* elf-bfd.h (struct core_elf_obj_tdata): New.
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008, 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include <limits.h>
24
25 #include "bfd.h"
26 #include "bfd_stdint.h"
27 #include "libiberty.h"
28 #include "libbfd.h"
29 #include "elf-bfd.h"
30 #include "elf-nacl.h"
31 #include "elf-vxworks.h"
32 #include "elf/arm.h"
33
34 /* Return the relocation section associated with NAME. HTAB is the
35 bfd's elf32_arm_link_hash_entry. */
36 #define RELOC_SECTION(HTAB, NAME) \
37 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
38
39 /* Return size of a relocation entry. HTAB is the bfd's
40 elf32_arm_link_hash_entry. */
41 #define RELOC_SIZE(HTAB) \
42 ((HTAB)->use_rel \
43 ? sizeof (Elf32_External_Rel) \
44 : sizeof (Elf32_External_Rela))
45
46 /* Return function to swap relocations in. HTAB is the bfd's
47 elf32_arm_link_hash_entry. */
48 #define SWAP_RELOC_IN(HTAB) \
49 ((HTAB)->use_rel \
50 ? bfd_elf32_swap_reloc_in \
51 : bfd_elf32_swap_reloca_in)
52
53 /* Return function to swap relocations out. HTAB is the bfd's
54 elf32_arm_link_hash_entry. */
55 #define SWAP_RELOC_OUT(HTAB) \
56 ((HTAB)->use_rel \
57 ? bfd_elf32_swap_reloc_out \
58 : bfd_elf32_swap_reloca_out)
59
60 #define elf_info_to_howto 0
61 #define elf_info_to_howto_rel elf32_arm_info_to_howto
62
63 #define ARM_ELF_ABI_VERSION 0
64 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
65
66 /* The Adjusted Place, as defined by AAELF. */
67 #define Pa(X) ((X) & 0xfffffffc)
68
69 static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
70 struct bfd_link_info *link_info,
71 asection *sec,
72 bfd_byte *contents);
73
74 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
75 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
76 in that slot. */
77
78 static reloc_howto_type elf32_arm_howto_table_1[] =
79 {
80 /* No relocation. */
81 HOWTO (R_ARM_NONE, /* type */
82 0, /* rightshift */
83 0, /* size (0 = byte, 1 = short, 2 = long) */
84 0, /* bitsize */
85 FALSE, /* pc_relative */
86 0, /* bitpos */
87 complain_overflow_dont,/* complain_on_overflow */
88 bfd_elf_generic_reloc, /* special_function */
89 "R_ARM_NONE", /* name */
90 FALSE, /* partial_inplace */
91 0, /* src_mask */
92 0, /* dst_mask */
93 FALSE), /* pcrel_offset */
94
95 HOWTO (R_ARM_PC24, /* type */
96 2, /* rightshift */
97 2, /* size (0 = byte, 1 = short, 2 = long) */
98 24, /* bitsize */
99 TRUE, /* pc_relative */
100 0, /* bitpos */
101 complain_overflow_signed,/* complain_on_overflow */
102 bfd_elf_generic_reloc, /* special_function */
103 "R_ARM_PC24", /* name */
104 FALSE, /* partial_inplace */
105 0x00ffffff, /* src_mask */
106 0x00ffffff, /* dst_mask */
107 TRUE), /* pcrel_offset */
108
109 /* 32 bit absolute */
110 HOWTO (R_ARM_ABS32, /* type */
111 0, /* rightshift */
112 2, /* size (0 = byte, 1 = short, 2 = long) */
113 32, /* bitsize */
114 FALSE, /* pc_relative */
115 0, /* bitpos */
116 complain_overflow_bitfield,/* complain_on_overflow */
117 bfd_elf_generic_reloc, /* special_function */
118 "R_ARM_ABS32", /* name */
119 FALSE, /* partial_inplace */
120 0xffffffff, /* src_mask */
121 0xffffffff, /* dst_mask */
122 FALSE), /* pcrel_offset */
123
124 /* standard 32bit pc-relative reloc */
125 HOWTO (R_ARM_REL32, /* type */
126 0, /* rightshift */
127 2, /* size (0 = byte, 1 = short, 2 = long) */
128 32, /* bitsize */
129 TRUE, /* pc_relative */
130 0, /* bitpos */
131 complain_overflow_bitfield,/* complain_on_overflow */
132 bfd_elf_generic_reloc, /* special_function */
133 "R_ARM_REL32", /* name */
134 FALSE, /* partial_inplace */
135 0xffffffff, /* src_mask */
136 0xffffffff, /* dst_mask */
137 TRUE), /* pcrel_offset */
138
139 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
140 HOWTO (R_ARM_LDR_PC_G0, /* type */
141 0, /* rightshift */
142 0, /* size (0 = byte, 1 = short, 2 = long) */
143 32, /* bitsize */
144 TRUE, /* pc_relative */
145 0, /* bitpos */
146 complain_overflow_dont,/* complain_on_overflow */
147 bfd_elf_generic_reloc, /* special_function */
148 "R_ARM_LDR_PC_G0", /* name */
149 FALSE, /* partial_inplace */
150 0xffffffff, /* src_mask */
151 0xffffffff, /* dst_mask */
152 TRUE), /* pcrel_offset */
153
154 /* 16 bit absolute */
155 HOWTO (R_ARM_ABS16, /* type */
156 0, /* rightshift */
157 1, /* size (0 = byte, 1 = short, 2 = long) */
158 16, /* bitsize */
159 FALSE, /* pc_relative */
160 0, /* bitpos */
161 complain_overflow_bitfield,/* complain_on_overflow */
162 bfd_elf_generic_reloc, /* special_function */
163 "R_ARM_ABS16", /* name */
164 FALSE, /* partial_inplace */
165 0x0000ffff, /* src_mask */
166 0x0000ffff, /* dst_mask */
167 FALSE), /* pcrel_offset */
168
169 /* 12 bit absolute */
170 HOWTO (R_ARM_ABS12, /* type */
171 0, /* rightshift */
172 2, /* size (0 = byte, 1 = short, 2 = long) */
173 12, /* bitsize */
174 FALSE, /* pc_relative */
175 0, /* bitpos */
176 complain_overflow_bitfield,/* complain_on_overflow */
177 bfd_elf_generic_reloc, /* special_function */
178 "R_ARM_ABS12", /* name */
179 FALSE, /* partial_inplace */
180 0x00000fff, /* src_mask */
181 0x00000fff, /* dst_mask */
182 FALSE), /* pcrel_offset */
183
184 HOWTO (R_ARM_THM_ABS5, /* type */
185 6, /* rightshift */
186 1, /* size (0 = byte, 1 = short, 2 = long) */
187 5, /* bitsize */
188 FALSE, /* pc_relative */
189 0, /* bitpos */
190 complain_overflow_bitfield,/* complain_on_overflow */
191 bfd_elf_generic_reloc, /* special_function */
192 "R_ARM_THM_ABS5", /* name */
193 FALSE, /* partial_inplace */
194 0x000007e0, /* src_mask */
195 0x000007e0, /* dst_mask */
196 FALSE), /* pcrel_offset */
197
198 /* 8 bit absolute */
199 HOWTO (R_ARM_ABS8, /* type */
200 0, /* rightshift */
201 0, /* size (0 = byte, 1 = short, 2 = long) */
202 8, /* bitsize */
203 FALSE, /* pc_relative */
204 0, /* bitpos */
205 complain_overflow_bitfield,/* complain_on_overflow */
206 bfd_elf_generic_reloc, /* special_function */
207 "R_ARM_ABS8", /* name */
208 FALSE, /* partial_inplace */
209 0x000000ff, /* src_mask */
210 0x000000ff, /* dst_mask */
211 FALSE), /* pcrel_offset */
212
213 HOWTO (R_ARM_SBREL32, /* type */
214 0, /* rightshift */
215 2, /* size (0 = byte, 1 = short, 2 = long) */
216 32, /* bitsize */
217 FALSE, /* pc_relative */
218 0, /* bitpos */
219 complain_overflow_dont,/* complain_on_overflow */
220 bfd_elf_generic_reloc, /* special_function */
221 "R_ARM_SBREL32", /* name */
222 FALSE, /* partial_inplace */
223 0xffffffff, /* src_mask */
224 0xffffffff, /* dst_mask */
225 FALSE), /* pcrel_offset */
226
227 HOWTO (R_ARM_THM_CALL, /* type */
228 1, /* rightshift */
229 2, /* size (0 = byte, 1 = short, 2 = long) */
230 24, /* bitsize */
231 TRUE, /* pc_relative */
232 0, /* bitpos */
233 complain_overflow_signed,/* complain_on_overflow */
234 bfd_elf_generic_reloc, /* special_function */
235 "R_ARM_THM_CALL", /* name */
236 FALSE, /* partial_inplace */
237 0x07ff2fff, /* src_mask */
238 0x07ff2fff, /* dst_mask */
239 TRUE), /* pcrel_offset */
240
241 HOWTO (R_ARM_THM_PC8, /* type */
242 1, /* rightshift */
243 1, /* size (0 = byte, 1 = short, 2 = long) */
244 8, /* bitsize */
245 TRUE, /* pc_relative */
246 0, /* bitpos */
247 complain_overflow_signed,/* complain_on_overflow */
248 bfd_elf_generic_reloc, /* special_function */
249 "R_ARM_THM_PC8", /* name */
250 FALSE, /* partial_inplace */
251 0x000000ff, /* src_mask */
252 0x000000ff, /* dst_mask */
253 TRUE), /* pcrel_offset */
254
255 HOWTO (R_ARM_BREL_ADJ, /* type */
256 1, /* rightshift */
257 1, /* size (0 = byte, 1 = short, 2 = long) */
258 32, /* bitsize */
259 FALSE, /* pc_relative */
260 0, /* bitpos */
261 complain_overflow_signed,/* complain_on_overflow */
262 bfd_elf_generic_reloc, /* special_function */
263 "R_ARM_BREL_ADJ", /* name */
264 FALSE, /* partial_inplace */
265 0xffffffff, /* src_mask */
266 0xffffffff, /* dst_mask */
267 FALSE), /* pcrel_offset */
268
269 HOWTO (R_ARM_TLS_DESC, /* type */
270 0, /* rightshift */
271 2, /* size (0 = byte, 1 = short, 2 = long) */
272 32, /* bitsize */
273 FALSE, /* pc_relative */
274 0, /* bitpos */
275 complain_overflow_bitfield,/* complain_on_overflow */
276 bfd_elf_generic_reloc, /* special_function */
277 "R_ARM_TLS_DESC", /* name */
278 FALSE, /* partial_inplace */
279 0xffffffff, /* src_mask */
280 0xffffffff, /* dst_mask */
281 FALSE), /* pcrel_offset */
282
283 HOWTO (R_ARM_THM_SWI8, /* type */
284 0, /* rightshift */
285 0, /* size (0 = byte, 1 = short, 2 = long) */
286 0, /* bitsize */
287 FALSE, /* pc_relative */
288 0, /* bitpos */
289 complain_overflow_signed,/* complain_on_overflow */
290 bfd_elf_generic_reloc, /* special_function */
291 "R_ARM_SWI8", /* name */
292 FALSE, /* partial_inplace */
293 0x00000000, /* src_mask */
294 0x00000000, /* dst_mask */
295 FALSE), /* pcrel_offset */
296
297 /* BLX instruction for the ARM. */
298 HOWTO (R_ARM_XPC25, /* type */
299 2, /* rightshift */
300 2, /* size (0 = byte, 1 = short, 2 = long) */
301 24, /* bitsize */
302 TRUE, /* pc_relative */
303 0, /* bitpos */
304 complain_overflow_signed,/* complain_on_overflow */
305 bfd_elf_generic_reloc, /* special_function */
306 "R_ARM_XPC25", /* name */
307 FALSE, /* partial_inplace */
308 0x00ffffff, /* src_mask */
309 0x00ffffff, /* dst_mask */
310 TRUE), /* pcrel_offset */
311
312 /* BLX instruction for the Thumb. */
313 HOWTO (R_ARM_THM_XPC22, /* type */
314 2, /* rightshift */
315 2, /* size (0 = byte, 1 = short, 2 = long) */
316 24, /* bitsize */
317 TRUE, /* pc_relative */
318 0, /* bitpos */
319 complain_overflow_signed,/* complain_on_overflow */
320 bfd_elf_generic_reloc, /* special_function */
321 "R_ARM_THM_XPC22", /* name */
322 FALSE, /* partial_inplace */
323 0x07ff2fff, /* src_mask */
324 0x07ff2fff, /* dst_mask */
325 TRUE), /* pcrel_offset */
326
327 /* Dynamic TLS relocations. */
328
329 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
330 0, /* rightshift */
331 2, /* size (0 = byte, 1 = short, 2 = long) */
332 32, /* bitsize */
333 FALSE, /* pc_relative */
334 0, /* bitpos */
335 complain_overflow_bitfield,/* complain_on_overflow */
336 bfd_elf_generic_reloc, /* special_function */
337 "R_ARM_TLS_DTPMOD32", /* name */
338 TRUE, /* partial_inplace */
339 0xffffffff, /* src_mask */
340 0xffffffff, /* dst_mask */
341 FALSE), /* pcrel_offset */
342
343 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
344 0, /* rightshift */
345 2, /* size (0 = byte, 1 = short, 2 = long) */
346 32, /* bitsize */
347 FALSE, /* pc_relative */
348 0, /* bitpos */
349 complain_overflow_bitfield,/* complain_on_overflow */
350 bfd_elf_generic_reloc, /* special_function */
351 "R_ARM_TLS_DTPOFF32", /* name */
352 TRUE, /* partial_inplace */
353 0xffffffff, /* src_mask */
354 0xffffffff, /* dst_mask */
355 FALSE), /* pcrel_offset */
356
357 HOWTO (R_ARM_TLS_TPOFF32, /* type */
358 0, /* rightshift */
359 2, /* size (0 = byte, 1 = short, 2 = long) */
360 32, /* bitsize */
361 FALSE, /* pc_relative */
362 0, /* bitpos */
363 complain_overflow_bitfield,/* complain_on_overflow */
364 bfd_elf_generic_reloc, /* special_function */
365 "R_ARM_TLS_TPOFF32", /* name */
366 TRUE, /* partial_inplace */
367 0xffffffff, /* src_mask */
368 0xffffffff, /* dst_mask */
369 FALSE), /* pcrel_offset */
370
371 /* Relocs used in ARM Linux */
372
373 HOWTO (R_ARM_COPY, /* type */
374 0, /* rightshift */
375 2, /* size (0 = byte, 1 = short, 2 = long) */
376 32, /* bitsize */
377 FALSE, /* pc_relative */
378 0, /* bitpos */
379 complain_overflow_bitfield,/* complain_on_overflow */
380 bfd_elf_generic_reloc, /* special_function */
381 "R_ARM_COPY", /* name */
382 TRUE, /* partial_inplace */
383 0xffffffff, /* src_mask */
384 0xffffffff, /* dst_mask */
385 FALSE), /* pcrel_offset */
386
387 HOWTO (R_ARM_GLOB_DAT, /* type */
388 0, /* rightshift */
389 2, /* size (0 = byte, 1 = short, 2 = long) */
390 32, /* bitsize */
391 FALSE, /* pc_relative */
392 0, /* bitpos */
393 complain_overflow_bitfield,/* complain_on_overflow */
394 bfd_elf_generic_reloc, /* special_function */
395 "R_ARM_GLOB_DAT", /* name */
396 TRUE, /* partial_inplace */
397 0xffffffff, /* src_mask */
398 0xffffffff, /* dst_mask */
399 FALSE), /* pcrel_offset */
400
401 HOWTO (R_ARM_JUMP_SLOT, /* type */
402 0, /* rightshift */
403 2, /* size (0 = byte, 1 = short, 2 = long) */
404 32, /* bitsize */
405 FALSE, /* pc_relative */
406 0, /* bitpos */
407 complain_overflow_bitfield,/* complain_on_overflow */
408 bfd_elf_generic_reloc, /* special_function */
409 "R_ARM_JUMP_SLOT", /* name */
410 TRUE, /* partial_inplace */
411 0xffffffff, /* src_mask */
412 0xffffffff, /* dst_mask */
413 FALSE), /* pcrel_offset */
414
415 HOWTO (R_ARM_RELATIVE, /* type */
416 0, /* rightshift */
417 2, /* size (0 = byte, 1 = short, 2 = long) */
418 32, /* bitsize */
419 FALSE, /* pc_relative */
420 0, /* bitpos */
421 complain_overflow_bitfield,/* complain_on_overflow */
422 bfd_elf_generic_reloc, /* special_function */
423 "R_ARM_RELATIVE", /* name */
424 TRUE, /* partial_inplace */
425 0xffffffff, /* src_mask */
426 0xffffffff, /* dst_mask */
427 FALSE), /* pcrel_offset */
428
429 HOWTO (R_ARM_GOTOFF32, /* type */
430 0, /* rightshift */
431 2, /* size (0 = byte, 1 = short, 2 = long) */
432 32, /* bitsize */
433 FALSE, /* pc_relative */
434 0, /* bitpos */
435 complain_overflow_bitfield,/* complain_on_overflow */
436 bfd_elf_generic_reloc, /* special_function */
437 "R_ARM_GOTOFF32", /* name */
438 TRUE, /* partial_inplace */
439 0xffffffff, /* src_mask */
440 0xffffffff, /* dst_mask */
441 FALSE), /* pcrel_offset */
442
443 HOWTO (R_ARM_GOTPC, /* type */
444 0, /* rightshift */
445 2, /* size (0 = byte, 1 = short, 2 = long) */
446 32, /* bitsize */
447 TRUE, /* pc_relative */
448 0, /* bitpos */
449 complain_overflow_bitfield,/* complain_on_overflow */
450 bfd_elf_generic_reloc, /* special_function */
451 "R_ARM_GOTPC", /* name */
452 TRUE, /* partial_inplace */
453 0xffffffff, /* src_mask */
454 0xffffffff, /* dst_mask */
455 TRUE), /* pcrel_offset */
456
457 HOWTO (R_ARM_GOT32, /* type */
458 0, /* rightshift */
459 2, /* size (0 = byte, 1 = short, 2 = long) */
460 32, /* bitsize */
461 FALSE, /* pc_relative */
462 0, /* bitpos */
463 complain_overflow_bitfield,/* complain_on_overflow */
464 bfd_elf_generic_reloc, /* special_function */
465 "R_ARM_GOT32", /* name */
466 TRUE, /* partial_inplace */
467 0xffffffff, /* src_mask */
468 0xffffffff, /* dst_mask */
469 FALSE), /* pcrel_offset */
470
471 HOWTO (R_ARM_PLT32, /* type */
472 2, /* rightshift */
473 2, /* size (0 = byte, 1 = short, 2 = long) */
474 24, /* bitsize */
475 TRUE, /* pc_relative */
476 0, /* bitpos */
477 complain_overflow_bitfield,/* complain_on_overflow */
478 bfd_elf_generic_reloc, /* special_function */
479 "R_ARM_PLT32", /* name */
480 FALSE, /* partial_inplace */
481 0x00ffffff, /* src_mask */
482 0x00ffffff, /* dst_mask */
483 TRUE), /* pcrel_offset */
484
485 HOWTO (R_ARM_CALL, /* type */
486 2, /* rightshift */
487 2, /* size (0 = byte, 1 = short, 2 = long) */
488 24, /* bitsize */
489 TRUE, /* pc_relative */
490 0, /* bitpos */
491 complain_overflow_signed,/* complain_on_overflow */
492 bfd_elf_generic_reloc, /* special_function */
493 "R_ARM_CALL", /* name */
494 FALSE, /* partial_inplace */
495 0x00ffffff, /* src_mask */
496 0x00ffffff, /* dst_mask */
497 TRUE), /* pcrel_offset */
498
499 HOWTO (R_ARM_JUMP24, /* type */
500 2, /* rightshift */
501 2, /* size (0 = byte, 1 = short, 2 = long) */
502 24, /* bitsize */
503 TRUE, /* pc_relative */
504 0, /* bitpos */
505 complain_overflow_signed,/* complain_on_overflow */
506 bfd_elf_generic_reloc, /* special_function */
507 "R_ARM_JUMP24", /* name */
508 FALSE, /* partial_inplace */
509 0x00ffffff, /* src_mask */
510 0x00ffffff, /* dst_mask */
511 TRUE), /* pcrel_offset */
512
513 HOWTO (R_ARM_THM_JUMP24, /* type */
514 1, /* rightshift */
515 2, /* size (0 = byte, 1 = short, 2 = long) */
516 24, /* bitsize */
517 TRUE, /* pc_relative */
518 0, /* bitpos */
519 complain_overflow_signed,/* complain_on_overflow */
520 bfd_elf_generic_reloc, /* special_function */
521 "R_ARM_THM_JUMP24", /* name */
522 FALSE, /* partial_inplace */
523 0x07ff2fff, /* src_mask */
524 0x07ff2fff, /* dst_mask */
525 TRUE), /* pcrel_offset */
526
527 HOWTO (R_ARM_BASE_ABS, /* type */
528 0, /* rightshift */
529 2, /* size (0 = byte, 1 = short, 2 = long) */
530 32, /* bitsize */
531 FALSE, /* pc_relative */
532 0, /* bitpos */
533 complain_overflow_dont,/* complain_on_overflow */
534 bfd_elf_generic_reloc, /* special_function */
535 "R_ARM_BASE_ABS", /* name */
536 FALSE, /* partial_inplace */
537 0xffffffff, /* src_mask */
538 0xffffffff, /* dst_mask */
539 FALSE), /* pcrel_offset */
540
541 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
542 0, /* rightshift */
543 2, /* size (0 = byte, 1 = short, 2 = long) */
544 12, /* bitsize */
545 TRUE, /* pc_relative */
546 0, /* bitpos */
547 complain_overflow_dont,/* complain_on_overflow */
548 bfd_elf_generic_reloc, /* special_function */
549 "R_ARM_ALU_PCREL_7_0", /* name */
550 FALSE, /* partial_inplace */
551 0x00000fff, /* src_mask */
552 0x00000fff, /* dst_mask */
553 TRUE), /* pcrel_offset */
554
555 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
556 0, /* rightshift */
557 2, /* size (0 = byte, 1 = short, 2 = long) */
558 12, /* bitsize */
559 TRUE, /* pc_relative */
560 8, /* bitpos */
561 complain_overflow_dont,/* complain_on_overflow */
562 bfd_elf_generic_reloc, /* special_function */
563 "R_ARM_ALU_PCREL_15_8",/* name */
564 FALSE, /* partial_inplace */
565 0x00000fff, /* src_mask */
566 0x00000fff, /* dst_mask */
567 TRUE), /* pcrel_offset */
568
569 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
570 0, /* rightshift */
571 2, /* size (0 = byte, 1 = short, 2 = long) */
572 12, /* bitsize */
573 TRUE, /* pc_relative */
574 16, /* bitpos */
575 complain_overflow_dont,/* complain_on_overflow */
576 bfd_elf_generic_reloc, /* special_function */
577 "R_ARM_ALU_PCREL_23_15",/* name */
578 FALSE, /* partial_inplace */
579 0x00000fff, /* src_mask */
580 0x00000fff, /* dst_mask */
581 TRUE), /* pcrel_offset */
582
583 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
584 0, /* rightshift */
585 2, /* size (0 = byte, 1 = short, 2 = long) */
586 12, /* bitsize */
587 FALSE, /* pc_relative */
588 0, /* bitpos */
589 complain_overflow_dont,/* complain_on_overflow */
590 bfd_elf_generic_reloc, /* special_function */
591 "R_ARM_LDR_SBREL_11_0",/* name */
592 FALSE, /* partial_inplace */
593 0x00000fff, /* src_mask */
594 0x00000fff, /* dst_mask */
595 FALSE), /* pcrel_offset */
596
597 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
598 0, /* rightshift */
599 2, /* size (0 = byte, 1 = short, 2 = long) */
600 8, /* bitsize */
601 FALSE, /* pc_relative */
602 12, /* bitpos */
603 complain_overflow_dont,/* complain_on_overflow */
604 bfd_elf_generic_reloc, /* special_function */
605 "R_ARM_ALU_SBREL_19_12",/* name */
606 FALSE, /* partial_inplace */
607 0x000ff000, /* src_mask */
608 0x000ff000, /* dst_mask */
609 FALSE), /* pcrel_offset */
610
611 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
612 0, /* rightshift */
613 2, /* size (0 = byte, 1 = short, 2 = long) */
614 8, /* bitsize */
615 FALSE, /* pc_relative */
616 20, /* bitpos */
617 complain_overflow_dont,/* complain_on_overflow */
618 bfd_elf_generic_reloc, /* special_function */
619 "R_ARM_ALU_SBREL_27_20",/* name */
620 FALSE, /* partial_inplace */
621 0x0ff00000, /* src_mask */
622 0x0ff00000, /* dst_mask */
623 FALSE), /* pcrel_offset */
624
625 HOWTO (R_ARM_TARGET1, /* type */
626 0, /* rightshift */
627 2, /* size (0 = byte, 1 = short, 2 = long) */
628 32, /* bitsize */
629 FALSE, /* pc_relative */
630 0, /* bitpos */
631 complain_overflow_dont,/* complain_on_overflow */
632 bfd_elf_generic_reloc, /* special_function */
633 "R_ARM_TARGET1", /* name */
634 FALSE, /* partial_inplace */
635 0xffffffff, /* src_mask */
636 0xffffffff, /* dst_mask */
637 FALSE), /* pcrel_offset */
638
639 HOWTO (R_ARM_ROSEGREL32, /* type */
640 0, /* rightshift */
641 2, /* size (0 = byte, 1 = short, 2 = long) */
642 32, /* bitsize */
643 FALSE, /* pc_relative */
644 0, /* bitpos */
645 complain_overflow_dont,/* complain_on_overflow */
646 bfd_elf_generic_reloc, /* special_function */
647 "R_ARM_ROSEGREL32", /* name */
648 FALSE, /* partial_inplace */
649 0xffffffff, /* src_mask */
650 0xffffffff, /* dst_mask */
651 FALSE), /* pcrel_offset */
652
653 HOWTO (R_ARM_V4BX, /* type */
654 0, /* rightshift */
655 2, /* size (0 = byte, 1 = short, 2 = long) */
656 32, /* bitsize */
657 FALSE, /* pc_relative */
658 0, /* bitpos */
659 complain_overflow_dont,/* complain_on_overflow */
660 bfd_elf_generic_reloc, /* special_function */
661 "R_ARM_V4BX", /* name */
662 FALSE, /* partial_inplace */
663 0xffffffff, /* src_mask */
664 0xffffffff, /* dst_mask */
665 FALSE), /* pcrel_offset */
666
667 HOWTO (R_ARM_TARGET2, /* type */
668 0, /* rightshift */
669 2, /* size (0 = byte, 1 = short, 2 = long) */
670 32, /* bitsize */
671 FALSE, /* pc_relative */
672 0, /* bitpos */
673 complain_overflow_signed,/* complain_on_overflow */
674 bfd_elf_generic_reloc, /* special_function */
675 "R_ARM_TARGET2", /* name */
676 FALSE, /* partial_inplace */
677 0xffffffff, /* src_mask */
678 0xffffffff, /* dst_mask */
679 TRUE), /* pcrel_offset */
680
681 HOWTO (R_ARM_PREL31, /* type */
682 0, /* rightshift */
683 2, /* size (0 = byte, 1 = short, 2 = long) */
684 31, /* bitsize */
685 TRUE, /* pc_relative */
686 0, /* bitpos */
687 complain_overflow_signed,/* complain_on_overflow */
688 bfd_elf_generic_reloc, /* special_function */
689 "R_ARM_PREL31", /* name */
690 FALSE, /* partial_inplace */
691 0x7fffffff, /* src_mask */
692 0x7fffffff, /* dst_mask */
693 TRUE), /* pcrel_offset */
694
695 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
696 0, /* rightshift */
697 2, /* size (0 = byte, 1 = short, 2 = long) */
698 16, /* bitsize */
699 FALSE, /* pc_relative */
700 0, /* bitpos */
701 complain_overflow_dont,/* complain_on_overflow */
702 bfd_elf_generic_reloc, /* special_function */
703 "R_ARM_MOVW_ABS_NC", /* name */
704 FALSE, /* partial_inplace */
705 0x000f0fff, /* src_mask */
706 0x000f0fff, /* dst_mask */
707 FALSE), /* pcrel_offset */
708
709 HOWTO (R_ARM_MOVT_ABS, /* type */
710 0, /* rightshift */
711 2, /* size (0 = byte, 1 = short, 2 = long) */
712 16, /* bitsize */
713 FALSE, /* pc_relative */
714 0, /* bitpos */
715 complain_overflow_bitfield,/* complain_on_overflow */
716 bfd_elf_generic_reloc, /* special_function */
717 "R_ARM_MOVT_ABS", /* name */
718 FALSE, /* partial_inplace */
719 0x000f0fff, /* src_mask */
720 0x000f0fff, /* dst_mask */
721 FALSE), /* pcrel_offset */
722
723 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
724 0, /* rightshift */
725 2, /* size (0 = byte, 1 = short, 2 = long) */
726 16, /* bitsize */
727 TRUE, /* pc_relative */
728 0, /* bitpos */
729 complain_overflow_dont,/* complain_on_overflow */
730 bfd_elf_generic_reloc, /* special_function */
731 "R_ARM_MOVW_PREL_NC", /* name */
732 FALSE, /* partial_inplace */
733 0x000f0fff, /* src_mask */
734 0x000f0fff, /* dst_mask */
735 TRUE), /* pcrel_offset */
736
737 HOWTO (R_ARM_MOVT_PREL, /* type */
738 0, /* rightshift */
739 2, /* size (0 = byte, 1 = short, 2 = long) */
740 16, /* bitsize */
741 TRUE, /* pc_relative */
742 0, /* bitpos */
743 complain_overflow_bitfield,/* complain_on_overflow */
744 bfd_elf_generic_reloc, /* special_function */
745 "R_ARM_MOVT_PREL", /* name */
746 FALSE, /* partial_inplace */
747 0x000f0fff, /* src_mask */
748 0x000f0fff, /* dst_mask */
749 TRUE), /* pcrel_offset */
750
751 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
752 0, /* rightshift */
753 2, /* size (0 = byte, 1 = short, 2 = long) */
754 16, /* bitsize */
755 FALSE, /* pc_relative */
756 0, /* bitpos */
757 complain_overflow_dont,/* complain_on_overflow */
758 bfd_elf_generic_reloc, /* special_function */
759 "R_ARM_THM_MOVW_ABS_NC",/* name */
760 FALSE, /* partial_inplace */
761 0x040f70ff, /* src_mask */
762 0x040f70ff, /* dst_mask */
763 FALSE), /* pcrel_offset */
764
765 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
766 0, /* rightshift */
767 2, /* size (0 = byte, 1 = short, 2 = long) */
768 16, /* bitsize */
769 FALSE, /* pc_relative */
770 0, /* bitpos */
771 complain_overflow_bitfield,/* complain_on_overflow */
772 bfd_elf_generic_reloc, /* special_function */
773 "R_ARM_THM_MOVT_ABS", /* name */
774 FALSE, /* partial_inplace */
775 0x040f70ff, /* src_mask */
776 0x040f70ff, /* dst_mask */
777 FALSE), /* pcrel_offset */
778
779 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
780 0, /* rightshift */
781 2, /* size (0 = byte, 1 = short, 2 = long) */
782 16, /* bitsize */
783 TRUE, /* pc_relative */
784 0, /* bitpos */
785 complain_overflow_dont,/* complain_on_overflow */
786 bfd_elf_generic_reloc, /* special_function */
787 "R_ARM_THM_MOVW_PREL_NC",/* name */
788 FALSE, /* partial_inplace */
789 0x040f70ff, /* src_mask */
790 0x040f70ff, /* dst_mask */
791 TRUE), /* pcrel_offset */
792
793 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
794 0, /* rightshift */
795 2, /* size (0 = byte, 1 = short, 2 = long) */
796 16, /* bitsize */
797 TRUE, /* pc_relative */
798 0, /* bitpos */
799 complain_overflow_bitfield,/* complain_on_overflow */
800 bfd_elf_generic_reloc, /* special_function */
801 "R_ARM_THM_MOVT_PREL", /* name */
802 FALSE, /* partial_inplace */
803 0x040f70ff, /* src_mask */
804 0x040f70ff, /* dst_mask */
805 TRUE), /* pcrel_offset */
806
807 HOWTO (R_ARM_THM_JUMP19, /* type */
808 1, /* rightshift */
809 2, /* size (0 = byte, 1 = short, 2 = long) */
810 19, /* bitsize */
811 TRUE, /* pc_relative */
812 0, /* bitpos */
813 complain_overflow_signed,/* complain_on_overflow */
814 bfd_elf_generic_reloc, /* special_function */
815 "R_ARM_THM_JUMP19", /* name */
816 FALSE, /* partial_inplace */
817 0x043f2fff, /* src_mask */
818 0x043f2fff, /* dst_mask */
819 TRUE), /* pcrel_offset */
820
821 HOWTO (R_ARM_THM_JUMP6, /* type */
822 1, /* rightshift */
823 1, /* size (0 = byte, 1 = short, 2 = long) */
824 6, /* bitsize */
825 TRUE, /* pc_relative */
826 0, /* bitpos */
827 complain_overflow_unsigned,/* complain_on_overflow */
828 bfd_elf_generic_reloc, /* special_function */
829 "R_ARM_THM_JUMP6", /* name */
830 FALSE, /* partial_inplace */
831 0x02f8, /* src_mask */
832 0x02f8, /* dst_mask */
833 TRUE), /* pcrel_offset */
834
835 /* These are declared as 13-bit signed relocations because we can
836 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
837 versa. */
838 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
839 0, /* rightshift */
840 2, /* size (0 = byte, 1 = short, 2 = long) */
841 13, /* bitsize */
842 TRUE, /* pc_relative */
843 0, /* bitpos */
844 complain_overflow_dont,/* complain_on_overflow */
845 bfd_elf_generic_reloc, /* special_function */
846 "R_ARM_THM_ALU_PREL_11_0",/* name */
847 FALSE, /* partial_inplace */
848 0xffffffff, /* src_mask */
849 0xffffffff, /* dst_mask */
850 TRUE), /* pcrel_offset */
851
852 HOWTO (R_ARM_THM_PC12, /* type */
853 0, /* rightshift */
854 2, /* size (0 = byte, 1 = short, 2 = long) */
855 13, /* bitsize */
856 TRUE, /* pc_relative */
857 0, /* bitpos */
858 complain_overflow_dont,/* complain_on_overflow */
859 bfd_elf_generic_reloc, /* special_function */
860 "R_ARM_THM_PC12", /* name */
861 FALSE, /* partial_inplace */
862 0xffffffff, /* src_mask */
863 0xffffffff, /* dst_mask */
864 TRUE), /* pcrel_offset */
865
866 HOWTO (R_ARM_ABS32_NOI, /* type */
867 0, /* rightshift */
868 2, /* size (0 = byte, 1 = short, 2 = long) */
869 32, /* bitsize */
870 FALSE, /* pc_relative */
871 0, /* bitpos */
872 complain_overflow_dont,/* complain_on_overflow */
873 bfd_elf_generic_reloc, /* special_function */
874 "R_ARM_ABS32_NOI", /* name */
875 FALSE, /* partial_inplace */
876 0xffffffff, /* src_mask */
877 0xffffffff, /* dst_mask */
878 FALSE), /* pcrel_offset */
879
880 HOWTO (R_ARM_REL32_NOI, /* type */
881 0, /* rightshift */
882 2, /* size (0 = byte, 1 = short, 2 = long) */
883 32, /* bitsize */
884 TRUE, /* pc_relative */
885 0, /* bitpos */
886 complain_overflow_dont,/* complain_on_overflow */
887 bfd_elf_generic_reloc, /* special_function */
888 "R_ARM_REL32_NOI", /* name */
889 FALSE, /* partial_inplace */
890 0xffffffff, /* src_mask */
891 0xffffffff, /* dst_mask */
892 FALSE), /* pcrel_offset */
893
894 /* Group relocations. */
895
896 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
897 0, /* rightshift */
898 2, /* size (0 = byte, 1 = short, 2 = long) */
899 32, /* bitsize */
900 TRUE, /* pc_relative */
901 0, /* bitpos */
902 complain_overflow_dont,/* complain_on_overflow */
903 bfd_elf_generic_reloc, /* special_function */
904 "R_ARM_ALU_PC_G0_NC", /* name */
905 FALSE, /* partial_inplace */
906 0xffffffff, /* src_mask */
907 0xffffffff, /* dst_mask */
908 TRUE), /* pcrel_offset */
909
910 HOWTO (R_ARM_ALU_PC_G0, /* type */
911 0, /* rightshift */
912 2, /* size (0 = byte, 1 = short, 2 = long) */
913 32, /* bitsize */
914 TRUE, /* pc_relative */
915 0, /* bitpos */
916 complain_overflow_dont,/* complain_on_overflow */
917 bfd_elf_generic_reloc, /* special_function */
918 "R_ARM_ALU_PC_G0", /* name */
919 FALSE, /* partial_inplace */
920 0xffffffff, /* src_mask */
921 0xffffffff, /* dst_mask */
922 TRUE), /* pcrel_offset */
923
924 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
925 0, /* rightshift */
926 2, /* size (0 = byte, 1 = short, 2 = long) */
927 32, /* bitsize */
928 TRUE, /* pc_relative */
929 0, /* bitpos */
930 complain_overflow_dont,/* complain_on_overflow */
931 bfd_elf_generic_reloc, /* special_function */
932 "R_ARM_ALU_PC_G1_NC", /* name */
933 FALSE, /* partial_inplace */
934 0xffffffff, /* src_mask */
935 0xffffffff, /* dst_mask */
936 TRUE), /* pcrel_offset */
937
938 HOWTO (R_ARM_ALU_PC_G1, /* type */
939 0, /* rightshift */
940 2, /* size (0 = byte, 1 = short, 2 = long) */
941 32, /* bitsize */
942 TRUE, /* pc_relative */
943 0, /* bitpos */
944 complain_overflow_dont,/* complain_on_overflow */
945 bfd_elf_generic_reloc, /* special_function */
946 "R_ARM_ALU_PC_G1", /* name */
947 FALSE, /* partial_inplace */
948 0xffffffff, /* src_mask */
949 0xffffffff, /* dst_mask */
950 TRUE), /* pcrel_offset */
951
952 HOWTO (R_ARM_ALU_PC_G2, /* type */
953 0, /* rightshift */
954 2, /* size (0 = byte, 1 = short, 2 = long) */
955 32, /* bitsize */
956 TRUE, /* pc_relative */
957 0, /* bitpos */
958 complain_overflow_dont,/* complain_on_overflow */
959 bfd_elf_generic_reloc, /* special_function */
960 "R_ARM_ALU_PC_G2", /* name */
961 FALSE, /* partial_inplace */
962 0xffffffff, /* src_mask */
963 0xffffffff, /* dst_mask */
964 TRUE), /* pcrel_offset */
965
966 HOWTO (R_ARM_LDR_PC_G1, /* type */
967 0, /* rightshift */
968 2, /* size (0 = byte, 1 = short, 2 = long) */
969 32, /* bitsize */
970 TRUE, /* pc_relative */
971 0, /* bitpos */
972 complain_overflow_dont,/* complain_on_overflow */
973 bfd_elf_generic_reloc, /* special_function */
974 "R_ARM_LDR_PC_G1", /* name */
975 FALSE, /* partial_inplace */
976 0xffffffff, /* src_mask */
977 0xffffffff, /* dst_mask */
978 TRUE), /* pcrel_offset */
979
980 HOWTO (R_ARM_LDR_PC_G2, /* type */
981 0, /* rightshift */
982 2, /* size (0 = byte, 1 = short, 2 = long) */
983 32, /* bitsize */
984 TRUE, /* pc_relative */
985 0, /* bitpos */
986 complain_overflow_dont,/* complain_on_overflow */
987 bfd_elf_generic_reloc, /* special_function */
988 "R_ARM_LDR_PC_G2", /* name */
989 FALSE, /* partial_inplace */
990 0xffffffff, /* src_mask */
991 0xffffffff, /* dst_mask */
992 TRUE), /* pcrel_offset */
993
994 HOWTO (R_ARM_LDRS_PC_G0, /* type */
995 0, /* rightshift */
996 2, /* size (0 = byte, 1 = short, 2 = long) */
997 32, /* bitsize */
998 TRUE, /* pc_relative */
999 0, /* bitpos */
1000 complain_overflow_dont,/* complain_on_overflow */
1001 bfd_elf_generic_reloc, /* special_function */
1002 "R_ARM_LDRS_PC_G0", /* name */
1003 FALSE, /* partial_inplace */
1004 0xffffffff, /* src_mask */
1005 0xffffffff, /* dst_mask */
1006 TRUE), /* pcrel_offset */
1007
1008 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1009 0, /* rightshift */
1010 2, /* size (0 = byte, 1 = short, 2 = long) */
1011 32, /* bitsize */
1012 TRUE, /* pc_relative */
1013 0, /* bitpos */
1014 complain_overflow_dont,/* complain_on_overflow */
1015 bfd_elf_generic_reloc, /* special_function */
1016 "R_ARM_LDRS_PC_G1", /* name */
1017 FALSE, /* partial_inplace */
1018 0xffffffff, /* src_mask */
1019 0xffffffff, /* dst_mask */
1020 TRUE), /* pcrel_offset */
1021
1022 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1023 0, /* rightshift */
1024 2, /* size (0 = byte, 1 = short, 2 = long) */
1025 32, /* bitsize */
1026 TRUE, /* pc_relative */
1027 0, /* bitpos */
1028 complain_overflow_dont,/* complain_on_overflow */
1029 bfd_elf_generic_reloc, /* special_function */
1030 "R_ARM_LDRS_PC_G2", /* name */
1031 FALSE, /* partial_inplace */
1032 0xffffffff, /* src_mask */
1033 0xffffffff, /* dst_mask */
1034 TRUE), /* pcrel_offset */
1035
1036 HOWTO (R_ARM_LDC_PC_G0, /* type */
1037 0, /* rightshift */
1038 2, /* size (0 = byte, 1 = short, 2 = long) */
1039 32, /* bitsize */
1040 TRUE, /* pc_relative */
1041 0, /* bitpos */
1042 complain_overflow_dont,/* complain_on_overflow */
1043 bfd_elf_generic_reloc, /* special_function */
1044 "R_ARM_LDC_PC_G0", /* name */
1045 FALSE, /* partial_inplace */
1046 0xffffffff, /* src_mask */
1047 0xffffffff, /* dst_mask */
1048 TRUE), /* pcrel_offset */
1049
1050 HOWTO (R_ARM_LDC_PC_G1, /* type */
1051 0, /* rightshift */
1052 2, /* size (0 = byte, 1 = short, 2 = long) */
1053 32, /* bitsize */
1054 TRUE, /* pc_relative */
1055 0, /* bitpos */
1056 complain_overflow_dont,/* complain_on_overflow */
1057 bfd_elf_generic_reloc, /* special_function */
1058 "R_ARM_LDC_PC_G1", /* name */
1059 FALSE, /* partial_inplace */
1060 0xffffffff, /* src_mask */
1061 0xffffffff, /* dst_mask */
1062 TRUE), /* pcrel_offset */
1063
1064 HOWTO (R_ARM_LDC_PC_G2, /* type */
1065 0, /* rightshift */
1066 2, /* size (0 = byte, 1 = short, 2 = long) */
1067 32, /* bitsize */
1068 TRUE, /* pc_relative */
1069 0, /* bitpos */
1070 complain_overflow_dont,/* complain_on_overflow */
1071 bfd_elf_generic_reloc, /* special_function */
1072 "R_ARM_LDC_PC_G2", /* name */
1073 FALSE, /* partial_inplace */
1074 0xffffffff, /* src_mask */
1075 0xffffffff, /* dst_mask */
1076 TRUE), /* pcrel_offset */
1077
1078 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1079 0, /* rightshift */
1080 2, /* size (0 = byte, 1 = short, 2 = long) */
1081 32, /* bitsize */
1082 TRUE, /* pc_relative */
1083 0, /* bitpos */
1084 complain_overflow_dont,/* complain_on_overflow */
1085 bfd_elf_generic_reloc, /* special_function */
1086 "R_ARM_ALU_SB_G0_NC", /* name */
1087 FALSE, /* partial_inplace */
1088 0xffffffff, /* src_mask */
1089 0xffffffff, /* dst_mask */
1090 TRUE), /* pcrel_offset */
1091
1092 HOWTO (R_ARM_ALU_SB_G0, /* type */
1093 0, /* rightshift */
1094 2, /* size (0 = byte, 1 = short, 2 = long) */
1095 32, /* bitsize */
1096 TRUE, /* pc_relative */
1097 0, /* bitpos */
1098 complain_overflow_dont,/* complain_on_overflow */
1099 bfd_elf_generic_reloc, /* special_function */
1100 "R_ARM_ALU_SB_G0", /* name */
1101 FALSE, /* partial_inplace */
1102 0xffffffff, /* src_mask */
1103 0xffffffff, /* dst_mask */
1104 TRUE), /* pcrel_offset */
1105
1106 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1107 0, /* rightshift */
1108 2, /* size (0 = byte, 1 = short, 2 = long) */
1109 32, /* bitsize */
1110 TRUE, /* pc_relative */
1111 0, /* bitpos */
1112 complain_overflow_dont,/* complain_on_overflow */
1113 bfd_elf_generic_reloc, /* special_function */
1114 "R_ARM_ALU_SB_G1_NC", /* name */
1115 FALSE, /* partial_inplace */
1116 0xffffffff, /* src_mask */
1117 0xffffffff, /* dst_mask */
1118 TRUE), /* pcrel_offset */
1119
1120 HOWTO (R_ARM_ALU_SB_G1, /* type */
1121 0, /* rightshift */
1122 2, /* size (0 = byte, 1 = short, 2 = long) */
1123 32, /* bitsize */
1124 TRUE, /* pc_relative */
1125 0, /* bitpos */
1126 complain_overflow_dont,/* complain_on_overflow */
1127 bfd_elf_generic_reloc, /* special_function */
1128 "R_ARM_ALU_SB_G1", /* name */
1129 FALSE, /* partial_inplace */
1130 0xffffffff, /* src_mask */
1131 0xffffffff, /* dst_mask */
1132 TRUE), /* pcrel_offset */
1133
1134 HOWTO (R_ARM_ALU_SB_G2, /* type */
1135 0, /* rightshift */
1136 2, /* size (0 = byte, 1 = short, 2 = long) */
1137 32, /* bitsize */
1138 TRUE, /* pc_relative */
1139 0, /* bitpos */
1140 complain_overflow_dont,/* complain_on_overflow */
1141 bfd_elf_generic_reloc, /* special_function */
1142 "R_ARM_ALU_SB_G2", /* name */
1143 FALSE, /* partial_inplace */
1144 0xffffffff, /* src_mask */
1145 0xffffffff, /* dst_mask */
1146 TRUE), /* pcrel_offset */
1147
1148 HOWTO (R_ARM_LDR_SB_G0, /* type */
1149 0, /* rightshift */
1150 2, /* size (0 = byte, 1 = short, 2 = long) */
1151 32, /* bitsize */
1152 TRUE, /* pc_relative */
1153 0, /* bitpos */
1154 complain_overflow_dont,/* complain_on_overflow */
1155 bfd_elf_generic_reloc, /* special_function */
1156 "R_ARM_LDR_SB_G0", /* name */
1157 FALSE, /* partial_inplace */
1158 0xffffffff, /* src_mask */
1159 0xffffffff, /* dst_mask */
1160 TRUE), /* pcrel_offset */
1161
1162 HOWTO (R_ARM_LDR_SB_G1, /* type */
1163 0, /* rightshift */
1164 2, /* size (0 = byte, 1 = short, 2 = long) */
1165 32, /* bitsize */
1166 TRUE, /* pc_relative */
1167 0, /* bitpos */
1168 complain_overflow_dont,/* complain_on_overflow */
1169 bfd_elf_generic_reloc, /* special_function */
1170 "R_ARM_LDR_SB_G1", /* name */
1171 FALSE, /* partial_inplace */
1172 0xffffffff, /* src_mask */
1173 0xffffffff, /* dst_mask */
1174 TRUE), /* pcrel_offset */
1175
1176 HOWTO (R_ARM_LDR_SB_G2, /* type */
1177 0, /* rightshift */
1178 2, /* size (0 = byte, 1 = short, 2 = long) */
1179 32, /* bitsize */
1180 TRUE, /* pc_relative */
1181 0, /* bitpos */
1182 complain_overflow_dont,/* complain_on_overflow */
1183 bfd_elf_generic_reloc, /* special_function */
1184 "R_ARM_LDR_SB_G2", /* name */
1185 FALSE, /* partial_inplace */
1186 0xffffffff, /* src_mask */
1187 0xffffffff, /* dst_mask */
1188 TRUE), /* pcrel_offset */
1189
1190 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1191 0, /* rightshift */
1192 2, /* size (0 = byte, 1 = short, 2 = long) */
1193 32, /* bitsize */
1194 TRUE, /* pc_relative */
1195 0, /* bitpos */
1196 complain_overflow_dont,/* complain_on_overflow */
1197 bfd_elf_generic_reloc, /* special_function */
1198 "R_ARM_LDRS_SB_G0", /* name */
1199 FALSE, /* partial_inplace */
1200 0xffffffff, /* src_mask */
1201 0xffffffff, /* dst_mask */
1202 TRUE), /* pcrel_offset */
1203
1204 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1205 0, /* rightshift */
1206 2, /* size (0 = byte, 1 = short, 2 = long) */
1207 32, /* bitsize */
1208 TRUE, /* pc_relative */
1209 0, /* bitpos */
1210 complain_overflow_dont,/* complain_on_overflow */
1211 bfd_elf_generic_reloc, /* special_function */
1212 "R_ARM_LDRS_SB_G1", /* name */
1213 FALSE, /* partial_inplace */
1214 0xffffffff, /* src_mask */
1215 0xffffffff, /* dst_mask */
1216 TRUE), /* pcrel_offset */
1217
1218 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1219 0, /* rightshift */
1220 2, /* size (0 = byte, 1 = short, 2 = long) */
1221 32, /* bitsize */
1222 TRUE, /* pc_relative */
1223 0, /* bitpos */
1224 complain_overflow_dont,/* complain_on_overflow */
1225 bfd_elf_generic_reloc, /* special_function */
1226 "R_ARM_LDRS_SB_G2", /* name */
1227 FALSE, /* partial_inplace */
1228 0xffffffff, /* src_mask */
1229 0xffffffff, /* dst_mask */
1230 TRUE), /* pcrel_offset */
1231
1232 HOWTO (R_ARM_LDC_SB_G0, /* type */
1233 0, /* rightshift */
1234 2, /* size (0 = byte, 1 = short, 2 = long) */
1235 32, /* bitsize */
1236 TRUE, /* pc_relative */
1237 0, /* bitpos */
1238 complain_overflow_dont,/* complain_on_overflow */
1239 bfd_elf_generic_reloc, /* special_function */
1240 "R_ARM_LDC_SB_G0", /* name */
1241 FALSE, /* partial_inplace */
1242 0xffffffff, /* src_mask */
1243 0xffffffff, /* dst_mask */
1244 TRUE), /* pcrel_offset */
1245
1246 HOWTO (R_ARM_LDC_SB_G1, /* type */
1247 0, /* rightshift */
1248 2, /* size (0 = byte, 1 = short, 2 = long) */
1249 32, /* bitsize */
1250 TRUE, /* pc_relative */
1251 0, /* bitpos */
1252 complain_overflow_dont,/* complain_on_overflow */
1253 bfd_elf_generic_reloc, /* special_function */
1254 "R_ARM_LDC_SB_G1", /* name */
1255 FALSE, /* partial_inplace */
1256 0xffffffff, /* src_mask */
1257 0xffffffff, /* dst_mask */
1258 TRUE), /* pcrel_offset */
1259
1260 HOWTO (R_ARM_LDC_SB_G2, /* type */
1261 0, /* rightshift */
1262 2, /* size (0 = byte, 1 = short, 2 = long) */
1263 32, /* bitsize */
1264 TRUE, /* pc_relative */
1265 0, /* bitpos */
1266 complain_overflow_dont,/* complain_on_overflow */
1267 bfd_elf_generic_reloc, /* special_function */
1268 "R_ARM_LDC_SB_G2", /* name */
1269 FALSE, /* partial_inplace */
1270 0xffffffff, /* src_mask */
1271 0xffffffff, /* dst_mask */
1272 TRUE), /* pcrel_offset */
1273
1274 /* End of group relocations. */
1275
1276 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1277 0, /* rightshift */
1278 2, /* size (0 = byte, 1 = short, 2 = long) */
1279 16, /* bitsize */
1280 FALSE, /* pc_relative */
1281 0, /* bitpos */
1282 complain_overflow_dont,/* complain_on_overflow */
1283 bfd_elf_generic_reloc, /* special_function */
1284 "R_ARM_MOVW_BREL_NC", /* name */
1285 FALSE, /* partial_inplace */
1286 0x0000ffff, /* src_mask */
1287 0x0000ffff, /* dst_mask */
1288 FALSE), /* pcrel_offset */
1289
1290 HOWTO (R_ARM_MOVT_BREL, /* type */
1291 0, /* rightshift */
1292 2, /* size (0 = byte, 1 = short, 2 = long) */
1293 16, /* bitsize */
1294 FALSE, /* pc_relative */
1295 0, /* bitpos */
1296 complain_overflow_bitfield,/* complain_on_overflow */
1297 bfd_elf_generic_reloc, /* special_function */
1298 "R_ARM_MOVT_BREL", /* name */
1299 FALSE, /* partial_inplace */
1300 0x0000ffff, /* src_mask */
1301 0x0000ffff, /* dst_mask */
1302 FALSE), /* pcrel_offset */
1303
1304 HOWTO (R_ARM_MOVW_BREL, /* type */
1305 0, /* rightshift */
1306 2, /* size (0 = byte, 1 = short, 2 = long) */
1307 16, /* bitsize */
1308 FALSE, /* pc_relative */
1309 0, /* bitpos */
1310 complain_overflow_dont,/* complain_on_overflow */
1311 bfd_elf_generic_reloc, /* special_function */
1312 "R_ARM_MOVW_BREL", /* name */
1313 FALSE, /* partial_inplace */
1314 0x0000ffff, /* src_mask */
1315 0x0000ffff, /* dst_mask */
1316 FALSE), /* pcrel_offset */
1317
1318 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1319 0, /* rightshift */
1320 2, /* size (0 = byte, 1 = short, 2 = long) */
1321 16, /* bitsize */
1322 FALSE, /* pc_relative */
1323 0, /* bitpos */
1324 complain_overflow_dont,/* complain_on_overflow */
1325 bfd_elf_generic_reloc, /* special_function */
1326 "R_ARM_THM_MOVW_BREL_NC",/* name */
1327 FALSE, /* partial_inplace */
1328 0x040f70ff, /* src_mask */
1329 0x040f70ff, /* dst_mask */
1330 FALSE), /* pcrel_offset */
1331
1332 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1333 0, /* rightshift */
1334 2, /* size (0 = byte, 1 = short, 2 = long) */
1335 16, /* bitsize */
1336 FALSE, /* pc_relative */
1337 0, /* bitpos */
1338 complain_overflow_bitfield,/* complain_on_overflow */
1339 bfd_elf_generic_reloc, /* special_function */
1340 "R_ARM_THM_MOVT_BREL", /* name */
1341 FALSE, /* partial_inplace */
1342 0x040f70ff, /* src_mask */
1343 0x040f70ff, /* dst_mask */
1344 FALSE), /* pcrel_offset */
1345
1346 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1347 0, /* rightshift */
1348 2, /* size (0 = byte, 1 = short, 2 = long) */
1349 16, /* bitsize */
1350 FALSE, /* pc_relative */
1351 0, /* bitpos */
1352 complain_overflow_dont,/* complain_on_overflow */
1353 bfd_elf_generic_reloc, /* special_function */
1354 "R_ARM_THM_MOVW_BREL", /* name */
1355 FALSE, /* partial_inplace */
1356 0x040f70ff, /* src_mask */
1357 0x040f70ff, /* dst_mask */
1358 FALSE), /* pcrel_offset */
1359
1360 HOWTO (R_ARM_TLS_GOTDESC, /* type */
1361 0, /* rightshift */
1362 2, /* size (0 = byte, 1 = short, 2 = long) */
1363 32, /* bitsize */
1364 FALSE, /* pc_relative */
1365 0, /* bitpos */
1366 complain_overflow_bitfield,/* complain_on_overflow */
1367 NULL, /* special_function */
1368 "R_ARM_TLS_GOTDESC", /* name */
1369 TRUE, /* partial_inplace */
1370 0xffffffff, /* src_mask */
1371 0xffffffff, /* dst_mask */
1372 FALSE), /* pcrel_offset */
1373
1374 HOWTO (R_ARM_TLS_CALL, /* type */
1375 0, /* rightshift */
1376 2, /* size (0 = byte, 1 = short, 2 = long) */
1377 24, /* bitsize */
1378 FALSE, /* pc_relative */
1379 0, /* bitpos */
1380 complain_overflow_dont,/* complain_on_overflow */
1381 bfd_elf_generic_reloc, /* special_function */
1382 "R_ARM_TLS_CALL", /* name */
1383 FALSE, /* partial_inplace */
1384 0x00ffffff, /* src_mask */
1385 0x00ffffff, /* dst_mask */
1386 FALSE), /* pcrel_offset */
1387
1388 HOWTO (R_ARM_TLS_DESCSEQ, /* type */
1389 0, /* rightshift */
1390 2, /* size (0 = byte, 1 = short, 2 = long) */
1391 0, /* bitsize */
1392 FALSE, /* pc_relative */
1393 0, /* bitpos */
1394 complain_overflow_bitfield,/* complain_on_overflow */
1395 bfd_elf_generic_reloc, /* special_function */
1396 "R_ARM_TLS_DESCSEQ", /* name */
1397 FALSE, /* partial_inplace */
1398 0x00000000, /* src_mask */
1399 0x00000000, /* dst_mask */
1400 FALSE), /* pcrel_offset */
1401
1402 HOWTO (R_ARM_THM_TLS_CALL, /* type */
1403 0, /* rightshift */
1404 2, /* size (0 = byte, 1 = short, 2 = long) */
1405 24, /* bitsize */
1406 FALSE, /* pc_relative */
1407 0, /* bitpos */
1408 complain_overflow_dont,/* complain_on_overflow */
1409 bfd_elf_generic_reloc, /* special_function */
1410 "R_ARM_THM_TLS_CALL", /* name */
1411 FALSE, /* partial_inplace */
1412 0x07ff07ff, /* src_mask */
1413 0x07ff07ff, /* dst_mask */
1414 FALSE), /* pcrel_offset */
1415
1416 HOWTO (R_ARM_PLT32_ABS, /* type */
1417 0, /* rightshift */
1418 2, /* size (0 = byte, 1 = short, 2 = long) */
1419 32, /* bitsize */
1420 FALSE, /* pc_relative */
1421 0, /* bitpos */
1422 complain_overflow_dont,/* complain_on_overflow */
1423 bfd_elf_generic_reloc, /* special_function */
1424 "R_ARM_PLT32_ABS", /* name */
1425 FALSE, /* partial_inplace */
1426 0xffffffff, /* src_mask */
1427 0xffffffff, /* dst_mask */
1428 FALSE), /* pcrel_offset */
1429
1430 HOWTO (R_ARM_GOT_ABS, /* type */
1431 0, /* rightshift */
1432 2, /* size (0 = byte, 1 = short, 2 = long) */
1433 32, /* bitsize */
1434 FALSE, /* pc_relative */
1435 0, /* bitpos */
1436 complain_overflow_dont,/* complain_on_overflow */
1437 bfd_elf_generic_reloc, /* special_function */
1438 "R_ARM_GOT_ABS", /* name */
1439 FALSE, /* partial_inplace */
1440 0xffffffff, /* src_mask */
1441 0xffffffff, /* dst_mask */
1442 FALSE), /* pcrel_offset */
1443
1444 HOWTO (R_ARM_GOT_PREL, /* type */
1445 0, /* rightshift */
1446 2, /* size (0 = byte, 1 = short, 2 = long) */
1447 32, /* bitsize */
1448 TRUE, /* pc_relative */
1449 0, /* bitpos */
1450 complain_overflow_dont, /* complain_on_overflow */
1451 bfd_elf_generic_reloc, /* special_function */
1452 "R_ARM_GOT_PREL", /* name */
1453 FALSE, /* partial_inplace */
1454 0xffffffff, /* src_mask */
1455 0xffffffff, /* dst_mask */
1456 TRUE), /* pcrel_offset */
1457
1458 HOWTO (R_ARM_GOT_BREL12, /* type */
1459 0, /* rightshift */
1460 2, /* size (0 = byte, 1 = short, 2 = long) */
1461 12, /* bitsize */
1462 FALSE, /* pc_relative */
1463 0, /* bitpos */
1464 complain_overflow_bitfield,/* complain_on_overflow */
1465 bfd_elf_generic_reloc, /* special_function */
1466 "R_ARM_GOT_BREL12", /* name */
1467 FALSE, /* partial_inplace */
1468 0x00000fff, /* src_mask */
1469 0x00000fff, /* dst_mask */
1470 FALSE), /* pcrel_offset */
1471
1472 HOWTO (R_ARM_GOTOFF12, /* type */
1473 0, /* rightshift */
1474 2, /* size (0 = byte, 1 = short, 2 = long) */
1475 12, /* bitsize */
1476 FALSE, /* pc_relative */
1477 0, /* bitpos */
1478 complain_overflow_bitfield,/* complain_on_overflow */
1479 bfd_elf_generic_reloc, /* special_function */
1480 "R_ARM_GOTOFF12", /* name */
1481 FALSE, /* partial_inplace */
1482 0x00000fff, /* src_mask */
1483 0x00000fff, /* dst_mask */
1484 FALSE), /* pcrel_offset */
1485
1486 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1487
1488 /* GNU extension to record C++ vtable member usage */
1489 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1490 0, /* rightshift */
1491 2, /* size (0 = byte, 1 = short, 2 = long) */
1492 0, /* bitsize */
1493 FALSE, /* pc_relative */
1494 0, /* bitpos */
1495 complain_overflow_dont, /* complain_on_overflow */
1496 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1497 "R_ARM_GNU_VTENTRY", /* name */
1498 FALSE, /* partial_inplace */
1499 0, /* src_mask */
1500 0, /* dst_mask */
1501 FALSE), /* pcrel_offset */
1502
1503 /* GNU extension to record C++ vtable hierarchy */
1504 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1505 0, /* rightshift */
1506 2, /* size (0 = byte, 1 = short, 2 = long) */
1507 0, /* bitsize */
1508 FALSE, /* pc_relative */
1509 0, /* bitpos */
1510 complain_overflow_dont, /* complain_on_overflow */
1511 NULL, /* special_function */
1512 "R_ARM_GNU_VTINHERIT", /* name */
1513 FALSE, /* partial_inplace */
1514 0, /* src_mask */
1515 0, /* dst_mask */
1516 FALSE), /* pcrel_offset */
1517
1518 HOWTO (R_ARM_THM_JUMP11, /* type */
1519 1, /* rightshift */
1520 1, /* size (0 = byte, 1 = short, 2 = long) */
1521 11, /* bitsize */
1522 TRUE, /* pc_relative */
1523 0, /* bitpos */
1524 complain_overflow_signed, /* complain_on_overflow */
1525 bfd_elf_generic_reloc, /* special_function */
1526 "R_ARM_THM_JUMP11", /* name */
1527 FALSE, /* partial_inplace */
1528 0x000007ff, /* src_mask */
1529 0x000007ff, /* dst_mask */
1530 TRUE), /* pcrel_offset */
1531
1532 HOWTO (R_ARM_THM_JUMP8, /* type */
1533 1, /* rightshift */
1534 1, /* size (0 = byte, 1 = short, 2 = long) */
1535 8, /* bitsize */
1536 TRUE, /* pc_relative */
1537 0, /* bitpos */
1538 complain_overflow_signed, /* complain_on_overflow */
1539 bfd_elf_generic_reloc, /* special_function */
1540 "R_ARM_THM_JUMP8", /* name */
1541 FALSE, /* partial_inplace */
1542 0x000000ff, /* src_mask */
1543 0x000000ff, /* dst_mask */
1544 TRUE), /* pcrel_offset */
1545
1546 /* TLS relocations */
1547 HOWTO (R_ARM_TLS_GD32, /* type */
1548 0, /* rightshift */
1549 2, /* size (0 = byte, 1 = short, 2 = long) */
1550 32, /* bitsize */
1551 FALSE, /* pc_relative */
1552 0, /* bitpos */
1553 complain_overflow_bitfield,/* complain_on_overflow */
1554 NULL, /* special_function */
1555 "R_ARM_TLS_GD32", /* name */
1556 TRUE, /* partial_inplace */
1557 0xffffffff, /* src_mask */
1558 0xffffffff, /* dst_mask */
1559 FALSE), /* pcrel_offset */
1560
1561 HOWTO (R_ARM_TLS_LDM32, /* type */
1562 0, /* rightshift */
1563 2, /* size (0 = byte, 1 = short, 2 = long) */
1564 32, /* bitsize */
1565 FALSE, /* pc_relative */
1566 0, /* bitpos */
1567 complain_overflow_bitfield,/* complain_on_overflow */
1568 bfd_elf_generic_reloc, /* special_function */
1569 "R_ARM_TLS_LDM32", /* name */
1570 TRUE, /* partial_inplace */
1571 0xffffffff, /* src_mask */
1572 0xffffffff, /* dst_mask */
1573 FALSE), /* pcrel_offset */
1574
1575 HOWTO (R_ARM_TLS_LDO32, /* type */
1576 0, /* rightshift */
1577 2, /* size (0 = byte, 1 = short, 2 = long) */
1578 32, /* bitsize */
1579 FALSE, /* pc_relative */
1580 0, /* bitpos */
1581 complain_overflow_bitfield,/* complain_on_overflow */
1582 bfd_elf_generic_reloc, /* special_function */
1583 "R_ARM_TLS_LDO32", /* name */
1584 TRUE, /* partial_inplace */
1585 0xffffffff, /* src_mask */
1586 0xffffffff, /* dst_mask */
1587 FALSE), /* pcrel_offset */
1588
1589 HOWTO (R_ARM_TLS_IE32, /* type */
1590 0, /* rightshift */
1591 2, /* size (0 = byte, 1 = short, 2 = long) */
1592 32, /* bitsize */
1593 FALSE, /* pc_relative */
1594 0, /* bitpos */
1595 complain_overflow_bitfield,/* complain_on_overflow */
1596 NULL, /* special_function */
1597 "R_ARM_TLS_IE32", /* name */
1598 TRUE, /* partial_inplace */
1599 0xffffffff, /* src_mask */
1600 0xffffffff, /* dst_mask */
1601 FALSE), /* pcrel_offset */
1602
1603 HOWTO (R_ARM_TLS_LE32, /* type */
1604 0, /* rightshift */
1605 2, /* size (0 = byte, 1 = short, 2 = long) */
1606 32, /* bitsize */
1607 FALSE, /* pc_relative */
1608 0, /* bitpos */
1609 complain_overflow_bitfield,/* complain_on_overflow */
1610 bfd_elf_generic_reloc, /* special_function */
1611 "R_ARM_TLS_LE32", /* name */
1612 TRUE, /* partial_inplace */
1613 0xffffffff, /* src_mask */
1614 0xffffffff, /* dst_mask */
1615 FALSE), /* pcrel_offset */
1616
1617 HOWTO (R_ARM_TLS_LDO12, /* type */
1618 0, /* rightshift */
1619 2, /* size (0 = byte, 1 = short, 2 = long) */
1620 12, /* bitsize */
1621 FALSE, /* pc_relative */
1622 0, /* bitpos */
1623 complain_overflow_bitfield,/* complain_on_overflow */
1624 bfd_elf_generic_reloc, /* special_function */
1625 "R_ARM_TLS_LDO12", /* name */
1626 FALSE, /* partial_inplace */
1627 0x00000fff, /* src_mask */
1628 0x00000fff, /* dst_mask */
1629 FALSE), /* pcrel_offset */
1630
1631 HOWTO (R_ARM_TLS_LE12, /* type */
1632 0, /* rightshift */
1633 2, /* size (0 = byte, 1 = short, 2 = long) */
1634 12, /* bitsize */
1635 FALSE, /* pc_relative */
1636 0, /* bitpos */
1637 complain_overflow_bitfield,/* complain_on_overflow */
1638 bfd_elf_generic_reloc, /* special_function */
1639 "R_ARM_TLS_LE12", /* name */
1640 FALSE, /* partial_inplace */
1641 0x00000fff, /* src_mask */
1642 0x00000fff, /* dst_mask */
1643 FALSE), /* pcrel_offset */
1644
1645 HOWTO (R_ARM_TLS_IE12GP, /* type */
1646 0, /* rightshift */
1647 2, /* size (0 = byte, 1 = short, 2 = long) */
1648 12, /* bitsize */
1649 FALSE, /* pc_relative */
1650 0, /* bitpos */
1651 complain_overflow_bitfield,/* complain_on_overflow */
1652 bfd_elf_generic_reloc, /* special_function */
1653 "R_ARM_TLS_IE12GP", /* name */
1654 FALSE, /* partial_inplace */
1655 0x00000fff, /* src_mask */
1656 0x00000fff, /* dst_mask */
1657 FALSE), /* pcrel_offset */
1658
1659 /* 112-127 private relocations. */
1660 EMPTY_HOWTO (112),
1661 EMPTY_HOWTO (113),
1662 EMPTY_HOWTO (114),
1663 EMPTY_HOWTO (115),
1664 EMPTY_HOWTO (116),
1665 EMPTY_HOWTO (117),
1666 EMPTY_HOWTO (118),
1667 EMPTY_HOWTO (119),
1668 EMPTY_HOWTO (120),
1669 EMPTY_HOWTO (121),
1670 EMPTY_HOWTO (122),
1671 EMPTY_HOWTO (123),
1672 EMPTY_HOWTO (124),
1673 EMPTY_HOWTO (125),
1674 EMPTY_HOWTO (126),
1675 EMPTY_HOWTO (127),
1676
1677 /* R_ARM_ME_TOO, obsolete. */
1678 EMPTY_HOWTO (128),
1679
1680 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1681 0, /* rightshift */
1682 1, /* size (0 = byte, 1 = short, 2 = long) */
1683 0, /* bitsize */
1684 FALSE, /* pc_relative */
1685 0, /* bitpos */
1686 complain_overflow_bitfield,/* complain_on_overflow */
1687 bfd_elf_generic_reloc, /* special_function */
1688 "R_ARM_THM_TLS_DESCSEQ",/* name */
1689 FALSE, /* partial_inplace */
1690 0x00000000, /* src_mask */
1691 0x00000000, /* dst_mask */
1692 FALSE), /* pcrel_offset */
1693 };
1694
1695 /* 160 onwards: */
1696 static reloc_howto_type elf32_arm_howto_table_2[1] =
1697 {
1698 HOWTO (R_ARM_IRELATIVE, /* type */
1699 0, /* rightshift */
1700 2, /* size (0 = byte, 1 = short, 2 = long) */
1701 32, /* bitsize */
1702 FALSE, /* pc_relative */
1703 0, /* bitpos */
1704 complain_overflow_bitfield,/* complain_on_overflow */
1705 bfd_elf_generic_reloc, /* special_function */
1706 "R_ARM_IRELATIVE", /* name */
1707 TRUE, /* partial_inplace */
1708 0xffffffff, /* src_mask */
1709 0xffffffff, /* dst_mask */
1710 FALSE) /* pcrel_offset */
1711 };
1712
1713 /* 249-255 extended, currently unused, relocations: */
1714 static reloc_howto_type elf32_arm_howto_table_3[4] =
1715 {
1716 HOWTO (R_ARM_RREL32, /* type */
1717 0, /* rightshift */
1718 0, /* size (0 = byte, 1 = short, 2 = long) */
1719 0, /* bitsize */
1720 FALSE, /* pc_relative */
1721 0, /* bitpos */
1722 complain_overflow_dont,/* complain_on_overflow */
1723 bfd_elf_generic_reloc, /* special_function */
1724 "R_ARM_RREL32", /* name */
1725 FALSE, /* partial_inplace */
1726 0, /* src_mask */
1727 0, /* dst_mask */
1728 FALSE), /* pcrel_offset */
1729
1730 HOWTO (R_ARM_RABS32, /* type */
1731 0, /* rightshift */
1732 0, /* size (0 = byte, 1 = short, 2 = long) */
1733 0, /* bitsize */
1734 FALSE, /* pc_relative */
1735 0, /* bitpos */
1736 complain_overflow_dont,/* complain_on_overflow */
1737 bfd_elf_generic_reloc, /* special_function */
1738 "R_ARM_RABS32", /* name */
1739 FALSE, /* partial_inplace */
1740 0, /* src_mask */
1741 0, /* dst_mask */
1742 FALSE), /* pcrel_offset */
1743
1744 HOWTO (R_ARM_RPC24, /* type */
1745 0, /* rightshift */
1746 0, /* size (0 = byte, 1 = short, 2 = long) */
1747 0, /* bitsize */
1748 FALSE, /* pc_relative */
1749 0, /* bitpos */
1750 complain_overflow_dont,/* complain_on_overflow */
1751 bfd_elf_generic_reloc, /* special_function */
1752 "R_ARM_RPC24", /* name */
1753 FALSE, /* partial_inplace */
1754 0, /* src_mask */
1755 0, /* dst_mask */
1756 FALSE), /* pcrel_offset */
1757
1758 HOWTO (R_ARM_RBASE, /* type */
1759 0, /* rightshift */
1760 0, /* size (0 = byte, 1 = short, 2 = long) */
1761 0, /* bitsize */
1762 FALSE, /* pc_relative */
1763 0, /* bitpos */
1764 complain_overflow_dont,/* complain_on_overflow */
1765 bfd_elf_generic_reloc, /* special_function */
1766 "R_ARM_RBASE", /* name */
1767 FALSE, /* partial_inplace */
1768 0, /* src_mask */
1769 0, /* dst_mask */
1770 FALSE) /* pcrel_offset */
1771 };
1772
1773 static reloc_howto_type *
1774 elf32_arm_howto_from_type (unsigned int r_type)
1775 {
1776 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1777 return &elf32_arm_howto_table_1[r_type];
1778
1779 if (r_type == R_ARM_IRELATIVE)
1780 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1781
1782 if (r_type >= R_ARM_RREL32
1783 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1784 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
1785
1786 return NULL;
1787 }
1788
1789 static void
1790 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1791 Elf_Internal_Rela * elf_reloc)
1792 {
1793 unsigned int r_type;
1794
1795 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1796 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1797 }
1798
1799 struct elf32_arm_reloc_map
1800 {
1801 bfd_reloc_code_real_type bfd_reloc_val;
1802 unsigned char elf_reloc_val;
1803 };
1804
1805 /* All entries in this list must also be present in elf32_arm_howto_table. */
1806 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1807 {
1808 {BFD_RELOC_NONE, R_ARM_NONE},
1809 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1810 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1811 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1812 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1813 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1814 {BFD_RELOC_32, R_ARM_ABS32},
1815 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1816 {BFD_RELOC_8, R_ARM_ABS8},
1817 {BFD_RELOC_16, R_ARM_ABS16},
1818 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1819 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1820 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1821 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1822 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1823 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1824 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1825 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1826 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1827 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1828 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1829 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1830 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1831 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
1832 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1833 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1834 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1835 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1836 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1837 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1838 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1839 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1840 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC},
1841 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL},
1842 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL},
1843 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ},
1844 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ},
1845 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC},
1846 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1847 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1848 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1849 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1850 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1851 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1852 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1853 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1854 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE},
1855 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1856 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1857 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1858 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1859 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1860 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1861 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1862 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1863 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1864 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1865 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1866 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1867 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1868 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1869 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1870 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1871 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1872 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1873 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1874 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1875 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1876 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1877 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1878 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1879 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1880 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1881 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1882 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1883 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1884 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1885 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1886 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1887 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1888 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1889 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1890 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1891 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1892 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1893 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}
1894 };
1895
1896 static reloc_howto_type *
1897 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1898 bfd_reloc_code_real_type code)
1899 {
1900 unsigned int i;
1901
1902 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1903 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1904 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1905
1906 return NULL;
1907 }
1908
1909 static reloc_howto_type *
1910 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1911 const char *r_name)
1912 {
1913 unsigned int i;
1914
1915 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1916 if (elf32_arm_howto_table_1[i].name != NULL
1917 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1918 return &elf32_arm_howto_table_1[i];
1919
1920 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1921 if (elf32_arm_howto_table_2[i].name != NULL
1922 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1923 return &elf32_arm_howto_table_2[i];
1924
1925 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
1926 if (elf32_arm_howto_table_3[i].name != NULL
1927 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
1928 return &elf32_arm_howto_table_3[i];
1929
1930 return NULL;
1931 }
1932
1933 /* Support for core dump NOTE sections. */
1934
1935 static bfd_boolean
1936 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1937 {
1938 int offset;
1939 size_t size;
1940
1941 switch (note->descsz)
1942 {
1943 default:
1944 return FALSE;
1945
1946 case 148: /* Linux/ARM 32-bit. */
1947 /* pr_cursig */
1948 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1949
1950 /* pr_pid */
1951 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
1952
1953 /* pr_reg */
1954 offset = 72;
1955 size = 72;
1956
1957 break;
1958 }
1959
1960 /* Make a ".reg/999" section. */
1961 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1962 size, note->descpos + offset);
1963 }
1964
1965 static bfd_boolean
1966 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1967 {
1968 switch (note->descsz)
1969 {
1970 default:
1971 return FALSE;
1972
1973 case 124: /* Linux/ARM elf_prpsinfo. */
1974 elf_tdata (abfd)->core->pid
1975 = bfd_get_32 (abfd, note->descdata + 12);
1976 elf_tdata (abfd)->core->program
1977 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1978 elf_tdata (abfd)->core->command
1979 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1980 }
1981
1982 /* Note that for some reason, a spurious space is tacked
1983 onto the end of the args in some (at least one anyway)
1984 implementations, so strip it off if it exists. */
1985 {
1986 char *command = elf_tdata (abfd)->core->command;
1987 int n = strlen (command);
1988
1989 if (0 < n && command[n - 1] == ' ')
1990 command[n - 1] = '\0';
1991 }
1992
1993 return TRUE;
1994 }
1995
1996 static char *
1997 elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz,
1998 int note_type, ...)
