Make import libraries relocatable objects
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
1 /* 32-bit ELF support for ARM
2 Copyright (C) 1998-2017 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include <limits.h>
23
24 #include "bfd.h"
25 #include "bfd_stdint.h"
26 #include "libiberty.h"
27 #include "libbfd.h"
28 #include "elf-bfd.h"
29 #include "elf-nacl.h"
30 #include "elf-vxworks.h"
31 #include "elf/arm.h"
32
33 /* Return the relocation section associated with NAME. HTAB is the
34 bfd's elf32_arm_link_hash_entry. */
35 #define RELOC_SECTION(HTAB, NAME) \
36 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
37
38 /* Return size of a relocation entry. HTAB is the bfd's
39 elf32_arm_link_hash_entry. */
40 #define RELOC_SIZE(HTAB) \
41 ((HTAB)->use_rel \
42 ? sizeof (Elf32_External_Rel) \
43 : sizeof (Elf32_External_Rela))
44
45 /* Return function to swap relocations in. HTAB is the bfd's
46 elf32_arm_link_hash_entry. */
47 #define SWAP_RELOC_IN(HTAB) \
48 ((HTAB)->use_rel \
49 ? bfd_elf32_swap_reloc_in \
50 : bfd_elf32_swap_reloca_in)
51
52 /* Return function to swap relocations out. HTAB is the bfd's
53 elf32_arm_link_hash_entry. */
54 #define SWAP_RELOC_OUT(HTAB) \
55 ((HTAB)->use_rel \
56 ? bfd_elf32_swap_reloc_out \
57 : bfd_elf32_swap_reloca_out)
58
59 #define elf_info_to_howto 0
60 #define elf_info_to_howto_rel elf32_arm_info_to_howto
61
62 #define ARM_ELF_ABI_VERSION 0
63 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
64
65 /* The Adjusted Place, as defined by AAELF. */
66 #define Pa(X) ((X) & 0xfffffffc)
67
68 static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
69 struct bfd_link_info *link_info,
70 asection *sec,
71 bfd_byte *contents);
72
73 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
74 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
75 in that slot. */
76
77 static reloc_howto_type elf32_arm_howto_table_1[] =
78 {
79 /* No relocation. */
80 HOWTO (R_ARM_NONE, /* type */
81 0, /* rightshift */
82 3, /* size (0 = byte, 1 = short, 2 = long) */
83 0, /* bitsize */
84 FALSE, /* pc_relative */
85 0, /* bitpos */
86 complain_overflow_dont,/* complain_on_overflow */
87 bfd_elf_generic_reloc, /* special_function */
88 "R_ARM_NONE", /* name */
89 FALSE, /* partial_inplace */
90 0, /* src_mask */
91 0, /* dst_mask */
92 FALSE), /* pcrel_offset */
93
94 HOWTO (R_ARM_PC24, /* type */
95 2, /* rightshift */
96 2, /* size (0 = byte, 1 = short, 2 = long) */
97 24, /* bitsize */
98 TRUE, /* pc_relative */
99 0, /* bitpos */
100 complain_overflow_signed,/* complain_on_overflow */
101 bfd_elf_generic_reloc, /* special_function */
102 "R_ARM_PC24", /* name */
103 FALSE, /* partial_inplace */
104 0x00ffffff, /* src_mask */
105 0x00ffffff, /* dst_mask */
106 TRUE), /* pcrel_offset */
107
108 /* 32 bit absolute */
109 HOWTO (R_ARM_ABS32, /* type */
110 0, /* rightshift */
111 2, /* size (0 = byte, 1 = short, 2 = long) */
112 32, /* bitsize */
113 FALSE, /* pc_relative */
114 0, /* bitpos */
115 complain_overflow_bitfield,/* complain_on_overflow */
116 bfd_elf_generic_reloc, /* special_function */
117 "R_ARM_ABS32", /* name */
118 FALSE, /* partial_inplace */
119 0xffffffff, /* src_mask */
120 0xffffffff, /* dst_mask */
121 FALSE), /* pcrel_offset */
122
123 /* standard 32bit pc-relative reloc */
124 HOWTO (R_ARM_REL32, /* type */
125 0, /* rightshift */
126 2, /* size (0 = byte, 1 = short, 2 = long) */
127 32, /* bitsize */
128 TRUE, /* pc_relative */
129 0, /* bitpos */
130 complain_overflow_bitfield,/* complain_on_overflow */
131 bfd_elf_generic_reloc, /* special_function */
132 "R_ARM_REL32", /* name */
133 FALSE, /* partial_inplace */
134 0xffffffff, /* src_mask */
135 0xffffffff, /* dst_mask */
136 TRUE), /* pcrel_offset */
137
138 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
139 HOWTO (R_ARM_LDR_PC_G0, /* type */
140 0, /* rightshift */
141 0, /* size (0 = byte, 1 = short, 2 = long) */
142 32, /* bitsize */
143 TRUE, /* pc_relative */
144 0, /* bitpos */
145 complain_overflow_dont,/* complain_on_overflow */
146 bfd_elf_generic_reloc, /* special_function */
147 "R_ARM_LDR_PC_G0", /* name */
148 FALSE, /* partial_inplace */
149 0xffffffff, /* src_mask */
150 0xffffffff, /* dst_mask */
151 TRUE), /* pcrel_offset */
152
153 /* 16 bit absolute */
154 HOWTO (R_ARM_ABS16, /* type */
155 0, /* rightshift */
156 1, /* size (0 = byte, 1 = short, 2 = long) */
157 16, /* bitsize */
158 FALSE, /* pc_relative */
159 0, /* bitpos */
160 complain_overflow_bitfield,/* complain_on_overflow */
161 bfd_elf_generic_reloc, /* special_function */
162 "R_ARM_ABS16", /* name */
163 FALSE, /* partial_inplace */
164 0x0000ffff, /* src_mask */
165 0x0000ffff, /* dst_mask */
166 FALSE), /* pcrel_offset */
167
168 /* 12 bit absolute */
169 HOWTO (R_ARM_ABS12, /* type */
170 0, /* rightshift */
171 2, /* size (0 = byte, 1 = short, 2 = long) */
172 12, /* bitsize */
173 FALSE, /* pc_relative */
174 0, /* bitpos */
175 complain_overflow_bitfield,/* complain_on_overflow */
176 bfd_elf_generic_reloc, /* special_function */
177 "R_ARM_ABS12", /* name */
178 FALSE, /* partial_inplace */
179 0x00000fff, /* src_mask */
180 0x00000fff, /* dst_mask */
181 FALSE), /* pcrel_offset */
182
183 HOWTO (R_ARM_THM_ABS5, /* type */
184 6, /* rightshift */
185 1, /* size (0 = byte, 1 = short, 2 = long) */
186 5, /* bitsize */
187 FALSE, /* pc_relative */
188 0, /* bitpos */
189 complain_overflow_bitfield,/* complain_on_overflow */
190 bfd_elf_generic_reloc, /* special_function */
191 "R_ARM_THM_ABS5", /* name */
192 FALSE, /* partial_inplace */
193 0x000007e0, /* src_mask */
194 0x000007e0, /* dst_mask */
195 FALSE), /* pcrel_offset */
196
197 /* 8 bit absolute */
198 HOWTO (R_ARM_ABS8, /* type */
199 0, /* rightshift */
200 0, /* size (0 = byte, 1 = short, 2 = long) */
201 8, /* bitsize */
202 FALSE, /* pc_relative */
203 0, /* bitpos */
204 complain_overflow_bitfield,/* complain_on_overflow */
205 bfd_elf_generic_reloc, /* special_function */
206 "R_ARM_ABS8", /* name */
207 FALSE, /* partial_inplace */
208 0x000000ff, /* src_mask */
209 0x000000ff, /* dst_mask */
210 FALSE), /* pcrel_offset */
211
212 HOWTO (R_ARM_SBREL32, /* type */
213 0, /* rightshift */
214 2, /* size (0 = byte, 1 = short, 2 = long) */
215 32, /* bitsize */
216 FALSE, /* pc_relative */
217 0, /* bitpos */
218 complain_overflow_dont,/* complain_on_overflow */
219 bfd_elf_generic_reloc, /* special_function */
220 "R_ARM_SBREL32", /* name */
221 FALSE, /* partial_inplace */
222 0xffffffff, /* src_mask */
223 0xffffffff, /* dst_mask */
224 FALSE), /* pcrel_offset */
225
226 HOWTO (R_ARM_THM_CALL, /* type */
227 1, /* rightshift */
228 2, /* size (0 = byte, 1 = short, 2 = long) */
229 24, /* bitsize */
230 TRUE, /* pc_relative */
231 0, /* bitpos */
232 complain_overflow_signed,/* complain_on_overflow */
233 bfd_elf_generic_reloc, /* special_function */
234 "R_ARM_THM_CALL", /* name */
235 FALSE, /* partial_inplace */
236 0x07ff2fff, /* src_mask */
237 0x07ff2fff, /* dst_mask */
238 TRUE), /* pcrel_offset */
239
240 HOWTO (R_ARM_THM_PC8, /* type */
241 1, /* rightshift */
242 1, /* size (0 = byte, 1 = short, 2 = long) */
243 8, /* bitsize */
244 TRUE, /* pc_relative */
245 0, /* bitpos */
246 complain_overflow_signed,/* complain_on_overflow */
247 bfd_elf_generic_reloc, /* special_function */
248 "R_ARM_THM_PC8", /* name */
249 FALSE, /* partial_inplace */
250 0x000000ff, /* src_mask */
251 0x000000ff, /* dst_mask */
252 TRUE), /* pcrel_offset */
253
254 HOWTO (R_ARM_BREL_ADJ, /* type */
255 1, /* rightshift */
256 1, /* size (0 = byte, 1 = short, 2 = long) */
257 32, /* bitsize */
258 FALSE, /* pc_relative */
259 0, /* bitpos */
260 complain_overflow_signed,/* complain_on_overflow */
261 bfd_elf_generic_reloc, /* special_function */
262 "R_ARM_BREL_ADJ", /* name */
263 FALSE, /* partial_inplace */
264 0xffffffff, /* src_mask */
265 0xffffffff, /* dst_mask */
266 FALSE), /* pcrel_offset */
267
268 HOWTO (R_ARM_TLS_DESC, /* type */
269 0, /* rightshift */
270 2, /* size (0 = byte, 1 = short, 2 = long) */
271 32, /* bitsize */
272 FALSE, /* pc_relative */
273 0, /* bitpos */
274 complain_overflow_bitfield,/* complain_on_overflow */
275 bfd_elf_generic_reloc, /* special_function */
276 "R_ARM_TLS_DESC", /* name */
277 FALSE, /* partial_inplace */
278 0xffffffff, /* src_mask */
279 0xffffffff, /* dst_mask */
280 FALSE), /* pcrel_offset */
281
282 HOWTO (R_ARM_THM_SWI8, /* type */
283 0, /* rightshift */
284 0, /* size (0 = byte, 1 = short, 2 = long) */
285 0, /* bitsize */
286 FALSE, /* pc_relative */
287 0, /* bitpos */
288 complain_overflow_signed,/* complain_on_overflow */
289 bfd_elf_generic_reloc, /* special_function */
290 "R_ARM_SWI8", /* name */
291 FALSE, /* partial_inplace */
292 0x00000000, /* src_mask */
293 0x00000000, /* dst_mask */
294 FALSE), /* pcrel_offset */
295
296 /* BLX instruction for the ARM. */
297 HOWTO (R_ARM_XPC25, /* type */
298 2, /* rightshift */
299 2, /* size (0 = byte, 1 = short, 2 = long) */
300 24, /* bitsize */
301 TRUE, /* pc_relative */
302 0, /* bitpos */
303 complain_overflow_signed,/* complain_on_overflow */
304 bfd_elf_generic_reloc, /* special_function */
305 "R_ARM_XPC25", /* name */
306 FALSE, /* partial_inplace */
307 0x00ffffff, /* src_mask */
308 0x00ffffff, /* dst_mask */
309 TRUE), /* pcrel_offset */
310
311 /* BLX instruction for the Thumb. */
312 HOWTO (R_ARM_THM_XPC22, /* type */
313 2, /* rightshift */
314 2, /* size (0 = byte, 1 = short, 2 = long) */
315 24, /* bitsize */
316 TRUE, /* pc_relative */
317 0, /* bitpos */
318 complain_overflow_signed,/* complain_on_overflow */
319 bfd_elf_generic_reloc, /* special_function */
320 "R_ARM_THM_XPC22", /* name */
321 FALSE, /* partial_inplace */
322 0x07ff2fff, /* src_mask */
323 0x07ff2fff, /* dst_mask */
324 TRUE), /* pcrel_offset */
325
326 /* Dynamic TLS relocations. */
327
328 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
329 0, /* rightshift */
330 2, /* size (0 = byte, 1 = short, 2 = long) */
331 32, /* bitsize */
332 FALSE, /* pc_relative */
333 0, /* bitpos */
334 complain_overflow_bitfield,/* complain_on_overflow */
335 bfd_elf_generic_reloc, /* special_function */
336 "R_ARM_TLS_DTPMOD32", /* name */
337 TRUE, /* partial_inplace */
338 0xffffffff, /* src_mask */
339 0xffffffff, /* dst_mask */
340 FALSE), /* pcrel_offset */
341
342 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
343 0, /* rightshift */
344 2, /* size (0 = byte, 1 = short, 2 = long) */
345 32, /* bitsize */
346 FALSE, /* pc_relative */
347 0, /* bitpos */
348 complain_overflow_bitfield,/* complain_on_overflow */
349 bfd_elf_generic_reloc, /* special_function */
350 "R_ARM_TLS_DTPOFF32", /* name */
351 TRUE, /* partial_inplace */
352 0xffffffff, /* src_mask */
353 0xffffffff, /* dst_mask */
354 FALSE), /* pcrel_offset */
355
356 HOWTO (R_ARM_TLS_TPOFF32, /* type */
357 0, /* rightshift */
358 2, /* size (0 = byte, 1 = short, 2 = long) */
359 32, /* bitsize */
360 FALSE, /* pc_relative */
361 0, /* bitpos */
362 complain_overflow_bitfield,/* complain_on_overflow */
363 bfd_elf_generic_reloc, /* special_function */
364 "R_ARM_TLS_TPOFF32", /* name */
365 TRUE, /* partial_inplace */
366 0xffffffff, /* src_mask */
367 0xffffffff, /* dst_mask */
368 FALSE), /* pcrel_offset */
369
370 /* Relocs used in ARM Linux */
371
372 HOWTO (R_ARM_COPY, /* type */
373 0, /* rightshift */
374 2, /* size (0 = byte, 1 = short, 2 = long) */
375 32, /* bitsize */
376 FALSE, /* pc_relative */
377 0, /* bitpos */
378 complain_overflow_bitfield,/* complain_on_overflow */
379 bfd_elf_generic_reloc, /* special_function */
380 "R_ARM_COPY", /* name */
381 TRUE, /* partial_inplace */
382 0xffffffff, /* src_mask */
383 0xffffffff, /* dst_mask */
384 FALSE), /* pcrel_offset */
385
386 HOWTO (R_ARM_GLOB_DAT, /* type */
387 0, /* rightshift */
388 2, /* size (0 = byte, 1 = short, 2 = long) */
389 32, /* bitsize */
390 FALSE, /* pc_relative */
391 0, /* bitpos */
392 complain_overflow_bitfield,/* complain_on_overflow */
393 bfd_elf_generic_reloc, /* special_function */
394 "R_ARM_GLOB_DAT", /* name */
395 TRUE, /* partial_inplace */
396 0xffffffff, /* src_mask */
397 0xffffffff, /* dst_mask */
398 FALSE), /* pcrel_offset */
399
400 HOWTO (R_ARM_JUMP_SLOT, /* type */
401 0, /* rightshift */
402 2, /* size (0 = byte, 1 = short, 2 = long) */
403 32, /* bitsize */
404 FALSE, /* pc_relative */
405 0, /* bitpos */
406 complain_overflow_bitfield,/* complain_on_overflow */
407 bfd_elf_generic_reloc, /* special_function */
408 "R_ARM_JUMP_SLOT", /* name */
409 TRUE, /* partial_inplace */
410 0xffffffff, /* src_mask */
411 0xffffffff, /* dst_mask */
412 FALSE), /* pcrel_offset */
413
414 HOWTO (R_ARM_RELATIVE, /* type */
415 0, /* rightshift */
416 2, /* size (0 = byte, 1 = short, 2 = long) */
417 32, /* bitsize */
418 FALSE, /* pc_relative */
419 0, /* bitpos */
420 complain_overflow_bitfield,/* complain_on_overflow */
421 bfd_elf_generic_reloc, /* special_function */
422 "R_ARM_RELATIVE", /* name */
423 TRUE, /* partial_inplace */
424 0xffffffff, /* src_mask */
425 0xffffffff, /* dst_mask */
426 FALSE), /* pcrel_offset */
427
428 HOWTO (R_ARM_GOTOFF32, /* type */
429 0, /* rightshift */
430 2, /* size (0 = byte, 1 = short, 2 = long) */
431 32, /* bitsize */
432 FALSE, /* pc_relative */
433 0, /* bitpos */
434 complain_overflow_bitfield,/* complain_on_overflow */
435 bfd_elf_generic_reloc, /* special_function */
436 "R_ARM_GOTOFF32", /* name */
437 TRUE, /* partial_inplace */
438 0xffffffff, /* src_mask */
439 0xffffffff, /* dst_mask */
440 FALSE), /* pcrel_offset */
441
442 HOWTO (R_ARM_GOTPC, /* type */
443 0, /* rightshift */
444 2, /* size (0 = byte, 1 = short, 2 = long) */
445 32, /* bitsize */
446 TRUE, /* pc_relative */
447 0, /* bitpos */
448 complain_overflow_bitfield,/* complain_on_overflow */
449 bfd_elf_generic_reloc, /* special_function */
450 "R_ARM_GOTPC", /* name */
451 TRUE, /* partial_inplace */
452 0xffffffff, /* src_mask */
453 0xffffffff, /* dst_mask */
454 TRUE), /* pcrel_offset */
455
456 HOWTO (R_ARM_GOT32, /* type */
457 0, /* rightshift */
458 2, /* size (0 = byte, 1 = short, 2 = long) */
459 32, /* bitsize */
460 FALSE, /* pc_relative */
461 0, /* bitpos */
462 complain_overflow_bitfield,/* complain_on_overflow */
463 bfd_elf_generic_reloc, /* special_function */
464 "R_ARM_GOT32", /* name */
465 TRUE, /* partial_inplace */
466 0xffffffff, /* src_mask */
467 0xffffffff, /* dst_mask */
468 FALSE), /* pcrel_offset */
469
470 HOWTO (R_ARM_PLT32, /* type */
471 2, /* rightshift */
472 2, /* size (0 = byte, 1 = short, 2 = long) */
473 24, /* bitsize */
474 TRUE, /* pc_relative */
475 0, /* bitpos */
476 complain_overflow_bitfield,/* complain_on_overflow */
477 bfd_elf_generic_reloc, /* special_function */
478 "R_ARM_PLT32", /* name */
479 FALSE, /* partial_inplace */
480 0x00ffffff, /* src_mask */
481 0x00ffffff, /* dst_mask */
482 TRUE), /* pcrel_offset */
483
484 HOWTO (R_ARM_CALL, /* type */
485 2, /* rightshift */
486 2, /* size (0 = byte, 1 = short, 2 = long) */
487 24, /* bitsize */
488 TRUE, /* pc_relative */
489 0, /* bitpos */
490 complain_overflow_signed,/* complain_on_overflow */
491 bfd_elf_generic_reloc, /* special_function */
492 "R_ARM_CALL", /* name */
493 FALSE, /* partial_inplace */
494 0x00ffffff, /* src_mask */
495 0x00ffffff, /* dst_mask */
496 TRUE), /* pcrel_offset */
497
498 HOWTO (R_ARM_JUMP24, /* type */
499 2, /* rightshift */
500 2, /* size (0 = byte, 1 = short, 2 = long) */
501 24, /* bitsize */
502 TRUE, /* pc_relative */
503 0, /* bitpos */
504 complain_overflow_signed,/* complain_on_overflow */
505 bfd_elf_generic_reloc, /* special_function */
506 "R_ARM_JUMP24", /* name */
507 FALSE, /* partial_inplace */
508 0x00ffffff, /* src_mask */
509 0x00ffffff, /* dst_mask */
510 TRUE), /* pcrel_offset */
511
512 HOWTO (R_ARM_THM_JUMP24, /* type */
513 1, /* rightshift */
514 2, /* size (0 = byte, 1 = short, 2 = long) */
515 24, /* bitsize */
516 TRUE, /* pc_relative */
517 0, /* bitpos */
518 complain_overflow_signed,/* complain_on_overflow */
519 bfd_elf_generic_reloc, /* special_function */
520 "R_ARM_THM_JUMP24", /* name */
521 FALSE, /* partial_inplace */
522 0x07ff2fff, /* src_mask */
523 0x07ff2fff, /* dst_mask */
524 TRUE), /* pcrel_offset */
525
526 HOWTO (R_ARM_BASE_ABS, /* type */
527 0, /* rightshift */
528 2, /* size (0 = byte, 1 = short, 2 = long) */
529 32, /* bitsize */
530 FALSE, /* pc_relative */
531 0, /* bitpos */
532 complain_overflow_dont,/* complain_on_overflow */
533 bfd_elf_generic_reloc, /* special_function */
534 "R_ARM_BASE_ABS", /* name */
535 FALSE, /* partial_inplace */
536 0xffffffff, /* src_mask */
537 0xffffffff, /* dst_mask */
538 FALSE), /* pcrel_offset */
539
540 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
541 0, /* rightshift */
542 2, /* size (0 = byte, 1 = short, 2 = long) */
543 12, /* bitsize */
544 TRUE, /* pc_relative */
545 0, /* bitpos */
546 complain_overflow_dont,/* complain_on_overflow */
547 bfd_elf_generic_reloc, /* special_function */
548 "R_ARM_ALU_PCREL_7_0", /* name */
549 FALSE, /* partial_inplace */
550 0x00000fff, /* src_mask */
551 0x00000fff, /* dst_mask */
552 TRUE), /* pcrel_offset */
553
554 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
555 0, /* rightshift */
556 2, /* size (0 = byte, 1 = short, 2 = long) */
557 12, /* bitsize */
558 TRUE, /* pc_relative */
559 8, /* bitpos */
560 complain_overflow_dont,/* complain_on_overflow */
561 bfd_elf_generic_reloc, /* special_function */
562 "R_ARM_ALU_PCREL_15_8",/* name */
563 FALSE, /* partial_inplace */
564 0x00000fff, /* src_mask */
565 0x00000fff, /* dst_mask */
566 TRUE), /* pcrel_offset */
567
568 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
569 0, /* rightshift */
570 2, /* size (0 = byte, 1 = short, 2 = long) */
571 12, /* bitsize */
572 TRUE, /* pc_relative */
573 16, /* bitpos */
574 complain_overflow_dont,/* complain_on_overflow */
575 bfd_elf_generic_reloc, /* special_function */
576 "R_ARM_ALU_PCREL_23_15",/* name */
577 FALSE, /* partial_inplace */
578 0x00000fff, /* src_mask */
579 0x00000fff, /* dst_mask */
580 TRUE), /* pcrel_offset */
581
582 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
583 0, /* rightshift */
584 2, /* size (0 = byte, 1 = short, 2 = long) */
585 12, /* bitsize */
586 FALSE, /* pc_relative */
587 0, /* bitpos */
588 complain_overflow_dont,/* complain_on_overflow */
589 bfd_elf_generic_reloc, /* special_function */
590 "R_ARM_LDR_SBREL_11_0",/* name */
591 FALSE, /* partial_inplace */
592 0x00000fff, /* src_mask */
593 0x00000fff, /* dst_mask */
594 FALSE), /* pcrel_offset */
595
596 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
597 0, /* rightshift */
598 2, /* size (0 = byte, 1 = short, 2 = long) */
599 8, /* bitsize */
600 FALSE, /* pc_relative */
601 12, /* bitpos */
602 complain_overflow_dont,/* complain_on_overflow */
603 bfd_elf_generic_reloc, /* special_function */
604 "R_ARM_ALU_SBREL_19_12",/* name */
605 FALSE, /* partial_inplace */
606 0x000ff000, /* src_mask */
607 0x000ff000, /* dst_mask */
608 FALSE), /* pcrel_offset */
609
610 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
611 0, /* rightshift */
612 2, /* size (0 = byte, 1 = short, 2 = long) */
613 8, /* bitsize */
614 FALSE, /* pc_relative */
615 20, /* bitpos */
616 complain_overflow_dont,/* complain_on_overflow */
617 bfd_elf_generic_reloc, /* special_function */
618 "R_ARM_ALU_SBREL_27_20",/* name */
619 FALSE, /* partial_inplace */
620 0x0ff00000, /* src_mask */
621 0x0ff00000, /* dst_mask */
622 FALSE), /* pcrel_offset */
623
624 HOWTO (R_ARM_TARGET1, /* type */
625 0, /* rightshift */
626 2, /* size (0 = byte, 1 = short, 2 = long) */
627 32, /* bitsize */
628 FALSE, /* pc_relative */
629 0, /* bitpos */
630 complain_overflow_dont,/* complain_on_overflow */
631 bfd_elf_generic_reloc, /* special_function */
632 "R_ARM_TARGET1", /* name */
633 FALSE, /* partial_inplace */
634 0xffffffff, /* src_mask */
635 0xffffffff, /* dst_mask */
636 FALSE), /* pcrel_offset */
637
638 HOWTO (R_ARM_ROSEGREL32, /* type */
639 0, /* rightshift */
640 2, /* size (0 = byte, 1 = short, 2 = long) */
641 32, /* bitsize */
642 FALSE, /* pc_relative */
643 0, /* bitpos */
644 complain_overflow_dont,/* complain_on_overflow */
645 bfd_elf_generic_reloc, /* special_function */
646 "R_ARM_ROSEGREL32", /* name */
647 FALSE, /* partial_inplace */
648 0xffffffff, /* src_mask */
649 0xffffffff, /* dst_mask */
650 FALSE), /* pcrel_offset */
651
652 HOWTO (R_ARM_V4BX, /* type */
653 0, /* rightshift */
654 2, /* size (0 = byte, 1 = short, 2 = long) */
655 32, /* bitsize */
656 FALSE, /* pc_relative */
657 0, /* bitpos */
658 complain_overflow_dont,/* complain_on_overflow */
659 bfd_elf_generic_reloc, /* special_function */
660 "R_ARM_V4BX", /* name */
661 FALSE, /* partial_inplace */
662 0xffffffff, /* src_mask */
663 0xffffffff, /* dst_mask */
664 FALSE), /* pcrel_offset */
665
666 HOWTO (R_ARM_TARGET2, /* type */
667 0, /* rightshift */
668 2, /* size (0 = byte, 1 = short, 2 = long) */
669 32, /* bitsize */
670 FALSE, /* pc_relative */
671 0, /* bitpos */
672 complain_overflow_signed,/* complain_on_overflow */
673 bfd_elf_generic_reloc, /* special_function */
674 "R_ARM_TARGET2", /* name */
675 FALSE, /* partial_inplace */
676 0xffffffff, /* src_mask */
677 0xffffffff, /* dst_mask */
678 TRUE), /* pcrel_offset */
679
680 HOWTO (R_ARM_PREL31, /* type */
681 0, /* rightshift */
682 2, /* size (0 = byte, 1 = short, 2 = long) */
683 31, /* bitsize */
684 TRUE, /* pc_relative */
685 0, /* bitpos */
686 complain_overflow_signed,/* complain_on_overflow */
687 bfd_elf_generic_reloc, /* special_function */
688 "R_ARM_PREL31", /* name */
689 FALSE, /* partial_inplace */
690 0x7fffffff, /* src_mask */
691 0x7fffffff, /* dst_mask */
692 TRUE), /* pcrel_offset */
693
694 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
695 0, /* rightshift */
696 2, /* size (0 = byte, 1 = short, 2 = long) */
697 16, /* bitsize */
698 FALSE, /* pc_relative */
699 0, /* bitpos */
700 complain_overflow_dont,/* complain_on_overflow */
701 bfd_elf_generic_reloc, /* special_function */
702 "R_ARM_MOVW_ABS_NC", /* name */
703 FALSE, /* partial_inplace */
704 0x000f0fff, /* src_mask */
705 0x000f0fff, /* dst_mask */
706 FALSE), /* pcrel_offset */
707
708 HOWTO (R_ARM_MOVT_ABS, /* type */
709 0, /* rightshift */
710 2, /* size (0 = byte, 1 = short, 2 = long) */
711 16, /* bitsize */
712 FALSE, /* pc_relative */
713 0, /* bitpos */
714 complain_overflow_bitfield,/* complain_on_overflow */
715 bfd_elf_generic_reloc, /* special_function */
716 "R_ARM_MOVT_ABS", /* name */
717 FALSE, /* partial_inplace */
718 0x000f0fff, /* src_mask */
719 0x000f0fff, /* dst_mask */
720 FALSE), /* pcrel_offset */
721
722 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
723 0, /* rightshift */
724 2, /* size (0 = byte, 1 = short, 2 = long) */
725 16, /* bitsize */
726 TRUE, /* pc_relative */
727 0, /* bitpos */
728 complain_overflow_dont,/* complain_on_overflow */
729 bfd_elf_generic_reloc, /* special_function */
730 "R_ARM_MOVW_PREL_NC", /* name */
731 FALSE, /* partial_inplace */
732 0x000f0fff, /* src_mask */
733 0x000f0fff, /* dst_mask */
734 TRUE), /* pcrel_offset */
735
736 HOWTO (R_ARM_MOVT_PREL, /* type */
737 0, /* rightshift */
738 2, /* size (0 = byte, 1 = short, 2 = long) */
739 16, /* bitsize */
740 TRUE, /* pc_relative */
741 0, /* bitpos */
742 complain_overflow_bitfield,/* complain_on_overflow */
743 bfd_elf_generic_reloc, /* special_function */
744 "R_ARM_MOVT_PREL", /* name */
745 FALSE, /* partial_inplace */
746 0x000f0fff, /* src_mask */
747 0x000f0fff, /* dst_mask */
748 TRUE), /* pcrel_offset */
749
750 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
751 0, /* rightshift */
752 2, /* size (0 = byte, 1 = short, 2 = long) */
753 16, /* bitsize */
754 FALSE, /* pc_relative */
755 0, /* bitpos */
756 complain_overflow_dont,/* complain_on_overflow */
757 bfd_elf_generic_reloc, /* special_function */
758 "R_ARM_THM_MOVW_ABS_NC",/* name */
759 FALSE, /* partial_inplace */
760 0x040f70ff, /* src_mask */
761 0x040f70ff, /* dst_mask */
762 FALSE), /* pcrel_offset */
763
764 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
765 0, /* rightshift */
766 2, /* size (0 = byte, 1 = short, 2 = long) */
767 16, /* bitsize */
768 FALSE, /* pc_relative */
769 0, /* bitpos */
770 complain_overflow_bitfield,/* complain_on_overflow */
771 bfd_elf_generic_reloc, /* special_function */
772 "R_ARM_THM_MOVT_ABS", /* name */
773 FALSE, /* partial_inplace */
774 0x040f70ff, /* src_mask */
775 0x040f70ff, /* dst_mask */
776 FALSE), /* pcrel_offset */
777
778 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
779 0, /* rightshift */
780 2, /* size (0 = byte, 1 = short, 2 = long) */
781 16, /* bitsize */
782 TRUE, /* pc_relative */
783 0, /* bitpos */
784 complain_overflow_dont,/* complain_on_overflow */
785 bfd_elf_generic_reloc, /* special_function */
786 "R_ARM_THM_MOVW_PREL_NC",/* name */
787 FALSE, /* partial_inplace */
788 0x040f70ff, /* src_mask */
789 0x040f70ff, /* dst_mask */
790 TRUE), /* pcrel_offset */
791
792 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
793 0, /* rightshift */
794 2, /* size (0 = byte, 1 = short, 2 = long) */
795 16, /* bitsize */
796 TRUE, /* pc_relative */
797 0, /* bitpos */
798 complain_overflow_bitfield,/* complain_on_overflow */
799 bfd_elf_generic_reloc, /* special_function */
800 "R_ARM_THM_MOVT_PREL", /* name */
801 FALSE, /* partial_inplace */
802 0x040f70ff, /* src_mask */
803 0x040f70ff, /* dst_mask */
804 TRUE), /* pcrel_offset */
805
806 HOWTO (R_ARM_THM_JUMP19, /* type */
807 1, /* rightshift */
808 2, /* size (0 = byte, 1 = short, 2 = long) */
809 19, /* bitsize */
810 TRUE, /* pc_relative */
811 0, /* bitpos */
812 complain_overflow_signed,/* complain_on_overflow */
813 bfd_elf_generic_reloc, /* special_function */
814 "R_ARM_THM_JUMP19", /* name */
815 FALSE, /* partial_inplace */
816 0x043f2fff, /* src_mask */
817 0x043f2fff, /* dst_mask */
818 TRUE), /* pcrel_offset */
819
820 HOWTO (R_ARM_THM_JUMP6, /* type */
821 1, /* rightshift */
822 1, /* size (0 = byte, 1 = short, 2 = long) */
823 6, /* bitsize */
824 TRUE, /* pc_relative */
825 0, /* bitpos */
826 complain_overflow_unsigned,/* complain_on_overflow */
827 bfd_elf_generic_reloc, /* special_function */
828 "R_ARM_THM_JUMP6", /* name */
829 FALSE, /* partial_inplace */
830 0x02f8, /* src_mask */
831 0x02f8, /* dst_mask */
832 TRUE), /* pcrel_offset */
833
834 /* These are declared as 13-bit signed relocations because we can
835 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
836 versa. */
837 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
838 0, /* rightshift */
839 2, /* size (0 = byte, 1 = short, 2 = long) */
840 13, /* bitsize */
841 TRUE, /* pc_relative */
842 0, /* bitpos */
843 complain_overflow_dont,/* complain_on_overflow */
844 bfd_elf_generic_reloc, /* special_function */
845 "R_ARM_THM_ALU_PREL_11_0",/* name */
846 FALSE, /* partial_inplace */
847 0xffffffff, /* src_mask */
848 0xffffffff, /* dst_mask */
849 TRUE), /* pcrel_offset */
850
851 HOWTO (R_ARM_THM_PC12, /* type */
852 0, /* rightshift */
853 2, /* size (0 = byte, 1 = short, 2 = long) */
854 13, /* bitsize */
855 TRUE, /* pc_relative */
856 0, /* bitpos */
857 complain_overflow_dont,/* complain_on_overflow */
858 bfd_elf_generic_reloc, /* special_function */
859 "R_ARM_THM_PC12", /* name */
860 FALSE, /* partial_inplace */
861 0xffffffff, /* src_mask */
862 0xffffffff, /* dst_mask */
863 TRUE), /* pcrel_offset */
864
865 HOWTO (R_ARM_ABS32_NOI, /* type */
866 0, /* rightshift */
867 2, /* size (0 = byte, 1 = short, 2 = long) */
868 32, /* bitsize */
869 FALSE, /* pc_relative */
870 0, /* bitpos */
871 complain_overflow_dont,/* complain_on_overflow */
872 bfd_elf_generic_reloc, /* special_function */
873 "R_ARM_ABS32_NOI", /* name */
874 FALSE, /* partial_inplace */
875 0xffffffff, /* src_mask */
876 0xffffffff, /* dst_mask */
877 FALSE), /* pcrel_offset */
878
879 HOWTO (R_ARM_REL32_NOI, /* type */
880 0, /* rightshift */
881 2, /* size (0 = byte, 1 = short, 2 = long) */
882 32, /* bitsize */
883 TRUE, /* pc_relative */
884 0, /* bitpos */
885 complain_overflow_dont,/* complain_on_overflow */
886 bfd_elf_generic_reloc, /* special_function */
887 "R_ARM_REL32_NOI", /* name */
888 FALSE, /* partial_inplace */
889 0xffffffff, /* src_mask */
890 0xffffffff, /* dst_mask */
891 FALSE), /* pcrel_offset */
892
893 /* Group relocations. */
894
895 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
896 0, /* rightshift */
897 2, /* size (0 = byte, 1 = short, 2 = long) */
898 32, /* bitsize */
899 TRUE, /* pc_relative */
900 0, /* bitpos */
901 complain_overflow_dont,/* complain_on_overflow */
902 bfd_elf_generic_reloc, /* special_function */
903 "R_ARM_ALU_PC_G0_NC", /* name */
904 FALSE, /* partial_inplace */
905 0xffffffff, /* src_mask */
906 0xffffffff, /* dst_mask */
907 TRUE), /* pcrel_offset */
908
909 HOWTO (R_ARM_ALU_PC_G0, /* type */
910 0, /* rightshift */
911 2, /* size (0 = byte, 1 = short, 2 = long) */
912 32, /* bitsize */
913 TRUE, /* pc_relative */
914 0, /* bitpos */
915 complain_overflow_dont,/* complain_on_overflow */
916 bfd_elf_generic_reloc, /* special_function */
917 "R_ARM_ALU_PC_G0", /* name */
918 FALSE, /* partial_inplace */
919 0xffffffff, /* src_mask */
920 0xffffffff, /* dst_mask */
921 TRUE), /* pcrel_offset */
922
923 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
924 0, /* rightshift */
925 2, /* size (0 = byte, 1 = short, 2 = long) */
926 32, /* bitsize */
927 TRUE, /* pc_relative */
928 0, /* bitpos */
929 complain_overflow_dont,/* complain_on_overflow */
930 bfd_elf_generic_reloc, /* special_function */
931 "R_ARM_ALU_PC_G1_NC", /* name */
932 FALSE, /* partial_inplace */
933 0xffffffff, /* src_mask */
934 0xffffffff, /* dst_mask */
935 TRUE), /* pcrel_offset */
936
937 HOWTO (R_ARM_ALU_PC_G1, /* type */
938 0, /* rightshift */
939 2, /* size (0 = byte, 1 = short, 2 = long) */
940 32, /* bitsize */
941 TRUE, /* pc_relative */
942 0, /* bitpos */
943 complain_overflow_dont,/* complain_on_overflow */
944 bfd_elf_generic_reloc, /* special_function */
945 "R_ARM_ALU_PC_G1", /* name */
946 FALSE, /* partial_inplace */
947 0xffffffff, /* src_mask */
948 0xffffffff, /* dst_mask */
949 TRUE), /* pcrel_offset */
950
951 HOWTO (R_ARM_ALU_PC_G2, /* type */
952 0, /* rightshift */
953 2, /* size (0 = byte, 1 = short, 2 = long) */
954 32, /* bitsize */
955 TRUE, /* pc_relative */
956 0, /* bitpos */
957 complain_overflow_dont,/* complain_on_overflow */
958 bfd_elf_generic_reloc, /* special_function */
959 "R_ARM_ALU_PC_G2", /* name */
960 FALSE, /* partial_inplace */
961 0xffffffff, /* src_mask */
962 0xffffffff, /* dst_mask */
963 TRUE), /* pcrel_offset */
964
965 HOWTO (R_ARM_LDR_PC_G1, /* type */
966 0, /* rightshift */
967 2, /* size (0 = byte, 1 = short, 2 = long) */
968 32, /* bitsize */
969 TRUE, /* pc_relative */
970 0, /* bitpos */
971 complain_overflow_dont,/* complain_on_overflow */
972 bfd_elf_generic_reloc, /* special_function */
973 "R_ARM_LDR_PC_G1", /* name */
974 FALSE, /* partial_inplace */
975 0xffffffff, /* src_mask */
976 0xffffffff, /* dst_mask */
977 TRUE), /* pcrel_offset */
978
979 HOWTO (R_ARM_LDR_PC_G2, /* type */
980 0, /* rightshift */
981 2, /* size (0 = byte, 1 = short, 2 = long) */
982 32, /* bitsize */
983 TRUE, /* pc_relative */
984 0, /* bitpos */
985 complain_overflow_dont,/* complain_on_overflow */
986 bfd_elf_generic_reloc, /* special_function */
987 "R_ARM_LDR_PC_G2", /* name */
988 FALSE, /* partial_inplace */
989 0xffffffff, /* src_mask */
990 0xffffffff, /* dst_mask */
991 TRUE), /* pcrel_offset */
992
993 HOWTO (R_ARM_LDRS_PC_G0, /* type */
994 0, /* rightshift */
995 2, /* size (0 = byte, 1 = short, 2 = long) */
996 32, /* bitsize */
997 TRUE, /* pc_relative */
998 0, /* bitpos */
999 complain_overflow_dont,/* complain_on_overflow */
1000 bfd_elf_generic_reloc, /* special_function */
1001 "R_ARM_LDRS_PC_G0", /* name */
1002 FALSE, /* partial_inplace */
1003 0xffffffff, /* src_mask */
1004 0xffffffff, /* dst_mask */
1005 TRUE), /* pcrel_offset */
1006
1007 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1008 0, /* rightshift */
1009 2, /* size (0 = byte, 1 = short, 2 = long) */
1010 32, /* bitsize */
1011 TRUE, /* pc_relative */
1012 0, /* bitpos */
1013 complain_overflow_dont,/* complain_on_overflow */
1014 bfd_elf_generic_reloc, /* special_function */
1015 "R_ARM_LDRS_PC_G1", /* name */
1016 FALSE, /* partial_inplace */
1017 0xffffffff, /* src_mask */
1018 0xffffffff, /* dst_mask */
1019 TRUE), /* pcrel_offset */
1020
1021 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1022 0, /* rightshift */
1023 2, /* size (0 = byte, 1 = short, 2 = long) */
1024 32, /* bitsize */
1025 TRUE, /* pc_relative */
1026 0, /* bitpos */
1027 complain_overflow_dont,/* complain_on_overflow */
1028 bfd_elf_generic_reloc, /* special_function */
1029 "R_ARM_LDRS_PC_G2", /* name */
1030 FALSE, /* partial_inplace */
1031 0xffffffff, /* src_mask */
1032 0xffffffff, /* dst_mask */
1033 TRUE), /* pcrel_offset */
1034
1035 HOWTO (R_ARM_LDC_PC_G0, /* type */
1036 0, /* rightshift */
1037 2, /* size (0 = byte, 1 = short, 2 = long) */
1038 32, /* bitsize */
1039 TRUE, /* pc_relative */
1040 0, /* bitpos */
1041 complain_overflow_dont,/* complain_on_overflow */
1042 bfd_elf_generic_reloc, /* special_function */
1043 "R_ARM_LDC_PC_G0", /* name */
1044 FALSE, /* partial_inplace */
1045 0xffffffff, /* src_mask */
1046 0xffffffff, /* dst_mask */
1047 TRUE), /* pcrel_offset */
1048
1049 HOWTO (R_ARM_LDC_PC_G1, /* type */
1050 0, /* rightshift */
1051 2, /* size (0 = byte, 1 = short, 2 = long) */
1052 32, /* bitsize */
1053 TRUE, /* pc_relative */
1054 0, /* bitpos */
1055 complain_overflow_dont,/* complain_on_overflow */
1056 bfd_elf_generic_reloc, /* special_function */
1057 "R_ARM_LDC_PC_G1", /* name */
1058 FALSE, /* partial_inplace */
1059 0xffffffff, /* src_mask */
1060 0xffffffff, /* dst_mask */
1061 TRUE), /* pcrel_offset */
1062
1063 HOWTO (R_ARM_LDC_PC_G2, /* type */
1064 0, /* rightshift */
1065 2, /* size (0 = byte, 1 = short, 2 = long) */
1066 32, /* bitsize */
1067 TRUE, /* pc_relative */
1068 0, /* bitpos */
1069 complain_overflow_dont,/* complain_on_overflow */
1070 bfd_elf_generic_reloc, /* special_function */
1071 "R_ARM_LDC_PC_G2", /* name */
