherwise. */
5536
5537 static bfd_boolean
5538 cortex_a8_erratum_scan (bfd *input_bfd,
5539 struct bfd_link_info *info,
5540 struct a8_erratum_fix **a8_fixes_p,
5541 unsigned int *num_a8_fixes_p,
5542 unsigned int *a8_fix_table_size_p,
5543 struct a8_erratum_reloc *a8_relocs,
5544 unsigned int num_a8_relocs,
5545 unsigned prev_num_a8_fixes,
5546 bfd_boolean *stub_changed_p)
5547 {
5548 asection *section;
5549 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5550 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
5551 unsigned int num_a8_fixes = *num_a8_fixes_p;
5552 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
5553
5554 if (htab == NULL)
5555 return FALSE;
5556
5557 for (section = input_bfd->sections;
5558 section != NULL;
5559 section = section->next)
5560 {
5561 bfd_byte *contents = NULL;
5562 struct _arm_elf_section_data *sec_data;
5563 unsigned int span;
5564 bfd_vma base_vma;
5565
5566 if (elf_section_type (section) != SHT_PROGBITS
5567 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
5568 || (section->flags & SEC_EXCLUDE) != 0
5569 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
5570 || (section->output_section == bfd_abs_section_ptr))
5571 continue;
5572
5573 base_vma = section->output_section->vma + section->output_offset;
5574
5575 if (elf_section_data (section)->this_hdr.contents != NULL)
5576 contents = elf_section_data (section)->this_hdr.contents;
5577 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
5578 return TRUE;
5579
5580 sec_data = elf32_arm_section_data (section);
5581
5582 for (span = 0; span < sec_data->mapcount; span++)
5583 {
5584 unsigned int span_start = sec_data->map[span].vma;
5585 unsigned int span_end = (span == sec_data->mapcount - 1)
5586 ? section->size : sec_data->map[span + 1].vma;
5587 unsigned int i;
5588 char span_type = sec_data->map[span].type;
5589 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
5590
5591 if (span_type != 't')
5592 continue;
5593
5594 /* Span is entirely within a single 4KB region: skip scanning. */
5595 if (((base_vma + span_start) & ~0xfff)
5596 == ((base_vma + span_end) & ~0xfff))
5597 continue;
5598
5599 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
5600
5601 * The opcode is BLX.W, BL.W, B.W, Bcc.W
5602 * The branch target is in the same 4KB region as the
5603 first half of the branch.
5604 * The instruction before the branch is a 32-bit
5605 length non-branch instruction. */
5606 for (i = span_start; i < span_end;)
5607 {
5608 unsigned int insn = bfd_getl16 (&contents[i]);
5609 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
5610 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
5611
5612 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
5613 insn_32bit = TRUE;
5614
5615 if (insn_32bit)
5616 {
5617 /* Load the rest of the insn (in manual-friendly order). */
5618 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
5619
5620 /* Encoding T4: B<c>.W. */
5621 is_b = (insn & 0xf800d000) == 0xf0009000;
5622 /* Encoding T1: BL<c>.W. */
5623 is_bl = (insn & 0xf800d000) == 0xf000d000;
5624 /* Encoding T2: BLX<c>.W. */
5625 is_blx = (insn & 0xf800d000) == 0xf000c000;
5626 /* Encoding T3: B<c>.W (not permitted in IT block). */
5627 is_bcc = (insn & 0xf800d000) == 0xf0008000
5628 && (insn & 0x07f00000) != 0x03800000;
5629 }
5630
5631 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
5632
5633 if (((base_vma + i) & 0xfff) == 0xffe
5634 && insn_32bit
5635 && is_32bit_branch
5636 && last_was_32bit
5637 && ! last_was_branch)
5638 {
5639 bfd_signed_vma offset = 0;
5640 bfd_boolean force_target_arm = FALSE;
5641 bfd_boolean force_target_thumb = FALSE;
5642 bfd_vma target;
5643 enum elf32_arm_stub_type stub_type = arm_stub_none;
5644 struct a8_erratum_reloc key, *found;
5645 bfd_boolean use_plt = FALSE;
5646
5647 key.from = base_vma + i;
5648 found = (struct a8_erratum_reloc *)
5649 bsearch (&key, a8_relocs, num_a8_relocs,
5650 sizeof (struct a8_erratum_reloc),
5651 &a8_reloc_compare);
5652
5653 if (found)
5654 {
5655 char *error_message = NULL;
5656 struct elf_link_hash_entry *entry;
5657
5658 /* We don't care about the error returned from this
5659 function, only if there is glue or not. */
5660 entry = find_thumb_glue (info, found->sym_name,
5661 &error_message);
5662
5663 if (entry)
5664 found->non_a8_stub = TRUE;
5665
5666 /* Keep a simpler condition, for the sake of clarity. */
5667 if (htab->root.splt != NULL && found->hash != NULL
5668 && found->hash->root.plt.offset != (bfd_vma) -1)
5669 use_plt = TRUE;
5670
5671 if (found->r_type == R_ARM_THM_CALL)
5672 {
5673 if (found->branch_type == ST_BRANCH_TO_ARM
5674 || use_plt)
5675 force_target_arm = TRUE;
5676 else
5677 force_target_thumb = TRUE;
5678 }
5679 }
5680
5681 /* Check if we have an offending branch instruction. */
5682
5683 if (found && found->non_a8_stub)
5684 /* We've already made a stub for this instruction, e.g.
5685 it's a long branch or a Thumb->ARM stub. Assume that
5686 stub will suffice to work around the A8 erratum (see
5687 setting of always_after_branch above). */
5688 ;
5689 else if (is_bcc)
5690 {
5691 offset = (insn & 0x7ff) << 1;
5692 offset |= (insn & 0x3f0000) >> 4;
5693 offset |= (insn & 0x2000) ? 0x40000 : 0;
5694 offset |= (insn & 0x800) ? 0x80000 : 0;
5695 offset |= (insn & 0x4000000) ? 0x100000 : 0;
5696 if (offset & 0x100000)
5697 offset |= ~ ((bfd_signed_vma) 0xfffff);
5698 stub_type = arm_stub_a8_veneer_b_cond;
5699 }
5700 else if (is_b || is_bl || is_blx)
5701 {
5702 int s = (insn & 0x4000000) != 0;
5703 int j1 = (insn & 0x2000) != 0;
5704 int j2 = (insn & 0x800) != 0;
5705 int i1 = !(j1 ^ s);
5706 int i2 = !(j2 ^ s);
5707
5708 offset = (insn & 0x7ff) << 1;
5709 offset |= (insn & 0x3ff0000) >> 4;
5710 offset |= i2 << 22;
5711 offset |= i1 << 23;
5712 offset |= s << 24;
5713 if (offset & 0x1000000)
5714 offset |= ~ ((bfd_signed_vma) 0xffffff);
5715
5716 if (is_blx)
5717 offset &= ~ ((bfd_signed_vma) 3);
5718
5719 stub_type = is_blx ? arm_stub_a8_veneer_blx :
5720 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
5721 }
5722
5723 if (stub_type != arm_stub_none)
5724 {
5725 bfd_vma pc_for_insn = base_vma + i + 4;
5726
5727 /* The original instruction is a BL, but the target is
5728 an ARM instruction. If we were not making a stub,
5729 the BL would have been converted to a BLX. Use the
5730 BLX stub instead in that case. */
5731 if (htab->use_blx && force_target_arm
5732 && stub_type == arm_stub_a8_veneer_bl)
5733 {
5734 stub_type = arm_stub_a8_veneer_blx;
5735 is_blx = TRUE;
5736 is_bl = FALSE;
5737 }
5738 /* Conversely, if the original instruction was
5739 BLX but the target is Thumb mode, use the BL
5740 stub. */
5741 else if (force_target_thumb
5742 && stub_type == arm_stub_a8_veneer_blx)
5743 {
5744 stub_type = arm_stub_a8_veneer_bl;
5745 is_blx = FALSE;
5746 is_bl = TRUE;
5747 }
5748
5749 if (is_blx)
5750 pc_for_insn &= ~ ((bfd_vma) 3);
5751
5752 /* If we found a relocation, use the proper destination,
5753 not the offset in the (unrelocated) instruction.
5754 Note this is always done if we switched the stub type
5755 above. */
5756 if (found)
5757 offset =
5758 (bfd_signed_vma) (found->destination - pc_for_insn);
5759
5760 /* If the stub will use a Thumb-mode branch to a
5761 PLT target, redirect it to the preceding Thumb
5762 entry point. */
5763 if (stub_type != arm_stub_a8_veneer_blx && use_plt)
5764 offset -= PLT_THUMB_STUB_SIZE;
5765
5766 target = pc_for_insn + offset;
5767
5768 /* The BLX stub is ARM-mode code. Adjust the offset to
5769 take the different PC value (+8 instead of +4) into
5770 account. */
5771 if (stub_type == arm_stub_a8_veneer_blx)
5772 offset += 4;
5773
5774 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
5775 {
5776 char *stub_name = NULL;
5777
5778 if (num_a8_fixes == a8_fix_table_size)
5779 {
5780 a8_fix_table_size *= 2;
5781 a8_fixes = (struct a8_erratum_fix *)
5782 bfd_realloc (a8_fixes,
5783 sizeof (struct a8_erratum_fix)
5784 * a8_fix_table_size);
5785 }
5786
5787 if (num_a8_fixes < prev_num_a8_fixes)
5788 {
5789 /* If we're doing a subsequent scan,
5790 check if we've found the same fix as
5791 before, and try and reuse the stub
5792 name. */
5793 stub_name = a8_fixes[num_a8_fixes].stub_name;
5794 if ((a8_fixes[num_a8_fixes].section != section)
5795 || (a8_fixes[num_a8_fixes].offset != i))
5796 {
5797 free (stub_name);
5798 stub_name = NULL;
5799 *stub_changed_p = TRUE;
5800 }
5801 }
5802
5803 if (!stub_name)
5804 {
5805 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
5806 if (stub_name != NULL)
5807 sprintf (stub_name, "%x:%x", section->id, i);
5808 }
5809
5810 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
5811 a8_fixes[num_a8_fixes].section = section;
5812 a8_fixes[num_a8_fixes].offset = i;
5813 a8_fixes[num_a8_fixes].target_offset =
5814 target - base_vma;
5815 a8_fixes[num_a8_fixes].orig_insn = insn;
5816 a8_fixes[num_a8_fixes].stub_name = stub_name;
5817 a8_fixes[num_a8_fixes].stub_type = stub_type;
5818 a8_fixes[num_a8_fixes].branch_type =
5819 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
5820
5821 num_a8_fixes++;
5822 }
5823 }
5824 }
5825
5826 i += insn_32bit ? 4 : 2;
5827 last_was_32bit = insn_32bit;
5828 last_was_branch = is_32bit_branch;
5829 }
5830 }
5831
5832 if (elf_section_data (section)->this_hdr.contents == NULL)
5833 free (contents);
5834 }
5835
5836 *a8_fixes_p = a8_fixes;
5837 *num_a8_fixes_p = num_a8_fixes;
5838 *a8_fix_table_size_p = a8_fix_table_size;
5839
5840 return FALSE;
5841 }
5842
5843 /* Create or update a stub entry depending on whether the stub can already be
5844 found in HTAB. The stub is identified by:
5845 - its type STUB_TYPE
5846 - its source branch (note that several can share the same stub) whose
5847 section and relocation (if any) are given by SECTION and IRELA
5848 respectively
5849 - its target symbol whose input section, hash, name, value and branch type
5850 are given in SYM_SEC, HASH, SYM_NAME, SYM_VALUE and BRANCH_TYPE
5851 respectively
5852
5853 If found, the value of the stub's target symbol is updated from SYM_VALUE
5854 and *NEW_STUB is set to FALSE. Otherwise, *NEW_STUB is set to
5855 TRUE and the stub entry is initialized.
5856
5857 Returns the stub that was created or updated, or NULL if an error
5858 occurred. */
5859
5860 static struct elf32_arm_stub_hash_entry *
5861 elf32_arm_create_stub (struct elf32_arm_link_hash_table *htab,
5862 enum elf32_arm_stub_type stub_type, asection *section,
5863 Elf_Internal_Rela *irela, asection *sym_sec,
5864 struct elf32_arm_link_hash_entry *hash, char *sym_name,
5865 bfd_vma sym_value, enum arm_st_branch_type branch_type,
5866 bfd_boolean *new_stub)
5867 {
5868 const asection *id_sec;
5869 char *stub_name;
5870 struct elf32_arm_stub_hash_entry *stub_entry;
5871 unsigned int r_type;
5872 bfd_boolean sym_claimed = arm_stub_sym_claimed (stub_type);
5873
5874 BFD_ASSERT (stub_type != arm_stub_none);
5875 *new_stub = FALSE;
5876
5877 if (sym_claimed)
5878 stub_name = sym_name;
5879 else
5880 {
5881 BFD_ASSERT (irela);
5882 BFD_ASSERT (section);
5883 BFD_ASSERT (section->id <= htab->top_id);
5884
5885 /* Support for grouping stub sections. */
5886 id_sec = htab->stub_group[section->id].link_sec;
5887
5888 /* Get the name of this stub. */
5889 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela,
5890 stub_type);
5891 if (!stub_name)
5892 return NULL;
5893 }
5894
5895 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name, FALSE,
5896 FALSE);
5897 /* The proper stub has already been created, just update its value. */
5898 if (stub_entry != NULL)
5899 {
5900 if (!sym_claimed)
5901 free (stub_name);
5902 stub_entry->target_value = sym_value;
5903 return stub_entry;
5904 }
5905
5906 stub_entry = elf32_arm_add_stub (stub_name, section, htab, stub_type);
5907 if (stub_entry == NULL)
5908 {
5909 if (!sym_claimed)
5910 free (stub_name);
5911 return NULL;
5912 }
5913
5914 stub_entry->target_value = sym_value;
5915 stub_entry->target_section = sym_sec;
5916 stub_entry->stub_type = stub_type;
5917 stub_entry->h = hash;
5918 stub_entry->branch_type = branch_type;
5919
5920 if (sym_claimed)
5921 stub_entry->output_name = sym_name;
5922 else
5923 {
5924 if (sym_name == NULL)
5925 sym_name = "unnamed";
5926 stub_entry->output_name = (char *)
5927 bfd_alloc (htab->stub_bfd, sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5928 + strlen (sym_name));
5929 if (stub_entry->output_name == NULL)
5930 {
5931 free (stub_name);
5932 return NULL;
5933 }
5934
5935 /* For historical reasons, use the existing names for ARM-to-Thumb and
5936 Thumb-to-ARM stubs. */
5937 r_type = ELF32_R_TYPE (irela->r_info);
5938 if ((r_type == (unsigned int) R_ARM_THM_CALL
5939 || r_type == (unsigned int) R_ARM_THM_JUMP24
5940 || r_type == (unsigned int) R_ARM_THM_JUMP19)
5941 && branch_type == ST_BRANCH_TO_ARM)
5942 sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5943 else if ((r_type == (unsigned int) R_ARM_CALL
5944 || r_type == (unsigned int) R_ARM_JUMP24)
5945 && branch_type == ST_BRANCH_TO_THUMB)
5946 sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5947 else
5948 sprintf (stub_entry->output_name, STUB_ENTRY_NAME, sym_name);
5949 }
5950
5951 *new_stub = TRUE;
5952 return stub_entry;
5953 }
5954
5955 /* Scan symbols in INPUT_BFD to identify secure entry functions needing a
5956 gateway veneer to transition from non secure to secure state and create them
5957 accordingly.
5958
5959 "ARMv8-M Security Extensions: Requirements on Development Tools" document
5960 defines the conditions that govern Secure Gateway veneer creation for a
5961 given symbol <SYM> as follows:
5962 - it has function type
5963 - it has non local binding
5964 - a symbol named __acle_se_<SYM> (called special symbol) exists with the
5965 same type, binding and value as <SYM> (called normal symbol).
5966 An entry function can handle secure state transition itself in which case
5967 its special symbol would have a different value from the normal symbol.
5968
5969 OUT_ATTR gives the output attributes, SYM_HASHES the symbol index to hash
5970 entry mapping while HTAB gives the name to hash entry mapping.
5971 *CMSE_STUB_CREATED is increased by the number of secure gateway veneer
5972 created.
5973
5974 The return value gives whether a stub failed to be allocated. */
5975
5976 static bfd_boolean
5977 cmse_scan (bfd *input_bfd, struct elf32_arm_link_hash_table *htab,
5978 obj_attribute *out_attr, struct elf_link_hash_entry **sym_hashes,
5979 int *cmse_stub_created)
5980 {
5981 const struct elf_backend_data *bed;
5982 Elf_Internal_Shdr *symtab_hdr;
5983 unsigned i, j, sym_count, ext_start;
5984 Elf_Internal_Sym *cmse_sym, *local_syms;
5985 struct elf32_arm_link_hash_entry *hash, *cmse_hash = NULL;
5986 enum arm_st_branch_type branch_type;
5987 char *sym_name, *lsym_name;
5988 bfd_vma sym_value;
5989 asection *section;
5990 struct elf32_arm_stub_hash_entry *stub_entry;
5991 bfd_boolean is_v8m, new_stub, cmse_invalid, ret = TRUE;
5992
5993 bed = get_elf_backend_data (input_bfd);
5994 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5995 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
5996 ext_start = symtab_hdr->sh_info;
5997 is_v8m = (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
5998 && out_attr[Tag_CPU_arch_profile].i == 'M');
5999
6000 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
6001 if (local_syms == NULL)
6002 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
6003 symtab_hdr->sh_info, 0, NULL, NULL,
6004 NULL);
6005 if (symtab_hdr->sh_info && local_syms == NULL)
6006 return FALSE;
6007
6008 /* Scan symbols. */
6009 for (i = 0; i < sym_count; i++)
6010 {
6011 cmse_invalid = FALSE;
6012
6013 if (i < ext_start)
6014 {
6015 cmse_sym = &local_syms[i];
6016 sym_name = bfd_elf_string_from_elf_section (input_bfd,
6017 symtab_hdr->sh_link,
6018 cmse_sym->st_name);
6019 if (!sym_name || !CONST_STRNEQ (sym_name, CMSE_PREFIX))
6020 continue;
6021
6022 /* Special symbol with local binding. */
6023 cmse_invalid = TRUE;
6024 }
6025 else
6026 {
6027 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
6028 sym_name = (char *) cmse_hash->root.root.root.string;
6029 if (!CONST_STRNEQ (sym_name, CMSE_PREFIX))
6030 continue;
6031
6032 /* Special symbol has incorrect binding or type. */
6033 if ((cmse_hash->root.root.type != bfd_link_hash_defined
6034 && cmse_hash->root.root.type != bfd_link_hash_defweak)
6035 || cmse_hash->root.type != STT_FUNC)
6036 cmse_invalid = TRUE;
6037 }
6038
6039 if (!is_v8m)
6040 {
6041 _bfd_error_handler (_("%pB: special symbol `%s' only allowed for "
6042 "ARMv8-M architecture or later"),
6043 input_bfd, sym_name);
6044 is_v8m = TRUE; /* Avoid multiple warning. */
6045 ret = FALSE;
6046 }
6047
6048 if (cmse_invalid)
6049 {
6050 _bfd_error_handler (_("%pB: invalid special symbol `%s'; it must be"
6051 " a global or weak function symbol"),
6052 input_bfd, sym_name);
6053 ret = FALSE;
6054 if (i < ext_start)
6055 continue;
6056 }
6057
6058 sym_name += strlen (CMSE_PREFIX);
6059 hash = (struct elf32_arm_link_hash_entry *)
6060 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
6061
6062 /* No associated normal symbol or it is neither global nor weak. */
6063 if (!hash
6064 || (hash->root.root.type != bfd_link_hash_defined
6065 && hash->root.root.type != bfd_link_hash_defweak)
6066 || hash->root.type != STT_FUNC)
6067 {
6068 /* Initialize here to avoid warning about use of possibly
6069 uninitialized variable. */
6070 j = 0;
6071
6072 if (!hash)
6073 {
6074 /* Searching for a normal symbol with local binding. */
6075 for (; j < ext_start; j++)
6076 {
6077 lsym_name =
6078 bfd_elf_string_from_elf_section (input_bfd,
6079 symtab_hdr->sh_link,
6080 local_syms[j].st_name);
6081 if (!strcmp (sym_name, lsym_name))
6082 break;
6083 }
6084 }
6085
6086 if (hash || j < ext_start)
6087 {
6088 _bfd_error_handler
6089 (_("%pB: invalid standard symbol `%s'; it must be "
6090 "a global or weak function symbol"),
6091 input_bfd, sym_name);
6092 }
6093 else
6094 _bfd_error_handler
6095 (_("%pB: absent standard symbol `%s'"), input_bfd, sym_name);
6096 ret = FALSE;
6097 if (!hash)
6098 continue;
6099 }
6100
6101 sym_value = hash->root.root.u.def.value;
6102 section = hash->root.root.u.def.section;
6103
6104 if (cmse_hash->root.root.u.def.section != section)
6105 {
6106 _bfd_error_handler
6107 (_("%pB: `%s' and its special symbol are in different sections"),
6108 input_bfd, sym_name);
6109 ret = FALSE;
6110 }
6111 if (cmse_hash->root.root.u.def.value != sym_value)
6112 continue; /* Ignore: could be an entry function starting with SG. */
6113
6114 /* If this section is a link-once section that will be discarded, then
6115 don't create any stubs. */
6116 if (section->output_section == NULL)
6117 {
6118 _bfd_error_handler
6119 (_("%pB: entry function `%s' not output"), input_bfd, sym_name);
6120 continue;
6121 }
6122
6123 if (hash->root.size == 0)
6124 {
6125 _bfd_error_handler
6126 (_("%pB: entry function `%s' is empty"), input_bfd, sym_name);
6127 ret = FALSE;
6128 }
6129
6130 if (!ret)
6131 continue;
6132 branch_type = ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
6133 stub_entry
6134 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
6135 NULL, NULL, section, hash, sym_name,
6136 sym_value, branch_type, &new_stub);
6137
6138 if (stub_entry == NULL)
6139 ret = FALSE;
6140 else
6141 {
6142 BFD_ASSERT (new_stub);
6143 (*cmse_stub_created)++;
6144 }
6145 }
6146
6147 if (!symtab_hdr->contents)
6148 free (local_syms);
6149 return ret;
6150 }
6151
6152 /* Return TRUE iff a symbol identified by its linker HASH entry is a secure
6153 code entry function, ie can be called from non secure code without using a
6154 veneer. */
6155
6156 static bfd_boolean
6157 cmse_entry_fct_p (struct elf32_arm_link_hash_entry *hash)
6158 {
6159 bfd_byte contents[4];
6160 uint32_t first_insn;
6161 asection *section;
6162 file_ptr offset;
6163 bfd *abfd;
6164
6165 /* Defined symbol of function type. */
6166 if (hash->root.root.type != bfd_link_hash_defined
6167 && hash->root.root.type != bfd_link_hash_defweak)
6168 return FALSE;
6169 if (hash->root.type != STT_FUNC)
6170 return FALSE;
6171
6172 /* Read first instruction. */
6173 section = hash->root.root.u.def.section;
6174 abfd = section->owner;
6175 offset = hash->root.root.u.def.value - section->vma;
6176 if (!bfd_get_section_contents (abfd, section, contents, offset,
6177 sizeof (contents)))
6178 return FALSE;
6179
6180 first_insn = bfd_get_32 (abfd, contents);
6181
6182 /* Starts by SG instruction. */
6183 return first_insn == 0xe97fe97f;
6184 }
6185
6186 /* Output the name (in symbol table) of the veneer GEN_ENTRY if it is a new
6187 secure gateway veneers (ie. the veneers was not in the input import library)
6188 and there is no output import library (GEN_INFO->out_implib_bfd is NULL. */
6189
6190 static bfd_boolean
6191 arm_list_new_cmse_stub (struct bfd_hash_entry *gen_entry, void *gen_info)
6192 {
6193 struct elf32_arm_stub_hash_entry *stub_entry;
6194 struct bfd_link_info *info;
6195
6196 /* Massage our args to the form they really have. */
6197 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
6198 info = (struct bfd_link_info *) gen_info;
6199
6200 if (info->out_implib_bfd)
6201 return TRUE;
6202
6203 if (stub_entry->stub_type != arm_stub_cmse_branch_thumb_only)
6204 return TRUE;
6205
6206 if (stub_entry->stub_offset == (bfd_vma) -1)
6207 _bfd_error_handler (" %s", stub_entry->output_name);
6208
6209 return TRUE;
6210 }
6211
6212 /* Set offset of each secure gateway veneers so that its address remain
6213 identical to the one in the input import library referred by
6214 HTAB->in_implib_bfd. A warning is issued for veneers that disappeared
6215 (present in input import library but absent from the executable being
6216 linked) or if new veneers appeared and there is no output import library
6217 (INFO->out_implib_bfd is NULL and *CMSE_STUB_CREATED is bigger than the
6218 number of secure gateway veneers found in the input import library.
6219
6220 The function returns whether an error occurred. If no error occurred,
6221 *CMSE_STUB_CREATED gives the number of SG veneers created by both cmse_scan
6222 and this function and HTAB->new_cmse_stub_offset is set to the biggest
6223 veneer observed set for new veneers to be layed out after. */
6224
6225 static bfd_boolean
6226 set_cmse_veneer_addr_from_implib (struct bfd_link_info *info,
6227 struct elf32_arm_link_hash_table *htab,
6228 int *cmse_stub_created)
6229 {
6230 long symsize;
6231 char *sym_name;
6232 flagword flags;
6233 long i, symcount;
6234 bfd *in_implib_bfd;
6235 asection *stub_out_sec;
6236 bfd_boolean ret = TRUE;
6237 Elf_Internal_Sym *intsym;
6238 const char *out_sec_name;
6239 bfd_size_type cmse_stub_size;
6240 asymbol **sympp = NULL, *sym;
6241 struct elf32_arm_link_hash_entry *hash;
6242 const insn_sequence *cmse_stub_template;
6243 struct elf32_arm_stub_hash_entry *stub_entry;
6244 int cmse_stub_template_size, new_cmse_stubs_created = *cmse_stub_created;
6245 bfd_vma veneer_value, stub_offset, next_cmse_stub_offset;
6246 bfd_vma cmse_stub_array_start = (bfd_vma) -1, cmse_stub_sec_vma = 0;
6247
6248 /* No input secure gateway import library. */
6249 if (!htab->in_implib_bfd)
6250 return TRUE;
6251
6252 in_implib_bfd = htab->in_implib_bfd;
6253 if (!htab->cmse_implib)
6254 {
6255 _bfd_error_handler (_("%pB: --in-implib only supported for Secure "
6256 "Gateway import libraries"), in_implib_bfd);
6257 return FALSE;
6258 }
6259
6260 /* Get symbol table size. */
6261 symsize = bfd_get_symtab_upper_bound (in_implib_bfd);
6262 if (symsize < 0)
6263 return FALSE;
6264
6265 /* Read in the input secure gateway import library's symbol table. */
6266 sympp = (asymbol **) bfd_malloc (symsize);
6267 if (sympp == NULL)
6268 return FALSE;
6269
6270 symcount = bfd_canonicalize_symtab (in_implib_bfd, sympp);
6271 if (symcount < 0)
6272 {
6273 ret = FALSE;
6274 goto free_sym_buf;
6275 }
6276
6277 htab->new_cmse_stub_offset = 0;
6278 cmse_stub_size =
6279 find_stub_size_and_template (arm_stub_cmse_branch_thumb_only,
6280 &cmse_stub_template,
6281 &cmse_stub_template_size);
6282 out_sec_name =
6283 arm_dedicated_stub_output_section_name (arm_stub_cmse_branch_thumb_only);
6284 stub_out_sec =
6285 bfd_get_section_by_name (htab->obfd, out_sec_name);
6286 if (stub_out_sec != NULL)
6287 cmse_stub_sec_vma = stub_out_sec->vma;
6288
6289 /* Set addresses of veneers mentionned in input secure gateway import
6290 library's symbol table. */
6291 for (i = 0; i < symcount; i++)
6292 {
6293 sym = sympp[i];
6294 flags = sym->flags;
6295 sym_name = (char *) bfd_asymbol_name (sym);
6296 intsym = &((elf_symbol_type *) sym)->internal_elf_sym;
6297
6298 if (sym->section != bfd_abs_section_ptr
6299 || !(flags & (BSF_GLOBAL | BSF_WEAK))
6300 || (flags & BSF_FUNCTION) != BSF_FUNCTION
6301 || (ARM_GET_SYM_BRANCH_TYPE (intsym->st_target_internal)
6302 != ST_BRANCH_TO_THUMB))
6303 {
6304 _bfd_error_handler (_("%pB: invalid import library entry: `%s'; "
6305 "symbol should be absolute, global and "
6306 "refer to Thumb functions"),
6307 in_implib_bfd, sym_name);
6308 ret = FALSE;
6309 continue;
6310 }
6311
6312 veneer_value = bfd_asymbol_value (sym);
6313 stub_offset = veneer_value - cmse_stub_sec_vma;
6314 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, sym_name,
6315 FALSE, FALSE);
6316 hash = (struct elf32_arm_link_hash_entry *)
6317 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
6318
6319 /* Stub entry should have been created by cmse_scan or the symbol be of
6320 a secure function callable from non secure code. */
6321 if (!stub_entry && !hash)
6322 {
6323 bfd_boolean new_stub;
6324
6325 _bfd_error_handler
6326 (_("entry function `%s' disappeared from secure code"), sym_name);
6327 hash = (struct elf32_arm_link_hash_entry *)
6328 elf_link_hash_lookup (&(htab)->root, sym_name, TRUE, TRUE, TRUE);
6329 stub_entry
6330 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
6331 NULL, NULL, bfd_abs_section_ptr, hash,
6332 sym_name, veneer_value,
6333 ST_BRANCH_TO_THUMB, &new_stub);
6334 if (stub_entry == NULL)
6335 ret = FALSE;
6336 else
6337 {
6338 BFD_ASSERT (new_stub);
6339 new_cmse_stubs_created++;
6340 (*cmse_stub_created)++;
6341 }
6342 stub_entry->stub_template_size = stub_entry->stub_size = 0;
6343 stub_entry->stub_offset = stub_offset;
6344 }
6345 /* Symbol found is not callable from non secure code. */
6346 else if (!stub_entry)
6347 {
6348 if (!cmse_entry_fct_p (hash))
6349 {
6350 _bfd_error_handler (_("`%s' refers to a non entry function"),
6351 sym_name);
6352 ret = FALSE;
6353 }
6354 continue;
6355 }
6356 else
6357 {
6358 /* Only stubs for SG veneers should have been created. */
6359 BFD_ASSERT (stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
6360
6361 /* Check visibility hasn't changed. */
6362 if (!!(flags & BSF_GLOBAL)
6363 != (hash->root.root.type == bfd_link_hash_defined))
6364 _bfd_error_handler
6365 (_("%pB: visibility of symbol `%s' has changed"), in_implib_bfd,
6366 sym_name);
6367
6368 stub_entry->stub_offset = stub_offset;
6369 }
6370
6371 /* Size should match that of a SG veneer. */
6372 if (intsym->st_size != cmse_stub_size)
6373 {
6374 _bfd_error_handler (_("%pB: incorrect size for symbol `%s'"),
6375 in_implib_bfd, sym_name);
6376 ret = FALSE;
6377 }
6378
6379 /* Previous veneer address is before current SG veneer section. */
6380 if (veneer_value < cmse_stub_sec_vma)
6381 {
6382 /* Avoid offset underflow. */
6383 if (stub_entry)
6384 stub_entry->stub_offset = 0;
6385 stub_offset = 0;
6386 ret = FALSE;
6387 }
6388
6389 /* Complain if stub offset not a multiple of stub size. */
6390 if (stub_offset % cmse_stub_size)
6391 {
6392 _bfd_error_handler
6393 (_("offset of veneer for entry function `%s' not a multiple of "
6394 "its size"), sym_name);
6395 ret = FALSE;
6396 }
6397
6398 if (!ret)
6399 continue;
6400
6401 new_cmse_stubs_created--;
6402 if (veneer_value < cmse_stub_array_start)
6403 cmse_stub_array_start = veneer_value;
6404 next_cmse_stub_offset = stub_offset + ((cmse_stub_size + 7) & ~7);
6405 if (next_cmse_stub_offset > htab->new_cmse_stub_offset)
6406 htab->new_cmse_stub_offset = next_cmse_stub_offset;
6407 }
6408
6409 if (!info->out_implib_bfd && new_cmse_stubs_created != 0)
6410 {
6411 BFD_ASSERT (new_cmse_stubs_created > 0);
6412 _bfd_error_handler
6413 (_("new entry function(s) introduced but no output import library "
6414 "specified:"));
6415 bfd_hash_traverse (&htab->stub_hash_table, arm_list_new_cmse_stub, info);
6416 }
6417
6418 if (cmse_stub_array_start != cmse_stub_sec_vma)
6419 {
6420 _bfd_error_handler
6421 (_("start address of `%s' is different from previous link"),
6422 out_sec_name);
6423 ret = FALSE;
6424 }
6425
6426 free_sym_buf:
6427 free (sympp);
6428 return ret;
6429 }
6430
6431 /* Determine and set the size of the stub section for a final link.
6432
6433 The basic idea here is to examine all the relocations looking for
6434 PC-relative calls to a target that is unreachable with a "bl"
6435 instruction. */
6436
6437 bfd_boolean
6438 elf32_arm_size_stubs (bfd *output_bfd,
6439 bfd *stub_bfd,
6440 struct bfd_link_info *info,
6441 bfd_signed_vma group_size,
6442 asection * (*add_stub_section) (const char *, asection *,
6443 asection *,
6444 unsigned int),
6445 void (*layout_sections_again) (void))
6446 {
6447 bfd_boolean ret = TRUE;
6448 obj_attribute *out_attr;
6449 int cmse_stub_created = 0;
6450 bfd_size_type stub_group_size;
6451 bfd_boolean m_profile, stubs_always_after_branch, first_veneer_scan = TRUE;
6452 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
6453 struct a8_erratum_fix *a8_fixes = NULL;
6454 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
6455 struct a8_erratum_reloc *a8_relocs = NULL;
6456 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
6457
6458 if (htab == NULL)
6459 return FALSE;
6460
6461 if (htab->fix_cortex_a8)
6462 {
6463 a8_fixes = (struct a8_erratum_fix *)
6464 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
6465 a8_relocs = (struct a8_erratum_reloc *)
6466 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
6467 }
6468
6469 /* Propagate mach to stub bfd, because it may not have been
6470 finalized when we created stub_bfd. */
6471 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
6472 bfd_get_mach (output_bfd));
6473
6474 /* Stash our params away. */
6475 htab->stub_bfd = stub_bfd;
6476 htab->add_stub_section = add_stub_section;
6477 htab->layout_sections_again = layout_sections_again;
6478 stubs_always_after_branch = group_size < 0;
6479
6480 out_attr = elf_known_obj_attributes_proc (output_bfd);
6481 m_profile = out_attr[Tag_CPU_arch_profile].i == 'M';
6482
6483 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
6484 as the first half of a 32-bit branch straddling two 4K pages. This is a
6485 crude way of enforcing that. */
6486 if (htab->fix_cortex_a8)
6487 stubs_always_after_branch = 1;
6488
6489 if (group_size < 0)
6490 stub_group_size = -group_size;
6491 else
6492 stub_group_size = group_size;
6493
6494 if (stub_group_size == 1)
6495 {
6496 /* Default values. */
6497 /* Thumb branch range is +-4MB has to be used as the default
6498 maximum size (a given section can contain both ARM and Thumb
6499 code, so the worst case has to be taken into account).
6500
6501 This value is 24K less than that, which allows for 2025
6502 12-byte stubs. If we exceed that, then we will fail to link.
6503 The user will have to relink with an explicit group size
6504 option. */
6505 stub_group_size = 4170000;
6506 }
6507
6508 group_sections (htab, stub_group_size, stubs_always_after_branch);
6509
6510 /* If we're applying the cortex A8 fix, we need to determine the
6511 program header size now, because we cannot change it later --
6512 that could alter section placements. Notice the A8 erratum fix
6513 ends up requiring the section addresses to remain unchanged
6514 modulo the page size. That's something we cannot represent
6515 inside BFD, and we don't want to force the section alignment to
6516 be the page size. */
6517 if (htab->fix_cortex_a8)
6518 (*htab->layout_sections_again) ();
6519
6520 while (1)
6521 {
6522 bfd *input_bfd;
6523 unsigned int bfd_indx;
6524 asection *stub_sec;
6525 enum elf32_arm_stub_type stub_type;
6526 bfd_boolean stub_changed = FALSE;
6527 unsigned prev_num_a8_fixes = num_a8_fixes;
6528
6529 num_a8_fixes = 0;
6530 for (input_bfd = info->input_bfds, bfd_indx = 0;
6531 input_bfd != NULL;
6532 input_bfd = input_bfd->link.next, bfd_indx++)
6533 {
6534 Elf_Internal_Shdr *symtab_hdr;
6535 asection *section;
6536 Elf_Internal_Sym *local_syms = NULL;
6537
6538 if (!is_arm_elf (input_bfd))
6539 continue;
6540 if ((input_bfd->flags & DYNAMIC) != 0
6541 && (elf_sym_hashes (input_bfd) == NULL
6542 || (elf_dyn_lib_class (input_bfd) & DYN_AS_NEEDED) != 0))
6543 continue;
6544
6545 num_a8_relocs = 0;
6546
6547 /* We'll need the symbol table in a second. */
6548 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6549 if (symtab_hdr->sh_info == 0)
6550 continue;
6551
6552 /* Limit scan of symbols to object file whose profile is
6553 Microcontroller to not hinder performance in the general case. */
6554 if (m_profile && first_veneer_scan)
6555 {
6556 struct elf_link_hash_entry **sym_hashes;
6557
6558 sym_hashes = elf_sym_hashes (input_bfd);
6559 if (!cmse_scan (input_bfd, htab, out_attr, sym_hashes,
6560 &cmse_stub_created))
6561 goto error_ret_free_local;
6562
6563 if (cmse_stub_created != 0)
6564 stub_changed = TRUE;
6565 }
6566
6567 /* Walk over each section attached to the input bfd. */
6568 for (section = input_bfd->sections;
6569 section != NULL;
6570 section = section->next)
6571 {
6572 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
6573
6574 /* If there aren't any relocs, then there's nothing more
6575 to do. */
6576 if ((section->flags & SEC_RELOC) == 0
6577 || section->reloc_count == 0
6578 || (section->flags & SEC_CODE) == 0)
6579 continue;
6580
6581 /* If this section is a link-once section that will be
6582 discarded, then don't create any stubs. */
6583 if (section->output_section == NULL
6584 || section->output_section->owner != output_bfd)
6585 continue;
6586
6587 /* Get the relocs. */
6588 internal_relocs
6589 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
6590 NULL, info->keep_memory);
6591 if (internal_relocs == NULL)
6592 goto error_ret_free_local;
6593
6594 /* Now examine each relocation. */
6595 irela = internal_relocs;
6596 irelaend = irela + section->reloc_count;
6597 for (; irela < irelaend; irela++)
6598 {
6599 unsigned int r_type, r_indx;
6600 asection *sym_sec;
6601 bfd_vma sym_value;
6602 bfd_vma destination;
6603 struct elf32_arm_link_hash_entry *hash;
6604 const char *sym_name;
6605 unsigned char st_type;
6606 enum arm_st_branch_type branch_type;
6607 bfd_boolean created_stub = FALSE;
6608
6609 r_type = ELF32_R_TYPE (irela->r_info);
6610 r_indx = ELF32_R_SYM (irela->r_info);
6611
6612 if (r_type >= (unsigned int) R_ARM_max)
6613 {
6614 bfd_set_error (bfd_error_bad_value);
6615 error_ret_free_internal:
6616 if (elf_section_data (section)->relocs == NULL)
6617 free (internal_relocs);
6618 /* Fall through. */
6619 error_ret_free_local:
6620 if (local_syms != NULL
6621 && (symtab_hdr->contents
6622 != (unsigned char *) local_syms))
6623 free (local_syms);
6624 return FALSE;
6625 }
6626
6627 hash = NULL;
6628 if (r_indx >= symtab_hdr->sh_info)
6629 hash = elf32_arm_hash_entry
6630 (elf_sym_hashes (input_bfd)
6631 [r_indx - symtab_hdr->sh_info]);
6632
6633 /* Only look for stubs on branch instructions, or
6634 non-relaxed TLSCALL */
6635 if ((r_type != (unsigned int) R_ARM_CALL)
6636 && (r_type != (unsigned int) R_ARM_THM_CALL)
6637 && (r_type != (unsigned int) R_ARM_JUMP24)
6638 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
6639 && (r_type != (unsigned int) R_ARM_THM_XPC22)
6640 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
6641 && (r_type != (unsigned int) R_ARM_PLT32)
6642 && !((r_type == (unsigned int) R_ARM_TLS_CALL
6643 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6644 && r_type == elf32_arm_tls_transition
6645 (info, r_type, &hash->root)
6646 && ((hash ? hash->tls_type
6647 : (elf32_arm_local_got_tls_type
6648 (input_bfd)[r_indx]))
6649 & GOT_TLS_GDESC) != 0))
6650 continue;
6651
6652 /* Now determine the call target, its name, value,
6653 section. */
6654 sym_sec = NULL;
6655 sym_value = 0;
6656 destination = 0;
6657 sym_name = NULL;
6658
6659 if (r_type == (unsigned int) R_ARM_TLS_CALL
6660 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6661 {
6662 /* A non-relaxed TLS call. The target is the
6663 plt-resident trampoline and nothing to do
6664 with the symbol. */
6665 BFD_ASSERT (htab->tls_trampoline > 0);
6666 sym_sec = htab->root.splt;
6667 sym_value = htab->tls_trampoline;
6668 hash = 0;
6669 st_type = STT_FUNC;
6670 branch_type = ST_BRANCH_TO_ARM;
6671 }
6672 else if (!hash)
6673 {
6674 /* It's a local symbol. */
6675 Elf_Internal_Sym *sym;
6676
6677 if (local_syms == NULL)
6678 {
6679 local_syms
6680 = (Elf_Internal_Sym *) symtab_hdr->contents;
6681 if (local_syms == NULL)
6682 local_syms
6683 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
6684 symtab_hdr->sh_info, 0,
6685 NULL, NULL, NULL);
6686 if (local_syms == NULL)
6687 goto error_ret_free_internal;
6688 }
6689
6690 sym = local_syms + r_indx;
6691 if (sym->st_shndx == SHN_UNDEF)
6692 sym_sec = bfd_und_section_ptr;
6693 else if (sym->st_shndx == SHN_ABS)
6694 sym_sec = bfd_abs_section_ptr;
6695 else if (sym->st_shndx == SHN_COMMON)
6696 sym_sec = bfd_com_section_ptr;
6697 else
6698 sym_sec =
6699 bfd_section_from_elf_index (input_bfd, sym->st_shndx);
6700
6701 if (!sym_sec)
6702 /* This is an undefined symbol. It can never
6703 be resolved. */
6704 continue;
6705
6706 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
6707 sym_value = sym->st_value;
6708 destination = (sym_value + irela->r_addend
6709 + sym_sec->output_offset
6710 + sym_sec->output_section->vma);
6711 st_type = ELF_ST_TYPE (sym->st_info);
6712 branch_type =
6713 ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
6714 sym_name
6715 = bfd_elf_string_from_elf_section (input_bfd,
6716 symtab_hdr->sh_link,
6717 sym->st_name);
6718 }
6719 else
6720 {
6721 /* It's an external symbol. */
6722 while (hash->root.root.type == bfd_link_hash_indirect
6723 || hash->root.root.type == bfd_link_hash_warning)
6724 hash = ((struct elf32_arm_link_hash_entry *)
6725 hash->root.root.u.i.link);
6726
6727 if (hash->root.root.type == bfd_link_hash_defined
6728 || hash->root.root.type == bfd_link_hash_defweak)
6729 {
6730 sym_sec = hash->root.root.u.def.section;
6731 sym_value = hash->root.root.u.def.value;
6732
6733 struct elf32_arm_link_hash_table *globals =
6734 elf32_arm_hash_table (info);
6735
6736 /* For a destination in a shared library,
6737 use the PLT stub as target address to
6738 decide whether a branch stub is
6739 needed. */
6740 if (globals != NULL
6741 && globals->root.splt != NULL
6742 && hash != NULL
6743 && hash->root.plt.offset != (bfd_vma) -1)
6744 {
6745 sym_sec = globals->root.splt;
6746 sym_value = hash->root.plt.offset;
6747 if (sym_sec->output_section != NULL)
6748 destination = (sym_value
6749 + sym_sec->output_offset
6750 + sym_sec->output_section->vma);
6751 }
6752 else if (sym_sec->output_section != NULL)
6753 destination = (sym_value + irela->r_addend
6754 + sym_sec->output_offset
6755 + sym_sec->output_section->vma);
6756 }
6757 else if ((hash->root.root.type == bfd_link_hash_undefined)
6758 || (hash->root.root.type == bfd_link_hash_undefweak))
6759 {
6760 /* For a shared library, use the PLT stub as
6761 target address to decide whether a long
6762 branch stub is needed.
6763 For absolute code, they cannot be handled. */
6764 struct elf32_arm_link_hash_table *globals =
6765 elf32_arm_hash_table (info);
6766
6767 if (globals != NULL
6768 && globals->root.splt != NULL
6769 && hash != NULL
6770 && hash->root.plt.offset != (bfd_vma) -1)
6771 {
6772 sym_sec = globals->root.splt;
6773 sym_value = hash->root.plt.offset;
6774 if (sym_sec->output_section != NULL)
6775 destination = (sym_value
6776 + sym_sec->output_offset
6777 + sym_sec->output_section->vma);
6778 }
6779 else
6780 continue;
6781 }
6782 else
6783 {
6784 bfd_set_error (bfd_error_bad_value);
6785 goto error_ret_free_internal;
6786 }
6787 st_type = hash->root.type;
6788 branch_type =
6789 ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
6790 sym_name = hash->root.root.root.string;
6791 }
6792
6793 do
6794 {
6795 bfd_boolean new_stub;
6796 struct elf32_arm_stub_hash_entry *stub_entry;
6797
6798 /* Determine what (if any) linker stub is needed. */
6799 stub_type = arm_type_of_stub (info, section, irela,
6800 st_type, &branch_type,
6801 hash, destination, sym_sec,
6802 input_bfd, sym_name);
6803 if (stub_type == arm_stub_none)
6804 break;
6805
6806 /* We've either created a stub for this reloc already,
6807 or we are about to. */
6808 stub_entry =
6809 elf32_arm_create_stub (htab, stub_type, section, irela,
6810 sym_sec, hash,
6811 (char *) sym_name, sym_value,
6812 branch_type, &new_stub);
6813
6814 created_stub = stub_entry != NULL;
6815 if (!created_stub)
6816 goto error_ret_free_internal;
6817 else if (!new_stub)
6818 break;
6819 else
6820 stub_changed = TRUE;
6821 }
6822 while (0);
6823
6824 /* Look for relocations which might trigger Cortex-A8
6825 erratum. */
6826 if (htab->fix_cortex_a8
6827 && (r_type == (unsigned int) R_ARM_THM_JUMP24
6828 || r_type == (unsigned int) R_ARM_THM_JUMP19
6829 || r_type == (unsigned int) R_ARM_THM_CALL
6830 || r_type == (unsigned int) R_ARM_THM_XPC22))
6831 {
6832 bfd_vma from = section->output_section->vma
6833 + section->output_offset
6834 + irela->r_offset;
6835
6836 if ((from & 0xfff) == 0xffe)
6837 {
6838 /* Found a candidate. Note we haven't checked the
6839 destination is within 4K here: if we do so (and
6840 don't create an entry in a8_relocs) we can't tell
6841 that a branch should have been relocated when
6842 scanning later. */
6843 if (num_a8_relocs == a8_reloc_table_size)
6844 {
6845 a8_reloc_table_size *= 2;
6846 a8_relocs = (struct a8_erratum_reloc *)
6847 bfd_realloc (a8_relocs,
6848 sizeof (struct a8_erratum_reloc)
6849 * a8_reloc_table_size);
6850 }
6851
6852 a8_relocs[num_a8_relocs].from = from;
6853 a8_relocs[num_a8_relocs].destination = destination;
6854 a8_relocs[num_a8_relocs].r_type = r_type;
6855 a8_relocs[num_a8_relocs].branch_type = branch_type;
6856 a8_relocs[num_a8_relocs].sym_name = sym_name;
6857 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
6858 a8_relocs[num_a8_relocs].hash = hash;
6859
6860 num_a8_relocs++;
6861 }
6862 }
6863 }
6864
6865 /* We're done with the internal relocs, free them. */
6866 if (elf_section_data (section)->relocs == NULL)
6867 free (internal_relocs);
6868 }
6869
6870 if (htab->fix_cortex_a8)
6871 {
6872 /* Sort relocs which might apply to Cortex-A8 erratum. */
6873 qsort (a8_relocs, num_a8_relocs,
6874 sizeof (struct a8_erratum_reloc),
6875 &a8_reloc_compare);
6876
6877 /* Scan for branches which might trigger Cortex-A8 erratum. */
6878 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
6879 &num_a8_fixes, &a8_fix_table_size,
6880 a8_relocs, num_a8_relocs,
6881 prev_num_a8_fixes, &stub_changed)
6882 != 0)
6883 goto error_ret_free_local;
6884 }
6885
6886 if (local_syms != NULL
6887 && symtab_hdr->contents != (unsigned char *) local_syms)
6888 {
6889 if (!info->keep_memory)
6890 free (local_syms);
6891 else
6892 symtab_hdr->contents = (unsigned char *) local_syms;
6893 }
6894 }
6895
6896 if (first_veneer_scan
6897 && !set_cmse_veneer_addr_from_implib (info, htab,
6898 &cmse_stub_created))
6899 ret = FALSE;
6900
6901 if (prev_num_a8_fixes != num_a8_fixes)
6902 stub_changed = TRUE;
6903
6904 if (!stub_changed)
6905 break;
6906
6907 /* OK, we've added some stubs. Find out the new size of the
6908 stub sections. */
6909 for (stub_sec = htab->stub_bfd->sections;
6910 stub_sec != NULL;
6911 stub_sec = stub_sec->next)
6912 {
6913 /* Ignore non-stub sections. */
6914 if (!strstr (stub_sec->name, STUB_SUFFIX))
6915 continue;
6916
6917 stub_sec->size = 0;
6918 }
6919
6920 /* Add new SG veneers after those already in the input import
6921 library. */
6922 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6923 stub_type++)
6924 {
6925 bfd_vma *start_offset_p;
6926 asection **stub_sec_p;
6927
6928 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
6929 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6930 if (start_offset_p == NULL)
6931 continue;
6932
6933 BFD_ASSERT (stub_sec_p != NULL);
6934 if (*stub_sec_p != NULL)
6935 (*stub_sec_p)->size = *start_offset_p;
6936 }
6937
6938 /* Compute stub section size, considering padding. */
6939 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
6940 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6941 stub_type++)
6942 {
6943 int size, padding;
6944 asection **stub_sec_p;
6945
6946 padding = arm_dedicated_stub_section_padding (stub_type);
6947 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6948 /* Skip if no stub input section or no stub section padding
6949 required. */
6950 if ((stub_sec_p != NULL && *stub_sec_p == NULL) || padding == 0)
6951 continue;
6952 /* Stub section padding required but no dedicated section. */
6953 BFD_ASSERT (stub_sec_p);
6954
6955 size = (*stub_sec_p)->size;
6956 size = (size + padding - 1) & ~(padding - 1);
6957 (*stub_sec_p)->size = size;
6958 }
6959
6960 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
6961 if (htab->fix_cortex_a8)
6962 for (i = 0; i < num_a8_fixes; i++)
6963 {
6964 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
6965 a8_fixes[i].section, htab, a8_fixes[i].stub_type);
6966
6967 if (stub_sec == NULL)
6968 return FALSE;
6969
6970 stub_sec->size
6971 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
6972 NULL);
6973 }
6974
6975
6976 /* Ask the linker to do its stuff. */
6977 (*htab->layout_sections_again) ();
6978 first_veneer_scan = FALSE;
6979 }
6980
6981 /* Add stubs for Cortex-A8 erratum fixes now. */
6982 if (htab->fix_cortex_a8)
6983 {
6984 for (i = 0; i < num_a8_fixes; i++)
6985 {
6986 struct elf32_arm_stub_hash_entry *stub_entry;
6987 char *stub_name = a8_fixes[i].stub_name;
6988 asection *section = a8_fixes[i].section;
6989 unsigned int section_id = a8_fixes[i].section->id;
6990 asection *link_sec = htab->stub_group[section_id].link_sec;
6991 asection *stub_sec = htab->stub_group[section_id].stub_sec;
6992 const insn_sequence *template_sequence;
6993 int template_size, size = 0;
6994
6995 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
6996 TRUE, FALSE);
6997 if (stub_entry == NULL)
6998 {
6999 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
7000 section->owner, stub_name);
7001 return FALSE;
7002 }
7003
7004 stub_entry->stub_sec = stub_sec;
7005 stub_entry->stub_offset = (bfd_vma) -1;
7006 stub_entry->id_sec = link_sec;
7007 stub_entry->stub_type = a8_fixes[i].stub_type;
7008 stub_entry->source_value = a8_fixes[i].offset;
7009 stub_entry->target_section = a8_fixes[i].section;
7010 stub_entry->target_value = a8_fixes[i].target_offset;
7011 stub_entry->orig_insn = a8_fixes[i].orig_insn;
7012 stub_entry->branch_type = a8_fixes[i].branch_type;
7013
7014 size = find_stub_size_and_template (a8_fixes[i].stub_type,
7015 &template_sequence,
7016 &template_size);
7017
7018 stub_entry->stub_size = size;
7019 stub_entry->stub_template = template_sequence;
7020 stub_entry->stub_template_size = template_size;
7021 }
7022
7023 /* Stash the Cortex-A8 erratum fix array for use later in
7024 elf32_arm_write_section(). */
7025 htab->a8_erratum_fixes = a8_fixes;
7026 htab->num_a8_erratum_fixes = num_a8_fixes;
7027 }
7028 else
7029 {
7030 htab->a8_erratum_fixes = NULL;
7031 htab->num_a8_erratum_fixes = 0;
7032 }
7033 return ret;
7034 }
7035
7036 /* Build all the stubs associated with the current output file. The
7037 stubs are kept in a hash table attached to the main linker hash
7038 table. We also set up the .plt entries for statically linked PIC
7039 functions here. This function is called via arm_elf_finish in the
7040 linker. */
7041
7042 bfd_boolean
7043 elf32_arm_build_stubs (struct bfd_link_info *info)
7044 {
7045 asection *stub_sec;
7046 struct bfd_hash_table *table;
7047 enum elf32_arm_stub_type stub_type;
7048 struct elf32_arm_link_hash_table *htab;
7049
7050 htab = elf32_arm_hash_table (info);
7051 if (htab == NULL)
7052 return FALSE;
7053
7054 for (stub_sec = htab->stub_bfd->sections;
7055 stub_sec != NULL;
7056 stub_sec = stub_sec->next)
7057 {
7058 bfd_size_type size;
7059
7060 /* Ignore non-stub sections. */
7061 if (!strstr (stub_sec->name, STUB_SUFFIX))
7062 continue;
7063
7064 /* Allocate memory to hold the linker stubs. Zeroing the stub sections
7065 must at least be done for stub section requiring padding and for SG
7066 veneers to ensure that a non secure code branching to a removed SG
7067 veneer causes an error. */
7068 size = stub_sec->size;
7069 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
7070 if (stub_sec->contents == NULL && size != 0)
7071 return FALSE;
7072
7073 stub_sec->size = 0;
7074 }
7075
7076 /* Add new SG veneers after those already in the input import library. */
7077 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
7078 {
7079 bfd_vma *start_offset_p;
7080 asection **stub_sec_p;
7081
7082 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
7083 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
7084 if (start_offset_p == NULL)
7085 continue;
7086
7087 BFD_ASSERT (stub_sec_p != NULL);
7088 if (*stub_sec_p != NULL)
7089 (*stub_sec_p)->size = *start_offset_p;
7090 }
7091
7092 /* Build the stubs as directed by the stub hash table. */
7093 table = &htab->stub_hash_table;
7094 bfd_hash_traverse (table, arm_build_one_stub, info);
7095 if (htab->fix_cortex_a8)
7096 {
7097 /* Place the cortex a8 stubs last. */
7098 htab->fix_cortex_a8 = -1;
7099 bfd_hash_traverse (table, arm_build_one_stub, info);
7100 }
7101
7102 return TRUE;
7103 }
7104
7105 /* Locate the Thumb encoded calling stub for NAME. */
7106
7107 static struct elf_link_hash_entry *
7108 find_thumb_glue (struct bfd_link_info *link_info,
7109 const char *name,
7110 char **error_message)
7111 {
7112 char *tmp_name;
7113 struct elf_link_hash_entry *hash;
7114 struct elf32_arm_link_hash_table *hash_table;
7115
7116 /* We need a pointer to the armelf specific hash table. */
7117 hash_table = elf32_arm_hash_table (link_info);
7118 if (hash_table == NULL)
7119 return NULL;
7120
7121 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
7122 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
7123
7124 BFD_ASSERT (tmp_name);
7125
7126 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
7127
7128 hash = elf_link_hash_lookup
7129 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
7130
7131 if (hash == NULL
7132 && asprintf (error_message, _("unable to find %s glue '%s' for '%s'"),
7133 "Thumb", tmp_name, name) == -1)
7134 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
7135
7136 free (tmp_name);
7137
7138 return hash;
7139 }
7140
7141 /* Locate the ARM encoded calling stub for NAME. */
7142
7143 static struct elf_link_hash_entry *
7144 find_arm_glue (struct bfd_link_info *link_info,
7145 const char *name,
7146 char **error_message)
7147 {
7148 char *tmp_name;
7149 struct elf_link_hash_entry *myh;
7150 struct elf32_arm_link_hash_table *hash_table;
7151
7152 /* We need a pointer to the elfarm specific hash table. */
7153 hash_table = elf32_arm_hash_table (link_info);
7154 if (hash_table == NULL)
7155 return NULL;
7156
7157 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
7158 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
7159 BFD_ASSERT (tmp_name);
7160
7161 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
7162
7163 myh = elf_link_hash_lookup
7164 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
7165
7166 if (myh == NULL
7167 && asprintf (error_message, _("unable to find %s glue '%s' for '%s'"),
7168 "ARM", tmp_name, name) == -1)
7169 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
7170
7171 free (tmp_name);
7172
7173 return myh;
7174 }
7175
7176 /* ARM->Thumb glue (static images):
7177
7178 .arm
7179 __func_from_arm:
7180 ldr r12, __func_addr
7181 bx r12
7182 __func_addr:
7183 .word func @ behave as if you saw a ARM_32 reloc.
7184
7185 (v5t static images)
7186 .arm
7187 __func_from_arm:
7188 ldr pc, __func_addr
7189 __func_addr:
7190 .word func @ behave as if you saw a ARM_32 reloc.
7191
7192 (relocatable images)
7193 .arm
7194 __func_from_arm:
7195 ldr r12, __func_offset
7196 add r12, r12, pc
7197 bx r12
7198 __func_offset:
7199 .word func - . */
7200
7201 #define ARM2THUMB_STATIC_GLUE_SIZE 12
7202 static const insn32 a2t1_ldr_insn = 0xe59fc000;
7203 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
7204 static const insn32 a2t3_func_addr_insn = 0x00000001;
7205
7206 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
7207 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
7208 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
7209
7210 #define ARM2THUMB_PIC_GLUE_SIZE 16
7211 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
7212 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
7213 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
7214
7215 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
7216
7217 .thumb .thumb
7218 .align 2 .align 2
7219 __func_from_thumb: __func_from_thumb:
7220 bx pc push {r6, lr}
7221 nop ldr r6, __func_addr
7222 .arm mov lr, pc
7223 b func bx r6
7224 .arm
7225 ;; back_to_thumb
7226 ldmia r13! {r6, lr}
7227 bx lr
7228 __func_addr:
7229 .word func */
7230
7231 #define THUMB2ARM_GLUE_SIZE 8
7232 static const insn16 t2a1_bx_pc_insn = 0x4778;
7233 static const insn16 t2a2_noop_insn = 0x46c0;
7234 static const insn32 t2a3_b_insn = 0xea000000;
7235
7236 #define VFP11_ERRATUM_VENEER_SIZE 8
7237 #define STM32L4XX_ERRATUM_LDM_VENEER_SIZE 16
7238 #define STM32L4XX_ERRATUM_VLDM_VENEER_SIZE 24
7239
7240 #define ARM_BX_VENEER_SIZE 12
7241 static const insn32 armbx1_tst_insn = 0xe3100001;
7242 static const insn32 armbx2_moveq_insn = 0x01a0f000;
7243 static const insn32 armbx3_bx_insn = 0xe12fff10;
7244
7245 #ifndef ELFARM_NABI_C_INCLUDED
7246 static void
7247 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
7248 {
7249 asection * s;
7250 bfd_byte * contents;
7251
7252 if (size == 0)
7253 {
7254 /* Do not include empty glue sections in the output. */
7255 if (abfd != NULL)
7256 {
7257 s = bfd_get_linker_section (abfd, name);
7258 if (s != NULL)
7259 s->flags |= SEC_EXCLUDE;
7260 }
7261 return;
7262 }
7263
7264 BFD_ASSERT (abfd != NULL);
7265
7266 s = bfd_get_linker_section (abfd, name);
7267 BFD_ASSERT (s != NULL);
7268
7269 contents = (bfd_byte *) bfd_zalloc (abfd, size);
7270
7271 BFD_ASSERT (s->size == size);
7272 s->contents = contents;
7273 }
7274
7275 bfd_boolean
7276 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
7277 {
7278 struct elf32_arm_link_hash_table * globals;
7279
7280 globals = elf32_arm_hash_table (info);
7281 BFD_ASSERT (globals != NULL);
7282
7283 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7284 globals->arm_glue_size,
7285 ARM2THUMB_GLUE_SECTION_NAME);
7286
7287 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7288 globals->thumb_glue_size,
7289 THUMB2ARM_GLUE_SECTION_NAME);
7290
7291 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7292 globals->vfp11_erratum_glue_size,
7293 VFP11_ERRATUM_VENEER_SECTION_NAME);
7294
7295 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7296 globals->stm32l4xx_erratum_glue_size,
7297 STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7298
7299 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7300 globals->bx_glue_size,
7301 ARM_BX_GLUE_SECTION_NAME);
7302
7303 return TRUE;
7304 }
7305
7306 /* Allocate space and symbols for calling a Thumb function from Arm mode.
7307 returns the symbol identifying the stub. */
7308
7309 static struct elf_link_hash_entry *
7310 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
7311 struct elf_link_hash_entry * h)
7312 {
7313 const char * name = h->root.root.string;
7314 asection * s;
7315 char * tmp_name;
7316 struct elf_link_hash_entry * myh;
7317 struct bfd_link_hash_entry * bh;
7318 struct elf32_arm_link_hash_table * globals;
7319 bfd_vma val;
7320 bfd_size_type size;
7321
7322 globals = elf32_arm_hash_table (link_info);
7323 BFD_ASSERT (globals != NULL);
7324 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7325
7326 s = bfd_get_linker_section
7327 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
7328
7329 BFD_ASSERT (s != NULL);
7330
7331 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
7332 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
7333 BFD_ASSERT (tmp_name);
7334
7335 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
7336
7337 myh = elf_link_hash_lookup
7338 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
7339
7340 if (myh != NULL)
7341 {
7342 /* We've already seen this guy. */
7343 free (tmp_name);
7344 return myh;
7345 }
7346
7347 /* The only trick here is using hash_table->arm_glue_size as the value.