1999 {
2000 switch (note_type)
2001 {
2002 default:
2003 return NULL;
2004
2005 case NT_PRPSINFO:
2006 {
2007 char data[124];
2008 va_list ap;
2009
2010 va_start (ap, note_type);
2011 memset (data, 0, sizeof (data));
2012 strncpy (data + 28, va_arg (ap, const char *), 16);
2013 strncpy (data + 44, va_arg (ap, const char *), 80);
2014 va_end (ap);
2015
2016 return elfcore_write_note (abfd, buf, bufsiz,
2017 "CORE", note_type, data, sizeof (data));
2018 }
2019
2020 case NT_PRSTATUS:
2021 {
2022 char data[148];
2023 va_list ap;
2024 long pid;
2025 int cursig;
2026 const void *greg;
2027
2028 va_start (ap, note_type);
2029 memset (data, 0, sizeof (data));
2030 pid = va_arg (ap, long);
2031 bfd_put_32 (abfd, pid, data + 24);
2032 cursig = va_arg (ap, int);
2033 bfd_put_16 (abfd, cursig, data + 12);
2034 greg = va_arg (ap, const void *);
2035 memcpy (data + 72, greg, 72);
2036 va_end (ap);
2037
2038 return elfcore_write_note (abfd, buf, bufsiz,
2039 "CORE", note_type, data, sizeof (data));
2040 }
2041 }
2042 }
2043
2044 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
2045 #define TARGET_LITTLE_NAME "elf32-littlearm"
2046 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
2047 #define TARGET_BIG_NAME "elf32-bigarm"
2048
2049 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
2050 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
2051 #define elf_backend_write_core_note elf32_arm_nabi_write_core_note
2052
2053 typedef unsigned long int insn32;
2054 typedef unsigned short int insn16;
2055
2056 /* In lieu of proper flags, assume all EABIv4 or later objects are
2057 interworkable. */
2058 #define INTERWORK_FLAG(abfd) \
2059 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
2060 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2061 || ((abfd)->flags & BFD_LINKER_CREATED))
2062
2063 /* The linker script knows the section names for placement.
2064 The entry_names are used to do simple name mangling on the stubs.
2065 Given a function name, and its type, the stub can be found. The
2066 name can be changed. The only requirement is the %s be present. */
2067 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2068 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2069
2070 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2071 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2072
2073 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2074 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2075
2076 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2077 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2078
2079 #define STUB_ENTRY_NAME "__%s_veneer"
2080
2081 /* The name of the dynamic interpreter. This is put in the .interp
2082 section. */
2083 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2084
2085 static const unsigned long tls_trampoline [] =
2086 {
2087 0xe08e0000, /* add r0, lr, r0 */
2088 0xe5901004, /* ldr r1, [r0,#4] */
2089 0xe12fff11, /* bx r1 */
2090 };
2091
2092 static const unsigned long dl_tlsdesc_lazy_trampoline [] =
2093 {
2094 0xe52d2004, /* push {r2} */
2095 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2096 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2097 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2098 0xe081100f, /* 2: add r1, pc */
2099 0xe12fff12, /* bx r2 */
2100 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
2101 + dl_tlsdesc_lazy_resolver(GOT) */
2102 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2103 };
2104
2105 #ifdef FOUR_WORD_PLT
2106
2107 /* The first entry in a procedure linkage table looks like
2108 this. It is set up so that any shared library function that is
2109 called before the relocation has been set up calls the dynamic
2110 linker first. */
2111 static const bfd_vma elf32_arm_plt0_entry [] =
2112 {
2113 0xe52de004, /* str lr, [sp, #-4]! */
2114 0xe59fe010, /* ldr lr, [pc, #16] */
2115 0xe08fe00e, /* add lr, pc, lr */
2116 0xe5bef008, /* ldr pc, [lr, #8]! */
2117 };
2118
2119 /* Subsequent entries in a procedure linkage table look like
2120 this. */
2121 static const bfd_vma elf32_arm_plt_entry [] =
2122 {
2123 0xe28fc600, /* add ip, pc, #NN */
2124 0xe28cca00, /* add ip, ip, #NN */
2125 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2126 0x00000000, /* unused */
2127 };
2128
2129 #else
2130
2131 /* The first entry in a procedure linkage table looks like
2132 this. It is set up so that any shared library function that is
2133 called before the relocation has been set up calls the dynamic
2134 linker first. */
2135 static const bfd_vma elf32_arm_plt0_entry [] =
2136 {
2137 0xe52de004, /* str lr, [sp, #-4]! */
2138 0xe59fe004, /* ldr lr, [pc, #4] */
2139 0xe08fe00e, /* add lr, pc, lr */
2140 0xe5bef008, /* ldr pc, [lr, #8]! */
2141 0x00000000, /* &GOT[0] - . */
2142 };
2143
2144 /* Subsequent entries in a procedure linkage table look like
2145 this. */
2146 static const bfd_vma elf32_arm_plt_entry [] =
2147 {
2148 0xe28fc600, /* add ip, pc, #0xNN00000 */
2149 0xe28cca00, /* add ip, ip, #0xNN000 */
2150 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2151 };
2152
2153 #endif
2154
2155 /* The format of the first entry in the procedure linkage table
2156 for a VxWorks executable. */
2157 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
2158 {
2159 0xe52dc008, /* str ip,[sp,#-8]! */
2160 0xe59fc000, /* ldr ip,[pc] */
2161 0xe59cf008, /* ldr pc,[ip,#8] */
2162 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
2163 };
2164
2165 /* The format of subsequent entries in a VxWorks executable. */
2166 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
2167 {
2168 0xe59fc000, /* ldr ip,[pc] */
2169 0xe59cf000, /* ldr pc,[ip] */
2170 0x00000000, /* .long @got */
2171 0xe59fc000, /* ldr ip,[pc] */
2172 0xea000000, /* b _PLT */
2173 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2174 };
2175
2176 /* The format of entries in a VxWorks shared library. */
2177 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
2178 {
2179 0xe59fc000, /* ldr ip,[pc] */
2180 0xe79cf009, /* ldr pc,[ip,r9] */
2181 0x00000000, /* .long @got */
2182 0xe59fc000, /* ldr ip,[pc] */
2183 0xe599f008, /* ldr pc,[r9,#8] */
2184 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2185 };
2186
2187 /* An initial stub used if the PLT entry is referenced from Thumb code. */
2188 #define PLT_THUMB_STUB_SIZE 4
2189 static const bfd_vma elf32_arm_plt_thumb_stub [] =
2190 {
2191 0x4778, /* bx pc */
2192 0x46c0 /* nop */
2193 };
2194
2195 /* The entries in a PLT when using a DLL-based target with multiple
2196 address spaces. */
2197 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2198 {
2199 0xe51ff004, /* ldr pc, [pc, #-4] */
2200 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2201 };
2202
2203 /* The first entry in a procedure linkage table looks like
2204 this. It is set up so that any shared library function that is
2205 called before the relocation has been set up calls the dynamic
2206 linker first. */
2207 static const bfd_vma elf32_arm_nacl_plt0_entry [] =
2208 {
2209 /* First bundle: */
2210 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */
2211 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */
2212 0xe08cc00f, /* add ip, ip, pc */
2213 0xe52dc008, /* str ip, [sp, #-8]! */
2214 /* Second bundle: */
2215 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2216 0xe59cc000, /* ldr ip, [ip] */
2217 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2218 0xe12fff1c, /* bx ip */
2219 /* Third bundle: */
2220 0xe320f000, /* nop */
2221 0xe320f000, /* nop */
2222 0xe320f000, /* nop */
2223 /* .Lplt_tail: */
2224 0xe50dc004, /* str ip, [sp, #-4] */
2225 /* Fourth bundle: */
2226 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2227 0xe59cc000, /* ldr ip, [ip] */
2228 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2229 0xe12fff1c, /* bx ip */
2230 };
2231 #define ARM_NACL_PLT_TAIL_OFFSET (11 * 4)
2232
2233 /* Subsequent entries in a procedure linkage table look like this. */
2234 static const bfd_vma elf32_arm_nacl_plt_entry [] =
2235 {
2236 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */
2237 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */
2238 0xe08cc00f, /* add ip, ip, pc */
2239 0xea000000, /* b .Lplt_tail */
2240 };
2241
2242 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2243 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2244 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2245 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2246 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2247 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2248
2249 enum stub_insn_type
2250 {
2251 THUMB16_TYPE = 1,
2252 THUMB32_TYPE,
2253 ARM_TYPE,
2254 DATA_TYPE
2255 };
2256
2257 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2258 /* A bit of a hack. A Thumb conditional branch, in which the proper condition
2259 is inserted in arm_build_one_stub(). */
2260 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2261 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2262 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2263 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2264 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2265 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2266
2267 typedef struct
2268 {
2269 bfd_vma data;
2270 enum stub_insn_type type;
2271 unsigned int r_type;
2272 int reloc_addend;
2273 } insn_sequence;
2274
2275 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2276 to reach the stub if necessary. */
2277 static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2278 {
2279 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2280 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2281 };
2282
2283 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2284 available. */
2285 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2286 {
2287 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2288 ARM_INSN (0xe12fff1c), /* bx ip */
2289 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2290 };
2291
2292 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2293 static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2294 {
2295 THUMB16_INSN (0xb401), /* push {r0} */
2296 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2297 THUMB16_INSN (0x4684), /* mov ip, r0 */
2298 THUMB16_INSN (0xbc01), /* pop {r0} */
2299 THUMB16_INSN (0x4760), /* bx ip */
2300 THUMB16_INSN (0xbf00), /* nop */
2301 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2302 };
2303
2304 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2305 allowed. */
2306 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2307 {
2308 THUMB16_INSN (0x4778), /* bx pc */
2309 THUMB16_INSN (0x46c0), /* nop */
2310 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2311 ARM_INSN (0xe12fff1c), /* bx ip */
2312 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2313 };
2314
2315 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2316 available. */
2317 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2318 {
2319 THUMB16_INSN (0x4778), /* bx pc */
2320 THUMB16_INSN (0x46c0), /* nop */
2321 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2322 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2323 };
2324
2325 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2326 one, when the destination is close enough. */
2327 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2328 {
2329 THUMB16_INSN (0x4778), /* bx pc */
2330 THUMB16_INSN (0x46c0), /* nop */
2331 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */
2332 };
2333
2334 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2335 blx to reach the stub if necessary. */
2336 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2337 {
2338 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */
2339 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */
2340 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2341 };
2342
2343 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2344 blx to reach the stub if necessary. We can not add into pc;
2345 it is not guaranteed to mode switch (different in ARMv6 and
2346 ARMv7). */
2347 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2348 {
2349 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2350 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2351 ARM_INSN (0xe12fff1c), /* bx ip */
2352 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2353 };
2354
2355 /* V4T ARM -> ARM long branch stub, PIC. */
2356 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2357 {
2358 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2359 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2360 ARM_INSN (0xe12fff1c), /* bx ip */
2361 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2362 };
2363
2364 /* V4T Thumb -> ARM long branch stub, PIC. */
2365 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2366 {
2367 THUMB16_INSN (0x4778), /* bx pc */
2368 THUMB16_INSN (0x46c0), /* nop */
2369 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2370 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */
2371 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2372 };
2373
2374 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2375 architectures. */
2376 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2377 {
2378 THUMB16_INSN (0xb401), /* push {r0} */
2379 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2380 THUMB16_INSN (0x46fc), /* mov ip, pc */
2381 THUMB16_INSN (0x4484), /* add ip, r0 */
2382 THUMB16_INSN (0xbc01), /* pop {r0} */
2383 THUMB16_INSN (0x4760), /* bx ip */
2384 DATA_WORD (0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2385 };
2386
2387 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2388 allowed. */
2389 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2390 {
2391 THUMB16_INSN (0x4778), /* bx pc */
2392 THUMB16_INSN (0x46c0), /* nop */
2393 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2394 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2395 ARM_INSN (0xe12fff1c), /* bx ip */
2396 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2397 };
2398
2399 /* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2400 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2401 static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2402 {
2403 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */
2404 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */
2405 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2406 };
2407
2408 /* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2409 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2410 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2411 {
2412 THUMB16_INSN (0x4778), /* bx pc */
2413 THUMB16_INSN (0x46c0), /* nop */
2414 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */
2415 ARM_INSN (0xe081f00f), /* add pc, r1, pc */
2416 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2417 };
2418
2419 /* Cortex-A8 erratum-workaround stubs. */
2420
2421 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2422 can't use a conditional branch to reach this stub). */
2423
2424 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2425 {
2426 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */
2427 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */
2428 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */
2429 };
2430
2431 /* Stub used for b.w and bl.w instructions. */
2432
2433 static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2434 {
2435 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2436 };
2437
2438 static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2439 {
2440 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2441 };
2442
2443 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2444 instruction (which switches to ARM mode) to point to this stub. Jump to the
2445 real destination using an ARM-mode branch. */
2446
2447 static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2448 {
2449 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */
2450 };
2451
2452 /* For each section group there can be a specially created linker section
2453 to hold the stubs for that group. The name of the stub section is based
2454 upon the name of another section within that group with the suffix below
2455 applied.
2456
2457 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2458 create what appeared to be a linker stub section when it actually
2459 contained user code/data. For example, consider this fragment:
2460
2461 const char * stubborn_problems[] = { "np" };
2462
2463 If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2464 section called:
2465
2466 .data.rel.local.stubborn_problems
2467
2468 This then causes problems in arm32_arm_build_stubs() as it triggers:
2469
2470 // Ignore non-stub sections.
2471 if (!strstr (stub_sec->name, STUB_SUFFIX))
2472 continue;
2473
2474 And so the section would be ignored instead of being processed. Hence
2475 the change in definition of STUB_SUFFIX to a name that cannot be a valid
2476 C identifier. */
2477 #define STUB_SUFFIX ".__stub"
2478
2479 /* One entry per long/short branch stub defined above. */
2480 #define DEF_STUBS \
2481 DEF_STUB(long_branch_any_any) \
2482 DEF_STUB(long_branch_v4t_arm_thumb) \
2483 DEF_STUB(long_branch_thumb_only) \
2484 DEF_STUB(long_branch_v4t_thumb_thumb) \
2485 DEF_STUB(long_branch_v4t_thumb_arm) \
2486 DEF_STUB(short_branch_v4t_thumb_arm) \
2487 DEF_STUB(long_branch_any_arm_pic) \
2488 DEF_STUB(long_branch_any_thumb_pic) \
2489 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2490 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2491 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2492 DEF_STUB(long_branch_thumb_only_pic) \
2493 DEF_STUB(long_branch_any_tls_pic) \
2494 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
2495 DEF_STUB(a8_veneer_b_cond) \
2496 DEF_STUB(a8_veneer_b) \
2497 DEF_STUB(a8_veneer_bl) \
2498 DEF_STUB(a8_veneer_blx)
2499
2500 #define DEF_STUB(x) arm_stub_##x,
2501 enum elf32_arm_stub_type
2502 {
2503 arm_stub_none,
2504 DEF_STUBS
2505 /* Note the first a8_veneer type */
2506 arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond
2507 };
2508 #undef DEF_STUB
2509
2510 typedef struct
2511 {
2512 const insn_sequence* template_sequence;
2513 int template_size;
2514 } stub_def;
2515
2516 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2517 static const stub_def stub_definitions[] =
2518 {
2519 {NULL, 0},
2520 DEF_STUBS
2521 };
2522
2523 struct elf32_arm_stub_hash_entry
2524 {
2525 /* Base hash table entry structure. */
2526 struct bfd_hash_entry root;
2527
2528 /* The stub section. */
2529 asection *stub_sec;
2530
2531 /* Offset within stub_sec of the beginning of this stub. */
2532 bfd_vma stub_offset;
2533
2534 /* Given the symbol's value and its section we can determine its final
2535 value when building the stubs (so the stub knows where to jump). */
2536 bfd_vma target_value;
2537 asection *target_section;
2538
2539 /* Offset to apply to relocation referencing target_value. */
2540 bfd_vma target_addend;
2541
2542 /* The instruction which caused this stub to be generated (only valid for
2543 Cortex-A8 erratum workaround stubs at present). */
2544 unsigned long orig_insn;
2545
2546 /* The stub type. */
2547 enum elf32_arm_stub_type stub_type;
2548 /* Its encoding size in bytes. */
2549 int stub_size;
2550 /* Its template. */
2551 const insn_sequence *stub_template;
2552 /* The size of the template (number of entries). */
2553 int stub_template_size;
2554
2555 /* The symbol table entry, if any, that this was derived from. */
2556 struct elf32_arm_link_hash_entry *h;
2557
2558 /* Type of branch. */
2559 enum arm_st_branch_type branch_type;
2560
2561 /* Where this stub is being called from, or, in the case of combined
2562 stub sections, the first input section in the group. */
2563 asection *id_sec;
2564
2565 /* The name for the local symbol at the start of this stub. The
2566 stub name in the hash table has to be unique; this does not, so
2567 it can be friendlier. */
2568 char *output_name;
2569 };
2570
2571 /* Used to build a map of a section. This is required for mixed-endian
2572 code/data. */
2573
2574 typedef struct elf32_elf_section_map
2575 {
2576 bfd_vma vma;
2577 char type;
2578 }
2579 elf32_arm_section_map;
2580
2581 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2582
2583 typedef enum
2584 {
2585 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2586 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2587 VFP11_ERRATUM_ARM_VENEER,
2588 VFP11_ERRATUM_THUMB_VENEER
2589 }
2590 elf32_vfp11_erratum_type;
2591
2592 typedef struct elf32_vfp11_erratum_list
2593 {
2594 struct elf32_vfp11_erratum_list *next;
2595 bfd_vma vma;
2596 union
2597 {
2598 struct
2599 {
2600 struct elf32_vfp11_erratum_list *veneer;
2601 unsigned int vfp_insn;
2602 } b;
2603 struct
2604 {
2605 struct elf32_vfp11_erratum_list *branch;
2606 unsigned int id;
2607 } v;
2608 } u;
2609 elf32_vfp11_erratum_type type;
2610 }
2611 elf32_vfp11_erratum_list;
2612
2613 typedef enum
2614 {
2615 DELETE_EXIDX_ENTRY,
2616 INSERT_EXIDX_CANTUNWIND_AT_END
2617 }
2618 arm_unwind_edit_type;
2619
2620 /* A (sorted) list of edits to apply to an unwind table. */
2621 typedef struct arm_unwind_table_edit
2622 {
2623 arm_unwind_edit_type type;
2624 /* Note: we sometimes want to insert an unwind entry corresponding to a
2625 section different from the one we're currently writing out, so record the
2626 (text) section this edit relates to here. */
2627 asection *linked_section;
2628 unsigned int index;
2629 struct arm_unwind_table_edit *next;
2630 }
2631 arm_unwind_table_edit;
2632
2633 typedef struct _arm_elf_section_data
2634 {
2635 /* Information about mapping symbols. */
2636 struct bfd_elf_section_data elf;
2637 unsigned int mapcount;
2638 unsigned int mapsize;
2639 elf32_arm_section_map *map;
2640 /* Information about CPU errata. */
2641 unsigned int erratumcount;
2642 elf32_vfp11_erratum_list *erratumlist;
2643 /* Information about unwind tables. */
2644 union
2645 {
2646 /* Unwind info attached to a text section. */
2647 struct
2648 {
2649 asection *arm_exidx_sec;
2650 } text;
2651
2652 /* Unwind info attached to an .ARM.exidx section. */
2653 struct
2654 {
2655 arm_unwind_table_edit *unwind_edit_list;
2656 arm_unwind_table_edit *unwind_edit_tail;
2657 } exidx;
2658 } u;
2659 }
2660 _arm_elf_section_data;
2661
2662 #define elf32_arm_section_data(sec) \
2663 ((_arm_elf_section_data *) elf_section_data (sec))
2664
2665 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2666 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2667 so may be created multiple times: we use an array of these entries whilst
2668 relaxing which we can refresh easily, then create stubs for each potentially
2669 erratum-triggering instruction once we've settled on a solution. */
2670
2671 struct a8_erratum_fix
2672 {
2673 bfd *input_bfd;
2674 asection *section;
2675 bfd_vma offset;
2676 bfd_vma addend;
2677 unsigned long orig_insn;
2678 char *stub_name;
2679 enum elf32_arm_stub_type stub_type;
2680 enum arm_st_branch_type branch_type;
2681 };
2682
2683 /* A table of relocs applied to branches which might trigger Cortex-A8
2684 erratum. */
2685
2686 struct a8_erratum_reloc
2687 {
2688 bfd_vma from;
2689 bfd_vma destination;
2690 struct elf32_arm_link_hash_entry *hash;
2691 const char *sym_name;
2692 unsigned int r_type;
2693 enum arm_st_branch_type branch_type;
2694 bfd_boolean non_a8_stub;
2695 };
2696
2697 /* The size of the thread control block. */
2698 #define TCB_SIZE 8
2699
2700 /* ARM-specific information about a PLT entry, over and above the usual
2701 gotplt_union. */
2702 struct arm_plt_info
2703 {
2704 /* We reference count Thumb references to a PLT entry separately,
2705 so that we can emit the Thumb trampoline only if needed. */
2706 bfd_signed_vma thumb_refcount;
2707
2708 /* Some references from Thumb code may be eliminated by BL->BLX
2709 conversion, so record them separately. */
2710 bfd_signed_vma maybe_thumb_refcount;
2711
2712 /* How many of the recorded PLT accesses were from non-call relocations.
2713 This information is useful when deciding whether anything takes the
2714 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
2715 non-call references to the function should resolve directly to the
2716 real runtime target. */
2717 unsigned int noncall_refcount;
2718
2719 /* Since PLT entries have variable size if the Thumb prologue is
2720 used, we need to record the index into .got.plt instead of
2721 recomputing it from the PLT offset. */
2722 bfd_signed_vma got_offset;
2723 };
2724
2725 /* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
2726 struct arm_local_iplt_info
2727 {
2728 /* The information that is usually found in the generic ELF part of
2729 the hash table entry. */
2730 union gotplt_union root;
2731
2732 /* The information that is usually found in the ARM-specific part of
2733 the hash table entry. */
2734 struct arm_plt_info arm;
2735
2736 /* A list of all potential dynamic relocations against this symbol. */
2737 struct elf_dyn_relocs *dyn_relocs;
2738 };
2739
2740 struct elf_arm_obj_tdata
2741 {
2742 struct elf_obj_tdata root;
2743
2744 /* tls_type for each local got entry. */
2745 char *local_got_tls_type;
2746
2747 /* GOTPLT entries for TLS descriptors. */
2748 bfd_vma *local_tlsdesc_gotent;
2749
2750 /* Information for local symbols that need entries in .iplt. */
2751 struct arm_local_iplt_info **local_iplt;
2752
2753 /* Zero to warn when linking objects with incompatible enum sizes. */
2754 int no_enum_size_warning;
2755
2756 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2757 int no_wchar_size_warning;
2758 };
2759
2760 #define elf_arm_tdata(bfd) \
2761 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2762
2763 #define elf32_arm_local_got_tls_type(bfd) \
2764 (elf_arm_tdata (bfd)->local_got_tls_type)
2765
2766 #define elf32_arm_local_tlsdesc_gotent(bfd) \
2767 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
2768
2769 #define elf32_arm_local_iplt(bfd) \
2770 (elf_arm_tdata (bfd)->local_iplt)
2771
2772 #define is_arm_elf(bfd) \
2773 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2774 && elf_tdata (bfd) != NULL \
2775 && elf_object_id (bfd) == ARM_ELF_DATA)
2776
2777 static bfd_boolean
2778 elf32_arm_mkobject (bfd *abfd)
2779 {
2780 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2781 ARM_ELF_DATA);
2782 }
2783
2784 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2785
2786 /* Arm ELF linker hash entry. */
2787 struct elf32_arm_link_hash_entry
2788 {
2789 struct elf_link_hash_entry root;
2790
2791 /* Track dynamic relocs copied for this symbol. */
2792 struct elf_dyn_relocs *dyn_relocs;
2793
2794 /* ARM-specific PLT information. */
2795 struct arm_plt_info plt;
2796
2797 #define GOT_UNKNOWN 0
2798 #define GOT_NORMAL 1
2799 #define GOT_TLS_GD 2
2800 #define GOT_TLS_IE 4
2801 #define GOT_TLS_GDESC 8
2802 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
2803 unsigned int tls_type : 8;
2804
2805 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
2806 unsigned int is_iplt : 1;
2807
2808 unsigned int unused : 23;
2809
2810 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
2811 starting at the end of the jump table. */
2812 bfd_vma tlsdesc_got;
2813
2814 /* The symbol marking the real symbol location for exported thumb
2815 symbols with Arm stubs. */
2816 struct elf_link_hash_entry *export_glue;
2817
2818 /* A pointer to the most recently used stub hash entry against this
2819 symbol. */
2820 struct elf32_arm_stub_hash_entry *stub_cache;
2821 };
2822
2823 /* Traverse an arm ELF linker hash table. */
2824 #define elf32_arm_link_hash_traverse(table, func, info) \
2825 (elf_link_hash_traverse \
2826 (&(table)->root, \
2827 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2828 (info)))
2829
2830 /* Get the ARM elf linker hash table from a link_info structure. */
2831 #define elf32_arm_hash_table(info) \
2832 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
2833 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
2834
2835 #define arm_stub_hash_lookup(table, string, create, copy) \
2836 ((struct elf32_arm_stub_hash_entry *) \
2837 bfd_hash_lookup ((table), (string), (create), (copy)))
2838
2839 /* Array to keep track of which stub sections have been created, and
2840 information on stub grouping. */
2841 struct map_stub
2842 {
2843 /* This is the section to which stubs in the group will be
2844 attached. */
2845 asection *link_sec;
2846 /* The stub section. */
2847 asection *stub_sec;
2848 };
2849
2850 #define elf32_arm_compute_jump_table_size(htab) \
2851 ((htab)->next_tls_desc_index * 4)
2852
2853 /* ARM ELF linker hash table. */
2854 struct elf32_arm_link_hash_table
2855 {
2856 /* The main hash table. */
2857 struct elf_link_hash_table root;
2858
2859 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2860 bfd_size_type thumb_glue_size;
2861
2862 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2863 bfd_size_type arm_glue_size;
2864
2865 /* The size in bytes of section containing the ARMv4 BX veneers. */
2866 bfd_size_type bx_glue_size;
2867
2868 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2869 veneer has been populated. */
2870 bfd_vma bx_glue_offset[15];
2871
2872 /* The size in bytes of the section containing glue for VFP11 erratum
2873 veneers. */
2874 bfd_size_type vfp11_erratum_glue_size;
2875
2876 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
2877 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
2878 elf32_arm_write_section(). */
2879 struct a8_erratum_fix *a8_erratum_fixes;
2880 unsigned int num_a8_erratum_fixes;
2881
2882 /* An arbitrary input BFD chosen to hold the glue sections. */
2883 bfd * bfd_of_glue_owner;
2884
2885 /* Nonzero to output a BE8 image. */
2886 int byteswap_code;
2887
2888 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2889 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2890 int target1_is_rel;
2891
2892 /* The relocation to use for R_ARM_TARGET2 relocations. */
2893 int target2_reloc;
2894
2895 /* 0 = Ignore R_ARM_V4BX.
2896 1 = Convert BX to MOV PC.
2897 2 = Generate v4 interworing stubs. */
2898 int fix_v4bx;
2899
2900 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
2901 int fix_cortex_a8;
2902
2903 /* Whether we should fix the ARM1176 BLX immediate issue. */
2904 int fix_arm1176;
2905
2906 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2907 int use_blx;
2908
2909 /* What sort of code sequences we should look for which may trigger the
2910 VFP11 denorm erratum. */
2911 bfd_arm_vfp11_fix vfp11_fix;
2912
2913 /* Global counter for the number of fixes we have emitted. */
2914 int num_vfp11_fixes;
2915
2916 /* Nonzero to force PIC branch veneers. */
2917 int pic_veneer;
2918
2919 /* The number of bytes in the initial entry in the PLT. */
2920 bfd_size_type plt_header_size;
2921
2922 /* The number of bytes in the subsequent PLT etries. */
2923 bfd_size_type plt_entry_size;
2924
2925 /* True if the target system is VxWorks. */
2926 int vxworks_p;
2927
2928 /* True if the target system is Symbian OS. */
2929 int symbian_p;
2930
2931 /* True if the target system is Native Client. */
2932 int nacl_p;
2933
2934 /* True if the target uses REL relocations. */
2935 int use_rel;
2936
2937 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
2938 bfd_vma next_tls_desc_index;
2939
2940 /* How many R_ARM_TLS_DESC relocations were generated so far. */
2941 bfd_vma num_tls_desc;
2942
2943 /* Short-cuts to get to dynamic linker sections. */
2944 asection *sdynbss;
2945 asection *srelbss;
2946
2947 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2948 asection *srelplt2;
2949
2950 /* The offset into splt of the PLT entry for the TLS descriptor
2951 resolver. Special values are 0, if not necessary (or not found
2952 to be necessary yet), and -1 if needed but not determined
2953 yet. */
2954 bfd_vma dt_tlsdesc_plt;
2955
2956 /* The offset into sgot of the GOT entry used by the PLT entry
2957 above. */
2958 bfd_vma dt_tlsdesc_got;
2959
2960 /* Offset in .plt section of tls_arm_trampoline. */
2961 bfd_vma tls_trampoline;
2962
2963 /* Data for R_ARM_TLS_LDM32 relocations. */
2964 union
2965 {
2966 bfd_signed_vma refcount;
2967 bfd_vma offset;
2968 } tls_ldm_got;
2969
2970 /* Small local sym cache. */
2971 struct sym_cache sym_cache;
2972
2973 /* For convenience in allocate_dynrelocs. */
2974 bfd * obfd;
2975
2976 /* The amount of space used by the reserved portion of the sgotplt
2977 section, plus whatever space is used by the jump slots. */
2978 bfd_vma sgotplt_jump_table_size;
2979
2980 /* The stub hash table. */
2981 struct bfd_hash_table stub_hash_table;
2982
2983 /* Linker stub bfd. */
2984 bfd *stub_bfd;
2985
2986 /* Linker call-backs. */
2987 asection * (*add_stub_section) (const char *, asection *);
2988 void (*layout_sections_again) (void);
2989
2990 /* Array to keep track of which stub sections have been created, and
2991 information on stub grouping. */
2992 struct map_stub *stub_group;
2993
2994 /* Number of elements in stub_group. */
2995 int top_id;
2996
2997 /* Assorted information used by elf32_arm_size_stubs. */
2998 unsigned int bfd_count;
2999 int top_index;
3000 asection **input_list;
3001 };
3002
3003 /* Create an entry in an ARM ELF linker hash table. */
3004
3005 static struct bfd_hash_entry *
3006 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
3007 struct bfd_hash_table * table,
3008 const char * string)
3009 {
3010 struct elf32_arm_link_hash_entry * ret =
3011 (struct elf32_arm_link_hash_entry *) entry;
3012
3013 /* Allocate the structure if it has not already been allocated by a
3014 subclass. */
3015 if (ret == NULL)
3016 ret = (struct elf32_arm_link_hash_entry *)
3017 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
3018 if (ret == NULL)
3019 return (struct bfd_hash_entry *) ret;
3020
3021 /* Call the allocation method of the superclass. */
3022 ret = ((struct elf32_arm_link_hash_entry *)
3023 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3024 table, string));
3025 if (ret != NULL)
3026 {
3027 ret->dyn_relocs = NULL;
3028 ret->tls_type = GOT_UNKNOWN;
3029 ret->tlsdesc_got = (bfd_vma) -1;
3030 ret->plt.thumb_refcount = 0;
3031 ret->plt.maybe_thumb_refcount = 0;
3032 ret->plt.noncall_refcount = 0;
3033 ret->plt.got_offset = -1;
3034 ret->is_iplt = FALSE;
3035 ret->export_glue = NULL;
3036
3037 ret->stub_cache = NULL;
3038 }
3039
3040 return (struct bfd_hash_entry *) ret;
3041 }
3042
3043 /* Ensure that we have allocated bookkeeping structures for ABFD's local
3044 symbols. */
3045
3046 static bfd_boolean
3047 elf32_arm_allocate_local_sym_info (bfd *abfd)
3048 {
3049 if (elf_local_got_refcounts (abfd) == NULL)
3050 {
3051 bfd_size_type num_syms;
3052 bfd_size_type size;
3053 char *data;
3054
3055 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
3056 size = num_syms * (sizeof (bfd_signed_vma)
3057 + sizeof (struct arm_local_iplt_info *)
3058 + sizeof (bfd_vma)
3059 + sizeof (char));
3060 data = bfd_zalloc (abfd, size);
3061 if (data == NULL)
3062 return FALSE;
3063
3064 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
3065 data += num_syms * sizeof (bfd_signed_vma);
3066
3067 elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
3068 data += num_syms * sizeof (struct arm_local_iplt_info *);
3069
3070 elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
3071 data += num_syms * sizeof (bfd_vma);
3072
3073 elf32_arm_local_got_tls_type (abfd) = data;
3074 }
3075 return TRUE;
3076 }
3077
3078 /* Return the .iplt information for local symbol R_SYMNDX, which belongs
3079 to input bfd ABFD. Create the information if it doesn't already exist.
3080 Return null if an allocation fails. */
3081
3082 static struct arm_local_iplt_info *
3083 elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
3084 {
3085 struct arm_local_iplt_info **ptr;
3086
3087 if (!elf32_arm_allocate_local_sym_info (abfd))
3088 return NULL;
3089
3090 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
3091 ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
3092 if (*ptr == NULL)
3093 *ptr = bfd_zalloc (abfd, sizeof (**ptr));
3094 return *ptr;
3095 }
3096
3097 /* Try to obtain PLT information for the symbol with index R_SYMNDX
3098 in ABFD's symbol table. If the symbol is global, H points to its
3099 hash table entry, otherwise H is null.
3100
3101 Return true if the symbol does have PLT information. When returning
3102 true, point *ROOT_PLT at the target-independent reference count/offset
3103 union and *ARM_PLT at the ARM-specific information. */
3104
3105 static bfd_boolean
3106 elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_entry *h,
3107 unsigned long r_symndx, union gotplt_union **root_plt,
3108 struct arm_plt_info **arm_plt)
3109 {
3110 struct arm_local_iplt_info *local_iplt;
3111
3112 if (h != NULL)
3113 {
3114 *root_plt = &h->root.plt;
3115 *arm_plt = &h->plt;
3116 return TRUE;
3117 }
3118
3119 if (elf32_arm_local_iplt (abfd) == NULL)
3120 return FALSE;
3121
3122 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
3123 if (local_iplt == NULL)
3124 return FALSE;
3125
3126 *root_plt = &local_iplt->root;
3127 *arm_plt = &local_iplt->arm;
3128 return TRUE;
3129 }
3130
3131 /* Return true if the PLT described by ARM_PLT requires a Thumb stub
3132 before it. */
3133
3134 static bfd_boolean
3135 elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3136 struct arm_plt_info *arm_plt)
3137 {
3138 struct elf32_arm_link_hash_table *htab;
3139
3140 htab = elf32_arm_hash_table (info);
3141 return (arm_plt->thumb_refcount != 0
3142 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0));
3143 }
3144
3145 /* Return a pointer to the head of the dynamic reloc list that should
3146 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3147 ABFD's symbol table. Return null if an error occurs. */
3148
3149 static struct elf_dyn_relocs **
3150 elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3151 Elf_Internal_Sym *isym)
3152 {
3153 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3154 {
3155 struct arm_local_iplt_info *local_iplt;
3156
3157 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3158 if (local_iplt == NULL)
3159 return NULL;
3160 return &local_iplt->dyn_relocs;
3161 }
3162 else
3163 {
3164 /* Track dynamic relocs needed for local syms too.
3165 We really need local syms available to do this
3166 easily. Oh well. */
3167 asection *s;
3168 void *vpp;
3169
3170 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3171 if (s == NULL)
3172 abort ();
3173
3174 vpp = &elf_section_data (s)->local_dynrel;
3175 return (struct elf_dyn_relocs **) vpp;
3176 }
3177 }
3178
3179 /* Initialize an entry in the stub hash table. */
3180
3181 static struct bfd_hash_entry *
3182 stub_hash_newfunc (struct bfd_hash_entry *entry,
3183 struct bfd_hash_table *table,
3184 const char *string)
3185 {
3186 /* Allocate the structure if it has not already been allocated by a
3187 subclass. */
3188 if (entry == NULL)
3189 {
3190 entry = (struct bfd_hash_entry *)
3191 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
3192 if (entry == NULL)
3193 return entry;
3194 }
3195
3196 /* Call the allocation method of the superclass. */
3197 entry = bfd_hash_newfunc (entry, table, string);
3198 if (entry != NULL)
3199 {
3200 struct elf32_arm_stub_hash_entry *eh;
3201
3202 /* Initialize the local fields. */
3203 eh = (struct elf32_arm_stub_hash_entry *) entry;
3204 eh->stub_sec = NULL;
3205 eh->stub_offset = 0;
3206 eh->target_value = 0;
3207 eh->target_section = NULL;
3208 eh->target_addend = 0;
3209 eh->orig_insn = 0;
3210 eh->stub_type = arm_stub_none;
3211 eh->stub_size = 0;
3212 eh->stub_template = NULL;
3213 eh->stub_template_size = 0;
3214 eh->h = NULL;
3215 eh->id_sec = NULL;
3216 eh->output_name = NULL;
3217 }
3218
3219 return entry;
3220 }
3221
3222 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
3223 shortcuts to them in our hash table. */
3224
3225 static bfd_boolean
3226 create_got_section (bfd *dynobj, struct bfd_link_info *info)
3227 {
3228 struct elf32_arm_link_hash_table *htab;
3229
3230 htab = elf32_arm_hash_table (info);
3231 if (htab == NULL)
3232 return FALSE;
3233
3234 /* BPABI objects never have a GOT, or associated sections. */
3235 if (htab->symbian_p)
3236 return TRUE;
3237
3238 if (! _bfd_elf_create_got_section (dynobj, info))
3239 return FALSE;
3240
3241 return TRUE;
3242 }
3243
3244 /* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3245
3246 static bfd_boolean
3247 create_ifunc_sections (struct bfd_link_info *info)
3248 {
3249 struct elf32_arm_link_hash_table *htab;
3250 const struct elf_backend_data *bed;
3251 bfd *dynobj;
3252 asection *s;
3253 flagword flags;
3254
3255 htab = elf32_arm_hash_table (info);
3256 dynobj = htab->root.dynobj;
3257 bed = get_elf_backend_data (dynobj);
3258 flags = bed->dynamic_sec_flags;
3259
3260 if (htab->root.iplt == NULL)
3261 {
3262 s = bfd_make_section_anyway_with_flags (dynobj, ".iplt",
3263 flags | SEC_READONLY | SEC_CODE);
3264 if (s == NULL
3265 || !bfd_set_section_alignment (dynobj, s, bed->plt_alignment))
3266 return FALSE;
3267 htab->root.iplt = s;
3268 }
3269
3270 if (htab->root.irelplt == NULL)
3271 {
3272 s = bfd_make_section_anyway_with_flags (dynobj,
3273 RELOC_SECTION (htab, ".iplt"),
3274 flags | SEC_READONLY);
3275 if (s == NULL
3276 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3277 return FALSE;
3278 htab->root.irelplt = s;
3279 }
3280
3281 if (htab->root.igotplt == NULL)
3282 {
3283 s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags);
3284 if (s == NULL
3285 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3286 return FALSE;
3287 htab->root.igotplt = s;
3288 }
3289 return TRUE;
3290 }
3291
3292 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3293 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
3294 hash table. */
3295
3296 static bfd_boolean
3297 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3298 {
3299 struct elf32_arm_link_hash_table *htab;
3300
3301 htab = elf32_arm_hash_table (info);
3302 if (htab == NULL)
3303 return FALSE;
3304
3305 if (!htab->root.sgot && !create_got_section (dynobj, info))
3306 return FALSE;
3307
3308 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3309 return FALSE;
3310
3311 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
3312 if (!info->shared)
3313 htab->srelbss = bfd_get_linker_section (dynobj,
3314 RELOC_SECTION (htab, ".bss"));
3315
3316 if (htab->vxworks_p)
3317 {
3318 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
3319 return FALSE;
3320
3321 if (info->shared)
3322 {
3323 htab->plt_header_size = 0;
3324 htab->plt_entry_size
3325 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3326 }
3327 else
3328 {
3329 htab->plt_header_size
3330 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3331 htab->plt_entry_size
3332 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3333 }
3334 }
3335
3336 if (!htab->root.splt
3337 || !htab->root.srelplt
3338 || !htab->sdynbss
3339 || (!info->shared && !htab->srelbss))
3340 abort ();
3341
3342 return TRUE;
3343 }
3344
3345 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3346
3347 static void
3348 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
3349 struct elf_link_hash_entry *dir,
3350 struct elf_link_hash_entry *ind)
3351 {
3352 struct elf32_arm_link_hash_entry *edir, *eind;
3353
3354 edir = (struct elf32_arm_link_hash_entry *) dir;
3355 eind = (struct elf32_arm_link_hash_entry *) ind;
3356
3357 if (eind->dyn_relocs != NULL)
3358 {
3359 if (edir->dyn_relocs != NULL)
3360 {
3361 struct elf_dyn_relocs **pp;
3362 struct elf_dyn_relocs *p;
3363
3364 /* Add reloc counts against the indirect sym to the direct sym
3365 list. Merge any entries against the same section. */
3366 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3367 {
3368 struct elf_dyn_relocs *q;
3369
3370 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3371 if (q->sec == p->sec)
3372 {
3373 q->pc_count += p->pc_count;
3374 q->count += p->count;
3375 *pp = p->next;
3376 break;
3377 }
3378 if (q == NULL)
3379 pp = &p->next;
3380 }
3381 *pp = edir->dyn_relocs;
3382 }
3383
3384 edir->dyn_relocs = eind->dyn_relocs;
3385 eind->dyn_relocs = NULL;
3386 }
3387
3388 if (ind->root.type == bfd_link_hash_indirect)
3389 {
3390 /* Copy over PLT info. */
3391 edir->plt.thumb_refcount += eind->plt.thumb_refcount;
3392 eind->plt.thumb_refcount = 0;
3393 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
3394 eind->plt.maybe_thumb_refcount = 0;
3395 edir->plt.noncall_refcount += eind->plt.noncall_refcount;
3396 eind->plt.noncall_refcount = 0;
3397
3398 /* We should only allocate a function to .iplt once the final
3399 symbol information is known. */
3400 BFD_ASSERT (!eind->is_iplt);
3401
3402 if (dir->got.refcount <= 0)
3403 {
3404 edir->tls_type = eind->tls_type;
3405 eind->tls_type = GOT_UNKNOWN;
3406 }
3407 }
3408
3409 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
3410 }
3411
3412 /* Create an ARM elf linker hash table. */
3413
3414 static struct bfd_link_hash_table *
3415 elf32_arm_link_hash_table_create (bfd *abfd)
3416 {
3417 struct elf32_arm_link_hash_table *ret;
3418 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
3419
3420 ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt);
3421 if (ret == NULL)
3422 return NULL;
3423
3424 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
3425 elf32_arm_link_hash_newfunc,
3426 sizeof (struct elf32_arm_link_hash_entry),
3427 ARM_ELF_DATA))
3428 {
3429 free (ret);
3430 return NULL;
3431 }
3432
3433 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
3434 #ifdef FOUR_WORD_PLT
3435 ret->plt_header_size = 16;
3436 ret->plt_entry_size = 16;
3437 #else
3438 ret->plt_header_size = 20;
3439 ret->plt_entry_size = 12;
3440 #endif
3441 ret->use_rel = 1;
3442 ret->obfd = abfd;
3443
3444 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
3445 sizeof (struct elf32_arm_stub_hash_entry)))
3446 {
3447 free (ret);
3448 return NULL;
3449 }
3450
3451 return &ret->root.root;
3452 }
3453
3454 /* Free the derived linker hash table. */
3455
3456 static void
3457 elf32_arm_hash_table_free (struct bfd_link_hash_table *hash)
3458 {
3459 struct elf32_arm_link_hash_table *ret
3460 = (struct elf32_arm_link_hash_table *) hash;
3461
3462 bfd_hash_table_free (&ret->stub_hash_table);
3463 _bfd_elf_link_hash_table_free (hash);
3464 }
3465
3466 /* Determine if we're dealing with a Thumb only architecture. */
3467
3468 static bfd_boolean
3469 using_thumb_only (struct elf32_arm_link_hash_table *globals)
3470 {
3471 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3472 Tag_CPU_arch);
3473 int profile;
3474
3475 if (arch == TAG_CPU_ARCH_V6_M || arch == TAG_CPU_ARCH_V6S_M)
3476 return TRUE;
3477
3478 if (arch != TAG_CPU_ARCH_V7 && arch != TAG_CPU_ARCH_V7E_M)
3479 return FALSE;
3480
3481 profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3482 Tag_CPU_arch_profile);
3483
3484 return profile == 'M';
3485 }
3486
3487 /* Determine if we're dealing with a Thumb-2 object. */
3488
3489 static bfd_boolean
3490 using_thumb2 (struct elf32_arm_link_hash_table *globals)
3491 {
3492 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3493 Tag_CPU_arch);
3494 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
3495 }
3496
3497 /* Determine what kind of NOPs are available. */
3498
3499 static bfd_boolean
3500 arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
3501 {
3502 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3503 Tag_CPU_arch);
3504 return arch == TAG_CPU_ARCH_V6T2
3505 || arch == TAG_CPU_ARCH_V6K
3506 || arch == TAG_CPU_ARCH_V7
3507 || arch == TAG_CPU_ARCH_V7E_M;
3508 }
3509
3510 static bfd_boolean
3511 arch_has_thumb2_nop (struct elf32_arm_link_hash_table *globals)
3512 {
3513 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3514 Tag_CPU_arch);
3515 return (arch == TAG_CPU_ARCH_V6T2 || arch == TAG_CPU_ARCH_V7
3516 || arch == TAG_CPU_ARCH_V7E_M);
3517 }
3518
3519 static bfd_boolean
3520 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
3521 {
3522 switch (stub_type)
3523 {
3524 case arm_stub_long_branch_thumb_only:
3525 case arm_stub_long_branch_v4t_thumb_arm:
3526 case arm_stub_short_branch_v4t_thumb_arm:
3527 case arm_stub_long_branch_v4t_thumb_arm_pic:
3528 case arm_stub_long_branch_v4t_thumb_tls_pic:
3529 case arm_stub_long_branch_thumb_only_pic:
3530 return TRUE;
3531 case arm_stub_none:
3532 BFD_FAIL ();
3533 return FALSE;
3534 break;
3535 default:
3536 return FALSE;
3537 }
3538 }
3539
3540 /* Determine the type of stub needed, if any, for a call. */
3541
3542 static enum elf32_arm_stub_type
3543 arm_type_of_stub (struct bfd_link_info *info,
3544 asection *input_sec,
3545 const Elf_Internal_Rela *rel,
3546 unsigned char st_type,
3547 enum arm_st_branch_type *actual_branch_type,
3548 struct elf32_arm_link_hash_entry *hash,
3549 bfd_vma destination,
3550 asection *sym_sec,
3551 bfd *input_bfd,
3552 const char *name)
3553 {
3554 bfd_vma location;
3555 bfd_signed_vma branch_offset;
3556 unsigned int r_type;
3557 struct elf32_arm_link_hash_table * globals;
3558 int thumb2;
3559 int thumb_only;
3560 enum elf32_arm_stub_type stub_type = arm_stub_none;
3561 int use_plt = 0;
3562 enum arm_st_branch_type branch_type = *actual_branch_type;
3563 union gotplt_union *root_plt;
3564 struct arm_plt_info *arm_plt;
3565
3566 if (branch_type == ST_BRANCH_LONG)
3567 return stub_type;
3568
3569 globals = elf32_arm_hash_table (info);
3570 if (globals == NULL)
3571 return stub_type;
3572
3573 thumb_only = using_thumb_only (globals);
3574
3575 thumb2 = using_thumb2 (globals);
3576
3577 /* Determine where the call point is. */
3578 location = (input_sec->output_offset
3579 + input_sec->output_section->vma
3580 + rel->r_offset);
3581
3582 r_type = ELF32_R_TYPE (rel->r_info);
3583
3584 /* For TLS call relocs, it is the caller's responsibility to provide
3585 the address of the appropriate trampoline. */
3586 if (r_type != R_ARM_TLS_CALL
3587 && r_type != R_ARM_THM_TLS_CALL
3588 && elf32_arm_get_plt_info (input_bfd, hash, ELF32_R_SYM (rel->r_info),
3589 &root_plt, &arm_plt)
3590 && root_plt->offset != (bfd_vma) -1)
3591 {
3592 asection *splt;
3593
3594 if (hash == NULL || hash->is_iplt)
3595 splt = globals->root.iplt;
3596 else
3597 splt = globals->root.splt;
3598 if (splt != NULL)
3599 {
3600 use_plt = 1;
3601
3602 /* Note when dealing with PLT entries: the main PLT stub is in
3603 ARM mode, so if the branch is in Thumb mode, another
3604 Thumb->ARM stub will be inserted later just before the ARM
3605 PLT stub. We don't take this extra distance into account
3606 here, because if a long branch stub is needed, we'll add a
3607 Thumb->Arm one and branch directly to the ARM PLT entry
3608 because it avoids spreading offset corrections in several
3609 places. */
3610
3611 destination = (splt->output_section->vma
3612 + splt->output_offset
3613 + root_plt->offset);
3614 st_type = STT_FUNC;
3615 branch_type = ST_BRANCH_TO_ARM;
3616 }
3617 }
3618 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
3619 BFD_ASSERT (st_type != STT_GNU_IFUNC);
3620
3621 branch_offset = (bfd_signed_vma)(destination - location);
3622
3623 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3624 || r_type == R_ARM_THM_TLS_CALL)
3625 {
3626 /* Handle cases where:
3627 - this call goes too far (different Thumb/Thumb2 max
3628 distance)
3629 - it's a Thumb->Arm call and blx is not available, or it's a
3630 Thumb->Arm branch (not bl). A stub is needed in this case,
3631 but only if this call is not through a PLT entry. Indeed,
3632 PLT stubs handle mode switching already.
3633 */
3634 if ((!thumb2
3635 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
3636 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
3637 || (thumb2
3638 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
3639 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
3640 || (branch_type == ST_BRANCH_TO_ARM
3641 && (((r_type == R_ARM_THM_CALL
3642 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
3643 || (r_type == R_ARM_THM_JUMP24))
3644 && !use_plt))
3645 {
3646 if (branch_type == ST_BRANCH_TO_THUMB)
3647 {
3648 /* Thumb to thumb. */
3649 if (!thumb_only)
3650 {
3651 stub_type = (info->shared | globals->pic_veneer)
3652 /* PIC stubs. */
3653 ? ((globals->use_blx
3654 && (r_type == R_ARM_THM_CALL))
3655 /* V5T and above. Stub starts with ARM code, so
3656 we must be able to switch mode before
3657 reaching it, which is only possible for 'bl'
3658 (ie R_ARM_THM_CALL relocation). */
3659 ? arm_stub_long_branch_any_thumb_pic
3660 /* On V4T, use Thumb code only. */
3661 : arm_stub_long_branch_v4t_thumb_thumb_pic)
3662
3663 /* non-PIC stubs. */
3664 : ((globals->use_blx
3665 && (r_type == R_ARM_THM_CALL))
3666 /* V5T and above. */
3667 ? arm_stub_long_branch_any_any
3668 /* V4T. */
3669 : arm_stub_long_branch_v4t_thumb_thumb);
3670 }
3671 else
3672 {
3673 stub_type = (info->shared | globals->pic_veneer)
3674 /* PIC stub. */
3675 ? arm_stub_long_branch_thumb_only_pic
3676 /* non-PIC stub. */
3677 : arm_stub_long_branch_thumb_only;
3678 }
3679 }
3680 else
3681 {
3682 /* Thumb to arm. */
3683 if (sym_sec != NULL
3684 && sym_sec->owner != NULL
3685 && !INTERWORK_FLAG (sym_sec->owner))
3686 {
3687 (*_bfd_error_handler)
3688 (_("%B(%s): warning: interworking not enabled.\n"
3689 " first occurrence: %B: Thumb call to ARM"),
3690 sym_sec->owner, input_bfd, name);
3691 }
3692
3693 stub_type =
3694 (info->shared | globals->pic_veneer)
3695 /* PIC stubs. */
3696 ? (r_type == R_ARM_THM_TLS_CALL
3697 /* TLS PIC stubs */
3698 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
3699 : arm_stub_long_branch_v4t_thumb_tls_pic)
3700 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
3701 /* V5T PIC and above. */
3702 ? arm_stub_long_branch_any_arm_pic
3703 /* V4T PIC stub. */
3704 : arm_stub_long_branch_v4t_thumb_arm_pic))
3705
3706 /* non-PIC stubs. */
3707 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
3708 /* V5T and above. */
3709 ? arm_stub_long_branch_any_any
3710 /* V4T. */
3711 : arm_stub_long_branch_v4t_thumb_arm);
3712
3713 /* Handle v4t short branches. */
3714 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
3715 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
3716 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
3717 stub_type = arm_stub_short_branch_v4t_thumb_arm;
3718 }
3719 }
3720 }
3721 else if (r_type == R_ARM_CALL
3722 || r_type == R_ARM_JUMP24
3723 || r_type == R_ARM_PLT32
3724 || r_type == R_ARM_TLS_CALL)
3725 {
3726 if (branch_type == ST_BRANCH_TO_THUMB)
3727 {
3728 /* Arm to thumb. */
3729
3730 if (sym_sec != NULL
3731 && sym_sec->owner != NULL
3732 && !INTERWORK_FLAG (sym_sec->owner))
3733 {
3734 (*_bfd_error_handler)
3735 (_("%B(%s): warning: interworking not enabled.\n"
3736 " first occurrence: %B: ARM call to Thumb"),
3737 sym_sec->owner, input_bfd, name);
3738 }
3739
3740 /* We have an extra 2-bytes reach because of
3741 the mode change (bit 24 (H) of BLX encoding). */
3742 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
3743 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
3744 || (r_type == R_ARM_CALL && !globals->use_blx)
3745 || (r_type == R_ARM_JUMP24)
3746 || (r_type == R_ARM_PLT32))
3747 {
3748 stub_type = (info->shared | globals->pic_veneer)
3749 /* PIC stubs. */
3750 ? ((globals->use_blx)
3751 /* V5T and above. */
3752 ? arm_stub_long_branch_any_thumb_pic
3753 /* V4T stub. */
3754 : arm_stub_long_branch_v4t_arm_thumb_pic)
3755
3756 /* non-PIC stubs. */
3757 : ((globals->use_blx)
3758 /* V5T and above. */
3759 ? arm_stub_long_branch_any_any
3760 /* V4T. */
3761 : arm_stub_long_branch_v4t_arm_thumb);
3762 }
3763 }
3764 else
3765 {
3766 /* Arm to arm. */
3767 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
3768 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
3769 {
3770 stub_type =
3771 (info->shared | globals->pic_veneer)
3772 /* PIC stubs. */
3773 ? (r_type == R_ARM_TLS_CALL
3774 /* TLS PIC Stub */
3775 ? arm_stub_long_branch_any_tls_pic
3776 : arm_stub_long_branch_any_arm_pic)
3777 /* non-PIC stubs. */
3778 : arm_stub_long_branch_any_any;
3779 }
3780 }
3781 }
3782
3783 /* If a stub is needed, record the actual destination type. */
3784 if (stub_type != arm_stub_none)
3785 *actual_branch_type = branch_type;
3786
3787 return stub_type;
3788 }
3789
3790 /* Build a name for an entry in the stub hash table. */
3791
3792 static char *
3793 elf32_arm_stub_name (const asection *input_section,
3794 const asection *sym_sec,
3795 const struct elf32_arm_link_hash_entry *hash,
3796 const Elf_Internal_Rela *rel,
3797 enum elf32_arm_stub_type stub_type)
3798 {
3799 char *stub_name;
3800 bfd_size_type len;
3801
3802 if (hash)
3803 {
3804 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
3805 stub_name = (char *) bfd_malloc (len);
3806 if (stub_name != NULL)
3807 sprintf (stub_name, "%08x_%s+%x_%d",
3808 input_section->id & 0xffffffff,
3809 hash->root.root.root.string,
3810 (int) rel->r_addend & 0xffffffff,
3811 (int) stub_type);
3812 }
3813 else
3814 {
3815 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
3816 stub_name = (char *) bfd_malloc (len);
3817 if (stub_name != NULL)
3818 sprintf (stub_name, "%08x_%x:%x+%x_%d",
3819 input_section->id & 0xffffffff,
3820 sym_sec->id & 0xffffffff,
3821 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
3822 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
3823 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
3824 (int) rel->r_addend & 0xffffffff,
3825 (int) stub_type);
3826 }
3827
3828 return stub_name;
3829 }
3830
3831 /* Look up an entry in the stub hash. Stub entries are cached because
3832 creating the stub name takes a bit of time. */
3833
3834 static struct elf32_arm_stub_hash_entry *
3835 elf32_arm_get_stub_entry (const asection *input_section,
3836 const asection *sym_sec,
3837 struct elf_link_hash_entry *hash,
3838 const Elf_Internal_Rela *rel,
3839 struct elf32_arm_link_hash_table *htab,
3840 enum elf32_arm_stub_type stub_type)
3841 {
3842 struct elf32_arm_stub_hash_entry *stub_entry;
3843 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
3844 const asection *id_sec;
3845
3846 if ((input_section->flags & SEC_CODE) == 0)
3847 return NULL;
3848
3849 /* If this input section is part of a group of sections sharing one
3850 stub section, then use the id of the first section in the group.