1072 FALSE, /* partial_inplace */
1073 0xffffffff, /* src_mask */
1074 0xffffffff, /* dst_mask */
1075 TRUE), /* pcrel_offset */
1076
1077 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1078 0, /* rightshift */
1079 2, /* size (0 = byte, 1 = short, 2 = long) */
1080 32, /* bitsize */
1081 TRUE, /* pc_relative */
1082 0, /* bitpos */
1083 complain_overflow_dont,/* complain_on_overflow */
1084 bfd_elf_generic_reloc, /* special_function */
1085 "R_ARM_ALU_SB_G0_NC", /* name */
1086 FALSE, /* partial_inplace */
1087 0xffffffff, /* src_mask */
1088 0xffffffff, /* dst_mask */
1089 TRUE), /* pcrel_offset */
1090
1091 HOWTO (R_ARM_ALU_SB_G0, /* type */
1092 0, /* rightshift */
1093 2, /* size (0 = byte, 1 = short, 2 = long) */
1094 32, /* bitsize */
1095 TRUE, /* pc_relative */
1096 0, /* bitpos */
1097 complain_overflow_dont,/* complain_on_overflow */
1098 bfd_elf_generic_reloc, /* special_function */
1099 "R_ARM_ALU_SB_G0", /* name */
1100 FALSE, /* partial_inplace */
1101 0xffffffff, /* src_mask */
1102 0xffffffff, /* dst_mask */
1103 TRUE), /* pcrel_offset */
1104
1105 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1106 0, /* rightshift */
1107 2, /* size (0 = byte, 1 = short, 2 = long) */
1108 32, /* bitsize */
1109 TRUE, /* pc_relative */
1110 0, /* bitpos */
1111 complain_overflow_dont,/* complain_on_overflow */
1112 bfd_elf_generic_reloc, /* special_function */
1113 "R_ARM_ALU_SB_G1_NC", /* name */
1114 FALSE, /* partial_inplace */
1115 0xffffffff, /* src_mask */
1116 0xffffffff, /* dst_mask */
1117 TRUE), /* pcrel_offset */
1118
1119 HOWTO (R_ARM_ALU_SB_G1, /* type */
1120 0, /* rightshift */
1121 2, /* size (0 = byte, 1 = short, 2 = long) */
1122 32, /* bitsize */
1123 TRUE, /* pc_relative */
1124 0, /* bitpos */
1125 complain_overflow_dont,/* complain_on_overflow */
1126 bfd_elf_generic_reloc, /* special_function */
1127 "R_ARM_ALU_SB_G1", /* name */
1128 FALSE, /* partial_inplace */
1129 0xffffffff, /* src_mask */
1130 0xffffffff, /* dst_mask */
1131 TRUE), /* pcrel_offset */
1132
1133 HOWTO (R_ARM_ALU_SB_G2, /* type */
1134 0, /* rightshift */
1135 2, /* size (0 = byte, 1 = short, 2 = long) */
1136 32, /* bitsize */
1137 TRUE, /* pc_relative */
1138 0, /* bitpos */
1139 complain_overflow_dont,/* complain_on_overflow */
1140 bfd_elf_generic_reloc, /* special_function */
1141 "R_ARM_ALU_SB_G2", /* name */
1142 FALSE, /* partial_inplace */
1143 0xffffffff, /* src_mask */
1144 0xffffffff, /* dst_mask */
1145 TRUE), /* pcrel_offset */
1146
1147 HOWTO (R_ARM_LDR_SB_G0, /* type */
1148 0, /* rightshift */
1149 2, /* size (0 = byte, 1 = short, 2 = long) */
1150 32, /* bitsize */
1151 TRUE, /* pc_relative */
1152 0, /* bitpos */
1153 complain_overflow_dont,/* complain_on_overflow */
1154 bfd_elf_generic_reloc, /* special_function */
1155 "R_ARM_LDR_SB_G0", /* name */
1156 FALSE, /* partial_inplace */
1157 0xffffffff, /* src_mask */
1158 0xffffffff, /* dst_mask */
1159 TRUE), /* pcrel_offset */
1160
1161 HOWTO (R_ARM_LDR_SB_G1, /* type */
1162 0, /* rightshift */
1163 2, /* size (0 = byte, 1 = short, 2 = long) */
1164 32, /* bitsize */
1165 TRUE, /* pc_relative */
1166 0, /* bitpos */
1167 complain_overflow_dont,/* complain_on_overflow */
1168 bfd_elf_generic_reloc, /* special_function */
1169 "R_ARM_LDR_SB_G1", /* name */
1170 FALSE, /* partial_inplace */
1171 0xffffffff, /* src_mask */
1172 0xffffffff, /* dst_mask */
1173 TRUE), /* pcrel_offset */
1174
1175 HOWTO (R_ARM_LDR_SB_G2, /* type */
1176 0, /* rightshift */
1177 2, /* size (0 = byte, 1 = short, 2 = long) */
1178 32, /* bitsize */
1179 TRUE, /* pc_relative */
1180 0, /* bitpos */
1181 complain_overflow_dont,/* complain_on_overflow */
1182 bfd_elf_generic_reloc, /* special_function */
1183 "R_ARM_LDR_SB_G2", /* name */
1184 FALSE, /* partial_inplace */
1185 0xffffffff, /* src_mask */
1186 0xffffffff, /* dst_mask */
1187 TRUE), /* pcrel_offset */
1188
1189 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1190 0, /* rightshift */
1191 2, /* size (0 = byte, 1 = short, 2 = long) */
1192 32, /* bitsize */
1193 TRUE, /* pc_relative */
1194 0, /* bitpos */
1195 complain_overflow_dont,/* complain_on_overflow */
1196 bfd_elf_generic_reloc, /* special_function */
1197 "R_ARM_LDRS_SB_G0", /* name */
1198 FALSE, /* partial_inplace */
1199 0xffffffff, /* src_mask */
1200 0xffffffff, /* dst_mask */
1201 TRUE), /* pcrel_offset */
1202
1203 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1204 0, /* rightshift */
1205 2, /* size (0 = byte, 1 = short, 2 = long) */
1206 32, /* bitsize */
1207 TRUE, /* pc_relative */
1208 0, /* bitpos */
1209 complain_overflow_dont,/* complain_on_overflow */
1210 bfd_elf_generic_reloc, /* special_function */
1211 "R_ARM_LDRS_SB_G1", /* name */
1212 FALSE, /* partial_inplace */
1213 0xffffffff, /* src_mask */
1214 0xffffffff, /* dst_mask */
1215 TRUE), /* pcrel_offset */
1216
1217 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1218 0, /* rightshift */
1219 2, /* size (0 = byte, 1 = short, 2 = long) */
1220 32, /* bitsize */
1221 TRUE, /* pc_relative */
1222 0, /* bitpos */
1223 complain_overflow_dont,/* complain_on_overflow */
1224 bfd_elf_generic_reloc, /* special_function */
1225 "R_ARM_LDRS_SB_G2", /* name */
1226 FALSE, /* partial_inplace */
1227 0xffffffff, /* src_mask */
1228 0xffffffff, /* dst_mask */
1229 TRUE), /* pcrel_offset */
1230
1231 HOWTO (R_ARM_LDC_SB_G0, /* type */
1232 0, /* rightshift */
1233 2, /* size (0 = byte, 1 = short, 2 = long) */
1234 32, /* bitsize */
1235 TRUE, /* pc_relative */
1236 0, /* bitpos */
1237 complain_overflow_dont,/* complain_on_overflow */
1238 bfd_elf_generic_reloc, /* special_function */
1239 "R_ARM_LDC_SB_G0", /* name */
1240 FALSE, /* partial_inplace */
1241 0xffffffff, /* src_mask */
1242 0xffffffff, /* dst_mask */
1243 TRUE), /* pcrel_offset */
1244
1245 HOWTO (R_ARM_LDC_SB_G1, /* type */
1246 0, /* rightshift */
1247 2, /* size (0 = byte, 1 = short, 2 = long) */
1248 32, /* bitsize */
1249 TRUE, /* pc_relative */
1250 0, /* bitpos */
1251 complain_overflow_dont,/* complain_on_overflow */
1252 bfd_elf_generic_reloc, /* special_function */
1253 "R_ARM_LDC_SB_G1", /* name */
1254 FALSE, /* partial_inplace */
1255 0xffffffff, /* src_mask */
1256 0xffffffff, /* dst_mask */
1257 TRUE), /* pcrel_offset */
1258
1259 HOWTO (R_ARM_LDC_SB_G2, /* type */
1260 0, /* rightshift */
1261 2, /* size (0 = byte, 1 = short, 2 = long) */
1262 32, /* bitsize */
1263 TRUE, /* pc_relative */
1264 0, /* bitpos */
1265 complain_overflow_dont,/* complain_on_overflow */
1266 bfd_elf_generic_reloc, /* special_function */
1267 "R_ARM_LDC_SB_G2", /* name */
1268 FALSE, /* partial_inplace */
1269 0xffffffff, /* src_mask */
1270 0xffffffff, /* dst_mask */
1271 TRUE), /* pcrel_offset */
1272
1273 /* End of group relocations. */
1274
1275 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1276 0, /* rightshift */
1277 2, /* size (0 = byte, 1 = short, 2 = long) */
1278 16, /* bitsize */
1279 FALSE, /* pc_relative */
1280 0, /* bitpos */
1281 complain_overflow_dont,/* complain_on_overflow */
1282 bfd_elf_generic_reloc, /* special_function */
1283 "R_ARM_MOVW_BREL_NC", /* name */
1284 FALSE, /* partial_inplace */
1285 0x0000ffff, /* src_mask */
1286 0x0000ffff, /* dst_mask */
1287 FALSE), /* pcrel_offset */
1288
1289 HOWTO (R_ARM_MOVT_BREL, /* type */
1290 0, /* rightshift */
1291 2, /* size (0 = byte, 1 = short, 2 = long) */
1292 16, /* bitsize */
1293 FALSE, /* pc_relative */
1294 0, /* bitpos */
1295 complain_overflow_bitfield,/* complain_on_overflow */
1296 bfd_elf_generic_reloc, /* special_function */
1297 "R_ARM_MOVT_BREL", /* name */
1298 FALSE, /* partial_inplace */
1299 0x0000ffff, /* src_mask */
1300 0x0000ffff, /* dst_mask */
1301 FALSE), /* pcrel_offset */
1302
1303 HOWTO (R_ARM_MOVW_BREL, /* type */
1304 0, /* rightshift */
1305 2, /* size (0 = byte, 1 = short, 2 = long) */
1306 16, /* bitsize */
1307 FALSE, /* pc_relative */
1308 0, /* bitpos */
1309 complain_overflow_dont,/* complain_on_overflow */
1310 bfd_elf_generic_reloc, /* special_function */
1311 "R_ARM_MOVW_BREL", /* name */
1312 FALSE, /* partial_inplace */
1313 0x0000ffff, /* src_mask */
1314 0x0000ffff, /* dst_mask */
1315 FALSE), /* pcrel_offset */
1316
1317 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1318 0, /* rightshift */
1319 2, /* size (0 = byte, 1 = short, 2 = long) */
1320 16, /* bitsize */
1321 FALSE, /* pc_relative */
1322 0, /* bitpos */
1323 complain_overflow_dont,/* complain_on_overflow */
1324 bfd_elf_generic_reloc, /* special_function */
1325 "R_ARM_THM_MOVW_BREL_NC",/* name */
1326 FALSE, /* partial_inplace */
1327 0x040f70ff, /* src_mask */
1328 0x040f70ff, /* dst_mask */
1329 FALSE), /* pcrel_offset */
1330
1331 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1332 0, /* rightshift */
1333 2, /* size (0 = byte, 1 = short, 2 = long) */
1334 16, /* bitsize */
1335 FALSE, /* pc_relative */
1336 0, /* bitpos */
1337 complain_overflow_bitfield,/* complain_on_overflow */
1338 bfd_elf_generic_reloc, /* special_function */
1339 "R_ARM_THM_MOVT_BREL", /* name */
1340 FALSE, /* partial_inplace */
1341 0x040f70ff, /* src_mask */
1342 0x040f70ff, /* dst_mask */
1343 FALSE), /* pcrel_offset */
1344
1345 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1346 0, /* rightshift */
1347 2, /* size (0 = byte, 1 = short, 2 = long) */
1348 16, /* bitsize */
1349 FALSE, /* pc_relative */
1350 0, /* bitpos */
1351 complain_overflow_dont,/* complain_on_overflow */
1352 bfd_elf_generic_reloc, /* special_function */
1353 "R_ARM_THM_MOVW_BREL", /* name */
1354 FALSE, /* partial_inplace */
1355 0x040f70ff, /* src_mask */
1356 0x040f70ff, /* dst_mask */
1357 FALSE), /* pcrel_offset */
1358
1359 HOWTO (R_ARM_TLS_GOTDESC, /* type */
1360 0, /* rightshift */
1361 2, /* size (0 = byte, 1 = short, 2 = long) */
1362 32, /* bitsize */
1363 FALSE, /* pc_relative */
1364 0, /* bitpos */
1365 complain_overflow_bitfield,/* complain_on_overflow */
1366 NULL, /* special_function */
1367 "R_ARM_TLS_GOTDESC", /* name */
1368 TRUE, /* partial_inplace */
1369 0xffffffff, /* src_mask */
1370 0xffffffff, /* dst_mask */
1371 FALSE), /* pcrel_offset */
1372
1373 HOWTO (R_ARM_TLS_CALL, /* type */
1374 0, /* rightshift */
1375 2, /* size (0 = byte, 1 = short, 2 = long) */
1376 24, /* bitsize */
1377 FALSE, /* pc_relative */
1378 0, /* bitpos */
1379 complain_overflow_dont,/* complain_on_overflow */
1380 bfd_elf_generic_reloc, /* special_function */
1381 "R_ARM_TLS_CALL", /* name */
1382 FALSE, /* partial_inplace */
1383 0x00ffffff, /* src_mask */
1384 0x00ffffff, /* dst_mask */
1385 FALSE), /* pcrel_offset */
1386
1387 HOWTO (R_ARM_TLS_DESCSEQ, /* type */
1388 0, /* rightshift */
1389 2, /* size (0 = byte, 1 = short, 2 = long) */
1390 0, /* bitsize */
1391 FALSE, /* pc_relative */
1392 0, /* bitpos */
1393 complain_overflow_bitfield,/* complain_on_overflow */
1394 bfd_elf_generic_reloc, /* special_function */
1395 "R_ARM_TLS_DESCSEQ", /* name */
1396 FALSE, /* partial_inplace */
1397 0x00000000, /* src_mask */
1398 0x00000000, /* dst_mask */
1399 FALSE), /* pcrel_offset */
1400
1401 HOWTO (R_ARM_THM_TLS_CALL, /* type */
1402 0, /* rightshift */
1403 2, /* size (0 = byte, 1 = short, 2 = long) */
1404 24, /* bitsize */
1405 FALSE, /* pc_relative */
1406 0, /* bitpos */
1407 complain_overflow_dont,/* complain_on_overflow */
1408 bfd_elf_generic_reloc, /* special_function */
1409 "R_ARM_THM_TLS_CALL", /* name */
1410 FALSE, /* partial_inplace */
1411 0x07ff07ff, /* src_mask */
1412 0x07ff07ff, /* dst_mask */
1413 FALSE), /* pcrel_offset */
1414
1415 HOWTO (R_ARM_PLT32_ABS, /* type */
1416 0, /* rightshift */
1417 2, /* size (0 = byte, 1 = short, 2 = long) */
1418 32, /* bitsize */
1419 FALSE, /* pc_relative */
1420 0, /* bitpos */
1421 complain_overflow_dont,/* complain_on_overflow */
1422 bfd_elf_generic_reloc, /* special_function */
1423 "R_ARM_PLT32_ABS", /* name */
1424 FALSE, /* partial_inplace */
1425 0xffffffff, /* src_mask */
1426 0xffffffff, /* dst_mask */
1427 FALSE), /* pcrel_offset */
1428
1429 HOWTO (R_ARM_GOT_ABS, /* type */
1430 0, /* rightshift */
1431 2, /* size (0 = byte, 1 = short, 2 = long) */
1432 32, /* bitsize */
1433 FALSE, /* pc_relative */
1434 0, /* bitpos */
1435 complain_overflow_dont,/* complain_on_overflow */
1436 bfd_elf_generic_reloc, /* special_function */
1437 "R_ARM_GOT_ABS", /* name */
1438 FALSE, /* partial_inplace */
1439 0xffffffff, /* src_mask */
1440 0xffffffff, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1442
1443 HOWTO (R_ARM_GOT_PREL, /* type */
1444 0, /* rightshift */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1446 32, /* bitsize */
1447 TRUE, /* pc_relative */
1448 0, /* bitpos */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 bfd_elf_generic_reloc, /* special_function */
1451 "R_ARM_GOT_PREL", /* name */
1452 FALSE, /* partial_inplace */
1453 0xffffffff, /* src_mask */
1454 0xffffffff, /* dst_mask */
1455 TRUE), /* pcrel_offset */
1456
1457 HOWTO (R_ARM_GOT_BREL12, /* type */
1458 0, /* rightshift */
1459 2, /* size (0 = byte, 1 = short, 2 = long) */
1460 12, /* bitsize */
1461 FALSE, /* pc_relative */
1462 0, /* bitpos */
1463 complain_overflow_bitfield,/* complain_on_overflow */
1464 bfd_elf_generic_reloc, /* special_function */
1465 "R_ARM_GOT_BREL12", /* name */
1466 FALSE, /* partial_inplace */
1467 0x00000fff, /* src_mask */
1468 0x00000fff, /* dst_mask */
1469 FALSE), /* pcrel_offset */
1470
1471 HOWTO (R_ARM_GOTOFF12, /* type */
1472 0, /* rightshift */
1473 2, /* size (0 = byte, 1 = short, 2 = long) */
1474 12, /* bitsize */
1475 FALSE, /* pc_relative */
1476 0, /* bitpos */
1477 complain_overflow_bitfield,/* complain_on_overflow */
1478 bfd_elf_generic_reloc, /* special_function */
1479 "R_ARM_GOTOFF12", /* name */
1480 FALSE, /* partial_inplace */
1481 0x00000fff, /* src_mask */
1482 0x00000fff, /* dst_mask */
1483 FALSE), /* pcrel_offset */
1484
1485 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1486
1487 /* GNU extension to record C++ vtable member usage */
1488 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1489 0, /* rightshift */
1490 2, /* size (0 = byte, 1 = short, 2 = long) */
1491 0, /* bitsize */
1492 FALSE, /* pc_relative */
1493 0, /* bitpos */
1494 complain_overflow_dont, /* complain_on_overflow */
1495 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1496 "R_ARM_GNU_VTENTRY", /* name */
1497 FALSE, /* partial_inplace */
1498 0, /* src_mask */
1499 0, /* dst_mask */
1500 FALSE), /* pcrel_offset */
1501
1502 /* GNU extension to record C++ vtable hierarchy */
1503 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1504 0, /* rightshift */
1505 2, /* size (0 = byte, 1 = short, 2 = long) */
1506 0, /* bitsize */
1507 FALSE, /* pc_relative */
1508 0, /* bitpos */
1509 complain_overflow_dont, /* complain_on_overflow */
1510 NULL, /* special_function */
1511 "R_ARM_GNU_VTINHERIT", /* name */
1512 FALSE, /* partial_inplace */
1513 0, /* src_mask */
1514 0, /* dst_mask */
1515 FALSE), /* pcrel_offset */
1516
1517 HOWTO (R_ARM_THM_JUMP11, /* type */
1518 1, /* rightshift */
1519 1, /* size (0 = byte, 1 = short, 2 = long) */
1520 11, /* bitsize */
1521 TRUE, /* pc_relative */
1522 0, /* bitpos */
1523 complain_overflow_signed, /* complain_on_overflow */
1524 bfd_elf_generic_reloc, /* special_function */
1525 "R_ARM_THM_JUMP11", /* name */
1526 FALSE, /* partial_inplace */
1527 0x000007ff, /* src_mask */
1528 0x000007ff, /* dst_mask */
1529 TRUE), /* pcrel_offset */
1530
1531 HOWTO (R_ARM_THM_JUMP8, /* type */
1532 1, /* rightshift */
1533 1, /* size (0 = byte, 1 = short, 2 = long) */
1534 8, /* bitsize */
1535 TRUE, /* pc_relative */
1536 0, /* bitpos */
1537 complain_overflow_signed, /* complain_on_overflow */
1538 bfd_elf_generic_reloc, /* special_function */
1539 "R_ARM_THM_JUMP8", /* name */
1540 FALSE, /* partial_inplace */
1541 0x000000ff, /* src_mask */
1542 0x000000ff, /* dst_mask */
1543 TRUE), /* pcrel_offset */
1544
1545 /* TLS relocations */
1546 HOWTO (R_ARM_TLS_GD32, /* type */
1547 0, /* rightshift */
1548 2, /* size (0 = byte, 1 = short, 2 = long) */
1549 32, /* bitsize */
1550 FALSE, /* pc_relative */
1551 0, /* bitpos */
1552 complain_overflow_bitfield,/* complain_on_overflow */
1553 NULL, /* special_function */
1554 "R_ARM_TLS_GD32", /* name */
1555 TRUE, /* partial_inplace */
1556 0xffffffff, /* src_mask */
1557 0xffffffff, /* dst_mask */
1558 FALSE), /* pcrel_offset */
1559
1560 HOWTO (R_ARM_TLS_LDM32, /* type */
1561 0, /* rightshift */
1562 2, /* size (0 = byte, 1 = short, 2 = long) */
1563 32, /* bitsize */
1564 FALSE, /* pc_relative */
1565 0, /* bitpos */
1566 complain_overflow_bitfield,/* complain_on_overflow */
1567 bfd_elf_generic_reloc, /* special_function */
1568 "R_ARM_TLS_LDM32", /* name */
1569 TRUE, /* partial_inplace */
1570 0xffffffff, /* src_mask */
1571 0xffffffff, /* dst_mask */
1572 FALSE), /* pcrel_offset */
1573
1574 HOWTO (R_ARM_TLS_LDO32, /* type */
1575 0, /* rightshift */
1576 2, /* size (0 = byte, 1 = short, 2 = long) */
1577 32, /* bitsize */
1578 FALSE, /* pc_relative */
1579 0, /* bitpos */
1580 complain_overflow_bitfield,/* complain_on_overflow */
1581 bfd_elf_generic_reloc, /* special_function */
1582 "R_ARM_TLS_LDO32", /* name */
1583 TRUE, /* partial_inplace */
1584 0xffffffff, /* src_mask */
1585 0xffffffff, /* dst_mask */
1586 FALSE), /* pcrel_offset */
1587
1588 HOWTO (R_ARM_TLS_IE32, /* type */
1589 0, /* rightshift */
1590 2, /* size (0 = byte, 1 = short, 2 = long) */
1591 32, /* bitsize */
1592 FALSE, /* pc_relative */
1593 0, /* bitpos */
1594 complain_overflow_bitfield,/* complain_on_overflow */
1595 NULL, /* special_function */
1596 "R_ARM_TLS_IE32", /* name */
1597 TRUE, /* partial_inplace */
1598 0xffffffff, /* src_mask */
1599 0xffffffff, /* dst_mask */
1600 FALSE), /* pcrel_offset */
1601
1602 HOWTO (R_ARM_TLS_LE32, /* type */
1603 0, /* rightshift */
1604 2, /* size (0 = byte, 1 = short, 2 = long) */
1605 32, /* bitsize */
1606 FALSE, /* pc_relative */
1607 0, /* bitpos */
1608 complain_overflow_bitfield,/* complain_on_overflow */
1609 NULL, /* special_function */
1610 "R_ARM_TLS_LE32", /* name */
1611 TRUE, /* partial_inplace */
1612 0xffffffff, /* src_mask */
1613 0xffffffff, /* dst_mask */
1614 FALSE), /* pcrel_offset */
1615
1616 HOWTO (R_ARM_TLS_LDO12, /* type */
1617 0, /* rightshift */
1618 2, /* size (0 = byte, 1 = short, 2 = long) */
1619 12, /* bitsize */
1620 FALSE, /* pc_relative */
1621 0, /* bitpos */
1622 complain_overflow_bitfield,/* complain_on_overflow */
1623 bfd_elf_generic_reloc, /* special_function */
1624 "R_ARM_TLS_LDO12", /* name */
1625 FALSE, /* partial_inplace */
1626 0x00000fff, /* src_mask */
1627 0x00000fff, /* dst_mask */
1628 FALSE), /* pcrel_offset */
1629
1630 HOWTO (R_ARM_TLS_LE12, /* type */
1631 0, /* rightshift */
1632 2, /* size (0 = byte, 1 = short, 2 = long) */
1633 12, /* bitsize */
1634 FALSE, /* pc_relative */
1635 0, /* bitpos */
1636 complain_overflow_bitfield,/* complain_on_overflow */
1637 bfd_elf_generic_reloc, /* special_function */
1638 "R_ARM_TLS_LE12", /* name */
1639 FALSE, /* partial_inplace */
1640 0x00000fff, /* src_mask */
1641 0x00000fff, /* dst_mask */
1642 FALSE), /* pcrel_offset */
1643
1644 HOWTO (R_ARM_TLS_IE12GP, /* type */
1645 0, /* rightshift */
1646 2, /* size (0 = byte, 1 = short, 2 = long) */
1647 12, /* bitsize */
1648 FALSE, /* pc_relative */
1649 0, /* bitpos */
1650 complain_overflow_bitfield,/* complain_on_overflow */
1651 bfd_elf_generic_reloc, /* special_function */
1652 "R_ARM_TLS_IE12GP", /* name */
1653 FALSE, /* partial_inplace */
1654 0x00000fff, /* src_mask */
1655 0x00000fff, /* dst_mask */
1656 FALSE), /* pcrel_offset */
1657
1658 /* 112-127 private relocations. */
1659 EMPTY_HOWTO (112),
1660 EMPTY_HOWTO (113),
1661 EMPTY_HOWTO (114),
1662 EMPTY_HOWTO (115),
1663 EMPTY_HOWTO (116),
1664 EMPTY_HOWTO (117),
1665 EMPTY_HOWTO (118),
1666 EMPTY_HOWTO (119),
1667 EMPTY_HOWTO (120),
1668 EMPTY_HOWTO (121),
1669 EMPTY_HOWTO (122),
1670 EMPTY_HOWTO (123),
1671 EMPTY_HOWTO (124),
1672 EMPTY_HOWTO (125),
1673 EMPTY_HOWTO (126),
1674 EMPTY_HOWTO (127),
1675
1676 /* R_ARM_ME_TOO, obsolete. */
1677 EMPTY_HOWTO (128),
1678
1679 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1680 0, /* rightshift */
1681 1, /* size (0 = byte, 1 = short, 2 = long) */
1682 0, /* bitsize */
1683 FALSE, /* pc_relative */
1684 0, /* bitpos */
1685 complain_overflow_bitfield,/* complain_on_overflow */
1686 bfd_elf_generic_reloc, /* special_function */
1687 "R_ARM_THM_TLS_DESCSEQ",/* name */
1688 FALSE, /* partial_inplace */
1689 0x00000000, /* src_mask */
1690 0x00000000, /* dst_mask */
1691 FALSE), /* pcrel_offset */
1692 EMPTY_HOWTO (130),
1693 EMPTY_HOWTO (131),
1694 HOWTO (R_ARM_THM_ALU_ABS_G0_NC,/* type. */
1695 0, /* rightshift. */
1696 1, /* size (0 = byte, 1 = short, 2 = long). */
1697 16, /* bitsize. */
1698 FALSE, /* pc_relative. */
1699 0, /* bitpos. */
1700 complain_overflow_bitfield,/* complain_on_overflow. */
1701 bfd_elf_generic_reloc, /* special_function. */
1702 "R_ARM_THM_ALU_ABS_G0_NC",/* name. */
1703 FALSE, /* partial_inplace. */
1704 0x00000000, /* src_mask. */
1705 0x00000000, /* dst_mask. */
1706 FALSE), /* pcrel_offset. */
1707 HOWTO (R_ARM_THM_ALU_ABS_G1_NC,/* type. */
1708 0, /* rightshift. */
1709 1, /* size (0 = byte, 1 = short, 2 = long). */
1710 16, /* bitsize. */
1711 FALSE, /* pc_relative. */
1712 0, /* bitpos. */
1713 complain_overflow_bitfield,/* complain_on_overflow. */
1714 bfd_elf_generic_reloc, /* special_function. */
1715 "R_ARM_THM_ALU_ABS_G1_NC",/* name. */
1716 FALSE, /* partial_inplace. */
1717 0x00000000, /* src_mask. */
1718 0x00000000, /* dst_mask. */
1719 FALSE), /* pcrel_offset. */
1720 HOWTO (R_ARM_THM_ALU_ABS_G2_NC,/* type. */
1721 0, /* rightshift. */
1722 1, /* size (0 = byte, 1 = short, 2 = long). */
1723 16, /* bitsize. */
1724 FALSE, /* pc_relative. */
1725 0, /* bitpos. */
1726 complain_overflow_bitfield,/* complain_on_overflow. */
1727 bfd_elf_generic_reloc, /* special_function. */
1728 "R_ARM_THM_ALU_ABS_G2_NC",/* name. */
1729 FALSE, /* partial_inplace. */
1730 0x00000000, /* src_mask. */
1731 0x00000000, /* dst_mask. */
1732 FALSE), /* pcrel_offset. */
1733 HOWTO (R_ARM_THM_ALU_ABS_G3_NC,/* type. */
1734 0, /* rightshift. */
1735 1, /* size (0 = byte, 1 = short, 2 = long). */
1736 16, /* bitsize. */
1737 FALSE, /* pc_relative. */
1738 0, /* bitpos. */
1739 complain_overflow_bitfield,/* complain_on_overflow. */
1740 bfd_elf_generic_reloc, /* special_function. */
1741 "R_ARM_THM_ALU_ABS_G3_NC",/* name. */
1742 FALSE, /* partial_inplace. */
1743 0x00000000, /* src_mask. */
1744 0x00000000, /* dst_mask. */
1745 FALSE), /* pcrel_offset. */
1746 };
1747
1748 /* 160 onwards: */
1749 static reloc_howto_type elf32_arm_howto_table_2[1] =
1750 {
1751 HOWTO (R_ARM_IRELATIVE, /* type */
1752 0, /* rightshift */
1753 2, /* size (0 = byte, 1 = short, 2 = long) */
1754 32, /* bitsize */
1755 FALSE, /* pc_relative */
1756 0, /* bitpos */
1757 complain_overflow_bitfield,/* complain_on_overflow */
1758 bfd_elf_generic_reloc, /* special_function */
1759 "R_ARM_IRELATIVE", /* name */
1760 TRUE, /* partial_inplace */
1761 0xffffffff, /* src_mask */
1762 0xffffffff, /* dst_mask */
1763 FALSE) /* pcrel_offset */
1764 };
1765
1766 /* 249-255 extended, currently unused, relocations: */
1767 static reloc_howto_type elf32_arm_howto_table_3[4] =
1768 {
1769 HOWTO (R_ARM_RREL32, /* type */
1770 0, /* rightshift */
1771 0, /* size (0 = byte, 1 = short, 2 = long) */
1772 0, /* bitsize */
1773 FALSE, /* pc_relative */
1774 0, /* bitpos */
1775 complain_overflow_dont,/* complain_on_overflow */
1776 bfd_elf_generic_reloc, /* special_function */
1777 "R_ARM_RREL32", /* name */
1778 FALSE, /* partial_inplace */
1779 0, /* src_mask */
1780 0, /* dst_mask */
1781 FALSE), /* pcrel_offset */
1782
1783 HOWTO (R_ARM_RABS32, /* type */
1784 0, /* rightshift */
1785 0, /* size (0 = byte, 1 = short, 2 = long) */
1786 0, /* bitsize */
1787 FALSE, /* pc_relative */
1788 0, /* bitpos */
1789 complain_overflow_dont,/* complain_on_overflow */
1790 bfd_elf_generic_reloc, /* special_function */
1791 "R_ARM_RABS32", /* name */
1792 FALSE, /* partial_inplace */
1793 0, /* src_mask */
1794 0, /* dst_mask */
1795 FALSE), /* pcrel_offset */
1796
1797 HOWTO (R_ARM_RPC24, /* type */
1798 0, /* rightshift */
1799 0, /* size (0 = byte, 1 = short, 2 = long) */
1800 0, /* bitsize */
1801 FALSE, /* pc_relative */
1802 0, /* bitpos */
1803 complain_overflow_dont,/* complain_on_overflow */
1804 bfd_elf_generic_reloc, /* special_function */
1805 "R_ARM_RPC24", /* name */
1806 FALSE, /* partial_inplace */
1807 0, /* src_mask */
1808 0, /* dst_mask */
1809 FALSE), /* pcrel_offset */
1810
1811 HOWTO (R_ARM_RBASE, /* type */
1812 0, /* rightshift */
1813 0, /* size (0 = byte, 1 = short, 2 = long) */
1814 0, /* bitsize */
1815 FALSE, /* pc_relative */
1816 0, /* bitpos */
1817 complain_overflow_dont,/* complain_on_overflow */
1818 bfd_elf_generic_reloc, /* special_function */
1819 "R_ARM_RBASE", /* name */
1820 FALSE, /* partial_inplace */
1821 0, /* src_mask */
1822 0, /* dst_mask */
1823 FALSE) /* pcrel_offset */
1824 };
1825
1826 static reloc_howto_type *
1827 elf32_arm_howto_from_type (unsigned int r_type)
1828 {
1829 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1830 return &elf32_arm_howto_table_1[r_type];
1831
1832 if (r_type == R_ARM_IRELATIVE)
1833 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1834
1835 if (r_type >= R_ARM_RREL32
1836 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1837 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
1838
1839 return NULL;
1840 }
1841
1842 static void
1843 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1844 Elf_Internal_Rela * elf_reloc)
1845 {
1846 unsigned int r_type;
1847
1848 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1849 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1850 }
1851
1852 struct elf32_arm_reloc_map
1853 {
1854 bfd_reloc_code_real_type bfd_reloc_val;
1855 unsigned char elf_reloc_val;
1856 };
1857
1858 /* All entries in this list must also be present in elf32_arm_howto_table. */
1859 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1860 {
1861 {BFD_RELOC_NONE, R_ARM_NONE},
1862 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1863 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1864 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1865 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1866 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1867 {BFD_RELOC_32, R_ARM_ABS32},
1868 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1869 {BFD_RELOC_8, R_ARM_ABS8},
1870 {BFD_RELOC_16, R_ARM_ABS16},
1871 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1872 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1873 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1874 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1875 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1876 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1877 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1878 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1879 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1880 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1881 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1882 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1883 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1884 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
1885 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1886 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1887 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1888 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1889 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1890 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1891 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1892 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1893 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC},
1894 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL},
1895 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL},
1896 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ},
1897 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ},
1898 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC},
1899 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1900 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1901 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1902 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1903 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1904 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1905 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1906 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1907 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE},
1908 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1909 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1910 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1911 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1912 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1913 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1914 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1915 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1916 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1917 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1918 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1919 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1920 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1921 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1922 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1923 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1924 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1925 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1926 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1927 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1928 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1929 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1930 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1931 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1932 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1933 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1934 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1935 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1936 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1937 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1938 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1939 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1940 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1941 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1942 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1943 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1944 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1945 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1946 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX},
1947 {BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC, R_ARM_THM_ALU_ABS_G3_NC},
1948 {BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC, R_ARM_THM_ALU_ABS_G2_NC},
1949 {BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC, R_ARM_THM_ALU_ABS_G1_NC},
1950 {BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC, R_ARM_THM_ALU_ABS_G0_NC}
1951 };
1952
1953 static reloc_howto_type *
1954 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1955 bfd_reloc_code_real_type code)
1956 {
1957 unsigned int i;
1958
1959 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1960 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1961 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1962
1963 return NULL;
1964 }
1965
1966 static reloc_howto_type *
1967 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1968 const char *r_name)
1969 {
1970 unsigned int i;
1971
1972 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1973 if (elf32_arm_howto_table_1[i].name != NULL
1974 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1975 return &elf32_arm_howto_table_1[i];
1976
1977 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1978 if (elf32_arm_howto_table_2[i].name != NULL
1979 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1980 return &elf32_arm_howto_table_2[i];
1981
1982 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
1983 if (elf32_arm_howto_table_3[i].name != NULL
1984 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
1985 return &elf32_arm_howto_table_3[i];
1986
1987 return NULL;
1988 }
1989
1990 /* Support for core dump NOTE sections. */
1991
1992 static bfd_boolean
1993 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1994 {
1995 int offset;
1996 size_t size;
1997
1998 switch (note->descsz)
1999 {
2000 default:
2001 return FALSE;
2002
2003 case 148: /* Linux/ARM 32-bit. */
2004 /* pr_cursig */
2005 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2006
2007 /* pr_pid */
2008 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
2009
2010 /* pr_reg */
2011 offset = 72;
2012 size = 72;
2013
2014 break;
2015 }
2016
2017 /* Make a ".reg/999" section. */
2018 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2019 size, note->descpos + offset);
2020 }
2021
2022 static bfd_boolean
2023 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2024 {
2025 switch (note->descsz)
2026 {
2027 default:
2028 return FALSE;
2029
2030 case 124: /* Linux/ARM elf_prpsinfo. */
2031 elf_tdata (abfd)->core->pid
2032 = bfd_get_32 (abfd, note->descdata + 12);
2033 elf_tdata (abfd)->core->program
2034 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
2035 elf_tdata (abfd)->core->command
2036 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
2037 }
2038
2039 /* Note that for some reason, a spurious space is tacked
2040 onto the end of the args in some (at least one anyway)
2041 implementations, so strip it off if it exists. */
2042 {
2043 char *command = elf_tdata (abfd)->core->command;
2044 int n = strlen (command);
2045
2046 if (0 < n && command[n - 1] == ' ')
2047 command[n - 1] = '\0';
2048 }
2049
2050 return TRUE;
2051 }
2052
2053 static char *
2054 elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz,
2055 int note_type, ...)