7348 Even though the section isn't allocated yet, this is where we will be
7349 putting it. The +1 on the value marks that the stub has not been
7350 output yet - not that it is a Thumb function. */
7351 bh = NULL;
7352 val = globals->arm_glue_size + 1;
7353 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
7354 tmp_name, BSF_GLOBAL, s, val,
7355 NULL, TRUE, FALSE, &bh);
7356
7357 myh = (struct elf_link_hash_entry *) bh;
7358 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7359 myh->forced_local = 1;
7360
7361 free (tmp_name);
7362
7363 if (bfd_link_pic (link_info)
7364 || globals->root.is_relocatable_executable
7365 || globals->pic_veneer)
7366 size = ARM2THUMB_PIC_GLUE_SIZE;
7367 else if (globals->use_blx)
7368 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
7369 else
7370 size = ARM2THUMB_STATIC_GLUE_SIZE;
7371
7372 s->size += size;
7373 globals->arm_glue_size += size;
7374
7375 return myh;
7376 }
7377
7378 /* Allocate space for ARMv4 BX veneers. */
7379
7380 static void
7381 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
7382 {
7383 asection * s;
7384 struct elf32_arm_link_hash_table *globals;
7385 char *tmp_name;
7386 struct elf_link_hash_entry *myh;
7387 struct bfd_link_hash_entry *bh;
7388 bfd_vma val;
7389
7390 /* BX PC does not need a veneer. */
7391 if (reg == 15)
7392 return;
7393
7394 globals = elf32_arm_hash_table (link_info);
7395 BFD_ASSERT (globals != NULL);
7396 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7397
7398 /* Check if this veneer has already been allocated. */
7399 if (globals->bx_glue_offset[reg])
7400 return;
7401
7402 s = bfd_get_linker_section
7403 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
7404
7405 BFD_ASSERT (s != NULL);
7406
7407 /* Add symbol for veneer. */
7408 tmp_name = (char *)
7409 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
7410 BFD_ASSERT (tmp_name);
7411
7412 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
7413
7414 myh = elf_link_hash_lookup
7415 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
7416
7417 BFD_ASSERT (myh == NULL);
7418
7419 bh = NULL;
7420 val = globals->bx_glue_size;
7421 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
7422 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7423 NULL, TRUE, FALSE, &bh);
7424
7425 myh = (struct elf_link_hash_entry *) bh;
7426 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7427 myh->forced_local = 1;
7428
7429 s->size += ARM_BX_VENEER_SIZE;
7430 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
7431 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
7432 }
7433
7434
7435 /* Add an entry to the code/data map for section SEC. */
7436
7437 static void
7438 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
7439 {
7440 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
7441 unsigned int newidx;
7442
7443 if (sec_data->map == NULL)
7444 {
7445 sec_data->map = (elf32_arm_section_map *)
7446 bfd_malloc (sizeof (elf32_arm_section_map));
7447 sec_data->mapcount = 0;
7448 sec_data->mapsize = 1;
7449 }
7450
7451 newidx = sec_data->mapcount++;
7452
7453 if (sec_data->mapcount > sec_data->mapsize)
7454 {
7455 sec_data->mapsize *= 2;
7456 sec_data->map = (elf32_arm_section_map *)
7457 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
7458 * sizeof (elf32_arm_section_map));
7459 }
7460
7461 if (sec_data->map)
7462 {
7463 sec_data->map[newidx].vma = vma;
7464 sec_data->map[newidx].type = type;
7465 }
7466 }
7467
7468
7469 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
7470 veneers are handled for now. */
7471
7472 static bfd_vma
7473 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
7474 elf32_vfp11_erratum_list *branch,
7475 bfd *branch_bfd,
7476 asection *branch_sec,
7477 unsigned int offset)
7478 {
7479 asection *s;
7480 struct elf32_arm_link_hash_table *hash_table;
7481 char *tmp_name;
7482 struct elf_link_hash_entry *myh;
7483 struct bfd_link_hash_entry *bh;
7484 bfd_vma val;
7485 struct _arm_elf_section_data *sec_data;
7486 elf32_vfp11_erratum_list *newerr;
7487
7488 hash_table = elf32_arm_hash_table (link_info);
7489 BFD_ASSERT (hash_table != NULL);
7490 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
7491
7492 s = bfd_get_linker_section
7493 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
7494
7495 sec_data = elf32_arm_section_data (s);
7496
7497 BFD_ASSERT (s != NULL);
7498
7499 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7500 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
7501 BFD_ASSERT (tmp_name);
7502
7503 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
7504 hash_table->num_vfp11_fixes);
7505
7506 myh = elf_link_hash_lookup
7507 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7508
7509 BFD_ASSERT (myh == NULL);
7510
7511 bh = NULL;
7512 val = hash_table->vfp11_erratum_glue_size;
7513 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
7514 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7515 NULL, TRUE, FALSE, &bh);
7516
7517 myh = (struct elf_link_hash_entry *) bh;
7518 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7519 myh->forced_local = 1;
7520
7521 /* Link veneer back to calling location. */
7522 sec_data->erratumcount += 1;
7523 newerr = (elf32_vfp11_erratum_list *)
7524 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
7525
7526 newerr->type = VFP11_ERRATUM_ARM_VENEER;
7527 newerr->vma = -1;
7528 newerr->u.v.branch = branch;
7529 newerr->u.v.id = hash_table->num_vfp11_fixes;
7530 branch->u.b.veneer = newerr;
7531
7532 newerr->next = sec_data->erratumlist;
7533 sec_data->erratumlist = newerr;
7534
7535 /* A symbol for the return from the veneer. */
7536 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
7537 hash_table->num_vfp11_fixes);
7538
7539 myh = elf_link_hash_lookup
7540 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7541
7542 if (myh != NULL)
7543 abort ();
7544
7545 bh = NULL;
7546 val = offset + 4;
7547 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
7548 branch_sec, val, NULL, TRUE, FALSE, &bh);
7549
7550 myh = (struct elf_link_hash_entry *) bh;
7551 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7552 myh->forced_local = 1;
7553
7554 free (tmp_name);
7555
7556 /* Generate a mapping symbol for the veneer section, and explicitly add an
7557 entry for that symbol to the code/data map for the section. */
7558 if (hash_table->vfp11_erratum_glue_size == 0)
7559 {
7560 bh = NULL;
7561 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
7562 ever requires this erratum fix. */
7563 _bfd_generic_link_add_one_symbol (link_info,
7564 hash_table->bfd_of_glue_owner, "$a",
7565 BSF_LOCAL, s, 0, NULL,
7566 TRUE, FALSE, &bh);
7567
7568 myh = (struct elf_link_hash_entry *) bh;
7569 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7570 myh->forced_local = 1;
7571
7572 /* The elf32_arm_init_maps function only cares about symbols from input
7573 BFDs. We must make a note of this generated mapping symbol
7574 ourselves so that code byteswapping works properly in
7575 elf32_arm_write_section. */
7576 elf32_arm_section_map_add (s, 'a', 0);
7577 }
7578
7579 s->size += VFP11_ERRATUM_VENEER_SIZE;
7580 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
7581 hash_table->num_vfp11_fixes++;
7582
7583 /* The offset of the veneer. */
7584 return val;
7585 }
7586
7587 /* Record information about a STM32L4XX STM erratum veneer. Only THUMB-mode
7588 veneers need to be handled because used only in Cortex-M. */
7589
7590 static bfd_vma
7591 record_stm32l4xx_erratum_veneer (struct bfd_link_info *link_info,
7592 elf32_stm32l4xx_erratum_list *branch,
7593 bfd *branch_bfd,
7594 asection *branch_sec,
7595 unsigned int offset,
7596 bfd_size_type veneer_size)
7597 {
7598 asection *s;
7599 struct elf32_arm_link_hash_table *hash_table;
7600 char *tmp_name;
7601 struct elf_link_hash_entry *myh;
7602 struct bfd_link_hash_entry *bh;
7603 bfd_vma val;
7604 struct _arm_elf_section_data *sec_data;
7605 elf32_stm32l4xx_erratum_list *newerr;
7606
7607 hash_table = elf32_arm_hash_table (link_info);
7608 BFD_ASSERT (hash_table != NULL);
7609 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
7610
7611 s = bfd_get_linker_section
7612 (hash_table->bfd_of_glue_owner, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7613
7614 BFD_ASSERT (s != NULL);
7615
7616 sec_data = elf32_arm_section_data (s);
7617
7618 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7619 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
7620 BFD_ASSERT (tmp_name);
7621
7622 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
7623 hash_table->num_stm32l4xx_fixes);
7624
7625 myh = elf_link_hash_lookup
7626 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7627
7628 BFD_ASSERT (myh == NULL);
7629
7630 bh = NULL;
7631 val = hash_table->stm32l4xx_erratum_glue_size;
7632 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
7633 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7634 NULL, TRUE, FALSE, &bh);
7635
7636 myh = (struct elf_link_hash_entry *) bh;
7637 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7638 myh->forced_local = 1;
7639
7640 /* Link veneer back to calling location. */
7641 sec_data->stm32l4xx_erratumcount += 1;
7642 newerr = (elf32_stm32l4xx_erratum_list *)
7643 bfd_zmalloc (sizeof (elf32_stm32l4xx_erratum_list));
7644
7645 newerr->type = STM32L4XX_ERRATUM_VENEER;
7646 newerr->vma = -1;
7647 newerr->u.v.branch = branch;
7648 newerr->u.v.id = hash_table->num_stm32l4xx_fixes;
7649 branch->u.b.veneer = newerr;
7650
7651 newerr->next = sec_data->stm32l4xx_erratumlist;
7652 sec_data->stm32l4xx_erratumlist = newerr;
7653
7654 /* A symbol for the return from the veneer. */
7655 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
7656 hash_table->num_stm32l4xx_fixes);
7657
7658 myh = elf_link_hash_lookup
7659 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7660
7661 if (myh != NULL)
7662 abort ();
7663
7664 bh = NULL;
7665 val = offset + 4;
7666 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
7667 branch_sec, val, NULL, TRUE, FALSE, &bh);
7668
7669 myh = (struct elf_link_hash_entry *) bh;
7670 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7671 myh->forced_local = 1;
7672
7673 free (tmp_name);
7674
7675 /* Generate a mapping symbol for the veneer section, and explicitly add an
7676 entry for that symbol to the code/data map for the section. */
7677 if (hash_table->stm32l4xx_erratum_glue_size == 0)
7678 {
7679 bh = NULL;
7680 /* Creates a THUMB symbol since there is no other choice. */
7681 _bfd_generic_link_add_one_symbol (link_info,
7682 hash_table->bfd_of_glue_owner, "$t",
7683 BSF_LOCAL, s, 0, NULL,
7684 TRUE, FALSE, &bh);
7685
7686 myh = (struct elf_link_hash_entry *) bh;
7687 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7688 myh->forced_local = 1;
7689
7690 /* The elf32_arm_init_maps function only cares about symbols from input
7691 BFDs. We must make a note of this generated mapping symbol
7692 ourselves so that code byteswapping works properly in
7693 elf32_arm_write_section. */
7694 elf32_arm_section_map_add (s, 't', 0);
7695 }
7696
7697 s->size += veneer_size;
7698 hash_table->stm32l4xx_erratum_glue_size += veneer_size;
7699 hash_table->num_stm32l4xx_fixes++;
7700
7701 /* The offset of the veneer. */
7702 return val;
7703 }
7704
7705 #define ARM_GLUE_SECTION_FLAGS \
7706 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
7707 | SEC_READONLY | SEC_LINKER_CREATED)
7708
7709 /* Create a fake section for use by the ARM backend of the linker. */
7710
7711 static bfd_boolean
7712 arm_make_glue_section (bfd * abfd, const char * name)
7713 {
7714 asection * sec;
7715
7716 sec = bfd_get_linker_section (abfd, name);
7717 if (sec != NULL)
7718 /* Already made. */
7719 return TRUE;
7720
7721 sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
7722
7723 if (sec == NULL
7724 || !bfd_set_section_alignment (sec, 2))
7725 return FALSE;
7726
7727 /* Set the gc mark to prevent the section from being removed by garbage
7728 collection, despite the fact that no relocs refer to this section. */
7729 sec->gc_mark = 1;
7730
7731 return TRUE;
7732 }
7733
7734 /* Set size of .plt entries. This function is called from the
7735 linker scripts in ld/emultempl/{armelf}.em. */
7736
7737 void
7738 bfd_elf32_arm_use_long_plt (void)
7739 {
7740 elf32_arm_use_long_plt_entry = TRUE;
7741 }
7742
7743 /* Add the glue sections to ABFD. This function is called from the
7744 linker scripts in ld/emultempl/{armelf}.em. */
7745
7746 bfd_boolean
7747 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
7748 struct bfd_link_info *info)
7749 {
7750 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
7751 bfd_boolean dostm32l4xx = globals
7752 && globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE;
7753 bfd_boolean addglue;
7754
7755 /* If we are only performing a partial
7756 link do not bother adding the glue. */
7757 if (bfd_link_relocatable (info))
7758 return TRUE;
7759
7760 addglue = arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
7761 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
7762 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
7763 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
7764
7765 if (!dostm32l4xx)
7766 return addglue;
7767
7768 return addglue
7769 && arm_make_glue_section (abfd, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7770 }
7771
7772 /* Mark output sections of veneers needing a dedicated one with SEC_KEEP. This
7773 ensures they are not marked for deletion by
7774 strip_excluded_output_sections () when veneers are going to be created
7775 later. Not doing so would trigger assert on empty section size in
7776 lang_size_sections_1 (). */
7777
7778 void
7779 bfd_elf32_arm_keep_private_stub_output_sections (struct bfd_link_info *info)
7780 {
7781 enum elf32_arm_stub_type stub_type;
7782
7783 /* If we are only performing a partial
7784 link do not bother adding the glue. */
7785 if (bfd_link_relocatable (info))
7786 return;
7787
7788 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
7789 {
7790 asection *out_sec;
7791 const char *out_sec_name;
7792
7793 if (!arm_dedicated_stub_output_section_required (stub_type))
7794 continue;
7795
7796 out_sec_name = arm_dedicated_stub_output_section_name (stub_type);
7797 out_sec = bfd_get_section_by_name (info->output_bfd, out_sec_name);
7798 if (out_sec != NULL)
7799 out_sec->flags |= SEC_KEEP;
7800 }
7801 }
7802
7803 /* Select a BFD to be used to hold the sections used by the glue code.
7804 This function is called from the linker scripts in ld/emultempl/
7805 {armelf/pe}.em. */
7806
7807 bfd_boolean
7808 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
7809 {
7810 struct elf32_arm_link_hash_table *globals;
7811
7812 /* If we are only performing a partial link
7813 do not bother getting a bfd to hold the glue. */
7814 if (bfd_link_relocatable (info))
7815 return TRUE;
7816
7817 /* Make sure we don't attach the glue sections to a dynamic object. */
7818 BFD_ASSERT (!(abfd->flags & DYNAMIC));
7819
7820 globals = elf32_arm_hash_table (info);
7821 BFD_ASSERT (globals != NULL);
7822
7823 if (globals->bfd_of_glue_owner != NULL)
7824 return TRUE;
7825
7826 /* Save the bfd for later use. */
7827 globals->bfd_of_glue_owner = abfd;
7828
7829 return TRUE;
7830 }
7831
7832 static void
7833 check_use_blx (struct elf32_arm_link_hash_table *globals)
7834 {
7835 int cpu_arch;
7836
7837 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
7838 Tag_CPU_arch);
7839
7840 if (globals->fix_arm1176)
7841 {
7842 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
7843 globals->use_blx = 1;
7844 }
7845 else
7846 {
7847 if (cpu_arch > TAG_CPU_ARCH_V4T)
7848 globals->use_blx = 1;
7849 }
7850 }
7851
7852 bfd_boolean
7853 bfd_elf32_arm_process_before_allocation (bfd *abfd,
7854 struct bfd_link_info *link_info)
7855 {
7856 Elf_Internal_Shdr *symtab_hdr;
7857 Elf_Internal_Rela *internal_relocs = NULL;
7858 Elf_Internal_Rela *irel, *irelend;
7859 bfd_byte *contents = NULL;
7860
7861 asection *sec;
7862 struct elf32_arm_link_hash_table *globals;
7863
7864 /* If we are only performing a partial link do not bother
7865 to construct any glue. */
7866 if (bfd_link_relocatable (link_info))
7867 return TRUE;
7868
7869 /* Here we have a bfd that is to be included on the link. We have a
7870 hook to do reloc rummaging, before section sizes are nailed down. */
7871 globals = elf32_arm_hash_table (link_info);
7872 BFD_ASSERT (globals != NULL);
7873
7874 check_use_blx (globals);
7875
7876 if (globals->byteswap_code && !bfd_big_endian (abfd))
7877 {
7878 _bfd_error_handler (_("%pB: BE8 images only valid in big-endian mode"),
7879 abfd);
7880 return FALSE;
7881 }
7882
7883 /* PR 5398: If we have not decided to include any loadable sections in
7884 the output then we will not have a glue owner bfd. This is OK, it
7885 just means that there is nothing else for us to do here. */
7886 if (globals->bfd_of_glue_owner == NULL)
7887 return TRUE;
7888
7889 /* Rummage around all the relocs and map the glue vectors. */
7890 sec = abfd->sections;
7891
7892 if (sec == NULL)
7893 return TRUE;
7894
7895 for (; sec != NULL; sec = sec->next)
7896 {
7897 if (sec->reloc_count == 0)
7898 continue;
7899
7900 if ((sec->flags & SEC_EXCLUDE) != 0)
7901 continue;
7902
7903 symtab_hdr = & elf_symtab_hdr (abfd);
7904
7905 /* Load the relocs. */
7906 internal_relocs
7907 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
7908
7909 if (internal_relocs == NULL)
7910 goto error_return;
7911
7912 irelend = internal_relocs + sec->reloc_count;
7913 for (irel = internal_relocs; irel < irelend; irel++)
7914 {
7915 long r_type;
7916 unsigned long r_index;
7917
7918 struct elf_link_hash_entry *h;
7919
7920 r_type = ELF32_R_TYPE (irel->r_info);
7921 r_index = ELF32_R_SYM (irel->r_info);
7922
7923 /* These are the only relocation types we care about. */
7924 if ( r_type != R_ARM_PC24
7925 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
7926 continue;
7927
7928 /* Get the section contents if we haven't done so already. */
7929 if (contents == NULL)
7930 {
7931 /* Get cached copy if it exists. */
7932 if (elf_section_data (sec)->this_hdr.contents != NULL)
7933 contents = elf_section_data (sec)->this_hdr.contents;
7934 else
7935 {
7936 /* Go get them off disk. */
7937 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
7938 goto error_return;
7939 }
7940 }
7941
7942 if (r_type == R_ARM_V4BX)
7943 {
7944 int reg;
7945
7946 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
7947 record_arm_bx_glue (link_info, reg);
7948 continue;
7949 }
7950
7951 /* If the relocation is not against a symbol it cannot concern us. */
7952 h = NULL;
7953
7954 /* We don't care about local symbols. */
7955 if (r_index < symtab_hdr->sh_info)
7956 continue;
7957
7958 /* This is an external symbol. */
7959 r_index -= symtab_hdr->sh_info;
7960 h = (struct elf_link_hash_entry *)
7961 elf_sym_hashes (abfd)[r_index];
7962
7963 /* If the relocation is against a static symbol it must be within
7964 the current section and so cannot be a cross ARM/Thumb relocation. */
7965 if (h == NULL)
7966 continue;
7967
7968 /* If the call will go through a PLT entry then we do not need
7969 glue. */
7970 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
7971 continue;
7972
7973 switch (r_type)
7974 {
7975 case R_ARM_PC24:
7976 /* This one is a call from arm code. We need to look up
7977 the target of the call. If it is a thumb target, we
7978 insert glue. */
7979 if (ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
7980 == ST_BRANCH_TO_THUMB)
7981 record_arm_to_thumb_glue (link_info, h);
7982 break;
7983
7984 default:
7985 abort ();
7986 }
7987 }
7988
7989 if (contents != NULL
7990 && elf_section_data (sec)->this_hdr.contents != contents)
7991 free (contents);
7992 contents = NULL;
7993
7994 if (internal_relocs != NULL
7995 && elf_section_data (sec)->relocs != internal_relocs)
7996 free (internal_relocs);
7997 internal_relocs = NULL;
7998 }
7999
8000 return TRUE;
8001
8002 error_return:
8003 if (contents != NULL
8004 && elf_section_data (sec)->this_hdr.contents != contents)
8005 free (contents);
8006 if (internal_relocs != NULL
8007 && elf_section_data (sec)->relocs != internal_relocs)
8008 free (internal_relocs);
8009
8010 return FALSE;
8011 }
8012 #endif
8013
8014
8015 /* Initialise maps of ARM/Thumb/data for input BFDs. */
8016
8017 void
8018 bfd_elf32_arm_init_maps (bfd *abfd)
8019 {
8020 Elf_Internal_Sym *isymbuf;
8021 Elf_Internal_Shdr *hdr;
8022 unsigned int i, localsyms;
8023
8024 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
8025 if (! is_arm_elf (abfd))
8026 return;
8027
8028 if ((abfd->flags & DYNAMIC) != 0)
8029 return;
8030
8031 hdr = & elf_symtab_hdr (abfd);
8032 localsyms = hdr->sh_info;
8033
8034 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
8035 should contain the number of local symbols, which should come before any
8036 global symbols. Mapping symbols are always local. */
8037 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
8038 NULL);
8039
8040 /* No internal symbols read? Skip this BFD. */
8041 if (isymbuf == NULL)
8042 return;
8043
8044 for (i = 0; i < localsyms; i++)
8045 {
8046 Elf_Internal_Sym *isym = &isymbuf[i];
8047 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
8048 const char *name;
8049
8050 if (sec != NULL
8051 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
8052 {
8053 name = bfd_elf_string_from_elf_section (abfd,
8054 hdr->sh_link, isym->st_name);
8055
8056 if (bfd_is_arm_special_symbol_name (name,
8057 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
8058 elf32_arm_section_map_add (sec, name[1], isym->st_value);
8059 }
8060 }
8061 }
8062
8063
8064 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
8065 say what they wanted. */
8066
8067 void
8068 bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
8069 {
8070 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8071 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
8072
8073 if (globals == NULL)
8074 return;
8075
8076 if (globals->fix_cortex_a8 == -1)
8077 {
8078 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
8079 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
8080 && (out_attr[Tag_CPU_arch_profile].i == 'A'
8081 || out_attr[Tag_CPU_arch_profile].i == 0))
8082 globals->fix_cortex_a8 = 1;
8083 else
8084 globals->fix_cortex_a8 = 0;
8085 }
8086 }
8087
8088
8089 void
8090 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
8091 {
8092 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8093 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
8094
8095 if (globals == NULL)
8096 return;
8097 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
8098 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
8099 {
8100 switch (globals->vfp11_fix)
8101 {
8102 case BFD_ARM_VFP11_FIX_DEFAULT:
8103 case BFD_ARM_VFP11_FIX_NONE:
8104 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
8105 break;
8106
8107 default:
8108 /* Give a warning, but do as the user requests anyway. */
8109 _bfd_error_handler (_("%pB: warning: selected VFP11 erratum "
8110 "workaround is not necessary for target architecture"), obfd);
8111 }
8112 }
8113 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
8114 /* For earlier architectures, we might need the workaround, but do not
8115 enable it by default. If users is running with broken hardware, they
8116 must enable the erratum fix explicitly. */
8117 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
8118 }
8119
8120 void
8121 bfd_elf32_arm_set_stm32l4xx_fix (bfd *obfd, struct bfd_link_info *link_info)
8122 {
8123 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8124 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
8125
8126 if (globals == NULL)
8127 return;
8128
8129 /* We assume only Cortex-M4 may require the fix. */
8130 if (out_attr[Tag_CPU_arch].i != TAG_CPU_ARCH_V7E_M
8131 || out_attr[Tag_CPU_arch_profile].i != 'M')
8132 {
8133 if (globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE)
8134 /* Give a warning, but do as the user requests anyway. */
8135 _bfd_error_handler
8136 (_("%pB: warning: selected STM32L4XX erratum "
8137 "workaround is not necessary for target architecture"), obfd);
8138 }
8139 }
8140
8141 enum bfd_arm_vfp11_pipe
8142 {
8143 VFP11_FMAC,
8144 VFP11_LS,
8145 VFP11_DS,
8146 VFP11_BAD
8147 };
8148
8149 /* Return a VFP register number. This is encoded as RX:X for single-precision
8150 registers, or X:RX for double-precision registers, where RX is the group of
8151 four bits in the instruction encoding and X is the single extension bit.
8152 RX and X fields are specified using their lowest (starting) bit. The return
8153 value is:
8154
8155 0...31: single-precision registers s0...s31
8156 32...63: double-precision registers d0...d31.
8157
8158 Although X should be zero for VFP11 (encoding d0...d15 only), we might
8159 encounter VFP3 instructions, so we allow the full range for DP registers. */
8160
8161 static unsigned int
8162 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
8163 unsigned int x)
8164 {
8165 if (is_double)
8166 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
8167 else
8168 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
8169 }
8170
8171 /* Set bits in *WMASK according to a register number REG as encoded by
8172 bfd_arm_vfp11_regno(). Ignore d16-d31. */
8173
8174 static void
8175 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
8176 {
8177 if (reg < 32)
8178 *wmask |= 1 << reg;
8179 else if (reg < 48)
8180 *wmask |= 3 << ((reg - 32) * 2);
8181 }
8182
8183 /* Return TRUE if WMASK overwrites anything in REGS. */
8184
8185 static bfd_boolean
8186 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
8187 {
8188 int i;
8189
8190 for (i = 0; i < numregs; i++)
8191 {
8192 unsigned int reg = regs[i];
8193
8194 if (reg < 32 && (wmask & (1 << reg)) != 0)
8195 return TRUE;
8196
8197 reg -= 32;
8198
8199 if (reg >= 16)
8200 continue;
8201
8202 if ((wmask & (3 << (reg * 2))) != 0)
8203 return TRUE;
8204 }
8205
8206 return FALSE;
8207 }
8208
8209 /* In this function, we're interested in two things: finding input registers
8210 for VFP data-processing instructions, and finding the set of registers which
8211 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
8212 hold the written set, so FLDM etc. are easy to deal with (we're only
8213 interested in 32 SP registers or 16 dp registers, due to the VFP version
8214 implemented by the chip in question). DP registers are marked by setting
8215 both SP registers in the write mask). */
8216
8217 static enum bfd_arm_vfp11_pipe
8218 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
8219 int *numregs)
8220 {
8221 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
8222 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
8223
8224 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
8225 {
8226 unsigned int pqrs;
8227 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
8228 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
8229
8230 pqrs = ((insn & 0x00800000) >> 20)
8231 | ((insn & 0x00300000) >> 19)
8232 | ((insn & 0x00000040) >> 6);
8233
8234 switch (pqrs)
8235 {
8236 case 0: /* fmac[sd]. */
8237 case 1: /* fnmac[sd]. */
8238 case 2: /* fmsc[sd]. */
8239 case 3: /* fnmsc[sd]. */
8240 vpipe = VFP11_FMAC;
8241 bfd_arm_vfp11_write_mask (destmask, fd);
8242 regs[0] = fd;
8243 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
8244 regs[2] = fm;
8245 *numregs = 3;
8246 break;
8247
8248 case 4: /* fmul[sd]. */
8249 case 5: /* fnmul[sd]. */
8250 case 6: /* fadd[sd]. */
8251 case 7: /* fsub[sd]. */
8252 vpipe = VFP11_FMAC;
8253 goto vfp_binop;
8254
8255 case 8: /* fdiv[sd]. */
8256 vpipe = VFP11_DS;
8257 vfp_binop:
8258 bfd_arm_vfp11_write_mask (destmask, fd);
8259 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
8260 regs[1] = fm;
8261 *numregs = 2;
8262 break;
8263
8264 case 15: /* extended opcode. */
8265 {
8266 unsigned int extn = ((insn >> 15) & 0x1e)
8267 | ((insn >> 7) & 1);
8268
8269 switch (extn)
8270 {
8271 case 0: /* fcpy[sd]. */
8272 case 1: /* fabs[sd]. */
8273 case 2: /* fneg[sd]. */
8274 case 8: /* fcmp[sd]. */
8275 case 9: /* fcmpe[sd]. */
8276 case 10: /* fcmpz[sd]. */
8277 case 11: /* fcmpez[sd]. */
8278 case 16: /* fuito[sd]. */
8279 case 17: /* fsito[sd]. */
8280 case 24: /* ftoui[sd]. */
8281 case 25: /* ftouiz[sd]. */
8282 case 26: /* ftosi[sd]. */
8283 case 27: /* ftosiz[sd]. */
8284 /* These instructions will not bounce due to underflow. */
8285 *numregs = 0;
8286 vpipe = VFP11_FMAC;
8287 break;
8288
8289 case 3: /* fsqrt[sd]. */
8290 /* fsqrt cannot underflow, but it can (perhaps) overwrite
8291 registers to cause the erratum in previous instructions. */
8292 bfd_arm_vfp11_write_mask (destmask, fd);
8293 vpipe = VFP11_DS;
8294 break;
8295
8296 case 15: /* fcvt{ds,sd}. */
8297 {
8298 int rnum = 0;
8299
8300 bfd_arm_vfp11_write_mask (destmask, fd);
8301
8302 /* Only FCVTSD can underflow. */
8303 if ((insn & 0x100) != 0)
8304 regs[rnum++] = fm;
8305
8306 *numregs = rnum;
8307
8308 vpipe = VFP11_FMAC;
8309 }
8310 break;
8311
8312 default:
8313 return VFP11_BAD;
8314 }
8315 }
8316 break;
8317
8318 default:
8319 return VFP11_BAD;
8320 }
8321 }
8322 /* Two-register transfer. */
8323 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
8324 {
8325 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
8326
8327 if ((insn & 0x100000) == 0)
8328 {
8329 if (is_double)
8330 bfd_arm_vfp11_write_mask (destmask, fm);
8331 else
8332 {
8333 bfd_arm_vfp11_write_mask (destmask, fm);
8334 bfd_arm_vfp11_write_mask (destmask, fm + 1);
8335 }
8336 }
8337
8338 vpipe = VFP11_LS;
8339 }
8340 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
8341 {
8342 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
8343 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
8344
8345 switch (puw)
8346 {
8347 case 0: /* Two-reg transfer. We should catch these above. */
8348 abort ();
8349
8350 case 2: /* fldm[sdx]. */
8351 case 3:
8352 case 5:
8353 {
8354 unsigned int i, offset = insn & 0xff;
8355
8356 if (is_double)
8357 offset >>= 1;
8358
8359 for (i = fd; i < fd + offset; i++)
8360 bfd_arm_vfp11_write_mask (destmask, i);
8361 }
8362 break;
8363
8364 case 4: /* fld[sd]. */
8365 case 6:
8366 bfd_arm_vfp11_write_mask (destmask, fd);
8367 break;
8368
8369 default:
8370 return VFP11_BAD;
8371 }
8372
8373 vpipe = VFP11_LS;
8374 }
8375 /* Single-register transfer. Note L==0. */
8376 else if ((insn & 0x0f100e10) == 0x0e000a10)
8377 {
8378 unsigned int opcode = (insn >> 21) & 7;
8379 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
8380
8381 switch (opcode)
8382 {
8383 case 0: /* fmsr/fmdlr. */
8384 case 1: /* fmdhr. */
8385 /* Mark fmdhr and fmdlr as writing to the whole of the DP
8386 destination register. I don't know if this is exactly right,
8387 but it is the conservative choice. */
8388 bfd_arm_vfp11_write_mask (destmask, fn);
8389 break;
8390
8391 case 7: /* fmxr. */
8392 break;
8393 }
8394
8395 vpipe = VFP11_LS;
8396 }
8397
8398 return vpipe;
8399 }
8400
8401
8402 static int elf32_arm_compare_mapping (const void * a, const void * b);
8403
8404
8405 /* Look for potentially-troublesome code sequences which might trigger the
8406 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
8407 (available from ARM) for details of the erratum. A short version is
8408 described in ld.texinfo. */
8409
8410 bfd_boolean
8411 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
8412 {
8413 asection *sec;
8414 bfd_byte *contents = NULL;
8415 int state = 0;
8416 int regs[3], numregs = 0;
8417 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8418 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
8419
8420 if (globals == NULL)
8421 return FALSE;
8422
8423 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
8424 The states transition as follows:
8425
8426 0 -> 1 (vector) or 0 -> 2 (scalar)
8427 A VFP FMAC-pipeline instruction has been seen. Fill
8428 regs[0]..regs[numregs-1] with its input operands. Remember this
8429 instruction in 'first_fmac'.
8430
8431 1 -> 2
8432 Any instruction, except for a VFP instruction which overwrites
8433 regs[*].
8434
8435 1 -> 3 [ -> 0 ] or
8436 2 -> 3 [ -> 0 ]
8437 A VFP instruction has been seen which overwrites any of regs[*].
8438 We must make a veneer! Reset state to 0 before examining next
8439 instruction.
8440
8441 2 -> 0
8442 If we fail to match anything in state 2, reset to state 0 and reset
8443 the instruction pointer to the instruction after 'first_fmac'.
8444
8445 If the VFP11 vector mode is in use, there must be at least two unrelated
8446 instructions between anti-dependent VFP11 instructions to properly avoid
8447 triggering the erratum, hence the use of the extra state 1. */
8448
8449 /* If we are only performing a partial link do not bother
8450 to construct any glue. */
8451 if (bfd_link_relocatable (link_info))
8452 return TRUE;
8453
8454 /* Skip if this bfd does not correspond to an ELF image. */
8455 if (! is_arm_elf (abfd))
8456 return TRUE;
8457
8458 /* We should have chosen a fix type by the time we get here. */
8459 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
8460
8461 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
8462 return TRUE;
8463
8464 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8465 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8466 return TRUE;
8467
8468 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8469 {
8470 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
8471 struct _arm_elf_section_data *sec_data;
8472
8473 /* If we don't have executable progbits, we're not interested in this
8474 section. Also skip if section is to be excluded. */
8475 if (elf_section_type (sec) != SHT_PROGBITS
8476 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8477 || (sec->flags & SEC_EXCLUDE) != 0
8478 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8479 || sec->output_section == bfd_abs_section_ptr
8480 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
8481 continue;
8482
8483 sec_data = elf32_arm_section_data (sec);
8484
8485 if (sec_data->mapcount == 0)
8486 continue;
8487
8488 if (elf_section_data (sec)->this_hdr.contents != NULL)
8489 contents = elf_section_data (sec)->this_hdr.contents;
8490 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8491 goto error_return;
8492
8493 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8494 elf32_arm_compare_mapping);
8495
8496 for (span = 0; span < sec_data->mapcount; span++)
8497 {
8498 unsigned int span_start = sec_data->map[span].vma;
8499 unsigned int span_end = (span == sec_data->mapcount - 1)
8500 ? sec->size : sec_data->map[span + 1].vma;
8501 char span_type = sec_data->map[span].type;
8502
8503 /* FIXME: Only ARM mode is supported at present. We may need to
8504 support Thumb-2 mode also at some point. */
8505 if (span_type != 'a')
8506 continue;
8507
8508 for (i = span_start; i < span_end;)
8509 {
8510 unsigned int next_i = i + 4;
8511 unsigned int insn = bfd_big_endian (abfd)
8512 ? (((unsigned) contents[i] << 24)
8513 | (contents[i + 1] << 16)
8514 | (contents[i + 2] << 8)
8515 | contents[i + 3])
8516 : (((unsigned) contents[i + 3] << 24)
8517 | (contents[i + 2] << 16)
8518 | (contents[i + 1] << 8)
8519 | contents[i]);
8520 unsigned int writemask = 0;
8521 enum bfd_arm_vfp11_pipe vpipe;
8522
8523 switch (state)
8524 {
8525 case 0:
8526 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
8527 &numregs);
8528 /* I'm assuming the VFP11 erratum can trigger with denorm
8529 operands on either the FMAC or the DS pipeline. This might
8530 lead to slightly overenthusiastic veneer insertion. */
8531 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
8532 {
8533 state = use_vector ? 1 : 2;
8534 first_fmac = i;
8535 veneer_of_insn = insn;
8536 }
8537 break;
8538
8539 case 1:
8540 {
8541 int other_regs[3], other_numregs;
8542 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
8543 other_regs,
8544 &other_numregs);
8545 if (vpipe != VFP11_BAD
8546 && bfd_arm_vfp11_antidependency (writemask, regs,
8547 numregs))
8548 state = 3;
8549 else
8550 state = 2;
8551 }
8552 break;
8553
8554 case 2:
8555 {
8556 int other_regs[3], other_numregs;
8557 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
8558 other_regs,
8559 &other_numregs);
8560 if (vpipe != VFP11_BAD
8561 && bfd_arm_vfp11_antidependency (writemask, regs,
8562 numregs))
8563 state = 3;
8564 else
8565 {
8566 state = 0;
8567 next_i = first_fmac + 4;
8568 }
8569 }
8570 break;
8571
8572 case 3:
8573 abort (); /* Should be unreachable. */
8574 }
8575
8576 if (state == 3)
8577 {
8578 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
8579 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
8580
8581 elf32_arm_section_data (sec)->erratumcount += 1;
8582
8583 newerr->u.b.vfp_insn = veneer_of_insn;
8584
8585 switch (span_type)
8586 {
8587 case 'a':
8588 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
8589 break;
8590
8591 default:
8592 abort ();
8593 }
8594
8595 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
8596 first_fmac);
8597
8598 newerr->vma = -1;
8599
8600 newerr->next = sec_data->erratumlist;
8601 sec_data->erratumlist = newerr;
8602
8603 state = 0;
8604 }
8605
8606 i = next_i;
8607 }
8608 }
8609
8610 if (contents != NULL
8611 && elf_section_data (sec)->this_hdr.contents != contents)
8612 free (contents);
8613 contents = NULL;
8614 }
8615
8616 return TRUE;
8617
8618 error_return:
8619 if (contents != NULL
8620 && elf_section_data (sec)->this_hdr.contents != contents)
8621 free (contents);
8622
8623 return FALSE;
8624 }
8625
8626 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
8627 after sections have been laid out, using specially-named symbols. */
8628
8629 void
8630 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
8631 struct bfd_link_info *link_info)
8632 {
8633 asection *sec;
8634 struct elf32_arm_link_hash_table *globals;
8635 char *tmp_name;
8636
8637 if (bfd_link_relocatable (link_info))
8638 return;
8639
8640 /* Skip if this bfd does not correspond to an ELF image. */
8641 if (! is_arm_elf (abfd))
8642 return;
8643
8644 globals = elf32_arm_hash_table (link_info);
8645 if (globals == NULL)
8646 return;
8647
8648 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
8649 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
8650 BFD_ASSERT (tmp_name);
8651
8652 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8653 {
8654 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8655 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
8656
8657 for (; errnode != NULL; errnode = errnode->next)
8658 {
8659 struct elf_link_hash_entry *myh;
8660 bfd_vma vma;
8661
8662 switch (errnode->type)
8663 {
8664 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
8665 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
8666 /* Find veneer symbol. */
8667 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
8668 errnode->u.b.veneer->u.v.id);
8669
8670 myh = elf_link_hash_lookup
8671 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8672
8673 if (myh == NULL)
8674 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8675 abfd, "VFP11", tmp_name);
8676
8677 vma = myh->root.u.def.section->output_section->vma
8678 + myh->root.u.def.section->output_offset
8679 + myh->root.u.def.value;
8680
8681 errnode->u.b.veneer->vma = vma;
8682 break;
8683
8684 case VFP11_ERRATUM_ARM_VENEER:
8685 case VFP11_ERRATUM_THUMB_VENEER:
8686 /* Find return location. */
8687 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
8688 errnode->u.v.id);
8689
8690 myh = elf_link_hash_lookup
8691 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8692
8693 if (myh == NULL)
8694 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8695 abfd, "VFP11", tmp_name);
8696
8697 vma = myh->root.u.def.section->output_section->vma
8698 + myh->root.u.def.section->output_offset
8699 + myh->root.u.def.value;
8700
8701 errnode->u.v.branch->vma = vma;
8702 break;
8703
8704 default:
8705 abort ();
8706 }
8707 }
8708 }
8709
8710 free (tmp_name);
8711 }
8712
8713 /* Find virtual-memory addresses for STM32L4XX erratum veneers and
8714 return locations after sections have been laid out, using
8715 specially-named symbols. */
8716
8717 void
8718 bfd_elf32_arm_stm32l4xx_fix_veneer_locations (bfd *abfd,
8719 struct bfd_link_info *link_info)
8720 {
8721 asection *sec;
8722 struct elf32_arm_link_hash_table *globals;
8723 char *tmp_name;
8724
8725 if (bfd_link_relocatable (link_info))
8726 return;
8727
8728 /* Skip if this bfd does not correspond to an ELF image. */
8729 if (! is_arm_elf (abfd))
8730 return;
8731
8732 globals = elf32_arm_hash_table (link_info);
8733 if (globals == NULL)
8734 return;
8735
8736 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
8737 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
8738 BFD_ASSERT (tmp_name);
8739
8740 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8741 {
8742 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8743 elf32_stm32l4xx_erratum_list *errnode = sec_data->stm32l4xx_erratumlist;
8744
8745 for (; errnode != NULL; errnode = errnode->next)
8746 {
8747 struct elf_link_hash_entry *myh;
8748 bfd_vma vma;
8749
8750 switch (errnode->type)
8751 {
8752 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
8753 /* Find veneer symbol. */
8754 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
8755 errnode->u.b.veneer->u.v.id);
8756
8757 myh = elf_link_hash_lookup
8758 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8759
8760 if (myh == NULL)
8761 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8762 abfd, "STM32L4XX", tmp_name);
8763
8764 vma = myh->root.u.def.section->output_section->vma
8765 + myh->root.u.def.section->output_offset
8766 + myh->root.u.def.value;
8767
8768 errnode->u.b.veneer->vma = vma;
8769 break;
8770
8771 case STM32L4XX_ERRATUM_VENEER:
8772 /* Find return location. */
8773 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
8774 errnode->u.v.id);
8775
8776 myh = elf_link_hash_lookup
8777 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8778
8779 if (myh == NULL)
8780 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8781 abfd, "STM32L4XX", tmp_name);
8782
8783 vma = myh->root.u.def.section->output_section->vma
8784 + myh->root.u.def.section->output_offset
8785 + myh->root.u.def.value;
8786
8787 errnode->u.v.branch->vma = vma;
8788 break;
8789
8790 default:
8791 abort ();
8792 }
8793 }
8794 }
8795
8796 free (tmp_name);
8797 }
8798
8799 static inline bfd_boolean
8800 is_thumb2_ldmia (const insn32 insn)
8801 {
8802 /* Encoding T2: LDM<c>.W <Rn>{!},<registers>
8803 1110 - 1000 - 10W1 - rrrr - PM (0) l - llll - llll - llll. */
8804 return (insn & 0xffd02000) == 0xe8900000;
8805 }
8806
8807 static inline bfd_boolean
8808 is_thumb2_ldmdb (const insn32 insn)
8809 {
8810 /* Encoding T1: LDMDB<c> <Rn>{!},<registers>
8811 1110 - 1001 - 00W1 - rrrr - PM (0) l - llll - llll - llll. */
8812 return (insn & 0xffd02000) == 0xe9100000;
8813 }
8814
8815 static inline bfd_boolean
8816 is_thumb2_vldm (const insn32 insn)
8817 {
8818 /* A6.5 Extension register load or store instruction
8819 A7.7.229
8820 We look for SP 32-bit and DP 64-bit registers.
8821 Encoding T1 VLDM{mode}<c> <Rn>{!}, <list>
8822 <list> is consecutive 64-bit registers
8823 1110 - 110P - UDW1 - rrrr - vvvv - 1011 - iiii - iiii
8824 Encoding T2 VLDM{mode}<c> <Rn>{!}, <list>
8825 <list> is consecutive 32-bit registers
8826 1110 - 110P - UDW1 - rrrr - vvvv - 1010 - iiii - iiii
8827 if P==0 && U==1 && W==1 && Rn=1101 VPOP
8828 if PUW=010 || PUW=011 || PUW=101 VLDM. */
8829 return
8830 (((insn & 0xfe100f00) == 0xec100b00) ||
8831 ((insn & 0xfe100f00) == 0xec100a00))
8832 && /* (IA without !). */
8833 (((((insn << 7) >> 28) & 0xd) == 0x4)
8834 /* (IA with !), includes VPOP (when reg number is SP). */
8835 || ((((insn << 7) >> 28) & 0xd) == 0x5)
8836 /* (DB with !). */
8837 || ((((insn << 7) >> 28) & 0xd) == 0x9));
8838 }
8839
8840 /* STM STM32L4XX erratum : This function assumes that it receives an LDM or
8841 VLDM opcode and:
8842 - computes the number and the mode of memory accesses
8843 - decides if the replacement should be done:
8844 . replaces only if > 8-word accesses
8845 . or (testing purposes only) replaces all accesses. */
8846
8847 static bfd_boolean
8848 stm32l4xx_need_create_replacing_stub (const insn32 insn,
8849 bfd_arm_stm32l4xx_fix stm32l4xx_fix)
8850 {
8851 int nb_words = 0;
8852
8853 /* The field encoding the register list is the same for both LDMIA
8854 and LDMDB encodings. */
8855 if (is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn))
8856 nb_words = elf32_arm_popcount (insn & 0x0000ffff);
8857 else if (is_thumb2_vldm (insn))
8858 nb_words = (insn & 0xff);
8859
8860 /* DEFAULT mode accounts for the real bug condition situation,
8861 ALL mode inserts stubs for each LDM/VLDM instruction (testing). */
8862 return
8863 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_DEFAULT) ? nb_words > 8 :
8864 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_ALL) ? TRUE : FALSE;
8865 }
8866
8867 /* Look for potentially-troublesome code sequences which might trigger
8868 the STM STM32L4XX erratum. */
8869
8870 bfd_boolean
8871 bfd_elf32_arm_stm32l4xx_erratum_scan (bfd *abfd,
8872 struct bfd_link_info *link_info)
8873 {
8874 asection *sec;
8875 bfd_byte *contents = NULL;
8876 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8877
8878 if (globals == NULL)
8879 return FALSE;
8880
8881 /* If we are only performing a partial link do not bother
8882 to construct any glue. */
8883 if (bfd_link_relocatable (link_info))
8884 return TRUE;
8885
8886 /* Skip if this bfd does not correspond to an ELF image. */
8887 if (! is_arm_elf (abfd))
8888 return TRUE;
8889
8890 if (globals->stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_NONE)
8891 return TRUE;
8892
8893 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8894 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8895 return TRUE;
8896
8897 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8898 {
8899 unsigned int i, span;
8900 struct _arm_elf_section_data *sec_data;
8901
8902 /* If we don't have executable progbits, we're not interested in this
8903 section. Also skip if section is to be excluded. */
8904 if (elf_section_type (sec) != SHT_PROGBITS
8905 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8906 || (sec->flags & SEC_EXCLUDE) != 0
8907 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8908 || sec->output_section == bfd_abs_section_ptr
8909 || strcmp (sec->name, STM32L4XX_ERRATUM_VENEER_SECTION_NAME) == 0)
8910 continue;
8911
8912 sec_data = elf32_arm_section_data (sec);
8913
8914 if (sec_data->mapcount == 0)
8915 continue;
8916
8917 if (elf_section_data (sec)->this_hdr.contents != NULL)
8918 contents = elf_section_data (sec)->this_hdr.contents;
8919 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8920 goto error_return;
8921
8922 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8923 elf32_arm_compare_mapping);
8924
8925 for (span = 0; span < sec_data->mapcount; span++)
8926 {
8927 unsigned int span_start = sec_data->map[span].vma;
8928 unsigned int span_end = (span == sec_data->mapcount - 1)
8929 ? sec->size : sec_data->map[span + 1].vma;
8930 char span_type = sec_data->map[span].type;
8931 int itblock_current_pos = 0;
8932
8933 /* Only Thumb2 mode need be supported with this CM4 specific
8934 code, we should not encounter any arm mode eg span_type
8935 != 'a'. */
8936 if (span_type != 't')
8937 continue;
8938
8939 for (i = span_start; i < span_end;)
8940 {
8941 unsigned int insn = bfd_get_16 (abfd, &contents[i]);
8942 bfd_boolean insn_32bit = FALSE;
8943 bfd_boolean is_ldm = FALSE;
8944 bfd_boolean is_vldm = FALSE;
8945 bfd_boolean is_not_last_in_it_block = FALSE;
8946
8947 /* The first 16-bits of all 32-bit thumb2 instructions start
8948 with opcode[15..13]=0b111 and the encoded op1 can be anything
8949 except opcode[12..11]!=0b00.
8950 See 32-bit Thumb instruction encoding. */
8951 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
8952 insn_32bit = TRUE;
8953
8954 /* Compute the predicate that tells if the instruction
8955 is concerned by the IT block
8956 - Creates an error if there is a ldm that is not
8957 last in the IT block thus cannot be replaced
8958 - Otherwise we can create a branch at the end of the
8959 IT block, it will be controlled naturally by IT
8960 with the proper pseudo-predicate
8961 - So the only interesting predicate is the one that
8962 tells that we are not on the last item of an IT
8963 block. */
8964 if (itblock_current_pos != 0)
8965 is_not_last_in_it_block = !!--itblock_current_pos;
8966
8967 if (insn_32bit)
8968 {
8969 /* Load the rest of the insn (in manual-friendly order). */
8970 insn = (insn << 16) | bfd_get_16 (abfd, &contents[i + 2]);
8971 is_ldm = is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn);
8972 is_vldm = is_thumb2_vldm (insn);
8973
8974 /* Veneers are created for (v)ldm depending on
8975 option flags and memory accesses conditions; but
8976 if the instruction is not the last instruction of
8977 an IT block, we cannot create a jump there, so we
8978 bail out. */
8979 if ((is_ldm || is_vldm)
8980 && stm32l4xx_need_create_replacing_stub
8981 (insn, globals->stm32l4xx_fix))
8982 {
8983 if (is_not_last_in_it_block)
8984 {
8985 _bfd_error_handler
8986 /* xgettext:c-format */
8987 (_("%pB(%pA+%#x): error: multiple load detected"
8988 " in non-last IT block instruction:"
8989 " STM32L4XX veneer cannot be generated; "
8990 "use gcc option -mrestrict-it to generate"
8991 " only one instruction per IT block"),
8992 abfd, sec, i);
8993 }
8994 else
8995 {
8996 elf32_stm32l4xx_erratum_list *newerr =
8997 (elf32_stm32l4xx_erratum_list *)
8998 bfd_zmalloc
8999 (sizeof (elf32_stm32l4xx_erratum_list));
9000
9001 elf32_arm_section_data (sec)
9002 ->stm32l4xx_erratumcount += 1;
9003 newerr->u.b.insn = insn;
9004 /* We create only thumb branches. */
9005 newerr->type =
9006 STM32L4XX_ERRATUM_BRANCH_TO_VENEER;
9007 record_stm32l4xx_erratum_veneer
9008 (link_info, newerr, abfd, sec,
9009 i,
9010 is_ldm ?
9011 STM32L4XX_ERRATUM_LDM_VENEER_SIZE:
9012 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
9013 newerr->vma = -1;
9014 newerr->next = sec_data->stm32l4xx_erratumlist;
9015 sec_data->stm32l4xx_erratumlist = newerr;
9016 }
9017 }
9018 }
9019 else
9020 {
9021 /* A7.7.37 IT p208
9022 IT blocks are only encoded in T1
9023 Encoding T1: IT{x{y{z}}} <firstcond>
9024 1 0 1 1 - 1 1 1 1 - firstcond - mask
9025 if mask = '0000' then see 'related encodings'
9026 We don't deal with UNPREDICTABLE, just ignore these.
9027 There can be no nested IT blocks so an IT block
9028 is naturally a new one for which it is worth
9029 computing its size. */
9030 bfd_boolean is_newitblock = ((insn & 0xff00) == 0xbf00)
9031 && ((insn & 0x000f) != 0x0000);
9032 /* If we have a new IT block we compute its size. */
9033 if (is_newitblock)
9034 {
9035 /* Compute the number of instructions controlled
9036 by the IT block, it will be used to decide
9037 whether we are inside an IT block or not. */
9038 unsigned int mask = insn & 0x000f;
9039 itblock_current_pos = 4 - ctz (mask);
9040 }
9041 }
9042
9043 i += insn_32bit ? 4 : 2;
9044 }
9045 }
9046
9047 if (contents != NULL
9048 && elf_section_data (sec)->this_hdr.contents != contents)
9049 free (contents);
9050 contents = NULL;
9051 }
9052
9053 return TRUE;
9054
9055 error_return:
9056 if (contents != NULL
9057 && elf_section_data (sec)->this_hdr.contents != contents)
9058 free (contents);
9059
9060 return FALSE;
9061 }
9062
9063 /* Set target relocation values needed during linking. */
9064
9065 void
9066 bfd_elf32_arm_set_target_params (struct bfd *output_bfd,
9067 struct bfd_link_info *link_info,
9068 struct elf32_arm_params *params)
9069 {
9070 struct elf32_arm_link_hash_table *globals;
9071
9072 globals = elf32_arm_hash_table (link_info);
9073 if (globals == NULL)
9074 return;
9075
9076 globals->target1_is_rel = params->target1_is_rel;
9077 if (globals->fdpic_p)
9078 globals->target2_reloc = R_ARM_GOT32;
9079 else if (strcmp (params->target2_type, "rel") == 0)
9080 globals->target2_reloc = R_ARM_REL32;
9081 else if (strcmp (params->target2_type, "abs") == 0)
9082 globals->target2_reloc = R_ARM_ABS32;
9083 else if (strcmp (params->target2_type, "got-rel") == 0)
9084 globals->target2_reloc = R_ARM_GOT_PREL;
9085 else
9086 {
9087 _bfd_error_handler (_("invalid TARGET2 relocation type '%s'"),
9088 params->target2_type);
9089 }
9090 globals->fix_v4bx = params->fix_v4bx;
9091 globals->use_blx |= params->use_blx;
9092 globals->vfp11_fix = params->vfp11_denorm_fix;
9093 globals->stm32l4xx_fix = params->stm32l4xx_fix;
9094 if (globals->fdpic_p)
9095 globals->pic_veneer = 1;
9096 else
9097 globals->pic_veneer = params->pic_veneer;
9098 globals->fix_cortex_a8 = params->fix_cortex_a8;
9099 globals->fix_arm1176 = params->fix_arm1176;
9100 globals->cmse_implib = params->cmse_implib;
9101 globals->in_implib_bfd = params->in_implib_bfd;
9102
9103 BFD_ASSERT (is_arm_elf (output_bfd));
9104 elf_arm_tdata (output_bfd)->no_enum_size_warning
9105 = params->no_enum_size_warning;
9106 elf_arm_tdata (output_bfd)->no_wchar_size_warning
9107 = params->no_wchar_size_warning;
9108 }
9109
9110 /* Replace the target offset of a Thumb bl or b.w instruction. */
9111
9112 static void
9113 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
9114 {
9115 bfd_vma upper;
9116 bfd_vma lower;
9117 int reloc_sign;
9118
9119 BFD_ASSERT ((offset & 1) == 0);
9120
9121 upper = bfd_get_16 (abfd, insn);
9122 lower = bfd_get_16 (abfd, insn + 2);
9123 reloc_sign = (offset < 0) ? 1 : 0;
9124 upper = (upper & ~(bfd_vma) 0x7ff)
9125 | ((offset >> 12) & 0x3ff)
9126 | (reloc_sign << 10);
9127 lower = (lower & ~(bfd_vma) 0x2fff)
9128 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
9129 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
9130 | ((offset >> 1) & 0x7ff);
9131 bfd_put_16 (abfd, upper, insn);
9132 bfd_put_16 (abfd, lower, insn + 2);
9133 }
9134
9135 /* Thumb code calling an ARM function. */
9136
9137 static int
9138 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
9139 const char * name,
9140 bfd * input_bfd,
9141 bfd * output_bfd,
9142 asection * input_section,
9143 bfd_byte * hit_data,
9144 asection * sym_sec,
9145 bfd_vma offset,
9146 bfd_signed_vma addend,
9147 bfd_vma val,
9148 char **error_message)
9149 {
9150 asection * s = 0;
9151 bfd_vma my_offset;
9152 long int ret_offset;
9153 struct elf_link_hash_entry * myh;
9154 struct elf32_arm_link_hash_table * globals;
9155
9156 myh = find_thumb_glue (info, name, error_message);
9157 if (myh == NULL)
9158 return FALSE;
9159
9160 globals = elf32_arm_hash_table (info);
9161 BFD_ASSERT (globals != NULL);
9162 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9163
9164 my_offset = myh->root.u.def.value;
9165
9166 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9167 THUMB2ARM_GLUE_SECTION_NAME);
9168
9169 BFD_ASSERT (s != NULL);
9170 BFD_ASSERT (s->contents != NULL);
9171 BFD_ASSERT (s->output_section != NULL);
9172
9173 if ((my_offset & 0x01) == 0x01)
9174 {
9175 if (sym_sec != NULL
9176 && sym_sec->owner != NULL
9177 && !INTERWORK_FLAG (sym_sec->owner))
9178 {
9179 _bfd_error_handler
9180 (_("%pB(%s): warning: interworking not enabled;"
9181 " first occurrence: %pB: %s call to %s"),
9182 sym_sec->owner, name, input_bfd, "Thumb", "ARM");
9183
9184 return FALSE;
9185 }
9186
9187 --my_offset;
9188 myh->root.u.def.value = my_offset;
9189
9190 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
9191 s->contents + my_offset);
9192
9193 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
9194 s->contents + my_offset + 2);
9195
9196 ret_offset =
9197 /* Address of destination of the stub. */
9198 ((bfd_signed_vma) val)
9199 - ((bfd_signed_vma)
9200 /* Offset from the start of the current section
9201 to the start of the stubs. */
9202 (s->output_offset
9203 /* Offset of the start of this stub from the start of the stubs. */
9204 + my_offset
9205 /* Address of the start of the current section. */
9206 + s->output_section->vma)
9207 /* The branch instruction is 4 bytes into the stub. */
9208 + 4
9209 /* ARM branches work from the pc of the instruction + 8. */
9210 + 8);
9211
9212 put_arm_insn (globals, output_bfd,
9213 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
9214 s->contents + my_offset + 4);
9215 }
9216
9217 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
9218
9219 /* Now go back and fix up the original BL insn to point to here. */
9220 ret_offset =
9221 /* Address of where the stub is located. */
9222 (s->output_section->vma + s->output_offset + my_offset)
9223 /* Address of where the BL is located. */
9224 - (input_section->output_section->vma + input_section->output_offset
9225 + offset)
9226 /* Addend in the relocation. */
9227 - addend
9228 /* Biassing for PC-relative addressing. */
9229 - 8;
9230
9231 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
9232
9233 return TRUE;
9234 }
9235
9236 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
9237
9238 static struct elf_link_hash_entry *
9239 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
9240 const char * name,
9241 bfd * input_bfd,
9242 bfd * output_bfd,
9243 asection * sym_sec,
9244 bfd_vma val,
9245 asection * s,
9246 char ** error_message)
9247 {
9248 bfd_vma my_offset;
9249 long int ret_offset;
9250 struct elf_link_hash_entry * myh;
9251 struct elf32_arm_link_hash_table * globals;
9252
9253 myh = find_arm_glue (info, name, error_message);
9254 if (myh == NULL)
9255 return NULL;
9256
9257 globals = elf32_arm_hash_table (info);
9258 BFD_ASSERT (globals != NULL);
9259 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9260
9261 my_offset = myh->root.u.def.value;
9262
9263 if ((my_offset & 0x01) == 0x01)
9264 {
9265 if (sym_sec != NULL
9266 && sym_sec->owner != NULL
9267 && !INTERWORK_FLAG (sym_sec->owner))
9268 {
9269 _bfd_error_handler
9270 (_("%pB(%s): warning: interworking not enabled;"
9271 " first occurrence: %pB: %s call to %s"),
9272 sym_sec->owner, name, input_bfd, "ARM", "Thumb");
9273 }
9274
9275 --my_offset;
9276 myh->root.u.def.value = my_offset;
9277
9278 if (bfd_link_pic (info)
9279 || globals->root.is_relocatable_executable
9280 || globals->pic_veneer)
9281 {
9282 /* For relocatable objects we can't use absolute addresses,
9283 so construct the address from a relative offset. */
9284 /* TODO: If the offset is small it's probably worth
9285 constructing the address with adds. */
9286 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
9287 s->contents + my_offset);
9288 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
9289 s->contents + my_offset + 4);
9290 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
9291 s->contents + my_offset + 8);
9292 /* Adjust the offset by 4 for the position of the add,
9293 and 8 for the pipeline offset. */
9294 ret_offset = (val - (s->output_offset
9295 + s->output_section->vma
9296 + my_offset + 12))
9297 | 1;
9298 bfd_put_32 (output_bfd, ret_offset,
9299 s->contents + my_offset + 12);
9300 }
9301 else if (globals->use_blx)
9302 {
9303 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
9304 s->contents + my_offset);
9305
9306 /* It's a thumb address. Add the low order bit. */
9307 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
9308 s->contents + my_offset + 4);
9309 }
9310 else
9311 {
9312 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
9313 s->contents + my_offset);
9314
9315 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
9316 s->contents + my_offset + 4);
9317
9318 /* It's a thumb address. Add the low order bit. */
9319 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
9320 s->contents + my_offset + 8);
9321
9322 my_offset += 12;
9323 }
9324 }
9325
9326 BFD_ASSERT (my_offset <= globals->arm_glue_size);
9327
9328 return myh;
9329 }
9330
9331 /* Arm code calling a Thumb function. */
9332
9333 static int
9334 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
9335 const char * name,
9336 bfd * input_bfd,
9337 bfd * output_bfd,
9338 asection * input_section,
9339 bfd_byte * hit_data,
9340 asection * sym_sec,
9341 bfd_vma offset,
9342 bfd_signed_vma addend,
9343 bfd_vma val,
9344 char **error_message)
9345 {
9346 unsigned long int tmp;
9347 bfd_vma my_offset;
9348 asection * s;
9349 long int ret_offset;
9350 struct elf_link_hash_entry * myh;
9351 struct elf32_arm_link_hash_table * globals;
9352
9353 globals = elf32_arm_hash_table (info);
9354 BFD_ASSERT (globals != NULL);
9355 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9356
9357 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9358 ARM2THUMB_GLUE_SECTION_NAME);
9359 BFD_ASSERT (s != NULL);
9360 BFD_ASSERT (s->contents != NULL);
9361 BFD_ASSERT (s->output_section != NULL);
9362
9363 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
9364 sym_sec, val, s, error_message);
9365 if (!myh)
9366 return FALSE;
9367
9368 my_offset = myh->root.u.def.value;
9369 tmp = bfd_get_32 (input_bfd, hit_data);
9370 tmp = tmp & 0xFF000000;
9371
9372 /* Somehow these are both 4 too far, so subtract 8. */
9373 ret_offset = (s->output_offset
9374 + my_offset
9375 + s->output_section->vma
9376 - (input_section->output_offset
9377 + input_section->output_section->vma
9378 + offset + addend)
9379 - 8);
9380
9381 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
9382
9383 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
9384
9385 return TRUE;
9386 }
9387
9388 /* Populate Arm stub for an exported Thumb function. */
9389
9390 static bfd_boolean
9391 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
9392 {
9393 struct bfd_link_info * info = (struct bfd_link_info *) inf;
9394 asection * s;
9395 struct elf_link_hash_entry * myh;
9396 struct elf32_arm_link_hash_entry *eh;
9397 struct elf32_arm_link_hash_table * globals;
9398 asection *sec;
9399 bfd_vma val;
9400 char *error_message;
9401
9402 eh = elf32_arm_hash_entry (h);
9403 /* Allocate stubs for exported Thumb functions on v4t. */
9404 if (eh->export_glue == NULL)
9405 return TRUE;
9406
9407 globals = elf32_arm_hash_table (info);
9408 BFD_ASSERT (globals != NULL);
9409 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9410
9411 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9412 ARM2THUMB_GLUE_SECTION_NAME);
9413 BFD_ASSERT (s != NULL);
9414 BFD_ASSERT (s->contents != NULL);
9415 BFD_ASSERT (s->output_section != NULL);
9416
9417 sec = eh->export_glue->root.u.def.section;
9418
9419 BFD_ASSERT (sec->output_section != NULL);
9420
9421 val = eh->export_glue->root.u.def.value + sec->output_offset
9422 + sec->output_section->vma;
9423
9424 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
9425 h->root.u.def.section->owner,
9426 globals->obfd, sec, val, s,
9427 &error_message);
9428 BFD_ASSERT (myh);
9429 return TRUE;
9430 }
9431
9432 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
9433
9434 static bfd_vma
9435 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
9436 {
9437 bfd_byte *p;
9438 bfd_vma glue_addr;
9439 asection *s;
9440 struct elf32_arm_link_hash_table *globals;
9441
9442 globals = elf32_arm_hash_table (info);
9443 BFD_ASSERT (globals != NULL);
9444 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9445
9446 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9447 ARM_BX_GLUE_SECTION_NAME);
9448 BFD_ASSERT (s != NULL);
9449 BFD_ASSERT (s->contents != NULL);
9450 BFD_ASSERT (s->output_section != NULL);
9451
9452 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
9453
9454 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
9455
9456 if ((globals->bx_glue_offset[reg] & 1) == 0)
9457 {
9458 p = s->contents + glue_addr;
9459 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
9460 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
9461 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
9462 globals->bx_glue_offset[reg] |= 1;
9463 }
9464
9465 return glue_addr + s->output_section->vma + s->output_offset;
9466 }
9467
9468 /* Generate Arm stubs for exported Thumb symbols. */
9469 static void
9470 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
9471 struct bfd_link_info *link_info)
9472 {
9473 struct elf32_arm_link_hash_table * globals;
9474
9475 if (link_info == NULL)
9476 /* Ignore this if we are not called by the ELF backend linker. */
9477 return;
9478
9479 globals = elf32_arm_hash_table (link_info);
9480 if (globals == NULL)
9481 return;
9482
9483 /* If blx is available then exported Thumb symbols are OK and there is
9484 nothing to do. */
9485 if (globals->use_blx)
9486 return;
9487
9488 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
9489 link_info);
9490 }
9491
9492 /* Reserve space for COUNT dynamic relocations in relocation selection
9493 SRELOC. */
9494
9495 static void
9496 elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
9497 bfd_size_type count)
9498 {
9499 struct elf32_arm_link_hash_table *htab;
9500
9501 htab = elf32_arm_hash_table (info);
9502 BFD_ASSERT (htab->root.dynamic_sections_created);
9503 if (sreloc == NULL)
9504 abort ();
9505 sreloc->size += RELOC_SIZE (htab) * count;
9506 }
9507
9508 /* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
9509 dynamic, the relocations should go in SRELOC, otherwise they should
9510 go in the special .rel.iplt section. */
9511
9512 static void
9513 elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
9514 bfd_size_type count)
9515 {
9516 struct elf32_arm_link_hash_table *htab;
9517
9518 htab = elf32_arm_hash_table (info);
9519 if (!htab->root.dynamic_sections_created)
9520 htab->root.irelplt->size += RELOC_SIZE (htab) * count;
9521 else
9522 {
9523 BFD_ASSERT (sreloc != NULL);
9524 sreloc->size += RELOC_SIZE (htab) * count;
9525 }
9526 }
9527
9528 /* Add relocation REL to the end of relocation section SRELOC. */
9529
9530 static void
9531 elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
9532 asection *sreloc, Elf_Internal_Rela *rel)
9533 {
9534 bfd_byte *loc;
9535 struct elf32_arm_link_hash_table *htab;
9536
9537 htab = elf32_arm_hash_table (info);
9538 if (!htab->root.dynamic_sections_created
9539 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
9540 sreloc = htab->root.irelplt;
9541 if (sreloc == NULL)
9542 abort ();
9543 loc = sreloc->contents;
9544 loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
9545 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
9546 abort ();
9547 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
9548 }
9549
9550 /* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
9551 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
9552 to .plt. */
9553
9554 static void
9555 elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
9556 bfd_boolean is_iplt_entry,
9557 union gotplt_union *root_plt,
9558 struct arm_plt_info *arm_plt)
9559 {
9560 struct elf32_arm_link_hash_table *htab;
9561 asection *splt;
9562 asection *sgotplt;
9563
9564 htab = elf32_arm_hash_table (info);
9565
9566 if (is_iplt_entry)
9567 {
9568 splt = htab->root.iplt;
9569 sgotplt = htab->root.igotplt;
9570
9571 /* NaCl uses a special first entry in .iplt too. */
9572 if (htab->nacl_p && splt->size == 0)
9573 splt->size += htab->plt_header_size;
9574
9575 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
9576 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
9577 }
9578 else
9579 {
9580 splt = htab->root.splt;
9581 sgotplt = htab->root.sgotplt;
9582
9583 if (htab->fdpic_p)
9584 {
9585 /* Allocate room for R_ARM_FUNCDESC_VALUE. */
9586 /* For lazy binding, relocations will be put into .rel.plt, in
9587 .rel.got otherwise. */
9588 /* FIXME: today we don't support lazy binding so put it in .rel.got */
9589 if (info->flags & DF_BIND_NOW)
9590 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
9591 else
9592 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
9593 }
9594 else
9595 {
9596 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
9597 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
9598 }
9599
9600 /* If this is the first .plt entry, make room for the special
9601 first entry. */
9602 if (splt->size == 0)
9603 splt->size += htab->plt_header_size;
9604
9605 htab->next_tls_desc_index++;
9606 }
9607
9608 /* Allocate the PLT entry itself, including any leading Thumb stub. */
9609 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9610 splt->size += PLT_THUMB_STUB_SIZE;
9611 root_plt->offset = splt->size;
9612 splt->size += htab->plt_entry_size;
9613
9614 if (!htab->symbian_p)
9615 {
9616 /* We also need to make an entry in the .got.plt section, which
9617 will be placed in the .got section by the linker script. */
9618 if (is_iplt_entry)
9619 arm_plt->got_offset = sgotplt->size;
9620 else
9621 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
9622 if (htab->fdpic_p)
9623 /* Function descriptor takes 64 bits in GOT. */
9624 sgotplt->size += 8;
9625 else
9626 sgotplt->size += 4;
9627 }
9628 }
9629
9630 static bfd_vma
9631 arm_movw_immediate (bfd_vma value)
9632 {
9633 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
9634 }
9635
9636 static bfd_vma
9637 arm_movt_immediate (bfd_vma value)
9638 {
9639 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
9640 }
9641
9642 /* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
9643 the entry lives in .iplt and resolves to (*SYM_VALUE)().