3851 Stub names need to include a section id, as there may well be
3852 more than one stub used to reach say, printf, and we need to
3853 distinguish between them. */
3854 id_sec = htab->stub_group[input_section->id].link_sec;
3855
3856 if (h != NULL && h->stub_cache != NULL
3857 && h->stub_cache->h == h
3858 && h->stub_cache->id_sec == id_sec
3859 && h->stub_cache->stub_type == stub_type)
3860 {
3861 stub_entry = h->stub_cache;
3862 }
3863 else
3864 {
3865 char *stub_name;
3866
3867 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
3868 if (stub_name == NULL)
3869 return NULL;
3870
3871 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3872 stub_name, FALSE, FALSE);
3873 if (h != NULL)
3874 h->stub_cache = stub_entry;
3875
3876 free (stub_name);
3877 }
3878
3879 return stub_entry;
3880 }
3881
3882 /* Find or create a stub section. Returns a pointer to the stub section, and
3883 the section to which the stub section will be attached (in *LINK_SEC_P).
3884 LINK_SEC_P may be NULL. */
3885
3886 static asection *
3887 elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
3888 struct elf32_arm_link_hash_table *htab)
3889 {
3890 asection *link_sec;
3891 asection *stub_sec;
3892
3893 link_sec = htab->stub_group[section->id].link_sec;
3894 BFD_ASSERT (link_sec != NULL);
3895 stub_sec = htab->stub_group[section->id].stub_sec;
3896
3897 if (stub_sec == NULL)
3898 {
3899 stub_sec = htab->stub_group[link_sec->id].stub_sec;
3900 if (stub_sec == NULL)
3901 {
3902 size_t namelen;
3903 bfd_size_type len;
3904 char *s_name;
3905
3906 namelen = strlen (link_sec->name);
3907 len = namelen + sizeof (STUB_SUFFIX);
3908 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
3909 if (s_name == NULL)
3910 return NULL;
3911
3912 memcpy (s_name, link_sec->name, namelen);
3913 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3914 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3915 if (stub_sec == NULL)
3916 return NULL;
3917 htab->stub_group[link_sec->id].stub_sec = stub_sec;
3918 }
3919 htab->stub_group[section->id].stub_sec = stub_sec;
3920 }
3921
3922 if (link_sec_p)
3923 *link_sec_p = link_sec;
3924
3925 return stub_sec;
3926 }
3927
3928 /* Add a new stub entry to the stub hash. Not all fields of the new
3929 stub entry are initialised. */
3930
3931 static struct elf32_arm_stub_hash_entry *
3932 elf32_arm_add_stub (const char *stub_name,
3933 asection *section,
3934 struct elf32_arm_link_hash_table *htab)
3935 {
3936 asection *link_sec;
3937 asection *stub_sec;
3938 struct elf32_arm_stub_hash_entry *stub_entry;
3939
3940 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab);
3941 if (stub_sec == NULL)
3942 return NULL;
3943
3944 /* Enter this entry into the linker stub hash table. */
3945 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3946 TRUE, FALSE);
3947 if (stub_entry == NULL)
3948 {
3949 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
3950 section->owner,
3951 stub_name);
3952 return NULL;
3953 }
3954
3955 stub_entry->stub_sec = stub_sec;
3956 stub_entry->stub_offset = 0;
3957 stub_entry->id_sec = link_sec;
3958
3959 return stub_entry;
3960 }
3961
3962 /* Store an Arm insn into an output section not processed by
3963 elf32_arm_write_section. */
3964
3965 static void
3966 put_arm_insn (struct elf32_arm_link_hash_table * htab,
3967 bfd * output_bfd, bfd_vma val, void * ptr)
3968 {
3969 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3970 bfd_putl32 (val, ptr);
3971 else
3972 bfd_putb32 (val, ptr);
3973 }
3974
3975 /* Store a 16-bit Thumb insn into an output section not processed by
3976 elf32_arm_write_section. */
3977
3978 static void
3979 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
3980 bfd * output_bfd, bfd_vma val, void * ptr)
3981 {
3982 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3983 bfd_putl16 (val, ptr);
3984 else
3985 bfd_putb16 (val, ptr);
3986 }
3987
3988 /* If it's possible to change R_TYPE to a more efficient access
3989 model, return the new reloc type. */
3990
3991 static unsigned
3992 elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
3993 struct elf_link_hash_entry *h)
3994 {
3995 int is_local = (h == NULL);
3996
3997 if (info->shared || (h && h->root.type == bfd_link_hash_undefweak))
3998 return r_type;
3999
4000 /* We do not support relaxations for Old TLS models. */
4001 switch (r_type)
4002 {
4003 case R_ARM_TLS_GOTDESC:
4004 case R_ARM_TLS_CALL:
4005 case R_ARM_THM_TLS_CALL:
4006 case R_ARM_TLS_DESCSEQ:
4007 case R_ARM_THM_TLS_DESCSEQ:
4008 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
4009 }
4010
4011 return r_type;
4012 }
4013
4014 static bfd_reloc_status_type elf32_arm_final_link_relocate
4015 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
4016 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
4017 const char *, unsigned char, enum arm_st_branch_type,
4018 struct elf_link_hash_entry *, bfd_boolean *, char **);
4019
4020 static unsigned int
4021 arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
4022 {
4023 switch (stub_type)
4024 {
4025 case arm_stub_a8_veneer_b_cond:
4026 case arm_stub_a8_veneer_b:
4027 case arm_stub_a8_veneer_bl:
4028 return 2;
4029
4030 case arm_stub_long_branch_any_any:
4031 case arm_stub_long_branch_v4t_arm_thumb:
4032 case arm_stub_long_branch_thumb_only:
4033 case arm_stub_long_branch_v4t_thumb_thumb:
4034 case arm_stub_long_branch_v4t_thumb_arm:
4035 case arm_stub_short_branch_v4t_thumb_arm:
4036 case arm_stub_long_branch_any_arm_pic:
4037 case arm_stub_long_branch_any_thumb_pic:
4038 case arm_stub_long_branch_v4t_thumb_thumb_pic:
4039 case arm_stub_long_branch_v4t_arm_thumb_pic:
4040 case arm_stub_long_branch_v4t_thumb_arm_pic:
4041 case arm_stub_long_branch_thumb_only_pic:
4042 case arm_stub_long_branch_any_tls_pic:
4043 case arm_stub_long_branch_v4t_thumb_tls_pic:
4044 case arm_stub_a8_veneer_blx:
4045 return 4;
4046
4047 default:
4048 abort (); /* Should be unreachable. */
4049 }
4050 }
4051
4052 static bfd_boolean
4053 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
4054 void * in_arg)
4055 {
4056 #define MAXRELOCS 2
4057 struct elf32_arm_stub_hash_entry *stub_entry;
4058 struct elf32_arm_link_hash_table *globals;
4059 struct bfd_link_info *info;
4060 asection *stub_sec;
4061 bfd *stub_bfd;
4062 bfd_byte *loc;
4063 bfd_vma sym_value;
4064 int template_size;
4065 int size;
4066 const insn_sequence *template_sequence;
4067 int i;
4068 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
4069 int stub_reloc_offset[MAXRELOCS] = {0, 0};
4070 int nrelocs = 0;
4071
4072 /* Massage our args to the form they really have. */
4073 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4074 info = (struct bfd_link_info *) in_arg;
4075
4076 globals = elf32_arm_hash_table (info);
4077 if (globals == NULL)
4078 return FALSE;
4079
4080 stub_sec = stub_entry->stub_sec;
4081
4082 if ((globals->fix_cortex_a8 < 0)
4083 != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
4084 /* We have to do less-strictly-aligned fixes last. */
4085 return TRUE;
4086
4087 /* Make a note of the offset within the stubs for this entry. */
4088 stub_entry->stub_offset = stub_sec->size;
4089 loc = stub_sec->contents + stub_entry->stub_offset;
4090
4091 stub_bfd = stub_sec->owner;
4092
4093 /* This is the address of the stub destination. */
4094 sym_value = (stub_entry->target_value
4095 + stub_entry->target_section->output_offset
4096 + stub_entry->target_section->output_section->vma);
4097
4098 template_sequence = stub_entry->stub_template;
4099 template_size = stub_entry->stub_template_size;
4100
4101 size = 0;
4102 for (i = 0; i < template_size; i++)
4103 {
4104 switch (template_sequence[i].type)
4105 {
4106 case THUMB16_TYPE:
4107 {
4108 bfd_vma data = (bfd_vma) template_sequence[i].data;
4109 if (template_sequence[i].reloc_addend != 0)
4110 {
4111 /* We've borrowed the reloc_addend field to mean we should
4112 insert a condition code into this (Thumb-1 branch)
4113 instruction. See THUMB16_BCOND_INSN. */
4114 BFD_ASSERT ((data & 0xff00) == 0xd000);
4115 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
4116 }
4117 bfd_put_16 (stub_bfd, data, loc + size);
4118 size += 2;
4119 }
4120 break;
4121
4122 case THUMB32_TYPE:
4123 bfd_put_16 (stub_bfd,
4124 (template_sequence[i].data >> 16) & 0xffff,
4125 loc + size);
4126 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
4127 loc + size + 2);
4128 if (template_sequence[i].r_type != R_ARM_NONE)
4129 {
4130 stub_reloc_idx[nrelocs] = i;
4131 stub_reloc_offset[nrelocs++] = size;
4132 }
4133 size += 4;
4134 break;
4135
4136 case ARM_TYPE:
4137 bfd_put_32 (stub_bfd, template_sequence[i].data,
4138 loc + size);
4139 /* Handle cases where the target is encoded within the
4140 instruction. */
4141 if (template_sequence[i].r_type == R_ARM_JUMP24)
4142 {
4143 stub_reloc_idx[nrelocs] = i;
4144 stub_reloc_offset[nrelocs++] = size;
4145 }
4146 size += 4;
4147 break;
4148
4149 case DATA_TYPE:
4150 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
4151 stub_reloc_idx[nrelocs] = i;
4152 stub_reloc_offset[nrelocs++] = size;
4153 size += 4;
4154 break;
4155
4156 default:
4157 BFD_FAIL ();
4158 return FALSE;
4159 }
4160 }
4161
4162 stub_sec->size += size;
4163
4164 /* Stub size has already been computed in arm_size_one_stub. Check
4165 consistency. */
4166 BFD_ASSERT (size == stub_entry->stub_size);
4167
4168 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
4169 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
4170 sym_value |= 1;
4171
4172 /* Assume there is at least one and at most MAXRELOCS entries to relocate
4173 in each stub. */
4174 BFD_ASSERT (nrelocs != 0 && nrelocs <= MAXRELOCS);
4175
4176 for (i = 0; i < nrelocs; i++)
4177 if (template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP24
4178 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP19
4179 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_CALL
4180 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_XPC22)
4181 {
4182 Elf_Internal_Rela rel;
4183 bfd_boolean unresolved_reloc;
4184 char *error_message;
4185 enum arm_st_branch_type branch_type
4186 = (template_sequence[stub_reloc_idx[i]].r_type != R_ARM_THM_XPC22
4187 ? ST_BRANCH_TO_THUMB : ST_BRANCH_TO_ARM);
4188 bfd_vma points_to = sym_value + stub_entry->target_addend;
4189
4190 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4191 rel.r_info = ELF32_R_INFO (0,
4192 template_sequence[stub_reloc_idx[i]].r_type);
4193 rel.r_addend = template_sequence[stub_reloc_idx[i]].reloc_addend;
4194
4195 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
4196 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
4197 template should refer back to the instruction after the original
4198 branch. */
4199 points_to = sym_value;
4200
4201 /* There may be unintended consequences if this is not true. */
4202 BFD_ASSERT (stub_entry->h == NULL);
4203
4204 /* Note: _bfd_final_link_relocate doesn't handle these relocations
4205 properly. We should probably use this function unconditionally,
4206 rather than only for certain relocations listed in the enclosing
4207 conditional, for the sake of consistency. */
4208 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4209 (template_sequence[stub_reloc_idx[i]].r_type),
4210 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
4211 points_to, info, stub_entry->target_section, "", STT_FUNC,
4212 branch_type, (struct elf_link_hash_entry *) stub_entry->h,
4213 &unresolved_reloc, &error_message);
4214 }
4215 else
4216 {
4217 Elf_Internal_Rela rel;
4218 bfd_boolean unresolved_reloc;
4219 char *error_message;
4220 bfd_vma points_to = sym_value + stub_entry->target_addend
4221 + template_sequence[stub_reloc_idx[i]].reloc_addend;
4222
4223 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4224 rel.r_info = ELF32_R_INFO (0,
4225 template_sequence[stub_reloc_idx[i]].r_type);
4226 rel.r_addend = 0;
4227
4228 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4229 (template_sequence[stub_reloc_idx[i]].r_type),
4230 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
4231 points_to, info, stub_entry->target_section, "", STT_FUNC,
4232 stub_entry->branch_type,
4233 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
4234 &error_message);
4235 }
4236
4237 return TRUE;
4238 #undef MAXRELOCS
4239 }
4240
4241 /* Calculate the template, template size and instruction size for a stub.
4242 Return value is the instruction size. */
4243
4244 static unsigned int
4245 find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
4246 const insn_sequence **stub_template,
4247 int *stub_template_size)
4248 {
4249 const insn_sequence *template_sequence = NULL;
4250 int template_size = 0, i;
4251 unsigned int size;
4252
4253 template_sequence = stub_definitions[stub_type].template_sequence;
4254 if (stub_template)
4255 *stub_template = template_sequence;
4256
4257 template_size = stub_definitions[stub_type].template_size;
4258 if (stub_template_size)
4259 *stub_template_size = template_size;
4260
4261 size = 0;
4262 for (i = 0; i < template_size; i++)
4263 {
4264 switch (template_sequence[i].type)
4265 {
4266 case THUMB16_TYPE:
4267 size += 2;
4268 break;
4269
4270 case ARM_TYPE:
4271 case THUMB32_TYPE:
4272 case DATA_TYPE:
4273 size += 4;
4274 break;
4275
4276 default:
4277 BFD_FAIL ();
4278 return 0;
4279 }
4280 }
4281
4282 return size;
4283 }
4284
4285 /* As above, but don't actually build the stub. Just bump offset so
4286 we know stub section sizes. */
4287
4288 static bfd_boolean
4289 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
4290 void *in_arg ATTRIBUTE_UNUSED)
4291 {
4292 struct elf32_arm_stub_hash_entry *stub_entry;
4293 const insn_sequence *template_sequence;
4294 int template_size, size;
4295
4296 /* Massage our args to the form they really have. */
4297 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4298
4299 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
4300 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
4301
4302 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
4303 &template_size);
4304
4305 stub_entry->stub_size = size;
4306 stub_entry->stub_template = template_sequence;
4307 stub_entry->stub_template_size = template_size;
4308
4309 size = (size + 7) & ~7;
4310 stub_entry->stub_sec->size += size;
4311
4312 return TRUE;
4313 }
4314
4315 /* External entry points for sizing and building linker stubs. */
4316
4317 /* Set up various things so that we can make a list of input sections
4318 for each output section included in the link. Returns -1 on error,
4319 0 when no stubs will be needed, and 1 on success. */
4320
4321 int
4322 elf32_arm_setup_section_lists (bfd *output_bfd,
4323 struct bfd_link_info *info)
4324 {
4325 bfd *input_bfd;
4326 unsigned int bfd_count;
4327 int top_id, top_index;
4328 asection *section;
4329 asection **input_list, **list;
4330 bfd_size_type amt;
4331 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4332
4333 if (htab == NULL)
4334 return 0;
4335 if (! is_elf_hash_table (htab))
4336 return 0;
4337
4338 /* Count the number of input BFDs and find the top input section id. */
4339 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
4340 input_bfd != NULL;
4341 input_bfd = input_bfd->link_next)
4342 {
4343 bfd_count += 1;
4344 for (section = input_bfd->sections;
4345 section != NULL;
4346 section = section->next)
4347 {
4348 if (top_id < section->id)
4349 top_id = section->id;
4350 }
4351 }
4352 htab->bfd_count = bfd_count;
4353
4354 amt = sizeof (struct map_stub) * (top_id + 1);
4355 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
4356 if (htab->stub_group == NULL)
4357 return -1;
4358 htab->top_id = top_id;
4359
4360 /* We can't use output_bfd->section_count here to find the top output
4361 section index as some sections may have been removed, and
4362 _bfd_strip_section_from_output doesn't renumber the indices. */
4363 for (section = output_bfd->sections, top_index = 0;
4364 section != NULL;
4365 section = section->next)
4366 {
4367 if (top_index < section->index)
4368 top_index = section->index;
4369 }
4370
4371 htab->top_index = top_index;
4372 amt = sizeof (asection *) * (top_index + 1);
4373 input_list = (asection **) bfd_malloc (amt);
4374 htab->input_list = input_list;
4375 if (input_list == NULL)
4376 return -1;
4377
4378 /* For sections we aren't interested in, mark their entries with a
4379 value we can check later. */
4380 list = input_list + top_index;
4381 do
4382 *list = bfd_abs_section_ptr;
4383 while (list-- != input_list);
4384
4385 for (section = output_bfd->sections;
4386 section != NULL;
4387 section = section->next)
4388 {
4389 if ((section->flags & SEC_CODE) != 0)
4390 input_list[section->index] = NULL;
4391 }
4392
4393 return 1;
4394 }
4395
4396 /* The linker repeatedly calls this function for each input section,
4397 in the order that input sections are linked into output sections.
4398 Build lists of input sections to determine groupings between which
4399 we may insert linker stubs. */
4400
4401 void
4402 elf32_arm_next_input_section (struct bfd_link_info *info,
4403 asection *isec)
4404 {
4405 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4406
4407 if (htab == NULL)
4408 return;
4409
4410 if (isec->output_section->index <= htab->top_index)
4411 {
4412 asection **list = htab->input_list + isec->output_section->index;
4413
4414 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
4415 {
4416 /* Steal the link_sec pointer for our list. */
4417 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
4418 /* This happens to make the list in reverse order,
4419 which we reverse later. */
4420 PREV_SEC (isec) = *list;
4421 *list = isec;
4422 }
4423 }
4424 }
4425
4426 /* See whether we can group stub sections together. Grouping stub
4427 sections may result in fewer stubs. More importantly, we need to
4428 put all .init* and .fini* stubs at the end of the .init or
4429 .fini output sections respectively, because glibc splits the
4430 _init and _fini functions into multiple parts. Putting a stub in
4431 the middle of a function is not a good idea. */
4432
4433 static void
4434 group_sections (struct elf32_arm_link_hash_table *htab,
4435 bfd_size_type stub_group_size,
4436 bfd_boolean stubs_always_after_branch)
4437 {
4438 asection **list = htab->input_list;
4439
4440 do
4441 {
4442 asection *tail = *list;
4443 asection *head;
4444
4445 if (tail == bfd_abs_section_ptr)
4446 continue;
4447
4448 /* Reverse the list: we must avoid placing stubs at the
4449 beginning of the section because the beginning of the text
4450 section may be required for an interrupt vector in bare metal
4451 code. */
4452 #define NEXT_SEC PREV_SEC
4453 head = NULL;
4454 while (tail != NULL)
4455 {
4456 /* Pop from tail. */
4457 asection *item = tail;
4458 tail = PREV_SEC (item);
4459
4460 /* Push on head. */
4461 NEXT_SEC (item) = head;
4462 head = item;
4463 }
4464
4465 while (head != NULL)
4466 {
4467 asection *curr;
4468 asection *next;
4469 bfd_vma stub_group_start = head->output_offset;
4470 bfd_vma end_of_next;
4471
4472 curr = head;
4473 while (NEXT_SEC (curr) != NULL)
4474 {
4475 next = NEXT_SEC (curr);
4476 end_of_next = next->output_offset + next->size;
4477 if (end_of_next - stub_group_start >= stub_group_size)
4478 /* End of NEXT is too far from start, so stop. */
4479 break;
4480 /* Add NEXT to the group. */
4481 curr = next;
4482 }
4483
4484 /* OK, the size from the start to the start of CURR is less
4485 than stub_group_size and thus can be handled by one stub
4486 section. (Or the head section is itself larger than
4487 stub_group_size, in which case we may be toast.)
4488 We should really be keeping track of the total size of
4489 stubs added here, as stubs contribute to the final output
4490 section size. */
4491 do
4492 {
4493 next = NEXT_SEC (head);
4494 /* Set up this stub group. */
4495 htab->stub_group[head->id].link_sec = curr;
4496 }
4497 while (head != curr && (head = next) != NULL);
4498
4499 /* But wait, there's more! Input sections up to stub_group_size
4500 bytes after the stub section can be handled by it too. */
4501 if (!stubs_always_after_branch)
4502 {
4503 stub_group_start = curr->output_offset + curr->size;
4504
4505 while (next != NULL)
4506 {
4507 end_of_next = next->output_offset + next->size;
4508 if (end_of_next - stub_group_start >= stub_group_size)
4509 /* End of NEXT is too far from stubs, so stop. */
4510 break;
4511 /* Add NEXT to the stub group. */
4512 head = next;
4513 next = NEXT_SEC (head);
4514 htab->stub_group[head->id].link_sec = curr;
4515 }
4516 }
4517 head = next;
4518 }
4519 }
4520 while (list++ != htab->input_list + htab->top_index);
4521
4522 free (htab->input_list);
4523 #undef PREV_SEC
4524 #undef NEXT_SEC
4525 }
4526
4527 /* Comparison function for sorting/searching relocations relating to Cortex-A8
4528 erratum fix. */
4529
4530 static int
4531 a8_reloc_compare (const void *a, const void *b)
4532 {
4533 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
4534 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
4535
4536 if (ra->from < rb->from)
4537 return -1;
4538 else if (ra->from > rb->from)
4539 return 1;
4540 else
4541 return 0;
4542 }
4543
4544 static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
4545 const char *, char **);
4546
4547 /* Helper function to scan code for sequences which might trigger the Cortex-A8
4548 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
4549 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
4550 otherwise. */
4551
4552 static bfd_boolean
4553 cortex_a8_erratum_scan (bfd *input_bfd,
4554 struct bfd_link_info *info,
4555 struct a8_erratum_fix **a8_fixes_p,
4556 unsigned int *num_a8_fixes_p,
4557 unsigned int *a8_fix_table_size_p,
4558 struct a8_erratum_reloc *a8_relocs,
4559 unsigned int num_a8_relocs,
4560 unsigned prev_num_a8_fixes,
4561 bfd_boolean *stub_changed_p)
4562 {
4563 asection *section;
4564 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4565 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
4566 unsigned int num_a8_fixes = *num_a8_fixes_p;
4567 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
4568
4569 if (htab == NULL)
4570 return FALSE;
4571
4572 for (section = input_bfd->sections;
4573 section != NULL;
4574 section = section->next)
4575 {
4576 bfd_byte *contents = NULL;
4577 struct _arm_elf_section_data *sec_data;
4578 unsigned int span;
4579 bfd_vma base_vma;
4580
4581 if (elf_section_type (section) != SHT_PROGBITS
4582 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
4583 || (section->flags & SEC_EXCLUDE) != 0
4584 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4585 || (section->output_section == bfd_abs_section_ptr))
4586 continue;
4587
4588 base_vma = section->output_section->vma + section->output_offset;
4589
4590 if (elf_section_data (section)->this_hdr.contents != NULL)
4591 contents = elf_section_data (section)->this_hdr.contents;
4592 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
4593 return TRUE;
4594
4595 sec_data = elf32_arm_section_data (section);
4596
4597 for (span = 0; span < sec_data->mapcount; span++)
4598 {
4599 unsigned int span_start = sec_data->map[span].vma;
4600 unsigned int span_end = (span == sec_data->mapcount - 1)
4601 ? section->size : sec_data->map[span + 1].vma;
4602 unsigned int i;
4603 char span_type = sec_data->map[span].type;
4604 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
4605
4606 if (span_type != 't')
4607 continue;
4608
4609 /* Span is entirely within a single 4KB region: skip scanning. */
4610 if (((base_vma + span_start) & ~0xfff)
4611 == ((base_vma + span_end) & ~0xfff))
4612 continue;
4613
4614 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
4615
4616 * The opcode is BLX.W, BL.W, B.W, Bcc.W
4617 * The branch target is in the same 4KB region as the
4618 first half of the branch.
4619 * The instruction before the branch is a 32-bit
4620 length non-branch instruction. */
4621 for (i = span_start; i < span_end;)
4622 {
4623 unsigned int insn = bfd_getl16 (&contents[i]);
4624 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
4625 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
4626
4627 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
4628 insn_32bit = TRUE;
4629
4630 if (insn_32bit)
4631 {
4632 /* Load the rest of the insn (in manual-friendly order). */
4633 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
4634
4635 /* Encoding T4: B<c>.W. */
4636 is_b = (insn & 0xf800d000) == 0xf0009000;
4637 /* Encoding T1: BL<c>.W. */
4638 is_bl = (insn & 0xf800d000) == 0xf000d000;
4639 /* Encoding T2: BLX<c>.W. */
4640 is_blx = (insn & 0xf800d000) == 0xf000c000;
4641 /* Encoding T3: B<c>.W (not permitted in IT block). */
4642 is_bcc = (insn & 0xf800d000) == 0xf0008000
4643 && (insn & 0x07f00000) != 0x03800000;
4644 }
4645
4646 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
4647
4648 if (((base_vma + i) & 0xfff) == 0xffe
4649 && insn_32bit
4650 && is_32bit_branch
4651 && last_was_32bit
4652 && ! last_was_branch)
4653 {
4654 bfd_signed_vma offset = 0;
4655 bfd_boolean force_target_arm = FALSE;
4656 bfd_boolean force_target_thumb = FALSE;
4657 bfd_vma target;
4658 enum elf32_arm_stub_type stub_type = arm_stub_none;
4659 struct a8_erratum_reloc key, *found;
4660 bfd_boolean use_plt = FALSE;
4661
4662 key.from = base_vma + i;
4663 found = (struct a8_erratum_reloc *)
4664 bsearch (&key, a8_relocs, num_a8_relocs,
4665 sizeof (struct a8_erratum_reloc),
4666 &a8_reloc_compare);
4667
4668 if (found)
4669 {
4670 char *error_message = NULL;
4671 struct elf_link_hash_entry *entry;
4672
4673 /* We don't care about the error returned from this
4674 function, only if there is glue or not. */
4675 entry = find_thumb_glue (info, found->sym_name,
4676 &error_message);
4677
4678 if (entry)
4679 found->non_a8_stub = TRUE;
4680
4681 /* Keep a simpler condition, for the sake of clarity. */
4682 if (htab->root.splt != NULL && found->hash != NULL
4683 && found->hash->root.plt.offset != (bfd_vma) -1)
4684 use_plt = TRUE;
4685
4686 if (found->r_type == R_ARM_THM_CALL)
4687 {
4688 if (found->branch_type == ST_BRANCH_TO_ARM
4689 || use_plt)
4690 force_target_arm = TRUE;
4691 else
4692 force_target_thumb = TRUE;
4693 }
4694 }
4695
4696 /* Check if we have an offending branch instruction. */
4697
4698 if (found && found->non_a8_stub)
4699 /* We've already made a stub for this instruction, e.g.
4700 it's a long branch or a Thumb->ARM stub. Assume that
4701 stub will suffice to work around the A8 erratum (see
4702 setting of always_after_branch above). */
4703 ;
4704 else if (is_bcc)
4705 {
4706 offset = (insn & 0x7ff) << 1;
4707 offset |= (insn & 0x3f0000) >> 4;
4708 offset |= (insn & 0x2000) ? 0x40000 : 0;
4709 offset |= (insn & 0x800) ? 0x80000 : 0;
4710 offset |= (insn & 0x4000000) ? 0x100000 : 0;
4711 if (offset & 0x100000)
4712 offset |= ~ ((bfd_signed_vma) 0xfffff);
4713 stub_type = arm_stub_a8_veneer_b_cond;
4714 }
4715 else if (is_b || is_bl || is_blx)
4716 {
4717 int s = (insn & 0x4000000) != 0;
4718 int j1 = (insn & 0x2000) != 0;
4719 int j2 = (insn & 0x800) != 0;
4720 int i1 = !(j1 ^ s);
4721 int i2 = !(j2 ^ s);
4722
4723 offset = (insn & 0x7ff) << 1;
4724 offset |= (insn & 0x3ff0000) >> 4;
4725 offset |= i2 << 22;
4726 offset |= i1 << 23;
4727 offset |= s << 24;
4728 if (offset & 0x1000000)
4729 offset |= ~ ((bfd_signed_vma) 0xffffff);
4730
4731 if (is_blx)
4732 offset &= ~ ((bfd_signed_vma) 3);
4733
4734 stub_type = is_blx ? arm_stub_a8_veneer_blx :
4735 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
4736 }
4737
4738 if (stub_type != arm_stub_none)
4739 {
4740 bfd_vma pc_for_insn = base_vma + i + 4;
4741
4742 /* The original instruction is a BL, but the target is
4743 an ARM instruction. If we were not making a stub,
4744 the BL would have been converted to a BLX. Use the
4745 BLX stub instead in that case. */
4746 if (htab->use_blx && force_target_arm
4747 && stub_type == arm_stub_a8_veneer_bl)
4748 {
4749 stub_type = arm_stub_a8_veneer_blx;
4750 is_blx = TRUE;
4751 is_bl = FALSE;
4752 }
4753 /* Conversely, if the original instruction was
4754 BLX but the target is Thumb mode, use the BL
4755 stub. */
4756 else if (force_target_thumb
4757 && stub_type == arm_stub_a8_veneer_blx)
4758 {
4759 stub_type = arm_stub_a8_veneer_bl;
4760 is_blx = FALSE;
4761 is_bl = TRUE;
4762 }
4763
4764 if (is_blx)
4765 pc_for_insn &= ~ ((bfd_vma) 3);
4766
4767 /* If we found a relocation, use the proper destination,
4768 not the offset in the (unrelocated) instruction.
4769 Note this is always done if we switched the stub type
4770 above. */
4771 if (found)
4772 offset =
4773 (bfd_signed_vma) (found->destination - pc_for_insn);
4774
4775 /* If the stub will use a Thumb-mode branch to a
4776 PLT target, redirect it to the preceding Thumb
4777 entry point. */
4778 if (stub_type != arm_stub_a8_veneer_blx && use_plt)
4779 offset -= PLT_THUMB_STUB_SIZE;
4780
4781 target = pc_for_insn + offset;
4782
4783 /* The BLX stub is ARM-mode code. Adjust the offset to
4784 take the different PC value (+8 instead of +4) into
4785 account. */
4786 if (stub_type == arm_stub_a8_veneer_blx)
4787 offset += 4;
4788
4789 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
4790 {
4791 char *stub_name = NULL;
4792
4793 if (num_a8_fixes == a8_fix_table_size)
4794 {
4795 a8_fix_table_size *= 2;
4796 a8_fixes = (struct a8_erratum_fix *)
4797 bfd_realloc (a8_fixes,
4798 sizeof (struct a8_erratum_fix)
4799 * a8_fix_table_size);
4800 }
4801
4802 if (num_a8_fixes < prev_num_a8_fixes)
4803 {
4804 /* If we're doing a subsequent scan,
4805 check if we've found the same fix as
4806 before, and try and reuse the stub
4807 name. */
4808 stub_name = a8_fixes[num_a8_fixes].stub_name;
4809 if ((a8_fixes[num_a8_fixes].section != section)
4810 || (a8_fixes[num_a8_fixes].offset != i))
4811 {
4812 free (stub_name);
4813 stub_name = NULL;
4814 *stub_changed_p = TRUE;
4815 }
4816 }
4817
4818 if (!stub_name)
4819 {
4820 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
4821 if (stub_name != NULL)
4822 sprintf (stub_name, "%x:%x", section->id, i);
4823 }
4824
4825 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
4826 a8_fixes[num_a8_fixes].section = section;
4827 a8_fixes[num_a8_fixes].offset = i;
4828 a8_fixes[num_a8_fixes].addend = offset;
4829 a8_fixes[num_a8_fixes].orig_insn = insn;
4830 a8_fixes[num_a8_fixes].stub_name = stub_name;
4831 a8_fixes[num_a8_fixes].stub_type = stub_type;
4832 a8_fixes[num_a8_fixes].branch_type =
4833 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
4834
4835 num_a8_fixes++;
4836 }
4837 }
4838 }
4839
4840 i += insn_32bit ? 4 : 2;
4841 last_was_32bit = insn_32bit;
4842 last_was_branch = is_32bit_branch;
4843 }
4844 }
4845
4846 if (elf_section_data (section)->this_hdr.contents == NULL)
4847 free (contents);
4848 }
4849
4850 *a8_fixes_p = a8_fixes;
4851 *num_a8_fixes_p = num_a8_fixes;
4852 *a8_fix_table_size_p = a8_fix_table_size;
4853
4854 return FALSE;
4855 }
4856
4857 /* Determine and set the size of the stub section for a final link.
4858
4859 The basic idea here is to examine all the relocations looking for
4860 PC-relative calls to a target that is unreachable with a "bl"
4861 instruction. */
4862
4863 bfd_boolean
4864 elf32_arm_size_stubs (bfd *output_bfd,
4865 bfd *stub_bfd,
4866 struct bfd_link_info *info,
4867 bfd_signed_vma group_size,
4868 asection * (*add_stub_section) (const char *, asection *),
4869 void (*layout_sections_again) (void))
4870 {
4871 bfd_size_type stub_group_size;
4872 bfd_boolean stubs_always_after_branch;
4873 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4874 struct a8_erratum_fix *a8_fixes = NULL;
4875 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
4876 struct a8_erratum_reloc *a8_relocs = NULL;
4877 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
4878
4879 if (htab == NULL)
4880 return FALSE;
4881
4882 if (htab->fix_cortex_a8)
4883 {
4884 a8_fixes = (struct a8_erratum_fix *)
4885 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
4886 a8_relocs = (struct a8_erratum_reloc *)
4887 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
4888 }
4889
4890 /* Propagate mach to stub bfd, because it may not have been
4891 finalized when we created stub_bfd. */
4892 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
4893 bfd_get_mach (output_bfd));
4894
4895 /* Stash our params away. */
4896 htab->stub_bfd = stub_bfd;
4897 htab->add_stub_section = add_stub_section;
4898 htab->layout_sections_again = layout_sections_again;
4899 stubs_always_after_branch = group_size < 0;
4900
4901 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
4902 as the first half of a 32-bit branch straddling two 4K pages. This is a
4903 crude way of enforcing that. */
4904 if (htab->fix_cortex_a8)
4905 stubs_always_after_branch = 1;
4906
4907 if (group_size < 0)
4908 stub_group_size = -group_size;
4909 else
4910 stub_group_size = group_size;
4911
4912 if (stub_group_size == 1)
4913 {
4914 /* Default values. */
4915 /* Thumb branch range is +-4MB has to be used as the default
4916 maximum size (a given section can contain both ARM and Thumb
4917 code, so the worst case has to be taken into account).
4918
4919 This value is 24K less than that, which allows for 2025
4920 12-byte stubs. If we exceed that, then we will fail to link.
4921 The user will have to relink with an explicit group size
4922 option. */
4923 stub_group_size = 4170000;
4924 }
4925
4926 group_sections (htab, stub_group_size, stubs_always_after_branch);
4927
4928 /* If we're applying the cortex A8 fix, we need to determine the
4929 program header size now, because we cannot change it later --
4930 that could alter section placements. Notice the A8 erratum fix
4931 ends up requiring the section addresses to remain unchanged
4932 modulo the page size. That's something we cannot represent
4933 inside BFD, and we don't want to force the section alignment to
4934 be the page size. */
4935 if (htab->fix_cortex_a8)
4936 (*htab->layout_sections_again) ();
4937
4938 while (1)
4939 {
4940 bfd *input_bfd;
4941 unsigned int bfd_indx;
4942 asection *stub_sec;
4943 bfd_boolean stub_changed = FALSE;
4944 unsigned prev_num_a8_fixes = num_a8_fixes;
4945
4946 num_a8_fixes = 0;
4947 for (input_bfd = info->input_bfds, bfd_indx = 0;
4948 input_bfd != NULL;
4949 input_bfd = input_bfd->link_next, bfd_indx++)
4950 {
4951 Elf_Internal_Shdr *symtab_hdr;
4952 asection *section;
4953 Elf_Internal_Sym *local_syms = NULL;
4954
4955 if (!is_arm_elf (input_bfd))
4956 continue;
4957
4958 num_a8_relocs = 0;
4959
4960 /* We'll need the symbol table in a second. */
4961 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4962 if (symtab_hdr->sh_info == 0)
4963 continue;
4964
4965 /* Walk over each section attached to the input bfd. */
4966 for (section = input_bfd->sections;
4967 section != NULL;
4968 section = section->next)
4969 {
4970 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
4971
4972 /* If there aren't any relocs, then there's nothing more
4973 to do. */
4974 if ((section->flags & SEC_RELOC) == 0
4975 || section->reloc_count == 0
4976 || (section->flags & SEC_CODE) == 0)
4977 continue;
4978
4979 /* If this section is a link-once section that will be
4980 discarded, then don't create any stubs. */
4981 if (section->output_section == NULL
4982 || section->output_section->owner != output_bfd)
4983 continue;
4984
4985 /* Get the relocs. */
4986 internal_relocs
4987 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
4988 NULL, info->keep_memory);
4989 if (internal_relocs == NULL)
4990 goto error_ret_free_local;
4991
4992 /* Now examine each relocation. */
4993 irela = internal_relocs;
4994 irelaend = irela + section->reloc_count;
4995 for (; irela < irelaend; irela++)
4996 {
4997 unsigned int r_type, r_indx;
4998 enum elf32_arm_stub_type stub_type;
4999 struct elf32_arm_stub_hash_entry *stub_entry;
5000 asection *sym_sec;
5001 bfd_vma sym_value;
5002 bfd_vma destination;
5003 struct elf32_arm_link_hash_entry *hash;
5004 const char *sym_name;
5005 char *stub_name;
5006 const asection *id_sec;
5007 unsigned char st_type;
5008 enum arm_st_branch_type branch_type;
5009 bfd_boolean created_stub = FALSE;
5010
5011 r_type = ELF32_R_TYPE (irela->r_info);
5012 r_indx = ELF32_R_SYM (irela->r_info);
5013
5014 if (r_type >= (unsigned int) R_ARM_max)
5015 {
5016 bfd_set_error (bfd_error_bad_value);
5017 error_ret_free_internal:
5018 if (elf_section_data (section)->relocs == NULL)
5019 free (internal_relocs);
5020 goto error_ret_free_local;
5021 }
5022
5023 hash = NULL;
5024 if (r_indx >= symtab_hdr->sh_info)
5025 hash = elf32_arm_hash_entry
5026 (elf_sym_hashes (input_bfd)
5027 [r_indx - symtab_hdr->sh_info]);
5028
5029 /* Only look for stubs on branch instructions, or
5030 non-relaxed TLSCALL */
5031 if ((r_type != (unsigned int) R_ARM_CALL)
5032 && (r_type != (unsigned int) R_ARM_THM_CALL)
5033 && (r_type != (unsigned int) R_ARM_JUMP24)
5034 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
5035 && (r_type != (unsigned int) R_ARM_THM_XPC22)
5036 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
5037 && (r_type != (unsigned int) R_ARM_PLT32)
5038 && !((r_type == (unsigned int) R_ARM_TLS_CALL
5039 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
5040 && r_type == elf32_arm_tls_transition
5041 (info, r_type, &hash->root)
5042 && ((hash ? hash->tls_type
5043 : (elf32_arm_local_got_tls_type
5044 (input_bfd)[r_indx]))
5045 & GOT_TLS_GDESC) != 0))
5046 continue;
5047
5048 /* Now determine the call target, its name, value,
5049 section. */
5050 sym_sec = NULL;
5051 sym_value = 0;
5052 destination = 0;
5053 sym_name = NULL;
5054
5055 if (r_type == (unsigned int) R_ARM_TLS_CALL
5056 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
5057 {
5058 /* A non-relaxed TLS call. The target is the
5059 plt-resident trampoline and nothing to do
5060 with the symbol. */
5061 BFD_ASSERT (htab->tls_trampoline > 0);
5062 sym_sec = htab->root.splt;
5063 sym_value = htab->tls_trampoline;
5064 hash = 0;
5065 st_type = STT_FUNC;
5066 branch_type = ST_BRANCH_TO_ARM;
5067 }
5068 else if (!hash)
5069 {
5070 /* It's a local symbol. */
5071 Elf_Internal_Sym *sym;
5072
5073 if (local_syms == NULL)
5074 {
5075 local_syms
5076 = (Elf_Internal_Sym *) symtab_hdr->contents;
5077 if (local_syms == NULL)
5078 local_syms
5079 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
5080 symtab_hdr->sh_info, 0,
5081 NULL, NULL, NULL);
5082 if (local_syms == NULL)
5083 goto error_ret_free_internal;
5084 }
5085
5086 sym = local_syms + r_indx;
5087 if (sym->st_shndx == SHN_UNDEF)
5088 sym_sec = bfd_und_section_ptr;
5089 else if (sym->st_shndx == SHN_ABS)
5090 sym_sec = bfd_abs_section_ptr;
5091 else if (sym->st_shndx == SHN_COMMON)
5092 sym_sec = bfd_com_section_ptr;
5093 else
5094 sym_sec =
5095 bfd_section_from_elf_index (input_bfd, sym->st_shndx);
5096
5097 if (!sym_sec)
5098 /* This is an undefined symbol. It can never
5099 be resolved. */
5100 continue;
5101
5102 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
5103 sym_value = sym->st_value;
5104 destination = (sym_value + irela->r_addend
5105 + sym_sec->output_offset
5106 + sym_sec->output_section->vma);
5107 st_type = ELF_ST_TYPE (sym->st_info);
5108 branch_type = ARM_SYM_BRANCH_TYPE (sym);
5109 sym_name
5110 = bfd_elf_string_from_elf_section (input_bfd,
5111 symtab_hdr->sh_link,
5112 sym->st_name);
5113 }
5114 else
5115 {
5116 /* It's an external symbol. */
5117 while (hash->root.root.type == bfd_link_hash_indirect
5118 || hash->root.root.type == bfd_link_hash_warning)
5119 hash = ((struct elf32_arm_link_hash_entry *)
5120 hash->root.root.u.i.link);
5121
5122 if (hash->root.root.type == bfd_link_hash_defined
5123 || hash->root.root.type == bfd_link_hash_defweak)
5124 {
5125 sym_sec = hash->root.root.u.def.section;
5126 sym_value = hash->root.root.u.def.value;
5127
5128 struct elf32_arm_link_hash_table *globals =
5129 elf32_arm_hash_table (info);
5130
5131 /* For a destination in a shared library,
5132 use the PLT stub as target address to
5133 decide whether a branch stub is
5134 needed. */
5135 if (globals != NULL
5136 && globals->root.splt != NULL
5137 && hash != NULL
5138 && hash->root.plt.offset != (bfd_vma) -1)
5139 {
5140 sym_sec = globals->root.splt;
5141 sym_value = hash->root.plt.offset;
5142 if (sym_sec->output_section != NULL)
5143 destination = (sym_value
5144 + sym_sec->output_offset
5145 + sym_sec->output_section->vma);
5146 }
5147 else if (sym_sec->output_section != NULL)
5148 destination = (sym_value + irela->r_addend
5149 + sym_sec->output_offset
5150 + sym_sec->output_section->vma);
5151 }
5152 else if ((hash->root.root.type == bfd_link_hash_undefined)
5153 || (hash->root.root.type == bfd_link_hash_undefweak))
5154 {
5155 /* For a shared library, use the PLT stub as
5156 target address to decide whether a long
5157 branch stub is needed.
5158 For absolute code, they cannot be handled. */
5159 struct elf32_arm_link_hash_table *globals =
5160 elf32_arm_hash_table (info);
5161
5162 if (globals != NULL
5163 && globals->root.splt != NULL
5164 && hash != NULL
5165 && hash->root.plt.offset != (bfd_vma) -1)
5166 {
5167 sym_sec = globals->root.splt;
5168 sym_value = hash->root.plt.offset;
5169 if (sym_sec->output_section != NULL)
5170 destination = (sym_value
5171 + sym_sec->output_offset
5172 + sym_sec->output_section->vma);
5173 }
5174 else
5175 continue;
5176 }
5177 else
5178 {
5179 bfd_set_error (bfd_error_bad_value);
5180 goto error_ret_free_internal;
5181 }
5182 st_type = hash->root.type;
5183 branch_type = hash->root.target_internal;
5184 sym_name = hash->root.root.root.string;
5185 }
5186
5187 do
5188 {
5189 /* Determine what (if any) linker stub is needed. */
5190 stub_type = arm_type_of_stub (info, section, irela,
5191 st_type, &branch_type,
5192 hash, destination, sym_sec,
5193 input_bfd, sym_name);
5194 if (stub_type == arm_stub_none)
5195 break;
5196
5197 /* Support for grouping stub sections. */
5198 id_sec = htab->stub_group[section->id].link_sec;
5199
5200 /* Get the name of this stub. */
5201 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash,
5202 irela, stub_type);
5203 if (!stub_name)
5204 goto error_ret_free_internal;
5205
5206 /* We've either created a stub for this reloc already,
5207 or we are about to. */
5208 created_stub = TRUE;
5209
5210 stub_entry = arm_stub_hash_lookup
5211 (&htab->stub_hash_table, stub_name,
5212 FALSE, FALSE);
5213 if (stub_entry != NULL)
5214 {
5215 /* The proper stub has already been created. */
5216 free (stub_name);
5217 stub_entry->target_value = sym_value;
5218 break;
5219 }
5220
5221 stub_entry = elf32_arm_add_stub (stub_name, section,
5222 htab);
5223 if (stub_entry == NULL)
5224 {
5225 free (stub_name);
5226 goto error_ret_free_internal;
5227 }
5228
5229 stub_entry->target_value = sym_value;
5230 stub_entry->target_section = sym_sec;
5231 stub_entry->stub_type = stub_type;
5232 stub_entry->h = hash;
5233 stub_entry->branch_type = branch_type;
5234
5235 if (sym_name == NULL)
5236 sym_name = "unnamed";
5237 stub_entry->output_name = (char *)
5238 bfd_alloc (htab->stub_bfd,
5239 sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5240 + strlen (sym_name));
5241 if (stub_entry->output_name == NULL)
5242 {
5243 free (stub_name);
5244 goto error_ret_free_internal;
5245 }
5246
5247 /* For historical reasons, use the existing names for
5248 ARM-to-Thumb and Thumb-to-ARM stubs. */
5249 if ((r_type == (unsigned int) R_ARM_THM_CALL
5250 || r_type == (unsigned int) R_ARM_THM_JUMP24)
5251 && branch_type == ST_BRANCH_TO_ARM)
5252 sprintf (stub_entry->output_name,
5253 THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5254 else if ((r_type == (unsigned int) R_ARM_CALL
5255 || r_type == (unsigned int) R_ARM_JUMP24)
5256 && branch_type == ST_BRANCH_TO_THUMB)
5257 sprintf (stub_entry->output_name,
5258 ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5259 else
5260 sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
5261 sym_name);
5262
5263 stub_changed = TRUE;
5264 }
5265 while (0);
5266
5267 /* Look for relocations which might trigger Cortex-A8
5268 erratum. */
5269 if (htab->fix_cortex_a8
5270 && (r_type == (unsigned int) R_ARM_THM_JUMP24
5271 || r_type == (unsigned int) R_ARM_THM_JUMP19
5272 || r_type == (unsigned int) R_ARM_THM_CALL
5273 || r_type == (unsigned int) R_ARM_THM_XPC22))
5274 {
5275 bfd_vma from = section->output_section->vma
5276 + section->output_offset
5277 + irela->r_offset;
5278
5279 if ((from & 0xfff) == 0xffe)
5280 {
5281 /* Found a candidate. Note we haven't checked the
5282 destination is within 4K here: if we do so (and
5283 don't create an entry in a8_relocs) we can't tell
5284 that a branch should have been relocated when
5285 scanning later. */
5286 if (num_a8_relocs == a8_reloc_table_size)
5287 {
5288 a8_reloc_table_size *= 2;
5289 a8_relocs = (struct a8_erratum_reloc *)
5290 bfd_realloc (a8_relocs,
5291 sizeof (struct a8_erratum_reloc)
5292 * a8_reloc_table_size);
5293 }
5294
5295 a8_relocs[num_a8_relocs].from = from;
5296 a8_relocs[num_a8_relocs].destination = destination;
5297 a8_relocs[num_a8_relocs].r_type = r_type;
5298 a8_relocs[num_a8_relocs].branch_type = branch_type;
5299 a8_relocs[num_a8_relocs].sym_name = sym_name;
5300 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
5301 a8_relocs[num_a8_relocs].hash = hash;
5302
5303 num_a8_relocs++;
5304 }
5305 }
5306 }
5307
5308 /* We're done with the internal relocs, free them. */
5309 if (elf_section_data (section)->relocs == NULL)
5310 free (internal_relocs);
5311 }
5312
5313 if (htab->fix_cortex_a8)
5314 {
5315 /* Sort relocs which might apply to Cortex-A8 erratum. */
5316 qsort (a8_relocs, num_a8_relocs,
5317 sizeof (struct a8_erratum_reloc),
5318 &a8_reloc_compare);
5319
5320 /* Scan for branches which might trigger Cortex-A8 erratum. */
5321 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
5322 &num_a8_fixes, &a8_fix_table_size,
5323 a8_relocs, num_a8_relocs,
5324 prev_num_a8_fixes, &stub_changed)
5325 != 0)
5326 goto error_ret_free_local;
5327 }
5328 }
5329
5330 if (prev_num_a8_fixes != num_a8_fixes)
5331 stub_changed = TRUE;
5332
5333 if (!stub_changed)
5334 break;
5335
5336 /* OK, we've added some stubs. Find out the new size of the
5337 stub sections. */
5338 for (stub_sec = htab->stub_bfd->sections;
5339 stub_sec != NULL;
5340 stub_sec = stub_sec->next)
5341 {
5342 /* Ignore non-stub sections. */
5343 if (!strstr (stub_sec->name, STUB_SUFFIX))
5344 continue;
5345
5346 stub_sec->size = 0;
5347 }
5348
5349 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
5350
5351 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
5352 if (htab->fix_cortex_a8)
5353 for (i = 0; i < num_a8_fixes; i++)
5354 {
5355 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
5356 a8_fixes[i].section, htab);
5357
5358 if (stub_sec == NULL)
5359 goto error_ret_free_local;
5360
5361 stub_sec->size
5362 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
5363 NULL);
5364 }
5365
5366
5367 /* Ask the linker to do its stuff. */
5368 (*htab->layout_sections_again) ();
5369 }
5370
5371 /* Add stubs for Cortex-A8 erratum fixes now. */
5372 if (htab->fix_cortex_a8)
5373 {
5374 for (i = 0; i < num_a8_fixes; i++)
5375 {
5376 struct elf32_arm_stub_hash_entry *stub_entry;
5377 char *stub_name = a8_fixes[i].stub_name;
5378 asection *section = a8_fixes[i].section;
5379 unsigned int section_id = a8_fixes[i].section->id;
5380 asection *link_sec = htab->stub_group[section_id].link_sec;
5381 asection *stub_sec = htab->stub_group[section_id].stub_sec;
5382 const insn_sequence *template_sequence;
5383 int template_size, size = 0;
5384
5385 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
5386 TRUE, FALSE);
5387 if (stub_entry == NULL)
5388 {
5389 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
5390 section->owner,
5391 stub_name);
5392 return FALSE;
5393 }
5394
5395 stub_entry->stub_sec = stub_sec;
5396 stub_entry->stub_offset = 0;
5397 stub_entry->id_sec = link_sec;
5398 stub_entry->stub_type = a8_fixes[i].stub_type;
5399 stub_entry->target_section = a8_fixes[i].section;
5400 stub_entry->target_value = a8_fixes[i].offset;
5401 stub_entry->target_addend = a8_fixes[i].addend;
5402 stub_entry->orig_insn = a8_fixes[i].orig_insn;
5403 stub_entry->branch_type = a8_fixes[i].branch_type;
5404
5405 size = find_stub_size_and_template (a8_fixes[i].stub_type,
5406 &template_sequence,
5407 &template_size);
5408
5409 stub_entry->stub_size = size;
5410 stub_entry->stub_template = template_sequence;
5411 stub_entry->stub_template_size = template_size;
5412 }
5413
5414 /* Stash the Cortex-A8 erratum fix array for use later in
5415 elf32_arm_write_section(). */
5416 htab->a8_erratum_fixes = a8_fixes;
5417 htab->num_a8_erratum_fixes = num_a8_fixes;
5418 }
5419 else
5420 {
5421 htab->a8_erratum_fixes = NULL;
5422 htab->num_a8_erratum_fixes = 0;
5423 }
5424 return TRUE;
5425
5426 error_ret_free_local:
5427 return FALSE;
5428 }
5429
5430 /* Build all the stubs associated with the current output file. The
5431 stubs are kept in a hash table attached to the main linker hash
5432 table. We also set up the .plt entries for statically linked PIC
5433 functions here. This function is called via arm_elf_finish in the
5434 linker. */
5435
5436 bfd_boolean
5437 elf32_arm_build_stubs (struct bfd_link_info *info)
5438 {
5439 asection *stub_sec;
5440 struct bfd_hash_table *table;
5441 struct elf32_arm_link_hash_table *htab;
5442
5443 htab = elf32_arm_hash_table (info);
5444 if (htab == NULL)
5445 return FALSE;
5446
5447 for (stub_sec = htab->stub_bfd->sections;
5448 stub_sec != NULL;
5449 stub_sec = stub_sec->next)
5450 {
5451 bfd_size_type size;
5452
5453 /* Ignore non-stub sections. */
5454 if (!strstr (stub_sec->name, STUB_SUFFIX))
5455 continue;
5456
5457 /* Allocate memory to hold the linker stubs. */
5458 size = stub_sec->size;
5459 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
5460 if (stub_sec->contents == NULL && size != 0)
5461 return FALSE;
5462 stub_sec->size = 0;
5463 }
5464
5465 /* Build the stubs as directed by the stub hash table. */
5466 table = &htab->stub_hash_table;
5467 bfd_hash_traverse (table, arm_build_one_stub, info);
5468 if (htab->fix_cortex_a8)
5469 {
5470 /* Place the cortex a8 stubs last. */
5471 htab->fix_cortex_a8 = -1;
5472 bfd_hash_traverse (table, arm_build_one_stub, info);
5473 }
5474
5475 return TRUE;
5476 }
5477
5478 /* Locate the Thumb encoded calling stub for NAME. */
5479
5480 static struct elf_link_hash_entry *
5481 find_thumb_glue (struct bfd_link_info *link_info,
5482 const char *name,
5483 char **error_message)
5484 {
5485 char *tmp_name;
5486 struct elf_link_hash_entry *hash;
5487 struct elf32_arm_link_hash_table *hash_table;
5488
5489 /* We need a pointer to the armelf specific hash table. */
5490 hash_table = elf32_arm_hash_table (link_info);
5491 if (hash_table == NULL)
5492 return NULL;
5493
5494 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5495 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
5496
5497 BFD_ASSERT (tmp_name);
5498
5499 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
5500
5501 hash = elf_link_hash_lookup
5502 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
5503
5504 if (hash == NULL
5505 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
5506 tmp_name, name) == -1)
5507 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
5508
5509 free (tmp_name);
5510
5511 return hash;
5512 }
5513
5514 /* Locate the ARM encoded calling stub for NAME. */
5515
5516 static struct elf_link_hash_entry *
5517 find_arm_glue (struct bfd_link_info *link_info,
5518 const char *name,
5519 char **error_message)
5520 {
5521 char *tmp_name;
5522 struct elf_link_hash_entry *myh;
5523 struct elf32_arm_link_hash_table *hash_table;
5524
5525 /* We need a pointer to the elfarm specific hash table. */
5526 hash_table = elf32_arm_hash_table (link_info);
5527 if (hash_table == NULL)
5528 return NULL;
5529
5530 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5531 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
5532
5533 BFD_ASSERT (tmp_name);
5534
5535 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5536
5537 myh = elf_link_hash_lookup
5538 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
5539
5540 if (myh == NULL
5541 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
5542 tmp_name, name) == -1)
5543 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
5544
5545 free (tmp_name);
5546
5547 return myh;
5548 }
5549
5550 /* ARM->Thumb glue (static images):
5551
5552 .arm
5553 __func_from_arm:
5554 ldr r12, __func_addr
5555 bx r12
5556 __func_addr:
5557 .word func @ behave as if you saw a ARM_32 reloc.
5558
5559 (v5t static images)
5560 .arm
5561 __func_from_arm:
5562 ldr pc, __func_addr
5563 __func_addr:
5564 .word func @ behave as if you saw a ARM_32 reloc.
5565
5566 (relocatable images)
5567 .arm
5568 __func_from_arm:
5569 ldr r12, __func_offset
5570 add r12, r12, pc
5571 bx r12
5572 __func_offset:
5573 .word func - . */
5574
5575 #define ARM2THUMB_STATIC_GLUE_SIZE 12
5576 static const insn32 a2t1_ldr_insn = 0xe59fc000;
5577 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
5578 static const insn32 a2t3_func_addr_insn = 0x00000001;
5579
5580 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
5581 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
5582 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
5583
5584 #define ARM2THUMB_PIC_GLUE_SIZE 16
5585 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
5586 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
5587 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
5588
5589 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
5590
5591 .thumb .thumb
5592 .align 2 .align 2
5593 __func_from_thumb: __func_from_thumb:
5594 bx pc push {r6, lr}
5595 nop ldr r6, __func_addr
5596 .arm mov lr, pc
5597 b func bx r6
5598 .arm
5599 ;; back_to_thumb
5600 ldmia r13! {r6, lr}
5601 bx lr
5602 __func_addr:
5603 .word func */
5604
5605 #define THUMB2ARM_GLUE_SIZE 8
5606 static const insn16 t2a1_bx_pc_insn = 0x4778;
5607 static const insn16 t2a2_noop_insn = 0x46c0;
5608 static const insn32 t2a3_b_insn = 0xea000000;
5609
5610 #define VFP11_ERRATUM_VENEER_SIZE 8
5611
5612 #define ARM_BX_VENEER_SIZE 12
5613 static const insn32 armbx1_tst_insn = 0xe3100001;
5614 static const insn32 armbx2_moveq_insn = 0x01a0f000;
5615 static const insn32 armbx3_bx_insn = 0xe12fff10;
5616
5617 #ifndef ELFARM_NABI_C_INCLUDED
5618 static void
5619 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
5620 {
5621 asection * s;
5622 bfd_byte * contents;
5623
5624 if (size == 0)
5625 {
5626 /* Do not include empty glue sections in the output. */
5627 if (abfd != NULL)
5628 {
5629 s = bfd_get_linker_section (abfd, name);
5630 if (s != NULL)
5631 s->flags |= SEC_EXCLUDE;
5632 }
5633 return;
5634 }
5635
5636 BFD_ASSERT (abfd != NULL);
5637
5638 s = bfd_get_linker_section (abfd, name);
5639 BFD_ASSERT (s != NULL);
5640
5641 contents = (bfd_byte *) bfd_alloc (abfd, size);
5642
5643 BFD_ASSERT (s->size == size);
5644 s->contents = contents;
5645 }
5646
5647 bfd_boolean
5648 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
5649 {
5650 struct elf32_arm_link_hash_table * globals;
5651
5652 globals = elf32_arm_hash_table (info);
5653 BFD_ASSERT (globals != NULL);
5654
5655 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5656 globals->arm_glue_size,
5657 ARM2THUMB_GLUE_SECTION_NAME);
5658
5659 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5660 globals->thumb_glue_size,
5661 THUMB2ARM_GLUE_SECTION_NAME);
5662
5663 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5664 globals->vfp11_erratum_glue_size,
5665 VFP11_ERRATUM_VENEER_SECTION_NAME);
5666
5667 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5668 globals->bx_glue_size,
5669 ARM_BX_GLUE_SECTION_NAME);
5670
5671 return TRUE;
5672 }
5673
5674 /* Allocate space and symbols for calling a Thumb function from Arm mode.
5675 returns the symbol identifying the stub. */
5676
5677 static struct elf_link_hash_entry *
5678 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
5679 struct elf_link_hash_entry * h)
5680 {
5681 const char * name = h->root.root.string;
5682 asection * s;
5683 char * tmp_name;
5684 struct elf_link_hash_entry * myh;
5685 struct bfd_link_hash_entry * bh;
5686 struct elf32_arm_link_hash_table * globals;
5687 bfd_vma val;
5688 bfd_size_type size;
5689
5690 globals = elf32_arm_hash_table (link_info);
5691 BFD_ASSERT (globals != NULL);
5692 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5693
5694 s = bfd_get_linker_section
5695 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
5696
5697 BFD_ASSERT (s != NULL);
5698
5699 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5700 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
5701
5702 BFD_ASSERT (tmp_name);
5703
5704 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5705
5706 myh = elf_link_hash_lookup
5707 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5708
5709 if (myh != NULL)
5710 {
5711 /* We've already seen this guy. */
5712 free (tmp_name);
5713 return myh;
5714 }
5715
5716 /* The only trick here is using hash_table->arm_glue_size as the value.
