Add markers for binutils 2.35 branch
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
1 /* 32-bit ELF support for ARM
2 Copyright (C) 1998-2020 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include <limits.h>
23
24 #include "bfd.h"
25 #include "libiberty.h"
26 #include "libbfd.h"
27 #include "elf-bfd.h"
28 #include "elf-nacl.h"
29 #include "elf-vxworks.h"
30 #include "elf/arm.h"
31 #include "elf32-arm.h"
32 #include "cpu-arm.h"
33
34 /* Return the relocation section associated with NAME. HTAB is the
35 bfd's elf32_arm_link_hash_entry. */
36 #define RELOC_SECTION(HTAB, NAME) \
37 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
38
39 /* Return size of a relocation entry. HTAB is the bfd's
40 elf32_arm_link_hash_entry. */
41 #define RELOC_SIZE(HTAB) \
42 ((HTAB)->use_rel \
43 ? sizeof (Elf32_External_Rel) \
44 : sizeof (Elf32_External_Rela))
45
46 /* Return function to swap relocations in. HTAB is the bfd's
47 elf32_arm_link_hash_entry. */
48 #define SWAP_RELOC_IN(HTAB) \
49 ((HTAB)->use_rel \
50 ? bfd_elf32_swap_reloc_in \
51 : bfd_elf32_swap_reloca_in)
52
53 /* Return function to swap relocations out. HTAB is the bfd's
54 elf32_arm_link_hash_entry. */
55 #define SWAP_RELOC_OUT(HTAB) \
56 ((HTAB)->use_rel \
57 ? bfd_elf32_swap_reloc_out \
58 : bfd_elf32_swap_reloca_out)
59
60 #define elf_info_to_howto NULL
61 #define elf_info_to_howto_rel elf32_arm_info_to_howto
62
63 #define ARM_ELF_ABI_VERSION 0
64 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
65
66 /* The Adjusted Place, as defined by AAELF. */
67 #define Pa(X) ((X) & 0xfffffffc)
68
69 static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
70 struct bfd_link_info *link_info,
71 asection *sec,
72 bfd_byte *contents);
73
74 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
75 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
76 in that slot. */
77
78 static reloc_howto_type elf32_arm_howto_table_1[] =
79 {
80 /* No relocation. */
81 HOWTO (R_ARM_NONE, /* type */
82 0, /* rightshift */
83 3, /* size (0 = byte, 1 = short, 2 = long) */
84 0, /* bitsize */
85 FALSE, /* pc_relative */
86 0, /* bitpos */
87 complain_overflow_dont,/* complain_on_overflow */
88 bfd_elf_generic_reloc, /* special_function */
89 "R_ARM_NONE", /* name */
90 FALSE, /* partial_inplace */
91 0, /* src_mask */
92 0, /* dst_mask */
93 FALSE), /* pcrel_offset */
94
95 HOWTO (R_ARM_PC24, /* type */
96 2, /* rightshift */
97 2, /* size (0 = byte, 1 = short, 2 = long) */
98 24, /* bitsize */
99 TRUE, /* pc_relative */
100 0, /* bitpos */
101 complain_overflow_signed,/* complain_on_overflow */
102 bfd_elf_generic_reloc, /* special_function */
103 "R_ARM_PC24", /* name */
104 FALSE, /* partial_inplace */
105 0x00ffffff, /* src_mask */
106 0x00ffffff, /* dst_mask */
107 TRUE), /* pcrel_offset */
108
109 /* 32 bit absolute */
110 HOWTO (R_ARM_ABS32, /* type */
111 0, /* rightshift */
112 2, /* size (0 = byte, 1 = short, 2 = long) */
113 32, /* bitsize */
114 FALSE, /* pc_relative */
115 0, /* bitpos */
116 complain_overflow_bitfield,/* complain_on_overflow */
117 bfd_elf_generic_reloc, /* special_function */
118 "R_ARM_ABS32", /* name */
119 FALSE, /* partial_inplace */
120 0xffffffff, /* src_mask */
121 0xffffffff, /* dst_mask */
122 FALSE), /* pcrel_offset */
123
124 /* standard 32bit pc-relative reloc */
125 HOWTO (R_ARM_REL32, /* type */
126 0, /* rightshift */
127 2, /* size (0 = byte, 1 = short, 2 = long) */
128 32, /* bitsize */
129 TRUE, /* pc_relative */
130 0, /* bitpos */
131 complain_overflow_bitfield,/* complain_on_overflow */
132 bfd_elf_generic_reloc, /* special_function */
133 "R_ARM_REL32", /* name */
134 FALSE, /* partial_inplace */
135 0xffffffff, /* src_mask */
136 0xffffffff, /* dst_mask */
137 TRUE), /* pcrel_offset */
138
139 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
140 HOWTO (R_ARM_LDR_PC_G0, /* type */
141 0, /* rightshift */
142 0, /* size (0 = byte, 1 = short, 2 = long) */
143 32, /* bitsize */
144 TRUE, /* pc_relative */
145 0, /* bitpos */
146 complain_overflow_dont,/* complain_on_overflow */
147 bfd_elf_generic_reloc, /* special_function */
148 "R_ARM_LDR_PC_G0", /* name */
149 FALSE, /* partial_inplace */
150 0xffffffff, /* src_mask */
151 0xffffffff, /* dst_mask */
152 TRUE), /* pcrel_offset */
153
154 /* 16 bit absolute */
155 HOWTO (R_ARM_ABS16, /* type */
156 0, /* rightshift */
157 1, /* size (0 = byte, 1 = short, 2 = long) */
158 16, /* bitsize */
159 FALSE, /* pc_relative */
160 0, /* bitpos */
161 complain_overflow_bitfield,/* complain_on_overflow */
162 bfd_elf_generic_reloc, /* special_function */
163 "R_ARM_ABS16", /* name */
164 FALSE, /* partial_inplace */
165 0x0000ffff, /* src_mask */
166 0x0000ffff, /* dst_mask */
167 FALSE), /* pcrel_offset */
168
169 /* 12 bit absolute */
170 HOWTO (R_ARM_ABS12, /* type */
171 0, /* rightshift */
172 2, /* size (0 = byte, 1 = short, 2 = long) */
173 12, /* bitsize */
174 FALSE, /* pc_relative */
175 0, /* bitpos */
176 complain_overflow_bitfield,/* complain_on_overflow */
177 bfd_elf_generic_reloc, /* special_function */
178 "R_ARM_ABS12", /* name */
179 FALSE, /* partial_inplace */
180 0x00000fff, /* src_mask */
181 0x00000fff, /* dst_mask */
182 FALSE), /* pcrel_offset */
183
184 HOWTO (R_ARM_THM_ABS5, /* type */
185 6, /* rightshift */
186 1, /* size (0 = byte, 1 = short, 2 = long) */
187 5, /* bitsize */
188 FALSE, /* pc_relative */
189 0, /* bitpos */
190 complain_overflow_bitfield,/* complain_on_overflow */
191 bfd_elf_generic_reloc, /* special_function */
192 "R_ARM_THM_ABS5", /* name */
193 FALSE, /* partial_inplace */
194 0x000007e0, /* src_mask */
195 0x000007e0, /* dst_mask */
196 FALSE), /* pcrel_offset */
197
198 /* 8 bit absolute */
199 HOWTO (R_ARM_ABS8, /* type */
200 0, /* rightshift */
201 0, /* size (0 = byte, 1 = short, 2 = long) */
202 8, /* bitsize */
203 FALSE, /* pc_relative */
204 0, /* bitpos */
205 complain_overflow_bitfield,/* complain_on_overflow */
206 bfd_elf_generic_reloc, /* special_function */
207 "R_ARM_ABS8", /* name */
208 FALSE, /* partial_inplace */
209 0x000000ff, /* src_mask */
210 0x000000ff, /* dst_mask */
211 FALSE), /* pcrel_offset */
212
213 HOWTO (R_ARM_SBREL32, /* type */
214 0, /* rightshift */
215 2, /* size (0 = byte, 1 = short, 2 = long) */
216 32, /* bitsize */
217 FALSE, /* pc_relative */
218 0, /* bitpos */
219 complain_overflow_dont,/* complain_on_overflow */
220 bfd_elf_generic_reloc, /* special_function */
221 "R_ARM_SBREL32", /* name */
222 FALSE, /* partial_inplace */
223 0xffffffff, /* src_mask */
224 0xffffffff, /* dst_mask */
225 FALSE), /* pcrel_offset */
226
227 HOWTO (R_ARM_THM_CALL, /* type */
228 1, /* rightshift */
229 2, /* size (0 = byte, 1 = short, 2 = long) */
230 24, /* bitsize */
231 TRUE, /* pc_relative */
232 0, /* bitpos */
233 complain_overflow_signed,/* complain_on_overflow */
234 bfd_elf_generic_reloc, /* special_function */
235 "R_ARM_THM_CALL", /* name */
236 FALSE, /* partial_inplace */
237 0x07ff2fff, /* src_mask */
238 0x07ff2fff, /* dst_mask */
239 TRUE), /* pcrel_offset */
240
241 HOWTO (R_ARM_THM_PC8, /* type */
242 1, /* rightshift */
243 1, /* size (0 = byte, 1 = short, 2 = long) */
244 8, /* bitsize */
245 TRUE, /* pc_relative */
246 0, /* bitpos */
247 complain_overflow_signed,/* complain_on_overflow */
248 bfd_elf_generic_reloc, /* special_function */
249 "R_ARM_THM_PC8", /* name */
250 FALSE, /* partial_inplace */
251 0x000000ff, /* src_mask */
252 0x000000ff, /* dst_mask */
253 TRUE), /* pcrel_offset */
254
255 HOWTO (R_ARM_BREL_ADJ, /* type */
256 1, /* rightshift */
257 1, /* size (0 = byte, 1 = short, 2 = long) */
258 32, /* bitsize */
259 FALSE, /* pc_relative */
260 0, /* bitpos */
261 complain_overflow_signed,/* complain_on_overflow */
262 bfd_elf_generic_reloc, /* special_function */
263 "R_ARM_BREL_ADJ", /* name */
264 FALSE, /* partial_inplace */
265 0xffffffff, /* src_mask */
266 0xffffffff, /* dst_mask */
267 FALSE), /* pcrel_offset */
268
269 HOWTO (R_ARM_TLS_DESC, /* type */
270 0, /* rightshift */
271 2, /* size (0 = byte, 1 = short, 2 = long) */
272 32, /* bitsize */
273 FALSE, /* pc_relative */
274 0, /* bitpos */
275 complain_overflow_bitfield,/* complain_on_overflow */
276 bfd_elf_generic_reloc, /* special_function */
277 "R_ARM_TLS_DESC", /* name */
278 FALSE, /* partial_inplace */
279 0xffffffff, /* src_mask */
280 0xffffffff, /* dst_mask */
281 FALSE), /* pcrel_offset */
282
283 HOWTO (R_ARM_THM_SWI8, /* type */
284 0, /* rightshift */
285 0, /* size (0 = byte, 1 = short, 2 = long) */
286 0, /* bitsize */
287 FALSE, /* pc_relative */
288 0, /* bitpos */
289 complain_overflow_signed,/* complain_on_overflow */
290 bfd_elf_generic_reloc, /* special_function */
291 "R_ARM_SWI8", /* name */
292 FALSE, /* partial_inplace */
293 0x00000000, /* src_mask */
294 0x00000000, /* dst_mask */
295 FALSE), /* pcrel_offset */
296
297 /* BLX instruction for the ARM. */
298 HOWTO (R_ARM_XPC25, /* type */
299 2, /* rightshift */
300 2, /* size (0 = byte, 1 = short, 2 = long) */
301 24, /* bitsize */
302 TRUE, /* pc_relative */
303 0, /* bitpos */
304 complain_overflow_signed,/* complain_on_overflow */
305 bfd_elf_generic_reloc, /* special_function */
306 "R_ARM_XPC25", /* name */
307 FALSE, /* partial_inplace */
308 0x00ffffff, /* src_mask */
309 0x00ffffff, /* dst_mask */
310 TRUE), /* pcrel_offset */
311
312 /* BLX instruction for the Thumb. */
313 HOWTO (R_ARM_THM_XPC22, /* type */
314 2, /* rightshift */
315 2, /* size (0 = byte, 1 = short, 2 = long) */
316 24, /* bitsize */
317 TRUE, /* pc_relative */
318 0, /* bitpos */
319 complain_overflow_signed,/* complain_on_overflow */
320 bfd_elf_generic_reloc, /* special_function */
321 "R_ARM_THM_XPC22", /* name */
322 FALSE, /* partial_inplace */
323 0x07ff2fff, /* src_mask */
324 0x07ff2fff, /* dst_mask */
325 TRUE), /* pcrel_offset */
326
327 /* Dynamic TLS relocations. */
328
329 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
330 0, /* rightshift */
331 2, /* size (0 = byte, 1 = short, 2 = long) */
332 32, /* bitsize */
333 FALSE, /* pc_relative */
334 0, /* bitpos */
335 complain_overflow_bitfield,/* complain_on_overflow */
336 bfd_elf_generic_reloc, /* special_function */
337 "R_ARM_TLS_DTPMOD32", /* name */
338 TRUE, /* partial_inplace */
339 0xffffffff, /* src_mask */
340 0xffffffff, /* dst_mask */
341 FALSE), /* pcrel_offset */
342
343 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
344 0, /* rightshift */
345 2, /* size (0 = byte, 1 = short, 2 = long) */
346 32, /* bitsize */
347 FALSE, /* pc_relative */
348 0, /* bitpos */
349 complain_overflow_bitfield,/* complain_on_overflow */
350 bfd_elf_generic_reloc, /* special_function */
351 "R_ARM_TLS_DTPOFF32", /* name */
352 TRUE, /* partial_inplace */
353 0xffffffff, /* src_mask */
354 0xffffffff, /* dst_mask */
355 FALSE), /* pcrel_offset */
356
357 HOWTO (R_ARM_TLS_TPOFF32, /* type */
358 0, /* rightshift */
359 2, /* size (0 = byte, 1 = short, 2 = long) */
360 32, /* bitsize */
361 FALSE, /* pc_relative */
362 0, /* bitpos */
363 complain_overflow_bitfield,/* complain_on_overflow */
364 bfd_elf_generic_reloc, /* special_function */
365 "R_ARM_TLS_TPOFF32", /* name */
366 TRUE, /* partial_inplace */
367 0xffffffff, /* src_mask */
368 0xffffffff, /* dst_mask */
369 FALSE), /* pcrel_offset */
370
371 /* Relocs used in ARM Linux */
372
373 HOWTO (R_ARM_COPY, /* type */
374 0, /* rightshift */
375 2, /* size (0 = byte, 1 = short, 2 = long) */
376 32, /* bitsize */
377 FALSE, /* pc_relative */
378 0, /* bitpos */
379 complain_overflow_bitfield,/* complain_on_overflow */
380 bfd_elf_generic_reloc, /* special_function */
381 "R_ARM_COPY", /* name */
382 TRUE, /* partial_inplace */
383 0xffffffff, /* src_mask */
384 0xffffffff, /* dst_mask */
385 FALSE), /* pcrel_offset */
386
387 HOWTO (R_ARM_GLOB_DAT, /* type */
388 0, /* rightshift */
389 2, /* size (0 = byte, 1 = short, 2 = long) */
390 32, /* bitsize */
391 FALSE, /* pc_relative */
392 0, /* bitpos */
393 complain_overflow_bitfield,/* complain_on_overflow */
394 bfd_elf_generic_reloc, /* special_function */
395 "R_ARM_GLOB_DAT", /* name */
396 TRUE, /* partial_inplace */
397 0xffffffff, /* src_mask */
398 0xffffffff, /* dst_mask */
399 FALSE), /* pcrel_offset */
400
401 HOWTO (R_ARM_JUMP_SLOT, /* type */
402 0, /* rightshift */
403 2, /* size (0 = byte, 1 = short, 2 = long) */
404 32, /* bitsize */
405 FALSE, /* pc_relative */
406 0, /* bitpos */
407 complain_overflow_bitfield,/* complain_on_overflow */
408 bfd_elf_generic_reloc, /* special_function */
409 "R_ARM_JUMP_SLOT", /* name */
410 TRUE, /* partial_inplace */
411 0xffffffff, /* src_mask */
412 0xffffffff, /* dst_mask */
413 FALSE), /* pcrel_offset */
414
415 HOWTO (R_ARM_RELATIVE, /* type */
416 0, /* rightshift */
417 2, /* size (0 = byte, 1 = short, 2 = long) */
418 32, /* bitsize */
419 FALSE, /* pc_relative */
420 0, /* bitpos */
421 complain_overflow_bitfield,/* complain_on_overflow */
422 bfd_elf_generic_reloc, /* special_function */
423 "R_ARM_RELATIVE", /* name */
424 TRUE, /* partial_inplace */
425 0xffffffff, /* src_mask */
426 0xffffffff, /* dst_mask */
427 FALSE), /* pcrel_offset */
428
429 HOWTO (R_ARM_GOTOFF32, /* type */
430 0, /* rightshift */
431 2, /* size (0 = byte, 1 = short, 2 = long) */
432 32, /* bitsize */
433 FALSE, /* pc_relative */
434 0, /* bitpos */
435 complain_overflow_bitfield,/* complain_on_overflow */
436 bfd_elf_generic_reloc, /* special_function */
437 "R_ARM_GOTOFF32", /* name */
438 TRUE, /* partial_inplace */
439 0xffffffff, /* src_mask */
440 0xffffffff, /* dst_mask */
441 FALSE), /* pcrel_offset */
442
443 HOWTO (R_ARM_GOTPC, /* type */
444 0, /* rightshift */
445 2, /* size (0 = byte, 1 = short, 2 = long) */
446 32, /* bitsize */
447 TRUE, /* pc_relative */
448 0, /* bitpos */
449 complain_overflow_bitfield,/* complain_on_overflow */
450 bfd_elf_generic_reloc, /* special_function */
451 "R_ARM_GOTPC", /* name */
452 TRUE, /* partial_inplace */
453 0xffffffff, /* src_mask */
454 0xffffffff, /* dst_mask */
455 TRUE), /* pcrel_offset */
456
457 HOWTO (R_ARM_GOT32, /* type */
458 0, /* rightshift */
459 2, /* size (0 = byte, 1 = short, 2 = long) */
460 32, /* bitsize */
461 FALSE, /* pc_relative */
462 0, /* bitpos */
463 complain_overflow_bitfield,/* complain_on_overflow */
464 bfd_elf_generic_reloc, /* special_function */
465 "R_ARM_GOT32", /* name */
466 TRUE, /* partial_inplace */
467 0xffffffff, /* src_mask */
468 0xffffffff, /* dst_mask */
469 FALSE), /* pcrel_offset */
470
471 HOWTO (R_ARM_PLT32, /* type */
472 2, /* rightshift */
473 2, /* size (0 = byte, 1 = short, 2 = long) */
474 24, /* bitsize */
475 TRUE, /* pc_relative */
476 0, /* bitpos */
477 complain_overflow_bitfield,/* complain_on_overflow */
478 bfd_elf_generic_reloc, /* special_function */
479 "R_ARM_PLT32", /* name */
480 FALSE, /* partial_inplace */
481 0x00ffffff, /* src_mask */
482 0x00ffffff, /* dst_mask */
483 TRUE), /* pcrel_offset */
484
485 HOWTO (R_ARM_CALL, /* type */
486 2, /* rightshift */
487 2, /* size (0 = byte, 1 = short, 2 = long) */
488 24, /* bitsize */
489 TRUE, /* pc_relative */
490 0, /* bitpos */
491 complain_overflow_signed,/* complain_on_overflow */
492 bfd_elf_generic_reloc, /* special_function */
493 "R_ARM_CALL", /* name */
494 FALSE, /* partial_inplace */
495 0x00ffffff, /* src_mask */
496 0x00ffffff, /* dst_mask */
497 TRUE), /* pcrel_offset */
498
499 HOWTO (R_ARM_JUMP24, /* type */
500 2, /* rightshift */
501 2, /* size (0 = byte, 1 = short, 2 = long) */
502 24, /* bitsize */
503 TRUE, /* pc_relative */
504 0, /* bitpos */
505 complain_overflow_signed,/* complain_on_overflow */
506 bfd_elf_generic_reloc, /* special_function */
507 "R_ARM_JUMP24", /* name */
508 FALSE, /* partial_inplace */
509 0x00ffffff, /* src_mask */
510 0x00ffffff, /* dst_mask */
511 TRUE), /* pcrel_offset */
512
513 HOWTO (R_ARM_THM_JUMP24, /* type */
514 1, /* rightshift */
515 2, /* size (0 = byte, 1 = short, 2 = long) */
516 24, /* bitsize */
517 TRUE, /* pc_relative */
518 0, /* bitpos */
519 complain_overflow_signed,/* complain_on_overflow */
520 bfd_elf_generic_reloc, /* special_function */
521 "R_ARM_THM_JUMP24", /* name */
522 FALSE, /* partial_inplace */
523 0x07ff2fff, /* src_mask */
524 0x07ff2fff, /* dst_mask */
525 TRUE), /* pcrel_offset */
526
527 HOWTO (R_ARM_BASE_ABS, /* type */
528 0, /* rightshift */
529 2, /* size (0 = byte, 1 = short, 2 = long) */
530 32, /* bitsize */
531 FALSE, /* pc_relative */
532 0, /* bitpos */
533 complain_overflow_dont,/* complain_on_overflow */
534 bfd_elf_generic_reloc, /* special_function */
535 "R_ARM_BASE_ABS", /* name */
536 FALSE, /* partial_inplace */
537 0xffffffff, /* src_mask */
538 0xffffffff, /* dst_mask */
539 FALSE), /* pcrel_offset */
540
541 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
542 0, /* rightshift */
543 2, /* size (0 = byte, 1 = short, 2 = long) */
544 12, /* bitsize */
545 TRUE, /* pc_relative */
546 0, /* bitpos */
547 complain_overflow_dont,/* complain_on_overflow */
548 bfd_elf_generic_reloc, /* special_function */
549 "R_ARM_ALU_PCREL_7_0", /* name */
550 FALSE, /* partial_inplace */
551 0x00000fff, /* src_mask */
552 0x00000fff, /* dst_mask */
553 TRUE), /* pcrel_offset */
554
555 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
556 0, /* rightshift */
557 2, /* size (0 = byte, 1 = short, 2 = long) */
558 12, /* bitsize */
559 TRUE, /* pc_relative */
560 8, /* bitpos */
561 complain_overflow_dont,/* complain_on_overflow */
562 bfd_elf_generic_reloc, /* special_function */
563 "R_ARM_ALU_PCREL_15_8",/* name */
564 FALSE, /* partial_inplace */
565 0x00000fff, /* src_mask */
566 0x00000fff, /* dst_mask */
567 TRUE), /* pcrel_offset */
568
569 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
570 0, /* rightshift */
571 2, /* size (0 = byte, 1 = short, 2 = long) */
572 12, /* bitsize */
573 TRUE, /* pc_relative */
574 16, /* bitpos */
575 complain_overflow_dont,/* complain_on_overflow */
576 bfd_elf_generic_reloc, /* special_function */
577 "R_ARM_ALU_PCREL_23_15",/* name */
578 FALSE, /* partial_inplace */
579 0x00000fff, /* src_mask */
580 0x00000fff, /* dst_mask */
581 TRUE), /* pcrel_offset */
582
583 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
584 0, /* rightshift */
585 2, /* size (0 = byte, 1 = short, 2 = long) */
586 12, /* bitsize */
587 FALSE, /* pc_relative */
588 0, /* bitpos */
589 complain_overflow_dont,/* complain_on_overflow */
590 bfd_elf_generic_reloc, /* special_function */
591 "R_ARM_LDR_SBREL_11_0",/* name */
592 FALSE, /* partial_inplace */
593 0x00000fff, /* src_mask */
594 0x00000fff, /* dst_mask */
595 FALSE), /* pcrel_offset */
596
597 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
598 0, /* rightshift */
599 2, /* size (0 = byte, 1 = short, 2 = long) */
600 8, /* bitsize */
601 FALSE, /* pc_relative */
602 12, /* bitpos */
603 complain_overflow_dont,/* complain_on_overflow */
604 bfd_elf_generic_reloc, /* special_function */
605 "R_ARM_ALU_SBREL_19_12",/* name */
606 FALSE, /* partial_inplace */
607 0x000ff000, /* src_mask */
608 0x000ff000, /* dst_mask */
609 FALSE), /* pcrel_offset */
610
611 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
612 0, /* rightshift */
613 2, /* size (0 = byte, 1 = short, 2 = long) */
614 8, /* bitsize */
615 FALSE, /* pc_relative */
616 20, /* bitpos */
617 complain_overflow_dont,/* complain_on_overflow */
618 bfd_elf_generic_reloc, /* special_function */
619 "R_ARM_ALU_SBREL_27_20",/* name */
620 FALSE, /* partial_inplace */
621 0x0ff00000, /* src_mask */
622 0x0ff00000, /* dst_mask */
623 FALSE), /* pcrel_offset */
624
625 HOWTO (R_ARM_TARGET1, /* type */
626 0, /* rightshift */
627 2, /* size (0 = byte, 1 = short, 2 = long) */
628 32, /* bitsize */
629 FALSE, /* pc_relative */
630 0, /* bitpos */
631 complain_overflow_dont,/* complain_on_overflow */
632 bfd_elf_generic_reloc, /* special_function */
633 "R_ARM_TARGET1", /* name */
634 FALSE, /* partial_inplace */
635 0xffffffff, /* src_mask */
636 0xffffffff, /* dst_mask */
637 FALSE), /* pcrel_offset */
638
639 HOWTO (R_ARM_ROSEGREL32, /* type */
640 0, /* rightshift */
641 2, /* size (0 = byte, 1 = short, 2 = long) */
642 32, /* bitsize */
643 FALSE, /* pc_relative */
644 0, /* bitpos */
645 complain_overflow_dont,/* complain_on_overflow */
646 bfd_elf_generic_reloc, /* special_function */
647 "R_ARM_ROSEGREL32", /* name */
648 FALSE, /* partial_inplace */
649 0xffffffff, /* src_mask */
650 0xffffffff, /* dst_mask */
651 FALSE), /* pcrel_offset */
652
653 HOWTO (R_ARM_V4BX, /* type */
654 0, /* rightshift */
655 2, /* size (0 = byte, 1 = short, 2 = long) */
656 32, /* bitsize */
657 FALSE, /* pc_relative */
658 0, /* bitpos */
659 complain_overflow_dont,/* complain_on_overflow */
660 bfd_elf_generic_reloc, /* special_function */
661 "R_ARM_V4BX", /* name */
662 FALSE, /* partial_inplace */
663 0xffffffff, /* src_mask */
664 0xffffffff, /* dst_mask */
665 FALSE), /* pcrel_offset */
666
667 HOWTO (R_ARM_TARGET2, /* type */
668 0, /* rightshift */
669 2, /* size (0 = byte, 1 = short, 2 = long) */
670 32, /* bitsize */
671 FALSE, /* pc_relative */
672 0, /* bitpos */
673 complain_overflow_signed,/* complain_on_overflow */
674 bfd_elf_generic_reloc, /* special_function */
675 "R_ARM_TARGET2", /* name */
676 FALSE, /* partial_inplace */
677 0xffffffff, /* src_mask */
678 0xffffffff, /* dst_mask */
679 TRUE), /* pcrel_offset */
680
681 HOWTO (R_ARM_PREL31, /* type */
682 0, /* rightshift */
683 2, /* size (0 = byte, 1 = short, 2 = long) */
684 31, /* bitsize */
685 TRUE, /* pc_relative */
686 0, /* bitpos */
687 complain_overflow_signed,/* complain_on_overflow */
688 bfd_elf_generic_reloc, /* special_function */
689 "R_ARM_PREL31", /* name */
690 FALSE, /* partial_inplace */
691 0x7fffffff, /* src_mask */
692 0x7fffffff, /* dst_mask */
693 TRUE), /* pcrel_offset */
694
695 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
696 0, /* rightshift */
697 2, /* size (0 = byte, 1 = short, 2 = long) */
698 16, /* bitsize */
699 FALSE, /* pc_relative */
700 0, /* bitpos */
701 complain_overflow_dont,/* complain_on_overflow */
702 bfd_elf_generic_reloc, /* special_function */
703 "R_ARM_MOVW_ABS_NC", /* name */
704 FALSE, /* partial_inplace */
705 0x000f0fff, /* src_mask */
706 0x000f0fff, /* dst_mask */
707 FALSE), /* pcrel_offset */
708
709 HOWTO (R_ARM_MOVT_ABS, /* type */
710 0, /* rightshift */
711 2, /* size (0 = byte, 1 = short, 2 = long) */
712 16, /* bitsize */
713 FALSE, /* pc_relative */
714 0, /* bitpos */
715 complain_overflow_bitfield,/* complain_on_overflow */
716 bfd_elf_generic_reloc, /* special_function */
717 "R_ARM_MOVT_ABS", /* name */
718 FALSE, /* partial_inplace */
719 0x000f0fff, /* src_mask */
720 0x000f0fff, /* dst_mask */
721 FALSE), /* pcrel_offset */
722
723 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
724 0, /* rightshift */
725 2, /* size (0 = byte, 1 = short, 2 = long) */
726 16, /* bitsize */
727 TRUE, /* pc_relative */
728 0, /* bitpos */
729 complain_overflow_dont,/* complain_on_overflow */
730 bfd_elf_generic_reloc, /* special_function */
731 "R_ARM_MOVW_PREL_NC", /* name */
732 FALSE, /* partial_inplace */
733 0x000f0fff, /* src_mask */
734 0x000f0fff, /* dst_mask */
735 TRUE), /* pcrel_offset */
736
737 HOWTO (R_ARM_MOVT_PREL, /* type */
738 0, /* rightshift */
739 2, /* size (0 = byte, 1 = short, 2 = long) */
740 16, /* bitsize */
741 TRUE, /* pc_relative */
742 0, /* bitpos */
743 complain_overflow_bitfield,/* complain_on_overflow */
744 bfd_elf_generic_reloc, /* special_function */
745 "R_ARM_MOVT_PREL", /* name */
746 FALSE, /* partial_inplace */
747 0x000f0fff, /* src_mask */
748 0x000f0fff, /* dst_mask */
749 TRUE), /* pcrel_offset */
750
751 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
752 0, /* rightshift */
753 2, /* size (0 = byte, 1 = short, 2 = long) */
754 16, /* bitsize */
755 FALSE, /* pc_relative */
756 0, /* bitpos */
757 complain_overflow_dont,/* complain_on_overflow */
758 bfd_elf_generic_reloc, /* special_function */
759 "R_ARM_THM_MOVW_ABS_NC",/* name */
760 FALSE, /* partial_inplace */
761 0x040f70ff, /* src_mask */
762 0x040f70ff, /* dst_mask */
763 FALSE), /* pcrel_offset */
764
765 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
766 0, /* rightshift */
767 2, /* size (0 = byte, 1 = short, 2 = long) */
768 16, /* bitsize */
769 FALSE, /* pc_relative */
770 0, /* bitpos */
771 complain_overflow_bitfield,/* complain_on_overflow */
772 bfd_elf_generic_reloc, /* special_function */
773 "R_ARM_THM_MOVT_ABS", /* name */
774 FALSE, /* partial_inplace */
775 0x040f70ff, /* src_mask */
776 0x040f70ff, /* dst_mask */
777 FALSE), /* pcrel_offset */
778
779 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
780 0, /* rightshift */
781 2, /* size (0 = byte, 1 = short, 2 = long) */
782 16, /* bitsize */
783 TRUE, /* pc_relative */
784 0, /* bitpos */
785 complain_overflow_dont,/* complain_on_overflow */
786 bfd_elf_generic_reloc, /* special_function */
787 "R_ARM_THM_MOVW_PREL_NC",/* name */
788 FALSE, /* partial_inplace */
789 0x040f70ff, /* src_mask */
790 0x040f70ff, /* dst_mask */
791 TRUE), /* pcrel_offset */
792
793 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
794 0, /* rightshift */
795 2, /* size (0 = byte, 1 = short, 2 = long) */
796 16, /* bitsize */
797 TRUE, /* pc_relative */
798 0, /* bitpos */
799 complain_overflow_bitfield,/* complain_on_overflow */
800 bfd_elf_generic_reloc, /* special_function */
801 "R_ARM_THM_MOVT_PREL", /* name */
802 FALSE, /* partial_inplace */
803 0x040f70ff, /* src_mask */
804 0x040f70ff, /* dst_mask */
805 TRUE), /* pcrel_offset */
806
807 HOWTO (R_ARM_THM_JUMP19, /* type */
808 1, /* rightshift */
809 2, /* size (0 = byte, 1 = short, 2 = long) */
810 19, /* bitsize */
811 TRUE, /* pc_relative */
812 0, /* bitpos */
813 complain_overflow_signed,/* complain_on_overflow */
814 bfd_elf_generic_reloc, /* special_function */
815 "R_ARM_THM_JUMP19", /* name */
816 FALSE, /* partial_inplace */
817 0x043f2fff, /* src_mask */
818 0x043f2fff, /* dst_mask */
819 TRUE), /* pcrel_offset */
820
821 HOWTO (R_ARM_THM_JUMP6, /* type */
822 1, /* rightshift */
823 1, /* size (0 = byte, 1 = short, 2 = long) */
824 6, /* bitsize */
825 TRUE, /* pc_relative */
826 0, /* bitpos */
827 complain_overflow_unsigned,/* complain_on_overflow */
828 bfd_elf_generic_reloc, /* special_function */
829 "R_ARM_THM_JUMP6", /* name */
830 FALSE, /* partial_inplace */
831 0x02f8, /* src_mask */
832 0x02f8, /* dst_mask */
833 TRUE), /* pcrel_offset */
834
835 /* These are declared as 13-bit signed relocations because we can
836 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
837 versa. */
838 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
839 0, /* rightshift */
840 2, /* size (0 = byte, 1 = short, 2 = long) */
841 13, /* bitsize */
842 TRUE, /* pc_relative */
843 0, /* bitpos */
844 complain_overflow_dont,/* complain_on_overflow */
845 bfd_elf_generic_reloc, /* special_function */
846 "R_ARM_THM_ALU_PREL_11_0",/* name */
847 FALSE, /* partial_inplace */
848 0xffffffff, /* src_mask */
849 0xffffffff, /* dst_mask */
850 TRUE), /* pcrel_offset */
851
852 HOWTO (R_ARM_THM_PC12, /* type */
853 0, /* rightshift */
854 2, /* size (0 = byte, 1 = short, 2 = long) */
855 13, /* bitsize */
856 TRUE, /* pc_relative */
857 0, /* bitpos */
858 complain_overflow_dont,/* complain_on_overflow */
859 bfd_elf_generic_reloc, /* special_function */
860 "R_ARM_THM_PC12", /* name */
861 FALSE, /* partial_inplace */
862 0xffffffff, /* src_mask */
863 0xffffffff, /* dst_mask */
864 TRUE), /* pcrel_offset */
865
866 HOWTO (R_ARM_ABS32_NOI, /* type */
867 0, /* rightshift */
868 2, /* size (0 = byte, 1 = short, 2 = long) */
869 32, /* bitsize */
870 FALSE, /* pc_relative */
871 0, /* bitpos */
872 complain_overflow_dont,/* complain_on_overflow */
873 bfd_elf_generic_reloc, /* special_function */
874 "R_ARM_ABS32_NOI", /* name */
875 FALSE, /* partial_inplace */
876 0xffffffff, /* src_mask */
877 0xffffffff, /* dst_mask */
878 FALSE), /* pcrel_offset */
879
880 HOWTO (R_ARM_REL32_NOI, /* type */
881 0, /* rightshift */
882 2, /* size (0 = byte, 1 = short, 2 = long) */
883 32, /* bitsize */
884 TRUE, /* pc_relative */
885 0, /* bitpos */
886 complain_overflow_dont,/* complain_on_overflow */
887 bfd_elf_generic_reloc, /* special_function */
888 "R_ARM_REL32_NOI", /* name */
889 FALSE, /* partial_inplace */
890 0xffffffff, /* src_mask */
891 0xffffffff, /* dst_mask */
892 FALSE), /* pcrel_offset */
893
894 /* Group relocations. */
895
896 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
897 0, /* rightshift */
898 2, /* size (0 = byte, 1 = short, 2 = long) */
899 32, /* bitsize */
900 TRUE, /* pc_relative */
901 0, /* bitpos */
902 complain_overflow_dont,/* complain_on_overflow */
903 bfd_elf_generic_reloc, /* special_function */
904 "R_ARM_ALU_PC_G0_NC", /* name */
905 FALSE, /* partial_inplace */
906 0xffffffff, /* src_mask */
907 0xffffffff, /* dst_mask */
908 TRUE), /* pcrel_offset */
909
910 HOWTO (R_ARM_ALU_PC_G0, /* type */
911 0, /* rightshift */
912 2, /* size (0 = byte, 1 = short, 2 = long) */
913 32, /* bitsize */
914 TRUE, /* pc_relative */
915 0, /* bitpos */
916 complain_overflow_dont,/* complain_on_overflow */
917 bfd_elf_generic_reloc, /* special_function */
918 "R_ARM_ALU_PC_G0", /* name */
919 FALSE, /* partial_inplace */
920 0xffffffff, /* src_mask */
921 0xffffffff, /* dst_mask */
922 TRUE), /* pcrel_offset */
923
924 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
925 0, /* rightshift */
926 2, /* size (0 = byte, 1 = short, 2 = long) */
927 32, /* bitsize */
928 TRUE, /* pc_relative */
929 0, /* bitpos */
930 complain_overflow_dont,/* complain_on_overflow */
931 bfd_elf_generic_reloc, /* special_function */
932 "R_ARM_ALU_PC_G1_NC", /* name */
933 FALSE, /* partial_inplace */
934 0xffffffff, /* src_mask */
935 0xffffffff, /* dst_mask */
936 TRUE), /* pcrel_offset */
937
938 HOWTO (R_ARM_ALU_PC_G1, /* type */
939 0, /* rightshift */
940 2, /* size (0 = byte, 1 = short, 2 = long) */
941 32, /* bitsize */
942 TRUE, /* pc_relative */
943 0, /* bitpos */
944 complain_overflow_dont,/* complain_on_overflow */
945 bfd_elf_generic_reloc, /* special_function */
946 "R_ARM_ALU_PC_G1", /* name */
947 FALSE, /* partial_inplace */
948 0xffffffff, /* src_mask */
949 0xffffffff, /* dst_mask */
950 TRUE), /* pcrel_offset */
951
952 HOWTO (R_ARM_ALU_PC_G2, /* type */
953 0, /* rightshift */
954 2, /* size (0 = byte, 1 = short, 2 = long) */
955 32, /* bitsize */
956 TRUE, /* pc_relative */
957 0, /* bitpos */
958 complain_overflow_dont,/* complain_on_overflow */
959 bfd_elf_generic_reloc, /* special_function */
960 "R_ARM_ALU_PC_G2", /* name */
961 FALSE, /* partial_inplace */
962 0xffffffff, /* src_mask */
963 0xffffffff, /* dst_mask */
964 TRUE), /* pcrel_offset */
965
966 HOWTO (R_ARM_LDR_PC_G1, /* type */
967 0, /* rightshift */
968 2, /* size (0 = byte, 1 = short, 2 = long) */
969 32, /* bitsize */
970 TRUE, /* pc_relative */
971 0, /* bitpos */
972 complain_overflow_dont,/* complain_on_overflow */
973 bfd_elf_generic_reloc, /* special_function */
974 "R_ARM_LDR_PC_G1", /* name */
975 FALSE, /* partial_inplace */
976 0xffffffff, /* src_mask */
977 0xffffffff, /* dst_mask */
978 TRUE), /* pcrel_offset */
979
980 HOWTO (R_ARM_LDR_PC_G2, /* type */
981 0, /* rightshift */
982 2, /* size (0 = byte, 1 = short, 2 = long) */
983 32, /* bitsize */
984 TRUE, /* pc_relative */
985 0, /* bitpos */
986 complain_overflow_dont,/* complain_on_overflow */
987 bfd_elf_generic_reloc, /* special_function */
988 "R_ARM_LDR_PC_G2", /* name */
989 FALSE, /* partial_inplace */
990 0xffffffff, /* src_mask */
991 0xffffffff, /* dst_mask */
992 TRUE), /* pcrel_offset */
993
994 HOWTO (R_ARM_LDRS_PC_G0, /* type */
995 0, /* rightshift */
996 2, /* size (0 = byte, 1 = short, 2 = long) */
997 32, /* bitsize */
998 TRUE, /* pc_relative */
999 0, /* bitpos */
1000 complain_overflow_dont,/* complain_on_overflow */
1001 bfd_elf_generic_reloc, /* special_function */
1002 "R_ARM_LDRS_PC_G0", /* name */
1003 FALSE, /* partial_inplace */
1004 0xffffffff, /* src_mask */
1005 0xffffffff, /* dst_mask */
1006 TRUE), /* pcrel_offset */
1007
1008 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1009 0, /* rightshift */
1010 2, /* size (0 = byte, 1 = short, 2 = long) */
1011 32, /* bitsize */
1012 TRUE, /* pc_relative */
1013 0, /* bitpos */
1014 complain_overflow_dont,/* complain_on_overflow */
1015 bfd_elf_generic_reloc, /* special_function */
1016 "R_ARM_LDRS_PC_G1", /* name */
1017 FALSE, /* partial_inplace */
1018 0xffffffff, /* src_mask */
1019 0xffffffff, /* dst_mask */
1020 TRUE), /* pcrel_offset */
1021
1022 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1023 0, /* rightshift */
1024 2, /* size (0 = byte, 1 = short, 2 = long) */
1025 32, /* bitsize */
1026 TRUE, /* pc_relative */
1027 0, /* bitpos */
1028 complain_overflow_dont,/* complain_on_overflow */
1029 bfd_elf_generic_reloc, /* special_function */
1030 "R_ARM_LDRS_PC_G2", /* name */
1031 FALSE, /* partial_inplace */
1032 0xffffffff, /* src_mask */
1033 0xffffffff, /* dst_mask */
1034 TRUE), /* pcrel_offset */
1035
1036 HOWTO (R_ARM_LDC_PC_G0, /* type */
1037 0, /* rightshift */
1038 2, /* size (0 = byte, 1 = short, 2 = long) */
1039 32, /* bitsize */
1040 TRUE, /* pc_relative */
1041 0, /* bitpos */
1042 complain_overflow_dont,/* complain_on_overflow */
1043 bfd_elf_generic_reloc, /* special_function */
1044 "R_ARM_LDC_PC_G0", /* name */
1045 FALSE, /* partial_inplace */
1046 0xffffffff, /* src_mask */
1047 0xffffffff, /* dst_mask */
1048 TRUE), /* pcrel_offset */
1049
1050 HOWTO (R_ARM_LDC_PC_G1, /* type */
1051 0, /* rightshift */
1052 2, /* size (0 = byte, 1 = short, 2 = long) */
1053 32, /* bitsize */
1054 TRUE, /* pc_relative */
1055 0, /* bitpos */
1056 complain_overflow_dont,/* complain_on_overflow */
1057 bfd_elf_generic_reloc, /* special_function */
1058 "R_ARM_LDC_PC_G1", /* name */
1059 FALSE, /* partial_inplace */
1060 0xffffffff, /* src_mask */
1061 0xffffffff, /* dst_mask */
1062 TRUE), /* pcrel_offset */
1063
1064 HOWTO (R_ARM_LDC_PC_G2, /* type */
1065 0, /* rightshift */
1066 2, /* size (0 = byte, 1 = short, 2 = long) */
1067 32, /* bitsize */
1068 TRUE, /* pc_relative */
1069 0, /* bitpos */
1070 complain_overflow_dont,/* complain_on_overflow */
1071 bfd_elf_generic_reloc, /* special_function */
1072 "R_ARM_LDC_PC_G2", /* name */
1073 FALSE, /* partial_inplace */
1074 0xffffffff, /* src_mask */
1075 0xffffffff, /* dst_mask */
1076 TRUE), /* pcrel_offset */
1077
1078 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1079 0, /* rightshift */
1080 2, /* size (0 = byte, 1 = short, 2 = long) */
1081 32, /* bitsize */
1082 TRUE, /* pc_relative */
1083 0, /* bitpos */
1084 complain_overflow_dont,/* complain_on_overflow */
1085 bfd_elf_generic_reloc, /* special_function */
1086 "R_ARM_ALU_SB_G0_NC", /* name */
1087 FALSE, /* partial_inplace */
1088 0xffffffff, /* src_mask */
1089 0xffffffff, /* dst_mask */
1090 TRUE), /* pcrel_offset */
1091
1092 HOWTO (R_ARM_ALU_SB_G0, /* type */
1093 0, /* rightshift */
1094 2, /* size (0 = byte, 1 = short, 2 = long) */
1095 32, /* bitsize */
1096 TRUE, /* pc_relative */
1097 0, /* bitpos */
1098 complain_overflow_dont,/* complain_on_overflow */
1099 bfd_elf_generic_reloc, /* special_function */
1100 "R_ARM_ALU_SB_G0", /* name */
1101 FALSE, /* partial_inplace */
1102 0xffffffff, /* src_mask */
1103 0xffffffff, /* dst_mask */
1104 TRUE), /* pcrel_offset */
1105
1106 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1107 0, /* rightshift */
1108 2, /* size (0 = byte, 1 = short, 2 = long) */
1109 32, /* bitsize */
1110 TRUE, /* pc_relative */
1111 0, /* bitpos */
1112 complain_overflow_dont,/* complain_on_overflow */
1113 bfd_elf_generic_reloc, /* special_function */
1114 "R_ARM_ALU_SB_G1_NC", /* name */
1115 FALSE, /* partial_inplace */
1116 0xffffffff, /* src_mask */
1117 0xffffffff, /* dst_mask */
1118 TRUE), /* pcrel_offset */
1119
1120 HOWTO (R_ARM_ALU_SB_G1, /* type */
1121 0, /* rightshift */
1122 2, /* size (0 = byte, 1 = short, 2 = long) */
1123 32, /* bitsize */
1124 TRUE, /* pc_relative */
1125 0, /* bitpos */
1126 complain_overflow_dont,/* complain_on_overflow */
1127 bfd_elf_generic_reloc, /* special_function */
1128 "R_ARM_ALU_SB_G1", /* name */
1129 FALSE, /* partial_inplace */
1130 0xffffffff, /* src_mask */
1131 0xffffffff, /* dst_mask */
1132 TRUE), /* pcrel_offset */
1133
1134 HOWTO (R_ARM_ALU_SB_G2, /* type */
1135 0, /* rightshift */
1136 2, /* size (0 = byte, 1 = short, 2 = long) */
1137 32, /* bitsize */
1138 TRUE, /* pc_relative */
1139 0, /* bitpos */
1140 complain_overflow_dont,/* complain_on_overflow */
1141 bfd_elf_generic_reloc, /* special_function */
1142 "R_ARM_ALU_SB_G2", /* name */
1143 FALSE, /* partial_inplace */
1144 0xffffffff, /* src_mask */
1145 0xffffffff, /* dst_mask */
1146 TRUE), /* pcrel_offset */
1147
1148 HOWTO (R_ARM_LDR_SB_G0, /* type */
1149 0, /* rightshift */
1150 2, /* size (0 = byte, 1 = short, 2 = long) */
1151 32, /* bitsize */
1152 TRUE, /* pc_relative */
1153 0, /* bitpos */
1154 complain_overflow_dont,/* complain_on_overflow */
1155 bfd_elf_generic_reloc, /* special_function */
1156 "R_ARM_LDR_SB_G0", /* name */
1157 FALSE, /* partial_inplace */
1158 0xffffffff, /* src_mask */
1159 0xffffffff, /* dst_mask */
1160 TRUE), /* pcrel_offset */
1161
1162 HOWTO (R_ARM_LDR_SB_G1, /* type */
1163 0, /* rightshift */
1164 2, /* size (0 = byte, 1 = short, 2 = long) */
1165 32, /* bitsize */
1166 TRUE, /* pc_relative */
1167 0, /* bitpos */
1168 complain_overflow_dont,/* complain_on_overflow */
1169 bfd_elf_generic_reloc, /* special_function */
1170 "R_ARM_LDR_SB_G1", /* name */
1171 FALSE, /* partial_inplace */
1172 0xffffffff, /* src_mask */
1173 0xffffffff, /* dst_mask */
1174 TRUE), /* pcrel_offset */
1175
1176 HOWTO (R_ARM_LDR_SB_G2, /* type */
1177 0, /* rightshift */
1178 2, /* size (0 = byte, 1 = short, 2 = long) */
1179 32, /* bitsize */
1180 TRUE, /* pc_relative */
1181 0, /* bitpos */
1182 complain_overflow_dont,/* complain_on_overflow */
1183 bfd_elf_generic_reloc, /* special_function */
1184 "R_ARM_LDR_SB_G2", /* name */
1185 FALSE, /* partial_inplace */
1186 0xffffffff, /* src_mask */
1187 0xffffffff, /* dst_mask */
1188 TRUE), /* pcrel_offset */
1189
1190 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1191 0, /* rightshift */
1192 2, /* size (0 = byte, 1 = short, 2 = long) */
1193 32, /* bitsize */
1194 TRUE, /* pc_relative */
1195 0, /* bitpos */
1196 complain_overflow_dont,/* complain_on_overflow */
1197 bfd_elf_generic_reloc, /* special_function */
1198 "R_ARM_LDRS_SB_G0", /* name */
1199 FALSE, /* partial_inplace */
1200 0xffffffff, /* src_mask */
1201 0xffffffff, /* dst_mask */
1202 TRUE), /* pcrel_offset */
1203
1204 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1205 0, /* rightshift */
1206 2, /* size (0 = byte, 1 = short, 2 = long) */
1207 32, /* bitsize */
1208 TRUE, /* pc_relative */
1209 0, /* bitpos */
1210 complain_overflow_dont,/* complain_on_overflow */
1211 bfd_elf_generic_reloc, /* special_function */
1212 "R_ARM_LDRS_SB_G1", /* name */
1213 FALSE, /* partial_inplace */
1214 0xffffffff, /* src_mask */
1215 0xffffffff, /* dst_mask */
1216 TRUE), /* pcrel_offset */
1217
1218 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1219 0, /* rightshift */
1220 2, /* size (0 = byte, 1 = short, 2 = long) */
1221 32, /* bitsize */
1222 TRUE, /* pc_relative */
1223 0, /* bitpos */
1224 complain_overflow_dont,/* complain_on_overflow */
1225 bfd_elf_generic_reloc, /* special_function */
1226 "R_ARM_LDRS_SB_G2", /* name */
1227 FALSE, /* partial_inplace */
1228 0xffffffff, /* src_mask */
1229 0xffffffff, /* dst_mask */
1230 TRUE), /* pcrel_offset */
1231
1232 HOWTO (R_ARM_LDC_SB_G0, /* type */
1233 0, /* rightshift */
1234 2, /* size (0 = byte, 1 = short, 2 = long) */
1235 32, /* bitsize */
1236 TRUE, /* pc_relative */
1237 0, /* bitpos */
1238 complain_overflow_dont,/* complain_on_overflow */
1239 bfd_elf_generic_reloc, /* special_function */
1240 "R_ARM_LDC_SB_G0", /* name */
1241 FALSE, /* partial_inplace */
1242 0xffffffff, /* src_mask */
1243 0xffffffff, /* dst_mask */
1244 TRUE), /* pcrel_offset */
1245
1246 HOWTO (R_ARM_LDC_SB_G1, /* type */
1247 0, /* rightshift */
1248 2, /* size (0 = byte, 1 = short, 2 = long) */
1249 32, /* bitsize */
1250 TRUE, /* pc_relative */
1251 0, /* bitpos */
1252 complain_overflow_dont,/* complain_on_overflow */
1253 bfd_elf_generic_reloc, /* special_function */
1254 "R_ARM_LDC_SB_G1", /* name */
1255 FALSE, /* partial_inplace */
1256 0xffffffff, /* src_mask */
1257 0xffffffff, /* dst_mask */
1258 TRUE), /* pcrel_offset */
1259
1260 HOWTO (R_ARM_LDC_SB_G2, /* type */
1261 0, /* rightshift */
1262 2, /* size (0 = byte, 1 = short, 2 = long) */
1263 32, /* bitsize */
1264 TRUE, /* pc_relative */
1265 0, /* bitpos */
1266 complain_overflow_dont,/* complain_on_overflow */
1267 bfd_elf_generic_reloc, /* special_function */
1268 "R_ARM_LDC_SB_G2", /* name */
1269 FALSE, /* partial_inplace */
1270 0xffffffff, /* src_mask */
1271 0xffffffff, /* dst_mask */
1272 TRUE), /* pcrel_offset */
1273
1274 /* End of group relocations. */
1275
1276 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1277 0, /* rightshift */
1278 2, /* size (0 = byte, 1 = short, 2 = long) */
1279 16, /* bitsize */
1280 FALSE, /* pc_relative */
1281 0, /* bitpos */
1282 complain_overflow_dont,/* complain_on_overflow */
1283 bfd_elf_generic_reloc, /* special_function */
1284 "R_ARM_MOVW_BREL_NC", /* name */
1285 FALSE, /* partial_inplace */
1286 0x0000ffff, /* src_mask */
1287 0x0000ffff, /* dst_mask */
1288 FALSE), /* pcrel_offset */
1289
1290 HOWTO (R_ARM_MOVT_BREL, /* type */
1291 0, /* rightshift */
1292 2, /* size (0 = byte, 1 = short, 2 = long) */
1293 16, /* bitsize */
1294 FALSE, /* pc_relative */
1295 0, /* bitpos */
1296 complain_overflow_bitfield,/* complain_on_overflow */
1297 bfd_elf_generic_reloc, /* special_function */
1298 "R_ARM_MOVT_BREL", /* name */
1299 FALSE, /* partial_inplace */
1300 0x0000ffff, /* src_mask */
1301 0x0000ffff, /* dst_mask */
1302 FALSE), /* pcrel_offset */
1303
1304 HOWTO (R_ARM_MOVW_BREL, /* type */
1305 0, /* rightshift */
1306 2, /* size (0 = byte, 1 = short, 2 = long) */
1307 16, /* bitsize */
1308 FALSE, /* pc_relative */
1309 0, /* bitpos */
1310 complain_overflow_dont,/* complain_on_overflow */
1311 bfd_elf_generic_reloc, /* special_function */
1312 "R_ARM_MOVW_BREL", /* name */
1313 FALSE, /* partial_inplace */
1314 0x0000ffff, /* src_mask */
1315 0x0000ffff, /* dst_mask */
1316 FALSE), /* pcrel_offset */
1317
1318 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1319 0, /* rightshift */
1320 2, /* size (0 = byte, 1 = short, 2 = long) */
1321 16, /* bitsize */
1322 FALSE, /* pc_relative */
1323 0, /* bitpos */
1324 complain_overflow_dont,/* complain_on_overflow */
1325 bfd_elf_generic_reloc, /* special_function */
1326 "R_ARM_THM_MOVW_BREL_NC",/* name */
1327 FALSE, /* partial_inplace */
1328 0x040f70ff, /* src_mask */
1329 0x040f70ff, /* dst_mask */
1330 FALSE), /* pcrel_offset */
1331
1332 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1333 0, /* rightshift */
1334 2, /* size (0 = byte, 1 = short, 2 = long) */
1335 16, /* bitsize */
1336 FALSE, /* pc_relative */
1337 0, /* bitpos */
1338 complain_overflow_bitfield,/* complain_on_overflow */
1339 bfd_elf_generic_reloc, /* special_function */
1340 "R_ARM_THM_MOVT_BREL", /* name */
1341 FALSE, /* partial_inplace */
1342 0x040f70ff, /* src_mask */
1343 0x040f70ff, /* dst_mask */
1344 FALSE), /* pcrel_offset */
1345
1346 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1347 0, /* rightshift */
1348 2, /* size (0 = byte, 1 = short, 2 = long) */
1349 16, /* bitsize */
1350 FALSE, /* pc_relative */
1351 0, /* bitpos */
1352 complain_overflow_dont,/* complain_on_overflow */
1353 bfd_elf_generic_reloc, /* special_function */
1354 "R_ARM_THM_MOVW_BREL", /* name */
1355 FALSE, /* partial_inplace */
1356 0x040f70ff, /* src_mask */
1357 0x040f70ff, /* dst_mask */
1358 FALSE), /* pcrel_offset */
1359
1360 HOWTO (R_ARM_TLS_GOTDESC, /* type */
1361 0, /* rightshift */
1362 2, /* size (0 = byte, 1 = short, 2 = long) */
1363 32, /* bitsize */
1364 FALSE, /* pc_relative */
1365 0, /* bitpos */
1366 complain_overflow_bitfield,/* complain_on_overflow */
1367 NULL, /* special_function */
1368 "R_ARM_TLS_GOTDESC", /* name */
1369 TRUE, /* partial_inplace */
1370 0xffffffff, /* src_mask */
1371 0xffffffff, /* dst_mask */
1372 FALSE), /* pcrel_offset */
1373
1374 HOWTO (R_ARM_TLS_CALL, /* type */
1375 0, /* rightshift */
1376 2, /* size (0 = byte, 1 = short, 2 = long) */
1377 24, /* bitsize */
1378 FALSE, /* pc_relative */
1379 0, /* bitpos */
1380 complain_overflow_dont,/* complain_on_overflow */
1381 bfd_elf_generic_reloc, /* special_function */
1382 "R_ARM_TLS_CALL", /* name */
1383 FALSE, /* partial_inplace */
1384 0x00ffffff, /* src_mask */
1385 0x00ffffff, /* dst_mask */
1386 FALSE), /* pcrel_offset */
1387
1388 HOWTO (R_ARM_TLS_DESCSEQ, /* type */
1389 0, /* rightshift */
1390 2, /* size (0 = byte, 1 = short, 2 = long) */
1391 0, /* bitsize */
1392 FALSE, /* pc_relative */
1393 0, /* bitpos */
1394 complain_overflow_bitfield,/* complain_on_overflow */
1395 bfd_elf_generic_reloc, /* special_function */
1396 "R_ARM_TLS_DESCSEQ", /* name */
1397 FALSE, /* partial_inplace */
1398 0x00000000, /* src_mask */
1399 0x00000000, /* dst_mask */
1400 FALSE), /* pcrel_offset */
1401
1402 HOWTO (R_ARM_THM_TLS_CALL, /* type */
1403 0, /* rightshift */
1404 2, /* size (0 = byte, 1 = short, 2 = long) */
1405 24, /* bitsize */
1406 FALSE, /* pc_relative */
1407 0, /* bitpos */
1408 complain_overflow_dont,/* complain_on_overflow */
1409 bfd_elf_generic_reloc, /* special_function */
1410 "R_ARM_THM_TLS_CALL", /* name */
1411 FALSE, /* partial_inplace */
1412 0x07ff07ff, /* src_mask */
1413 0x07ff07ff, /* dst_mask */
1414 FALSE), /* pcrel_offset */
1415
1416 HOWTO (R_ARM_PLT32_ABS, /* type */
1417 0, /* rightshift */
1418 2, /* size (0 = byte, 1 = short, 2 = long) */
1419 32, /* bitsize */
1420 FALSE, /* pc_relative */
1421 0, /* bitpos */
1422 complain_overflow_dont,/* complain_on_overflow */
1423 bfd_elf_generic_reloc, /* special_function */
1424 "R_ARM_PLT32_ABS", /* name */
1425 FALSE, /* partial_inplace */
1426 0xffffffff, /* src_mask */
1427 0xffffffff, /* dst_mask */
1428 FALSE), /* pcrel_offset */
1429
1430 HOWTO (R_ARM_GOT_ABS, /* type */
1431 0, /* rightshift */
1432 2, /* size (0 = byte, 1 = short, 2 = long) */
1433 32, /* bitsize */
1434 FALSE, /* pc_relative */
1435 0, /* bitpos */
1436 complain_overflow_dont,/* complain_on_overflow */
1437 bfd_elf_generic_reloc, /* special_function */
1438 "R_ARM_GOT_ABS", /* name */
1439 FALSE, /* partial_inplace */
1440 0xffffffff, /* src_mask */
1441 0xffffffff, /* dst_mask */
1442 FALSE), /* pcrel_offset */
1443
1444 HOWTO (R_ARM_GOT_PREL, /* type */
1445 0, /* rightshift */
1446 2, /* size (0 = byte, 1 = short, 2 = long) */
1447 32, /* bitsize */
1448 TRUE, /* pc_relative */
1449 0, /* bitpos */
1450 complain_overflow_dont, /* complain_on_overflow */
1451 bfd_elf_generic_reloc, /* special_function */
1452 "R_ARM_GOT_PREL", /* name */
1453 FALSE, /* partial_inplace */
1454 0xffffffff, /* src_mask */
1455 0xffffffff, /* dst_mask */
1456 TRUE), /* pcrel_offset */
1457
1458 HOWTO (R_ARM_GOT_BREL12, /* type */
1459 0, /* rightshift */
1460 2, /* size (0 = byte, 1 = short, 2 = long) */
1461 12, /* bitsize */
1462 FALSE, /* pc_relative */
1463 0, /* bitpos */
1464 complain_overflow_bitfield,/* complain_on_overflow */
1465 bfd_elf_generic_reloc, /* special_function */
1466 "R_ARM_GOT_BREL12", /* name */
1467 FALSE, /* partial_inplace */
1468 0x00000fff, /* src_mask */
1469 0x00000fff, /* dst_mask */
1470 FALSE), /* pcrel_offset */
1471
1472 HOWTO (R_ARM_GOTOFF12, /* type */
1473 0, /* rightshift */
1474 2, /* size (0 = byte, 1 = short, 2 = long) */
1475 12, /* bitsize */
1476 FALSE, /* pc_relative */
1477 0, /* bitpos */
1478 complain_overflow_bitfield,/* complain_on_overflow */
1479 bfd_elf_generic_reloc, /* special_function */
1480 "R_ARM_GOTOFF12", /* name */
1481 FALSE, /* partial_inplace */
1482 0x00000fff, /* src_mask */
1483 0x00000fff, /* dst_mask */
1484 FALSE), /* pcrel_offset */
1485
1486 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1487
1488 /* GNU extension to record C++ vtable member usage */
1489 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1490 0, /* rightshift */
1491 2, /* size (0 = byte, 1 = short, 2 = long) */
1492 0, /* bitsize */
1493 FALSE, /* pc_relative */
1494 0, /* bitpos */
1495 complain_overflow_dont, /* complain_on_overflow */
1496 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1497 "R_ARM_GNU_VTENTRY", /* name */
1498 FALSE, /* partial_inplace */
1499 0, /* src_mask */
1500 0, /* dst_mask */
1501 FALSE), /* pcrel_offset */
1502
1503 /* GNU extension to record C++ vtable hierarchy */
1504 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1505 0, /* rightshift */
1506 2, /* size (0 = byte, 1 = short, 2 = long) */
1507 0, /* bitsize */
1508 FALSE, /* pc_relative */
1509 0, /* bitpos */
1510 complain_overflow_dont, /* complain_on_overflow */
1511 NULL, /* special_function */
1512 "R_ARM_GNU_VTINHERIT", /* name */
1513 FALSE, /* partial_inplace */
1514 0, /* src_mask */
1515 0, /* dst_mask */
1516 FALSE), /* pcrel_offset */
1517
1518 HOWTO (R_ARM_THM_JUMP11, /* type */
1519 1, /* rightshift */
1520 1, /* size (0 = byte, 1 = short, 2 = long) */
1521 11, /* bitsize */
1522 TRUE, /* pc_relative */
1523 0, /* bitpos */
1524 complain_overflow_signed, /* complain_on_overflow */
1525 bfd_elf_generic_reloc, /* special_function */
1526 "R_ARM_THM_JUMP11", /* name */
1527 FALSE, /* partial_inplace */
1528 0x000007ff, /* src_mask */
1529 0x000007ff, /* dst_mask */
1530 TRUE), /* pcrel_offset */
1531
1532 HOWTO (R_ARM_THM_JUMP8, /* type */
1533 1, /* rightshift */
1534 1, /* size (0 = byte, 1 = short, 2 = long) */
1535 8, /* bitsize */
1536 TRUE, /* pc_relative */
1537 0, /* bitpos */
1538 complain_overflow_signed, /* complain_on_overflow */
1539 bfd_elf_generic_reloc, /* special_function */
1540 "R_ARM_THM_JUMP8", /* name */
1541 FALSE, /* partial_inplace */
1542 0x000000ff, /* src_mask */
1543 0x000000ff, /* dst_mask */
1544 TRUE), /* pcrel_offset */
1545
1546 /* TLS relocations */
1547 HOWTO (R_ARM_TLS_GD32, /* type */
1548 0, /* rightshift */
1549 2, /* size (0 = byte, 1 = short, 2 = long) */
1550 32, /* bitsize */
1551 FALSE, /* pc_relative */
1552 0, /* bitpos */
1553 complain_overflow_bitfield,/* complain_on_overflow */
1554 NULL, /* special_function */
1555 "R_ARM_TLS_GD32", /* name */
1556 TRUE, /* partial_inplace */
1557 0xffffffff, /* src_mask */
1558 0xffffffff, /* dst_mask */
1559 FALSE), /* pcrel_offset */
1560
1561 HOWTO (R_ARM_TLS_LDM32, /* type */
1562 0, /* rightshift */
1563 2, /* size (0 = byte, 1 = short, 2 = long) */
1564 32, /* bitsize */
1565 FALSE, /* pc_relative */
1566 0, /* bitpos */
1567 complain_overflow_bitfield,/* complain_on_overflow */
1568 bfd_elf_generic_reloc, /* special_function */
1569 "R_ARM_TLS_LDM32", /* name */
1570 TRUE, /* partial_inplace */
1571 0xffffffff, /* src_mask */
1572 0xffffffff, /* dst_mask */
1573 FALSE), /* pcrel_offset */
1574
1575 HOWTO (R_ARM_TLS_LDO32, /* type */
1576 0, /* rightshift */
1577 2, /* size (0 = byte, 1 = short, 2 = long) */
1578 32, /* bitsize */
1579 FALSE, /* pc_relative */
1580 0, /* bitpos */
1581 complain_overflow_bitfield,/* complain_on_overflow */
1582 bfd_elf_generic_reloc, /* special_function */
1583 "R_ARM_TLS_LDO32", /* name */
1584 TRUE, /* partial_inplace */
1585 0xffffffff, /* src_mask */
1586 0xffffffff, /* dst_mask */
1587 FALSE), /* pcrel_offset */
1588
1589 HOWTO (R_ARM_TLS_IE32, /* type */
1590 0, /* rightshift */
1591 2, /* size (0 = byte, 1 = short, 2 = long) */
1592 32, /* bitsize */
1593 FALSE, /* pc_relative */
1594 0, /* bitpos */
1595 complain_overflow_bitfield,/* complain_on_overflow */
1596 NULL, /* special_function */
1597 "R_ARM_TLS_IE32", /* name */
1598 TRUE, /* partial_inplace */
1599 0xffffffff, /* src_mask */
1600 0xffffffff, /* dst_mask */
1601 FALSE), /* pcrel_offset */
1602
1603 HOWTO (R_ARM_TLS_LE32, /* type */
1604 0, /* rightshift */
1605 2, /* size (0 = byte, 1 = short, 2 = long) */
1606 32, /* bitsize */
1607 FALSE, /* pc_relative */
1608 0, /* bitpos */
1609 complain_overflow_bitfield,/* complain_on_overflow */
1610 NULL, /* special_function */
1611 "R_ARM_TLS_LE32", /* name */
1612 TRUE, /* partial_inplace */
1613 0xffffffff, /* src_mask */
1614 0xffffffff, /* dst_mask */
1615 FALSE), /* pcrel_offset */
1616
1617 HOWTO (R_ARM_TLS_LDO12, /* type */
1618 0, /* rightshift */
1619 2, /* size (0 = byte, 1 = short, 2 = long) */
1620 12, /* bitsize */
1621 FALSE, /* pc_relative */
1622 0, /* bitpos */
1623 complain_overflow_bitfield,/* complain_on_overflow */
1624 bfd_elf_generic_reloc, /* special_function */
1625 "R_ARM_TLS_LDO12", /* name */
1626 FALSE, /* partial_inplace */
1627 0x00000fff, /* src_mask */
1628 0x00000fff, /* dst_mask */
1629 FALSE), /* pcrel_offset */
1630
1631 HOWTO (R_ARM_TLS_LE12, /* type */
1632 0, /* rightshift */
1633 2, /* size (0 = byte, 1 = short, 2 = long) */
1634 12, /* bitsize */
1635 FALSE, /* pc_relative */
1636 0, /* bitpos */
1637 complain_overflow_bitfield,/* complain_on_overflow */
1638 bfd_elf_generic_reloc, /* special_function */
1639 "R_ARM_TLS_LE12", /* name */
1640 FALSE, /* partial_inplace */
1641 0x00000fff, /* src_mask */
1642 0x00000fff, /* dst_mask */
1643 FALSE), /* pcrel_offset */
1644
1645 HOWTO (R_ARM_TLS_IE12GP, /* type */
1646 0, /* rightshift */
1647 2, /* size (0 = byte, 1 = short, 2 = long) */
1648 12, /* bitsize */
1649 FALSE, /* pc_relative */
1650 0, /* bitpos */
1651 complain_overflow_bitfield,/* complain_on_overflow */
1652 bfd_elf_generic_reloc, /* special_function */
1653 "R_ARM_TLS_IE12GP", /* name */
1654 FALSE, /* partial_inplace */
1655 0x00000fff, /* src_mask */
1656 0x00000fff, /* dst_mask */
1657 FALSE), /* pcrel_offset */
1658
1659 /* 112-127 private relocations. */
1660 EMPTY_HOWTO (112),
1661 EMPTY_HOWTO (113),
1662 EMPTY_HOWTO (114),
1663 EMPTY_HOWTO (115),
1664 EMPTY_HOWTO (116),
1665 EMPTY_HOWTO (117),
1666 EMPTY_HOWTO (118),
1667 EMPTY_HOWTO (119),
1668 EMPTY_HOWTO (120),
1669 EMPTY_HOWTO (121),
1670 EMPTY_HOWTO (122),
1671 EMPTY_HOWTO (123),
1672 EMPTY_HOWTO (124),
1673 EMPTY_HOWTO (125),
1674 EMPTY_HOWTO (126),
1675 EMPTY_HOWTO (127),
1676
1677 /* R_ARM_ME_TOO, obsolete. */
1678 EMPTY_HOWTO (128),
1679
1680 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1681 0, /* rightshift */
1682 1, /* size (0 = byte, 1 = short, 2 = long) */
1683 0, /* bitsize */
1684 FALSE, /* pc_relative */
1685 0, /* bitpos */
1686 complain_overflow_bitfield,/* complain_on_overflow */
1687 bfd_elf_generic_reloc, /* special_function */
1688 "R_ARM_THM_TLS_DESCSEQ",/* name */
1689 FALSE, /* partial_inplace */
1690 0x00000000, /* src_mask */
1691 0x00000000, /* dst_mask */
1692 FALSE), /* pcrel_offset */
1693 EMPTY_HOWTO (130),
1694 EMPTY_HOWTO (131),
1695 HOWTO (R_ARM_THM_ALU_ABS_G0_NC,/* type. */
1696 0, /* rightshift. */
1697 1, /* size (0 = byte, 1 = short, 2 = long). */
1698 16, /* bitsize. */
1699 FALSE, /* pc_relative. */
1700 0, /* bitpos. */
1701 complain_overflow_bitfield,/* complain_on_overflow. */
1702 bfd_elf_generic_reloc, /* special_function. */
1703 "R_ARM_THM_ALU_ABS_G0_NC",/* name. */
1704 FALSE, /* partial_inplace. */
1705 0x00000000, /* src_mask. */
1706 0x00000000, /* dst_mask. */
1707 FALSE), /* pcrel_offset. */
1708 HOWTO (R_ARM_THM_ALU_ABS_G1_NC,/* type. */
1709 0, /* rightshift. */
1710 1, /* size (0 = byte, 1 = short, 2 = long). */
1711 16, /* bitsize. */
1712 FALSE, /* pc_relative. */
1713 0, /* bitpos. */
1714 complain_overflow_bitfield,/* complain_on_overflow. */
1715 bfd_elf_generic_reloc, /* special_function. */
1716 "R_ARM_THM_ALU_ABS_G1_NC",/* name. */
1717 FALSE, /* partial_inplace. */
1718 0x00000000, /* src_mask. */
1719 0x00000000, /* dst_mask. */
1720 FALSE), /* pcrel_offset. */
1721 HOWTO (R_ARM_THM_ALU_ABS_G2_NC,/* type. */
1722 0, /* rightshift. */
1723 1, /* size (0 = byte, 1 = short, 2 = long). */
1724 16, /* bitsize. */
1725 FALSE, /* pc_relative. */
1726 0, /* bitpos. */
1727 complain_overflow_bitfield,/* complain_on_overflow. */
1728 bfd_elf_generic_reloc, /* special_function. */
1729 "R_ARM_THM_ALU_ABS_G2_NC",/* name. */
1730 FALSE, /* partial_inplace. */
1731 0x00000000, /* src_mask. */
1732 0x00000000, /* dst_mask. */
1733 FALSE), /* pcrel_offset. */
1734 HOWTO (R_ARM_THM_ALU_ABS_G3_NC,/* type. */
1735 0, /* rightshift. */
1736 1, /* size (0 = byte, 1 = short, 2 = long). */
1737 16, /* bitsize. */
1738 FALSE, /* pc_relative. */
1739 0, /* bitpos. */
1740 complain_overflow_bitfield,/* complain_on_overflow. */
1741 bfd_elf_generic_reloc, /* special_function. */
1742 "R_ARM_THM_ALU_ABS_G3_NC",/* name. */
1743 FALSE, /* partial_inplace. */
1744 0x00000000, /* src_mask. */
1745 0x00000000, /* dst_mask. */
1746 FALSE), /* pcrel_offset. */
1747 /* Relocations for Armv8.1-M Mainline. */
1748 HOWTO (R_ARM_THM_BF16, /* type. */
1749 0, /* rightshift. */
1750 1, /* size (0 = byte, 1 = short, 2 = long). */
1751 16, /* bitsize. */
1752 TRUE, /* pc_relative. */
1753 0, /* bitpos. */
1754 complain_overflow_dont,/* do not complain_on_overflow. */
1755 bfd_elf_generic_reloc, /* special_function. */
1756 "R_ARM_THM_BF16", /* name. */
1757 FALSE, /* partial_inplace. */
1758 0x001f0ffe, /* src_mask. */
1759 0x001f0ffe, /* dst_mask. */
1760 TRUE), /* pcrel_offset. */
1761 HOWTO (R_ARM_THM_BF12, /* type. */
1762 0, /* rightshift. */
1763 1, /* size (0 = byte, 1 = short, 2 = long). */
1764 12, /* bitsize. */
1765 TRUE, /* pc_relative. */
1766 0, /* bitpos. */
1767 complain_overflow_dont,/* do not complain_on_overflow. */
1768 bfd_elf_generic_reloc, /* special_function. */
1769 "R_ARM_THM_BF12", /* name. */
1770 FALSE, /* partial_inplace. */
1771 0x00010ffe, /* src_mask. */
1772 0x00010ffe, /* dst_mask. */
1773 TRUE), /* pcrel_offset. */
1774 HOWTO (R_ARM_THM_BF18, /* type. */
1775 0, /* rightshift. */
1776 1, /* size (0 = byte, 1 = short, 2 = long). */
1777 18, /* bitsize. */
1778 TRUE, /* pc_relative. */
1779 0, /* bitpos. */
1780 complain_overflow_dont,/* do not complain_on_overflow. */
1781 bfd_elf_generic_reloc, /* special_function. */
1782 "R_ARM_THM_BF18", /* name. */
1783 FALSE, /* partial_inplace. */
1784 0x007f0ffe, /* src_mask. */
1785 0x007f0ffe, /* dst_mask. */
1786 TRUE), /* pcrel_offset. */
1787 };
1788
1789 /* 160 onwards: */
1790 static reloc_howto_type elf32_arm_howto_table_2[8] =
1791 {
1792 HOWTO (R_ARM_IRELATIVE, /* type */
1793 0, /* rightshift */
1794 2, /* size (0 = byte, 1 = short, 2 = long) */
1795 32, /* bitsize */
1796 FALSE, /* pc_relative */
1797 0, /* bitpos */
1798 complain_overflow_bitfield,/* complain_on_overflow */
1799 bfd_elf_generic_reloc, /* special_function */
1800 "R_ARM_IRELATIVE", /* name */
1801 TRUE, /* partial_inplace */
1802 0xffffffff, /* src_mask */
1803 0xffffffff, /* dst_mask */
1804 FALSE), /* pcrel_offset */
1805 HOWTO (R_ARM_GOTFUNCDESC, /* type */
1806 0, /* rightshift */
1807 2, /* size (0 = byte, 1 = short, 2 = long) */
1808 32, /* bitsize */
1809 FALSE, /* pc_relative */
1810 0, /* bitpos */
1811 complain_overflow_bitfield,/* complain_on_overflow */
1812 bfd_elf_generic_reloc, /* special_function */
1813 "R_ARM_GOTFUNCDESC", /* name */
1814 FALSE, /* partial_inplace */
1815 0, /* src_mask */
1816 0xffffffff, /* dst_mask */
1817 FALSE), /* pcrel_offset */
1818 HOWTO (R_ARM_GOTOFFFUNCDESC, /* type */
1819 0, /* rightshift */
1820 2, /* size (0 = byte, 1 = short, 2 = long) */
1821 32, /* bitsize */
1822 FALSE, /* pc_relative */
1823 0, /* bitpos */
1824 complain_overflow_bitfield,/* complain_on_overflow */
1825 bfd_elf_generic_reloc, /* special_function */
1826 "R_ARM_GOTOFFFUNCDESC",/* name */
1827 FALSE, /* partial_inplace */
1828 0, /* src_mask */
1829 0xffffffff, /* dst_mask */
1830 FALSE), /* pcrel_offset */
1831 HOWTO (R_ARM_FUNCDESC, /* type */
1832 0, /* rightshift */
1833 2, /* size (0 = byte, 1 = short, 2 = long) */
1834 32, /* bitsize */
1835 FALSE, /* pc_relative */
1836 0, /* bitpos */
1837 complain_overflow_bitfield,/* complain_on_overflow */
1838 bfd_elf_generic_reloc, /* special_function */
1839 "R_ARM_FUNCDESC", /* name */
1840 FALSE, /* partial_inplace */
1841 0, /* src_mask */
1842 0xffffffff, /* dst_mask */
1843 FALSE), /* pcrel_offset */
1844 HOWTO (R_ARM_FUNCDESC_VALUE, /* type */
1845 0, /* rightshift */
1846 2, /* size (0 = byte, 1 = short, 2 = long) */
1847 64, /* bitsize */
1848 FALSE, /* pc_relative */
1849 0, /* bitpos */
1850 complain_overflow_bitfield,/* complain_on_overflow */
1851 bfd_elf_generic_reloc, /* special_function */
1852 "R_ARM_FUNCDESC_VALUE",/* name */
1853 FALSE, /* partial_inplace */
1854 0, /* src_mask */
1855 0xffffffff, /* dst_mask */
1856 FALSE), /* pcrel_offset */
1857 HOWTO (R_ARM_TLS_GD32_FDPIC, /* type */
1858 0, /* rightshift */
1859 2, /* size (0 = byte, 1 = short, 2 = long) */
1860 32, /* bitsize */
1861 FALSE, /* pc_relative */
1862 0, /* bitpos */
1863 complain_overflow_bitfield,/* complain_on_overflow */
1864 bfd_elf_generic_reloc, /* special_function */
1865 "R_ARM_TLS_GD32_FDPIC",/* name */
1866 FALSE, /* partial_inplace */
1867 0, /* src_mask */
1868 0xffffffff, /* dst_mask */
1869 FALSE), /* pcrel_offset */
1870 HOWTO (R_ARM_TLS_LDM32_FDPIC, /* type */
1871 0, /* rightshift */
1872 2, /* size (0 = byte, 1 = short, 2 = long) */
1873 32, /* bitsize */
1874 FALSE, /* pc_relative */
1875 0, /* bitpos */
1876 complain_overflow_bitfield,/* complain_on_overflow */
1877 bfd_elf_generic_reloc, /* special_function */
1878 "R_ARM_TLS_LDM32_FDPIC",/* name */
1879 FALSE, /* partial_inplace */
1880 0, /* src_mask */
1881 0xffffffff, /* dst_mask */
1882 FALSE), /* pcrel_offset */
1883 HOWTO (R_ARM_TLS_IE32_FDPIC, /* type */
1884 0, /* rightshift */
1885 2, /* size (0 = byte, 1 = short, 2 = long) */
1886 32, /* bitsize */
1887 FALSE, /* pc_relative */
1888 0, /* bitpos */
1889 complain_overflow_bitfield,/* complain_on_overflow */
1890 bfd_elf_generic_reloc, /* special_function */
1891 "R_ARM_TLS_IE32_FDPIC",/* name */
1892 FALSE, /* partial_inplace */
1893 0, /* src_mask */
1894 0xffffffff, /* dst_mask */
1895 FALSE), /* pcrel_offset */
1896 };
1897
1898 /* 249-255 extended, currently unused, relocations: */
1899 static reloc_howto_type elf32_arm_howto_table_3[4] =
1900 {
1901 HOWTO (R_ARM_RREL32, /* type */
1902 0, /* rightshift */
1903 0, /* size (0 = byte, 1 = short, 2 = long) */
1904 0, /* bitsize */
1905 FALSE, /* pc_relative */
1906 0, /* bitpos */
1907 complain_overflow_dont,/* complain_on_overflow */
1908 bfd_elf_generic_reloc, /* special_function */
1909 "R_ARM_RREL32", /* name */
1910 FALSE, /* partial_inplace */
1911 0, /* src_mask */
1912 0, /* dst_mask */
1913 FALSE), /* pcrel_offset */
1914
1915 HOWTO (R_ARM_RABS32, /* type */
1916 0, /* rightshift */
1917 0, /* size (0 = byte, 1 = short, 2 = long) */
1918 0, /* bitsize */
1919 FALSE, /* pc_relative */
1920 0, /* bitpos */
1921 complain_overflow_dont,/* complain_on_overflow */
1922 bfd_elf_generic_reloc, /* special_function */
1923 "R_ARM_RABS32", /* name */
1924 FALSE, /* partial_inplace */
1925 0, /* src_mask */
1926 0, /* dst_mask */
1927 FALSE), /* pcrel_offset */
1928
1929 HOWTO (R_ARM_RPC24, /* type */
1930 0, /* rightshift */
1931 0, /* size (0 = byte, 1 = short, 2 = long) */
1932 0, /* bitsize */
1933 FALSE, /* pc_relative */
1934 0, /* bitpos */
1935 complain_overflow_dont,/* complain_on_overflow */
1936 bfd_elf_generic_reloc, /* special_function */
1937 "R_ARM_RPC24", /* name */
1938 FALSE, /* partial_inplace */
1939 0, /* src_mask */
1940 0, /* dst_mask */
1941 FALSE), /* pcrel_offset */
1942
1943 HOWTO (R_ARM_RBASE, /* type */
1944 0, /* rightshift */
1945 0, /* size (0 = byte, 1 = short, 2 = long) */
1946 0, /* bitsize */
1947 FALSE, /* pc_relative */
1948 0, /* bitpos */
1949 complain_overflow_dont,/* complain_on_overflow */
1950 bfd_elf_generic_reloc, /* special_function */
1951 "R_ARM_RBASE", /* name */
1952 FALSE, /* partial_inplace */
1953 0, /* src_mask */
1954 0, /* dst_mask */
1955 FALSE) /* pcrel_offset */
1956 };
1957
1958 static reloc_howto_type *
1959 elf32_arm_howto_from_type (unsigned int r_type)
1960 {
1961 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1962 return &elf32_arm_howto_table_1[r_type];
1963
1964 if (r_type >= R_ARM_IRELATIVE
1965 && r_type < R_ARM_IRELATIVE + ARRAY_SIZE (elf32_arm_howto_table_2))
1966 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1967
1968 if (r_type >= R_ARM_RREL32
1969 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1970 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
1971
1972 return NULL;
1973 }
1974
1975 static bfd_boolean
1976 elf32_arm_info_to_howto (bfd * abfd, arelent * bfd_reloc,
1977 Elf_Internal_Rela * elf_reloc)
1978 {
1979 unsigned int r_type;
1980
1981 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1982 if ((bfd_reloc->howto = elf32_arm_howto_from_type (r_type)) == NULL)
1983 {
1984 /* xgettext:c-format */
1985 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
1986 abfd, r_type);
1987 bfd_set_error (bfd_error_bad_value);
1988 return FALSE;
1989 }
1990 return TRUE;
1991 }
1992
1993 struct elf32_arm_reloc_map
1994 {
1995 bfd_reloc_code_real_type bfd_reloc_val;
1996 unsigned char elf_reloc_val;
1997 };
1998
1999 /* All entries in this list must also be present in elf32_arm_howto_table. */
2000 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
2001 {
2002 {BFD_RELOC_NONE, R_ARM_NONE},
2003 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
2004 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
2005 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
2006 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
2007 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
2008 {BFD_RELOC_32, R_ARM_ABS32},
2009 {BFD_RELOC_32_PCREL, R_ARM_REL32},
2010 {BFD_RELOC_8, R_ARM_ABS8},
2011 {BFD_RELOC_16, R_ARM_ABS16},
2012 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
2013 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
2014 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
2015 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
2016 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
2017 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
2018 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
2019 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
2020 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
2021 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
2022 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
2023 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
2024 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
2025 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
2026 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
2027 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
2028 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
2029 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
2030 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
2031 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
2032 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
2033 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
2034 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC},
2035 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL},
2036 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL},
2037 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ},
2038 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ},
2039 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC},
2040 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
2041 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
2042 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
2043 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
2044 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
2045 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
2046 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
2047 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
2048 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE},
2049 {BFD_RELOC_ARM_GOTFUNCDESC, R_ARM_GOTFUNCDESC},
2050 {BFD_RELOC_ARM_GOTOFFFUNCDESC, R_ARM_GOTOFFFUNCDESC},
2051 {BFD_RELOC_ARM_FUNCDESC, R_ARM_FUNCDESC},
2052 {BFD_RELOC_ARM_FUNCDESC_VALUE, R_ARM_FUNCDESC_VALUE},
2053 {BFD_RELOC_ARM_TLS_GD32_FDPIC, R_ARM_TLS_GD32_FDPIC},
2054 {BFD_RELOC_ARM_TLS_LDM32_FDPIC, R_ARM_TLS_LDM32_FDPIC},
2055 {BFD_RELOC_ARM_TLS_IE32_FDPIC, R_ARM_TLS_IE32_FDPIC},
2056 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
2057 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
2058 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
2059 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
2060 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
2061 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
2062 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
2063 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
2064 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
2065 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
2066 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
2067 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
2068 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
2069 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
2070 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
2071 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
2072 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
2073 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
2074 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
2075 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
2076 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
2077 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
2078 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
2079 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
2080 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
2081 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
2082 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
2083 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
2084 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
2085 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
2086 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
2087 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
2088 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
2089 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
2090 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
2091 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
2092 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
2093 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
2094 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX},
2095 {BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC, R_ARM_THM_ALU_ABS_G3_NC},
2096 {BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC, R_ARM_THM_ALU_ABS_G2_NC},
2097 {BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC, R_ARM_THM_ALU_ABS_G1_NC},
2098 {BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC, R_ARM_THM_ALU_ABS_G0_NC},
2099 {BFD_RELOC_ARM_THUMB_BF17, R_ARM_THM_BF16},
2100 {BFD_RELOC_ARM_THUMB_BF13, R_ARM_THM_BF12},
2101 {BFD_RELOC_ARM_THUMB_BF19, R_ARM_THM_BF18}
2102 };
2103
2104 static reloc_howto_type *
2105 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2106 bfd_reloc_code_real_type code)
2107 {
2108 unsigned int i;
2109
2110 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
2111 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
2112 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
2113
2114 return NULL;
2115 }
2116
2117 static reloc_howto_type *
2118 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2119 const char *r_name)
2120 {
2121 unsigned int i;
2122
2123 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
2124 if (elf32_arm_howto_table_1[i].name != NULL
2125 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
2126 return &elf32_arm_howto_table_1[i];
2127
2128 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
2129 if (elf32_arm_howto_table_2[i].name != NULL
2130 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
2131 return &elf32_arm_howto_table_2[i];
2132
2133 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
2134 if (elf32_arm_howto_table_3[i].name != NULL
2135 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
2136 return &elf32_arm_howto_table_3[i];
2137
2138 return NULL;
2139 }
2140
2141 /* Support for core dump NOTE sections. */
2142
2143 static bfd_boolean
2144 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2145 {
2146 int offset;
2147 size_t size;
2148
2149 switch (note->descsz)
2150 {
2151 default:
2152 return FALSE;
2153
2154 case 148: /* Linux/ARM 32-bit. */
2155 /* pr_cursig */
2156 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2157
2158 /* pr_pid */
2159 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
2160
2161 /* pr_reg */
2162 offset = 72;
2163 size = 72;
2164
2165 break;
2166 }
2167
2168 /* Make a ".reg/999" section. */
2169 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2170 size, note->descpos + offset);
2171 }
2172
2173 static bfd_boolean
2174 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2175 {
2176 switch (note->descsz)
2177 {
2178 default:
2179 return FALSE;
2180
2181 case 124: /* Linux/ARM elf_prpsinfo. */
2182 elf_tdata (abfd)->core->pid
2183 = bfd_get_32 (abfd, note->descdata + 12);
2184 elf_tdata (abfd)->core->program
2185 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
2186 elf_tdata (abfd)->core->command
2187 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
2188 }
2189
2190 /* Note that for some reason, a spurious space is tacked
2191 onto the end of the args in some (at least one anyway)
2192 implementations, so strip it off if it exists. */
2193 {
2194 char *command = elf_tdata (abfd)->core->command;
2195 int n = strlen (command);
2196
2197 if (0 < n && command[n - 1] == ' ')
2198 command[n - 1] = '\0';
2199 }
2200
2201 return TRUE;
2202 }
2203
2204 static char *
2205 elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz,
2206 int note_type, ...)