9644 Otherwise, DYNINDX is the index of the symbol in the dynamic
9645 symbol table and SYM_VALUE is undefined.
9646
9647 ROOT_PLT points to the offset of the PLT entry from the start of its
9648 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
9649 bookkeeping information.
9650
9651 Returns FALSE if there was a problem. */
9652
9653 static bfd_boolean
9654 elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
9655 union gotplt_union *root_plt,
9656 struct arm_plt_info *arm_plt,
9657 int dynindx, bfd_vma sym_value)
9658 {
9659 struct elf32_arm_link_hash_table *htab;
9660 asection *sgot;
9661 asection *splt;
9662 asection *srel;
9663 bfd_byte *loc;
9664 bfd_vma plt_index;
9665 Elf_Internal_Rela rel;
9666 bfd_vma plt_header_size;
9667 bfd_vma got_header_size;
9668
9669 htab = elf32_arm_hash_table (info);
9670
9671 /* Pick the appropriate sections and sizes. */
9672 if (dynindx == -1)
9673 {
9674 splt = htab->root.iplt;
9675 sgot = htab->root.igotplt;
9676 srel = htab->root.irelplt;
9677
9678 /* There are no reserved entries in .igot.plt, and no special
9679 first entry in .iplt. */
9680 got_header_size = 0;
9681 plt_header_size = 0;
9682 }
9683 else
9684 {
9685 splt = htab->root.splt;
9686 sgot = htab->root.sgotplt;
9687 srel = htab->root.srelplt;
9688
9689 got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
9690 plt_header_size = htab->plt_header_size;
9691 }
9692 BFD_ASSERT (splt != NULL && srel != NULL);
9693
9694 /* Fill in the entry in the procedure linkage table. */
9695 if (htab->symbian_p)
9696 {
9697 BFD_ASSERT (dynindx >= 0);
9698 put_arm_insn (htab, output_bfd,
9699 elf32_arm_symbian_plt_entry[0],
9700 splt->contents + root_plt->offset);
9701 bfd_put_32 (output_bfd,
9702 elf32_arm_symbian_plt_entry[1],
9703 splt->contents + root_plt->offset + 4);
9704
9705 /* Fill in the entry in the .rel.plt section. */
9706 rel.r_offset = (splt->output_section->vma
9707 + splt->output_offset
9708 + root_plt->offset + 4);
9709 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
9710
9711 /* Get the index in the procedure linkage table which
9712 corresponds to this symbol. This is the index of this symbol
9713 in all the symbols for which we are making plt entries. The
9714 first entry in the procedure linkage table is reserved. */
9715 plt_index = ((root_plt->offset - plt_header_size)
9716 / htab->plt_entry_size);
9717 }
9718 else
9719 {
9720 bfd_vma got_offset, got_address, plt_address;
9721 bfd_vma got_displacement, initial_got_entry;
9722 bfd_byte * ptr;
9723
9724 BFD_ASSERT (sgot != NULL);
9725
9726 /* Get the offset into the .(i)got.plt table of the entry that
9727 corresponds to this function. */
9728 got_offset = (arm_plt->got_offset & -2);
9729
9730 /* Get the index in the procedure linkage table which
9731 corresponds to this symbol. This is the index of this symbol
9732 in all the symbols for which we are making plt entries.
9733 After the reserved .got.plt entries, all symbols appear in
9734 the same order as in .plt. */
9735 if (htab->fdpic_p)
9736 /* Function descriptor takes 8 bytes. */
9737 plt_index = (got_offset - got_header_size) / 8;
9738 else
9739 plt_index = (got_offset - got_header_size) / 4;
9740
9741 /* Calculate the address of the GOT entry. */
9742 got_address = (sgot->output_section->vma
9743 + sgot->output_offset
9744 + got_offset);
9745
9746 /* ...and the address of the PLT entry. */
9747 plt_address = (splt->output_section->vma
9748 + splt->output_offset
9749 + root_plt->offset);
9750
9751 ptr = splt->contents + root_plt->offset;
9752 if (htab->vxworks_p && bfd_link_pic (info))
9753 {
9754 unsigned int i;
9755 bfd_vma val;
9756
9757 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9758 {
9759 val = elf32_arm_vxworks_shared_plt_entry[i];
9760 if (i == 2)
9761 val |= got_address - sgot->output_section->vma;
9762 if (i == 5)
9763 val |= plt_index * RELOC_SIZE (htab);
9764 if (i == 2 || i == 5)
9765 bfd_put_32 (output_bfd, val, ptr);
9766 else
9767 put_arm_insn (htab, output_bfd, val, ptr);
9768 }
9769 }
9770 else if (htab->vxworks_p)
9771 {
9772 unsigned int i;
9773 bfd_vma val;
9774
9775 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9776 {
9777 val = elf32_arm_vxworks_exec_plt_entry[i];
9778 if (i == 2)
9779 val |= got_address;
9780 if (i == 4)
9781 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
9782 if (i == 5)
9783 val |= plt_index * RELOC_SIZE (htab);
9784 if (i == 2 || i == 5)
9785 bfd_put_32 (output_bfd, val, ptr);
9786 else
9787 put_arm_insn (htab, output_bfd, val, ptr);
9788 }
9789
9790 loc = (htab->srelplt2->contents
9791 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
9792
9793 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
9794 referencing the GOT for this PLT entry. */
9795 rel.r_offset = plt_address + 8;
9796 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
9797 rel.r_addend = got_offset;
9798 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9799 loc += RELOC_SIZE (htab);
9800
9801 /* Create the R_ARM_ABS32 relocation referencing the
9802 beginning of the PLT for this GOT entry. */
9803 rel.r_offset = got_address;
9804 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
9805 rel.r_addend = 0;
9806 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9807 }
9808 else if (htab->nacl_p)
9809 {
9810 /* Calculate the displacement between the PLT slot and the
9811 common tail that's part of the special initial PLT slot. */
9812 int32_t tail_displacement
9813 = ((splt->output_section->vma + splt->output_offset
9814 + ARM_NACL_PLT_TAIL_OFFSET)
9815 - (plt_address + htab->plt_entry_size + 4));
9816 BFD_ASSERT ((tail_displacement & 3) == 0);
9817 tail_displacement >>= 2;
9818
9819 BFD_ASSERT ((tail_displacement & 0xff000000) == 0
9820 || (-tail_displacement & 0xff000000) == 0);
9821
9822 /* Calculate the displacement between the PLT slot and the entry
9823 in the GOT. The offset accounts for the value produced by
9824 adding to pc in the penultimate instruction of the PLT stub. */
9825 got_displacement = (got_address
9826 - (plt_address + htab->plt_entry_size));
9827
9828 /* NaCl does not support interworking at all. */
9829 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt));
9830
9831 put_arm_insn (htab, output_bfd,
9832 elf32_arm_nacl_plt_entry[0]
9833 | arm_movw_immediate (got_displacement),
9834 ptr + 0);
9835 put_arm_insn (htab, output_bfd,
9836 elf32_arm_nacl_plt_entry[1]
9837 | arm_movt_immediate (got_displacement),
9838 ptr + 4);
9839 put_arm_insn (htab, output_bfd,
9840 elf32_arm_nacl_plt_entry[2],
9841 ptr + 8);
9842 put_arm_insn (htab, output_bfd,
9843 elf32_arm_nacl_plt_entry[3]
9844 | (tail_displacement & 0x00ffffff),
9845 ptr + 12);
9846 }
9847 else if (htab->fdpic_p)
9848 {
9849 const bfd_vma *plt_entry = using_thumb_only(htab)
9850 ? elf32_arm_fdpic_thumb_plt_entry
9851 : elf32_arm_fdpic_plt_entry;
9852
9853 /* Fill-up Thumb stub if needed. */
9854 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9855 {
9856 put_thumb_insn (htab, output_bfd,
9857 elf32_arm_plt_thumb_stub[0], ptr - 4);
9858 put_thumb_insn (htab, output_bfd,
9859 elf32_arm_plt_thumb_stub[1], ptr - 2);
9860 }
9861 /* As we are using 32 bit instructions even for the Thumb
9862 version, we have to use 'put_arm_insn' instead of
9863 'put_thumb_insn'. */
9864 put_arm_insn(htab, output_bfd, plt_entry[0], ptr + 0);
9865 put_arm_insn(htab, output_bfd, plt_entry[1], ptr + 4);
9866 put_arm_insn(htab, output_bfd, plt_entry[2], ptr + 8);
9867 put_arm_insn(htab, output_bfd, plt_entry[3], ptr + 12);
9868 bfd_put_32 (output_bfd, got_offset, ptr + 16);
9869
9870 if (!(info->flags & DF_BIND_NOW))
9871 {
9872 /* funcdesc_value_reloc_offset. */
9873 bfd_put_32 (output_bfd,
9874 htab->root.srelplt->reloc_count * RELOC_SIZE (htab),
9875 ptr + 20);
9876 put_arm_insn(htab, output_bfd, plt_entry[6], ptr + 24);
9877 put_arm_insn(htab, output_bfd, plt_entry[7], ptr + 28);
9878 put_arm_insn(htab, output_bfd, plt_entry[8], ptr + 32);
9879 put_arm_insn(htab, output_bfd, plt_entry[9], ptr + 36);
9880 }
9881 }
9882 else if (using_thumb_only (htab))
9883 {
9884 /* PR ld/16017: Generate thumb only PLT entries. */
9885 if (!using_thumb2 (htab))
9886 {
9887 /* FIXME: We ought to be able to generate thumb-1 PLT
9888 instructions... */
9889 _bfd_error_handler (_("%pB: warning: thumb-1 mode PLT generation not currently supported"),
9890 output_bfd);
9891 return FALSE;
9892 }
9893
9894 /* Calculate the displacement between the PLT slot and the entry in
9895 the GOT. The 12-byte offset accounts for the value produced by
9896 adding to pc in the 3rd instruction of the PLT stub. */
9897 got_displacement = got_address - (plt_address + 12);
9898
9899 /* As we are using 32 bit instructions we have to use 'put_arm_insn'
9900 instead of 'put_thumb_insn'. */
9901 put_arm_insn (htab, output_bfd,
9902 elf32_thumb2_plt_entry[0]
9903 | ((got_displacement & 0x000000ff) << 16)
9904 | ((got_displacement & 0x00000700) << 20)
9905 | ((got_displacement & 0x00000800) >> 1)
9906 | ((got_displacement & 0x0000f000) >> 12),
9907 ptr + 0);
9908 put_arm_insn (htab, output_bfd,
9909 elf32_thumb2_plt_entry[1]
9910 | ((got_displacement & 0x00ff0000) )
9911 | ((got_displacement & 0x07000000) << 4)
9912 | ((got_displacement & 0x08000000) >> 17)
9913 | ((got_displacement & 0xf0000000) >> 28),
9914 ptr + 4);
9915 put_arm_insn (htab, output_bfd,
9916 elf32_thumb2_plt_entry[2],
9917 ptr + 8);
9918 put_arm_insn (htab, output_bfd,
9919 elf32_thumb2_plt_entry[3],
9920 ptr + 12);
9921 }
9922 else
9923 {
9924 /* Calculate the displacement between the PLT slot and the
9925 entry in the GOT. The eight-byte offset accounts for the
9926 value produced by adding to pc in the first instruction
9927 of the PLT stub. */
9928 got_displacement = got_address - (plt_address + 8);
9929
9930 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9931 {
9932 put_thumb_insn (htab, output_bfd,
9933 elf32_arm_plt_thumb_stub[0], ptr - 4);
9934 put_thumb_insn (htab, output_bfd,
9935 elf32_arm_plt_thumb_stub[1], ptr - 2);
9936 }
9937
9938 if (!elf32_arm_use_long_plt_entry)
9939 {
9940 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
9941
9942 put_arm_insn (htab, output_bfd,
9943 elf32_arm_plt_entry_short[0]
9944 | ((got_displacement & 0x0ff00000) >> 20),
9945 ptr + 0);
9946 put_arm_insn (htab, output_bfd,
9947 elf32_arm_plt_entry_short[1]
9948 | ((got_displacement & 0x000ff000) >> 12),
9949 ptr+ 4);
9950 put_arm_insn (htab, output_bfd,
9951 elf32_arm_plt_entry_short[2]
9952 | (got_displacement & 0x00000fff),
9953 ptr + 8);
9954 #ifdef FOUR_WORD_PLT
9955 bfd_put_32 (output_bfd, elf32_arm_plt_entry_short[3], ptr + 12);
9956 #endif
9957 }
9958 else
9959 {
9960 put_arm_insn (htab, output_bfd,
9961 elf32_arm_plt_entry_long[0]
9962 | ((got_displacement & 0xf0000000) >> 28),
9963 ptr + 0);
9964 put_arm_insn (htab, output_bfd,
9965 elf32_arm_plt_entry_long[1]
9966 | ((got_displacement & 0x0ff00000) >> 20),
9967 ptr + 4);
9968 put_arm_insn (htab, output_bfd,
9969 elf32_arm_plt_entry_long[2]
9970 | ((got_displacement & 0x000ff000) >> 12),
9971 ptr+ 8);
9972 put_arm_insn (htab, output_bfd,
9973 elf32_arm_plt_entry_long[3]
9974 | (got_displacement & 0x00000fff),
9975 ptr + 12);
9976 }
9977 }
9978
9979 /* Fill in the entry in the .rel(a).(i)plt section. */
9980 rel.r_offset = got_address;
9981 rel.r_addend = 0;
9982 if (dynindx == -1)
9983 {
9984 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
9985 The dynamic linker or static executable then calls SYM_VALUE
9986 to determine the correct run-time value of the .igot.plt entry. */
9987 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9988 initial_got_entry = sym_value;
9989 }
9990 else
9991 {
9992 /* For FDPIC we will have to resolve a R_ARM_FUNCDESC_VALUE
9993 used by PLT entry. */
9994 if (htab->fdpic_p)
9995 {
9996 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_FUNCDESC_VALUE);
9997 initial_got_entry = 0;
9998 }
9999 else
10000 {
10001 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
10002 initial_got_entry = (splt->output_section->vma
10003 + splt->output_offset);
10004
10005 /* PR ld/16017
10006 When thumb only we need to set the LSB for any address that
10007 will be used with an interworking branch instruction. */
10008 if (using_thumb_only (htab))
10009 initial_got_entry |= 1;
10010 }
10011 }
10012
10013 /* Fill in the entry in the global offset table. */
10014 bfd_put_32 (output_bfd, initial_got_entry,
10015 sgot->contents + got_offset);
10016
10017 if (htab->fdpic_p && !(info->flags & DF_BIND_NOW))
10018 {
10019 /* Setup initial funcdesc value. */
10020 /* FIXME: we don't support lazy binding because there is a
10021 race condition between both words getting written and
10022 some other thread attempting to read them. The ARM
10023 architecture does not have an atomic 64 bit load/store
10024 instruction that could be used to prevent it; it is
10025 recommended that threaded FDPIC applications run with the
10026 LD_BIND_NOW environment variable set. */
10027 bfd_put_32(output_bfd, plt_address + 0x18,
10028 sgot->contents + got_offset);
10029 bfd_put_32(output_bfd, -1 /*TODO*/,
10030 sgot->contents + got_offset + 4);
10031 }
10032 }
10033
10034 if (dynindx == -1)
10035 elf32_arm_add_dynreloc (output_bfd, info, srel, &rel);
10036 else
10037 {
10038 if (htab->fdpic_p)
10039 {
10040 /* For FDPIC we put PLT relocationss into .rel.got when not
10041 lazy binding otherwise we put them in .rel.plt. For now,
10042 we don't support lazy binding so put it in .rel.got. */
10043 if (info->flags & DF_BIND_NOW)
10044 elf32_arm_add_dynreloc(output_bfd, info, htab->root.srelgot, &rel);
10045 else
10046 elf32_arm_add_dynreloc(output_bfd, info, htab->root.srelplt, &rel);
10047 }
10048 else
10049 {
10050 loc = srel->contents + plt_index * RELOC_SIZE (htab);
10051 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10052 }
10053 }
10054
10055 return TRUE;
10056 }
10057
10058 /* Some relocations map to different relocations depending on the
10059 target. Return the real relocation. */
10060
10061 static int
10062 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
10063 int r_type)
10064 {
10065 switch (r_type)
10066 {
10067 case R_ARM_TARGET1:
10068 if (globals->target1_is_rel)
10069 return R_ARM_REL32;
10070 else
10071 return R_ARM_ABS32;
10072
10073 case R_ARM_TARGET2:
10074 return globals->target2_reloc;
10075
10076 default:
10077 return r_type;
10078 }
10079 }
10080
10081 /* Return the base VMA address which should be subtracted from real addresses
10082 when resolving @dtpoff relocation.
10083 This is PT_TLS segment p_vaddr. */
10084
10085 static bfd_vma
10086 dtpoff_base (struct bfd_link_info *info)
10087 {
10088 /* If tls_sec is NULL, we should have signalled an error already. */
10089 if (elf_hash_table (info)->tls_sec == NULL)
10090 return 0;
10091 return elf_hash_table (info)->tls_sec->vma;
10092 }
10093
10094 /* Return the relocation value for @tpoff relocation
10095 if STT_TLS virtual address is ADDRESS. */
10096
10097 static bfd_vma
10098 tpoff (struct bfd_link_info *info, bfd_vma address)
10099 {
10100 struct elf_link_hash_table *htab = elf_hash_table (info);
10101 bfd_vma base;
10102
10103 /* If tls_sec is NULL, we should have signalled an error already. */
10104 if (htab->tls_sec == NULL)
10105 return 0;
10106 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
10107 return address - htab->tls_sec->vma + base;
10108 }
10109
10110 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
10111 VALUE is the relocation value. */
10112
10113 static bfd_reloc_status_type
10114 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
10115 {
10116 if (value > 0xfff)
10117 return bfd_reloc_overflow;
10118
10119 value |= bfd_get_32 (abfd, data) & 0xfffff000;
10120 bfd_put_32 (abfd, value, data);
10121 return bfd_reloc_ok;
10122 }
10123
10124 /* Handle TLS relaxations. Relaxing is possible for symbols that use
10125 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
10126 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
10127
10128 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
10129 is to then call final_link_relocate. Return other values in the
10130 case of error.
10131
10132 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
10133 the pre-relaxed code. It would be nice if the relocs were updated
10134 to match the optimization. */
10135
10136 static bfd_reloc_status_type
10137 elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
10138 bfd *input_bfd, asection *input_sec, bfd_byte *contents,
10139 Elf_Internal_Rela *rel, unsigned long is_local)
10140 {
10141 unsigned long insn;
10142
10143 switch (ELF32_R_TYPE (rel->r_info))
10144 {
10145 default:
10146 return bfd_reloc_notsupported;
10147
10148 case R_ARM_TLS_GOTDESC:
10149 if (is_local)
10150 insn = 0;
10151 else
10152 {
10153 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
10154 if (insn & 1)
10155 insn -= 5; /* THUMB */
10156 else
10157 insn -= 8; /* ARM */
10158 }
10159 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
10160 return bfd_reloc_continue;
10161
10162 case R_ARM_THM_TLS_DESCSEQ:
10163 /* Thumb insn. */
10164 insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
10165 if ((insn & 0xff78) == 0x4478) /* add rx, pc */
10166 {
10167 if (is_local)
10168 /* nop */
10169 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10170 }
10171 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
10172 {
10173 if (is_local)
10174 /* nop */
10175 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10176 else
10177 /* ldr rx,[ry] */
10178 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
10179 }
10180 else if ((insn & 0xff87) == 0x4780) /* blx rx */
10181 {
10182 if (is_local)
10183 /* nop */
10184 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10185 else
10186 /* mov r0, rx */
10187 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
10188 contents + rel->r_offset);
10189 }
10190 else
10191 {
10192 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
10193 /* It's a 32 bit instruction, fetch the rest of it for
10194 error generation. */
10195 insn = (insn << 16)
10196 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
10197 _bfd_error_handler
10198 /* xgettext:c-format */
10199 (_("%pB(%pA+%#" PRIx64 "): "
10200 "unexpected %s instruction '%#lx' in TLS trampoline"),
10201 input_bfd, input_sec, (uint64_t) rel->r_offset,
10202 "Thumb", insn);
10203 return bfd_reloc_notsupported;
10204 }
10205 break;
10206
10207 case R_ARM_TLS_DESCSEQ:
10208 /* arm insn. */
10209 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
10210 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
10211 {
10212 if (is_local)
10213 /* mov rx, ry */
10214 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
10215 contents + rel->r_offset);
10216 }
10217 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
10218 {
10219 if (is_local)
10220 /* nop */
10221 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
10222 else
10223 /* ldr rx,[ry] */
10224 bfd_put_32 (input_bfd, insn & 0xfffff000,
10225 contents + rel->r_offset);
10226 }
10227 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
10228 {
10229 if (is_local)
10230 /* nop */
10231 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
10232 else
10233 /* mov r0, rx */
10234 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
10235 contents + rel->r_offset);
10236 }
10237 else
10238 {
10239 _bfd_error_handler
10240 /* xgettext:c-format */
10241 (_("%pB(%pA+%#" PRIx64 "): "
10242 "unexpected %s instruction '%#lx' in TLS trampoline"),
10243 input_bfd, input_sec, (uint64_t) rel->r_offset,
10244 "ARM", insn);
10245 return bfd_reloc_notsupported;
10246 }
10247 break;
10248
10249 case R_ARM_TLS_CALL:
10250 /* GD->IE relaxation, turn the instruction into 'nop' or
10251 'ldr r0, [pc,r0]' */
10252 insn = is_local ? 0xe1a00000 : 0xe79f0000;
10253 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
10254 break;
10255
10256 case R_ARM_THM_TLS_CALL:
10257 /* GD->IE relaxation. */
10258 if (!is_local)
10259 /* add r0,pc; ldr r0, [r0] */
10260 insn = 0x44786800;
10261 else if (using_thumb2 (globals))
10262 /* nop.w */
10263 insn = 0xf3af8000;
10264 else
10265 /* nop; nop */
10266 insn = 0xbf00bf00;
10267
10268 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
10269 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
10270 break;
10271 }
10272 return bfd_reloc_ok;
10273 }
10274
10275 /* For a given value of n, calculate the value of G_n as required to
10276 deal with group relocations. We return it in the form of an
10277 encoded constant-and-rotation, together with the final residual. If n is
10278 specified as less than zero, then final_residual is filled with the
10279 input value and no further action is performed. */
10280
10281 static bfd_vma
10282 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
10283 {
10284 int current_n;
10285 bfd_vma g_n;
10286 bfd_vma encoded_g_n = 0;
10287 bfd_vma residual = value; /* Also known as Y_n. */
10288
10289 for (current_n = 0; current_n <= n; current_n++)
10290 {
10291 int shift;
10292
10293 /* Calculate which part of the value to mask. */
10294 if (residual == 0)
10295 shift = 0;
10296 else
10297 {
10298 int msb;
10299
10300 /* Determine the most significant bit in the residual and
10301 align the resulting value to a 2-bit boundary. */
10302 for (msb = 30; msb >= 0; msb -= 2)
10303 if (residual & (3 << msb))
10304 break;
10305
10306 /* The desired shift is now (msb - 6), or zero, whichever
10307 is the greater. */
10308 shift = msb - 6;
10309 if (shift < 0)
10310 shift = 0;
10311 }
10312
10313 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
10314 g_n = residual & (0xff << shift);
10315 encoded_g_n = (g_n >> shift)
10316 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
10317
10318 /* Calculate the residual for the next time around. */
10319 residual &= ~g_n;
10320 }
10321
10322 *final_residual = residual;
10323
10324 return encoded_g_n;
10325 }
10326
10327 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
10328 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
10329
10330 static int
10331 identify_add_or_sub (bfd_vma insn)
10332 {
10333 int opcode = insn & 0x1e00000;
10334
10335 if (opcode == 1 << 23) /* ADD */
10336 return 1;
10337
10338 if (opcode == 1 << 22) /* SUB */
10339 return -1;
10340
10341 return 0;
10342 }
10343
10344 /* Perform a relocation as part of a final link. */
10345
10346 static bfd_reloc_status_type
10347 elf32_arm_final_link_relocate (reloc_howto_type * howto,
10348 bfd * input_bfd,
10349 bfd * output_bfd,
10350 asection * input_section,
10351 bfd_byte * contents,
10352 Elf_Internal_Rela * rel,
10353 bfd_vma value,
10354 struct bfd_link_info * info,
10355 asection * sym_sec,
10356 const char * sym_name,
10357 unsigned char st_type,
10358 enum arm_st_branch_type branch_type,
10359 struct elf_link_hash_entry * h,
10360 bfd_boolean * unresolved_reloc_p,
10361 char ** error_message)
10362 {
10363 unsigned long r_type = howto->type;
10364 unsigned long r_symndx;
10365 bfd_byte * hit_data = contents + rel->r_offset;
10366 bfd_vma * local_got_offsets;
10367 bfd_vma * local_tlsdesc_gotents;
10368 asection * sgot;
10369 asection * splt;
10370 asection * sreloc = NULL;
10371 asection * srelgot;
10372 bfd_vma addend;
10373 bfd_signed_vma signed_addend;
10374 unsigned char dynreloc_st_type;
10375 bfd_vma dynreloc_value;
10376 struct elf32_arm_link_hash_table * globals;
10377 struct elf32_arm_link_hash_entry *eh;
10378 union gotplt_union *root_plt;
10379 struct arm_plt_info *arm_plt;
10380 bfd_vma plt_offset;
10381 bfd_vma gotplt_offset;
10382 bfd_boolean has_iplt_entry;
10383 bfd_boolean resolved_to_zero;
10384
10385 globals = elf32_arm_hash_table (info);
10386 if (globals == NULL)
10387 return bfd_reloc_notsupported;
10388
10389 BFD_ASSERT (is_arm_elf (input_bfd));
10390 BFD_ASSERT (howto != NULL);
10391
10392 /* Some relocation types map to different relocations depending on the
10393 target. We pick the right one here. */
10394 r_type = arm_real_reloc_type (globals, r_type);
10395
10396 /* It is possible to have linker relaxations on some TLS access
10397 models. Update our information here. */
10398 r_type = elf32_arm_tls_transition (info, r_type, h);
10399
10400 if (r_type != howto->type)
10401 howto = elf32_arm_howto_from_type (r_type);
10402
10403 eh = (struct elf32_arm_link_hash_entry *) h;
10404 sgot = globals->root.sgot;
10405 local_got_offsets = elf_local_got_offsets (input_bfd);
10406 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
10407
10408 if (globals->root.dynamic_sections_created)
10409 srelgot = globals->root.srelgot;
10410 else
10411 srelgot = NULL;
10412
10413 r_symndx = ELF32_R_SYM (rel->r_info);
10414
10415 if (globals->use_rel)
10416 {
10417 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
10418
10419 if (addend & ((howto->src_mask + 1) >> 1))
10420 {
10421 signed_addend = -1;
10422 signed_addend &= ~ howto->src_mask;
10423 signed_addend |= addend;
10424 }
10425 else
10426 signed_addend = addend;
10427 }
10428 else
10429 addend = signed_addend = rel->r_addend;
10430
10431 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
10432 are resolving a function call relocation. */
10433 if (using_thumb_only (globals)
10434 && (r_type == R_ARM_THM_CALL
10435 || r_type == R_ARM_THM_JUMP24)
10436 && branch_type == ST_BRANCH_TO_ARM)
10437 branch_type = ST_BRANCH_TO_THUMB;
10438
10439 /* Record the symbol information that should be used in dynamic
10440 relocations. */
10441 dynreloc_st_type = st_type;
10442 dynreloc_value = value;
10443 if (branch_type == ST_BRANCH_TO_THUMB)
10444 dynreloc_value |= 1;
10445
10446 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
10447 VALUE appropriately for relocations that we resolve at link time. */
10448 has_iplt_entry = FALSE;
10449 if (elf32_arm_get_plt_info (input_bfd, globals, eh, r_symndx, &root_plt,
10450 &arm_plt)
10451 && root_plt->offset != (bfd_vma) -1)
10452 {
10453 plt_offset = root_plt->offset;
10454 gotplt_offset = arm_plt->got_offset;
10455
10456 if (h == NULL || eh->is_iplt)
10457 {
10458 has_iplt_entry = TRUE;
10459 splt = globals->root.iplt;
10460
10461 /* Populate .iplt entries here, because not all of them will
10462 be seen by finish_dynamic_symbol. The lower bit is set if
10463 we have already populated the entry. */
10464 if (plt_offset & 1)
10465 plt_offset--;
10466 else
10467 {
10468 if (elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
10469 -1, dynreloc_value))
10470 root_plt->offset |= 1;
10471 else
10472 return bfd_reloc_notsupported;
10473 }
10474
10475 /* Static relocations always resolve to the .iplt entry. */
10476 st_type = STT_FUNC;
10477 value = (splt->output_section->vma
10478 + splt->output_offset
10479 + plt_offset);
10480 branch_type = ST_BRANCH_TO_ARM;
10481
10482 /* If there are non-call relocations that resolve to the .iplt
10483 entry, then all dynamic ones must too. */
10484 if (arm_plt->noncall_refcount != 0)
10485 {
10486 dynreloc_st_type = st_type;
10487 dynreloc_value = value;
10488 }
10489 }
10490 else
10491 /* We populate the .plt entry in finish_dynamic_symbol. */
10492 splt = globals->root.splt;
10493 }
10494 else
10495 {
10496 splt = NULL;
10497 plt_offset = (bfd_vma) -1;
10498 gotplt_offset = (bfd_vma) -1;
10499 }
10500
10501 resolved_to_zero = (h != NULL
10502 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
10503
10504 switch (r_type)
10505 {
10506 case R_ARM_NONE:
10507 /* We don't need to find a value for this symbol. It's just a
10508 marker. */
10509 *unresolved_reloc_p = FALSE;
10510 return bfd_reloc_ok;
10511
10512 case R_ARM_ABS12:
10513 if (!globals->vxworks_p)
10514 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
10515 /* Fall through. */
10516
10517 case R_ARM_PC24:
10518 case R_ARM_ABS32:
10519 case R_ARM_ABS32_NOI:
10520 case R_ARM_REL32:
10521 case R_ARM_REL32_NOI:
10522 case R_ARM_CALL:
10523 case R_ARM_JUMP24:
10524 case R_ARM_XPC25:
10525 case R_ARM_PREL31:
10526 case R_ARM_PLT32:
10527 /* Handle relocations which should use the PLT entry. ABS32/REL32
10528 will use the symbol's value, which may point to a PLT entry, but we
10529 don't need to handle that here. If we created a PLT entry, all
10530 branches in this object should go to it, except if the PLT is too
10531 far away, in which case a long branch stub should be inserted. */
10532 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
10533 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
10534 && r_type != R_ARM_CALL
10535 && r_type != R_ARM_JUMP24
10536 && r_type != R_ARM_PLT32)
10537 && plt_offset != (bfd_vma) -1)
10538 {
10539 /* If we've created a .plt section, and assigned a PLT entry
10540 to this function, it must either be a STT_GNU_IFUNC reference
10541 or not be known to bind locally. In other cases, we should
10542 have cleared the PLT entry by now. */
10543 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
10544
10545 value = (splt->output_section->vma
10546 + splt->output_offset
10547 + plt_offset);
10548 *unresolved_reloc_p = FALSE;
10549 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10550 contents, rel->r_offset, value,
10551 rel->r_addend);
10552 }
10553
10554 /* When generating a shared object or relocatable executable, these
10555 relocations are copied into the output file to be resolved at
10556 run time. */
10557 if ((bfd_link_pic (info)
10558 || globals->root.is_relocatable_executable
10559 || globals->fdpic_p)
10560 && (input_section->flags & SEC_ALLOC)
10561 && !(globals->vxworks_p
10562 && strcmp (input_section->output_section->name,
10563 ".tls_vars") == 0)
10564 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
10565 || !SYMBOL_CALLS_LOCAL (info, h))
10566 && !(input_bfd == globals->stub_bfd
10567 && strstr (input_section->name, STUB_SUFFIX))
10568 && (h == NULL
10569 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10570 && !resolved_to_zero)
10571 || h->root.type != bfd_link_hash_undefweak)
10572 && r_type != R_ARM_PC24
10573 && r_type != R_ARM_CALL
10574 && r_type != R_ARM_JUMP24
10575 && r_type != R_ARM_PREL31
10576 && r_type != R_ARM_PLT32)
10577 {
10578 Elf_Internal_Rela outrel;
10579 bfd_boolean skip, relocate;
10580 int isrofixup = 0;
10581
10582 if ((r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
10583 && !h->def_regular)
10584 {
10585 char *v = _("shared object");
10586
10587 if (bfd_link_executable (info))
10588 v = _("PIE executable");
10589
10590 _bfd_error_handler
10591 (_("%pB: relocation %s against external or undefined symbol `%s'"
10592 " can not be used when making a %s; recompile with -fPIC"), input_bfd,
10593 elf32_arm_howto_table_1[r_type].name, h->root.root.string, v);
10594 return bfd_reloc_notsupported;
10595 }
10596
10597 *unresolved_reloc_p = FALSE;
10598
10599 if (sreloc == NULL && globals->root.dynamic_sections_created)
10600 {
10601 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
10602 ! globals->use_rel);
10603
10604 if (sreloc == NULL)
10605 return bfd_reloc_notsupported;
10606 }
10607
10608 skip = FALSE;
10609 relocate = FALSE;
10610
10611 outrel.r_addend = addend;
10612 outrel.r_offset =
10613 _bfd_elf_section_offset (output_bfd, info, input_section,
10614 rel->r_offset);
10615 if (outrel.r_offset == (bfd_vma) -1)
10616 skip = TRUE;
10617 else if (outrel.r_offset == (bfd_vma) -2)
10618 skip = TRUE, relocate = TRUE;
10619 outrel.r_offset += (input_section->output_section->vma
10620 + input_section->output_offset);
10621
10622 if (skip)
10623 memset (&outrel, 0, sizeof outrel);
10624 else if (h != NULL
10625 && h->dynindx != -1
10626 && (!bfd_link_pic (info)
10627 || !(bfd_link_pie (info)
10628 || SYMBOLIC_BIND (info, h))
10629 || !h->def_regular))
10630 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
10631 else
10632 {
10633 int symbol;
10634
10635 /* This symbol is local, or marked to become local. */
10636 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI
10637 || (globals->fdpic_p && !bfd_link_pic(info)));
10638 if (globals->symbian_p)
10639 {
10640 asection *osec;
10641
10642 /* On Symbian OS, the data segment and text segement
10643 can be relocated independently. Therefore, we
10644 must indicate the segment to which this
10645 relocation is relative. The BPABI allows us to
10646 use any symbol in the right segment; we just use
10647 the section symbol as it is convenient. (We
10648 cannot use the symbol given by "h" directly as it
10649 will not appear in the dynamic symbol table.)
10650
10651 Note that the dynamic linker ignores the section
10652 symbol value, so we don't subtract osec->vma
10653 from the emitted reloc addend. */
10654 if (sym_sec)
10655 osec = sym_sec->output_section;
10656 else
10657 osec = input_section->output_section;
10658 symbol = elf_section_data (osec)->dynindx;
10659 if (symbol == 0)
10660 {
10661 struct elf_link_hash_table *htab = elf_hash_table (info);
10662
10663 if ((osec->flags & SEC_READONLY) == 0
10664 && htab->data_index_section != NULL)
10665 osec = htab->data_index_section;
10666 else
10667 osec = htab->text_index_section;
10668 symbol = elf_section_data (osec)->dynindx;
10669 }
10670 BFD_ASSERT (symbol != 0);
10671 }
10672 else
10673 /* On SVR4-ish systems, the dynamic loader cannot
10674 relocate the text and data segments independently,
10675 so the symbol does not matter. */
10676 symbol = 0;
10677 if (dynreloc_st_type == STT_GNU_IFUNC)
10678 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
10679 to the .iplt entry. Instead, every non-call reference
10680 must use an R_ARM_IRELATIVE relocation to obtain the
10681 correct run-time address. */
10682 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
10683 else if (globals->fdpic_p && !bfd_link_pic(info))
10684 isrofixup = 1;
10685 else
10686 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
10687 if (globals->use_rel)
10688 relocate = TRUE;
10689 else
10690 outrel.r_addend += dynreloc_value;
10691 }
10692
10693 if (isrofixup)
10694 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset);
10695 else
10696 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
10697
10698 /* If this reloc is against an external symbol, we do not want to
10699 fiddle with the addend. Otherwise, we need to include the symbol
10700 value so that it becomes an addend for the dynamic reloc. */
10701 if (! relocate)
10702 return bfd_reloc_ok;
10703
10704 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10705 contents, rel->r_offset,
10706 dynreloc_value, (bfd_vma) 0);
10707 }
10708 else switch (r_type)
10709 {
10710 case R_ARM_ABS12:
10711 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
10712
10713 case R_ARM_XPC25: /* Arm BLX instruction. */
10714 case R_ARM_CALL:
10715 case R_ARM_JUMP24:
10716 case R_ARM_PC24: /* Arm B/BL instruction. */
10717 case R_ARM_PLT32:
10718 {
10719 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
10720
10721 if (r_type == R_ARM_XPC25)
10722 {
10723 /* Check for Arm calling Arm function. */
10724 /* FIXME: Should we translate the instruction into a BL
10725 instruction instead ? */
10726 if (branch_type != ST_BRANCH_TO_THUMB)
10727 _bfd_error_handler
10728 (_("\%pB: warning: %s BLX instruction targets"
10729 " %s function '%s'"),
10730 input_bfd, "ARM",
10731 "ARM", h ? h->root.root.string : "(local)");
10732 }
10733 else if (r_type == R_ARM_PC24)
10734 {
10735 /* Check for Arm calling Thumb function. */
10736 if (branch_type == ST_BRANCH_TO_THUMB)
10737 {
10738 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
10739 output_bfd, input_section,
10740 hit_data, sym_sec, rel->r_offset,
10741 signed_addend, value,
10742 error_message))
10743 return bfd_reloc_ok;
10744 else
10745 return bfd_reloc_dangerous;
10746 }
10747 }
10748
10749 /* Check if a stub has to be inserted because the
10750 destination is too far or we are changing mode. */
10751 if ( r_type == R_ARM_CALL
10752 || r_type == R_ARM_JUMP24
10753 || r_type == R_ARM_PLT32)
10754 {
10755 enum elf32_arm_stub_type stub_type = arm_stub_none;
10756 struct elf32_arm_link_hash_entry *hash;
10757
10758 hash = (struct elf32_arm_link_hash_entry *) h;
10759 stub_type = arm_type_of_stub (info, input_section, rel,
10760 st_type, &branch_type,
10761 hash, value, sym_sec,
10762 input_bfd, sym_name);
10763
10764 if (stub_type != arm_stub_none)
10765 {
10766 /* The target is out of reach, so redirect the
10767 branch to the local stub for this function. */
10768 stub_entry = elf32_arm_get_stub_entry (input_section,
10769 sym_sec, h,
10770 rel, globals,
10771 stub_type);
10772 {
10773 if (stub_entry != NULL)
10774 value = (stub_entry->stub_offset
10775 + stub_entry->stub_sec->output_offset
10776 + stub_entry->stub_sec->output_section->vma);
10777
10778 if (plt_offset != (bfd_vma) -1)
10779 *unresolved_reloc_p = FALSE;
10780 }
10781 }
10782 else
10783 {
10784 /* If the call goes through a PLT entry, make sure to
10785 check distance to the right destination address. */
10786 if (plt_offset != (bfd_vma) -1)
10787 {
10788 value = (splt->output_section->vma
10789 + splt->output_offset
10790 + plt_offset);
10791 *unresolved_reloc_p = FALSE;
10792 /* The PLT entry is in ARM mode, regardless of the
10793 target function. */
10794 branch_type = ST_BRANCH_TO_ARM;
10795 }
10796 }
10797 }
10798
10799 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
10800 where:
10801 S is the address of the symbol in the relocation.
10802 P is address of the instruction being relocated.
10803 A is the addend (extracted from the instruction) in bytes.
10804
10805 S is held in 'value'.
10806 P is the base address of the section containing the
10807 instruction plus the offset of the reloc into that
10808 section, ie:
10809 (input_section->output_section->vma +
10810 input_section->output_offset +
10811 rel->r_offset).
10812 A is the addend, converted into bytes, ie:
10813 (signed_addend * 4)
10814
10815 Note: None of these operations have knowledge of the pipeline
10816 size of the processor, thus it is up to the assembler to
10817 encode this information into the addend. */
10818 value -= (input_section->output_section->vma
10819 + input_section->output_offset);
10820 value -= rel->r_offset;
10821 if (globals->use_rel)
10822 value += (signed_addend << howto->size);
10823 else
10824 /* RELA addends do not have to be adjusted by howto->size. */
10825 value += signed_addend;
10826
10827 signed_addend = value;
10828 signed_addend >>= howto->rightshift;
10829
10830 /* A branch to an undefined weak symbol is turned into a jump to
10831 the next instruction unless a PLT entry will be created.
10832 Do the same for local undefined symbols (but not for STN_UNDEF).
10833 The jump to the next instruction is optimized as a NOP depending
10834 on the architecture. */
10835 if (h ? (h->root.type == bfd_link_hash_undefweak
10836 && plt_offset == (bfd_vma) -1)
10837 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
10838 {
10839 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
10840
10841 if (arch_has_arm_nop (globals))
10842 value |= 0x0320f000;
10843 else
10844 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
10845 }
10846 else
10847 {
10848 /* Perform a signed range check. */
10849 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
10850 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
10851 return bfd_reloc_overflow;
10852
10853 addend = (value & 2);
10854
10855 value = (signed_addend & howto->dst_mask)
10856 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
10857
10858 if (r_type == R_ARM_CALL)
10859 {
10860 /* Set the H bit in the BLX instruction. */
10861 if (branch_type == ST_BRANCH_TO_THUMB)
10862 {
10863 if (addend)
10864 value |= (1 << 24);
10865 else
10866 value &= ~(bfd_vma)(1 << 24);
10867 }
10868
10869 /* Select the correct instruction (BL or BLX). */
10870 /* Only if we are not handling a BL to a stub. In this
10871 case, mode switching is performed by the stub. */
10872 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
10873 value |= (1 << 28);
10874 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
10875 {
10876 value &= ~(bfd_vma)(1 << 28);
10877 value |= (1 << 24);
10878 }
10879 }
10880 }
10881 }
10882 break;
10883
10884 case R_ARM_ABS32:
10885 value += addend;
10886 if (branch_type == ST_BRANCH_TO_THUMB)
10887 value |= 1;
10888 break;
10889
10890 case R_ARM_ABS32_NOI:
10891 value += addend;
10892 break;
10893
10894 case R_ARM_REL32:
10895 value += addend;
10896 if (branch_type == ST_BRANCH_TO_THUMB)
10897 value |= 1;
10898 value -= (input_section->output_section->vma
10899 + input_section->output_offset + rel->r_offset);
10900 break;
10901
10902 case R_ARM_REL32_NOI:
10903 value += addend;
10904 value -= (input_section->output_section->vma
10905 + input_section->output_offset + rel->r_offset);
10906 break;
10907
10908 case R_ARM_PREL31:
10909 value -= (input_section->output_section->vma
10910 + input_section->output_offset + rel->r_offset);
10911 value += signed_addend;
10912 if (! h || h->root.type != bfd_link_hash_undefweak)
10913 {
10914 /* Check for overflow. */
10915 if ((value ^ (value >> 1)) & (1 << 30))
10916 return bfd_reloc_overflow;
10917 }
10918 value &= 0x7fffffff;
10919 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
10920 if (branch_type == ST_BRANCH_TO_THUMB)
10921 value |= 1;
10922 break;
10923 }
10924
10925 bfd_put_32 (input_bfd, value, hit_data);
10926 return bfd_reloc_ok;
10927
10928 case R_ARM_ABS8:
10929 /* PR 16202: Refectch the addend using the correct size. */
10930 if (globals->use_rel)
10931 addend = bfd_get_8 (input_bfd, hit_data);
10932 value += addend;
10933
10934 /* There is no way to tell whether the user intended to use a signed or
10935 unsigned addend. When checking for overflow we accept either,
10936 as specified by the AAELF. */
10937 if ((long) value > 0xff || (long) value < -0x80)
10938 return bfd_reloc_overflow;
10939
10940 bfd_put_8 (input_bfd, value, hit_data);
10941 return bfd_reloc_ok;
10942
10943 case R_ARM_ABS16:
10944 /* PR 16202: Refectch the addend using the correct size. */
10945 if (globals->use_rel)
10946 addend = bfd_get_16 (input_bfd, hit_data);
10947 value += addend;
10948
10949 /* See comment for R_ARM_ABS8. */
10950 if ((long) value > 0xffff || (long) value < -0x8000)
10951 return bfd_reloc_overflow;
10952
10953 bfd_put_16 (input_bfd, value, hit_data);
10954 return bfd_reloc_ok;
10955
10956 case R_ARM_THM_ABS5:
10957 /* Support ldr and str instructions for the thumb. */
10958 if (globals->use_rel)
10959 {
10960 /* Need to refetch addend. */
10961 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
10962 /* ??? Need to determine shift amount from operand size. */
10963 addend >>= howto->rightshift;
10964 }
10965 value += addend;
10966
10967 /* ??? Isn't value unsigned? */
10968 if ((long) value > 0x1f || (long) value < -0x10)
10969 return bfd_reloc_overflow;
10970
10971 /* ??? Value needs to be properly shifted into place first. */
10972 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
10973 bfd_put_16 (input_bfd, value, hit_data);
10974 return bfd_reloc_ok;
10975
10976 case R_ARM_THM_ALU_PREL_11_0:
10977 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
10978 {
10979 bfd_vma insn;
10980 bfd_signed_vma relocation;
10981
10982 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
10983 | bfd_get_16 (input_bfd, hit_data + 2);
10984
10985 if (globals->use_rel)
10986 {
10987 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
10988 | ((insn & (1 << 26)) >> 15);
10989 if (insn & 0xf00000)
10990 signed_addend = -signed_addend;
10991 }
10992
10993 relocation = value + signed_addend;
10994 relocation -= Pa (input_section->output_section->vma
10995 + input_section->output_offset
10996 + rel->r_offset);
10997
10998 /* PR 21523: Use an absolute value. The user of this reloc will
10999 have already selected an ADD or SUB insn appropriately. */
11000 value = llabs (relocation);
11001
11002 if (value >= 0x1000)
11003 return bfd_reloc_overflow;
11004
11005 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
11006 if (branch_type == ST_BRANCH_TO_THUMB)
11007 value |= 1;
11008
11009 insn = (insn & 0xfb0f8f00) | (value & 0xff)
11010 | ((value & 0x700) << 4)
11011 | ((value & 0x800) << 15);
11012 if (relocation < 0)
11013 insn |= 0xa00000;
11014
11015 bfd_put_16 (input_bfd, insn >> 16, hit_data);
11016 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
11017
11018 return bfd_reloc_ok;
11019 }
11020
11021 case R_ARM_THM_PC8:
11022 /* PR 10073: This reloc is not generated by the GNU toolchain,
11023 but it is supported for compatibility with third party libraries
11024 generated by other compilers, specifically the ARM/IAR. */
11025 {
11026 bfd_vma insn;
11027 bfd_signed_vma relocation;
11028
11029 insn = bfd_get_16 (input_bfd, hit_data);
11030
11031 if (globals->use_rel)
11032 addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4;
11033
11034 relocation = value + addend;
11035 relocation -= Pa (input_section->output_section->vma
11036 + input_section->output_offset
11037 + rel->r_offset);
11038
11039 value = relocation;
11040
11041 /* We do not check for overflow of this reloc. Although strictly
11042 speaking this is incorrect, it appears to be necessary in order
11043 to work with IAR generated relocs. Since GCC and GAS do not
11044 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
11045 a problem for them. */
11046 value &= 0x3fc;
11047
11048 insn = (insn & 0xff00) | (value >> 2);
11049
11050 bfd_put_16 (input_bfd, insn, hit_data);
11051
11052 return bfd_reloc_ok;
11053 }
11054
11055 case R_ARM_THM_PC12:
11056 /* Corresponds to: ldr.w reg, [pc, #offset]. */
11057 {
11058 bfd_vma insn;
11059 bfd_signed_vma relocation;
11060
11061 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
11062 | bfd_get_16 (input_bfd, hit_data + 2);
11063
11064 if (globals->use_rel)
11065 {
11066 signed_addend = insn & 0xfff;
11067 if (!(insn & (1 << 23)))
11068 signed_addend = -signed_addend;
11069 }
11070
11071 relocation = value + signed_addend;
11072 relocation -= Pa (input_section->output_section->vma
11073 + input_section->output_offset
11074 + rel->r_offset);
11075
11076 value = relocation;
11077
11078 if (value >= 0x1000)
11079 return bfd_reloc_overflow;
11080
11081 insn = (insn & 0xff7ff000) | value;
11082 if (relocation >= 0)
11083 insn |= (1 << 23);
11084
11085 bfd_put_16 (input_bfd, insn >> 16, hit_data);
11086 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
11087
11088 return bfd_reloc_ok;
11089 }
11090
11091 case R_ARM_THM_XPC22:
11092 case R_ARM_THM_CALL:
11093 case R_ARM_THM_JUMP24:
11094 /* Thumb BL (branch long instruction). */
11095 {
11096 bfd_vma relocation;
11097 bfd_vma reloc_sign;
11098 bfd_boolean overflow = FALSE;
11099 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
11100 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
11101 bfd_signed_vma reloc_signed_max;
11102 bfd_signed_vma reloc_signed_min;
11103 bfd_vma check;
11104 bfd_signed_vma signed_check;
11105 int bitsize;
11106 const int thumb2 = using_thumb2 (globals);
11107 const int thumb2_bl = using_thumb2_bl (globals);
11108
11109 /* A branch to an undefined weak symbol is turned into a jump to
11110 the next instruction unless a PLT entry will be created.
11111 The jump to the next instruction is optimized as a NOP.W for
11112 Thumb-2 enabled architectures. */
11113 if (h && h->root.type == bfd_link_hash_undefweak
11114 && plt_offset == (bfd_vma) -1)
11115 {
11116 if (thumb2)
11117 {
11118 bfd_put_16 (input_bfd, 0xf3af, hit_data);
11119 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
11120 }
11121 else
11122 {
11123 bfd_put_16 (input_bfd, 0xe000, hit_data);
11124 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
11125 }
11126 return bfd_reloc_ok;
11127 }
11128
11129 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
11130 with Thumb-1) involving the J1 and J2 bits. */
11131 if (globals->use_rel)
11132 {
11133 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
11134 bfd_vma upper = upper_insn & 0x3ff;
11135 bfd_vma lower = lower_insn & 0x7ff;
11136 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
11137 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
11138 bfd_vma i1 = j1 ^ s ? 0 : 1;
11139 bfd_vma i2 = j2 ^ s ? 0 : 1;
11140
11141 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
11142 /* Sign extend. */
11143 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
11144
11145 signed_addend = addend;
11146 }
11147
11148 if (r_type == R_ARM_THM_XPC22)
11149 {
11150 /* Check for Thumb to Thumb call. */
11151 /* FIXME: Should we translate the instruction into a BL
11152 instruction instead ? */
11153 if (branch_type == ST_BRANCH_TO_THUMB)
11154 _bfd_error_handler
11155 (_("%pB: warning: %s BLX instruction targets"
11156 " %s function '%s'"),
11157 input_bfd, "Thumb",
11158 "Thumb", h ? h->root.root.string : "(local)");
11159 }
11160 else
11161 {
11162 /* If it is not a call to Thumb, assume call to Arm.
11163 If it is a call relative to a section name, then it is not a
11164 function call at all, but rather a long jump. Calls through
11165 the PLT do not require stubs. */
11166 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
11167 {
11168 if (globals->use_blx && r_type == R_ARM_THM_CALL)
11169 {
11170 /* Convert BL to BLX. */
11171 lower_insn = (lower_insn & ~0x1000) | 0x0800;
11172 }
11173 else if (( r_type != R_ARM_THM_CALL)
11174 && (r_type != R_ARM_THM_JUMP24))
11175 {
11176 if (elf32_thumb_to_arm_stub
11177 (info, sym_name, input_bfd, output_bfd, input_section,
11178 hit_data, sym_sec, rel->r_offset, signed_addend, value,
11179 error_message))
11180 return bfd_reloc_ok;
11181 else
11182 return bfd_reloc_dangerous;
11183 }
11184 }
11185 else if (branch_type == ST_BRANCH_TO_THUMB
11186 && globals->use_blx
11187 && r_type == R_ARM_THM_CALL)
11188 {
11189 /* Make sure this is a BL. */
11190 lower_insn |= 0x1800;
11191 }
11192 }
11193
11194 enum elf32_arm_stub_type stub_type = arm_stub_none;
11195 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
11196 {
11197 /* Check if a stub has to be inserted because the destination
11198 is too far. */
11199 struct elf32_arm_stub_hash_entry *stub_entry;
11200 struct elf32_arm_link_hash_entry *hash;
11201
11202 hash = (struct elf32_arm_link_hash_entry *) h;
11203
11204 stub_type = arm_type_of_stub (info, input_section, rel,
11205 st_type, &branch_type,
11206 hash, value, sym_sec,
11207 input_bfd, sym_name);
11208
11209 if (stub_type != arm_stub_none)
11210 {
11211 /* The target is out of reach or we are changing modes, so
11212 redirect the branch to the local stub for this
11213 function. */
11214 stub_entry = elf32_arm_get_stub_entry (input_section,
11215 sym_sec, h,
11216 rel, globals,
11217 stub_type);
11218 if (stub_entry != NULL)
11219 {
11220 value = (stub_entry->stub_offset
11221 + stub_entry->stub_sec->output_offset
11222 + stub_entry->stub_sec->output_section->vma);
11223
11224 if (plt_offset != (bfd_vma) -1)
11225 *unresolved_reloc_p = FALSE;
11226 }
11227
11228 /* If this call becomes a call to Arm, force BLX. */
11229 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
11230 {
11231 if ((stub_entry
11232 && !arm_stub_is_thumb (stub_entry->stub_type))
11233 || branch_type != ST_BRANCH_TO_THUMB)
11234 lower_insn = (lower_insn & ~0x1000) | 0x0800;
11235 }
11236 }
11237 }
11238
11239 /* Handle calls via the PLT. */
11240 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
11241 {
11242 value = (splt->output_section->vma
11243 + splt->output_offset
11244 + plt_offset);
11245
11246 if (globals->use_blx
11247 && r_type == R_ARM_THM_CALL
11248 && ! using_thumb_only (globals))
11249 {
11250 /* If the Thumb BLX instruction is available, convert
11251 the BL to a BLX instruction to call the ARM-mode
11252 PLT entry. */
11253 lower_insn = (lower_insn & ~0x1000) | 0x0800;
11254 branch_type = ST_BRANCH_TO_ARM;
11255 }
11256 else
11257 {
11258 if (! using_thumb_only (globals))
11259 /* Target the Thumb stub before the ARM PLT entry. */
11260 value -= PLT_THUMB_STUB_SIZE;
11261 branch_type = ST_BRANCH_TO_THUMB;
11262 }
11263 *unresolved_reloc_p = FALSE;
11264 }
11265
11266 relocation = value + signed_addend;
11267
11268 relocation -= (input_section->output_section->vma
11269 + input_section->output_offset
11270 + rel->r_offset);
11271
11272 check = relocation >> howto->rightshift;
11273
11274 /* If this is a signed value, the rightshift just dropped
11275 leading 1 bits (assuming twos complement). */
11276 if ((bfd_signed_vma) relocation >= 0)
11277 signed_check = check;
11278 else
11279 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
11280
11281 /* Calculate the permissable maximum and minimum values for
11282 this relocation according to whether we're relocating for
11283 Thumb-2 or not. */
11284 bitsize = howto->bitsize;
11285 if (!thumb2_bl)
11286 bitsize -= 2;
11287 reloc_signed_max = (1 << (bitsize - 1)) - 1;
11288 reloc_signed_min = ~reloc_signed_max;
11289
11290 /* Assumes two's complement. */
11291 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
11292 overflow = TRUE;
11293
11294 if ((lower_insn & 0x5000) == 0x4000)
11295 /* For a BLX instruction, make sure that the relocation is rounded up
11296 to a word boundary. This follows the semantics of the instruction
11297 which specifies that bit 1 of the target address will come from bit
11298 1 of the base address. */
11299 relocation = (relocation + 2) & ~ 3;
11300
11301 /* Put RELOCATION back into the insn. Assumes two's complement.