5717 Even though the section isn't allocated yet, this is where we will be
5718 putting it. The +1 on the value marks that the stub has not been
5719 output yet - not that it is a Thumb function. */
5720 bh = NULL;
5721 val = globals->arm_glue_size + 1;
5722 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5723 tmp_name, BSF_GLOBAL, s, val,
5724 NULL, TRUE, FALSE, &bh);
5725
5726 myh = (struct elf_link_hash_entry *) bh;
5727 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5728 myh->forced_local = 1;
5729
5730 free (tmp_name);
5731
5732 if (link_info->shared || globals->root.is_relocatable_executable
5733 || globals->pic_veneer)
5734 size = ARM2THUMB_PIC_GLUE_SIZE;
5735 else if (globals->use_blx)
5736 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
5737 else
5738 size = ARM2THUMB_STATIC_GLUE_SIZE;
5739
5740 s->size += size;
5741 globals->arm_glue_size += size;
5742
5743 return myh;
5744 }
5745
5746 /* Allocate space for ARMv4 BX veneers. */
5747
5748 static void
5749 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
5750 {
5751 asection * s;
5752 struct elf32_arm_link_hash_table *globals;
5753 char *tmp_name;
5754 struct elf_link_hash_entry *myh;
5755 struct bfd_link_hash_entry *bh;
5756 bfd_vma val;
5757
5758 /* BX PC does not need a veneer. */
5759 if (reg == 15)
5760 return;
5761
5762 globals = elf32_arm_hash_table (link_info);
5763 BFD_ASSERT (globals != NULL);
5764 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5765
5766 /* Check if this veneer has already been allocated. */
5767 if (globals->bx_glue_offset[reg])
5768 return;
5769
5770 s = bfd_get_linker_section
5771 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
5772
5773 BFD_ASSERT (s != NULL);
5774
5775 /* Add symbol for veneer. */
5776 tmp_name = (char *)
5777 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
5778
5779 BFD_ASSERT (tmp_name);
5780
5781 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
5782
5783 myh = elf_link_hash_lookup
5784 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
5785
5786 BFD_ASSERT (myh == NULL);
5787
5788 bh = NULL;
5789 val = globals->bx_glue_size;
5790 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5791 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5792 NULL, TRUE, FALSE, &bh);
5793
5794 myh = (struct elf_link_hash_entry *) bh;
5795 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5796 myh->forced_local = 1;
5797
5798 s->size += ARM_BX_VENEER_SIZE;
5799 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
5800 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
5801 }
5802
5803
5804 /* Add an entry to the code/data map for section SEC. */
5805
5806 static void
5807 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
5808 {
5809 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5810 unsigned int newidx;
5811
5812 if (sec_data->map == NULL)
5813 {
5814 sec_data->map = (elf32_arm_section_map *)
5815 bfd_malloc (sizeof (elf32_arm_section_map));
5816 sec_data->mapcount = 0;
5817 sec_data->mapsize = 1;
5818 }
5819
5820 newidx = sec_data->mapcount++;
5821
5822 if (sec_data->mapcount > sec_data->mapsize)
5823 {
5824 sec_data->mapsize *= 2;
5825 sec_data->map = (elf32_arm_section_map *)
5826 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
5827 * sizeof (elf32_arm_section_map));
5828 }
5829
5830 if (sec_data->map)
5831 {
5832 sec_data->map[newidx].vma = vma;
5833 sec_data->map[newidx].type = type;
5834 }
5835 }
5836
5837
5838 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
5839 veneers are handled for now. */
5840
5841 static bfd_vma
5842 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
5843 elf32_vfp11_erratum_list *branch,
5844 bfd *branch_bfd,
5845 asection *branch_sec,
5846 unsigned int offset)
5847 {
5848 asection *s;
5849 struct elf32_arm_link_hash_table *hash_table;
5850 char *tmp_name;
5851 struct elf_link_hash_entry *myh;
5852 struct bfd_link_hash_entry *bh;
5853 bfd_vma val;
5854 struct _arm_elf_section_data *sec_data;
5855 elf32_vfp11_erratum_list *newerr;
5856
5857 hash_table = elf32_arm_hash_table (link_info);
5858 BFD_ASSERT (hash_table != NULL);
5859 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
5860
5861 s = bfd_get_linker_section
5862 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
5863
5864 sec_data = elf32_arm_section_data (s);
5865
5866 BFD_ASSERT (s != NULL);
5867
5868 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
5869 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
5870
5871 BFD_ASSERT (tmp_name);
5872
5873 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5874 hash_table->num_vfp11_fixes);
5875
5876 myh = elf_link_hash_lookup
5877 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
5878
5879 BFD_ASSERT (myh == NULL);
5880
5881 bh = NULL;
5882 val = hash_table->vfp11_erratum_glue_size;
5883 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
5884 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5885 NULL, TRUE, FALSE, &bh);
5886
5887 myh = (struct elf_link_hash_entry *) bh;
5888 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5889 myh->forced_local = 1;
5890
5891 /* Link veneer back to calling location. */
5892 sec_data->erratumcount += 1;
5893 newerr = (elf32_vfp11_erratum_list *)
5894 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
5895
5896 newerr->type = VFP11_ERRATUM_ARM_VENEER;
5897 newerr->vma = -1;
5898 newerr->u.v.branch = branch;
5899 newerr->u.v.id = hash_table->num_vfp11_fixes;
5900 branch->u.b.veneer = newerr;
5901
5902 newerr->next = sec_data->erratumlist;
5903 sec_data->erratumlist = newerr;
5904
5905 /* A symbol for the return from the veneer. */
5906 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
5907 hash_table->num_vfp11_fixes);
5908
5909 myh = elf_link_hash_lookup
5910 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
5911
5912 if (myh != NULL)
5913 abort ();
5914
5915 bh = NULL;
5916 val = offset + 4;
5917 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
5918 branch_sec, val, NULL, TRUE, FALSE, &bh);
5919
5920 myh = (struct elf_link_hash_entry *) bh;
5921 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5922 myh->forced_local = 1;
5923
5924 free (tmp_name);
5925
5926 /* Generate a mapping symbol for the veneer section, and explicitly add an
5927 entry for that symbol to the code/data map for the section. */
5928 if (hash_table->vfp11_erratum_glue_size == 0)
5929 {
5930 bh = NULL;
5931 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
5932 ever requires this erratum fix. */
5933 _bfd_generic_link_add_one_symbol (link_info,
5934 hash_table->bfd_of_glue_owner, "$a",
5935 BSF_LOCAL, s, 0, NULL,
5936 TRUE, FALSE, &bh);
5937
5938 myh = (struct elf_link_hash_entry *) bh;
5939 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
5940 myh->forced_local = 1;
5941
5942 /* The elf32_arm_init_maps function only cares about symbols from input
5943 BFDs. We must make a note of this generated mapping symbol
5944 ourselves so that code byteswapping works properly in
5945 elf32_arm_write_section. */
5946 elf32_arm_section_map_add (s, 'a', 0);
5947 }
5948
5949 s->size += VFP11_ERRATUM_VENEER_SIZE;
5950 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
5951 hash_table->num_vfp11_fixes++;
5952
5953 /* The offset of the veneer. */
5954 return val;
5955 }
5956
5957 #define ARM_GLUE_SECTION_FLAGS \
5958 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
5959 | SEC_READONLY | SEC_LINKER_CREATED)
5960
5961 /* Create a fake section for use by the ARM backend of the linker. */
5962
5963 static bfd_boolean
5964 arm_make_glue_section (bfd * abfd, const char * name)
5965 {
5966 asection * sec;
5967
5968 sec = bfd_get_linker_section (abfd, name);
5969 if (sec != NULL)
5970 /* Already made. */
5971 return TRUE;
5972
5973 sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
5974
5975 if (sec == NULL
5976 || !bfd_set_section_alignment (abfd, sec, 2))
5977 return FALSE;
5978
5979 /* Set the gc mark to prevent the section from being removed by garbage
5980 collection, despite the fact that no relocs refer to this section. */
5981 sec->gc_mark = 1;
5982
5983 return TRUE;
5984 }
5985
5986 /* Add the glue sections to ABFD. This function is called from the
5987 linker scripts in ld/emultempl/{armelf}.em. */
5988
5989 bfd_boolean
5990 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
5991 struct bfd_link_info *info)
5992 {
5993 /* If we are only performing a partial
5994 link do not bother adding the glue. */
5995 if (info->relocatable)
5996 return TRUE;
5997
5998 return arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
5999 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
6000 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
6001 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
6002 }
6003
6004 /* Select a BFD to be used to hold the sections used by the glue code.
6005 This function is called from the linker scripts in ld/emultempl/
6006 {armelf/pe}.em. */
6007
6008 bfd_boolean
6009 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
6010 {
6011 struct elf32_arm_link_hash_table *globals;
6012
6013 /* If we are only performing a partial link
6014 do not bother getting a bfd to hold the glue. */
6015 if (info->relocatable)
6016 return TRUE;
6017
6018 /* Make sure we don't attach the glue sections to a dynamic object. */
6019 BFD_ASSERT (!(abfd->flags & DYNAMIC));
6020
6021 globals = elf32_arm_hash_table (info);
6022 BFD_ASSERT (globals != NULL);
6023
6024 if (globals->bfd_of_glue_owner != NULL)
6025 return TRUE;
6026
6027 /* Save the bfd for later use. */
6028 globals->bfd_of_glue_owner = abfd;
6029
6030 return TRUE;
6031 }
6032
6033 static void
6034 check_use_blx (struct elf32_arm_link_hash_table *globals)
6035 {
6036 int cpu_arch;
6037
6038 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
6039 Tag_CPU_arch);
6040
6041 if (globals->fix_arm1176)
6042 {
6043 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
6044 globals->use_blx = 1;
6045 }
6046 else
6047 {
6048 if (cpu_arch > TAG_CPU_ARCH_V4T)
6049 globals->use_blx = 1;
6050 }
6051 }
6052
6053 bfd_boolean
6054 bfd_elf32_arm_process_before_allocation (bfd *abfd,
6055 struct bfd_link_info *link_info)
6056 {
6057 Elf_Internal_Shdr *symtab_hdr;
6058 Elf_Internal_Rela *internal_relocs = NULL;
6059 Elf_Internal_Rela *irel, *irelend;
6060 bfd_byte *contents = NULL;
6061
6062 asection *sec;
6063 struct elf32_arm_link_hash_table *globals;
6064
6065 /* If we are only performing a partial link do not bother
6066 to construct any glue. */
6067 if (link_info->relocatable)
6068 return TRUE;
6069
6070 /* Here we have a bfd that is to be included on the link. We have a
6071 hook to do reloc rummaging, before section sizes are nailed down. */
6072 globals = elf32_arm_hash_table (link_info);
6073 BFD_ASSERT (globals != NULL);
6074
6075 check_use_blx (globals);
6076
6077 if (globals->byteswap_code && !bfd_big_endian (abfd))
6078 {
6079 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
6080 abfd);
6081 return FALSE;
6082 }
6083
6084 /* PR 5398: If we have not decided to include any loadable sections in
6085 the output then we will not have a glue owner bfd. This is OK, it
6086 just means that there is nothing else for us to do here. */
6087 if (globals->bfd_of_glue_owner == NULL)
6088 return TRUE;
6089
6090 /* Rummage around all the relocs and map the glue vectors. */
6091 sec = abfd->sections;
6092
6093 if (sec == NULL)
6094 return TRUE;
6095
6096 for (; sec != NULL; sec = sec->next)
6097 {
6098 if (sec->reloc_count == 0)
6099 continue;
6100
6101 if ((sec->flags & SEC_EXCLUDE) != 0)
6102 continue;
6103
6104 symtab_hdr = & elf_symtab_hdr (abfd);
6105
6106 /* Load the relocs. */
6107 internal_relocs
6108 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
6109
6110 if (internal_relocs == NULL)
6111 goto error_return;
6112
6113 irelend = internal_relocs + sec->reloc_count;
6114 for (irel = internal_relocs; irel < irelend; irel++)
6115 {
6116 long r_type;
6117 unsigned long r_index;
6118
6119 struct elf_link_hash_entry *h;
6120
6121 r_type = ELF32_R_TYPE (irel->r_info);
6122 r_index = ELF32_R_SYM (irel->r_info);
6123
6124 /* These are the only relocation types we care about. */
6125 if ( r_type != R_ARM_PC24
6126 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
6127 continue;
6128
6129 /* Get the section contents if we haven't done so already. */
6130 if (contents == NULL)
6131 {
6132 /* Get cached copy if it exists. */
6133 if (elf_section_data (sec)->this_hdr.contents != NULL)
6134 contents = elf_section_data (sec)->this_hdr.contents;
6135 else
6136 {
6137 /* Go get them off disk. */
6138 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
6139 goto error_return;
6140 }
6141 }
6142
6143 if (r_type == R_ARM_V4BX)
6144 {
6145 int reg;
6146
6147 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
6148 record_arm_bx_glue (link_info, reg);
6149 continue;
6150 }
6151
6152 /* If the relocation is not against a symbol it cannot concern us. */
6153 h = NULL;
6154
6155 /* We don't care about local symbols. */
6156 if (r_index < symtab_hdr->sh_info)
6157 continue;
6158
6159 /* This is an external symbol. */
6160 r_index -= symtab_hdr->sh_info;
6161 h = (struct elf_link_hash_entry *)
6162 elf_sym_hashes (abfd)[r_index];
6163
6164 /* If the relocation is against a static symbol it must be within
6165 the current section and so cannot be a cross ARM/Thumb relocation. */
6166 if (h == NULL)
6167 continue;
6168
6169 /* If the call will go through a PLT entry then we do not need
6170 glue. */
6171 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
6172 continue;
6173
6174 switch (r_type)
6175 {
6176 case R_ARM_PC24:
6177 /* This one is a call from arm code. We need to look up
6178 the target of the call. If it is a thumb target, we
6179 insert glue. */
6180 if (h->target_internal == ST_BRANCH_TO_THUMB)
6181 record_arm_to_thumb_glue (link_info, h);
6182 break;
6183
6184 default:
6185 abort ();
6186 }
6187 }
6188
6189 if (contents != NULL
6190 && elf_section_data (sec)->this_hdr.contents != contents)
6191 free (contents);
6192 contents = NULL;
6193
6194 if (internal_relocs != NULL
6195 && elf_section_data (sec)->relocs != internal_relocs)
6196 free (internal_relocs);
6197 internal_relocs = NULL;
6198 }
6199
6200 return TRUE;
6201
6202 error_return:
6203 if (contents != NULL
6204 && elf_section_data (sec)->this_hdr.contents != contents)
6205 free (contents);
6206 if (internal_relocs != NULL
6207 && elf_section_data (sec)->relocs != internal_relocs)
6208 free (internal_relocs);
6209
6210 return FALSE;
6211 }
6212 #endif
6213
6214
6215 /* Initialise maps of ARM/Thumb/data for input BFDs. */
6216
6217 void
6218 bfd_elf32_arm_init_maps (bfd *abfd)
6219 {
6220 Elf_Internal_Sym *isymbuf;
6221 Elf_Internal_Shdr *hdr;
6222 unsigned int i, localsyms;
6223
6224 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
6225 if (! is_arm_elf (abfd))
6226 return;
6227
6228 if ((abfd->flags & DYNAMIC) != 0)
6229 return;
6230
6231 hdr = & elf_symtab_hdr (abfd);
6232 localsyms = hdr->sh_info;
6233
6234 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
6235 should contain the number of local symbols, which should come before any
6236 global symbols. Mapping symbols are always local. */
6237 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
6238 NULL);
6239
6240 /* No internal symbols read? Skip this BFD. */
6241 if (isymbuf == NULL)
6242 return;
6243
6244 for (i = 0; i < localsyms; i++)
6245 {
6246 Elf_Internal_Sym *isym = &isymbuf[i];
6247 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
6248 const char *name;
6249
6250 if (sec != NULL
6251 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
6252 {
6253 name = bfd_elf_string_from_elf_section (abfd,
6254 hdr->sh_link, isym->st_name);
6255
6256 if (bfd_is_arm_special_symbol_name (name,
6257 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
6258 elf32_arm_section_map_add (sec, name[1], isym->st_value);
6259 }
6260 }
6261 }
6262
6263
6264 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
6265 say what they wanted. */
6266
6267 void
6268 bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
6269 {
6270 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6271 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
6272
6273 if (globals == NULL)
6274 return;
6275
6276 if (globals->fix_cortex_a8 == -1)
6277 {
6278 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
6279 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
6280 && (out_attr[Tag_CPU_arch_profile].i == 'A'
6281 || out_attr[Tag_CPU_arch_profile].i == 0))
6282 globals->fix_cortex_a8 = 1;
6283 else
6284 globals->fix_cortex_a8 = 0;
6285 }
6286 }
6287
6288
6289 void
6290 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
6291 {
6292 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6293 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
6294
6295 if (globals == NULL)
6296 return;
6297 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
6298 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
6299 {
6300 switch (globals->vfp11_fix)
6301 {
6302 case BFD_ARM_VFP11_FIX_DEFAULT:
6303 case BFD_ARM_VFP11_FIX_NONE:
6304 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
6305 break;
6306
6307 default:
6308 /* Give a warning, but do as the user requests anyway. */
6309 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
6310 "workaround is not necessary for target architecture"), obfd);
6311 }
6312 }
6313 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
6314 /* For earlier architectures, we might need the workaround, but do not
6315 enable it by default. If users is running with broken hardware, they
6316 must enable the erratum fix explicitly. */
6317 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
6318 }
6319
6320
6321 enum bfd_arm_vfp11_pipe
6322 {
6323 VFP11_FMAC,
6324 VFP11_LS,
6325 VFP11_DS,
6326 VFP11_BAD
6327 };
6328
6329 /* Return a VFP register number. This is encoded as RX:X for single-precision
6330 registers, or X:RX for double-precision registers, where RX is the group of
6331 four bits in the instruction encoding and X is the single extension bit.
6332 RX and X fields are specified using their lowest (starting) bit. The return
6333 value is:
6334
6335 0...31: single-precision registers s0...s31
6336 32...63: double-precision registers d0...d31.
6337
6338 Although X should be zero for VFP11 (encoding d0...d15 only), we might
6339 encounter VFP3 instructions, so we allow the full range for DP registers. */
6340
6341 static unsigned int
6342 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
6343 unsigned int x)
6344 {
6345 if (is_double)
6346 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
6347 else
6348 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
6349 }
6350
6351 /* Set bits in *WMASK according to a register number REG as encoded by
6352 bfd_arm_vfp11_regno(). Ignore d16-d31. */
6353
6354 static void
6355 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
6356 {
6357 if (reg < 32)
6358 *wmask |= 1 << reg;
6359 else if (reg < 48)
6360 *wmask |= 3 << ((reg - 32) * 2);
6361 }
6362
6363 /* Return TRUE if WMASK overwrites anything in REGS. */
6364
6365 static bfd_boolean
6366 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
6367 {
6368 int i;
6369
6370 for (i = 0; i < numregs; i++)
6371 {
6372 unsigned int reg = regs[i];
6373
6374 if (reg < 32 && (wmask & (1 << reg)) != 0)
6375 return TRUE;
6376
6377 reg -= 32;
6378
6379 if (reg >= 16)
6380 continue;
6381
6382 if ((wmask & (3 << (reg * 2))) != 0)
6383 return TRUE;
6384 }
6385
6386 return FALSE;
6387 }
6388
6389 /* In this function, we're interested in two things: finding input registers
6390 for VFP data-processing instructions, and finding the set of registers which
6391 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
6392 hold the written set, so FLDM etc. are easy to deal with (we're only
6393 interested in 32 SP registers or 16 dp registers, due to the VFP version
6394 implemented by the chip in question). DP registers are marked by setting
6395 both SP registers in the write mask). */
6396
6397 static enum bfd_arm_vfp11_pipe
6398 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
6399 int *numregs)
6400 {
6401 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
6402 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
6403
6404 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
6405 {
6406 unsigned int pqrs;
6407 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
6408 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
6409
6410 pqrs = ((insn & 0x00800000) >> 20)
6411 | ((insn & 0x00300000) >> 19)
6412 | ((insn & 0x00000040) >> 6);
6413
6414 switch (pqrs)
6415 {
6416 case 0: /* fmac[sd]. */
6417 case 1: /* fnmac[sd]. */
6418 case 2: /* fmsc[sd]. */
6419 case 3: /* fnmsc[sd]. */
6420 vpipe = VFP11_FMAC;
6421 bfd_arm_vfp11_write_mask (destmask, fd);
6422 regs[0] = fd;
6423 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
6424 regs[2] = fm;
6425 *numregs = 3;
6426 break;
6427
6428 case 4: /* fmul[sd]. */
6429 case 5: /* fnmul[sd]. */
6430 case 6: /* fadd[sd]. */
6431 case 7: /* fsub[sd]. */
6432 vpipe = VFP11_FMAC;
6433 goto vfp_binop;
6434
6435 case 8: /* fdiv[sd]. */
6436 vpipe = VFP11_DS;
6437 vfp_binop:
6438 bfd_arm_vfp11_write_mask (destmask, fd);
6439 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
6440 regs[1] = fm;
6441 *numregs = 2;
6442 break;
6443
6444 case 15: /* extended opcode. */
6445 {
6446 unsigned int extn = ((insn >> 15) & 0x1e)
6447 | ((insn >> 7) & 1);
6448
6449 switch (extn)
6450 {
6451 case 0: /* fcpy[sd]. */
6452 case 1: /* fabs[sd]. */
6453 case 2: /* fneg[sd]. */
6454 case 8: /* fcmp[sd]. */
6455 case 9: /* fcmpe[sd]. */
6456 case 10: /* fcmpz[sd]. */
6457 case 11: /* fcmpez[sd]. */
6458 case 16: /* fuito[sd]. */
6459 case 17: /* fsito[sd]. */
6460 case 24: /* ftoui[sd]. */
6461 case 25: /* ftouiz[sd]. */
6462 case 26: /* ftosi[sd]. */
6463 case 27: /* ftosiz[sd]. */
6464 /* These instructions will not bounce due to underflow. */
6465 *numregs = 0;
6466 vpipe = VFP11_FMAC;
6467 break;
6468
6469 case 3: /* fsqrt[sd]. */
6470 /* fsqrt cannot underflow, but it can (perhaps) overwrite
6471 registers to cause the erratum in previous instructions. */
6472 bfd_arm_vfp11_write_mask (destmask, fd);
6473 vpipe = VFP11_DS;
6474 break;
6475
6476 case 15: /* fcvt{ds,sd}. */
6477 {
6478 int rnum = 0;
6479
6480 bfd_arm_vfp11_write_mask (destmask, fd);
6481
6482 /* Only FCVTSD can underflow. */
6483 if ((insn & 0x100) != 0)
6484 regs[rnum++] = fm;
6485
6486 *numregs = rnum;
6487
6488 vpipe = VFP11_FMAC;
6489 }
6490 break;
6491
6492 default:
6493 return VFP11_BAD;
6494 }
6495 }
6496 break;
6497
6498 default:
6499 return VFP11_BAD;
6500 }
6501 }
6502 /* Two-register transfer. */
6503 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
6504 {
6505 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
6506
6507 if ((insn & 0x100000) == 0)
6508 {
6509 if (is_double)
6510 bfd_arm_vfp11_write_mask (destmask, fm);
6511 else
6512 {
6513 bfd_arm_vfp11_write_mask (destmask, fm);
6514 bfd_arm_vfp11_write_mask (destmask, fm + 1);
6515 }
6516 }
6517
6518 vpipe = VFP11_LS;
6519 }
6520 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
6521 {
6522 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
6523 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
6524
6525 switch (puw)
6526 {
6527 case 0: /* Two-reg transfer. We should catch these above. */
6528 abort ();
6529
6530 case 2: /* fldm[sdx]. */
6531 case 3:
6532 case 5:
6533 {
6534 unsigned int i, offset = insn & 0xff;
6535
6536 if (is_double)
6537 offset >>= 1;
6538
6539 for (i = fd; i < fd + offset; i++)
6540 bfd_arm_vfp11_write_mask (destmask, i);
6541 }
6542 break;
6543
6544 case 4: /* fld[sd]. */
6545 case 6:
6546 bfd_arm_vfp11_write_mask (destmask, fd);
6547 break;
6548
6549 default:
6550 return VFP11_BAD;
6551 }
6552
6553 vpipe = VFP11_LS;
6554 }
6555 /* Single-register transfer. Note L==0. */
6556 else if ((insn & 0x0f100e10) == 0x0e000a10)
6557 {
6558 unsigned int opcode = (insn >> 21) & 7;
6559 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
6560
6561 switch (opcode)
6562 {
6563 case 0: /* fmsr/fmdlr. */
6564 case 1: /* fmdhr. */
6565 /* Mark fmdhr and fmdlr as writing to the whole of the DP
6566 destination register. I don't know if this is exactly right,
6567 but it is the conservative choice. */
6568 bfd_arm_vfp11_write_mask (destmask, fn);
6569 break;
6570
6571 case 7: /* fmxr. */
6572 break;
6573 }
6574
6575 vpipe = VFP11_LS;
6576 }
6577
6578 return vpipe;
6579 }
6580
6581
6582 static int elf32_arm_compare_mapping (const void * a, const void * b);
6583
6584
6585 /* Look for potentially-troublesome code sequences which might trigger the
6586 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
6587 (available from ARM) for details of the erratum. A short version is
6588 described in ld.texinfo. */
6589
6590 bfd_boolean
6591 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
6592 {
6593 asection *sec;
6594 bfd_byte *contents = NULL;
6595 int state = 0;
6596 int regs[3], numregs = 0;
6597 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6598 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
6599
6600 if (globals == NULL)
6601 return FALSE;
6602
6603 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
6604 The states transition as follows:
6605
6606 0 -> 1 (vector) or 0 -> 2 (scalar)
6607 A VFP FMAC-pipeline instruction has been seen. Fill
6608 regs[0]..regs[numregs-1] with its input operands. Remember this
6609 instruction in 'first_fmac'.
6610
6611 1 -> 2
6612 Any instruction, except for a VFP instruction which overwrites
6613 regs[*].
6614
6615 1 -> 3 [ -> 0 ] or
6616 2 -> 3 [ -> 0 ]
6617 A VFP instruction has been seen which overwrites any of regs[*].
6618 We must make a veneer! Reset state to 0 before examining next
6619 instruction.
6620
6621 2 -> 0
6622 If we fail to match anything in state 2, reset to state 0 and reset
6623 the instruction pointer to the instruction after 'first_fmac'.
6624
6625 If the VFP11 vector mode is in use, there must be at least two unrelated
6626 instructions between anti-dependent VFP11 instructions to properly avoid
6627 triggering the erratum, hence the use of the extra state 1. */
6628
6629 /* If we are only performing a partial link do not bother
6630 to construct any glue. */
6631 if (link_info->relocatable)
6632 return TRUE;
6633
6634 /* Skip if this bfd does not correspond to an ELF image. */
6635 if (! is_arm_elf (abfd))
6636 return TRUE;
6637
6638 /* We should have chosen a fix type by the time we get here. */
6639 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
6640
6641 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
6642 return TRUE;
6643
6644 /* Skip this BFD if it corresponds to an executable or dynamic object. */
6645 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
6646 return TRUE;
6647
6648 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6649 {
6650 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
6651 struct _arm_elf_section_data *sec_data;
6652
6653 /* If we don't have executable progbits, we're not interested in this
6654 section. Also skip if section is to be excluded. */
6655 if (elf_section_type (sec) != SHT_PROGBITS
6656 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
6657 || (sec->flags & SEC_EXCLUDE) != 0
6658 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
6659 || sec->output_section == bfd_abs_section_ptr
6660 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
6661 continue;
6662
6663 sec_data = elf32_arm_section_data (sec);
6664
6665 if (sec_data->mapcount == 0)
6666 continue;
6667
6668 if (elf_section_data (sec)->this_hdr.contents != NULL)
6669 contents = elf_section_data (sec)->this_hdr.contents;
6670 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
6671 goto error_return;
6672
6673 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
6674 elf32_arm_compare_mapping);
6675
6676 for (span = 0; span < sec_data->mapcount; span++)
6677 {
6678 unsigned int span_start = sec_data->map[span].vma;
6679 unsigned int span_end = (span == sec_data->mapcount - 1)
6680 ? sec->size : sec_data->map[span + 1].vma;
6681 char span_type = sec_data->map[span].type;
6682
6683 /* FIXME: Only ARM mode is supported at present. We may need to
6684 support Thumb-2 mode also at some point. */
6685 if (span_type != 'a')
6686 continue;
6687
6688 for (i = span_start; i < span_end;)
6689 {
6690 unsigned int next_i = i + 4;
6691 unsigned int insn = bfd_big_endian (abfd)
6692 ? (contents[i] << 24)
6693 | (contents[i + 1] << 16)
6694 | (contents[i + 2] << 8)
6695 | contents[i + 3]
6696 : (contents[i + 3] << 24)
6697 | (contents[i + 2] << 16)
6698 | (contents[i + 1] << 8)
6699 | contents[i];
6700 unsigned int writemask = 0;
6701 enum bfd_arm_vfp11_pipe vpipe;
6702
6703 switch (state)
6704 {
6705 case 0:
6706 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
6707 &numregs);
6708 /* I'm assuming the VFP11 erratum can trigger with denorm
6709 operands on either the FMAC or the DS pipeline. This might
6710 lead to slightly overenthusiastic veneer insertion. */
6711 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
6712 {
6713 state = use_vector ? 1 : 2;
6714 first_fmac = i;
6715 veneer_of_insn = insn;
6716 }
6717 break;
6718
6719 case 1:
6720 {
6721 int other_regs[3], other_numregs;
6722 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
6723 other_regs,
6724 &other_numregs);
6725 if (vpipe != VFP11_BAD
6726 && bfd_arm_vfp11_antidependency (writemask, regs,
6727 numregs))
6728 state = 3;
6729 else
6730 state = 2;
6731 }
6732 break;
6733
6734 case 2:
6735 {
6736 int other_regs[3], other_numregs;
6737 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
6738 other_regs,
6739 &other_numregs);
6740 if (vpipe != VFP11_BAD
6741 && bfd_arm_vfp11_antidependency (writemask, regs,
6742 numregs))
6743 state = 3;
6744 else
6745 {
6746 state = 0;
6747 next_i = first_fmac + 4;
6748 }
6749 }
6750 break;
6751
6752 case 3:
6753 abort (); /* Should be unreachable. */
6754 }
6755
6756 if (state == 3)
6757 {
6758 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
6759 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
6760
6761 elf32_arm_section_data (sec)->erratumcount += 1;
6762
6763 newerr->u.b.vfp_insn = veneer_of_insn;
6764
6765 switch (span_type)
6766 {
6767 case 'a':
6768 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
6769 break;
6770
6771 default:
6772 abort ();
6773 }
6774
6775 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
6776 first_fmac);
6777
6778 newerr->vma = -1;
6779
6780 newerr->next = sec_data->erratumlist;
6781 sec_data->erratumlist = newerr;
6782
6783 state = 0;
6784 }
6785
6786 i = next_i;
6787 }
6788 }
6789
6790 if (contents != NULL
6791 && elf_section_data (sec)->this_hdr.contents != contents)
6792 free (contents);
6793 contents = NULL;
6794 }
6795
6796 return TRUE;
6797
6798 error_return:
6799 if (contents != NULL
6800 && elf_section_data (sec)->this_hdr.contents != contents)
6801 free (contents);
6802
6803 return FALSE;
6804 }
6805
6806 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
6807 after sections have been laid out, using specially-named symbols. */
6808
6809 void
6810 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
6811 struct bfd_link_info *link_info)
6812 {
6813 asection *sec;
6814 struct elf32_arm_link_hash_table *globals;
6815 char *tmp_name;
6816
6817 if (link_info->relocatable)
6818 return;
6819
6820 /* Skip if this bfd does not correspond to an ELF image. */
6821 if (! is_arm_elf (abfd))
6822 return;
6823
6824 globals = elf32_arm_hash_table (link_info);
6825 if (globals == NULL)
6826 return;
6827
6828 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
6829 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
6830
6831 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6832 {
6833 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
6834 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
6835
6836 for (; errnode != NULL; errnode = errnode->next)
6837 {
6838 struct elf_link_hash_entry *myh;
6839 bfd_vma vma;
6840
6841 switch (errnode->type)
6842 {
6843 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
6844 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
6845 /* Find veneer symbol. */
6846 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
6847 errnode->u.b.veneer->u.v.id);
6848
6849 myh = elf_link_hash_lookup
6850 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6851
6852 if (myh == NULL)
6853 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6854 "`%s'"), abfd, tmp_name);
6855
6856 vma = myh->root.u.def.section->output_section->vma
6857 + myh->root.u.def.section->output_offset
6858 + myh->root.u.def.value;
6859
6860 errnode->u.b.veneer->vma = vma;
6861 break;
6862
6863 case VFP11_ERRATUM_ARM_VENEER:
6864 case VFP11_ERRATUM_THUMB_VENEER:
6865 /* Find return location. */
6866 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
6867 errnode->u.v.id);
6868
6869 myh = elf_link_hash_lookup
6870 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6871
6872 if (myh == NULL)
6873 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6874 "`%s'"), abfd, tmp_name);
6875
6876 vma = myh->root.u.def.section->output_section->vma
6877 + myh->root.u.def.section->output_offset
6878 + myh->root.u.def.value;
6879
6880 errnode->u.v.branch->vma = vma;
6881 break;
6882
6883 default:
6884 abort ();
6885 }
6886 }
6887 }
6888
6889 free (tmp_name);
6890 }
6891
6892
6893 /* Set target relocation values needed during linking. */
6894
6895 void
6896 bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
6897 struct bfd_link_info *link_info,
6898 int target1_is_rel,
6899 char * target2_type,
6900 int fix_v4bx,
6901 int use_blx,
6902 bfd_arm_vfp11_fix vfp11_fix,
6903 int no_enum_warn, int no_wchar_warn,
6904 int pic_veneer, int fix_cortex_a8,
6905 int fix_arm1176)
6906 {
6907 struct elf32_arm_link_hash_table *globals;
6908
6909 globals = elf32_arm_hash_table (link_info);
6910 if (globals == NULL)
6911 return;
6912
6913 globals->target1_is_rel = target1_is_rel;
6914 if (strcmp (target2_type, "rel") == 0)
6915 globals->target2_reloc = R_ARM_REL32;
6916 else if (strcmp (target2_type, "abs") == 0)
6917 globals->target2_reloc = R_ARM_ABS32;
6918 else if (strcmp (target2_type, "got-rel") == 0)
6919 globals->target2_reloc = R_ARM_GOT_PREL;
6920 else
6921 {
6922 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
6923 target2_type);
6924 }
6925 globals->fix_v4bx = fix_v4bx;
6926 globals->use_blx |= use_blx;
6927 globals->vfp11_fix = vfp11_fix;
6928 globals->pic_veneer = pic_veneer;
6929 globals->fix_cortex_a8 = fix_cortex_a8;
6930 globals->fix_arm1176 = fix_arm1176;
6931
6932 BFD_ASSERT (is_arm_elf (output_bfd));
6933 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
6934 elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
6935 }
6936
6937 /* Replace the target offset of a Thumb bl or b.w instruction. */
6938
6939 static void
6940 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
6941 {
6942 bfd_vma upper;
6943 bfd_vma lower;
6944 int reloc_sign;
6945
6946 BFD_ASSERT ((offset & 1) == 0);
6947
6948 upper = bfd_get_16 (abfd, insn);
6949 lower = bfd_get_16 (abfd, insn + 2);
6950 reloc_sign = (offset < 0) ? 1 : 0;
6951 upper = (upper & ~(bfd_vma) 0x7ff)
6952 | ((offset >> 12) & 0x3ff)
6953 | (reloc_sign << 10);
6954 lower = (lower & ~(bfd_vma) 0x2fff)
6955 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
6956 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
6957 | ((offset >> 1) & 0x7ff);
6958 bfd_put_16 (abfd, upper, insn);
6959 bfd_put_16 (abfd, lower, insn + 2);
6960 }
6961
6962 /* Thumb code calling an ARM function. */
6963
6964 static int
6965 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
6966 const char * name,
6967 bfd * input_bfd,
6968 bfd * output_bfd,
6969 asection * input_section,
6970 bfd_byte * hit_data,
6971 asection * sym_sec,
6972 bfd_vma offset,
6973 bfd_signed_vma addend,
6974 bfd_vma val,
6975 char **error_message)
6976 {
6977 asection * s = 0;
6978 bfd_vma my_offset;
6979 long int ret_offset;
6980 struct elf_link_hash_entry * myh;
6981 struct elf32_arm_link_hash_table * globals;
6982
6983 myh = find_thumb_glue (info, name, error_message);
6984 if (myh == NULL)
6985 return FALSE;
6986
6987 globals = elf32_arm_hash_table (info);
6988 BFD_ASSERT (globals != NULL);
6989 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6990
6991 my_offset = myh->root.u.def.value;
6992
6993 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
6994 THUMB2ARM_GLUE_SECTION_NAME);
6995
6996 BFD_ASSERT (s != NULL);
6997 BFD_ASSERT (s->contents != NULL);
6998 BFD_ASSERT (s->output_section != NULL);
6999
7000 if ((my_offset & 0x01) == 0x01)
7001 {
7002 if (sym_sec != NULL
7003 && sym_sec->owner != NULL
7004 && !INTERWORK_FLAG (sym_sec->owner))
7005 {
7006 (*_bfd_error_handler)
7007 (_("%B(%s): warning: interworking not enabled.\n"
7008 " first occurrence: %B: Thumb call to ARM"),
7009 sym_sec->owner, input_bfd, name);
7010
7011 return FALSE;
7012 }
7013
7014 --my_offset;
7015 myh->root.u.def.value = my_offset;
7016
7017 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
7018 s->contents + my_offset);
7019
7020 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
7021 s->contents + my_offset + 2);
7022
7023 ret_offset =
7024 /* Address of destination of the stub. */
7025 ((bfd_signed_vma) val)
7026 - ((bfd_signed_vma)
7027 /* Offset from the start of the current section
7028 to the start of the stubs. */
7029 (s->output_offset
7030 /* Offset of the start of this stub from the start of the stubs. */
7031 + my_offset
7032 /* Address of the start of the current section. */
7033 + s->output_section->vma)
7034 /* The branch instruction is 4 bytes into the stub. */
7035 + 4
7036 /* ARM branches work from the pc of the instruction + 8. */
7037 + 8);
7038
7039 put_arm_insn (globals, output_bfd,
7040 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
7041 s->contents + my_offset + 4);
7042 }
7043
7044 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
7045
7046 /* Now go back and fix up the original BL insn to point to here. */
7047 ret_offset =
7048 /* Address of where the stub is located. */
7049 (s->output_section->vma + s->output_offset + my_offset)
7050 /* Address of where the BL is located. */
7051 - (input_section->output_section->vma + input_section->output_offset
7052 + offset)
7053 /* Addend in the relocation. */
7054 - addend
7055 /* Biassing for PC-relative addressing. */
7056 - 8;
7057
7058 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
7059
7060 return TRUE;
7061 }
7062
7063 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
7064
7065 static struct elf_link_hash_entry *
7066 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
7067 const char * name,
7068 bfd * input_bfd,
7069 bfd * output_bfd,
7070 asection * sym_sec,
7071 bfd_vma val,
7072 asection * s,
7073 char ** error_message)
7074 {
7075 bfd_vma my_offset;
7076 long int ret_offset;
7077 struct elf_link_hash_entry * myh;
7078 struct elf32_arm_link_hash_table * globals;
7079
7080 myh = find_arm_glue (info, name, error_message);
7081 if (myh == NULL)
7082 return NULL;
7083
7084 globals = elf32_arm_hash_table (info);
7085 BFD_ASSERT (globals != NULL);
7086 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7087
7088 my_offset = myh->root.u.def.value;
7089
7090 if ((my_offset & 0x01) == 0x01)
7091 {
7092 if (sym_sec != NULL
7093 && sym_sec->owner != NULL
7094 && !INTERWORK_FLAG (sym_sec->owner))
7095 {
7096 (*_bfd_error_handler)
7097 (_("%B(%s): warning: interworking not enabled.\n"
7098 " first occurrence: %B: arm call to thumb"),
7099 sym_sec->owner, input_bfd, name);
7100 }
7101
7102 --my_offset;
7103 myh->root.u.def.value = my_offset;
7104
7105 if (info->shared || globals->root.is_relocatable_executable
7106 || globals->pic_veneer)
7107 {
7108 /* For relocatable objects we can't use absolute addresses,
7109 so construct the address from a relative offset. */
7110 /* TODO: If the offset is small it's probably worth
7111 constructing the address with adds. */
7112 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
7113 s->contents + my_offset);
7114 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
7115 s->contents + my_offset + 4);
7116 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
7117 s->contents + my_offset + 8);
7118 /* Adjust the offset by 4 for the position of the add,
7119 and 8 for the pipeline offset. */
7120 ret_offset = (val - (s->output_offset
7121 + s->output_section->vma
7122 + my_offset + 12))
7123 | 1;
7124 bfd_put_32 (output_bfd, ret_offset,
7125 s->contents + my_offset + 12);
7126 }
7127 else if (globals->use_blx)
7128 {
7129 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
7130 s->contents + my_offset);
7131
7132 /* It's a thumb address. Add the low order bit. */
7133 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
7134 s->contents + my_offset + 4);
7135 }
7136 else
7137 {
7138 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
7139 s->contents + my_offset);
7140
7141 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
7142 s->contents + my_offset + 4);
7143
7144 /* It's a thumb address. Add the low order bit. */
7145 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
7146 s->contents + my_offset + 8);
7147
7148 my_offset += 12;
7149 }
7150 }
7151
7152 BFD_ASSERT (my_offset <= globals->arm_glue_size);
7153
7154 return myh;
7155 }
7156
7157 /* Arm code calling a Thumb function. */
7158
7159 static int
7160 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
7161 const char * name,
7162 bfd * input_bfd,
7163 bfd * output_bfd,
7164 asection * input_section,
7165 bfd_byte * hit_data,
7166 asection * sym_sec,
7167 bfd_vma offset,
7168 bfd_signed_vma addend,
7169 bfd_vma val,
7170 char **error_message)
7171 {
7172 unsigned long int tmp;
7173 bfd_vma my_offset;
7174 asection * s;
7175 long int ret_offset;
7176 struct elf_link_hash_entry * myh;
7177 struct elf32_arm_link_hash_table * globals;
7178
7179 globals = elf32_arm_hash_table (info);
7180 BFD_ASSERT (globals != NULL);
7181 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7182
7183 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7184 ARM2THUMB_GLUE_SECTION_NAME);
7185 BFD_ASSERT (s != NULL);
7186 BFD_ASSERT (s->contents != NULL);
7187 BFD_ASSERT (s->output_section != NULL);
7188
7189 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
7190 sym_sec, val, s, error_message);
7191 if (!myh)
7192 return FALSE;
7193
7194 my_offset = myh->root.u.def.value;
7195 tmp = bfd_get_32 (input_bfd, hit_data);
7196 tmp = tmp & 0xFF000000;
7197
7198 /* Somehow these are both 4 too far, so subtract 8. */
7199 ret_offset = (s->output_offset
7200 + my_offset
7201 + s->output_section->vma
7202 - (input_section->output_offset
7203 + input_section->output_section->vma
7204 + offset + addend)
7205 - 8);
7206
7207 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
7208
7209 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
7210
7211 return TRUE;
7212 }
7213
7214 /* Populate Arm stub for an exported Thumb function. */
7215
7216 static bfd_boolean
7217 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
7218 {
7219 struct bfd_link_info * info = (struct bfd_link_info *) inf;
7220 asection * s;
7221 struct elf_link_hash_entry * myh;
7222 struct elf32_arm_link_hash_entry *eh;
7223 struct elf32_arm_link_hash_table * globals;
7224 asection *sec;
7225 bfd_vma val;
7226 char *error_message;
7227
7228 eh = elf32_arm_hash_entry (h);
7229 /* Allocate stubs for exported Thumb functions on v4t. */
7230 if (eh->export_glue == NULL)
7231 return TRUE;
7232
7233 globals = elf32_arm_hash_table (info);
7234 BFD_ASSERT (globals != NULL);
7235 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7236
7237 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7238 ARM2THUMB_GLUE_SECTION_NAME);
7239 BFD_ASSERT (s != NULL);
7240 BFD_ASSERT (s->contents != NULL);
7241 BFD_ASSERT (s->output_section != NULL);
7242
7243 sec = eh->export_glue->root.u.def.section;
7244
7245 BFD_ASSERT (sec->output_section != NULL);
7246
7247 val = eh->export_glue->root.u.def.value + sec->output_offset
7248 + sec->output_section->vma;
7249
7250 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
7251 h->root.u.def.section->owner,
7252 globals->obfd, sec, val, s,
7253 &error_message);
7254 BFD_ASSERT (myh);
7255 return TRUE;
7256 }
7257
7258 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
7259
7260 static bfd_vma
7261 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
7262 {
7263 bfd_byte *p;
7264 bfd_vma glue_addr;
7265 asection *s;
7266 struct elf32_arm_link_hash_table *globals;
7267
7268 globals = elf32_arm_hash_table (info);
7269 BFD_ASSERT (globals != NULL);
7270 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7271
7272 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7273 ARM_BX_GLUE_SECTION_NAME);
7274 BFD_ASSERT (s != NULL);
7275 BFD_ASSERT (s->contents != NULL);
7276 BFD_ASSERT (s->output_section != NULL);
7277
7278 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
7279
7280 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
7281
7282 if ((globals->bx_glue_offset[reg] & 1) == 0)
7283 {
7284 p = s->contents + glue_addr;
7285 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
7286 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
7287 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
7288 globals->bx_glue_offset[reg] |= 1;
7289 }
7290
7291 return glue_addr + s->output_section->vma + s->output_offset;
7292 }
7293
7294 /* Generate Arm stubs for exported Thumb symbols. */
7295 static void
7296 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
7297 struct bfd_link_info *link_info)
7298 {
7299 struct elf32_arm_link_hash_table * globals;
7300
7301 if (link_info == NULL)
7302 /* Ignore this if we are not called by the ELF backend linker. */
7303 return;
7304
7305 globals = elf32_arm_hash_table (link_info);
7306 if (globals == NULL)
7307 return;
7308
7309 /* If blx is available then exported Thumb symbols are OK and there is
7310 nothing to do. */
7311 if (globals->use_blx)
7312 return;
7313
7314 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
7315 link_info);
7316 }
7317
7318 /* Reserve space for COUNT dynamic relocations in relocation selection
7319 SRELOC. */
7320
7321 static void
7322 elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
7323 bfd_size_type count)
7324 {
7325 struct elf32_arm_link_hash_table *htab;
7326
7327 htab = elf32_arm_hash_table (info);
7328 BFD_ASSERT (htab->root.dynamic_sections_created);
7329 if (sreloc == NULL)
7330 abort ();
7331 sreloc->size += RELOC_SIZE (htab) * count;
7332 }
7333
7334 /* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
7335 dynamic, the relocations should go in SRELOC, otherwise they should
7336 go in the special .rel.iplt section. */
7337
7338 static void
7339 elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
7340 bfd_size_type count)
7341 {
7342 struct elf32_arm_link_hash_table *htab;
7343
7344 htab = elf32_arm_hash_table (info);
7345 if (!htab->root.dynamic_sections_created)
7346 htab->root.irelplt->size += RELOC_SIZE (htab) * count;
7347 else
7348 {
7349 BFD_ASSERT (sreloc != NULL);
7350 sreloc->size += RELOC_SIZE (htab) * count;
7351 }
7352 }
7353
7354 /* Add relocation REL to the end of relocation section SRELOC. */
7355
7356 static void
7357 elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
7358 asection *sreloc, Elf_Internal_Rela *rel)
7359 {
7360 bfd_byte *loc;
7361 struct elf32_arm_link_hash_table *htab;
7362
7363 htab = elf32_arm_hash_table (info);
7364 if (!htab->root.dynamic_sections_created
7365 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
7366 sreloc = htab->root.irelplt;
7367 if (sreloc == NULL)
7368 abort ();
7369 loc = sreloc->contents;
7370 loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
7371 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
7372 abort ();
7373 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
7374 }
7375
7376 /* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
7377 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
7378 to .plt. */
7379
7380 static void
7381 elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
7382 bfd_boolean is_iplt_entry,
7383 union gotplt_union *root_plt,
7384 struct arm_plt_info *arm_plt)
7385 {
7386 struct elf32_arm_link_hash_table *htab;
7387 asection *splt;
7388 asection *sgotplt;
7389
7390 htab = elf32_arm_hash_table (info);
7391
7392 if (is_iplt_entry)
7393 {
7394 splt = htab->root.iplt;
7395 sgotplt = htab->root.igotplt;
7396
7397 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
7398 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
7399 }
7400 else
7401 {
7402 splt = htab->root.splt;
7403 sgotplt = htab->root.sgotplt;
7404
7405 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
7406 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
7407
7408 /* If this is the first .plt entry, make room for the special
7409 first entry. */
7410 if (splt->size == 0)
7411 splt->size += htab->plt_header_size;
7412 }
7413
7414 /* Allocate the PLT entry itself, including any leading Thumb stub. */
7415 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
7416 splt->size += PLT_THUMB_STUB_SIZE;
7417 root_plt->offset = splt->size;
7418 splt->size += htab->plt_entry_size;
7419
7420 if (!htab->symbian_p)
7421 {
7422 /* We also need to make an entry in the .got.plt section, which
7423 will be placed in the .got section by the linker script. */
7424 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
7425 sgotplt->size += 4;
7426 }
7427 }
7428
7429 static bfd_vma
7430 arm_movw_immediate (bfd_vma value)
7431 {
7432 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
7433 }
7434
7435 static bfd_vma
7436 arm_movt_immediate (bfd_vma value)
7437 {
7438 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
7439 }
7440
7441 /* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
7442 the entry lives in .iplt and resolves to (*SYM_VALUE)().
7443 Otherwise, DYNINDX is the index of the symbol in the dynamic
7444 symbol table and SYM_VALUE is undefined.
7445
7446 ROOT_PLT points to the offset of the PLT entry from the start of its
7447 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
7448 bookkeeping information. */
7449
7450 static void
7451 elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
7452 union gotplt_union *root_plt,
7453 struct arm_plt_info *arm_plt,
7454 int dynindx, bfd_vma sym_value)
7455 {
7456 struct elf32_arm_link_hash_table *htab;
7457 asection *sgot;
7458 asection *splt;
7459 asection *srel;
7460 bfd_byte *loc;
7461 bfd_vma plt_index;
7462 Elf_Internal_Rela rel;
7463 bfd_vma plt_header_size;
7464 bfd_vma got_header_size;
7465
7466 htab = elf32_arm_hash_table (info);
7467
7468 /* Pick the appropriate sections and sizes. */
7469 if (dynindx == -1)
7470 {
7471 splt = htab->root.iplt;
7472 sgot = htab->root.igotplt;
7473 srel = htab->root.irelplt;
7474
7475 /* There are no reserved entries in .igot.plt, and no special
7476 first entry in .iplt. */
7477 got_header_size = 0;
7478 plt_header_size = 0;
7479 }
7480 else
7481 {
7482 splt = htab->root.splt;
7483 sgot = htab->root.sgotplt;
7484 srel = htab->root.srelplt;
7485
7486 got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
7487 plt_header_size = htab->plt_header_size;
7488 }
7489 BFD_ASSERT (splt != NULL && srel != NULL);
7490
7491 /* Fill in the entry in the procedure linkage table. */
7492 if (htab->symbian_p)
7493 {
7494 BFD_ASSERT (dynindx >= 0);
7495 put_arm_insn (htab, output_bfd,
7496 elf32_arm_symbian_plt_entry[0],
7497 splt->contents + root_plt->offset);
7498 bfd_put_32 (output_bfd,
7499 elf32_arm_symbian_plt_entry[1],
7500 splt->contents + root_plt->offset + 4);
7501
7502 /* Fill in the entry in the .rel.plt section. */
7503 rel.r_offset = (splt->output_section->vma
7504 + splt->output_offset
7505 + root_plt->offset + 4);
7506 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
7507
7508 /* Get the index in the procedure linkage table which
7509 corresponds to this symbol. This is the index of this symbol
7510 in all the symbols for which we are making plt entries. The
7511 first entry in the procedure linkage table is reserved. */
7512 plt_index = ((root_plt->offset - plt_header_size)
7513 / htab->plt_entry_size);
7514 }
7515 else
7516 {
7517 bfd_vma got_offset, got_address, plt_address;
7518 bfd_vma got_displacement, initial_got_entry;
7519 bfd_byte * ptr;
7520
7521 BFD_ASSERT (sgot != NULL);
7522
7523 /* Get the offset into the .(i)got.plt table of the entry that
7524 corresponds to this function. */
7525 got_offset = (arm_plt->got_offset & -2);
7526
7527 /* Get the index in the procedure linkage table which
7528 corresponds to this symbol. This is the index of this symbol
7529 in all the symbols for which we are making plt entries.
7530 After the reserved .got.plt entries, all symbols appear in
7531 the same order as in .plt. */
7532 plt_index = (got_offset - got_header_size) / 4;
7533
7534 /* Calculate the address of the GOT entry. */
7535 got_address = (sgot->output_section->vma
7536 + sgot->output_offset
7537 + got_offset);
7538
7539 /* ...and the address of the PLT entry. */
7540 plt_address = (splt->output_section->vma
7541 + splt->output_offset
7542 + root_plt->offset);
7543
7544 ptr = splt->contents + root_plt->offset;
7545 if (htab->vxworks_p && info->shared)
7546 {
7547 unsigned int i;
7548 bfd_vma val;
7549
7550 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
7551 {
7552 val = elf32_arm_vxworks_shared_plt_entry[i];
7553 if (i == 2)
7554 val |= got_address - sgot->output_section->vma;
7555 if (i == 5)
7556 val |= plt_index * RELOC_SIZE (htab);
7557 if (i == 2 || i == 5)
7558 bfd_put_32 (output_bfd, val, ptr);
7559 else
7560 put_arm_insn (htab, output_bfd, val, ptr);
7561 }
7562 }
7563 else if (htab->vxworks_p)
7564 {
7565 unsigned int i;
7566 bfd_vma val;
7567
7568 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
7569 {
7570 val = elf32_arm_vxworks_exec_plt_entry[i];
7571 if (i == 2)
7572 val |= got_address;
7573 if (i == 4)
7574 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
7575 if (i == 5)
7576 val |= plt_index * RELOC_SIZE (htab);
7577 if (i == 2 || i == 5)
7578 bfd_put_32 (output_bfd, val, ptr);
7579 else
7580 put_arm_insn (htab, output_bfd, val, ptr);
7581 }
7582
7583 loc = (htab->srelplt2->contents
7584 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
7585
7586 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
7587 referencing the GOT for this PLT entry. */
7588 rel.r_offset = plt_address + 8;
7589 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
7590 rel.r_addend = got_offset;
7591 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7592 loc += RELOC_SIZE (htab);
7593
7594 /* Create the R_ARM_ABS32 relocation referencing the
7595 beginning of the PLT for this GOT entry. */
7596 rel.r_offset = got_address;
7597 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
7598 rel.r_addend = 0;
7599 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7600 }
7601 else if (htab->nacl_p)
7602 {
7603 /* Calculate the displacement between the PLT slot and the
7604 common tail that's part of the special initial PLT slot. */
7605 int32_t tail_displacement
7606 = ((splt->output_section->vma + splt->output_offset
7607 + ARM_NACL_PLT_TAIL_OFFSET)
7608 - (plt_address + htab->plt_entry_size + 4));
7609 BFD_ASSERT ((tail_displacement & 3) == 0);
7610 tail_displacement >>= 2;
7611
7612 BFD_ASSERT ((tail_displacement & 0xff000000) == 0
7613 || (-tail_displacement & 0xff000000) == 0);
7614
7615 /* Calculate the displacement between the PLT slot and the entry
7616 in the GOT. The offset accounts for the value produced by
7617 adding to pc in the penultimate instruction of the PLT stub. */
7618 got_displacement = (got_address
7619 - (plt_address + htab->plt_entry_size));
7620
7621 /* NaCl does not support interworking at all. */
7622 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt));
7623
7624 put_arm_insn (htab, output_bfd,
7625 elf32_arm_nacl_plt_entry[0]
7626 | arm_movw_immediate (got_displacement),
7627 ptr + 0);
7628 put_arm_insn (htab, output_bfd,
7629 elf32_arm_nacl_plt_entry[1]
7630 | arm_movt_immediate (got_displacement),
7631 ptr + 4);
7632 put_arm_insn (htab, output_bfd,
7633 elf32_arm_nacl_plt_entry[2],
7634 ptr + 8);
7635 put_arm_insn (htab, output_bfd,
7636 elf32_arm_nacl_plt_entry[3]
7637 | (tail_displacement & 0x00ffffff),
7638 ptr + 12);
7639 }
7640 else
7641 {
7642 /* Calculate the displacement between the PLT slot and the
7643 entry in the GOT. The eight-byte offset accounts for the
7644 value produced by adding to pc in the first instruction
7645 of the PLT stub. */
7646 got_displacement = got_address - (plt_address + 8);
7647
7648 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
7649
7650 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
7651 {
7652 put_thumb_insn (htab, output_bfd,
7653 elf32_arm_plt_thumb_stub[0], ptr - 4);
7654 put_thumb_insn (htab, output_bfd,
7655 elf32_arm_plt_thumb_stub[1], ptr - 2);
7656 }
7657
7658 put_arm_insn (htab, output_bfd,
7659 elf32_arm_plt_entry[0]
7660 | ((got_displacement & 0x0ff00000) >> 20),
7661 ptr + 0);
7662 put_arm_insn (htab, output_bfd,
7663 elf32_arm_plt_entry[1]
7664 | ((got_displacement & 0x000ff000) >> 12),
7665 ptr+ 4);
7666 put_arm_insn (htab, output_bfd,
7667 elf32_arm_plt_entry[2]
7668 | (got_displacement & 0x00000fff),
7669 ptr + 8);
7670 #ifdef FOUR_WORD_PLT
7671 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
7672 #endif
7673 }
7674
7675 /* Fill in the entry in the .rel(a).(i)plt section. */
7676 rel.r_offset = got_address;
7677 rel.r_addend = 0;
7678 if (dynindx == -1)
7679 {
7680 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
7681 The dynamic linker or static executable then calls SYM_VALUE
7682 to determine the correct run-time value of the .igot.plt entry. */
7683 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
7684 initial_got_entry = sym_value;
7685 }
7686 else
7687 {
7688 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
7689 initial_got_entry = (splt->output_section->vma
7690 + splt->output_offset);
7691 }
7692
7693 /* Fill in the entry in the global offset table. */
7694 bfd_put_32 (output_bfd, initial_got_entry,
7695 sgot->contents + got_offset);
7696 }
7697
7698 loc = srel->contents + plt_index * RELOC_SIZE (htab);
7699 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7700 }
7701
7702 /* Some relocations map to different relocations depending on the
7703 target. Return the real relocation. */
7704
7705 static int
7706 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
7707 int r_type)
7708 {
7709 switch (r_type)
7710 {
7711 case R_ARM_TARGET1:
7712 if (globals->target1_is_rel)
7713 return R_ARM_REL32;
7714 else
7715 return R_ARM_ABS32;
7716
7717 case R_ARM_TARGET2:
7718 return globals->target2_reloc;
7719
7720 default:
7721 return r_type;
7722 }
7723 }
7724
7725 /* Return the base VMA address which should be subtracted from real addresses
7726 when resolving @dtpoff relocation.
7727 This is PT_TLS segment p_vaddr. */
7728
7729 static bfd_vma
7730 dtpoff_base (struct bfd_link_info *info)
7731 {
7732 /* If tls_sec is NULL, we should have signalled an error already. */
7733 if (elf_hash_table (info)->tls_sec == NULL)
7734 return 0;
7735 return elf_hash_table (info)->tls_sec->vma;
7736 }
7737
7738 /* Return the relocation value for @tpoff relocation
7739 if STT_TLS virtual address is ADDRESS. */
7740
7741 static bfd_vma
7742 tpoff (struct bfd_link_info *info, bfd_vma address)
7743 {
7744 struct elf_link_hash_table *htab = elf_hash_table (info);
7745 bfd_vma base;
7746
7747 /* If tls_sec is NULL, we should have signalled an error already. */
7748 if (htab->tls_sec == NULL)
7749 return 0;
7750 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
7751 return address - htab->tls_sec->vma + base;
7752 }
7753
7754 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
7755 VALUE is the relocation value. */
7756
7757 static bfd_reloc_status_type
7758 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
7759 {
7760 if (value > 0xfff)
7761 return bfd_reloc_overflow;
7762
7763 value |= bfd_get_32 (abfd, data) & 0xfffff000;
7764 bfd_put_32 (abfd, value, data);
7765 return bfd_reloc_ok;
7766 }
7767
7768 /* Handle TLS relaxations. Relaxing is possible for symbols that use
7769 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
7770 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
7771
7772 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
7773 is to then call final_link_relocate. Return other values in the
7774 case of error.
7775
7776 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
7777 the pre-relaxed code. It would be nice if the relocs were updated
7778 to match the optimization. */
7779
7780 static bfd_reloc_status_type
7781 elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
7782 bfd *input_bfd, asection *input_sec, bfd_byte *contents,
7783 Elf_Internal_Rela *rel, unsigned long is_local)
7784 {
7785 unsigned long insn;
7786
7787 switch (ELF32_R_TYPE (rel->r_info))
7788 {
7789 default:
7790 return bfd_reloc_notsupported;
7791
7792 case R_ARM_TLS_GOTDESC:
7793 if (is_local)
7794 insn = 0;
7795 else
7796 {
7797 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
7798 if (insn & 1)
7799 insn -= 5; /* THUMB */
7800 else
7801 insn -= 8; /* ARM */
7802 }
7803 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
7804 return bfd_reloc_continue;
7805
7806 case R_ARM_THM_TLS_DESCSEQ:
7807 /* Thumb insn. */
7808 insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
7809 if ((insn & 0xff78) == 0x4478) /* add rx, pc */
7810 {
7811 if (is_local)
7812 /* nop */
7813 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
7814 }
7815 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
7816 {
7817 if (is_local)
7818 /* nop */
7819 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
7820 else
7821 /* ldr rx,[ry] */
7822 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
7823 }
7824 else if ((insn & 0xff87) == 0x4780) /* blx rx */
7825 {
7826 if (is_local)
7827 /* nop */
7828 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
7829 else
7830 /* mov r0, rx */
7831 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
7832 contents + rel->r_offset);
7833 }
7834 else
7835 {
7836 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
7837 /* It's a 32 bit instruction, fetch the rest of it for
7838 error generation. */
7839 insn = (insn << 16)
7840 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
7841 (*_bfd_error_handler)
7842 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' in TLS trampoline"),
7843 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
7844 return bfd_reloc_notsupported;
7845 }
7846 break;
7847
7848 case R_ARM_TLS_DESCSEQ:
7849 /* arm insn. */
7850 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
7851 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
7852 {
7853 if (is_local)
7854 /* mov rx, ry */
7855 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
7856 contents + rel->r_offset);
7857 }
7858 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
7859 {
7860 if (is_local)
7861 /* nop */
7862 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
7863 else
7864 /* ldr rx,[ry] */
7865 bfd_put_32 (input_bfd, insn & 0xfffff000,
7866 contents + rel->r_offset);
7867 }
7868 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
7869 {
7870 if (is_local)
7871 /* nop */
7872 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
7873 else
7874 /* mov r0, rx */
7875 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
7876 contents + rel->r_offset);
7877 }
7878 else
7879 {
7880 (*_bfd_error_handler)
7881 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' in TLS trampoline"),
7882 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
7883 return bfd_reloc_notsupported;
7884 }
7885 break;
7886
7887 case R_ARM_TLS_CALL:
7888 /* GD->IE relaxation, turn the instruction into 'nop' or
7889 'ldr r0, [pc,r0]' */
7890 insn = is_local ? 0xe1a00000 : 0xe79f0000;
7891 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
7892 break;
7893
7894 case R_ARM_THM_TLS_CALL:
7895 /* GD->IE relaxation */
7896 if (!is_local)
7897 /* add r0,pc; ldr r0, [r0] */
7898 insn = 0x44786800;
7899 else if (arch_has_thumb2_nop (globals))
7900 /* nop.w */
7901 insn = 0xf3af8000;
7902 else
7903 /* nop; nop */
7904 insn = 0xbf00bf00;
7905
7906 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
7907 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
7908 break;
7909 }
7910 return bfd_reloc_ok;
7911 }
7912
7913 /* For a given value of n, calculate the value of G_n as required to
7914 deal with group relocations. We return it in the form of an
7915 encoded constant-and-rotation, together with the final residual. If n is
7916 specified as less than zero, then final_residual is filled with the
7917 input value and no further action is performed. */
7918
7919 static bfd_vma
7920 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
7921 {
7922 int current_n;
7923 bfd_vma g_n;
7924 bfd_vma encoded_g_n = 0;
7925 bfd_vma residual = value; /* Also known as Y_n. */
7926
7927 for (current_n = 0; current_n <= n; current_n++)
7928 {
7929 int shift;
7930
7931 /* Calculate which part of the value to mask. */
7932 if (residual == 0)
7933 shift = 0;
7934 else
7935 {
7936 int msb;
7937
7938 /* Determine the most significant bit in the residual and
7939 align the resulting value to a 2-bit boundary. */
7940 for (msb = 30; msb >= 0; msb -= 2)
7941 if (residual & (3 << msb))
7942 break;
7943
7944 /* The desired shift is now (msb - 6), or zero, whichever
7945 is the greater. */
7946 shift = msb - 6;
7947 if (shift < 0)
7948 shift = 0;
7949 }
7950
7951 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
7952 g_n = residual & (0xff << shift);
7953 encoded_g_n = (g_n >> shift)
7954 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
7955
7956 /* Calculate the residual for the next time around. */
7957 residual &= ~g_n;
7958 }
7959
7960 *final_residual = residual;
7961
7962 return encoded_g_n;
7963 }
7964
7965 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
7966 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
7967
7968 static int
7969 identify_add_or_sub (bfd_vma insn)
7970 {
7971 int opcode = insn & 0x1e00000;
7972
7973 if (opcode == 1 << 23) /* ADD */
7974 return 1;
7975
7976 if (opcode == 1 << 22) /* SUB */
7977 return -1;
7978
7979 return 0;
7980 }
7981
7982 /* Perform a relocation as part of a final link. */
7983
7984 static bfd_reloc_status_type
7985 elf32_arm_final_link_relocate (reloc_howto_type * howto,
7986 bfd * input_bfd,
7987 bfd * output_bfd,
7988 asection * input_section,
7989 bfd_byte * contents,
7990 Elf_Internal_Rela * rel,
7991 bfd_vma value,
7992 struct bfd_link_info * info,
7993 asection * sym_sec,
7994 const char * sym_name,
7995 unsigned char st_type,
7996 enum arm_st_branch_type branch_type,
7997 struct elf_link_hash_entry * h,
7998 bfd_boolean * unresolved_reloc_p,
7999 char ** error_message)
8000 {
8001 unsigned long r_type = howto->type;
8002 unsigned long r_symndx;
8003 bfd_byte * hit_data = contents + rel->r_offset;
8004 bfd_vma * local_got_offsets;
8005 bfd_vma * local_tlsdesc_gotents;
8006 asection * sgot;
8007 asection * splt;
8008 asection * sreloc = NULL;
8009 asection * srelgot;
8010 bfd_vma addend;
8011 bfd_signed_vma signed_addend;
8012 unsigned char dynreloc_st_type;
8013 bfd_vma dynreloc_value;
8014 struct elf32_arm_link_hash_table * globals;
8015 struct elf32_arm_link_hash_entry *eh;
8016 union gotplt_union *root_plt;
8017 struct arm_plt_info *arm_plt;
8018 bfd_vma plt_offset;
8019 bfd_vma gotplt_offset;
8020 bfd_boolean has_iplt_entry;
8021
8022 globals = elf32_arm_hash_table (info);
8023 if (globals == NULL)
8024 return bfd_reloc_notsupported;
8025
8026 BFD_ASSERT (is_arm_elf (input_bfd));
8027
8028 /* Some relocation types map to different relocations depending on the
8029 target. We pick the right one here. */
8030 r_type = arm_real_reloc_type (globals, r_type);
8031
8032 /* It is possible to have linker relaxations on some TLS access
8033 models. Update our information here. */
8034 r_type = elf32_arm_tls_transition (info, r_type, h);
8035
8036 if (r_type != howto->type)
8037 howto = elf32_arm_howto_from_type (r_type);
8038
8039 /* If the start address has been set, then set the EF_ARM_HASENTRY
8040 flag. Setting this more than once is redundant, but the cost is
8041 not too high, and it keeps the code simple.