2207 {
2208 switch (note_type)
2209 {
2210 default:
2211 return NULL;
2212
2213 case NT_PRPSINFO:
2214 {
2215 char data[124] ATTRIBUTE_NONSTRING;
2216 va_list ap;
2217
2218 va_start (ap, note_type);
2219 memset (data, 0, sizeof (data));
2220 strncpy (data + 28, va_arg (ap, const char *), 16);
2221 #if GCC_VERSION == 8000 || GCC_VERSION == 8001
2222 DIAGNOSTIC_PUSH;
2223 /* GCC 8.0 and 8.1 warn about 80 equals destination size with
2224 -Wstringop-truncation:
2225 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85643
2226 */
2227 DIAGNOSTIC_IGNORE_STRINGOP_TRUNCATION;
2228 #endif
2229 strncpy (data + 44, va_arg (ap, const char *), 80);
2230 #if GCC_VERSION == 8000 || GCC_VERSION == 8001
2231 DIAGNOSTIC_POP;
2232 #endif
2233 va_end (ap);
2234
2235 return elfcore_write_note (abfd, buf, bufsiz,
2236 "CORE", note_type, data, sizeof (data));
2237 }
2238
2239 case NT_PRSTATUS:
2240 {
2241 char data[148];
2242 va_list ap;
2243 long pid;
2244 int cursig;
2245 const void *greg;
2246
2247 va_start (ap, note_type);
2248 memset (data, 0, sizeof (data));
2249 pid = va_arg (ap, long);
2250 bfd_put_32 (abfd, pid, data + 24);
2251 cursig = va_arg (ap, int);
2252 bfd_put_16 (abfd, cursig, data + 12);
2253 greg = va_arg (ap, const void *);
2254 memcpy (data + 72, greg, 72);
2255 va_end (ap);
2256
2257 return elfcore_write_note (abfd, buf, bufsiz,
2258 "CORE", note_type, data, sizeof (data));
2259 }
2260 }
2261 }
2262
2263 #define TARGET_LITTLE_SYM arm_elf32_le_vec
2264 #define TARGET_LITTLE_NAME "elf32-littlearm"
2265 #define TARGET_BIG_SYM arm_elf32_be_vec
2266 #define TARGET_BIG_NAME "elf32-bigarm"
2267
2268 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
2269 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
2270 #define elf_backend_write_core_note elf32_arm_nabi_write_core_note
2271
2272 typedef unsigned long int insn32;
2273 typedef unsigned short int insn16;
2274
2275 /* In lieu of proper flags, assume all EABIv4 or later objects are
2276 interworkable. */
2277 #define INTERWORK_FLAG(abfd) \
2278 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
2279 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2280 || ((abfd)->flags & BFD_LINKER_CREATED))
2281
2282 /* The linker script knows the section names for placement.
2283 The entry_names are used to do simple name mangling on the stubs.
2284 Given a function name, and its type, the stub can be found. The
2285 name can be changed. The only requirement is the %s be present. */
2286 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2287 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2288
2289 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2290 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2291
2292 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2293 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2294
2295 #define STM32L4XX_ERRATUM_VENEER_SECTION_NAME ".text.stm32l4xx_veneer"
2296 #define STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "__stm32l4xx_veneer_%x"
2297
2298 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2299 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2300
2301 #define STUB_ENTRY_NAME "__%s_veneer"
2302
2303 #define CMSE_PREFIX "__acle_se_"
2304
2305 #define CMSE_STUB_NAME ".gnu.sgstubs"
2306
2307 /* The name of the dynamic interpreter. This is put in the .interp
2308 section. */
2309 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2310
2311 /* FDPIC default stack size. */
2312 #define DEFAULT_STACK_SIZE 0x8000
2313
2314 static const unsigned long tls_trampoline [] =
2315 {
2316 0xe08e0000, /* add r0, lr, r0 */
2317 0xe5901004, /* ldr r1, [r0,#4] */
2318 0xe12fff11, /* bx r1 */
2319 };
2320
2321 static const unsigned long dl_tlsdesc_lazy_trampoline [] =
2322 {
2323 0xe52d2004, /* push {r2} */
2324 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2325 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2326 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2327 0xe081100f, /* 2: add r1, pc */
2328 0xe12fff12, /* bx r2 */
2329 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
2330 + dl_tlsdesc_lazy_resolver(GOT) */
2331 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2332 };
2333
2334 /* NOTE: [Thumb nop sequence]
2335 When adding code that transitions from Thumb to Arm the instruction that
2336 should be used for the alignment padding should be 0xe7fd (b .-2) instead of
2337 a nop for performance reasons. */
2338
2339 /* ARM FDPIC PLT entry. */
2340 /* The last 5 words contain PLT lazy fragment code and data. */
2341 static const bfd_vma elf32_arm_fdpic_plt_entry [] =
2342 {
2343 0xe59fc008, /* ldr r12, .L1 */
2344 0xe08cc009, /* add r12, r12, r9 */
2345 0xe59c9004, /* ldr r9, [r12, #4] */
2346 0xe59cf000, /* ldr pc, [r12] */
2347 0x00000000, /* L1. .word foo(GOTOFFFUNCDESC) */
2348 0x00000000, /* L1. .word foo(funcdesc_value_reloc_offset) */
2349 0xe51fc00c, /* ldr r12, [pc, #-12] */
2350 0xe92d1000, /* push {r12} */
2351 0xe599c004, /* ldr r12, [r9, #4] */
2352 0xe599f000, /* ldr pc, [r9] */
2353 };
2354
2355 /* Thumb FDPIC PLT entry. */
2356 /* The last 5 words contain PLT lazy fragment code and data. */
2357 static const bfd_vma elf32_arm_fdpic_thumb_plt_entry [] =
2358 {
2359 0xc00cf8df, /* ldr.w r12, .L1 */
2360 0x0c09eb0c, /* add.w r12, r12, r9 */
2361 0x9004f8dc, /* ldr.w r9, [r12, #4] */
2362 0xf000f8dc, /* ldr.w pc, [r12] */
2363 0x00000000, /* .L1 .word foo(GOTOFFFUNCDESC) */
2364 0x00000000, /* .L2 .word foo(funcdesc_value_reloc_offset) */
2365 0xc008f85f, /* ldr.w r12, .L2 */
2366 0xcd04f84d, /* push {r12} */
2367 0xc004f8d9, /* ldr.w r12, [r9, #4] */
2368 0xf000f8d9, /* ldr.w pc, [r9] */
2369 };
2370
2371 #ifdef FOUR_WORD_PLT
2372
2373 /* The first entry in a procedure linkage table looks like
2374 this. It is set up so that any shared library function that is
2375 called before the relocation has been set up calls the dynamic
2376 linker first. */
2377 static const bfd_vma elf32_arm_plt0_entry [] =
2378 {
2379 0xe52de004, /* str lr, [sp, #-4]! */
2380 0xe59fe010, /* ldr lr, [pc, #16] */
2381 0xe08fe00e, /* add lr, pc, lr */
2382 0xe5bef008, /* ldr pc, [lr, #8]! */
2383 };
2384
2385 /* Subsequent entries in a procedure linkage table look like
2386 this. */
2387 static const bfd_vma elf32_arm_plt_entry [] =
2388 {
2389 0xe28fc600, /* add ip, pc, #NN */
2390 0xe28cca00, /* add ip, ip, #NN */
2391 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2392 0x00000000, /* unused */
2393 };
2394
2395 #else /* not FOUR_WORD_PLT */
2396
2397 /* The first entry in a procedure linkage table looks like
2398 this. It is set up so that any shared library function that is
2399 called before the relocation has been set up calls the dynamic
2400 linker first. */
2401 static const bfd_vma elf32_arm_plt0_entry [] =
2402 {
2403 0xe52de004, /* str lr, [sp, #-4]! */
2404 0xe59fe004, /* ldr lr, [pc, #4] */
2405 0xe08fe00e, /* add lr, pc, lr */
2406 0xe5bef008, /* ldr pc, [lr, #8]! */
2407 0x00000000, /* &GOT[0] - . */
2408 };
2409
2410 /* By default subsequent entries in a procedure linkage table look like
2411 this. Offsets that don't fit into 28 bits will cause link error. */
2412 static const bfd_vma elf32_arm_plt_entry_short [] =
2413 {
2414 0xe28fc600, /* add ip, pc, #0xNN00000 */
2415 0xe28cca00, /* add ip, ip, #0xNN000 */
2416 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2417 };
2418
2419 /* When explicitly asked, we'll use this "long" entry format
2420 which can cope with arbitrary displacements. */
2421 static const bfd_vma elf32_arm_plt_entry_long [] =
2422 {
2423 0xe28fc200, /* add ip, pc, #0xN0000000 */
2424 0xe28cc600, /* add ip, ip, #0xNN00000 */
2425 0xe28cca00, /* add ip, ip, #0xNN000 */
2426 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2427 };
2428
2429 static bfd_boolean elf32_arm_use_long_plt_entry = FALSE;
2430
2431 #endif /* not FOUR_WORD_PLT */
2432
2433 /* The first entry in a procedure linkage table looks like this.
2434 It is set up so that any shared library function that is called before the
2435 relocation has been set up calls the dynamic linker first. */
2436 static const bfd_vma elf32_thumb2_plt0_entry [] =
2437 {
2438 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2439 an instruction maybe encoded to one or two array elements. */
2440 0xf8dfb500, /* push {lr} */
2441 0x44fee008, /* ldr.w lr, [pc, #8] */
2442 /* add lr, pc */
2443 0xff08f85e, /* ldr.w pc, [lr, #8]! */
2444 0x00000000, /* &GOT[0] - . */
2445 };
2446
2447 /* Subsequent entries in a procedure linkage table for thumb only target
2448 look like this. */
2449 static const bfd_vma elf32_thumb2_plt_entry [] =
2450 {
2451 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2452 an instruction maybe encoded to one or two array elements. */
2453 0x0c00f240, /* movw ip, #0xNNNN */
2454 0x0c00f2c0, /* movt ip, #0xNNNN */
2455 0xf8dc44fc, /* add ip, pc */
2456 0xe7fcf000 /* ldr.w pc, [ip] */
2457 /* b .-4 */
2458 };
2459
2460 /* The format of the first entry in the procedure linkage table
2461 for a VxWorks executable. */
2462 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
2463 {
2464 0xe52dc008, /* str ip,[sp,#-8]! */
2465 0xe59fc000, /* ldr ip,[pc] */
2466 0xe59cf008, /* ldr pc,[ip,#8] */
2467 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
2468 };
2469
2470 /* The format of subsequent entries in a VxWorks executable. */
2471 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
2472 {
2473 0xe59fc000, /* ldr ip,[pc] */
2474 0xe59cf000, /* ldr pc,[ip] */
2475 0x00000000, /* .long @got */
2476 0xe59fc000, /* ldr ip,[pc] */
2477 0xea000000, /* b _PLT */
2478 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2479 };
2480
2481 /* The format of entries in a VxWorks shared library. */
2482 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
2483 {
2484 0xe59fc000, /* ldr ip,[pc] */
2485 0xe79cf009, /* ldr pc,[ip,r9] */
2486 0x00000000, /* .long @got */
2487 0xe59fc000, /* ldr ip,[pc] */
2488 0xe599f008, /* ldr pc,[r9,#8] */
2489 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2490 };
2491
2492 /* An initial stub used if the PLT entry is referenced from Thumb code. */
2493 #define PLT_THUMB_STUB_SIZE 4
2494 static const bfd_vma elf32_arm_plt_thumb_stub [] =
2495 {
2496 0x4778, /* bx pc */
2497 0xe7fd /* b .-2 */
2498 };
2499
2500 /* The entries in a PLT when using a DLL-based target with multiple
2501 address spaces. */
2502 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2503 {
2504 0xe51ff004, /* ldr pc, [pc, #-4] */
2505 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2506 };
2507
2508 /* The first entry in a procedure linkage table looks like
2509 this. It is set up so that any shared library function that is
2510 called before the relocation has been set up calls the dynamic
2511 linker first. */
2512 static const bfd_vma elf32_arm_nacl_plt0_entry [] =
2513 {
2514 /* First bundle: */
2515 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */
2516 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */
2517 0xe08cc00f, /* add ip, ip, pc */
2518 0xe52dc008, /* str ip, [sp, #-8]! */
2519 /* Second bundle: */
2520 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2521 0xe59cc000, /* ldr ip, [ip] */
2522 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2523 0xe12fff1c, /* bx ip */
2524 /* Third bundle: */
2525 0xe320f000, /* nop */
2526 0xe320f000, /* nop */
2527 0xe320f000, /* nop */
2528 /* .Lplt_tail: */
2529 0xe50dc004, /* str ip, [sp, #-4] */
2530 /* Fourth bundle: */
2531 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2532 0xe59cc000, /* ldr ip, [ip] */
2533 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2534 0xe12fff1c, /* bx ip */
2535 };
2536 #define ARM_NACL_PLT_TAIL_OFFSET (11 * 4)
2537
2538 /* Subsequent entries in a procedure linkage table look like this. */
2539 static const bfd_vma elf32_arm_nacl_plt_entry [] =
2540 {
2541 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */
2542 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */
2543 0xe08cc00f, /* add ip, ip, pc */
2544 0xea000000, /* b .Lplt_tail */
2545 };
2546
2547 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2548 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2549 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2550 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2551 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2552 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2553 #define THM2_MAX_FWD_COND_BRANCH_OFFSET (((1 << 20) -2) + 4)
2554 #define THM2_MAX_BWD_COND_BRANCH_OFFSET (-(1 << 20) + 4)
2555
2556 enum stub_insn_type
2557 {
2558 THUMB16_TYPE = 1,
2559 THUMB32_TYPE,
2560 ARM_TYPE,
2561 DATA_TYPE
2562 };
2563
2564 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2565 /* A bit of a hack. A Thumb conditional branch, in which the proper condition
2566 is inserted in arm_build_one_stub(). */
2567 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2568 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2569 #define THUMB32_MOVT(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVT_ABS, 0}
2570 #define THUMB32_MOVW(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVW_ABS_NC, 0}
2571 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2572 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2573 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2574 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2575
2576 typedef struct
2577 {
2578 bfd_vma data;
2579 enum stub_insn_type type;
2580 unsigned int r_type;
2581 int reloc_addend;
2582 } insn_sequence;
2583
2584 /* See note [Thumb nop sequence] when adding a veneer. */
2585
2586 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2587 to reach the stub if necessary. */
2588 static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2589 {
2590 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2591 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2592 };
2593
2594 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2595 available. */
2596 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2597 {
2598 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2599 ARM_INSN (0xe12fff1c), /* bx ip */
2600 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2601 };
2602
2603 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2604 static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2605 {
2606 THUMB16_INSN (0xb401), /* push {r0} */
2607 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2608 THUMB16_INSN (0x4684), /* mov ip, r0 */
2609 THUMB16_INSN (0xbc01), /* pop {r0} */
2610 THUMB16_INSN (0x4760), /* bx ip */
2611 THUMB16_INSN (0xbf00), /* nop */
2612 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2613 };
2614
2615 /* Thumb -> Thumb long branch stub in thumb2 encoding. Used on armv7. */
2616 static const insn_sequence elf32_arm_stub_long_branch_thumb2_only[] =
2617 {
2618 THUMB32_INSN (0xf85ff000), /* ldr.w pc, [pc, #-0] */
2619 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(x) */
2620 };
2621
2622 /* Thumb -> Thumb long branch stub. Used for PureCode sections on Thumb2
2623 M-profile architectures. */
2624 static const insn_sequence elf32_arm_stub_long_branch_thumb2_only_pure[] =
2625 {
2626 THUMB32_MOVW (0xf2400c00), /* mov.w ip, R_ARM_MOVW_ABS_NC */
2627 THUMB32_MOVT (0xf2c00c00), /* movt ip, R_ARM_MOVT_ABS << 16 */
2628 THUMB16_INSN (0x4760), /* bx ip */
2629 };
2630
2631 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2632 allowed. */
2633 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2634 {
2635 THUMB16_INSN (0x4778), /* bx pc */
2636 THUMB16_INSN (0xe7fd), /* b .-2 */
2637 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2638 ARM_INSN (0xe12fff1c), /* bx ip */
2639 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2640 };
2641
2642 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2643 available. */
2644 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2645 {
2646 THUMB16_INSN (0x4778), /* bx pc */
2647 THUMB16_INSN (0xe7fd), /* b .-2 */
2648 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2649 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2650 };
2651
2652 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2653 one, when the destination is close enough. */
2654 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2655 {
2656 THUMB16_INSN (0x4778), /* bx pc */
2657 THUMB16_INSN (0xe7fd), /* b .-2 */
2658 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */
2659 };
2660
2661 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2662 blx to reach the stub if necessary. */
2663 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2664 {
2665 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */
2666 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */
2667 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2668 };
2669
2670 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2671 blx to reach the stub if necessary. We can not add into pc;
2672 it is not guaranteed to mode switch (different in ARMv6 and
2673 ARMv7). */
2674 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2675 {
2676 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2677 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2678 ARM_INSN (0xe12fff1c), /* bx ip */
2679 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2680 };
2681
2682 /* V4T ARM -> ARM long branch stub, PIC. */
2683 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2684 {
2685 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2686 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2687 ARM_INSN (0xe12fff1c), /* bx ip */
2688 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2689 };
2690
2691 /* V4T Thumb -> ARM long branch stub, PIC. */
2692 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2693 {
2694 THUMB16_INSN (0x4778), /* bx pc */
2695 THUMB16_INSN (0xe7fd), /* b .-2 */
2696 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2697 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */
2698 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2699 };
2700
2701 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2702 architectures. */
2703 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2704 {
2705 THUMB16_INSN (0xb401), /* push {r0} */
2706 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2707 THUMB16_INSN (0x46fc), /* mov ip, pc */
2708 THUMB16_INSN (0x4484), /* add ip, r0 */
2709 THUMB16_INSN (0xbc01), /* pop {r0} */
2710 THUMB16_INSN (0x4760), /* bx ip */
2711 DATA_WORD (0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2712 };
2713
2714 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2715 allowed. */
2716 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2717 {
2718 THUMB16_INSN (0x4778), /* bx pc */
2719 THUMB16_INSN (0xe7fd), /* b .-2 */
2720 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2721 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2722 ARM_INSN (0xe12fff1c), /* bx ip */
2723 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2724 };
2725
2726 /* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2727 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2728 static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2729 {
2730 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */
2731 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */
2732 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2733 };
2734
2735 /* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2736 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2737 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2738 {
2739 THUMB16_INSN (0x4778), /* bx pc */
2740 THUMB16_INSN (0xe7fd), /* b .-2 */
2741 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */
2742 ARM_INSN (0xe081f00f), /* add pc, r1, pc */
2743 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2744 };
2745
2746 /* NaCl ARM -> ARM long branch stub. */
2747 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl[] =
2748 {
2749 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2750 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2751 ARM_INSN (0xe12fff1c), /* bx ip */
2752 ARM_INSN (0xe320f000), /* nop */
2753 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2754 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2755 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2756 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2757 };
2758
2759 /* NaCl ARM -> ARM long branch stub, PIC. */
2760 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic[] =
2761 {
2762 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2763 ARM_INSN (0xe08cc00f), /* add ip, ip, pc */
2764 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2765 ARM_INSN (0xe12fff1c), /* bx ip */
2766 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2767 DATA_WORD (0, R_ARM_REL32, 8), /* dcd R_ARM_REL32(X+8) */
2768 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2769 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2770 };
2771
2772 /* Stub used for transition to secure state (aka SG veneer). */
2773 static const insn_sequence elf32_arm_stub_cmse_branch_thumb_only[] =
2774 {
2775 THUMB32_INSN (0xe97fe97f), /* sg. */
2776 THUMB32_B_INSN (0xf000b800, -4), /* b.w original_branch_dest. */
2777 };
2778
2779
2780 /* Cortex-A8 erratum-workaround stubs. */
2781
2782 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2783 can't use a conditional branch to reach this stub). */
2784
2785 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2786 {
2787 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */
2788 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */
2789 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */
2790 };
2791
2792 /* Stub used for b.w and bl.w instructions. */
2793
2794 static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2795 {
2796 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2797 };
2798
2799 static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2800 {
2801 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2802 };
2803
2804 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2805 instruction (which switches to ARM mode) to point to this stub. Jump to the
2806 real destination using an ARM-mode branch. */
2807
2808 static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2809 {
2810 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */
2811 };
2812
2813 /* For each section group there can be a specially created linker section
2814 to hold the stubs for that group. The name of the stub section is based
2815 upon the name of another section within that group with the suffix below
2816 applied.
2817
2818 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2819 create what appeared to be a linker stub section when it actually
2820 contained user code/data. For example, consider this fragment:
2821
2822 const char * stubborn_problems[] = { "np" };
2823
2824 If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2825 section called:
2826
2827 .data.rel.local.stubborn_problems
2828
2829 This then causes problems in arm32_arm_build_stubs() as it triggers:
2830
2831 // Ignore non-stub sections.
2832 if (!strstr (stub_sec->name, STUB_SUFFIX))
2833 continue;
2834
2835 And so the section would be ignored instead of being processed. Hence
2836 the change in definition of STUB_SUFFIX to a name that cannot be a valid
2837 C identifier. */
2838 #define STUB_SUFFIX ".__stub"
2839
2840 /* One entry per long/short branch stub defined above. */
2841 #define DEF_STUBS \
2842 DEF_STUB(long_branch_any_any) \
2843 DEF_STUB(long_branch_v4t_arm_thumb) \
2844 DEF_STUB(long_branch_thumb_only) \
2845 DEF_STUB(long_branch_v4t_thumb_thumb) \
2846 DEF_STUB(long_branch_v4t_thumb_arm) \
2847 DEF_STUB(short_branch_v4t_thumb_arm) \
2848 DEF_STUB(long_branch_any_arm_pic) \
2849 DEF_STUB(long_branch_any_thumb_pic) \
2850 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2851 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2852 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2853 DEF_STUB(long_branch_thumb_only_pic) \
2854 DEF_STUB(long_branch_any_tls_pic) \
2855 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
2856 DEF_STUB(long_branch_arm_nacl) \
2857 DEF_STUB(long_branch_arm_nacl_pic) \
2858 DEF_STUB(cmse_branch_thumb_only) \
2859 DEF_STUB(a8_veneer_b_cond) \
2860 DEF_STUB(a8_veneer_b) \
2861 DEF_STUB(a8_veneer_bl) \
2862 DEF_STUB(a8_veneer_blx) \
2863 DEF_STUB(long_branch_thumb2_only) \
2864 DEF_STUB(long_branch_thumb2_only_pure)
2865
2866 #define DEF_STUB(x) arm_stub_##x,
2867 enum elf32_arm_stub_type
2868 {
2869 arm_stub_none,
2870 DEF_STUBS
2871 max_stub_type
2872 };
2873 #undef DEF_STUB
2874
2875 /* Note the first a8_veneer type. */
2876 const unsigned arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond;
2877
2878 typedef struct
2879 {
2880 const insn_sequence* template_sequence;
2881 int template_size;
2882 } stub_def;
2883
2884 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2885 static const stub_def stub_definitions[] =
2886 {
2887 {NULL, 0},
2888 DEF_STUBS
2889 };
2890
2891 struct elf32_arm_stub_hash_entry
2892 {
2893 /* Base hash table entry structure. */
2894 struct bfd_hash_entry root;
2895
2896 /* The stub section. */
2897 asection *stub_sec;
2898
2899 /* Offset within stub_sec of the beginning of this stub. */
2900 bfd_vma stub_offset;
2901
2902 /* Given the symbol's value and its section we can determine its final
2903 value when building the stubs (so the stub knows where to jump). */
2904 bfd_vma target_value;
2905 asection *target_section;
2906
2907 /* Same as above but for the source of the branch to the stub. Used for
2908 Cortex-A8 erratum workaround to patch it to branch to the stub. As
2909 such, source section does not need to be recorded since Cortex-A8 erratum
2910 workaround stubs are only generated when both source and target are in the
2911 same section. */
2912 bfd_vma source_value;
2913
2914 /* The instruction which caused this stub to be generated (only valid for
2915 Cortex-A8 erratum workaround stubs at present). */
2916 unsigned long orig_insn;
2917
2918 /* The stub type. */
2919 enum elf32_arm_stub_type stub_type;
2920 /* Its encoding size in bytes. */
2921 int stub_size;
2922 /* Its template. */
2923 const insn_sequence *stub_template;
2924 /* The size of the template (number of entries). */
2925 int stub_template_size;
2926
2927 /* The symbol table entry, if any, that this was derived from. */
2928 struct elf32_arm_link_hash_entry *h;
2929
2930 /* Type of branch. */
2931 enum arm_st_branch_type branch_type;
2932
2933 /* Where this stub is being called from, or, in the case of combined
2934 stub sections, the first input section in the group. */
2935 asection *id_sec;
2936
2937 /* The name for the local symbol at the start of this stub. The
2938 stub name in the hash table has to be unique; this does not, so
2939 it can be friendlier. */
2940 char *output_name;
2941 };
2942
2943 /* Used to build a map of a section. This is required for mixed-endian
2944 code/data. */
2945
2946 typedef struct elf32_elf_section_map
2947 {
2948 bfd_vma vma;
2949 char type;
2950 }
2951 elf32_arm_section_map;
2952
2953 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2954
2955 typedef enum
2956 {
2957 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2958 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2959 VFP11_ERRATUM_ARM_VENEER,
2960 VFP11_ERRATUM_THUMB_VENEER
2961 }
2962 elf32_vfp11_erratum_type;
2963
2964 typedef struct elf32_vfp11_erratum_list
2965 {
2966 struct elf32_vfp11_erratum_list *next;
2967 bfd_vma vma;
2968 union
2969 {
2970 struct
2971 {
2972 struct elf32_vfp11_erratum_list *veneer;
2973 unsigned int vfp_insn;
2974 } b;
2975 struct
2976 {
2977 struct elf32_vfp11_erratum_list *branch;
2978 unsigned int id;
2979 } v;
2980 } u;
2981 elf32_vfp11_erratum_type type;
2982 }
2983 elf32_vfp11_erratum_list;
2984
2985 /* Information about a STM32L4XX erratum veneer, or a branch to such a
2986 veneer. */
2987 typedef enum
2988 {
2989 STM32L4XX_ERRATUM_BRANCH_TO_VENEER,
2990 STM32L4XX_ERRATUM_VENEER
2991 }
2992 elf32_stm32l4xx_erratum_type;
2993
2994 typedef struct elf32_stm32l4xx_erratum_list
2995 {
2996 struct elf32_stm32l4xx_erratum_list *next;
2997 bfd_vma vma;
2998 union
2999 {
3000 struct
3001 {
3002 struct elf32_stm32l4xx_erratum_list *veneer;
3003 unsigned int insn;
3004 } b;
3005 struct
3006 {
3007 struct elf32_stm32l4xx_erratum_list *branch;
3008 unsigned int id;
3009 } v;
3010 } u;
3011 elf32_stm32l4xx_erratum_type type;
3012 }
3013 elf32_stm32l4xx_erratum_list;
3014
3015 typedef enum
3016 {
3017 DELETE_EXIDX_ENTRY,
3018 INSERT_EXIDX_CANTUNWIND_AT_END
3019 }
3020 arm_unwind_edit_type;
3021
3022 /* A (sorted) list of edits to apply to an unwind table. */
3023 typedef struct arm_unwind_table_edit
3024 {
3025 arm_unwind_edit_type type;
3026 /* Note: we sometimes want to insert an unwind entry corresponding to a
3027 section different from the one we're currently writing out, so record the
3028 (text) section this edit relates to here. */
3029 asection *linked_section;
3030 unsigned int index;
3031 struct arm_unwind_table_edit *next;
3032 }
3033 arm_unwind_table_edit;
3034
3035 typedef struct _arm_elf_section_data
3036 {
3037 /* Information about mapping symbols. */
3038 struct bfd_elf_section_data elf;
3039 unsigned int mapcount;
3040 unsigned int mapsize;
3041 elf32_arm_section_map *map;
3042 /* Information about CPU errata. */
3043 unsigned int erratumcount;
3044 elf32_vfp11_erratum_list *erratumlist;
3045 unsigned int stm32l4xx_erratumcount;
3046 elf32_stm32l4xx_erratum_list *stm32l4xx_erratumlist;
3047 unsigned int additional_reloc_count;
3048 /* Information about unwind tables. */
3049 union
3050 {
3051 /* Unwind info attached to a text section. */
3052 struct
3053 {
3054 asection *arm_exidx_sec;
3055 } text;
3056
3057 /* Unwind info attached to an .ARM.exidx section. */
3058 struct
3059 {
3060 arm_unwind_table_edit *unwind_edit_list;
3061 arm_unwind_table_edit *unwind_edit_tail;
3062 } exidx;
3063 } u;
3064 }
3065 _arm_elf_section_data;
3066
3067 #define elf32_arm_section_data(sec) \
3068 ((_arm_elf_section_data *) elf_section_data (sec))
3069
3070 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
3071 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
3072 so may be created multiple times: we use an array of these entries whilst
3073 relaxing which we can refresh easily, then create stubs for each potentially
3074 erratum-triggering instruction once we've settled on a solution. */
3075
3076 struct a8_erratum_fix
3077 {
3078 bfd *input_bfd;
3079 asection *section;
3080 bfd_vma offset;
3081 bfd_vma target_offset;
3082 unsigned long orig_insn;
3083 char *stub_name;
3084 enum elf32_arm_stub_type stub_type;
3085 enum arm_st_branch_type branch_type;
3086 };
3087
3088 /* A table of relocs applied to branches which might trigger Cortex-A8
3089 erratum. */
3090
3091 struct a8_erratum_reloc
3092 {
3093 bfd_vma from;
3094 bfd_vma destination;
3095 struct elf32_arm_link_hash_entry *hash;
3096 const char *sym_name;
3097 unsigned int r_type;
3098 enum arm_st_branch_type branch_type;
3099 bfd_boolean non_a8_stub;
3100 };
3101
3102 /* The size of the thread control block. */
3103 #define TCB_SIZE 8
3104
3105 /* ARM-specific information about a PLT entry, over and above the usual
3106 gotplt_union. */
3107 struct arm_plt_info
3108 {
3109 /* We reference count Thumb references to a PLT entry separately,
3110 so that we can emit the Thumb trampoline only if needed. */
3111 bfd_signed_vma thumb_refcount;
3112
3113 /* Some references from Thumb code may be eliminated by BL->BLX
3114 conversion, so record them separately. */
3115 bfd_signed_vma maybe_thumb_refcount;
3116
3117 /* How many of the recorded PLT accesses were from non-call relocations.
3118 This information is useful when deciding whether anything takes the
3119 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
3120 non-call references to the function should resolve directly to the
3121 real runtime target. */
3122 unsigned int noncall_refcount;
3123
3124 /* Since PLT entries have variable size if the Thumb prologue is
3125 used, we need to record the index into .got.plt instead of
3126 recomputing it from the PLT offset. */
3127 bfd_signed_vma got_offset;
3128 };
3129
3130 /* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
3131 struct arm_local_iplt_info
3132 {
3133 /* The information that is usually found in the generic ELF part of
3134 the hash table entry. */
3135 union gotplt_union root;
3136
3137 /* The information that is usually found in the ARM-specific part of
3138 the hash table entry. */
3139 struct arm_plt_info arm;
3140
3141 /* A list of all potential dynamic relocations against this symbol. */
3142 struct elf_dyn_relocs *dyn_relocs;
3143 };
3144
3145 /* Structure to handle FDPIC support for local functions. */
3146 struct fdpic_local {
3147 unsigned int funcdesc_cnt;
3148 unsigned int gotofffuncdesc_cnt;
3149 int funcdesc_offset;
3150 };
3151
3152 struct elf_arm_obj_tdata
3153 {
3154 struct elf_obj_tdata root;
3155
3156 /* tls_type for each local got entry. */
3157 char *local_got_tls_type;
3158
3159 /* GOTPLT entries for TLS descriptors. */
3160 bfd_vma *local_tlsdesc_gotent;
3161
3162 /* Information for local symbols that need entries in .iplt. */
3163 struct arm_local_iplt_info **local_iplt;
3164
3165 /* Zero to warn when linking objects with incompatible enum sizes. */
3166 int no_enum_size_warning;
3167
3168 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
3169 int no_wchar_size_warning;
3170
3171 /* Maintains FDPIC counters and funcdesc info. */
3172 struct fdpic_local *local_fdpic_cnts;
3173 };
3174
3175 #define elf_arm_tdata(bfd) \
3176 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
3177
3178 #define elf32_arm_local_got_tls_type(bfd) \
3179 (elf_arm_tdata (bfd)->local_got_tls_type)
3180
3181 #define elf32_arm_local_tlsdesc_gotent(bfd) \
3182 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
3183
3184 #define elf32_arm_local_iplt(bfd) \
3185 (elf_arm_tdata (bfd)->local_iplt)
3186
3187 #define elf32_arm_local_fdpic_cnts(bfd) \
3188 (elf_arm_tdata (bfd)->local_fdpic_cnts)
3189
3190 #define is_arm_elf(bfd) \
3191 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
3192 && elf_tdata (bfd) != NULL \
3193 && elf_object_id (bfd) == ARM_ELF_DATA)
3194
3195 static bfd_boolean
3196 elf32_arm_mkobject (bfd *abfd)
3197 {
3198 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
3199 ARM_ELF_DATA);
3200 }
3201
3202 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
3203
3204 /* Structure to handle FDPIC support for extern functions. */
3205 struct fdpic_global {
3206 unsigned int gotofffuncdesc_cnt;
3207 unsigned int gotfuncdesc_cnt;
3208 unsigned int funcdesc_cnt;
3209 int funcdesc_offset;
3210 int gotfuncdesc_offset;
3211 };
3212
3213 /* Arm ELF linker hash entry. */
3214 struct elf32_arm_link_hash_entry
3215 {
3216 struct elf_link_hash_entry root;
3217
3218 /* ARM-specific PLT information. */
3219 struct arm_plt_info plt;
3220
3221 #define GOT_UNKNOWN 0
3222 #define GOT_NORMAL 1
3223 #define GOT_TLS_GD 2
3224 #define GOT_TLS_IE 4
3225 #define GOT_TLS_GDESC 8
3226 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
3227 unsigned int tls_type : 8;
3228
3229 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
3230 unsigned int is_iplt : 1;
3231
3232 unsigned int unused : 23;
3233
3234 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
3235 starting at the end of the jump table. */
3236 bfd_vma tlsdesc_got;
3237
3238 /* The symbol marking the real symbol location for exported thumb
3239 symbols with Arm stubs. */
3240 struct elf_link_hash_entry *export_glue;
3241
3242 /* A pointer to the most recently used stub hash entry against this
3243 symbol. */
3244 struct elf32_arm_stub_hash_entry *stub_cache;
3245
3246 /* Counter for FDPIC relocations against this symbol. */
3247 struct fdpic_global fdpic_cnts;
3248 };
3249
3250 /* Traverse an arm ELF linker hash table. */
3251 #define elf32_arm_link_hash_traverse(table, func, info) \
3252 (elf_link_hash_traverse \
3253 (&(table)->root, \
3254 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
3255 (info)))
3256
3257 /* Get the ARM elf linker hash table from a link_info structure. */
3258 #define elf32_arm_hash_table(info) \
3259 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
3260 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
3261
3262 #define arm_stub_hash_lookup(table, string, create, copy) \
3263 ((struct elf32_arm_stub_hash_entry *) \
3264 bfd_hash_lookup ((table), (string), (create), (copy)))
3265
3266 /* Array to keep track of which stub sections have been created, and
3267 information on stub grouping. */
3268 struct map_stub
3269 {
3270 /* This is the section to which stubs in the group will be
3271 attached. */
3272 asection *link_sec;
3273 /* The stub section. */
3274 asection *stub_sec;
3275 };
3276
3277 #define elf32_arm_compute_jump_table_size(htab) \
3278 ((htab)->next_tls_desc_index * 4)
3279
3280 /* ARM ELF linker hash table. */
3281 struct elf32_arm_link_hash_table
3282 {
3283 /* The main hash table. */
3284 struct elf_link_hash_table root;
3285
3286 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
3287 bfd_size_type thumb_glue_size;
3288
3289 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
3290 bfd_size_type arm_glue_size;
3291
3292 /* The size in bytes of section containing the ARMv4 BX veneers. */
3293 bfd_size_type bx_glue_size;
3294
3295 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
3296 veneer has been populated. */
3297 bfd_vma bx_glue_offset[15];
3298
3299 /* The size in bytes of the section containing glue for VFP11 erratum
3300 veneers. */
3301 bfd_size_type vfp11_erratum_glue_size;
3302
3303 /* The size in bytes of the section containing glue for STM32L4XX erratum
3304 veneers. */
3305 bfd_size_type stm32l4xx_erratum_glue_size;
3306
3307 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
3308 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
3309 elf32_arm_write_section(). */
3310 struct a8_erratum_fix *a8_erratum_fixes;
3311 unsigned int num_a8_erratum_fixes;
3312
3313 /* An arbitrary input BFD chosen to hold the glue sections. */
3314 bfd * bfd_of_glue_owner;
3315
3316 /* Nonzero to output a BE8 image. */
3317 int byteswap_code;
3318
3319 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
3320 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
3321 int target1_is_rel;
3322
3323 /* The relocation to use for R_ARM_TARGET2 relocations. */
3324 int target2_reloc;
3325
3326 /* 0 = Ignore R_ARM_V4BX.
3327 1 = Convert BX to MOV PC.
3328 2 = Generate v4 interworing stubs. */
3329 int fix_v4bx;
3330
3331 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
3332 int fix_cortex_a8;
3333
3334 /* Whether we should fix the ARM1176 BLX immediate issue. */
3335 int fix_arm1176;
3336
3337 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
3338 int use_blx;
3339
3340 /* What sort of code sequences we should look for which may trigger the
3341 VFP11 denorm erratum. */
3342 bfd_arm_vfp11_fix vfp11_fix;
3343
3344 /* Global counter for the number of fixes we have emitted. */
3345 int num_vfp11_fixes;
3346
3347 /* What sort of code sequences we should look for which may trigger the
3348 STM32L4XX erratum. */
3349 bfd_arm_stm32l4xx_fix stm32l4xx_fix;
3350
3351 /* Global counter for the number of fixes we have emitted. */
3352 int num_stm32l4xx_fixes;
3353
3354 /* Nonzero to force PIC branch veneers. */
3355 int pic_veneer;
3356
3357 /* The number of bytes in the initial entry in the PLT. */
3358 bfd_size_type plt_header_size;
3359
3360 /* The number of bytes in the subsequent PLT etries. */
3361 bfd_size_type plt_entry_size;
3362
3363 /* True if the target uses REL relocations. */
3364 bfd_boolean use_rel;
3365
3366 /* Nonzero if import library must be a secure gateway import library
3367 as per ARMv8-M Security Extensions. */
3368 int cmse_implib;
3369
3370 /* The import library whose symbols' address must remain stable in
3371 the import library generated. */
3372 bfd *in_implib_bfd;
3373
3374 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
3375 bfd_vma next_tls_desc_index;
3376
3377 /* How many R_ARM_TLS_DESC relocations were generated so far. */
3378 bfd_vma num_tls_desc;
3379
3380 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
3381 asection *srelplt2;
3382
3383 /* Offset in .plt section of tls_arm_trampoline. */
3384 bfd_vma tls_trampoline;
3385
3386 /* Data for R_ARM_TLS_LDM32/R_ARM_TLS_LDM32_FDPIC relocations. */
3387 union
3388 {
3389 bfd_signed_vma refcount;
3390 bfd_vma offset;
3391 } tls_ldm_got;
3392
3393 /* Small local sym cache. */
3394 struct sym_cache sym_cache;
3395
3396 /* For convenience in allocate_dynrelocs. */
3397 bfd * obfd;
3398
3399 /* The amount of space used by the reserved portion of the sgotplt
3400 section, plus whatever space is used by the jump slots. */
3401 bfd_vma sgotplt_jump_table_size;
3402
3403 /* The stub hash table. */
3404 struct bfd_hash_table stub_hash_table;
3405
3406 /* Linker stub bfd. */
3407 bfd *stub_bfd;
3408
3409 /* Linker call-backs. */
3410 asection * (*add_stub_section) (const char *, asection *, asection *,
3411 unsigned int);
3412 void (*layout_sections_again) (void);
3413
3414 /* Array to keep track of which stub sections have been created, and
3415 information on stub grouping. */
3416 struct map_stub *stub_group;
3417
3418 /* Input stub section holding secure gateway veneers. */
3419 asection *cmse_stub_sec;
3420
3421 /* Offset in cmse_stub_sec where new SG veneers (not in input import library)
3422 start to be allocated. */
3423 bfd_vma new_cmse_stub_offset;
3424
3425 /* Number of elements in stub_group. */
3426 unsigned int top_id;
3427
3428 /* Assorted information used by elf32_arm_size_stubs. */
3429 unsigned int bfd_count;
3430 unsigned int top_index;
3431 asection **input_list;
3432
3433 /* True if the target system uses FDPIC. */
3434 int fdpic_p;
3435
3436 /* Fixup section. Used for FDPIC. */
3437 asection *srofixup;
3438 };
3439
3440 /* Add an FDPIC read-only fixup. */
3441 static void
3442 arm_elf_add_rofixup (bfd *output_bfd, asection *srofixup, bfd_vma offset)
3443 {
3444 bfd_vma fixup_offset;
3445
3446 fixup_offset = srofixup->reloc_count++ * 4;
3447 BFD_ASSERT (fixup_offset < srofixup->size);
3448 bfd_put_32 (output_bfd, offset, srofixup->contents + fixup_offset);
3449 }
3450
3451 static inline int
3452 ctz (unsigned int mask)
3453 {
3454 #if GCC_VERSION >= 3004
3455 return __builtin_ctz (mask);
3456 #else
3457 unsigned int i;
3458
3459 for (i = 0; i < 8 * sizeof (mask); i++)
3460 {
3461 if (mask & 0x1)
3462 break;
3463 mask = (mask >> 1);
3464 }
3465 return i;
3466 #endif
3467 }
3468
3469 static inline int
3470 elf32_arm_popcount (unsigned int mask)
3471 {
3472 #if GCC_VERSION >= 3004
3473 return __builtin_popcount (mask);
3474 #else
3475 unsigned int i;
3476 int sum = 0;
3477
3478 for (i = 0; i < 8 * sizeof (mask); i++)
3479 {
3480 if (mask & 0x1)
3481 sum++;
3482 mask = (mask >> 1);
3483 }
3484 return sum;
3485 #endif
3486 }
3487
3488 static void elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
3489 asection *sreloc, Elf_Internal_Rela *rel);
3490
3491 static void
3492 arm_elf_fill_funcdesc(bfd *output_bfd,
3493 struct bfd_link_info *info,
3494 int *funcdesc_offset,
3495 int dynindx,
3496 int offset,
3497 bfd_vma addr,
3498 bfd_vma dynreloc_value,
3499 bfd_vma seg)
3500 {
3501 if ((*funcdesc_offset & 1) == 0)
3502 {
3503 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
3504 asection *sgot = globals->root.sgot;
3505
3506 if (bfd_link_pic(info))
3507 {
3508 asection *srelgot = globals->root.srelgot;
3509 Elf_Internal_Rela outrel;
3510
3511 outrel.r_info = ELF32_R_INFO (dynindx, R_ARM_FUNCDESC_VALUE);
3512 outrel.r_offset = sgot->output_section->vma + sgot->output_offset + offset;
3513 outrel.r_addend = 0;
3514
3515 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
3516 bfd_put_32 (output_bfd, addr, sgot->contents + offset);
3517 bfd_put_32 (output_bfd, seg, sgot->contents + offset + 4);
3518 }
3519 else
3520 {
3521 struct elf_link_hash_entry *hgot = globals->root.hgot;
3522 bfd_vma got_value = hgot->root.u.def.value
3523 + hgot->root.u.def.section->output_section->vma
3524 + hgot->root.u.def.section->output_offset;
3525
3526 arm_elf_add_rofixup(output_bfd, globals->srofixup,
3527 sgot->output_section->vma + sgot->output_offset
3528 + offset);
3529 arm_elf_add_rofixup(output_bfd, globals->srofixup,
3530 sgot->output_section->vma + sgot->output_offset
3531 + offset + 4);
3532 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + offset);
3533 bfd_put_32 (output_bfd, got_value, sgot->contents + offset + 4);
3534 }
3535 *funcdesc_offset |= 1;
3536 }
3537 }
3538
3539 /* Create an entry in an ARM ELF linker hash table. */
3540
3541 static struct bfd_hash_entry *
3542 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
3543 struct bfd_hash_table * table,
3544 const char * string)
3545 {
3546 struct elf32_arm_link_hash_entry * ret =
3547 (struct elf32_arm_link_hash_entry *) entry;
3548
3549 /* Allocate the structure if it has not already been allocated by a
3550 subclass. */
3551 if (ret == NULL)
3552 ret = (struct elf32_arm_link_hash_entry *)
3553 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
3554 if (ret == NULL)
3555 return (struct bfd_hash_entry *) ret;
3556
3557 /* Call the allocation method of the superclass. */
3558 ret = ((struct elf32_arm_link_hash_entry *)
3559 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3560 table, string));
3561 if (ret != NULL)
3562 {
3563 ret->tls_type = GOT_UNKNOWN;
3564 ret->tlsdesc_got = (bfd_vma) -1;
3565 ret->plt.thumb_refcount = 0;
3566 ret->plt.maybe_thumb_refcount = 0;
3567 ret->plt.noncall_refcount = 0;
3568 ret->plt.got_offset = -1;
3569 ret->is_iplt = FALSE;
3570 ret->export_glue = NULL;
3571
3572 ret->stub_cache = NULL;
3573
3574 ret->fdpic_cnts.gotofffuncdesc_cnt = 0;
3575 ret->fdpic_cnts.gotfuncdesc_cnt = 0;
3576 ret->fdpic_cnts.funcdesc_cnt = 0;
3577 ret->fdpic_cnts.funcdesc_offset = -1;
3578 ret->fdpic_cnts.gotfuncdesc_offset = -1;
3579 }
3580
3581 return (struct bfd_hash_entry *) ret;
3582 }
3583
3584 /* Ensure that we have allocated bookkeeping structures for ABFD's local
3585 symbols. */
3586
3587 static bfd_boolean
3588 elf32_arm_allocate_local_sym_info (bfd *abfd)
3589 {
3590 if (elf_local_got_refcounts (abfd) == NULL)
3591 {
3592 bfd_size_type num_syms;
3593 bfd_size_type size;
3594 char *data;
3595
3596 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
3597 size = num_syms * (sizeof (bfd_signed_vma)
3598 + sizeof (struct arm_local_iplt_info *)
3599 + sizeof (bfd_vma)
3600 + sizeof (char)
3601 + sizeof (struct fdpic_local));
3602 data = bfd_zalloc (abfd, size);
3603 if (data == NULL)
3604 return FALSE;
3605
3606 elf32_arm_local_fdpic_cnts (abfd) = (struct fdpic_local *) data;
3607 data += num_syms * sizeof (struct fdpic_local);
3608
3609 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
3610 data += num_syms * sizeof (bfd_signed_vma);
3611
3612 elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
3613 data += num_syms * sizeof (struct arm_local_iplt_info *);
3614
3615 elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
3616 data += num_syms * sizeof (bfd_vma);
3617
3618 elf32_arm_local_got_tls_type (abfd) = data;
3619 }
3620 return TRUE;
3621 }
3622
3623 /* Return the .iplt information for local symbol R_SYMNDX, which belongs
3624 to input bfd ABFD. Create the information if it doesn't already exist.
3625 Return null if an allocation fails. */
3626
3627 static struct arm_local_iplt_info *
3628 elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
3629 {
3630 struct arm_local_iplt_info **ptr;
3631
3632 if (!elf32_arm_allocate_local_sym_info (abfd))
3633 return NULL;
3634
3635 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
3636 ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
3637 if (*ptr == NULL)
3638 *ptr = bfd_zalloc (abfd, sizeof (**ptr));
3639 return *ptr;
3640 }
3641
3642 /* Try to obtain PLT information for the symbol with index R_SYMNDX
3643 in ABFD's symbol table. If the symbol is global, H points to its
3644 hash table entry, otherwise H is null.
3645
3646 Return true if the symbol does have PLT information. When returning
3647 true, point *ROOT_PLT at the target-independent reference count/offset
3648 union and *ARM_PLT at the ARM-specific information. */
3649
3650 static bfd_boolean
3651 elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_table *globals,
3652 struct elf32_arm_link_hash_entry *h,
3653 unsigned long r_symndx, union gotplt_union **root_plt,
3654 struct arm_plt_info **arm_plt)
3655 {
3656 struct arm_local_iplt_info *local_iplt;
3657
3658 if (globals->root.splt == NULL && globals->root.iplt == NULL)
3659 return FALSE;
3660
3661 if (h != NULL)
3662 {
3663 *root_plt = &h->root.plt;
3664 *arm_plt = &h->plt;
3665 return TRUE;
3666 }
3667
3668 if (elf32_arm_local_iplt (abfd) == NULL)
3669 return FALSE;
3670
3671 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
3672 if (local_iplt == NULL)
3673 return FALSE;
3674
3675 *root_plt = &local_iplt->root;
3676 *arm_plt = &local_iplt->arm;
3677 return TRUE;
3678 }
3679
3680 static bfd_boolean using_thumb_only (struct elf32_arm_link_hash_table *globals);
3681
3682 /* Return true if the PLT described by ARM_PLT requires a Thumb stub
3683 before it. */
3684
3685 static bfd_boolean
3686 elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3687 struct arm_plt_info *arm_plt)
3688 {
3689 struct elf32_arm_link_hash_table *htab;
3690
3691 htab = elf32_arm_hash_table (info);
3692
3693 return (!using_thumb_only(htab) && (arm_plt->thumb_refcount != 0
3694 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0)));
3695 }
3696
3697 /* Return a pointer to the head of the dynamic reloc list that should
3698 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3699 ABFD's symbol table. Return null if an error occurs. */
3700
3701 static struct elf_dyn_relocs **
3702 elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3703 Elf_Internal_Sym *isym)
3704 {
3705 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3706 {
3707 struct arm_local_iplt_info *local_iplt;
3708
3709 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3710 if (local_iplt == NULL)
3711 return NULL;
3712 return &local_iplt->dyn_relocs;
3713 }
3714 else
3715 {
3716 /* Track dynamic relocs needed for local syms too.
3717 We really need local syms available to do this
3718 easily. Oh well. */
3719 asection *s;
3720 void *vpp;
3721
3722 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3723 if (s == NULL)
3724 abort ();
3725
3726 vpp = &elf_section_data (s)->local_dynrel;
3727 return (struct elf_dyn_relocs **) vpp;
3728 }
3729 }
3730
3731 /* Initialize an entry in the stub hash table. */
3732
3733 static struct bfd_hash_entry *
3734 stub_hash_newfunc (struct bfd_hash_entry *entry,
3735 struct bfd_hash_table *table,
3736 const char *string)
3737 {
3738 /* Allocate the structure if it has not already been allocated by a
3739 subclass. */
3740 if (entry == NULL)
3741 {
3742 entry = (struct bfd_hash_entry *)
3743 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
3744 if (entry == NULL)
3745 return entry;
3746 }
3747
3748 /* Call the allocation method of the superclass. */
3749 entry = bfd_hash_newfunc (entry, table, string);
3750 if (entry != NULL)
3751 {
3752 struct elf32_arm_stub_hash_entry *eh;
3753
3754 /* Initialize the local fields. */
3755 eh = (struct elf32_arm_stub_hash_entry *) entry;
3756 eh->stub_sec = NULL;
3757 eh->stub_offset = (bfd_vma) -1;
3758 eh->source_value = 0;
3759 eh->target_value = 0;
3760 eh->target_section = NULL;
3761 eh->orig_insn = 0;
3762 eh->stub_type = arm_stub_none;
3763 eh->stub_size = 0;
3764 eh->stub_template = NULL;
3765 eh->stub_template_size = -1;
3766 eh->h = NULL;
3767 eh->id_sec = NULL;
3768 eh->output_name = NULL;
3769 }
3770
3771 return entry;
3772 }
3773
3774 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
3775 shortcuts to them in our hash table. */
3776
3777 static bfd_boolean
3778 create_got_section (bfd *dynobj, struct bfd_link_info *info)
3779 {
3780 struct elf32_arm_link_hash_table *htab;
3781
3782 htab = elf32_arm_hash_table (info);
3783 if (htab == NULL)
3784 return FALSE;
3785
3786 /* BPABI objects never have a GOT, or associated sections. */
3787 if (htab->root.target_os == is_symbian)
3788 return TRUE;
3789
3790 if (! _bfd_elf_create_got_section (dynobj, info))
3791 return FALSE;
3792
3793 /* Also create .rofixup. */
3794 if (htab->fdpic_p)
3795 {
3796 htab->srofixup = bfd_make_section_with_flags (dynobj, ".rofixup",
3797 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3798 | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_READONLY));
3799 if (htab->srofixup == NULL
3800 || !bfd_set_section_alignment (htab->srofixup, 2))
3801 return FALSE;
3802 }
3803
3804 return TRUE;
3805 }
3806
3807 /* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3808
3809 static bfd_boolean
3810 create_ifunc_sections (struct bfd_link_info *info)
3811 {
3812 struct elf32_arm_link_hash_table *htab;
3813 const struct elf_backend_data *bed;
3814 bfd *dynobj;
3815 asection *s;
3816 flagword flags;
3817
3818 htab = elf32_arm_hash_table (info);
3819 dynobj = htab->root.dynobj;
3820 bed = get_elf_backend_data (dynobj);
3821 flags = bed->dynamic_sec_flags;
3822
3823 if (htab->root.iplt == NULL)
3824 {
3825 s = bfd_make_section_anyway_with_flags (dynobj, ".iplt",
3826 flags | SEC_READONLY | SEC_CODE);
3827 if (s == NULL
3828 || !bfd_set_section_alignment (s, bed->plt_alignment))
3829 return FALSE;
3830 htab->root.iplt = s;
3831 }
3832
3833 if (htab->root.irelplt == NULL)
3834 {
3835 s = bfd_make_section_anyway_with_flags (dynobj,
3836 RELOC_SECTION (htab, ".iplt"),
3837 flags | SEC_READONLY);
3838 if (s == NULL
3839 || !bfd_set_section_alignment (s, bed->s->log_file_align))
3840 return FALSE;
3841 htab->root.irelplt = s;
3842 }
3843
3844 if (htab->root.igotplt == NULL)
3845 {
3846 s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags);
3847 if (s == NULL
3848 || !bfd_set_section_alignment (s, bed->s->log_file_align))
3849 return FALSE;
3850 htab->root.igotplt = s;
3851 }
3852 return TRUE;
3853 }
3854
3855 /* Determine if we're dealing with a Thumb only architecture. */
3856
3857 static bfd_boolean
3858 using_thumb_only (struct elf32_arm_link_hash_table *globals)
3859 {
3860 int arch;
3861 int profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3862 Tag_CPU_arch_profile);
3863
3864 if (profile)
3865 return profile == 'M';
3866
3867 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3868
3869 /* Force return logic to be reviewed for each new architecture. */
3870 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
3871
3872 if (arch == TAG_CPU_ARCH_V6_M
3873 || arch == TAG_CPU_ARCH_V6S_M
3874 || arch == TAG_CPU_ARCH_V7E_M
3875 || arch == TAG_CPU_ARCH_V8M_BASE
3876 || arch == TAG_CPU_ARCH_V8M_MAIN
3877 || arch == TAG_CPU_ARCH_V8_1M_MAIN)
3878 return TRUE;
3879
3880 return FALSE;
3881 }
3882
3883 /* Determine if we're dealing with a Thumb-2 object. */
3884
3885 static bfd_boolean
3886 using_thumb2 (struct elf32_arm_link_hash_table *globals)
3887 {
3888 int arch;
3889 int thumb_isa = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3890 Tag_THUMB_ISA_use);
3891
3892 if (thumb_isa)
3893 return thumb_isa == 2;
3894
3895 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3896
3897 /* Force return logic to be reviewed for each new architecture. */
3898 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
3899
3900 return (arch == TAG_CPU_ARCH_V6T2
3901 || arch == TAG_CPU_ARCH_V7
3902 || arch == TAG_CPU_ARCH_V7E_M
3903 || arch == TAG_CPU_ARCH_V8
3904 || arch == TAG_CPU_ARCH_V8R
3905 || arch == TAG_CPU_ARCH_V8M_MAIN
3906 || arch == TAG_CPU_ARCH_V8_1M_MAIN);
3907 }
3908
3909 /* Determine whether Thumb-2 BL instruction is available. */
3910
3911 static bfd_boolean
3912 using_thumb2_bl (struct elf32_arm_link_hash_table *globals)
3913 {
3914 int arch =
3915 bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3916
3917 /* Force return logic to be reviewed for each new architecture. */
3918 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
3919
3920 /* Architecture was introduced after ARMv6T2 (eg. ARMv6-M). */
3921 return (arch == TAG_CPU_ARCH_V6T2
3922 || arch >= TAG_CPU_ARCH_V7);
3923 }
3924
3925 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3926 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
3927 hash table. */
3928
3929 static bfd_boolean
3930 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3931 {
3932 struct elf32_arm_link_hash_table *htab;
3933
3934 htab = elf32_arm_hash_table (info);
3935 if (htab == NULL)
3936 return FALSE;
3937
3938 if (!htab->root.sgot && !create_got_section (dynobj, info))
3939 return FALSE;
3940
3941 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3942 return FALSE;
3943
3944 if (htab->root.target_os == is_vxworks)
3945 {
3946 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
3947 return FALSE;
3948
3949 if (bfd_link_pic (info))
3950 {
3951 htab->plt_header_size = 0;
3952 htab->plt_entry_size
3953 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3954 }
3955 else
3956 {
3957 htab->plt_header_size
3958 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3959 htab->plt_entry_size
3960 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3961 }
3962
3963 if (elf_elfheader (dynobj))
3964 elf_elfheader (dynobj)->e_ident[EI_CLASS] = ELFCLASS32;
3965 }
3966 else
3967 {
3968 /* PR ld/16017
3969 Test for thumb only architectures. Note - we cannot just call
3970 using_thumb_only() as the attributes in the output bfd have not been
3971 initialised at this point, so instead we use the input bfd. */
3972 bfd * saved_obfd = htab->obfd;
3973
3974 htab->obfd = dynobj;
3975 if (using_thumb_only (htab))
3976 {
3977 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
3978 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
3979 }
3980 htab->obfd = saved_obfd;
3981 }
3982
3983 if (htab->fdpic_p) {
3984 htab->plt_header_size = 0;
3985 if (info->flags & DF_BIND_NOW)
3986 htab->plt_entry_size = 4 * (ARRAY_SIZE(elf32_arm_fdpic_plt_entry) - 5);
3987 else
3988 htab->plt_entry_size = 4 * ARRAY_SIZE(elf32_arm_fdpic_plt_entry);
3989 }
3990
3991 if (!htab->root.splt
3992 || !htab->root.srelplt
3993 || !htab->root.sdynbss
3994 || (!bfd_link_pic (info) && !htab->root.srelbss))
3995 abort ();
3996
3997 return TRUE;
3998 }
3999
4000 /* Copy the extra info we tack onto an elf_link_hash_entry. */
4001
4002 static void
4003 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
4004 struct elf_link_hash_entry *dir,
4005 struct elf_link_hash_entry *ind)
4006 {
4007 struct elf32_arm_link_hash_entry *edir, *eind;
4008
4009 edir = (struct elf32_arm_link_hash_entry *) dir;
4010 eind = (struct elf32_arm_link_hash_entry *) ind;
4011
4012 if (ind->root.type == bfd_link_hash_indirect)
4013 {
4014 /* Copy over PLT info. */
4015 edir->plt.thumb_refcount += eind->plt.thumb_refcount;
4016 eind->plt.thumb_refcount = 0;
4017 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
4018 eind->plt.maybe_thumb_refcount = 0;
4019 edir->plt.noncall_refcount += eind->plt.noncall_refcount;
4020 eind->plt.noncall_refcount = 0;
4021
4022 /* Copy FDPIC counters. */
4023 edir->fdpic_cnts.gotofffuncdesc_cnt += eind->fdpic_cnts.gotofffuncdesc_cnt;
4024 edir->fdpic_cnts.gotfuncdesc_cnt += eind->fdpic_cnts.gotfuncdesc_cnt;
4025 edir->fdpic_cnts.funcdesc_cnt += eind->fdpic_cnts.funcdesc_cnt;
4026
4027 /* We should only allocate a function to .iplt once the final
4028 symbol information is known. */
4029 BFD_ASSERT (!eind->is_iplt);
4030
4031 if (dir->got.refcount <= 0)
4032 {
4033 edir->tls_type = eind->tls_type;
4034 eind->tls_type = GOT_UNKNOWN;
4035 }
4036 }
4037
4038 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
4039 }
4040
4041 /* Destroy an ARM elf linker hash table. */
4042
4043 static void
4044 elf32_arm_link_hash_table_free (bfd *obfd)
4045 {
4046 struct elf32_arm_link_hash_table *ret
4047 = (struct elf32_arm_link_hash_table *) obfd->link.hash;
4048
4049 bfd_hash_table_free (&ret->stub_hash_table);
4050 _bfd_elf_link_hash_table_free (obfd);
4051 }
4052
4053 /* Create an ARM elf linker hash table. */
4054
4055 static struct bfd_link_hash_table *
4056 elf32_arm_link_hash_table_create (bfd *abfd)
4057 {
4058 struct elf32_arm_link_hash_table *ret;
4059 size_t amt = sizeof (struct elf32_arm_link_hash_table);
4060
4061 ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt);
4062 if (ret == NULL)
4063 return NULL;
4064
4065 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
4066 elf32_arm_link_hash_newfunc,
4067 sizeof (struct elf32_arm_link_hash_entry),
4068 ARM_ELF_DATA))
4069 {
4070 free (ret);
4071 return NULL;
4072 }
4073
4074 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
4075 ret->stm32l4xx_fix = BFD_ARM_STM32L4XX_FIX_NONE;
4076 #ifdef FOUR_WORD_PLT
4077 ret->plt_header_size = 16;
4078 ret->plt_entry_size = 16;
4079 #else
4080 ret->plt_header_size = 20;
4081 ret->plt_entry_size = elf32_arm_use_long_plt_entry ? 16 : 12;
4082 #endif
4083 ret->use_rel = TRUE;
4084 ret->obfd = abfd;
4085 ret->fdpic_p = 0;
4086
4087 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
4088 sizeof (struct elf32_arm_stub_hash_entry)))
4089 {
4090 _bfd_elf_link_hash_table_free (abfd);
4091 return NULL;
4092 }
4093 ret->root.root.hash_table_free = elf32_arm_link_hash_table_free;
4094
4095 return &ret->root.root;
4096 }
4097
4098 /* Determine what kind of NOPs are available. */
4099
4100 static bfd_boolean
4101 arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
4102 {
4103 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
4104 Tag_CPU_arch);
4105
4106 /* Force return logic to be reviewed for each new architecture. */
4107 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
4108
4109 return (arch == TAG_CPU_ARCH_V6T2
4110 || arch == TAG_CPU_ARCH_V6K
4111 || arch == TAG_CPU_ARCH_V7
4112 || arch == TAG_CPU_ARCH_V8
4113 || arch == TAG_CPU_ARCH_V8R);
4114 }
4115
4116 static bfd_boolean
4117 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
4118 {
4119 switch (stub_type)
4120 {
4121 case arm_stub_long_branch_thumb_only:
4122 case arm_stub_long_branch_thumb2_only:
4123 case arm_stub_long_branch_thumb2_only_pure:
4124 case arm_stub_long_branch_v4t_thumb_arm:
4125 case arm_stub_short_branch_v4t_thumb_arm:
4126 case arm_stub_long_branch_v4t_thumb_arm_pic:
4127 case arm_stub_long_branch_v4t_thumb_tls_pic:
4128 case arm_stub_long_branch_thumb_only_pic:
4129 case arm_stub_cmse_branch_thumb_only:
4130 return TRUE;
4131 case arm_stub_none:
4132 BFD_FAIL ();
4133 return FALSE;
4134 break;
4135 default:
4136 return FALSE;
4137 }
4138 }
4139
4140 /* Determine the type of stub needed, if any, for a call. */
4141
4142 static enum elf32_arm_stub_type
4143 arm_type_of_stub (struct bfd_link_info *info,
4144 asection *input_sec,
4145 const Elf_Internal_Rela *rel,
4146 unsigned char st_type,
4147 enum arm_st_branch_type *actual_branch_type,
4148 struct elf32_arm_link_hash_entry *hash,
4149 bfd_vma destination,
4150 asection *sym_sec,
4151 bfd *input_bfd,
4152 const char *name)
4153 {
4154 bfd_vma location;
4155 bfd_signed_vma branch_offset;
4156 unsigned int r_type;
4157 struct elf32_arm_link_hash_table * globals;
4158 bfd_boolean thumb2, thumb2_bl, thumb_only;
4159 enum elf32_arm_stub_type stub_type = arm_stub_none;
4160 int use_plt = 0;
4161 enum arm_st_branch_type branch_type = *actual_branch_type;
4162 union gotplt_union *root_plt;
4163 struct arm_plt_info *arm_plt;
4164 int arch;
4165 int thumb2_movw;
4166
4167 if (branch_type == ST_BRANCH_LONG)
4168 return stub_type;
4169
4170 globals = elf32_arm_hash_table (info);
4171 if (globals == NULL)
4172 return stub_type;
4173
4174 thumb_only = using_thumb_only (globals);
4175 thumb2 = using_thumb2 (globals);
4176 thumb2_bl = using_thumb2_bl (globals);
4177
4178 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
4179
4180 /* True for architectures that implement the thumb2 movw instruction. */
4181 thumb2_movw = thumb2 || (arch == TAG_CPU_ARCH_V8M_BASE);
4182
4183 /* Determine where the call point is. */
4184 location = (input_sec->output_offset
4185 + input_sec->output_section->vma
4186 + rel->r_offset);
4187
4188 r_type = ELF32_R_TYPE (rel->r_info);
4189
4190 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
4191 are considering a function call relocation. */
4192 if (thumb_only && (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
4193 || r_type == R_ARM_THM_JUMP19)
4194 && branch_type == ST_BRANCH_TO_ARM)
4195 branch_type = ST_BRANCH_TO_THUMB;
4196
4197 /* For TLS call relocs, it is the caller's responsibility to provide
4198 the address of the appropriate trampoline. */
4199 if (r_type != R_ARM_TLS_CALL
4200 && r_type != R_ARM_THM_TLS_CALL
4201 && elf32_arm_get_plt_info (input_bfd, globals, hash,
4202 ELF32_R_SYM (rel->r_info), &root_plt,
4203 &arm_plt)
4204 && root_plt->offset != (bfd_vma) -1)
4205 {
4206 asection *splt;
4207
4208 if (hash == NULL || hash->is_iplt)
4209 splt = globals->root.iplt;
4210 else
4211 splt = globals->root.splt;
4212 if (splt != NULL)
4213 {
4214 use_plt = 1;
4215
4216 /* Note when dealing with PLT entries: the main PLT stub is in
4217 ARM mode, so if the branch is in Thumb mode, another
4218 Thumb->ARM stub will be inserted later just before the ARM
4219 PLT stub. If a long branch stub is needed, we'll add a
4220 Thumb->Arm one and branch directly to the ARM PLT entry.
4221 Here, we have to check if a pre-PLT Thumb->ARM stub
4222 is needed and if it will be close enough. */
4223
4224 destination = (splt->output_section->vma
4225 + splt->output_offset
4226 + root_plt->offset);
4227 st_type = STT_FUNC;
4228
4229 /* Thumb branch/call to PLT: it can become a branch to ARM
4230 or to Thumb. We must perform the same checks and
4231 corrections as in elf32_arm_final_link_relocate. */
4232 if ((r_type == R_ARM_THM_CALL)
4233 || (r_type == R_ARM_THM_JUMP24))
4234 {
4235 if (globals->use_blx
4236 && r_type == R_ARM_THM_CALL
4237 && !thumb_only)
4238 {
4239 /* If the Thumb BLX instruction is available, convert
4240 the BL to a BLX instruction to call the ARM-mode
4241 PLT entry. */
4242 branch_type = ST_BRANCH_TO_ARM;
4243 }
4244 else
4245 {
4246 if (!thumb_only)
4247 /* Target the Thumb stub before the ARM PLT entry. */
4248 destination -= PLT_THUMB_STUB_SIZE;
4249 branch_type = ST_BRANCH_TO_THUMB;
4250 }
4251 }
4252 else
4253 {
4254 branch_type = ST_BRANCH_TO_ARM;
4255 }
4256 }
4257 }
4258 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
4259 BFD_ASSERT (st_type != STT_GNU_IFUNC);
4260
4261 branch_offset = (bfd_signed_vma)(destination - location);
4262
4263 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
4264 || r_type == R_ARM_THM_TLS_CALL || r_type == R_ARM_THM_JUMP19)
4265 {
4266 /* Handle cases where:
4267 - this call goes too far (different Thumb/Thumb2 max
4268 distance)
4269 - it's a Thumb->Arm call and blx is not available, or it's a
4270 Thumb->Arm branch (not bl). A stub is needed in this case,
4271 but only if this call is not through a PLT entry. Indeed,
4272 PLT stubs handle mode switching already. */
4273 if ((!thumb2_bl
4274 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4275 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4276 || (thumb2_bl
4277 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4278 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4279 || (thumb2
4280 && (branch_offset > THM2_MAX_FWD_COND_BRANCH_OFFSET
4281 || (branch_offset < THM2_MAX_BWD_COND_BRANCH_OFFSET))
4282 && (r_type == R_ARM_THM_JUMP19))
4283 || (branch_type == ST_BRANCH_TO_ARM
4284 && (((r_type == R_ARM_THM_CALL
4285 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
4286 || (r_type == R_ARM_THM_JUMP24)
4287 || (r_type == R_ARM_THM_JUMP19))
4288 && !use_plt))
4289 {
4290 /* If we need to insert a Thumb-Thumb long branch stub to a
4291 PLT, use one that branches directly to the ARM PLT
4292 stub. If we pretended we'd use the pre-PLT Thumb->ARM
4293 stub, undo this now. */
4294 if ((branch_type == ST_BRANCH_TO_THUMB) && use_plt && !thumb_only)
4295 {
4296 branch_type = ST_BRANCH_TO_ARM;
4297 branch_offset += PLT_THUMB_STUB_SIZE;
4298 }
4299
4300 if (branch_type == ST_BRANCH_TO_THUMB)
4301 {
4302 /* Thumb to thumb. */
4303 if (!thumb_only)
4304 {
4305 if (input_sec->flags & SEC_ELF_PURECODE)
4306 _bfd_error_handler
4307 (_("%pB(%pA): warning: long branch veneers used in"
4308 " section with SHF_ARM_PURECODE section"
4309 " attribute is only supported for M-profile"
4310 " targets that implement the movw instruction"),
4311 input_bfd, input_sec);
4312
4313 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4314 /* PIC stubs. */
4315 ? ((globals->use_blx
4316 && (r_type == R_ARM_THM_CALL))
4317 /* V5T and above. Stub starts with ARM code, so
4318 we must be able to switch mode before
4319 reaching it, which is only possible for 'bl'
4320 (ie R_ARM_THM_CALL relocation). */
4321 ? arm_stub_long_branch_any_thumb_pic
4322 /* On V4T, use Thumb code only. */
4323 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4324
4325 /* non-PIC stubs. */
4326 : ((globals->use_blx
4327 && (r_type == R_ARM_THM_CALL))
4328 /* V5T and above. */
4329 ? arm_stub_long_branch_any_any
4330 /* V4T. */
4331 : arm_stub_long_branch_v4t_thumb_thumb);
4332 }
4333 else
4334 {
4335 if (thumb2_movw && (input_sec->flags & SEC_ELF_PURECODE))
4336 stub_type = arm_stub_long_branch_thumb2_only_pure;
4337 else
4338 {
4339 if (input_sec->flags & SEC_ELF_PURECODE)
4340 _bfd_error_handler
4341 (_("%pB(%pA): warning: long branch veneers used in"
4342 " section with SHF_ARM_PURECODE section"
4343 " attribute is only supported for M-profile"
4344 " targets that implement the movw instruction"),
4345 input_bfd, input_sec);
4346
4347 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4348 /* PIC stub. */
4349 ? arm_stub_long_branch_thumb_only_pic
4350 /* non-PIC stub. */
4351 : (thumb2 ? arm_stub_long_branch_thumb2_only
4352 : arm_stub_long_branch_thumb_only);
4353 }
4354 }
4355 }
4356 else
4357 {
4358 if (input_sec->flags & SEC_ELF_PURECODE)
4359 _bfd_error_handler
4360 (_("%pB(%pA): warning: long branch veneers used in"
4361 " section with SHF_ARM_PURECODE section"
4362 " attribute is only supported" " for M-profile"
4363 " targets that implement the movw instruction"),
4364 input_bfd, input_sec);
4365
4366 /* Thumb to arm. */
4367 if (sym_sec != NULL
4368 && sym_sec->owner != NULL
4369 && !INTERWORK_FLAG (sym_sec->owner))
4370 {
4371 _bfd_error_handler
4372 (_("%pB(%s): warning: interworking not enabled;"
4373 " first occurrence: %pB: %s call to %s"),
4374 sym_sec->owner, name, input_bfd, "Thumb", "ARM");
4375 }
4376
4377 stub_type =
4378 (bfd_link_pic (info) | globals->pic_veneer)
4379 /* PIC stubs. */
4380 ? (r_type == R_ARM_THM_TLS_CALL
4381 /* TLS PIC stubs. */
4382 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
4383 : arm_stub_long_branch_v4t_thumb_tls_pic)
4384 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
4385 /* V5T PIC and above. */
4386 ? arm_stub_long_branch_any_arm_pic
4387 /* V4T PIC stub. */
4388 : arm_stub_long_branch_v4t_thumb_arm_pic))
4389
4390 /* non-PIC stubs. */
4391 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
4392 /* V5T and above. */
4393 ? arm_stub_long_branch_any_any
4394 /* V4T. */
4395 : arm_stub_long_branch_v4t_thumb_arm);
4396
4397 /* Handle v4t short branches. */
4398 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4399 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4400 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4401 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4402 }
4403 }
4404 }
4405 else if (r_type == R_ARM_CALL
4406 || r_type == R_ARM_JUMP24
4407 || r_type == R_ARM_PLT32
4408 || r_type == R_ARM_TLS_CALL)
4409 {
4410 if (input_sec->flags & SEC_ELF_PURECODE)
4411 _bfd_error_handler
4412 (_("%pB(%pA): warning: long branch veneers used in"
4413 " section with SHF_ARM_PURECODE section"
4414 " attribute is only supported for M-profile"
4415 " targets that implement the movw instruction"),
4416 input_bfd, input_sec);
4417 if (branch_type == ST_BRANCH_TO_THUMB)
4418 {
4419 /* Arm to thumb. */
4420
4421 if (sym_sec != NULL
4422 && sym_sec->owner != NULL
4423 && !INTERWORK_FLAG (sym_sec->owner))
4424 {
4425 _bfd_error_handler
4426 (_("%pB(%s): warning: interworking not enabled;"
4427 " first occurrence: %pB: %s call to %s"),
4428 sym_sec->owner, name, input_bfd, "ARM", "Thumb");
4429 }
4430
4431 /* We have an extra 2-bytes reach because of
4432 the mode change (bit 24 (H) of BLX encoding). */
4433 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4434 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4435 || (r_type == R_ARM_CALL && !globals->use_blx)
4436 || (r_type == R_ARM_JUMP24)
4437 || (r_type == R_ARM_PLT32))
4438 {
4439 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4440 /* PIC stubs. */
4441 ? ((globals->use_blx)
4442 /* V5T and above. */
4443 ? arm_stub_long_branch_any_thumb_pic
4444 /* V4T stub. */
4445 : arm_stub_long_branch_v4t_arm_thumb_pic)
4446
4447 /* non-PIC stubs. */
4448 : ((globals->use_blx)
4449 /* V5T and above. */
4450 ? arm_stub_long_branch_any_any
4451 /* V4T. */
4452 : arm_stub_long_branch_v4t_arm_thumb);
4453 }
4454 }
4455 else
4456 {
4457 /* Arm to arm. */
4458 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4459 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4460 {
4461 stub_type =
4462 (bfd_link_pic (info) | globals->pic_veneer)
4463 /* PIC stubs. */
4464 ? (r_type == R_ARM_TLS_CALL
4465 /* TLS PIC Stub. */
4466 ? arm_stub_long_branch_any_tls_pic
4467 : (globals->root.target_os == is_nacl
4468 ? arm_stub_long_branch_arm_nacl_pic
4469 : arm_stub_long_branch_any_arm_pic))
4470 /* non-PIC stubs. */
4471 : (globals->root.target_os == is_nacl
4472 ? arm_stub_long_branch_arm_nacl
4473 : arm_stub_long_branch_any_any);
4474 }
4475 }
4476 }
4477
4478 /* If a stub is needed, record the actual destination type. */
4479 if (stub_type != arm_stub_none)
4480 *actual_branch_type = branch_type;
4481
4482 return stub_type;
4483 }
4484
4485 /* Build a name for an entry in the stub hash table. */
4486
4487 static char *
4488 elf32_arm_stub_name (const asection *input_section,
4489 const asection *sym_sec,
4490 const struct elf32_arm_link_hash_entry *hash,
4491 const Elf_Internal_Rela *rel,
4492 enum elf32_arm_stub_type stub_type)
4493 {
4494 char *stub_name;
4495 bfd_size_type len;
4496
4497 if (hash)
4498 {
4499 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
4500 stub_name = (char *) bfd_malloc (len);
4501 if (stub_name != NULL)
4502 sprintf (stub_name, "%08x_%s+%x_%d",
4503 input_section->id & 0xffffffff,
4504 hash->root.root.root.string,
4505 (int) rel->r_addend & 0xffffffff,
4506 (int) stub_type);
4507 }
4508 else
4509 {
4510 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
4511 stub_name = (char *) bfd_malloc (len);
4512 if (stub_name != NULL)
4513 sprintf (stub_name, "%08x_%x:%x+%x_%d",
4514 input_section->id & 0xffffffff,
4515 sym_sec->id & 0xffffffff,
4516 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
4517 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
4518 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
4519 (int) rel->r_addend & 0xffffffff,
4520 (int) stub_type);
4521 }
4522
4523 return stub_name;
4524 }
4525
4526 /* Look up an entry in the stub hash. Stub entries are cached because
4527 creating the stub name takes a bit of time. */
4528
4529 static struct elf32_arm_stub_hash_entry *
4530 elf32_arm_get_stub_entry (const asection *input_section,
4531 const asection *sym_sec,
4532 struct elf_link_hash_entry *hash,
4533 const Elf_Internal_Rela *rel,
4534 struct elf32_arm_link_hash_table *htab,
4535 enum elf32_arm_stub_type stub_type)
4536 {
4537 struct elf32_arm_stub_hash_entry *stub_entry;
4538 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
4539 const asection *id_sec;
4540
4541 if ((input_section->flags & SEC_CODE) == 0)
4542 return NULL;
4543
4544 /* If the input section is the CMSE stubs one and it needs a long
4545 branch stub to reach it's final destination, give up with an
4546 error message: this is not supported. See PR ld/24709. */
4547 if (!strncmp (input_section->name, CMSE_STUB_NAME, strlen(CMSE_STUB_NAME)))
4548 {
4549 bfd *output_bfd = htab->obfd;
4550 asection *out_sec = bfd_get_section_by_name (output_bfd, CMSE_STUB_NAME);
4551
4552 _bfd_error_handler (_("ERROR: CMSE stub (%s section) too far "
4553 "(%#" PRIx64 ") from destination (%#" PRIx64 ")"),
4554 CMSE_STUB_NAME,
4555 (uint64_t)out_sec->output_section->vma
4556 + out_sec->output_offset,
4557 (uint64_t)sym_sec->output_section->vma
4558 + sym_sec->output_offset
4559 + h->root.root.u.def.value);
4560 /* Exit, rather than leave incompletely processed
4561 relocations. */
4562 xexit(1);
4563 }
4564
4565 /* If this input section is part of a group of sections sharing one
4566 stub section, then use the id of the first section in the group.
4567 Stub names need to include a section id, as there may well be
4568 more than one stub used to reach say, printf, and we need to
4569 distinguish between them. */
4570 BFD_ASSERT (input_section->id <= htab->top_id);
4571 id_sec = htab->stub_group[input_section->id].link_sec;
4572
4573 if (h != NULL && h->stub_cache != NULL
4574 && h->stub_cache->h == h
4575 && h->stub_cache->id_sec == id_sec
4576 && h->stub_cache->stub_type == stub_type)
4577 {
4578 stub_entry = h->stub_cache;
4579 }
4580 else
4581 {
4582 char *stub_name;
4583
4584 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
4585 if (stub_name == NULL)
4586 return NULL;
4587
4588 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
4589 stub_name, FALSE, FALSE);
4590 if (h != NULL)
4591 h->stub_cache = stub_entry;
4592
4593 free (stub_name);
4594 }
4595
4596 return stub_entry;
4597 }
4598
4599 /* Whether veneers of type STUB_TYPE require to be in a dedicated output
4600 section. */
4601
4602 static bfd_boolean
4603 arm_dedicated_stub_output_section_required (enum elf32_arm_stub_type stub_type)
4604 {
4605 if (stub_type >= max_stub_type)
4606 abort (); /* Should be unreachable. */
4607
4608 switch (stub_type)
4609 {
4610 case arm_stub_cmse_branch_thumb_only:
4611 return TRUE;
4612
4613 default:
4614 return FALSE;
4615 }
4616
4617 abort (); /* Should be unreachable. */
4618 }
4619
4620 /* Required alignment (as a power of 2) for the dedicated section holding
4621 veneers of type STUB_TYPE, or 0 if veneers of this type are interspersed
4622 with input sections. */
4623
4624 static int
4625 arm_dedicated_stub_output_section_required_alignment
4626 (enum elf32_arm_stub_type stub_type)
4627 {
4628 if (stub_type >= max_stub_type)
4629 abort (); /* Should be unreachable. */
4630
4631 switch (stub_type)
4632 {
4633 /* Vectors of Secure Gateway veneers must be aligned on 32byte
4634 boundary. */
4635 case arm_stub_cmse_branch_thumb_only:
4636 return 5;
4637
4638 default:
4639 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4640 return 0;
4641 }
4642
4643 abort (); /* Should be unreachable. */
4644 }
4645
4646 /* Name of the dedicated output section to put veneers of type STUB_TYPE, or
4647 NULL if veneers of this type are interspersed with input sections. */
4648
4649 static const char *
4650 arm_dedicated_stub_output_section_name (enum elf32_arm_stub_type stub_type)
4651 {
4652 if (stub_type >= max_stub_type)
4653 abort (); /* Should be unreachable. */
4654
4655 switch (stub_type)
4656 {
4657 case arm_stub_cmse_branch_thumb_only:
4658 return CMSE_STUB_NAME;
4659
4660 default:
4661 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4662 return NULL;
4663 }
4664
4665 abort (); /* Should be unreachable. */
4666 }
4667
4668 /* If veneers of type STUB_TYPE should go in a dedicated output section,
4669 returns the address of the hash table field in HTAB holding a pointer to the
4670 corresponding input section. Otherwise, returns NULL. */
4671
4672 static asection **
4673 arm_dedicated_stub_input_section_ptr (struct elf32_arm_link_hash_table *htab,
4674 enum elf32_arm_stub_type stub_type)
4675 {
4676 if (stub_type >= max_stub_type)
4677 abort (); /* Should be unreachable. */
4678
4679 switch (stub_type)
4680 {
4681 case arm_stub_cmse_branch_thumb_only:
4682 return &htab->cmse_stub_sec;
4683
4684 default:
4685 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4686 return NULL;
4687 }
4688
4689 abort (); /* Should be unreachable. */
4690 }
4691
4692 /* Find or create a stub section to contain a stub of type STUB_TYPE. SECTION
4693 is the section that branch into veneer and can be NULL if stub should go in
4694 a dedicated output section. Returns a pointer to the stub section, and the
4695 section to which the stub section will be attached (in *LINK_SEC_P).