2056 {
2057 switch (note_type)
2058 {
2059 default:
2060 return NULL;
2061
2062 case NT_PRPSINFO:
2063 {
2064 char data[124];
2065 va_list ap;
2066
2067 va_start (ap, note_type);
2068 memset (data, 0, sizeof (data));
2069 strncpy (data + 28, va_arg (ap, const char *), 16);
2070 strncpy (data + 44, va_arg (ap, const char *), 80);
2071 va_end (ap);
2072
2073 return elfcore_write_note (abfd, buf, bufsiz,
2074 "CORE", note_type, data, sizeof (data));
2075 }
2076
2077 case NT_PRSTATUS:
2078 {
2079 char data[148];
2080 va_list ap;
2081 long pid;
2082 int cursig;
2083 const void *greg;
2084
2085 va_start (ap, note_type);
2086 memset (data, 0, sizeof (data));
2087 pid = va_arg (ap, long);
2088 bfd_put_32 (abfd, pid, data + 24);
2089 cursig = va_arg (ap, int);
2090 bfd_put_16 (abfd, cursig, data + 12);
2091 greg = va_arg (ap, const void *);
2092 memcpy (data + 72, greg, 72);
2093 va_end (ap);
2094
2095 return elfcore_write_note (abfd, buf, bufsiz,
2096 "CORE", note_type, data, sizeof (data));
2097 }
2098 }
2099 }
2100
2101 #define TARGET_LITTLE_SYM arm_elf32_le_vec
2102 #define TARGET_LITTLE_NAME "elf32-littlearm"
2103 #define TARGET_BIG_SYM arm_elf32_be_vec
2104 #define TARGET_BIG_NAME "elf32-bigarm"
2105
2106 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
2107 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
2108 #define elf_backend_write_core_note elf32_arm_nabi_write_core_note
2109
2110 typedef unsigned long int insn32;
2111 typedef unsigned short int insn16;
2112
2113 /* In lieu of proper flags, assume all EABIv4 or later objects are
2114 interworkable. */
2115 #define INTERWORK_FLAG(abfd) \
2116 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
2117 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2118 || ((abfd)->flags & BFD_LINKER_CREATED))
2119
2120 /* The linker script knows the section names for placement.
2121 The entry_names are used to do simple name mangling on the stubs.
2122 Given a function name, and its type, the stub can be found. The
2123 name can be changed. The only requirement is the %s be present. */
2124 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2125 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2126
2127 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2128 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2129
2130 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2131 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2132
2133 #define STM32L4XX_ERRATUM_VENEER_SECTION_NAME ".text.stm32l4xx_veneer"
2134 #define STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "__stm32l4xx_veneer_%x"
2135
2136 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2137 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2138
2139 #define STUB_ENTRY_NAME "__%s_veneer"
2140
2141 #define CMSE_PREFIX "__acle_se_"
2142
2143 /* The name of the dynamic interpreter. This is put in the .interp
2144 section. */
2145 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2146
2147 static const unsigned long tls_trampoline [] =
2148 {
2149 0xe08e0000, /* add r0, lr, r0 */
2150 0xe5901004, /* ldr r1, [r0,#4] */
2151 0xe12fff11, /* bx r1 */
2152 };
2153
2154 static const unsigned long dl_tlsdesc_lazy_trampoline [] =
2155 {
2156 0xe52d2004, /* push {r2} */
2157 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2158 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2159 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2160 0xe081100f, /* 2: add r1, pc */
2161 0xe12fff12, /* bx r2 */
2162 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
2163 + dl_tlsdesc_lazy_resolver(GOT) */
2164 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2165 };
2166
2167 #ifdef FOUR_WORD_PLT
2168
2169 /* The first entry in a procedure linkage table looks like
2170 this. It is set up so that any shared library function that is
2171 called before the relocation has been set up calls the dynamic
2172 linker first. */
2173 static const bfd_vma elf32_arm_plt0_entry [] =
2174 {
2175 0xe52de004, /* str lr, [sp, #-4]! */
2176 0xe59fe010, /* ldr lr, [pc, #16] */
2177 0xe08fe00e, /* add lr, pc, lr */
2178 0xe5bef008, /* ldr pc, [lr, #8]! */
2179 };
2180
2181 /* Subsequent entries in a procedure linkage table look like
2182 this. */
2183 static const bfd_vma elf32_arm_plt_entry [] =
2184 {
2185 0xe28fc600, /* add ip, pc, #NN */
2186 0xe28cca00, /* add ip, ip, #NN */
2187 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2188 0x00000000, /* unused */
2189 };
2190
2191 #else /* not FOUR_WORD_PLT */
2192
2193 /* The first entry in a procedure linkage table looks like
2194 this. It is set up so that any shared library function that is
2195 called before the relocation has been set up calls the dynamic
2196 linker first. */
2197 static const bfd_vma elf32_arm_plt0_entry [] =
2198 {
2199 0xe52de004, /* str lr, [sp, #-4]! */
2200 0xe59fe004, /* ldr lr, [pc, #4] */
2201 0xe08fe00e, /* add lr, pc, lr */
2202 0xe5bef008, /* ldr pc, [lr, #8]! */
2203 0x00000000, /* &GOT[0] - . */
2204 };
2205
2206 /* By default subsequent entries in a procedure linkage table look like
2207 this. Offsets that don't fit into 28 bits will cause link error. */
2208 static const bfd_vma elf32_arm_plt_entry_short [] =
2209 {
2210 0xe28fc600, /* add ip, pc, #0xNN00000 */
2211 0xe28cca00, /* add ip, ip, #0xNN000 */
2212 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2213 };
2214
2215 /* When explicitly asked, we'll use this "long" entry format
2216 which can cope with arbitrary displacements. */
2217 static const bfd_vma elf32_arm_plt_entry_long [] =
2218 {
2219 0xe28fc200, /* add ip, pc, #0xN0000000 */
2220 0xe28cc600, /* add ip, ip, #0xNN00000 */
2221 0xe28cca00, /* add ip, ip, #0xNN000 */
2222 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2223 };
2224
2225 static bfd_boolean elf32_arm_use_long_plt_entry = FALSE;
2226
2227 #endif /* not FOUR_WORD_PLT */
2228
2229 /* The first entry in a procedure linkage table looks like this.
2230 It is set up so that any shared library function that is called before the
2231 relocation has been set up calls the dynamic linker first. */
2232 static const bfd_vma elf32_thumb2_plt0_entry [] =
2233 {
2234 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2235 an instruction maybe encoded to one or two array elements. */
2236 0xf8dfb500, /* push {lr} */
2237 0x44fee008, /* ldr.w lr, [pc, #8] */
2238 /* add lr, pc */
2239 0xff08f85e, /* ldr.w pc, [lr, #8]! */
2240 0x00000000, /* &GOT[0] - . */
2241 };
2242
2243 /* Subsequent entries in a procedure linkage table for thumb only target
2244 look like this. */
2245 static const bfd_vma elf32_thumb2_plt_entry [] =
2246 {
2247 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2248 an instruction maybe encoded to one or two array elements. */
2249 0x0c00f240, /* movw ip, #0xNNNN */
2250 0x0c00f2c0, /* movt ip, #0xNNNN */
2251 0xf8dc44fc, /* add ip, pc */
2252 0xbf00f000 /* ldr.w pc, [ip] */
2253 /* nop */
2254 };
2255
2256 /* The format of the first entry in the procedure linkage table
2257 for a VxWorks executable. */
2258 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
2259 {
2260 0xe52dc008, /* str ip,[sp,#-8]! */
2261 0xe59fc000, /* ldr ip,[pc] */
2262 0xe59cf008, /* ldr pc,[ip,#8] */
2263 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
2264 };
2265
2266 /* The format of subsequent entries in a VxWorks executable. */
2267 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
2268 {
2269 0xe59fc000, /* ldr ip,[pc] */
2270 0xe59cf000, /* ldr pc,[ip] */
2271 0x00000000, /* .long @got */
2272 0xe59fc000, /* ldr ip,[pc] */
2273 0xea000000, /* b _PLT */
2274 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2275 };
2276
2277 /* The format of entries in a VxWorks shared library. */
2278 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
2279 {
2280 0xe59fc000, /* ldr ip,[pc] */
2281 0xe79cf009, /* ldr pc,[ip,r9] */
2282 0x00000000, /* .long @got */
2283 0xe59fc000, /* ldr ip,[pc] */
2284 0xe599f008, /* ldr pc,[r9,#8] */
2285 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2286 };
2287
2288 /* An initial stub used if the PLT entry is referenced from Thumb code. */
2289 #define PLT_THUMB_STUB_SIZE 4
2290 static const bfd_vma elf32_arm_plt_thumb_stub [] =
2291 {
2292 0x4778, /* bx pc */
2293 0x46c0 /* nop */
2294 };
2295
2296 /* The entries in a PLT when using a DLL-based target with multiple
2297 address spaces. */
2298 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2299 {
2300 0xe51ff004, /* ldr pc, [pc, #-4] */
2301 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2302 };
2303
2304 /* The first entry in a procedure linkage table looks like
2305 this. It is set up so that any shared library function that is
2306 called before the relocation has been set up calls the dynamic
2307 linker first. */
2308 static const bfd_vma elf32_arm_nacl_plt0_entry [] =
2309 {
2310 /* First bundle: */
2311 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */
2312 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */
2313 0xe08cc00f, /* add ip, ip, pc */
2314 0xe52dc008, /* str ip, [sp, #-8]! */
2315 /* Second bundle: */
2316 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2317 0xe59cc000, /* ldr ip, [ip] */
2318 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2319 0xe12fff1c, /* bx ip */
2320 /* Third bundle: */
2321 0xe320f000, /* nop */
2322 0xe320f000, /* nop */
2323 0xe320f000, /* nop */
2324 /* .Lplt_tail: */
2325 0xe50dc004, /* str ip, [sp, #-4] */
2326 /* Fourth bundle: */
2327 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2328 0xe59cc000, /* ldr ip, [ip] */
2329 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2330 0xe12fff1c, /* bx ip */
2331 };
2332 #define ARM_NACL_PLT_TAIL_OFFSET (11 * 4)
2333
2334 /* Subsequent entries in a procedure linkage table look like this. */
2335 static const bfd_vma elf32_arm_nacl_plt_entry [] =
2336 {
2337 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */
2338 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */
2339 0xe08cc00f, /* add ip, ip, pc */
2340 0xea000000, /* b .Lplt_tail */
2341 };
2342
2343 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2344 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2345 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2346 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2347 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2348 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2349 #define THM2_MAX_FWD_COND_BRANCH_OFFSET (((1 << 20) -2) + 4)
2350 #define THM2_MAX_BWD_COND_BRANCH_OFFSET (-(1 << 20) + 4)
2351
2352 enum stub_insn_type
2353 {
2354 THUMB16_TYPE = 1,
2355 THUMB32_TYPE,
2356 ARM_TYPE,
2357 DATA_TYPE
2358 };
2359
2360 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2361 /* A bit of a hack. A Thumb conditional branch, in which the proper condition
2362 is inserted in arm_build_one_stub(). */
2363 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2364 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2365 #define THUMB32_MOVT(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVT_ABS, 0}
2366 #define THUMB32_MOVW(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVW_ABS_NC, 0}
2367 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2368 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2369 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2370 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2371
2372 typedef struct
2373 {
2374 bfd_vma data;
2375 enum stub_insn_type type;
2376 unsigned int r_type;
2377 int reloc_addend;
2378 } insn_sequence;
2379
2380 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2381 to reach the stub if necessary. */
2382 static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2383 {
2384 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2385 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2386 };
2387
2388 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2389 available. */
2390 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2391 {
2392 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2393 ARM_INSN (0xe12fff1c), /* bx ip */
2394 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2395 };
2396
2397 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2398 static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2399 {
2400 THUMB16_INSN (0xb401), /* push {r0} */
2401 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2402 THUMB16_INSN (0x4684), /* mov ip, r0 */
2403 THUMB16_INSN (0xbc01), /* pop {r0} */
2404 THUMB16_INSN (0x4760), /* bx ip */
2405 THUMB16_INSN (0xbf00), /* nop */
2406 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2407 };
2408
2409 /* Thumb -> Thumb long branch stub in thumb2 encoding. Used on armv7. */
2410 static const insn_sequence elf32_arm_stub_long_branch_thumb2_only[] =
2411 {
2412 THUMB32_INSN (0xf85ff000), /* ldr.w pc, [pc, #-0] */
2413 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(x) */
2414 };
2415
2416 /* Thumb -> Thumb long branch stub. Used for PureCode sections on Thumb2
2417 M-profile architectures. */
2418 static const insn_sequence elf32_arm_stub_long_branch_thumb2_only_pure[] =
2419 {
2420 THUMB32_MOVW (0xf2400c00), /* mov.w ip, R_ARM_MOVW_ABS_NC */
2421 THUMB32_MOVT (0xf2c00c00), /* movt ip, R_ARM_MOVT_ABS << 16 */
2422 THUMB16_INSN (0x4760), /* bx ip */
2423 };
2424
2425 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2426 allowed. */
2427 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2428 {
2429 THUMB16_INSN (0x4778), /* bx pc */
2430 THUMB16_INSN (0x46c0), /* nop */
2431 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2432 ARM_INSN (0xe12fff1c), /* bx ip */
2433 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2434 };
2435
2436 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2437 available. */
2438 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2439 {
2440 THUMB16_INSN (0x4778), /* bx pc */
2441 THUMB16_INSN (0x46c0), /* nop */
2442 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2443 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2444 };
2445
2446 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2447 one, when the destination is close enough. */
2448 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2449 {
2450 THUMB16_INSN (0x4778), /* bx pc */
2451 THUMB16_INSN (0x46c0), /* nop */
2452 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */
2453 };
2454
2455 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2456 blx to reach the stub if necessary. */
2457 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2458 {
2459 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */
2460 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */
2461 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2462 };
2463
2464 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2465 blx to reach the stub if necessary. We can not add into pc;
2466 it is not guaranteed to mode switch (different in ARMv6 and
2467 ARMv7). */
2468 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2469 {
2470 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2471 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2472 ARM_INSN (0xe12fff1c), /* bx ip */
2473 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2474 };
2475
2476 /* V4T ARM -> ARM long branch stub, PIC. */
2477 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2478 {
2479 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2480 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2481 ARM_INSN (0xe12fff1c), /* bx ip */
2482 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2483 };
2484
2485 /* V4T Thumb -> ARM long branch stub, PIC. */
2486 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2487 {
2488 THUMB16_INSN (0x4778), /* bx pc */
2489 THUMB16_INSN (0x46c0), /* nop */
2490 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2491 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */
2492 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2493 };
2494
2495 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2496 architectures. */
2497 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2498 {
2499 THUMB16_INSN (0xb401), /* push {r0} */
2500 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2501 THUMB16_INSN (0x46fc), /* mov ip, pc */
2502 THUMB16_INSN (0x4484), /* add ip, r0 */
2503 THUMB16_INSN (0xbc01), /* pop {r0} */
2504 THUMB16_INSN (0x4760), /* bx ip */
2505 DATA_WORD (0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2506 };
2507
2508 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2509 allowed. */
2510 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2511 {
2512 THUMB16_INSN (0x4778), /* bx pc */
2513 THUMB16_INSN (0x46c0), /* nop */
2514 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2515 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2516 ARM_INSN (0xe12fff1c), /* bx ip */
2517 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2518 };
2519
2520 /* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2521 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2522 static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2523 {
2524 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */
2525 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */
2526 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2527 };
2528
2529 /* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2530 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2531 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2532 {
2533 THUMB16_INSN (0x4778), /* bx pc */
2534 THUMB16_INSN (0x46c0), /* nop */
2535 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */
2536 ARM_INSN (0xe081f00f), /* add pc, r1, pc */
2537 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2538 };
2539
2540 /* NaCl ARM -> ARM long branch stub. */
2541 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl[] =
2542 {
2543 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2544 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2545 ARM_INSN (0xe12fff1c), /* bx ip */
2546 ARM_INSN (0xe320f000), /* nop */
2547 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2548 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2549 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2550 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2551 };
2552
2553 /* NaCl ARM -> ARM long branch stub, PIC. */
2554 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic[] =
2555 {
2556 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2557 ARM_INSN (0xe08cc00f), /* add ip, ip, pc */
2558 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2559 ARM_INSN (0xe12fff1c), /* bx ip */
2560 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2561 DATA_WORD (0, R_ARM_REL32, 8), /* dcd R_ARM_REL32(X+8) */
2562 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2563 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2564 };
2565
2566 /* Stub used for transition to secure state (aka SG veneer). */
2567 static const insn_sequence elf32_arm_stub_cmse_branch_thumb_only[] =
2568 {
2569 THUMB32_INSN (0xe97fe97f), /* sg. */
2570 THUMB32_B_INSN (0xf000b800, -4), /* b.w original_branch_dest. */
2571 };
2572
2573
2574 /* Cortex-A8 erratum-workaround stubs. */
2575
2576 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2577 can't use a conditional branch to reach this stub). */
2578
2579 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2580 {
2581 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */
2582 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */
2583 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */
2584 };
2585
2586 /* Stub used for b.w and bl.w instructions. */
2587
2588 static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2589 {
2590 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2591 };
2592
2593 static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2594 {
2595 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2596 };
2597
2598 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2599 instruction (which switches to ARM mode) to point to this stub. Jump to the
2600 real destination using an ARM-mode branch. */
2601
2602 static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2603 {
2604 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */
2605 };
2606
2607 /* For each section group there can be a specially created linker section
2608 to hold the stubs for that group. The name of the stub section is based
2609 upon the name of another section within that group with the suffix below
2610 applied.
2611
2612 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2613 create what appeared to be a linker stub section when it actually
2614 contained user code/data. For example, consider this fragment:
2615
2616 const char * stubborn_problems[] = { "np" };
2617
2618 If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2619 section called:
2620
2621 .data.rel.local.stubborn_problems
2622
2623 This then causes problems in arm32_arm_build_stubs() as it triggers:
2624
2625 // Ignore non-stub sections.
2626 if (!strstr (stub_sec->name, STUB_SUFFIX))
2627 continue;
2628
2629 And so the section would be ignored instead of being processed. Hence
2630 the change in definition of STUB_SUFFIX to a name that cannot be a valid
2631 C identifier. */
2632 #define STUB_SUFFIX ".__stub"
2633
2634 /* One entry per long/short branch stub defined above. */
2635 #define DEF_STUBS \
2636 DEF_STUB(long_branch_any_any) \
2637 DEF_STUB(long_branch_v4t_arm_thumb) \
2638 DEF_STUB(long_branch_thumb_only) \
2639 DEF_STUB(long_branch_v4t_thumb_thumb) \
2640 DEF_STUB(long_branch_v4t_thumb_arm) \
2641 DEF_STUB(short_branch_v4t_thumb_arm) \
2642 DEF_STUB(long_branch_any_arm_pic) \
2643 DEF_STUB(long_branch_any_thumb_pic) \
2644 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2645 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2646 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2647 DEF_STUB(long_branch_thumb_only_pic) \
2648 DEF_STUB(long_branch_any_tls_pic) \
2649 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
2650 DEF_STUB(long_branch_arm_nacl) \
2651 DEF_STUB(long_branch_arm_nacl_pic) \
2652 DEF_STUB(cmse_branch_thumb_only) \
2653 DEF_STUB(a8_veneer_b_cond) \
2654 DEF_STUB(a8_veneer_b) \
2655 DEF_STUB(a8_veneer_bl) \
2656 DEF_STUB(a8_veneer_blx) \
2657 DEF_STUB(long_branch_thumb2_only) \
2658 DEF_STUB(long_branch_thumb2_only_pure)
2659
2660 #define DEF_STUB(x) arm_stub_##x,
2661 enum elf32_arm_stub_type
2662 {
2663 arm_stub_none,
2664 DEF_STUBS
2665 max_stub_type
2666 };
2667 #undef DEF_STUB
2668
2669 /* Note the first a8_veneer type. */
2670 const unsigned arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond;
2671
2672 typedef struct
2673 {
2674 const insn_sequence* template_sequence;
2675 int template_size;
2676 } stub_def;
2677
2678 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2679 static const stub_def stub_definitions[] =
2680 {
2681 {NULL, 0},
2682 DEF_STUBS
2683 };
2684
2685 struct elf32_arm_stub_hash_entry
2686 {
2687 /* Base hash table entry structure. */
2688 struct bfd_hash_entry root;
2689
2690 /* The stub section. */
2691 asection *stub_sec;
2692
2693 /* Offset within stub_sec of the beginning of this stub. */
2694 bfd_vma stub_offset;
2695
2696 /* Given the symbol's value and its section we can determine its final
2697 value when building the stubs (so the stub knows where to jump). */
2698 bfd_vma target_value;
2699 asection *target_section;
2700
2701 /* Same as above but for the source of the branch to the stub. Used for
2702 Cortex-A8 erratum workaround to patch it to branch to the stub. As
2703 such, source section does not need to be recorded since Cortex-A8 erratum
2704 workaround stubs are only generated when both source and target are in the
2705 same section. */
2706 bfd_vma source_value;
2707
2708 /* The instruction which caused this stub to be generated (only valid for
2709 Cortex-A8 erratum workaround stubs at present). */
2710 unsigned long orig_insn;
2711
2712 /* The stub type. */
2713 enum elf32_arm_stub_type stub_type;
2714 /* Its encoding size in bytes. */
2715 int stub_size;
2716 /* Its template. */
2717 const insn_sequence *stub_template;
2718 /* The size of the template (number of entries). */
2719 int stub_template_size;
2720
2721 /* The symbol table entry, if any, that this was derived from. */
2722 struct elf32_arm_link_hash_entry *h;
2723
2724 /* Type of branch. */
2725 enum arm_st_branch_type branch_type;
2726
2727 /* Where this stub is being called from, or, in the case of combined
2728 stub sections, the first input section in the group. */
2729 asection *id_sec;
2730
2731 /* The name for the local symbol at the start of this stub. The
2732 stub name in the hash table has to be unique; this does not, so
2733 it can be friendlier. */
2734 char *output_name;
2735 };
2736
2737 /* Used to build a map of a section. This is required for mixed-endian
2738 code/data. */
2739
2740 typedef struct elf32_elf_section_map
2741 {
2742 bfd_vma vma;
2743 char type;
2744 }
2745 elf32_arm_section_map;
2746
2747 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2748
2749 typedef enum
2750 {
2751 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2752 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2753 VFP11_ERRATUM_ARM_VENEER,
2754 VFP11_ERRATUM_THUMB_VENEER
2755 }
2756 elf32_vfp11_erratum_type;
2757
2758 typedef struct elf32_vfp11_erratum_list
2759 {
2760 struct elf32_vfp11_erratum_list *next;
2761 bfd_vma vma;
2762 union
2763 {
2764 struct
2765 {
2766 struct elf32_vfp11_erratum_list *veneer;
2767 unsigned int vfp_insn;
2768 } b;
2769 struct
2770 {
2771 struct elf32_vfp11_erratum_list *branch;
2772 unsigned int id;
2773 } v;
2774 } u;
2775 elf32_vfp11_erratum_type type;
2776 }
2777 elf32_vfp11_erratum_list;
2778
2779 /* Information about a STM32L4XX erratum veneer, or a branch to such a
2780 veneer. */
2781 typedef enum
2782 {
2783 STM32L4XX_ERRATUM_BRANCH_TO_VENEER,
2784 STM32L4XX_ERRATUM_VENEER
2785 }
2786 elf32_stm32l4xx_erratum_type;
2787
2788 typedef struct elf32_stm32l4xx_erratum_list
2789 {
2790 struct elf32_stm32l4xx_erratum_list *next;
2791 bfd_vma vma;
2792 union
2793 {
2794 struct
2795 {
2796 struct elf32_stm32l4xx_erratum_list *veneer;
2797 unsigned int insn;
2798 } b;
2799 struct
2800 {
2801 struct elf32_stm32l4xx_erratum_list *branch;
2802 unsigned int id;
2803 } v;
2804 } u;
2805 elf32_stm32l4xx_erratum_type type;
2806 }
2807 elf32_stm32l4xx_erratum_list;
2808
2809 typedef enum
2810 {
2811 DELETE_EXIDX_ENTRY,
2812 INSERT_EXIDX_CANTUNWIND_AT_END
2813 }
2814 arm_unwind_edit_type;
2815
2816 /* A (sorted) list of edits to apply to an unwind table. */
2817 typedef struct arm_unwind_table_edit
2818 {
2819 arm_unwind_edit_type type;
2820 /* Note: we sometimes want to insert an unwind entry corresponding to a
2821 section different from the one we're currently writing out, so record the
2822 (text) section this edit relates to here. */
2823 asection *linked_section;
2824 unsigned int index;
2825 struct arm_unwind_table_edit *next;
2826 }
2827 arm_unwind_table_edit;
2828
2829 typedef struct _arm_elf_section_data
2830 {
2831 /* Information about mapping symbols. */
2832 struct bfd_elf_section_data elf;
2833 unsigned int mapcount;
2834 unsigned int mapsize;
2835 elf32_arm_section_map *map;
2836 /* Information about CPU errata. */
2837 unsigned int erratumcount;
2838 elf32_vfp11_erratum_list *erratumlist;
2839 unsigned int stm32l4xx_erratumcount;
2840 elf32_stm32l4xx_erratum_list *stm32l4xx_erratumlist;
2841 unsigned int additional_reloc_count;
2842 /* Information about unwind tables. */
2843 union
2844 {
2845 /* Unwind info attached to a text section. */
2846 struct
2847 {
2848 asection *arm_exidx_sec;
2849 } text;
2850
2851 /* Unwind info attached to an .ARM.exidx section. */
2852 struct
2853 {
2854 arm_unwind_table_edit *unwind_edit_list;
2855 arm_unwind_table_edit *unwind_edit_tail;
2856 } exidx;
2857 } u;
2858 }
2859 _arm_elf_section_data;
2860
2861 #define elf32_arm_section_data(sec) \
2862 ((_arm_elf_section_data *) elf_section_data (sec))
2863
2864 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2865 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2866 so may be created multiple times: we use an array of these entries whilst
2867 relaxing which we can refresh easily, then create stubs for each potentially
2868 erratum-triggering instruction once we've settled on a solution. */
2869
2870 struct a8_erratum_fix
2871 {
2872 bfd *input_bfd;
2873 asection *section;
2874 bfd_vma offset;
2875 bfd_vma target_offset;
2876 unsigned long orig_insn;
2877 char *stub_name;
2878 enum elf32_arm_stub_type stub_type;
2879 enum arm_st_branch_type branch_type;
2880 };
2881
2882 /* A table of relocs applied to branches which might trigger Cortex-A8
2883 erratum. */
2884
2885 struct a8_erratum_reloc
2886 {
2887 bfd_vma from;
2888 bfd_vma destination;
2889 struct elf32_arm_link_hash_entry *hash;
2890 const char *sym_name;
2891 unsigned int r_type;
2892 enum arm_st_branch_type branch_type;
2893 bfd_boolean non_a8_stub;
2894 };
2895
2896 /* The size of the thread control block. */
2897 #define TCB_SIZE 8
2898
2899 /* ARM-specific information about a PLT entry, over and above the usual
2900 gotplt_union. */
2901 struct arm_plt_info
2902 {
2903 /* We reference count Thumb references to a PLT entry separately,
2904 so that we can emit the Thumb trampoline only if needed. */
2905 bfd_signed_vma thumb_refcount;
2906
2907 /* Some references from Thumb code may be eliminated by BL->BLX
2908 conversion, so record them separately. */
2909 bfd_signed_vma maybe_thumb_refcount;
2910
2911 /* How many of the recorded PLT accesses were from non-call relocations.
