fb29c0c0108df1453bd46ad4911331d22eae6010
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
1 /* 32-bit ELF support for ARM
2 Copyright (C) 1998-2018 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include <limits.h>
23
24 #include "bfd.h"
25 #include "bfd_stdint.h"
26 #include "libiberty.h"
27 #include "libbfd.h"
28 #include "elf-bfd.h"
29 #include "elf-nacl.h"
30 #include "elf-vxworks.h"
31 #include "elf/arm.h"
32
33 /* Return the relocation section associated with NAME. HTAB is the
34 bfd's elf32_arm_link_hash_entry. */
35 #define RELOC_SECTION(HTAB, NAME) \
36 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
37
38 /* Return size of a relocation entry. HTAB is the bfd's
39 elf32_arm_link_hash_entry. */
40 #define RELOC_SIZE(HTAB) \
41 ((HTAB)->use_rel \
42 ? sizeof (Elf32_External_Rel) \
43 : sizeof (Elf32_External_Rela))
44
45 /* Return function to swap relocations in. HTAB is the bfd's
46 elf32_arm_link_hash_entry. */
47 #define SWAP_RELOC_IN(HTAB) \
48 ((HTAB)->use_rel \
49 ? bfd_elf32_swap_reloc_in \
50 : bfd_elf32_swap_reloca_in)
51
52 /* Return function to swap relocations out. HTAB is the bfd's
53 elf32_arm_link_hash_entry. */
54 #define SWAP_RELOC_OUT(HTAB) \
55 ((HTAB)->use_rel \
56 ? bfd_elf32_swap_reloc_out \
57 : bfd_elf32_swap_reloca_out)
58
59 #define elf_info_to_howto NULL
60 #define elf_info_to_howto_rel elf32_arm_info_to_howto
61
62 #define ARM_ELF_ABI_VERSION 0
63 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
64
65 /* The Adjusted Place, as defined by AAELF. */
66 #define Pa(X) ((X) & 0xfffffffc)
67
68 static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
69 struct bfd_link_info *link_info,
70 asection *sec,
71 bfd_byte *contents);
72
73 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
74 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
75 in that slot. */
76
77 static reloc_howto_type elf32_arm_howto_table_1[] =
78 {
79 /* No relocation. */
80 HOWTO (R_ARM_NONE, /* type */
81 0, /* rightshift */
82 3, /* size (0 = byte, 1 = short, 2 = long) */
83 0, /* bitsize */
84 FALSE, /* pc_relative */
85 0, /* bitpos */
86 complain_overflow_dont,/* complain_on_overflow */
87 bfd_elf_generic_reloc, /* special_function */
88 "R_ARM_NONE", /* name */
89 FALSE, /* partial_inplace */
90 0, /* src_mask */
91 0, /* dst_mask */
92 FALSE), /* pcrel_offset */
93
94 HOWTO (R_ARM_PC24, /* type */
95 2, /* rightshift */
96 2, /* size (0 = byte, 1 = short, 2 = long) */
97 24, /* bitsize */
98 TRUE, /* pc_relative */
99 0, /* bitpos */
100 complain_overflow_signed,/* complain_on_overflow */
101 bfd_elf_generic_reloc, /* special_function */
102 "R_ARM_PC24", /* name */
103 FALSE, /* partial_inplace */
104 0x00ffffff, /* src_mask */
105 0x00ffffff, /* dst_mask */
106 TRUE), /* pcrel_offset */
107
108 /* 32 bit absolute */
109 HOWTO (R_ARM_ABS32, /* type */
110 0, /* rightshift */
111 2, /* size (0 = byte, 1 = short, 2 = long) */
112 32, /* bitsize */
113 FALSE, /* pc_relative */
114 0, /* bitpos */
115 complain_overflow_bitfield,/* complain_on_overflow */
116 bfd_elf_generic_reloc, /* special_function */
117 "R_ARM_ABS32", /* name */
118 FALSE, /* partial_inplace */
119 0xffffffff, /* src_mask */
120 0xffffffff, /* dst_mask */
121 FALSE), /* pcrel_offset */
122
123 /* standard 32bit pc-relative reloc */
124 HOWTO (R_ARM_REL32, /* type */
125 0, /* rightshift */
126 2, /* size (0 = byte, 1 = short, 2 = long) */
127 32, /* bitsize */
128 TRUE, /* pc_relative */
129 0, /* bitpos */
130 complain_overflow_bitfield,/* complain_on_overflow */
131 bfd_elf_generic_reloc, /* special_function */
132 "R_ARM_REL32", /* name */
133 FALSE, /* partial_inplace */
134 0xffffffff, /* src_mask */
135 0xffffffff, /* dst_mask */
136 TRUE), /* pcrel_offset */
137
138 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
139 HOWTO (R_ARM_LDR_PC_G0, /* type */
140 0, /* rightshift */
141 0, /* size (0 = byte, 1 = short, 2 = long) */
142 32, /* bitsize */
143 TRUE, /* pc_relative */
144 0, /* bitpos */
145 complain_overflow_dont,/* complain_on_overflow */
146 bfd_elf_generic_reloc, /* special_function */
147 "R_ARM_LDR_PC_G0", /* name */
148 FALSE, /* partial_inplace */
149 0xffffffff, /* src_mask */
150 0xffffffff, /* dst_mask */
151 TRUE), /* pcrel_offset */
152
153 /* 16 bit absolute */
154 HOWTO (R_ARM_ABS16, /* type */
155 0, /* rightshift */
156 1, /* size (0 = byte, 1 = short, 2 = long) */
157 16, /* bitsize */
158 FALSE, /* pc_relative */
159 0, /* bitpos */
160 complain_overflow_bitfield,/* complain_on_overflow */
161 bfd_elf_generic_reloc, /* special_function */
162 "R_ARM_ABS16", /* name */
163 FALSE, /* partial_inplace */
164 0x0000ffff, /* src_mask */
165 0x0000ffff, /* dst_mask */
166 FALSE), /* pcrel_offset */
167
168 /* 12 bit absolute */
169 HOWTO (R_ARM_ABS12, /* type */
170 0, /* rightshift */
171 2, /* size (0 = byte, 1 = short, 2 = long) */
172 12, /* bitsize */
173 FALSE, /* pc_relative */
174 0, /* bitpos */
175 complain_overflow_bitfield,/* complain_on_overflow */
176 bfd_elf_generic_reloc, /* special_function */
177 "R_ARM_ABS12", /* name */
178 FALSE, /* partial_inplace */
179 0x00000fff, /* src_mask */
180 0x00000fff, /* dst_mask */
181 FALSE), /* pcrel_offset */
182
183 HOWTO (R_ARM_THM_ABS5, /* type */
184 6, /* rightshift */
185 1, /* size (0 = byte, 1 = short, 2 = long) */
186 5, /* bitsize */
187 FALSE, /* pc_relative */
188 0, /* bitpos */
189 complain_overflow_bitfield,/* complain_on_overflow */
190 bfd_elf_generic_reloc, /* special_function */
191 "R_ARM_THM_ABS5", /* name */
192 FALSE, /* partial_inplace */
193 0x000007e0, /* src_mask */
194 0x000007e0, /* dst_mask */
195 FALSE), /* pcrel_offset */
196
197 /* 8 bit absolute */
198 HOWTO (R_ARM_ABS8, /* type */
199 0, /* rightshift */
200 0, /* size (0 = byte, 1 = short, 2 = long) */
201 8, /* bitsize */
202 FALSE, /* pc_relative */
203 0, /* bitpos */
204 complain_overflow_bitfield,/* complain_on_overflow */
205 bfd_elf_generic_reloc, /* special_function */
206 "R_ARM_ABS8", /* name */
207 FALSE, /* partial_inplace */
208 0x000000ff, /* src_mask */
209 0x000000ff, /* dst_mask */
210 FALSE), /* pcrel_offset */
211
212 HOWTO (R_ARM_SBREL32, /* type */
213 0, /* rightshift */
214 2, /* size (0 = byte, 1 = short, 2 = long) */
215 32, /* bitsize */
216 FALSE, /* pc_relative */
217 0, /* bitpos */
218 complain_overflow_dont,/* complain_on_overflow */
219 bfd_elf_generic_reloc, /* special_function */
220 "R_ARM_SBREL32", /* name */
221 FALSE, /* partial_inplace */
222 0xffffffff, /* src_mask */
223 0xffffffff, /* dst_mask */
224 FALSE), /* pcrel_offset */
225
226 HOWTO (R_ARM_THM_CALL, /* type */
227 1, /* rightshift */
228 2, /* size (0 = byte, 1 = short, 2 = long) */
229 24, /* bitsize */
230 TRUE, /* pc_relative */
231 0, /* bitpos */
232 complain_overflow_signed,/* complain_on_overflow */
233 bfd_elf_generic_reloc, /* special_function */
234 "R_ARM_THM_CALL", /* name */
235 FALSE, /* partial_inplace */
236 0x07ff2fff, /* src_mask */
237 0x07ff2fff, /* dst_mask */
238 TRUE), /* pcrel_offset */
239
240 HOWTO (R_ARM_THM_PC8, /* type */
241 1, /* rightshift */
242 1, /* size (0 = byte, 1 = short, 2 = long) */
243 8, /* bitsize */
244 TRUE, /* pc_relative */
245 0, /* bitpos */
246 complain_overflow_signed,/* complain_on_overflow */
247 bfd_elf_generic_reloc, /* special_function */
248 "R_ARM_THM_PC8", /* name */
249 FALSE, /* partial_inplace */
250 0x000000ff, /* src_mask */
251 0x000000ff, /* dst_mask */
252 TRUE), /* pcrel_offset */
253
254 HOWTO (R_ARM_BREL_ADJ, /* type */
255 1, /* rightshift */
256 1, /* size (0 = byte, 1 = short, 2 = long) */
257 32, /* bitsize */
258 FALSE, /* pc_relative */
259 0, /* bitpos */
260 complain_overflow_signed,/* complain_on_overflow */
261 bfd_elf_generic_reloc, /* special_function */
262 "R_ARM_BREL_ADJ", /* name */
263 FALSE, /* partial_inplace */
264 0xffffffff, /* src_mask */
265 0xffffffff, /* dst_mask */
266 FALSE), /* pcrel_offset */
267
268 HOWTO (R_ARM_TLS_DESC, /* type */
269 0, /* rightshift */
270 2, /* size (0 = byte, 1 = short, 2 = long) */
271 32, /* bitsize */
272 FALSE, /* pc_relative */
273 0, /* bitpos */
274 complain_overflow_bitfield,/* complain_on_overflow */
275 bfd_elf_generic_reloc, /* special_function */
276 "R_ARM_TLS_DESC", /* name */
277 FALSE, /* partial_inplace */
278 0xffffffff, /* src_mask */
279 0xffffffff, /* dst_mask */
280 FALSE), /* pcrel_offset */
281
282 HOWTO (R_ARM_THM_SWI8, /* type */
283 0, /* rightshift */
284 0, /* size (0 = byte, 1 = short, 2 = long) */
285 0, /* bitsize */
286 FALSE, /* pc_relative */
287 0, /* bitpos */
288 complain_overflow_signed,/* complain_on_overflow */
289 bfd_elf_generic_reloc, /* special_function */
290 "R_ARM_SWI8", /* name */
291 FALSE, /* partial_inplace */
292 0x00000000, /* src_mask */
293 0x00000000, /* dst_mask */
294 FALSE), /* pcrel_offset */
295
296 /* BLX instruction for the ARM. */
297 HOWTO (R_ARM_XPC25, /* type */
298 2, /* rightshift */
299 2, /* size (0 = byte, 1 = short, 2 = long) */
300 24, /* bitsize */
301 TRUE, /* pc_relative */
302 0, /* bitpos */
303 complain_overflow_signed,/* complain_on_overflow */
304 bfd_elf_generic_reloc, /* special_function */
305 "R_ARM_XPC25", /* name */
306 FALSE, /* partial_inplace */
307 0x00ffffff, /* src_mask */
308 0x00ffffff, /* dst_mask */
309 TRUE), /* pcrel_offset */
310
311 /* BLX instruction for the Thumb. */
312 HOWTO (R_ARM_THM_XPC22, /* type */
313 2, /* rightshift */
314 2, /* size (0 = byte, 1 = short, 2 = long) */
315 24, /* bitsize */
316 TRUE, /* pc_relative */
317 0, /* bitpos */
318 complain_overflow_signed,/* complain_on_overflow */
319 bfd_elf_generic_reloc, /* special_function */
320 "R_ARM_THM_XPC22", /* name */
321 FALSE, /* partial_inplace */
322 0x07ff2fff, /* src_mask */
323 0x07ff2fff, /* dst_mask */
324 TRUE), /* pcrel_offset */
325
326 /* Dynamic TLS relocations. */
327
328 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
329 0, /* rightshift */
330 2, /* size (0 = byte, 1 = short, 2 = long) */
331 32, /* bitsize */
332 FALSE, /* pc_relative */
333 0, /* bitpos */
334 complain_overflow_bitfield,/* complain_on_overflow */
335 bfd_elf_generic_reloc, /* special_function */
336 "R_ARM_TLS_DTPMOD32", /* name */
337 TRUE, /* partial_inplace */
338 0xffffffff, /* src_mask */
339 0xffffffff, /* dst_mask */
340 FALSE), /* pcrel_offset */
341
342 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
343 0, /* rightshift */
344 2, /* size (0 = byte, 1 = short, 2 = long) */
345 32, /* bitsize */
346 FALSE, /* pc_relative */
347 0, /* bitpos */
348 complain_overflow_bitfield,/* complain_on_overflow */
349 bfd_elf_generic_reloc, /* special_function */
350 "R_ARM_TLS_DTPOFF32", /* name */
351 TRUE, /* partial_inplace */
352 0xffffffff, /* src_mask */
353 0xffffffff, /* dst_mask */
354 FALSE), /* pcrel_offset */
355
356 HOWTO (R_ARM_TLS_TPOFF32, /* type */
357 0, /* rightshift */
358 2, /* size (0 = byte, 1 = short, 2 = long) */
359 32, /* bitsize */
360 FALSE, /* pc_relative */
361 0, /* bitpos */
362 complain_overflow_bitfield,/* complain_on_overflow */
363 bfd_elf_generic_reloc, /* special_function */
364 "R_ARM_TLS_TPOFF32", /* name */
365 TRUE, /* partial_inplace */
366 0xffffffff, /* src_mask */
367 0xffffffff, /* dst_mask */
368 FALSE), /* pcrel_offset */
369
370 /* Relocs used in ARM Linux */
371
372 HOWTO (R_ARM_COPY, /* type */
373 0, /* rightshift */
374 2, /* size (0 = byte, 1 = short, 2 = long) */
375 32, /* bitsize */
376 FALSE, /* pc_relative */
377 0, /* bitpos */
378 complain_overflow_bitfield,/* complain_on_overflow */
379 bfd_elf_generic_reloc, /* special_function */
380 "R_ARM_COPY", /* name */
381 TRUE, /* partial_inplace */
382 0xffffffff, /* src_mask */
383 0xffffffff, /* dst_mask */
384 FALSE), /* pcrel_offset */
385
386 HOWTO (R_ARM_GLOB_DAT, /* type */
387 0, /* rightshift */
388 2, /* size (0 = byte, 1 = short, 2 = long) */
389 32, /* bitsize */
390 FALSE, /* pc_relative */
391 0, /* bitpos */
392 complain_overflow_bitfield,/* complain_on_overflow */
393 bfd_elf_generic_reloc, /* special_function */
394 "R_ARM_GLOB_DAT", /* name */
395 TRUE, /* partial_inplace */
396 0xffffffff, /* src_mask */
397 0xffffffff, /* dst_mask */
398 FALSE), /* pcrel_offset */
399
400 HOWTO (R_ARM_JUMP_SLOT, /* type */
401 0, /* rightshift */
402 2, /* size (0 = byte, 1 = short, 2 = long) */
403 32, /* bitsize */
404 FALSE, /* pc_relative */
405 0, /* bitpos */
406 complain_overflow_bitfield,/* complain_on_overflow */
407 bfd_elf_generic_reloc, /* special_function */
408 "R_ARM_JUMP_SLOT", /* name */
409 TRUE, /* partial_inplace */
410 0xffffffff, /* src_mask */
411 0xffffffff, /* dst_mask */
412 FALSE), /* pcrel_offset */
413
414 HOWTO (R_ARM_RELATIVE, /* type */
415 0, /* rightshift */
416 2, /* size (0 = byte, 1 = short, 2 = long) */
417 32, /* bitsize */
418 FALSE, /* pc_relative */
419 0, /* bitpos */
420 complain_overflow_bitfield,/* complain_on_overflow */
421 bfd_elf_generic_reloc, /* special_function */
422 "R_ARM_RELATIVE", /* name */
423 TRUE, /* partial_inplace */
424 0xffffffff, /* src_mask */
425 0xffffffff, /* dst_mask */
426 FALSE), /* pcrel_offset */
427
428 HOWTO (R_ARM_GOTOFF32, /* type */
429 0, /* rightshift */
430 2, /* size (0 = byte, 1 = short, 2 = long) */
431 32, /* bitsize */
432 FALSE, /* pc_relative */
433 0, /* bitpos */
434 complain_overflow_bitfield,/* complain_on_overflow */
435 bfd_elf_generic_reloc, /* special_function */
436 "R_ARM_GOTOFF32", /* name */
437 TRUE, /* partial_inplace */
438 0xffffffff, /* src_mask */
439 0xffffffff, /* dst_mask */
440 FALSE), /* pcrel_offset */
441
442 HOWTO (R_ARM_GOTPC, /* type */
443 0, /* rightshift */
444 2, /* size (0 = byte, 1 = short, 2 = long) */
445 32, /* bitsize */
446 TRUE, /* pc_relative */
447 0, /* bitpos */
448 complain_overflow_bitfield,/* complain_on_overflow */
449 bfd_elf_generic_reloc, /* special_function */
450 "R_ARM_GOTPC", /* name */
451 TRUE, /* partial_inplace */
452 0xffffffff, /* src_mask */
453 0xffffffff, /* dst_mask */
454 TRUE), /* pcrel_offset */
455
456 HOWTO (R_ARM_GOT32, /* type */
457 0, /* rightshift */
458 2, /* size (0 = byte, 1 = short, 2 = long) */
459 32, /* bitsize */
460 FALSE, /* pc_relative */
461 0, /* bitpos */
462 complain_overflow_bitfield,/* complain_on_overflow */
463 bfd_elf_generic_reloc, /* special_function */
464 "R_ARM_GOT32", /* name */
465 TRUE, /* partial_inplace */
466 0xffffffff, /* src_mask */
467 0xffffffff, /* dst_mask */
468 FALSE), /* pcrel_offset */
469
470 HOWTO (R_ARM_PLT32, /* type */
471 2, /* rightshift */
472 2, /* size (0 = byte, 1 = short, 2 = long) */
473 24, /* bitsize */
474 TRUE, /* pc_relative */
475 0, /* bitpos */
476 complain_overflow_bitfield,/* complain_on_overflow */
477 bfd_elf_generic_reloc, /* special_function */
478 "R_ARM_PLT32", /* name */
479 FALSE, /* partial_inplace */
480 0x00ffffff, /* src_mask */
481 0x00ffffff, /* dst_mask */
482 TRUE), /* pcrel_offset */
483
484 HOWTO (R_ARM_CALL, /* type */
485 2, /* rightshift */
486 2, /* size (0 = byte, 1 = short, 2 = long) */
487 24, /* bitsize */
488 TRUE, /* pc_relative */
489 0, /* bitpos */
490 complain_overflow_signed,/* complain_on_overflow */
491 bfd_elf_generic_reloc, /* special_function */
492 "R_ARM_CALL", /* name */
493 FALSE, /* partial_inplace */
494 0x00ffffff, /* src_mask */
495 0x00ffffff, /* dst_mask */
496 TRUE), /* pcrel_offset */
497
498 HOWTO (R_ARM_JUMP24, /* type */
499 2, /* rightshift */
500 2, /* size (0 = byte, 1 = short, 2 = long) */
501 24, /* bitsize */
502 TRUE, /* pc_relative */
503 0, /* bitpos */
504 complain_overflow_signed,/* complain_on_overflow */
505 bfd_elf_generic_reloc, /* special_function */
506 "R_ARM_JUMP24", /* name */
507 FALSE, /* partial_inplace */
508 0x00ffffff, /* src_mask */
509 0x00ffffff, /* dst_mask */
510 TRUE), /* pcrel_offset */
511
512 HOWTO (R_ARM_THM_JUMP24, /* type */
513 1, /* rightshift */
514 2, /* size (0 = byte, 1 = short, 2 = long) */
515 24, /* bitsize */
516 TRUE, /* pc_relative */
517 0, /* bitpos */
518 complain_overflow_signed,/* complain_on_overflow */
519 bfd_elf_generic_reloc, /* special_function */
520 "R_ARM_THM_JUMP24", /* name */
521 FALSE, /* partial_inplace */
522 0x07ff2fff, /* src_mask */
523 0x07ff2fff, /* dst_mask */
524 TRUE), /* pcrel_offset */
525
526 HOWTO (R_ARM_BASE_ABS, /* type */
527 0, /* rightshift */
528 2, /* size (0 = byte, 1 = short, 2 = long) */
529 32, /* bitsize */
530 FALSE, /* pc_relative */
531 0, /* bitpos */
532 complain_overflow_dont,/* complain_on_overflow */
533 bfd_elf_generic_reloc, /* special_function */
534 "R_ARM_BASE_ABS", /* name */
535 FALSE, /* partial_inplace */
536 0xffffffff, /* src_mask */
537 0xffffffff, /* dst_mask */
538 FALSE), /* pcrel_offset */
539
540 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
541 0, /* rightshift */
542 2, /* size (0 = byte, 1 = short, 2 = long) */
543 12, /* bitsize */
544 TRUE, /* pc_relative */
545 0, /* bitpos */
546 complain_overflow_dont,/* complain_on_overflow */
547 bfd_elf_generic_reloc, /* special_function */
548 "R_ARM_ALU_PCREL_7_0", /* name */
549 FALSE, /* partial_inplace */
550 0x00000fff, /* src_mask */
551 0x00000fff, /* dst_mask */
552 TRUE), /* pcrel_offset */
553
554 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
555 0, /* rightshift */
556 2, /* size (0 = byte, 1 = short, 2 = long) */
557 12, /* bitsize */
558 TRUE, /* pc_relative */
559 8, /* bitpos */
560 complain_overflow_dont,/* complain_on_overflow */
561 bfd_elf_generic_reloc, /* special_function */
562 "R_ARM_ALU_PCREL_15_8",/* name */
563 FALSE, /* partial_inplace */
564 0x00000fff, /* src_mask */
565 0x00000fff, /* dst_mask */
566 TRUE), /* pcrel_offset */
567
568 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
569 0, /* rightshift */
570 2, /* size (0 = byte, 1 = short, 2 = long) */
571 12, /* bitsize */
572 TRUE, /* pc_relative */
573 16, /* bitpos */
574 complain_overflow_dont,/* complain_on_overflow */
575 bfd_elf_generic_reloc, /* special_function */
576 "R_ARM_ALU_PCREL_23_15",/* name */
577 FALSE, /* partial_inplace */
578 0x00000fff, /* src_mask */
579 0x00000fff, /* dst_mask */
580 TRUE), /* pcrel_offset */
581
582 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
583 0, /* rightshift */
584 2, /* size (0 = byte, 1 = short, 2 = long) */
585 12, /* bitsize */
586 FALSE, /* pc_relative */
587 0, /* bitpos */
588 complain_overflow_dont,/* complain_on_overflow */
589 bfd_elf_generic_reloc, /* special_function */
590 "R_ARM_LDR_SBREL_11_0",/* name */
591 FALSE, /* partial_inplace */
592 0x00000fff, /* src_mask */
593 0x00000fff, /* dst_mask */
594 FALSE), /* pcrel_offset */
595
596 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
597 0, /* rightshift */
598 2, /* size (0 = byte, 1 = short, 2 = long) */
599 8, /* bitsize */
600 FALSE, /* pc_relative */
601 12, /* bitpos */
602 complain_overflow_dont,/* complain_on_overflow */
603 bfd_elf_generic_reloc, /* special_function */
604 "R_ARM_ALU_SBREL_19_12",/* name */
605 FALSE, /* partial_inplace */
606 0x000ff000, /* src_mask */
607 0x000ff000, /* dst_mask */
608 FALSE), /* pcrel_offset */
609
610 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
611 0, /* rightshift */
612 2, /* size (0 = byte, 1 = short, 2 = long) */
613 8, /* bitsize */
614 FALSE, /* pc_relative */
615 20, /* bitpos */
616 complain_overflow_dont,/* complain_on_overflow */
617 bfd_elf_generic_reloc, /* special_function */
618 "R_ARM_ALU_SBREL_27_20",/* name */
619 FALSE, /* partial_inplace */
620 0x0ff00000, /* src_mask */
621 0x0ff00000, /* dst_mask */
622 FALSE), /* pcrel_offset */
623
624 HOWTO (R_ARM_TARGET1, /* type */
625 0, /* rightshift */
626 2, /* size (0 = byte, 1 = short, 2 = long) */
627 32, /* bitsize */
628 FALSE, /* pc_relative */
629 0, /* bitpos */
630 complain_overflow_dont,/* complain_on_overflow */
631 bfd_elf_generic_reloc, /* special_function */
632 "R_ARM_TARGET1", /* name */
633 FALSE, /* partial_inplace */
634 0xffffffff, /* src_mask */
635 0xffffffff, /* dst_mask */
636 FALSE), /* pcrel_offset */
637
638 HOWTO (R_ARM_ROSEGREL32, /* type */
639 0, /* rightshift */
640 2, /* size (0 = byte, 1 = short, 2 = long) */
641 32, /* bitsize */
642 FALSE, /* pc_relative */
643 0, /* bitpos */
644 complain_overflow_dont,/* complain_on_overflow */
645 bfd_elf_generic_reloc, /* special_function */
646 "R_ARM_ROSEGREL32", /* name */
647 FALSE, /* partial_inplace */
648 0xffffffff, /* src_mask */
649 0xffffffff, /* dst_mask */
650 FALSE), /* pcrel_offset */
651
652 HOWTO (R_ARM_V4BX, /* type */
653 0, /* rightshift */
654 2, /* size (0 = byte, 1 = short, 2 = long) */
655 32, /* bitsize */
656 FALSE, /* pc_relative */
657 0, /* bitpos */
658 complain_overflow_dont,/* complain_on_overflow */
659 bfd_elf_generic_reloc, /* special_function */
660 "R_ARM_V4BX", /* name */
661 FALSE, /* partial_inplace */
662 0xffffffff, /* src_mask */
663 0xffffffff, /* dst_mask */
664 FALSE), /* pcrel_offset */
665
666 HOWTO (R_ARM_TARGET2, /* type */
667 0, /* rightshift */
668 2, /* size (0 = byte, 1 = short, 2 = long) */
669 32, /* bitsize */
670 FALSE, /* pc_relative */
671 0, /* bitpos */
672 complain_overflow_signed,/* complain_on_overflow */
673 bfd_elf_generic_reloc, /* special_function */
674 "R_ARM_TARGET2", /* name */
675 FALSE, /* partial_inplace */
676 0xffffffff, /* src_mask */
677 0xffffffff, /* dst_mask */
678 TRUE), /* pcrel_offset */
679
680 HOWTO (R_ARM_PREL31, /* type */
681 0, /* rightshift */
682 2, /* size (0 = byte, 1 = short, 2 = long) */
683 31, /* bitsize */
684 TRUE, /* pc_relative */
685 0, /* bitpos */
686 complain_overflow_signed,/* complain_on_overflow */
687 bfd_elf_generic_reloc, /* special_function */
688 "R_ARM_PREL31", /* name */
689 FALSE, /* partial_inplace */
690 0x7fffffff, /* src_mask */
691 0x7fffffff, /* dst_mask */
692 TRUE), /* pcrel_offset */
693
694 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
695 0, /* rightshift */
696 2, /* size (0 = byte, 1 = short, 2 = long) */
697 16, /* bitsize */
698 FALSE, /* pc_relative */
699 0, /* bitpos */
700 complain_overflow_dont,/* complain_on_overflow */
701 bfd_elf_generic_reloc, /* special_function */
702 "R_ARM_MOVW_ABS_NC", /* name */
703 FALSE, /* partial_inplace */
704 0x000f0fff, /* src_mask */
705 0x000f0fff, /* dst_mask */
706 FALSE), /* pcrel_offset */
707
708 HOWTO (R_ARM_MOVT_ABS, /* type */
709 0, /* rightshift */
710 2, /* size (0 = byte, 1 = short, 2 = long) */
711 16, /* bitsize */
712 FALSE, /* pc_relative */
713 0, /* bitpos */
714 complain_overflow_bitfield,/* complain_on_overflow */
715 bfd_elf_generic_reloc, /* special_function */
716 "R_ARM_MOVT_ABS", /* name */
717 FALSE, /* partial_inplace */
718 0x000f0fff, /* src_mask */
719 0x000f0fff, /* dst_mask */
720 FALSE), /* pcrel_offset */
721
722 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
723 0, /* rightshift */
724 2, /* size (0 = byte, 1 = short, 2 = long) */
725 16, /* bitsize */
726 TRUE, /* pc_relative */
727 0, /* bitpos */
728 complain_overflow_dont,/* complain_on_overflow */
729 bfd_elf_generic_reloc, /* special_function */
730 "R_ARM_MOVW_PREL_NC", /* name */
731 FALSE, /* partial_inplace */
732 0x000f0fff, /* src_mask */
733 0x000f0fff, /* dst_mask */
734 TRUE), /* pcrel_offset */
735
736 HOWTO (R_ARM_MOVT_PREL, /* type */
737 0, /* rightshift */
738 2, /* size (0 = byte, 1 = short, 2 = long) */
739 16, /* bitsize */
740 TRUE, /* pc_relative */
741 0, /* bitpos */
742 complain_overflow_bitfield,/* complain_on_overflow */
743 bfd_elf_generic_reloc, /* special_function */
744 "R_ARM_MOVT_PREL", /* name */
745 FALSE, /* partial_inplace */
746 0x000f0fff, /* src_mask */
747 0x000f0fff, /* dst_mask */
748 TRUE), /* pcrel_offset */
749
750 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
751 0, /* rightshift */
752 2, /* size (0 = byte, 1 = short, 2 = long) */
753 16, /* bitsize */
754 FALSE, /* pc_relative */
755 0, /* bitpos */
756 complain_overflow_dont,/* complain_on_overflow */
757 bfd_elf_generic_reloc, /* special_function */
758 "R_ARM_THM_MOVW_ABS_NC",/* name */
759 FALSE, /* partial_inplace */
760 0x040f70ff, /* src_mask */
761 0x040f70ff, /* dst_mask */
762 FALSE), /* pcrel_offset */
763
764 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
765 0, /* rightshift */
766 2, /* size (0 = byte, 1 = short, 2 = long) */
767 16, /* bitsize */
768 FALSE, /* pc_relative */
769 0, /* bitpos */
770 complain_overflow_bitfield,/* complain_on_overflow */
771 bfd_elf_generic_reloc, /* special_function */
772 "R_ARM_THM_MOVT_ABS", /* name */
773 FALSE, /* partial_inplace */
774 0x040f70ff, /* src_mask */
775 0x040f70ff, /* dst_mask */
776 FALSE), /* pcrel_offset */
777
778 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
779 0, /* rightshift */
780 2, /* size (0 = byte, 1 = short, 2 = long) */
781 16, /* bitsize */
782 TRUE, /* pc_relative */
783 0, /* bitpos */
784 complain_overflow_dont,/* complain_on_overflow */
785 bfd_elf_generic_reloc, /* special_function */
786 "R_ARM_THM_MOVW_PREL_NC",/* name */
787 FALSE, /* partial_inplace */
788 0x040f70ff, /* src_mask */
789 0x040f70ff, /* dst_mask */
790 TRUE), /* pcrel_offset */
791
792 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
793 0, /* rightshift */
794 2, /* size (0 = byte, 1 = short, 2 = long) */
795 16, /* bitsize */
796 TRUE, /* pc_relative */
797 0, /* bitpos */
798 complain_overflow_bitfield,/* complain_on_overflow */
799 bfd_elf_generic_reloc, /* special_function */
800 "R_ARM_THM_MOVT_PREL", /* name */
801 FALSE, /* partial_inplace */
802 0x040f70ff, /* src_mask */
803 0x040f70ff, /* dst_mask */
804 TRUE), /* pcrel_offset */
805
806 HOWTO (R_ARM_THM_JUMP19, /* type */
807 1, /* rightshift */
808 2, /* size (0 = byte, 1 = short, 2 = long) */
809 19, /* bitsize */
810 TRUE, /* pc_relative */
811 0, /* bitpos */
812 complain_overflow_signed,/* complain_on_overflow */
813 bfd_elf_generic_reloc, /* special_function */
814 "R_ARM_THM_JUMP19", /* name */
815 FALSE, /* partial_inplace */
816 0x043f2fff, /* src_mask */
817 0x043f2fff, /* dst_mask */
818 TRUE), /* pcrel_offset */
819
820 HOWTO (R_ARM_THM_JUMP6, /* type */
821 1, /* rightshift */
822 1, /* size (0 = byte, 1 = short, 2 = long) */
823 6, /* bitsize */
824 TRUE, /* pc_relative */
825 0, /* bitpos */
826 complain_overflow_unsigned,/* complain_on_overflow */
827 bfd_elf_generic_reloc, /* special_function */
828 "R_ARM_THM_JUMP6", /* name */
829 FALSE, /* partial_inplace */
830 0x02f8, /* src_mask */
831 0x02f8, /* dst_mask */
832 TRUE), /* pcrel_offset */
833
834 /* These are declared as 13-bit signed relocations because we can
835 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
836 versa. */
837 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
838 0, /* rightshift */
839 2, /* size (0 = byte, 1 = short, 2 = long) */
840 13, /* bitsize */
841 TRUE, /* pc_relative */
842 0, /* bitpos */
843 complain_overflow_dont,/* complain_on_overflow */
844 bfd_elf_generic_reloc, /* special_function */
845 "R_ARM_THM_ALU_PREL_11_0",/* name */
846 FALSE, /* partial_inplace */
847 0xffffffff, /* src_mask */
848 0xffffffff, /* dst_mask */
849 TRUE), /* pcrel_offset */
850
851 HOWTO (R_ARM_THM_PC12, /* type */
852 0, /* rightshift */
853 2, /* size (0 = byte, 1 = short, 2 = long) */
854 13, /* bitsize */
855 TRUE, /* pc_relative */
856 0, /* bitpos */
857 complain_overflow_dont,/* complain_on_overflow */
858 bfd_elf_generic_reloc, /* special_function */
859 "R_ARM_THM_PC12", /* name */
860 FALSE, /* partial_inplace */
861 0xffffffff, /* src_mask */
862 0xffffffff, /* dst_mask */
863 TRUE), /* pcrel_offset */
864
865 HOWTO (R_ARM_ABS32_NOI, /* type */
866 0, /* rightshift */
867 2, /* size (0 = byte, 1 = short, 2 = long) */
868 32, /* bitsize */
869 FALSE, /* pc_relative */
870 0, /* bitpos */
871 complain_overflow_dont,/* complain_on_overflow */
872 bfd_elf_generic_reloc, /* special_function */
873 "R_ARM_ABS32_NOI", /* name */
874 FALSE, /* partial_inplace */
875 0xffffffff, /* src_mask */
876 0xffffffff, /* dst_mask */
877 FALSE), /* pcrel_offset */
878
879 HOWTO (R_ARM_REL32_NOI, /* type */
880 0, /* rightshift */
881 2, /* size (0 = byte, 1 = short, 2 = long) */
882 32, /* bitsize */
883 TRUE, /* pc_relative */
884 0, /* bitpos */
885 complain_overflow_dont,/* complain_on_overflow */
886 bfd_elf_generic_reloc, /* special_function */
887 "R_ARM_REL32_NOI", /* name */
888 FALSE, /* partial_inplace */
889 0xffffffff, /* src_mask */
890 0xffffffff, /* dst_mask */
891 FALSE), /* pcrel_offset */
892
893 /* Group relocations. */
894
895 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
896 0, /* rightshift */
897 2, /* size (0 = byte, 1 = short, 2 = long) */
898 32, /* bitsize */
899 TRUE, /* pc_relative */
900 0, /* bitpos */
901 complain_overflow_dont,/* complain_on_overflow */
902 bfd_elf_generic_reloc, /* special_function */
903 "R_ARM_ALU_PC_G0_NC", /* name */
904 FALSE, /* partial_inplace */
905 0xffffffff, /* src_mask */
906 0xffffffff, /* dst_mask */
907 TRUE), /* pcrel_offset */
908
909 HOWTO (R_ARM_ALU_PC_G0, /* type */
910 0, /* rightshift */
911 2, /* size (0 = byte, 1 = short, 2 = long) */
912 32, /* bitsize */
913 TRUE, /* pc_relative */
914 0, /* bitpos */
915 complain_overflow_dont,/* complain_on_overflow */
916 bfd_elf_generic_reloc, /* special_function */
917 "R_ARM_ALU_PC_G0", /* name */
918 FALSE, /* partial_inplace */
919 0xffffffff, /* src_mask */
920 0xffffffff, /* dst_mask */
921 TRUE), /* pcrel_offset */
922
923 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
924 0, /* rightshift */
925 2, /* size (0 = byte, 1 = short, 2 = long) */
926 32, /* bitsize */
927 TRUE, /* pc_relative */
928 0, /* bitpos */
929 complain_overflow_dont,/* complain_on_overflow */
930 bfd_elf_generic_reloc, /* special_function */
931 "R_ARM_ALU_PC_G1_NC", /* name */
932 FALSE, /* partial_inplace */
933 0xffffffff, /* src_mask */
934 0xffffffff, /* dst_mask */
935 TRUE), /* pcrel_offset */
936
937 HOWTO (R_ARM_ALU_PC_G1, /* type */
938 0, /* rightshift */
939 2, /* size (0 = byte, 1 = short, 2 = long) */
940 32, /* bitsize */
941 TRUE, /* pc_relative */
942 0, /* bitpos */
943 complain_overflow_dont,/* complain_on_overflow */
944 bfd_elf_generic_reloc, /* special_function */
945 "R_ARM_ALU_PC_G1", /* name */
946 FALSE, /* partial_inplace */
947 0xffffffff, /* src_mask */
948 0xffffffff, /* dst_mask */
949 TRUE), /* pcrel_offset */
950
951 HOWTO (R_ARM_ALU_PC_G2, /* type */
952 0, /* rightshift */
953 2, /* size (0 = byte, 1 = short, 2 = long) */
954 32, /* bitsize */
955 TRUE, /* pc_relative */
956 0, /* bitpos */
957 complain_overflow_dont,/* complain_on_overflow */
958 bfd_elf_generic_reloc, /* special_function */
959 "R_ARM_ALU_PC_G2", /* name */
960 FALSE, /* partial_inplace */
961 0xffffffff, /* src_mask */
962 0xffffffff, /* dst_mask */
963 TRUE), /* pcrel_offset */
964
965 HOWTO (R_ARM_LDR_PC_G1, /* type */
966 0, /* rightshift */
967 2, /* size (0 = byte, 1 = short, 2 = long) */
968 32, /* bitsize */
969 TRUE, /* pc_relative */
970 0, /* bitpos */
971 complain_overflow_dont,/* complain_on_overflow */
972 bfd_elf_generic_reloc, /* special_function */
973 "R_ARM_LDR_PC_G1", /* name */
974 FALSE, /* partial_inplace */
975 0xffffffff, /* src_mask */
976 0xffffffff, /* dst_mask */
977 TRUE), /* pcrel_offset */
978
979 HOWTO (R_ARM_LDR_PC_G2, /* type */
980 0, /* rightshift */
981 2, /* size (0 = byte, 1 = short, 2 = long) */
982 32, /* bitsize */
983 TRUE, /* pc_relative */
984 0, /* bitpos */
985 complain_overflow_dont,/* complain_on_overflow */
986 bfd_elf_generic_reloc, /* special_function */
987 "R_ARM_LDR_PC_G2", /* name */
988 FALSE, /* partial_inplace */
989 0xffffffff, /* src_mask */
990 0xffffffff, /* dst_mask */
991 TRUE), /* pcrel_offset */
992
993 HOWTO (R_ARM_LDRS_PC_G0, /* type */
994 0, /* rightshift */
995 2, /* size (0 = byte, 1 = short, 2 = long) */
996 32, /* bitsize */
997 TRUE, /* pc_relative */
998 0, /* bitpos */
999 complain_overflow_dont,/* complain_on_overflow */
1000 bfd_elf_generic_reloc, /* special_function */
1001 "R_ARM_LDRS_PC_G0", /* name */
1002 FALSE, /* partial_inplace */
1003 0xffffffff, /* src_mask */
1004 0xffffffff, /* dst_mask */
1005 TRUE), /* pcrel_offset */
1006
1007 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1008 0, /* rightshift */
1009 2, /* size (0 = byte, 1 = short, 2 = long) */
1010 32, /* bitsize */
1011 TRUE, /* pc_relative */
1012 0, /* bitpos */
1013 complain_overflow_dont,/* complain_on_overflow */
1014 bfd_elf_generic_reloc, /* special_function */
1015 "R_ARM_LDRS_PC_G1", /* name */
1016 FALSE, /* partial_inplace */
1017 0xffffffff, /* src_mask */
1018 0xffffffff, /* dst_mask */
1019 TRUE), /* pcrel_offset */
1020
1021 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1022 0, /* rightshift */
1023 2, /* size (0 = byte, 1 = short, 2 = long) */
1024 32, /* bitsize */
1025 TRUE, /* pc_relative */
1026 0, /* bitpos */
1027 complain_overflow_dont,/* complain_on_overflow */
1028 bfd_elf_generic_reloc, /* special_function */
1029 "R_ARM_LDRS_PC_G2", /* name */
1030 FALSE, /* partial_inplace */
1031 0xffffffff, /* src_mask */
1032 0xffffffff, /* dst_mask */
1033 TRUE), /* pcrel_offset */
1034
1035 HOWTO (R_ARM_LDC_PC_G0, /* type */
1036 0, /* rightshift */
1037 2, /* size (0 = byte, 1 = short, 2 = long) */
1038 32, /* bitsize */
1039 TRUE, /* pc_relative */
1040 0, /* bitpos */
1041 complain_overflow_dont,/* complain_on_overflow */
1042 bfd_elf_generic_reloc, /* special_function */
1043 "R_ARM_LDC_PC_G0", /* name */
1044 FALSE, /* partial_inplace */
1045 0xffffffff, /* src_mask */
1046 0xffffffff, /* dst_mask */
1047 TRUE), /* pcrel_offset */
1048
1049 HOWTO (R_ARM_LDC_PC_G1, /* type */
1050 0, /* rightshift */
1051 2, /* size (0 = byte, 1 = short, 2 = long) */
1052 32, /* bitsize */
1053 TRUE, /* pc_relative */
1054 0, /* bitpos */
1055 complain_overflow_dont,/* complain_on_overflow */
1056 bfd_elf_generic_reloc, /* special_function */
1057 "R_ARM_LDC_PC_G1", /* name */
1058 FALSE, /* partial_inplace */
1059 0xffffffff, /* src_mask */
1060 0xffffffff, /* dst_mask */
1061 TRUE), /* pcrel_offset */
1062
1063 HOWTO (R_ARM_LDC_PC_G2, /* type */
1064 0, /* rightshift */
1065 2, /* size (0 = byte, 1 = short, 2 = long) */
1066 32, /* bitsize */
1067 TRUE, /* pc_relative */
1068 0, /* bitpos */
1069 complain_overflow_dont,/* complain_on_overflow */
1070 bfd_elf_generic_reloc, /* special_function */
1071 "R_ARM_LDC_PC_G2", /* name */
1072 FALSE, /* partial_inplace */
1073 0xffffffff, /* src_mask */
1074 0xffffffff, /* dst_mask */
1075 TRUE), /* pcrel_offset */
1076
1077 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1078 0, /* rightshift */
1079 2, /* size (0 = byte, 1 = short, 2 = long) */
1080 32, /* bitsize */
1081 TRUE, /* pc_relative */
1082 0, /* bitpos */
1083 complain_overflow_dont,/* complain_on_overflow */
1084 bfd_elf_generic_reloc, /* special_function */
1085 "R_ARM_ALU_SB_G0_NC", /* name */
1086 FALSE, /* partial_inplace */
1087 0xffffffff, /* src_mask */
1088 0xffffffff, /* dst_mask */
1089 TRUE), /* pcrel_offset */
1090
1091 HOWTO (R_ARM_ALU_SB_G0, /* type */
1092 0, /* rightshift */
1093 2, /* size (0 = byte, 1 = short, 2 = long) */
1094 32, /* bitsize */
1095 TRUE, /* pc_relative */
1096 0, /* bitpos */
1097 complain_overflow_dont,/* complain_on_overflow */
1098 bfd_elf_generic_reloc, /* special_function */
1099 "R_ARM_ALU_SB_G0", /* name */
1100 FALSE, /* partial_inplace */
1101 0xffffffff, /* src_mask */
1102 0xffffffff, /* dst_mask */
1103 TRUE), /* pcrel_offset */
1104
1105 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1106 0, /* rightshift */
1107 2, /* size (0 = byte, 1 = short, 2 = long) */
1108 32, /* bitsize */
1109 TRUE, /* pc_relative */
1110 0, /* bitpos */
1111 complain_overflow_dont,/* complain_on_overflow */
1112 bfd_elf_generic_reloc, /* special_function */
1113 "R_ARM_ALU_SB_G1_NC", /* name */
1114 FALSE, /* partial_inplace */
1115 0xffffffff, /* src_mask */
1116 0xffffffff, /* dst_mask */
1117 TRUE), /* pcrel_offset */
1118
1119 HOWTO (R_ARM_ALU_SB_G1, /* type */
1120 0, /* rightshift */
1121 2, /* size (0 = byte, 1 = short, 2 = long) */
1122 32, /* bitsize */
1123 TRUE, /* pc_relative */
1124 0, /* bitpos */
1125 complain_overflow_dont,/* complain_on_overflow */
1126 bfd_elf_generic_reloc, /* special_function */
1127 "R_ARM_ALU_SB_G1", /* name */
1128 FALSE, /* partial_inplace */
1129 0xffffffff, /* src_mask */
1130 0xffffffff, /* dst_mask */
1131 TRUE), /* pcrel_offset */
1132
1133 HOWTO (R_ARM_ALU_SB_G2, /* type */
1134 0, /* rightshift */
1135 2, /* size (0 = byte, 1 = short, 2 = long) */
1136 32, /* bitsize */
1137 TRUE, /* pc_relative */
1138 0, /* bitpos */
1139 complain_overflow_dont,/* complain_on_overflow */
1140 bfd_elf_generic_reloc, /* special_function */
1141 "R_ARM_ALU_SB_G2", /* name */
1142 FALSE, /* partial_inplace */
1143 0xffffffff, /* src_mask */
1144 0xffffffff, /* dst_mask */
1145 TRUE), /* pcrel_offset */
1146
1147 HOWTO (R_ARM_LDR_SB_G0, /* type */
1148 0, /* rightshift */
1149 2, /* size (0 = byte, 1 = short, 2 = long) */
1150 32, /* bitsize */
1151 TRUE, /* pc_relative */
1152 0, /* bitpos */
1153 complain_overflow_dont,/* complain_on_overflow */
1154 bfd_elf_generic_reloc, /* special_function */
1155 "R_ARM_LDR_SB_G0", /* name */
1156 FALSE, /* partial_inplace */
1157 0xffffffff, /* src_mask */
1158 0xffffffff, /* dst_mask */
1159 TRUE), /* pcrel_offset */
1160
1161 HOWTO (R_ARM_LDR_SB_G1, /* type */
1162 0, /* rightshift */
1163 2, /* size (0 = byte, 1 = short, 2 = long) */
1164 32, /* bitsize */
1165 TRUE, /* pc_relative */
1166 0, /* bitpos */
1167 complain_overflow_dont,/* complain_on_overflow */
1168 bfd_elf_generic_reloc, /* special_function */
1169 "R_ARM_LDR_SB_G1", /* name */
1170 FALSE, /* partial_inplace */
1171 0xffffffff, /* src_mask */
1172 0xffffffff, /* dst_mask */
1173 TRUE), /* pcrel_offset */
1174
1175 HOWTO (R_ARM_LDR_SB_G2, /* type */
1176 0, /* rightshift */
1177 2, /* size (0 = byte, 1 = short, 2 = long) */
1178 32, /* bitsize */
1179 TRUE, /* pc_relative */
1180 0, /* bitpos */
1181 complain_overflow_dont,/* complain_on_overflow */
1182 bfd_elf_generic_reloc, /* special_function */
1183 "R_ARM_LDR_SB_G2", /* name */
1184 FALSE, /* partial_inplace */
1185 0xffffffff, /* src_mask */
1186 0xffffffff, /* dst_mask */
1187 TRUE), /* pcrel_offset */
1188
1189 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1190 0, /* rightshift */
1191 2, /* size (0 = byte, 1 = short, 2 = long) */
1192 32, /* bitsize */
1193 TRUE, /* pc_relative */
1194 0, /* bitpos */
1195 complain_overflow_dont,/* complain_on_overflow */
1196 bfd_elf_generic_reloc, /* special_function */
1197 "R_ARM_LDRS_SB_G0", /* name */
1198 FALSE, /* partial_inplace */
1199 0xffffffff, /* src_mask */
1200 0xffffffff, /* dst_mask */
1201 TRUE), /* pcrel_offset */
1202
1203 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1204 0, /* rightshift */
1205 2, /* size (0 = byte, 1 = short, 2 = long) */
1206 32, /* bitsize */
1207 TRUE, /* pc_relative */
1208 0, /* bitpos */
1209 complain_overflow_dont,/* complain_on_overflow */
1210 bfd_elf_generic_reloc, /* special_function */
1211 "R_ARM_LDRS_SB_G1", /* name */
1212 FALSE, /* partial_inplace */
1213 0xffffffff, /* src_mask */
1214 0xffffffff, /* dst_mask */
1215 TRUE), /* pcrel_offset */
1216
1217 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1218 0, /* rightshift */
1219 2, /* size (0 = byte, 1 = short, 2 = long) */
1220 32, /* bitsize */
1221 TRUE, /* pc_relative */
1222 0, /* bitpos */
1223 complain_overflow_dont,/* complain_on_overflow */
1224 bfd_elf_generic_reloc, /* special_function */
1225 "R_ARM_LDRS_SB_G2", /* name */
1226 FALSE, /* partial_inplace */
1227 0xffffffff, /* src_mask */
1228 0xffffffff, /* dst_mask */
1229 TRUE), /* pcrel_offset */
1230
1231 HOWTO (R_ARM_LDC_SB_G0, /* type */
1232 0, /* rightshift */
1233 2, /* size (0 = byte, 1 = short, 2 = long) */
1234 32, /* bitsize */
1235 TRUE, /* pc_relative */
1236 0, /* bitpos */
1237 complain_overflow_dont,/* complain_on_overflow */
1238 bfd_elf_generic_reloc, /* special_function */
1239 "R_ARM_LDC_SB_G0", /* name */
1240 FALSE, /* partial_inplace */
1241 0xffffffff, /* src_mask */
1242 0xffffffff, /* dst_mask */
1243 TRUE), /* pcrel_offset */
1244
1245 HOWTO (R_ARM_LDC_SB_G1, /* type */
1246 0, /* rightshift */
1247 2, /* size (0 = byte, 1 = short, 2 = long) */
1248 32, /* bitsize */
1249 TRUE, /* pc_relative */
1250 0, /* bitpos */
1251 complain_overflow_dont,/* complain_on_overflow */
1252 bfd_elf_generic_reloc, /* special_function */
1253 "R_ARM_LDC_SB_G1", /* name */
1254 FALSE, /* partial_inplace */
1255 0xffffffff, /* src_mask */
1256 0xffffffff, /* dst_mask */
1257 TRUE), /* pcrel_offset */
1258
1259 HOWTO (R_ARM_LDC_SB_G2, /* type */
1260 0, /* rightshift */
1261 2, /* size (0 = byte, 1 = short, 2 = long) */
1262 32, /* bitsize */
1263 TRUE, /* pc_relative */
1264 0, /* bitpos */
1265 complain_overflow_dont,/* complain_on_overflow */
1266 bfd_elf_generic_reloc, /* special_function */
1267 "R_ARM_LDC_SB_G2", /* name */
1268 FALSE, /* partial_inplace */
1269 0xffffffff, /* src_mask */
1270 0xffffffff, /* dst_mask */
1271 TRUE), /* pcrel_offset */
1272
1273 /* End of group relocations. */
1274
1275 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1276 0, /* rightshift */
1277 2, /* size (0 = byte, 1 = short, 2 = long) */
1278 16, /* bitsize */
1279 FALSE, /* pc_relative */
1280 0, /* bitpos */
1281 complain_overflow_dont,/* complain_on_overflow */
1282 bfd_elf_generic_reloc, /* special_function */
1283 "R_ARM_MOVW_BREL_NC", /* name */
1284 FALSE, /* partial_inplace */
1285 0x0000ffff, /* src_mask */
1286 0x0000ffff, /* dst_mask */
1287 FALSE), /* pcrel_offset */
1288
1289 HOWTO (R_ARM_MOVT_BREL, /* type */
1290 0, /* rightshift */
1291 2, /* size (0 = byte, 1 = short, 2 = long) */
1292 16, /* bitsize */
1293 FALSE, /* pc_relative */
1294 0, /* bitpos */
1295 complain_overflow_bitfield,/* complain_on_overflow */
1296 bfd_elf_generic_reloc, /* special_function */
1297 "R_ARM_MOVT_BREL", /* name */
1298 FALSE, /* partial_inplace */
1299 0x0000ffff, /* src_mask */
1300 0x0000ffff, /* dst_mask */
1301 FALSE), /* pcrel_offset */
1302
1303 HOWTO (R_ARM_MOVW_BREL, /* type */
1304 0, /* rightshift */
1305 2, /* size (0 = byte, 1 = short, 2 = long) */
1306 16, /* bitsize */
1307 FALSE, /* pc_relative */
1308 0, /* bitpos */
1309 complain_overflow_dont,/* complain_on_overflow */
1310 bfd_elf_generic_reloc, /* special_function */
1311 "R_ARM_MOVW_BREL", /* name */
1312 FALSE, /* partial_inplace */
1313 0x0000ffff, /* src_mask */
1314 0x0000ffff, /* dst_mask */
1315 FALSE), /* pcrel_offset */
1316
1317 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1318 0, /* rightshift */
1319 2, /* size (0 = byte, 1 = short, 2 = long) */
1320 16, /* bitsize */
1321 FALSE, /* pc_relative */
1322 0, /* bitpos */
1323 complain_overflow_dont,/* complain_on_overflow */
1324 bfd_elf_generic_reloc, /* special_function */
1325 "R_ARM_THM_MOVW_BREL_NC",/* name */
1326 FALSE, /* partial_inplace */
1327 0x040f70ff, /* src_mask */
1328 0x040f70ff, /* dst_mask */
1329 FALSE), /* pcrel_offset */
1330
1331 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1332 0, /* rightshift */
1333 2, /* size (0 = byte, 1 = short, 2 = long) */
1334 16, /* bitsize */
1335 FALSE, /* pc_relative */
1336 0, /* bitpos */
1337 complain_overflow_bitfield,/* complain_on_overflow */
1338 bfd_elf_generic_reloc, /* special_function */
1339 "R_ARM_THM_MOVT_BREL", /* name */
1340 FALSE, /* partial_inplace */
1341 0x040f70ff, /* src_mask */
1342 0x040f70ff, /* dst_mask */
1343 FALSE), /* pcrel_offset */
1344
1345 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1346 0, /* rightshift */
1347 2, /* size (0 = byte, 1 = short, 2 = long) */
1348 16, /* bitsize */
1349 FALSE, /* pc_relative */
1350 0, /* bitpos */
1351 complain_overflow_dont,/* complain_on_overflow */
1352 bfd_elf_generic_reloc, /* special_function */
1353 "R_ARM_THM_MOVW_BREL", /* name */
1354 FALSE, /* partial_inplace */
1355 0x040f70ff, /* src_mask */
1356 0x040f70ff, /* dst_mask */
1357 FALSE), /* pcrel_offset */
1358
1359 HOWTO (R_ARM_TLS_GOTDESC, /* type */
1360 0, /* rightshift */
1361 2, /* size (0 = byte, 1 = short, 2 = long) */
1362 32, /* bitsize */
1363 FALSE, /* pc_relative */
1364 0, /* bitpos */
1365 complain_overflow_bitfield,/* complain_on_overflow */
1366 NULL, /* special_function */
1367 "R_ARM_TLS_GOTDESC", /* name */
1368 TRUE, /* partial_inplace */
1369 0xffffffff, /* src_mask */
1370 0xffffffff, /* dst_mask */
1371 FALSE), /* pcrel_offset */
1372
1373 HOWTO (R_ARM_TLS_CALL, /* type */
1374 0, /* rightshift */
1375 2, /* size (0 = byte, 1 = short, 2 = long) */
1376 24, /* bitsize */
1377 FALSE, /* pc_relative */
1378 0, /* bitpos */
1379 complain_overflow_dont,/* complain_on_overflow */
1380 bfd_elf_generic_reloc, /* special_function */
1381 "R_ARM_TLS_CALL", /* name */
1382 FALSE, /* partial_inplace */
1383 0x00ffffff, /* src_mask */
1384 0x00ffffff, /* dst_mask */
1385 FALSE), /* pcrel_offset */
1386
1387 HOWTO (R_ARM_TLS_DESCSEQ, /* type */
1388 0, /* rightshift */
1389 2, /* size (0 = byte, 1 = short, 2 = long) */
1390 0, /* bitsize */
1391 FALSE, /* pc_relative */
1392 0, /* bitpos */
1393 complain_overflow_bitfield,/* complain_on_overflow */
1394 bfd_elf_generic_reloc, /* special_function */
1395 "R_ARM_TLS_DESCSEQ", /* name */
1396 FALSE, /* partial_inplace */
1397 0x00000000, /* src_mask */
1398 0x00000000, /* dst_mask */
1399 FALSE), /* pcrel_offset */
1400
1401 HOWTO (R_ARM_THM_TLS_CALL, /* type */
1402 0, /* rightshift */
1403 2, /* size (0 = byte, 1 = short, 2 = long) */
1404 24, /* bitsize */
1405 FALSE, /* pc_relative */
1406 0, /* bitpos */
1407 complain_overflow_dont,/* complain_on_overflow */
1408 bfd_elf_generic_reloc, /* special_function */
1409 "R_ARM_THM_TLS_CALL", /* name */
1410 FALSE, /* partial_inplace */
1411 0x07ff07ff, /* src_mask */
1412 0x07ff07ff, /* dst_mask */
1413 FALSE), /* pcrel_offset */
1414
1415 HOWTO (R_ARM_PLT32_ABS, /* type */
1416 0, /* rightshift */
1417 2, /* size (0 = byte, 1 = short, 2 = long) */
1418 32, /* bitsize */
1419 FALSE, /* pc_relative */
1420 0, /* bitpos */
1421 complain_overflow_dont,/* complain_on_overflow */
1422 bfd_elf_generic_reloc, /* special_function */
1423 "R_ARM_PLT32_ABS", /* name */
1424 FALSE, /* partial_inplace */
1425 0xffffffff, /* src_mask */
1426 0xffffffff, /* dst_mask */
1427 FALSE), /* pcrel_offset */
1428
1429 HOWTO (R_ARM_GOT_ABS, /* type */
1430 0, /* rightshift */
1431 2, /* size (0 = byte, 1 = short, 2 = long) */
1432 32, /* bitsize */
1433 FALSE, /* pc_relative */
1434 0, /* bitpos */
1435 complain_overflow_dont,/* complain_on_overflow */
1436 bfd_elf_generic_reloc, /* special_function */
1437 "R_ARM_GOT_ABS", /* name */
1438 FALSE, /* partial_inplace */
1439 0xffffffff, /* src_mask */
1440 0xffffffff, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1442
1443 HOWTO (R_ARM_GOT_PREL, /* type */
1444 0, /* rightshift */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1446 32, /* bitsize */
1447 TRUE, /* pc_relative */
1448 0, /* bitpos */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 bfd_elf_generic_reloc, /* special_function */
1451 "R_ARM_GOT_PREL", /* name */
1452 FALSE, /* partial_inplace */
1453 0xffffffff, /* src_mask */
1454 0xffffffff, /* dst_mask */
1455 TRUE), /* pcrel_offset */
1456
1457 HOWTO (R_ARM_GOT_BREL12, /* type */
1458 0, /* rightshift */
1459 2, /* size (0 = byte, 1 = short, 2 = long) */
1460 12, /* bitsize */
1461 FALSE, /* pc_relative */
1462 0, /* bitpos */
1463 complain_overflow_bitfield,/* complain_on_overflow */
1464 bfd_elf_generic_reloc, /* special_function */
1465 "R_ARM_GOT_BREL12", /* name */
1466 FALSE, /* partial_inplace */
1467 0x00000fff, /* src_mask */
1468 0x00000fff, /* dst_mask */
1469 FALSE), /* pcrel_offset */
1470
1471 HOWTO (R_ARM_GOTOFF12, /* type */
1472 0, /* rightshift */
1473 2, /* size (0 = byte, 1 = short, 2 = long) */
1474 12, /* bitsize */
1475 FALSE, /* pc_relative */
1476 0, /* bitpos */
1477 complain_overflow_bitfield,/* complain_on_overflow */
1478 bfd_elf_generic_reloc, /* special_function */
1479 "R_ARM_GOTOFF12", /* name */
1480 FALSE, /* partial_inplace */
1481 0x00000fff, /* src_mask */
1482 0x00000fff, /* dst_mask */
1483 FALSE), /* pcrel_offset */
1484
1485 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1486
1487 /* GNU extension to record C++ vtable member usage */
1488 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1489 0, /* rightshift */
1490 2, /* size (0 = byte, 1 = short, 2 = long) */
1491 0, /* bitsize */
1492 FALSE, /* pc_relative */
1493 0, /* bitpos */
1494 complain_overflow_dont, /* complain_on_overflow */
1495 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1496 "R_ARM_GNU_VTENTRY", /* name */
1497 FALSE, /* partial_inplace */
1498 0, /* src_mask */
1499 0, /* dst_mask */
1500 FALSE), /* pcrel_offset */
1501
1502 /* GNU extension to record C++ vtable hierarchy */
1503 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1504 0, /* rightshift */
1505 2, /* size (0 = byte, 1 = short, 2 = long) */
1506 0, /* bitsize */
1507 FALSE, /* pc_relative */
1508 0, /* bitpos */
1509 complain_overflow_dont, /* complain_on_overflow */
1510 NULL, /* special_function */
1511 "R_ARM_GNU_VTINHERIT", /* name */
1512 FALSE, /* partial_inplace */
1513 0, /* src_mask */
1514 0, /* dst_mask */
1515 FALSE), /* pcrel_offset */
1516
1517 HOWTO (R_ARM_THM_JUMP11, /* type */
1518 1, /* rightshift */
1519 1, /* size (0 = byte, 1 = short, 2 = long) */
1520 11, /* bitsize */
1521 TRUE, /* pc_relative */
1522 0, /* bitpos */
1523 complain_overflow_signed, /* complain_on_overflow */
1524 bfd_elf_generic_reloc, /* special_function */
1525 "R_ARM_THM_JUMP11", /* name */
1526 FALSE, /* partial_inplace */
1527 0x000007ff, /* src_mask */
1528 0x000007ff, /* dst_mask */
1529 TRUE), /* pcrel_offset */
1530
1531 HOWTO (R_ARM_THM_JUMP8, /* type */
1532 1, /* rightshift */
1533 1, /* size (0 = byte, 1 = short, 2 = long) */
1534 8, /* bitsize */
1535 TRUE, /* pc_relative */
1536 0, /* bitpos */
1537 complain_overflow_signed, /* complain_on_overflow */
1538 bfd_elf_generic_reloc, /* special_function */
1539 "R_ARM_THM_JUMP8", /* name */
1540 FALSE, /* partial_inplace */
1541 0x000000ff, /* src_mask */
1542 0x000000ff, /* dst_mask */
1543 TRUE), /* pcrel_offset */
1544
1545 /* TLS relocations */
1546 HOWTO (R_ARM_TLS_GD32, /* type */
1547 0, /* rightshift */
1548 2, /* size (0 = byte, 1 = short, 2 = long) */
1549 32, /* bitsize */
1550 FALSE, /* pc_relative */
1551 0, /* bitpos */
1552 complain_overflow_bitfield,/* complain_on_overflow */
1553 NULL, /* special_function */
1554 "R_ARM_TLS_GD32", /* name */
1555 TRUE, /* partial_inplace */
1556 0xffffffff, /* src_mask */
1557 0xffffffff, /* dst_mask */
1558 FALSE), /* pcrel_offset */
1559
1560 HOWTO (R_ARM_TLS_LDM32, /* type */
1561 0, /* rightshift */
1562 2, /* size (0 = byte, 1 = short, 2 = long) */
1563 32, /* bitsize */
1564 FALSE, /* pc_relative */
1565 0, /* bitpos */
1566 complain_overflow_bitfield,/* complain_on_overflow */
1567 bfd_elf_generic_reloc, /* special_function */
1568 "R_ARM_TLS_LDM32", /* name */
1569 TRUE, /* partial_inplace */
1570 0xffffffff, /* src_mask */
1571 0xffffffff, /* dst_mask */
1572 FALSE), /* pcrel_offset */
1573
1574 HOWTO (R_ARM_TLS_LDO32, /* type */
1575 0, /* rightshift */
1576 2, /* size (0 = byte, 1 = short, 2 = long) */
1577 32, /* bitsize */
1578 FALSE, /* pc_relative */
1579 0, /* bitpos */
1580 complain_overflow_bitfield,/* complain_on_overflow */
1581 bfd_elf_generic_reloc, /* special_function */
1582 "R_ARM_TLS_LDO32", /* name */
1583 TRUE, /* partial_inplace */
1584 0xffffffff, /* src_mask */
1585 0xffffffff, /* dst_mask */
1586 FALSE), /* pcrel_offset */
1587
1588 HOWTO (R_ARM_TLS_IE32, /* type */
1589 0, /* rightshift */
1590 2, /* size (0 = byte, 1 = short, 2 = long) */
1591 32, /* bitsize */
1592 FALSE, /* pc_relative */
1593 0, /* bitpos */
1594 complain_overflow_bitfield,/* complain_on_overflow */
1595 NULL, /* special_function */
1596 "R_ARM_TLS_IE32", /* name */
1597 TRUE, /* partial_inplace */
1598 0xffffffff, /* src_mask */
1599 0xffffffff, /* dst_mask */
1600 FALSE), /* pcrel_offset */
1601
1602 HOWTO (R_ARM_TLS_LE32, /* type */
1603 0, /* rightshift */
1604 2, /* size (0 = byte, 1 = short, 2 = long) */
1605 32, /* bitsize */
1606 FALSE, /* pc_relative */
1607 0, /* bitpos */
1608 complain_overflow_bitfield,/* complain_on_overflow */
1609 NULL, /* special_function */
1610 "R_ARM_TLS_LE32", /* name */
1611 TRUE, /* partial_inplace */
1612 0xffffffff, /* src_mask */
1613 0xffffffff, /* dst_mask */
1614 FALSE), /* pcrel_offset */
1615
1616 HOWTO (R_ARM_TLS_LDO12, /* type */
1617 0, /* rightshift */
1618 2, /* size (0 = byte, 1 = short, 2 = long) */
1619 12, /* bitsize */
1620 FALSE, /* pc_relative */
1621 0, /* bitpos */
1622 complain_overflow_bitfield,/* complain_on_overflow */
1623 bfd_elf_generic_reloc, /* special_function */
1624 "R_ARM_TLS_LDO12", /* name */
1625 FALSE, /* partial_inplace */
1626 0x00000fff, /* src_mask */
1627 0x00000fff, /* dst_mask */
1628 FALSE), /* pcrel_offset */
1629
1630 HOWTO (R_ARM_TLS_LE12, /* type */
1631 0, /* rightshift */
1632 2, /* size (0 = byte, 1 = short, 2 = long) */
1633 12, /* bitsize */
1634 FALSE, /* pc_relative */
1635 0, /* bitpos */
1636 complain_overflow_bitfield,/* complain_on_overflow */
1637 bfd_elf_generic_reloc, /* special_function */
1638 "R_ARM_TLS_LE12", /* name */
1639 FALSE, /* partial_inplace */
1640 0x00000fff, /* src_mask */
1641 0x00000fff, /* dst_mask */
1642 FALSE), /* pcrel_offset */
1643
1644 HOWTO (R_ARM_TLS_IE12GP, /* type */
1645 0, /* rightshift */
1646 2, /* size (0 = byte, 1 = short, 2 = long) */
1647 12, /* bitsize */
1648 FALSE, /* pc_relative */
1649 0, /* bitpos */
1650 complain_overflow_bitfield,/* complain_on_overflow */
1651 bfd_elf_generic_reloc, /* special_function */
1652 "R_ARM_TLS_IE12GP", /* name */
1653 FALSE, /* partial_inplace */
1654 0x00000fff, /* src_mask */
1655 0x00000fff, /* dst_mask */
1656 FALSE), /* pcrel_offset */
1657
1658 /* 112-127 private relocations. */
1659 EMPTY_HOWTO (112),
1660 EMPTY_HOWTO (113),
1661 EMPTY_HOWTO (114),
1662 EMPTY_HOWTO (115),
1663 EMPTY_HOWTO (116),
1664 EMPTY_HOWTO (117),
1665 EMPTY_HOWTO (118),
1666 EMPTY_HOWTO (119),
1667 EMPTY_HOWTO (120),
1668 EMPTY_HOWTO (121),
1669 EMPTY_HOWTO (122),
1670 EMPTY_HOWTO (123),
1671 EMPTY_HOWTO (124),
1672 EMPTY_HOWTO (125),
1673 EMPTY_HOWTO (126),
1674 EMPTY_HOWTO (127),
1675
1676 /* R_ARM_ME_TOO, obsolete. */
1677 EMPTY_HOWTO (128),
1678
1679 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1680 0, /* rightshift */
1681 1, /* size (0 = byte, 1 = short, 2 = long) */
1682 0, /* bitsize */
1683 FALSE, /* pc_relative */
1684 0, /* bitpos */
1685 complain_overflow_bitfield,/* complain_on_overflow */
1686 bfd_elf_generic_reloc, /* special_function */
1687 "R_ARM_THM_TLS_DESCSEQ",/* name */
1688 FALSE, /* partial_inplace */
1689 0x00000000, /* src_mask */
1690 0x00000000, /* dst_mask */
1691 FALSE), /* pcrel_offset */
1692 EMPTY_HOWTO (130),
1693 EMPTY_HOWTO (131),
1694 HOWTO (R_ARM_THM_ALU_ABS_G0_NC,/* type. */
1695 0, /* rightshift. */
1696 1, /* size (0 = byte, 1 = short, 2 = long). */
1697 16, /* bitsize. */
1698 FALSE, /* pc_relative. */
1699 0, /* bitpos. */
1700 complain_overflow_bitfield,/* complain_on_overflow. */
1701 bfd_elf_generic_reloc, /* special_function. */
1702 "R_ARM_THM_ALU_ABS_G0_NC",/* name. */
1703 FALSE, /* partial_inplace. */
1704 0x00000000, /* src_mask. */
1705 0x00000000, /* dst_mask. */
1706 FALSE), /* pcrel_offset. */
1707 HOWTO (R_ARM_THM_ALU_ABS_G1_NC,/* type. */
1708 0, /* rightshift. */
1709 1, /* size (0 = byte, 1 = short, 2 = long). */
1710 16, /* bitsize. */
1711 FALSE, /* pc_relative. */
1712 0, /* bitpos. */
1713 complain_overflow_bitfield,/* complain_on_overflow. */
1714 bfd_elf_generic_reloc, /* special_function. */
1715 "R_ARM_THM_ALU_ABS_G1_NC",/* name. */
1716 FALSE, /* partial_inplace. */
1717 0x00000000, /* src_mask. */
1718 0x00000000, /* dst_mask. */
1719 FALSE), /* pcrel_offset. */
1720 HOWTO (R_ARM_THM_ALU_ABS_G2_NC,/* type. */
1721 0, /* rightshift. */
1722 1, /* size (0 = byte, 1 = short, 2 = long). */
1723 16, /* bitsize. */
1724 FALSE, /* pc_relative. */
1725 0, /* bitpos. */
1726 complain_overflow_bitfield,/* complain_on_overflow. */
1727 bfd_elf_generic_reloc, /* special_function. */
1728 "R_ARM_THM_ALU_ABS_G2_NC",/* name. */
1729 FALSE, /* partial_inplace. */
1730 0x00000000, /* src_mask. */
1731 0x00000000, /* dst_mask. */
1732 FALSE), /* pcrel_offset. */
1733 HOWTO (R_ARM_THM_ALU_ABS_G3_NC,/* type. */
1734 0, /* rightshift. */
1735 1, /* size (0 = byte, 1 = short, 2 = long). */
1736 16, /* bitsize. */
1737 FALSE, /* pc_relative. */
1738 0, /* bitpos. */
1739 complain_overflow_bitfield,/* complain_on_overflow. */
1740 bfd_elf_generic_reloc, /* special_function. */
1741 "R_ARM_THM_ALU_ABS_G3_NC",/* name. */
1742 FALSE, /* partial_inplace. */
1743 0x00000000, /* src_mask. */
1744 0x00000000, /* dst_mask. */
1745 FALSE), /* pcrel_offset. */
1746 };
1747
1748 /* 160 onwards: */
1749 static reloc_howto_type elf32_arm_howto_table_2[8] =
1750 {
1751 HOWTO (R_ARM_IRELATIVE, /* type */
1752 0, /* rightshift */
1753 2, /* size (0 = byte, 1 = short, 2 = long) */
1754 32, /* bitsize */
1755 FALSE, /* pc_relative */
1756 0, /* bitpos */
1757 complain_overflow_bitfield,/* complain_on_overflow */
1758 bfd_elf_generic_reloc, /* special_function */
1759 "R_ARM_IRELATIVE", /* name */
1760 TRUE, /* partial_inplace */
1761 0xffffffff, /* src_mask */
1762 0xffffffff, /* dst_mask */
1763 FALSE), /* pcrel_offset */
1764 HOWTO (R_ARM_GOTFUNCDESC, /* type */
1765 0, /* rightshift */
1766 2, /* size (0 = byte, 1 = short, 2 = long) */
1767 32, /* bitsize */
1768 FALSE, /* pc_relative */
1769 0, /* bitpos */
1770 complain_overflow_bitfield,/* complain_on_overflow */
1771 bfd_elf_generic_reloc, /* special_function */
1772 "R_ARM_GOTFUNCDESC", /* name */
1773 FALSE, /* partial_inplace */
1774 0, /* src_mask */
1775 0xffffffff, /* dst_mask */
1776 FALSE), /* pcrel_offset */
1777 HOWTO (R_ARM_GOTOFFFUNCDESC, /* type */
1778 0, /* rightshift */
1779 2, /* size (0 = byte, 1 = short, 2 = long) */
1780 32, /* bitsize */
1781 FALSE, /* pc_relative */
1782 0, /* bitpos */
1783 complain_overflow_bitfield,/* complain_on_overflow */
1784 bfd_elf_generic_reloc, /* special_function */
1785 "R_ARM_GOTOFFFUNCDESC",/* name */
1786 FALSE, /* partial_inplace */
1787 0, /* src_mask */
1788 0xffffffff, /* dst_mask */
1789 FALSE), /* pcrel_offset */
1790 HOWTO (R_ARM_FUNCDESC, /* type */
1791 0, /* rightshift */
1792 2, /* size (0 = byte, 1 = short, 2 = long) */
1793 32, /* bitsize */
1794 FALSE, /* pc_relative */
1795 0, /* bitpos */
1796 complain_overflow_bitfield,/* complain_on_overflow */
1797 bfd_elf_generic_reloc, /* special_function */
1798 "R_ARM_FUNCDESC", /* name */
1799 FALSE, /* partial_inplace */
1800 0, /* src_mask */
1801 0xffffffff, /* dst_mask */
1802 FALSE), /* pcrel_offset */
1803 HOWTO (R_ARM_FUNCDESC_VALUE, /* type */
1804 0, /* rightshift */
1805 2, /* size (0 = byte, 1 = short, 2 = long) */
1806 64, /* bitsize */
1807 FALSE, /* pc_relative */
1808 0, /* bitpos */
1809 complain_overflow_bitfield,/* complain_on_overflow */
1810 bfd_elf_generic_reloc, /* special_function */
1811 "R_ARM_FUNCDESC_VALUE",/* name */
1812 FALSE, /* partial_inplace */
1813 0, /* src_mask */
1814 0xffffffff, /* dst_mask */
1815 FALSE), /* pcrel_offset */
1816 HOWTO (R_ARM_TLS_GD32_FDPIC, /* type */
1817 0, /* rightshift */
1818 2, /* size (0 = byte, 1 = short, 2 = long) */
1819 32, /* bitsize */
1820 FALSE, /* pc_relative */
1821 0, /* bitpos */
1822 complain_overflow_bitfield,/* complain_on_overflow */
1823 bfd_elf_generic_reloc, /* special_function */
1824 "R_ARM_TLS_GD32_FDPIC",/* name */
1825 FALSE, /* partial_inplace */
1826 0, /* src_mask */
1827 0xffffffff, /* dst_mask */
1828 FALSE), /* pcrel_offset */
1829 HOWTO (R_ARM_TLS_LDM32_FDPIC, /* type */
1830 0, /* rightshift */
1831 2, /* size (0 = byte, 1 = short, 2 = long) */
1832 32, /* bitsize */
1833 FALSE, /* pc_relative */
1834 0, /* bitpos */
1835 complain_overflow_bitfield,/* complain_on_overflow */
1836 bfd_elf_generic_reloc, /* special_function */
1837 "R_ARM_TLS_LDM32_FDPIC",/* name */
1838 FALSE, /* partial_inplace */
1839 0, /* src_mask */
1840 0xffffffff, /* dst_mask */
1841 FALSE), /* pcrel_offset */
1842 HOWTO (R_ARM_TLS_IE32_FDPIC, /* type */
1843 0, /* rightshift */
1844 2, /* size (0 = byte, 1 = short, 2 = long) */
1845 32, /* bitsize */
1846 FALSE, /* pc_relative */
1847 0, /* bitpos */
1848 complain_overflow_bitfield,/* complain_on_overflow */
1849 bfd_elf_generic_reloc, /* special_function */
1850 "R_ARM_TLS_IE32_FDPIC",/* name */
1851 FALSE, /* partial_inplace */
1852 0, /* src_mask */
1853 0xffffffff, /* dst_mask */
1854 FALSE), /* pcrel_offset */
1855 };
1856
1857 /* 249-255 extended, currently unused, relocations: */
1858 static reloc_howto_type elf32_arm_howto_table_3[4] =
1859 {
1860 HOWTO (R_ARM_RREL32, /* type */
1861 0, /* rightshift */
1862 0, /* size (0 = byte, 1 = short, 2 = long) */
1863 0, /* bitsize */
1864 FALSE, /* pc_relative */
1865 0, /* bitpos */
1866 complain_overflow_dont,/* complain_on_overflow */
1867 bfd_elf_generic_reloc, /* special_function */
1868 "R_ARM_RREL32", /* name */
1869 FALSE, /* partial_inplace */
1870 0, /* src_mask */
1871 0, /* dst_mask */
1872 FALSE), /* pcrel_offset */
1873
1874 HOWTO (R_ARM_RABS32, /* type */
1875 0, /* rightshift */
1876 0, /* size (0 = byte, 1 = short, 2 = long) */
1877 0, /* bitsize */
1878 FALSE, /* pc_relative */
1879 0, /* bitpos */
1880 complain_overflow_dont,/* complain_on_overflow */
1881 bfd_elf_generic_reloc, /* special_function */
1882 "R_ARM_RABS32", /* name */
1883 FALSE, /* partial_inplace */
1884 0, /* src_mask */
1885 0, /* dst_mask */
1886 FALSE), /* pcrel_offset */
1887
1888 HOWTO (R_ARM_RPC24, /* type */
1889 0, /* rightshift */
1890 0, /* size (0 = byte, 1 = short, 2 = long) */
1891 0, /* bitsize */
1892 FALSE, /* pc_relative */
1893 0, /* bitpos */
1894 complain_overflow_dont,/* complain_on_overflow */
1895 bfd_elf_generic_reloc, /* special_function */
1896 "R_ARM_RPC24", /* name */
1897 FALSE, /* partial_inplace */
1898 0, /* src_mask */
1899 0, /* dst_mask */
1900 FALSE), /* pcrel_offset */
1901
1902 HOWTO (R_ARM_RBASE, /* type */
1903 0, /* rightshift */
1904 0, /* size (0 = byte, 1 = short, 2 = long) */
1905 0, /* bitsize */
1906 FALSE, /* pc_relative */
1907 0, /* bitpos */
1908 complain_overflow_dont,/* complain_on_overflow */
1909 bfd_elf_generic_reloc, /* special_function */
1910 "R_ARM_RBASE", /* name */
1911 FALSE, /* partial_inplace */
1912 0, /* src_mask */
1913 0, /* dst_mask */
1914 FALSE) /* pcrel_offset */
1915 };
1916
1917 static reloc_howto_type *
1918 elf32_arm_howto_from_type (unsigned int r_type)
1919 {
1920 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1921 return &elf32_arm_howto_table_1[r_type];
1922
1923 if (r_type >= R_ARM_IRELATIVE
1924 && r_type < R_ARM_IRELATIVE + ARRAY_SIZE (elf32_arm_howto_table_2))
1925 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1926
1927 if (r_type >= R_ARM_RREL32
1928 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1929 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
1930
1931 return NULL;
1932 }
1933
1934 static bfd_boolean
1935 elf32_arm_info_to_howto (bfd * abfd, arelent * bfd_reloc,
1936 Elf_Internal_Rela * elf_reloc)
1937 {
1938 unsigned int r_type;
1939
1940 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1941 if ((bfd_reloc->howto = elf32_arm_howto_from_type (r_type)) == NULL)
1942 {
1943 /* xgettext:c-format */
1944 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
1945 abfd, r_type);
1946 bfd_set_error (bfd_error_bad_value);
1947 return FALSE;
1948 }
1949 return TRUE;
1950 }
1951
1952 struct elf32_arm_reloc_map
1953 {
1954 bfd_reloc_code_real_type bfd_reloc_val;
1955 unsigned char elf_reloc_val;
1956 };
1957
1958 /* All entries in this list must also be present in elf32_arm_howto_table. */
1959 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1960 {
1961 {BFD_RELOC_NONE, R_ARM_NONE},
1962 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1963 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1964 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1965 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1966 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1967 {BFD_RELOC_32, R_ARM_ABS32},
1968 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1969 {BFD_RELOC_8, R_ARM_ABS8},
1970 {BFD_RELOC_16, R_ARM_ABS16},
1971 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1972 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1973 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1974 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1975 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1976 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1977 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1978 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1979 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1980 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1981 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1982 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1983 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1984 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
1985 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1986 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1987 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1988 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1989 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1990 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1991 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1992 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1993 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC},
1994 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL},
1995 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL},
1996 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ},
1997 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ},
1998 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC},
1999 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
2000 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
2001 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
2002 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
2003 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
2004 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
2005 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
2006 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
2007 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE},
2008 {BFD_RELOC_ARM_GOTFUNCDESC, R_ARM_GOTFUNCDESC},
2009 {BFD_RELOC_ARM_GOTOFFFUNCDESC, R_ARM_GOTOFFFUNCDESC},
2010 {BFD_RELOC_ARM_FUNCDESC, R_ARM_FUNCDESC},
2011 {BFD_RELOC_ARM_FUNCDESC_VALUE, R_ARM_FUNCDESC_VALUE},
2012 {BFD_RELOC_ARM_TLS_GD32_FDPIC, R_ARM_TLS_GD32_FDPIC},
2013 {BFD_RELOC_ARM_TLS_LDM32_FDPIC, R_ARM_TLS_LDM32_FDPIC},
2014 {BFD_RELOC_ARM_TLS_IE32_FDPIC, R_ARM_TLS_IE32_FDPIC},
2015 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
2016 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
2017 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
2018 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
2019 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
2020 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
2021 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
2022 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
2023 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
2024 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
2025 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
2026 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
2027 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
2028 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
2029 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
2030 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
2031 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
2032 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
2033 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
2034 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
2035 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
2036 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
2037 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
2038 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
2039 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
2040 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
2041 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
2042 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
2043 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
2044 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
2045 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
2046 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
2047 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
2048 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
2049 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
2050 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
2051 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
2052 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
2053 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX},
2054 {BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC, R_ARM_THM_ALU_ABS_G3_NC},
2055 {BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC, R_ARM_THM_ALU_ABS_G2_NC},
2056 {BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC, R_ARM_THM_ALU_ABS_G1_NC},
2057 {BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC, R_ARM_THM_ALU_ABS_G0_NC}
2058 };
2059
2060 static reloc_howto_type *
2061 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2062 bfd_reloc_code_real_type code)
2063 {
2064 unsigned int i;
2065
2066 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
2067 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
2068 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
2069
2070 return NULL;
2071 }
2072
2073 static reloc_howto_type *
2074 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2075 const char *r_name)
2076 {
2077 unsigned int i;
2078
2079 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
2080 if (elf32_arm_howto_table_1[i].name != NULL
2081 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
2082 return &elf32_arm_howto_table_1[i];
2083
2084 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
2085 if (elf32_arm_howto_table_2[i].name != NULL
2086 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
2087 return &elf32_arm_howto_table_2[i];
2088
2089 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
2090 if (elf32_arm_howto_table_3[i].name != NULL
2091 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
2092 return &elf32_arm_howto_table_3[i];
2093
2094 return NULL;
2095 }
2096
2097 /* Support for core dump NOTE sections. */
2098
2099 static bfd_boolean
2100 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2101 {
2102 int offset;
2103 size_t size;
2104
2105 switch (note->descsz)
2106 {
2107 default:
2108 return FALSE;
2109
2110 case 148: /* Linux/ARM 32-bit. */
2111 /* pr_cursig */
2112 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2113
2114 /* pr_pid */
2115 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
2116
2117 /* pr_reg */
2118 offset = 72;
2119 size = 72;
2120
2121 break;
2122 }
2123
2124 /* Make a ".reg/999" section. */
2125 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2126 size, note->descpos + offset);
2127 }
2128
2129 static bfd_boolean
2130 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2131 {
2132 switch (note->descsz)
2133 {
2134 default:
2135 return FALSE;
2136
2137 case 124: /* Linux/ARM elf_prpsinfo. */
2138 elf_tdata (abfd)->core->pid
2139 = bfd_get_32 (abfd, note->descdata + 12);
2140 elf_tdata (abfd)->core->program
2141 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
2142 elf_tdata (abfd)->core->command
2143 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
2144 }
2145
2146 /* Note that for some reason, a spurious space is tacked
2147 onto the end of the args in some (at least one anyway)
2148 implementations, so strip it off if it exists. */
2149 {
2150 char *command = elf_tdata (abfd)->core->command;
2151 int n = strlen (command);
2152
2153 if (0 < n && command[n - 1] == ' ')
2154 command[n - 1] = '\0';
2155 }
2156
2157 return TRUE;
2158 }
2159
2160 static char *
2161 elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz,
2162 int note_type, ...)