4696 LINK_SEC_P may be NULL. */
4697
4698 static asection *
4699 elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
4700 struct elf32_arm_link_hash_table *htab,
4701 enum elf32_arm_stub_type stub_type)
4702 {
4703 asection *link_sec, *out_sec, **stub_sec_p;
4704 const char *stub_sec_prefix;
4705 bfd_boolean dedicated_output_section =
4706 arm_dedicated_stub_output_section_required (stub_type);
4707 int align;
4708
4709 if (dedicated_output_section)
4710 {
4711 bfd *output_bfd = htab->obfd;
4712 const char *out_sec_name =
4713 arm_dedicated_stub_output_section_name (stub_type);
4714 link_sec = NULL;
4715 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
4716 stub_sec_prefix = out_sec_name;
4717 align = arm_dedicated_stub_output_section_required_alignment (stub_type);
4718 out_sec = bfd_get_section_by_name (output_bfd, out_sec_name);
4719 if (out_sec == NULL)
4720 {
4721 _bfd_error_handler (_("no address assigned to the veneers output "
4722 "section %s"), out_sec_name);
4723 return NULL;
4724 }
4725 }
4726 else
4727 {
4728 BFD_ASSERT (section->id <= htab->top_id);
4729 link_sec = htab->stub_group[section->id].link_sec;
4730 BFD_ASSERT (link_sec != NULL);
4731 stub_sec_p = &htab->stub_group[section->id].stub_sec;
4732 if (*stub_sec_p == NULL)
4733 stub_sec_p = &htab->stub_group[link_sec->id].stub_sec;
4734 stub_sec_prefix = link_sec->name;
4735 out_sec = link_sec->output_section;
4736 align = htab->root.target_os == is_nacl ? 4 : 3;
4737 }
4738
4739 if (*stub_sec_p == NULL)
4740 {
4741 size_t namelen;
4742 bfd_size_type len;
4743 char *s_name;
4744
4745 namelen = strlen (stub_sec_prefix);
4746 len = namelen + sizeof (STUB_SUFFIX);
4747 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
4748 if (s_name == NULL)
4749 return NULL;
4750
4751 memcpy (s_name, stub_sec_prefix, namelen);
4752 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4753 *stub_sec_p = (*htab->add_stub_section) (s_name, out_sec, link_sec,
4754 align);
4755 if (*stub_sec_p == NULL)
4756 return NULL;
4757
4758 out_sec->flags |= SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_CODE
4759 | SEC_HAS_CONTENTS | SEC_RELOC | SEC_IN_MEMORY
4760 | SEC_KEEP;
4761 }
4762
4763 if (!dedicated_output_section)
4764 htab->stub_group[section->id].stub_sec = *stub_sec_p;
4765
4766 if (link_sec_p)
4767 *link_sec_p = link_sec;
4768
4769 return *stub_sec_p;
4770 }
4771
4772 /* Add a new stub entry to the stub hash. Not all fields of the new
4773 stub entry are initialised. */
4774
4775 static struct elf32_arm_stub_hash_entry *
4776 elf32_arm_add_stub (const char *stub_name, asection *section,
4777 struct elf32_arm_link_hash_table *htab,
4778 enum elf32_arm_stub_type stub_type)
4779 {
4780 asection *link_sec;
4781 asection *stub_sec;
4782 struct elf32_arm_stub_hash_entry *stub_entry;
4783
4784 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab,
4785 stub_type);
4786 if (stub_sec == NULL)
4787 return NULL;
4788
4789 /* Enter this entry into the linker stub hash table. */
4790 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4791 TRUE, FALSE);
4792 if (stub_entry == NULL)
4793 {
4794 if (section == NULL)
4795 section = stub_sec;
4796 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
4797 section->owner, stub_name);
4798 return NULL;
4799 }
4800
4801 stub_entry->stub_sec = stub_sec;
4802 stub_entry->stub_offset = (bfd_vma) -1;
4803 stub_entry->id_sec = link_sec;
4804
4805 return stub_entry;
4806 }
4807
4808 /* Store an Arm insn into an output section not processed by
4809 elf32_arm_write_section. */
4810
4811 static void
4812 put_arm_insn (struct elf32_arm_link_hash_table * htab,
4813 bfd * output_bfd, bfd_vma val, void * ptr)
4814 {
4815 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4816 bfd_putl32 (val, ptr);
4817 else
4818 bfd_putb32 (val, ptr);
4819 }
4820
4821 /* Store a 16-bit Thumb insn into an output section not processed by
4822 elf32_arm_write_section. */
4823
4824 static void
4825 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
4826 bfd * output_bfd, bfd_vma val, void * ptr)
4827 {
4828 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4829 bfd_putl16 (val, ptr);
4830 else
4831 bfd_putb16 (val, ptr);
4832 }
4833
4834 /* Store a Thumb2 insn into an output section not processed by
4835 elf32_arm_write_section. */
4836
4837 static void
4838 put_thumb2_insn (struct elf32_arm_link_hash_table * htab,
4839 bfd * output_bfd, bfd_vma val, bfd_byte * ptr)
4840 {
4841 /* T2 instructions are 16-bit streamed. */
4842 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4843 {
4844 bfd_putl16 ((val >> 16) & 0xffff, ptr);
4845 bfd_putl16 ((val & 0xffff), ptr + 2);
4846 }
4847 else
4848 {
4849 bfd_putb16 ((val >> 16) & 0xffff, ptr);
4850 bfd_putb16 ((val & 0xffff), ptr + 2);
4851 }
4852 }
4853
4854 /* If it's possible to change R_TYPE to a more efficient access
4855 model, return the new reloc type. */
4856
4857 static unsigned
4858 elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
4859 struct elf_link_hash_entry *h)
4860 {
4861 int is_local = (h == NULL);
4862
4863 if (bfd_link_dll (info)
4864 || (h && h->root.type == bfd_link_hash_undefweak))
4865 return r_type;
4866
4867 /* We do not support relaxations for Old TLS models. */
4868 switch (r_type)
4869 {
4870 case R_ARM_TLS_GOTDESC:
4871 case R_ARM_TLS_CALL:
4872 case R_ARM_THM_TLS_CALL:
4873 case R_ARM_TLS_DESCSEQ:
4874 case R_ARM_THM_TLS_DESCSEQ:
4875 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
4876 }
4877
4878 return r_type;
4879 }
4880
4881 static bfd_reloc_status_type elf32_arm_final_link_relocate
4882 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
4883 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
4884 const char *, unsigned char, enum arm_st_branch_type,
4885 struct elf_link_hash_entry *, bfd_boolean *, char **);
4886
4887 static unsigned int
4888 arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
4889 {
4890 switch (stub_type)
4891 {
4892 case arm_stub_a8_veneer_b_cond:
4893 case arm_stub_a8_veneer_b:
4894 case arm_stub_a8_veneer_bl:
4895 return 2;
4896
4897 case arm_stub_long_branch_any_any:
4898 case arm_stub_long_branch_v4t_arm_thumb:
4899 case arm_stub_long_branch_thumb_only:
4900 case arm_stub_long_branch_thumb2_only:
4901 case arm_stub_long_branch_thumb2_only_pure:
4902 case arm_stub_long_branch_v4t_thumb_thumb:
4903 case arm_stub_long_branch_v4t_thumb_arm:
4904 case arm_stub_short_branch_v4t_thumb_arm:
4905 case arm_stub_long_branch_any_arm_pic:
4906 case arm_stub_long_branch_any_thumb_pic:
4907 case arm_stub_long_branch_v4t_thumb_thumb_pic:
4908 case arm_stub_long_branch_v4t_arm_thumb_pic:
4909 case arm_stub_long_branch_v4t_thumb_arm_pic:
4910 case arm_stub_long_branch_thumb_only_pic:
4911 case arm_stub_long_branch_any_tls_pic:
4912 case arm_stub_long_branch_v4t_thumb_tls_pic:
4913 case arm_stub_cmse_branch_thumb_only:
4914 case arm_stub_a8_veneer_blx:
4915 return 4;
4916
4917 case arm_stub_long_branch_arm_nacl:
4918 case arm_stub_long_branch_arm_nacl_pic:
4919 return 16;
4920
4921 default:
4922 abort (); /* Should be unreachable. */
4923 }
4924 }
4925
4926 /* Returns whether stubs of type STUB_TYPE take over the symbol they are
4927 veneering (TRUE) or have their own symbol (FALSE). */
4928
4929 static bfd_boolean
4930 arm_stub_sym_claimed (enum elf32_arm_stub_type stub_type)
4931 {
4932 if (stub_type >= max_stub_type)
4933 abort (); /* Should be unreachable. */
4934
4935 switch (stub_type)
4936 {
4937 case arm_stub_cmse_branch_thumb_only:
4938 return TRUE;
4939
4940 default:
4941 return FALSE;
4942 }
4943
4944 abort (); /* Should be unreachable. */
4945 }
4946
4947 /* Returns the padding needed for the dedicated section used stubs of type
4948 STUB_TYPE. */
4949
4950 static int
4951 arm_dedicated_stub_section_padding (enum elf32_arm_stub_type stub_type)
4952 {
4953 if (stub_type >= max_stub_type)
4954 abort (); /* Should be unreachable. */
4955
4956 switch (stub_type)
4957 {
4958 case arm_stub_cmse_branch_thumb_only:
4959 return 32;
4960
4961 default:
4962 return 0;
4963 }
4964
4965 abort (); /* Should be unreachable. */
4966 }
4967
4968 /* If veneers of type STUB_TYPE should go in a dedicated output section,
4969 returns the address of the hash table field in HTAB holding the offset at
4970 which new veneers should be layed out in the stub section. */
4971
4972 static bfd_vma*
4973 arm_new_stubs_start_offset_ptr (struct elf32_arm_link_hash_table *htab,
4974 enum elf32_arm_stub_type stub_type)
4975 {
4976 switch (stub_type)
4977 {
4978 case arm_stub_cmse_branch_thumb_only:
4979 return &htab->new_cmse_stub_offset;
4980
4981 default:
4982 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4983 return NULL;
4984 }
4985 }
4986
4987 static bfd_boolean
4988 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
4989 void * in_arg)
4990 {
4991 #define MAXRELOCS 3
4992 bfd_boolean removed_sg_veneer;
4993 struct elf32_arm_stub_hash_entry *stub_entry;
4994 struct elf32_arm_link_hash_table *globals;
4995 struct bfd_link_info *info;
4996 asection *stub_sec;
4997 bfd *stub_bfd;
4998 bfd_byte *loc;
4999 bfd_vma sym_value;
5000 int template_size;
5001 int size;
5002 const insn_sequence *template_sequence;
5003 int i;
5004 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
5005 int stub_reloc_offset[MAXRELOCS] = {0, 0};
5006 int nrelocs = 0;
5007 int just_allocated = 0;
5008
5009 /* Massage our args to the form they really have. */
5010 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
5011 info = (struct bfd_link_info *) in_arg;
5012
5013 /* Fail if the target section could not be assigned to an output
5014 section. The user should fix his linker script. */
5015 if (stub_entry->target_section->output_section == NULL
5016 && info->non_contiguous_regions)
5017 info->callbacks->einfo (_("%F%P: Could not assign '%pA' to an output section. "
5018 "Retry without --enable-non-contiguous-regions.\n"),
5019 stub_entry->target_section);
5020
5021 globals = elf32_arm_hash_table (info);
5022 if (globals == NULL)
5023 return FALSE;
5024
5025 stub_sec = stub_entry->stub_sec;
5026
5027 if ((globals->fix_cortex_a8 < 0)
5028 != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
5029 /* We have to do less-strictly-aligned fixes last. */
5030 return TRUE;
5031
5032 /* Assign a slot at the end of section if none assigned yet. */
5033 if (stub_entry->stub_offset == (bfd_vma) -1)
5034 {
5035 stub_entry->stub_offset = stub_sec->size;
5036 just_allocated = 1;
5037 }
5038 loc = stub_sec->contents + stub_entry->stub_offset;
5039
5040 stub_bfd = stub_sec->owner;
5041
5042 /* This is the address of the stub destination. */
5043 sym_value = (stub_entry->target_value
5044 + stub_entry->target_section->output_offset
5045 + stub_entry->target_section->output_section->vma);
5046
5047 template_sequence = stub_entry->stub_template;
5048 template_size = stub_entry->stub_template_size;
5049
5050 size = 0;
5051 for (i = 0; i < template_size; i++)
5052 {
5053 switch (template_sequence[i].type)
5054 {
5055 case THUMB16_TYPE:
5056 {
5057 bfd_vma data = (bfd_vma) template_sequence[i].data;
5058 if (template_sequence[i].reloc_addend != 0)
5059 {
5060 /* We've borrowed the reloc_addend field to mean we should
5061 insert a condition code into this (Thumb-1 branch)
5062 instruction. See THUMB16_BCOND_INSN. */
5063 BFD_ASSERT ((data & 0xff00) == 0xd000);
5064 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
5065 }
5066 bfd_put_16 (stub_bfd, data, loc + size);
5067 size += 2;
5068 }
5069 break;
5070
5071 case THUMB32_TYPE:
5072 bfd_put_16 (stub_bfd,
5073 (template_sequence[i].data >> 16) & 0xffff,
5074 loc + size);
5075 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
5076 loc + size + 2);
5077 if (template_sequence[i].r_type != R_ARM_NONE)
5078 {
5079 stub_reloc_idx[nrelocs] = i;
5080 stub_reloc_offset[nrelocs++] = size;
5081 }
5082 size += 4;
5083 break;
5084
5085 case ARM_TYPE:
5086 bfd_put_32 (stub_bfd, template_sequence[i].data,
5087 loc + size);
5088 /* Handle cases where the target is encoded within the
5089 instruction. */
5090 if (template_sequence[i].r_type == R_ARM_JUMP24)
5091 {
5092 stub_reloc_idx[nrelocs] = i;
5093 stub_reloc_offset[nrelocs++] = size;
5094 }
5095 size += 4;
5096 break;
5097
5098 case DATA_TYPE:
5099 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
5100 stub_reloc_idx[nrelocs] = i;
5101 stub_reloc_offset[nrelocs++] = size;
5102 size += 4;
5103 break;
5104
5105 default:
5106 BFD_FAIL ();
5107 return FALSE;
5108 }
5109 }
5110
5111 if (just_allocated)
5112 stub_sec->size += size;
5113
5114 /* Stub size has already been computed in arm_size_one_stub. Check
5115 consistency. */
5116 BFD_ASSERT (size == stub_entry->stub_size);
5117
5118 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
5119 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
5120 sym_value |= 1;
5121
5122 /* Assume non empty slots have at least one and at most MAXRELOCS entries
5123 to relocate in each stub. */
5124 removed_sg_veneer =
5125 (size == 0 && stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
5126 BFD_ASSERT (removed_sg_veneer || (nrelocs != 0 && nrelocs <= MAXRELOCS));
5127
5128 for (i = 0; i < nrelocs; i++)
5129 {
5130 Elf_Internal_Rela rel;
5131 bfd_boolean unresolved_reloc;
5132 char *error_message;
5133 bfd_vma points_to =
5134 sym_value + template_sequence[stub_reloc_idx[i]].reloc_addend;
5135
5136 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
5137 rel.r_info = ELF32_R_INFO (0,
5138 template_sequence[stub_reloc_idx[i]].r_type);
5139 rel.r_addend = 0;
5140
5141 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
5142 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
5143 template should refer back to the instruction after the original
5144 branch. We use target_section as Cortex-A8 erratum workaround stubs
5145 are only generated when both source and target are in the same
5146 section. */
5147 points_to = stub_entry->target_section->output_section->vma
5148 + stub_entry->target_section->output_offset
5149 + stub_entry->source_value;
5150
5151 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
5152 (template_sequence[stub_reloc_idx[i]].r_type),
5153 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
5154 points_to, info, stub_entry->target_section, "", STT_FUNC,
5155 stub_entry->branch_type,
5156 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
5157 &error_message);
5158 }
5159
5160 return TRUE;
5161 #undef MAXRELOCS
5162 }
5163
5164 /* Calculate the template, template size and instruction size for a stub.
5165 Return value is the instruction size. */
5166
5167 static unsigned int
5168 find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
5169 const insn_sequence **stub_template,
5170 int *stub_template_size)
5171 {
5172 const insn_sequence *template_sequence = NULL;
5173 int template_size = 0, i;
5174 unsigned int size;
5175
5176 template_sequence = stub_definitions[stub_type].template_sequence;
5177 if (stub_template)
5178 *stub_template = template_sequence;
5179
5180 template_size = stub_definitions[stub_type].template_size;
5181 if (stub_template_size)
5182 *stub_template_size = template_size;
5183
5184 size = 0;
5185 for (i = 0; i < template_size; i++)
5186 {
5187 switch (template_sequence[i].type)
5188 {
5189 case THUMB16_TYPE:
5190 size += 2;
5191 break;
5192
5193 case ARM_TYPE:
5194 case THUMB32_TYPE:
5195 case DATA_TYPE:
5196 size += 4;
5197 break;
5198
5199 default:
5200 BFD_FAIL ();
5201 return 0;
5202 }
5203 }
5204
5205 return size;
5206 }
5207
5208 /* As above, but don't actually build the stub. Just bump offset so
5209 we know stub section sizes. */
5210
5211 static bfd_boolean
5212 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
5213 void *in_arg ATTRIBUTE_UNUSED)
5214 {
5215 struct elf32_arm_stub_hash_entry *stub_entry;
5216 const insn_sequence *template_sequence;
5217 int template_size, size;
5218
5219 /* Massage our args to the form they really have. */
5220 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
5221
5222 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
5223 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
5224
5225 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
5226 &template_size);
5227
5228 /* Initialized to -1. Null size indicates an empty slot full of zeros. */
5229 if (stub_entry->stub_template_size)
5230 {
5231 stub_entry->stub_size = size;
5232 stub_entry->stub_template = template_sequence;
5233 stub_entry->stub_template_size = template_size;
5234 }
5235
5236 /* Already accounted for. */
5237 if (stub_entry->stub_offset != (bfd_vma) -1)
5238 return TRUE;
5239
5240 size = (size + 7) & ~7;
5241 stub_entry->stub_sec->size += size;
5242
5243 return TRUE;
5244 }
5245
5246 /* External entry points for sizing and building linker stubs. */
5247
5248 /* Set up various things so that we can make a list of input sections
5249 for each output section included in the link. Returns -1 on error,
5250 0 when no stubs will be needed, and 1 on success. */
5251
5252 int
5253 elf32_arm_setup_section_lists (bfd *output_bfd,
5254 struct bfd_link_info *info)
5255 {
5256 bfd *input_bfd;
5257 unsigned int bfd_count;
5258 unsigned int top_id, top_index;
5259 asection *section;
5260 asection **input_list, **list;
5261 size_t amt;
5262 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5263
5264 if (htab == NULL)
5265 return 0;
5266 if (! is_elf_hash_table (htab))
5267 return 0;
5268
5269 /* Count the number of input BFDs and find the top input section id. */
5270 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
5271 input_bfd != NULL;
5272 input_bfd = input_bfd->link.next)
5273 {
5274 bfd_count += 1;
5275 for (section = input_bfd->sections;
5276 section != NULL;
5277 section = section->next)
5278 {
5279 if (top_id < section->id)
5280 top_id = section->id;
5281 }
5282 }
5283 htab->bfd_count = bfd_count;
5284
5285 amt = sizeof (struct map_stub) * (top_id + 1);
5286 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
5287 if (htab->stub_group == NULL)
5288 return -1;
5289 htab->top_id = top_id;
5290
5291 /* We can't use output_bfd->section_count here to find the top output
5292 section index as some sections may have been removed, and
5293 _bfd_strip_section_from_output doesn't renumber the indices. */
5294 for (section = output_bfd->sections, top_index = 0;
5295 section != NULL;
5296 section = section->next)
5297 {
5298 if (top_index < section->index)
5299 top_index = section->index;
5300 }
5301
5302 htab->top_index = top_index;
5303 amt = sizeof (asection *) * (top_index + 1);
5304 input_list = (asection **) bfd_malloc (amt);
5305 htab->input_list = input_list;
5306 if (input_list == NULL)
5307 return -1;
5308
5309 /* For sections we aren't interested in, mark their entries with a
5310 value we can check later. */
5311 list = input_list + top_index;
5312 do
5313 *list = bfd_abs_section_ptr;
5314 while (list-- != input_list);
5315
5316 for (section = output_bfd->sections;
5317 section != NULL;
5318 section = section->next)
5319 {
5320 if ((section->flags & SEC_CODE) != 0)
5321 input_list[section->index] = NULL;
5322 }
5323
5324 return 1;
5325 }
5326
5327 /* The linker repeatedly calls this function for each input section,
5328 in the order that input sections are linked into output sections.
5329 Build lists of input sections to determine groupings between which
5330 we may insert linker stubs. */
5331
5332 void
5333 elf32_arm_next_input_section (struct bfd_link_info *info,
5334 asection *isec)
5335 {
5336 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5337
5338 if (htab == NULL)
5339 return;
5340
5341 if (isec->output_section->index <= htab->top_index)
5342 {
5343 asection **list = htab->input_list + isec->output_section->index;
5344
5345 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
5346 {
5347 /* Steal the link_sec pointer for our list. */
5348 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
5349 /* This happens to make the list in reverse order,
5350 which we reverse later. */
5351 PREV_SEC (isec) = *list;
5352 *list = isec;
5353 }
5354 }
5355 }
5356
5357 /* See whether we can group stub sections together. Grouping stub
5358 sections may result in fewer stubs. More importantly, we need to
5359 put all .init* and .fini* stubs at the end of the .init or
5360 .fini output sections respectively, because glibc splits the
5361 _init and _fini functions into multiple parts. Putting a stub in
5362 the middle of a function is not a good idea. */
5363
5364 static void
5365 group_sections (struct elf32_arm_link_hash_table *htab,
5366 bfd_size_type stub_group_size,
5367 bfd_boolean stubs_always_after_branch)
5368 {
5369 asection **list = htab->input_list;
5370
5371 do
5372 {
5373 asection *tail = *list;
5374 asection *head;
5375
5376 if (tail == bfd_abs_section_ptr)
5377 continue;
5378
5379 /* Reverse the list: we must avoid placing stubs at the
5380 beginning of the section because the beginning of the text
5381 section may be required for an interrupt vector in bare metal
5382 code. */
5383 #define NEXT_SEC PREV_SEC
5384 head = NULL;
5385 while (tail != NULL)
5386 {
5387 /* Pop from tail. */
5388 asection *item = tail;
5389 tail = PREV_SEC (item);
5390
5391 /* Push on head. */
5392 NEXT_SEC (item) = head;
5393 head = item;
5394 }
5395
5396 while (head != NULL)
5397 {
5398 asection *curr;
5399 asection *next;
5400 bfd_vma stub_group_start = head->output_offset;
5401 bfd_vma end_of_next;
5402
5403 curr = head;
5404 while (NEXT_SEC (curr) != NULL)
5405 {
5406 next = NEXT_SEC (curr);
5407 end_of_next = next->output_offset + next->size;
5408 if (end_of_next - stub_group_start >= stub_group_size)
5409 /* End of NEXT is too far from start, so stop. */
5410 break;
5411 /* Add NEXT to the group. */
5412 curr = next;
5413 }
5414
5415 /* OK, the size from the start to the start of CURR is less
5416 than stub_group_size and thus can be handled by one stub
5417 section. (Or the head section is itself larger than
5418 stub_group_size, in which case we may be toast.)
5419 We should really be keeping track of the total size of
5420 stubs added here, as stubs contribute to the final output
5421 section size. */
5422 do
5423 {
5424 next = NEXT_SEC (head);
5425 /* Set up this stub group. */
5426 htab->stub_group[head->id].link_sec = curr;
5427 }
5428 while (head != curr && (head = next) != NULL);
5429
5430 /* But wait, there's more! Input sections up to stub_group_size
5431 bytes after the stub section can be handled by it too. */
5432 if (!stubs_always_after_branch)
5433 {
5434 stub_group_start = curr->output_offset + curr->size;
5435
5436 while (next != NULL)
5437 {
5438 end_of_next = next->output_offset + next->size;
5439 if (end_of_next - stub_group_start >= stub_group_size)
5440 /* End of NEXT is too far from stubs, so stop. */
5441 break;
5442 /* Add NEXT to the stub group. */
5443 head = next;
5444 next = NEXT_SEC (head);
5445 htab->stub_group[head->id].link_sec = curr;
5446 }
5447 }
5448 head = next;
5449 }
5450 }
5451 while (list++ != htab->input_list + htab->top_index);
5452
5453 free (htab->input_list);
5454 #undef PREV_SEC
5455 #undef NEXT_SEC
5456 }
5457
5458 /* Comparison function for sorting/searching relocations relating to Cortex-A8
5459 erratum fix. */
5460
5461 static int
5462 a8_reloc_compare (const void *a, const void *b)
5463 {
5464 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
5465 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
5466
5467 if (ra->from < rb->from)
5468 return -1;
5469 else if (ra->from > rb->from)
5470 return 1;
5471 else
5472 return 0;
5473 }
5474
5475 static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
5476 const char *, char **);
5477
5478 /* Helper function to scan code for sequences which might trigger the Cortex-A8
5479 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
5480 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
5481 otherwise. */
5482
5483 static bfd_boolean
5484 cortex_a8_erratum_scan (bfd *input_bfd,
5485 struct bfd_link_info *info,
5486 struct a8_erratum_fix **a8_fixes_p,
5487 unsigned int *num_a8_fixes_p,
5488 unsigned int *a8_fix_table_size_p,
5489 struct a8_erratum_reloc *a8_relocs,
5490 unsigned int num_a8_relocs,
5491 unsigned prev_num_a8_fixes,
5492 bfd_boolean *stub_changed_p)
5493 {
5494 asection *section;
5495 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5496 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
5497 unsigned int num_a8_fixes = *num_a8_fixes_p;
5498 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
5499
5500 if (htab == NULL)
5501 return FALSE;
5502
5503 for (section = input_bfd->sections;
5504 section != NULL;
5505 section = section->next)
5506 {
5507 bfd_byte *contents = NULL;
5508 struct _arm_elf_section_data *sec_data;
5509 unsigned int span;
5510 bfd_vma base_vma;
5511
5512 if (elf_section_type (section) != SHT_PROGBITS
5513 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
5514 || (section->flags & SEC_EXCLUDE) != 0
5515 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
5516 || (section->output_section == bfd_abs_section_ptr))
5517 continue;
5518
5519 base_vma = section->output_section->vma + section->output_offset;
5520
5521 if (elf_section_data (section)->this_hdr.contents != NULL)
5522 contents = elf_section_data (section)->this_hdr.contents;
5523 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
5524 return TRUE;
5525
5526 sec_data = elf32_arm_section_data (section);
5527
5528 for (span = 0; span < sec_data->mapcount; span++)
5529 {
5530 unsigned int span_start = sec_data->map[span].vma;
5531 unsigned int span_end = (span == sec_data->mapcount - 1)
5532 ? section->size : sec_data->map[span + 1].vma;
5533 unsigned int i;
5534 char span_type = sec_data->map[span].type;
5535 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
5536
5537 if (span_type != 't')
5538 continue;
5539
5540 /* Span is entirely within a single 4KB region: skip scanning. */
5541 if (((base_vma + span_start) & ~0xfff)
5542 == ((base_vma + span_end) & ~0xfff))
5543 continue;
5544
5545 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
5546
5547 * The opcode is BLX.W, BL.W, B.W, Bcc.W
5548 * The branch target is in the same 4KB region as the
5549 first half of the branch.
5550 * The instruction before the branch is a 32-bit
5551 length non-branch instruction. */
5552 for (i = span_start; i < span_end;)
5553 {
5554 unsigned int insn = bfd_getl16 (&contents[i]);
5555 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
5556 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
5557
5558 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
5559 insn_32bit = TRUE;
5560
5561 if (insn_32bit)
5562 {
5563 /* Load the rest of the insn (in manual-friendly order). */
5564 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
5565
5566 /* Encoding T4: B<c>.W. */
5567 is_b = (insn & 0xf800d000) == 0xf0009000;
5568 /* Encoding T1: BL<c>.W. */
5569 is_bl = (insn & 0xf800d000) == 0xf000d000;
5570 /* Encoding T2: BLX<c>.W. */
5571 is_blx = (insn & 0xf800d000) == 0xf000c000;
5572 /* Encoding T3: B<c>.W (not permitted in IT block). */
5573 is_bcc = (insn & 0xf800d000) == 0xf0008000
5574 && (insn & 0x07f00000) != 0x03800000;
5575 }
5576
5577 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
5578
5579 if (((base_vma + i) & 0xfff) == 0xffe
5580 && insn_32bit
5581 && is_32bit_branch
5582 && last_was_32bit
5583 && ! last_was_branch)
5584 {
5585 bfd_signed_vma offset = 0;
5586 bfd_boolean force_target_arm = FALSE;
5587 bfd_boolean force_target_thumb = FALSE;
5588 bfd_vma target;
5589 enum elf32_arm_stub_type stub_type = arm_stub_none;
5590 struct a8_erratum_reloc key, *found;
5591 bfd_boolean use_plt = FALSE;
5592
5593 key.from = base_vma + i;
5594 found = (struct a8_erratum_reloc *)
5595 bsearch (&key, a8_relocs, num_a8_relocs,
5596 sizeof (struct a8_erratum_reloc),
5597 &a8_reloc_compare);
5598
5599 if (found)
5600 {
5601 char *error_message = NULL;
5602 struct elf_link_hash_entry *entry;
5603
5604 /* We don't care about the error returned from this
5605 function, only if there is glue or not. */
5606 entry = find_thumb_glue (info, found->sym_name,
5607 &error_message);
5608
5609 if (entry)
5610 found->non_a8_stub = TRUE;
5611
5612 /* Keep a simpler condition, for the sake of clarity. */
5613 if (htab->root.splt != NULL && found->hash != NULL
5614 && found->hash->root.plt.offset != (bfd_vma) -1)
5615 use_plt = TRUE;
5616
5617 if (found->r_type == R_ARM_THM_CALL)
5618 {
5619 if (found->branch_type == ST_BRANCH_TO_ARM
5620 || use_plt)
5621 force_target_arm = TRUE;
5622 else
5623 force_target_thumb = TRUE;
5624 }
5625 }
5626
5627 /* Check if we have an offending branch instruction. */
5628
5629 if (found && found->non_a8_stub)
5630 /* We've already made a stub for this instruction, e.g.
5631 it's a long branch or a Thumb->ARM stub. Assume that
5632 stub will suffice to work around the A8 erratum (see
5633 setting of always_after_branch above). */
5634 ;
5635 else if (is_bcc)
5636 {
5637 offset = (insn & 0x7ff) << 1;
5638 offset |= (insn & 0x3f0000) >> 4;
5639 offset |= (insn & 0x2000) ? 0x40000 : 0;
5640 offset |= (insn & 0x800) ? 0x80000 : 0;
5641 offset |= (insn & 0x4000000) ? 0x100000 : 0;
5642 if (offset & 0x100000)
5643 offset |= ~ ((bfd_signed_vma) 0xfffff);
5644 stub_type = arm_stub_a8_veneer_b_cond;
5645 }
5646 else if (is_b || is_bl || is_blx)
5647 {
5648 int s = (insn & 0x4000000) != 0;
5649 int j1 = (insn & 0x2000) != 0;
5650 int j2 = (insn & 0x800) != 0;
5651 int i1 = !(j1 ^ s);
5652 int i2 = !(j2 ^ s);
5653
5654 offset = (insn & 0x7ff) << 1;
5655 offset |= (insn & 0x3ff0000) >> 4;
5656 offset |= i2 << 22;
5657 offset |= i1 << 23;
5658 offset |= s << 24;
5659 if (offset & 0x1000000)
5660 offset |= ~ ((bfd_signed_vma) 0xffffff);
5661
5662 if (is_blx)
5663 offset &= ~ ((bfd_signed_vma) 3);
5664
5665 stub_type = is_blx ? arm_stub_a8_veneer_blx :
5666 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
5667 }
5668
5669 if (stub_type != arm_stub_none)
5670 {
5671 bfd_vma pc_for_insn = base_vma + i + 4;
5672
5673 /* The original instruction is a BL, but the target is
5674 an ARM instruction. If we were not making a stub,
5675 the BL would have been converted to a BLX. Use the
5676 BLX stub instead in that case. */
5677 if (htab->use_blx && force_target_arm
5678 && stub_type == arm_stub_a8_veneer_bl)
5679 {
5680 stub_type = arm_stub_a8_veneer_blx;
5681 is_blx = TRUE;
5682 is_bl = FALSE;
5683 }
5684 /* Conversely, if the original instruction was
5685 BLX but the target is Thumb mode, use the BL
5686 stub. */
5687 else if (force_target_thumb
5688 && stub_type == arm_stub_a8_veneer_blx)
5689 {
5690 stub_type = arm_stub_a8_veneer_bl;
5691 is_blx = FALSE;
5692 is_bl = TRUE;
5693 }
5694
5695 if (is_blx)
5696 pc_for_insn &= ~ ((bfd_vma) 3);
5697
5698 /* If we found a relocation, use the proper destination,
5699 not the offset in the (unrelocated) instruction.
5700 Note this is always done if we switched the stub type
5701 above. */
5702 if (found)
5703 offset =
5704 (bfd_signed_vma) (found->destination - pc_for_insn);
5705
5706 /* If the stub will use a Thumb-mode branch to a
5707 PLT target, redirect it to the preceding Thumb
5708 entry point. */
5709 if (stub_type != arm_stub_a8_veneer_blx && use_plt)
5710 offset -= PLT_THUMB_STUB_SIZE;
5711
5712 target = pc_for_insn + offset;
5713
5714 /* The BLX stub is ARM-mode code. Adjust the offset to
5715 take the different PC value (+8 instead of +4) into
5716 account. */
5717 if (stub_type == arm_stub_a8_veneer_blx)
5718 offset += 4;
5719
5720 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
5721 {
5722 char *stub_name = NULL;
5723
5724 if (num_a8_fixes == a8_fix_table_size)
5725 {
5726 a8_fix_table_size *= 2;
5727 a8_fixes = (struct a8_erratum_fix *)
5728 bfd_realloc (a8_fixes,
5729 sizeof (struct a8_erratum_fix)
5730 * a8_fix_table_size);
5731 }
5732
5733 if (num_a8_fixes < prev_num_a8_fixes)
5734 {
5735 /* If we're doing a subsequent scan,
5736 check if we've found the same fix as
5737 before, and try and reuse the stub
5738 name. */
5739 stub_name = a8_fixes[num_a8_fixes].stub_name;
5740 if ((a8_fixes[num_a8_fixes].section != section)
5741 || (a8_fixes[num_a8_fixes].offset != i))
5742 {
5743 free (stub_name);
5744 stub_name = NULL;
5745 *stub_changed_p = TRUE;
5746 }
5747 }
5748
5749 if (!stub_name)
5750 {
5751 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
5752 if (stub_name != NULL)
5753 sprintf (stub_name, "%x:%x", section->id, i);
5754 }
5755
5756 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
5757 a8_fixes[num_a8_fixes].section = section;
5758 a8_fixes[num_a8_fixes].offset = i;
5759 a8_fixes[num_a8_fixes].target_offset =
5760 target - base_vma;
5761 a8_fixes[num_a8_fixes].orig_insn = insn;
5762 a8_fixes[num_a8_fixes].stub_name = stub_name;
5763 a8_fixes[num_a8_fixes].stub_type = stub_type;
5764 a8_fixes[num_a8_fixes].branch_type =
5765 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
5766
5767 num_a8_fixes++;
5768 }
5769 }
5770 }
5771
5772 i += insn_32bit ? 4 : 2;
5773 last_was_32bit = insn_32bit;
5774 last_was_branch = is_32bit_branch;
5775 }
5776 }
5777
5778 if (elf_section_data (section)->this_hdr.contents == NULL)
5779 free (contents);
5780 }
5781
5782 *a8_fixes_p = a8_fixes;
5783 *num_a8_fixes_p = num_a8_fixes;
5784 *a8_fix_table_size_p = a8_fix_table_size;
5785
5786 return FALSE;
5787 }
5788
5789 /* Create or update a stub entry depending on whether the stub can already be
5790 found in HTAB. The stub is identified by:
5791 - its type STUB_TYPE
5792 - its source branch (note that several can share the same stub) whose
5793 section and relocation (if any) are given by SECTION and IRELA
5794 respectively
5795 - its target symbol whose input section, hash, name, value and branch type
5796 are given in SYM_SEC, HASH, SYM_NAME, SYM_VALUE and BRANCH_TYPE
5797 respectively
5798
5799 If found, the value of the stub's target symbol is updated from SYM_VALUE
5800 and *NEW_STUB is set to FALSE. Otherwise, *NEW_STUB is set to
5801 TRUE and the stub entry is initialized.
5802
5803 Returns the stub that was created or updated, or NULL if an error
5804 occurred. */
5805
5806 static struct elf32_arm_stub_hash_entry *
5807 elf32_arm_create_stub (struct elf32_arm_link_hash_table *htab,
5808 enum elf32_arm_stub_type stub_type, asection *section,
5809 Elf_Internal_Rela *irela, asection *sym_sec,
5810 struct elf32_arm_link_hash_entry *hash, char *sym_name,
5811 bfd_vma sym_value, enum arm_st_branch_type branch_type,
5812 bfd_boolean *new_stub)
5813 {
5814 const asection *id_sec;
5815 char *stub_name;
5816 struct elf32_arm_stub_hash_entry *stub_entry;
5817 unsigned int r_type;
5818 bfd_boolean sym_claimed = arm_stub_sym_claimed (stub_type);
5819
5820 BFD_ASSERT (stub_type != arm_stub_none);
5821 *new_stub = FALSE;
5822
5823 if (sym_claimed)
5824 stub_name = sym_name;
5825 else
5826 {
5827 BFD_ASSERT (irela);
5828 BFD_ASSERT (section);
5829 BFD_ASSERT (section->id <= htab->top_id);
5830
5831 /* Support for grouping stub sections. */
5832 id_sec = htab->stub_group[section->id].link_sec;
5833
5834 /* Get the name of this stub. */
5835 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela,
5836 stub_type);
5837 if (!stub_name)
5838 return NULL;
5839 }
5840
5841 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name, FALSE,
5842 FALSE);
5843 /* The proper stub has already been created, just update its value. */
5844 if (stub_entry != NULL)
5845 {
5846 if (!sym_claimed)
5847 free (stub_name);
5848 stub_entry->target_value = sym_value;
5849 return stub_entry;
5850 }
5851
5852 stub_entry = elf32_arm_add_stub (stub_name, section, htab, stub_type);
5853 if (stub_entry == NULL)
5854 {
5855 if (!sym_claimed)
5856 free (stub_name);
5857 return NULL;
5858 }
5859
5860 stub_entry->target_value = sym_value;
5861 stub_entry->target_section = sym_sec;
5862 stub_entry->stub_type = stub_type;
5863 stub_entry->h = hash;
5864 stub_entry->branch_type = branch_type;
5865
5866 if (sym_claimed)
5867 stub_entry->output_name = sym_name;
5868 else
5869 {
5870 if (sym_name == NULL)
5871 sym_name = "unnamed";
5872 stub_entry->output_name = (char *)
5873 bfd_alloc (htab->stub_bfd, sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5874 + strlen (sym_name));
5875 if (stub_entry->output_name == NULL)
5876 {
5877 free (stub_name);
5878 return NULL;
5879 }
5880
5881 /* For historical reasons, use the existing names for ARM-to-Thumb and
5882 Thumb-to-ARM stubs. */
5883 r_type = ELF32_R_TYPE (irela->r_info);
5884 if ((r_type == (unsigned int) R_ARM_THM_CALL
5885 || r_type == (unsigned int) R_ARM_THM_JUMP24
5886 || r_type == (unsigned int) R_ARM_THM_JUMP19)
5887 && branch_type == ST_BRANCH_TO_ARM)
5888 sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5889 else if ((r_type == (unsigned int) R_ARM_CALL
5890 || r_type == (unsigned int) R_ARM_JUMP24)
5891 && branch_type == ST_BRANCH_TO_THUMB)
5892 sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5893 else
5894 sprintf (stub_entry->output_name, STUB_ENTRY_NAME, sym_name);
5895 }
5896
5897 *new_stub = TRUE;
5898 return stub_entry;
5899 }
5900
5901 /* Scan symbols in INPUT_BFD to identify secure entry functions needing a
5902 gateway veneer to transition from non secure to secure state and create them
5903 accordingly.
5904
5905 "ARMv8-M Security Extensions: Requirements on Development Tools" document
5906 defines the conditions that govern Secure Gateway veneer creation for a
5907 given symbol <SYM> as follows:
5908 - it has function type
5909 - it has non local binding
5910 - a symbol named __acle_se_<SYM> (called special symbol) exists with the
5911 same type, binding and value as <SYM> (called normal symbol).
5912 An entry function can handle secure state transition itself in which case
5913 its special symbol would have a different value from the normal symbol.
5914
5915 OUT_ATTR gives the output attributes, SYM_HASHES the symbol index to hash
5916 entry mapping while HTAB gives the name to hash entry mapping.
5917 *CMSE_STUB_CREATED is increased by the number of secure gateway veneer
5918 created.
5919
5920 The return value gives whether a stub failed to be allocated. */
5921
5922 static bfd_boolean
5923 cmse_scan (bfd *input_bfd, struct elf32_arm_link_hash_table *htab,
5924 obj_attribute *out_attr, struct elf_link_hash_entry **sym_hashes,
5925 int *cmse_stub_created)
5926 {
5927 const struct elf_backend_data *bed;
5928 Elf_Internal_Shdr *symtab_hdr;
5929 unsigned i, j, sym_count, ext_start;
5930 Elf_Internal_Sym *cmse_sym, *local_syms;
5931 struct elf32_arm_link_hash_entry *hash, *cmse_hash = NULL;
5932 enum arm_st_branch_type branch_type;
5933 char *sym_name, *lsym_name;
5934 bfd_vma sym_value;
5935 asection *section;
5936 struct elf32_arm_stub_hash_entry *stub_entry;
5937 bfd_boolean is_v8m, new_stub, cmse_invalid, ret = TRUE;
5938
5939 bed = get_elf_backend_data (input_bfd);
5940 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5941 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
5942 ext_start = symtab_hdr->sh_info;
5943 is_v8m = (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
5944 && out_attr[Tag_CPU_arch_profile].i == 'M');
5945
5946 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
5947 if (local_syms == NULL)
5948 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
5949 symtab_hdr->sh_info, 0, NULL, NULL,
5950 NULL);
5951 if (symtab_hdr->sh_info && local_syms == NULL)
5952 return FALSE;
5953
5954 /* Scan symbols. */
5955 for (i = 0; i < sym_count; i++)
5956 {
5957 cmse_invalid = FALSE;
5958
5959 if (i < ext_start)
5960 {
5961 cmse_sym = &local_syms[i];
5962 sym_name = bfd_elf_string_from_elf_section (input_bfd,
5963 symtab_hdr->sh_link,
5964 cmse_sym->st_name);
5965 if (!sym_name || !CONST_STRNEQ (sym_name, CMSE_PREFIX))
5966 continue;
5967
5968 /* Special symbol with local binding. */
5969 cmse_invalid = TRUE;
5970 }
5971 else
5972 {
5973 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
5974 sym_name = (char *) cmse_hash->root.root.root.string;
5975 if (!CONST_STRNEQ (sym_name, CMSE_PREFIX))
5976 continue;
5977
5978 /* Special symbol has incorrect binding or type. */
5979 if ((cmse_hash->root.root.type != bfd_link_hash_defined
5980 && cmse_hash->root.root.type != bfd_link_hash_defweak)
5981 || cmse_hash->root.type != STT_FUNC)
5982 cmse_invalid = TRUE;
5983 }
5984
5985 if (!is_v8m)
5986 {
5987 _bfd_error_handler (_("%pB: special symbol `%s' only allowed for "
5988 "ARMv8-M architecture or later"),
5989 input_bfd, sym_name);
5990 is_v8m = TRUE; /* Avoid multiple warning. */
5991 ret = FALSE;
5992 }
5993
5994 if (cmse_invalid)
5995 {
5996 _bfd_error_handler (_("%pB: invalid special symbol `%s'; it must be"
5997 " a global or weak function symbol"),
5998 input_bfd, sym_name);
5999 ret = FALSE;
6000 if (i < ext_start)
6001 continue;
6002 }
6003
6004 sym_name += strlen (CMSE_PREFIX);
6005 hash = (struct elf32_arm_link_hash_entry *)
6006 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
6007
6008 /* No associated normal symbol or it is neither global nor weak. */
6009 if (!hash
6010 || (hash->root.root.type != bfd_link_hash_defined
6011 && hash->root.root.type != bfd_link_hash_defweak)
6012 || hash->root.type != STT_FUNC)
6013 {
6014 /* Initialize here to avoid warning about use of possibly
6015 uninitialized variable. */
6016 j = 0;
6017
6018 if (!hash)
6019 {
6020 /* Searching for a normal symbol with local binding. */
6021 for (; j < ext_start; j++)
6022 {
6023 lsym_name =
6024 bfd_elf_string_from_elf_section (input_bfd,
6025 symtab_hdr->sh_link,
6026 local_syms[j].st_name);
6027 if (!strcmp (sym_name, lsym_name))
6028 break;
6029 }
6030 }
6031
6032 if (hash || j < ext_start)
6033 {
6034 _bfd_error_handler
6035 (_("%pB: invalid standard symbol `%s'; it must be "
6036 "a global or weak function symbol"),
6037 input_bfd, sym_name);
6038 }
6039 else
6040 _bfd_error_handler
6041 (_("%pB: absent standard symbol `%s'"), input_bfd, sym_name);
6042 ret = FALSE;
6043 if (!hash)
6044 continue;
6045 }
6046
6047 sym_value = hash->root.root.u.def.value;
6048 section = hash->root.root.u.def.section;
6049
6050 if (cmse_hash->root.root.u.def.section != section)
6051 {
6052 _bfd_error_handler
6053 (_("%pB: `%s' and its special symbol are in different sections"),
6054 input_bfd, sym_name);
6055 ret = FALSE;
6056 }
6057 if (cmse_hash->root.root.u.def.value != sym_value)
6058 continue; /* Ignore: could be an entry function starting with SG. */
6059
6060 /* If this section is a link-once section that will be discarded, then
6061 don't create any stubs. */
6062 if (section->output_section == NULL)
6063 {
6064 _bfd_error_handler
6065 (_("%pB: entry function `%s' not output"), input_bfd, sym_name);
6066 continue;
6067 }
6068
6069 if (hash->root.size == 0)
6070 {
6071 _bfd_error_handler
6072 (_("%pB: entry function `%s' is empty"), input_bfd, sym_name);
6073 ret = FALSE;
6074 }
6075
6076 if (!ret)
6077 continue;
6078 branch_type = ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
6079 stub_entry
6080 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
6081 NULL, NULL, section, hash, sym_name,
6082 sym_value, branch_type, &new_stub);
6083
6084 if (stub_entry == NULL)
6085 ret = FALSE;
6086 else
6087 {
6088 BFD_ASSERT (new_stub);
6089 (*cmse_stub_created)++;
6090 }
6091 }
6092
6093 if (!symtab_hdr->contents)
6094 free (local_syms);
6095 return ret;
6096 }
6097
6098 /* Return TRUE iff a symbol identified by its linker HASH entry is a secure
6099 code entry function, ie can be called from non secure code without using a
6100 veneer. */
6101
6102 static bfd_boolean
6103 cmse_entry_fct_p (struct elf32_arm_link_hash_entry *hash)
6104 {
6105 bfd_byte contents[4];
6106 uint32_t first_insn;
6107 asection *section;
6108 file_ptr offset;
6109 bfd *abfd;
6110
6111 /* Defined symbol of function type. */
6112 if (hash->root.root.type != bfd_link_hash_defined
6113 && hash->root.root.type != bfd_link_hash_defweak)
6114 return FALSE;
6115 if (hash->root.type != STT_FUNC)
6116 return FALSE;
6117
6118 /* Read first instruction. */
6119 section = hash->root.root.u.def.section;
6120 abfd = section->owner;
6121 offset = hash->root.root.u.def.value - section->vma;
6122 if (!bfd_get_section_contents (abfd, section, contents, offset,
6123 sizeof (contents)))
6124 return FALSE;
6125
6126 first_insn = bfd_get_32 (abfd, contents);
6127
6128 /* Starts by SG instruction. */
6129 return first_insn == 0xe97fe97f;
6130 }
6131
6132 /* Output the name (in symbol table) of the veneer GEN_ENTRY if it is a new
6133 secure gateway veneers (ie. the veneers was not in the input import library)
6134 and there is no output import library (GEN_INFO->out_implib_bfd is NULL. */
6135
6136 static bfd_boolean
6137 arm_list_new_cmse_stub (struct bfd_hash_entry *gen_entry, void *gen_info)
6138 {
6139 struct elf32_arm_stub_hash_entry *stub_entry;
6140 struct bfd_link_info *info;
6141
6142 /* Massage our args to the form they really have. */
6143 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
6144 info = (struct bfd_link_info *) gen_info;
6145
6146 if (info->out_implib_bfd)
6147 return TRUE;
6148
6149 if (stub_entry->stub_type != arm_stub_cmse_branch_thumb_only)
6150 return TRUE;
6151
6152 if (stub_entry->stub_offset == (bfd_vma) -1)
6153 _bfd_error_handler (" %s", stub_entry->output_name);
6154
6155 return TRUE;
6156 }
6157
6158 /* Set offset of each secure gateway veneers so that its address remain
6159 identical to the one in the input import library referred by
6160 HTAB->in_implib_bfd. A warning is issued for veneers that disappeared
6161 (present in input import library but absent from the executable being
6162 linked) or if new veneers appeared and there is no output import library
6163 (INFO->out_implib_bfd is NULL and *CMSE_STUB_CREATED is bigger than the
6164 number of secure gateway veneers found in the input import library.
6165
6166 The function returns whether an error occurred. If no error occurred,
6167 *CMSE_STUB_CREATED gives the number of SG veneers created by both cmse_scan
6168 and this function and HTAB->new_cmse_stub_offset is set to the biggest
6169 veneer observed set for new veneers to be layed out after. */
6170
6171 static bfd_boolean
6172 set_cmse_veneer_addr_from_implib (struct bfd_link_info *info,
6173 struct elf32_arm_link_hash_table *htab,
6174 int *cmse_stub_created)
6175 {
6176 long symsize;
6177 char *sym_name;
6178 flagword flags;
6179 long i, symcount;
6180 bfd *in_implib_bfd;
6181 asection *stub_out_sec;
6182 bfd_boolean ret = TRUE;
6183 Elf_Internal_Sym *intsym;
6184 const char *out_sec_name;
6185 bfd_size_type cmse_stub_size;
6186 asymbol **sympp = NULL, *sym;
6187 struct elf32_arm_link_hash_entry *hash;
6188 const insn_sequence *cmse_stub_template;
6189 struct elf32_arm_stub_hash_entry *stub_entry;
6190 int cmse_stub_template_size, new_cmse_stubs_created = *cmse_stub_created;
6191 bfd_vma veneer_value, stub_offset, next_cmse_stub_offset;
6192 bfd_vma cmse_stub_array_start = (bfd_vma) -1, cmse_stub_sec_vma = 0;
6193
6194 /* No input secure gateway import library. */
6195 if (!htab->in_implib_bfd)
6196 return TRUE;
6197
6198 in_implib_bfd = htab->in_implib_bfd;
6199 if (!htab->cmse_implib)
6200 {
6201 _bfd_error_handler (_("%pB: --in-implib only supported for Secure "
6202 "Gateway import libraries"), in_implib_bfd);
6203 return FALSE;
6204 }
6205
6206 /* Get symbol table size. */
6207 symsize = bfd_get_symtab_upper_bound (in_implib_bfd);
6208 if (symsize < 0)
6209 return FALSE;
6210
6211 /* Read in the input secure gateway import library's symbol table. */
6212 sympp = (asymbol **) bfd_malloc (symsize);
6213 if (sympp == NULL)
6214 return FALSE;
6215
6216 symcount = bfd_canonicalize_symtab (in_implib_bfd, sympp);
6217 if (symcount < 0)
6218 {
6219 ret = FALSE;
6220 goto free_sym_buf;
6221 }
6222
6223 htab->new_cmse_stub_offset = 0;
6224 cmse_stub_size =
6225 find_stub_size_and_template (arm_stub_cmse_branch_thumb_only,
6226 &cmse_stub_template,
6227 &cmse_stub_template_size);
6228 out_sec_name =
6229 arm_dedicated_stub_output_section_name (arm_stub_cmse_branch_thumb_only);
6230 stub_out_sec =
6231 bfd_get_section_by_name (htab->obfd, out_sec_name);
6232 if (stub_out_sec != NULL)
6233 cmse_stub_sec_vma = stub_out_sec->vma;
6234
6235 /* Set addresses of veneers mentionned in input secure gateway import
6236 library's symbol table. */
6237 for (i = 0; i < symcount; i++)
6238 {
6239 sym = sympp[i];
6240 flags = sym->flags;
6241 sym_name = (char *) bfd_asymbol_name (sym);
6242 intsym = &((elf_symbol_type *) sym)->internal_elf_sym;
6243
6244 if (sym->section != bfd_abs_section_ptr
6245 || !(flags & (BSF_GLOBAL | BSF_WEAK))
6246 || (flags & BSF_FUNCTION) != BSF_FUNCTION
6247 || (ARM_GET_SYM_BRANCH_TYPE (intsym->st_target_internal)
6248 != ST_BRANCH_TO_THUMB))
6249 {
6250 _bfd_error_handler (_("%pB: invalid import library entry: `%s'; "
6251 "symbol should be absolute, global and "
6252 "refer to Thumb functions"),
6253 in_implib_bfd, sym_name);
6254 ret = FALSE;
6255 continue;
6256 }
6257
6258 veneer_value = bfd_asymbol_value (sym);
6259 stub_offset = veneer_value - cmse_stub_sec_vma;
6260 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, sym_name,
6261 FALSE, FALSE);
6262 hash = (struct elf32_arm_link_hash_entry *)
6263 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
6264
6265 /* Stub entry should have been created by cmse_scan or the symbol be of
6266 a secure function callable from non secure code. */
6267 if (!stub_entry && !hash)
6268 {
6269 bfd_boolean new_stub;
6270
6271 _bfd_error_handler
6272 (_("entry function `%s' disappeared from secure code"), sym_name);
6273 hash = (struct elf32_arm_link_hash_entry *)
6274 elf_link_hash_lookup (&(htab)->root, sym_name, TRUE, TRUE, TRUE);
6275 stub_entry
6276 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
6277 NULL, NULL, bfd_abs_section_ptr, hash,
6278 sym_name, veneer_value,
6279 ST_BRANCH_TO_THUMB, &new_stub);
6280 if (stub_entry == NULL)
6281 ret = FALSE;
6282 else
6283 {
6284 BFD_ASSERT (new_stub);
6285 new_cmse_stubs_created++;
6286 (*cmse_stub_created)++;
6287 }
6288 stub_entry->stub_template_size = stub_entry->stub_size = 0;
6289 stub_entry->stub_offset = stub_offset;
6290 }
6291 /* Symbol found is not callable from non secure code. */
6292 else if (!stub_entry)
6293 {
6294 if (!cmse_entry_fct_p (hash))
6295 {
6296 _bfd_error_handler (_("`%s' refers to a non entry function"),
6297 sym_name);
6298 ret = FALSE;
6299 }
6300 continue;
6301 }
6302 else
6303 {
6304 /* Only stubs for SG veneers should have been created. */
6305 BFD_ASSERT (stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
6306
6307 /* Check visibility hasn't changed. */
6308 if (!!(flags & BSF_GLOBAL)
6309 != (hash->root.root.type == bfd_link_hash_defined))
6310 _bfd_error_handler
6311 (_("%pB: visibility of symbol `%s' has changed"), in_implib_bfd,
6312 sym_name);
6313
6314 stub_entry->stub_offset = stub_offset;
6315 }
6316
6317 /* Size should match that of a SG veneer. */
6318 if (intsym->st_size != cmse_stub_size)
6319 {
6320 _bfd_error_handler (_("%pB: incorrect size for symbol `%s'"),
6321 in_implib_bfd, sym_name);
6322 ret = FALSE;
6323 }
6324
6325 /* Previous veneer address is before current SG veneer section. */
6326 if (veneer_value < cmse_stub_sec_vma)
6327 {
6328 /* Avoid offset underflow. */
6329 if (stub_entry)
6330 stub_entry->stub_offset = 0;
6331 stub_offset = 0;
6332 ret = FALSE;
6333 }
6334
6335 /* Complain if stub offset not a multiple of stub size. */
6336 if (stub_offset % cmse_stub_size)
6337 {
6338 _bfd_error_handler
6339 (_("offset of veneer for entry function `%s' not a multiple of "
6340 "its size"), sym_name);
6341 ret = FALSE;
6342 }
6343
6344 if (!ret)
6345 continue;
6346
6347 new_cmse_stubs_created--;
6348 if (veneer_value < cmse_stub_array_start)
6349 cmse_stub_array_start = veneer_value;
6350 next_cmse_stub_offset = stub_offset + ((cmse_stub_size + 7) & ~7);
6351 if (next_cmse_stub_offset > htab->new_cmse_stub_offset)
6352 htab->new_cmse_stub_offset = next_cmse_stub_offset;
6353 }
6354
6355 if (!info->out_implib_bfd && new_cmse_stubs_created != 0)
6356 {
6357 BFD_ASSERT (new_cmse_stubs_created > 0);
6358 _bfd_error_handler
6359 (_("new entry function(s) introduced but no output import library "
6360 "specified:"));
6361 bfd_hash_traverse (&htab->stub_hash_table, arm_list_new_cmse_stub, info);
6362 }
6363
6364 if (cmse_stub_array_start != cmse_stub_sec_vma)
6365 {
6366 _bfd_error_handler
6367 (_("start address of `%s' is different from previous link"),
6368 out_sec_name);
6369 ret = FALSE;
6370 }
6371
6372 free_sym_buf:
6373 free (sympp);
6374 return ret;
6375 }
6376
6377 /* Determine and set the size of the stub section for a final link.
6378
6379 The basic idea here is to examine all the relocations looking for
6380 PC-relative calls to a target that is unreachable with a "bl"
6381 instruction. */
6382
6383 bfd_boolean
6384 elf32_arm_size_stubs (bfd *output_bfd,
6385 bfd *stub_bfd,
6386 struct bfd_link_info *info,
6387 bfd_signed_vma group_size,
6388 asection * (*add_stub_section) (const char *, asection *,
6389 asection *,
6390 unsigned int),
6391 void (*layout_sections_again) (void))
6392 {
6393 bfd_boolean ret = TRUE;
6394 obj_attribute *out_attr;
6395 int cmse_stub_created = 0;
6396 bfd_size_type stub_group_size;
6397 bfd_boolean m_profile, stubs_always_after_branch, first_veneer_scan = TRUE;
6398 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
6399 struct a8_erratum_fix *a8_fixes = NULL;
6400 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
6401 struct a8_erratum_reloc *a8_relocs = NULL;
6402 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
6403
6404 if (htab == NULL)
6405 return FALSE;
6406
6407 if (htab->fix_cortex_a8)
6408 {
6409 a8_fixes = (struct a8_erratum_fix *)
6410 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
6411 a8_relocs = (struct a8_erratum_reloc *)
6412 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
6413 }
6414
6415 /* Propagate mach to stub bfd, because it may not have been
6416 finalized when we created stub_bfd. */
6417 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
6418 bfd_get_mach (output_bfd));
6419
6420 /* Stash our params away. */
6421 htab->stub_bfd = stub_bfd;
6422 htab->add_stub_section = add_stub_section;
6423 htab->layout_sections_again = layout_sections_again;
6424 stubs_always_after_branch = group_size < 0;
6425
6426 out_attr = elf_known_obj_attributes_proc (output_bfd);
6427 m_profile = out_attr[Tag_CPU_arch_profile].i == 'M';
6428
6429 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
6430 as the first half of a 32-bit branch straddling two 4K pages. This is a
6431 crude way of enforcing that. */
6432 if (htab->fix_cortex_a8)
6433 stubs_always_after_branch = 1;
6434
6435 if (group_size < 0)
6436 stub_group_size = -group_size;
6437 else
6438 stub_group_size = group_size;
6439
6440 if (stub_group_size == 1)
6441 {
6442 /* Default values. */
6443 /* Thumb branch range is +-4MB has to be used as the default
6444 maximum size (a given section can contain both ARM and Thumb
6445 code, so the worst case has to be taken into account).
6446
6447 This value is 24K less than that, which allows for 2025
6448 12-byte stubs. If we exceed that, then we will fail to link.
6449 The user will have to relink with an explicit group size
6450 option. */
6451 stub_group_size = 4170000;
6452 }
6453
6454 group_sections (htab, stub_group_size, stubs_always_after_branch);
6455
6456 /* If we're applying the cortex A8 fix, we need to determine the
6457 program header size now, because we cannot change it later --
6458 that could alter section placements. Notice the A8 erratum fix
6459 ends up requiring the section addresses to remain unchanged
6460 modulo the page size. That's something we cannot represent
6461 inside BFD, and we don't want to force the section alignment to
6462 be the page size. */
6463 if (htab->fix_cortex_a8)
6464 (*htab->layout_sections_again) ();
6465
6466 while (1)
6467 {
6468 bfd *input_bfd;
6469 unsigned int bfd_indx;
6470 asection *stub_sec;
6471 enum elf32_arm_stub_type stub_type;
6472 bfd_boolean stub_changed = FALSE;
6473 unsigned prev_num_a8_fixes = num_a8_fixes;
6474
6475 num_a8_fixes = 0;
6476 for (input_bfd = info->input_bfds, bfd_indx = 0;
6477 input_bfd != NULL;
6478 input_bfd = input_bfd->link.next, bfd_indx++)
6479 {
6480 Elf_Internal_Shdr *symtab_hdr;
6481 asection *section;
6482 Elf_Internal_Sym *local_syms = NULL;
6483
6484 if (!is_arm_elf (input_bfd))
6485 continue;
6486 if ((input_bfd->flags & DYNAMIC) != 0
6487 && (elf_sym_hashes (input_bfd) == NULL
6488 || (elf_dyn_lib_class (input_bfd) & DYN_AS_NEEDED) != 0))
6489 continue;
6490
6491 num_a8_relocs = 0;
6492
6493 /* We'll need the symbol table in a second. */
6494 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6495 if (symtab_hdr->sh_info == 0)
6496 continue;
6497
6498 /* Limit scan of symbols to object file whose profile is
6499 Microcontroller to not hinder performance in the general case. */
6500 if (m_profile && first_veneer_scan)
6501 {
6502 struct elf_link_hash_entry **sym_hashes;
6503
6504 sym_hashes = elf_sym_hashes (input_bfd);
6505 if (!cmse_scan (input_bfd, htab, out_attr, sym_hashes,
6506 &cmse_stub_created))
6507 goto error_ret_free_local;
6508
6509 if (cmse_stub_created != 0)
6510 stub_changed = TRUE;
6511 }
6512
6513 /* Walk over each section attached to the input bfd. */
6514 for (section = input_bfd->sections;
6515 section != NULL;
6516 section = section->next)
6517 {
6518 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
6519
6520 /* If there aren't any relocs, then there's nothing more
6521 to do. */
6522 if ((section->flags & SEC_RELOC) == 0
6523 || section->reloc_count == 0
6524 || (section->flags & SEC_CODE) == 0)
6525 continue;
6526
6527 /* If this section is a link-once section that will be
6528 discarded, then don't create any stubs. */
6529 if (section->output_section == NULL
6530 || section->output_section->owner != output_bfd)
6531 continue;
6532
6533 /* Get the relocs. */
6534 internal_relocs
6535 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
6536 NULL, info->keep_memory);
6537 if (internal_relocs == NULL)
6538 goto error_ret_free_local;
6539
6540 /* Now examine each relocation. */
6541 irela = internal_relocs;
6542 irelaend = irela + section->reloc_count;
6543 for (; irela < irelaend; irela++)
6544 {
6545 unsigned int r_type, r_indx;
6546 asection *sym_sec;
6547 bfd_vma sym_value;
6548 bfd_vma destination;
6549 struct elf32_arm_link_hash_entry *hash;
6550 const char *sym_name;
6551 unsigned char st_type;
6552 enum arm_st_branch_type branch_type;
6553 bfd_boolean created_stub = FALSE;
6554
6555 r_type = ELF32_R_TYPE (irela->r_info);
6556 r_indx = ELF32_R_SYM (irela->r_info);
6557
6558 if (r_type >= (unsigned int) R_ARM_max)
6559 {
6560 bfd_set_error (bfd_error_bad_value);
6561 error_ret_free_internal:
6562 if (elf_section_data (section)->relocs == NULL)
6563 free (internal_relocs);
6564 /* Fall through. */
6565 error_ret_free_local:
6566 if (symtab_hdr->contents != (unsigned char *) local_syms)
6567 free (local_syms);
6568 return FALSE;
6569 }
6570
6571 hash = NULL;
6572 if (r_indx >= symtab_hdr->sh_info)
6573 hash = elf32_arm_hash_entry
6574 (elf_sym_hashes (input_bfd)
6575 [r_indx - symtab_hdr->sh_info]);
6576
6577 /* Only look for stubs on branch instructions, or
6578 non-relaxed TLSCALL */
6579 if ((r_type != (unsigned int) R_ARM_CALL)
6580 && (r_type != (unsigned int) R_ARM_THM_CALL)
6581 && (r_type != (unsigned int) R_ARM_JUMP24)
6582 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
6583 && (r_type != (unsigned int) R_ARM_THM_XPC22)
6584 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
6585 && (r_type != (unsigned int) R_ARM_PLT32)
6586 && !((r_type == (unsigned int) R_ARM_TLS_CALL
6587 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6588 && r_type == elf32_arm_tls_transition
6589 (info, r_type, &hash->root)
6590 && ((hash ? hash->tls_type
6591 : (elf32_arm_local_got_tls_type
6592 (input_bfd)[r_indx]))
6593 & GOT_TLS_GDESC) != 0))
6594 continue;
6595
6596 /* Now determine the call target, its name, value,
6597 section. */
6598 sym_sec = NULL;
6599 sym_value = 0;
6600 destination = 0;
6601 sym_name = NULL;
6602
6603 if (r_type == (unsigned int) R_ARM_TLS_CALL
6604 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6605 {
6606 /* A non-relaxed TLS call. The target is the
6607 plt-resident trampoline and nothing to do
6608 with the symbol. */
6609 BFD_ASSERT (htab->tls_trampoline > 0);
6610 sym_sec = htab->root.splt;
6611 sym_value = htab->tls_trampoline;
6612 hash = 0;
6613 st_type = STT_FUNC;
6614 branch_type = ST_BRANCH_TO_ARM;
6615 }
6616 else if (!hash)
6617 {
6618 /* It's a local symbol. */
6619 Elf_Internal_Sym *sym;
6620
6621 if (local_syms == NULL)
6622 {
6623 local_syms
6624 = (Elf_Internal_Sym *) symtab_hdr->contents;
6625 if (local_syms == NULL)
6626 local_syms
6627 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
6628 symtab_hdr->sh_info, 0,
6629 NULL, NULL, NULL);
6630 if (local_syms == NULL)
6631 goto error_ret_free_internal;
6632 }
6633
6634 sym = local_syms + r_indx;
6635 if (sym->st_shndx == SHN_UNDEF)
6636 sym_sec = bfd_und_section_ptr;
6637 else if (sym->st_shndx == SHN_ABS)
6638 sym_sec = bfd_abs_section_ptr;
6639 else if (sym->st_shndx == SHN_COMMON)
6640 sym_sec = bfd_com_section_ptr;
6641 else
6642 sym_sec =
6643 bfd_section_from_elf_index (input_bfd, sym->st_shndx);
6644
6645 if (!sym_sec)
6646 /* This is an undefined symbol. It can never
6647 be resolved. */
6648 continue;
6649
6650 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
6651 sym_value = sym->st_value;
6652 destination = (sym_value + irela->r_addend
6653 + sym_sec->output_offset
6654 + sym_sec->output_section->vma);
6655 st_type = ELF_ST_TYPE (sym->st_info);
6656 branch_type =
6657 ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
6658 sym_name
6659 = bfd_elf_string_from_elf_section (input_bfd,
6660 symtab_hdr->sh_link,
6661 sym->st_name);
6662 }
6663 else
6664 {
6665 /* It's an external symbol. */
6666 while (hash->root.root.type == bfd_link_hash_indirect
6667 || hash->root.root.type == bfd_link_hash_warning)
6668 hash = ((struct elf32_arm_link_hash_entry *)
6669 hash->root.root.u.i.link);
6670
6671 if (hash->root.root.type == bfd_link_hash_defined
6672 || hash->root.root.type == bfd_link_hash_defweak)
6673 {
6674 sym_sec = hash->root.root.u.def.section;
6675 sym_value = hash->root.root.u.def.value;
6676
6677 struct elf32_arm_link_hash_table *globals =
6678 elf32_arm_hash_table (info);
6679
6680 /* For a destination in a shared library,
6681 use the PLT stub as target address to
6682 decide whether a branch stub is
6683 needed. */
6684 if (globals != NULL
6685 && globals->root.splt != NULL
6686 && hash != NULL
6687 && hash->root.plt.offset != (bfd_vma) -1)
6688 {
6689 sym_sec = globals->root.splt;
6690 sym_value = hash->root.plt.offset;
6691 if (sym_sec->output_section != NULL)
6692 destination = (sym_value
6693 + sym_sec->output_offset
6694 + sym_sec->output_section->vma);
6695 }
6696 else if (sym_sec->output_section != NULL)
6697 destination = (sym_value + irela->r_addend
6698 + sym_sec->output_offset
6699 + sym_sec->output_section->vma);
6700 }
6701 else if ((hash->root.root.type == bfd_link_hash_undefined)
6702 || (hash->root.root.type == bfd_link_hash_undefweak))
6703 {
6704 /* For a shared library, use the PLT stub as
6705 target address to decide whether a long
6706 branch stub is needed.
6707 For absolute code, they cannot be handled. */
6708 struct elf32_arm_link_hash_table *globals =
6709 elf32_arm_hash_table (info);
6710
6711 if (globals != NULL
6712 && globals->root.splt != NULL
6713 && hash != NULL
6714 && hash->root.plt.offset != (bfd_vma) -1)
6715 {
6716 sym_sec = globals->root.splt;
6717 sym_value = hash->root.plt.offset;
6718 if (sym_sec->output_section != NULL)
6719 destination = (sym_value
6720 + sym_sec->output_offset
6721 + sym_sec->output_section->vma);
6722 }
6723 else
6724 continue;
6725 }
6726 else
6727 {
6728 bfd_set_error (bfd_error_bad_value);
6729 goto error_ret_free_internal;
6730 }
6731 st_type = hash->root.type;
6732 branch_type =
6733 ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
6734 sym_name = hash->root.root.root.string;
6735 }
6736
6737 do
6738 {
6739 bfd_boolean new_stub;
6740 struct elf32_arm_stub_hash_entry *stub_entry;
6741
6742 /* Determine what (if any) linker stub is needed. */
6743 stub_type = arm_type_of_stub (info, section, irela,
6744 st_type, &branch_type,
6745 hash, destination, sym_sec,
6746 input_bfd, sym_name);
6747 if (stub_type == arm_stub_none)
6748 break;
6749
6750 /* We've either created a stub for this reloc already,
6751 or we are about to. */
6752 stub_entry =
6753 elf32_arm_create_stub (htab, stub_type, section, irela,
6754 sym_sec, hash,
6755 (char *) sym_name, sym_value,
6756 branch_type, &new_stub);
6757
6758 created_stub = stub_entry != NULL;
6759 if (!created_stub)
6760 goto error_ret_free_internal;
6761 else if (!new_stub)
6762 break;
6763 else
6764 stub_changed = TRUE;
6765 }
6766 while (0);
6767
6768 /* Look for relocations which might trigger Cortex-A8
6769 erratum. */
6770 if (htab->fix_cortex_a8
6771 && (r_type == (unsigned int) R_ARM_THM_JUMP24
6772 || r_type == (unsigned int) R_ARM_THM_JUMP19
6773 || r_type == (unsigned int) R_ARM_THM_CALL
6774 || r_type == (unsigned int) R_ARM_THM_XPC22))
6775 {
6776 bfd_vma from = section->output_section->vma
6777 + section->output_offset
6778 + irela->r_offset;
6779
6780 if ((from & 0xfff) == 0xffe)
6781 {
6782 /* Found a candidate. Note we haven't checked the
6783 destination is within 4K here: if we do so (and
6784 don't create an entry in a8_relocs) we can't tell
6785 that a branch should have been relocated when
6786 scanning later. */
6787 if (num_a8_relocs == a8_reloc_table_size)
6788 {
6789 a8_reloc_table_size *= 2;
6790 a8_relocs = (struct a8_erratum_reloc *)
6791 bfd_realloc (a8_relocs,
6792 sizeof (struct a8_erratum_reloc)
6793 * a8_reloc_table_size);
6794 }
6795
6796 a8_relocs[num_a8_relocs].from = from;
6797 a8_relocs[num_a8_relocs].destination = destination;
6798 a8_relocs[num_a8_relocs].r_type = r_type;
6799 a8_relocs[num_a8_relocs].branch_type = branch_type;
6800 a8_relocs[num_a8_relocs].sym_name = sym_name;
6801 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
6802 a8_relocs[num_a8_relocs].hash = hash;
6803
6804 num_a8_relocs++;
6805 }
6806 }
6807 }
6808
6809 /* We're done with the internal relocs, free them. */
6810 if (elf_section_data (section)->relocs == NULL)
6811 free (internal_relocs);
6812 }
6813
6814 if (htab->fix_cortex_a8)
6815 {
6816 /* Sort relocs which might apply to Cortex-A8 erratum. */
6817 qsort (a8_relocs, num_a8_relocs,
6818 sizeof (struct a8_erratum_reloc),
6819 &a8_reloc_compare);
6820
6821 /* Scan for branches which might trigger Cortex-A8 erratum. */
6822 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
6823 &num_a8_fixes, &a8_fix_table_size,
6824 a8_relocs, num_a8_relocs,
6825 prev_num_a8_fixes, &stub_changed)
6826 != 0)
6827 goto error_ret_free_local;
6828 }
6829
6830 if (local_syms != NULL
6831 && symtab_hdr->contents != (unsigned char *) local_syms)
6832 {
6833 if (!info->keep_memory)
6834 free (local_syms);
6835 else
6836 symtab_hdr->contents = (unsigned char *) local_syms;
6837 }
6838 }
6839
6840 if (first_veneer_scan
6841 && !set_cmse_veneer_addr_from_implib (info, htab,
6842 &cmse_stub_created))
6843 ret = FALSE;
6844
6845 if (prev_num_a8_fixes != num_a8_fixes)
6846 stub_changed = TRUE;
6847
6848 if (!stub_changed)
6849 break;
6850
6851 /* OK, we've added some stubs. Find out the new size of the
6852 stub sections. */
6853 for (stub_sec = htab->stub_bfd->sections;
6854 stub_sec != NULL;
6855 stub_sec = stub_sec->next)
6856 {
6857 /* Ignore non-stub sections. */
6858 if (!strstr (stub_sec->name, STUB_SUFFIX))
6859 continue;
6860
6861 stub_sec->size = 0;
6862 }
6863
6864 /* Add new SG veneers after those already in the input import
6865 library. */
6866 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6867 stub_type++)
6868 {
6869 bfd_vma *start_offset_p;
6870 asection **stub_sec_p;
6871
6872 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
6873 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6874 if (start_offset_p == NULL)
6875 continue;
6876
6877 BFD_ASSERT (stub_sec_p != NULL);
6878 if (*stub_sec_p != NULL)
6879 (*stub_sec_p)->size = *start_offset_p;
6880 }
6881
6882 /* Compute stub section size, considering padding. */
6883 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
6884 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6885 stub_type++)
6886 {
6887 int size, padding;
6888 asection **stub_sec_p;
6889
6890 padding = arm_dedicated_stub_section_padding (stub_type);
6891 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6892 /* Skip if no stub input section or no stub section padding
6893 required. */
6894 if ((stub_sec_p != NULL && *stub_sec_p == NULL) || padding == 0)
6895 continue;
6896 /* Stub section padding required but no dedicated section. */
6897 BFD_ASSERT (stub_sec_p);
6898
6899 size = (*stub_sec_p)->size;
6900 size = (size + padding - 1) & ~(padding - 1);
6901 (*stub_sec_p)->size = size;
6902 }
6903
6904 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
6905 if (htab->fix_cortex_a8)
6906 for (i = 0; i < num_a8_fixes; i++)
6907 {
6908 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
6909 a8_fixes[i].section, htab, a8_fixes[i].stub_type);
6910
6911 if (stub_sec == NULL)
6912 return FALSE;
6913
6914 stub_sec->size
6915 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
6916 NULL);
6917 }
6918
6919
6920 /* Ask the linker to do its stuff. */
6921 (*htab->layout_sections_again) ();
6922 first_veneer_scan = FALSE;
6923 }
6924
6925 /* Add stubs for Cortex-A8 erratum fixes now. */
6926 if (htab->fix_cortex_a8)
6927 {
6928 for (i = 0; i < num_a8_fixes; i++)
6929 {
6930 struct elf32_arm_stub_hash_entry *stub_entry;
6931 char *stub_name = a8_fixes[i].stub_name;
6932 asection *section = a8_fixes[i].section;
6933 unsigned int section_id = a8_fixes[i].section->id;
6934 asection *link_sec = htab->stub_group[section_id].link_sec;
6935 asection *stub_sec = htab->stub_group[section_id].stub_sec;
6936 const insn_sequence *template_sequence;
6937 int template_size, size = 0;
6938
6939 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
6940 TRUE, FALSE);
6941 if (stub_entry == NULL)
6942 {
6943 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
6944 section->owner, stub_name);
6945 return FALSE;
6946 }
6947
6948 stub_entry->stub_sec = stub_sec;
6949 stub_entry->stub_offset = (bfd_vma) -1;
6950 stub_entry->id_sec = link_sec;
6951 stub_entry->stub_type = a8_fixes[i].stub_type;
6952 stub_entry->source_value = a8_fixes[i].offset;
6953 stub_entry->target_section = a8_fixes[i].section;
6954 stub_entry->target_value = a8_fixes[i].target_offset;
6955 stub_entry->orig_insn = a8_fixes[i].orig_insn;
6956 stub_entry->branch_type = a8_fixes[i].branch_type;
6957
6958 size = find_stub_size_and_template (a8_fixes[i].stub_type,
6959 &template_sequence,
6960 &template_size);
6961
6962 stub_entry->stub_size = size;
6963 stub_entry->stub_template = template_sequence;
6964 stub_entry->stub_template_size = template_size;
6965 }
6966
6967 /* Stash the Cortex-A8 erratum fix array for use later in
6968 elf32_arm_write_section(). */
6969 htab->a8_erratum_fixes = a8_fixes;
6970 htab->num_a8_erratum_fixes = num_a8_fixes;
6971 }
6972 else
6973 {
6974 htab->a8_erratum_fixes = NULL;
6975 htab->num_a8_erratum_fixes = 0;
6976 }
6977 return ret;
6978 }
6979
6980 /* Build all the stubs associated with the current output file. The
6981 stubs are kept in a hash table attached to the main linker hash
6982 table. We also set up the .plt entries for statically linked PIC
6983 functions here. This function is called via arm_elf_finish in the
6984 linker. */
6985
6986 bfd_boolean
6987 elf32_arm_build_stubs (struct bfd_link_info *info)
6988 {
6989 asection *stub_sec;
6990 struct bfd_hash_table *table;
6991 enum elf32_arm_stub_type stub_type;
6992 struct elf32_arm_link_hash_table *htab;
6993
6994 htab = elf32_arm_hash_table (info);
6995 if (htab == NULL)
6996 return FALSE;
6997
6998 for (stub_sec = htab->stub_bfd->sections;
6999 stub_sec != NULL;
7000 stub_sec = stub_sec->next)
7001 {
7002 bfd_size_type size;
7003
7004 /* Ignore non-stub sections. */
7005 if (!strstr (stub_sec->name, STUB_SUFFIX))
7006 continue;
7007
7008 /* Allocate memory to hold the linker stubs. Zeroing the stub sections
7009 must at least be done for stub section requiring padding and for SG
7010 veneers to ensure that a non secure code branching to a removed SG
7011 veneer causes an error. */
7012 size = stub_sec->size;
7013 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
7014 if (stub_sec->contents == NULL && size != 0)
7015 return FALSE;
7016
7017 stub_sec->size = 0;
7018 }
7019
7020 /* Add new SG veneers after those already in the input import library. */
7021 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
7022 {
7023 bfd_vma *start_offset_p;
7024 asection **stub_sec_p;
7025
7026 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
7027 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
7028 if (start_offset_p == NULL)
7029 continue;
7030
7031 BFD_ASSERT (stub_sec_p != NULL);
7032 if (*stub_sec_p != NULL)
7033 (*stub_sec_p)->size = *start_offset_p;
7034 }
7035
7036 /* Build the stubs as directed by the stub hash table. */
7037 table = &htab->stub_hash_table;
7038 bfd_hash_traverse (table, arm_build_one_stub, info);
7039 if (htab->fix_cortex_a8)
7040 {
7041 /* Place the cortex a8 stubs last. */
7042 htab->fix_cortex_a8 = -1;
7043 bfd_hash_traverse (table, arm_build_one_stub, info);
7044 }
7045
7046 return TRUE;
7047 }
7048
7049 /* Locate the Thumb encoded calling stub for NAME. */
7050
7051 static struct elf_link_hash_entry *
7052 find_thumb_glue (struct bfd_link_info *link_info,
7053 const char *name,
7054 char **error_message)
7055 {
7056 char *tmp_name;
7057 struct elf_link_hash_entry *hash;
7058 struct elf32_arm_link_hash_table *hash_table;
7059
7060 /* We need a pointer to the armelf specific hash table. */
7061 hash_table = elf32_arm_hash_table (link_info);
7062 if (hash_table == NULL)
7063 return NULL;
7064
7065 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
7066 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
7067
7068 BFD_ASSERT (tmp_name);
7069
7070 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
7071
7072 hash = elf_link_hash_lookup
7073 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
7074
7075 if (hash == NULL
7076 && asprintf (error_message, _("unable to find %s glue '%s' for '%s'"),
7077 "Thumb", tmp_name, name) == -1)
7078 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
7079
7080 free (tmp_name);
7081
7082 return hash;
7083 }
7084
7085 /* Locate the ARM encoded calling stub for NAME. */
7086
7087 static struct elf_link_hash_entry *
7088 find_arm_glue (struct bfd_link_info *link_info,
7089 const char *name,
7090 char **error_message)
7091 {
7092 char *tmp_name;
7093 struct elf_link_hash_entry *myh;
7094 struct elf32_arm_link_hash_table *hash_table;
7095
7096 /* We need a pointer to the elfarm specific hash table. */
7097 hash_table = elf32_arm_hash_table (link_info);
7098 if (hash_table == NULL)
7099 return NULL;
7100
7101 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
7102 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
7103 BFD_ASSERT (tmp_name);
7104
7105 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
7106
7107 myh = elf_link_hash_lookup
7108 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
7109
7110 if (myh == NULL
7111 && asprintf (error_message, _("unable to find %s glue '%s' for '%s'"),
7112 "ARM", tmp_name, name) == -1)
7113 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
7114
7115 free (tmp_name);
7116
7117 return myh;
7118 }
7119
7120 /* ARM->Thumb glue (static images):
7121
7122 .arm
7123 __func_from_arm:
7124 ldr r12, __func_addr
7125 bx r12
7126 __func_addr:
7127 .word func @ behave as if you saw a ARM_32 reloc.
7128
7129 (v5t static images)
7130 .arm
7131 __func_from_arm:
7132 ldr pc, __func_addr
7133 __func_addr:
7134 .word func @ behave as if you saw a ARM_32 reloc.
7135
7136 (relocatable images)
7137 .arm
7138 __func_from_arm:
7139 ldr r12, __func_offset
7140 add r12, r12, pc
7141 bx r12
7142 __func_offset:
7143 .word func - . */
7144
7145 #define ARM2THUMB_STATIC_GLUE_SIZE 12
7146 static const insn32 a2t1_ldr_insn = 0xe59fc000;
7147 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
7148 static const insn32 a2t3_func_addr_insn = 0x00000001;
7149
7150 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
7151 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
7152 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
7153
7154 #define ARM2THUMB_PIC_GLUE_SIZE 16
7155 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
7156 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
7157 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
7158
7159 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
7160
7161 .thumb .thumb
7162 .align 2 .align 2
7163 __func_from_thumb: __func_from_thumb:
7164 bx pc push {r6, lr}
7165 nop ldr r6, __func_addr
7166 .arm mov lr, pc
7167 b func bx r6
7168 .arm
7169 ;; back_to_thumb
7170 ldmia r13! {r6, lr}
7171 bx lr
7172 __func_addr:
7173 .word func */
7174
7175 #define THUMB2ARM_GLUE_SIZE 8
7176 static const insn16 t2a1_bx_pc_insn = 0x4778;
7177 static const insn16 t2a2_noop_insn = 0x46c0;
7178 static const insn32 t2a3_b_insn = 0xea000000;
7179
7180 #define VFP11_ERRATUM_VENEER_SIZE 8
7181 #define STM32L4XX_ERRATUM_LDM_VENEER_SIZE 16
7182 #define STM32L4XX_ERRATUM_VLDM_VENEER_SIZE 24
7183
7184 #define ARM_BX_VENEER_SIZE 12
7185 static const insn32 armbx1_tst_insn = 0xe3100001;
7186 static const insn32 armbx2_moveq_insn = 0x01a0f000;
7187 static const insn32 armbx3_bx_insn = 0xe12fff10;
7188
7189 #ifndef ELFARM_NABI_C_INCLUDED
7190 static void
7191 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
7192 {
7193 asection * s;
7194 bfd_byte * contents;
7195
7196 if (size == 0)
7197 {
7198 /* Do not include empty glue sections in the output. */
7199 if (abfd != NULL)
7200 {
7201 s = bfd_get_linker_section (abfd, name);
7202 if (s != NULL)
7203 s->flags |= SEC_EXCLUDE;
7204 }
7205 return;
7206 }
7207
7208 BFD_ASSERT (abfd != NULL);
7209
7210 s = bfd_get_linker_section (abfd, name);
7211 BFD_ASSERT (s != NULL);
7212
7213 contents = (bfd_byte *) bfd_zalloc (abfd, size);
7214
7215 BFD_ASSERT (s->size == size);
7216 s->contents = contents;
7217 }
7218
7219 bfd_boolean
7220 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
7221 {
7222 struct elf32_arm_link_hash_table * globals;
7223
7224 globals = elf32_arm_hash_table (info);
7225 BFD_ASSERT (globals != NULL);
7226
7227 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7228 globals->arm_glue_size,
7229 ARM2THUMB_GLUE_SECTION_NAME);
7230
7231 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7232 globals->thumb_glue_size,
7233 THUMB2ARM_GLUE_SECTION_NAME);
7234
7235 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7236 globals->vfp11_erratum_glue_size,
7237 VFP11_ERRATUM_VENEER_SECTION_NAME);
7238
7239 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7240 globals->stm32l4xx_erratum_glue_size,
7241 STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7242
7243 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7244 globals->bx_glue_size,
7245 ARM_BX_GLUE_SECTION_NAME);
7246
7247 return TRUE;
7248 }
7249
7250 /* Allocate space and symbols for calling a Thumb function from Arm mode.
7251 returns the symbol identifying the stub. */
7252
7253 static struct elf_link_hash_entry *
7254 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
7255 struct elf_link_hash_entry * h)
7256 {
7257 const char * name = h->root.root.string;
7258 asection * s;
7259 char * tmp_name;
7260 struct elf_link_hash_entry * myh;
7261 struct bfd_link_hash_entry * bh;
7262 struct elf32_arm_link_hash_table * globals;
7263 bfd_vma val;
7264 bfd_size_type size;
7265
7266 globals = elf32_arm_hash_table (link_info);
7267 BFD_ASSERT (globals != NULL);
7268 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7269
7270 s = bfd_get_linker_section
7271 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
7272
7273 BFD_ASSERT (s != NULL);
7274
7275 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
7276 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
7277 BFD_ASSERT (tmp_name);
7278
7279 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
7280
7281 myh = elf_link_hash_lookup
7282 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
7283
7284 if (myh != NULL)
7285 {
7286 /* We've already seen this guy. */
7287 free (tmp_name);
7288 return myh;
7289 }
7290
7291 /* The only trick here is using hash_table->arm_glue_size as the value.