2912 This information is useful when deciding whether anything takes the
2913 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
2914 non-call references to the function should resolve directly to the
2915 real runtime target. */
2916 unsigned int noncall_refcount;
2917
2918 /* Since PLT entries have variable size if the Thumb prologue is
2919 used, we need to record the index into .got.plt instead of
2920 recomputing it from the PLT offset. */
2921 bfd_signed_vma got_offset;
2922 };
2923
2924 /* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
2925 struct arm_local_iplt_info
2926 {
2927 /* The information that is usually found in the generic ELF part of
2928 the hash table entry. */
2929 union gotplt_union root;
2930
2931 /* The information that is usually found in the ARM-specific part of
2932 the hash table entry. */
2933 struct arm_plt_info arm;
2934
2935 /* A list of all potential dynamic relocations against this symbol. */
2936 struct elf_dyn_relocs *dyn_relocs;
2937 };
2938
2939 struct elf_arm_obj_tdata
2940 {
2941 struct elf_obj_tdata root;
2942
2943 /* tls_type for each local got entry. */
2944 char *local_got_tls_type;
2945
2946 /* GOTPLT entries for TLS descriptors. */
2947 bfd_vma *local_tlsdesc_gotent;
2948
2949 /* Information for local symbols that need entries in .iplt. */
2950 struct arm_local_iplt_info **local_iplt;
2951
2952 /* Zero to warn when linking objects with incompatible enum sizes. */
2953 int no_enum_size_warning;
2954
2955 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2956 int no_wchar_size_warning;
2957 };
2958
2959 #define elf_arm_tdata(bfd) \
2960 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2961
2962 #define elf32_arm_local_got_tls_type(bfd) \
2963 (elf_arm_tdata (bfd)->local_got_tls_type)
2964
2965 #define elf32_arm_local_tlsdesc_gotent(bfd) \
2966 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
2967
2968 #define elf32_arm_local_iplt(bfd) \
2969 (elf_arm_tdata (bfd)->local_iplt)
2970
2971 #define is_arm_elf(bfd) \
2972 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2973 && elf_tdata (bfd) != NULL \
2974 && elf_object_id (bfd) == ARM_ELF_DATA)
2975
2976 static bfd_boolean
2977 elf32_arm_mkobject (bfd *abfd)
2978 {
2979 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2980 ARM_ELF_DATA);
2981 }
2982
2983 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2984
2985 /* Arm ELF linker hash entry. */
2986 struct elf32_arm_link_hash_entry
2987 {
2988 struct elf_link_hash_entry root;
2989
2990 /* Track dynamic relocs copied for this symbol. */
2991 struct elf_dyn_relocs *dyn_relocs;
2992
2993 /* ARM-specific PLT information. */
2994 struct arm_plt_info plt;
2995
2996 #define GOT_UNKNOWN 0
2997 #define GOT_NORMAL 1
2998 #define GOT_TLS_GD 2
2999 #define GOT_TLS_IE 4
3000 #define GOT_TLS_GDESC 8
3001 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
3002 unsigned int tls_type : 8;
3003
3004 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
3005 unsigned int is_iplt : 1;
3006
3007 unsigned int unused : 23;
3008
3009 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
3010 starting at the end of the jump table. */
3011 bfd_vma tlsdesc_got;
3012
3013 /* The symbol marking the real symbol location for exported thumb
3014 symbols with Arm stubs. */
3015 struct elf_link_hash_entry *export_glue;
3016
3017 /* A pointer to the most recently used stub hash entry against this
3018 symbol. */
3019 struct elf32_arm_stub_hash_entry *stub_cache;
3020 };
3021
3022 /* Traverse an arm ELF linker hash table. */
3023 #define elf32_arm_link_hash_traverse(table, func, info) \
3024 (elf_link_hash_traverse \
3025 (&(table)->root, \
3026 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
3027 (info)))
3028
3029 /* Get the ARM elf linker hash table from a link_info structure. */
3030 #define elf32_arm_hash_table(info) \
3031 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
3032 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
3033
3034 #define arm_stub_hash_lookup(table, string, create, copy) \
3035 ((struct elf32_arm_stub_hash_entry *) \
3036 bfd_hash_lookup ((table), (string), (create), (copy)))
3037
3038 /* Array to keep track of which stub sections have been created, and
3039 information on stub grouping. */
3040 struct map_stub
3041 {
3042 /* This is the section to which stubs in the group will be
3043 attached. */
3044 asection *link_sec;
3045 /* The stub section. */
3046 asection *stub_sec;
3047 };
3048
3049 #define elf32_arm_compute_jump_table_size(htab) \
3050 ((htab)->next_tls_desc_index * 4)
3051
3052 /* ARM ELF linker hash table. */
3053 struct elf32_arm_link_hash_table
3054 {
3055 /* The main hash table. */
3056 struct elf_link_hash_table root;
3057
3058 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
3059 bfd_size_type thumb_glue_size;
3060
3061 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
3062 bfd_size_type arm_glue_size;
3063
3064 /* The size in bytes of section containing the ARMv4 BX veneers. */
3065 bfd_size_type bx_glue_size;
3066
3067 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
3068 veneer has been populated. */
3069 bfd_vma bx_glue_offset[15];
3070
3071 /* The size in bytes of the section containing glue for VFP11 erratum
3072 veneers. */
3073 bfd_size_type vfp11_erratum_glue_size;
3074
3075 /* The size in bytes of the section containing glue for STM32L4XX erratum
3076 veneers. */
3077 bfd_size_type stm32l4xx_erratum_glue_size;
3078
3079 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
3080 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
3081 elf32_arm_write_section(). */
3082 struct a8_erratum_fix *a8_erratum_fixes;
3083 unsigned int num_a8_erratum_fixes;
3084
3085 /* An arbitrary input BFD chosen to hold the glue sections. */
3086 bfd * bfd_of_glue_owner;
3087
3088 /* Nonzero to output a BE8 image. */
3089 int byteswap_code;
3090
3091 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
3092 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
3093 int target1_is_rel;
3094
3095 /* The relocation to use for R_ARM_TARGET2 relocations. */
3096 int target2_reloc;
3097
3098 /* 0 = Ignore R_ARM_V4BX.
3099 1 = Convert BX to MOV PC.
3100 2 = Generate v4 interworing stubs. */
3101 int fix_v4bx;
3102
3103 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
3104 int fix_cortex_a8;
3105
3106 /* Whether we should fix the ARM1176 BLX immediate issue. */
3107 int fix_arm1176;
3108
3109 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
3110 int use_blx;
3111
3112 /* What sort of code sequences we should look for which may trigger the
3113 VFP11 denorm erratum. */
3114 bfd_arm_vfp11_fix vfp11_fix;
3115
3116 /* Global counter for the number of fixes we have emitted. */
3117 int num_vfp11_fixes;
3118
3119 /* What sort of code sequences we should look for which may trigger the
3120 STM32L4XX erratum. */
3121 bfd_arm_stm32l4xx_fix stm32l4xx_fix;
3122
3123 /* Global counter for the number of fixes we have emitted. */
3124 int num_stm32l4xx_fixes;
3125
3126 /* Nonzero to force PIC branch veneers. */
3127 int pic_veneer;
3128
3129 /* The number of bytes in the initial entry in the PLT. */
3130 bfd_size_type plt_header_size;
3131
3132 /* The number of bytes in the subsequent PLT etries. */
3133 bfd_size_type plt_entry_size;
3134
3135 /* True if the target system is VxWorks. */
3136 int vxworks_p;
3137
3138 /* True if the target system is Symbian OS. */
3139 int symbian_p;
3140
3141 /* True if the target system is Native Client. */
3142 int nacl_p;
3143
3144 /* True if the target uses REL relocations. */
3145 int use_rel;
3146
3147 /* Nonzero if import library must be a secure gateway import library
3148 as per ARMv8-M Security Extensions. */
3149 int cmse_implib;
3150
3151 /* The import library whose symbols' address must remain stable in
3152 the import library generated. */
3153 bfd *in_implib_bfd;
3154
3155 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
3156 bfd_vma next_tls_desc_index;
3157
3158 /* How many R_ARM_TLS_DESC relocations were generated so far. */
3159 bfd_vma num_tls_desc;
3160
3161 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
3162 asection *srelplt2;
3163
3164 /* The offset into splt of the PLT entry for the TLS descriptor
3165 resolver. Special values are 0, if not necessary (or not found
3166 to be necessary yet), and -1 if needed but not determined
3167 yet. */
3168 bfd_vma dt_tlsdesc_plt;
3169
3170 /* The offset into sgot of the GOT entry used by the PLT entry
3171 above. */
3172 bfd_vma dt_tlsdesc_got;
3173
3174 /* Offset in .plt section of tls_arm_trampoline. */
3175 bfd_vma tls_trampoline;
3176
3177 /* Data for R_ARM_TLS_LDM32 relocations. */
3178 union
3179 {
3180 bfd_signed_vma refcount;
3181 bfd_vma offset;
3182 } tls_ldm_got;
3183
3184 /* Small local sym cache. */
3185 struct sym_cache sym_cache;
3186
3187 /* For convenience in allocate_dynrelocs. */
3188 bfd * obfd;
3189
3190 /* The amount of space used by the reserved portion of the sgotplt
3191 section, plus whatever space is used by the jump slots. */
3192 bfd_vma sgotplt_jump_table_size;
3193
3194 /* The stub hash table. */
3195 struct bfd_hash_table stub_hash_table;
3196
3197 /* Linker stub bfd. */
3198 bfd *stub_bfd;
3199
3200 /* Linker call-backs. */
3201 asection * (*add_stub_section) (const char *, asection *, asection *,
3202 unsigned int);
3203 void (*layout_sections_again) (void);
3204
3205 /* Array to keep track of which stub sections have been created, and
3206 information on stub grouping. */
3207 struct map_stub *stub_group;
3208
3209 /* Input stub section holding secure gateway veneers. */
3210 asection *cmse_stub_sec;
3211
3212 /* Offset in cmse_stub_sec where new SG veneers (not in input import library)
3213 start to be allocated. */
3214 bfd_vma new_cmse_stub_offset;
3215
3216 /* Number of elements in stub_group. */
3217 unsigned int top_id;
3218
3219 /* Assorted information used by elf32_arm_size_stubs. */
3220 unsigned int bfd_count;
3221 unsigned int top_index;
3222 asection **input_list;
3223 };
3224
3225 static inline int
3226 ctz (unsigned int mask)
3227 {
3228 #if GCC_VERSION >= 3004
3229 return __builtin_ctz (mask);
3230 #else
3231 unsigned int i;
3232
3233 for (i = 0; i < 8 * sizeof (mask); i++)
3234 {
3235 if (mask & 0x1)
3236 break;
3237 mask = (mask >> 1);
3238 }
3239 return i;
3240 #endif
3241 }
3242
3243 static inline int
3244 elf32_arm_popcount (unsigned int mask)
3245 {
3246 #if GCC_VERSION >= 3004
3247 return __builtin_popcount (mask);
3248 #else
3249 unsigned int i;
3250 int sum = 0;
3251
3252 for (i = 0; i < 8 * sizeof (mask); i++)
3253 {
3254 if (mask & 0x1)
3255 sum++;
3256 mask = (mask >> 1);
3257 }
3258 return sum;
3259 #endif
3260 }
3261
3262 /* Create an entry in an ARM ELF linker hash table. */
3263
3264 static struct bfd_hash_entry *
3265 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
3266 struct bfd_hash_table * table,
3267 const char * string)
3268 {
3269 struct elf32_arm_link_hash_entry * ret =
3270 (struct elf32_arm_link_hash_entry *) entry;
3271
3272 /* Allocate the structure if it has not already been allocated by a
3273 subclass. */
3274 if (ret == NULL)
3275 ret = (struct elf32_arm_link_hash_entry *)
3276 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
3277 if (ret == NULL)
3278 return (struct bfd_hash_entry *) ret;
3279
3280 /* Call the allocation method of the superclass. */
3281 ret = ((struct elf32_arm_link_hash_entry *)
3282 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3283 table, string));
3284 if (ret != NULL)
3285 {
3286 ret->dyn_relocs = NULL;
3287 ret->tls_type = GOT_UNKNOWN;
3288 ret->tlsdesc_got = (bfd_vma) -1;
3289 ret->plt.thumb_refcount = 0;
3290 ret->plt.maybe_thumb_refcount = 0;
3291 ret->plt.noncall_refcount = 0;
3292 ret->plt.got_offset = -1;
3293 ret->is_iplt = FALSE;
3294 ret->export_glue = NULL;
3295
3296 ret->stub_cache = NULL;
3297 }
3298
3299 return (struct bfd_hash_entry *) ret;
3300 }
3301
3302 /* Ensure that we have allocated bookkeeping structures for ABFD's local
3303 symbols. */
3304
3305 static bfd_boolean
3306 elf32_arm_allocate_local_sym_info (bfd *abfd)
3307 {
3308 if (elf_local_got_refcounts (abfd) == NULL)
3309 {
3310 bfd_size_type num_syms;
3311 bfd_size_type size;
3312 char *data;
3313
3314 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
3315 size = num_syms * (sizeof (bfd_signed_vma)
3316 + sizeof (struct arm_local_iplt_info *)
3317 + sizeof (bfd_vma)
3318 + sizeof (char));
3319 data = bfd_zalloc (abfd, size);
3320 if (data == NULL)
3321 return FALSE;
3322
3323 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
3324 data += num_syms * sizeof (bfd_signed_vma);
3325
3326 elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
3327 data += num_syms * sizeof (struct arm_local_iplt_info *);
3328
3329 elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
3330 data += num_syms * sizeof (bfd_vma);
3331
3332 elf32_arm_local_got_tls_type (abfd) = data;
3333 }
3334 return TRUE;
3335 }
3336
3337 /* Return the .iplt information for local symbol R_SYMNDX, which belongs
3338 to input bfd ABFD. Create the information if it doesn't already exist.
3339 Return null if an allocation fails. */
3340
3341 static struct arm_local_iplt_info *
3342 elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
3343 {
3344 struct arm_local_iplt_info **ptr;
3345
3346 if (!elf32_arm_allocate_local_sym_info (abfd))
3347 return NULL;
3348
3349 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
3350 ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
3351 if (*ptr == NULL)
3352 *ptr = bfd_zalloc (abfd, sizeof (**ptr));
3353 return *ptr;
3354 }
3355
3356 /* Try to obtain PLT information for the symbol with index R_SYMNDX
3357 in ABFD's symbol table. If the symbol is global, H points to its
3358 hash table entry, otherwise H is null.
3359
3360 Return true if the symbol does have PLT information. When returning
3361 true, point *ROOT_PLT at the target-independent reference count/offset
3362 union and *ARM_PLT at the ARM-specific information. */
3363
3364 static bfd_boolean
3365 elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_table *globals,
3366 struct elf32_arm_link_hash_entry *h,
3367 unsigned long r_symndx, union gotplt_union **root_plt,
3368 struct arm_plt_info **arm_plt)
3369 {
3370 struct arm_local_iplt_info *local_iplt;
3371
3372 if (globals->root.splt == NULL && globals->root.iplt == NULL)
3373 return FALSE;
3374
3375 if (h != NULL)
3376 {
3377 *root_plt = &h->root.plt;
3378 *arm_plt = &h->plt;
3379 return TRUE;
3380 }
3381
3382 if (elf32_arm_local_iplt (abfd) == NULL)
3383 return FALSE;
3384
3385 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
3386 if (local_iplt == NULL)
3387 return FALSE;
3388
3389 *root_plt = &local_iplt->root;
3390 *arm_plt = &local_iplt->arm;
3391 return TRUE;
3392 }
3393
3394 /* Return true if the PLT described by ARM_PLT requires a Thumb stub
3395 before it. */
3396
3397 static bfd_boolean
3398 elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3399 struct arm_plt_info *arm_plt)
3400 {
3401 struct elf32_arm_link_hash_table *htab;
3402
3403 htab = elf32_arm_hash_table (info);
3404 return (arm_plt->thumb_refcount != 0
3405 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0));
3406 }
3407
3408 /* Return a pointer to the head of the dynamic reloc list that should
3409 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3410 ABFD's symbol table. Return null if an error occurs. */
3411
3412 static struct elf_dyn_relocs **
3413 elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3414 Elf_Internal_Sym *isym)
3415 {
3416 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3417 {
3418 struct arm_local_iplt_info *local_iplt;
3419
3420 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3421 if (local_iplt == NULL)
3422 return NULL;
3423 return &local_iplt->dyn_relocs;
3424 }
3425 else
3426 {
3427 /* Track dynamic relocs needed for local syms too.
3428 We really need local syms available to do this
3429 easily. Oh well. */
3430 asection *s;
3431 void *vpp;
3432
3433 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3434 if (s == NULL)
3435 abort ();
3436
3437 vpp = &elf_section_data (s)->local_dynrel;
3438 return (struct elf_dyn_relocs **) vpp;
3439 }
3440 }
3441
3442 /* Initialize an entry in the stub hash table. */
3443
3444 static struct bfd_hash_entry *
3445 stub_hash_newfunc (struct bfd_hash_entry *entry,
3446 struct bfd_hash_table *table,
3447 const char *string)
3448 {
3449 /* Allocate the structure if it has not already been allocated by a
3450 subclass. */
3451 if (entry == NULL)
3452 {
3453 entry = (struct bfd_hash_entry *)
3454 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
3455 if (entry == NULL)
3456 return entry;
3457 }
3458
3459 /* Call the allocation method of the superclass. */
3460 entry = bfd_hash_newfunc (entry, table, string);
3461 if (entry != NULL)
3462 {
3463 struct elf32_arm_stub_hash_entry *eh;
3464
3465 /* Initialize the local fields. */
3466 eh = (struct elf32_arm_stub_hash_entry *) entry;
3467 eh->stub_sec = NULL;
3468 eh->stub_offset = (bfd_vma) -1;
3469 eh->source_value = 0;
3470 eh->target_value = 0;
3471 eh->target_section = NULL;
3472 eh->orig_insn = 0;
3473 eh->stub_type = arm_stub_none;
3474 eh->stub_size = 0;
3475 eh->stub_template = NULL;
3476 eh->stub_template_size = -1;
3477 eh->h = NULL;
3478 eh->id_sec = NULL;
3479 eh->output_name = NULL;
3480 }
3481
3482 return entry;
3483 }
3484
3485 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
3486 shortcuts to them in our hash table. */
3487
3488 static bfd_boolean
3489 create_got_section (bfd *dynobj, struct bfd_link_info *info)
3490 {
3491 struct elf32_arm_link_hash_table *htab;
3492
3493 htab = elf32_arm_hash_table (info);
3494 if (htab == NULL)
3495 return FALSE;
3496
3497 /* BPABI objects never have a GOT, or associated sections. */
3498 if (htab->symbian_p)
3499 return TRUE;
3500
3501 if (! _bfd_elf_create_got_section (dynobj, info))
3502 return FALSE;
3503
3504 return TRUE;
3505 }
3506
3507 /* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3508
3509 static bfd_boolean
3510 create_ifunc_sections (struct bfd_link_info *info)
3511 {
3512 struct elf32_arm_link_hash_table *htab;
3513 const struct elf_backend_data *bed;
3514 bfd *dynobj;
3515 asection *s;
3516 flagword flags;
3517
3518 htab = elf32_arm_hash_table (info);
3519 dynobj = htab->root.dynobj;
3520 bed = get_elf_backend_data (dynobj);
3521 flags = bed->dynamic_sec_flags;
3522
3523 if (htab->root.iplt == NULL)
3524 {
3525 s = bfd_make_section_anyway_with_flags (dynobj, ".iplt",
3526 flags | SEC_READONLY | SEC_CODE);
3527 if (s == NULL
3528 || !bfd_set_section_alignment (dynobj, s, bed->plt_alignment))
3529 return FALSE;
3530 htab->root.iplt = s;
3531 }
3532
3533 if (htab->root.irelplt == NULL)
3534 {
3535 s = bfd_make_section_anyway_with_flags (dynobj,
3536 RELOC_SECTION (htab, ".iplt"),
3537 flags | SEC_READONLY);
3538 if (s == NULL
3539 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3540 return FALSE;
3541 htab->root.irelplt = s;
3542 }
3543
3544 if (htab->root.igotplt == NULL)
3545 {
3546 s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags);
3547 if (s == NULL
3548 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3549 return FALSE;
3550 htab->root.igotplt = s;
3551 }
3552 return TRUE;
3553 }
3554
3555 /* Determine if we're dealing with a Thumb only architecture. */
3556
3557 static bfd_boolean
3558 using_thumb_only (struct elf32_arm_link_hash_table *globals)
3559 {
3560 int arch;
3561 int profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3562 Tag_CPU_arch_profile);
3563
3564 if (profile)
3565 return profile == 'M';
3566
3567 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3568
3569 /* Force return logic to be reviewed for each new architecture. */
3570 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8
3571 || arch == TAG_CPU_ARCH_V8M_BASE
3572 || arch == TAG_CPU_ARCH_V8M_MAIN);
3573
3574 if (arch == TAG_CPU_ARCH_V6_M
3575 || arch == TAG_CPU_ARCH_V6S_M
3576 || arch == TAG_CPU_ARCH_V7E_M
3577 || arch == TAG_CPU_ARCH_V8M_BASE
3578 || arch == TAG_CPU_ARCH_V8M_MAIN)
3579 return TRUE;
3580
3581 return FALSE;
3582 }
3583
3584 /* Determine if we're dealing with a Thumb-2 object. */
3585
3586 static bfd_boolean
3587 using_thumb2 (struct elf32_arm_link_hash_table *globals)
3588 {
3589 int arch;
3590 int thumb_isa = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3591 Tag_THUMB_ISA_use);
3592
3593 if (thumb_isa)
3594 return thumb_isa == 2;
3595
3596 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3597
3598 /* Force return logic to be reviewed for each new architecture. */
3599 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8
3600 || arch == TAG_CPU_ARCH_V8M_BASE
3601 || arch == TAG_CPU_ARCH_V8M_MAIN);
3602
3603 return (arch == TAG_CPU_ARCH_V6T2
3604 || arch == TAG_CPU_ARCH_V7
3605 || arch == TAG_CPU_ARCH_V7E_M
3606 || arch == TAG_CPU_ARCH_V8
3607 || arch == TAG_CPU_ARCH_V8M_MAIN);
3608 }
3609
3610 /* Determine whether Thumb-2 BL instruction is available. */
3611
3612 static bfd_boolean
3613 using_thumb2_bl (struct elf32_arm_link_hash_table *globals)
3614 {
3615 int arch =
3616 bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3617
3618 /* Force return logic to be reviewed for each new architecture. */
3619 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8
3620 || arch == TAG_CPU_ARCH_V8M_BASE
3621 || arch == TAG_CPU_ARCH_V8M_MAIN);
3622
3623 /* Architecture was introduced after ARMv6T2 (eg. ARMv6-M). */
3624 return (arch == TAG_CPU_ARCH_V6T2
3625 || arch >= TAG_CPU_ARCH_V7);
3626 }
3627
3628 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3629 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
3630 hash table. */
3631
3632 static bfd_boolean
3633 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3634 {
3635 struct elf32_arm_link_hash_table *htab;
3636
3637 htab = elf32_arm_hash_table (info);
3638 if (htab == NULL)
3639 return FALSE;
3640
3641 if (!htab->root.sgot && !create_got_section (dynobj, info))
3642 return FALSE;
3643
3644 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3645 return FALSE;
3646
3647 if (htab->vxworks_p)
3648 {
3649 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
3650 return FALSE;
3651
3652 if (bfd_link_pic (info))
3653 {
3654 htab->plt_header_size = 0;
3655 htab->plt_entry_size
3656 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3657 }
3658 else
3659 {
3660 htab->plt_header_size
3661 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3662 htab->plt_entry_size
3663 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3664 }
3665
3666 if (elf_elfheader (dynobj))
3667 elf_elfheader (dynobj)->e_ident[EI_CLASS] = ELFCLASS32;
3668 }
3669 else
3670 {
3671 /* PR ld/16017
3672 Test for thumb only architectures. Note - we cannot just call
3673 using_thumb_only() as the attributes in the output bfd have not been
3674 initialised at this point, so instead we use the input bfd. */
3675 bfd * saved_obfd = htab->obfd;
3676
3677 htab->obfd = dynobj;
3678 if (using_thumb_only (htab))
3679 {
3680 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
3681 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
3682 }
3683 htab->obfd = saved_obfd;
3684 }
3685
3686 if (!htab->root.splt
3687 || !htab->root.srelplt
3688 || !htab->root.sdynbss
3689 || (!bfd_link_pic (info) && !htab->root.srelbss))
3690 abort ();
3691
3692 return TRUE;
3693 }
3694
3695 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3696
3697 static void
3698 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
3699 struct elf_link_hash_entry *dir,
3700 struct elf_link_hash_entry *ind)
3701 {
3702 struct elf32_arm_link_hash_entry *edir, *eind;
3703
3704 edir = (struct elf32_arm_link_hash_entry *) dir;
3705 eind = (struct elf32_arm_link_hash_entry *) ind;
3706
3707 if (eind->dyn_relocs != NULL)
3708 {
3709 if (edir->dyn_relocs != NULL)
3710 {
3711 struct elf_dyn_relocs **pp;
3712 struct elf_dyn_relocs *p;
3713
3714 /* Add reloc counts against the indirect sym to the direct sym
3715 list. Merge any entries against the same section. */
3716 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3717 {
3718 struct elf_dyn_relocs *q;
3719
3720 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3721 if (q->sec == p->sec)
3722 {
3723 q->pc_count += p->pc_count;
3724 q->count += p->count;
3725 *pp = p->next;
3726 break;
3727 }
3728 if (q == NULL)
3729 pp = &p->next;
3730 }
3731 *pp = edir->dyn_relocs;
3732 }
3733
3734 edir->dyn_relocs = eind->dyn_relocs;
3735 eind->dyn_relocs = NULL;
3736 }
3737
3738 if (ind->root.type == bfd_link_hash_indirect)
3739 {
3740 /* Copy over PLT info. */
3741 edir->plt.thumb_refcount += eind->plt.thumb_refcount;
3742 eind->plt.thumb_refcount = 0;
3743 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
3744 eind->plt.maybe_thumb_refcount = 0;
3745 edir->plt.noncall_refcount += eind->plt.noncall_refcount;
3746 eind->plt.noncall_refcount = 0;
3747
3748 /* We should only allocate a function to .iplt once the final
3749 symbol information is known. */
3750 BFD_ASSERT (!eind->is_iplt);
3751
3752 if (dir->got.refcount <= 0)
3753 {
3754 edir->tls_type = eind->tls_type;
3755 eind->tls_type = GOT_UNKNOWN;
3756 }
3757 }
3758
3759 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
3760 }
3761
3762 /* Destroy an ARM elf linker hash table. */
3763
3764 static void
3765 elf32_arm_link_hash_table_free (bfd *obfd)
3766 {
3767 struct elf32_arm_link_hash_table *ret
3768 = (struct elf32_arm_link_hash_table *) obfd->link.hash;
3769
3770 bfd_hash_table_free (&ret->stub_hash_table);
3771 _bfd_elf_link_hash_table_free (obfd);
3772 }
3773
3774 /* Create an ARM elf linker hash table. */
3775
3776 static struct bfd_link_hash_table *
3777 elf32_arm_link_hash_table_create (bfd *abfd)
3778 {
3779 struct elf32_arm_link_hash_table *ret;
3780 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
3781
3782 ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt);
3783 if (ret == NULL)
3784 return NULL;
3785
3786 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
3787 elf32_arm_link_hash_newfunc,
3788 sizeof (struct elf32_arm_link_hash_entry),
3789 ARM_ELF_DATA))
3790 {
3791 free (ret);
3792 return NULL;
3793 }
3794
3795 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
3796 ret->stm32l4xx_fix = BFD_ARM_STM32L4XX_FIX_NONE;
3797 #ifdef FOUR_WORD_PLT
3798 ret->plt_header_size = 16;
3799 ret->plt_entry_size = 16;
3800 #else
3801 ret->plt_header_size = 20;
3802 ret->plt_entry_size = elf32_arm_use_long_plt_entry ? 16 : 12;
3803 #endif
3804 ret->use_rel = 1;
3805 ret->obfd = abfd;
3806
3807 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
3808 sizeof (struct elf32_arm_stub_hash_entry)))
3809 {
3810 _bfd_elf_link_hash_table_free (abfd);
3811 return NULL;
3812 }
3813 ret->root.root.hash_table_free = elf32_arm_link_hash_table_free;
3814
3815 return &ret->root.root;
3816 }
3817
3818 /* Determine what kind of NOPs are available. */
3819
3820 static bfd_boolean
3821 arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
3822 {
3823 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3824 Tag_CPU_arch);
3825
3826 /* Force return logic to be reviewed for each new architecture. */
3827 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8
3828 || arch == TAG_CPU_ARCH_V8M_BASE
3829 || arch == TAG_CPU_ARCH_V8M_MAIN);
3830
3831 return (arch == TAG_CPU_ARCH_V6T2
3832 || arch == TAG_CPU_ARCH_V6K
3833 || arch == TAG_CPU_ARCH_V7
3834 || arch == TAG_CPU_ARCH_V8);
3835 }
3836
3837 static bfd_boolean
3838 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
3839 {
3840 switch (stub_type)
3841 {
3842 case arm_stub_long_branch_thumb_only:
3843 case arm_stub_long_branch_thumb2_only:
3844 case arm_stub_long_branch_thumb2_only_pure:
3845 case arm_stub_long_branch_v4t_thumb_arm:
3846 case arm_stub_short_branch_v4t_thumb_arm:
3847 case arm_stub_long_branch_v4t_thumb_arm_pic:
3848 case arm_stub_long_branch_v4t_thumb_tls_pic:
3849 case arm_stub_long_branch_thumb_only_pic:
3850 case arm_stub_cmse_branch_thumb_only:
3851 return TRUE;
3852 case arm_stub_none:
3853 BFD_FAIL ();
3854 return FALSE;
3855 break;
3856 default:
3857 return FALSE;
3858 }
3859 }
3860
3861 /* Determine the type of stub needed, if any, for a call. */
3862
3863 static enum elf32_arm_stub_type
3864 arm_type_of_stub (struct bfd_link_info *info,
3865 asection *input_sec,
3866 const Elf_Internal_Rela *rel,
3867 unsigned char st_type,
3868 enum arm_st_branch_type *actual_branch_type,
3869 struct elf32_arm_link_hash_entry *hash,
3870 bfd_vma destination,
3871 asection *sym_sec,
3872 bfd *input_bfd,
3873 const char *name)
3874 {
3875 bfd_vma location;
3876 bfd_signed_vma branch_offset;
3877 unsigned int r_type;
3878 struct elf32_arm_link_hash_table * globals;
3879 bfd_boolean thumb2, thumb2_bl, thumb_only;
3880 enum elf32_arm_stub_type stub_type = arm_stub_none;
3881 int use_plt = 0;
3882 enum arm_st_branch_type branch_type = *actual_branch_type;
3883 union gotplt_union *root_plt;
3884 struct arm_plt_info *arm_plt;
3885 int arch;
3886 int thumb2_movw;
3887
3888 if (branch_type == ST_BRANCH_LONG)
3889 return stub_type;
3890
3891 globals = elf32_arm_hash_table (info);
3892 if (globals == NULL)
3893 return stub_type;
3894
3895 thumb_only = using_thumb_only (globals);
3896 thumb2 = using_thumb2 (globals);
3897 thumb2_bl = using_thumb2_bl (globals);
3898
3899 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3900
3901 /* True for architectures that implement the thumb2 movw instruction. */
3902 thumb2_movw = thumb2 || (arch == TAG_CPU_ARCH_V8M_BASE);
3903
3904 /* Determine where the call point is. */
3905 location = (input_sec->output_offset
3906 + input_sec->output_section->vma
3907 + rel->r_offset);
3908
3909 r_type = ELF32_R_TYPE (rel->r_info);
3910
3911 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
3912 are considering a function call relocation. */
3913 if (thumb_only && (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3914 || r_type == R_ARM_THM_JUMP19)
3915 && branch_type == ST_BRANCH_TO_ARM)
3916 branch_type = ST_BRANCH_TO_THUMB;
3917
3918 /* For TLS call relocs, it is the caller's responsibility to provide
3919 the address of the appropriate trampoline. */
3920 if (r_type != R_ARM_TLS_CALL
3921 && r_type != R_ARM_THM_TLS_CALL
3922 && elf32_arm_get_plt_info (input_bfd, globals, hash,
3923 ELF32_R_SYM (rel->r_info), &root_plt,
3924 &arm_plt)
3925 && root_plt->offset != (bfd_vma) -1)
3926 {
3927 asection *splt;
3928
3929 if (hash == NULL || hash->is_iplt)
3930 splt = globals->root.iplt;
3931 else
3932 splt = globals->root.splt;
3933 if (splt != NULL)
3934 {
3935 use_plt = 1;
3936
3937 /* Note when dealing with PLT entries: the main PLT stub is in
3938 ARM mode, so if the branch is in Thumb mode, another
3939 Thumb->ARM stub will be inserted later just before the ARM
3940 PLT stub. If a long branch stub is needed, we'll add a
3941 Thumb->Arm one and branch directly to the ARM PLT entry.
3942 Here, we have to check if a pre-PLT Thumb->ARM stub
3943 is needed and if it will be close enough. */
3944
3945 destination = (splt->output_section->vma
3946 + splt->output_offset
3947 + root_plt->offset);
3948 st_type = STT_FUNC;
3949
3950 /* Thumb branch/call to PLT: it can become a branch to ARM
3951 or to Thumb. We must perform the same checks and
3952 corrections as in elf32_arm_final_link_relocate. */
3953 if ((r_type == R_ARM_THM_CALL)
3954 || (r_type == R_ARM_THM_JUMP24))
3955 {
3956 if (globals->use_blx
3957 && r_type == R_ARM_THM_CALL
3958 && !thumb_only)
3959 {
3960 /* If the Thumb BLX instruction is available, convert
3961 the BL to a BLX instruction to call the ARM-mode
3962 PLT entry. */
3963 branch_type = ST_BRANCH_TO_ARM;
3964 }
3965 else
3966 {
3967 if (!thumb_only)
3968 /* Target the Thumb stub before the ARM PLT entry. */
3969 destination -= PLT_THUMB_STUB_SIZE;
3970 branch_type = ST_BRANCH_TO_THUMB;
3971 }
3972 }
3973 else
3974 {
3975 branch_type = ST_BRANCH_TO_ARM;
3976 }
3977 }
3978 }
3979 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
3980 BFD_ASSERT (st_type != STT_GNU_IFUNC);
3981
3982 branch_offset = (bfd_signed_vma)(destination - location);
3983
3984 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3985 || r_type == R_ARM_THM_TLS_CALL || r_type == R_ARM_THM_JUMP19)
3986 {
3987 /* Handle cases where:
3988 - this call goes too far (different Thumb/Thumb2 max
3989 distance)
3990 - it's a Thumb->Arm call and blx is not available, or it's a
3991 Thumb->Arm branch (not bl). A stub is needed in this case,
3992 but only if this call is not through a PLT entry. Indeed,
3993 PLT stubs handle mode switching already. */
3994 if ((!thumb2_bl
3995 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
3996 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
3997 || (thumb2_bl
3998 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
3999 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4000 || (thumb2
4001 && (branch_offset > THM2_MAX_FWD_COND_BRANCH_OFFSET
4002 || (branch_offset < THM2_MAX_BWD_COND_BRANCH_OFFSET))
4003 && (r_type == R_ARM_THM_JUMP19))
4004 || (branch_type == ST_BRANCH_TO_ARM
4005 && (((r_type == R_ARM_THM_CALL
4006 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
4007 || (r_type == R_ARM_THM_JUMP24)
4008 || (r_type == R_ARM_THM_JUMP19))
4009 && !use_plt))
4010 {
4011 /* If we need to insert a Thumb-Thumb long branch stub to a
4012 PLT, use one that branches directly to the ARM PLT
4013 stub. If we pretended we'd use the pre-PLT Thumb->ARM
4014 stub, undo this now. */
4015 if ((branch_type == ST_BRANCH_TO_THUMB) && use_plt && !thumb_only)
4016 {
4017 branch_type = ST_BRANCH_TO_ARM;
4018 branch_offset += PLT_THUMB_STUB_SIZE;
4019 }
4020
4021 if (branch_type == ST_BRANCH_TO_THUMB)
4022 {
4023 /* Thumb to thumb. */
4024 if (!thumb_only)
4025 {
4026 if (input_sec->flags & SEC_ELF_PURECODE)
4027 _bfd_error_handler
4028 (_("%B(%A): warning: long branch veneers used in"
4029 " section with SHF_ARM_PURECODE section"
4030 " attribute is only supported for M-profile"
4031 " targets that implement the movw instruction."),
4032 input_bfd, input_sec);
4033
4034 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4035 /* PIC stubs. */
4036 ? ((globals->use_blx
4037 && (r_type == R_ARM_THM_CALL))
4038 /* V5T and above. Stub starts with ARM code, so
4039 we must be able to switch mode before
4040 reaching it, which is only possible for 'bl'
4041 (ie R_ARM_THM_CALL relocation). */
4042 ? arm_stub_long_branch_any_thumb_pic
4043 /* On V4T, use Thumb code only. */
4044 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4045
4046 /* non-PIC stubs. */
4047 : ((globals->use_blx
4048 && (r_type == R_ARM_THM_CALL))
4049 /* V5T and above. */
4050 ? arm_stub_long_branch_any_any
4051 /* V4T. */
4052 : arm_stub_long_branch_v4t_thumb_thumb);
4053 }
4054 else
4055 {
4056 if (thumb2_movw && (input_sec->flags & SEC_ELF_PURECODE))
4057 stub_type = arm_stub_long_branch_thumb2_only_pure;
4058 else
4059 {
4060 if (input_sec->flags & SEC_ELF_PURECODE)
4061 _bfd_error_handler
4062 (_("%B(%A): warning: long branch veneers used in"
4063 " section with SHF_ARM_PURECODE section"
4064 " attribute is only supported for M-profile"
4065 " targets that implement the movw instruction."),
4066 input_bfd, input_sec);
4067
4068 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4069 /* PIC stub. */
4070 ? arm_stub_long_branch_thumb_only_pic
4071 /* non-PIC stub. */
4072 : (thumb2 ? arm_stub_long_branch_thumb2_only
4073 : arm_stub_long_branch_thumb_only);
4074 }
4075 }
4076 }
4077 else
4078 {
4079 if (input_sec->flags & SEC_ELF_PURECODE)
4080 _bfd_error_handler
4081 (_("%B(%A): warning: long branch veneers used in"
4082 " section with SHF_ARM_PURECODE section"
4083 " attribute is only supported" " for M-profile"
4084 " targets that implement the movw instruction."),
4085 input_bfd, input_sec);
4086
4087 /* Thumb to arm. */
4088 if (sym_sec != NULL
4089 && sym_sec->owner != NULL
4090 && !INTERWORK_FLAG (sym_sec->owner))
4091 {
4092 _bfd_error_handler
4093 (_("%B(%s): warning: interworking not enabled.\n"
4094 " first occurrence: %B: Thumb call to ARM"),
4095 sym_sec->owner, name, input_bfd);
4096 }
4097
4098 stub_type =
4099 (bfd_link_pic (info) | globals->pic_veneer)
4100 /* PIC stubs. */
4101 ? (r_type == R_ARM_THM_TLS_CALL
4102 /* TLS PIC stubs. */
4103 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
4104 : arm_stub_long_branch_v4t_thumb_tls_pic)
4105 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
4106 /* V5T PIC and above. */
4107 ? arm_stub_long_branch_any_arm_pic
4108 /* V4T PIC stub. */
4109 : arm_stub_long_branch_v4t_thumb_arm_pic))
4110
4111 /* non-PIC stubs. */
4112 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
4113 /* V5T and above. */
4114 ? arm_stub_long_branch_any_any
4115 /* V4T. */
4116 : arm_stub_long_branch_v4t_thumb_arm);
4117
4118 /* Handle v4t short branches. */
4119 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4120 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4121 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4122 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4123 }
4124 }
4125 }
4126 else if (r_type == R_ARM_CALL
4127 || r_type == R_ARM_JUMP24
4128 || r_type == R_ARM_PLT32
4129 || r_type == R_ARM_TLS_CALL)
4130 {
4131 if (input_sec->flags & SEC_ELF_PURECODE)
4132 _bfd_error_handler
4133 (_("%B(%A): warning: long branch veneers used in"
4134 " section with SHF_ARM_PURECODE section"
4135 " attribute is only supported for M-profile"
4136 " targets that implement the movw instruction."),
4137 input_bfd, input_sec);
4138 if (branch_type == ST_BRANCH_TO_THUMB)
4139 {
4140 /* Arm to thumb. */
4141
4142 if (sym_sec != NULL
4143 && sym_sec->owner != NULL
4144 && !INTERWORK_FLAG (sym_sec->owner))
4145 {
4146 _bfd_error_handler
4147 (_("%B(%s): warning: interworking not enabled.\n"
4148 " first occurrence: %B: ARM call to Thumb"),
4149 sym_sec->owner, input_bfd, name);
4150 }
4151
4152 /* We have an extra 2-bytes reach because of
4153 the mode change (bit 24 (H) of BLX encoding). */
4154 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4155 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4156 || (r_type == R_ARM_CALL && !globals->use_blx)
4157 || (r_type == R_ARM_JUMP24)
4158 || (r_type == R_ARM_PLT32))
4159 {
4160 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4161 /* PIC stubs. */
4162 ? ((globals->use_blx)
4163 /* V5T and above. */
4164 ? arm_stub_long_branch_any_thumb_pic
4165 /* V4T stub. */
4166 : arm_stub_long_branch_v4t_arm_thumb_pic)
4167
4168 /* non-PIC stubs. */
4169 : ((globals->use_blx)
4170 /* V5T and above. */
4171 ? arm_stub_long_branch_any_any
4172 /* V4T. */
4173 : arm_stub_long_branch_v4t_arm_thumb);
4174 }
4175 }
4176 else
4177 {
4178 /* Arm to arm. */
4179 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4180 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4181 {
4182 stub_type =
4183 (bfd_link_pic (info) | globals->pic_veneer)
4184 /* PIC stubs. */
4185 ? (r_type == R_ARM_TLS_CALL
4186 /* TLS PIC Stub. */
4187 ? arm_stub_long_branch_any_tls_pic
4188 : (globals->nacl_p
4189 ? arm_stub_long_branch_arm_nacl_pic
4190 : arm_stub_long_branch_any_arm_pic))
4191 /* non-PIC stubs. */
4192 : (globals->nacl_p
4193 ? arm_stub_long_branch_arm_nacl
4194 : arm_stub_long_branch_any_any);
4195 }
4196 }
4197 }
4198
4199 /* If a stub is needed, record the actual destination type. */
4200 if (stub_type != arm_stub_none)
4201 *actual_branch_type = branch_type;
4202
4203 return stub_type;
4204 }
4205
4206 /* Build a name for an entry in the stub hash table. */
4207
4208 static char *
4209 elf32_arm_stub_name (const asection *input_section,
4210 const asection *sym_sec,
4211 const struct elf32_arm_link_hash_entry *hash,
4212 const Elf_Internal_Rela *rel,
4213 enum elf32_arm_stub_type stub_type)
4214 {
4215 char *stub_name;
4216 bfd_size_type len;
4217
4218 if (hash)
4219 {
4220 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
4221 stub_name = (char *) bfd_malloc (len);
4222 if (stub_name != NULL)
4223 sprintf (stub_name, "%08x_%s+%x_%d",
4224 input_section->id & 0xffffffff,
4225 hash->root.root.root.string,
4226 (int) rel->r_addend & 0xffffffff,
4227 (int) stub_type);
4228 }
4229 else
4230 {
4231 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
4232 stub_name = (char *) bfd_malloc (len);
4233 if (stub_name != NULL)
4234 sprintf (stub_name, "%08x_%x:%x+%x_%d",
4235 input_section->id & 0xffffffff,
4236 sym_sec->id & 0xffffffff,
4237 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
4238 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
4239 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
4240 (int) rel->r_addend & 0xffffffff,
4241 (int) stub_type);
4242 }
4243
4244 return stub_name;
4245 }
4246
4247 /* Look up an entry in the stub hash. Stub entries are cached because
4248 creating the stub name takes a bit of time. */
4249
4250 static struct elf32_arm_stub_hash_entry *
4251 elf32_arm_get_stub_entry (const asection *input_section,
4252 const asection *sym_sec,
4253 struct elf_link_hash_entry *hash,
4254 const Elf_Internal_Rela *rel,
4255 struct elf32_arm_link_hash_table *htab,
4256 enum elf32_arm_stub_type stub_type)
4257 {
4258 struct elf32_arm_stub_hash_entry *stub_entry;
4259 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
4260 const asection *id_sec;
4261
4262 if ((input_section->flags & SEC_CODE) == 0)
4263 return NULL;
4264
4265 /* If this input section is part of a group of sections sharing one
4266 stub section, then use the id of the first section in the group.