2163 {
2164 switch (note_type)
2165 {
2166 default:
2167 return NULL;
2168
2169 case NT_PRPSINFO:
2170 {
2171 char data[124];
2172 va_list ap;
2173
2174 va_start (ap, note_type);
2175 memset (data, 0, sizeof (data));
2176 strncpy (data + 28, va_arg (ap, const char *), 16);
2177 strncpy (data + 44, va_arg (ap, const char *), 80);
2178 va_end (ap);
2179
2180 return elfcore_write_note (abfd, buf, bufsiz,
2181 "CORE", note_type, data, sizeof (data));
2182 }
2183
2184 case NT_PRSTATUS:
2185 {
2186 char data[148];
2187 va_list ap;
2188 long pid;
2189 int cursig;
2190 const void *greg;
2191
2192 va_start (ap, note_type);
2193 memset (data, 0, sizeof (data));
2194 pid = va_arg (ap, long);
2195 bfd_put_32 (abfd, pid, data + 24);
2196 cursig = va_arg (ap, int);
2197 bfd_put_16 (abfd, cursig, data + 12);
2198 greg = va_arg (ap, const void *);
2199 memcpy (data + 72, greg, 72);
2200 va_end (ap);
2201
2202 return elfcore_write_note (abfd, buf, bufsiz,
2203 "CORE", note_type, data, sizeof (data));
2204 }
2205 }
2206 }
2207
2208 #define TARGET_LITTLE_SYM arm_elf32_le_vec
2209 #define TARGET_LITTLE_NAME "elf32-littlearm"
2210 #define TARGET_BIG_SYM arm_elf32_be_vec
2211 #define TARGET_BIG_NAME "elf32-bigarm"
2212
2213 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
2214 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
2215 #define elf_backend_write_core_note elf32_arm_nabi_write_core_note
2216
2217 typedef unsigned long int insn32;
2218 typedef unsigned short int insn16;
2219
2220 /* In lieu of proper flags, assume all EABIv4 or later objects are
2221 interworkable. */
2222 #define INTERWORK_FLAG(abfd) \
2223 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
2224 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2225 || ((abfd)->flags & BFD_LINKER_CREATED))
2226
2227 /* The linker script knows the section names for placement.
2228 The entry_names are used to do simple name mangling on the stubs.
2229 Given a function name, and its type, the stub can be found. The
2230 name can be changed. The only requirement is the %s be present. */
2231 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2232 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2233
2234 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2235 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2236
2237 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2238 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2239
2240 #define STM32L4XX_ERRATUM_VENEER_SECTION_NAME ".text.stm32l4xx_veneer"
2241 #define STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "__stm32l4xx_veneer_%x"
2242
2243 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2244 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2245
2246 #define STUB_ENTRY_NAME "__%s_veneer"
2247
2248 #define CMSE_PREFIX "__acle_se_"
2249
2250 /* The name of the dynamic interpreter. This is put in the .interp
2251 section. */
2252 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2253
2254 static const unsigned long tls_trampoline [] =
2255 {
2256 0xe08e0000, /* add r0, lr, r0 */
2257 0xe5901004, /* ldr r1, [r0,#4] */
2258 0xe12fff11, /* bx r1 */
2259 };
2260
2261 static const unsigned long dl_tlsdesc_lazy_trampoline [] =
2262 {
2263 0xe52d2004, /* push {r2} */
2264 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2265 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2266 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2267 0xe081100f, /* 2: add r1, pc */
2268 0xe12fff12, /* bx r2 */
2269 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
2270 + dl_tlsdesc_lazy_resolver(GOT) */
2271 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2272 };
2273
2274 /* ARM FDPIC PLT entry. */
2275 /* The last 5 words contain PLT lazy fragment code and data. */
2276 static const bfd_vma elf32_arm_fdpic_plt_entry [] =
2277 {
2278 0xe59fc008, /* ldr r12, .L1 */
2279 0xe08cc009, /* add r12, r12, r9 */
2280 0xe59c9004, /* ldr r9, [r12, #4] */
2281 0xe59cf000, /* ldr pc, [r12] */
2282 0x00000000, /* L1. .word foo(GOTOFFFUNCDESC) */
2283 0x00000000, /* L1. .word foo(funcdesc_value_reloc_offset) */
2284 0xe51fc00c, /* ldr r12, [pc, #-12] */
2285 0xe92d1000, /* push {r12} */
2286 0xe599c004, /* ldr r12, [r9, #4] */
2287 0xe599f000, /* ldr pc, [r9] */
2288 };
2289
2290 #ifdef FOUR_WORD_PLT
2291
2292 /* The first entry in a procedure linkage table looks like
2293 this. It is set up so that any shared library function that is
2294 called before the relocation has been set up calls the dynamic
2295 linker first. */
2296 static const bfd_vma elf32_arm_plt0_entry [] =
2297 {
2298 0xe52de004, /* str lr, [sp, #-4]! */
2299 0xe59fe010, /* ldr lr, [pc, #16] */
2300 0xe08fe00e, /* add lr, pc, lr */
2301 0xe5bef008, /* ldr pc, [lr, #8]! */
2302 };
2303
2304 /* Subsequent entries in a procedure linkage table look like
2305 this. */
2306 static const bfd_vma elf32_arm_plt_entry [] =
2307 {
2308 0xe28fc600, /* add ip, pc, #NN */
2309 0xe28cca00, /* add ip, ip, #NN */
2310 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2311 0x00000000, /* unused */
2312 };
2313
2314 #else /* not FOUR_WORD_PLT */
2315
2316 /* The first entry in a procedure linkage table looks like
2317 this. It is set up so that any shared library function that is
2318 called before the relocation has been set up calls the dynamic
2319 linker first. */
2320 static const bfd_vma elf32_arm_plt0_entry [] =
2321 {
2322 0xe52de004, /* str lr, [sp, #-4]! */
2323 0xe59fe004, /* ldr lr, [pc, #4] */
2324 0xe08fe00e, /* add lr, pc, lr */
2325 0xe5bef008, /* ldr pc, [lr, #8]! */
2326 0x00000000, /* &GOT[0] - . */
2327 };
2328
2329 /* By default subsequent entries in a procedure linkage table look like
2330 this. Offsets that don't fit into 28 bits will cause link error. */
2331 static const bfd_vma elf32_arm_plt_entry_short [] =
2332 {
2333 0xe28fc600, /* add ip, pc, #0xNN00000 */
2334 0xe28cca00, /* add ip, ip, #0xNN000 */
2335 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2336 };
2337
2338 /* When explicitly asked, we'll use this "long" entry format
2339 which can cope with arbitrary displacements. */
2340 static const bfd_vma elf32_arm_plt_entry_long [] =
2341 {
2342 0xe28fc200, /* add ip, pc, #0xN0000000 */
2343 0xe28cc600, /* add ip, ip, #0xNN00000 */
2344 0xe28cca00, /* add ip, ip, #0xNN000 */
2345 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2346 };
2347
2348 static bfd_boolean elf32_arm_use_long_plt_entry = FALSE;
2349
2350 #endif /* not FOUR_WORD_PLT */
2351
2352 /* The first entry in a procedure linkage table looks like this.
2353 It is set up so that any shared library function that is called before the
2354 relocation has been set up calls the dynamic linker first. */
2355 static const bfd_vma elf32_thumb2_plt0_entry [] =
2356 {
2357 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2358 an instruction maybe encoded to one or two array elements. */
2359 0xf8dfb500, /* push {lr} */
2360 0x44fee008, /* ldr.w lr, [pc, #8] */
2361 /* add lr, pc */
2362 0xff08f85e, /* ldr.w pc, [lr, #8]! */
2363 0x00000000, /* &GOT[0] - . */
2364 };
2365
2366 /* Subsequent entries in a procedure linkage table for thumb only target
2367 look like this. */
2368 static const bfd_vma elf32_thumb2_plt_entry [] =
2369 {
2370 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2371 an instruction maybe encoded to one or two array elements. */
2372 0x0c00f240, /* movw ip, #0xNNNN */
2373 0x0c00f2c0, /* movt ip, #0xNNNN */
2374 0xf8dc44fc, /* add ip, pc */
2375 0xbf00f000 /* ldr.w pc, [ip] */
2376 /* nop */
2377 };
2378
2379 /* The format of the first entry in the procedure linkage table
2380 for a VxWorks executable. */
2381 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
2382 {
2383 0xe52dc008, /* str ip,[sp,#-8]! */
2384 0xe59fc000, /* ldr ip,[pc] */
2385 0xe59cf008, /* ldr pc,[ip,#8] */
2386 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
2387 };
2388
2389 /* The format of subsequent entries in a VxWorks executable. */
2390 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
2391 {
2392 0xe59fc000, /* ldr ip,[pc] */
2393 0xe59cf000, /* ldr pc,[ip] */
2394 0x00000000, /* .long @got */
2395 0xe59fc000, /* ldr ip,[pc] */
2396 0xea000000, /* b _PLT */
2397 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2398 };
2399
2400 /* The format of entries in a VxWorks shared library. */
2401 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
2402 {
2403 0xe59fc000, /* ldr ip,[pc] */
2404 0xe79cf009, /* ldr pc,[ip,r9] */
2405 0x00000000, /* .long @got */
2406 0xe59fc000, /* ldr ip,[pc] */
2407 0xe599f008, /* ldr pc,[r9,#8] */
2408 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2409 };
2410
2411 /* An initial stub used if the PLT entry is referenced from Thumb code. */
2412 #define PLT_THUMB_STUB_SIZE 4
2413 static const bfd_vma elf32_arm_plt_thumb_stub [] =
2414 {
2415 0x4778, /* bx pc */
2416 0x46c0 /* nop */
2417 };
2418
2419 /* The entries in a PLT when using a DLL-based target with multiple
2420 address spaces. */
2421 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2422 {
2423 0xe51ff004, /* ldr pc, [pc, #-4] */
2424 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2425 };
2426
2427 /* The first entry in a procedure linkage table looks like
2428 this. It is set up so that any shared library function that is
2429 called before the relocation has been set up calls the dynamic
2430 linker first. */
2431 static const bfd_vma elf32_arm_nacl_plt0_entry [] =
2432 {
2433 /* First bundle: */
2434 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */
2435 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */
2436 0xe08cc00f, /* add ip, ip, pc */
2437 0xe52dc008, /* str ip, [sp, #-8]! */
2438 /* Second bundle: */
2439 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2440 0xe59cc000, /* ldr ip, [ip] */
2441 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2442 0xe12fff1c, /* bx ip */
2443 /* Third bundle: */
2444 0xe320f000, /* nop */
2445 0xe320f000, /* nop */
2446 0xe320f000, /* nop */
2447 /* .Lplt_tail: */
2448 0xe50dc004, /* str ip, [sp, #-4] */
2449 /* Fourth bundle: */
2450 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2451 0xe59cc000, /* ldr ip, [ip] */
2452 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2453 0xe12fff1c, /* bx ip */
2454 };
2455 #define ARM_NACL_PLT_TAIL_OFFSET (11 * 4)
2456
2457 /* Subsequent entries in a procedure linkage table look like this. */
2458 static const bfd_vma elf32_arm_nacl_plt_entry [] =
2459 {
2460 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */
2461 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */
2462 0xe08cc00f, /* add ip, ip, pc */
2463 0xea000000, /* b .Lplt_tail */
2464 };
2465
2466 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2467 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2468 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2469 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2470 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2471 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2472 #define THM2_MAX_FWD_COND_BRANCH_OFFSET (((1 << 20) -2) + 4)
2473 #define THM2_MAX_BWD_COND_BRANCH_OFFSET (-(1 << 20) + 4)
2474
2475 enum stub_insn_type
2476 {
2477 THUMB16_TYPE = 1,
2478 THUMB32_TYPE,
2479 ARM_TYPE,
2480 DATA_TYPE
2481 };
2482
2483 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2484 /* A bit of a hack. A Thumb conditional branch, in which the proper condition
2485 is inserted in arm_build_one_stub(). */
2486 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2487 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2488 #define THUMB32_MOVT(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVT_ABS, 0}
2489 #define THUMB32_MOVW(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVW_ABS_NC, 0}
2490 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2491 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2492 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2493 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2494
2495 typedef struct
2496 {
2497 bfd_vma data;
2498 enum stub_insn_type type;
2499 unsigned int r_type;
2500 int reloc_addend;
2501 } insn_sequence;
2502
2503 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2504 to reach the stub if necessary. */
2505 static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2506 {
2507 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2508 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2509 };
2510
2511 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2512 available. */
2513 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2514 {
2515 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2516 ARM_INSN (0xe12fff1c), /* bx ip */
2517 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2518 };
2519
2520 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2521 static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2522 {
2523 THUMB16_INSN (0xb401), /* push {r0} */
2524 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2525 THUMB16_INSN (0x4684), /* mov ip, r0 */
2526 THUMB16_INSN (0xbc01), /* pop {r0} */
2527 THUMB16_INSN (0x4760), /* bx ip */
2528 THUMB16_INSN (0xbf00), /* nop */
2529 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2530 };
2531
2532 /* Thumb -> Thumb long branch stub in thumb2 encoding. Used on armv7. */
2533 static const insn_sequence elf32_arm_stub_long_branch_thumb2_only[] =
2534 {
2535 THUMB32_INSN (0xf85ff000), /* ldr.w pc, [pc, #-0] */
2536 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(x) */
2537 };
2538
2539 /* Thumb -> Thumb long branch stub. Used for PureCode sections on Thumb2
2540 M-profile architectures. */
2541 static const insn_sequence elf32_arm_stub_long_branch_thumb2_only_pure[] =
2542 {
2543 THUMB32_MOVW (0xf2400c00), /* mov.w ip, R_ARM_MOVW_ABS_NC */
2544 THUMB32_MOVT (0xf2c00c00), /* movt ip, R_ARM_MOVT_ABS << 16 */
2545 THUMB16_INSN (0x4760), /* bx ip */
2546 };
2547
2548 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2549 allowed. */
2550 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2551 {
2552 THUMB16_INSN (0x4778), /* bx pc */
2553 THUMB16_INSN (0x46c0), /* nop */
2554 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2555 ARM_INSN (0xe12fff1c), /* bx ip */
2556 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2557 };
2558
2559 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2560 available. */
2561 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2562 {
2563 THUMB16_INSN (0x4778), /* bx pc */
2564 THUMB16_INSN (0x46c0), /* nop */
2565 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2566 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2567 };
2568
2569 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2570 one, when the destination is close enough. */
2571 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2572 {
2573 THUMB16_INSN (0x4778), /* bx pc */
2574 THUMB16_INSN (0x46c0), /* nop */
2575 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */
2576 };
2577
2578 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2579 blx to reach the stub if necessary. */
2580 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2581 {
2582 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */
2583 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */
2584 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2585 };
2586
2587 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2588 blx to reach the stub if necessary. We can not add into pc;
2589 it is not guaranteed to mode switch (different in ARMv6 and
2590 ARMv7). */
2591 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2592 {
2593 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2594 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2595 ARM_INSN (0xe12fff1c), /* bx ip */
2596 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2597 };
2598
2599 /* V4T ARM -> ARM long branch stub, PIC. */
2600 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2601 {
2602 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2603 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2604 ARM_INSN (0xe12fff1c), /* bx ip */
2605 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2606 };
2607
2608 /* V4T Thumb -> ARM long branch stub, PIC. */
2609 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2610 {
2611 THUMB16_INSN (0x4778), /* bx pc */
2612 THUMB16_INSN (0x46c0), /* nop */
2613 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2614 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */
2615 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2616 };
2617
2618 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2619 architectures. */
2620 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2621 {
2622 THUMB16_INSN (0xb401), /* push {r0} */
2623 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2624 THUMB16_INSN (0x46fc), /* mov ip, pc */
2625 THUMB16_INSN (0x4484), /* add ip, r0 */
2626 THUMB16_INSN (0xbc01), /* pop {r0} */
2627 THUMB16_INSN (0x4760), /* bx ip */
2628 DATA_WORD (0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2629 };
2630
2631 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2632 allowed. */
2633 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2634 {
2635 THUMB16_INSN (0x4778), /* bx pc */
2636 THUMB16_INSN (0x46c0), /* nop */
2637 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2638 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2639 ARM_INSN (0xe12fff1c), /* bx ip */
2640 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2641 };
2642
2643 /* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2644 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2645 static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2646 {
2647 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */
2648 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */
2649 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2650 };
2651
2652 /* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2653 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2654 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2655 {
2656 THUMB16_INSN (0x4778), /* bx pc */
2657 THUMB16_INSN (0x46c0), /* nop */
2658 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */
2659 ARM_INSN (0xe081f00f), /* add pc, r1, pc */
2660 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2661 };
2662
2663 /* NaCl ARM -> ARM long branch stub. */
2664 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl[] =
2665 {
2666 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2667 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2668 ARM_INSN (0xe12fff1c), /* bx ip */
2669 ARM_INSN (0xe320f000), /* nop */
2670 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2671 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2672 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2673 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2674 };
2675
2676 /* NaCl ARM -> ARM long branch stub, PIC. */
2677 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic[] =
2678 {
2679 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2680 ARM_INSN (0xe08cc00f), /* add ip, ip, pc */
2681 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2682 ARM_INSN (0xe12fff1c), /* bx ip */
2683 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2684 DATA_WORD (0, R_ARM_REL32, 8), /* dcd R_ARM_REL32(X+8) */
2685 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2686 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2687 };
2688
2689 /* Stub used for transition to secure state (aka SG veneer). */
2690 static const insn_sequence elf32_arm_stub_cmse_branch_thumb_only[] =
2691 {
2692 THUMB32_INSN (0xe97fe97f), /* sg. */
2693 THUMB32_B_INSN (0xf000b800, -4), /* b.w original_branch_dest. */
2694 };
2695
2696
2697 /* Cortex-A8 erratum-workaround stubs. */
2698
2699 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2700 can't use a conditional branch to reach this stub). */
2701
2702 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2703 {
2704 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */
2705 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */
2706 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */
2707 };
2708
2709 /* Stub used for b.w and bl.w instructions. */
2710
2711 static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2712 {
2713 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2714 };
2715
2716 static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2717 {
2718 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2719 };
2720
2721 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2722 instruction (which switches to ARM mode) to point to this stub. Jump to the
2723 real destination using an ARM-mode branch. */
2724
2725 static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2726 {
2727 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */
2728 };
2729
2730 /* For each section group there can be a specially created linker section
2731 to hold the stubs for that group. The name of the stub section is based
2732 upon the name of another section within that group with the suffix below
2733 applied.
2734
2735 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2736 create what appeared to be a linker stub section when it actually
2737 contained user code/data. For example, consider this fragment:
2738
2739 const char * stubborn_problems[] = { "np" };
2740
2741 If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2742 section called:
2743
2744 .data.rel.local.stubborn_problems
2745
2746 This then causes problems in arm32_arm_build_stubs() as it triggers:
2747
2748 // Ignore non-stub sections.
2749 if (!strstr (stub_sec->name, STUB_SUFFIX))
2750 continue;
2751
2752 And so the section would be ignored instead of being processed. Hence
2753 the change in definition of STUB_SUFFIX to a name that cannot be a valid
2754 C identifier. */
2755 #define STUB_SUFFIX ".__stub"
2756
2757 /* One entry per long/short branch stub defined above. */
2758 #define DEF_STUBS \
2759 DEF_STUB(long_branch_any_any) \
2760 DEF_STUB(long_branch_v4t_arm_thumb) \
2761 DEF_STUB(long_branch_thumb_only) \
2762 DEF_STUB(long_branch_v4t_thumb_thumb) \
2763 DEF_STUB(long_branch_v4t_thumb_arm) \
2764 DEF_STUB(short_branch_v4t_thumb_arm) \
2765 DEF_STUB(long_branch_any_arm_pic) \
2766 DEF_STUB(long_branch_any_thumb_pic) \
2767 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2768 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2769 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2770 DEF_STUB(long_branch_thumb_only_pic) \
2771 DEF_STUB(long_branch_any_tls_pic) \
2772 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
2773 DEF_STUB(long_branch_arm_nacl) \
2774 DEF_STUB(long_branch_arm_nacl_pic) \
2775 DEF_STUB(cmse_branch_thumb_only) \
2776 DEF_STUB(a8_veneer_b_cond) \
2777 DEF_STUB(a8_veneer_b) \
2778 DEF_STUB(a8_veneer_bl) \
2779 DEF_STUB(a8_veneer_blx) \
2780 DEF_STUB(long_branch_thumb2_only) \
2781 DEF_STUB(long_branch_thumb2_only_pure)
2782
2783 #define DEF_STUB(x) arm_stub_##x,
2784 enum elf32_arm_stub_type
2785 {
2786 arm_stub_none,
2787 DEF_STUBS
2788 max_stub_type
2789 };
2790 #undef DEF_STUB
2791
2792 /* Note the first a8_veneer type. */
2793 const unsigned arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond;
2794
2795 typedef struct
2796 {
2797 const insn_sequence* template_sequence;
2798 int template_size;
2799 } stub_def;
2800
2801 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2802 static const stub_def stub_definitions[] =
2803 {
2804 {NULL, 0},
2805 DEF_STUBS
2806 };
2807
2808 struct elf32_arm_stub_hash_entry
2809 {
2810 /* Base hash table entry structure. */
2811 struct bfd_hash_entry root;
2812
2813 /* The stub section. */
2814 asection *stub_sec;
2815
2816 /* Offset within stub_sec of the beginning of this stub. */
2817 bfd_vma stub_offset;
2818
2819 /* Given the symbol's value and its section we can determine its final
2820 value when building the stubs (so the stub knows where to jump). */
2821 bfd_vma target_value;
2822 asection *target_section;
2823
2824 /* Same as above but for the source of the branch to the stub. Used for
2825 Cortex-A8 erratum workaround to patch it to branch to the stub. As
2826 such, source section does not need to be recorded since Cortex-A8 erratum
2827 workaround stubs are only generated when both source and target are in the
2828 same section. */
2829 bfd_vma source_value;
2830
2831 /* The instruction which caused this stub to be generated (only valid for
2832 Cortex-A8 erratum workaround stubs at present). */
2833 unsigned long orig_insn;
2834
2835 /* The stub type. */
2836 enum elf32_arm_stub_type stub_type;
2837 /* Its encoding size in bytes. */
2838 int stub_size;
2839 /* Its template. */
2840 const insn_sequence *stub_template;
2841 /* The size of the template (number of entries). */
2842 int stub_template_size;
2843
2844 /* The symbol table entry, if any, that this was derived from. */
2845 struct elf32_arm_link_hash_entry *h;
2846
2847 /* Type of branch. */
2848 enum arm_st_branch_type branch_type;
2849
2850 /* Where this stub is being called from, or, in the case of combined
2851 stub sections, the first input section in the group. */
2852 asection *id_sec;
2853
2854 /* The name for the local symbol at the start of this stub. The
2855 stub name in the hash table has to be unique; this does not, so
2856 it can be friendlier. */
2857 char *output_name;
2858 };
2859
2860 /* Used to build a map of a section. This is required for mixed-endian
2861 code/data. */
2862
2863 typedef struct elf32_elf_section_map
2864 {
2865 bfd_vma vma;
2866 char type;
2867 }
2868 elf32_arm_section_map;
2869
2870 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2871
2872 typedef enum
2873 {
2874 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2875 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2876 VFP11_ERRATUM_ARM_VENEER,
2877 VFP11_ERRATUM_THUMB_VENEER
2878 }
2879 elf32_vfp11_erratum_type;
2880
2881 typedef struct elf32_vfp11_erratum_list
2882 {
2883 struct elf32_vfp11_erratum_list *next;
2884 bfd_vma vma;
2885 union
2886 {
2887 struct
2888 {
2889 struct elf32_vfp11_erratum_list *veneer;
2890 unsigned int vfp_insn;
2891 } b;
2892 struct
2893 {
2894 struct elf32_vfp11_erratum_list *branch;
2895 unsigned int id;
2896 } v;
2897 } u;
2898 elf32_vfp11_erratum_type type;
2899 }
2900 elf32_vfp11_erratum_list;
2901
2902 /* Information about a STM32L4XX erratum veneer, or a branch to such a
2903 veneer. */
2904 typedef enum
2905 {
2906 STM32L4XX_ERRATUM_BRANCH_TO_VENEER,
2907 STM32L4XX_ERRATUM_VENEER
2908 }
2909 elf32_stm32l4xx_erratum_type;
2910
2911 typedef struct elf32_stm32l4xx_erratum_list
2912 {
2913 struct elf32_stm32l4xx_erratum_list *next;
2914 bfd_vma vma;
2915 union
2916 {
2917 struct
2918 {
2919 struct elf32_stm32l4xx_erratum_list *veneer;
2920 unsigned int insn;
2921 } b;
2922 struct
2923 {
2924 struct elf32_stm32l4xx_erratum_list *branch;
2925 unsigned int id;
2926 } v;
2927 } u;
2928 elf32_stm32l4xx_erratum_type type;
2929 }
2930 elf32_stm32l4xx_erratum_list;
2931
2932 typedef enum
2933 {
2934 DELETE_EXIDX_ENTRY,
2935 INSERT_EXIDX_CANTUNWIND_AT_END
2936 }
2937 arm_unwind_edit_type;
2938
2939 /* A (sorted) list of edits to apply to an unwind table. */
2940 typedef struct arm_unwind_table_edit
2941 {
2942 arm_unwind_edit_type type;
2943 /* Note: we sometimes want to insert an unwind entry corresponding to a
2944 section different from the one we're currently writing out, so record the
2945 (text) section this edit relates to here. */
2946 asection *linked_section;
2947 unsigned int index;
2948 struct arm_unwind_table_edit *next;
2949 }
2950 arm_unwind_table_edit;
2951
2952 typedef struct _arm_elf_section_data
2953 {
2954 /* Information about mapping symbols. */
2955 struct bfd_elf_section_data elf;
2956 unsigned int mapcount;
2957 unsigned int mapsize;
2958 elf32_arm_section_map *map;
2959 /* Information about CPU errata. */
2960 unsigned int erratumcount;
2961 elf32_vfp11_erratum_list *erratumlist;
2962 unsigned int stm32l4xx_erratumcount;
2963 elf32_stm32l4xx_erratum_list *stm32l4xx_erratumlist;
2964 unsigned int additional_reloc_count;
2965 /* Information about unwind tables. */
2966 union
2967 {
2968 /* Unwind info attached to a text section. */
2969 struct
2970 {
2971 asection *arm_exidx_sec;
2972 } text;
2973
2974 /* Unwind info attached to an .ARM.exidx section. */
2975 struct
2976 {
2977 arm_unwind_table_edit *unwind_edit_list;
2978 arm_unwind_table_edit *unwind_edit_tail;
2979 } exidx;
2980 } u;
2981 }
2982 _arm_elf_section_data;
2983
2984 #define elf32_arm_section_data(sec) \
2985 ((_arm_elf_section_data *) elf_section_data (sec))
2986
2987 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2988 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2989 so may be created multiple times: we use an array of these entries whilst
2990 relaxing which we can refresh easily, then create stubs for each potentially
2991 erratum-triggering instruction once we've settled on a solution. */
2992
2993 struct a8_erratum_fix
2994 {
2995 bfd *input_bfd;
2996 asection *section;
2997 bfd_vma offset;
2998 bfd_vma target_offset;
2999 unsigned long orig_insn;
3000 char *stub_name;
3001 enum elf32_arm_stub_type stub_type;
3002 enum arm_st_branch_type branch_type;
3003 };
3004
3005 /* A table of relocs applied to branches which might trigger Cortex-A8
3006 erratum. */
3007
3008 struct a8_erratum_reloc
3009 {
3010 bfd_vma from;
3011 bfd_vma destination;
3012 struct elf32_arm_link_hash_entry *hash;
3013 const char *sym_name;
3014 unsigned int r_type;
3015 enum arm_st_branch_type branch_type;
3016 bfd_boolean non_a8_stub;
3017 };
3018
3019 /* The size of the thread control block. */
3020 #define TCB_SIZE 8
3021
3022 /* ARM-specific information about a PLT entry, over and above the usual
3023 gotplt_union. */
3024 struct arm_plt_info
3025 {
3026 /* We reference count Thumb references to a PLT entry separately,
3027 so that we can emit the Thumb trampoline only if needed. */
3028 bfd_signed_vma thumb_refcount;
3029
3030 /* Some references from Thumb code may be eliminated by BL->BLX
3031 conversion, so record them separately. */
3032 bfd_signed_vma maybe_thumb_refcount;
3033
3034 /* How many of the recorded PLT accesses were from non-call relocations.
3035 This information is useful when deciding whether anything takes the
3036 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
3037 non-call references to the function should resolve directly to the
3038 real runtime target. */
3039 unsigned int noncall_refcount;
3040
3041 /* Since PLT entries have variable size if the Thumb prologue is
3042 used, we need to record the index into .got.plt instead of
3043 recomputing it from the PLT offset. */
3044 bfd_signed_vma got_offset;
3045 };
3046
3047 /* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
3048 struct arm_local_iplt_info
3049 {
3050 /* The information that is usually found in the generic ELF part of
3051 the hash table entry. */
3052 union gotplt_union root;
3053
3054 /* The information that is usually found in the ARM-specific part of
3055 the hash table entry. */
3056 struct arm_plt_info arm;
3057
3058 /* A list of all potential dynamic relocations against this symbol. */
3059 struct elf_dyn_relocs *dyn_relocs;
3060 };
3061
3062 /* Structure to handle FDPIC support for local functions. */
3063 struct fdpic_local {
3064 unsigned int funcdesc_cnt;
3065 unsigned int gotofffuncdesc_cnt;
3066 int funcdesc_offset;
3067 };
3068
3069 struct elf_arm_obj_tdata
3070 {
3071 struct elf_obj_tdata root;
3072
3073 /* tls_type for each local got entry. */
3074 char *local_got_tls_type;
3075
3076 /* GOTPLT entries for TLS descriptors. */
3077 bfd_vma *local_tlsdesc_gotent;
3078
3079 /* Information for local symbols that need entries in .iplt. */
3080 struct arm_local_iplt_info **local_iplt;
3081
3082 /* Zero to warn when linking objects with incompatible enum sizes. */
3083 int no_enum_size_warning;
3084
3085 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
3086 int no_wchar_size_warning;
3087
3088 /* Maintains FDPIC counters and funcdesc info. */
3089 struct fdpic_local *local_fdpic_cnts;
3090 };
3091
3092 #define elf_arm_tdata(bfd) \
3093 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
3094
3095 #define elf32_arm_local_got_tls_type(bfd) \
3096 (elf_arm_tdata (bfd)->local_got_tls_type)
3097
3098 #define elf32_arm_local_tlsdesc_gotent(bfd) \
3099 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
3100
3101 #define elf32_arm_local_iplt(bfd) \
3102 (elf_arm_tdata (bfd)->local_iplt)
3103
3104 #define elf32_arm_local_fdpic_cnts(bfd) \
3105 (elf_arm_tdata (bfd)->local_fdpic_cnts)
3106
3107 #define is_arm_elf(bfd) \
3108 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
3109 && elf_tdata (bfd) != NULL \
3110 && elf_object_id (bfd) == ARM_ELF_DATA)
3111
3112 static bfd_boolean
3113 elf32_arm_mkobject (bfd *abfd)
3114 {
3115 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
3116 ARM_ELF_DATA);
3117 }
3118
3119 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
3120
3121 /* Structure to handle FDPIC support for extern functions. */
3122 struct fdpic_global {
3123 unsigned int gotofffuncdesc_cnt;
3124 unsigned int gotfuncdesc_cnt;
3125 unsigned int funcdesc_cnt;
3126 int funcdesc_offset;
3127 int gotfuncdesc_offset;
3128 };
3129
3130 /* Arm ELF linker hash entry. */
3131 struct elf32_arm_link_hash_entry
3132 {
3133 struct elf_link_hash_entry root;
3134
3135 /* Track dynamic relocs copied for this symbol. */
3136 struct elf_dyn_relocs *dyn_relocs;
3137
3138 /* ARM-specific PLT information. */
3139 struct arm_plt_info plt;
3140
3141 #define GOT_UNKNOWN 0
3142 #define GOT_NORMAL 1
3143 #define GOT_TLS_GD 2
3144 #define GOT_TLS_IE 4
3145 #define GOT_TLS_GDESC 8
3146 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
3147 unsigned int tls_type : 8;
3148
3149 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
3150 unsigned int is_iplt : 1;
3151
3152 unsigned int unused : 23;
3153
3154 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
3155 starting at the end of the jump table. */
3156 bfd_vma tlsdesc_got;
3157
3158 /* The symbol marking the real symbol location for exported thumb
3159 symbols with Arm stubs. */
3160 struct elf_link_hash_entry *export_glue;
3161
3162 /* A pointer to the most recently used stub hash entry against this
3163 symbol. */
3164 struct elf32_arm_stub_hash_entry *stub_cache;
3165
3166 /* Counter for FDPIC relocations against this symbol. */
3167 struct fdpic_global fdpic_cnts;
3168 };
3169
3170 /* Traverse an arm ELF linker hash table. */
3171 #define elf32_arm_link_hash_traverse(table, func, info) \
3172 (elf_link_hash_traverse \
3173 (&(table)->root, \
3174 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
3175 (info)))
3176
3177 /* Get the ARM elf linker hash table from a link_info structure. */
3178 #define elf32_arm_hash_table(info) \
3179 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
3180 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
3181
3182 #define arm_stub_hash_lookup(table, string, create, copy) \
3183 ((struct elf32_arm_stub_hash_entry *) \
3184 bfd_hash_lookup ((table), (string), (create), (copy)))
3185
3186 /* Array to keep track of which stub sections have been created, and
3187 information on stub grouping. */
3188 struct map_stub
3189 {
3190 /* This is the section to which stubs in the group will be
3191 attached. */
3192 asection *link_sec;
3193 /* The stub section. */
3194 asection *stub_sec;
3195 };
3196
3197 #define elf32_arm_compute_jump_table_size(htab) \
3198 ((htab)->next_tls_desc_index * 4)
3199
3200 /* ARM ELF linker hash table. */
3201 struct elf32_arm_link_hash_table
3202 {
3203 /* The main hash table. */
3204 struct elf_link_hash_table root;
3205
3206 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
3207 bfd_size_type thumb_glue_size;
3208
3209 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
3210 bfd_size_type arm_glue_size;
3211
3212 /* The size in bytes of section containing the ARMv4 BX veneers. */
3213 bfd_size_type bx_glue_size;
3214
3215 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
3216 veneer has been populated. */
3217 bfd_vma bx_glue_offset[15];
3218
3219 /* The size in bytes of the section containing glue for VFP11 erratum
3220 veneers. */
3221 bfd_size_type vfp11_erratum_glue_size;
3222
3223 /* The size in bytes of the section containing glue for STM32L4XX erratum
3224 veneers. */
3225 bfd_size_type stm32l4xx_erratum_glue_size;
3226
3227 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
3228 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
3229 elf32_arm_write_section(). */
3230 struct a8_erratum_fix *a8_erratum_fixes;
3231 unsigned int num_a8_erratum_fixes;
3232
3233 /* An arbitrary input BFD chosen to hold the glue sections. */
3234 bfd * bfd_of_glue_owner;
3235
3236 /* Nonzero to output a BE8 image. */
3237 int byteswap_code;
3238
3239 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
3240 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
3241 int target1_is_rel;
3242
3243 /* The relocation to use for R_ARM_TARGET2 relocations. */
3244 int target2_reloc;
3245
3246 /* 0 = Ignore R_ARM_V4BX.
3247 1 = Convert BX to MOV PC.
3248 2 = Generate v4 interworing stubs. */
3249 int fix_v4bx;
3250
3251 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
3252 int fix_cortex_a8;
3253
3254 /* Whether we should fix the ARM1176 BLX immediate issue. */
3255 int fix_arm1176;
3256
3257 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
3258 int use_blx;
3259
3260 /* What sort of code sequences we should look for which may trigger the
3261 VFP11 denorm erratum. */
3262 bfd_arm_vfp11_fix vfp11_fix;
3263
3264 /* Global counter for the number of fixes we have emitted. */
3265 int num_vfp11_fixes;
3266
3267 /* What sort of code sequences we should look for which may trigger the
3268 STM32L4XX erratum. */
3269 bfd_arm_stm32l4xx_fix stm32l4xx_fix;
3270
3271 /* Global counter for the number of fixes we have emitted. */
3272 int num_stm32l4xx_fixes;
3273
3274 /* Nonzero to force PIC branch veneers. */
3275 int pic_veneer;
3276
3277 /* The number of bytes in the initial entry in the PLT. */
3278 bfd_size_type plt_header_size;
3279
3280 /* The number of bytes in the subsequent PLT etries. */
3281 bfd_size_type plt_entry_size;
3282
3283 /* True if the target system is VxWorks. */
3284 int vxworks_p;
3285
3286 /* True if the target system is Symbian OS. */
3287 int symbian_p;
3288
3289 /* True if the target system is Native Client. */
3290 int nacl_p;
3291
3292 /* True if the target uses REL relocations. */
3293 bfd_boolean use_rel;
3294
3295 /* Nonzero if import library must be a secure gateway import library
3296 as per ARMv8-M Security Extensions. */
3297 int cmse_implib;
3298
3299 /* The import library whose symbols' address must remain stable in
3300 the import library generated. */
3301 bfd *in_implib_bfd;
3302
3303 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
3304 bfd_vma next_tls_desc_index;
3305
3306 /* How many R_ARM_TLS_DESC relocations were generated so far. */
3307 bfd_vma num_tls_desc;
3308
3309 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
3310 asection *srelplt2;
3311
3312 /* The offset into splt of the PLT entry for the TLS descriptor
3313 resolver. Special values are 0, if not necessary (or not found
3314 to be necessary yet), and -1 if needed but not determined
3315 yet. */
3316 bfd_vma dt_tlsdesc_plt;
3317
3318 /* The offset into sgot of the GOT entry used by the PLT entry
3319 above. */
3320 bfd_vma dt_tlsdesc_got;
3321
3322 /* Offset in .plt section of tls_arm_trampoline. */
3323 bfd_vma tls_trampoline;
3324
3325 /* Data for R_ARM_TLS_LDM32/R_ARM_TLS_LDM32_FDPIC relocations. */
3326 union
3327 {
3328 bfd_signed_vma refcount;
3329 bfd_vma offset;
3330 } tls_ldm_got;
3331
3332 /* Small local sym cache. */
3333 struct sym_cache sym_cache;
3334
3335 /* For convenience in allocate_dynrelocs. */
3336 bfd * obfd;
3337
3338 /* The amount of space used by the reserved portion of the sgotplt
3339 section, plus whatever space is used by the jump slots. */
3340 bfd_vma sgotplt_jump_table_size;
3341
3342 /* The stub hash table. */
3343 struct bfd_hash_table stub_hash_table;
3344
3345 /* Linker stub bfd. */
3346 bfd *stub_bfd;
3347
3348 /* Linker call-backs. */
3349 asection * (*add_stub_section) (const char *, asection *, asection *,
3350 unsigned int);
3351 void (*layout_sections_again) (void);
3352
3353 /* Array to keep track of which stub sections have been created, and
3354 information on stub grouping. */
3355 struct map_stub *stub_group;
3356
3357 /* Input stub section holding secure gateway veneers. */
3358 asection *cmse_stub_sec;
3359
3360 /* Offset in cmse_stub_sec where new SG veneers (not in input import library)
3361 start to be allocated. */
3362 bfd_vma new_cmse_stub_offset;
3363
3364 /* Number of elements in stub_group. */
3365 unsigned int top_id;
3366
3367 /* Assorted information used by elf32_arm_size_stubs. */
3368 unsigned int bfd_count;
3369 unsigned int top_index;
3370 asection **input_list;
3371
3372 /* True if the target system uses FDPIC. */
3373 int fdpic_p;
3374
3375 /* Fixup section. Used for FDPIC. */
3376 asection *srofixup;
3377 };
3378
3379 /* Add an FDPIC read-only fixup. */
3380 static void
3381 arm_elf_add_rofixup (bfd *output_bfd, asection *srofixup, bfd_vma offset)
3382 {
3383 bfd_vma fixup_offset;
3384
3385 fixup_offset = srofixup->reloc_count++ * 4;
3386 BFD_ASSERT (fixup_offset < srofixup->size);
3387 bfd_put_32 (output_bfd, offset, srofixup->contents + fixup_offset);
3388 }
3389
3390 static inline int
3391 ctz (unsigned int mask)
3392 {
3393 #if GCC_VERSION >= 3004
3394 return __builtin_ctz (mask);
3395 #else
3396 unsigned int i;
3397
3398 for (i = 0; i < 8 * sizeof (mask); i++)
3399 {
3400 if (mask & 0x1)
3401 break;
3402 mask = (mask >> 1);
3403 }
3404 return i;
3405 #endif
3406 }
3407
3408 static inline int
3409 elf32_arm_popcount (unsigned int mask)
3410 {
3411 #if GCC_VERSION >= 3004
3412 return __builtin_popcount (mask);
3413 #else
3414 unsigned int i;
3415 int sum = 0;
3416
3417 for (i = 0; i < 8 * sizeof (mask); i++)
3418 {
3419 if (mask & 0x1)
3420 sum++;
3421 mask = (mask >> 1);
3422 }
3423 return sum;
3424 #endif
3425 }
3426
3427 static void elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
3428 asection *sreloc, Elf_Internal_Rela *rel);
3429
3430 static void
3431 arm_elf_fill_funcdesc(bfd *output_bfd,
3432 struct bfd_link_info *info,
3433 int *funcdesc_offset,
3434 int dynindx,
3435 int offset,
3436 bfd_vma addr,
3437 bfd_vma dynreloc_value,
3438 bfd_vma seg)
3439 {
3440 if ((*funcdesc_offset & 1) == 0)
3441 {
3442 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
3443 asection *sgot = globals->root.sgot;
3444
3445 if (bfd_link_pic(info))
3446 {
3447 asection *srelgot = globals->root.srelgot;
3448 Elf_Internal_Rela outrel;
3449
3450 outrel.r_info = ELF32_R_INFO (dynindx, R_ARM_FUNCDESC_VALUE);
3451 outrel.r_offset = sgot->output_section->vma + sgot->output_offset + offset;
3452 outrel.r_addend = 0;
3453
3454 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
3455 bfd_put_32 (output_bfd, addr, sgot->contents + offset);
3456 bfd_put_32 (output_bfd, seg, sgot->contents + offset + 4);
3457 }
3458 else
3459 {
3460 struct elf_link_hash_entry *hgot = globals->root.hgot;
3461 bfd_vma got_value = hgot->root.u.def.value
3462 + hgot->root.u.def.section->output_section->vma
3463 + hgot->root.u.def.section->output_offset;
3464
3465 arm_elf_add_rofixup(output_bfd, globals->srofixup,
3466 sgot->output_section->vma + sgot->output_offset
3467 + offset);
3468 arm_elf_add_rofixup(output_bfd, globals->srofixup,
3469 sgot->output_section->vma + sgot->output_offset
3470 + offset + 4);
3471 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + offset);
3472 bfd_put_32 (output_bfd, got_value, sgot->contents + offset + 4);
3473 }
3474 *funcdesc_offset |= 1;
3475 }
3476 }
3477
3478 /* Create an entry in an ARM ELF linker hash table. */
3479
3480 static struct bfd_hash_entry *
3481 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
3482 struct bfd_hash_table * table,
3483 const char * string)
3484 {
3485 struct elf32_arm_link_hash_entry * ret =
3486 (struct elf32_arm_link_hash_entry *) entry;
3487
3488 /* Allocate the structure if it has not already been allocated by a
3489 subclass. */
3490 if (ret == NULL)
3491 ret = (struct elf32_arm_link_hash_entry *)
3492 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
3493 if (ret == NULL)
3494 return (struct bfd_hash_entry *) ret;
3495
3496 /* Call the allocation method of the superclass. */
3497 ret = ((struct elf32_arm_link_hash_entry *)
3498 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3499 table, string));
3500 if (ret != NULL)
3501 {
3502 ret->dyn_relocs = NULL;
3503 ret->tls_type = GOT_UNKNOWN;
3504 ret->tlsdesc_got = (bfd_vma) -1;
3505 ret->plt.thumb_refcount = 0;
3506 ret->plt.maybe_thumb_refcount = 0;
3507 ret->plt.noncall_refcount = 0;
3508 ret->plt.got_offset = -1;
3509 ret->is_iplt = FALSE;
3510 ret->export_glue = NULL;
3511
3512 ret->stub_cache = NULL;
3513
3514 ret->fdpic_cnts.gotofffuncdesc_cnt = 0;
3515 ret->fdpic_cnts.gotfuncdesc_cnt = 0;
3516 ret->fdpic_cnts.funcdesc_cnt = 0;
3517 ret->fdpic_cnts.funcdesc_offset = -1;
3518 ret->fdpic_cnts.gotfuncdesc_offset = -1;
3519 }
3520
3521 return (struct bfd_hash_entry *) ret;
3522 }
3523
3524 /* Ensure that we have allocated bookkeeping structures for ABFD's local
3525 symbols. */
3526
3527 static bfd_boolean
3528 elf32_arm_allocate_local_sym_info (bfd *abfd)
3529 {
3530 if (elf_local_got_refcounts (abfd) == NULL)
3531 {
3532 bfd_size_type num_syms;
3533 bfd_size_type size;
3534 char *data;
3535
3536 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
3537 size = num_syms * (sizeof (bfd_signed_vma)
3538 + sizeof (struct arm_local_iplt_info *)
3539 + sizeof (bfd_vma)
3540 + sizeof (char)
3541 + sizeof (struct fdpic_local));
3542 data = bfd_zalloc (abfd, size);
3543 if (data == NULL)
3544 return FALSE;
3545
3546 elf32_arm_local_fdpic_cnts (abfd) = (struct fdpic_local *) data;
3547 data += num_syms * sizeof (struct fdpic_local);
3548
3549 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
3550 data += num_syms * sizeof (bfd_signed_vma);
3551
3552 elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
3553 data += num_syms * sizeof (struct arm_local_iplt_info *);
3554
3555 elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
3556 data += num_syms * sizeof (bfd_vma);
3557
3558 elf32_arm_local_got_tls_type (abfd) = data;
3559 }
3560 return TRUE;
3561 }
3562
3563 /* Return the .iplt information for local symbol R_SYMNDX, which belongs
3564 to input bfd ABFD. Create the information if it doesn't already exist.
3565 Return null if an allocation fails. */
3566
3567 static struct arm_local_iplt_info *
3568 elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
3569 {
3570 struct arm_local_iplt_info **ptr;
3571
3572 if (!elf32_arm_allocate_local_sym_info (abfd))
3573 return NULL;
3574
3575 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
3576 ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
3577 if (*ptr == NULL)
3578 *ptr = bfd_zalloc (abfd, sizeof (**ptr));
3579 return *ptr;
3580 }
3581
3582 /* Try to obtain PLT information for the symbol with index R_SYMNDX
3583 in ABFD's symbol table. If the symbol is global, H points to its
3584 hash table entry, otherwise H is null.
3585
3586 Return true if the symbol does have PLT information. When returning
3587 true, point *ROOT_PLT at the target-independent reference count/offset
3588 union and *ARM_PLT at the ARM-specific information. */
3589
3590 static bfd_boolean
3591 elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_table *globals,
3592 struct elf32_arm_link_hash_entry *h,
3593 unsigned long r_symndx, union gotplt_union **root_plt,
3594 struct arm_plt_info **arm_plt)
3595 {
3596 struct arm_local_iplt_info *local_iplt;
3597
3598 if (globals->root.splt == NULL && globals->root.iplt == NULL)
3599 return FALSE;
3600
3601 if (h != NULL)
3602 {
3603 *root_plt = &h->root.plt;
3604 *arm_plt = &h->plt;
3605 return TRUE;
3606 }
3607
3608 if (elf32_arm_local_iplt (abfd) == NULL)
3609 return FALSE;
3610
3611 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
3612 if (local_iplt == NULL)
3613 return FALSE;
3614
3615 *root_plt = &local_iplt->root;
3616 *arm_plt = &local_iplt->arm;
3617 return TRUE;
3618 }
3619
3620 /* Return true if the PLT described by ARM_PLT requires a Thumb stub
3621 before it. */
3622
3623 static bfd_boolean
3624 elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3625 struct arm_plt_info *arm_plt)
3626 {
3627 struct elf32_arm_link_hash_table *htab;
3628
3629 htab = elf32_arm_hash_table (info);
3630 return (arm_plt->thumb_refcount != 0
3631 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0));
3632 }
3633
3634 /* Return a pointer to the head of the dynamic reloc list that should
3635 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3636 ABFD's symbol table. Return null if an error occurs. */
3637
3638 static struct elf_dyn_relocs **
3639 elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3640 Elf_Internal_Sym *isym)
3641 {
3642 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3643 {
3644 struct arm_local_iplt_info *local_iplt;
3645
3646 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3647 if (local_iplt == NULL)
3648 return NULL;
3649 return &local_iplt->dyn_relocs;
3650 }
3651 else
3652 {
3653 /* Track dynamic relocs needed for local syms too.
3654 We really need local syms available to do this
3655 easily. Oh well. */
3656 asection *s;
3657 void *vpp;
3658
3659 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3660 if (s == NULL)
3661 abort ();
3662
3663 vpp = &elf_section_data (s)->local_dynrel;
3664 return (struct elf_dyn_relocs **) vpp;
3665 }
3666 }
3667
3668 /* Initialize an entry in the stub hash table. */
3669
3670 static struct bfd_hash_entry *
3671 stub_hash_newfunc (struct bfd_hash_entry *entry,
3672 struct bfd_hash_table *table,
3673 const char *string)
3674 {
3675 /* Allocate the structure if it has not already been allocated by a
3676 subclass. */
3677 if (entry == NULL)
3678 {
3679 entry = (struct bfd_hash_entry *)
3680 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
3681 if (entry == NULL)
3682 return entry;
3683 }
3684
3685 /* Call the allocation method of the superclass. */
3686 entry = bfd_hash_newfunc (entry, table, string);
3687 if (entry != NULL)
3688 {
3689 struct elf32_arm_stub_hash_entry *eh;
3690
3691 /* Initialize the local fields. */
3692 eh = (struct elf32_arm_stub_hash_entry *) entry;
3693 eh->stub_sec = NULL;
3694 eh->stub_offset = (bfd_vma) -1;
3695 eh->source_value = 0;
3696 eh->target_value = 0;
3697 eh->target_section = NULL;
3698 eh->orig_insn = 0;
3699 eh->stub_type = arm_stub_none;
3700 eh->stub_size = 0;
3701 eh->stub_template = NULL;
3702 eh->stub_template_size = -1;
3703 eh->h = NULL;
3704 eh->id_sec = NULL;
3705 eh->output_name = NULL;
3706 }
3707
3708 return entry;
3709 }
3710
3711 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
3712 shortcuts to them in our hash table. */
3713
3714 static bfd_boolean
3715 create_got_section (bfd *dynobj, struct bfd_link_info *info)
3716 {
3717 struct elf32_arm_link_hash_table *htab;
3718
3719 htab = elf32_arm_hash_table (info);
3720 if (htab == NULL)
3721 return FALSE;
3722
3723 /* BPABI objects never have a GOT, or associated sections. */
3724 if (htab->symbian_p)
3725 return TRUE;
3726
3727 if (! _bfd_elf_create_got_section (dynobj, info))
3728 return FALSE;
3729
3730 /* Also create .rofixup. */
3731 if (htab->fdpic_p)
3732 {
3733 htab->srofixup = bfd_make_section_with_flags (dynobj, ".rofixup",
3734 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3735 | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_READONLY));
3736 if (htab->srofixup == NULL || ! bfd_set_section_alignment (dynobj, htab->srofixup, 2))
3737 return FALSE;
3738 }
3739
3740 return TRUE;
3741 }
3742
3743 /* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3744
3745 static bfd_boolean
3746 create_ifunc_sections (struct bfd_link_info *info)
3747 {
3748 struct elf32_arm_link_hash_table *htab;
3749 const struct elf_backend_data *bed;
3750 bfd *dynobj;
3751 asection *s;
3752 flagword flags;
3753
3754 htab = elf32_arm_hash_table (info);
3755 dynobj = htab->root.dynobj;
3756 bed = get_elf_backend_data (dynobj);
3757 flags = bed->dynamic_sec_flags;
3758
3759 if (htab->root.iplt == NULL)
3760 {
3761 s = bfd_make_section_anyway_with_flags (dynobj, ".iplt",
3762 flags | SEC_READONLY | SEC_CODE);
3763 if (s == NULL
3764 || !bfd_set_section_alignment (dynobj, s, bed->plt_alignment))
3765 return FALSE;
3766 htab->root.iplt = s;
3767 }
3768
3769 if (htab->root.irelplt == NULL)
3770 {
3771 s = bfd_make_section_anyway_with_flags (dynobj,
3772 RELOC_SECTION (htab, ".iplt"),
3773 flags | SEC_READONLY);
3774 if (s == NULL
3775 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3776 return FALSE;
3777 htab->root.irelplt = s;
3778 }
3779
3780 if (htab->root.igotplt == NULL)
3781 {
3782 s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags);
3783 if (s == NULL
3784 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3785 return FALSE;
3786 htab->root.igotplt = s;
3787 }
3788 return TRUE;
3789 }
3790
3791 /* Determine if we're dealing with a Thumb only architecture. */
3792
3793 static bfd_boolean
3794 using_thumb_only (struct elf32_arm_link_hash_table *globals)
3795 {
3796 int arch;
3797 int profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3798 Tag_CPU_arch_profile);
3799
3800 if (profile)
3801 return profile == 'M';
3802
3803 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3804
3805 /* Force return logic to be reviewed for each new architecture. */
3806 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8M_MAIN);
3807
3808 if (arch == TAG_CPU_ARCH_V6_M
3809 || arch == TAG_CPU_ARCH_V6S_M
3810 || arch == TAG_CPU_ARCH_V7E_M
3811 || arch == TAG_CPU_ARCH_V8M_BASE
3812 || arch == TAG_CPU_ARCH_V8M_MAIN)
3813 return TRUE;
3814
3815 return FALSE;
3816 }
3817
3818 /* Determine if we're dealing with a Thumb-2 object. */
3819
3820 static bfd_boolean
3821 using_thumb2 (struct elf32_arm_link_hash_table *globals)
3822 {
3823 int arch;
3824 int thumb_isa = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3825 Tag_THUMB_ISA_use);
3826
3827 if (thumb_isa)
3828 return thumb_isa == 2;
3829
3830 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3831
3832 /* Force return logic to be reviewed for each new architecture. */
3833 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8M_MAIN);
3834
3835 return (arch == TAG_CPU_ARCH_V6T2
3836 || arch == TAG_CPU_ARCH_V7
3837 || arch == TAG_CPU_ARCH_V7E_M
3838 || arch == TAG_CPU_ARCH_V8
3839 || arch == TAG_CPU_ARCH_V8R
3840 || arch == TAG_CPU_ARCH_V8M_MAIN);
3841 }
3842
3843 /* Determine whether Thumb-2 BL instruction is available. */
3844
3845 static bfd_boolean
3846 using_thumb2_bl (struct elf32_arm_link_hash_table *globals)
3847 {
3848 int arch =
3849 bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3850
3851 /* Force return logic to be reviewed for each new architecture. */
3852 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8M_MAIN);
3853
3854 /* Architecture was introduced after ARMv6T2 (eg. ARMv6-M). */
3855 return (arch == TAG_CPU_ARCH_V6T2
3856 || arch >= TAG_CPU_ARCH_V7);
3857 }
3858
3859 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3860 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
3861 hash table. */
3862
3863 static bfd_boolean
3864 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3865 {
3866 struct elf32_arm_link_hash_table *htab;
3867
3868 htab = elf32_arm_hash_table (info);
3869 if (htab == NULL)
3870 return FALSE;
3871
3872 if (!htab->root.sgot && !create_got_section (dynobj, info))
3873 return FALSE;
3874
3875 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3876 return FALSE;
3877
3878 if (htab->vxworks_p)
3879 {
3880 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
3881 return FALSE;
3882
3883 if (bfd_link_pic (info))
3884 {
3885 htab->plt_header_size = 0;
3886 htab->plt_entry_size
3887 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3888 }
3889 else
3890 {
3891 htab->plt_header_size
3892 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3893 htab->plt_entry_size
3894 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3895 }
3896
3897 if (elf_elfheader (dynobj))
3898 elf_elfheader (dynobj)->e_ident[EI_CLASS] = ELFCLASS32;
3899 }
3900 else
3901 {
3902 /* PR ld/16017
3903 Test for thumb only architectures. Note - we cannot just call
3904 using_thumb_only() as the attributes in the output bfd have not been
3905 initialised at this point, so instead we use the input bfd. */
3906 bfd * saved_obfd = htab->obfd;
3907
3908 htab->obfd = dynobj;
3909 if (using_thumb_only (htab))
3910 {
3911 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
3912 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
3913 }
3914 htab->obfd = saved_obfd;
3915 }
3916
3917 if (htab->fdpic_p) {
3918 htab->plt_header_size = 0;
3919 if (info->flags & DF_BIND_NOW)
3920 htab->plt_entry_size = 4 * (ARRAY_SIZE(elf32_arm_fdpic_plt_entry) - 5);
3921 else
3922 htab->plt_entry_size = 4 * ARRAY_SIZE(elf32_arm_fdpic_plt_entry);
3923 }
3924
3925 if (!htab->root.splt
3926 || !htab->root.srelplt
3927 || !htab->root.sdynbss
3928 || (!bfd_link_pic (info) && !htab->root.srelbss))
3929 abort ();
3930
3931 return TRUE;
3932 }
3933
3934 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3935
3936 static void
3937 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
3938 struct elf_link_hash_entry *dir,
3939 struct elf_link_hash_entry *ind)
3940 {
3941 struct elf32_arm_link_hash_entry *edir, *eind;
3942
3943 edir = (struct elf32_arm_link_hash_entry *) dir;
3944 eind = (struct elf32_arm_link_hash_entry *) ind;
3945
3946 if (eind->dyn_relocs != NULL)
3947 {
3948 if (edir->dyn_relocs != NULL)
3949 {
3950 struct elf_dyn_relocs **pp;
3951 struct elf_dyn_relocs *p;
3952
3953 /* Add reloc counts against the indirect sym to the direct sym
3954 list. Merge any entries against the same section. */
3955 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3956 {
3957 struct elf_dyn_relocs *q;
3958
3959 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3960 if (q->sec == p->sec)
3961 {
3962 q->pc_count += p->pc_count;
3963 q->count += p->count;
3964 *pp = p->next;
3965 break;
3966 }
3967 if (q == NULL)
3968 pp = &p->next;
3969 }
3970 *pp = edir->dyn_relocs;
3971 }
3972
3973 edir->dyn_relocs = eind->dyn_relocs;
3974 eind->dyn_relocs = NULL;
3975 }
3976
3977 if (ind->root.type == bfd_link_hash_indirect)
3978 {
3979 /* Copy over PLT info. */
3980 edir->plt.thumb_refcount += eind->plt.thumb_refcount;
3981 eind->plt.thumb_refcount = 0;
3982 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
3983 eind->plt.maybe_thumb_refcount = 0;
3984 edir->plt.noncall_refcount += eind->plt.noncall_refcount;
3985 eind->plt.noncall_refcount = 0;
3986
3987 /* Copy FDPIC counters. */
3988 edir->fdpic_cnts.gotofffuncdesc_cnt += eind->fdpic_cnts.gotofffuncdesc_cnt;
3989 edir->fdpic_cnts.gotfuncdesc_cnt += eind->fdpic_cnts.gotfuncdesc_cnt;
3990 edir->fdpic_cnts.funcdesc_cnt += eind->fdpic_cnts.funcdesc_cnt;
3991
3992 /* We should only allocate a function to .iplt once the final
3993 symbol information is known. */
3994 BFD_ASSERT (!eind->is_iplt);
3995
3996 if (dir->got.refcount <= 0)
3997 {
3998 edir->tls_type = eind->tls_type;
3999 eind->tls_type = GOT_UNKNOWN;
4000 }
4001 }
4002
4003 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
4004 }
4005
4006 /* Destroy an ARM elf linker hash table. */
4007
4008 static void
4009 elf32_arm_link_hash_table_free (bfd *obfd)
4010 {
4011 struct elf32_arm_link_hash_table *ret
4012 = (struct elf32_arm_link_hash_table *) obfd->link.hash;
4013
4014 bfd_hash_table_free (&ret->stub_hash_table);
4015 _bfd_elf_link_hash_table_free (obfd);
4016 }
4017
4018 /* Create an ARM elf linker hash table. */
4019
4020 static struct bfd_link_hash_table *
4021 elf32_arm_link_hash_table_create (bfd *abfd)
4022 {
4023 struct elf32_arm_link_hash_table *ret;
4024 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
4025
4026 ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt);
4027 if (ret == NULL)
4028 return NULL;
4029
4030 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
4031 elf32_arm_link_hash_newfunc,
4032 sizeof (struct elf32_arm_link_hash_entry),
4033 ARM_ELF_DATA))
4034 {
4035 free (ret);
4036 return NULL;
4037 }
4038
4039 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
4040 ret->stm32l4xx_fix = BFD_ARM_STM32L4XX_FIX_NONE;
4041 #ifdef FOUR_WORD_PLT
4042 ret->plt_header_size = 16;
4043 ret->plt_entry_size = 16;
4044 #else
4045 ret->plt_header_size = 20;
4046 ret->plt_entry_size = elf32_arm_use_long_plt_entry ? 16 : 12;
4047 #endif
4048 ret->use_rel = TRUE;
4049 ret->obfd = abfd;
4050 ret->fdpic_p = 0;
4051
4052 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
4053 sizeof (struct elf32_arm_stub_hash_entry)))
4054 {
4055 _bfd_elf_link_hash_table_free (abfd);
4056 return NULL;
4057 }
4058 ret->root.root.hash_table_free = elf32_arm_link_hash_table_free;
4059
4060 return &ret->root.root;
4061 }
4062
4063 /* Determine what kind of NOPs are available. */
4064
4065 static bfd_boolean
4066 arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
4067 {
4068 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
4069 Tag_CPU_arch);
4070
4071 /* Force return logic to be reviewed for each new architecture. */
4072 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8M_MAIN);
4073
4074 return (arch == TAG_CPU_ARCH_V6T2
4075 || arch == TAG_CPU_ARCH_V6K
4076 || arch == TAG_CPU_ARCH_V7
4077 || arch == TAG_CPU_ARCH_V8
4078 || arch == TAG_CPU_ARCH_V8R);
4079 }
4080
4081 static bfd_boolean
4082 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
4083 {
4084 switch (stub_type)
4085 {
4086 case arm_stub_long_branch_thumb_only:
4087 case arm_stub_long_branch_thumb2_only:
4088 case arm_stub_long_branch_thumb2_only_pure:
4089 case arm_stub_long_branch_v4t_thumb_arm:
4090 case arm_stub_short_branch_v4t_thumb_arm:
4091 case arm_stub_long_branch_v4t_thumb_arm_pic:
4092 case arm_stub_long_branch_v4t_thumb_tls_pic:
4093 case arm_stub_long_branch_thumb_only_pic:
4094 case arm_stub_cmse_branch_thumb_only:
4095 return TRUE;
4096 case arm_stub_none:
4097 BFD_FAIL ();
4098 return FALSE;
4099 break;
4100 default:
4101 return FALSE;
4102 }
4103 }
4104
4105 /* Determine the type of stub needed, if any, for a call. */
4106
4107 static enum elf32_arm_stub_type
4108 arm_type_of_stub (struct bfd_link_info *info,
4109 asection *input_sec,
4110 const Elf_Internal_Rela *rel,
4111 unsigned char st_type,
4112 enum arm_st_branch_type *actual_branch_type,
4113 struct elf32_arm_link_hash_entry *hash,
4114 bfd_vma destination,
4115 asection *sym_sec,
4116 bfd *input_bfd,
4117 const char *name)
4118 {
4119 bfd_vma location;
4120 bfd_signed_vma branch_offset;
4121 unsigned int r_type;
4122 struct elf32_arm_link_hash_table * globals;
4123 bfd_boolean thumb2, thumb2_bl, thumb_only;
4124 enum elf32_arm_stub_type stub_type = arm_stub_none;
4125 int use_plt = 0;
4126 enum arm_st_branch_type branch_type = *actual_branch_type;
4127 union gotplt_union *root_plt;
4128 struct arm_plt_info *arm_plt;
4129 int arch;
4130 int thumb2_movw;
4131
4132 if (branch_type == ST_BRANCH_LONG)
4133 return stub_type;
4134
4135 globals = elf32_arm_hash_table (info);
4136 if (globals == NULL)
4137 return stub_type;
4138
4139 thumb_only = using_thumb_only (globals);
4140 thumb2 = using_thumb2 (globals);
4141 thumb2_bl = using_thumb2_bl (globals);
4142
4143 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
4144
4145 /* True for architectures that implement the thumb2 movw instruction. */
4146 thumb2_movw = thumb2 || (arch == TAG_CPU_ARCH_V8M_BASE);
4147
4148 /* Determine where the call point is. */
4149 location = (input_sec->output_offset
4150 + input_sec->output_section->vma
4151 + rel->r_offset);
4152
4153 r_type = ELF32_R_TYPE (rel->r_info);
4154
4155 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
4156 are considering a function call relocation. */
4157 if (thumb_only && (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
4158 || r_type == R_ARM_THM_JUMP19)
4159 && branch_type == ST_BRANCH_TO_ARM)
4160 branch_type = ST_BRANCH_TO_THUMB;
4161
4162 /* For TLS call relocs, it is the caller's responsibility to provide
4163 the address of the appropriate trampoline. */
4164 if (r_type != R_ARM_TLS_CALL
4165 && r_type != R_ARM_THM_TLS_CALL
4166 && elf32_arm_get_plt_info (input_bfd, globals, hash,
4167 ELF32_R_SYM (rel->r_info), &root_plt,
4168 &arm_plt)
4169 && root_plt->offset != (bfd_vma) -1)
4170 {
4171 asection *splt;
4172
4173 if (hash == NULL || hash->is_iplt)
4174 splt = globals->root.iplt;
4175 else
4176 splt = globals->root.splt;
4177 if (splt != NULL)
4178 {
4179 use_plt = 1;
4180
4181 /* Note when dealing with PLT entries: the main PLT stub is in
4182 ARM mode, so if the branch is in Thumb mode, another
4183 Thumb->ARM stub will be inserted later just before the ARM
4184 PLT stub. If a long branch stub is needed, we'll add a
4185 Thumb->Arm one and branch directly to the ARM PLT entry.
4186 Here, we have to check if a pre-PLT Thumb->ARM stub
4187 is needed and if it will be close enough. */
4188
4189 destination = (splt->output_section->vma
4190 + splt->output_offset
4191 + root_plt->offset);
4192 st_type = STT_FUNC;
4193
4194 /* Thumb branch/call to PLT: it can become a branch to ARM
4195 or to Thumb. We must perform the same checks and
4196 corrections as in elf32_arm_final_link_relocate. */
4197 if ((r_type == R_ARM_THM_CALL)
4198 || (r_type == R_ARM_THM_JUMP24))
4199 {
4200 if (globals->use_blx
4201 && r_type == R_ARM_THM_CALL
4202 && !thumb_only)
4203 {
4204 /* If the Thumb BLX instruction is available, convert
4205 the BL to a BLX instruction to call the ARM-mode
4206 PLT entry. */
4207 branch_type = ST_BRANCH_TO_ARM;
4208 }
4209 else
4210 {
4211 if (!thumb_only)
4212 /* Target the Thumb stub before the ARM PLT entry. */
4213 destination -= PLT_THUMB_STUB_SIZE;
4214 branch_type = ST_BRANCH_TO_THUMB;
4215 }
4216 }
4217 else
4218 {
4219 branch_type = ST_BRANCH_TO_ARM;
4220 }
4221 }
4222 }
4223 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
4224 BFD_ASSERT (st_type != STT_GNU_IFUNC);
4225
4226 branch_offset = (bfd_signed_vma)(destination - location);
4227
4228 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
4229 || r_type == R_ARM_THM_TLS_CALL || r_type == R_ARM_THM_JUMP19)
4230 {
4231 /* Handle cases where:
4232 - this call goes too far (different Thumb/Thumb2 max
4233 distance)
4234 - it's a Thumb->Arm call and blx is not available, or it's a
4235 Thumb->Arm branch (not bl). A stub is needed in this case,
4236 but only if this call is not through a PLT entry. Indeed,
4237 PLT stubs handle mode switching already. */
4238 if ((!thumb2_bl
4239 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4240 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4241 || (thumb2_bl
4242 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4243 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4244 || (thumb2
4245 && (branch_offset > THM2_MAX_FWD_COND_BRANCH_OFFSET
4246 || (branch_offset < THM2_MAX_BWD_COND_BRANCH_OFFSET))
4247 && (r_type == R_ARM_THM_JUMP19))
4248 || (branch_type == ST_BRANCH_TO_ARM
4249 && (((r_type == R_ARM_THM_CALL
4250 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
4251 || (r_type == R_ARM_THM_JUMP24)
4252 || (r_type == R_ARM_THM_JUMP19))
4253 && !use_plt))
4254 {
4255 /* If we need to insert a Thumb-Thumb long branch stub to a
4256 PLT, use one that branches directly to the ARM PLT
4257 stub. If we pretended we'd use the pre-PLT Thumb->ARM
4258 stub, undo this now. */
4259 if ((branch_type == ST_BRANCH_TO_THUMB) && use_plt && !thumb_only)
4260 {
4261 branch_type = ST_BRANCH_TO_ARM;
4262 branch_offset += PLT_THUMB_STUB_SIZE;
4263 }
4264
4265 if (branch_type == ST_BRANCH_TO_THUMB)
4266 {
4267 /* Thumb to thumb. */
4268 if (!thumb_only)
4269 {
4270 if (input_sec->flags & SEC_ELF_PURECODE)
4271 _bfd_error_handler
4272 (_("%pB(%pA): warning: long branch veneers used in"
4273 " section with SHF_ARM_PURECODE section"
4274 " attribute is only supported for M-profile"
4275 " targets that implement the movw instruction"),
4276 input_bfd, input_sec);
4277
4278 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4279 /* PIC stubs. */
4280 ? ((globals->use_blx
4281 && (r_type == R_ARM_THM_CALL))
4282 /* V5T and above. Stub starts with ARM code, so
4283 we must be able to switch mode before
4284 reaching it, which is only possible for 'bl'
4285 (ie R_ARM_THM_CALL relocation). */
4286 ? arm_stub_long_branch_any_thumb_pic
4287 /* On V4T, use Thumb code only. */
4288 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4289
4290 /* non-PIC stubs. */
4291 : ((globals->use_blx
4292 && (r_type == R_ARM_THM_CALL))
4293 /* V5T and above. */
4294 ? arm_stub_long_branch_any_any
4295 /* V4T. */
4296 : arm_stub_long_branch_v4t_thumb_thumb);
4297 }
4298 else
4299 {
4300 if (thumb2_movw && (input_sec->flags & SEC_ELF_PURECODE))
4301 stub_type = arm_stub_long_branch_thumb2_only_pure;
4302 else
4303 {
4304 if (input_sec->flags & SEC_ELF_PURECODE)
4305 _bfd_error_handler
4306 (_("%pB(%pA): warning: long branch veneers used in"
4307 " section with SHF_ARM_PURECODE section"
4308 " attribute is only supported for M-profile"
4309 " targets that implement the movw instruction"),
4310 input_bfd, input_sec);
4311
4312 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4313 /* PIC stub. */
4314 ? arm_stub_long_branch_thumb_only_pic
4315 /* non-PIC stub. */
4316 : (thumb2 ? arm_stub_long_branch_thumb2_only
4317 : arm_stub_long_branch_thumb_only);
4318 }
4319 }
4320 }
4321 else
4322 {
4323 if (input_sec->flags & SEC_ELF_PURECODE)
4324 _bfd_error_handler
4325 (_("%pB(%pA): warning: long branch veneers used in"
4326 " section with SHF_ARM_PURECODE section"
4327 " attribute is only supported" " for M-profile"
4328 " targets that implement the movw instruction"),
4329 input_bfd, input_sec);
4330
4331 /* Thumb to arm. */
4332 if (sym_sec != NULL
4333 && sym_sec->owner != NULL
4334 && !INTERWORK_FLAG (sym_sec->owner))
4335 {
4336 _bfd_error_handler
4337 (_("%pB(%s): warning: interworking not enabled;"
4338 " first occurrence: %pB: %s call to %s"),
4339 sym_sec->owner, name, input_bfd, "Thumb", "ARM");
4340 }
4341
4342 stub_type =
4343 (bfd_link_pic (info) | globals->pic_veneer)
4344 /* PIC stubs. */
4345 ? (r_type == R_ARM_THM_TLS_CALL
4346 /* TLS PIC stubs. */
4347 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
4348 : arm_stub_long_branch_v4t_thumb_tls_pic)
4349 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
4350 /* V5T PIC and above. */
4351 ? arm_stub_long_branch_any_arm_pic
4352 /* V4T PIC stub. */
4353 : arm_stub_long_branch_v4t_thumb_arm_pic))
4354
4355 /* non-PIC stubs. */
4356 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
4357 /* V5T and above. */
4358 ? arm_stub_long_branch_any_any
4359 /* V4T. */
4360 : arm_stub_long_branch_v4t_thumb_arm);
4361
4362 /* Handle v4t short branches. */
4363 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4364 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4365 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4366 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4367 }
4368 }
4369 }
4370 else if (r_type == R_ARM_CALL
4371 || r_type == R_ARM_JUMP24
4372 || r_type == R_ARM_PLT32
4373 || r_type == R_ARM_TLS_CALL)
4374 {
4375 if (input_sec->flags & SEC_ELF_PURECODE)
4376 _bfd_error_handler
4377 (_("%pB(%pA): warning: long branch veneers used in"
4378 " section with SHF_ARM_PURECODE section"
4379 " attribute is only supported for M-profile"
4380 " targets that implement the movw instruction"),
4381 input_bfd, input_sec);
4382 if (branch_type == ST_BRANCH_TO_THUMB)
4383 {
4384 /* Arm to thumb. */
4385
4386 if (sym_sec != NULL
4387 && sym_sec->owner != NULL
4388 && !INTERWORK_FLAG (sym_sec->owner))
4389 {
4390 _bfd_error_handler
4391 (_("%pB(%s): warning: interworking not enabled;"
4392 " first occurrence: %pB: %s call to %s"),
4393 sym_sec->owner, name, input_bfd, "ARM", "Thumb");
4394 }
4395
4396 /* We have an extra 2-bytes reach because of
4397 the mode change (bit 24 (H) of BLX encoding). */
4398 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4399 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4400 || (r_type == R_ARM_CALL && !globals->use_blx)
4401 || (r_type == R_ARM_JUMP24)
4402 || (r_type == R_ARM_PLT32))
4403 {
4404 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4405 /* PIC stubs. */
4406 ? ((globals->use_blx)
4407 /* V5T and above. */
4408 ? arm_stub_long_branch_any_thumb_pic
4409 /* V4T stub. */
4410 : arm_stub_long_branch_v4t_arm_thumb_pic)
4411
4412 /* non-PIC stubs. */
4413 : ((globals->use_blx)
4414 /* V5T and above. */
4415 ? arm_stub_long_branch_any_any
4416 /* V4T. */
4417 : arm_stub_long_branch_v4t_arm_thumb);
4418 }
4419 }
4420 else
4421 {
4422 /* Arm to arm. */
4423 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4424 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4425 {
4426 stub_type =
4427 (bfd_link_pic (info) | globals->pic_veneer)
4428 /* PIC stubs. */
4429 ? (r_type == R_ARM_TLS_CALL
4430 /* TLS PIC Stub. */
4431 ? arm_stub_long_branch_any_tls_pic
4432 : (globals->nacl_p
4433 ? arm_stub_long_branch_arm_nacl_pic
4434 : arm_stub_long_branch_any_arm_pic))
4435 /* non-PIC stubs. */
4436 : (globals->nacl_p
4437 ? arm_stub_long_branch_arm_nacl
4438 : arm_stub_long_branch_any_any);
4439 }
4440 }
4441 }
4442
4443 /* If a stub is needed, record the actual destination type. */
4444 if (stub_type != arm_stub_none)
4445 *actual_branch_type = branch_type;
4446
4447 return stub_type;
4448 }
4449
4450 /* Build a name for an entry in the stub hash table. */
4451
4452 static char *
4453 elf32_arm_stub_name (const asection *input_section,
4454 const asection *sym_sec,
4455 const struct elf32_arm_link_hash_entry *hash,
4456 const Elf_Internal_Rela *rel,
4457 enum elf32_arm_stub_type stub_type)
4458 {
4459 char *stub_name;
4460 bfd_size_type len;
4461
4462 if (hash)
4463 {
4464 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
4465 stub_name = (char *) bfd_malloc (len);
4466 if (stub_name != NULL)
4467 sprintf (stub_name, "%08x_%s+%x_%d",
4468 input_section->id & 0xffffffff,
4469 hash->root.root.root.string,
4470 (int) rel->r_addend & 0xffffffff,
4471 (int) stub_type);
4472 }
4473 else
4474 {
4475 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
4476 stub_name = (char *) bfd_malloc (len);
4477 if (stub_name != NULL)
4478 sprintf (stub_name, "%08x_%x:%x+%x_%d",
4479 input_section->id & 0xffffffff,
4480 sym_sec->id & 0xffffffff,
4481 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
4482 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
4483 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
4484 (int) rel->r_addend & 0xffffffff,
4485 (int) stub_type);
4486 }
4487
4488 return stub_name;
4489 }
4490
4491 /* Look up an entry in the stub hash. Stub entries are cached because
4492 creating the stub name takes a bit of time. */
4493
4494 static struct elf32_arm_stub_hash_entry *
4495 elf32_arm_get_stub_entry (const asection *input_section,
4496 const asection *sym_sec,
4497 struct elf_link_hash_entry *hash,
4498 const Elf_Internal_Rela *rel,
4499 struct elf32_arm_link_hash_table *htab,
4500 enum elf32_arm_stub_type stub_type)
4501 {
4502 struct elf32_arm_stub_hash_entry *stub_entry;
4503 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
4504 const asection *id_sec;
4505
4506 if ((input_section->flags & SEC_CODE) == 0)
4507 return NULL;
4508
4509 /* If this input section is part of a group of sections sharing one
4510 stub section, then use the id of the first section in the group.
4511 Stub names need to include a section id, as there may well be
4512 more than one stub used to reach say, printf, and we need to
4513 distinguish between them. */
4514 BFD_ASSERT (input_section->id <= htab->top_id);
4515 id_sec = htab->stub_group[input_section->id].link_sec;
4516
4517 if (h != NULL && h->stub_cache != NULL
4518 && h->stub_cache->h == h
4519 && h->stub_cache->id_sec == id_sec
4520 && h->stub_cache->stub_type == stub_type)
4521 {
4522 stub_entry = h->stub_cache;
4523 }
4524 else
4525 {
4526 char *stub_name;
4527
4528 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
4529 if (stub_name == NULL)
4530 return NULL;
4531
4532 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
4533 stub_name, FALSE, FALSE);
4534 if (h != NULL)
4535 h->stub_cache = stub_entry;
4536
4537 free (stub_name);
4538 }
4539
4540 return stub_entry;
4541 }
4542
4543 /* Whether veneers of type STUB_TYPE require to be in a dedicated output
4544 section. */
4545
4546 static bfd_boolean
4547 arm_dedicated_stub_output_section_required (enum elf32_arm_stub_type stub_type)
4548 {
4549 if (stub_type >= max_stub_type)
4550 abort (); /* Should be unreachable. */
4551
4552 switch (stub_type)
4553 {
4554 case arm_stub_cmse_branch_thumb_only:
4555 return TRUE;
4556
4557 default:
4558 return FALSE;
4559 }
4560
4561 abort (); /* Should be unreachable. */
4562 }
4563
4564 /* Required alignment (as a power of 2) for the dedicated section holding
4565 veneers of type STUB_TYPE, or 0 if veneers of this type are interspersed
4566 with input sections. */
4567
4568 static int
4569 arm_dedicated_stub_output_section_required_alignment
4570 (enum elf32_arm_stub_type stub_type)
4571 {
4572 if (stub_type >= max_stub_type)
4573 abort (); /* Should be unreachable. */
4574
4575 switch (stub_type)
4576 {
4577 /* Vectors of Secure Gateway veneers must be aligned on 32byte
4578 boundary. */
4579 case arm_stub_cmse_branch_thumb_only:
4580 return 5;
4581
4582 default:
4583 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4584 return 0;
4585 }
4586
4587 abort (); /* Should be unreachable. */
4588 }
4589
4590 /* Name of the dedicated output section to put veneers of type STUB_TYPE, or
4591 NULL if veneers of this type are interspersed with input sections. */
4592
4593 static const char *
4594 arm_dedicated_stub_output_section_name (enum elf32_arm_stub_type stub_type)
4595 {
4596 if (stub_type >= max_stub_type)
4597 abort (); /* Should be unreachable. */
4598
4599 switch (stub_type)
4600 {
4601 case arm_stub_cmse_branch_thumb_only:
4602 return ".gnu.sgstubs";
4603
4604 default:
4605 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4606 return NULL;
4607 }
4608
4609 abort (); /* Should be unreachable. */
4610 }
4611
4612 /* If veneers of type STUB_TYPE should go in a dedicated output section,
4613 returns the address of the hash table field in HTAB holding a pointer to the
4614 corresponding input section. Otherwise, returns NULL. */
4615
4616 static asection **
4617 arm_dedicated_stub_input_section_ptr (struct elf32_arm_link_hash_table *htab,
4618 enum elf32_arm_stub_type stub_type)
4619 {
4620 if (stub_type >= max_stub_type)
4621 abort (); /* Should be unreachable. */
4622
4623 switch (stub_type)
4624 {
4625 case arm_stub_cmse_branch_thumb_only:
4626 return &htab->cmse_stub_sec;
4627
4628 default:
4629 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4630 return NULL;
4631 }
4632
4633 abort (); /* Should be unreachable. */
4634 }
4635
4636 /* Find or create a stub section to contain a stub of type STUB_TYPE. SECTION
4637 is the section that branch into veneer and can be NULL if stub should go in
4638 a dedicated output section. Returns a pointer to the stub section, and the
4639 section to which the stub section will be attached (in *LINK_SEC_P).