11302 We use the Thumb-2 encoding, which is safe even if dealing with
11303 a Thumb-1 instruction by virtue of our overflow check above. */
11304 reloc_sign = (signed_check < 0) ? 1 : 0;
11305 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
11306 | ((relocation >> 12) & 0x3ff)
11307 | (reloc_sign << 10);
11308 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
11309 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
11310 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
11311 | ((relocation >> 1) & 0x7ff);
11312
11313 /* Put the relocated value back in the object file: */
11314 bfd_put_16 (input_bfd, upper_insn, hit_data);
11315 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11316
11317 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
11318 }
11319 break;
11320
11321 case R_ARM_THM_JUMP19:
11322 /* Thumb32 conditional branch instruction. */
11323 {
11324 bfd_vma relocation;
11325 bfd_boolean overflow = FALSE;
11326 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
11327 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
11328 bfd_signed_vma reloc_signed_max = 0xffffe;
11329 bfd_signed_vma reloc_signed_min = -0x100000;
11330 bfd_signed_vma signed_check;
11331 enum elf32_arm_stub_type stub_type = arm_stub_none;
11332 struct elf32_arm_stub_hash_entry *stub_entry;
11333 struct elf32_arm_link_hash_entry *hash;
11334
11335 /* Need to refetch the addend, reconstruct the top three bits,
11336 and squish the two 11 bit pieces together. */
11337 if (globals->use_rel)
11338 {
11339 bfd_vma S = (upper_insn & 0x0400) >> 10;
11340 bfd_vma upper = (upper_insn & 0x003f);
11341 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
11342 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
11343 bfd_vma lower = (lower_insn & 0x07ff);
11344
11345 upper |= J1 << 6;
11346 upper |= J2 << 7;
11347 upper |= (!S) << 8;
11348 upper -= 0x0100; /* Sign extend. */
11349
11350 addend = (upper << 12) | (lower << 1);
11351 signed_addend = addend;
11352 }
11353
11354 /* Handle calls via the PLT. */
11355 if (plt_offset != (bfd_vma) -1)
11356 {
11357 value = (splt->output_section->vma
11358 + splt->output_offset
11359 + plt_offset);
11360 /* Target the Thumb stub before the ARM PLT entry. */
11361 value -= PLT_THUMB_STUB_SIZE;
11362 *unresolved_reloc_p = FALSE;
11363 }
11364
11365 hash = (struct elf32_arm_link_hash_entry *)h;
11366
11367 stub_type = arm_type_of_stub (info, input_section, rel,
11368 st_type, &branch_type,
11369 hash, value, sym_sec,
11370 input_bfd, sym_name);
11371 if (stub_type != arm_stub_none)
11372 {
11373 stub_entry = elf32_arm_get_stub_entry (input_section,
11374 sym_sec, h,
11375 rel, globals,
11376 stub_type);
11377 if (stub_entry != NULL)
11378 {
11379 value = (stub_entry->stub_offset
11380 + stub_entry->stub_sec->output_offset
11381 + stub_entry->stub_sec->output_section->vma);
11382 }
11383 }
11384
11385 relocation = value + signed_addend;
11386 relocation -= (input_section->output_section->vma
11387 + input_section->output_offset
11388 + rel->r_offset);
11389 signed_check = (bfd_signed_vma) relocation;
11390
11391 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
11392 overflow = TRUE;
11393
11394 /* Put RELOCATION back into the insn. */
11395 {
11396 bfd_vma S = (relocation & 0x00100000) >> 20;
11397 bfd_vma J2 = (relocation & 0x00080000) >> 19;
11398 bfd_vma J1 = (relocation & 0x00040000) >> 18;
11399 bfd_vma hi = (relocation & 0x0003f000) >> 12;
11400 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
11401
11402 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
11403 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
11404 }
11405
11406 /* Put the relocated value back in the object file: */
11407 bfd_put_16 (input_bfd, upper_insn, hit_data);
11408 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11409
11410 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
11411 }
11412
11413 case R_ARM_THM_JUMP11:
11414 case R_ARM_THM_JUMP8:
11415 case R_ARM_THM_JUMP6:
11416 /* Thumb B (branch) instruction). */
11417 {
11418 bfd_signed_vma relocation;
11419 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
11420 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
11421 bfd_signed_vma signed_check;
11422
11423 /* CZB cannot jump backward. */
11424 if (r_type == R_ARM_THM_JUMP6)
11425 reloc_signed_min = 0;
11426
11427 if (globals->use_rel)
11428 {
11429 /* Need to refetch addend. */
11430 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
11431 if (addend & ((howto->src_mask + 1) >> 1))
11432 {
11433 signed_addend = -1;
11434 signed_addend &= ~ howto->src_mask;
11435 signed_addend |= addend;
11436 }
11437 else
11438 signed_addend = addend;
11439 /* The value in the insn has been right shifted. We need to
11440 undo this, so that we can perform the address calculation
11441 in terms of bytes. */
11442 signed_addend <<= howto->rightshift;
11443 }
11444 relocation = value + signed_addend;
11445
11446 relocation -= (input_section->output_section->vma
11447 + input_section->output_offset
11448 + rel->r_offset);
11449
11450 relocation >>= howto->rightshift;
11451 signed_check = relocation;
11452
11453 if (r_type == R_ARM_THM_JUMP6)
11454 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
11455 else
11456 relocation &= howto->dst_mask;
11457 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
11458
11459 bfd_put_16 (input_bfd, relocation, hit_data);
11460
11461 /* Assumes two's complement. */
11462 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
11463 return bfd_reloc_overflow;
11464
11465 return bfd_reloc_ok;
11466 }
11467
11468 case R_ARM_ALU_PCREL7_0:
11469 case R_ARM_ALU_PCREL15_8:
11470 case R_ARM_ALU_PCREL23_15:
11471 {
11472 bfd_vma insn;
11473 bfd_vma relocation;
11474
11475 insn = bfd_get_32 (input_bfd, hit_data);
11476 if (globals->use_rel)
11477 {
11478 /* Extract the addend. */
11479 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
11480 signed_addend = addend;
11481 }
11482 relocation = value + signed_addend;
11483
11484 relocation -= (input_section->output_section->vma
11485 + input_section->output_offset
11486 + rel->r_offset);
11487 insn = (insn & ~0xfff)
11488 | ((howto->bitpos << 7) & 0xf00)
11489 | ((relocation >> howto->bitpos) & 0xff);
11490 bfd_put_32 (input_bfd, value, hit_data);
11491 }
11492 return bfd_reloc_ok;
11493
11494 case R_ARM_GNU_VTINHERIT:
11495 case R_ARM_GNU_VTENTRY:
11496 return bfd_reloc_ok;
11497
11498 case R_ARM_GOTOFF32:
11499 /* Relocation is relative to the start of the
11500 global offset table. */
11501
11502 BFD_ASSERT (sgot != NULL);
11503 if (sgot == NULL)
11504 return bfd_reloc_notsupported;
11505
11506 /* If we are addressing a Thumb function, we need to adjust the
11507 address by one, so that attempts to call the function pointer will
11508 correctly interpret it as Thumb code. */
11509 if (branch_type == ST_BRANCH_TO_THUMB)
11510 value += 1;
11511
11512 /* Note that sgot->output_offset is not involved in this
11513 calculation. We always want the start of .got. If we
11514 define _GLOBAL_OFFSET_TABLE in a different way, as is
11515 permitted by the ABI, we might have to change this
11516 calculation. */
11517 value -= sgot->output_section->vma;
11518 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11519 contents, rel->r_offset, value,
11520 rel->r_addend);
11521
11522 case R_ARM_GOTPC:
11523 /* Use global offset table as symbol value. */
11524 BFD_ASSERT (sgot != NULL);
11525
11526 if (sgot == NULL)
11527 return bfd_reloc_notsupported;
11528
11529 *unresolved_reloc_p = FALSE;
11530 value = sgot->output_section->vma;
11531 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11532 contents, rel->r_offset, value,
11533 rel->r_addend);
11534
11535 case R_ARM_GOT32:
11536 case R_ARM_GOT_PREL:
11537 /* Relocation is to the entry for this symbol in the
11538 global offset table. */
11539 if (sgot == NULL)
11540 return bfd_reloc_notsupported;
11541
11542 if (dynreloc_st_type == STT_GNU_IFUNC
11543 && plt_offset != (bfd_vma) -1
11544 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
11545 {
11546 /* We have a relocation against a locally-binding STT_GNU_IFUNC
11547 symbol, and the relocation resolves directly to the runtime
11548 target rather than to the .iplt entry. This means that any
11549 .got entry would be the same value as the .igot.plt entry,
11550 so there's no point creating both. */
11551 sgot = globals->root.igotplt;
11552 value = sgot->output_offset + gotplt_offset;
11553 }
11554 else if (h != NULL)
11555 {
11556 bfd_vma off;
11557
11558 off = h->got.offset;
11559 BFD_ASSERT (off != (bfd_vma) -1);
11560 if ((off & 1) != 0)
11561 {
11562 /* We have already processsed one GOT relocation against
11563 this symbol. */
11564 off &= ~1;
11565 if (globals->root.dynamic_sections_created
11566 && !SYMBOL_REFERENCES_LOCAL (info, h))
11567 *unresolved_reloc_p = FALSE;
11568 }
11569 else
11570 {
11571 Elf_Internal_Rela outrel;
11572 int isrofixup = 0;
11573
11574 if (((h->dynindx != -1) || globals->fdpic_p)
11575 && !SYMBOL_REFERENCES_LOCAL (info, h))
11576 {
11577 /* If the symbol doesn't resolve locally in a static
11578 object, we have an undefined reference. If the
11579 symbol doesn't resolve locally in a dynamic object,
11580 it should be resolved by the dynamic linker. */
11581 if (globals->root.dynamic_sections_created)
11582 {
11583 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
11584 *unresolved_reloc_p = FALSE;
11585 }
11586 else
11587 outrel.r_info = 0;
11588 outrel.r_addend = 0;
11589 }
11590 else
11591 {
11592 if (dynreloc_st_type == STT_GNU_IFUNC)
11593 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
11594 else if (bfd_link_pic (info)
11595 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
11596 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11597 else
11598 {
11599 outrel.r_info = 0;
11600 if (globals->fdpic_p)
11601 isrofixup = 1;
11602 }
11603 outrel.r_addend = dynreloc_value;
11604 }
11605
11606 /* The GOT entry is initialized to zero by default.
11607 See if we should install a different value. */
11608 if (outrel.r_addend != 0
11609 && (globals->use_rel || outrel.r_info == 0))
11610 {
11611 bfd_put_32 (output_bfd, outrel.r_addend,
11612 sgot->contents + off);
11613 outrel.r_addend = 0;
11614 }
11615
11616 if (isrofixup)
11617 arm_elf_add_rofixup (output_bfd,
11618 elf32_arm_hash_table(info)->srofixup,
11619 sgot->output_section->vma
11620 + sgot->output_offset + off);
11621
11622 else if (outrel.r_info != 0)
11623 {
11624 outrel.r_offset = (sgot->output_section->vma
11625 + sgot->output_offset
11626 + off);
11627 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11628 }
11629
11630 h->got.offset |= 1;
11631 }
11632 value = sgot->output_offset + off;
11633 }
11634 else
11635 {
11636 bfd_vma off;
11637
11638 BFD_ASSERT (local_got_offsets != NULL
11639 && local_got_offsets[r_symndx] != (bfd_vma) -1);
11640
11641 off = local_got_offsets[r_symndx];
11642
11643 /* The offset must always be a multiple of 4. We use the
11644 least significant bit to record whether we have already
11645 generated the necessary reloc. */
11646 if ((off & 1) != 0)
11647 off &= ~1;
11648 else
11649 {
11650 Elf_Internal_Rela outrel;
11651 int isrofixup = 0;
11652
11653 if (dynreloc_st_type == STT_GNU_IFUNC)
11654 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
11655 else if (bfd_link_pic (info))
11656 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11657 else
11658 {
11659 outrel.r_info = 0;
11660 if (globals->fdpic_p)
11661 isrofixup = 1;
11662 }
11663
11664 /* The GOT entry is initialized to zero by default.
11665 See if we should install a different value. */
11666 if (globals->use_rel || outrel.r_info == 0)
11667 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
11668
11669 if (isrofixup)
11670 arm_elf_add_rofixup (output_bfd,
11671 globals->srofixup,
11672 sgot->output_section->vma
11673 + sgot->output_offset + off);
11674
11675 else if (outrel.r_info != 0)
11676 {
11677 outrel.r_addend = addend + dynreloc_value;
11678 outrel.r_offset = (sgot->output_section->vma
11679 + sgot->output_offset
11680 + off);
11681 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11682 }
11683
11684 local_got_offsets[r_symndx] |= 1;
11685 }
11686
11687 value = sgot->output_offset + off;
11688 }
11689 if (r_type != R_ARM_GOT32)
11690 value += sgot->output_section->vma;
11691
11692 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11693 contents, rel->r_offset, value,
11694 rel->r_addend);
11695
11696 case R_ARM_TLS_LDO32:
11697 value = value - dtpoff_base (info);
11698
11699 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11700 contents, rel->r_offset, value,
11701 rel->r_addend);
11702
11703 case R_ARM_TLS_LDM32:
11704 case R_ARM_TLS_LDM32_FDPIC:
11705 {
11706 bfd_vma off;
11707
11708 if (sgot == NULL)
11709 abort ();
11710
11711 off = globals->tls_ldm_got.offset;
11712
11713 if ((off & 1) != 0)
11714 off &= ~1;
11715 else
11716 {
11717 /* If we don't know the module number, create a relocation
11718 for it. */
11719 if (bfd_link_dll (info))
11720 {
11721 Elf_Internal_Rela outrel;
11722
11723 if (srelgot == NULL)
11724 abort ();
11725
11726 outrel.r_addend = 0;
11727 outrel.r_offset = (sgot->output_section->vma
11728 + sgot->output_offset + off);
11729 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
11730
11731 if (globals->use_rel)
11732 bfd_put_32 (output_bfd, outrel.r_addend,
11733 sgot->contents + off);
11734
11735 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11736 }
11737 else
11738 bfd_put_32 (output_bfd, 1, sgot->contents + off);
11739
11740 globals->tls_ldm_got.offset |= 1;
11741 }
11742
11743 if (r_type == R_ARM_TLS_LDM32_FDPIC)
11744 {
11745 bfd_put_32(output_bfd,
11746 globals->root.sgot->output_offset + off,
11747 contents + rel->r_offset);
11748
11749 return bfd_reloc_ok;
11750 }
11751 else
11752 {
11753 value = sgot->output_section->vma + sgot->output_offset + off
11754 - (input_section->output_section->vma
11755 + input_section->output_offset + rel->r_offset);
11756
11757 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11758 contents, rel->r_offset, value,
11759 rel->r_addend);
11760 }
11761 }
11762
11763 case R_ARM_TLS_CALL:
11764 case R_ARM_THM_TLS_CALL:
11765 case R_ARM_TLS_GD32:
11766 case R_ARM_TLS_GD32_FDPIC:
11767 case R_ARM_TLS_IE32:
11768 case R_ARM_TLS_IE32_FDPIC:
11769 case R_ARM_TLS_GOTDESC:
11770 case R_ARM_TLS_DESCSEQ:
11771 case R_ARM_THM_TLS_DESCSEQ:
11772 {
11773 bfd_vma off, offplt;
11774 int indx = 0;
11775 char tls_type;
11776
11777 BFD_ASSERT (sgot != NULL);
11778
11779 if (h != NULL)
11780 {
11781 bfd_boolean dyn;
11782 dyn = globals->root.dynamic_sections_created;
11783 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
11784 bfd_link_pic (info),
11785 h)
11786 && (!bfd_link_pic (info)
11787 || !SYMBOL_REFERENCES_LOCAL (info, h)))
11788 {
11789 *unresolved_reloc_p = FALSE;
11790 indx = h->dynindx;
11791 }
11792 off = h->got.offset;
11793 offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
11794 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
11795 }
11796 else
11797 {
11798 BFD_ASSERT (local_got_offsets != NULL);
11799 off = local_got_offsets[r_symndx];
11800 offplt = local_tlsdesc_gotents[r_symndx];
11801 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
11802 }
11803
11804 /* Linker relaxations happens from one of the
11805 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
11806 if (ELF32_R_TYPE(rel->r_info) != r_type)
11807 tls_type = GOT_TLS_IE;
11808
11809 BFD_ASSERT (tls_type != GOT_UNKNOWN);
11810
11811 if ((off & 1) != 0)
11812 off &= ~1;
11813 else
11814 {
11815 bfd_boolean need_relocs = FALSE;
11816 Elf_Internal_Rela outrel;
11817 int cur_off = off;
11818
11819 /* The GOT entries have not been initialized yet. Do it
11820 now, and emit any relocations. If both an IE GOT and a
11821 GD GOT are necessary, we emit the GD first. */
11822
11823 if ((bfd_link_dll (info) || indx != 0)
11824 && (h == NULL
11825 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11826 && !resolved_to_zero)
11827 || h->root.type != bfd_link_hash_undefweak))
11828 {
11829 need_relocs = TRUE;
11830 BFD_ASSERT (srelgot != NULL);
11831 }
11832
11833 if (tls_type & GOT_TLS_GDESC)
11834 {
11835 bfd_byte *loc;
11836
11837 /* We should have relaxed, unless this is an undefined
11838 weak symbol. */
11839 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
11840 || bfd_link_dll (info));
11841 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
11842 <= globals->root.sgotplt->size);
11843
11844 outrel.r_addend = 0;
11845 outrel.r_offset = (globals->root.sgotplt->output_section->vma
11846 + globals->root.sgotplt->output_offset
11847 + offplt
11848 + globals->sgotplt_jump_table_size);
11849
11850 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
11851 sreloc = globals->root.srelplt;
11852 loc = sreloc->contents;
11853 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
11854 BFD_ASSERT (loc + RELOC_SIZE (globals)
11855 <= sreloc->contents + sreloc->size);
11856
11857 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
11858
11859 /* For globals, the first word in the relocation gets
11860 the relocation index and the top bit set, or zero,
11861 if we're binding now. For locals, it gets the
11862 symbol's offset in the tls section. */
11863 bfd_put_32 (output_bfd,
11864 !h ? value - elf_hash_table (info)->tls_sec->vma
11865 : info->flags & DF_BIND_NOW ? 0
11866 : 0x80000000 | ELF32_R_SYM (outrel.r_info),
11867 globals->root.sgotplt->contents + offplt
11868 + globals->sgotplt_jump_table_size);
11869
11870 /* Second word in the relocation is always zero. */
11871 bfd_put_32 (output_bfd, 0,
11872 globals->root.sgotplt->contents + offplt
11873 + globals->sgotplt_jump_table_size + 4);
11874 }
11875 if (tls_type & GOT_TLS_GD)
11876 {
11877 if (need_relocs)
11878 {
11879 outrel.r_addend = 0;
11880 outrel.r_offset = (sgot->output_section->vma
11881 + sgot->output_offset
11882 + cur_off);
11883 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
11884
11885 if (globals->use_rel)
11886 bfd_put_32 (output_bfd, outrel.r_addend,
11887 sgot->contents + cur_off);
11888
11889 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11890
11891 if (indx == 0)
11892 bfd_put_32 (output_bfd, value - dtpoff_base (info),
11893 sgot->contents + cur_off + 4);
11894 else
11895 {
11896 outrel.r_addend = 0;
11897 outrel.r_info = ELF32_R_INFO (indx,
11898 R_ARM_TLS_DTPOFF32);
11899 outrel.r_offset += 4;
11900
11901 if (globals->use_rel)
11902 bfd_put_32 (output_bfd, outrel.r_addend,
11903 sgot->contents + cur_off + 4);
11904
11905 elf32_arm_add_dynreloc (output_bfd, info,
11906 srelgot, &outrel);
11907 }
11908 }
11909 else
11910 {
11911 /* If we are not emitting relocations for a
11912 general dynamic reference, then we must be in a
11913 static link or an executable link with the
11914 symbol binding locally. Mark it as belonging
11915 to module 1, the executable. */
11916 bfd_put_32 (output_bfd, 1,
11917 sgot->contents + cur_off);
11918 bfd_put_32 (output_bfd, value - dtpoff_base (info),
11919 sgot->contents + cur_off + 4);
11920 }
11921
11922 cur_off += 8;
11923 }
11924
11925 if (tls_type & GOT_TLS_IE)
11926 {
11927 if (need_relocs)
11928 {
11929 if (indx == 0)
11930 outrel.r_addend = value - dtpoff_base (info);
11931 else
11932 outrel.r_addend = 0;
11933 outrel.r_offset = (sgot->output_section->vma
11934 + sgot->output_offset
11935 + cur_off);
11936 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
11937
11938 if (globals->use_rel)
11939 bfd_put_32 (output_bfd, outrel.r_addend,
11940 sgot->contents + cur_off);
11941
11942 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11943 }
11944 else
11945 bfd_put_32 (output_bfd, tpoff (info, value),
11946 sgot->contents + cur_off);
11947 cur_off += 4;
11948 }
11949
11950 if (h != NULL)
11951 h->got.offset |= 1;
11952 else
11953 local_got_offsets[r_symndx] |= 1;
11954 }
11955
11956 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32 && r_type != R_ARM_TLS_GD32_FDPIC)
11957 off += 8;
11958 else if (tls_type & GOT_TLS_GDESC)
11959 off = offplt;
11960
11961 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
11962 || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
11963 {
11964 bfd_signed_vma offset;
11965 /* TLS stubs are arm mode. The original symbol is a
11966 data object, so branch_type is bogus. */
11967 branch_type = ST_BRANCH_TO_ARM;
11968 enum elf32_arm_stub_type stub_type
11969 = arm_type_of_stub (info, input_section, rel,
11970 st_type, &branch_type,
11971 (struct elf32_arm_link_hash_entry *)h,
11972 globals->tls_trampoline, globals->root.splt,
11973 input_bfd, sym_name);
11974
11975 if (stub_type != arm_stub_none)
11976 {
11977 struct elf32_arm_stub_hash_entry *stub_entry
11978 = elf32_arm_get_stub_entry
11979 (input_section, globals->root.splt, 0, rel,
11980 globals, stub_type);
11981 offset = (stub_entry->stub_offset
11982 + stub_entry->stub_sec->output_offset
11983 + stub_entry->stub_sec->output_section->vma);
11984 }
11985 else
11986 offset = (globals->root.splt->output_section->vma
11987 + globals->root.splt->output_offset
11988 + globals->tls_trampoline);
11989
11990 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
11991 {
11992 unsigned long inst;
11993
11994 offset -= (input_section->output_section->vma
11995 + input_section->output_offset
11996 + rel->r_offset + 8);
11997
11998 inst = offset >> 2;
11999 inst &= 0x00ffffff;
12000 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
12001 }
12002 else
12003 {
12004 /* Thumb blx encodes the offset in a complicated
12005 fashion. */
12006 unsigned upper_insn, lower_insn;
12007 unsigned neg;
12008
12009 offset -= (input_section->output_section->vma
12010 + input_section->output_offset
12011 + rel->r_offset + 4);
12012
12013 if (stub_type != arm_stub_none
12014 && arm_stub_is_thumb (stub_type))
12015 {
12016 lower_insn = 0xd000;
12017 }
12018 else
12019 {
12020 lower_insn = 0xc000;
12021 /* Round up the offset to a word boundary. */
12022 offset = (offset + 2) & ~2;
12023 }
12024
12025 neg = offset < 0;
12026 upper_insn = (0xf000
12027 | ((offset >> 12) & 0x3ff)
12028 | (neg << 10));
12029 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
12030 | (((!((offset >> 22) & 1)) ^ neg) << 11)
12031 | ((offset >> 1) & 0x7ff);
12032 bfd_put_16 (input_bfd, upper_insn, hit_data);
12033 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
12034 return bfd_reloc_ok;
12035 }
12036 }
12037 /* These relocations needs special care, as besides the fact
12038 they point somewhere in .gotplt, the addend must be
12039 adjusted accordingly depending on the type of instruction
12040 we refer to. */
12041 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
12042 {
12043 unsigned long data, insn;
12044 unsigned thumb;
12045
12046 data = bfd_get_signed_32 (input_bfd, hit_data);
12047 thumb = data & 1;
12048 data &= ~1ul;
12049
12050 if (thumb)
12051 {
12052 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
12053 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
12054 insn = (insn << 16)
12055 | bfd_get_16 (input_bfd,
12056 contents + rel->r_offset - data + 2);
12057 if ((insn & 0xf800c000) == 0xf000c000)
12058 /* bl/blx */
12059 value = -6;
12060 else if ((insn & 0xffffff00) == 0x4400)
12061 /* add */
12062 value = -5;
12063 else
12064 {
12065 _bfd_error_handler
12066 /* xgettext:c-format */
12067 (_("%pB(%pA+%#" PRIx64 "): "
12068 "unexpected %s instruction '%#lx' "
12069 "referenced by TLS_GOTDESC"),
12070 input_bfd, input_section, (uint64_t) rel->r_offset,
12071 "Thumb", insn);
12072 return bfd_reloc_notsupported;
12073 }
12074 }
12075 else
12076 {
12077 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
12078
12079 switch (insn >> 24)
12080 {
12081 case 0xeb: /* bl */
12082 case 0xfa: /* blx */
12083 value = -4;
12084 break;
12085
12086 case 0xe0: /* add */
12087 value = -8;
12088 break;
12089
12090 default:
12091 _bfd_error_handler
12092 /* xgettext:c-format */
12093 (_("%pB(%pA+%#" PRIx64 "): "
12094 "unexpected %s instruction '%#lx' "
12095 "referenced by TLS_GOTDESC"),
12096 input_bfd, input_section, (uint64_t) rel->r_offset,
12097 "ARM", insn);
12098 return bfd_reloc_notsupported;
12099 }
12100 }
12101
12102 value += ((globals->root.sgotplt->output_section->vma
12103 + globals->root.sgotplt->output_offset + off)
12104 - (input_section->output_section->vma
12105 + input_section->output_offset
12106 + rel->r_offset)
12107 + globals->sgotplt_jump_table_size);
12108 }
12109 else
12110 value = ((globals->root.sgot->output_section->vma
12111 + globals->root.sgot->output_offset + off)
12112 - (input_section->output_section->vma
12113 + input_section->output_offset + rel->r_offset));
12114
12115 if (globals->fdpic_p && (r_type == R_ARM_TLS_GD32_FDPIC ||
12116 r_type == R_ARM_TLS_IE32_FDPIC))
12117 {
12118 /* For FDPIC relocations, resolve to the offset of the GOT
12119 entry from the start of GOT. */
12120 bfd_put_32(output_bfd,
12121 globals->root.sgot->output_offset + off,
12122 contents + rel->r_offset);
12123
12124 return bfd_reloc_ok;
12125 }
12126 else
12127 {
12128 return _bfd_final_link_relocate (howto, input_bfd, input_section,
12129 contents, rel->r_offset, value,
12130 rel->r_addend);
12131 }
12132 }
12133
12134 case R_ARM_TLS_LE32:
12135 if (bfd_link_dll (info))
12136 {
12137 _bfd_error_handler
12138 /* xgettext:c-format */
12139 (_("%pB(%pA+%#" PRIx64 "): %s relocation not permitted "
12140 "in shared object"),
12141 input_bfd, input_section, (uint64_t) rel->r_offset, howto->name);
12142 return bfd_reloc_notsupported;
12143 }
12144 else
12145 value = tpoff (info, value);
12146
12147 return _bfd_final_link_relocate (howto, input_bfd, input_section,
12148 contents, rel->r_offset, value,
12149 rel->r_addend);
12150
12151 case R_ARM_V4BX:
12152 if (globals->fix_v4bx)
12153 {
12154 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12155
12156 /* Ensure that we have a BX instruction. */
12157 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
12158
12159 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
12160 {
12161 /* Branch to veneer. */
12162 bfd_vma glue_addr;
12163 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
12164 glue_addr -= input_section->output_section->vma
12165 + input_section->output_offset
12166 + rel->r_offset + 8;
12167 insn = (insn & 0xf0000000) | 0x0a000000
12168 | ((glue_addr >> 2) & 0x00ffffff);
12169 }
12170 else
12171 {
12172 /* Preserve Rm (lowest four bits) and the condition code
12173 (highest four bits). Other bits encode MOV PC,Rm. */
12174 insn = (insn & 0xf000000f) | 0x01a0f000;
12175 }
12176
12177 bfd_put_32 (input_bfd, insn, hit_data);
12178 }
12179 return bfd_reloc_ok;
12180
12181 case R_ARM_MOVW_ABS_NC:
12182 case R_ARM_MOVT_ABS:
12183 case R_ARM_MOVW_PREL_NC:
12184 case R_ARM_MOVT_PREL:
12185 /* Until we properly support segment-base-relative addressing then
12186 we assume the segment base to be zero, as for the group relocations.
12187 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
12188 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
12189 case R_ARM_MOVW_BREL_NC:
12190 case R_ARM_MOVW_BREL:
12191 case R_ARM_MOVT_BREL:
12192 {
12193 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12194
12195 if (globals->use_rel)
12196 {
12197 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
12198 signed_addend = (addend ^ 0x8000) - 0x8000;
12199 }
12200
12201 value += signed_addend;
12202
12203 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
12204 value -= (input_section->output_section->vma
12205 + input_section->output_offset + rel->r_offset);
12206
12207 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
12208 return bfd_reloc_overflow;
12209
12210 if (branch_type == ST_BRANCH_TO_THUMB)
12211 value |= 1;
12212
12213 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
12214 || r_type == R_ARM_MOVT_BREL)
12215 value >>= 16;
12216
12217 insn &= 0xfff0f000;
12218 insn |= value & 0xfff;
12219 insn |= (value & 0xf000) << 4;
12220 bfd_put_32 (input_bfd, insn, hit_data);
12221 }
12222 return bfd_reloc_ok;
12223
12224 case R_ARM_THM_MOVW_ABS_NC:
12225 case R_ARM_THM_MOVT_ABS:
12226 case R_ARM_THM_MOVW_PREL_NC:
12227 case R_ARM_THM_MOVT_PREL:
12228 /* Until we properly support segment-base-relative addressing then
12229 we assume the segment base to be zero, as for the above relocations.
12230 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
12231 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
12232 as R_ARM_THM_MOVT_ABS. */
12233 case R_ARM_THM_MOVW_BREL_NC:
12234 case R_ARM_THM_MOVW_BREL:
12235 case R_ARM_THM_MOVT_BREL:
12236 {
12237 bfd_vma insn;
12238
12239 insn = bfd_get_16 (input_bfd, hit_data) << 16;
12240 insn |= bfd_get_16 (input_bfd, hit_data + 2);
12241
12242 if (globals->use_rel)
12243 {
12244 addend = ((insn >> 4) & 0xf000)
12245 | ((insn >> 15) & 0x0800)
12246 | ((insn >> 4) & 0x0700)
12247 | (insn & 0x00ff);
12248 signed_addend = (addend ^ 0x8000) - 0x8000;
12249 }
12250
12251 value += signed_addend;
12252
12253 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
12254 value -= (input_section->output_section->vma
12255 + input_section->output_offset + rel->r_offset);
12256
12257 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
12258 return bfd_reloc_overflow;
12259
12260 if (branch_type == ST_BRANCH_TO_THUMB)
12261 value |= 1;
12262
12263 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
12264 || r_type == R_ARM_THM_MOVT_BREL)
12265 value >>= 16;
12266
12267 insn &= 0xfbf08f00;
12268 insn |= (value & 0xf000) << 4;
12269 insn |= (value & 0x0800) << 15;
12270 insn |= (value & 0x0700) << 4;
12271 insn |= (value & 0x00ff);
12272
12273 bfd_put_16 (input_bfd, insn >> 16, hit_data);
12274 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
12275 }
12276 return bfd_reloc_ok;
12277
12278 case R_ARM_ALU_PC_G0_NC:
12279 case R_ARM_ALU_PC_G1_NC:
12280 case R_ARM_ALU_PC_G0:
12281 case R_ARM_ALU_PC_G1:
12282 case R_ARM_ALU_PC_G2:
12283 case R_ARM_ALU_SB_G0_NC:
12284 case R_ARM_ALU_SB_G1_NC:
12285 case R_ARM_ALU_SB_G0:
12286 case R_ARM_ALU_SB_G1:
12287 case R_ARM_ALU_SB_G2:
12288 {
12289 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12290 bfd_vma pc = input_section->output_section->vma
12291 + input_section->output_offset + rel->r_offset;
12292 /* sb is the origin of the *segment* containing the symbol. */
12293 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12294 bfd_vma residual;
12295 bfd_vma g_n;
12296 bfd_signed_vma signed_value;
12297 int group = 0;
12298
12299 /* Determine which group of bits to select. */
12300 switch (r_type)
12301 {
12302 case R_ARM_ALU_PC_G0_NC:
12303 case R_ARM_ALU_PC_G0:
12304 case R_ARM_ALU_SB_G0_NC:
12305 case R_ARM_ALU_SB_G0:
12306 group = 0;
12307 break;
12308
12309 case R_ARM_ALU_PC_G1_NC:
12310 case R_ARM_ALU_PC_G1:
12311 case R_ARM_ALU_SB_G1_NC:
12312 case R_ARM_ALU_SB_G1:
12313 group = 1;
12314 break;
12315
12316 case R_ARM_ALU_PC_G2:
12317 case R_ARM_ALU_SB_G2:
12318 group = 2;
12319 break;
12320
12321 default:
12322 abort ();
12323 }
12324
12325 /* If REL, extract the addend from the insn. If RELA, it will
12326 have already been fetched for us. */
12327 if (globals->use_rel)
12328 {
12329 int negative;
12330 bfd_vma constant = insn & 0xff;
12331 bfd_vma rotation = (insn & 0xf00) >> 8;
12332
12333 if (rotation == 0)
12334 signed_addend = constant;
12335 else
12336 {
12337 /* Compensate for the fact that in the instruction, the
12338 rotation is stored in multiples of 2 bits. */
12339 rotation *= 2;
12340
12341 /* Rotate "constant" right by "rotation" bits. */
12342 signed_addend = (constant >> rotation) |
12343 (constant << (8 * sizeof (bfd_vma) - rotation));
12344 }
12345
12346 /* Determine if the instruction is an ADD or a SUB.
12347 (For REL, this determines the sign of the addend.) */
12348 negative = identify_add_or_sub (insn);
12349 if (negative == 0)
12350 {
12351 _bfd_error_handler
12352 /* xgettext:c-format */
12353 (_("%pB(%pA+%#" PRIx64 "): only ADD or SUB instructions "
12354 "are allowed for ALU group relocations"),
12355 input_bfd, input_section, (uint64_t) rel->r_offset);
12356 return bfd_reloc_overflow;
12357 }
12358
12359 signed_addend *= negative;
12360 }
12361
12362 /* Compute the value (X) to go in the place. */
12363 if (r_type == R_ARM_ALU_PC_G0_NC
12364 || r_type == R_ARM_ALU_PC_G1_NC
12365 || r_type == R_ARM_ALU_PC_G0
12366 || r_type == R_ARM_ALU_PC_G1
12367 || r_type == R_ARM_ALU_PC_G2)
12368 /* PC relative. */
12369 signed_value = value - pc + signed_addend;
12370 else
12371 /* Section base relative. */
12372 signed_value = value - sb + signed_addend;
12373
12374 /* If the target symbol is a Thumb function, then set the
12375 Thumb bit in the address. */
12376 if (branch_type == ST_BRANCH_TO_THUMB)
12377 signed_value |= 1;
12378
12379 /* Calculate the value of the relevant G_n, in encoded
12380 constant-with-rotation format. */
12381 g_n = calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12382 group, &residual);
12383
12384 /* Check for overflow if required. */
12385 if ((r_type == R_ARM_ALU_PC_G0
12386 || r_type == R_ARM_ALU_PC_G1
12387 || r_type == R_ARM_ALU_PC_G2
12388 || r_type == R_ARM_ALU_SB_G0
12389 || r_type == R_ARM_ALU_SB_G1
12390 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
12391 {
12392 _bfd_error_handler
12393 /* xgettext:c-format */
12394 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
12395 "splitting %#" PRIx64 " for group relocation %s"),
12396 input_bfd, input_section, (uint64_t) rel->r_offset,
12397 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12398 howto->name);
12399 return bfd_reloc_overflow;
12400 }
12401
12402 /* Mask out the value and the ADD/SUB part of the opcode; take care
12403 not to destroy the S bit. */
12404 insn &= 0xff1ff000;
12405
12406 /* Set the opcode according to whether the value to go in the
12407 place is negative. */
12408 if (signed_value < 0)
12409 insn |= 1 << 22;
12410 else
12411 insn |= 1 << 23;
12412
12413 /* Encode the offset. */
12414 insn |= g_n;
12415
12416 bfd_put_32 (input_bfd, insn, hit_data);
12417 }
12418 return bfd_reloc_ok;
12419
12420 case R_ARM_LDR_PC_G0:
12421 case R_ARM_LDR_PC_G1:
12422 case R_ARM_LDR_PC_G2:
12423 case R_ARM_LDR_SB_G0:
12424 case R_ARM_LDR_SB_G1:
12425 case R_ARM_LDR_SB_G2:
12426 {
12427 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12428 bfd_vma pc = input_section->output_section->vma
12429 + input_section->output_offset + rel->r_offset;
12430 /* sb is the origin of the *segment* containing the symbol. */
12431 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12432 bfd_vma residual;
12433 bfd_signed_vma signed_value;
12434 int group = 0;
12435
12436 /* Determine which groups of bits to calculate. */
12437 switch (r_type)
12438 {
12439 case R_ARM_LDR_PC_G0:
12440 case R_ARM_LDR_SB_G0:
12441 group = 0;
12442 break;
12443
12444 case R_ARM_LDR_PC_G1:
12445 case R_ARM_LDR_SB_G1:
12446 group = 1;
12447 break;
12448
12449 case R_ARM_LDR_PC_G2:
12450 case R_ARM_LDR_SB_G2:
12451 group = 2;
12452 break;
12453
12454 default:
12455 abort ();
12456 }
12457
12458 /* If REL, extract the addend from the insn. If RELA, it will
12459 have already been fetched for us. */
12460 if (globals->use_rel)
12461 {
12462 int negative = (insn & (1 << 23)) ? 1 : -1;
12463 signed_addend = negative * (insn & 0xfff);
12464 }
12465
12466 /* Compute the value (X) to go in the place. */
12467 if (r_type == R_ARM_LDR_PC_G0
12468 || r_type == R_ARM_LDR_PC_G1
12469 || r_type == R_ARM_LDR_PC_G2)
12470 /* PC relative. */
12471 signed_value = value - pc + signed_addend;
12472 else
12473 /* Section base relative. */
12474 signed_value = value - sb + signed_addend;
12475
12476 /* Calculate the value of the relevant G_{n-1} to obtain
12477 the residual at that stage. */
12478 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12479 group - 1, &residual);
12480
12481 /* Check for overflow. */
12482 if (residual >= 0x1000)
12483 {
12484 _bfd_error_handler
12485 /* xgettext:c-format */
12486 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
12487 "splitting %#" PRIx64 " for group relocation %s"),
12488 input_bfd, input_section, (uint64_t) rel->r_offset,
12489 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12490 howto->name);
12491 return bfd_reloc_overflow;
12492 }
12493
12494 /* Mask out the value and U bit. */
12495 insn &= 0xff7ff000;
12496
12497 /* Set the U bit if the value to go in the place is non-negative. */
12498 if (signed_value >= 0)
12499 insn |= 1 << 23;
12500
12501 /* Encode the offset. */
12502 insn |= residual;
12503
12504 bfd_put_32 (input_bfd, insn, hit_data);
12505 }
12506 return bfd_reloc_ok;
12507
12508 case R_ARM_LDRS_PC_G0:
12509 case R_ARM_LDRS_PC_G1:
12510 case R_ARM_LDRS_PC_G2:
12511 case R_ARM_LDRS_SB_G0:
12512 case R_ARM_LDRS_SB_G1:
12513 case R_ARM_LDRS_SB_G2:
12514 {
12515 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12516 bfd_vma pc = input_section->output_section->vma
12517 + input_section->output_offset + rel->r_offset;
12518 /* sb is the origin of the *segment* containing the symbol. */
12519 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12520 bfd_vma residual;
12521 bfd_signed_vma signed_value;
12522 int group = 0;
12523
12524 /* Determine which groups of bits to calculate. */
12525 switch (r_type)
12526 {
12527 case R_ARM_LDRS_PC_G0:
12528 case R_ARM_LDRS_SB_G0:
12529 group = 0;
12530 break;
12531
12532 case R_ARM_LDRS_PC_G1:
12533 case R_ARM_LDRS_SB_G1:
12534 group = 1;
12535 break;
12536
12537 case R_ARM_LDRS_PC_G2:
12538 case R_ARM_LDRS_SB_G2:
12539 group = 2;
12540 break;
12541
12542 default:
12543 abort ();
12544 }
12545
12546 /* If REL, extract the addend from the insn. If RELA, it will
12547 have already been fetched for us. */
12548 if (globals->use_rel)
12549 {
12550 int negative = (insn & (1 << 23)) ? 1 : -1;
12551 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
12552 }
12553
12554 /* Compute the value (X) to go in the place. */
12555 if (r_type == R_ARM_LDRS_PC_G0
12556 || r_type == R_ARM_LDRS_PC_G1
12557 || r_type == R_ARM_LDRS_PC_G2)
12558 /* PC relative. */
12559 signed_value = value - pc + signed_addend;
12560 else
12561 /* Section base relative. */
12562 signed_value = value - sb + signed_addend;
12563
12564 /* Calculate the value of the relevant G_{n-1} to obtain
12565 the residual at that stage. */
12566 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12567 group - 1, &residual);
12568
12569 /* Check for overflow. */
12570 if (residual >= 0x100)
12571 {
12572 _bfd_error_handler
12573 /* xgettext:c-format */
12574 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
12575 "splitting %#" PRIx64 " for group relocation %s"),
12576 input_bfd, input_section, (uint64_t) rel->r_offset,
12577 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12578 howto->name);
12579 return bfd_reloc_overflow;
12580 }
12581
12582 /* Mask out the value and U bit. */
12583 insn &= 0xff7ff0f0;
12584
12585 /* Set the U bit if the value to go in the place is non-negative. */
12586 if (signed_value >= 0)
12587 insn |= 1 << 23;
12588
12589 /* Encode the offset. */
12590 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
12591
12592 bfd_put_32 (input_bfd, insn, hit_data);
12593 }
12594 return bfd_reloc_ok;
12595
12596 case R_ARM_LDC_PC_G0:
12597 case R_ARM_LDC_PC_G1:
12598 case R_ARM_LDC_PC_G2:
12599 case R_ARM_LDC_SB_G0:
12600 case R_ARM_LDC_SB_G1:
12601 case R_ARM_LDC_SB_G2:
12602 {
12603 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12604 bfd_vma pc = input_section->output_section->vma
12605 + input_section->output_offset + rel->r_offset;
12606 /* sb is the origin of the *segment* containing the symbol. */
12607 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12608 bfd_vma residual;
12609 bfd_signed_vma signed_value;
12610 int group = 0;
12611
12612 /* Determine which groups of bits to calculate. */
12613 switch (r_type)
12614 {
12615 case R_ARM_LDC_PC_G0:
12616 case R_ARM_LDC_SB_G0:
12617 group = 0;
12618 break;
12619
12620 case R_ARM_LDC_PC_G1:
12621 case R_ARM_LDC_SB_G1:
12622 group = 1;
12623 break;
12624
12625 case R_ARM_LDC_PC_G2:
12626 case R_ARM_LDC_SB_G2:
12627 group = 2;
12628 break;
12629
12630 default:
12631 abort ();
12632 }
12633
12634 /* If REL, extract the addend from the insn. If RELA, it will
12635 have already been fetched for us. */
12636 if (globals->use_rel)
12637 {
12638 int negative = (insn & (1 << 23)) ? 1 : -1;
12639 signed_addend = negative * ((insn & 0xff) << 2);
12640 }
12641
12642 /* Compute the value (X) to go in the place. */
12643 if (r_type == R_ARM_LDC_PC_G0
12644 || r_type == R_ARM_LDC_PC_G1
12645 || r_type == R_ARM_LDC_PC_G2)
12646 /* PC relative. */
12647 signed_value = value - pc + signed_addend;
12648 else
12649 /* Section base relative. */
12650 signed_value = value - sb + signed_addend;
12651
12652 /* Calculate the value of the relevant G_{n-1} to obtain
12653 the residual at that stage. */
12654 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12655 group - 1, &residual);
12656
12657 /* Check for overflow. (The absolute value to go in the place must be
12658 divisible by four and, after having been divided by four, must
12659 fit in eight bits.) */
12660 if ((residual & 0x3) != 0 || residual >= 0x400)
12661 {
12662 _bfd_error_handler
12663 /* xgettext:c-format */
12664 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
12665 "splitting %#" PRIx64 " for group relocation %s"),
12666 input_bfd, input_section, (uint64_t) rel->r_offset,
12667 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12668 howto->name);
12669 return bfd_reloc_overflow;
12670 }
12671
12672 /* Mask out the value and U bit. */
12673 insn &= 0xff7fff00;
12674
12675 /* Set the U bit if the value to go in the place is non-negative. */
12676 if (signed_value >= 0)
12677 insn |= 1 << 23;
12678
12679 /* Encode the offset. */
12680 insn |= residual >> 2;
12681
12682 bfd_put_32 (input_bfd, insn, hit_data);
12683 }
12684 return bfd_reloc_ok;
12685
12686 case R_ARM_THM_ALU_ABS_G0_NC:
12687 case R_ARM_THM_ALU_ABS_G1_NC:
12688 case R_ARM_THM_ALU_ABS_G2_NC:
12689 case R_ARM_THM_ALU_ABS_G3_NC:
12690 {
12691 const int shift_array[4] = {0, 8, 16, 24};
12692 bfd_vma insn = bfd_get_16 (input_bfd, hit_data);
12693 bfd_vma addr = value;
12694 int shift = shift_array[r_type - R_ARM_THM_ALU_ABS_G0_NC];
12695
12696 /* Compute address. */
12697 if (globals->use_rel)
12698 signed_addend = insn & 0xff;
12699 addr += signed_addend;
12700 if (branch_type == ST_BRANCH_TO_THUMB)
12701 addr |= 1;
12702 /* Clean imm8 insn. */
12703 insn &= 0xff00;
12704 /* And update with correct part of address. */
12705 insn |= (addr >> shift) & 0xff;
12706 /* Update insn. */
12707 bfd_put_16 (input_bfd, insn, hit_data);
12708 }
12709
12710 *unresolved_reloc_p = FALSE;
12711 return bfd_reloc_ok;
12712
12713 case R_ARM_GOTOFFFUNCDESC:
12714 {
12715 if (h == NULL)
12716 {
12717 struct fdpic_local *local_fdpic_cnts = elf32_arm_local_fdpic_cnts(input_bfd);
12718 int dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12719 int offset = local_fdpic_cnts[r_symndx].funcdesc_offset & ~1;
12720 bfd_vma addr = dynreloc_value - sym_sec->output_section->vma;
12721 bfd_vma seg = -1;
12722
12723 if (bfd_link_pic(info) && dynindx == 0)
12724 abort();
12725
12726 /* Resolve relocation. */
12727 bfd_put_32(output_bfd, (offset + sgot->output_offset)
12728 , contents + rel->r_offset);
12729 /* Emit R_ARM_FUNCDESC_VALUE or two fixups on funcdesc if
12730 not done yet. */
12731 arm_elf_fill_funcdesc(output_bfd, info,
12732 &local_fdpic_cnts[r_symndx].funcdesc_offset,
12733 dynindx, offset, addr, dynreloc_value, seg);
12734 }
12735 else
12736 {
12737 int dynindx;
12738 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12739 bfd_vma addr;
12740 bfd_vma seg = -1;
12741
12742 /* For static binaries, sym_sec can be null. */
12743 if (sym_sec)
12744 {
12745 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12746 addr = dynreloc_value - sym_sec->output_section->vma;
12747 }
12748 else
12749 {
12750 dynindx = 0;
12751 addr = 0;
12752 }
12753
12754 if (bfd_link_pic(info) && dynindx == 0)
12755 abort();
12756
12757 /* This case cannot occur since funcdesc is allocated by
12758 the dynamic loader so we cannot resolve the relocation. */
12759 if (h->dynindx != -1)
12760 abort();
12761
12762 /* Resolve relocation. */
12763 bfd_put_32(output_bfd, (offset + sgot->output_offset),
12764 contents + rel->r_offset);
12765 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12766 arm_elf_fill_funcdesc(output_bfd, info,
12767 &eh->fdpic_cnts.funcdesc_offset,
12768 dynindx, offset, addr, dynreloc_value, seg);
12769 }
12770 }
12771 *unresolved_reloc_p = FALSE;
12772 return bfd_reloc_ok;
12773
12774 case R_ARM_GOTFUNCDESC:
12775 {
12776 if (h != NULL)
12777 {
12778 Elf_Internal_Rela outrel;
12779
12780 /* Resolve relocation. */
12781 bfd_put_32(output_bfd, ((eh->fdpic_cnts.gotfuncdesc_offset & ~1)
12782 + sgot->output_offset),
12783 contents + rel->r_offset);
12784 /* Add funcdesc and associated R_ARM_FUNCDESC_VALUE. */
12785 if(h->dynindx == -1)
12786 {
12787 int dynindx;
12788 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12789 bfd_vma addr;
12790 bfd_vma seg = -1;
12791
12792 /* For static binaries sym_sec can be null. */
12793 if (sym_sec)
12794 {
12795 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12796 addr = dynreloc_value - sym_sec->output_section->vma;
12797 }
12798 else
12799 {
12800 dynindx = 0;
12801 addr = 0;
12802 }
12803
12804 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12805 arm_elf_fill_funcdesc(output_bfd, info,
12806 &eh->fdpic_cnts.funcdesc_offset,
12807 dynindx, offset, addr, dynreloc_value, seg);
12808 }
12809
12810 /* Add a dynamic relocation on GOT entry if not already done. */
12811 if ((eh->fdpic_cnts.gotfuncdesc_offset & 1) == 0)
12812 {
12813 if (h->dynindx == -1)
12814 {
12815 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12816 if (h->root.type == bfd_link_hash_undefweak)
12817 bfd_put_32(output_bfd, 0, sgot->contents
12818 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1));
12819 else
12820 bfd_put_32(output_bfd, sgot->output_section->vma
12821 + sgot->output_offset
12822 + (eh->fdpic_cnts.funcdesc_offset & ~1),
12823 sgot->contents
12824 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1));
12825 }
12826 else
12827 {
12828 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_FUNCDESC);
12829 }
12830 outrel.r_offset = sgot->output_section->vma
12831 + sgot->output_offset
12832 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1);
12833 outrel.r_addend = 0;
12834 if (h->dynindx == -1 && !bfd_link_pic(info))
12835 if (h->root.type == bfd_link_hash_undefweak)
12836 arm_elf_add_rofixup(output_bfd, globals->srofixup, -1);
12837 else
12838 arm_elf_add_rofixup(output_bfd, globals->srofixup,
12839 outrel.r_offset);
12840 else
12841 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12842 eh->fdpic_cnts.gotfuncdesc_offset |= 1;
12843 }
12844 }
12845 else
12846 {
12847 /* Such relocation on static function should not have been
12848 emitted by the compiler. */
12849 abort();
12850 }
12851 }
12852 *unresolved_reloc_p = FALSE;
12853 return bfd_reloc_ok;
12854
12855 case R_ARM_FUNCDESC:
12856 {
12857 if (h == NULL)
12858 {
12859 struct fdpic_local *local_fdpic_cnts = elf32_arm_local_fdpic_cnts(input_bfd);
12860 Elf_Internal_Rela outrel;
12861 int dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12862 int offset = local_fdpic_cnts[r_symndx].funcdesc_offset & ~1;
12863 bfd_vma addr = dynreloc_value - sym_sec->output_section->vma;
12864 bfd_vma seg = -1;
12865
12866 if (bfd_link_pic(info) && dynindx == 0)
12867 abort();
12868
12869 /* Replace static FUNCDESC relocation with a
12870 R_ARM_RELATIVE dynamic relocation or with a rofixup for
12871 executable. */
12872 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12873 outrel.r_offset = input_section->output_section->vma
12874 + input_section->output_offset + rel->r_offset;
12875 outrel.r_addend = 0;
12876 if (bfd_link_pic(info))
12877 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12878 else
12879 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset);
12880
12881 bfd_put_32 (input_bfd, sgot->output_section->vma
12882 + sgot->output_offset + offset, hit_data);
12883
12884 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12885 arm_elf_fill_funcdesc(output_bfd, info,
12886 &local_fdpic_cnts[r_symndx].funcdesc_offset,
12887 dynindx, offset, addr, dynreloc_value, seg);
12888 }
12889 else
12890 {
12891 if (h->dynindx == -1)
12892 {
12893 int dynindx;
12894 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12895 bfd_vma addr;
12896 bfd_vma seg = -1;
12897 Elf_Internal_Rela outrel;
12898
12899 /* For static binaries sym_sec can be null. */
12900 if (sym_sec)
12901 {
12902 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12903 addr = dynreloc_value - sym_sec->output_section->vma;
12904 }
12905 else
12906 {
12907 dynindx = 0;
12908 addr = 0;
12909 }
12910
12911 if (bfd_link_pic(info) && dynindx == 0)
12912 abort();
12913
12914 /* Replace static FUNCDESC relocation with a
12915 R_ARM_RELATIVE dynamic relocation. */
12916 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12917 outrel.r_offset = input_section->output_section->vma
12918 + input_section->output_offset + rel->r_offset;
12919 outrel.r_addend = 0;
12920 if (bfd_link_pic(info))
12921 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12922 else
12923 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset);
12924
12925 bfd_put_32 (input_bfd, sgot->output_section->vma
12926 + sgot->output_offset + offset, hit_data);
12927
12928 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12929 arm_elf_fill_funcdesc(output_bfd, info,
12930 &eh->fdpic_cnts.funcdesc_offset,
12931 dynindx, offset, addr, dynreloc_value, seg);
12932 }
12933 else
12934 {
12935 Elf_Internal_Rela outrel;
12936
12937 /* Add a dynamic relocation. */
12938 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_FUNCDESC);
12939 outrel.r_offset = input_section->output_section->vma
12940 + input_section->output_offset + rel->r_offset;
12941 outrel.r_addend = 0;
12942 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12943 }
12944 }
12945 }
12946 *unresolved_reloc_p = FALSE;
12947 return bfd_reloc_ok;
12948
12949 case R_ARM_THM_BF16:
12950 {
12951 bfd_vma relocation;
12952 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
12953 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
12954
12955 if (globals->use_rel)
12956 {
12957 bfd_vma immA = (upper_insn & 0x001f);
12958 bfd_vma immB = (lower_insn & 0x07fe) >> 1;
12959 bfd_vma immC = (lower_insn & 0x0800) >> 11;
12960 addend = (immA << 12);
12961 addend |= (immB << 2);
12962 addend |= (immC << 1);
12963 addend |= 1;
12964 /* Sign extend. */
12965 signed_addend = (addend & 0x10000) ? addend - (1 << 17) : addend;
12966 }
12967
12968 relocation = value + signed_addend;
12969 relocation -= (input_section->output_section->vma
12970 + input_section->output_offset
12971 + rel->r_offset);
12972
12973 /* Put RELOCATION back into the insn. */
12974 {
12975 bfd_vma immA = (relocation & 0x0001f000) >> 12;
12976 bfd_vma immB = (relocation & 0x00000ffc) >> 2;
12977 bfd_vma immC = (relocation & 0x00000002) >> 1;
12978
12979 upper_insn = (upper_insn & 0xffe0) | immA;
12980 lower_insn = (lower_insn & 0xf001) | (immC << 11) | (immB << 1);
12981 }
12982
12983 /* Put the relocated value back in the object file: */
12984 bfd_put_16 (input_bfd, upper_insn, hit_data);
12985 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
12986
12987 return bfd_reloc_ok;
12988 }
12989
12990 case R_ARM_THM_BF12:
12991 {
12992 bfd_vma relocation;
12993 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
12994 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
12995
12996 if (globals->use_rel)
12997 {
12998 bfd_vma immA = (upper_insn & 0x0001);
12999 bfd_vma immB = (lower_insn & 0x07fe) >> 1;
13000 bfd_vma immC = (lower_insn & 0x0800) >> 11;
13001 addend = (immA << 12);
13002 addend |= (immB << 2);
13003 addend |= (immC << 1);
13004 addend |= 1;
13005 /* Sign extend. */
13006 addend = (addend & 0x1000) ? addend - (1 << 13) : addend;
13007 signed_addend = addend;
13008 }
13009
13010 relocation = value + signed_addend;
13011 relocation -= (input_section->output_section->vma
13012 + input_section->output_offset
13013 + rel->r_offset);
13014
13015 /* Put RELOCATION back into the insn. */
13016 {
13017 bfd_vma immA = (relocation & 0x00001000) >> 12;
13018 bfd_vma immB = (relocation & 0x00000ffc) >> 2;
13019 bfd_vma immC = (relocation & 0x00000002) >> 1;
13020
13021 upper_insn = (upper_insn & 0xfffe) | immA;
13022 lower_insn = (lower_insn & 0xf001) | (immC << 11) | (immB << 1);
13023 }
13024
13025 /* Put the relocated value back in the object file: */
13026 bfd_put_16 (input_bfd, upper_insn, hit_data);
13027 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
13028
13029 return bfd_reloc_ok;
13030 }
13031
13032 case R_ARM_THM_BF18:
13033 {
13034 bfd_vma relocation;
13035 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
13036 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
13037
13038 if (globals->use_rel)
13039 {
13040 bfd_vma immA = (upper_insn & 0x007f);
13041 bfd_vma immB = (lower_insn & 0x07fe) >> 1;
13042 bfd_vma immC = (lower_insn & 0x0800) >> 11;
13043 addend = (immA << 12);
13044 addend |= (immB << 2);
13045 addend |= (immC << 1);
13046 addend |= 1;
13047 /* Sign extend. */
13048 addend = (addend & 0x40000) ? addend - (1 << 19) : addend;
13049 signed_addend = addend;
13050 }
13051
13052 relocation = value + signed_addend;
13053 relocation -= (input_section->output_section->vma
13054 + input_section->output_offset
13055 + rel->r_offset);
13056
13057 /* Put RELOCATION back into the insn. */
13058 {
13059 bfd_vma immA = (relocation & 0x0007f000) >> 12;
13060 bfd_vma immB = (relocation & 0x00000ffc) >> 2;
13061 bfd_vma immC = (relocation & 0x00000002) >> 1;
13062
13063 upper_insn = (upper_insn & 0xff80) | immA;
13064 lower_insn = (lower_insn & 0xf001) | (immC << 11) | (immB << 1);
13065 }
13066
13067 /* Put the relocated value back in the object file: */
13068 bfd_put_16 (input_bfd, upper_insn, hit_data);
13069 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
13070
13071 return bfd_reloc_ok;
13072 }
13073
13074 default:
13075 return bfd_reloc_notsupported;
13076 }
13077 }
13078
13079 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
13080 static void
13081 arm_add_to_rel (bfd * abfd,
13082 bfd_byte * address,
13083 reloc_howto_type * howto,
13084 bfd_signed_vma increment)
13085 {
13086 bfd_signed_vma addend;
13087
13088 if (howto->type == R_ARM_THM_CALL
13089 || howto->type == R_ARM_THM_JUMP24)
13090 {
13091 int upper_insn, lower_insn;
13092 int upper, lower;
13093
13094 upper_insn = bfd_get_16 (abfd, address);
13095 lower_insn = bfd_get_16 (abfd, address + 2);
13096 upper = upper_insn & 0x7ff;
13097 lower = lower_insn & 0x7ff;
13098
13099 addend = (upper << 12) | (lower << 1);
13100 addend += increment;
13101 addend >>= 1;
13102
13103 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
13104 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
13105
13106 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
13107 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
13108 }
13109 else
13110 {
13111 bfd_vma contents;
13112
13113 contents = bfd_get_32 (abfd, address);
13114
13115 /* Get the (signed) value from the instruction. */
13116 addend = contents & howto->src_mask;
13117 if (addend & ((howto->src_mask + 1) >> 1))
13118 {
13119 bfd_signed_vma mask;
13120
13121 mask = -1;
13122 mask &= ~ howto->src_mask;
13123 addend |= mask;
13124 }
13125
13126 /* Add in the increment, (which is a byte value). */
13127 switch (howto->type)
13128 {
13129 default:
13130 addend += increment;
13131 break;
13132
13133 case R_ARM_PC24:
13134 case R_ARM_PLT32:
13135 case R_ARM_CALL:
13136 case R_ARM_JUMP24:
13137 addend <<= howto->size;
13138 addend += increment;
13139
13140 /* Should we check for overflow here ? */
13141
13142 /* Drop any undesired bits. */
13143 addend >>= howto->rightshift;
13144 break;
13145 }
13146
13147 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
13148
13149 bfd_put_32 (abfd, contents, address);
13150 }
13151 }
13152
13153 #define IS_ARM_TLS_RELOC(R_TYPE) \
13154 ((R_TYPE) == R_ARM_TLS_GD32 \
13155 || (R_TYPE) == R_ARM_TLS_GD32_FDPIC \
13156 || (R_TYPE) == R_ARM_TLS_LDO32 \
13157 || (R_TYPE) == R_ARM_TLS_LDM32 \
13158 || (R_TYPE) == R_ARM_TLS_LDM32_FDPIC \
13159 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
13160 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
13161 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
13162 || (R_TYPE) == R_ARM_TLS_LE32 \
13163 || (R_TYPE) == R_ARM_TLS_IE32 \
13164 || (R_TYPE) == R_ARM_TLS_IE32_FDPIC \
13165 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
13166
13167 /* Specific set of relocations for the gnu tls dialect. */
13168 #define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
13169 ((R_TYPE) == R_ARM_TLS_GOTDESC \
13170 || (R_TYPE) == R_ARM_TLS_CALL \
13171 || (R_TYPE) == R_ARM_THM_TLS_CALL \
13172 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
13173 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
13174
13175 /* Relocate an ARM ELF section. */
13176
13177 static bfd_boolean
13178 elf32_arm_relocate_section (bfd * output_bfd,
13179 struct bfd_link_info * info,
13180 bfd * input_bfd,
13181 asection * input_section,
13182 bfd_byte * contents,
13183 Elf_Internal_Rela * relocs,
13184 Elf_Internal_Sym * local_syms,
13185 asection ** local_sections)
13186 {
13187 Elf_Internal_Shdr *symtab_hdr;
13188 struct elf_link_hash_entry **sym_hashes;
13189 Elf_Internal_Rela *rel;
13190 Elf_Internal_Rela *relend;
13191 const char *name;
13192 struct elf32_arm_link_hash_table * globals;
13193
13194 globals = elf32_arm_hash_table (info);
13195 if (globals == NULL)
13196 return FALSE;
13197
13198 symtab_hdr = & elf_symtab_hdr (input_bfd);
13199 sym_hashes = elf_sym_hashes (input_bfd);
13200
13201 rel = relocs;
13202 relend = relocs + input_section->reloc_count;
13203 for (; rel < relend; rel++)
13204 {
13205 int r_type;
13206 reloc_howto_type * howto;
13207 unsigned long r_symndx;
13208 Elf_Internal_Sym * sym;
13209 asection * sec;
13210 struct elf_link_hash_entry * h;
13211 bfd_vma relocation;
13212 bfd_reloc_status_type r;
13213 arelent bfd_reloc;
13214 char sym_type;
13215 bfd_boolean unresolved_reloc = FALSE;
13216 char *error_message = NULL;
13217
13218 r_symndx = ELF32_R_SYM (rel->r_info);
13219 r_type = ELF32_R_TYPE (rel->r_info);
13220 r_type = arm_real_reloc_type (globals, r_type);
13221
13222 if ( r_type == R_ARM_GNU_VTENTRY
13223 || r_type == R_ARM_GNU_VTINHERIT)
13224 continue;
13225
13226 howto = bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
13227
13228 if (howto == NULL)
13229 return _bfd_unrecognized_reloc (input_bfd, input_section, r_type);
13230
13231 h = NULL;
13232 sym = NULL;
13233 sec = NULL;
13234
13235 if (r_symndx < symtab_hdr->sh_info)
13236 {
13237 sym = local_syms + r_symndx;
13238 sym_type = ELF32_ST_TYPE (sym->st_info);
13239 sec = local_sections[r_symndx];
13240
13241 /* An object file might have a reference to a local
13242 undefined symbol. This is a daft object file, but we
13243 should at least do something about it. V4BX & NONE
13244 relocations do not use the symbol and are explicitly
13245 allowed to use the undefined symbol, so allow those.