7292 Even though the section isn't allocated yet, this is where we will be
7293 putting it. The +1 on the value marks that the stub has not been
7294 output yet - not that it is a Thumb function. */
7295 bh = NULL;
7296 val = globals->arm_glue_size + 1;
7297 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
7298 tmp_name, BSF_GLOBAL, s, val,
7299 NULL, TRUE, FALSE, &bh);
7300
7301 myh = (struct elf_link_hash_entry *) bh;
7302 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7303 myh->forced_local = 1;
7304
7305 free (tmp_name);
7306
7307 if (bfd_link_pic (link_info)
7308 || globals->root.is_relocatable_executable
7309 || globals->pic_veneer)
7310 size = ARM2THUMB_PIC_GLUE_SIZE;
7311 else if (globals->use_blx)
7312 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
7313 else
7314 size = ARM2THUMB_STATIC_GLUE_SIZE;
7315
7316 s->size += size;
7317 globals->arm_glue_size += size;
7318
7319 return myh;
7320 }
7321
7322 /* Allocate space for ARMv4 BX veneers. */
7323
7324 static void
7325 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
7326 {
7327 asection * s;
7328 struct elf32_arm_link_hash_table *globals;
7329 char *tmp_name;
7330 struct elf_link_hash_entry *myh;
7331 struct bfd_link_hash_entry *bh;
7332 bfd_vma val;
7333
7334 /* BX PC does not need a veneer. */
7335 if (reg == 15)
7336 return;
7337
7338 globals = elf32_arm_hash_table (link_info);
7339 BFD_ASSERT (globals != NULL);
7340 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7341
7342 /* Check if this veneer has already been allocated. */
7343 if (globals->bx_glue_offset[reg])
7344 return;
7345
7346 s = bfd_get_linker_section
7347 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
7348
7349 BFD_ASSERT (s != NULL);
7350
7351 /* Add symbol for veneer. */
7352 tmp_name = (char *)
7353 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
7354 BFD_ASSERT (tmp_name);
7355
7356 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
7357
7358 myh = elf_link_hash_lookup
7359 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
7360
7361 BFD_ASSERT (myh == NULL);
7362
7363 bh = NULL;
7364 val = globals->bx_glue_size;
7365 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
7366 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7367 NULL, TRUE, FALSE, &bh);
7368
7369 myh = (struct elf_link_hash_entry *) bh;
7370 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7371 myh->forced_local = 1;
7372
7373 s->size += ARM_BX_VENEER_SIZE;
7374 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
7375 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
7376 }
7377
7378
7379 /* Add an entry to the code/data map for section SEC. */
7380
7381 static void
7382 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
7383 {
7384 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
7385 unsigned int newidx;
7386
7387 if (sec_data->map == NULL)
7388 {
7389 sec_data->map = (elf32_arm_section_map *)
7390 bfd_malloc (sizeof (elf32_arm_section_map));
7391 sec_data->mapcount = 0;
7392 sec_data->mapsize = 1;
7393 }
7394
7395 newidx = sec_data->mapcount++;
7396
7397 if (sec_data->mapcount > sec_data->mapsize)
7398 {
7399 sec_data->mapsize *= 2;
7400 sec_data->map = (elf32_arm_section_map *)
7401 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
7402 * sizeof (elf32_arm_section_map));
7403 }
7404
7405 if (sec_data->map)
7406 {
7407 sec_data->map[newidx].vma = vma;
7408 sec_data->map[newidx].type = type;
7409 }
7410 }
7411
7412
7413 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
7414 veneers are handled for now. */
7415
7416 static bfd_vma
7417 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
7418 elf32_vfp11_erratum_list *branch,
7419 bfd *branch_bfd,
7420 asection *branch_sec,
7421 unsigned int offset)
7422 {
7423 asection *s;
7424 struct elf32_arm_link_hash_table *hash_table;
7425 char *tmp_name;
7426 struct elf_link_hash_entry *myh;
7427 struct bfd_link_hash_entry *bh;
7428 bfd_vma val;
7429 struct _arm_elf_section_data *sec_data;
7430 elf32_vfp11_erratum_list *newerr;
7431
7432 hash_table = elf32_arm_hash_table (link_info);
7433 BFD_ASSERT (hash_table != NULL);
7434 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
7435
7436 s = bfd_get_linker_section
7437 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
7438
7439 sec_data = elf32_arm_section_data (s);
7440
7441 BFD_ASSERT (s != NULL);
7442
7443 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7444 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
7445 BFD_ASSERT (tmp_name);
7446
7447 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
7448 hash_table->num_vfp11_fixes);
7449
7450 myh = elf_link_hash_lookup
7451 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7452
7453 BFD_ASSERT (myh == NULL);
7454
7455 bh = NULL;
7456 val = hash_table->vfp11_erratum_glue_size;
7457 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
7458 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7459 NULL, TRUE, FALSE, &bh);
7460
7461 myh = (struct elf_link_hash_entry *) bh;
7462 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7463 myh->forced_local = 1;
7464
7465 /* Link veneer back to calling location. */
7466 sec_data->erratumcount += 1;
7467 newerr = (elf32_vfp11_erratum_list *)
7468 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
7469
7470 newerr->type = VFP11_ERRATUM_ARM_VENEER;
7471 newerr->vma = -1;
7472 newerr->u.v.branch = branch;
7473 newerr->u.v.id = hash_table->num_vfp11_fixes;
7474 branch->u.b.veneer = newerr;
7475
7476 newerr->next = sec_data->erratumlist;
7477 sec_data->erratumlist = newerr;
7478
7479 /* A symbol for the return from the veneer. */
7480 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
7481 hash_table->num_vfp11_fixes);
7482
7483 myh = elf_link_hash_lookup
7484 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7485
7486 if (myh != NULL)
7487 abort ();
7488
7489 bh = NULL;
7490 val = offset + 4;
7491 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
7492 branch_sec, val, NULL, TRUE, FALSE, &bh);
7493
7494 myh = (struct elf_link_hash_entry *) bh;
7495 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7496 myh->forced_local = 1;
7497
7498 free (tmp_name);
7499
7500 /* Generate a mapping symbol for the veneer section, and explicitly add an
7501 entry for that symbol to the code/data map for the section. */
7502 if (hash_table->vfp11_erratum_glue_size == 0)
7503 {
7504 bh = NULL;
7505 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
7506 ever requires this erratum fix. */
7507 _bfd_generic_link_add_one_symbol (link_info,
7508 hash_table->bfd_of_glue_owner, "$a",
7509 BSF_LOCAL, s, 0, NULL,
7510 TRUE, FALSE, &bh);
7511
7512 myh = (struct elf_link_hash_entry *) bh;
7513 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7514 myh->forced_local = 1;
7515
7516 /* The elf32_arm_init_maps function only cares about symbols from input
7517 BFDs. We must make a note of this generated mapping symbol
7518 ourselves so that code byteswapping works properly in
7519 elf32_arm_write_section. */
7520 elf32_arm_section_map_add (s, 'a', 0);
7521 }
7522
7523 s->size += VFP11_ERRATUM_VENEER_SIZE;
7524 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
7525 hash_table->num_vfp11_fixes++;
7526
7527 /* The offset of the veneer. */
7528 return val;
7529 }
7530
7531 /* Record information about a STM32L4XX STM erratum veneer. Only THUMB-mode
7532 veneers need to be handled because used only in Cortex-M. */
7533
7534 static bfd_vma
7535 record_stm32l4xx_erratum_veneer (struct bfd_link_info *link_info,
7536 elf32_stm32l4xx_erratum_list *branch,
7537 bfd *branch_bfd,
7538 asection *branch_sec,
7539 unsigned int offset,
7540 bfd_size_type veneer_size)
7541 {
7542 asection *s;
7543 struct elf32_arm_link_hash_table *hash_table;
7544 char *tmp_name;
7545 struct elf_link_hash_entry *myh;
7546 struct bfd_link_hash_entry *bh;
7547 bfd_vma val;
7548 struct _arm_elf_section_data *sec_data;
7549 elf32_stm32l4xx_erratum_list *newerr;
7550
7551 hash_table = elf32_arm_hash_table (link_info);
7552 BFD_ASSERT (hash_table != NULL);
7553 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
7554
7555 s = bfd_get_linker_section
7556 (hash_table->bfd_of_glue_owner, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7557
7558 BFD_ASSERT (s != NULL);
7559
7560 sec_data = elf32_arm_section_data (s);
7561
7562 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7563 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
7564 BFD_ASSERT (tmp_name);
7565
7566 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
7567 hash_table->num_stm32l4xx_fixes);
7568
7569 myh = elf_link_hash_lookup
7570 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7571
7572 BFD_ASSERT (myh == NULL);
7573
7574 bh = NULL;
7575 val = hash_table->stm32l4xx_erratum_glue_size;
7576 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
7577 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7578 NULL, TRUE, FALSE, &bh);
7579
7580 myh = (struct elf_link_hash_entry *) bh;
7581 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7582 myh->forced_local = 1;
7583
7584 /* Link veneer back to calling location. */
7585 sec_data->stm32l4xx_erratumcount += 1;
7586 newerr = (elf32_stm32l4xx_erratum_list *)
7587 bfd_zmalloc (sizeof (elf32_stm32l4xx_erratum_list));
7588
7589 newerr->type = STM32L4XX_ERRATUM_VENEER;
7590 newerr->vma = -1;
7591 newerr->u.v.branch = branch;
7592 newerr->u.v.id = hash_table->num_stm32l4xx_fixes;
7593 branch->u.b.veneer = newerr;
7594
7595 newerr->next = sec_data->stm32l4xx_erratumlist;
7596 sec_data->stm32l4xx_erratumlist = newerr;
7597
7598 /* A symbol for the return from the veneer. */
7599 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
7600 hash_table->num_stm32l4xx_fixes);
7601
7602 myh = elf_link_hash_lookup
7603 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7604
7605 if (myh != NULL)
7606 abort ();
7607
7608 bh = NULL;
7609 val = offset + 4;
7610 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
7611 branch_sec, val, NULL, TRUE, FALSE, &bh);
7612
7613 myh = (struct elf_link_hash_entry *) bh;
7614 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7615 myh->forced_local = 1;
7616
7617 free (tmp_name);
7618
7619 /* Generate a mapping symbol for the veneer section, and explicitly add an
7620 entry for that symbol to the code/data map for the section. */
7621 if (hash_table->stm32l4xx_erratum_glue_size == 0)
7622 {
7623 bh = NULL;
7624 /* Creates a THUMB symbol since there is no other choice. */
7625 _bfd_generic_link_add_one_symbol (link_info,
7626 hash_table->bfd_of_glue_owner, "$t",
7627 BSF_LOCAL, s, 0, NULL,
7628 TRUE, FALSE, &bh);
7629
7630 myh = (struct elf_link_hash_entry *) bh;
7631 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7632 myh->forced_local = 1;
7633
7634 /* The elf32_arm_init_maps function only cares about symbols from input
7635 BFDs. We must make a note of this generated mapping symbol
7636 ourselves so that code byteswapping works properly in
7637 elf32_arm_write_section. */
7638 elf32_arm_section_map_add (s, 't', 0);
7639 }
7640
7641 s->size += veneer_size;
7642 hash_table->stm32l4xx_erratum_glue_size += veneer_size;
7643 hash_table->num_stm32l4xx_fixes++;
7644
7645 /* The offset of the veneer. */
7646 return val;
7647 }
7648
7649 #define ARM_GLUE_SECTION_FLAGS \
7650 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
7651 | SEC_READONLY | SEC_LINKER_CREATED)
7652
7653 /* Create a fake section for use by the ARM backend of the linker. */
7654
7655 static bfd_boolean
7656 arm_make_glue_section (bfd * abfd, const char * name)
7657 {
7658 asection * sec;
7659
7660 sec = bfd_get_linker_section (abfd, name);
7661 if (sec != NULL)
7662 /* Already made. */
7663 return TRUE;
7664
7665 sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
7666
7667 if (sec == NULL
7668 || !bfd_set_section_alignment (sec, 2))
7669 return FALSE;
7670
7671 /* Set the gc mark to prevent the section from being removed by garbage
7672 collection, despite the fact that no relocs refer to this section. */
7673 sec->gc_mark = 1;
7674
7675 return TRUE;
7676 }
7677
7678 /* Set size of .plt entries. This function is called from the
7679 linker scripts in ld/emultempl/{armelf}.em. */
7680
7681 void
7682 bfd_elf32_arm_use_long_plt (void)
7683 {
7684 elf32_arm_use_long_plt_entry = TRUE;
7685 }
7686
7687 /* Add the glue sections to ABFD. This function is called from the
7688 linker scripts in ld/emultempl/{armelf}.em. */
7689
7690 bfd_boolean
7691 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
7692 struct bfd_link_info *info)
7693 {
7694 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
7695 bfd_boolean dostm32l4xx = globals
7696 && globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE;
7697 bfd_boolean addglue;
7698
7699 /* If we are only performing a partial
7700 link do not bother adding the glue. */
7701 if (bfd_link_relocatable (info))
7702 return TRUE;
7703
7704 addglue = arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
7705 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
7706 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
7707 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
7708
7709 if (!dostm32l4xx)
7710 return addglue;
7711
7712 return addglue
7713 && arm_make_glue_section (abfd, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7714 }
7715
7716 /* Mark output sections of veneers needing a dedicated one with SEC_KEEP. This
7717 ensures they are not marked for deletion by
7718 strip_excluded_output_sections () when veneers are going to be created
7719 later. Not doing so would trigger assert on empty section size in
7720 lang_size_sections_1 (). */
7721
7722 void
7723 bfd_elf32_arm_keep_private_stub_output_sections (struct bfd_link_info *info)
7724 {
7725 enum elf32_arm_stub_type stub_type;
7726
7727 /* If we are only performing a partial
7728 link do not bother adding the glue. */
7729 if (bfd_link_relocatable (info))
7730 return;
7731
7732 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
7733 {
7734 asection *out_sec;
7735 const char *out_sec_name;
7736
7737 if (!arm_dedicated_stub_output_section_required (stub_type))
7738 continue;
7739
7740 out_sec_name = arm_dedicated_stub_output_section_name (stub_type);
7741 out_sec = bfd_get_section_by_name (info->output_bfd, out_sec_name);
7742 if (out_sec != NULL)
7743 out_sec->flags |= SEC_KEEP;
7744 }
7745 }
7746
7747 /* Select a BFD to be used to hold the sections used by the glue code.
7748 This function is called from the linker scripts in ld/emultempl/
7749 {armelf/pe}.em. */
7750
7751 bfd_boolean
7752 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
7753 {
7754 struct elf32_arm_link_hash_table *globals;
7755
7756 /* If we are only performing a partial link
7757 do not bother getting a bfd to hold the glue. */
7758 if (bfd_link_relocatable (info))
7759 return TRUE;
7760
7761 /* Make sure we don't attach the glue sections to a dynamic object. */
7762 BFD_ASSERT (!(abfd->flags & DYNAMIC));
7763
7764 globals = elf32_arm_hash_table (info);
7765 BFD_ASSERT (globals != NULL);
7766
7767 if (globals->bfd_of_glue_owner != NULL)
7768 return TRUE;
7769
7770 /* Save the bfd for later use. */
7771 globals->bfd_of_glue_owner = abfd;
7772
7773 return TRUE;
7774 }
7775
7776 static void
7777 check_use_blx (struct elf32_arm_link_hash_table *globals)
7778 {
7779 int cpu_arch;
7780
7781 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
7782 Tag_CPU_arch);
7783
7784 if (globals->fix_arm1176)
7785 {
7786 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
7787 globals->use_blx = 1;
7788 }
7789 else
7790 {
7791 if (cpu_arch > TAG_CPU_ARCH_V4T)
7792 globals->use_blx = 1;
7793 }
7794 }
7795
7796 bfd_boolean
7797 bfd_elf32_arm_process_before_allocation (bfd *abfd,
7798 struct bfd_link_info *link_info)
7799 {
7800 Elf_Internal_Shdr *symtab_hdr;
7801 Elf_Internal_Rela *internal_relocs = NULL;
7802 Elf_Internal_Rela *irel, *irelend;
7803 bfd_byte *contents = NULL;
7804
7805 asection *sec;
7806 struct elf32_arm_link_hash_table *globals;
7807
7808 /* If we are only performing a partial link do not bother
7809 to construct any glue. */
7810 if (bfd_link_relocatable (link_info))
7811 return TRUE;
7812
7813 /* Here we have a bfd that is to be included on the link. We have a
7814 hook to do reloc rummaging, before section sizes are nailed down. */
7815 globals = elf32_arm_hash_table (link_info);
7816 BFD_ASSERT (globals != NULL);
7817
7818 check_use_blx (globals);
7819
7820 if (globals->byteswap_code && !bfd_big_endian (abfd))
7821 {
7822 _bfd_error_handler (_("%pB: BE8 images only valid in big-endian mode"),
7823 abfd);
7824 return FALSE;
7825 }
7826
7827 /* PR 5398: If we have not decided to include any loadable sections in
7828 the output then we will not have a glue owner bfd. This is OK, it
7829 just means that there is nothing else for us to do here. */
7830 if (globals->bfd_of_glue_owner == NULL)
7831 return TRUE;
7832
7833 /* Rummage around all the relocs and map the glue vectors. */
7834 sec = abfd->sections;
7835
7836 if (sec == NULL)
7837 return TRUE;
7838
7839 for (; sec != NULL; sec = sec->next)
7840 {
7841 if (sec->reloc_count == 0)
7842 continue;
7843
7844 if ((sec->flags & SEC_EXCLUDE) != 0)
7845 continue;
7846
7847 symtab_hdr = & elf_symtab_hdr (abfd);
7848
7849 /* Load the relocs. */
7850 internal_relocs
7851 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
7852
7853 if (internal_relocs == NULL)
7854 goto error_return;
7855
7856 irelend = internal_relocs + sec->reloc_count;
7857 for (irel = internal_relocs; irel < irelend; irel++)
7858 {
7859 long r_type;
7860 unsigned long r_index;
7861
7862 struct elf_link_hash_entry *h;
7863
7864 r_type = ELF32_R_TYPE (irel->r_info);
7865 r_index = ELF32_R_SYM (irel->r_info);
7866
7867 /* These are the only relocation types we care about. */
7868 if ( r_type != R_ARM_PC24
7869 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
7870 continue;
7871
7872 /* Get the section contents if we haven't done so already. */
7873 if (contents == NULL)
7874 {
7875 /* Get cached copy if it exists. */
7876 if (elf_section_data (sec)->this_hdr.contents != NULL)
7877 contents = elf_section_data (sec)->this_hdr.contents;
7878 else
7879 {
7880 /* Go get them off disk. */
7881 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
7882 goto error_return;
7883 }
7884 }
7885
7886 if (r_type == R_ARM_V4BX)
7887 {
7888 int reg;
7889
7890 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
7891 record_arm_bx_glue (link_info, reg);
7892 continue;
7893 }
7894
7895 /* If the relocation is not against a symbol it cannot concern us. */
7896 h = NULL;
7897
7898 /* We don't care about local symbols. */
7899 if (r_index < symtab_hdr->sh_info)
7900 continue;
7901
7902 /* This is an external symbol. */
7903 r_index -= symtab_hdr->sh_info;
7904 h = (struct elf_link_hash_entry *)
7905 elf_sym_hashes (abfd)[r_index];
7906
7907 /* If the relocation is against a static symbol it must be within
7908 the current section and so cannot be a cross ARM/Thumb relocation. */
7909 if (h == NULL)
7910 continue;
7911
7912 /* If the call will go through a PLT entry then we do not need
7913 glue. */
7914 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
7915 continue;
7916
7917 switch (r_type)
7918 {
7919 case R_ARM_PC24:
7920 /* This one is a call from arm code. We need to look up
7921 the target of the call. If it is a thumb target, we
7922 insert glue. */
7923 if (ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
7924 == ST_BRANCH_TO_THUMB)
7925 record_arm_to_thumb_glue (link_info, h);
7926 break;
7927
7928 default:
7929 abort ();
7930 }
7931 }
7932
7933 if (elf_section_data (sec)->this_hdr.contents != contents)
7934 free (contents);
7935 contents = NULL;
7936
7937 if (elf_section_data (sec)->relocs != internal_relocs)
7938 free (internal_relocs);
7939 internal_relocs = NULL;
7940 }
7941
7942 return TRUE;
7943
7944 error_return:
7945 if (elf_section_data (sec)->this_hdr.contents != contents)
7946 free (contents);
7947 if (elf_section_data (sec)->relocs != internal_relocs)
7948 free (internal_relocs);
7949
7950 return FALSE;
7951 }
7952 #endif
7953
7954
7955 /* Initialise maps of ARM/Thumb/data for input BFDs. */
7956
7957 void
7958 bfd_elf32_arm_init_maps (bfd *abfd)
7959 {
7960 Elf_Internal_Sym *isymbuf;
7961 Elf_Internal_Shdr *hdr;
7962 unsigned int i, localsyms;
7963
7964 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
7965 if (! is_arm_elf (abfd))
7966 return;
7967
7968 if ((abfd->flags & DYNAMIC) != 0)
7969 return;
7970
7971 hdr = & elf_symtab_hdr (abfd);
7972 localsyms = hdr->sh_info;
7973
7974 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
7975 should contain the number of local symbols, which should come before any
7976 global symbols. Mapping symbols are always local. */
7977 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
7978 NULL);
7979
7980 /* No internal symbols read? Skip this BFD. */
7981 if (isymbuf == NULL)
7982 return;
7983
7984 for (i = 0; i < localsyms; i++)
7985 {
7986 Elf_Internal_Sym *isym = &isymbuf[i];
7987 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
7988 const char *name;
7989
7990 if (sec != NULL
7991 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
7992 {
7993 name = bfd_elf_string_from_elf_section (abfd,
7994 hdr->sh_link, isym->st_name);
7995
7996 if (bfd_is_arm_special_symbol_name (name,
7997 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
7998 elf32_arm_section_map_add (sec, name[1], isym->st_value);
7999 }
8000 }
8001 }
8002
8003
8004 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
8005 say what they wanted. */
8006
8007 void
8008 bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
8009 {
8010 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8011 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
8012
8013 if (globals == NULL)
8014 return;
8015
8016 if (globals->fix_cortex_a8 == -1)
8017 {
8018 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
8019 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
8020 && (out_attr[Tag_CPU_arch_profile].i == 'A'
8021 || out_attr[Tag_CPU_arch_profile].i == 0))
8022 globals->fix_cortex_a8 = 1;
8023 else
8024 globals->fix_cortex_a8 = 0;
8025 }
8026 }
8027
8028
8029 void
8030 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
8031 {
8032 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8033 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
8034
8035 if (globals == NULL)
8036 return;
8037 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
8038 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
8039 {
8040 switch (globals->vfp11_fix)
8041 {
8042 case BFD_ARM_VFP11_FIX_DEFAULT:
8043 case BFD_ARM_VFP11_FIX_NONE:
8044 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
8045 break;
8046
8047 default:
8048 /* Give a warning, but do as the user requests anyway. */
8049 _bfd_error_handler (_("%pB: warning: selected VFP11 erratum "
8050 "workaround is not necessary for target architecture"), obfd);
8051 }
8052 }
8053 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
8054 /* For earlier architectures, we might need the workaround, but do not
8055 enable it by default. If users is running with broken hardware, they
8056 must enable the erratum fix explicitly. */
8057 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
8058 }
8059
8060 void
8061 bfd_elf32_arm_set_stm32l4xx_fix (bfd *obfd, struct bfd_link_info *link_info)
8062 {
8063 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8064 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
8065
8066 if (globals == NULL)
8067 return;
8068
8069 /* We assume only Cortex-M4 may require the fix. */
8070 if (out_attr[Tag_CPU_arch].i != TAG_CPU_ARCH_V7E_M
8071 || out_attr[Tag_CPU_arch_profile].i != 'M')
8072 {
8073 if (globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE)
8074 /* Give a warning, but do as the user requests anyway. */
8075 _bfd_error_handler
8076 (_("%pB: warning: selected STM32L4XX erratum "
8077 "workaround is not necessary for target architecture"), obfd);
8078 }
8079 }
8080
8081 enum bfd_arm_vfp11_pipe
8082 {
8083 VFP11_FMAC,
8084 VFP11_LS,
8085 VFP11_DS,
8086 VFP11_BAD
8087 };
8088
8089 /* Return a VFP register number. This is encoded as RX:X for single-precision
8090 registers, or X:RX for double-precision registers, where RX is the group of
8091 four bits in the instruction encoding and X is the single extension bit.
8092 RX and X fields are specified using their lowest (starting) bit. The return
8093 value is:
8094
8095 0...31: single-precision registers s0...s31
8096 32...63: double-precision registers d0...d31.
8097
8098 Although X should be zero for VFP11 (encoding d0...d15 only), we might
8099 encounter VFP3 instructions, so we allow the full range for DP registers. */
8100
8101 static unsigned int
8102 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
8103 unsigned int x)
8104 {
8105 if (is_double)
8106 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
8107 else
8108 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
8109 }
8110
8111 /* Set bits in *WMASK according to a register number REG as encoded by
8112 bfd_arm_vfp11_regno(). Ignore d16-d31. */
8113
8114 static void
8115 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
8116 {
8117 if (reg < 32)
8118 *wmask |= 1 << reg;
8119 else if (reg < 48)
8120 *wmask |= 3 << ((reg - 32) * 2);
8121 }
8122
8123 /* Return TRUE if WMASK overwrites anything in REGS. */
8124
8125 static bfd_boolean
8126 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
8127 {
8128 int i;
8129
8130 for (i = 0; i < numregs; i++)
8131 {
8132 unsigned int reg = regs[i];
8133
8134 if (reg < 32 && (wmask & (1 << reg)) != 0)
8135 return TRUE;
8136
8137 reg -= 32;
8138
8139 if (reg >= 16)
8140 continue;
8141
8142 if ((wmask & (3 << (reg * 2))) != 0)
8143 return TRUE;
8144 }
8145
8146 return FALSE;
8147 }
8148
8149 /* In this function, we're interested in two things: finding input registers
8150 for VFP data-processing instructions, and finding the set of registers which
8151 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
8152 hold the written set, so FLDM etc. are easy to deal with (we're only
8153 interested in 32 SP registers or 16 dp registers, due to the VFP version
8154 implemented by the chip in question). DP registers are marked by setting
8155 both SP registers in the write mask). */
8156
8157 static enum bfd_arm_vfp11_pipe
8158 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
8159 int *numregs)
8160 {
8161 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
8162 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
8163
8164 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
8165 {
8166 unsigned int pqrs;
8167 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
8168 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
8169
8170 pqrs = ((insn & 0x00800000) >> 20)
8171 | ((insn & 0x00300000) >> 19)
8172 | ((insn & 0x00000040) >> 6);
8173
8174 switch (pqrs)
8175 {
8176 case 0: /* fmac[sd]. */
8177 case 1: /* fnmac[sd]. */
8178 case 2: /* fmsc[sd]. */
8179 case 3: /* fnmsc[sd]. */
8180 vpipe = VFP11_FMAC;
8181 bfd_arm_vfp11_write_mask (destmask, fd);
8182 regs[0] = fd;
8183 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
8184 regs[2] = fm;
8185 *numregs = 3;
8186 break;
8187
8188 case 4: /* fmul[sd]. */
8189 case 5: /* fnmul[sd]. */
8190 case 6: /* fadd[sd]. */
8191 case 7: /* fsub[sd]. */
8192 vpipe = VFP11_FMAC;
8193 goto vfp_binop;
8194
8195 case 8: /* fdiv[sd]. */
8196 vpipe = VFP11_DS;
8197 vfp_binop:
8198 bfd_arm_vfp11_write_mask (destmask, fd);
8199 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
8200 regs[1] = fm;
8201 *numregs = 2;
8202 break;
8203
8204 case 15: /* extended opcode. */
8205 {
8206 unsigned int extn = ((insn >> 15) & 0x1e)
8207 | ((insn >> 7) & 1);
8208
8209 switch (extn)
8210 {
8211 case 0: /* fcpy[sd]. */
8212 case 1: /* fabs[sd]. */
8213 case 2: /* fneg[sd]. */
8214 case 8: /* fcmp[sd]. */
8215 case 9: /* fcmpe[sd]. */
8216 case 10: /* fcmpz[sd]. */
8217 case 11: /* fcmpez[sd]. */
8218 case 16: /* fuito[sd]. */
8219 case 17: /* fsito[sd]. */
8220 case 24: /* ftoui[sd]. */
8221 case 25: /* ftouiz[sd]. */
8222 case 26: /* ftosi[sd]. */
8223 case 27: /* ftosiz[sd]. */
8224 /* These instructions will not bounce due to underflow. */
8225 *numregs = 0;
8226 vpipe = VFP11_FMAC;
8227 break;
8228
8229 case 3: /* fsqrt[sd]. */
8230 /* fsqrt cannot underflow, but it can (perhaps) overwrite
8231 registers to cause the erratum in previous instructions. */
8232 bfd_arm_vfp11_write_mask (destmask, fd);
8233 vpipe = VFP11_DS;
8234 break;
8235
8236 case 15: /* fcvt{ds,sd}. */
8237 {
8238 int rnum = 0;
8239
8240 bfd_arm_vfp11_write_mask (destmask, fd);
8241
8242 /* Only FCVTSD can underflow. */
8243 if ((insn & 0x100) != 0)
8244 regs[rnum++] = fm;
8245
8246 *numregs = rnum;
8247
8248 vpipe = VFP11_FMAC;
8249 }
8250 break;
8251
8252 default:
8253 return VFP11_BAD;
8254 }
8255 }
8256 break;
8257
8258 default:
8259 return VFP11_BAD;
8260 }
8261 }
8262 /* Two-register transfer. */
8263 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
8264 {
8265 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
8266
8267 if ((insn & 0x100000) == 0)
8268 {
8269 if (is_double)
8270 bfd_arm_vfp11_write_mask (destmask, fm);
8271 else
8272 {
8273 bfd_arm_vfp11_write_mask (destmask, fm);
8274 bfd_arm_vfp11_write_mask (destmask, fm + 1);
8275 }
8276 }
8277
8278 vpipe = VFP11_LS;
8279 }
8280 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
8281 {
8282 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
8283 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
8284
8285 switch (puw)
8286 {
8287 case 0: /* Two-reg transfer. We should catch these above. */
8288 abort ();
8289
8290 case 2: /* fldm[sdx]. */
8291 case 3:
8292 case 5:
8293 {
8294 unsigned int i, offset = insn & 0xff;
8295
8296 if (is_double)
8297 offset >>= 1;
8298
8299 for (i = fd; i < fd + offset; i++)
8300 bfd_arm_vfp11_write_mask (destmask, i);
8301 }
8302 break;
8303
8304 case 4: /* fld[sd]. */
8305 case 6:
8306 bfd_arm_vfp11_write_mask (destmask, fd);
8307 break;
8308
8309 default:
8310 return VFP11_BAD;
8311 }
8312
8313 vpipe = VFP11_LS;
8314 }
8315 /* Single-register transfer. Note L==0. */
8316 else if ((insn & 0x0f100e10) == 0x0e000a10)
8317 {
8318 unsigned int opcode = (insn >> 21) & 7;
8319 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
8320
8321 switch (opcode)
8322 {
8323 case 0: /* fmsr/fmdlr. */
8324 case 1: /* fmdhr. */
8325 /* Mark fmdhr and fmdlr as writing to the whole of the DP
8326 destination register. I don't know if this is exactly right,
8327 but it is the conservative choice. */
8328 bfd_arm_vfp11_write_mask (destmask, fn);
8329 break;
8330
8331 case 7: /* fmxr. */
8332 break;
8333 }
8334
8335 vpipe = VFP11_LS;
8336 }
8337
8338 return vpipe;
8339 }
8340
8341
8342 static int elf32_arm_compare_mapping (const void * a, const void * b);
8343
8344
8345 /* Look for potentially-troublesome code sequences which might trigger the
8346 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
8347 (available from ARM) for details of the erratum. A short version is
8348 described in ld.texinfo. */
8349
8350 bfd_boolean
8351 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
8352 {
8353 asection *sec;
8354 bfd_byte *contents = NULL;
8355 int state = 0;
8356 int regs[3], numregs = 0;
8357 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8358 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
8359
8360 if (globals == NULL)
8361 return FALSE;
8362
8363 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
8364 The states transition as follows:
8365
8366 0 -> 1 (vector) or 0 -> 2 (scalar)
8367 A VFP FMAC-pipeline instruction has been seen. Fill
8368 regs[0]..regs[numregs-1] with its input operands. Remember this
8369 instruction in 'first_fmac'.
8370
8371 1 -> 2
8372 Any instruction, except for a VFP instruction which overwrites
8373 regs[*].
8374
8375 1 -> 3 [ -> 0 ] or
8376 2 -> 3 [ -> 0 ]
8377 A VFP instruction has been seen which overwrites any of regs[*].
8378 We must make a veneer! Reset state to 0 before examining next
8379 instruction.
8380
8381 2 -> 0
8382 If we fail to match anything in state 2, reset to state 0 and reset
8383 the instruction pointer to the instruction after 'first_fmac'.
8384
8385 If the VFP11 vector mode is in use, there must be at least two unrelated
8386 instructions between anti-dependent VFP11 instructions to properly avoid
8387 triggering the erratum, hence the use of the extra state 1. */
8388
8389 /* If we are only performing a partial link do not bother
8390 to construct any glue. */
8391 if (bfd_link_relocatable (link_info))
8392 return TRUE;
8393
8394 /* Skip if this bfd does not correspond to an ELF image. */
8395 if (! is_arm_elf (abfd))
8396 return TRUE;
8397
8398 /* We should have chosen a fix type by the time we get here. */
8399 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
8400
8401 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
8402 return TRUE;
8403
8404 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8405 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8406 return TRUE;
8407
8408 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8409 {
8410 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
8411 struct _arm_elf_section_data *sec_data;
8412
8413 /* If we don't have executable progbits, we're not interested in this
8414 section. Also skip if section is to be excluded. */
8415 if (elf_section_type (sec) != SHT_PROGBITS
8416 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8417 || (sec->flags & SEC_EXCLUDE) != 0
8418 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8419 || sec->output_section == bfd_abs_section_ptr
8420 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
8421 continue;
8422
8423 sec_data = elf32_arm_section_data (sec);
8424
8425 if (sec_data->mapcount == 0)
8426 continue;
8427
8428 if (elf_section_data (sec)->this_hdr.contents != NULL)
8429 contents = elf_section_data (sec)->this_hdr.contents;
8430 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8431 goto error_return;
8432
8433 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8434 elf32_arm_compare_mapping);
8435
8436 for (span = 0; span < sec_data->mapcount; span++)
8437 {
8438 unsigned int span_start = sec_data->map[span].vma;
8439 unsigned int span_end = (span == sec_data->mapcount - 1)
8440 ? sec->size : sec_data->map[span + 1].vma;
8441 char span_type = sec_data->map[span].type;
8442
8443 /* FIXME: Only ARM mode is supported at present. We may need to
8444 support Thumb-2 mode also at some point. */
8445 if (span_type != 'a')
8446 continue;
8447
8448 for (i = span_start; i < span_end;)
8449 {
8450 unsigned int next_i = i + 4;
8451 unsigned int insn = bfd_big_endian (abfd)
8452 ? (((unsigned) contents[i] << 24)
8453 | (contents[i + 1] << 16)
8454 | (contents[i + 2] << 8)
8455 | contents[i + 3])
8456 : (((unsigned) contents[i + 3] << 24)
8457 | (contents[i + 2] << 16)
8458 | (contents[i + 1] << 8)
8459 | contents[i]);
8460 unsigned int writemask = 0;
8461 enum bfd_arm_vfp11_pipe vpipe;
8462
8463 switch (state)
8464 {
8465 case 0:
8466 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
8467 &numregs);
8468 /* I'm assuming the VFP11 erratum can trigger with denorm
8469 operands on either the FMAC or the DS pipeline. This might
8470 lead to slightly overenthusiastic veneer insertion. */
8471 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
8472 {
8473 state = use_vector ? 1 : 2;
8474 first_fmac = i;
8475 veneer_of_insn = insn;
8476 }
8477 break;
8478
8479 case 1:
8480 {
8481 int other_regs[3], other_numregs;
8482 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
8483 other_regs,
8484 &other_numregs);
8485 if (vpipe != VFP11_BAD
8486 && bfd_arm_vfp11_antidependency (writemask, regs,
8487 numregs))
8488 state = 3;
8489 else
8490 state = 2;
8491 }
8492 break;
8493
8494 case 2:
8495 {
8496 int other_regs[3], other_numregs;
8497 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
8498 other_regs,
8499 &other_numregs);
8500 if (vpipe != VFP11_BAD
8501 && bfd_arm_vfp11_antidependency (writemask, regs,
8502 numregs))
8503 state = 3;
8504 else
8505 {
8506 state = 0;
8507 next_i = first_fmac + 4;
8508 }
8509 }
8510 break;
8511
8512 case 3:
8513 abort (); /* Should be unreachable. */
8514 }
8515
8516 if (state == 3)
8517 {
8518 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
8519 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
8520
8521 elf32_arm_section_data (sec)->erratumcount += 1;
8522
8523 newerr->u.b.vfp_insn = veneer_of_insn;
8524
8525 switch (span_type)
8526 {
8527 case 'a':
8528 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
8529 break;
8530
8531 default:
8532 abort ();
8533 }
8534
8535 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
8536 first_fmac);
8537
8538 newerr->vma = -1;
8539
8540 newerr->next = sec_data->erratumlist;
8541 sec_data->erratumlist = newerr;
8542
8543 state = 0;
8544 }
8545
8546 i = next_i;
8547 }
8548 }
8549
8550 if (elf_section_data (sec)->this_hdr.contents != contents)
8551 free (contents);
8552 contents = NULL;
8553 }
8554
8555 return TRUE;
8556
8557 error_return:
8558 if (elf_section_data (sec)->this_hdr.contents != contents)
8559 free (contents);
8560
8561 return FALSE;
8562 }
8563
8564 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
8565 after sections have been laid out, using specially-named symbols. */
8566
8567 void
8568 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
8569 struct bfd_link_info *link_info)
8570 {
8571 asection *sec;
8572 struct elf32_arm_link_hash_table *globals;
8573 char *tmp_name;
8574
8575 if (bfd_link_relocatable (link_info))
8576 return;
8577
8578 /* Skip if this bfd does not correspond to an ELF image. */
8579 if (! is_arm_elf (abfd))
8580 return;
8581
8582 globals = elf32_arm_hash_table (link_info);
8583 if (globals == NULL)
8584 return;
8585
8586 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
8587 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
8588 BFD_ASSERT (tmp_name);
8589
8590 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8591 {
8592 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8593 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
8594
8595 for (; errnode != NULL; errnode = errnode->next)
8596 {
8597 struct elf_link_hash_entry *myh;
8598 bfd_vma vma;
8599
8600 switch (errnode->type)
8601 {
8602 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
8603 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
8604 /* Find veneer symbol. */
8605 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
8606 errnode->u.b.veneer->u.v.id);
8607
8608 myh = elf_link_hash_lookup
8609 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8610
8611 if (myh == NULL)
8612 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8613 abfd, "VFP11", tmp_name);
8614
8615 vma = myh->root.u.def.section->output_section->vma
8616 + myh->root.u.def.section->output_offset
8617 + myh->root.u.def.value;
8618
8619 errnode->u.b.veneer->vma = vma;
8620 break;
8621
8622 case VFP11_ERRATUM_ARM_VENEER:
8623 case VFP11_ERRATUM_THUMB_VENEER:
8624 /* Find return location. */
8625 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
8626 errnode->u.v.id);
8627
8628 myh = elf_link_hash_lookup
8629 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8630
8631 if (myh == NULL)
8632 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8633 abfd, "VFP11", tmp_name);
8634
8635 vma = myh->root.u.def.section->output_section->vma
8636 + myh->root.u.def.section->output_offset
8637 + myh->root.u.def.value;
8638
8639 errnode->u.v.branch->vma = vma;
8640 break;
8641
8642 default:
8643 abort ();
8644 }
8645 }
8646 }
8647
8648 free (tmp_name);
8649 }
8650
8651 /* Find virtual-memory addresses for STM32L4XX erratum veneers and
8652 return locations after sections have been laid out, using
8653 specially-named symbols. */
8654
8655 void
8656 bfd_elf32_arm_stm32l4xx_fix_veneer_locations (bfd *abfd,
8657 struct bfd_link_info *link_info)
8658 {
8659 asection *sec;
8660 struct elf32_arm_link_hash_table *globals;
8661 char *tmp_name;
8662
8663 if (bfd_link_relocatable (link_info))
8664 return;
8665
8666 /* Skip if this bfd does not correspond to an ELF image. */
8667 if (! is_arm_elf (abfd))
8668 return;
8669
8670 globals = elf32_arm_hash_table (link_info);
8671 if (globals == NULL)
8672 return;
8673
8674 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
8675 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
8676 BFD_ASSERT (tmp_name);
8677
8678 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8679 {
8680 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8681 elf32_stm32l4xx_erratum_list *errnode = sec_data->stm32l4xx_erratumlist;
8682
8683 for (; errnode != NULL; errnode = errnode->next)
8684 {
8685 struct elf_link_hash_entry *myh;
8686 bfd_vma vma;
8687
8688 switch (errnode->type)
8689 {
8690 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
8691 /* Find veneer symbol. */
8692 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
8693 errnode->u.b.veneer->u.v.id);
8694
8695 myh = elf_link_hash_lookup
8696 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8697
8698 if (myh == NULL)
8699 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8700 abfd, "STM32L4XX", tmp_name);
8701
8702 vma = myh->root.u.def.section->output_section->vma
8703 + myh->root.u.def.section->output_offset
8704 + myh->root.u.def.value;
8705
8706 errnode->u.b.veneer->vma = vma;
8707 break;
8708
8709 case STM32L4XX_ERRATUM_VENEER:
8710 /* Find return location. */
8711 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
8712 errnode->u.v.id);
8713
8714 myh = elf_link_hash_lookup
8715 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8716
8717 if (myh == NULL)
8718 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8719 abfd, "STM32L4XX", tmp_name);
8720
8721 vma = myh->root.u.def.section->output_section->vma
8722 + myh->root.u.def.section->output_offset
8723 + myh->root.u.def.value;
8724
8725 errnode->u.v.branch->vma = vma;
8726 break;
8727
8728 default:
8729 abort ();
8730 }
8731 }
8732 }
8733
8734 free (tmp_name);
8735 }
8736
8737 static inline bfd_boolean
8738 is_thumb2_ldmia (const insn32 insn)
8739 {
8740 /* Encoding T2: LDM<c>.W <Rn>{!},<registers>
8741 1110 - 1000 - 10W1 - rrrr - PM (0) l - llll - llll - llll. */
8742 return (insn & 0xffd02000) == 0xe8900000;
8743 }
8744
8745 static inline bfd_boolean
8746 is_thumb2_ldmdb (const insn32 insn)
8747 {
8748 /* Encoding T1: LDMDB<c> <Rn>{!},<registers>
8749 1110 - 1001 - 00W1 - rrrr - PM (0) l - llll - llll - llll. */
8750 return (insn & 0xffd02000) == 0xe9100000;
8751 }
8752
8753 static inline bfd_boolean
8754 is_thumb2_vldm (const insn32 insn)
8755 {
8756 /* A6.5 Extension register load or store instruction
8757 A7.7.229
8758 We look for SP 32-bit and DP 64-bit registers.
8759 Encoding T1 VLDM{mode}<c> <Rn>{!}, <list>
8760 <list> is consecutive 64-bit registers
8761 1110 - 110P - UDW1 - rrrr - vvvv - 1011 - iiii - iiii
8762 Encoding T2 VLDM{mode}<c> <Rn>{!}, <list>
8763 <list> is consecutive 32-bit registers
8764 1110 - 110P - UDW1 - rrrr - vvvv - 1010 - iiii - iiii
8765 if P==0 && U==1 && W==1 && Rn=1101 VPOP
8766 if PUW=010 || PUW=011 || PUW=101 VLDM. */
8767 return
8768 (((insn & 0xfe100f00) == 0xec100b00) ||
8769 ((insn & 0xfe100f00) == 0xec100a00))
8770 && /* (IA without !). */
8771 (((((insn << 7) >> 28) & 0xd) == 0x4)
8772 /* (IA with !), includes VPOP (when reg number is SP). */
8773 || ((((insn << 7) >> 28) & 0xd) == 0x5)
8774 /* (DB with !). */
8775 || ((((insn << 7) >> 28) & 0xd) == 0x9));
8776 }
8777
8778 /* STM STM32L4XX erratum : This function assumes that it receives an LDM or
8779 VLDM opcode and:
8780 - computes the number and the mode of memory accesses
8781 - decides if the replacement should be done:
8782 . replaces only if > 8-word accesses
8783 . or (testing purposes only) replaces all accesses. */
8784
8785 static bfd_boolean
8786 stm32l4xx_need_create_replacing_stub (const insn32 insn,
8787 bfd_arm_stm32l4xx_fix stm32l4xx_fix)
8788 {
8789 int nb_words = 0;
8790
8791 /* The field encoding the register list is the same for both LDMIA
8792 and LDMDB encodings. */
8793 if (is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn))
8794 nb_words = elf32_arm_popcount (insn & 0x0000ffff);
8795 else if (is_thumb2_vldm (insn))
8796 nb_words = (insn & 0xff);
8797
8798 /* DEFAULT mode accounts for the real bug condition situation,
8799 ALL mode inserts stubs for each LDM/VLDM instruction (testing). */
8800 return
8801 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_DEFAULT) ? nb_words > 8 :
8802 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_ALL) ? TRUE : FALSE;
8803 }
8804
8805 /* Look for potentially-troublesome code sequences which might trigger
8806 the STM STM32L4XX erratum. */
8807
8808 bfd_boolean
8809 bfd_elf32_arm_stm32l4xx_erratum_scan (bfd *abfd,
8810 struct bfd_link_info *link_info)
8811 {
8812 asection *sec;
8813 bfd_byte *contents = NULL;
8814 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8815
8816 if (globals == NULL)
8817 return FALSE;
8818
8819 /* If we are only performing a partial link do not bother
8820 to construct any glue. */
8821 if (bfd_link_relocatable (link_info))
8822 return TRUE;
8823
8824 /* Skip if this bfd does not correspond to an ELF image. */
8825 if (! is_arm_elf (abfd))
8826 return TRUE;
8827
8828 if (globals->stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_NONE)
8829 return TRUE;
8830
8831 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8832 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8833 return TRUE;
8834
8835 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8836 {
8837 unsigned int i, span;
8838 struct _arm_elf_section_data *sec_data;
8839
8840 /* If we don't have executable progbits, we're not interested in this
8841 section. Also skip if section is to be excluded. */
8842 if (elf_section_type (sec) != SHT_PROGBITS
8843 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8844 || (sec->flags & SEC_EXCLUDE) != 0
8845 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8846 || sec->output_section == bfd_abs_section_ptr
8847 || strcmp (sec->name, STM32L4XX_ERRATUM_VENEER_SECTION_NAME) == 0)
8848 continue;
8849
8850 sec_data = elf32_arm_section_data (sec);
8851
8852 if (sec_data->mapcount == 0)
8853 continue;
8854
8855 if (elf_section_data (sec)->this_hdr.contents != NULL)
8856 contents = elf_section_data (sec)->this_hdr.contents;
8857 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8858 goto error_return;
8859
8860 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8861 elf32_arm_compare_mapping);
8862
8863 for (span = 0; span < sec_data->mapcount; span++)
8864 {
8865 unsigned int span_start = sec_data->map[span].vma;
8866 unsigned int span_end = (span == sec_data->mapcount - 1)
8867 ? sec->size : sec_data->map[span + 1].vma;
8868 char span_type = sec_data->map[span].type;
8869 int itblock_current_pos = 0;
8870
8871 /* Only Thumb2 mode need be supported with this CM4 specific
8872 code, we should not encounter any arm mode eg span_type
8873 != 'a'. */
8874 if (span_type != 't')
8875 continue;
8876
8877 for (i = span_start; i < span_end;)
8878 {
8879 unsigned int insn = bfd_get_16 (abfd, &contents[i]);
8880 bfd_boolean insn_32bit = FALSE;
8881 bfd_boolean is_ldm = FALSE;
8882 bfd_boolean is_vldm = FALSE;
8883 bfd_boolean is_not_last_in_it_block = FALSE;
8884
8885 /* The first 16-bits of all 32-bit thumb2 instructions start
8886 with opcode[15..13]=0b111 and the encoded op1 can be anything
8887 except opcode[12..11]!=0b00.
8888 See 32-bit Thumb instruction encoding. */
8889 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
8890 insn_32bit = TRUE;
8891
8892 /* Compute the predicate that tells if the instruction
8893 is concerned by the IT block
8894 - Creates an error if there is a ldm that is not
8895 last in the IT block thus cannot be replaced
8896 - Otherwise we can create a branch at the end of the
8897 IT block, it will be controlled naturally by IT
8898 with the proper pseudo-predicate
8899 - So the only interesting predicate is the one that
8900 tells that we are not on the last item of an IT
8901 block. */
8902 if (itblock_current_pos != 0)
8903 is_not_last_in_it_block = !!--itblock_current_pos;
8904
8905 if (insn_32bit)
8906 {
8907 /* Load the rest of the insn (in manual-friendly order). */
8908 insn = (insn << 16) | bfd_get_16 (abfd, &contents[i + 2]);
8909 is_ldm = is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn);
8910 is_vldm = is_thumb2_vldm (insn);
8911
8912 /* Veneers are created for (v)ldm depending on
8913 option flags and memory accesses conditions; but
8914 if the instruction is not the last instruction of
8915 an IT block, we cannot create a jump there, so we
8916 bail out. */
8917 if ((is_ldm || is_vldm)
8918 && stm32l4xx_need_create_replacing_stub
8919 (insn, globals->stm32l4xx_fix))
8920 {
8921 if (is_not_last_in_it_block)
8922 {
8923 _bfd_error_handler
8924 /* xgettext:c-format */
8925 (_("%pB(%pA+%#x): error: multiple load detected"
8926 " in non-last IT block instruction:"
8927 " STM32L4XX veneer cannot be generated; "
8928 "use gcc option -mrestrict-it to generate"
8929 " only one instruction per IT block"),
8930 abfd, sec, i);
8931 }
8932 else
8933 {
8934 elf32_stm32l4xx_erratum_list *newerr =
8935 (elf32_stm32l4xx_erratum_list *)
8936 bfd_zmalloc
8937 (sizeof (elf32_stm32l4xx_erratum_list));
8938
8939 elf32_arm_section_data (sec)
8940 ->stm32l4xx_erratumcount += 1;
8941 newerr->u.b.insn = insn;
8942 /* We create only thumb branches. */
8943 newerr->type =
8944 STM32L4XX_ERRATUM_BRANCH_TO_VENEER;
8945 record_stm32l4xx_erratum_veneer
8946 (link_info, newerr, abfd, sec,
8947 i,
8948 is_ldm ?
8949 STM32L4XX_ERRATUM_LDM_VENEER_SIZE:
8950 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
8951 newerr->vma = -1;
8952 newerr->next = sec_data->stm32l4xx_erratumlist;
8953 sec_data->stm32l4xx_erratumlist = newerr;
8954 }
8955 }
8956 }
8957 else
8958 {
8959 /* A7.7.37 IT p208
8960 IT blocks are only encoded in T1
8961 Encoding T1: IT{x{y{z}}} <firstcond>
8962 1 0 1 1 - 1 1 1 1 - firstcond - mask
8963 if mask = '0000' then see 'related encodings'
8964 We don't deal with UNPREDICTABLE, just ignore these.
8965 There can be no nested IT blocks so an IT block
8966 is naturally a new one for which it is worth
8967 computing its size. */
8968 bfd_boolean is_newitblock = ((insn & 0xff00) == 0xbf00)
8969 && ((insn & 0x000f) != 0x0000);
8970 /* If we have a new IT block we compute its size. */
8971 if (is_newitblock)
8972 {
8973 /* Compute the number of instructions controlled
8974 by the IT block, it will be used to decide
8975 whether we are inside an IT block or not. */
8976 unsigned int mask = insn & 0x000f;
8977 itblock_current_pos = 4 - ctz (mask);
8978 }
8979 }
8980
8981 i += insn_32bit ? 4 : 2;
8982 }
8983 }
8984
8985 if (elf_section_data (sec)->this_hdr.contents != contents)
8986 free (contents);
8987 contents = NULL;
8988 }
8989
8990 return TRUE;
8991
8992 error_return:
8993 if (elf_section_data (sec)->this_hdr.contents != contents)
8994 free (contents);
8995
8996 return FALSE;
8997 }
8998
8999 /* Set target relocation values needed during linking. */
9000
9001 void
9002 bfd_elf32_arm_set_target_params (struct bfd *output_bfd,
9003 struct bfd_link_info *link_info,
9004 struct elf32_arm_params *params)
9005 {
9006 struct elf32_arm_link_hash_table *globals;
9007
9008 globals = elf32_arm_hash_table (link_info);
9009 if (globals == NULL)
9010 return;
9011
9012 globals->target1_is_rel = params->target1_is_rel;
9013 if (globals->fdpic_p)
9014 globals->target2_reloc = R_ARM_GOT32;
9015 else if (strcmp (params->target2_type, "rel") == 0)
9016 globals->target2_reloc = R_ARM_REL32;
9017 else if (strcmp (params->target2_type, "abs") == 0)
9018 globals->target2_reloc = R_ARM_ABS32;
9019 else if (strcmp (params->target2_type, "got-rel") == 0)
9020 globals->target2_reloc = R_ARM_GOT_PREL;
9021 else
9022 {
9023 _bfd_error_handler (_("invalid TARGET2 relocation type '%s'"),
9024 params->target2_type);
9025 }
9026 globals->fix_v4bx = params->fix_v4bx;
9027 globals->use_blx |= params->use_blx;
9028 globals->vfp11_fix = params->vfp11_denorm_fix;
9029 globals->stm32l4xx_fix = params->stm32l4xx_fix;
9030 if (globals->fdpic_p)
9031 globals->pic_veneer = 1;
9032 else
9033 globals->pic_veneer = params->pic_veneer;
9034 globals->fix_cortex_a8 = params->fix_cortex_a8;
9035 globals->fix_arm1176 = params->fix_arm1176;
9036 globals->cmse_implib = params->cmse_implib;
9037 globals->in_implib_bfd = params->in_implib_bfd;
9038
9039 BFD_ASSERT (is_arm_elf (output_bfd));
9040 elf_arm_tdata (output_bfd)->no_enum_size_warning
9041 = params->no_enum_size_warning;
9042 elf_arm_tdata (output_bfd)->no_wchar_size_warning
9043 = params->no_wchar_size_warning;
9044 }
9045
9046 /* Replace the target offset of a Thumb bl or b.w instruction. */
9047
9048 static void
9049 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
9050 {
9051 bfd_vma upper;
9052 bfd_vma lower;
9053 int reloc_sign;
9054
9055 BFD_ASSERT ((offset & 1) == 0);
9056
9057 upper = bfd_get_16 (abfd, insn);
9058 lower = bfd_get_16 (abfd, insn + 2);
9059 reloc_sign = (offset < 0) ? 1 : 0;
9060 upper = (upper & ~(bfd_vma) 0x7ff)
9061 | ((offset >> 12) & 0x3ff)
9062 | (reloc_sign << 10);
9063 lower = (lower & ~(bfd_vma) 0x2fff)
9064 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
9065 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
9066 | ((offset >> 1) & 0x7ff);
9067 bfd_put_16 (abfd, upper, insn);
9068 bfd_put_16 (abfd, lower, insn + 2);
9069 }
9070
9071 /* Thumb code calling an ARM function. */
9072
9073 static int
9074 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
9075 const char * name,
9076 bfd * input_bfd,
9077 bfd * output_bfd,
9078 asection * input_section,
9079 bfd_byte * hit_data,
9080 asection * sym_sec,
9081 bfd_vma offset,
9082 bfd_signed_vma addend,
9083 bfd_vma val,
9084 char **error_message)
9085 {
9086 asection * s = 0;
9087 bfd_vma my_offset;
9088 long int ret_offset;
9089 struct elf_link_hash_entry * myh;
9090 struct elf32_arm_link_hash_table * globals;
9091
9092 myh = find_thumb_glue (info, name, error_message);
9093 if (myh == NULL)
9094 return FALSE;
9095
9096 globals = elf32_arm_hash_table (info);
9097 BFD_ASSERT (globals != NULL);
9098 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9099
9100 my_offset = myh->root.u.def.value;
9101
9102 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9103 THUMB2ARM_GLUE_SECTION_NAME);
9104
9105 BFD_ASSERT (s != NULL);
9106 BFD_ASSERT (s->contents != NULL);
9107 BFD_ASSERT (s->output_section != NULL);
9108
9109 if ((my_offset & 0x01) == 0x01)
9110 {
9111 if (sym_sec != NULL
9112 && sym_sec->owner != NULL
9113 && !INTERWORK_FLAG (sym_sec->owner))
9114 {
9115 _bfd_error_handler
9116 (_("%pB(%s): warning: interworking not enabled;"
9117 " first occurrence: %pB: %s call to %s"),
9118 sym_sec->owner, name, input_bfd, "Thumb", "ARM");
9119
9120 return FALSE;
9121 }
9122
9123 --my_offset;
9124 myh->root.u.def.value = my_offset;
9125
9126 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
9127 s->contents + my_offset);
9128
9129 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
9130 s->contents + my_offset + 2);
9131
9132 ret_offset =
9133 /* Address of destination of the stub. */
9134 ((bfd_signed_vma) val)
9135 - ((bfd_signed_vma)
9136 /* Offset from the start of the current section
9137 to the start of the stubs. */
9138 (s->output_offset
9139 /* Offset of the start of this stub from the start of the stubs. */
9140 + my_offset
9141 /* Address of the start of the current section. */
9142 + s->output_section->vma)
9143 /* The branch instruction is 4 bytes into the stub. */
9144 + 4
9145 /* ARM branches work from the pc of the instruction + 8. */
9146 + 8);
9147
9148 put_arm_insn (globals, output_bfd,
9149 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
9150 s->contents + my_offset + 4);
9151 }
9152
9153 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
9154
9155 /* Now go back and fix up the original BL insn to point to here. */
9156 ret_offset =
9157 /* Address of where the stub is located. */
9158 (s->output_section->vma + s->output_offset + my_offset)
9159 /* Address of where the BL is located. */
9160 - (input_section->output_section->vma + input_section->output_offset
9161 + offset)
9162 /* Addend in the relocation. */
9163 - addend
9164 /* Biassing for PC-relative addressing. */
9165 - 8;
9166
9167 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
9168
9169 return TRUE;
9170 }
9171
9172 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
9173
9174 static struct elf_link_hash_entry *
9175 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
9176 const char * name,
9177 bfd * input_bfd,
9178 bfd * output_bfd,
9179 asection * sym_sec,
9180 bfd_vma val,
9181 asection * s,
9182 char ** error_message)
9183 {
9184 bfd_vma my_offset;
9185 long int ret_offset;
9186 struct elf_link_hash_entry * myh;
9187 struct elf32_arm_link_hash_table * globals;
9188
9189 myh = find_arm_glue (info, name, error_message);
9190 if (myh == NULL)
9191 return NULL;
9192
9193 globals = elf32_arm_hash_table (info);
9194 BFD_ASSERT (globals != NULL);
9195 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9196
9197 my_offset = myh->root.u.def.value;
9198
9199 if ((my_offset & 0x01) == 0x01)
9200 {
9201 if (sym_sec != NULL
9202 && sym_sec->owner != NULL
9203 && !INTERWORK_FLAG (sym_sec->owner))
9204 {
9205 _bfd_error_handler
9206 (_("%pB(%s): warning: interworking not enabled;"
9207 " first occurrence: %pB: %s call to %s"),
9208 sym_sec->owner, name, input_bfd, "ARM", "Thumb");
9209 }
9210
9211 --my_offset;
9212 myh->root.u.def.value = my_offset;
9213
9214 if (bfd_link_pic (info)
9215 || globals->root.is_relocatable_executable
9216 || globals->pic_veneer)
9217 {
9218 /* For relocatable objects we can't use absolute addresses,
9219 so construct the address from a relative offset. */
9220 /* TODO: If the offset is small it's probably worth
9221 constructing the address with adds. */
9222 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
9223 s->contents + my_offset);
9224 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
9225 s->contents + my_offset + 4);
9226 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
9227 s->contents + my_offset + 8);
9228 /* Adjust the offset by 4 for the position of the add,
9229 and 8 for the pipeline offset. */
9230 ret_offset = (val - (s->output_offset
9231 + s->output_section->vma
9232 + my_offset + 12))
9233 | 1;
9234 bfd_put_32 (output_bfd, ret_offset,
9235 s->contents + my_offset + 12);
9236 }
9237 else if (globals->use_blx)
9238 {
9239 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
9240 s->contents + my_offset);
9241
9242 /* It's a thumb address. Add the low order bit. */
9243 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
9244 s->contents + my_offset + 4);
9245 }
9246 else
9247 {
9248 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
9249 s->contents + my_offset);
9250
9251 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
9252 s->contents + my_offset + 4);
9253
9254 /* It's a thumb address. Add the low order bit. */
9255 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
9256 s->contents + my_offset + 8);
9257
9258 my_offset += 12;
9259 }
9260 }
9261
9262 BFD_ASSERT (my_offset <= globals->arm_glue_size);
9263
9264 return myh;
9265 }
9266
9267 /* Arm code calling a Thumb function. */
9268
9269 static int
9270 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
9271 const char * name,
9272 bfd * input_bfd,
9273 bfd * output_bfd,
9274 asection * input_section,
9275 bfd_byte * hit_data,
9276 asection * sym_sec,
9277 bfd_vma offset,
9278 bfd_signed_vma addend,
9279 bfd_vma val,
9280 char **error_message)
9281 {
9282 unsigned long int tmp;
9283 bfd_vma my_offset;
9284 asection * s;
9285 long int ret_offset;
9286 struct elf_link_hash_entry * myh;
9287 struct elf32_arm_link_hash_table * globals;
9288
9289 globals = elf32_arm_hash_table (info);
9290 BFD_ASSERT (globals != NULL);
9291 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9292
9293 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9294 ARM2THUMB_GLUE_SECTION_NAME);
9295 BFD_ASSERT (s != NULL);
9296 BFD_ASSERT (s->contents != NULL);
9297 BFD_ASSERT (s->output_section != NULL);
9298
9299 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
9300 sym_sec, val, s, error_message);
9301 if (!myh)
9302 return FALSE;
9303
9304 my_offset = myh->root.u.def.value;
9305 tmp = bfd_get_32 (input_bfd, hit_data);
9306 tmp = tmp & 0xFF000000;
9307
9308 /* Somehow these are both 4 too far, so subtract 8. */
9309 ret_offset = (s->output_offset
9310 + my_offset
9311 + s->output_section->vma
9312 - (input_section->output_offset
9313 + input_section->output_section->vma
9314 + offset + addend)
9315 - 8);
9316
9317 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
9318
9319 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
9320
9321 return TRUE;
9322 }
9323
9324 /* Populate Arm stub for an exported Thumb function. */
9325
9326 static bfd_boolean
9327 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
9328 {
9329 struct bfd_link_info * info = (struct bfd_link_info *) inf;
9330 asection * s;
9331 struct elf_link_hash_entry * myh;
9332 struct elf32_arm_link_hash_entry *eh;
9333 struct elf32_arm_link_hash_table * globals;
9334 asection *sec;
9335 bfd_vma val;
9336 char *error_message;
9337
9338 eh = elf32_arm_hash_entry (h);
9339 /* Allocate stubs for exported Thumb functions on v4t. */
9340 if (eh->export_glue == NULL)
9341 return TRUE;
9342
9343 globals = elf32_arm_hash_table (info);
9344 BFD_ASSERT (globals != NULL);
9345 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9346
9347 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9348 ARM2THUMB_GLUE_SECTION_NAME);
9349 BFD_ASSERT (s != NULL);
9350 BFD_ASSERT (s->contents != NULL);
9351 BFD_ASSERT (s->output_section != NULL);
9352
9353 sec = eh->export_glue->root.u.def.section;
9354
9355 BFD_ASSERT (sec->output_section != NULL);
9356
9357 val = eh->export_glue->root.u.def.value + sec->output_offset
9358 + sec->output_section->vma;
9359
9360 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
9361 h->root.u.def.section->owner,
9362 globals->obfd, sec, val, s,
9363 &error_message);
9364 BFD_ASSERT (myh);
9365 return TRUE;
9366 }
9367
9368 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
9369
9370 static bfd_vma
9371 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
9372 {
9373 bfd_byte *p;
9374 bfd_vma glue_addr;
9375 asection *s;
9376 struct elf32_arm_link_hash_table *globals;
9377
9378 globals = elf32_arm_hash_table (info);
9379 BFD_ASSERT (globals != NULL);
9380 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9381
9382 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9383 ARM_BX_GLUE_SECTION_NAME);
9384 BFD_ASSERT (s != NULL);
9385 BFD_ASSERT (s->contents != NULL);
9386 BFD_ASSERT (s->output_section != NULL);
9387
9388 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
9389
9390 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
9391
9392 if ((globals->bx_glue_offset[reg] & 1) == 0)
9393 {
9394 p = s->contents + glue_addr;
9395 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
9396 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
9397 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
9398 globals->bx_glue_offset[reg] |= 1;
9399 }
9400
9401 return glue_addr + s->output_section->vma + s->output_offset;
9402 }
9403
9404 /* Generate Arm stubs for exported Thumb symbols. */
9405 static void
9406 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
9407 struct bfd_link_info *link_info)
9408 {
9409 struct elf32_arm_link_hash_table * globals;
9410
9411 if (link_info == NULL)
9412 /* Ignore this if we are not called by the ELF backend linker. */
9413 return;
9414
9415 globals = elf32_arm_hash_table (link_info);
9416 if (globals == NULL)
9417 return;
9418
9419 /* If blx is available then exported Thumb symbols are OK and there is
9420 nothing to do. */
9421 if (globals->use_blx)
9422 return;
9423
9424 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
9425 link_info);
9426 }
9427
9428 /* Reserve space for COUNT dynamic relocations in relocation selection
9429 SRELOC. */
9430
9431 static void
9432 elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
9433 bfd_size_type count)
9434 {
9435 struct elf32_arm_link_hash_table *htab;
9436
9437 htab = elf32_arm_hash_table (info);
9438 BFD_ASSERT (htab->root.dynamic_sections_created);
9439 if (sreloc == NULL)
9440 abort ();
9441 sreloc->size += RELOC_SIZE (htab) * count;
9442 }
9443
9444 /* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
9445 dynamic, the relocations should go in SRELOC, otherwise they should
9446 go in the special .rel.iplt section. */
9447
9448 static void
9449 elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
9450 bfd_size_type count)
9451 {
9452 struct elf32_arm_link_hash_table *htab;
9453
9454 htab = elf32_arm_hash_table (info);
9455 if (!htab->root.dynamic_sections_created)
9456 htab->root.irelplt->size += RELOC_SIZE (htab) * count;
9457 else
9458 {
9459 BFD_ASSERT (sreloc != NULL);
9460 sreloc->size += RELOC_SIZE (htab) * count;
9461 }
9462 }
9463
9464 /* Add relocation REL to the end of relocation section SRELOC. */
9465
9466 static void
9467 elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
9468 asection *sreloc, Elf_Internal_Rela *rel)
9469 {
9470 bfd_byte *loc;
9471 struct elf32_arm_link_hash_table *htab;
9472
9473 htab = elf32_arm_hash_table (info);
9474 if (!htab->root.dynamic_sections_created
9475 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
9476 sreloc = htab->root.irelplt;
9477 if (sreloc == NULL)
9478 abort ();
9479 loc = sreloc->contents;
9480 loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
9481 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
9482 abort ();
9483 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
9484 }
9485
9486 /* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
9487 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
9488 to .plt. */
9489
9490 static void
9491 elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
9492 bfd_boolean is_iplt_entry,
9493 union gotplt_union *root_plt,
9494 struct arm_plt_info *arm_plt)
9495 {
9496 struct elf32_arm_link_hash_table *htab;
9497 asection *splt;
9498 asection *sgotplt;
9499
9500 htab = elf32_arm_hash_table (info);
9501
9502 if (is_iplt_entry)
9503 {
9504 splt = htab->root.iplt;
9505 sgotplt = htab->root.igotplt;
9506
9507 /* NaCl uses a special first entry in .iplt too. */
9508 if (htab->root.target_os == is_nacl && splt->size == 0)
9509 splt->size += htab->plt_header_size;
9510
9511 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
9512 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
9513 }
9514 else
9515 {
9516 splt = htab->root.splt;
9517 sgotplt = htab->root.sgotplt;
9518
9519 if (htab->fdpic_p)
9520 {
9521 /* Allocate room for R_ARM_FUNCDESC_VALUE. */
9522 /* For lazy binding, relocations will be put into .rel.plt, in
9523 .rel.got otherwise. */
9524 /* FIXME: today we don't support lazy binding so put it in .rel.got */
9525 if (info->flags & DF_BIND_NOW)
9526 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
9527 else
9528 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
9529 }
9530 else
9531 {
9532 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
9533 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
9534 }
9535
9536 /* If this is the first .plt entry, make room for the special
9537 first entry. */
9538 if (splt->size == 0)
9539 splt->size += htab->plt_header_size;
9540
9541 htab->next_tls_desc_index++;
9542 }
9543
9544 /* Allocate the PLT entry itself, including any leading Thumb stub. */
9545 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9546 splt->size += PLT_THUMB_STUB_SIZE;
9547 root_plt->offset = splt->size;
9548 splt->size += htab->plt_entry_size;
9549
9550 if (htab->root.target_os != is_symbian)
9551 {
9552 /* We also need to make an entry in the .got.plt section, which
9553 will be placed in the .got section by the linker script. */
9554 if (is_iplt_entry)
9555 arm_plt->got_offset = sgotplt->size;
9556 else
9557 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
9558 if (htab->fdpic_p)
9559 /* Function descriptor takes 64 bits in GOT. */
9560 sgotplt->size += 8;
9561 else
9562 sgotplt->size += 4;
9563 }
9564 }
9565
9566 static bfd_vma
9567 arm_movw_immediate (bfd_vma value)
9568 {
9569 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
9570 }
9571
9572 static bfd_vma
9573 arm_movt_immediate (bfd_vma value)
9574 {
9575 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
9576 }
9577
9578 /* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
9579 the entry lives in .iplt and resolves to (*SYM_VALUE)().
9580 Otherwise, DYNINDX is the index of the symbol in the dynamic
9581 symbol table and SYM_VALUE is undefined.
9582
9583 ROOT_PLT points to the offset of the PLT entry from the start of its
9584 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
9585 bookkeeping information.
9586
9587 Returns FALSE if there was a problem. */
9588
9589 static bfd_boolean
9590 elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
9591 union gotplt_union *root_plt,
9592 struct arm_plt_info *arm_plt,
9593 int dynindx, bfd_vma sym_value)
9594 {
9595 struct elf32_arm_link_hash_table *htab;
9596 asection *sgot;
9597 asection *splt;
9598 asection *srel;
9599 bfd_byte *loc;
9600 bfd_vma plt_index;
9601 Elf_Internal_Rela rel;
9602 bfd_vma plt_header_size;
9603 bfd_vma got_header_size;
9604
9605 htab = elf32_arm_hash_table (info);
9606
9607 /* Pick the appropriate sections and sizes. */
9608 if (dynindx == -1)
9609 {
9610 splt = htab->root.iplt;
9611 sgot = htab->root.igotplt;
9612 srel = htab->root.irelplt;
9613
9614 /* There are no reserved entries in .igot.plt, and no special
9615 first entry in .iplt. */
9616 got_header_size = 0;
9617 plt_header_size = 0;
9618 }
9619 else
9620 {
9621 splt = htab->root.splt;
9622 sgot = htab->root.sgotplt;
9623 srel = htab->root.srelplt;
9624
9625 got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
9626 plt_header_size = htab->plt_header_size;
9627 }
9628 BFD_ASSERT (splt != NULL && srel != NULL);
9629
9630 /* Fill in the entry in the procedure linkage table. */
9631 if (htab->root.target_os == is_symbian)
9632 {
9633 BFD_ASSERT (dynindx >= 0);
9634 put_arm_insn (htab, output_bfd,
9635 elf32_arm_symbian_plt_entry[0],
9636 splt->contents + root_plt->offset);
9637 bfd_put_32 (output_bfd,
9638 elf32_arm_symbian_plt_entry[1],
9639 splt->contents + root_plt->offset + 4);
9640
9641 /* Fill in the entry in the .rel.plt section. */
9642 rel.r_offset = (splt->output_section->vma
9643 + splt->output_offset
9644 + root_plt->offset + 4);
9645 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
9646
9647 /* Get the index in the procedure linkage table which
9648 corresponds to this symbol. This is the index of this symbol
9649 in all the symbols for which we are making plt entries. The
9650 first entry in the procedure linkage table is reserved. */
9651 plt_index = ((root_plt->offset - plt_header_size)
9652 / htab->plt_entry_size);
9653 }
9654 else
9655 {
9656 bfd_vma got_offset, got_address, plt_address;
9657 bfd_vma got_displacement, initial_got_entry;
9658 bfd_byte * ptr;
9659
9660 BFD_ASSERT (sgot != NULL);
9661
9662 /* Get the offset into the .(i)got.plt table of the entry that
9663 corresponds to this function. */
9664 got_offset = (arm_plt->got_offset & -2);
9665
9666 /* Get the index in the procedure linkage table which
9667 corresponds to this symbol. This is the index of this symbol
9668 in all the symbols for which we are making plt entries.
9669 After the reserved .got.plt entries, all symbols appear in
9670 the same order as in .plt. */
9671 if (htab->fdpic_p)
9672 /* Function descriptor takes 8 bytes. */
9673 plt_index = (got_offset - got_header_size) / 8;
9674 else
9675 plt_index = (got_offset - got_header_size) / 4;
9676
9677 /* Calculate the address of the GOT entry. */
9678 got_address = (sgot->output_section->vma
9679 + sgot->output_offset
9680 + got_offset);
9681
9682 /* ...and the address of the PLT entry. */
9683 plt_address = (splt->output_section->vma
9684 + splt->output_offset
9685 + root_plt->offset);
9686
9687 ptr = splt->contents + root_plt->offset;
9688 if (htab->root.target_os == is_vxworks && bfd_link_pic (info))
9689 {
9690 unsigned int i;
9691 bfd_vma val;
9692
9693 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9694 {
9695 val = elf32_arm_vxworks_shared_plt_entry[i];
9696 if (i == 2)
9697 val |= got_address - sgot->output_section->vma;
9698 if (i == 5)
9699 val |= plt_index * RELOC_SIZE (htab);
9700 if (i == 2 || i == 5)
9701 bfd_put_32 (output_bfd, val, ptr);
9702 else
9703 put_arm_insn (htab, output_bfd, val, ptr);
9704 }
9705 }
9706 else if (htab->root.target_os == is_vxworks)
9707 {
9708 unsigned int i;
9709 bfd_vma val;
9710
9711 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9712 {
9713 val = elf32_arm_vxworks_exec_plt_entry[i];
9714 if (i == 2)
9715 val |= got_address;
9716 if (i == 4)
9717 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
9718 if (i == 5)
9719 val |= plt_index * RELOC_SIZE (htab);
9720 if (i == 2 || i == 5)
9721 bfd_put_32 (output_bfd, val, ptr);
9722 else
9723 put_arm_insn (htab, output_bfd, val, ptr);
9724 }
9725
9726 loc = (htab->srelplt2->contents
9727 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
9728
9729 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
9730 referencing the GOT for this PLT entry. */
9731 rel.r_offset = plt_address + 8;
9732 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
9733 rel.r_addend = got_offset;
9734 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9735 loc += RELOC_SIZE (htab);
9736
9737 /* Create the R_ARM_ABS32 relocation referencing the
9738 beginning of the PLT for this GOT entry. */
9739 rel.r_offset = got_address;
9740 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
9741 rel.r_addend = 0;
9742 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9743 }
9744 else if (htab->root.target_os == is_nacl)
9745 {
9746 /* Calculate the displacement between the PLT slot and the
9747 common tail that's part of the special initial PLT slot. */
9748 int32_t tail_displacement
9749 = ((splt->output_section->vma + splt->output_offset
9750 + ARM_NACL_PLT_TAIL_OFFSET)
9751 - (plt_address + htab->plt_entry_size + 4));
9752 BFD_ASSERT ((tail_displacement & 3) == 0);
9753 tail_displacement >>= 2;
9754
9755 BFD_ASSERT ((tail_displacement & 0xff000000) == 0
9756 || (-tail_displacement & 0xff000000) == 0);
9757
9758 /* Calculate the displacement between the PLT slot and the entry
9759 in the GOT. The offset accounts for the value produced by
9760 adding to pc in the penultimate instruction of the PLT stub. */
9761 got_displacement = (got_address
9762 - (plt_address + htab->plt_entry_size));
9763
9764 /* NaCl does not support interworking at all. */
9765 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt));
9766
9767 put_arm_insn (htab, output_bfd,
9768 elf32_arm_nacl_plt_entry[0]
9769 | arm_movw_immediate (got_displacement),
9770 ptr + 0);
9771 put_arm_insn (htab, output_bfd,
9772 elf32_arm_nacl_plt_entry[1]
9773 | arm_movt_immediate (got_displacement),
9774 ptr + 4);
9775 put_arm_insn (htab, output_bfd,
9776 elf32_arm_nacl_plt_entry[2],
9777 ptr + 8);
9778 put_arm_insn (htab, output_bfd,
9779 elf32_arm_nacl_plt_entry[3]
9780 | (tail_displacement & 0x00ffffff),
9781 ptr + 12);
9782 }
9783 else if (htab->fdpic_p)
9784 {
9785 const bfd_vma *plt_entry = using_thumb_only(htab)
9786 ? elf32_arm_fdpic_thumb_plt_entry
9787 : elf32_arm_fdpic_plt_entry;
9788
9789 /* Fill-up Thumb stub if needed. */
9790 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9791 {
9792 put_thumb_insn (htab, output_bfd,
9793 elf32_arm_plt_thumb_stub[0], ptr - 4);
9794 put_thumb_insn (htab, output_bfd,
9795 elf32_arm_plt_thumb_stub[1], ptr - 2);
9796 }
9797 /* As we are using 32 bit instructions even for the Thumb
9798 version, we have to use 'put_arm_insn' instead of
9799 'put_thumb_insn'. */
9800 put_arm_insn(htab, output_bfd, plt_entry[0], ptr + 0);
9801 put_arm_insn(htab, output_bfd, plt_entry[1], ptr + 4);
9802 put_arm_insn(htab, output_bfd, plt_entry[2], ptr + 8);
9803 put_arm_insn(htab, output_bfd, plt_entry[3], ptr + 12);
9804 bfd_put_32 (output_bfd, got_offset, ptr + 16);
9805
9806 if (!(info->flags & DF_BIND_NOW))
9807 {
9808 /* funcdesc_value_reloc_offset. */
9809 bfd_put_32 (output_bfd,
9810 htab->root.srelplt->reloc_count * RELOC_SIZE (htab),
9811 ptr + 20);
9812 put_arm_insn(htab, output_bfd, plt_entry[6], ptr + 24);
9813 put_arm_insn(htab, output_bfd, plt_entry[7], ptr + 28);
9814 put_arm_insn(htab, output_bfd, plt_entry[8], ptr + 32);
9815 put_arm_insn(htab, output_bfd, plt_entry[9], ptr + 36);
9816 }
9817 }
9818 else if (using_thumb_only (htab))
9819 {
9820 /* PR ld/16017: Generate thumb only PLT entries. */
9821 if (!using_thumb2 (htab))
9822 {
9823 /* FIXME: We ought to be able to generate thumb-1 PLT
9824 instructions... */
9825 _bfd_error_handler (_("%pB: warning: thumb-1 mode PLT generation not currently supported"),
9826 output_bfd);
9827 return FALSE;
9828 }
9829
9830 /* Calculate the displacement between the PLT slot and the entry in
9831 the GOT. The 12-byte offset accounts for the value produced by
9832 adding to pc in the 3rd instruction of the PLT stub. */
9833 got_displacement = got_address - (plt_address + 12);
9834
9835 /* As we are using 32 bit instructions we have to use 'put_arm_insn'
9836 instead of 'put_thumb_insn'. */
9837 put_arm_insn (htab, output_bfd,
9838 elf32_thumb2_plt_entry[0]
9839 | ((got_displacement & 0x000000ff) << 16)
9840 | ((got_displacement & 0x00000700) << 20)
9841 | ((got_displacement & 0x00000800) >> 1)
9842 | ((got_displacement & 0x0000f000) >> 12),
9843 ptr + 0);
9844 put_arm_insn (htab, output_bfd,
9845 elf32_thumb2_plt_entry[1]
9846 | ((got_displacement & 0x00ff0000) )
9847 | ((got_displacement & 0x07000000) << 4)
9848 | ((got_displacement & 0x08000000) >> 17)
9849 | ((got_displacement & 0xf0000000) >> 28),
9850 ptr + 4);
9851 put_arm_insn (htab, output_bfd,
9852 elf32_thumb2_plt_entry[2],
9853 ptr + 8);
9854 put_arm_insn (htab, output_bfd,
9855 elf32_thumb2_plt_entry[3],
9856 ptr + 12);
9857 }
9858 else
9859 {
9860 /* Calculate the displacement between the PLT slot and the
9861 entry in the GOT. The eight-byte offset accounts for the
9862 value produced by adding to pc in the first instruction
9863 of the PLT stub. */
9864 got_displacement = got_address - (plt_address + 8);
9865
9866 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9867 {
9868 put_thumb_insn (htab, output_bfd,
9869 elf32_arm_plt_thumb_stub[0], ptr - 4);
9870 put_thumb_insn (htab, output_bfd,
9871 elf32_arm_plt_thumb_stub[1], ptr - 2);
9872 }
9873
9874 if (!elf32_arm_use_long_plt_entry)
9875 {
9876 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
9877
9878 put_arm_insn (htab, output_bfd,
9879 elf32_arm_plt_entry_short[0]
9880 | ((got_displacement & 0x0ff00000) >> 20),
9881 ptr + 0);
9882 put_arm_insn (htab, output_bfd,
9883 elf32_arm_plt_entry_short[1]
9884 | ((got_displacement & 0x000ff000) >> 12),
9885 ptr+ 4);
9886 put_arm_insn (htab, output_bfd,
9887 elf32_arm_plt_entry_short[2]
9888 | (got_displacement & 0x00000fff),
9889 ptr + 8);
9890 #ifdef FOUR_WORD_PLT
9891 bfd_put_32 (output_bfd, elf32_arm_plt_entry_short[3], ptr + 12);
9892 #endif
9893 }
9894 else
9895 {
9896 put_arm_insn (htab, output_bfd,
9897 elf32_arm_plt_entry_long[0]
9898 | ((got_displacement & 0xf0000000) >> 28),
9899 ptr + 0);
9900 put_arm_insn (htab, output_bfd,
9901 elf32_arm_plt_entry_long[1]
9902 | ((got_displacement & 0x0ff00000) >> 20),
9903 ptr + 4);
9904 put_arm_insn (htab, output_bfd,
9905 elf32_arm_plt_entry_long[2]
9906 | ((got_displacement & 0x000ff000) >> 12),
9907 ptr+ 8);
9908 put_arm_insn (htab, output_bfd,
9909 elf32_arm_plt_entry_long[3]
9910 | (got_displacement & 0x00000fff),
9911 ptr + 12);
9912 }
9913 }
9914
9915 /* Fill in the entry in the .rel(a).(i)plt section. */
9916 rel.r_offset = got_address;
9917 rel.r_addend = 0;
9918 if (dynindx == -1)
9919 {
9920 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
9921 The dynamic linker or static executable then calls SYM_VALUE
9922 to determine the correct run-time value of the .igot.plt entry. */
9923 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9924 initial_got_entry = sym_value;
9925 }
9926 else
9927 {
9928 /* For FDPIC we will have to resolve a R_ARM_FUNCDESC_VALUE
9929 used by PLT entry. */
9930 if (htab->fdpic_p)
9931 {
9932 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_FUNCDESC_VALUE);
9933 initial_got_entry = 0;
9934 }
9935 else
9936 {
9937 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
9938 initial_got_entry = (splt->output_section->vma
9939 + splt->output_offset);
9940
9941 /* PR ld/16017
9942 When thumb only we need to set the LSB for any address that
9943 will be used with an interworking branch instruction. */
9944 if (using_thumb_only (htab))
9945 initial_got_entry |= 1;
9946 }
9947 }
9948
9949 /* Fill in the entry in the global offset table. */
9950 bfd_put_32 (output_bfd, initial_got_entry,
9951 sgot->contents + got_offset);
9952
9953 if (htab->fdpic_p && !(info->flags & DF_BIND_NOW))
9954 {
9955 /* Setup initial funcdesc value. */
9956 /* FIXME: we don't support lazy binding because there is a
9957 race condition between both words getting written and
9958 some other thread attempting to read them. The ARM
9959 architecture does not have an atomic 64 bit load/store
9960 instruction that could be used to prevent it; it is
9961 recommended that threaded FDPIC applications run with the
9962 LD_BIND_NOW environment variable set. */
9963 bfd_put_32(output_bfd, plt_address + 0x18,
9964 sgot->contents + got_offset);
9965 bfd_put_32(output_bfd, -1 /*TODO*/,
9966 sgot->contents + got_offset + 4);
9967 }
9968 }
9969
9970 if (dynindx == -1)
9971 elf32_arm_add_dynreloc (output_bfd, info, srel, &rel);
9972 else
9973 {
9974 if (htab->fdpic_p)
9975 {
9976 /* For FDPIC we put PLT relocationss into .rel.got when not
9977 lazy binding otherwise we put them in .rel.plt. For now,
9978 we don't support lazy binding so put it in .rel.got. */
9979 if (info->flags & DF_BIND_NOW)
9980 elf32_arm_add_dynreloc(output_bfd, info, htab->root.srelgot, &rel);
9981 else
9982 elf32_arm_add_dynreloc(output_bfd, info, htab->root.srelplt, &rel);
9983 }
9984 else
9985 {
9986 loc = srel->contents + plt_index * RELOC_SIZE (htab);
9987 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9988 }
9989 }
9990
9991 return TRUE;
9992 }
9993
9994 /* Some relocations map to different relocations depending on the
9995 target. Return the real relocation. */
9996
9997 static int
9998 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
9999 int r_type)
10000 {
10001 switch (r_type)
10002 {
10003 case R_ARM_TARGET1:
10004 if (globals->target1_is_rel)
10005 return R_ARM_REL32;
10006 else
10007 return R_ARM_ABS32;
10008
10009 case R_ARM_TARGET2:
10010 return globals->target2_reloc;
10011
10012 default:
10013 return r_type;
10014 }
10015 }
10016
10017 /* Return the base VMA address which should be subtracted from real addresses
10018 when resolving @dtpoff relocation.
10019 This is PT_TLS segment p_vaddr. */
10020
10021 static bfd_vma
10022 dtpoff_base (struct bfd_link_info *info)
10023 {
10024 /* If tls_sec is NULL, we should have signalled an error already. */
10025 if (elf_hash_table (info)->tls_sec == NULL)
10026 return 0;
10027 return elf_hash_table (info)->tls_sec->vma;
10028 }
10029
10030 /* Return the relocation value for @tpoff relocation
10031 if STT_TLS virtual address is ADDRESS. */
10032
10033 static bfd_vma
10034 tpoff (struct bfd_link_info *info, bfd_vma address)
10035 {
10036 struct elf_link_hash_table *htab = elf_hash_table (info);
10037 bfd_vma base;
10038
10039 /* If tls_sec is NULL, we should have signalled an error already. */
10040 if (htab->tls_sec == NULL)
10041 return 0;
10042 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
10043 return address - htab->tls_sec->vma + base;
10044 }
10045
10046 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
10047 VALUE is the relocation value. */
10048
10049 static bfd_reloc_status_type
10050 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
10051 {
10052 if (value > 0xfff)
10053 return bfd_reloc_overflow;
10054
10055 value |= bfd_get_32 (abfd, data) & 0xfffff000;
10056 bfd_put_32 (abfd, value, data);
10057 return bfd_reloc_ok;
10058 }
10059
10060 /* Handle TLS relaxations. Relaxing is possible for symbols that use
10061 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
10062 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
10063
10064 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
10065 is to then call final_link_relocate. Return other values in the
10066 case of error.