4640 LINK_SEC_P may be NULL. */
4641
4642 static asection *
4643 elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
4644 struct elf32_arm_link_hash_table *htab,
4645 enum elf32_arm_stub_type stub_type)
4646 {
4647 asection *link_sec, *out_sec, **stub_sec_p;
4648 const char *stub_sec_prefix;
4649 bfd_boolean dedicated_output_section =
4650 arm_dedicated_stub_output_section_required (stub_type);
4651 int align;
4652
4653 if (dedicated_output_section)
4654 {
4655 bfd *output_bfd = htab->obfd;
4656 const char *out_sec_name =
4657 arm_dedicated_stub_output_section_name (stub_type);
4658 link_sec = NULL;
4659 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
4660 stub_sec_prefix = out_sec_name;
4661 align = arm_dedicated_stub_output_section_required_alignment (stub_type);
4662 out_sec = bfd_get_section_by_name (output_bfd, out_sec_name);
4663 if (out_sec == NULL)
4664 {
4665 _bfd_error_handler (_("no address assigned to the veneers output "
4666 "section %s"), out_sec_name);
4667 return NULL;
4668 }
4669 }
4670 else
4671 {
4672 BFD_ASSERT (section->id <= htab->top_id);
4673 link_sec = htab->stub_group[section->id].link_sec;
4674 BFD_ASSERT (link_sec != NULL);
4675 stub_sec_p = &htab->stub_group[section->id].stub_sec;
4676 if (*stub_sec_p == NULL)
4677 stub_sec_p = &htab->stub_group[link_sec->id].stub_sec;
4678 stub_sec_prefix = link_sec->name;
4679 out_sec = link_sec->output_section;
4680 align = htab->nacl_p ? 4 : 3;
4681 }
4682
4683 if (*stub_sec_p == NULL)
4684 {
4685 size_t namelen;
4686 bfd_size_type len;
4687 char *s_name;
4688
4689 namelen = strlen (stub_sec_prefix);
4690 len = namelen + sizeof (STUB_SUFFIX);
4691 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
4692 if (s_name == NULL)
4693 return NULL;
4694
4695 memcpy (s_name, stub_sec_prefix, namelen);
4696 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4697 *stub_sec_p = (*htab->add_stub_section) (s_name, out_sec, link_sec,
4698 align);
4699 if (*stub_sec_p == NULL)
4700 return NULL;
4701
4702 out_sec->flags |= SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_CODE
4703 | SEC_HAS_CONTENTS | SEC_RELOC | SEC_IN_MEMORY
4704 | SEC_KEEP;
4705 }
4706
4707 if (!dedicated_output_section)
4708 htab->stub_group[section->id].stub_sec = *stub_sec_p;
4709
4710 if (link_sec_p)
4711 *link_sec_p = link_sec;
4712
4713 return *stub_sec_p;
4714 }
4715
4716 /* Add a new stub entry to the stub hash. Not all fields of the new
4717 stub entry are initialised. */
4718
4719 static struct elf32_arm_stub_hash_entry *
4720 elf32_arm_add_stub (const char *stub_name, asection *section,
4721 struct elf32_arm_link_hash_table *htab,
4722 enum elf32_arm_stub_type stub_type)
4723 {
4724 asection *link_sec;
4725 asection *stub_sec;
4726 struct elf32_arm_stub_hash_entry *stub_entry;
4727
4728 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab,
4729 stub_type);
4730 if (stub_sec == NULL)
4731 return NULL;
4732
4733 /* Enter this entry into the linker stub hash table. */
4734 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4735 TRUE, FALSE);
4736 if (stub_entry == NULL)
4737 {
4738 if (section == NULL)
4739 section = stub_sec;
4740 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
4741 section->owner, stub_name);
4742 return NULL;
4743 }
4744
4745 stub_entry->stub_sec = stub_sec;
4746 stub_entry->stub_offset = (bfd_vma) -1;
4747 stub_entry->id_sec = link_sec;
4748
4749 return stub_entry;
4750 }
4751
4752 /* Store an Arm insn into an output section not processed by
4753 elf32_arm_write_section. */
4754
4755 static void
4756 put_arm_insn (struct elf32_arm_link_hash_table * htab,
4757 bfd * output_bfd, bfd_vma val, void * ptr)
4758 {
4759 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4760 bfd_putl32 (val, ptr);
4761 else
4762 bfd_putb32 (val, ptr);
4763 }
4764
4765 /* Store a 16-bit Thumb insn into an output section not processed by
4766 elf32_arm_write_section. */
4767
4768 static void
4769 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
4770 bfd * output_bfd, bfd_vma val, void * ptr)
4771 {
4772 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4773 bfd_putl16 (val, ptr);
4774 else
4775 bfd_putb16 (val, ptr);
4776 }
4777
4778 /* Store a Thumb2 insn into an output section not processed by
4779 elf32_arm_write_section. */
4780
4781 static void
4782 put_thumb2_insn (struct elf32_arm_link_hash_table * htab,
4783 bfd * output_bfd, bfd_vma val, bfd_byte * ptr)
4784 {
4785 /* T2 instructions are 16-bit streamed. */
4786 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4787 {
4788 bfd_putl16 ((val >> 16) & 0xffff, ptr);
4789 bfd_putl16 ((val & 0xffff), ptr + 2);
4790 }
4791 else
4792 {
4793 bfd_putb16 ((val >> 16) & 0xffff, ptr);
4794 bfd_putb16 ((val & 0xffff), ptr + 2);
4795 }
4796 }
4797
4798 /* If it's possible to change R_TYPE to a more efficient access
4799 model, return the new reloc type. */
4800
4801 static unsigned
4802 elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
4803 struct elf_link_hash_entry *h)
4804 {
4805 int is_local = (h == NULL);
4806
4807 if (bfd_link_pic (info)
4808 || (h && h->root.type == bfd_link_hash_undefweak))
4809 return r_type;
4810
4811 /* We do not support relaxations for Old TLS models. */
4812 switch (r_type)
4813 {
4814 case R_ARM_TLS_GOTDESC:
4815 case R_ARM_TLS_CALL:
4816 case R_ARM_THM_TLS_CALL:
4817 case R_ARM_TLS_DESCSEQ:
4818 case R_ARM_THM_TLS_DESCSEQ:
4819 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
4820 }
4821
4822 return r_type;
4823 }
4824
4825 static bfd_reloc_status_type elf32_arm_final_link_relocate
4826 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
4827 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
4828 const char *, unsigned char, enum arm_st_branch_type,
4829 struct elf_link_hash_entry *, bfd_boolean *, char **);
4830
4831 static unsigned int
4832 arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
4833 {
4834 switch (stub_type)
4835 {
4836 case arm_stub_a8_veneer_b_cond:
4837 case arm_stub_a8_veneer_b:
4838 case arm_stub_a8_veneer_bl:
4839 return 2;
4840
4841 case arm_stub_long_branch_any_any:
4842 case arm_stub_long_branch_v4t_arm_thumb:
4843 case arm_stub_long_branch_thumb_only:
4844 case arm_stub_long_branch_thumb2_only:
4845 case arm_stub_long_branch_thumb2_only_pure:
4846 case arm_stub_long_branch_v4t_thumb_thumb:
4847 case arm_stub_long_branch_v4t_thumb_arm:
4848 case arm_stub_short_branch_v4t_thumb_arm:
4849 case arm_stub_long_branch_any_arm_pic:
4850 case arm_stub_long_branch_any_thumb_pic:
4851 case arm_stub_long_branch_v4t_thumb_thumb_pic:
4852 case arm_stub_long_branch_v4t_arm_thumb_pic:
4853 case arm_stub_long_branch_v4t_thumb_arm_pic:
4854 case arm_stub_long_branch_thumb_only_pic:
4855 case arm_stub_long_branch_any_tls_pic:
4856 case arm_stub_long_branch_v4t_thumb_tls_pic:
4857 case arm_stub_cmse_branch_thumb_only:
4858 case arm_stub_a8_veneer_blx:
4859 return 4;
4860
4861 case arm_stub_long_branch_arm_nacl:
4862 case arm_stub_long_branch_arm_nacl_pic:
4863 return 16;
4864
4865 default:
4866 abort (); /* Should be unreachable. */
4867 }
4868 }
4869
4870 /* Returns whether stubs of type STUB_TYPE take over the symbol they are
4871 veneering (TRUE) or have their own symbol (FALSE). */
4872
4873 static bfd_boolean
4874 arm_stub_sym_claimed (enum elf32_arm_stub_type stub_type)
4875 {
4876 if (stub_type >= max_stub_type)
4877 abort (); /* Should be unreachable. */
4878
4879 switch (stub_type)
4880 {
4881 case arm_stub_cmse_branch_thumb_only:
4882 return TRUE;
4883
4884 default:
4885 return FALSE;
4886 }
4887
4888 abort (); /* Should be unreachable. */
4889 }
4890
4891 /* Returns the padding needed for the dedicated section used stubs of type
4892 STUB_TYPE. */
4893
4894 static int
4895 arm_dedicated_stub_section_padding (enum elf32_arm_stub_type stub_type)
4896 {
4897 if (stub_type >= max_stub_type)
4898 abort (); /* Should be unreachable. */
4899
4900 switch (stub_type)
4901 {
4902 case arm_stub_cmse_branch_thumb_only:
4903 return 32;
4904
4905 default:
4906 return 0;
4907 }
4908
4909 abort (); /* Should be unreachable. */
4910 }
4911
4912 /* If veneers of type STUB_TYPE should go in a dedicated output section,
4913 returns the address of the hash table field in HTAB holding the offset at
4914 which new veneers should be layed out in the stub section. */
4915
4916 static bfd_vma*
4917 arm_new_stubs_start_offset_ptr (struct elf32_arm_link_hash_table *htab,
4918 enum elf32_arm_stub_type stub_type)
4919 {
4920 switch (stub_type)
4921 {
4922 case arm_stub_cmse_branch_thumb_only:
4923 return &htab->new_cmse_stub_offset;
4924
4925 default:
4926 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4927 return NULL;
4928 }
4929 }
4930
4931 static bfd_boolean
4932 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
4933 void * in_arg)
4934 {
4935 #define MAXRELOCS 3
4936 bfd_boolean removed_sg_veneer;
4937 struct elf32_arm_stub_hash_entry *stub_entry;
4938 struct elf32_arm_link_hash_table *globals;
4939 struct bfd_link_info *info;
4940 asection *stub_sec;
4941 bfd *stub_bfd;
4942 bfd_byte *loc;
4943 bfd_vma sym_value;
4944 int template_size;
4945 int size;
4946 const insn_sequence *template_sequence;
4947 int i;
4948 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
4949 int stub_reloc_offset[MAXRELOCS] = {0, 0};
4950 int nrelocs = 0;
4951 int just_allocated = 0;
4952
4953 /* Massage our args to the form they really have. */
4954 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4955 info = (struct bfd_link_info *) in_arg;
4956
4957 globals = elf32_arm_hash_table (info);
4958 if (globals == NULL)
4959 return FALSE;
4960
4961 stub_sec = stub_entry->stub_sec;
4962
4963 if ((globals->fix_cortex_a8 < 0)
4964 != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
4965 /* We have to do less-strictly-aligned fixes last. */
4966 return TRUE;
4967
4968 /* Assign a slot at the end of section if none assigned yet. */
4969 if (stub_entry->stub_offset == (bfd_vma) -1)
4970 {
4971 stub_entry->stub_offset = stub_sec->size;
4972 just_allocated = 1;
4973 }
4974 loc = stub_sec->contents + stub_entry->stub_offset;
4975
4976 stub_bfd = stub_sec->owner;
4977
4978 /* This is the address of the stub destination. */
4979 sym_value = (stub_entry->target_value
4980 + stub_entry->target_section->output_offset
4981 + stub_entry->target_section->output_section->vma);
4982
4983 template_sequence = stub_entry->stub_template;
4984 template_size = stub_entry->stub_template_size;
4985
4986 size = 0;
4987 for (i = 0; i < template_size; i++)
4988 {
4989 switch (template_sequence[i].type)
4990 {
4991 case THUMB16_TYPE:
4992 {
4993 bfd_vma data = (bfd_vma) template_sequence[i].data;
4994 if (template_sequence[i].reloc_addend != 0)
4995 {
4996 /* We've borrowed the reloc_addend field to mean we should
4997 insert a condition code into this (Thumb-1 branch)
4998 instruction. See THUMB16_BCOND_INSN. */
4999 BFD_ASSERT ((data & 0xff00) == 0xd000);
5000 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
5001 }
5002 bfd_put_16 (stub_bfd, data, loc + size);
5003 size += 2;
5004 }
5005 break;
5006
5007 case THUMB32_TYPE:
5008 bfd_put_16 (stub_bfd,
5009 (template_sequence[i].data >> 16) & 0xffff,
5010 loc + size);
5011 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
5012 loc + size + 2);
5013 if (template_sequence[i].r_type != R_ARM_NONE)
5014 {
5015 stub_reloc_idx[nrelocs] = i;
5016 stub_reloc_offset[nrelocs++] = size;
5017 }
5018 size += 4;
5019 break;
5020
5021 case ARM_TYPE:
5022 bfd_put_32 (stub_bfd, template_sequence[i].data,
5023 loc + size);
5024 /* Handle cases where the target is encoded within the
5025 instruction. */
5026 if (template_sequence[i].r_type == R_ARM_JUMP24)
5027 {
5028 stub_reloc_idx[nrelocs] = i;
5029 stub_reloc_offset[nrelocs++] = size;
5030 }
5031 size += 4;
5032 break;
5033
5034 case DATA_TYPE:
5035 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
5036 stub_reloc_idx[nrelocs] = i;
5037 stub_reloc_offset[nrelocs++] = size;
5038 size += 4;
5039 break;
5040
5041 default:
5042 BFD_FAIL ();
5043 return FALSE;
5044 }
5045 }
5046
5047 if (just_allocated)
5048 stub_sec->size += size;
5049
5050 /* Stub size has already been computed in arm_size_one_stub. Check
5051 consistency. */
5052 BFD_ASSERT (size == stub_entry->stub_size);
5053
5054 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
5055 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
5056 sym_value |= 1;
5057
5058 /* Assume non empty slots have at least one and at most MAXRELOCS entries
5059 to relocate in each stub. */
5060 removed_sg_veneer =
5061 (size == 0 && stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
5062 BFD_ASSERT (removed_sg_veneer || (nrelocs != 0 && nrelocs <= MAXRELOCS));
5063
5064 for (i = 0; i < nrelocs; i++)
5065 {
5066 Elf_Internal_Rela rel;
5067 bfd_boolean unresolved_reloc;
5068 char *error_message;
5069 bfd_vma points_to =
5070 sym_value + template_sequence[stub_reloc_idx[i]].reloc_addend;
5071
5072 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
5073 rel.r_info = ELF32_R_INFO (0,
5074 template_sequence[stub_reloc_idx[i]].r_type);
5075 rel.r_addend = 0;
5076
5077 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
5078 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
5079 template should refer back to the instruction after the original
5080 branch. We use target_section as Cortex-A8 erratum workaround stubs
5081 are only generated when both source and target are in the same
5082 section. */
5083 points_to = stub_entry->target_section->output_section->vma
5084 + stub_entry->target_section->output_offset
5085 + stub_entry->source_value;
5086
5087 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
5088 (template_sequence[stub_reloc_idx[i]].r_type),
5089 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
5090 points_to, info, stub_entry->target_section, "", STT_FUNC,
5091 stub_entry->branch_type,
5092 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
5093 &error_message);
5094 }
5095
5096 return TRUE;
5097 #undef MAXRELOCS
5098 }
5099
5100 /* Calculate the template, template size and instruction size for a stub.
5101 Return value is the instruction size. */
5102
5103 static unsigned int
5104 find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
5105 const insn_sequence **stub_template,
5106 int *stub_template_size)
5107 {
5108 const insn_sequence *template_sequence = NULL;
5109 int template_size = 0, i;
5110 unsigned int size;
5111
5112 template_sequence = stub_definitions[stub_type].template_sequence;
5113 if (stub_template)
5114 *stub_template = template_sequence;
5115
5116 template_size = stub_definitions[stub_type].template_size;
5117 if (stub_template_size)
5118 *stub_template_size = template_size;
5119
5120 size = 0;
5121 for (i = 0; i < template_size; i++)
5122 {
5123 switch (template_sequence[i].type)
5124 {
5125 case THUMB16_TYPE:
5126 size += 2;
5127 break;
5128
5129 case ARM_TYPE:
5130 case THUMB32_TYPE:
5131 case DATA_TYPE:
5132 size += 4;
5133 break;
5134
5135 default:
5136 BFD_FAIL ();
5137 return 0;
5138 }
5139 }
5140
5141 return size;
5142 }
5143
5144 /* As above, but don't actually build the stub. Just bump offset so
5145 we know stub section sizes. */
5146
5147 static bfd_boolean
5148 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
5149 void *in_arg ATTRIBUTE_UNUSED)
5150 {
5151 struct elf32_arm_stub_hash_entry *stub_entry;
5152 const insn_sequence *template_sequence;
5153 int template_size, size;
5154
5155 /* Massage our args to the form they really have. */
5156 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
5157
5158 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
5159 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
5160
5161 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
5162 &template_size);
5163
5164 /* Initialized to -1. Null size indicates an empty slot full of zeros. */
5165 if (stub_entry->stub_template_size)
5166 {
5167 stub_entry->stub_size = size;
5168 stub_entry->stub_template = template_sequence;
5169 stub_entry->stub_template_size = template_size;
5170 }
5171
5172 /* Already accounted for. */
5173 if (stub_entry->stub_offset != (bfd_vma) -1)
5174 return TRUE;
5175
5176 size = (size + 7) & ~7;
5177 stub_entry->stub_sec->size += size;
5178
5179 return TRUE;
5180 }
5181
5182 /* External entry points for sizing and building linker stubs. */
5183
5184 /* Set up various things so that we can make a list of input sections
5185 for each output section included in the link. Returns -1 on error,
5186 0 when no stubs will be needed, and 1 on success. */
5187
5188 int
5189 elf32_arm_setup_section_lists (bfd *output_bfd,
5190 struct bfd_link_info *info)
5191 {
5192 bfd *input_bfd;
5193 unsigned int bfd_count;
5194 unsigned int top_id, top_index;
5195 asection *section;
5196 asection **input_list, **list;
5197 bfd_size_type amt;
5198 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5199
5200 if (htab == NULL)
5201 return 0;
5202 if (! is_elf_hash_table (htab))
5203 return 0;
5204
5205 /* Count the number of input BFDs and find the top input section id. */
5206 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
5207 input_bfd != NULL;
5208 input_bfd = input_bfd->link.next)
5209 {
5210 bfd_count += 1;
5211 for (section = input_bfd->sections;
5212 section != NULL;
5213 section = section->next)
5214 {
5215 if (top_id < section->id)
5216 top_id = section->id;
5217 }
5218 }
5219 htab->bfd_count = bfd_count;
5220
5221 amt = sizeof (struct map_stub) * (top_id + 1);
5222 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
5223 if (htab->stub_group == NULL)
5224 return -1;
5225 htab->top_id = top_id;
5226
5227 /* We can't use output_bfd->section_count here to find the top output
5228 section index as some sections may have been removed, and
5229 _bfd_strip_section_from_output doesn't renumber the indices. */
5230 for (section = output_bfd->sections, top_index = 0;
5231 section != NULL;
5232 section = section->next)
5233 {
5234 if (top_index < section->index)
5235 top_index = section->index;
5236 }
5237
5238 htab->top_index = top_index;
5239 amt = sizeof (asection *) * (top_index + 1);
5240 input_list = (asection **) bfd_malloc (amt);
5241 htab->input_list = input_list;
5242 if (input_list == NULL)
5243 return -1;
5244
5245 /* For sections we aren't interested in, mark their entries with a
5246 value we can check later. */
5247 list = input_list + top_index;
5248 do
5249 *list = bfd_abs_section_ptr;
5250 while (list-- != input_list);
5251
5252 for (section = output_bfd->sections;
5253 section != NULL;
5254 section = section->next)
5255 {
5256 if ((section->flags & SEC_CODE) != 0)
5257 input_list[section->index] = NULL;
5258 }
5259
5260 return 1;
5261 }
5262
5263 /* The linker repeatedly calls this function for each input section,
5264 in the order that input sections are linked into output sections.
5265 Build lists of input sections to determine groupings between which
5266 we may insert linker stubs. */
5267
5268 void
5269 elf32_arm_next_input_section (struct bfd_link_info *info,
5270 asection *isec)
5271 {
5272 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5273
5274 if (htab == NULL)
5275 return;
5276
5277 if (isec->output_section->index <= htab->top_index)
5278 {
5279 asection **list = htab->input_list + isec->output_section->index;
5280
5281 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
5282 {
5283 /* Steal the link_sec pointer for our list. */
5284 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
5285 /* This happens to make the list in reverse order,
5286 which we reverse later. */
5287 PREV_SEC (isec) = *list;
5288 *list = isec;
5289 }
5290 }
5291 }
5292
5293 /* See whether we can group stub sections together. Grouping stub
5294 sections may result in fewer stubs. More importantly, we need to
5295 put all .init* and .fini* stubs at the end of the .init or
5296 .fini output sections respectively, because glibc splits the
5297 _init and _fini functions into multiple parts. Putting a stub in
5298 the middle of a function is not a good idea. */
5299
5300 static void
5301 group_sections (struct elf32_arm_link_hash_table *htab,
5302 bfd_size_type stub_group_size,
5303 bfd_boolean stubs_always_after_branch)
5304 {
5305 asection **list = htab->input_list;
5306
5307 do
5308 {
5309 asection *tail = *list;
5310 asection *head;
5311
5312 if (tail == bfd_abs_section_ptr)
5313 continue;
5314
5315 /* Reverse the list: we must avoid placing stubs at the
5316 beginning of the section because the beginning of the text
5317 section may be required for an interrupt vector in bare metal
5318 code. */
5319 #define NEXT_SEC PREV_SEC
5320 head = NULL;
5321 while (tail != NULL)
5322 {
5323 /* Pop from tail. */
5324 asection *item = tail;
5325 tail = PREV_SEC (item);
5326
5327 /* Push on head. */
5328 NEXT_SEC (item) = head;
5329 head = item;
5330 }
5331
5332 while (head != NULL)
5333 {
5334 asection *curr;
5335 asection *next;
5336 bfd_vma stub_group_start = head->output_offset;
5337 bfd_vma end_of_next;
5338
5339 curr = head;
5340 while (NEXT_SEC (curr) != NULL)
5341 {
5342 next = NEXT_SEC (curr);
5343 end_of_next = next->output_offset + next->size;
5344 if (end_of_next - stub_group_start >= stub_group_size)
5345 /* End of NEXT is too far from start, so stop. */
5346 break;
5347 /* Add NEXT to the group. */
5348 curr = next;
5349 }
5350
5351 /* OK, the size from the start to the start of CURR is less
5352 than stub_group_size and thus can be handled by one stub
5353 section. (Or the head section is itself larger than
5354 stub_group_size, in which case we may be toast.)
5355 We should really be keeping track of the total size of
5356 stubs added here, as stubs contribute to the final output
5357 section size. */
5358 do
5359 {
5360 next = NEXT_SEC (head);
5361 /* Set up this stub group. */
5362 htab->stub_group[head->id].link_sec = curr;
5363 }
5364 while (head != curr && (head = next) != NULL);
5365
5366 /* But wait, there's more! Input sections up to stub_group_size
5367 bytes after the stub section can be handled by it too. */
5368 if (!stubs_always_after_branch)
5369 {
5370 stub_group_start = curr->output_offset + curr->size;
5371
5372 while (next != NULL)
5373 {
5374 end_of_next = next->output_offset + next->size;
5375 if (end_of_next - stub_group_start >= stub_group_size)
5376 /* End of NEXT is too far from stubs, so stop. */
5377 break;
5378 /* Add NEXT to the stub group. */
5379 head = next;
5380 next = NEXT_SEC (head);
5381 htab->stub_group[head->id].link_sec = curr;
5382 }
5383 }
5384 head = next;
5385 }
5386 }
5387 while (list++ != htab->input_list + htab->top_index);
5388
5389 free (htab->input_list);
5390 #undef PREV_SEC
5391 #undef NEXT_SEC
5392 }
5393
5394 /* Comparison function for sorting/searching relocations relating to Cortex-A8
5395 erratum fix. */
5396
5397 static int
5398 a8_reloc_compare (const void *a, const void *b)
5399 {
5400 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
5401 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
5402
5403 if (ra->from < rb->from)
5404 return -1;
5405 else if (ra->from > rb->from)
5406 return 1;
5407 else
5408 return 0;
5409 }
5410
5411 static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
5412 const char *, char **);
5413
5414 /* Helper function to scan code for sequences which might trigger the Cortex-A8
5415 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
5416 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
5417 otherwise. */
5418
5419 static bfd_boolean
5420 cortex_a8_erratum_scan (bfd *input_bfd,
5421 struct bfd_link_info *info,
5422 struct a8_erratum_fix **a8_fixes_p,
5423 unsigned int *num_a8_fixes_p,
5424 unsigned int *a8_fix_table_size_p,
5425 struct a8_erratum_reloc *a8_relocs,
5426 unsigned int num_a8_relocs,
5427 unsigned prev_num_a8_fixes,
5428 bfd_boolean *stub_changed_p)
5429 {
5430 asection *section;
5431 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5432 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
5433 unsigned int num_a8_fixes = *num_a8_fixes_p;
5434 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
5435
5436 if (htab == NULL)
5437 return FALSE;
5438
5439 for (section = input_bfd->sections;
5440 section != NULL;
5441 section = section->next)
5442 {
5443 bfd_byte *contents = NULL;
5444 struct _arm_elf_section_data *sec_data;
5445 unsigned int span;
5446 bfd_vma base_vma;
5447
5448 if (elf_section_type (section) != SHT_PROGBITS
5449 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
5450 || (section->flags & SEC_EXCLUDE) != 0
5451 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
5452 || (section->output_section == bfd_abs_section_ptr))
5453 continue;
5454
5455 base_vma = section->output_section->vma + section->output_offset;
5456
5457 if (elf_section_data (section)->this_hdr.contents != NULL)
5458 contents = elf_section_data (section)->this_hdr.contents;
5459 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
5460 return TRUE;
5461
5462 sec_data = elf32_arm_section_data (section);
5463
5464 for (span = 0; span < sec_data->mapcount; span++)
5465 {
5466 unsigned int span_start = sec_data->map[span].vma;
5467 unsigned int span_end = (span == sec_data->mapcount - 1)
5468 ? section->size : sec_data->map[span + 1].vma;
5469 unsigned int i;
5470 char span_type = sec_data->map[span].type;
5471 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
5472
5473 if (span_type != 't')
5474 continue;
5475
5476 /* Span is entirely within a single 4KB region: skip scanning. */
5477 if (((base_vma + span_start) & ~0xfff)
5478 == ((base_vma + span_end) & ~0xfff))
5479 continue;
5480
5481 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
5482
5483 * The opcode is BLX.W, BL.W, B.W, Bcc.W
5484 * The branch target is in the same 4KB region as the
5485 first half of the branch.
5486 * The instruction before the branch is a 32-bit
5487 length non-branch instruction. */
5488 for (i = span_start; i < span_end;)
5489 {
5490 unsigned int insn = bfd_getl16 (&contents[i]);
5491 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
5492 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
5493
5494 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
5495 insn_32bit = TRUE;
5496
5497 if (insn_32bit)
5498 {
5499 /* Load the rest of the insn (in manual-friendly order). */
5500 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
5501
5502 /* Encoding T4: B<c>.W. */
5503 is_b = (insn & 0xf800d000) == 0xf0009000;
5504 /* Encoding T1: BL<c>.W. */
5505 is_bl = (insn & 0xf800d000) == 0xf000d000;
5506 /* Encoding T2: BLX<c>.W. */
5507 is_blx = (insn & 0xf800d000) == 0xf000c000;
5508 /* Encoding T3: B<c>.W (not permitted in IT block). */
5509 is_bcc = (insn & 0xf800d000) == 0xf0008000
5510 && (insn & 0x07f00000) != 0x03800000;
5511 }
5512
5513 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
5514
5515 if (((base_vma + i) & 0xfff) == 0xffe
5516 && insn_32bit
5517 && is_32bit_branch
5518 && last_was_32bit
5519 && ! last_was_branch)
5520 {
5521 bfd_signed_vma offset = 0;
5522 bfd_boolean force_target_arm = FALSE;
5523 bfd_boolean force_target_thumb = FALSE;
5524 bfd_vma target;
5525 enum elf32_arm_stub_type stub_type = arm_stub_none;
5526 struct a8_erratum_reloc key, *found;
5527 bfd_boolean use_plt = FALSE;
5528
5529 key.from = base_vma + i;
5530 found = (struct a8_erratum_reloc *)
5531 bsearch (&key, a8_relocs, num_a8_relocs,
5532 sizeof (struct a8_erratum_reloc),
5533 &a8_reloc_compare);
5534
5535 if (found)
5536 {
5537 char *error_message = NULL;
5538 struct elf_link_hash_entry *entry;
5539
5540 /* We don't care about the error returned from this
5541 function, only if there is glue or not. */
5542 entry = find_thumb_glue (info, found->sym_name,
5543 &error_message);
5544
5545 if (entry)
5546 found->non_a8_stub = TRUE;
5547
5548 /* Keep a simpler condition, for the sake of clarity. */
5549 if (htab->root.splt != NULL && found->hash != NULL
5550 && found->hash->root.plt.offset != (bfd_vma) -1)
5551 use_plt = TRUE;
5552
5553 if (found->r_type == R_ARM_THM_CALL)
5554 {
5555 if (found->branch_type == ST_BRANCH_TO_ARM
5556 || use_plt)
5557 force_target_arm = TRUE;
5558 else
5559 force_target_thumb = TRUE;
5560 }
5561 }
5562
5563 /* Check if we have an offending branch instruction. */
5564
5565 if (found && found->non_a8_stub)
5566 /* We've already made a stub for this instruction, e.g.
5567 it's a long branch or a Thumb->ARM stub. Assume that
5568 stub will suffice to work around the A8 erratum (see
5569 setting of always_after_branch above). */
5570 ;
5571 else if (is_bcc)
5572 {
5573 offset = (insn & 0x7ff) << 1;
5574 offset |= (insn & 0x3f0000) >> 4;
5575 offset |= (insn & 0x2000) ? 0x40000 : 0;
5576 offset |= (insn & 0x800) ? 0x80000 : 0;
5577 offset |= (insn & 0x4000000) ? 0x100000 : 0;
5578 if (offset & 0x100000)
5579 offset |= ~ ((bfd_signed_vma) 0xfffff);
5580 stub_type = arm_stub_a8_veneer_b_cond;
5581 }
5582 else if (is_b || is_bl || is_blx)
5583 {
5584 int s = (insn & 0x4000000) != 0;
5585 int j1 = (insn & 0x2000) != 0;
5586 int j2 = (insn & 0x800) != 0;
5587 int i1 = !(j1 ^ s);
5588 int i2 = !(j2 ^ s);
5589
5590 offset = (insn & 0x7ff) << 1;
5591 offset |= (insn & 0x3ff0000) >> 4;
5592 offset |= i2 << 22;
5593 offset |= i1 << 23;
5594 offset |= s << 24;
5595 if (offset & 0x1000000)
5596 offset |= ~ ((bfd_signed_vma) 0xffffff);
5597
5598 if (is_blx)
5599 offset &= ~ ((bfd_signed_vma) 3);
5600
5601 stub_type = is_blx ? arm_stub_a8_veneer_blx :
5602 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
5603 }
5604
5605 if (stub_type != arm_stub_none)
5606 {
5607 bfd_vma pc_for_insn = base_vma + i + 4;
5608
5609 /* The original instruction is a BL, but the target is
5610 an ARM instruction. If we were not making a stub,
5611 the BL would have been converted to a BLX. Use the
5612 BLX stub instead in that case. */
5613 if (htab->use_blx && force_target_arm
5614 && stub_type == arm_stub_a8_veneer_bl)
5615 {
5616 stub_type = arm_stub_a8_veneer_blx;
5617 is_blx = TRUE;
5618 is_bl = FALSE;
5619 }
5620 /* Conversely, if the original instruction was
5621 BLX but the target is Thumb mode, use the BL
5622 stub. */
5623 else if (force_target_thumb
5624 && stub_type == arm_stub_a8_veneer_blx)
5625 {
5626 stub_type = arm_stub_a8_veneer_bl;
5627 is_blx = FALSE;
5628 is_bl = TRUE;
5629 }
5630
5631 if (is_blx)
5632 pc_for_insn &= ~ ((bfd_vma) 3);
5633
5634 /* If we found a relocation, use the proper destination,
5635 not the offset in the (unrelocated) instruction.
5636 Note this is always done if we switched the stub type
5637 above. */
5638 if (found)
5639 offset =
5640 (bfd_signed_vma) (found->destination - pc_for_insn);
5641
5642 /* If the stub will use a Thumb-mode branch to a
5643 PLT target, redirect it to the preceding Thumb
5644 entry point. */
5645 if (stub_type != arm_stub_a8_veneer_blx && use_plt)
5646 offset -= PLT_THUMB_STUB_SIZE;
5647
5648 target = pc_for_insn + offset;
5649
5650 /* The BLX stub is ARM-mode code. Adjust the offset to
5651 take the different PC value (+8 instead of +4) into
5652 account. */
5653 if (stub_type == arm_stub_a8_veneer_blx)
5654 offset += 4;
5655
5656 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
5657 {
5658 char *stub_name = NULL;
5659
5660 if (num_a8_fixes == a8_fix_table_size)
5661 {
5662 a8_fix_table_size *= 2;
5663 a8_fixes = (struct a8_erratum_fix *)
5664 bfd_realloc (a8_fixes,
5665 sizeof (struct a8_erratum_fix)
5666 * a8_fix_table_size);
5667 }
5668
5669 if (num_a8_fixes < prev_num_a8_fixes)
5670 {
5671 /* If we're doing a subsequent scan,
5672 check if we've found the same fix as
5673 before, and try and reuse the stub
5674 name. */
5675 stub_name = a8_fixes[num_a8_fixes].stub_name;
5676 if ((a8_fixes[num_a8_fixes].section != section)
5677 || (a8_fixes[num_a8_fixes].offset != i))
5678 {
5679 free (stub_name);
5680 stub_name = NULL;
5681 *stub_changed_p = TRUE;
5682 }
5683 }
5684
5685 if (!stub_name)
5686 {
5687 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
5688 if (stub_name != NULL)
5689 sprintf (stub_name, "%x:%x", section->id, i);
5690 }
5691
5692 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
5693 a8_fixes[num_a8_fixes].section = section;
5694 a8_fixes[num_a8_fixes].offset = i;
5695 a8_fixes[num_a8_fixes].target_offset =
5696 target - base_vma;
5697 a8_fixes[num_a8_fixes].orig_insn = insn;
5698 a8_fixes[num_a8_fixes].stub_name = stub_name;
5699 a8_fixes[num_a8_fixes].stub_type = stub_type;
5700 a8_fixes[num_a8_fixes].branch_type =
5701 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
5702
5703 num_a8_fixes++;
5704 }
5705 }
5706 }
5707
5708 i += insn_32bit ? 4 : 2;
5709 last_was_32bit = insn_32bit;
5710 last_was_branch = is_32bit_branch;
5711 }
5712 }
5713
5714 if (elf_section_data (section)->this_hdr.contents == NULL)
5715 free (contents);
5716 }
5717
5718 *a8_fixes_p = a8_fixes;
5719 *num_a8_fixes_p = num_a8_fixes;
5720 *a8_fix_table_size_p = a8_fix_table_size;
5721
5722 return FALSE;
5723 }
5724
5725 /* Create or update a stub entry depending on whether the stub can already be
5726 found in HTAB. The stub is identified by:
5727 - its type STUB_TYPE
5728 - its source branch (note that several can share the same stub) whose
5729 section and relocation (if any) are given by SECTION and IRELA
5730 respectively
5731 - its target symbol whose input section, hash, name, value and branch type
5732 are given in SYM_SEC, HASH, SYM_NAME, SYM_VALUE and BRANCH_TYPE
5733 respectively
5734
5735 If found, the value of the stub's target symbol is updated from SYM_VALUE
5736 and *NEW_STUB is set to FALSE. Otherwise, *NEW_STUB is set to
5737 TRUE and the stub entry is initialized.
5738
5739 Returns the stub that was created or updated, or NULL if an error
5740 occurred. */
5741
5742 static struct elf32_arm_stub_hash_entry *
5743 elf32_arm_create_stub (struct elf32_arm_link_hash_table *htab,
5744 enum elf32_arm_stub_type stub_type, asection *section,
5745 Elf_Internal_Rela *irela, asection *sym_sec,
5746 struct elf32_arm_link_hash_entry *hash, char *sym_name,
5747 bfd_vma sym_value, enum arm_st_branch_type branch_type,
5748 bfd_boolean *new_stub)
5749 {
5750 const asection *id_sec;
5751 char *stub_name;
5752 struct elf32_arm_stub_hash_entry *stub_entry;
5753 unsigned int r_type;
5754 bfd_boolean sym_claimed = arm_stub_sym_claimed (stub_type);
5755
5756 BFD_ASSERT (stub_type != arm_stub_none);
5757 *new_stub = FALSE;
5758
5759 if (sym_claimed)
5760 stub_name = sym_name;
5761 else
5762 {
5763 BFD_ASSERT (irela);
5764 BFD_ASSERT (section);
5765 BFD_ASSERT (section->id <= htab->top_id);
5766
5767 /* Support for grouping stub sections. */
5768 id_sec = htab->stub_group[section->id].link_sec;
5769
5770 /* Get the name of this stub. */
5771 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela,
5772 stub_type);
5773 if (!stub_name)
5774 return NULL;
5775 }
5776
5777 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name, FALSE,
5778 FALSE);
5779 /* The proper stub has already been created, just update its value. */
5780 if (stub_entry != NULL)
5781 {
5782 if (!sym_claimed)
5783 free (stub_name);
5784 stub_entry->target_value = sym_value;
5785 return stub_entry;
5786 }
5787
5788 stub_entry = elf32_arm_add_stub (stub_name, section, htab, stub_type);
5789 if (stub_entry == NULL)
5790 {
5791 if (!sym_claimed)
5792 free (stub_name);
5793 return NULL;
5794 }
5795
5796 stub_entry->target_value = sym_value;
5797 stub_entry->target_section = sym_sec;
5798 stub_entry->stub_type = stub_type;
5799 stub_entry->h = hash;
5800 stub_entry->branch_type = branch_type;
5801
5802 if (sym_claimed)
5803 stub_entry->output_name = sym_name;
5804 else
5805 {
5806 if (sym_name == NULL)
5807 sym_name = "unnamed";
5808 stub_entry->output_name = (char *)
5809 bfd_alloc (htab->stub_bfd, sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5810 + strlen (sym_name));
5811 if (stub_entry->output_name == NULL)
5812 {
5813 free (stub_name);
5814 return NULL;
5815 }
5816
5817 /* For historical reasons, use the existing names for ARM-to-Thumb and
5818 Thumb-to-ARM stubs. */
5819 r_type = ELF32_R_TYPE (irela->r_info);
5820 if ((r_type == (unsigned int) R_ARM_THM_CALL
5821 || r_type == (unsigned int) R_ARM_THM_JUMP24
5822 || r_type == (unsigned int) R_ARM_THM_JUMP19)
5823 && branch_type == ST_BRANCH_TO_ARM)
5824 sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5825 else if ((r_type == (unsigned int) R_ARM_CALL
5826 || r_type == (unsigned int) R_ARM_JUMP24)
5827 && branch_type == ST_BRANCH_TO_THUMB)
5828 sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5829 else
5830 sprintf (stub_entry->output_name, STUB_ENTRY_NAME, sym_name);
5831 }
5832
5833 *new_stub = TRUE;
5834 return stub_entry;
5835 }
5836
5837 /* Scan symbols in INPUT_BFD to identify secure entry functions needing a
5838 gateway veneer to transition from non secure to secure state and create them
5839 accordingly.
5840
5841 "ARMv8-M Security Extensions: Requirements on Development Tools" document
5842 defines the conditions that govern Secure Gateway veneer creation for a
5843 given symbol <SYM> as follows:
5844 - it has function type
5845 - it has non local binding
5846 - a symbol named __acle_se_<SYM> (called special symbol) exists with the
5847 same type, binding and value as <SYM> (called normal symbol).
5848 An entry function can handle secure state transition itself in which case
5849 its special symbol would have a different value from the normal symbol.
5850
5851 OUT_ATTR gives the output attributes, SYM_HASHES the symbol index to hash
5852 entry mapping while HTAB gives the name to hash entry mapping.
5853 *CMSE_STUB_CREATED is increased by the number of secure gateway veneer
5854 created.
5855
5856 The return value gives whether a stub failed to be allocated. */
5857
5858 static bfd_boolean
5859 cmse_scan (bfd *input_bfd, struct elf32_arm_link_hash_table *htab,
5860 obj_attribute *out_attr, struct elf_link_hash_entry **sym_hashes,
5861 int *cmse_stub_created)
5862 {
5863 const struct elf_backend_data *bed;
5864 Elf_Internal_Shdr *symtab_hdr;
5865 unsigned i, j, sym_count, ext_start;
5866 Elf_Internal_Sym *cmse_sym, *local_syms;
5867 struct elf32_arm_link_hash_entry *hash, *cmse_hash = NULL;
5868 enum arm_st_branch_type branch_type;
5869 char *sym_name, *lsym_name;
5870 bfd_vma sym_value;
5871 asection *section;
5872 struct elf32_arm_stub_hash_entry *stub_entry;
5873 bfd_boolean is_v8m, new_stub, cmse_invalid, ret = TRUE;
5874
5875 bed = get_elf_backend_data (input_bfd);
5876 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5877 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
5878 ext_start = symtab_hdr->sh_info;
5879 is_v8m = (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
5880 && out_attr[Tag_CPU_arch_profile].i == 'M');
5881
5882 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
5883 if (local_syms == NULL)
5884 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
5885 symtab_hdr->sh_info, 0, NULL, NULL,
5886 NULL);
5887 if (symtab_hdr->sh_info && local_syms == NULL)
5888 return FALSE;
5889
5890 /* Scan symbols. */
5891 for (i = 0; i < sym_count; i++)
5892 {
5893 cmse_invalid = FALSE;
5894
5895 if (i < ext_start)
5896 {
5897 cmse_sym = &local_syms[i];
5898 /* Not a special symbol. */
5899 if (!ARM_GET_SYM_CMSE_SPCL (cmse_sym->st_target_internal))
5900 continue;
5901 sym_name = bfd_elf_string_from_elf_section (input_bfd,
5902 symtab_hdr->sh_link,
5903 cmse_sym->st_name);
5904 /* Special symbol with local binding. */
5905 cmse_invalid = TRUE;
5906 }
5907 else
5908 {
5909 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
5910 sym_name = (char *) cmse_hash->root.root.root.string;
5911
5912 /* Not a special symbol. */
5913 if (!ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
5914 continue;
5915
5916 /* Special symbol has incorrect binding or type. */
5917 if ((cmse_hash->root.root.type != bfd_link_hash_defined
5918 && cmse_hash->root.root.type != bfd_link_hash_defweak)
5919 || cmse_hash->root.type != STT_FUNC)
5920 cmse_invalid = TRUE;
5921 }
5922
5923 if (!is_v8m)
5924 {
5925 _bfd_error_handler (_("%pB: special symbol `%s' only allowed for "
5926 "ARMv8-M architecture or later"),
5927 input_bfd, sym_name);
5928 is_v8m = TRUE; /* Avoid multiple warning. */
5929 ret = FALSE;
5930 }
5931
5932 if (cmse_invalid)
5933 {
5934 _bfd_error_handler (_("%pB: invalid special symbol `%s'; it must be"
5935 " a global or weak function symbol"),
5936 input_bfd, sym_name);
5937 ret = FALSE;
5938 if (i < ext_start)
5939 continue;
5940 }
5941
5942 sym_name += strlen (CMSE_PREFIX);
5943 hash = (struct elf32_arm_link_hash_entry *)
5944 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
5945
5946 /* No associated normal symbol or it is neither global nor weak. */
5947 if (!hash
5948 || (hash->root.root.type != bfd_link_hash_defined
5949 && hash->root.root.type != bfd_link_hash_defweak)
5950 || hash->root.type != STT_FUNC)
5951 {
5952 /* Initialize here to avoid warning about use of possibly
5953 uninitialized variable. */
5954 j = 0;
5955
5956 if (!hash)
5957 {
5958 /* Searching for a normal symbol with local binding. */
5959 for (; j < ext_start; j++)
5960 {
5961 lsym_name =
5962 bfd_elf_string_from_elf_section (input_bfd,
5963 symtab_hdr->sh_link,
5964 local_syms[j].st_name);
5965 if (!strcmp (sym_name, lsym_name))
5966 break;
5967 }
5968 }
5969
5970 if (hash || j < ext_start)
5971 {
5972 _bfd_error_handler
5973 (_("%pB: invalid standard symbol `%s'; it must be "
5974 "a global or weak function symbol"),
5975 input_bfd, sym_name);
5976 }
5977 else
5978 _bfd_error_handler
5979 (_("%pB: absent standard symbol `%s'"), input_bfd, sym_name);
5980 ret = FALSE;
5981 if (!hash)
5982 continue;
5983 }
5984
5985 sym_value = hash->root.root.u.def.value;
5986 section = hash->root.root.u.def.section;
5987
5988 if (cmse_hash->root.root.u.def.section != section)
5989 {
5990 _bfd_error_handler
5991 (_("%pB: `%s' and its special symbol are in different sections"),
5992 input_bfd, sym_name);
5993 ret = FALSE;
5994 }
5995 if (cmse_hash->root.root.u.def.value != sym_value)
5996 continue; /* Ignore: could be an entry function starting with SG. */
5997
5998 /* If this section is a link-once section that will be discarded, then
5999 don't create any stubs. */
6000 if (section->output_section == NULL)
6001 {
6002 _bfd_error_handler
6003 (_("%pB: entry function `%s' not output"), input_bfd, sym_name);
6004 continue;
6005 }
6006
6007 if (hash->root.size == 0)
6008 {
6009 _bfd_error_handler
6010 (_("%pB: entry function `%s' is empty"), input_bfd, sym_name);
6011 ret = FALSE;
6012 }
6013
6014 if (!ret)
6015 continue;
6016 branch_type = ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
6017 stub_entry
6018 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
6019 NULL, NULL, section, hash, sym_name,
6020 sym_value, branch_type, &new_stub);
6021
6022 if (stub_entry == NULL)
6023 ret = FALSE;
6024 else
6025 {
6026 BFD_ASSERT (new_stub);
6027 (*cmse_stub_created)++;
6028 }
6029 }
6030
6031 if (!symtab_hdr->contents)
6032 free (local_syms);
6033 return ret;
6034 }
6035
6036 /* Return TRUE iff a symbol identified by its linker HASH entry is a secure
6037 code entry function, ie can be called from non secure code without using a
6038 veneer. */
6039
6040 static bfd_boolean
6041 cmse_entry_fct_p (struct elf32_arm_link_hash_entry *hash)
6042 {
6043 bfd_byte contents[4];
6044 uint32_t first_insn;
6045 asection *section;
6046 file_ptr offset;
6047 bfd *abfd;
6048
6049 /* Defined symbol of function type. */
6050 if (hash->root.root.type != bfd_link_hash_defined
6051 && hash->root.root.type != bfd_link_hash_defweak)
6052 return FALSE;
6053 if (hash->root.type != STT_FUNC)
6054 return FALSE;
6055
6056 /* Read first instruction. */
6057 section = hash->root.root.u.def.section;
6058 abfd = section->owner;
6059 offset = hash->root.root.u.def.value - section->vma;
6060 if (!bfd_get_section_contents (abfd, section, contents, offset,
6061 sizeof (contents)))
6062 return FALSE;
6063
6064 first_insn = bfd_get_32 (abfd, contents);
6065
6066 /* Starts by SG instruction. */
6067 return first_insn == 0xe97fe97f;
6068 }
6069
6070 /* Output the name (in symbol table) of the veneer GEN_ENTRY if it is a new
6071 secure gateway veneers (ie. the veneers was not in the input import library)
6072 and there is no output import library (GEN_INFO->out_implib_bfd is NULL. */
6073
6074 static bfd_boolean
6075 arm_list_new_cmse_stub (struct bfd_hash_entry *gen_entry, void *gen_info)
6076 {
6077 struct elf32_arm_stub_hash_entry *stub_entry;
6078 struct bfd_link_info *info;
6079
6080 /* Massage our args to the form they really have. */
6081 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
6082 info = (struct bfd_link_info *) gen_info;
6083
6084 if (info->out_implib_bfd)
6085 return TRUE;
6086
6087 if (stub_entry->stub_type != arm_stub_cmse_branch_thumb_only)
6088 return TRUE;
6089
6090 if (stub_entry->stub_offset == (bfd_vma) -1)
6091 _bfd_error_handler (" %s", stub_entry->output_name);
6092
6093 return TRUE;
6094 }
6095
6096 /* Set offset of each secure gateway veneers so that its address remain
6097 identical to the one in the input import library referred by
6098 HTAB->in_implib_bfd. A warning is issued for veneers that disappeared
6099 (present in input import library but absent from the executable being
6100 linked) or if new veneers appeared and there is no output import library
6101 (INFO->out_implib_bfd is NULL and *CMSE_STUB_CREATED is bigger than the
6102 number of secure gateway veneers found in the input import library.
6103
6104 The function returns whether an error occurred. If no error occurred,
6105 *CMSE_STUB_CREATED gives the number of SG veneers created by both cmse_scan
6106 and this function and HTAB->new_cmse_stub_offset is set to the biggest
6107 veneer observed set for new veneers to be layed out after. */
6108
6109 static bfd_boolean
6110 set_cmse_veneer_addr_from_implib (struct bfd_link_info *info,
6111 struct elf32_arm_link_hash_table *htab,
6112 int *cmse_stub_created)
6113 {
6114 long symsize;
6115 char *sym_name;
6116 flagword flags;
6117 long i, symcount;
6118 bfd *in_implib_bfd;
6119 asection *stub_out_sec;
6120 bfd_boolean ret = TRUE;
6121 Elf_Internal_Sym *intsym;
6122 const char *out_sec_name;
6123 bfd_size_type cmse_stub_size;
6124 asymbol **sympp = NULL, *sym;
6125 struct elf32_arm_link_hash_entry *hash;
6126 const insn_sequence *cmse_stub_template;
6127 struct elf32_arm_stub_hash_entry *stub_entry;
6128 int cmse_stub_template_size, new_cmse_stubs_created = *cmse_stub_created;
6129 bfd_vma veneer_value, stub_offset, next_cmse_stub_offset;
6130 bfd_vma cmse_stub_array_start = (bfd_vma) -1, cmse_stub_sec_vma = 0;
6131
6132 /* No input secure gateway import library. */
6133 if (!htab->in_implib_bfd)
6134 return TRUE;
6135
6136 in_implib_bfd = htab->in_implib_bfd;
6137 if (!htab->cmse_implib)
6138 {
6139 _bfd_error_handler (_("%pB: --in-implib only supported for Secure "
6140 "Gateway import libraries"), in_implib_bfd);
6141 return FALSE;
6142 }
6143
6144 /* Get symbol table size. */
6145 symsize = bfd_get_symtab_upper_bound (in_implib_bfd);
6146 if (symsize < 0)
6147 return FALSE;
6148
6149 /* Read in the input secure gateway import library's symbol table. */
6150 sympp = (asymbol **) xmalloc (symsize);
6151 symcount = bfd_canonicalize_symtab (in_implib_bfd, sympp);
6152 if (symcount < 0)
6153 {
6154 ret = FALSE;
6155 goto free_sym_buf;
6156 }
6157
6158 htab->new_cmse_stub_offset = 0;
6159 cmse_stub_size =
6160 find_stub_size_and_template (arm_stub_cmse_branch_thumb_only,
6161 &cmse_stub_template,
6162 &cmse_stub_template_size);
6163 out_sec_name =
6164 arm_dedicated_stub_output_section_name (arm_stub_cmse_branch_thumb_only);
6165 stub_out_sec =
6166 bfd_get_section_by_name (htab->obfd, out_sec_name);
6167 if (stub_out_sec != NULL)
6168 cmse_stub_sec_vma = stub_out_sec->vma;
6169
6170 /* Set addresses of veneers mentionned in input secure gateway import
6171 library's symbol table. */
6172 for (i = 0; i < symcount; i++)
6173 {
6174 sym = sympp[i];
6175 flags = sym->flags;
6176 sym_name = (char *) bfd_asymbol_name (sym);
6177 intsym = &((elf_symbol_type *) sym)->internal_elf_sym;
6178
6179 if (sym->section != bfd_abs_section_ptr
6180 || !(flags & (BSF_GLOBAL | BSF_WEAK))
6181 || (flags & BSF_FUNCTION) != BSF_FUNCTION
6182 || (ARM_GET_SYM_BRANCH_TYPE (intsym->st_target_internal)
6183 != ST_BRANCH_TO_THUMB))
6184 {
6185 _bfd_error_handler (_("%pB: invalid import library entry: `%s'; "
6186 "symbol should be absolute, global and "
6187 "refer to Thumb functions"),
6188 in_implib_bfd, sym_name);
6189 ret = FALSE;
6190 continue;
6191 }
6192
6193 veneer_value = bfd_asymbol_value (sym);
6194 stub_offset = veneer_value - cmse_stub_sec_vma;
6195 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, sym_name,
6196 FALSE, FALSE);
6197 hash = (struct elf32_arm_link_hash_entry *)
6198 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
6199
6200 /* Stub entry should have been created by cmse_scan or the symbol be of
6201 a secure function callable from non secure code. */
6202 if (!stub_entry && !hash)
6203 {
6204 bfd_boolean new_stub;
6205
6206 _bfd_error_handler
6207 (_("entry function `%s' disappeared from secure code"), sym_name);
6208 hash = (struct elf32_arm_link_hash_entry *)
6209 elf_link_hash_lookup (&(htab)->root, sym_name, TRUE, TRUE, TRUE);
6210 stub_entry
6211 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
6212 NULL, NULL, bfd_abs_section_ptr, hash,
6213 sym_name, veneer_value,
6214 ST_BRANCH_TO_THUMB, &new_stub);
6215 if (stub_entry == NULL)
6216 ret = FALSE;
6217 else
6218 {
6219 BFD_ASSERT (new_stub);
6220 new_cmse_stubs_created++;
6221 (*cmse_stub_created)++;
6222 }
6223 stub_entry->stub_template_size = stub_entry->stub_size = 0;
6224 stub_entry->stub_offset = stub_offset;
6225 }
6226 /* Symbol found is not callable from non secure code. */
6227 else if (!stub_entry)
6228 {
6229 if (!cmse_entry_fct_p (hash))
6230 {
6231 _bfd_error_handler (_("`%s' refers to a non entry function"),
6232 sym_name);
6233 ret = FALSE;
6234 }
6235 continue;
6236 }
6237 else
6238 {
6239 /* Only stubs for SG veneers should have been created. */
6240 BFD_ASSERT (stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
6241
6242 /* Check visibility hasn't changed. */
6243 if (!!(flags & BSF_GLOBAL)
6244 != (hash->root.root.type == bfd_link_hash_defined))
6245 _bfd_error_handler
6246 (_("%pB: visibility of symbol `%s' has changed"), in_implib_bfd,
6247 sym_name);
6248
6249 stub_entry->stub_offset = stub_offset;
6250 }
6251
6252 /* Size should match that of a SG veneer. */
6253 if (intsym->st_size != cmse_stub_size)
6254 {
6255 _bfd_error_handler (_("%pB: incorrect size for symbol `%s'"),
6256 in_implib_bfd, sym_name);
6257 ret = FALSE;
6258 }
6259
6260 /* Previous veneer address is before current SG veneer section. */
6261 if (veneer_value < cmse_stub_sec_vma)
6262 {
6263 /* Avoid offset underflow. */
6264 if (stub_entry)
6265 stub_entry->stub_offset = 0;
6266 stub_offset = 0;
6267 ret = FALSE;
6268 }
6269
6270 /* Complain if stub offset not a multiple of stub size. */
6271 if (stub_offset % cmse_stub_size)
6272 {
6273 _bfd_error_handler
6274 (_("offset of veneer for entry function `%s' not a multiple of "
6275 "its size"), sym_name);
6276 ret = FALSE;
6277 }
6278
6279 if (!ret)
6280 continue;
6281
6282 new_cmse_stubs_created--;
6283 if (veneer_value < cmse_stub_array_start)
6284 cmse_stub_array_start = veneer_value;
6285 next_cmse_stub_offset = stub_offset + ((cmse_stub_size + 7) & ~7);
6286 if (next_cmse_stub_offset > htab->new_cmse_stub_offset)
6287 htab->new_cmse_stub_offset = next_cmse_stub_offset;
6288 }
6289
6290 if (!info->out_implib_bfd && new_cmse_stubs_created != 0)
6291 {
6292 BFD_ASSERT (new_cmse_stubs_created > 0);
6293 _bfd_error_handler
6294 (_("new entry function(s) introduced but no output import library "
6295 "specified:"));
6296 bfd_hash_traverse (&htab->stub_hash_table, arm_list_new_cmse_stub, info);
6297 }
6298
6299 if (cmse_stub_array_start != cmse_stub_sec_vma)
6300 {
6301 _bfd_error_handler
6302 (_("start address of `%s' is different from previous link"),
6303 out_sec_name);
6304 ret = FALSE;
6305 }
6306
6307 free_sym_buf:
6308 free (sympp);
6309 return ret;
6310 }
6311
6312 /* Determine and set the size of the stub section for a final link.
6313
6314 The basic idea here is to examine all the relocations looking for
6315 PC-relative calls to a target that is unreachable with a "bl"
6316 instruction. */
6317
6318 bfd_boolean
6319 elf32_arm_size_stubs (bfd *output_bfd,
6320 bfd *stub_bfd,
6321 struct bfd_link_info *info,
6322 bfd_signed_vma group_size,
6323 asection * (*add_stub_section) (const char *, asection *,
6324 asection *,
6325 unsigned int),
6326 void (*layout_sections_again) (void))
6327 {
6328 bfd_boolean ret = TRUE;
6329 obj_attribute *out_attr;
6330 int cmse_stub_created = 0;
6331 bfd_size_type stub_group_size;
6332 bfd_boolean m_profile, stubs_always_after_branch, first_veneer_scan = TRUE;
6333 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
6334 struct a8_erratum_fix *a8_fixes = NULL;
6335 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
6336 struct a8_erratum_reloc *a8_relocs = NULL;
6337 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
6338
6339 if (htab == NULL)
6340 return FALSE;
6341
6342 if (htab->fix_cortex_a8)
6343 {
6344 a8_fixes = (struct a8_erratum_fix *)
6345 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
6346 a8_relocs = (struct a8_erratum_reloc *)
6347 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
6348 }
6349
6350 /* Propagate mach to stub bfd, because it may not have been
6351 finalized when we created stub_bfd. */
6352 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
6353 bfd_get_mach (output_bfd));
6354
6355 /* Stash our params away. */
6356 htab->stub_bfd = stub_bfd;
6357 htab->add_stub_section = add_stub_section;
6358 htab->layout_sections_again = layout_sections_again;
6359 stubs_always_after_branch = group_size < 0;
6360
6361 out_attr = elf_known_obj_attributes_proc (output_bfd);
6362 m_profile = out_attr[Tag_CPU_arch_profile].i == 'M';
6363
6364 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
6365 as the first half of a 32-bit branch straddling two 4K pages. This is a
6366 crude way of enforcing that. */
6367 if (htab->fix_cortex_a8)
6368 stubs_always_after_branch = 1;
6369
6370 if (group_size < 0)
6371 stub_group_size = -group_size;
6372 else
6373 stub_group_size = group_size;
6374
6375 if (stub_group_size == 1)
6376 {
6377 /* Default values. */
6378 /* Thumb branch range is +-4MB has to be used as the default
6379 maximum size (a given section can contain both ARM and Thumb
6380 code, so the worst case has to be taken into account).
6381
6382 This value is 24K less than that, which allows for 2025
6383 12-byte stubs. If we exceed that, then we will fail to link.
6384 The user will have to relink with an explicit group size
6385 option. */
6386 stub_group_size = 4170000;
6387 }
6388
6389 group_sections (htab, stub_group_size, stubs_always_after_branch);
6390
6391 /* If we're applying the cortex A8 fix, we need to determine the
6392 program header size now, because we cannot change it later --
6393 that could alter section placements. Notice the A8 erratum fix
6394 ends up requiring the section addresses to remain unchanged
6395 modulo the page size. That's something we cannot represent
6396 inside BFD, and we don't want to force the section alignment to
6397 be the page size. */
6398 if (htab->fix_cortex_a8)
6399 (*htab->layout_sections_again) ();
6400
6401 while (1)
6402 {
6403 bfd *input_bfd;
6404 unsigned int bfd_indx;
6405 asection *stub_sec;
6406 enum elf32_arm_stub_type stub_type;
6407 bfd_boolean stub_changed = FALSE;
6408 unsigned prev_num_a8_fixes = num_a8_fixes;
6409
6410 num_a8_fixes = 0;
6411 for (input_bfd = info->input_bfds, bfd_indx = 0;
6412 input_bfd != NULL;
6413 input_bfd = input_bfd->link.next, bfd_indx++)
6414 {
6415 Elf_Internal_Shdr *symtab_hdr;
6416 asection *section;
6417 Elf_Internal_Sym *local_syms = NULL;
6418
6419 if (!is_arm_elf (input_bfd))
6420 continue;
6421
6422 num_a8_relocs = 0;
6423
6424 /* We'll need the symbol table in a second. */
6425 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6426 if (symtab_hdr->sh_info == 0)
6427 continue;
6428
6429 /* Limit scan of symbols to object file whose profile is
6430 Microcontroller to not hinder performance in the general case. */
6431 if (m_profile && first_veneer_scan)
6432 {
6433 struct elf_link_hash_entry **sym_hashes;
6434
6435 sym_hashes = elf_sym_hashes (input_bfd);
6436 if (!cmse_scan (input_bfd, htab, out_attr, sym_hashes,
6437 &cmse_stub_created))
6438 goto error_ret_free_local;
6439
6440 if (cmse_stub_created != 0)
6441 stub_changed = TRUE;
6442 }
6443
6444 /* Walk over each section attached to the input bfd. */
6445 for (section = input_bfd->sections;
6446 section != NULL;
6447 section = section->next)
6448 {
6449 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
6450
6451 /* If there aren't any relocs, then there's nothing more
6452 to do. */
6453 if ((section->flags & SEC_RELOC) == 0
6454 || section->reloc_count == 0
6455 || (section->flags & SEC_CODE) == 0)
6456 continue;
6457
6458 /* If this section is a link-once section that will be
6459 discarded, then don't create any stubs. */
6460 if (section->output_section == NULL
6461 || section->output_section->owner != output_bfd)
6462 continue;
6463
6464 /* Get the relocs. */
6465 internal_relocs
6466 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
6467 NULL, info->keep_memory);
6468 if (internal_relocs == NULL)
6469 goto error_ret_free_local;
6470
6471 /* Now examine each relocation. */
6472 irela = internal_relocs;
6473 irelaend = irela + section->reloc_count;
6474 for (; irela < irelaend; irela++)
6475 {
6476 unsigned int r_type, r_indx;
6477 asection *sym_sec;
6478 bfd_vma sym_value;
6479 bfd_vma destination;
6480 struct elf32_arm_link_hash_entry *hash;
6481 const char *sym_name;
6482 unsigned char st_type;
6483 enum arm_st_branch_type branch_type;
6484 bfd_boolean created_stub = FALSE;
6485
6486 r_type = ELF32_R_TYPE (irela->r_info);
6487 r_indx = ELF32_R_SYM (irela->r_info);
6488
6489 if (r_type >= (unsigned int) R_ARM_max)
6490 {
6491 bfd_set_error (bfd_error_bad_value);
6492 error_ret_free_internal:
6493 if (elf_section_data (section)->relocs == NULL)
6494 free (internal_relocs);
6495 /* Fall through. */
6496 error_ret_free_local:
6497 if (local_syms != NULL
6498 && (symtab_hdr->contents
6499 != (unsigned char *) local_syms))
6500 free (local_syms);
6501 return FALSE;
6502 }
6503
6504 hash = NULL;
6505 if (r_indx >= symtab_hdr->sh_info)
6506 hash = elf32_arm_hash_entry
6507 (elf_sym_hashes (input_bfd)
6508 [r_indx - symtab_hdr->sh_info]);
6509
6510 /* Only look for stubs on branch instructions, or
6511 non-relaxed TLSCALL */
6512 if ((r_type != (unsigned int) R_ARM_CALL)
6513 && (r_type != (unsigned int) R_ARM_THM_CALL)
6514 && (r_type != (unsigned int) R_ARM_JUMP24)
6515 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
6516 && (r_type != (unsigned int) R_ARM_THM_XPC22)
6517 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
6518 && (r_type != (unsigned int) R_ARM_PLT32)
6519 && !((r_type == (unsigned int) R_ARM_TLS_CALL
6520 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6521 && r_type == elf32_arm_tls_transition
6522 (info, r_type, &hash->root)
6523 && ((hash ? hash->tls_type
6524 : (elf32_arm_local_got_tls_type
6525 (input_bfd)[r_indx]))
6526 & GOT_TLS_GDESC) != 0))
6527 continue;
6528
6529 /* Now determine the call target, its name, value,
6530 section. */
6531 sym_sec = NULL;
6532 sym_value = 0;
6533 destination = 0;
6534 sym_name = NULL;
6535
6536 if (r_type == (unsigned int) R_ARM_TLS_CALL
6537 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6538 {
6539 /* A non-relaxed TLS call. The target is the
6540 plt-resident trampoline and nothing to do
6541 with the symbol. */
6542 BFD_ASSERT (htab->tls_trampoline > 0);
6543 sym_sec = htab->root.splt;
6544 sym_value = htab->tls_trampoline;
6545 hash = 0;
6546 st_type = STT_FUNC;
6547 branch_type = ST_BRANCH_TO_ARM;
6548 }
6549 else if (!hash)
6550 {
6551 /* It's a local symbol. */
6552 Elf_Internal_Sym *sym;
6553
6554 if (local_syms == NULL)
6555 {
6556 local_syms
6557 = (Elf_Internal_Sym *) symtab_hdr->contents;
6558 if (local_syms == NULL)
6559 local_syms
6560 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
6561 symtab_hdr->sh_info, 0,
6562 NULL, NULL, NULL);
6563 if (local_syms == NULL)
6564 goto error_ret_free_internal;
6565 }
6566
6567 sym = local_syms + r_indx;
6568 if (sym->st_shndx == SHN_UNDEF)
6569 sym_sec = bfd_und_section_ptr;
6570 else if (sym->st_shndx == SHN_ABS)
6571 sym_sec = bfd_abs_section_ptr;
6572 else if (sym->st_shndx == SHN_COMMON)
6573 sym_sec = bfd_com_section_ptr;
6574 else
6575 sym_sec =
6576 bfd_section_from_elf_index (input_bfd, sym->st_shndx);
6577
6578 if (!sym_sec)
6579 /* This is an undefined symbol. It can never
6580 be resolved. */
6581 continue;
6582
6583 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
6584 sym_value = sym->st_value;
6585 destination = (sym_value + irela->r_addend
6586 + sym_sec->output_offset
6587 + sym_sec->output_section->vma);
6588 st_type = ELF_ST_TYPE (sym->st_info);
6589 branch_type =
6590 ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
6591 sym_name
6592 = bfd_elf_string_from_elf_section (input_bfd,
6593 symtab_hdr->sh_link,
6594 sym->st_name);
6595 }
6596 else
6597 {
6598 /* It's an external symbol. */
6599 while (hash->root.root.type == bfd_link_hash_indirect
6600 || hash->root.root.type == bfd_link_hash_warning)
6601 hash = ((struct elf32_arm_link_hash_entry *)
6602 hash->root.root.u.i.link);
6603
6604 if (hash->root.root.type == bfd_link_hash_defined
6605 || hash->root.root.type == bfd_link_hash_defweak)
6606 {
6607 sym_sec = hash->root.root.u.def.section;
6608 sym_value = hash->root.root.u.def.value;
6609
6610 struct elf32_arm_link_hash_table *globals =
6611 elf32_arm_hash_table (info);
6612
6613 /* For a destination in a shared library,
6614 use the PLT stub as target address to
6615 decide whether a branch stub is
6616 needed. */
6617 if (globals != NULL
6618 && globals->root.splt != NULL
6619 && hash != NULL
6620 && hash->root.plt.offset != (bfd_vma) -1)
6621 {
6622 sym_sec = globals->root.splt;
6623 sym_value = hash->root.plt.offset;
6624 if (sym_sec->output_section != NULL)
6625 destination = (sym_value
6626 + sym_sec->output_offset
6627 + sym_sec->output_section->vma);
6628 }
6629 else if (sym_sec->output_section != NULL)
6630 destination = (sym_value + irela->r_addend
6631 + sym_sec->output_offset
6632 + sym_sec->output_section->vma);
6633 }
6634 else if ((hash->root.root.type == bfd_link_hash_undefined)
6635 || (hash->root.root.type == bfd_link_hash_undefweak))
6636 {
6637 /* For a shared library, use the PLT stub as
6638 target address to decide whether a long
6639 branch stub is needed.
6640 For absolute code, they cannot be handled. */
6641 struct elf32_arm_link_hash_table *globals =
6642 elf32_arm_hash_table (info);
6643
6644 if (globals != NULL
6645 && globals->root.splt != NULL
6646 && hash != NULL
6647 && hash->root.plt.offset != (bfd_vma) -1)
6648 {
6649 sym_sec = globals->root.splt;
6650 sym_value = hash->root.plt.offset;
6651 if (sym_sec->output_section != NULL)
6652 destination = (sym_value
6653 + sym_sec->output_offset
6654 + sym_sec->output_section->vma);
6655 }
6656 else
6657 continue;
6658 }
6659 else
6660 {
6661 bfd_set_error (bfd_error_bad_value);
6662 goto error_ret_free_internal;
6663 }
6664 st_type = hash->root.type;
6665 branch_type =
6666 ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
6667 sym_name = hash->root.root.root.string;
6668 }
6669
6670 do
6671 {
6672 bfd_boolean new_stub;
6673 struct elf32_arm_stub_hash_entry *stub_entry;
6674
6675 /* Determine what (if any) linker stub is needed. */
6676 stub_type = arm_type_of_stub (info, section, irela,
6677 st_type, &branch_type,
6678 hash, destination, sym_sec,
6679 input_bfd, sym_name);
6680 if (stub_type == arm_stub_none)
6681 break;
6682
6683 /* We've either created a stub for this reloc already,
6684 or we are about to. */
6685 stub_entry =
6686 elf32_arm_create_stub (htab, stub_type, section, irela,
6687 sym_sec, hash,
6688 (char *) sym_name, sym_value,
6689 branch_type, &new_stub);
6690
6691 created_stub = stub_entry != NULL;
6692 if (!created_stub)
6693 goto error_ret_free_internal;
6694 else if (!new_stub)
6695 break;
6696 else
6697 stub_changed = TRUE;
6698 }
6699 while (0);
6700
6701 /* Look for relocations which might trigger Cortex-A8
6702 erratum. */
6703 if (htab->fix_cortex_a8
6704 && (r_type == (unsigned int) R_ARM_THM_JUMP24
6705 || r_type == (unsigned int) R_ARM_THM_JUMP19
6706 || r_type == (unsigned int) R_ARM_THM_CALL
6707 || r_type == (unsigned int) R_ARM_THM_XPC22))
6708 {
6709 bfd_vma from = section->output_section->vma
6710 + section->output_offset
6711 + irela->r_offset;
6712
6713 if ((from & 0xfff) == 0xffe)
6714 {
6715 /* Found a candidate. Note we haven't checked the
6716 destination is within 4K here: if we do so (and
6717 don't create an entry in a8_relocs) we can't tell
6718 that a branch should have been relocated when
6719 scanning later. */
6720 if (num_a8_relocs == a8_reloc_table_size)
6721 {
6722 a8_reloc_table_size *= 2;
6723 a8_relocs = (struct a8_erratum_reloc *)
6724 bfd_realloc (a8_relocs,
6725 sizeof (struct a8_erratum_reloc)
6726 * a8_reloc_table_size);
6727 }
6728
6729 a8_relocs[num_a8_relocs].from = from;
6730 a8_relocs[num_a8_relocs].destination = destination;
6731 a8_relocs[num_a8_relocs].r_type = r_type;
6732 a8_relocs[num_a8_relocs].branch_type = branch_type;
6733 a8_relocs[num_a8_relocs].sym_name = sym_name;
6734 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
6735 a8_relocs[num_a8_relocs].hash = hash;
6736
6737 num_a8_relocs++;
6738 }
6739 }
6740 }
6741
6742 /* We're done with the internal relocs, free them. */
6743 if (elf_section_data (section)->relocs == NULL)
6744 free (internal_relocs);
6745 }
6746
6747 if (htab->fix_cortex_a8)
6748 {
6749 /* Sort relocs which might apply to Cortex-A8 erratum. */
6750 qsort (a8_relocs, num_a8_relocs,
6751 sizeof (struct a8_erratum_reloc),
6752 &a8_reloc_compare);
6753
6754 /* Scan for branches which might trigger Cortex-A8 erratum. */
6755 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
6756 &num_a8_fixes, &a8_fix_table_size,
6757 a8_relocs, num_a8_relocs,
6758 prev_num_a8_fixes, &stub_changed)
6759 != 0)
6760 goto error_ret_free_local;
6761 }
6762
6763 if (local_syms != NULL
6764 && symtab_hdr->contents != (unsigned char *) local_syms)
6765 {
6766 if (!info->keep_memory)
6767 free (local_syms);
6768 else
6769 symtab_hdr->contents = (unsigned char *) local_syms;
6770 }
6771 }
6772
6773 if (first_veneer_scan
6774 && !set_cmse_veneer_addr_from_implib (info, htab,
6775 &cmse_stub_created))
6776 ret = FALSE;
6777
6778 if (prev_num_a8_fixes != num_a8_fixes)
6779 stub_changed = TRUE;
6780
6781 if (!stub_changed)
6782 break;
6783
6784 /* OK, we've added some stubs. Find out the new size of the
6785 stub sections. */
6786 for (stub_sec = htab->stub_bfd->sections;
6787 stub_sec != NULL;
6788 stub_sec = stub_sec->next)
6789 {
6790 /* Ignore non-stub sections. */
6791 if (!strstr (stub_sec->name, STUB_SUFFIX))
6792 continue;
6793
6794 stub_sec->size = 0;
6795 }
6796
6797 /* Add new SG veneers after those already in the input import
6798 library. */
6799 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6800 stub_type++)
6801 {
6802 bfd_vma *start_offset_p;
6803 asection **stub_sec_p;
6804
6805 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
6806 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6807 if (start_offset_p == NULL)
6808 continue;
6809
6810 BFD_ASSERT (stub_sec_p != NULL);
6811 if (*stub_sec_p != NULL)
6812 (*stub_sec_p)->size = *start_offset_p;
6813 }
6814
6815 /* Compute stub section size, considering padding. */
6816 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
6817 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6818 stub_type++)
6819 {
6820 int size, padding;
6821 asection **stub_sec_p;
6822
6823 padding = arm_dedicated_stub_section_padding (stub_type);
6824 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6825 /* Skip if no stub input section or no stub section padding
6826 required. */
6827 if ((stub_sec_p != NULL && *stub_sec_p == NULL) || padding == 0)
6828 continue;
6829 /* Stub section padding required but no dedicated section. */
6830 BFD_ASSERT (stub_sec_p);
6831
6832 size = (*stub_sec_p)->size;
6833 size = (size + padding - 1) & ~(padding - 1);
6834 (*stub_sec_p)->size = size;
6835 }
6836
6837 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
6838 if (htab->fix_cortex_a8)
6839 for (i = 0; i < num_a8_fixes; i++)
6840 {
6841 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
6842 a8_fixes[i].section, htab, a8_fixes[i].stub_type);
6843
6844 if (stub_sec == NULL)
6845 return FALSE;
6846
6847 stub_sec->size
6848 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
6849 NULL);
6850 }
6851
6852
6853 /* Ask the linker to do its stuff. */
6854 (*htab->layout_sections_again) ();
6855 first_veneer_scan = FALSE;
6856 }
6857
6858 /* Add stubs for Cortex-A8 erratum fixes now. */
6859 if (htab->fix_cortex_a8)
6860 {
6861 for (i = 0; i < num_a8_fixes; i++)
6862 {
6863 struct elf32_arm_stub_hash_entry *stub_entry;
6864 char *stub_name = a8_fixes[i].stub_name;
6865 asection *section = a8_fixes[i].section;
6866 unsigned int section_id = a8_fixes[i].section->id;
6867 asection *link_sec = htab->stub_group[section_id].link_sec;
6868 asection *stub_sec = htab->stub_group[section_id].stub_sec;
6869 const insn_sequence *template_sequence;
6870 int template_size, size = 0;
6871
6872 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
6873 TRUE, FALSE);
6874 if (stub_entry == NULL)
6875 {
6876 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
6877 section->owner, stub_name);
6878 return FALSE;
6879 }
6880
6881 stub_entry->stub_sec = stub_sec;
6882 stub_entry->stub_offset = (bfd_vma) -1;
6883 stub_entry->id_sec = link_sec;
6884 stub_entry->stub_type = a8_fixes[i].stub_type;
6885 stub_entry->source_value = a8_fixes[i].offset;
6886 stub_entry->target_section = a8_fixes[i].section;
6887 stub_entry->target_value = a8_fixes[i].target_offset;
6888 stub_entry->orig_insn = a8_fixes[i].orig_insn;
6889 stub_entry->branch_type = a8_fixes[i].branch_type;
6890
6891 size = find_stub_size_and_template (a8_fixes[i].stub_type,
6892 &template_sequence,
6893 &template_size);
6894
6895 stub_entry->stub_size = size;
6896 stub_entry->stub_template = template_sequence;
6897 stub_entry->stub_template_size = template_size;
6898 }
6899
6900 /* Stash the Cortex-A8 erratum fix array for use later in
6901 elf32_arm_write_section(). */
6902 htab->a8_erratum_fixes = a8_fixes;
6903 htab->num_a8_erratum_fixes = num_a8_fixes;
6904 }
6905 else
6906 {
6907 htab->a8_erratum_fixes = NULL;
6908 htab->num_a8_erratum_fixes = 0;
6909 }
6910 return ret;
6911 }
6912
6913 /* Build all the stubs associated with the current output file. The
6914 stubs are kept in a hash table attached to the main linker hash
6915 table. We also set up the .plt entries for statically linked PIC
6916 functions here. This function is called via arm_elf_finish in the
6917 linker. */
6918
6919 bfd_boolean
6920 elf32_arm_build_stubs (struct bfd_link_info *info)
6921 {
6922 asection *stub_sec;
6923 struct bfd_hash_table *table;
6924 enum elf32_arm_stub_type stub_type;
6925 struct elf32_arm_link_hash_table *htab;
6926
6927 htab = elf32_arm_hash_table (info);
6928 if (htab == NULL)
6929 return FALSE;
6930
6931 for (stub_sec = htab->stub_bfd->sections;
6932 stub_sec != NULL;
6933 stub_sec = stub_sec->next)
6934 {
6935 bfd_size_type size;
6936
6937 /* Ignore non-stub sections. */
6938 if (!strstr (stub_sec->name, STUB_SUFFIX))
6939 continue;
6940
6941 /* Allocate memory to hold the linker stubs. Zeroing the stub sections
6942 must at least be done for stub section requiring padding and for SG
6943 veneers to ensure that a non secure code branching to a removed SG
6944 veneer causes an error. */
6945 size = stub_sec->size;
6946 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
6947 if (stub_sec->contents == NULL && size != 0)
6948 return FALSE;
6949
6950 stub_sec->size = 0;
6951 }
6952
6953 /* Add new SG veneers after those already in the input import library. */
6954 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
6955 {
6956 bfd_vma *start_offset_p;
6957 asection **stub_sec_p;
6958
6959 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
6960 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6961 if (start_offset_p == NULL)
6962 continue;
6963
6964 BFD_ASSERT (stub_sec_p != NULL);
6965 if (*stub_sec_p != NULL)
6966 (*stub_sec_p)->size = *start_offset_p;
6967 }
6968
6969 /* Build the stubs as directed by the stub hash table. */
6970 table = &htab->stub_hash_table;
6971 bfd_hash_traverse (table, arm_build_one_stub, info);
6972 if (htab->fix_cortex_a8)
6973 {
6974 /* Place the cortex a8 stubs last. */
6975 htab->fix_cortex_a8 = -1;
6976 bfd_hash_traverse (table, arm_build_one_stub, info);
6977 }
6978
6979 return TRUE;
6980 }
6981
6982 /* Locate the Thumb encoded calling stub for NAME. */
6983
6984 static struct elf_link_hash_entry *
6985 find_thumb_glue (struct bfd_link_info *link_info,
6986 const char *name,
6987 char **error_message)
6988 {
6989 char *tmp_name;
6990 struct elf_link_hash_entry *hash;
6991 struct elf32_arm_link_hash_table *hash_table;
6992
6993 /* We need a pointer to the armelf specific hash table. */
6994 hash_table = elf32_arm_hash_table (link_info);
6995 if (hash_table == NULL)
6996 return NULL;
6997
6998 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
6999 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
7000
7001 BFD_ASSERT (tmp_name);
7002
7003 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
7004
7005 hash = elf_link_hash_lookup
7006 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
7007
7008 if (hash == NULL
7009 && asprintf (error_message, _("unable to find %s glue '%s' for '%s'"),
7010 "Thumb", tmp_name, name) == -1)
7011 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
7012
7013 free (tmp_name);
7014
7015 return hash;
7016 }
7017
7018 /* Locate the ARM encoded calling stub for NAME. */
7019
7020 static struct elf_link_hash_entry *
7021 find_arm_glue (struct bfd_link_info *link_info,
7022 const char *name,
7023 char **error_message)
7024 {
7025 char *tmp_name;
7026 struct elf_link_hash_entry *myh;
7027 struct elf32_arm_link_hash_table *hash_table;
7028
7029 /* We need a pointer to the elfarm specific hash table. */
7030 hash_table = elf32_arm_hash_table (link_info);
7031 if (hash_table == NULL)
7032 return NULL;
7033
7034 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
7035 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
7036
7037 BFD_ASSERT (tmp_name);
7038
7039 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
7040
7041 myh = elf_link_hash_lookup
7042 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
7043
7044 if (myh == NULL
7045 && asprintf (error_message, _("unable to find %s glue '%s' for '%s'"),
7046 "ARM", tmp_name, name) == -1)
7047 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
7048
7049 free (tmp_name);
7050
7051 return myh;
7052 }
7053
7054 /* ARM->Thumb glue (static images):
7055
7056 .arm
7057 __func_from_arm:
7058 ldr r12, __func_addr
7059 bx r12
7060 __func_addr:
7061 .word func @ behave as if you saw a ARM_32 reloc.
7062
7063 (v5t static images)
7064 .arm
7065 __func_from_arm:
7066 ldr pc, __func_addr
7067 __func_addr:
7068 .word func @ behave as if you saw a ARM_32 reloc.
7069
7070 (relocatable images)
7071 .arm
7072 __func_from_arm:
7073 ldr r12, __func_offset
7074 add r12, r12, pc
7075 bx r12
7076 __func_offset:
7077 .word func - . */
7078
7079 #define ARM2THUMB_STATIC_GLUE_SIZE 12
7080 static const insn32 a2t1_ldr_insn = 0xe59fc000;
7081 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
7082 static const insn32 a2t3_func_addr_insn = 0x00000001;
7083
7084 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
7085 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
7086 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
7087
7088 #define ARM2THUMB_PIC_GLUE_SIZE 16
7089 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
7090 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
7091 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
7092
7093 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
7094
7095 .thumb .thumb
7096 .align 2 .align 2
7097 __func_from_thumb: __func_from_thumb:
7098 bx pc push {r6, lr}
7099 nop ldr r6, __func_addr
7100 .arm mov lr, pc
7101 b func bx r6
7102 .arm
7103 ;; back_to_thumb
7104 ldmia r13! {r6, lr}
7105 bx lr
7106 __func_addr:
7107 .word func */
7108
7109 #define THUMB2ARM_GLUE_SIZE 8
7110 static const insn16 t2a1_bx_pc_insn = 0x4778;
7111 static const insn16 t2a2_noop_insn = 0x46c0;
7112 static const insn32 t2a3_b_insn = 0xea000000;
7113
7114 #define VFP11_ERRATUM_VENEER_SIZE 8
7115 #define STM32L4XX_ERRATUM_LDM_VENEER_SIZE 16
7116 #define STM32L4XX_ERRATUM_VLDM_VENEER_SIZE 24
7117
7118 #define ARM_BX_VENEER_SIZE 12
7119 static const insn32 armbx1_tst_insn = 0xe3100001;
7120 static const insn32 armbx2_moveq_insn = 0x01a0f000;
7121 static const insn32 armbx3_bx_insn = 0xe12fff10;
7122
7123 #ifndef ELFARM_NABI_C_INCLUDED
7124 static void
7125 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
7126 {
7127 asection * s;
7128 bfd_byte * contents;
7129
7130 if (size == 0)
7131 {
7132 /* Do not include empty glue sections in the output. */
7133 if (abfd != NULL)
7134 {
7135 s = bfd_get_linker_section (abfd, name);
7136 if (s != NULL)
7137 s->flags |= SEC_EXCLUDE;
7138 }
7139 return;
7140 }
7141
7142 BFD_ASSERT (abfd != NULL);
7143
7144 s = bfd_get_linker_section (abfd, name);
7145 BFD_ASSERT (s != NULL);
7146
7147 contents = (bfd_byte *) bfd_alloc (abfd, size);
7148
7149 BFD_ASSERT (s->size == size);
7150 s->contents = contents;
7151 }
7152
7153 bfd_boolean
7154 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
7155 {
7156 struct elf32_arm_link_hash_table * globals;
7157
7158 globals = elf32_arm_hash_table (info);
7159 BFD_ASSERT (globals != NULL);
7160
7161 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7162 globals->arm_glue_size,
7163 ARM2THUMB_GLUE_SECTION_NAME);
7164
7165 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7166 globals->thumb_glue_size,
7167 THUMB2ARM_GLUE_SECTION_NAME);
7168
7169 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7170 globals->vfp11_erratum_glue_size,
7171 VFP11_ERRATUM_VENEER_SECTION_NAME);
7172
7173 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7174 globals->stm32l4xx_erratum_glue_size,
7175 STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7176
7177 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7178 globals->bx_glue_size,
7179 ARM_BX_GLUE_SECTION_NAME);
7180
7181 return TRUE;
7182 }
7183
7184 /* Allocate space and symbols for calling a Thumb function from Arm mode.
7185 returns the symbol identifying the stub. */
7186
7187 static struct elf_link_hash_entry *
7188 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
7189 struct elf_link_hash_entry * h)
7190 {
7191 const char * name = h->root.root.string;
7192 asection * s;
7193 char * tmp_name;
7194 struct elf_link_hash_entry * myh;
7195 struct bfd_link_hash_entry * bh;
7196 struct elf32_arm_link_hash_table * globals;
7197 bfd_vma val;
7198 bfd_size_type size;
7199
7200 globals = elf32_arm_hash_table (link_info);
7201 BFD_ASSERT (globals != NULL);
7202 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7203
7204 s = bfd_get_linker_section
7205 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
7206
7207 BFD_ASSERT (s != NULL);
7208
7209 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
7210 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
7211
7212 BFD_ASSERT (tmp_name);
7213
7214 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
7215
7216 myh = elf_link_hash_lookup
7217 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
7218
7219 if (myh != NULL)
7220 {
7221 /* We've already seen this guy. */
7222 free (tmp_name);
7223 return myh;
7224 }
7225
7226 /* The only trick here is using hash_table->arm_glue_size as the value.