13246 Likewise for relocations against STN_UNDEF. */
13247 if (r_type != R_ARM_V4BX
13248 && r_type != R_ARM_NONE
13249 && r_symndx != STN_UNDEF
13250 && bfd_is_und_section (sec)
13251 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
13252 (*info->callbacks->undefined_symbol)
13253 (info, bfd_elf_string_from_elf_section
13254 (input_bfd, symtab_hdr->sh_link, sym->st_name),
13255 input_bfd, input_section,
13256 rel->r_offset, TRUE);
13257
13258 if (globals->use_rel)
13259 {
13260 relocation = (sec->output_section->vma
13261 + sec->output_offset
13262 + sym->st_value);
13263 if (!bfd_link_relocatable (info)
13264 && (sec->flags & SEC_MERGE)
13265 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
13266 {
13267 asection *msec;
13268 bfd_vma addend, value;
13269
13270 switch (r_type)
13271 {
13272 case R_ARM_MOVW_ABS_NC:
13273 case R_ARM_MOVT_ABS:
13274 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
13275 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
13276 addend = (addend ^ 0x8000) - 0x8000;
13277 break;
13278
13279 case R_ARM_THM_MOVW_ABS_NC:
13280 case R_ARM_THM_MOVT_ABS:
13281 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
13282 << 16;
13283 value |= bfd_get_16 (input_bfd,
13284 contents + rel->r_offset + 2);
13285 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
13286 | ((value & 0x04000000) >> 15);
13287 addend = (addend ^ 0x8000) - 0x8000;
13288 break;
13289
13290 default:
13291 if (howto->rightshift
13292 || (howto->src_mask & (howto->src_mask + 1)))
13293 {
13294 _bfd_error_handler
13295 /* xgettext:c-format */
13296 (_("%pB(%pA+%#" PRIx64 "): "
13297 "%s relocation against SEC_MERGE section"),
13298 input_bfd, input_section,
13299 (uint64_t) rel->r_offset, howto->name);
13300 return FALSE;
13301 }
13302
13303 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
13304
13305 /* Get the (signed) value from the instruction. */
13306 addend = value & howto->src_mask;
13307 if (addend & ((howto->src_mask + 1) >> 1))
13308 {
13309 bfd_signed_vma mask;
13310
13311 mask = -1;
13312 mask &= ~ howto->src_mask;
13313 addend |= mask;
13314 }
13315 break;
13316 }
13317
13318 msec = sec;
13319 addend =
13320 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
13321 - relocation;
13322 addend += msec->output_section->vma + msec->output_offset;
13323
13324 /* Cases here must match those in the preceding
13325 switch statement. */
13326 switch (r_type)
13327 {
13328 case R_ARM_MOVW_ABS_NC:
13329 case R_ARM_MOVT_ABS:
13330 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
13331 | (addend & 0xfff);
13332 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
13333 break;
13334
13335 case R_ARM_THM_MOVW_ABS_NC:
13336 case R_ARM_THM_MOVT_ABS:
13337 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
13338 | (addend & 0xff) | ((addend & 0x0800) << 15);
13339 bfd_put_16 (input_bfd, value >> 16,
13340 contents + rel->r_offset);
13341 bfd_put_16 (input_bfd, value,
13342 contents + rel->r_offset + 2);
13343 break;
13344
13345 default:
13346 value = (value & ~ howto->dst_mask)
13347 | (addend & howto->dst_mask);
13348 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
13349 break;
13350 }
13351 }
13352 }
13353 else
13354 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
13355 }
13356 else
13357 {
13358 bfd_boolean warned, ignored;
13359
13360 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
13361 r_symndx, symtab_hdr, sym_hashes,
13362 h, sec, relocation,
13363 unresolved_reloc, warned, ignored);
13364
13365 sym_type = h->type;
13366 }
13367
13368 if (sec != NULL && discarded_section (sec))
13369 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
13370 rel, 1, relend, howto, 0, contents);
13371
13372 if (bfd_link_relocatable (info))
13373 {
13374 /* This is a relocatable link. We don't have to change
13375 anything, unless the reloc is against a section symbol,
13376 in which case we have to adjust according to where the
13377 section symbol winds up in the output section. */
13378 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
13379 {
13380 if (globals->use_rel)
13381 arm_add_to_rel (input_bfd, contents + rel->r_offset,
13382 howto, (bfd_signed_vma) sec->output_offset);
13383 else
13384 rel->r_addend += sec->output_offset;
13385 }
13386 continue;
13387 }
13388
13389 if (h != NULL)
13390 name = h->root.root.string;
13391 else
13392 {
13393 name = (bfd_elf_string_from_elf_section
13394 (input_bfd, symtab_hdr->sh_link, sym->st_name));
13395 if (name == NULL || *name == '\0')
13396 name = bfd_section_name (sec);
13397 }
13398
13399 if (r_symndx != STN_UNDEF
13400 && r_type != R_ARM_NONE
13401 && (h == NULL
13402 || h->root.type == bfd_link_hash_defined
13403 || h->root.type == bfd_link_hash_defweak)
13404 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
13405 {
13406 _bfd_error_handler
13407 ((sym_type == STT_TLS
13408 /* xgettext:c-format */
13409 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
13410 /* xgettext:c-format */
13411 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
13412 input_bfd,
13413 input_section,
13414 (uint64_t) rel->r_offset,
13415 howto->name,
13416 name);
13417 }
13418
13419 /* We call elf32_arm_final_link_relocate unless we're completely
13420 done, i.e., the relaxation produced the final output we want,
13421 and we won't let anybody mess with it. Also, we have to do
13422 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
13423 both in relaxed and non-relaxed cases. */
13424 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
13425 || (IS_ARM_TLS_GNU_RELOC (r_type)
13426 && !((h ? elf32_arm_hash_entry (h)->tls_type :
13427 elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
13428 & GOT_TLS_GDESC)))
13429 {
13430 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
13431 contents, rel, h == NULL);
13432 /* This may have been marked unresolved because it came from
13433 a shared library. But we've just dealt with that. */
13434 unresolved_reloc = 0;
13435 }
13436 else
13437 r = bfd_reloc_continue;
13438
13439 if (r == bfd_reloc_continue)
13440 {
13441 unsigned char branch_type =
13442 h ? ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
13443 : ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
13444
13445 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
13446 input_section, contents, rel,
13447 relocation, info, sec, name,
13448 sym_type, branch_type, h,
13449 &unresolved_reloc,
13450 &error_message);
13451 }
13452
13453 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
13454 because such sections are not SEC_ALLOC and thus ld.so will
13455 not process them. */
13456 if (unresolved_reloc
13457 && !((input_section->flags & SEC_DEBUGGING) != 0
13458 && h->def_dynamic)
13459 && _bfd_elf_section_offset (output_bfd, info, input_section,
13460 rel->r_offset) != (bfd_vma) -1)
13461 {
13462 _bfd_error_handler
13463 /* xgettext:c-format */
13464 (_("%pB(%pA+%#" PRIx64 "): "
13465 "unresolvable %s relocation against symbol `%s'"),
13466 input_bfd,
13467 input_section,
13468 (uint64_t) rel->r_offset,
13469 howto->name,
13470 h->root.root.string);
13471 return FALSE;
13472 }
13473
13474 if (r != bfd_reloc_ok)
13475 {
13476 switch (r)
13477 {
13478 case bfd_reloc_overflow:
13479 /* If the overflowing reloc was to an undefined symbol,
13480 we have already printed one error message and there
13481 is no point complaining again. */
13482 if (!h || h->root.type != bfd_link_hash_undefined)
13483 (*info->callbacks->reloc_overflow)
13484 (info, (h ? &h->root : NULL), name, howto->name,
13485 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
13486 break;
13487
13488 case bfd_reloc_undefined:
13489 (*info->callbacks->undefined_symbol)
13490 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
13491 break;
13492
13493 case bfd_reloc_outofrange:
13494 error_message = _("out of range");
13495 goto common_error;
13496
13497 case bfd_reloc_notsupported:
13498 error_message = _("unsupported relocation");
13499 goto common_error;
13500
13501 case bfd_reloc_dangerous:
13502 /* error_message should already be set. */
13503 goto common_error;
13504
13505 default:
13506 error_message = _("unknown error");
13507 /* Fall through. */
13508
13509 common_error:
13510 BFD_ASSERT (error_message != NULL);
13511 (*info->callbacks->reloc_dangerous)
13512 (info, error_message, input_bfd, input_section, rel->r_offset);
13513 break;
13514 }
13515 }
13516 }
13517
13518 return TRUE;
13519 }
13520
13521 /* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
13522 adds the edit to the start of the list. (The list must be built in order of
13523 ascending TINDEX: the function's callers are primarily responsible for
13524 maintaining that condition). */
13525
13526 static void
13527 add_unwind_table_edit (arm_unwind_table_edit **head,
13528 arm_unwind_table_edit **tail,
13529 arm_unwind_edit_type type,
13530 asection *linked_section,
13531 unsigned int tindex)
13532 {
13533 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
13534 xmalloc (sizeof (arm_unwind_table_edit));
13535
13536 new_edit->type = type;
13537 new_edit->linked_section = linked_section;
13538 new_edit->index = tindex;
13539
13540 if (tindex > 0)
13541 {
13542 new_edit->next = NULL;
13543
13544 if (*tail)
13545 (*tail)->next = new_edit;
13546
13547 (*tail) = new_edit;
13548
13549 if (!*head)
13550 (*head) = new_edit;
13551 }
13552 else
13553 {
13554 new_edit->next = *head;
13555
13556 if (!*tail)
13557 *tail = new_edit;
13558
13559 *head = new_edit;
13560 }
13561 }
13562
13563 static _arm_elf_section_data *get_arm_elf_section_data (asection *);
13564
13565 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
13566 static void
13567 adjust_exidx_size(asection *exidx_sec, int adjust)
13568 {
13569 asection *out_sec;
13570
13571 if (!exidx_sec->rawsize)
13572 exidx_sec->rawsize = exidx_sec->size;
13573
13574 bfd_set_section_size (exidx_sec, exidx_sec->size + adjust);
13575 out_sec = exidx_sec->output_section;
13576 /* Adjust size of output section. */
13577 bfd_set_section_size (out_sec, out_sec->size +adjust);
13578 }
13579
13580 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
13581 static void
13582 insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
13583 {
13584 struct _arm_elf_section_data *exidx_arm_data;
13585
13586 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
13587 add_unwind_table_edit (
13588 &exidx_arm_data->u.exidx.unwind_edit_list,
13589 &exidx_arm_data->u.exidx.unwind_edit_tail,
13590 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
13591
13592 exidx_arm_data->additional_reloc_count++;
13593
13594 adjust_exidx_size(exidx_sec, 8);
13595 }
13596
13597 /* Scan .ARM.exidx tables, and create a list describing edits which should be
13598 made to those tables, such that:
13599
13600 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
13601 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
13602 codes which have been inlined into the index).
13603
13604 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
13605
13606 The edits are applied when the tables are written
13607 (in elf32_arm_write_section). */
13608
13609 bfd_boolean
13610 elf32_arm_fix_exidx_coverage (asection **text_section_order,
13611 unsigned int num_text_sections,
13612 struct bfd_link_info *info,
13613 bfd_boolean merge_exidx_entries)
13614 {
13615 bfd *inp;
13616 unsigned int last_second_word = 0, i;
13617 asection *last_exidx_sec = NULL;
13618 asection *last_text_sec = NULL;
13619 int last_unwind_type = -1;
13620
13621 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
13622 text sections. */
13623 for (inp = info->input_bfds; inp != NULL; inp = inp->link.next)
13624 {
13625 asection *sec;
13626
13627 for (sec = inp->sections; sec != NULL; sec = sec->next)
13628 {
13629 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
13630 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
13631
13632 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
13633 continue;
13634
13635 if (elf_sec->linked_to)
13636 {
13637 Elf_Internal_Shdr *linked_hdr
13638 = &elf_section_data (elf_sec->linked_to)->this_hdr;
13639 struct _arm_elf_section_data *linked_sec_arm_data
13640 = get_arm_elf_section_data (linked_hdr->bfd_section);
13641
13642 if (linked_sec_arm_data == NULL)
13643 continue;
13644
13645 /* Link this .ARM.exidx section back from the text section it
13646 describes. */
13647 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
13648 }
13649 }
13650 }
13651
13652 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
13653 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
13654 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
13655
13656 for (i = 0; i < num_text_sections; i++)
13657 {
13658 asection *sec = text_section_order[i];
13659 asection *exidx_sec;
13660 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
13661 struct _arm_elf_section_data *exidx_arm_data;
13662 bfd_byte *contents = NULL;
13663 int deleted_exidx_bytes = 0;
13664 bfd_vma j;
13665 arm_unwind_table_edit *unwind_edit_head = NULL;
13666 arm_unwind_table_edit *unwind_edit_tail = NULL;
13667 Elf_Internal_Shdr *hdr;
13668 bfd *ibfd;
13669
13670 if (arm_data == NULL)
13671 continue;
13672
13673 exidx_sec = arm_data->u.text.arm_exidx_sec;
13674 if (exidx_sec == NULL)
13675 {
13676 /* Section has no unwind data. */
13677 if (last_unwind_type == 0 || !last_exidx_sec)
13678 continue;
13679
13680 /* Ignore zero sized sections. */
13681 if (sec->size == 0)
13682 continue;
13683
13684 insert_cantunwind_after(last_text_sec, last_exidx_sec);
13685 last_unwind_type = 0;
13686 continue;
13687 }
13688
13689 /* Skip /DISCARD/ sections. */
13690 if (bfd_is_abs_section (exidx_sec->output_section))
13691 continue;
13692
13693 hdr = &elf_section_data (exidx_sec)->this_hdr;
13694 if (hdr->sh_type != SHT_ARM_EXIDX)
13695 continue;
13696
13697 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
13698 if (exidx_arm_data == NULL)
13699 continue;
13700
13701 ibfd = exidx_sec->owner;
13702
13703 if (hdr->contents != NULL)
13704 contents = hdr->contents;
13705 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
13706 /* An error? */
13707 continue;
13708
13709 if (last_unwind_type > 0)
13710 {
13711 unsigned int first_word = bfd_get_32 (ibfd, contents);
13712 /* Add cantunwind if first unwind item does not match section
13713 start. */
13714 if (first_word != sec->vma)
13715 {
13716 insert_cantunwind_after (last_text_sec, last_exidx_sec);
13717 last_unwind_type = 0;
13718 }
13719 }
13720
13721 for (j = 0; j < hdr->sh_size; j += 8)
13722 {
13723 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
13724 int unwind_type;
13725 int elide = 0;
13726
13727 /* An EXIDX_CANTUNWIND entry. */
13728 if (second_word == 1)
13729 {
13730 if (last_unwind_type == 0)
13731 elide = 1;
13732 unwind_type = 0;
13733 }
13734 /* Inlined unwinding data. Merge if equal to previous. */
13735 else if ((second_word & 0x80000000) != 0)
13736 {
13737 if (merge_exidx_entries
13738 && last_second_word == second_word && last_unwind_type == 1)
13739 elide = 1;
13740 unwind_type = 1;
13741 last_second_word = second_word;
13742 }
13743 /* Normal table entry. In theory we could merge these too,
13744 but duplicate entries are likely to be much less common. */
13745 else
13746 unwind_type = 2;
13747
13748 if (elide && !bfd_link_relocatable (info))
13749 {
13750 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
13751 DELETE_EXIDX_ENTRY, NULL, j / 8);
13752
13753 deleted_exidx_bytes += 8;
13754 }
13755
13756 last_unwind_type = unwind_type;
13757 }
13758
13759 /* Free contents if we allocated it ourselves. */
13760 if (contents != hdr->contents)
13761 free (contents);
13762
13763 /* Record edits to be applied later (in elf32_arm_write_section). */
13764 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
13765 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
13766
13767 if (deleted_exidx_bytes > 0)
13768 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
13769
13770 last_exidx_sec = exidx_sec;
13771 last_text_sec = sec;
13772 }
13773
13774 /* Add terminating CANTUNWIND entry. */
13775 if (!bfd_link_relocatable (info) && last_exidx_sec
13776 && last_unwind_type != 0)
13777 insert_cantunwind_after(last_text_sec, last_exidx_sec);
13778
13779 return TRUE;
13780 }
13781
13782 static bfd_boolean
13783 elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
13784 bfd *ibfd, const char *name)
13785 {
13786 asection *sec, *osec;
13787
13788 sec = bfd_get_linker_section (ibfd, name);
13789 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
13790 return TRUE;
13791
13792 osec = sec->output_section;
13793 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
13794 return TRUE;
13795
13796 if (! bfd_set_section_contents (obfd, osec, sec->contents,
13797 sec->output_offset, sec->size))
13798 return FALSE;
13799
13800 return TRUE;
13801 }
13802
13803 static bfd_boolean
13804 elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
13805 {
13806 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
13807 asection *sec, *osec;
13808
13809 if (globals == NULL)
13810 return FALSE;
13811
13812 /* Invoke the regular ELF backend linker to do all the work. */
13813 if (!bfd_elf_final_link (abfd, info))
13814 return FALSE;
13815
13816 /* Process stub sections (eg BE8 encoding, ...). */
13817 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
13818 unsigned int i;
13819 for (i=0; i<htab->top_id; i++)
13820 {
13821 sec = htab->stub_group[i].stub_sec;
13822 /* Only process it once, in its link_sec slot. */
13823 if (sec && i == htab->stub_group[i].link_sec->id)
13824 {
13825 osec = sec->output_section;
13826 elf32_arm_write_section (abfd, info, sec, sec->contents);
13827 if (! bfd_set_section_contents (abfd, osec, sec->contents,
13828 sec->output_offset, sec->size))
13829 return FALSE;
13830 }
13831 }
13832
13833 /* Write out any glue sections now that we have created all the
13834 stubs. */
13835 if (globals->bfd_of_glue_owner != NULL)
13836 {
13837 if (! elf32_arm_output_glue_section (info, abfd,
13838 globals->bfd_of_glue_owner,
13839 ARM2THUMB_GLUE_SECTION_NAME))
13840 return FALSE;
13841
13842 if (! elf32_arm_output_glue_section (info, abfd,
13843 globals->bfd_of_glue_owner,
13844 THUMB2ARM_GLUE_SECTION_NAME))
13845 return FALSE;
13846
13847 if (! elf32_arm_output_glue_section (info, abfd,
13848 globals->bfd_of_glue_owner,
13849 VFP11_ERRATUM_VENEER_SECTION_NAME))
13850 return FALSE;
13851
13852 if (! elf32_arm_output_glue_section (info, abfd,
13853 globals->bfd_of_glue_owner,
13854 STM32L4XX_ERRATUM_VENEER_SECTION_NAME))
13855 return FALSE;
13856
13857 if (! elf32_arm_output_glue_section (info, abfd,
13858 globals->bfd_of_glue_owner,
13859 ARM_BX_GLUE_SECTION_NAME))
13860 return FALSE;
13861 }
13862
13863 return TRUE;
13864 }
13865
13866 /* Return a best guess for the machine number based on the attributes. */
13867
13868 static unsigned int
13869 bfd_arm_get_mach_from_attributes (bfd * abfd)
13870 {
13871 int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch);
13872
13873 switch (arch)
13874 {
13875 case TAG_CPU_ARCH_PRE_V4: return bfd_mach_arm_3M;
13876 case TAG_CPU_ARCH_V4: return bfd_mach_arm_4;
13877 case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T;
13878 case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T;
13879
13880 case TAG_CPU_ARCH_V5TE:
13881 {
13882 char * name;
13883
13884 BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES);
13885 name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s;
13886
13887 if (name)
13888 {
13889 if (strcmp (name, "IWMMXT2") == 0)
13890 return bfd_mach_arm_iWMMXt2;
13891
13892 if (strcmp (name, "IWMMXT") == 0)
13893 return bfd_mach_arm_iWMMXt;
13894
13895 if (strcmp (name, "XSCALE") == 0)
13896 {
13897 int wmmx;
13898
13899 BFD_ASSERT (Tag_WMMX_arch < NUM_KNOWN_OBJ_ATTRIBUTES);
13900 wmmx = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_WMMX_arch].i;
13901 switch (wmmx)
13902 {
13903 case 1: return bfd_mach_arm_iWMMXt;
13904 case 2: return bfd_mach_arm_iWMMXt2;
13905 default: return bfd_mach_arm_XScale;
13906 }
13907 }
13908 }
13909
13910 return bfd_mach_arm_5TE;
13911 }
13912
13913 case TAG_CPU_ARCH_V5TEJ:
13914 return bfd_mach_arm_5TEJ;
13915 case TAG_CPU_ARCH_V6:
13916 return bfd_mach_arm_6;
13917 case TAG_CPU_ARCH_V6KZ:
13918 return bfd_mach_arm_6KZ;
13919 case TAG_CPU_ARCH_V6T2:
13920 return bfd_mach_arm_6T2;
13921 case TAG_CPU_ARCH_V6K:
13922 return bfd_mach_arm_6K;
13923 case TAG_CPU_ARCH_V7:
13924 return bfd_mach_arm_7;
13925 case TAG_CPU_ARCH_V6_M:
13926 return bfd_mach_arm_6M;
13927 case TAG_CPU_ARCH_V6S_M:
13928 return bfd_mach_arm_6SM;
13929 case TAG_CPU_ARCH_V7E_M:
13930 return bfd_mach_arm_7EM;
13931 case TAG_CPU_ARCH_V8:
13932 return bfd_mach_arm_8;
13933 case TAG_CPU_ARCH_V8R:
13934 return bfd_mach_arm_8R;
13935 case TAG_CPU_ARCH_V8M_BASE:
13936 return bfd_mach_arm_8M_BASE;
13937 case TAG_CPU_ARCH_V8M_MAIN:
13938 return bfd_mach_arm_8M_MAIN;
13939 case TAG_CPU_ARCH_V8_1M_MAIN:
13940 return bfd_mach_arm_8_1M_MAIN;
13941
13942 default:
13943 /* Force entry to be added for any new known Tag_CPU_arch value. */
13944 BFD_ASSERT (arch > MAX_TAG_CPU_ARCH);
13945
13946 /* Unknown Tag_CPU_arch value. */
13947 return bfd_mach_arm_unknown;
13948 }
13949 }
13950
13951 /* Set the right machine number. */
13952
13953 static bfd_boolean
13954 elf32_arm_object_p (bfd *abfd)
13955 {
13956 unsigned int mach;
13957
13958 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
13959
13960 if (mach == bfd_mach_arm_unknown)
13961 {
13962 if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
13963 mach = bfd_mach_arm_ep9312;
13964 else
13965 mach = bfd_arm_get_mach_from_attributes (abfd);
13966 }
13967
13968 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
13969 return TRUE;
13970 }
13971
13972 /* Function to keep ARM specific flags in the ELF header. */
13973
13974 static bfd_boolean
13975 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
13976 {
13977 if (elf_flags_init (abfd)
13978 && elf_elfheader (abfd)->e_flags != flags)
13979 {
13980 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
13981 {
13982 if (flags & EF_ARM_INTERWORK)
13983 _bfd_error_handler
13984 (_("warning: not setting interworking flag of %pB since it has already been specified as non-interworking"),
13985 abfd);
13986 else
13987 _bfd_error_handler
13988 (_("warning: clearing the interworking flag of %pB due to outside request"),
13989 abfd);
13990 }
13991 }
13992 else
13993 {
13994 elf_elfheader (abfd)->e_flags = flags;
13995 elf_flags_init (abfd) = TRUE;
13996 }
13997
13998 return TRUE;
13999 }
14000
14001 /* Copy backend specific data from one object module to another. */
14002
14003 static bfd_boolean
14004 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
14005 {
14006 flagword in_flags;
14007 flagword out_flags;
14008
14009 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
14010 return TRUE;
14011
14012 in_flags = elf_elfheader (ibfd)->e_flags;
14013 out_flags = elf_elfheader (obfd)->e_flags;
14014
14015 if (elf_flags_init (obfd)
14016 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
14017 && in_flags != out_flags)
14018 {
14019 /* Cannot mix APCS26 and APCS32 code. */
14020 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
14021 return FALSE;
14022
14023 /* Cannot mix float APCS and non-float APCS code. */
14024 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
14025 return FALSE;
14026
14027 /* If the src and dest have different interworking flags
14028 then turn off the interworking bit. */
14029 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
14030 {
14031 if (out_flags & EF_ARM_INTERWORK)
14032 _bfd_error_handler
14033 (_("warning: clearing the interworking flag of %pB because non-interworking code in %pB has been linked with it"),
14034 obfd, ibfd);
14035
14036 in_flags &= ~EF_ARM_INTERWORK;
14037 }
14038
14039 /* Likewise for PIC, though don't warn for this case. */
14040 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
14041 in_flags &= ~EF_ARM_PIC;
14042 }
14043
14044 elf_elfheader (obfd)->e_flags = in_flags;
14045 elf_flags_init (obfd) = TRUE;
14046
14047 return _bfd_elf_copy_private_bfd_data (ibfd, obfd);
14048 }
14049
14050 /* Values for Tag_ABI_PCS_R9_use. */
14051 enum
14052 {
14053 AEABI_R9_V6,
14054 AEABI_R9_SB,
14055 AEABI_R9_TLS,
14056 AEABI_R9_unused
14057 };
14058
14059 /* Values for Tag_ABI_PCS_RW_data. */
14060 enum
14061 {
14062 AEABI_PCS_RW_data_absolute,
14063 AEABI_PCS_RW_data_PCrel,
14064 AEABI_PCS_RW_data_SBrel,
14065 AEABI_PCS_RW_data_unused
14066 };
14067
14068 /* Values for Tag_ABI_enum_size. */
14069 enum
14070 {
14071 AEABI_enum_unused,
14072 AEABI_enum_short,
14073 AEABI_enum_wide,
14074 AEABI_enum_forced_wide
14075 };
14076
14077 /* Determine whether an object attribute tag takes an integer, a
14078 string or both. */
14079
14080 static int
14081 elf32_arm_obj_attrs_arg_type (int tag)
14082 {
14083 if (tag == Tag_compatibility)
14084 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
14085 else if (tag == Tag_nodefaults)
14086 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
14087 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
14088 return ATTR_TYPE_FLAG_STR_VAL;
14089 else if (tag < 32)
14090 return ATTR_TYPE_FLAG_INT_VAL;
14091 else
14092 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
14093 }
14094
14095 /* The ABI defines that Tag_conformance should be emitted first, and that
14096 Tag_nodefaults should be second (if either is defined). This sets those
14097 two positions, and bumps up the position of all the remaining tags to
14098 compensate. */
14099 static int
14100 elf32_arm_obj_attrs_order (int num)
14101 {
14102 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
14103 return Tag_conformance;
14104 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
14105 return Tag_nodefaults;
14106 if ((num - 2) < Tag_nodefaults)
14107 return num - 2;
14108 if ((num - 1) < Tag_conformance)
14109 return num - 1;
14110 return num;
14111 }
14112
14113 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
14114 static bfd_boolean
14115 elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
14116 {
14117 if ((tag & 127) < 64)
14118 {
14119 _bfd_error_handler
14120 (_("%pB: unknown mandatory EABI object attribute %d"),
14121 abfd, tag);
14122 bfd_set_error (bfd_error_bad_value);
14123 return FALSE;
14124 }
14125 else
14126 {
14127 _bfd_error_handler
14128 (_("warning: %pB: unknown EABI object attribute %d"),
14129 abfd, tag);
14130 return TRUE;
14131 }
14132 }
14133
14134 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
14135 Returns -1 if no architecture could be read. */
14136
14137 static int
14138 get_secondary_compatible_arch (bfd *abfd)
14139 {
14140 obj_attribute *attr =
14141 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
14142
14143 /* Note: the tag and its argument below are uleb128 values, though
14144 currently-defined values fit in one byte for each. */
14145 if (attr->s
14146 && attr->s[0] == Tag_CPU_arch
14147 && (attr->s[1] & 128) != 128
14148 && attr->s[2] == 0)
14149 return attr->s[1];
14150
14151 /* This tag is "safely ignorable", so don't complain if it looks funny. */
14152 return -1;
14153 }
14154
14155 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
14156 The tag is removed if ARCH is -1. */
14157
14158 static void
14159 set_secondary_compatible_arch (bfd *abfd, int arch)
14160 {
14161 obj_attribute *attr =
14162 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
14163
14164 if (arch == -1)
14165 {
14166 attr->s = NULL;
14167 return;
14168 }
14169
14170 /* Note: the tag and its argument below are uleb128 values, though
14171 currently-defined values fit in one byte for each. */
14172 if (!attr->s)
14173 attr->s = (char *) bfd_alloc (abfd, 3);
14174 attr->s[0] = Tag_CPU_arch;
14175 attr->s[1] = arch;
14176 attr->s[2] = '\0';
14177 }
14178
14179 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
14180 into account. */
14181
14182 static int
14183 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
14184 int newtag, int secondary_compat)
14185 {
14186 #define T(X) TAG_CPU_ARCH_##X
14187 int tagl, tagh, result;
14188 const int v6t2[] =
14189 {
14190 T(V6T2), /* PRE_V4. */
14191 T(V6T2), /* V4. */
14192 T(V6T2), /* V4T. */
14193 T(V6T2), /* V5T. */
14194 T(V6T2), /* V5TE. */
14195 T(V6T2), /* V5TEJ. */
14196 T(V6T2), /* V6. */
14197 T(V7), /* V6KZ. */
14198 T(V6T2) /* V6T2. */
14199 };
14200 const int v6k[] =
14201 {
14202 T(V6K), /* PRE_V4. */
14203 T(V6K), /* V4. */
14204 T(V6K), /* V4T. */
14205 T(V6K), /* V5T. */
14206 T(V6K), /* V5TE. */
14207 T(V6K), /* V5TEJ. */
14208 T(V6K), /* V6. */
14209 T(V6KZ), /* V6KZ. */
14210 T(V7), /* V6T2. */
14211 T(V6K) /* V6K. */
14212 };
14213 const int v7[] =
14214 {
14215 T(V7), /* PRE_V4. */
14216 T(V7), /* V4. */
14217 T(V7), /* V4T. */
14218 T(V7), /* V5T. */
14219 T(V7), /* V5TE. */
14220 T(V7), /* V5TEJ. */
14221 T(V7), /* V6. */
14222 T(V7), /* V6KZ. */
14223 T(V7), /* V6T2. */
14224 T(V7), /* V6K. */
14225 T(V7) /* V7. */
14226 };
14227 const int v6_m[] =
14228 {
14229 -1, /* PRE_V4. */
14230 -1, /* V4. */
14231 T(V6K), /* V4T. */
14232 T(V6K), /* V5T. */
14233 T(V6K), /* V5TE. */
14234 T(V6K), /* V5TEJ. */
14235 T(V6K), /* V6. */
14236 T(V6KZ), /* V6KZ. */
14237 T(V7), /* V6T2. */
14238 T(V6K), /* V6K. */
14239 T(V7), /* V7. */
14240 T(V6_M) /* V6_M. */
14241 };
14242 const int v6s_m[] =
14243 {
14244 -1, /* PRE_V4. */
14245 -1, /* V4. */
14246 T(V6K), /* V4T. */
14247 T(V6K), /* V5T. */
14248 T(V6K), /* V5TE. */
14249 T(V6K), /* V5TEJ. */
14250 T(V6K), /* V6. */
14251 T(V6KZ), /* V6KZ. */
14252 T(V7), /* V6T2. */
14253 T(V6K), /* V6K. */
14254 T(V7), /* V7. */
14255 T(V6S_M), /* V6_M. */
14256 T(V6S_M) /* V6S_M. */
14257 };
14258 const int v7e_m[] =
14259 {
14260 -1, /* PRE_V4. */
14261 -1, /* V4. */
14262 T(V7E_M), /* V4T. */
14263 T(V7E_M), /* V5T. */
14264 T(V7E_M), /* V5TE. */
14265 T(V7E_M), /* V5TEJ. */
14266 T(V7E_M), /* V6. */
14267 T(V7E_M), /* V6KZ. */
14268 T(V7E_M), /* V6T2. */
14269 T(V7E_M), /* V6K. */
14270 T(V7E_M), /* V7. */
14271 T(V7E_M), /* V6_M. */
14272 T(V7E_M), /* V6S_M. */
14273 T(V7E_M) /* V7E_M. */
14274 };
14275 const int v8[] =
14276 {
14277 T(V8), /* PRE_V4. */
14278 T(V8), /* V4. */
14279 T(V8), /* V4T. */
14280 T(V8), /* V5T. */
14281 T(V8), /* V5TE. */
14282 T(V8), /* V5TEJ. */
14283 T(V8), /* V6. */
14284 T(V8), /* V6KZ. */
14285 T(V8), /* V6T2. */
14286 T(V8), /* V6K. */
14287 T(V8), /* V7. */
14288 T(V8), /* V6_M. */
14289 T(V8), /* V6S_M. */
14290 T(V8), /* V7E_M. */
14291 T(V8) /* V8. */
14292 };
14293 const int v8r[] =
14294 {
14295 T(V8R), /* PRE_V4. */
14296 T(V8R), /* V4. */
14297 T(V8R), /* V4T. */
14298 T(V8R), /* V5T. */
14299 T(V8R), /* V5TE. */
14300 T(V8R), /* V5TEJ. */
14301 T(V8R), /* V6. */
14302 T(V8R), /* V6KZ. */
14303 T(V8R), /* V6T2. */
14304 T(V8R), /* V6K. */
14305 T(V8R), /* V7. */
14306 T(V8R), /* V6_M. */
14307 T(V8R), /* V6S_M. */
14308 T(V8R), /* V7E_M. */
14309 T(V8), /* V8. */
14310 T(V8R), /* V8R. */
14311 };
14312 const int v8m_baseline[] =
14313 {
14314 -1, /* PRE_V4. */
14315 -1, /* V4. */
14316 -1, /* V4T. */
14317 -1, /* V5T. */
14318 -1, /* V5TE. */
14319 -1, /* V5TEJ. */
14320 -1, /* V6. */
14321 -1, /* V6KZ. */
14322 -1, /* V6T2. */
14323 -1, /* V6K. */
14324 -1, /* V7. */
14325 T(V8M_BASE), /* V6_M. */
14326 T(V8M_BASE), /* V6S_M. */
14327 -1, /* V7E_M. */
14328 -1, /* V8. */
14329 -1, /* V8R. */
14330 T(V8M_BASE) /* V8-M BASELINE. */
14331 };
14332 const int v8m_mainline[] =
14333 {
14334 -1, /* PRE_V4. */
14335 -1, /* V4. */
14336 -1, /* V4T. */
14337 -1, /* V5T. */
14338 -1, /* V5TE. */
14339 -1, /* V5TEJ. */
14340 -1, /* V6. */
14341 -1, /* V6KZ. */
14342 -1, /* V6T2. */
14343 -1, /* V6K. */
14344 T(V8M_MAIN), /* V7. */
14345 T(V8M_MAIN), /* V6_M. */
14346 T(V8M_MAIN), /* V6S_M. */
14347 T(V8M_MAIN), /* V7E_M. */
14348 -1, /* V8. */
14349 -1, /* V8R. */
14350 T(V8M_MAIN), /* V8-M BASELINE. */
14351 T(V8M_MAIN) /* V8-M MAINLINE. */
14352 };
14353 const int v8_1m_mainline[] =
14354 {
14355 -1, /* PRE_V4. */
14356 -1, /* V4. */
14357 -1, /* V4T. */
14358 -1, /* V5T. */
14359 -1, /* V5TE. */
14360 -1, /* V5TEJ. */
14361 -1, /* V6. */
14362 -1, /* V6KZ. */
14363 -1, /* V6T2. */
14364 -1, /* V6K. */
14365 T(V8_1M_MAIN), /* V7. */
14366 T(V8_1M_MAIN), /* V6_M. */
14367 T(V8_1M_MAIN), /* V6S_M. */
14368 T(V8_1M_MAIN), /* V7E_M. */
14369 -1, /* V8. */
14370 -1, /* V8R. */
14371 T(V8_1M_MAIN), /* V8-M BASELINE. */
14372 T(V8_1M_MAIN), /* V8-M MAINLINE. */
14373 -1, /* Unused (18). */
14374 -1, /* Unused (19). */
14375 -1, /* Unused (20). */
14376 T(V8_1M_MAIN) /* V8.1-M MAINLINE. */
14377 };
14378 const int v4t_plus_v6_m[] =
14379 {
14380 -1, /* PRE_V4. */
14381 -1, /* V4. */
14382 T(V4T), /* V4T. */
14383 T(V5T), /* V5T. */
14384 T(V5TE), /* V5TE. */
14385 T(V5TEJ), /* V5TEJ. */
14386 T(V6), /* V6. */
14387 T(V6KZ), /* V6KZ. */
14388 T(V6T2), /* V6T2. */
14389 T(V6K), /* V6K. */
14390 T(V7), /* V7. */
14391 T(V6_M), /* V6_M. */
14392 T(V6S_M), /* V6S_M. */
14393 T(V7E_M), /* V7E_M. */
14394 T(V8), /* V8. */
14395 -1, /* V8R. */
14396 T(V8M_BASE), /* V8-M BASELINE. */
14397 T(V8M_MAIN), /* V8-M MAINLINE. */
14398 -1, /* Unused (18). */
14399 -1, /* Unused (19). */
14400 -1, /* Unused (20). */
14401 T(V8_1M_MAIN), /* V8.1-M MAINLINE. */
14402 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
14403 };
14404 const int *comb[] =
14405 {
14406 v6t2,
14407 v6k,
14408 v7,
14409 v6_m,
14410 v6s_m,
14411 v7e_m,
14412 v8,
14413 v8r,
14414 v8m_baseline,
14415 v8m_mainline,
14416 NULL,
14417 NULL,
14418 NULL,
14419 v8_1m_mainline,
14420 /* Pseudo-architecture. */
14421 v4t_plus_v6_m
14422 };
14423
14424 /* Check we've not got a higher architecture than we know about. */
14425
14426 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
14427 {
14428 _bfd_error_handler (_("error: %pB: unknown CPU architecture"), ibfd);
14429 return -1;
14430 }
14431
14432 /* Override old tag if we have a Tag_also_compatible_with on the output. */
14433
14434 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
14435 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
14436 oldtag = T(V4T_PLUS_V6_M);
14437
14438 /* And override the new tag if we have a Tag_also_compatible_with on the
14439 input. */
14440
14441 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
14442 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
14443 newtag = T(V4T_PLUS_V6_M);
14444
14445 tagl = (oldtag < newtag) ? oldtag : newtag;
14446 result = tagh = (oldtag > newtag) ? oldtag : newtag;
14447
14448 /* Architectures before V6KZ add features monotonically. */
14449 if (tagh <= TAG_CPU_ARCH_V6KZ)
14450 return result;
14451
14452 result = comb[tagh - T(V6T2)] ? comb[tagh - T(V6T2)][tagl] : -1;
14453
14454 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
14455 as the canonical version. */
14456 if (result == T(V4T_PLUS_V6_M))
14457 {
14458 result = T(V4T);
14459 *secondary_compat_out = T(V6_M);
14460 }
14461 else
14462 *secondary_compat_out = -1;
14463
14464 if (result == -1)
14465 {
14466 _bfd_error_handler (_("error: %pB: conflicting CPU architectures %d/%d"),
14467 ibfd, oldtag, newtag);
14468 return -1;
14469 }
14470
14471 return result;
14472 #undef T
14473 }
14474
14475 /* Query attributes object to see if integer divide instructions may be
14476 present in an object. */
14477 static bfd_boolean
14478 elf32_arm_attributes_accept_div (const obj_attribute *attr)
14479 {
14480 int arch = attr[Tag_CPU_arch].i;
14481 int profile = attr[Tag_CPU_arch_profile].i;
14482
14483 switch (attr[Tag_DIV_use].i)
14484 {
14485 case 0:
14486 /* Integer divide allowed if instruction contained in archetecture. */
14487 if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
14488 return TRUE;
14489 else if (arch >= TAG_CPU_ARCH_V7E_M)
14490 return TRUE;
14491 else
14492 return FALSE;
14493
14494 case 1:
14495 /* Integer divide explicitly prohibited. */
14496 return FALSE;
14497
14498 default:
14499 /* Unrecognised case - treat as allowing divide everywhere. */
14500 case 2:
14501 /* Integer divide allowed in ARM state. */
14502 return TRUE;
14503 }
14504 }
14505
14506 /* Query attributes object to see if integer divide instructions are
14507 forbidden to be in the object. This is not the inverse of
14508 elf32_arm_attributes_accept_div. */
14509 static bfd_boolean
14510 elf32_arm_attributes_forbid_div (const obj_attribute *attr)
14511 {
14512 return attr[Tag_DIV_use].i == 1;
14513 }
14514
14515 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
14516 are conflicting attributes. */
14517
14518 static bfd_boolean
14519 elf32_arm_merge_eabi_attributes (bfd *ibfd, struct bfd_link_info *info)
14520 {
14521 bfd *obfd = info->output_bfd;
14522 obj_attribute *in_attr;
14523 obj_attribute *out_attr;
14524 /* Some tags have 0 = don't care, 1 = strong requirement,
14525 2 = weak requirement. */
14526 static const int order_021[3] = {0, 2, 1};
14527 int i;
14528 bfd_boolean result = TRUE;
14529 const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section;
14530
14531 /* Skip the linker stubs file. This preserves previous behavior
14532 of accepting unknown attributes in the first input file - but
14533 is that a bug? */
14534 if (ibfd->flags & BFD_LINKER_CREATED)
14535 return TRUE;
14536
14537 /* Skip any input that hasn't attribute section.
14538 This enables to link object files without attribute section with
14539 any others. */
14540 if (bfd_get_section_by_name (ibfd, sec_name) == NULL)
14541 return TRUE;
14542
14543 if (!elf_known_obj_attributes_proc (obfd)[0].i)
14544 {
14545 /* This is the first object. Copy the attributes. */
14546 _bfd_elf_copy_obj_attributes (ibfd, obfd);
14547
14548 out_attr = elf_known_obj_attributes_proc (obfd);
14549
14550 /* Use the Tag_null value to indicate the attributes have been
14551 initialized. */
14552 out_attr[0].i = 1;
14553
14554 /* We do not output objects with Tag_MPextension_use_legacy - we move
14555 the attribute's value to Tag_MPextension_use. */
14556 if (out_attr[Tag_MPextension_use_legacy].i != 0)
14557 {
14558 if (out_attr[Tag_MPextension_use].i != 0
14559 && out_attr[Tag_MPextension_use_legacy].i
14560 != out_attr[Tag_MPextension_use].i)
14561 {
14562 _bfd_error_handler
14563 (_("Error: %pB has both the current and legacy "
14564 "Tag_MPextension_use attributes"), ibfd);
14565 result = FALSE;
14566 }
14567
14568 out_attr[Tag_MPextension_use] =
14569 out_attr[Tag_MPextension_use_legacy];
14570 out_attr[Tag_MPextension_use_legacy].type = 0;
14571 out_attr[Tag_MPextension_use_legacy].i = 0;
14572 }
14573
14574 return result;
14575 }
14576
14577 in_attr = elf_known_obj_attributes_proc (ibfd);
14578 out_attr = elf_known_obj_attributes_proc (obfd);
14579 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
14580 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
14581 {
14582 /* Ignore mismatches if the object doesn't use floating point or is
14583 floating point ABI independent. */
14584 if (out_attr[Tag_ABI_FP_number_model].i == AEABI_FP_number_model_none
14585 || (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
14586 && out_attr[Tag_ABI_VFP_args].i == AEABI_VFP_args_compatible))
14587 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
14588 else if (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
14589 && in_attr[Tag_ABI_VFP_args].i != AEABI_VFP_args_compatible)
14590 {
14591 _bfd_error_handler
14592 (_("error: %pB uses VFP register arguments, %pB does not"),
14593 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
14594 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
14595 result = FALSE;
14596 }
14597 }
14598
14599 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
14600 {
14601 /* Merge this attribute with existing attributes. */
14602 switch (i)
14603 {
14604 case Tag_CPU_raw_name:
14605 case Tag_CPU_name:
14606 /* These are merged after Tag_CPU_arch. */
14607 break;
14608
14609 case Tag_ABI_optimization_goals:
14610 case Tag_ABI_FP_optimization_goals:
14611 /* Use the first value seen. */
14612 break;
14613
14614 case Tag_CPU_arch:
14615 {
14616 int secondary_compat = -1, secondary_compat_out = -1;
14617 unsigned int saved_out_attr = out_attr[i].i;
14618 int arch_attr;
14619 static const char *name_table[] =
14620 {
14621 /* These aren't real CPU names, but we can't guess
14622 that from the architecture version alone. */
14623 "Pre v4",
14624 "ARM v4",
14625 "ARM v4T",
14626 "ARM v5T",
14627 "ARM v5TE",
14628 "ARM v5TEJ",
14629 "ARM v6",
14630 "ARM v6KZ",
14631 "ARM v6T2",
14632 "ARM v6K",
14633 "ARM v7",
14634 "ARM v6-M",
14635 "ARM v6S-M",
14636 "ARM v8",
14637 "",
14638 "ARM v8-M.baseline",
14639 "ARM v8-M.mainline",
14640 };
14641
14642 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
14643 secondary_compat = get_secondary_compatible_arch (ibfd);
14644 secondary_compat_out = get_secondary_compatible_arch (obfd);
14645 arch_attr = tag_cpu_arch_combine (ibfd, out_attr[i].i,
14646 &secondary_compat_out,
14647 in_attr[i].i,
14648 secondary_compat);
14649
14650 /* Return with error if failed to merge. */
14651 if (arch_attr == -1)
14652 return FALSE;
14653
14654 out_attr[i].i = arch_attr;
14655
14656 set_secondary_compatible_arch (obfd, secondary_compat_out);
14657
14658 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
14659 if (out_attr[i].i == saved_out_attr)
14660 ; /* Leave the names alone. */
14661 else if (out_attr[i].i == in_attr[i].i)
14662 {
14663 /* The output architecture has been changed to match the
14664 input architecture. Use the input names. */
14665 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
14666 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
14667 : NULL;
14668 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
14669 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
14670 : NULL;
14671 }
14672 else
14673 {
14674 out_attr[Tag_CPU_name].s = NULL;
14675 out_attr[Tag_CPU_raw_name].s = NULL;
14676 }
14677
14678 /* If we still don't have a value for Tag_CPU_name,
14679 make one up now. Tag_CPU_raw_name remains blank. */
14680 if (out_attr[Tag_CPU_name].s == NULL
14681 && out_attr[i].i < ARRAY_SIZE (name_table))
14682 out_attr[Tag_CPU_name].s =
14683 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
14684 }
14685 break;
14686
14687 case Tag_ARM_ISA_use:
14688 case Tag_THUMB_ISA_use:
14689 case Tag_WMMX_arch:
14690 case Tag_Advanced_SIMD_arch:
14691 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
14692 case Tag_ABI_FP_rounding:
14693 case Tag_ABI_FP_exceptions:
14694 case Tag_ABI_FP_user_exceptions:
14695 case Tag_ABI_FP_number_model:
14696 case Tag_FP_HP_extension:
14697 case Tag_CPU_unaligned_access:
14698 case Tag_T2EE_use:
14699 case Tag_MPextension_use:
14700 case Tag_MVE_arch:
14701 /* Use the largest value specified. */
14702 if (in_attr[i].i > out_attr[i].i)
14703 out_attr[i].i = in_attr[i].i;
14704 break;
14705
14706 case Tag_ABI_align_preserved:
14707 case Tag_ABI_PCS_RO_data:
14708 /* Use the smallest value specified. */
14709 if (in_attr[i].i < out_attr[i].i)
14710 out_attr[i].i = in_attr[i].i;
14711 break;
14712
14713 case Tag_ABI_align_needed:
14714 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
14715 && (in_attr[Tag_ABI_align_preserved].i == 0
14716 || out_attr[Tag_ABI_align_preserved].i == 0))
14717 {
14718 /* This error message should be enabled once all non-conformant
14719 binaries in the toolchain have had the attributes set
14720 properly.
14721 _bfd_error_handler
14722 (_("error: %pB: 8-byte data alignment conflicts with %pB"),
14723 obfd, ibfd);
14724 result = FALSE; */
14725 }
14726 /* Fall through. */
14727 case Tag_ABI_FP_denormal:
14728 case Tag_ABI_PCS_GOT_use:
14729 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
14730 value if greater than 2 (for future-proofing). */
14731 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
14732 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
14733 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
14734 out_attr[i].i = in_attr[i].i;
14735 break;
14736
14737 case Tag_Virtualization_use:
14738 /* The virtualization tag effectively stores two bits of
14739 information: the intended use of TrustZone (in bit 0), and the
14740 intended use of Virtualization (in bit 1). */
14741 if (out_attr[i].i == 0)
14742 out_attr[i].i = in_attr[i].i;
14743 else if (in_attr[i].i != 0
14744 && in_attr[i].i != out_attr[i].i)
14745 {
14746 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
14747 out_attr[i].i = 3;
14748 else
14749 {
14750 _bfd_error_handler
14751 (_("error: %pB: unable to merge virtualization attributes "
14752 "with %pB"),
14753 obfd, ibfd);
14754 result = FALSE;
14755 }
14756 }
14757 break;
14758
14759 case Tag_CPU_arch_profile:
14760 if (out_attr[i].i != in_attr[i].i)
14761 {
14762 /* 0 will merge with anything.
14763 'A' and 'S' merge to 'A'.
14764 'R' and 'S' merge to 'R'.
14765 'M' and 'A|R|S' is an error. */
14766 if (out_attr[i].i == 0
14767 || (out_attr[i].i == 'S'
14768 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
14769 out_attr[i].i = in_attr[i].i;
14770 else if (in_attr[i].i == 0
14771 || (in_attr[i].i == 'S'
14772 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
14773 ; /* Do nothing. */
14774 else
14775 {
14776 _bfd_error_handler
14777 (_("error: %pB: conflicting architecture profiles %c/%c"),
14778 ibfd,
14779 in_attr[i].i ? in_attr[i].i : '0',
14780 out_attr[i].i ? out_attr[i].i : '0');
14781 result = FALSE;
14782 }
14783 }
14784 break;
14785
14786 case Tag_DSP_extension:
14787 /* No need to change output value if any of:
14788 - pre (<=) ARMv5T input architecture (do not have DSP)
14789 - M input profile not ARMv7E-M and do not have DSP. */
14790 if (in_attr[Tag_CPU_arch].i <= 3
14791 || (in_attr[Tag_CPU_arch_profile].i == 'M'
14792 && in_attr[Tag_CPU_arch].i != 13
14793 && in_attr[i].i == 0))
14794 ; /* Do nothing. */
14795 /* Output value should be 0 if DSP part of architecture, ie.
14796 - post (>=) ARMv5te architecture output
14797 - A, R or S profile output or ARMv7E-M output architecture. */
14798 else if (out_attr[Tag_CPU_arch].i >= 4
14799 && (out_attr[Tag_CPU_arch_profile].i == 'A'
14800 || out_attr[Tag_CPU_arch_profile].i == 'R'
14801 || out_attr[Tag_CPU_arch_profile].i == 'S'
14802 || out_attr[Tag_CPU_arch].i == 13))
14803 out_attr[i].i = 0;
14804 /* Otherwise, DSP instructions are added and not part of output
14805 architecture. */
14806 else
14807 out_attr[i].i = 1;
14808 break;
14809
14810 case Tag_FP_arch:
14811 {
14812 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
14813 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
14814 when it's 0. It might mean absence of FP hardware if
14815 Tag_FP_arch is zero. */
14816
14817 #define VFP_VERSION_COUNT 9
14818 static const struct
14819 {
14820 int ver;
14821 int regs;
14822 } vfp_versions[VFP_VERSION_COUNT] =
14823 {
14824 {0, 0},
14825 {1, 16},
14826 {2, 16},
14827 {3, 32},
14828 {3, 16},
14829 {4, 32},
14830 {4, 16},
14831 {8, 32},
14832 {8, 16}
14833 };
14834 int ver;
14835 int regs;
14836 int newval;
14837
14838 /* If the output has no requirement about FP hardware,
14839 follow the requirement of the input. */
14840 if (out_attr[i].i == 0)
14841 {
14842 /* This assert is still reasonable, we shouldn't
14843 produce the suspicious build attribute
14844 combination (See below for in_attr). */
14845 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
14846 out_attr[i].i = in_attr[i].i;
14847 out_attr[Tag_ABI_HardFP_use].i
14848 = in_attr[Tag_ABI_HardFP_use].i;
14849 break;
14850 }
14851 /* If the input has no requirement about FP hardware, do
14852 nothing. */
14853 else if (in_attr[i].i == 0)
14854 {
14855 /* We used to assert that Tag_ABI_HardFP_use was
14856 zero here, but we should never assert when
14857 consuming an object file that has suspicious
14858 build attributes. The single precision variant
14859 of 'no FP architecture' is still 'no FP
14860 architecture', so we just ignore the tag in this
14861 case. */
14862 break;
14863 }
14864
14865 /* Both the input and the output have nonzero Tag_FP_arch.
14866 So Tag_ABI_HardFP_use is implied by Tag_FP_arch when it's zero. */
14867
14868 /* If both the input and the output have zero Tag_ABI_HardFP_use,
14869 do nothing. */
14870 if (in_attr[Tag_ABI_HardFP_use].i == 0
14871 && out_attr[Tag_ABI_HardFP_use].i == 0)
14872 ;
14873 /* If the input and the output have different Tag_ABI_HardFP_use,
14874 the combination of them is 0 (implied by Tag_FP_arch). */
14875 else if (in_attr[Tag_ABI_HardFP_use].i
14876 != out_attr[Tag_ABI_HardFP_use].i)
14877 out_attr[Tag_ABI_HardFP_use].i = 0;
14878
14879 /* Now we can handle Tag_FP_arch. */
14880
14881 /* Values of VFP_VERSION_COUNT or more aren't defined, so just
14882 pick the biggest. */
14883 if (in_attr[i].i >= VFP_VERSION_COUNT
14884 && in_attr[i].i > out_attr[i].i)
14885 {
14886 out_attr[i] = in_attr[i];
14887 break;
14888 }
14889 /* The output uses the superset of input features
14890 (ISA version) and registers. */
14891 ver = vfp_versions[in_attr[i].i].ver;
14892 if (ver < vfp_versions[out_attr[i].i].ver)
14893 ver = vfp_versions[out_attr[i].i].ver;
14894 regs = vfp_versions[in_attr[i].i].regs;
14895 if (regs < vfp_versions[out_attr[i].i].regs)
14896 regs = vfp_versions[out_attr[i].i].regs;
14897 /* This assumes all possible supersets are also a valid
14898 options. */
14899 for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--)
14900 {
14901 if (regs == vfp_versions[newval].regs
14902 && ver == vfp_versions[newval].ver)
14903 break;
14904 }
14905 out_attr[i].i = newval;
14906 }
14907 break;
14908 case Tag_PCS_config:
14909 if (out_attr[i].i == 0)
14910 out_attr[i].i = in_attr[i].i;
14911 else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i)
14912 {
14913 /* It's sometimes ok to mix different configs, so this is only
14914 a warning. */
14915 _bfd_error_handler
14916 (_("warning: %pB: conflicting platform configuration"), ibfd);
14917 }
14918 break;
14919 case Tag_ABI_PCS_R9_use:
14920 if (in_attr[i].i != out_attr[i].i
14921 && out_attr[i].i != AEABI_R9_unused
14922 && in_attr[i].i != AEABI_R9_unused)
14923 {
14924 _bfd_error_handler
14925 (_("error: %pB: conflicting use of R9"), ibfd);
14926 result = FALSE;
14927 }
14928 if (out_attr[i].i == AEABI_R9_unused)
14929 out_attr[i].i = in_attr[i].i;
14930 break;
14931 case Tag_ABI_PCS_RW_data:
14932 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
14933 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
14934 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
14935 {
14936 _bfd_error_handler
14937 (_("error: %pB: SB relative addressing conflicts with use of R9"),
14938 ibfd);
14939 result = FALSE;
14940 }
14941 /* Use the smallest value specified. */
14942 if (in_attr[i].i < out_attr[i].i)
14943 out_attr[i].i = in_attr[i].i;
14944 break;
14945 case Tag_ABI_PCS_wchar_t:
14946 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
14947 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
14948 {
14949 _bfd_error_handler
14950 (_("warning: %pB uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
14951 ibfd, in_attr[i].i, out_attr[i].i);
14952 }
14953 else if (in_attr[i].i && !out_attr[i].i)
14954 out_attr[i].i = in_attr[i].i;
14955 break;
14956 case Tag_ABI_enum_size:
14957 if (in_attr[i].i != AEABI_enum_unused)
14958 {
14959 if (out_attr[i].i == AEABI_enum_unused
14960 || out_attr[i].i == AEABI_enum_forced_wide)
14961 {
14962 /* The existing object is compatible with anything.
14963 Use whatever requirements the new object has. */
14964 out_attr[i].i = in_attr[i].i;
14965 }
14966 else if (in_attr[i].i != AEABI_enum_forced_wide
14967 && out_attr[i].i != in_attr[i].i
14968 && !elf_arm_tdata (obfd)->no_enum_size_warning)
14969 {
14970 static const char *aeabi_enum_names[] =
14971 { "", "variable-size", "32-bit", "" };
14972 const char *in_name =
14973 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
14974 ? aeabi_enum_names[in_attr[i].i]
14975 : "<unknown>";
14976 const char *out_name =
14977 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
14978 ? aeabi_enum_names[out_attr[i].i]
14979 : "<unknown>";
14980 _bfd_error_handler
14981 (_("warning: %pB uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
14982 ibfd, in_name, out_name);
14983 }
14984 }
14985 break;
14986 case Tag_ABI_VFP_args:
14987 /* Aready done. */
14988 break;
14989 case Tag_ABI_WMMX_args:
14990 if (in_attr[i].i != out_attr[i].i)
14991 {
14992 _bfd_error_handler
14993 (_("error: %pB uses iWMMXt register arguments, %pB does not"),
14994 ibfd, obfd);
14995 result = FALSE;
14996 }
14997 break;
14998 case Tag_compatibility:
14999 /* Merged in target-independent code. */
15000 break;
15001 case Tag_ABI_HardFP_use:
15002 /* This is handled along with Tag_FP_arch. */
15003 break;
15004 case Tag_ABI_FP_16bit_format:
15005 if (in_attr[i].i != 0 && out_attr[i].i != 0)
15006 {
15007 if (in_attr[i].i != out_attr[i].i)
15008 {
15009 _bfd_error_handler
15010 (_("error: fp16 format mismatch between %pB and %pB"),
15011 ibfd, obfd);
15012 result = FALSE;
15013 }
15014 }
15015 if (in_attr[i].i != 0)
15016 out_attr[i].i = in_attr[i].i;
15017 break;
15018
15019 case Tag_DIV_use:
15020 /* A value of zero on input means that the divide instruction may
15021 be used if available in the base architecture as specified via
15022 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that
15023 the user did not want divide instructions. A value of 2
15024 explicitly means that divide instructions were allowed in ARM
15025 and Thumb state. */
15026 if (in_attr[i].i == out_attr[i].i)
15027 /* Do nothing. */ ;
15028 else if (elf32_arm_attributes_forbid_div (in_attr)
15029 && !elf32_arm_attributes_accept_div (out_attr))
15030 out_attr[i].i = 1;
15031 else if (elf32_arm_attributes_forbid_div (out_attr)
15032 && elf32_arm_attributes_accept_div (in_attr))
15033 out_attr[i].i = in_attr[i].i;
15034 else if (in_attr[i].i == 2)
15035 out_attr[i].i = in_attr[i].i;
15036 break;
15037
15038 case Tag_MPextension_use_legacy:
15039 /* We don't output objects with Tag_MPextension_use_legacy - we
15040 move the value to Tag_MPextension_use. */
15041 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
15042 {
15043 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
15044 {
15045 _bfd_error_handler
15046 (_("%pB has both the current and legacy "
15047 "Tag_MPextension_use attributes"),
15048 ibfd);
15049 result = FALSE;
15050 }
15051 }
15052
15053 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
15054 out_attr[Tag_MPextension_use] = in_attr[i];
15055
15056 break;
15057
15058 case Tag_nodefaults:
15059 /* This tag is set if it exists, but the value is unused (and is
15060 typically zero). We don't actually need to do anything here -
15061 the merge happens automatically when the type flags are merged
15062 below. */
15063 break;
15064 case Tag_also_compatible_with:
15065 /* Already done in Tag_CPU_arch. */
15066 break;
15067 case Tag_conformance:
15068 /* Keep the attribute if it matches. Throw it away otherwise.