10067
10068 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
10069 the pre-relaxed code. It would be nice if the relocs were updated
10070 to match the optimization. */
10071
10072 static bfd_reloc_status_type
10073 elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
10074 bfd *input_bfd, asection *input_sec, bfd_byte *contents,
10075 Elf_Internal_Rela *rel, unsigned long is_local)
10076 {
10077 unsigned long insn;
10078
10079 switch (ELF32_R_TYPE (rel->r_info))
10080 {
10081 default:
10082 return bfd_reloc_notsupported;
10083
10084 case R_ARM_TLS_GOTDESC:
10085 if (is_local)
10086 insn = 0;
10087 else
10088 {
10089 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
10090 if (insn & 1)
10091 insn -= 5; /* THUMB */
10092 else
10093 insn -= 8; /* ARM */
10094 }
10095 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
10096 return bfd_reloc_continue;
10097
10098 case R_ARM_THM_TLS_DESCSEQ:
10099 /* Thumb insn. */
10100 insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
10101 if ((insn & 0xff78) == 0x4478) /* add rx, pc */
10102 {
10103 if (is_local)
10104 /* nop */
10105 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10106 }
10107 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
10108 {
10109 if (is_local)
10110 /* nop */
10111 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10112 else
10113 /* ldr rx,[ry] */
10114 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
10115 }
10116 else if ((insn & 0xff87) == 0x4780) /* blx rx */
10117 {
10118 if (is_local)
10119 /* nop */
10120 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10121 else
10122 /* mov r0, rx */
10123 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
10124 contents + rel->r_offset);
10125 }
10126 else
10127 {
10128 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
10129 /* It's a 32 bit instruction, fetch the rest of it for
10130 error generation. */
10131 insn = (insn << 16)
10132 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
10133 _bfd_error_handler
10134 /* xgettext:c-format */
10135 (_("%pB(%pA+%#" PRIx64 "): "
10136 "unexpected %s instruction '%#lx' in TLS trampoline"),
10137 input_bfd, input_sec, (uint64_t) rel->r_offset,
10138 "Thumb", insn);
10139 return bfd_reloc_notsupported;
10140 }
10141 break;
10142
10143 case R_ARM_TLS_DESCSEQ:
10144 /* arm insn. */
10145 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
10146 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
10147 {
10148 if (is_local)
10149 /* mov rx, ry */
10150 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
10151 contents + rel->r_offset);
10152 }
10153 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
10154 {
10155 if (is_local)
10156 /* nop */
10157 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
10158 else
10159 /* ldr rx,[ry] */
10160 bfd_put_32 (input_bfd, insn & 0xfffff000,
10161 contents + rel->r_offset);
10162 }
10163 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
10164 {
10165 if (is_local)
10166 /* nop */
10167 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
10168 else
10169 /* mov r0, rx */
10170 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
10171 contents + rel->r_offset);
10172 }
10173 else
10174 {
10175 _bfd_error_handler
10176 /* xgettext:c-format */
10177 (_("%pB(%pA+%#" PRIx64 "): "
10178 "unexpected %s instruction '%#lx' in TLS trampoline"),
10179 input_bfd, input_sec, (uint64_t) rel->r_offset,
10180 "ARM", insn);
10181 return bfd_reloc_notsupported;
10182 }
10183 break;
10184
10185 case R_ARM_TLS_CALL:
10186 /* GD->IE relaxation, turn the instruction into 'nop' or
10187 'ldr r0, [pc,r0]' */
10188 insn = is_local ? 0xe1a00000 : 0xe79f0000;
10189 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
10190 break;
10191
10192 case R_ARM_THM_TLS_CALL:
10193 /* GD->IE relaxation. */
10194 if (!is_local)
10195 /* add r0,pc; ldr r0, [r0] */
10196 insn = 0x44786800;
10197 else if (using_thumb2 (globals))
10198 /* nop.w */
10199 insn = 0xf3af8000;
10200 else
10201 /* nop; nop */
10202 insn = 0xbf00bf00;
10203
10204 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
10205 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
10206 break;
10207 }
10208 return bfd_reloc_ok;
10209 }
10210
10211 /* For a given value of n, calculate the value of G_n as required to
10212 deal with group relocations. We return it in the form of an
10213 encoded constant-and-rotation, together with the final residual. If n is
10214 specified as less than zero, then final_residual is filled with the
10215 input value and no further action is performed. */
10216
10217 static bfd_vma
10218 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
10219 {
10220 int current_n;
10221 bfd_vma g_n;
10222 bfd_vma encoded_g_n = 0;
10223 bfd_vma residual = value; /* Also known as Y_n. */
10224
10225 for (current_n = 0; current_n <= n; current_n++)
10226 {
10227 int shift;
10228
10229 /* Calculate which part of the value to mask. */
10230 if (residual == 0)
10231 shift = 0;
10232 else
10233 {
10234 int msb;
10235
10236 /* Determine the most significant bit in the residual and
10237 align the resulting value to a 2-bit boundary. */
10238 for (msb = 30; msb >= 0; msb -= 2)
10239 if (residual & (3 << msb))
10240 break;
10241
10242 /* The desired shift is now (msb - 6), or zero, whichever
10243 is the greater. */
10244 shift = msb - 6;
10245 if (shift < 0)
10246 shift = 0;
10247 }
10248
10249 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
10250 g_n = residual & (0xff << shift);
10251 encoded_g_n = (g_n >> shift)
10252 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
10253
10254 /* Calculate the residual for the next time around. */
10255 residual &= ~g_n;
10256 }
10257
10258 *final_residual = residual;
10259
10260 return encoded_g_n;
10261 }
10262
10263 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
10264 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
10265
10266 static int
10267 identify_add_or_sub (bfd_vma insn)
10268 {
10269 int opcode = insn & 0x1e00000;
10270
10271 if (opcode == 1 << 23) /* ADD */
10272 return 1;
10273
10274 if (opcode == 1 << 22) /* SUB */
10275 return -1;
10276
10277 return 0;
10278 }
10279
10280 /* Perform a relocation as part of a final link. */
10281
10282 static bfd_reloc_status_type
10283 elf32_arm_final_link_relocate (reloc_howto_type * howto,
10284 bfd * input_bfd,
10285 bfd * output_bfd,
10286 asection * input_section,
10287 bfd_byte * contents,
10288 Elf_Internal_Rela * rel,
10289 bfd_vma value,
10290 struct bfd_link_info * info,
10291 asection * sym_sec,
10292 const char * sym_name,
10293 unsigned char st_type,
10294 enum arm_st_branch_type branch_type,
10295 struct elf_link_hash_entry * h,
10296 bfd_boolean * unresolved_reloc_p,
10297 char ** error_message)
10298 {
10299 unsigned long r_type = howto->type;
10300 unsigned long r_symndx;
10301 bfd_byte * hit_data = contents + rel->r_offset;
10302 bfd_vma * local_got_offsets;
10303 bfd_vma * local_tlsdesc_gotents;
10304 asection * sgot;
10305 asection * splt;
10306 asection * sreloc = NULL;
10307 asection * srelgot;
10308 bfd_vma addend;
10309 bfd_signed_vma signed_addend;
10310 unsigned char dynreloc_st_type;
10311 bfd_vma dynreloc_value;
10312 struct elf32_arm_link_hash_table * globals;
10313 struct elf32_arm_link_hash_entry *eh;
10314 union gotplt_union *root_plt;
10315 struct arm_plt_info *arm_plt;
10316 bfd_vma plt_offset;
10317 bfd_vma gotplt_offset;
10318 bfd_boolean has_iplt_entry;
10319 bfd_boolean resolved_to_zero;
10320
10321 globals = elf32_arm_hash_table (info);
10322 if (globals == NULL)
10323 return bfd_reloc_notsupported;
10324
10325 BFD_ASSERT (is_arm_elf (input_bfd));
10326 BFD_ASSERT (howto != NULL);
10327
10328 /* Some relocation types map to different relocations depending on the
10329 target. We pick the right one here. */
10330 r_type = arm_real_reloc_type (globals, r_type);
10331
10332 /* It is possible to have linker relaxations on some TLS access
10333 models. Update our information here. */
10334 r_type = elf32_arm_tls_transition (info, r_type, h);
10335
10336 if (r_type != howto->type)
10337 howto = elf32_arm_howto_from_type (r_type);
10338
10339 eh = (struct elf32_arm_link_hash_entry *) h;
10340 sgot = globals->root.sgot;
10341 local_got_offsets = elf_local_got_offsets (input_bfd);
10342 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
10343
10344 if (globals->root.dynamic_sections_created)
10345 srelgot = globals->root.srelgot;
10346 else
10347 srelgot = NULL;
10348
10349 r_symndx = ELF32_R_SYM (rel->r_info);
10350
10351 if (globals->use_rel)
10352 {
10353 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
10354
10355 if (addend & ((howto->src_mask + 1) >> 1))
10356 {
10357 signed_addend = -1;
10358 signed_addend &= ~ howto->src_mask;
10359 signed_addend |= addend;
10360 }
10361 else
10362 signed_addend = addend;
10363 }
10364 else
10365 addend = signed_addend = rel->r_addend;
10366
10367 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
10368 are resolving a function call relocation. */
10369 if (using_thumb_only (globals)
10370 && (r_type == R_ARM_THM_CALL
10371 || r_type == R_ARM_THM_JUMP24)
10372 && branch_type == ST_BRANCH_TO_ARM)
10373 branch_type = ST_BRANCH_TO_THUMB;
10374
10375 /* Record the symbol information that should be used in dynamic
10376 relocations. */
10377 dynreloc_st_type = st_type;
10378 dynreloc_value = value;
10379 if (branch_type == ST_BRANCH_TO_THUMB)
10380 dynreloc_value |= 1;
10381
10382 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
10383 VALUE appropriately for relocations that we resolve at link time. */
10384 has_iplt_entry = FALSE;
10385 if (elf32_arm_get_plt_info (input_bfd, globals, eh, r_symndx, &root_plt,
10386 &arm_plt)
10387 && root_plt->offset != (bfd_vma) -1)
10388 {
10389 plt_offset = root_plt->offset;
10390 gotplt_offset = arm_plt->got_offset;
10391
10392 if (h == NULL || eh->is_iplt)
10393 {
10394 has_iplt_entry = TRUE;
10395 splt = globals->root.iplt;
10396
10397 /* Populate .iplt entries here, because not all of them will
10398 be seen by finish_dynamic_symbol. The lower bit is set if
10399 we have already populated the entry. */
10400 if (plt_offset & 1)
10401 plt_offset--;
10402 else
10403 {
10404 if (elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
10405 -1, dynreloc_value))
10406 root_plt->offset |= 1;
10407 else
10408 return bfd_reloc_notsupported;
10409 }
10410
10411 /* Static relocations always resolve to the .iplt entry. */
10412 st_type = STT_FUNC;
10413 value = (splt->output_section->vma
10414 + splt->output_offset
10415 + plt_offset);
10416 branch_type = ST_BRANCH_TO_ARM;
10417
10418 /* If there are non-call relocations that resolve to the .iplt
10419 entry, then all dynamic ones must too. */
10420 if (arm_plt->noncall_refcount != 0)
10421 {
10422 dynreloc_st_type = st_type;
10423 dynreloc_value = value;
10424 }
10425 }
10426 else
10427 /* We populate the .plt entry in finish_dynamic_symbol. */
10428 splt = globals->root.splt;
10429 }
10430 else
10431 {
10432 splt = NULL;
10433 plt_offset = (bfd_vma) -1;
10434 gotplt_offset = (bfd_vma) -1;
10435 }
10436
10437 resolved_to_zero = (h != NULL
10438 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
10439
10440 switch (r_type)
10441 {
10442 case R_ARM_NONE:
10443 /* We don't need to find a value for this symbol. It's just a
10444 marker. */
10445 *unresolved_reloc_p = FALSE;
10446 return bfd_reloc_ok;
10447
10448 case R_ARM_ABS12:
10449 if (globals->root.target_os != is_vxworks)
10450 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
10451 /* Fall through. */
10452
10453 case R_ARM_PC24:
10454 case R_ARM_ABS32:
10455 case R_ARM_ABS32_NOI:
10456 case R_ARM_REL32:
10457 case R_ARM_REL32_NOI:
10458 case R_ARM_CALL:
10459 case R_ARM_JUMP24:
10460 case R_ARM_XPC25:
10461 case R_ARM_PREL31:
10462 case R_ARM_PLT32:
10463 /* Handle relocations which should use the PLT entry. ABS32/REL32
10464 will use the symbol's value, which may point to a PLT entry, but we
10465 don't need to handle that here. If we created a PLT entry, all
10466 branches in this object should go to it, except if the PLT is too
10467 far away, in which case a long branch stub should be inserted. */
10468 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
10469 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
10470 && r_type != R_ARM_CALL
10471 && r_type != R_ARM_JUMP24
10472 && r_type != R_ARM_PLT32)
10473 && plt_offset != (bfd_vma) -1)
10474 {
10475 /* If we've created a .plt section, and assigned a PLT entry
10476 to this function, it must either be a STT_GNU_IFUNC reference
10477 or not be known to bind locally. In other cases, we should
10478 have cleared the PLT entry by now. */
10479 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
10480
10481 value = (splt->output_section->vma
10482 + splt->output_offset
10483 + plt_offset);
10484 *unresolved_reloc_p = FALSE;
10485 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10486 contents, rel->r_offset, value,
10487 rel->r_addend);
10488 }
10489
10490 /* When generating a shared object or relocatable executable, these
10491 relocations are copied into the output file to be resolved at
10492 run time. */
10493 if ((bfd_link_pic (info)
10494 || globals->root.is_relocatable_executable
10495 || globals->fdpic_p)
10496 && (input_section->flags & SEC_ALLOC)
10497 && !(globals->root.target_os == is_vxworks
10498 && strcmp (input_section->output_section->name,
10499 ".tls_vars") == 0)
10500 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
10501 || !SYMBOL_CALLS_LOCAL (info, h))
10502 && !(input_bfd == globals->stub_bfd
10503 && strstr (input_section->name, STUB_SUFFIX))
10504 && (h == NULL
10505 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10506 && !resolved_to_zero)
10507 || h->root.type != bfd_link_hash_undefweak)
10508 && r_type != R_ARM_PC24
10509 && r_type != R_ARM_CALL
10510 && r_type != R_ARM_JUMP24
10511 && r_type != R_ARM_PREL31
10512 && r_type != R_ARM_PLT32)
10513 {
10514 Elf_Internal_Rela outrel;
10515 bfd_boolean skip, relocate;
10516 int isrofixup = 0;
10517
10518 if ((r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
10519 && !h->def_regular)
10520 {
10521 char *v = _("shared object");
10522
10523 if (bfd_link_executable (info))
10524 v = _("PIE executable");
10525
10526 _bfd_error_handler
10527 (_("%pB: relocation %s against external or undefined symbol `%s'"
10528 " can not be used when making a %s; recompile with -fPIC"), input_bfd,
10529 elf32_arm_howto_table_1[r_type].name, h->root.root.string, v);
10530 return bfd_reloc_notsupported;
10531 }
10532
10533 *unresolved_reloc_p = FALSE;
10534
10535 if (sreloc == NULL && globals->root.dynamic_sections_created)
10536 {
10537 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
10538 ! globals->use_rel);
10539
10540 if (sreloc == NULL)
10541 return bfd_reloc_notsupported;
10542 }
10543
10544 skip = FALSE;
10545 relocate = FALSE;
10546
10547 outrel.r_addend = addend;
10548 outrel.r_offset =
10549 _bfd_elf_section_offset (output_bfd, info, input_section,
10550 rel->r_offset);
10551 if (outrel.r_offset == (bfd_vma) -1)
10552 skip = TRUE;
10553 else if (outrel.r_offset == (bfd_vma) -2)
10554 skip = TRUE, relocate = TRUE;
10555 outrel.r_offset += (input_section->output_section->vma
10556 + input_section->output_offset);
10557
10558 if (skip)
10559 memset (&outrel, 0, sizeof outrel);
10560 else if (h != NULL
10561 && h->dynindx != -1
10562 && (!bfd_link_pic (info)
10563 || !(bfd_link_pie (info)
10564 || SYMBOLIC_BIND (info, h))
10565 || !h->def_regular))
10566 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
10567 else
10568 {
10569 int symbol;
10570
10571 /* This symbol is local, or marked to become local. */
10572 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI
10573 || (globals->fdpic_p && !bfd_link_pic(info)));
10574 if (globals->root.target_os == is_symbian)
10575 {
10576 asection *osec;
10577
10578 /* On Symbian OS, the data segment and text segement
10579 can be relocated independently. Therefore, we
10580 must indicate the segment to which this
10581 relocation is relative. The BPABI allows us to
10582 use any symbol in the right segment; we just use
10583 the section symbol as it is convenient. (We
10584 cannot use the symbol given by "h" directly as it
10585 will not appear in the dynamic symbol table.)
10586
10587 Note that the dynamic linker ignores the section
10588 symbol value, so we don't subtract osec->vma
10589 from the emitted reloc addend. */
10590 if (sym_sec)
10591 osec = sym_sec->output_section;
10592 else
10593 osec = input_section->output_section;
10594 symbol = elf_section_data (osec)->dynindx;
10595 if (symbol == 0)
10596 {
10597 struct elf_link_hash_table *htab = elf_hash_table (info);
10598
10599 if ((osec->flags & SEC_READONLY) == 0
10600 && htab->data_index_section != NULL)
10601 osec = htab->data_index_section;
10602 else
10603 osec = htab->text_index_section;
10604 symbol = elf_section_data (osec)->dynindx;
10605 }
10606 BFD_ASSERT (symbol != 0);
10607 }
10608 else
10609 /* On SVR4-ish systems, the dynamic loader cannot
10610 relocate the text and data segments independently,
10611 so the symbol does not matter. */
10612 symbol = 0;
10613 if (dynreloc_st_type == STT_GNU_IFUNC)
10614 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
10615 to the .iplt entry. Instead, every non-call reference
10616 must use an R_ARM_IRELATIVE relocation to obtain the
10617 correct run-time address. */
10618 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
10619 else if (globals->fdpic_p && !bfd_link_pic(info))
10620 isrofixup = 1;
10621 else
10622 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
10623 if (globals->use_rel)
10624 relocate = TRUE;
10625 else
10626 outrel.r_addend += dynreloc_value;
10627 }
10628
10629 if (isrofixup)
10630 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset);
10631 else
10632 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
10633
10634 /* If this reloc is against an external symbol, we do not want to
10635 fiddle with the addend. Otherwise, we need to include the symbol
10636 value so that it becomes an addend for the dynamic reloc. */
10637 if (! relocate)
10638 return bfd_reloc_ok;
10639
10640 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10641 contents, rel->r_offset,
10642 dynreloc_value, (bfd_vma) 0);
10643 }
10644 else switch (r_type)
10645 {
10646 case R_ARM_ABS12:
10647 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
10648
10649 case R_ARM_XPC25: /* Arm BLX instruction. */
10650 case R_ARM_CALL:
10651 case R_ARM_JUMP24:
10652 case R_ARM_PC24: /* Arm B/BL instruction. */
10653 case R_ARM_PLT32:
10654 {
10655 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
10656
10657 if (r_type == R_ARM_XPC25)
10658 {
10659 /* Check for Arm calling Arm function. */
10660 /* FIXME: Should we translate the instruction into a BL
10661 instruction instead ? */
10662 if (branch_type != ST_BRANCH_TO_THUMB)
10663 _bfd_error_handler
10664 (_("\%pB: warning: %s BLX instruction targets"
10665 " %s function '%s'"),
10666 input_bfd, "ARM",
10667 "ARM", h ? h->root.root.string : "(local)");
10668 }
10669 else if (r_type == R_ARM_PC24)
10670 {
10671 /* Check for Arm calling Thumb function. */
10672 if (branch_type == ST_BRANCH_TO_THUMB)
10673 {
10674 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
10675 output_bfd, input_section,
10676 hit_data, sym_sec, rel->r_offset,
10677 signed_addend, value,
10678 error_message))
10679 return bfd_reloc_ok;
10680 else
10681 return bfd_reloc_dangerous;
10682 }
10683 }
10684
10685 /* Check if a stub has to be inserted because the
10686 destination is too far or we are changing mode. */
10687 if ( r_type == R_ARM_CALL
10688 || r_type == R_ARM_JUMP24
10689 || r_type == R_ARM_PLT32)
10690 {
10691 enum elf32_arm_stub_type stub_type = arm_stub_none;
10692 struct elf32_arm_link_hash_entry *hash;
10693
10694 hash = (struct elf32_arm_link_hash_entry *) h;
10695 stub_type = arm_type_of_stub (info, input_section, rel,
10696 st_type, &branch_type,
10697 hash, value, sym_sec,
10698 input_bfd, sym_name);
10699
10700 if (stub_type != arm_stub_none)
10701 {
10702 /* The target is out of reach, so redirect the
10703 branch to the local stub for this function. */
10704 stub_entry = elf32_arm_get_stub_entry (input_section,
10705 sym_sec, h,
10706 rel, globals,
10707 stub_type);
10708 {
10709 if (stub_entry != NULL)
10710 value = (stub_entry->stub_offset
10711 + stub_entry->stub_sec->output_offset
10712 + stub_entry->stub_sec->output_section->vma);
10713
10714 if (plt_offset != (bfd_vma) -1)
10715 *unresolved_reloc_p = FALSE;
10716 }
10717 }
10718 else
10719 {
10720 /* If the call goes through a PLT entry, make sure to
10721 check distance to the right destination address. */
10722 if (plt_offset != (bfd_vma) -1)
10723 {
10724 value = (splt->output_section->vma
10725 + splt->output_offset
10726 + plt_offset);
10727 *unresolved_reloc_p = FALSE;
10728 /* The PLT entry is in ARM mode, regardless of the
10729 target function. */
10730 branch_type = ST_BRANCH_TO_ARM;
10731 }
10732 }
10733 }
10734
10735 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
10736 where:
10737 S is the address of the symbol in the relocation.
10738 P is address of the instruction being relocated.
10739 A is the addend (extracted from the instruction) in bytes.
10740
10741 S is held in 'value'.
10742 P is the base address of the section containing the
10743 instruction plus the offset of the reloc into that
10744 section, ie:
10745 (input_section->output_section->vma +
10746 input_section->output_offset +
10747 rel->r_offset).
10748 A is the addend, converted into bytes, ie:
10749 (signed_addend * 4)
10750
10751 Note: None of these operations have knowledge of the pipeline
10752 size of the processor, thus it is up to the assembler to
10753 encode this information into the addend. */
10754 value -= (input_section->output_section->vma
10755 + input_section->output_offset);
10756 value -= rel->r_offset;
10757 if (globals->use_rel)
10758 value += (signed_addend << howto->size);
10759 else
10760 /* RELA addends do not have to be adjusted by howto->size. */
10761 value += signed_addend;
10762
10763 signed_addend = value;
10764 signed_addend >>= howto->rightshift;
10765
10766 /* A branch to an undefined weak symbol is turned into a jump to
10767 the next instruction unless a PLT entry will be created.
10768 Do the same for local undefined symbols (but not for STN_UNDEF).
10769 The jump to the next instruction is optimized as a NOP depending
10770 on the architecture. */
10771 if (h ? (h->root.type == bfd_link_hash_undefweak
10772 && plt_offset == (bfd_vma) -1)
10773 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
10774 {
10775 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
10776
10777 if (arch_has_arm_nop (globals))
10778 value |= 0x0320f000;
10779 else
10780 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
10781 }
10782 else
10783 {
10784 /* Perform a signed range check. */
10785 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
10786 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
10787 return bfd_reloc_overflow;
10788
10789 addend = (value & 2);
10790
10791 value = (signed_addend & howto->dst_mask)
10792 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
10793
10794 if (r_type == R_ARM_CALL)
10795 {
10796 /* Set the H bit in the BLX instruction. */
10797 if (branch_type == ST_BRANCH_TO_THUMB)
10798 {
10799 if (addend)
10800 value |= (1 << 24);
10801 else
10802 value &= ~(bfd_vma)(1 << 24);
10803 }
10804
10805 /* Select the correct instruction (BL or BLX). */
10806 /* Only if we are not handling a BL to a stub. In this
10807 case, mode switching is performed by the stub. */
10808 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
10809 value |= (1 << 28);
10810 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
10811 {
10812 value &= ~(bfd_vma)(1 << 28);
10813 value |= (1 << 24);
10814 }
10815 }
10816 }
10817 }
10818 break;
10819
10820 case R_ARM_ABS32:
10821 value += addend;
10822 if (branch_type == ST_BRANCH_TO_THUMB)
10823 value |= 1;
10824 break;
10825
10826 case R_ARM_ABS32_NOI:
10827 value += addend;
10828 break;
10829
10830 case R_ARM_REL32:
10831 value += addend;
10832 if (branch_type == ST_BRANCH_TO_THUMB)
10833 value |= 1;
10834 value -= (input_section->output_section->vma
10835 + input_section->output_offset + rel->r_offset);
10836 break;
10837
10838 case R_ARM_REL32_NOI:
10839 value += addend;
10840 value -= (input_section->output_section->vma
10841 + input_section->output_offset + rel->r_offset);
10842 break;
10843
10844 case R_ARM_PREL31:
10845 value -= (input_section->output_section->vma
10846 + input_section->output_offset + rel->r_offset);
10847 value += signed_addend;
10848 if (! h || h->root.type != bfd_link_hash_undefweak)
10849 {
10850 /* Check for overflow. */
10851 if ((value ^ (value >> 1)) & (1 << 30))
10852 return bfd_reloc_overflow;
10853 }
10854 value &= 0x7fffffff;
10855 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
10856 if (branch_type == ST_BRANCH_TO_THUMB)
10857 value |= 1;
10858 break;
10859 }
10860
10861 bfd_put_32 (input_bfd, value, hit_data);
10862 return bfd_reloc_ok;
10863
10864 case R_ARM_ABS8:
10865 /* PR 16202: Refectch the addend using the correct size. */
10866 if (globals->use_rel)
10867 addend = bfd_get_8 (input_bfd, hit_data);
10868 value += addend;
10869
10870 /* There is no way to tell whether the user intended to use a signed or
10871 unsigned addend. When checking for overflow we accept either,
10872 as specified by the AAELF. */
10873 if ((long) value > 0xff || (long) value < -0x80)
10874 return bfd_reloc_overflow;
10875
10876 bfd_put_8 (input_bfd, value, hit_data);
10877 return bfd_reloc_ok;
10878
10879 case R_ARM_ABS16:
10880 /* PR 16202: Refectch the addend using the correct size. */
10881 if (globals->use_rel)
10882 addend = bfd_get_16 (input_bfd, hit_data);
10883 value += addend;
10884
10885 /* See comment for R_ARM_ABS8. */
10886 if ((long) value > 0xffff || (long) value < -0x8000)
10887 return bfd_reloc_overflow;
10888
10889 bfd_put_16 (input_bfd, value, hit_data);
10890 return bfd_reloc_ok;
10891
10892 case R_ARM_THM_ABS5:
10893 /* Support ldr and str instructions for the thumb. */
10894 if (globals->use_rel)
10895 {
10896 /* Need to refetch addend. */
10897 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
10898 /* ??? Need to determine shift amount from operand size. */
10899 addend >>= howto->rightshift;
10900 }
10901 value += addend;
10902
10903 /* ??? Isn't value unsigned? */
10904 if ((long) value > 0x1f || (long) value < -0x10)
10905 return bfd_reloc_overflow;
10906
10907 /* ??? Value needs to be properly shifted into place first. */
10908 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
10909 bfd_put_16 (input_bfd, value, hit_data);
10910 return bfd_reloc_ok;
10911
10912 case R_ARM_THM_ALU_PREL_11_0:
10913 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
10914 {
10915 bfd_vma insn;
10916 bfd_signed_vma relocation;
10917
10918 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
10919 | bfd_get_16 (input_bfd, hit_data + 2);
10920
10921 if (globals->use_rel)
10922 {
10923 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
10924 | ((insn & (1 << 26)) >> 15);
10925 if (insn & 0xf00000)
10926 signed_addend = -signed_addend;
10927 }
10928
10929 relocation = value + signed_addend;
10930 relocation -= Pa (input_section->output_section->vma
10931 + input_section->output_offset
10932 + rel->r_offset);
10933
10934 /* PR 21523: Use an absolute value. The user of this reloc will
10935 have already selected an ADD or SUB insn appropriately. */
10936 value = llabs (relocation);
10937
10938 if (value >= 0x1000)
10939 return bfd_reloc_overflow;
10940
10941 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
10942 if (branch_type == ST_BRANCH_TO_THUMB)
10943 value |= 1;
10944
10945 insn = (insn & 0xfb0f8f00) | (value & 0xff)
10946 | ((value & 0x700) << 4)
10947 | ((value & 0x800) << 15);
10948 if (relocation < 0)
10949 insn |= 0xa00000;
10950
10951 bfd_put_16 (input_bfd, insn >> 16, hit_data);
10952 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10953
10954 return bfd_reloc_ok;
10955 }
10956
10957 case R_ARM_THM_PC8:
10958 /* PR 10073: This reloc is not generated by the GNU toolchain,
10959 but it is supported for compatibility with third party libraries
10960 generated by other compilers, specifically the ARM/IAR. */
10961 {
10962 bfd_vma insn;
10963 bfd_signed_vma relocation;
10964
10965 insn = bfd_get_16 (input_bfd, hit_data);
10966
10967 if (globals->use_rel)
10968 addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4;
10969
10970 relocation = value + addend;
10971 relocation -= Pa (input_section->output_section->vma
10972 + input_section->output_offset
10973 + rel->r_offset);
10974
10975 value = relocation;
10976
10977 /* We do not check for overflow of this reloc. Although strictly
10978 speaking this is incorrect, it appears to be necessary in order
10979 to work with IAR generated relocs. Since GCC and GAS do not
10980 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
10981 a problem for them. */
10982 value &= 0x3fc;
10983
10984 insn = (insn & 0xff00) | (value >> 2);
10985
10986 bfd_put_16 (input_bfd, insn, hit_data);
10987
10988 return bfd_reloc_ok;
10989 }
10990
10991 case R_ARM_THM_PC12:
10992 /* Corresponds to: ldr.w reg, [pc, #offset]. */
10993 {
10994 bfd_vma insn;
10995 bfd_signed_vma relocation;
10996
10997 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
10998 | bfd_get_16 (input_bfd, hit_data + 2);
10999
11000 if (globals->use_rel)
11001 {
11002 signed_addend = insn & 0xfff;
11003 if (!(insn & (1 << 23)))
11004 signed_addend = -signed_addend;
11005 }
11006
11007 relocation = value + signed_addend;
11008 relocation -= Pa (input_section->output_section->vma
11009 + input_section->output_offset
11010 + rel->r_offset);
11011
11012 value = relocation;
11013
11014 if (value >= 0x1000)
11015 return bfd_reloc_overflow;
11016
11017 insn = (insn & 0xff7ff000) | value;
11018 if (relocation >= 0)
11019 insn |= (1 << 23);
11020
11021 bfd_put_16 (input_bfd, insn >> 16, hit_data);
11022 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
11023
11024 return bfd_reloc_ok;
11025 }
11026
11027 case R_ARM_THM_XPC22:
11028 case R_ARM_THM_CALL:
11029 case R_ARM_THM_JUMP24:
11030 /* Thumb BL (branch long instruction). */
11031 {
11032 bfd_vma relocation;
11033 bfd_vma reloc_sign;
11034 bfd_boolean overflow = FALSE;
11035 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
11036 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
11037 bfd_signed_vma reloc_signed_max;
11038 bfd_signed_vma reloc_signed_min;
11039 bfd_vma check;
11040 bfd_signed_vma signed_check;
11041 int bitsize;
11042 const int thumb2 = using_thumb2 (globals);
11043 const int thumb2_bl = using_thumb2_bl (globals);
11044
11045 /* A branch to an undefined weak symbol is turned into a jump to
11046 the next instruction unless a PLT entry will be created.
11047 The jump to the next instruction is optimized as a NOP.W for
11048 Thumb-2 enabled architectures. */
11049 if (h && h->root.type == bfd_link_hash_undefweak
11050 && plt_offset == (bfd_vma) -1)
11051 {
11052 if (thumb2)
11053 {
11054 bfd_put_16 (input_bfd, 0xf3af, hit_data);
11055 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
11056 }
11057 else
11058 {
11059 bfd_put_16 (input_bfd, 0xe000, hit_data);
11060 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
11061 }
11062 return bfd_reloc_ok;
11063 }
11064
11065 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
11066 with Thumb-1) involving the J1 and J2 bits. */
11067 if (globals->use_rel)
11068 {
11069 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
11070 bfd_vma upper = upper_insn & 0x3ff;
11071 bfd_vma lower = lower_insn & 0x7ff;
11072 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
11073 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
11074 bfd_vma i1 = j1 ^ s ? 0 : 1;
11075 bfd_vma i2 = j2 ^ s ? 0 : 1;
11076
11077 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
11078 /* Sign extend. */
11079 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
11080
11081 signed_addend = addend;
11082 }
11083
11084 if (r_type == R_ARM_THM_XPC22)
11085 {
11086 /* Check for Thumb to Thumb call. */
11087 /* FIXME: Should we translate the instruction into a BL
11088 instruction instead ? */
11089 if (branch_type == ST_BRANCH_TO_THUMB)
11090 _bfd_error_handler
11091 (_("%pB: warning: %s BLX instruction targets"
11092 " %s function '%s'"),
11093 input_bfd, "Thumb",
11094 "Thumb", h ? h->root.root.string : "(local)");
11095 }
11096 else
11097 {
11098 /* If it is not a call to Thumb, assume call to Arm.
11099 If it is a call relative to a section name, then it is not a
11100 function call at all, but rather a long jump. Calls through
11101 the PLT do not require stubs. */
11102 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
11103 {
11104 if (globals->use_blx && r_type == R_ARM_THM_CALL)
11105 {
11106 /* Convert BL to BLX. */
11107 lower_insn = (lower_insn & ~0x1000) | 0x0800;
11108 }
11109 else if (( r_type != R_ARM_THM_CALL)
11110 && (r_type != R_ARM_THM_JUMP24))
11111 {
11112 if (elf32_thumb_to_arm_stub
11113 (info, sym_name, input_bfd, output_bfd, input_section,
11114 hit_data, sym_sec, rel->r_offset, signed_addend, value,
11115 error_message))
11116 return bfd_reloc_ok;
11117 else
11118 return bfd_reloc_dangerous;
11119 }
11120 }
11121 else if (branch_type == ST_BRANCH_TO_THUMB
11122 && globals->use_blx
11123 && r_type == R_ARM_THM_CALL)
11124 {
11125 /* Make sure this is a BL. */
11126 lower_insn |= 0x1800;
11127 }
11128 }
11129
11130 enum elf32_arm_stub_type stub_type = arm_stub_none;
11131 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
11132 {
11133 /* Check if a stub has to be inserted because the destination
11134 is too far. */
11135 struct elf32_arm_stub_hash_entry *stub_entry;
11136 struct elf32_arm_link_hash_entry *hash;
11137
11138 hash = (struct elf32_arm_link_hash_entry *) h;
11139
11140 stub_type = arm_type_of_stub (info, input_section, rel,
11141 st_type, &branch_type,
11142 hash, value, sym_sec,
11143 input_bfd, sym_name);
11144
11145 if (stub_type != arm_stub_none)
11146 {
11147 /* The target is out of reach or we are changing modes, so
11148 redirect the branch to the local stub for this
11149 function. */
11150 stub_entry = elf32_arm_get_stub_entry (input_section,
11151 sym_sec, h,
11152 rel, globals,
11153 stub_type);
11154 if (stub_entry != NULL)
11155 {
11156 value = (stub_entry->stub_offset
11157 + stub_entry->stub_sec->output_offset
11158 + stub_entry->stub_sec->output_section->vma);
11159
11160 if (plt_offset != (bfd_vma) -1)
11161 *unresolved_reloc_p = FALSE;
11162 }
11163
11164 /* If this call becomes a call to Arm, force BLX. */
11165 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
11166 {
11167 if ((stub_entry
11168 && !arm_stub_is_thumb (stub_entry->stub_type))
11169 || branch_type != ST_BRANCH_TO_THUMB)
11170 lower_insn = (lower_insn & ~0x1000) | 0x0800;
11171 }
11172 }
11173 }
11174
11175 /* Handle calls via the PLT. */
11176 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
11177 {
11178 value = (splt->output_section->vma
11179 + splt->output_offset
11180 + plt_offset);
11181
11182 if (globals->use_blx
11183 && r_type == R_ARM_THM_CALL
11184 && ! using_thumb_only (globals))
11185 {
11186 /* If the Thumb BLX instruction is available, convert
11187 the BL to a BLX instruction to call the ARM-mode
11188 PLT entry. */
11189 lower_insn = (lower_insn & ~0x1000) | 0x0800;
11190 branch_type = ST_BRANCH_TO_ARM;
11191 }
11192 else
11193 {
11194 if (! using_thumb_only (globals))
11195 /* Target the Thumb stub before the ARM PLT entry. */
11196 value -= PLT_THUMB_STUB_SIZE;
11197 branch_type = ST_BRANCH_TO_THUMB;
11198 }
11199 *unresolved_reloc_p = FALSE;
11200 }
11201
11202 relocation = value + signed_addend;
11203
11204 relocation -= (input_section->output_section->vma
11205 + input_section->output_offset
11206 + rel->r_offset);
11207
11208 check = relocation >> howto->rightshift;
11209
11210 /* If this is a signed value, the rightshift just dropped
11211 leading 1 bits (assuming twos complement). */
11212 if ((bfd_signed_vma) relocation >= 0)
11213 signed_check = check;
11214 else
11215 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
11216
11217 /* Calculate the permissable maximum and minimum values for
11218 this relocation according to whether we're relocating for
11219 Thumb-2 or not. */
11220 bitsize = howto->bitsize;
11221 if (!thumb2_bl)
11222 bitsize -= 2;
11223 reloc_signed_max = (1 << (bitsize - 1)) - 1;
11224 reloc_signed_min = ~reloc_signed_max;
11225
11226 /* Assumes two's complement. */
11227 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
11228 overflow = TRUE;
11229
11230 if ((lower_insn & 0x5000) == 0x4000)
11231 /* For a BLX instruction, make sure that the relocation is rounded up
11232 to a word boundary. This follows the semantics of the instruction
11233 which specifies that bit 1 of the target address will come from bit
11234 1 of the base address. */
11235 relocation = (relocation + 2) & ~ 3;
11236
11237 /* Put RELOCATION back into the insn. Assumes two's complement.
11238 We use the Thumb-2 encoding, which is safe even if dealing with
11239 a Thumb-1 instruction by virtue of our overflow check above. */
11240 reloc_sign = (signed_check < 0) ? 1 : 0;
11241 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
11242 | ((relocation >> 12) & 0x3ff)
11243 | (reloc_sign << 10);
11244 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
11245 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
11246 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
11247 | ((relocation >> 1) & 0x7ff);
11248
11249 /* Put the relocated value back in the object file: */
11250 bfd_put_16 (input_bfd, upper_insn, hit_data);
11251 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11252
11253 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
11254 }
11255 break;
11256
11257 case R_ARM_THM_JUMP19:
11258 /* Thumb32 conditional branch instruction. */
11259 {
11260 bfd_vma relocation;
11261 bfd_boolean overflow = FALSE;
11262 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
11263 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
11264 bfd_signed_vma reloc_signed_max = 0xffffe;
11265 bfd_signed_vma reloc_signed_min = -0x100000;
11266 bfd_signed_vma signed_check;
11267 enum elf32_arm_stub_type stub_type = arm_stub_none;
11268 struct elf32_arm_stub_hash_entry *stub_entry;
11269 struct elf32_arm_link_hash_entry *hash;
11270
11271 /* Need to refetch the addend, reconstruct the top three bits,
11272 and squish the two 11 bit pieces together. */
11273 if (globals->use_rel)
11274 {
11275 bfd_vma S = (upper_insn & 0x0400) >> 10;
11276 bfd_vma upper = (upper_insn & 0x003f);
11277 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
11278 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
11279 bfd_vma lower = (lower_insn & 0x07ff);
11280
11281 upper |= J1 << 6;
11282 upper |= J2 << 7;
11283 upper |= (!S) << 8;
11284 upper -= 0x0100; /* Sign extend. */
11285
11286 addend = (upper << 12) | (lower << 1);
11287 signed_addend = addend;
11288 }
11289
11290 /* Handle calls via the PLT. */
11291 if (plt_offset != (bfd_vma) -1)
11292 {
11293 value = (splt->output_section->vma
11294 + splt->output_offset
11295 + plt_offset);
11296 /* Target the Thumb stub before the ARM PLT entry. */
11297 value -= PLT_THUMB_STUB_SIZE;
11298 *unresolved_reloc_p = FALSE;
11299 }
11300
11301 hash = (struct elf32_arm_link_hash_entry *)h;
11302
11303 stub_type = arm_type_of_stub (info, input_section, rel,
11304 st_type, &branch_type,
11305 hash, value, sym_sec,
11306 input_bfd, sym_name);
11307 if (stub_type != arm_stub_none)
11308 {
11309 stub_entry = elf32_arm_get_stub_entry (input_section,
11310 sym_sec, h,
11311 rel, globals,
11312 stub_type);
11313 if (stub_entry != NULL)
11314 {
11315 value = (stub_entry->stub_offset
11316 + stub_entry->stub_sec->output_offset
11317 + stub_entry->stub_sec->output_section->vma);
11318 }
11319 }
11320
11321 relocation = value + signed_addend;
11322 relocation -= (input_section->output_section->vma
11323 + input_section->output_offset
11324 + rel->r_offset);
11325 signed_check = (bfd_signed_vma) relocation;
11326
11327 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
11328 overflow = TRUE;
11329
11330 /* Put RELOCATION back into the insn. */
11331 {
11332 bfd_vma S = (relocation & 0x00100000) >> 20;
11333 bfd_vma J2 = (relocation & 0x00080000) >> 19;
11334 bfd_vma J1 = (relocation & 0x00040000) >> 18;
11335 bfd_vma hi = (relocation & 0x0003f000) >> 12;
11336 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
11337
11338 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
11339 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
11340 }
11341
11342 /* Put the relocated value back in the object file: */
11343 bfd_put_16 (input_bfd, upper_insn, hit_data);
11344 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11345
11346 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
11347 }
11348
11349 case R_ARM_THM_JUMP11:
11350 case R_ARM_THM_JUMP8:
11351 case R_ARM_THM_JUMP6:
11352 /* Thumb B (branch) instruction). */
11353 {
11354 bfd_signed_vma relocation;
11355 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
11356 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
11357 bfd_signed_vma signed_check;
11358
11359 /* CZB cannot jump backward. */
11360 if (r_type == R_ARM_THM_JUMP6)
11361 reloc_signed_min = 0;
11362
11363 if (globals->use_rel)
11364 {
11365 /* Need to refetch addend. */
11366 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
11367 if (addend & ((howto->src_mask + 1) >> 1))
11368 {
11369 signed_addend = -1;
11370 signed_addend &= ~ howto->src_mask;
11371 signed_addend |= addend;
11372 }
11373 else
11374 signed_addend = addend;
11375 /* The value in the insn has been right shifted. We need to
11376 undo this, so that we can perform the address calculation
11377 in terms of bytes. */
11378 signed_addend <<= howto->rightshift;
11379 }
11380 relocation = value + signed_addend;
11381
11382 relocation -= (input_section->output_section->vma
11383 + input_section->output_offset
11384 + rel->r_offset);
11385
11386 relocation >>= howto->rightshift;
11387 signed_check = relocation;
11388
11389 if (r_type == R_ARM_THM_JUMP6)
11390 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
11391 else
11392 relocation &= howto->dst_mask;
11393 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
11394
11395 bfd_put_16 (input_bfd, relocation, hit_data);
11396
11397 /* Assumes two's complement. */
11398 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
11399 return bfd_reloc_overflow;
11400
11401 return bfd_reloc_ok;
11402 }
11403
11404 case R_ARM_ALU_PCREL7_0:
11405 case R_ARM_ALU_PCREL15_8:
11406 case R_ARM_ALU_PCREL23_15:
11407 {
11408 bfd_vma insn;
11409 bfd_vma relocation;
11410
11411 insn = bfd_get_32 (input_bfd, hit_data);
11412 if (globals->use_rel)
11413 {
11414 /* Extract the addend. */
11415 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
11416 signed_addend = addend;
11417 }
11418 relocation = value + signed_addend;
11419
11420 relocation -= (input_section->output_section->vma
11421 + input_section->output_offset
11422 + rel->r_offset);
11423 insn = (insn & ~0xfff)
11424 | ((howto->bitpos << 7) & 0xf00)
11425 | ((relocation >> howto->bitpos) & 0xff);
11426 bfd_put_32 (input_bfd, value, hit_data);
11427 }
11428 return bfd_reloc_ok;
11429
11430 case R_ARM_GNU_VTINHERIT:
11431 case R_ARM_GNU_VTENTRY:
11432 return bfd_reloc_ok;
11433
11434 case R_ARM_GOTOFF32:
11435 /* Relocation is relative to the start of the
11436 global offset table. */
11437
11438 BFD_ASSERT (sgot != NULL);
11439 if (sgot == NULL)
11440 return bfd_reloc_notsupported;
11441
11442 /* If we are addressing a Thumb function, we need to adjust the
11443 address by one, so that attempts to call the function pointer will
11444 correctly interpret it as Thumb code. */
11445 if (branch_type == ST_BRANCH_TO_THUMB)
11446 value += 1;
11447
11448 /* Note that sgot->output_offset is not involved in this
11449 calculation. We always want the start of .got. If we
11450 define _GLOBAL_OFFSET_TABLE in a different way, as is
11451 permitted by the ABI, we might have to change this
11452 calculation. */
11453 value -= sgot->output_section->vma;
11454 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11455 contents, rel->r_offset, value,
11456 rel->r_addend);
11457
11458 case R_ARM_GOTPC:
11459 /* Use global offset table as symbol value. */
11460 BFD_ASSERT (sgot != NULL);
11461
11462 if (sgot == NULL)
11463 return bfd_reloc_notsupported;
11464
11465 *unresolved_reloc_p = FALSE;
11466 value = sgot->output_section->vma;
11467 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11468 contents, rel->r_offset, value,
11469 rel->r_addend);
11470
11471 case R_ARM_GOT32:
11472 case R_ARM_GOT_PREL:
11473 /* Relocation is to the entry for this symbol in the
11474 global offset table. */
11475 if (sgot == NULL)
11476 return bfd_reloc_notsupported;
11477
11478 if (dynreloc_st_type == STT_GNU_IFUNC
11479 && plt_offset != (bfd_vma) -1
11480 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
11481 {
11482 /* We have a relocation against a locally-binding STT_GNU_IFUNC
11483 symbol, and the relocation resolves directly to the runtime
11484 target rather than to the .iplt entry. This means that any
11485 .got entry would be the same value as the .igot.plt entry,
11486 so there's no point creating both. */
11487 sgot = globals->root.igotplt;
11488 value = sgot->output_offset + gotplt_offset;
11489 }
11490 else if (h != NULL)
11491 {
11492 bfd_vma off;
11493
11494 off = h->got.offset;
11495 BFD_ASSERT (off != (bfd_vma) -1);
11496 if ((off & 1) != 0)
11497 {
11498 /* We have already processsed one GOT relocation against
11499 this symbol. */
11500 off &= ~1;
11501 if (globals->root.dynamic_sections_created
11502 && !SYMBOL_REFERENCES_LOCAL (info, h))
11503 *unresolved_reloc_p = FALSE;
11504 }
11505 else
11506 {
11507 Elf_Internal_Rela outrel;
11508 int isrofixup = 0;
11509
11510 if (((h->dynindx != -1) || globals->fdpic_p)
11511 && !SYMBOL_REFERENCES_LOCAL (info, h))
11512 {
11513 /* If the symbol doesn't resolve locally in a static
11514 object, we have an undefined reference. If the
11515 symbol doesn't resolve locally in a dynamic object,
11516 it should be resolved by the dynamic linker. */
11517 if (globals->root.dynamic_sections_created)
11518 {
11519 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
11520 *unresolved_reloc_p = FALSE;
11521 }
11522 else
11523 outrel.r_info = 0;
11524 outrel.r_addend = 0;
11525 }
11526 else
11527 {
11528 if (dynreloc_st_type == STT_GNU_IFUNC)
11529 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
11530 else if (bfd_link_pic (info)
11531 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
11532 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11533 else
11534 {
11535 outrel.r_info = 0;
11536 if (globals->fdpic_p)
11537 isrofixup = 1;
11538 }
11539 outrel.r_addend = dynreloc_value;
11540 }
11541
11542 /* The GOT entry is initialized to zero by default.
11543 See if we should install a different value. */
11544 if (outrel.r_addend != 0
11545 && (globals->use_rel || outrel.r_info == 0))
11546 {
11547 bfd_put_32 (output_bfd, outrel.r_addend,
11548 sgot->contents + off);
11549 outrel.r_addend = 0;
11550 }
11551
11552 if (isrofixup)
11553 arm_elf_add_rofixup (output_bfd,
11554 elf32_arm_hash_table(info)->srofixup,
11555 sgot->output_section->vma
11556 + sgot->output_offset + off);
11557
11558 else if (outrel.r_info != 0)
11559 {
11560 outrel.r_offset = (sgot->output_section->vma
11561 + sgot->output_offset
11562 + off);
11563 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11564 }
11565
11566 h->got.offset |= 1;
11567 }
11568 value = sgot->output_offset + off;
11569 }
11570 else
11571 {
11572 bfd_vma off;
11573
11574 BFD_ASSERT (local_got_offsets != NULL
11575 && local_got_offsets[r_symndx] != (bfd_vma) -1);
11576
11577 off = local_got_offsets[r_symndx];
11578
11579 /* The offset must always be a multiple of 4. We use the
11580 least significant bit to record whether we have already
11581 generated the necessary reloc. */
11582 if ((off & 1) != 0)
11583 off &= ~1;
11584 else
11585 {
11586 Elf_Internal_Rela outrel;
11587 int isrofixup = 0;
11588
11589 if (dynreloc_st_type == STT_GNU_IFUNC)
11590 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
11591 else if (bfd_link_pic (info))
11592 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11593 else
11594 {
11595 outrel.r_info = 0;
11596 if (globals->fdpic_p)
11597 isrofixup = 1;
11598 }
11599
11600 /* The GOT entry is initialized to zero by default.
11601 See if we should install a different value. */
11602 if (globals->use_rel || outrel.r_info == 0)
11603 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
11604
11605 if (isrofixup)
11606 arm_elf_add_rofixup (output_bfd,
11607 globals->srofixup,
11608 sgot->output_section->vma
11609 + sgot->output_offset + off);
11610
11611 else if (outrel.r_info != 0)
11612 {
11613 outrel.r_addend = addend + dynreloc_value;
11614 outrel.r_offset = (sgot->output_section->vma
11615 + sgot->output_offset
11616 + off);
11617 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11618 }
11619
11620 local_got_offsets[r_symndx] |= 1;
11621 }
11622
11623 value = sgot->output_offset + off;
11624 }
11625 if (r_type != R_ARM_GOT32)
11626 value += sgot->output_section->vma;
11627
11628 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11629 contents, rel->r_offset, value,
11630 rel->r_addend);
11631
11632 case R_ARM_TLS_LDO32:
11633 value = value - dtpoff_base (info);
11634
11635 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11636 contents, rel->r_offset, value,
11637 rel->r_addend);
11638
11639 case R_ARM_TLS_LDM32:
11640 case R_ARM_TLS_LDM32_FDPIC:
11641 {
11642 bfd_vma off;
11643
11644 if (sgot == NULL)
11645 abort ();
11646
11647 off = globals->tls_ldm_got.offset;
11648
11649 if ((off & 1) != 0)
11650 off &= ~1;
11651 else
11652 {
11653 /* If we don't know the module number, create a relocation
11654 for it. */
11655 if (bfd_link_dll (info))
11656 {
11657 Elf_Internal_Rela outrel;
11658
11659 if (srelgot == NULL)
11660 abort ();
11661
11662 outrel.r_addend = 0;
11663 outrel.r_offset = (sgot->output_section->vma
11664 + sgot->output_offset + off);
11665 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
11666
11667 if (globals->use_rel)
11668 bfd_put_32 (output_bfd, outrel.r_addend,
11669 sgot->contents + off);
11670
11671 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11672 }
11673 else
11674 bfd_put_32 (output_bfd, 1, sgot->contents + off);
11675
11676 globals->tls_ldm_got.offset |= 1;
11677 }
11678
11679 if (r_type == R_ARM_TLS_LDM32_FDPIC)
11680 {
11681 bfd_put_32(output_bfd,
11682 globals->root.sgot->output_offset + off,
11683 contents + rel->r_offset);
11684
11685 return bfd_reloc_ok;
11686 }
11687 else
11688 {
11689 value = sgot->output_section->vma + sgot->output_offset + off
11690 - (input_section->output_section->vma
11691 + input_section->output_offset + rel->r_offset);
11692
11693 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11694 contents, rel->r_offset, value,
11695 rel->r_addend);
11696 }
11697 }
11698
11699 case R_ARM_TLS_CALL:
11700 case R_ARM_THM_TLS_CALL:
11701 case R_ARM_TLS_GD32:
11702 case R_ARM_TLS_GD32_FDPIC:
11703 case R_ARM_TLS_IE32:
11704 case R_ARM_TLS_IE32_FDPIC:
11705 case R_ARM_TLS_GOTDESC:
11706 case R_ARM_TLS_DESCSEQ:
11707 case R_ARM_THM_TLS_DESCSEQ:
11708 {
11709 bfd_vma off, offplt;
11710 int indx = 0;
11711 char tls_type;
11712
11713 BFD_ASSERT (sgot != NULL);
11714
11715 if (h != NULL)
11716 {
11717 bfd_boolean dyn;
11718 dyn = globals->root.dynamic_sections_created;
11719 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
11720 bfd_link_pic (info),
11721 h)
11722 && (!bfd_link_pic (info)
11723 || !SYMBOL_REFERENCES_LOCAL (info, h)))
11724 {
11725 *unresolved_reloc_p = FALSE;
11726 indx = h->dynindx;
11727 }
11728 off = h->got.offset;
11729 offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
11730 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
11731 }
11732 else
11733 {
11734 BFD_ASSERT (local_got_offsets != NULL);
11735 off = local_got_offsets[r_symndx];
11736 offplt = local_tlsdesc_gotents[r_symndx];
11737 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
11738 }
11739
11740 /* Linker relaxations happens from one of the
11741 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
11742 if (ELF32_R_TYPE(rel->r_info) != r_type)
11743 tls_type = GOT_TLS_IE;
11744
11745 BFD_ASSERT (tls_type != GOT_UNKNOWN);
11746
11747 if ((off & 1) != 0)
11748 off &= ~1;
11749 else
11750 {
11751 bfd_boolean need_relocs = FALSE;
11752 Elf_Internal_Rela outrel;
11753 int cur_off = off;
11754
11755 /* The GOT entries have not been initialized yet. Do it
11756 now, and emit any relocations. If both an IE GOT and a
11757 GD GOT are necessary, we emit the GD first. */
11758
11759 if ((bfd_link_dll (info) || indx != 0)
11760 && (h == NULL
11761 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11762 && !resolved_to_zero)
11763 || h->root.type != bfd_link_hash_undefweak))
11764 {
11765 need_relocs = TRUE;
11766 BFD_ASSERT (srelgot != NULL);
11767 }
11768
11769 if (tls_type & GOT_TLS_GDESC)
11770 {
11771 bfd_byte *loc;
11772
11773 /* We should have relaxed, unless this is an undefined
11774 weak symbol. */
11775 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
11776 || bfd_link_dll (info));
11777 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
11778 <= globals->root.sgotplt->size);
11779
11780 outrel.r_addend = 0;
11781 outrel.r_offset = (globals->root.sgotplt->output_section->vma
11782 + globals->root.sgotplt->output_offset
11783 + offplt
11784 + globals->sgotplt_jump_table_size);
11785
11786 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
11787 sreloc = globals->root.srelplt;
11788 loc = sreloc->contents;
11789 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
11790 BFD_ASSERT (loc + RELOC_SIZE (globals)
11791 <= sreloc->contents + sreloc->size);
11792
11793 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
11794
11795 /* For globals, the first word in the relocation gets
11796 the relocation index and the top bit set, or zero,
11797 if we're binding now. For locals, it gets the
11798 symbol's offset in the tls section. */
11799 bfd_put_32 (output_bfd,
11800 !h ? value - elf_hash_table (info)->tls_sec->vma
11801 : info->flags & DF_BIND_NOW ? 0
11802 : 0x80000000 | ELF32_R_SYM (outrel.r_info),
11803 globals->root.sgotplt->contents + offplt
11804 + globals->sgotplt_jump_table_size);
11805
11806 /* Second word in the relocation is always zero. */
11807 bfd_put_32 (output_bfd, 0,
11808 globals->root.sgotplt->contents + offplt
11809 + globals->sgotplt_jump_table_size + 4);
11810 }
11811 if (tls_type & GOT_TLS_GD)
11812 {
11813 if (need_relocs)
11814 {
11815 outrel.r_addend = 0;
11816 outrel.r_offset = (sgot->output_section->vma
11817 + sgot->output_offset
11818 + cur_off);
11819 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
11820
11821 if (globals->use_rel)
11822 bfd_put_32 (output_bfd, outrel.r_addend,
11823 sgot->contents + cur_off);
11824
11825 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11826
11827 if (indx == 0)
11828 bfd_put_32 (output_bfd, value - dtpoff_base (info),
11829 sgot->contents + cur_off + 4);
11830 else
11831 {
11832 outrel.r_addend = 0;
11833 outrel.r_info = ELF32_R_INFO (indx,
11834 R_ARM_TLS_DTPOFF32);
11835 outrel.r_offset += 4;
11836
11837 if (globals->use_rel)
11838 bfd_put_32 (output_bfd, outrel.r_addend,
11839 sgot->contents + cur_off + 4);
11840
11841 elf32_arm_add_dynreloc (output_bfd, info,
11842 srelgot, &outrel);
11843 }
11844 }
11845 else
11846 {
11847 /* If we are not emitting relocations for a
11848 general dynamic reference, then we must be in a
11849 static link or an executable link with the
11850 symbol binding locally. Mark it as belonging
11851 to module 1, the executable. */
11852 bfd_put_32 (output_bfd, 1,
11853 sgot->contents + cur_off);
11854 bfd_put_32 (output_bfd, value - dtpoff_base (info),
11855 sgot->contents + cur_off + 4);
11856 }
11857
11858 cur_off += 8;
11859 }
11860
11861 if (tls_type & GOT_TLS_IE)
11862 {
11863 if (need_relocs)
11864 {
11865 if (indx == 0)
11866 outrel.r_addend = value - dtpoff_base (info);
11867 else
11868 outrel.r_addend = 0;
11869 outrel.r_offset = (sgot->output_section->vma
11870 + sgot->output_offset
11871 + cur_off);
11872 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
11873
11874 if (globals->use_rel)
11875 bfd_put_32 (output_bfd, outrel.r_addend,
11876 sgot->contents + cur_off);
11877
11878 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11879 }
11880 else
11881 bfd_put_32 (output_bfd, tpoff (info, value),
11882 sgot->contents + cur_off);
11883 cur_off += 4;
11884 }
11885
11886 if (h != NULL)
11887 h->got.offset |= 1;
11888 else
11889 local_got_offsets[r_symndx] |= 1;
11890 }
11891
11892 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32 && r_type != R_ARM_TLS_GD32_FDPIC)
11893 off += 8;
11894 else if (tls_type & GOT_TLS_GDESC)
11895 off = offplt;
11896
11897 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
11898 || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
11899 {
11900 bfd_signed_vma offset;
11901 /* TLS stubs are arm mode. The original symbol is a
11902 data object, so branch_type is bogus. */
11903 branch_type = ST_BRANCH_TO_ARM;
11904 enum elf32_arm_stub_type stub_type
11905 = arm_type_of_stub (info, input_section, rel,
11906 st_type, &branch_type,
11907 (struct elf32_arm_link_hash_entry *)h,
11908 globals->tls_trampoline, globals->root.splt,
11909 input_bfd, sym_name);
11910
11911 if (stub_type != arm_stub_none)
11912 {
11913 struct elf32_arm_stub_hash_entry *stub_entry
11914 = elf32_arm_get_stub_entry
11915 (input_section, globals->root.splt, 0, rel,
11916 globals, stub_type);
11917 offset = (stub_entry->stub_offset
11918 + stub_entry->stub_sec->output_offset
11919 + stub_entry->stub_sec->output_section->vma);
11920 }
11921 else
11922 offset = (globals->root.splt->output_section->vma
11923 + globals->root.splt->output_offset
11924 + globals->tls_trampoline);
11925
11926 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
11927 {
11928 unsigned long inst;
11929
11930 offset -= (input_section->output_section->vma
11931 + input_section->output_offset
11932 + rel->r_offset + 8);
11933
11934 inst = offset >> 2;
11935 inst &= 0x00ffffff;
11936 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
11937 }
11938 else
11939 {
11940 /* Thumb blx encodes the offset in a complicated
11941 fashion. */
11942 unsigned upper_insn, lower_insn;
11943 unsigned neg;
11944
11945 offset -= (input_section->output_section->vma
11946 + input_section->output_offset
11947 + rel->r_offset + 4);
11948
11949 if (stub_type != arm_stub_none
11950 && arm_stub_is_thumb (stub_type))
11951 {
11952 lower_insn = 0xd000;
11953 }
11954 else
11955 {
11956 lower_insn = 0xc000;
11957 /* Round up the offset to a word boundary. */
11958 offset = (offset + 2) & ~2;
11959 }
11960
11961 neg = offset < 0;
11962 upper_insn = (0xf000
11963 | ((offset >> 12) & 0x3ff)
11964 | (neg << 10));
11965 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
11966 | (((!((offset >> 22) & 1)) ^ neg) << 11)
11967 | ((offset >> 1) & 0x7ff);
11968 bfd_put_16 (input_bfd, upper_insn, hit_data);
11969 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11970 return bfd_reloc_ok;
11971 }
11972 }
11973 /* These relocations needs special care, as besides the fact
11974 they point somewhere in .gotplt, the addend must be
11975 adjusted accordingly depending on the type of instruction
11976 we refer to. */
11977 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
11978 {
11979 unsigned long data, insn;
11980 unsigned thumb;
11981
11982 data = bfd_get_signed_32 (input_bfd, hit_data);
11983 thumb = data & 1;
11984 data &= ~1ul;
11985
11986 if (thumb)
11987 {
11988 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
11989 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
11990 insn = (insn << 16)
11991 | bfd_get_16 (input_bfd,
11992 contents + rel->r_offset - data + 2);
11993 if ((insn & 0xf800c000) == 0xf000c000)
11994 /* bl/blx */
11995 value = -6;
11996 else if ((insn & 0xffffff00) == 0x4400)
11997 /* add */
11998 value = -5;
11999 else
12000 {
12001 _bfd_error_handler
12002 /* xgettext:c-format */
12003 (_("%pB(%pA+%#" PRIx64 "): "
12004 "unexpected %s instruction '%#lx' "
12005 "referenced by TLS_GOTDESC"),
12006 input_bfd, input_section, (uint64_t) rel->r_offset,
12007 "Thumb", insn);
12008 return bfd_reloc_notsupported;
12009 }
12010 }
12011 else
12012 {
12013 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
12014
12015 switch (insn >> 24)
12016 {
12017 case 0xeb: /* bl */
12018 case 0xfa: /* blx */
12019 value = -4;
12020 break;
12021
12022 case 0xe0: /* add */
12023 value = -8;
12024 break;
12025
12026 default:
12027 _bfd_error_handler
12028 /* xgettext:c-format */
12029 (_("%pB(%pA+%#" PRIx64 "): "
12030 "unexpected %s instruction '%#lx' "
12031 "referenced by TLS_GOTDESC"),
12032 input_bfd, input_section, (uint64_t) rel->r_offset,
12033 "ARM", insn);
12034 return bfd_reloc_notsupported;
12035 }
12036 }
12037
12038 value += ((globals->root.sgotplt->output_section->vma
12039 + globals->root.sgotplt->output_offset + off)
12040 - (input_section->output_section->vma
12041 + input_section->output_offset
12042 + rel->r_offset)
12043 + globals->sgotplt_jump_table_size);
12044 }
12045 else
12046 value = ((globals->root.sgot->output_section->vma
12047 + globals->root.sgot->output_offset + off)
12048 - (input_section->output_section->vma
12049 + input_section->output_offset + rel->r_offset));
12050
12051 if (globals->fdpic_p && (r_type == R_ARM_TLS_GD32_FDPIC ||
12052 r_type == R_ARM_TLS_IE32_FDPIC))
12053 {
12054 /* For FDPIC relocations, resolve to the offset of the GOT
12055 entry from the start of GOT. */
12056 bfd_put_32(output_bfd,
12057 globals->root.sgot->output_offset + off,
12058 contents + rel->r_offset);
12059
12060 return bfd_reloc_ok;
12061 }
12062 else
12063 {
12064 return _bfd_final_link_relocate (howto, input_bfd, input_section,
12065 contents, rel->r_offset, value,
12066 rel->r_addend);
12067 }
12068 }
12069
12070 case R_ARM_TLS_LE32:
12071 if (bfd_link_dll (info))
12072 {
12073 _bfd_error_handler
12074 /* xgettext:c-format */
12075 (_("%pB(%pA+%#" PRIx64 "): %s relocation not permitted "
12076 "in shared object"),
12077 input_bfd, input_section, (uint64_t) rel->r_offset, howto->name);
12078 return bfd_reloc_notsupported;
12079 }
12080 else
12081 value = tpoff (info, value);
12082
12083 return _bfd_final_link_relocate (howto, input_bfd, input_section,
12084 contents, rel->r_offset, value,
12085 rel->r_addend);
12086
12087 case R_ARM_V4BX:
12088 if (globals->fix_v4bx)
12089 {
12090 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12091
12092 /* Ensure that we have a BX instruction. */
12093 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
12094
12095 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
12096 {
12097 /* Branch to veneer. */
12098 bfd_vma glue_addr;
12099 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
12100 glue_addr -= input_section->output_section->vma
12101 + input_section->output_offset
12102 + rel->r_offset + 8;
12103 insn = (insn & 0xf0000000) | 0x0a000000
12104 | ((glue_addr >> 2) & 0x00ffffff);
12105 }
12106 else
12107 {
12108 /* Preserve Rm (lowest four bits) and the condition code
12109 (highest four bits). Other bits encode MOV PC,Rm. */
12110 insn = (insn & 0xf000000f) | 0x01a0f000;
12111 }
12112
12113 bfd_put_32 (input_bfd, insn, hit_data);
12114 }
12115 return bfd_reloc_ok;
12116
12117 case R_ARM_MOVW_ABS_NC:
12118 case R_ARM_MOVT_ABS:
12119 case R_ARM_MOVW_PREL_NC:
12120 case R_ARM_MOVT_PREL:
12121 /* Until we properly support segment-base-relative addressing then
12122 we assume the segment base to be zero, as for the group relocations.
12123 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
12124 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
12125 case R_ARM_MOVW_BREL_NC:
12126 case R_ARM_MOVW_BREL:
12127 case R_ARM_MOVT_BREL:
12128 {
12129 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12130
12131 if (globals->use_rel)
12132 {
12133 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
12134 signed_addend = (addend ^ 0x8000) - 0x8000;
12135 }
12136
12137 value += signed_addend;
12138
12139 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
12140 value -= (input_section->output_section->vma
12141 + input_section->output_offset + rel->r_offset);
12142
12143 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
12144 return bfd_reloc_overflow;
12145
12146 if (branch_type == ST_BRANCH_TO_THUMB)
12147 value |= 1;
12148
12149 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
12150 || r_type == R_ARM_MOVT_BREL)
12151 value >>= 16;
12152
12153 insn &= 0xfff0f000;
12154 insn |= value & 0xfff;
12155 insn |= (value & 0xf000) << 4;
12156 bfd_put_32 (input_bfd, insn, hit_data);
12157 }
12158 return bfd_reloc_ok;
12159
12160 case R_ARM_THM_MOVW_ABS_NC:
12161 case R_ARM_THM_MOVT_ABS:
12162 case R_ARM_THM_MOVW_PREL_NC:
12163 case R_ARM_THM_MOVT_PREL:
12164 /* Until we properly support segment-base-relative addressing then
12165 we assume the segment base to be zero, as for the above relocations.
12166 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
12167 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
12168 as R_ARM_THM_MOVT_ABS. */
12169 case R_ARM_THM_MOVW_BREL_NC:
12170 case R_ARM_THM_MOVW_BREL:
12171 case R_ARM_THM_MOVT_BREL:
12172 {
12173 bfd_vma insn;
12174
12175 insn = bfd_get_16 (input_bfd, hit_data) << 16;
12176 insn |= bfd_get_16 (input_bfd, hit_data + 2);
12177
12178 if (globals->use_rel)
12179 {
12180 addend = ((insn >> 4) & 0xf000)
12181 | ((insn >> 15) & 0x0800)
12182 | ((insn >> 4) & 0x0700)
12183 | (insn & 0x00ff);
12184 signed_addend = (addend ^ 0x8000) - 0x8000;
12185 }
12186
12187 value += signed_addend;
12188
12189 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
12190 value -= (input_section->output_section->vma
12191 + input_section->output_offset + rel->r_offset);
12192
12193 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
12194 return bfd_reloc_overflow;
12195
12196 if (branch_type == ST_BRANCH_TO_THUMB)
12197 value |= 1;
12198
12199 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
12200 || r_type == R_ARM_THM_MOVT_BREL)
12201 value >>= 16;
12202
12203 insn &= 0xfbf08f00;
12204 insn |= (value & 0xf000) << 4;
12205 insn |= (value & 0x0800) << 15;
12206 insn |= (value & 0x0700) << 4;
12207 insn |= (value & 0x00ff);
12208
12209 bfd_put_16 (input_bfd, insn >> 16, hit_data);
12210 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
12211 }
12212 return bfd_reloc_ok;
12213
12214 case R_ARM_ALU_PC_G0_NC:
12215 case R_ARM_ALU_PC_G1_NC:
12216 case R_ARM_ALU_PC_G0:
12217 case R_ARM_ALU_PC_G1:
12218 case R_ARM_ALU_PC_G2:
12219 case R_ARM_ALU_SB_G0_NC:
12220 case R_ARM_ALU_SB_G1_NC:
12221 case R_ARM_ALU_SB_G0:
12222 case R_ARM_ALU_SB_G1:
12223 case R_ARM_ALU_SB_G2:
12224 {
12225 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12226 bfd_vma pc = input_section->output_section->vma
12227 + input_section->output_offset + rel->r_offset;
12228 /* sb is the origin of the *segment* containing the symbol. */
12229 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12230 bfd_vma residual;
12231 bfd_vma g_n;
12232 bfd_signed_vma signed_value;
12233 int group = 0;
12234
12235 /* Determine which group of bits to select. */
12236 switch (r_type)
12237 {
12238 case R_ARM_ALU_PC_G0_NC:
12239 case R_ARM_ALU_PC_G0:
12240 case R_ARM_ALU_SB_G0_NC:
12241 case R_ARM_ALU_SB_G0:
12242 group = 0;
12243 break;
12244
12245 case R_ARM_ALU_PC_G1_NC:
12246 case R_ARM_ALU_PC_G1:
12247 case R_ARM_ALU_SB_G1_NC:
12248 case R_ARM_ALU_SB_G1:
12249 group = 1;
12250 break;
12251
12252 case R_ARM_ALU_PC_G2:
12253 case R_ARM_ALU_SB_G2:
12254 group = 2;
12255 break;
12256
12257 default:
12258 abort ();
12259 }
12260
12261 /* If REL, extract the addend from the insn. If RELA, it will
12262 have already been fetched for us. */
12263 if (globals->use_rel)
12264 {
12265 int negative;
12266 bfd_vma constant = insn & 0xff;
12267 bfd_vma rotation = (insn & 0xf00) >> 8;
12268
12269 if (rotation == 0)
12270 signed_addend = constant;
12271 else
12272 {
12273 /* Compensate for the fact that in the instruction, the
12274 rotation is stored in multiples of 2 bits. */
12275 rotation *= 2;
12276
12277 /* Rotate "constant" right by "rotation" bits. */
12278 signed_addend = (constant >> rotation) |
12279 (constant << (8 * sizeof (bfd_vma) - rotation));
12280 }
12281
12282 /* Determine if the instruction is an ADD or a SUB.
12283 (For REL, this determines the sign of the addend.) */
12284 negative = identify_add_or_sub (insn);
12285 if (negative == 0)
12286 {
12287 _bfd_error_handler
12288 /* xgettext:c-format */
12289 (_("%pB(%pA+%#" PRIx64 "): only ADD or SUB instructions "
12290 "are allowed for ALU group relocations"),
12291 input_bfd, input_section, (uint64_t) rel->r_offset);
12292 return bfd_reloc_overflow;
12293 }
12294
12295 signed_addend *= negative;
12296 }
12297
12298 /* Compute the value (X) to go in the place. */
12299 if (r_type == R_ARM_ALU_PC_G0_NC
12300 || r_type == R_ARM_ALU_PC_G1_NC
12301 || r_type == R_ARM_ALU_PC_G0
12302 || r_type == R_ARM_ALU_PC_G1
12303 || r_type == R_ARM_ALU_PC_G2)
12304 /* PC relative. */
12305 signed_value = value - pc + signed_addend;
12306 else
12307 /* Section base relative. */
12308 signed_value = value - sb + signed_addend;
12309
12310 /* If the target symbol is a Thumb function, then set the
12311 Thumb bit in the address. */
12312 if (branch_type == ST_BRANCH_TO_THUMB)
12313 signed_value |= 1;
12314
12315 /* Calculate the value of the relevant G_n, in encoded
12316 constant-with-rotation format. */
12317 g_n = calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12318 group, &residual);
12319
12320 /* Check for overflow if required. */
12321 if ((r_type == R_ARM_ALU_PC_G0
12322 || r_type == R_ARM_ALU_PC_G1
12323 || r_type == R_ARM_ALU_PC_G2
12324 || r_type == R_ARM_ALU_SB_G0
12325 || r_type == R_ARM_ALU_SB_G1
12326 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
12327 {
12328 _bfd_error_handler
12329 /* xgettext:c-format */
12330 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
12331 "splitting %#" PRIx64 " for group relocation %s"),
12332 input_bfd, input_section, (uint64_t) rel->r_offset,
12333 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12334 howto->name);
12335 return bfd_reloc_overflow;
12336 }
12337
12338 /* Mask out the value and the ADD/SUB part of the opcode; take care
12339 not to destroy the S bit. */
12340 insn &= 0xff1ff000;
12341
12342 /* Set the opcode according to whether the value to go in the
12343 place is negative. */
12344 if (signed_value < 0)
12345 insn |= 1 << 22;
12346 else
12347 insn |= 1 << 23;
12348
12349 /* Encode the offset. */
12350 insn |= g_n;
12351
12352 bfd_put_32 (input_bfd, insn, hit_data);
12353 }
12354 return bfd_reloc_ok;
12355
12356 case R_ARM_LDR_PC_G0:
12357 case R_ARM_LDR_PC_G1:
12358 case R_ARM_LDR_PC_G2:
12359 case R_ARM_LDR_SB_G0:
12360 case R_ARM_LDR_SB_G1:
12361 case R_ARM_LDR_SB_G2:
12362 {
12363 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12364 bfd_vma pc = input_section->output_section->vma
12365 + input_section->output_offset + rel->r_offset;
12366 /* sb is the origin of the *segment* containing the symbol. */
12367 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12368 bfd_vma residual;
12369 bfd_signed_vma signed_value;
12370 int group = 0;
12371
12372 /* Determine which groups of bits to calculate. */
12373 switch (r_type)
12374 {
12375 case R_ARM_LDR_PC_G0:
12376 case R_ARM_LDR_SB_G0:
12377 group = 0;
12378 break;
12379
12380 case R_ARM_LDR_PC_G1:
12381 case R_ARM_LDR_SB_G1:
12382 group = 1;
12383 break;
12384
12385 case R_ARM_LDR_PC_G2:
12386 case R_ARM_LDR_SB_G2:
12387 group = 2;
12388 break;
12389
12390 default:
12391 abort ();
12392 }
12393
12394 /* If REL, extract the addend from the insn. If RELA, it will
12395 have already been fetched for us. */
12396 if (globals->use_rel)
12397 {
12398 int negative = (insn & (1 << 23)) ? 1 : -1;
12399 signed_addend = negative * (insn & 0xfff);
12400 }
12401
12402 /* Compute the value (X) to go in the place. */
12403 if (r_type == R_ARM_LDR_PC_G0
12404 || r_type == R_ARM_LDR_PC_G1
12405 || r_type == R_ARM_LDR_PC_G2)
12406 /* PC relative. */
12407 signed_value = value - pc + signed_addend;
12408 else
12409 /* Section base relative. */
12410 signed_value = value - sb + signed_addend;
12411
12412 /* Calculate the value of the relevant G_{n-1} to obtain
12413 the residual at that stage. */
12414 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12415 group - 1, &residual);
12416
12417 /* Check for overflow. */
12418 if (residual >= 0x1000)
12419 {
12420 _bfd_error_handler
12421 /* xgettext:c-format */
12422 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
12423 "splitting %#" PRIx64 " for group relocation %s"),
12424 input_bfd, input_section, (uint64_t) rel->r_offset,
12425 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12426 howto->name);
12427 return bfd_reloc_overflow;
12428 }
12429
12430 /* Mask out the value and U bit. */
12431 insn &= 0xff7ff000;
12432
12433 /* Set the U bit if the value to go in the place is non-negative. */
12434 if (signed_value >= 0)
12435 insn |= 1 << 23;
12436
12437 /* Encode the offset. */
12438 insn |= residual;
12439
12440 bfd_put_32 (input_bfd, insn, hit_data);
12441 }
12442 return bfd_reloc_ok;
12443
12444 case R_ARM_LDRS_PC_G0:
12445 case R_ARM_LDRS_PC_G1:
12446 case R_ARM_LDRS_PC_G2:
12447 case R_ARM_LDRS_SB_G0:
12448 case R_ARM_LDRS_SB_G1:
12449 case R_ARM_LDRS_SB_G2:
12450 {
12451 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12452 bfd_vma pc = input_section->output_section->vma
12453 + input_section->output_offset + rel->r_offset;
12454 /* sb is the origin of the *segment* containing the symbol. */
12455 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12456 bfd_vma residual;
12457 bfd_signed_vma signed_value;
12458 int group = 0;
12459
12460 /* Determine which groups of bits to calculate. */
12461 switch (r_type)
12462 {
12463 case R_ARM_LDRS_PC_G0:
12464 case R_ARM_LDRS_SB_G0:
12465 group = 0;
12466 break;
12467
12468 case R_ARM_LDRS_PC_G1:
12469 case R_ARM_LDRS_SB_G1:
12470 group = 1;
12471 break;
12472
12473 case R_ARM_LDRS_PC_G2:
12474 case R_ARM_LDRS_SB_G2:
12475 group = 2;
12476 break;
12477
12478 default:
12479 abort ();
12480 }
12481
12482 /* If REL, extract the addend from the insn. If RELA, it will
12483 have already been fetched for us. */
12484 if (globals->use_rel)
12485 {
12486 int negative = (insn & (1 << 23)) ? 1 : -1;
12487 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
12488 }
12489
12490 /* Compute the value (X) to go in the place. */
12491 if (r_type == R_ARM_LDRS_PC_G0
12492 || r_type == R_ARM_LDRS_PC_G1
12493 || r_type == R_ARM_LDRS_PC_G2)
12494 /* PC relative. */
12495 signed_value = value - pc + signed_addend;
12496 else
12497 /* Section base relative. */
12498 signed_value = value - sb + signed_addend;
12499
12500 /* Calculate the value of the relevant G_{n-1} to obtain
12501 the residual at that stage. */
12502 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12503 group - 1, &residual);
12504
12505 /* Check for overflow. */
12506 if (residual >= 0x100)
12507 {
12508 _bfd_error_handler
12509 /* xgettext:c-format */
12510 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
12511 "splitting %#" PRIx64 " for group relocation %s"),
12512 input_bfd, input_section, (uint64_t) rel->r_offset,
12513 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12514 howto->name);
12515 return bfd_reloc_overflow;
12516 }
12517
12518 /* Mask out the value and U bit. */
12519 insn &= 0xff7ff0f0;
12520
12521 /* Set the U bit if the value to go in the place is non-negative. */
12522 if (signed_value >= 0)
12523 insn |= 1 << 23;
12524
12525 /* Encode the offset. */
12526 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
12527
12528 bfd_put_32 (input_bfd, insn, hit_data);
12529 }
12530 return bfd_reloc_ok;
12531
12532 case R_ARM_LDC_PC_G0:
12533 case R_ARM_LDC_PC_G1:
12534 case R_ARM_LDC_PC_G2:
12535 case R_ARM_LDC_SB_G0:
12536 case R_ARM_LDC_SB_G1:
12537 case R_ARM_LDC_SB_G2:
12538 {
12539 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12540 bfd_vma pc = input_section->output_section->vma
12541 + input_section->output_offset + rel->r_offset;
12542 /* sb is the origin of the *segment* containing the symbol. */
12543 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12544 bfd_vma residual;
12545 bfd_signed_vma signed_value;
12546 int group = 0;
12547
12548 /* Determine which groups of bits to calculate. */
12549 switch (r_type)
12550 {
12551 case R_ARM_LDC_PC_G0:
12552 case R_ARM_LDC_SB_G0:
12553 group = 0;
12554 break;
12555
12556 case R_ARM_LDC_PC_G1:
12557 case R_ARM_LDC_SB_G1:
12558 group = 1;
12559 break;
12560
12561 case R_ARM_LDC_PC_G2:
12562 case R_ARM_LDC_SB_G2:
12563 group = 2;
12564 break;
12565
12566 default:
12567 abort ();
12568 }
12569
12570 /* If REL, extract the addend from the insn. If RELA, it will
12571 have already been fetched for us. */
12572 if (globals->use_rel)
12573 {
12574 int negative = (insn & (1 << 23)) ? 1 : -1;
12575 signed_addend = negative * ((insn & 0xff) << 2);
12576 }
12577
12578 /* Compute the value (X) to go in the place. */
12579 if (r_type == R_ARM_LDC_PC_G0
12580 || r_type == R_ARM_LDC_PC_G1
12581 || r_type == R_ARM_LDC_PC_G2)
12582 /* PC relative. */
12583 signed_value = value - pc + signed_addend;
12584 else
12585 /* Section base relative. */
12586 signed_value = value - sb + signed_addend;
12587
12588 /* Calculate the value of the relevant G_{n-1} to obtain
12589 the residual at that stage. */
12590 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12591 group - 1, &residual);
12592
12593 /* Check for overflow. (The absolute value to go in the place must be
12594 divisible by four and, after having been divided by four, must
12595 fit in eight bits.) */
12596 if ((residual & 0x3) != 0 || residual >= 0x400)
12597 {
12598 _bfd_error_handler
12599 /* xgettext:c-format */
12600 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
12601 "splitting %#" PRIx64 " for group relocation %s"),
12602 input_bfd, input_section, (uint64_t) rel->r_offset,
12603 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12604 howto->name);
12605 return bfd_reloc_overflow;
12606 }
12607
12608 /* Mask out the value and U bit. */
12609 insn &= 0xff7fff00;
12610
12611 /* Set the U bit if the value to go in the place is non-negative. */
12612 if (signed_value >= 0)
12613 insn |= 1 << 23;
12614
12615 /* Encode the offset. */
12616 insn |= residual >> 2;
12617
12618 bfd_put_32 (input_bfd, insn, hit_data);
12619 }
12620 return bfd_reloc_ok;
12621
12622 case R_ARM_THM_ALU_ABS_G0_NC:
12623 case R_ARM_THM_ALU_ABS_G1_NC:
12624 case R_ARM_THM_ALU_ABS_G2_NC:
12625 case R_ARM_THM_ALU_ABS_G3_NC:
12626 {
12627 const int shift_array[4] = {0, 8, 16, 24};
12628 bfd_vma insn = bfd_get_16 (input_bfd, hit_data);
12629 bfd_vma addr = value;
12630 int shift = shift_array[r_type - R_ARM_THM_ALU_ABS_G0_NC];
12631
12632 /* Compute address. */
12633 if (globals->use_rel)
12634 signed_addend = insn & 0xff;
12635 addr += signed_addend;
12636 if (branch_type == ST_BRANCH_TO_THUMB)
12637 addr |= 1;
12638 /* Clean imm8 insn. */
12639 insn &= 0xff00;
12640 /* And update with correct part of address. */
12641 insn |= (addr >> shift) & 0xff;
12642 /* Update insn. */
12643 bfd_put_16 (input_bfd, insn, hit_data);
12644 }
12645
12646 *unresolved_reloc_p = FALSE;
12647 return bfd_reloc_ok;
12648
12649 case R_ARM_GOTOFFFUNCDESC:
12650 {
12651 if (h == NULL)
12652 {
12653 struct fdpic_local *local_fdpic_cnts = elf32_arm_local_fdpic_cnts(input_bfd);
12654 int dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12655 int offset = local_fdpic_cnts[r_symndx].funcdesc_offset & ~1;
12656 bfd_vma addr = dynreloc_value - sym_sec->output_section->vma;
12657 bfd_vma seg = -1;
12658
12659 if (bfd_link_pic(info) && dynindx == 0)
12660 abort();
12661
12662 /* Resolve relocation. */
12663 bfd_put_32(output_bfd, (offset + sgot->output_offset)
12664 , contents + rel->r_offset);
12665 /* Emit R_ARM_FUNCDESC_VALUE or two fixups on funcdesc if
12666 not done yet. */
12667 arm_elf_fill_funcdesc(output_bfd, info,
12668 &local_fdpic_cnts[r_symndx].funcdesc_offset,
12669 dynindx, offset, addr, dynreloc_value, seg);
12670 }
12671 else
12672 {
12673 int dynindx;
12674 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12675 bfd_vma addr;
12676 bfd_vma seg = -1;
12677
12678 /* For static binaries, sym_sec can be null. */
12679 if (sym_sec)
12680 {
12681 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12682 addr = dynreloc_value - sym_sec->output_section->vma;
12683 }
12684 else
12685 {
12686 dynindx = 0;
12687 addr = 0;
12688 }
12689
12690 if (bfd_link_pic(info) && dynindx == 0)
12691 abort();
12692
12693 /* This case cannot occur since funcdesc is allocated by
12694 the dynamic loader so we cannot resolve the relocation. */
12695 if (h->dynindx != -1)
12696 abort();
12697
12698 /* Resolve relocation. */
12699 bfd_put_32(output_bfd, (offset + sgot->output_offset),
12700 contents + rel->r_offset);
12701 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12702 arm_elf_fill_funcdesc(output_bfd, info,
12703 &eh->fdpic_cnts.funcdesc_offset,
12704 dynindx, offset, addr, dynreloc_value, seg);
12705 }
12706 }
12707 *unresolved_reloc_p = FALSE;
12708 return bfd_reloc_ok;
12709
12710 case R_ARM_GOTFUNCDESC:
12711 {
12712 if (h != NULL)
12713 {
12714 Elf_Internal_Rela outrel;
12715
12716 /* Resolve relocation. */
12717 bfd_put_32(output_bfd, ((eh->fdpic_cnts.gotfuncdesc_offset & ~1)
12718 + sgot->output_offset),
12719 contents + rel->r_offset);
12720 /* Add funcdesc and associated R_ARM_FUNCDESC_VALUE. */
12721 if(h->dynindx == -1)
12722 {
12723 int dynindx;
12724 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12725 bfd_vma addr;
12726 bfd_vma seg = -1;
12727
12728 /* For static binaries sym_sec can be null. */
12729 if (sym_sec)
12730 {
12731 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12732 addr = dynreloc_value - sym_sec->output_section->vma;
12733 }
12734 else
12735 {
12736 dynindx = 0;
12737 addr = 0;
12738 }
12739
12740 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12741 arm_elf_fill_funcdesc(output_bfd, info,
12742 &eh->fdpic_cnts.funcdesc_offset,
12743 dynindx, offset, addr, dynreloc_value, seg);
12744 }
12745
12746 /* Add a dynamic relocation on GOT entry if not already done. */
12747 if ((eh->fdpic_cnts.gotfuncdesc_offset & 1) == 0)
12748 {
12749 if (h->dynindx == -1)
12750 {
12751 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12752 if (h->root.type == bfd_link_hash_undefweak)
12753 bfd_put_32(output_bfd, 0, sgot->contents
12754 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1));
12755 else
12756 bfd_put_32(output_bfd, sgot->output_section->vma
12757 + sgot->output_offset
12758 + (eh->fdpic_cnts.funcdesc_offset & ~1),
12759 sgot->contents
12760 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1));
12761 }
12762 else
12763 {
12764 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_FUNCDESC);
12765 }
12766 outrel.r_offset = sgot->output_section->vma
12767 + sgot->output_offset
12768 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1);
12769 outrel.r_addend = 0;
12770 if (h->dynindx == -1 && !bfd_link_pic(info))
12771 if (h->root.type == bfd_link_hash_undefweak)
12772 arm_elf_add_rofixup(output_bfd, globals->srofixup, -1);
12773 else
12774 arm_elf_add_rofixup(output_bfd, globals->srofixup,
12775 outrel.r_offset);
12776 else
12777 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12778 eh->fdpic_cnts.gotfuncdesc_offset |= 1;
12779 }
12780 }
12781 else
12782 {
12783 /* Such relocation on static function should not have been
12784 emitted by the compiler. */
12785 abort();
12786 }
12787 }
12788 *unresolved_reloc_p = FALSE;
12789 return bfd_reloc_ok;
12790
12791 case R_ARM_FUNCDESC:
12792 {
12793 if (h == NULL)
12794 {
12795 struct fdpic_local *local_fdpic_cnts = elf32_arm_local_fdpic_cnts(input_bfd);
12796 Elf_Internal_Rela outrel;
12797 int dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12798 int offset = local_fdpic_cnts[r_symndx].funcdesc_offset & ~1;
12799 bfd_vma addr = dynreloc_value - sym_sec->output_section->vma;
12800 bfd_vma seg = -1;
12801
12802 if (bfd_link_pic(info) && dynindx == 0)
12803 abort();
12804
12805 /* Replace static FUNCDESC relocation with a
12806 R_ARM_RELATIVE dynamic relocation or with a rofixup for
12807 executable. */
12808 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12809 outrel.r_offset = input_section->output_section->vma
12810 + input_section->output_offset + rel->r_offset;
12811 outrel.r_addend = 0;
12812 if (bfd_link_pic(info))
12813 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12814 else
12815 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset);
12816
12817 bfd_put_32 (input_bfd, sgot->output_section->vma
12818 + sgot->output_offset + offset, hit_data);
12819
12820 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12821 arm_elf_fill_funcdesc(output_bfd, info,
12822 &local_fdpic_cnts[r_symndx].funcdesc_offset,
12823 dynindx, offset, addr, dynreloc_value, seg);
12824 }
12825 else
12826 {
12827 if (h->dynindx == -1)
12828 {
12829 int dynindx;
12830 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12831 bfd_vma addr;
12832 bfd_vma seg = -1;
12833 Elf_Internal_Rela outrel;
12834
12835 /* For static binaries sym_sec can be null. */
12836 if (sym_sec)
12837 {
12838 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12839 addr = dynreloc_value - sym_sec->output_section->vma;
12840 }
12841 else
12842 {
12843 dynindx = 0;
12844 addr = 0;
12845 }
12846
12847 if (bfd_link_pic(info) && dynindx == 0)
12848 abort();
12849
12850 /* Replace static FUNCDESC relocation with a
12851 R_ARM_RELATIVE dynamic relocation. */
12852 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12853 outrel.r_offset = input_section->output_section->vma
12854 + input_section->output_offset + rel->r_offset;
12855 outrel.r_addend = 0;
12856 if (bfd_link_pic(info))
12857 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12858 else
12859 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset);
12860
12861 bfd_put_32 (input_bfd, sgot->output_section->vma
12862 + sgot->output_offset + offset, hit_data);
12863
12864 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12865 arm_elf_fill_funcdesc(output_bfd, info,
12866 &eh->fdpic_cnts.funcdesc_offset,
12867 dynindx, offset, addr, dynreloc_value, seg);
12868 }
12869 else
12870 {
12871 Elf_Internal_Rela outrel;
12872
12873 /* Add a dynamic relocation. */
12874 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_FUNCDESC);
12875 outrel.r_offset = input_section->output_section->vma
12876 + input_section->output_offset + rel->r_offset;
12877 outrel.r_addend = 0;
12878 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12879 }
12880 }
12881 }
12882 *unresolved_reloc_p = FALSE;
12883 return bfd_reloc_ok;
12884
12885 case R_ARM_THM_BF16:
12886 {
12887 bfd_vma relocation;
12888 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
12889 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
12890
12891 if (globals->use_rel)
12892 {
12893 bfd_vma immA = (upper_insn & 0x001f);
12894 bfd_vma immB = (lower_insn & 0x07fe) >> 1;
12895 bfd_vma immC = (lower_insn & 0x0800) >> 11;
12896 addend = (immA << 12);
12897 addend |= (immB << 2);
12898 addend |= (immC << 1);
12899 addend |= 1;
12900 /* Sign extend. */
12901 signed_addend = (addend & 0x10000) ? addend - (1 << 17) : addend;
12902 }
12903
12904 relocation = value + signed_addend;
12905 relocation -= (input_section->output_section->vma
12906 + input_section->output_offset
12907 + rel->r_offset);
12908
12909 /* Put RELOCATION back into the insn. */
12910 {
12911 bfd_vma immA = (relocation & 0x0001f000) >> 12;
12912 bfd_vma immB = (relocation & 0x00000ffc) >> 2;
12913 bfd_vma immC = (relocation & 0x00000002) >> 1;
12914
12915 upper_insn = (upper_insn & 0xffe0) | immA;
12916 lower_insn = (lower_insn & 0xf001) | (immC << 11) | (immB << 1);
12917 }
12918
12919 /* Put the relocated value back in the object file: */
12920 bfd_put_16 (input_bfd, upper_insn, hit_data);
12921 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
12922
12923 return bfd_reloc_ok;
12924 }
12925
12926 case R_ARM_THM_BF12:
12927 {
12928 bfd_vma relocation;
12929 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
12930 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
12931
12932 if (globals->use_rel)
12933 {
12934 bfd_vma immA = (upper_insn & 0x0001);
12935 bfd_vma immB = (lower_insn & 0x07fe) >> 1;
12936 bfd_vma immC = (lower_insn & 0x0800) >> 11;
12937 addend = (immA << 12);
12938 addend |= (immB << 2);
12939 addend |= (immC << 1);
12940 addend |= 1;
12941 /* Sign extend. */
12942 addend = (addend & 0x1000) ? addend - (1 << 13) : addend;
12943 signed_addend = addend;
12944 }
12945
12946 relocation = value + signed_addend;
12947 relocation -= (input_section->output_section->vma
12948 + input_section->output_offset
12949 + rel->r_offset);
12950
12951 /* Put RELOCATION back into the insn. */
12952 {
12953 bfd_vma immA = (relocation & 0x00001000) >> 12;
12954 bfd_vma immB = (relocation & 0x00000ffc) >> 2;
12955 bfd_vma immC = (relocation & 0x00000002) >> 1;
12956
12957 upper_insn = (upper_insn & 0xfffe) | immA;
12958 lower_insn = (lower_insn & 0xf001) | (immC << 11) | (immB << 1);
12959 }
12960
12961 /* Put the relocated value back in the object file: */
12962 bfd_put_16 (input_bfd, upper_insn, hit_data);
12963 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
12964
12965 return bfd_reloc_ok;
12966 }
12967
12968 case R_ARM_THM_BF18:
12969 {
12970 bfd_vma relocation;
12971 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
12972 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
12973
12974 if (globals->use_rel)
12975 {
12976 bfd_vma immA = (upper_insn & 0x007f);
12977 bfd_vma immB = (lower_insn & 0x07fe) >> 1;
12978 bfd_vma immC = (lower_insn & 0x0800) >> 11;
12979 addend = (immA << 12);
12980 addend |= (immB << 2);
12981 addend |= (immC << 1);
12982 addend |= 1;
12983 /* Sign extend. */
12984 addend = (addend & 0x40000) ? addend - (1 << 19) : addend;
12985 signed_addend = addend;
12986 }
12987
12988 relocation = value + signed_addend;
12989 relocation -= (input_section->output_section->vma
12990 + input_section->output_offset
12991 + rel->r_offset);
12992
12993 /* Put RELOCATION back into the insn. */
12994 {
12995 bfd_vma immA = (relocation & 0x0007f000) >> 12;
12996 bfd_vma immB = (relocation & 0x00000ffc) >> 2;
12997 bfd_vma immC = (relocation & 0x00000002) >> 1;
12998
12999 upper_insn = (upper_insn & 0xff80) | immA;
13000 lower_insn = (lower_insn & 0xf001) | (immC << 11) | (immB << 1);
13001 }
13002
13003 /* Put the relocated value back in the object file: */
13004 bfd_put_16 (input_bfd, upper_insn, hit_data);
13005 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
13006
13007 return bfd_reloc_ok;
13008 }
13009
13010 default:
13011 return bfd_reloc_notsupported;
13012 }
13013 }
13014
13015 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
13016 static void
13017 arm_add_to_rel (bfd * abfd,
13018 bfd_byte * address,
13019 reloc_howto_type * howto,
13020 bfd_signed_vma increment)
13021 {
13022 bfd_signed_vma addend;
13023
13024 if (howto->type == R_ARM_THM_CALL
13025 || howto->type == R_ARM_THM_JUMP24)
13026 {
13027 int upper_insn, lower_insn;
13028 int upper, lower;
13029
13030 upper_insn = bfd_get_16 (abfd, address);
13031 lower_insn = bfd_get_16 (abfd, address + 2);
13032 upper = upper_insn & 0x7ff;
13033 lower = lower_insn & 0x7ff;
13034
13035 addend = (upper << 12) | (lower << 1);
13036 addend += increment;
13037 addend >>= 1;
13038
13039 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
13040 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
13041
13042 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
13043 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
13044 }
13045 else
13046 {
13047 bfd_vma contents;
13048
13049 contents = bfd_get_32 (abfd, address);
13050
13051 /* Get the (signed) value from the instruction. */
13052 addend = contents & howto->src_mask;
13053 if (addend & ((howto->src_mask + 1) >> 1))
13054 {
13055 bfd_signed_vma mask;
13056
13057 mask = -1;
13058 mask &= ~ howto->src_mask;
13059 addend |= mask;
13060 }
13061
13062 /* Add in the increment, (which is a byte value). */
13063 switch (howto->type)
13064 {
13065 default:
13066 addend += increment;
13067 break;
13068
13069 case R_ARM_PC24:
13070 case R_ARM_PLT32:
13071 case R_ARM_CALL:
13072 case R_ARM_JUMP24:
13073 addend <<= howto->size;
13074 addend += increment;
13075
13076 /* Should we check for overflow here ? */
13077
13078 /* Drop any undesired bits. */
13079 addend >>= howto->rightshift;
13080 break;
13081 }
13082
13083 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
13084
13085 bfd_put_32 (abfd, contents, address);
13086 }
13087 }
13088
13089 #define IS_ARM_TLS_RELOC(R_TYPE) \
13090 ((R_TYPE) == R_ARM_TLS_GD32 \
13091 || (R_TYPE) == R_ARM_TLS_GD32_FDPIC \
13092 || (R_TYPE) == R_ARM_TLS_LDO32 \
13093 || (R_TYPE) == R_ARM_TLS_LDM32 \
13094 || (R_TYPE) == R_ARM_TLS_LDM32_FDPIC \
13095 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
13096 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
13097 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
13098 || (R_TYPE) == R_ARM_TLS_LE32 \
13099 || (R_TYPE) == R_ARM_TLS_IE32 \
13100 || (R_TYPE) == R_ARM_TLS_IE32_FDPIC \
13101 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
13102
13103 /* Specific set of relocations for the gnu tls dialect. */
13104 #define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
13105 ((R_TYPE) == R_ARM_TLS_GOTDESC \
13106 || (R_TYPE) == R_ARM_TLS_CALL \
13107 || (R_TYPE) == R_ARM_THM_TLS_CALL \
13108 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
13109 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
13110
13111 /* Relocate an ARM ELF section. */
13112
13113 static bfd_boolean
13114 elf32_arm_relocate_section (bfd * output_bfd,
13115 struct bfd_link_info * info,
13116 bfd * input_bfd,
13117 asection * input_section,
13118 bfd_byte * contents,
13119 Elf_Internal_Rela * relocs,
13120 Elf_Internal_Sym * local_syms,
13121 asection ** local_sections)
13122 {
13123 Elf_Internal_Shdr *symtab_hdr;
13124 struct elf_link_hash_entry **sym_hashes;
13125 Elf_Internal_Rela *rel;
13126 Elf_Internal_Rela *relend;
13127 const char *name;
13128 struct elf32_arm_link_hash_table * globals;
13129
13130 globals = elf32_arm_hash_table (info);
13131 if (globals == NULL)
13132 return FALSE;
13133
13134 symtab_hdr = & elf_symtab_hdr (input_bfd);
13135 sym_hashes = elf_sym_hashes (input_bfd);
13136
13137 rel = relocs;
13138 relend = relocs + input_section->reloc_count;
13139 for (; rel < relend; rel++)
13140 {
13141 int r_type;
13142 reloc_howto_type * howto;
13143 unsigned long r_symndx;
13144 Elf_Internal_Sym * sym;
13145 asection * sec;
13146 struct elf_link_hash_entry * h;
13147 bfd_vma relocation;
13148 bfd_reloc_status_type r;
13149 arelent bfd_reloc;
13150 char sym_type;
13151 bfd_boolean unresolved_reloc = FALSE;
13152 char *error_message = NULL;
13153
13154 r_symndx = ELF32_R_SYM (rel->r_info);
13155 r_type = ELF32_R_TYPE (rel->r_info);
13156 r_type = arm_real_reloc_type (globals, r_type);
13157
13158 if ( r_type == R_ARM_GNU_VTENTRY
13159 || r_type == R_ARM_GNU_VTINHERIT)
13160 continue;
13161
13162 howto = bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
13163
13164 if (howto == NULL)
13165 return _bfd_unrecognized_reloc (input_bfd, input_section, r_type);
13166
13167 h = NULL;
13168 sym = NULL;
13169 sec = NULL;
13170
13171 if (r_symndx < symtab_hdr->sh_info)
13172 {
13173 sym = local_syms + r_symndx;
13174 sym_type = ELF32_ST_TYPE (sym->st_info);
13175 sec = local_sections[r_symndx];
13176
13177 /* An object file might have a reference to a local
13178 undefined symbol. This is a daft object file, but we
13179 should at least do something about it. V4BX & NONE
13180 relocations do not use the symbol and are explicitly
13181 allowed to use the undefined symbol, so allow those.