7227 Even though the section isn't allocated yet, this is where we will be
7228 putting it. The +1 on the value marks that the stub has not been
7229 output yet - not that it is a Thumb function. */
7230 bh = NULL;
7231 val = globals->arm_glue_size + 1;
7232 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
7233 tmp_name, BSF_GLOBAL, s, val,
7234 NULL, TRUE, FALSE, &bh);
7235
7236 myh = (struct elf_link_hash_entry *) bh;
7237 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7238 myh->forced_local = 1;
7239
7240 free (tmp_name);
7241
7242 if (bfd_link_pic (link_info)
7243 || globals->root.is_relocatable_executable
7244 || globals->pic_veneer)
7245 size = ARM2THUMB_PIC_GLUE_SIZE;
7246 else if (globals->use_blx)
7247 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
7248 else
7249 size = ARM2THUMB_STATIC_GLUE_SIZE;
7250
7251 s->size += size;
7252 globals->arm_glue_size += size;
7253
7254 return myh;
7255 }
7256
7257 /* Allocate space for ARMv4 BX veneers. */
7258
7259 static void
7260 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
7261 {
7262 asection * s;
7263 struct elf32_arm_link_hash_table *globals;
7264 char *tmp_name;
7265 struct elf_link_hash_entry *myh;
7266 struct bfd_link_hash_entry *bh;
7267 bfd_vma val;
7268
7269 /* BX PC does not need a veneer. */
7270 if (reg == 15)
7271 return;
7272
7273 globals = elf32_arm_hash_table (link_info);
7274 BFD_ASSERT (globals != NULL);
7275 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7276
7277 /* Check if this veneer has already been allocated. */
7278 if (globals->bx_glue_offset[reg])
7279 return;
7280
7281 s = bfd_get_linker_section
7282 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
7283
7284 BFD_ASSERT (s != NULL);
7285
7286 /* Add symbol for veneer. */
7287 tmp_name = (char *)
7288 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
7289
7290 BFD_ASSERT (tmp_name);
7291
7292 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
7293
7294 myh = elf_link_hash_lookup
7295 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
7296
7297 BFD_ASSERT (myh == NULL);
7298
7299 bh = NULL;
7300 val = globals->bx_glue_size;
7301 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
7302 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7303 NULL, TRUE, FALSE, &bh);
7304
7305 myh = (struct elf_link_hash_entry *) bh;
7306 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7307 myh->forced_local = 1;
7308
7309 s->size += ARM_BX_VENEER_SIZE;
7310 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
7311 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
7312 }
7313
7314
7315 /* Add an entry to the code/data map for section SEC. */
7316
7317 static void
7318 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
7319 {
7320 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
7321 unsigned int newidx;
7322
7323 if (sec_data->map == NULL)
7324 {
7325 sec_data->map = (elf32_arm_section_map *)
7326 bfd_malloc (sizeof (elf32_arm_section_map));
7327 sec_data->mapcount = 0;
7328 sec_data->mapsize = 1;
7329 }
7330
7331 newidx = sec_data->mapcount++;
7332
7333 if (sec_data->mapcount > sec_data->mapsize)
7334 {
7335 sec_data->mapsize *= 2;
7336 sec_data->map = (elf32_arm_section_map *)
7337 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
7338 * sizeof (elf32_arm_section_map));
7339 }
7340
7341 if (sec_data->map)
7342 {
7343 sec_data->map[newidx].vma = vma;
7344 sec_data->map[newidx].type = type;
7345 }
7346 }
7347
7348
7349 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
7350 veneers are handled for now. */
7351
7352 static bfd_vma
7353 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
7354 elf32_vfp11_erratum_list *branch,
7355 bfd *branch_bfd,
7356 asection *branch_sec,
7357 unsigned int offset)
7358 {
7359 asection *s;
7360 struct elf32_arm_link_hash_table *hash_table;
7361 char *tmp_name;
7362 struct elf_link_hash_entry *myh;
7363 struct bfd_link_hash_entry *bh;
7364 bfd_vma val;
7365 struct _arm_elf_section_data *sec_data;
7366 elf32_vfp11_erratum_list *newerr;
7367
7368 hash_table = elf32_arm_hash_table (link_info);
7369 BFD_ASSERT (hash_table != NULL);
7370 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
7371
7372 s = bfd_get_linker_section
7373 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
7374
7375 sec_data = elf32_arm_section_data (s);
7376
7377 BFD_ASSERT (s != NULL);
7378
7379 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7380 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
7381
7382 BFD_ASSERT (tmp_name);
7383
7384 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
7385 hash_table->num_vfp11_fixes);
7386
7387 myh = elf_link_hash_lookup
7388 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7389
7390 BFD_ASSERT (myh == NULL);
7391
7392 bh = NULL;
7393 val = hash_table->vfp11_erratum_glue_size;
7394 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
7395 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7396 NULL, TRUE, FALSE, &bh);
7397
7398 myh = (struct elf_link_hash_entry *) bh;
7399 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7400 myh->forced_local = 1;
7401
7402 /* Link veneer back to calling location. */
7403 sec_data->erratumcount += 1;
7404 newerr = (elf32_vfp11_erratum_list *)
7405 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
7406
7407 newerr->type = VFP11_ERRATUM_ARM_VENEER;
7408 newerr->vma = -1;
7409 newerr->u.v.branch = branch;
7410 newerr->u.v.id = hash_table->num_vfp11_fixes;
7411 branch->u.b.veneer = newerr;
7412
7413 newerr->next = sec_data->erratumlist;
7414 sec_data->erratumlist = newerr;
7415
7416 /* A symbol for the return from the veneer. */
7417 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
7418 hash_table->num_vfp11_fixes);
7419
7420 myh = elf_link_hash_lookup
7421 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7422
7423 if (myh != NULL)
7424 abort ();
7425
7426 bh = NULL;
7427 val = offset + 4;
7428 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
7429 branch_sec, val, NULL, TRUE, FALSE, &bh);
7430
7431 myh = (struct elf_link_hash_entry *) bh;
7432 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7433 myh->forced_local = 1;
7434
7435 free (tmp_name);
7436
7437 /* Generate a mapping symbol for the veneer section, and explicitly add an
7438 entry for that symbol to the code/data map for the section. */
7439 if (hash_table->vfp11_erratum_glue_size == 0)
7440 {
7441 bh = NULL;
7442 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
7443 ever requires this erratum fix. */
7444 _bfd_generic_link_add_one_symbol (link_info,
7445 hash_table->bfd_of_glue_owner, "$a",
7446 BSF_LOCAL, s, 0, NULL,
7447 TRUE, FALSE, &bh);
7448
7449 myh = (struct elf_link_hash_entry *) bh;
7450 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7451 myh->forced_local = 1;
7452
7453 /* The elf32_arm_init_maps function only cares about symbols from input
7454 BFDs. We must make a note of this generated mapping symbol
7455 ourselves so that code byteswapping works properly in
7456 elf32_arm_write_section. */
7457 elf32_arm_section_map_add (s, 'a', 0);
7458 }
7459
7460 s->size += VFP11_ERRATUM_VENEER_SIZE;
7461 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
7462 hash_table->num_vfp11_fixes++;
7463
7464 /* The offset of the veneer. */
7465 return val;
7466 }
7467
7468 /* Record information about a STM32L4XX STM erratum veneer. Only THUMB-mode
7469 veneers need to be handled because used only in Cortex-M. */
7470
7471 static bfd_vma
7472 record_stm32l4xx_erratum_veneer (struct bfd_link_info *link_info,
7473 elf32_stm32l4xx_erratum_list *branch,
7474 bfd *branch_bfd,
7475 asection *branch_sec,
7476 unsigned int offset,
7477 bfd_size_type veneer_size)
7478 {
7479 asection *s;
7480 struct elf32_arm_link_hash_table *hash_table;
7481 char *tmp_name;
7482 struct elf_link_hash_entry *myh;
7483 struct bfd_link_hash_entry *bh;
7484 bfd_vma val;
7485 struct _arm_elf_section_data *sec_data;
7486 elf32_stm32l4xx_erratum_list *newerr;
7487
7488 hash_table = elf32_arm_hash_table (link_info);
7489 BFD_ASSERT (hash_table != NULL);
7490 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
7491
7492 s = bfd_get_linker_section
7493 (hash_table->bfd_of_glue_owner, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7494
7495 BFD_ASSERT (s != NULL);
7496
7497 sec_data = elf32_arm_section_data (s);
7498
7499 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7500 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
7501
7502 BFD_ASSERT (tmp_name);
7503
7504 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
7505 hash_table->num_stm32l4xx_fixes);
7506
7507 myh = elf_link_hash_lookup
7508 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7509
7510 BFD_ASSERT (myh == NULL);
7511
7512 bh = NULL;
7513 val = hash_table->stm32l4xx_erratum_glue_size;
7514 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
7515 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7516 NULL, TRUE, FALSE, &bh);
7517
7518 myh = (struct elf_link_hash_entry *) bh;
7519 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7520 myh->forced_local = 1;
7521
7522 /* Link veneer back to calling location. */
7523 sec_data->stm32l4xx_erratumcount += 1;
7524 newerr = (elf32_stm32l4xx_erratum_list *)
7525 bfd_zmalloc (sizeof (elf32_stm32l4xx_erratum_list));
7526
7527 newerr->type = STM32L4XX_ERRATUM_VENEER;
7528 newerr->vma = -1;
7529 newerr->u.v.branch = branch;
7530 newerr->u.v.id = hash_table->num_stm32l4xx_fixes;
7531 branch->u.b.veneer = newerr;
7532
7533 newerr->next = sec_data->stm32l4xx_erratumlist;
7534 sec_data->stm32l4xx_erratumlist = newerr;
7535
7536 /* A symbol for the return from the veneer. */
7537 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
7538 hash_table->num_stm32l4xx_fixes);
7539
7540 myh = elf_link_hash_lookup
7541 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7542
7543 if (myh != NULL)
7544 abort ();
7545
7546 bh = NULL;
7547 val = offset + 4;
7548 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
7549 branch_sec, val, NULL, TRUE, FALSE, &bh);
7550
7551 myh = (struct elf_link_hash_entry *) bh;
7552 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7553 myh->forced_local = 1;
7554
7555 free (tmp_name);
7556
7557 /* Generate a mapping symbol for the veneer section, and explicitly add an
7558 entry for that symbol to the code/data map for the section. */
7559 if (hash_table->stm32l4xx_erratum_glue_size == 0)
7560 {
7561 bh = NULL;
7562 /* Creates a THUMB symbol since there is no other choice. */
7563 _bfd_generic_link_add_one_symbol (link_info,
7564 hash_table->bfd_of_glue_owner, "$t",
7565 BSF_LOCAL, s, 0, NULL,
7566 TRUE, FALSE, &bh);
7567
7568 myh = (struct elf_link_hash_entry *) bh;
7569 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7570 myh->forced_local = 1;
7571
7572 /* The elf32_arm_init_maps function only cares about symbols from input
7573 BFDs. We must make a note of this generated mapping symbol
7574 ourselves so that code byteswapping works properly in
7575 elf32_arm_write_section. */
7576 elf32_arm_section_map_add (s, 't', 0);
7577 }
7578
7579 s->size += veneer_size;
7580 hash_table->stm32l4xx_erratum_glue_size += veneer_size;
7581 hash_table->num_stm32l4xx_fixes++;
7582
7583 /* The offset of the veneer. */
7584 return val;
7585 }
7586
7587 #define ARM_GLUE_SECTION_FLAGS \
7588 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
7589 | SEC_READONLY | SEC_LINKER_CREATED)
7590
7591 /* Create a fake section for use by the ARM backend of the linker. */
7592
7593 static bfd_boolean
7594 arm_make_glue_section (bfd * abfd, const char * name)
7595 {
7596 asection * sec;
7597
7598 sec = bfd_get_linker_section (abfd, name);
7599 if (sec != NULL)
7600 /* Already made. */
7601 return TRUE;
7602
7603 sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
7604
7605 if (sec == NULL
7606 || !bfd_set_section_alignment (abfd, sec, 2))
7607 return FALSE;
7608
7609 /* Set the gc mark to prevent the section from being removed by garbage
7610 collection, despite the fact that no relocs refer to this section. */
7611 sec->gc_mark = 1;
7612
7613 return TRUE;
7614 }
7615
7616 /* Set size of .plt entries. This function is called from the
7617 linker scripts in ld/emultempl/{armelf}.em. */
7618
7619 void
7620 bfd_elf32_arm_use_long_plt (void)
7621 {
7622 elf32_arm_use_long_plt_entry = TRUE;
7623 }
7624
7625 /* Add the glue sections to ABFD. This function is called from the
7626 linker scripts in ld/emultempl/{armelf}.em. */
7627
7628 bfd_boolean
7629 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
7630 struct bfd_link_info *info)
7631 {
7632 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
7633 bfd_boolean dostm32l4xx = globals
7634 && globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE;
7635 bfd_boolean addglue;
7636
7637 /* If we are only performing a partial
7638 link do not bother adding the glue. */
7639 if (bfd_link_relocatable (info))
7640 return TRUE;
7641
7642 addglue = arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
7643 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
7644 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
7645 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
7646
7647 if (!dostm32l4xx)
7648 return addglue;
7649
7650 return addglue
7651 && arm_make_glue_section (abfd, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7652 }
7653
7654 /* Mark output sections of veneers needing a dedicated one with SEC_KEEP. This
7655 ensures they are not marked for deletion by
7656 strip_excluded_output_sections () when veneers are going to be created
7657 later. Not doing so would trigger assert on empty section size in
7658 lang_size_sections_1 (). */
7659
7660 void
7661 bfd_elf32_arm_keep_private_stub_output_sections (struct bfd_link_info *info)
7662 {
7663 enum elf32_arm_stub_type stub_type;
7664
7665 /* If we are only performing a partial
7666 link do not bother adding the glue. */
7667 if (bfd_link_relocatable (info))
7668 return;
7669
7670 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
7671 {
7672 asection *out_sec;
7673 const char *out_sec_name;
7674
7675 if (!arm_dedicated_stub_output_section_required (stub_type))
7676 continue;
7677
7678 out_sec_name = arm_dedicated_stub_output_section_name (stub_type);
7679 out_sec = bfd_get_section_by_name (info->output_bfd, out_sec_name);
7680 if (out_sec != NULL)
7681 out_sec->flags |= SEC_KEEP;
7682 }
7683 }
7684
7685 /* Select a BFD to be used to hold the sections used by the glue code.
7686 This function is called from the linker scripts in ld/emultempl/
7687 {armelf/pe}.em. */
7688
7689 bfd_boolean
7690 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
7691 {
7692 struct elf32_arm_link_hash_table *globals;
7693
7694 /* If we are only performing a partial link
7695 do not bother getting a bfd to hold the glue. */
7696 if (bfd_link_relocatable (info))
7697 return TRUE;
7698
7699 /* Make sure we don't attach the glue sections to a dynamic object. */
7700 BFD_ASSERT (!(abfd->flags & DYNAMIC));
7701
7702 globals = elf32_arm_hash_table (info);
7703 BFD_ASSERT (globals != NULL);
7704
7705 if (globals->bfd_of_glue_owner != NULL)
7706 return TRUE;
7707
7708 /* Save the bfd for later use. */
7709 globals->bfd_of_glue_owner = abfd;
7710
7711 return TRUE;
7712 }
7713
7714 static void
7715 check_use_blx (struct elf32_arm_link_hash_table *globals)
7716 {
7717 int cpu_arch;
7718
7719 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
7720 Tag_CPU_arch);
7721
7722 if (globals->fix_arm1176)
7723 {
7724 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
7725 globals->use_blx = 1;
7726 }
7727 else
7728 {
7729 if (cpu_arch > TAG_CPU_ARCH_V4T)
7730 globals->use_blx = 1;
7731 }
7732 }
7733
7734 bfd_boolean
7735 bfd_elf32_arm_process_before_allocation (bfd *abfd,
7736 struct bfd_link_info *link_info)
7737 {
7738 Elf_Internal_Shdr *symtab_hdr;
7739 Elf_Internal_Rela *internal_relocs = NULL;
7740 Elf_Internal_Rela *irel, *irelend;
7741 bfd_byte *contents = NULL;
7742
7743 asection *sec;
7744 struct elf32_arm_link_hash_table *globals;
7745
7746 /* If we are only performing a partial link do not bother
7747 to construct any glue. */
7748 if (bfd_link_relocatable (link_info))
7749 return TRUE;
7750
7751 /* Here we have a bfd that is to be included on the link. We have a
7752 hook to do reloc rummaging, before section sizes are nailed down. */
7753 globals = elf32_arm_hash_table (link_info);
7754 BFD_ASSERT (globals != NULL);
7755
7756 check_use_blx (globals);
7757
7758 if (globals->byteswap_code && !bfd_big_endian (abfd))
7759 {
7760 _bfd_error_handler (_("%pB: BE8 images only valid in big-endian mode"),
7761 abfd);
7762 return FALSE;
7763 }
7764
7765 /* PR 5398: If we have not decided to include any loadable sections in
7766 the output then we will not have a glue owner bfd. This is OK, it
7767 just means that there is nothing else for us to do here. */
7768 if (globals->bfd_of_glue_owner == NULL)
7769 return TRUE;
7770
7771 /* Rummage around all the relocs and map the glue vectors. */
7772 sec = abfd->sections;
7773
7774 if (sec == NULL)
7775 return TRUE;
7776
7777 for (; sec != NULL; sec = sec->next)
7778 {
7779 if (sec->reloc_count == 0)
7780 continue;
7781
7782 if ((sec->flags & SEC_EXCLUDE) != 0)
7783 continue;
7784
7785 symtab_hdr = & elf_symtab_hdr (abfd);
7786
7787 /* Load the relocs. */
7788 internal_relocs
7789 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
7790
7791 if (internal_relocs == NULL)
7792 goto error_return;
7793
7794 irelend = internal_relocs + sec->reloc_count;
7795 for (irel = internal_relocs; irel < irelend; irel++)
7796 {
7797 long r_type;
7798 unsigned long r_index;
7799
7800 struct elf_link_hash_entry *h;
7801
7802 r_type = ELF32_R_TYPE (irel->r_info);
7803 r_index = ELF32_R_SYM (irel->r_info);
7804
7805 /* These are the only relocation types we care about. */
7806 if ( r_type != R_ARM_PC24
7807 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
7808 continue;
7809
7810 /* Get the section contents if we haven't done so already. */
7811 if (contents == NULL)
7812 {
7813 /* Get cached copy if it exists. */
7814 if (elf_section_data (sec)->this_hdr.contents != NULL)
7815 contents = elf_section_data (sec)->this_hdr.contents;
7816 else
7817 {
7818 /* Go get them off disk. */
7819 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
7820 goto error_return;
7821 }
7822 }
7823
7824 if (r_type == R_ARM_V4BX)
7825 {
7826 int reg;
7827
7828 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
7829 record_arm_bx_glue (link_info, reg);
7830 continue;
7831 }
7832
7833 /* If the relocation is not against a symbol it cannot concern us. */
7834 h = NULL;
7835
7836 /* We don't care about local symbols. */
7837 if (r_index < symtab_hdr->sh_info)
7838 continue;
7839
7840 /* This is an external symbol. */
7841 r_index -= symtab_hdr->sh_info;
7842 h = (struct elf_link_hash_entry *)
7843 elf_sym_hashes (abfd)[r_index];
7844
7845 /* If the relocation is against a static symbol it must be within
7846 the current section and so cannot be a cross ARM/Thumb relocation. */
7847 if (h == NULL)
7848 continue;
7849
7850 /* If the call will go through a PLT entry then we do not need
7851 glue. */
7852 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
7853 continue;
7854
7855 switch (r_type)
7856 {
7857 case R_ARM_PC24:
7858 /* This one is a call from arm code. We need to look up
7859 the target of the call. If it is a thumb target, we
7860 insert glue. */
7861 if (ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
7862 == ST_BRANCH_TO_THUMB)
7863 record_arm_to_thumb_glue (link_info, h);
7864 break;
7865
7866 default:
7867 abort ();
7868 }
7869 }
7870
7871 if (contents != NULL
7872 && elf_section_data (sec)->this_hdr.contents != contents)
7873 free (contents);
7874 contents = NULL;
7875
7876 if (internal_relocs != NULL
7877 && elf_section_data (sec)->relocs != internal_relocs)
7878 free (internal_relocs);
7879 internal_relocs = NULL;
7880 }
7881
7882 return TRUE;
7883
7884 error_return:
7885 if (contents != NULL
7886 && elf_section_data (sec)->this_hdr.contents != contents)
7887 free (contents);
7888 if (internal_relocs != NULL
7889 && elf_section_data (sec)->relocs != internal_relocs)
7890 free (internal_relocs);
7891
7892 return FALSE;
7893 }
7894 #endif
7895
7896
7897 /* Initialise maps of ARM/Thumb/data for input BFDs. */
7898
7899 void
7900 bfd_elf32_arm_init_maps (bfd *abfd)
7901 {
7902 Elf_Internal_Sym *isymbuf;
7903 Elf_Internal_Shdr *hdr;
7904 unsigned int i, localsyms;
7905
7906 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
7907 if (! is_arm_elf (abfd))
7908 return;
7909
7910 if ((abfd->flags & DYNAMIC) != 0)
7911 return;
7912
7913 hdr = & elf_symtab_hdr (abfd);
7914 localsyms = hdr->sh_info;
7915
7916 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
7917 should contain the number of local symbols, which should come before any
7918 global symbols. Mapping symbols are always local. */
7919 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
7920 NULL);
7921
7922 /* No internal symbols read? Skip this BFD. */
7923 if (isymbuf == NULL)
7924 return;
7925
7926 for (i = 0; i < localsyms; i++)
7927 {
7928 Elf_Internal_Sym *isym = &isymbuf[i];
7929 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
7930 const char *name;
7931
7932 if (sec != NULL
7933 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
7934 {
7935 name = bfd_elf_string_from_elf_section (abfd,
7936 hdr->sh_link, isym->st_name);
7937
7938 if (bfd_is_arm_special_symbol_name (name,
7939 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
7940 elf32_arm_section_map_add (sec, name[1], isym->st_value);
7941 }
7942 }
7943 }
7944
7945
7946 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
7947 say what they wanted. */
7948
7949 void
7950 bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
7951 {
7952 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
7953 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
7954
7955 if (globals == NULL)
7956 return;
7957
7958 if (globals->fix_cortex_a8 == -1)
7959 {
7960 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
7961 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
7962 && (out_attr[Tag_CPU_arch_profile].i == 'A'
7963 || out_attr[Tag_CPU_arch_profile].i == 0))
7964 globals->fix_cortex_a8 = 1;
7965 else
7966 globals->fix_cortex_a8 = 0;
7967 }
7968 }
7969
7970
7971 void
7972 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
7973 {
7974 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
7975 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
7976
7977 if (globals == NULL)
7978 return;
7979 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
7980 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
7981 {
7982 switch (globals->vfp11_fix)
7983 {
7984 case BFD_ARM_VFP11_FIX_DEFAULT:
7985 case BFD_ARM_VFP11_FIX_NONE:
7986 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
7987 break;
7988
7989 default:
7990 /* Give a warning, but do as the user requests anyway. */
7991 _bfd_error_handler (_("%pB: warning: selected VFP11 erratum "
7992 "workaround is not necessary for target architecture"), obfd);
7993 }
7994 }
7995 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
7996 /* For earlier architectures, we might need the workaround, but do not
7997 enable it by default. If users is running with broken hardware, they
7998 must enable the erratum fix explicitly. */
7999 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
8000 }
8001
8002 void
8003 bfd_elf32_arm_set_stm32l4xx_fix (bfd *obfd, struct bfd_link_info *link_info)
8004 {
8005 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8006 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
8007
8008 if (globals == NULL)
8009 return;
8010
8011 /* We assume only Cortex-M4 may require the fix. */
8012 if (out_attr[Tag_CPU_arch].i != TAG_CPU_ARCH_V7E_M
8013 || out_attr[Tag_CPU_arch_profile].i != 'M')
8014 {
8015 if (globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE)
8016 /* Give a warning, but do as the user requests anyway. */
8017 _bfd_error_handler
8018 (_("%pB: warning: selected STM32L4XX erratum "
8019 "workaround is not necessary for target architecture"), obfd);
8020 }
8021 }
8022
8023 enum bfd_arm_vfp11_pipe
8024 {
8025 VFP11_FMAC,
8026 VFP11_LS,
8027 VFP11_DS,
8028 VFP11_BAD
8029 };
8030
8031 /* Return a VFP register number. This is encoded as RX:X for single-precision
8032 registers, or X:RX for double-precision registers, where RX is the group of
8033 four bits in the instruction encoding and X is the single extension bit.
8034 RX and X fields are specified using their lowest (starting) bit. The return
8035 value is:
8036
8037 0...31: single-precision registers s0...s31
8038 32...63: double-precision registers d0...d31.
8039
8040 Although X should be zero for VFP11 (encoding d0...d15 only), we might
8041 encounter VFP3 instructions, so we allow the full range for DP registers. */
8042
8043 static unsigned int
8044 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
8045 unsigned int x)
8046 {
8047 if (is_double)
8048 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
8049 else
8050 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
8051 }
8052
8053 /* Set bits in *WMASK according to a register number REG as encoded by
8054 bfd_arm_vfp11_regno(). Ignore d16-d31. */
8055
8056 static void
8057 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
8058 {
8059 if (reg < 32)
8060 *wmask |= 1 << reg;
8061 else if (reg < 48)
8062 *wmask |= 3 << ((reg - 32) * 2);
8063 }
8064
8065 /* Return TRUE if WMASK overwrites anything in REGS. */
8066
8067 static bfd_boolean
8068 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
8069 {
8070 int i;
8071
8072 for (i = 0; i < numregs; i++)
8073 {
8074 unsigned int reg = regs[i];
8075
8076 if (reg < 32 && (wmask & (1 << reg)) != 0)
8077 return TRUE;
8078
8079 reg -= 32;
8080
8081 if (reg >= 16)
8082 continue;
8083
8084 if ((wmask & (3 << (reg * 2))) != 0)
8085 return TRUE;
8086 }
8087
8088 return FALSE;
8089 }
8090
8091 /* In this function, we're interested in two things: finding input registers
8092 for VFP data-processing instructions, and finding the set of registers which
8093 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
8094 hold the written set, so FLDM etc. are easy to deal with (we're only
8095 interested in 32 SP registers or 16 dp registers, due to the VFP version
8096 implemented by the chip in question). DP registers are marked by setting
8097 both SP registers in the write mask). */
8098
8099 static enum bfd_arm_vfp11_pipe
8100 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
8101 int *numregs)
8102 {
8103 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
8104 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
8105
8106 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
8107 {
8108 unsigned int pqrs;
8109 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
8110 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
8111
8112 pqrs = ((insn & 0x00800000) >> 20)
8113 | ((insn & 0x00300000) >> 19)
8114 | ((insn & 0x00000040) >> 6);
8115
8116 switch (pqrs)
8117 {
8118 case 0: /* fmac[sd]. */
8119 case 1: /* fnmac[sd]. */
8120 case 2: /* fmsc[sd]. */
8121 case 3: /* fnmsc[sd]. */
8122 vpipe = VFP11_FMAC;
8123 bfd_arm_vfp11_write_mask (destmask, fd);
8124 regs[0] = fd;
8125 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
8126 regs[2] = fm;
8127 *numregs = 3;
8128 break;
8129
8130 case 4: /* fmul[sd]. */
8131 case 5: /* fnmul[sd]. */
8132 case 6: /* fadd[sd]. */
8133 case 7: /* fsub[sd]. */
8134 vpipe = VFP11_FMAC;
8135 goto vfp_binop;
8136
8137 case 8: /* fdiv[sd]. */
8138 vpipe = VFP11_DS;
8139 vfp_binop:
8140 bfd_arm_vfp11_write_mask (destmask, fd);
8141 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
8142 regs[1] = fm;
8143 *numregs = 2;
8144 break;
8145
8146 case 15: /* extended opcode. */
8147 {
8148 unsigned int extn = ((insn >> 15) & 0x1e)
8149 | ((insn >> 7) & 1);
8150
8151 switch (extn)
8152 {
8153 case 0: /* fcpy[sd]. */
8154 case 1: /* fabs[sd]. */
8155 case 2: /* fneg[sd]. */
8156 case 8: /* fcmp[sd]. */
8157 case 9: /* fcmpe[sd]. */
8158 case 10: /* fcmpz[sd]. */
8159 case 11: /* fcmpez[sd]. */
8160 case 16: /* fuito[sd]. */
8161 case 17: /* fsito[sd]. */
8162 case 24: /* ftoui[sd]. */
8163 case 25: /* ftouiz[sd]. */
8164 case 26: /* ftosi[sd]. */
8165 case 27: /* ftosiz[sd]. */
8166 /* These instructions will not bounce due to underflow. */
8167 *numregs = 0;
8168 vpipe = VFP11_FMAC;
8169 break;
8170
8171 case 3: /* fsqrt[sd]. */
8172 /* fsqrt cannot underflow, but it can (perhaps) overwrite
8173 registers to cause the erratum in previous instructions. */
8174 bfd_arm_vfp11_write_mask (destmask, fd);
8175 vpipe = VFP11_DS;
8176 break;
8177
8178 case 15: /* fcvt{ds,sd}. */
8179 {
8180 int rnum = 0;
8181
8182 bfd_arm_vfp11_write_mask (destmask, fd);
8183
8184 /* Only FCVTSD can underflow. */
8185 if ((insn & 0x100) != 0)
8186 regs[rnum++] = fm;
8187
8188 *numregs = rnum;
8189
8190 vpipe = VFP11_FMAC;
8191 }
8192 break;
8193
8194 default:
8195 return VFP11_BAD;
8196 }
8197 }
8198 break;
8199
8200 default:
8201 return VFP11_BAD;
8202 }
8203 }
8204 /* Two-register transfer. */
8205 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
8206 {
8207 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
8208
8209 if ((insn & 0x100000) == 0)
8210 {
8211 if (is_double)
8212 bfd_arm_vfp11_write_mask (destmask, fm);
8213 else
8214 {
8215 bfd_arm_vfp11_write_mask (destmask, fm);
8216 bfd_arm_vfp11_write_mask (destmask, fm + 1);
8217 }
8218 }
8219
8220 vpipe = VFP11_LS;
8221 }
8222 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
8223 {
8224 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
8225 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
8226
8227 switch (puw)
8228 {
8229 case 0: /* Two-reg transfer. We should catch these above. */
8230 abort ();
8231
8232 case 2: /* fldm[sdx]. */
8233 case 3:
8234 case 5:
8235 {
8236 unsigned int i, offset = insn & 0xff;
8237
8238 if (is_double)
8239 offset >>= 1;
8240
8241 for (i = fd; i < fd + offset; i++)
8242 bfd_arm_vfp11_write_mask (destmask, i);
8243 }
8244 break;
8245
8246 case 4: /* fld[sd]. */
8247 case 6:
8248 bfd_arm_vfp11_write_mask (destmask, fd);
8249 break;
8250
8251 default:
8252 return VFP11_BAD;
8253 }
8254
8255 vpipe = VFP11_LS;
8256 }
8257 /* Single-register transfer. Note L==0. */
8258 else if ((insn & 0x0f100e10) == 0x0e000a10)
8259 {
8260 unsigned int opcode = (insn >> 21) & 7;
8261 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
8262
8263 switch (opcode)
8264 {
8265 case 0: /* fmsr/fmdlr. */
8266 case 1: /* fmdhr. */
8267 /* Mark fmdhr and fmdlr as writing to the whole of the DP
8268 destination register. I don't know if this is exactly right,
8269 but it is the conservative choice. */
8270 bfd_arm_vfp11_write_mask (destmask, fn);
8271 break;
8272
8273 case 7: /* fmxr. */
8274 break;
8275 }
8276
8277 vpipe = VFP11_LS;
8278 }
8279
8280 return vpipe;
8281 }
8282
8283
8284 static int elf32_arm_compare_mapping (const void * a, const void * b);
8285
8286
8287 /* Look for potentially-troublesome code sequences which might trigger the
8288 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
8289 (available from ARM) for details of the erratum. A short version is
8290 described in ld.texinfo. */
8291
8292 bfd_boolean
8293 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
8294 {
8295 asection *sec;
8296 bfd_byte *contents = NULL;
8297 int state = 0;
8298 int regs[3], numregs = 0;
8299 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8300 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
8301
8302 if (globals == NULL)
8303 return FALSE;
8304
8305 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
8306 The states transition as follows:
8307
8308 0 -> 1 (vector) or 0 -> 2 (scalar)
8309 A VFP FMAC-pipeline instruction has been seen. Fill
8310 regs[0]..regs[numregs-1] with its input operands. Remember this
8311 instruction in 'first_fmac'.
8312
8313 1 -> 2
8314 Any instruction, except for a VFP instruction which overwrites
8315 regs[*].
8316
8317 1 -> 3 [ -> 0 ] or
8318 2 -> 3 [ -> 0 ]
8319 A VFP instruction has been seen which overwrites any of regs[*].
8320 We must make a veneer! Reset state to 0 before examining next
8321 instruction.
8322
8323 2 -> 0
8324 If we fail to match anything in state 2, reset to state 0 and reset
8325 the instruction pointer to the instruction after 'first_fmac'.
8326
8327 If the VFP11 vector mode is in use, there must be at least two unrelated
8328 instructions between anti-dependent VFP11 instructions to properly avoid
8329 triggering the erratum, hence the use of the extra state 1. */
8330
8331 /* If we are only performing a partial link do not bother
8332 to construct any glue. */
8333 if (bfd_link_relocatable (link_info))
8334 return TRUE;
8335
8336 /* Skip if this bfd does not correspond to an ELF image. */
8337 if (! is_arm_elf (abfd))
8338 return TRUE;
8339
8340 /* We should have chosen a fix type by the time we get here. */
8341 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
8342
8343 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
8344 return TRUE;
8345
8346 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8347 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8348 return TRUE;
8349
8350 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8351 {
8352 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
8353 struct _arm_elf_section_data *sec_data;
8354
8355 /* If we don't have executable progbits, we're not interested in this
8356 section. Also skip if section is to be excluded. */
8357 if (elf_section_type (sec) != SHT_PROGBITS
8358 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8359 || (sec->flags & SEC_EXCLUDE) != 0
8360 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8361 || sec->output_section == bfd_abs_section_ptr
8362 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
8363 continue;
8364
8365 sec_data = elf32_arm_section_data (sec);
8366
8367 if (sec_data->mapcount == 0)
8368 continue;
8369
8370 if (elf_section_data (sec)->this_hdr.contents != NULL)
8371 contents = elf_section_data (sec)->this_hdr.contents;
8372 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8373 goto error_return;
8374
8375 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8376 elf32_arm_compare_mapping);
8377
8378 for (span = 0; span < sec_data->mapcount; span++)
8379 {
8380 unsigned int span_start = sec_data->map[span].vma;
8381 unsigned int span_end = (span == sec_data->mapcount - 1)
8382 ? sec->size : sec_data->map[span + 1].vma;
8383 char span_type = sec_data->map[span].type;
8384
8385 /* FIXME: Only ARM mode is supported at present. We may need to
8386 support Thumb-2 mode also at some point. */
8387 if (span_type != 'a')
8388 continue;
8389
8390 for (i = span_start; i < span_end;)
8391 {
8392 unsigned int next_i = i + 4;
8393 unsigned int insn = bfd_big_endian (abfd)
8394 ? (contents[i] << 24)
8395 | (contents[i + 1] << 16)
8396 | (contents[i + 2] << 8)
8397 | contents[i + 3]
8398 : (contents[i + 3] << 24)
8399 | (contents[i + 2] << 16)
8400 | (contents[i + 1] << 8)
8401 | contents[i];
8402 unsigned int writemask = 0;
8403 enum bfd_arm_vfp11_pipe vpipe;
8404
8405 switch (state)
8406 {
8407 case 0:
8408 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
8409 &numregs);
8410 /* I'm assuming the VFP11 erratum can trigger with denorm
8411 operands on either the FMAC or the DS pipeline. This might
8412 lead to slightly overenthusiastic veneer insertion. */
8413 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
8414 {
8415 state = use_vector ? 1 : 2;
8416 first_fmac = i;
8417 veneer_of_insn = insn;
8418 }
8419 break;
8420
8421 case 1:
8422 {
8423 int other_regs[3], other_numregs;
8424 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
8425 other_regs,
8426 &other_numregs);
8427 if (vpipe != VFP11_BAD
8428 && bfd_arm_vfp11_antidependency (writemask, regs,
8429 numregs))
8430 state = 3;
8431 else
8432 state = 2;
8433 }
8434 break;
8435
8436 case 2:
8437 {
8438 int other_regs[3], other_numregs;
8439 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
8440 other_regs,
8441 &other_numregs);
8442 if (vpipe != VFP11_BAD
8443 && bfd_arm_vfp11_antidependency (writemask, regs,
8444 numregs))
8445 state = 3;
8446 else
8447 {
8448 state = 0;
8449 next_i = first_fmac + 4;
8450 }
8451 }
8452 break;
8453
8454 case 3:
8455 abort (); /* Should be unreachable. */
8456 }
8457
8458 if (state == 3)
8459 {
8460 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
8461 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
8462
8463 elf32_arm_section_data (sec)->erratumcount += 1;
8464
8465 newerr->u.b.vfp_insn = veneer_of_insn;
8466
8467 switch (span_type)
8468 {
8469 case 'a':
8470 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
8471 break;
8472
8473 default:
8474 abort ();
8475 }
8476
8477 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
8478 first_fmac);
8479
8480 newerr->vma = -1;
8481
8482 newerr->next = sec_data->erratumlist;
8483 sec_data->erratumlist = newerr;
8484
8485 state = 0;
8486 }
8487
8488 i = next_i;
8489 }
8490 }
8491
8492 if (contents != NULL
8493 && elf_section_data (sec)->this_hdr.contents != contents)
8494 free (contents);
8495 contents = NULL;
8496 }
8497
8498 return TRUE;
8499
8500 error_return:
8501 if (contents != NULL
8502 && elf_section_data (sec)->this_hdr.contents != contents)
8503 free (contents);
8504
8505 return FALSE;
8506 }
8507
8508 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
8509 after sections have been laid out, using specially-named symbols. */
8510
8511 void
8512 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
8513 struct bfd_link_info *link_info)
8514 {
8515 asection *sec;
8516 struct elf32_arm_link_hash_table *globals;
8517 char *tmp_name;
8518
8519 if (bfd_link_relocatable (link_info))
8520 return;
8521
8522 /* Skip if this bfd does not correspond to an ELF image. */
8523 if (! is_arm_elf (abfd))
8524 return;
8525
8526 globals = elf32_arm_hash_table (link_info);
8527 if (globals == NULL)
8528 return;
8529
8530 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
8531 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
8532
8533 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8534 {
8535 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8536 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
8537
8538 for (; errnode != NULL; errnode = errnode->next)
8539 {
8540 struct elf_link_hash_entry *myh;
8541 bfd_vma vma;
8542
8543 switch (errnode->type)
8544 {
8545 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
8546 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
8547 /* Find veneer symbol. */
8548 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
8549 errnode->u.b.veneer->u.v.id);
8550
8551 myh = elf_link_hash_lookup
8552 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8553
8554 if (myh == NULL)
8555 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8556 abfd, "VFP11", tmp_name);
8557
8558 vma = myh->root.u.def.section->output_section->vma
8559 + myh->root.u.def.section->output_offset
8560 + myh->root.u.def.value;
8561
8562 errnode->u.b.veneer->vma = vma;
8563 break;
8564
8565 case VFP11_ERRATUM_ARM_VENEER:
8566 case VFP11_ERRATUM_THUMB_VENEER:
8567 /* Find return location. */
8568 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
8569 errnode->u.v.id);
8570
8571 myh = elf_link_hash_lookup
8572 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8573
8574 if (myh == NULL)
8575 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8576 abfd, "VFP11", tmp_name);
8577
8578 vma = myh->root.u.def.section->output_section->vma
8579 + myh->root.u.def.section->output_offset
8580 + myh->root.u.def.value;
8581
8582 errnode->u.v.branch->vma = vma;
8583 break;
8584
8585 default:
8586 abort ();
8587 }
8588 }
8589 }
8590
8591 free (tmp_name);
8592 }
8593
8594 /* Find virtual-memory addresses for STM32L4XX erratum veneers and
8595 return locations after sections have been laid out, using
8596 specially-named symbols. */
8597
8598 void
8599 bfd_elf32_arm_stm32l4xx_fix_veneer_locations (bfd *abfd,
8600 struct bfd_link_info *link_info)
8601 {
8602 asection *sec;
8603 struct elf32_arm_link_hash_table *globals;
8604 char *tmp_name;
8605
8606 if (bfd_link_relocatable (link_info))
8607 return;
8608
8609 /* Skip if this bfd does not correspond to an ELF image. */
8610 if (! is_arm_elf (abfd))
8611 return;
8612
8613 globals = elf32_arm_hash_table (link_info);
8614 if (globals == NULL)
8615 return;
8616
8617 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
8618 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
8619
8620 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8621 {
8622 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8623 elf32_stm32l4xx_erratum_list *errnode = sec_data->stm32l4xx_erratumlist;
8624
8625 for (; errnode != NULL; errnode = errnode->next)
8626 {
8627 struct elf_link_hash_entry *myh;
8628 bfd_vma vma;
8629
8630 switch (errnode->type)
8631 {
8632 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
8633 /* Find veneer symbol. */
8634 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
8635 errnode->u.b.veneer->u.v.id);
8636
8637 myh = elf_link_hash_lookup
8638 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8639
8640 if (myh == NULL)
8641 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8642 abfd, "STM32L4XX", tmp_name);
8643
8644 vma = myh->root.u.def.section->output_section->vma
8645 + myh->root.u.def.section->output_offset
8646 + myh->root.u.def.value;
8647
8648 errnode->u.b.veneer->vma = vma;
8649 break;
8650
8651 case STM32L4XX_ERRATUM_VENEER:
8652 /* Find return location. */
8653 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
8654 errnode->u.v.id);
8655
8656 myh = elf_link_hash_lookup
8657 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8658
8659 if (myh == NULL)
8660 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8661 abfd, "STM32L4XX", tmp_name);
8662
8663 vma = myh->root.u.def.section->output_section->vma
8664 + myh->root.u.def.section->output_offset
8665 + myh->root.u.def.value;
8666
8667 errnode->u.v.branch->vma = vma;
8668 break;
8669
8670 default:
8671 abort ();
8672 }
8673 }
8674 }
8675
8676 free (tmp_name);
8677 }
8678
8679 static inline bfd_boolean
8680 is_thumb2_ldmia (const insn32 insn)
8681 {
8682 /* Encoding T2: LDM<c>.W <Rn>{!},<registers>
8683 1110 - 1000 - 10W1 - rrrr - PM (0) l - llll - llll - llll. */
8684 return (insn & 0xffd02000) == 0xe8900000;
8685 }
8686
8687 static inline bfd_boolean
8688 is_thumb2_ldmdb (const insn32 insn)
8689 {
8690 /* Encoding T1: LDMDB<c> <Rn>{!},<registers>
8691 1110 - 1001 - 00W1 - rrrr - PM (0) l - llll - llll - llll. */
8692 return (insn & 0xffd02000) == 0xe9100000;
8693 }
8694
8695 static inline bfd_boolean
8696 is_thumb2_vldm (const insn32 insn)
8697 {
8698 /* A6.5 Extension register load or store instruction
8699 A7.7.229
8700 We look for SP 32-bit and DP 64-bit registers.
8701 Encoding T1 VLDM{mode}<c> <Rn>{!}, <list>
8702 <list> is consecutive 64-bit registers
8703 1110 - 110P - UDW1 - rrrr - vvvv - 1011 - iiii - iiii
8704 Encoding T2 VLDM{mode}<c> <Rn>{!}, <list>
8705 <list> is consecutive 32-bit registers
8706 1110 - 110P - UDW1 - rrrr - vvvv - 1010 - iiii - iiii
8707 if P==0 && U==1 && W==1 && Rn=1101 VPOP
8708 if PUW=010 || PUW=011 || PUW=101 VLDM. */
8709 return
8710 (((insn & 0xfe100f00) == 0xec100b00) ||
8711 ((insn & 0xfe100f00) == 0xec100a00))
8712 && /* (IA without !). */
8713 (((((insn << 7) >> 28) & 0xd) == 0x4)
8714 /* (IA with !), includes VPOP (when reg number is SP). */
8715 || ((((insn << 7) >> 28) & 0xd) == 0x5)
8716 /* (DB with !). */
8717 || ((((insn << 7) >> 28) & 0xd) == 0x9));
8718 }
8719
8720 /* STM STM32L4XX erratum : This function assumes that it receives an LDM or
8721 VLDM opcode and:
8722 - computes the number and the mode of memory accesses
8723 - decides if the replacement should be done:
8724 . replaces only if > 8-word accesses
8725 . or (testing purposes only) replaces all accesses. */
8726
8727 static bfd_boolean
8728 stm32l4xx_need_create_replacing_stub (const insn32 insn,
8729 bfd_arm_stm32l4xx_fix stm32l4xx_fix)
8730 {
8731 int nb_words = 0;
8732
8733 /* The field encoding the register list is the same for both LDMIA
8734 and LDMDB encodings. */
8735 if (is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn))
8736 nb_words = elf32_arm_popcount (insn & 0x0000ffff);
8737 else if (is_thumb2_vldm (insn))
8738 nb_words = (insn & 0xff);
8739
8740 /* DEFAULT mode accounts for the real bug condition situation,
8741 ALL mode inserts stubs for each LDM/VLDM instruction (testing). */
8742 return
8743 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_DEFAULT) ? nb_words > 8 :
8744 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_ALL) ? TRUE : FALSE;
8745 }
8746
8747 /* Look for potentially-troublesome code sequences which might trigger
8748 the STM STM32L4XX erratum. */
8749
8750 bfd_boolean
8751 bfd_elf32_arm_stm32l4xx_erratum_scan (bfd *abfd,
8752 struct bfd_link_info *link_info)
8753 {
8754 asection *sec;
8755 bfd_byte *contents = NULL;
8756 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8757
8758 if (globals == NULL)
8759 return FALSE;
8760
8761 /* If we are only performing a partial link do not bother
8762 to construct any glue. */
8763 if (bfd_link_relocatable (link_info))
8764 return TRUE;
8765
8766 /* Skip if this bfd does not correspond to an ELF image. */
8767 if (! is_arm_elf (abfd))
8768 return TRUE;
8769
8770 if (globals->stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_NONE)
8771 return TRUE;
8772
8773 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8774 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8775 return TRUE;
8776
8777 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8778 {
8779 unsigned int i, span;
8780 struct _arm_elf_section_data *sec_data;
8781
8782 /* If we don't have executable progbits, we're not interested in this
8783 section. Also skip if section is to be excluded. */
8784 if (elf_section_type (sec) != SHT_PROGBITS
8785 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8786 || (sec->flags & SEC_EXCLUDE) != 0
8787 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8788 || sec->output_section == bfd_abs_section_ptr
8789 || strcmp (sec->name, STM32L4XX_ERRATUM_VENEER_SECTION_NAME) == 0)
8790 continue;
8791
8792 sec_data = elf32_arm_section_data (sec);
8793
8794 if (sec_data->mapcount == 0)
8795 continue;
8796
8797 if (elf_section_data (sec)->this_hdr.contents != NULL)
8798 contents = elf_section_data (sec)->this_hdr.contents;
8799 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8800 goto error_return;
8801
8802 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8803 elf32_arm_compare_mapping);
8804
8805 for (span = 0; span < sec_data->mapcount; span++)
8806 {
8807 unsigned int span_start = sec_data->map[span].vma;
8808 unsigned int span_end = (span == sec_data->mapcount - 1)
8809 ? sec->size : sec_data->map[span + 1].vma;
8810 char span_type = sec_data->map[span].type;
8811 int itblock_current_pos = 0;
8812
8813 /* Only Thumb2 mode need be supported with this CM4 specific
8814 code, we should not encounter any arm mode eg span_type
8815 != 'a'. */
8816 if (span_type != 't')
8817 continue;
8818
8819 for (i = span_start; i < span_end;)
8820 {
8821 unsigned int insn = bfd_get_16 (abfd, &contents[i]);
8822 bfd_boolean insn_32bit = FALSE;
8823 bfd_boolean is_ldm = FALSE;
8824 bfd_boolean is_vldm = FALSE;
8825 bfd_boolean is_not_last_in_it_block = FALSE;
8826
8827 /* The first 16-bits of all 32-bit thumb2 instructions start
8828 with opcode[15..13]=0b111 and the encoded op1 can be anything
8829 except opcode[12..11]!=0b00.
8830 See 32-bit Thumb instruction encoding. */
8831 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
8832 insn_32bit = TRUE;
8833
8834 /* Compute the predicate that tells if the instruction
8835 is concerned by the IT block
8836 - Creates an error if there is a ldm that is not
8837 last in the IT block thus cannot be replaced
8838 - Otherwise we can create a branch at the end of the
8839 IT block, it will be controlled naturally by IT
8840 with the proper pseudo-predicate
8841 - So the only interesting predicate is the one that
8842 tells that we are not on the last item of an IT
8843 block. */
8844 if (itblock_current_pos != 0)
8845 is_not_last_in_it_block = !!--itblock_current_pos;
8846
8847 if (insn_32bit)
8848 {
8849 /* Load the rest of the insn (in manual-friendly order). */
8850 insn = (insn << 16) | bfd_get_16 (abfd, &contents[i + 2]);
8851 is_ldm = is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn);
8852 is_vldm = is_thumb2_vldm (insn);
8853
8854 /* Veneers are created for (v)ldm depending on
8855 option flags and memory accesses conditions; but
8856 if the instruction is not the last instruction of
8857 an IT block, we cannot create a jump there, so we
8858 bail out. */
8859 if ((is_ldm || is_vldm)
8860 && stm32l4xx_need_create_replacing_stub
8861 (insn, globals->stm32l4xx_fix))
8862 {
8863 if (is_not_last_in_it_block)
8864 {
8865 _bfd_error_handler
8866 /* xgettext:c-format */
8867 (_("%pB(%pA+%#x): error: multiple load detected"
8868 " in non-last IT block instruction:"
8869 " STM32L4XX veneer cannot be generated; "
8870 "use gcc option -mrestrict-it to generate"
8871 " only one instruction per IT block"),
8872 abfd, sec, i);
8873 }
8874 else
8875 {
8876 elf32_stm32l4xx_erratum_list *newerr =
8877 (elf32_stm32l4xx_erratum_list *)
8878 bfd_zmalloc
8879 (sizeof (elf32_stm32l4xx_erratum_list));
8880
8881 elf32_arm_section_data (sec)
8882 ->stm32l4xx_erratumcount += 1;
8883 newerr->u.b.insn = insn;
8884 /* We create only thumb branches. */
8885 newerr->type =
8886 STM32L4XX_ERRATUM_BRANCH_TO_VENEER;
8887 record_stm32l4xx_erratum_veneer
8888 (link_info, newerr, abfd, sec,
8889 i,
8890 is_ldm ?
8891 STM32L4XX_ERRATUM_LDM_VENEER_SIZE:
8892 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
8893 newerr->vma = -1;
8894 newerr->next = sec_data->stm32l4xx_erratumlist;
8895 sec_data->stm32l4xx_erratumlist = newerr;
8896 }
8897 }
8898 }
8899 else
8900 {
8901 /* A7.7.37 IT p208
8902 IT blocks are only encoded in T1
8903 Encoding T1: IT{x{y{z}}} <firstcond>
8904 1 0 1 1 - 1 1 1 1 - firstcond - mask
8905 if mask = '0000' then see 'related encodings'
8906 We don't deal with UNPREDICTABLE, just ignore these.
8907 There can be no nested IT blocks so an IT block
8908 is naturally a new one for which it is worth
8909 computing its size. */
8910 bfd_boolean is_newitblock = ((insn & 0xff00) == 0xbf00)
8911 && ((insn & 0x000f) != 0x0000);
8912 /* If we have a new IT block we compute its size. */
8913 if (is_newitblock)
8914 {
8915 /* Compute the number of instructions controlled
8916 by the IT block, it will be used to decide
8917 whether we are inside an IT block or not. */
8918 unsigned int mask = insn & 0x000f;
8919 itblock_current_pos = 4 - ctz (mask);
8920 }
8921 }
8922
8923 i += insn_32bit ? 4 : 2;
8924 }
8925 }
8926
8927 if (contents != NULL
8928 && elf_section_data (sec)->this_hdr.contents != contents)
8929 free (contents);
8930 contents = NULL;
8931 }
8932
8933 return TRUE;
8934
8935 error_return:
8936 if (contents != NULL
8937 && elf_section_data (sec)->this_hdr.contents != contents)
8938 free (contents);
8939
8940 return FALSE;
8941 }
8942
8943 /* Set target relocation values needed during linking. */
8944
8945 void
8946 bfd_elf32_arm_set_target_params (struct bfd *output_bfd,
8947 struct bfd_link_info *link_info,
8948 struct elf32_arm_params *params)
8949 {
8950 struct elf32_arm_link_hash_table *globals;
8951
8952 globals = elf32_arm_hash_table (link_info);
8953 if (globals == NULL)
8954 return;
8955
8956 globals->target1_is_rel = params->target1_is_rel;
8957 if (strcmp (params->target2_type, "rel") == 0)
8958 globals->target2_reloc = R_ARM_REL32;
8959 else if (strcmp (params->target2_type, "abs") == 0)
8960 globals->target2_reloc = R_ARM_ABS32;
8961 else if (strcmp (params->target2_type, "got-rel") == 0)
8962 globals->target2_reloc = R_ARM_GOT_PREL;
8963 else
8964 {
8965 _bfd_error_handler (_("invalid TARGET2 relocation type '%s'"),
8966 params->target2_type);
8967 }
8968 globals->fix_v4bx = params->fix_v4bx;
8969 globals->use_blx |= params->use_blx;
8970 globals->vfp11_fix = params->vfp11_denorm_fix;
8971 globals->stm32l4xx_fix = params->stm32l4xx_fix;
8972 if (globals->fdpic_p)
8973 globals->pic_veneer = 1;
8974 else
8975 globals->pic_veneer = params->pic_veneer;
8976 globals->fix_cortex_a8 = params->fix_cortex_a8;
8977 globals->fix_arm1176 = params->fix_arm1176;
8978 globals->cmse_implib = params->cmse_implib;
8979 globals->in_implib_bfd = params->in_implib_bfd;
8980
8981 BFD_ASSERT (is_arm_elf (output_bfd));
8982 elf_arm_tdata (output_bfd)->no_enum_size_warning
8983 = params->no_enum_size_warning;
8984 elf_arm_tdata (output_bfd)->no_wchar_size_warning
8985 = params->no_wchar_size_warning;
8986 }
8987
8988 /* Replace the target offset of a Thumb bl or b.w instruction. */
8989
8990 static void
8991 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
8992 {
8993 bfd_vma upper;
8994 bfd_vma lower;
8995 int reloc_sign;
8996
8997 BFD_ASSERT ((offset & 1) == 0);
8998
8999 upper = bfd_get_16 (abfd, insn);
9000 lower = bfd_get_16 (abfd, insn + 2);
9001 reloc_sign = (offset < 0) ? 1 : 0;
9002 upper = (upper & ~(bfd_vma) 0x7ff)
9003 | ((offset >> 12) & 0x3ff)
9004 | (reloc_sign << 10);
9005 lower = (lower & ~(bfd_vma) 0x2fff)
9006 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
9007 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
9008 | ((offset >> 1) & 0x7ff);
9009 bfd_put_16 (abfd, upper, insn);
9010 bfd_put_16 (abfd, lower, insn + 2);
9011 }
9012
9013 /* Thumb code calling an ARM function. */
9014
9015 static int
9016 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
9017 const char * name,
9018 bfd * input_bfd,
9019 bfd * output_bfd,
9020 asection * input_section,
9021 bfd_byte * hit_data,
9022 asection * sym_sec,
9023 bfd_vma offset,
9024 bfd_signed_vma addend,
9025 bfd_vma val,
9026 char **error_message)
9027 {
9028 asection * s = 0;
9029 bfd_vma my_offset;
9030 long int ret_offset;
9031 struct elf_link_hash_entry * myh;
9032 struct elf32_arm_link_hash_table * globals;
9033
9034 myh = find_thumb_glue (info, name, error_message);
9035 if (myh == NULL)
9036 return FALSE;
9037
9038 globals = elf32_arm_hash_table (info);
9039 BFD_ASSERT (globals != NULL);
9040 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9041
9042 my_offset = myh->root.u.def.value;
9043
9044 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9045 THUMB2ARM_GLUE_SECTION_NAME);
9046
9047 BFD_ASSERT (s != NULL);
9048 BFD_ASSERT (s->contents != NULL);
9049 BFD_ASSERT (s->output_section != NULL);
9050
9051 if ((my_offset & 0x01) == 0x01)
9052 {
9053 if (sym_sec != NULL
9054 && sym_sec->owner != NULL
9055 && !INTERWORK_FLAG (sym_sec->owner))
9056 {
9057 _bfd_error_handler
9058 (_("%pB(%s): warning: interworking not enabled;"
9059 " first occurrence: %pB: %s call to %s"),
9060 sym_sec->owner, name, input_bfd, "Thumb", "ARM");
9061
9062 return FALSE;
9063 }
9064
9065 --my_offset;
9066 myh->root.u.def.value = my_offset;
9067
9068 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
9069 s->contents + my_offset);
9070
9071 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
9072 s->contents + my_offset + 2);
9073
9074 ret_offset =
9075 /* Address of destination of the stub. */
9076 ((bfd_signed_vma) val)
9077 - ((bfd_signed_vma)
9078 /* Offset from the start of the current section
9079 to the start of the stubs. */
9080 (s->output_offset
9081 /* Offset of the start of this stub from the start of the stubs. */
9082 + my_offset
9083 /* Address of the start of the current section. */
9084 + s->output_section->vma)
9085 /* The branch instruction is 4 bytes into the stub. */
9086 + 4
9087 /* ARM branches work from the pc of the instruction + 8. */
9088 + 8);
9089
9090 put_arm_insn (globals, output_bfd,
9091 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
9092 s->contents + my_offset + 4);
9093 }
9094
9095 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
9096
9097 /* Now go back and fix up the original BL insn to point to here. */
9098 ret_offset =
9099 /* Address of where the stub is located. */
9100 (s->output_section->vma + s->output_offset + my_offset)
9101 /* Address of where the BL is located. */
9102 - (input_section->output_section->vma + input_section->output_offset
9103 + offset)
9104 /* Addend in the relocation. */
9105 - addend
9106 /* Biassing for PC-relative addressing. */
9107 - 8;
9108
9109 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
9110
9111 return TRUE;
9112 }
9113
9114 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
9115
9116 static struct elf_link_hash_entry *
9117 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
9118 const char * name,
9119 bfd * input_bfd,
9120 bfd * output_bfd,
9121 asection * sym_sec,
9122 bfd_vma val,
9123 asection * s,
9124 char ** error_message)
9125 {
9126 bfd_vma my_offset;
9127 long int ret_offset;
9128 struct elf_link_hash_entry * myh;
9129 struct elf32_arm_link_hash_table * globals;
9130
9131 myh = find_arm_glue (info, name, error_message);
9132 if (myh == NULL)
9133 return NULL;
9134
9135 globals = elf32_arm_hash_table (info);
9136 BFD_ASSERT (globals != NULL);
9137 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9138
9139 my_offset = myh->root.u.def.value;
9140
9141 if ((my_offset & 0x01) == 0x01)
9142 {
9143 if (sym_sec != NULL
9144 && sym_sec->owner != NULL
9145 && !INTERWORK_FLAG (sym_sec->owner))
9146 {
9147 _bfd_error_handler
9148 (_("%pB(%s): warning: interworking not enabled;"
9149 " first occurrence: %pB: %s call to %s"),
9150 sym_sec->owner, name, input_bfd, "ARM", "Thumb");
9151 }
9152
9153 --my_offset;
9154 myh->root.u.def.value = my_offset;
9155
9156 if (bfd_link_pic (info)
9157 || globals->root.is_relocatable_executable
9158 || globals->pic_veneer)
9159 {
9160 /* For relocatable objects we can't use absolute addresses,
9161 so construct the address from a relative offset. */
9162 /* TODO: If the offset is small it's probably worth
9163 constructing the address with adds. */
9164 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
9165 s->contents + my_offset);
9166 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
9167 s->contents + my_offset + 4);
9168 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
9169 s->contents + my_offset + 8);
9170 /* Adjust the offset by 4 for the position of the add,
9171 and 8 for the pipeline offset. */
9172 ret_offset = (val - (s->output_offset
9173 + s->output_section->vma
9174 + my_offset + 12))
9175 | 1;
9176 bfd_put_32 (output_bfd, ret_offset,
9177 s->contents + my_offset + 12);
9178 }
9179 else if (globals->use_blx)
9180 {
9181 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
9182 s->contents + my_offset);
9183
9184 /* It's a thumb address. Add the low order bit. */
9185 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
9186 s->contents + my_offset + 4);
9187 }
9188 else
9189 {
9190 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
9191 s->contents + my_offset);
9192
9193 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
9194 s->contents + my_offset + 4);
9195
9196 /* It's a thumb address. Add the low order bit. */
9197 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
9198 s->contents + my_offset + 8);
9199
9200 my_offset += 12;
9201 }
9202 }
9203
9204 BFD_ASSERT (my_offset <= globals->arm_glue_size);
9205
9206 return myh;
9207 }
9208
9209 /* Arm code calling a Thumb function. */
9210
9211 static int
9212 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
9213 const char * name,
9214 bfd * input_bfd,
9215 bfd * output_bfd,
9216 asection * input_section,
9217 bfd_byte * hit_data,
9218 asection * sym_sec,
9219 bfd_vma offset,
9220 bfd_signed_vma addend,
9221 bfd_vma val,
9222 char **error_message)
9223 {
9224 unsigned long int tmp;
9225 bfd_vma my_offset;
9226 asection * s;
9227 long int ret_offset;
9228 struct elf_link_hash_entry * myh;
9229 struct elf32_arm_link_hash_table * globals;
9230
9231 globals = elf32_arm_hash_table (info);
9232 BFD_ASSERT (globals != NULL);
9233 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9234
9235 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9236 ARM2THUMB_GLUE_SECTION_NAME);
9237 BFD_ASSERT (s != NULL);
9238 BFD_ASSERT (s->contents != NULL);
9239 BFD_ASSERT (s->output_section != NULL);
9240
9241 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
9242 sym_sec, val, s, error_message);
9243 if (!myh)
9244 return FALSE;
9245
9246 my_offset = myh->root.u.def.value;
9247 tmp = bfd_get_32 (input_bfd, hit_data);
9248 tmp = tmp & 0xFF000000;
9249
9250 /* Somehow these are both 4 too far, so subtract 8. */
9251 ret_offset = (s->output_offset
9252 + my_offset
9253 + s->output_section->vma
9254 - (input_section->output_offset
9255 + input_section->output_section->vma
9256 + offset + addend)
9257 - 8);
9258
9259 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
9260
9261 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
9262
9263 return TRUE;
9264 }
9265
9266 /* Populate Arm stub for an exported Thumb function. */
9267
9268 static bfd_boolean
9269 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
9270 {
9271 struct bfd_link_info * info = (struct bfd_link_info *) inf;
9272 asection * s;
9273 struct elf_link_hash_entry * myh;
9274 struct elf32_arm_link_hash_entry *eh;
9275 struct elf32_arm_link_hash_table * globals;
9276 asection *sec;
9277 bfd_vma val;
9278 char *error_message;
9279
9280 eh = elf32_arm_hash_entry (h);
9281 /* Allocate stubs for exported Thumb functions on v4t. */
9282 if (eh->export_glue == NULL)
9283 return TRUE;
9284
9285 globals = elf32_arm_hash_table (info);
9286 BFD_ASSERT (globals != NULL);
9287 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9288
9289 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9290 ARM2THUMB_GLUE_SECTION_NAME);
9291 BFD_ASSERT (s != NULL);
9292 BFD_ASSERT (s->contents != NULL);
9293 BFD_ASSERT (s->output_section != NULL);
9294
9295 sec = eh->export_glue->root.u.def.section;
9296
9297 BFD_ASSERT (sec->output_section != NULL);
9298
9299 val = eh->export_glue->root.u.def.value + sec->output_offset
9300 + sec->output_section->vma;
9301
9302 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
9303 h->root.u.def.section->owner,
9304 globals->obfd, sec, val, s,
9305 &error_message);
9306 BFD_ASSERT (myh);
9307 return TRUE;
9308 }
9309
9310 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
9311
9312 static bfd_vma
9313 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
9314 {
9315 bfd_byte *p;
9316 bfd_vma glue_addr;
9317 asection *s;
9318 struct elf32_arm_link_hash_table *globals;
9319
9320 globals = elf32_arm_hash_table (info);
9321 BFD_ASSERT (globals != NULL);
9322 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9323
9324 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9325 ARM_BX_GLUE_SECTION_NAME);
9326 BFD_ASSERT (s != NULL);
9327 BFD_ASSERT (s->contents != NULL);
9328 BFD_ASSERT (s->output_section != NULL);
9329
9330 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
9331
9332 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
9333
9334 if ((globals->bx_glue_offset[reg] & 1) == 0)
9335 {
9336 p = s->contents + glue_addr;
9337 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
9338 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
9339 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
9340 globals->bx_glue_offset[reg] |= 1;
9341 }
9342
9343 return glue_addr + s->output_section->vma + s->output_offset;
9344 }
9345
9346 /* Generate Arm stubs for exported Thumb symbols. */
9347 static void
9348 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
9349 struct bfd_link_info *link_info)
9350 {
9351 struct elf32_arm_link_hash_table * globals;
9352
9353 if (link_info == NULL)
9354 /* Ignore this if we are not called by the ELF backend linker. */
9355 return;
9356
9357 globals = elf32_arm_hash_table (link_info);
9358 if (globals == NULL)
9359 return;
9360
9361 /* If blx is available then exported Thumb symbols are OK and there is
9362 nothing to do. */
9363 if (globals->use_blx)
9364 return;
9365
9366 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
9367 link_info);
9368 }
9369
9370 /* Reserve space for COUNT dynamic relocations in relocation selection
9371 SRELOC. */
9372
9373 static void
9374 elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
9375 bfd_size_type count)
9376 {
9377 struct elf32_arm_link_hash_table *htab;
9378
9379 htab = elf32_arm_hash_table (info);
9380 BFD_ASSERT (htab->root.dynamic_sections_created);
9381 if (sreloc == NULL)
9382 abort ();
9383 sreloc->size += RELOC_SIZE (htab) * count;
9384 }
9385
9386 /* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
9387 dynamic, the relocations should go in SRELOC, otherwise they should
9388 go in the special .rel.iplt section. */
9389
9390 static void
9391 elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
9392 bfd_size_type count)
9393 {
9394 struct elf32_arm_link_hash_table *htab;
9395
9396 htab = elf32_arm_hash_table (info);
9397 if (!htab->root.dynamic_sections_created)
9398 htab->root.irelplt->size += RELOC_SIZE (htab) * count;
9399 else
9400 {
9401 BFD_ASSERT (sreloc != NULL);
9402 sreloc->size += RELOC_SIZE (htab) * count;
9403 }
9404 }
9405
9406 /* Add relocation REL to the end of relocation section SRELOC. */
9407
9408 static void
9409 elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
9410 asection *sreloc, Elf_Internal_Rela *rel)
9411 {
9412 bfd_byte *loc;
9413 struct elf32_arm_link_hash_table *htab;
9414
9415 htab = elf32_arm_hash_table (info);
9416 if (!htab->root.dynamic_sections_created
9417 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
9418 sreloc = htab->root.irelplt;
9419 if (sreloc == NULL)
9420 abort ();
9421 loc = sreloc->contents;
9422 loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
9423 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
9424 abort ();
9425 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
9426 }
9427
9428 /* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
9429 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
9430 to .plt. */
9431
9432 static void
9433 elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
9434 bfd_boolean is_iplt_entry,
9435 union gotplt_union *root_plt,
9436 struct arm_plt_info *arm_plt)
9437 {
9438 struct elf32_arm_link_hash_table *htab;
9439 asection *splt;
9440 asection *sgotplt;
9441
9442 htab = elf32_arm_hash_table (info);
9443
9444 if (is_iplt_entry)
9445 {
9446 splt = htab->root.iplt;
9447 sgotplt = htab->root.igotplt;
9448
9449 /* NaCl uses a special first entry in .iplt too. */
9450 if (htab->nacl_p && splt->size == 0)
9451 splt->size += htab->plt_header_size;
9452
9453 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
9454 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
9455 }
9456 else
9457 {
9458 splt = htab->root.splt;
9459 sgotplt = htab->root.sgotplt;
9460
9461 if (htab->fdpic_p)
9462 {
9463 /* Allocate room for R_ARM_FUNCDESC_VALUE. */
9464 /* For lazy binding, relocations will be put into .rel.plt, in
9465 .rel.got otherwise. */
9466 /* FIXME: today we don't support lazy binding so put it in .rel.got */
9467 if (info->flags & DF_BIND_NOW)
9468 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
9469 else
9470 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
9471 }
9472 else
9473 {
9474 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
9475 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
9476 }
9477
9478 /* If this is the first .plt entry, make room for the special
9479 first entry. */
9480 if (splt->size == 0)
9481 splt->size += htab->plt_header_size;
9482
9483 htab->next_tls_desc_index++;
9484 }
9485
9486 /* Allocate the PLT entry itself, including any leading Thumb stub. */
9487 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9488 splt->size += PLT_THUMB_STUB_SIZE;
9489 root_plt->offset = splt->size;
9490 splt->size += htab->plt_entry_size;
9491
9492 if (!htab->symbian_p)
9493 {
9494 /* We also need to make an entry in the .got.plt section, which
9495 will be placed in the .got section by the linker script. */
9496 if (is_iplt_entry)
9497 arm_plt->got_offset = sgotplt->size;
9498 else
9499 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
9500 if (htab->fdpic_p)
9501 /* Function descriptor takes 64 bits in GOT. */
9502 sgotplt->size += 8;
9503 else
9504 sgotplt->size += 4;
9505 }
9506 }
9507
9508 static bfd_vma
9509 arm_movw_immediate (bfd_vma value)
9510 {
9511 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
9512 }
9513
9514 static bfd_vma
9515 arm_movt_immediate (bfd_vma value)
9516 {
9517 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
9518 }
9519
9520 /* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
9521 the entry lives in .iplt and resolves to (*SYM_VALUE)().
9522 Otherwise, DYNINDX is the index of the symbol in the dynamic
9523 symbol table and SYM_VALUE is undefined.
9524
9525 ROOT_PLT points to the offset of the PLT entry from the start of its
9526 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
9527 bookkeeping information.
9528
9529 Returns FALSE if there was a problem. */
9530
9531 static bfd_boolean
9532 elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
9533 union gotplt_union *root_plt,
9534 struct arm_plt_info *arm_plt,
9535 int dynindx, bfd_vma sym_value)
9536 {
9537 struct elf32_arm_link_hash_table *htab;
9538 asection *sgot;
9539 asection *splt;
9540 asection *srel;
9541 bfd_byte *loc;
9542 bfd_vma plt_index;
9543 Elf_Internal_Rela rel;
9544 bfd_vma plt_header_size;
9545 bfd_vma got_header_size;
9546
9547 htab = elf32_arm_hash_table (info);
9548
9549 /* Pick the appropriate sections and sizes. */
9550 if (dynindx == -1)
9551 {
9552 splt = htab->root.iplt;
9553 sgot = htab->root.igotplt;
9554 srel = htab->root.irelplt;
9555
9556 /* There are no reserved entries in .igot.plt, and no special
9557 first entry in .iplt. */
9558 got_header_size = 0;
9559 plt_header_size = 0;
9560 }
9561 else
9562 {
9563 splt = htab->root.splt;
9564 sgot = htab->root.sgotplt;
9565 srel = htab->root.srelplt;
9566
9567 got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
9568 plt_header_size = htab->plt_header_size;
9569 }
9570 BFD_ASSERT (splt != NULL && srel != NULL);
9571
9572 /* Fill in the entry in the procedure linkage table. */
9573 if (htab->symbian_p)
9574 {
9575 BFD_ASSERT (dynindx >= 0);
9576 put_arm_insn (htab, output_bfd,
9577 elf32_arm_symbian_plt_entry[0],
9578 splt->contents + root_plt->offset);
9579 bfd_put_32 (output_bfd,
9580 elf32_arm_symbian_plt_entry[1],
9581 splt->contents + root_plt->offset + 4);
9582
9583 /* Fill in the entry in the .rel.plt section. */
9584 rel.r_offset = (splt->output_section->vma
9585 + splt->output_offset
9586 + root_plt->offset + 4);
9587 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
9588
9589 /* Get the index in the procedure linkage table which
9590 corresponds to this symbol. This is the index of this symbol
9591 in all the symbols for which we are making plt entries. The
9592 first entry in the procedure linkage table is reserved. */
9593 plt_index = ((root_plt->offset - plt_header_size)
9594 / htab->plt_entry_size);
9595 }
9596 else
9597 {
9598 bfd_vma got_offset, got_address, plt_address;
9599 bfd_vma got_displacement, initial_got_entry;
9600 bfd_byte * ptr;
9601
9602 BFD_ASSERT (sgot != NULL);
9603
9604 /* Get the offset into the .(i)got.plt table of the entry that
9605 corresponds to this function. */
9606 got_offset = (arm_plt->got_offset & -2);
9607
9608 /* Get the index in the procedure linkage table which
9609 corresponds to this symbol. This is the index of this symbol
9610 in all the symbols for which we are making plt entries.
9611 After the reserved .got.plt entries, all symbols appear in
9612 the same order as in .plt. */
9613 if (htab->fdpic_p)
9614 /* Function descriptor takes 8 bytes. */
9615 plt_index = (got_offset - got_header_size) / 8;
9616 else
9617 plt_index = (got_offset - got_header_size) / 4;
9618
9619 /* Calculate the address of the GOT entry. */
9620 got_address = (sgot->output_section->vma
9621 + sgot->output_offset
9622 + got_offset);
9623
9624 /* ...and the address of the PLT entry. */
9625 plt_address = (splt->output_section->vma
9626 + splt->output_offset
9627 + root_plt->offset);
9628
9629 ptr = splt->contents + root_plt->offset;
9630 if (htab->vxworks_p && bfd_link_pic (info))
9631 {
9632 unsigned int i;
9633 bfd_vma val;
9634
9635 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9636 {
9637 val = elf32_arm_vxworks_shared_plt_entry[i];
9638 if (i == 2)
9639 val |= got_address - sgot->output_section->vma;
9640 if (i == 5)
9641 val |= plt_index * RELOC_SIZE (htab);
9642 if (i == 2 || i == 5)
9643 bfd_put_32 (output_bfd, val, ptr);
9644 else
9645 put_arm_insn (htab, output_bfd, val, ptr);
9646 }
9647 }
9648 else if (htab->vxworks_p)
9649 {
9650 unsigned int i;
9651 bfd_vma val;
9652
9653 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9654 {
9655 val = elf32_arm_vxworks_exec_plt_entry[i];
9656 if (i == 2)
9657 val |= got_address;
9658 if (i == 4)
9659 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
9660 if (i == 5)
9661 val |= plt_index * RELOC_SIZE (htab);
9662 if (i == 2 || i == 5)
9663 bfd_put_32 (output_bfd, val, ptr);
9664 else
9665 put_arm_insn (htab, output_bfd, val, ptr);
9666 }
9667
9668 loc = (htab->srelplt2->contents
9669 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
9670
9671 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
9672 referencing the GOT for this PLT entry. */
9673 rel.r_offset = plt_address + 8;
9674 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
9675 rel.r_addend = got_offset;
9676 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9677 loc += RELOC_SIZE (htab);
9678
9679 /* Create the R_ARM_ABS32 relocation referencing the
9680 beginning of the PLT for this GOT entry. */
9681 rel.r_offset = got_address;
9682 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
9683 rel.r_addend = 0;
9684 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9685 }
9686 else if (htab->nacl_p)
9687 {
9688 /* Calculate the displacement between the PLT slot and the
9689 common tail that's part of the special initial PLT slot. */
9690 int32_t tail_displacement
9691 = ((splt->output_section->vma + splt->output_offset
9692 + ARM_NACL_PLT_TAIL_OFFSET)
9693 - (plt_address + htab->plt_entry_size + 4));
9694 BFD_ASSERT ((tail_displacement & 3) == 0);
9695 tail_displacement >>= 2;
9696
9697 BFD_ASSERT ((tail_displacement & 0xff000000) == 0
9698 || (-tail_displacement & 0xff000000) == 0);
9699
9700 /* Calculate the displacement between the PLT slot and the entry
9701 in the GOT. The offset accounts for the value produced by
9702 adding to pc in the penultimate instruction of the PLT stub. */
9703 got_displacement = (got_address
9704 - (plt_address + htab->plt_entry_size));
9705
9706 /* NaCl does not support interworking at all. */
9707 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt));
9708
9709 put_arm_insn (htab, output_bfd,
9710 elf32_arm_nacl_plt_entry[0]
9711 | arm_movw_immediate (got_displacement),
9712 ptr + 0);
9713 put_arm_insn (htab, output_bfd,
9714 elf32_arm_nacl_plt_entry[1]
9715 | arm_movt_immediate (got_displacement),
9716 ptr + 4);
9717 put_arm_insn (htab, output_bfd,
9718 elf32_arm_nacl_plt_entry[2],
9719 ptr + 8);
9720 put_arm_insn (htab, output_bfd,
9721 elf32_arm_nacl_plt_entry[3]
9722 | (tail_displacement & 0x00ffffff),
9723 ptr + 12);
9724 }
9725 else if (htab->fdpic_p)
9726 {
9727 /* Fill-up Thumb stub if needed. */
9728 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9729 {
9730 put_thumb_insn (htab, output_bfd,
9731 elf32_arm_plt_thumb_stub[0], ptr - 4);
9732 put_thumb_insn (htab, output_bfd,
9733 elf32_arm_plt_thumb_stub[1], ptr - 2);
9734 }
9735 put_arm_insn(htab, output_bfd,
9736 elf32_arm_fdpic_plt_entry[0], ptr + 0);
9737 put_arm_insn(htab, output_bfd,
9738 elf32_arm_fdpic_plt_entry[1], ptr + 4);
9739 put_arm_insn(htab, output_bfd,
9740 elf32_arm_fdpic_plt_entry[2], ptr + 8);
9741 put_arm_insn(htab, output_bfd,
9742 elf32_arm_fdpic_plt_entry[3], ptr + 12);
9743 bfd_put_32 (output_bfd, got_offset, ptr + 16);
9744
9745 if (!(info->flags & DF_BIND_NOW))
9746 {
9747 /* funcdesc_value_reloc_offset. */
9748 bfd_put_32 (output_bfd,
9749 htab->root.srelplt->reloc_count * RELOC_SIZE (htab),
9750 ptr + 20);
9751 put_arm_insn(htab, output_bfd,
9752 elf32_arm_fdpic_plt_entry[6], ptr + 24);
9753 put_arm_insn(htab, output_bfd,
9754 elf32_arm_fdpic_plt_entry[7], ptr + 28);
9755 put_arm_insn(htab, output_bfd,
9756 elf32_arm_fdpic_plt_entry[8], ptr + 32);
9757 put_arm_insn(htab, output_bfd,
9758 elf32_arm_fdpic_plt_entry[9], ptr + 36);
9759 }
9760 }
9761 else if (using_thumb_only (htab))
9762 {
9763 /* PR ld/16017: Generate thumb only PLT entries. */
9764 if (!using_thumb2 (htab))
9765 {
9766 /* FIXME: We ought to be able to generate thumb-1 PLT
9767 instructions... */
9768 _bfd_error_handler (_("%pB: warning: thumb-1 mode PLT generation not currently supported"),
9769 output_bfd);
9770 return FALSE;
9771 }
9772
9773 /* Calculate the displacement between the PLT slot and the entry in
9774 the GOT. The 12-byte offset accounts for the value produced by
9775 adding to pc in the 3rd instruction of the PLT stub. */
9776 got_displacement = got_address - (plt_address + 12);
9777
9778 /* As we are using 32 bit instructions we have to use 'put_arm_insn'
9779 instead of 'put_thumb_insn'. */
9780 put_arm_insn (htab, output_bfd,
9781 elf32_thumb2_plt_entry[0]
9782 | ((got_displacement & 0x000000ff) << 16)
9783 | ((got_displacement & 0x00000700) << 20)
9784 | ((got_displacement & 0x00000800) >> 1)
9785 | ((got_displacement & 0x0000f000) >> 12),
9786 ptr + 0);
9787 put_arm_insn (htab, output_bfd,
9788 elf32_thumb2_plt_entry[1]
9789 | ((got_displacement & 0x00ff0000) )
9790 | ((got_displacement & 0x07000000) << 4)
9791 | ((got_displacement & 0x08000000) >> 17)
9792 | ((got_displacement & 0xf0000000) >> 28),
9793 ptr + 4);
9794 put_arm_insn (htab, output_bfd,
9795 elf32_thumb2_plt_entry[2],
9796 ptr + 8);
9797 put_arm_insn (htab, output_bfd,
9798 elf32_thumb2_plt_entry[3],
9799 ptr + 12);
9800 }
9801 else
9802 {
9803 /* Calculate the displacement between the PLT slot and the
9804 entry in the GOT. The eight-byte offset accounts for the
9805 value produced by adding to pc in the first instruction
9806 of the PLT stub. */
9807 got_displacement = got_address - (plt_address + 8);
9808
9809 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9810 {
9811 put_thumb_insn (htab, output_bfd,
9812 elf32_arm_plt_thumb_stub[0], ptr - 4);
9813 put_thumb_insn (htab, output_bfd,
9814 elf32_arm_plt_thumb_stub[1], ptr - 2);
9815 }
9816
9817 if (!elf32_arm_use_long_plt_entry)
9818 {
9819 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
9820
9821 put_arm_insn (htab, output_bfd,
9822 elf32_arm_plt_entry_short[0]
9823 | ((got_displacement & 0x0ff00000) >> 20),
9824 ptr + 0);
9825 put_arm_insn (htab, output_bfd,
9826 elf32_arm_plt_entry_short[1]
9827 | ((got_displacement & 0x000ff000) >> 12),
9828 ptr+ 4);
9829 put_arm_insn (htab, output_bfd,
9830 elf32_arm_plt_entry_short[2]
9831 | (got_displacement & 0x00000fff),
9832 ptr + 8);
9833 #ifdef FOUR_WORD_PLT
9834 bfd_put_32 (output_bfd, elf32_arm_plt_entry_short[3], ptr + 12);
9835 #endif
9836 }
9837 else
9838 {
9839 put_arm_insn (htab, output_bfd,
9840 elf32_arm_plt_entry_long[0]
9841 | ((got_displacement & 0xf0000000) >> 28),
9842 ptr + 0);
9843 put_arm_insn (htab, output_bfd,
9844 elf32_arm_plt_entry_long[1]
9845 | ((got_displacement & 0x0ff00000) >> 20),
9846 ptr + 4);
9847 put_arm_insn (htab, output_bfd,
9848 elf32_arm_plt_entry_long[2]
9849 | ((got_displacement & 0x000ff000) >> 12),
9850 ptr+ 8);
9851 put_arm_insn (htab, output_bfd,
9852 elf32_arm_plt_entry_long[3]
9853 | (got_displacement & 0x00000fff),
9854 ptr + 12);
9855 }
9856 }
9857
9858 /* Fill in the entry in the .rel(a).(i)plt section. */
9859 rel.r_offset = got_address;
9860 rel.r_addend = 0;
9861 if (dynindx == -1)
9862 {
9863 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
9864 The dynamic linker or static executable then calls SYM_VALUE
9865 to determine the correct run-time value of the .igot.plt entry. */
9866 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9867 initial_got_entry = sym_value;
9868 }
9869 else
9870 {
9871 /* For FDPIC we will have to resolve a R_ARM_FUNCDESC_VALUE
9872 used by PLT entry. */
9873 if (htab->fdpic_p)
9874 {
9875 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_FUNCDESC_VALUE);
9876 initial_got_entry = 0;
9877 }
9878 else
9879 {
9880 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
9881 initial_got_entry = (splt->output_section->vma
9882 + splt->output_offset);
9883 }
9884 }
9885
9886 /* Fill in the entry in the global offset table. */
9887 bfd_put_32 (output_bfd, initial_got_entry,
9888 sgot->contents + got_offset);
9889
9890 if (htab->fdpic_p && !(info->flags & DF_BIND_NOW))
9891 {
9892 /* Setup initial funcdesc value. */
9893 /* FIXME: we don't support lazy binding because there is a
9894 race condition between both words getting written and
9895 some other thread attempting to read them. The ARM
9896 architecture does not have an atomic 64 bit load/store
9897 instruction that could be used to prevent it; it is
9898 recommended that threaded FDPIC applications run with the
9899 LD_BIND_NOW environment variable set. */
9900 bfd_put_32(output_bfd, plt_address + 0x18,
9901 sgot->contents + got_offset);
9902 bfd_put_32(output_bfd, -1 /*TODO*/,
9903 sgot->contents + got_offset + 4);
9904 }
9905 }
9906
9907 if (dynindx == -1)
9908 elf32_arm_add_dynreloc (output_bfd, info, srel, &rel);
9909 else
9910 {
9911 if (htab->fdpic_p)
9912 {
9913 /* For FDPIC we put PLT relocationss into .rel.got when not
9914 lazy binding otherwise we put them in .rel.plt. For now,
9915 we don't support lazy binding so put it in .rel.got. */
9916 if (info->flags & DF_BIND_NOW)
9917 elf32_arm_add_dynreloc(output_bfd, info, htab->root.srelgot, &rel);
9918 else
9919 elf32_arm_add_dynreloc(output_bfd, info, htab->root.srelplt, &rel);
9920 }
9921 else
9922 {
9923 loc = srel->contents + plt_index * RELOC_SIZE (htab);
9924 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9925 }
9926 }
9927
9928 return TRUE;
9929 }
9930
9931 /* Some relocations map to different relocations depending on the
9932 target. Return the real relocation. */
9933
9934 static int
9935 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
9936 int r_type)
9937 {
9938 switch (r_type)
9939 {
9940 case R_ARM_TARGET1:
9941 if (globals->target1_is_rel)
9942 return R_ARM_REL32;
9943 else
9944 return R_ARM_ABS32;
9945
9946 case R_ARM_TARGET2:
9947 return globals->target2_reloc;
9948
9949 default:
9950 return r_type;
9951 }
9952 }
9953
9954 /* Return the base VMA address which should be subtracted from real addresses
9955 when resolving @dtpoff relocation.
9956 This is PT_TLS segment p_vaddr. */
9957
9958 static bfd_vma
9959 dtpoff_base (struct bfd_link_info *info)
9960 {
9961 /* If tls_sec is NULL, we should have signalled an error already. */
9962 if (elf_hash_table (info)->tls_sec == NULL)
9963 return 0;
9964 return elf_hash_table (info)->tls_sec->vma;
9965 }
9966
9967 /* Return the relocation value for @tpoff relocation
9968 if STT_TLS virtual address is ADDRESS. */
9969
9970 static bfd_vma
9971 tpoff (struct bfd_link_info *info, bfd_vma address)
9972 {
9973 struct elf_link_hash_table *htab = elf_hash_table (info);
9974 bfd_vma base;
9975
9976 /* If tls_sec is NULL, we should have signalled an error already. */
9977 if (htab->tls_sec == NULL)
9978 return 0;
9979 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
9980 return address - htab->tls_sec->vma + base;
9981 }
9982
9983 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
9984 VALUE is the relocation value. */
9985
9986 static bfd_reloc_status_type
9987 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
9988 {
9989 if (value > 0xfff)
9990 return bfd_reloc_overflow;
9991
9992 value |= bfd_get_32 (abfd, data) & 0xfffff000;
9993 bfd_put_32 (abfd, value, data);
9994 return bfd_reloc_ok;
9995 }
9996
9997 /* Handle TLS relaxations. Relaxing is possible for symbols that use
9998 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
9999 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
10000
10001 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
10002 is to then call final_link_relocate. Return other values in the
10003 case of error.