15069 No attribute means no claim to conform. */
15070 if (!in_attr[i].s || !out_attr[i].s
15071 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
15072 out_attr[i].s = NULL;
15073 break;
15074
15075 default:
15076 result
15077 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
15078 }
15079
15080 /* If out_attr was copied from in_attr then it won't have a type yet. */
15081 if (in_attr[i].type && !out_attr[i].type)
15082 out_attr[i].type = in_attr[i].type;
15083 }
15084
15085 /* Merge Tag_compatibility attributes and any common GNU ones. */
15086 if (!_bfd_elf_merge_object_attributes (ibfd, info))
15087 return FALSE;
15088
15089 /* Check for any attributes not known on ARM. */
15090 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
15091
15092 return result;
15093 }
15094
15095
15096 /* Return TRUE if the two EABI versions are incompatible. */
15097
15098 static bfd_boolean
15099 elf32_arm_versions_compatible (unsigned iver, unsigned over)
15100 {
15101 /* v4 and v5 are the same spec before and after it was released,
15102 so allow mixing them. */
15103 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
15104 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
15105 return TRUE;
15106
15107 return (iver == over);
15108 }
15109
15110 /* Merge backend specific data from an object file to the output
15111 object file when linking. */
15112
15113 static bfd_boolean
15114 elf32_arm_merge_private_bfd_data (bfd *, struct bfd_link_info *);
15115
15116 /* Display the flags field. */
15117
15118 static bfd_boolean
15119 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
15120 {
15121 FILE * file = (FILE *) ptr;
15122 unsigned long flags;
15123
15124 BFD_ASSERT (abfd != NULL && ptr != NULL);
15125
15126 /* Print normal ELF private data. */
15127 _bfd_elf_print_private_bfd_data (abfd, ptr);
15128
15129 flags = elf_elfheader (abfd)->e_flags;
15130 /* Ignore init flag - it may not be set, despite the flags field
15131 containing valid data. */
15132
15133 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15134
15135 switch (EF_ARM_EABI_VERSION (flags))
15136 {
15137 case EF_ARM_EABI_UNKNOWN:
15138 /* The following flag bits are GNU extensions and not part of the
15139 official ARM ELF extended ABI. Hence they are only decoded if
15140 the EABI version is not set. */
15141 if (flags & EF_ARM_INTERWORK)
15142 fprintf (file, _(" [interworking enabled]"));
15143
15144 if (flags & EF_ARM_APCS_26)
15145 fprintf (file, " [APCS-26]");
15146 else
15147 fprintf (file, " [APCS-32]");
15148
15149 if (flags & EF_ARM_VFP_FLOAT)
15150 fprintf (file, _(" [VFP float format]"));
15151 else if (flags & EF_ARM_MAVERICK_FLOAT)
15152 fprintf (file, _(" [Maverick float format]"));
15153 else
15154 fprintf (file, _(" [FPA float format]"));
15155
15156 if (flags & EF_ARM_APCS_FLOAT)
15157 fprintf (file, _(" [floats passed in float registers]"));
15158
15159 if (flags & EF_ARM_PIC)
15160 fprintf (file, _(" [position independent]"));
15161
15162 if (flags & EF_ARM_NEW_ABI)
15163 fprintf (file, _(" [new ABI]"));
15164
15165 if (flags & EF_ARM_OLD_ABI)
15166 fprintf (file, _(" [old ABI]"));
15167
15168 if (flags & EF_ARM_SOFT_FLOAT)
15169 fprintf (file, _(" [software FP]"));
15170
15171 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
15172 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
15173 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
15174 | EF_ARM_MAVERICK_FLOAT);
15175 break;
15176
15177 case EF_ARM_EABI_VER1:
15178 fprintf (file, _(" [Version1 EABI]"));
15179
15180 if (flags & EF_ARM_SYMSARESORTED)
15181 fprintf (file, _(" [sorted symbol table]"));
15182 else
15183 fprintf (file, _(" [unsorted symbol table]"));
15184
15185 flags &= ~ EF_ARM_SYMSARESORTED;
15186 break;
15187
15188 case EF_ARM_EABI_VER2:
15189 fprintf (file, _(" [Version2 EABI]"));
15190
15191 if (flags & EF_ARM_SYMSARESORTED)
15192 fprintf (file, _(" [sorted symbol table]"));
15193 else
15194 fprintf (file, _(" [unsorted symbol table]"));
15195
15196 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
15197 fprintf (file, _(" [dynamic symbols use segment index]"));
15198
15199 if (flags & EF_ARM_MAPSYMSFIRST)
15200 fprintf (file, _(" [mapping symbols precede others]"));
15201
15202 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
15203 | EF_ARM_MAPSYMSFIRST);
15204 break;
15205
15206 case EF_ARM_EABI_VER3:
15207 fprintf (file, _(" [Version3 EABI]"));
15208 break;
15209
15210 case EF_ARM_EABI_VER4:
15211 fprintf (file, _(" [Version4 EABI]"));
15212 goto eabi;
15213
15214 case EF_ARM_EABI_VER5:
15215 fprintf (file, _(" [Version5 EABI]"));
15216
15217 if (flags & EF_ARM_ABI_FLOAT_SOFT)
15218 fprintf (file, _(" [soft-float ABI]"));
15219
15220 if (flags & EF_ARM_ABI_FLOAT_HARD)
15221 fprintf (file, _(" [hard-float ABI]"));
15222
15223 flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD);
15224
15225 eabi:
15226 if (flags & EF_ARM_BE8)
15227 fprintf (file, _(" [BE8]"));
15228
15229 if (flags & EF_ARM_LE8)
15230 fprintf (file, _(" [LE8]"));
15231
15232 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
15233 break;
15234
15235 default:
15236 fprintf (file, _(" <EABI version unrecognised>"));
15237 break;
15238 }
15239
15240 flags &= ~ EF_ARM_EABIMASK;
15241
15242 if (flags & EF_ARM_RELEXEC)
15243 fprintf (file, _(" [relocatable executable]"));
15244
15245 if (flags & EF_ARM_PIC)
15246 fprintf (file, _(" [position independent]"));
15247
15248 if (elf_elfheader (abfd)->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC)
15249 fprintf (file, _(" [FDPIC ABI supplement]"));
15250
15251 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_PIC);
15252
15253 if (flags)
15254 fprintf (file, _("<Unrecognised flag bits set>"));
15255
15256 fputc ('\n', file);
15257
15258 return TRUE;
15259 }
15260
15261 static int
15262 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
15263 {
15264 switch (ELF_ST_TYPE (elf_sym->st_info))
15265 {
15266 case STT_ARM_TFUNC:
15267 return ELF_ST_TYPE (elf_sym->st_info);
15268
15269 case STT_ARM_16BIT:
15270 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
15271 This allows us to distinguish between data used by Thumb instructions
15272 and non-data (which is probably code) inside Thumb regions of an
15273 executable. */
15274 if (type != STT_OBJECT && type != STT_TLS)
15275 return ELF_ST_TYPE (elf_sym->st_info);
15276 break;
15277
15278 default:
15279 break;
15280 }
15281
15282 return type;
15283 }
15284
15285 static asection *
15286 elf32_arm_gc_mark_hook (asection *sec,
15287 struct bfd_link_info *info,
15288 Elf_Internal_Rela *rel,
15289 struct elf_link_hash_entry *h,
15290 Elf_Internal_Sym *sym)
15291 {
15292 if (h != NULL)
15293 switch (ELF32_R_TYPE (rel->r_info))
15294 {
15295 case R_ARM_GNU_VTINHERIT:
15296 case R_ARM_GNU_VTENTRY:
15297 return NULL;
15298 }
15299
15300 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
15301 }
15302
15303 /* Look through the relocs for a section during the first phase. */
15304
15305 static bfd_boolean
15306 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
15307 asection *sec, const Elf_Internal_Rela *relocs)
15308 {
15309 Elf_Internal_Shdr *symtab_hdr;
15310 struct elf_link_hash_entry **sym_hashes;
15311 const Elf_Internal_Rela *rel;
15312 const Elf_Internal_Rela *rel_end;
15313 bfd *dynobj;
15314 asection *sreloc;
15315 struct elf32_arm_link_hash_table *htab;
15316 bfd_boolean call_reloc_p;
15317 bfd_boolean may_become_dynamic_p;
15318 bfd_boolean may_need_local_target_p;
15319 unsigned long nsyms;
15320
15321 if (bfd_link_relocatable (info))
15322 return TRUE;
15323
15324 BFD_ASSERT (is_arm_elf (abfd));
15325
15326 htab = elf32_arm_hash_table (info);
15327 if (htab == NULL)
15328 return FALSE;
15329
15330 sreloc = NULL;
15331
15332 /* Create dynamic sections for relocatable executables so that we can
15333 copy relocations. */
15334 if (htab->root.is_relocatable_executable
15335 && ! htab->root.dynamic_sections_created)
15336 {
15337 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
15338 return FALSE;
15339 }
15340
15341 if (htab->root.dynobj == NULL)
15342 htab->root.dynobj = abfd;
15343 if (!create_ifunc_sections (info))
15344 return FALSE;
15345
15346 dynobj = htab->root.dynobj;
15347
15348 symtab_hdr = & elf_symtab_hdr (abfd);
15349 sym_hashes = elf_sym_hashes (abfd);
15350 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
15351
15352 rel_end = relocs + sec->reloc_count;
15353 for (rel = relocs; rel < rel_end; rel++)
15354 {
15355 Elf_Internal_Sym *isym;
15356 struct elf_link_hash_entry *h;
15357 struct elf32_arm_link_hash_entry *eh;
15358 unsigned int r_symndx;
15359 int r_type;
15360
15361 r_symndx = ELF32_R_SYM (rel->r_info);
15362 r_type = ELF32_R_TYPE (rel->r_info);
15363 r_type = arm_real_reloc_type (htab, r_type);
15364
15365 if (r_symndx >= nsyms
15366 /* PR 9934: It is possible to have relocations that do not
15367 refer to symbols, thus it is also possible to have an
15368 object file containing relocations but no symbol table. */
15369 && (r_symndx > STN_UNDEF || nsyms > 0))
15370 {
15371 _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd,
15372 r_symndx);
15373 return FALSE;
15374 }
15375
15376 h = NULL;
15377 isym = NULL;
15378 if (nsyms > 0)
15379 {
15380 if (r_symndx < symtab_hdr->sh_info)
15381 {
15382 /* A local symbol. */
15383 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
15384 abfd, r_symndx);
15385 if (isym == NULL)
15386 return FALSE;
15387 }
15388 else
15389 {
15390 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
15391 while (h->root.type == bfd_link_hash_indirect
15392 || h->root.type == bfd_link_hash_warning)
15393 h = (struct elf_link_hash_entry *) h->root.u.i.link;
15394 }
15395 }
15396
15397 eh = (struct elf32_arm_link_hash_entry *) h;
15398
15399 call_reloc_p = FALSE;
15400 may_become_dynamic_p = FALSE;
15401 may_need_local_target_p = FALSE;
15402
15403 /* Could be done earlier, if h were already available. */
15404 r_type = elf32_arm_tls_transition (info, r_type, h);
15405 switch (r_type)
15406 {
15407 case R_ARM_GOTOFFFUNCDESC:
15408 {
15409 if (h == NULL)
15410 {
15411 if (!elf32_arm_allocate_local_sym_info (abfd))
15412 return FALSE;
15413 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].gotofffuncdesc_cnt += 1;
15414 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].funcdesc_offset = -1;
15415 }
15416 else
15417 {
15418 eh->fdpic_cnts.gotofffuncdesc_cnt++;
15419 }
15420 }
15421 break;
15422
15423 case R_ARM_GOTFUNCDESC:
15424 {
15425 if (h == NULL)
15426 {
15427 /* Such a relocation is not supposed to be generated
15428 by gcc on a static function. */
15429 /* Anyway if needed it could be handled. */
15430 abort();
15431 }
15432 else
15433 {
15434 eh->fdpic_cnts.gotfuncdesc_cnt++;
15435 }
15436 }
15437 break;
15438
15439 case R_ARM_FUNCDESC:
15440 {
15441 if (h == NULL)
15442 {
15443 if (!elf32_arm_allocate_local_sym_info (abfd))
15444 return FALSE;
15445 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].funcdesc_cnt += 1;
15446 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].funcdesc_offset = -1;
15447 }
15448 else
15449 {
15450 eh->fdpic_cnts.funcdesc_cnt++;
15451 }
15452 }
15453 break;
15454
15455 case R_ARM_GOT32:
15456 case R_ARM_GOT_PREL:
15457 case R_ARM_TLS_GD32:
15458 case R_ARM_TLS_GD32_FDPIC:
15459 case R_ARM_TLS_IE32:
15460 case R_ARM_TLS_IE32_FDPIC:
15461 case R_ARM_TLS_GOTDESC:
15462 case R_ARM_TLS_DESCSEQ:
15463 case R_ARM_THM_TLS_DESCSEQ:
15464 case R_ARM_TLS_CALL:
15465 case R_ARM_THM_TLS_CALL:
15466 /* This symbol requires a global offset table entry. */
15467 {
15468 int tls_type, old_tls_type;
15469
15470 switch (r_type)
15471 {
15472 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
15473 case R_ARM_TLS_GD32_FDPIC: tls_type = GOT_TLS_GD; break;
15474
15475 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
15476 case R_ARM_TLS_IE32_FDPIC: tls_type = GOT_TLS_IE; break;
15477
15478 case R_ARM_TLS_GOTDESC:
15479 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
15480 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
15481 tls_type = GOT_TLS_GDESC; break;
15482
15483 default: tls_type = GOT_NORMAL; break;
15484 }
15485
15486 if (!bfd_link_executable (info) && (tls_type & GOT_TLS_IE))
15487 info->flags |= DF_STATIC_TLS;
15488
15489 if (h != NULL)
15490 {
15491 h->got.refcount++;
15492 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
15493 }
15494 else
15495 {
15496 /* This is a global offset table entry for a local symbol. */
15497 if (!elf32_arm_allocate_local_sym_info (abfd))
15498 return FALSE;
15499 elf_local_got_refcounts (abfd)[r_symndx] += 1;
15500 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
15501 }
15502
15503 /* If a variable is accessed with both tls methods, two
15504 slots may be created. */
15505 if (GOT_TLS_GD_ANY_P (old_tls_type)
15506 && GOT_TLS_GD_ANY_P (tls_type))
15507 tls_type |= old_tls_type;
15508
15509 /* We will already have issued an error message if there
15510 is a TLS/non-TLS mismatch, based on the symbol
15511 type. So just combine any TLS types needed. */
15512 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
15513 && tls_type != GOT_NORMAL)
15514 tls_type |= old_tls_type;
15515
15516 /* If the symbol is accessed in both IE and GDESC
15517 method, we're able to relax. Turn off the GDESC flag,
15518 without messing up with any other kind of tls types
15519 that may be involved. */
15520 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
15521 tls_type &= ~GOT_TLS_GDESC;
15522
15523 if (old_tls_type != tls_type)
15524 {
15525 if (h != NULL)
15526 elf32_arm_hash_entry (h)->tls_type = tls_type;
15527 else
15528 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
15529 }
15530 }
15531 /* Fall through. */
15532
15533 case R_ARM_TLS_LDM32:
15534 case R_ARM_TLS_LDM32_FDPIC:
15535 if (r_type == R_ARM_TLS_LDM32 || r_type == R_ARM_TLS_LDM32_FDPIC)
15536 htab->tls_ldm_got.refcount++;
15537 /* Fall through. */
15538
15539 case R_ARM_GOTOFF32:
15540 case R_ARM_GOTPC:
15541 if (htab->root.sgot == NULL
15542 && !create_got_section (htab->root.dynobj, info))
15543 return FALSE;
15544 break;
15545
15546 case R_ARM_PC24:
15547 case R_ARM_PLT32:
15548 case R_ARM_CALL:
15549 case R_ARM_JUMP24:
15550 case R_ARM_PREL31:
15551 case R_ARM_THM_CALL:
15552 case R_ARM_THM_JUMP24:
15553 case R_ARM_THM_JUMP19:
15554 call_reloc_p = TRUE;
15555 may_need_local_target_p = TRUE;
15556 break;
15557
15558 case R_ARM_ABS12:
15559 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
15560 ldr __GOTT_INDEX__ offsets. */
15561 if (!htab->vxworks_p)
15562 {
15563 may_need_local_target_p = TRUE;
15564 break;
15565 }
15566 else goto jump_over;
15567
15568 /* Fall through. */
15569
15570 case R_ARM_MOVW_ABS_NC:
15571 case R_ARM_MOVT_ABS:
15572 case R_ARM_THM_MOVW_ABS_NC:
15573 case R_ARM_THM_MOVT_ABS:
15574 if (bfd_link_pic (info))
15575 {
15576 _bfd_error_handler
15577 (_("%pB: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
15578 abfd, elf32_arm_howto_table_1[r_type].name,
15579 (h) ? h->root.root.string : "a local symbol");
15580 bfd_set_error (bfd_error_bad_value);
15581 return FALSE;
15582 }
15583
15584 /* Fall through. */
15585 case R_ARM_ABS32:
15586 case R_ARM_ABS32_NOI:
15587 jump_over:
15588 if (h != NULL && bfd_link_executable (info))
15589 {
15590 h->pointer_equality_needed = 1;
15591 }
15592 /* Fall through. */
15593 case R_ARM_REL32:
15594 case R_ARM_REL32_NOI:
15595 case R_ARM_MOVW_PREL_NC:
15596 case R_ARM_MOVT_PREL:
15597 case R_ARM_THM_MOVW_PREL_NC:
15598 case R_ARM_THM_MOVT_PREL:
15599
15600 /* Should the interworking branches be listed here? */
15601 if ((bfd_link_pic (info) || htab->root.is_relocatable_executable
15602 || htab->fdpic_p)
15603 && (sec->flags & SEC_ALLOC) != 0)
15604 {
15605 if (h == NULL
15606 && elf32_arm_howto_from_type (r_type)->pc_relative)
15607 {
15608 /* In shared libraries and relocatable executables,
15609 we treat local relative references as calls;
15610 see the related SYMBOL_CALLS_LOCAL code in
15611 allocate_dynrelocs. */
15612 call_reloc_p = TRUE;
15613 may_need_local_target_p = TRUE;
15614 }
15615 else
15616 /* We are creating a shared library or relocatable
15617 executable, and this is a reloc against a global symbol,
15618 or a non-PC-relative reloc against a local symbol.
15619 We may need to copy the reloc into the output. */
15620 may_become_dynamic_p = TRUE;
15621 }
15622 else
15623 may_need_local_target_p = TRUE;
15624 break;
15625
15626 /* This relocation describes the C++ object vtable hierarchy.
15627 Reconstruct it for later use during GC. */
15628 case R_ARM_GNU_VTINHERIT:
15629 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
15630 return FALSE;
15631 break;
15632
15633 /* This relocation describes which C++ vtable entries are actually
15634 used. Record for later use during GC. */
15635 case R_ARM_GNU_VTENTRY:
15636 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
15637 return FALSE;
15638 break;
15639 }
15640
15641 if (h != NULL)
15642 {
15643 if (call_reloc_p)
15644 /* We may need a .plt entry if the function this reloc
15645 refers to is in a different object, regardless of the
15646 symbol's type. We can't tell for sure yet, because
15647 something later might force the symbol local. */
15648 h->needs_plt = 1;
15649 else if (may_need_local_target_p)
15650 /* If this reloc is in a read-only section, we might
15651 need a copy reloc. We can't check reliably at this
15652 stage whether the section is read-only, as input
15653 sections have not yet been mapped to output sections.
15654 Tentatively set the flag for now, and correct in
15655 adjust_dynamic_symbol. */
15656 h->non_got_ref = 1;
15657 }
15658
15659 if (may_need_local_target_p
15660 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
15661 {
15662 union gotplt_union *root_plt;
15663 struct arm_plt_info *arm_plt;
15664 struct arm_local_iplt_info *local_iplt;
15665
15666 if (h != NULL)
15667 {
15668 root_plt = &h->plt;
15669 arm_plt = &eh->plt;
15670 }
15671 else
15672 {
15673 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
15674 if (local_iplt == NULL)
15675 return FALSE;
15676 root_plt = &local_iplt->root;
15677 arm_plt = &local_iplt->arm;
15678 }
15679
15680 /* If the symbol is a function that doesn't bind locally,
15681 this relocation will need a PLT entry. */
15682 if (root_plt->refcount != -1)
15683 root_plt->refcount += 1;
15684
15685 if (!call_reloc_p)
15686 arm_plt->noncall_refcount++;
15687
15688 /* It's too early to use htab->use_blx here, so we have to
15689 record possible blx references separately from
15690 relocs that definitely need a thumb stub. */
15691
15692 if (r_type == R_ARM_THM_CALL)
15693 arm_plt->maybe_thumb_refcount += 1;
15694
15695 if (r_type == R_ARM_THM_JUMP24
15696 || r_type == R_ARM_THM_JUMP19)
15697 arm_plt->thumb_refcount += 1;
15698 }
15699
15700 if (may_become_dynamic_p)
15701 {
15702 struct elf_dyn_relocs *p, **head;
15703
15704 /* Create a reloc section in dynobj. */
15705 if (sreloc == NULL)
15706 {
15707 sreloc = _bfd_elf_make_dynamic_reloc_section
15708 (sec, dynobj, 2, abfd, ! htab->use_rel);
15709
15710 if (sreloc == NULL)
15711 return FALSE;
15712
15713 /* BPABI objects never have dynamic relocations mapped. */
15714 if (htab->symbian_p)
15715 {
15716 flagword flags;
15717
15718 flags = bfd_section_flags (sreloc);
15719 flags &= ~(SEC_LOAD | SEC_ALLOC);
15720 bfd_set_section_flags (sreloc, flags);
15721 }
15722 }
15723
15724 /* If this is a global symbol, count the number of
15725 relocations we need for this symbol. */
15726 if (h != NULL)
15727 head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
15728 else
15729 {
15730 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
15731 if (head == NULL)
15732 return FALSE;
15733 }
15734
15735 p = *head;
15736 if (p == NULL || p->sec != sec)
15737 {
15738 size_t amt = sizeof *p;
15739
15740 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
15741 if (p == NULL)
15742 return FALSE;
15743 p->next = *head;
15744 *head = p;
15745 p->sec = sec;
15746 p->count = 0;
15747 p->pc_count = 0;
15748 }
15749
15750 if (elf32_arm_howto_from_type (r_type)->pc_relative)
15751 p->pc_count += 1;
15752 p->count += 1;
15753 if (h == NULL && htab->fdpic_p && !bfd_link_pic(info)
15754 && r_type != R_ARM_ABS32 && r_type != R_ARM_ABS32_NOI) {
15755 /* Here we only support R_ARM_ABS32 and R_ARM_ABS32_NOI
15756 that will become rofixup. */
15757 /* This is due to the fact that we suppose all will become rofixup. */
15758 fprintf(stderr, "FDPIC does not yet support %d relocation to become dynamic for executable\n", r_type);
15759 _bfd_error_handler
15760 (_("FDPIC does not yet support %s relocation"
15761 " to become dynamic for executable"),
15762 elf32_arm_howto_table_1[r_type].name);
15763 abort();
15764 }
15765 }
15766 }
15767
15768 return TRUE;
15769 }
15770
15771 static void
15772 elf32_arm_update_relocs (asection *o,
15773 struct bfd_elf_section_reloc_data *reldata)
15774 {
15775 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
15776 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
15777 const struct elf_backend_data *bed;
15778 _arm_elf_section_data *eado;
15779 struct bfd_link_order *p;
15780 bfd_byte *erela_head, *erela;
15781 Elf_Internal_Rela *irela_head, *irela;
15782 Elf_Internal_Shdr *rel_hdr;
15783 bfd *abfd;
15784 unsigned int count;
15785
15786 eado = get_arm_elf_section_data (o);
15787
15788 if (!eado || eado->elf.this_hdr.sh_type != SHT_ARM_EXIDX)
15789 return;
15790
15791 abfd = o->owner;
15792 bed = get_elf_backend_data (abfd);
15793 rel_hdr = reldata->hdr;
15794
15795 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
15796 {
15797 swap_in = bed->s->swap_reloc_in;
15798 swap_out = bed->s->swap_reloc_out;
15799 }
15800 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
15801 {
15802 swap_in = bed->s->swap_reloca_in;
15803 swap_out = bed->s->swap_reloca_out;
15804 }
15805 else
15806 abort ();
15807
15808 erela_head = rel_hdr->contents;
15809 irela_head = (Elf_Internal_Rela *) bfd_zmalloc
15810 ((NUM_SHDR_ENTRIES (rel_hdr) + 1) * sizeof (*irela_head));
15811
15812 erela = erela_head;
15813 irela = irela_head;
15814 count = 0;
15815
15816 for (p = o->map_head.link_order; p; p = p->next)
15817 {
15818 if (p->type == bfd_section_reloc_link_order
15819 || p->type == bfd_symbol_reloc_link_order)
15820 {
15821 (*swap_in) (abfd, erela, irela);
15822 erela += rel_hdr->sh_entsize;
15823 irela++;
15824 count++;
15825 }
15826 else if (p->type == bfd_indirect_link_order)
15827 {
15828 struct bfd_elf_section_reloc_data *input_reldata;
15829 arm_unwind_table_edit *edit_list, *edit_tail;
15830 _arm_elf_section_data *eadi;
15831 bfd_size_type j;
15832 bfd_vma offset;
15833 asection *i;
15834
15835 i = p->u.indirect.section;
15836
15837 eadi = get_arm_elf_section_data (i);
15838 edit_list = eadi->u.exidx.unwind_edit_list;
15839 edit_tail = eadi->u.exidx.unwind_edit_tail;
15840 offset = i->output_offset;
15841
15842 if (eadi->elf.rel.hdr &&
15843 eadi->elf.rel.hdr->sh_entsize == rel_hdr->sh_entsize)
15844 input_reldata = &eadi->elf.rel;
15845 else if (eadi->elf.rela.hdr &&
15846 eadi->elf.rela.hdr->sh_entsize == rel_hdr->sh_entsize)
15847 input_reldata = &eadi->elf.rela;
15848 else
15849 abort ();
15850
15851 if (edit_list)
15852 {
15853 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
15854 {
15855 arm_unwind_table_edit *edit_node, *edit_next;
15856 bfd_vma bias;
15857 bfd_vma reloc_index;
15858
15859 (*swap_in) (abfd, erela, irela);
15860 reloc_index = (irela->r_offset - offset) / 8;
15861
15862 bias = 0;
15863 edit_node = edit_list;
15864 for (edit_next = edit_list;
15865 edit_next && edit_next->index <= reloc_index;
15866 edit_next = edit_node->next)
15867 {
15868 bias++;
15869 edit_node = edit_next;
15870 }
15871
15872 if (edit_node->type != DELETE_EXIDX_ENTRY
15873 || edit_node->index != reloc_index)
15874 {
15875 irela->r_offset -= bias * 8;
15876 irela++;
15877 count++;
15878 }
15879
15880 erela += rel_hdr->sh_entsize;
15881 }
15882
15883 if (edit_tail->type == INSERT_EXIDX_CANTUNWIND_AT_END)
15884 {
15885 /* New relocation entity. */
15886 asection *text_sec = edit_tail->linked_section;
15887 asection *text_out = text_sec->output_section;
15888 bfd_vma exidx_offset = offset + i->size - 8;
15889
15890 irela->r_addend = 0;
15891 irela->r_offset = exidx_offset;
15892 irela->r_info = ELF32_R_INFO
15893 (text_out->target_index, R_ARM_PREL31);
15894 irela++;
15895 count++;
15896 }
15897 }
15898 else
15899 {
15900 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
15901 {
15902 (*swap_in) (abfd, erela, irela);
15903 erela += rel_hdr->sh_entsize;
15904 irela++;
15905 }
15906
15907 count += NUM_SHDR_ENTRIES (input_reldata->hdr);
15908 }
15909 }
15910 }
15911
15912 reldata->count = count;
15913 rel_hdr->sh_size = count * rel_hdr->sh_entsize;
15914
15915 erela = erela_head;
15916 irela = irela_head;
15917 while (count > 0)
15918 {
15919 (*swap_out) (abfd, irela, erela);
15920 erela += rel_hdr->sh_entsize;
15921 irela++;
15922 count--;
15923 }
15924
15925 free (irela_head);
15926
15927 /* Hashes are no longer valid. */
15928 free (reldata->hashes);
15929 reldata->hashes = NULL;
15930 }
15931
15932 /* Unwinding tables are not referenced directly. This pass marks them as
15933 required if the corresponding code section is marked. Similarly, ARMv8-M
15934 secure entry functions can only be referenced by SG veneers which are
15935 created after the GC process. They need to be marked in case they reside in
15936 their own section (as would be the case if code was compiled with
15937 -ffunction-sections). */
15938
15939 static bfd_boolean
15940 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
15941 elf_gc_mark_hook_fn gc_mark_hook)
15942 {
15943 bfd *sub;
15944 Elf_Internal_Shdr **elf_shdrp;
15945 asection *cmse_sec;
15946 obj_attribute *out_attr;
15947 Elf_Internal_Shdr *symtab_hdr;
15948 unsigned i, sym_count, ext_start;
15949 const struct elf_backend_data *bed;
15950 struct elf_link_hash_entry **sym_hashes;
15951 struct elf32_arm_link_hash_entry *cmse_hash;
15952 bfd_boolean again, is_v8m, first_bfd_browse = TRUE;
15953 bfd_boolean debug_sec_need_to_be_marked = FALSE;
15954 asection *isec;
15955
15956 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
15957
15958 out_attr = elf_known_obj_attributes_proc (info->output_bfd);
15959 is_v8m = out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
15960 && out_attr[Tag_CPU_arch_profile].i == 'M';
15961
15962 /* Marking EH data may cause additional code sections to be marked,
15963 requiring multiple passes. */
15964 again = TRUE;
15965 while (again)
15966 {
15967 again = FALSE;
15968 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
15969 {
15970 asection *o;
15971
15972 if (! is_arm_elf (sub))
15973 continue;
15974
15975 elf_shdrp = elf_elfsections (sub);
15976 for (o = sub->sections; o != NULL; o = o->next)
15977 {
15978 Elf_Internal_Shdr *hdr;
15979
15980 hdr = &elf_section_data (o)->this_hdr;
15981 if (hdr->sh_type == SHT_ARM_EXIDX
15982 && hdr->sh_link
15983 && hdr->sh_link < elf_numsections (sub)
15984 && !o->gc_mark
15985 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
15986 {
15987 again = TRUE;
15988 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
15989 return FALSE;
15990 }
15991 }
15992
15993 /* Mark section holding ARMv8-M secure entry functions. We mark all
15994 of them so no need for a second browsing. */
15995 if (is_v8m && first_bfd_browse)
15996 {
15997 sym_hashes = elf_sym_hashes (sub);
15998 bed = get_elf_backend_data (sub);
15999 symtab_hdr = &elf_tdata (sub)->symtab_hdr;
16000 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
16001 ext_start = symtab_hdr->sh_info;
16002
16003 /* Scan symbols. */
16004 for (i = ext_start; i < sym_count; i++)
16005 {
16006 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
16007
16008 /* Assume it is a special symbol. If not, cmse_scan will
16009 warn about it and user can do something about it. */
16010 if (CONST_STRNEQ (cmse_hash->root.root.root.string,
16011 CMSE_PREFIX))
16012 {
16013 cmse_sec = cmse_hash->root.root.u.def.section;
16014 if (!cmse_sec->gc_mark
16015 && !_bfd_elf_gc_mark (info, cmse_sec, gc_mark_hook))
16016 return FALSE;
16017 /* The debug sections related to these secure entry
16018 functions are marked on enabling below flag. */
16019 debug_sec_need_to_be_marked = TRUE;
16020 }
16021 }
16022
16023 if (debug_sec_need_to_be_marked)
16024 {
16025 /* Looping over all the sections of the object file containing
16026 Armv8-M secure entry functions and marking all the debug
16027 sections. */
16028 for (isec = sub->sections; isec != NULL; isec = isec->next)
16029 {
16030 /* If not a debug sections, skip it. */
16031 if (!isec->gc_mark && (isec->flags & SEC_DEBUGGING))
16032 isec->gc_mark = 1 ;
16033 }
16034 debug_sec_need_to_be_marked = FALSE;
16035 }
16036 }
16037 }
16038 first_bfd_browse = FALSE;
16039 }
16040
16041 return TRUE;
16042 }
16043
16044 /* Treat mapping symbols as special target symbols. */
16045
16046 static bfd_boolean
16047 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
16048 {
16049 return bfd_is_arm_special_symbol_name (sym->name,
16050 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
16051 }
16052
16053 /* If the ELF symbol SYM might be a function in SEC, return the
16054 function size and set *CODE_OFF to the function's entry point,
16055 otherwise return zero. */
16056
16057 static bfd_size_type
16058 elf32_arm_maybe_function_sym (const asymbol *sym, asection *sec,
16059 bfd_vma *code_off)
16060 {
16061 bfd_size_type size;
16062
16063 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
16064 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
16065 || sym->section != sec)
16066 return 0;
16067
16068 if (!(sym->flags & BSF_SYNTHETIC))
16069 switch (ELF_ST_TYPE (((elf_symbol_type *) sym)->internal_elf_sym.st_info))
16070 {
16071 case STT_FUNC:
16072 case STT_ARM_TFUNC:
16073 case STT_NOTYPE:
16074 break;
16075 default:
16076 return 0;
16077 }
16078
16079 if ((sym->flags & BSF_LOCAL)
16080 && bfd_is_arm_special_symbol_name (sym->name,
16081 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
16082 return 0;
16083
16084 *code_off = sym->value;
16085 size = 0;
16086 if (!(sym->flags & BSF_SYNTHETIC))
16087 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
16088 if (size == 0)
16089 size = 1;
16090 return size;
16091 }
16092
16093 static bfd_boolean
16094 elf32_arm_find_inliner_info (bfd * abfd,
16095 const char ** filename_ptr,
16096 const char ** functionname_ptr,
16097 unsigned int * line_ptr)
16098 {
16099 bfd_boolean found;
16100 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
16101 functionname_ptr, line_ptr,
16102 & elf_tdata (abfd)->dwarf2_find_line_info);
16103 return found;
16104 }
16105
16106 /* Find dynamic relocs for H that apply to read-only sections. */
16107
16108 static asection *
16109 readonly_dynrelocs (struct elf_link_hash_entry *h)
16110 {
16111 struct elf_dyn_relocs *p;
16112
16113 for (p = elf32_arm_hash_entry (h)->dyn_relocs; p != NULL; p = p->next)
16114 {
16115 asection *s = p->sec->output_section;
16116
16117 if (s != NULL && (s->flags & SEC_READONLY) != 0)
16118 return p->sec;
16119 }
16120 return NULL;
16121 }
16122
16123 /* Adjust a symbol defined by a dynamic object and referenced by a
16124 regular object. The current definition is in some section of the
16125 dynamic object, but we're not including those sections. We have to
16126 change the definition to something the rest of the link can
16127 understand. */
16128
16129 static bfd_boolean
16130 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
16131 struct elf_link_hash_entry * h)
16132 {
16133 bfd * dynobj;
16134 asection *s, *srel;
16135 struct elf32_arm_link_hash_entry * eh;
16136 struct elf32_arm_link_hash_table *globals;
16137
16138 globals = elf32_arm_hash_table (info);
16139 if (globals == NULL)
16140 return FALSE;
16141
16142 dynobj = elf_hash_table (info)->dynobj;
16143
16144 /* Make sure we know what is going on here. */
16145 BFD_ASSERT (dynobj != NULL
16146 && (h->needs_plt
16147 || h->type == STT_GNU_IFUNC
16148 || h->is_weakalias
16149 || (h->def_dynamic
16150 && h->ref_regular
16151 && !h->def_regular)));
16152
16153 eh = (struct elf32_arm_link_hash_entry *) h;
16154
16155 /* If this is a function, put it in the procedure linkage table. We
16156 will fill in the contents of the procedure linkage table later,
16157 when we know the address of the .got section. */
16158 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
16159 {
16160 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
16161 symbol binds locally. */
16162 if (h->plt.refcount <= 0
16163 || (h->type != STT_GNU_IFUNC
16164 && (SYMBOL_CALLS_LOCAL (info, h)
16165 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
16166 && h->root.type == bfd_link_hash_undefweak))))
16167 {
16168 /* This case can occur if we saw a PLT32 reloc in an input
16169 file, but the symbol was never referred to by a dynamic
16170 object, or if all references were garbage collected. In
16171 such a case, we don't actually need to build a procedure
16172 linkage table, and we can just do a PC24 reloc instead. */
16173 h->plt.offset = (bfd_vma) -1;
16174 eh->plt.thumb_refcount = 0;
16175 eh->plt.maybe_thumb_refcount = 0;
16176 eh->plt.noncall_refcount = 0;
16177 h->needs_plt = 0;
16178 }
16179
16180 return TRUE;
16181 }
16182 else
16183 {
16184 /* It's possible that we incorrectly decided a .plt reloc was
16185 needed for an R_ARM_PC24 or similar reloc to a non-function sym
16186 in check_relocs. We can't decide accurately between function
16187 and non-function syms in check-relocs; Objects loaded later in
16188 the link may change h->type. So fix it now. */
16189 h->plt.offset = (bfd_vma) -1;
16190 eh->plt.thumb_refcount = 0;
16191 eh->plt.maybe_thumb_refcount = 0;
16192 eh->plt.noncall_refcount = 0;
16193 }
16194
16195 /* If this is a weak symbol, and there is a real definition, the
16196 processor independent code will have arranged for us to see the
16197 real definition first, and we can just use the same value. */
16198 if (h->is_weakalias)
16199 {
16200 struct elf_link_hash_entry *def = weakdef (h);
16201 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
16202 h->root.u.def.section = def->root.u.def.section;
16203 h->root.u.def.value = def->root.u.def.value;
16204 return TRUE;
16205 }
16206
16207 /* If there are no non-GOT references, we do not need a copy
16208 relocation. */
16209 if (!h->non_got_ref)
16210 return TRUE;
16211
16212 /* This is a reference to a symbol defined by a dynamic object which
16213 is not a function. */
16214
16215 /* If we are creating a shared library, we must presume that the
16216 only references to the symbol are via the global offset table.
16217 For such cases we need not do anything here; the relocations will
16218 be handled correctly by relocate_section. Relocatable executables
16219 can reference data in shared objects directly, so we don't need to
16220 do anything here. */
16221 if (bfd_link_pic (info) || globals->root.is_relocatable_executable)
16222 return TRUE;
16223
16224 /* We must allocate the symbol in our .dynbss section, which will
16225 become part of the .bss section of the executable. There will be
16226 an entry for this symbol in the .dynsym section. The dynamic
16227 object will contain position independent code, so all references
16228 from the dynamic object to this symbol will go through the global
16229 offset table. The dynamic linker will use the .dynsym entry to
16230 determine the address it must put in the global offset table, so
16231 both the dynamic object and the regular object will refer to the
16232 same memory location for the variable. */
16233 /* If allowed, we must generate a R_ARM_COPY reloc to tell the dynamic
16234 linker to copy the initial value out of the dynamic object and into
16235 the runtime process image. We need to remember the offset into the
16236 .rel(a).bss section we are going to use. */
16237 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
16238 {
16239 s = globals->root.sdynrelro;
16240 srel = globals->root.sreldynrelro;
16241 }
16242 else
16243 {
16244 s = globals->root.sdynbss;
16245 srel = globals->root.srelbss;
16246 }
16247 if (info->nocopyreloc == 0
16248 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
16249 && h->size != 0)
16250 {
16251 elf32_arm_allocate_dynrelocs (info, srel, 1);
16252 h->needs_copy = 1;
16253 }
16254
16255 return _bfd_elf_adjust_dynamic_copy (info, h, s);
16256 }
16257
16258 /* Allocate space in .plt, .got and associated reloc sections for
16259 dynamic relocs. */
16260
16261 static bfd_boolean
16262 allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
16263 {
16264 struct bfd_link_info *info;
16265 struct elf32_arm_link_hash_table *htab;
16266 struct elf32_arm_link_hash_entry *eh;
16267 struct elf_dyn_relocs *p;
16268
16269 if (h->root.type == bfd_link_hash_indirect)
16270 return TRUE;
16271
16272 eh = (struct elf32_arm_link_hash_entry *) h;
16273
16274 info = (struct bfd_link_info *) inf;
16275 htab = elf32_arm_hash_table (info);
16276 if (htab == NULL)
16277 return FALSE;
16278
16279 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
16280 && h->plt.refcount > 0)
16281 {
16282 /* Make sure this symbol is output as a dynamic symbol.
16283 Undefined weak syms won't yet be marked as dynamic. */
16284 if (h->dynindx == -1 && !h->forced_local
16285 && h->root.type == bfd_link_hash_undefweak)
16286 {
16287 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16288 return FALSE;
16289 }
16290
16291 /* If the call in the PLT entry binds locally, the associated
16292 GOT entry should use an R_ARM_IRELATIVE relocation instead of
16293 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
16294 than the .plt section. */
16295 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
16296 {
16297 eh->is_iplt = 1;
16298 if (eh->plt.noncall_refcount == 0
16299 && SYMBOL_REFERENCES_LOCAL (info, h))
16300 /* All non-call references can be resolved directly.
16301 This means that they can (and in some cases, must)
16302 resolve directly to the run-time target, rather than
16303 to the PLT. That in turns means that any .got entry
16304 would be equal to the .igot.plt entry, so there's
16305 no point having both. */
16306 h->got.refcount = 0;
16307 }
16308
16309 if (bfd_link_pic (info)
16310 || eh->is_iplt
16311 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
16312 {
16313 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
16314
16315 /* If this symbol is not defined in a regular file, and we are
16316 not generating a shared library, then set the symbol to this
16317 location in the .plt. This is required to make function
16318 pointers compare as equal between the normal executable and
16319 the shared library. */
16320 if (! bfd_link_pic (info)
16321 && !h->def_regular)
16322 {
16323 h->root.u.def.section = htab->root.splt;
16324 h->root.u.def.value = h->plt.offset;
16325
16326 /* Make sure the function is not marked as Thumb, in case
16327 it is the target of an ABS32 relocation, which will
16328 point to the PLT entry. */
16329 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
16330 }
16331
16332 /* VxWorks executables have a second set of relocations for
16333 each PLT entry. They go in a separate relocation section,
16334 which is processed by the kernel loader. */
16335 if (htab->vxworks_p && !bfd_link_pic (info))
16336 {
16337 /* There is a relocation for the initial PLT entry:
16338 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
16339 if (h->plt.offset == htab->plt_header_size)
16340 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
16341
16342 /* There are two extra relocations for each subsequent
16343 PLT entry: an R_ARM_32 relocation for the GOT entry,
16344 and an R_ARM_32 relocation for the PLT entry. */
16345 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
16346 }
16347 }
16348 else
16349 {
16350 h->plt.offset = (bfd_vma) -1;
16351 h->needs_plt = 0;
16352 }
16353 }
16354 else
16355 {
16356 h->plt.offset = (bfd_vma) -1;
16357 h->needs_plt = 0;
16358 }
16359
16360 eh = (struct elf32_arm_link_hash_entry *) h;
16361 eh->tlsdesc_got = (bfd_vma) -1;
16362
16363 if (h->got.refcount > 0)
16364 {
16365 asection *s;
16366 bfd_boolean dyn;
16367 int tls_type = elf32_arm_hash_entry (h)->tls_type;
16368 int indx;
16369
16370 /* Make sure this symbol is output as a dynamic symbol.
16371 Undefined weak syms won't yet be marked as dynamic. */
16372 if (htab->root.dynamic_sections_created && h->dynindx == -1 && !h->forced_local
16373 && h->root.type == bfd_link_hash_undefweak)
16374 {
16375 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16376 return FALSE;
16377 }
16378
16379 if (!htab->symbian_p)
16380 {
16381 s = htab->root.sgot;
16382 h->got.offset = s->size;
16383
16384 if (tls_type == GOT_UNKNOWN)
16385 abort ();
16386
16387 if (tls_type == GOT_NORMAL)
16388 /* Non-TLS symbols need one GOT slot. */
16389 s->size += 4;
16390 else
16391 {
16392 if (tls_type & GOT_TLS_GDESC)
16393 {
16394 /* R_ARM_TLS_DESC needs 2 GOT slots. */
16395 eh->tlsdesc_got
16396 = (htab->root.sgotplt->size
16397 - elf32_arm_compute_jump_table_size (htab));
16398 htab->root.sgotplt->size += 8;
16399 h->got.offset = (bfd_vma) -2;
16400 /* plt.got_offset needs to know there's a TLS_DESC
16401 reloc in the middle of .got.plt. */
16402 htab->num_tls_desc++;
16403 }
16404
16405 if (tls_type & GOT_TLS_GD)
16406 {
16407 /* R_ARM_TLS_GD32 and R_ARM_TLS_GD32_FDPIC need two
16408 consecutive GOT slots. If the symbol is both GD
16409 and GDESC, got.offset may have been
16410 overwritten. */
16411 h->got.offset = s->size;
16412 s->size += 8;
16413 }
16414
16415 if (tls_type & GOT_TLS_IE)
16416 /* R_ARM_TLS_IE32/R_ARM_TLS_IE32_FDPIC need one GOT
16417 slot. */
16418 s->size += 4;
16419 }
16420
16421 dyn = htab->root.dynamic_sections_created;
16422
16423 indx = 0;
16424 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
16425 bfd_link_pic (info),
16426 h)
16427 && (!bfd_link_pic (info)
16428 || !SYMBOL_REFERENCES_LOCAL (info, h)))
16429 indx = h->dynindx;
16430
16431 if (tls_type != GOT_NORMAL
16432 && (bfd_link_dll (info) || indx != 0)
16433 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
16434 || h->root.type != bfd_link_hash_undefweak))
16435 {
16436 if (tls_type & GOT_TLS_IE)
16437 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16438
16439 if (tls_type & GOT_TLS_GD)
16440 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16441
16442 if (tls_type & GOT_TLS_GDESC)
16443 {
16444 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
16445 /* GDESC needs a trampoline to jump to. */
16446 htab->tls_trampoline = -1;
16447 }
16448
16449 /* Only GD needs it. GDESC just emits one relocation per
16450 2 entries. */
16451 if ((tls_type & GOT_TLS_GD) && indx != 0)
16452 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16453 }
16454 else if (((indx != -1) || htab->fdpic_p)
16455 && !SYMBOL_REFERENCES_LOCAL (info, h))
16456 {
16457 if (htab->root.dynamic_sections_created)
16458 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
16459 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16460 }
16461 else if (h->type == STT_GNU_IFUNC
16462 && eh->plt.noncall_refcount == 0)
16463 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
16464 they all resolve dynamically instead. Reserve room for the
16465 GOT entry's R_ARM_IRELATIVE relocation. */
16466 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
16467 else if (bfd_link_pic (info)
16468 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
16469 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
16470 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16471 else if (htab->fdpic_p && tls_type == GOT_NORMAL)
16472 /* Reserve room for rofixup for FDPIC executable. */
16473 /* TLS relocs do not need space since they are completely
16474 resolved. */
16475 htab->srofixup->size += 4;
16476 }
16477 }
16478 else
16479 h->got.offset = (bfd_vma) -1;
16480
16481 /* FDPIC support. */
16482 if (eh->fdpic_cnts.gotofffuncdesc_cnt > 0)
16483 {
16484 /* Symbol musn't be exported. */
16485 if (h->dynindx != -1)
16486 abort();
16487
16488 /* We only allocate one function descriptor with its associated relocation. */
16489 if (eh->fdpic_cnts.funcdesc_offset == -1)
16490 {
16491 asection *s = htab->root.sgot;
16492
16493 eh->fdpic_cnts.funcdesc_offset = s->size;
16494 s->size += 8;
16495 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16496 if (bfd_link_pic(info))
16497 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16498 else
16499 htab->srofixup->size += 8;
16500 }
16501 }
16502
16503 if (eh->fdpic_cnts.gotfuncdesc_cnt > 0)
16504 {
16505 asection *s = htab->root.sgot;
16506
16507 if (htab->root.dynamic_sections_created && h->dynindx == -1
16508 && !h->forced_local)
16509 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16510 return FALSE;
16511
16512 if (h->dynindx == -1)
16513 {
16514 /* We only allocate one function descriptor with its associated relocation. q */
16515 if (eh->fdpic_cnts.funcdesc_offset == -1)
16516 {
16517
16518 eh->fdpic_cnts.funcdesc_offset = s->size;
16519 s->size += 8;
16520 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16521 if (bfd_link_pic(info))
16522 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16523 else
16524 htab->srofixup->size += 8;
16525 }
16526 }
16527
16528 /* Add one entry into the GOT and a R_ARM_FUNCDESC or
16529 R_ARM_RELATIVE/rofixup relocation on it. */
16530 eh->fdpic_cnts.gotfuncdesc_offset = s->size;
16531 s->size += 4;
16532 if (h->dynindx == -1 && !bfd_link_pic(info))
16533 htab->srofixup->size += 4;
16534 else
16535 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16536 }
16537
16538 if (eh->fdpic_cnts.funcdesc_cnt > 0)
16539 {
16540 if (htab->root.dynamic_sections_created && h->dynindx == -1
16541 && !h->forced_local)
16542 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16543 return FALSE;
16544
16545 if (h->dynindx == -1)
16546 {
16547 /* We only allocate one function descriptor with its associated relocation. */
16548 if (eh->fdpic_cnts.funcdesc_offset == -1)
16549 {
16550 asection *s = htab->root.sgot;
16551
16552 eh->fdpic_cnts.funcdesc_offset = s->size;
16553 s->size += 8;
16554 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16555 if (bfd_link_pic(info))
16556 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16557 else
16558 htab->srofixup->size += 8;
16559 }
16560 }
16561 if (h->dynindx == -1 && !bfd_link_pic(info))
16562 {
16563 /* For FDPIC executable we replace R_ARM_RELATIVE with a rofixup. */
16564 htab->srofixup->size += 4 * eh->fdpic_cnts.funcdesc_cnt;
16565 }
16566 else
16567 {
16568 /* Will need one dynamic reloc per reference. will be either
16569 R_ARM_FUNCDESC or R_ARM_RELATIVE for hidden symbols. */
16570 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot,
16571 eh->fdpic_cnts.funcdesc_cnt);
16572 }
16573 }
16574
16575 /* Allocate stubs for exported Thumb functions on v4t. */
16576 if (!htab->use_blx && h->dynindx != -1
16577 && h->def_regular
16578 && ARM_GET_SYM_BRANCH_TYPE (h->target_internal) == ST_BRANCH_TO_THUMB
16579 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
16580 {
16581 struct elf_link_hash_entry * th;
16582 struct bfd_link_hash_entry * bh;
16583 struct elf_link_hash_entry * myh;
16584 char name[1024];
16585 asection *s;
16586 bh = NULL;
16587 /* Create a new symbol to regist the real location of the function. */
16588 s = h->root.u.def.section;
16589 sprintf (name, "__real_%s", h->root.root.string);
16590 _bfd_generic_link_add_one_symbol (info, s->owner,
16591 name, BSF_GLOBAL, s,
16592 h->root.u.def.value,
16593 NULL, TRUE, FALSE, &bh);
16594
16595 myh = (struct elf_link_hash_entry *) bh;
16596 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
16597 myh->forced_local = 1;
16598 ARM_SET_SYM_BRANCH_TYPE (myh->target_internal, ST_BRANCH_TO_THUMB);
16599 eh->export_glue = myh;
16600 th = record_arm_to_thumb_glue (info, h);
16601 /* Point the symbol at the stub. */
16602 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
16603 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
16604 h->root.u.def.section = th->root.u.def.section;
16605 h->root.u.def.value = th->root.u.def.value & ~1;
16606 }
16607
16608 if (eh->dyn_relocs == NULL)
16609 return TRUE;
16610
16611 /* In the shared -Bsymbolic case, discard space allocated for
16612 dynamic pc-relative relocs against symbols which turn out to be
16613 defined in regular objects. For the normal shared case, discard
16614 space for pc-relative relocs that have become local due to symbol
16615 visibility changes. */
16616
16617 if (bfd_link_pic (info) || htab->root.is_relocatable_executable || htab->fdpic_p)
16618 {
16619 /* Relocs that use pc_count are PC-relative forms, which will appear
16620 on something like ".long foo - ." or "movw REG, foo - .". We want
16621 calls to protected symbols to resolve directly to the function
16622 rather than going via the plt. If people want function pointer
16623 comparisons to work as expected then they should avoid writing
16624 assembly like ".long foo - .". */
16625 if (SYMBOL_CALLS_LOCAL (info, h))
16626 {
16627 struct elf_dyn_relocs **pp;
16628
16629 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
16630 {
16631 p->count -= p->pc_count;
16632 p->pc_count = 0;
16633 if (p->count == 0)
16634 *pp = p->next;
16635 else
16636 pp = &p->next;
16637 }
16638 }
16639
16640 if (htab->vxworks_p)
16641 {
16642 struct elf_dyn_relocs **pp;
16643
16644 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
16645 {
16646 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
16647 *pp = p->next;
16648 else
16649 pp = &p->next;
16650 }
16651 }
16652
16653 /* Also discard relocs on undefined weak syms with non-default
16654 visibility. */
16655 if (eh->dyn_relocs != NULL
16656 && h->root.type == bfd_link_hash_undefweak)
16657 {
16658 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
16659 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
16660 eh->dyn_relocs = NULL;
16661
16662 /* Make sure undefined weak symbols are output as a dynamic
16663 symbol in PIEs. */
16664 else if (htab->root.dynamic_sections_created && h->dynindx == -1
16665 && !h->forced_local)
16666 {
16667 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16668 return FALSE;
16669 }
16670 }
16671
16672 else if (htab->root.is_relocatable_executable && h->dynindx == -1
16673 && h->root.type == bfd_link_hash_new)
16674 {
16675 /* Output absolute symbols so that we can create relocations
16676 against them. For normal symbols we output a relocation
16677 against the section that contains them. */
16678 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16679 return FALSE;
16680 }
16681
16682 }
16683 else
16684 {
16685 /* For the non-shared case, discard space for relocs against
16686 symbols which turn out to need copy relocs or are not
16687 dynamic. */
16688
16689 if (!h->non_got_ref
16690 && ((h->def_dynamic
16691 && !h->def_regular)
16692 || (htab->root.dynamic_sections_created
16693 && (h->root.type == bfd_link_hash_undefweak
16694 || h->root.type == bfd_link_hash_undefined))))
16695 {
16696 /* Make sure this symbol is output as a dynamic symbol.
16697 Undefined weak syms won't yet be marked as dynamic. */
16698 if (h->dynindx == -1 && !h->forced_local
16699 && h->root.type == bfd_link_hash_undefweak)
16700 {
16701 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16702 return FALSE;
16703 }
16704
16705 /* If that succeeded, we know we'll be keeping all the
16706 relocs. */
16707 if (h->dynindx != -1)
16708 goto keep;
16709 }
16710
16711 eh->dyn_relocs = NULL;
16712
16713 keep: ;
16714 }
16715
16716 /* Finally, allocate space. */
16717 for (p = eh->dyn_relocs; p != NULL; p = p->next)
16718 {
16719 asection *sreloc = elf_section_data (p->sec)->sreloc;
16720
16721 if (h->type == STT_GNU_IFUNC
16722 && eh->plt.noncall_refcount == 0
16723 && SYMBOL_REFERENCES_LOCAL (info, h))
16724 elf32_arm_allocate_irelocs (info, sreloc, p->count);
16725 else if (h->dynindx != -1 && (!bfd_link_pic(info) || !info->symbolic || !h->def_regular))
16726 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
16727 else if (htab->fdpic_p && !bfd_link_pic(info))
16728 htab->srofixup->size += 4 * p->count;
16729 else
16730 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
16731 }
16732
16733 return TRUE;
16734 }
16735
16736 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
16737 read-only sections. */
16738
16739 static bfd_boolean
16740 maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p)
16741 {
16742 asection *sec;
16743
16744 if (h->root.type == bfd_link_hash_indirect)
16745 return TRUE;
16746
16747 sec = readonly_dynrelocs (h);
16748 if (sec != NULL)
16749 {
16750 struct bfd_link_info *info = (struct bfd_link_info *) info_p;
16751
16752 info->flags |= DF_TEXTREL;
16753 info->callbacks->minfo
16754 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
16755 sec->owner, h->root.root.string, sec);
16756
16757 /* Not an error, just cut short the traversal. */
16758 return FALSE;
16759 }
16760
16761 return TRUE;
16762 }
16763
16764 void
16765 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
16766 int byteswap_code)
16767 {
16768 struct elf32_arm_link_hash_table *globals;
16769
16770 globals = elf32_arm_hash_table (info);
16771 if (globals == NULL)
16772 return;
16773
16774 globals->byteswap_code = byteswap_code;
16775 }
16776
16777 /* Set the sizes of the dynamic sections. */
16778
16779 static bfd_boolean
16780 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
16781 struct bfd_link_info * info)
16782 {
16783 bfd * dynobj;
16784 asection * s;
16785 bfd_boolean plt;
16786 bfd_boolean relocs;
16787 bfd *ibfd;
16788 struct elf32_arm_link_hash_table *htab;
16789
16790 htab = elf32_arm_hash_table (info);
16791 if (htab == NULL)
16792 return FALSE;
16793
16794 dynobj = elf_hash_table (info)->dynobj;
16795 BFD_ASSERT (dynobj != NULL);
16796 check_use_blx (htab);
16797
16798 if (elf_hash_table (info)->dynamic_sections_created)
16799 {
16800 /* Set the contents of the .interp section to the interpreter. */
16801 if (bfd_link_executable (info) && !info->nointerp)
16802 {
16803 s = bfd_get_linker_section (dynobj, ".interp");
16804 BFD_ASSERT (s != NULL);
16805 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
16806 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
16807 }
16808 }
16809
16810 /* Set up .got offsets for local syms, and space for local dynamic
16811 relocs. */
16812 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
16813 {
16814 bfd_signed_vma *local_got;
16815 bfd_signed_vma *end_local_got;
16816 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
16817 char *local_tls_type;
16818 bfd_vma *local_tlsdesc_gotent;
16819 bfd_size_type locsymcount;
16820 Elf_Internal_Shdr *symtab_hdr;
16821 asection *srel;
16822 bfd_boolean is_vxworks = htab->vxworks_p;
16823 unsigned int symndx;
16824 struct fdpic_local *local_fdpic_cnts;
16825
16826 if (! is_arm_elf (ibfd))
16827 continue;
16828
16829 for (s = ibfd->sections; s != NULL; s = s->next)
16830 {
16831 struct elf_dyn_relocs *p;
16832
16833 for (p = (struct elf_dyn_relocs *)
16834 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
16835 {
16836 if (!bfd_is_abs_section (p->sec)
16837 && bfd_is_abs_section (p->sec->output_section))
16838 {
16839 /* Input section has been discarded, either because
16840 it is a copy of a linkonce section or due to
16841 linker script /DISCARD/, so we'll be discarding
16842 the relocs too. */
16843 }
16844 else if (is_vxworks
16845 && strcmp (p->sec->output_section->name,
16846 ".tls_vars") == 0)
16847 {
16848 /* Relocations in vxworks .tls_vars sections are
16849 handled specially by the loader. */
16850 }
16851 else if (p->count != 0)
16852 {
16853 srel = elf_section_data (p->sec)->sreloc;
16854 if (htab->fdpic_p && !bfd_link_pic(info))
16855 htab->srofixup->size += 4 * p->count;
16856 else
16857 elf32_arm_allocate_dynrelocs (info, srel, p->count);
16858 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
16859 info->flags |= DF_TEXTREL;
16860 }
16861 }
16862 }
16863
16864 local_got = elf_local_got_refcounts (ibfd);
16865 if (!local_got)
16866 continue;
16867
16868 symtab_hdr = & elf_symtab_hdr (ibfd);
16869 locsymcount = symtab_hdr->sh_info;
16870 end_local_got = local_got + locsymcount;
16871 local_iplt_ptr = elf32_arm_local_iplt (ibfd);
16872 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
16873 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
16874 local_fdpic_cnts = elf32_arm_local_fdpic_cnts (ibfd);
16875 symndx = 0;
16876 s = htab->root.sgot;
16877 srel = htab->root.srelgot;
16878 for (; local_got < end_local_got;
16879 ++local_got, ++local_iplt_ptr, ++local_tls_type,
16880 ++local_tlsdesc_gotent, ++symndx, ++local_fdpic_cnts)
16881 {
16882 *local_tlsdesc_gotent = (bfd_vma) -1;
16883 local_iplt = *local_iplt_ptr;
16884
16885 /* FDPIC support. */
16886 if (local_fdpic_cnts->gotofffuncdesc_cnt > 0)
16887 {
16888 if (local_fdpic_cnts->funcdesc_offset == -1)
16889 {
16890 local_fdpic_cnts->funcdesc_offset = s->size;
16891 s->size += 8;
16892
16893 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16894 if (bfd_link_pic(info))
16895 elf32_arm_allocate_dynrelocs (info, srel, 1);
16896 else
16897 htab->srofixup->size += 8;
16898 }
16899 }
16900
16901 if (local_fdpic_cnts->funcdesc_cnt > 0)
16902 {
16903 if (local_fdpic_cnts->funcdesc_offset == -1)
16904 {
16905 local_fdpic_cnts->funcdesc_offset = s->size;
16906 s->size += 8;
16907
16908 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16909 if (bfd_link_pic(info))
16910 elf32_arm_allocate_dynrelocs (info, srel, 1);
16911 else
16912 htab->srofixup->size += 8;
16913 }
16914
16915 /* We will add n R_ARM_RELATIVE relocations or n rofixups. */
16916 if (bfd_link_pic(info))
16917 elf32_arm_allocate_dynrelocs (info, srel, local_fdpic_cnts->funcdesc_cnt);
16918 else
16919 htab->srofixup->size += 4 * local_fdpic_cnts->funcdesc_cnt;
16920 }
16921
16922 if (local_iplt != NULL)
16923 {
16924 struct elf_dyn_relocs *p;
16925
16926 if (local_iplt->root.refcount > 0)
16927 {
16928 elf32_arm_allocate_plt_entry (info, TRUE,
16929 &local_iplt->root,
16930 &local_iplt->arm);
16931 if (local_iplt->arm.noncall_refcount == 0)
16932 /* All references to the PLT are calls, so all
16933 non-call references can resolve directly to the
16934 run-time target. This means that the .got entry
16935 would be the same as the .igot.plt entry, so there's
16936 no point creating both. */
16937 *local_got = 0;
16938 }
16939 else
16940 {
16941 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
16942 local_iplt->root.offset = (bfd_vma) -1;
16943 }
16944
16945 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
16946 {
16947 asection *psrel;
16948
16949 psrel = elf_section_data (p->sec)->sreloc;
16950 if (local_iplt->arm.noncall_refcount == 0)
16951 elf32_arm_allocate_irelocs (info, psrel, p->count);
16952 else
16953 elf32_arm_allocate_dynrelocs (info, psrel, p->count);
16954 }
16955 }
16956 if (*local_got > 0)
16957 {
16958 Elf_Internal_Sym *isym;
16959
16960 *local_got = s->size;
16961 if (*local_tls_type & GOT_TLS_GD)
16962 /* TLS_GD relocs need an 8-byte structure in the GOT. */
16963 s->size += 8;
16964 if (*local_tls_type & GOT_TLS_GDESC)
16965 {
16966 *local_tlsdesc_gotent = htab->root.sgotplt->size
16967 - elf32_arm_compute_jump_table_size (htab);
16968 htab->root.sgotplt->size += 8;
16969 *local_got = (bfd_vma) -2;
16970 /* plt.got_offset needs to know there's a TLS_DESC
16971 reloc in the middle of .got.plt. */
16972 htab->num_tls_desc++;
16973 }
16974 if (*local_tls_type & GOT_TLS_IE)
16975 s->size += 4;
16976
16977 if (*local_tls_type & GOT_NORMAL)
16978 {
16979 /* If the symbol is both GD and GDESC, *local_got
16980 may have been overwritten. */
16981 *local_got = s->size;
16982 s->size += 4;
16983 }
16984
16985 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
16986 if (isym == NULL)
16987 return FALSE;
16988
16989 /* If all references to an STT_GNU_IFUNC PLT are calls,
16990 then all non-call references, including this GOT entry,
16991 resolve directly to the run-time target. */
16992 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
16993 && (local_iplt == NULL
16994 || local_iplt->arm.noncall_refcount == 0))
16995 elf32_arm_allocate_irelocs (info, srel, 1);
16996 else if (bfd_link_pic (info) || output_bfd->flags & DYNAMIC || htab->fdpic_p)
16997 {
16998 if ((bfd_link_pic (info) && !(*local_tls_type & GOT_TLS_GDESC)))
16999 elf32_arm_allocate_dynrelocs (info, srel, 1);
17000 else if (htab->fdpic_p && *local_tls_type & GOT_NORMAL)
17001 htab->srofixup->size += 4;
17002
17003 if ((bfd_link_pic (info) || htab->fdpic_p)
17004 && *local_tls_type & GOT_TLS_GDESC)
17005 {
17006 elf32_arm_allocate_dynrelocs (info,
17007 htab->root.srelplt, 1);
17008 htab->tls_trampoline = -1;
17009 }
17010 }
17011 }
17012 else
17013 *local_got = (bfd_vma) -1;
17014 }
17015 }
17016
17017 if (htab->tls_ldm_got.refcount > 0)
17018 {
17019 /* Allocate two GOT entries and one dynamic relocation (if necessary)
17020 for R_ARM_TLS_LDM32/R_ARM_TLS_LDM32_FDPIC relocations. */
17021 htab->tls_ldm_got.offset = htab->root.sgot->size;
17022 htab->root.sgot->size += 8;
17023 if (bfd_link_pic (info))
17024 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
17025 }
17026 else
17027 htab->tls_ldm_got.offset = -1;
17028
17029 /* At the very end of the .rofixup section is a pointer to the GOT,
17030 reserve space for it. */
17031 if (htab->fdpic_p && htab->srofixup != NULL)
17032 htab->srofixup->size += 4;
17033
17034 /* Allocate global sym .plt and .got entries, and space for global
17035 sym dynamic relocs. */
17036 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
17037
17038 /* Here we rummage through the found bfds to collect glue information. */
17039 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
17040 {
17041 if (! is_arm_elf (ibfd))
17042 continue;
17043
17044 /* Initialise mapping tables for code/data. */
17045 bfd_elf32_arm_init_maps (ibfd);
17046
17047 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
17048 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info)
17049 || !bfd_elf32_arm_stm32l4xx_erratum_scan (ibfd, info))
17050 _bfd_error_handler (_("errors encountered processing file %pB"), ibfd);
17051 }
17052
17053 /* Allocate space for the glue sections now that we've sized them. */
17054 bfd_elf32_arm_allocate_interworking_sections (info);
17055
17056 /* For every jump slot reserved in the sgotplt, reloc_count is
17057 incremented. However, when we reserve space for TLS descriptors,
17058 it's not incremented, so in order to compute the space reserved
17059 for them, it suffices to multiply the reloc count by the jump
17060 slot size. */
17061 if (htab->root.srelplt)
17062 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
17063
17064 if (htab->tls_trampoline)
17065 {
17066 if (htab->root.splt->size == 0)
17067 htab->root.splt->size += htab->plt_header_size;
17068
17069 htab->tls_trampoline = htab->root.splt->size;
17070 htab->root.splt->size += htab->plt_entry_size;
17071
17072 /* If we're not using lazy TLS relocations, don't generate the
17073 PLT and GOT entries they require. */
17074 if (!(info->flags & DF_BIND_NOW))
17075 {
17076 htab->dt_tlsdesc_got = htab->root.sgot->size;
17077 htab->root.sgot->size += 4;
17078
17079 htab->dt_tlsdesc_plt = htab->root.splt->size;
17080 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
17081 }
17082 }
17083
17084 /* The check_relocs and adjust_dynamic_symbol entry points have
17085 determined the sizes of the various dynamic sections. Allocate
17086 memory for them. */
17087 plt = FALSE;
17088 relocs = FALSE;
17089 for (s = dynobj->sections; s != NULL; s = s->next)
17090 {
17091 const char * name;
17092
17093 if ((s->flags & SEC_LINKER_CREATED) == 0)
17094 continue;
17095
17096 /* It's OK to base decisions on the section name, because none
17097 of the dynobj section names depend upon the input files. */
17098 name = bfd_section_name (s);
17099
17100 if (s == htab->root.splt)
17101 {
17102 /* Remember whether there is a PLT. */
17103 plt = s->size != 0;
17104 }
17105 else if (CONST_STRNEQ (name, ".rel"))
17106 {
17107 if (s->size != 0)
17108 {
17109 /* Remember whether there are any reloc sections other
17110 than .rel(a).plt and .rela.plt.unloaded. */
17111 if (s != htab->root.srelplt && s != htab->srelplt2)
17112 relocs = TRUE;
17113
17114 /* We use the reloc_count field as a counter if we need
17115 to copy relocs into the output file. */
17116 s->reloc_count = 0;
17117 }
17118 }
17119 else if (s != htab->root.sgot
17120 && s != htab->root.sgotplt
17121 && s != htab->root.iplt
17122 && s != htab->root.igotplt
17123 && s != htab->root.sdynbss
17124 && s != htab->root.sdynrelro
17125 && s != htab->srofixup)
17126 {
17127 /* It's not one of our sections, so don't allocate space. */
17128 continue;
17129 }
17130
17131 if (s->size == 0)
17132 {
17133 /* If we don't need this section, strip it from the
17134 output file. This is mostly to handle .rel(a).bss and
17135 .rel(a).plt. We must create both sections in
17136 create_dynamic_sections, because they must be created
17137 before the linker maps input sections to output
17138 sections. The linker does that before
17139 adjust_dynamic_symbol is called, and it is that
17140 function which decides whether anything needs to go
17141 into these sections. */
17142 s->flags |= SEC_EXCLUDE;
17143 continue;
17144 }
17145
17146 if ((s->flags & SEC_HAS_CONTENTS) == 0)
17147 continue;
17148
17149 /* Allocate memory for the section contents. */
17150 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
17151 if (s->contents == NULL)
17152 return FALSE;
17153 }
17154
17155 if (elf_hash_table (info)->dynamic_sections_created)
17156 {
17157 /* Add some entries to the .dynamic section. We fill in the
17158 values later, in elf32_arm_finish_dynamic_sections, but we
17159 must add the entries now so that we get the correct size for
17160 the .dynamic section. The DT_DEBUG entry is filled in by the
17161 dynamic linker and used by the debugger. */
17162 #define add_dynamic_entry(TAG, VAL) \
17163 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
17164
17165 if (bfd_link_executable (info))
17166 {
17167 if (!add_dynamic_entry (DT_DEBUG, 0))
17168 return FALSE;
17169 }
17170
17171 if (plt)
17172 {
17173 if ( !add_dynamic_entry (DT_PLTGOT, 0)
17174 || !add_dynamic_entry (DT_PLTRELSZ, 0)
17175 || !add_dynamic_entry (DT_PLTREL,
17176 htab->use_rel ? DT_REL : DT_RELA)
17177 || !add_dynamic_entry (DT_JMPREL, 0))
17178 return FALSE;
17179
17180 if (htab->dt_tlsdesc_plt
17181 && (!add_dynamic_entry (DT_TLSDESC_PLT,0)
17182 || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
17183 return FALSE;
17184 }
17185
17186 if (relocs)
17187 {
17188 if (htab->use_rel)
17189 {
17190 if (!add_dynamic_entry (DT_REL, 0)
17191 || !add_dynamic_entry (DT_RELSZ, 0)
17192 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
17193 return FALSE;
17194 }
17195 else
17196 {
17197 if (!add_dynamic_entry (DT_RELA, 0)
17198 || !add_dynamic_entry (DT_RELASZ, 0)
17199 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
17200 return FALSE;
17201 }
17202 }
17203
17204 /* If any dynamic relocs apply to a read-only section,
17205 then we need a DT_TEXTREL entry. */
17206 if ((info->flags & DF_TEXTREL) == 0)
17207 elf_link_hash_traverse (&htab->root, maybe_set_textrel, info);
17208
17209 if ((info->flags & DF_TEXTREL) != 0)
17210 {
17211 if (!add_dynamic_entry (DT_TEXTREL, 0))
17212 return FALSE;
17213 }
17214 if (htab->vxworks_p
17215 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
17216 return FALSE;
17217 }
17218 #undef add_dynamic_entry
17219
17220 return TRUE;
17221 }
17222
17223 /* Size sections even though they're not dynamic. We use it to setup
17224 _TLS_MODULE_BASE_, if needed. */
17225
17226 static bfd_boolean
17227 elf32_arm_always_size_sections (bfd *output_bfd,
17228 struct bfd_link_info *info)
17229 {
17230 asection *tls_sec;
17231 struct elf32_arm_link_hash_table *htab;
17232
17233 htab = elf32_arm_hash_table (info);
17234
17235 if (bfd_link_relocatable (info))
17236 return TRUE;
17237
17238 tls_sec = elf_hash_table (info)->tls_sec;
17239
17240 if (tls_sec)
17241 {
17242 struct elf_link_hash_entry *tlsbase;
17243
17244 tlsbase = elf_link_hash_lookup
17245 (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
17246
17247 if (tlsbase)
17248 {
17249 struct bfd_link_hash_entry *bh = NULL;
17250 const struct elf_backend_data *bed
17251 = get_elf_backend_data (output_bfd);
17252
17253 if (!(_bfd_generic_link_add_one_symbol
17254 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
17255 tls_sec, 0, NULL, FALSE,
17256 bed->collect, &bh)))
17257 return FALSE;
17258
17259 tlsbase->type = STT_TLS;
17260 tlsbase = (struct elf_link_hash_entry *)bh;
17261 tlsbase->def_regular = 1;
17262 tlsbase->other = STV_HIDDEN;
17263 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
17264 }
17265 }
17266
17267 if (htab->fdpic_p && !bfd_link_relocatable (info)
17268 && !bfd_elf_stack_segment_size (output_bfd, info,
17269 "__stacksize", DEFAULT_STACK_SIZE))
17270 return FALSE;
17271
17272 return TRUE;
17273 }
17274
17275 /* Finish up dynamic symbol handling. We set the contents of various
17276 dynamic sections here. */
17277
17278 static bfd_boolean
17279 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
17280 struct bfd_link_info * info,
17281 struct elf_link_hash_entry * h,
17282 Elf_Internal_Sym * sym)
17283 {
17284 struct elf32_arm_link_hash_table *htab;
17285 struct elf32_arm_link_hash_entry *eh;
17286
17287 htab = elf32_arm_hash_table (info);
17288 if (htab == NULL)
17289 return FALSE;
17290
17291 eh = (struct elf32_arm_link_hash_entry *) h;
17292
17293 if (h->plt.offset != (bfd_vma) -1)
17294 {
17295 if (!eh->is_iplt)
17296 {
17297 BFD_ASSERT (h->dynindx != -1);
17298 if (! elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
17299 h->dynindx, 0))
17300 return FALSE;
17301 }
17302
17303 if (!h->def_regular)
17304 {
17305 /* Mark the symbol as undefined, rather than as defined in
17306 the .plt section. */
17307 sym->st_shndx = SHN_UNDEF;
17308 /* If the symbol is weak we need to clear the value.