13182 Likewise for relocations against STN_UNDEF. */
13183 if (r_type != R_ARM_V4BX
13184 && r_type != R_ARM_NONE
13185 && r_symndx != STN_UNDEF
13186 && bfd_is_und_section (sec)
13187 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
13188 (*info->callbacks->undefined_symbol)
13189 (info, bfd_elf_string_from_elf_section
13190 (input_bfd, symtab_hdr->sh_link, sym->st_name),
13191 input_bfd, input_section,
13192 rel->r_offset, TRUE);
13193
13194 if (globals->use_rel)
13195 {
13196 relocation = (sec->output_section->vma
13197 + sec->output_offset
13198 + sym->st_value);
13199 if (!bfd_link_relocatable (info)
13200 && (sec->flags & SEC_MERGE)
13201 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
13202 {
13203 asection *msec;
13204 bfd_vma addend, value;
13205
13206 switch (r_type)
13207 {
13208 case R_ARM_MOVW_ABS_NC:
13209 case R_ARM_MOVT_ABS:
13210 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
13211 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
13212 addend = (addend ^ 0x8000) - 0x8000;
13213 break;
13214
13215 case R_ARM_THM_MOVW_ABS_NC:
13216 case R_ARM_THM_MOVT_ABS:
13217 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
13218 << 16;
13219 value |= bfd_get_16 (input_bfd,
13220 contents + rel->r_offset + 2);
13221 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
13222 | ((value & 0x04000000) >> 15);
13223 addend = (addend ^ 0x8000) - 0x8000;
13224 break;
13225
13226 default:
13227 if (howto->rightshift
13228 || (howto->src_mask & (howto->src_mask + 1)))
13229 {
13230 _bfd_error_handler
13231 /* xgettext:c-format */
13232 (_("%pB(%pA+%#" PRIx64 "): "
13233 "%s relocation against SEC_MERGE section"),
13234 input_bfd, input_section,
13235 (uint64_t) rel->r_offset, howto->name);
13236 return FALSE;
13237 }
13238
13239 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
13240
13241 /* Get the (signed) value from the instruction. */
13242 addend = value & howto->src_mask;
13243 if (addend & ((howto->src_mask + 1) >> 1))
13244 {
13245 bfd_signed_vma mask;
13246
13247 mask = -1;
13248 mask &= ~ howto->src_mask;
13249 addend |= mask;
13250 }
13251 break;
13252 }
13253
13254 msec = sec;
13255 addend =
13256 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
13257 - relocation;
13258 addend += msec->output_section->vma + msec->output_offset;
13259
13260 /* Cases here must match those in the preceding
13261 switch statement. */
13262 switch (r_type)
13263 {
13264 case R_ARM_MOVW_ABS_NC:
13265 case R_ARM_MOVT_ABS:
13266 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
13267 | (addend & 0xfff);
13268 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
13269 break;
13270
13271 case R_ARM_THM_MOVW_ABS_NC:
13272 case R_ARM_THM_MOVT_ABS:
13273 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
13274 | (addend & 0xff) | ((addend & 0x0800) << 15);
13275 bfd_put_16 (input_bfd, value >> 16,
13276 contents + rel->r_offset);
13277 bfd_put_16 (input_bfd, value,
13278 contents + rel->r_offset + 2);
13279 break;
13280
13281 default:
13282 value = (value & ~ howto->dst_mask)
13283 | (addend & howto->dst_mask);
13284 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
13285 break;
13286 }
13287 }
13288 }
13289 else
13290 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
13291 }
13292 else
13293 {
13294 bfd_boolean warned, ignored;
13295
13296 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
13297 r_symndx, symtab_hdr, sym_hashes,
13298 h, sec, relocation,
13299 unresolved_reloc, warned, ignored);
13300
13301 sym_type = h->type;
13302 }
13303
13304 if (sec != NULL && discarded_section (sec))
13305 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
13306 rel, 1, relend, howto, 0, contents);
13307
13308 if (bfd_link_relocatable (info))
13309 {
13310 /* This is a relocatable link. We don't have to change
13311 anything, unless the reloc is against a section symbol,
13312 in which case we have to adjust according to where the
13313 section symbol winds up in the output section. */
13314 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
13315 {
13316 if (globals->use_rel)
13317 arm_add_to_rel (input_bfd, contents + rel->r_offset,
13318 howto, (bfd_signed_vma) sec->output_offset);
13319 else
13320 rel->r_addend += sec->output_offset;
13321 }
13322 continue;
13323 }
13324
13325 if (h != NULL)
13326 name = h->root.root.string;
13327 else
13328 {
13329 name = (bfd_elf_string_from_elf_section
13330 (input_bfd, symtab_hdr->sh_link, sym->st_name));
13331 if (name == NULL || *name == '\0')
13332 name = bfd_section_name (sec);
13333 }
13334
13335 if (r_symndx != STN_UNDEF
13336 && r_type != R_ARM_NONE
13337 && (h == NULL
13338 || h->root.type == bfd_link_hash_defined
13339 || h->root.type == bfd_link_hash_defweak)
13340 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
13341 {
13342 _bfd_error_handler
13343 ((sym_type == STT_TLS
13344 /* xgettext:c-format */
13345 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
13346 /* xgettext:c-format */
13347 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
13348 input_bfd,
13349 input_section,
13350 (uint64_t) rel->r_offset,
13351 howto->name,
13352 name);
13353 }
13354
13355 /* We call elf32_arm_final_link_relocate unless we're completely
13356 done, i.e., the relaxation produced the final output we want,
13357 and we won't let anybody mess with it. Also, we have to do
13358 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
13359 both in relaxed and non-relaxed cases. */
13360 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
13361 || (IS_ARM_TLS_GNU_RELOC (r_type)
13362 && !((h ? elf32_arm_hash_entry (h)->tls_type :
13363 elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
13364 & GOT_TLS_GDESC)))
13365 {
13366 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
13367 contents, rel, h == NULL);
13368 /* This may have been marked unresolved because it came from
13369 a shared library. But we've just dealt with that. */
13370 unresolved_reloc = 0;
13371 }
13372 else
13373 r = bfd_reloc_continue;
13374
13375 if (r == bfd_reloc_continue)
13376 {
13377 unsigned char branch_type =
13378 h ? ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
13379 : ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
13380
13381 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
13382 input_section, contents, rel,
13383 relocation, info, sec, name,
13384 sym_type, branch_type, h,
13385 &unresolved_reloc,
13386 &error_message);
13387 }
13388
13389 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
13390 because such sections are not SEC_ALLOC and thus ld.so will
13391 not process them. */
13392 if (unresolved_reloc
13393 && !((input_section->flags & SEC_DEBUGGING) != 0
13394 && h->def_dynamic)
13395 && _bfd_elf_section_offset (output_bfd, info, input_section,
13396 rel->r_offset) != (bfd_vma) -1)
13397 {
13398 _bfd_error_handler
13399 /* xgettext:c-format */
13400 (_("%pB(%pA+%#" PRIx64 "): "
13401 "unresolvable %s relocation against symbol `%s'"),
13402 input_bfd,
13403 input_section,
13404 (uint64_t) rel->r_offset,
13405 howto->name,
13406 h->root.root.string);
13407 return FALSE;
13408 }
13409
13410 if (r != bfd_reloc_ok)
13411 {
13412 switch (r)
13413 {
13414 case bfd_reloc_overflow:
13415 /* If the overflowing reloc was to an undefined symbol,
13416 we have already printed one error message and there
13417 is no point complaining again. */
13418 if (!h || h->root.type != bfd_link_hash_undefined)
13419 (*info->callbacks->reloc_overflow)
13420 (info, (h ? &h->root : NULL), name, howto->name,
13421 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
13422 break;
13423
13424 case bfd_reloc_undefined:
13425 (*info->callbacks->undefined_symbol)
13426 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
13427 break;
13428
13429 case bfd_reloc_outofrange:
13430 error_message = _("out of range");
13431 goto common_error;
13432
13433 case bfd_reloc_notsupported:
13434 error_message = _("unsupported relocation");
13435 goto common_error;
13436
13437 case bfd_reloc_dangerous:
13438 /* error_message should already be set. */
13439 goto common_error;
13440
13441 default:
13442 error_message = _("unknown error");
13443 /* Fall through. */
13444
13445 common_error:
13446 BFD_ASSERT (error_message != NULL);
13447 (*info->callbacks->reloc_dangerous)
13448 (info, error_message, input_bfd, input_section, rel->r_offset);
13449 break;
13450 }
13451 }
13452 }
13453
13454 return TRUE;
13455 }
13456
13457 /* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
13458 adds the edit to the start of the list. (The list must be built in order of
13459 ascending TINDEX: the function's callers are primarily responsible for
13460 maintaining that condition). */
13461
13462 static void
13463 add_unwind_table_edit (arm_unwind_table_edit **head,
13464 arm_unwind_table_edit **tail,
13465 arm_unwind_edit_type type,
13466 asection *linked_section,
13467 unsigned int tindex)
13468 {
13469 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
13470 xmalloc (sizeof (arm_unwind_table_edit));
13471
13472 new_edit->type = type;
13473 new_edit->linked_section = linked_section;
13474 new_edit->index = tindex;
13475
13476 if (tindex > 0)
13477 {
13478 new_edit->next = NULL;
13479
13480 if (*tail)
13481 (*tail)->next = new_edit;
13482
13483 (*tail) = new_edit;
13484
13485 if (!*head)
13486 (*head) = new_edit;
13487 }
13488 else
13489 {
13490 new_edit->next = *head;
13491
13492 if (!*tail)
13493 *tail = new_edit;
13494
13495 *head = new_edit;
13496 }
13497 }
13498
13499 static _arm_elf_section_data *get_arm_elf_section_data (asection *);
13500
13501 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
13502 static void
13503 adjust_exidx_size(asection *exidx_sec, int adjust)
13504 {
13505 asection *out_sec;
13506
13507 if (!exidx_sec->rawsize)
13508 exidx_sec->rawsize = exidx_sec->size;
13509
13510 bfd_set_section_size (exidx_sec, exidx_sec->size + adjust);
13511 out_sec = exidx_sec->output_section;
13512 /* Adjust size of output section. */
13513 bfd_set_section_size (out_sec, out_sec->size +adjust);
13514 }
13515
13516 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
13517 static void
13518 insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
13519 {
13520 struct _arm_elf_section_data *exidx_arm_data;
13521
13522 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
13523 add_unwind_table_edit (
13524 &exidx_arm_data->u.exidx.unwind_edit_list,
13525 &exidx_arm_data->u.exidx.unwind_edit_tail,
13526 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
13527
13528 exidx_arm_data->additional_reloc_count++;
13529
13530 adjust_exidx_size(exidx_sec, 8);
13531 }
13532
13533 /* Scan .ARM.exidx tables, and create a list describing edits which should be
13534 made to those tables, such that:
13535
13536 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
13537 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
13538 codes which have been inlined into the index).
13539
13540 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
13541
13542 The edits are applied when the tables are written
13543 (in elf32_arm_write_section). */
13544
13545 bfd_boolean
13546 elf32_arm_fix_exidx_coverage (asection **text_section_order,
13547 unsigned int num_text_sections,
13548 struct bfd_link_info *info,
13549 bfd_boolean merge_exidx_entries)
13550 {
13551 bfd *inp;
13552 unsigned int last_second_word = 0, i;
13553 asection *last_exidx_sec = NULL;
13554 asection *last_text_sec = NULL;
13555 int last_unwind_type = -1;
13556
13557 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
13558 text sections. */
13559 for (inp = info->input_bfds; inp != NULL; inp = inp->link.next)
13560 {
13561 asection *sec;
13562
13563 for (sec = inp->sections; sec != NULL; sec = sec->next)
13564 {
13565 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
13566 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
13567
13568 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
13569 continue;
13570
13571 if (elf_sec->linked_to)
13572 {
13573 Elf_Internal_Shdr *linked_hdr
13574 = &elf_section_data (elf_sec->linked_to)->this_hdr;
13575 struct _arm_elf_section_data *linked_sec_arm_data
13576 = get_arm_elf_section_data (linked_hdr->bfd_section);
13577
13578 if (linked_sec_arm_data == NULL)
13579 continue;
13580
13581 /* Link this .ARM.exidx section back from the text section it
13582 describes. */
13583 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
13584 }
13585 }
13586 }
13587
13588 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
13589 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
13590 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
13591
13592 for (i = 0; i < num_text_sections; i++)
13593 {
13594 asection *sec = text_section_order[i];
13595 asection *exidx_sec;
13596 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
13597 struct _arm_elf_section_data *exidx_arm_data;
13598 bfd_byte *contents = NULL;
13599 int deleted_exidx_bytes = 0;
13600 bfd_vma j;
13601 arm_unwind_table_edit *unwind_edit_head = NULL;
13602 arm_unwind_table_edit *unwind_edit_tail = NULL;
13603 Elf_Internal_Shdr *hdr;
13604 bfd *ibfd;
13605
13606 if (arm_data == NULL)
13607 continue;
13608
13609 exidx_sec = arm_data->u.text.arm_exidx_sec;
13610 if (exidx_sec == NULL)
13611 {
13612 /* Section has no unwind data. */
13613 if (last_unwind_type == 0 || !last_exidx_sec)
13614 continue;
13615
13616 /* Ignore zero sized sections. */
13617 if (sec->size == 0)
13618 continue;
13619
13620 insert_cantunwind_after(last_text_sec, last_exidx_sec);
13621 last_unwind_type = 0;
13622 continue;
13623 }
13624
13625 /* Skip /DISCARD/ sections. */
13626 if (bfd_is_abs_section (exidx_sec->output_section))
13627 continue;
13628
13629 hdr = &elf_section_data (exidx_sec)->this_hdr;
13630 if (hdr->sh_type != SHT_ARM_EXIDX)
13631 continue;
13632
13633 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
13634 if (exidx_arm_data == NULL)
13635 continue;
13636
13637 ibfd = exidx_sec->owner;
13638
13639 if (hdr->contents != NULL)
13640 contents = hdr->contents;
13641 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
13642 /* An error? */
13643 continue;
13644
13645 if (last_unwind_type > 0)
13646 {
13647 unsigned int first_word = bfd_get_32 (ibfd, contents);
13648 /* Add cantunwind if first unwind item does not match section
13649 start. */
13650 if (first_word != sec->vma)
13651 {
13652 insert_cantunwind_after (last_text_sec, last_exidx_sec);
13653 last_unwind_type = 0;
13654 }
13655 }
13656
13657 for (j = 0; j < hdr->sh_size; j += 8)
13658 {
13659 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
13660 int unwind_type;
13661 int elide = 0;
13662
13663 /* An EXIDX_CANTUNWIND entry. */
13664 if (second_word == 1)
13665 {
13666 if (last_unwind_type == 0)
13667 elide = 1;
13668 unwind_type = 0;
13669 }
13670 /* Inlined unwinding data. Merge if equal to previous. */
13671 else if ((second_word & 0x80000000) != 0)
13672 {
13673 if (merge_exidx_entries
13674 && last_second_word == second_word && last_unwind_type == 1)
13675 elide = 1;
13676 unwind_type = 1;
13677 last_second_word = second_word;
13678 }
13679 /* Normal table entry. In theory we could merge these too,
13680 but duplicate entries are likely to be much less common. */
13681 else
13682 unwind_type = 2;
13683
13684 if (elide && !bfd_link_relocatable (info))
13685 {
13686 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
13687 DELETE_EXIDX_ENTRY, NULL, j / 8);
13688
13689 deleted_exidx_bytes += 8;
13690 }
13691
13692 last_unwind_type = unwind_type;
13693 }
13694
13695 /* Free contents if we allocated it ourselves. */
13696 if (contents != hdr->contents)
13697 free (contents);
13698
13699 /* Record edits to be applied later (in elf32_arm_write_section). */
13700 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
13701 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
13702
13703 if (deleted_exidx_bytes > 0)
13704 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
13705
13706 last_exidx_sec = exidx_sec;
13707 last_text_sec = sec;
13708 }
13709
13710 /* Add terminating CANTUNWIND entry. */
13711 if (!bfd_link_relocatable (info) && last_exidx_sec
13712 && last_unwind_type != 0)
13713 insert_cantunwind_after(last_text_sec, last_exidx_sec);
13714
13715 return TRUE;
13716 }
13717
13718 static bfd_boolean
13719 elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
13720 bfd *ibfd, const char *name)
13721 {
13722 asection *sec, *osec;
13723
13724 sec = bfd_get_linker_section (ibfd, name);
13725 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
13726 return TRUE;
13727
13728 osec = sec->output_section;
13729 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
13730 return TRUE;
13731
13732 if (! bfd_set_section_contents (obfd, osec, sec->contents,
13733 sec->output_offset, sec->size))
13734 return FALSE;
13735
13736 return TRUE;
13737 }
13738
13739 static bfd_boolean
13740 elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
13741 {
13742 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
13743 asection *sec, *osec;
13744
13745 if (globals == NULL)
13746 return FALSE;
13747
13748 /* Invoke the regular ELF backend linker to do all the work. */
13749 if (!bfd_elf_final_link (abfd, info))
13750 return FALSE;
13751
13752 /* Process stub sections (eg BE8 encoding, ...). */
13753 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
13754 unsigned int i;
13755 for (i=0; i<htab->top_id; i++)
13756 {
13757 sec = htab->stub_group[i].stub_sec;
13758 /* Only process it once, in its link_sec slot. */
13759 if (sec && i == htab->stub_group[i].link_sec->id)
13760 {
13761 osec = sec->output_section;
13762 elf32_arm_write_section (abfd, info, sec, sec->contents);
13763 if (! bfd_set_section_contents (abfd, osec, sec->contents,
13764 sec->output_offset, sec->size))
13765 return FALSE;
13766 }
13767 }
13768
13769 /* Write out any glue sections now that we have created all the
13770 stubs. */
13771 if (globals->bfd_of_glue_owner != NULL)
13772 {
13773 if (! elf32_arm_output_glue_section (info, abfd,
13774 globals->bfd_of_glue_owner,
13775 ARM2THUMB_GLUE_SECTION_NAME))
13776 return FALSE;
13777
13778 if (! elf32_arm_output_glue_section (info, abfd,
13779 globals->bfd_of_glue_owner,
13780 THUMB2ARM_GLUE_SECTION_NAME))
13781 return FALSE;
13782
13783 if (! elf32_arm_output_glue_section (info, abfd,
13784 globals->bfd_of_glue_owner,
13785 VFP11_ERRATUM_VENEER_SECTION_NAME))
13786 return FALSE;
13787
13788 if (! elf32_arm_output_glue_section (info, abfd,
13789 globals->bfd_of_glue_owner,
13790 STM32L4XX_ERRATUM_VENEER_SECTION_NAME))
13791 return FALSE;
13792
13793 if (! elf32_arm_output_glue_section (info, abfd,
13794 globals->bfd_of_glue_owner,
13795 ARM_BX_GLUE_SECTION_NAME))
13796 return FALSE;
13797 }
13798
13799 return TRUE;
13800 }
13801
13802 /* Return a best guess for the machine number based on the attributes. */
13803
13804 static unsigned int
13805 bfd_arm_get_mach_from_attributes (bfd * abfd)
13806 {
13807 int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch);
13808
13809 switch (arch)
13810 {
13811 case TAG_CPU_ARCH_PRE_V4: return bfd_mach_arm_3M;
13812 case TAG_CPU_ARCH_V4: return bfd_mach_arm_4;
13813 case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T;
13814 case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T;
13815
13816 case TAG_CPU_ARCH_V5TE:
13817 {
13818 char * name;
13819
13820 BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES);
13821 name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s;
13822
13823 if (name)
13824 {
13825 if (strcmp (name, "IWMMXT2") == 0)
13826 return bfd_mach_arm_iWMMXt2;
13827
13828 if (strcmp (name, "IWMMXT") == 0)
13829 return bfd_mach_arm_iWMMXt;
13830
13831 if (strcmp (name, "XSCALE") == 0)
13832 {
13833 int wmmx;
13834
13835 BFD_ASSERT (Tag_WMMX_arch < NUM_KNOWN_OBJ_ATTRIBUTES);
13836 wmmx = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_WMMX_arch].i;
13837 switch (wmmx)
13838 {
13839 case 1: return bfd_mach_arm_iWMMXt;
13840 case 2: return bfd_mach_arm_iWMMXt2;
13841 default: return bfd_mach_arm_XScale;
13842 }
13843 }
13844 }
13845
13846 return bfd_mach_arm_5TE;
13847 }
13848
13849 case TAG_CPU_ARCH_V5TEJ:
13850 return bfd_mach_arm_5TEJ;
13851 case TAG_CPU_ARCH_V6:
13852 return bfd_mach_arm_6;
13853 case TAG_CPU_ARCH_V6KZ:
13854 return bfd_mach_arm_6KZ;
13855 case TAG_CPU_ARCH_V6T2:
13856 return bfd_mach_arm_6T2;
13857 case TAG_CPU_ARCH_V6K:
13858 return bfd_mach_arm_6K;
13859 case TAG_CPU_ARCH_V7:
13860 return bfd_mach_arm_7;
13861 case TAG_CPU_ARCH_V6_M:
13862 return bfd_mach_arm_6M;
13863 case TAG_CPU_ARCH_V6S_M:
13864 return bfd_mach_arm_6SM;
13865 case TAG_CPU_ARCH_V7E_M:
13866 return bfd_mach_arm_7EM;
13867 case TAG_CPU_ARCH_V8:
13868 return bfd_mach_arm_8;
13869 case TAG_CPU_ARCH_V8R:
13870 return bfd_mach_arm_8R;
13871 case TAG_CPU_ARCH_V8M_BASE:
13872 return bfd_mach_arm_8M_BASE;
13873 case TAG_CPU_ARCH_V8M_MAIN:
13874 return bfd_mach_arm_8M_MAIN;
13875 case TAG_CPU_ARCH_V8_1M_MAIN:
13876 return bfd_mach_arm_8_1M_MAIN;
13877
13878 default:
13879 /* Force entry to be added for any new known Tag_CPU_arch value. */
13880 BFD_ASSERT (arch > MAX_TAG_CPU_ARCH);
13881
13882 /* Unknown Tag_CPU_arch value. */
13883 return bfd_mach_arm_unknown;
13884 }
13885 }
13886
13887 /* Set the right machine number. */
13888
13889 static bfd_boolean
13890 elf32_arm_object_p (bfd *abfd)
13891 {
13892 unsigned int mach;
13893
13894 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
13895
13896 if (mach == bfd_mach_arm_unknown)
13897 {
13898 if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
13899 mach = bfd_mach_arm_ep9312;
13900 else
13901 mach = bfd_arm_get_mach_from_attributes (abfd);
13902 }
13903
13904 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
13905 return TRUE;
13906 }
13907
13908 /* Function to keep ARM specific flags in the ELF header. */
13909
13910 static bfd_boolean
13911 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
13912 {
13913 if (elf_flags_init (abfd)
13914 && elf_elfheader (abfd)->e_flags != flags)
13915 {
13916 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
13917 {
13918 if (flags & EF_ARM_INTERWORK)
13919 _bfd_error_handler
13920 (_("warning: not setting interworking flag of %pB since it has already been specified as non-interworking"),
13921 abfd);
13922 else
13923 _bfd_error_handler
13924 (_("warning: clearing the interworking flag of %pB due to outside request"),
13925 abfd);
13926 }
13927 }
13928 else
13929 {
13930 elf_elfheader (abfd)->e_flags = flags;
13931 elf_flags_init (abfd) = TRUE;
13932 }
13933
13934 return TRUE;
13935 }
13936
13937 /* Copy backend specific data from one object module to another. */
13938
13939 static bfd_boolean
13940 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
13941 {
13942 flagword in_flags;
13943 flagword out_flags;
13944
13945 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
13946 return TRUE;
13947
13948 in_flags = elf_elfheader (ibfd)->e_flags;
13949 out_flags = elf_elfheader (obfd)->e_flags;
13950
13951 if (elf_flags_init (obfd)
13952 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
13953 && in_flags != out_flags)
13954 {
13955 /* Cannot mix APCS26 and APCS32 code. */
13956 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
13957 return FALSE;
13958
13959 /* Cannot mix float APCS and non-float APCS code. */
13960 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
13961 return FALSE;
13962
13963 /* If the src and dest have different interworking flags
13964 then turn off the interworking bit. */
13965 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
13966 {
13967 if (out_flags & EF_ARM_INTERWORK)
13968 _bfd_error_handler
13969 (_("warning: clearing the interworking flag of %pB because non-interworking code in %pB has been linked with it"),
13970 obfd, ibfd);
13971
13972 in_flags &= ~EF_ARM_INTERWORK;
13973 }
13974
13975 /* Likewise for PIC, though don't warn for this case. */
13976 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
13977 in_flags &= ~EF_ARM_PIC;
13978 }
13979
13980 elf_elfheader (obfd)->e_flags = in_flags;
13981 elf_flags_init (obfd) = TRUE;
13982
13983 return _bfd_elf_copy_private_bfd_data (ibfd, obfd);
13984 }
13985
13986 /* Values for Tag_ABI_PCS_R9_use. */
13987 enum
13988 {
13989 AEABI_R9_V6,
13990 AEABI_R9_SB,
13991 AEABI_R9_TLS,
13992 AEABI_R9_unused
13993 };
13994
13995 /* Values for Tag_ABI_PCS_RW_data. */
13996 enum
13997 {
13998 AEABI_PCS_RW_data_absolute,
13999 AEABI_PCS_RW_data_PCrel,
14000 AEABI_PCS_RW_data_SBrel,
14001 AEABI_PCS_RW_data_unused
14002 };
14003
14004 /* Values for Tag_ABI_enum_size. */
14005 enum
14006 {
14007 AEABI_enum_unused,
14008 AEABI_enum_short,
14009 AEABI_enum_wide,
14010 AEABI_enum_forced_wide
14011 };
14012
14013 /* Determine whether an object attribute tag takes an integer, a
14014 string or both. */
14015
14016 static int
14017 elf32_arm_obj_attrs_arg_type (int tag)
14018 {
14019 if (tag == Tag_compatibility)
14020 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
14021 else if (tag == Tag_nodefaults)
14022 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
14023 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
14024 return ATTR_TYPE_FLAG_STR_VAL;
14025 else if (tag < 32)
14026 return ATTR_TYPE_FLAG_INT_VAL;
14027 else
14028 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
14029 }
14030
14031 /* The ABI defines that Tag_conformance should be emitted first, and that
14032 Tag_nodefaults should be second (if either is defined). This sets those
14033 two positions, and bumps up the position of all the remaining tags to
14034 compensate. */
14035 static int
14036 elf32_arm_obj_attrs_order (int num)
14037 {
14038 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
14039 return Tag_conformance;
14040 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
14041 return Tag_nodefaults;
14042 if ((num - 2) < Tag_nodefaults)
14043 return num - 2;
14044 if ((num - 1) < Tag_conformance)
14045 return num - 1;
14046 return num;
14047 }
14048
14049 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
14050 static bfd_boolean
14051 elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
14052 {
14053 if ((tag & 127) < 64)
14054 {
14055 _bfd_error_handler
14056 (_("%pB: unknown mandatory EABI object attribute %d"),
14057 abfd, tag);
14058 bfd_set_error (bfd_error_bad_value);
14059 return FALSE;
14060 }
14061 else
14062 {
14063 _bfd_error_handler
14064 (_("warning: %pB: unknown EABI object attribute %d"),
14065 abfd, tag);
14066 return TRUE;
14067 }
14068 }
14069
14070 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
14071 Returns -1 if no architecture could be read. */
14072
14073 static int
14074 get_secondary_compatible_arch (bfd *abfd)
14075 {
14076 obj_attribute *attr =
14077 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
14078
14079 /* Note: the tag and its argument below are uleb128 values, though
14080 currently-defined values fit in one byte for each. */
14081 if (attr->s
14082 && attr->s[0] == Tag_CPU_arch
14083 && (attr->s[1] & 128) != 128
14084 && attr->s[2] == 0)
14085 return attr->s[1];
14086
14087 /* This tag is "safely ignorable", so don't complain if it looks funny. */
14088 return -1;
14089 }
14090
14091 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
14092 The tag is removed if ARCH is -1. */
14093
14094 static void
14095 set_secondary_compatible_arch (bfd *abfd, int arch)
14096 {
14097 obj_attribute *attr =
14098 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
14099
14100 if (arch == -1)
14101 {
14102 attr->s = NULL;
14103 return;
14104 }
14105
14106 /* Note: the tag and its argument below are uleb128 values, though
14107 currently-defined values fit in one byte for each. */
14108 if (!attr->s)
14109 attr->s = (char *) bfd_alloc (abfd, 3);
14110 attr->s[0] = Tag_CPU_arch;
14111 attr->s[1] = arch;
14112 attr->s[2] = '\0';
14113 }
14114
14115 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
14116 into account. */
14117
14118 static int
14119 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
14120 int newtag, int secondary_compat)
14121 {
14122 #define T(X) TAG_CPU_ARCH_##X
14123 int tagl, tagh, result;
14124 const int v6t2[] =
14125 {
14126 T(V6T2), /* PRE_V4. */
14127 T(V6T2), /* V4. */
14128 T(V6T2), /* V4T. */
14129 T(V6T2), /* V5T. */
14130 T(V6T2), /* V5TE. */
14131 T(V6T2), /* V5TEJ. */
14132 T(V6T2), /* V6. */
14133 T(V7), /* V6KZ. */
14134 T(V6T2) /* V6T2. */
14135 };
14136 const int v6k[] =
14137 {
14138 T(V6K), /* PRE_V4. */
14139 T(V6K), /* V4. */
14140 T(V6K), /* V4T. */
14141 T(V6K), /* V5T. */
14142 T(V6K), /* V5TE. */
14143 T(V6K), /* V5TEJ. */
14144 T(V6K), /* V6. */
14145 T(V6KZ), /* V6KZ. */
14146 T(V7), /* V6T2. */
14147 T(V6K) /* V6K. */
14148 };
14149 const int v7[] =
14150 {
14151 T(V7), /* PRE_V4. */
14152 T(V7), /* V4. */
14153 T(V7), /* V4T. */
14154 T(V7), /* V5T. */
14155 T(V7), /* V5TE. */
14156 T(V7), /* V5TEJ. */
14157 T(V7), /* V6. */
14158 T(V7), /* V6KZ. */
14159 T(V7), /* V6T2. */
14160 T(V7), /* V6K. */
14161 T(V7) /* V7. */
14162 };
14163 const int v6_m[] =
14164 {
14165 -1, /* PRE_V4. */
14166 -1, /* V4. */
14167 T(V6K), /* V4T. */
14168 T(V6K), /* V5T. */
14169 T(V6K), /* V5TE. */
14170 T(V6K), /* V5TEJ. */
14171 T(V6K), /* V6. */
14172 T(V6KZ), /* V6KZ. */
14173 T(V7), /* V6T2. */
14174 T(V6K), /* V6K. */
14175 T(V7), /* V7. */
14176 T(V6_M) /* V6_M. */
14177 };
14178 const int v6s_m[] =
14179 {
14180 -1, /* PRE_V4. */
14181 -1, /* V4. */
14182 T(V6K), /* V4T. */
14183 T(V6K), /* V5T. */
14184 T(V6K), /* V5TE. */
14185 T(V6K), /* V5TEJ. */
14186 T(V6K), /* V6. */
14187 T(V6KZ), /* V6KZ. */
14188 T(V7), /* V6T2. */
14189 T(V6K), /* V6K. */
14190 T(V7), /* V7. */
14191 T(V6S_M), /* V6_M. */
14192 T(V6S_M) /* V6S_M. */
14193 };
14194 const int v7e_m[] =
14195 {
14196 -1, /* PRE_V4. */
14197 -1, /* V4. */
14198 T(V7E_M), /* V4T. */
14199 T(V7E_M), /* V5T. */
14200 T(V7E_M), /* V5TE. */
14201 T(V7E_M), /* V5TEJ. */
14202 T(V7E_M), /* V6. */
14203 T(V7E_M), /* V6KZ. */
14204 T(V7E_M), /* V6T2. */
14205 T(V7E_M), /* V6K. */
14206 T(V7E_M), /* V7. */
14207 T(V7E_M), /* V6_M. */
14208 T(V7E_M), /* V6S_M. */
14209 T(V7E_M) /* V7E_M. */
14210 };
14211 const int v8[] =
14212 {
14213 T(V8), /* PRE_V4. */
14214 T(V8), /* V4. */
14215 T(V8), /* V4T. */
14216 T(V8), /* V5T. */
14217 T(V8), /* V5TE. */
14218 T(V8), /* V5TEJ. */
14219 T(V8), /* V6. */
14220 T(V8), /* V6KZ. */
14221 T(V8), /* V6T2. */
14222 T(V8), /* V6K. */
14223 T(V8), /* V7. */
14224 T(V8), /* V6_M. */
14225 T(V8), /* V6S_M. */
14226 T(V8), /* V7E_M. */
14227 T(V8) /* V8. */
14228 };
14229 const int v8r[] =
14230 {
14231 T(V8R), /* PRE_V4. */
14232 T(V8R), /* V4. */
14233 T(V8R), /* V4T. */
14234 T(V8R), /* V5T. */
14235 T(V8R), /* V5TE. */
14236 T(V8R), /* V5TEJ. */
14237 T(V8R), /* V6. */
14238 T(V8R), /* V6KZ. */
14239 T(V8R), /* V6T2. */
14240 T(V8R), /* V6K. */
14241 T(V8R), /* V7. */
14242 T(V8R), /* V6_M. */
14243 T(V8R), /* V6S_M. */
14244 T(V8R), /* V7E_M. */
14245 T(V8), /* V8. */
14246 T(V8R), /* V8R. */
14247 };
14248 const int v8m_baseline[] =
14249 {
14250 -1, /* PRE_V4. */
14251 -1, /* V4. */
14252 -1, /* V4T. */
14253 -1, /* V5T. */
14254 -1, /* V5TE. */
14255 -1, /* V5TEJ. */
14256 -1, /* V6. */
14257 -1, /* V6KZ. */
14258 -1, /* V6T2. */
14259 -1, /* V6K. */
14260 -1, /* V7. */
14261 T(V8M_BASE), /* V6_M. */
14262 T(V8M_BASE), /* V6S_M. */
14263 -1, /* V7E_M. */
14264 -1, /* V8. */
14265 -1, /* V8R. */
14266 T(V8M_BASE) /* V8-M BASELINE. */
14267 };
14268 const int v8m_mainline[] =
14269 {
14270 -1, /* PRE_V4. */
14271 -1, /* V4. */
14272 -1, /* V4T. */
14273 -1, /* V5T. */
14274 -1, /* V5TE. */
14275 -1, /* V5TEJ. */
14276 -1, /* V6. */
14277 -1, /* V6KZ. */
14278 -1, /* V6T2. */
14279 -1, /* V6K. */
14280 T(V8M_MAIN), /* V7. */
14281 T(V8M_MAIN), /* V6_M. */
14282 T(V8M_MAIN), /* V6S_M. */
14283 T(V8M_MAIN), /* V7E_M. */
14284 -1, /* V8. */
14285 -1, /* V8R. */
14286 T(V8M_MAIN), /* V8-M BASELINE. */
14287 T(V8M_MAIN) /* V8-M MAINLINE. */
14288 };
14289 const int v8_1m_mainline[] =
14290 {
14291 -1, /* PRE_V4. */
14292 -1, /* V4. */
14293 -1, /* V4T. */
14294 -1, /* V5T. */
14295 -1, /* V5TE. */
14296 -1, /* V5TEJ. */
14297 -1, /* V6. */
14298 -1, /* V6KZ. */
14299 -1, /* V6T2. */
14300 -1, /* V6K. */
14301 T(V8_1M_MAIN), /* V7. */
14302 T(V8_1M_MAIN), /* V6_M. */
14303 T(V8_1M_MAIN), /* V6S_M. */
14304 T(V8_1M_MAIN), /* V7E_M. */
14305 -1, /* V8. */
14306 -1, /* V8R. */
14307 T(V8_1M_MAIN), /* V8-M BASELINE. */
14308 T(V8_1M_MAIN), /* V8-M MAINLINE. */
14309 -1, /* Unused (18). */
14310 -1, /* Unused (19). */
14311 -1, /* Unused (20). */
14312 T(V8_1M_MAIN) /* V8.1-M MAINLINE. */
14313 };
14314 const int v4t_plus_v6_m[] =
14315 {
14316 -1, /* PRE_V4. */
14317 -1, /* V4. */
14318 T(V4T), /* V4T. */
14319 T(V5T), /* V5T. */
14320 T(V5TE), /* V5TE. */
14321 T(V5TEJ), /* V5TEJ. */
14322 T(V6), /* V6. */
14323 T(V6KZ), /* V6KZ. */
14324 T(V6T2), /* V6T2. */
14325 T(V6K), /* V6K. */
14326 T(V7), /* V7. */
14327 T(V6_M), /* V6_M. */
14328 T(V6S_M), /* V6S_M. */
14329 T(V7E_M), /* V7E_M. */
14330 T(V8), /* V8. */
14331 -1, /* V8R. */
14332 T(V8M_BASE), /* V8-M BASELINE. */
14333 T(V8M_MAIN), /* V8-M MAINLINE. */
14334 -1, /* Unused (18). */
14335 -1, /* Unused (19). */
14336 -1, /* Unused (20). */
14337 T(V8_1M_MAIN), /* V8.1-M MAINLINE. */
14338 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
14339 };
14340 const int *comb[] =
14341 {
14342 v6t2,
14343 v6k,
14344 v7,
14345 v6_m,
14346 v6s_m,
14347 v7e_m,
14348 v8,
14349 v8r,
14350 v8m_baseline,
14351 v8m_mainline,
14352 NULL,
14353 NULL,
14354 NULL,
14355 v8_1m_mainline,
14356 /* Pseudo-architecture. */
14357 v4t_plus_v6_m
14358 };
14359
14360 /* Check we've not got a higher architecture than we know about. */
14361
14362 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
14363 {
14364 _bfd_error_handler (_("error: %pB: unknown CPU architecture"), ibfd);
14365 return -1;
14366 }
14367
14368 /* Override old tag if we have a Tag_also_compatible_with on the output. */
14369
14370 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
14371 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
14372 oldtag = T(V4T_PLUS_V6_M);
14373
14374 /* And override the new tag if we have a Tag_also_compatible_with on the
14375 input. */
14376
14377 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
14378 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
14379 newtag = T(V4T_PLUS_V6_M);
14380
14381 tagl = (oldtag < newtag) ? oldtag : newtag;
14382 result = tagh = (oldtag > newtag) ? oldtag : newtag;
14383
14384 /* Architectures before V6KZ add features monotonically. */
14385 if (tagh <= TAG_CPU_ARCH_V6KZ)
14386 return result;
14387
14388 result = comb[tagh - T(V6T2)] ? comb[tagh - T(V6T2)][tagl] : -1;
14389
14390 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
14391 as the canonical version. */
14392 if (result == T(V4T_PLUS_V6_M))
14393 {
14394 result = T(V4T);
14395 *secondary_compat_out = T(V6_M);
14396 }
14397 else
14398 *secondary_compat_out = -1;
14399
14400 if (result == -1)
14401 {
14402 _bfd_error_handler (_("error: %pB: conflicting CPU architectures %d/%d"),
14403 ibfd, oldtag, newtag);
14404 return -1;
14405 }
14406
14407 return result;
14408 #undef T
14409 }
14410
14411 /* Query attributes object to see if integer divide instructions may be
14412 present in an object. */
14413 static bfd_boolean
14414 elf32_arm_attributes_accept_div (const obj_attribute *attr)
14415 {
14416 int arch = attr[Tag_CPU_arch].i;
14417 int profile = attr[Tag_CPU_arch_profile].i;
14418
14419 switch (attr[Tag_DIV_use].i)
14420 {
14421 case 0:
14422 /* Integer divide allowed if instruction contained in archetecture. */
14423 if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
14424 return TRUE;
14425 else if (arch >= TAG_CPU_ARCH_V7E_M)
14426 return TRUE;
14427 else
14428 return FALSE;
14429
14430 case 1:
14431 /* Integer divide explicitly prohibited. */
14432 return FALSE;
14433
14434 default:
14435 /* Unrecognised case - treat as allowing divide everywhere. */
14436 case 2:
14437 /* Integer divide allowed in ARM state. */
14438 return TRUE;
14439 }
14440 }
14441
14442 /* Query attributes object to see if integer divide instructions are
14443 forbidden to be in the object. This is not the inverse of
14444 elf32_arm_attributes_accept_div. */
14445 static bfd_boolean
14446 elf32_arm_attributes_forbid_div (const obj_attribute *attr)
14447 {
14448 return attr[Tag_DIV_use].i == 1;
14449 }
14450
14451 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
14452 are conflicting attributes. */
14453
14454 static bfd_boolean
14455 elf32_arm_merge_eabi_attributes (bfd *ibfd, struct bfd_link_info *info)
14456 {
14457 bfd *obfd = info->output_bfd;
14458 obj_attribute *in_attr;
14459 obj_attribute *out_attr;
14460 /* Some tags have 0 = don't care, 1 = strong requirement,
14461 2 = weak requirement. */
14462 static const int order_021[3] = {0, 2, 1};
14463 int i;
14464 bfd_boolean result = TRUE;
14465 const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section;
14466
14467 /* Skip the linker stubs file. This preserves previous behavior
14468 of accepting unknown attributes in the first input file - but
14469 is that a bug? */
14470 if (ibfd->flags & BFD_LINKER_CREATED)
14471 return TRUE;
14472
14473 /* Skip any input that hasn't attribute section.
14474 This enables to link object files without attribute section with
14475 any others. */
14476 if (bfd_get_section_by_name (ibfd, sec_name) == NULL)
14477 return TRUE;
14478
14479 if (!elf_known_obj_attributes_proc (obfd)[0].i)
14480 {
14481 /* This is the first object. Copy the attributes. */
14482 _bfd_elf_copy_obj_attributes (ibfd, obfd);
14483
14484 out_attr = elf_known_obj_attributes_proc (obfd);
14485
14486 /* Use the Tag_null value to indicate the attributes have been
14487 initialized. */
14488 out_attr[0].i = 1;
14489
14490 /* We do not output objects with Tag_MPextension_use_legacy - we move
14491 the attribute's value to Tag_MPextension_use. */
14492 if (out_attr[Tag_MPextension_use_legacy].i != 0)
14493 {
14494 if (out_attr[Tag_MPextension_use].i != 0
14495 && out_attr[Tag_MPextension_use_legacy].i
14496 != out_attr[Tag_MPextension_use].i)
14497 {
14498 _bfd_error_handler
14499 (_("Error: %pB has both the current and legacy "
14500 "Tag_MPextension_use attributes"), ibfd);
14501 result = FALSE;
14502 }
14503
14504 out_attr[Tag_MPextension_use] =
14505 out_attr[Tag_MPextension_use_legacy];
14506 out_attr[Tag_MPextension_use_legacy].type = 0;
14507 out_attr[Tag_MPextension_use_legacy].i = 0;
14508 }
14509
14510 return result;
14511 }
14512
14513 in_attr = elf_known_obj_attributes_proc (ibfd);
14514 out_attr = elf_known_obj_attributes_proc (obfd);
14515 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
14516 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
14517 {
14518 /* Ignore mismatches if the object doesn't use floating point or is
14519 floating point ABI independent. */
14520 if (out_attr[Tag_ABI_FP_number_model].i == AEABI_FP_number_model_none
14521 || (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
14522 && out_attr[Tag_ABI_VFP_args].i == AEABI_VFP_args_compatible))
14523 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
14524 else if (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
14525 && in_attr[Tag_ABI_VFP_args].i != AEABI_VFP_args_compatible)
14526 {
14527 _bfd_error_handler
14528 (_("error: %pB uses VFP register arguments, %pB does not"),
14529 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
14530 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
14531 result = FALSE;
14532 }
14533 }
14534
14535 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
14536 {
14537 /* Merge this attribute with existing attributes. */
14538 switch (i)
14539 {
14540 case Tag_CPU_raw_name:
14541 case Tag_CPU_name:
14542 /* These are merged after Tag_CPU_arch. */
14543 break;
14544
14545 case Tag_ABI_optimization_goals:
14546 case Tag_ABI_FP_optimization_goals:
14547 /* Use the first value seen. */
14548 break;
14549
14550 case Tag_CPU_arch:
14551 {
14552 int secondary_compat = -1, secondary_compat_out = -1;
14553 unsigned int saved_out_attr = out_attr[i].i;
14554 int arch_attr;
14555 static const char *name_table[] =
14556 {
14557 /* These aren't real CPU names, but we can't guess
14558 that from the architecture version alone. */
14559 "Pre v4",
14560 "ARM v4",
14561 "ARM v4T",
14562 "ARM v5T",
14563 "ARM v5TE",
14564 "ARM v5TEJ",
14565 "ARM v6",
14566 "ARM v6KZ",
14567 "ARM v6T2",
14568 "ARM v6K",
14569 "ARM v7",
14570 "ARM v6-M",
14571 "ARM v6S-M",
14572 "ARM v8",
14573 "",
14574 "ARM v8-M.baseline",
14575 "ARM v8-M.mainline",
14576 };
14577
14578 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
14579 secondary_compat = get_secondary_compatible_arch (ibfd);
14580 secondary_compat_out = get_secondary_compatible_arch (obfd);
14581 arch_attr = tag_cpu_arch_combine (ibfd, out_attr[i].i,
14582 &secondary_compat_out,
14583 in_attr[i].i,
14584 secondary_compat);
14585
14586 /* Return with error if failed to merge. */
14587 if (arch_attr == -1)
14588 return FALSE;
14589
14590 out_attr[i].i = arch_attr;
14591
14592 set_secondary_compatible_arch (obfd, secondary_compat_out);
14593
14594 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
14595 if (out_attr[i].i == saved_out_attr)
14596 ; /* Leave the names alone. */
14597 else if (out_attr[i].i == in_attr[i].i)
14598 {
14599 /* The output architecture has been changed to match the
14600 input architecture. Use the input names. */
14601 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
14602 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
14603 : NULL;
14604 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
14605 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
14606 : NULL;
14607 }
14608 else
14609 {
14610 out_attr[Tag_CPU_name].s = NULL;
14611 out_attr[Tag_CPU_raw_name].s = NULL;
14612 }
14613
14614 /* If we still don't have a value for Tag_CPU_name,
14615 make one up now. Tag_CPU_raw_name remains blank. */
14616 if (out_attr[Tag_CPU_name].s == NULL
14617 && out_attr[i].i < ARRAY_SIZE (name_table))
14618 out_attr[Tag_CPU_name].s =
14619 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
14620 }
14621 break;
14622
14623 case Tag_ARM_ISA_use:
14624 case Tag_THUMB_ISA_use:
14625 case Tag_WMMX_arch:
14626 case Tag_Advanced_SIMD_arch:
14627 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
14628 case Tag_ABI_FP_rounding:
14629 case Tag_ABI_FP_exceptions:
14630 case Tag_ABI_FP_user_exceptions:
14631 case Tag_ABI_FP_number_model:
14632 case Tag_FP_HP_extension:
14633 case Tag_CPU_unaligned_access:
14634 case Tag_T2EE_use:
14635 case Tag_MPextension_use:
14636 case Tag_MVE_arch:
14637 /* Use the largest value specified. */
14638 if (in_attr[i].i > out_attr[i].i)
14639 out_attr[i].i = in_attr[i].i;
14640 break;
14641
14642 case Tag_ABI_align_preserved:
14643 case Tag_ABI_PCS_RO_data:
14644 /* Use the smallest value specified. */
14645 if (in_attr[i].i < out_attr[i].i)
14646 out_attr[i].i = in_attr[i].i;
14647 break;
14648
14649 case Tag_ABI_align_needed:
14650 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
14651 && (in_attr[Tag_ABI_align_preserved].i == 0
14652 || out_attr[Tag_ABI_align_preserved].i == 0))
14653 {
14654 /* This error message should be enabled once all non-conformant
14655 binaries in the toolchain have had the attributes set
14656 properly.
14657 _bfd_error_handler
14658 (_("error: %pB: 8-byte data alignment conflicts with %pB"),
14659 obfd, ibfd);
14660 result = FALSE; */
14661 }
14662 /* Fall through. */
14663 case Tag_ABI_FP_denormal:
14664 case Tag_ABI_PCS_GOT_use:
14665 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
14666 value if greater than 2 (for future-proofing). */
14667 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
14668 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
14669 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
14670 out_attr[i].i = in_attr[i].i;
14671 break;
14672
14673 case Tag_Virtualization_use:
14674 /* The virtualization tag effectively stores two bits of
14675 information: the intended use of TrustZone (in bit 0), and the
14676 intended use of Virtualization (in bit 1). */
14677 if (out_attr[i].i == 0)
14678 out_attr[i].i = in_attr[i].i;
14679 else if (in_attr[i].i != 0
14680 && in_attr[i].i != out_attr[i].i)
14681 {
14682 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
14683 out_attr[i].i = 3;
14684 else
14685 {
14686 _bfd_error_handler
14687 (_("error: %pB: unable to merge virtualization attributes "
14688 "with %pB"),
14689 obfd, ibfd);
14690 result = FALSE;
14691 }
14692 }
14693 break;
14694
14695 case Tag_CPU_arch_profile:
14696 if (out_attr[i].i != in_attr[i].i)
14697 {
14698 /* 0 will merge with anything.
14699 'A' and 'S' merge to 'A'.
14700 'R' and 'S' merge to 'R'.
14701 'M' and 'A|R|S' is an error. */
14702 if (out_attr[i].i == 0
14703 || (out_attr[i].i == 'S'
14704 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
14705 out_attr[i].i = in_attr[i].i;
14706 else if (in_attr[i].i == 0
14707 || (in_attr[i].i == 'S'
14708 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
14709 ; /* Do nothing. */
14710 else
14711 {
14712 _bfd_error_handler
14713 (_("error: %pB: conflicting architecture profiles %c/%c"),
14714 ibfd,
14715 in_attr[i].i ? in_attr[i].i : '0',
14716 out_attr[i].i ? out_attr[i].i : '0');
14717 result = FALSE;
14718 }
14719 }
14720 break;
14721
14722 case Tag_DSP_extension:
14723 /* No need to change output value if any of:
14724 - pre (<=) ARMv5T input architecture (do not have DSP)
14725 - M input profile not ARMv7E-M and do not have DSP. */
14726 if (in_attr[Tag_CPU_arch].i <= 3
14727 || (in_attr[Tag_CPU_arch_profile].i == 'M'
14728 && in_attr[Tag_CPU_arch].i != 13
14729 && in_attr[i].i == 0))
14730 ; /* Do nothing. */
14731 /* Output value should be 0 if DSP part of architecture, ie.
14732 - post (>=) ARMv5te architecture output
14733 - A, R or S profile output or ARMv7E-M output architecture. */
14734 else if (out_attr[Tag_CPU_arch].i >= 4
14735 && (out_attr[Tag_CPU_arch_profile].i == 'A'
14736 || out_attr[Tag_CPU_arch_profile].i == 'R'
14737 || out_attr[Tag_CPU_arch_profile].i == 'S'
14738 || out_attr[Tag_CPU_arch].i == 13))
14739 out_attr[i].i = 0;
14740 /* Otherwise, DSP instructions are added and not part of output
14741 architecture. */
14742 else
14743 out_attr[i].i = 1;
14744 break;
14745
14746 case Tag_FP_arch:
14747 {
14748 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
14749 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
14750 when it's 0. It might mean absence of FP hardware if
14751 Tag_FP_arch is zero. */
14752
14753 #define VFP_VERSION_COUNT 9
14754 static const struct
14755 {
14756 int ver;
14757 int regs;
14758 } vfp_versions[VFP_VERSION_COUNT] =
14759 {
14760 {0, 0},
14761 {1, 16},
14762 {2, 16},
14763 {3, 32},
14764 {3, 16},
14765 {4, 32},
14766 {4, 16},
14767 {8, 32},
14768 {8, 16}
14769 };
14770 int ver;
14771 int regs;
14772 int newval;
14773
14774 /* If the output has no requirement about FP hardware,
14775 follow the requirement of the input. */
14776 if (out_attr[i].i == 0)
14777 {
14778 /* This assert is still reasonable, we shouldn't
14779 produce the suspicious build attribute
14780 combination (See below for in_attr). */
14781 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
14782 out_attr[i].i = in_attr[i].i;
14783 out_attr[Tag_ABI_HardFP_use].i
14784 = in_attr[Tag_ABI_HardFP_use].i;
14785 break;
14786 }
14787 /* If the input has no requirement about FP hardware, do
14788 nothing. */
14789 else if (in_attr[i].i == 0)
14790 {
14791 /* We used to assert that Tag_ABI_HardFP_use was
14792 zero here, but we should never assert when
14793 consuming an object file that has suspicious
14794 build attributes. The single precision variant
14795 of 'no FP architecture' is still 'no FP
14796 architecture', so we just ignore the tag in this
14797 case. */
14798 break;
14799 }
14800
14801 /* Both the input and the output have nonzero Tag_FP_arch.
14802 So Tag_ABI_HardFP_use is implied by Tag_FP_arch when it's zero. */
14803
14804 /* If both the input and the output have zero Tag_ABI_HardFP_use,
14805 do nothing. */
14806 if (in_attr[Tag_ABI_HardFP_use].i == 0
14807 && out_attr[Tag_ABI_HardFP_use].i == 0)
14808 ;
14809 /* If the input and the output have different Tag_ABI_HardFP_use,
14810 the combination of them is 0 (implied by Tag_FP_arch). */
14811 else if (in_attr[Tag_ABI_HardFP_use].i
14812 != out_attr[Tag_ABI_HardFP_use].i)
14813 out_attr[Tag_ABI_HardFP_use].i = 0;
14814
14815 /* Now we can handle Tag_FP_arch. */
14816
14817 /* Values of VFP_VERSION_COUNT or more aren't defined, so just
14818 pick the biggest. */
14819 if (in_attr[i].i >= VFP_VERSION_COUNT
14820 && in_attr[i].i > out_attr[i].i)
14821 {
14822 out_attr[i] = in_attr[i];
14823 break;
14824 }
14825 /* The output uses the superset of input features
14826 (ISA version) and registers. */
14827 ver = vfp_versions[in_attr[i].i].ver;
14828 if (ver < vfp_versions[out_attr[i].i].ver)
14829 ver = vfp_versions[out_attr[i].i].ver;
14830 regs = vfp_versions[in_attr[i].i].regs;
14831 if (regs < vfp_versions[out_attr[i].i].regs)
14832 regs = vfp_versions[out_attr[i].i].regs;
14833 /* This assumes all possible supersets are also a valid
14834 options. */
14835 for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--)
14836 {
14837 if (regs == vfp_versions[newval].regs
14838 && ver == vfp_versions[newval].ver)
14839 break;
14840 }
14841 out_attr[i].i = newval;
14842 }
14843 break;
14844 case Tag_PCS_config:
14845 if (out_attr[i].i == 0)
14846 out_attr[i].i = in_attr[i].i;
14847 else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i)
14848 {
14849 /* It's sometimes ok to mix different configs, so this is only
14850 a warning. */
14851 _bfd_error_handler
14852 (_("warning: %pB: conflicting platform configuration"), ibfd);
14853 }
14854 break;
14855 case Tag_ABI_PCS_R9_use:
14856 if (in_attr[i].i != out_attr[i].i
14857 && out_attr[i].i != AEABI_R9_unused
14858 && in_attr[i].i != AEABI_R9_unused)
14859 {
14860 _bfd_error_handler
14861 (_("error: %pB: conflicting use of R9"), ibfd);
14862 result = FALSE;
14863 }
14864 if (out_attr[i].i == AEABI_R9_unused)
14865 out_attr[i].i = in_attr[i].i;
14866 break;
14867 case Tag_ABI_PCS_RW_data:
14868 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
14869 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
14870 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
14871 {
14872 _bfd_error_handler
14873 (_("error: %pB: SB relative addressing conflicts with use of R9"),
14874 ibfd);
14875 result = FALSE;
14876 }
14877 /* Use the smallest value specified. */
14878 if (in_attr[i].i < out_attr[i].i)
14879 out_attr[i].i = in_attr[i].i;
14880 break;
14881 case Tag_ABI_PCS_wchar_t:
14882 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
14883 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
14884 {
14885 _bfd_error_handler
14886 (_("warning: %pB uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
14887 ibfd, in_attr[i].i, out_attr[i].i);
14888 }
14889 else if (in_attr[i].i && !out_attr[i].i)
14890 out_attr[i].i = in_attr[i].i;
14891 break;
14892 case Tag_ABI_enum_size:
14893 if (in_attr[i].i != AEABI_enum_unused)
14894 {
14895 if (out_attr[i].i == AEABI_enum_unused
14896 || out_attr[i].i == AEABI_enum_forced_wide)
14897 {
14898 /* The existing object is compatible with anything.
14899 Use whatever requirements the new object has. */
14900 out_attr[i].i = in_attr[i].i;
14901 }
14902 else if (in_attr[i].i != AEABI_enum_forced_wide
14903 && out_attr[i].i != in_attr[i].i
14904 && !elf_arm_tdata (obfd)->no_enum_size_warning)
14905 {
14906 static const char *aeabi_enum_names[] =
14907 { "", "variable-size", "32-bit", "" };
14908 const char *in_name =
14909 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
14910 ? aeabi_enum_names[in_attr[i].i]
14911 : "<unknown>";
14912 const char *out_name =
14913 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
14914 ? aeabi_enum_names[out_attr[i].i]
14915 : "<unknown>";
14916 _bfd_error_handler
14917 (_("warning: %pB uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
14918 ibfd, in_name, out_name);
14919 }
14920 }
14921 break;
14922 case Tag_ABI_VFP_args:
14923 /* Aready done. */
14924 break;
14925 case Tag_ABI_WMMX_args:
14926 if (in_attr[i].i != out_attr[i].i)
14927 {
14928 _bfd_error_handler
14929 (_("error: %pB uses iWMMXt register arguments, %pB does not"),
14930 ibfd, obfd);
14931 result = FALSE;
14932 }
14933 break;
14934 case Tag_compatibility:
14935 /* Merged in target-independent code. */
14936 break;
14937 case Tag_ABI_HardFP_use:
14938 /* This is handled along with Tag_FP_arch. */
14939 break;
14940 case Tag_ABI_FP_16bit_format:
14941 if (in_attr[i].i != 0 && out_attr[i].i != 0)
14942 {
14943 if (in_attr[i].i != out_attr[i].i)
14944 {
14945 _bfd_error_handler
14946 (_("error: fp16 format mismatch between %pB and %pB"),
14947 ibfd, obfd);
14948 result = FALSE;
14949 }
14950 }
14951 if (in_attr[i].i != 0)
14952 out_attr[i].i = in_attr[i].i;
14953 break;
14954
14955 case Tag_DIV_use:
14956 /* A value of zero on input means that the divide instruction may
14957 be used if available in the base architecture as specified via
14958 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that
14959 the user did not want divide instructions. A value of 2
14960 explicitly means that divide instructions were allowed in ARM
14961 and Thumb state. */
14962 if (in_attr[i].i == out_attr[i].i)
14963 /* Do nothing. */ ;
14964 else if (elf32_arm_attributes_forbid_div (in_attr)
14965 && !elf32_arm_attributes_accept_div (out_attr))
14966 out_attr[i].i = 1;
14967 else if (elf32_arm_attributes_forbid_div (out_attr)
14968 && elf32_arm_attributes_accept_div (in_attr))
14969 out_attr[i].i = in_attr[i].i;
14970 else if (in_attr[i].i == 2)
14971 out_attr[i].i = in_attr[i].i;
14972 break;
14973
14974 case Tag_MPextension_use_legacy:
14975 /* We don't output objects with Tag_MPextension_use_legacy - we
14976 move the value to Tag_MPextension_use. */
14977 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
14978 {
14979 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
14980 {
14981 _bfd_error_handler
14982 (_("%pB has both the current and legacy "
14983 "Tag_MPextension_use attributes"),
14984 ibfd);
14985 result = FALSE;
14986 }
14987 }
14988
14989 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
14990 out_attr[Tag_MPextension_use] = in_attr[i];
14991
14992 break;
14993
14994 case Tag_nodefaults:
14995 /* This tag is set if it exists, but the value is unused (and is
14996 typically zero). We don't actually need to do anything here -
14997 the merge happens automatically when the type flags are merged
14998 below. */
14999 break;
15000 case Tag_also_compatible_with:
15001 /* Already done in Tag_CPU_arch. */
15002 break;
15003 case Tag_conformance:
15004 /* Keep the attribute if it matches. Throw it away otherwise.
15005 No attribute means no claim to conform. */
15006 if (!in_attr[i].s || !out_attr[i].s
15007 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
15008 out_attr[i].s = NULL;
15009 break;
15010
15011 default:
15012 result
15013 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
15014 }
15015
15016 /* If out_attr was copied from in_attr then it won't have a type yet. */
15017 if (in_attr[i].type && !out_attr[i].type)
15018 out_attr[i].type = in_attr[i].type;
15019 }
15020
15021 /* Merge Tag_compatibility attributes and any common GNU ones. */
15022 if (!_bfd_elf_merge_object_attributes (ibfd, info))
15023 return FALSE;
15024
15025 /* Check for any attributes not known on ARM. */
15026 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
15027
15028 return result;
15029 }
15030
15031
15032 /* Return TRUE if the two EABI versions are incompatible. */
15033
15034 static bfd_boolean
15035 elf32_arm_versions_compatible (unsigned iver, unsigned over)
15036 {
15037 /* v4 and v5 are the same spec before and after it was released,
15038 so allow mixing them. */
15039 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
15040 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
15041 return TRUE;
15042
15043 return (iver == over);
15044 }
15045
15046 /* Merge backend specific data from an object file to the output
15047 object file when linking. */
15048
15049 static bfd_boolean
15050 elf32_arm_merge_private_bfd_data (bfd *, struct bfd_link_info *);
15051
15052 /* Display the flags field. */
15053
15054 static bfd_boolean
15055 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
15056 {
15057 FILE * file = (FILE *) ptr;
15058 unsigned long flags;
15059
15060 BFD_ASSERT (abfd != NULL && ptr != NULL);
15061
15062 /* Print normal ELF private data. */
15063 _bfd_elf_print_private_bfd_data (abfd, ptr);
15064
15065 flags = elf_elfheader (abfd)->e_flags;
15066 /* Ignore init flag - it may not be set, despite the flags field
15067 containing valid data. */
15068
15069 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15070
15071 switch (EF_ARM_EABI_VERSION (flags))
15072 {
15073 case EF_ARM_EABI_UNKNOWN:
15074 /* The following flag bits are GNU extensions and not part of the
15075 official ARM ELF extended ABI. Hence they are only decoded if
15076 the EABI version is not set. */
15077 if (flags & EF_ARM_INTERWORK)
15078 fprintf (file, _(" [interworking enabled]"));
15079
15080 if (flags & EF_ARM_APCS_26)
15081 fprintf (file, " [APCS-26]");
15082 else
15083 fprintf (file, " [APCS-32]");
15084
15085 if (flags & EF_ARM_VFP_FLOAT)
15086 fprintf (file, _(" [VFP float format]"));
15087 else if (flags & EF_ARM_MAVERICK_FLOAT)
15088 fprintf (file, _(" [Maverick float format]"));
15089 else
15090 fprintf (file, _(" [FPA float format]"));
15091
15092 if (flags & EF_ARM_APCS_FLOAT)
15093 fprintf (file, _(" [floats passed in float registers]"));
15094
15095 if (flags & EF_ARM_PIC)
15096 fprintf (file, _(" [position independent]"));
15097
15098 if (flags & EF_ARM_NEW_ABI)
15099 fprintf (file, _(" [new ABI]"));
15100
15101 if (flags & EF_ARM_OLD_ABI)
15102 fprintf (file, _(" [old ABI]"));
15103
15104 if (flags & EF_ARM_SOFT_FLOAT)
15105 fprintf (file, _(" [software FP]"));
15106
15107 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
15108 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
15109 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
15110 | EF_ARM_MAVERICK_FLOAT);
15111 break;
15112
15113 case EF_ARM_EABI_VER1:
15114 fprintf (file, _(" [Version1 EABI]"));
15115
15116 if (flags & EF_ARM_SYMSARESORTED)
15117 fprintf (file, _(" [sorted symbol table]"));
15118 else
15119 fprintf (file, _(" [unsorted symbol table]"));
15120
15121 flags &= ~ EF_ARM_SYMSARESORTED;
15122 break;
15123
15124 case EF_ARM_EABI_VER2:
15125 fprintf (file, _(" [Version2 EABI]"));
15126
15127 if (flags & EF_ARM_SYMSARESORTED)
15128 fprintf (file, _(" [sorted symbol table]"));
15129 else
15130 fprintf (file, _(" [unsorted symbol table]"));
15131
15132 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
15133 fprintf (file, _(" [dynamic symbols use segment index]"));
15134
15135 if (flags & EF_ARM_MAPSYMSFIRST)
15136 fprintf (file, _(" [mapping symbols precede others]"));
15137
15138 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
15139 | EF_ARM_MAPSYMSFIRST);
15140 break;
15141
15142 case EF_ARM_EABI_VER3:
15143 fprintf (file, _(" [Version3 EABI]"));
15144 break;
15145
15146 case EF_ARM_EABI_VER4:
15147 fprintf (file, _(" [Version4 EABI]"));
15148 goto eabi;
15149
15150 case EF_ARM_EABI_VER5:
15151 fprintf (file, _(" [Version5 EABI]"));
15152
15153 if (flags & EF_ARM_ABI_FLOAT_SOFT)
15154 fprintf (file, _(" [soft-float ABI]"));
15155
15156 if (flags & EF_ARM_ABI_FLOAT_HARD)
15157 fprintf (file, _(" [hard-float ABI]"));
15158
15159 flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD);
15160
15161 eabi:
15162 if (flags & EF_ARM_BE8)
15163 fprintf (file, _(" [BE8]"));
15164
15165 if (flags & EF_ARM_LE8)
15166 fprintf (file, _(" [LE8]"));
15167
15168 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
15169 break;
15170
15171 default:
15172 fprintf (file, _(" <EABI version unrecognised>"));
15173 break;
15174 }
15175
15176 flags &= ~ EF_ARM_EABIMASK;
15177
15178 if (flags & EF_ARM_RELEXEC)
15179 fprintf (file, _(" [relocatable executable]"));
15180
15181 if (flags & EF_ARM_PIC)
15182 fprintf (file, _(" [position independent]"));
15183
15184 if (elf_elfheader (abfd)->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC)
15185 fprintf (file, _(" [FDPIC ABI supplement]"));
15186
15187 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_PIC);
15188
15189 if (flags)
15190 fprintf (file, _("<Unrecognised flag bits set>"));
15191
15192 fputc ('\n', file);
15193
15194 return TRUE;
15195 }
15196
15197 static int
15198 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
15199 {
15200 switch (ELF_ST_TYPE (elf_sym->st_info))
15201 {
15202 case STT_ARM_TFUNC:
15203 return ELF_ST_TYPE (elf_sym->st_info);
15204
15205 case STT_ARM_16BIT:
15206 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
15207 This allows us to distinguish between data used by Thumb instructions
15208 and non-data (which is probably code) inside Thumb regions of an
15209 executable. */
15210 if (type != STT_OBJECT && type != STT_TLS)
15211 return ELF_ST_TYPE (elf_sym->st_info);
15212 break;
15213
15214 default:
15215 break;
15216 }
15217
15218 return type;
15219 }
15220
15221 static asection *
15222 elf32_arm_gc_mark_hook (asection *sec,
15223 struct bfd_link_info *info,
15224 Elf_Internal_Rela *rel,
15225 struct elf_link_hash_entry *h,
15226 Elf_Internal_Sym *sym)
15227 {
15228 if (h != NULL)
15229 switch (ELF32_R_TYPE (rel->r_info))
15230 {
15231 case R_ARM_GNU_VTINHERIT:
15232 case R_ARM_GNU_VTENTRY:
15233 return NULL;
15234 }
15235
15236 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
15237 }
15238
15239 /* Look through the relocs for a section during the first phase. */
15240
15241 static bfd_boolean
15242 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
15243 asection *sec, const Elf_Internal_Rela *relocs)
15244 {
15245 Elf_Internal_Shdr *symtab_hdr;
15246 struct elf_link_hash_entry **sym_hashes;
15247 const Elf_Internal_Rela *rel;
15248 const Elf_Internal_Rela *rel_end;
15249 bfd *dynobj;
15250 asection *sreloc;
15251 struct elf32_arm_link_hash_table *htab;
15252 bfd_boolean call_reloc_p;
15253 bfd_boolean may_become_dynamic_p;
15254 bfd_boolean may_need_local_target_p;
15255 unsigned long nsyms;
15256
15257 if (bfd_link_relocatable (info))
15258 return TRUE;
15259
15260 BFD_ASSERT (is_arm_elf (abfd));
15261
15262 htab = elf32_arm_hash_table (info);
15263 if (htab == NULL)
15264 return FALSE;
15265
15266 sreloc = NULL;
15267
15268 /* Create dynamic sections for relocatable executables so that we can
15269 copy relocations. */
15270 if (htab->root.is_relocatable_executable
15271 && ! htab->root.dynamic_sections_created)
15272 {
15273 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
15274 return FALSE;
15275 }
15276
15277 if (htab->root.dynobj == NULL)
15278 htab->root.dynobj = abfd;
15279 if (!create_ifunc_sections (info))
15280 return FALSE;
15281
15282 dynobj = htab->root.dynobj;
15283
15284 symtab_hdr = & elf_symtab_hdr (abfd);
15285 sym_hashes = elf_sym_hashes (abfd);
15286 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
15287
15288 rel_end = relocs + sec->reloc_count;
15289 for (rel = relocs; rel < rel_end; rel++)
15290 {
15291 Elf_Internal_Sym *isym;
15292 struct elf_link_hash_entry *h;
15293 struct elf32_arm_link_hash_entry *eh;
15294 unsigned int r_symndx;
15295 int r_type;
15296
15297 r_symndx = ELF32_R_SYM (rel->r_info);
15298 r_type = ELF32_R_TYPE (rel->r_info);
15299 r_type = arm_real_reloc_type (htab, r_type);
15300
15301 if (r_symndx >= nsyms
15302 /* PR 9934: It is possible to have relocations that do not
15303 refer to symbols, thus it is also possible to have an
15304 object file containing relocations but no symbol table. */
15305 && (r_symndx > STN_UNDEF || nsyms > 0))
15306 {
15307 _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd,
15308 r_symndx);
15309 return FALSE;
15310 }
15311
15312 h = NULL;
15313 isym = NULL;
15314 if (nsyms > 0)
15315 {
15316 if (r_symndx < symtab_hdr->sh_info)
15317 {
15318 /* A local symbol. */
15319 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
15320 abfd, r_symndx);
15321 if (isym == NULL)
15322 return FALSE;
15323 }
15324 else
15325 {
15326 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
15327 while (h->root.type == bfd_link_hash_indirect
15328 || h->root.type == bfd_link_hash_warning)
15329 h = (struct elf_link_hash_entry *) h->root.u.i.link;
15330 }
15331 }
15332
15333 eh = (struct elf32_arm_link_hash_entry *) h;
15334
15335 call_reloc_p = FALSE;
15336 may_become_dynamic_p = FALSE;
15337 may_need_local_target_p = FALSE;
15338
15339 /* Could be done earlier, if h were already available. */
15340 r_type = elf32_arm_tls_transition (info, r_type, h);
15341 switch (r_type)
15342 {
15343 case R_ARM_GOTOFFFUNCDESC:
15344 {
15345 if (h == NULL)
15346 {
15347 if (!elf32_arm_allocate_local_sym_info (abfd))
15348 return FALSE;
15349 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].gotofffuncdesc_cnt += 1;
15350 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].funcdesc_offset = -1;
15351 }
15352 else
15353 {
15354 eh->fdpic_cnts.gotofffuncdesc_cnt++;
15355 }
15356 }
15357 break;
15358
15359 case R_ARM_GOTFUNCDESC:
15360 {
15361 if (h == NULL)
15362 {
15363 /* Such a relocation is not supposed to be generated
15364 by gcc on a static function. */
15365 /* Anyway if needed it could be handled. */
15366 abort();
15367 }
15368 else
15369 {
15370 eh->fdpic_cnts.gotfuncdesc_cnt++;
15371 }
15372 }
15373 break;
15374
15375 case R_ARM_FUNCDESC:
15376 {
15377 if (h == NULL)
15378 {
15379 if (!elf32_arm_allocate_local_sym_info (abfd))
15380 return FALSE;
15381 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].funcdesc_cnt += 1;
15382 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].funcdesc_offset = -1;
15383 }
15384 else
15385 {
15386 eh->fdpic_cnts.funcdesc_cnt++;
15387 }
15388 }
15389 break;
15390
15391 case R_ARM_GOT32:
15392 case R_ARM_GOT_PREL:
15393 case R_ARM_TLS_GD32:
15394 case R_ARM_TLS_GD32_FDPIC:
15395 case R_ARM_TLS_IE32:
15396 case R_ARM_TLS_IE32_FDPIC:
15397 case R_ARM_TLS_GOTDESC:
15398 case R_ARM_TLS_DESCSEQ:
15399 case R_ARM_THM_TLS_DESCSEQ:
15400 case R_ARM_TLS_CALL:
15401 case R_ARM_THM_TLS_CALL:
15402 /* This symbol requires a global offset table entry. */
15403 {
15404 int tls_type, old_tls_type;
15405
15406 switch (r_type)
15407 {
15408 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
15409 case R_ARM_TLS_GD32_FDPIC: tls_type = GOT_TLS_GD; break;
15410
15411 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
15412 case R_ARM_TLS_IE32_FDPIC: tls_type = GOT_TLS_IE; break;
15413
15414 case R_ARM_TLS_GOTDESC:
15415 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
15416 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
15417 tls_type = GOT_TLS_GDESC; break;
15418
15419 default: tls_type = GOT_NORMAL; break;
15420 }
15421
15422 if (!bfd_link_executable (info) && (tls_type & GOT_TLS_IE))
15423 info->flags |= DF_STATIC_TLS;
15424
15425 if (h != NULL)
15426 {
15427 h->got.refcount++;
15428 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
15429 }
15430 else
15431 {
15432 /* This is a global offset table entry for a local symbol. */
15433 if (!elf32_arm_allocate_local_sym_info (abfd))
15434 return FALSE;
15435 elf_local_got_refcounts (abfd)[r_symndx] += 1;
15436 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
15437 }
15438
15439 /* If a variable is accessed with both tls methods, two
15440 slots may be created. */
15441 if (GOT_TLS_GD_ANY_P (old_tls_type)
15442 && GOT_TLS_GD_ANY_P (tls_type))
15443 tls_type |= old_tls_type;
15444
15445 /* We will already have issued an error message if there
15446 is a TLS/non-TLS mismatch, based on the symbol
15447 type. So just combine any TLS types needed. */
15448 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
15449 && tls_type != GOT_NORMAL)
15450 tls_type |= old_tls_type;
15451
15452 /* If the symbol is accessed in both IE and GDESC
15453 method, we're able to relax. Turn off the GDESC flag,
15454 without messing up with any other kind of tls types
15455 that may be involved. */
15456 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
15457 tls_type &= ~GOT_TLS_GDESC;
15458
15459 if (old_tls_type != tls_type)
15460 {
15461 if (h != NULL)
15462 elf32_arm_hash_entry (h)->tls_type = tls_type;
15463 else
15464 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
15465 }
15466 }
15467 /* Fall through. */
15468
15469 case R_ARM_TLS_LDM32:
15470 case R_ARM_TLS_LDM32_FDPIC:
15471 if (r_type == R_ARM_TLS_LDM32 || r_type == R_ARM_TLS_LDM32_FDPIC)
15472 htab->tls_ldm_got.refcount++;
15473 /* Fall through. */
15474
15475 case R_ARM_GOTOFF32:
15476 case R_ARM_GOTPC:
15477 if (htab->root.sgot == NULL
15478 && !create_got_section (htab->root.dynobj, info))
15479 return FALSE;
15480 break;
15481
15482 case R_ARM_PC24:
15483 case R_ARM_PLT32:
15484 case R_ARM_CALL:
15485 case R_ARM_JUMP24:
15486 case R_ARM_PREL31:
15487 case R_ARM_THM_CALL:
15488 case R_ARM_THM_JUMP24:
15489 case R_ARM_THM_JUMP19:
15490 call_reloc_p = TRUE;
15491 may_need_local_target_p = TRUE;
15492 break;
15493
15494 case R_ARM_ABS12:
15495 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
15496 ldr __GOTT_INDEX__ offsets. */
15497 if (htab->root.target_os != is_vxworks)
15498 {
15499 may_need_local_target_p = TRUE;
15500 break;
15501 }
15502 else goto jump_over;
15503
15504 /* Fall through. */
15505
15506 case R_ARM_MOVW_ABS_NC:
15507 case R_ARM_MOVT_ABS:
15508 case R_ARM_THM_MOVW_ABS_NC:
15509 case R_ARM_THM_MOVT_ABS:
15510 if (bfd_link_pic (info))
15511 {
15512 _bfd_error_handler
15513 (_("%pB: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
15514 abfd, elf32_arm_howto_table_1[r_type].name,
15515 (h) ? h->root.root.string : "a local symbol");
15516 bfd_set_error (bfd_error_bad_value);
15517 return FALSE;
15518 }
15519
15520 /* Fall through. */
15521 case R_ARM_ABS32:
15522 case R_ARM_ABS32_NOI:
15523 jump_over:
15524 if (h != NULL && bfd_link_executable (info))
15525 {
15526 h->pointer_equality_needed = 1;
15527 }
15528 /* Fall through. */
15529 case R_ARM_REL32:
15530 case R_ARM_REL32_NOI:
15531 case R_ARM_MOVW_PREL_NC:
15532 case R_ARM_MOVT_PREL:
15533 case R_ARM_THM_MOVW_PREL_NC:
15534 case R_ARM_THM_MOVT_PREL:
15535
15536 /* Should the interworking branches be listed here? */
15537 if ((bfd_link_pic (info) || htab->root.is_relocatable_executable
15538 || htab->fdpic_p)
15539 && (sec->flags & SEC_ALLOC) != 0)
15540 {
15541 if (h == NULL
15542 && elf32_arm_howto_from_type (r_type)->pc_relative)
15543 {
15544 /* In shared libraries and relocatable executables,
15545 we treat local relative references as calls;
15546 see the related SYMBOL_CALLS_LOCAL code in
15547 allocate_dynrelocs. */
15548 call_reloc_p = TRUE;
15549 may_need_local_target_p = TRUE;
15550 }
15551 else
15552 /* We are creating a shared library or relocatable
15553 executable, and this is a reloc against a global symbol,
15554 or a non-PC-relative reloc against a local symbol.
15555 We may need to copy the reloc into the output. */
15556 may_become_dynamic_p = TRUE;
15557 }
15558 else
15559 may_need_local_target_p = TRUE;
15560 break;
15561
15562 /* This relocation describes the C++ object vtable hierarchy.
15563 Reconstruct it for later use during GC. */
15564 case R_ARM_GNU_VTINHERIT:
15565 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
15566 return FALSE;
15567 break;
15568
15569 /* This relocation describes which C++ vtable entries are actually
15570 used. Record for later use during GC. */
15571 case R_ARM_GNU_VTENTRY:
15572 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
15573 return FALSE;
15574 break;
15575 }
15576
15577 if (h != NULL)
15578 {
15579 if (call_reloc_p)
15580 /* We may need a .plt entry if the function this reloc
15581 refers to is in a different object, regardless of the
15582 symbol's type. We can't tell for sure yet, because
15583 something later might force the symbol local. */
15584 h->needs_plt = 1;
15585 else if (may_need_local_target_p)
15586 /* If this reloc is in a read-only section, we might
15587 need a copy reloc. We can't check reliably at this
15588 stage whether the section is read-only, as input
15589 sections have not yet been mapped to output sections.