10004
10005 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
10006 the pre-relaxed code. It would be nice if the relocs were updated
10007 to match the optimization. */
10008
10009 static bfd_reloc_status_type
10010 elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
10011 bfd *input_bfd, asection *input_sec, bfd_byte *contents,
10012 Elf_Internal_Rela *rel, unsigned long is_local)
10013 {
10014 unsigned long insn;
10015
10016 switch (ELF32_R_TYPE (rel->r_info))
10017 {
10018 default:
10019 return bfd_reloc_notsupported;
10020
10021 case R_ARM_TLS_GOTDESC:
10022 if (is_local)
10023 insn = 0;
10024 else
10025 {
10026 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
10027 if (insn & 1)
10028 insn -= 5; /* THUMB */
10029 else
10030 insn -= 8; /* ARM */
10031 }
10032 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
10033 return bfd_reloc_continue;
10034
10035 case R_ARM_THM_TLS_DESCSEQ:
10036 /* Thumb insn. */
10037 insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
10038 if ((insn & 0xff78) == 0x4478) /* add rx, pc */
10039 {
10040 if (is_local)
10041 /* nop */
10042 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10043 }
10044 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
10045 {
10046 if (is_local)
10047 /* nop */
10048 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10049 else
10050 /* ldr rx,[ry] */
10051 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
10052 }
10053 else if ((insn & 0xff87) == 0x4780) /* blx rx */
10054 {
10055 if (is_local)
10056 /* nop */
10057 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10058 else
10059 /* mov r0, rx */
10060 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
10061 contents + rel->r_offset);
10062 }
10063 else
10064 {
10065 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
10066 /* It's a 32 bit instruction, fetch the rest of it for
10067 error generation. */
10068 insn = (insn << 16)
10069 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
10070 _bfd_error_handler
10071 /* xgettext:c-format */
10072 (_("%pB(%pA+%#" PRIx64 "): "
10073 "unexpected %s instruction '%#lx' in TLS trampoline"),
10074 input_bfd, input_sec, (uint64_t) rel->r_offset,
10075 "Thumb", insn);
10076 return bfd_reloc_notsupported;
10077 }
10078 break;
10079
10080 case R_ARM_TLS_DESCSEQ:
10081 /* arm insn. */
10082 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
10083 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
10084 {
10085 if (is_local)
10086 /* mov rx, ry */
10087 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
10088 contents + rel->r_offset);
10089 }
10090 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
10091 {
10092 if (is_local)
10093 /* nop */
10094 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
10095 else
10096 /* ldr rx,[ry] */
10097 bfd_put_32 (input_bfd, insn & 0xfffff000,
10098 contents + rel->r_offset);
10099 }
10100 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
10101 {
10102 if (is_local)
10103 /* nop */
10104 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
10105 else
10106 /* mov r0, rx */
10107 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
10108 contents + rel->r_offset);
10109 }
10110 else
10111 {
10112 _bfd_error_handler
10113 /* xgettext:c-format */
10114 (_("%pB(%pA+%#" PRIx64 "): "
10115 "unexpected %s instruction '%#lx' in TLS trampoline"),
10116 input_bfd, input_sec, (uint64_t) rel->r_offset,
10117 "ARM", insn);
10118 return bfd_reloc_notsupported;
10119 }
10120 break;
10121
10122 case R_ARM_TLS_CALL:
10123 /* GD->IE relaxation, turn the instruction into 'nop' or
10124 'ldr r0, [pc,r0]' */
10125 insn = is_local ? 0xe1a00000 : 0xe79f0000;
10126 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
10127 break;
10128
10129 case R_ARM_THM_TLS_CALL:
10130 /* GD->IE relaxation. */
10131 if (!is_local)
10132 /* add r0,pc; ldr r0, [r0] */
10133 insn = 0x44786800;
10134 else if (using_thumb2 (globals))
10135 /* nop.w */
10136 insn = 0xf3af8000;
10137 else
10138 /* nop; nop */
10139 insn = 0xbf00bf00;
10140
10141 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
10142 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
10143 break;
10144 }
10145 return bfd_reloc_ok;
10146 }
10147
10148 /* For a given value of n, calculate the value of G_n as required to
10149 deal with group relocations. We return it in the form of an
10150 encoded constant-and-rotation, together with the final residual. If n is
10151 specified as less than zero, then final_residual is filled with the
10152 input value and no further action is performed. */
10153
10154 static bfd_vma
10155 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
10156 {
10157 int current_n;
10158 bfd_vma g_n;
10159 bfd_vma encoded_g_n = 0;
10160 bfd_vma residual = value; /* Also known as Y_n. */
10161
10162 for (current_n = 0; current_n <= n; current_n++)
10163 {
10164 int shift;
10165
10166 /* Calculate which part of the value to mask. */
10167 if (residual == 0)
10168 shift = 0;
10169 else
10170 {
10171 int msb;
10172
10173 /* Determine the most significant bit in the residual and
10174 align the resulting value to a 2-bit boundary. */
10175 for (msb = 30; msb >= 0; msb -= 2)
10176 if (residual & (3 << msb))
10177 break;
10178
10179 /* The desired shift is now (msb - 6), or zero, whichever
10180 is the greater. */
10181 shift = msb - 6;
10182 if (shift < 0)
10183 shift = 0;
10184 }
10185
10186 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
10187 g_n = residual & (0xff << shift);
10188 encoded_g_n = (g_n >> shift)
10189 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
10190
10191 /* Calculate the residual for the next time around. */
10192 residual &= ~g_n;
10193 }
10194
10195 *final_residual = residual;
10196
10197 return encoded_g_n;
10198 }
10199
10200 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
10201 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
10202
10203 static int
10204 identify_add_or_sub (bfd_vma insn)
10205 {
10206 int opcode = insn & 0x1e00000;
10207
10208 if (opcode == 1 << 23) /* ADD */
10209 return 1;
10210
10211 if (opcode == 1 << 22) /* SUB */
10212 return -1;
10213
10214 return 0;
10215 }
10216
10217 /* Perform a relocation as part of a final link. */
10218
10219 static bfd_reloc_status_type
10220 elf32_arm_final_link_relocate (reloc_howto_type * howto,
10221 bfd * input_bfd,
10222 bfd * output_bfd,
10223 asection * input_section,
10224 bfd_byte * contents,
10225 Elf_Internal_Rela * rel,
10226 bfd_vma value,
10227 struct bfd_link_info * info,
10228 asection * sym_sec,
10229 const char * sym_name,
10230 unsigned char st_type,
10231 enum arm_st_branch_type branch_type,
10232 struct elf_link_hash_entry * h,
10233 bfd_boolean * unresolved_reloc_p,
10234 char ** error_message)
10235 {
10236 unsigned long r_type = howto->type;
10237 unsigned long r_symndx;
10238 bfd_byte * hit_data = contents + rel->r_offset;
10239 bfd_vma * local_got_offsets;
10240 bfd_vma * local_tlsdesc_gotents;
10241 asection * sgot;
10242 asection * splt;
10243 asection * sreloc = NULL;
10244 asection * srelgot;
10245 bfd_vma addend;
10246 bfd_signed_vma signed_addend;
10247 unsigned char dynreloc_st_type;
10248 bfd_vma dynreloc_value;
10249 struct elf32_arm_link_hash_table * globals;
10250 struct elf32_arm_link_hash_entry *eh;
10251 union gotplt_union *root_plt;
10252 struct arm_plt_info *arm_plt;
10253 bfd_vma plt_offset;
10254 bfd_vma gotplt_offset;
10255 bfd_boolean has_iplt_entry;
10256 bfd_boolean resolved_to_zero;
10257
10258 globals = elf32_arm_hash_table (info);
10259 if (globals == NULL)
10260 return bfd_reloc_notsupported;
10261
10262 BFD_ASSERT (is_arm_elf (input_bfd));
10263 BFD_ASSERT (howto != NULL);
10264
10265 /* Some relocation types map to different relocations depending on the
10266 target. We pick the right one here. */
10267 r_type = arm_real_reloc_type (globals, r_type);
10268
10269 /* It is possible to have linker relaxations on some TLS access
10270 models. Update our information here. */
10271 r_type = elf32_arm_tls_transition (info, r_type, h);
10272
10273 if (r_type != howto->type)
10274 howto = elf32_arm_howto_from_type (r_type);
10275
10276 eh = (struct elf32_arm_link_hash_entry *) h;
10277 sgot = globals->root.sgot;
10278 local_got_offsets = elf_local_got_offsets (input_bfd);
10279 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
10280
10281 if (globals->root.dynamic_sections_created)
10282 srelgot = globals->root.srelgot;
10283 else
10284 srelgot = NULL;
10285
10286 r_symndx = ELF32_R_SYM (rel->r_info);
10287
10288 if (globals->use_rel)
10289 {
10290 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
10291
10292 if (addend & ((howto->src_mask + 1) >> 1))
10293 {
10294 signed_addend = -1;
10295 signed_addend &= ~ howto->src_mask;
10296 signed_addend |= addend;
10297 }
10298 else
10299 signed_addend = addend;
10300 }
10301 else
10302 addend = signed_addend = rel->r_addend;
10303
10304 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
10305 are resolving a function call relocation. */
10306 if (using_thumb_only (globals)
10307 && (r_type == R_ARM_THM_CALL
10308 || r_type == R_ARM_THM_JUMP24)
10309 && branch_type == ST_BRANCH_TO_ARM)
10310 branch_type = ST_BRANCH_TO_THUMB;
10311
10312 /* Record the symbol information that should be used in dynamic
10313 relocations. */
10314 dynreloc_st_type = st_type;
10315 dynreloc_value = value;
10316 if (branch_type == ST_BRANCH_TO_THUMB)
10317 dynreloc_value |= 1;
10318
10319 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
10320 VALUE appropriately for relocations that we resolve at link time. */
10321 has_iplt_entry = FALSE;
10322 if (elf32_arm_get_plt_info (input_bfd, globals, eh, r_symndx, &root_plt,
10323 &arm_plt)
10324 && root_plt->offset != (bfd_vma) -1)
10325 {
10326 plt_offset = root_plt->offset;
10327 gotplt_offset = arm_plt->got_offset;
10328
10329 if (h == NULL || eh->is_iplt)
10330 {
10331 has_iplt_entry = TRUE;
10332 splt = globals->root.iplt;
10333
10334 /* Populate .iplt entries here, because not all of them will
10335 be seen by finish_dynamic_symbol. The lower bit is set if
10336 we have already populated the entry. */
10337 if (plt_offset & 1)
10338 plt_offset--;
10339 else
10340 {
10341 if (elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
10342 -1, dynreloc_value))
10343 root_plt->offset |= 1;
10344 else
10345 return bfd_reloc_notsupported;
10346 }
10347
10348 /* Static relocations always resolve to the .iplt entry. */
10349 st_type = STT_FUNC;
10350 value = (splt->output_section->vma
10351 + splt->output_offset
10352 + plt_offset);
10353 branch_type = ST_BRANCH_TO_ARM;
10354
10355 /* If there are non-call relocations that resolve to the .iplt
10356 entry, then all dynamic ones must too. */
10357 if (arm_plt->noncall_refcount != 0)
10358 {
10359 dynreloc_st_type = st_type;
10360 dynreloc_value = value;
10361 }
10362 }
10363 else
10364 /* We populate the .plt entry in finish_dynamic_symbol. */
10365 splt = globals->root.splt;
10366 }
10367 else
10368 {
10369 splt = NULL;
10370 plt_offset = (bfd_vma) -1;
10371 gotplt_offset = (bfd_vma) -1;
10372 }
10373
10374 resolved_to_zero = (h != NULL
10375 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
10376
10377 switch (r_type)
10378 {
10379 case R_ARM_NONE:
10380 /* We don't need to find a value for this symbol. It's just a
10381 marker. */
10382 *unresolved_reloc_p = FALSE;
10383 return bfd_reloc_ok;
10384
10385 case R_ARM_ABS12:
10386 if (!globals->vxworks_p)
10387 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
10388 /* Fall through. */
10389
10390 case R_ARM_PC24:
10391 case R_ARM_ABS32:
10392 case R_ARM_ABS32_NOI:
10393 case R_ARM_REL32:
10394 case R_ARM_REL32_NOI:
10395 case R_ARM_CALL:
10396 case R_ARM_JUMP24:
10397 case R_ARM_XPC25:
10398 case R_ARM_PREL31:
10399 case R_ARM_PLT32:
10400 /* Handle relocations which should use the PLT entry. ABS32/REL32
10401 will use the symbol's value, which may point to a PLT entry, but we
10402 don't need to handle that here. If we created a PLT entry, all
10403 branches in this object should go to it, except if the PLT is too
10404 far away, in which case a long branch stub should be inserted. */
10405 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
10406 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
10407 && r_type != R_ARM_CALL
10408 && r_type != R_ARM_JUMP24
10409 && r_type != R_ARM_PLT32)
10410 && plt_offset != (bfd_vma) -1)
10411 {
10412 /* If we've created a .plt section, and assigned a PLT entry
10413 to this function, it must either be a STT_GNU_IFUNC reference
10414 or not be known to bind locally. In other cases, we should
10415 have cleared the PLT entry by now. */
10416 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
10417
10418 value = (splt->output_section->vma
10419 + splt->output_offset
10420 + plt_offset);
10421 *unresolved_reloc_p = FALSE;
10422 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10423 contents, rel->r_offset, value,
10424 rel->r_addend);
10425 }
10426
10427 /* When generating a shared object or relocatable executable, these
10428 relocations are copied into the output file to be resolved at
10429 run time. */
10430 if ((bfd_link_pic (info)
10431 || globals->root.is_relocatable_executable
10432 || globals->fdpic_p)
10433 && (input_section->flags & SEC_ALLOC)
10434 && !(globals->vxworks_p
10435 && strcmp (input_section->output_section->name,
10436 ".tls_vars") == 0)
10437 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
10438 || !SYMBOL_CALLS_LOCAL (info, h))
10439 && !(input_bfd == globals->stub_bfd
10440 && strstr (input_section->name, STUB_SUFFIX))
10441 && (h == NULL
10442 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10443 && !resolved_to_zero)
10444 || h->root.type != bfd_link_hash_undefweak)
10445 && r_type != R_ARM_PC24
10446 && r_type != R_ARM_CALL
10447 && r_type != R_ARM_JUMP24
10448 && r_type != R_ARM_PREL31
10449 && r_type != R_ARM_PLT32)
10450 {
10451 Elf_Internal_Rela outrel;
10452 bfd_boolean skip, relocate;
10453 int isrofixup = 0;
10454
10455 if ((r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
10456 && !h->def_regular)
10457 {
10458 char *v = _("shared object");
10459
10460 if (bfd_link_executable (info))
10461 v = _("PIE executable");
10462
10463 _bfd_error_handler
10464 (_("%pB: relocation %s against external or undefined symbol `%s'"
10465 " can not be used when making a %s; recompile with -fPIC"), input_bfd,
10466 elf32_arm_howto_table_1[r_type].name, h->root.root.string, v);
10467 return bfd_reloc_notsupported;
10468 }
10469
10470 *unresolved_reloc_p = FALSE;
10471
10472 if (sreloc == NULL && globals->root.dynamic_sections_created)
10473 {
10474 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
10475 ! globals->use_rel);
10476
10477 if (sreloc == NULL)
10478 return bfd_reloc_notsupported;
10479 }
10480
10481 skip = FALSE;
10482 relocate = FALSE;
10483
10484 outrel.r_addend = addend;
10485 outrel.r_offset =
10486 _bfd_elf_section_offset (output_bfd, info, input_section,
10487 rel->r_offset);
10488 if (outrel.r_offset == (bfd_vma) -1)
10489 skip = TRUE;
10490 else if (outrel.r_offset == (bfd_vma) -2)
10491 skip = TRUE, relocate = TRUE;
10492 outrel.r_offset += (input_section->output_section->vma
10493 + input_section->output_offset);
10494
10495 if (skip)
10496 memset (&outrel, 0, sizeof outrel);
10497 else if (h != NULL
10498 && h->dynindx != -1
10499 && (!bfd_link_pic (info)
10500 || !(bfd_link_pie (info)
10501 || SYMBOLIC_BIND (info, h))
10502 || !h->def_regular))
10503 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
10504 else
10505 {
10506 int symbol;
10507
10508 /* This symbol is local, or marked to become local. */
10509 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI
10510 || (globals->fdpic_p && !bfd_link_pic(info)));
10511 if (globals->symbian_p)
10512 {
10513 asection *osec;
10514
10515 /* On Symbian OS, the data segment and text segement
10516 can be relocated independently. Therefore, we
10517 must indicate the segment to which this
10518 relocation is relative. The BPABI allows us to
10519 use any symbol in the right segment; we just use
10520 the section symbol as it is convenient. (We
10521 cannot use the symbol given by "h" directly as it
10522 will not appear in the dynamic symbol table.)
10523
10524 Note that the dynamic linker ignores the section
10525 symbol value, so we don't subtract osec->vma
10526 from the emitted reloc addend. */
10527 if (sym_sec)
10528 osec = sym_sec->output_section;
10529 else
10530 osec = input_section->output_section;
10531 symbol = elf_section_data (osec)->dynindx;
10532 if (symbol == 0)
10533 {
10534 struct elf_link_hash_table *htab = elf_hash_table (info);
10535
10536 if ((osec->flags & SEC_READONLY) == 0
10537 && htab->data_index_section != NULL)
10538 osec = htab->data_index_section;
10539 else
10540 osec = htab->text_index_section;
10541 symbol = elf_section_data (osec)->dynindx;
10542 }
10543 BFD_ASSERT (symbol != 0);
10544 }
10545 else
10546 /* On SVR4-ish systems, the dynamic loader cannot
10547 relocate the text and data segments independently,
10548 so the symbol does not matter. */
10549 symbol = 0;
10550 if (dynreloc_st_type == STT_GNU_IFUNC)
10551 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
10552 to the .iplt entry. Instead, every non-call reference
10553 must use an R_ARM_IRELATIVE relocation to obtain the
10554 correct run-time address. */
10555 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
10556 else if (globals->fdpic_p && !bfd_link_pic(info))
10557 isrofixup = 1;
10558 else
10559 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
10560 if (globals->use_rel)
10561 relocate = TRUE;
10562 else
10563 outrel.r_addend += dynreloc_value;
10564 }
10565
10566 if (isrofixup)
10567 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset);
10568 else
10569 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
10570
10571 /* If this reloc is against an external symbol, we do not want to
10572 fiddle with the addend. Otherwise, we need to include the symbol
10573 value so that it becomes an addend for the dynamic reloc. */
10574 if (! relocate)
10575 return bfd_reloc_ok;
10576
10577 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10578 contents, rel->r_offset,
10579 dynreloc_value, (bfd_vma) 0);
10580 }
10581 else switch (r_type)
10582 {
10583 case R_ARM_ABS12:
10584 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
10585
10586 case R_ARM_XPC25: /* Arm BLX instruction. */
10587 case R_ARM_CALL:
10588 case R_ARM_JUMP24:
10589 case R_ARM_PC24: /* Arm B/BL instruction. */
10590 case R_ARM_PLT32:
10591 {
10592 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
10593
10594 if (r_type == R_ARM_XPC25)
10595 {
10596 /* Check for Arm calling Arm function. */
10597 /* FIXME: Should we translate the instruction into a BL
10598 instruction instead ? */
10599 if (branch_type != ST_BRANCH_TO_THUMB)
10600 _bfd_error_handler
10601 (_("\%pB: warning: %s BLX instruction targets"
10602 " %s function '%s'"),
10603 input_bfd, "ARM",
10604 "ARM", h ? h->root.root.string : "(local)");
10605 }
10606 else if (r_type == R_ARM_PC24)
10607 {
10608 /* Check for Arm calling Thumb function. */
10609 if (branch_type == ST_BRANCH_TO_THUMB)
10610 {
10611 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
10612 output_bfd, input_section,
10613 hit_data, sym_sec, rel->r_offset,
10614 signed_addend, value,
10615 error_message))
10616 return bfd_reloc_ok;
10617 else
10618 return bfd_reloc_dangerous;
10619 }
10620 }
10621
10622 /* Check if a stub has to be inserted because the
10623 destination is too far or we are changing mode. */
10624 if ( r_type == R_ARM_CALL
10625 || r_type == R_ARM_JUMP24
10626 || r_type == R_ARM_PLT32)
10627 {
10628 enum elf32_arm_stub_type stub_type = arm_stub_none;
10629 struct elf32_arm_link_hash_entry *hash;
10630
10631 hash = (struct elf32_arm_link_hash_entry *) h;
10632 stub_type = arm_type_of_stub (info, input_section, rel,
10633 st_type, &branch_type,
10634 hash, value, sym_sec,
10635 input_bfd, sym_name);
10636
10637 if (stub_type != arm_stub_none)
10638 {
10639 /* The target is out of reach, so redirect the
10640 branch to the local stub for this function. */
10641 stub_entry = elf32_arm_get_stub_entry (input_section,
10642 sym_sec, h,
10643 rel, globals,
10644 stub_type);
10645 {
10646 if (stub_entry != NULL)
10647 value = (stub_entry->stub_offset
10648 + stub_entry->stub_sec->output_offset
10649 + stub_entry->stub_sec->output_section->vma);
10650
10651 if (plt_offset != (bfd_vma) -1)
10652 *unresolved_reloc_p = FALSE;
10653 }
10654 }
10655 else
10656 {
10657 /* If the call goes through a PLT entry, make sure to
10658 check distance to the right destination address. */
10659 if (plt_offset != (bfd_vma) -1)
10660 {
10661 value = (splt->output_section->vma
10662 + splt->output_offset
10663 + plt_offset);
10664 *unresolved_reloc_p = FALSE;
10665 /* The PLT entry is in ARM mode, regardless of the
10666 target function. */
10667 branch_type = ST_BRANCH_TO_ARM;
10668 }
10669 }
10670 }
10671
10672 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
10673 where:
10674 S is the address of the symbol in the relocation.
10675 P is address of the instruction being relocated.
10676 A is the addend (extracted from the instruction) in bytes.
10677
10678 S is held in 'value'.
10679 P is the base address of the section containing the
10680 instruction plus the offset of the reloc into that
10681 section, ie:
10682 (input_section->output_section->vma +
10683 input_section->output_offset +
10684 rel->r_offset).
10685 A is the addend, converted into bytes, ie:
10686 (signed_addend * 4)
10687
10688 Note: None of these operations have knowledge of the pipeline
10689 size of the processor, thus it is up to the assembler to
10690 encode this information into the addend. */
10691 value -= (input_section->output_section->vma
10692 + input_section->output_offset);
10693 value -= rel->r_offset;
10694 if (globals->use_rel)
10695 value += (signed_addend << howto->size);
10696 else
10697 /* RELA addends do not have to be adjusted by howto->size. */
10698 value += signed_addend;
10699
10700 signed_addend = value;
10701 signed_addend >>= howto->rightshift;
10702
10703 /* A branch to an undefined weak symbol is turned into a jump to
10704 the next instruction unless a PLT entry will be created.
10705 Do the same for local undefined symbols (but not for STN_UNDEF).
10706 The jump to the next instruction is optimized as a NOP depending
10707 on the architecture. */
10708 if (h ? (h->root.type == bfd_link_hash_undefweak
10709 && plt_offset == (bfd_vma) -1)
10710 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
10711 {
10712 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
10713
10714 if (arch_has_arm_nop (globals))
10715 value |= 0x0320f000;
10716 else
10717 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
10718 }
10719 else
10720 {
10721 /* Perform a signed range check. */
10722 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
10723 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
10724 return bfd_reloc_overflow;
10725
10726 addend = (value & 2);
10727
10728 value = (signed_addend & howto->dst_mask)
10729 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
10730
10731 if (r_type == R_ARM_CALL)
10732 {
10733 /* Set the H bit in the BLX instruction. */
10734 if (branch_type == ST_BRANCH_TO_THUMB)
10735 {
10736 if (addend)
10737 value |= (1 << 24);
10738 else
10739 value &= ~(bfd_vma)(1 << 24);
10740 }
10741
10742 /* Select the correct instruction (BL or BLX). */
10743 /* Only if we are not handling a BL to a stub. In this
10744 case, mode switching is performed by the stub. */
10745 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
10746 value |= (1 << 28);
10747 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
10748 {
10749 value &= ~(bfd_vma)(1 << 28);
10750 value |= (1 << 24);
10751 }
10752 }
10753 }
10754 }
10755 break;
10756
10757 case R_ARM_ABS32:
10758 value += addend;
10759 if (branch_type == ST_BRANCH_TO_THUMB)
10760 value |= 1;
10761 break;
10762
10763 case R_ARM_ABS32_NOI:
10764 value += addend;
10765 break;
10766
10767 case R_ARM_REL32:
10768 value += addend;
10769 if (branch_type == ST_BRANCH_TO_THUMB)
10770 value |= 1;
10771 value -= (input_section->output_section->vma
10772 + input_section->output_offset + rel->r_offset);
10773 break;
10774
10775 case R_ARM_REL32_NOI:
10776 value += addend;
10777 value -= (input_section->output_section->vma
10778 + input_section->output_offset + rel->r_offset);
10779 break;
10780
10781 case R_ARM_PREL31:
10782 value -= (input_section->output_section->vma
10783 + input_section->output_offset + rel->r_offset);
10784 value += signed_addend;
10785 if (! h || h->root.type != bfd_link_hash_undefweak)
10786 {
10787 /* Check for overflow. */
10788 if ((value ^ (value >> 1)) & (1 << 30))
10789 return bfd_reloc_overflow;
10790 }
10791 value &= 0x7fffffff;
10792 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
10793 if (branch_type == ST_BRANCH_TO_THUMB)
10794 value |= 1;
10795 break;
10796 }
10797
10798 bfd_put_32 (input_bfd, value, hit_data);
10799 return bfd_reloc_ok;
10800
10801 case R_ARM_ABS8:
10802 /* PR 16202: Refectch the addend using the correct size. */
10803 if (globals->use_rel)
10804 addend = bfd_get_8 (input_bfd, hit_data);
10805 value += addend;
10806
10807 /* There is no way to tell whether the user intended to use a signed or
10808 unsigned addend. When checking for overflow we accept either,
10809 as specified by the AAELF. */
10810 if ((long) value > 0xff || (long) value < -0x80)
10811 return bfd_reloc_overflow;
10812
10813 bfd_put_8 (input_bfd, value, hit_data);
10814 return bfd_reloc_ok;
10815
10816 case R_ARM_ABS16:
10817 /* PR 16202: Refectch the addend using the correct size. */
10818 if (globals->use_rel)
10819 addend = bfd_get_16 (input_bfd, hit_data);
10820 value += addend;
10821
10822 /* See comment for R_ARM_ABS8. */
10823 if ((long) value > 0xffff || (long) value < -0x8000)
10824 return bfd_reloc_overflow;
10825
10826 bfd_put_16 (input_bfd, value, hit_data);
10827 return bfd_reloc_ok;
10828
10829 case R_ARM_THM_ABS5:
10830 /* Support ldr and str instructions for the thumb. */
10831 if (globals->use_rel)
10832 {
10833 /* Need to refetch addend. */
10834 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
10835 /* ??? Need to determine shift amount from operand size. */
10836 addend >>= howto->rightshift;
10837 }
10838 value += addend;
10839
10840 /* ??? Isn't value unsigned? */
10841 if ((long) value > 0x1f || (long) value < -0x10)
10842 return bfd_reloc_overflow;
10843
10844 /* ??? Value needs to be properly shifted into place first. */
10845 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
10846 bfd_put_16 (input_bfd, value, hit_data);
10847 return bfd_reloc_ok;
10848
10849 case R_ARM_THM_ALU_PREL_11_0:
10850 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
10851 {
10852 bfd_vma insn;
10853 bfd_signed_vma relocation;
10854
10855 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
10856 | bfd_get_16 (input_bfd, hit_data + 2);
10857
10858 if (globals->use_rel)
10859 {
10860 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
10861 | ((insn & (1 << 26)) >> 15);
10862 if (insn & 0xf00000)
10863 signed_addend = -signed_addend;
10864 }
10865
10866 relocation = value + signed_addend;
10867 relocation -= Pa (input_section->output_section->vma
10868 + input_section->output_offset
10869 + rel->r_offset);
10870
10871 /* PR 21523: Use an absolute value. The user of this reloc will
10872 have already selected an ADD or SUB insn appropriately. */
10873 value = labs (relocation);
10874
10875 if (value >= 0x1000)
10876 return bfd_reloc_overflow;
10877
10878 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
10879 if (branch_type == ST_BRANCH_TO_THUMB)
10880 value |= 1;
10881
10882 insn = (insn & 0xfb0f8f00) | (value & 0xff)
10883 | ((value & 0x700) << 4)
10884 | ((value & 0x800) << 15);
10885 if (relocation < 0)
10886 insn |= 0xa00000;
10887
10888 bfd_put_16 (input_bfd, insn >> 16, hit_data);
10889 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10890
10891 return bfd_reloc_ok;
10892 }
10893
10894 case R_ARM_THM_PC8:
10895 /* PR 10073: This reloc is not generated by the GNU toolchain,
10896 but it is supported for compatibility with third party libraries
10897 generated by other compilers, specifically the ARM/IAR. */
10898 {
10899 bfd_vma insn;
10900 bfd_signed_vma relocation;
10901
10902 insn = bfd_get_16 (input_bfd, hit_data);
10903
10904 if (globals->use_rel)
10905 addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4;
10906
10907 relocation = value + addend;
10908 relocation -= Pa (input_section->output_section->vma
10909 + input_section->output_offset
10910 + rel->r_offset);
10911
10912 value = relocation;
10913
10914 /* We do not check for overflow of this reloc. Although strictly
10915 speaking this is incorrect, it appears to be necessary in order
10916 to work with IAR generated relocs. Since GCC and GAS do not
10917 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
10918 a problem for them. */
10919 value &= 0x3fc;
10920
10921 insn = (insn & 0xff00) | (value >> 2);
10922
10923 bfd_put_16 (input_bfd, insn, hit_data);
10924
10925 return bfd_reloc_ok;
10926 }
10927
10928 case R_ARM_THM_PC12:
10929 /* Corresponds to: ldr.w reg, [pc, #offset]. */
10930 {
10931 bfd_vma insn;
10932 bfd_signed_vma relocation;
10933
10934 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
10935 | bfd_get_16 (input_bfd, hit_data + 2);
10936
10937 if (globals->use_rel)
10938 {
10939 signed_addend = insn & 0xfff;
10940 if (!(insn & (1 << 23)))
10941 signed_addend = -signed_addend;
10942 }
10943
10944 relocation = value + signed_addend;
10945 relocation -= Pa (input_section->output_section->vma
10946 + input_section->output_offset
10947 + rel->r_offset);
10948
10949 value = relocation;
10950
10951 if (value >= 0x1000)
10952 return bfd_reloc_overflow;
10953
10954 insn = (insn & 0xff7ff000) | value;
10955 if (relocation >= 0)
10956 insn |= (1 << 23);
10957
10958 bfd_put_16 (input_bfd, insn >> 16, hit_data);
10959 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10960
10961 return bfd_reloc_ok;
10962 }
10963
10964 case R_ARM_THM_XPC22:
10965 case R_ARM_THM_CALL:
10966 case R_ARM_THM_JUMP24:
10967 /* Thumb BL (branch long instruction). */
10968 {
10969 bfd_vma relocation;
10970 bfd_vma reloc_sign;
10971 bfd_boolean overflow = FALSE;
10972 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
10973 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
10974 bfd_signed_vma reloc_signed_max;
10975 bfd_signed_vma reloc_signed_min;
10976 bfd_vma check;
10977 bfd_signed_vma signed_check;
10978 int bitsize;
10979 const int thumb2 = using_thumb2 (globals);
10980 const int thumb2_bl = using_thumb2_bl (globals);
10981
10982 /* A branch to an undefined weak symbol is turned into a jump to
10983 the next instruction unless a PLT entry will be created.
10984 The jump to the next instruction is optimized as a NOP.W for
10985 Thumb-2 enabled architectures. */
10986 if (h && h->root.type == bfd_link_hash_undefweak
10987 && plt_offset == (bfd_vma) -1)
10988 {
10989 if (thumb2)
10990 {
10991 bfd_put_16 (input_bfd, 0xf3af, hit_data);
10992 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
10993 }
10994 else
10995 {
10996 bfd_put_16 (input_bfd, 0xe000, hit_data);
10997 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
10998 }
10999 return bfd_reloc_ok;
11000 }
11001
11002 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
11003 with Thumb-1) involving the J1 and J2 bits. */
11004 if (globals->use_rel)
11005 {
11006 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
11007 bfd_vma upper = upper_insn & 0x3ff;
11008 bfd_vma lower = lower_insn & 0x7ff;
11009 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
11010 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
11011 bfd_vma i1 = j1 ^ s ? 0 : 1;
11012 bfd_vma i2 = j2 ^ s ? 0 : 1;
11013
11014 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
11015 /* Sign extend. */
11016 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
11017
11018 signed_addend = addend;
11019 }
11020
11021 if (r_type == R_ARM_THM_XPC22)
11022 {
11023 /* Check for Thumb to Thumb call. */
11024 /* FIXME: Should we translate the instruction into a BL
11025 instruction instead ? */
11026 if (branch_type == ST_BRANCH_TO_THUMB)
11027 _bfd_error_handler
11028 (_("%pB: warning: %s BLX instruction targets"
11029 " %s function '%s'"),
11030 input_bfd, "Thumb",
11031 "Thumb", h ? h->root.root.string : "(local)");
11032 }
11033 else
11034 {
11035 /* If it is not a call to Thumb, assume call to Arm.
11036 If it is a call relative to a section name, then it is not a
11037 function call at all, but rather a long jump. Calls through
11038 the PLT do not require stubs. */
11039 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
11040 {
11041 if (globals->use_blx && r_type == R_ARM_THM_CALL)
11042 {
11043 /* Convert BL to BLX. */
11044 lower_insn = (lower_insn & ~0x1000) | 0x0800;
11045 }
11046 else if (( r_type != R_ARM_THM_CALL)
11047 && (r_type != R_ARM_THM_JUMP24))
11048 {
11049 if (elf32_thumb_to_arm_stub
11050 (info, sym_name, input_bfd, output_bfd, input_section,
11051 hit_data, sym_sec, rel->r_offset, signed_addend, value,
11052 error_message))
11053 return bfd_reloc_ok;
11054 else
11055 return bfd_reloc_dangerous;
11056 }
11057 }
11058 else if (branch_type == ST_BRANCH_TO_THUMB
11059 && globals->use_blx
11060 && r_type == R_ARM_THM_CALL)
11061 {
11062 /* Make sure this is a BL. */
11063 lower_insn |= 0x1800;
11064 }
11065 }
11066
11067 enum elf32_arm_stub_type stub_type = arm_stub_none;
11068 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
11069 {
11070 /* Check if a stub has to be inserted because the destination
11071 is too far. */
11072 struct elf32_arm_stub_hash_entry *stub_entry;
11073 struct elf32_arm_link_hash_entry *hash;
11074
11075 hash = (struct elf32_arm_link_hash_entry *) h;
11076
11077 stub_type = arm_type_of_stub (info, input_section, rel,
11078 st_type, &branch_type,
11079 hash, value, sym_sec,
11080 input_bfd, sym_name);
11081
11082 if (stub_type != arm_stub_none)
11083 {
11084 /* The target is out of reach or we are changing modes, so
11085 redirect the branch to the local stub for this
11086 function. */
11087 stub_entry = elf32_arm_get_stub_entry (input_section,
11088 sym_sec, h,
11089 rel, globals,
11090 stub_type);
11091 if (stub_entry != NULL)
11092 {
11093 value = (stub_entry->stub_offset
11094 + stub_entry->stub_sec->output_offset
11095 + stub_entry->stub_sec->output_section->vma);
11096
11097 if (plt_offset != (bfd_vma) -1)
11098 *unresolved_reloc_p = FALSE;
11099 }
11100
11101 /* If this call becomes a call to Arm, force BLX. */
11102 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
11103 {
11104 if ((stub_entry
11105 && !arm_stub_is_thumb (stub_entry->stub_type))
11106 || branch_type != ST_BRANCH_TO_THUMB)
11107 lower_insn = (lower_insn & ~0x1000) | 0x0800;
11108 }
11109 }
11110 }
11111
11112 /* Handle calls via the PLT. */
11113 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
11114 {
11115 value = (splt->output_section->vma
11116 + splt->output_offset
11117 + plt_offset);
11118
11119 if (globals->use_blx
11120 && r_type == R_ARM_THM_CALL
11121 && ! using_thumb_only (globals))
11122 {
11123 /* If the Thumb BLX instruction is available, convert
11124 the BL to a BLX instruction to call the ARM-mode
11125 PLT entry. */
11126 lower_insn = (lower_insn & ~0x1000) | 0x0800;
11127 branch_type = ST_BRANCH_TO_ARM;
11128 }
11129 else
11130 {
11131 if (! using_thumb_only (globals))
11132 /* Target the Thumb stub before the ARM PLT entry. */
11133 value -= PLT_THUMB_STUB_SIZE;
11134 branch_type = ST_BRANCH_TO_THUMB;
11135 }
11136 *unresolved_reloc_p = FALSE;
11137 }
11138
11139 relocation = value + signed_addend;
11140
11141 relocation -= (input_section->output_section->vma
11142 + input_section->output_offset
11143 + rel->r_offset);
11144
11145 check = relocation >> howto->rightshift;
11146
11147 /* If this is a signed value, the rightshift just dropped
11148 leading 1 bits (assuming twos complement). */
11149 if ((bfd_signed_vma) relocation >= 0)
11150 signed_check = check;
11151 else
11152 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
11153
11154 /* Calculate the permissable maximum and minimum values for
11155 this relocation according to whether we're relocating for
11156 Thumb-2 or not. */
11157 bitsize = howto->bitsize;
11158 if (!thumb2_bl)
11159 bitsize -= 2;
11160 reloc_signed_max = (1 << (bitsize - 1)) - 1;
11161 reloc_signed_min = ~reloc_signed_max;
11162
11163 /* Assumes two's complement. */
11164 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
11165 overflow = TRUE;
11166
11167 if ((lower_insn & 0x5000) == 0x4000)
11168 /* For a BLX instruction, make sure that the relocation is rounded up
11169 to a word boundary. This follows the semantics of the instruction
11170 which specifies that bit 1 of the target address will come from bit
11171 1 of the base address. */
11172 relocation = (relocation + 2) & ~ 3;
11173
11174 /* Put RELOCATION back into the insn. Assumes two's complement.
11175 We use the Thumb-2 encoding, which is safe even if dealing with
11176 a Thumb-1 instruction by virtue of our overflow check above. */
11177 reloc_sign = (signed_check < 0) ? 1 : 0;
11178 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
11179 | ((relocation >> 12) & 0x3ff)
11180 | (reloc_sign << 10);
11181 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
11182 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
11183 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
11184 | ((relocation >> 1) & 0x7ff);
11185
11186 /* Put the relocated value back in the object file: */
11187 bfd_put_16 (input_bfd, upper_insn, hit_data);
11188 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11189
11190 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
11191 }
11192 break;
11193
11194 case R_ARM_THM_JUMP19:
11195 /* Thumb32 conditional branch instruction. */
11196 {
11197 bfd_vma relocation;
11198 bfd_boolean overflow = FALSE;
11199 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
11200 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
11201 bfd_signed_vma reloc_signed_max = 0xffffe;
11202 bfd_signed_vma reloc_signed_min = -0x100000;
11203 bfd_signed_vma signed_check;
11204 enum elf32_arm_stub_type stub_type = arm_stub_none;
11205 struct elf32_arm_stub_hash_entry *stub_entry;
11206 struct elf32_arm_link_hash_entry *hash;
11207
11208 /* Need to refetch the addend, reconstruct the top three bits,
11209 and squish the two 11 bit pieces together. */
11210 if (globals->use_rel)
11211 {
11212 bfd_vma S = (upper_insn & 0x0400) >> 10;
11213 bfd_vma upper = (upper_insn & 0x003f);
11214 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
11215 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
11216 bfd_vma lower = (lower_insn & 0x07ff);
11217
11218 upper |= J1 << 6;
11219 upper |= J2 << 7;
11220 upper |= (!S) << 8;
11221 upper -= 0x0100; /* Sign extend. */
11222
11223 addend = (upper << 12) | (lower << 1);
11224 signed_addend = addend;
11225 }
11226
11227 /* Handle calls via the PLT. */
11228 if (plt_offset != (bfd_vma) -1)
11229 {
11230 value = (splt->output_section->vma
11231 + splt->output_offset
11232 + plt_offset);
11233 /* Target the Thumb stub before the ARM PLT entry. */
11234 value -= PLT_THUMB_STUB_SIZE;
11235 *unresolved_reloc_p = FALSE;
11236 }
11237
11238 hash = (struct elf32_arm_link_hash_entry *)h;
11239
11240 stub_type = arm_type_of_stub (info, input_section, rel,
11241 st_type, &branch_type,
11242 hash, value, sym_sec,
11243 input_bfd, sym_name);
11244 if (stub_type != arm_stub_none)
11245 {
11246 stub_entry = elf32_arm_get_stub_entry (input_section,
11247 sym_sec, h,
11248 rel, globals,
11249 stub_type);
11250 if (stub_entry != NULL)
11251 {
11252 value = (stub_entry->stub_offset
11253 + stub_entry->stub_sec->output_offset
11254 + stub_entry->stub_sec->output_section->vma);
11255 }
11256 }
11257
11258 relocation = value + signed_addend;
11259 relocation -= (input_section->output_section->vma
11260 + input_section->output_offset
11261 + rel->r_offset);
11262 signed_check = (bfd_signed_vma) relocation;
11263
11264 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
11265 overflow = TRUE;
11266
11267 /* Put RELOCATION back into the insn. */
11268 {
11269 bfd_vma S = (relocation & 0x00100000) >> 20;
11270 bfd_vma J2 = (relocation & 0x00080000) >> 19;
11271 bfd_vma J1 = (relocation & 0x00040000) >> 18;
11272 bfd_vma hi = (relocation & 0x0003f000) >> 12;
11273 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
11274
11275 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
11276 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
11277 }
11278
11279 /* Put the relocated value back in the object file: */
11280 bfd_put_16 (input_bfd, upper_insn, hit_data);
11281 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11282
11283 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
11284 }
11285
11286 case R_ARM_THM_JUMP11:
11287 case R_ARM_THM_JUMP8:
11288 case R_ARM_THM_JUMP6:
11289 /* Thumb B (branch) instruction). */
11290 {
11291 bfd_signed_vma relocation;
11292 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
11293 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
11294 bfd_signed_vma signed_check;
11295
11296 /* CZB cannot jump backward. */
11297 if (r_type == R_ARM_THM_JUMP6)
11298 reloc_signed_min = 0;
11299
11300 if (globals->use_rel)
11301 {
11302 /* Need to refetch addend. */
11303 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
11304 if (addend & ((howto->src_mask + 1) >> 1))
11305 {
11306 signed_addend = -1;
11307 signed_addend &= ~ howto->src_mask;
11308 signed_addend |= addend;
11309 }
11310 else
11311 signed_addend = addend;
11312 /* The value in the insn has been right shifted. We need to
11313 undo this, so that we can perform the address calculation
11314 in terms of bytes. */
11315 signed_addend <<= howto->rightshift;
11316 }
11317 relocation = value + signed_addend;
11318
11319 relocation -= (input_section->output_section->vma
11320 + input_section->output_offset
11321 + rel->r_offset);
11322
11323 relocation >>= howto->rightshift;
11324 signed_check = relocation;
11325
11326 if (r_type == R_ARM_THM_JUMP6)
11327 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
11328 else
11329 relocation &= howto->dst_mask;
11330 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
11331
11332 bfd_put_16 (input_bfd, relocation, hit_data);
11333
11334 /* Assumes two's complement. */
11335 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
11336 return bfd_reloc_overflow;
11337
11338 return bfd_reloc_ok;
11339 }
11340
11341 case R_ARM_ALU_PCREL7_0:
11342 case R_ARM_ALU_PCREL15_8:
11343 case R_ARM_ALU_PCREL23_15:
11344 {
11345 bfd_vma insn;
11346 bfd_vma relocation;
11347
11348 insn = bfd_get_32 (input_bfd, hit_data);
11349 if (globals->use_rel)
11350 {
11351 /* Extract the addend. */
11352 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
11353 signed_addend = addend;
11354 }
11355 relocation = value + signed_addend;
11356
11357 relocation -= (input_section->output_section->vma
11358 + input_section->output_offset
11359 + rel->r_offset);
11360 insn = (insn & ~0xfff)
11361 | ((howto->bitpos << 7) & 0xf00)
11362 | ((relocation >> howto->bitpos) & 0xff);
11363 bfd_put_32 (input_bfd, value, hit_data);
11364 }
11365 return bfd_reloc_ok;
11366
11367 case R_ARM_GNU_VTINHERIT:
11368 case R_ARM_GNU_VTENTRY:
11369 return bfd_reloc_ok;
11370
11371 case R_ARM_GOTOFF32:
11372 /* Relocation is relative to the start of the
11373 global offset table. */
11374
11375 BFD_ASSERT (sgot != NULL);
11376 if (sgot == NULL)
11377 return bfd_reloc_notsupported;
11378
11379 /* If we are addressing a Thumb function, we need to adjust the
11380 address by one, so that attempts to call the function pointer will
11381 correctly interpret it as Thumb code. */
11382 if (branch_type == ST_BRANCH_TO_THUMB)
11383 value += 1;
11384
11385 /* Note that sgot->output_offset is not involved in this
11386 calculation. We always want the start of .got. If we
11387 define _GLOBAL_OFFSET_TABLE in a different way, as is
11388 permitted by the ABI, we might have to change this
11389 calculation. */
11390 value -= sgot->output_section->vma;
11391 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11392 contents, rel->r_offset, value,
11393 rel->r_addend);
11394
11395 case R_ARM_GOTPC:
11396 /* Use global offset table as symbol value. */
11397 BFD_ASSERT (sgot != NULL);
11398
11399 if (sgot == NULL)
11400 return bfd_reloc_notsupported;
11401
11402 *unresolved_reloc_p = FALSE;
11403 value = sgot->output_section->vma;
11404 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11405 contents, rel->r_offset, value,
11406 rel->r_addend);
11407
11408 case R_ARM_GOT32:
11409 case R_ARM_GOT_PREL:
11410 /* Relocation is to the entry for this symbol in the
11411 global offset table. */
11412 if (sgot == NULL)
11413 return bfd_reloc_notsupported;
11414
11415 if (dynreloc_st_type == STT_GNU_IFUNC
11416 && plt_offset != (bfd_vma) -1
11417 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
11418 {
11419 /* We have a relocation against a locally-binding STT_GNU_IFUNC
11420 symbol, and the relocation resolves directly to the runtime
11421 target rather than to the .iplt entry. This means that any
11422 .got entry would be the same value as the .igot.plt entry,
11423 so there's no point creating both. */
11424 sgot = globals->root.igotplt;
11425 value = sgot->output_offset + gotplt_offset;
11426 }
11427 else if (h != NULL)
11428 {
11429 bfd_vma off;
11430
11431 off = h->got.offset;
11432 BFD_ASSERT (off != (bfd_vma) -1);
11433 if ((off & 1) != 0)
11434 {
11435 /* We have already processsed one GOT relocation against
11436 this symbol. */
11437 off &= ~1;
11438 if (globals->root.dynamic_sections_created
11439 && !SYMBOL_REFERENCES_LOCAL (info, h))
11440 *unresolved_reloc_p = FALSE;
11441 }
11442 else
11443 {
11444 Elf_Internal_Rela outrel;
11445 int isrofixup = 0;
11446
11447 if (((h->dynindx != -1) || globals->fdpic_p)
11448 && !SYMBOL_REFERENCES_LOCAL (info, h))
11449 {
11450 /* If the symbol doesn't resolve locally in a static
11451 object, we have an undefined reference. If the
11452 symbol doesn't resolve locally in a dynamic object,
11453 it should be resolved by the dynamic linker. */
11454 if (globals->root.dynamic_sections_created)
11455 {
11456 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
11457 *unresolved_reloc_p = FALSE;
11458 }
11459 else
11460 outrel.r_info = 0;
11461 outrel.r_addend = 0;
11462 }
11463 else
11464 {
11465 if (dynreloc_st_type == STT_GNU_IFUNC)
11466 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
11467 else if (bfd_link_pic (info)
11468 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11469 || h->root.type != bfd_link_hash_undefweak))
11470 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11471 else if (globals->fdpic_p)
11472 isrofixup = 1;
11473 else
11474 outrel.r_info = 0;
11475 outrel.r_addend = dynreloc_value;
11476 }
11477
11478 /* The GOT entry is initialized to zero by default.
11479 See if we should install a different value. */
11480 if (outrel.r_addend != 0
11481 && (outrel.r_info == 0 || globals->use_rel || isrofixup))
11482 {
11483 bfd_put_32 (output_bfd, outrel.r_addend,
11484 sgot->contents + off);
11485 outrel.r_addend = 0;
11486 }
11487
11488 if (outrel.r_info != 0 && !isrofixup)
11489 {
11490 outrel.r_offset = (sgot->output_section->vma
11491 + sgot->output_offset
11492 + off);
11493 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11494 }
11495 else if (isrofixup)
11496 {
11497 arm_elf_add_rofixup(output_bfd,
11498 elf32_arm_hash_table(info)->srofixup,
11499 sgot->output_section->vma
11500 + sgot->output_offset + off);
11501 }
11502 h->got.offset |= 1;
11503 }
11504 value = sgot->output_offset + off;
11505 }
11506 else
11507 {
11508 bfd_vma off;
11509
11510 BFD_ASSERT (local_got_offsets != NULL
11511 && local_got_offsets[r_symndx] != (bfd_vma) -1);
11512
11513 off = local_got_offsets[r_symndx];
11514
11515 /* The offset must always be a multiple of 4. We use the
11516 least significant bit to record whether we have already
11517 generated the necessary reloc. */
11518 if ((off & 1) != 0)
11519 off &= ~1;
11520 else
11521 {
11522 if (globals->use_rel)
11523 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
11524
11525 if (bfd_link_pic (info) || dynreloc_st_type == STT_GNU_IFUNC)
11526 {
11527 Elf_Internal_Rela outrel;
11528
11529 outrel.r_addend = addend + dynreloc_value;
11530 outrel.r_offset = (sgot->output_section->vma
11531 + sgot->output_offset
11532 + off);
11533 if (dynreloc_st_type == STT_GNU_IFUNC)
11534 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
11535 else
11536 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11537 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11538 }
11539 else if (globals->fdpic_p)
11540 {
11541 /* For FDPIC executables, we use rofixup to fix
11542 address at runtime. */
11543 arm_elf_add_rofixup(output_bfd, globals->srofixup,
11544 sgot->output_section->vma + sgot->output_offset
11545 + off);
11546 }
11547
11548 local_got_offsets[r_symndx] |= 1;
11549 }
11550
11551 value = sgot->output_offset + off;
11552 }
11553 if (r_type != R_ARM_GOT32)
11554 value += sgot->output_section->vma;
11555
11556 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11557 contents, rel->r_offset, value,
11558 rel->r_addend);
11559
11560 case R_ARM_TLS_LDO32:
11561 value = value - dtpoff_base (info);
11562
11563 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11564 contents, rel->r_offset, value,
11565 rel->r_addend);
11566
11567 case R_ARM_TLS_LDM32:
11568 case R_ARM_TLS_LDM32_FDPIC:
11569 {
11570 bfd_vma off;
11571
11572 if (sgot == NULL)
11573 abort ();
11574
11575 off = globals->tls_ldm_got.offset;
11576
11577 if ((off & 1) != 0)
11578 off &= ~1;
11579 else
11580 {
11581 /* If we don't know the module number, create a relocation
11582 for it. */
11583 if (bfd_link_pic (info))
11584 {
11585 Elf_Internal_Rela outrel;
11586
11587 if (srelgot == NULL)
11588 abort ();
11589
11590 outrel.r_addend = 0;
11591 outrel.r_offset = (sgot->output_section->vma
11592 + sgot->output_offset + off);
11593 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
11594
11595 if (globals->use_rel)
11596 bfd_put_32 (output_bfd, outrel.r_addend,
11597 sgot->contents + off);
11598
11599 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11600 }
11601 else
11602 bfd_put_32 (output_bfd, 1, sgot->contents + off);
11603
11604 globals->tls_ldm_got.offset |= 1;
11605 }
11606
11607 if (r_type == R_ARM_TLS_LDM32_FDPIC)
11608 {
11609 bfd_put_32(output_bfd,
11610 globals->root.sgot->output_offset + off,
11611 contents + rel->r_offset);
11612
11613 return bfd_reloc_ok;
11614 }
11615 else
11616 {
11617 value = sgot->output_section->vma + sgot->output_offset + off
11618 - (input_section->output_section->vma
11619 + input_section->output_offset + rel->r_offset);
11620
11621 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11622 contents, rel->r_offset, value,
11623 rel->r_addend);
11624 }
11625 }
11626
11627 case R_ARM_TLS_CALL:
11628 case R_ARM_THM_TLS_CALL:
11629 case R_ARM_TLS_GD32:
11630 case R_ARM_TLS_GD32_FDPIC:
11631 case R_ARM_TLS_IE32:
11632 case R_ARM_TLS_IE32_FDPIC:
11633 case R_ARM_TLS_GOTDESC:
11634 case R_ARM_TLS_DESCSEQ:
11635 case R_ARM_THM_TLS_DESCSEQ:
11636 {
11637 bfd_vma off, offplt;
11638 int indx = 0;
11639 char tls_type;
11640
11641 BFD_ASSERT (sgot != NULL);
11642
11643 if (h != NULL)
11644 {
11645 bfd_boolean dyn;
11646 dyn = globals->root.dynamic_sections_created;
11647 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
11648 bfd_link_pic (info),
11649 h)
11650 && (!bfd_link_pic (info)
11651 || !SYMBOL_REFERENCES_LOCAL (info, h)))
11652 {
11653 *unresolved_reloc_p = FALSE;
11654 indx = h->dynindx;
11655 }
11656 off = h->got.offset;
11657 offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
11658 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
11659 }
11660 else
11661 {
11662 BFD_ASSERT (local_got_offsets != NULL);
11663 off = local_got_offsets[r_symndx];
11664 offplt = local_tlsdesc_gotents[r_symndx];
11665 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
11666 }
11667
11668 /* Linker relaxations happens from one of the
11669 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
11670 if (ELF32_R_TYPE(rel->r_info) != r_type)
11671 tls_type = GOT_TLS_IE;
11672
11673 BFD_ASSERT (tls_type != GOT_UNKNOWN);
11674
11675 if ((off & 1) != 0)
11676 off &= ~1;
11677 else
11678 {
11679 bfd_boolean need_relocs = FALSE;
11680 Elf_Internal_Rela outrel;
11681 int cur_off = off;
11682
11683 /* The GOT entries have not been initialized yet. Do it
11684 now, and emit any relocations. If both an IE GOT and a
11685 GD GOT are necessary, we emit the GD first. */
11686
11687 if ((bfd_link_pic (info) || indx != 0)
11688 && (h == NULL
11689 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11690 && !resolved_to_zero)
11691 || h->root.type != bfd_link_hash_undefweak))
11692 {
11693 need_relocs = TRUE;
11694 BFD_ASSERT (srelgot != NULL);
11695 }
11696
11697 if (tls_type & GOT_TLS_GDESC)
11698 {
11699 bfd_byte *loc;
11700
11701 /* We should have relaxed, unless this is an undefined
11702 weak symbol. */
11703 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
11704 || bfd_link_pic (info));
11705 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
11706 <= globals->root.sgotplt->size);
11707
11708 outrel.r_addend = 0;
11709 outrel.r_offset = (globals->root.sgotplt->output_section->vma
11710 + globals->root.sgotplt->output_offset
11711 + offplt
11712 + globals->sgotplt_jump_table_size);
11713
11714 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
11715 sreloc = globals->root.srelplt;
11716 loc = sreloc->contents;
11717 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
11718 BFD_ASSERT (loc + RELOC_SIZE (globals)
11719 <= sreloc->contents + sreloc->size);
11720
11721 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
11722
11723 /* For globals, the first word in the relocation gets
11724 the relocation index and the top bit set, or zero,
11725 if we're binding now. For locals, it gets the
11726 symbol's offset in the tls section. */
11727 bfd_put_32 (output_bfd,
11728 !h ? value - elf_hash_table (info)->tls_sec->vma
11729 : info->flags & DF_BIND_NOW ? 0
11730 : 0x80000000 | ELF32_R_SYM (outrel.r_info),
11731 globals->root.sgotplt->contents + offplt
11732 + globals->sgotplt_jump_table_size);
11733
11734 /* Second word in the relocation is always zero. */
11735 bfd_put_32 (output_bfd, 0,
11736 globals->root.sgotplt->contents + offplt
11737 + globals->sgotplt_jump_table_size + 4);
11738 }
11739 if (tls_type & GOT_TLS_GD)
11740 {
11741 if (need_relocs)
11742 {
11743 outrel.r_addend = 0;
11744 outrel.r_offset = (sgot->output_section->vma
11745 + sgot->output_offset
11746 + cur_off);
11747 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
11748
11749 if (globals->use_rel)
11750 bfd_put_32 (output_bfd, outrel.r_addend,
11751 sgot->contents + cur_off);
11752
11753 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11754
11755 if (indx == 0)
11756 bfd_put_32 (output_bfd, value - dtpoff_base (info),
11757 sgot->contents + cur_off + 4);
11758 else
11759 {
11760 outrel.r_addend = 0;
11761 outrel.r_info = ELF32_R_INFO (indx,
11762 R_ARM_TLS_DTPOFF32);
11763 outrel.r_offset += 4;
11764
11765 if (globals->use_rel)
11766 bfd_put_32 (output_bfd, outrel.r_addend,
11767 sgot->contents + cur_off + 4);
11768
11769 elf32_arm_add_dynreloc (output_bfd, info,
11770 srelgot, &outrel);
11771 }
11772 }
11773 else
11774 {
11775 /* If we are not emitting relocations for a
11776 general dynamic reference, then we must be in a
11777 static link or an executable link with the
11778 symbol binding locally. Mark it as belonging
11779 to module 1, the executable. */
11780 bfd_put_32 (output_bfd, 1,
11781 sgot->contents + cur_off);
11782 bfd_put_32 (output_bfd, value - dtpoff_base (info),
11783 sgot->contents + cur_off + 4);
11784 }
11785
11786 cur_off += 8;
11787 }
11788
11789 if (tls_type & GOT_TLS_IE)
11790 {
11791 if (need_relocs)
11792 {
11793 if (indx == 0)
11794 outrel.r_addend = value - dtpoff_base (info);
11795 else
11796 outrel.r_addend = 0;
11797 outrel.r_offset = (sgot->output_section->vma
11798 + sgot->output_offset
11799 + cur_off);
11800 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
11801
11802 if (globals->use_rel)
11803 bfd_put_32 (output_bfd, outrel.r_addend,
11804 sgot->contents + cur_off);
11805
11806 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11807 }
11808 else
11809 bfd_put_32 (output_bfd, tpoff (info, value),
11810 sgot->contents + cur_off);
11811 cur_off += 4;
11812 }
11813
11814 if (h != NULL)
11815 h->got.offset |= 1;
11816 else
11817 local_got_offsets[r_symndx] |= 1;
11818 }
11819
11820 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32 && r_type != R_ARM_TLS_GD32_FDPIC)
11821 off += 8;
11822 else if (tls_type & GOT_TLS_GDESC)
11823 off = offplt;
11824
11825 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
11826 || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
11827 {
11828 bfd_signed_vma offset;
11829 /* TLS stubs are arm mode. The original symbol is a
11830 data object, so branch_type is bogus. */
11831 branch_type = ST_BRANCH_TO_ARM;
11832 enum elf32_arm_stub_type stub_type
11833 = arm_type_of_stub (info, input_section, rel,
11834 st_type, &branch_type,
11835 (struct elf32_arm_link_hash_entry *)h,
11836 globals->tls_trampoline, globals->root.splt,
11837 input_bfd, sym_name);
11838
11839 if (stub_type != arm_stub_none)
11840 {
11841 struct elf32_arm_stub_hash_entry *stub_entry
11842 = elf32_arm_get_stub_entry
11843 (input_section, globals->root.splt, 0, rel,
11844 globals, stub_type);
11845 offset = (stub_entry->stub_offset
11846 + stub_entry->stub_sec->output_offset
11847 + stub_entry->stub_sec->output_section->vma);
11848 }
11849 else
11850 offset = (globals->root.splt->output_section->vma
11851 + globals->root.splt->output_offset
11852 + globals->tls_trampoline);
11853
11854 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
11855 {
11856 unsigned long inst;
11857
11858 offset -= (input_section->output_section->vma
11859 + input_section->output_offset
11860 + rel->r_offset + 8);
11861
11862 inst = offset >> 2;
11863 inst &= 0x00ffffff;
11864 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
11865 }
11866 else
11867 {
11868 /* Thumb blx encodes the offset in a complicated
11869 fashion. */
11870 unsigned upper_insn, lower_insn;
11871 unsigned neg;
11872
11873 offset -= (input_section->output_section->vma
11874 + input_section->output_offset
11875 + rel->r_offset + 4);
11876
11877 if (stub_type != arm_stub_none
11878 && arm_stub_is_thumb (stub_type))
11879 {
11880 lower_insn = 0xd000;
11881 }
11882 else
11883 {
11884 lower_insn = 0xc000;
11885 /* Round up the offset to a word boundary. */
11886 offset = (offset + 2) & ~2;
11887 }
11888
11889 neg = offset < 0;
11890 upper_insn = (0xf000
11891 | ((offset >> 12) & 0x3ff)
11892 | (neg << 10));
11893 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
11894 | (((!((offset >> 22) & 1)) ^ neg) << 11)
11895 | ((offset >> 1) & 0x7ff);
11896 bfd_put_16 (input_bfd, upper_insn, hit_data);
11897 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11898 return bfd_reloc_ok;
11899 }
11900 }
11901 /* These relocations needs special care, as besides the fact
11902 they point somewhere in .gotplt, the addend must be
11903 adjusted accordingly depending on the type of instruction
11904 we refer to. */
11905 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
11906 {
11907 unsigned long data, insn;
11908 unsigned thumb;
11909
11910 data = bfd_get_32 (input_bfd, hit_data);
11911 thumb = data & 1;
11912 data &= ~1u;
11913
11914 if (thumb)
11915 {
11916 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
11917 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
11918 insn = (insn << 16)
11919 | bfd_get_16 (input_bfd,
11920 contents + rel->r_offset - data + 2);
11921 if ((insn & 0xf800c000) == 0xf000c000)
11922 /* bl/blx */
11923 value = -6;
11924 else if ((insn & 0xffffff00) == 0x4400)
11925 /* add */
11926 value = -5;
11927 else
11928 {
11929 _bfd_error_handler
11930 /* xgettext:c-format */
11931 (_("%pB(%pA+%#" PRIx64 "): "
11932 "unexpected %s instruction '%#lx' "
11933 "referenced by TLS_GOTDESC"),
11934 input_bfd, input_section, (uint64_t) rel->r_offset,
11935 "Thumb", insn);
11936 return bfd_reloc_notsupported;
11937 }
11938 }
11939 else
11940 {
11941 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
11942
11943 switch (insn >> 24)
11944 {
11945 case 0xeb: /* bl */
11946 case 0xfa: /* blx */
11947 value = -4;
11948 break;
11949
11950 case 0xe0: /* add */
11951 value = -8;
11952 break;
11953
11954 default:
11955 _bfd_error_handler
11956 /* xgettext:c-format */
11957 (_("%pB(%pA+%#" PRIx64 "): "
11958 "unexpected %s instruction '%#lx' "
11959 "referenced by TLS_GOTDESC"),
11960 input_bfd, input_section, (uint64_t) rel->r_offset,
11961 "ARM", insn);
11962 return bfd_reloc_notsupported;
11963 }
11964 }
11965
11966 value += ((globals->root.sgotplt->output_section->vma
11967 + globals->root.sgotplt->output_offset + off)
11968 - (input_section->output_section->vma
11969 + input_section->output_offset
11970 + rel->r_offset)
11971 + globals->sgotplt_jump_table_size);
11972 }
11973 else
11974 value = ((globals->root.sgot->output_section->vma
11975 + globals->root.sgot->output_offset + off)
11976 - (input_section->output_section->vma
11977 + input_section->output_offset + rel->r_offset));
11978
11979 if (globals->fdpic_p && (r_type == R_ARM_TLS_GD32_FDPIC ||
11980 r_type == R_ARM_TLS_IE32_FDPIC))
11981 {
11982 /* For FDPIC relocations, resolve to the offset of the GOT
11983 entry from the start of GOT. */
11984 bfd_put_32(output_bfd,
11985 globals->root.sgot->output_offset + off,
11986 contents + rel->r_offset);
11987
11988 return bfd_reloc_ok;
11989 }
11990 else
11991 {
11992 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11993 contents, rel->r_offset, value,
11994 rel->r_addend);
11995 }
11996 }
11997
11998 case R_ARM_TLS_LE32:
11999 if (bfd_link_dll (info))
12000 {
12001 _bfd_error_handler
12002 /* xgettext:c-format */
12003 (_("%pB(%pA+%#" PRIx64 "): %s relocation not permitted "
12004 "in shared object"),
12005 input_bfd, input_section, (uint64_t) rel->r_offset, howto->name);
12006 return bfd_reloc_notsupported;
12007 }
12008 else
12009 value = tpoff (info, value);
12010
12011 return _bfd_final_link_relocate (howto, input_bfd, input_section,
12012 contents, rel->r_offset, value,
12013 rel->r_addend);
12014
12015 case R_ARM_V4BX:
12016 if (globals->fix_v4bx)
12017 {
12018 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12019
12020 /* Ensure that we have a BX instruction. */
12021 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
12022
12023 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
12024 {
12025 /* Branch to veneer. */
12026 bfd_vma glue_addr;
12027 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
12028 glue_addr -= input_section->output_section->vma
12029 + input_section->output_offset
12030 + rel->r_offset + 8;
12031 insn = (insn & 0xf0000000) | 0x0a000000
12032 | ((glue_addr >> 2) & 0x00ffffff);
12033 }
12034 else
12035 {
12036 /* Preserve Rm (lowest four bits) and the condition code
12037 (highest four bits). Other bits encode MOV PC,Rm. */
12038 insn = (insn & 0xf000000f) | 0x01a0f000;
12039 }
12040
12041 bfd_put_32 (input_bfd, insn, hit_data);
12042 }
12043 return bfd_reloc_ok;
12044
12045 case R_ARM_MOVW_ABS_NC:
12046 case R_ARM_MOVT_ABS:
12047 case R_ARM_MOVW_PREL_NC:
12048 case R_ARM_MOVT_PREL:
12049 /* Until we properly support segment-base-relative addressing then
12050 we assume the segment base to be zero, as for the group relocations.
12051 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
12052 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
12053 case R_ARM_MOVW_BREL_NC:
12054 case R_ARM_MOVW_BREL:
12055 case R_ARM_MOVT_BREL:
12056 {
12057 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12058
12059 if (globals->use_rel)
12060 {
12061 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
12062 signed_addend = (addend ^ 0x8000) - 0x8000;
12063 }
12064
12065 value += signed_addend;
12066
12067 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
12068 value -= (input_section->output_section->vma
12069 + input_section->output_offset + rel->r_offset);
12070
12071 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
12072 return bfd_reloc_overflow;
12073
12074 if (branch_type == ST_BRANCH_TO_THUMB)
12075 value |= 1;
12076
12077 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
12078 || r_type == R_ARM_MOVT_BREL)
12079 value >>= 16;
12080
12081 insn &= 0xfff0f000;
12082 insn |= value & 0xfff;
12083 insn |= (value & 0xf000) << 4;
12084 bfd_put_32 (input_bfd, insn, hit_data);
12085 }
12086 return bfd_reloc_ok;
12087
12088 case R_ARM_THM_MOVW_ABS_NC:
12089 case R_ARM_THM_MOVT_ABS:
12090 case R_ARM_THM_MOVW_PREL_NC:
12091 case R_ARM_THM_MOVT_PREL:
12092 /* Until we properly support segment-base-relative addressing then
12093 we assume the segment base to be zero, as for the above relocations.
12094 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
12095 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
12096 as R_ARM_THM_MOVT_ABS. */
12097 case R_ARM_THM_MOVW_BREL_NC:
12098 case R_ARM_THM_MOVW_BREL:
12099 case R_ARM_THM_MOVT_BREL:
12100 {
12101 bfd_vma insn;
12102
12103 insn = bfd_get_16 (input_bfd, hit_data) << 16;
12104 insn |= bfd_get_16 (input_bfd, hit_data + 2);
12105
12106 if (globals->use_rel)
12107 {
12108 addend = ((insn >> 4) & 0xf000)
12109 | ((insn >> 15) & 0x0800)
12110 | ((insn >> 4) & 0x0700)
12111 | (insn & 0x00ff);
12112 signed_addend = (addend ^ 0x8000) - 0x8000;
12113 }
12114
12115 value += signed_addend;
12116
12117 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
12118 value -= (input_section->output_section->vma
12119 + input_section->output_offset + rel->r_offset);
12120
12121 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
12122 return bfd_reloc_overflow;
12123
12124 if (branch_type == ST_BRANCH_TO_THUMB)
12125 value |= 1;
12126
12127 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
12128 || r_type == R_ARM_THM_MOVT_BREL)
12129 value >>= 16;
12130
12131 insn &= 0xfbf08f00;
12132 insn |= (value & 0xf000) << 4;
12133 insn |= (value & 0x0800) << 15;
12134 insn |= (value & 0x0700) << 4;
12135 insn |= (value & 0x00ff);
12136
12137 bfd_put_16 (input_bfd, insn >> 16, hit_data);
12138 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
12139 }
12140 return bfd_reloc_ok;
12141
12142 case R_ARM_ALU_PC_G0_NC:
12143 case R_ARM_ALU_PC_G1_NC:
12144 case R_ARM_ALU_PC_G0:
12145 case R_ARM_ALU_PC_G1:
12146 case R_ARM_ALU_PC_G2:
12147 case R_ARM_ALU_SB_G0_NC:
12148 case R_ARM_ALU_SB_G1_NC:
12149 case R_ARM_ALU_SB_G0:
12150 case R_ARM_ALU_SB_G1:
12151 case R_ARM_ALU_SB_G2:
12152 {
12153 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12154 bfd_vma pc = input_section->output_section->vma
12155 + input_section->output_offset + rel->r_offset;
12156 /* sb is the origin of the *segment* containing the symbol. */
12157 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12158 bfd_vma residual;
12159 bfd_vma g_n;
12160 bfd_signed_vma signed_value;
12161 int group = 0;
12162
12163 /* Determine which group of bits to select. */
12164 switch (r_type)
12165 {
12166 case R_ARM_ALU_PC_G0_NC:
12167 case R_ARM_ALU_PC_G0:
12168 case R_ARM_ALU_SB_G0_NC:
12169 case R_ARM_ALU_SB_G0:
12170 group = 0;
12171 break;
12172
12173 case R_ARM_ALU_PC_G1_NC:
12174 case R_ARM_ALU_PC_G1:
12175 case R_ARM_ALU_SB_G1_NC:
12176 case R_ARM_ALU_SB_G1:
12177 group = 1;
12178 break;
12179
12180 case R_ARM_ALU_PC_G2:
12181 case R_ARM_ALU_SB_G2:
12182 group = 2;
12183 break;
12184
12185 default:
12186 abort ();
12187 }
12188
12189 /* If REL, extract the addend from the insn. If RELA, it will
12190 have already been fetched for us. */
12191 if (globals->use_rel)
12192 {
12193 int negative;
12194 bfd_vma constant = insn & 0xff;
12195 bfd_vma rotation = (insn & 0xf00) >> 8;
12196
12197 if (rotation == 0)
12198 signed_addend = constant;
12199 else
12200 {
12201 /* Compensate for the fact that in the instruction, the
12202 rotation is stored in multiples of 2 bits. */
12203 rotation *= 2;
12204
12205 /* Rotate "constant" right by "rotation" bits. */
12206 signed_addend = (constant >> rotation) |
12207 (constant << (8 * sizeof (bfd_vma) - rotation));
12208 }
12209
12210 /* Determine if the instruction is an ADD or a SUB.
12211 (For REL, this determines the sign of the addend.) */
12212 negative = identify_add_or_sub (insn);
12213 if (negative == 0)
12214 {
12215 _bfd_error_handler
12216 /* xgettext:c-format */
12217 (_("%pB(%pA+%#" PRIx64 "): only ADD or SUB instructions "
12218 "are allowed for ALU group relocations"),
12219 input_bfd, input_section, (uint64_t) rel->r_offset);
12220 return bfd_reloc_overflow;
12221 }
12222
12223 signed_addend *= negative;
12224 }
12225
12226 /* Compute the value (X) to go in the place. */
12227 if (r_type == R_ARM_ALU_PC_G0_NC
12228 || r_type == R_ARM_ALU_PC_G1_NC
12229 || r_type == R_ARM_ALU_PC_G0
12230 || r_type == R_ARM_ALU_PC_G1
12231 || r_type == R_ARM_ALU_PC_G2)
12232 /* PC relative. */
12233 signed_value = value - pc + signed_addend;
12234 else
12235 /* Section base relative. */
12236 signed_value = value - sb + signed_addend;
12237
12238 /* If the target symbol is a Thumb function, then set the
12239 Thumb bit in the address. */
12240 if (branch_type == ST_BRANCH_TO_THUMB)
12241 signed_value |= 1;
12242
12243 /* Calculate the value of the relevant G_n, in encoded
12244 constant-with-rotation format. */
12245 g_n = calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12246 group, &residual);
12247
12248 /* Check for overflow if required. */
12249 if ((r_type == R_ARM_ALU_PC_G0
12250 || r_type == R_ARM_ALU_PC_G1
12251 || r_type == R_ARM_ALU_PC_G2
12252 || r_type == R_ARM_ALU_SB_G0
12253 || r_type == R_ARM_ALU_SB_G1
12254 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
12255 {
12256 _bfd_error_handler
12257 /* xgettext:c-format */
12258 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
12259 "splitting %#" PRIx64 " for group relocation %s"),
12260 input_bfd, input_section, (uint64_t) rel->r_offset,
12261 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12262 howto->name);
12263 return bfd_reloc_overflow;
12264 }
12265
12266 /* Mask out the value and the ADD/SUB part of the opcode; take care
12267 not to destroy the S bit. */
12268 insn &= 0xff1ff000;
12269
12270 /* Set the opcode according to whether the value to go in the
12271 place is negative. */
12272 if (signed_value < 0)
12273 insn |= 1 << 22;
12274 else
12275 insn |= 1 << 23;
12276
12277 /* Encode the offset. */
12278 insn |= g_n;
12279
12280 bfd_put_32 (input_bfd, insn, hit_data);
12281 }
12282 return bfd_reloc_ok;
12283
12284 case R_ARM_LDR_PC_G0:
12285 case R_ARM_LDR_PC_G1:
12286 case R_ARM_LDR_PC_G2:
12287 case R_ARM_LDR_SB_G0:
12288 case R_ARM_LDR_SB_G1:
12289 case R_ARM_LDR_SB_G2:
12290 {
12291 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12292 bfd_vma pc = input_section->output_section->vma
12293 + input_section->output_offset + rel->r_offset;
12294 /* sb is the origin of the *segment* containing the symbol. */
12295 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12296 bfd_vma residual;
12297 bfd_signed_vma signed_value;
12298 int group = 0;
12299
12300 /* Determine which groups of bits to calculate. */
12301 switch (r_type)
12302 {
12303 case R_ARM_LDR_PC_G0:
12304 case R_ARM_LDR_SB_G0:
12305 group = 0;
12306 break;
12307
12308 case R_ARM_LDR_PC_G1:
12309 case R_ARM_LDR_SB_G1:
12310 group = 1;
12311 break;
12312
12313 case R_ARM_LDR_PC_G2:
12314 case R_ARM_LDR_SB_G2:
12315 group = 2;
12316 break;
12317
12318 default:
12319 abort ();
12320 }
12321
12322 /* If REL, extract the addend from the insn. If RELA, it will
12323 have already been fetched for us. */
12324 if (globals->use_rel)
12325 {
12326 int negative = (insn & (1 << 23)) ? 1 : -1;
12327 signed_addend = negative * (insn & 0xfff);
12328 }
12329
12330 /* Compute the value (X) to go in the place. */
12331 if (r_type == R_ARM_LDR_PC_G0
12332 || r_type == R_ARM_LDR_PC_G1
12333 || r_type == R_ARM_LDR_PC_G2)
12334 /* PC relative. */
12335 signed_value = value - pc + signed_addend;
12336 else
12337 /* Section base relative. */
12338 signed_value = value - sb + signed_addend;
12339
12340 /* Calculate the value of the relevant G_{n-1} to obtain
12341 the residual at that stage. */
12342 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12343 group - 1, &residual);
12344
12345 /* Check for overflow. */
12346 if (residual >= 0x1000)
12347 {
12348 _bfd_error_handler
12349 /* xgettext:c-format */
12350 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
12351 "splitting %#" PRIx64 " for group relocation %s"),
12352 input_bfd, input_section, (uint64_t) rel->r_offset,
12353 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12354 howto->name);
12355 return bfd_reloc_overflow;
12356 }
12357
12358 /* Mask out the value and U bit. */
12359 insn &= 0xff7ff000;
12360
12361 /* Set the U bit if the value to go in the place is non-negative. */
12362 if (signed_value >= 0)
12363 insn |= 1 << 23;
12364
12365 /* Encode the offset. */
12366 insn |= residual;
12367
12368 bfd_put_32 (input_bfd, insn, hit_data);
12369 }
12370 return bfd_reloc_ok;
12371
12372 case R_ARM_LDRS_PC_G0:
12373 case R_ARM_LDRS_PC_G1:
12374 case R_ARM_LDRS_PC_G2:
12375 case R_ARM_LDRS_SB_G0:
12376 case R_ARM_LDRS_SB_G1:
12377 case R_ARM_LDRS_SB_G2:
12378 {
12379 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12380 bfd_vma pc = input_section->output_section->vma
12381 + input_section->output_offset + rel->r_offset;
12382 /* sb is the origin of the *segment* containing the symbol. */
12383 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12384 bfd_vma residual;
12385 bfd_signed_vma signed_value;
12386 int group = 0;
12387
12388 /* Determine which groups of bits to calculate. */
12389 switch (r_type)
12390 {
12391 case R_ARM_LDRS_PC_G0:
12392 case R_ARM_LDRS_SB_G0:
12393 group = 0;
12394 break;
12395
12396 case R_ARM_LDRS_PC_G1:
12397 case R_ARM_LDRS_SB_G1:
12398 group = 1;
12399 break;
12400
12401 case R_ARM_LDRS_PC_G2:
12402 case R_ARM_LDRS_SB_G2:
12403 group = 2;
12404 break;
12405
12406 default:
12407 abort ();
12408 }
12409
12410 /* If REL, extract the addend from the insn. If RELA, it will
12411 have already been fetched for us. */
12412 if (globals->use_rel)
12413 {
12414 int negative = (insn & (1 << 23)) ? 1 : -1;
12415 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
12416 }
12417
12418 /* Compute the value (X) to go in the place. */
12419 if (r_type == R_ARM_LDRS_PC_G0
12420 || r_type == R_ARM_LDRS_PC_G1
12421 || r_type == R_ARM_LDRS_PC_G2)
12422 /* PC relative. */
12423 signed_value = value - pc + signed_addend;
12424 else
12425 /* Section base relative. */
12426 signed_value = value - sb + signed_addend;
12427
12428 /* Calculate the value of the relevant G_{n-1} to obtain
12429 the residual at that stage. */
12430 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12431 group - 1, &residual);
12432
12433 /* Check for overflow. */
12434 if (residual >= 0x100)
12435 {
12436 _bfd_error_handler
12437 /* xgettext:c-format */
12438 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
12439 "splitting %#" PRIx64 " for group relocation %s"),
12440 input_bfd, input_section, (uint64_t) rel->r_offset,
12441 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12442 howto->name);
12443 return bfd_reloc_overflow;
12444 }
12445
12446 /* Mask out the value and U bit. */
12447 insn &= 0xff7ff0f0;
12448
12449 /* Set the U bit if the value to go in the place is non-negative. */
12450 if (signed_value >= 0)
12451 insn |= 1 << 23;
12452
12453 /* Encode the offset. */
12454 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
12455
12456 bfd_put_32 (input_bfd, insn, hit_data);
12457 }
12458 return bfd_reloc_ok;
12459
12460 case R_ARM_LDC_PC_G0:
12461 case R_ARM_LDC_PC_G1:
12462 case R_ARM_LDC_PC_G2:
12463 case R_ARM_LDC_SB_G0:
12464 case R_ARM_LDC_SB_G1:
12465 case R_ARM_LDC_SB_G2:
12466 {
12467 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12468 bfd_vma pc = input_section->output_section->vma
12469 + input_section->output_offset + rel->r_offset;
12470 /* sb is the origin of the *segment* containing the symbol. */
12471 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12472 bfd_vma residual;
12473 bfd_signed_vma signed_value;
12474 int group = 0;
12475
12476 /* Determine which groups of bits to calculate. */
12477 switch (r_type)
12478 {
12479 case R_ARM_LDC_PC_G0:
12480 case R_ARM_LDC_SB_G0:
12481 group = 0;
12482 break;
12483
12484 case R_ARM_LDC_PC_G1:
12485 case R_ARM_LDC_SB_G1:
12486 group = 1;
12487 break;
12488
12489 case R_ARM_LDC_PC_G2:
12490 case R_ARM_LDC_SB_G2:
12491 group = 2;
12492 break;
12493
12494 default:
12495 abort ();
12496 }
12497
12498 /* If REL, extract the addend from the insn. If RELA, it will
12499 have already been fetched for us. */
12500 if (globals->use_rel)
12501 {
12502 int negative = (insn & (1 << 23)) ? 1 : -1;
12503 signed_addend = negative * ((insn & 0xff) << 2);
12504 }
12505
12506 /* Compute the value (X) to go in the place. */
12507 if (r_type == R_ARM_LDC_PC_G0
12508 || r_type == R_ARM_LDC_PC_G1
12509 || r_type == R_ARM_LDC_PC_G2)
12510 /* PC relative. */
12511 signed_value = value - pc + signed_addend;
12512 else
12513 /* Section base relative. */
12514 signed_value = value - sb + signed_addend;
12515
12516 /* Calculate the value of the relevant G_{n-1} to obtain
12517 the residual at that stage. */
12518 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12519 group - 1, &residual);
12520
12521 /* Check for overflow. (The absolute value to go in the place must be
12522 divisible by four and, after having been divided by four, must
12523 fit in eight bits.) */
12524 if ((residual & 0x3) != 0 || residual >= 0x400)
12525 {
12526 _bfd_error_handler
12527 /* xgettext:c-format */
12528 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
12529 "splitting %#" PRIx64 " for group relocation %s"),
12530 input_bfd, input_section, (uint64_t) rel->r_offset,
12531 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12532 howto->name);
12533 return bfd_reloc_overflow;
12534 }
12535
12536 /* Mask out the value and U bit. */
12537 insn &= 0xff7fff00;
12538
12539 /* Set the U bit if the value to go in the place is non-negative. */
12540 if (signed_value >= 0)
12541 insn |= 1 << 23;
12542
12543 /* Encode the offset. */
12544 insn |= residual >> 2;
12545
12546 bfd_put_32 (input_bfd, insn, hit_data);
12547 }
12548 return bfd_reloc_ok;
12549
12550 case R_ARM_THM_ALU_ABS_G0_NC:
12551 case R_ARM_THM_ALU_ABS_G1_NC:
12552 case R_ARM_THM_ALU_ABS_G2_NC:
12553 case R_ARM_THM_ALU_ABS_G3_NC:
12554 {
12555 const int shift_array[4] = {0, 8, 16, 24};
12556 bfd_vma insn = bfd_get_16 (input_bfd, hit_data);
12557 bfd_vma addr = value;
12558 int shift = shift_array[r_type - R_ARM_THM_ALU_ABS_G0_NC];
12559
12560 /* Compute address. */
12561 if (globals->use_rel)
12562 signed_addend = insn & 0xff;
12563 addr += signed_addend;
12564 if (branch_type == ST_BRANCH_TO_THUMB)
12565 addr |= 1;
12566 /* Clean imm8 insn. */
12567 insn &= 0xff00;
12568 /* And update with correct part of address. */
12569 insn |= (addr >> shift) & 0xff;
12570 /* Update insn. */
12571 bfd_put_16 (input_bfd, insn, hit_data);
12572 }
12573
12574 *unresolved_reloc_p = FALSE;
12575 return bfd_reloc_ok;
12576
12577 case R_ARM_GOTOFFFUNCDESC:
12578 {
12579 if (h == NULL)
12580 {
12581 struct fdpic_local *local_fdpic_cnts = elf32_arm_local_fdpic_cnts(input_bfd);
12582 int dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12583 int offset = local_fdpic_cnts[r_symndx].funcdesc_offset & ~1;
12584 bfd_vma addr = dynreloc_value - sym_sec->output_section->vma;
12585 bfd_vma seg = -1;
12586
12587 if (bfd_link_pic(info) && dynindx == 0)
12588 abort();
12589
12590 /* Resolve relocation. */
12591 bfd_put_32(output_bfd, (offset + sgot->output_offset)
12592 , contents + rel->r_offset);
12593 /* Emit R_ARM_FUNCDESC_VALUE or two fixups on funcdesc if
12594 not done yet. */
12595 arm_elf_fill_funcdesc(output_bfd, info,
12596 &local_fdpic_cnts[r_symndx].funcdesc_offset,
12597 dynindx, offset, addr, dynreloc_value, seg);
12598 }
12599 else
12600 {
12601 int dynindx;
12602 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12603 bfd_vma addr;
12604 bfd_vma seg = -1;
12605
12606 /* For static binaries, sym_sec can be null. */
12607 if (sym_sec)
12608 {
12609 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12610 addr = dynreloc_value - sym_sec->output_section->vma;
12611 }
12612 else
12613 {
12614 dynindx = 0;
12615 addr = 0;
12616 }
12617
12618 if (bfd_link_pic(info) && dynindx == 0)
12619 abort();
12620
12621 /* This case cannot occur since funcdesc is allocated by
12622 the dynamic loader so we cannot resolve the relocation. */
12623 if (h->dynindx != -1)
12624 abort();
12625
12626 /* Resolve relocation. */
12627 bfd_put_32(output_bfd, (offset + sgot->output_offset),
12628 contents + rel->r_offset);
12629 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12630 arm_elf_fill_funcdesc(output_bfd, info,
12631 &eh->fdpic_cnts.funcdesc_offset,
12632 dynindx, offset, addr, dynreloc_value, seg);
12633 }
12634 }
12635 *unresolved_reloc_p = FALSE;
12636 return bfd_reloc_ok;
12637
12638 case R_ARM_GOTFUNCDESC:
12639 {
12640 if (h != NULL)
12641 {
12642 Elf_Internal_Rela outrel;
12643
12644 /* Resolve relocation. */
12645 bfd_put_32(output_bfd, ((eh->fdpic_cnts.gotfuncdesc_offset & ~1)
12646 + sgot->output_offset),
12647 contents + rel->r_offset);
12648 /* Add funcdesc and associated R_ARM_FUNCDESC_VALUE. */
12649 if(h->dynindx == -1)
12650 {
12651 int dynindx;
12652 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12653 bfd_vma addr;
12654 bfd_vma seg = -1;
12655
12656 /* For static binaries sym_sec can be null. */
12657 if (sym_sec)
12658 {
12659 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12660 addr = dynreloc_value - sym_sec->output_section->vma;
12661 }
12662 else
12663 {
12664 dynindx = 0;
12665 addr = 0;
12666 }
12667
12668 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12669 arm_elf_fill_funcdesc(output_bfd, info,
12670 &eh->fdpic_cnts.funcdesc_offset,
12671 dynindx, offset, addr, dynreloc_value, seg);
12672 }
12673
12674 /* Add a dynamic relocation on GOT entry if not already done. */
12675 if ((eh->fdpic_cnts.gotfuncdesc_offset & 1) == 0)
12676 {
12677 if (h->dynindx == -1)
12678 {
12679 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12680 if (h->root.type == bfd_link_hash_undefweak)
12681 bfd_put_32(output_bfd, 0, sgot->contents
12682 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1));
12683 else
12684 bfd_put_32(output_bfd, sgot->output_section->vma
12685 + sgot->output_offset
12686 + (eh->fdpic_cnts.funcdesc_offset & ~1),
12687 sgot->contents
12688 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1));
12689 }
12690 else
12691 {
12692 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_FUNCDESC);
12693 }
12694 outrel.r_offset = sgot->output_section->vma
12695 + sgot->output_offset
12696 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1);
12697 outrel.r_addend = 0;
12698 if (h->dynindx == -1 && !bfd_link_pic(info))
12699 if (h->root.type == bfd_link_hash_undefweak)
12700 arm_elf_add_rofixup(output_bfd, globals->srofixup, -1);
12701 else
12702 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset);
12703 else
12704 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12705 eh->fdpic_cnts.gotfuncdesc_offset |= 1;
12706 }
12707 }
12708 else
12709 {
12710 /* Such relocation on static function should not have been
12711 emitted by the compiler. */
12712 abort();
12713 }
12714 }
12715 *unresolved_reloc_p = FALSE;
12716 return bfd_reloc_ok;
12717
12718 case R_ARM_FUNCDESC:
12719 {
12720 if (h == NULL)
12721 {
12722 struct fdpic_local *local_fdpic_cnts = elf32_arm_local_fdpic_cnts(input_bfd);
12723 Elf_Internal_Rela outrel;
12724 int dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12725 int offset = local_fdpic_cnts[r_symndx].funcdesc_offset & ~1;
12726 bfd_vma addr = dynreloc_value - sym_sec->output_section->vma;
12727 bfd_vma seg = -1;
12728
12729 if (bfd_link_pic(info) && dynindx == 0)
12730 abort();
12731
12732 /* Replace static FUNCDESC relocation with a
12733 R_ARM_RELATIVE dynamic relocation or with a rofixup for
12734 executable. */
12735 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12736 outrel.r_offset = input_section->output_section->vma
12737 + input_section->output_offset + rel->r_offset;
12738 outrel.r_addend = 0;
12739 if (bfd_link_pic(info))
12740 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12741 else
12742 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset);
12743
12744 bfd_put_32 (input_bfd, sgot->output_section->vma
12745 + sgot->output_offset + offset, hit_data);
12746
12747 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12748 arm_elf_fill_funcdesc(output_bfd, info,
12749 &local_fdpic_cnts[r_symndx].funcdesc_offset,
12750 dynindx, offset, addr, dynreloc_value, seg);
12751 }
12752 else
12753 {
12754 if (h->dynindx == -1)
12755 {
12756 int dynindx;
12757 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12758 bfd_vma addr;
12759 bfd_vma seg = -1;
12760 Elf_Internal_Rela outrel;
12761
12762 /* For static binaries sym_sec can be null. */
12763 if (sym_sec)
12764 {
12765 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12766 addr = dynreloc_value - sym_sec->output_section->vma;
12767 }
12768 else
12769 {
12770 dynindx = 0;
12771 addr = 0;
12772 }
12773
12774 if (bfd_link_pic(info) && dynindx == 0)
12775 abort();
12776
12777 /* Replace static FUNCDESC relocation with a
12778 R_ARM_RELATIVE dynamic relocation. */
12779 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12780 outrel.r_offset = input_section->output_section->vma
12781 + input_section->output_offset + rel->r_offset;
12782 outrel.r_addend = 0;
12783 if (bfd_link_pic(info))
12784 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12785 else
12786 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset);
12787
12788 bfd_put_32 (input_bfd, sgot->output_section->vma
12789 + sgot->output_offset + offset, hit_data);
12790
12791 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12792 arm_elf_fill_funcdesc(output_bfd, info,
12793 &eh->fdpic_cnts.funcdesc_offset,
12794 dynindx, offset, addr, dynreloc_value, seg);
12795 }
12796 else
12797 {
12798 Elf_Internal_Rela outrel;
12799
12800 /* Add a dynamic relocation. */
12801 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_FUNCDESC);
12802 outrel.r_offset = input_section->output_section->vma
12803 + input_section->output_offset + rel->r_offset;
12804 outrel.r_addend = 0;
12805 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12806 }
12807 }
12808 }
12809 *unresolved_reloc_p = FALSE;
12810 return bfd_reloc_ok;
12811
12812 default:
12813 return bfd_reloc_notsupported;
12814 }
12815 }
12816
12817 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
12818 static void
12819 arm_add_to_rel (bfd * abfd,
12820 bfd_byte * address,
12821 reloc_howto_type * howto,
12822 bfd_signed_vma increment)
12823 {
12824 bfd_signed_vma addend;
12825
12826 if (howto->type == R_ARM_THM_CALL
12827 || howto->type == R_ARM_THM_JUMP24)
12828 {
12829 int upper_insn, lower_insn;
12830 int upper, lower;
12831
12832 upper_insn = bfd_get_16 (abfd, address);
12833 lower_insn = bfd_get_16 (abfd, address + 2);
12834 upper = upper_insn & 0x7ff;
12835 lower = lower_insn & 0x7ff;
12836
12837 addend = (upper << 12) | (lower << 1);
12838 addend += increment;
12839 addend >>= 1;
12840
12841 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
12842 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
12843
12844 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
12845 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
12846 }
12847 else
12848 {
12849 bfd_vma contents;
12850
12851 contents = bfd_get_32 (abfd, address);
12852
12853 /* Get the (signed) value from the instruction. */
12854 addend = contents & howto->src_mask;
12855 if (addend & ((howto->src_mask + 1) >> 1))
12856 {
12857 bfd_signed_vma mask;
12858
12859 mask = -1;
12860 mask &= ~ howto->src_mask;
12861 addend |= mask;
12862 }
12863
12864 /* Add in the increment, (which is a byte value). */
12865 switch (howto->type)
12866 {
12867 default:
12868 addend += increment;
12869 break;
12870
12871 case R_ARM_PC24:
12872 case R_ARM_PLT32:
12873 case R_ARM_CALL:
12874 case R_ARM_JUMP24:
12875 addend <<= howto->size;
12876 addend += increment;
12877
12878 /* Should we check for overflow here ? */
12879
12880 /* Drop any undesired bits. */
12881 addend >>= howto->rightshift;
12882 break;
12883 }
12884
12885 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
12886
12887 bfd_put_32 (abfd, contents, address);
12888 }
12889 }
12890
12891 #define IS_ARM_TLS_RELOC(R_TYPE) \
12892 ((R_TYPE) == R_ARM_TLS_GD32 \
12893 || (R_TYPE) == R_ARM_TLS_GD32_FDPIC \
12894 || (R_TYPE) == R_ARM_TLS_LDO32 \
12895 || (R_TYPE) == R_ARM_TLS_LDM32 \
12896 || (R_TYPE) == R_ARM_TLS_LDM32_FDPIC \
12897 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
12898 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
12899 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
12900 || (R_TYPE) == R_ARM_TLS_LE32 \
12901 || (R_TYPE) == R_ARM_TLS_IE32 \
12902 || (R_TYPE) == R_ARM_TLS_IE32_FDPIC \
12903 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
12904
12905 /* Specific set of relocations for the gnu tls dialect. */
12906 #define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
12907 ((R_TYPE) == R_ARM_TLS_GOTDESC \
12908 || (R_TYPE) == R_ARM_TLS_CALL \
12909 || (R_TYPE) == R_ARM_THM_TLS_CALL \
12910 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
12911 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
12912
12913 /* Relocate an ARM ELF section. */
12914
12915 static bfd_boolean
12916 elf32_arm_relocate_section (bfd * output_bfd,
12917 struct bfd_link_info * info,
12918 bfd * input_bfd,
12919 asection * input_section,
12920 bfd_byte * contents,
12921 Elf_Internal_Rela * relocs,
12922 Elf_Internal_Sym * local_syms,
12923 asection ** local_sections)
12924 {
12925 Elf_Internal_Shdr *symtab_hdr;
12926 struct elf_link_hash_entry **sym_hashes;
12927 Elf_Internal_Rela *rel;
12928 Elf_Internal_Rela *relend;
12929 const char *name;
12930 struct elf32_arm_link_hash_table * globals;
12931
12932 globals = elf32_arm_hash_table (info);
12933 if (globals == NULL)
12934 return FALSE;
12935
12936 symtab_hdr = & elf_symtab_hdr (input_bfd);
12937 sym_hashes = elf_sym_hashes (input_bfd);
12938
12939 rel = relocs;
12940 relend = relocs + input_section->reloc_count;
12941 for (; rel < relend; rel++)
12942 {
12943 int r_type;
12944 reloc_howto_type * howto;
12945 unsigned long r_symndx;
12946 Elf_Internal_Sym * sym;
12947 asection * sec;
12948 struct elf_link_hash_entry * h;
12949 bfd_vma relocation;
12950 bfd_reloc_status_type r;
12951 arelent bfd_reloc;
12952 char sym_type;
12953 bfd_boolean unresolved_reloc = FALSE;
12954 char *error_message = NULL;
12955
12956 r_symndx = ELF32_R_SYM (rel->r_info);
12957 r_type = ELF32_R_TYPE (rel->r_info);
12958 r_type = arm_real_reloc_type (globals, r_type);
12959
12960 if ( r_type == R_ARM_GNU_VTENTRY
12961 || r_type == R_ARM_GNU_VTINHERIT)
12962 continue;
12963
12964 howto = bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
12965
12966 if (howto == NULL)
12967 return _bfd_unrecognized_reloc (input_bfd, input_section, r_type);
12968
12969 h = NULL;
12970 sym = NULL;
12971 sec = NULL;
12972
12973 if (r_symndx < symtab_hdr->sh_info)
12974 {
12975 sym = local_syms + r_symndx;
12976 sym_type = ELF32_ST_TYPE (sym->st_info);
12977 sec = local_sections[r_symndx];
12978
12979 /* An object file might have a reference to a local
12980 undefined symbol. This is a daft object file, but we
12981 should at least do something about it. V4BX & NONE
12982 relocations do not use the symbol and are explicitly
12983 allowed to use the undefined symbol, so allow those.