17309 Otherwise, the PLT entry would provide a definition for
17310 the symbol even if the symbol wasn't defined anywhere,
17311 and so the symbol would never be NULL. Leave the value if
17312 there were any relocations where pointer equality matters
17313 (this is a clue for the dynamic linker, to make function
17314 pointer comparisons work between an application and shared
17315 library). */
17316 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
17317 sym->st_value = 0;
17318 }
17319 else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
17320 {
17321 /* At least one non-call relocation references this .iplt entry,
17322 so the .iplt entry is the function's canonical address. */
17323 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
17324 ARM_SET_SYM_BRANCH_TYPE (sym->st_target_internal, ST_BRANCH_TO_ARM);
17325 sym->st_shndx = (_bfd_elf_section_from_bfd_section
17326 (output_bfd, htab->root.iplt->output_section));
17327 sym->st_value = (h->plt.offset
17328 + htab->root.iplt->output_section->vma
17329 + htab->root.iplt->output_offset);
17330 }
17331 }
17332
17333 if (h->needs_copy)
17334 {
17335 asection * s;
17336 Elf_Internal_Rela rel;
17337
17338 /* This symbol needs a copy reloc. Set it up. */
17339 BFD_ASSERT (h->dynindx != -1
17340 && (h->root.type == bfd_link_hash_defined
17341 || h->root.type == bfd_link_hash_defweak));
17342
17343 rel.r_addend = 0;
17344 rel.r_offset = (h->root.u.def.value
17345 + h->root.u.def.section->output_section->vma
17346 + h->root.u.def.section->output_offset);
17347 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
17348 if (h->root.u.def.section == htab->root.sdynrelro)
17349 s = htab->root.sreldynrelro;
17350 else
17351 s = htab->root.srelbss;
17352 elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
17353 }
17354
17355 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
17356 and for FDPIC, the _GLOBAL_OFFSET_TABLE_ symbol is not absolute:
17357 it is relative to the ".got" section. */
17358 if (h == htab->root.hdynamic
17359 || (!htab->fdpic_p && !htab->vxworks_p && h == htab->root.hgot))
17360 sym->st_shndx = SHN_ABS;
17361
17362 return TRUE;
17363 }
17364
17365 static void
17366 arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
17367 void *contents,
17368 const unsigned long *template, unsigned count)
17369 {
17370 unsigned ix;
17371
17372 for (ix = 0; ix != count; ix++)
17373 {
17374 unsigned long insn = template[ix];
17375
17376 /* Emit mov pc,rx if bx is not permitted. */
17377 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
17378 insn = (insn & 0xf000000f) | 0x01a0f000;
17379 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
17380 }
17381 }
17382
17383 /* Install the special first PLT entry for elf32-arm-nacl. Unlike
17384 other variants, NaCl needs this entry in a static executable's
17385 .iplt too. When we're handling that case, GOT_DISPLACEMENT is
17386 zero. For .iplt really only the last bundle is useful, and .iplt
17387 could have a shorter first entry, with each individual PLT entry's
17388 relative branch calculated differently so it targets the last
17389 bundle instead of the instruction before it (labelled .Lplt_tail
17390 above). But it's simpler to keep the size and layout of PLT0
17391 consistent with the dynamic case, at the cost of some dead code at
17392 the start of .iplt and the one dead store to the stack at the start
17393 of .Lplt_tail. */
17394 static void
17395 arm_nacl_put_plt0 (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
17396 asection *plt, bfd_vma got_displacement)
17397 {
17398 unsigned int i;
17399
17400 put_arm_insn (htab, output_bfd,
17401 elf32_arm_nacl_plt0_entry[0]
17402 | arm_movw_immediate (got_displacement),
17403 plt->contents + 0);
17404 put_arm_insn (htab, output_bfd,
17405 elf32_arm_nacl_plt0_entry[1]
17406 | arm_movt_immediate (got_displacement),
17407 plt->contents + 4);
17408
17409 for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i)
17410 put_arm_insn (htab, output_bfd,
17411 elf32_arm_nacl_plt0_entry[i],
17412 plt->contents + (i * 4));
17413 }
17414
17415 /* Finish up the dynamic sections. */
17416
17417 static bfd_boolean
17418 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
17419 {
17420 bfd * dynobj;
17421 asection * sgot;
17422 asection * sdyn;
17423 struct elf32_arm_link_hash_table *htab;
17424
17425 htab = elf32_arm_hash_table (info);
17426 if (htab == NULL)
17427 return FALSE;
17428
17429 dynobj = elf_hash_table (info)->dynobj;
17430
17431 sgot = htab->root.sgotplt;
17432 /* A broken linker script might have discarded the dynamic sections.
17433 Catch this here so that we do not seg-fault later on. */
17434 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
17435 return FALSE;
17436 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
17437
17438 if (elf_hash_table (info)->dynamic_sections_created)
17439 {
17440 asection *splt;
17441 Elf32_External_Dyn *dyncon, *dynconend;
17442
17443 splt = htab->root.splt;
17444 BFD_ASSERT (splt != NULL && sdyn != NULL);
17445 BFD_ASSERT (htab->symbian_p || sgot != NULL);
17446
17447 dyncon = (Elf32_External_Dyn *) sdyn->contents;
17448 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
17449
17450 for (; dyncon < dynconend; dyncon++)
17451 {
17452 Elf_Internal_Dyn dyn;
17453 const char * name;
17454 asection * s;
17455
17456 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
17457
17458 switch (dyn.d_tag)
17459 {
17460 unsigned int type;
17461
17462 default:
17463 if (htab->vxworks_p
17464 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
17465 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17466 break;
17467
17468 case DT_HASH:
17469 name = ".hash";
17470 goto get_vma_if_bpabi;
17471 case DT_STRTAB:
17472 name = ".dynstr";
17473 goto get_vma_if_bpabi;
17474 case DT_SYMTAB:
17475 name = ".dynsym";
17476 goto get_vma_if_bpabi;
17477 case DT_VERSYM:
17478 name = ".gnu.version";
17479 goto get_vma_if_bpabi;
17480 case DT_VERDEF:
17481 name = ".gnu.version_d";
17482 goto get_vma_if_bpabi;
17483 case DT_VERNEED:
17484 name = ".gnu.version_r";
17485 goto get_vma_if_bpabi;
17486
17487 case DT_PLTGOT:
17488 name = htab->symbian_p ? ".got" : ".got.plt";
17489 goto get_vma;
17490 case DT_JMPREL:
17491 name = RELOC_SECTION (htab, ".plt");
17492 get_vma:
17493 s = bfd_get_linker_section (dynobj, name);
17494 if (s == NULL)
17495 {
17496 _bfd_error_handler
17497 (_("could not find section %s"), name);
17498 bfd_set_error (bfd_error_invalid_operation);
17499 return FALSE;
17500 }
17501 if (!htab->symbian_p)
17502 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
17503 else
17504 /* In the BPABI, tags in the PT_DYNAMIC section point
17505 at the file offset, not the memory address, for the
17506 convenience of the post linker. */
17507 dyn.d_un.d_ptr = s->output_section->filepos + s->output_offset;
17508 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17509 break;
17510
17511 get_vma_if_bpabi:
17512 if (htab->symbian_p)
17513 goto get_vma;
17514 break;
17515
17516 case DT_PLTRELSZ:
17517 s = htab->root.srelplt;
17518 BFD_ASSERT (s != NULL);
17519 dyn.d_un.d_val = s->size;
17520 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17521 break;
17522
17523 case DT_RELSZ:
17524 case DT_RELASZ:
17525 case DT_REL:
17526 case DT_RELA:
17527 /* In the BPABI, the DT_REL tag must point at the file
17528 offset, not the VMA, of the first relocation
17529 section. So, we use code similar to that in
17530 elflink.c, but do not check for SHF_ALLOC on the
17531 relocation section, since relocation sections are
17532 never allocated under the BPABI. PLT relocs are also
17533 included. */
17534 if (htab->symbian_p)
17535 {
17536 unsigned int i;
17537 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
17538 ? SHT_REL : SHT_RELA);
17539 dyn.d_un.d_val = 0;
17540 for (i = 1; i < elf_numsections (output_bfd); i++)
17541 {
17542 Elf_Internal_Shdr *hdr
17543 = elf_elfsections (output_bfd)[i];
17544 if (hdr->sh_type == type)
17545 {
17546 if (dyn.d_tag == DT_RELSZ
17547 || dyn.d_tag == DT_RELASZ)
17548 dyn.d_un.d_val += hdr->sh_size;
17549 else if ((ufile_ptr) hdr->sh_offset
17550 <= dyn.d_un.d_val - 1)
17551 dyn.d_un.d_val = hdr->sh_offset;
17552 }
17553 }
17554 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17555 }
17556 break;
17557
17558 case DT_TLSDESC_PLT:
17559 s = htab->root.splt;
17560 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
17561 + htab->dt_tlsdesc_plt);
17562 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17563 break;
17564
17565 case DT_TLSDESC_GOT:
17566 s = htab->root.sgot;
17567 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
17568 + htab->dt_tlsdesc_got);
17569 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17570 break;
17571
17572 /* Set the bottom bit of DT_INIT/FINI if the
17573 corresponding function is Thumb. */
17574 case DT_INIT:
17575 name = info->init_function;
17576 goto get_sym;
17577 case DT_FINI:
17578 name = info->fini_function;
17579 get_sym:
17580 /* If it wasn't set by elf_bfd_final_link
17581 then there is nothing to adjust. */
17582 if (dyn.d_un.d_val != 0)
17583 {
17584 struct elf_link_hash_entry * eh;
17585
17586 eh = elf_link_hash_lookup (elf_hash_table (info), name,
17587 FALSE, FALSE, TRUE);
17588 if (eh != NULL
17589 && ARM_GET_SYM_BRANCH_TYPE (eh->target_internal)
17590 == ST_BRANCH_TO_THUMB)
17591 {
17592 dyn.d_un.d_val |= 1;
17593 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17594 }
17595 }
17596 break;
17597 }
17598 }
17599
17600 /* Fill in the first entry in the procedure linkage table. */
17601 if (splt->size > 0 && htab->plt_header_size)
17602 {
17603 const bfd_vma *plt0_entry;
17604 bfd_vma got_address, plt_address, got_displacement;
17605
17606 /* Calculate the addresses of the GOT and PLT. */
17607 got_address = sgot->output_section->vma + sgot->output_offset;
17608 plt_address = splt->output_section->vma + splt->output_offset;
17609
17610 if (htab->vxworks_p)
17611 {
17612 /* The VxWorks GOT is relocated by the dynamic linker.
17613 Therefore, we must emit relocations rather than simply
17614 computing the values now. */
17615 Elf_Internal_Rela rel;
17616
17617 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
17618 put_arm_insn (htab, output_bfd, plt0_entry[0],
17619 splt->contents + 0);
17620 put_arm_insn (htab, output_bfd, plt0_entry[1],
17621 splt->contents + 4);
17622 put_arm_insn (htab, output_bfd, plt0_entry[2],
17623 splt->contents + 8);
17624 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
17625
17626 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
17627 rel.r_offset = plt_address + 12;
17628 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
17629 rel.r_addend = 0;
17630 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
17631 htab->srelplt2->contents);
17632 }
17633 else if (htab->nacl_p)
17634 arm_nacl_put_plt0 (htab, output_bfd, splt,
17635 got_address + 8 - (plt_address + 16));
17636 else if (using_thumb_only (htab))
17637 {
17638 got_displacement = got_address - (plt_address + 12);
17639
17640 plt0_entry = elf32_thumb2_plt0_entry;
17641 put_arm_insn (htab, output_bfd, plt0_entry[0],
17642 splt->contents + 0);
17643 put_arm_insn (htab, output_bfd, plt0_entry[1],
17644 splt->contents + 4);
17645 put_arm_insn (htab, output_bfd, plt0_entry[2],
17646 splt->contents + 8);
17647
17648 bfd_put_32 (output_bfd, got_displacement, splt->contents + 12);
17649 }
17650 else
17651 {
17652 got_displacement = got_address - (plt_address + 16);
17653
17654 plt0_entry = elf32_arm_plt0_entry;
17655 put_arm_insn (htab, output_bfd, plt0_entry[0],
17656 splt->contents + 0);
17657 put_arm_insn (htab, output_bfd, plt0_entry[1],
17658 splt->contents + 4);
17659 put_arm_insn (htab, output_bfd, plt0_entry[2],
17660 splt->contents + 8);
17661 put_arm_insn (htab, output_bfd, plt0_entry[3],
17662 splt->contents + 12);
17663
17664 #ifdef FOUR_WORD_PLT
17665 /* The displacement value goes in the otherwise-unused
17666 last word of the second entry. */
17667 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
17668 #else
17669 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
17670 #endif
17671 }
17672 }
17673
17674 /* UnixWare sets the entsize of .plt to 4, although that doesn't
17675 really seem like the right value. */
17676 if (splt->output_section->owner == output_bfd)
17677 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
17678
17679 if (htab->dt_tlsdesc_plt)
17680 {
17681 bfd_vma got_address
17682 = sgot->output_section->vma + sgot->output_offset;
17683 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
17684 + htab->root.sgot->output_offset);
17685 bfd_vma plt_address
17686 = splt->output_section->vma + splt->output_offset;
17687
17688 arm_put_trampoline (htab, output_bfd,
17689 splt->contents + htab->dt_tlsdesc_plt,
17690 dl_tlsdesc_lazy_trampoline, 6);
17691
17692 bfd_put_32 (output_bfd,
17693 gotplt_address + htab->dt_tlsdesc_got
17694 - (plt_address + htab->dt_tlsdesc_plt)
17695 - dl_tlsdesc_lazy_trampoline[6],
17696 splt->contents + htab->dt_tlsdesc_plt + 24);
17697 bfd_put_32 (output_bfd,
17698 got_address - (plt_address + htab->dt_tlsdesc_plt)
17699 - dl_tlsdesc_lazy_trampoline[7],
17700 splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
17701 }
17702
17703 if (htab->tls_trampoline)
17704 {
17705 arm_put_trampoline (htab, output_bfd,
17706 splt->contents + htab->tls_trampoline,
17707 tls_trampoline, 3);
17708 #ifdef FOUR_WORD_PLT
17709 bfd_put_32 (output_bfd, 0x00000000,
17710 splt->contents + htab->tls_trampoline + 12);
17711 #endif
17712 }
17713
17714 if (htab->vxworks_p
17715 && !bfd_link_pic (info)
17716 && htab->root.splt->size > 0)
17717 {
17718 /* Correct the .rel(a).plt.unloaded relocations. They will have
17719 incorrect symbol indexes. */
17720 int num_plts;
17721 unsigned char *p;
17722
17723 num_plts = ((htab->root.splt->size - htab->plt_header_size)
17724 / htab->plt_entry_size);
17725 p = htab->srelplt2->contents + RELOC_SIZE (htab);
17726
17727 for (; num_plts; num_plts--)
17728 {
17729 Elf_Internal_Rela rel;
17730
17731 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
17732 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
17733 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
17734 p += RELOC_SIZE (htab);
17735
17736 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
17737 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
17738 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
17739 p += RELOC_SIZE (htab);
17740 }
17741 }
17742 }
17743
17744 if (htab->nacl_p && htab->root.iplt != NULL && htab->root.iplt->size > 0)
17745 /* NaCl uses a special first entry in .iplt too. */
17746 arm_nacl_put_plt0 (htab, output_bfd, htab->root.iplt, 0);
17747
17748 /* Fill in the first three entries in the global offset table. */
17749 if (sgot)
17750 {
17751 if (sgot->size > 0)
17752 {
17753 if (sdyn == NULL)
17754 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
17755 else
17756 bfd_put_32 (output_bfd,
17757 sdyn->output_section->vma + sdyn->output_offset,
17758 sgot->contents);
17759 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
17760 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
17761 }
17762
17763 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
17764 }
17765
17766 /* At the very end of the .rofixup section is a pointer to the GOT. */
17767 if (htab->fdpic_p && htab->srofixup != NULL)
17768 {
17769 struct elf_link_hash_entry *hgot = htab->root.hgot;
17770
17771 bfd_vma got_value = hgot->root.u.def.value
17772 + hgot->root.u.def.section->output_section->vma
17773 + hgot->root.u.def.section->output_offset;
17774
17775 arm_elf_add_rofixup(output_bfd, htab->srofixup, got_value);
17776
17777 /* Make sure we allocated and generated the same number of fixups. */
17778 BFD_ASSERT (htab->srofixup->reloc_count * 4 == htab->srofixup->size);
17779 }
17780
17781 return TRUE;
17782 }
17783
17784 static bfd_boolean
17785 elf32_arm_init_file_header (bfd *abfd, struct bfd_link_info *link_info)
17786 {
17787 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
17788 struct elf32_arm_link_hash_table *globals;
17789 struct elf_segment_map *m;
17790
17791 if (!_bfd_elf_init_file_header (abfd, link_info))
17792 return FALSE;
17793
17794 i_ehdrp = elf_elfheader (abfd);
17795
17796 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
17797 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
17798 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
17799
17800 if (link_info)
17801 {
17802 globals = elf32_arm_hash_table (link_info);
17803 if (globals != NULL && globals->byteswap_code)
17804 i_ehdrp->e_flags |= EF_ARM_BE8;
17805
17806 if (globals->fdpic_p)
17807 i_ehdrp->e_ident[EI_OSABI] |= ELFOSABI_ARM_FDPIC;
17808 }
17809
17810 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5
17811 && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC)))
17812 {
17813 int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args);
17814 if (abi == AEABI_VFP_args_vfp)
17815 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD;
17816 else
17817 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT;
17818 }
17819
17820 /* Scan segment to set p_flags attribute if it contains only sections with
17821 SHF_ARM_PURECODE flag. */
17822 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
17823 {
17824 unsigned int j;
17825
17826 if (m->count == 0)
17827 continue;
17828 for (j = 0; j < m->count; j++)
17829 {
17830 if (!(elf_section_flags (m->sections[j]) & SHF_ARM_PURECODE))
17831 break;
17832 }
17833 if (j == m->count)
17834 {
17835 m->p_flags = PF_X;
17836 m->p_flags_valid = 1;
17837 }
17838 }
17839 return TRUE;
17840 }
17841
17842 static enum elf_reloc_type_class
17843 elf32_arm_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
17844 const asection *rel_sec ATTRIBUTE_UNUSED,
17845 const Elf_Internal_Rela *rela)
17846 {
17847 switch ((int) ELF32_R_TYPE (rela->r_info))
17848 {
17849 case R_ARM_RELATIVE:
17850 return reloc_class_relative;
17851 case R_ARM_JUMP_SLOT:
17852 return reloc_class_plt;
17853 case R_ARM_COPY:
17854 return reloc_class_copy;
17855 case R_ARM_IRELATIVE:
17856 return reloc_class_ifunc;
17857 default:
17858 return reloc_class_normal;
17859 }
17860 }
17861
17862 static void
17863 arm_final_write_processing (bfd *abfd)
17864 {
17865 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
17866 }
17867
17868 static bfd_boolean
17869 elf32_arm_final_write_processing (bfd *abfd)
17870 {
17871 arm_final_write_processing (abfd);
17872 return _bfd_elf_final_write_processing (abfd);
17873 }
17874
17875 /* Return TRUE if this is an unwinding table entry. */
17876
17877 static bfd_boolean
17878 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
17879 {
17880 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
17881 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
17882 }
17883
17884
17885 /* Set the type and flags for an ARM section. We do this by
17886 the section name, which is a hack, but ought to work. */
17887
17888 static bfd_boolean
17889 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
17890 {
17891 const char * name;
17892
17893 name = bfd_section_name (sec);
17894
17895 if (is_arm_elf_unwind_section_name (abfd, name))
17896 {
17897 hdr->sh_type = SHT_ARM_EXIDX;
17898 hdr->sh_flags |= SHF_LINK_ORDER;
17899 }
17900
17901 if (sec->flags & SEC_ELF_PURECODE)
17902 hdr->sh_flags |= SHF_ARM_PURECODE;
17903
17904 return TRUE;
17905 }
17906
17907 /* Handle an ARM specific section when reading an object file. This is
17908 called when bfd_section_from_shdr finds a section with an unknown
17909 type. */
17910
17911 static bfd_boolean
17912 elf32_arm_section_from_shdr (bfd *abfd,
17913 Elf_Internal_Shdr * hdr,
17914 const char *name,
17915 int shindex)
17916 {
17917 /* There ought to be a place to keep ELF backend specific flags, but
17918 at the moment there isn't one. We just keep track of the
17919 sections by their name, instead. Fortunately, the ABI gives
17920 names for all the ARM specific sections, so we will probably get
17921 away with this. */
17922 switch (hdr->sh_type)
17923 {
17924 case SHT_ARM_EXIDX:
17925 case SHT_ARM_PREEMPTMAP:
17926 case SHT_ARM_ATTRIBUTES:
17927 break;
17928
17929 default:
17930 return FALSE;
17931 }
17932
17933 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
17934 return FALSE;
17935
17936 return TRUE;
17937 }
17938
17939 static _arm_elf_section_data *
17940 get_arm_elf_section_data (asection * sec)
17941 {
17942 if (sec && sec->owner && is_arm_elf (sec->owner))
17943 return elf32_arm_section_data (sec);
17944 else
17945 return NULL;
17946 }
17947
17948 typedef struct
17949 {
17950 void *flaginfo;
17951 struct bfd_link_info *info;
17952 asection *sec;
17953 int sec_shndx;
17954 int (*func) (void *, const char *, Elf_Internal_Sym *,
17955 asection *, struct elf_link_hash_entry *);
17956 } output_arch_syminfo;
17957
17958 enum map_symbol_type
17959 {
17960 ARM_MAP_ARM,
17961 ARM_MAP_THUMB,
17962 ARM_MAP_DATA
17963 };
17964
17965
17966 /* Output a single mapping symbol. */
17967
17968 static bfd_boolean
17969 elf32_arm_output_map_sym (output_arch_syminfo *osi,
17970 enum map_symbol_type type,
17971 bfd_vma offset)
17972 {
17973 static const char *names[3] = {"$a", "$t", "$d"};
17974 Elf_Internal_Sym sym;
17975
17976 sym.st_value = osi->sec->output_section->vma
17977 + osi->sec->output_offset
17978 + offset;
17979 sym.st_size = 0;
17980 sym.st_other = 0;
17981 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
17982 sym.st_shndx = osi->sec_shndx;
17983 sym.st_target_internal = 0;
17984 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
17985 return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1;
17986 }
17987
17988 /* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
17989 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
17990
17991 static bfd_boolean
17992 elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
17993 bfd_boolean is_iplt_entry_p,
17994 union gotplt_union *root_plt,
17995 struct arm_plt_info *arm_plt)
17996 {
17997 struct elf32_arm_link_hash_table *htab;
17998 bfd_vma addr, plt_header_size;
17999
18000 if (root_plt->offset == (bfd_vma) -1)
18001 return TRUE;
18002
18003 htab = elf32_arm_hash_table (osi->info);
18004 if (htab == NULL)
18005 return FALSE;
18006
18007 if (is_iplt_entry_p)
18008 {
18009 osi->sec = htab->root.iplt;
18010 plt_header_size = 0;
18011 }
18012 else
18013 {
18014 osi->sec = htab->root.splt;
18015 plt_header_size = htab->plt_header_size;
18016 }
18017 osi->sec_shndx = (_bfd_elf_section_from_bfd_section
18018 (osi->info->output_bfd, osi->sec->output_section));
18019
18020 addr = root_plt->offset & -2;
18021 if (htab->symbian_p)
18022 {
18023 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
18024 return FALSE;
18025 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
18026 return FALSE;
18027 }
18028 else if (htab->vxworks_p)
18029 {
18030 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
18031 return FALSE;
18032 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
18033 return FALSE;
18034 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
18035 return FALSE;
18036 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
18037 return FALSE;
18038 }
18039 else if (htab->nacl_p)
18040 {
18041 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
18042 return FALSE;
18043 }
18044 else if (htab->fdpic_p)
18045 {
18046 enum map_symbol_type type = using_thumb_only(htab)
18047 ? ARM_MAP_THUMB
18048 : ARM_MAP_ARM;
18049
18050 if (elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt))
18051 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
18052 return FALSE;
18053 if (!elf32_arm_output_map_sym (osi, type, addr))
18054 return FALSE;
18055 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 16))
18056 return FALSE;
18057 if (htab->plt_entry_size == 4 * ARRAY_SIZE(elf32_arm_fdpic_plt_entry))
18058 if (!elf32_arm_output_map_sym (osi, type, addr + 24))
18059 return FALSE;
18060 }
18061 else if (using_thumb_only (htab))
18062 {
18063 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
18064 return FALSE;
18065 }
18066 else
18067 {
18068 bfd_boolean thumb_stub_p;
18069
18070 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
18071 if (thumb_stub_p)
18072 {
18073 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
18074 return FALSE;
18075 }
18076 #ifdef FOUR_WORD_PLT
18077 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
18078 return FALSE;
18079 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
18080 return FALSE;
18081 #else
18082 /* A three-word PLT with no Thumb thunk contains only Arm code,
18083 so only need to output a mapping symbol for the first PLT entry and
18084 entries with thumb thunks. */
18085 if (thumb_stub_p || addr == plt_header_size)
18086 {
18087 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
18088 return FALSE;
18089 }
18090 #endif
18091 }
18092
18093 return TRUE;
18094 }
18095
18096 /* Output mapping symbols for PLT entries associated with H. */
18097
18098 static bfd_boolean
18099 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
18100 {
18101 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
18102 struct elf32_arm_link_hash_entry *eh;
18103
18104 if (h->root.type == bfd_link_hash_indirect)
18105 return TRUE;
18106
18107 if (h->root.type == bfd_link_hash_warning)
18108 /* When warning symbols are created, they **replace** the "real"
18109 entry in the hash table, thus we never get to see the real
18110 symbol in a hash traversal. So look at it now. */
18111 h = (struct elf_link_hash_entry *) h->root.u.i.link;
18112
18113 eh = (struct elf32_arm_link_hash_entry *) h;
18114 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
18115 &h->plt, &eh->plt);
18116 }
18117
18118 /* Bind a veneered symbol to its veneer identified by its hash entry
18119 STUB_ENTRY. The veneered location thus loose its symbol. */
18120
18121 static void
18122 arm_stub_claim_sym (struct elf32_arm_stub_hash_entry *stub_entry)
18123 {
18124 struct elf32_arm_link_hash_entry *hash = stub_entry->h;
18125
18126 BFD_ASSERT (hash);
18127 hash->root.root.u.def.section = stub_entry->stub_sec;
18128 hash->root.root.u.def.value = stub_entry->stub_offset;
18129 hash->root.size = stub_entry->stub_size;
18130 }
18131
18132 /* Output a single local symbol for a generated stub. */
18133
18134 static bfd_boolean
18135 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
18136 bfd_vma offset, bfd_vma size)
18137 {
18138 Elf_Internal_Sym sym;
18139
18140 sym.st_value = osi->sec->output_section->vma
18141 + osi->sec->output_offset
18142 + offset;
18143 sym.st_size = size;
18144 sym.st_other = 0;
18145 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
18146 sym.st_shndx = osi->sec_shndx;
18147 sym.st_target_internal = 0;
18148 return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1;
18149 }
18150
18151 static bfd_boolean
18152 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
18153 void * in_arg)
18154 {
18155 struct elf32_arm_stub_hash_entry *stub_entry;
18156 asection *stub_sec;
18157 bfd_vma addr;
18158 char *stub_name;
18159 output_arch_syminfo *osi;
18160 const insn_sequence *template_sequence;
18161 enum stub_insn_type prev_type;
18162 int size;
18163 int i;
18164 enum map_symbol_type sym_type;
18165
18166 /* Massage our args to the form they really have. */
18167 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
18168 osi = (output_arch_syminfo *) in_arg;
18169
18170 stub_sec = stub_entry->stub_sec;
18171
18172 /* Ensure this stub is attached to the current section being
18173 processed. */
18174 if (stub_sec != osi->sec)
18175 return TRUE;
18176
18177 addr = (bfd_vma) stub_entry->stub_offset;
18178 template_sequence = stub_entry->stub_template;
18179
18180 if (arm_stub_sym_claimed (stub_entry->stub_type))
18181 arm_stub_claim_sym (stub_entry);
18182 else
18183 {
18184 stub_name = stub_entry->output_name;
18185 switch (template_sequence[0].type)
18186 {
18187 case ARM_TYPE:
18188 if (!elf32_arm_output_stub_sym (osi, stub_name, addr,
18189 stub_entry->stub_size))
18190 return FALSE;
18191 break;
18192 case THUMB16_TYPE:
18193 case THUMB32_TYPE:
18194 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
18195 stub_entry->stub_size))
18196 return FALSE;
18197 break;
18198 default:
18199 BFD_FAIL ();
18200 return 0;
18201 }
18202 }
18203
18204 prev_type = DATA_TYPE;
18205 size = 0;
18206 for (i = 0; i < stub_entry->stub_template_size; i++)
18207 {
18208 switch (template_sequence[i].type)
18209 {
18210 case ARM_TYPE:
18211 sym_type = ARM_MAP_ARM;
18212 break;
18213
18214 case THUMB16_TYPE:
18215 case THUMB32_TYPE:
18216 sym_type = ARM_MAP_THUMB;
18217 break;
18218
18219 case DATA_TYPE:
18220 sym_type = ARM_MAP_DATA;
18221 break;
18222
18223 default:
18224 BFD_FAIL ();
18225 return FALSE;
18226 }
18227
18228 if (template_sequence[i].type != prev_type)
18229 {
18230 prev_type = template_sequence[i].type;
18231 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
18232 return FALSE;
18233 }
18234
18235 switch (template_sequence[i].type)
18236 {
18237 case ARM_TYPE:
18238 case THUMB32_TYPE:
18239 size += 4;
18240 break;
18241
18242 case THUMB16_TYPE:
18243 size += 2;
18244 break;
18245
18246 case DATA_TYPE:
18247 size += 4;
18248 break;
18249
18250 default:
18251 BFD_FAIL ();
18252 return FALSE;
18253 }
18254 }
18255
18256 return TRUE;
18257 }
18258
18259 /* Output mapping symbols for linker generated sections,
18260 and for those data-only sections that do not have a
18261 $d. */
18262
18263 static bfd_boolean
18264 elf32_arm_output_arch_local_syms (bfd *output_bfd,
18265 struct bfd_link_info *info,
18266 void *flaginfo,
18267 int (*func) (void *, const char *,
18268 Elf_Internal_Sym *,
18269 asection *,
18270 struct elf_link_hash_entry *))
18271 {
18272 output_arch_syminfo osi;
18273 struct elf32_arm_link_hash_table *htab;
18274 bfd_vma offset;
18275 bfd_size_type size;
18276 bfd *input_bfd;
18277
18278 htab = elf32_arm_hash_table (info);
18279 if (htab == NULL)
18280 return FALSE;
18281
18282 check_use_blx (htab);
18283
18284 osi.flaginfo = flaginfo;
18285 osi.info = info;
18286 osi.func = func;
18287
18288 /* Add a $d mapping symbol to data-only sections that
18289 don't have any mapping symbol. This may result in (harmless) redundant
18290 mapping symbols. */
18291 for (input_bfd = info->input_bfds;
18292 input_bfd != NULL;
18293 input_bfd = input_bfd->link.next)
18294 {
18295 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
18296 for (osi.sec = input_bfd->sections;
18297 osi.sec != NULL;
18298 osi.sec = osi.sec->next)
18299 {
18300 if (osi.sec->output_section != NULL
18301 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
18302 != 0)
18303 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
18304 == SEC_HAS_CONTENTS
18305 && get_arm_elf_section_data (osi.sec) != NULL
18306 && get_arm_elf_section_data (osi.sec)->mapcount == 0
18307 && osi.sec->size > 0
18308 && (osi.sec->flags & SEC_EXCLUDE) == 0)
18309 {
18310 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18311 (output_bfd, osi.sec->output_section);
18312 if (osi.sec_shndx != (int)SHN_BAD)
18313 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
18314 }
18315 }
18316 }
18317
18318 /* ARM->Thumb glue. */
18319 if (htab->arm_glue_size > 0)
18320 {
18321 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18322 ARM2THUMB_GLUE_SECTION_NAME);
18323
18324 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18325 (output_bfd, osi.sec->output_section);
18326 if (bfd_link_pic (info) || htab->root.is_relocatable_executable
18327 || htab->pic_veneer)
18328 size = ARM2THUMB_PIC_GLUE_SIZE;
18329 else if (htab->use_blx)
18330 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
18331 else
18332 size = ARM2THUMB_STATIC_GLUE_SIZE;
18333
18334 for (offset = 0; offset < htab->arm_glue_size; offset += size)
18335 {
18336 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
18337 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
18338 }
18339 }
18340
18341 /* Thumb->ARM glue. */
18342 if (htab->thumb_glue_size > 0)
18343 {
18344 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18345 THUMB2ARM_GLUE_SECTION_NAME);
18346
18347 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18348 (output_bfd, osi.sec->output_section);
18349 size = THUMB2ARM_GLUE_SIZE;
18350
18351 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
18352 {
18353 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
18354 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
18355 }
18356 }
18357
18358 /* ARMv4 BX veneers. */
18359 if (htab->bx_glue_size > 0)
18360 {
18361 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18362 ARM_BX_GLUE_SECTION_NAME);
18363
18364 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18365 (output_bfd, osi.sec->output_section);
18366
18367 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
18368 }
18369
18370 /* Long calls stubs. */
18371 if (htab->stub_bfd && htab->stub_bfd->sections)
18372 {
18373 asection* stub_sec;
18374
18375 for (stub_sec = htab->stub_bfd->sections;
18376 stub_sec != NULL;
18377 stub_sec = stub_sec->next)
18378 {
18379 /* Ignore non-stub sections. */
18380 if (!strstr (stub_sec->name, STUB_SUFFIX))
18381 continue;
18382
18383 osi.sec = stub_sec;
18384
18385 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18386 (output_bfd, osi.sec->output_section);
18387
18388 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
18389 }
18390 }
18391
18392 /* Finally, output mapping symbols for the PLT. */
18393 if (htab->root.splt && htab->root.splt->size > 0)
18394 {
18395 osi.sec = htab->root.splt;
18396 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
18397 (output_bfd, osi.sec->output_section));
18398
18399 /* Output mapping symbols for the plt header. SymbianOS does not have a
18400 plt header. */
18401 if (htab->vxworks_p)
18402 {
18403 /* VxWorks shared libraries have no PLT header. */
18404 if (!bfd_link_pic (info))
18405 {
18406 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18407 return FALSE;
18408 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
18409 return FALSE;
18410 }
18411 }
18412 else if (htab->nacl_p)
18413 {
18414 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18415 return FALSE;
18416 }
18417 else if (using_thumb_only (htab) && !htab->fdpic_p)
18418 {
18419 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 0))
18420 return FALSE;
18421 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
18422 return FALSE;
18423 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 16))
18424 return FALSE;
18425 }
18426 else if (!htab->symbian_p && !htab->fdpic_p)
18427 {
18428 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18429 return FALSE;
18430 #ifndef FOUR_WORD_PLT
18431 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
18432 return FALSE;
18433 #endif
18434 }
18435 }
18436 if (htab->nacl_p && htab->root.iplt && htab->root.iplt->size > 0)
18437 {
18438 /* NaCl uses a special first entry in .iplt too. */
18439 osi.sec = htab->root.iplt;
18440 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
18441 (output_bfd, osi.sec->output_section));
18442 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18443 return FALSE;
18444 }
18445 if ((htab->root.splt && htab->root.splt->size > 0)
18446 || (htab->root.iplt && htab->root.iplt->size > 0))
18447 {
18448 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
18449 for (input_bfd = info->input_bfds;
18450 input_bfd != NULL;
18451 input_bfd = input_bfd->link.next)
18452 {
18453 struct arm_local_iplt_info **local_iplt;
18454 unsigned int i, num_syms;
18455
18456 local_iplt = elf32_arm_local_iplt (input_bfd);
18457 if (local_iplt != NULL)
18458 {
18459 num_syms = elf_symtab_hdr (input_bfd).sh_info;
18460 for (i = 0; i < num_syms; i++)
18461 if (local_iplt[i] != NULL
18462 && !elf32_arm_output_plt_map_1 (&osi, TRUE,
18463 &local_iplt[i]->root,
18464 &local_iplt[i]->arm))
18465 return FALSE;
18466 }
18467 }
18468 }
18469 if (htab->dt_tlsdesc_plt != 0)
18470 {
18471 /* Mapping symbols for the lazy tls trampoline. */
18472 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
18473 return FALSE;
18474
18475 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
18476 htab->dt_tlsdesc_plt + 24))
18477 return FALSE;
18478 }
18479 if (htab->tls_trampoline != 0)
18480 {
18481 /* Mapping symbols for the tls trampoline. */
18482 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
18483 return FALSE;
18484 #ifdef FOUR_WORD_PLT
18485 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
18486 htab->tls_trampoline + 12))
18487 return FALSE;
18488 #endif
18489 }
18490
18491 return TRUE;
18492 }
18493
18494 /* Filter normal symbols of CMSE entry functions of ABFD to include in
18495 the import library. All SYMCOUNT symbols of ABFD can be examined
18496 from their pointers in SYMS. Pointers of symbols to keep should be
18497 stored continuously at the beginning of that array.
18498
18499 Returns the number of symbols to keep. */
18500
18501 static unsigned int
18502 elf32_arm_filter_cmse_symbols (bfd *abfd ATTRIBUTE_UNUSED,
18503 struct bfd_link_info *info,
18504 asymbol **syms, long symcount)
18505 {
18506 size_t maxnamelen;
18507 char *cmse_name;
18508 long src_count, dst_count = 0;
18509 struct elf32_arm_link_hash_table *htab;
18510
18511 htab = elf32_arm_hash_table (info);
18512 if (!htab->stub_bfd || !htab->stub_bfd->sections)
18513 symcount = 0;
18514
18515 maxnamelen = 128;
18516 cmse_name = (char *) bfd_malloc (maxnamelen);
18517 BFD_ASSERT (cmse_name);
18518
18519 for (src_count = 0; src_count < symcount; src_count++)
18520 {
18521 struct elf32_arm_link_hash_entry *cmse_hash;
18522 asymbol *sym;
18523 flagword flags;
18524 char *name;
18525 size_t namelen;
18526
18527 sym = syms[src_count];
18528 flags = sym->flags;
18529 name = (char *) bfd_asymbol_name (sym);
18530
18531 if ((flags & BSF_FUNCTION) != BSF_FUNCTION)
18532 continue;
18533 if (!(flags & (BSF_GLOBAL | BSF_WEAK)))
18534 continue;
18535
18536 namelen = strlen (name) + sizeof (CMSE_PREFIX) + 1;
18537 if (namelen > maxnamelen)
18538 {
18539 cmse_name = (char *)
18540 bfd_realloc (cmse_name, namelen);
18541 maxnamelen = namelen;
18542 }
18543 snprintf (cmse_name, maxnamelen, "%s%s", CMSE_PREFIX, name);
18544 cmse_hash = (struct elf32_arm_link_hash_entry *)
18545 elf_link_hash_lookup (&(htab)->root, cmse_name, FALSE, FALSE, TRUE);
18546
18547 if (!cmse_hash
18548 || (cmse_hash->root.root.type != bfd_link_hash_defined
18549 && cmse_hash->root.root.type != bfd_link_hash_defweak)
18550 || cmse_hash->root.type != STT_FUNC)
18551 continue;
18552
18553 syms[dst_count++] = sym;
18554 }
18555 free (cmse_name);
18556
18557 syms[dst_count] = NULL;
18558
18559 return dst_count;
18560 }
18561
18562 /* Filter symbols of ABFD to include in the import library. All
18563 SYMCOUNT symbols of ABFD can be examined from their pointers in
18564 SYMS. Pointers of symbols to keep should be stored continuously at
18565 the beginning of that array.
18566
18567 Returns the number of symbols to keep. */
18568
18569 static unsigned int
18570 elf32_arm_filter_implib_symbols (bfd *abfd ATTRIBUTE_UNUSED,
18571 struct bfd_link_info *info,
18572 asymbol **syms, long symcount)
18573 {
18574 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
18575
18576 /* Requirement 8 of "ARM v8-M Security Extensions: Requirements on
18577 Development Tools" (ARM-ECM-0359818) mandates Secure Gateway import
18578 library to be a relocatable object file. */
18579 BFD_ASSERT (!(bfd_get_file_flags (info->out_implib_bfd) & EXEC_P));
18580 if (globals->cmse_implib)
18581 return elf32_arm_filter_cmse_symbols (abfd, info, syms, symcount);
18582 else
18583 return _bfd_elf_filter_global_symbols (abfd, info, syms, symcount);
18584 }
18585
18586 /* Allocate target specific section data. */
18587
18588 static bfd_boolean
18589 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
18590 {
18591 if (!sec->used_by_bfd)
18592 {
18593 _arm_elf_section_data *sdata;
18594 size_t amt = sizeof (*sdata);
18595
18596 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
18597 if (sdata == NULL)
18598 return FALSE;
18599 sec->used_by_bfd = sdata;
18600 }
18601
18602 return _bfd_elf_new_section_hook (abfd, sec);
18603 }
18604
18605
18606 /* Used to order a list of mapping symbols by address. */
18607
18608 static int
18609 elf32_arm_compare_mapping (const void * a, const void * b)
18610 {
18611 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
18612 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
18613
18614 if (amap->vma > bmap->vma)
18615 return 1;
18616 else if (amap->vma < bmap->vma)
18617 return -1;
18618 else if (amap->type > bmap->type)
18619 /* Ensure results do not depend on the host qsort for objects with
18620 multiple mapping symbols at the same address by sorting on type
18621 after vma. */
18622 return 1;
18623 else if (amap->type < bmap->type)
18624 return -1;
18625 else
18626 return 0;
18627 }
18628
18629 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
18630
18631 static unsigned long
18632 offset_prel31 (unsigned long addr, bfd_vma offset)
18633 {
18634 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
18635 }
18636
18637 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
18638 relocations. */
18639
18640 static void
18641 copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
18642 {
18643 unsigned long first_word = bfd_get_32 (output_bfd, from);
18644 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
18645
18646 /* High bit of first word is supposed to be zero. */
18647 if ((first_word & 0x80000000ul) == 0)
18648 first_word = offset_prel31 (first_word, offset);
18649
18650 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
18651 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
18652 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
18653 second_word = offset_prel31 (second_word, offset);
18654
18655 bfd_put_32 (output_bfd, first_word, to);
18656 bfd_put_32 (output_bfd, second_word, to + 4);
18657 }
18658
18659 /* Data for make_branch_to_a8_stub(). */
18660
18661 struct a8_branch_to_stub_data
18662 {
18663 asection *writing_section;
18664 bfd_byte *contents;
18665 };
18666
18667
18668 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
18669 places for a particular section. */
18670
18671 static bfd_boolean
18672 make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
18673 void *in_arg)
18674 {
18675 struct elf32_arm_stub_hash_entry *stub_entry;
18676 struct a8_branch_to_stub_data *data;
18677 bfd_byte *contents;
18678 unsigned long branch_insn;
18679 bfd_vma veneered_insn_loc, veneer_entry_loc;
18680 bfd_signed_vma branch_offset;
18681 bfd *abfd;
18682 unsigned int loc;
18683
18684 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
18685 data = (struct a8_branch_to_stub_data *) in_arg;
18686
18687 if (stub_entry->target_section != data->writing_section
18688 || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
18689 return TRUE;
18690
18691 contents = data->contents;
18692
18693 /* We use target_section as Cortex-A8 erratum workaround stubs are only
18694 generated when both source and target are in the same section. */
18695 veneered_insn_loc = stub_entry->target_section->output_section->vma
18696 + stub_entry->target_section->output_offset
18697 + stub_entry->source_value;
18698
18699 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
18700 + stub_entry->stub_sec->output_offset
18701 + stub_entry->stub_offset;
18702
18703 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
18704 veneered_insn_loc &= ~3u;
18705
18706 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
18707
18708 abfd = stub_entry->target_section->owner;
18709 loc = stub_entry->source_value;
18710
18711 /* We attempt to avoid this condition by setting stubs_always_after_branch
18712 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
18713 This check is just to be on the safe side... */
18714 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
18715 {
18716 _bfd_error_handler (_("%pB: error: Cortex-A8 erratum stub is "
18717 "allocated in unsafe location"), abfd);
18718 return FALSE;
18719 }
18720
18721 switch (stub_entry->stub_type)
18722 {
18723 case arm_stub_a8_veneer_b:
18724 case arm_stub_a8_veneer_b_cond:
18725 branch_insn = 0xf0009000;
18726 goto jump24;
18727
18728 case arm_stub_a8_veneer_blx:
18729 branch_insn = 0xf000e800;
18730 goto jump24;
18731
18732 case arm_stub_a8_veneer_bl:
18733 {
18734 unsigned int i1, j1, i2, j2, s;
18735
18736 branch_insn = 0xf000d000;
18737
18738 jump24:
18739 if (branch_offset < -16777216 || branch_offset > 16777214)
18740 {
18741 /* There's not much we can do apart from complain if this
18742 happens. */
18743 _bfd_error_handler (_("%pB: error: Cortex-A8 erratum stub out "
18744 "of range (input file too large)"), abfd);
18745 return FALSE;
18746 }
18747
18748 /* i1 = not(j1 eor s), so:
18749 not i1 = j1 eor s
18750 j1 = (not i1) eor s. */
18751
18752 branch_insn |= (branch_offset >> 1) & 0x7ff;
18753 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
18754 i2 = (branch_offset >> 22) & 1;
18755 i1 = (branch_offset >> 23) & 1;
18756 s = (branch_offset >> 24) & 1;
18757 j1 = (!i1) ^ s;
18758 j2 = (!i2) ^ s;
18759 branch_insn |= j2 << 11;
18760 branch_insn |= j1 << 13;
18761 branch_insn |= s << 26;
18762 }
18763 break;
18764
18765 default:
18766 BFD_FAIL ();
18767 return FALSE;
18768 }
18769
18770 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[loc]);
18771 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[loc + 2]);
18772
18773 return TRUE;
18774 }
18775
18776 /* Beginning of stm32l4xx work-around. */
18777
18778 /* Functions encoding instructions necessary for the emission of the
18779 fix-stm32l4xx-629360.
18780 Encoding is extracted from the
18781 ARM (C) Architecture Reference Manual
18782 ARMv7-A and ARMv7-R edition
18783 ARM DDI 0406C.b (ID072512). */
18784
18785 static inline bfd_vma
18786 create_instruction_branch_absolute (int branch_offset)
18787 {
18788 /* A8.8.18 B (A8-334)
18789 B target_address (Encoding T4). */
18790 /* 1111 - 0Sii - iiii - iiii - 10J1 - Jiii - iiii - iiii. */
18791 /* jump offset is: S:I1:I2:imm10:imm11:0. */
18792 /* with : I1 = NOT (J1 EOR S) I2 = NOT (J2 EOR S). */
18793
18794 int s = ((branch_offset & 0x1000000) >> 24);
18795 int j1 = s ^ !((branch_offset & 0x800000) >> 23);
18796 int j2 = s ^ !((branch_offset & 0x400000) >> 22);
18797
18798 if (branch_offset < -(1 << 24) || branch_offset >= (1 << 24))
18799 BFD_ASSERT (0 && "Error: branch out of range. Cannot create branch.");
18800
18801 bfd_vma patched_inst = 0xf0009000
18802 | s << 26 /* S. */
18803 | (((unsigned long) (branch_offset) >> 12) & 0x3ff) << 16 /* imm10. */
18804 | j1 << 13 /* J1. */
18805 | j2 << 11 /* J2. */
18806 | (((unsigned long) (branch_offset) >> 1) & 0x7ff); /* imm11. */
18807
18808 return patched_inst;
18809 }
18810
18811 static inline bfd_vma
18812 create_instruction_ldmia (int base_reg, int wback, int reg_mask)
18813 {
18814 /* A8.8.57 LDM/LDMIA/LDMFD (A8-396)
18815 LDMIA Rn!, {Ra, Rb, Rc, ...} (Encoding T2). */
18816 bfd_vma patched_inst = 0xe8900000
18817 | (/*W=*/wback << 21)
18818 | (base_reg << 16)
18819 | (reg_mask & 0x0000ffff);
18820
18821 return patched_inst;
18822 }
18823
18824 static inline bfd_vma
18825 create_instruction_ldmdb (int base_reg, int wback, int reg_mask)
18826 {
18827 /* A8.8.60 LDMDB/LDMEA (A8-402)
18828 LDMDB Rn!, {Ra, Rb, Rc, ...} (Encoding T1). */
18829 bfd_vma patched_inst = 0xe9100000
18830 | (/*W=*/wback << 21)
18831 | (base_reg << 16)
18832 | (reg_mask & 0x0000ffff);
18833
18834 return patched_inst;
18835 }
18836
18837 static inline bfd_vma
18838 create_instruction_mov (int target_reg, int source_reg)
18839 {
18840 /* A8.8.103 MOV (register) (A8-486)
18841 MOV Rd, Rm (Encoding T1). */
18842 bfd_vma patched_inst = 0x4600
18843 | (target_reg & 0x7)
18844 | ((target_reg & 0x8) >> 3) << 7
18845 | (source_reg << 3);
18846
18847 return patched_inst;
18848 }
18849
18850 static inline bfd_vma
18851 create_instruction_sub (int target_reg, int source_reg, int value)
18852 {
18853 /* A8.8.221 SUB (immediate) (A8-708)
18854 SUB Rd, Rn, #value (Encoding T3). */
18855 bfd_vma patched_inst = 0xf1a00000
18856 | (target_reg << 8)
18857 | (source_reg << 16)
18858 | (/*S=*/0 << 20)
18859 | ((value & 0x800) >> 11) << 26
18860 | ((value & 0x700) >> 8) << 12
18861 | (value & 0x0ff);
18862
18863 return patched_inst;
18864 }
18865
18866 static inline bfd_vma
18867 create_instruction_vldmia (int base_reg, int is_dp, int wback, int num_words,
18868 int first_reg)
18869 {
18870 /* A8.8.332 VLDM (A8-922)
18871 VLMD{MODE} Rn{!}, {list} (Encoding T1 or T2). */
18872 bfd_vma patched_inst = (is_dp ? 0xec900b00 : 0xec900a00)
18873 | (/*W=*/wback << 21)
18874 | (base_reg << 16)
18875 | (num_words & 0x000000ff)
18876 | (((unsigned)first_reg >> 1) & 0x0000000f) << 12
18877 | (first_reg & 0x00000001) << 22;
18878
18879 return patched_inst;
18880 }
18881
18882 static inline bfd_vma
18883 create_instruction_vldmdb (int base_reg, int is_dp, int num_words,
18884 int first_reg)
18885 {
18886 /* A8.8.332 VLDM (A8-922)
18887 VLMD{MODE} Rn!, {} (Encoding T1 or T2). */
18888 bfd_vma patched_inst = (is_dp ? 0xed300b00 : 0xed300a00)
18889 | (base_reg << 16)
18890 | (num_words & 0x000000ff)
18891 | (((unsigned)first_reg >>1 ) & 0x0000000f) << 12
18892 | (first_reg & 0x00000001) << 22;
18893
18894 return patched_inst;
18895 }
18896
18897 static inline bfd_vma
18898 create_instruction_udf_w (int value)
18899 {
18900 /* A8.8.247 UDF (A8-758)
18901 Undefined (Encoding T2). */
18902 bfd_vma patched_inst = 0xf7f0a000
18903 | (value & 0x00000fff)
18904 | (value & 0x000f0000) << 16;
18905
18906 return patched_inst;
18907 }
18908
18909 static inline bfd_vma
18910 create_instruction_udf (int value)
18911 {
18912 /* A8.8.247 UDF (A8-758)
18913 Undefined (Encoding T1). */
18914 bfd_vma patched_inst = 0xde00
18915 | (value & 0xff);
18916
18917 return patched_inst;
18918 }
18919
18920 /* Functions writing an instruction in memory, returning the next
18921 memory position to write to. */
18922
18923 static inline bfd_byte *
18924 push_thumb2_insn32 (struct elf32_arm_link_hash_table * htab,
18925 bfd * output_bfd, bfd_byte *pt, insn32 insn)
18926 {
18927 put_thumb2_insn (htab, output_bfd, insn, pt);
18928 return pt + 4;
18929 }
18930
18931 static inline bfd_byte *
18932 push_thumb2_insn16 (struct elf32_arm_link_hash_table * htab,
18933 bfd * output_bfd, bfd_byte *pt, insn32 insn)
18934 {
18935 put_thumb_insn (htab, output_bfd, insn, pt);
18936 return pt + 2;
18937 }
18938
18939 /* Function filling up a region in memory with T1 and T2 UDFs taking
18940 care of alignment. */
18941
18942 static bfd_byte *
18943 stm32l4xx_fill_stub_udf (struct elf32_arm_link_hash_table * htab,
18944 bfd * output_bfd,
18945 const bfd_byte * const base_stub_contents,
18946 bfd_byte * const from_stub_contents,
18947 const bfd_byte * const end_stub_contents)
18948 {
18949 bfd_byte *current_stub_contents = from_stub_contents;
18950
18951 /* Fill the remaining of the stub with deterministic contents : UDF
18952 instructions.
18953 Check if realignment is needed on modulo 4 frontier using T1, to
18954 further use T2. */
18955 if ((current_stub_contents < end_stub_contents)
18956 && !((current_stub_contents - base_stub_contents) % 2)
18957 && ((current_stub_contents - base_stub_contents) % 4))
18958 current_stub_contents =
18959 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18960 create_instruction_udf (0));
18961
18962 for (; current_stub_contents < end_stub_contents;)
18963 current_stub_contents =
18964 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18965 create_instruction_udf_w (0));
18966
18967 return current_stub_contents;
18968 }
18969
18970 /* Functions writing the stream of instructions equivalent to the
18971 derived sequence for ldmia, ldmdb, vldm respectively. */
18972
18973 static void
18974 stm32l4xx_create_replacing_stub_ldmia (struct elf32_arm_link_hash_table * htab,
18975 bfd * output_bfd,
18976 const insn32 initial_insn,
18977 const bfd_byte *const initial_insn_addr,
18978 bfd_byte *const base_stub_contents)
18979 {
18980 int wback = (initial_insn & 0x00200000) >> 21;
18981 int ri, rn = (initial_insn & 0x000F0000) >> 16;
18982 int insn_all_registers = initial_insn & 0x0000ffff;
18983 int insn_low_registers, insn_high_registers;
18984 int usable_register_mask;
18985 int nb_registers = elf32_arm_popcount (insn_all_registers);
18986 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
18987 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
18988 bfd_byte *current_stub_contents = base_stub_contents;
18989
18990 BFD_ASSERT (is_thumb2_ldmia (initial_insn));
18991
18992 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
18993 smaller than 8 registers load sequences that do not cause the
18994 hardware issue. */
18995 if (nb_registers <= 8)
18996 {
18997 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
18998 current_stub_contents =
18999 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19000 initial_insn);
19001
19002 /* B initial_insn_addr+4. */
19003 if (!restore_pc)
19004 current_stub_contents =
19005 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19006 create_instruction_branch_absolute
19007 (initial_insn_addr - current_stub_contents));
19008
19009 /* Fill the remaining of the stub with deterministic contents. */
19010 current_stub_contents =
19011 stm32l4xx_fill_stub_udf (htab, output_bfd,
19012 base_stub_contents, current_stub_contents,
19013 base_stub_contents +
19014 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19015
19016 return;
19017 }
19018
19019 /* - reg_list[13] == 0. */
19020 BFD_ASSERT ((insn_all_registers & (1 << 13))==0);
19021
19022 /* - reg_list[14] & reg_list[15] != 1. */
19023 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
19024
19025 /* - if (wback==1) reg_list[rn] == 0. */
19026 BFD_ASSERT (!wback || !restore_rn);
19027
19028 /* - nb_registers > 8. */
19029 BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8);
19030
19031 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
19032
19033 /* In the following algorithm, we split this wide LDM using 2 LDM insns:
19034 - One with the 7 lowest registers (register mask 0x007F)
19035 This LDM will finally contain between 2 and 7 registers
19036 - One with the 7 highest registers (register mask 0xDF80)
19037 This ldm will finally contain between 2 and 7 registers. */
19038 insn_low_registers = insn_all_registers & 0x007F;
19039 insn_high_registers = insn_all_registers & 0xDF80;
19040
19041 /* A spare register may be needed during this veneer to temporarily
19042 handle the base register. This register will be restored with the
19043 last LDM operation.
19044 The usable register may be any general purpose register (that
19045 excludes PC, SP, LR : register mask is 0x1FFF). */
19046 usable_register_mask = 0x1FFF;
19047
19048 /* Generate the stub function. */
19049 if (wback)
19050 {
19051 /* LDMIA Rn!, {R-low-register-list} : (Encoding T2). */
19052 current_stub_contents =
19053 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19054 create_instruction_ldmia
19055 (rn, /*wback=*/1, insn_low_registers));
19056
19057 /* LDMIA Rn!, {R-high-register-list} : (Encoding T2). */
19058 current_stub_contents =
19059 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19060 create_instruction_ldmia
19061 (rn, /*wback=*/1, insn_high_registers));
19062 if (!restore_pc)
19063 {
19064 /* B initial_insn_addr+4. */
19065 current_stub_contents =
19066 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19067 create_instruction_branch_absolute
19068 (initial_insn_addr - current_stub_contents));
19069 }
19070 }
19071 else /* if (!wback). */
19072 {
19073 ri = rn;
19074
19075 /* If Rn is not part of the high-register-list, move it there. */
19076 if (!(insn_high_registers & (1 << rn)))
19077 {
19078 /* Choose a Ri in the high-register-list that will be restored. */
19079 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19080
19081 /* MOV Ri, Rn. */
19082 current_stub_contents =
19083 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19084 create_instruction_mov (ri, rn));
19085 }
19086
19087 /* LDMIA Ri!, {R-low-register-list} : (Encoding T2). */
19088 current_stub_contents =
19089 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19090 create_instruction_ldmia
19091 (ri, /*wback=*/1, insn_low_registers));
19092
19093 /* LDMIA Ri, {R-high-register-list} : (Encoding T2). */
19094 current_stub_contents =
19095 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19096 create_instruction_ldmia
19097 (ri, /*wback=*/0, insn_high_registers));
19098
19099 if (!restore_pc)
19100 {
19101 /* B initial_insn_addr+4. */
19102 current_stub_contents =
19103 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19104 create_instruction_branch_absolute
19105 (initial_insn_addr - current_stub_contents));
19106 }
19107 }
19108
19109 /* Fill the remaining of the stub with deterministic contents. */
19110 current_stub_contents =
19111 stm32l4xx_fill_stub_udf (htab, output_bfd,
19112 base_stub_contents, current_stub_contents,
19113 base_stub_contents +
19114 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19115 }
19116
19117 static void
19118 stm32l4xx_create_replacing_stub_ldmdb (struct elf32_arm_link_hash_table * htab,
19119 bfd * output_bfd,
19120 const insn32 initial_insn,
19121 const bfd_byte *const initial_insn_addr,
19122 bfd_byte *const base_stub_contents)
19123 {
19124 int wback = (initial_insn & 0x00200000) >> 21;
19125 int ri, rn = (initial_insn & 0x000f0000) >> 16;
19126 int insn_all_registers = initial_insn & 0x0000ffff;
19127 int insn_low_registers, insn_high_registers;
19128 int usable_register_mask;
19129 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
19130 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
19131 int nb_registers = elf32_arm_popcount (insn_all_registers);
19132 bfd_byte *current_stub_contents = base_stub_contents;
19133
19134 BFD_ASSERT (is_thumb2_ldmdb (initial_insn));
19135
19136 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
19137 smaller than 8 registers load sequences that do not cause the
19138 hardware issue. */
19139 if (nb_registers <= 8)
19140 {
19141 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
19142 current_stub_contents =
19143 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19144 initial_insn);
19145
19146 /* B initial_insn_addr+4. */
19147 current_stub_contents =
19148 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19149 create_instruction_branch_absolute
19150 (initial_insn_addr - current_stub_contents));
19151
19152 /* Fill the remaining of the stub with deterministic contents. */
19153 current_stub_contents =
19154 stm32l4xx_fill_stub_udf (htab, output_bfd,
19155 base_stub_contents, current_stub_contents,
19156 base_stub_contents +
19157 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19158
19159 return;
19160 }
19161
19162 /* - reg_list[13] == 0. */
19163 BFD_ASSERT ((insn_all_registers & (1 << 13)) == 0);
19164
19165 /* - reg_list[14] & reg_list[15] != 1. */
19166 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
19167
19168 /* - if (wback==1) reg_list[rn] == 0. */
19169 BFD_ASSERT (!wback || !restore_rn);
19170
19171 /* - nb_registers > 8. */
19172 BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8);
19173
19174 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
19175
19176 /* In the following algorithm, we split this wide LDM using 2 LDM insn:
19177 - One with the 7 lowest registers (register mask 0x007F)
19178 This LDM will finally contain between 2 and 7 registers
19179 - One with the 7 highest registers (register mask 0xDF80)
19180 This ldm will finally contain between 2 and 7 registers. */
19181 insn_low_registers = insn_all_registers & 0x007F;
19182 insn_high_registers = insn_all_registers & 0xDF80;
19183
19184 /* A spare register may be needed during this veneer to temporarily
19185 handle the base register. This register will be restored with
19186 the last LDM operation.