15590 Tentatively set the flag for now, and correct in
15591 adjust_dynamic_symbol. */
15592 h->non_got_ref = 1;
15593 }
15594
15595 if (may_need_local_target_p
15596 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
15597 {
15598 union gotplt_union *root_plt;
15599 struct arm_plt_info *arm_plt;
15600 struct arm_local_iplt_info *local_iplt;
15601
15602 if (h != NULL)
15603 {
15604 root_plt = &h->plt;
15605 arm_plt = &eh->plt;
15606 }
15607 else
15608 {
15609 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
15610 if (local_iplt == NULL)
15611 return FALSE;
15612 root_plt = &local_iplt->root;
15613 arm_plt = &local_iplt->arm;
15614 }
15615
15616 /* If the symbol is a function that doesn't bind locally,
15617 this relocation will need a PLT entry. */
15618 if (root_plt->refcount != -1)
15619 root_plt->refcount += 1;
15620
15621 if (!call_reloc_p)
15622 arm_plt->noncall_refcount++;
15623
15624 /* It's too early to use htab->use_blx here, so we have to
15625 record possible blx references separately from
15626 relocs that definitely need a thumb stub. */
15627
15628 if (r_type == R_ARM_THM_CALL)
15629 arm_plt->maybe_thumb_refcount += 1;
15630
15631 if (r_type == R_ARM_THM_JUMP24
15632 || r_type == R_ARM_THM_JUMP19)
15633 arm_plt->thumb_refcount += 1;
15634 }
15635
15636 if (may_become_dynamic_p)
15637 {
15638 struct elf_dyn_relocs *p, **head;
15639
15640 /* Create a reloc section in dynobj. */
15641 if (sreloc == NULL)
15642 {
15643 sreloc = _bfd_elf_make_dynamic_reloc_section
15644 (sec, dynobj, 2, abfd, ! htab->use_rel);
15645
15646 if (sreloc == NULL)
15647 return FALSE;
15648
15649 /* BPABI objects never have dynamic relocations mapped. */
15650 if (htab->root.target_os == is_symbian)
15651 {
15652 flagword flags;
15653
15654 flags = bfd_section_flags (sreloc);
15655 flags &= ~(SEC_LOAD | SEC_ALLOC);
15656 bfd_set_section_flags (sreloc, flags);
15657 }
15658 }
15659
15660 /* If this is a global symbol, count the number of
15661 relocations we need for this symbol. */
15662 if (h != NULL)
15663 head = &h->dyn_relocs;
15664 else
15665 {
15666 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
15667 if (head == NULL)
15668 return FALSE;
15669 }
15670
15671 p = *head;
15672 if (p == NULL || p->sec != sec)
15673 {
15674 size_t amt = sizeof *p;
15675
15676 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
15677 if (p == NULL)
15678 return FALSE;
15679 p->next = *head;
15680 *head = p;
15681 p->sec = sec;
15682 p->count = 0;
15683 p->pc_count = 0;
15684 }
15685
15686 if (elf32_arm_howto_from_type (r_type)->pc_relative)
15687 p->pc_count += 1;
15688 p->count += 1;
15689 if (h == NULL && htab->fdpic_p && !bfd_link_pic(info)
15690 && r_type != R_ARM_ABS32 && r_type != R_ARM_ABS32_NOI) {
15691 /* Here we only support R_ARM_ABS32 and R_ARM_ABS32_NOI
15692 that will become rofixup. */
15693 /* This is due to the fact that we suppose all will become rofixup. */
15694 fprintf(stderr, "FDPIC does not yet support %d relocation to become dynamic for executable\n", r_type);
15695 _bfd_error_handler
15696 (_("FDPIC does not yet support %s relocation"
15697 " to become dynamic for executable"),
15698 elf32_arm_howto_table_1[r_type].name);
15699 abort();
15700 }
15701 }
15702 }
15703
15704 return TRUE;
15705 }
15706
15707 static void
15708 elf32_arm_update_relocs (asection *o,
15709 struct bfd_elf_section_reloc_data *reldata)
15710 {
15711 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
15712 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
15713 const struct elf_backend_data *bed;
15714 _arm_elf_section_data *eado;
15715 struct bfd_link_order *p;
15716 bfd_byte *erela_head, *erela;
15717 Elf_Internal_Rela *irela_head, *irela;
15718 Elf_Internal_Shdr *rel_hdr;
15719 bfd *abfd;
15720 unsigned int count;
15721
15722 eado = get_arm_elf_section_data (o);
15723
15724 if (!eado || eado->elf.this_hdr.sh_type != SHT_ARM_EXIDX)
15725 return;
15726
15727 abfd = o->owner;
15728 bed = get_elf_backend_data (abfd);
15729 rel_hdr = reldata->hdr;
15730
15731 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
15732 {
15733 swap_in = bed->s->swap_reloc_in;
15734 swap_out = bed->s->swap_reloc_out;
15735 }
15736 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
15737 {
15738 swap_in = bed->s->swap_reloca_in;
15739 swap_out = bed->s->swap_reloca_out;
15740 }
15741 else
15742 abort ();
15743
15744 erela_head = rel_hdr->contents;
15745 irela_head = (Elf_Internal_Rela *) bfd_zmalloc
15746 ((NUM_SHDR_ENTRIES (rel_hdr) + 1) * sizeof (*irela_head));
15747
15748 erela = erela_head;
15749 irela = irela_head;
15750 count = 0;
15751
15752 for (p = o->map_head.link_order; p; p = p->next)
15753 {
15754 if (p->type == bfd_section_reloc_link_order
15755 || p->type == bfd_symbol_reloc_link_order)
15756 {
15757 (*swap_in) (abfd, erela, irela);
15758 erela += rel_hdr->sh_entsize;
15759 irela++;
15760 count++;
15761 }
15762 else if (p->type == bfd_indirect_link_order)
15763 {
15764 struct bfd_elf_section_reloc_data *input_reldata;
15765 arm_unwind_table_edit *edit_list, *edit_tail;
15766 _arm_elf_section_data *eadi;
15767 bfd_size_type j;
15768 bfd_vma offset;
15769 asection *i;
15770
15771 i = p->u.indirect.section;
15772
15773 eadi = get_arm_elf_section_data (i);
15774 edit_list = eadi->u.exidx.unwind_edit_list;
15775 edit_tail = eadi->u.exidx.unwind_edit_tail;
15776 offset = i->output_offset;
15777
15778 if (eadi->elf.rel.hdr &&
15779 eadi->elf.rel.hdr->sh_entsize == rel_hdr->sh_entsize)
15780 input_reldata = &eadi->elf.rel;
15781 else if (eadi->elf.rela.hdr &&
15782 eadi->elf.rela.hdr->sh_entsize == rel_hdr->sh_entsize)
15783 input_reldata = &eadi->elf.rela;
15784 else
15785 abort ();
15786
15787 if (edit_list)
15788 {
15789 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
15790 {
15791 arm_unwind_table_edit *edit_node, *edit_next;
15792 bfd_vma bias;
15793 bfd_vma reloc_index;
15794
15795 (*swap_in) (abfd, erela, irela);
15796 reloc_index = (irela->r_offset - offset) / 8;
15797
15798 bias = 0;
15799 edit_node = edit_list;
15800 for (edit_next = edit_list;
15801 edit_next && edit_next->index <= reloc_index;
15802 edit_next = edit_node->next)
15803 {
15804 bias++;
15805 edit_node = edit_next;
15806 }
15807
15808 if (edit_node->type != DELETE_EXIDX_ENTRY
15809 || edit_node->index != reloc_index)
15810 {
15811 irela->r_offset -= bias * 8;
15812 irela++;
15813 count++;
15814 }
15815
15816 erela += rel_hdr->sh_entsize;
15817 }
15818
15819 if (edit_tail->type == INSERT_EXIDX_CANTUNWIND_AT_END)
15820 {
15821 /* New relocation entity. */
15822 asection *text_sec = edit_tail->linked_section;
15823 asection *text_out = text_sec->output_section;
15824 bfd_vma exidx_offset = offset + i->size - 8;
15825
15826 irela->r_addend = 0;
15827 irela->r_offset = exidx_offset;
15828 irela->r_info = ELF32_R_INFO
15829 (text_out->target_index, R_ARM_PREL31);
15830 irela++;
15831 count++;
15832 }
15833 }
15834 else
15835 {
15836 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
15837 {
15838 (*swap_in) (abfd, erela, irela);
15839 erela += rel_hdr->sh_entsize;
15840 irela++;
15841 }
15842
15843 count += NUM_SHDR_ENTRIES (input_reldata->hdr);
15844 }
15845 }
15846 }
15847
15848 reldata->count = count;
15849 rel_hdr->sh_size = count * rel_hdr->sh_entsize;
15850
15851 erela = erela_head;
15852 irela = irela_head;
15853 while (count > 0)
15854 {
15855 (*swap_out) (abfd, irela, erela);
15856 erela += rel_hdr->sh_entsize;
15857 irela++;
15858 count--;
15859 }
15860
15861 free (irela_head);
15862
15863 /* Hashes are no longer valid. */
15864 free (reldata->hashes);
15865 reldata->hashes = NULL;
15866 }
15867
15868 /* Unwinding tables are not referenced directly. This pass marks them as
15869 required if the corresponding code section is marked. Similarly, ARMv8-M
15870 secure entry functions can only be referenced by SG veneers which are
15871 created after the GC process. They need to be marked in case they reside in
15872 their own section (as would be the case if code was compiled with
15873 -ffunction-sections). */
15874
15875 static bfd_boolean
15876 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
15877 elf_gc_mark_hook_fn gc_mark_hook)
15878 {
15879 bfd *sub;
15880 Elf_Internal_Shdr **elf_shdrp;
15881 asection *cmse_sec;
15882 obj_attribute *out_attr;
15883 Elf_Internal_Shdr *symtab_hdr;
15884 unsigned i, sym_count, ext_start;
15885 const struct elf_backend_data *bed;
15886 struct elf_link_hash_entry **sym_hashes;
15887 struct elf32_arm_link_hash_entry *cmse_hash;
15888 bfd_boolean again, is_v8m, first_bfd_browse = TRUE;
15889 bfd_boolean debug_sec_need_to_be_marked = FALSE;
15890 asection *isec;
15891
15892 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
15893
15894 out_attr = elf_known_obj_attributes_proc (info->output_bfd);
15895 is_v8m = out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
15896 && out_attr[Tag_CPU_arch_profile].i == 'M';
15897
15898 /* Marking EH data may cause additional code sections to be marked,
15899 requiring multiple passes. */
15900 again = TRUE;
15901 while (again)
15902 {
15903 again = FALSE;
15904 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
15905 {
15906 asection *o;
15907
15908 if (! is_arm_elf (sub))
15909 continue;
15910
15911 elf_shdrp = elf_elfsections (sub);
15912 for (o = sub->sections; o != NULL; o = o->next)
15913 {
15914 Elf_Internal_Shdr *hdr;
15915
15916 hdr = &elf_section_data (o)->this_hdr;
15917 if (hdr->sh_type == SHT_ARM_EXIDX
15918 && hdr->sh_link
15919 && hdr->sh_link < elf_numsections (sub)
15920 && !o->gc_mark
15921 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
15922 {
15923 again = TRUE;
15924 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
15925 return FALSE;
15926 }
15927 }
15928
15929 /* Mark section holding ARMv8-M secure entry functions. We mark all
15930 of them so no need for a second browsing. */
15931 if (is_v8m && first_bfd_browse)
15932 {
15933 sym_hashes = elf_sym_hashes (sub);
15934 bed = get_elf_backend_data (sub);
15935 symtab_hdr = &elf_tdata (sub)->symtab_hdr;
15936 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
15937 ext_start = symtab_hdr->sh_info;
15938
15939 /* Scan symbols. */
15940 for (i = ext_start; i < sym_count; i++)
15941 {
15942 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
15943
15944 /* Assume it is a special symbol. If not, cmse_scan will
15945 warn about it and user can do something about it. */
15946 if (CONST_STRNEQ (cmse_hash->root.root.root.string,
15947 CMSE_PREFIX))
15948 {
15949 cmse_sec = cmse_hash->root.root.u.def.section;
15950 if (!cmse_sec->gc_mark
15951 && !_bfd_elf_gc_mark (info, cmse_sec, gc_mark_hook))
15952 return FALSE;
15953 /* The debug sections related to these secure entry
15954 functions are marked on enabling below flag. */
15955 debug_sec_need_to_be_marked = TRUE;
15956 }
15957 }
15958
15959 if (debug_sec_need_to_be_marked)
15960 {
15961 /* Looping over all the sections of the object file containing
15962 Armv8-M secure entry functions and marking all the debug
15963 sections. */
15964 for (isec = sub->sections; isec != NULL; isec = isec->next)
15965 {
15966 /* If not a debug sections, skip it. */
15967 if (!isec->gc_mark && (isec->flags & SEC_DEBUGGING))
15968 isec->gc_mark = 1 ;
15969 }
15970 debug_sec_need_to_be_marked = FALSE;
15971 }
15972 }
15973 }
15974 first_bfd_browse = FALSE;
15975 }
15976
15977 return TRUE;
15978 }
15979
15980 /* Treat mapping symbols as special target symbols. */
15981
15982 static bfd_boolean
15983 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
15984 {
15985 return bfd_is_arm_special_symbol_name (sym->name,
15986 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
15987 }
15988
15989 /* If the ELF symbol SYM might be a function in SEC, return the
15990 function size and set *CODE_OFF to the function's entry point,
15991 otherwise return zero. */
15992
15993 static bfd_size_type
15994 elf32_arm_maybe_function_sym (const asymbol *sym, asection *sec,
15995 bfd_vma *code_off)
15996 {
15997 bfd_size_type size;
15998
15999 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
16000 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
16001 || sym->section != sec)
16002 return 0;
16003
16004 if (!(sym->flags & BSF_SYNTHETIC))
16005 switch (ELF_ST_TYPE (((elf_symbol_type *) sym)->internal_elf_sym.st_info))
16006 {
16007 case STT_FUNC:
16008 case STT_ARM_TFUNC:
16009 case STT_NOTYPE:
16010 break;
16011 default:
16012 return 0;
16013 }
16014
16015 if ((sym->flags & BSF_LOCAL)
16016 && bfd_is_arm_special_symbol_name (sym->name,
16017 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
16018 return 0;
16019
16020 *code_off = sym->value;
16021 size = 0;
16022 if (!(sym->flags & BSF_SYNTHETIC))
16023 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
16024 if (size == 0)
16025 size = 1;
16026 return size;
16027 }
16028
16029 static bfd_boolean
16030 elf32_arm_find_inliner_info (bfd * abfd,
16031 const char ** filename_ptr,
16032 const char ** functionname_ptr,
16033 unsigned int * line_ptr)
16034 {
16035 bfd_boolean found;
16036 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
16037 functionname_ptr, line_ptr,
16038 & elf_tdata (abfd)->dwarf2_find_line_info);
16039 return found;
16040 }
16041
16042 /* Adjust a symbol defined by a dynamic object and referenced by a
16043 regular object. The current definition is in some section of the
16044 dynamic object, but we're not including those sections. We have to
16045 change the definition to something the rest of the link can
16046 understand. */
16047
16048 static bfd_boolean
16049 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
16050 struct elf_link_hash_entry * h)
16051 {
16052 bfd * dynobj;
16053 asection *s, *srel;
16054 struct elf32_arm_link_hash_entry * eh;
16055 struct elf32_arm_link_hash_table *globals;
16056
16057 globals = elf32_arm_hash_table (info);
16058 if (globals == NULL)
16059 return FALSE;
16060
16061 dynobj = elf_hash_table (info)->dynobj;
16062
16063 /* Make sure we know what is going on here. */
16064 BFD_ASSERT (dynobj != NULL
16065 && (h->needs_plt
16066 || h->type == STT_GNU_IFUNC
16067 || h->is_weakalias
16068 || (h->def_dynamic
16069 && h->ref_regular
16070 && !h->def_regular)));
16071
16072 eh = (struct elf32_arm_link_hash_entry *) h;
16073
16074 /* If this is a function, put it in the procedure linkage table. We
16075 will fill in the contents of the procedure linkage table later,
16076 when we know the address of the .got section. */
16077 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
16078 {
16079 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
16080 symbol binds locally. */
16081 if (h->plt.refcount <= 0
16082 || (h->type != STT_GNU_IFUNC
16083 && (SYMBOL_CALLS_LOCAL (info, h)
16084 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
16085 && h->root.type == bfd_link_hash_undefweak))))
16086 {
16087 /* This case can occur if we saw a PLT32 reloc in an input
16088 file, but the symbol was never referred to by a dynamic
16089 object, or if all references were garbage collected. In
16090 such a case, we don't actually need to build a procedure
16091 linkage table, and we can just do a PC24 reloc instead. */
16092 h->plt.offset = (bfd_vma) -1;
16093 eh->plt.thumb_refcount = 0;
16094 eh->plt.maybe_thumb_refcount = 0;
16095 eh->plt.noncall_refcount = 0;
16096 h->needs_plt = 0;
16097 }
16098
16099 return TRUE;
16100 }
16101 else
16102 {
16103 /* It's possible that we incorrectly decided a .plt reloc was
16104 needed for an R_ARM_PC24 or similar reloc to a non-function sym
16105 in check_relocs. We can't decide accurately between function
16106 and non-function syms in check-relocs; Objects loaded later in
16107 the link may change h->type. So fix it now. */
16108 h->plt.offset = (bfd_vma) -1;
16109 eh->plt.thumb_refcount = 0;
16110 eh->plt.maybe_thumb_refcount = 0;
16111 eh->plt.noncall_refcount = 0;
16112 }
16113
16114 /* If this is a weak symbol, and there is a real definition, the
16115 processor independent code will have arranged for us to see the
16116 real definition first, and we can just use the same value. */
16117 if (h->is_weakalias)
16118 {
16119 struct elf_link_hash_entry *def = weakdef (h);
16120 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
16121 h->root.u.def.section = def->root.u.def.section;
16122 h->root.u.def.value = def->root.u.def.value;
16123 return TRUE;
16124 }
16125
16126 /* If there are no non-GOT references, we do not need a copy
16127 relocation. */
16128 if (!h->non_got_ref)
16129 return TRUE;
16130
16131 /* This is a reference to a symbol defined by a dynamic object which
16132 is not a function. */
16133
16134 /* If we are creating a shared library, we must presume that the
16135 only references to the symbol are via the global offset table.
16136 For such cases we need not do anything here; the relocations will
16137 be handled correctly by relocate_section. Relocatable executables
16138 can reference data in shared objects directly, so we don't need to
16139 do anything here. */
16140 if (bfd_link_pic (info) || globals->root.is_relocatable_executable)
16141 return TRUE;
16142
16143 /* We must allocate the symbol in our .dynbss section, which will
16144 become part of the .bss section of the executable. There will be
16145 an entry for this symbol in the .dynsym section. The dynamic
16146 object will contain position independent code, so all references
16147 from the dynamic object to this symbol will go through the global
16148 offset table. The dynamic linker will use the .dynsym entry to
16149 determine the address it must put in the global offset table, so
16150 both the dynamic object and the regular object will refer to the
16151 same memory location for the variable. */
16152 /* If allowed, we must generate a R_ARM_COPY reloc to tell the dynamic
16153 linker to copy the initial value out of the dynamic object and into
16154 the runtime process image. We need to remember the offset into the
16155 .rel(a).bss section we are going to use. */
16156 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
16157 {
16158 s = globals->root.sdynrelro;
16159 srel = globals->root.sreldynrelro;
16160 }
16161 else
16162 {
16163 s = globals->root.sdynbss;
16164 srel = globals->root.srelbss;
16165 }
16166 if (info->nocopyreloc == 0
16167 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
16168 && h->size != 0)
16169 {
16170 elf32_arm_allocate_dynrelocs (info, srel, 1);
16171 h->needs_copy = 1;
16172 }
16173
16174 return _bfd_elf_adjust_dynamic_copy (info, h, s);
16175 }
16176
16177 /* Allocate space in .plt, .got and associated reloc sections for
16178 dynamic relocs. */
16179
16180 static bfd_boolean
16181 allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
16182 {
16183 struct bfd_link_info *info;
16184 struct elf32_arm_link_hash_table *htab;
16185 struct elf32_arm_link_hash_entry *eh;
16186 struct elf_dyn_relocs *p;
16187
16188 if (h->root.type == bfd_link_hash_indirect)
16189 return TRUE;
16190
16191 eh = (struct elf32_arm_link_hash_entry *) h;
16192
16193 info = (struct bfd_link_info *) inf;
16194 htab = elf32_arm_hash_table (info);
16195 if (htab == NULL)
16196 return FALSE;
16197
16198 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
16199 && h->plt.refcount > 0)
16200 {
16201 /* Make sure this symbol is output as a dynamic symbol.
16202 Undefined weak syms won't yet be marked as dynamic. */
16203 if (h->dynindx == -1 && !h->forced_local
16204 && h->root.type == bfd_link_hash_undefweak)
16205 {
16206 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16207 return FALSE;
16208 }
16209
16210 /* If the call in the PLT entry binds locally, the associated
16211 GOT entry should use an R_ARM_IRELATIVE relocation instead of
16212 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
16213 than the .plt section. */
16214 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
16215 {
16216 eh->is_iplt = 1;
16217 if (eh->plt.noncall_refcount == 0
16218 && SYMBOL_REFERENCES_LOCAL (info, h))
16219 /* All non-call references can be resolved directly.
16220 This means that they can (and in some cases, must)
16221 resolve directly to the run-time target, rather than
16222 to the PLT. That in turns means that any .got entry
16223 would be equal to the .igot.plt entry, so there's
16224 no point having both. */
16225 h->got.refcount = 0;
16226 }
16227
16228 if (bfd_link_pic (info)
16229 || eh->is_iplt
16230 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
16231 {
16232 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
16233
16234 /* If this symbol is not defined in a regular file, and we are
16235 not generating a shared library, then set the symbol to this
16236 location in the .plt. This is required to make function
16237 pointers compare as equal between the normal executable and
16238 the shared library. */
16239 if (! bfd_link_pic (info)
16240 && !h->def_regular)
16241 {
16242 h->root.u.def.section = htab->root.splt;
16243 h->root.u.def.value = h->plt.offset;
16244
16245 /* Make sure the function is not marked as Thumb, in case
16246 it is the target of an ABS32 relocation, which will
16247 point to the PLT entry. */
16248 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
16249 }
16250
16251 /* VxWorks executables have a second set of relocations for
16252 each PLT entry. They go in a separate relocation section,
16253 which is processed by the kernel loader. */
16254 if (htab->root.target_os == is_vxworks && !bfd_link_pic (info))
16255 {
16256 /* There is a relocation for the initial PLT entry:
16257 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
16258 if (h->plt.offset == htab->plt_header_size)
16259 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
16260
16261 /* There are two extra relocations for each subsequent
16262 PLT entry: an R_ARM_32 relocation for the GOT entry,
16263 and an R_ARM_32 relocation for the PLT entry. */
16264 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
16265 }
16266 }
16267 else
16268 {
16269 h->plt.offset = (bfd_vma) -1;
16270 h->needs_plt = 0;
16271 }
16272 }
16273 else
16274 {
16275 h->plt.offset = (bfd_vma) -1;
16276 h->needs_plt = 0;
16277 }
16278
16279 eh = (struct elf32_arm_link_hash_entry *) h;
16280 eh->tlsdesc_got = (bfd_vma) -1;
16281
16282 if (h->got.refcount > 0)
16283 {
16284 asection *s;
16285 bfd_boolean dyn;
16286 int tls_type = elf32_arm_hash_entry (h)->tls_type;
16287 int indx;
16288
16289 /* Make sure this symbol is output as a dynamic symbol.
16290 Undefined weak syms won't yet be marked as dynamic. */
16291 if (htab->root.dynamic_sections_created && h->dynindx == -1 && !h->forced_local
16292 && h->root.type == bfd_link_hash_undefweak)
16293 {
16294 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16295 return FALSE;
16296 }
16297
16298 if (htab->root.target_os != is_symbian)
16299 {
16300 s = htab->root.sgot;
16301 h->got.offset = s->size;
16302
16303 if (tls_type == GOT_UNKNOWN)
16304 abort ();
16305
16306 if (tls_type == GOT_NORMAL)
16307 /* Non-TLS symbols need one GOT slot. */
16308 s->size += 4;
16309 else
16310 {
16311 if (tls_type & GOT_TLS_GDESC)
16312 {
16313 /* R_ARM_TLS_DESC needs 2 GOT slots. */
16314 eh->tlsdesc_got
16315 = (htab->root.sgotplt->size
16316 - elf32_arm_compute_jump_table_size (htab));
16317 htab->root.sgotplt->size += 8;
16318 h->got.offset = (bfd_vma) -2;
16319 /* plt.got_offset needs to know there's a TLS_DESC
16320 reloc in the middle of .got.plt. */
16321 htab->num_tls_desc++;
16322 }
16323
16324 if (tls_type & GOT_TLS_GD)
16325 {
16326 /* R_ARM_TLS_GD32 and R_ARM_TLS_GD32_FDPIC need two
16327 consecutive GOT slots. If the symbol is both GD
16328 and GDESC, got.offset may have been
16329 overwritten. */
16330 h->got.offset = s->size;
16331 s->size += 8;
16332 }
16333
16334 if (tls_type & GOT_TLS_IE)
16335 /* R_ARM_TLS_IE32/R_ARM_TLS_IE32_FDPIC need one GOT
16336 slot. */
16337 s->size += 4;
16338 }
16339
16340 dyn = htab->root.dynamic_sections_created;
16341
16342 indx = 0;
16343 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
16344 bfd_link_pic (info),
16345 h)
16346 && (!bfd_link_pic (info)
16347 || !SYMBOL_REFERENCES_LOCAL (info, h)))
16348 indx = h->dynindx;
16349
16350 if (tls_type != GOT_NORMAL
16351 && (bfd_link_dll (info) || indx != 0)
16352 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
16353 || h->root.type != bfd_link_hash_undefweak))
16354 {
16355 if (tls_type & GOT_TLS_IE)
16356 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16357
16358 if (tls_type & GOT_TLS_GD)
16359 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16360
16361 if (tls_type & GOT_TLS_GDESC)
16362 {
16363 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
16364 /* GDESC needs a trampoline to jump to. */
16365 htab->tls_trampoline = -1;
16366 }
16367
16368 /* Only GD needs it. GDESC just emits one relocation per
16369 2 entries. */
16370 if ((tls_type & GOT_TLS_GD) && indx != 0)
16371 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16372 }
16373 else if (((indx != -1) || htab->fdpic_p)
16374 && !SYMBOL_REFERENCES_LOCAL (info, h))
16375 {
16376 if (htab->root.dynamic_sections_created)
16377 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
16378 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16379 }
16380 else if (h->type == STT_GNU_IFUNC
16381 && eh->plt.noncall_refcount == 0)
16382 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
16383 they all resolve dynamically instead. Reserve room for the
16384 GOT entry's R_ARM_IRELATIVE relocation. */
16385 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
16386 else if (bfd_link_pic (info)
16387 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
16388 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
16389 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16390 else if (htab->fdpic_p && tls_type == GOT_NORMAL)
16391 /* Reserve room for rofixup for FDPIC executable. */
16392 /* TLS relocs do not need space since they are completely
16393 resolved. */
16394 htab->srofixup->size += 4;
16395 }
16396 }
16397 else
16398 h->got.offset = (bfd_vma) -1;
16399
16400 /* FDPIC support. */
16401 if (eh->fdpic_cnts.gotofffuncdesc_cnt > 0)
16402 {
16403 /* Symbol musn't be exported. */
16404 if (h->dynindx != -1)
16405 abort();
16406
16407 /* We only allocate one function descriptor with its associated relocation. */
16408 if (eh->fdpic_cnts.funcdesc_offset == -1)
16409 {
16410 asection *s = htab->root.sgot;
16411
16412 eh->fdpic_cnts.funcdesc_offset = s->size;
16413 s->size += 8;
16414 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16415 if (bfd_link_pic(info))
16416 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16417 else
16418 htab->srofixup->size += 8;
16419 }
16420 }
16421
16422 if (eh->fdpic_cnts.gotfuncdesc_cnt > 0)
16423 {
16424 asection *s = htab->root.sgot;
16425
16426 if (htab->root.dynamic_sections_created && h->dynindx == -1
16427 && !h->forced_local)
16428 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16429 return FALSE;
16430
16431 if (h->dynindx == -1)
16432 {
16433 /* We only allocate one function descriptor with its associated relocation. q */
16434 if (eh->fdpic_cnts.funcdesc_offset == -1)
16435 {
16436
16437 eh->fdpic_cnts.funcdesc_offset = s->size;
16438 s->size += 8;
16439 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16440 if (bfd_link_pic(info))
16441 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16442 else
16443 htab->srofixup->size += 8;
16444 }
16445 }
16446
16447 /* Add one entry into the GOT and a R_ARM_FUNCDESC or
16448 R_ARM_RELATIVE/rofixup relocation on it. */
16449 eh->fdpic_cnts.gotfuncdesc_offset = s->size;
16450 s->size += 4;
16451 if (h->dynindx == -1 && !bfd_link_pic(info))
16452 htab->srofixup->size += 4;
16453 else
16454 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16455 }
16456
16457 if (eh->fdpic_cnts.funcdesc_cnt > 0)
16458 {
16459 if (htab->root.dynamic_sections_created && h->dynindx == -1
16460 && !h->forced_local)
16461 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16462 return FALSE;
16463
16464 if (h->dynindx == -1)
16465 {
16466 /* We only allocate one function descriptor with its associated relocation. */
16467 if (eh->fdpic_cnts.funcdesc_offset == -1)
16468 {
16469 asection *s = htab->root.sgot;
16470
16471 eh->fdpic_cnts.funcdesc_offset = s->size;
16472 s->size += 8;
16473 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16474 if (bfd_link_pic(info))
16475 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16476 else
16477 htab->srofixup->size += 8;
16478 }
16479 }
16480 if (h->dynindx == -1 && !bfd_link_pic(info))
16481 {
16482 /* For FDPIC executable we replace R_ARM_RELATIVE with a rofixup. */
16483 htab->srofixup->size += 4 * eh->fdpic_cnts.funcdesc_cnt;
16484 }
16485 else
16486 {
16487 /* Will need one dynamic reloc per reference. will be either
16488 R_ARM_FUNCDESC or R_ARM_RELATIVE for hidden symbols. */
16489 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot,
16490 eh->fdpic_cnts.funcdesc_cnt);
16491 }
16492 }
16493
16494 /* Allocate stubs for exported Thumb functions on v4t. */
16495 if (!htab->use_blx && h->dynindx != -1
16496 && h->def_regular
16497 && ARM_GET_SYM_BRANCH_TYPE (h->target_internal) == ST_BRANCH_TO_THUMB
16498 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
16499 {
16500 struct elf_link_hash_entry * th;
16501 struct bfd_link_hash_entry * bh;
16502 struct elf_link_hash_entry * myh;
16503 char name[1024];
16504 asection *s;
16505 bh = NULL;
16506 /* Create a new symbol to regist the real location of the function. */
16507 s = h->root.u.def.section;
16508 sprintf (name, "__real_%s", h->root.root.string);
16509 _bfd_generic_link_add_one_symbol (info, s->owner,
16510 name, BSF_GLOBAL, s,
16511 h->root.u.def.value,
16512 NULL, TRUE, FALSE, &bh);
16513
16514 myh = (struct elf_link_hash_entry *) bh;
16515 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
16516 myh->forced_local = 1;
16517 ARM_SET_SYM_BRANCH_TYPE (myh->target_internal, ST_BRANCH_TO_THUMB);
16518 eh->export_glue = myh;
16519 th = record_arm_to_thumb_glue (info, h);
16520 /* Point the symbol at the stub. */
16521 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
16522 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
16523 h->root.u.def.section = th->root.u.def.section;
16524 h->root.u.def.value = th->root.u.def.value & ~1;
16525 }
16526
16527 if (h->dyn_relocs == NULL)
16528 return TRUE;
16529
16530 /* In the shared -Bsymbolic case, discard space allocated for
16531 dynamic pc-relative relocs against symbols which turn out to be
16532 defined in regular objects. For the normal shared case, discard
16533 space for pc-relative relocs that have become local due to symbol
16534 visibility changes. */
16535
16536 if (bfd_link_pic (info) || htab->root.is_relocatable_executable || htab->fdpic_p)
16537 {
16538 /* Relocs that use pc_count are PC-relative forms, which will appear
16539 on something like ".long foo - ." or "movw REG, foo - .". We want
16540 calls to protected symbols to resolve directly to the function
16541 rather than going via the plt. If people want function pointer
16542 comparisons to work as expected then they should avoid writing
16543 assembly like ".long foo - .". */
16544 if (SYMBOL_CALLS_LOCAL (info, h))
16545 {
16546 struct elf_dyn_relocs **pp;
16547
16548 for (pp = &h->dyn_relocs; (p = *pp) != NULL; )
16549 {
16550 p->count -= p->pc_count;
16551 p->pc_count = 0;
16552 if (p->count == 0)
16553 *pp = p->next;
16554 else
16555 pp = &p->next;
16556 }
16557 }
16558
16559 if (htab->root.target_os == is_vxworks)
16560 {
16561 struct elf_dyn_relocs **pp;
16562
16563 for (pp = &h->dyn_relocs; (p = *pp) != NULL; )
16564 {
16565 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
16566 *pp = p->next;
16567 else
16568 pp = &p->next;
16569 }
16570 }
16571
16572 /* Also discard relocs on undefined weak syms with non-default
16573 visibility. */
16574 if (h->dyn_relocs != NULL
16575 && h->root.type == bfd_link_hash_undefweak)
16576 {
16577 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
16578 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
16579 h->dyn_relocs = NULL;
16580
16581 /* Make sure undefined weak symbols are output as a dynamic
16582 symbol in PIEs. */
16583 else if (htab->root.dynamic_sections_created && h->dynindx == -1
16584 && !h->forced_local)
16585 {
16586 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16587 return FALSE;
16588 }
16589 }
16590
16591 else if (htab->root.is_relocatable_executable && h->dynindx == -1
16592 && h->root.type == bfd_link_hash_new)
16593 {
16594 /* Output absolute symbols so that we can create relocations
16595 against them. For normal symbols we output a relocation
16596 against the section that contains them. */
16597 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16598 return FALSE;
16599 }
16600
16601 }
16602 else
16603 {
16604 /* For the non-shared case, discard space for relocs against
16605 symbols which turn out to need copy relocs or are not
16606 dynamic. */
16607
16608 if (!h->non_got_ref
16609 && ((h->def_dynamic
16610 && !h->def_regular)
16611 || (htab->root.dynamic_sections_created
16612 && (h->root.type == bfd_link_hash_undefweak
16613 || h->root.type == bfd_link_hash_undefined))))
16614 {
16615 /* Make sure this symbol is output as a dynamic symbol.
16616 Undefined weak syms won't yet be marked as dynamic. */
16617 if (h->dynindx == -1 && !h->forced_local
16618 && h->root.type == bfd_link_hash_undefweak)
16619 {
16620 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16621 return FALSE;
16622 }
16623
16624 /* If that succeeded, we know we'll be keeping all the
16625 relocs. */
16626 if (h->dynindx != -1)
16627 goto keep;
16628 }
16629
16630 h->dyn_relocs = NULL;
16631
16632 keep: ;
16633 }
16634
16635 /* Finally, allocate space. */
16636 for (p = h->dyn_relocs; p != NULL; p = p->next)
16637 {
16638 asection *sreloc = elf_section_data (p->sec)->sreloc;
16639
16640 if (h->type == STT_GNU_IFUNC
16641 && eh->plt.noncall_refcount == 0
16642 && SYMBOL_REFERENCES_LOCAL (info, h))
16643 elf32_arm_allocate_irelocs (info, sreloc, p->count);
16644 else if (h->dynindx != -1 && (!bfd_link_pic(info) || !info->symbolic || !h->def_regular))
16645 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
16646 else if (htab->fdpic_p && !bfd_link_pic(info))
16647 htab->srofixup->size += 4 * p->count;
16648 else
16649 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
16650 }
16651
16652 return TRUE;
16653 }
16654
16655 void
16656 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
16657 int byteswap_code)
16658 {
16659 struct elf32_arm_link_hash_table *globals;
16660
16661 globals = elf32_arm_hash_table (info);
16662 if (globals == NULL)
16663 return;
16664
16665 globals->byteswap_code = byteswap_code;
16666 }
16667
16668 /* Set the sizes of the dynamic sections. */
16669
16670 static bfd_boolean
16671 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
16672 struct bfd_link_info * info)
16673 {
16674 bfd * dynobj;
16675 asection * s;
16676 bfd_boolean relocs;
16677 bfd *ibfd;
16678 struct elf32_arm_link_hash_table *htab;
16679
16680 htab = elf32_arm_hash_table (info);
16681 if (htab == NULL)
16682 return FALSE;
16683
16684 dynobj = elf_hash_table (info)->dynobj;
16685 BFD_ASSERT (dynobj != NULL);
16686 check_use_blx (htab);
16687
16688 if (elf_hash_table (info)->dynamic_sections_created)
16689 {
16690 /* Set the contents of the .interp section to the interpreter. */
16691 if (bfd_link_executable (info) && !info->nointerp)
16692 {
16693 s = bfd_get_linker_section (dynobj, ".interp");
16694 BFD_ASSERT (s != NULL);
16695 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
16696 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
16697 }
16698 }
16699
16700 /* Set up .got offsets for local syms, and space for local dynamic
16701 relocs. */
16702 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
16703 {
16704 bfd_signed_vma *local_got;
16705 bfd_signed_vma *end_local_got;
16706 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
16707 char *local_tls_type;
16708 bfd_vma *local_tlsdesc_gotent;
16709 bfd_size_type locsymcount;
16710 Elf_Internal_Shdr *symtab_hdr;
16711 asection *srel;
16712 unsigned int symndx;
16713 struct fdpic_local *local_fdpic_cnts;
16714
16715 if (! is_arm_elf (ibfd))
16716 continue;
16717
16718 for (s = ibfd->sections; s != NULL; s = s->next)
16719 {
16720 struct elf_dyn_relocs *p;
16721
16722 for (p = (struct elf_dyn_relocs *)
16723 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
16724 {
16725 if (!bfd_is_abs_section (p->sec)
16726 && bfd_is_abs_section (p->sec->output_section))
16727 {
16728 /* Input section has been discarded, either because
16729 it is a copy of a linkonce section or due to
16730 linker script /DISCARD/, so we'll be discarding
16731 the relocs too. */
16732 }
16733 else if (htab->root.target_os == is_vxworks
16734 && strcmp (p->sec->output_section->name,
16735 ".tls_vars") == 0)
16736 {
16737 /* Relocations in vxworks .tls_vars sections are
16738 handled specially by the loader. */
16739 }
16740 else if (p->count != 0)
16741 {
16742 srel = elf_section_data (p->sec)->sreloc;
16743 if (htab->fdpic_p && !bfd_link_pic(info))
16744 htab->srofixup->size += 4 * p->count;
16745 else
16746 elf32_arm_allocate_dynrelocs (info, srel, p->count);
16747 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
16748 info->flags |= DF_TEXTREL;
16749 }
16750 }
16751 }
16752
16753 local_got = elf_local_got_refcounts (ibfd);
16754 if (!local_got)
16755 continue;
16756
16757 symtab_hdr = & elf_symtab_hdr (ibfd);
16758 locsymcount = symtab_hdr->sh_info;
16759 end_local_got = local_got + locsymcount;
16760 local_iplt_ptr = elf32_arm_local_iplt (ibfd);
16761 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
16762 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
16763 local_fdpic_cnts = elf32_arm_local_fdpic_cnts (ibfd);
16764 symndx = 0;
16765 s = htab->root.sgot;
16766 srel = htab->root.srelgot;
16767 for (; local_got < end_local_got;
16768 ++local_got, ++local_iplt_ptr, ++local_tls_type,
16769 ++local_tlsdesc_gotent, ++symndx, ++local_fdpic_cnts)
16770 {
16771 *local_tlsdesc_gotent = (bfd_vma) -1;
16772 local_iplt = *local_iplt_ptr;
16773
16774 /* FDPIC support. */
16775 if (local_fdpic_cnts->gotofffuncdesc_cnt > 0)
16776 {
16777 if (local_fdpic_cnts->funcdesc_offset == -1)
16778 {
16779 local_fdpic_cnts->funcdesc_offset = s->size;
16780 s->size += 8;
16781
16782 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16783 if (bfd_link_pic(info))
16784 elf32_arm_allocate_dynrelocs (info, srel, 1);
16785 else
16786 htab->srofixup->size += 8;
16787 }
16788 }
16789
16790 if (local_fdpic_cnts->funcdesc_cnt > 0)
16791 {
16792 if (local_fdpic_cnts->funcdesc_offset == -1)
16793 {
16794 local_fdpic_cnts->funcdesc_offset = s->size;
16795 s->size += 8;
16796
16797 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16798 if (bfd_link_pic(info))
16799 elf32_arm_allocate_dynrelocs (info, srel, 1);
16800 else
16801 htab->srofixup->size += 8;
16802 }
16803
16804 /* We will add n R_ARM_RELATIVE relocations or n rofixups. */
16805 if (bfd_link_pic(info))
16806 elf32_arm_allocate_dynrelocs (info, srel, local_fdpic_cnts->funcdesc_cnt);
16807 else
16808 htab->srofixup->size += 4 * local_fdpic_cnts->funcdesc_cnt;
16809 }
16810
16811 if (local_iplt != NULL)
16812 {
16813 struct elf_dyn_relocs *p;
16814
16815 if (local_iplt->root.refcount > 0)
16816 {
16817 elf32_arm_allocate_plt_entry (info, TRUE,
16818 &local_iplt->root,
16819 &local_iplt->arm);
16820 if (local_iplt->arm.noncall_refcount == 0)
16821 /* All references to the PLT are calls, so all
16822 non-call references can resolve directly to the
16823 run-time target. This means that the .got entry
16824 would be the same as the .igot.plt entry, so there's
16825 no point creating both. */
16826 *local_got = 0;
16827 }
16828 else
16829 {
16830 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
16831 local_iplt->root.offset = (bfd_vma) -1;
16832 }
16833
16834 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
16835 {
16836 asection *psrel;
16837
16838 psrel = elf_section_data (p->sec)->sreloc;
16839 if (local_iplt->arm.noncall_refcount == 0)
16840 elf32_arm_allocate_irelocs (info, psrel, p->count);
16841 else
16842 elf32_arm_allocate_dynrelocs (info, psrel, p->count);
16843 }
16844 }
16845 if (*local_got > 0)
16846 {
16847 Elf_Internal_Sym *isym;
16848
16849 *local_got = s->size;
16850 if (*local_tls_type & GOT_TLS_GD)
16851 /* TLS_GD relocs need an 8-byte structure in the GOT. */
16852 s->size += 8;
16853 if (*local_tls_type & GOT_TLS_GDESC)
16854 {
16855 *local_tlsdesc_gotent = htab->root.sgotplt->size
16856 - elf32_arm_compute_jump_table_size (htab);
16857 htab->root.sgotplt->size += 8;
16858 *local_got = (bfd_vma) -2;
16859 /* plt.got_offset needs to know there's a TLS_DESC
16860 reloc in the middle of .got.plt. */
16861 htab->num_tls_desc++;
16862 }
16863 if (*local_tls_type & GOT_TLS_IE)
16864 s->size += 4;
16865
16866 if (*local_tls_type & GOT_NORMAL)
16867 {
16868 /* If the symbol is both GD and GDESC, *local_got
16869 may have been overwritten. */
16870 *local_got = s->size;
16871 s->size += 4;
16872 }
16873
16874 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
16875 if (isym == NULL)
16876 return FALSE;
16877
16878 /* If all references to an STT_GNU_IFUNC PLT are calls,
16879 then all non-call references, including this GOT entry,
16880 resolve directly to the run-time target. */
16881 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
16882 && (local_iplt == NULL
16883 || local_iplt->arm.noncall_refcount == 0))
16884 elf32_arm_allocate_irelocs (info, srel, 1);
16885 else if (bfd_link_pic (info) || output_bfd->flags & DYNAMIC || htab->fdpic_p)
16886 {
16887 if ((bfd_link_pic (info) && !(*local_tls_type & GOT_TLS_GDESC)))
16888 elf32_arm_allocate_dynrelocs (info, srel, 1);
16889 else if (htab->fdpic_p && *local_tls_type & GOT_NORMAL)
16890 htab->srofixup->size += 4;
16891
16892 if ((bfd_link_pic (info) || htab->fdpic_p)
16893 && *local_tls_type & GOT_TLS_GDESC)
16894 {
16895 elf32_arm_allocate_dynrelocs (info,
16896 htab->root.srelplt, 1);
16897 htab->tls_trampoline = -1;
16898 }
16899 }
16900 }
16901 else
16902 *local_got = (bfd_vma) -1;
16903 }
16904 }
16905
16906 if (htab->tls_ldm_got.refcount > 0)
16907 {
16908 /* Allocate two GOT entries and one dynamic relocation (if necessary)
16909 for R_ARM_TLS_LDM32/R_ARM_TLS_LDM32_FDPIC relocations. */
16910 htab->tls_ldm_got.offset = htab->root.sgot->size;
16911 htab->root.sgot->size += 8;
16912 if (bfd_link_pic (info))
16913 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16914 }
16915 else
16916 htab->tls_ldm_got.offset = -1;
16917
16918 /* At the very end of the .rofixup section is a pointer to the GOT,
16919 reserve space for it. */
16920 if (htab->fdpic_p && htab->srofixup != NULL)
16921 htab->srofixup->size += 4;
16922
16923 /* Allocate global sym .plt and .got entries, and space for global
16924 sym dynamic relocs. */
16925 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
16926
16927 /* Here we rummage through the found bfds to collect glue information. */
16928 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
16929 {
16930 if (! is_arm_elf (ibfd))
16931 continue;
16932
16933 /* Initialise mapping tables for code/data. */
16934 bfd_elf32_arm_init_maps (ibfd);
16935
16936 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
16937 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info)
16938 || !bfd_elf32_arm_stm32l4xx_erratum_scan (ibfd, info))
16939 _bfd_error_handler (_("errors encountered processing file %pB"), ibfd);
16940 }
16941
16942 /* Allocate space for the glue sections now that we've sized them. */
16943 bfd_elf32_arm_allocate_interworking_sections (info);
16944
16945 /* For every jump slot reserved in the sgotplt, reloc_count is
16946 incremented. However, when we reserve space for TLS descriptors,
16947 it's not incremented, so in order to compute the space reserved
16948 for them, it suffices to multiply the reloc count by the jump
16949 slot size. */
16950 if (htab->root.srelplt)
16951 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
16952
16953 if (htab->tls_trampoline)
16954 {
16955 if (htab->root.splt->size == 0)
16956 htab->root.splt->size += htab->plt_header_size;
16957
16958 htab->tls_trampoline = htab->root.splt->size;
16959 htab->root.splt->size += htab->plt_entry_size;
16960
16961 /* If we're not using lazy TLS relocations, don't generate the
16962 PLT and GOT entries they require. */
16963 if ((info->flags & DF_BIND_NOW))
16964 htab->root.tlsdesc_plt = 0;
16965 else
16966 {
16967 htab->root.tlsdesc_got = htab->root.sgot->size;
16968 htab->root.sgot->size += 4;
16969
16970 htab->root.tlsdesc_plt = htab->root.splt->size;
16971 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
16972 }
16973 }
16974
16975 /* The check_relocs and adjust_dynamic_symbol entry points have
16976 determined the sizes of the various dynamic sections. Allocate
16977 memory for them. */
16978 relocs = FALSE;
16979 for (s = dynobj->sections; s != NULL; s = s->next)
16980 {
16981 const char * name;
16982
16983 if ((s->flags & SEC_LINKER_CREATED) == 0)
16984 continue;
16985
16986 /* It's OK to base decisions on the section name, because none
16987 of the dynobj section names depend upon the input files. */
16988 name = bfd_section_name (s);
16989
16990 if (s == htab->root.splt)
16991 {
16992 /* Remember whether there is a PLT. */
16993 ;
16994 }
16995 else if (CONST_STRNEQ (name, ".rel"))
16996 {
16997 if (s->size != 0)
16998 {
16999 /* Remember whether there are any reloc sections other
17000 than .rel(a).plt and .rela.plt.unloaded. */
17001 if (s != htab->root.srelplt && s != htab->srelplt2)
17002 relocs = TRUE;
17003
17004 /* We use the reloc_count field as a counter if we need
17005 to copy relocs into the output file. */
17006 s->reloc_count = 0;
17007 }
17008 }
17009 else if (s != htab->root.sgot
17010 && s != htab->root.sgotplt
17011 && s != htab->root.iplt
17012 && s != htab->root.igotplt
17013 && s != htab->root.sdynbss
17014 && s != htab->root.sdynrelro
17015 && s != htab->srofixup)
17016 {
17017 /* It's not one of our sections, so don't allocate space. */
17018 continue;
17019 }
17020
17021 if (s->size == 0)
17022 {
17023 /* If we don't need this section, strip it from the
17024 output file. This is mostly to handle .rel(a).bss and
17025 .rel(a).plt. We must create both sections in
17026 create_dynamic_sections, because they must be created
17027 before the linker maps input sections to output
17028 sections. The linker does that before
17029 adjust_dynamic_symbol is called, and it is that
17030 function which decides whether anything needs to go
17031 into these sections. */
17032 s->flags |= SEC_EXCLUDE;
17033 continue;
17034 }
17035
17036 if ((s->flags & SEC_HAS_CONTENTS) == 0)
17037 continue;
17038
17039 /* Allocate memory for the section contents. */
17040 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
17041 if (s->contents == NULL)
17042 return FALSE;
17043 }
17044
17045 return _bfd_elf_maybe_vxworks_add_dynamic_tags (output_bfd, info,
17046 relocs);
17047 }
17048
17049 /* Size sections even though they're not dynamic. We use it to setup
17050 _TLS_MODULE_BASE_, if needed. */
17051
17052 static bfd_boolean
17053 elf32_arm_always_size_sections (bfd *output_bfd,
17054 struct bfd_link_info *info)
17055 {
17056 asection *tls_sec;
17057 struct elf32_arm_link_hash_table *htab;
17058
17059 htab = elf32_arm_hash_table (info);
17060
17061 if (bfd_link_relocatable (info))
17062 return TRUE;
17063
17064 tls_sec = elf_hash_table (info)->tls_sec;
17065
17066 if (tls_sec)
17067 {
17068 struct elf_link_hash_entry *tlsbase;
17069
17070 tlsbase = elf_link_hash_lookup
17071 (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
17072
17073 if (tlsbase)
17074 {
17075 struct bfd_link_hash_entry *bh = NULL;
17076 const struct elf_backend_data *bed
17077 = get_elf_backend_data (output_bfd);
17078
17079 if (!(_bfd_generic_link_add_one_symbol
17080 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
17081 tls_sec, 0, NULL, FALSE,
17082 bed->collect, &bh)))
17083 return FALSE;
17084
17085 tlsbase->type = STT_TLS;
17086 tlsbase = (struct elf_link_hash_entry *)bh;
17087 tlsbase->def_regular = 1;
17088 tlsbase->other = STV_HIDDEN;
17089 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
17090 }
17091 }
17092
17093 if (htab->fdpic_p && !bfd_link_relocatable (info)
17094 && !bfd_elf_stack_segment_size (output_bfd, info,
17095 "__stacksize", DEFAULT_STACK_SIZE))
17096 return FALSE;
17097
17098 return TRUE;
17099 }
17100
17101 /* Finish up dynamic symbol handling. We set the contents of various
17102 dynamic sections here. */
17103
17104 static bfd_boolean
17105 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
17106 struct bfd_link_info * info,
17107 struct elf_link_hash_entry * h,
17108 Elf_Internal_Sym * sym)
17109 {
17110 struct elf32_arm_link_hash_table *htab;
17111 struct elf32_arm_link_hash_entry *eh;
17112
17113 htab = elf32_arm_hash_table (info);
17114 if (htab == NULL)
17115 return FALSE;
17116
17117 eh = (struct elf32_arm_link_hash_entry *) h;
17118
17119 if (h->plt.offset != (bfd_vma) -1)
17120 {
17121 if (!eh->is_iplt)
17122 {
17123 BFD_ASSERT (h->dynindx != -1);
17124 if (! elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
17125 h->dynindx, 0))
17126 return FALSE;
17127 }
17128
17129 if (!h->def_regular)
17130 {
17131 /* Mark the symbol as undefined, rather than as defined in
17132 the .plt section. */
17133 sym->st_shndx = SHN_UNDEF;
17134 /* If the symbol is weak we need to clear the value.
17135 Otherwise, the PLT entry would provide a definition for
17136 the symbol even if the symbol wasn't defined anywhere,
17137 and so the symbol would never be NULL. Leave the value if
17138 there were any relocations where pointer equality matters
17139 (this is a clue for the dynamic linker, to make function
17140 pointer comparisons work between an application and shared
17141 library). */
17142 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
17143 sym->st_value = 0;
17144 }
17145 else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
17146 {
17147 /* At least one non-call relocation references this .iplt entry,
17148 so the .iplt entry is the function's canonical address. */
17149 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
17150 ARM_SET_SYM_BRANCH_TYPE (sym->st_target_internal, ST_BRANCH_TO_ARM);
17151 sym->st_shndx = (_bfd_elf_section_from_bfd_section
17152 (output_bfd, htab->root.iplt->output_section));
17153 sym->st_value = (h->plt.offset
17154 + htab->root.iplt->output_section->vma
17155 + htab->root.iplt->output_offset);
17156 }
17157 }
17158
17159 if (h->needs_copy)
17160 {
17161 asection * s;
17162 Elf_Internal_Rela rel;
17163
17164 /* This symbol needs a copy reloc. Set it up. */
17165 BFD_ASSERT (h->dynindx != -1
17166 && (h->root.type == bfd_link_hash_defined
17167 || h->root.type == bfd_link_hash_defweak));
17168
17169 rel.r_addend = 0;
17170 rel.r_offset = (h->root.u.def.value
17171 + h->root.u.def.section->output_section->vma
17172 + h->root.u.def.section->output_offset);
17173 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
17174 if (h->root.u.def.section == htab->root.sdynrelro)
17175 s = htab->root.sreldynrelro;
17176 else
17177 s = htab->root.srelbss;
17178 elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
17179 }
17180
17181 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
17182 and for FDPIC, the _GLOBAL_OFFSET_TABLE_ symbol is not absolute:
17183 it is relative to the ".got" section. */
17184 if (h == htab->root.hdynamic
17185 || (!htab->fdpic_p
17186 && htab->root.target_os != is_vxworks
17187 && h == htab->root.hgot))
17188 sym->st_shndx = SHN_ABS;
17189
17190 return TRUE;
17191 }
17192
17193 static void
17194 arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
17195 void *contents,
17196 const unsigned long *template, unsigned count)
17197 {
17198 unsigned ix;
17199
17200 for (ix = 0; ix != count; ix++)
17201 {
17202 unsigned long insn = template[ix];
17203
17204 /* Emit mov pc,rx if bx is not permitted. */
17205 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
17206 insn = (insn & 0xf000000f) | 0x01a0f000;
17207 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
17208 }
17209 }
17210
17211 /* Install the special first PLT entry for elf32-arm-nacl. Unlike
17212 other variants, NaCl needs this entry in a static executable's
17213 .iplt too. When we're handling that case, GOT_DISPLACEMENT is
17214 zero. For .iplt really only the last bundle is useful, and .iplt
17215 could have a shorter first entry, with each individual PLT entry's
17216 relative branch calculated differently so it targets the last
17217 bundle instead of the instruction before it (labelled .Lplt_tail
17218 above). But it's simpler to keep the size and layout of PLT0
17219 consistent with the dynamic case, at the cost of some dead code at
17220 the start of .iplt and the one dead store to the stack at the start
17221 of .Lplt_tail. */
17222 static void
17223 arm_nacl_put_plt0 (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
17224 asection *plt, bfd_vma got_displacement)
17225 {
17226 unsigned int i;
17227
17228 put_arm_insn (htab, output_bfd,
17229 elf32_arm_nacl_plt0_entry[0]
17230 | arm_movw_immediate (got_displacement),
17231 plt->contents + 0);
17232 put_arm_insn (htab, output_bfd,
17233 elf32_arm_nacl_plt0_entry[1]
17234 | arm_movt_immediate (got_displacement),
17235 plt->contents + 4);
17236
17237 for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i)
17238 put_arm_insn (htab, output_bfd,
17239 elf32_arm_nacl_plt0_entry[i],
17240 plt->contents + (i * 4));
17241 }
17242
17243 /* Finish up the dynamic sections. */
17244
17245 static bfd_boolean
17246 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
17247 {
17248 bfd * dynobj;
17249 asection * sgot;
17250 asection * sdyn;
17251 struct elf32_arm_link_hash_table *htab;
17252
17253 htab = elf32_arm_hash_table (info);
17254 if (htab == NULL)
17255 return FALSE;
17256
17257 dynobj = elf_hash_table (info)->dynobj;
17258
17259 sgot = htab->root.sgotplt;
17260 /* A broken linker script might have discarded the dynamic sections.
17261 Catch this here so that we do not seg-fault later on. */
17262 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
17263 return FALSE;
17264 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
17265
17266 if (elf_hash_table (info)->dynamic_sections_created)
17267 {
17268 asection *splt;
17269 Elf32_External_Dyn *dyncon, *dynconend;
17270
17271 splt = htab->root.splt;
17272 BFD_ASSERT (splt != NULL && sdyn != NULL);
17273 BFD_ASSERT (htab->root.target_os == is_symbian || sgot != NULL);
17274
17275 dyncon = (Elf32_External_Dyn *) sdyn->contents;
17276 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
17277
17278 for (; dyncon < dynconend; dyncon++)
17279 {
17280 Elf_Internal_Dyn dyn;
17281 const char * name;
17282 asection * s;
17283
17284 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
17285
17286 switch (dyn.d_tag)
17287 {
17288 unsigned int type;
17289
17290 default:
17291 if (htab->root.target_os == is_vxworks
17292 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
17293 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17294 break;
17295
17296 case DT_HASH:
17297 name = ".hash";
17298 goto get_vma_if_bpabi;
17299 case DT_STRTAB:
17300 name = ".dynstr";
17301 goto get_vma_if_bpabi;
17302 case DT_SYMTAB:
17303 name = ".dynsym";
17304 goto get_vma_if_bpabi;
17305 case DT_VERSYM:
17306 name = ".gnu.version";
17307 goto get_vma_if_bpabi;
17308 case DT_VERDEF:
17309 name = ".gnu.version_d";
17310 goto get_vma_if_bpabi;
17311 case DT_VERNEED:
17312 name = ".gnu.version_r";
17313 goto get_vma_if_bpabi;
17314
17315 case DT_PLTGOT:
17316 name = (htab->root.target_os == is_symbian
17317 ? ".got" : ".got.plt");
17318 goto get_vma;
17319 case DT_JMPREL:
17320 name = RELOC_SECTION (htab, ".plt");
17321 get_vma:
17322 s = bfd_get_linker_section (dynobj, name);
17323 if (s == NULL)
17324 {
17325 _bfd_error_handler
17326 (_("could not find section %s"), name);
17327 bfd_set_error (bfd_error_invalid_operation);
17328 return FALSE;
17329 }
17330 if (htab->root.target_os != is_symbian)
17331 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
17332 else
17333 /* In the BPABI, tags in the PT_DYNAMIC section point
17334 at the file offset, not the memory address, for the
17335 convenience of the post linker. */
17336 dyn.d_un.d_ptr = s->output_section->filepos + s->output_offset;
17337 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17338 break;
17339
17340 get_vma_if_bpabi:
17341 if (htab->root.target_os == is_symbian)
17342 goto get_vma;
17343 break;
17344
17345 case DT_PLTRELSZ:
17346 s = htab->root.srelplt;
17347 BFD_ASSERT (s != NULL);
17348 dyn.d_un.d_val = s->size;
17349 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17350 break;
17351
17352 case DT_RELSZ:
17353 case DT_RELASZ:
17354 case DT_REL:
17355 case DT_RELA:
17356 /* In the BPABI, the DT_REL tag must point at the file
17357 offset, not the VMA, of the first relocation
17358 section. So, we use code similar to that in
17359 elflink.c, but do not check for SHF_ALLOC on the
17360 relocation section, since relocation sections are
17361 never allocated under the BPABI. PLT relocs are also
17362 included. */
17363 if (htab->root.target_os == is_symbian)
17364 {
17365 unsigned int i;
17366 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
17367 ? SHT_REL : SHT_RELA);
17368 dyn.d_un.d_val = 0;
17369 for (i = 1; i < elf_numsections (output_bfd); i++)
17370 {
17371 Elf_Internal_Shdr *hdr
17372 = elf_elfsections (output_bfd)[i];
17373 if (hdr->sh_type == type)
17374 {
17375 if (dyn.d_tag == DT_RELSZ
17376 || dyn.d_tag == DT_RELASZ)
17377 dyn.d_un.d_val += hdr->sh_size;
17378 else if ((ufile_ptr) hdr->sh_offset
17379 <= dyn.d_un.d_val - 1)
17380 dyn.d_un.d_val = hdr->sh_offset;
17381 }
17382 }
17383 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17384 }
17385 break;
17386
17387 case DT_TLSDESC_PLT:
17388 s = htab->root.splt;
17389 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
17390 + htab->root.tlsdesc_plt);
17391 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17392 break;
17393
17394 case DT_TLSDESC_GOT:
17395 s = htab->root.sgot;
17396 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
17397 + htab->root.tlsdesc_got);
17398 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17399 break;
17400
17401 /* Set the bottom bit of DT_INIT/FINI if the
17402 corresponding function is Thumb. */
17403 case DT_INIT:
17404 name = info->init_function;
17405 goto get_sym;
17406 case DT_FINI:
17407 name = info->fini_function;
17408 get_sym:
17409 /* If it wasn't set by elf_bfd_final_link
17410 then there is nothing to adjust. */
17411 if (dyn.d_un.d_val != 0)
17412 {
17413 struct elf_link_hash_entry * eh;
17414
17415 eh = elf_link_hash_lookup (elf_hash_table (info), name,
17416 FALSE, FALSE, TRUE);
17417 if (eh != NULL
17418 && ARM_GET_SYM_BRANCH_TYPE (eh->target_internal)
17419 == ST_BRANCH_TO_THUMB)
17420 {
17421 dyn.d_un.d_val |= 1;
17422 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17423 }
17424 }
17425 break;
17426 }
17427 }
17428
17429 /* Fill in the first entry in the procedure linkage table. */
17430 if (splt->size > 0 && htab->plt_header_size)
17431 {
17432 const bfd_vma *plt0_entry;
17433 bfd_vma got_address, plt_address, got_displacement;
17434
17435 /* Calculate the addresses of the GOT and PLT. */
17436 got_address = sgot->output_section->vma + sgot->output_offset;
17437 plt_address = splt->output_section->vma + splt->output_offset;
17438
17439 if (htab->root.target_os == is_vxworks)
17440 {
17441 /* The VxWorks GOT is relocated by the dynamic linker.
17442 Therefore, we must emit relocations rather than simply
17443 computing the values now. */
17444 Elf_Internal_Rela rel;
17445
17446 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
17447 put_arm_insn (htab, output_bfd, plt0_entry[0],
17448 splt->contents + 0);
17449 put_arm_insn (htab, output_bfd, plt0_entry[1],
17450 splt->contents + 4);
17451 put_arm_insn (htab, output_bfd, plt0_entry[2],
17452 splt->contents + 8);
17453 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
17454
17455 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
17456 rel.r_offset = plt_address + 12;
17457 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
17458 rel.r_addend = 0;
17459 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
17460 htab->srelplt2->contents);
17461 }
17462 else if (htab->root.target_os == is_nacl)
17463 arm_nacl_put_plt0 (htab, output_bfd, splt,
17464 got_address + 8 - (plt_address + 16));
17465 else if (using_thumb_only (htab))
17466 {
17467 got_displacement = got_address - (plt_address + 12);
17468
17469 plt0_entry = elf32_thumb2_plt0_entry;
17470 put_arm_insn (htab, output_bfd, plt0_entry[0],
17471 splt->contents + 0);
17472 put_arm_insn (htab, output_bfd, plt0_entry[1],
17473 splt->contents + 4);
17474 put_arm_insn (htab, output_bfd, plt0_entry[2],
17475 splt->contents + 8);
17476
17477 bfd_put_32 (output_bfd, got_displacement, splt->contents + 12);
17478 }
17479 else
17480 {
17481 got_displacement = got_address - (plt_address + 16);
17482
17483 plt0_entry = elf32_arm_plt0_entry;
17484 put_arm_insn (htab, output_bfd, plt0_entry[0],
17485 splt->contents + 0);
17486 put_arm_insn (htab, output_bfd, plt0_entry[1],
17487 splt->contents + 4);
17488 put_arm_insn (htab, output_bfd, plt0_entry[2],
17489 splt->contents + 8);
17490 put_arm_insn (htab, output_bfd, plt0_entry[3],
17491 splt->contents + 12);
17492
17493 #ifdef FOUR_WORD_PLT
17494 /* The displacement value goes in the otherwise-unused
17495 last word of the second entry. */
17496 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
17497 #else
17498 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
17499 #endif
17500 }
17501 }
17502
17503 /* UnixWare sets the entsize of .plt to 4, although that doesn't
17504 really seem like the right value. */
17505 if (splt->output_section->owner == output_bfd)
17506 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
17507
17508 if (htab->root.tlsdesc_plt)
17509 {
17510 bfd_vma got_address
17511 = sgot->output_section->vma + sgot->output_offset;
17512 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
17513 + htab->root.sgot->output_offset);
17514 bfd_vma plt_address
17515 = splt->output_section->vma + splt->output_offset;
17516
17517 arm_put_trampoline (htab, output_bfd,
17518 splt->contents + htab->root.tlsdesc_plt,
17519 dl_tlsdesc_lazy_trampoline, 6);
17520
17521 bfd_put_32 (output_bfd,
17522 gotplt_address + htab->root.tlsdesc_got
17523 - (plt_address + htab->root.tlsdesc_plt)
17524 - dl_tlsdesc_lazy_trampoline[6],
17525 splt->contents + htab->root.tlsdesc_plt + 24);
17526 bfd_put_32 (output_bfd,
17527 got_address - (plt_address + htab->root.tlsdesc_plt)
17528 - dl_tlsdesc_lazy_trampoline[7],
17529 splt->contents + htab->root.tlsdesc_plt + 24 + 4);
17530 }
17531
17532 if (htab->tls_trampoline)
17533 {
17534 arm_put_trampoline (htab, output_bfd,
17535 splt->contents + htab->tls_trampoline,
17536 tls_trampoline, 3);
17537 #ifdef FOUR_WORD_PLT
17538 bfd_put_32 (output_bfd, 0x00000000,
17539 splt->contents + htab->tls_trampoline + 12);
17540 #endif
17541 }
17542
17543 if (htab->root.target_os == is_vxworks
17544 && !bfd_link_pic (info)
17545 && htab->root.splt->size > 0)
17546 {
17547 /* Correct the .rel(a).plt.unloaded relocations. They will have
17548 incorrect symbol indexes. */
17549 int num_plts;
17550 unsigned char *p;
17551
17552 num_plts = ((htab->root.splt->size - htab->plt_header_size)
17553 / htab->plt_entry_size);
17554 p = htab->srelplt2->contents + RELOC_SIZE (htab);
17555
17556 for (; num_plts; num_plts--)
17557 {
17558 Elf_Internal_Rela rel;
17559
17560 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
17561 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
17562 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
17563 p += RELOC_SIZE (htab);
17564
17565 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
17566 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
17567 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
17568 p += RELOC_SIZE (htab);
17569 }
17570 }
17571 }
17572
17573 if (htab->root.target_os == is_nacl
17574 && htab->root.iplt != NULL
17575 && htab->root.iplt->size > 0)
17576 /* NaCl uses a special first entry in .iplt too. */
17577 arm_nacl_put_plt0 (htab, output_bfd, htab->root.iplt, 0);
17578
17579 /* Fill in the first three entries in the global offset table. */
17580 if (sgot)
17581 {
17582 if (sgot->size > 0)
17583 {
17584 if (sdyn == NULL)
17585 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
17586 else
17587 bfd_put_32 (output_bfd,
17588 sdyn->output_section->vma + sdyn->output_offset,
17589 sgot->contents);
17590 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
17591 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
17592 }
17593
17594 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
17595 }
17596
17597 /* At the very end of the .rofixup section is a pointer to the GOT. */
17598 if (htab->fdpic_p && htab->srofixup != NULL)
17599 {
17600 struct elf_link_hash_entry *hgot = htab->root.hgot;
17601
17602 bfd_vma got_value = hgot->root.u.def.value
17603 + hgot->root.u.def.section->output_section->vma
17604 + hgot->root.u.def.section->output_offset;
17605
17606 arm_elf_add_rofixup(output_bfd, htab->srofixup, got_value);
17607
17608 /* Make sure we allocated and generated the same number of fixups. */
17609 BFD_ASSERT (htab->srofixup->reloc_count * 4 == htab->srofixup->size);
17610 }
17611
17612 return TRUE;
17613 }
17614
17615 static bfd_boolean
17616 elf32_arm_init_file_header (bfd *abfd, struct bfd_link_info *link_info)
17617 {
17618 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
17619 struct elf32_arm_link_hash_table *globals;
17620 struct elf_segment_map *m;
17621
17622 if (!_bfd_elf_init_file_header (abfd, link_info))
17623 return FALSE;
17624
17625 i_ehdrp = elf_elfheader (abfd);
17626
17627 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
17628 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
17629 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
17630
17631 if (link_info)
17632 {
17633 globals = elf32_arm_hash_table (link_info);
17634 if (globals != NULL && globals->byteswap_code)
17635 i_ehdrp->e_flags |= EF_ARM_BE8;
17636
17637 if (globals->fdpic_p)
17638 i_ehdrp->e_ident[EI_OSABI] |= ELFOSABI_ARM_FDPIC;
17639 }
17640
17641 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5
17642 && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC)))
17643 {
17644 int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args);
17645 if (abi == AEABI_VFP_args_vfp)
17646 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD;
17647 else
17648 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT;
17649 }
17650
17651 /* Scan segment to set p_flags attribute if it contains only sections with
17652 SHF_ARM_PURECODE flag. */
17653 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
17654 {
17655 unsigned int j;
17656
17657 if (m->count == 0)
17658 continue;
17659 for (j = 0; j < m->count; j++)
17660 {
17661 if (!(elf_section_flags (m->sections[j]) & SHF_ARM_PURECODE))
17662 break;
17663 }
17664 if (j == m->count)
17665 {
17666 m->p_flags = PF_X;
17667 m->p_flags_valid = 1;
17668 }
17669 }
17670 return TRUE;
17671 }
17672
17673 static enum elf_reloc_type_class
17674 elf32_arm_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
17675 const asection *rel_sec ATTRIBUTE_UNUSED,
17676 const Elf_Internal_Rela *rela)
17677 {
17678 switch ((int) ELF32_R_TYPE (rela->r_info))
17679 {
17680 case R_ARM_RELATIVE:
17681 return reloc_class_relative;
17682 case R_ARM_JUMP_SLOT:
17683 return reloc_class_plt;
17684 case R_ARM_COPY:
17685 return reloc_class_copy;
17686 case R_ARM_IRELATIVE:
17687 return reloc_class_ifunc;
17688 default:
17689 return reloc_class_normal;
17690 }
17691 }
17692
17693 static void
17694 arm_final_write_processing (bfd *abfd)
17695 {
17696 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
17697 }
17698
17699 static bfd_boolean
17700 elf32_arm_final_write_processing (bfd *abfd)
17701 {
17702 arm_final_write_processing (abfd);
17703 return _bfd_elf_final_write_processing (abfd);
17704 }
17705
17706 /* Return TRUE if this is an unwinding table entry. */
17707
17708 static bfd_boolean
17709 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
17710 {
17711 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
17712 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
17713 }
17714
17715
17716 /* Set the type and flags for an ARM section. We do this by
17717 the section name, which is a hack, but ought to work. */
17718
17719 static bfd_boolean
17720 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
17721 {
17722 const char * name;
17723
17724 name = bfd_section_name (sec);
17725
17726 if (is_arm_elf_unwind_section_name (abfd, name))
17727 {
17728 hdr->sh_type = SHT_ARM_EXIDX;
17729 hdr->sh_flags |= SHF_LINK_ORDER;
17730 }
17731
17732 if (sec->flags & SEC_ELF_PURECODE)
17733 hdr->sh_flags |= SHF_ARM_PURECODE;
17734
17735 return TRUE;
17736 }
17737
17738 /* Handle an ARM specific section when reading an object file. This is
17739 called when bfd_section_from_shdr finds a section with an unknown
17740 type. */
17741
17742 static bfd_boolean
17743 elf32_arm_section_from_shdr (bfd *abfd,
17744 Elf_Internal_Shdr * hdr,
17745 const char *name,
17746 int shindex)
17747 {
17748 /* There ought to be a place to keep ELF backend specific flags, but
17749 at the moment there isn't one. We just keep track of the
17750 sections by their name, instead. Fortunately, the ABI gives
17751 names for all the ARM specific sections, so we will probably get
17752 away with this. */
17753 switch (hdr->sh_type)
17754 {
17755 case SHT_ARM_EXIDX:
17756 case SHT_ARM_PREEMPTMAP:
17757 case SHT_ARM_ATTRIBUTES:
17758 break;
17759
17760 default:
17761 return FALSE;
17762 }
17763
17764 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
17765 return FALSE;
17766
17767 return TRUE;
17768 }
17769
17770 static _arm_elf_section_data *
17771 get_arm_elf_section_data (asection * sec)
17772 {
17773 if (sec && sec->owner && is_arm_elf (sec->owner))
17774 return elf32_arm_section_data (sec);
17775 else
17776 return NULL;
17777 }
17778
17779 typedef struct
17780 {
17781 void *flaginfo;
17782 struct bfd_link_info *info;
17783 asection *sec;
17784 int sec_shndx;
17785 int (*func) (void *, const char *, Elf_Internal_Sym *,
17786 asection *, struct elf_link_hash_entry *);
17787 } output_arch_syminfo;
17788
17789 enum map_symbol_type
17790 {
17791 ARM_MAP_ARM,
17792 ARM_MAP_THUMB,
17793 ARM_MAP_DATA
17794 };
17795
17796
17797 /* Output a single mapping symbol. */
17798
17799 static bfd_boolean
17800 elf32_arm_output_map_sym (output_arch_syminfo *osi,
17801 enum map_symbol_type type,
17802 bfd_vma offset)
17803 {
17804 static const char *names[3] = {"$a", "$t", "$d"};
17805 Elf_Internal_Sym sym;
17806
17807 sym.st_value = osi->sec->output_section->vma
17808 + osi->sec->output_offset
17809 + offset;
17810 sym.st_size = 0;
17811 sym.st_other = 0;
17812 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
17813 sym.st_shndx = osi->sec_shndx;
17814 sym.st_target_internal = 0;
17815 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
17816 return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1;
17817 }
17818
17819 /* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
17820 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
17821
17822 static bfd_boolean
17823 elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
17824 bfd_boolean is_iplt_entry_p,
17825 union gotplt_union *root_plt,
17826 struct arm_plt_info *arm_plt)
17827 {
17828 struct elf32_arm_link_hash_table *htab;
17829 bfd_vma addr, plt_header_size;
17830
17831 if (root_plt->offset == (bfd_vma) -1)
17832 return TRUE;
17833
17834 htab = elf32_arm_hash_table (osi->info);
17835 if (htab == NULL)
17836 return FALSE;
17837
17838 if (is_iplt_entry_p)
17839 {
17840 osi->sec = htab->root.iplt;
17841 plt_header_size = 0;
17842 }
17843 else
17844 {
17845 osi->sec = htab->root.splt;
17846 plt_header_size = htab->plt_header_size;
17847 }
17848 osi->sec_shndx = (_bfd_elf_section_from_bfd_section
17849 (osi->info->output_bfd, osi->sec->output_section));
17850
17851 addr = root_plt->offset & -2;
17852 if (htab->root.target_os == is_symbian)
17853 {
17854 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
17855 return FALSE;
17856 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
17857 return FALSE;
17858 }
17859 else if (htab->root.target_os == is_vxworks)
17860 {
17861 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
17862 return FALSE;
17863 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
17864 return FALSE;
17865 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
17866 return FALSE;
17867 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
17868 return FALSE;
17869 }
17870 else if (htab->root.target_os == is_nacl)
17871 {
17872 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
17873 return FALSE;
17874 }
17875 else if (htab->fdpic_p)
17876 {
17877 enum map_symbol_type type = using_thumb_only(htab)
17878 ? ARM_MAP_THUMB
17879 : ARM_MAP_ARM;
17880
17881 if (elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt))
17882 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
17883 return FALSE;
17884 if (!elf32_arm_output_map_sym (osi, type, addr))
17885 return FALSE;
17886 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 16))
17887 return FALSE;
17888 if (htab->plt_entry_size == 4 * ARRAY_SIZE(elf32_arm_fdpic_plt_entry))
17889 if (!elf32_arm_output_map_sym (osi, type, addr + 24))
17890 return FALSE;
17891 }
17892 else if (using_thumb_only (htab))
17893 {
17894 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
17895 return FALSE;
17896 }
17897 else
17898 {
17899 bfd_boolean thumb_stub_p;
17900
17901 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
17902 if (thumb_stub_p)
17903 {
17904 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
17905 return FALSE;
17906 }
17907 #ifdef FOUR_WORD_PLT
17908 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
17909 return FALSE;
17910 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
17911 return FALSE;
17912 #else
17913 /* A three-word PLT with no Thumb thunk contains only Arm code,
17914 so only need to output a mapping symbol for the first PLT entry and
17915 entries with thumb thunks. */
17916 if (thumb_stub_p || addr == plt_header_size)
17917 {
17918 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
17919 return FALSE;
17920 }
17921 #endif
17922 }
17923
17924 return TRUE;
17925 }
17926
17927 /* Output mapping symbols for PLT entries associated with H. */
17928
17929 static bfd_boolean
17930 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
17931 {
17932 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
17933 struct elf32_arm_link_hash_entry *eh;
17934
17935 if (h->root.type == bfd_link_hash_indirect)
17936 return TRUE;
17937
17938 if (h->root.type == bfd_link_hash_warning)
17939 /* When warning symbols are created, they **replace** the "real"
17940 entry in the hash table, thus we never get to see the real
17941 symbol in a hash traversal. So look at it now. */
17942 h = (struct elf_link_hash_entry *) h->root.u.i.link;
17943
17944 eh = (struct elf32_arm_link_hash_entry *) h;
17945 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
17946 &h->plt, &eh->plt);
17947 }
17948
17949 /* Bind a veneered symbol to its veneer identified by its hash entry
17950 STUB_ENTRY. The veneered location thus loose its symbol. */
17951
17952 static void
17953 arm_stub_claim_sym (struct elf32_arm_stub_hash_entry *stub_entry)
17954 {
17955 struct elf32_arm_link_hash_entry *hash = stub_entry->h;
17956
17957 BFD_ASSERT (hash);
17958 hash->root.root.u.def.section = stub_entry->stub_sec;
17959 hash->root.root.u.def.value = stub_entry->stub_offset;
17960 hash->root.size = stub_entry->stub_size;
17961 }
17962
17963 /* Output a single local symbol for a generated stub. */
17964
17965 static bfd_boolean
17966 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
17967 bfd_vma offset, bfd_vma size)
17968 {
17969 Elf_Internal_Sym sym;
17970
17971 sym.st_value = osi->sec->output_section->vma
17972 + osi->sec->output_offset
17973 + offset;
17974 sym.st_size = size;
17975 sym.st_other = 0;
17976 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
17977 sym.st_shndx = osi->sec_shndx;
17978 sym.st_target_internal = 0;
17979 return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1;
17980 }
17981
17982 static bfd_boolean
17983 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
17984 void * in_arg)
17985 {
17986 struct elf32_arm_stub_hash_entry *stub_entry;
17987 asection *stub_sec;
17988 bfd_vma addr;
17989 char *stub_name;
17990 output_arch_syminfo *osi;
17991 const insn_sequence *template_sequence;
17992 enum stub_insn_type prev_type;
17993 int size;
17994 int i;
17995 enum map_symbol_type sym_type;
17996
17997 /* Massage our args to the form they really have. */
17998 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
17999 osi = (output_arch_syminfo *) in_arg;
18000
18001 stub_sec = stub_entry->stub_sec;
18002
18003 /* Ensure this stub is attached to the current section being
18004 processed. */
18005 if (stub_sec != osi->sec)
18006 return TRUE;
18007
18008 addr = (bfd_vma) stub_entry->stub_offset;
18009 template_sequence = stub_entry->stub_template;
18010
18011 if (arm_stub_sym_claimed (stub_entry->stub_type))
18012 arm_stub_claim_sym (stub_entry);
18013 else
18014 {
18015 stub_name = stub_entry->output_name;
18016 switch (template_sequence[0].type)
18017 {
18018 case ARM_TYPE:
18019 if (!elf32_arm_output_stub_sym (osi, stub_name, addr,
18020 stub_entry->stub_size))
18021 return FALSE;
18022 break;
18023 case THUMB16_TYPE:
18024 case THUMB32_TYPE:
18025 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
18026 stub_entry->stub_size))
18027 return FALSE;
18028 break;
18029 default:
18030 BFD_FAIL ();
18031 return 0;
18032 }
18033 }
18034
18035 prev_type = DATA_TYPE;
18036 size = 0;
18037 for (i = 0; i < stub_entry->stub_template_size; i++)
18038 {
18039 switch (template_sequence[i].type)
18040 {
18041 case ARM_TYPE:
18042 sym_type = ARM_MAP_ARM;
18043 break;
18044
18045 case THUMB16_TYPE:
18046 case THUMB32_TYPE:
18047 sym_type = ARM_MAP_THUMB;
18048 break;
18049
18050 case DATA_TYPE:
18051 sym_type = ARM_MAP_DATA;
18052 break;
18053
18054 default:
18055 BFD_FAIL ();
18056 return FALSE;
18057 }
18058
18059 if (template_sequence[i].type != prev_type)
18060 {
18061 prev_type = template_sequence[i].type;
18062 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
18063 return FALSE;
18064 }
18065
18066 switch (template_sequence[i].type)
18067 {
18068 case ARM_TYPE:
18069 case THUMB32_TYPE:
18070 size += 4;
18071 break;
18072
18073 case THUMB16_TYPE:
18074 size += 2;
18075 break;
18076
18077 case DATA_TYPE:
18078 size += 4;
18079 break;
18080
18081 default:
18082 BFD_FAIL ();
18083 return FALSE;
18084 }
18085 }
18086
18087 return TRUE;
18088 }
18089
18090 /* Output mapping symbols for linker generated sections,
18091 and for those data-only sections that do not have a
18092 $d. */
18093
18094 static bfd_boolean
18095 elf32_arm_output_arch_local_syms (bfd *output_bfd,
18096 struct bfd_link_info *info,
18097 void *flaginfo,
18098 int (*func) (void *, const char *,
18099 Elf_Internal_Sym *,
18100 asection *,
18101 struct elf_link_hash_entry *))
18102 {
18103 output_arch_syminfo osi;
18104 struct elf32_arm_link_hash_table *htab;
18105 bfd_vma offset;
18106 bfd_size_type size;
18107 bfd *input_bfd;
18108
18109 htab = elf32_arm_hash_table (info);
18110 if (htab == NULL)
18111 return FALSE;
18112
18113 check_use_blx (htab);
18114
18115 osi.flaginfo = flaginfo;
18116 osi.info = info;
18117 osi.func = func;
18118
18119 /* Add a $d mapping symbol to data-only sections that
18120 don't have any mapping symbol. This may result in (harmless) redundant
18121 mapping symbols. */
18122 for (input_bfd = info->input_bfds;
18123 input_bfd != NULL;
18124 input_bfd = input_bfd->link.next)
18125 {
18126 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
18127 for (osi.sec = input_bfd->sections;
18128 osi.sec != NULL;
18129 osi.sec = osi.sec->next)
18130 {
18131 if (osi.sec->output_section != NULL
18132 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
18133 != 0)
18134 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
18135 == SEC_HAS_CONTENTS
18136 && get_arm_elf_section_data (osi.sec) != NULL
18137 && get_arm_elf_section_data (osi.sec)->mapcount == 0
18138 && osi.sec->size > 0
18139 && (osi.sec->flags & SEC_EXCLUDE) == 0)
18140 {
18141 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18142 (output_bfd, osi.sec->output_section);
18143 if (osi.sec_shndx != (int)SHN_BAD)
18144 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
18145 }
18146 }
18147 }
18148
18149 /* ARM->Thumb glue. */
18150 if (htab->arm_glue_size > 0)
18151 {
18152 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18153 ARM2THUMB_GLUE_SECTION_NAME);
18154
18155 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18156 (output_bfd, osi.sec->output_section);
18157 if (bfd_link_pic (info) || htab->root.is_relocatable_executable
18158 || htab->pic_veneer)
18159 size = ARM2THUMB_PIC_GLUE_SIZE;
18160 else if (htab->use_blx)
18161 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
18162 else
18163 size = ARM2THUMB_STATIC_GLUE_SIZE;
18164
18165 for (offset = 0; offset < htab->arm_glue_size; offset += size)
18166 {
18167 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
18168 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
18169 }
18170 }
18171
18172 /* Thumb->ARM glue. */
18173 if (htab->thumb_glue_size > 0)
18174 {
18175 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18176 THUMB2ARM_GLUE_SECTION_NAME);
18177
18178 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18179 (output_bfd, osi.sec->output_section);
18180 size = THUMB2ARM_GLUE_SIZE;
18181
18182 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
18183 {
18184 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
18185 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
18186 }
18187 }
18188
18189 /* ARMv4 BX veneers. */
18190 if (htab->bx_glue_size > 0)
18191 {
18192 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18193 ARM_BX_GLUE_SECTION_NAME);
18194
18195 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18196 (output_bfd, osi.sec->output_section);
18197
18198 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
18199 }
18200
18201 /* Long calls stubs. */
18202 if (htab->stub_bfd && htab->stub_bfd->sections)
18203 {
18204 asection* stub_sec;
18205
18206 for (stub_sec = htab->stub_bfd->sections;
18207 stub_sec != NULL;
18208 stub_sec = stub_sec->next)
18209 {
18210 /* Ignore non-stub sections. */
18211 if (!strstr (stub_sec->name, STUB_SUFFIX))
18212 continue;
18213
18214 osi.sec = stub_sec;
18215
18216 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18217 (output_bfd, osi.sec->output_section);
18218
18219 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
18220 }
18221 }
18222
18223 /* Finally, output mapping symbols for the PLT. */
18224 if (htab->root.splt && htab->root.splt->size > 0)
18225 {
18226 osi.sec = htab->root.splt;
18227 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
18228 (output_bfd, osi.sec->output_section));
18229
18230 /* Output mapping symbols for the plt header. SymbianOS does not have a
18231 plt header. */
18232 if (htab->root.target_os == is_vxworks)
18233 {
18234 /* VxWorks shared libraries have no PLT header. */
18235 if (!bfd_link_pic (info))
18236 {
18237 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18238 return FALSE;
18239 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
18240 return FALSE;
18241 }
18242 }
18243 else if (htab->root.target_os == is_nacl)
18244 {
18245 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18246 return FALSE;
18247 }
18248 else if (using_thumb_only (htab) && !htab->fdpic_p)
18249 {
18250 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 0))
18251 return FALSE;
18252 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
18253 return FALSE;
18254 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 16))
18255 return FALSE;
18256 }
18257 else if (htab->root.target_os != is_symbian && !htab->fdpic_p)
18258 {
18259 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18260 return FALSE;
18261 #ifndef FOUR_WORD_PLT
18262 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
18263 return FALSE;
18264 #endif
18265 }
18266 }
18267 if (htab->root.target_os == is_nacl
18268 && htab->root.iplt
18269 && htab->root.iplt->size > 0)
18270 {
18271 /* NaCl uses a special first entry in .iplt too. */
18272 osi.sec = htab->root.iplt;
18273 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
18274 (output_bfd, osi.sec->output_section));
18275 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18276 return FALSE;
18277 }
18278 if ((htab->root.splt && htab->root.splt->size > 0)
18279 || (htab->root.iplt && htab->root.iplt->size > 0))
18280 {
18281 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
18282 for (input_bfd = info->input_bfds;
18283 input_bfd != NULL;
18284 input_bfd = input_bfd->link.next)
18285 {
18286 struct arm_local_iplt_info **local_iplt;
18287 unsigned int i, num_syms;
18288
18289 local_iplt = elf32_arm_local_iplt (input_bfd);
18290 if (local_iplt != NULL)
18291 {
18292 num_syms = elf_symtab_hdr (input_bfd).sh_info;
18293 for (i = 0; i < num_syms; i++)
18294 if (local_iplt[i] != NULL
18295 && !elf32_arm_output_plt_map_1 (&osi, TRUE,
18296 &local_iplt[i]->root,
18297 &local_iplt[i]->arm))
18298 return FALSE;
18299 }
18300 }
18301 }
18302 if (htab->root.tlsdesc_plt != 0)
18303 {
18304 /* Mapping symbols for the lazy tls trampoline. */
18305 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM,
18306 htab->root.tlsdesc_plt))
18307 return FALSE;
18308
18309 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
18310 htab->root.tlsdesc_plt + 24))
18311 return FALSE;
18312 }
18313 if (htab->tls_trampoline != 0)
18314 {
18315 /* Mapping symbols for the tls trampoline. */
18316 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
18317 return FALSE;
18318 #ifdef FOUR_WORD_PLT
18319 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
18320 htab->tls_trampoline + 12))
18321 return FALSE;
18322 #endif
18323 }
18324
18325 return TRUE;
18326 }
18327
18328 /* Filter normal symbols of CMSE entry functions of ABFD to include in
18329 the import library. All SYMCOUNT symbols of ABFD can be examined
18330 from their pointers in SYMS. Pointers of symbols to keep should be
18331 stored continuously at the beginning of that array.
18332
18333 Returns the number of symbols to keep. */
18334
18335 static unsigned int
18336 elf32_arm_filter_cmse_symbols (bfd *abfd ATTRIBUTE_UNUSED,
18337 struct bfd_link_info *info,
18338 asymbol **syms, long symcount)
18339 {
18340 size_t maxnamelen;
18341 char *cmse_name;
18342 long src_count, dst_count = 0;
18343 struct elf32_arm_link_hash_table *htab;
18344
18345 htab = elf32_arm_hash_table (info);
18346 if (!htab->stub_bfd || !htab->stub_bfd->sections)
18347 symcount = 0;
18348
18349 maxnamelen = 128;
18350 cmse_name = (char *) bfd_malloc (maxnamelen);
18351 BFD_ASSERT (cmse_name);
18352
18353 for (src_count = 0; src_count < symcount; src_count++)
18354 {
18355 struct elf32_arm_link_hash_entry *cmse_hash;
18356 asymbol *sym;
18357 flagword flags;
18358 char *name;
18359 size_t namelen;
18360
18361 sym = syms[src_count];
18362 flags = sym->flags;
18363 name = (char *) bfd_asymbol_name (sym);
18364
18365 if ((flags & BSF_FUNCTION) != BSF_FUNCTION)
18366 continue;
18367 if (!(flags & (BSF_GLOBAL | BSF_WEAK)))
18368 continue;
18369
18370 namelen = strlen (name) + sizeof (CMSE_PREFIX) + 1;
18371 if (namelen > maxnamelen)
18372 {
18373 cmse_name = (char *)
18374 bfd_realloc (cmse_name, namelen);
18375 maxnamelen = namelen;
18376 }
18377 snprintf (cmse_name, maxnamelen, "%s%s", CMSE_PREFIX, name);
18378 cmse_hash = (struct elf32_arm_link_hash_entry *)
18379 elf_link_hash_lookup (&(htab)->root, cmse_name, FALSE, FALSE, TRUE);
18380
18381 if (!cmse_hash
18382 || (cmse_hash->root.root.type != bfd_link_hash_defined
18383 && cmse_hash->root.root.type != bfd_link_hash_defweak)
18384 || cmse_hash->root.type != STT_FUNC)
18385 continue;
18386
18387 syms[dst_count++] = sym;
18388 }
18389 free (cmse_name);
18390
18391 syms[dst_count] = NULL;
18392
18393 return dst_count;
18394 }
18395
18396 /* Filter symbols of ABFD to include in the import library. All
18397 SYMCOUNT symbols of ABFD can be examined from their pointers in
18398 SYMS. Pointers of symbols to keep should be stored continuously at
18399 the beginning of that array.