12984 Likewise for relocations against STN_UNDEF. */
12985 if (r_type != R_ARM_V4BX
12986 && r_type != R_ARM_NONE
12987 && r_symndx != STN_UNDEF
12988 && bfd_is_und_section (sec)
12989 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
12990 (*info->callbacks->undefined_symbol)
12991 (info, bfd_elf_string_from_elf_section
12992 (input_bfd, symtab_hdr->sh_link, sym->st_name),
12993 input_bfd, input_section,
12994 rel->r_offset, TRUE);
12995
12996 if (globals->use_rel)
12997 {
12998 relocation = (sec->output_section->vma
12999 + sec->output_offset
13000 + sym->st_value);
13001 if (!bfd_link_relocatable (info)
13002 && (sec->flags & SEC_MERGE)
13003 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
13004 {
13005 asection *msec;
13006 bfd_vma addend, value;
13007
13008 switch (r_type)
13009 {
13010 case R_ARM_MOVW_ABS_NC:
13011 case R_ARM_MOVT_ABS:
13012 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
13013 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
13014 addend = (addend ^ 0x8000) - 0x8000;
13015 break;
13016
13017 case R_ARM_THM_MOVW_ABS_NC:
13018 case R_ARM_THM_MOVT_ABS:
13019 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
13020 << 16;
13021 value |= bfd_get_16 (input_bfd,
13022 contents + rel->r_offset + 2);
13023 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
13024 | ((value & 0x04000000) >> 15);
13025 addend = (addend ^ 0x8000) - 0x8000;
13026 break;
13027
13028 default:
13029 if (howto->rightshift
13030 || (howto->src_mask & (howto->src_mask + 1)))
13031 {
13032 _bfd_error_handler
13033 /* xgettext:c-format */
13034 (_("%pB(%pA+%#" PRIx64 "): "
13035 "%s relocation against SEC_MERGE section"),
13036 input_bfd, input_section,
13037 (uint64_t) rel->r_offset, howto->name);
13038 return FALSE;
13039 }
13040
13041 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
13042
13043 /* Get the (signed) value from the instruction. */
13044 addend = value & howto->src_mask;
13045 if (addend & ((howto->src_mask + 1) >> 1))
13046 {
13047 bfd_signed_vma mask;
13048
13049 mask = -1;
13050 mask &= ~ howto->src_mask;
13051 addend |= mask;
13052 }
13053 break;
13054 }
13055
13056 msec = sec;
13057 addend =
13058 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
13059 - relocation;
13060 addend += msec->output_section->vma + msec->output_offset;
13061
13062 /* Cases here must match those in the preceding
13063 switch statement. */
13064 switch (r_type)
13065 {
13066 case R_ARM_MOVW_ABS_NC:
13067 case R_ARM_MOVT_ABS:
13068 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
13069 | (addend & 0xfff);
13070 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
13071 break;
13072
13073 case R_ARM_THM_MOVW_ABS_NC:
13074 case R_ARM_THM_MOVT_ABS:
13075 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
13076 | (addend & 0xff) | ((addend & 0x0800) << 15);
13077 bfd_put_16 (input_bfd, value >> 16,
13078 contents + rel->r_offset);
13079 bfd_put_16 (input_bfd, value,
13080 contents + rel->r_offset + 2);
13081 break;
13082
13083 default:
13084 value = (value & ~ howto->dst_mask)
13085 | (addend & howto->dst_mask);
13086 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
13087 break;
13088 }
13089 }
13090 }
13091 else
13092 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
13093 }
13094 else
13095 {
13096 bfd_boolean warned, ignored;
13097
13098 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
13099 r_symndx, symtab_hdr, sym_hashes,
13100 h, sec, relocation,
13101 unresolved_reloc, warned, ignored);
13102
13103 sym_type = h->type;
13104 }
13105
13106 if (sec != NULL && discarded_section (sec))
13107 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
13108 rel, 1, relend, howto, 0, contents);
13109
13110 if (bfd_link_relocatable (info))
13111 {
13112 /* This is a relocatable link. We don't have to change
13113 anything, unless the reloc is against a section symbol,
13114 in which case we have to adjust according to where the
13115 section symbol winds up in the output section. */
13116 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
13117 {
13118 if (globals->use_rel)
13119 arm_add_to_rel (input_bfd, contents + rel->r_offset,
13120 howto, (bfd_signed_vma) sec->output_offset);
13121 else
13122 rel->r_addend += sec->output_offset;
13123 }
13124 continue;
13125 }
13126
13127 if (h != NULL)
13128 name = h->root.root.string;
13129 else
13130 {
13131 name = (bfd_elf_string_from_elf_section
13132 (input_bfd, symtab_hdr->sh_link, sym->st_name));
13133 if (name == NULL || *name == '\0')
13134 name = bfd_section_name (input_bfd, sec);
13135 }
13136
13137 if (r_symndx != STN_UNDEF
13138 && r_type != R_ARM_NONE
13139 && (h == NULL
13140 || h->root.type == bfd_link_hash_defined
13141 || h->root.type == bfd_link_hash_defweak)
13142 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
13143 {
13144 _bfd_error_handler
13145 ((sym_type == STT_TLS
13146 /* xgettext:c-format */
13147 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
13148 /* xgettext:c-format */
13149 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
13150 input_bfd,
13151 input_section,
13152 (uint64_t) rel->r_offset,
13153 howto->name,
13154 name);
13155 }
13156
13157 /* We call elf32_arm_final_link_relocate unless we're completely
13158 done, i.e., the relaxation produced the final output we want,
13159 and we won't let anybody mess with it. Also, we have to do
13160 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
13161 both in relaxed and non-relaxed cases. */
13162 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
13163 || (IS_ARM_TLS_GNU_RELOC (r_type)
13164 && !((h ? elf32_arm_hash_entry (h)->tls_type :
13165 elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
13166 & GOT_TLS_GDESC)))
13167 {
13168 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
13169 contents, rel, h == NULL);
13170 /* This may have been marked unresolved because it came from
13171 a shared library. But we've just dealt with that. */
13172 unresolved_reloc = 0;
13173 }
13174 else
13175 r = bfd_reloc_continue;
13176
13177 if (r == bfd_reloc_continue)
13178 {
13179 unsigned char branch_type =
13180 h ? ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
13181 : ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
13182
13183 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
13184 input_section, contents, rel,
13185 relocation, info, sec, name,
13186 sym_type, branch_type, h,
13187 &unresolved_reloc,
13188 &error_message);
13189 }
13190
13191 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
13192 because such sections are not SEC_ALLOC and thus ld.so will
13193 not process them. */
13194 if (unresolved_reloc
13195 && !((input_section->flags & SEC_DEBUGGING) != 0
13196 && h->def_dynamic)
13197 && _bfd_elf_section_offset (output_bfd, info, input_section,
13198 rel->r_offset) != (bfd_vma) -1)
13199 {
13200 _bfd_error_handler
13201 /* xgettext:c-format */
13202 (_("%pB(%pA+%#" PRIx64 "): "
13203 "unresolvable %s relocation against symbol `%s'"),
13204 input_bfd,
13205 input_section,
13206 (uint64_t) rel->r_offset,
13207 howto->name,
13208 h->root.root.string);
13209 return FALSE;
13210 }
13211
13212 if (r != bfd_reloc_ok)
13213 {
13214 switch (r)
13215 {
13216 case bfd_reloc_overflow:
13217 /* If the overflowing reloc was to an undefined symbol,
13218 we have already printed one error message and there
13219 is no point complaining again. */
13220 if (!h || h->root.type != bfd_link_hash_undefined)
13221 (*info->callbacks->reloc_overflow)
13222 (info, (h ? &h->root : NULL), name, howto->name,
13223 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
13224 break;
13225
13226 case bfd_reloc_undefined:
13227 (*info->callbacks->undefined_symbol)
13228 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
13229 break;
13230
13231 case bfd_reloc_outofrange:
13232 error_message = _("out of range");
13233 goto common_error;
13234
13235 case bfd_reloc_notsupported:
13236 error_message = _("unsupported relocation");
13237 goto common_error;
13238
13239 case bfd_reloc_dangerous:
13240 /* error_message should already be set. */
13241 goto common_error;
13242
13243 default:
13244 error_message = _("unknown error");
13245 /* Fall through. */
13246
13247 common_error:
13248 BFD_ASSERT (error_message != NULL);
13249 (*info->callbacks->reloc_dangerous)
13250 (info, error_message, input_bfd, input_section, rel->r_offset);
13251 break;
13252 }
13253 }
13254 }
13255
13256 return TRUE;
13257 }
13258
13259 /* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
13260 adds the edit to the start of the list. (The list must be built in order of
13261 ascending TINDEX: the function's callers are primarily responsible for
13262 maintaining that condition). */
13263
13264 static void
13265 add_unwind_table_edit (arm_unwind_table_edit **head,
13266 arm_unwind_table_edit **tail,
13267 arm_unwind_edit_type type,
13268 asection *linked_section,
13269 unsigned int tindex)
13270 {
13271 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
13272 xmalloc (sizeof (arm_unwind_table_edit));
13273
13274 new_edit->type = type;
13275 new_edit->linked_section = linked_section;
13276 new_edit->index = tindex;
13277
13278 if (tindex > 0)
13279 {
13280 new_edit->next = NULL;
13281
13282 if (*tail)
13283 (*tail)->next = new_edit;
13284
13285 (*tail) = new_edit;
13286
13287 if (!*head)
13288 (*head) = new_edit;
13289 }
13290 else
13291 {
13292 new_edit->next = *head;
13293
13294 if (!*tail)
13295 *tail = new_edit;
13296
13297 *head = new_edit;
13298 }
13299 }
13300
13301 static _arm_elf_section_data *get_arm_elf_section_data (asection *);
13302
13303 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
13304 static void
13305 adjust_exidx_size(asection *exidx_sec, int adjust)
13306 {
13307 asection *out_sec;
13308
13309 if (!exidx_sec->rawsize)
13310 exidx_sec->rawsize = exidx_sec->size;
13311
13312 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
13313 out_sec = exidx_sec->output_section;
13314 /* Adjust size of output section. */
13315 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
13316 }
13317
13318 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
13319 static void
13320 insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
13321 {
13322 struct _arm_elf_section_data *exidx_arm_data;
13323
13324 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
13325 add_unwind_table_edit (
13326 &exidx_arm_data->u.exidx.unwind_edit_list,
13327 &exidx_arm_data->u.exidx.unwind_edit_tail,
13328 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
13329
13330 exidx_arm_data->additional_reloc_count++;
13331
13332 adjust_exidx_size(exidx_sec, 8);
13333 }
13334
13335 /* Scan .ARM.exidx tables, and create a list describing edits which should be
13336 made to those tables, such that:
13337
13338 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
13339 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
13340 codes which have been inlined into the index).
13341
13342 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
13343
13344 The edits are applied when the tables are written
13345 (in elf32_arm_write_section). */
13346
13347 bfd_boolean
13348 elf32_arm_fix_exidx_coverage (asection **text_section_order,
13349 unsigned int num_text_sections,
13350 struct bfd_link_info *info,
13351 bfd_boolean merge_exidx_entries)
13352 {
13353 bfd *inp;
13354 unsigned int last_second_word = 0, i;
13355 asection *last_exidx_sec = NULL;
13356 asection *last_text_sec = NULL;
13357 int last_unwind_type = -1;
13358
13359 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
13360 text sections. */
13361 for (inp = info->input_bfds; inp != NULL; inp = inp->link.next)
13362 {
13363 asection *sec;
13364
13365 for (sec = inp->sections; sec != NULL; sec = sec->next)
13366 {
13367 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
13368 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
13369
13370 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
13371 continue;
13372
13373 if (elf_sec->linked_to)
13374 {
13375 Elf_Internal_Shdr *linked_hdr
13376 = &elf_section_data (elf_sec->linked_to)->this_hdr;
13377 struct _arm_elf_section_data *linked_sec_arm_data
13378 = get_arm_elf_section_data (linked_hdr->bfd_section);
13379
13380 if (linked_sec_arm_data == NULL)
13381 continue;
13382
13383 /* Link this .ARM.exidx section back from the text section it
13384 describes. */
13385 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
13386 }
13387 }
13388 }
13389
13390 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
13391 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
13392 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
13393
13394 for (i = 0; i < num_text_sections; i++)
13395 {
13396 asection *sec = text_section_order[i];
13397 asection *exidx_sec;
13398 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
13399 struct _arm_elf_section_data *exidx_arm_data;
13400 bfd_byte *contents = NULL;
13401 int deleted_exidx_bytes = 0;
13402 bfd_vma j;
13403 arm_unwind_table_edit *unwind_edit_head = NULL;
13404 arm_unwind_table_edit *unwind_edit_tail = NULL;
13405 Elf_Internal_Shdr *hdr;
13406 bfd *ibfd;
13407
13408 if (arm_data == NULL)
13409 continue;
13410
13411 exidx_sec = arm_data->u.text.arm_exidx_sec;
13412 if (exidx_sec == NULL)
13413 {
13414 /* Section has no unwind data. */
13415 if (last_unwind_type == 0 || !last_exidx_sec)
13416 continue;
13417
13418 /* Ignore zero sized sections. */
13419 if (sec->size == 0)
13420 continue;
13421
13422 insert_cantunwind_after(last_text_sec, last_exidx_sec);
13423 last_unwind_type = 0;
13424 continue;
13425 }
13426
13427 /* Skip /DISCARD/ sections. */
13428 if (bfd_is_abs_section (exidx_sec->output_section))
13429 continue;
13430
13431 hdr = &elf_section_data (exidx_sec)->this_hdr;
13432 if (hdr->sh_type != SHT_ARM_EXIDX)
13433 continue;
13434
13435 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
13436 if (exidx_arm_data == NULL)
13437 continue;
13438
13439 ibfd = exidx_sec->owner;
13440
13441 if (hdr->contents != NULL)
13442 contents = hdr->contents;
13443 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
13444 /* An error? */
13445 continue;
13446
13447 if (last_unwind_type > 0)
13448 {
13449 unsigned int first_word = bfd_get_32 (ibfd, contents);
13450 /* Add cantunwind if first unwind item does not match section
13451 start. */
13452 if (first_word != sec->vma)
13453 {
13454 insert_cantunwind_after (last_text_sec, last_exidx_sec);
13455 last_unwind_type = 0;
13456 }
13457 }
13458
13459 for (j = 0; j < hdr->sh_size; j += 8)
13460 {
13461 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
13462 int unwind_type;
13463 int elide = 0;
13464
13465 /* An EXIDX_CANTUNWIND entry. */
13466 if (second_word == 1)
13467 {
13468 if (last_unwind_type == 0)
13469 elide = 1;
13470 unwind_type = 0;
13471 }
13472 /* Inlined unwinding data. Merge if equal to previous. */
13473 else if ((second_word & 0x80000000) != 0)
13474 {
13475 if (merge_exidx_entries
13476 && last_second_word == second_word && last_unwind_type == 1)
13477 elide = 1;
13478 unwind_type = 1;
13479 last_second_word = second_word;
13480 }
13481 /* Normal table entry. In theory we could merge these too,
13482 but duplicate entries are likely to be much less common. */
13483 else
13484 unwind_type = 2;
13485
13486 if (elide && !bfd_link_relocatable (info))
13487 {
13488 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
13489 DELETE_EXIDX_ENTRY, NULL, j / 8);
13490
13491 deleted_exidx_bytes += 8;
13492 }
13493
13494 last_unwind_type = unwind_type;
13495 }
13496
13497 /* Free contents if we allocated it ourselves. */
13498 if (contents != hdr->contents)
13499 free (contents);
13500
13501 /* Record edits to be applied later (in elf32_arm_write_section). */
13502 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
13503 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
13504
13505 if (deleted_exidx_bytes > 0)
13506 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
13507
13508 last_exidx_sec = exidx_sec;
13509 last_text_sec = sec;
13510 }
13511
13512 /* Add terminating CANTUNWIND entry. */
13513 if (!bfd_link_relocatable (info) && last_exidx_sec
13514 && last_unwind_type != 0)
13515 insert_cantunwind_after(last_text_sec, last_exidx_sec);
13516
13517 return TRUE;
13518 }
13519
13520 static bfd_boolean
13521 elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
13522 bfd *ibfd, const char *name)
13523 {
13524 asection *sec, *osec;
13525
13526 sec = bfd_get_linker_section (ibfd, name);
13527 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
13528 return TRUE;
13529
13530 osec = sec->output_section;
13531 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
13532 return TRUE;
13533
13534 if (! bfd_set_section_contents (obfd, osec, sec->contents,
13535 sec->output_offset, sec->size))
13536 return FALSE;
13537
13538 return TRUE;
13539 }
13540
13541 static bfd_boolean
13542 elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
13543 {
13544 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
13545 asection *sec, *osec;
13546
13547 if (globals == NULL)
13548 return FALSE;
13549
13550 /* Invoke the regular ELF backend linker to do all the work. */
13551 if (!bfd_elf_final_link (abfd, info))
13552 return FALSE;
13553
13554 /* Process stub sections (eg BE8 encoding, ...). */
13555 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
13556 unsigned int i;
13557 for (i=0; i<htab->top_id; i++)
13558 {
13559 sec = htab->stub_group[i].stub_sec;
13560 /* Only process it once, in its link_sec slot. */
13561 if (sec && i == htab->stub_group[i].link_sec->id)
13562 {
13563 osec = sec->output_section;
13564 elf32_arm_write_section (abfd, info, sec, sec->contents);
13565 if (! bfd_set_section_contents (abfd, osec, sec->contents,
13566 sec->output_offset, sec->size))
13567 return FALSE;
13568 }
13569 }
13570
13571 /* Write out any glue sections now that we have created all the
13572 stubs. */
13573 if (globals->bfd_of_glue_owner != NULL)
13574 {
13575 if (! elf32_arm_output_glue_section (info, abfd,
13576 globals->bfd_of_glue_owner,
13577 ARM2THUMB_GLUE_SECTION_NAME))
13578 return FALSE;
13579
13580 if (! elf32_arm_output_glue_section (info, abfd,
13581 globals->bfd_of_glue_owner,
13582 THUMB2ARM_GLUE_SECTION_NAME))
13583 return FALSE;
13584
13585 if (! elf32_arm_output_glue_section (info, abfd,
13586 globals->bfd_of_glue_owner,
13587 VFP11_ERRATUM_VENEER_SECTION_NAME))
13588 return FALSE;
13589
13590 if (! elf32_arm_output_glue_section (info, abfd,
13591 globals->bfd_of_glue_owner,
13592 STM32L4XX_ERRATUM_VENEER_SECTION_NAME))
13593 return FALSE;
13594
13595 if (! elf32_arm_output_glue_section (info, abfd,
13596 globals->bfd_of_glue_owner,
13597 ARM_BX_GLUE_SECTION_NAME))
13598 return FALSE;
13599 }
13600
13601 return TRUE;
13602 }
13603
13604 /* Return a best guess for the machine number based on the attributes. */
13605
13606 static unsigned int
13607 bfd_arm_get_mach_from_attributes (bfd * abfd)
13608 {
13609 int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch);
13610
13611 switch (arch)
13612 {
13613 case TAG_CPU_ARCH_V4: return bfd_mach_arm_4;
13614 case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T;
13615 case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T;
13616
13617 case TAG_CPU_ARCH_V5TE:
13618 {
13619 char * name;
13620
13621 BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES);
13622 name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s;
13623
13624 if (name)
13625 {
13626 if (strcmp (name, "IWMMXT2") == 0)
13627 return bfd_mach_arm_iWMMXt2;
13628
13629 if (strcmp (name, "IWMMXT") == 0)
13630 return bfd_mach_arm_iWMMXt;
13631
13632 if (strcmp (name, "XSCALE") == 0)
13633 {
13634 int wmmx;
13635
13636 BFD_ASSERT (Tag_WMMX_arch < NUM_KNOWN_OBJ_ATTRIBUTES);
13637 wmmx = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_WMMX_arch].i;
13638 switch (wmmx)
13639 {
13640 case 1: return bfd_mach_arm_iWMMXt;
13641 case 2: return bfd_mach_arm_iWMMXt2;
13642 default: return bfd_mach_arm_XScale;
13643 }
13644 }
13645 }
13646
13647 return bfd_mach_arm_5TE;
13648 }
13649
13650 default:
13651 return bfd_mach_arm_unknown;
13652 }
13653 }
13654
13655 /* Set the right machine number. */
13656
13657 static bfd_boolean
13658 elf32_arm_object_p (bfd *abfd)
13659 {
13660 unsigned int mach;
13661
13662 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
13663
13664 if (mach == bfd_mach_arm_unknown)
13665 {
13666 if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
13667 mach = bfd_mach_arm_ep9312;
13668 else
13669 mach = bfd_arm_get_mach_from_attributes (abfd);
13670 }
13671
13672 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
13673 return TRUE;
13674 }
13675
13676 /* Function to keep ARM specific flags in the ELF header. */
13677
13678 static bfd_boolean
13679 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
13680 {
13681 if (elf_flags_init (abfd)
13682 && elf_elfheader (abfd)->e_flags != flags)
13683 {
13684 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
13685 {
13686 if (flags & EF_ARM_INTERWORK)
13687 _bfd_error_handler
13688 (_("warning: not setting interworking flag of %pB since it has already been specified as non-interworking"),
13689 abfd);
13690 else
13691 _bfd_error_handler
13692 (_("warning: clearing the interworking flag of %pB due to outside request"),
13693 abfd);
13694 }
13695 }
13696 else
13697 {
13698 elf_elfheader (abfd)->e_flags = flags;
13699 elf_flags_init (abfd) = TRUE;
13700 }
13701
13702 return TRUE;
13703 }
13704
13705 /* Copy backend specific data from one object module to another. */
13706
13707 static bfd_boolean
13708 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
13709 {
13710 flagword in_flags;
13711 flagword out_flags;
13712
13713 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
13714 return TRUE;
13715
13716 in_flags = elf_elfheader (ibfd)->e_flags;
13717 out_flags = elf_elfheader (obfd)->e_flags;
13718
13719 if (elf_flags_init (obfd)
13720 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
13721 && in_flags != out_flags)
13722 {
13723 /* Cannot mix APCS26 and APCS32 code. */
13724 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
13725 return FALSE;
13726
13727 /* Cannot mix float APCS and non-float APCS code. */
13728 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
13729 return FALSE;
13730
13731 /* If the src and dest have different interworking flags
13732 then turn off the interworking bit. */
13733 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
13734 {
13735 if (out_flags & EF_ARM_INTERWORK)
13736 _bfd_error_handler
13737 (_("warning: clearing the interworking flag of %pB because non-interworking code in %pB has been linked with it"),
13738 obfd, ibfd);
13739
13740 in_flags &= ~EF_ARM_INTERWORK;
13741 }
13742
13743 /* Likewise for PIC, though don't warn for this case. */
13744 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
13745 in_flags &= ~EF_ARM_PIC;
13746 }
13747
13748 elf_elfheader (obfd)->e_flags = in_flags;
13749 elf_flags_init (obfd) = TRUE;
13750
13751 return _bfd_elf_copy_private_bfd_data (ibfd, obfd);
13752 }
13753
13754 /* Values for Tag_ABI_PCS_R9_use. */
13755 enum
13756 {
13757 AEABI_R9_V6,
13758 AEABI_R9_SB,
13759 AEABI_R9_TLS,
13760 AEABI_R9_unused
13761 };
13762
13763 /* Values for Tag_ABI_PCS_RW_data. */
13764 enum
13765 {
13766 AEABI_PCS_RW_data_absolute,
13767 AEABI_PCS_RW_data_PCrel,
13768 AEABI_PCS_RW_data_SBrel,
13769 AEABI_PCS_RW_data_unused
13770 };
13771
13772 /* Values for Tag_ABI_enum_size. */
13773 enum
13774 {
13775 AEABI_enum_unused,
13776 AEABI_enum_short,
13777 AEABI_enum_wide,
13778 AEABI_enum_forced_wide
13779 };
13780
13781 /* Determine whether an object attribute tag takes an integer, a
13782 string or both. */
13783
13784 static int
13785 elf32_arm_obj_attrs_arg_type (int tag)
13786 {
13787 if (tag == Tag_compatibility)
13788 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
13789 else if (tag == Tag_nodefaults)
13790 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
13791 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
13792 return ATTR_TYPE_FLAG_STR_VAL;
13793 else if (tag < 32)
13794 return ATTR_TYPE_FLAG_INT_VAL;
13795 else
13796 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
13797 }
13798
13799 /* The ABI defines that Tag_conformance should be emitted first, and that
13800 Tag_nodefaults should be second (if either is defined). This sets those
13801 two positions, and bumps up the position of all the remaining tags to
13802 compensate. */
13803 static int
13804 elf32_arm_obj_attrs_order (int num)
13805 {
13806 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
13807 return Tag_conformance;
13808 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
13809 return Tag_nodefaults;
13810 if ((num - 2) < Tag_nodefaults)
13811 return num - 2;
13812 if ((num - 1) < Tag_conformance)
13813 return num - 1;
13814 return num;
13815 }
13816
13817 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
13818 static bfd_boolean
13819 elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
13820 {
13821 if ((tag & 127) < 64)
13822 {
13823 _bfd_error_handler
13824 (_("%pB: unknown mandatory EABI object attribute %d"),
13825 abfd, tag);
13826 bfd_set_error (bfd_error_bad_value);
13827 return FALSE;
13828 }
13829 else
13830 {
13831 _bfd_error_handler
13832 (_("warning: %pB: unknown EABI object attribute %d"),
13833 abfd, tag);
13834 return TRUE;
13835 }
13836 }
13837
13838 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
13839 Returns -1 if no architecture could be read. */
13840
13841 static int
13842 get_secondary_compatible_arch (bfd *abfd)
13843 {
13844 obj_attribute *attr =
13845 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
13846
13847 /* Note: the tag and its argument below are uleb128 values, though
13848 currently-defined values fit in one byte for each. */
13849 if (attr->s
13850 && attr->s[0] == Tag_CPU_arch
13851 && (attr->s[1] & 128) != 128
13852 && attr->s[2] == 0)
13853 return attr->s[1];
13854
13855 /* This tag is "safely ignorable", so don't complain if it looks funny. */
13856 return -1;
13857 }
13858
13859 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
13860 The tag is removed if ARCH is -1. */
13861
13862 static void
13863 set_secondary_compatible_arch (bfd *abfd, int arch)
13864 {
13865 obj_attribute *attr =
13866 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
13867
13868 if (arch == -1)
13869 {
13870 attr->s = NULL;
13871 return;
13872 }
13873
13874 /* Note: the tag and its argument below are uleb128 values, though
13875 currently-defined values fit in one byte for each. */
13876 if (!attr->s)
13877 attr->s = (char *) bfd_alloc (abfd, 3);
13878 attr->s[0] = Tag_CPU_arch;
13879 attr->s[1] = arch;
13880 attr->s[2] = '\0';
13881 }
13882
13883 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
13884 into account. */
13885
13886 static int
13887 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
13888 int newtag, int secondary_compat)
13889 {
13890 #define T(X) TAG_CPU_ARCH_##X
13891 int tagl, tagh, result;
13892 const int v6t2[] =
13893 {
13894 T(V6T2), /* PRE_V4. */
13895 T(V6T2), /* V4. */
13896 T(V6T2), /* V4T. */
13897 T(V6T2), /* V5T. */
13898 T(V6T2), /* V5TE. */
13899 T(V6T2), /* V5TEJ. */
13900 T(V6T2), /* V6. */
13901 T(V7), /* V6KZ. */
13902 T(V6T2) /* V6T2. */
13903 };
13904 const int v6k[] =
13905 {
13906 T(V6K), /* PRE_V4. */
13907 T(V6K), /* V4. */
13908 T(V6K), /* V4T. */
13909 T(V6K), /* V5T. */
13910 T(V6K), /* V5TE. */
13911 T(V6K), /* V5TEJ. */
13912 T(V6K), /* V6. */
13913 T(V6KZ), /* V6KZ. */
13914 T(V7), /* V6T2. */
13915 T(V6K) /* V6K. */
13916 };
13917 const int v7[] =
13918 {
13919 T(V7), /* PRE_V4. */
13920 T(V7), /* V4. */
13921 T(V7), /* V4T. */
13922 T(V7), /* V5T. */
13923 T(V7), /* V5TE. */
13924 T(V7), /* V5TEJ. */
13925 T(V7), /* V6. */
13926 T(V7), /* V6KZ. */
13927 T(V7), /* V6T2. */
13928 T(V7), /* V6K. */
13929 T(V7) /* V7. */
13930 };
13931 const int v6_m[] =
13932 {
13933 -1, /* PRE_V4. */
13934 -1, /* V4. */
13935 T(V6K), /* V4T. */
13936 T(V6K), /* V5T. */
13937 T(V6K), /* V5TE. */
13938 T(V6K), /* V5TEJ. */
13939 T(V6K), /* V6. */
13940 T(V6KZ), /* V6KZ. */
13941 T(V7), /* V6T2. */
13942 T(V6K), /* V6K. */
13943 T(V7), /* V7. */
13944 T(V6_M) /* V6_M. */
13945 };
13946 const int v6s_m[] =
13947 {
13948 -1, /* PRE_V4. */
13949 -1, /* V4. */
13950 T(V6K), /* V4T. */
13951 T(V6K), /* V5T. */
13952 T(V6K), /* V5TE. */
13953 T(V6K), /* V5TEJ. */
13954 T(V6K), /* V6. */
13955 T(V6KZ), /* V6KZ. */
13956 T(V7), /* V6T2. */
13957 T(V6K), /* V6K. */
13958 T(V7), /* V7. */
13959 T(V6S_M), /* V6_M. */
13960 T(V6S_M) /* V6S_M. */
13961 };
13962 const int v7e_m[] =
13963 {
13964 -1, /* PRE_V4. */
13965 -1, /* V4. */
13966 T(V7E_M), /* V4T. */
13967 T(V7E_M), /* V5T. */
13968 T(V7E_M), /* V5TE. */
13969 T(V7E_M), /* V5TEJ. */
13970 T(V7E_M), /* V6. */
13971 T(V7E_M), /* V6KZ. */
13972 T(V7E_M), /* V6T2. */
13973 T(V7E_M), /* V6K. */
13974 T(V7E_M), /* V7. */
13975 T(V7E_M), /* V6_M. */
13976 T(V7E_M), /* V6S_M. */
13977 T(V7E_M) /* V7E_M. */
13978 };
13979 const int v8[] =
13980 {
13981 T(V8), /* PRE_V4. */
13982 T(V8), /* V4. */
13983 T(V8), /* V4T. */
13984 T(V8), /* V5T. */
13985 T(V8), /* V5TE. */
13986 T(V8), /* V5TEJ. */
13987 T(V8), /* V6. */
13988 T(V8), /* V6KZ. */
13989 T(V8), /* V6T2. */
13990 T(V8), /* V6K. */
13991 T(V8), /* V7. */
13992 T(V8), /* V6_M. */
13993 T(V8), /* V6S_M. */
13994 T(V8), /* V7E_M. */
13995 T(V8) /* V8. */
13996 };
13997 const int v8r[] =
13998 {
13999 T(V8R), /* PRE_V4. */
14000 T(V8R), /* V4. */
14001 T(V8R), /* V4T. */
14002 T(V8R), /* V5T. */
14003 T(V8R), /* V5TE. */
14004 T(V8R), /* V5TEJ. */
14005 T(V8R), /* V6. */
14006 T(V8R), /* V6KZ. */
14007 T(V8R), /* V6T2. */
14008 T(V8R), /* V6K. */
14009 T(V8R), /* V7. */
14010 T(V8R), /* V6_M. */
14011 T(V8R), /* V6S_M. */
14012 T(V8R), /* V7E_M. */
14013 T(V8), /* V8. */
14014 T(V8R), /* V8R. */
14015 };
14016 const int v8m_baseline[] =
14017 {
14018 -1, /* PRE_V4. */
14019 -1, /* V4. */
14020 -1, /* V4T. */
14021 -1, /* V5T. */
14022 -1, /* V5TE. */
14023 -1, /* V5TEJ. */
14024 -1, /* V6. */
14025 -1, /* V6KZ. */
14026 -1, /* V6T2. */
14027 -1, /* V6K. */
14028 -1, /* V7. */
14029 T(V8M_BASE), /* V6_M. */
14030 T(V8M_BASE), /* V6S_M. */
14031 -1, /* V7E_M. */
14032 -1, /* V8. */
14033 -1, /* V8R. */
14034 T(V8M_BASE) /* V8-M BASELINE. */
14035 };
14036 const int v8m_mainline[] =
14037 {
14038 -1, /* PRE_V4. */
14039 -1, /* V4. */
14040 -1, /* V4T. */
14041 -1, /* V5T. */
14042 -1, /* V5TE. */
14043 -1, /* V5TEJ. */
14044 -1, /* V6. */
14045 -1, /* V6KZ. */
14046 -1, /* V6T2. */
14047 -1, /* V6K. */
14048 T(V8M_MAIN), /* V7. */
14049 T(V8M_MAIN), /* V6_M. */
14050 T(V8M_MAIN), /* V6S_M. */
14051 T(V8M_MAIN), /* V7E_M. */
14052 -1, /* V8. */
14053 -1, /* V8R. */
14054 T(V8M_MAIN), /* V8-M BASELINE. */
14055 T(V8M_MAIN) /* V8-M MAINLINE. */
14056 };
14057 const int v4t_plus_v6_m[] =
14058 {
14059 -1, /* PRE_V4. */
14060 -1, /* V4. */
14061 T(V4T), /* V4T. */
14062 T(V5T), /* V5T. */
14063 T(V5TE), /* V5TE. */
14064 T(V5TEJ), /* V5TEJ. */
14065 T(V6), /* V6. */
14066 T(V6KZ), /* V6KZ. */
14067 T(V6T2), /* V6T2. */
14068 T(V6K), /* V6K. */
14069 T(V7), /* V7. */
14070 T(V6_M), /* V6_M. */
14071 T(V6S_M), /* V6S_M. */
14072 T(V7E_M), /* V7E_M. */
14073 T(V8), /* V8. */
14074 -1, /* V8R. */
14075 T(V8M_BASE), /* V8-M BASELINE. */
14076 T(V8M_MAIN), /* V8-M MAINLINE. */
14077 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
14078 };
14079 const int *comb[] =
14080 {
14081 v6t2,
14082 v6k,
14083 v7,
14084 v6_m,
14085 v6s_m,
14086 v7e_m,
14087 v8,
14088 v8r,
14089 v8m_baseline,
14090 v8m_mainline,
14091 /* Pseudo-architecture. */
14092 v4t_plus_v6_m
14093 };
14094
14095 /* Check we've not got a higher architecture than we know about. */
14096
14097 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
14098 {
14099 _bfd_error_handler (_("error: %pB: unknown CPU architecture"), ibfd);
14100 return -1;
14101 }
14102
14103 /* Override old tag if we have a Tag_also_compatible_with on the output. */
14104
14105 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
14106 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
14107 oldtag = T(V4T_PLUS_V6_M);
14108
14109 /* And override the new tag if we have a Tag_also_compatible_with on the
14110 input. */
14111
14112 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
14113 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
14114 newtag = T(V4T_PLUS_V6_M);
14115
14116 tagl = (oldtag < newtag) ? oldtag : newtag;
14117 result = tagh = (oldtag > newtag) ? oldtag : newtag;
14118
14119 /* Architectures before V6KZ add features monotonically. */
14120 if (tagh <= TAG_CPU_ARCH_V6KZ)
14121 return result;
14122
14123 result = comb[tagh - T(V6T2)] ? comb[tagh - T(V6T2)][tagl] : -1;
14124
14125 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
14126 as the canonical version. */
14127 if (result == T(V4T_PLUS_V6_M))
14128 {
14129 result = T(V4T);
14130 *secondary_compat_out = T(V6_M);
14131 }
14132 else
14133 *secondary_compat_out = -1;
14134
14135 if (result == -1)
14136 {
14137 _bfd_error_handler (_("error: %pB: conflicting CPU architectures %d/%d"),
14138 ibfd, oldtag, newtag);
14139 return -1;
14140 }
14141
14142 return result;
14143 #undef T
14144 }
14145
14146 /* Query attributes object to see if integer divide instructions may be
14147 present in an object. */
14148 static bfd_boolean
14149 elf32_arm_attributes_accept_div (const obj_attribute *attr)
14150 {
14151 int arch = attr[Tag_CPU_arch].i;
14152 int profile = attr[Tag_CPU_arch_profile].i;
14153
14154 switch (attr[Tag_DIV_use].i)
14155 {
14156 case 0:
14157 /* Integer divide allowed if instruction contained in archetecture. */
14158 if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
14159 return TRUE;
14160 else if (arch >= TAG_CPU_ARCH_V7E_M)
14161 return TRUE;
14162 else
14163 return FALSE;
14164
14165 case 1:
14166 /* Integer divide explicitly prohibited. */
14167 return FALSE;
14168
14169 default:
14170 /* Unrecognised case - treat as allowing divide everywhere. */
14171 case 2:
14172 /* Integer divide allowed in ARM state. */
14173 return TRUE;
14174 }
14175 }
14176
14177 /* Query attributes object to see if integer divide instructions are
14178 forbidden to be in the object. This is not the inverse of
14179 elf32_arm_attributes_accept_div. */
14180 static bfd_boolean
14181 elf32_arm_attributes_forbid_div (const obj_attribute *attr)
14182 {
14183 return attr[Tag_DIV_use].i == 1;
14184 }
14185
14186 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
14187 are conflicting attributes. */
14188
14189 static bfd_boolean
14190 elf32_arm_merge_eabi_attributes (bfd *ibfd, struct bfd_link_info *info)
14191 {
14192 bfd *obfd = info->output_bfd;
14193 obj_attribute *in_attr;
14194 obj_attribute *out_attr;
14195 /* Some tags have 0 = don't care, 1 = strong requirement,
14196 2 = weak requirement. */
14197 static const int order_021[3] = {0, 2, 1};
14198 int i;
14199 bfd_boolean result = TRUE;
14200 const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section;
14201
14202 /* Skip the linker stubs file. This preserves previous behavior
14203 of accepting unknown attributes in the first input file - but
14204 is that a bug? */
14205 if (ibfd->flags & BFD_LINKER_CREATED)
14206 return TRUE;
14207
14208 /* Skip any input that hasn't attribute section.
14209 This enables to link object files without attribute section with
14210 any others. */
14211 if (bfd_get_section_by_name (ibfd, sec_name) == NULL)
14212 return TRUE;
14213
14214 if (!elf_known_obj_attributes_proc (obfd)[0].i)
14215 {
14216 /* This is the first object. Copy the attributes. */
14217 _bfd_elf_copy_obj_attributes (ibfd, obfd);
14218
14219 out_attr = elf_known_obj_attributes_proc (obfd);
14220
14221 /* Use the Tag_null value to indicate the attributes have been
14222 initialized. */
14223 out_attr[0].i = 1;
14224
14225 /* We do not output objects with Tag_MPextension_use_legacy - we move
14226 the attribute's value to Tag_MPextension_use. */
14227 if (out_attr[Tag_MPextension_use_legacy].i != 0)
14228 {
14229 if (out_attr[Tag_MPextension_use].i != 0
14230 && out_attr[Tag_MPextension_use_legacy].i
14231 != out_attr[Tag_MPextension_use].i)
14232 {
14233 _bfd_error_handler
14234 (_("Error: %pB has both the current and legacy "
14235 "Tag_MPextension_use attributes"), ibfd);
14236 result = FALSE;
14237 }
14238
14239 out_attr[Tag_MPextension_use] =
14240 out_attr[Tag_MPextension_use_legacy];
14241 out_attr[Tag_MPextension_use_legacy].type = 0;
14242 out_attr[Tag_MPextension_use_legacy].i = 0;
14243 }
14244
14245 return result;
14246 }
14247
14248 in_attr = elf_known_obj_attributes_proc (ibfd);
14249 out_attr = elf_known_obj_attributes_proc (obfd);
14250 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
14251 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
14252 {
14253 /* Ignore mismatches if the object doesn't use floating point or is
14254 floating point ABI independent. */
14255 if (out_attr[Tag_ABI_FP_number_model].i == AEABI_FP_number_model_none
14256 || (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
14257 && out_attr[Tag_ABI_VFP_args].i == AEABI_VFP_args_compatible))
14258 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
14259 else if (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
14260 && in_attr[Tag_ABI_VFP_args].i != AEABI_VFP_args_compatible)
14261 {
14262 _bfd_error_handler
14263 (_("error: %pB uses VFP register arguments, %pB does not"),
14264 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
14265 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
14266 result = FALSE;
14267 }
14268 }
14269
14270 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
14271 {
14272 /* Merge this attribute with existing attributes. */
14273 switch (i)
14274 {
14275 case Tag_CPU_raw_name:
14276 case Tag_CPU_name:
14277 /* These are merged after Tag_CPU_arch. */
14278 break;
14279
14280 case Tag_ABI_optimization_goals:
14281 case Tag_ABI_FP_optimization_goals:
14282 /* Use the first value seen. */
14283 break;
14284
14285 case Tag_CPU_arch:
14286 {
14287 int secondary_compat = -1, secondary_compat_out = -1;
14288 unsigned int saved_out_attr = out_attr[i].i;
14289 int arch_attr;
14290 static const char *name_table[] =
14291 {
14292 /* These aren't real CPU names, but we can't guess
14293 that from the architecture version alone. */
14294 "Pre v4",
14295 "ARM v4",
14296 "ARM v4T",
14297 "ARM v5T",
14298 "ARM v5TE",
14299 "ARM v5TEJ",
14300 "ARM v6",
14301 "ARM v6KZ",
14302 "ARM v6T2",
14303 "ARM v6K",
14304 "ARM v7",
14305 "ARM v6-M",
14306 "ARM v6S-M",
14307 "ARM v8",
14308 "",
14309 "ARM v8-M.baseline",
14310 "ARM v8-M.mainline",
14311 };
14312
14313 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
14314 secondary_compat = get_secondary_compatible_arch (ibfd);
14315 secondary_compat_out = get_secondary_compatible_arch (obfd);
14316 arch_attr = tag_cpu_arch_combine (ibfd, out_attr[i].i,
14317 &secondary_compat_out,
14318 in_attr[i].i,
14319 secondary_compat);
14320
14321 /* Return with error if failed to merge. */
14322 if (arch_attr == -1)
14323 return FALSE;
14324
14325 out_attr[i].i = arch_attr;
14326
14327 set_secondary_compatible_arch (obfd, secondary_compat_out);
14328
14329 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
14330 if (out_attr[i].i == saved_out_attr)
14331 ; /* Leave the names alone. */
14332 else if (out_attr[i].i == in_attr[i].i)
14333 {
14334 /* The output architecture has been changed to match the
14335 input architecture. Use the input names. */
14336 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
14337 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
14338 : NULL;
14339 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
14340 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
14341 : NULL;
14342 }
14343 else
14344 {
14345 out_attr[Tag_CPU_name].s = NULL;
14346 out_attr[Tag_CPU_raw_name].s = NULL;
14347 }
14348
14349 /* If we still don't have a value for Tag_CPU_name,
14350 make one up now. Tag_CPU_raw_name remains blank. */
14351 if (out_attr[Tag_CPU_name].s == NULL
14352 && out_attr[i].i < ARRAY_SIZE (name_table))
14353 out_attr[Tag_CPU_name].s =
14354 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
14355 }
14356 break;
14357
14358 case Tag_ARM_ISA_use:
14359 case Tag_THUMB_ISA_use:
14360 case Tag_WMMX_arch:
14361 case Tag_Advanced_SIMD_arch:
14362 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
14363 case Tag_ABI_FP_rounding:
14364 case Tag_ABI_FP_exceptions:
14365 case Tag_ABI_FP_user_exceptions:
14366 case Tag_ABI_FP_number_model:
14367 case Tag_FP_HP_extension:
14368 case Tag_CPU_unaligned_access:
14369 case Tag_T2EE_use:
14370 case Tag_MPextension_use:
14371 /* Use the largest value specified. */
14372 if (in_attr[i].i > out_attr[i].i)
14373 out_attr[i].i = in_attr[i].i;
14374 break;
14375
14376 case Tag_ABI_align_preserved:
14377 case Tag_ABI_PCS_RO_data:
14378 /* Use the smallest value specified. */
14379 if (in_attr[i].i < out_attr[i].i)
14380 out_attr[i].i = in_attr[i].i;
14381 break;
14382
14383 case Tag_ABI_align_needed:
14384 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
14385 && (in_attr[Tag_ABI_align_preserved].i == 0
14386 || out_attr[Tag_ABI_align_preserved].i == 0))
14387 {
14388 /* This error message should be enabled once all non-conformant
14389 binaries in the toolchain have had the attributes set
14390 properly.
14391 _bfd_error_handler
14392 (_("error: %pB: 8-byte data alignment conflicts with %pB"),
14393 obfd, ibfd);
14394 result = FALSE; */
14395 }
14396 /* Fall through. */
14397 case Tag_ABI_FP_denormal:
14398 case Tag_ABI_PCS_GOT_use:
14399 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
14400 value if greater than 2 (for future-proofing). */
14401 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
14402 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
14403 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
14404 out_attr[i].i = in_attr[i].i;
14405 break;
14406
14407 case Tag_Virtualization_use:
14408 /* The virtualization tag effectively stores two bits of
14409 information: the intended use of TrustZone (in bit 0), and the
14410 intended use of Virtualization (in bit 1). */
14411 if (out_attr[i].i == 0)
14412 out_attr[i].i = in_attr[i].i;
14413 else if (in_attr[i].i != 0
14414 && in_attr[i].i != out_attr[i].i)
14415 {
14416 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
14417 out_attr[i].i = 3;
14418 else
14419 {
14420 _bfd_error_handler
14421 (_("error: %pB: unable to merge virtualization attributes "
14422 "with %pB"),
14423 obfd, ibfd);
14424 result = FALSE;
14425 }
14426 }
14427 break;
14428
14429 case Tag_CPU_arch_profile:
14430 if (out_attr[i].i != in_attr[i].i)
14431 {
14432 /* 0 will merge with anything.
14433 'A' and 'S' merge to 'A'.
14434 'R' and 'S' merge to 'R'.
14435 'M' and 'A|R|S' is an error. */
14436 if (out_attr[i].i == 0
14437 || (out_attr[i].i == 'S'
14438 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
14439 out_attr[i].i = in_attr[i].i;
14440 else if (in_attr[i].i == 0
14441 || (in_attr[i].i == 'S'
14442 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
14443 ; /* Do nothing. */
14444 else
14445 {
14446 _bfd_error_handler
14447 (_("error: %pB: conflicting architecture profiles %c/%c"),
14448 ibfd,
14449 in_attr[i].i ? in_attr[i].i : '0',
14450 out_attr[i].i ? out_attr[i].i : '0');
14451 result = FALSE;
14452 }
14453 }
14454 break;
14455
14456 case Tag_DSP_extension:
14457 /* No need to change output value if any of:
14458 - pre (<=) ARMv5T input architecture (do not have DSP)
14459 - M input profile not ARMv7E-M and do not have DSP. */
14460 if (in_attr[Tag_CPU_arch].i <= 3
14461 || (in_attr[Tag_CPU_arch_profile].i == 'M'
14462 && in_attr[Tag_CPU_arch].i != 13
14463 && in_attr[i].i == 0))
14464 ; /* Do nothing. */
14465 /* Output value should be 0 if DSP part of architecture, ie.
14466 - post (>=) ARMv5te architecture output
14467 - A, R or S profile output or ARMv7E-M output architecture. */
14468 else if (out_attr[Tag_CPU_arch].i >= 4
14469 && (out_attr[Tag_CPU_arch_profile].i == 'A'
14470 || out_attr[Tag_CPU_arch_profile].i == 'R'
14471 || out_attr[Tag_CPU_arch_profile].i == 'S'
14472 || out_attr[Tag_CPU_arch].i == 13))
14473 out_attr[i].i = 0;
14474 /* Otherwise, DSP instructions are added and not part of output
14475 architecture. */
14476 else
14477 out_attr[i].i = 1;
14478 break;
14479
14480 case Tag_FP_arch:
14481 {
14482 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
14483 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
14484 when it's 0. It might mean absence of FP hardware if
14485 Tag_FP_arch is zero. */
14486
14487 #define VFP_VERSION_COUNT 9
14488 static const struct
14489 {
14490 int ver;
14491 int regs;
14492 } vfp_versions[VFP_VERSION_COUNT] =
14493 {
14494 {0, 0},
14495 {1, 16},
14496 {2, 16},
14497 {3, 32},
14498 {3, 16},
14499 {4, 32},
14500 {4, 16},
14501 {8, 32},
14502 {8, 16}
14503 };
14504 int ver;
14505 int regs;
14506 int newval;
14507
14508 /* If the output has no requirement about FP hardware,
14509 follow the requirement of the input. */
14510 if (out_attr[i].i == 0)
14511 {
14512 /* This assert is still reasonable, we shouldn't
14513 produce the suspicious build attribute
14514 combination (See below for in_attr). */
14515 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
14516 out_attr[i].i = in_attr[i].i;
14517 out_attr[Tag_ABI_HardFP_use].i
14518 = in_attr[Tag_ABI_HardFP_use].i;
14519 break;
14520 }
14521 /* If the input has no requirement about FP hardware, do
14522 nothing. */
14523 else if (in_attr[i].i == 0)
14524 {
14525 /* We used to assert that Tag_ABI_HardFP_use was
14526 zero here, but we should never assert when
14527 consuming an object file that has suspicious
14528 build attributes. The single precision variant
14529 of 'no FP architecture' is still 'no FP
14530 architecture', so we just ignore the tag in this
14531 case. */
14532 break;
14533 }
14534
14535 /* Both the input and the output have nonzero Tag_FP_arch.
14536 So Tag_ABI_HardFP_use is implied by Tag_FP_arch when it's zero. */
14537
14538 /* If both the input and the output have zero Tag_ABI_HardFP_use,
14539 do nothing. */
14540 if (in_attr[Tag_ABI_HardFP_use].i == 0
14541 && out_attr[Tag_ABI_HardFP_use].i == 0)
14542 ;
14543 /* If the input and the output have different Tag_ABI_HardFP_use,
14544 the combination of them is 0 (implied by Tag_FP_arch). */
14545 else if (in_attr[Tag_ABI_HardFP_use].i
14546 != out_attr[Tag_ABI_HardFP_use].i)
14547 out_attr[Tag_ABI_HardFP_use].i = 0;
14548
14549 /* Now we can handle Tag_FP_arch. */
14550
14551 /* Values of VFP_VERSION_COUNT or more aren't defined, so just
14552 pick the biggest. */
14553 if (in_attr[i].i >= VFP_VERSION_COUNT
14554 && in_attr[i].i > out_attr[i].i)
14555 {
14556 out_attr[i] = in_attr[i];
14557 break;
14558 }
14559 /* The output uses the superset of input features
14560 (ISA version) and registers. */
14561 ver = vfp_versions[in_attr[i].i].ver;
14562 if (ver < vfp_versions[out_attr[i].i].ver)
14563 ver = vfp_versions[out_attr[i].i].ver;
14564 regs = vfp_versions[in_attr[i].i].regs;
14565 if (regs < vfp_versions[out_attr[i].i].regs)
14566 regs = vfp_versions[out_attr[i].i].regs;
14567 /* This assumes all possible supersets are also a valid
14568 options. */
14569 for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--)
14570 {
14571 if (regs == vfp_versions[newval].regs
14572 && ver == vfp_versions[newval].ver)
14573 break;
14574 }
14575 out_attr[i].i = newval;
14576 }
14577 break;
14578 case Tag_PCS_config:
14579 if (out_attr[i].i == 0)
14580 out_attr[i].i = in_attr[i].i;
14581 else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i)
14582 {
14583 /* It's sometimes ok to mix different configs, so this is only
14584 a warning. */
14585 _bfd_error_handler
14586 (_("warning: %pB: conflicting platform configuration"), ibfd);
14587 }
14588 break;
14589 case Tag_ABI_PCS_R9_use:
14590 if (in_attr[i].i != out_attr[i].i
14591 && out_attr[i].i != AEABI_R9_unused
14592 && in_attr[i].i != AEABI_R9_unused)
14593 {
14594 _bfd_error_handler
14595 (_("error: %pB: conflicting use of R9"), ibfd);
14596 result = FALSE;
14597 }
14598 if (out_attr[i].i == AEABI_R9_unused)
14599 out_attr[i].i = in_attr[i].i;
14600 break;
14601 case Tag_ABI_PCS_RW_data:
14602 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
14603 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
14604 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
14605 {
14606 _bfd_error_handler
14607 (_("error: %pB: SB relative addressing conflicts with use of R9"),
14608 ibfd);
14609 result = FALSE;
14610 }
14611 /* Use the smallest value specified. */
14612 if (in_attr[i].i < out_attr[i].i)
14613 out_attr[i].i = in_attr[i].i;
14614 break;
14615 case Tag_ABI_PCS_wchar_t:
14616 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
14617 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
14618 {
14619 _bfd_error_handler
14620 (_("warning: %pB uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
14621 ibfd, in_attr[i].i, out_attr[i].i);
14622 }
14623 else if (in_attr[i].i && !out_attr[i].i)
14624 out_attr[i].i = in_attr[i].i;
14625 break;
14626 case Tag_ABI_enum_size:
14627 if (in_attr[i].i != AEABI_enum_unused)
14628 {
14629 if (out_attr[i].i == AEABI_enum_unused
14630 || out_attr[i].i == AEABI_enum_forced_wide)
14631 {
14632 /* The existing object is compatible with anything.
14633 Use whatever requirements the new object has. */
14634 out_attr[i].i = in_attr[i].i;
14635 }
14636 else if (in_attr[i].i != AEABI_enum_forced_wide
14637 && out_attr[i].i != in_attr[i].i
14638 && !elf_arm_tdata (obfd)->no_enum_size_warning)
14639 {
14640 static const char *aeabi_enum_names[] =
14641 { "", "variable-size", "32-bit", "" };
14642 const char *in_name =
14643 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
14644 ? aeabi_enum_names[in_attr[i].i]
14645 : "<unknown>";
14646 const char *out_name =
14647 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
14648 ? aeabi_enum_names[out_attr[i].i]
14649 : "<unknown>";
14650 _bfd_error_handler
14651 (_("warning: %pB uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
14652 ibfd, in_name, out_name);
14653 }
14654 }
14655 break;
14656 case Tag_ABI_VFP_args:
14657 /* Aready done. */
14658 break;
14659 case Tag_ABI_WMMX_args:
14660 if (in_attr[i].i != out_attr[i].i)
14661 {
14662 _bfd_error_handler
14663 (_("error: %pB uses iWMMXt register arguments, %pB does not"),
14664 ibfd, obfd);
14665 result = FALSE;
14666 }
14667 break;
14668 case Tag_compatibility:
14669 /* Merged in target-independent code. */
14670 break;
14671 case Tag_ABI_HardFP_use:
14672 /* This is handled along with Tag_FP_arch. */
14673 break;
14674 case Tag_ABI_FP_16bit_format:
14675 if (in_attr[i].i != 0 && out_attr[i].i != 0)
14676 {
14677 if (in_attr[i].i != out_attr[i].i)
14678 {
14679 _bfd_error_handler
14680 (_("error: fp16 format mismatch between %pB and %pB"),
14681 ibfd, obfd);
14682 result = FALSE;
14683 }
14684 }
14685 if (in_attr[i].i != 0)
14686 out_attr[i].i = in_attr[i].i;
14687 break;
14688
14689 case Tag_DIV_use:
14690 /* A value of zero on input means that the divide instruction may
14691 be used if available in the base architecture as specified via
14692 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that
14693 the user did not want divide instructions. A value of 2
14694 explicitly means that divide instructions were allowed in ARM
14695 and Thumb state. */
14696 if (in_attr[i].i == out_attr[i].i)
14697 /* Do nothing. */ ;
14698 else if (elf32_arm_attributes_forbid_div (in_attr)
14699 && !elf32_arm_attributes_accept_div (out_attr))
14700 out_attr[i].i = 1;
14701 else if (elf32_arm_attributes_forbid_div (out_attr)
14702 && elf32_arm_attributes_accept_div (in_attr))
14703 out_attr[i].i = in_attr[i].i;
14704 else if (in_attr[i].i == 2)
14705 out_attr[i].i = in_attr[i].i;
14706 break;
14707
14708 case Tag_MPextension_use_legacy:
14709 /* We don't output objects with Tag_MPextension_use_legacy - we
14710 move the value to Tag_MPextension_use. */
14711 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
14712 {
14713 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
14714 {
14715 _bfd_error_handler
14716 (_("%pB has both the current and legacy "
14717 "Tag_MPextension_use attributes"),
14718 ibfd);
14719 result = FALSE;
14720 }
14721 }
14722
14723 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
14724 out_attr[Tag_MPextension_use] = in_attr[i];
14725
14726 break;
14727
14728 case Tag_nodefaults:
14729 /* This tag is set if it exists, but the value is unused (and is
14730 typically zero). We don't actually need to do anything here -
14731 the merge happens automatically when the type flags are merged
14732 below. */
14733 break;
14734 case Tag_also_compatible_with:
14735 /* Already done in Tag_CPU_arch. */
14736 break;
14737 case Tag_conformance:
14738 /* Keep the attribute if it matches. Throw it away otherwise.
14739 No attribute means no claim to conform. */
14740 if (!in_attr[i].s || !out_attr[i].s
14741 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
14742 out_attr[i].s = NULL;
14743 break;
14744
14745 default:
14746 result
14747 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
14748 }
14749
14750 /* If out_attr was copied from in_attr then it won't have a type yet. */
14751 if (in_attr[i].type && !out_attr[i].type)
14752 out_attr[i].type = in_attr[i].type;
14753 }
14754
14755 /* Merge Tag_compatibility attributes and any common GNU ones. */
14756 if (!_bfd_elf_merge_object_attributes (ibfd, info))
14757 return FALSE;
14758
14759 /* Check for any attributes not known on ARM. */
14760 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
14761
14762 return result;
14763 }
14764
14765
14766 /* Return TRUE if the two EABI versions are incompatible. */
14767
14768 static bfd_boolean
14769 elf32_arm_versions_compatible (unsigned iver, unsigned over)
14770 {
14771 /* v4 and v5 are the same spec before and after it was released,
14772 so allow mixing them. */
14773 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
14774 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
14775 return TRUE;
14776
14777 return (iver == over);
14778 }
14779
14780 /* Merge backend specific data from an object file to the output
14781 object file when linking. */
14782
14783 static bfd_boolean
14784 elf32_arm_merge_private_bfd_data (bfd *, struct bfd_link_info *);
14785
14786 /* Display the flags field. */
14787
14788 static bfd_boolean
14789 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
14790 {
14791 FILE * file = (FILE *) ptr;
14792 unsigned long flags;
14793
14794 BFD_ASSERT (abfd != NULL && ptr != NULL);
14795
14796 /* Print normal ELF private data. */
14797 _bfd_elf_print_private_bfd_data (abfd, ptr);
14798
14799 flags = elf_elfheader (abfd)->e_flags;
14800 /* Ignore init flag - it may not be set, despite the flags field
14801 containing valid data. */
14802
14803 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14804
14805 switch (EF_ARM_EABI_VERSION (flags))
14806 {
14807 case EF_ARM_EABI_UNKNOWN:
14808 /* The following flag bits are GNU extensions and not part of the
14809 official ARM ELF extended ABI. Hence they are only decoded if
14810 the EABI version is not set. */
14811 if (flags & EF_ARM_INTERWORK)
14812 fprintf (file, _(" [interworking enabled]"));
14813
14814 if (flags & EF_ARM_APCS_26)
14815 fprintf (file, " [APCS-26]");
14816 else
14817 fprintf (file, " [APCS-32]");
14818
14819 if (flags & EF_ARM_VFP_FLOAT)
14820 fprintf (file, _(" [VFP float format]"));
14821 else if (flags & EF_ARM_MAVERICK_FLOAT)
14822 fprintf (file, _(" [Maverick float format]"));
14823 else
14824 fprintf (file, _(" [FPA float format]"));
14825
14826 if (flags & EF_ARM_APCS_FLOAT)
14827 fprintf (file, _(" [floats passed in float registers]"));
14828
14829 if (flags & EF_ARM_PIC)
14830 fprintf (file, _(" [position independent]"));
14831
14832 if (flags & EF_ARM_NEW_ABI)
14833 fprintf (file, _(" [new ABI]"));
14834
14835 if (flags & EF_ARM_OLD_ABI)
14836 fprintf (file, _(" [old ABI]"));
14837
14838 if (flags & EF_ARM_SOFT_FLOAT)
14839 fprintf (file, _(" [software FP]"));
14840
14841 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
14842 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
14843 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
14844 | EF_ARM_MAVERICK_FLOAT);
14845 break;
14846
14847 case EF_ARM_EABI_VER1:
14848 fprintf (file, _(" [Version1 EABI]"));
14849
14850 if (flags & EF_ARM_SYMSARESORTED)
14851 fprintf (file, _(" [sorted symbol table]"));
14852 else
14853 fprintf (file, _(" [unsorted symbol table]"));
14854
14855 flags &= ~ EF_ARM_SYMSARESORTED;
14856 break;
14857
14858 case EF_ARM_EABI_VER2:
14859 fprintf (file, _(" [Version2 EABI]"));
14860
14861 if (flags & EF_ARM_SYMSARESORTED)
14862 fprintf (file, _(" [sorted symbol table]"));
14863 else
14864 fprintf (file, _(" [unsorted symbol table]"));
14865
14866 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
14867 fprintf (file, _(" [dynamic symbols use segment index]"));
14868
14869 if (flags & EF_ARM_MAPSYMSFIRST)
14870 fprintf (file, _(" [mapping symbols precede others]"));
14871
14872 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
14873 | EF_ARM_MAPSYMSFIRST);
14874 break;
14875
14876 case EF_ARM_EABI_VER3:
14877 fprintf (file, _(" [Version3 EABI]"));
14878 break;
14879
14880 case EF_ARM_EABI_VER4:
14881 fprintf (file, _(" [Version4 EABI]"));
14882 goto eabi;
14883
14884 case EF_ARM_EABI_VER5:
14885 fprintf (file, _(" [Version5 EABI]"));
14886
14887 if (flags & EF_ARM_ABI_FLOAT_SOFT)
14888 fprintf (file, _(" [soft-float ABI]"));
14889
14890 if (flags & EF_ARM_ABI_FLOAT_HARD)
14891 fprintf (file, _(" [hard-float ABI]"));
14892
14893 flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD);
14894
14895 eabi:
14896 if (flags & EF_ARM_BE8)
14897 fprintf (file, _(" [BE8]"));
14898
14899 if (flags & EF_ARM_LE8)
14900 fprintf (file, _(" [LE8]"));
14901
14902 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
14903 break;
14904
14905 default:
14906 fprintf (file, _(" <EABI version unrecognised>"));
14907 break;
14908 }
14909
14910 flags &= ~ EF_ARM_EABIMASK;
14911
14912 if (flags & EF_ARM_RELEXEC)
14913 fprintf (file, _(" [relocatable executable]"));
14914
14915 if (flags & EF_ARM_PIC)
14916 fprintf (file, _(" [position independent]"));
14917
14918 if (elf_elfheader (abfd)->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC)
14919 fprintf (file, _(" [FDPIC ABI supplement]"));
14920
14921 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_PIC);
14922
14923 if (flags)
14924 fprintf (file, _("<Unrecognised flag bits set>"));
14925
14926 fputc ('\n', file);
14927
14928 return TRUE;
14929 }
14930
14931 static int
14932 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
14933 {
14934 switch (ELF_ST_TYPE (elf_sym->st_info))
14935 {
14936 case STT_ARM_TFUNC:
14937 return ELF_ST_TYPE (elf_sym->st_info);
14938
14939 case STT_ARM_16BIT:
14940 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
14941 This allows us to distinguish between data used by Thumb instructions
14942 and non-data (which is probably code) inside Thumb regions of an
14943 executable. */
14944 if (type != STT_OBJECT && type != STT_TLS)
14945 return ELF_ST_TYPE (elf_sym->st_info);
14946 break;
14947
14948 default:
14949 break;
14950 }
14951
14952 return type;
14953 }
14954
14955 static asection *
14956 elf32_arm_gc_mark_hook (asection *sec,
14957 struct bfd_link_info *info,
14958 Elf_Internal_Rela *rel,
14959 struct elf_link_hash_entry *h,
14960 Elf_Internal_Sym *sym)
14961 {
14962 if (h != NULL)
14963 switch (ELF32_R_TYPE (rel->r_info))
14964 {
14965 case R_ARM_GNU_VTINHERIT:
14966 case R_ARM_GNU_VTENTRY:
14967 return NULL;
14968 }
14969
14970 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
14971 }
14972
14973 /* Look through the relocs for a section during the first phase. */
14974
14975 static bfd_boolean
14976 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
14977 asection *sec, const Elf_Internal_Rela *relocs)
14978 {
14979 Elf_Internal_Shdr *symtab_hdr;
14980 struct elf_link_hash_entry **sym_hashes;
14981 const Elf_Internal_Rela *rel;
14982 const Elf_Internal_Rela *rel_end;
14983 bfd *dynobj;
14984 asection *sreloc;
14985 struct elf32_arm_link_hash_table *htab;
14986 bfd_boolean call_reloc_p;
14987 bfd_boolean may_become_dynamic_p;
14988 bfd_boolean may_need_local_target_p;
14989 unsigned long nsyms;
14990
14991 if (bfd_link_relocatable (info))
14992 return TRUE;
14993
14994 BFD_ASSERT (is_arm_elf (abfd));
14995
14996 htab = elf32_arm_hash_table (info);
14997 if (htab == NULL)
14998 return FALSE;
14999
15000 sreloc = NULL;
15001
15002 /* Create dynamic sections for relocatable executables so that we can
15003 copy relocations. */
15004 if (htab->root.is_relocatable_executable
15005 && ! htab->root.dynamic_sections_created)
15006 {
15007 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
15008 return FALSE;
15009 }
15010
15011 if (htab->root.dynobj == NULL)
15012 htab->root.dynobj = abfd;
15013 if (!create_ifunc_sections (info))
15014 return FALSE;
15015
15016 dynobj = htab->root.dynobj;
15017
15018 symtab_hdr = & elf_symtab_hdr (abfd);
15019 sym_hashes = elf_sym_hashes (abfd);
15020 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
15021
15022 rel_end = relocs + sec->reloc_count;
15023 for (rel = relocs; rel < rel_end; rel++)
15024 {
15025 Elf_Internal_Sym *isym;
15026 struct elf_link_hash_entry *h;
15027 struct elf32_arm_link_hash_entry *eh;
15028 unsigned int r_symndx;
15029 int r_type;
15030
15031 r_symndx = ELF32_R_SYM (rel->r_info);
15032 r_type = ELF32_R_TYPE (rel->r_info);
15033 r_type = arm_real_reloc_type (htab, r_type);
15034
15035 if (r_symndx >= nsyms
15036 /* PR 9934: It is possible to have relocations that do not
15037 refer to symbols, thus it is also possible to have an
15038 object file containing relocations but no symbol table. */
15039 && (r_symndx > STN_UNDEF || nsyms > 0))
15040 {
15041 _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd,
15042 r_symndx);
15043 return FALSE;
15044 }
15045
15046 h = NULL;
15047 isym = NULL;
15048 if (nsyms > 0)
15049 {
15050 if (r_symndx < symtab_hdr->sh_info)
15051 {
15052 /* A local symbol. */
15053 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
15054 abfd, r_symndx);
15055 if (isym == NULL)
15056 return FALSE;
15057 }
15058 else
15059 {
15060 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
15061 while (h->root.type == bfd_link_hash_indirect
15062 || h->root.type == bfd_link_hash_warning)
15063 h = (struct elf_link_hash_entry *) h->root.u.i.link;
15064 }
15065 }
15066
15067 eh = (struct elf32_arm_link_hash_entry *) h;
15068
15069 call_reloc_p = FALSE;
15070 may_become_dynamic_p = FALSE;
15071 may_need_local_target_p = FALSE;
15072
15073 /* Could be done earlier, if h were already available. */
15074 r_type = elf32_arm_tls_transition (info, r_type, h);
15075 switch (r_type)
15076 {
15077 case R_ARM_GOTOFFFUNCDESC:
15078 {
15079 if (h == NULL)
15080 {
15081 if (!elf32_arm_allocate_local_sym_info (abfd))
15082 return FALSE;
15083 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].gotofffuncdesc_cnt += 1;
15084 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].funcdesc_offset = -1;
15085 }
15086 else
15087 {
15088 eh->fdpic_cnts.gotofffuncdesc_cnt++;
15089 }
15090 }
15091 break;
15092
15093 case R_ARM_GOTFUNCDESC:
15094 {
15095 if (h == NULL)
15096 {
15097 /* Such a relocation is not supposed to be generated
15098 by gcc on a static function. */
15099 /* Anyway if needed it could be handled. */
15100 abort();
15101 }
15102 else
15103 {
15104 eh->fdpic_cnts.gotfuncdesc_cnt++;
15105 }
15106 }
15107 break;
15108
15109 case R_ARM_FUNCDESC:
15110 {
15111 if (h == NULL)
15112 {
15113 if (!elf32_arm_allocate_local_sym_info (abfd))
15114 return FALSE;
15115 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].funcdesc_cnt += 1;
15116 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].funcdesc_offset = -1;
15117 }
15118 else
15119 {
15120 eh->fdpic_cnts.funcdesc_cnt++;
15121 }
15122 }
15123 break;
15124
15125 case R_ARM_GOT32:
15126 case R_ARM_GOT_PREL:
15127 case R_ARM_TLS_GD32:
15128 case R_ARM_TLS_GD32_FDPIC:
15129 case R_ARM_TLS_IE32:
15130 case R_ARM_TLS_IE32_FDPIC:
15131 case R_ARM_TLS_GOTDESC:
15132 case R_ARM_TLS_DESCSEQ:
15133 case R_ARM_THM_TLS_DESCSEQ:
15134 case R_ARM_TLS_CALL:
15135 case R_ARM_THM_TLS_CALL:
15136 /* This symbol requires a global offset table entry. */
15137 {
15138 int tls_type, old_tls_type;
15139
15140 switch (r_type)
15141 {
15142 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
15143 case R_ARM_TLS_GD32_FDPIC: tls_type = GOT_TLS_GD; break;
15144
15145 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
15146 case R_ARM_TLS_IE32_FDPIC: tls_type = GOT_TLS_IE; break;
15147
15148 case R_ARM_TLS_GOTDESC:
15149 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
15150 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
15151 tls_type = GOT_TLS_GDESC; break;
15152
15153 default: tls_type = GOT_NORMAL; break;
15154 }
15155
15156 if (!bfd_link_executable (info) && (tls_type & GOT_TLS_IE))
15157 info->flags |= DF_STATIC_TLS;
15158
15159 if (h != NULL)
15160 {
15161 h->got.refcount++;
15162 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
15163 }
15164 else
15165 {
15166 /* This is a global offset table entry for a local symbol. */
15167 if (!elf32_arm_allocate_local_sym_info (abfd))
15168 return FALSE;
15169 elf_local_got_refcounts (abfd)[r_symndx] += 1;
15170 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
15171 }
15172
15173 /* If a variable is accessed with both tls methods, two
15174 slots may be created. */
15175 if (GOT_TLS_GD_ANY_P (old_tls_type)
15176 && GOT_TLS_GD_ANY_P (tls_type))
15177 tls_type |= old_tls_type;
15178
15179 /* We will already have issued an error message if there
15180 is a TLS/non-TLS mismatch, based on the symbol
15181 type. So just combine any TLS types needed. */
15182 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
15183 && tls_type != GOT_NORMAL)
15184 tls_type |= old_tls_type;
15185
15186 /* If the symbol is accessed in both IE and GDESC
15187 method, we're able to relax. Turn off the GDESC flag,
15188 without messing up with any other kind of tls types
15189 that may be involved. */
15190 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
15191 tls_type &= ~GOT_TLS_GDESC;
15192
15193 if (old_tls_type != tls_type)
15194 {
15195 if (h != NULL)
15196 elf32_arm_hash_entry (h)->tls_type = tls_type;
15197 else
15198 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
15199 }
15200 }
15201 /* Fall through. */
15202
15203 case R_ARM_TLS_LDM32:
15204 case R_ARM_TLS_LDM32_FDPIC:
15205 if (r_type == R_ARM_TLS_LDM32 || r_type == R_ARM_TLS_LDM32_FDPIC)
15206 htab->tls_ldm_got.refcount++;
15207 /* Fall through. */
15208
15209 case R_ARM_GOTOFF32:
15210 case R_ARM_GOTPC:
15211 if (htab->root.sgot == NULL
15212 && !create_got_section (htab->root.dynobj, info))
15213 return FALSE;
15214 break;
15215
15216 case R_ARM_PC24:
15217 case R_ARM_PLT32:
15218 case R_ARM_CALL:
15219 case R_ARM_JUMP24:
15220 case R_ARM_PREL31:
15221 case R_ARM_THM_CALL:
15222 case R_ARM_THM_JUMP24:
15223 case R_ARM_THM_JUMP19:
15224 call_reloc_p = TRUE;
15225 may_need_local_target_p = TRUE;
15226 break;
15227
15228 case R_ARM_ABS12:
15229 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
15230 ldr __GOTT_INDEX__ offsets. */
15231 if (!htab->vxworks_p)
15232 {
15233 may_need_local_target_p = TRUE;
15234 break;
15235 }
15236 else goto jump_over;
15237
15238 /* Fall through. */
15239
15240 case R_ARM_MOVW_ABS_NC:
15241 case R_ARM_MOVT_ABS:
15242 case R_ARM_THM_MOVW_ABS_NC:
15243 case R_ARM_THM_MOVT_ABS:
15244 if (bfd_link_pic (info))
15245 {
15246 _bfd_error_handler
15247 (_("%pB: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
15248 abfd, elf32_arm_howto_table_1[r_type].name,
15249 (h) ? h->root.root.string : "a local symbol");
15250 bfd_set_error (bfd_error_bad_value);
15251 return FALSE;
15252 }
15253
15254 /* Fall through. */
15255 case R_ARM_ABS32:
15256 case R_ARM_ABS32_NOI:
15257 jump_over:
15258 if (h != NULL && bfd_link_executable (info))
15259 {
15260 h->pointer_equality_needed = 1;
15261 }
15262 /* Fall through. */
15263 case R_ARM_REL32:
15264 case R_ARM_REL32_NOI:
15265 case R_ARM_MOVW_PREL_NC:
15266 case R_ARM_MOVT_PREL:
15267 case R_ARM_THM_MOVW_PREL_NC:
15268 case R_ARM_THM_MOVT_PREL:
15269
15270 /* Should the interworking branches be listed here? */
15271 if ((bfd_link_pic (info) || htab->root.is_relocatable_executable
15272 || htab->fdpic_p)
15273 && (sec->flags & SEC_ALLOC) != 0)
15274 {
15275 if (h == NULL
15276 && elf32_arm_howto_from_type (r_type)->pc_relative)
15277 {
15278 /* In shared libraries and relocatable executables,
15279 we treat local relative references as calls;
15280 see the related SYMBOL_CALLS_LOCAL code in
15281 allocate_dynrelocs. */
15282 call_reloc_p = TRUE;
15283 may_need_local_target_p = TRUE;
15284 }
15285 else
15286 /* We are creating a shared library or relocatable
15287 executable, and this is a reloc against a global symbol,
15288 or a non-PC-relative reloc against a local symbol.
15289 We may need to copy the reloc into the output. */
15290 may_become_dynamic_p = TRUE;
15291 }
15292 else
15293 may_need_local_target_p = TRUE;
15294 break;
15295
15296 /* This relocation describes the C++ object vtable hierarchy.
15297 Reconstruct it for later use during GC. */
15298 case R_ARM_GNU_VTINHERIT:
15299 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
15300 return FALSE;
15301 break;
15302
15303 /* This relocation describes which C++ vtable entries are actually
15304 used. Record for later use during GC. */
15305 case R_ARM_GNU_VTENTRY:
15306 BFD_ASSERT (h != NULL);
15307 if (h != NULL
15308 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
15309 return FALSE;
15310 break;
15311 }
15312
15313 if (h != NULL)
15314 {
15315 if (call_reloc_p)
15316 /* We may need a .plt entry if the function this reloc
15317 refers to is in a different object, regardless of the
15318 symbol's type. We can't tell for sure yet, because
15319 something later might force the symbol local. */
15320 h->needs_plt = 1;
15321 else if (may_need_local_target_p)
15322 /* If this reloc is in a read-only section, we might
15323 need a copy reloc. We can't check reliably at this
15324 stage whether the section is read-only, as input
15325 sections have not yet been mapped to output sections.