8042
8043 The test is done here, rather than somewhere else, because the
8044 start address is only set just before the final link commences.
8045
8046 Note - if the user deliberately sets a start address of 0, the
8047 flag will not be set. */
8048 if (bfd_get_start_address (output_bfd) != 0)
8049 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
8050
8051 eh = (struct elf32_arm_link_hash_entry *) h;
8052 sgot = globals->root.sgot;
8053 local_got_offsets = elf_local_got_offsets (input_bfd);
8054 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
8055
8056 if (globals->root.dynamic_sections_created)
8057 srelgot = globals->root.srelgot;
8058 else
8059 srelgot = NULL;
8060
8061 r_symndx = ELF32_R_SYM (rel->r_info);
8062
8063 if (globals->use_rel)
8064 {
8065 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
8066
8067 if (addend & ((howto->src_mask + 1) >> 1))
8068 {
8069 signed_addend = -1;
8070 signed_addend &= ~ howto->src_mask;
8071 signed_addend |= addend;
8072 }
8073 else
8074 signed_addend = addend;
8075 }
8076 else
8077 addend = signed_addend = rel->r_addend;
8078
8079 /* Record the symbol information that should be used in dynamic
8080 relocations. */
8081 dynreloc_st_type = st_type;
8082 dynreloc_value = value;
8083 if (branch_type == ST_BRANCH_TO_THUMB)
8084 dynreloc_value |= 1;
8085
8086 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
8087 VALUE appropriately for relocations that we resolve at link time. */
8088 has_iplt_entry = FALSE;
8089 if (elf32_arm_get_plt_info (input_bfd, eh, r_symndx, &root_plt, &arm_plt)
8090 && root_plt->offset != (bfd_vma) -1)
8091 {
8092 plt_offset = root_plt->offset;
8093 gotplt_offset = arm_plt->got_offset;
8094
8095 if (h == NULL || eh->is_iplt)
8096 {
8097 has_iplt_entry = TRUE;
8098 splt = globals->root.iplt;
8099
8100 /* Populate .iplt entries here, because not all of them will
8101 be seen by finish_dynamic_symbol. The lower bit is set if
8102 we have already populated the entry. */
8103 if (plt_offset & 1)
8104 plt_offset--;
8105 else
8106 {
8107 elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
8108 -1, dynreloc_value);
8109 root_plt->offset |= 1;
8110 }
8111
8112 /* Static relocations always resolve to the .iplt entry. */
8113 st_type = STT_FUNC;
8114 value = (splt->output_section->vma
8115 + splt->output_offset
8116 + plt_offset);
8117 branch_type = ST_BRANCH_TO_ARM;
8118
8119 /* If there are non-call relocations that resolve to the .iplt
8120 entry, then all dynamic ones must too. */
8121 if (arm_plt->noncall_refcount != 0)
8122 {
8123 dynreloc_st_type = st_type;
8124 dynreloc_value = value;
8125 }
8126 }
8127 else
8128 /* We populate the .plt entry in finish_dynamic_symbol. */
8129 splt = globals->root.splt;
8130 }
8131 else
8132 {
8133 splt = NULL;
8134 plt_offset = (bfd_vma) -1;
8135 gotplt_offset = (bfd_vma) -1;
8136 }
8137
8138 switch (r_type)
8139 {
8140 case R_ARM_NONE:
8141 /* We don't need to find a value for this symbol. It's just a
8142 marker. */
8143 *unresolved_reloc_p = FALSE;
8144 return bfd_reloc_ok;
8145
8146 case R_ARM_ABS12:
8147 if (!globals->vxworks_p)
8148 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
8149
8150 case R_ARM_PC24:
8151 case R_ARM_ABS32:
8152 case R_ARM_ABS32_NOI:
8153 case R_ARM_REL32:
8154 case R_ARM_REL32_NOI:
8155 case R_ARM_CALL:
8156 case R_ARM_JUMP24:
8157 case R_ARM_XPC25:
8158 case R_ARM_PREL31:
8159 case R_ARM_PLT32:
8160 /* Handle relocations which should use the PLT entry. ABS32/REL32
8161 will use the symbol's value, which may point to a PLT entry, but we
8162 don't need to handle that here. If we created a PLT entry, all
8163 branches in this object should go to it, except if the PLT is too
8164 far away, in which case a long branch stub should be inserted. */
8165 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
8166 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
8167 && r_type != R_ARM_CALL
8168 && r_type != R_ARM_JUMP24
8169 && r_type != R_ARM_PLT32)
8170 && plt_offset != (bfd_vma) -1)
8171 {
8172 /* If we've created a .plt section, and assigned a PLT entry
8173 to this function, it must either be a STT_GNU_IFUNC reference
8174 or not be known to bind locally. In other cases, we should
8175 have cleared the PLT entry by now. */
8176 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
8177
8178 value = (splt->output_section->vma
8179 + splt->output_offset
8180 + plt_offset);
8181 *unresolved_reloc_p = FALSE;
8182 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8183 contents, rel->r_offset, value,
8184 rel->r_addend);
8185 }
8186
8187 /* When generating a shared object or relocatable executable, these
8188 relocations are copied into the output file to be resolved at
8189 run time. */
8190 if ((info->shared || globals->root.is_relocatable_executable)
8191 && (input_section->flags & SEC_ALLOC)
8192 && !(globals->vxworks_p
8193 && strcmp (input_section->output_section->name,
8194 ".tls_vars") == 0)
8195 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
8196 || !SYMBOL_CALLS_LOCAL (info, h))
8197 && !(input_bfd == globals->stub_bfd
8198 && strstr (input_section->name, STUB_SUFFIX))
8199 && (h == NULL
8200 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8201 || h->root.type != bfd_link_hash_undefweak)
8202 && r_type != R_ARM_PC24
8203 && r_type != R_ARM_CALL
8204 && r_type != R_ARM_JUMP24
8205 && r_type != R_ARM_PREL31
8206 && r_type != R_ARM_PLT32)
8207 {
8208 Elf_Internal_Rela outrel;
8209 bfd_boolean skip, relocate;
8210
8211 *unresolved_reloc_p = FALSE;
8212
8213 if (sreloc == NULL && globals->root.dynamic_sections_created)
8214 {
8215 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
8216 ! globals->use_rel);
8217
8218 if (sreloc == NULL)
8219 return bfd_reloc_notsupported;
8220 }
8221
8222 skip = FALSE;
8223 relocate = FALSE;
8224
8225 outrel.r_addend = addend;
8226 outrel.r_offset =
8227 _bfd_elf_section_offset (output_bfd, info, input_section,
8228 rel->r_offset);
8229 if (outrel.r_offset == (bfd_vma) -1)
8230 skip = TRUE;
8231 else if (outrel.r_offset == (bfd_vma) -2)
8232 skip = TRUE, relocate = TRUE;
8233 outrel.r_offset += (input_section->output_section->vma
8234 + input_section->output_offset);
8235
8236 if (skip)
8237 memset (&outrel, 0, sizeof outrel);
8238 else if (h != NULL
8239 && h->dynindx != -1
8240 && (!info->shared
8241 || !info->symbolic
8242 || !h->def_regular))
8243 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
8244 else
8245 {
8246 int symbol;
8247
8248 /* This symbol is local, or marked to become local. */
8249 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI);
8250 if (globals->symbian_p)
8251 {
8252 asection *osec;
8253
8254 /* On Symbian OS, the data segment and text segement
8255 can be relocated independently. Therefore, we
8256 must indicate the segment to which this
8257 relocation is relative. The BPABI allows us to
8258 use any symbol in the right segment; we just use
8259 the section symbol as it is convenient. (We
8260 cannot use the symbol given by "h" directly as it
8261 will not appear in the dynamic symbol table.)
8262
8263 Note that the dynamic linker ignores the section
8264 symbol value, so we don't subtract osec->vma
8265 from the emitted reloc addend. */
8266 if (sym_sec)
8267 osec = sym_sec->output_section;
8268 else
8269 osec = input_section->output_section;
8270 symbol = elf_section_data (osec)->dynindx;
8271 if (symbol == 0)
8272 {
8273 struct elf_link_hash_table *htab = elf_hash_table (info);
8274
8275 if ((osec->flags & SEC_READONLY) == 0
8276 && htab->data_index_section != NULL)
8277 osec = htab->data_index_section;
8278 else
8279 osec = htab->text_index_section;
8280 symbol = elf_section_data (osec)->dynindx;
8281 }
8282 BFD_ASSERT (symbol != 0);
8283 }
8284 else
8285 /* On SVR4-ish systems, the dynamic loader cannot
8286 relocate the text and data segments independently,
8287 so the symbol does not matter. */
8288 symbol = 0;
8289 if (dynreloc_st_type == STT_GNU_IFUNC)
8290 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
8291 to the .iplt entry. Instead, every non-call reference
8292 must use an R_ARM_IRELATIVE relocation to obtain the
8293 correct run-time address. */
8294 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
8295 else
8296 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
8297 if (globals->use_rel)
8298 relocate = TRUE;
8299 else
8300 outrel.r_addend += dynreloc_value;
8301 }
8302
8303 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
8304
8305 /* If this reloc is against an external symbol, we do not want to
8306 fiddle with the addend. Otherwise, we need to include the symbol
8307 value so that it becomes an addend for the dynamic reloc. */
8308 if (! relocate)
8309 return bfd_reloc_ok;
8310
8311 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8312 contents, rel->r_offset,
8313 dynreloc_value, (bfd_vma) 0);
8314 }
8315 else switch (r_type)
8316 {
8317 case R_ARM_ABS12:
8318 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
8319
8320 case R_ARM_XPC25: /* Arm BLX instruction. */
8321 case R_ARM_CALL:
8322 case R_ARM_JUMP24:
8323 case R_ARM_PC24: /* Arm B/BL instruction. */
8324 case R_ARM_PLT32:
8325 {
8326 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
8327
8328 if (r_type == R_ARM_XPC25)
8329 {
8330 /* Check for Arm calling Arm function. */
8331 /* FIXME: Should we translate the instruction into a BL
8332 instruction instead ? */
8333 if (branch_type != ST_BRANCH_TO_THUMB)
8334 (*_bfd_error_handler)
8335 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
8336 input_bfd,
8337 h ? h->root.root.string : "(local)");
8338 }
8339 else if (r_type == R_ARM_PC24)
8340 {
8341 /* Check for Arm calling Thumb function. */
8342 if (branch_type == ST_BRANCH_TO_THUMB)
8343 {
8344 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
8345 output_bfd, input_section,
8346 hit_data, sym_sec, rel->r_offset,
8347 signed_addend, value,
8348 error_message))
8349 return bfd_reloc_ok;
8350 else
8351 return bfd_reloc_dangerous;
8352 }
8353 }
8354
8355 /* Check if a stub has to be inserted because the
8356 destination is too far or we are changing mode. */
8357 if ( r_type == R_ARM_CALL
8358 || r_type == R_ARM_JUMP24
8359 || r_type == R_ARM_PLT32)
8360 {
8361 enum elf32_arm_stub_type stub_type = arm_stub_none;
8362 struct elf32_arm_link_hash_entry *hash;
8363
8364 hash = (struct elf32_arm_link_hash_entry *) h;
8365 stub_type = arm_type_of_stub (info, input_section, rel,
8366 st_type, &branch_type,
8367 hash, value, sym_sec,
8368 input_bfd, sym_name);
8369
8370 if (stub_type != arm_stub_none)
8371 {
8372 /* The target is out of reach, so redirect the
8373 branch to the local stub for this function. */
8374 stub_entry = elf32_arm_get_stub_entry (input_section,
8375 sym_sec, h,
8376 rel, globals,
8377 stub_type);
8378 {
8379 if (stub_entry != NULL)
8380 value = (stub_entry->stub_offset
8381 + stub_entry->stub_sec->output_offset
8382 + stub_entry->stub_sec->output_section->vma);
8383
8384 if (plt_offset != (bfd_vma) -1)
8385 *unresolved_reloc_p = FALSE;
8386 }
8387 }
8388 else
8389 {
8390 /* If the call goes through a PLT entry, make sure to
8391 check distance to the right destination address. */
8392 if (plt_offset != (bfd_vma) -1)
8393 {
8394 value = (splt->output_section->vma
8395 + splt->output_offset
8396 + plt_offset);
8397 *unresolved_reloc_p = FALSE;
8398 /* The PLT entry is in ARM mode, regardless of the
8399 target function. */
8400 branch_type = ST_BRANCH_TO_ARM;
8401 }
8402 }
8403 }
8404
8405 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
8406 where:
8407 S is the address of the symbol in the relocation.
8408 P is address of the instruction being relocated.
8409 A is the addend (extracted from the instruction) in bytes.
8410
8411 S is held in 'value'.
8412 P is the base address of the section containing the
8413 instruction plus the offset of the reloc into that
8414 section, ie:
8415 (input_section->output_section->vma +
8416 input_section->output_offset +
8417 rel->r_offset).
8418 A is the addend, converted into bytes, ie:
8419 (signed_addend * 4)
8420
8421 Note: None of these operations have knowledge of the pipeline
8422 size of the processor, thus it is up to the assembler to
8423 encode this information into the addend. */
8424 value -= (input_section->output_section->vma
8425 + input_section->output_offset);
8426 value -= rel->r_offset;
8427 if (globals->use_rel)
8428 value += (signed_addend << howto->size);
8429 else
8430 /* RELA addends do not have to be adjusted by howto->size. */
8431 value += signed_addend;
8432
8433 signed_addend = value;
8434 signed_addend >>= howto->rightshift;
8435
8436 /* A branch to an undefined weak symbol is turned into a jump to
8437 the next instruction unless a PLT entry will be created.
8438 Do the same for local undefined symbols (but not for STN_UNDEF).
8439 The jump to the next instruction is optimized as a NOP depending
8440 on the architecture. */
8441 if (h ? (h->root.type == bfd_link_hash_undefweak
8442 && plt_offset == (bfd_vma) -1)
8443 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
8444 {
8445 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
8446
8447 if (arch_has_arm_nop (globals))
8448 value |= 0x0320f000;
8449 else
8450 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
8451 }
8452 else
8453 {
8454 /* Perform a signed range check. */
8455 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
8456 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
8457 return bfd_reloc_overflow;
8458
8459 addend = (value & 2);
8460
8461 value = (signed_addend & howto->dst_mask)
8462 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
8463
8464 if (r_type == R_ARM_CALL)
8465 {
8466 /* Set the H bit in the BLX instruction. */
8467 if (branch_type == ST_BRANCH_TO_THUMB)
8468 {
8469 if (addend)
8470 value |= (1 << 24);
8471 else
8472 value &= ~(bfd_vma)(1 << 24);
8473 }
8474
8475 /* Select the correct instruction (BL or BLX). */
8476 /* Only if we are not handling a BL to a stub. In this
8477 case, mode switching is performed by the stub. */
8478 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
8479 value |= (1 << 28);
8480 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
8481 {
8482 value &= ~(bfd_vma)(1 << 28);
8483 value |= (1 << 24);
8484 }
8485 }
8486 }
8487 }
8488 break;
8489
8490 case R_ARM_ABS32:
8491 value += addend;
8492 if (branch_type == ST_BRANCH_TO_THUMB)
8493 value |= 1;
8494 break;
8495
8496 case R_ARM_ABS32_NOI:
8497 value += addend;
8498 break;
8499
8500 case R_ARM_REL32:
8501 value += addend;
8502 if (branch_type == ST_BRANCH_TO_THUMB)
8503 value |= 1;
8504 value -= (input_section->output_section->vma
8505 + input_section->output_offset + rel->r_offset);
8506 break;
8507
8508 case R_ARM_REL32_NOI:
8509 value += addend;
8510 value -= (input_section->output_section->vma
8511 + input_section->output_offset + rel->r_offset);
8512 break;
8513
8514 case R_ARM_PREL31:
8515 value -= (input_section->output_section->vma
8516 + input_section->output_offset + rel->r_offset);
8517 value += signed_addend;
8518 if (! h || h->root.type != bfd_link_hash_undefweak)
8519 {
8520 /* Check for overflow. */
8521 if ((value ^ (value >> 1)) & (1 << 30))
8522 return bfd_reloc_overflow;
8523 }
8524 value &= 0x7fffffff;
8525 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
8526 if (branch_type == ST_BRANCH_TO_THUMB)
8527 value |= 1;
8528 break;
8529 }
8530
8531 bfd_put_32 (input_bfd, value, hit_data);
8532 return bfd_reloc_ok;
8533
8534 case R_ARM_ABS8:
8535 value += addend;
8536
8537 /* There is no way to tell whether the user intended to use a signed or
8538 unsigned addend. When checking for overflow we accept either,
8539 as specified by the AAELF. */
8540 if ((long) value > 0xff || (long) value < -0x80)
8541 return bfd_reloc_overflow;
8542
8543 bfd_put_8 (input_bfd, value, hit_data);
8544 return bfd_reloc_ok;
8545
8546 case R_ARM_ABS16:
8547 value += addend;
8548
8549 /* See comment for R_ARM_ABS8. */
8550 if ((long) value > 0xffff || (long) value < -0x8000)
8551 return bfd_reloc_overflow;
8552
8553 bfd_put_16 (input_bfd, value, hit_data);
8554 return bfd_reloc_ok;
8555
8556 case R_ARM_THM_ABS5:
8557 /* Support ldr and str instructions for the thumb. */
8558 if (globals->use_rel)
8559 {
8560 /* Need to refetch addend. */
8561 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
8562 /* ??? Need to determine shift amount from operand size. */
8563 addend >>= howto->rightshift;
8564 }
8565 value += addend;
8566
8567 /* ??? Isn't value unsigned? */
8568 if ((long) value > 0x1f || (long) value < -0x10)
8569 return bfd_reloc_overflow;
8570
8571 /* ??? Value needs to be properly shifted into place first. */
8572 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
8573 bfd_put_16 (input_bfd, value, hit_data);
8574 return bfd_reloc_ok;
8575
8576 case R_ARM_THM_ALU_PREL_11_0:
8577 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
8578 {
8579 bfd_vma insn;
8580 bfd_signed_vma relocation;
8581
8582 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
8583 | bfd_get_16 (input_bfd, hit_data + 2);
8584
8585 if (globals->use_rel)
8586 {
8587 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
8588 | ((insn & (1 << 26)) >> 15);
8589 if (insn & 0xf00000)
8590 signed_addend = -signed_addend;
8591 }
8592
8593 relocation = value + signed_addend;
8594 relocation -= Pa (input_section->output_section->vma
8595 + input_section->output_offset
8596 + rel->r_offset);
8597
8598 value = abs (relocation);
8599
8600 if (value >= 0x1000)
8601 return bfd_reloc_overflow;
8602
8603 insn = (insn & 0xfb0f8f00) | (value & 0xff)
8604 | ((value & 0x700) << 4)
8605 | ((value & 0x800) << 15);
8606 if (relocation < 0)
8607 insn |= 0xa00000;
8608
8609 bfd_put_16 (input_bfd, insn >> 16, hit_data);
8610 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8611
8612 return bfd_reloc_ok;
8613 }
8614
8615 case R_ARM_THM_PC8:
8616 /* PR 10073: This reloc is not generated by the GNU toolchain,
8617 but it is supported for compatibility with third party libraries
8618 generated by other compilers, specifically the ARM/IAR. */
8619 {
8620 bfd_vma insn;
8621 bfd_signed_vma relocation;
8622
8623 insn = bfd_get_16 (input_bfd, hit_data);
8624
8625 if (globals->use_rel)
8626 addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4;
8627
8628 relocation = value + addend;
8629 relocation -= Pa (input_section->output_section->vma
8630 + input_section->output_offset
8631 + rel->r_offset);
8632
8633 value = abs (relocation);
8634
8635 /* We do not check for overflow of this reloc. Although strictly
8636 speaking this is incorrect, it appears to be necessary in order
8637 to work with IAR generated relocs. Since GCC and GAS do not
8638 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
8639 a problem for them. */
8640 value &= 0x3fc;
8641
8642 insn = (insn & 0xff00) | (value >> 2);
8643
8644 bfd_put_16 (input_bfd, insn, hit_data);
8645
8646 return bfd_reloc_ok;
8647 }
8648
8649 case R_ARM_THM_PC12:
8650 /* Corresponds to: ldr.w reg, [pc, #offset]. */
8651 {
8652 bfd_vma insn;
8653 bfd_signed_vma relocation;
8654
8655 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
8656 | bfd_get_16 (input_bfd, hit_data + 2);
8657
8658 if (globals->use_rel)
8659 {
8660 signed_addend = insn & 0xfff;
8661 if (!(insn & (1 << 23)))
8662 signed_addend = -signed_addend;
8663 }
8664
8665 relocation = value + signed_addend;
8666 relocation -= Pa (input_section->output_section->vma
8667 + input_section->output_offset
8668 + rel->r_offset);
8669
8670 value = abs (relocation);
8671
8672 if (value >= 0x1000)
8673 return bfd_reloc_overflow;
8674
8675 insn = (insn & 0xff7ff000) | value;
8676 if (relocation >= 0)
8677 insn |= (1 << 23);
8678
8679 bfd_put_16 (input_bfd, insn >> 16, hit_data);
8680 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8681
8682 return bfd_reloc_ok;
8683 }
8684
8685 case R_ARM_THM_XPC22:
8686 case R_ARM_THM_CALL:
8687 case R_ARM_THM_JUMP24:
8688 /* Thumb BL (branch long instruction). */
8689 {
8690 bfd_vma relocation;
8691 bfd_vma reloc_sign;
8692 bfd_boolean overflow = FALSE;
8693 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
8694 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
8695 bfd_signed_vma reloc_signed_max;
8696 bfd_signed_vma reloc_signed_min;
8697 bfd_vma check;
8698 bfd_signed_vma signed_check;
8699 int bitsize;
8700 const int thumb2 = using_thumb2 (globals);
8701
8702 /* A branch to an undefined weak symbol is turned into a jump to
8703 the next instruction unless a PLT entry will be created.
8704 The jump to the next instruction is optimized as a NOP.W for
8705 Thumb-2 enabled architectures. */
8706 if (h && h->root.type == bfd_link_hash_undefweak
8707 && plt_offset == (bfd_vma) -1)
8708 {
8709 if (arch_has_thumb2_nop (globals))
8710 {
8711 bfd_put_16 (input_bfd, 0xf3af, hit_data);
8712 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
8713 }
8714 else
8715 {
8716 bfd_put_16 (input_bfd, 0xe000, hit_data);
8717 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
8718 }
8719 return bfd_reloc_ok;
8720 }
8721
8722 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
8723 with Thumb-1) involving the J1 and J2 bits. */
8724 if (globals->use_rel)
8725 {
8726 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
8727 bfd_vma upper = upper_insn & 0x3ff;
8728 bfd_vma lower = lower_insn & 0x7ff;
8729 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
8730 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
8731 bfd_vma i1 = j1 ^ s ? 0 : 1;
8732 bfd_vma i2 = j2 ^ s ? 0 : 1;
8733
8734 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
8735 /* Sign extend. */
8736 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
8737
8738 signed_addend = addend;
8739 }
8740
8741 if (r_type == R_ARM_THM_XPC22)
8742 {
8743 /* Check for Thumb to Thumb call. */
8744 /* FIXME: Should we translate the instruction into a BL
8745 instruction instead ? */
8746 if (branch_type == ST_BRANCH_TO_THUMB)
8747 (*_bfd_error_handler)
8748 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
8749 input_bfd,
8750 h ? h->root.root.string : "(local)");
8751 }
8752 else
8753 {
8754 /* If it is not a call to Thumb, assume call to Arm.
8755 If it is a call relative to a section name, then it is not a
8756 function call at all, but rather a long jump. Calls through
8757 the PLT do not require stubs. */
8758 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
8759 {
8760 if (globals->use_blx && r_type == R_ARM_THM_CALL)
8761 {
8762 /* Convert BL to BLX. */
8763 lower_insn = (lower_insn & ~0x1000) | 0x0800;
8764 }
8765 else if (( r_type != R_ARM_THM_CALL)
8766 && (r_type != R_ARM_THM_JUMP24))
8767 {
8768 if (elf32_thumb_to_arm_stub
8769 (info, sym_name, input_bfd, output_bfd, input_section,
8770 hit_data, sym_sec, rel->r_offset, signed_addend, value,
8771 error_message))
8772 return bfd_reloc_ok;
8773 else
8774 return bfd_reloc_dangerous;
8775 }
8776 }
8777 else if (branch_type == ST_BRANCH_TO_THUMB
8778 && globals->use_blx
8779 && r_type == R_ARM_THM_CALL)
8780 {
8781 /* Make sure this is a BL. */
8782 lower_insn |= 0x1800;
8783 }
8784 }
8785
8786 enum elf32_arm_stub_type stub_type = arm_stub_none;
8787 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
8788 {
8789 /* Check if a stub has to be inserted because the destination
8790 is too far. */
8791 struct elf32_arm_stub_hash_entry *stub_entry;
8792 struct elf32_arm_link_hash_entry *hash;
8793
8794 hash = (struct elf32_arm_link_hash_entry *) h;
8795
8796 stub_type = arm_type_of_stub (info, input_section, rel,
8797 st_type, &branch_type,
8798 hash, value, sym_sec,
8799 input_bfd, sym_name);
8800
8801 if (stub_type != arm_stub_none)
8802 {
8803 /* The target is out of reach or we are changing modes, so
8804 redirect the branch to the local stub for this
8805 function. */
8806 stub_entry = elf32_arm_get_stub_entry (input_section,
8807 sym_sec, h,
8808 rel, globals,
8809 stub_type);
8810 if (stub_entry != NULL)
8811 {
8812 value = (stub_entry->stub_offset
8813 + stub_entry->stub_sec->output_offset
8814 + stub_entry->stub_sec->output_section->vma);
8815
8816 if (plt_offset != (bfd_vma) -1)
8817 *unresolved_reloc_p = FALSE;
8818 }
8819
8820 /* If this call becomes a call to Arm, force BLX. */
8821 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
8822 {
8823 if ((stub_entry
8824 && !arm_stub_is_thumb (stub_entry->stub_type))
8825 || branch_type != ST_BRANCH_TO_THUMB)
8826 lower_insn = (lower_insn & ~0x1000) | 0x0800;
8827 }
8828 }
8829 }
8830
8831 /* Handle calls via the PLT. */
8832 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
8833 {
8834 value = (splt->output_section->vma
8835 + splt->output_offset
8836 + plt_offset);
8837
8838 if (globals->use_blx && r_type == R_ARM_THM_CALL)
8839 {
8840 /* If the Thumb BLX instruction is available, convert
8841 the BL to a BLX instruction to call the ARM-mode
8842 PLT entry. */
8843 lower_insn = (lower_insn & ~0x1000) | 0x0800;
8844 branch_type = ST_BRANCH_TO_ARM;
8845 }
8846 else
8847 {
8848 /* Target the Thumb stub before the ARM PLT entry. */
8849 value -= PLT_THUMB_STUB_SIZE;
8850 branch_type = ST_BRANCH_TO_THUMB;
8851 }
8852 *unresolved_reloc_p = FALSE;
8853 }
8854
8855 relocation = value + signed_addend;
8856
8857 relocation -= (input_section->output_section->vma
8858 + input_section->output_offset
8859 + rel->r_offset);
8860
8861 check = relocation >> howto->rightshift;
8862
8863 /* If this is a signed value, the rightshift just dropped
8864 leading 1 bits (assuming twos complement). */
8865 if ((bfd_signed_vma) relocation >= 0)
8866 signed_check = check;
8867 else
8868 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
8869
8870 /* Calculate the permissable maximum and minimum values for
8871 this relocation according to whether we're relocating for
8872 Thumb-2 or not. */
8873 bitsize = howto->bitsize;
8874 if (!thumb2)
8875 bitsize -= 2;
8876 reloc_signed_max = (1 << (bitsize - 1)) - 1;
8877 reloc_signed_min = ~reloc_signed_max;
8878
8879 /* Assumes two's complement. */
8880 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
8881 overflow = TRUE;
8882
8883 if ((lower_insn & 0x5000) == 0x4000)
8884 /* For a BLX instruction, make sure that the relocation is rounded up
8885 to a word boundary. This follows the semantics of the instruction
8886 which specifies that bit 1 of the target address will come from bit
8887 1 of the base address. */
8888 relocation = (relocation + 2) & ~ 3;
8889
8890 /* Put RELOCATION back into the insn. Assumes two's complement.
8891 We use the Thumb-2 encoding, which is safe even if dealing with
8892 a Thumb-1 instruction by virtue of our overflow check above. */
8893 reloc_sign = (signed_check < 0) ? 1 : 0;
8894 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
8895 | ((relocation >> 12) & 0x3ff)
8896 | (reloc_sign << 10);
8897 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
8898 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
8899 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
8900 | ((relocation >> 1) & 0x7ff);
8901
8902 /* Put the relocated value back in the object file: */
8903 bfd_put_16 (input_bfd, upper_insn, hit_data);
8904 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
8905
8906 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
8907 }
8908 break;
8909
8910 case R_ARM_THM_JUMP19:
8911 /* Thumb32 conditional branch instruction. */
8912 {
8913 bfd_vma relocation;
8914 bfd_boolean overflow = FALSE;
8915 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
8916 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
8917 bfd_signed_vma reloc_signed_max = 0xffffe;
8918 bfd_signed_vma reloc_signed_min = -0x100000;
8919 bfd_signed_vma signed_check;
8920
8921 /* Need to refetch the addend, reconstruct the top three bits,
8922 and squish the two 11 bit pieces together. */
8923 if (globals->use_rel)
8924 {
8925 bfd_vma S = (upper_insn & 0x0400) >> 10;
8926 bfd_vma upper = (upper_insn & 0x003f);
8927 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
8928 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
8929 bfd_vma lower = (lower_insn & 0x07ff);
8930
8931 upper |= J1 << 6;
8932 upper |= J2 << 7;
8933 upper |= (!S) << 8;
8934 upper -= 0x0100; /* Sign extend. */
8935
8936 addend = (upper << 12) | (lower << 1);
8937 signed_addend = addend;
8938 }
8939
8940 /* Handle calls via the PLT. */
8941 if (plt_offset != (bfd_vma) -1)
8942 {
8943 value = (splt->output_section->vma
8944 + splt->output_offset
8945 + plt_offset);
8946 /* Target the Thumb stub before the ARM PLT entry. */
8947 value -= PLT_THUMB_STUB_SIZE;
8948 *unresolved_reloc_p = FALSE;
8949 }
8950
8951 /* ??? Should handle interworking? GCC might someday try to
8952 use this for tail calls. */
8953
8954 relocation = value + signed_addend;
8955 relocation -= (input_section->output_section->vma
8956 + input_section->output_offset
8957 + rel->r_offset);
8958 signed_check = (bfd_signed_vma) relocation;
8959
8960 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
8961 overflow = TRUE;
8962
8963 /* Put RELOCATION back into the insn. */
8964 {
8965 bfd_vma S = (relocation & 0x00100000) >> 20;
8966 bfd_vma J2 = (relocation & 0x00080000) >> 19;
8967 bfd_vma J1 = (relocation & 0x00040000) >> 18;
8968 bfd_vma hi = (relocation & 0x0003f000) >> 12;
8969 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
8970
8971 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
8972 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
8973 }
8974
8975 /* Put the relocated value back in the object file: */
8976 bfd_put_16 (input_bfd, upper_insn, hit_data);
8977 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
8978
8979 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
8980 }
8981
8982 case R_ARM_THM_JUMP11:
8983 case R_ARM_THM_JUMP8:
8984 case R_ARM_THM_JUMP6:
8985 /* Thumb B (branch) instruction). */
8986 {
8987 bfd_signed_vma relocation;
8988 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
8989 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
8990 bfd_signed_vma signed_check;
8991
8992 /* CZB cannot jump backward. */
8993 if (r_type == R_ARM_THM_JUMP6)
8994 reloc_signed_min = 0;
8995
8996 if (globals->use_rel)
8997 {
8998 /* Need to refetch addend. */
8999 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
9000 if (addend & ((howto->src_mask + 1) >> 1))
9001 {
9002 signed_addend = -1;
9003 signed_addend &= ~ howto->src_mask;
9004 signed_addend |= addend;
9005 }
9006 else
9007 signed_addend = addend;
9008 /* The value in the insn has been right shifted. We need to
9009 undo this, so that we can perform the address calculation
9010 in terms of bytes. */
9011 signed_addend <<= howto->rightshift;
9012 }
9013 relocation = value + signed_addend;
9014
9015 relocation -= (input_section->output_section->vma
9016 + input_section->output_offset
9017 + rel->r_offset);
9018
9019 relocation >>= howto->rightshift;
9020 signed_check = relocation;
9021
9022 if (r_type == R_ARM_THM_JUMP6)
9023 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
9024 else
9025 relocation &= howto->dst_mask;
9026 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
9027
9028 bfd_put_16 (input_bfd, relocation, hit_data);
9029
9030 /* Assumes two's complement. */
9031 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
9032 return bfd_reloc_overflow;
9033
9034 return bfd_reloc_ok;
9035 }
9036
9037 case R_ARM_ALU_PCREL7_0:
9038 case R_ARM_ALU_PCREL15_8:
9039 case R_ARM_ALU_PCREL23_15:
9040 {
9041 bfd_vma insn;
9042 bfd_vma relocation;
9043
9044 insn = bfd_get_32 (input_bfd, hit_data);
9045 if (globals->use_rel)
9046 {
9047 /* Extract the addend. */
9048 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
9049 signed_addend = addend;
9050 }
9051 relocation = value + signed_addend;
9052
9053 relocation -= (input_section->output_section->vma
9054 + input_section->output_offset
9055 + rel->r_offset);
9056 insn = (insn & ~0xfff)
9057 | ((howto->bitpos << 7) & 0xf00)
9058 | ((relocation >> howto->bitpos) & 0xff);
9059 bfd_put_32 (input_bfd, value, hit_data);
9060 }
9061 return bfd_reloc_ok;
9062
9063 case R_ARM_GNU_VTINHERIT:
9064 case R_ARM_GNU_VTENTRY:
9065 return bfd_reloc_ok;
9066
9067 case R_ARM_GOTOFF32:
9068 /* Relocation is relative to the start of the
9069 global offset table. */
9070
9071 BFD_ASSERT (sgot != NULL);
9072 if (sgot == NULL)
9073 return bfd_reloc_notsupported;
9074
9075 /* If we are addressing a Thumb function, we need to adjust the
9076 address by one, so that attempts to call the function pointer will
9077 correctly interpret it as Thumb code. */
9078 if (branch_type == ST_BRANCH_TO_THUMB)
9079 value += 1;
9080
9081 /* Note that sgot->output_offset is not involved in this
9082 calculation. We always want the start of .got. If we
9083 define _GLOBAL_OFFSET_TABLE in a different way, as is
9084 permitted by the ABI, we might have to change this
9085 calculation. */
9086 value -= sgot->output_section->vma;
9087 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9088 contents, rel->r_offset, value,
9089 rel->r_addend);
9090
9091 case R_ARM_GOTPC:
9092 /* Use global offset table as symbol value. */
9093 BFD_ASSERT (sgot != NULL);
9094
9095 if (sgot == NULL)
9096 return bfd_reloc_notsupported;
9097
9098 *unresolved_reloc_p = FALSE;
9099 value = sgot->output_section->vma;
9100 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9101 contents, rel->r_offset, value,
9102 rel->r_addend);
9103
9104 case R_ARM_GOT32:
9105 case R_ARM_GOT_PREL:
9106 /* Relocation is to the entry for this symbol in the
9107 global offset table. */
9108 if (sgot == NULL)
9109 return bfd_reloc_notsupported;
9110
9111 if (dynreloc_st_type == STT_GNU_IFUNC
9112 && plt_offset != (bfd_vma) -1
9113 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
9114 {
9115 /* We have a relocation against a locally-binding STT_GNU_IFUNC
9116 symbol, and the relocation resolves directly to the runtime
9117 target rather than to the .iplt entry. This means that any
9118 .got entry would be the same value as the .igot.plt entry,
9119 so there's no point creating both. */
9120 sgot = globals->root.igotplt;
9121 value = sgot->output_offset + gotplt_offset;
9122 }
9123 else if (h != NULL)
9124 {
9125 bfd_vma off;
9126
9127 off = h->got.offset;
9128 BFD_ASSERT (off != (bfd_vma) -1);
9129 if ((off & 1) != 0)
9130 {
9131 /* We have already processsed one GOT relocation against
9132 this symbol. */
9133 off &= ~1;
9134 if (globals->root.dynamic_sections_created
9135 && !SYMBOL_REFERENCES_LOCAL (info, h))
9136 *unresolved_reloc_p = FALSE;
9137 }
9138 else
9139 {
9140 Elf_Internal_Rela outrel;
9141
9142 if (!SYMBOL_REFERENCES_LOCAL (info, h))
9143 {
9144 /* If the symbol doesn't resolve locally in a static
9145 object, we have an undefined reference. If the
9146 symbol doesn't resolve locally in a dynamic object,
9147 it should be resolved by the dynamic linker. */
9148 if (globals->root.dynamic_sections_created)
9149 {
9150 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
9151 *unresolved_reloc_p = FALSE;
9152 }
9153 else
9154 outrel.r_info = 0;
9155 outrel.r_addend = 0;
9156 }
9157 else
9158 {
9159 if (dynreloc_st_type == STT_GNU_IFUNC)
9160 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9161 else if (info->shared)
9162 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
9163 else
9164 outrel.r_info = 0;
9165 outrel.r_addend = dynreloc_value;
9166 }
9167
9168 /* The GOT entry is initialized to zero by default.
9169 See if we should install a different value. */
9170 if (outrel.r_addend != 0
9171 && (outrel.r_info == 0 || globals->use_rel))
9172 {
9173 bfd_put_32 (output_bfd, outrel.r_addend,
9174 sgot->contents + off);
9175 outrel.r_addend = 0;
9176 }
9177
9178 if (outrel.r_info != 0)
9179 {
9180 outrel.r_offset = (sgot->output_section->vma
9181 + sgot->output_offset
9182 + off);
9183 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9184 }
9185 h->got.offset |= 1;
9186 }
9187 value = sgot->output_offset + off;
9188 }
9189 else
9190 {
9191 bfd_vma off;
9192
9193 BFD_ASSERT (local_got_offsets != NULL &&
9194 local_got_offsets[r_symndx] != (bfd_vma) -1);
9195
9196 off = local_got_offsets[r_symndx];
9197
9198 /* The offset must always be a multiple of 4. We use the
9199 least significant bit to record whether we have already
9200 generated the necessary reloc. */
9201 if ((off & 1) != 0)
9202 off &= ~1;
9203 else
9204 {
9205 if (globals->use_rel)
9206 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
9207
9208 if (info->shared || dynreloc_st_type == STT_GNU_IFUNC)
9209 {
9210 Elf_Internal_Rela outrel;
9211
9212 outrel.r_addend = addend + dynreloc_value;
9213 outrel.r_offset = (sgot->output_section->vma
9214 + sgot->output_offset
9215 + off);
9216 if (dynreloc_st_type == STT_GNU_IFUNC)
9217 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9218 else
9219 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
9220 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9221 }
9222
9223 local_got_offsets[r_symndx] |= 1;
9224 }
9225
9226 value = sgot->output_offset + off;
9227 }
9228 if (r_type != R_ARM_GOT32)
9229 value += sgot->output_section->vma;
9230
9231 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9232 contents, rel->r_offset, value,
9233 rel->r_addend);
9234
9235 case R_ARM_TLS_LDO32:
9236 value = value - dtpoff_base (info);
9237
9238 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9239 contents, rel->r_offset, value,
9240 rel->r_addend);
9241
9242 case R_ARM_TLS_LDM32:
9243 {
9244 bfd_vma off;
9245
9246 if (sgot == NULL)
9247 abort ();
9248
9249 off = globals->tls_ldm_got.offset;
9250
9251 if ((off & 1) != 0)
9252 off &= ~1;
9253 else
9254 {
9255 /* If we don't know the module number, create a relocation
9256 for it. */
9257 if (info->shared)
9258 {
9259 Elf_Internal_Rela outrel;
9260
9261 if (srelgot == NULL)
9262 abort ();
9263
9264 outrel.r_addend = 0;
9265 outrel.r_offset = (sgot->output_section->vma
9266 + sgot->output_offset + off);
9267 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
9268
9269 if (globals->use_rel)
9270 bfd_put_32 (output_bfd, outrel.r_addend,
9271 sgot->contents + off);
9272
9273 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9274 }
9275 else
9276 bfd_put_32 (output_bfd, 1, sgot->contents + off);
9277
9278 globals->tls_ldm_got.offset |= 1;
9279 }
9280
9281 value = sgot->output_section->vma + sgot->output_offset + off
9282 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
9283
9284 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9285 contents, rel->r_offset, value,
9286 rel->r_addend);
9287 }
9288
9289 case R_ARM_TLS_CALL:
9290 case R_ARM_THM_TLS_CALL:
9291 case R_ARM_TLS_GD32:
9292 case R_ARM_TLS_IE32:
9293 case R_ARM_TLS_GOTDESC:
9294 case R_ARM_TLS_DESCSEQ:
9295 case R_ARM_THM_TLS_DESCSEQ:
9296 {
9297 bfd_vma off, offplt;
9298 int indx = 0;
9299 char tls_type;
9300
9301 BFD_ASSERT (sgot != NULL);
9302
9303 if (h != NULL)
9304 {
9305 bfd_boolean dyn;
9306 dyn = globals->root.dynamic_sections_created;
9307 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
9308 && (!info->shared
9309 || !SYMBOL_REFERENCES_LOCAL (info, h)))
9310 {
9311 *unresolved_reloc_p = FALSE;
9312 indx = h->dynindx;
9313 }
9314 off = h->got.offset;
9315 offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
9316 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
9317 }
9318 else
9319 {
9320 BFD_ASSERT (local_got_offsets != NULL);
9321 off = local_got_offsets[r_symndx];
9322 offplt = local_tlsdesc_gotents[r_symndx];
9323 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
9324 }
9325
9326 /* Linker relaxations happens from one of the
9327 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
9328 if (ELF32_R_TYPE(rel->r_info) != r_type)
9329 tls_type = GOT_TLS_IE;
9330
9331 BFD_ASSERT (tls_type != GOT_UNKNOWN);
9332
9333 if ((off & 1) != 0)
9334 off &= ~1;
9335 else
9336 {
9337 bfd_boolean need_relocs = FALSE;
9338 Elf_Internal_Rela outrel;
9339 int cur_off = off;
9340
9341 /* The GOT entries have not been initialized yet. Do it
9342 now, and emit any relocations. If both an IE GOT and a
9343 GD GOT are necessary, we emit the GD first. */
9344
9345 if ((info->shared || indx != 0)
9346 && (h == NULL
9347 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9348 || h->root.type != bfd_link_hash_undefweak))
9349 {
9350 need_relocs = TRUE;
9351 BFD_ASSERT (srelgot != NULL);
9352 }
9353
9354 if (tls_type & GOT_TLS_GDESC)
9355 {
9356 bfd_byte *loc;
9357
9358 /* We should have relaxed, unless this is an undefined
9359 weak symbol. */
9360 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
9361 || info->shared);
9362 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
9363 <= globals->root.sgotplt->size);
9364
9365 outrel.r_addend = 0;
9366 outrel.r_offset = (globals->root.sgotplt->output_section->vma
9367 + globals->root.sgotplt->output_offset
9368 + offplt
9369 + globals->sgotplt_jump_table_size);
9370
9371 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
9372 sreloc = globals->root.srelplt;
9373 loc = sreloc->contents;
9374 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
9375 BFD_ASSERT (loc + RELOC_SIZE (globals)
9376 <= sreloc->contents + sreloc->size);
9377
9378 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
9379
9380 /* For globals, the first word in the relocation gets
9381 the relocation index and the top bit set, or zero,
9382 if we're binding now. For locals, it gets the
9383 symbol's offset in the tls section. */
9384 bfd_put_32 (output_bfd,
9385 !h ? value - elf_hash_table (info)->tls_sec->vma
9386 : info->flags & DF_BIND_NOW ? 0
9387 : 0x80000000 | ELF32_R_SYM (outrel.r_info),
9388 globals->root.sgotplt->contents + offplt
9389 + globals->sgotplt_jump_table_size);
9390
9391 /* Second word in the relocation is always zero. */
9392 bfd_put_32 (output_bfd, 0,
9393 globals->root.sgotplt->contents + offplt
9394 + globals->sgotplt_jump_table_size + 4);
9395 }
9396 if (tls_type & GOT_TLS_GD)
9397 {
9398 if (need_relocs)
9399 {
9400 outrel.r_addend = 0;
9401 outrel.r_offset = (sgot->output_section->vma
9402 + sgot->output_offset
9403 + cur_off);
9404 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
9405
9406 if (globals->use_rel)
9407 bfd_put_32 (output_bfd, outrel.r_addend,
9408 sgot->contents + cur_off);
9409
9410 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9411
9412 if (indx == 0)
9413 bfd_put_32 (output_bfd, value - dtpoff_base (info),
9414 sgot->contents + cur_off + 4);
9415 else
9416 {
9417 outrel.r_addend = 0;
9418 outrel.r_info = ELF32_R_INFO (indx,
9419 R_ARM_TLS_DTPOFF32);
9420 outrel.r_offset += 4;
9421
9422 if (globals->use_rel)
9423 bfd_put_32 (output_bfd, outrel.r_addend,
9424 sgot->contents + cur_off + 4);
9425
9426 elf32_arm_add_dynreloc (output_bfd, info,
9427 srelgot, &outrel);
9428 }
9429 }
9430 else
9431 {
9432 /* If we are not emitting relocations for a
9433 general dynamic reference, then we must be in a
9434 static link or an executable link with the
9435 symbol binding locally. Mark it as belonging
9436 to module 1, the executable. */
9437 bfd_put_32 (output_bfd, 1,
9438 sgot->contents + cur_off);
9439 bfd_put_32 (output_bfd, value - dtpoff_base (info),
9440 sgot->contents + cur_off + 4);
9441 }
9442
9443 cur_off += 8;
9444 }
9445
9446 if (tls_type & GOT_TLS_IE)
9447 {
9448 if (need_relocs)
9449 {
9450 if (indx == 0)
9451 outrel.r_addend = value - dtpoff_base (info);
9452 else
9453 outrel.r_addend = 0;
9454 outrel.r_offset = (sgot->output_section->vma
9455 + sgot->output_offset
9456 + cur_off);
9457 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
9458
9459 if (globals->use_rel)
9460 bfd_put_32 (output_bfd, outrel.r_addend,
9461 sgot->contents + cur_off);
9462
9463 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9464 }
9465 else
9466 bfd_put_32 (output_bfd, tpoff (info, value),
9467 sgot->contents + cur_off);
9468 cur_off += 4;
9469 }
9470
9471 if (h != NULL)
9472 h->got.offset |= 1;
9473 else
9474 local_got_offsets[r_symndx] |= 1;
9475 }
9476
9477 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
9478 off += 8;
9479 else if (tls_type & GOT_TLS_GDESC)
9480 off = offplt;
9481
9482 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
9483 || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
9484 {
9485 bfd_signed_vma offset;
9486 /* TLS stubs are arm mode. The original symbol is a
9487 data object, so branch_type is bogus. */
9488 branch_type = ST_BRANCH_TO_ARM;
9489 enum elf32_arm_stub_type stub_type
9490 = arm_type_of_stub (info, input_section, rel,
9491 st_type, &branch_type,
9492 (struct elf32_arm_link_hash_entry *)h,
9493 globals->tls_trampoline, globals->root.splt,
9494 input_bfd, sym_name);
9495
9496 if (stub_type != arm_stub_none)
9497 {
9498 struct elf32_arm_stub_hash_entry *stub_entry
9499 = elf32_arm_get_stub_entry
9500 (input_section, globals->root.splt, 0, rel,
9501 globals, stub_type);
9502 offset = (stub_entry->stub_offset
9503 + stub_entry->stub_sec->output_offset
9504 + stub_entry->stub_sec->output_section->vma);
9505 }
9506 else
9507 offset = (globals->root.splt->output_section->vma
9508 + globals->root.splt->output_offset
9509 + globals->tls_trampoline);
9510
9511 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
9512 {
9513 unsigned long inst;
9514
9515 offset -= (input_section->output_section->vma
9516 + input_section->output_offset
9517 + rel->r_offset + 8);
9518
9519 inst = offset >> 2;
9520 inst &= 0x00ffffff;
9521 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
9522 }
9523 else
9524 {
9525 /* Thumb blx encodes the offset in a complicated
9526 fashion. */
9527 unsigned upper_insn, lower_insn;
9528 unsigned neg;
9529
9530 offset -= (input_section->output_section->vma
9531 + input_section->output_offset
9532 + rel->r_offset + 4);
9533
9534 if (stub_type != arm_stub_none
9535 && arm_stub_is_thumb (stub_type))
9536 {
9537 lower_insn = 0xd000;
9538 }
9539 else
9540 {
9541 lower_insn = 0xc000;
9542 /* Round up the offset to a word boundary */
9543 offset = (offset + 2) & ~2;
9544 }
9545
9546 neg = offset < 0;
9547 upper_insn = (0xf000
9548 | ((offset >> 12) & 0x3ff)
9549 | (neg << 10));
9550 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
9551 | (((!((offset >> 22) & 1)) ^ neg) << 11)
9552 | ((offset >> 1) & 0x7ff);
9553 bfd_put_16 (input_bfd, upper_insn, hit_data);
9554 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
9555 return bfd_reloc_ok;
9556 }
9557 }
9558 /* These relocations needs special care, as besides the fact
9559 they point somewhere in .gotplt, the addend must be
9560 adjusted accordingly depending on the type of instruction
9561 we refer to */
9562 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
9563 {
9564 unsigned long data, insn;
9565 unsigned thumb;
9566
9567 data = bfd_get_32 (input_bfd, hit_data);
9568 thumb = data & 1;
9569 data &= ~1u;
9570
9571 if (thumb)
9572 {
9573 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
9574 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
9575 insn = (insn << 16)
9576 | bfd_get_16 (input_bfd,
9577 contents + rel->r_offset - data + 2);
9578 if ((insn & 0xf800c000) == 0xf000c000)
9579 /* bl/blx */
9580 value = -6;
9581 else if ((insn & 0xffffff00) == 0x4400)
9582 /* add */
9583 value = -5;
9584 else
9585 {
9586 (*_bfd_error_handler)
9587 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' referenced by TLS_GOTDESC"),
9588 input_bfd, input_section,
9589 (unsigned long)rel->r_offset, insn);
9590 return bfd_reloc_notsupported;
9591 }
9592 }
9593 else
9594 {
9595 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
9596
9597 switch (insn >> 24)
9598 {
9599 case 0xeb: /* bl */
9600 case 0xfa: /* blx */
9601 value = -4;
9602 break;
9603
9604 case 0xe0: /* add */
9605 value = -8;
9606 break;
9607
9608 default:
9609 (*_bfd_error_handler)
9610 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' referenced by TLS_GOTDESC"),
9611 input_bfd, input_section,
9612 (unsigned long)rel->r_offset, insn);
9613 return bfd_reloc_notsupported;
9614 }
9615 }
9616
9617 value += ((globals->root.sgotplt->output_section->vma
9618 + globals->root.sgotplt->output_offset + off)
9619 - (input_section->output_section->vma
9620 + input_section->output_offset
9621 + rel->r_offset)
9622 + globals->sgotplt_jump_table_size);
9623 }
9624 else
9625 value = ((globals->root.sgot->output_section->vma
9626 + globals->root.sgot->output_offset + off)
9627 - (input_section->output_section->vma
9628 + input_section->output_offset + rel->r_offset));
9629
9630 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9631 contents, rel->r_offset, value,
9632 rel->r_addend);
9633 }
9634
9635 case R_ARM_TLS_LE32:
9636 if (info->shared && !info->pie)
9637 {
9638 (*_bfd_error_handler)
9639 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
9640 input_bfd, input_section,
9641 (long) rel->r_offset, howto->name);
9642 return bfd_reloc_notsupported;
9643 }
9644 else
9645 value = tpoff (info, value);
9646
9647 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9648 contents, rel->r_offset, value,
9649 rel->r_addend);
9650
9651 case R_ARM_V4BX:
9652 if (globals->fix_v4bx)
9653 {
9654 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9655
9656 /* Ensure that we have a BX instruction. */
9657 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
9658
9659 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
9660 {
9661 /* Branch to veneer. */
9662 bfd_vma glue_addr;
9663 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
9664 glue_addr -= input_section->output_section->vma
9665 + input_section->output_offset
9666 + rel->r_offset + 8;
9667 insn = (insn & 0xf0000000) | 0x0a000000
9668 | ((glue_addr >> 2) & 0x00ffffff);
9669 }
9670 else
9671 {
9672 /* Preserve Rm (lowest four bits) and the condition code
9673 (highest four bits). Other bits encode MOV PC,Rm. */
9674 insn = (insn & 0xf000000f) | 0x01a0f000;
9675 }
9676
9677 bfd_put_32 (input_bfd, insn, hit_data);
9678 }
9679 return bfd_reloc_ok;
9680
9681 case R_ARM_MOVW_ABS_NC:
9682 case R_ARM_MOVT_ABS:
9683 case R_ARM_MOVW_PREL_NC:
9684 case R_ARM_MOVT_PREL:
9685 /* Until we properly support segment-base-relative addressing then
9686 we assume the segment base to be zero, as for the group relocations.
9687 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
9688 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
9689 case R_ARM_MOVW_BREL_NC:
9690 case R_ARM_MOVW_BREL:
9691 case R_ARM_MOVT_BREL:
9692 {
9693 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9694
9695 if (globals->use_rel)
9696 {
9697 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
9698 signed_addend = (addend ^ 0x8000) - 0x8000;
9699 }
9700
9701 value += signed_addend;
9702
9703 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
9704 value -= (input_section->output_section->vma
9705 + input_section->output_offset + rel->r_offset);
9706
9707 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
9708 return bfd_reloc_overflow;
9709
9710 if (branch_type == ST_BRANCH_TO_THUMB)
9711 value |= 1;
9712
9713 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
9714 || r_type == R_ARM_MOVT_BREL)
9715 value >>= 16;
9716
9717 insn &= 0xfff0f000;
9718 insn |= value & 0xfff;
9719 insn |= (value & 0xf000) << 4;
9720 bfd_put_32 (input_bfd, insn, hit_data);
9721 }
9722 return bfd_reloc_ok;
9723
9724 case R_ARM_THM_MOVW_ABS_NC:
9725 case R_ARM_THM_MOVT_ABS:
9726 case R_ARM_THM_MOVW_PREL_NC:
9727 case R_ARM_THM_MOVT_PREL:
9728 /* Until we properly support segment-base-relative addressing then
9729 we assume the segment base to be zero, as for the above relocations.
9730 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
9731 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
9732 as R_ARM_THM_MOVT_ABS. */
9733 case R_ARM_THM_MOVW_BREL_NC:
9734 case R_ARM_THM_MOVW_BREL:
9735 case R_ARM_THM_MOVT_BREL:
9736 {
9737 bfd_vma insn;
9738
9739 insn = bfd_get_16 (input_bfd, hit_data) << 16;
9740 insn |= bfd_get_16 (input_bfd, hit_data + 2);
9741
9742 if (globals->use_rel)
9743 {
9744 addend = ((insn >> 4) & 0xf000)
9745 | ((insn >> 15) & 0x0800)
9746 | ((insn >> 4) & 0x0700)
9747 | (insn & 0x00ff);
9748 signed_addend = (addend ^ 0x8000) - 0x8000;
9749 }
9750
9751 value += signed_addend;
9752
9753 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
9754 value -= (input_section->output_section->vma
9755 + input_section->output_offset + rel->r_offset);
9756
9757 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
9758 return bfd_reloc_overflow;
9759
9760 if (branch_type == ST_BRANCH_TO_THUMB)
9761 value |= 1;
9762
9763 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
9764 || r_type == R_ARM_THM_MOVT_BREL)
9765 value >>= 16;
9766
9767 insn &= 0xfbf08f00;
9768 insn |= (value & 0xf000) << 4;
9769 insn |= (value & 0x0800) << 15;
9770 insn |= (value & 0x0700) << 4;
9771 insn |= (value & 0x00ff);
9772
9773 bfd_put_16 (input_bfd, insn >> 16, hit_data);
9774 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
9775 }
9776 return bfd_reloc_ok;
9777
9778 case R_ARM_ALU_PC_G0_NC:
9779 case R_ARM_ALU_PC_G1_NC:
9780 case R_ARM_ALU_PC_G0:
9781 case R_ARM_ALU_PC_G1:
9782 case R_ARM_ALU_PC_G2:
9783 case R_ARM_ALU_SB_G0_NC:
9784 case R_ARM_ALU_SB_G1_NC:
9785 case R_ARM_ALU_SB_G0:
9786 case R_ARM_ALU_SB_G1:
9787 case R_ARM_ALU_SB_G2:
9788 {
9789 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9790 bfd_vma pc = input_section->output_section->vma
9791 + input_section->output_offset + rel->r_offset;
9792 /* sb should be the origin of the *segment* containing the symbol.
9793 It is not clear how to obtain this OS-dependent value, so we
9794 make an arbitrary choice of zero. */
9795 bfd_vma sb = 0;
9796 bfd_vma residual;
9797 bfd_vma g_n;
9798 bfd_signed_vma signed_value;
9799 int group = 0;
9800
9801 /* Determine which group of bits to select. */
9802 switch (r_type)
9803 {
9804 case R_ARM_ALU_PC_G0_NC:
9805 case R_ARM_ALU_PC_G0:
9806 case R_ARM_ALU_SB_G0_NC:
9807 case R_ARM_ALU_SB_G0:
9808 group = 0;
9809 break;
9810
9811 case R_ARM_ALU_PC_G1_NC:
9812 case R_ARM_ALU_PC_G1:
9813 case R_ARM_ALU_SB_G1_NC:
9814 case R_ARM_ALU_SB_G1:
9815 group = 1;
9816 break;
9817
9818 case R_ARM_ALU_PC_G2:
9819 case R_ARM_ALU_SB_G2:
9820 group = 2;
9821 break;
9822
9823 default:
9824 abort ();
9825 }
9826
9827 /* If REL, extract the addend from the insn. If RELA, it will
9828 have already been fetched for us. */
9829 if (globals->use_rel)
9830 {
9831 int negative;
9832 bfd_vma constant = insn & 0xff;
9833 bfd_vma rotation = (insn & 0xf00) >> 8;
9834
9835 if (rotation == 0)
9836 signed_addend = constant;
9837 else
9838 {
9839 /* Compensate for the fact that in the instruction, the
9840 rotation is stored in multiples of 2 bits. */
9841 rotation *= 2;
9842
9843 /* Rotate "constant" right by "rotation" bits. */
9844 signed_addend = (constant >> rotation) |
9845 (constant << (8 * sizeof (bfd_vma) - rotation));
9846 }
9847
9848 /* Determine if the instruction is an ADD or a SUB.