4267 Stub names need to include a section id, as there may well be
4268 more than one stub used to reach say, printf, and we need to
4269 distinguish between them. */
4270 BFD_ASSERT (input_section->id <= htab->top_id);
4271 id_sec = htab->stub_group[input_section->id].link_sec;
4272
4273 if (h != NULL && h->stub_cache != NULL
4274 && h->stub_cache->h == h
4275 && h->stub_cache->id_sec == id_sec
4276 && h->stub_cache->stub_type == stub_type)
4277 {
4278 stub_entry = h->stub_cache;
4279 }
4280 else
4281 {
4282 char *stub_name;
4283
4284 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
4285 if (stub_name == NULL)
4286 return NULL;
4287
4288 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
4289 stub_name, FALSE, FALSE);
4290 if (h != NULL)
4291 h->stub_cache = stub_entry;
4292
4293 free (stub_name);
4294 }
4295
4296 return stub_entry;
4297 }
4298
4299 /* Whether veneers of type STUB_TYPE require to be in a dedicated output
4300 section. */
4301
4302 static bfd_boolean
4303 arm_dedicated_stub_output_section_required (enum elf32_arm_stub_type stub_type)
4304 {
4305 if (stub_type >= max_stub_type)
4306 abort (); /* Should be unreachable. */
4307
4308 switch (stub_type)
4309 {
4310 case arm_stub_cmse_branch_thumb_only:
4311 return TRUE;
4312
4313 default:
4314 return FALSE;
4315 }
4316
4317 abort (); /* Should be unreachable. */
4318 }
4319
4320 /* Required alignment (as a power of 2) for the dedicated section holding
4321 veneers of type STUB_TYPE, or 0 if veneers of this type are interspersed
4322 with input sections. */
4323
4324 static int
4325 arm_dedicated_stub_output_section_required_alignment
4326 (enum elf32_arm_stub_type stub_type)
4327 {
4328 if (stub_type >= max_stub_type)
4329 abort (); /* Should be unreachable. */
4330
4331 switch (stub_type)
4332 {
4333 /* Vectors of Secure Gateway veneers must be aligned on 32byte
4334 boundary. */
4335 case arm_stub_cmse_branch_thumb_only:
4336 return 5;
4337
4338 default:
4339 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4340 return 0;
4341 }
4342
4343 abort (); /* Should be unreachable. */
4344 }
4345
4346 /* Name of the dedicated output section to put veneers of type STUB_TYPE, or
4347 NULL if veneers of this type are interspersed with input sections. */
4348
4349 static const char *
4350 arm_dedicated_stub_output_section_name (enum elf32_arm_stub_type stub_type)
4351 {
4352 if (stub_type >= max_stub_type)
4353 abort (); /* Should be unreachable. */
4354
4355 switch (stub_type)
4356 {
4357 case arm_stub_cmse_branch_thumb_only:
4358 return ".gnu.sgstubs";
4359
4360 default:
4361 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4362 return NULL;
4363 }
4364
4365 abort (); /* Should be unreachable. */
4366 }
4367
4368 /* If veneers of type STUB_TYPE should go in a dedicated output section,
4369 returns the address of the hash table field in HTAB holding a pointer to the
4370 corresponding input section. Otherwise, returns NULL. */
4371
4372 static asection **
4373 arm_dedicated_stub_input_section_ptr (struct elf32_arm_link_hash_table *htab,
4374 enum elf32_arm_stub_type stub_type)
4375 {
4376 if (stub_type >= max_stub_type)
4377 abort (); /* Should be unreachable. */
4378
4379 switch (stub_type)
4380 {
4381 case arm_stub_cmse_branch_thumb_only:
4382 return &htab->cmse_stub_sec;
4383
4384 default:
4385 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4386 return NULL;
4387 }
4388
4389 abort (); /* Should be unreachable. */
4390 }
4391
4392 /* Find or create a stub section to contain a stub of type STUB_TYPE. SECTION
4393 is the section that branch into veneer and can be NULL if stub should go in
4394 a dedicated output section. Returns a pointer to the stub section, and the
4395 section to which the stub section will be attached (in *LINK_SEC_P).
4396 LINK_SEC_P may be NULL. */
4397
4398 static asection *
4399 elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
4400 struct elf32_arm_link_hash_table *htab,
4401 enum elf32_arm_stub_type stub_type)
4402 {
4403 asection *link_sec, *out_sec, **stub_sec_p;
4404 const char *stub_sec_prefix;
4405 bfd_boolean dedicated_output_section =
4406 arm_dedicated_stub_output_section_required (stub_type);
4407 int align;
4408
4409 if (dedicated_output_section)
4410 {
4411 bfd *output_bfd = htab->obfd;
4412 const char *out_sec_name =
4413 arm_dedicated_stub_output_section_name (stub_type);
4414 link_sec = NULL;
4415 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
4416 stub_sec_prefix = out_sec_name;
4417 align = arm_dedicated_stub_output_section_required_alignment (stub_type);
4418 out_sec = bfd_get_section_by_name (output_bfd, out_sec_name);
4419 if (out_sec == NULL)
4420 {
4421 _bfd_error_handler (_("No address assigned to the veneers output "
4422 "section %s"), out_sec_name);
4423 return NULL;
4424 }
4425 }
4426 else
4427 {
4428 BFD_ASSERT (section->id <= htab->top_id);
4429 link_sec = htab->stub_group[section->id].link_sec;
4430 BFD_ASSERT (link_sec != NULL);
4431 stub_sec_p = &htab->stub_group[section->id].stub_sec;
4432 if (*stub_sec_p == NULL)
4433 stub_sec_p = &htab->stub_group[link_sec->id].stub_sec;
4434 stub_sec_prefix = link_sec->name;
4435 out_sec = link_sec->output_section;
4436 align = htab->nacl_p ? 4 : 3;
4437 }
4438
4439 if (*stub_sec_p == NULL)
4440 {
4441 size_t namelen;
4442 bfd_size_type len;
4443 char *s_name;
4444
4445 namelen = strlen (stub_sec_prefix);
4446 len = namelen + sizeof (STUB_SUFFIX);
4447 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
4448 if (s_name == NULL)
4449 return NULL;
4450
4451 memcpy (s_name, stub_sec_prefix, namelen);
4452 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4453 *stub_sec_p = (*htab->add_stub_section) (s_name, out_sec, link_sec,
4454 align);
4455 if (*stub_sec_p == NULL)
4456 return NULL;
4457
4458 out_sec->flags |= SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_CODE
4459 | SEC_HAS_CONTENTS | SEC_RELOC | SEC_IN_MEMORY
4460 | SEC_KEEP;
4461 }
4462
4463 if (!dedicated_output_section)
4464 htab->stub_group[section->id].stub_sec = *stub_sec_p;
4465
4466 if (link_sec_p)
4467 *link_sec_p = link_sec;
4468
4469 return *stub_sec_p;
4470 }
4471
4472 /* Add a new stub entry to the stub hash. Not all fields of the new
4473 stub entry are initialised. */
4474
4475 static struct elf32_arm_stub_hash_entry *
4476 elf32_arm_add_stub (const char *stub_name, asection *section,
4477 struct elf32_arm_link_hash_table *htab,
4478 enum elf32_arm_stub_type stub_type)
4479 {
4480 asection *link_sec;
4481 asection *stub_sec;
4482 struct elf32_arm_stub_hash_entry *stub_entry;
4483
4484 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab,
4485 stub_type);
4486 if (stub_sec == NULL)
4487 return NULL;
4488
4489 /* Enter this entry into the linker stub hash table. */
4490 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4491 TRUE, FALSE);
4492 if (stub_entry == NULL)
4493 {
4494 if (section == NULL)
4495 section = stub_sec;
4496 _bfd_error_handler (_("%B: cannot create stub entry %s"),
4497 section->owner, stub_name);
4498 return NULL;
4499 }
4500
4501 stub_entry->stub_sec = stub_sec;
4502 stub_entry->stub_offset = (bfd_vma) -1;
4503 stub_entry->id_sec = link_sec;
4504
4505 return stub_entry;
4506 }
4507
4508 /* Store an Arm insn into an output section not processed by
4509 elf32_arm_write_section. */
4510
4511 static void
4512 put_arm_insn (struct elf32_arm_link_hash_table * htab,
4513 bfd * output_bfd, bfd_vma val, void * ptr)
4514 {
4515 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4516 bfd_putl32 (val, ptr);
4517 else
4518 bfd_putb32 (val, ptr);
4519 }
4520
4521 /* Store a 16-bit Thumb insn into an output section not processed by
4522 elf32_arm_write_section. */
4523
4524 static void
4525 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
4526 bfd * output_bfd, bfd_vma val, void * ptr)
4527 {
4528 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4529 bfd_putl16 (val, ptr);
4530 else
4531 bfd_putb16 (val, ptr);
4532 }
4533
4534 /* Store a Thumb2 insn into an output section not processed by
4535 elf32_arm_write_section. */
4536
4537 static void
4538 put_thumb2_insn (struct elf32_arm_link_hash_table * htab,
4539 bfd * output_bfd, bfd_vma val, bfd_byte * ptr)
4540 {
4541 /* T2 instructions are 16-bit streamed. */
4542 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4543 {
4544 bfd_putl16 ((val >> 16) & 0xffff, ptr);
4545 bfd_putl16 ((val & 0xffff), ptr + 2);
4546 }
4547 else
4548 {
4549 bfd_putb16 ((val >> 16) & 0xffff, ptr);
4550 bfd_putb16 ((val & 0xffff), ptr + 2);
4551 }
4552 }
4553
4554 /* If it's possible to change R_TYPE to a more efficient access
4555 model, return the new reloc type. */
4556
4557 static unsigned
4558 elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
4559 struct elf_link_hash_entry *h)
4560 {
4561 int is_local = (h == NULL);
4562
4563 if (bfd_link_pic (info)
4564 || (h && h->root.type == bfd_link_hash_undefweak))
4565 return r_type;
4566
4567 /* We do not support relaxations for Old TLS models. */
4568 switch (r_type)
4569 {
4570 case R_ARM_TLS_GOTDESC:
4571 case R_ARM_TLS_CALL:
4572 case R_ARM_THM_TLS_CALL:
4573 case R_ARM_TLS_DESCSEQ:
4574 case R_ARM_THM_TLS_DESCSEQ:
4575 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
4576 }
4577
4578 return r_type;
4579 }
4580
4581 static bfd_reloc_status_type elf32_arm_final_link_relocate
4582 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
4583 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
4584 const char *, unsigned char, enum arm_st_branch_type,
4585 struct elf_link_hash_entry *, bfd_boolean *, char **);
4586
4587 static unsigned int
4588 arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
4589 {
4590 switch (stub_type)
4591 {
4592 case arm_stub_a8_veneer_b_cond:
4593 case arm_stub_a8_veneer_b:
4594 case arm_stub_a8_veneer_bl:
4595 return 2;
4596
4597 case arm_stub_long_branch_any_any:
4598 case arm_stub_long_branch_v4t_arm_thumb:
4599 case arm_stub_long_branch_thumb_only:
4600 case arm_stub_long_branch_thumb2_only:
4601 case arm_stub_long_branch_thumb2_only_pure:
4602 case arm_stub_long_branch_v4t_thumb_thumb:
4603 case arm_stub_long_branch_v4t_thumb_arm:
4604 case arm_stub_short_branch_v4t_thumb_arm:
4605 case arm_stub_long_branch_any_arm_pic:
4606 case arm_stub_long_branch_any_thumb_pic:
4607 case arm_stub_long_branch_v4t_thumb_thumb_pic:
4608 case arm_stub_long_branch_v4t_arm_thumb_pic:
4609 case arm_stub_long_branch_v4t_thumb_arm_pic:
4610 case arm_stub_long_branch_thumb_only_pic:
4611 case arm_stub_long_branch_any_tls_pic:
4612 case arm_stub_long_branch_v4t_thumb_tls_pic:
4613 case arm_stub_cmse_branch_thumb_only:
4614 case arm_stub_a8_veneer_blx:
4615 return 4;
4616
4617 case arm_stub_long_branch_arm_nacl:
4618 case arm_stub_long_branch_arm_nacl_pic:
4619 return 16;
4620
4621 default:
4622 abort (); /* Should be unreachable. */
4623 }
4624 }
4625
4626 /* Returns whether stubs of type STUB_TYPE take over the symbol they are
4627 veneering (TRUE) or have their own symbol (FALSE). */
4628
4629 static bfd_boolean
4630 arm_stub_sym_claimed (enum elf32_arm_stub_type stub_type)
4631 {
4632 if (stub_type >= max_stub_type)
4633 abort (); /* Should be unreachable. */
4634
4635 switch (stub_type)
4636 {
4637 case arm_stub_cmse_branch_thumb_only:
4638 return TRUE;
4639
4640 default:
4641 return FALSE;
4642 }
4643
4644 abort (); /* Should be unreachable. */
4645 }
4646
4647 /* Returns the padding needed for the dedicated section used stubs of type
4648 STUB_TYPE. */
4649
4650 static int
4651 arm_dedicated_stub_section_padding (enum elf32_arm_stub_type stub_type)
4652 {
4653 if (stub_type >= max_stub_type)
4654 abort (); /* Should be unreachable. */
4655
4656 switch (stub_type)
4657 {
4658 case arm_stub_cmse_branch_thumb_only:
4659 return 32;
4660
4661 default:
4662 return 0;
4663 }
4664
4665 abort (); /* Should be unreachable. */
4666 }
4667
4668 /* If veneers of type STUB_TYPE should go in a dedicated output section,
4669 returns the address of the hash table field in HTAB holding the offset at
4670 which new veneers should be layed out in the stub section. */
4671
4672 static bfd_vma*
4673 arm_new_stubs_start_offset_ptr (struct elf32_arm_link_hash_table *htab,
4674 enum elf32_arm_stub_type stub_type)
4675 {
4676 switch (stub_type)
4677 {
4678 case arm_stub_cmse_branch_thumb_only:
4679 return &htab->new_cmse_stub_offset;
4680
4681 default:
4682 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4683 return NULL;
4684 }
4685 }
4686
4687 static bfd_boolean
4688 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
4689 void * in_arg)
4690 {
4691 #define MAXRELOCS 3
4692 bfd_boolean removed_sg_veneer;
4693 struct elf32_arm_stub_hash_entry *stub_entry;
4694 struct elf32_arm_link_hash_table *globals;
4695 struct bfd_link_info *info;
4696 asection *stub_sec;
4697 bfd *stub_bfd;
4698 bfd_byte *loc;
4699 bfd_vma sym_value;
4700 int template_size;
4701 int size;
4702 const insn_sequence *template_sequence;
4703 int i;
4704 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
4705 int stub_reloc_offset[MAXRELOCS] = {0, 0};
4706 int nrelocs = 0;
4707 int just_allocated = 0;
4708
4709 /* Massage our args to the form they really have. */
4710 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4711 info = (struct bfd_link_info *) in_arg;
4712
4713 globals = elf32_arm_hash_table (info);
4714 if (globals == NULL)
4715 return FALSE;
4716
4717 stub_sec = stub_entry->stub_sec;
4718
4719 if ((globals->fix_cortex_a8 < 0)
4720 != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
4721 /* We have to do less-strictly-aligned fixes last. */
4722 return TRUE;
4723
4724 /* Assign a slot at the end of section if none assigned yet. */
4725 if (stub_entry->stub_offset == (bfd_vma) -1)
4726 {
4727 stub_entry->stub_offset = stub_sec->size;
4728 just_allocated = 1;
4729 }
4730 loc = stub_sec->contents + stub_entry->stub_offset;
4731
4732 stub_bfd = stub_sec->owner;
4733
4734 /* This is the address of the stub destination. */
4735 sym_value = (stub_entry->target_value
4736 + stub_entry->target_section->output_offset
4737 + stub_entry->target_section->output_section->vma);
4738
4739 template_sequence = stub_entry->stub_template;
4740 template_size = stub_entry->stub_template_size;
4741
4742 size = 0;
4743 for (i = 0; i < template_size; i++)
4744 {
4745 switch (template_sequence[i].type)
4746 {
4747 case THUMB16_TYPE:
4748 {
4749 bfd_vma data = (bfd_vma) template_sequence[i].data;
4750 if (template_sequence[i].reloc_addend != 0)
4751 {
4752 /* We've borrowed the reloc_addend field to mean we should
4753 insert a condition code into this (Thumb-1 branch)
4754 instruction. See THUMB16_BCOND_INSN. */
4755 BFD_ASSERT ((data & 0xff00) == 0xd000);
4756 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
4757 }
4758 bfd_put_16 (stub_bfd, data, loc + size);
4759 size += 2;
4760 }
4761 break;
4762
4763 case THUMB32_TYPE:
4764 bfd_put_16 (stub_bfd,
4765 (template_sequence[i].data >> 16) & 0xffff,
4766 loc + size);
4767 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
4768 loc + size + 2);
4769 if (template_sequence[i].r_type != R_ARM_NONE)
4770 {
4771 stub_reloc_idx[nrelocs] = i;
4772 stub_reloc_offset[nrelocs++] = size;
4773 }
4774 size += 4;
4775 break;
4776
4777 case ARM_TYPE:
4778 bfd_put_32 (stub_bfd, template_sequence[i].data,
4779 loc + size);
4780 /* Handle cases where the target is encoded within the
4781 instruction. */
4782 if (template_sequence[i].r_type == R_ARM_JUMP24)
4783 {
4784 stub_reloc_idx[nrelocs] = i;
4785 stub_reloc_offset[nrelocs++] = size;
4786 }
4787 size += 4;
4788 break;
4789
4790 case DATA_TYPE:
4791 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
4792 stub_reloc_idx[nrelocs] = i;
4793 stub_reloc_offset[nrelocs++] = size;
4794 size += 4;
4795 break;
4796
4797 default:
4798 BFD_FAIL ();
4799 return FALSE;
4800 }
4801 }
4802
4803 if (just_allocated)
4804 stub_sec->size += size;
4805
4806 /* Stub size has already been computed in arm_size_one_stub. Check
4807 consistency. */
4808 BFD_ASSERT (size == stub_entry->stub_size);
4809
4810 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
4811 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
4812 sym_value |= 1;
4813
4814 /* Assume non empty slots have at least one and at most MAXRELOCS entries
4815 to relocate in each stub. */
4816 removed_sg_veneer =
4817 (size == 0 && stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
4818 BFD_ASSERT (removed_sg_veneer || (nrelocs != 0 && nrelocs <= MAXRELOCS));
4819
4820 for (i = 0; i < nrelocs; i++)
4821 {
4822 Elf_Internal_Rela rel;
4823 bfd_boolean unresolved_reloc;
4824 char *error_message;
4825 bfd_vma points_to =
4826 sym_value + template_sequence[stub_reloc_idx[i]].reloc_addend;
4827
4828 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4829 rel.r_info = ELF32_R_INFO (0,
4830 template_sequence[stub_reloc_idx[i]].r_type);
4831 rel.r_addend = 0;
4832
4833 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
4834 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
4835 template should refer back to the instruction after the original
4836 branch. We use target_section as Cortex-A8 erratum workaround stubs
4837 are only generated when both source and target are in the same
4838 section. */
4839 points_to = stub_entry->target_section->output_section->vma
4840 + stub_entry->target_section->output_offset
4841 + stub_entry->source_value;
4842
4843 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4844 (template_sequence[stub_reloc_idx[i]].r_type),
4845 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
4846 points_to, info, stub_entry->target_section, "", STT_FUNC,
4847 stub_entry->branch_type,
4848 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
4849 &error_message);
4850 }
4851
4852 return TRUE;
4853 #undef MAXRELOCS
4854 }
4855
4856 /* Calculate the template, template size and instruction size for a stub.
4857 Return value is the instruction size. */
4858
4859 static unsigned int
4860 find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
4861 const insn_sequence **stub_template,
4862 int *stub_template_size)
4863 {
4864 const insn_sequence *template_sequence = NULL;
4865 int template_size = 0, i;
4866 unsigned int size;
4867
4868 template_sequence = stub_definitions[stub_type].template_sequence;
4869 if (stub_template)
4870 *stub_template = template_sequence;
4871
4872 template_size = stub_definitions[stub_type].template_size;
4873 if (stub_template_size)
4874 *stub_template_size = template_size;
4875
4876 size = 0;
4877 for (i = 0; i < template_size; i++)
4878 {
4879 switch (template_sequence[i].type)
4880 {
4881 case THUMB16_TYPE:
4882 size += 2;
4883 break;
4884
4885 case ARM_TYPE:
4886 case THUMB32_TYPE:
4887 case DATA_TYPE:
4888 size += 4;
4889 break;
4890
4891 default:
4892 BFD_FAIL ();
4893 return 0;
4894 }
4895 }
4896
4897 return size;
4898 }
4899
4900 /* As above, but don't actually build the stub. Just bump offset so
4901 we know stub section sizes. */
4902
4903 static bfd_boolean
4904 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
4905 void *in_arg ATTRIBUTE_UNUSED)
4906 {
4907 struct elf32_arm_stub_hash_entry *stub_entry;
4908 const insn_sequence *template_sequence;
4909 int template_size, size;
4910
4911 /* Massage our args to the form they really have. */
4912 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4913
4914 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
4915 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
4916
4917 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
4918 &template_size);
4919
4920 /* Initialized to -1. Null size indicates an empty slot full of zeros. */
4921 if (stub_entry->stub_template_size)
4922 {
4923 stub_entry->stub_size = size;
4924 stub_entry->stub_template = template_sequence;
4925 stub_entry->stub_template_size = template_size;
4926 }
4927
4928 /* Already accounted for. */
4929 if (stub_entry->stub_offset != (bfd_vma) -1)
4930 return TRUE;
4931
4932 size = (size + 7) & ~7;
4933 stub_entry->stub_sec->size += size;
4934
4935 return TRUE;
4936 }
4937
4938 /* External entry points for sizing and building linker stubs. */
4939
4940 /* Set up various things so that we can make a list of input sections
4941 for each output section included in the link. Returns -1 on error,
4942 0 when no stubs will be needed, and 1 on success. */
4943
4944 int
4945 elf32_arm_setup_section_lists (bfd *output_bfd,
4946 struct bfd_link_info *info)
4947 {
4948 bfd *input_bfd;
4949 unsigned int bfd_count;
4950 unsigned int top_id, top_index;
4951 asection *section;
4952 asection **input_list, **list;
4953 bfd_size_type amt;
4954 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4955
4956 if (htab == NULL)
4957 return 0;
4958 if (! is_elf_hash_table (htab))
4959 return 0;
4960
4961 /* Count the number of input BFDs and find the top input section id. */
4962 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
4963 input_bfd != NULL;
4964 input_bfd = input_bfd->link.next)
4965 {
4966 bfd_count += 1;
4967 for (section = input_bfd->sections;
4968 section != NULL;
4969 section = section->next)
4970 {
4971 if (top_id < section->id)
4972 top_id = section->id;
4973 }
4974 }
4975 htab->bfd_count = bfd_count;
4976
4977 amt = sizeof (struct map_stub) * (top_id + 1);
4978 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
4979 if (htab->stub_group == NULL)
4980 return -1;
4981 htab->top_id = top_id;
4982
4983 /* We can't use output_bfd->section_count here to find the top output
4984 section index as some sections may have been removed, and
4985 _bfd_strip_section_from_output doesn't renumber the indices. */
4986 for (section = output_bfd->sections, top_index = 0;
4987 section != NULL;
4988 section = section->next)
4989 {
4990 if (top_index < section->index)
4991 top_index = section->index;
4992 }
4993
4994 htab->top_index = top_index;
4995 amt = sizeof (asection *) * (top_index + 1);
4996 input_list = (asection **) bfd_malloc (amt);
4997 htab->input_list = input_list;
4998 if (input_list == NULL)
4999 return -1;
5000
5001 /* For sections we aren't interested in, mark their entries with a
5002 value we can check later. */
5003 list = input_list + top_index;
5004 do
5005 *list = bfd_abs_section_ptr;
5006 while (list-- != input_list);
5007
5008 for (section = output_bfd->sections;
5009 section != NULL;
5010 section = section->next)
5011 {
5012 if ((section->flags & SEC_CODE) != 0)
5013 input_list[section->index] = NULL;
5014 }
5015
5016 return 1;
5017 }
5018
5019 /* The linker repeatedly calls this function for each input section,
5020 in the order that input sections are linked into output sections.
5021 Build lists of input sections to determine groupings between which
5022 we may insert linker stubs. */
5023
5024 void
5025 elf32_arm_next_input_section (struct bfd_link_info *info,
5026 asection *isec)
5027 {
5028 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5029
5030 if (htab == NULL)
5031 return;
5032
5033 if (isec->output_section->index <= htab->top_index)
5034 {
5035 asection **list = htab->input_list + isec->output_section->index;
5036
5037 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
5038 {
5039 /* Steal the link_sec pointer for our list. */
5040 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
5041 /* This happens to make the list in reverse order,
5042 which we reverse later. */
5043 PREV_SEC (isec) = *list;
5044 *list = isec;
5045 }
5046 }
5047 }
5048
5049 /* See whether we can group stub sections together. Grouping stub
5050 sections may result in fewer stubs. More importantly, we need to
5051 put all .init* and .fini* stubs at the end of the .init or
5052 .fini output sections respectively, because glibc splits the
5053 _init and _fini functions into multiple parts. Putting a stub in
5054 the middle of a function is not a good idea. */
5055
5056 static void
5057 group_sections (struct elf32_arm_link_hash_table *htab,
5058 bfd_size_type stub_group_size,
5059 bfd_boolean stubs_always_after_branch)
5060 {
5061 asection **list = htab->input_list;
5062
5063 do
5064 {
5065 asection *tail = *list;
5066 asection *head;
5067
5068 if (tail == bfd_abs_section_ptr)
5069 continue;
5070
5071 /* Reverse the list: we must avoid placing stubs at the
5072 beginning of the section because the beginning of the text
5073 section may be required for an interrupt vector in bare metal
5074 code. */
5075 #define NEXT_SEC PREV_SEC
5076 head = NULL;
5077 while (tail != NULL)
5078 {
5079 /* Pop from tail. */
5080 asection *item = tail;
5081 tail = PREV_SEC (item);
5082
5083 /* Push on head. */
5084 NEXT_SEC (item) = head;
5085 head = item;
5086 }
5087
5088 while (head != NULL)
5089 {
5090 asection *curr;
5091 asection *next;
5092 bfd_vma stub_group_start = head->output_offset;
5093 bfd_vma end_of_next;
5094
5095 curr = head;
5096 while (NEXT_SEC (curr) != NULL)
5097 {
5098 next = NEXT_SEC (curr);
5099 end_of_next = next->output_offset + next->size;
5100 if (end_of_next - stub_group_start >= stub_group_size)
5101 /* End of NEXT is too far from start, so stop. */
5102 break;
5103 /* Add NEXT to the group. */
5104 curr = next;
5105 }
5106
5107 /* OK, the size from the start to the start of CURR is less
5108 than stub_group_size and thus can be handled by one stub
5109 section. (Or the head section is itself larger than
5110 stub_group_size, in which case we may be toast.)
5111 We should really be keeping track of the total size of
5112 stubs added here, as stubs contribute to the final output
5113 section size. */
5114 do
5115 {
5116 next = NEXT_SEC (head);
5117 /* Set up this stub group. */
5118 htab->stub_group[head->id].link_sec = curr;
5119 }
5120 while (head != curr && (head = next) != NULL);
5121
5122 /* But wait, there's more! Input sections up to stub_group_size
5123 bytes after the stub section can be handled by it too. */
5124 if (!stubs_always_after_branch)
5125 {
5126 stub_group_start = curr->output_offset + curr->size;
5127
5128 while (next != NULL)
5129 {
5130 end_of_next = next->output_offset + next->size;
5131 if (end_of_next - stub_group_start >= stub_group_size)
5132 /* End of NEXT is too far from stubs, so stop. */
5133 break;
5134 /* Add NEXT to the stub group. */
5135 head = next;
5136 next = NEXT_SEC (head);
5137 htab->stub_group[head->id].link_sec = curr;
5138 }
5139 }
5140 head = next;
5141 }
5142 }
5143 while (list++ != htab->input_list + htab->top_index);
5144
5145 free (htab->input_list);
5146 #undef PREV_SEC
5147 #undef NEXT_SEC
5148 }
5149
5150 /* Comparison function for sorting/searching relocations relating to Cortex-A8
5151 erratum fix. */
5152
5153 static int
5154 a8_reloc_compare (const void *a, const void *b)
5155 {
5156 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
5157 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
5158
5159 if (ra->from < rb->from)
5160 return -1;
5161 else if (ra->from > rb->from)
5162 return 1;
5163 else
5164 return 0;
5165 }
5166
5167 static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
5168 const char *, char **);
5169
5170 /* Helper function to scan code for sequences which might trigger the Cortex-A8
5171 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
5172 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
5173 otherwise. */
5174
5175 static bfd_boolean
5176 cortex_a8_erratum_scan (bfd *input_bfd,
5177 struct bfd_link_info *info,
5178 struct a8_erratum_fix **a8_fixes_p,
5179 unsigned int *num_a8_fixes_p,
5180 unsigned int *a8_fix_table_size_p,
5181 struct a8_erratum_reloc *a8_relocs,
5182 unsigned int num_a8_relocs,
5183 unsigned prev_num_a8_fixes,
5184 bfd_boolean *stub_changed_p)
5185 {
5186 asection *section;
5187 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5188 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
5189 unsigned int num_a8_fixes = *num_a8_fixes_p;
5190 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
5191
5192 if (htab == NULL)
5193 return FALSE;
5194
5195 for (section = input_bfd->sections;
5196 section != NULL;
5197 section = section->next)
5198 {
5199 bfd_byte *contents = NULL;
5200 struct _arm_elf_section_data *sec_data;
5201 unsigned int span;
5202 bfd_vma base_vma;
5203
5204 if (elf_section_type (section) != SHT_PROGBITS
5205 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
5206 || (section->flags & SEC_EXCLUDE) != 0
5207 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
5208 || (section->output_section == bfd_abs_section_ptr))
5209 continue;
5210
5211 base_vma = section->output_section->vma + section->output_offset;
5212
5213 if (elf_section_data (section)->this_hdr.contents != NULL)
5214 contents = elf_section_data (section)->this_hdr.contents;
5215 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
5216 return TRUE;
5217
5218 sec_data = elf32_arm_section_data (section);
5219
5220 for (span = 0; span < sec_data->mapcount; span++)
5221 {
5222 unsigned int span_start = sec_data->map[span].vma;
5223 unsigned int span_end = (span == sec_data->mapcount - 1)
5224 ? section->size : sec_data->map[span + 1].vma;
5225 unsigned int i;
5226 char span_type = sec_data->map[span].type;
5227 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
5228
5229 if (span_type != 't')
5230 continue;
5231
5232 /* Span is entirely within a single 4KB region: skip scanning. */
5233 if (((base_vma + span_start) & ~0xfff)
5234 == ((base_vma + span_end) & ~0xfff))
5235 continue;
5236
5237 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
5238
5239 * The opcode is BLX.W, BL.W, B.W, Bcc.W
5240 * The branch target is in the same 4KB region as the
5241 first half of the branch.