15326 Tentatively set the flag for now, and correct in
15327 adjust_dynamic_symbol. */
15328 h->non_got_ref = 1;
15329 }
15330
15331 if (may_need_local_target_p
15332 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
15333 {
15334 union gotplt_union *root_plt;
15335 struct arm_plt_info *arm_plt;
15336 struct arm_local_iplt_info *local_iplt;
15337
15338 if (h != NULL)
15339 {
15340 root_plt = &h->plt;
15341 arm_plt = &eh->plt;
15342 }
15343 else
15344 {
15345 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
15346 if (local_iplt == NULL)
15347 return FALSE;
15348 root_plt = &local_iplt->root;
15349 arm_plt = &local_iplt->arm;
15350 }
15351
15352 /* If the symbol is a function that doesn't bind locally,
15353 this relocation will need a PLT entry. */
15354 if (root_plt->refcount != -1)
15355 root_plt->refcount += 1;
15356
15357 if (!call_reloc_p)
15358 arm_plt->noncall_refcount++;
15359
15360 /* It's too early to use htab->use_blx here, so we have to
15361 record possible blx references separately from
15362 relocs that definitely need a thumb stub. */
15363
15364 if (r_type == R_ARM_THM_CALL)
15365 arm_plt->maybe_thumb_refcount += 1;
15366
15367 if (r_type == R_ARM_THM_JUMP24
15368 || r_type == R_ARM_THM_JUMP19)
15369 arm_plt->thumb_refcount += 1;
15370 }
15371
15372 if (may_become_dynamic_p)
15373 {
15374 struct elf_dyn_relocs *p, **head;
15375
15376 /* Create a reloc section in dynobj. */
15377 if (sreloc == NULL)
15378 {
15379 sreloc = _bfd_elf_make_dynamic_reloc_section
15380 (sec, dynobj, 2, abfd, ! htab->use_rel);
15381
15382 if (sreloc == NULL)
15383 return FALSE;
15384
15385 /* BPABI objects never have dynamic relocations mapped. */
15386 if (htab->symbian_p)
15387 {
15388 flagword flags;
15389
15390 flags = bfd_get_section_flags (dynobj, sreloc);
15391 flags &= ~(SEC_LOAD | SEC_ALLOC);
15392 bfd_set_section_flags (dynobj, sreloc, flags);
15393 }
15394 }
15395
15396 /* If this is a global symbol, count the number of
15397 relocations we need for this symbol. */
15398 if (h != NULL)
15399 head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
15400 else
15401 {
15402 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
15403 if (head == NULL)
15404 return FALSE;
15405 }
15406
15407 p = *head;
15408 if (p == NULL || p->sec != sec)
15409 {
15410 bfd_size_type amt = sizeof *p;
15411
15412 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
15413 if (p == NULL)
15414 return FALSE;
15415 p->next = *head;
15416 *head = p;
15417 p->sec = sec;
15418 p->count = 0;
15419 p->pc_count = 0;
15420 }
15421
15422 if (elf32_arm_howto_from_type (r_type)->pc_relative)
15423 p->pc_count += 1;
15424 p->count += 1;
15425 if (h == NULL && htab->fdpic_p && !bfd_link_pic(info)
15426 && r_type != R_ARM_ABS32 && r_type != R_ARM_ABS32_NOI) {
15427 /* Here we only support R_ARM_ABS32 and R_ARM_ABS32_NOI
15428 that will become rofixup. */
15429 /* This is due to the fact that we suppose all will become rofixup. */
15430 fprintf(stderr, "FDPIC does not yet support %d relocation to become dynamic for executable\n", r_type);
15431 _bfd_error_handler
15432 (_("FDPIC does not yet support %s relocation"
15433 " to become dynamic for executable"),
15434 elf32_arm_howto_table_1[r_type].name);
15435 abort();
15436 }
15437 }
15438 }
15439
15440 return TRUE;
15441 }
15442
15443 static void
15444 elf32_arm_update_relocs (asection *o,
15445 struct bfd_elf_section_reloc_data *reldata)
15446 {
15447 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
15448 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
15449 const struct elf_backend_data *bed;
15450 _arm_elf_section_data *eado;
15451 struct bfd_link_order *p;
15452 bfd_byte *erela_head, *erela;
15453 Elf_Internal_Rela *irela_head, *irela;
15454 Elf_Internal_Shdr *rel_hdr;
15455 bfd *abfd;
15456 unsigned int count;
15457
15458 eado = get_arm_elf_section_data (o);
15459
15460 if (!eado || eado->elf.this_hdr.sh_type != SHT_ARM_EXIDX)
15461 return;
15462
15463 abfd = o->owner;
15464 bed = get_elf_backend_data (abfd);
15465 rel_hdr = reldata->hdr;
15466
15467 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
15468 {
15469 swap_in = bed->s->swap_reloc_in;
15470 swap_out = bed->s->swap_reloc_out;
15471 }
15472 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
15473 {
15474 swap_in = bed->s->swap_reloca_in;
15475 swap_out = bed->s->swap_reloca_out;
15476 }
15477 else
15478 abort ();
15479
15480 erela_head = rel_hdr->contents;
15481 irela_head = (Elf_Internal_Rela *) bfd_zmalloc
15482 ((NUM_SHDR_ENTRIES (rel_hdr) + 1) * sizeof (*irela_head));
15483
15484 erela = erela_head;
15485 irela = irela_head;
15486 count = 0;
15487
15488 for (p = o->map_head.link_order; p; p = p->next)
15489 {
15490 if (p->type == bfd_section_reloc_link_order
15491 || p->type == bfd_symbol_reloc_link_order)
15492 {
15493 (*swap_in) (abfd, erela, irela);
15494 erela += rel_hdr->sh_entsize;
15495 irela++;
15496 count++;
15497 }
15498 else if (p->type == bfd_indirect_link_order)
15499 {
15500 struct bfd_elf_section_reloc_data *input_reldata;
15501 arm_unwind_table_edit *edit_list, *edit_tail;
15502 _arm_elf_section_data *eadi;
15503 bfd_size_type j;
15504 bfd_vma offset;
15505 asection *i;
15506
15507 i = p->u.indirect.section;
15508
15509 eadi = get_arm_elf_section_data (i);
15510 edit_list = eadi->u.exidx.unwind_edit_list;
15511 edit_tail = eadi->u.exidx.unwind_edit_tail;
15512 offset = o->vma + i->output_offset;
15513
15514 if (eadi->elf.rel.hdr &&
15515 eadi->elf.rel.hdr->sh_entsize == rel_hdr->sh_entsize)
15516 input_reldata = &eadi->elf.rel;
15517 else if (eadi->elf.rela.hdr &&
15518 eadi->elf.rela.hdr->sh_entsize == rel_hdr->sh_entsize)
15519 input_reldata = &eadi->elf.rela;
15520 else
15521 abort ();
15522
15523 if (edit_list)
15524 {
15525 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
15526 {
15527 arm_unwind_table_edit *edit_node, *edit_next;
15528 bfd_vma bias;
15529 bfd_vma reloc_index;
15530
15531 (*swap_in) (abfd, erela, irela);
15532 reloc_index = (irela->r_offset - offset) / 8;
15533
15534 bias = 0;
15535 edit_node = edit_list;
15536 for (edit_next = edit_list;
15537 edit_next && edit_next->index <= reloc_index;
15538 edit_next = edit_node->next)
15539 {
15540 bias++;
15541 edit_node = edit_next;
15542 }
15543
15544 if (edit_node->type != DELETE_EXIDX_ENTRY
15545 || edit_node->index != reloc_index)
15546 {
15547 irela->r_offset -= bias * 8;
15548 irela++;
15549 count++;
15550 }
15551
15552 erela += rel_hdr->sh_entsize;
15553 }
15554
15555 if (edit_tail->type == INSERT_EXIDX_CANTUNWIND_AT_END)
15556 {
15557 /* New relocation entity. */
15558 asection *text_sec = edit_tail->linked_section;
15559 asection *text_out = text_sec->output_section;
15560 bfd_vma exidx_offset = offset + i->size - 8;
15561
15562 irela->r_addend = 0;
15563 irela->r_offset = exidx_offset;
15564 irela->r_info = ELF32_R_INFO
15565 (text_out->target_index, R_ARM_PREL31);
15566 irela++;
15567 count++;
15568 }
15569 }
15570 else
15571 {
15572 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
15573 {
15574 (*swap_in) (abfd, erela, irela);
15575 erela += rel_hdr->sh_entsize;
15576 irela++;
15577 }
15578
15579 count += NUM_SHDR_ENTRIES (input_reldata->hdr);
15580 }
15581 }
15582 }
15583
15584 reldata->count = count;
15585 rel_hdr->sh_size = count * rel_hdr->sh_entsize;
15586
15587 erela = erela_head;
15588 irela = irela_head;
15589 while (count > 0)
15590 {
15591 (*swap_out) (abfd, irela, erela);
15592 erela += rel_hdr->sh_entsize;
15593 irela++;
15594 count--;
15595 }
15596
15597 free (irela_head);
15598
15599 /* Hashes are no longer valid. */
15600 free (reldata->hashes);
15601 reldata->hashes = NULL;
15602 }
15603
15604 /* Unwinding tables are not referenced directly. This pass marks them as
15605 required if the corresponding code section is marked. Similarly, ARMv8-M
15606 secure entry functions can only be referenced by SG veneers which are
15607 created after the GC process. They need to be marked in case they reside in
15608 their own section (as would be the case if code was compiled with
15609 -ffunction-sections). */
15610
15611 static bfd_boolean
15612 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
15613 elf_gc_mark_hook_fn gc_mark_hook)
15614 {
15615 bfd *sub;
15616 Elf_Internal_Shdr **elf_shdrp;
15617 asection *cmse_sec;
15618 obj_attribute *out_attr;
15619 Elf_Internal_Shdr *symtab_hdr;
15620 unsigned i, sym_count, ext_start;
15621 const struct elf_backend_data *bed;
15622 struct elf_link_hash_entry **sym_hashes;
15623 struct elf32_arm_link_hash_entry *cmse_hash;
15624 bfd_boolean again, is_v8m, first_bfd_browse = TRUE;
15625
15626 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
15627
15628 out_attr = elf_known_obj_attributes_proc (info->output_bfd);
15629 is_v8m = out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
15630 && out_attr[Tag_CPU_arch_profile].i == 'M';
15631
15632 /* Marking EH data may cause additional code sections to be marked,
15633 requiring multiple passes. */
15634 again = TRUE;
15635 while (again)
15636 {
15637 again = FALSE;
15638 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
15639 {
15640 asection *o;
15641
15642 if (! is_arm_elf (sub))
15643 continue;
15644
15645 elf_shdrp = elf_elfsections (sub);
15646 for (o = sub->sections; o != NULL; o = o->next)
15647 {
15648 Elf_Internal_Shdr *hdr;
15649
15650 hdr = &elf_section_data (o)->this_hdr;
15651 if (hdr->sh_type == SHT_ARM_EXIDX
15652 && hdr->sh_link
15653 && hdr->sh_link < elf_numsections (sub)
15654 && !o->gc_mark
15655 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
15656 {
15657 again = TRUE;
15658 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
15659 return FALSE;
15660 }
15661 }
15662
15663 /* Mark section holding ARMv8-M secure entry functions. We mark all
15664 of them so no need for a second browsing. */
15665 if (is_v8m && first_bfd_browse)
15666 {
15667 sym_hashes = elf_sym_hashes (sub);
15668 bed = get_elf_backend_data (sub);
15669 symtab_hdr = &elf_tdata (sub)->symtab_hdr;
15670 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
15671 ext_start = symtab_hdr->sh_info;
15672
15673 /* Scan symbols. */
15674 for (i = ext_start; i < sym_count; i++)
15675 {
15676 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
15677
15678 /* Assume it is a special symbol. If not, cmse_scan will
15679 warn about it and user can do something about it. */
15680 if (ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
15681 {
15682 cmse_sec = cmse_hash->root.root.u.def.section;
15683 if (!cmse_sec->gc_mark
15684 && !_bfd_elf_gc_mark (info, cmse_sec, gc_mark_hook))
15685 return FALSE;
15686 }
15687 }
15688 }
15689 }
15690 first_bfd_browse = FALSE;
15691 }
15692
15693 return TRUE;
15694 }
15695
15696 /* Treat mapping symbols as special target symbols. */
15697
15698 static bfd_boolean
15699 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
15700 {
15701 return bfd_is_arm_special_symbol_name (sym->name,
15702 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
15703 }
15704
15705 /* This is a copy of elf_find_function() from elf.c except that
15706 ARM mapping symbols are ignored when looking for function names
15707 and STT_ARM_TFUNC is considered to a function type. */
15708
15709 static bfd_boolean
15710 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
15711 asymbol ** symbols,
15712 asection * section,
15713 bfd_vma offset,
15714 const char ** filename_ptr,
15715 const char ** functionname_ptr)
15716 {
15717 const char * filename = NULL;
15718 asymbol * func = NULL;
15719 bfd_vma low_func = 0;
15720 asymbol ** p;
15721
15722 for (p = symbols; *p != NULL; p++)
15723 {
15724 elf_symbol_type *q;
15725
15726 q = (elf_symbol_type *) *p;
15727
15728 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
15729 {
15730 default:
15731 break;
15732 case STT_FILE:
15733 filename = bfd_asymbol_name (&q->symbol);
15734 break;
15735 case STT_FUNC:
15736 case STT_ARM_TFUNC:
15737 case STT_NOTYPE:
15738 /* Skip mapping symbols. */
15739 if ((q->symbol.flags & BSF_LOCAL)
15740 && bfd_is_arm_special_symbol_name (q->symbol.name,
15741 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
15742 continue;
15743 /* Fall through. */
15744 if (bfd_get_section (&q->symbol) == section
15745 && q->symbol.value >= low_func
15746 && q->symbol.value <= offset)
15747 {
15748 func = (asymbol *) q;
15749 low_func = q->symbol.value;
15750 }
15751 break;
15752 }
15753 }
15754
15755 if (func == NULL)
15756 return FALSE;
15757
15758 if (filename_ptr)
15759 *filename_ptr = filename;
15760 if (functionname_ptr)
15761 *functionname_ptr = bfd_asymbol_name (func);
15762
15763 return TRUE;
15764 }
15765
15766
15767 /* Find the nearest line to a particular section and offset, for error
15768 reporting. This code is a duplicate of the code in elf.c, except
15769 that it uses arm_elf_find_function. */
15770
15771 static bfd_boolean
15772 elf32_arm_find_nearest_line (bfd * abfd,
15773 asymbol ** symbols,
15774 asection * section,
15775 bfd_vma offset,
15776 const char ** filename_ptr,
15777 const char ** functionname_ptr,
15778 unsigned int * line_ptr,
15779 unsigned int * discriminator_ptr)
15780 {
15781 bfd_boolean found = FALSE;
15782
15783 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
15784 filename_ptr, functionname_ptr,
15785 line_ptr, discriminator_ptr,
15786 dwarf_debug_sections, 0,
15787 & elf_tdata (abfd)->dwarf2_find_line_info))
15788 {
15789 if (!*functionname_ptr)
15790 arm_elf_find_function (abfd, symbols, section, offset,
15791 *filename_ptr ? NULL : filename_ptr,
15792 functionname_ptr);
15793
15794 return TRUE;
15795 }
15796
15797 /* Skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain
15798 uses DWARF1. */
15799
15800 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
15801 & found, filename_ptr,
15802 functionname_ptr, line_ptr,
15803 & elf_tdata (abfd)->line_info))
15804 return FALSE;
15805
15806 if (found && (*functionname_ptr || *line_ptr))
15807 return TRUE;
15808
15809 if (symbols == NULL)
15810 return FALSE;
15811
15812 if (! arm_elf_find_function (abfd, symbols, section, offset,
15813 filename_ptr, functionname_ptr))
15814 return FALSE;
15815
15816 *line_ptr = 0;
15817 return TRUE;
15818 }
15819
15820 static bfd_boolean
15821 elf32_arm_find_inliner_info (bfd * abfd,
15822 const char ** filename_ptr,
15823 const char ** functionname_ptr,
15824 unsigned int * line_ptr)
15825 {
15826 bfd_boolean found;
15827 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
15828 functionname_ptr, line_ptr,
15829 & elf_tdata (abfd)->dwarf2_find_line_info);
15830 return found;
15831 }
15832
15833 /* Find dynamic relocs for H that apply to read-only sections. */
15834
15835 static asection *
15836 readonly_dynrelocs (struct elf_link_hash_entry *h)
15837 {
15838 struct elf_dyn_relocs *p;
15839
15840 for (p = elf32_arm_hash_entry (h)->dyn_relocs; p != NULL; p = p->next)
15841 {
15842 asection *s = p->sec->output_section;
15843
15844 if (s != NULL && (s->flags & SEC_READONLY) != 0)
15845 return p->sec;
15846 }
15847 return NULL;
15848 }
15849
15850 /* Adjust a symbol defined by a dynamic object and referenced by a
15851 regular object. The current definition is in some section of the
15852 dynamic object, but we're not including those sections. We have to
15853 change the definition to something the rest of the link can
15854 understand. */
15855
15856 static bfd_boolean
15857 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
15858 struct elf_link_hash_entry * h)
15859 {
15860 bfd * dynobj;
15861 asection *s, *srel;
15862 struct elf32_arm_link_hash_entry * eh;
15863 struct elf32_arm_link_hash_table *globals;
15864
15865 globals = elf32_arm_hash_table (info);
15866 if (globals == NULL)
15867 return FALSE;
15868
15869 dynobj = elf_hash_table (info)->dynobj;
15870
15871 /* Make sure we know what is going on here. */
15872 BFD_ASSERT (dynobj != NULL
15873 && (h->needs_plt
15874 || h->type == STT_GNU_IFUNC
15875 || h->is_weakalias
15876 || (h->def_dynamic
15877 && h->ref_regular
15878 && !h->def_regular)));
15879
15880 eh = (struct elf32_arm_link_hash_entry *) h;
15881
15882 /* If this is a function, put it in the procedure linkage table. We
15883 will fill in the contents of the procedure linkage table later,
15884 when we know the address of the .got section. */
15885 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
15886 {
15887 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
15888 symbol binds locally. */
15889 if (h->plt.refcount <= 0
15890 || (h->type != STT_GNU_IFUNC
15891 && (SYMBOL_CALLS_LOCAL (info, h)
15892 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
15893 && h->root.type == bfd_link_hash_undefweak))))
15894 {
15895 /* This case can occur if we saw a PLT32 reloc in an input
15896 file, but the symbol was never referred to by a dynamic
15897 object, or if all references were garbage collected. In
15898 such a case, we don't actually need to build a procedure
15899 linkage table, and we can just do a PC24 reloc instead. */
15900 h->plt.offset = (bfd_vma) -1;
15901 eh->plt.thumb_refcount = 0;
15902 eh->plt.maybe_thumb_refcount = 0;
15903 eh->plt.noncall_refcount = 0;
15904 h->needs_plt = 0;
15905 }
15906
15907 return TRUE;
15908 }
15909 else
15910 {
15911 /* It's possible that we incorrectly decided a .plt reloc was
15912 needed for an R_ARM_PC24 or similar reloc to a non-function sym
15913 in check_relocs. We can't decide accurately between function
15914 and non-function syms in check-relocs; Objects loaded later in
15915 the link may change h->type. So fix it now. */
15916 h->plt.offset = (bfd_vma) -1;
15917 eh->plt.thumb_refcount = 0;
15918 eh->plt.maybe_thumb_refcount = 0;
15919 eh->plt.noncall_refcount = 0;
15920 }
15921
15922 /* If this is a weak symbol, and there is a real definition, the
15923 processor independent code will have arranged for us to see the
15924 real definition first, and we can just use the same value. */
15925 if (h->is_weakalias)
15926 {
15927 struct elf_link_hash_entry *def = weakdef (h);
15928 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
15929 h->root.u.def.section = def->root.u.def.section;
15930 h->root.u.def.value = def->root.u.def.value;
15931 return TRUE;
15932 }
15933
15934 /* If there are no non-GOT references, we do not need a copy
15935 relocation. */
15936 if (!h->non_got_ref)
15937 return TRUE;
15938
15939 /* This is a reference to a symbol defined by a dynamic object which
15940 is not a function. */
15941
15942 /* If we are creating a shared library, we must presume that the
15943 only references to the symbol are via the global offset table.
15944 For such cases we need not do anything here; the relocations will
15945 be handled correctly by relocate_section. Relocatable executables
15946 can reference data in shared objects directly, so we don't need to
15947 do anything here. */
15948 if (bfd_link_pic (info) || globals->root.is_relocatable_executable)
15949 return TRUE;
15950
15951 /* We must allocate the symbol in our .dynbss section, which will
15952 become part of the .bss section of the executable. There will be
15953 an entry for this symbol in the .dynsym section. The dynamic
15954 object will contain position independent code, so all references
15955 from the dynamic object to this symbol will go through the global
15956 offset table. The dynamic linker will use the .dynsym entry to
15957 determine the address it must put in the global offset table, so
15958 both the dynamic object and the regular object will refer to the
15959 same memory location for the variable. */
15960 /* If allowed, we must generate a R_ARM_COPY reloc to tell the dynamic
15961 linker to copy the initial value out of the dynamic object and into
15962 the runtime process image. We need to remember the offset into the
15963 .rel(a).bss section we are going to use. */
15964 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
15965 {
15966 s = globals->root.sdynrelro;
15967 srel = globals->root.sreldynrelro;
15968 }
15969 else
15970 {
15971 s = globals->root.sdynbss;
15972 srel = globals->root.srelbss;
15973 }
15974 if (info->nocopyreloc == 0
15975 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
15976 && h->size != 0)
15977 {
15978 elf32_arm_allocate_dynrelocs (info, srel, 1);
15979 h->needs_copy = 1;
15980 }
15981
15982 return _bfd_elf_adjust_dynamic_copy (info, h, s);
15983 }
15984
15985 /* Allocate space in .plt, .got and associated reloc sections for
15986 dynamic relocs. */
15987
15988 static bfd_boolean
15989 allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
15990 {
15991 struct bfd_link_info *info;
15992 struct elf32_arm_link_hash_table *htab;
15993 struct elf32_arm_link_hash_entry *eh;
15994 struct elf_dyn_relocs *p;
15995
15996 if (h->root.type == bfd_link_hash_indirect)
15997 return TRUE;
15998
15999 eh = (struct elf32_arm_link_hash_entry *) h;
16000
16001 info = (struct bfd_link_info *) inf;
16002 htab = elf32_arm_hash_table (info);
16003 if (htab == NULL)
16004 return FALSE;
16005
16006 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
16007 && h->plt.refcount > 0)
16008 {
16009 /* Make sure this symbol is output as a dynamic symbol.
16010 Undefined weak syms won't yet be marked as dynamic. */
16011 if (h->dynindx == -1 && !h->forced_local
16012 && h->root.type == bfd_link_hash_undefweak)
16013 {
16014 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16015 return FALSE;
16016 }
16017
16018 /* If the call in the PLT entry binds locally, the associated
16019 GOT entry should use an R_ARM_IRELATIVE relocation instead of
16020 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
16021 than the .plt section. */
16022 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
16023 {
16024 eh->is_iplt = 1;
16025 if (eh->plt.noncall_refcount == 0
16026 && SYMBOL_REFERENCES_LOCAL (info, h))
16027 /* All non-call references can be resolved directly.
16028 This means that they can (and in some cases, must)
16029 resolve directly to the run-time target, rather than
16030 to the PLT. That in turns means that any .got entry
16031 would be equal to the .igot.plt entry, so there's
16032 no point having both. */
16033 h->got.refcount = 0;
16034 }
16035
16036 if (bfd_link_pic (info)
16037 || eh->is_iplt
16038 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
16039 {
16040 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
16041
16042 /* If this symbol is not defined in a regular file, and we are
16043 not generating a shared library, then set the symbol to this
16044 location in the .plt. This is required to make function
16045 pointers compare as equal between the normal executable and
16046 the shared library. */
16047 if (! bfd_link_pic (info)
16048 && !h->def_regular)
16049 {
16050 h->root.u.def.section = htab->root.splt;
16051 h->root.u.def.value = h->plt.offset;
16052
16053 /* Make sure the function is not marked as Thumb, in case
16054 it is the target of an ABS32 relocation, which will
16055 point to the PLT entry. */
16056 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
16057 }
16058
16059 /* VxWorks executables have a second set of relocations for
16060 each PLT entry. They go in a separate relocation section,
16061 which is processed by the kernel loader. */
16062 if (htab->vxworks_p && !bfd_link_pic (info))
16063 {
16064 /* There is a relocation for the initial PLT entry:
16065 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
16066 if (h->plt.offset == htab->plt_header_size)
16067 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
16068
16069 /* There are two extra relocations for each subsequent
16070 PLT entry: an R_ARM_32 relocation for the GOT entry,
16071 and an R_ARM_32 relocation for the PLT entry. */
16072 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
16073 }
16074 }
16075 else
16076 {
16077 h->plt.offset = (bfd_vma) -1;
16078 h->needs_plt = 0;
16079 }
16080 }
16081 else
16082 {
16083 h->plt.offset = (bfd_vma) -1;
16084 h->needs_plt = 0;
16085 }
16086
16087 eh = (struct elf32_arm_link_hash_entry *) h;
16088 eh->tlsdesc_got = (bfd_vma) -1;
16089
16090 if (h->got.refcount > 0)
16091 {
16092 asection *s;
16093 bfd_boolean dyn;
16094 int tls_type = elf32_arm_hash_entry (h)->tls_type;
16095 int indx;
16096
16097 /* Make sure this symbol is output as a dynamic symbol.
16098 Undefined weak syms won't yet be marked as dynamic. */
16099 if (htab->root.dynamic_sections_created && h->dynindx == -1 && !h->forced_local
16100 && h->root.type == bfd_link_hash_undefweak)
16101 {
16102 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16103 return FALSE;
16104 }
16105
16106 if (!htab->symbian_p)
16107 {
16108 s = htab->root.sgot;
16109 h->got.offset = s->size;
16110
16111 if (tls_type == GOT_UNKNOWN)
16112 abort ();
16113
16114 if (tls_type == GOT_NORMAL)
16115 /* Non-TLS symbols need one GOT slot. */
16116 s->size += 4;
16117 else
16118 {
16119 if (tls_type & GOT_TLS_GDESC)
16120 {
16121 /* R_ARM_TLS_DESC needs 2 GOT slots. */
16122 eh->tlsdesc_got
16123 = (htab->root.sgotplt->size
16124 - elf32_arm_compute_jump_table_size (htab));
16125 htab->root.sgotplt->size += 8;
16126 h->got.offset = (bfd_vma) -2;
16127 /* plt.got_offset needs to know there's a TLS_DESC
16128 reloc in the middle of .got.plt. */
16129 htab->num_tls_desc++;
16130 }
16131
16132 if (tls_type & GOT_TLS_GD)
16133 {
16134 /* R_ARM_TLS_GD32 and R_ARM_TLS_GD32_FDPIC need two
16135 consecutive GOT slots. If the symbol is both GD
16136 and GDESC, got.offset may have been
16137 overwritten. */
16138 h->got.offset = s->size;
16139 s->size += 8;
16140 }
16141
16142 if (tls_type & GOT_TLS_IE)
16143 /* R_ARM_TLS_IE32/R_ARM_TLS_IE32_FDPIC need one GOT
16144 slot. */
16145 s->size += 4;
16146 }
16147
16148 dyn = htab->root.dynamic_sections_created;
16149
16150 indx = 0;
16151 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
16152 bfd_link_pic (info),
16153 h)
16154 && (!bfd_link_pic (info)
16155 || !SYMBOL_REFERENCES_LOCAL (info, h)))
16156 indx = h->dynindx;
16157
16158 if (tls_type != GOT_NORMAL
16159 && (bfd_link_pic (info) || indx != 0)
16160 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
16161 || h->root.type != bfd_link_hash_undefweak))
16162 {
16163 if (tls_type & GOT_TLS_IE)
16164 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16165
16166 if (tls_type & GOT_TLS_GD)
16167 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16168
16169 if (tls_type & GOT_TLS_GDESC)
16170 {
16171 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
16172 /* GDESC needs a trampoline to jump to. */
16173 htab->tls_trampoline = -1;
16174 }
16175
16176 /* Only GD needs it. GDESC just emits one relocation per
16177 2 entries. */
16178 if ((tls_type & GOT_TLS_GD) && indx != 0)
16179 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16180 }
16181 else if (((indx != -1) || htab->fdpic_p)
16182 && !SYMBOL_REFERENCES_LOCAL (info, h))
16183 {
16184 if (htab->root.dynamic_sections_created)
16185 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
16186 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16187 }
16188 else if (h->type == STT_GNU_IFUNC
16189 && eh->plt.noncall_refcount == 0)
16190 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
16191 they all resolve dynamically instead. Reserve room for the
16192 GOT entry's R_ARM_IRELATIVE relocation. */
16193 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
16194 else if (bfd_link_pic (info)
16195 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
16196 || h->root.type != bfd_link_hash_undefweak))
16197 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
16198 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16199 else if (htab->fdpic_p && tls_type == GOT_NORMAL)
16200 /* Reserve room for rofixup for FDPIC executable. */
16201 /* TLS relocs do not need space since they are completely
16202 resolved. */
16203 htab->srofixup->size += 4;
16204 }
16205 }
16206 else
16207 h->got.offset = (bfd_vma) -1;
16208
16209 /* FDPIC support. */
16210 if (eh->fdpic_cnts.gotofffuncdesc_cnt > 0)
16211 {
16212 /* Symbol musn't be exported. */
16213 if (h->dynindx != -1)
16214 abort();
16215
16216 /* We only allocate one function descriptor with its associated relocation. */
16217 if (eh->fdpic_cnts.funcdesc_offset == -1)
16218 {
16219 asection *s = htab->root.sgot;
16220
16221 eh->fdpic_cnts.funcdesc_offset = s->size;
16222 s->size += 8;
16223 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16224 if (bfd_link_pic(info))
16225 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16226 else
16227 htab->srofixup->size += 8;
16228 }
16229 }
16230
16231 if (eh->fdpic_cnts.gotfuncdesc_cnt > 0)
16232 {
16233 asection *s = htab->root.sgot;
16234
16235 if (htab->root.dynamic_sections_created && h->dynindx == -1
16236 && !h->forced_local)
16237 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16238 return FALSE;
16239
16240 if (h->dynindx == -1)
16241 {
16242 /* We only allocate one function descriptor with its associated relocation. q */
16243 if (eh->fdpic_cnts.funcdesc_offset == -1)
16244 {
16245
16246 eh->fdpic_cnts.funcdesc_offset = s->size;
16247 s->size += 8;
16248 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16249 if (bfd_link_pic(info))
16250 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16251 else
16252 htab->srofixup->size += 8;
16253 }
16254 }
16255
16256 /* Add one entry into the GOT and a R_ARM_FUNCDESC or
16257 R_ARM_RELATIVE/rofixup relocation on it. */
16258 eh->fdpic_cnts.gotfuncdesc_offset = s->size;
16259 s->size += 4;
16260 if (h->dynindx == -1 && !bfd_link_pic(info))
16261 htab->srofixup->size += 4;
16262 else
16263 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16264 }
16265
16266 if (eh->fdpic_cnts.funcdesc_cnt > 0)
16267 {
16268 if (htab->root.dynamic_sections_created && h->dynindx == -1
16269 && !h->forced_local)
16270 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16271 return FALSE;
16272
16273 if (h->dynindx == -1)
16274 {
16275 /* We only allocate one function descriptor with its associated relocation. */
16276 if (eh->fdpic_cnts.funcdesc_offset == -1)
16277 {
16278 asection *s = htab->root.sgot;
16279
16280 eh->fdpic_cnts.funcdesc_offset = s->size;
16281 s->size += 8;
16282 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16283 if (bfd_link_pic(info))
16284 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16285 else
16286 htab->srofixup->size += 8;
16287 }
16288 }
16289 if (h->dynindx == -1 && !bfd_link_pic(info))
16290 {
16291 /* For FDPIC executable we replace R_ARM_RELATIVE with a rofixup. */
16292 htab->srofixup->size += 4 * eh->fdpic_cnts.funcdesc_cnt;
16293 }
16294 else
16295 {
16296 /* Will need one dynamic reloc per reference. will be either
16297 R_ARM_FUNCDESC or R_ARM_RELATIVE for hidden symbols. */
16298 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot,
16299 eh->fdpic_cnts.funcdesc_cnt);
16300 }
16301 }
16302
16303 /* Allocate stubs for exported Thumb functions on v4t. */
16304 if (!htab->use_blx && h->dynindx != -1
16305 && h->def_regular
16306 && ARM_GET_SYM_BRANCH_TYPE (h->target_internal) == ST_BRANCH_TO_THUMB
16307 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
16308 {
16309 struct elf_link_hash_entry * th;
16310 struct bfd_link_hash_entry * bh;
16311 struct elf_link_hash_entry * myh;
16312 char name[1024];
16313 asection *s;
16314 bh = NULL;
16315 /* Create a new symbol to regist the real location of the function. */
16316 s = h->root.u.def.section;
16317 sprintf (name, "__real_%s", h->root.root.string);
16318 _bfd_generic_link_add_one_symbol (info, s->owner,
16319 name, BSF_GLOBAL, s,
16320 h->root.u.def.value,
16321 NULL, TRUE, FALSE, &bh);
16322
16323 myh = (struct elf_link_hash_entry *) bh;
16324 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
16325 myh->forced_local = 1;
16326 ARM_SET_SYM_BRANCH_TYPE (myh->target_internal, ST_BRANCH_TO_THUMB);
16327 eh->export_glue = myh;
16328 th = record_arm_to_thumb_glue (info, h);
16329 /* Point the symbol at the stub. */
16330 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
16331 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
16332 h->root.u.def.section = th->root.u.def.section;
16333 h->root.u.def.value = th->root.u.def.value & ~1;
16334 }
16335
16336 if (eh->dyn_relocs == NULL)
16337 return TRUE;
16338
16339 /* In the shared -Bsymbolic case, discard space allocated for
16340 dynamic pc-relative relocs against symbols which turn out to be
16341 defined in regular objects. For the normal shared case, discard
16342 space for pc-relative relocs that have become local due to symbol
16343 visibility changes. */
16344
16345 if (bfd_link_pic (info) || htab->root.is_relocatable_executable || htab->fdpic_p)
16346 {
16347 /* Relocs that use pc_count are PC-relative forms, which will appear
16348 on something like ".long foo - ." or "movw REG, foo - .". We want
16349 calls to protected symbols to resolve directly to the function
16350 rather than going via the plt. If people want function pointer
16351 comparisons to work as expected then they should avoid writing
16352 assembly like ".long foo - .". */
16353 if (SYMBOL_CALLS_LOCAL (info, h))
16354 {
16355 struct elf_dyn_relocs **pp;
16356
16357 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
16358 {
16359 p->count -= p->pc_count;
16360 p->pc_count = 0;
16361 if (p->count == 0)
16362 *pp = p->next;
16363 else
16364 pp = &p->next;
16365 }
16366 }
16367
16368 if (htab->vxworks_p)
16369 {
16370 struct elf_dyn_relocs **pp;
16371
16372 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
16373 {
16374 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
16375 *pp = p->next;
16376 else
16377 pp = &p->next;
16378 }
16379 }
16380
16381 /* Also discard relocs on undefined weak syms with non-default
16382 visibility. */
16383 if (eh->dyn_relocs != NULL
16384 && h->root.type == bfd_link_hash_undefweak)
16385 {
16386 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
16387 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
16388 eh->dyn_relocs = NULL;
16389
16390 /* Make sure undefined weak symbols are output as a dynamic
16391 symbol in PIEs. */
16392 else if (htab->root.dynamic_sections_created && h->dynindx == -1
16393 && !h->forced_local)
16394 {
16395 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16396 return FALSE;
16397 }
16398 }
16399
16400 else if (htab->root.is_relocatable_executable && h->dynindx == -1
16401 && h->root.type == bfd_link_hash_new)
16402 {
16403 /* Output absolute symbols so that we can create relocations
16404 against them. For normal symbols we output a relocation
16405 against the section that contains them. */
16406 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16407 return FALSE;
16408 }
16409
16410 }
16411 else
16412 {
16413 /* For the non-shared case, discard space for relocs against
16414 symbols which turn out to need copy relocs or are not
16415 dynamic. */
16416
16417 if (!h->non_got_ref
16418 && ((h->def_dynamic
16419 && !h->def_regular)
16420 || (htab->root.dynamic_sections_created
16421 && (h->root.type == bfd_link_hash_undefweak
16422 || h->root.type == bfd_link_hash_undefined))))
16423 {
16424 /* Make sure this symbol is output as a dynamic symbol.
16425 Undefined weak syms won't yet be marked as dynamic. */
16426 if (h->dynindx == -1 && !h->forced_local
16427 && h->root.type == bfd_link_hash_undefweak)
16428 {
16429 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16430 return FALSE;
16431 }
16432
16433 /* If that succeeded, we know we'll be keeping all the
16434 relocs. */
16435 if (h->dynindx != -1)
16436 goto keep;
16437 }
16438
16439 eh->dyn_relocs = NULL;
16440
16441 keep: ;
16442 }
16443
16444 /* Finally, allocate space. */
16445 for (p = eh->dyn_relocs; p != NULL; p = p->next)
16446 {
16447 asection *sreloc = elf_section_data (p->sec)->sreloc;
16448
16449 if (h->type == STT_GNU_IFUNC
16450 && eh->plt.noncall_refcount == 0
16451 && SYMBOL_REFERENCES_LOCAL (info, h))
16452 elf32_arm_allocate_irelocs (info, sreloc, p->count);
16453 else if (h->dynindx != -1 && (!bfd_link_pic(info) || !info->symbolic || !h->def_regular))
16454 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
16455 else if (htab->fdpic_p && !bfd_link_pic(info))
16456 htab->srofixup->size += 4 * p->count;
16457 else
16458 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
16459 }
16460
16461 return TRUE;
16462 }
16463
16464 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
16465 read-only sections. */
16466
16467 static bfd_boolean
16468 maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p)
16469 {
16470 asection *sec;
16471
16472 if (h->root.type == bfd_link_hash_indirect)
16473 return TRUE;
16474
16475 sec = readonly_dynrelocs (h);
16476 if (sec != NULL)
16477 {
16478 struct bfd_link_info *info = (struct bfd_link_info *) info_p;
16479
16480 info->flags |= DF_TEXTREL;
16481 info->callbacks->minfo
16482 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
16483 sec->owner, h->root.root.string, sec);
16484
16485 /* Not an error, just cut short the traversal. */
16486 return FALSE;
16487 }
16488 return TRUE;
16489 }
16490
16491 void
16492 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
16493 int byteswap_code)
16494 {
16495 struct elf32_arm_link_hash_table *globals;
16496
16497 globals = elf32_arm_hash_table (info);
16498 if (globals == NULL)
16499 return;
16500
16501 globals->byteswap_code = byteswap_code;
16502 }
16503
16504 /* Set the sizes of the dynamic sections. */
16505
16506 static bfd_boolean
16507 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
16508 struct bfd_link_info * info)
16509 {
16510 bfd * dynobj;
16511 asection * s;
16512 bfd_boolean plt;
16513 bfd_boolean relocs;
16514 bfd *ibfd;
16515 struct elf32_arm_link_hash_table *htab;
16516
16517 htab = elf32_arm_hash_table (info);
16518 if (htab == NULL)
16519 return FALSE;
16520
16521 dynobj = elf_hash_table (info)->dynobj;
16522 BFD_ASSERT (dynobj != NULL);
16523 check_use_blx (htab);
16524
16525 if (elf_hash_table (info)->dynamic_sections_created)
16526 {
16527 /* Set the contents of the .interp section to the interpreter. */
16528 if (bfd_link_executable (info) && !info->nointerp)
16529 {
16530 s = bfd_get_linker_section (dynobj, ".interp");
16531 BFD_ASSERT (s != NULL);
16532 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
16533 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
16534 }
16535 }
16536
16537 /* Set up .got offsets for local syms, and space for local dynamic
16538 relocs. */
16539 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
16540 {
16541 bfd_signed_vma *local_got;
16542 bfd_signed_vma *end_local_got;
16543 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
16544 char *local_tls_type;
16545 bfd_vma *local_tlsdesc_gotent;
16546 bfd_size_type locsymcount;
16547 Elf_Internal_Shdr *symtab_hdr;
16548 asection *srel;
16549 bfd_boolean is_vxworks = htab->vxworks_p;
16550 unsigned int symndx;
16551 struct fdpic_local *local_fdpic_cnts;
16552
16553 if (! is_arm_elf (ibfd))
16554 continue;
16555
16556 for (s = ibfd->sections; s != NULL; s = s->next)
16557 {
16558 struct elf_dyn_relocs *p;
16559
16560 for (p = (struct elf_dyn_relocs *)
16561 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
16562 {
16563 if (!bfd_is_abs_section (p->sec)
16564 && bfd_is_abs_section (p->sec->output_section))
16565 {
16566 /* Input section has been discarded, either because
16567 it is a copy of a linkonce section or due to
16568 linker script /DISCARD/, so we'll be discarding
16569 the relocs too. */
16570 }
16571 else if (is_vxworks
16572 && strcmp (p->sec->output_section->name,
16573 ".tls_vars") == 0)
16574 {
16575 /* Relocations in vxworks .tls_vars sections are
16576 handled specially by the loader. */
16577 }
16578 else if (p->count != 0)
16579 {
16580 srel = elf_section_data (p->sec)->sreloc;
16581 if (htab->fdpic_p && !bfd_link_pic(info))
16582 htab->srofixup->size += 4 * p->count;
16583 else
16584 elf32_arm_allocate_dynrelocs (info, srel, p->count);
16585 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
16586 info->flags |= DF_TEXTREL;
16587 }
16588 }
16589 }
16590
16591 local_got = elf_local_got_refcounts (ibfd);
16592 if (!local_got)
16593 continue;
16594
16595 symtab_hdr = & elf_symtab_hdr (ibfd);
16596 locsymcount = symtab_hdr->sh_info;
16597 end_local_got = local_got + locsymcount;
16598 local_iplt_ptr = elf32_arm_local_iplt (ibfd);
16599 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
16600 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
16601 local_fdpic_cnts = elf32_arm_local_fdpic_cnts (ibfd);
16602 symndx = 0;
16603 s = htab->root.sgot;
16604 srel = htab->root.srelgot;
16605 for (; local_got < end_local_got;
16606 ++local_got, ++local_iplt_ptr, ++local_tls_type,
16607 ++local_tlsdesc_gotent, ++symndx, ++local_fdpic_cnts)
16608 {
16609 *local_tlsdesc_gotent = (bfd_vma) -1;
16610 local_iplt = *local_iplt_ptr;
16611
16612 /* FDPIC support. */
16613 if (local_fdpic_cnts->gotofffuncdesc_cnt > 0)
16614 {
16615 if (local_fdpic_cnts->funcdesc_offset == -1)
16616 {
16617 local_fdpic_cnts->funcdesc_offset = s->size;
16618 s->size += 8;
16619
16620 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16621 if (bfd_link_pic(info))
16622 elf32_arm_allocate_dynrelocs (info, srel, 1);
16623 else
16624 htab->srofixup->size += 8;
16625 }
16626 }
16627
16628 if (local_fdpic_cnts->funcdesc_cnt > 0)
16629 {
16630 if (local_fdpic_cnts->funcdesc_offset == -1)
16631 {
16632 local_fdpic_cnts->funcdesc_offset = s->size;
16633 s->size += 8;
16634
16635 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16636 if (bfd_link_pic(info))
16637 elf32_arm_allocate_dynrelocs (info, srel, 1);
16638 else
16639 htab->srofixup->size += 8;
16640 }
16641
16642 /* We will add n R_ARM_RELATIVE relocations or n rofixups. */
16643 if (bfd_link_pic(info))
16644 elf32_arm_allocate_dynrelocs (info, srel, local_fdpic_cnts->funcdesc_cnt);
16645 else
16646 htab->srofixup->size += 4 * local_fdpic_cnts->funcdesc_cnt;
16647 }
16648
16649 if (local_iplt != NULL)
16650 {
16651 struct elf_dyn_relocs *p;
16652
16653 if (local_iplt->root.refcount > 0)
16654 {
16655 elf32_arm_allocate_plt_entry (info, TRUE,
16656 &local_iplt->root,
16657 &local_iplt->arm);
16658 if (local_iplt->arm.noncall_refcount == 0)
16659 /* All references to the PLT are calls, so all
16660 non-call references can resolve directly to the
16661 run-time target. This means that the .got entry
16662 would be the same as the .igot.plt entry, so there's
16663 no point creating both. */
16664 *local_got = 0;
16665 }
16666 else
16667 {
16668 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
16669 local_iplt->root.offset = (bfd_vma) -1;
16670 }
16671
16672 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
16673 {
16674 asection *psrel;
16675
16676 psrel = elf_section_data (p->sec)->sreloc;
16677 if (local_iplt->arm.noncall_refcount == 0)
16678 elf32_arm_allocate_irelocs (info, psrel, p->count);
16679 else
16680 elf32_arm_allocate_dynrelocs (info, psrel, p->count);
16681 }
16682 }
16683 if (*local_got > 0)
16684 {
16685 Elf_Internal_Sym *isym;
16686
16687 *local_got = s->size;
16688 if (*local_tls_type & GOT_TLS_GD)
16689 /* TLS_GD relocs need an 8-byte structure in the GOT. */
16690 s->size += 8;
16691 if (*local_tls_type & GOT_TLS_GDESC)
16692 {
16693 *local_tlsdesc_gotent = htab->root.sgotplt->size
16694 - elf32_arm_compute_jump_table_size (htab);
16695 htab->root.sgotplt->size += 8;
16696 *local_got = (bfd_vma) -2;
16697 /* plt.got_offset needs to know there's a TLS_DESC
16698 reloc in the middle of .got.plt. */
16699 htab->num_tls_desc++;
16700 }
16701 if (*local_tls_type & GOT_TLS_IE)
16702 s->size += 4;
16703
16704 if (*local_tls_type & GOT_NORMAL)
16705 {
16706 /* If the symbol is both GD and GDESC, *local_got
16707 may have been overwritten. */
16708 *local_got = s->size;
16709 s->size += 4;
16710 }
16711
16712 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
16713 if (isym == NULL)
16714 return FALSE;
16715
16716 /* If all references to an STT_GNU_IFUNC PLT are calls,
16717 then all non-call references, including this GOT entry,
16718 resolve directly to the run-time target. */
16719 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
16720 && (local_iplt == NULL
16721 || local_iplt->arm.noncall_refcount == 0))
16722 elf32_arm_allocate_irelocs (info, srel, 1);
16723 else if (bfd_link_pic (info) || output_bfd->flags & DYNAMIC || htab->fdpic_p)
16724 {
16725 if ((bfd_link_pic (info) && !(*local_tls_type & GOT_TLS_GDESC)))
16726 elf32_arm_allocate_dynrelocs (info, srel, 1);
16727 else if (htab->fdpic_p && *local_tls_type & GOT_NORMAL)
16728 htab->srofixup->size += 4;
16729
16730 if ((bfd_link_pic (info) || htab->fdpic_p)
16731 && *local_tls_type & GOT_TLS_GDESC)
16732 {
16733 elf32_arm_allocate_dynrelocs (info,
16734 htab->root.srelplt, 1);
16735 htab->tls_trampoline = -1;
16736 }
16737 }
16738 }
16739 else
16740 *local_got = (bfd_vma) -1;
16741 }
16742 }
16743
16744 if (htab->tls_ldm_got.refcount > 0)
16745 {
16746 /* Allocate two GOT entries and one dynamic relocation (if necessary)
16747 for R_ARM_TLS_LDM32/R_ARM_TLS_LDM32_FDPIC relocations. */
16748 htab->tls_ldm_got.offset = htab->root.sgot->size;
16749 htab->root.sgot->size += 8;
16750 if (bfd_link_pic (info))
16751 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16752 }
16753 else
16754 htab->tls_ldm_got.offset = -1;
16755
16756 /* At the very end of the .rofixup section is a pointer to the GOT,
16757 reserve space for it. */
16758 if (htab->fdpic_p && htab->srofixup != NULL)
16759 htab->srofixup->size += 4;
16760
16761 /* Allocate global sym .plt and .got entries, and space for global
16762 sym dynamic relocs. */
16763 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
16764
16765 /* Here we rummage through the found bfds to collect glue information. */
16766 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
16767 {
16768 if (! is_arm_elf (ibfd))
16769 continue;
16770
16771 /* Initialise mapping tables for code/data. */
16772 bfd_elf32_arm_init_maps (ibfd);
16773
16774 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
16775 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info)
16776 || !bfd_elf32_arm_stm32l4xx_erratum_scan (ibfd, info))
16777 _bfd_error_handler (_("errors encountered processing file %pB"), ibfd);
16778 }
16779
16780 /* Allocate space for the glue sections now that we've sized them. */
16781 bfd_elf32_arm_allocate_interworking_sections (info);
16782
16783 /* For every jump slot reserved in the sgotplt, reloc_count is
16784 incremented. However, when we reserve space for TLS descriptors,
16785 it's not incremented, so in order to compute the space reserved
16786 for them, it suffices to multiply the reloc count by the jump
16787 slot size. */
16788 if (htab->root.srelplt)
16789 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
16790
16791 if (htab->tls_trampoline)
16792 {
16793 if (htab->root.splt->size == 0)
16794 htab->root.splt->size += htab->plt_header_size;
16795
16796 htab->tls_trampoline = htab->root.splt->size;
16797 htab->root.splt->size += htab->plt_entry_size;
16798
16799 /* If we're not using lazy TLS relocations, don't generate the
16800 PLT and GOT entries they require. */
16801 if (!(info->flags & DF_BIND_NOW))
16802 {
16803 htab->dt_tlsdesc_got = htab->root.sgot->size;
16804 htab->root.sgot->size += 4;
16805
16806 htab->dt_tlsdesc_plt = htab->root.splt->size;
16807 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
16808 }
16809 }
16810
16811 /* The check_relocs and adjust_dynamic_symbol entry points have
16812 determined the sizes of the various dynamic sections. Allocate
16813 memory for them. */
16814 plt = FALSE;
16815 relocs = FALSE;
16816 for (s = dynobj->sections; s != NULL; s = s->next)
16817 {
16818 const char * name;
16819
16820 if ((s->flags & SEC_LINKER_CREATED) == 0)
16821 continue;
16822
16823 /* It's OK to base decisions on the section name, because none
16824 of the dynobj section names depend upon the input files. */
16825 name = bfd_get_section_name (dynobj, s);
16826
16827 if (s == htab->root.splt)
16828 {
16829 /* Remember whether there is a PLT. */
16830 plt = s->size != 0;
16831 }
16832 else if (CONST_STRNEQ (name, ".rel"))
16833 {
16834 if (s->size != 0)
16835 {
16836 /* Remember whether there are any reloc sections other
16837 than .rel(a).plt and .rela.plt.unloaded. */
16838 if (s != htab->root.srelplt && s != htab->srelplt2)
16839 relocs = TRUE;
16840
16841 /* We use the reloc_count field as a counter if we need
16842 to copy relocs into the output file. */
16843 s->reloc_count = 0;
16844 }
16845 }
16846 else if (s != htab->root.sgot
16847 && s != htab->root.sgotplt
16848 && s != htab->root.iplt
16849 && s != htab->root.igotplt
16850 && s != htab->root.sdynbss
16851 && s != htab->root.sdynrelro
16852 && s != htab->srofixup)
16853 {
16854 /* It's not one of our sections, so don't allocate space. */
16855 continue;
16856 }
16857
16858 if (s->size == 0)
16859 {
16860 /* If we don't need this section, strip it from the
16861 output file. This is mostly to handle .rel(a).bss and
16862 .rel(a).plt. We must create both sections in
16863 create_dynamic_sections, because they must be created
16864 before the linker maps input sections to output
16865 sections. The linker does that before
16866 adjust_dynamic_symbol is called, and it is that
16867 function which decides whether anything needs to go
16868 into these sections. */
16869 s->flags |= SEC_EXCLUDE;
16870 continue;
16871 }
16872
16873 if ((s->flags & SEC_HAS_CONTENTS) == 0)
16874 continue;
16875
16876 /* Allocate memory for the section contents. */
16877 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
16878 if (s->contents == NULL)
16879 return FALSE;
16880 }
16881
16882 if (elf_hash_table (info)->dynamic_sections_created)
16883 {
16884 /* Add some entries to the .dynamic section. We fill in the
16885 values later, in elf32_arm_finish_dynamic_sections, but we
16886 must add the entries now so that we get the correct size for
16887 the .dynamic section. The DT_DEBUG entry is filled in by the
16888 dynamic linker and used by the debugger. */
16889 #define add_dynamic_entry(TAG, VAL) \
16890 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
16891
16892 if (bfd_link_executable (info))
16893 {
16894 if (!add_dynamic_entry (DT_DEBUG, 0))
16895 return FALSE;
16896 }
16897
16898 if (plt)
16899 {
16900 if ( !add_dynamic_entry (DT_PLTGOT, 0)
16901 || !add_dynamic_entry (DT_PLTRELSZ, 0)
16902 || !add_dynamic_entry (DT_PLTREL,
16903 htab->use_rel ? DT_REL : DT_RELA)
16904 || !add_dynamic_entry (DT_JMPREL, 0))
16905 return FALSE;
16906
16907 if (htab->dt_tlsdesc_plt
16908 && (!add_dynamic_entry (DT_TLSDESC_PLT,0)
16909 || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
16910 return FALSE;
16911 }
16912
16913 if (relocs)
16914 {
16915 if (htab->use_rel)
16916 {
16917 if (!add_dynamic_entry (DT_REL, 0)
16918 || !add_dynamic_entry (DT_RELSZ, 0)
16919 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
16920 return FALSE;
16921 }
16922 else
16923 {
16924 if (!add_dynamic_entry (DT_RELA, 0)
16925 || !add_dynamic_entry (DT_RELASZ, 0)
16926 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
16927 return FALSE;
16928 }
16929 }
16930
16931 /* If any dynamic relocs apply to a read-only section,
16932 then we need a DT_TEXTREL entry. */
16933 if ((info->flags & DF_TEXTREL) == 0)
16934 elf_link_hash_traverse (&htab->root, maybe_set_textrel, info);
16935
16936 if ((info->flags & DF_TEXTREL) != 0)
16937 {
16938 if (!add_dynamic_entry (DT_TEXTREL, 0))
16939 return FALSE;
16940 }
16941 if (htab->vxworks_p
16942 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
16943 return FALSE;
16944 }
16945 #undef add_dynamic_entry
16946
16947 return TRUE;
16948 }
16949
16950 /* Size sections even though they're not dynamic. We use it to setup
16951 _TLS_MODULE_BASE_, if needed. */
16952
16953 static bfd_boolean
16954 elf32_arm_always_size_sections (bfd *output_bfd,
16955 struct bfd_link_info *info)
16956 {
16957 asection *tls_sec;
16958
16959 if (bfd_link_relocatable (info))
16960 return TRUE;
16961
16962 tls_sec = elf_hash_table (info)->tls_sec;
16963
16964 if (tls_sec)
16965 {
16966 struct elf_link_hash_entry *tlsbase;
16967
16968 tlsbase = elf_link_hash_lookup
16969 (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
16970
16971 if (tlsbase)
16972 {
16973 struct bfd_link_hash_entry *bh = NULL;
16974 const struct elf_backend_data *bed
16975 = get_elf_backend_data (output_bfd);
16976
16977 if (!(_bfd_generic_link_add_one_symbol
16978 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
16979 tls_sec, 0, NULL, FALSE,
16980 bed->collect, &bh)))
16981 return FALSE;
16982
16983 tlsbase->type = STT_TLS;
16984 tlsbase = (struct elf_link_hash_entry *)bh;
16985 tlsbase->def_regular = 1;
16986 tlsbase->other = STV_HIDDEN;
16987 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
16988 }
16989 }
16990 return TRUE;
16991 }
16992
16993 /* Finish up dynamic symbol handling. We set the contents of various
16994 dynamic sections here. */
16995
16996 static bfd_boolean
16997 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
16998 struct bfd_link_info * info,
16999 struct elf_link_hash_entry * h,
17000 Elf_Internal_Sym * sym)
17001 {
17002 struct elf32_arm_link_hash_table *htab;
17003 struct elf32_arm_link_hash_entry *eh;
17004
17005 htab = elf32_arm_hash_table (info);
17006 if (htab == NULL)
17007 return FALSE;
17008
17009 eh = (struct elf32_arm_link_hash_entry *) h;
17010
17011 if (h->plt.offset != (bfd_vma) -1)
17012 {
17013 if (!eh->is_iplt)
17014 {
17015 BFD_ASSERT (h->dynindx != -1);
17016 if (! elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
17017 h->dynindx, 0))
17018 return FALSE;
17019 }
17020
17021 if (!h->def_regular)
17022 {
17023 /* Mark the symbol as undefined, rather than as defined in
17024 the .plt section. */
17025 sym->st_shndx = SHN_UNDEF;
17026 /* If the symbol is weak we need to clear the value.
17027 Otherwise, the PLT entry would provide a definition for
17028 the symbol even if the symbol wasn't defined anywhere,
17029 and so the symbol would never be NULL. Leave the value if
17030 there were any relocations where pointer equality matters
17031 (this is a clue for the dynamic linker, to make function
17032 pointer comparisons work between an application and shared
17033 library). */
17034 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
17035 sym->st_value = 0;
17036 }
17037 else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
17038 {
17039 /* At least one non-call relocation references this .iplt entry,
17040 so the .iplt entry is the function's canonical address. */
17041 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
17042 ARM_SET_SYM_BRANCH_TYPE (sym->st_target_internal, ST_BRANCH_TO_ARM);
17043 sym->st_shndx = (_bfd_elf_section_from_bfd_section
17044 (output_bfd, htab->root.iplt->output_section));
17045 sym->st_value = (h->plt.offset
17046 + htab->root.iplt->output_section->vma
17047 + htab->root.iplt->output_offset);
17048 }
17049 }
17050
17051 if (h->needs_copy)
17052 {
17053 asection * s;
17054 Elf_Internal_Rela rel;
17055
17056 /* This symbol needs a copy reloc. Set it up. */
17057 BFD_ASSERT (h->dynindx != -1
17058 && (h->root.type == bfd_link_hash_defined
17059 || h->root.type == bfd_link_hash_defweak));
17060
17061 rel.r_addend = 0;
17062 rel.r_offset = (h->root.u.def.value
17063 + h->root.u.def.section->output_section->vma
17064 + h->root.u.def.section->output_offset);
17065 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
17066 if (h->root.u.def.section == htab->root.sdynrelro)
17067 s = htab->root.sreldynrelro;
17068 else
17069 s = htab->root.srelbss;
17070 elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
17071 }
17072
17073 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
17074 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
17075 to the ".got" section. */
17076 if (h == htab->root.hdynamic
17077 || (!htab->vxworks_p && h == htab->root.hgot))
17078 sym->st_shndx = SHN_ABS;
17079
17080 return TRUE;
17081 }
17082
17083 static void
17084 arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
17085 void *contents,
17086 const unsigned long *template, unsigned count)
17087 {
17088 unsigned ix;
17089
17090 for (ix = 0; ix != count; ix++)
17091 {
17092 unsigned long insn = template[ix];
17093
17094 /* Emit mov pc,rx if bx is not permitted. */
17095 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
17096 insn = (insn & 0xf000000f) | 0x01a0f000;
17097 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
17098 }
17099 }
17100
17101 /* Install the special first PLT entry for elf32-arm-nacl. Unlike
17102 other variants, NaCl needs this entry in a static executable's
17103 .iplt too. When we're handling that case, GOT_DISPLACEMENT is
17104 zero. For .iplt really only the last bundle is useful, and .iplt
17105 could have a shorter first entry, with each individual PLT entry's
17106 relative branch calculated differently so it targets the last
17107 bundle instead of the instruction before it (labelled .Lplt_tail
17108 above). But it's simpler to keep the size and layout of PLT0
17109 consistent with the dynamic case, at the cost of some dead code at
17110 the start of .iplt and the one dead store to the stack at the start
17111 of .Lplt_tail. */
17112 static void
17113 arm_nacl_put_plt0 (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
17114 asection *plt, bfd_vma got_displacement)
17115 {
17116 unsigned int i;
17117
17118 put_arm_insn (htab, output_bfd,
17119 elf32_arm_nacl_plt0_entry[0]
17120 | arm_movw_immediate (got_displacement),
17121 plt->contents + 0);
17122 put_arm_insn (htab, output_bfd,
17123 elf32_arm_nacl_plt0_entry[1]
17124 | arm_movt_immediate (got_displacement),
17125 plt->contents + 4);
17126
17127 for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i)
17128 put_arm_insn (htab, output_bfd,
17129 elf32_arm_nacl_plt0_entry[i],
17130 plt->contents + (i * 4));
17131 }
17132
17133 /* Finish up the dynamic sections. */
17134
17135 static bfd_boolean
17136 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
17137 {
17138 bfd * dynobj;
17139 asection * sgot;
17140 asection * sdyn;
17141 struct elf32_arm_link_hash_table *htab;
17142
17143 htab = elf32_arm_hash_table (info);
17144 if (htab == NULL)
17145 return FALSE;
17146
17147 dynobj = elf_hash_table (info)->dynobj;
17148
17149 sgot = htab->root.sgotplt;
17150 /* A broken linker script might have discarded the dynamic sections.
17151 Catch this here so that we do not seg-fault later on. */
17152 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
17153 return FALSE;
17154 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
17155
17156 if (elf_hash_table (info)->dynamic_sections_created)
17157 {
17158 asection *splt;
17159 Elf32_External_Dyn *dyncon, *dynconend;
17160
17161 splt = htab->root.splt;
17162 BFD_ASSERT (splt != NULL && sdyn != NULL);
17163 BFD_ASSERT (htab->symbian_p || sgot != NULL);
17164
17165 dyncon = (Elf32_External_Dyn *) sdyn->contents;
17166 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
17167
17168 for (; dyncon < dynconend; dyncon++)
17169 {
17170 Elf_Internal_Dyn dyn;
17171 const char * name;
17172 asection * s;
17173
17174 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
17175
17176 switch (dyn.d_tag)
17177 {
17178 unsigned int type;
17179
17180 default:
17181 if (htab->vxworks_p
17182 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
17183 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17184 break;
17185
17186 case DT_HASH:
17187 name = ".hash";
17188 goto get_vma_if_bpabi;
17189 case DT_STRTAB:
17190 name = ".dynstr";
17191 goto get_vma_if_bpabi;
17192 case DT_SYMTAB:
17193 name = ".dynsym";
17194 goto get_vma_if_bpabi;
17195 case DT_VERSYM:
17196 name = ".gnu.version";
17197 goto get_vma_if_bpabi;
17198 case DT_VERDEF:
17199 name = ".gnu.version_d";
17200 goto get_vma_if_bpabi;
17201 case DT_VERNEED:
17202 name = ".gnu.version_r";
17203 goto get_vma_if_bpabi;
17204
17205 case DT_PLTGOT:
17206 name = htab->symbian_p ? ".got" : ".got.plt";
17207 goto get_vma;
17208 case DT_JMPREL:
17209 name = RELOC_SECTION (htab, ".plt");
17210 get_vma:
17211 s = bfd_get_linker_section (dynobj, name);
17212 if (s == NULL)
17213 {
17214 _bfd_error_handler
17215 (_("could not find section %s"), name);
17216 bfd_set_error (bfd_error_invalid_operation);
17217 return FALSE;
17218 }
17219 if (!htab->symbian_p)
17220 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
17221 else
17222 /* In the BPABI, tags in the PT_DYNAMIC section point
17223 at the file offset, not the memory address, for the
17224 convenience of the post linker. */
17225 dyn.d_un.d_ptr = s->output_section->filepos + s->output_offset;
17226 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17227 break;
17228
17229 get_vma_if_bpabi:
17230 if (htab->symbian_p)
17231 goto get_vma;
17232 break;
17233
17234 case DT_PLTRELSZ:
17235 s = htab->root.srelplt;
17236 BFD_ASSERT (s != NULL);
17237 dyn.d_un.d_val = s->size;
17238 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17239 break;
17240
17241 case DT_RELSZ:
17242 case DT_RELASZ:
17243 case DT_REL:
17244 case DT_RELA:
17245 /* In the BPABI, the DT_REL tag must point at the file
17246 offset, not the VMA, of the first relocation
17247 section. So, we use code similar to that in
17248 elflink.c, but do not check for SHF_ALLOC on the
17249 relocation section, since relocation sections are
17250 never allocated under the BPABI. PLT relocs are also
17251 included. */
17252 if (htab->symbian_p)
17253 {
17254 unsigned int i;
17255 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
17256 ? SHT_REL : SHT_RELA);
17257 dyn.d_un.d_val = 0;
17258 for (i = 1; i < elf_numsections (output_bfd); i++)
17259 {
17260 Elf_Internal_Shdr *hdr
17261 = elf_elfsections (output_bfd)[i];
17262 if (hdr->sh_type == type)
17263 {
17264 if (dyn.d_tag == DT_RELSZ
17265 || dyn.d_tag == DT_RELASZ)
17266 dyn.d_un.d_val += hdr->sh_size;
17267 else if ((ufile_ptr) hdr->sh_offset
17268 <= dyn.d_un.d_val - 1)
17269 dyn.d_un.d_val = hdr->sh_offset;
17270 }
17271 }
17272 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17273 }
17274 break;
17275
17276 case DT_TLSDESC_PLT:
17277 s = htab->root.splt;
17278 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
17279 + htab->dt_tlsdesc_plt);
17280 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17281 break;
17282
17283 case DT_TLSDESC_GOT:
17284 s = htab->root.sgot;
17285 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
17286 + htab->dt_tlsdesc_got);
17287 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17288 break;
17289
17290 /* Set the bottom bit of DT_INIT/FINI if the
17291 corresponding function is Thumb. */
17292 case DT_INIT:
17293 name = info->init_function;
17294 goto get_sym;
17295 case DT_FINI:
17296 name = info->fini_function;
17297 get_sym:
17298 /* If it wasn't set by elf_bfd_final_link
17299 then there is nothing to adjust. */
17300 if (dyn.d_un.d_val != 0)
17301 {
17302 struct elf_link_hash_entry * eh;
17303
17304 eh = elf_link_hash_lookup (elf_hash_table (info), name,
17305 FALSE, FALSE, TRUE);
17306 if (eh != NULL
17307 && ARM_GET_SYM_BRANCH_TYPE (eh->target_internal)
17308 == ST_BRANCH_TO_THUMB)
17309 {
17310 dyn.d_un.d_val |= 1;
17311 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17312 }
17313 }
17314 break;
17315 }
17316 }
17317
17318 /* Fill in the first entry in the procedure linkage table. */
17319 if (splt->size > 0 && htab->plt_header_size)
17320 {
17321 const bfd_vma *plt0_entry;
17322 bfd_vma got_address, plt_address, got_displacement;
17323
17324 /* Calculate the addresses of the GOT and PLT. */
17325 got_address = sgot->output_section->vma + sgot->output_offset;
17326 plt_address = splt->output_section->vma + splt->output_offset;
17327
17328 if (htab->vxworks_p)
17329 {
17330 /* The VxWorks GOT is relocated by the dynamic linker.
17331 Therefore, we must emit relocations rather than simply
17332 computing the values now. */
17333 Elf_Internal_Rela rel;
17334
17335 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
17336 put_arm_insn (htab, output_bfd, plt0_entry[0],
17337 splt->contents + 0);
17338 put_arm_insn (htab, output_bfd, plt0_entry[1],
17339 splt->contents + 4);
17340 put_arm_insn (htab, output_bfd, plt0_entry[2],
17341 splt->contents + 8);
17342 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
17343
17344 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
17345 rel.r_offset = plt_address + 12;
17346 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
17347 rel.r_addend = 0;
17348 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
17349 htab->srelplt2->contents);
17350 }
17351 else if (htab->nacl_p)
17352 arm_nacl_put_plt0 (htab, output_bfd, splt,
17353 got_address + 8 - (plt_address + 16));
17354 else if (using_thumb_only (htab))
17355 {
17356 got_displacement = got_address - (plt_address + 12);
17357
17358 plt0_entry = elf32_thumb2_plt0_entry;
17359 put_arm_insn (htab, output_bfd, plt0_entry[0],
17360 splt->contents + 0);
17361 put_arm_insn (htab, output_bfd, plt0_entry[1],
17362 splt->contents + 4);
17363 put_arm_insn (htab, output_bfd, plt0_entry[2],
17364 splt->contents + 8);
17365
17366 bfd_put_32 (output_bfd, got_displacement, splt->contents + 12);
17367 }
17368 else
17369 {
17370 got_displacement = got_address - (plt_address + 16);
17371
17372 plt0_entry = elf32_arm_plt0_entry;
17373 put_arm_insn (htab, output_bfd, plt0_entry[0],
17374 splt->contents + 0);
17375 put_arm_insn (htab, output_bfd, plt0_entry[1],
17376 splt->contents + 4);
17377 put_arm_insn (htab, output_bfd, plt0_entry[2],
17378 splt->contents + 8);
17379 put_arm_insn (htab, output_bfd, plt0_entry[3],
17380 splt->contents + 12);
17381
17382 #ifdef FOUR_WORD_PLT
17383 /* The displacement value goes in the otherwise-unused
17384 last word of the second entry. */
17385 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
17386 #else
17387 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
17388 #endif
17389 }
17390 }
17391
17392 /* UnixWare sets the entsize of .plt to 4, although that doesn't
17393 really seem like the right value. */
17394 if (splt->output_section->owner == output_bfd)
17395 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
17396
17397 if (htab->dt_tlsdesc_plt)
17398 {
17399 bfd_vma got_address
17400 = sgot->output_section->vma + sgot->output_offset;
17401 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
17402 + htab->root.sgot->output_offset);
17403 bfd_vma plt_address
17404 = splt->output_section->vma + splt->output_offset;
17405
17406 arm_put_trampoline (htab, output_bfd,
17407 splt->contents + htab->dt_tlsdesc_plt,
17408 dl_tlsdesc_lazy_trampoline, 6);
17409
17410 bfd_put_32 (output_bfd,
17411 gotplt_address + htab->dt_tlsdesc_got
17412 - (plt_address + htab->dt_tlsdesc_plt)
17413 - dl_tlsdesc_lazy_trampoline[6],
17414 splt->contents + htab->dt_tlsdesc_plt + 24);
17415 bfd_put_32 (output_bfd,
17416 got_address - (plt_address + htab->dt_tlsdesc_plt)
17417 - dl_tlsdesc_lazy_trampoline[7],
17418 splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
17419 }
17420
17421 if (htab->tls_trampoline)
17422 {
17423 arm_put_trampoline (htab, output_bfd,
17424 splt->contents + htab->tls_trampoline,
17425 tls_trampoline, 3);
17426 #ifdef FOUR_WORD_PLT
17427 bfd_put_32 (output_bfd, 0x00000000,
17428 splt->contents + htab->tls_trampoline + 12);
17429 #endif
17430 }
17431
17432 if (htab->vxworks_p
17433 && !bfd_link_pic (info)
17434 && htab->root.splt->size > 0)
17435 {
17436 /* Correct the .rel(a).plt.unloaded relocations. They will have
17437 incorrect symbol indexes. */
17438 int num_plts;
17439 unsigned char *p;
17440
17441 num_plts = ((htab->root.splt->size - htab->plt_header_size)
17442 / htab->plt_entry_size);
17443 p = htab->srelplt2->contents + RELOC_SIZE (htab);
17444
17445 for (; num_plts; num_plts--)
17446 {
17447 Elf_Internal_Rela rel;
17448
17449 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
17450 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
17451 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
17452 p += RELOC_SIZE (htab);
17453
17454 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
17455 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
17456 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
17457 p += RELOC_SIZE (htab);
17458 }
17459 }
17460 }
17461
17462 if (htab->nacl_p && htab->root.iplt != NULL && htab->root.iplt->size > 0)
17463 /* NaCl uses a special first entry in .iplt too. */
17464 arm_nacl_put_plt0 (htab, output_bfd, htab->root.iplt, 0);
17465
17466 /* Fill in the first three entries in the global offset table. */
17467 if (sgot)
17468 {
17469 if (sgot->size > 0)
17470 {
17471 if (sdyn == NULL)
17472 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
17473 else
17474 bfd_put_32 (output_bfd,
17475 sdyn->output_section->vma + sdyn->output_offset,
17476 sgot->contents);
17477 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
17478 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
17479 }
17480
17481 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
17482 }
17483
17484 /* At the very end of the .rofixup section is a pointer to the GOT. */
17485 if (htab->fdpic_p && htab->srofixup != NULL)
17486 {
17487 struct elf_link_hash_entry *hgot = htab->root.hgot;
17488
17489 bfd_vma got_value = hgot->root.u.def.value
17490 + hgot->root.u.def.section->output_section->vma
17491 + hgot->root.u.def.section->output_offset;
17492
17493 arm_elf_add_rofixup(output_bfd, htab->srofixup, got_value);
17494
17495 /* Make sure we allocated and generated the same number of fixups. */
17496 BFD_ASSERT (htab->srofixup->reloc_count * 4 == htab->srofixup->size);
17497 }
17498
17499 return TRUE;
17500 }
17501
17502 static void
17503 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
17504 {
17505 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
17506 struct elf32_arm_link_hash_table *globals;
17507 struct elf_segment_map *m;
17508
17509 i_ehdrp = elf_elfheader (abfd);
17510
17511 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
17512 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
17513 else
17514 _bfd_elf_post_process_headers (abfd, link_info);
17515 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
17516
17517 if (link_info)
17518 {
17519 globals = elf32_arm_hash_table (link_info);
17520 if (globals != NULL && globals->byteswap_code)
17521 i_ehdrp->e_flags |= EF_ARM_BE8;
17522
17523 if (globals->fdpic_p)
17524 i_ehdrp->e_ident[EI_OSABI] |= ELFOSABI_ARM_FDPIC;
17525 }
17526
17527 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5
17528 && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC)))
17529 {
17530 int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args);
17531 if (abi == AEABI_VFP_args_vfp)
17532 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD;
17533 else
17534 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT;
17535 }
17536
17537 /* Scan segment to set p_flags attribute if it contains only sections with
17538 SHF_ARM_PURECODE flag. */
17539 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
17540 {
17541 unsigned int j;
17542
17543 if (m->count == 0)
17544 continue;
17545 for (j = 0; j < m->count; j++)
17546 {
17547 if (!(elf_section_flags (m->sections[j]) & SHF_ARM_PURECODE))
17548 break;
17549 }
17550 if (j == m->count)
17551 {
17552 m->p_flags = PF_X;
17553 m->p_flags_valid = 1;
17554 }
17555 }
17556 }
17557
17558 static enum elf_reloc_type_class
17559 elf32_arm_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
17560 const asection *rel_sec ATTRIBUTE_UNUSED,
17561 const Elf_Internal_Rela *rela)
17562 {
17563 switch ((int) ELF32_R_TYPE (rela->r_info))
17564 {
17565 case R_ARM_RELATIVE:
17566 return reloc_class_relative;
17567 case R_ARM_JUMP_SLOT:
17568 return reloc_class_plt;
17569 case R_ARM_COPY:
17570 return reloc_class_copy;
17571 case R_ARM_IRELATIVE:
17572 return reloc_class_ifunc;
17573 default:
17574 return reloc_class_normal;
17575 }
17576 }
17577
17578 static void
17579 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
17580 {
17581 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
17582 }
17583
17584 /* Return TRUE if this is an unwinding table entry. */
17585
17586 static bfd_boolean
17587 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
17588 {
17589 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
17590 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
17591 }
17592
17593
17594 /* Set the type and flags for an ARM section. We do this by
17595 the section name, which is a hack, but ought to work. */
17596
17597 static bfd_boolean
17598 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
17599 {
17600 const char * name;
17601
17602 name = bfd_get_section_name (abfd, sec);
17603
17604 if (is_arm_elf_unwind_section_name (abfd, name))
17605 {
17606 hdr->sh_type = SHT_ARM_EXIDX;
17607 hdr->sh_flags |= SHF_LINK_ORDER;
17608 }
17609
17610 if (sec->flags & SEC_ELF_PURECODE)
17611 hdr->sh_flags |= SHF_ARM_PURECODE;
17612
17613 return TRUE;
17614 }
17615
17616 /* Handle an ARM specific section when reading an object file. This is
17617 called when bfd_section_from_shdr finds a section with an unknown
17618 type. */
17619
17620 static bfd_boolean
17621 elf32_arm_section_from_shdr (bfd *abfd,
17622 Elf_Internal_Shdr * hdr,
17623 const char *name,
17624 int shindex)
17625 {
17626 /* There ought to be a place to keep ELF backend specific flags, but
17627 at the moment there isn't one. We just keep track of the
17628 sections by their name, instead. Fortunately, the ABI gives
17629 names for all the ARM specific sections, so we will probably get
17630 away with this. */
17631 switch (hdr->sh_type)
17632 {
17633 case SHT_ARM_EXIDX:
17634 case SHT_ARM_PREEMPTMAP:
17635 case SHT_ARM_ATTRIBUTES:
17636 break;
17637
17638 default:
17639 return FALSE;
17640 }
17641
17642 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
17643 return FALSE;
17644
17645 return TRUE;
17646 }
17647
17648 static _arm_elf_section_data *
17649 get_arm_elf_section_data (asection * sec)
17650 {
17651 if (sec && sec->owner && is_arm_elf (sec->owner))
17652 return elf32_arm_section_data (sec);
17653 else
17654 return NULL;
17655 }
17656
17657 typedef struct
17658 {
17659 void *flaginfo;
17660 struct bfd_link_info *info;
17661 asection *sec;
17662 int sec_shndx;
17663 int (*func) (void *, const char *, Elf_Internal_Sym *,
17664 asection *, struct elf_link_hash_entry *);
17665 } output_arch_syminfo;
17666
17667 enum map_symbol_type
17668 {
17669 ARM_MAP_ARM,
17670 ARM_MAP_THUMB,
17671 ARM_MAP_DATA
17672 };
17673
17674
17675 /* Output a single mapping symbol. */
17676
17677 static bfd_boolean
17678 elf32_arm_output_map_sym (output_arch_syminfo *osi,
17679 enum map_symbol_type type,
17680 bfd_vma offset)
17681 {
17682 static const char *names[3] = {"$a", "$t", "$d"};
17683 Elf_Internal_Sym sym;
17684
17685 sym.st_value = osi->sec->output_section->vma
17686 + osi->sec->output_offset
17687 + offset;
17688 sym.st_size = 0;
17689 sym.st_other = 0;
17690 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
17691 sym.st_shndx = osi->sec_shndx;
17692 sym.st_target_internal = 0;
17693 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
17694 return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1;
17695 }
17696
17697 /* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
17698 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
17699
17700 static bfd_boolean
17701 elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
17702 bfd_boolean is_iplt_entry_p,
17703 union gotplt_union *root_plt,
17704 struct arm_plt_info *arm_plt)
17705 {
17706 struct elf32_arm_link_hash_table *htab;
17707 bfd_vma addr, plt_header_size;
17708
17709 if (root_plt->offset == (bfd_vma) -1)
17710 return TRUE;
17711
17712 htab = elf32_arm_hash_table (osi->info);
17713 if (htab == NULL)
17714 return FALSE;
17715
17716 if (is_iplt_entry_p)
17717 {
17718 osi->sec = htab->root.iplt;
17719 plt_header_size = 0;
17720 }
17721 else
17722 {
17723 osi->sec = htab->root.splt;
17724 plt_header_size = htab->plt_header_size;
17725 }
17726 osi->sec_shndx = (_bfd_elf_section_from_bfd_section
17727 (osi->info->output_bfd, osi->sec->output_section));
17728
17729 addr = root_plt->offset & -2;
17730 if (htab->symbian_p)
17731 {
17732 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
17733 return FALSE;
17734 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
17735 return FALSE;
17736 }
17737 else if (htab->vxworks_p)
17738 {
17739 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
17740 return FALSE;
17741 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
17742 return FALSE;
17743 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
17744 return FALSE;
17745 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
17746 return FALSE;
17747 }
17748 else if (htab->nacl_p)
17749 {
17750 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
17751 return FALSE;
17752 }
17753 else if (htab->fdpic_p)
17754 {
17755 if (elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt))
17756 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
17757 return FALSE;
17758 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
17759 return FALSE;
17760 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 16))
17761 return FALSE;
17762 if (htab->plt_entry_size == 4 * ARRAY_SIZE(elf32_arm_fdpic_plt_entry))
17763 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 24))
17764 return FALSE;
17765 }
17766 else if (using_thumb_only (htab))
17767 {
17768 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
17769 return FALSE;
17770 }
17771 else
17772 {
17773 bfd_boolean thumb_stub_p;
17774
17775 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
17776 if (thumb_stub_p)
17777 {
17778 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
17779 return FALSE;
17780 }
17781 #ifdef FOUR_WORD_PLT
17782 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
17783 return FALSE;
17784 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
17785 return FALSE;
17786 #else
17787 /* A three-word PLT with no Thumb thunk contains only Arm code,
17788 so only need to output a mapping symbol for the first PLT entry and
17789 entries with thumb thunks. */
17790 if (thumb_stub_p || addr == plt_header_size)
17791 {
17792 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
17793 return FALSE;
17794 }
17795 #endif
17796 }
17797
17798 return TRUE;
17799 }
17800
17801 /* Output mapping symbols for PLT entries associated with H. */
17802
17803 static bfd_boolean
17804 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
17805 {
17806 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
17807 struct elf32_arm_link_hash_entry *eh;
17808
17809 if (h->root.type == bfd_link_hash_indirect)
17810 return TRUE;
17811
17812 if (h->root.type == bfd_link_hash_warning)
17813 /* When warning symbols are created, they **replace** the "real"
17814 entry in the hash table, thus we never get to see the real
17815 symbol in a hash traversal. So look at it now. */
17816 h = (struct elf_link_hash_entry *) h->root.u.i.link;
17817
17818 eh = (struct elf32_arm_link_hash_entry *) h;
17819 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
17820 &h->plt, &eh->plt);
17821 }
17822
17823 /* Bind a veneered symbol to its veneer identified by its hash entry
17824 STUB_ENTRY. The veneered location thus loose its symbol. */
17825
17826 static void
17827 arm_stub_claim_sym (struct elf32_arm_stub_hash_entry *stub_entry)
17828 {
17829 struct elf32_arm_link_hash_entry *hash = stub_entry->h;
17830
17831 BFD_ASSERT (hash);
17832 hash->root.root.u.def.section = stub_entry->stub_sec;
17833 hash->root.root.u.def.value = stub_entry->stub_offset;
17834 hash->root.size = stub_entry->stub_size;
17835 }
17836
17837 /* Output a single local symbol for a generated stub. */
17838
17839 static bfd_boolean
17840 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
17841 bfd_vma offset, bfd_vma size)
17842 {
17843 Elf_Internal_Sym sym;
17844
17845 sym.st_value = osi->sec->output_section->vma
17846 + osi->sec->output_offset
17847 + offset;
17848 sym.st_size = size;
17849 sym.st_other = 0;
17850 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
17851 sym.st_shndx = osi->sec_shndx;
17852 sym.st_target_internal = 0;
17853 return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1;
17854 }
17855
17856 static bfd_boolean
17857 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
17858 void * in_arg)
17859 {
17860 struct elf32_arm_stub_hash_entry *stub_entry;
17861 asection *stub_sec;
17862 bfd_vma addr;
17863 char *stub_name;
17864 output_arch_syminfo *osi;
17865 const insn_sequence *template_sequence;
17866 enum stub_insn_type prev_type;
17867 int size;
17868 int i;
17869 enum map_symbol_type sym_type;
17870
17871 /* Massage our args to the form they really have. */
17872 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
17873 osi = (output_arch_syminfo *) in_arg;
17874
17875 stub_sec = stub_entry->stub_sec;
17876
17877 /* Ensure this stub is attached to the current section being
17878 processed. */
17879 if (stub_sec != osi->sec)
17880 return TRUE;
17881
17882 addr = (bfd_vma) stub_entry->stub_offset;
17883 template_sequence = stub_entry->stub_template;
17884
17885 if (arm_stub_sym_claimed (stub_entry->stub_type))
17886 arm_stub_claim_sym (stub_entry);
17887 else
17888 {
17889 stub_name = stub_entry->output_name;
17890 switch (template_sequence[0].type)
17891 {
17892 case ARM_TYPE:
17893 if (!elf32_arm_output_stub_sym (osi, stub_name, addr,
17894 stub_entry->stub_size))
17895 return FALSE;
17896 break;
17897 case THUMB16_TYPE:
17898 case THUMB32_TYPE:
17899 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
17900 stub_entry->stub_size))
17901 return FALSE;
17902 break;
17903 default:
17904 BFD_FAIL ();
17905 return 0;
17906 }
17907 }
17908
17909 prev_type = DATA_TYPE;
17910 size = 0;
17911 for (i = 0; i < stub_entry->stub_template_size; i++)
17912 {
17913 switch (template_sequence[i].type)
17914 {
17915 case ARM_TYPE:
17916 sym_type = ARM_MAP_ARM;
17917 break;
17918
17919 case THUMB16_TYPE:
17920 case THUMB32_TYPE:
17921 sym_type = ARM_MAP_THUMB;
17922 break;
17923
17924 case DATA_TYPE:
17925 sym_type = ARM_MAP_DATA;
17926 break;
17927
17928 default:
17929 BFD_FAIL ();
17930 return FALSE;
17931 }
17932
17933 if (template_sequence[i].type != prev_type)
17934 {
17935 prev_type = template_sequence[i].type;
17936 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
17937 return FALSE;
17938 }
17939
17940 switch (template_sequence[i].type)
17941 {
17942 case ARM_TYPE:
17943 case THUMB32_TYPE:
17944 size += 4;
17945 break;
17946
17947 case THUMB16_TYPE:
17948 size += 2;
17949 break;
17950
17951 case DATA_TYPE:
17952 size += 4;
17953 break;
17954
17955 default:
17956 BFD_FAIL ();
17957 return FALSE;
17958 }
17959 }
17960
17961 return TRUE;
17962 }
17963
17964 /* Output mapping symbols for linker generated sections,
17965 and for those data-only sections that do not have a
17966 $d. */
17967
17968 static bfd_boolean
17969 elf32_arm_output_arch_local_syms (bfd *output_bfd,
17970 struct bfd_link_info *info,
17971 void *flaginfo,
17972 int (*func) (void *, const char *,
17973 Elf_Internal_Sym *,
17974 asection *,
17975 struct elf_link_hash_entry *))
17976 {
17977 output_arch_syminfo osi;
17978 struct elf32_arm_link_hash_table *htab;
17979 bfd_vma offset;
17980 bfd_size_type size;
17981 bfd *input_bfd;
17982
17983 htab = elf32_arm_hash_table (info);
17984 if (htab == NULL)
17985 return FALSE;
17986
17987 check_use_blx (htab);
17988
17989 osi.flaginfo = flaginfo;
17990 osi.info = info;
17991 osi.func = func;
17992
17993 /* Add a $d mapping symbol to data-only sections that
17994 don't have any mapping symbol. This may result in (harmless) redundant
17995 mapping symbols. */
17996 for (input_bfd = info->input_bfds;
17997 input_bfd != NULL;
17998 input_bfd = input_bfd->link.next)
17999 {
18000 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
18001 for (osi.sec = input_bfd->sections;
18002 osi.sec != NULL;
18003 osi.sec = osi.sec->next)
18004 {
18005 if (osi.sec->output_section != NULL
18006 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
18007 != 0)
18008 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
18009 == SEC_HAS_CONTENTS
18010 && get_arm_elf_section_data (osi.sec) != NULL
18011 && get_arm_elf_section_data (osi.sec)->mapcount == 0
18012 && osi.sec->size > 0
18013 && (osi.sec->flags & SEC_EXCLUDE) == 0)
18014 {
18015 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18016 (output_bfd, osi.sec->output_section);
18017 if (osi.sec_shndx != (int)SHN_BAD)
18018 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
18019 }
18020 }
18021 }
18022
18023 /* ARM->Thumb glue. */
18024 if (htab->arm_glue_size > 0)
18025 {
18026 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18027 ARM2THUMB_GLUE_SECTION_NAME);
18028
18029 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18030 (output_bfd, osi.sec->output_section);
18031 if (bfd_link_pic (info) || htab->root.is_relocatable_executable
18032 || htab->pic_veneer)
18033 size = ARM2THUMB_PIC_GLUE_SIZE;
18034 else if (htab->use_blx)
18035 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
18036 else
18037 size = ARM2THUMB_STATIC_GLUE_SIZE;
18038
18039 for (offset = 0; offset < htab->arm_glue_size; offset += size)
18040 {
18041 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
18042 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
18043 }
18044 }
18045
18046 /* Thumb->ARM glue. */
18047 if (htab->thumb_glue_size > 0)
18048 {
18049 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18050 THUMB2ARM_GLUE_SECTION_NAME);
18051
18052 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18053 (output_bfd, osi.sec->output_section);
18054 size = THUMB2ARM_GLUE_SIZE;
18055
18056 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
18057 {
18058 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
18059 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
18060 }
18061 }
18062
18063 /* ARMv4 BX veneers. */
18064 if (htab->bx_glue_size > 0)
18065 {
18066 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18067 ARM_BX_GLUE_SECTION_NAME);
18068
18069 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18070 (output_bfd, osi.sec->output_section);
18071
18072 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
18073 }
18074
18075 /* Long calls stubs. */
18076 if (htab->stub_bfd && htab->stub_bfd->sections)
18077 {
18078 asection* stub_sec;
18079
18080 for (stub_sec = htab->stub_bfd->sections;
18081 stub_sec != NULL;
18082 stub_sec = stub_sec->next)
18083 {
18084 /* Ignore non-stub sections. */
18085 if (!strstr (stub_sec->name, STUB_SUFFIX))
18086 continue;
18087
18088 osi.sec = stub_sec;
18089
18090 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18091 (output_bfd, osi.sec->output_section);
18092
18093 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
18094 }
18095 }
18096
18097 /* Finally, output mapping symbols for the PLT. */
18098 if (htab->root.splt && htab->root.splt->size > 0)
18099 {
18100 osi.sec = htab->root.splt;
18101 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
18102 (output_bfd, osi.sec->output_section));
18103
18104 /* Output mapping symbols for the plt header. SymbianOS does not have a
18105 plt header. */
18106 if (htab->vxworks_p)
18107 {
18108 /* VxWorks shared libraries have no PLT header. */
18109 if (!bfd_link_pic (info))
18110 {
18111 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18112 return FALSE;
18113 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
18114 return FALSE;
18115 }
18116 }
18117 else if (htab->nacl_p)
18118 {
18119 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18120 return FALSE;
18121 }
18122 else if (using_thumb_only (htab))
18123 {
18124 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 0))
18125 return FALSE;
18126 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
18127 return FALSE;
18128 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 16))
18129 return FALSE;
18130 }
18131 else if (!htab->symbian_p && !htab->fdpic_p)
18132 {
18133 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18134 return FALSE;
18135 #ifndef FOUR_WORD_PLT
18136 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
18137 return FALSE;
18138 #endif
18139 }
18140 }
18141 if (htab->nacl_p && htab->root.iplt && htab->root.iplt->size > 0)
18142 {
18143 /* NaCl uses a special first entry in .iplt too. */
18144 osi.sec = htab->root.iplt;
18145 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
18146 (output_bfd, osi.sec->output_section));
18147 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18148 return FALSE;
18149 }
18150 if ((htab->root.splt && htab->root.splt->size > 0)
18151 || (htab->root.iplt && htab->root.iplt->size > 0))
18152 {
18153 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
18154 for (input_bfd = info->input_bfds;
18155 input_bfd != NULL;
18156 input_bfd = input_bfd->link.next)
18157 {
18158 struct arm_local_iplt_info **local_iplt;
18159 unsigned int i, num_syms;
18160
18161 local_iplt = elf32_arm_local_iplt (input_bfd);
18162 if (local_iplt != NULL)
18163 {
18164 num_syms = elf_symtab_hdr (input_bfd).sh_info;
18165 for (i = 0; i < num_syms; i++)
18166 if (local_iplt[i] != NULL
18167 && !elf32_arm_output_plt_map_1 (&osi, TRUE,
18168 &local_iplt[i]->root,
18169 &local_iplt[i]->arm))
18170 return FALSE;
18171 }
18172 }
18173 }
18174 if (htab->dt_tlsdesc_plt != 0)
18175 {
18176 /* Mapping symbols for the lazy tls trampoline. */
18177 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
18178 return FALSE;
18179
18180 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
18181 htab->dt_tlsdesc_plt + 24))
18182 return FALSE;
18183 }
18184 if (htab->tls_trampoline != 0)
18185 {
18186 /* Mapping symbols for the tls trampoline. */
18187 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
18188 return FALSE;
18189 #ifdef FOUR_WORD_PLT
18190 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
18191 htab->tls_trampoline + 12))
18192 return FALSE;
18193 #endif
18194 }
18195
18196 return TRUE;
18197 }
18198
18199 /* Filter normal symbols of CMSE entry functions of ABFD to include in
18200 the import library. All SYMCOUNT symbols of ABFD can be examined
18201 from their pointers in SYMS. Pointers of symbols to keep should be
18202 stored continuously at the beginning of that array.
18203
18204 Returns the number of symbols to keep. */
18205
18206 static unsigned int
18207 elf32_arm_filter_cmse_symbols (bfd *abfd ATTRIBUTE_UNUSED,
18208 struct bfd_link_info *info,
18209 asymbol **syms, long symcount)
18210 {
18211 size_t maxnamelen;
18212 char *cmse_name;
18213 long src_count, dst_count = 0;
18214 struct elf32_arm_link_hash_table *htab;
18215
18216 htab = elf32_arm_hash_table (info);
18217 if (!htab->stub_bfd || !htab->stub_bfd->sections)
18218 symcount = 0;
18219
18220 maxnamelen = 128;
18221 cmse_name = (char *) bfd_malloc (maxnamelen);
18222 for (src_count = 0; src_count < symcount; src_count++)
18223 {
18224 struct elf32_arm_link_hash_entry *cmse_hash;
18225 asymbol *sym;
18226 flagword flags;
18227 char *name;
18228 size_t namelen;
18229
18230 sym = syms[src_count];
18231 flags = sym->flags;
18232 name = (char *) bfd_asymbol_name (sym);
18233
18234 if ((flags & BSF_FUNCTION) != BSF_FUNCTION)
18235 continue;
18236 if (!(flags & (BSF_GLOBAL | BSF_WEAK)))
18237 continue;
18238
18239 namelen = strlen (name) + sizeof (CMSE_PREFIX) + 1;
18240 if (namelen > maxnamelen)
18241 {
18242 cmse_name = (char *)
18243 bfd_realloc (cmse_name, namelen);
18244 maxnamelen = namelen;
18245 }
18246 snprintf (cmse_name, maxnamelen, "%s%s", CMSE_PREFIX, name);
18247 cmse_hash = (struct elf32_arm_link_hash_entry *)
18248 elf_link_hash_lookup (&(htab)->root, cmse_name, FALSE, FALSE, TRUE);
18249
18250 if (!cmse_hash
18251 || (cmse_hash->root.root.type != bfd_link_hash_defined
18252 && cmse_hash->root.root.type != bfd_link_hash_defweak)
18253 || cmse_hash->root.type != STT_FUNC)
18254 continue;
18255
18256 if (!ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
18257 continue;
18258
18259 syms[dst_count++] = sym;
18260 }
18261 free (cmse_name);
18262
18263 syms[dst_count] = NULL;
18264
18265 return dst_count;
18266 }
18267
18268 /* Filter symbols of ABFD to include in the import library. All
18269 SYMCOUNT symbols of ABFD can be examined from their pointers in
18270 SYMS. Pointers of symbols to keep should be stored continuously at
18271 the beginning of that array.