19187 The usable register may be any general purpose register (that excludes
19188 PC, SP, LR : register mask is 0x1FFF). */
19189 usable_register_mask = 0x1FFF;
19190
19191 /* Generate the stub function. */
19192 if (!wback && !restore_pc && !restore_rn)
19193 {
19194 /* Choose a Ri in the low-register-list that will be restored. */
19195 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
19196
19197 /* MOV Ri, Rn. */
19198 current_stub_contents =
19199 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19200 create_instruction_mov (ri, rn));
19201
19202 /* LDMDB Ri!, {R-high-register-list}. */
19203 current_stub_contents =
19204 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19205 create_instruction_ldmdb
19206 (ri, /*wback=*/1, insn_high_registers));
19207
19208 /* LDMDB Ri, {R-low-register-list}. */
19209 current_stub_contents =
19210 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19211 create_instruction_ldmdb
19212 (ri, /*wback=*/0, insn_low_registers));
19213
19214 /* B initial_insn_addr+4. */
19215 current_stub_contents =
19216 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19217 create_instruction_branch_absolute
19218 (initial_insn_addr - current_stub_contents));
19219 }
19220 else if (wback && !restore_pc && !restore_rn)
19221 {
19222 /* LDMDB Rn!, {R-high-register-list}. */
19223 current_stub_contents =
19224 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19225 create_instruction_ldmdb
19226 (rn, /*wback=*/1, insn_high_registers));
19227
19228 /* LDMDB Rn!, {R-low-register-list}. */
19229 current_stub_contents =
19230 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19231 create_instruction_ldmdb
19232 (rn, /*wback=*/1, insn_low_registers));
19233
19234 /* B initial_insn_addr+4. */
19235 current_stub_contents =
19236 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19237 create_instruction_branch_absolute
19238 (initial_insn_addr - current_stub_contents));
19239 }
19240 else if (!wback && restore_pc && !restore_rn)
19241 {
19242 /* Choose a Ri in the high-register-list that will be restored. */
19243 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19244
19245 /* SUB Ri, Rn, #(4*nb_registers). */
19246 current_stub_contents =
19247 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19248 create_instruction_sub (ri, rn, (4 * nb_registers)));
19249
19250 /* LDMIA Ri!, {R-low-register-list}. */
19251 current_stub_contents =
19252 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19253 create_instruction_ldmia
19254 (ri, /*wback=*/1, insn_low_registers));
19255
19256 /* LDMIA Ri, {R-high-register-list}. */
19257 current_stub_contents =
19258 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19259 create_instruction_ldmia
19260 (ri, /*wback=*/0, insn_high_registers));
19261 }
19262 else if (wback && restore_pc && !restore_rn)
19263 {
19264 /* Choose a Ri in the high-register-list that will be restored. */
19265 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19266
19267 /* SUB Rn, Rn, #(4*nb_registers) */
19268 current_stub_contents =
19269 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19270 create_instruction_sub (rn, rn, (4 * nb_registers)));
19271
19272 /* MOV Ri, Rn. */
19273 current_stub_contents =
19274 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19275 create_instruction_mov (ri, rn));
19276
19277 /* LDMIA Ri!, {R-low-register-list}. */
19278 current_stub_contents =
19279 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19280 create_instruction_ldmia
19281 (ri, /*wback=*/1, insn_low_registers));
19282
19283 /* LDMIA Ri, {R-high-register-list}. */
19284 current_stub_contents =
19285 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19286 create_instruction_ldmia
19287 (ri, /*wback=*/0, insn_high_registers));
19288 }
19289 else if (!wback && !restore_pc && restore_rn)
19290 {
19291 ri = rn;
19292 if (!(insn_low_registers & (1 << rn)))
19293 {
19294 /* Choose a Ri in the low-register-list that will be restored. */
19295 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
19296
19297 /* MOV Ri, Rn. */
19298 current_stub_contents =
19299 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19300 create_instruction_mov (ri, rn));
19301 }
19302
19303 /* LDMDB Ri!, {R-high-register-list}. */
19304 current_stub_contents =
19305 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19306 create_instruction_ldmdb
19307 (ri, /*wback=*/1, insn_high_registers));
19308
19309 /* LDMDB Ri, {R-low-register-list}. */
19310 current_stub_contents =
19311 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19312 create_instruction_ldmdb
19313 (ri, /*wback=*/0, insn_low_registers));
19314
19315 /* B initial_insn_addr+4. */
19316 current_stub_contents =
19317 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19318 create_instruction_branch_absolute
19319 (initial_insn_addr - current_stub_contents));
19320 }
19321 else if (!wback && restore_pc && restore_rn)
19322 {
19323 ri = rn;
19324 if (!(insn_high_registers & (1 << rn)))
19325 {
19326 /* Choose a Ri in the high-register-list that will be restored. */
19327 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19328 }
19329
19330 /* SUB Ri, Rn, #(4*nb_registers). */
19331 current_stub_contents =
19332 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19333 create_instruction_sub (ri, rn, (4 * nb_registers)));
19334
19335 /* LDMIA Ri!, {R-low-register-list}. */
19336 current_stub_contents =
19337 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19338 create_instruction_ldmia
19339 (ri, /*wback=*/1, insn_low_registers));
19340
19341 /* LDMIA Ri, {R-high-register-list}. */
19342 current_stub_contents =
19343 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19344 create_instruction_ldmia
19345 (ri, /*wback=*/0, insn_high_registers));
19346 }
19347 else if (wback && restore_rn)
19348 {
19349 /* The assembler should not have accepted to encode this. */
19350 BFD_ASSERT (0 && "Cannot patch an instruction that has an "
19351 "undefined behavior.\n");
19352 }
19353
19354 /* Fill the remaining of the stub with deterministic contents. */
19355 current_stub_contents =
19356 stm32l4xx_fill_stub_udf (htab, output_bfd,
19357 base_stub_contents, current_stub_contents,
19358 base_stub_contents +
19359 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19360
19361 }
19362
19363 static void
19364 stm32l4xx_create_replacing_stub_vldm (struct elf32_arm_link_hash_table * htab,
19365 bfd * output_bfd,
19366 const insn32 initial_insn,
19367 const bfd_byte *const initial_insn_addr,
19368 bfd_byte *const base_stub_contents)
19369 {
19370 int num_words = initial_insn & 0xff;
19371 bfd_byte *current_stub_contents = base_stub_contents;
19372
19373 BFD_ASSERT (is_thumb2_vldm (initial_insn));
19374
19375 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
19376 smaller than 8 words load sequences that do not cause the
19377 hardware issue. */
19378 if (num_words <= 8)
19379 {
19380 /* Untouched instruction. */
19381 current_stub_contents =
19382 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19383 initial_insn);
19384
19385 /* B initial_insn_addr+4. */
19386 current_stub_contents =
19387 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19388 create_instruction_branch_absolute
19389 (initial_insn_addr - current_stub_contents));
19390 }
19391 else
19392 {
19393 bfd_boolean is_dp = /* DP encoding. */
19394 (initial_insn & 0xfe100f00) == 0xec100b00;
19395 bfd_boolean is_ia_nobang = /* (IA without !). */
19396 (((initial_insn << 7) >> 28) & 0xd) == 0x4;
19397 bfd_boolean is_ia_bang = /* (IA with !) - includes VPOP. */
19398 (((initial_insn << 7) >> 28) & 0xd) == 0x5;
19399 bfd_boolean is_db_bang = /* (DB with !). */
19400 (((initial_insn << 7) >> 28) & 0xd) == 0x9;
19401 int base_reg = ((unsigned int) initial_insn << 12) >> 28;
19402 /* d = UInt (Vd:D);. */
19403 int first_reg = ((((unsigned int) initial_insn << 16) >> 28) << 1)
19404 | (((unsigned int)initial_insn << 9) >> 31);
19405
19406 /* Compute the number of 8-words chunks needed to split. */
19407 int chunks = (num_words % 8) ? (num_words / 8 + 1) : (num_words / 8);
19408 int chunk;
19409
19410 /* The test coverage has been done assuming the following
19411 hypothesis that exactly one of the previous is_ predicates is
19412 true. */
19413 BFD_ASSERT ( (is_ia_nobang ^ is_ia_bang ^ is_db_bang)
19414 && !(is_ia_nobang & is_ia_bang & is_db_bang));
19415
19416 /* We treat the cutting of the words in one pass for all
19417 cases, then we emit the adjustments:
19418
19419 vldm rx, {...}
19420 -> vldm rx!, {8_words_or_less} for each needed 8_word
19421 -> sub rx, rx, #size (list)
19422
19423 vldm rx!, {...}
19424 -> vldm rx!, {8_words_or_less} for each needed 8_word
19425 This also handles vpop instruction (when rx is sp)
19426
19427 vldmd rx!, {...}
19428 -> vldmb rx!, {8_words_or_less} for each needed 8_word. */
19429 for (chunk = 0; chunk < chunks; ++chunk)
19430 {
19431 bfd_vma new_insn = 0;
19432
19433 if (is_ia_nobang || is_ia_bang)
19434 {
19435 new_insn = create_instruction_vldmia
19436 (base_reg,
19437 is_dp,
19438 /*wback= . */1,
19439 chunks - (chunk + 1) ?
19440 8 : num_words - chunk * 8,
19441 first_reg + chunk * 8);
19442 }
19443 else if (is_db_bang)
19444 {
19445 new_insn = create_instruction_vldmdb
19446 (base_reg,
19447 is_dp,
19448 chunks - (chunk + 1) ?
19449 8 : num_words - chunk * 8,
19450 first_reg + chunk * 8);
19451 }
19452
19453 if (new_insn)
19454 current_stub_contents =
19455 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19456 new_insn);
19457 }
19458
19459 /* Only this case requires the base register compensation
19460 subtract. */
19461 if (is_ia_nobang)
19462 {
19463 current_stub_contents =
19464 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19465 create_instruction_sub
19466 (base_reg, base_reg, 4*num_words));
19467 }
19468
19469 /* B initial_insn_addr+4. */
19470 current_stub_contents =
19471 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19472 create_instruction_branch_absolute
19473 (initial_insn_addr - current_stub_contents));
19474 }
19475
19476 /* Fill the remaining of the stub with deterministic contents. */
19477 current_stub_contents =
19478 stm32l4xx_fill_stub_udf (htab, output_bfd,
19479 base_stub_contents, current_stub_contents,
19480 base_stub_contents +
19481 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
19482 }
19483
19484 static void
19485 stm32l4xx_create_replacing_stub (struct elf32_arm_link_hash_table * htab,
19486 bfd * output_bfd,
19487 const insn32 wrong_insn,
19488 const bfd_byte *const wrong_insn_addr,
19489 bfd_byte *const stub_contents)
19490 {
19491 if (is_thumb2_ldmia (wrong_insn))
19492 stm32l4xx_create_replacing_stub_ldmia (htab, output_bfd,
19493 wrong_insn, wrong_insn_addr,
19494 stub_contents);
19495 else if (is_thumb2_ldmdb (wrong_insn))
19496 stm32l4xx_create_replacing_stub_ldmdb (htab, output_bfd,
19497 wrong_insn, wrong_insn_addr,
19498 stub_contents);
19499 else if (is_thumb2_vldm (wrong_insn))
19500 stm32l4xx_create_replacing_stub_vldm (htab, output_bfd,
19501 wrong_insn, wrong_insn_addr,
19502 stub_contents);
19503 }
19504
19505 /* End of stm32l4xx work-around. */
19506
19507
19508 /* Do code byteswapping. Return FALSE afterwards so that the section is
19509 written out as normal. */
19510
19511 static bfd_boolean
19512 elf32_arm_write_section (bfd *output_bfd,
19513 struct bfd_link_info *link_info,
19514 asection *sec,
19515 bfd_byte *contents)
19516 {
19517 unsigned int mapcount, errcount;
19518 _arm_elf_section_data *arm_data;
19519 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
19520 elf32_arm_section_map *map;
19521 elf32_vfp11_erratum_list *errnode;
19522 elf32_stm32l4xx_erratum_list *stm32l4xx_errnode;
19523 bfd_vma ptr;
19524 bfd_vma end;
19525 bfd_vma offset = sec->output_section->vma + sec->output_offset;
19526 bfd_byte tmp;
19527 unsigned int i;
19528
19529 if (globals == NULL)
19530 return FALSE;
19531
19532 /* If this section has not been allocated an _arm_elf_section_data
19533 structure then we cannot record anything. */
19534 arm_data = get_arm_elf_section_data (sec);
19535 if (arm_data == NULL)
19536 return FALSE;
19537
19538 mapcount = arm_data->mapcount;
19539 map = arm_data->map;
19540 errcount = arm_data->erratumcount;
19541
19542 if (errcount != 0)
19543 {
19544 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
19545
19546 for (errnode = arm_data->erratumlist; errnode != 0;
19547 errnode = errnode->next)
19548 {
19549 bfd_vma target = errnode->vma - offset;
19550
19551 switch (errnode->type)
19552 {
19553 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
19554 {
19555 bfd_vma branch_to_veneer;
19556 /* Original condition code of instruction, plus bit mask for
19557 ARM B instruction. */
19558 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
19559 | 0x0a000000;
19560
19561 /* The instruction is before the label. */
19562 target -= 4;
19563
19564 /* Above offset included in -4 below. */
19565 branch_to_veneer = errnode->u.b.veneer->vma
19566 - errnode->vma - 4;
19567
19568 if ((signed) branch_to_veneer < -(1 << 25)
19569 || (signed) branch_to_veneer >= (1 << 25))
19570 _bfd_error_handler (_("%pB: error: VFP11 veneer out of "
19571 "range"), output_bfd);
19572
19573 insn |= (branch_to_veneer >> 2) & 0xffffff;
19574 contents[endianflip ^ target] = insn & 0xff;
19575 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
19576 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
19577 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
19578 }
19579 break;
19580
19581 case VFP11_ERRATUM_ARM_VENEER:
19582 {
19583 bfd_vma branch_from_veneer;
19584 unsigned int insn;
19585
19586 /* Take size of veneer into account. */
19587 branch_from_veneer = errnode->u.v.branch->vma
19588 - errnode->vma - 12;
19589
19590 if ((signed) branch_from_veneer < -(1 << 25)
19591 || (signed) branch_from_veneer >= (1 << 25))
19592 _bfd_error_handler (_("%pB: error: VFP11 veneer out of "
19593 "range"), output_bfd);
19594
19595 /* Original instruction. */
19596 insn = errnode->u.v.branch->u.b.vfp_insn;
19597 contents[endianflip ^ target] = insn & 0xff;
19598 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
19599 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
19600 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
19601
19602 /* Branch back to insn after original insn. */
19603 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
19604 contents[endianflip ^ (target + 4)] = insn & 0xff;
19605 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
19606 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
19607 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
19608 }
19609 break;
19610
19611 default:
19612 abort ();
19613 }
19614 }
19615 }
19616
19617 if (arm_data->stm32l4xx_erratumcount != 0)
19618 {
19619 for (stm32l4xx_errnode = arm_data->stm32l4xx_erratumlist;
19620 stm32l4xx_errnode != 0;
19621 stm32l4xx_errnode = stm32l4xx_errnode->next)
19622 {
19623 bfd_vma target = stm32l4xx_errnode->vma - offset;
19624
19625 switch (stm32l4xx_errnode->type)
19626 {
19627 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
19628 {
19629 unsigned int insn;
19630 bfd_vma branch_to_veneer =
19631 stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma;
19632
19633 if ((signed) branch_to_veneer < -(1 << 24)
19634 || (signed) branch_to_veneer >= (1 << 24))
19635 {
19636 bfd_vma out_of_range =
19637 ((signed) branch_to_veneer < -(1 << 24)) ?
19638 - branch_to_veneer - (1 << 24) :
19639 ((signed) branch_to_veneer >= (1 << 24)) ?
19640 branch_to_veneer - (1 << 24) : 0;
19641
19642 _bfd_error_handler
19643 (_("%pB(%#" PRIx64 "): error: "
19644 "cannot create STM32L4XX veneer; "
19645 "jump out of range by %" PRId64 " bytes; "
19646 "cannot encode branch instruction"),
19647 output_bfd,
19648 (uint64_t) (stm32l4xx_errnode->vma - 4),
19649 (int64_t) out_of_range);
19650 continue;
19651 }
19652
19653 insn = create_instruction_branch_absolute
19654 (stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma);
19655
19656 /* The instruction is before the label. */
19657 target -= 4;
19658
19659 put_thumb2_insn (globals, output_bfd,
19660 (bfd_vma) insn, contents + target);
19661 }
19662 break;
19663
19664 case STM32L4XX_ERRATUM_VENEER:
19665 {
19666 bfd_byte * veneer;
19667 bfd_byte * veneer_r;
19668 unsigned int insn;
19669
19670 veneer = contents + target;
19671 veneer_r = veneer
19672 + stm32l4xx_errnode->u.b.veneer->vma
19673 - stm32l4xx_errnode->vma - 4;
19674
19675 if ((signed) (veneer_r - veneer -
19676 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE >
19677 STM32L4XX_ERRATUM_LDM_VENEER_SIZE ?
19678 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE :
19679 STM32L4XX_ERRATUM_LDM_VENEER_SIZE) < -(1 << 24)
19680 || (signed) (veneer_r - veneer) >= (1 << 24))
19681 {
19682 _bfd_error_handler (_("%pB: error: cannot create STM32L4XX "
19683 "veneer"), output_bfd);
19684 continue;
19685 }
19686
19687 /* Original instruction. */
19688 insn = stm32l4xx_errnode->u.v.branch->u.b.insn;
19689
19690 stm32l4xx_create_replacing_stub
19691 (globals, output_bfd, insn, (void*)veneer_r, (void*)veneer);
19692 }
19693 break;
19694
19695 default:
19696 abort ();
19697 }
19698 }
19699 }
19700
19701 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
19702 {
19703 arm_unwind_table_edit *edit_node
19704 = arm_data->u.exidx.unwind_edit_list;
19705 /* Now, sec->size is the size of the section we will write. The original
19706 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
19707 markers) was sec->rawsize. (This isn't the case if we perform no
19708 edits, then rawsize will be zero and we should use size). */
19709 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
19710 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
19711 unsigned int in_index, out_index;
19712 bfd_vma add_to_offsets = 0;
19713
19714 if (edited_contents == NULL)
19715 return FALSE;
19716 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
19717 {
19718 if (edit_node)
19719 {
19720 unsigned int edit_index = edit_node->index;
19721
19722 if (in_index < edit_index && in_index * 8 < input_size)
19723 {
19724 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
19725 contents + in_index * 8, add_to_offsets);
19726 out_index++;
19727 in_index++;
19728 }
19729 else if (in_index == edit_index
19730 || (in_index * 8 >= input_size
19731 && edit_index == UINT_MAX))
19732 {
19733 switch (edit_node->type)
19734 {
19735 case DELETE_EXIDX_ENTRY:
19736 in_index++;
19737 add_to_offsets += 8;
19738 break;
19739
19740 case INSERT_EXIDX_CANTUNWIND_AT_END:
19741 {
19742 asection *text_sec = edit_node->linked_section;
19743 bfd_vma text_offset = text_sec->output_section->vma
19744 + text_sec->output_offset
19745 + text_sec->size;
19746 bfd_vma exidx_offset = offset + out_index * 8;
19747 unsigned long prel31_offset;
19748
19749 /* Note: this is meant to be equivalent to an
19750 R_ARM_PREL31 relocation. These synthetic
19751 EXIDX_CANTUNWIND markers are not relocated by the
19752 usual BFD method. */
19753 prel31_offset = (text_offset - exidx_offset)
19754 & 0x7ffffffful;
19755 if (bfd_link_relocatable (link_info))
19756 {
19757 /* Here relocation for new EXIDX_CANTUNWIND is
19758 created, so there is no need to
19759 adjust offset by hand. */
19760 prel31_offset = text_sec->output_offset
19761 + text_sec->size;
19762 }
19763
19764 /* First address we can't unwind. */
19765 bfd_put_32 (output_bfd, prel31_offset,
19766 &edited_contents[out_index * 8]);
19767
19768 /* Code for EXIDX_CANTUNWIND. */
19769 bfd_put_32 (output_bfd, 0x1,
19770 &edited_contents[out_index * 8 + 4]);
19771
19772 out_index++;
19773 add_to_offsets -= 8;
19774 }
19775 break;
19776 }
19777
19778 edit_node = edit_node->next;
19779 }
19780 }
19781 else
19782 {
19783 /* No more edits, copy remaining entries verbatim. */
19784 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
19785 contents + in_index * 8, add_to_offsets);
19786 out_index++;
19787 in_index++;
19788 }
19789 }
19790
19791 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
19792 bfd_set_section_contents (output_bfd, sec->output_section,
19793 edited_contents,
19794 (file_ptr) sec->output_offset, sec->size);
19795
19796 return TRUE;
19797 }
19798
19799 /* Fix code to point to Cortex-A8 erratum stubs. */
19800 if (globals->fix_cortex_a8)
19801 {
19802 struct a8_branch_to_stub_data data;
19803
19804 data.writing_section = sec;
19805 data.contents = contents;
19806
19807 bfd_hash_traverse (& globals->stub_hash_table, make_branch_to_a8_stub,
19808 & data);
19809 }
19810
19811 if (mapcount == 0)
19812 return FALSE;
19813
19814 if (globals->byteswap_code)
19815 {
19816 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
19817
19818 ptr = map[0].vma;
19819 for (i = 0; i < mapcount; i++)
19820 {
19821 if (i == mapcount - 1)
19822 end = sec->size;
19823 else
19824 end = map[i + 1].vma;
19825
19826 switch (map[i].type)
19827 {
19828 case 'a':
19829 /* Byte swap code words. */
19830 while (ptr + 3 < end)
19831 {
19832 tmp = contents[ptr];
19833 contents[ptr] = contents[ptr + 3];
19834 contents[ptr + 3] = tmp;
19835 tmp = contents[ptr + 1];
19836 contents[ptr + 1] = contents[ptr + 2];
19837 contents[ptr + 2] = tmp;
19838 ptr += 4;
19839 }
19840 break;
19841
19842 case 't':
19843 /* Byte swap code halfwords. */
19844 while (ptr + 1 < end)
19845 {
19846 tmp = contents[ptr];
19847 contents[ptr] = contents[ptr + 1];
19848 contents[ptr + 1] = tmp;
19849 ptr += 2;
19850 }
19851 break;
19852
19853 case 'd':
19854 /* Leave data alone. */
19855 break;
19856 }
19857 ptr = end;
19858 }
19859 }
19860
19861 free (map);
19862 arm_data->mapcount = -1;
19863 arm_data->mapsize = 0;
19864 arm_data->map = NULL;
19865
19866 return FALSE;
19867 }
19868
19869 /* Mangle thumb function symbols as we read them in. */
19870
19871 static bfd_boolean
19872 elf32_arm_swap_symbol_in (bfd * abfd,
19873 const void *psrc,
19874 const void *pshn,
19875 Elf_Internal_Sym *dst)
19876 {
19877 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
19878 return FALSE;
19879 dst->st_target_internal = 0;
19880
19881 /* New EABI objects mark thumb function symbols by setting the low bit of
19882 the address. */
19883 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
19884 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
19885 {
19886 if (dst->st_value & 1)
19887 {
19888 dst->st_value &= ~(bfd_vma) 1;
19889 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal,
19890 ST_BRANCH_TO_THUMB);
19891 }
19892 else
19893 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_ARM);
19894 }
19895 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
19896 {
19897 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
19898 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_THUMB);
19899 }
19900 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
19901 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_LONG);
19902 else
19903 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_UNKNOWN);
19904
19905 return TRUE;
19906 }
19907
19908
19909 /* Mangle thumb function symbols as we write them out. */
19910
19911 static void
19912 elf32_arm_swap_symbol_out (bfd *abfd,
19913 const Elf_Internal_Sym *src,
19914 void *cdst,
19915 void *shndx)
19916 {
19917 Elf_Internal_Sym newsym;
19918
19919 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
19920 of the address set, as per the new EABI. We do this unconditionally
19921 because objcopy does not set the elf header flags until after
19922 it writes out the symbol table. */
19923 if (ARM_GET_SYM_BRANCH_TYPE (src->st_target_internal) == ST_BRANCH_TO_THUMB)
19924 {
19925 newsym = *src;
19926 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
19927 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
19928 if (newsym.st_shndx != SHN_UNDEF)
19929 {
19930 /* Do this only for defined symbols. At link type, the static
19931 linker will simulate the work of dynamic linker of resolving
19932 symbols and will carry over the thumbness of found symbols to
19933 the output symbol table. It's not clear how it happens, but
19934 the thumbness of undefined symbols can well be different at
19935 runtime, and writing '1' for them will be confusing for users
19936 and possibly for dynamic linker itself.
19937 */
19938 newsym.st_value |= 1;
19939 }
19940
19941 src = &newsym;
19942 }
19943 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
19944 }
19945
19946 /* Add the PT_ARM_EXIDX program header. */
19947
19948 static bfd_boolean
19949 elf32_arm_modify_segment_map (bfd *abfd,
19950 struct bfd_link_info *info ATTRIBUTE_UNUSED)
19951 {
19952 struct elf_segment_map *m;
19953 asection *sec;
19954
19955 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
19956 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
19957 {
19958 /* If there is already a PT_ARM_EXIDX header, then we do not
19959 want to add another one. This situation arises when running
19960 "strip"; the input binary already has the header. */
19961 m = elf_seg_map (abfd);
19962 while (m && m->p_type != PT_ARM_EXIDX)
19963 m = m->next;
19964 if (!m)
19965 {
19966 m = (struct elf_segment_map *)
19967 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
19968 if (m == NULL)
19969 return FALSE;
19970 m->p_type = PT_ARM_EXIDX;
19971 m->count = 1;
19972 m->sections[0] = sec;
19973
19974 m->next = elf_seg_map (abfd);
19975 elf_seg_map (abfd) = m;
19976 }
19977 }
19978
19979 return TRUE;
19980 }
19981
19982 /* We may add a PT_ARM_EXIDX program header. */
19983
19984 static int
19985 elf32_arm_additional_program_headers (bfd *abfd,
19986 struct bfd_link_info *info ATTRIBUTE_UNUSED)
19987 {
19988 asection *sec;
19989
19990 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
19991 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
19992 return 1;
19993 else
19994 return 0;
19995 }
19996
19997 /* Hook called by the linker routine which adds symbols from an object
19998 file. */
19999
20000 static bfd_boolean
20001 elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
20002 Elf_Internal_Sym *sym, const char **namep,
20003 flagword *flagsp, asection **secp, bfd_vma *valp)
20004 {
20005 if (elf32_arm_hash_table (info) == NULL)
20006 return FALSE;
20007
20008 if (elf32_arm_hash_table (info)->vxworks_p
20009 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
20010 flagsp, secp, valp))
20011 return FALSE;
20012
20013 return TRUE;
20014 }
20015
20016 /* We use this to override swap_symbol_in and swap_symbol_out. */
20017 const struct elf_size_info elf32_arm_size_info =
20018 {
20019 sizeof (Elf32_External_Ehdr),
20020 sizeof (Elf32_External_Phdr),
20021 sizeof (Elf32_External_Shdr),
20022 sizeof (Elf32_External_Rel),
20023 sizeof (Elf32_External_Rela),
20024 sizeof (Elf32_External_Sym),
20025 sizeof (Elf32_External_Dyn),
20026 sizeof (Elf_External_Note),
20027 4,
20028 1,
20029 32, 2,
20030 ELFCLASS32, EV_CURRENT,
20031 bfd_elf32_write_out_phdrs,
20032 bfd_elf32_write_shdrs_and_ehdr,
20033 bfd_elf32_checksum_contents,
20034 bfd_elf32_write_relocs,
20035 elf32_arm_swap_symbol_in,
20036 elf32_arm_swap_symbol_out,
20037 bfd_elf32_slurp_reloc_table,
20038 bfd_elf32_slurp_symbol_table,
20039 bfd_elf32_swap_dyn_in,
20040 bfd_elf32_swap_dyn_out,
20041 bfd_elf32_swap_reloc_in,
20042 bfd_elf32_swap_reloc_out,
20043 bfd_elf32_swap_reloca_in,
20044 bfd_elf32_swap_reloca_out
20045 };
20046
20047 static bfd_vma
20048 read_code32 (const bfd *abfd, const bfd_byte *addr)
20049 {
20050 /* V7 BE8 code is always little endian. */
20051 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
20052 return bfd_getl32 (addr);
20053
20054 return bfd_get_32 (abfd, addr);
20055 }
20056
20057 static bfd_vma
20058 read_code16 (const bfd *abfd, const bfd_byte *addr)
20059 {
20060 /* V7 BE8 code is always little endian. */
20061 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
20062 return bfd_getl16 (addr);
20063
20064 return bfd_get_16 (abfd, addr);
20065 }
20066
20067 /* Return size of plt0 entry starting at ADDR
20068 or (bfd_vma) -1 if size can not be determined. */
20069
20070 static bfd_vma
20071 elf32_arm_plt0_size (const bfd *abfd, const bfd_byte *addr)
20072 {
20073 bfd_vma first_word;
20074 bfd_vma plt0_size;
20075
20076 first_word = read_code32 (abfd, addr);
20077
20078 if (first_word == elf32_arm_plt0_entry[0])
20079 plt0_size = 4 * ARRAY_SIZE (elf32_arm_plt0_entry);
20080 else if (first_word == elf32_thumb2_plt0_entry[0])
20081 plt0_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
20082 else
20083 /* We don't yet handle this PLT format. */
20084 return (bfd_vma) -1;
20085
20086 return plt0_size;
20087 }
20088
20089 /* Return size of plt entry starting at offset OFFSET
20090 of plt section located at address START
20091 or (bfd_vma) -1 if size can not be determined. */
20092
20093 static bfd_vma
20094 elf32_arm_plt_size (const bfd *abfd, const bfd_byte *start, bfd_vma offset)
20095 {
20096 bfd_vma first_insn;
20097 bfd_vma plt_size = 0;
20098 const bfd_byte *addr = start + offset;
20099
20100 /* PLT entry size if fixed on Thumb-only platforms. */
20101 if (read_code32 (abfd, start) == elf32_thumb2_plt0_entry[0])
20102 return 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
20103
20104 /* Respect Thumb stub if necessary. */
20105 if (read_code16 (abfd, addr) == elf32_arm_plt_thumb_stub[0])
20106 {
20107 plt_size += 2 * ARRAY_SIZE(elf32_arm_plt_thumb_stub);
20108 }
20109
20110 /* Strip immediate from first add. */
20111 first_insn = read_code32 (abfd, addr + plt_size) & 0xffffff00;
20112
20113 #ifdef FOUR_WORD_PLT
20114 if (first_insn == elf32_arm_plt_entry[0])
20115 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry);
20116 #else
20117 if (first_insn == elf32_arm_plt_entry_long[0])
20118 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_long);
20119 else if (first_insn == elf32_arm_plt_entry_short[0])
20120 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_short);
20121 #endif
20122 else
20123 /* We don't yet handle this PLT format. */
20124 return (bfd_vma) -1;
20125
20126 return plt_size;
20127 }
20128
20129 /* Implementation is shamelessly borrowed from _bfd_elf_get_synthetic_symtab. */
20130
20131 static long
20132 elf32_arm_get_synthetic_symtab (bfd *abfd,
20133 long symcount ATTRIBUTE_UNUSED,
20134 asymbol **syms ATTRIBUTE_UNUSED,
20135 long dynsymcount,
20136 asymbol **dynsyms,
20137 asymbol **ret)
20138 {
20139 asection *relplt;
20140 asymbol *s;
20141 arelent *p;
20142 long count, i, n;
20143 size_t size;
20144 Elf_Internal_Shdr *hdr;
20145 char *names;
20146 asection *plt;
20147 bfd_vma offset;
20148 bfd_byte *data;
20149
20150 *ret = NULL;
20151
20152 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
20153 return 0;
20154
20155 if (dynsymcount <= 0)
20156 return 0;
20157
20158 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
20159 if (relplt == NULL)
20160 return 0;
20161
20162 hdr = &elf_section_data (relplt)->this_hdr;
20163 if (hdr->sh_link != elf_dynsymtab (abfd)
20164 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
20165 return 0;
20166
20167 plt = bfd_get_section_by_name (abfd, ".plt");
20168 if (plt == NULL)
20169 return 0;
20170
20171 if (!elf32_arm_size_info.slurp_reloc_table (abfd, relplt, dynsyms, TRUE))
20172 return -1;
20173
20174 data = plt->contents;
20175 if (data == NULL)
20176 {
20177 if (!bfd_get_full_section_contents(abfd, (asection *) plt, &data) || data == NULL)
20178 return -1;
20179 bfd_cache_section_contents((asection *) plt, data);
20180 }
20181
20182 count = relplt->size / hdr->sh_entsize;
20183 size = count * sizeof (asymbol);
20184 p = relplt->relocation;
20185 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
20186 {
20187 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
20188 if (p->addend != 0)
20189 size += sizeof ("+0x") - 1 + 8;
20190 }
20191
20192 s = *ret = (asymbol *) bfd_malloc (size);
20193 if (s == NULL)
20194 return -1;
20195
20196 offset = elf32_arm_plt0_size (abfd, data);
20197 if (offset == (bfd_vma) -1)
20198 return -1;
20199
20200 names = (char *) (s + count);
20201 p = relplt->relocation;
20202 n = 0;
20203 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
20204 {
20205 size_t len;
20206
20207 bfd_vma plt_size = elf32_arm_plt_size (abfd, data, offset);
20208 if (plt_size == (bfd_vma) -1)
20209 break;
20210
20211 *s = **p->sym_ptr_ptr;
20212 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
20213 we are defining a symbol, ensure one of them is set. */
20214 if ((s->flags & BSF_LOCAL) == 0)
20215 s->flags |= BSF_GLOBAL;
20216 s->flags |= BSF_SYNTHETIC;
20217 s->section = plt;
20218 s->value = offset;
20219 s->name = names;
20220 s->udata.p = NULL;
20221 len = strlen ((*p->sym_ptr_ptr)->name);
20222 memcpy (names, (*p->sym_ptr_ptr)->name, len);
20223 names += len;
20224 if (p->addend != 0)
20225 {
20226 char buf[30], *a;
20227
20228 memcpy (names, "+0x", sizeof ("+0x") - 1);
20229 names += sizeof ("+0x") - 1;
20230 bfd_sprintf_vma (abfd, buf, p->addend);
20231 for (a = buf; *a == '0'; ++a)
20232 ;
20233 len = strlen (a);
20234 memcpy (names, a, len);
20235 names += len;
20236 }
20237 memcpy (names, "@plt", sizeof ("@plt"));
20238 names += sizeof ("@plt");
20239 ++s, ++n;
20240 offset += plt_size;
20241 }
20242
20243 return n;
20244 }
20245
20246 static bfd_boolean
20247 elf32_arm_section_flags (const Elf_Internal_Shdr *hdr)
20248 {
20249 if (hdr->sh_flags & SHF_ARM_PURECODE)
20250 hdr->bfd_section->flags |= SEC_ELF_PURECODE;
20251 return TRUE;
20252 }
20253
20254 static flagword
20255 elf32_arm_lookup_section_flags (char *flag_name)
20256 {
20257 if (!strcmp (flag_name, "SHF_ARM_PURECODE"))
20258 return SHF_ARM_PURECODE;
20259
20260 return SEC_NO_FLAGS;
20261 }
20262
20263 static unsigned int
20264 elf32_arm_count_additional_relocs (asection *sec)
20265 {
20266 struct _arm_elf_section_data *arm_data;
20267 arm_data = get_arm_elf_section_data (sec);
20268
20269 return arm_data == NULL ? 0 : arm_data->additional_reloc_count;
20270 }
20271
20272 /* Called to set the sh_flags, sh_link and sh_info fields of OSECTION which
20273 has a type >= SHT_LOOS. Returns TRUE if these fields were initialised
20274 FALSE otherwise. ISECTION is the best guess matching section from the
20275 input bfd IBFD, but it might be NULL. */
20276
20277 static bfd_boolean
20278 elf32_arm_copy_special_section_fields (const bfd *ibfd ATTRIBUTE_UNUSED,
20279 bfd *obfd ATTRIBUTE_UNUSED,
20280 const Elf_Internal_Shdr *isection ATTRIBUTE_UNUSED,
20281 Elf_Internal_Shdr *osection)
20282 {
20283 switch (osection->sh_type)
20284 {
20285 case SHT_ARM_EXIDX:
20286 {
20287 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
20288 Elf_Internal_Shdr **iheaders = elf_elfsections (ibfd);
20289 unsigned i = 0;
20290
20291 osection->sh_flags = SHF_ALLOC | SHF_LINK_ORDER;
20292 osection->sh_info = 0;
20293
20294 /* The sh_link field must be set to the text section associated with
20295 this index section. Unfortunately the ARM EHABI does not specify
20296 exactly how to determine this association. Our caller does try
20297 to match up OSECTION with its corresponding input section however
20298 so that is a good first guess. */
20299 if (isection != NULL
20300 && osection->bfd_section != NULL
20301 && isection->bfd_section != NULL
20302 && isection->bfd_section->output_section != NULL
20303 && isection->bfd_section->output_section == osection->bfd_section
20304 && iheaders != NULL
20305 && isection->sh_link > 0
20306 && isection->sh_link < elf_numsections (ibfd)
20307 && iheaders[isection->sh_link]->bfd_section != NULL
20308 && iheaders[isection->sh_link]->bfd_section->output_section != NULL
20309 )
20310 {
20311 for (i = elf_numsections (obfd); i-- > 0;)
20312 if (oheaders[i]->bfd_section
20313 == iheaders[isection->sh_link]->bfd_section->output_section)
20314 break;
20315 }
20316
20317 if (i == 0)
20318 {
20319 /* Failing that we have to find a matching section ourselves. If
20320 we had the output section name available we could compare that
20321 with input section names. Unfortunately we don't. So instead
20322 we use a simple heuristic and look for the nearest executable
20323 section before this one. */
20324 for (i = elf_numsections (obfd); i-- > 0;)
20325 if (oheaders[i] == osection)
20326 break;
20327 if (i == 0)
20328 break;
20329
20330 while (i-- > 0)
20331 if (oheaders[i]->sh_type == SHT_PROGBITS
20332 && (oheaders[i]->sh_flags & (SHF_ALLOC | SHF_EXECINSTR))
20333 == (SHF_ALLOC | SHF_EXECINSTR))
20334 break;
20335 }
20336
20337 if (i)
20338 {
20339 osection->sh_link = i;
20340 /* If the text section was part of a group
20341 then the index section should be too. */
20342 if (oheaders[i]->sh_flags & SHF_GROUP)
20343 osection->sh_flags |= SHF_GROUP;
20344 return TRUE;
20345 }
20346 }
20347 break;
20348
20349 case SHT_ARM_PREEMPTMAP:
20350 osection->sh_flags = SHF_ALLOC;
20351 break;
20352
20353 case SHT_ARM_ATTRIBUTES:
20354 case SHT_ARM_DEBUGOVERLAY:
20355 case SHT_ARM_OVERLAYSECTION:
20356 default:
20357 break;
20358 }
20359
20360 return FALSE;
20361 }
20362
20363 /* Returns TRUE if NAME is an ARM mapping symbol.
20364 Traditionally the symbols $a, $d and $t have been used.
20365 The ARM ELF standard also defines $x (for A64 code). It also allows a
20366 period initiated suffix to be added to the symbol: "$[adtx]\.[:sym_char]+".
20367 Other tools might also produce $b (Thumb BL), $f, $p, $m and $v, but we do
20368 not support them here. $t.x indicates the start of ThumbEE instructions. */
20369
20370 static bfd_boolean
20371 is_arm_mapping_symbol (const char * name)
20372 {
20373 return name != NULL /* Paranoia. */
20374 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
20375 the mapping symbols could have acquired a prefix.
20376 We do not support this here, since such symbols no
20377 longer conform to the ARM ELF ABI. */
20378 && (name[1] == 'a' || name[1] == 'd' || name[1] == 't' || name[1] == 'x')
20379 && (name[2] == 0 || name[2] == '.');
20380 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
20381 any characters that follow the period are legal characters for the body
20382 of a symbol's name. For now we just assume that this is the case. */
20383 }
20384
20385 /* Make sure that mapping symbols in object files are not removed via the
20386 "strip --strip-unneeded" tool. These symbols are needed in order to
20387 correctly generate interworking veneers, and for byte swapping code
20388 regions. Once an object file has been linked, it is safe to remove the
20389 symbols as they will no longer be needed. */
20390
20391 static void
20392 elf32_arm_backend_symbol_processing (bfd *abfd, asymbol *sym)
20393 {
20394 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
20395 && sym->section != bfd_abs_section_ptr
20396 && is_arm_mapping_symbol (sym->name))
20397 sym->flags |= BSF_KEEP;
20398 }
20399
20400 #undef elf_backend_copy_special_section_fields
20401 #define elf_backend_copy_special_section_fields elf32_arm_copy_special_section_fields
20402
20403 #define ELF_ARCH bfd_arch_arm
20404 #define ELF_TARGET_ID ARM_ELF_DATA
20405 #define ELF_MACHINE_CODE EM_ARM
20406 #ifdef __QNXTARGET__
20407 #define ELF_MAXPAGESIZE 0x1000
20408 #else
20409 #define ELF_MAXPAGESIZE 0x10000
20410 #endif
20411 #define ELF_MINPAGESIZE 0x1000
20412 #define ELF_COMMONPAGESIZE 0x1000
20413
20414 #define bfd_elf32_mkobject elf32_arm_mkobject
20415
20416 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
20417 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
20418 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
20419 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
20420 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
20421 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
20422 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
20423 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
20424 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
20425 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
20426 #define bfd_elf32_bfd_final_link elf32_arm_final_link
20427 #define bfd_elf32_get_synthetic_symtab elf32_arm_get_synthetic_symtab
20428
20429 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
20430 #define elf_backend_maybe_function_sym elf32_arm_maybe_function_sym
20431 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
20432 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
20433 #define elf_backend_check_relocs elf32_arm_check_relocs
20434 #define elf_backend_update_relocs elf32_arm_update_relocs
20435 #define elf_backend_relocate_section elf32_arm_relocate_section
20436 #define elf_backend_write_section elf32_arm_write_section
20437 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
20438 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
20439 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
20440 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
20441 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
20442 #define elf_backend_always_size_sections elf32_arm_always_size_sections
20443 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
20444 #define elf_backend_init_file_header elf32_arm_init_file_header
20445 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
20446 #define elf_backend_object_p elf32_arm_object_p
20447 #define elf_backend_fake_sections elf32_arm_fake_sections
20448 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
20449 #define elf_backend_final_write_processing elf32_arm_final_write_processing
20450 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
20451 #define elf_backend_size_info elf32_arm_size_info
20452 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
20453 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
20454 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
20455 #define elf_backend_filter_implib_symbols elf32_arm_filter_implib_symbols
20456 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
20457 #define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
20458 #define elf_backend_count_additional_relocs elf32_arm_count_additional_relocs
20459 #define elf_backend_symbol_processing elf32_arm_backend_symbol_processing
20460
20461 #define elf_backend_can_refcount 1
20462 #define elf_backend_can_gc_sections 1
20463 #define elf_backend_plt_readonly 1
20464 #define elf_backend_want_got_plt 1
20465 #define elf_backend_want_plt_sym 0
20466 #define elf_backend_want_dynrelro 1
20467 #define elf_backend_may_use_rel_p 1
20468 #define elf_backend_may_use_rela_p 0
20469 #define elf_backend_default_use_rela_p 0
20470 #define elf_backend_dtrel_excludes_plt 1
20471
20472 #define elf_backend_got_header_size 12
20473 #define elf_backend_extern_protected_data 1
20474
20475 #undef elf_backend_obj_attrs_vendor
20476 #define elf_backend_obj_attrs_vendor "aeabi"
20477 #undef elf_backend_obj_attrs_section
20478 #define elf_backend_obj_attrs_section ".ARM.attributes"
20479 #undef elf_backend_obj_attrs_arg_type
20480 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
20481 #undef elf_backend_obj_attrs_section_type
20482 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
20483 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
20484 #define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
20485
20486 #undef elf_backend_section_flags
20487 #define elf_backend_section_flags elf32_arm_section_flags
20488 #undef elf_backend_lookup_section_flags_hook
20489 #define elf_backend_lookup_section_flags_hook elf32_arm_lookup_section_flags
20490
20491 #define elf_backend_linux_prpsinfo32_ugid16 TRUE
20492
20493 #include "elf32-target.h"
20494
20495 /* Native Client targets. */
20496
20497 #undef TARGET_LITTLE_SYM
20498 #define TARGET_LITTLE_SYM arm_elf32_nacl_le_vec
20499 #undef TARGET_LITTLE_NAME
20500 #define TARGET_LITTLE_NAME "elf32-littlearm-nacl"
20501 #undef TARGET_BIG_SYM
20502 #define TARGET_BIG_SYM arm_elf32_nacl_be_vec
20503 #undef TARGET_BIG_NAME
20504 #define TARGET_BIG_NAME "elf32-bigarm-nacl"
20505
20506 /* Like elf32_arm_link_hash_table_create -- but overrides
20507 appropriately for NaCl. */
20508
20509 static struct bfd_link_hash_table *
20510 elf32_arm_nacl_link_hash_table_create (bfd *abfd)
20511 {
20512 struct bfd_link_hash_table *ret;
20513
20514 ret = elf32_arm_link_hash_table_create (abfd);
20515 if (ret)
20516 {
20517 struct elf32_arm_link_hash_table *htab
20518 = (struct elf32_arm_link_hash_table *) ret;
20519
20520 htab->nacl_p = 1;
20521
20522 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry);
20523 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry);
20524 }
20525 return ret;
20526 }
20527
20528 /* Since NaCl doesn't use the ARM-specific unwind format, we don't
20529 really need to use elf32_arm_modify_segment_map. But we do it
20530 anyway just to reduce gratuitous differences with the stock ARM backend. */
20531
20532 static bfd_boolean
20533 elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
20534 {
20535 return (elf32_arm_modify_segment_map (abfd, info)
20536 && nacl_modify_segment_map (abfd, info));
20537 }
20538
20539 static bfd_boolean
20540 elf32_arm_nacl_final_write_processing (bfd *abfd)
20541 {
20542 arm_final_write_processing (abfd);
20543 return nacl_final_write_processing (abfd);
20544 }
20545
20546 static bfd_vma
20547 elf32_arm_nacl_plt_sym_val (bfd_vma i, const asection *plt,
20548 const arelent *rel ATTRIBUTE_UNUSED)
20549 {
20550 return plt->vma
20551 + 4 * (ARRAY_SIZE (elf32_arm_nacl_plt0_entry) +
20552 i * ARRAY_SIZE (elf32_arm_nacl_plt_entry));
20553 }
20554
20555 #undef elf32_bed
20556 #define elf32_bed elf32_arm_nacl_bed
20557 #undef bfd_elf32_bfd_link_hash_table_create
20558 #define bfd_elf32_bfd_link_hash_table_create \
20559 elf32_arm_nacl_link_hash_table_create
20560 #undef elf_backend_plt_alignment
20561 #define elf_backend_plt_alignment 4
20562 #undef elf_backend_modify_segment_map
20563 #define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map
20564 #undef elf_backend_modify_headers
20565 #define elf_backend_modify_headers nacl_modify_headers
20566 #undef elf_backend_final_write_processing
20567 #define elf_backend_final_write_processing elf32_arm_nacl_final_write_processing
20568 #undef bfd_elf32_get_synthetic_symtab
20569 #undef elf_backend_plt_sym_val
20570 #define elf_backend_plt_sym_val elf32_arm_nacl_plt_sym_val
20571 #undef elf_backend_copy_special_section_fields
20572
20573 #undef ELF_MINPAGESIZE
20574 #undef ELF_COMMONPAGESIZE
20575
20576
20577 #include "elf32-target.h"
20578
20579 /* Reset to defaults. */
20580 #undef elf_backend_plt_alignment
20581 #undef elf_backend_modify_segment_map
20582 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
20583 #undef elf_backend_modify_headers
20584 #undef elf_backend_final_write_processing
20585 #define elf_backend_final_write_processing elf32_arm_final_write_processing
20586 #undef ELF_MINPAGESIZE
20587 #define ELF_MINPAGESIZE 0x1000
20588 #undef ELF_COMMONPAGESIZE
20589 #define ELF_COMMONPAGESIZE 0x1000
20590
20591
20592 /* FDPIC Targets. */
20593
20594 #undef TARGET_LITTLE_SYM
20595 #define TARGET_LITTLE_SYM arm_elf32_fdpic_le_vec
20596 #undef TARGET_LITTLE_NAME
20597 #define TARGET_LITTLE_NAME "elf32-littlearm-fdpic"
20598 #undef TARGET_BIG_SYM
20599 #define TARGET_BIG_SYM arm_elf32_fdpic_be_vec
20600 #undef TARGET_BIG_NAME
20601 #define TARGET_BIG_NAME "elf32-bigarm-fdpic"
20602 #undef elf_match_priority
20603 #define elf_match_priority 128
20604 #undef ELF_OSABI
20605 #define ELF_OSABI ELFOSABI_ARM_FDPIC
20606
20607 /* Like elf32_arm_link_hash_table_create -- but overrides
20608 appropriately for FDPIC. */
20609
20610 static struct bfd_link_hash_table *
20611 elf32_arm_fdpic_link_hash_table_create (bfd *abfd)
20612 {
20613 struct bfd_link_hash_table *ret;
20614
20615 ret = elf32_arm_link_hash_table_create (abfd);
20616 if (ret)
20617 {
20618 struct elf32_arm_link_hash_table *htab = (struct elf32_arm_link_hash_table *) ret;
20619
20620 htab->fdpic_p = 1;
20621 }
20622 return ret;
20623 }
20624
20625 /* We need dynamic symbols for every section, since segments can
20626 relocate independently. */
20627 static bfd_boolean
20628 elf32_arm_fdpic_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
20629 struct bfd_link_info *info
20630 ATTRIBUTE_UNUSED,
20631 asection *p ATTRIBUTE_UNUSED)
20632 {
20633 switch (elf_section_data (p)->this_hdr.sh_type)
20634 {
20635 case SHT_PROGBITS:
20636 case SHT_NOBITS:
20637 /* If sh_type is yet undecided, assume it could be
20638 SHT_PROGBITS/SHT_NOBITS. */
20639 case SHT_NULL:
20640 return FALSE;
20641
20642 /* There shouldn't be section relative relocations
20643 against any other section. */
20644 default:
20645 return TRUE;
20646 }
20647 }
20648
20649 #undef elf32_bed
20650 #define elf32_bed elf32_arm_fdpic_bed
20651
20652 #undef bfd_elf32_bfd_link_hash_table_create
20653 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_fdpic_link_hash_table_create
20654
20655 #undef elf_backend_omit_section_dynsym
20656 #define elf_backend_omit_section_dynsym elf32_arm_fdpic_omit_section_dynsym
20657
20658 #include "elf32-target.h"
20659
20660 #undef elf_match_priority
20661 #undef ELF_OSABI
20662 #undef elf_backend_omit_section_dynsym
20663
20664 /* VxWorks Targets. */
20665
20666 #undef TARGET_LITTLE_SYM
20667 #define TARGET_LITTLE_SYM arm_elf32_vxworks_le_vec
20668 #undef TARGET_LITTLE_NAME
20669 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
20670 #undef TARGET_BIG_SYM
20671 #define TARGET_BIG_SYM arm_elf32_vxworks_be_vec
20672 #undef TARGET_BIG_NAME
20673 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
20674
20675 /* Like elf32_arm_link_hash_table_create -- but overrides
20676 appropriately for VxWorks. */
20677
20678 static struct bfd_link_hash_table *
20679 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
20680 {
20681 struct bfd_link_hash_table *ret;
20682
20683 ret = elf32_arm_link_hash_table_create (abfd);
20684 if (ret)
20685 {
20686 struct elf32_arm_link_hash_table *htab
20687 = (struct elf32_arm_link_hash_table *) ret;
20688 htab->use_rel = 0;
20689 htab->vxworks_p = 1;
20690 }
20691 return ret;
20692 }
20693
20694 static bfd_boolean
20695 elf32_arm_vxworks_final_write_processing (bfd *abfd)
20696 {
20697 arm_final_write_processing (abfd);
20698 return elf_vxworks_final_write_processing (abfd);
20699 }
20700
20701 #undef elf32_bed
20702 #define elf32_bed elf32_arm_vxworks_bed
20703
20704 #undef bfd_elf32_bfd_link_hash_table_create
20705 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
20706 #undef elf_backend_final_write_processing
20707 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
20708 #undef elf_backend_emit_relocs
20709 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
20710
20711 #undef elf_backend_may_use_rel_p
20712 #define elf_backend_may_use_rel_p 0
20713 #undef elf_backend_may_use_rela_p
20714 #define elf_backend_may_use_rela_p 1
20715 #undef elf_backend_default_use_rela_p
20716 #define elf_backend_default_use_rela_p 1
20717 #undef elf_backend_want_plt_sym
20718 #define elf_backend_want_plt_sym 1
20719 #undef ELF_MAXPAGESIZE
20720 #define ELF_MAXPAGESIZE 0x1000
20721
20722 #include "elf32-target.h"
20723
20724
20725 /* Merge backend specific data from an object file to the output
20726 object file when linking. */
20727
20728 static bfd_boolean
20729 elf32_arm_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
20730 {
20731 bfd *obfd = info->output_bfd;
20732 flagword out_flags;
20733 flagword in_flags;
20734 bfd_boolean flags_compatible = TRUE;
20735 asection *sec;
20736
20737 /* Check if we have the same endianness. */
20738 if (! _bfd_generic_verify_endian_match (ibfd, info))
20739 return FALSE;
20740
20741 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
20742 return TRUE;
20743
20744 if (!elf32_arm_merge_eabi_attributes (ibfd, info))
20745 return FALSE;
20746
20747 /* The input BFD must have had its flags initialised. */
20748 /* The following seems bogus to me -- The flags are initialized in
20749 the assembler but I don't think an elf_flags_init field is
20750 written into the object. */
20751 /* BFD_ASSERT (elf_flags_init (ibfd)); */
20752
20753 in_flags = elf_elfheader (ibfd)->e_flags;
20754 out_flags = elf_elfheader (obfd)->e_flags;
20755
20756 /* In theory there is no reason why we couldn't handle this. However
20757 in practice it isn't even close to working and there is no real
20758 reason to want it. */
20759 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
20760 && !(ibfd->flags & DYNAMIC)
20761 && (in_flags & EF_ARM_BE8))
20762 {
20763 _bfd_error_handler (_("error: %pB is already in final BE8 format"),
20764 ibfd);
20765 return FALSE;
20766 }
20767
20768 if (!elf_flags_init (obfd))
20769 {
20770 /* If the input is the default architecture and had the default
20771 flags then do not bother setting the flags for the output
20772 architecture, instead allow future merges to do this. If no
20773 future merges ever set these flags then they will retain their
20774 uninitialised values, which surprise surprise, correspond
20775 to the default values. */
20776 if (bfd_get_arch_info (ibfd)->the_default
20777 && elf_elfheader (ibfd)->e_flags == 0)
20778 return TRUE;
20779
20780 elf_flags_init (obfd) = TRUE;
20781 elf_elfheader (obfd)->e_flags = in_flags;
20782
20783 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
20784 && bfd_get_arch_info (obfd)->the_default)
20785 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
20786
20787 return TRUE;
20788 }
20789
20790 /* Determine what should happen if the input ARM architecture
20791 does not match the output ARM architecture. */
20792 if (! bfd_arm_merge_machines (ibfd, obfd))
20793 return FALSE;
20794
20795 /* Identical flags must be compatible. */
20796 if (in_flags == out_flags)
20797 return TRUE;
20798
20799 /* Check to see if the input BFD actually contains any sections. If
20800 not, its flags may not have been initialised either, but it
20801 cannot actually cause any incompatiblity. Do not short-circuit
20802 dynamic objects; their section list may be emptied by
20803 elf_link_add_object_symbols.
20804
20805 Also check to see if there are no code sections in the input.
20806 In this case there is no need to check for code specific flags.
20807 XXX - do we need to worry about floating-point format compatability
20808 in data sections ? */
20809 if (!(ibfd->flags & DYNAMIC))
20810 {
20811 bfd_boolean null_input_bfd = TRUE;
20812 bfd_boolean only_data_sections = TRUE;
20813
20814 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
20815 {
20816 /* Ignore synthetic glue sections. */
20817 if (strcmp (sec->name, ".glue_7")
20818 && strcmp (sec->name, ".glue_7t"))
20819 {
20820 if ((bfd_section_flags (sec)
20821 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
20822 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
20823 only_data_sections = FALSE;
20824
20825 null_input_bfd = FALSE;
20826 break;
20827 }
20828 }
20829
20830 if (null_input_bfd || only_data_sections)
20831 return TRUE;
20832 }
20833
20834 /* Complain about various flag mismatches. */
20835 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
20836 EF_ARM_EABI_VERSION (out_flags)))
20837 {
20838 _bfd_error_handler
20839 (_("error: source object %pB has EABI version %d, but target %pB has EABI version %d"),
20840 ibfd, (in_flags & EF_ARM_EABIMASK) >> 24,
20841 obfd, (out_flags & EF_ARM_EABIMASK) >> 24);
20842 return FALSE;
20843 }
20844
20845 /* Not sure what needs to be checked for EABI versions >= 1. */
20846 /* VxWorks libraries do not use these flags. */
20847 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
20848 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
20849 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
20850 {
20851 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
20852 {
20853 _bfd_error_handler
20854 (_("error: %pB is compiled for APCS-%d, whereas target %pB uses APCS-%d"),
20855 ibfd, in_flags & EF_ARM_APCS_26 ? 26 : 32,
20856 obfd, out_flags & EF_ARM_APCS_26 ? 26 : 32);
20857 flags_compatible = FALSE;
20858 }
20859
20860 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
20861 {
20862 if (in_flags & EF_ARM_APCS_FLOAT)
20863 _bfd_error_handler
20864 (_("error: %pB passes floats in float registers, whereas %pB passes them in integer registers"),
20865 ibfd, obfd);
20866 else
20867 _bfd_error_handler
20868 (_("error: %pB passes floats in integer registers, whereas %pB passes them in float registers"),
20869 ibfd, obfd);
20870
20871 flags_compatible = FALSE;
20872 }
20873
20874 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
20875 {
20876 if (in_flags & EF_ARM_VFP_FLOAT)
20877 _bfd_error_handler
20878 (_("error: %pB uses %s instructions, whereas %pB does not"),
20879 ibfd, "VFP", obfd);
20880 else
20881 _bfd_error_handler
20882 (_("error: %pB uses %s instructions, whereas %pB does not"),
20883 ibfd, "FPA", obfd);
20884
20885 flags_compatible = FALSE;
20886 }
20887
20888 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
20889 {
20890 if (in_flags & EF_ARM_MAVERICK_FLOAT)
20891 _bfd_error_handler
20892 (_("error: %pB uses %s instructions, whereas %pB does not"),
20893 ibfd, "Maverick", obfd);
20894 else
20895 _bfd_error_handler
20896 (_("error: %pB does not use %s instructions, whereas %pB does"),
20897 ibfd, "Maverick", obfd);
20898
20899 flags_compatible = FALSE;
20900 }
20901
20902 #ifdef EF_ARM_SOFT_FLOAT
20903 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
20904 {
20905 /* We can allow interworking between code that is VFP format
20906 layout, and uses either soft float or integer regs for
20907 passing floating point arguments and results. We already
20908 know that the APCS_FLOAT flags match; similarly for VFP
20909 flags. */
20910 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
20911 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
20912 {
20913 if (in_flags & EF_ARM_SOFT_FLOAT)
20914 _bfd_error_handler
20915 (_("error: %pB uses software FP, whereas %pB uses hardware FP"),
20916 ibfd, obfd);
20917 else
20918 _bfd_error_handler
20919 (_("error: %pB uses hardware FP, whereas %pB uses software FP"),
20920 ibfd, obfd);
20921
20922 flags_compatible = FALSE;
20923 }
20924 }
20925 #endif
20926
20927 /* Interworking mismatch is only a warning. */
20928 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
20929 {
20930 if (in_flags & EF_ARM_INTERWORK)
20931 {
20932 _bfd_error_handler
20933 (_("warning: %pB supports interworking, whereas %pB does not"),
20934 ibfd, obfd);
20935 }
20936 else
20937 {
20938 _bfd_error_handler
20939 (_("warning: %pB does not support interworking, whereas %pB does"),
20940 ibfd, obfd);
20941 }
20942 }
20943 }
20944
20945 return flags_compatible;
20946 }
20947
20948
20949 /* Symbian OS Targets. */
20950
20951 #undef TARGET_LITTLE_SYM
20952 #define TARGET_LITTLE_SYM arm_elf32_symbian_le_vec
20953 #undef TARGET_LITTLE_NAME
20954 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
20955 #undef TARGET_BIG_SYM
20956 #define TARGET_BIG_SYM arm_elf32_symbian_be_vec
20957 #undef TARGET_BIG_NAME
20958 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
20959
20960 /* Like elf32_arm_link_hash_table_create -- but overrides
20961 appropriately for Symbian OS. */
20962
20963 static struct bfd_link_hash_table *
20964 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
20965 {
20966 struct bfd_link_hash_table *ret;
20967
20968 ret = elf32_arm_link_hash_table_create (abfd);
20969 if (ret)
20970 {
20971 struct elf32_arm_link_hash_table *htab
20972 = (struct elf32_arm_link_hash_table *)ret;
20973 /* There is no PLT header for Symbian OS. */
20974 htab->plt_header_size = 0;
20975 /* The PLT entries are each one instruction and one word. */
20976 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
20977 htab->symbian_p = 1;
20978 /* Symbian uses armv5t or above, so use_blx is always true. */
20979 htab->use_blx = 1;
20980 htab->root.is_relocatable_executable = 1;
20981 }
20982 return ret;
20983 }
20984
20985 static const struct bfd_elf_special_section
20986 elf32_arm_symbian_special_sections[] =
20987 {
20988 /* In a BPABI executable, the dynamic linking sections do not go in
20989 the loadable read-only segment. The post-linker may wish to
20990 refer to these sections, but they are not part of the final
20991 program image. */
20992 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
20993 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
20994 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
20995 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
20996 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
20997 /* These sections do not need to be writable as the SymbianOS
20998 postlinker will arrange things so that no dynamic relocation is
20999 required. */
21000 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
21001 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
21002 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
21003 { NULL, 0, 0, 0, 0 }
21004 };
21005
21006 static void
21007 elf32_arm_symbian_begin_write_processing (bfd *abfd,
21008 struct bfd_link_info *link_info)
21009 {
21010 /* BPABI objects are never loaded directly by an OS kernel; they are
21011 processed by a postlinker first, into an OS-specific format. If
21012 the D_PAGED bit is set on the file, BFD will align segments on
21013 page boundaries, so that an OS can directly map the file. With
21014 BPABI objects, that just results in wasted space. In addition,
21015 because we clear the D_PAGED bit, map_sections_to_segments will
21016 recognize that the program headers should not be mapped into any
21017 loadable segment. */
21018 abfd->flags &= ~D_PAGED;
21019 elf32_arm_begin_write_processing (abfd, link_info);
21020 }
21021
21022 static bfd_boolean
21023 elf32_arm_symbian_modify_segment_map (bfd *abfd,
21024 struct bfd_link_info *info)
21025 {
21026 struct elf_segment_map *m;
21027 asection *dynsec;
21028
21029 /* BPABI shared libraries and executables should have a PT_DYNAMIC
21030 segment. However, because the .dynamic section is not marked
21031 with SEC_LOAD, the generic ELF code will not create such a
21032 segment. */
21033 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
21034 if (dynsec)
21035 {
21036 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
21037 if (m->p_type == PT_DYNAMIC)
21038 break;
21039
21040 if (m == NULL)
21041 {
21042 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
21043 m->next = elf_seg_map (abfd);
21044 elf_seg_map (abfd) = m;
21045 }
21046 }
21047
21048 /* Also call the generic arm routine. */
21049 return elf32_arm_modify_segment_map (abfd, info);
21050 }
21051
21052 /* Return address for Ith PLT stub in section PLT, for relocation REL
21053 or (bfd_vma) -1 if it should not be included. */
21054
21055 static bfd_vma
21056 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
21057 const arelent *rel ATTRIBUTE_UNUSED)
21058 {
21059 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
21060 }
21061
21062 #undef elf32_bed
21063 #define elf32_bed elf32_arm_symbian_bed
21064
21065 /* The dynamic sections are not allocated on SymbianOS; the postlinker
21066 will process them and then discard them. */
21067 #undef ELF_DYNAMIC_SEC_FLAGS
21068 #define ELF_DYNAMIC_SEC_FLAGS \
21069 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
21070
21071 #undef elf_backend_emit_relocs
21072
21073 #undef bfd_elf32_bfd_link_hash_table_create
21074 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
21075 #undef elf_backend_special_sections
21076 #define elf_backend_special_sections elf32_arm_symbian_special_sections
21077 #undef elf_backend_begin_write_processing
21078 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
21079 #undef elf_backend_final_write_processing
21080 #define elf_backend_final_write_processing elf32_arm_final_write_processing
21081
21082 #undef elf_backend_modify_segment_map
21083 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
21084
21085 /* There is no .got section for BPABI objects, and hence no header. */
21086 #undef elf_backend_got_header_size
21087 #define elf_backend_got_header_size 0
21088
21089 /* Similarly, there is no .got.plt section. */
21090 #undef elf_backend_want_got_plt
21091 #define elf_backend_want_got_plt 0
21092
21093 #undef elf_backend_plt_sym_val
21094 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
21095
21096 #undef elf_backend_may_use_rel_p
21097 #define elf_backend_may_use_rel_p 1
21098 #undef elf_backend_may_use_rela_p
21099 #define elf_backend_may_use_rela_p 0
21100 #undef elf_backend_default_use_rela_p
21101 #define elf_backend_default_use_rela_p 0
21102 #undef elf_backend_want_plt_sym
21103 #define elf_backend_want_plt_sym 0
21104 #undef elf_backend_dtrel_excludes_plt
21105 #define elf_backend_dtrel_excludes_plt 0
21106 #undef ELF_MAXPAGESIZE
21107 #define ELF_MAXPAGESIZE 0x8000
21108
21109 #include "elf32-target.h"
This page took 0.489709 seconds and 4 git commands to generate.