5242 * The instruction before the branch is a 32-bit
5243 length non-branch instruction. */
5244 for (i = span_start; i < span_end;)
5245 {
5246 unsigned int insn = bfd_getl16 (&contents[i]);
5247 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
5248 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
5249
5250 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
5251 insn_32bit = TRUE;
5252
5253 if (insn_32bit)
5254 {
5255 /* Load the rest of the insn (in manual-friendly order). */
5256 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
5257
5258 /* Encoding T4: B<c>.W. */
5259 is_b = (insn & 0xf800d000) == 0xf0009000;
5260 /* Encoding T1: BL<c>.W. */
5261 is_bl = (insn & 0xf800d000) == 0xf000d000;
5262 /* Encoding T2: BLX<c>.W. */
5263 is_blx = (insn & 0xf800d000) == 0xf000c000;
5264 /* Encoding T3: B<c>.W (not permitted in IT block). */
5265 is_bcc = (insn & 0xf800d000) == 0xf0008000
5266 && (insn & 0x07f00000) != 0x03800000;
5267 }
5268
5269 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
5270
5271 if (((base_vma + i) & 0xfff) == 0xffe
5272 && insn_32bit
5273 && is_32bit_branch
5274 && last_was_32bit
5275 && ! last_was_branch)
5276 {
5277 bfd_signed_vma offset = 0;
5278 bfd_boolean force_target_arm = FALSE;
5279 bfd_boolean force_target_thumb = FALSE;
5280 bfd_vma target;
5281 enum elf32_arm_stub_type stub_type = arm_stub_none;
5282 struct a8_erratum_reloc key, *found;
5283 bfd_boolean use_plt = FALSE;
5284
5285 key.from = base_vma + i;
5286 found = (struct a8_erratum_reloc *)
5287 bsearch (&key, a8_relocs, num_a8_relocs,
5288 sizeof (struct a8_erratum_reloc),
5289 &a8_reloc_compare);
5290
5291 if (found)
5292 {
5293 char *error_message = NULL;
5294 struct elf_link_hash_entry *entry;
5295
5296 /* We don't care about the error returned from this
5297 function, only if there is glue or not. */
5298 entry = find_thumb_glue (info, found->sym_name,
5299 &error_message);
5300
5301 if (entry)
5302 found->non_a8_stub = TRUE;
5303
5304 /* Keep a simpler condition, for the sake of clarity. */
5305 if (htab->root.splt != NULL && found->hash != NULL
5306 && found->hash->root.plt.offset != (bfd_vma) -1)
5307 use_plt = TRUE;
5308
5309 if (found->r_type == R_ARM_THM_CALL)
5310 {
5311 if (found->branch_type == ST_BRANCH_TO_ARM
5312 || use_plt)
5313 force_target_arm = TRUE;
5314 else
5315 force_target_thumb = TRUE;
5316 }
5317 }
5318
5319 /* Check if we have an offending branch instruction. */
5320
5321 if (found && found->non_a8_stub)
5322 /* We've already made a stub for this instruction, e.g.
5323 it's a long branch or a Thumb->ARM stub. Assume that
5324 stub will suffice to work around the A8 erratum (see
5325 setting of always_after_branch above). */
5326 ;
5327 else if (is_bcc)
5328 {
5329 offset = (insn & 0x7ff) << 1;
5330 offset |= (insn & 0x3f0000) >> 4;
5331 offset |= (insn & 0x2000) ? 0x40000 : 0;
5332 offset |= (insn & 0x800) ? 0x80000 : 0;
5333 offset |= (insn & 0x4000000) ? 0x100000 : 0;
5334 if (offset & 0x100000)
5335 offset |= ~ ((bfd_signed_vma) 0xfffff);
5336 stub_type = arm_stub_a8_veneer_b_cond;
5337 }
5338 else if (is_b || is_bl || is_blx)
5339 {
5340 int s = (insn & 0x4000000) != 0;
5341 int j1 = (insn & 0x2000) != 0;
5342 int j2 = (insn & 0x800) != 0;
5343 int i1 = !(j1 ^ s);
5344 int i2 = !(j2 ^ s);
5345
5346 offset = (insn & 0x7ff) << 1;
5347 offset |= (insn & 0x3ff0000) >> 4;
5348 offset |= i2 << 22;
5349 offset |= i1 << 23;
5350 offset |= s << 24;
5351 if (offset & 0x1000000)
5352 offset |= ~ ((bfd_signed_vma) 0xffffff);
5353
5354 if (is_blx)
5355 offset &= ~ ((bfd_signed_vma) 3);
5356
5357 stub_type = is_blx ? arm_stub_a8_veneer_blx :
5358 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
5359 }
5360
5361 if (stub_type != arm_stub_none)
5362 {
5363 bfd_vma pc_for_insn = base_vma + i + 4;
5364
5365 /* The original instruction is a BL, but the target is
5366 an ARM instruction. If we were not making a stub,
5367 the BL would have been converted to a BLX. Use the
5368 BLX stub instead in that case. */
5369 if (htab->use_blx && force_target_arm
5370 && stub_type == arm_stub_a8_veneer_bl)
5371 {
5372 stub_type = arm_stub_a8_veneer_blx;
5373 is_blx = TRUE;
5374 is_bl = FALSE;
5375 }
5376 /* Conversely, if the original instruction was
5377 BLX but the target is Thumb mode, use the BL
5378 stub. */
5379 else if (force_target_thumb
5380 && stub_type == arm_stub_a8_veneer_blx)
5381 {
5382 stub_type = arm_stub_a8_veneer_bl;
5383 is_blx = FALSE;
5384 is_bl = TRUE;
5385 }
5386
5387 if (is_blx)
5388 pc_for_insn &= ~ ((bfd_vma) 3);
5389
5390 /* If we found a relocation, use the proper destination,
5391 not the offset in the (unrelocated) instruction.
5392 Note this is always done if we switched the stub type
5393 above. */
5394 if (found)
5395 offset =
5396 (bfd_signed_vma) (found->destination - pc_for_insn);
5397
5398 /* If the stub will use a Thumb-mode branch to a
5399 PLT target, redirect it to the preceding Thumb
5400 entry point. */
5401 if (stub_type != arm_stub_a8_veneer_blx && use_plt)
5402 offset -= PLT_THUMB_STUB_SIZE;
5403
5404 target = pc_for_insn + offset;
5405
5406 /* The BLX stub is ARM-mode code. Adjust the offset to
5407 take the different PC value (+8 instead of +4) into
5408 account. */
5409 if (stub_type == arm_stub_a8_veneer_blx)
5410 offset += 4;
5411
5412 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
5413 {
5414 char *stub_name = NULL;
5415
5416 if (num_a8_fixes == a8_fix_table_size)
5417 {
5418 a8_fix_table_size *= 2;
5419 a8_fixes = (struct a8_erratum_fix *)
5420 bfd_realloc (a8_fixes,
5421 sizeof (struct a8_erratum_fix)
5422 * a8_fix_table_size);
5423 }
5424
5425 if (num_a8_fixes < prev_num_a8_fixes)
5426 {
5427 /* If we're doing a subsequent scan,
5428 check if we've found the same fix as
5429 before, and try and reuse the stub
5430 name. */
5431 stub_name = a8_fixes[num_a8_fixes].stub_name;
5432 if ((a8_fixes[num_a8_fixes].section != section)
5433 || (a8_fixes[num_a8_fixes].offset != i))
5434 {
5435 free (stub_name);
5436 stub_name = NULL;
5437 *stub_changed_p = TRUE;
5438 }
5439 }
5440
5441 if (!stub_name)
5442 {
5443 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
5444 if (stub_name != NULL)
5445 sprintf (stub_name, "%x:%x", section->id, i);
5446 }
5447
5448 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
5449 a8_fixes[num_a8_fixes].section = section;
5450 a8_fixes[num_a8_fixes].offset = i;
5451 a8_fixes[num_a8_fixes].target_offset =
5452 target - base_vma;
5453 a8_fixes[num_a8_fixes].orig_insn = insn;
5454 a8_fixes[num_a8_fixes].stub_name = stub_name;
5455 a8_fixes[num_a8_fixes].stub_type = stub_type;
5456 a8_fixes[num_a8_fixes].branch_type =
5457 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
5458
5459 num_a8_fixes++;
5460 }
5461 }
5462 }
5463
5464 i += insn_32bit ? 4 : 2;
5465 last_was_32bit = insn_32bit;
5466 last_was_branch = is_32bit_branch;
5467 }
5468 }
5469
5470 if (elf_section_data (section)->this_hdr.contents == NULL)
5471 free (contents);
5472 }
5473
5474 *a8_fixes_p = a8_fixes;
5475 *num_a8_fixes_p = num_a8_fixes;
5476 *a8_fix_table_size_p = a8_fix_table_size;
5477
5478 return FALSE;
5479 }
5480
5481 /* Create or update a stub entry depending on whether the stub can already be
5482 found in HTAB. The stub is identified by:
5483 - its type STUB_TYPE
5484 - its source branch (note that several can share the same stub) whose
5485 section and relocation (if any) are given by SECTION and IRELA
5486 respectively
5487 - its target symbol whose input section, hash, name, value and branch type
5488 are given in SYM_SEC, HASH, SYM_NAME, SYM_VALUE and BRANCH_TYPE
5489 respectively
5490
5491 If found, the value of the stub's target symbol is updated from SYM_VALUE
5492 and *NEW_STUB is set to FALSE. Otherwise, *NEW_STUB is set to
5493 TRUE and the stub entry is initialized.
5494
5495 Returns the stub that was created or updated, or NULL if an error
5496 occurred. */
5497
5498 static struct elf32_arm_stub_hash_entry *
5499 elf32_arm_create_stub (struct elf32_arm_link_hash_table *htab,
5500 enum elf32_arm_stub_type stub_type, asection *section,
5501 Elf_Internal_Rela *irela, asection *sym_sec,
5502 struct elf32_arm_link_hash_entry *hash, char *sym_name,
5503 bfd_vma sym_value, enum arm_st_branch_type branch_type,
5504 bfd_boolean *new_stub)
5505 {
5506 const asection *id_sec;
5507 char *stub_name;
5508 struct elf32_arm_stub_hash_entry *stub_entry;
5509 unsigned int r_type;
5510 bfd_boolean sym_claimed = arm_stub_sym_claimed (stub_type);
5511
5512 BFD_ASSERT (stub_type != arm_stub_none);
5513 *new_stub = FALSE;
5514
5515 if (sym_claimed)
5516 stub_name = sym_name;
5517 else
5518 {
5519 BFD_ASSERT (irela);
5520 BFD_ASSERT (section);
5521 BFD_ASSERT (section->id <= htab->top_id);
5522
5523 /* Support for grouping stub sections. */
5524 id_sec = htab->stub_group[section->id].link_sec;
5525
5526 /* Get the name of this stub. */
5527 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela,
5528 stub_type);
5529 if (!stub_name)
5530 return NULL;
5531 }
5532
5533 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name, FALSE,
5534 FALSE);
5535 /* The proper stub has already been created, just update its value. */
5536 if (stub_entry != NULL)
5537 {
5538 if (!sym_claimed)
5539 free (stub_name);
5540 stub_entry->target_value = sym_value;
5541 return stub_entry;
5542 }
5543
5544 stub_entry = elf32_arm_add_stub (stub_name, section, htab, stub_type);
5545 if (stub_entry == NULL)
5546 {
5547 if (!sym_claimed)
5548 free (stub_name);
5549 return NULL;
5550 }
5551
5552 stub_entry->target_value = sym_value;
5553 stub_entry->target_section = sym_sec;
5554 stub_entry->stub_type = stub_type;
5555 stub_entry->h = hash;
5556 stub_entry->branch_type = branch_type;
5557
5558 if (sym_claimed)
5559 stub_entry->output_name = sym_name;
5560 else
5561 {
5562 if (sym_name == NULL)
5563 sym_name = "unnamed";
5564 stub_entry->output_name = (char *)
5565 bfd_alloc (htab->stub_bfd, sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5566 + strlen (sym_name));
5567 if (stub_entry->output_name == NULL)
5568 {
5569 free (stub_name);
5570 return NULL;
5571 }
5572
5573 /* For historical reasons, use the existing names for ARM-to-Thumb and
5574 Thumb-to-ARM stubs. */
5575 r_type = ELF32_R_TYPE (irela->r_info);
5576 if ((r_type == (unsigned int) R_ARM_THM_CALL
5577 || r_type == (unsigned int) R_ARM_THM_JUMP24
5578 || r_type == (unsigned int) R_ARM_THM_JUMP19)
5579 && branch_type == ST_BRANCH_TO_ARM)
5580 sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5581 else if ((r_type == (unsigned int) R_ARM_CALL
5582 || r_type == (unsigned int) R_ARM_JUMP24)
5583 && branch_type == ST_BRANCH_TO_THUMB)
5584 sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5585 else
5586 sprintf (stub_entry->output_name, STUB_ENTRY_NAME, sym_name);
5587 }
5588
5589 *new_stub = TRUE;
5590 return stub_entry;
5591 }
5592
5593 /* Scan symbols in INPUT_BFD to identify secure entry functions needing a
5594 gateway veneer to transition from non secure to secure state and create them
5595 accordingly.
5596
5597 "ARMv8-M Security Extensions: Requirements on Development Tools" document
5598 defines the conditions that govern Secure Gateway veneer creation for a
5599 given symbol <SYM> as follows:
5600 - it has function type
5601 - it has non local binding
5602 - a symbol named __acle_se_<SYM> (called special symbol) exists with the
5603 same type, binding and value as <SYM> (called normal symbol).
5604 An entry function can handle secure state transition itself in which case
5605 its special symbol would have a different value from the normal symbol.
5606
5607 OUT_ATTR gives the output attributes, SYM_HASHES the symbol index to hash
5608 entry mapping while HTAB gives the name to hash entry mapping.
5609 *CMSE_STUB_CREATED is increased by the number of secure gateway veneer
5610 created.
5611
5612 The return value gives whether a stub failed to be allocated. */
5613
5614 static bfd_boolean
5615 cmse_scan (bfd *input_bfd, struct elf32_arm_link_hash_table *htab,
5616 obj_attribute *out_attr, struct elf_link_hash_entry **sym_hashes,
5617 int *cmse_stub_created)
5618 {
5619 const struct elf_backend_data *bed;
5620 Elf_Internal_Shdr *symtab_hdr;
5621 unsigned i, j, sym_count, ext_start;
5622 Elf_Internal_Sym *cmse_sym, *local_syms;
5623 struct elf32_arm_link_hash_entry *hash, *cmse_hash = NULL;
5624 enum arm_st_branch_type branch_type;
5625 char *sym_name, *lsym_name;
5626 bfd_vma sym_value;
5627 asection *section;
5628 struct elf32_arm_stub_hash_entry *stub_entry;
5629 bfd_boolean is_v8m, new_stub, cmse_invalid, ret = TRUE;
5630
5631 bed = get_elf_backend_data (input_bfd);
5632 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5633 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
5634 ext_start = symtab_hdr->sh_info;
5635 is_v8m = (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
5636 && out_attr[Tag_CPU_arch_profile].i == 'M');
5637
5638 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
5639 if (local_syms == NULL)
5640 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
5641 symtab_hdr->sh_info, 0, NULL, NULL,
5642 NULL);
5643 if (symtab_hdr->sh_info && local_syms == NULL)
5644 return FALSE;
5645
5646 /* Scan symbols. */
5647 for (i = 0; i < sym_count; i++)
5648 {
5649 cmse_invalid = FALSE;
5650
5651 if (i < ext_start)
5652 {
5653 cmse_sym = &local_syms[i];
5654 /* Not a special symbol. */
5655 if (!ARM_GET_SYM_CMSE_SPCL (cmse_sym->st_target_internal))
5656 continue;
5657 sym_name = bfd_elf_string_from_elf_section (input_bfd,
5658 symtab_hdr->sh_link,
5659 cmse_sym->st_name);
5660 /* Special symbol with local binding. */
5661 cmse_invalid = TRUE;
5662 }
5663 else
5664 {
5665 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
5666 sym_name = (char *) cmse_hash->root.root.root.string;
5667
5668 /* Not a special symbol. */
5669 if (!ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
5670 continue;
5671
5672 /* Special symbol has incorrect binding or type. */
5673 if ((cmse_hash->root.root.type != bfd_link_hash_defined
5674 && cmse_hash->root.root.type != bfd_link_hash_defweak)
5675 || cmse_hash->root.type != STT_FUNC)
5676 cmse_invalid = TRUE;
5677 }
5678
5679 if (!is_v8m)
5680 {
5681 _bfd_error_handler (_("%B: Special symbol `%s' only allowed for "
5682 "ARMv8-M architecture or later."),
5683 input_bfd, sym_name);
5684 is_v8m = TRUE; /* Avoid multiple warning. */
5685 ret = FALSE;
5686 }
5687
5688 if (cmse_invalid)
5689 {
5690 _bfd_error_handler (_("%B: invalid special symbol `%s'."),
5691 input_bfd, sym_name);
5692 _bfd_error_handler (_("It must be a global or weak function "
5693 "symbol."));
5694 ret = FALSE;
5695 if (i < ext_start)
5696 continue;
5697 }
5698
5699 sym_name += strlen (CMSE_PREFIX);
5700 hash = (struct elf32_arm_link_hash_entry *)
5701 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
5702
5703 /* No associated normal symbol or it is neither global nor weak. */
5704 if (!hash
5705 || (hash->root.root.type != bfd_link_hash_defined
5706 && hash->root.root.type != bfd_link_hash_defweak)
5707 || hash->root.type != STT_FUNC)
5708 {
5709 /* Initialize here to avoid warning about use of possibly
5710 uninitialized variable. */
5711 j = 0;
5712
5713 if (!hash)
5714 {
5715 /* Searching for a normal symbol with local binding. */
5716 for (; j < ext_start; j++)
5717 {
5718 lsym_name =
5719 bfd_elf_string_from_elf_section (input_bfd,
5720 symtab_hdr->sh_link,
5721 local_syms[j].st_name);
5722 if (!strcmp (sym_name, lsym_name))
5723 break;
5724 }
5725 }
5726
5727 if (hash || j < ext_start)
5728 {
5729 _bfd_error_handler
5730 (_("%B: invalid standard symbol `%s'."), input_bfd, sym_name);
5731 _bfd_error_handler
5732 (_("It must be a global or weak function symbol."));
5733 }
5734 else
5735 _bfd_error_handler
5736 (_("%B: absent standard symbol `%s'."), input_bfd, sym_name);
5737 ret = FALSE;
5738 if (!hash)
5739 continue;
5740 }
5741
5742 sym_value = hash->root.root.u.def.value;
5743 section = hash->root.root.u.def.section;
5744
5745 if (cmse_hash->root.root.u.def.section != section)
5746 {
5747 _bfd_error_handler
5748 (_("%B: `%s' and its special symbol are in different sections."),
5749 input_bfd, sym_name);
5750 ret = FALSE;
5751 }
5752 if (cmse_hash->root.root.u.def.value != sym_value)
5753 continue; /* Ignore: could be an entry function starting with SG. */
5754
5755 /* If this section is a link-once section that will be discarded, then
5756 don't create any stubs. */
5757 if (section->output_section == NULL)
5758 {
5759 _bfd_error_handler
5760 (_("%B: entry function `%s' not output."), input_bfd, sym_name);
5761 continue;
5762 }
5763
5764 if (hash->root.size == 0)
5765 {
5766 _bfd_error_handler
5767 (_("%B: entry function `%s' is empty."), input_bfd, sym_name);
5768 ret = FALSE;
5769 }
5770
5771 if (!ret)
5772 continue;
5773 branch_type = ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
5774 stub_entry
5775 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
5776 NULL, NULL, section, hash, sym_name,
5777 sym_value, branch_type, &new_stub);
5778
5779 if (stub_entry == NULL)
5780 ret = FALSE;
5781 else
5782 {
5783 BFD_ASSERT (new_stub);
5784 (*cmse_stub_created)++;
5785 }
5786 }
5787
5788 if (!symtab_hdr->contents)
5789 free (local_syms);
5790 return ret;
5791 }
5792
5793 /* Return TRUE iff a symbol identified by its linker HASH entry is a secure
5794 code entry function, ie can be called from non secure code without using a
5795 veneer. */
5796
5797 static bfd_boolean
5798 cmse_entry_fct_p (struct elf32_arm_link_hash_entry *hash)
5799 {
5800 bfd_byte contents[4];
5801 uint32_t first_insn;
5802 asection *section;
5803 file_ptr offset;
5804 bfd *abfd;
5805
5806 /* Defined symbol of function type. */
5807 if (hash->root.root.type != bfd_link_hash_defined
5808 && hash->root.root.type != bfd_link_hash_defweak)
5809 return FALSE;
5810 if (hash->root.type != STT_FUNC)
5811 return FALSE;
5812
5813 /* Read first instruction. */
5814 section = hash->root.root.u.def.section;
5815 abfd = section->owner;
5816 offset = hash->root.root.u.def.value - section->vma;
5817 if (!bfd_get_section_contents (abfd, section, contents, offset,
5818 sizeof (contents)))
5819 return FALSE;
5820
5821 first_insn = bfd_get_32 (abfd, contents);
5822
5823 /* Starts by SG instruction. */
5824 return first_insn == 0xe97fe97f;
5825 }
5826
5827 /* Output the name (in symbol table) of the veneer GEN_ENTRY if it is a new
5828 secure gateway veneers (ie. the veneers was not in the input import library)
5829 and there is no output import library (GEN_INFO->out_implib_bfd is NULL. */
5830
5831 static bfd_boolean
5832 arm_list_new_cmse_stub (struct bfd_hash_entry *gen_entry, void *gen_info)
5833 {
5834 struct elf32_arm_stub_hash_entry *stub_entry;
5835 struct bfd_link_info *info;
5836
5837 /* Massage our args to the form they really have. */
5838 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
5839 info = (struct bfd_link_info *) gen_info;
5840
5841 if (info->out_implib_bfd)
5842 return TRUE;
5843
5844 if (stub_entry->stub_type != arm_stub_cmse_branch_thumb_only)
5845 return TRUE;
5846
5847 if (stub_entry->stub_offset == (bfd_vma) -1)
5848 _bfd_error_handler (" %s", stub_entry->output_name);
5849
5850 return TRUE;
5851 }
5852
5853 /* Set offset of each secure gateway veneers so that its address remain
5854 identical to the one in the input import library referred by
5855 HTAB->in_implib_bfd. A warning is issued for veneers that disappeared
5856 (present in input import library but absent from the executable being
5857 linked) or if new veneers appeared and there is no output import library
5858 (INFO->out_implib_bfd is NULL and *CMSE_STUB_CREATED is bigger than the
5859 number of secure gateway veneers found in the input import library.
5860
5861 The function returns whether an error occurred. If no error occurred,
5862 *CMSE_STUB_CREATED gives the number of SG veneers created by both cmse_scan
5863 and this function and HTAB->new_cmse_stub_offset is set to the biggest
5864 veneer observed set for new veneers to be layed out after. */
5865
5866 static bfd_boolean
5867 set_cmse_veneer_addr_from_implib (struct bfd_link_info *info,
5868 struct elf32_arm_link_hash_table *htab,
5869 int *cmse_stub_created)
5870 {
5871 long symsize;
5872 char *sym_name;
5873 flagword flags;
5874 long i, symcount;
5875 bfd *in_implib_bfd;
5876 asection *stub_out_sec;
5877 bfd_boolean ret = TRUE;
5878 Elf_Internal_Sym *intsym;
5879 const char *out_sec_name;
5880 bfd_size_type cmse_stub_size;
5881 asymbol **sympp = NULL, *sym;
5882 struct elf32_arm_link_hash_entry *hash;
5883 const insn_sequence *cmse_stub_template;
5884 struct elf32_arm_stub_hash_entry *stub_entry;
5885 int cmse_stub_template_size, new_cmse_stubs_created = *cmse_stub_created;
5886 bfd_vma veneer_value, stub_offset, next_cmse_stub_offset;
5887 bfd_vma cmse_stub_array_start = (bfd_vma) -1, cmse_stub_sec_vma = 0;
5888
5889 /* No input secure gateway import library. */
5890 if (!htab->in_implib_bfd)
5891 return TRUE;
5892
5893 in_implib_bfd = htab->in_implib_bfd;
5894 if (!htab->cmse_implib)
5895 {
5896 _bfd_error_handler (_("%B: --in-implib only supported for Secure "
5897 "Gateway import libraries."), in_implib_bfd);
5898 return FALSE;
5899 }
5900
5901 /* Get symbol table size. */
5902 symsize = bfd_get_symtab_upper_bound (in_implib_bfd);
5903 if (symsize < 0)
5904 return FALSE;
5905
5906 /* Read in the input secure gateway import library's symbol table. */
5907 sympp = (asymbol **) xmalloc (symsize);
5908 symcount = bfd_canonicalize_symtab (in_implib_bfd, sympp);
5909 if (symcount < 0)
5910 {
5911 ret = FALSE;
5912 goto free_sym_buf;
5913 }
5914
5915 htab->new_cmse_stub_offset = 0;
5916 cmse_stub_size =
5917 find_stub_size_and_template (arm_stub_cmse_branch_thumb_only,
5918 &cmse_stub_template,
5919 &cmse_stub_template_size);
5920 out_sec_name =
5921 arm_dedicated_stub_output_section_name (arm_stub_cmse_branch_thumb_only);
5922 stub_out_sec =
5923 bfd_get_section_by_name (htab->obfd, out_sec_name);
5924 if (stub_out_sec != NULL)
5925 cmse_stub_sec_vma = stub_out_sec->vma;
5926
5927 /* Set addresses of veneers mentionned in input secure gateway import
5928 library's symbol table. */
5929 for (i = 0; i < symcount; i++)
5930 {
5931 sym = sympp[i];
5932 flags = sym->flags;
5933 sym_name = (char *) bfd_asymbol_name (sym);
5934 intsym = &((elf_symbol_type *) sym)->internal_elf_sym;
5935
5936 if (sym->section != bfd_abs_section_ptr
5937 || !(flags & (BSF_GLOBAL | BSF_WEAK))
5938 || (flags & BSF_FUNCTION) != BSF_FUNCTION
5939 || (ARM_GET_SYM_BRANCH_TYPE (intsym->st_target_internal)
5940 != ST_BRANCH_TO_THUMB))
5941 {
5942 _bfd_error_handler (_("%B: invalid import library entry: `%s'."),
5943 in_implib_bfd, sym_name);
5944 _bfd_error_handler (_("Symbol should be absolute, global and "
5945 "refer to Thumb functions."));
5946 ret = FALSE;
5947 continue;
5948 }
5949
5950 veneer_value = bfd_asymbol_value (sym);
5951 stub_offset = veneer_value - cmse_stub_sec_vma;
5952 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, sym_name,
5953 FALSE, FALSE);
5954 hash = (struct elf32_arm_link_hash_entry *)
5955 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
5956
5957 /* Stub entry should have been created by cmse_scan or the symbol be of
5958 a secure function callable from non secure code. */
5959 if (!stub_entry && !hash)
5960 {
5961 bfd_boolean new_stub;
5962
5963 _bfd_error_handler
5964 (_("Entry function `%s' disappeared from secure code."), sym_name);
5965 hash = (struct elf32_arm_link_hash_entry *)
5966 elf_link_hash_lookup (&(htab)->root, sym_name, TRUE, TRUE, TRUE);
5967 stub_entry
5968 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
5969 NULL, NULL, bfd_abs_section_ptr, hash,
5970 sym_name, veneer_value,
5971 ST_BRANCH_TO_THUMB, &new_stub);
5972 if (stub_entry == NULL)
5973 ret = FALSE;
5974 else
5975 {
5976 BFD_ASSERT (new_stub);
5977 new_cmse_stubs_created++;
5978 (*cmse_stub_created)++;
5979 }
5980 stub_entry->stub_template_size = stub_entry->stub_size = 0;
5981 stub_entry->stub_offset = stub_offset;
5982 }
5983 /* Symbol found is not callable from non secure code. */
5984 else if (!stub_entry)
5985 {
5986 if (!cmse_entry_fct_p (hash))
5987 {
5988 _bfd_error_handler (_("`%s' refers to a non entry function."),
5989 sym_name);
5990 ret = FALSE;
5991 }
5992 continue;
5993 }
5994 else
5995 {
5996 /* Only stubs for SG veneers should have been created. */
5997 BFD_ASSERT (stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
5998
5999 /* Check visibility hasn't changed. */
6000 if (!!(flags & BSF_GLOBAL)
6001 != (hash->root.root.type == bfd_link_hash_defined))
6002 _bfd_error_handler
6003 (_("%B: visibility of symbol `%s' has changed."), in_implib_bfd,
6004 sym_name);
6005
6006 stub_entry->stub_offset = stub_offset;
6007 }
6008
6009 /* Size should match that of a SG veneer. */
6010 if (intsym->st_size != cmse_stub_size)
6011 {
6012 _bfd_error_handler (_("%B: incorrect size for symbol `%s'."),
6013 in_implib_bfd, sym_name);
6014 ret = FALSE;
6015 }
6016
6017 /* Previous veneer address is before current SG veneer section. */
6018 if (veneer_value < cmse_stub_sec_vma)
6019 {
6020 /* Avoid offset underflow. */
6021 if (stub_entry)
6022 stub_entry->stub_offset = 0;
6023 stub_offset = 0;
6024 ret = FALSE;
6025 }
6026
6027 /* Complain if stub offset not a multiple of stub size. */
6028 if (stub_offset % cmse_stub_size)
6029 {
6030 _bfd_error_handler
6031 (_("Offset of veneer for entry function `%s' not a multiple of "
6032 "its size."), sym_name);
6033 ret = FALSE;
6034 }
6035
6036 if (!ret)
6037 continue;
6038
6039 new_cmse_stubs_created--;
6040 if (veneer_value < cmse_stub_array_start)
6041 cmse_stub_array_start = veneer_value;
6042 next_cmse_stub_offset = stub_offset + ((cmse_stub_size + 7) & ~7);
6043 if (next_cmse_stub_offset > htab->new_cmse_stub_offset)
6044 htab->new_cmse_stub_offset = next_cmse_stub_offset;
6045 }
6046
6047 if (!info->out_implib_bfd && new_cmse_stubs_created != 0)
6048 {
6049 BFD_ASSERT (new_cmse_stubs_created > 0);
6050 _bfd_error_handler
6051 (_("new entry function(s) introduced but no output import library "
6052 "specified:"));
6053 bfd_hash_traverse (&htab->stub_hash_table, arm_list_new_cmse_stub, info);
6054 }
6055
6056 if (cmse_stub_array_start != cmse_stub_sec_vma)
6057 {
6058 _bfd_error_handler
6059 (_("Start address of `%s' is different from previous link."),
6060 out_sec_name);
6061 ret = FALSE;
6062 }
6063
6064 free_sym_buf:
6065 free (sympp);
6066 return ret;
6067 }
6068
6069 /* Determine and set the size of the stub section for a final link.
6070
6071 The basic idea here is to examine all the relocations looking for
6072 PC-relative calls to a target that is unreachable with a "bl"
6073 instruction. */
6074
6075 bfd_boolean
6076 elf32_arm_size_stubs (bfd *output_bfd,
6077 bfd *stub_bfd,
6078 struct bfd_link_info *info,
6079 bfd_signed_vma group_size,
6080 asection * (*add_stub_section) (const char *, asection *,
6081 asection *,
6082 unsigned int),
6083 void (*layout_sections_again) (void))
6084 {
6085 bfd_boolean ret = TRUE;
6086 obj_attribute *out_attr;
6087 int cmse_stub_created = 0;
6088 bfd_size_type stub_group_size;
6089 bfd_boolean m_profile, stubs_always_after_branch, first_veneer_scan = TRUE;
6090 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
6091 struct a8_erratum_fix *a8_fixes = NULL;
6092 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
6093 struct a8_erratum_reloc *a8_relocs = NULL;
6094 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
6095
6096 if (htab == NULL)
6097 return FALSE;
6098
6099 if (htab->fix_cortex_a8)
6100 {
6101 a8_fixes = (struct a8_erratum_fix *)
6102 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
6103 a8_relocs = (struct a8_erratum_reloc *)
6104 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
6105 }
6106
6107 /* Propagate mach to stub bfd, because it may not have been
6108 finalized when we created stub_bfd. */
6109 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
6110 bfd_get_mach (output_bfd));
6111
6112 /* Stash our params away. */
6113 htab->stub_bfd = stub_bfd;
6114 htab->add_stub_section = add_stub_section;
6115 htab->layout_sections_again = layout_sections_again;
6116 stubs_always_after_branch = group_size < 0;
6117
6118 out_attr = elf_known_obj_attributes_proc (output_bfd);
6119 m_profile = out_attr[Tag_CPU_arch_profile].i == 'M';
6120
6121 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
6122 as the first half of a 32-bit branch straddling two 4K pages. This is a
6123 crude way of enforcing that. */
6124 if (htab->fix_cortex_a8)
6125 stubs_always_after_branch = 1;
6126
6127 if (group_size < 0)
6128 stub_group_size = -group_size;
6129 else
6130 stub_group_size = group_size;
6131
6132 if (stub_group_size == 1)
6133 {
6134 /* Default values. */
6135 /* Thumb branch range is +-4MB has to be used as the default
6136 maximum size (a given section can contain both ARM and Thumb
6137 code, so the worst case has to be taken into account).
6138
6139 This value is 24K less than that, which allows for 2025
6140 12-byte stubs. If we exceed that, then we will fail to link.
6141 The user will have to relink with an explicit group size
6142 option. */
6143 stub_group_size = 4170000;
6144 }
6145
6146 group_sections (htab, stub_group_size, stubs_always_after_branch);
6147
6148 /* If we're applying the cortex A8 fix, we need to determine the
6149 program header size now, because we cannot change it later --
6150 that could alter section placements. Notice the A8 erratum fix
6151 ends up requiring the section addresses to remain unchanged
6152 modulo the page size. That's something we cannot represent
6153 inside BFD, and we don't want to force the section alignment to
6154 be the page size. */
6155 if (htab->fix_cortex_a8)
6156 (*htab->layout_sections_again) ();
6157
6158 while (1)
6159 {
6160 bfd *input_bfd;
6161 unsigned int bfd_indx;
6162 asection *stub_sec;
6163 enum elf32_arm_stub_type stub_type;
6164 bfd_boolean stub_changed = FALSE;
6165 unsigned prev_num_a8_fixes = num_a8_fixes;
6166
6167 num_a8_fixes = 0;
6168 for (input_bfd = info->input_bfds, bfd_indx = 0;
6169 input_bfd != NULL;
6170 input_bfd = input_bfd->link.next, bfd_indx++)
6171 {
6172 Elf_Internal_Shdr *symtab_hdr;
6173 asection *section;
6174 Elf_Internal_Sym *local_syms = NULL;
6175
6176 if (!is_arm_elf (input_bfd))
6177 continue;
6178
6179 num_a8_relocs = 0;
6180
6181 /* We'll need the symbol table in a second. */
6182 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6183 if (symtab_hdr->sh_info == 0)
6184 continue;
6185
6186 /* Limit scan of symbols to object file whose profile is
6187 Microcontroller to not hinder performance in the general case. */
6188 if (m_profile && first_veneer_scan)
6189 {
6190 struct elf_link_hash_entry **sym_hashes;
6191
6192 sym_hashes = elf_sym_hashes (input_bfd);
6193 if (!cmse_scan (input_bfd, htab, out_attr, sym_hashes,
6194 &cmse_stub_created))
6195 goto error_ret_free_local;
6196
6197 if (cmse_stub_created != 0)
6198 stub_changed = TRUE;
6199 }
6200
6201 /* Walk over each section attached to the input bfd. */
6202 for (section = input_bfd->sections;
6203 section != NULL;
6204 section = section->next)
6205 {
6206 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
6207
6208 /* If there aren't any relocs, then there's nothing more
6209 to do. */
6210 if ((section->flags & SEC_RELOC) == 0
6211 || section->reloc_count == 0
6212 || (section->flags & SEC_CODE) == 0)
6213 continue;
6214
6215 /* If this section is a link-once section that will be
6216 discarded, then don't create any stubs. */
6217 if (section->output_section == NULL
6218 || section->output_section->owner != output_bfd)
6219 continue;
6220
6221 /* Get the relocs. */
6222 internal_relocs
6223 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
6224 NULL, info->keep_memory);
6225 if (internal_relocs == NULL)
6226 goto error_ret_free_local;
6227
6228 /* Now examine each relocation. */
6229 irela = internal_relocs;
6230 irelaend = irela + section->reloc_count;
6231 for (; irela < irelaend; irela++)
6232 {
6233 unsigned int r_type, r_indx;
6234 asection *sym_sec;
6235 bfd_vma sym_value;
6236 bfd_vma destination;
6237 struct elf32_arm_link_hash_entry *hash;
6238 const char *sym_name;
6239 unsigned char st_type;
6240 enum arm_st_branch_type branch_type;
6241 bfd_boolean created_stub = FALSE;
6242
6243 r_type = ELF32_R_TYPE (irela->r_info);
6244 r_indx = ELF32_R_SYM (irela->r_info);
6245
6246 if (r_type >= (unsigned int) R_ARM_max)
6247 {
6248 bfd_set_error (bfd_error_bad_value);
6249 error_ret_free_internal:
6250 if (elf_section_data (section)->relocs == NULL)
6251 free (internal_relocs);
6252 /* Fall through. */
6253 error_ret_free_local:
6254 if (local_syms != NULL
6255 && (symtab_hdr->contents
6256 != (unsigned char *) local_syms))
6257 free (local_syms);
6258 return FALSE;
6259 }
6260
6261 hash = NULL;
6262 if (r_indx >= symtab_hdr->sh_info)
6263 hash = elf32_arm_hash_entry
6264 (elf_sym_hashes (input_bfd)
6265 [r_indx - symtab_hdr->sh_info]);
6266
6267 /* Only look for stubs on branch instructions, or
6268 non-relaxed TLSCALL */
6269 if ((r_type != (unsigned int) R_ARM_CALL)
6270 && (r_type != (unsigned int) R_ARM_THM_CALL)
6271 && (r_type != (unsigned int) R_ARM_JUMP24)
6272 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
6273 && (r_type != (unsigned int) R_ARM_THM_XPC22)
6274 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
6275 && (r_type != (unsigned int) R_ARM_PLT32)
6276 && !((r_type == (unsigned int) R_ARM_TLS_CALL
6277 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6278 && r_type == elf32_arm_tls_transition
6279 (info, r_type, &hash->root)
6280 && ((hash ? hash->tls_type
6281 : (elf32_arm_local_got_tls_type
6282 (input_bfd)[r_indx]))
6283 & GOT_TLS_GDESC) != 0))
6284 continue;
6285
6286 /* Now determine the call target, its name, value,
6287 section. */
6288 sym_sec = NULL;
6289 sym_value = 0;
6290 destination = 0;
6291 sym_name = NULL;
6292
6293 if (r_type == (unsigned int) R_ARM_TLS_CALL
6294 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6295 {
6296 /* A non-relaxed TLS call. The target is the
6297 plt-resident trampoline and nothing to do
6298 with the symbol. */
6299 BFD_ASSERT (htab->tls_trampoline > 0);
6300 sym_sec = htab->root.splt;
6301 sym_value = htab->tls_trampoline;
6302 hash = 0;
6303 st_type = STT_FUNC;
6304 branch_type = ST_BRANCH_TO_ARM;
6305 }
6306 else if (!hash)
6307 {
6308 /* It's a local symbol. */
6309 Elf_Internal_Sym *sym;
6310
6311 if (local_syms == NULL)
6312 {
6313 local_syms
6314 = (Elf_Internal_Sym *) symtab_hdr->contents;
6315 if (local_syms == NULL)
6316 local_syms
6317 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
6318 symtab_hdr->sh_info, 0,
6319 NULL, NULL, NULL);
6320 if (local_syms == NULL)
6321 goto error_ret_free_internal;
6322 }
6323
6324 sym = local_syms + r_indx;
6325 if (sym->st_shndx == SHN_UNDEF)
6326 sym_sec = bfd_und_section_ptr;
6327 else if (sym->st_shndx == SHN_ABS)
6328 sym_sec = bfd_abs_section_ptr;
6329 else if (sym->st_shndx == SHN_COMMON)
6330 sym_sec = bfd_com_section_ptr;
6331 else
6332 sym_sec =
6333 bfd_section_from_elf_index (input_bfd, sym->st_shndx);
6334
6335 if (!sym_sec)
6336 /* This is an undefined symbol. It can never
6337 be resolved. */
6338 continue;
6339
6340 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
6341 sym_value = sym->st_value;
6342 destination = (sym_value + irela->r_addend
6343 + sym_sec->output_offset
6344 + sym_sec->output_section->vma);
6345 st_type = ELF_ST_TYPE (sym->st_info);
6346 branch_type =
6347 ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
6348 sym_name
6349 = bfd_elf_string_from_elf_section (input_bfd,
6350 symtab_hdr->sh_link,
6351 sym->st_name);
6352 }
6353 else
6354 {
6355 /* It's an external symbol. */
6356 while (hash->root.root.type == bfd_link_hash_indirect
6357 || hash->root.root.type == bfd_link_hash_warning)
6358 hash = ((struct elf32_arm_link_hash_entry *)
6359 hash->root.root.u.i.link);
6360
6361 if (hash->root.root.type == bfd_link_hash_defined
6362 || hash->root.root.type == bfd_link_hash_defweak)
6363 {
6364 sym_sec = hash->root.root.u.def.section;
6365 sym_value = hash->root.root.u.def.value;
6366
6367 struct elf32_arm_link_hash_table *globals =
6368 elf32_arm_hash_table (info);
6369
6370 /* For a destination in a shared library,
6371 use the PLT stub as target address to
6372 decide whether a branch stub is
6373 needed. */
6374 if (globals != NULL
6375 && globals->root.splt != NULL
6376 && hash != NULL
6377 && hash->root.plt.offset != (bfd_vma) -1)
6378 {
6379 sym_sec = globals->root.splt;
6380 sym_value = hash->root.plt.offset;
6381 if (sym_sec->output_section != NULL)
6382 destination = (sym_value
6383 + sym_sec->output_offset
6384 + sym_sec->output_section->vma);
6385 }
6386 else if (sym_sec->output_section != NULL)
6387 destination = (sym_value + irela->r_addend
6388 + sym_sec->output_offset
6389 + sym_sec->output_section->vma);
6390 }
6391 else if ((hash->root.root.type == bfd_link_hash_undefined)
6392 || (hash->root.root.type == bfd_link_hash_undefweak))
6393 {
6394 /* For a shared library, use the PLT stub as
6395 target address to decide whether a long
6396 branch stub is needed.