18272
18273 Returns the number of symbols to keep. */
18274
18275 static unsigned int
18276 elf32_arm_filter_implib_symbols (bfd *abfd ATTRIBUTE_UNUSED,
18277 struct bfd_link_info *info,
18278 asymbol **syms, long symcount)
18279 {
18280 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
18281
18282 /* Requirement 8 of "ARM v8-M Security Extensions: Requirements on
18283 Development Tools" (ARM-ECM-0359818) mandates Secure Gateway import
18284 library to be a relocatable object file. */
18285 BFD_ASSERT (!(bfd_get_file_flags (info->out_implib_bfd) & EXEC_P));
18286 if (globals->cmse_implib)
18287 return elf32_arm_filter_cmse_symbols (abfd, info, syms, symcount);
18288 else
18289 return _bfd_elf_filter_global_symbols (abfd, info, syms, symcount);
18290 }
18291
18292 /* Allocate target specific section data. */
18293
18294 static bfd_boolean
18295 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
18296 {
18297 if (!sec->used_by_bfd)
18298 {
18299 _arm_elf_section_data *sdata;
18300 bfd_size_type amt = sizeof (*sdata);
18301
18302 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
18303 if (sdata == NULL)
18304 return FALSE;
18305 sec->used_by_bfd = sdata;
18306 }
18307
18308 return _bfd_elf_new_section_hook (abfd, sec);
18309 }
18310
18311
18312 /* Used to order a list of mapping symbols by address. */
18313
18314 static int
18315 elf32_arm_compare_mapping (const void * a, const void * b)
18316 {
18317 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
18318 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
18319
18320 if (amap->vma > bmap->vma)
18321 return 1;
18322 else if (amap->vma < bmap->vma)
18323 return -1;
18324 else if (amap->type > bmap->type)
18325 /* Ensure results do not depend on the host qsort for objects with
18326 multiple mapping symbols at the same address by sorting on type
18327 after vma. */
18328 return 1;
18329 else if (amap->type < bmap->type)
18330 return -1;
18331 else
18332 return 0;
18333 }
18334
18335 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
18336
18337 static unsigned long
18338 offset_prel31 (unsigned long addr, bfd_vma offset)
18339 {
18340 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
18341 }
18342
18343 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
18344 relocations. */
18345
18346 static void
18347 copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
18348 {
18349 unsigned long first_word = bfd_get_32 (output_bfd, from);
18350 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
18351
18352 /* High bit of first word is supposed to be zero. */
18353 if ((first_word & 0x80000000ul) == 0)
18354 first_word = offset_prel31 (first_word, offset);
18355
18356 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
18357 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
18358 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
18359 second_word = offset_prel31 (second_word, offset);
18360
18361 bfd_put_32 (output_bfd, first_word, to);
18362 bfd_put_32 (output_bfd, second_word, to + 4);
18363 }
18364
18365 /* Data for make_branch_to_a8_stub(). */
18366
18367 struct a8_branch_to_stub_data
18368 {
18369 asection *writing_section;
18370 bfd_byte *contents;
18371 };
18372
18373
18374 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
18375 places for a particular section. */
18376
18377 static bfd_boolean
18378 make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
18379 void *in_arg)
18380 {
18381 struct elf32_arm_stub_hash_entry *stub_entry;
18382 struct a8_branch_to_stub_data *data;
18383 bfd_byte *contents;
18384 unsigned long branch_insn;
18385 bfd_vma veneered_insn_loc, veneer_entry_loc;
18386 bfd_signed_vma branch_offset;
18387 bfd *abfd;
18388 unsigned int loc;
18389
18390 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
18391 data = (struct a8_branch_to_stub_data *) in_arg;
18392
18393 if (stub_entry->target_section != data->writing_section
18394 || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
18395 return TRUE;
18396
18397 contents = data->contents;
18398
18399 /* We use target_section as Cortex-A8 erratum workaround stubs are only
18400 generated when both source and target are in the same section. */
18401 veneered_insn_loc = stub_entry->target_section->output_section->vma
18402 + stub_entry->target_section->output_offset
18403 + stub_entry->source_value;
18404
18405 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
18406 + stub_entry->stub_sec->output_offset
18407 + stub_entry->stub_offset;
18408
18409 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
18410 veneered_insn_loc &= ~3u;
18411
18412 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
18413
18414 abfd = stub_entry->target_section->owner;
18415 loc = stub_entry->source_value;
18416
18417 /* We attempt to avoid this condition by setting stubs_always_after_branch
18418 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
18419 This check is just to be on the safe side... */
18420 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
18421 {
18422 _bfd_error_handler (_("%pB: error: Cortex-A8 erratum stub is "
18423 "allocated in unsafe location"), abfd);
18424 return FALSE;
18425 }
18426
18427 switch (stub_entry->stub_type)
18428 {
18429 case arm_stub_a8_veneer_b:
18430 case arm_stub_a8_veneer_b_cond:
18431 branch_insn = 0xf0009000;
18432 goto jump24;
18433
18434 case arm_stub_a8_veneer_blx:
18435 branch_insn = 0xf000e800;
18436 goto jump24;
18437
18438 case arm_stub_a8_veneer_bl:
18439 {
18440 unsigned int i1, j1, i2, j2, s;
18441
18442 branch_insn = 0xf000d000;
18443
18444 jump24:
18445 if (branch_offset < -16777216 || branch_offset > 16777214)
18446 {
18447 /* There's not much we can do apart from complain if this
18448 happens. */
18449 _bfd_error_handler (_("%pB: error: Cortex-A8 erratum stub out "
18450 "of range (input file too large)"), abfd);
18451 return FALSE;
18452 }
18453
18454 /* i1 = not(j1 eor s), so:
18455 not i1 = j1 eor s
18456 j1 = (not i1) eor s. */
18457
18458 branch_insn |= (branch_offset >> 1) & 0x7ff;
18459 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
18460 i2 = (branch_offset >> 22) & 1;
18461 i1 = (branch_offset >> 23) & 1;
18462 s = (branch_offset >> 24) & 1;
18463 j1 = (!i1) ^ s;
18464 j2 = (!i2) ^ s;
18465 branch_insn |= j2 << 11;
18466 branch_insn |= j1 << 13;
18467 branch_insn |= s << 26;
18468 }
18469 break;
18470
18471 default:
18472 BFD_FAIL ();
18473 return FALSE;
18474 }
18475
18476 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[loc]);
18477 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[loc + 2]);
18478
18479 return TRUE;
18480 }
18481
18482 /* Beginning of stm32l4xx work-around. */
18483
18484 /* Functions encoding instructions necessary for the emission of the
18485 fix-stm32l4xx-629360.
18486 Encoding is extracted from the
18487 ARM (C) Architecture Reference Manual
18488 ARMv7-A and ARMv7-R edition
18489 ARM DDI 0406C.b (ID072512). */
18490
18491 static inline bfd_vma
18492 create_instruction_branch_absolute (int branch_offset)
18493 {
18494 /* A8.8.18 B (A8-334)
18495 B target_address (Encoding T4). */
18496 /* 1111 - 0Sii - iiii - iiii - 10J1 - Jiii - iiii - iiii. */
18497 /* jump offset is: S:I1:I2:imm10:imm11:0. */
18498 /* with : I1 = NOT (J1 EOR S) I2 = NOT (J2 EOR S). */
18499
18500 int s = ((branch_offset & 0x1000000) >> 24);
18501 int j1 = s ^ !((branch_offset & 0x800000) >> 23);
18502 int j2 = s ^ !((branch_offset & 0x400000) >> 22);
18503
18504 if (branch_offset < -(1 << 24) || branch_offset >= (1 << 24))
18505 BFD_ASSERT (0 && "Error: branch out of range. Cannot create branch.");
18506
18507 bfd_vma patched_inst = 0xf0009000
18508 | s << 26 /* S. */
18509 | (((unsigned long) (branch_offset) >> 12) & 0x3ff) << 16 /* imm10. */
18510 | j1 << 13 /* J1. */
18511 | j2 << 11 /* J2. */
18512 | (((unsigned long) (branch_offset) >> 1) & 0x7ff); /* imm11. */
18513
18514 return patched_inst;
18515 }
18516
18517 static inline bfd_vma
18518 create_instruction_ldmia (int base_reg, int wback, int reg_mask)
18519 {
18520 /* A8.8.57 LDM/LDMIA/LDMFD (A8-396)
18521 LDMIA Rn!, {Ra, Rb, Rc, ...} (Encoding T2). */
18522 bfd_vma patched_inst = 0xe8900000
18523 | (/*W=*/wback << 21)
18524 | (base_reg << 16)
18525 | (reg_mask & 0x0000ffff);
18526
18527 return patched_inst;
18528 }
18529
18530 static inline bfd_vma
18531 create_instruction_ldmdb (int base_reg, int wback, int reg_mask)
18532 {
18533 /* A8.8.60 LDMDB/LDMEA (A8-402)
18534 LDMDB Rn!, {Ra, Rb, Rc, ...} (Encoding T1). */
18535 bfd_vma patched_inst = 0xe9100000
18536 | (/*W=*/wback << 21)
18537 | (base_reg << 16)
18538 | (reg_mask & 0x0000ffff);
18539
18540 return patched_inst;
18541 }
18542
18543 static inline bfd_vma
18544 create_instruction_mov (int target_reg, int source_reg)
18545 {
18546 /* A8.8.103 MOV (register) (A8-486)
18547 MOV Rd, Rm (Encoding T1). */
18548 bfd_vma patched_inst = 0x4600
18549 | (target_reg & 0x7)
18550 | ((target_reg & 0x8) >> 3) << 7
18551 | (source_reg << 3);
18552
18553 return patched_inst;
18554 }
18555
18556 static inline bfd_vma
18557 create_instruction_sub (int target_reg, int source_reg, int value)
18558 {
18559 /* A8.8.221 SUB (immediate) (A8-708)
18560 SUB Rd, Rn, #value (Encoding T3). */
18561 bfd_vma patched_inst = 0xf1a00000
18562 | (target_reg << 8)
18563 | (source_reg << 16)
18564 | (/*S=*/0 << 20)
18565 | ((value & 0x800) >> 11) << 26
18566 | ((value & 0x700) >> 8) << 12
18567 | (value & 0x0ff);
18568
18569 return patched_inst;
18570 }
18571
18572 static inline bfd_vma
18573 create_instruction_vldmia (int base_reg, int is_dp, int wback, int num_words,
18574 int first_reg)
18575 {
18576 /* A8.8.332 VLDM (A8-922)
18577 VLMD{MODE} Rn{!}, {list} (Encoding T1 or T2). */
18578 bfd_vma patched_inst = (is_dp ? 0xec900b00 : 0xec900a00)
18579 | (/*W=*/wback << 21)
18580 | (base_reg << 16)
18581 | (num_words & 0x000000ff)
18582 | (((unsigned)first_reg >> 1) & 0x0000000f) << 12
18583 | (first_reg & 0x00000001) << 22;
18584
18585 return patched_inst;
18586 }
18587
18588 static inline bfd_vma
18589 create_instruction_vldmdb (int base_reg, int is_dp, int num_words,
18590 int first_reg)
18591 {
18592 /* A8.8.332 VLDM (A8-922)
18593 VLMD{MODE} Rn!, {} (Encoding T1 or T2). */
18594 bfd_vma patched_inst = (is_dp ? 0xed300b00 : 0xed300a00)
18595 | (base_reg << 16)
18596 | (num_words & 0x000000ff)
18597 | (((unsigned)first_reg >>1 ) & 0x0000000f) << 12
18598 | (first_reg & 0x00000001) << 22;
18599
18600 return patched_inst;
18601 }
18602
18603 static inline bfd_vma
18604 create_instruction_udf_w (int value)
18605 {
18606 /* A8.8.247 UDF (A8-758)
18607 Undefined (Encoding T2). */
18608 bfd_vma patched_inst = 0xf7f0a000
18609 | (value & 0x00000fff)
18610 | (value & 0x000f0000) << 16;
18611
18612 return patched_inst;
18613 }
18614
18615 static inline bfd_vma
18616 create_instruction_udf (int value)
18617 {
18618 /* A8.8.247 UDF (A8-758)
18619 Undefined (Encoding T1). */
18620 bfd_vma patched_inst = 0xde00
18621 | (value & 0xff);
18622
18623 return patched_inst;
18624 }
18625
18626 /* Functions writing an instruction in memory, returning the next
18627 memory position to write to. */
18628
18629 static inline bfd_byte *
18630 push_thumb2_insn32 (struct elf32_arm_link_hash_table * htab,
18631 bfd * output_bfd, bfd_byte *pt, insn32 insn)
18632 {
18633 put_thumb2_insn (htab, output_bfd, insn, pt);
18634 return pt + 4;
18635 }
18636
18637 static inline bfd_byte *
18638 push_thumb2_insn16 (struct elf32_arm_link_hash_table * htab,
18639 bfd * output_bfd, bfd_byte *pt, insn32 insn)
18640 {
18641 put_thumb_insn (htab, output_bfd, insn, pt);
18642 return pt + 2;
18643 }
18644
18645 /* Function filling up a region in memory with T1 and T2 UDFs taking
18646 care of alignment. */
18647
18648 static bfd_byte *
18649 stm32l4xx_fill_stub_udf (struct elf32_arm_link_hash_table * htab,
18650 bfd * output_bfd,
18651 const bfd_byte * const base_stub_contents,
18652 bfd_byte * const from_stub_contents,
18653 const bfd_byte * const end_stub_contents)
18654 {
18655 bfd_byte *current_stub_contents = from_stub_contents;
18656
18657 /* Fill the remaining of the stub with deterministic contents : UDF
18658 instructions.
18659 Check if realignment is needed on modulo 4 frontier using T1, to
18660 further use T2. */
18661 if ((current_stub_contents < end_stub_contents)
18662 && !((current_stub_contents - base_stub_contents) % 2)
18663 && ((current_stub_contents - base_stub_contents) % 4))
18664 current_stub_contents =
18665 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18666 create_instruction_udf (0));
18667
18668 for (; current_stub_contents < end_stub_contents;)
18669 current_stub_contents =
18670 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18671 create_instruction_udf_w (0));
18672
18673 return current_stub_contents;
18674 }
18675
18676 /* Functions writing the stream of instructions equivalent to the
18677 derived sequence for ldmia, ldmdb, vldm respectively. */
18678
18679 static void
18680 stm32l4xx_create_replacing_stub_ldmia (struct elf32_arm_link_hash_table * htab,
18681 bfd * output_bfd,
18682 const insn32 initial_insn,
18683 const bfd_byte *const initial_insn_addr,
18684 bfd_byte *const base_stub_contents)
18685 {
18686 int wback = (initial_insn & 0x00200000) >> 21;
18687 int ri, rn = (initial_insn & 0x000F0000) >> 16;
18688 int insn_all_registers = initial_insn & 0x0000ffff;
18689 int insn_low_registers, insn_high_registers;
18690 int usable_register_mask;
18691 int nb_registers = elf32_arm_popcount (insn_all_registers);
18692 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
18693 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
18694 bfd_byte *current_stub_contents = base_stub_contents;
18695
18696 BFD_ASSERT (is_thumb2_ldmia (initial_insn));
18697
18698 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
18699 smaller than 8 registers load sequences that do not cause the
18700 hardware issue. */
18701 if (nb_registers <= 8)
18702 {
18703 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
18704 current_stub_contents =
18705 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18706 initial_insn);
18707
18708 /* B initial_insn_addr+4. */
18709 if (!restore_pc)
18710 current_stub_contents =
18711 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18712 create_instruction_branch_absolute
18713 (initial_insn_addr - current_stub_contents));
18714
18715 /* Fill the remaining of the stub with deterministic contents. */
18716 current_stub_contents =
18717 stm32l4xx_fill_stub_udf (htab, output_bfd,
18718 base_stub_contents, current_stub_contents,
18719 base_stub_contents +
18720 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
18721
18722 return;
18723 }
18724
18725 /* - reg_list[13] == 0. */
18726 BFD_ASSERT ((insn_all_registers & (1 << 13))==0);
18727
18728 /* - reg_list[14] & reg_list[15] != 1. */
18729 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
18730
18731 /* - if (wback==1) reg_list[rn] == 0. */
18732 BFD_ASSERT (!wback || !restore_rn);
18733
18734 /* - nb_registers > 8. */
18735 BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8);
18736
18737 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
18738
18739 /* In the following algorithm, we split this wide LDM using 2 LDM insns:
18740 - One with the 7 lowest registers (register mask 0x007F)
18741 This LDM will finally contain between 2 and 7 registers
18742 - One with the 7 highest registers (register mask 0xDF80)
18743 This ldm will finally contain between 2 and 7 registers. */
18744 insn_low_registers = insn_all_registers & 0x007F;
18745 insn_high_registers = insn_all_registers & 0xDF80;
18746
18747 /* A spare register may be needed during this veneer to temporarily
18748 handle the base register. This register will be restored with the
18749 last LDM operation.
18750 The usable register may be any general purpose register (that
18751 excludes PC, SP, LR : register mask is 0x1FFF). */
18752 usable_register_mask = 0x1FFF;
18753
18754 /* Generate the stub function. */
18755 if (wback)
18756 {
18757 /* LDMIA Rn!, {R-low-register-list} : (Encoding T2). */
18758 current_stub_contents =
18759 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18760 create_instruction_ldmia
18761 (rn, /*wback=*/1, insn_low_registers));
18762
18763 /* LDMIA Rn!, {R-high-register-list} : (Encoding T2). */
18764 current_stub_contents =
18765 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18766 create_instruction_ldmia
18767 (rn, /*wback=*/1, insn_high_registers));
18768 if (!restore_pc)
18769 {
18770 /* B initial_insn_addr+4. */
18771 current_stub_contents =
18772 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18773 create_instruction_branch_absolute
18774 (initial_insn_addr - current_stub_contents));
18775 }
18776 }
18777 else /* if (!wback). */
18778 {
18779 ri = rn;
18780
18781 /* If Rn is not part of the high-register-list, move it there. */
18782 if (!(insn_high_registers & (1 << rn)))
18783 {
18784 /* Choose a Ri in the high-register-list that will be restored. */
18785 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18786
18787 /* MOV Ri, Rn. */
18788 current_stub_contents =
18789 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18790 create_instruction_mov (ri, rn));
18791 }
18792
18793 /* LDMIA Ri!, {R-low-register-list} : (Encoding T2). */
18794 current_stub_contents =
18795 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18796 create_instruction_ldmia
18797 (ri, /*wback=*/1, insn_low_registers));
18798
18799 /* LDMIA Ri, {R-high-register-list} : (Encoding T2). */
18800 current_stub_contents =
18801 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18802 create_instruction_ldmia
18803 (ri, /*wback=*/0, insn_high_registers));
18804
18805 if (!restore_pc)
18806 {
18807 /* B initial_insn_addr+4. */
18808 current_stub_contents =
18809 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18810 create_instruction_branch_absolute
18811 (initial_insn_addr - current_stub_contents));
18812 }
18813 }
18814
18815 /* Fill the remaining of the stub with deterministic contents. */
18816 current_stub_contents =
18817 stm32l4xx_fill_stub_udf (htab, output_bfd,
18818 base_stub_contents, current_stub_contents,
18819 base_stub_contents +
18820 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
18821 }
18822
18823 static void
18824 stm32l4xx_create_replacing_stub_ldmdb (struct elf32_arm_link_hash_table * htab,
18825 bfd * output_bfd,
18826 const insn32 initial_insn,
18827 const bfd_byte *const initial_insn_addr,
18828 bfd_byte *const base_stub_contents)
18829 {
18830 int wback = (initial_insn & 0x00200000) >> 21;
18831 int ri, rn = (initial_insn & 0x000f0000) >> 16;
18832 int insn_all_registers = initial_insn & 0x0000ffff;
18833 int insn_low_registers, insn_high_registers;
18834 int usable_register_mask;
18835 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
18836 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
18837 int nb_registers = elf32_arm_popcount (insn_all_registers);
18838 bfd_byte *current_stub_contents = base_stub_contents;
18839
18840 BFD_ASSERT (is_thumb2_ldmdb (initial_insn));
18841
18842 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
18843 smaller than 8 registers load sequences that do not cause the
18844 hardware issue. */
18845 if (nb_registers <= 8)
18846 {
18847 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
18848 current_stub_contents =
18849 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18850 initial_insn);
18851
18852 /* B initial_insn_addr+4. */
18853 current_stub_contents =
18854 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18855 create_instruction_branch_absolute
18856 (initial_insn_addr - current_stub_contents));
18857
18858 /* Fill the remaining of the stub with deterministic contents. */
18859 current_stub_contents =
18860 stm32l4xx_fill_stub_udf (htab, output_bfd,
18861 base_stub_contents, current_stub_contents,
18862 base_stub_contents +
18863 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
18864
18865 return;
18866 }
18867
18868 /* - reg_list[13] == 0. */
18869 BFD_ASSERT ((insn_all_registers & (1 << 13)) == 0);
18870
18871 /* - reg_list[14] & reg_list[15] != 1. */
18872 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
18873
18874 /* - if (wback==1) reg_list[rn] == 0. */
18875 BFD_ASSERT (!wback || !restore_rn);
18876
18877 /* - nb_registers > 8. */
18878 BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8);
18879
18880 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
18881
18882 /* In the following algorithm, we split this wide LDM using 2 LDM insn:
18883 - One with the 7 lowest registers (register mask 0x007F)
18884 This LDM will finally contain between 2 and 7 registers
18885 - One with the 7 highest registers (register mask 0xDF80)
18886 This ldm will finally contain between 2 and 7 registers. */
18887 insn_low_registers = insn_all_registers & 0x007F;
18888 insn_high_registers = insn_all_registers & 0xDF80;
18889
18890 /* A spare register may be needed during this veneer to temporarily
18891 handle the base register. This register will be restored with
18892 the last LDM operation.
18893 The usable register may be any general purpose register (that excludes
18894 PC, SP, LR : register mask is 0x1FFF). */
18895 usable_register_mask = 0x1FFF;
18896
18897 /* Generate the stub function. */
18898 if (!wback && !restore_pc && !restore_rn)
18899 {
18900 /* Choose a Ri in the low-register-list that will be restored. */
18901 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
18902
18903 /* MOV Ri, Rn. */
18904 current_stub_contents =
18905 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18906 create_instruction_mov (ri, rn));
18907
18908 /* LDMDB Ri!, {R-high-register-list}. */
18909 current_stub_contents =
18910 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18911 create_instruction_ldmdb
18912 (ri, /*wback=*/1, insn_high_registers));
18913
18914 /* LDMDB Ri, {R-low-register-list}. */
18915 current_stub_contents =
18916 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18917 create_instruction_ldmdb
18918 (ri, /*wback=*/0, insn_low_registers));
18919
18920 /* B initial_insn_addr+4. */
18921 current_stub_contents =
18922 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18923 create_instruction_branch_absolute
18924 (initial_insn_addr - current_stub_contents));
18925 }
18926 else if (wback && !restore_pc && !restore_rn)
18927 {
18928 /* LDMDB Rn!, {R-high-register-list}. */
18929 current_stub_contents =
18930 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18931 create_instruction_ldmdb
18932 (rn, /*wback=*/1, insn_high_registers));
18933
18934 /* LDMDB Rn!, {R-low-register-list}. */
18935 current_stub_contents =
18936 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18937 create_instruction_ldmdb
18938 (rn, /*wback=*/1, insn_low_registers));
18939
18940 /* B initial_insn_addr+4. */
18941 current_stub_contents =
18942 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18943 create_instruction_branch_absolute
18944 (initial_insn_addr - current_stub_contents));
18945 }
18946 else if (!wback && restore_pc && !restore_rn)
18947 {
18948 /* Choose a Ri in the high-register-list that will be restored. */
18949 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18950
18951 /* SUB Ri, Rn, #(4*nb_registers). */
18952 current_stub_contents =
18953 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18954 create_instruction_sub (ri, rn, (4 * nb_registers)));
18955
18956 /* LDMIA Ri!, {R-low-register-list}. */
18957 current_stub_contents =
18958 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18959 create_instruction_ldmia
18960 (ri, /*wback=*/1, insn_low_registers));
18961
18962 /* LDMIA Ri, {R-high-register-list}. */
18963 current_stub_contents =
18964 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18965 create_instruction_ldmia
18966 (ri, /*wback=*/0, insn_high_registers));
18967 }
18968 else if (wback && restore_pc && !restore_rn)
18969 {
18970 /* Choose a Ri in the high-register-list that will be restored. */
18971 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18972
18973 /* SUB Rn, Rn, #(4*nb_registers) */
18974 current_stub_contents =
18975 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18976 create_instruction_sub (rn, rn, (4 * nb_registers)));
18977
18978 /* MOV Ri, Rn. */
18979 current_stub_contents =
18980 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18981 create_instruction_mov (ri, rn));
18982
18983 /* LDMIA Ri!, {R-low-register-list}. */
18984 current_stub_contents =
18985 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18986 create_instruction_ldmia
18987 (ri, /*wback=*/1, insn_low_registers));
18988
18989 /* LDMIA Ri, {R-high-register-list}. */
18990 current_stub_contents =
18991 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18992 create_instruction_ldmia
18993 (ri, /*wback=*/0, insn_high_registers));
18994 }
18995 else if (!wback && !restore_pc && restore_rn)
18996 {
18997 ri = rn;
18998 if (!(insn_low_registers & (1 << rn)))
18999 {
19000 /* Choose a Ri in the low-register-list that will be restored. */
19001 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
19002
19003 /* MOV Ri, Rn. */
19004 current_stub_contents =
19005 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19006 create_instruction_mov (ri, rn));
19007 }
19008
19009 /* LDMDB Ri!, {R-high-register-list}. */
19010 current_stub_contents =
19011 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19012 create_instruction_ldmdb
19013 (ri, /*wback=*/1, insn_high_registers));
19014
19015 /* LDMDB Ri, {R-low-register-list}. */
19016 current_stub_contents =
19017 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19018 create_instruction_ldmdb
19019 (ri, /*wback=*/0, insn_low_registers));
19020
19021 /* B initial_insn_addr+4. */
19022 current_stub_contents =
19023 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19024 create_instruction_branch_absolute
19025 (initial_insn_addr - current_stub_contents));
19026 }
19027 else if (!wback && restore_pc && restore_rn)
19028 {
19029 ri = rn;
19030 if (!(insn_high_registers & (1 << rn)))
19031 {
19032 /* Choose a Ri in the high-register-list that will be restored. */
19033 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19034 }
19035
19036 /* SUB Ri, Rn, #(4*nb_registers). */
19037 current_stub_contents =
19038 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19039 create_instruction_sub (ri, rn, (4 * nb_registers)));
19040
19041 /* LDMIA Ri!, {R-low-register-list}. */
19042 current_stub_contents =
19043 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19044 create_instruction_ldmia
19045 (ri, /*wback=*/1, insn_low_registers));
19046
19047 /* LDMIA Ri, {R-high-register-list}. */
19048 current_stub_contents =
19049 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19050 create_instruction_ldmia
19051 (ri, /*wback=*/0, insn_high_registers));
19052 }
19053 else if (wback && restore_rn)
19054 {
19055 /* The assembler should not have accepted to encode this. */
19056 BFD_ASSERT (0 && "Cannot patch an instruction that has an "
19057 "undefined behavior.\n");
19058 }
19059
19060 /* Fill the remaining of the stub with deterministic contents. */
19061 current_stub_contents =
19062 stm32l4xx_fill_stub_udf (htab, output_bfd,
19063 base_stub_contents, current_stub_contents,
19064 base_stub_contents +
19065 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19066
19067 }
19068
19069 static void
19070 stm32l4xx_create_replacing_stub_vldm (struct elf32_arm_link_hash_table * htab,
19071 bfd * output_bfd,
19072 const insn32 initial_insn,
19073 const bfd_byte *const initial_insn_addr,
19074 bfd_byte *const base_stub_contents)
19075 {
19076 int num_words = ((unsigned int) initial_insn << 24) >> 24;
19077 bfd_byte *current_stub_contents = base_stub_contents;
19078
19079 BFD_ASSERT (is_thumb2_vldm (initial_insn));
19080
19081 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
19082 smaller than 8 words load sequences that do not cause the
19083 hardware issue. */
19084 if (num_words <= 8)
19085 {
19086 /* Untouched instruction. */
19087 current_stub_contents =
19088 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19089 initial_insn);
19090
19091 /* B initial_insn_addr+4. */
19092 current_stub_contents =
19093 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19094 create_instruction_branch_absolute
19095 (initial_insn_addr - current_stub_contents));
19096 }
19097 else
19098 {
19099 bfd_boolean is_dp = /* DP encoding. */
19100 (initial_insn & 0xfe100f00) == 0xec100b00;
19101 bfd_boolean is_ia_nobang = /* (IA without !). */
19102 (((initial_insn << 7) >> 28) & 0xd) == 0x4;
19103 bfd_boolean is_ia_bang = /* (IA with !) - includes VPOP. */
19104 (((initial_insn << 7) >> 28) & 0xd) == 0x5;
19105 bfd_boolean is_db_bang = /* (DB with !). */
19106 (((initial_insn << 7) >> 28) & 0xd) == 0x9;
19107 int base_reg = ((unsigned int) initial_insn << 12) >> 28;
19108 /* d = UInt (Vd:D);. */
19109 int first_reg = ((((unsigned int) initial_insn << 16) >> 28) << 1)
19110 | (((unsigned int)initial_insn << 9) >> 31);
19111
19112 /* Compute the number of 8-words chunks needed to split. */
19113 int chunks = (num_words % 8) ? (num_words / 8 + 1) : (num_words / 8);
19114 int chunk;
19115
19116 /* The test coverage has been done assuming the following
19117 hypothesis that exactly one of the previous is_ predicates is
19118 true. */
19119 BFD_ASSERT ( (is_ia_nobang ^ is_ia_bang ^ is_db_bang)
19120 && !(is_ia_nobang & is_ia_bang & is_db_bang));
19121
19122 /* We treat the cutting of the words in one pass for all
19123 cases, then we emit the adjustments:
19124
19125 vldm rx, {...}
19126 -> vldm rx!, {8_words_or_less} for each needed 8_word
19127 -> sub rx, rx, #size (list)
19128
19129 vldm rx!, {...}
19130 -> vldm rx!, {8_words_or_less} for each needed 8_word
19131 This also handles vpop instruction (when rx is sp)
19132
19133 vldmd rx!, {...}
19134 -> vldmb rx!, {8_words_or_less} for each needed 8_word. */
19135 for (chunk = 0; chunk < chunks; ++chunk)
19136 {
19137 bfd_vma new_insn = 0;
19138
19139 if (is_ia_nobang || is_ia_bang)
19140 {
19141 new_insn = create_instruction_vldmia
19142 (base_reg,
19143 is_dp,
19144 /*wback= . */1,
19145 chunks - (chunk + 1) ?
19146 8 : num_words - chunk * 8,
19147 first_reg + chunk * 8);
19148 }
19149 else if (is_db_bang)
19150 {
19151 new_insn = create_instruction_vldmdb
19152 (base_reg,
19153 is_dp,
19154 chunks - (chunk + 1) ?
19155 8 : num_words - chunk * 8,
19156 first_reg + chunk * 8);
19157 }
19158
19159 if (new_insn)
19160 current_stub_contents =
19161 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19162 new_insn);
19163 }
19164
19165 /* Only this case requires the base register compensation
19166 subtract. */
19167 if (is_ia_nobang)
19168 {
19169 current_stub_contents =
19170 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19171 create_instruction_sub
19172 (base_reg, base_reg, 4*num_words));
19173 }
19174
19175 /* B initial_insn_addr+4. */
19176 current_stub_contents =
19177 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19178 create_instruction_branch_absolute
19179 (initial_insn_addr - current_stub_contents));
19180 }
19181
19182 /* Fill the remaining of the stub with deterministic contents. */
19183 current_stub_contents =
19184 stm32l4xx_fill_stub_udf (htab, output_bfd,
19185 base_stub_contents, current_stub_contents,
19186 base_stub_contents +
19187 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
19188 }
19189
19190 static void
19191 stm32l4xx_create_replacing_stub (struct elf32_arm_link_hash_table * htab,
19192 bfd * output_bfd,
19193 const insn32 wrong_insn,
19194 const bfd_byte *const wrong_insn_addr,
19195 bfd_byte *const stub_contents)
19196 {
19197 if (is_thumb2_ldmia (wrong_insn))
19198 stm32l4xx_create_replacing_stub_ldmia (htab, output_bfd,
19199 wrong_insn, wrong_insn_addr,
19200 stub_contents);
19201 else if (is_thumb2_ldmdb (wrong_insn))
19202 stm32l4xx_create_replacing_stub_ldmdb (htab, output_bfd,
19203 wrong_insn, wrong_insn_addr,
19204 stub_contents);
19205 else if (is_thumb2_vldm (wrong_insn))
19206 stm32l4xx_create_replacing_stub_vldm (htab, output_bfd,
19207 wrong_insn, wrong_insn_addr,
19208 stub_contents);
19209 }
19210
19211 /* End of stm32l4xx work-around. */
19212
19213
19214 /* Do code byteswapping. Return FALSE afterwards so that the section is
19215 written out as normal. */
19216
19217 static bfd_boolean
19218 elf32_arm_write_section (bfd *output_bfd,
19219 struct bfd_link_info *link_info,
19220 asection *sec,
19221 bfd_byte *contents)
19222 {
19223 unsigned int mapcount, errcount;
19224 _arm_elf_section_data *arm_data;
19225 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
19226 elf32_arm_section_map *map;
19227 elf32_vfp11_erratum_list *errnode;
19228 elf32_stm32l4xx_erratum_list *stm32l4xx_errnode;
19229 bfd_vma ptr;
19230 bfd_vma end;
19231 bfd_vma offset = sec->output_section->vma + sec->output_offset;
19232 bfd_byte tmp;
19233 unsigned int i;
19234
19235 if (globals == NULL)
19236 return FALSE;
19237
19238 /* If this section has not been allocated an _arm_elf_section_data
19239 structure then we cannot record anything. */
19240 arm_data = get_arm_elf_section_data (sec);
19241 if (arm_data == NULL)
19242 return FALSE;
19243
19244 mapcount = arm_data->mapcount;
19245 map = arm_data->map;
19246 errcount = arm_data->erratumcount;
19247
19248 if (errcount != 0)
19249 {
19250 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
19251
19252 for (errnode = arm_data->erratumlist; errnode != 0;
19253 errnode = errnode->next)
19254 {
19255 bfd_vma target = errnode->vma - offset;
19256
19257 switch (errnode->type)
19258 {
19259 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
19260 {
19261 bfd_vma branch_to_veneer;
19262 /* Original condition code of instruction, plus bit mask for
19263 ARM B instruction. */
19264 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
19265 | 0x0a000000;
19266
19267 /* The instruction is before the label. */
19268 target -= 4;
19269
19270 /* Above offset included in -4 below. */
19271 branch_to_veneer = errnode->u.b.veneer->vma
19272 - errnode->vma - 4;
19273
19274 if ((signed) branch_to_veneer < -(1 << 25)
19275 || (signed) branch_to_veneer >= (1 << 25))
19276 _bfd_error_handler (_("%pB: error: VFP11 veneer out of "
19277 "range"), output_bfd);
19278
19279 insn |= (branch_to_veneer >> 2) & 0xffffff;
19280 contents[endianflip ^ target] = insn & 0xff;
19281 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
19282 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
19283 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
19284 }
19285 break;
19286
19287 case VFP11_ERRATUM_ARM_VENEER:
19288 {
19289 bfd_vma branch_from_veneer;
19290 unsigned int insn;
19291
19292 /* Take size of veneer into account. */
19293 branch_from_veneer = errnode->u.v.branch->vma
19294 - errnode->vma - 12;
19295
19296 if ((signed) branch_from_veneer < -(1 << 25)
19297 || (signed) branch_from_veneer >= (1 << 25))
19298 _bfd_error_handler (_("%pB: error: VFP11 veneer out of "
19299 "range"), output_bfd);
19300
19301 /* Original instruction. */
19302 insn = errnode->u.v.branch->u.b.vfp_insn;
19303 contents[endianflip ^ target] = insn & 0xff;
19304 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
19305 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
19306 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
19307
19308 /* Branch back to insn after original insn. */
19309 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
19310 contents[endianflip ^ (target + 4)] = insn & 0xff;
19311 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
19312 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
19313 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
19314 }
19315 break;
19316
19317 default:
19318 abort ();
19319 }
19320 }
19321 }
19322
19323 if (arm_data->stm32l4xx_erratumcount != 0)
19324 {
19325 for (stm32l4xx_errnode = arm_data->stm32l4xx_erratumlist;
19326 stm32l4xx_errnode != 0;
19327 stm32l4xx_errnode = stm32l4xx_errnode->next)
19328 {
19329 bfd_vma target = stm32l4xx_errnode->vma - offset;
19330
19331 switch (stm32l4xx_errnode->type)
19332 {
19333 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
19334 {
19335 unsigned int insn;
19336 bfd_vma branch_to_veneer =
19337 stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma;
19338
19339 if ((signed) branch_to_veneer < -(1 << 24)
19340 || (signed) branch_to_veneer >= (1 << 24))
19341 {
19342 bfd_vma out_of_range =
19343 ((signed) branch_to_veneer < -(1 << 24)) ?
19344 - branch_to_veneer - (1 << 24) :
19345 ((signed) branch_to_veneer >= (1 << 24)) ?
19346 branch_to_veneer - (1 << 24) : 0;
19347
19348 _bfd_error_handler
19349 (_("%pB(%#" PRIx64 "): error: "
19350 "cannot create STM32L4XX veneer; "
19351 "jump out of range by %" PRId64 " bytes; "
19352 "cannot encode branch instruction"),
19353 output_bfd,
19354 (uint64_t) (stm32l4xx_errnode->vma - 4),
19355 (int64_t) out_of_range);
19356 continue;
19357 }
19358
19359 insn = create_instruction_branch_absolute
19360 (stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma);
19361
19362 /* The instruction is before the label. */
19363 target -= 4;
19364
19365 put_thumb2_insn (globals, output_bfd,
19366 (bfd_vma) insn, contents + target);
19367 }
19368 break;
19369
19370 case STM32L4XX_ERRATUM_VENEER:
19371 {
19372 bfd_byte * veneer;
19373 bfd_byte * veneer_r;
19374 unsigned int insn;
19375
19376 veneer = contents + target;
19377 veneer_r = veneer
19378 + stm32l4xx_errnode->u.b.veneer->vma
19379 - stm32l4xx_errnode->vma - 4;
19380
19381 if ((signed) (veneer_r - veneer -
19382 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE >
19383 STM32L4XX_ERRATUM_LDM_VENEER_SIZE ?
19384 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE :
19385 STM32L4XX_ERRATUM_LDM_VENEER_SIZE) < -(1 << 24)
19386 || (signed) (veneer_r - veneer) >= (1 << 24))
19387 {
19388 _bfd_error_handler (_("%pB: error: cannot create STM32L4XX "
19389 "veneer"), output_bfd);
19390 continue;
19391 }
19392
19393 /* Original instruction. */
19394 insn = stm32l4xx_errnode->u.v.branch->u.b.insn;
19395
19396 stm32l4xx_create_replacing_stub
19397 (globals, output_bfd, insn, (void*)veneer_r, (void*)veneer);
19398 }
19399 break;
19400
19401 default:
19402 abort ();
19403 }
19404 }
19405 }
19406
19407 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
19408 {
19409 arm_unwind_table_edit *edit_node
19410 = arm_data->u.exidx.unwind_edit_list;
19411 /* Now, sec->size is the size of the section we will write. The original
19412 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
19413 markers) was sec->rawsize. (This isn't the case if we perform no
19414 edits, then rawsize will be zero and we should use size). */
19415 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
19416 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
19417 unsigned int in_index, out_index;
19418 bfd_vma add_to_offsets = 0;
19419
19420 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
19421 {
19422 if (edit_node)
19423 {
19424 unsigned int edit_index = edit_node->index;
19425
19426 if (in_index < edit_index && in_index * 8 < input_size)
19427 {
19428 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
19429 contents + in_index * 8, add_to_offsets);
19430 out_index++;
19431 in_index++;
19432 }
19433 else if (in_index == edit_index
19434 || (in_index * 8 >= input_size
19435 && edit_index == UINT_MAX))
19436 {
19437 switch (edit_node->type)
19438 {
19439 case DELETE_EXIDX_ENTRY:
19440 in_index++;
19441 add_to_offsets += 8;
19442 break;
19443
19444 case INSERT_EXIDX_CANTUNWIND_AT_END:
19445 {
19446 asection *text_sec = edit_node->linked_section;
19447 bfd_vma text_offset = text_sec->output_section->vma
19448 + text_sec->output_offset
19449 + text_sec->size;
19450 bfd_vma exidx_offset = offset + out_index * 8;
19451 unsigned long prel31_offset;
19452
19453 /* Note: this is meant to be equivalent to an
19454 R_ARM_PREL31 relocation. These synthetic
19455 EXIDX_CANTUNWIND markers are not relocated by the
19456 usual BFD method. */
19457 prel31_offset = (text_offset - exidx_offset)
19458 & 0x7ffffffful;
19459 if (bfd_link_relocatable (link_info))
19460 {
19461 /* Here relocation for new EXIDX_CANTUNWIND is
19462 created, so there is no need to
19463 adjust offset by hand. */
19464 prel31_offset = text_sec->output_offset
19465 + text_sec->size;
19466 }
19467
19468 /* First address we can't unwind. */
19469 bfd_put_32 (output_bfd, prel31_offset,
19470 &edited_contents[out_index * 8]);
19471
19472 /* Code for EXIDX_CANTUNWIND. */
19473 bfd_put_32 (output_bfd, 0x1,
19474 &edited_contents[out_index * 8 + 4]);
19475
19476 out_index++;
19477 add_to_offsets -= 8;
19478 }
19479 break;
19480 }
19481
19482 edit_node = edit_node->next;
19483 }
19484 }
19485 else
19486 {
19487 /* No more edits, copy remaining entries verbatim. */
19488 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
19489 contents + in_index * 8, add_to_offsets);
19490 out_index++;
19491 in_index++;
19492 }
19493 }
19494
19495 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
19496 bfd_set_section_contents (output_bfd, sec->output_section,
19497 edited_contents,
19498 (file_ptr) sec->output_offset, sec->size);
19499
19500 return TRUE;
19501 }
19502
19503 /* Fix code to point to Cortex-A8 erratum stubs. */
19504 if (globals->fix_cortex_a8)
19505 {
19506 struct a8_branch_to_stub_data data;
19507
19508 data.writing_section = sec;
19509 data.contents = contents;
19510
19511 bfd_hash_traverse (& globals->stub_hash_table, make_branch_to_a8_stub,
19512 & data);
19513 }
19514
19515 if (mapcount == 0)
19516 return FALSE;
19517
19518 if (globals->byteswap_code)
19519 {
19520 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
19521
19522 ptr = map[0].vma;
19523 for (i = 0; i < mapcount; i++)
19524 {
19525 if (i == mapcount - 1)
19526 end = sec->size;
19527 else
19528 end = map[i + 1].vma;
19529
19530 switch (map[i].type)
19531 {
19532 case 'a':
19533 /* Byte swap code words. */
19534 while (ptr + 3 < end)
19535 {
19536 tmp = contents[ptr];
19537 contents[ptr] = contents[ptr + 3];
19538 contents[ptr + 3] = tmp;
19539 tmp = contents[ptr + 1];
19540 contents[ptr + 1] = contents[ptr + 2];
19541 contents[ptr + 2] = tmp;
19542 ptr += 4;
19543 }
19544 break;
19545
19546 case 't':
19547 /* Byte swap code halfwords. */
19548 while (ptr + 1 < end)
19549 {
19550 tmp = contents[ptr];
19551 contents[ptr] = contents[ptr + 1];
19552 contents[ptr + 1] = tmp;
19553 ptr += 2;
19554 }
19555 break;
19556
19557 case 'd':
19558 /* Leave data alone. */
19559 break;
19560 }
19561 ptr = end;
19562 }
19563 }
19564
19565 free (map);
19566 arm_data->mapcount = -1;
19567 arm_data->mapsize = 0;
19568 arm_data->map = NULL;
19569
19570 return FALSE;
19571 }
19572
19573 /* Mangle thumb function symbols as we read them in. */
19574
19575 static bfd_boolean
19576 elf32_arm_swap_symbol_in (bfd * abfd,
19577 const void *psrc,
19578 const void *pshn,
19579 Elf_Internal_Sym *dst)
19580 {
19581 Elf_Internal_Shdr *symtab_hdr;
19582 const char *name = NULL;
19583
19584 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
19585 return FALSE;
19586 dst->st_target_internal = 0;
19587
19588 /* New EABI objects mark thumb function symbols by setting the low bit of
19589 the address. */
19590 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
19591 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
19592 {
19593 if (dst->st_value & 1)
19594 {
19595 dst->st_value &= ~(bfd_vma) 1;
19596 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal,
19597 ST_BRANCH_TO_THUMB);
19598 }
19599 else
19600 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_ARM);
19601 }
19602 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
19603 {
19604 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
19605 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_THUMB);
19606 }
19607 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
19608 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_LONG);
19609 else
19610 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_UNKNOWN);
19611
19612 /* Mark CMSE special symbols. */
19613 symtab_hdr = & elf_symtab_hdr (abfd);
19614 if (symtab_hdr->sh_size)
19615 name = bfd_elf_sym_name (abfd, symtab_hdr, dst, NULL);
19616 if (name && CONST_STRNEQ (name, CMSE_PREFIX))
19617 ARM_SET_SYM_CMSE_SPCL (dst->st_target_internal);
19618
19619 return TRUE;
19620 }
19621
19622
19623 /* Mangle thumb function symbols as we write them out. */
19624
19625 static void
19626 elf32_arm_swap_symbol_out (bfd *abfd,
19627 const Elf_Internal_Sym *src,
19628 void *cdst,
19629 void *shndx)
19630 {
19631 Elf_Internal_Sym newsym;
19632
19633 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
19634 of the address set, as per the new EABI. We do this unconditionally
19635 because objcopy does not set the elf header flags until after
19636 it writes out the symbol table. */
19637 if (ARM_GET_SYM_BRANCH_TYPE (src->st_target_internal) == ST_BRANCH_TO_THUMB)
19638 {
19639 newsym = *src;
19640 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
19641 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
19642 if (newsym.st_shndx != SHN_UNDEF)
19643 {
19644 /* Do this only for defined symbols. At link type, the static
19645 linker will simulate the work of dynamic linker of resolving
19646 symbols and will carry over the thumbness of found symbols to
19647 the output symbol table. It's not clear how it happens, but
19648 the thumbness of undefined symbols can well be different at
19649 runtime, and writing '1' for them will be confusing for users
19650 and possibly for dynamic linker itself.
19651 */
19652 newsym.st_value |= 1;
19653 }
19654
19655 src = &newsym;
19656 }
19657 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
19658 }
19659
19660 /* Add the PT_ARM_EXIDX program header. */
19661
19662 static bfd_boolean
19663 elf32_arm_modify_segment_map (bfd *abfd,
19664 struct bfd_link_info *info ATTRIBUTE_UNUSED)
19665 {
19666 struct elf_segment_map *m;
19667 asection *sec;
19668
19669 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
19670 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
19671 {
19672 /* If there is already a PT_ARM_EXIDX header, then we do not
19673 want to add another one. This situation arises when running
19674 "strip"; the input binary already has the header. */
19675 m = elf_seg_map (abfd);
19676 while (m && m->p_type != PT_ARM_EXIDX)
19677 m = m->next;
19678 if (!m)
19679 {
19680 m = (struct elf_segment_map *)
19681 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
19682 if (m == NULL)
19683 return FALSE;
19684 m->p_type = PT_ARM_EXIDX;
19685 m->count = 1;
19686 m->sections[0] = sec;
19687
19688 m->next = elf_seg_map (abfd);
19689 elf_seg_map (abfd) = m;
19690 }
19691 }
19692
19693 return TRUE;
19694 }
19695
19696 /* We may add a PT_ARM_EXIDX program header. */
19697
19698 static int
19699 elf32_arm_additional_program_headers (bfd *abfd,
19700 struct bfd_link_info *info ATTRIBUTE_UNUSED)
19701 {
19702 asection *sec;
19703
19704 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
19705 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
19706 return 1;
19707 else
19708 return 0;
19709 }
19710
19711 /* Hook called by the linker routine which adds symbols from an object
19712 file. */
19713
19714 static bfd_boolean
19715 elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
19716 Elf_Internal_Sym *sym, const char **namep,
19717 flagword *flagsp, asection **secp, bfd_vma *valp)
19718 {
19719 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
19720 && (abfd->flags & DYNAMIC) == 0
19721 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
19722 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_ifunc;
19723
19724 if (elf32_arm_hash_table (info) == NULL)
19725 return FALSE;
19726
19727 if (elf32_arm_hash_table (info)->vxworks_p
19728 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
19729 flagsp, secp, valp))
19730 return FALSE;
19731
19732 return TRUE;
19733 }
19734
19735 /* We use this to override swap_symbol_in and swap_symbol_out. */
19736 const struct elf_size_info elf32_arm_size_info =
19737 {
19738 sizeof (Elf32_External_Ehdr),
19739 sizeof (Elf32_External_Phdr),
19740 sizeof (Elf32_External_Shdr),
19741 sizeof (Elf32_External_Rel),
19742 sizeof (Elf32_External_Rela),
19743 sizeof (Elf32_External_Sym),
19744 sizeof (Elf32_External_Dyn),
19745 sizeof (Elf_External_Note),
19746 4,
19747 1,
19748 32, 2,
19749 ELFCLASS32, EV_CURRENT,
19750 bfd_elf32_write_out_phdrs,
19751 bfd_elf32_write_shdrs_and_ehdr,
19752 bfd_elf32_checksum_contents,
19753 bfd_elf32_write_relocs,
19754 elf32_arm_swap_symbol_in,
19755 elf32_arm_swap_symbol_out,
19756 bfd_elf32_slurp_reloc_table,
19757 bfd_elf32_slurp_symbol_table,
19758 bfd_elf32_swap_dyn_in,
19759 bfd_elf32_swap_dyn_out,
19760 bfd_elf32_swap_reloc_in,
19761 bfd_elf32_swap_reloc_out,
19762 bfd_elf32_swap_reloca_in,
19763 bfd_elf32_swap_reloca_out
19764 };
19765
19766 static bfd_vma
19767 read_code32 (const bfd *abfd, const bfd_byte *addr)
19768 {
19769 /* V7 BE8 code is always little endian. */
19770 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
19771 return bfd_getl32 (addr);
19772
19773 return bfd_get_32 (abfd, addr);
19774 }
19775
19776 static bfd_vma
19777 read_code16 (const bfd *abfd, const bfd_byte *addr)
19778 {
19779 /* V7 BE8 code is always little endian. */
19780 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
19781 return bfd_getl16 (addr);
19782
19783 return bfd_get_16 (abfd, addr);
19784 }
19785
19786 /* Return size of plt0 entry starting at ADDR
19787 or (bfd_vma) -1 if size can not be determined. */
19788
19789 static bfd_vma
19790 elf32_arm_plt0_size (const bfd *abfd, const bfd_byte *addr)
19791 {
19792 bfd_vma first_word;
19793 bfd_vma plt0_size;
19794
19795 first_word = read_code32 (abfd, addr);
19796
19797 if (first_word == elf32_arm_plt0_entry[0])
19798 plt0_size = 4 * ARRAY_SIZE (elf32_arm_plt0_entry);
19799 else if (first_word == elf32_thumb2_plt0_entry[0])
19800 plt0_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
19801 else
19802 /* We don't yet handle this PLT format. */
19803 return (bfd_vma) -1;
19804
19805 return plt0_size;
19806 }
19807
19808 /* Return size of plt entry starting at offset OFFSET
19809 of plt section located at address START
19810 or (bfd_vma) -1 if size can not be determined. */
19811
19812 static bfd_vma
19813 elf32_arm_plt_size (const bfd *abfd, const bfd_byte *start, bfd_vma offset)
19814 {
19815 bfd_vma first_insn;
19816 bfd_vma plt_size = 0;
19817 const bfd_byte *addr = start + offset;
19818
19819 /* PLT entry size if fixed on Thumb-only platforms. */
19820 if (read_code32 (abfd, start) == elf32_thumb2_plt0_entry[0])
19821 return 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
19822
19823 /* Respect Thumb stub if necessary. */
19824 if (read_code16 (abfd, addr) == elf32_arm_plt_thumb_stub[0])
19825 {
19826 plt_size += 2 * ARRAY_SIZE(elf32_arm_plt_thumb_stub);
19827 }
19828
19829 /* Strip immediate from first add. */
19830 first_insn = read_code32 (abfd, addr + plt_size) & 0xffffff00;
19831
19832 #ifdef FOUR_WORD_PLT
19833 if (first_insn == elf32_arm_plt_entry[0])
19834 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry);
19835 #else
19836 if (first_insn == elf32_arm_plt_entry_long[0])
19837 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_long);
19838 else if (first_insn == elf32_arm_plt_entry_short[0])
19839 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_short);
19840 #endif
19841 else
19842 /* We don't yet handle this PLT format. */
19843 return (bfd_vma) -1;
19844
19845 return plt_size;
19846 }
19847
19848 /* Implementation is shamelessly borrowed from _bfd_elf_get_synthetic_symtab. */
19849
19850 static long
19851 elf32_arm_get_synthetic_symtab (bfd *abfd,
19852 long symcount ATTRIBUTE_UNUSED,
19853 asymbol **syms ATTRIBUTE_UNUSED,
19854 long dynsymcount,
19855 asymbol **dynsyms,
19856 asymbol **ret)
19857 {
19858 asection *relplt;
19859 asymbol *s;
19860 arelent *p;
19861 long count, i, n;
19862 size_t size;
19863 Elf_Internal_Shdr *hdr;
19864 char *names;
19865 asection *plt;
19866 bfd_vma offset;
19867 bfd_byte *data;
19868
19869 *ret = NULL;
19870
19871 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
19872 return 0;
19873
19874 if (dynsymcount <= 0)
19875 return 0;
19876
19877 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
19878 if (relplt == NULL)
19879 return 0;
19880
19881 hdr = &elf_section_data (relplt)->this_hdr;
19882 if (hdr->sh_link != elf_dynsymtab (abfd)
19883 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
19884 return 0;
19885
19886 plt = bfd_get_section_by_name (abfd, ".plt");
19887 if (plt == NULL)
19888 return 0;
19889
19890 if (!elf32_arm_size_info.slurp_reloc_table (abfd, relplt, dynsyms, TRUE))
19891 return -1;
19892
19893 data = plt->contents;
19894 if (data == NULL)
19895 {
19896 if (!bfd_get_full_section_contents(abfd, (asection *) plt, &data) || data == NULL)
19897 return -1;
19898 bfd_cache_section_contents((asection *) plt, data);
19899 }
19900
19901 count = relplt->size / hdr->sh_entsize;
19902 size = count * sizeof (asymbol);
19903 p = relplt->relocation;
19904 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
19905 {
19906 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
19907 if (p->addend != 0)
19908 size += sizeof ("+0x") - 1 + 8;
19909 }
19910
19911 s = *ret = (asymbol *) bfd_malloc (size);
19912 if (s == NULL)
19913 return -1;
19914
19915 offset = elf32_arm_plt0_size (abfd, data);
19916 if (offset == (bfd_vma) -1)
19917 return -1;
19918
19919 names = (char *) (s + count);
19920 p = relplt->relocation;
19921 n = 0;
19922 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
19923 {
19924 size_t len;
19925
19926 bfd_vma plt_size = elf32_arm_plt_size (abfd, data, offset);
19927 if (plt_size == (bfd_vma) -1)
19928 break;
19929
19930 *s = **p->sym_ptr_ptr;
19931 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
19932 we are defining a symbol, ensure one of them is set. */
19933 if ((s->flags & BSF_LOCAL) == 0)
19934 s->flags |= BSF_GLOBAL;
19935 s->flags |= BSF_SYNTHETIC;
19936 s->section = plt;
19937 s->value = offset;
19938 s->name = names;
19939 s->udata.p = NULL;
19940 len = strlen ((*p->sym_ptr_ptr)->name);
19941 memcpy (names, (*p->sym_ptr_ptr)->name, len);
19942 names += len;
19943 if (p->addend != 0)
19944 {
19945 char buf[30], *a;
19946
19947 memcpy (names, "+0x", sizeof ("+0x") - 1);
19948 names += sizeof ("+0x") - 1;
19949 bfd_sprintf_vma (abfd, buf, p->addend);
19950 for (a = buf; *a == '0'; ++a)
19951 ;
19952 len = strlen (a);
19953 memcpy (names, a, len);
19954 names += len;
19955 }
19956 memcpy (names, "@plt", sizeof ("@plt"));
19957 names += sizeof ("@plt");
19958 ++s, ++n;
19959 offset += plt_size;
19960 }
19961
19962 return n;
19963 }
19964
19965 static bfd_boolean
19966 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr * hdr)
19967 {
19968 if (hdr->sh_flags & SHF_ARM_PURECODE)
19969 *flags |= SEC_ELF_PURECODE;
19970 return TRUE;
19971 }
19972
19973 static flagword
19974 elf32_arm_lookup_section_flags (char *flag_name)
19975 {
19976 if (!strcmp (flag_name, "SHF_ARM_PURECODE"))
19977 return SHF_ARM_PURECODE;
19978
19979 return SEC_NO_FLAGS;
19980 }
19981
19982 static unsigned int
19983 elf32_arm_count_additional_relocs (asection *sec)
19984 {
19985 struct _arm_elf_section_data *arm_data;
19986 arm_data = get_arm_elf_section_data (sec);
19987
19988 return arm_data == NULL ? 0 : arm_data->additional_reloc_count;
19989 }
19990
19991 /* Called to set the sh_flags, sh_link and sh_info fields of OSECTION which
19992 has a type >= SHT_LOOS. Returns TRUE if these fields were initialised
19993 FALSE otherwise. ISECTION is the best guess matching section from the
19994 input bfd IBFD, but it might be NULL. */
19995
19996 static bfd_boolean
19997 elf32_arm_copy_special_section_fields (const bfd *ibfd ATTRIBUTE_UNUSED,
19998 bfd *obfd ATTRIBUTE_UNUSED,
19999 const Elf_Internal_Shdr *isection ATTRIBUTE_UNUSED,
20000 Elf_Internal_Shdr *osection)
20001 {
20002 switch (osection->sh_type)
20003 {
20004 case SHT_ARM_EXIDX:
20005 {
20006 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
20007 Elf_Internal_Shdr **iheaders = elf_elfsections (ibfd);
20008 unsigned i = 0;
20009
20010 osection->sh_flags = SHF_ALLOC | SHF_LINK_ORDER;
20011 osection->sh_info = 0;
20012
20013 /* The sh_link field must be set to the text section associated with
20014 this index section. Unfortunately the ARM EHABI does not specify
20015 exactly how to determine this association. Our caller does try
20016 to match up OSECTION with its corresponding input section however
20017 so that is a good first guess. */
20018 if (isection != NULL
20019 && osection->bfd_section != NULL
20020 && isection->bfd_section != NULL
20021 && isection->bfd_section->output_section != NULL
20022 && isection->bfd_section->output_section == osection->bfd_section
20023 && iheaders != NULL
20024 && isection->sh_link > 0
20025 && isection->sh_link < elf_numsections (ibfd)
20026 && iheaders[isection->sh_link]->bfd_section != NULL
20027 && iheaders[isection->sh_link]->bfd_section->output_section != NULL
20028 )
20029 {
20030 for (i = elf_numsections (obfd); i-- > 0;)
20031 if (oheaders[i]->bfd_section
20032 == iheaders[isection->sh_link]->bfd_section->output_section)
20033 break;
20034 }
20035
20036 if (i == 0)
20037 {
20038 /* Failing that we have to find a matching section ourselves. If
20039 we had the output section name available we could compare that
20040 with input section names. Unfortunately we don't. So instead
20041 we use a simple heuristic and look for the nearest executable
20042 section before this one. */
20043 for (i = elf_numsections (obfd); i-- > 0;)
20044 if (oheaders[i] == osection)
20045 break;
20046 if (i == 0)
20047 break;
20048
20049 while (i-- > 0)
20050 if (oheaders[i]->sh_type == SHT_PROGBITS
20051 && (oheaders[i]->sh_flags & (SHF_ALLOC | SHF_EXECINSTR))
20052 == (SHF_ALLOC | SHF_EXECINSTR))
20053 break;
20054 }
20055
20056 if (i)
20057 {
20058 osection->sh_link = i;
20059 /* If the text section was part of a group
20060 then the index section should be too. */
20061 if (oheaders[i]->sh_flags & SHF_GROUP)
20062 osection->sh_flags |= SHF_GROUP;
20063 return TRUE;
20064 }
20065 }
20066 break;
20067
20068 case SHT_ARM_PREEMPTMAP:
20069 osection->sh_flags = SHF_ALLOC;
20070 break;
20071
20072 case SHT_ARM_ATTRIBUTES:
20073 case SHT_ARM_DEBUGOVERLAY:
20074 case SHT_ARM_OVERLAYSECTION:
20075 default:
20076 break;
20077 }
20078
20079 return FALSE;
20080 }
20081
20082 /* Returns TRUE if NAME is an ARM mapping symbol.
20083 Traditionally the symbols $a, $d and $t have been used.
20084 The ARM ELF standard also defines $x (for A64 code). It also allows a
20085 period initiated suffix to be added to the symbol: "$[adtx]\.[:sym_char]+".
20086 Other tools might also produce $b (Thumb BL), $f, $p, $m and $v, but we do
20087 not support them here. $t.x indicates the start of ThumbEE instructions. */
20088
20089 static bfd_boolean
20090 is_arm_mapping_symbol (const char * name)
20091 {
20092 return name != NULL /* Paranoia. */
20093 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
20094 the mapping symbols could have acquired a prefix.
20095 We do not support this here, since such symbols no
20096 longer conform to the ARM ELF ABI. */
20097 && (name[1] == 'a' || name[1] == 'd' || name[1] == 't' || name[1] == 'x')
20098 && (name[2] == 0 || name[2] == '.');
20099 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
20100 any characters that follow the period are legal characters for the body
20101 of a symbol's name. For now we just assume that this is the case. */
20102 }
20103
20104 /* Make sure that mapping symbols in object files are not removed via the
20105 "strip --strip-unneeded" tool. These symbols are needed in order to
20106 correctly generate interworking veneers, and for byte swapping code
20107 regions. Once an object file has been linked, it is safe to remove the
20108 symbols as they will no longer be needed. */
20109
20110 static void
20111 elf32_arm_backend_symbol_processing (bfd *abfd, asymbol *sym)
20112 {
20113 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
20114 && sym->section != bfd_abs_section_ptr
20115 && is_arm_mapping_symbol (sym->name))
20116 sym->flags |= BSF_KEEP;
20117 }
20118
20119 #undef elf_backend_copy_special_section_fields
20120 #define elf_backend_copy_special_section_fields elf32_arm_copy_special_section_fields
20121
20122 #define ELF_ARCH bfd_arch_arm
20123 #define ELF_TARGET_ID ARM_ELF_DATA
20124 #define ELF_MACHINE_CODE EM_ARM
20125 #ifdef __QNXTARGET__
20126 #define ELF_MAXPAGESIZE 0x1000
20127 #else
20128 #define ELF_MAXPAGESIZE 0x10000
20129 #endif
20130 #define ELF_MINPAGESIZE 0x1000
20131 #define ELF_COMMONPAGESIZE 0x1000
20132
20133 #define bfd_elf32_mkobject elf32_arm_mkobject
20134
20135 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
20136 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
20137 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
20138 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
20139 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
20140 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
20141 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
20142 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
20143 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
20144 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
20145 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
20146 #define bfd_elf32_bfd_final_link elf32_arm_final_link
20147 #define bfd_elf32_get_synthetic_symtab elf32_arm_get_synthetic_symtab
20148
20149 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
20150 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
20151 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
20152 #define elf_backend_check_relocs elf32_arm_check_relocs
20153 #define elf_backend_update_relocs elf32_arm_update_relocs
20154 #define elf_backend_relocate_section elf32_arm_relocate_section
20155 #define elf_backend_write_section elf32_arm_write_section
20156 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
20157 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
20158 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
20159 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
20160 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
20161 #define elf_backend_always_size_sections elf32_arm_always_size_sections
20162 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
20163 #define elf_backend_post_process_headers elf32_arm_post_process_headers
20164 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
20165 #define elf_backend_object_p elf32_arm_object_p
20166 #define elf_backend_fake_sections elf32_arm_fake_sections
20167 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
20168 #define elf_backend_final_write_processing elf32_arm_final_write_processing
20169 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
20170 #define elf_backend_size_info elf32_arm_size_info
20171 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
20172 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
20173 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
20174 #define elf_backend_filter_implib_symbols elf32_arm_filter_implib_symbols
20175 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
20176 #define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
20177 #define elf_backend_count_additional_relocs elf32_arm_count_additional_relocs
20178 #define elf_backend_symbol_processing elf32_arm_backend_symbol_processing
20179
20180 #define elf_backend_can_refcount 1
20181 #define elf_backend_can_gc_sections 1
20182 #define elf_backend_plt_readonly 1
20183 #define elf_backend_want_got_plt 1
20184 #define elf_backend_want_plt_sym 0
20185 #define elf_backend_want_dynrelro 1
20186 #define elf_backend_may_use_rel_p 1
20187 #define elf_backend_may_use_rela_p 0
20188 #define elf_backend_default_use_rela_p 0
20189 #define elf_backend_dtrel_excludes_plt 1
20190
20191 #define elf_backend_got_header_size 12
20192 #define elf_backend_extern_protected_data 1
20193
20194 #undef elf_backend_obj_attrs_vendor
20195 #define elf_backend_obj_attrs_vendor "aeabi"
20196 #undef elf_backend_obj_attrs_section
20197 #define elf_backend_obj_attrs_section ".ARM.attributes"
20198 #undef elf_backend_obj_attrs_arg_type
20199 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
20200 #undef elf_backend_obj_attrs_section_type
20201 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
20202 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
20203 #define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
20204
20205 #undef elf_backend_section_flags
20206 #define elf_backend_section_flags elf32_arm_section_flags
20207 #undef elf_backend_lookup_section_flags_hook
20208 #define elf_backend_lookup_section_flags_hook elf32_arm_lookup_section_flags
20209
20210 #define elf_backend_linux_prpsinfo32_ugid16 TRUE
20211
20212 #include "elf32-target.h"
20213
20214 /* Native Client targets. */
20215
20216 #undef TARGET_LITTLE_SYM
20217 #define TARGET_LITTLE_SYM arm_elf32_nacl_le_vec
20218 #undef TARGET_LITTLE_NAME
20219 #define TARGET_LITTLE_NAME "elf32-littlearm-nacl"
20220 #undef TARGET_BIG_SYM
20221 #define TARGET_BIG_SYM arm_elf32_nacl_be_vec
20222 #undef TARGET_BIG_NAME
20223 #define TARGET_BIG_NAME "elf32-bigarm-nacl"
20224
20225 /* Like elf32_arm_link_hash_table_create -- but overrides
20226 appropriately for NaCl. */
20227
20228 static struct bfd_link_hash_table *
20229 elf32_arm_nacl_link_hash_table_create (bfd *abfd)
20230 {
20231 struct bfd_link_hash_table *ret;
20232
20233 ret = elf32_arm_link_hash_table_create (abfd);
20234 if (ret)
20235 {
20236 struct elf32_arm_link_hash_table *htab
20237 = (struct elf32_arm_link_hash_table *) ret;
20238
20239 htab->nacl_p = 1;
20240
20241 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry);
20242 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry);
20243 }
20244 return ret;
20245 }
20246
20247 /* Since NaCl doesn't use the ARM-specific unwind format, we don't
20248 really need to use elf32_arm_modify_segment_map. But we do it
20249 anyway just to reduce gratuitous differences with the stock ARM backend. */
20250
20251 static bfd_boolean
20252 elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
20253 {
20254 return (elf32_arm_modify_segment_map (abfd, info)
20255 && nacl_modify_segment_map (abfd, info));
20256 }
20257
20258 static void
20259 elf32_arm_nacl_final_write_processing (bfd *abfd, bfd_boolean linker)
20260 {
20261 elf32_arm_final_write_processing (abfd, linker);
20262 nacl_final_write_processing (abfd, linker);
20263 }
20264
20265 static bfd_vma
20266 elf32_arm_nacl_plt_sym_val (bfd_vma i, const asection *plt,
20267 const arelent *rel ATTRIBUTE_UNUSED)
20268 {
20269 return plt->vma
20270 + 4 * (ARRAY_SIZE (elf32_arm_nacl_plt0_entry) +
20271 i * ARRAY_SIZE (elf32_arm_nacl_plt_entry));
20272 }
20273
20274 #undef elf32_bed
20275 #define elf32_bed elf32_arm_nacl_bed
20276 #undef bfd_elf32_bfd_link_hash_table_create
20277 #define bfd_elf32_bfd_link_hash_table_create \
20278 elf32_arm_nacl_link_hash_table_create
20279 #undef elf_backend_plt_alignment
20280 #define elf_backend_plt_alignment 4
20281 #undef elf_backend_modify_segment_map
20282 #define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map
20283 #undef elf_backend_modify_program_headers
20284 #define elf_backend_modify_program_headers nacl_modify_program_headers
20285 #undef elf_backend_final_write_processing
20286 #define elf_backend_final_write_processing elf32_arm_nacl_final_write_processing
20287 #undef bfd_elf32_get_synthetic_symtab
20288 #undef elf_backend_plt_sym_val
20289 #define elf_backend_plt_sym_val elf32_arm_nacl_plt_sym_val
20290 #undef elf_backend_copy_special_section_fields
20291
20292 #undef ELF_MINPAGESIZE
20293 #undef ELF_COMMONPAGESIZE
20294
20295
20296 #include "elf32-target.h"
20297
20298 /* Reset to defaults. */
20299 #undef elf_backend_plt_alignment
20300 #undef elf_backend_modify_segment_map
20301 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
20302 #undef elf_backend_modify_program_headers
20303 #undef elf_backend_final_write_processing
20304 #define elf_backend_final_write_processing elf32_arm_final_write_processing
20305 #undef ELF_MINPAGESIZE
20306 #define ELF_MINPAGESIZE 0x1000
20307 #undef ELF_COMMONPAGESIZE
20308 #define ELF_COMMONPAGESIZE 0x1000
20309
20310
20311 /* FDPIC Targets. */
20312
20313 #undef TARGET_LITTLE_SYM
20314 #define TARGET_LITTLE_SYM arm_elf32_fdpic_le_vec
20315 #undef TARGET_LITTLE_NAME
20316 #define TARGET_LITTLE_NAME "elf32-littlearm-fdpic"
20317 #undef TARGET_BIG_SYM
20318 #define TARGET_BIG_SYM arm_elf32_fdpic_be_vec
20319 #undef TARGET_BIG_NAME
20320 #define TARGET_BIG_NAME "elf32-bigarm-fdpic"
20321 #undef elf_match_priority
20322 #define elf_match_priority 128
20323 #undef ELF_OSABI
20324 #define ELF_OSABI ELFOSABI_ARM_FDPIC
20325
20326 /* Like elf32_arm_link_hash_table_create -- but overrides
20327 appropriately for FDPIC. */
20328
20329 static struct bfd_link_hash_table *
20330 elf32_arm_fdpic_link_hash_table_create (bfd *abfd)
20331 {
20332 struct bfd_link_hash_table *ret;
20333
20334 ret = elf32_arm_link_hash_table_create (abfd);
20335 if (ret)
20336 {
20337 struct elf32_arm_link_hash_table *htab = (struct elf32_arm_link_hash_table *) ret;
20338
20339 htab->fdpic_p = 1;
20340 }
20341 return ret;
20342 }
20343
20344 /* We need dynamic symbols for every section, since segments can
20345 relocate independently. */
20346 static bfd_boolean
20347 elf32_arm_fdpic_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
20348 struct bfd_link_info *info
20349 ATTRIBUTE_UNUSED,
20350 asection *p ATTRIBUTE_UNUSED)
20351 {
20352 switch (elf_section_data (p)->this_hdr.sh_type)
20353 {
20354 case SHT_PROGBITS:
20355 case SHT_NOBITS:
20356 /* If sh_type is yet undecided, assume it could be
20357 SHT_PROGBITS/SHT_NOBITS. */
20358 case SHT_NULL:
20359 return FALSE;
20360
20361 /* There shouldn't be section relative relocations
20362 against any other section. */
20363 default:
20364 return TRUE;
20365 }
20366 }
20367
20368 #undef elf32_bed
20369 #define elf32_bed elf32_arm_fdpic_bed
20370
20371 #undef bfd_elf32_bfd_link_hash_table_create
20372 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_fdpic_link_hash_table_create
20373
20374 #undef elf_backend_omit_section_dynsym
20375 #define elf_backend_omit_section_dynsym elf32_arm_fdpic_omit_section_dynsym
20376
20377 #include "elf32-target.h"
20378
20379 #undef elf_match_priority
20380 #undef ELF_OSABI
20381 #undef elf_backend_omit_section_dynsym
20382
20383 /* VxWorks Targets. */
20384
20385 #undef TARGET_LITTLE_SYM
20386 #define TARGET_LITTLE_SYM arm_elf32_vxworks_le_vec
20387 #undef TARGET_LITTLE_NAME
20388 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
20389 #undef TARGET_BIG_SYM
20390 #define TARGET_BIG_SYM arm_elf32_vxworks_be_vec
20391 #undef TARGET_BIG_NAME
20392 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
20393
20394 /* Like elf32_arm_link_hash_table_create -- but overrides
20395 appropriately for VxWorks. */
20396
20397 static struct bfd_link_hash_table *
20398 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
20399 {
20400 struct bfd_link_hash_table *ret;
20401
20402 ret = elf32_arm_link_hash_table_create (abfd);
20403 if (ret)
20404 {
20405 struct elf32_arm_link_hash_table *htab
20406 = (struct elf32_arm_link_hash_table *) ret;
20407 htab->use_rel = 0;
20408 htab->vxworks_p = 1;
20409 }
20410 return ret;
20411 }
20412
20413 static void
20414 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
20415 {
20416 elf32_arm_final_write_processing (abfd, linker);
20417 elf_vxworks_final_write_processing (abfd, linker);
20418 }
20419
20420 #undef elf32_bed
20421 #define elf32_bed elf32_arm_vxworks_bed
20422
20423 #undef bfd_elf32_bfd_link_hash_table_create
20424 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
20425 #undef elf_backend_final_write_processing
20426 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
20427 #undef elf_backend_emit_relocs
20428 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
20429
20430 #undef elf_backend_may_use_rel_p
20431 #define elf_backend_may_use_rel_p 0
20432 #undef elf_backend_may_use_rela_p
20433 #define elf_backend_may_use_rela_p 1
20434 #undef elf_backend_default_use_rela_p
20435 #define elf_backend_default_use_rela_p 1
20436 #undef elf_backend_want_plt_sym
20437 #define elf_backend_want_plt_sym 1
20438 #undef ELF_MAXPAGESIZE
20439 #define ELF_MAXPAGESIZE 0x1000
20440
20441 #include "elf32-target.h"
20442
20443
20444 /* Merge backend specific data from an object file to the output
20445 object file when linking. */
20446
20447 static bfd_boolean
20448 elf32_arm_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
20449 {
20450 bfd *obfd = info->output_bfd;
20451 flagword out_flags;
20452 flagword in_flags;
20453 bfd_boolean flags_compatible = TRUE;
20454 asection *sec;
20455
20456 /* Check if we have the same endianness. */
20457 if (! _bfd_generic_verify_endian_match (ibfd, info))
20458 return FALSE;
20459
20460 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
20461 return TRUE;
20462
20463 if (!elf32_arm_merge_eabi_attributes (ibfd, info))
20464 return FALSE;
20465
20466 /* The input BFD must have had its flags initialised. */
20467 /* The following seems bogus to me -- The flags are initialized in
20468 the assembler but I don't think an elf_flags_init field is
20469 written into the object. */
20470 /* BFD_ASSERT (elf_flags_init (ibfd)); */
20471
20472 in_flags = elf_elfheader (ibfd)->e_flags;
20473 out_flags = elf_elfheader (obfd)->e_flags;
20474
20475 /* In theory there is no reason why we couldn't handle this. However
20476 in practice it isn't even close to working and there is no real
20477 reason to want it. */
20478 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
20479 && !(ibfd->flags & DYNAMIC)
20480 && (in_flags & EF_ARM_BE8))
20481 {
20482 _bfd_error_handler (_("error: %pB is already in final BE8 format"),
20483 ibfd);
20484 return FALSE;
20485 }
20486
20487 if (!elf_flags_init (obfd))
20488 {
20489 /* If the input is the default architecture and had the default
20490 flags then do not bother setting the flags for the output
20491 architecture, instead allow future merges to do this. If no
20492 future merges ever set these flags then they will retain their
20493 uninitialised values, which surprise surprise, correspond
20494 to the default values. */
20495 if (bfd_get_arch_info (ibfd)->the_default
20496 && elf_elfheader (ibfd)->e_flags == 0)
20497 return TRUE;
20498
20499 elf_flags_init (obfd) = TRUE;
20500 elf_elfheader (obfd)->e_flags = in_flags;
20501
20502 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
20503 && bfd_get_arch_info (obfd)->the_default)
20504 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
20505
20506 return TRUE;
20507 }
20508
20509 /* Determine what should happen if the input ARM architecture
20510 does not match the output ARM architecture. */
20511 if (! bfd_arm_merge_machines (ibfd, obfd))
20512 return FALSE;
20513
20514 /* Identical flags must be compatible. */
20515 if (in_flags == out_flags)
20516 return TRUE;
20517
20518 /* Check to see if the input BFD actually contains any sections. If
20519 not, its flags may not have been initialised either, but it
20520 cannot actually cause any incompatiblity. Do not short-circuit
20521 dynamic objects; their section list may be emptied by
20522 elf_link_add_object_symbols.
20523
20524 Also check to see if there are no code sections in the input.
20525 In this case there is no need to check for code specific flags.
20526 XXX - do we need to worry about floating-point format compatability
20527 in data sections ? */
20528 if (!(ibfd->flags & DYNAMIC))
20529 {
20530 bfd_boolean null_input_bfd = TRUE;
20531 bfd_boolean only_data_sections = TRUE;
20532
20533 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
20534 {
20535 /* Ignore synthetic glue sections. */
20536 if (strcmp (sec->name, ".glue_7")
20537 && strcmp (sec->name, ".glue_7t"))
20538 {
20539 if ((bfd_get_section_flags (ibfd, sec)
20540 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
20541 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
20542 only_data_sections = FALSE;
20543
20544 null_input_bfd = FALSE;
20545 break;
20546 }
20547 }
20548
20549 if (null_input_bfd || only_data_sections)
20550 return TRUE;
20551 }
20552
20553 /* Complain about various flag mismatches. */
20554 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
20555 EF_ARM_EABI_VERSION (out_flags)))
20556 {
20557 _bfd_error_handler
20558 (_("error: source object %pB has EABI version %d, but target %pB has EABI version %d"),
20559 ibfd, (in_flags & EF_ARM_EABIMASK) >> 24,
20560 obfd, (out_flags & EF_ARM_EABIMASK) >> 24);
20561 return FALSE;
20562 }
20563
20564 /* Not sure what needs to be checked for EABI versions >= 1. */
20565 /* VxWorks libraries do not use these flags. */
20566 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
20567 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
20568 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
20569 {
20570 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
20571 {
20572 _bfd_error_handler
20573 (_("error: %pB is compiled for APCS-%d, whereas target %pB uses APCS-%d"),
20574 ibfd, in_flags & EF_ARM_APCS_26 ? 26 : 32,
20575 obfd, out_flags & EF_ARM_APCS_26 ? 26 : 32);
20576 flags_compatible = FALSE;
20577 }
20578
20579 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
20580 {
20581 if (in_flags & EF_ARM_APCS_FLOAT)
20582 _bfd_error_handler
20583 (_("error: %pB passes floats in float registers, whereas %pB passes them in integer registers"),
20584 ibfd, obfd);
20585 else
20586 _bfd_error_handler
20587 (_("error: %pB passes floats in integer registers, whereas %pB passes them in float registers"),
20588 ibfd, obfd);
20589
20590 flags_compatible = FALSE;
20591 }
20592
20593 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
20594 {
20595 if (in_flags & EF_ARM_VFP_FLOAT)
20596 _bfd_error_handler
20597 (_("error: %pB uses %s instructions, whereas %pB does not"),
20598 ibfd, "VFP", obfd);
20599 else
20600 _bfd_error_handler
20601 (_("error: %pB uses %s instructions, whereas %pB does not"),
20602 ibfd, "FPA", obfd);
20603
20604 flags_compatible = FALSE;
20605 }
20606
20607 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
20608 {
20609 if (in_flags & EF_ARM_MAVERICK_FLOAT)
20610 _bfd_error_handler
20611 (_("error: %pB uses %s instructions, whereas %pB does not"),
20612 ibfd, "Maverick", obfd);
20613 else
20614 _bfd_error_handler
20615 (_("error: %pB does not use %s instructions, whereas %pB does"),
20616 ibfd, "Maverick", obfd);
20617
20618 flags_compatible = FALSE;
20619 }
20620
20621 #ifdef EF_ARM_SOFT_FLOAT
20622 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
20623 {
20624 /* We can allow interworking between code that is VFP format
20625 layout, and uses either soft float or integer regs for
20626 passing floating point arguments and results. We already
20627 know that the APCS_FLOAT flags match; similarly for VFP
20628 flags. */
20629 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
20630 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
20631 {
20632 if (in_flags & EF_ARM_SOFT_FLOAT)
20633 _bfd_error_handler
20634 (_("error: %pB uses software FP, whereas %pB uses hardware FP"),
20635 ibfd, obfd);
20636 else
20637 _bfd_error_handler
20638 (_("error: %pB uses hardware FP, whereas %pB uses software FP"),
20639 ibfd, obfd);
20640
20641 flags_compatible = FALSE;
20642 }
20643 }
20644 #endif
20645
20646 /* Interworking mismatch is only a warning. */
20647 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
20648 {
20649 if (in_flags & EF_ARM_INTERWORK)
20650 {
20651 _bfd_error_handler
20652 (_("warning: %pB supports interworking, whereas %pB does not"),
20653 ibfd, obfd);
20654 }
20655 else
20656 {
20657 _bfd_error_handler
20658 (_("warning: %pB does not support interworking, whereas %pB does"),
20659 ibfd, obfd);
20660 }
20661 }
20662 }
20663
20664 return flags_compatible;
20665 }
20666
20667
20668 /* Symbian OS Targets. */
20669
20670 #undef TARGET_LITTLE_SYM
20671 #define TARGET_LITTLE_SYM arm_elf32_symbian_le_vec
20672 #undef TARGET_LITTLE_NAME
20673 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
20674 #undef TARGET_BIG_SYM
20675 #define TARGET_BIG_SYM arm_elf32_symbian_be_vec
20676 #undef TARGET_BIG_NAME
20677 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
20678
20679 /* Like elf32_arm_link_hash_table_create -- but overrides
20680 appropriately for Symbian OS. */
20681
20682 static struct bfd_link_hash_table *
20683 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
20684 {
20685 struct bfd_link_hash_table *ret;
20686
20687 ret = elf32_arm_link_hash_table_create (abfd);
20688 if (ret)
20689 {
20690 struct elf32_arm_link_hash_table *htab
20691 = (struct elf32_arm_link_hash_table *)ret;
20692 /* There is no PLT header for Symbian OS. */
20693 htab->plt_header_size = 0;
20694 /* The PLT entries are each one instruction and one word. */
20695 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
20696 htab->symbian_p = 1;
20697 /* Symbian uses armv5t or above, so use_blx is always true. */
20698 htab->use_blx = 1;
20699 htab->root.is_relocatable_executable = 1;
20700 }
20701 return ret;
20702 }
20703
20704 static const struct bfd_elf_special_section
20705 elf32_arm_symbian_special_sections[] =
20706 {
20707 /* In a BPABI executable, the dynamic linking sections do not go in
20708 the loadable read-only segment. The post-linker may wish to
20709 refer to these sections, but they are not part of the final
20710 program image. */
20711 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
20712 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
20713 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
20714 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
20715 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
20716 /* These sections do not need to be writable as the SymbianOS
20717 postlinker will arrange things so that no dynamic relocation is
20718 required. */
20719 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
20720 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
20721 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
20722 { NULL, 0, 0, 0, 0 }
20723 };
20724
20725 static void
20726 elf32_arm_symbian_begin_write_processing (bfd *abfd,
20727 struct bfd_link_info *link_info)
20728 {
20729 /* BPABI objects are never loaded directly by an OS kernel; they are
20730 processed by a postlinker first, into an OS-specific format. If
20731 the D_PAGED bit is set on the file, BFD will align segments on
20732 page boundaries, so that an OS can directly map the file. With
20733 BPABI objects, that just results in wasted space. In addition,
20734 because we clear the D_PAGED bit, map_sections_to_segments will
20735 recognize that the program headers should not be mapped into any
20736 loadable segment. */
20737 abfd->flags &= ~D_PAGED;
20738 elf32_arm_begin_write_processing (abfd, link_info);
20739 }
20740
20741 static bfd_boolean
20742 elf32_arm_symbian_modify_segment_map (bfd *abfd,
20743 struct bfd_link_info *info)
20744 {
20745 struct elf_segment_map *m;
20746 asection *dynsec;
20747
20748 /* BPABI shared libraries and executables should have a PT_DYNAMIC
20749 segment. However, because the .dynamic section is not marked
20750 with SEC_LOAD, the generic ELF code will not create such a
20751 segment. */
20752 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
20753 if (dynsec)
20754 {
20755 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
20756 if (m->p_type == PT_DYNAMIC)
20757 break;
20758
20759 if (m == NULL)
20760 {
20761 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
20762 m->next = elf_seg_map (abfd);
20763 elf_seg_map (abfd) = m;
20764 }
20765 }
20766
20767 /* Also call the generic arm routine. */
20768 return elf32_arm_modify_segment_map (abfd, info);
20769 }
20770
20771 /* Return address for Ith PLT stub in section PLT, for relocation REL
20772 or (bfd_vma) -1 if it should not be included. */
20773
20774 static bfd_vma
20775 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
20776 const arelent *rel ATTRIBUTE_UNUSED)
20777 {
20778 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
20779 }
20780
20781 #undef elf32_bed
20782 #define elf32_bed elf32_arm_symbian_bed
20783
20784 /* The dynamic sections are not allocated on SymbianOS; the postlinker
20785 will process them and then discard them. */
20786 #undef ELF_DYNAMIC_SEC_FLAGS
20787 #define ELF_DYNAMIC_SEC_FLAGS \
20788 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
20789
20790 #undef elf_backend_emit_relocs
20791
20792 #undef bfd_elf32_bfd_link_hash_table_create
20793 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
20794 #undef elf_backend_special_sections
20795 #define elf_backend_special_sections elf32_arm_symbian_special_sections
20796 #undef elf_backend_begin_write_processing
20797 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
20798 #undef elf_backend_final_write_processing
20799 #define elf_backend_final_write_processing elf32_arm_final_write_processing
20800
20801 #undef elf_backend_modify_segment_map
20802 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
20803
20804 /* There is no .got section for BPABI objects, and hence no header. */
20805 #undef elf_backend_got_header_size
20806 #define elf_backend_got_header_size 0
20807
20808 /* Similarly, there is no .got.plt section. */
20809 #undef elf_backend_want_got_plt
20810 #define elf_backend_want_got_plt 0
20811
20812 #undef elf_backend_plt_sym_val
20813 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
20814
20815 #undef elf_backend_may_use_rel_p
20816 #define elf_backend_may_use_rel_p 1
20817 #undef elf_backend_may_use_rela_p
20818 #define elf_backend_may_use_rela_p 0
20819 #undef elf_backend_default_use_rela_p
20820 #define elf_backend_default_use_rela_p 0
20821 #undef elf_backend_want_plt_sym
20822 #define elf_backend_want_plt_sym 0
20823 #undef elf_backend_dtrel_excludes_plt
20824 #define elf_backend_dtrel_excludes_plt 0
20825 #undef ELF_MAXPAGESIZE
20826 #define ELF_MAXPAGESIZE 0x8000
20827
20828 #include "elf32-target.h"
This page took 0.59119 seconds and 3 git commands to generate.