9849 (For REL, this determines the sign of the addend.) */
9850 negative = identify_add_or_sub (insn);
9851 if (negative == 0)
9852 {
9853 (*_bfd_error_handler)
9854 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
9855 input_bfd, input_section,
9856 (long) rel->r_offset, howto->name);
9857 return bfd_reloc_overflow;
9858 }
9859
9860 signed_addend *= negative;
9861 }
9862
9863 /* Compute the value (X) to go in the place. */
9864 if (r_type == R_ARM_ALU_PC_G0_NC
9865 || r_type == R_ARM_ALU_PC_G1_NC
9866 || r_type == R_ARM_ALU_PC_G0
9867 || r_type == R_ARM_ALU_PC_G1
9868 || r_type == R_ARM_ALU_PC_G2)
9869 /* PC relative. */
9870 signed_value = value - pc + signed_addend;
9871 else
9872 /* Section base relative. */
9873 signed_value = value - sb + signed_addend;
9874
9875 /* If the target symbol is a Thumb function, then set the
9876 Thumb bit in the address. */
9877 if (branch_type == ST_BRANCH_TO_THUMB)
9878 signed_value |= 1;
9879
9880 /* Calculate the value of the relevant G_n, in encoded
9881 constant-with-rotation format. */
9882 g_n = calculate_group_reloc_mask (abs (signed_value), group,
9883 &residual);
9884
9885 /* Check for overflow if required. */
9886 if ((r_type == R_ARM_ALU_PC_G0
9887 || r_type == R_ARM_ALU_PC_G1
9888 || r_type == R_ARM_ALU_PC_G2
9889 || r_type == R_ARM_ALU_SB_G0
9890 || r_type == R_ARM_ALU_SB_G1
9891 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
9892 {
9893 (*_bfd_error_handler)
9894 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9895 input_bfd, input_section,
9896 (long) rel->r_offset, abs (signed_value), howto->name);
9897 return bfd_reloc_overflow;
9898 }
9899
9900 /* Mask out the value and the ADD/SUB part of the opcode; take care
9901 not to destroy the S bit. */
9902 insn &= 0xff1ff000;
9903
9904 /* Set the opcode according to whether the value to go in the
9905 place is negative. */
9906 if (signed_value < 0)
9907 insn |= 1 << 22;
9908 else
9909 insn |= 1 << 23;
9910
9911 /* Encode the offset. */
9912 insn |= g_n;
9913
9914 bfd_put_32 (input_bfd, insn, hit_data);
9915 }
9916 return bfd_reloc_ok;
9917
9918 case R_ARM_LDR_PC_G0:
9919 case R_ARM_LDR_PC_G1:
9920 case R_ARM_LDR_PC_G2:
9921 case R_ARM_LDR_SB_G0:
9922 case R_ARM_LDR_SB_G1:
9923 case R_ARM_LDR_SB_G2:
9924 {
9925 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9926 bfd_vma pc = input_section->output_section->vma
9927 + input_section->output_offset + rel->r_offset;
9928 bfd_vma sb = 0; /* See note above. */
9929 bfd_vma residual;
9930 bfd_signed_vma signed_value;
9931 int group = 0;
9932
9933 /* Determine which groups of bits to calculate. */
9934 switch (r_type)
9935 {
9936 case R_ARM_LDR_PC_G0:
9937 case R_ARM_LDR_SB_G0:
9938 group = 0;
9939 break;
9940
9941 case R_ARM_LDR_PC_G1:
9942 case R_ARM_LDR_SB_G1:
9943 group = 1;
9944 break;
9945
9946 case R_ARM_LDR_PC_G2:
9947 case R_ARM_LDR_SB_G2:
9948 group = 2;
9949 break;
9950
9951 default:
9952 abort ();
9953 }
9954
9955 /* If REL, extract the addend from the insn. If RELA, it will
9956 have already been fetched for us. */
9957 if (globals->use_rel)
9958 {
9959 int negative = (insn & (1 << 23)) ? 1 : -1;
9960 signed_addend = negative * (insn & 0xfff);
9961 }
9962
9963 /* Compute the value (X) to go in the place. */
9964 if (r_type == R_ARM_LDR_PC_G0
9965 || r_type == R_ARM_LDR_PC_G1
9966 || r_type == R_ARM_LDR_PC_G2)
9967 /* PC relative. */
9968 signed_value = value - pc + signed_addend;
9969 else
9970 /* Section base relative. */
9971 signed_value = value - sb + signed_addend;
9972
9973 /* Calculate the value of the relevant G_{n-1} to obtain
9974 the residual at that stage. */
9975 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
9976
9977 /* Check for overflow. */
9978 if (residual >= 0x1000)
9979 {
9980 (*_bfd_error_handler)
9981 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9982 input_bfd, input_section,
9983 (long) rel->r_offset, abs (signed_value), howto->name);
9984 return bfd_reloc_overflow;
9985 }
9986
9987 /* Mask out the value and U bit. */
9988 insn &= 0xff7ff000;
9989
9990 /* Set the U bit if the value to go in the place is non-negative. */
9991 if (signed_value >= 0)
9992 insn |= 1 << 23;
9993
9994 /* Encode the offset. */
9995 insn |= residual;
9996
9997 bfd_put_32 (input_bfd, insn, hit_data);
9998 }
9999 return bfd_reloc_ok;
10000
10001 case R_ARM_LDRS_PC_G0:
10002 case R_ARM_LDRS_PC_G1:
10003 case R_ARM_LDRS_PC_G2:
10004 case R_ARM_LDRS_SB_G0:
10005 case R_ARM_LDRS_SB_G1:
10006 case R_ARM_LDRS_SB_G2:
10007 {
10008 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
10009 bfd_vma pc = input_section->output_section->vma
10010 + input_section->output_offset + rel->r_offset;
10011 bfd_vma sb = 0; /* See note above. */
10012 bfd_vma residual;
10013 bfd_signed_vma signed_value;
10014 int group = 0;
10015
10016 /* Determine which groups of bits to calculate. */
10017 switch (r_type)
10018 {
10019 case R_ARM_LDRS_PC_G0:
10020 case R_ARM_LDRS_SB_G0:
10021 group = 0;
10022 break;
10023
10024 case R_ARM_LDRS_PC_G1:
10025 case R_ARM_LDRS_SB_G1:
10026 group = 1;
10027 break;
10028
10029 case R_ARM_LDRS_PC_G2:
10030 case R_ARM_LDRS_SB_G2:
10031 group = 2;
10032 break;
10033
10034 default:
10035 abort ();
10036 }
10037
10038 /* If REL, extract the addend from the insn. If RELA, it will
10039 have already been fetched for us. */
10040 if (globals->use_rel)
10041 {
10042 int negative = (insn & (1 << 23)) ? 1 : -1;
10043 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
10044 }
10045
10046 /* Compute the value (X) to go in the place. */
10047 if (r_type == R_ARM_LDRS_PC_G0
10048 || r_type == R_ARM_LDRS_PC_G1
10049 || r_type == R_ARM_LDRS_PC_G2)
10050 /* PC relative. */
10051 signed_value = value - pc + signed_addend;
10052 else
10053 /* Section base relative. */
10054 signed_value = value - sb + signed_addend;
10055
10056 /* Calculate the value of the relevant G_{n-1} to obtain
10057 the residual at that stage. */
10058 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
10059
10060 /* Check for overflow. */
10061 if (residual >= 0x100)
10062 {
10063 (*_bfd_error_handler)
10064 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10065 input_bfd, input_section,
10066 (long) rel->r_offset, abs (signed_value), howto->name);
10067 return bfd_reloc_overflow;
10068 }
10069
10070 /* Mask out the value and U bit. */
10071 insn &= 0xff7ff0f0;
10072
10073 /* Set the U bit if the value to go in the place is non-negative. */
10074 if (signed_value >= 0)
10075 insn |= 1 << 23;
10076
10077 /* Encode the offset. */
10078 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
10079
10080 bfd_put_32 (input_bfd, insn, hit_data);
10081 }
10082 return bfd_reloc_ok;
10083
10084 case R_ARM_LDC_PC_G0:
10085 case R_ARM_LDC_PC_G1:
10086 case R_ARM_LDC_PC_G2:
10087 case R_ARM_LDC_SB_G0:
10088 case R_ARM_LDC_SB_G1:
10089 case R_ARM_LDC_SB_G2:
10090 {
10091 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
10092 bfd_vma pc = input_section->output_section->vma
10093 + input_section->output_offset + rel->r_offset;
10094 bfd_vma sb = 0; /* See note above. */
10095 bfd_vma residual;
10096 bfd_signed_vma signed_value;
10097 int group = 0;
10098
10099 /* Determine which groups of bits to calculate. */
10100 switch (r_type)
10101 {
10102 case R_ARM_LDC_PC_G0:
10103 case R_ARM_LDC_SB_G0:
10104 group = 0;
10105 break;
10106
10107 case R_ARM_LDC_PC_G1:
10108 case R_ARM_LDC_SB_G1:
10109 group = 1;
10110 break;
10111
10112 case R_ARM_LDC_PC_G2:
10113 case R_ARM_LDC_SB_G2:
10114 group = 2;
10115 break;
10116
10117 default:
10118 abort ();
10119 }
10120
10121 /* If REL, extract the addend from the insn. If RELA, it will
10122 have already been fetched for us. */
10123 if (globals->use_rel)
10124 {
10125 int negative = (insn & (1 << 23)) ? 1 : -1;
10126 signed_addend = negative * ((insn & 0xff) << 2);
10127 }
10128
10129 /* Compute the value (X) to go in the place. */
10130 if (r_type == R_ARM_LDC_PC_G0
10131 || r_type == R_ARM_LDC_PC_G1
10132 || r_type == R_ARM_LDC_PC_G2)
10133 /* PC relative. */
10134 signed_value = value - pc + signed_addend;
10135 else
10136 /* Section base relative. */
10137 signed_value = value - sb + signed_addend;
10138
10139 /* Calculate the value of the relevant G_{n-1} to obtain
10140 the residual at that stage. */
10141 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
10142
10143 /* Check for overflow. (The absolute value to go in the place must be
10144 divisible by four and, after having been divided by four, must
10145 fit in eight bits.) */
10146 if ((residual & 0x3) != 0 || residual >= 0x400)
10147 {
10148 (*_bfd_error_handler)
10149 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10150 input_bfd, input_section,
10151 (long) rel->r_offset, abs (signed_value), howto->name);
10152 return bfd_reloc_overflow;
10153 }
10154
10155 /* Mask out the value and U bit. */
10156 insn &= 0xff7fff00;
10157
10158 /* Set the U bit if the value to go in the place is non-negative. */
10159 if (signed_value >= 0)
10160 insn |= 1 << 23;
10161
10162 /* Encode the offset. */
10163 insn |= residual >> 2;
10164
10165 bfd_put_32 (input_bfd, insn, hit_data);
10166 }
10167 return bfd_reloc_ok;
10168
10169 default:
10170 return bfd_reloc_notsupported;
10171 }
10172 }
10173
10174 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
10175 static void
10176 arm_add_to_rel (bfd * abfd,
10177 bfd_byte * address,
10178 reloc_howto_type * howto,
10179 bfd_signed_vma increment)
10180 {
10181 bfd_signed_vma addend;
10182
10183 if (howto->type == R_ARM_THM_CALL
10184 || howto->type == R_ARM_THM_JUMP24)
10185 {
10186 int upper_insn, lower_insn;
10187 int upper, lower;
10188
10189 upper_insn = bfd_get_16 (abfd, address);
10190 lower_insn = bfd_get_16 (abfd, address + 2);
10191 upper = upper_insn & 0x7ff;
10192 lower = lower_insn & 0x7ff;
10193
10194 addend = (upper << 12) | (lower << 1);
10195 addend += increment;
10196 addend >>= 1;
10197
10198 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
10199 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
10200
10201 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
10202 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
10203 }
10204 else
10205 {
10206 bfd_vma contents;
10207
10208 contents = bfd_get_32 (abfd, address);
10209
10210 /* Get the (signed) value from the instruction. */
10211 addend = contents & howto->src_mask;
10212 if (addend & ((howto->src_mask + 1) >> 1))
10213 {
10214 bfd_signed_vma mask;
10215
10216 mask = -1;
10217 mask &= ~ howto->src_mask;
10218 addend |= mask;
10219 }
10220
10221 /* Add in the increment, (which is a byte value). */
10222 switch (howto->type)
10223 {
10224 default:
10225 addend += increment;
10226 break;
10227
10228 case R_ARM_PC24:
10229 case R_ARM_PLT32:
10230 case R_ARM_CALL:
10231 case R_ARM_JUMP24:
10232 addend <<= howto->size;
10233 addend += increment;
10234
10235 /* Should we check for overflow here ? */
10236
10237 /* Drop any undesired bits. */
10238 addend >>= howto->rightshift;
10239 break;
10240 }
10241
10242 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
10243
10244 bfd_put_32 (abfd, contents, address);
10245 }
10246 }
10247
10248 #define IS_ARM_TLS_RELOC(R_TYPE) \
10249 ((R_TYPE) == R_ARM_TLS_GD32 \
10250 || (R_TYPE) == R_ARM_TLS_LDO32 \
10251 || (R_TYPE) == R_ARM_TLS_LDM32 \
10252 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
10253 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
10254 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
10255 || (R_TYPE) == R_ARM_TLS_LE32 \
10256 || (R_TYPE) == R_ARM_TLS_IE32 \
10257 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
10258
10259 /* Specific set of relocations for the gnu tls dialect. */
10260 #define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
10261 ((R_TYPE) == R_ARM_TLS_GOTDESC \
10262 || (R_TYPE) == R_ARM_TLS_CALL \
10263 || (R_TYPE) == R_ARM_THM_TLS_CALL \
10264 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
10265 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
10266
10267 /* Relocate an ARM ELF section. */
10268
10269 static bfd_boolean
10270 elf32_arm_relocate_section (bfd * output_bfd,
10271 struct bfd_link_info * info,
10272 bfd * input_bfd,
10273 asection * input_section,
10274 bfd_byte * contents,
10275 Elf_Internal_Rela * relocs,
10276 Elf_Internal_Sym * local_syms,
10277 asection ** local_sections)
10278 {
10279 Elf_Internal_Shdr *symtab_hdr;
10280 struct elf_link_hash_entry **sym_hashes;
10281 Elf_Internal_Rela *rel;
10282 Elf_Internal_Rela *relend;
10283 const char *name;
10284 struct elf32_arm_link_hash_table * globals;
10285
10286 globals = elf32_arm_hash_table (info);
10287 if (globals == NULL)
10288 return FALSE;
10289
10290 symtab_hdr = & elf_symtab_hdr (input_bfd);
10291 sym_hashes = elf_sym_hashes (input_bfd);
10292
10293 rel = relocs;
10294 relend = relocs + input_section->reloc_count;
10295 for (; rel < relend; rel++)
10296 {
10297 int r_type;
10298 reloc_howto_type * howto;
10299 unsigned long r_symndx;
10300 Elf_Internal_Sym * sym;
10301 asection * sec;
10302 struct elf_link_hash_entry * h;
10303 bfd_vma relocation;
10304 bfd_reloc_status_type r;
10305 arelent bfd_reloc;
10306 char sym_type;
10307 bfd_boolean unresolved_reloc = FALSE;
10308 char *error_message = NULL;
10309
10310 r_symndx = ELF32_R_SYM (rel->r_info);
10311 r_type = ELF32_R_TYPE (rel->r_info);
10312 r_type = arm_real_reloc_type (globals, r_type);
10313
10314 if ( r_type == R_ARM_GNU_VTENTRY
10315 || r_type == R_ARM_GNU_VTINHERIT)
10316 continue;
10317
10318 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
10319 howto = bfd_reloc.howto;
10320
10321 h = NULL;
10322 sym = NULL;
10323 sec = NULL;
10324
10325 if (r_symndx < symtab_hdr->sh_info)
10326 {
10327 sym = local_syms + r_symndx;
10328 sym_type = ELF32_ST_TYPE (sym->st_info);
10329 sec = local_sections[r_symndx];
10330
10331 /* An object file might have a reference to a local
10332 undefined symbol. This is a daft object file, but we
10333 should at least do something about it. V4BX & NONE
10334 relocations do not use the symbol and are explicitly
10335 allowed to use the undefined symbol, so allow those.
10336 Likewise for relocations against STN_UNDEF. */
10337 if (r_type != R_ARM_V4BX
10338 && r_type != R_ARM_NONE
10339 && r_symndx != STN_UNDEF
10340 && bfd_is_und_section (sec)
10341 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
10342 {
10343 if (!info->callbacks->undefined_symbol
10344 (info, bfd_elf_string_from_elf_section
10345 (input_bfd, symtab_hdr->sh_link, sym->st_name),
10346 input_bfd, input_section,
10347 rel->r_offset, TRUE))
10348 return FALSE;
10349 }
10350
10351 if (globals->use_rel)
10352 {
10353 relocation = (sec->output_section->vma
10354 + sec->output_offset
10355 + sym->st_value);
10356 if (!info->relocatable
10357 && (sec->flags & SEC_MERGE)
10358 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10359 {
10360 asection *msec;
10361 bfd_vma addend, value;
10362
10363 switch (r_type)
10364 {
10365 case R_ARM_MOVW_ABS_NC:
10366 case R_ARM_MOVT_ABS:
10367 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
10368 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
10369 addend = (addend ^ 0x8000) - 0x8000;
10370 break;
10371
10372 case R_ARM_THM_MOVW_ABS_NC:
10373 case R_ARM_THM_MOVT_ABS:
10374 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
10375 << 16;
10376 value |= bfd_get_16 (input_bfd,
10377 contents + rel->r_offset + 2);
10378 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
10379 | ((value & 0x04000000) >> 15);
10380 addend = (addend ^ 0x8000) - 0x8000;
10381 break;
10382
10383 default:
10384 if (howto->rightshift
10385 || (howto->src_mask & (howto->src_mask + 1)))
10386 {
10387 (*_bfd_error_handler)
10388 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
10389 input_bfd, input_section,
10390 (long) rel->r_offset, howto->name);
10391 return FALSE;
10392 }
10393
10394 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
10395
10396 /* Get the (signed) value from the instruction. */
10397 addend = value & howto->src_mask;
10398 if (addend & ((howto->src_mask + 1) >> 1))
10399 {
10400 bfd_signed_vma mask;
10401
10402 mask = -1;
10403 mask &= ~ howto->src_mask;
10404 addend |= mask;
10405 }
10406 break;
10407 }
10408
10409 msec = sec;
10410 addend =
10411 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
10412 - relocation;
10413 addend += msec->output_section->vma + msec->output_offset;
10414
10415 /* Cases here must match those in the preceding
10416 switch statement. */
10417 switch (r_type)
10418 {
10419 case R_ARM_MOVW_ABS_NC:
10420 case R_ARM_MOVT_ABS:
10421 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
10422 | (addend & 0xfff);
10423 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
10424 break;
10425
10426 case R_ARM_THM_MOVW_ABS_NC:
10427 case R_ARM_THM_MOVT_ABS:
10428 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
10429 | (addend & 0xff) | ((addend & 0x0800) << 15);
10430 bfd_put_16 (input_bfd, value >> 16,
10431 contents + rel->r_offset);
10432 bfd_put_16 (input_bfd, value,
10433 contents + rel->r_offset + 2);
10434 break;
10435
10436 default:
10437 value = (value & ~ howto->dst_mask)
10438 | (addend & howto->dst_mask);
10439 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
10440 break;
10441 }
10442 }
10443 }
10444 else
10445 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10446 }
10447 else
10448 {
10449 bfd_boolean warned;
10450
10451 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
10452 r_symndx, symtab_hdr, sym_hashes,
10453 h, sec, relocation,
10454 unresolved_reloc, warned);
10455
10456 sym_type = h->type;
10457 }
10458
10459 if (sec != NULL && discarded_section (sec))
10460 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10461 rel, 1, relend, howto, 0, contents);
10462
10463 if (info->relocatable)
10464 {
10465 /* This is a relocatable link. We don't have to change
10466 anything, unless the reloc is against a section symbol,
10467 in which case we have to adjust according to where the
10468 section symbol winds up in the output section. */
10469 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10470 {
10471 if (globals->use_rel)
10472 arm_add_to_rel (input_bfd, contents + rel->r_offset,
10473 howto, (bfd_signed_vma) sec->output_offset);
10474 else
10475 rel->r_addend += sec->output_offset;
10476 }
10477 continue;
10478 }
10479
10480 if (h != NULL)
10481 name = h->root.root.string;
10482 else
10483 {
10484 name = (bfd_elf_string_from_elf_section
10485 (input_bfd, symtab_hdr->sh_link, sym->st_name));
10486 if (name == NULL || *name == '\0')
10487 name = bfd_section_name (input_bfd, sec);
10488 }
10489
10490 if (r_symndx != STN_UNDEF
10491 && r_type != R_ARM_NONE
10492 && (h == NULL
10493 || h->root.type == bfd_link_hash_defined
10494 || h->root.type == bfd_link_hash_defweak)
10495 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
10496 {
10497 (*_bfd_error_handler)
10498 ((sym_type == STT_TLS
10499 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
10500 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
10501 input_bfd,
10502 input_section,
10503 (long) rel->r_offset,
10504 howto->name,
10505 name);
10506 }
10507
10508 /* We call elf32_arm_final_link_relocate unless we're completely
10509 done, i.e., the relaxation produced the final output we want,
10510 and we won't let anybody mess with it. Also, we have to do
10511 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
10512 both in relaxed and non-relaxed cases */
10513 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
10514 || (IS_ARM_TLS_GNU_RELOC (r_type)
10515 && !((h ? elf32_arm_hash_entry (h)->tls_type :
10516 elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
10517 & GOT_TLS_GDESC)))
10518 {
10519 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
10520 contents, rel, h == NULL);
10521 /* This may have been marked unresolved because it came from
10522 a shared library. But we've just dealt with that. */
10523 unresolved_reloc = 0;
10524 }
10525 else
10526 r = bfd_reloc_continue;
10527
10528 if (r == bfd_reloc_continue)
10529 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
10530 input_section, contents, rel,
10531 relocation, info, sec, name, sym_type,
10532 (h ? h->target_internal
10533 : ARM_SYM_BRANCH_TYPE (sym)), h,
10534 &unresolved_reloc, &error_message);
10535
10536 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
10537 because such sections are not SEC_ALLOC and thus ld.so will
10538 not process them. */
10539 if (unresolved_reloc
10540 && !((input_section->flags & SEC_DEBUGGING) != 0
10541 && h->def_dynamic)
10542 && _bfd_elf_section_offset (output_bfd, info, input_section,
10543 rel->r_offset) != (bfd_vma) -1)
10544 {
10545 (*_bfd_error_handler)
10546 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
10547 input_bfd,
10548 input_section,
10549 (long) rel->r_offset,
10550 howto->name,
10551 h->root.root.string);
10552 return FALSE;
10553 }
10554
10555 if (r != bfd_reloc_ok)
10556 {
10557 switch (r)
10558 {
10559 case bfd_reloc_overflow:
10560 /* If the overflowing reloc was to an undefined symbol,
10561 we have already printed one error message and there
10562 is no point complaining again. */
10563 if ((! h ||
10564 h->root.type != bfd_link_hash_undefined)
10565 && (!((*info->callbacks->reloc_overflow)
10566 (info, (h ? &h->root : NULL), name, howto->name,
10567 (bfd_vma) 0, input_bfd, input_section,
10568 rel->r_offset))))
10569 return FALSE;
10570 break;
10571
10572 case bfd_reloc_undefined:
10573 if (!((*info->callbacks->undefined_symbol)
10574 (info, name, input_bfd, input_section,
10575 rel->r_offset, TRUE)))
10576 return FALSE;
10577 break;
10578
10579 case bfd_reloc_outofrange:
10580 error_message = _("out of range");
10581 goto common_error;
10582
10583 case bfd_reloc_notsupported:
10584 error_message = _("unsupported relocation");
10585 goto common_error;
10586
10587 case bfd_reloc_dangerous:
10588 /* error_message should already be set. */
10589 goto common_error;
10590
10591 default:
10592 error_message = _("unknown error");
10593 /* Fall through. */
10594
10595 common_error:
10596 BFD_ASSERT (error_message != NULL);
10597 if (!((*info->callbacks->reloc_dangerous)
10598 (info, error_message, input_bfd, input_section,
10599 rel->r_offset)))
10600 return FALSE;
10601 break;
10602 }
10603 }
10604 }
10605
10606 return TRUE;
10607 }
10608
10609 /* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
10610 adds the edit to the start of the list. (The list must be built in order of
10611 ascending TINDEX: the function's callers are primarily responsible for
10612 maintaining that condition). */
10613
10614 static void
10615 add_unwind_table_edit (arm_unwind_table_edit **head,
10616 arm_unwind_table_edit **tail,
10617 arm_unwind_edit_type type,
10618 asection *linked_section,
10619 unsigned int tindex)
10620 {
10621 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
10622 xmalloc (sizeof (arm_unwind_table_edit));
10623
10624 new_edit->type = type;
10625 new_edit->linked_section = linked_section;
10626 new_edit->index = tindex;
10627
10628 if (tindex > 0)
10629 {
10630 new_edit->next = NULL;
10631
10632 if (*tail)
10633 (*tail)->next = new_edit;
10634
10635 (*tail) = new_edit;
10636
10637 if (!*head)
10638 (*head) = new_edit;
10639 }
10640 else
10641 {
10642 new_edit->next = *head;
10643
10644 if (!*tail)
10645 *tail = new_edit;
10646
10647 *head = new_edit;
10648 }
10649 }
10650
10651 static _arm_elf_section_data *get_arm_elf_section_data (asection *);
10652
10653 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
10654 static void
10655 adjust_exidx_size(asection *exidx_sec, int adjust)
10656 {
10657 asection *out_sec;
10658
10659 if (!exidx_sec->rawsize)
10660 exidx_sec->rawsize = exidx_sec->size;
10661
10662 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
10663 out_sec = exidx_sec->output_section;
10664 /* Adjust size of output section. */
10665 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
10666 }
10667
10668 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
10669 static void
10670 insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
10671 {
10672 struct _arm_elf_section_data *exidx_arm_data;
10673
10674 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
10675 add_unwind_table_edit (
10676 &exidx_arm_data->u.exidx.unwind_edit_list,
10677 &exidx_arm_data->u.exidx.unwind_edit_tail,
10678 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
10679
10680 adjust_exidx_size(exidx_sec, 8);
10681 }
10682
10683 /* Scan .ARM.exidx tables, and create a list describing edits which should be
10684 made to those tables, such that:
10685
10686 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
10687 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
10688 codes which have been inlined into the index).
10689
10690 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
10691
10692 The edits are applied when the tables are written
10693 (in elf32_arm_write_section). */
10694
10695 bfd_boolean
10696 elf32_arm_fix_exidx_coverage (asection **text_section_order,
10697 unsigned int num_text_sections,
10698 struct bfd_link_info *info,
10699 bfd_boolean merge_exidx_entries)
10700 {
10701 bfd *inp;
10702 unsigned int last_second_word = 0, i;
10703 asection *last_exidx_sec = NULL;
10704 asection *last_text_sec = NULL;
10705 int last_unwind_type = -1;
10706
10707 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
10708 text sections. */
10709 for (inp = info->input_bfds; inp != NULL; inp = inp->link_next)
10710 {
10711 asection *sec;
10712
10713 for (sec = inp->sections; sec != NULL; sec = sec->next)
10714 {
10715 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
10716 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
10717
10718 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
10719 continue;
10720
10721 if (elf_sec->linked_to)
10722 {
10723 Elf_Internal_Shdr *linked_hdr
10724 = &elf_section_data (elf_sec->linked_to)->this_hdr;
10725 struct _arm_elf_section_data *linked_sec_arm_data
10726 = get_arm_elf_section_data (linked_hdr->bfd_section);
10727
10728 if (linked_sec_arm_data == NULL)
10729 continue;
10730
10731 /* Link this .ARM.exidx section back from the text section it
10732 describes. */
10733 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
10734 }
10735 }
10736 }
10737
10738 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
10739 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
10740 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
10741
10742 for (i = 0; i < num_text_sections; i++)
10743 {
10744 asection *sec = text_section_order[i];
10745 asection *exidx_sec;
10746 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
10747 struct _arm_elf_section_data *exidx_arm_data;
10748 bfd_byte *contents = NULL;
10749 int deleted_exidx_bytes = 0;
10750 bfd_vma j;
10751 arm_unwind_table_edit *unwind_edit_head = NULL;
10752 arm_unwind_table_edit *unwind_edit_tail = NULL;
10753 Elf_Internal_Shdr *hdr;
10754 bfd *ibfd;
10755
10756 if (arm_data == NULL)
10757 continue;
10758
10759 exidx_sec = arm_data->u.text.arm_exidx_sec;
10760 if (exidx_sec == NULL)
10761 {
10762 /* Section has no unwind data. */
10763 if (last_unwind_type == 0 || !last_exidx_sec)
10764 continue;
10765
10766 /* Ignore zero sized sections. */
10767 if (sec->size == 0)
10768 continue;
10769
10770 insert_cantunwind_after(last_text_sec, last_exidx_sec);
10771 last_unwind_type = 0;
10772 continue;
10773 }
10774
10775 /* Skip /DISCARD/ sections. */
10776 if (bfd_is_abs_section (exidx_sec->output_section))
10777 continue;
10778
10779 hdr = &elf_section_data (exidx_sec)->this_hdr;
10780 if (hdr->sh_type != SHT_ARM_EXIDX)
10781 continue;
10782
10783 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
10784 if (exidx_arm_data == NULL)
10785 continue;
10786
10787 ibfd = exidx_sec->owner;
10788
10789 if (hdr->contents != NULL)
10790 contents = hdr->contents;
10791 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
10792 /* An error? */
10793 continue;
10794
10795 for (j = 0; j < hdr->sh_size; j += 8)
10796 {
10797 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
10798 int unwind_type;
10799 int elide = 0;
10800
10801 /* An EXIDX_CANTUNWIND entry. */
10802 if (second_word == 1)
10803 {
10804 if (last_unwind_type == 0)
10805 elide = 1;
10806 unwind_type = 0;
10807 }
10808 /* Inlined unwinding data. Merge if equal to previous. */
10809 else if ((second_word & 0x80000000) != 0)
10810 {
10811 if (merge_exidx_entries
10812 && last_second_word == second_word && last_unwind_type == 1)
10813 elide = 1;
10814 unwind_type = 1;
10815 last_second_word = second_word;
10816 }
10817 /* Normal table entry. In theory we could merge these too,
10818 but duplicate entries are likely to be much less common. */
10819 else
10820 unwind_type = 2;
10821
10822 if (elide)
10823 {
10824 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
10825 DELETE_EXIDX_ENTRY, NULL, j / 8);
10826
10827 deleted_exidx_bytes += 8;
10828 }
10829
10830 last_unwind_type = unwind_type;
10831 }
10832
10833 /* Free contents if we allocated it ourselves. */
10834 if (contents != hdr->contents)
10835 free (contents);
10836
10837 /* Record edits to be applied later (in elf32_arm_write_section). */
10838 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
10839 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
10840
10841 if (deleted_exidx_bytes > 0)
10842 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
10843
10844 last_exidx_sec = exidx_sec;
10845 last_text_sec = sec;
10846 }
10847
10848 /* Add terminating CANTUNWIND entry. */
10849 if (last_exidx_sec && last_unwind_type != 0)
10850 insert_cantunwind_after(last_text_sec, last_exidx_sec);
10851
10852 return TRUE;
10853 }
10854
10855 static bfd_boolean
10856 elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
10857 bfd *ibfd, const char *name)
10858 {
10859 asection *sec, *osec;
10860
10861 sec = bfd_get_linker_section (ibfd, name);
10862 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
10863 return TRUE;
10864
10865 osec = sec->output_section;
10866 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
10867 return TRUE;
10868
10869 if (! bfd_set_section_contents (obfd, osec, sec->contents,
10870 sec->output_offset, sec->size))
10871 return FALSE;
10872
10873 return TRUE;
10874 }
10875
10876 static bfd_boolean
10877 elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
10878 {
10879 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
10880 asection *sec, *osec;
10881
10882 if (globals == NULL)
10883 return FALSE;
10884
10885 /* Invoke the regular ELF backend linker to do all the work. */
10886 if (!bfd_elf_final_link (abfd, info))
10887 return FALSE;
10888
10889 /* Process stub sections (eg BE8 encoding, ...). */
10890 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
10891 int i;
10892 for (i=0; i<htab->top_id; i++)
10893 {
10894 sec = htab->stub_group[i].stub_sec;
10895 /* Only process it once, in its link_sec slot. */
10896 if (sec && i == htab->stub_group[i].link_sec->id)
10897 {
10898 osec = sec->output_section;
10899 elf32_arm_write_section (abfd, info, sec, sec->contents);
10900 if (! bfd_set_section_contents (abfd, osec, sec->contents,
10901 sec->output_offset, sec->size))
10902 return FALSE;
10903 }
10904 }
10905
10906 /* Write out any glue sections now that we have created all the
10907 stubs. */
10908 if (globals->bfd_of_glue_owner != NULL)
10909 {
10910 if (! elf32_arm_output_glue_section (info, abfd,
10911 globals->bfd_of_glue_owner,
10912 ARM2THUMB_GLUE_SECTION_NAME))
10913 return FALSE;
10914
10915 if (! elf32_arm_output_glue_section (info, abfd,
10916 globals->bfd_of_glue_owner,
10917 THUMB2ARM_GLUE_SECTION_NAME))
10918 return FALSE;
10919
10920 if (! elf32_arm_output_glue_section (info, abfd,
10921 globals->bfd_of_glue_owner,
10922 VFP11_ERRATUM_VENEER_SECTION_NAME))
10923 return FALSE;
10924
10925 if (! elf32_arm_output_glue_section (info, abfd,
10926 globals->bfd_of_glue_owner,
10927 ARM_BX_GLUE_SECTION_NAME))
10928 return FALSE;
10929 }
10930
10931 return TRUE;
10932 }
10933
10934 /* Return a best guess for the machine number based on the attributes. */
10935
10936 static unsigned int
10937 bfd_arm_get_mach_from_attributes (bfd * abfd)
10938 {
10939 int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch);
10940
10941 switch (arch)
10942 {
10943 case TAG_CPU_ARCH_V4: return bfd_mach_arm_4;
10944 case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T;
10945 case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T;
10946
10947 case TAG_CPU_ARCH_V5TE:
10948 {
10949 char * name;
10950
10951 BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES);
10952 name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s;
10953
10954 if (name)
10955 {
10956 if (strcmp (name, "IWMMXT2") == 0)
10957 return bfd_mach_arm_iWMMXt2;
10958
10959 if (strcmp (name, "IWMMXT") == 0)
10960 return bfd_mach_arm_iWMMXt;
10961 }
10962
10963 return bfd_mach_arm_5TE;
10964 }
10965
10966 default:
10967 return bfd_mach_arm_unknown;
10968 }
10969 }
10970
10971 /* Set the right machine number. */
10972
10973 static bfd_boolean
10974 elf32_arm_object_p (bfd *abfd)
10975 {
10976 unsigned int mach;
10977
10978 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
10979
10980 if (mach == bfd_mach_arm_unknown)
10981 {
10982 if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
10983 mach = bfd_mach_arm_ep9312;
10984 else
10985 mach = bfd_arm_get_mach_from_attributes (abfd);
10986 }
10987
10988 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
10989 return TRUE;
10990 }
10991
10992 /* Function to keep ARM specific flags in the ELF header. */
10993
10994 static bfd_boolean
10995 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
10996 {
10997 if (elf_flags_init (abfd)
10998 && elf_elfheader (abfd)->e_flags != flags)
10999 {
11000 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
11001 {
11002 if (flags & EF_ARM_INTERWORK)
11003 (*_bfd_error_handler)
11004 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
11005 abfd);
11006 else
11007 _bfd_error_handler
11008 (_("Warning: Clearing the interworking flag of %B due to outside request"),
11009 abfd);
11010 }
11011 }
11012 else
11013 {
11014 elf_elfheader (abfd)->e_flags = flags;
11015 elf_flags_init (abfd) = TRUE;
11016 }
11017
11018 return TRUE;
11019 }
11020
11021 /* Copy backend specific data from one object module to another. */
11022
11023 static bfd_boolean
11024 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
11025 {
11026 flagword in_flags;
11027 flagword out_flags;
11028
11029 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
11030 return TRUE;
11031
11032 in_flags = elf_elfheader (ibfd)->e_flags;
11033 out_flags = elf_elfheader (obfd)->e_flags;
11034
11035 if (elf_flags_init (obfd)
11036 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
11037 && in_flags != out_flags)
11038 {
11039 /* Cannot mix APCS26 and APCS32 code. */
11040 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
11041 return FALSE;
11042
11043 /* Cannot mix float APCS and non-float APCS code. */
11044 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
11045 return FALSE;
11046
11047 /* If the src and dest have different interworking flags
11048 then turn off the interworking bit. */
11049 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
11050 {
11051 if (out_flags & EF_ARM_INTERWORK)
11052 _bfd_error_handler
11053 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
11054 obfd, ibfd);
11055
11056 in_flags &= ~EF_ARM_INTERWORK;
11057 }
11058
11059 /* Likewise for PIC, though don't warn for this case. */
11060 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
11061 in_flags &= ~EF_ARM_PIC;
11062 }
11063
11064 elf_elfheader (obfd)->e_flags = in_flags;
11065 elf_flags_init (obfd) = TRUE;
11066
11067 /* Also copy the EI_OSABI field. */
11068 elf_elfheader (obfd)->e_ident[EI_OSABI] =
11069 elf_elfheader (ibfd)->e_ident[EI_OSABI];
11070
11071 /* Copy object attributes. */
11072 _bfd_elf_copy_obj_attributes (ibfd, obfd);
11073
11074 return TRUE;
11075 }
11076
11077 /* Values for Tag_ABI_PCS_R9_use. */
11078 enum
11079 {
11080 AEABI_R9_V6,
11081 AEABI_R9_SB,
11082 AEABI_R9_TLS,
11083 AEABI_R9_unused
11084 };
11085
11086 /* Values for Tag_ABI_PCS_RW_data. */
11087 enum
11088 {
11089 AEABI_PCS_RW_data_absolute,
11090 AEABI_PCS_RW_data_PCrel,
11091 AEABI_PCS_RW_data_SBrel,
11092 AEABI_PCS_RW_data_unused
11093 };
11094
11095 /* Values for Tag_ABI_enum_size. */
11096 enum
11097 {
11098 AEABI_enum_unused,
11099 AEABI_enum_short,
11100 AEABI_enum_wide,
11101 AEABI_enum_forced_wide
11102 };
11103
11104 /* Determine whether an object attribute tag takes an integer, a
11105 string or both. */
11106
11107 static int
11108 elf32_arm_obj_attrs_arg_type (int tag)
11109 {
11110 if (tag == Tag_compatibility)
11111 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
11112 else if (tag == Tag_nodefaults)
11113 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
11114 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
11115 return ATTR_TYPE_FLAG_STR_VAL;
11116 else if (tag < 32)
11117 return ATTR_TYPE_FLAG_INT_VAL;
11118 else
11119 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
11120 }
11121
11122 /* The ABI defines that Tag_conformance should be emitted first, and that
11123 Tag_nodefaults should be second (if either is defined). This sets those
11124 two positions, and bumps up the position of all the remaining tags to
11125 compensate. */
11126 static int
11127 elf32_arm_obj_attrs_order (int num)
11128 {
11129 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
11130 return Tag_conformance;
11131 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
11132 return Tag_nodefaults;
11133 if ((num - 2) < Tag_nodefaults)
11134 return num - 2;
11135 if ((num - 1) < Tag_conformance)
11136 return num - 1;
11137 return num;
11138 }
11139
11140 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
11141 static bfd_boolean
11142 elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
11143 {
11144 if ((tag & 127) < 64)
11145 {
11146 _bfd_error_handler
11147 (_("%B: Unknown mandatory EABI object attribute %d"),
11148 abfd, tag);
11149 bfd_set_error (bfd_error_bad_value);
11150 return FALSE;
11151 }
11152 else
11153 {
11154 _bfd_error_handler
11155 (_("Warning: %B: Unknown EABI object attribute %d"),
11156 abfd, tag);
11157 return TRUE;
11158 }
11159 }
11160
11161 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
11162 Returns -1 if no architecture could be read. */
11163
11164 static int
11165 get_secondary_compatible_arch (bfd *abfd)
11166 {
11167 obj_attribute *attr =
11168 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
11169
11170 /* Note: the tag and its argument below are uleb128 values, though
11171 currently-defined values fit in one byte for each. */
11172 if (attr->s
11173 && attr->s[0] == Tag_CPU_arch
11174 && (attr->s[1] & 128) != 128
11175 && attr->s[2] == 0)
11176 return attr->s[1];
11177
11178 /* This tag is "safely ignorable", so don't complain if it looks funny. */
11179 return -1;
11180 }
11181
11182 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
11183 The tag is removed if ARCH is -1. */
11184
11185 static void
11186 set_secondary_compatible_arch (bfd *abfd, int arch)
11187 {
11188 obj_attribute *attr =
11189 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
11190
11191 if (arch == -1)
11192 {
11193 attr->s = NULL;
11194 return;
11195 }
11196
11197 /* Note: the tag and its argument below are uleb128 values, though
11198 currently-defined values fit in one byte for each. */
11199 if (!attr->s)
11200 attr->s = (char *) bfd_alloc (abfd, 3);
11201 attr->s[0] = Tag_CPU_arch;
11202 attr->s[1] = arch;
11203 attr->s[2] = '\0';
11204 }
11205
11206 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
11207 into account. */
11208
11209 static int
11210 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
11211 int newtag, int secondary_compat)
11212 {
11213 #define T(X) TAG_CPU_ARCH_##X
11214 int tagl, tagh, result;
11215 const int v6t2[] =
11216 {
11217 T(V6T2), /* PRE_V4. */
11218 T(V6T2), /* V4. */
11219 T(V6T2), /* V4T. */
11220 T(V6T2), /* V5T. */
11221 T(V6T2), /* V5TE. */
11222 T(V6T2), /* V5TEJ. */
11223 T(V6T2), /* V6. */
11224 T(V7), /* V6KZ. */
11225 T(V6T2) /* V6T2. */
11226 };
11227 const int v6k[] =
11228 {
11229 T(V6K), /* PRE_V4. */
11230 T(V6K), /* V4. */
11231 T(V6K), /* V4T. */
11232 T(V6K), /* V5T. */
11233 T(V6K), /* V5TE. */
11234 T(V6K), /* V5TEJ. */
11235 T(V6K), /* V6. */
11236 T(V6KZ), /* V6KZ. */
11237 T(V7), /* V6T2. */
11238 T(V6K) /* V6K. */
11239 };
11240 const int v7[] =
11241 {
11242 T(V7), /* PRE_V4. */
11243 T(V7), /* V4. */
11244 T(V7), /* V4T. */
11245 T(V7), /* V5T. */
11246 T(V7), /* V5TE. */
11247 T(V7), /* V5TEJ. */
11248 T(V7), /* V6. */
11249 T(V7), /* V6KZ. */
11250 T(V7), /* V6T2. */
11251 T(V7), /* V6K. */
11252 T(V7) /* V7. */
11253 };
11254 const int v6_m[] =
11255 {
11256 -1, /* PRE_V4. */
11257 -1, /* V4. */
11258 T(V6K), /* V4T. */
11259 T(V6K), /* V5T. */
11260 T(V6K), /* V5TE. */
11261 T(V6K), /* V5TEJ. */
11262 T(V6K), /* V6. */
11263 T(V6KZ), /* V6KZ. */
11264 T(V7), /* V6T2. */
11265 T(V6K), /* V6K. */
11266 T(V7), /* V7. */
11267 T(V6_M) /* V6_M. */
11268 };
11269 const int v6s_m[] =
11270 {
11271 -1, /* PRE_V4. */
11272 -1, /* V4. */
11273 T(V6K), /* V4T. */
11274 T(V6K), /* V5T. */
11275 T(V6K), /* V5TE. */
11276 T(V6K), /* V5TEJ. */
11277 T(V6K), /* V6. */
11278 T(V6KZ), /* V6KZ. */
11279 T(V7), /* V6T2. */
11280 T(V6K), /* V6K. */
11281 T(V7), /* V7. */
11282 T(V6S_M), /* V6_M. */
11283 T(V6S_M) /* V6S_M. */
11284 };
11285 const int v7e_m[] =
11286 {
11287 -1, /* PRE_V4. */
11288 -1, /* V4. */
11289 T(V7E_M), /* V4T. */
11290 T(V7E_M), /* V5T. */
11291 T(V7E_M), /* V5TE. */
11292 T(V7E_M), /* V5TEJ. */
11293 T(V7E_M), /* V6. */
11294 T(V7E_M), /* V6KZ. */
11295 T(V7E_M), /* V6T2. */
11296 T(V7E_M), /* V6K. */
11297 T(V7E_M), /* V7. */
11298 T(V7E_M), /* V6_M. */
11299 T(V7E_M), /* V6S_M. */
11300 T(V7E_M) /* V7E_M. */
11301 };
11302 const int v8[] =
11303 {
11304 T(V8), /* PRE_V4. */
11305 T(V8), /* V4. */
11306 T(V8), /* V4T. */
11307 T(V8), /* V5T. */
11308 T(V8), /* V5TE. */
11309 T(V8), /* V5TEJ. */
11310 T(V8), /* V6. */
11311 T(V8), /* V6KZ. */
11312 T(V8), /* V6T2. */
11313 T(V8), /* V6K. */
11314 T(V8), /* V7. */
11315 T(V8), /* V6_M. */
11316 T(V8), /* V6S_M. */
11317 T(V8), /* V7E_M. */
11318 T(V8) /* V8. */
11319 };
11320 const int v4t_plus_v6_m[] =
11321 {
11322 -1, /* PRE_V4. */
11323 -1, /* V4. */
11324 T(V4T), /* V4T. */
11325 T(V5T), /* V5T. */
11326 T(V5TE), /* V5TE. */
11327 T(V5TEJ), /* V5TEJ. */
11328 T(V6), /* V6. */
11329 T(V6KZ), /* V6KZ. */
11330 T(V6T2), /* V6T2. */
11331 T(V6K), /* V6K. */
11332 T(V7), /* V7. */
11333 T(V6_M), /* V6_M. */
11334 T(V6S_M), /* V6S_M. */
11335 T(V7E_M), /* V7E_M. */
11336 T(V8), /* V8. */
11337 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
11338 };
11339 const int *comb[] =
11340 {
11341 v6t2,
11342 v6k,
11343 v7,
11344 v6_m,
11345 v6s_m,
11346 v7e_m,
11347 v8,
11348 /* Pseudo-architecture. */
11349 v4t_plus_v6_m
11350 };
11351
11352 /* Check we've not got a higher architecture than we know about. */
11353
11354 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
11355 {
11356 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
11357 return -1;
11358 }
11359
11360 /* Override old tag if we have a Tag_also_compatible_with on the output. */
11361
11362 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
11363 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
11364 oldtag = T(V4T_PLUS_V6_M);
11365
11366 /* And override the new tag if we have a Tag_also_compatible_with on the
11367 input. */
11368
11369 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
11370 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
11371 newtag = T(V4T_PLUS_V6_M);
11372
11373 tagl = (oldtag < newtag) ? oldtag : newtag;
11374 result = tagh = (oldtag > newtag) ? oldtag : newtag;
11375
11376 /* Architectures before V6KZ add features monotonically. */
11377 if (tagh <= TAG_CPU_ARCH_V6KZ)
11378 return result;
11379
11380 result = comb[tagh - T(V6T2)][tagl];
11381
11382 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
11383 as the canonical version. */
11384 if (result == T(V4T_PLUS_V6_M))
11385 {
11386 result = T(V4T);
11387 *secondary_compat_out = T(V6_M);
11388 }
11389 else
11390 *secondary_compat_out = -1;
11391
11392 if (result == -1)
11393 {
11394 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
11395 ibfd, oldtag, newtag);
11396 return -1;
11397 }
11398
11399 return result;
11400 #undef T
11401 }
11402
11403 /* Query attributes object to see if integer divide instructions may be
11404 present in an object. */
11405 static bfd_boolean
11406 elf32_arm_attributes_accept_div (const obj_attribute *attr)
11407 {
11408 int arch = attr[Tag_CPU_arch].i;
11409 int profile = attr[Tag_CPU_arch_profile].i;
11410
11411 switch (attr[Tag_DIV_use].i)
11412 {
11413 case 0:
11414 /* Integer divide allowed if instruction contained in archetecture. */
11415 if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
11416 return TRUE;
11417 else if (arch >= TAG_CPU_ARCH_V7E_M)
11418 return TRUE;
11419 else
11420 return FALSE;
11421
11422 case 1:
11423 /* Integer divide explicitly prohibited. */
11424 return FALSE;
11425
11426 default:
11427 /* Unrecognised case - treat as allowing divide everywhere. */
11428 case 2:
11429 /* Integer divide allowed in ARM state. */
11430 return TRUE;
11431 }
11432 }
11433
11434 /* Query attributes object to see if integer divide instructions are
11435 forbidden to be in the object. This is not the inverse of
11436 elf32_arm_attributes_accept_div. */
11437 static bfd_boolean
11438 elf32_arm_attributes_forbid_div (const obj_attribute *attr)
11439 {
11440 return attr[Tag_DIV_use].i == 1;
11441 }
11442
11443 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
11444 are conflicting attributes. */
11445
11446 static bfd_boolean
11447 elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
11448 {
11449 obj_attribute *in_attr;
11450 obj_attribute *out_attr;
11451 /* Some tags have 0 = don't care, 1 = strong requirement,
11452 2 = weak requirement. */
11453 static const int order_021[3] = {0, 2, 1};
11454 int i;
11455 bfd_boolean result = TRUE;
11456
11457 /* Skip the linker stubs file. This preserves previous behavior
11458 of accepting unknown attributes in the first input file - but
11459 is that a bug? */
11460 if (ibfd->flags & BFD_LINKER_CREATED)
11461 return TRUE;
11462
11463 if (!elf_known_obj_attributes_proc (obfd)[0].i)
11464 {
11465 /* This is the first object. Copy the attributes. */
11466 _bfd_elf_copy_obj_attributes (ibfd, obfd);
11467
11468 out_attr = elf_known_obj_attributes_proc (obfd);
11469
11470 /* Use the Tag_null value to indicate the attributes have been
11471 initialized. */
11472 out_attr[0].i = 1;
11473
11474 /* We do not output objects with Tag_MPextension_use_legacy - we move
11475 the attribute's value to Tag_MPextension_use. */
11476 if (out_attr[Tag_MPextension_use_legacy].i != 0)
11477 {
11478 if (out_attr[Tag_MPextension_use].i != 0
11479 && out_attr[Tag_MPextension_use_legacy].i
11480 != out_attr[Tag_MPextension_use].i)
11481 {
11482 _bfd_error_handler
11483 (_("Error: %B has both the current and legacy "
11484 "Tag_MPextension_use attributes"), ibfd);
11485 result = FALSE;
11486 }
11487
11488 out_attr[Tag_MPextension_use] =
11489 out_attr[Tag_MPextension_use_legacy];
11490 out_attr[Tag_MPextension_use_legacy].type = 0;
11491 out_attr[Tag_MPextension_use_legacy].i = 0;
11492 }
11493
11494 return result;
11495 }
11496
11497 in_attr = elf_known_obj_attributes_proc (ibfd);
11498 out_attr = elf_known_obj_attributes_proc (obfd);
11499 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
11500 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
11501 {
11502 /* Ignore mismatches if the object doesn't use floating point. */
11503 if (out_attr[Tag_ABI_FP_number_model].i == 0)
11504 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
11505 else if (in_attr[Tag_ABI_FP_number_model].i != 0)
11506 {
11507 _bfd_error_handler
11508 (_("error: %B uses VFP register arguments, %B does not"),
11509 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
11510 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
11511 result = FALSE;
11512 }
11513 }
11514
11515 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
11516 {
11517 /* Merge this attribute with existing attributes. */
11518 switch (i)
11519 {
11520 case Tag_CPU_raw_name:
11521 case Tag_CPU_name:
11522 /* These are merged after Tag_CPU_arch. */
11523 break;
11524
11525 case Tag_ABI_optimization_goals:
11526 case Tag_ABI_FP_optimization_goals:
11527 /* Use the first value seen. */
11528 break;
11529
11530 case Tag_CPU_arch:
11531 {
11532 int secondary_compat = -1, secondary_compat_out = -1;
11533 unsigned int saved_out_attr = out_attr[i].i;
11534 static const char *name_table[] = {
11535 /* These aren't real CPU names, but we can't guess
11536 that from the architecture version alone. */
11537 "Pre v4",
11538 "ARM v4",
11539 "ARM v4T",
11540 "ARM v5T",
11541 "ARM v5TE",
11542 "ARM v5TEJ",
11543 "ARM v6",
11544 "ARM v6KZ",
11545 "ARM v6T2",
11546 "ARM v6K",
11547 "ARM v7",
11548 "ARM v6-M",
11549 "ARM v6S-M",
11550 "ARM v8"
11551 };
11552
11553 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
11554 secondary_compat = get_secondary_compatible_arch (ibfd);
11555 secondary_compat_out = get_secondary_compatible_arch (obfd);
11556 out_attr[i].i = tag_cpu_arch_combine (ibfd, out_attr[i].i,
11557 &secondary_compat_out,
11558 in_attr[i].i,
11559 secondary_compat);
11560 set_secondary_compatible_arch (obfd, secondary_compat_out);
11561
11562 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
11563 if (out_attr[i].i == saved_out_attr)
11564 ; /* Leave the names alone. */
11565 else if (out_attr[i].i == in_attr[i].i)
11566 {
11567 /* The output architecture has been changed to match the
11568 input architecture. Use the input names. */
11569 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
11570 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
11571 : NULL;
11572 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
11573 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
11574 : NULL;
11575 }
11576 else
11577 {
11578 out_attr[Tag_CPU_name].s = NULL;
11579 out_attr[Tag_CPU_raw_name].s = NULL;
11580 }
11581
11582 /* If we still don't have a value for Tag_CPU_name,
11583 make one up now. Tag_CPU_raw_name remains blank. */
11584 if (out_attr[Tag_CPU_name].s == NULL
11585 && out_attr[i].i < ARRAY_SIZE (name_table))
11586 out_attr[Tag_CPU_name].s =
11587 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
11588 }
11589 break;
11590
11591 case Tag_ARM_ISA_use:
11592 case Tag_THUMB_ISA_use:
11593 case Tag_WMMX_arch:
11594 case Tag_Advanced_SIMD_arch:
11595 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
11596 case Tag_ABI_FP_rounding:
11597 case Tag_ABI_FP_exceptions:
11598 case Tag_ABI_FP_user_exceptions:
11599 case Tag_ABI_FP_number_model:
11600 case Tag_FP_HP_extension:
11601 case Tag_CPU_unaligned_access:
11602 case Tag_T2EE_use:
11603 case Tag_MPextension_use:
11604 /* Use the largest value specified. */
11605 if (in_attr[i].i > out_attr[i].i)
11606 out_attr[i].i = in_attr[i].i;
11607 break;
11608
11609 case Tag_ABI_align_preserved:
11610 case Tag_ABI_PCS_RO_data:
11611 /* Use the smallest value specified. */
11612 if (in_attr[i].i < out_attr[i].i)
11613 out_attr[i].i = in_attr[i].i;
11614 break;
11615
11616 case Tag_ABI_align_needed:
11617 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
11618 && (in_attr[Tag_ABI_align_preserved].i == 0
11619 || out_attr[Tag_ABI_align_preserved].i == 0))
11620 {
11621 /* This error message should be enabled once all non-conformant
11622 binaries in the toolchain have had the attributes set
11623 properly.
11624 _bfd_error_handler
11625 (_("error: %B: 8-byte data alignment conflicts with %B"),
11626 obfd, ibfd);
11627 result = FALSE; */
11628 }
11629 /* Fall through. */
11630 case Tag_ABI_FP_denormal:
11631 case Tag_ABI_PCS_GOT_use:
11632 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
11633 value if greater than 2 (for future-proofing). */
11634 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
11635 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
11636 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
11637 out_attr[i].i = in_attr[i].i;
11638 break;
11639
11640 case Tag_Virtualization_use:
11641 /* The virtualization tag effectively stores two bits of
11642 information: the intended use of TrustZone (in bit 0), and the
11643 intended use of Virtualization (in bit 1). */
11644 if (out_attr[i].i == 0)
11645 out_attr[i].i = in_attr[i].i;
11646 else if (in_attr[i].i != 0
11647 && in_attr[i].i != out_attr[i].i)
11648 {
11649 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
11650 out_attr[i].i = 3;
11651 else
11652 {
11653 _bfd_error_handler
11654 (_("error: %B: unable to merge virtualization attributes "
11655 "with %B"),
11656 obfd, ibfd);
11657 result = FALSE;
11658 }
11659 }
11660 break;
11661
11662 case Tag_CPU_arch_profile:
11663 if (out_attr[i].i != in_attr[i].i)
11664 {
11665 /* 0 will merge with anything.
11666 'A' and 'S' merge to 'A'.
11667 'R' and 'S' merge to 'R'.
11668 'M' and 'A|R|S' is an error. */
11669 if (out_attr[i].i == 0
11670 || (out_attr[i].i == 'S'
11671 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
11672 out_attr[i].i = in_attr[i].i;
11673 else if (in_attr[i].i == 0
11674 || (in_attr[i].i == 'S'
11675 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
11676 ; /* Do nothing. */
11677 else
11678 {
11679 _bfd_error_handler
11680 (_("error: %B: Conflicting architecture profiles %c/%c"),
11681 ibfd,
11682 in_attr[i].i ? in_attr[i].i : '0',
11683 out_attr[i].i ? out_attr[i].i : '0');
11684 result = FALSE;
11685 }
11686 }
11687 break;
11688 case Tag_FP_arch:
11689 {
11690 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
11691 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
11692 when it's 0. It might mean absence of FP hardware if
11693 Tag_FP_arch is zero, otherwise it is effectively SP + DP. */
11694
11695 #define VFP_VERSION_COUNT 8
11696 static const struct
11697 {
11698 int ver;
11699 int regs;
11700 } vfp_versions[VFP_VERSION_COUNT] =
11701 {
11702 {0, 0},
11703 {1, 16},
11704 {2, 16},
11705 {3, 32},
11706 {3, 16},
11707 {4, 32},
11708 {4, 16},
11709 {8, 32}
11710 };
11711 int ver;
11712 int regs;
11713 int newval;
11714
11715 /* If the output has no requirement about FP hardware,
11716 follow the requirement of the input. */
11717 if (out_attr[i].i == 0)
11718 {
11719 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
11720 out_attr[i].i = in_attr[i].i;
11721 out_attr[Tag_ABI_HardFP_use].i
11722 = in_attr[Tag_ABI_HardFP_use].i;
11723 break;
11724 }
11725 /* If the input has no requirement about FP hardware, do
11726 nothing. */
11727 else if (in_attr[i].i == 0)
11728 {
11729 BFD_ASSERT (in_attr[Tag_ABI_HardFP_use].i == 0);
11730 break;
11731 }
11732
11733 /* Both the input and the output have nonzero Tag_FP_arch.
11734 So Tag_ABI_HardFP_use is (SP & DP) when it's zero. */
11735
11736 /* If both the input and the output have zero Tag_ABI_HardFP_use,
11737 do nothing. */
11738 if (in_attr[Tag_ABI_HardFP_use].i == 0
11739 && out_attr[Tag_ABI_HardFP_use].i == 0)
11740 ;
11741 /* If the input and the output have different Tag_ABI_HardFP_use,
11742 the combination of them is 3 (SP & DP). */
11743 else if (in_attr[Tag_ABI_HardFP_use].i
11744 != out_attr[Tag_ABI_HardFP_use].i)
11745 out_attr[Tag_ABI_HardFP_use].i = 3;
11746
11747 /* Now we can handle Tag_FP_arch. */
11748
11749 /* Values of VFP_VERSION_COUNT or more aren't defined, so just
11750 pick the biggest. */
11751 if (in_attr[i].i >= VFP_VERSION_COUNT
11752 && in_attr[i].i > out_attr[i].i)
11753 {
11754 out_attr[i] = in_attr[i];
11755 break;
11756 }
11757 /* The output uses the superset of input features
11758 (ISA version) and registers. */
11759 ver = vfp_versions[in_attr[i].i].ver;
11760 if (ver < vfp_versions[out_attr[i].i].ver)
11761 ver = vfp_versions[out_attr[i].i].ver;
11762 regs = vfp_versions[in_attr[i].i].regs;
11763 if (regs < vfp_versions[out_attr[i].i].regs)
11764 regs = vfp_versions[out_attr[i].i].regs;
11765 /* This assumes all possible supersets are also a valid
11766 options. */
11767 for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--)
11768 {
11769 if (regs == vfp_versions[newval].regs
11770 && ver == vfp_versions[newval].ver)
11771 break;
11772 }
11773 out_attr[i].i = newval;
11774 }
11775 break;
11776 case Tag_PCS_config:
11777 if (out_attr[i].i == 0)
11778 out_attr[i].i = in_attr[i].i;
11779 else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i)
11780 {
11781 /* It's sometimes ok to mix different configs, so this is only
11782 a warning. */
11783 _bfd_error_handler
11784 (_("Warning: %B: Conflicting platform configuration"), ibfd);
11785 }
11786 break;
11787 case Tag_ABI_PCS_R9_use:
11788 if (in_attr[i].i != out_attr[i].i
11789 && out_attr[i].i != AEABI_R9_unused
11790 && in_attr[i].i != AEABI_R9_unused)
11791 {
11792 _bfd_error_handler
11793 (_("error: %B: Conflicting use of R9"), ibfd);
11794 result = FALSE;
11795 }
11796 if (out_attr[i].i == AEABI_R9_unused)
11797 out_attr[i].i = in_attr[i].i;
11798 break;
11799 case Tag_ABI_PCS_RW_data:
11800 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
11801 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
11802 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
11803 {
11804 _bfd_error_handler
11805 (_("error: %B: SB relative addressing conflicts with use of R9"),
11806 ibfd);
11807 result = FALSE;
11808 }
11809 /* Use the smallest value specified. */
11810 if (in_attr[i].i < out_attr[i].i)
11811 out_attr[i].i = in_attr[i].i;
11812 break;
11813 case Tag_ABI_PCS_wchar_t:
11814 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
11815 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
11816 {
11817 _bfd_error_handler
11818 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
11819 ibfd, in_attr[i].i, out_attr[i].i);
11820 }
11821 else if (in_attr[i].i && !out_attr[i].i)
11822 out_attr[i].i = in_attr[i].i;
11823 break;
11824 case Tag_ABI_enum_size:
11825 if (in_attr[i].i != AEABI_enum_unused)
11826 {
11827 if (out_attr[i].i == AEABI_enum_unused
11828 || out_attr[i].i == AEABI_enum_forced_wide)
11829 {
11830 /* The existing object is compatible with anything.
11831 Use whatever requirements the new object has. */
11832 out_attr[i].i = in_attr[i].i;
11833 }
11834 else if (in_attr[i].i != AEABI_enum_forced_wide
11835 && out_attr[i].i != in_attr[i].i
11836 && !elf_arm_tdata (obfd)->no_enum_size_warning)
11837 {
11838 static const char *aeabi_enum_names[] =
11839 { "", "variable-size", "32-bit", "" };
11840 const char *in_name =
11841 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
11842 ? aeabi_enum_names[in_attr[i].i]
11843 : "<unknown>";
11844 const char *out_name =
11845 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
11846 ? aeabi_enum_names[out_attr[i].i]
11847 : "<unknown>";
11848 _bfd_error_handler
11849 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
11850 ibfd, in_name, out_name);
11851 }
11852 }
11853 break;
11854 case Tag_ABI_VFP_args:
11855 /* Aready done. */
11856 break;
11857 case Tag_ABI_WMMX_args:
11858 if (in_attr[i].i != out_attr[i].i)
11859 {
11860 _bfd_error_handler
11861 (_("error: %B uses iWMMXt register arguments, %B does not"),
11862 ibfd, obfd);
11863 result = FALSE;
11864 }
11865 break;
11866 case Tag_compatibility:
11867 /* Merged in target-independent code. */
11868 break;
11869 case Tag_ABI_HardFP_use:
11870 /* This is handled along with Tag_FP_arch. */
11871 break;
11872 case Tag_ABI_FP_16bit_format:
11873 if (in_attr[i].i != 0 && out_attr[i].i != 0)
11874 {
11875 if (in_attr[i].i != out_attr[i].i)
11876 {
11877 _bfd_error_handler
11878 (_("error: fp16 format mismatch between %B and %B"),
11879 ibfd, obfd);
11880 result = FALSE;
11881 }
11882 }
11883 if (in_attr[i].i != 0)
11884 out_attr[i].i = in_attr[i].i;
11885 break;
11886
11887 case Tag_DIV_use:
11888 /* A value of zero on input means that the divide instruction may
11889 be used if available in the base architecture as specified via
11890 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that
11891 the user did not want divide instructions. A value of 2
11892 explicitly means that divide instructions were allowed in ARM
11893 and Thumb state. */
11894 if (in_attr[i].i == out_attr[i].i)
11895 /* Do nothing. */ ;
11896 else if (elf32_arm_attributes_forbid_div (in_attr)
11897 && !elf32_arm_attributes_accept_div (out_attr))
11898 out_attr[i].i = 1;
11899 else if (elf32_arm_attributes_forbid_div (out_attr)
11900 && elf32_arm_attributes_accept_div (in_attr))
11901 out_attr[i].i = in_attr[i].i;
11902 else if (in_attr[i].i == 2)
11903 out_attr[i].i = in_attr[i].i;
11904 break;
11905
11906 case Tag_MPextension_use_legacy:
11907 /* We don't output objects with Tag_MPextension_use_legacy - we
11908 move the value to Tag_MPextension_use. */
11909 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
11910 {
11911 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
11912 {
11913 _bfd_error_handler
11914 (_("%B has has both the current and legacy "
11915 "Tag_MPextension_use attributes"),
11916 ibfd);
11917 result = FALSE;
11918 }
11919 }
11920
11921 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
11922 out_attr[Tag_MPextension_use] = in_attr[i];
11923
11924 break;
11925
11926 case Tag_nodefaults:
11927 /* This tag is set if it exists, but the value is unused (and is
11928 typically zero). We don't actually need to do anything here -
11929 the merge happens automatically when the type flags are merged
11930 below. */
11931 break;
11932 case Tag_also_compatible_with:
11933 /* Already done in Tag_CPU_arch. */
11934 break;
11935 case Tag_conformance:
11936 /* Keep the attribute if it matches. Throw it away otherwise.