6397 For absolute code, they cannot be handled. */
6398 struct elf32_arm_link_hash_table *globals =
6399 elf32_arm_hash_table (info);
6400
6401 if (globals != NULL
6402 && globals->root.splt != NULL
6403 && hash != NULL
6404 && hash->root.plt.offset != (bfd_vma) -1)
6405 {
6406 sym_sec = globals->root.splt;
6407 sym_value = hash->root.plt.offset;
6408 if (sym_sec->output_section != NULL)
6409 destination = (sym_value
6410 + sym_sec->output_offset
6411 + sym_sec->output_section->vma);
6412 }
6413 else
6414 continue;
6415 }
6416 else
6417 {
6418 bfd_set_error (bfd_error_bad_value);
6419 goto error_ret_free_internal;
6420 }
6421 st_type = hash->root.type;
6422 branch_type =
6423 ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
6424 sym_name = hash->root.root.root.string;
6425 }
6426
6427 do
6428 {
6429 bfd_boolean new_stub;
6430 struct elf32_arm_stub_hash_entry *stub_entry;
6431
6432 /* Determine what (if any) linker stub is needed. */
6433 stub_type = arm_type_of_stub (info, section, irela,
6434 st_type, &branch_type,
6435 hash, destination, sym_sec,
6436 input_bfd, sym_name);
6437 if (stub_type == arm_stub_none)
6438 break;
6439
6440 /* We've either created a stub for this reloc already,
6441 or we are about to. */
6442 stub_entry =
6443 elf32_arm_create_stub (htab, stub_type, section, irela,
6444 sym_sec, hash,
6445 (char *) sym_name, sym_value,
6446 branch_type, &new_stub);
6447
6448 created_stub = stub_entry != NULL;
6449 if (!created_stub)
6450 goto error_ret_free_internal;
6451 else if (!new_stub)
6452 break;
6453 else
6454 stub_changed = TRUE;
6455 }
6456 while (0);
6457
6458 /* Look for relocations which might trigger Cortex-A8
6459 erratum. */
6460 if (htab->fix_cortex_a8
6461 && (r_type == (unsigned int) R_ARM_THM_JUMP24
6462 || r_type == (unsigned int) R_ARM_THM_JUMP19
6463 || r_type == (unsigned int) R_ARM_THM_CALL
6464 || r_type == (unsigned int) R_ARM_THM_XPC22))
6465 {
6466 bfd_vma from = section->output_section->vma
6467 + section->output_offset
6468 + irela->r_offset;
6469
6470 if ((from & 0xfff) == 0xffe)
6471 {
6472 /* Found a candidate. Note we haven't checked the
6473 destination is within 4K here: if we do so (and
6474 don't create an entry in a8_relocs) we can't tell
6475 that a branch should have been relocated when
6476 scanning later. */
6477 if (num_a8_relocs == a8_reloc_table_size)
6478 {
6479 a8_reloc_table_size *= 2;
6480 a8_relocs = (struct a8_erratum_reloc *)
6481 bfd_realloc (a8_relocs,
6482 sizeof (struct a8_erratum_reloc)
6483 * a8_reloc_table_size);
6484 }
6485
6486 a8_relocs[num_a8_relocs].from = from;
6487 a8_relocs[num_a8_relocs].destination = destination;
6488 a8_relocs[num_a8_relocs].r_type = r_type;
6489 a8_relocs[num_a8_relocs].branch_type = branch_type;
6490 a8_relocs[num_a8_relocs].sym_name = sym_name;
6491 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
6492 a8_relocs[num_a8_relocs].hash = hash;
6493
6494 num_a8_relocs++;
6495 }
6496 }
6497 }
6498
6499 /* We're done with the internal relocs, free them. */
6500 if (elf_section_data (section)->relocs == NULL)
6501 free (internal_relocs);
6502 }
6503
6504 if (htab->fix_cortex_a8)
6505 {
6506 /* Sort relocs which might apply to Cortex-A8 erratum. */
6507 qsort (a8_relocs, num_a8_relocs,
6508 sizeof (struct a8_erratum_reloc),
6509 &a8_reloc_compare);
6510
6511 /* Scan for branches which might trigger Cortex-A8 erratum. */
6512 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
6513 &num_a8_fixes, &a8_fix_table_size,
6514 a8_relocs, num_a8_relocs,
6515 prev_num_a8_fixes, &stub_changed)
6516 != 0)
6517 goto error_ret_free_local;
6518 }
6519
6520 if (local_syms != NULL
6521 && symtab_hdr->contents != (unsigned char *) local_syms)
6522 {
6523 if (!info->keep_memory)
6524 free (local_syms);
6525 else
6526 symtab_hdr->contents = (unsigned char *) local_syms;
6527 }
6528 }
6529
6530 if (first_veneer_scan
6531 && !set_cmse_veneer_addr_from_implib (info, htab,
6532 &cmse_stub_created))
6533 ret = FALSE;
6534
6535 if (prev_num_a8_fixes != num_a8_fixes)
6536 stub_changed = TRUE;
6537
6538 if (!stub_changed)
6539 break;
6540
6541 /* OK, we've added some stubs. Find out the new size of the
6542 stub sections. */
6543 for (stub_sec = htab->stub_bfd->sections;
6544 stub_sec != NULL;
6545 stub_sec = stub_sec->next)
6546 {
6547 /* Ignore non-stub sections. */
6548 if (!strstr (stub_sec->name, STUB_SUFFIX))
6549 continue;
6550
6551 stub_sec->size = 0;
6552 }
6553
6554 /* Add new SG veneers after those already in the input import
6555 library. */
6556 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6557 stub_type++)
6558 {
6559 bfd_vma *start_offset_p;
6560 asection **stub_sec_p;
6561
6562 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
6563 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6564 if (start_offset_p == NULL)
6565 continue;
6566
6567 BFD_ASSERT (stub_sec_p != NULL);
6568 if (*stub_sec_p != NULL)
6569 (*stub_sec_p)->size = *start_offset_p;
6570 }
6571
6572 /* Compute stub section size, considering padding. */
6573 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
6574 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6575 stub_type++)
6576 {
6577 int size, padding;
6578 asection **stub_sec_p;
6579
6580 padding = arm_dedicated_stub_section_padding (stub_type);
6581 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6582 /* Skip if no stub input section or no stub section padding
6583 required. */
6584 if ((stub_sec_p != NULL && *stub_sec_p == NULL) || padding == 0)
6585 continue;
6586 /* Stub section padding required but no dedicated section. */
6587 BFD_ASSERT (stub_sec_p);
6588
6589 size = (*stub_sec_p)->size;
6590 size = (size + padding - 1) & ~(padding - 1);
6591 (*stub_sec_p)->size = size;
6592 }
6593
6594 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
6595 if (htab->fix_cortex_a8)
6596 for (i = 0; i < num_a8_fixes; i++)
6597 {
6598 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
6599 a8_fixes[i].section, htab, a8_fixes[i].stub_type);
6600
6601 if (stub_sec == NULL)
6602 return FALSE;
6603
6604 stub_sec->size
6605 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
6606 NULL);
6607 }
6608
6609
6610 /* Ask the linker to do its stuff. */
6611 (*htab->layout_sections_again) ();
6612 first_veneer_scan = FALSE;
6613 }
6614
6615 /* Add stubs for Cortex-A8 erratum fixes now. */
6616 if (htab->fix_cortex_a8)
6617 {
6618 for (i = 0; i < num_a8_fixes; i++)
6619 {
6620 struct elf32_arm_stub_hash_entry *stub_entry;
6621 char *stub_name = a8_fixes[i].stub_name;
6622 asection *section = a8_fixes[i].section;
6623 unsigned int section_id = a8_fixes[i].section->id;
6624 asection *link_sec = htab->stub_group[section_id].link_sec;
6625 asection *stub_sec = htab->stub_group[section_id].stub_sec;
6626 const insn_sequence *template_sequence;
6627 int template_size, size = 0;
6628
6629 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
6630 TRUE, FALSE);
6631 if (stub_entry == NULL)
6632 {
6633 _bfd_error_handler (_("%B: cannot create stub entry %s"),
6634 section->owner, stub_name);
6635 return FALSE;
6636 }
6637
6638 stub_entry->stub_sec = stub_sec;
6639 stub_entry->stub_offset = (bfd_vma) -1;
6640 stub_entry->id_sec = link_sec;
6641 stub_entry->stub_type = a8_fixes[i].stub_type;
6642 stub_entry->source_value = a8_fixes[i].offset;
6643 stub_entry->target_section = a8_fixes[i].section;
6644 stub_entry->target_value = a8_fixes[i].target_offset;
6645 stub_entry->orig_insn = a8_fixes[i].orig_insn;
6646 stub_entry->branch_type = a8_fixes[i].branch_type;
6647
6648 size = find_stub_size_and_template (a8_fixes[i].stub_type,
6649 &template_sequence,
6650 &template_size);
6651
6652 stub_entry->stub_size = size;
6653 stub_entry->stub_template = template_sequence;
6654 stub_entry->stub_template_size = template_size;
6655 }
6656
6657 /* Stash the Cortex-A8 erratum fix array for use later in
6658 elf32_arm_write_section(). */
6659 htab->a8_erratum_fixes = a8_fixes;
6660 htab->num_a8_erratum_fixes = num_a8_fixes;
6661 }
6662 else
6663 {
6664 htab->a8_erratum_fixes = NULL;
6665 htab->num_a8_erratum_fixes = 0;
6666 }
6667 return ret;
6668 }
6669
6670 /* Build all the stubs associated with the current output file. The
6671 stubs are kept in a hash table attached to the main linker hash
6672 table. We also set up the .plt entries for statically linked PIC
6673 functions here. This function is called via arm_elf_finish in the
6674 linker. */
6675
6676 bfd_boolean
6677 elf32_arm_build_stubs (struct bfd_link_info *info)
6678 {
6679 asection *stub_sec;
6680 struct bfd_hash_table *table;
6681 enum elf32_arm_stub_type stub_type;
6682 struct elf32_arm_link_hash_table *htab;
6683
6684 htab = elf32_arm_hash_table (info);
6685 if (htab == NULL)
6686 return FALSE;
6687
6688 for (stub_sec = htab->stub_bfd->sections;
6689 stub_sec != NULL;
6690 stub_sec = stub_sec->next)
6691 {
6692 bfd_size_type size;
6693
6694 /* Ignore non-stub sections. */
6695 if (!strstr (stub_sec->name, STUB_SUFFIX))
6696 continue;
6697
6698 /* Allocate memory to hold the linker stubs. Zeroing the stub sections
6699 must at least be done for stub section requiring padding and for SG
6700 veneers to ensure that a non secure code branching to a removed SG
6701 veneer causes an error. */
6702 size = stub_sec->size;
6703 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
6704 if (stub_sec->contents == NULL && size != 0)
6705 return FALSE;
6706
6707 stub_sec->size = 0;
6708 }
6709
6710 /* Add new SG veneers after those already in the input import library. */
6711 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
6712 {
6713 bfd_vma *start_offset_p;
6714 asection **stub_sec_p;
6715
6716 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
6717 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6718 if (start_offset_p == NULL)
6719 continue;
6720
6721 BFD_ASSERT (stub_sec_p != NULL);
6722 if (*stub_sec_p != NULL)
6723 (*stub_sec_p)->size = *start_offset_p;
6724 }
6725
6726 /* Build the stubs as directed by the stub hash table. */
6727 table = &htab->stub_hash_table;
6728 bfd_hash_traverse (table, arm_build_one_stub, info);
6729 if (htab->fix_cortex_a8)
6730 {
6731 /* Place the cortex a8 stubs last. */
6732 htab->fix_cortex_a8 = -1;
6733 bfd_hash_traverse (table, arm_build_one_stub, info);
6734 }
6735
6736 return TRUE;
6737 }
6738
6739 /* Locate the Thumb encoded calling stub for NAME. */
6740
6741 static struct elf_link_hash_entry *
6742 find_thumb_glue (struct bfd_link_info *link_info,
6743 const char *name,
6744 char **error_message)
6745 {
6746 char *tmp_name;
6747 struct elf_link_hash_entry *hash;
6748 struct elf32_arm_link_hash_table *hash_table;
6749
6750 /* We need a pointer to the armelf specific hash table. */
6751 hash_table = elf32_arm_hash_table (link_info);
6752 if (hash_table == NULL)
6753 return NULL;
6754
6755 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
6756 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
6757
6758 BFD_ASSERT (tmp_name);
6759
6760 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
6761
6762 hash = elf_link_hash_lookup
6763 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
6764
6765 if (hash == NULL
6766 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
6767 tmp_name, name) == -1)
6768 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
6769
6770 free (tmp_name);
6771
6772 return hash;
6773 }
6774
6775 /* Locate the ARM encoded calling stub for NAME. */
6776
6777 static struct elf_link_hash_entry *
6778 find_arm_glue (struct bfd_link_info *link_info,
6779 const char *name,
6780 char **error_message)
6781 {
6782 char *tmp_name;
6783 struct elf_link_hash_entry *myh;
6784 struct elf32_arm_link_hash_table *hash_table;
6785
6786 /* We need a pointer to the elfarm specific hash table. */
6787 hash_table = elf32_arm_hash_table (link_info);
6788 if (hash_table == NULL)
6789 return NULL;
6790
6791 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
6792 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
6793
6794 BFD_ASSERT (tmp_name);
6795
6796 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
6797
6798 myh = elf_link_hash_lookup
6799 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
6800
6801 if (myh == NULL
6802 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
6803 tmp_name, name) == -1)
6804 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
6805
6806 free (tmp_name);
6807
6808 return myh;
6809 }
6810
6811 /* ARM->Thumb glue (static images):
6812
6813 .arm
6814 __func_from_arm:
6815 ldr r12, __func_addr
6816 bx r12
6817 __func_addr:
6818 .word func @ behave as if you saw a ARM_32 reloc.
6819
6820 (v5t static images)
6821 .arm
6822 __func_from_arm:
6823 ldr pc, __func_addr
6824 __func_addr:
6825 .word func @ behave as if you saw a ARM_32 reloc.
6826
6827 (relocatable images)
6828 .arm
6829 __func_from_arm:
6830 ldr r12, __func_offset
6831 add r12, r12, pc
6832 bx r12
6833 __func_offset:
6834 .word func - . */
6835
6836 #define ARM2THUMB_STATIC_GLUE_SIZE 12
6837 static const insn32 a2t1_ldr_insn = 0xe59fc000;
6838 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
6839 static const insn32 a2t3_func_addr_insn = 0x00000001;
6840
6841 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
6842 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
6843 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
6844
6845 #define ARM2THUMB_PIC_GLUE_SIZE 16
6846 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
6847 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
6848 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
6849
6850 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
6851
6852 .thumb .thumb
6853 .align 2 .align 2
6854 __func_from_thumb: __func_from_thumb:
6855 bx pc push {r6, lr}
6856 nop ldr r6, __func_addr
6857 .arm mov lr, pc
6858 b func bx r6
6859 .arm
6860 ;; back_to_thumb
6861 ldmia r13! {r6, lr}
6862 bx lr
6863 __func_addr:
6864 .word func */
6865
6866 #define THUMB2ARM_GLUE_SIZE 8
6867 static const insn16 t2a1_bx_pc_insn = 0x4778;
6868 static const insn16 t2a2_noop_insn = 0x46c0;
6869 static const insn32 t2a3_b_insn = 0xea000000;
6870
6871 #define VFP11_ERRATUM_VENEER_SIZE 8
6872 #define STM32L4XX_ERRATUM_LDM_VENEER_SIZE 16
6873 #define STM32L4XX_ERRATUM_VLDM_VENEER_SIZE 24
6874
6875 #define ARM_BX_VENEER_SIZE 12
6876 static const insn32 armbx1_tst_insn = 0xe3100001;
6877 static const insn32 armbx2_moveq_insn = 0x01a0f000;
6878 static const insn32 armbx3_bx_insn = 0xe12fff10;
6879
6880 #ifndef ELFARM_NABI_C_INCLUDED
6881 static void
6882 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
6883 {
6884 asection * s;
6885 bfd_byte * contents;
6886
6887 if (size == 0)
6888 {
6889 /* Do not include empty glue sections in the output. */
6890 if (abfd != NULL)
6891 {
6892 s = bfd_get_linker_section (abfd, name);
6893 if (s != NULL)
6894 s->flags |= SEC_EXCLUDE;
6895 }
6896 return;
6897 }
6898
6899 BFD_ASSERT (abfd != NULL);
6900
6901 s = bfd_get_linker_section (abfd, name);
6902 BFD_ASSERT (s != NULL);
6903
6904 contents = (bfd_byte *) bfd_alloc (abfd, size);
6905
6906 BFD_ASSERT (s->size == size);
6907 s->contents = contents;
6908 }
6909
6910 bfd_boolean
6911 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
6912 {
6913 struct elf32_arm_link_hash_table * globals;
6914
6915 globals = elf32_arm_hash_table (info);
6916 BFD_ASSERT (globals != NULL);
6917
6918 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6919 globals->arm_glue_size,
6920 ARM2THUMB_GLUE_SECTION_NAME);
6921
6922 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6923 globals->thumb_glue_size,
6924 THUMB2ARM_GLUE_SECTION_NAME);
6925
6926 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6927 globals->vfp11_erratum_glue_size,
6928 VFP11_ERRATUM_VENEER_SECTION_NAME);
6929
6930 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6931 globals->stm32l4xx_erratum_glue_size,
6932 STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
6933
6934 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6935 globals->bx_glue_size,
6936 ARM_BX_GLUE_SECTION_NAME);
6937
6938 return TRUE;
6939 }
6940
6941 /* Allocate space and symbols for calling a Thumb function from Arm mode.
6942 returns the symbol identifying the stub. */
6943
6944 static struct elf_link_hash_entry *
6945 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
6946 struct elf_link_hash_entry * h)
6947 {
6948 const char * name = h->root.root.string;
6949 asection * s;
6950 char * tmp_name;
6951 struct elf_link_hash_entry * myh;
6952 struct bfd_link_hash_entry * bh;
6953 struct elf32_arm_link_hash_table * globals;
6954 bfd_vma val;
6955 bfd_size_type size;
6956
6957 globals = elf32_arm_hash_table (link_info);
6958 BFD_ASSERT (globals != NULL);
6959 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6960
6961 s = bfd_get_linker_section
6962 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
6963
6964 BFD_ASSERT (s != NULL);
6965
6966 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
6967 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
6968
6969 BFD_ASSERT (tmp_name);
6970
6971 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
6972
6973 myh = elf_link_hash_lookup
6974 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6975
6976 if (myh != NULL)
6977 {
6978 /* We've already seen this guy. */
6979 free (tmp_name);
6980 return myh;
6981 }
6982
6983 /* The only trick here is using hash_table->arm_glue_size as the value.
6984 Even though the section isn't allocated yet, this is where we will be
6985 putting it. The +1 on the value marks that the stub has not been
6986 output yet - not that it is a Thumb function. */
6987 bh = NULL;
6988 val = globals->arm_glue_size + 1;
6989 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
6990 tmp_name, BSF_GLOBAL, s, val,
6991 NULL, TRUE, FALSE, &bh);
6992
6993 myh = (struct elf_link_hash_entry *) bh;
6994 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
6995 myh->forced_local = 1;
6996
6997 free (tmp_name);
6998
6999 if (bfd_link_pic (link_info)
7000 || globals->root.is_relocatable_executable
7001 || globals->pic_veneer)
7002 size = ARM2THUMB_PIC_GLUE_SIZE;
7003 else if (globals->use_blx)
7004 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
7005 else
7006 size = ARM2THUMB_STATIC_GLUE_SIZE;
7007
7008 s->size += size;
7009 globals->arm_glue_size += size;
7010
7011 return myh;
7012 }
7013
7014 /* Allocate space for ARMv4 BX veneers. */
7015
7016 static void
7017 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
7018 {
7019 asection * s;
7020 struct elf32_arm_link_hash_table *globals;
7021 char *tmp_name;
7022 struct elf_link_hash_entry *myh;
7023 struct bfd_link_hash_entry *bh;
7024 bfd_vma val;
7025
7026 /* BX PC does not need a veneer. */
7027 if (reg == 15)
7028 return;
7029
7030 globals = elf32_arm_hash_table (link_info);
7031 BFD_ASSERT (globals != NULL);
7032 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7033
7034 /* Check if this veneer has already been allocated. */
7035 if (globals->bx_glue_offset[reg])
7036 return;
7037
7038 s = bfd_get_linker_section
7039 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
7040
7041 BFD_ASSERT (s != NULL);
7042
7043 /* Add symbol for veneer. */
7044 tmp_name = (char *)
7045 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
7046
7047 BFD_ASSERT (tmp_name);
7048
7049 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
7050
7051 myh = elf_link_hash_lookup
7052 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
7053
7054 BFD_ASSERT (myh == NULL);
7055
7056 bh = NULL;
7057 val = globals->bx_glue_size;
7058 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
7059 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7060 NULL, TRUE, FALSE, &bh);
7061
7062 myh = (struct elf_link_hash_entry *) bh;
7063 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7064 myh->forced_local = 1;
7065
7066 s->size += ARM_BX_VENEER_SIZE;
7067 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
7068 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
7069 }
7070
7071
7072 /* Add an entry to the code/data map for section SEC. */
7073
7074 static void
7075 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
7076 {
7077 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
7078 unsigned int newidx;
7079
7080 if (sec_data->map == NULL)
7081 {
7082 sec_data->map = (elf32_arm_section_map *)
7083 bfd_malloc (sizeof (elf32_arm_section_map));
7084 sec_data->mapcount = 0;
7085 sec_data->mapsize = 1;
7086 }
7087
7088 newidx = sec_data->mapcount++;
7089
7090 if (sec_data->mapcount > sec_data->mapsize)
7091 {
7092 sec_data->mapsize *= 2;
7093 sec_data->map = (elf32_arm_section_map *)
7094 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
7095 * sizeof (elf32_arm_section_map));
7096 }
7097
7098 if (sec_data->map)
7099 {
7100 sec_data->map[newidx].vma = vma;
7101 sec_data->map[newidx].type = type;
7102 }
7103 }
7104
7105
7106 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
7107 veneers are handled for now. */
7108
7109 static bfd_vma
7110 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
7111 elf32_vfp11_erratum_list *branch,
7112 bfd *branch_bfd,
7113 asection *branch_sec,
7114 unsigned int offset)
7115 {
7116 asection *s;
7117 struct elf32_arm_link_hash_table *hash_table;
7118 char *tmp_name;
7119 struct elf_link_hash_entry *myh;
7120 struct bfd_link_hash_entry *bh;
7121 bfd_vma val;
7122 struct _arm_elf_section_data *sec_data;
7123 elf32_vfp11_erratum_list *newerr;
7124
7125 hash_table = elf32_arm_hash_table (link_info);
7126 BFD_ASSERT (hash_table != NULL);
7127 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
7128
7129 s = bfd_get_linker_section
7130 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
7131
7132 sec_data = elf32_arm_section_data (s);
7133
7134 BFD_ASSERT (s != NULL);
7135
7136 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7137 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
7138
7139 BFD_ASSERT (tmp_name);
7140
7141 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
7142 hash_table->num_vfp11_fixes);
7143
7144 myh = elf_link_hash_lookup
7145 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7146
7147 BFD_ASSERT (myh == NULL);
7148
7149 bh = NULL;
7150 val = hash_table->vfp11_erratum_glue_size;
7151 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
7152 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7153 NULL, TRUE, FALSE, &bh);
7154
7155 myh = (struct elf_link_hash_entry *) bh;
7156 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7157 myh->forced_local = 1;
7158
7159 /* Link veneer back to calling location. */
7160 sec_data->erratumcount += 1;
7161 newerr = (elf32_vfp11_erratum_list *)
7162 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
7163
7164 newerr->type = VFP11_ERRATUM_ARM_VENEER;
7165 newerr->vma = -1;
7166 newerr->u.v.branch = branch;
7167 newerr->u.v.id = hash_table->num_vfp11_fixes;
7168 branch->u.b.veneer = newerr;
7169
7170 newerr->next = sec_data->erratumlist;
7171 sec_data->erratumlist = newerr;
7172
7173 /* A symbol for the return from the veneer. */
7174 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
7175 hash_table->num_vfp11_fixes);
7176
7177 myh = elf_link_hash_lookup
7178 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7179
7180 if (myh != NULL)
7181 abort ();
7182
7183 bh = NULL;
7184 val = offset + 4;
7185 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
7186 branch_sec, val, NULL, TRUE, FALSE, &bh);
7187
7188 myh = (struct elf_link_hash_entry *) bh;
7189 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7190 myh->forced_local = 1;
7191
7192 free (tmp_name);
7193
7194 /* Generate a mapping symbol for the veneer section, and explicitly add an
7195 entry for that symbol to the code/data map for the section. */
7196 if (hash_table->vfp11_erratum_glue_size == 0)
7197 {
7198 bh = NULL;
7199 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
7200 ever requires this erratum fix. */
7201 _bfd_generic_link_add_one_symbol (link_info,
7202 hash_table->bfd_of_glue_owner, "$a",
7203 BSF_LOCAL, s, 0, NULL,
7204 TRUE, FALSE, &bh);
7205
7206 myh = (struct elf_link_hash_entry *) bh;
7207 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7208 myh->forced_local = 1;
7209
7210 /* The elf32_arm_init_maps function only cares about symbols from input
7211 BFDs. We must make a note of this generated mapping symbol
7212 ourselves so that code byteswapping works properly in
7213 elf32_arm_write_section. */
7214 elf32_arm_section_map_add (s, 'a', 0);
7215 }
7216
7217 s->size += VFP11_ERRATUM_VENEER_SIZE;
7218 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
7219 hash_table->num_vfp11_fixes++;
7220
7221 /* The offset of the veneer. */
7222 return val;
7223 }
7224
7225 /* Record information about a STM32L4XX STM erratum veneer. Only THUMB-mode
7226 veneers need to be handled because used only in Cortex-M. */
7227
7228 static bfd_vma
7229 record_stm32l4xx_erratum_veneer (struct bfd_link_info *link_info,
7230 elf32_stm32l4xx_erratum_list *branch,
7231 bfd *branch_bfd,
7232 asection *branch_sec,
7233 unsigned int offset,
7234 bfd_size_type veneer_size)
7235 {
7236 asection *s;
7237 struct elf32_arm_link_hash_table *hash_table;
7238 char *tmp_name;
7239 struct elf_link_hash_entry *myh;
7240 struct bfd_link_hash_entry *bh;
7241 bfd_vma val;
7242 struct _arm_elf_section_data *sec_data;
7243 elf32_stm32l4xx_erratum_list *newerr;
7244
7245 hash_table = elf32_arm_hash_table (link_info);
7246 BFD_ASSERT (hash_table != NULL);
7247 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
7248
7249 s = bfd_get_linker_section
7250 (hash_table->bfd_of_glue_owner, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7251
7252 BFD_ASSERT (s != NULL);
7253
7254 sec_data = elf32_arm_section_data (s);
7255
7256 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7257 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
7258
7259 BFD_ASSERT (tmp_name);
7260
7261 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
7262 hash_table->num_stm32l4xx_fixes);
7263
7264 myh = elf_link_hash_lookup
7265 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7266
7267 BFD_ASSERT (myh == NULL);
7268
7269 bh = NULL;
7270 val = hash_table->stm32l4xx_erratum_glue_size;
7271 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
7272 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7273 NULL, TRUE, FALSE, &bh);
7274
7275 myh = (struct elf_link_hash_entry *) bh;
7276 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7277 myh->forced_local = 1;
7278
7279 /* Link veneer back to calling location. */
7280 sec_data->stm32l4xx_erratumcount += 1;
7281 newerr = (elf32_stm32l4xx_erratum_list *)
7282 bfd_zmalloc (sizeof (elf32_stm32l4xx_erratum_list));
7283
7284 newerr->type = STM32L4XX_ERRATUM_VENEER;
7285 newerr->vma = -1;
7286 newerr->u.v.branch = branch;
7287 newerr->u.v.id = hash_table->num_stm32l4xx_fixes;
7288 branch->u.b.veneer = newerr;
7289
7290 newerr->next = sec_data->stm32l4xx_erratumlist;
7291 sec_data->stm32l4xx_erratumlist = newerr;
7292
7293 /* A symbol for the return from the veneer. */
7294 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
7295 hash_table->num_stm32l4xx_fixes);
7296
7297 myh = elf_link_hash_lookup
7298 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7299
7300 if (myh != NULL)
7301 abort ();
7302
7303 bh = NULL;
7304 val = offset + 4;
7305 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
7306 branch_sec, val, NULL, TRUE, FALSE, &bh);
7307
7308 myh = (struct elf_link_hash_entry *) bh;
7309 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7310 myh->forced_local = 1;
7311
7312 free (tmp_name);
7313
7314 /* Generate a mapping symbol for the veneer section, and explicitly add an
7315 entry for that symbol to the code/data map for the section. */
7316 if (hash_table->stm32l4xx_erratum_glue_size == 0)
7317 {
7318 bh = NULL;
7319 /* Creates a THUMB symbol since there is no other choice. */
7320 _bfd_generic_link_add_one_symbol (link_info,
7321 hash_table->bfd_of_glue_owner, "$t",
7322 BSF_LOCAL, s, 0, NULL,
7323 TRUE, FALSE, &bh);
7324
7325 myh = (struct elf_link_hash_entry *) bh;
7326 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7327 myh->forced_local = 1;
7328
7329 /* The elf32_arm_init_maps function only cares about symbols from input
7330 BFDs. We must make a note of this generated mapping symbol
7331 ourselves so that code byteswapping works properly in
7332 elf32_arm_write_section. */
7333 elf32_arm_section_map_add (s, 't', 0);
7334 }
7335
7336 s->size += veneer_size;
7337 hash_table->stm32l4xx_erratum_glue_size += veneer_size;
7338 hash_table->num_stm32l4xx_fixes++;
7339
7340 /* The offset of the veneer. */
7341 return val;
7342 }
7343
7344 #define ARM_GLUE_SECTION_FLAGS \
7345 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
7346 | SEC_READONLY | SEC_LINKER_CREATED)
7347
7348 /* Create a fake section for use by the ARM backend of the linker. */
7349
7350 static bfd_boolean
7351 arm_make_glue_section (bfd * abfd, const char * name)
7352 {
7353 asection * sec;
7354
7355 sec = bfd_get_linker_section (abfd, name);
7356 if (sec != NULL)
7357 /* Already made. */
7358 return TRUE;
7359
7360 sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
7361
7362 if (sec == NULL
7363 || !bfd_set_section_alignment (abfd, sec, 2))
7364 return FALSE;
7365
7366 /* Set the gc mark to prevent the section from being removed by garbage
7367 collection, despite the fact that no relocs refer to this section. */
7368 sec->gc_mark = 1;
7369
7370 return TRUE;
7371 }
7372
7373 /* Set size of .plt entries. This function is called from the
7374 linker scripts in ld/emultempl/{armelf}.em. */
7375
7376 void
7377 bfd_elf32_arm_use_long_plt (void)
7378 {
7379 elf32_arm_use_long_plt_entry = TRUE;
7380 }
7381
7382 /* Add the glue sections to ABFD. This function is called from the
7383 linker scripts in ld/emultempl/{armelf}.em. */
7384
7385 bfd_boolean
7386 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
7387 struct bfd_link_info *info)
7388 {
7389 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
7390 bfd_boolean dostm32l4xx = globals
7391 && globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE;
7392 bfd_boolean addglue;
7393
7394 /* If we are only performing a partial
7395 link do not bother adding the glue. */
7396 if (bfd_link_relocatable (info))
7397 return TRUE;
7398
7399 addglue = arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
7400 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
7401 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
7402 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
7403
7404 if (!dostm32l4xx)
7405 return addglue;
7406
7407 return addglue
7408 && arm_make_glue_section (abfd, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7409 }
7410
7411 /* Mark output sections of veneers needing a dedicated one with SEC_KEEP. This
7412 ensures they are not marked for deletion by
7413 strip_excluded_output_sections () when veneers are going to be created
7414 later. Not doing so would trigger assert on empty section size in
7415 lang_size_sections_1 (). */
7416
7417 void
7418 bfd_elf32_arm_keep_private_stub_output_sections (struct bfd_link_info *info)
7419 {
7420 enum elf32_arm_stub_type stub_type;
7421
7422 /* If we are only performing a partial
7423 link do not bother adding the glue. */
7424 if (bfd_link_relocatable (info))
7425 return;
7426
7427 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
7428 {
7429 asection *out_sec;
7430 const char *out_sec_name;
7431
7432 if (!arm_dedicated_stub_output_section_required (stub_type))
7433 continue;
7434
7435 out_sec_name = arm_dedicated_stub_output_section_name (stub_type);
7436 out_sec = bfd_get_section_by_name (info->output_bfd, out_sec_name);
7437 if (out_sec != NULL)
7438 out_sec->flags |= SEC_KEEP;
7439 }
7440 }
7441
7442 /* Select a BFD to be used to hold the sections used by the glue code.