18400
18401 Returns the number of symbols to keep. */
18402
18403 static unsigned int
18404 elf32_arm_filter_implib_symbols (bfd *abfd ATTRIBUTE_UNUSED,
18405 struct bfd_link_info *info,
18406 asymbol **syms, long symcount)
18407 {
18408 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
18409
18410 /* Requirement 8 of "ARM v8-M Security Extensions: Requirements on
18411 Development Tools" (ARM-ECM-0359818) mandates Secure Gateway import
18412 library to be a relocatable object file. */
18413 BFD_ASSERT (!(bfd_get_file_flags (info->out_implib_bfd) & EXEC_P));
18414 if (globals->cmse_implib)
18415 return elf32_arm_filter_cmse_symbols (abfd, info, syms, symcount);
18416 else
18417 return _bfd_elf_filter_global_symbols (abfd, info, syms, symcount);
18418 }
18419
18420 /* Allocate target specific section data. */
18421
18422 static bfd_boolean
18423 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
18424 {
18425 if (!sec->used_by_bfd)
18426 {
18427 _arm_elf_section_data *sdata;
18428 size_t amt = sizeof (*sdata);
18429
18430 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
18431 if (sdata == NULL)
18432 return FALSE;
18433 sec->used_by_bfd = sdata;
18434 }
18435
18436 return _bfd_elf_new_section_hook (abfd, sec);
18437 }
18438
18439
18440 /* Used to order a list of mapping symbols by address. */
18441
18442 static int
18443 elf32_arm_compare_mapping (const void * a, const void * b)
18444 {
18445 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
18446 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
18447
18448 if (amap->vma > bmap->vma)
18449 return 1;
18450 else if (amap->vma < bmap->vma)
18451 return -1;
18452 else if (amap->type > bmap->type)
18453 /* Ensure results do not depend on the host qsort for objects with
18454 multiple mapping symbols at the same address by sorting on type
18455 after vma. */
18456 return 1;
18457 else if (amap->type < bmap->type)
18458 return -1;
18459 else
18460 return 0;
18461 }
18462
18463 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
18464
18465 static unsigned long
18466 offset_prel31 (unsigned long addr, bfd_vma offset)
18467 {
18468 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
18469 }
18470
18471 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
18472 relocations. */
18473
18474 static void
18475 copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
18476 {
18477 unsigned long first_word = bfd_get_32 (output_bfd, from);
18478 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
18479
18480 /* High bit of first word is supposed to be zero. */
18481 if ((first_word & 0x80000000ul) == 0)
18482 first_word = offset_prel31 (first_word, offset);
18483
18484 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
18485 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
18486 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
18487 second_word = offset_prel31 (second_word, offset);
18488
18489 bfd_put_32 (output_bfd, first_word, to);
18490 bfd_put_32 (output_bfd, second_word, to + 4);
18491 }
18492
18493 /* Data for make_branch_to_a8_stub(). */
18494
18495 struct a8_branch_to_stub_data
18496 {
18497 asection *writing_section;
18498 bfd_byte *contents;
18499 };
18500
18501
18502 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
18503 places for a particular section. */
18504
18505 static bfd_boolean
18506 make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
18507 void *in_arg)
18508 {
18509 struct elf32_arm_stub_hash_entry *stub_entry;
18510 struct a8_branch_to_stub_data *data;
18511 bfd_byte *contents;
18512 unsigned long branch_insn;
18513 bfd_vma veneered_insn_loc, veneer_entry_loc;
18514 bfd_signed_vma branch_offset;
18515 bfd *abfd;
18516 unsigned int loc;
18517
18518 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
18519 data = (struct a8_branch_to_stub_data *) in_arg;
18520
18521 if (stub_entry->target_section != data->writing_section
18522 || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
18523 return TRUE;
18524
18525 contents = data->contents;
18526
18527 /* We use target_section as Cortex-A8 erratum workaround stubs are only
18528 generated when both source and target are in the same section. */
18529 veneered_insn_loc = stub_entry->target_section->output_section->vma
18530 + stub_entry->target_section->output_offset
18531 + stub_entry->source_value;
18532
18533 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
18534 + stub_entry->stub_sec->output_offset
18535 + stub_entry->stub_offset;
18536
18537 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
18538 veneered_insn_loc &= ~3u;
18539
18540 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
18541
18542 abfd = stub_entry->target_section->owner;
18543 loc = stub_entry->source_value;
18544
18545 /* We attempt to avoid this condition by setting stubs_always_after_branch
18546 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
18547 This check is just to be on the safe side... */
18548 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
18549 {
18550 _bfd_error_handler (_("%pB: error: Cortex-A8 erratum stub is "
18551 "allocated in unsafe location"), abfd);
18552 return FALSE;
18553 }
18554
18555 switch (stub_entry->stub_type)
18556 {
18557 case arm_stub_a8_veneer_b:
18558 case arm_stub_a8_veneer_b_cond:
18559 branch_insn = 0xf0009000;
18560 goto jump24;
18561
18562 case arm_stub_a8_veneer_blx:
18563 branch_insn = 0xf000e800;
18564 goto jump24;
18565
18566 case arm_stub_a8_veneer_bl:
18567 {
18568 unsigned int i1, j1, i2, j2, s;
18569
18570 branch_insn = 0xf000d000;
18571
18572 jump24:
18573 if (branch_offset < -16777216 || branch_offset > 16777214)
18574 {
18575 /* There's not much we can do apart from complain if this
18576 happens. */
18577 _bfd_error_handler (_("%pB: error: Cortex-A8 erratum stub out "
18578 "of range (input file too large)"), abfd);
18579 return FALSE;
18580 }
18581
18582 /* i1 = not(j1 eor s), so:
18583 not i1 = j1 eor s
18584 j1 = (not i1) eor s. */
18585
18586 branch_insn |= (branch_offset >> 1) & 0x7ff;
18587 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
18588 i2 = (branch_offset >> 22) & 1;
18589 i1 = (branch_offset >> 23) & 1;
18590 s = (branch_offset >> 24) & 1;
18591 j1 = (!i1) ^ s;
18592 j2 = (!i2) ^ s;
18593 branch_insn |= j2 << 11;
18594 branch_insn |= j1 << 13;
18595 branch_insn |= s << 26;
18596 }
18597 break;
18598
18599 default:
18600 BFD_FAIL ();
18601 return FALSE;
18602 }
18603
18604 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[loc]);
18605 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[loc + 2]);
18606
18607 return TRUE;
18608 }
18609
18610 /* Beginning of stm32l4xx work-around. */
18611
18612 /* Functions encoding instructions necessary for the emission of the
18613 fix-stm32l4xx-629360.
18614 Encoding is extracted from the
18615 ARM (C) Architecture Reference Manual
18616 ARMv7-A and ARMv7-R edition
18617 ARM DDI 0406C.b (ID072512). */
18618
18619 static inline bfd_vma
18620 create_instruction_branch_absolute (int branch_offset)
18621 {
18622 /* A8.8.18 B (A8-334)
18623 B target_address (Encoding T4). */
18624 /* 1111 - 0Sii - iiii - iiii - 10J1 - Jiii - iiii - iiii. */
18625 /* jump offset is: S:I1:I2:imm10:imm11:0. */
18626 /* with : I1 = NOT (J1 EOR S) I2 = NOT (J2 EOR S). */
18627
18628 int s = ((branch_offset & 0x1000000) >> 24);
18629 int j1 = s ^ !((branch_offset & 0x800000) >> 23);
18630 int j2 = s ^ !((branch_offset & 0x400000) >> 22);
18631
18632 if (branch_offset < -(1 << 24) || branch_offset >= (1 << 24))
18633 BFD_ASSERT (0 && "Error: branch out of range. Cannot create branch.");
18634
18635 bfd_vma patched_inst = 0xf0009000
18636 | s << 26 /* S. */
18637 | (((unsigned long) (branch_offset) >> 12) & 0x3ff) << 16 /* imm10. */
18638 | j1 << 13 /* J1. */
18639 | j2 << 11 /* J2. */
18640 | (((unsigned long) (branch_offset) >> 1) & 0x7ff); /* imm11. */
18641
18642 return patched_inst;
18643 }
18644
18645 static inline bfd_vma
18646 create_instruction_ldmia (int base_reg, int wback, int reg_mask)
18647 {
18648 /* A8.8.57 LDM/LDMIA/LDMFD (A8-396)
18649 LDMIA Rn!, {Ra, Rb, Rc, ...} (Encoding T2). */
18650 bfd_vma patched_inst = 0xe8900000
18651 | (/*W=*/wback << 21)
18652 | (base_reg << 16)
18653 | (reg_mask & 0x0000ffff);
18654
18655 return patched_inst;
18656 }
18657
18658 static inline bfd_vma
18659 create_instruction_ldmdb (int base_reg, int wback, int reg_mask)
18660 {
18661 /* A8.8.60 LDMDB/LDMEA (A8-402)
18662 LDMDB Rn!, {Ra, Rb, Rc, ...} (Encoding T1). */
18663 bfd_vma patched_inst = 0xe9100000
18664 | (/*W=*/wback << 21)
18665 | (base_reg << 16)
18666 | (reg_mask & 0x0000ffff);
18667
18668 return patched_inst;
18669 }
18670
18671 static inline bfd_vma
18672 create_instruction_mov (int target_reg, int source_reg)
18673 {
18674 /* A8.8.103 MOV (register) (A8-486)
18675 MOV Rd, Rm (Encoding T1). */
18676 bfd_vma patched_inst = 0x4600
18677 | (target_reg & 0x7)
18678 | ((target_reg & 0x8) >> 3) << 7
18679 | (source_reg << 3);
18680
18681 return patched_inst;
18682 }
18683
18684 static inline bfd_vma
18685 create_instruction_sub (int target_reg, int source_reg, int value)
18686 {
18687 /* A8.8.221 SUB (immediate) (A8-708)
18688 SUB Rd, Rn, #value (Encoding T3). */
18689 bfd_vma patched_inst = 0xf1a00000
18690 | (target_reg << 8)
18691 | (source_reg << 16)
18692 | (/*S=*/0 << 20)
18693 | ((value & 0x800) >> 11) << 26
18694 | ((value & 0x700) >> 8) << 12
18695 | (value & 0x0ff);
18696
18697 return patched_inst;
18698 }
18699
18700 static inline bfd_vma
18701 create_instruction_vldmia (int base_reg, int is_dp, int wback, int num_words,
18702 int first_reg)
18703 {
18704 /* A8.8.332 VLDM (A8-922)
18705 VLMD{MODE} Rn{!}, {list} (Encoding T1 or T2). */
18706 bfd_vma patched_inst = (is_dp ? 0xec900b00 : 0xec900a00)
18707 | (/*W=*/wback << 21)
18708 | (base_reg << 16)
18709 | (num_words & 0x000000ff)
18710 | (((unsigned)first_reg >> 1) & 0x0000000f) << 12
18711 | (first_reg & 0x00000001) << 22;
18712
18713 return patched_inst;
18714 }
18715
18716 static inline bfd_vma
18717 create_instruction_vldmdb (int base_reg, int is_dp, int num_words,
18718 int first_reg)
18719 {
18720 /* A8.8.332 VLDM (A8-922)
18721 VLMD{MODE} Rn!, {} (Encoding T1 or T2). */
18722 bfd_vma patched_inst = (is_dp ? 0xed300b00 : 0xed300a00)
18723 | (base_reg << 16)
18724 | (num_words & 0x000000ff)
18725 | (((unsigned)first_reg >>1 ) & 0x0000000f) << 12
18726 | (first_reg & 0x00000001) << 22;
18727
18728 return patched_inst;
18729 }
18730
18731 static inline bfd_vma
18732 create_instruction_udf_w (int value)
18733 {
18734 /* A8.8.247 UDF (A8-758)
18735 Undefined (Encoding T2). */
18736 bfd_vma patched_inst = 0xf7f0a000
18737 | (value & 0x00000fff)
18738 | (value & 0x000f0000) << 16;
18739
18740 return patched_inst;
18741 }
18742
18743 static inline bfd_vma
18744 create_instruction_udf (int value)
18745 {
18746 /* A8.8.247 UDF (A8-758)
18747 Undefined (Encoding T1). */
18748 bfd_vma patched_inst = 0xde00
18749 | (value & 0xff);
18750
18751 return patched_inst;
18752 }
18753
18754 /* Functions writing an instruction in memory, returning the next
18755 memory position to write to. */
18756
18757 static inline bfd_byte *
18758 push_thumb2_insn32 (struct elf32_arm_link_hash_table * htab,
18759 bfd * output_bfd, bfd_byte *pt, insn32 insn)
18760 {
18761 put_thumb2_insn (htab, output_bfd, insn, pt);
18762 return pt + 4;
18763 }
18764
18765 static inline bfd_byte *
18766 push_thumb2_insn16 (struct elf32_arm_link_hash_table * htab,
18767 bfd * output_bfd, bfd_byte *pt, insn32 insn)
18768 {
18769 put_thumb_insn (htab, output_bfd, insn, pt);
18770 return pt + 2;
18771 }
18772
18773 /* Function filling up a region in memory with T1 and T2 UDFs taking
18774 care of alignment. */
18775
18776 static bfd_byte *
18777 stm32l4xx_fill_stub_udf (struct elf32_arm_link_hash_table * htab,
18778 bfd * output_bfd,
18779 const bfd_byte * const base_stub_contents,
18780 bfd_byte * const from_stub_contents,
18781 const bfd_byte * const end_stub_contents)
18782 {
18783 bfd_byte *current_stub_contents = from_stub_contents;
18784
18785 /* Fill the remaining of the stub with deterministic contents : UDF
18786 instructions.
18787 Check if realignment is needed on modulo 4 frontier using T1, to
18788 further use T2. */
18789 if ((current_stub_contents < end_stub_contents)
18790 && !((current_stub_contents - base_stub_contents) % 2)
18791 && ((current_stub_contents - base_stub_contents) % 4))
18792 current_stub_contents =
18793 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18794 create_instruction_udf (0));
18795
18796 for (; current_stub_contents < end_stub_contents;)
18797 current_stub_contents =
18798 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18799 create_instruction_udf_w (0));
18800
18801 return current_stub_contents;
18802 }
18803
18804 /* Functions writing the stream of instructions equivalent to the
18805 derived sequence for ldmia, ldmdb, vldm respectively. */
18806
18807 static void
18808 stm32l4xx_create_replacing_stub_ldmia (struct elf32_arm_link_hash_table * htab,
18809 bfd * output_bfd,
18810 const insn32 initial_insn,
18811 const bfd_byte *const initial_insn_addr,
18812 bfd_byte *const base_stub_contents)
18813 {
18814 int wback = (initial_insn & 0x00200000) >> 21;
18815 int ri, rn = (initial_insn & 0x000F0000) >> 16;
18816 int insn_all_registers = initial_insn & 0x0000ffff;
18817 int insn_low_registers, insn_high_registers;
18818 int usable_register_mask;
18819 int nb_registers = elf32_arm_popcount (insn_all_registers);
18820 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
18821 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
18822 bfd_byte *current_stub_contents = base_stub_contents;
18823
18824 BFD_ASSERT (is_thumb2_ldmia (initial_insn));
18825
18826 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
18827 smaller than 8 registers load sequences that do not cause the
18828 hardware issue. */
18829 if (nb_registers <= 8)
18830 {
18831 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
18832 current_stub_contents =
18833 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18834 initial_insn);
18835
18836 /* B initial_insn_addr+4. */
18837 if (!restore_pc)
18838 current_stub_contents =
18839 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18840 create_instruction_branch_absolute
18841 (initial_insn_addr - current_stub_contents));
18842
18843 /* Fill the remaining of the stub with deterministic contents. */
18844 current_stub_contents =
18845 stm32l4xx_fill_stub_udf (htab, output_bfd,
18846 base_stub_contents, current_stub_contents,
18847 base_stub_contents +
18848 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
18849
18850 return;
18851 }
18852
18853 /* - reg_list[13] == 0. */
18854 BFD_ASSERT ((insn_all_registers & (1 << 13))==0);
18855
18856 /* - reg_list[14] & reg_list[15] != 1. */
18857 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
18858
18859 /* - if (wback==1) reg_list[rn] == 0. */
18860 BFD_ASSERT (!wback || !restore_rn);
18861
18862 /* - nb_registers > 8. */
18863 BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8);
18864
18865 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
18866
18867 /* In the following algorithm, we split this wide LDM using 2 LDM insns:
18868 - One with the 7 lowest registers (register mask 0x007F)
18869 This LDM will finally contain between 2 and 7 registers
18870 - One with the 7 highest registers (register mask 0xDF80)
18871 This ldm will finally contain between 2 and 7 registers. */
18872 insn_low_registers = insn_all_registers & 0x007F;
18873 insn_high_registers = insn_all_registers & 0xDF80;
18874
18875 /* A spare register may be needed during this veneer to temporarily
18876 handle the base register. This register will be restored with the
18877 last LDM operation.
18878 The usable register may be any general purpose register (that
18879 excludes PC, SP, LR : register mask is 0x1FFF). */
18880 usable_register_mask = 0x1FFF;
18881
18882 /* Generate the stub function. */
18883 if (wback)
18884 {
18885 /* LDMIA Rn!, {R-low-register-list} : (Encoding T2). */
18886 current_stub_contents =
18887 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18888 create_instruction_ldmia
18889 (rn, /*wback=*/1, insn_low_registers));
18890
18891 /* LDMIA Rn!, {R-high-register-list} : (Encoding T2). */
18892 current_stub_contents =
18893 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18894 create_instruction_ldmia
18895 (rn, /*wback=*/1, insn_high_registers));
18896 if (!restore_pc)
18897 {
18898 /* B initial_insn_addr+4. */
18899 current_stub_contents =
18900 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18901 create_instruction_branch_absolute
18902 (initial_insn_addr - current_stub_contents));
18903 }
18904 }
18905 else /* if (!wback). */
18906 {
18907 ri = rn;
18908
18909 /* If Rn is not part of the high-register-list, move it there. */
18910 if (!(insn_high_registers & (1 << rn)))
18911 {
18912 /* Choose a Ri in the high-register-list that will be restored. */
18913 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18914
18915 /* MOV Ri, Rn. */
18916 current_stub_contents =
18917 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18918 create_instruction_mov (ri, rn));
18919 }
18920
18921 /* LDMIA Ri!, {R-low-register-list} : (Encoding T2). */
18922 current_stub_contents =
18923 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18924 create_instruction_ldmia
18925 (ri, /*wback=*/1, insn_low_registers));
18926
18927 /* LDMIA Ri, {R-high-register-list} : (Encoding T2). */
18928 current_stub_contents =
18929 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18930 create_instruction_ldmia
18931 (ri, /*wback=*/0, insn_high_registers));
18932
18933 if (!restore_pc)
18934 {
18935 /* B initial_insn_addr+4. */
18936 current_stub_contents =
18937 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18938 create_instruction_branch_absolute
18939 (initial_insn_addr - current_stub_contents));
18940 }
18941 }
18942
18943 /* Fill the remaining of the stub with deterministic contents. */
18944 current_stub_contents =
18945 stm32l4xx_fill_stub_udf (htab, output_bfd,
18946 base_stub_contents, current_stub_contents,
18947 base_stub_contents +
18948 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
18949 }
18950
18951 static void
18952 stm32l4xx_create_replacing_stub_ldmdb (struct elf32_arm_link_hash_table * htab,
18953 bfd * output_bfd,
18954 const insn32 initial_insn,
18955 const bfd_byte *const initial_insn_addr,
18956 bfd_byte *const base_stub_contents)
18957 {
18958 int wback = (initial_insn & 0x00200000) >> 21;
18959 int ri, rn = (initial_insn & 0x000f0000) >> 16;
18960 int insn_all_registers = initial_insn & 0x0000ffff;
18961 int insn_low_registers, insn_high_registers;
18962 int usable_register_mask;
18963 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
18964 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
18965 int nb_registers = elf32_arm_popcount (insn_all_registers);
18966 bfd_byte *current_stub_contents = base_stub_contents;
18967
18968 BFD_ASSERT (is_thumb2_ldmdb (initial_insn));
18969
18970 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
18971 smaller than 8 registers load sequences that do not cause the
18972 hardware issue. */
18973 if (nb_registers <= 8)
18974 {
18975 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
18976 current_stub_contents =
18977 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18978 initial_insn);
18979
18980 /* B initial_insn_addr+4. */
18981 current_stub_contents =
18982 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18983 create_instruction_branch_absolute
18984 (initial_insn_addr - current_stub_contents));
18985
18986 /* Fill the remaining of the stub with deterministic contents. */
18987 current_stub_contents =
18988 stm32l4xx_fill_stub_udf (htab, output_bfd,
18989 base_stub_contents, current_stub_contents,
18990 base_stub_contents +
18991 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
18992
18993 return;
18994 }
18995
18996 /* - reg_list[13] == 0. */
18997 BFD_ASSERT ((insn_all_registers & (1 << 13)) == 0);
18998
18999 /* - reg_list[14] & reg_list[15] != 1. */
19000 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
19001
19002 /* - if (wback==1) reg_list[rn] == 0. */
19003 BFD_ASSERT (!wback || !restore_rn);
19004
19005 /* - nb_registers > 8. */
19006 BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8);
19007
19008 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
19009
19010 /* In the following algorithm, we split this wide LDM using 2 LDM insn:
19011 - One with the 7 lowest registers (register mask 0x007F)
19012 This LDM will finally contain between 2 and 7 registers
19013 - One with the 7 highest registers (register mask 0xDF80)
19014 This ldm will finally contain between 2 and 7 registers. */
19015 insn_low_registers = insn_all_registers & 0x007F;
19016 insn_high_registers = insn_all_registers & 0xDF80;
19017
19018 /* A spare register may be needed during this veneer to temporarily
19019 handle the base register. This register will be restored with
19020 the last LDM operation.
19021 The usable register may be any general purpose register (that excludes
19022 PC, SP, LR : register mask is 0x1FFF). */
19023 usable_register_mask = 0x1FFF;
19024
19025 /* Generate the stub function. */
19026 if (!wback && !restore_pc && !restore_rn)
19027 {
19028 /* Choose a Ri in the low-register-list that will be restored. */
19029 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
19030
19031 /* MOV Ri, Rn. */
19032 current_stub_contents =
19033 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19034 create_instruction_mov (ri, rn));
19035
19036 /* LDMDB Ri!, {R-high-register-list}. */
19037 current_stub_contents =
19038 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19039 create_instruction_ldmdb
19040 (ri, /*wback=*/1, insn_high_registers));
19041
19042 /* LDMDB Ri, {R-low-register-list}. */
19043 current_stub_contents =
19044 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19045 create_instruction_ldmdb
19046 (ri, /*wback=*/0, insn_low_registers));
19047
19048 /* B initial_insn_addr+4. */
19049 current_stub_contents =
19050 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19051 create_instruction_branch_absolute
19052 (initial_insn_addr - current_stub_contents));
19053 }
19054 else if (wback && !restore_pc && !restore_rn)
19055 {
19056 /* LDMDB Rn!, {R-high-register-list}. */
19057 current_stub_contents =
19058 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19059 create_instruction_ldmdb
19060 (rn, /*wback=*/1, insn_high_registers));
19061
19062 /* LDMDB Rn!, {R-low-register-list}. */
19063 current_stub_contents =
19064 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19065 create_instruction_ldmdb
19066 (rn, /*wback=*/1, insn_low_registers));
19067
19068 /* B initial_insn_addr+4. */
19069 current_stub_contents =
19070 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19071 create_instruction_branch_absolute
19072 (initial_insn_addr - current_stub_contents));
19073 }
19074 else if (!wback && restore_pc && !restore_rn)
19075 {
19076 /* Choose a Ri in the high-register-list that will be restored. */
19077 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19078
19079 /* SUB Ri, Rn, #(4*nb_registers). */
19080 current_stub_contents =
19081 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19082 create_instruction_sub (ri, rn, (4 * nb_registers)));
19083
19084 /* LDMIA Ri!, {R-low-register-list}. */
19085 current_stub_contents =
19086 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19087 create_instruction_ldmia
19088 (ri, /*wback=*/1, insn_low_registers));
19089
19090 /* LDMIA Ri, {R-high-register-list}. */
19091 current_stub_contents =
19092 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19093 create_instruction_ldmia
19094 (ri, /*wback=*/0, insn_high_registers));
19095 }
19096 else if (wback && restore_pc && !restore_rn)
19097 {
19098 /* Choose a Ri in the high-register-list that will be restored. */
19099 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19100
19101 /* SUB Rn, Rn, #(4*nb_registers) */
19102 current_stub_contents =
19103 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19104 create_instruction_sub (rn, rn, (4 * nb_registers)));
19105
19106 /* MOV Ri, Rn. */
19107 current_stub_contents =
19108 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19109 create_instruction_mov (ri, rn));
19110
19111 /* LDMIA Ri!, {R-low-register-list}. */
19112 current_stub_contents =
19113 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19114 create_instruction_ldmia
19115 (ri, /*wback=*/1, insn_low_registers));
19116
19117 /* LDMIA Ri, {R-high-register-list}. */
19118 current_stub_contents =
19119 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19120 create_instruction_ldmia
19121 (ri, /*wback=*/0, insn_high_registers));
19122 }
19123 else if (!wback && !restore_pc && restore_rn)
19124 {
19125 ri = rn;
19126 if (!(insn_low_registers & (1 << rn)))
19127 {
19128 /* Choose a Ri in the low-register-list that will be restored. */
19129 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
19130
19131 /* MOV Ri, Rn. */
19132 current_stub_contents =
19133 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19134 create_instruction_mov (ri, rn));
19135 }
19136
19137 /* LDMDB Ri!, {R-high-register-list}. */
19138 current_stub_contents =
19139 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19140 create_instruction_ldmdb
19141 (ri, /*wback=*/1, insn_high_registers));
19142
19143 /* LDMDB Ri, {R-low-register-list}. */
19144 current_stub_contents =
19145 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19146 create_instruction_ldmdb
19147 (ri, /*wback=*/0, insn_low_registers));
19148
19149 /* B initial_insn_addr+4. */
19150 current_stub_contents =
19151 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19152 create_instruction_branch_absolute
19153 (initial_insn_addr - current_stub_contents));
19154 }
19155 else if (!wback && restore_pc && restore_rn)
19156 {
19157 ri = rn;
19158 if (!(insn_high_registers & (1 << rn)))
19159 {
19160 /* Choose a Ri in the high-register-list that will be restored. */
19161 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19162 }
19163
19164 /* SUB Ri, Rn, #(4*nb_registers). */
19165 current_stub_contents =
19166 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19167 create_instruction_sub (ri, rn, (4 * nb_registers)));
19168
19169 /* LDMIA Ri!, {R-low-register-list}. */
19170 current_stub_contents =
19171 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19172 create_instruction_ldmia
19173 (ri, /*wback=*/1, insn_low_registers));
19174
19175 /* LDMIA Ri, {R-high-register-list}. */
19176 current_stub_contents =
19177 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19178 create_instruction_ldmia
19179 (ri, /*wback=*/0, insn_high_registers));
19180 }
19181 else if (wback && restore_rn)
19182 {
19183 /* The assembler should not have accepted to encode this. */
19184 BFD_ASSERT (0 && "Cannot patch an instruction that has an "
19185 "undefined behavior.\n");
19186 }
19187
19188 /* Fill the remaining of the stub with deterministic contents. */
19189 current_stub_contents =
19190 stm32l4xx_fill_stub_udf (htab, output_bfd,
19191 base_stub_contents, current_stub_contents,
19192 base_stub_contents +
19193 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19194
19195 }
19196
19197 static void
19198 stm32l4xx_create_replacing_stub_vldm (struct elf32_arm_link_hash_table * htab,
19199 bfd * output_bfd,
19200 const insn32 initial_insn,
19201 const bfd_byte *const initial_insn_addr,
19202 bfd_byte *const base_stub_contents)
19203 {
19204 int num_words = initial_insn & 0xff;
19205 bfd_byte *current_stub_contents = base_stub_contents;
19206
19207 BFD_ASSERT (is_thumb2_vldm (initial_insn));
19208
19209 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
19210 smaller than 8 words load sequences that do not cause the
19211 hardware issue. */
19212 if (num_words <= 8)
19213 {
19214 /* Untouched instruction. */
19215 current_stub_contents =
19216 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19217 initial_insn);
19218
19219 /* B initial_insn_addr+4. */
19220 current_stub_contents =
19221 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19222 create_instruction_branch_absolute
19223 (initial_insn_addr - current_stub_contents));
19224 }
19225 else
19226 {
19227 bfd_boolean is_dp = /* DP encoding. */
19228 (initial_insn & 0xfe100f00) == 0xec100b00;
19229 bfd_boolean is_ia_nobang = /* (IA without !). */
19230 (((initial_insn << 7) >> 28) & 0xd) == 0x4;
19231 bfd_boolean is_ia_bang = /* (IA with !) - includes VPOP. */
19232 (((initial_insn << 7) >> 28) & 0xd) == 0x5;
19233 bfd_boolean is_db_bang = /* (DB with !). */
19234 (((initial_insn << 7) >> 28) & 0xd) == 0x9;
19235 int base_reg = ((unsigned int) initial_insn << 12) >> 28;
19236 /* d = UInt (Vd:D);. */
19237 int first_reg = ((((unsigned int) initial_insn << 16) >> 28) << 1)
19238 | (((unsigned int)initial_insn << 9) >> 31);
19239
19240 /* Compute the number of 8-words chunks needed to split. */
19241 int chunks = (num_words % 8) ? (num_words / 8 + 1) : (num_words / 8);
19242 int chunk;
19243
19244 /* The test coverage has been done assuming the following
19245 hypothesis that exactly one of the previous is_ predicates is
19246 true. */
19247 BFD_ASSERT ( (is_ia_nobang ^ is_ia_bang ^ is_db_bang)
19248 && !(is_ia_nobang & is_ia_bang & is_db_bang));
19249
19250 /* We treat the cutting of the words in one pass for all
19251 cases, then we emit the adjustments:
19252
19253 vldm rx, {...}
19254 -> vldm rx!, {8_words_or_less} for each needed 8_word
19255 -> sub rx, rx, #size (list)
19256
19257 vldm rx!, {...}
19258 -> vldm rx!, {8_words_or_less} for each needed 8_word
19259 This also handles vpop instruction (when rx is sp)
19260
19261 vldmd rx!, {...}
19262 -> vldmb rx!, {8_words_or_less} for each needed 8_word. */
19263 for (chunk = 0; chunk < chunks; ++chunk)
19264 {
19265 bfd_vma new_insn = 0;
19266
19267 if (is_ia_nobang || is_ia_bang)
19268 {
19269 new_insn = create_instruction_vldmia
19270 (base_reg,
19271 is_dp,
19272 /*wback= . */1,
19273 chunks - (chunk + 1) ?
19274 8 : num_words - chunk * 8,
19275 first_reg + chunk * 8);
19276 }
19277 else if (is_db_bang)
19278 {
19279 new_insn = create_instruction_vldmdb
19280 (base_reg,
19281 is_dp,
19282 chunks - (chunk + 1) ?
19283 8 : num_words - chunk * 8,
19284 first_reg + chunk * 8);
19285 }
19286
19287 if (new_insn)
19288 current_stub_contents =
19289 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19290 new_insn);
19291 }
19292
19293 /* Only this case requires the base register compensation
19294 subtract. */
19295 if (is_ia_nobang)
19296 {
19297 current_stub_contents =
19298 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19299 create_instruction_sub
19300 (base_reg, base_reg, 4*num_words));
19301 }
19302
19303 /* B initial_insn_addr+4. */
19304 current_stub_contents =
19305 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19306 create_instruction_branch_absolute
19307 (initial_insn_addr - current_stub_contents));
19308 }
19309
19310 /* Fill the remaining of the stub with deterministic contents. */
19311 current_stub_contents =
19312 stm32l4xx_fill_stub_udf (htab, output_bfd,
19313 base_stub_contents, current_stub_contents,
19314 base_stub_contents +
19315 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
19316 }
19317
19318 static void
19319 stm32l4xx_create_replacing_stub (struct elf32_arm_link_hash_table * htab,
19320 bfd * output_bfd,
19321 const insn32 wrong_insn,
19322 const bfd_byte *const wrong_insn_addr,
19323 bfd_byte *const stub_contents)
19324 {
19325 if (is_thumb2_ldmia (wrong_insn))
19326 stm32l4xx_create_replacing_stub_ldmia (htab, output_bfd,
19327 wrong_insn, wrong_insn_addr,
19328 stub_contents);
19329 else if (is_thumb2_ldmdb (wrong_insn))
19330 stm32l4xx_create_replacing_stub_ldmdb (htab, output_bfd,
19331 wrong_insn, wrong_insn_addr,
19332 stub_contents);
19333 else if (is_thumb2_vldm (wrong_insn))
19334 stm32l4xx_create_replacing_stub_vldm (htab, output_bfd,
19335 wrong_insn, wrong_insn_addr,
19336 stub_contents);
19337 }
19338
19339 /* End of stm32l4xx work-around. */
19340
19341
19342 /* Do code byteswapping. Return FALSE afterwards so that the section is
19343 written out as normal. */
19344
19345 static bfd_boolean
19346 elf32_arm_write_section (bfd *output_bfd,
19347 struct bfd_link_info *link_info,
19348 asection *sec,
19349 bfd_byte *contents)
19350 {
19351 unsigned int mapcount, errcount;
19352 _arm_elf_section_data *arm_data;
19353 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
19354 elf32_arm_section_map *map;
19355 elf32_vfp11_erratum_list *errnode;
19356 elf32_stm32l4xx_erratum_list *stm32l4xx_errnode;
19357 bfd_vma ptr;
19358 bfd_vma end;
19359 bfd_vma offset = sec->output_section->vma + sec->output_offset;
19360 bfd_byte tmp;
19361 unsigned int i;
19362
19363 if (globals == NULL)
19364 return FALSE;
19365
19366 /* If this section has not been allocated an _arm_elf_section_data
19367 structure then we cannot record anything. */
19368 arm_data = get_arm_elf_section_data (sec);
19369 if (arm_data == NULL)
19370 return FALSE;
19371
19372 mapcount = arm_data->mapcount;
19373 map = arm_data->map;
19374 errcount = arm_data->erratumcount;
19375
19376 if (errcount != 0)
19377 {
19378 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
19379
19380 for (errnode = arm_data->erratumlist; errnode != 0;
19381 errnode = errnode->next)
19382 {
19383 bfd_vma target = errnode->vma - offset;
19384
19385 switch (errnode->type)
19386 {
19387 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
19388 {
19389 bfd_vma branch_to_veneer;
19390 /* Original condition code of instruction, plus bit mask for
19391 ARM B instruction. */
19392 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
19393 | 0x0a000000;
19394
19395 /* The instruction is before the label. */
19396 target -= 4;
19397
19398 /* Above offset included in -4 below. */
19399 branch_to_veneer = errnode->u.b.veneer->vma
19400 - errnode->vma - 4;
19401
19402 if ((signed) branch_to_veneer < -(1 << 25)
19403 || (signed) branch_to_veneer >= (1 << 25))
19404 _bfd_error_handler (_("%pB: error: VFP11 veneer out of "
19405 "range"), output_bfd);
19406
19407 insn |= (branch_to_veneer >> 2) & 0xffffff;
19408 contents[endianflip ^ target] = insn & 0xff;
19409 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
19410 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
19411 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
19412 }
19413 break;
19414
19415 case VFP11_ERRATUM_ARM_VENEER:
19416 {
19417 bfd_vma branch_from_veneer;
19418 unsigned int insn;
19419
19420 /* Take size of veneer into account. */
19421 branch_from_veneer = errnode->u.v.branch->vma
19422 - errnode->vma - 12;
19423
19424 if ((signed) branch_from_veneer < -(1 << 25)
19425 || (signed) branch_from_veneer >= (1 << 25))
19426 _bfd_error_handler (_("%pB: error: VFP11 veneer out of "
19427 "range"), output_bfd);
19428
19429 /* Original instruction. */
19430 insn = errnode->u.v.branch->u.b.vfp_insn;
19431 contents[endianflip ^ target] = insn & 0xff;
19432 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
19433 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
19434 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
19435
19436 /* Branch back to insn after original insn. */
19437 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
19438 contents[endianflip ^ (target + 4)] = insn & 0xff;
19439 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
19440 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
19441 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
19442 }
19443 break;
19444
19445 default:
19446 abort ();
19447 }
19448 }
19449 }
19450
19451 if (arm_data->stm32l4xx_erratumcount != 0)
19452 {
19453 for (stm32l4xx_errnode = arm_data->stm32l4xx_erratumlist;
19454 stm32l4xx_errnode != 0;
19455 stm32l4xx_errnode = stm32l4xx_errnode->next)
19456 {
19457 bfd_vma target = stm32l4xx_errnode->vma - offset;
19458
19459 switch (stm32l4xx_errnode->type)
19460 {
19461 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
19462 {
19463 unsigned int insn;
19464 bfd_vma branch_to_veneer =
19465 stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma;
19466
19467 if ((signed) branch_to_veneer < -(1 << 24)
19468 || (signed) branch_to_veneer >= (1 << 24))
19469 {
19470 bfd_vma out_of_range =
19471 ((signed) branch_to_veneer < -(1 << 24)) ?
19472 - branch_to_veneer - (1 << 24) :
19473 ((signed) branch_to_veneer >= (1 << 24)) ?
19474 branch_to_veneer - (1 << 24) : 0;
19475
19476 _bfd_error_handler
19477 (_("%pB(%#" PRIx64 "): error: "
19478 "cannot create STM32L4XX veneer; "
19479 "jump out of range by %" PRId64 " bytes; "
19480 "cannot encode branch instruction"),
19481 output_bfd,
19482 (uint64_t) (stm32l4xx_errnode->vma - 4),
19483 (int64_t) out_of_range);
19484 continue;
19485 }
19486
19487 insn = create_instruction_branch_absolute
19488 (stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma);
19489
19490 /* The instruction is before the label. */
19491 target -= 4;
19492
19493 put_thumb2_insn (globals, output_bfd,
19494 (bfd_vma) insn, contents + target);
19495 }
19496 break;
19497
19498 case STM32L4XX_ERRATUM_VENEER:
19499 {
19500 bfd_byte * veneer;
19501 bfd_byte * veneer_r;
19502 unsigned int insn;
19503
19504 veneer = contents + target;
19505 veneer_r = veneer
19506 + stm32l4xx_errnode->u.b.veneer->vma
19507 - stm32l4xx_errnode->vma - 4;
19508
19509 if ((signed) (veneer_r - veneer -
19510 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE >
19511 STM32L4XX_ERRATUM_LDM_VENEER_SIZE ?
19512 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE :
19513 STM32L4XX_ERRATUM_LDM_VENEER_SIZE) < -(1 << 24)
19514 || (signed) (veneer_r - veneer) >= (1 << 24))
19515 {
19516 _bfd_error_handler (_("%pB: error: cannot create STM32L4XX "
19517 "veneer"), output_bfd);
19518 continue;
19519 }
19520
19521 /* Original instruction. */
19522 insn = stm32l4xx_errnode->u.v.branch->u.b.insn;
19523
19524 stm32l4xx_create_replacing_stub
19525 (globals, output_bfd, insn, (void*)veneer_r, (void*)veneer);
19526 }
19527 break;
19528
19529 default:
19530 abort ();
19531 }
19532 }
19533 }
19534
19535 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
19536 {
19537 arm_unwind_table_edit *edit_node
19538 = arm_data->u.exidx.unwind_edit_list;
19539 /* Now, sec->size is the size of the section we will write. The original
19540 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
19541 markers) was sec->rawsize. (This isn't the case if we perform no
19542 edits, then rawsize will be zero and we should use size). */
19543 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
19544 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
19545 unsigned int in_index, out_index;
19546 bfd_vma add_to_offsets = 0;
19547
19548 if (edited_contents == NULL)
19549 return FALSE;
19550 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
19551 {
19552 if (edit_node)
19553 {
19554 unsigned int edit_index = edit_node->index;
19555
19556 if (in_index < edit_index && in_index * 8 < input_size)
19557 {
19558 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
19559 contents + in_index * 8, add_to_offsets);
19560 out_index++;
19561 in_index++;
19562 }
19563 else if (in_index == edit_index
19564 || (in_index * 8 >= input_size
19565 && edit_index == UINT_MAX))
19566 {
19567 switch (edit_node->type)
19568 {
19569 case DELETE_EXIDX_ENTRY:
19570 in_index++;
19571 add_to_offsets += 8;
19572 break;
19573
19574 case INSERT_EXIDX_CANTUNWIND_AT_END:
19575 {
19576 asection *text_sec = edit_node->linked_section;
19577 bfd_vma text_offset = text_sec->output_section->vma
19578 + text_sec->output_offset
19579 + text_sec->size;
19580 bfd_vma exidx_offset = offset + out_index * 8;
19581 unsigned long prel31_offset;
19582
19583 /* Note: this is meant to be equivalent to an
19584 R_ARM_PREL31 relocation. These synthetic
19585 EXIDX_CANTUNWIND markers are not relocated by the
19586 usual BFD method. */
19587 prel31_offset = (text_offset - exidx_offset)
19588 & 0x7ffffffful;
19589 if (bfd_link_relocatable (link_info))
19590 {
19591 /* Here relocation for new EXIDX_CANTUNWIND is
19592 created, so there is no need to
19593 adjust offset by hand. */
19594 prel31_offset = text_sec->output_offset
19595 + text_sec->size;
19596 }
19597
19598 /* First address we can't unwind. */
19599 bfd_put_32 (output_bfd, prel31_offset,
19600 &edited_contents[out_index * 8]);
19601
19602 /* Code for EXIDX_CANTUNWIND. */
19603 bfd_put_32 (output_bfd, 0x1,
19604 &edited_contents[out_index * 8 + 4]);
19605
19606 out_index++;
19607 add_to_offsets -= 8;
19608 }
19609 break;
19610 }
19611
19612 edit_node = edit_node->next;
19613 }
19614 }
19615 else
19616 {
19617 /* No more edits, copy remaining entries verbatim. */
19618 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
19619 contents + in_index * 8, add_to_offsets);
19620 out_index++;
19621 in_index++;
19622 }
19623 }
19624
19625 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
19626 bfd_set_section_contents (output_bfd, sec->output_section,
19627 edited_contents,
19628 (file_ptr) sec->output_offset, sec->size);
19629
19630 return TRUE;
19631 }
19632
19633 /* Fix code to point to Cortex-A8 erratum stubs. */
19634 if (globals->fix_cortex_a8)
19635 {
19636 struct a8_branch_to_stub_data data;
19637
19638 data.writing_section = sec;
19639 data.contents = contents;
19640
19641 bfd_hash_traverse (& globals->stub_hash_table, make_branch_to_a8_stub,
19642 & data);
19643 }
19644
19645 if (mapcount == 0)
19646 return FALSE;
19647
19648 if (globals->byteswap_code)
19649 {
19650 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
19651
19652 ptr = map[0].vma;
19653 for (i = 0; i < mapcount; i++)
19654 {
19655 if (i == mapcount - 1)
19656 end = sec->size;
19657 else
19658 end = map[i + 1].vma;
19659
19660 switch (map[i].type)
19661 {
19662 case 'a':
19663 /* Byte swap code words. */
19664 while (ptr + 3 < end)
19665 {
19666 tmp = contents[ptr];
19667 contents[ptr] = contents[ptr + 3];
19668 contents[ptr + 3] = tmp;
19669 tmp = contents[ptr + 1];
19670 contents[ptr + 1] = contents[ptr + 2];
19671 contents[ptr + 2] = tmp;
19672 ptr += 4;
19673 }
19674 break;
19675
19676 case 't':
19677 /* Byte swap code halfwords. */
19678 while (ptr + 1 < end)
19679 {
19680 tmp = contents[ptr];
19681 contents[ptr] = contents[ptr + 1];
19682 contents[ptr + 1] = tmp;
19683 ptr += 2;
19684 }
19685 break;
19686
19687 case 'd':
19688 /* Leave data alone. */
19689 break;
19690 }
19691 ptr = end;
19692 }
19693 }
19694
19695 free (map);
19696 arm_data->mapcount = -1;
19697 arm_data->mapsize = 0;
19698 arm_data->map = NULL;
19699
19700 return FALSE;
19701 }
19702
19703 /* Mangle thumb function symbols as we read them in. */
19704
19705 static bfd_boolean
19706 elf32_arm_swap_symbol_in (bfd * abfd,
19707 const void *psrc,
19708 const void *pshn,
19709 Elf_Internal_Sym *dst)
19710 {
19711 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
19712 return FALSE;
19713 dst->st_target_internal = 0;
19714
19715 /* New EABI objects mark thumb function symbols by setting the low bit of
19716 the address. */
19717 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
19718 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
19719 {
19720 if (dst->st_value & 1)
19721 {
19722 dst->st_value &= ~(bfd_vma) 1;
19723 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal,
19724 ST_BRANCH_TO_THUMB);
19725 }
19726 else
19727 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_ARM);
19728 }
19729 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
19730 {
19731 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
19732 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_THUMB);
19733 }
19734 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
19735 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_LONG);
19736 else
19737 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_UNKNOWN);
19738
19739 return TRUE;
19740 }
19741
19742
19743 /* Mangle thumb function symbols as we write them out. */
19744
19745 static void
19746 elf32_arm_swap_symbol_out (bfd *abfd,
19747 const Elf_Internal_Sym *src,
19748 void *cdst,
19749 void *shndx)
19750 {
19751 Elf_Internal_Sym newsym;
19752
19753 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
19754 of the address set, as per the new EABI. We do this unconditionally
19755 because objcopy does not set the elf header flags until after
19756 it writes out the symbol table. */
19757 if (ARM_GET_SYM_BRANCH_TYPE (src->st_target_internal) == ST_BRANCH_TO_THUMB)
19758 {
19759 newsym = *src;
19760 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
19761 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
19762 if (newsym.st_shndx != SHN_UNDEF)
19763 {
19764 /* Do this only for defined symbols. At link type, the static
19765 linker will simulate the work of dynamic linker of resolving
19766 symbols and will carry over the thumbness of found symbols to
19767 the output symbol table. It's not clear how it happens, but
19768 the thumbness of undefined symbols can well be different at
19769 runtime, and writing '1' for them will be confusing for users
19770 and possibly for dynamic linker itself.
19771 */
19772 newsym.st_value |= 1;
19773 }
19774
19775 src = &newsym;
19776 }
19777 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
19778 }
19779
19780 /* Add the PT_ARM_EXIDX program header. */
19781
19782 static bfd_boolean
19783 elf32_arm_modify_segment_map (bfd *abfd,
19784 struct bfd_link_info *info ATTRIBUTE_UNUSED)
19785 {
19786 struct elf_segment_map *m;
19787 asection *sec;
19788
19789 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
19790 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
19791 {
19792 /* If there is already a PT_ARM_EXIDX header, then we do not
19793 want to add another one. This situation arises when running
19794 "strip"; the input binary already has the header. */
19795 m = elf_seg_map (abfd);
19796 while (m && m->p_type != PT_ARM_EXIDX)
19797 m = m->next;
19798 if (!m)
19799 {
19800 m = (struct elf_segment_map *)
19801 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
19802 if (m == NULL)
19803 return FALSE;
19804 m->p_type = PT_ARM_EXIDX;
19805 m->count = 1;
19806 m->sections[0] = sec;
19807
19808 m->next = elf_seg_map (abfd);
19809 elf_seg_map (abfd) = m;
19810 }
19811 }
19812
19813 return TRUE;
19814 }
19815
19816 /* We may add a PT_ARM_EXIDX program header. */
19817
19818 static int
19819 elf32_arm_additional_program_headers (bfd *abfd,
19820 struct bfd_link_info *info ATTRIBUTE_UNUSED)
19821 {
19822 asection *sec;
19823
19824 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
19825 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
19826 return 1;
19827 else
19828 return 0;
19829 }
19830
19831 /* Hook called by the linker routine which adds symbols from an object
19832 file. */
19833
19834 static bfd_boolean
19835 elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
19836 Elf_Internal_Sym *sym, const char **namep,
19837 flagword *flagsp, asection **secp, bfd_vma *valp)
19838 {
19839 if (elf32_arm_hash_table (info) == NULL)
19840 return FALSE;
19841
19842 if (elf32_arm_hash_table (info)->root.target_os == is_vxworks
19843 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
19844 flagsp, secp, valp))
19845 return FALSE;
19846
19847 return TRUE;
19848 }
19849
19850 /* We use this to override swap_symbol_in and swap_symbol_out. */
19851 const struct elf_size_info elf32_arm_size_info =
19852 {
19853 sizeof (Elf32_External_Ehdr),
19854 sizeof (Elf32_External_Phdr),
19855 sizeof (Elf32_External_Shdr),
19856 sizeof (Elf32_External_Rel),
19857 sizeof (Elf32_External_Rela),
19858 sizeof (Elf32_External_Sym),
19859 sizeof (Elf32_External_Dyn),
19860 sizeof (Elf_External_Note),
19861 4,
19862 1,
19863 32, 2,
19864 ELFCLASS32, EV_CURRENT,
19865 bfd_elf32_write_out_phdrs,
19866 bfd_elf32_write_shdrs_and_ehdr,
19867 bfd_elf32_checksum_contents,
19868 bfd_elf32_write_relocs,
19869 elf32_arm_swap_symbol_in,
19870 elf32_arm_swap_symbol_out,
19871 bfd_elf32_slurp_reloc_table,
19872 bfd_elf32_slurp_symbol_table,
19873 bfd_elf32_swap_dyn_in,
19874 bfd_elf32_swap_dyn_out,
19875 bfd_elf32_swap_reloc_in,
19876 bfd_elf32_swap_reloc_out,
19877 bfd_elf32_swap_reloca_in,
19878 bfd_elf32_swap_reloca_out
19879 };
19880
19881 static bfd_vma
19882 read_code32 (const bfd *abfd, const bfd_byte *addr)
19883 {
19884 /* V7 BE8 code is always little endian. */
19885 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
19886 return bfd_getl32 (addr);
19887
19888 return bfd_get_32 (abfd, addr);
19889 }
19890
19891 static bfd_vma
19892 read_code16 (const bfd *abfd, const bfd_byte *addr)
19893 {
19894 /* V7 BE8 code is always little endian. */
19895 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
19896 return bfd_getl16 (addr);
19897
19898 return bfd_get_16 (abfd, addr);
19899 }
19900
19901 /* Return size of plt0 entry starting at ADDR
19902 or (bfd_vma) -1 if size can not be determined. */
19903
19904 static bfd_vma
19905 elf32_arm_plt0_size (const bfd *abfd, const bfd_byte *addr)
19906 {
19907 bfd_vma first_word;
19908 bfd_vma plt0_size;
19909
19910 first_word = read_code32 (abfd, addr);
19911
19912 if (first_word == elf32_arm_plt0_entry[0])
19913 plt0_size = 4 * ARRAY_SIZE (elf32_arm_plt0_entry);
19914 else if (first_word == elf32_thumb2_plt0_entry[0])
19915 plt0_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
19916 else
19917 /* We don't yet handle this PLT format. */
19918 return (bfd_vma) -1;
19919
19920 return plt0_size;
19921 }
19922
19923 /* Return size of plt entry starting at offset OFFSET
19924 of plt section located at address START
19925 or (bfd_vma) -1 if size can not be determined. */
19926
19927 static bfd_vma
19928 elf32_arm_plt_size (const bfd *abfd, const bfd_byte *start, bfd_vma offset)
19929 {
19930 bfd_vma first_insn;
19931 bfd_vma plt_size = 0;
19932 const bfd_byte *addr = start + offset;
19933
19934 /* PLT entry size if fixed on Thumb-only platforms. */
19935 if (read_code32 (abfd, start) == elf32_thumb2_plt0_entry[0])
19936 return 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
19937
19938 /* Respect Thumb stub if necessary. */
19939 if (read_code16 (abfd, addr) == elf32_arm_plt_thumb_stub[0])
19940 {
19941 plt_size += 2 * ARRAY_SIZE(elf32_arm_plt_thumb_stub);
19942 }
19943
19944 /* Strip immediate from first add. */
19945 first_insn = read_code32 (abfd, addr + plt_size) & 0xffffff00;
19946
19947 #ifdef FOUR_WORD_PLT
19948 if (first_insn == elf32_arm_plt_entry[0])
19949 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry);
19950 #else
19951 if (first_insn == elf32_arm_plt_entry_long[0])
19952 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_long);
19953 else if (first_insn == elf32_arm_plt_entry_short[0])
19954 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_short);
19955 #endif
19956 else
19957 /* We don't yet handle this PLT format. */
19958 return (bfd_vma) -1;
19959
19960 return plt_size;
19961 }
19962
19963 /* Implementation is shamelessly borrowed from _bfd_elf_get_synthetic_symtab. */
19964
19965 static long
19966 elf32_arm_get_synthetic_symtab (bfd *abfd,
19967 long symcount ATTRIBUTE_UNUSED,
19968 asymbol **syms ATTRIBUTE_UNUSED,
19969 long dynsymcount,
19970 asymbol **dynsyms,
19971 asymbol **ret)
19972 {
19973 asection *relplt;
19974 asymbol *s;
19975 arelent *p;
19976 long count, i, n;
19977 size_t size;
19978 Elf_Internal_Shdr *hdr;
19979 char *names;
19980 asection *plt;
19981 bfd_vma offset;
19982 bfd_byte *data;
19983
19984 *ret = NULL;
19985
19986 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
19987 return 0;
19988
19989 if (dynsymcount <= 0)
19990 return 0;
19991
19992 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
19993 if (relplt == NULL)
19994 return 0;
19995
19996 hdr = &elf_section_data (relplt)->this_hdr;
19997 if (hdr->sh_link != elf_dynsymtab (abfd)
19998 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
19999 return 0;
20000
20001 plt = bfd_get_section_by_name (abfd, ".plt");
20002 if (plt == NULL)
20003 return 0;
20004
20005 if (!elf32_arm_size_info.slurp_reloc_table (abfd, relplt, dynsyms, TRUE))
20006 return -1;
20007
20008 data = plt->contents;
20009 if (data == NULL)
20010 {
20011 if (!bfd_get_full_section_contents(abfd, (asection *) plt, &data) || data == NULL)
20012 return -1;
20013 bfd_cache_section_contents((asection *) plt, data);
20014 }
20015
20016 count = relplt->size / hdr->sh_entsize;
20017 size = count * sizeof (asymbol);
20018 p = relplt->relocation;
20019 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
20020 {
20021 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
20022 if (p->addend != 0)
20023 size += sizeof ("+0x") - 1 + 8;
20024 }
20025
20026 s = *ret = (asymbol *) bfd_malloc (size);
20027 if (s == NULL)
20028 return -1;
20029
20030 offset = elf32_arm_plt0_size (abfd, data);
20031 if (offset == (bfd_vma) -1)
20032 return -1;
20033
20034 names = (char *) (s + count);
20035 p = relplt->relocation;
20036 n = 0;
20037 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
20038 {
20039 size_t len;
20040
20041 bfd_vma plt_size = elf32_arm_plt_size (abfd, data, offset);
20042 if (plt_size == (bfd_vma) -1)
20043 break;
20044
20045 *s = **p->sym_ptr_ptr;
20046 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
20047 we are defining a symbol, ensure one of them is set. */
20048 if ((s->flags & BSF_LOCAL) == 0)
20049 s->flags |= BSF_GLOBAL;
20050 s->flags |= BSF_SYNTHETIC;
20051 s->section = plt;
20052 s->value = offset;
20053 s->name = names;
20054 s->udata.p = NULL;
20055 len = strlen ((*p->sym_ptr_ptr)->name);
20056 memcpy (names, (*p->sym_ptr_ptr)->name, len);
20057 names += len;
20058 if (p->addend != 0)
20059 {
20060 char buf[30], *a;
20061
20062 memcpy (names, "+0x", sizeof ("+0x") - 1);
20063 names += sizeof ("+0x") - 1;
20064 bfd_sprintf_vma (abfd, buf, p->addend);
20065 for (a = buf; *a == '0'; ++a)
20066 ;
20067 len = strlen (a);
20068 memcpy (names, a, len);
20069 names += len;
20070 }
20071 memcpy (names, "@plt", sizeof ("@plt"));
20072 names += sizeof ("@plt");
20073 ++s, ++n;
20074 offset += plt_size;
20075 }
20076
20077 return n;
20078 }
20079
20080 static bfd_boolean
20081 elf32_arm_section_flags (const Elf_Internal_Shdr *hdr)
20082 {
20083 if (hdr->sh_flags & SHF_ARM_PURECODE)
20084 hdr->bfd_section->flags |= SEC_ELF_PURECODE;
20085 return TRUE;
20086 }
20087
20088 static flagword
20089 elf32_arm_lookup_section_flags (char *flag_name)
20090 {
20091 if (!strcmp (flag_name, "SHF_ARM_PURECODE"))
20092 return SHF_ARM_PURECODE;
20093
20094 return SEC_NO_FLAGS;
20095 }
20096
20097 static unsigned int
20098 elf32_arm_count_additional_relocs (asection *sec)
20099 {
20100 struct _arm_elf_section_data *arm_data;
20101 arm_data = get_arm_elf_section_data (sec);
20102
20103 return arm_data == NULL ? 0 : arm_data->additional_reloc_count;
20104 }
20105
20106 /* Called to set the sh_flags, sh_link and sh_info fields of OSECTION which
20107 has a type >= SHT_LOOS. Returns TRUE if these fields were initialised
20108 FALSE otherwise. ISECTION is the best guess matching section from the
20109 input bfd IBFD, but it might be NULL. */
20110
20111 static bfd_boolean
20112 elf32_arm_copy_special_section_fields (const bfd *ibfd ATTRIBUTE_UNUSED,
20113 bfd *obfd ATTRIBUTE_UNUSED,
20114 const Elf_Internal_Shdr *isection ATTRIBUTE_UNUSED,
20115 Elf_Internal_Shdr *osection)
20116 {
20117 switch (osection->sh_type)
20118 {
20119 case SHT_ARM_EXIDX:
20120 {
20121 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
20122 Elf_Internal_Shdr **iheaders = elf_elfsections (ibfd);
20123 unsigned i = 0;
20124
20125 osection->sh_flags = SHF_ALLOC | SHF_LINK_ORDER;
20126 osection->sh_info = 0;
20127
20128 /* The sh_link field must be set to the text section associated with
20129 this index section. Unfortunately the ARM EHABI does not specify
20130 exactly how to determine this association. Our caller does try
20131 to match up OSECTION with its corresponding input section however
20132 so that is a good first guess. */
20133 if (isection != NULL
20134 && osection->bfd_section != NULL
20135 && isection->bfd_section != NULL
20136 && isection->bfd_section->output_section != NULL
20137 && isection->bfd_section->output_section == osection->bfd_section
20138 && iheaders != NULL
20139 && isection->sh_link > 0
20140 && isection->sh_link < elf_numsections (ibfd)
20141 && iheaders[isection->sh_link]->bfd_section != NULL
20142 && iheaders[isection->sh_link]->bfd_section->output_section != NULL
20143 )
20144 {
20145 for (i = elf_numsections (obfd); i-- > 0;)
20146 if (oheaders[i]->bfd_section
20147 == iheaders[isection->sh_link]->bfd_section->output_section)
20148 break;
20149 }
20150
20151 if (i == 0)
20152 {
20153 /* Failing that we have to find a matching section ourselves. If
20154 we had the output section name available we could compare that
20155 with input section names. Unfortunately we don't. So instead
20156 we use a simple heuristic and look for the nearest executable
20157 section before this one. */
20158 for (i = elf_numsections (obfd); i-- > 0;)
20159 if (oheaders[i] == osection)
20160 break;
20161 if (i == 0)
20162 break;
20163
20164 while (i-- > 0)
20165 if (oheaders[i]->sh_type == SHT_PROGBITS
20166 && (oheaders[i]->sh_flags & (SHF_ALLOC | SHF_EXECINSTR))
20167 == (SHF_ALLOC | SHF_EXECINSTR))
20168 break;
20169 }
20170
20171 if (i)
20172 {
20173 osection->sh_link = i;
20174 /* If the text section was part of a group
20175 then the index section should be too. */
20176 if (oheaders[i]->sh_flags & SHF_GROUP)
20177 osection->sh_flags |= SHF_GROUP;
20178 return TRUE;
20179 }
20180 }
20181 break;
20182
20183 case SHT_ARM_PREEMPTMAP:
20184 osection->sh_flags = SHF_ALLOC;
20185 break;
20186
20187 case SHT_ARM_ATTRIBUTES:
20188 case SHT_ARM_DEBUGOVERLAY:
20189 case SHT_ARM_OVERLAYSECTION:
20190 default:
20191 break;
20192 }
20193
20194 return FALSE;
20195 }
20196
20197 /* Returns TRUE if NAME is an ARM mapping symbol.
20198 Traditionally the symbols $a, $d and $t have been used.
20199 The ARM ELF standard also defines $x (for A64 code). It also allows a
20200 period initiated suffix to be added to the symbol: "$[adtx]\.[:sym_char]+".
20201 Other tools might also produce $b (Thumb BL), $f, $p, $m and $v, but we do
20202 not support them here. $t.x indicates the start of ThumbEE instructions. */
20203
20204 static bfd_boolean
20205 is_arm_mapping_symbol (const char * name)
20206 {
20207 return name != NULL /* Paranoia. */
20208 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
20209 the mapping symbols could have acquired a prefix.
20210 We do not support this here, since such symbols no
20211 longer conform to the ARM ELF ABI. */
20212 && (name[1] == 'a' || name[1] == 'd' || name[1] == 't' || name[1] == 'x')
20213 && (name[2] == 0 || name[2] == '.');
20214 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
20215 any characters that follow the period are legal characters for the body
20216 of a symbol's name. For now we just assume that this is the case. */
20217 }
20218
20219 /* Make sure that mapping symbols in object files are not removed via the
20220 "strip --strip-unneeded" tool. These symbols are needed in order to
20221 correctly generate interworking veneers, and for byte swapping code
20222 regions. Once an object file has been linked, it is safe to remove the
20223 symbols as they will no longer be needed. */
20224
20225 static void
20226 elf32_arm_backend_symbol_processing (bfd *abfd, asymbol *sym)
20227 {
20228 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
20229 && sym->section != bfd_abs_section_ptr
20230 && is_arm_mapping_symbol (sym->name))
20231 sym->flags |= BSF_KEEP;
20232 }
20233
20234 #undef elf_backend_copy_special_section_fields
20235 #define elf_backend_copy_special_section_fields elf32_arm_copy_special_section_fields
20236
20237 #define ELF_ARCH bfd_arch_arm
20238 #define ELF_TARGET_ID ARM_ELF_DATA
20239 #define ELF_MACHINE_CODE EM_ARM
20240 #ifdef __QNXTARGET__
20241 #define ELF_MAXPAGESIZE 0x1000
20242 #else
20243 #define ELF_MAXPAGESIZE 0x10000
20244 #endif
20245 #define ELF_MINPAGESIZE 0x1000
20246 #define ELF_COMMONPAGESIZE 0x1000
20247
20248 #define bfd_elf32_mkobject elf32_arm_mkobject
20249
20250 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
20251 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
20252 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
20253 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
20254 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
20255 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
20256 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
20257 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
20258 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
20259 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
20260 #define bfd_elf32_bfd_final_link elf32_arm_final_link
20261 #define bfd_elf32_get_synthetic_symtab elf32_arm_get_synthetic_symtab
20262
20263 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
20264 #define elf_backend_maybe_function_sym elf32_arm_maybe_function_sym
20265 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
20266 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
20267 #define elf_backend_check_relocs elf32_arm_check_relocs
20268 #define elf_backend_update_relocs elf32_arm_update_relocs
20269 #define elf_backend_relocate_section elf32_arm_relocate_section
20270 #define elf_backend_write_section elf32_arm_write_section
20271 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
20272 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
20273 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
20274 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
20275 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
20276 #define elf_backend_always_size_sections elf32_arm_always_size_sections
20277 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
20278 #define elf_backend_init_file_header elf32_arm_init_file_header
20279 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
20280 #define elf_backend_object_p elf32_arm_object_p
20281 #define elf_backend_fake_sections elf32_arm_fake_sections
20282 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
20283 #define elf_backend_final_write_processing elf32_arm_final_write_processing
20284 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
20285 #define elf_backend_size_info elf32_arm_size_info
20286 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
20287 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
20288 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
20289 #define elf_backend_filter_implib_symbols elf32_arm_filter_implib_symbols
20290 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
20291 #define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
20292 #define elf_backend_count_additional_relocs elf32_arm_count_additional_relocs
20293 #define elf_backend_symbol_processing elf32_arm_backend_symbol_processing
20294
20295 #define elf_backend_can_refcount 1
20296 #define elf_backend_can_gc_sections 1
20297 #define elf_backend_plt_readonly 1
20298 #define elf_backend_want_got_plt 1
20299 #define elf_backend_want_plt_sym 0
20300 #define elf_backend_want_dynrelro 1
20301 #define elf_backend_may_use_rel_p 1
20302 #define elf_backend_may_use_rela_p 0
20303 #define elf_backend_default_use_rela_p 0
20304 #define elf_backend_dtrel_excludes_plt 1
20305
20306 #define elf_backend_got_header_size 12
20307 #define elf_backend_extern_protected_data 1
20308
20309 #undef elf_backend_obj_attrs_vendor
20310 #define elf_backend_obj_attrs_vendor "aeabi"
20311 #undef elf_backend_obj_attrs_section
20312 #define elf_backend_obj_attrs_section ".ARM.attributes"
20313 #undef elf_backend_obj_attrs_arg_type
20314 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
20315 #undef elf_backend_obj_attrs_section_type
20316 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
20317 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
20318 #define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
20319
20320 #undef elf_backend_section_flags
20321 #define elf_backend_section_flags elf32_arm_section_flags
20322 #undef elf_backend_lookup_section_flags_hook
20323 #define elf_backend_lookup_section_flags_hook elf32_arm_lookup_section_flags
20324
20325 #define elf_backend_linux_prpsinfo32_ugid16 TRUE
20326
20327 #include "elf32-target.h"
20328
20329 /* Native Client targets. */
20330
20331 #undef TARGET_LITTLE_SYM
20332 #define TARGET_LITTLE_SYM arm_elf32_nacl_le_vec
20333 #undef TARGET_LITTLE_NAME
20334 #define TARGET_LITTLE_NAME "elf32-littlearm-nacl"
20335 #undef TARGET_BIG_SYM
20336 #define TARGET_BIG_SYM arm_elf32_nacl_be_vec
20337 #undef TARGET_BIG_NAME
20338 #define TARGET_BIG_NAME "elf32-bigarm-nacl"
20339
20340 /* Like elf32_arm_link_hash_table_create -- but overrides
20341 appropriately for NaCl. */
20342
20343 static struct bfd_link_hash_table *
20344 elf32_arm_nacl_link_hash_table_create (bfd *abfd)
20345 {
20346 struct bfd_link_hash_table *ret;
20347
20348 ret = elf32_arm_link_hash_table_create (abfd);
20349 if (ret)
20350 {
20351 struct elf32_arm_link_hash_table *htab
20352 = (struct elf32_arm_link_hash_table *) ret;
20353
20354 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry);
20355 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry);
20356 }
20357 return ret;
20358 }
20359
20360 /* Since NaCl doesn't use the ARM-specific unwind format, we don't
20361 really need to use elf32_arm_modify_segment_map. But we do it
20362 anyway just to reduce gratuitous differences with the stock ARM backend. */
20363
20364 static bfd_boolean
20365 elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
20366 {
20367 return (elf32_arm_modify_segment_map (abfd, info)
20368 && nacl_modify_segment_map (abfd, info));
20369 }
20370
20371 static bfd_boolean
20372 elf32_arm_nacl_final_write_processing (bfd *abfd)
20373 {
20374 arm_final_write_processing (abfd);
20375 return nacl_final_write_processing (abfd);
20376 }
20377
20378 static bfd_vma
20379 elf32_arm_nacl_plt_sym_val (bfd_vma i, const asection *plt,
20380 const arelent *rel ATTRIBUTE_UNUSED)
20381 {
20382 return plt->vma
20383 + 4 * (ARRAY_SIZE (elf32_arm_nacl_plt0_entry) +
20384 i * ARRAY_SIZE (elf32_arm_nacl_plt_entry));
20385 }
20386
20387 #undef elf32_bed
20388 #define elf32_bed elf32_arm_nacl_bed
20389 #undef bfd_elf32_bfd_link_hash_table_create
20390 #define bfd_elf32_bfd_link_hash_table_create \
20391 elf32_arm_nacl_link_hash_table_create
20392 #undef elf_backend_plt_alignment
20393 #define elf_backend_plt_alignment 4
20394 #undef elf_backend_modify_segment_map
20395 #define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map
20396 #undef elf_backend_modify_headers
20397 #define elf_backend_modify_headers nacl_modify_headers
20398 #undef elf_backend_final_write_processing
20399 #define elf_backend_final_write_processing elf32_arm_nacl_final_write_processing
20400 #undef bfd_elf32_get_synthetic_symtab
20401 #undef elf_backend_plt_sym_val
20402 #define elf_backend_plt_sym_val elf32_arm_nacl_plt_sym_val
20403 #undef elf_backend_copy_special_section_fields
20404
20405 #undef ELF_MINPAGESIZE
20406 #undef ELF_COMMONPAGESIZE
20407
20408 #undef ELF_TARGET_OS
20409 #define ELF_TARGET_OS is_nacl
20410
20411 #include "elf32-target.h"
20412
20413 /* Reset to defaults. */
20414 #undef elf_backend_plt_alignment
20415 #undef elf_backend_modify_segment_map
20416 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
20417 #undef elf_backend_modify_headers
20418 #undef elf_backend_final_write_processing
20419 #define elf_backend_final_write_processing elf32_arm_final_write_processing
20420 #undef ELF_MINPAGESIZE
20421 #define ELF_MINPAGESIZE 0x1000
20422 #undef ELF_COMMONPAGESIZE
20423 #define ELF_COMMONPAGESIZE 0x1000
20424
20425
20426 /* FDPIC Targets. */
20427
20428 #undef TARGET_LITTLE_SYM
20429 #define TARGET_LITTLE_SYM arm_elf32_fdpic_le_vec
20430 #undef TARGET_LITTLE_NAME
20431 #define TARGET_LITTLE_NAME "elf32-littlearm-fdpic"
20432 #undef TARGET_BIG_SYM
20433 #define TARGET_BIG_SYM arm_elf32_fdpic_be_vec
20434 #undef TARGET_BIG_NAME
20435 #define TARGET_BIG_NAME "elf32-bigarm-fdpic"
20436 #undef elf_match_priority
20437 #define elf_match_priority 128
20438 #undef ELF_OSABI
20439 #define ELF_OSABI ELFOSABI_ARM_FDPIC
20440
20441 /* Like elf32_arm_link_hash_table_create -- but overrides
20442 appropriately for FDPIC. */
20443
20444 static struct bfd_link_hash_table *
20445 elf32_arm_fdpic_link_hash_table_create (bfd *abfd)
20446 {
20447 struct bfd_link_hash_table *ret;
20448
20449 ret = elf32_arm_link_hash_table_create (abfd);
20450 if (ret)
20451 {
20452 struct elf32_arm_link_hash_table *htab = (struct elf32_arm_link_hash_table *) ret;
20453
20454 htab->fdpic_p = 1;
20455 }
20456 return ret;
20457 }
20458
20459 /* We need dynamic symbols for every section, since segments can
20460 relocate independently. */
20461 static bfd_boolean
20462 elf32_arm_fdpic_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
20463 struct bfd_link_info *info
20464 ATTRIBUTE_UNUSED,
20465 asection *p ATTRIBUTE_UNUSED)
20466 {
20467 switch (elf_section_data (p)->this_hdr.sh_type)
20468 {
20469 case SHT_PROGBITS:
20470 case SHT_NOBITS:
20471 /* If sh_type is yet undecided, assume it could be
20472 SHT_PROGBITS/SHT_NOBITS. */
20473 case SHT_NULL:
20474 return FALSE;
20475
20476 /* There shouldn't be section relative relocations
20477 against any other section. */
20478 default:
20479 return TRUE;
20480 }
20481 }
20482
20483 #undef elf32_bed
20484 #define elf32_bed elf32_arm_fdpic_bed
20485
20486 #undef bfd_elf32_bfd_link_hash_table_create
20487 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_fdpic_link_hash_table_create
20488
20489 #undef elf_backend_omit_section_dynsym
20490 #define elf_backend_omit_section_dynsym elf32_arm_fdpic_omit_section_dynsym
20491
20492 #undef ELF_TARGET_OS
20493
20494 #include "elf32-target.h"
20495
20496 #undef elf_match_priority
20497 #undef ELF_OSABI
20498 #undef elf_backend_omit_section_dynsym
20499
20500 /* VxWorks Targets. */
20501
20502 #undef TARGET_LITTLE_SYM
20503 #define TARGET_LITTLE_SYM arm_elf32_vxworks_le_vec
20504 #undef TARGET_LITTLE_NAME
20505 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
20506 #undef TARGET_BIG_SYM
20507 #define TARGET_BIG_SYM arm_elf32_vxworks_be_vec
20508 #undef TARGET_BIG_NAME
20509 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
20510
20511 /* Like elf32_arm_link_hash_table_create -- but overrides
20512 appropriately for VxWorks. */
20513
20514 static struct bfd_link_hash_table *
20515 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
20516 {
20517 struct bfd_link_hash_table *ret;
20518
20519 ret = elf32_arm_link_hash_table_create (abfd);
20520 if (ret)
20521 {
20522 struct elf32_arm_link_hash_table *htab
20523 = (struct elf32_arm_link_hash_table *) ret;
20524 htab->use_rel = 0;
20525 }
20526 return ret;
20527 }
20528
20529 static bfd_boolean
20530 elf32_arm_vxworks_final_write_processing (bfd *abfd)
20531 {
20532 arm_final_write_processing (abfd);
20533 return elf_vxworks_final_write_processing (abfd);
20534 }
20535
20536 #undef elf32_bed
20537 #define elf32_bed elf32_arm_vxworks_bed
20538
20539 #undef bfd_elf32_bfd_link_hash_table_create
20540 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
20541 #undef elf_backend_final_write_processing
20542 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
20543 #undef elf_backend_emit_relocs
20544 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
20545
20546 #undef elf_backend_may_use_rel_p
20547 #define elf_backend_may_use_rel_p 0
20548 #undef elf_backend_may_use_rela_p
20549 #define elf_backend_may_use_rela_p 1
20550 #undef elf_backend_default_use_rela_p
20551 #define elf_backend_default_use_rela_p 1
20552 #undef elf_backend_want_plt_sym
20553 #define elf_backend_want_plt_sym 1
20554 #undef ELF_MAXPAGESIZE
20555 #define ELF_MAXPAGESIZE 0x1000
20556 #undef ELF_TARGET_OS
20557 #define ELF_TARGET_OS is_vxworks
20558
20559 #include "elf32-target.h"
20560
20561
20562 /* Merge backend specific data from an object file to the output
20563 object file when linking. */
20564
20565 static bfd_boolean
20566 elf32_arm_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
20567 {
20568 bfd *obfd = info->output_bfd;
20569 flagword out_flags;
20570 flagword in_flags;
20571 bfd_boolean flags_compatible = TRUE;
20572 asection *sec;
20573
20574 /* Check if we have the same endianness. */
20575 if (! _bfd_generic_verify_endian_match (ibfd, info))
20576 return FALSE;
20577
20578 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
20579 return TRUE;
20580
20581 if (!elf32_arm_merge_eabi_attributes (ibfd, info))
20582 return FALSE;
20583
20584 /* The input BFD must have had its flags initialised. */
20585 /* The following seems bogus to me -- The flags are initialized in
20586 the assembler but I don't think an elf_flags_init field is
20587 written into the object. */
20588 /* BFD_ASSERT (elf_flags_init (ibfd)); */
20589
20590 in_flags = elf_elfheader (ibfd)->e_flags;
20591 out_flags = elf_elfheader (obfd)->e_flags;
20592
20593 /* In theory there is no reason why we couldn't handle this. However
20594 in practice it isn't even close to working and there is no real
20595 reason to want it. */
20596 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
20597 && !(ibfd->flags & DYNAMIC)
20598 && (in_flags & EF_ARM_BE8))
20599 {
20600 _bfd_error_handler (_("error: %pB is already in final BE8 format"),
20601 ibfd);
20602 return FALSE;
20603 }
20604
20605 if (!elf_flags_init (obfd))
20606 {
20607 /* If the input is the default architecture and had the default
20608 flags then do not bother setting the flags for the output
20609 architecture, instead allow future merges to do this. If no
20610 future merges ever set these flags then they will retain their
20611 uninitialised values, which surprise surprise, correspond
20612 to the default values. */
20613 if (bfd_get_arch_info (ibfd)->the_default
20614 && elf_elfheader (ibfd)->e_flags == 0)
20615 return TRUE;
20616
20617 elf_flags_init (obfd) = TRUE;
20618 elf_elfheader (obfd)->e_flags = in_flags;
20619
20620 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
20621 && bfd_get_arch_info (obfd)->the_default)
20622 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
20623
20624 return TRUE;
20625 }
20626
20627 /* Determine what should happen if the input ARM architecture
20628 does not match the output ARM architecture. */
20629 if (! bfd_arm_merge_machines (ibfd, obfd))
20630 return FALSE;
20631
20632 /* Identical flags must be compatible. */
20633 if (in_flags == out_flags)
20634 return TRUE;
20635
20636 /* Check to see if the input BFD actually contains any sections. If
20637 not, its flags may not have been initialised either, but it
20638 cannot actually cause any incompatiblity. Do not short-circuit
20639 dynamic objects; their section list may be emptied by
20640 elf_link_add_object_symbols.
20641
20642 Also check to see if there are no code sections in the input.
20643 In this case there is no need to check for code specific flags.
20644 XXX - do we need to worry about floating-point format compatability
20645 in data sections ? */
20646 if (!(ibfd->flags & DYNAMIC))
20647 {
20648 bfd_boolean null_input_bfd = TRUE;
20649 bfd_boolean only_data_sections = TRUE;
20650
20651 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
20652 {
20653 /* Ignore synthetic glue sections. */
20654 if (strcmp (sec->name, ".glue_7")
20655 && strcmp (sec->name, ".glue_7t"))
20656 {
20657 if ((bfd_section_flags (sec)
20658 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
20659 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
20660 only_data_sections = FALSE;
20661
20662 null_input_bfd = FALSE;
20663 break;
20664 }
20665 }
20666
20667 if (null_input_bfd || only_data_sections)
20668 return TRUE;
20669 }
20670
20671 /* Complain about various flag mismatches. */
20672 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
20673 EF_ARM_EABI_VERSION (out_flags)))
20674 {
20675 _bfd_error_handler
20676 (_("error: source object %pB has EABI version %d, but target %pB has EABI version %d"),
20677 ibfd, (in_flags & EF_ARM_EABIMASK) >> 24,
20678 obfd, (out_flags & EF_ARM_EABIMASK) >> 24);
20679 return FALSE;
20680 }
20681
20682 /* Not sure what needs to be checked for EABI versions >= 1. */
20683 /* VxWorks libraries do not use these flags. */
20684 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
20685 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
20686 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
20687 {
20688 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
20689 {
20690 _bfd_error_handler
20691 (_("error: %pB is compiled for APCS-%d, whereas target %pB uses APCS-%d"),
20692 ibfd, in_flags & EF_ARM_APCS_26 ? 26 : 32,
20693 obfd, out_flags & EF_ARM_APCS_26 ? 26 : 32);
20694 flags_compatible = FALSE;
20695 }
20696
20697 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
20698 {
20699 if (in_flags & EF_ARM_APCS_FLOAT)
20700 _bfd_error_handler
20701 (_("error: %pB passes floats in float registers, whereas %pB passes them in integer registers"),
20702 ibfd, obfd);
20703 else
20704 _bfd_error_handler
20705 (_("error: %pB passes floats in integer registers, whereas %pB passes them in float registers"),
20706 ibfd, obfd);
20707
20708 flags_compatible = FALSE;
20709 }
20710
20711 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
20712 {
20713 if (in_flags & EF_ARM_VFP_FLOAT)
20714 _bfd_error_handler
20715 (_("error: %pB uses %s instructions, whereas %pB does not"),
20716 ibfd, "VFP", obfd);
20717 else
20718 _bfd_error_handler
20719 (_("error: %pB uses %s instructions, whereas %pB does not"),
20720 ibfd, "FPA", obfd);
20721
20722 flags_compatible = FALSE;
20723 }
20724
20725 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
20726 {
20727 if (in_flags & EF_ARM_MAVERICK_FLOAT)
20728 _bfd_error_handler
20729 (_("error: %pB uses %s instructions, whereas %pB does not"),
20730 ibfd, "Maverick", obfd);
20731 else
20732 _bfd_error_handler
20733 (_("error: %pB does not use %s instructions, whereas %pB does"),
20734 ibfd, "Maverick", obfd);
20735
20736 flags_compatible = FALSE;
20737 }
20738
20739 #ifdef EF_ARM_SOFT_FLOAT
20740 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
20741 {
20742 /* We can allow interworking between code that is VFP format
20743 layout, and uses either soft float or integer regs for
20744 passing floating point arguments and results. We already
20745 know that the APCS_FLOAT flags match; similarly for VFP
20746 flags. */
20747 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
20748 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
20749 {
20750 if (in_flags & EF_ARM_SOFT_FLOAT)
20751 _bfd_error_handler
20752 (_("error: %pB uses software FP, whereas %pB uses hardware FP"),
20753 ibfd, obfd);
20754 else
20755 _bfd_error_handler
20756 (_("error: %pB uses hardware FP, whereas %pB uses software FP"),
20757 ibfd, obfd);
20758
20759 flags_compatible = FALSE;
20760 }
20761 }
20762 #endif
20763
20764 /* Interworking mismatch is only a warning. */
20765 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
20766 {
20767 if (in_flags & EF_ARM_INTERWORK)
20768 {
20769 _bfd_error_handler
20770 (_("warning: %pB supports interworking, whereas %pB does not"),
20771 ibfd, obfd);
20772 }
20773 else
20774 {
20775 _bfd_error_handler
20776 (_("warning: %pB does not support interworking, whereas %pB does"),
20777 ibfd, obfd);
20778 }
20779 }
20780 }
20781
20782 return flags_compatible;
20783 }
20784
20785
20786 /* Symbian OS Targets. */
20787
20788 #undef TARGET_LITTLE_SYM
20789 #define TARGET_LITTLE_SYM arm_elf32_symbian_le_vec
20790 #undef TARGET_LITTLE_NAME
20791 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
20792 #undef TARGET_BIG_SYM
20793 #define TARGET_BIG_SYM arm_elf32_symbian_be_vec
20794 #undef TARGET_BIG_NAME
20795 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
20796
20797 /* Like elf32_arm_link_hash_table_create -- but overrides
20798 appropriately for Symbian OS. */
20799
20800 static struct bfd_link_hash_table *
20801 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
20802 {
20803 struct bfd_link_hash_table *ret;
20804
20805 ret = elf32_arm_link_hash_table_create (abfd);
20806 if (ret)
20807 {
20808 struct elf32_arm_link_hash_table *htab
20809 = (struct elf32_arm_link_hash_table *)ret;
20810 /* There is no PLT header for Symbian OS. */
20811 htab->plt_header_size = 0;
20812 /* The PLT entries are each one instruction and one word. */
20813 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
20814 /* Symbian uses armv5t or above, so use_blx is always true. */
20815 htab->use_blx = 1;
20816 htab->root.is_relocatable_executable = 1;
20817 }
20818 return ret;
20819 }
20820
20821 static const struct bfd_elf_special_section
20822 elf32_arm_symbian_special_sections[] =
20823 {
20824 /* In a BPABI executable, the dynamic linking sections do not go in
20825 the loadable read-only segment. The post-linker may wish to
20826 refer to these sections, but they are not part of the final
20827 program image. */
20828 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
20829 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
20830 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
20831 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
20832 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
20833 /* These sections do not need to be writable as the SymbianOS
20834 postlinker will arrange things so that no dynamic relocation is
20835 required. */
20836 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
20837 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
20838 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
20839 { NULL, 0, 0, 0, 0 }
20840 };
20841
20842 static void
20843 elf32_arm_symbian_begin_write_processing (bfd *abfd,
20844 struct bfd_link_info *link_info)
20845 {
20846 /* BPABI objects are never loaded directly by an OS kernel; they are
20847 processed by a postlinker first, into an OS-specific format. If
20848 the D_PAGED bit is set on the file, BFD will align segments on
20849 page boundaries, so that an OS can directly map the file. With
20850 BPABI objects, that just results in wasted space. In addition,
20851 because we clear the D_PAGED bit, map_sections_to_segments will
20852 recognize that the program headers should not be mapped into any
20853 loadable segment. */
20854 abfd->flags &= ~D_PAGED;
20855 elf32_arm_begin_write_processing (abfd, link_info);
20856 }
20857
20858 static bfd_boolean
20859 elf32_arm_symbian_modify_segment_map (bfd *abfd,
20860 struct bfd_link_info *info)
20861 {
20862 struct elf_segment_map *m;
20863 asection *dynsec;
20864
20865 /* BPABI shared libraries and executables should have a PT_DYNAMIC
20866 segment. However, because the .dynamic section is not marked
20867 with SEC_LOAD, the generic ELF code will not create such a
20868 segment. */
20869 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
20870 if (dynsec)
20871 {
20872 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
20873 if (m->p_type == PT_DYNAMIC)
20874 break;
20875
20876 if (m == NULL)
20877 {
20878 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
20879 m->next = elf_seg_map (abfd);
20880 elf_seg_map (abfd) = m;
20881 }
20882 }
20883
20884 /* Also call the generic arm routine. */
20885 return elf32_arm_modify_segment_map (abfd, info);
20886 }
20887
20888 /* Return address for Ith PLT stub in section PLT, for relocation REL
20889 or (bfd_vma) -1 if it should not be included. */
20890
20891 static bfd_vma
20892 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
20893 const arelent *rel ATTRIBUTE_UNUSED)
20894 {
20895 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
20896 }
20897
20898 #undef elf32_bed
20899 #define elf32_bed elf32_arm_symbian_bed
20900
20901 /* The dynamic sections are not allocated on SymbianOS; the postlinker
20902 will process them and then discard them. */
20903 #undef ELF_DYNAMIC_SEC_FLAGS
20904 #define ELF_DYNAMIC_SEC_FLAGS \
20905 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
20906
20907 #undef elf_backend_emit_relocs
20908
20909 #undef bfd_elf32_bfd_link_hash_table_create
20910 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
20911 #undef elf_backend_special_sections
20912 #define elf_backend_special_sections elf32_arm_symbian_special_sections
20913 #undef elf_backend_begin_write_processing
20914 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
20915 #undef elf_backend_final_write_processing
20916 #define elf_backend_final_write_processing elf32_arm_final_write_processing
20917
20918 #undef elf_backend_modify_segment_map
20919 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
20920
20921 /* There is no .got section for BPABI objects, and hence no header. */
20922 #undef elf_backend_got_header_size
20923 #define elf_backend_got_header_size 0
20924
20925 /* Similarly, there is no .got.plt section. */
20926 #undef elf_backend_want_got_plt
20927 #define elf_backend_want_got_plt 0
20928
20929 #undef elf_backend_plt_sym_val
20930 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
20931
20932 #undef elf_backend_may_use_rel_p
20933 #define elf_backend_may_use_rel_p 1
20934 #undef elf_backend_may_use_rela_p
20935 #define elf_backend_may_use_rela_p 0
20936 #undef elf_backend_default_use_rela_p
20937 #define elf_backend_default_use_rela_p 0
20938 #undef elf_backend_want_plt_sym
20939 #define elf_backend_want_plt_sym 0
20940 #undef elf_backend_dtrel_excludes_plt
20941 #define elf_backend_dtrel_excludes_plt 0
20942 #undef ELF_MAXPAGESIZE
20943 #define ELF_MAXPAGESIZE 0x8000
20944 #undef ELF_TARGET_OS
20945 #define ELF_TARGET_OS is_symbian
20946
20947 #include "elf32-target.h"
This page took 0.478462 seconds and 4 git commands to generate.