11937 No attribute means no claim to conform. */
11938 if (!in_attr[i].s || !out_attr[i].s
11939 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
11940 out_attr[i].s = NULL;
11941 break;
11942
11943 default:
11944 result
11945 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
11946 }
11947
11948 /* If out_attr was copied from in_attr then it won't have a type yet. */
11949 if (in_attr[i].type && !out_attr[i].type)
11950 out_attr[i].type = in_attr[i].type;
11951 }
11952
11953 /* Merge Tag_compatibility attributes and any common GNU ones. */
11954 if (!_bfd_elf_merge_object_attributes (ibfd, obfd))
11955 return FALSE;
11956
11957 /* Check for any attributes not known on ARM. */
11958 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
11959
11960 return result;
11961 }
11962
11963
11964 /* Return TRUE if the two EABI versions are incompatible. */
11965
11966 static bfd_boolean
11967 elf32_arm_versions_compatible (unsigned iver, unsigned over)
11968 {
11969 /* v4 and v5 are the same spec before and after it was released,
11970 so allow mixing them. */
11971 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
11972 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
11973 return TRUE;
11974
11975 return (iver == over);
11976 }
11977
11978 /* Merge backend specific data from an object file to the output
11979 object file when linking. */
11980
11981 static bfd_boolean
11982 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd);
11983
11984 /* Display the flags field. */
11985
11986 static bfd_boolean
11987 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
11988 {
11989 FILE * file = (FILE *) ptr;
11990 unsigned long flags;
11991
11992 BFD_ASSERT (abfd != NULL && ptr != NULL);
11993
11994 /* Print normal ELF private data. */
11995 _bfd_elf_print_private_bfd_data (abfd, ptr);
11996
11997 flags = elf_elfheader (abfd)->e_flags;
11998 /* Ignore init flag - it may not be set, despite the flags field
11999 containing valid data. */
12000
12001 /* xgettext:c-format */
12002 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
12003
12004 switch (EF_ARM_EABI_VERSION (flags))
12005 {
12006 case EF_ARM_EABI_UNKNOWN:
12007 /* The following flag bits are GNU extensions and not part of the
12008 official ARM ELF extended ABI. Hence they are only decoded if
12009 the EABI version is not set. */
12010 if (flags & EF_ARM_INTERWORK)
12011 fprintf (file, _(" [interworking enabled]"));
12012
12013 if (flags & EF_ARM_APCS_26)
12014 fprintf (file, " [APCS-26]");
12015 else
12016 fprintf (file, " [APCS-32]");
12017
12018 if (flags & EF_ARM_VFP_FLOAT)
12019 fprintf (file, _(" [VFP float format]"));
12020 else if (flags & EF_ARM_MAVERICK_FLOAT)
12021 fprintf (file, _(" [Maverick float format]"));
12022 else
12023 fprintf (file, _(" [FPA float format]"));
12024
12025 if (flags & EF_ARM_APCS_FLOAT)
12026 fprintf (file, _(" [floats passed in float registers]"));
12027
12028 if (flags & EF_ARM_PIC)
12029 fprintf (file, _(" [position independent]"));
12030
12031 if (flags & EF_ARM_NEW_ABI)
12032 fprintf (file, _(" [new ABI]"));
12033
12034 if (flags & EF_ARM_OLD_ABI)
12035 fprintf (file, _(" [old ABI]"));
12036
12037 if (flags & EF_ARM_SOFT_FLOAT)
12038 fprintf (file, _(" [software FP]"));
12039
12040 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
12041 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
12042 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
12043 | EF_ARM_MAVERICK_FLOAT);
12044 break;
12045
12046 case EF_ARM_EABI_VER1:
12047 fprintf (file, _(" [Version1 EABI]"));
12048
12049 if (flags & EF_ARM_SYMSARESORTED)
12050 fprintf (file, _(" [sorted symbol table]"));
12051 else
12052 fprintf (file, _(" [unsorted symbol table]"));
12053
12054 flags &= ~ EF_ARM_SYMSARESORTED;
12055 break;
12056
12057 case EF_ARM_EABI_VER2:
12058 fprintf (file, _(" [Version2 EABI]"));
12059
12060 if (flags & EF_ARM_SYMSARESORTED)
12061 fprintf (file, _(" [sorted symbol table]"));
12062 else
12063 fprintf (file, _(" [unsorted symbol table]"));
12064
12065 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
12066 fprintf (file, _(" [dynamic symbols use segment index]"));
12067
12068 if (flags & EF_ARM_MAPSYMSFIRST)
12069 fprintf (file, _(" [mapping symbols precede others]"));
12070
12071 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
12072 | EF_ARM_MAPSYMSFIRST);
12073 break;
12074
12075 case EF_ARM_EABI_VER3:
12076 fprintf (file, _(" [Version3 EABI]"));
12077 break;
12078
12079 case EF_ARM_EABI_VER4:
12080 fprintf (file, _(" [Version4 EABI]"));
12081 goto eabi;
12082
12083 case EF_ARM_EABI_VER5:
12084 fprintf (file, _(" [Version5 EABI]"));
12085
12086 if (flags & EF_ARM_ABI_FLOAT_SOFT)
12087 fprintf (file, _(" [soft-float ABI]"));
12088
12089 if (flags & EF_ARM_ABI_FLOAT_HARD)
12090 fprintf (file, _(" [hard-float ABI]"));
12091
12092 flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD);
12093
12094 eabi:
12095 if (flags & EF_ARM_BE8)
12096 fprintf (file, _(" [BE8]"));
12097
12098 if (flags & EF_ARM_LE8)
12099 fprintf (file, _(" [LE8]"));
12100
12101 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
12102 break;
12103
12104 default:
12105 fprintf (file, _(" <EABI version unrecognised>"));
12106 break;
12107 }
12108
12109 flags &= ~ EF_ARM_EABIMASK;
12110
12111 if (flags & EF_ARM_RELEXEC)
12112 fprintf (file, _(" [relocatable executable]"));
12113
12114 if (flags & EF_ARM_HASENTRY)
12115 fprintf (file, _(" [has entry point]"));
12116
12117 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
12118
12119 if (flags)
12120 fprintf (file, _("<Unrecognised flag bits set>"));
12121
12122 fputc ('\n', file);
12123
12124 return TRUE;
12125 }
12126
12127 static int
12128 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
12129 {
12130 switch (ELF_ST_TYPE (elf_sym->st_info))
12131 {
12132 case STT_ARM_TFUNC:
12133 return ELF_ST_TYPE (elf_sym->st_info);
12134
12135 case STT_ARM_16BIT:
12136 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
12137 This allows us to distinguish between data used by Thumb instructions
12138 and non-data (which is probably code) inside Thumb regions of an
12139 executable. */
12140 if (type != STT_OBJECT && type != STT_TLS)
12141 return ELF_ST_TYPE (elf_sym->st_info);
12142 break;
12143
12144 default:
12145 break;
12146 }
12147
12148 return type;
12149 }
12150
12151 static asection *
12152 elf32_arm_gc_mark_hook (asection *sec,
12153 struct bfd_link_info *info,
12154 Elf_Internal_Rela *rel,
12155 struct elf_link_hash_entry *h,
12156 Elf_Internal_Sym *sym)
12157 {
12158 if (h != NULL)
12159 switch (ELF32_R_TYPE (rel->r_info))
12160 {
12161 case R_ARM_GNU_VTINHERIT:
12162 case R_ARM_GNU_VTENTRY:
12163 return NULL;
12164 }
12165
12166 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12167 }
12168
12169 /* Update the got entry reference counts for the section being removed. */
12170
12171 static bfd_boolean
12172 elf32_arm_gc_sweep_hook (bfd * abfd,
12173 struct bfd_link_info * info,
12174 asection * sec,
12175 const Elf_Internal_Rela * relocs)
12176 {
12177 Elf_Internal_Shdr *symtab_hdr;
12178 struct elf_link_hash_entry **sym_hashes;
12179 bfd_signed_vma *local_got_refcounts;
12180 const Elf_Internal_Rela *rel, *relend;
12181 struct elf32_arm_link_hash_table * globals;
12182
12183 if (info->relocatable)
12184 return TRUE;
12185
12186 globals = elf32_arm_hash_table (info);
12187 if (globals == NULL)
12188 return FALSE;
12189
12190 elf_section_data (sec)->local_dynrel = NULL;
12191
12192 symtab_hdr = & elf_symtab_hdr (abfd);
12193 sym_hashes = elf_sym_hashes (abfd);
12194 local_got_refcounts = elf_local_got_refcounts (abfd);
12195
12196 check_use_blx (globals);
12197
12198 relend = relocs + sec->reloc_count;
12199 for (rel = relocs; rel < relend; rel++)
12200 {
12201 unsigned long r_symndx;
12202 struct elf_link_hash_entry *h = NULL;
12203 struct elf32_arm_link_hash_entry *eh;
12204 int r_type;
12205 bfd_boolean call_reloc_p;
12206 bfd_boolean may_become_dynamic_p;
12207 bfd_boolean may_need_local_target_p;
12208 union gotplt_union *root_plt;
12209 struct arm_plt_info *arm_plt;
12210
12211 r_symndx = ELF32_R_SYM (rel->r_info);
12212 if (r_symndx >= symtab_hdr->sh_info)
12213 {
12214 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
12215 while (h->root.type == bfd_link_hash_indirect
12216 || h->root.type == bfd_link_hash_warning)
12217 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12218 }
12219 eh = (struct elf32_arm_link_hash_entry *) h;
12220
12221 call_reloc_p = FALSE;
12222 may_become_dynamic_p = FALSE;
12223 may_need_local_target_p = FALSE;
12224
12225 r_type = ELF32_R_TYPE (rel->r_info);
12226 r_type = arm_real_reloc_type (globals, r_type);
12227 switch (r_type)
12228 {
12229 case R_ARM_GOT32:
12230 case R_ARM_GOT_PREL:
12231 case R_ARM_TLS_GD32:
12232 case R_ARM_TLS_IE32:
12233 if (h != NULL)
12234 {
12235 if (h->got.refcount > 0)
12236 h->got.refcount -= 1;
12237 }
12238 else if (local_got_refcounts != NULL)
12239 {
12240 if (local_got_refcounts[r_symndx] > 0)
12241 local_got_refcounts[r_symndx] -= 1;
12242 }
12243 break;
12244
12245 case R_ARM_TLS_LDM32:
12246 globals->tls_ldm_got.refcount -= 1;
12247 break;
12248
12249 case R_ARM_PC24:
12250 case R_ARM_PLT32:
12251 case R_ARM_CALL:
12252 case R_ARM_JUMP24:
12253 case R_ARM_PREL31:
12254 case R_ARM_THM_CALL:
12255 case R_ARM_THM_JUMP24:
12256 case R_ARM_THM_JUMP19:
12257 call_reloc_p = TRUE;
12258 may_need_local_target_p = TRUE;
12259 break;
12260
12261 case R_ARM_ABS12:
12262 if (!globals->vxworks_p)
12263 {
12264 may_need_local_target_p = TRUE;
12265 break;
12266 }
12267 /* Fall through. */
12268 case R_ARM_ABS32:
12269 case R_ARM_ABS32_NOI:
12270 case R_ARM_REL32:
12271 case R_ARM_REL32_NOI:
12272 case R_ARM_MOVW_ABS_NC:
12273 case R_ARM_MOVT_ABS:
12274 case R_ARM_MOVW_PREL_NC:
12275 case R_ARM_MOVT_PREL:
12276 case R_ARM_THM_MOVW_ABS_NC:
12277 case R_ARM_THM_MOVT_ABS:
12278 case R_ARM_THM_MOVW_PREL_NC:
12279 case R_ARM_THM_MOVT_PREL:
12280 /* Should the interworking branches be here also? */
12281 if ((info->shared || globals->root.is_relocatable_executable)
12282 && (sec->flags & SEC_ALLOC) != 0)
12283 {
12284 if (h == NULL
12285 && (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI))
12286 {
12287 call_reloc_p = TRUE;
12288 may_need_local_target_p = TRUE;
12289 }
12290 else
12291 may_become_dynamic_p = TRUE;
12292 }
12293 else
12294 may_need_local_target_p = TRUE;
12295 break;
12296
12297 default:
12298 break;
12299 }
12300
12301 if (may_need_local_target_p
12302 && elf32_arm_get_plt_info (abfd, eh, r_symndx, &root_plt, &arm_plt))
12303 {
12304 /* If PLT refcount book-keeping is wrong and too low, we'll
12305 see a zero value (going to -1) for the root PLT reference
12306 count. */
12307 if (root_plt->refcount >= 0)
12308 {
12309 BFD_ASSERT (root_plt->refcount != 0);
12310 root_plt->refcount -= 1;
12311 }
12312 else
12313 /* A value of -1 means the symbol has become local, forced
12314 or seeing a hidden definition. Any other negative value
12315 is an error. */
12316 BFD_ASSERT (root_plt->refcount == -1);
12317
12318 if (!call_reloc_p)
12319 arm_plt->noncall_refcount--;
12320
12321 if (r_type == R_ARM_THM_CALL)
12322 arm_plt->maybe_thumb_refcount--;
12323
12324 if (r_type == R_ARM_THM_JUMP24
12325 || r_type == R_ARM_THM_JUMP19)
12326 arm_plt->thumb_refcount--;
12327 }
12328
12329 if (may_become_dynamic_p)
12330 {
12331 struct elf_dyn_relocs **pp;
12332 struct elf_dyn_relocs *p;
12333
12334 if (h != NULL)
12335 pp = &(eh->dyn_relocs);
12336 else
12337 {
12338 Elf_Internal_Sym *isym;
12339
12340 isym = bfd_sym_from_r_symndx (&globals->sym_cache,
12341 abfd, r_symndx);
12342 if (isym == NULL)
12343 return FALSE;
12344 pp = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
12345 if (pp == NULL)
12346 return FALSE;
12347 }
12348 for (; (p = *pp) != NULL; pp = &p->next)
12349 if (p->sec == sec)
12350 {
12351 /* Everything must go for SEC. */
12352 *pp = p->next;
12353 break;
12354 }
12355 }
12356 }
12357
12358 return TRUE;
12359 }
12360
12361 /* Look through the relocs for a section during the first phase. */
12362
12363 static bfd_boolean
12364 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
12365 asection *sec, const Elf_Internal_Rela *relocs)
12366 {
12367 Elf_Internal_Shdr *symtab_hdr;
12368 struct elf_link_hash_entry **sym_hashes;
12369 const Elf_Internal_Rela *rel;
12370 const Elf_Internal_Rela *rel_end;
12371 bfd *dynobj;
12372 asection *sreloc;
12373 struct elf32_arm_link_hash_table *htab;
12374 bfd_boolean call_reloc_p;
12375 bfd_boolean may_become_dynamic_p;
12376 bfd_boolean may_need_local_target_p;
12377 unsigned long nsyms;
12378
12379 if (info->relocatable)
12380 return TRUE;
12381
12382 BFD_ASSERT (is_arm_elf (abfd));
12383
12384 htab = elf32_arm_hash_table (info);
12385 if (htab == NULL)
12386 return FALSE;
12387
12388 sreloc = NULL;
12389
12390 /* Create dynamic sections for relocatable executables so that we can
12391 copy relocations. */
12392 if (htab->root.is_relocatable_executable
12393 && ! htab->root.dynamic_sections_created)
12394 {
12395 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
12396 return FALSE;
12397 }
12398
12399 if (htab->root.dynobj == NULL)
12400 htab->root.dynobj = abfd;
12401 if (!create_ifunc_sections (info))
12402 return FALSE;
12403
12404 dynobj = htab->root.dynobj;
12405
12406 symtab_hdr = & elf_symtab_hdr (abfd);
12407 sym_hashes = elf_sym_hashes (abfd);
12408 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
12409
12410 rel_end = relocs + sec->reloc_count;
12411 for (rel = relocs; rel < rel_end; rel++)
12412 {
12413 Elf_Internal_Sym *isym;
12414 struct elf_link_hash_entry *h;
12415 struct elf32_arm_link_hash_entry *eh;
12416 unsigned long r_symndx;
12417 int r_type;
12418
12419 r_symndx = ELF32_R_SYM (rel->r_info);
12420 r_type = ELF32_R_TYPE (rel->r_info);
12421 r_type = arm_real_reloc_type (htab, r_type);
12422
12423 if (r_symndx >= nsyms
12424 /* PR 9934: It is possible to have relocations that do not
12425 refer to symbols, thus it is also possible to have an
12426 object file containing relocations but no symbol table. */
12427 && (r_symndx > STN_UNDEF || nsyms > 0))
12428 {
12429 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
12430 r_symndx);
12431 return FALSE;
12432 }
12433
12434 h = NULL;
12435 isym = NULL;
12436 if (nsyms > 0)
12437 {
12438 if (r_symndx < symtab_hdr->sh_info)
12439 {
12440 /* A local symbol. */
12441 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
12442 abfd, r_symndx);
12443 if (isym == NULL)
12444 return FALSE;
12445 }
12446 else
12447 {
12448 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
12449 while (h->root.type == bfd_link_hash_indirect
12450 || h->root.type == bfd_link_hash_warning)
12451 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12452 }
12453 }
12454
12455 eh = (struct elf32_arm_link_hash_entry *) h;
12456
12457 call_reloc_p = FALSE;
12458 may_become_dynamic_p = FALSE;
12459 may_need_local_target_p = FALSE;
12460
12461 /* Could be done earlier, if h were already available. */
12462 r_type = elf32_arm_tls_transition (info, r_type, h);
12463 switch (r_type)
12464 {
12465 case R_ARM_GOT32:
12466 case R_ARM_GOT_PREL:
12467 case R_ARM_TLS_GD32:
12468 case R_ARM_TLS_IE32:
12469 case R_ARM_TLS_GOTDESC:
12470 case R_ARM_TLS_DESCSEQ:
12471 case R_ARM_THM_TLS_DESCSEQ:
12472 case R_ARM_TLS_CALL:
12473 case R_ARM_THM_TLS_CALL:
12474 /* This symbol requires a global offset table entry. */
12475 {
12476 int tls_type, old_tls_type;
12477
12478 switch (r_type)
12479 {
12480 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
12481
12482 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
12483
12484 case R_ARM_TLS_GOTDESC:
12485 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
12486 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
12487 tls_type = GOT_TLS_GDESC; break;
12488
12489 default: tls_type = GOT_NORMAL; break;
12490 }
12491
12492 if (h != NULL)
12493 {
12494 h->got.refcount++;
12495 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
12496 }
12497 else
12498 {
12499 /* This is a global offset table entry for a local symbol. */
12500 if (!elf32_arm_allocate_local_sym_info (abfd))
12501 return FALSE;
12502 elf_local_got_refcounts (abfd)[r_symndx] += 1;
12503 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
12504 }
12505
12506 /* If a variable is accessed with both tls methods, two
12507 slots may be created. */
12508 if (GOT_TLS_GD_ANY_P (old_tls_type)
12509 && GOT_TLS_GD_ANY_P (tls_type))
12510 tls_type |= old_tls_type;
12511
12512 /* We will already have issued an error message if there
12513 is a TLS/non-TLS mismatch, based on the symbol
12514 type. So just combine any TLS types needed. */
12515 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
12516 && tls_type != GOT_NORMAL)
12517 tls_type |= old_tls_type;
12518
12519 /* If the symbol is accessed in both IE and GDESC
12520 method, we're able to relax. Turn off the GDESC flag,
12521 without messing up with any other kind of tls types
12522 that may be involved */
12523 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
12524 tls_type &= ~GOT_TLS_GDESC;
12525
12526 if (old_tls_type != tls_type)
12527 {
12528 if (h != NULL)
12529 elf32_arm_hash_entry (h)->tls_type = tls_type;
12530 else
12531 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
12532 }
12533 }
12534 /* Fall through. */
12535
12536 case R_ARM_TLS_LDM32:
12537 if (r_type == R_ARM_TLS_LDM32)
12538 htab->tls_ldm_got.refcount++;
12539 /* Fall through. */
12540
12541 case R_ARM_GOTOFF32:
12542 case R_ARM_GOTPC:
12543 if (htab->root.sgot == NULL
12544 && !create_got_section (htab->root.dynobj, info))
12545 return FALSE;
12546 break;
12547
12548 case R_ARM_PC24:
12549 case R_ARM_PLT32:
12550 case R_ARM_CALL:
12551 case R_ARM_JUMP24:
12552 case R_ARM_PREL31:
12553 case R_ARM_THM_CALL:
12554 case R_ARM_THM_JUMP24:
12555 case R_ARM_THM_JUMP19:
12556 call_reloc_p = TRUE;
12557 may_need_local_target_p = TRUE;
12558 break;
12559
12560 case R_ARM_ABS12:
12561 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
12562 ldr __GOTT_INDEX__ offsets. */
12563 if (!htab->vxworks_p)
12564 {
12565 may_need_local_target_p = TRUE;
12566 break;
12567 }
12568 /* Fall through. */
12569
12570 case R_ARM_MOVW_ABS_NC:
12571 case R_ARM_MOVT_ABS:
12572 case R_ARM_THM_MOVW_ABS_NC:
12573 case R_ARM_THM_MOVT_ABS:
12574 if (info->shared)
12575 {
12576 (*_bfd_error_handler)
12577 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
12578 abfd, elf32_arm_howto_table_1[r_type].name,
12579 (h) ? h->root.root.string : "a local symbol");
12580 bfd_set_error (bfd_error_bad_value);
12581 return FALSE;
12582 }
12583
12584 /* Fall through. */
12585 case R_ARM_ABS32:
12586 case R_ARM_ABS32_NOI:
12587 case R_ARM_REL32:
12588 case R_ARM_REL32_NOI:
12589 case R_ARM_MOVW_PREL_NC:
12590 case R_ARM_MOVT_PREL:
12591 case R_ARM_THM_MOVW_PREL_NC:
12592 case R_ARM_THM_MOVT_PREL:
12593
12594 /* Should the interworking branches be listed here? */
12595 if ((info->shared || htab->root.is_relocatable_executable)
12596 && (sec->flags & SEC_ALLOC) != 0)
12597 {
12598 if (h == NULL
12599 && (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI))
12600 {
12601 /* In shared libraries and relocatable executables,
12602 we treat local relative references as calls;
12603 see the related SYMBOL_CALLS_LOCAL code in
12604 allocate_dynrelocs. */
12605 call_reloc_p = TRUE;
12606 may_need_local_target_p = TRUE;
12607 }
12608 else
12609 /* We are creating a shared library or relocatable
12610 executable, and this is a reloc against a global symbol,
12611 or a non-PC-relative reloc against a local symbol.
12612 We may need to copy the reloc into the output. */
12613 may_become_dynamic_p = TRUE;
12614 }
12615 else
12616 may_need_local_target_p = TRUE;
12617 break;
12618
12619 /* This relocation describes the C++ object vtable hierarchy.
12620 Reconstruct it for later use during GC. */
12621 case R_ARM_GNU_VTINHERIT:
12622 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
12623 return FALSE;
12624 break;
12625
12626 /* This relocation describes which C++ vtable entries are actually
12627 used. Record for later use during GC. */
12628 case R_ARM_GNU_VTENTRY:
12629 BFD_ASSERT (h != NULL);
12630 if (h != NULL
12631 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
12632 return FALSE;
12633 break;
12634 }
12635
12636 if (h != NULL)
12637 {
12638 if (call_reloc_p)
12639 /* We may need a .plt entry if the function this reloc
12640 refers to is in a different object, regardless of the
12641 symbol's type. We can't tell for sure yet, because
12642 something later might force the symbol local. */
12643 h->needs_plt = 1;
12644 else if (may_need_local_target_p)
12645 /* If this reloc is in a read-only section, we might
12646 need a copy reloc. We can't check reliably at this
12647 stage whether the section is read-only, as input
12648 sections have not yet been mapped to output sections.
12649 Tentatively set the flag for now, and correct in
12650 adjust_dynamic_symbol. */
12651 h->non_got_ref = 1;
12652 }
12653
12654 if (may_need_local_target_p
12655 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
12656 {
12657 union gotplt_union *root_plt;
12658 struct arm_plt_info *arm_plt;
12659 struct arm_local_iplt_info *local_iplt;
12660
12661 if (h != NULL)
12662 {
12663 root_plt = &h->plt;
12664 arm_plt = &eh->plt;
12665 }
12666 else
12667 {
12668 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
12669 if (local_iplt == NULL)
12670 return FALSE;
12671 root_plt = &local_iplt->root;
12672 arm_plt = &local_iplt->arm;
12673 }
12674
12675 /* If the symbol is a function that doesn't bind locally,
12676 this relocation will need a PLT entry. */
12677 if (root_plt->refcount != -1)
12678 root_plt->refcount += 1;
12679
12680 if (!call_reloc_p)
12681 arm_plt->noncall_refcount++;
12682
12683 /* It's too early to use htab->use_blx here, so we have to
12684 record possible blx references separately from
12685 relocs that definitely need a thumb stub. */
12686
12687 if (r_type == R_ARM_THM_CALL)
12688 arm_plt->maybe_thumb_refcount += 1;
12689
12690 if (r_type == R_ARM_THM_JUMP24
12691 || r_type == R_ARM_THM_JUMP19)
12692 arm_plt->thumb_refcount += 1;
12693 }
12694
12695 if (may_become_dynamic_p)
12696 {
12697 struct elf_dyn_relocs *p, **head;
12698
12699 /* Create a reloc section in dynobj. */
12700 if (sreloc == NULL)
12701 {
12702 sreloc = _bfd_elf_make_dynamic_reloc_section
12703 (sec, dynobj, 2, abfd, ! htab->use_rel);
12704
12705 if (sreloc == NULL)
12706 return FALSE;
12707
12708 /* BPABI objects never have dynamic relocations mapped. */
12709 if (htab->symbian_p)
12710 {
12711 flagword flags;
12712
12713 flags = bfd_get_section_flags (dynobj, sreloc);
12714 flags &= ~(SEC_LOAD | SEC_ALLOC);
12715 bfd_set_section_flags (dynobj, sreloc, flags);
12716 }
12717 }
12718
12719 /* If this is a global symbol, count the number of
12720 relocations we need for this symbol. */
12721 if (h != NULL)
12722 head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
12723 else
12724 {
12725 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
12726 if (head == NULL)
12727 return FALSE;
12728 }
12729
12730 p = *head;
12731 if (p == NULL || p->sec != sec)
12732 {
12733 bfd_size_type amt = sizeof *p;
12734
12735 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
12736 if (p == NULL)
12737 return FALSE;
12738 p->next = *head;
12739 *head = p;
12740 p->sec = sec;
12741 p->count = 0;
12742 p->pc_count = 0;
12743 }
12744
12745 if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
12746 p->pc_count += 1;
12747 p->count += 1;
12748 }
12749 }
12750
12751 return TRUE;
12752 }
12753
12754 /* Unwinding tables are not referenced directly. This pass marks them as
12755 required if the corresponding code section is marked. */
12756
12757 static bfd_boolean
12758 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
12759 elf_gc_mark_hook_fn gc_mark_hook)
12760 {
12761 bfd *sub;
12762 Elf_Internal_Shdr **elf_shdrp;
12763 bfd_boolean again;
12764
12765 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12766
12767 /* Marking EH data may cause additional code sections to be marked,
12768 requiring multiple passes. */
12769 again = TRUE;
12770 while (again)
12771 {
12772 again = FALSE;
12773 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12774 {
12775 asection *o;
12776
12777 if (! is_arm_elf (sub))
12778 continue;
12779
12780 elf_shdrp = elf_elfsections (sub);
12781 for (o = sub->sections; o != NULL; o = o->next)
12782 {
12783 Elf_Internal_Shdr *hdr;
12784
12785 hdr = &elf_section_data (o)->this_hdr;
12786 if (hdr->sh_type == SHT_ARM_EXIDX
12787 && hdr->sh_link
12788 && hdr->sh_link < elf_numsections (sub)
12789 && !o->gc_mark
12790 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
12791 {
12792 again = TRUE;
12793 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12794 return FALSE;
12795 }
12796 }
12797 }
12798 }
12799
12800 return TRUE;
12801 }
12802
12803 /* Treat mapping symbols as special target symbols. */
12804
12805 static bfd_boolean
12806 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
12807 {
12808 return bfd_is_arm_special_symbol_name (sym->name,
12809 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
12810 }
12811
12812 /* This is a copy of elf_find_function() from elf.c except that
12813 ARM mapping symbols are ignored when looking for function names
12814 and STT_ARM_TFUNC is considered to a function type. */
12815
12816 static bfd_boolean
12817 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
12818 asection * section,
12819 asymbol ** symbols,
12820 bfd_vma offset,
12821 const char ** filename_ptr,
12822 const char ** functionname_ptr)
12823 {
12824 const char * filename = NULL;
12825 asymbol * func = NULL;
12826 bfd_vma low_func = 0;
12827 asymbol ** p;
12828
12829 for (p = symbols; *p != NULL; p++)
12830 {
12831 elf_symbol_type *q;
12832
12833 q = (elf_symbol_type *) *p;
12834
12835 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
12836 {
12837 default:
12838 break;
12839 case STT_FILE:
12840 filename = bfd_asymbol_name (&q->symbol);
12841 break;
12842 case STT_FUNC:
12843 case STT_ARM_TFUNC:
12844 case STT_NOTYPE:
12845 /* Skip mapping symbols. */
12846 if ((q->symbol.flags & BSF_LOCAL)
12847 && bfd_is_arm_special_symbol_name (q->symbol.name,
12848 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
12849 continue;
12850 /* Fall through. */
12851 if (bfd_get_section (&q->symbol) == section
12852 && q->symbol.value >= low_func
12853 && q->symbol.value <= offset)
12854 {
12855 func = (asymbol *) q;
12856 low_func = q->symbol.value;
12857 }
12858 break;
12859 }
12860 }
12861
12862 if (func == NULL)
12863 return FALSE;
12864
12865 if (filename_ptr)
12866 *filename_ptr = filename;
12867 if (functionname_ptr)
12868 *functionname_ptr = bfd_asymbol_name (func);
12869
12870 return TRUE;
12871 }
12872
12873
12874 /* Find the nearest line to a particular section and offset, for error
12875 reporting. This code is a duplicate of the code in elf.c, except
12876 that it uses arm_elf_find_function. */
12877
12878 static bfd_boolean
12879 elf32_arm_find_nearest_line (bfd * abfd,
12880 asection * section,
12881 asymbol ** symbols,
12882 bfd_vma offset,
12883 const char ** filename_ptr,
12884 const char ** functionname_ptr,
12885 unsigned int * line_ptr)
12886 {
12887 bfd_boolean found = FALSE;
12888
12889 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
12890
12891 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
12892 section, symbols, offset,
12893 filename_ptr, functionname_ptr,
12894 line_ptr, NULL, 0,
12895 & elf_tdata (abfd)->dwarf2_find_line_info))
12896 {
12897 if (!*functionname_ptr)
12898 arm_elf_find_function (abfd, section, symbols, offset,
12899 *filename_ptr ? NULL : filename_ptr,
12900 functionname_ptr);
12901
12902 return TRUE;
12903 }
12904
12905 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
12906 & found, filename_ptr,
12907 functionname_ptr, line_ptr,
12908 & elf_tdata (abfd)->line_info))
12909 return FALSE;
12910
12911 if (found && (*functionname_ptr || *line_ptr))
12912 return TRUE;
12913
12914 if (symbols == NULL)
12915 return FALSE;
12916
12917 if (! arm_elf_find_function (abfd, section, symbols, offset,
12918 filename_ptr, functionname_ptr))
12919 return FALSE;
12920
12921 *line_ptr = 0;
12922 return TRUE;
12923 }
12924
12925 static bfd_boolean
12926 elf32_arm_find_inliner_info (bfd * abfd,
12927 const char ** filename_ptr,
12928 const char ** functionname_ptr,
12929 unsigned int * line_ptr)
12930 {
12931 bfd_boolean found;
12932 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12933 functionname_ptr, line_ptr,
12934 & elf_tdata (abfd)->dwarf2_find_line_info);
12935 return found;
12936 }
12937
12938 /* Adjust a symbol defined by a dynamic object and referenced by a
12939 regular object. The current definition is in some section of the
12940 dynamic object, but we're not including those sections. We have to
12941 change the definition to something the rest of the link can
12942 understand. */
12943
12944 static bfd_boolean
12945 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
12946 struct elf_link_hash_entry * h)
12947 {
12948 bfd * dynobj;
12949 asection * s;
12950 struct elf32_arm_link_hash_entry * eh;
12951 struct elf32_arm_link_hash_table *globals;
12952
12953 globals = elf32_arm_hash_table (info);
12954 if (globals == NULL)
12955 return FALSE;
12956
12957 dynobj = elf_hash_table (info)->dynobj;
12958
12959 /* Make sure we know what is going on here. */
12960 BFD_ASSERT (dynobj != NULL
12961 && (h->needs_plt
12962 || h->type == STT_GNU_IFUNC
12963 || h->u.weakdef != NULL
12964 || (h->def_dynamic
12965 && h->ref_regular
12966 && !h->def_regular)));
12967
12968 eh = (struct elf32_arm_link_hash_entry *) h;
12969
12970 /* If this is a function, put it in the procedure linkage table. We
12971 will fill in the contents of the procedure linkage table later,
12972 when we know the address of the .got section. */
12973 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
12974 {
12975 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
12976 symbol binds locally. */
12977 if (h->plt.refcount <= 0
12978 || (h->type != STT_GNU_IFUNC
12979 && (SYMBOL_CALLS_LOCAL (info, h)
12980 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
12981 && h->root.type == bfd_link_hash_undefweak))))
12982 {
12983 /* This case can occur if we saw a PLT32 reloc in an input
12984 file, but the symbol was never referred to by a dynamic
12985 object, or if all references were garbage collected. In
12986 such a case, we don't actually need to build a procedure
12987 linkage table, and we can just do a PC24 reloc instead. */
12988 h->plt.offset = (bfd_vma) -1;
12989 eh->plt.thumb_refcount = 0;
12990 eh->plt.maybe_thumb_refcount = 0;
12991 eh->plt.noncall_refcount = 0;
12992 h->needs_plt = 0;
12993 }
12994
12995 return TRUE;
12996 }
12997 else
12998 {
12999 /* It's possible that we incorrectly decided a .plt reloc was
13000 needed for an R_ARM_PC24 or similar reloc to a non-function sym
13001 in check_relocs. We can't decide accurately between function
13002 and non-function syms in check-relocs; Objects loaded later in
13003 the link may change h->type. So fix it now. */
13004 h->plt.offset = (bfd_vma) -1;
13005 eh->plt.thumb_refcount = 0;
13006 eh->plt.maybe_thumb_refcount = 0;
13007 eh->plt.noncall_refcount = 0;
13008 }
13009
13010 /* If this is a weak symbol, and there is a real definition, the
13011 processor independent code will have arranged for us to see the
13012 real definition first, and we can just use the same value. */
13013 if (h->u.weakdef != NULL)
13014 {
13015 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
13016 || h->u.weakdef->root.type == bfd_link_hash_defweak);
13017 h->root.u.def.section = h->u.weakdef->root.u.def.section;
13018 h->root.u.def.value = h->u.weakdef->root.u.def.value;
13019 return TRUE;
13020 }
13021
13022 /* If there are no non-GOT references, we do not need a copy
13023 relocation. */
13024 if (!h->non_got_ref)
13025 return TRUE;
13026
13027 /* This is a reference to a symbol defined by a dynamic object which
13028 is not a function. */
13029
13030 /* If we are creating a shared library, we must presume that the
13031 only references to the symbol are via the global offset table.
13032 For such cases we need not do anything here; the relocations will
13033 be handled correctly by relocate_section. Relocatable executables
13034 can reference data in shared objects directly, so we don't need to
13035 do anything here. */
13036 if (info->shared || globals->root.is_relocatable_executable)
13037 return TRUE;
13038
13039 /* We must allocate the symbol in our .dynbss section, which will
13040 become part of the .bss section of the executable. There will be
13041 an entry for this symbol in the .dynsym section. The dynamic
13042 object will contain position independent code, so all references
13043 from the dynamic object to this symbol will go through the global
13044 offset table. The dynamic linker will use the .dynsym entry to
13045 determine the address it must put in the global offset table, so
13046 both the dynamic object and the regular object will refer to the
13047 same memory location for the variable. */
13048 s = bfd_get_linker_section (dynobj, ".dynbss");
13049 BFD_ASSERT (s != NULL);
13050
13051 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
13052 copy the initial value out of the dynamic object and into the
13053 runtime process image. We need to remember the offset into the
13054 .rel(a).bss section we are going to use. */
13055 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
13056 {
13057 asection *srel;
13058
13059 srel = bfd_get_linker_section (dynobj, RELOC_SECTION (globals, ".bss"));
13060 elf32_arm_allocate_dynrelocs (info, srel, 1);
13061 h->needs_copy = 1;
13062 }
13063
13064 return _bfd_elf_adjust_dynamic_copy (h, s);
13065 }
13066
13067 /* Allocate space in .plt, .got and associated reloc sections for
13068 dynamic relocs. */
13069
13070 static bfd_boolean
13071 allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
13072 {
13073 struct bfd_link_info *info;
13074 struct elf32_arm_link_hash_table *htab;
13075 struct elf32_arm_link_hash_entry *eh;
13076 struct elf_dyn_relocs *p;
13077
13078 if (h->root.type == bfd_link_hash_indirect)
13079 return TRUE;
13080
13081 eh = (struct elf32_arm_link_hash_entry *) h;
13082
13083 info = (struct bfd_link_info *) inf;
13084 htab = elf32_arm_hash_table (info);
13085 if (htab == NULL)
13086 return FALSE;
13087
13088 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
13089 && h->plt.refcount > 0)
13090 {
13091 /* Make sure this symbol is output as a dynamic symbol.
13092 Undefined weak syms won't yet be marked as dynamic. */
13093 if (h->dynindx == -1
13094 && !h->forced_local)
13095 {
13096 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13097 return FALSE;
13098 }
13099
13100 /* If the call in the PLT entry binds locally, the associated
13101 GOT entry should use an R_ARM_IRELATIVE relocation instead of
13102 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
13103 than the .plt section. */
13104 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
13105 {
13106 eh->is_iplt = 1;
13107 if (eh->plt.noncall_refcount == 0
13108 && SYMBOL_REFERENCES_LOCAL (info, h))
13109 /* All non-call references can be resolved directly.
13110 This means that they can (and in some cases, must)
13111 resolve directly to the run-time target, rather than
13112 to the PLT. That in turns means that any .got entry
13113 would be equal to the .igot.plt entry, so there's
13114 no point having both. */
13115 h->got.refcount = 0;
13116 }
13117
13118 if (info->shared
13119 || eh->is_iplt
13120 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
13121 {
13122 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
13123
13124 /* If this symbol is not defined in a regular file, and we are
13125 not generating a shared library, then set the symbol to this
13126 location in the .plt. This is required to make function
13127 pointers compare as equal between the normal executable and
13128 the shared library. */
13129 if (! info->shared
13130 && !h->def_regular)
13131 {
13132 h->root.u.def.section = htab->root.splt;
13133 h->root.u.def.value = h->plt.offset;
13134
13135 /* Make sure the function is not marked as Thumb, in case
13136 it is the target of an ABS32 relocation, which will
13137 point to the PLT entry. */
13138 h->target_internal = ST_BRANCH_TO_ARM;
13139 }
13140
13141 htab->next_tls_desc_index++;
13142
13143 /* VxWorks executables have a second set of relocations for
13144 each PLT entry. They go in a separate relocation section,
13145 which is processed by the kernel loader. */
13146 if (htab->vxworks_p && !info->shared)
13147 {
13148 /* There is a relocation for the initial PLT entry:
13149 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
13150 if (h->plt.offset == htab->plt_header_size)
13151 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
13152
13153 /* There are two extra relocations for each subsequent
13154 PLT entry: an R_ARM_32 relocation for the GOT entry,
13155 and an R_ARM_32 relocation for the PLT entry. */
13156 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
13157 }
13158 }
13159 else
13160 {
13161 h->plt.offset = (bfd_vma) -1;
13162 h->needs_plt = 0;
13163 }
13164 }
13165 else
13166 {
13167 h->plt.offset = (bfd_vma) -1;
13168 h->needs_plt = 0;
13169 }
13170
13171 eh = (struct elf32_arm_link_hash_entry *) h;
13172 eh->tlsdesc_got = (bfd_vma) -1;
13173
13174 if (h->got.refcount > 0)
13175 {
13176 asection *s;
13177 bfd_boolean dyn;
13178 int tls_type = elf32_arm_hash_entry (h)->tls_type;
13179 int indx;
13180
13181 /* Make sure this symbol is output as a dynamic symbol.
13182 Undefined weak syms won't yet be marked as dynamic. */
13183 if (h->dynindx == -1
13184 && !h->forced_local)
13185 {
13186 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13187 return FALSE;
13188 }
13189
13190 if (!htab->symbian_p)
13191 {
13192 s = htab->root.sgot;
13193 h->got.offset = s->size;
13194
13195 if (tls_type == GOT_UNKNOWN)
13196 abort ();
13197
13198 if (tls_type == GOT_NORMAL)
13199 /* Non-TLS symbols need one GOT slot. */
13200 s->size += 4;
13201 else
13202 {
13203 if (tls_type & GOT_TLS_GDESC)
13204 {
13205 /* R_ARM_TLS_DESC needs 2 GOT slots. */
13206 eh->tlsdesc_got
13207 = (htab->root.sgotplt->size
13208 - elf32_arm_compute_jump_table_size (htab));
13209 htab->root.sgotplt->size += 8;
13210 h->got.offset = (bfd_vma) -2;
13211 /* plt.got_offset needs to know there's a TLS_DESC
13212 reloc in the middle of .got.plt. */
13213 htab->num_tls_desc++;
13214 }
13215
13216 if (tls_type & GOT_TLS_GD)
13217 {
13218 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. If
13219 the symbol is both GD and GDESC, got.offset may
13220 have been overwritten. */
13221 h->got.offset = s->size;
13222 s->size += 8;
13223 }
13224
13225 if (tls_type & GOT_TLS_IE)
13226 /* R_ARM_TLS_IE32 needs one GOT slot. */
13227 s->size += 4;
13228 }
13229
13230 dyn = htab->root.dynamic_sections_created;
13231
13232 indx = 0;
13233 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
13234 && (!info->shared
13235 || !SYMBOL_REFERENCES_LOCAL (info, h)))
13236 indx = h->dynindx;
13237
13238 if (tls_type != GOT_NORMAL
13239 && (info->shared || indx != 0)
13240 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
13241 || h->root.type != bfd_link_hash_undefweak))
13242 {
13243 if (tls_type & GOT_TLS_IE)
13244 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13245
13246 if (tls_type & GOT_TLS_GD)
13247 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13248
13249 if (tls_type & GOT_TLS_GDESC)
13250 {
13251 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
13252 /* GDESC needs a trampoline to jump to. */
13253 htab->tls_trampoline = -1;
13254 }
13255
13256 /* Only GD needs it. GDESC just emits one relocation per
13257 2 entries. */
13258 if ((tls_type & GOT_TLS_GD) && indx != 0)
13259 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13260 }
13261 else if (!SYMBOL_REFERENCES_LOCAL (info, h))
13262 {
13263 if (htab->root.dynamic_sections_created)
13264 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
13265 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13266 }
13267 else if (h->type == STT_GNU_IFUNC
13268 && eh->plt.noncall_refcount == 0)
13269 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
13270 they all resolve dynamically instead. Reserve room for the
13271 GOT entry's R_ARM_IRELATIVE relocation. */
13272 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
13273 else if (info->shared)
13274 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
13275 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13276 }
13277 }
13278 else
13279 h->got.offset = (bfd_vma) -1;
13280
13281 /* Allocate stubs for exported Thumb functions on v4t. */
13282 if (!htab->use_blx && h->dynindx != -1
13283 && h->def_regular
13284 && h->target_internal == ST_BRANCH_TO_THUMB
13285 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
13286 {
13287 struct elf_link_hash_entry * th;
13288 struct bfd_link_hash_entry * bh;
13289 struct elf_link_hash_entry * myh;
13290 char name[1024];
13291 asection *s;
13292 bh = NULL;
13293 /* Create a new symbol to regist the real location of the function. */
13294 s = h->root.u.def.section;
13295 sprintf (name, "__real_%s", h->root.root.string);
13296 _bfd_generic_link_add_one_symbol (info, s->owner,
13297 name, BSF_GLOBAL, s,
13298 h->root.u.def.value,
13299 NULL, TRUE, FALSE, &bh);
13300
13301 myh = (struct elf_link_hash_entry *) bh;
13302 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
13303 myh->forced_local = 1;
13304 myh->target_internal = ST_BRANCH_TO_THUMB;
13305 eh->export_glue = myh;
13306 th = record_arm_to_thumb_glue (info, h);
13307 /* Point the symbol at the stub. */
13308 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
13309 h->target_internal = ST_BRANCH_TO_ARM;
13310 h->root.u.def.section = th->root.u.def.section;
13311 h->root.u.def.value = th->root.u.def.value & ~1;
13312 }
13313
13314 if (eh->dyn_relocs == NULL)
13315 return TRUE;
13316
13317 /* In the shared -Bsymbolic case, discard space allocated for
13318 dynamic pc-relative relocs against symbols which turn out to be
13319 defined in regular objects. For the normal shared case, discard
13320 space for pc-relative relocs that have become local due to symbol
13321 visibility changes. */
13322
13323 if (info->shared || htab->root.is_relocatable_executable)
13324 {
13325 /* The only relocs that use pc_count are R_ARM_REL32 and
13326 R_ARM_REL32_NOI, which will appear on something like
13327 ".long foo - .". We want calls to protected symbols to resolve
13328 directly to the function rather than going via the plt. If people
13329 want function pointer comparisons to work as expected then they
13330 should avoid writing assembly like ".long foo - .". */
13331 if (SYMBOL_CALLS_LOCAL (info, h))
13332 {
13333 struct elf_dyn_relocs **pp;
13334
13335 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
13336 {
13337 p->count -= p->pc_count;
13338 p->pc_count = 0;
13339 if (p->count == 0)
13340 *pp = p->next;
13341 else
13342 pp = &p->next;
13343 }
13344 }
13345
13346 if (htab->vxworks_p)
13347 {
13348 struct elf_dyn_relocs **pp;
13349
13350 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
13351 {
13352 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
13353 *pp = p->next;
13354 else
13355 pp = &p->next;
13356 }
13357 }
13358
13359 /* Also discard relocs on undefined weak syms with non-default
13360 visibility. */
13361 if (eh->dyn_relocs != NULL
13362 && h->root.type == bfd_link_hash_undefweak)
13363 {
13364 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
13365 eh->dyn_relocs = NULL;
13366
13367 /* Make sure undefined weak symbols are output as a dynamic
13368 symbol in PIEs. */
13369 else if (h->dynindx == -1
13370 && !h->forced_local)
13371 {
13372 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13373 return FALSE;
13374 }
13375 }
13376
13377 else if (htab->root.is_relocatable_executable && h->dynindx == -1
13378 && h->root.type == bfd_link_hash_new)
13379 {
13380 /* Output absolute symbols so that we can create relocations
13381 against them. For normal symbols we output a relocation
13382 against the section that contains them. */
13383 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13384 return FALSE;
13385 }
13386
13387 }
13388 else
13389 {
13390 /* For the non-shared case, discard space for relocs against
13391 symbols which turn out to need copy relocs or are not
13392 dynamic. */
13393
13394 if (!h->non_got_ref
13395 && ((h->def_dynamic
13396 && !h->def_regular)
13397 || (htab->root.dynamic_sections_created
13398 && (h->root.type == bfd_link_hash_undefweak
13399 || h->root.type == bfd_link_hash_undefined))))
13400 {
13401 /* Make sure this symbol is output as a dynamic symbol.
13402 Undefined weak syms won't yet be marked as dynamic. */
13403 if (h->dynindx == -1
13404 && !h->forced_local)
13405 {
13406 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13407 return FALSE;
13408 }
13409
13410 /* If that succeeded, we know we'll be keeping all the
13411 relocs. */
13412 if (h->dynindx != -1)
13413 goto keep;
13414 }
13415
13416 eh->dyn_relocs = NULL;
13417
13418 keep: ;
13419 }
13420
13421 /* Finally, allocate space. */
13422 for (p = eh->dyn_relocs; p != NULL; p = p->next)
13423 {
13424 asection *sreloc = elf_section_data (p->sec)->sreloc;
13425 if (h->type == STT_GNU_IFUNC
13426 && eh->plt.noncall_refcount == 0
13427 && SYMBOL_REFERENCES_LOCAL (info, h))
13428 elf32_arm_allocate_irelocs (info, sreloc, p->count);
13429 else
13430 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
13431 }
13432
13433 return TRUE;
13434 }
13435
13436 /* Find any dynamic relocs that apply to read-only sections. */
13437
13438 static bfd_boolean
13439 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
13440 {
13441 struct elf32_arm_link_hash_entry * eh;
13442 struct elf_dyn_relocs * p;
13443
13444 eh = (struct elf32_arm_link_hash_entry *) h;
13445 for (p = eh->dyn_relocs; p != NULL; p = p->next)
13446 {
13447 asection *s = p->sec;
13448
13449 if (s != NULL && (s->flags & SEC_READONLY) != 0)
13450 {
13451 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13452
13453 info->flags |= DF_TEXTREL;
13454
13455 /* Not an error, just cut short the traversal. */
13456 return FALSE;
13457 }
13458 }
13459 return TRUE;
13460 }
13461
13462 void
13463 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
13464 int byteswap_code)
13465 {
13466 struct elf32_arm_link_hash_table *globals;
13467
13468 globals = elf32_arm_hash_table (info);
13469 if (globals == NULL)
13470 return;
13471
13472 globals->byteswap_code = byteswap_code;
13473 }
13474
13475 /* Set the sizes of the dynamic sections. */
13476
13477 static bfd_boolean
13478 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
13479 struct bfd_link_info * info)
13480 {
13481 bfd * dynobj;
13482 asection * s;
13483 bfd_boolean plt;
13484 bfd_boolean relocs;
13485 bfd *ibfd;
13486 struct elf32_arm_link_hash_table *htab;
13487
13488 htab = elf32_arm_hash_table (info);
13489 if (htab == NULL)
13490 return FALSE;
13491
13492 dynobj = elf_hash_table (info)->dynobj;
13493 BFD_ASSERT (dynobj != NULL);
13494 check_use_blx (htab);
13495
13496 if (elf_hash_table (info)->dynamic_sections_created)
13497 {
13498 /* Set the contents of the .interp section to the interpreter. */
13499 if (info->executable)
13500 {
13501 s = bfd_get_linker_section (dynobj, ".interp");
13502 BFD_ASSERT (s != NULL);
13503 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
13504 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
13505 }
13506 }
13507
13508 /* Set up .got offsets for local syms, and space for local dynamic
13509 relocs. */
13510 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
13511 {
13512 bfd_signed_vma *local_got;
13513 bfd_signed_vma *end_local_got;
13514 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
13515 char *local_tls_type;
13516 bfd_vma *local_tlsdesc_gotent;
13517 bfd_size_type locsymcount;
13518 Elf_Internal_Shdr *symtab_hdr;
13519 asection *srel;
13520 bfd_boolean is_vxworks = htab->vxworks_p;
13521 unsigned int symndx;
13522
13523 if (! is_arm_elf (ibfd))
13524 continue;
13525
13526 for (s = ibfd->sections; s != NULL; s = s->next)
13527 {
13528 struct elf_dyn_relocs *p;
13529
13530 for (p = (struct elf_dyn_relocs *)
13531 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
13532 {
13533 if (!bfd_is_abs_section (p->sec)
13534 && bfd_is_abs_section (p->sec->output_section))
13535 {
13536 /* Input section has been discarded, either because
13537 it is a copy of a linkonce section or due to
13538 linker script /DISCARD/, so we'll be discarding
13539 the relocs too. */
13540 }
13541 else if (is_vxworks
13542 && strcmp (p->sec->output_section->name,
13543 ".tls_vars") == 0)
13544 {
13545 /* Relocations in vxworks .tls_vars sections are
13546 handled specially by the loader. */
13547 }
13548 else if (p->count != 0)
13549 {
13550 srel = elf_section_data (p->sec)->sreloc;
13551 elf32_arm_allocate_dynrelocs (info, srel, p->count);
13552 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
13553 info->flags |= DF_TEXTREL;
13554 }
13555 }
13556 }
13557
13558 local_got = elf_local_got_refcounts (ibfd);
13559 if (!local_got)
13560 continue;
13561
13562 symtab_hdr = & elf_symtab_hdr (ibfd);
13563 locsymcount = symtab_hdr->sh_info;
13564 end_local_got = local_got + locsymcount;
13565 local_iplt_ptr = elf32_arm_local_iplt (ibfd);
13566 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
13567 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
13568 symndx = 0;
13569 s = htab->root.sgot;
13570 srel = htab->root.srelgot;
13571 for (; local_got < end_local_got;
13572 ++local_got, ++local_iplt_ptr, ++local_tls_type,
13573 ++local_tlsdesc_gotent, ++symndx)
13574 {
13575 *local_tlsdesc_gotent = (bfd_vma) -1;
13576 local_iplt = *local_iplt_ptr;
13577 if (local_iplt != NULL)
13578 {
13579 struct elf_dyn_relocs *p;
13580
13581 if (local_iplt->root.refcount > 0)
13582 {
13583 elf32_arm_allocate_plt_entry (info, TRUE,
13584 &local_iplt->root,
13585 &local_iplt->arm);
13586 if (local_iplt->arm.noncall_refcount == 0)
13587 /* All references to the PLT are calls, so all
13588 non-call references can resolve directly to the
13589 run-time target. This means that the .got entry
13590 would be the same as the .igot.plt entry, so there's
13591 no point creating both. */
13592 *local_got = 0;
13593 }
13594 else
13595 {
13596 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
13597 local_iplt->root.offset = (bfd_vma) -1;
13598 }
13599
13600 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
13601 {
13602 asection *psrel;
13603
13604 psrel = elf_section_data (p->sec)->sreloc;
13605 if (local_iplt->arm.noncall_refcount == 0)
13606 elf32_arm_allocate_irelocs (info, psrel, p->count);
13607 else
13608 elf32_arm_allocate_dynrelocs (info, psrel, p->count);
13609 }
13610 }
13611 if (*local_got > 0)
13612 {
13613 Elf_Internal_Sym *isym;
13614
13615 *local_got = s->size;
13616 if (*local_tls_type & GOT_TLS_GD)
13617 /* TLS_GD relocs need an 8-byte structure in the GOT. */
13618 s->size += 8;
13619 if (*local_tls_type & GOT_TLS_GDESC)
13620 {
13621 *local_tlsdesc_gotent = htab->root.sgotplt->size
13622 - elf32_arm_compute_jump_table_size (htab);
13623 htab->root.sgotplt->size += 8;
13624 *local_got = (bfd_vma) -2;
13625 /* plt.got_offset needs to know there's a TLS_DESC
13626 reloc in the middle of .got.plt. */
13627 htab->num_tls_desc++;
13628 }
13629 if (*local_tls_type & GOT_TLS_IE)
13630 s->size += 4;
13631
13632 if (*local_tls_type & GOT_NORMAL)
13633 {
13634 /* If the symbol is both GD and GDESC, *local_got
13635 may have been overwritten. */
13636 *local_got = s->size;
13637 s->size += 4;
13638 }
13639
13640 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
13641 if (isym == NULL)
13642 return FALSE;
13643
13644 /* If all references to an STT_GNU_IFUNC PLT are calls,
13645 then all non-call references, including this GOT entry,
13646 resolve directly to the run-time target. */
13647 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
13648 && (local_iplt == NULL
13649 || local_iplt->arm.noncall_refcount == 0))
13650 elf32_arm_allocate_irelocs (info, srel, 1);
13651 else if ((info->shared && !(*local_tls_type & GOT_TLS_GDESC))
13652 || *local_tls_type & GOT_TLS_GD)
13653 elf32_arm_allocate_dynrelocs (info, srel, 1);
13654
13655 if (info->shared && *local_tls_type & GOT_TLS_GDESC)
13656 {
13657 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
13658 htab->tls_trampoline = -1;
13659 }
13660 }
13661 else
13662 *local_got = (bfd_vma) -1;
13663 }
13664 }
13665
13666 if (htab->tls_ldm_got.refcount > 0)
13667 {
13668 /* Allocate two GOT entries and one dynamic relocation (if necessary)
13669 for R_ARM_TLS_LDM32 relocations. */
13670 htab->tls_ldm_got.offset = htab->root.sgot->size;
13671 htab->root.sgot->size += 8;
13672 if (info->shared)
13673 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13674 }
13675 else
13676 htab->tls_ldm_got.offset = -1;
13677
13678 /* Allocate global sym .plt and .got entries, and space for global
13679 sym dynamic relocs. */
13680 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
13681
13682 /* Here we rummage through the found bfds to collect glue information. */
13683 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
13684 {
13685 if (! is_arm_elf (ibfd))
13686 continue;
13687
13688 /* Initialise mapping tables for code/data. */
13689 bfd_elf32_arm_init_maps (ibfd);
13690
13691 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
13692 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
13693 /* xgettext:c-format */
13694 _bfd_error_handler (_("Errors encountered processing file %s"),
13695 ibfd->filename);
13696 }
13697
13698 /* Allocate space for the glue sections now that we've sized them. */
13699 bfd_elf32_arm_allocate_interworking_sections (info);
13700
13701 /* For every jump slot reserved in the sgotplt, reloc_count is
13702 incremented. However, when we reserve space for TLS descriptors,
13703 it's not incremented, so in order to compute the space reserved
13704 for them, it suffices to multiply the reloc count by the jump
13705 slot size. */
13706 if (htab->root.srelplt)
13707 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
13708
13709 if (htab->tls_trampoline)
13710 {
13711 if (htab->root.splt->size == 0)
13712 htab->root.splt->size += htab->plt_header_size;
13713
13714 htab->tls_trampoline = htab->root.splt->size;
13715 htab->root.splt->size += htab->plt_entry_size;
13716
13717 /* If we're not using lazy TLS relocations, don't generate the
13718 PLT and GOT entries they require. */
13719 if (!(info->flags & DF_BIND_NOW))
13720 {
13721 htab->dt_tlsdesc_got = htab->root.sgot->size;
13722 htab->root.sgot->size += 4;
13723
13724 htab->dt_tlsdesc_plt = htab->root.splt->size;
13725 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
13726 }
13727 }
13728
13729 /* The check_relocs and adjust_dynamic_symbol entry points have
13730 determined the sizes of the various dynamic sections. Allocate
13731 memory for them. */
13732 plt = FALSE;
13733 relocs = FALSE;
13734 for (s = dynobj->sections; s != NULL; s = s->next)
13735 {
13736 const char * name;
13737
13738 if ((s->flags & SEC_LINKER_CREATED) == 0)
13739 continue;
13740
13741 /* It's OK to base decisions on the section name, because none
13742 of the dynobj section names depend upon the input files. */
13743 name = bfd_get_section_name (dynobj, s);
13744
13745 if (s == htab->root.splt)
13746 {
13747 /* Remember whether there is a PLT. */
13748 plt = s->size != 0;
13749 }
13750 else if (CONST_STRNEQ (name, ".rel"))
13751 {
13752 if (s->size != 0)
13753 {
13754 /* Remember whether there are any reloc sections other
13755 than .rel(a).plt and .rela.plt.unloaded. */
13756 if (s != htab->root.srelplt && s != htab->srelplt2)
13757 relocs = TRUE;
13758
13759 /* We use the reloc_count field as a counter if we need
13760 to copy relocs into the output file. */
13761 s->reloc_count = 0;
13762 }
13763 }
13764 else if (s != htab->root.sgot
13765 && s != htab->root.sgotplt
13766 && s != htab->root.iplt
13767 && s != htab->root.igotplt
13768 && s != htab->sdynbss)
13769 {
13770 /* It's not one of our sections, so don't allocate space. */
13771 continue;
13772 }
13773
13774 if (s->size == 0)
13775 {
13776 /* If we don't need this section, strip it from the
13777 output file. This is mostly to handle .rel(a).bss and
13778 .rel(a).plt. We must create both sections in
13779 create_dynamic_sections, because they must be created
13780 before the linker maps input sections to output
13781 sections. The linker does that before
13782 adjust_dynamic_symbol is called, and it is that
13783 function which decides whether anything needs to go
13784 into these sections. */
13785 s->flags |= SEC_EXCLUDE;
13786 continue;
13787 }
13788
13789 if ((s->flags & SEC_HAS_CONTENTS) == 0)
13790 continue;
13791
13792 /* Allocate memory for the section contents. */
13793 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
13794 if (s->contents == NULL)
13795 return FALSE;
13796 }
13797
13798 if (elf_hash_table (info)->dynamic_sections_created)
13799 {
13800 /* Add some entries to the .dynamic section. We fill in the
13801 values later, in elf32_arm_finish_dynamic_sections, but we
13802 must add the entries now so that we get the correct size for
13803 the .dynamic section. The DT_DEBUG entry is filled in by the
13804 dynamic linker and used by the debugger. */
13805 #define add_dynamic_entry(TAG, VAL) \
13806 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
13807
13808 if (info->executable)
13809 {
13810 if (!add_dynamic_entry (DT_DEBUG, 0))
13811 return FALSE;
13812 }
13813
13814 if (plt)
13815 {
13816 if ( !add_dynamic_entry (DT_PLTGOT, 0)
13817 || !add_dynamic_entry (DT_PLTRELSZ, 0)
13818 || !add_dynamic_entry (DT_PLTREL,
13819 htab->use_rel ? DT_REL : DT_RELA)
13820 || !add_dynamic_entry (DT_JMPREL, 0))
13821 return FALSE;
13822
13823 if (htab->dt_tlsdesc_plt &&
13824 (!add_dynamic_entry (DT_TLSDESC_PLT,0)
13825 || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
13826 return FALSE;
13827 }
13828
13829 if (relocs)
13830 {
13831 if (htab->use_rel)
13832 {
13833 if (!add_dynamic_entry (DT_REL, 0)
13834 || !add_dynamic_entry (DT_RELSZ, 0)
13835 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
13836 return FALSE;
13837 }
13838 else
13839 {
13840 if (!add_dynamic_entry (DT_RELA, 0)
13841 || !add_dynamic_entry (DT_RELASZ, 0)
13842 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
13843 return FALSE;
13844 }
13845 }
13846
13847 /* If any dynamic relocs apply to a read-only section,
13848 then we need a DT_TEXTREL entry. */
13849 if ((info->flags & DF_TEXTREL) == 0)
13850 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
13851 info);
13852
13853 if ((info->flags & DF_TEXTREL) != 0)
13854 {
13855 if (!add_dynamic_entry (DT_TEXTREL, 0))
13856 return FALSE;
13857 }
13858 if (htab->vxworks_p
13859 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
13860 return FALSE;
13861 }
13862 #undef add_dynamic_entry
13863
13864 return TRUE;
13865 }
13866
13867 /* Size sections even though they're not dynamic. We use it to setup
13868 _TLS_MODULE_BASE_, if needed. */
13869
13870 static bfd_boolean
13871 elf32_arm_always_size_sections (bfd *output_bfd,
13872 struct bfd_link_info *info)
13873 {
13874 asection *tls_sec;
13875
13876 if (info->relocatable)
13877 return TRUE;
13878
13879 tls_sec = elf_hash_table (info)->tls_sec;
13880
13881 if (tls_sec)
13882 {
13883 struct elf_link_hash_entry *tlsbase;
13884
13885 tlsbase = elf_link_hash_lookup
13886 (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
13887
13888 if (tlsbase)
13889 {
13890 struct bfd_link_hash_entry *bh = NULL;
13891 const struct elf_backend_data *bed
13892 = get_elf_backend_data (output_bfd);
13893
13894 if (!(_bfd_generic_link_add_one_symbol
13895 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
13896 tls_sec, 0, NULL, FALSE,
13897 bed->collect, &bh)))
13898 return FALSE;
13899
13900 tlsbase->type = STT_TLS;
13901 tlsbase = (struct elf_link_hash_entry *)bh;
13902 tlsbase->def_regular = 1;
13903 tlsbase->other = STV_HIDDEN;
13904 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
13905 }
13906 }
13907 return TRUE;
13908 }
13909
13910 /* Finish up dynamic symbol handling. We set the contents of various
13911 dynamic sections here. */
13912
13913 static bfd_boolean
13914 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
13915 struct bfd_link_info * info,
13916 struct elf_link_hash_entry * h,
13917 Elf_Internal_Sym * sym)
13918 {
13919 struct elf32_arm_link_hash_table *htab;
13920 struct elf32_arm_link_hash_entry *eh;
13921
13922 htab = elf32_arm_hash_table (info);
13923 if (htab == NULL)
13924 return FALSE;
13925
13926 eh = (struct elf32_arm_link_hash_entry *) h;
13927
13928 if (h->plt.offset != (bfd_vma) -1)
13929 {
13930 if (!eh->is_iplt)
13931 {
13932 BFD_ASSERT (h->dynindx != -1);
13933 elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
13934 h->dynindx, 0);
13935 }
13936
13937 if (!h->def_regular)
13938 {
13939 /* Mark the symbol as undefined, rather than as defined in
13940 the .plt section. Leave the value alone. */
13941 sym->st_shndx = SHN_UNDEF;
13942 /* If the symbol is weak, we do need to clear the value.
13943 Otherwise, the PLT entry would provide a definition for
13944 the symbol even if the symbol wasn't defined anywhere,
13945 and so the symbol would never be NULL. */
13946 if (!h->ref_regular_nonweak)
13947 sym->st_value = 0;
13948 }
13949 else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
13950 {
13951 /* At least one non-call relocation references this .iplt entry,
13952 so the .iplt entry is the function's canonical address. */
13953 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
13954 sym->st_target_internal = ST_BRANCH_TO_ARM;
13955 sym->st_shndx = (_bfd_elf_section_from_bfd_section
13956 (output_bfd, htab->root.iplt->output_section));
13957 sym->st_value = (h->plt.offset
13958 + htab->root.iplt->output_section->vma
13959 + htab->root.iplt->output_offset);
13960 }
13961 }
13962
13963 if (h->needs_copy)
13964 {
13965 asection * s;
13966 Elf_Internal_Rela rel;
13967
13968 /* This symbol needs a copy reloc. Set it up. */
13969 BFD_ASSERT (h->dynindx != -1
13970 && (h->root.type == bfd_link_hash_defined
13971 || h->root.type == bfd_link_hash_defweak));
13972
13973 s = htab->srelbss;
13974 BFD_ASSERT (s != NULL);
13975
13976 rel.r_addend = 0;
13977 rel.r_offset = (h->root.u.def.value
13978 + h->root.u.def.section->output_section->vma
13979 + h->root.u.def.section->output_offset);
13980 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
13981 elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
13982 }
13983
13984 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
13985 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
13986 to the ".got" section. */
13987 if (h == htab->root.hdynamic
13988 || (!htab->vxworks_p && h == htab->root.hgot))
13989 sym->st_shndx = SHN_ABS;
13990
13991 return TRUE;
13992 }
13993
13994 static void
13995 arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
13996 void *contents,
13997 const unsigned long *template, unsigned count)
13998 {
13999 unsigned ix;
14000
14001 for (ix = 0; ix != count; ix++)
14002 {
14003 unsigned long insn = template[ix];
14004
14005 /* Emit mov pc,rx if bx is not permitted. */
14006 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
14007 insn = (insn & 0xf000000f) | 0x01a0f000;
14008 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
14009 }
14010 }
14011
14012 /* Finish up the dynamic sections. */
14013
14014 static bfd_boolean
14015 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
14016 {
14017 bfd * dynobj;
14018 asection * sgot;
14019 asection * sdyn;
14020 struct elf32_arm_link_hash_table *htab;
14021
14022 htab = elf32_arm_hash_table (info);
14023 if (htab == NULL)
14024 return FALSE;
14025
14026 dynobj = elf_hash_table (info)->dynobj;
14027
14028 sgot = htab->root.sgotplt;
14029 /* A broken linker script might have discarded the dynamic sections.
14030 Catch this here so that we do not seg-fault later on. */
14031 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
14032 return FALSE;
14033 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
14034
14035 if (elf_hash_table (info)->dynamic_sections_created)
14036 {
14037 asection *splt;
14038 Elf32_External_Dyn *dyncon, *dynconend;
14039
14040 splt = htab->root.splt;
14041 BFD_ASSERT (splt != NULL && sdyn != NULL);
14042 BFD_ASSERT (htab->symbian_p || sgot != NULL);
14043
14044 dyncon = (Elf32_External_Dyn *) sdyn->contents;
14045 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
14046
14047 for (; dyncon < dynconend; dyncon++)
14048 {
14049 Elf_Internal_Dyn dyn;
14050 const char * name;
14051 asection * s;
14052
14053 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
14054
14055 switch (dyn.d_tag)
14056 {
14057 unsigned int type;
14058
14059 default:
14060 if (htab->vxworks_p
14061 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
14062 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14063 break;
14064
14065 case DT_HASH:
14066 name = ".hash";
14067 goto get_vma_if_bpabi;
14068 case DT_STRTAB:
14069 name = ".dynstr";
14070 goto get_vma_if_bpabi;
14071 case DT_SYMTAB:
14072 name = ".dynsym";
14073 goto get_vma_if_bpabi;
14074 case DT_VERSYM:
14075 name = ".gnu.version";
14076 goto get_vma_if_bpabi;
14077 case DT_VERDEF:
14078 name = ".gnu.version_d";
14079 goto get_vma_if_bpabi;
14080 case DT_VERNEED:
14081 name = ".gnu.version_r";
14082 goto get_vma_if_bpabi;
14083
14084 case DT_PLTGOT:
14085 name = ".got";
14086 goto get_vma;
14087 case DT_JMPREL:
14088 name = RELOC_SECTION (htab, ".plt");
14089 get_vma:
14090 s = bfd_get_section_by_name (output_bfd, name);
14091 if (s == NULL)
14092 {
14093 /* PR ld/14397: Issue an error message if a required section is missing. */
14094 (*_bfd_error_handler)
14095 (_("error: required section '%s' not found in the linker script"), name);
14096 bfd_set_error (bfd_error_invalid_operation);
14097 return FALSE;
14098 }
14099 if (!htab->symbian_p)
14100 dyn.d_un.d_ptr = s->vma;
14101 else
14102 /* In the BPABI, tags in the PT_DYNAMIC section point
14103 at the file offset, not the memory address, for the
14104 convenience of the post linker. */
14105 dyn.d_un.d_ptr = s->filepos;
14106 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14107 break;
14108
14109 get_vma_if_bpabi:
14110 if (htab->symbian_p)
14111 goto get_vma;
14112 break;
14113
14114 case DT_PLTRELSZ:
14115 s = htab->root.srelplt;
14116 BFD_ASSERT (s != NULL);
14117 dyn.d_un.d_val = s->size;
14118 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14119 break;
14120
14121 case DT_RELSZ:
14122 case DT_RELASZ:
14123 if (!htab->symbian_p)
14124 {
14125 /* My reading of the SVR4 ABI indicates that the
14126 procedure linkage table relocs (DT_JMPREL) should be
14127 included in the overall relocs (DT_REL). This is
14128 what Solaris does. However, UnixWare can not handle
14129 that case. Therefore, we override the DT_RELSZ entry
14130 here to make it not include the JMPREL relocs. Since
14131 the linker script arranges for .rel(a).plt to follow all
14132 other relocation sections, we don't have to worry
14133 about changing the DT_REL entry. */
14134 s = htab->root.srelplt;
14135 if (s != NULL)
14136 dyn.d_un.d_val -= s->size;
14137 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14138 break;
14139 }
14140 /* Fall through. */
14141
14142 case DT_REL:
14143 case DT_RELA:
14144 /* In the BPABI, the DT_REL tag must point at the file
14145 offset, not the VMA, of the first relocation
14146 section. So, we use code similar to that in
14147 elflink.c, but do not check for SHF_ALLOC on the
14148 relcoation section, since relocations sections are
14149 never allocated under the BPABI. The comments above
14150 about Unixware notwithstanding, we include all of the
14151 relocations here. */
14152 if (htab->symbian_p)
14153 {
14154 unsigned int i;
14155 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
14156 ? SHT_REL : SHT_RELA);
14157 dyn.d_un.d_val = 0;
14158 for (i = 1; i < elf_numsections (output_bfd); i++)
14159 {
14160 Elf_Internal_Shdr *hdr
14161 = elf_elfsections (output_bfd)[i];
14162 if (hdr->sh_type == type)
14163 {
14164 if (dyn.d_tag == DT_RELSZ
14165 || dyn.d_tag == DT_RELASZ)
14166 dyn.d_un.d_val += hdr->sh_size;
14167 else if ((ufile_ptr) hdr->sh_offset
14168 <= dyn.d_un.d_val - 1)
14169 dyn.d_un.d_val = hdr->sh_offset;
14170 }
14171 }
14172 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14173 }
14174 break;
14175
14176 case DT_TLSDESC_PLT:
14177 s = htab->root.splt;
14178 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
14179 + htab->dt_tlsdesc_plt);
14180 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14181 break;
14182
14183 case DT_TLSDESC_GOT:
14184 s = htab->root.sgot;
14185 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
14186 + htab->dt_tlsdesc_got);
14187 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14188 break;
14189
14190 /* Set the bottom bit of DT_INIT/FINI if the
14191 corresponding function is Thumb. */
14192 case DT_INIT:
14193 name = info->init_function;
14194 goto get_sym;
14195 case DT_FINI:
14196 name = info->fini_function;
14197 get_sym:
14198 /* If it wasn't set by elf_bfd_final_link
14199 then there is nothing to adjust. */
14200 if (dyn.d_un.d_val != 0)
14201 {
14202 struct elf_link_hash_entry * eh;
14203
14204 eh = elf_link_hash_lookup (elf_hash_table (info), name,
14205 FALSE, FALSE, TRUE);
14206 if (eh != NULL && eh->target_internal == ST_BRANCH_TO_THUMB)
14207 {
14208 dyn.d_un.d_val |= 1;
14209 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14210 }
14211 }
14212 break;
14213 }
14214 }
14215
14216 /* Fill in the first entry in the procedure linkage table. */
14217 if (splt->size > 0 && htab->plt_header_size)
14218 {
14219 const bfd_vma *plt0_entry;
14220 bfd_vma got_address, plt_address, got_displacement;
14221
14222 /* Calculate the addresses of the GOT and PLT. */
14223 got_address = sgot->output_section->vma + sgot->output_offset;
14224 plt_address = splt->output_section->vma + splt->output_offset;
14225
14226 if (htab->vxworks_p)
14227 {
14228 /* The VxWorks GOT is relocated by the dynamic linker.
14229 Therefore, we must emit relocations rather than simply
14230 computing the values now. */
14231 Elf_Internal_Rela rel;
14232
14233 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
14234 put_arm_insn (htab, output_bfd, plt0_entry[0],
14235 splt->contents + 0);
14236 put_arm_insn (htab, output_bfd, plt0_entry[1],
14237 splt->contents + 4);
14238 put_arm_insn (htab, output_bfd, plt0_entry[2],
14239 splt->contents + 8);
14240 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
14241
14242 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
14243 rel.r_offset = plt_address + 12;
14244 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
14245 rel.r_addend = 0;
14246 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
14247 htab->srelplt2->contents);
14248 }
14249 else if (htab->nacl_p)
14250 {
14251 unsigned int i;
14252
14253 got_displacement = got_address + 8 - (plt_address + 16);
14254
14255 put_arm_insn (htab, output_bfd,
14256 elf32_arm_nacl_plt0_entry[0]
14257 | arm_movw_immediate (got_displacement),
14258 splt->contents + 0);
14259 put_arm_insn (htab, output_bfd,
14260 elf32_arm_nacl_plt0_entry[1]
14261 | arm_movt_immediate (got_displacement),
14262 splt->contents + 4);
14263 for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i)
14264 put_arm_insn (htab, output_bfd,
14265 elf32_arm_nacl_plt0_entry[i],
14266 splt->contents + (i * 4));
14267 }
14268 else
14269 {
14270 got_displacement = got_address - (plt_address + 16);
14271
14272 plt0_entry = elf32_arm_plt0_entry;
14273 put_arm_insn (htab, output_bfd, plt0_entry[0],
14274 splt->contents + 0);
14275 put_arm_insn (htab, output_bfd, plt0_entry[1],
14276 splt->contents + 4);
14277 put_arm_insn (htab, output_bfd, plt0_entry[2],
14278 splt->contents + 8);
14279 put_arm_insn (htab, output_bfd, plt0_entry[3],
14280 splt->contents + 12);
14281
14282 #ifdef FOUR_WORD_PLT
14283 /* The displacement value goes in the otherwise-unused
14284 last word of the second entry. */
14285 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
14286 #else
14287 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
14288 #endif
14289 }
14290 }
14291
14292 /* UnixWare sets the entsize of .plt to 4, although that doesn't
14293 really seem like the right value. */
14294 if (splt->output_section->owner == output_bfd)
14295 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
14296
14297 if (htab->dt_tlsdesc_plt)
14298 {
14299 bfd_vma got_address
14300 = sgot->output_section->vma + sgot->output_offset;
14301 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
14302 + htab->root.sgot->output_offset);
14303 bfd_vma plt_address
14304 = splt->output_section->vma + splt->output_offset;
14305
14306 arm_put_trampoline (htab, output_bfd,
14307 splt->contents + htab->dt_tlsdesc_plt,
14308 dl_tlsdesc_lazy_trampoline, 6);
14309
14310 bfd_put_32 (output_bfd,
14311 gotplt_address + htab->dt_tlsdesc_got
14312 - (plt_address + htab->dt_tlsdesc_plt)
14313 - dl_tlsdesc_lazy_trampoline[6],
14314 splt->contents + htab->dt_tlsdesc_plt + 24);
14315 bfd_put_32 (output_bfd,
14316 got_address - (plt_address + htab->dt_tlsdesc_plt)
14317 - dl_tlsdesc_lazy_trampoline[7],
14318 splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
14319 }
14320
14321 if (htab->tls_trampoline)
14322 {
14323 arm_put_trampoline (htab, output_bfd,
14324 splt->contents + htab->tls_trampoline,
14325 tls_trampoline, 3);
14326 #ifdef FOUR_WORD_PLT
14327 bfd_put_32 (output_bfd, 0x00000000,
14328 splt->contents + htab->tls_trampoline + 12);
14329 #endif
14330 }
14331
14332 if (htab->vxworks_p && !info->shared && htab->root.splt->size > 0)
14333 {
14334 /* Correct the .rel(a).plt.unloaded relocations. They will have
14335 incorrect symbol indexes. */
14336 int num_plts;
14337 unsigned char *p;
14338
14339 num_plts = ((htab->root.splt->size - htab->plt_header_size)
14340 / htab->plt_entry_size);
14341 p = htab->srelplt2->contents + RELOC_SIZE (htab);
14342
14343 for (; num_plts; num_plts--)
14344 {
14345 Elf_Internal_Rela rel;
14346
14347 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
14348 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
14349 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
14350 p += RELOC_SIZE (htab);
14351
14352 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
14353 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
14354 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
14355 p += RELOC_SIZE (htab);
14356 }
14357 }
14358 }
14359
14360 /* Fill in the first three entries in the global offset table. */
14361 if (sgot)
14362 {
14363 if (sgot->size > 0)
14364 {
14365 if (sdyn == NULL)
14366 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
14367 else
14368 bfd_put_32 (output_bfd,
14369 sdyn->output_section->vma + sdyn->output_offset,
14370 sgot->contents);
14371 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
14372 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
14373 }
14374
14375 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
14376 }
14377
14378 return TRUE;
14379 }
14380
14381 static void
14382 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
14383 {
14384 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
14385 struct elf32_arm_link_hash_table *globals;
14386
14387 i_ehdrp = elf_elfheader (abfd);
14388
14389 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
14390 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
14391 else
14392 i_ehdrp->e_ident[EI_OSABI] = 0;
14393 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
14394
14395 if (link_info)
14396 {
14397 globals = elf32_arm_hash_table (link_info);
14398 if (globals != NULL && globals->byteswap_code)
14399 i_ehdrp->e_flags |= EF_ARM_BE8;
14400 }
14401
14402 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5
14403 && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC)))
14404 {
14405 int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args);
14406 if (abi)
14407 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD;
14408 else
14409 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT;
14410 }
14411 }
14412
14413 static enum elf_reloc_type_class
14414 elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
14415 {
14416 switch ((int) ELF32_R_TYPE (rela->r_info))
14417 {
14418 case R_ARM_RELATIVE:
14419 return reloc_class_relative;
14420 case R_ARM_JUMP_SLOT:
14421 return reloc_class_plt;
14422 case R_ARM_COPY:
14423 return reloc_class_copy;
14424 default:
14425 return reloc_class_normal;
14426 }
14427 }
14428
14429 static void
14430 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
14431 {
14432 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
14433 }
14434
14435 /* Return TRUE if this is an unwinding table entry. */
14436
14437 static bfd_boolean
14438 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
14439 {
14440 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
14441 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
14442 }
14443
14444
14445 /* Set the type and flags for an ARM section. We do this by
14446 the section name, which is a hack, but ought to work. */
14447
14448 static bfd_boolean
14449 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
14450 {
14451 const char * name;
14452
14453 name = bfd_get_section_name (abfd, sec);
14454
14455 if (is_arm_elf_unwind_section_name (abfd, name))
14456 {
14457 hdr->sh_type = SHT_ARM_EXIDX;
14458 hdr->sh_flags |= SHF_LINK_ORDER;
14459 }
14460 return TRUE;
14461 }
14462
14463 /* Handle an ARM specific section when reading an object file. This is
14464 called when bfd_section_from_shdr finds a section with an unknown
14465 type. */
14466
14467 static bfd_boolean
14468 elf32_arm_section_from_shdr (bfd *abfd,
14469 Elf_Internal_Shdr * hdr,
14470 const char *name,
14471 int shindex)
14472 {
14473 /* There ought to be a place to keep ELF backend specific flags, but
14474 at the moment there isn't one. We just keep track of the
14475 sections by their name, instead. Fortunately, the ABI gives
14476 names for all the ARM specific sections, so we will probably get
14477 away with this. */
14478 switch (hdr->sh_type)
14479 {
14480 case SHT_ARM_EXIDX:
14481 case SHT_ARM_PREEMPTMAP:
14482 case SHT_ARM_ATTRIBUTES:
14483 break;
14484
14485 default:
14486 return FALSE;
14487 }
14488
14489 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
14490 return FALSE;
14491
14492 return TRUE;
14493 }
14494
14495 static _arm_elf_section_data *
14496 get_arm_elf_section_data (asection * sec)
14497 {
14498 if (sec && sec->owner && is_arm_elf (sec->owner))
14499 return elf32_arm_section_data (sec);
14500 else
14501 return NULL;
14502 }
14503
14504 typedef struct
14505 {
14506 void *flaginfo;
14507 struct bfd_link_info *info;
14508 asection *sec;
14509 int sec_shndx;
14510 int (*func) (void *, const char *, Elf_Internal_Sym *,
14511 asection *, struct elf_link_hash_entry *);
14512 } output_arch_syminfo;
14513
14514 enum map_symbol_type
14515 {
14516 ARM_MAP_ARM,
14517 ARM_MAP_THUMB,
14518 ARM_MAP_DATA
14519 };
14520
14521
14522 /* Output a single mapping symbol. */
14523
14524 static bfd_boolean
14525 elf32_arm_output_map_sym (output_arch_syminfo *osi,
14526 enum map_symbol_type type,
14527 bfd_vma offset)
14528 {
14529 static const char *names[3] = {"$a", "$t", "$d"};
14530 Elf_Internal_Sym sym;
14531
14532 sym.st_value = osi->sec->output_section->vma
14533 + osi->sec->output_offset
14534 + offset;
14535 sym.st_size = 0;
14536 sym.st_other = 0;
14537 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
14538 sym.st_shndx = osi->sec_shndx;
14539 sym.st_target_internal = 0;
14540 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
14541 return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1;
14542 }
14543
14544 /* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
14545 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
14546
14547 static bfd_boolean
14548 elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
14549 bfd_boolean is_iplt_entry_p,
14550 union gotplt_union *root_plt,
14551 struct arm_plt_info *arm_plt)
14552 {
14553 struct elf32_arm_link_hash_table *htab;
14554 bfd_vma addr, plt_header_size;
14555
14556 if (root_plt->offset == (bfd_vma) -1)
14557 return TRUE;
14558
14559 htab = elf32_arm_hash_table (osi->info);
14560 if (htab == NULL)
14561 return FALSE;
14562
14563 if (is_iplt_entry_p)
14564 {
14565 osi->sec = htab->root.iplt;
14566 plt_header_size = 0;
14567 }
14568 else
14569 {
14570 osi->sec = htab->root.splt;
14571 plt_header_size = htab->plt_header_size;
14572 }
14573 osi->sec_shndx = (_bfd_elf_section_from_bfd_section
14574 (osi->info->output_bfd, osi->sec->output_section));
14575
14576 addr = root_plt->offset & -2;
14577 if (htab->symbian_p)
14578 {
14579 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14580 return FALSE;
14581 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
14582 return FALSE;
14583 }
14584 else if (htab->vxworks_p)
14585 {
14586 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14587 return FALSE;
14588 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
14589 return FALSE;
14590 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
14591 return FALSE;
14592 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
14593 return FALSE;
14594 }
14595 else if (htab->nacl_p)
14596 {
14597 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14598 return FALSE;
14599 }
14600 else
14601 {
14602 bfd_boolean thumb_stub_p;
14603
14604 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
14605 if (thumb_stub_p)
14606 {
14607 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
14608 return FALSE;
14609 }
14610 #ifdef FOUR_WORD_PLT
14611 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14612 return FALSE;
14613 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
14614 return FALSE;
14615 #else
14616 /* A three-word PLT with no Thumb thunk contains only Arm code,
14617 so only need to output a mapping symbol for the first PLT entry and
14618 entries with thumb thunks. */
14619 if (thumb_stub_p || addr == plt_header_size)
14620 {
14621 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14622 return FALSE;
14623 }
14624 #endif
14625 }
14626
14627 return TRUE;
14628 }
14629
14630 /* Output mapping symbols for PLT entries associated with H. */
14631
14632 static bfd_boolean
14633 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
14634 {
14635 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
14636 struct elf32_arm_link_hash_entry *eh;
14637
14638 if (h->root.type == bfd_link_hash_indirect)
14639 return TRUE;
14640
14641 if (h->root.type == bfd_link_hash_warning)
14642 /* When warning symbols are created, they **replace** the "real"
14643 entry in the hash table, thus we never get to see the real
14644 symbol in a hash traversal. So look at it now. */
14645 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14646
14647 eh = (struct elf32_arm_link_hash_entry *) h;
14648 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
14649 &h->plt, &eh->plt);
14650 }
14651
14652 /* Output a single local symbol for a generated stub. */
14653
14654 static bfd_boolean
14655 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
14656 bfd_vma offset, bfd_vma size)
14657 {
14658 Elf_Internal_Sym sym;
14659
14660 sym.st_value = osi->sec->output_section->vma
14661 + osi->sec->output_offset
14662 + offset;
14663 sym.st_size = size;
14664 sym.st_other = 0;
14665 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
14666 sym.st_shndx = osi->sec_shndx;
14667 sym.st_target_internal = 0;
14668 return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1;
14669 }
14670
14671 static bfd_boolean
14672 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
14673 void * in_arg)
14674 {
14675 struct elf32_arm_stub_hash_entry *stub_entry;
14676 asection *stub_sec;
14677 bfd_vma addr;
14678 char *stub_name;
14679 output_arch_syminfo *osi;
14680 const insn_sequence *template_sequence;
14681 enum stub_insn_type prev_type;
14682 int size;
14683 int i;
14684 enum map_symbol_type sym_type;
14685
14686 /* Massage our args to the form they really have. */
14687 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
14688 osi = (output_arch_syminfo *) in_arg;
14689
14690 stub_sec = stub_entry->stub_sec;
14691
14692 /* Ensure this stub is attached to the current section being
14693 processed. */
14694 if (stub_sec != osi->sec)
14695 return TRUE;
14696
14697 addr = (bfd_vma) stub_entry->stub_offset;
14698 stub_name = stub_entry->output_name;
14699
14700 template_sequence = stub_entry->stub_template;
14701 switch (template_sequence[0].type)
14702 {
14703 case ARM_TYPE:
14704 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, stub_entry->stub_size))
14705 return FALSE;
14706 break;
14707 case THUMB16_TYPE:
14708 case THUMB32_TYPE:
14709 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
14710 stub_entry->stub_size))
14711 return FALSE;
14712 break;
14713 default:
14714 BFD_FAIL ();
14715 return 0;
14716 }
14717
14718 prev_type = DATA_TYPE;
14719 size = 0;
14720 for (i = 0; i < stub_entry->stub_template_size; i++)
14721 {
14722 switch (template_sequence[i].type)
14723 {
14724 case ARM_TYPE:
14725 sym_type = ARM_MAP_ARM;
14726 break;
14727
14728 case THUMB16_TYPE:
14729 case THUMB32_TYPE:
14730 sym_type = ARM_MAP_THUMB;
14731 break;
14732
14733 case DATA_TYPE:
14734 sym_type = ARM_MAP_DATA;
14735 break;
14736
14737 default:
14738 BFD_FAIL ();
14739 return FALSE;
14740 }
14741
14742 if (template_sequence[i].type != prev_type)
14743 {
14744 prev_type = template_sequence[i].type;
14745 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
14746 return FALSE;
14747 }
14748
14749 switch (template_sequence[i].type)
14750 {
14751 case ARM_TYPE:
14752 case THUMB32_TYPE:
14753 size += 4;
14754 break;
14755
14756 case THUMB16_TYPE:
14757 size += 2;
14758 break;
14759
14760 case DATA_TYPE:
14761 size += 4;
14762 break;
14763
14764 default:
14765 BFD_FAIL ();
14766 return FALSE;
14767 }
14768 }
14769
14770 return TRUE;
14771 }
14772
14773 /* Output mapping symbols for linker generated sections,
14774 and for those data-only sections that do not have a
14775 $d. */
14776
14777 static bfd_boolean
14778 elf32_arm_output_arch_local_syms (bfd *output_bfd,
14779 struct bfd_link_info *info,
14780 void *flaginfo,
14781 int (*func) (void *, const char *,
14782 Elf_Internal_Sym *,
14783 asection *,
14784 struct elf_link_hash_entry *))
14785 {
14786 output_arch_syminfo osi;
14787 struct elf32_arm_link_hash_table *htab;
14788 bfd_vma offset;
14789 bfd_size_type size;
14790 bfd *input_bfd;
14791
14792 htab = elf32_arm_hash_table (info);
14793 if (htab == NULL)
14794 return FALSE;
14795
14796 check_use_blx (htab);
14797
14798 osi.flaginfo = flaginfo;
14799 osi.info = info;
14800 osi.func = func;
14801
14802 /* Add a $d mapping symbol to data-only sections that
14803 don't have any mapping symbol. This may result in (harmless) redundant
14804 mapping symbols. */
14805 for (input_bfd = info->input_bfds;
14806 input_bfd != NULL;
14807 input_bfd = input_bfd->link_next)
14808 {
14809 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
14810 for (osi.sec = input_bfd->sections;
14811 osi.sec != NULL;
14812 osi.sec = osi.sec->next)
14813 {
14814 if (osi.sec->output_section != NULL
14815 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
14816 != 0)
14817 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
14818 == SEC_HAS_CONTENTS
14819 && get_arm_elf_section_data (osi.sec) != NULL
14820 && get_arm_elf_section_data (osi.sec)->mapcount == 0
14821 && osi.sec->size > 0
14822 && (osi.sec->flags & SEC_EXCLUDE) == 0)
14823 {
14824 osi.sec_shndx = _bfd_elf_section_from_bfd_section
14825 (output_bfd, osi.sec->output_section);
14826 if (osi.sec_shndx != (int)SHN_BAD)
14827 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
14828 }
14829 }
14830 }
14831
14832 /* ARM->Thumb glue. */
14833 if (htab->arm_glue_size > 0)
14834 {
14835 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
14836 ARM2THUMB_GLUE_SECTION_NAME);
14837
14838 osi.sec_shndx = _bfd_elf_section_from_bfd_section
14839 (output_bfd, osi.sec->output_section);
14840 if (info->shared || htab->root.is_relocatable_executable
14841 || htab->pic_veneer)
14842 size = ARM2THUMB_PIC_GLUE_SIZE;
14843 else if (htab->use_blx)
14844 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
14845 else
14846 size = ARM2THUMB_STATIC_GLUE_SIZE;
14847
14848 for (offset = 0; offset < htab->arm_glue_size; offset += size)
14849 {
14850 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
14851 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
14852 }
14853 }
14854
14855 /* Thumb->ARM glue. */
14856 if (htab->thumb_glue_size > 0)
14857 {
14858 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
14859 THUMB2ARM_GLUE_SECTION_NAME);
14860
14861 osi.sec_shndx = _bfd_elf_section_from_bfd_section
14862 (output_bfd, osi.sec->output_section);
14863 size = THUMB2ARM_GLUE_SIZE;
14864
14865 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
14866 {
14867 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
14868 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
14869 }
14870 }
14871
14872 /* ARMv4 BX veneers. */
14873 if (htab->bx_glue_size > 0)
14874 {
14875 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
14876 ARM_BX_GLUE_SECTION_NAME);
14877
14878 osi.sec_shndx = _bfd_elf_section_from_bfd_section
14879 (output_bfd, osi.sec->output_section);
14880
14881 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
14882 }
14883
14884 /* Long calls stubs. */
14885 if (htab->stub_bfd && htab->stub_bfd->sections)
14886 {
14887 asection* stub_sec;
14888
14889 for (stub_sec = htab->stub_bfd->sections;
14890 stub_sec != NULL;
14891 stub_sec = stub_sec->next)
14892 {
14893 /* Ignore non-stub sections. */
14894 if (!strstr (stub_sec->name, STUB_SUFFIX))
14895 continue;
14896
14897 osi.sec = stub_sec;
14898
14899 osi.sec_shndx = _bfd_elf_section_from_bfd_section
14900 (output_bfd, osi.sec->output_section);
14901
14902 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
14903 }
14904 }
14905
14906 /* Finally, output mapping symbols for the PLT. */
14907 if (htab->root.splt && htab->root.splt->size > 0)
14908 {
14909 osi.sec = htab->root.splt;
14910 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
14911 (output_bfd, osi.sec->output_section));
14912
14913 /* Output mapping symbols for the plt header. SymbianOS does not have a
14914 plt header. */
14915 if (htab->vxworks_p)
14916 {
14917 /* VxWorks shared libraries have no PLT header. */
14918 if (!info->shared)
14919 {
14920 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
14921 return FALSE;
14922 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
14923 return FALSE;
14924 }
14925 }
14926 else if (htab->nacl_p)
14927 {
14928 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
14929 return FALSE;
14930 }
14931 else if (!htab->symbian_p)
14932 {
14933 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
14934 return FALSE;
14935 #ifndef FOUR_WORD_PLT
14936 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
14937 return FALSE;
14938 #endif
14939 }
14940 }
14941 if ((htab->root.splt && htab->root.splt->size > 0)
14942 || (htab->root.iplt && htab->root.iplt->size > 0))
14943 {
14944 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
14945 for (input_bfd = info->input_bfds;
14946 input_bfd != NULL;
14947 input_bfd = input_bfd->link_next)
14948 {
14949 struct arm_local_iplt_info **local_iplt;
14950 unsigned int i, num_syms;
14951
14952 local_iplt = elf32_arm_local_iplt (input_bfd);
14953 if (local_iplt != NULL)
14954 {
14955 num_syms = elf_symtab_hdr (input_bfd).sh_info;
14956 for (i = 0; i < num_syms; i++)
14957 if (local_iplt[i] != NULL
14958 && !elf32_arm_output_plt_map_1 (&osi, TRUE,
14959 &local_iplt[i]->root,
14960 &local_iplt[i]->arm))
14961 return FALSE;
14962 }
14963 }
14964 }
14965 if (htab->dt_tlsdesc_plt != 0)
14966 {
14967 /* Mapping symbols for the lazy tls trampoline. */
14968 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
14969 return FALSE;
14970
14971 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
14972 htab->dt_tlsdesc_plt + 24))
14973 return FALSE;
14974 }
14975 if (htab->tls_trampoline != 0)
14976 {
14977 /* Mapping symbols for the tls trampoline. */
14978 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
14979 return FALSE;
14980 #ifdef FOUR_WORD_PLT
14981 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
14982 htab->tls_trampoline + 12))
14983 return FALSE;
14984 #endif
14985 }
14986
14987 return TRUE;
14988 }
14989
14990 /* Allocate target specific section data. */
14991
14992 static bfd_boolean
14993 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
14994 {
14995 if (!sec->used_by_bfd)
14996 {
14997 _arm_elf_section_data *sdata;
14998 bfd_size_type amt = sizeof (*sdata);
14999
15000 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
15001 if (sdata == NULL)
15002 return FALSE;
15003 sec->used_by_bfd = sdata;
15004 }
15005
15006 return _bfd_elf_new_section_hook (abfd, sec);
15007 }
15008
15009
15010 /* Used to order a list of mapping symbols by address. */
15011
15012 static int
15013 elf32_arm_compare_mapping (const void * a, const void * b)
15014 {
15015 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
15016 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
15017
15018 if (amap->vma > bmap->vma)
15019 return 1;
15020 else if (amap->vma < bmap->vma)
15021 return -1;
15022 else if (amap->type > bmap->type)
15023 /* Ensure results do not depend on the host qsort for objects with
15024 multiple mapping symbols at the same address by sorting on type
15025 after vma. */
15026 return 1;
15027 else if (amap->type < bmap->type)
15028 return -1;
15029 else
15030 return 0;
15031 }
15032
15033 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
15034
15035 static unsigned long
15036 offset_prel31 (unsigned long addr, bfd_vma offset)
15037 {
15038 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
15039 }
15040
15041 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
15042 relocations. */
15043
15044 static void
15045 copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
15046 {
15047 unsigned long first_word = bfd_get_32 (output_bfd, from);
15048 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
15049
15050 /* High bit of first word is supposed to be zero. */
15051 if ((first_word & 0x80000000ul) == 0)
15052 first_word = offset_prel31 (first_word, offset);
15053
15054 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
15055 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
15056 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
15057 second_word = offset_prel31 (second_word, offset);
15058
15059 bfd_put_32 (output_bfd, first_word, to);
15060 bfd_put_32 (output_bfd, second_word, to + 4);
15061 }
15062
15063 /* Data for make_branch_to_a8_stub(). */
15064
15065 struct a8_branch_to_stub_data
15066 {
15067 asection *writing_section;
15068 bfd_byte *contents;
15069 };
15070
15071
15072 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
15073 places for a particular section. */
15074
15075 static bfd_boolean
15076 make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
15077 void *in_arg)
15078 {
15079 struct elf32_arm_stub_hash_entry *stub_entry;
15080 struct a8_branch_to_stub_data *data;
15081 bfd_byte *contents;
15082 unsigned long branch_insn;
15083 bfd_vma veneered_insn_loc, veneer_entry_loc;
15084 bfd_signed_vma branch_offset;
15085 bfd *abfd;
15086 unsigned int target;
15087
15088 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
15089 data = (struct a8_branch_to_stub_data *) in_arg;
15090
15091 if (stub_entry->target_section != data->writing_section
15092 || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
15093 return TRUE;
15094
15095 contents = data->contents;
15096
15097 veneered_insn_loc = stub_entry->target_section->output_section->vma
15098 + stub_entry->target_section->output_offset
15099 + stub_entry->target_value;
15100
15101 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
15102 + stub_entry->stub_sec->output_offset
15103 + stub_entry->stub_offset;
15104
15105 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
15106 veneered_insn_loc &= ~3u;
15107
15108 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
15109
15110 abfd = stub_entry->target_section->owner;
15111 target = stub_entry->target_value;
15112
15113 /* We attempt to avoid this condition by setting stubs_always_after_branch
15114 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
15115 This check is just to be on the safe side... */
15116 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
15117 {
15118 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub is "
15119 "allocated in unsafe location"), abfd);
15120 return FALSE;
15121 }
15122
15123 switch (stub_entry->stub_type)
15124 {
15125 case arm_stub_a8_veneer_b:
15126 case arm_stub_a8_veneer_b_cond:
15127 branch_insn = 0xf0009000;
15128 goto jump24;
15129
15130 case arm_stub_a8_veneer_blx:
15131 branch_insn = 0xf000e800;
15132 goto jump24;
15133
15134 case arm_stub_a8_veneer_bl:
15135 {
15136 unsigned int i1, j1, i2, j2, s;
15137
15138 branch_insn = 0xf000d000;
15139
15140 jump24:
15141 if (branch_offset < -16777216 || branch_offset > 16777214)
15142 {
15143 /* There's not much we can do apart from complain if this
15144 happens. */
15145 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub out "
15146 "of range (input file too large)"), abfd);
15147 return FALSE;
15148 }
15149
15150 /* i1 = not(j1 eor s), so:
15151 not i1 = j1 eor s
15152 j1 = (not i1) eor s. */
15153
15154 branch_insn |= (branch_offset >> 1) & 0x7ff;
15155 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
15156 i2 = (branch_offset >> 22) & 1;
15157 i1 = (branch_offset >> 23) & 1;
15158 s = (branch_offset >> 24) & 1;
15159 j1 = (!i1) ^ s;
15160 j2 = (!i2) ^ s;
15161 branch_insn |= j2 << 11;
15162 branch_insn |= j1 << 13;
15163 branch_insn |= s << 26;
15164 }
15165 break;
15166
15167 default:
15168 BFD_FAIL ();
15169 return FALSE;
15170 }
15171
15172 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[target]);
15173 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[target + 2]);
15174
15175 return TRUE;
15176 }
15177
15178 /* Do code byteswapping. Return FALSE afterwards so that the section is
15179 written out as normal. */
15180
15181 static bfd_boolean
15182 elf32_arm_write_section (bfd *output_bfd,
15183 struct bfd_link_info *link_info,
15184 asection *sec,
15185 bfd_byte *contents)
15186 {
15187 unsigned int mapcount, errcount;
15188 _arm_elf_section_data *arm_data;
15189 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
15190 elf32_arm_section_map *map;
15191 elf32_vfp11_erratum_list *errnode;
15192 bfd_vma ptr;
15193 bfd_vma end;
15194 bfd_vma offset = sec->output_section->vma + sec->output_offset;
15195 bfd_byte tmp;
15196 unsigned int i;
15197
15198 if (globals == NULL)
15199 return FALSE;
15200
15201 /* If this section has not been allocated an _arm_elf_section_data
15202 structure then we cannot record anything. */
15203 arm_data = get_arm_elf_section_data (sec);
15204 if (arm_data == NULL)
15205 return FALSE;
15206
15207 mapcount = arm_data->mapcount;
15208 map = arm_data->map;
15209 errcount = arm_data->erratumcount;
15210
15211 if (errcount != 0)
15212 {
15213 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
15214
15215 for (errnode = arm_data->erratumlist; errnode != 0;
15216 errnode = errnode->next)
15217 {
15218 bfd_vma target = errnode->vma - offset;
15219
15220 switch (errnode->type)
15221 {
15222 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
15223 {
15224 bfd_vma branch_to_veneer;
15225 /* Original condition code of instruction, plus bit mask for
15226 ARM B instruction. */
15227 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
15228 | 0x0a000000;
15229
15230 /* The instruction is before the label. */
15231 target -= 4;
15232
15233 /* Above offset included in -4 below. */
15234 branch_to_veneer = errnode->u.b.veneer->vma
15235 - errnode->vma - 4;
15236
15237 if ((signed) branch_to_veneer < -(1 << 25)
15238 || (signed) branch_to_veneer >= (1 << 25))
15239 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
15240 "range"), output_bfd);
15241
15242 insn |= (branch_to_veneer >> 2) & 0xffffff;
15243 contents[endianflip ^ target] = insn & 0xff;
15244 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
15245 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
15246 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
15247 }
15248 break;
15249
15250 case VFP11_ERRATUM_ARM_VENEER:
15251 {
15252 bfd_vma branch_from_veneer;
15253 unsigned int insn;
15254
15255 /* Take size of veneer into account. */
15256 branch_from_veneer = errnode->u.v.branch->vma
15257 - errnode->vma - 12;
15258
15259 if ((signed) branch_from_veneer < -(1 << 25)
15260 || (signed) branch_from_veneer >= (1 << 25))
15261 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
15262 "range"), output_bfd);
15263
15264 /* Original instruction. */
15265 insn = errnode->u.v.branch->u.b.vfp_insn;
15266 contents[endianflip ^ target] = insn & 0xff;
15267 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
15268 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
15269 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
15270
15271 /* Branch back to insn after original insn. */
15272 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
15273 contents[endianflip ^ (target + 4)] = insn & 0xff;
15274 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
15275 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
15276 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
15277 }
15278 break;
15279
15280 default:
15281 abort ();
15282 }
15283 }
15284 }
15285
15286 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
15287 {
15288 arm_unwind_table_edit *edit_node
15289 = arm_data->u.exidx.unwind_edit_list;
15290 /* Now, sec->size is the size of the section we will write. The original
15291 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
15292 markers) was sec->rawsize. (This isn't the case if we perform no
15293 edits, then rawsize will be zero and we should use size). */
15294 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
15295 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
15296 unsigned int in_index, out_index;
15297 bfd_vma add_to_offsets = 0;
15298
15299 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
15300 {
15301 if (edit_node)
15302 {
15303 unsigned int edit_index = edit_node->index;
15304
15305 if (in_index < edit_index && in_index * 8 < input_size)
15306 {
15307 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
15308 contents + in_index * 8, add_to_offsets);
15309 out_index++;
15310 in_index++;
15311 }
15312 else if (in_index == edit_index
15313 || (in_index * 8 >= input_size
15314 && edit_index == UINT_MAX))
15315 {
15316 switch (edit_node->type)
15317 {
15318 case DELETE_EXIDX_ENTRY:
15319 in_index++;
15320 add_to_offsets += 8;
15321 break;
15322
15323 case INSERT_EXIDX_CANTUNWIND_AT_END:
15324 {
15325 asection *text_sec = edit_node->linked_section;
15326 bfd_vma text_offset = text_sec->output_section->vma
15327 + text_sec->output_offset
15328 + text_sec->size;
15329 bfd_vma exidx_offset = offset + out_index * 8;
15330 unsigned long prel31_offset;
15331
15332 /* Note: this is meant to be equivalent to an
15333 R_ARM_PREL31 relocation. These synthetic
15334 EXIDX_CANTUNWIND markers are not relocated by the
15335 usual BFD method. */
15336 prel31_offset = (text_offset - exidx_offset)
15337 & 0x7ffffffful;
15338
15339 /* First address we can't unwind. */
15340 bfd_put_32 (output_bfd, prel31_offset,
15341 &edited_contents[out_index * 8]);
15342
15343 /* Code for EXIDX_CANTUNWIND. */
15344 bfd_put_32 (output_bfd, 0x1,
15345 &edited_contents[out_index * 8 + 4]);
15346
15347 out_index++;
15348 add_to_offsets -= 8;
15349 }
15350 break;
15351 }
15352
15353 edit_node = edit_node->next;
15354 }
15355 }
15356 else
15357 {
15358 /* No more edits, copy remaining entries verbatim. */
15359 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
15360 contents + in_index * 8, add_to_offsets);
15361 out_index++;
15362 in_index++;
15363 }
15364 }
15365
15366 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
15367 bfd_set_section_contents (output_bfd, sec->output_section,
15368 edited_contents,
15369 (file_ptr) sec->output_offset, sec->size);
15370
15371 return TRUE;
15372 }
15373
15374 /* Fix code to point to Cortex-A8 erratum stubs. */
15375 if (globals->fix_cortex_a8)
15376 {
15377 struct a8_branch_to_stub_data data;
15378
15379 data.writing_section = sec;
15380 data.contents = contents;
15381
15382 bfd_hash_traverse (&globals->stub_hash_table, make_branch_to_a8_stub,
15383 &data);
15384 }
15385
15386 if (mapcount == 0)
15387 return FALSE;
15388
15389 if (globals->byteswap_code)
15390 {
15391 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
15392
15393 ptr = map[0].vma;
15394 for (i = 0; i < mapcount; i++)
15395 {
15396 if (i == mapcount - 1)
15397 end = sec->size;
15398 else
15399 end = map[i + 1].vma;
15400
15401 switch (map[i].type)
15402 {
15403 case 'a':
15404 /* Byte swap code words. */
15405 while (ptr + 3 < end)
15406 {
15407 tmp = contents[ptr];
15408 contents[ptr] = contents[ptr + 3];
15409 contents[ptr + 3] = tmp;
15410 tmp = contents[ptr + 1];
15411 contents[ptr + 1] = contents[ptr + 2];
15412 contents[ptr + 2] = tmp;
15413 ptr += 4;
15414 }
15415 break;
15416
15417 case 't':
15418 /* Byte swap code halfwords. */
15419 while (ptr + 1 < end)
15420 {
15421 tmp = contents[ptr];
15422 contents[ptr] = contents[ptr + 1];
15423 contents[ptr + 1] = tmp;
15424 ptr += 2;
15425 }
15426 break;
15427
15428 case 'd':
15429 /* Leave data alone. */
15430 break;
15431 }
15432 ptr = end;
15433 }
15434 }
15435
15436 free (map);
15437 arm_data->mapcount = -1;
15438 arm_data->mapsize = 0;
15439 arm_data->map = NULL;
15440
15441 return FALSE;
15442 }
15443
15444 /* Mangle thumb function symbols as we read them in. */
15445
15446 static bfd_boolean
15447 elf32_arm_swap_symbol_in (bfd * abfd,
15448 const void *psrc,
15449 const void *pshn,
15450 Elf_Internal_Sym *dst)
15451 {
15452 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
15453 return FALSE;
15454
15455 /* New EABI objects mark thumb function symbols by setting the low bit of
15456 the address. */
15457 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
15458 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
15459 {
15460 if (dst->st_value & 1)
15461 {
15462 dst->st_value &= ~(bfd_vma) 1;
15463 dst->st_target_internal = ST_BRANCH_TO_THUMB;
15464 }
15465 else
15466 dst->st_target_internal = ST_BRANCH_TO_ARM;
15467 }
15468 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
15469 {
15470 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
15471 dst->st_target_internal = ST_BRANCH_TO_THUMB;
15472 }
15473 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
15474 dst->st_target_internal = ST_BRANCH_LONG;
15475 else
15476 dst->st_target_internal = ST_BRANCH_UNKNOWN;
15477
15478 return TRUE;
15479 }
15480
15481
15482 /* Mangle thumb function symbols as we write them out. */
15483
15484 static void
15485 elf32_arm_swap_symbol_out (bfd *abfd,
15486 const Elf_Internal_Sym *src,
15487 void *cdst,
15488 void *shndx)
15489 {
15490 Elf_Internal_Sym newsym;
15491
15492 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
15493 of the address set, as per the new EABI. We do this unconditionally
15494 because objcopy does not set the elf header flags until after
15495 it writes out the symbol table. */
15496 if (src->st_target_internal == ST_BRANCH_TO_THUMB)
15497 {
15498 newsym = *src;
15499 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
15500 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
15501 if (newsym.st_shndx != SHN_UNDEF)
15502 {
15503 /* Do this only for defined symbols. At link type, the static
15504 linker will simulate the work of dynamic linker of resolving
15505 symbols and will carry over the thumbness of found symbols to
15506 the output symbol table. It's not clear how it happens, but
15507 the thumbness of undefined symbols can well be different at
15508 runtime, and writing '1' for them will be confusing for users
15509 and possibly for dynamic linker itself.
15510 */
15511 newsym.st_value |= 1;
15512 }
15513
15514 src = &newsym;
15515 }
15516 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
15517 }
15518
15519 /* Add the PT_ARM_EXIDX program header. */
15520
15521 static bfd_boolean
15522 elf32_arm_modify_segment_map (bfd *abfd,
15523 struct bfd_link_info *info ATTRIBUTE_UNUSED)
15524 {
15525 struct elf_segment_map *m;
15526 asection *sec;
15527
15528 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
15529 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
15530 {
15531 /* If there is already a PT_ARM_EXIDX header, then we do not
15532 want to add another one. This situation arises when running
15533 "strip"; the input binary already has the header. */
15534 m = elf_seg_map (abfd);
15535 while (m && m->p_type != PT_ARM_EXIDX)
15536 m = m->next;
15537 if (!m)
15538 {
15539 m = (struct elf_segment_map *)
15540 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
15541 if (m == NULL)
15542 return FALSE;
15543 m->p_type = PT_ARM_EXIDX;
15544 m->count = 1;
15545 m->sections[0] = sec;
15546
15547 m->next = elf_seg_map (abfd);
15548 elf_seg_map (abfd) = m;
15549 }
15550 }
15551
15552 return TRUE;
15553 }
15554
15555 /* We may add a PT_ARM_EXIDX program header. */
15556
15557 static int
15558 elf32_arm_additional_program_headers (bfd *abfd,
15559 struct bfd_link_info *info ATTRIBUTE_UNUSED)
15560 {
15561 asection *sec;
15562
15563 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
15564 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
15565 return 1;
15566 else
15567 return 0;
15568 }
15569
15570 /* Hook called by the linker routine which adds symbols from an object
15571 file. */
15572
15573 static bfd_boolean
15574 elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
15575 Elf_Internal_Sym *sym, const char **namep,
15576 flagword *flagsp, asection **secp, bfd_vma *valp)
15577 {
15578 if ((abfd->flags & DYNAMIC) == 0
15579 && (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
15580 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE))
15581 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
15582
15583 if (elf32_arm_hash_table (info)->vxworks_p
15584 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
15585 flagsp, secp, valp))
15586 return FALSE;
15587
15588 return TRUE;
15589 }
15590
15591 /* We use this to override swap_symbol_in and swap_symbol_out. */
15592 const struct elf_size_info elf32_arm_size_info =
15593 {
15594 sizeof (Elf32_External_Ehdr),
15595 sizeof (Elf32_External_Phdr),
15596 sizeof (Elf32_External_Shdr),
15597 sizeof (Elf32_External_Rel),
15598 sizeof (Elf32_External_Rela),
15599 sizeof (Elf32_External_Sym),
15600 sizeof (Elf32_External_Dyn),
15601 sizeof (Elf_External_Note),
15602 4,
15603 1,
15604 32, 2,
15605 ELFCLASS32, EV_CURRENT,
15606 bfd_elf32_write_out_phdrs,
15607 bfd_elf32_write_shdrs_and_ehdr,
15608 bfd_elf32_checksum_contents,
15609 bfd_elf32_write_relocs,
15610 elf32_arm_swap_symbol_in,
15611 elf32_arm_swap_symbol_out,
15612 bfd_elf32_slurp_reloc_table,
15613 bfd_elf32_slurp_symbol_table,
15614 bfd_elf32_swap_dyn_in,
15615 bfd_elf32_swap_dyn_out,
15616 bfd_elf32_swap_reloc_in,
15617 bfd_elf32_swap_reloc_out,
15618 bfd_elf32_swap_reloca_in,
15619 bfd_elf32_swap_reloca_out
15620 };
15621
15622 #define ELF_ARCH bfd_arch_arm
15623 #define ELF_TARGET_ID ARM_ELF_DATA
15624 #define ELF_MACHINE_CODE EM_ARM
15625 #ifdef __QNXTARGET__
15626 #define ELF_MAXPAGESIZE 0x1000
15627 #else
15628 #define ELF_MAXPAGESIZE 0x8000
15629 #endif
15630 #define ELF_MINPAGESIZE 0x1000
15631 #define ELF_COMMONPAGESIZE 0x1000
15632
15633 #define bfd_elf32_mkobject elf32_arm_mkobject
15634
15635 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
15636 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
15637 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
15638 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
15639 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
15640 #define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
15641 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
15642 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
15643 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
15644 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
15645 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
15646 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
15647 #define bfd_elf32_bfd_final_link elf32_arm_final_link
15648
15649 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
15650 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
15651 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
15652 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
15653 #define elf_backend_check_relocs elf32_arm_check_relocs
15654 #define elf_backend_relocate_section elf32_arm_relocate_section
15655 #define elf_backend_write_section elf32_arm_write_section
15656 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
15657 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
15658 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
15659 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
15660 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
15661 #define elf_backend_always_size_sections elf32_arm_always_size_sections
15662 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
15663 #define elf_backend_post_process_headers elf32_arm_post_process_headers
15664 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
15665 #define elf_backend_object_p elf32_arm_object_p
15666 #define elf_backend_fake_sections elf32_arm_fake_sections
15667 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
15668 #define elf_backend_final_write_processing elf32_arm_final_write_processing
15669 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
15670 #define elf_backend_size_info elf32_arm_size_info
15671 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
15672 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
15673 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
15674 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
15675 #define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
15676
15677 #define elf_backend_can_refcount 1
15678 #define elf_backend_can_gc_sections 1
15679 #define elf_backend_plt_readonly 1
15680 #define elf_backend_want_got_plt 1
15681 #define elf_backend_want_plt_sym 0
15682 #define elf_backend_may_use_rel_p 1
15683 #define elf_backend_may_use_rela_p 0
15684 #define elf_backend_default_use_rela_p 0
15685
15686 #define elf_backend_got_header_size 12
15687
15688 #undef elf_backend_obj_attrs_vendor
15689 #define elf_backend_obj_attrs_vendor "aeabi"
15690 #undef elf_backend_obj_attrs_section
15691 #define elf_backend_obj_attrs_section ".ARM.attributes"
15692 #undef elf_backend_obj_attrs_arg_type
15693 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
15694 #undef elf_backend_obj_attrs_section_type
15695 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
15696 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
15697 #define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
15698
15699 #include "elf32-target.h"
15700
15701 /* Native Client targets. */
15702
15703 #undef TARGET_LITTLE_SYM
15704 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_nacl_vec
15705 #undef TARGET_LITTLE_NAME
15706 #define TARGET_LITTLE_NAME "elf32-littlearm-nacl"
15707 #undef TARGET_BIG_SYM
15708 #define TARGET_BIG_SYM bfd_elf32_bigarm_nacl_vec
15709 #undef TARGET_BIG_NAME
15710 #define TARGET_BIG_NAME "elf32-bigarm-nacl"
15711
15712 /* Like elf32_arm_link_hash_table_create -- but overrides
15713 appropriately for NaCl. */
15714
15715 static struct bfd_link_hash_table *
15716 elf32_arm_nacl_link_hash_table_create (bfd *abfd)
15717 {
15718 struct bfd_link_hash_table *ret;
15719
15720 ret = elf32_arm_link_hash_table_create (abfd);
15721 if (ret)
15722 {
15723 struct elf32_arm_link_hash_table *htab
15724 = (struct elf32_arm_link_hash_table *) ret;
15725
15726 htab->nacl_p = 1;
15727
15728 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry);
15729 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry);
15730 }
15731 return ret;
15732 }
15733
15734 /* Since NaCl doesn't use the ARM-specific unwind format, we don't
15735 really need to use elf32_arm_modify_segment_map. But we do it
15736 anyway just to reduce gratuitous differences with the stock ARM backend. */
15737
15738 static bfd_boolean
15739 elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
15740 {
15741 return (elf32_arm_modify_segment_map (abfd, info)
15742 && nacl_modify_segment_map (abfd, info));
15743 }
15744
15745 #undef elf32_bed
15746 #define elf32_bed elf32_arm_nacl_bed
15747 #undef bfd_elf32_bfd_link_hash_table_create
15748 #define bfd_elf32_bfd_link_hash_table_create \
15749 elf32_arm_nacl_link_hash_table_create
15750 #undef elf_backend_plt_alignment
15751 #define elf_backend_plt_alignment 4
15752 #undef elf_backend_modify_segment_map
15753 #define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map
15754 #undef elf_backend_modify_program_headers
15755 #define elf_backend_modify_program_headers nacl_modify_program_headers
15756
15757 #undef ELF_MAXPAGESIZE
15758 #define ELF_MAXPAGESIZE 0x10000
15759
15760 #include "elf32-target.h"
15761
15762 /* Reset to defaults. */
15763 #undef elf_backend_plt_alignment
15764 #undef elf_backend_modify_segment_map
15765 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
15766 #undef elf_backend_modify_program_headers
15767
15768 /* VxWorks Targets. */
15769
15770 #undef TARGET_LITTLE_SYM
15771 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
15772 #undef TARGET_LITTLE_NAME
15773 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
15774 #undef TARGET_BIG_SYM
15775 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
15776 #undef TARGET_BIG_NAME
15777 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
15778
15779 /* Like elf32_arm_link_hash_table_create -- but overrides
15780 appropriately for VxWorks. */
15781
15782 static struct bfd_link_hash_table *
15783 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
15784 {
15785 struct bfd_link_hash_table *ret;
15786
15787 ret = elf32_arm_link_hash_table_create (abfd);
15788 if (ret)
15789 {
15790 struct elf32_arm_link_hash_table *htab
15791 = (struct elf32_arm_link_hash_table *) ret;
15792 htab->use_rel = 0;
15793 htab->vxworks_p = 1;
15794 }
15795 return ret;
15796 }
15797
15798 static void
15799 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
15800 {
15801 elf32_arm_final_write_processing (abfd, linker);
15802 elf_vxworks_final_write_processing (abfd, linker);
15803 }
15804
15805 #undef elf32_bed
15806 #define elf32_bed elf32_arm_vxworks_bed
15807
15808 #undef bfd_elf32_bfd_link_hash_table_create
15809 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
15810 #undef elf_backend_final_write_processing
15811 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
15812 #undef elf_backend_emit_relocs
15813 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
15814
15815 #undef elf_backend_may_use_rel_p
15816 #define elf_backend_may_use_rel_p 0
15817 #undef elf_backend_may_use_rela_p
15818 #define elf_backend_may_use_rela_p 1
15819 #undef elf_backend_default_use_rela_p
15820 #define elf_backend_default_use_rela_p 1
15821 #undef elf_backend_want_plt_sym
15822 #define elf_backend_want_plt_sym 1
15823 #undef ELF_MAXPAGESIZE
15824 #define ELF_MAXPAGESIZE 0x1000
15825
15826 #include "elf32-target.h"
15827
15828
15829 /* Merge backend specific data from an object file to the output
15830 object file when linking. */
15831
15832 static bfd_boolean
15833 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
15834 {
15835 flagword out_flags;
15836 flagword in_flags;
15837 bfd_boolean flags_compatible = TRUE;
15838 asection *sec;
15839
15840 /* Check if we have the same endianness. */
15841 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
15842 return FALSE;
15843
15844 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
15845 return TRUE;
15846
15847 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
15848 return FALSE;
15849
15850 /* The input BFD must have had its flags initialised. */
15851 /* The following seems bogus to me -- The flags are initialized in
15852 the assembler but I don't think an elf_flags_init field is
15853 written into the object. */
15854 /* BFD_ASSERT (elf_flags_init (ibfd)); */
15855
15856 in_flags = elf_elfheader (ibfd)->e_flags;
15857 out_flags = elf_elfheader (obfd)->e_flags;
15858
15859 /* In theory there is no reason why we couldn't handle this. However
15860 in practice it isn't even close to working and there is no real
15861 reason to want it. */
15862 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
15863 && !(ibfd->flags & DYNAMIC)
15864 && (in_flags & EF_ARM_BE8))
15865 {
15866 _bfd_error_handler (_("error: %B is already in final BE8 format"),
15867 ibfd);
15868 return FALSE;
15869 }
15870
15871 if (!elf_flags_init (obfd))
15872 {
15873 /* If the input is the default architecture and had the default
15874 flags then do not bother setting the flags for the output
15875 architecture, instead allow future merges to do this. If no
15876 future merges ever set these flags then they will retain their
15877 uninitialised values, which surprise surprise, correspond
15878 to the default values. */
15879 if (bfd_get_arch_info (ibfd)->the_default
15880 && elf_elfheader (ibfd)->e_flags == 0)
15881 return TRUE;
15882
15883 elf_flags_init (obfd) = TRUE;
15884 elf_elfheader (obfd)->e_flags = in_flags;
15885
15886 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15887 && bfd_get_arch_info (obfd)->the_default)
15888 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
15889
15890 return TRUE;
15891 }
15892
15893 /* Determine what should happen if the input ARM architecture
15894 does not match the output ARM architecture. */
15895 if (! bfd_arm_merge_machines (ibfd, obfd))
15896 return FALSE;
15897
15898 /* Identical flags must be compatible. */
15899 if (in_flags == out_flags)
15900 return TRUE;
15901
15902 /* Check to see if the input BFD actually contains any sections. If
15903 not, its flags may not have been initialised either, but it
15904 cannot actually cause any incompatiblity. Do not short-circuit
15905 dynamic objects; their section list may be emptied by
15906 elf_link_add_object_symbols.
15907
15908 Also check to see if there are no code sections in the input.
15909 In this case there is no need to check for code specific flags.
15910 XXX - do we need to worry about floating-point format compatability
15911 in data sections ? */
15912 if (!(ibfd->flags & DYNAMIC))
15913 {
15914 bfd_boolean null_input_bfd = TRUE;
15915 bfd_boolean only_data_sections = TRUE;
15916
15917 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15918 {
15919 /* Ignore synthetic glue sections. */
15920 if (strcmp (sec->name, ".glue_7")
15921 && strcmp (sec->name, ".glue_7t"))
15922 {
15923 if ((bfd_get_section_flags (ibfd, sec)
15924 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
15925 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
15926 only_data_sections = FALSE;
15927
15928 null_input_bfd = FALSE;
15929 break;
15930 }
15931 }
15932
15933 if (null_input_bfd || only_data_sections)
15934 return TRUE;
15935 }
15936
15937 /* Complain about various flag mismatches. */
15938 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
15939 EF_ARM_EABI_VERSION (out_flags)))
15940 {
15941 _bfd_error_handler
15942 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
15943 ibfd, obfd,
15944 (in_flags & EF_ARM_EABIMASK) >> 24,
15945 (out_flags & EF_ARM_EABIMASK) >> 24);
15946 return FALSE;
15947 }
15948
15949 /* Not sure what needs to be checked for EABI versions >= 1. */
15950 /* VxWorks libraries do not use these flags. */
15951 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
15952 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
15953 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
15954 {
15955 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
15956 {
15957 _bfd_error_handler
15958 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
15959 ibfd, obfd,
15960 in_flags & EF_ARM_APCS_26 ? 26 : 32,
15961 out_flags & EF_ARM_APCS_26 ? 26 : 32);
15962 flags_compatible = FALSE;
15963 }
15964
15965 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
15966 {
15967 if (in_flags & EF_ARM_APCS_FLOAT)
15968 _bfd_error_handler
15969 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
15970 ibfd, obfd);
15971 else
15972 _bfd_error_handler
15973 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
15974 ibfd, obfd);
15975
15976 flags_compatible = FALSE;
15977 }
15978
15979 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
15980 {
15981 if (in_flags & EF_ARM_VFP_FLOAT)
15982 _bfd_error_handler
15983 (_("error: %B uses VFP instructions, whereas %B does not"),
15984 ibfd, obfd);
15985 else
15986 _bfd_error_handler
15987 (_("error: %B uses FPA instructions, whereas %B does not"),
15988 ibfd, obfd);
15989
15990 flags_compatible = FALSE;
15991 }
15992
15993 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
15994 {
15995 if (in_flags & EF_ARM_MAVERICK_FLOAT)
15996 _bfd_error_handler
15997 (_("error: %B uses Maverick instructions, whereas %B does not"),
15998 ibfd, obfd);
15999 else
16000 _bfd_error_handler
16001 (_("error: %B does not use Maverick instructions, whereas %B does"),
16002 ibfd, obfd);
16003
16004 flags_compatible = FALSE;
16005 }
16006
16007 #ifdef EF_ARM_SOFT_FLOAT
16008 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
16009 {
16010 /* We can allow interworking between code that is VFP format
16011 layout, and uses either soft float or integer regs for
16012 passing floating point arguments and results. We already
16013 know that the APCS_FLOAT flags match; similarly for VFP
16014 flags. */
16015 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
16016 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
16017 {
16018 if (in_flags & EF_ARM_SOFT_FLOAT)
16019 _bfd_error_handler
16020 (_("error: %B uses software FP, whereas %B uses hardware FP"),
16021 ibfd, obfd);
16022 else
16023 _bfd_error_handler
16024 (_("error: %B uses hardware FP, whereas %B uses software FP"),
16025 ibfd, obfd);
16026
16027 flags_compatible = FALSE;
16028 }
16029 }
16030 #endif
16031
16032 /* Interworking mismatch is only a warning. */
16033 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
16034 {
16035 if (in_flags & EF_ARM_INTERWORK)
16036 {
16037 _bfd_error_handler
16038 (_("Warning: %B supports interworking, whereas %B does not"),
16039 ibfd, obfd);
16040 }
16041 else
16042 {
16043 _bfd_error_handler
16044 (_("Warning: %B does not support interworking, whereas %B does"),
16045 ibfd, obfd);
16046 }
16047 }
16048 }
16049
16050 return flags_compatible;
16051 }
16052
16053
16054 /* Symbian OS Targets. */
16055
16056 #undef TARGET_LITTLE_SYM
16057 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
16058 #undef TARGET_LITTLE_NAME
16059 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
16060 #undef TARGET_BIG_SYM
16061 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
16062 #undef TARGET_BIG_NAME
16063 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
16064
16065 /* Like elf32_arm_link_hash_table_create -- but overrides
16066 appropriately for Symbian OS. */
16067
16068 static struct bfd_link_hash_table *
16069 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
16070 {
16071 struct bfd_link_hash_table *ret;
16072
16073 ret = elf32_arm_link_hash_table_create (abfd);
16074 if (ret)
16075 {
16076 struct elf32_arm_link_hash_table *htab
16077 = (struct elf32_arm_link_hash_table *)ret;
16078 /* There is no PLT header for Symbian OS. */
16079 htab->plt_header_size = 0;
16080 /* The PLT entries are each one instruction and one word. */
16081 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
16082 htab->symbian_p = 1;
16083 /* Symbian uses armv5t or above, so use_blx is always true. */
16084 htab->use_blx = 1;
16085 htab->root.is_relocatable_executable = 1;
16086 }
16087 return ret;
16088 }
16089
16090 static const struct bfd_elf_special_section
16091 elf32_arm_symbian_special_sections[] =
16092 {
16093 /* In a BPABI executable, the dynamic linking sections do not go in
16094 the loadable read-only segment. The post-linker may wish to
16095 refer to these sections, but they are not part of the final
16096 program image. */
16097 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
16098 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
16099 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
16100 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
16101 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
16102 /* These sections do not need to be writable as the SymbianOS
16103 postlinker will arrange things so that no dynamic relocation is
16104 required. */
16105 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
16106 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
16107 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
16108 { NULL, 0, 0, 0, 0 }
16109 };
16110
16111 static void
16112 elf32_arm_symbian_begin_write_processing (bfd *abfd,
16113 struct bfd_link_info *link_info)
16114 {
16115 /* BPABI objects are never loaded directly by an OS kernel; they are
16116 processed by a postlinker first, into an OS-specific format. If
16117 the D_PAGED bit is set on the file, BFD will align segments on
16118 page boundaries, so that an OS can directly map the file. With
16119 BPABI objects, that just results in wasted space. In addition,
16120 because we clear the D_PAGED bit, map_sections_to_segments will
16121 recognize that the program headers should not be mapped into any
16122 loadable segment. */
16123 abfd->flags &= ~D_PAGED;
16124 elf32_arm_begin_write_processing (abfd, link_info);
16125 }
16126
16127 static bfd_boolean
16128 elf32_arm_symbian_modify_segment_map (bfd *abfd,
16129 struct bfd_link_info *info)
16130 {
16131 struct elf_segment_map *m;
16132 asection *dynsec;
16133
16134 /* BPABI shared libraries and executables should have a PT_DYNAMIC
16135 segment. However, because the .dynamic section is not marked
16136 with SEC_LOAD, the generic ELF code will not create such a
16137 segment. */
16138 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
16139 if (dynsec)
16140 {
16141 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
16142 if (m->p_type == PT_DYNAMIC)
16143 break;
16144
16145 if (m == NULL)
16146 {
16147 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
16148 m->next = elf_seg_map (abfd);
16149 elf_seg_map (abfd) = m;
16150 }
16151 }
16152
16153 /* Also call the generic arm routine. */
16154 return elf32_arm_modify_segment_map (abfd, info);
16155 }
16156
16157 /* Return address for Ith PLT stub in section PLT, for relocation REL
16158 or (bfd_vma) -1 if it should not be included. */
16159
16160 static bfd_vma
16161 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
16162 const arelent *rel ATTRIBUTE_UNUSED)
16163 {
16164 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
16165 }
16166
16167
16168 #undef elf32_bed
16169 #define elf32_bed elf32_arm_symbian_bed
16170
16171 /* The dynamic sections are not allocated on SymbianOS; the postlinker
16172 will process them and then discard them. */
16173 #undef ELF_DYNAMIC_SEC_FLAGS
16174 #define ELF_DYNAMIC_SEC_FLAGS \
16175 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
16176
16177 #undef elf_backend_emit_relocs
16178
16179 #undef bfd_elf32_bfd_link_hash_table_create
16180 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
16181 #undef elf_backend_special_sections
16182 #define elf_backend_special_sections elf32_arm_symbian_special_sections
16183 #undef elf_backend_begin_write_processing
16184 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
16185 #undef elf_backend_final_write_processing
16186 #define elf_backend_final_write_processing elf32_arm_final_write_processing
16187
16188 #undef elf_backend_modify_segment_map
16189 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
16190
16191 /* There is no .got section for BPABI objects, and hence no header. */
16192 #undef elf_backend_got_header_size
16193 #define elf_backend_got_header_size 0
16194
16195 /* Similarly, there is no .got.plt section. */
16196 #undef elf_backend_want_got_plt
16197 #define elf_backend_want_got_plt 0
16198
16199 #undef elf_backend_plt_sym_val
16200 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
16201
16202 #undef elf_backend_may_use_rel_p
16203 #define elf_backend_may_use_rel_p 1
16204 #undef elf_backend_may_use_rela_p
16205 #define elf_backend_may_use_rela_p 0
16206 #undef elf_backend_default_use_rela_p
16207 #define elf_backend_default_use_rela_p 0
16208 #undef elf_backend_want_plt_sym
16209 #define elf_backend_want_plt_sym 0
16210 #undef ELF_MAXPAGESIZE
16211 #define ELF_MAXPAGESIZE 0x8000
16212
16213 #include "elf32-target.h"
This page took 0.502135 seconds and 4 git commands to generate.