7443 This function is called from the linker scripts in ld/emultempl/
7444 {armelf/pe}.em. */
7445
7446 bfd_boolean
7447 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
7448 {
7449 struct elf32_arm_link_hash_table *globals;
7450
7451 /* If we are only performing a partial link
7452 do not bother getting a bfd to hold the glue. */
7453 if (bfd_link_relocatable (info))
7454 return TRUE;
7455
7456 /* Make sure we don't attach the glue sections to a dynamic object. */
7457 BFD_ASSERT (!(abfd->flags & DYNAMIC));
7458
7459 globals = elf32_arm_hash_table (info);
7460 BFD_ASSERT (globals != NULL);
7461
7462 if (globals->bfd_of_glue_owner != NULL)
7463 return TRUE;
7464
7465 /* Save the bfd for later use. */
7466 globals->bfd_of_glue_owner = abfd;
7467
7468 return TRUE;
7469 }
7470
7471 static void
7472 check_use_blx (struct elf32_arm_link_hash_table *globals)
7473 {
7474 int cpu_arch;
7475
7476 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
7477 Tag_CPU_arch);
7478
7479 if (globals->fix_arm1176)
7480 {
7481 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
7482 globals->use_blx = 1;
7483 }
7484 else
7485 {
7486 if (cpu_arch > TAG_CPU_ARCH_V4T)
7487 globals->use_blx = 1;
7488 }
7489 }
7490
7491 bfd_boolean
7492 bfd_elf32_arm_process_before_allocation (bfd *abfd,
7493 struct bfd_link_info *link_info)
7494 {
7495 Elf_Internal_Shdr *symtab_hdr;
7496 Elf_Internal_Rela *internal_relocs = NULL;
7497 Elf_Internal_Rela *irel, *irelend;
7498 bfd_byte *contents = NULL;
7499
7500 asection *sec;
7501 struct elf32_arm_link_hash_table *globals;
7502
7503 /* If we are only performing a partial link do not bother
7504 to construct any glue. */
7505 if (bfd_link_relocatable (link_info))
7506 return TRUE;
7507
7508 /* Here we have a bfd that is to be included on the link. We have a
7509 hook to do reloc rummaging, before section sizes are nailed down. */
7510 globals = elf32_arm_hash_table (link_info);
7511 BFD_ASSERT (globals != NULL);
7512
7513 check_use_blx (globals);
7514
7515 if (globals->byteswap_code && !bfd_big_endian (abfd))
7516 {
7517 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
7518 abfd);
7519 return FALSE;
7520 }
7521
7522 /* PR 5398: If we have not decided to include any loadable sections in
7523 the output then we will not have a glue owner bfd. This is OK, it
7524 just means that there is nothing else for us to do here. */
7525 if (globals->bfd_of_glue_owner == NULL)
7526 return TRUE;
7527
7528 /* Rummage around all the relocs and map the glue vectors. */
7529 sec = abfd->sections;
7530
7531 if (sec == NULL)
7532 return TRUE;
7533
7534 for (; sec != NULL; sec = sec->next)
7535 {
7536 if (sec->reloc_count == 0)
7537 continue;
7538
7539 if ((sec->flags & SEC_EXCLUDE) != 0)
7540 continue;
7541
7542 symtab_hdr = & elf_symtab_hdr (abfd);
7543
7544 /* Load the relocs. */
7545 internal_relocs
7546 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
7547
7548 if (internal_relocs == NULL)
7549 goto error_return;
7550
7551 irelend = internal_relocs + sec->reloc_count;
7552 for (irel = internal_relocs; irel < irelend; irel++)
7553 {
7554 long r_type;
7555 unsigned long r_index;
7556
7557 struct elf_link_hash_entry *h;
7558
7559 r_type = ELF32_R_TYPE (irel->r_info);
7560 r_index = ELF32_R_SYM (irel->r_info);
7561
7562 /* These are the only relocation types we care about. */
7563 if ( r_type != R_ARM_PC24
7564 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
7565 continue;
7566
7567 /* Get the section contents if we haven't done so already. */
7568 if (contents == NULL)
7569 {
7570 /* Get cached copy if it exists. */
7571 if (elf_section_data (sec)->this_hdr.contents != NULL)
7572 contents = elf_section_data (sec)->this_hdr.contents;
7573 else
7574 {
7575 /* Go get them off disk. */
7576 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
7577 goto error_return;
7578 }
7579 }
7580
7581 if (r_type == R_ARM_V4BX)
7582 {
7583 int reg;
7584
7585 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
7586 record_arm_bx_glue (link_info, reg);
7587 continue;
7588 }
7589
7590 /* If the relocation is not against a symbol it cannot concern us. */
7591 h = NULL;
7592
7593 /* We don't care about local symbols. */
7594 if (r_index < symtab_hdr->sh_info)
7595 continue;
7596
7597 /* This is an external symbol. */
7598 r_index -= symtab_hdr->sh_info;
7599 h = (struct elf_link_hash_entry *)
7600 elf_sym_hashes (abfd)[r_index];
7601
7602 /* If the relocation is against a static symbol it must be within
7603 the current section and so cannot be a cross ARM/Thumb relocation. */
7604 if (h == NULL)
7605 continue;
7606
7607 /* If the call will go through a PLT entry then we do not need
7608 glue. */
7609 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
7610 continue;
7611
7612 switch (r_type)
7613 {
7614 case R_ARM_PC24:
7615 /* This one is a call from arm code. We need to look up
7616 the target of the call. If it is a thumb target, we
7617 insert glue. */
7618 if (ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
7619 == ST_BRANCH_TO_THUMB)
7620 record_arm_to_thumb_glue (link_info, h);
7621 break;
7622
7623 default:
7624 abort ();
7625 }
7626 }
7627
7628 if (contents != NULL
7629 && elf_section_data (sec)->this_hdr.contents != contents)
7630 free (contents);
7631 contents = NULL;
7632
7633 if (internal_relocs != NULL
7634 && elf_section_data (sec)->relocs != internal_relocs)
7635 free (internal_relocs);
7636 internal_relocs = NULL;
7637 }
7638
7639 return TRUE;
7640
7641 error_return:
7642 if (contents != NULL
7643 && elf_section_data (sec)->this_hdr.contents != contents)
7644 free (contents);
7645 if (internal_relocs != NULL
7646 && elf_section_data (sec)->relocs != internal_relocs)
7647 free (internal_relocs);
7648
7649 return FALSE;
7650 }
7651 #endif
7652
7653
7654 /* Initialise maps of ARM/Thumb/data for input BFDs. */
7655
7656 void
7657 bfd_elf32_arm_init_maps (bfd *abfd)
7658 {
7659 Elf_Internal_Sym *isymbuf;
7660 Elf_Internal_Shdr *hdr;
7661 unsigned int i, localsyms;
7662
7663 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
7664 if (! is_arm_elf (abfd))
7665 return;
7666
7667 if ((abfd->flags & DYNAMIC) != 0)
7668 return;
7669
7670 hdr = & elf_symtab_hdr (abfd);
7671 localsyms = hdr->sh_info;
7672
7673 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
7674 should contain the number of local symbols, which should come before any
7675 global symbols. Mapping symbols are always local. */
7676 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
7677 NULL);
7678
7679 /* No internal symbols read? Skip this BFD. */
7680 if (isymbuf == NULL)
7681 return;
7682
7683 for (i = 0; i < localsyms; i++)
7684 {
7685 Elf_Internal_Sym *isym = &isymbuf[i];
7686 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
7687 const char *name;
7688
7689 if (sec != NULL
7690 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
7691 {
7692 name = bfd_elf_string_from_elf_section (abfd,
7693 hdr->sh_link, isym->st_name);
7694
7695 if (bfd_is_arm_special_symbol_name (name,
7696 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
7697 elf32_arm_section_map_add (sec, name[1], isym->st_value);
7698 }
7699 }
7700 }
7701
7702
7703 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
7704 say what they wanted. */
7705
7706 void
7707 bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
7708 {
7709 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
7710 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
7711
7712 if (globals == NULL)
7713 return;
7714
7715 if (globals->fix_cortex_a8 == -1)
7716 {
7717 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
7718 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
7719 && (out_attr[Tag_CPU_arch_profile].i == 'A'
7720 || out_attr[Tag_CPU_arch_profile].i == 0))
7721 globals->fix_cortex_a8 = 1;
7722 else
7723 globals->fix_cortex_a8 = 0;
7724 }
7725 }
7726
7727
7728 void
7729 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
7730 {
7731 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
7732 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
7733
7734 if (globals == NULL)
7735 return;
7736 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
7737 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
7738 {
7739 switch (globals->vfp11_fix)
7740 {
7741 case BFD_ARM_VFP11_FIX_DEFAULT:
7742 case BFD_ARM_VFP11_FIX_NONE:
7743 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
7744 break;
7745
7746 default:
7747 /* Give a warning, but do as the user requests anyway. */
7748 _bfd_error_handler (_("%B: warning: selected VFP11 erratum "
7749 "workaround is not necessary for target architecture"), obfd);
7750 }
7751 }
7752 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
7753 /* For earlier architectures, we might need the workaround, but do not
7754 enable it by default. If users is running with broken hardware, they
7755 must enable the erratum fix explicitly. */
7756 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
7757 }
7758
7759 void
7760 bfd_elf32_arm_set_stm32l4xx_fix (bfd *obfd, struct bfd_link_info *link_info)
7761 {
7762 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
7763 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
7764
7765 if (globals == NULL)
7766 return;
7767
7768 /* We assume only Cortex-M4 may require the fix. */
7769 if (out_attr[Tag_CPU_arch].i != TAG_CPU_ARCH_V7E_M
7770 || out_attr[Tag_CPU_arch_profile].i != 'M')
7771 {
7772 if (globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE)
7773 /* Give a warning, but do as the user requests anyway. */
7774 _bfd_error_handler
7775 (_("%B: warning: selected STM32L4XX erratum "
7776 "workaround is not necessary for target architecture"), obfd);
7777 }
7778 }
7779
7780 enum bfd_arm_vfp11_pipe
7781 {
7782 VFP11_FMAC,
7783 VFP11_LS,
7784 VFP11_DS,
7785 VFP11_BAD
7786 };
7787
7788 /* Return a VFP register number. This is encoded as RX:X for single-precision
7789 registers, or X:RX for double-precision registers, where RX is the group of
7790 four bits in the instruction encoding and X is the single extension bit.
7791 RX and X fields are specified using their lowest (starting) bit. The return
7792 value is:
7793
7794 0...31: single-precision registers s0...s31
7795 32...63: double-precision registers d0...d31.
7796
7797 Although X should be zero for VFP11 (encoding d0...d15 only), we might
7798 encounter VFP3 instructions, so we allow the full range for DP registers. */
7799
7800 static unsigned int
7801 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
7802 unsigned int x)
7803 {
7804 if (is_double)
7805 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
7806 else
7807 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
7808 }
7809
7810 /* Set bits in *WMASK according to a register number REG as encoded by
7811 bfd_arm_vfp11_regno(). Ignore d16-d31. */
7812
7813 static void
7814 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
7815 {
7816 if (reg < 32)
7817 *wmask |= 1 << reg;
7818 else if (reg < 48)
7819 *wmask |= 3 << ((reg - 32) * 2);
7820 }
7821
7822 /* Return TRUE if WMASK overwrites anything in REGS. */
7823
7824 static bfd_boolean
7825 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
7826 {
7827 int i;
7828
7829 for (i = 0; i < numregs; i++)
7830 {
7831 unsigned int reg = regs[i];
7832
7833 if (reg < 32 && (wmask & (1 << reg)) != 0)
7834 return TRUE;
7835
7836 reg -= 32;
7837
7838 if (reg >= 16)
7839 continue;
7840
7841 if ((wmask & (3 << (reg * 2))) != 0)
7842 return TRUE;
7843 }
7844
7845 return FALSE;
7846 }
7847
7848 /* In this function, we're interested in two things: finding input registers
7849 for VFP data-processing instructions, and finding the set of registers which
7850 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
7851 hold the written set, so FLDM etc. are easy to deal with (we're only
7852 interested in 32 SP registers or 16 dp registers, due to the VFP version
7853 implemented by the chip in question). DP registers are marked by setting
7854 both SP registers in the write mask). */
7855
7856 static enum bfd_arm_vfp11_pipe
7857 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
7858 int *numregs)
7859 {
7860 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
7861 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
7862
7863 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
7864 {
7865 unsigned int pqrs;
7866 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
7867 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
7868
7869 pqrs = ((insn & 0x00800000) >> 20)
7870 | ((insn & 0x00300000) >> 19)
7871 | ((insn & 0x00000040) >> 6);
7872
7873 switch (pqrs)
7874 {
7875 case 0: /* fmac[sd]. */
7876 case 1: /* fnmac[sd]. */
7877 case 2: /* fmsc[sd]. */
7878 case 3: /* fnmsc[sd]. */
7879 vpipe = VFP11_FMAC;
7880 bfd_arm_vfp11_write_mask (destmask, fd);
7881 regs[0] = fd;
7882 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
7883 regs[2] = fm;
7884 *numregs = 3;
7885 break;
7886
7887 case 4: /* fmul[sd]. */
7888 case 5: /* fnmul[sd]. */
7889 case 6: /* fadd[sd]. */
7890 case 7: /* fsub[sd]. */
7891 vpipe = VFP11_FMAC;
7892 goto vfp_binop;
7893
7894 case 8: /* fdiv[sd]. */
7895 vpipe = VFP11_DS;
7896 vfp_binop:
7897 bfd_arm_vfp11_write_mask (destmask, fd);
7898 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
7899 regs[1] = fm;
7900 *numregs = 2;
7901 break;
7902
7903 case 15: /* extended opcode. */
7904 {
7905 unsigned int extn = ((insn >> 15) & 0x1e)
7906 | ((insn >> 7) & 1);
7907
7908 switch (extn)
7909 {
7910 case 0: /* fcpy[sd]. */
7911 case 1: /* fabs[sd]. */
7912 case 2: /* fneg[sd]. */
7913 case 8: /* fcmp[sd]. */
7914 case 9: /* fcmpe[sd]. */
7915 case 10: /* fcmpz[sd]. */
7916 case 11: /* fcmpez[sd]. */
7917 case 16: /* fuito[sd]. */
7918 case 17: /* fsito[sd]. */
7919 case 24: /* ftoui[sd]. */
7920 case 25: /* ftouiz[sd]. */
7921 case 26: /* ftosi[sd]. */
7922 case 27: /* ftosiz[sd]. */
7923 /* These instructions will not bounce due to underflow. */
7924 *numregs = 0;
7925 vpipe = VFP11_FMAC;
7926 break;
7927
7928 case 3: /* fsqrt[sd]. */
7929 /* fsqrt cannot underflow, but it can (perhaps) overwrite
7930 registers to cause the erratum in previous instructions. */
7931 bfd_arm_vfp11_write_mask (destmask, fd);
7932 vpipe = VFP11_DS;
7933 break;
7934
7935 case 15: /* fcvt{ds,sd}. */
7936 {
7937 int rnum = 0;
7938
7939 bfd_arm_vfp11_write_mask (destmask, fd);
7940
7941 /* Only FCVTSD can underflow. */
7942 if ((insn & 0x100) != 0)
7943 regs[rnum++] = fm;
7944
7945 *numregs = rnum;
7946
7947 vpipe = VFP11_FMAC;
7948 }
7949 break;
7950
7951 default:
7952 return VFP11_BAD;
7953 }
7954 }
7955 break;
7956
7957 default:
7958 return VFP11_BAD;
7959 }
7960 }
7961 /* Two-register transfer. */
7962 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
7963 {
7964 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
7965
7966 if ((insn & 0x100000) == 0)
7967 {
7968 if (is_double)
7969 bfd_arm_vfp11_write_mask (destmask, fm);
7970 else
7971 {
7972 bfd_arm_vfp11_write_mask (destmask, fm);
7973 bfd_arm_vfp11_write_mask (destmask, fm + 1);
7974 }
7975 }
7976
7977 vpipe = VFP11_LS;
7978 }
7979 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
7980 {
7981 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
7982 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
7983
7984 switch (puw)
7985 {
7986 case 0: /* Two-reg transfer. We should catch these above. */
7987 abort ();
7988
7989 case 2: /* fldm[sdx]. */
7990 case 3:
7991 case 5:
7992 {
7993 unsigned int i, offset = insn & 0xff;
7994
7995 if (is_double)
7996 offset >>= 1;
7997
7998 for (i = fd; i < fd + offset; i++)
7999 bfd_arm_vfp11_write_mask (destmask, i);
8000 }
8001 break;
8002
8003 case 4: /* fld[sd]. */
8004 case 6:
8005 bfd_arm_vfp11_write_mask (destmask, fd);
8006 break;
8007
8008 default:
8009 return VFP11_BAD;
8010 }
8011
8012 vpipe = VFP11_LS;
8013 }
8014 /* Single-register transfer. Note L==0. */
8015 else if ((insn & 0x0f100e10) == 0x0e000a10)
8016 {
8017 unsigned int opcode = (insn >> 21) & 7;
8018 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
8019
8020 switch (opcode)
8021 {
8022 case 0: /* fmsr/fmdlr. */
8023 case 1: /* fmdhr. */
8024 /* Mark fmdhr and fmdlr as writing to the whole of the DP
8025 destination register. I don't know if this is exactly right,
8026 but it is the conservative choice. */
8027 bfd_arm_vfp11_write_mask (destmask, fn);
8028 break;
8029
8030 case 7: /* fmxr. */
8031 break;
8032 }
8033
8034 vpipe = VFP11_LS;
8035 }
8036
8037 return vpipe;
8038 }
8039
8040
8041 static int elf32_arm_compare_mapping (const void * a, const void * b);
8042
8043
8044 /* Look for potentially-troublesome code sequences which might trigger the
8045 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
8046 (available from ARM) for details of the erratum. A short version is
8047 described in ld.texinfo. */
8048
8049 bfd_boolean
8050 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
8051 {
8052 asection *sec;
8053 bfd_byte *contents = NULL;
8054 int state = 0;
8055 int regs[3], numregs = 0;
8056 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8057 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
8058
8059 if (globals == NULL)
8060 return FALSE;
8061
8062 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
8063 The states transition as follows:
8064
8065 0 -> 1 (vector) or 0 -> 2 (scalar)
8066 A VFP FMAC-pipeline instruction has been seen. Fill
8067 regs[0]..regs[numregs-1] with its input operands. Remember this
8068 instruction in 'first_fmac'.
8069
8070 1 -> 2
8071 Any instruction, except for a VFP instruction which overwrites
8072 regs[*].
8073
8074 1 -> 3 [ -> 0 ] or
8075 2 -> 3 [ -> 0 ]
8076 A VFP instruction has been seen which overwrites any of regs[*].
8077 We must make a veneer! Reset state to 0 before examining next
8078 instruction.
8079
8080 2 -> 0
8081 If we fail to match anything in state 2, reset to state 0 and reset
8082 the instruction pointer to the instruction after 'first_fmac'.
8083
8084 If the VFP11 vector mode is in use, there must be at least two unrelated
8085 instructions between anti-dependent VFP11 instructions to properly avoid
8086 triggering the erratum, hence the use of the extra state 1. */
8087
8088 /* If we are only performing a partial link do not bother
8089 to construct any glue. */
8090 if (bfd_link_relocatable (link_info))
8091 return TRUE;
8092
8093 /* Skip if this bfd does not correspond to an ELF image. */
8094 if (! is_arm_elf (abfd))
8095 return TRUE;
8096
8097 /* We should have chosen a fix type by the time we get here. */
8098 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
8099
8100 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
8101 return TRUE;
8102
8103 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8104 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8105 return TRUE;
8106
8107 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8108 {
8109 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
8110 struct _arm_elf_section_data *sec_data;
8111
8112 /* If we don't have executable progbits, we're not interested in this
8113 section. Also skip if section is to be excluded. */
8114 if (elf_section_type (sec) != SHT_PROGBITS
8115 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8116 || (sec->flags & SEC_EXCLUDE) != 0
8117 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8118 || sec->output_section == bfd_abs_section_ptr
8119 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
8120 continue;
8121
8122 sec_data = elf32_arm_section_data (sec);
8123
8124 if (sec_data->mapcount == 0)
8125 continue;
8126
8127 if (elf_section_data (sec)->this_hdr.contents != NULL)
8128 contents = elf_section_data (sec)->this_hdr.contents;
8129 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8130 goto error_return;
8131
8132 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8133 elf32_arm_compare_mapping);
8134
8135 for (span = 0; span < sec_data->mapcount; span++)
8136 {
8137 unsigned int span_start = sec_data->map[span].vma;
8138 unsigned int span_end = (span == sec_data->mapcount - 1)
8139 ? sec->size : sec_data->map[span + 1].vma;
8140 char span_type = sec_data->map[span].type;
8141
8142 /* FIXME: Only ARM mode is supported at present. We may need to
8143 support Thumb-2 mode also at some point. */
8144 if (span_type != 'a')
8145 continue;
8146
8147 for (i = span_start; i < span_end;)
8148 {
8149 unsigned int next_i = i + 4;
8150 unsigned int insn = bfd_big_endian (abfd)
8151 ? (contents[i] << 24)
8152 | (contents[i + 1] << 16)
8153 | (contents[i + 2] << 8)
8154 | contents[i + 3]
8155 : (contents[i + 3] << 24)
8156 | (contents[i + 2] << 16)
8157 | (contents[i + 1] << 8)
8158 | contents[i];
8159 unsigned int writemask = 0;
8160 enum bfd_arm_vfp11_pipe vpipe;
8161
8162 switch (state)
8163 {
8164 case 0:
8165 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
8166 &numregs);
8167 /* I'm assuming the VFP11 erratum can trigger with denorm
8168 operands on either the FMAC or the DS pipeline. This might
8169 lead to slightly overenthusiastic veneer insertion. */
8170 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
8171 {
8172 state = use_vector ? 1 : 2;
8173 first_fmac = i;
8174 veneer_of_insn = insn;
8175 }
8176 break;
8177
8178 case 1:
8179 {
8180 int other_regs[3], other_numregs;
8181 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
8182 other_regs,
8183 &other_numregs);
8184 if (vpipe != VFP11_BAD
8185 && bfd_arm_vfp11_antidependency (writemask, regs,
8186 numregs))
8187 state = 3;
8188 else
8189 state = 2;
8190 }
8191 break;
8192
8193 case 2:
8194 {
8195 int other_regs[3], other_numregs;
8196 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
8197 other_regs,
8198 &other_numregs);
8199 if (vpipe != VFP11_BAD
8200 && bfd_arm_vfp11_antidependency (writemask, regs,
8201 numregs))
8202 state = 3;
8203 else
8204 {
8205 state = 0;
8206 next_i = first_fmac + 4;
8207 }
8208 }
8209 break;
8210
8211 case 3:
8212 abort (); /* Should be unreachable. */
8213 }
8214
8215 if (state == 3)
8216 {
8217 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
8218 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
8219
8220 elf32_arm_section_data (sec)->erratumcount += 1;
8221
8222 newerr->u.b.vfp_insn = veneer_of_insn;
8223
8224 switch (span_type)
8225 {
8226 case 'a':
8227 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
8228 break;
8229
8230 default:
8231 abort ();
8232 }
8233
8234 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
8235 first_fmac);
8236
8237 newerr->vma = -1;
8238
8239 newerr->next = sec_data->erratumlist;
8240 sec_data->erratumlist = newerr;
8241
8242 state = 0;
8243 }
8244
8245 i = next_i;
8246 }
8247 }
8248
8249 if (contents != NULL
8250 && elf_section_data (sec)->this_hdr.contents != contents)
8251 free (contents);
8252 contents = NULL;
8253 }
8254
8255 return TRUE;
8256
8257 error_return:
8258 if (contents != NULL
8259 && elf_section_data (sec)->this_hdr.contents != contents)
8260 free (contents);
8261
8262 return FALSE;
8263 }
8264
8265 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
8266 after sections have been laid out, using specially-named symbols. */
8267
8268 void
8269 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
8270 struct bfd_link_info *link_info)
8271 {
8272 asection *sec;
8273 struct elf32_arm_link_hash_table *globals;
8274 char *tmp_name;
8275
8276 if (bfd_link_relocatable (link_info))
8277 return;
8278
8279 /* Skip if this bfd does not correspond to an ELF image. */
8280 if (! is_arm_elf (abfd))
8281 return;
8282
8283 globals = elf32_arm_hash_table (link_info);
8284 if (globals == NULL)
8285 return;
8286
8287 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
8288 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
8289
8290 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8291 {
8292 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8293 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
8294
8295 for (; errnode != NULL; errnode = errnode->next)
8296 {
8297 struct elf_link_hash_entry *myh;
8298 bfd_vma vma;
8299
8300 switch (errnode->type)
8301 {
8302 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
8303 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
8304 /* Find veneer symbol. */
8305 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
8306 errnode->u.b.veneer->u.v.id);
8307
8308 myh = elf_link_hash_lookup
8309 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8310
8311 if (myh == NULL)
8312 _bfd_error_handler (_("%B: unable to find VFP11 veneer "
8313 "`%s'"), abfd, tmp_name);
8314
8315 vma = myh->root.u.def.section->output_section->vma
8316 + myh->root.u.def.section->output_offset
8317 + myh->root.u.def.value;
8318
8319 errnode->u.b.veneer->vma = vma;
8320 break;
8321
8322 case VFP11_ERRATUM_ARM_VENEER:
8323 case VFP11_ERRATUM_THUMB_VENEER:
8324 /* Find return location. */
8325 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
8326 errnode->u.v.id);
8327
8328 myh = elf_link_hash_lookup
8329 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8330
8331 if (myh == NULL)
8332 _bfd_error_handler (_("%B: unable to find VFP11 veneer "
8333 "`%s'"), abfd, tmp_name);
8334
8335 vma = myh->root.u.def.section->output_section->vma
8336 + myh->root.u.def.section->output_offset
8337 + myh->root.u.def.value;
8338
8339 errnode->u.v.branch->vma = vma;
8340 break;
8341
8342 default:
8343 abort ();
8344 }
8345 }
8346 }
8347
8348 free (tmp_name);
8349 }
8350
8351 /* Find virtual-memory addresses for STM32L4XX erratum veneers and
8352 return locations after sections have been laid out, using
8353 specially-named symbols. */
8354
8355 void
8356 bfd_elf32_arm_stm32l4xx_fix_veneer_locations (bfd *abfd,
8357 struct bfd_link_info *link_info)
8358 {
8359 asection *sec;
8360 struct elf32_arm_link_hash_table *globals;
8361 char *tmp_name;
8362
8363 if (bfd_link_relocatable (link_info))
8364 return;
8365
8366 /* Skip if this bfd does not correspond to an ELF image. */
8367 if (! is_arm_elf (abfd))
8368 return;
8369
8370 globals = elf32_arm_hash_table (link_info);
8371 if (globals == NULL)
8372 return;
8373
8374 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
8375 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
8376
8377 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8378 {
8379 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8380 elf32_stm32l4xx_erratum_list *errnode = sec_data->stm32l4xx_erratumlist;
8381
8382 for (; errnode != NULL; errnode = errnode->next)
8383 {
8384 struct elf_link_hash_entry *myh;
8385 bfd_vma vma;
8386
8387 switch (errnode->type)
8388 {
8389 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
8390 /* Find veneer symbol. */
8391 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
8392 errnode->u.b.veneer->u.v.id);
8393
8394 myh = elf_link_hash_lookup
8395 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8396
8397 if (myh == NULL)
8398 _bfd_error_handler (_("%B: unable to find STM32L4XX veneer "
8399 "`%s'"), abfd, tmp_name);
8400
8401 vma = myh->root.u.def.section->output_section->vma
8402 + myh->root.u.def.section->output_offset
8403 + myh->root.u.def.value;
8404
8405 errnode->u.b.veneer->vma = vma;
8406 break;
8407
8408 case STM32L4XX_ERRATUM_VENEER:
8409 /* Find return location. */
8410 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
8411 errnode->u.v.id);
8412
8413 myh = elf_link_hash_lookup
8414 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8415
8416 if (myh == NULL)
8417 _bfd_error_handler (_("%B: unable to find STM32L4XX veneer "
8418 "`%s'"), abfd, tmp_name);
8419
8420 vma = myh->root.u.def.section->output_section->vma
8421 + myh->root.u.def.section->output_offset
8422 + myh->root.u.def.value;
8423
8424 errnode->u.v.branch->vma = vma;
8425 break;
8426
8427 default:
8428 abort ();
8429 }
8430 }
8431 }
8432
8433 free (tmp_name);
8434 }
8435
8436 static inline bfd_boolean
8437 is_thumb2_ldmia (const insn32 insn)
8438 {
8439 /* Encoding T2: LDM<c>.W <Rn>{!},<registers>
8440 1110 - 1000 - 10W1 - rrrr - PM (0) l - llll - llll - llll. */
8441 return (insn & 0xffd02000) == 0xe8900000;
8442 }
8443
8444 static inline bfd_boolean
8445 is_thumb2_ldmdb (const insn32 insn)
8446 {
8447 /* Encoding T1: LDMDB<c> <Rn>{!},<registers>
8448 1110 - 1001 - 00W1 - rrrr - PM (0) l - llll - llll - llll. */
8449 return (insn & 0xffd02000) == 0xe9100000;
8450 }
8451
8452 static inline bfd_boolean
8453 is_thumb2_vldm (const insn32 insn)
8454 {
8455 /* A6.5 Extension register load or store instruction
8456 A7.7.229
8457 We look for SP 32-bit and DP 64-bit registers.
8458 Encoding T1 VLDM{mode}<c> <Rn>{!}, <list>
8459 <list> is consecutive 64-bit registers
8460 1110 - 110P - UDW1 - rrrr - vvvv - 1011 - iiii - iiii
8461 Encoding T2 VLDM{mode}<c> <Rn>{!}, <list>
8462 <list> is consecutive 32-bit registers
8463 1110 - 110P - UDW1 - rrrr - vvvv - 1010 - iiii - iiii
8464 if P==0 && U==1 && W==1 && Rn=1101 VPOP
8465 if PUW=010 || PUW=011 || PUW=101 VLDM. */
8466 return
8467 (((insn & 0xfe100f00) == 0xec100b00) ||
8468 ((insn & 0xfe100f00) == 0xec100a00))
8469 && /* (IA without !). */
8470 (((((insn << 7) >> 28) & 0xd) == 0x4)
8471 /* (IA with !), includes VPOP (when reg number is SP). */
8472 || ((((insn << 7) >> 28) & 0xd) == 0x5)
8473 /* (DB with !). */
8474 || ((((insn << 7) >> 28) & 0xd) == 0x9));
8475 }
8476
8477 /* STM STM32L4XX erratum : This function assumes that it receives an LDM or
8478 VLDM opcode and:
8479 - computes the number and the mode of memory accesses
8480 - decides if the replacement should be done:
8481 . replaces only if > 8-word accesses
8482 . or (testing purposes only) replaces all accesses. */
8483
8484 static bfd_boolean
8485 stm32l4xx_need_create_replacing_stub (const insn32 insn,
8486 bfd_arm_stm32l4xx_fix stm32l4xx_fix)
8487 {
8488 int nb_words = 0;
8489
8490 /* The field encoding the register list is the same for both LDMIA
8491 and LDMDB encodings. */
8492 if (is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn))
8493 nb_words = elf32_arm_popcount (insn & 0x0000ffff);
8494 else if (is_thumb2_vldm (insn))
8495 nb_words = (insn & 0xff);
8496
8497 /* DEFAULT mode accounts for the real bug condition situation,
8498 ALL mode inserts stubs for each LDM/VLDM instruction (testing). */
8499 return
8500 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_DEFAULT) ? nb_words > 8 :
8501 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_ALL) ? TRUE : FALSE;
8502 }
8503
8504 /* Look for potentially-troublesome code sequences which might trigger
8505 the STM STM32L4XX erratum. */
8506
8507 bfd_boolean
8508 bfd_elf32_arm_stm32l4xx_erratum_scan (bfd *abfd,
8509 struct bfd_link_info *link_info)
8510 {
8511 asection *sec;
8512 bfd_byte *contents = NULL;
8513 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8514
8515 if (globals == NULL)
8516 return FALSE;
8517
8518 /* If we are only performing a partial link do not bother
8519 to construct any glue. */
8520 if (bfd_link_relocatable (link_info))
8521 return TRUE;
8522
8523 /* Skip if this bfd does not correspond to an ELF image. */
8524 if (! is_arm_elf (abfd))
8525 return TRUE;
8526
8527 if (globals->stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_NONE)
8528 return TRUE;
8529
8530 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8531 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8532 return TRUE;
8533
8534 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8535 {
8536 unsigned int i, span;
8537 struct _arm_elf_section_data *sec_data;
8538
8539 /* If we don't have executable progbits, we're not interested in this
8540 section. Also skip if section is to be excluded. */
8541 if (elf_section_type (sec) != SHT_PROGBITS
8542 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8543 || (sec->flags & SEC_EXCLUDE) != 0
8544 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8545 || sec->output_section == bfd_abs_section_ptr
8546 || strcmp (sec->name, STM32L4XX_ERRATUM_VENEER_SECTION_NAME) == 0)
8547 continue;
8548
8549 sec_data = elf32_arm_section_data (sec);
8550
8551 if (sec_data->mapcount == 0)
8552 continue;
8553
8554 if (elf_section_data (sec)->this_hdr.contents != NULL)
8555 contents = elf_section_data (sec)->this_hdr.contents;
8556 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8557 goto error_return;
8558
8559 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8560 elf32_arm_compare_mapping);
8561
8562 for (span = 0; span < sec_data->mapcount; span++)
8563 {
8564 unsigned int span_start = sec_data->map[span].vma;
8565 unsigned int span_end = (span == sec_data->mapcount - 1)
8566 ? sec->size : sec_data->map[span + 1].vma;
8567 char span_type = sec_data->map[span].type;
8568 int itblock_current_pos = 0;
8569
8570 /* Only Thumb2 mode need be supported with this CM4 specific
8571 code, we should not encounter any arm mode eg span_type
8572 != 'a'. */
8573 if (span_type != 't')
8574 continue;
8575
8576 for (i = span_start; i < span_end;)
8577 {
8578 unsigned int insn = bfd_get_16 (abfd, &contents[i]);
8579 bfd_boolean insn_32bit = FALSE;
8580 bfd_boolean is_ldm = FALSE;
8581 bfd_boolean is_vldm = FALSE;
8582 bfd_boolean is_not_last_in_it_block = FALSE;
8583
8584 /* The first 16-bits of all 32-bit thumb2 instructions start
8585 with opcode[15..13]=0b111 and the encoded op1 can be anything
8586 except opcode[12..11]!=0b00.
8587 See 32-bit Thumb instruction encoding. */
8588 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
8589 insn_32bit = TRUE;
8590
8591 /* Compute the predicate that tells if the instruction
8592 is concerned by the IT block
8593 - Creates an error if there is a ldm that is not
8594 last in the IT block thus cannot be replaced
8595 - Otherwise we can create a branch at the end of the
8596 IT block, it will be controlled naturally by IT
8597 with the proper pseudo-predicate
8598 - So the only interesting predicate is the one that
8599 tells that we are not on the last item of an IT
8600 block. */
8601 if (itblock_current_pos != 0)
8602 is_not_last_in_it_block = !!--itblock_current_pos;
8603
8604 if (insn_32bit)
8605 {
8606 /* Load the rest of the insn (in manual-friendly order). */
8607 insn = (insn << 16) | bfd_get_16 (abfd, &contents[i + 2]);
8608 is_ldm = is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn);
8609 is_vldm = is_thumb2_vldm (insn);
8610
8611 /* Veneers are created for (v)ldm depending on
8612 option flags and memory accesses conditions; but
8613 if the instruction is not the last instruction of
8614 an IT block, we cannot create a jump there, so we
8615 bail out. */
8616 if ((is_ldm || is_vldm)
8617 && stm32l4xx_need_create_replacing_stub
8618 (insn, globals->stm32l4xx_fix))
8619 {
8620 if (is_not_last_in_it_block)
8621 {
8622 _bfd_error_handler
8623 /* xgettext:c-format */
8624 (_("%B(%A+0x%lx): error: multiple load detected"
8625 " in non-last IT block instruction :"
8626 " STM32L4XX veneer cannot be generated.\n"
8627 "Use gcc option -mrestrict-it to generate"
8628 " only one instruction per IT block.\n"),
8629 abfd, sec, (long) i);
8630 }
8631 else
8632 {
8633 elf32_stm32l4xx_erratum_list *newerr =
8634 (elf32_stm32l4xx_erratum_list *)
8635 bfd_zmalloc
8636 (sizeof (elf32_stm32l4xx_erratum_list));
8637
8638 elf32_arm_section_data (sec)
8639 ->stm32l4xx_erratumcount += 1;
8640 newerr->u.b.insn = insn;
8641 /* We create only thumb branches. */
8642 newerr->type =
8643 STM32L4XX_ERRATUM_BRANCH_TO_VENEER;
8644 record_stm32l4xx_erratum_veneer
8645 (link_info, newerr, abfd, sec,
8646 i,
8647 is_ldm ?
8648 STM32L4XX_ERRATUM_LDM_VENEER_SIZE:
8649 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
8650 newerr->vma = -1;
8651 newerr->next = sec_data->stm32l4xx_erratumlist;
8652 sec_data->stm32l4xx_erratumlist = newerr;
8653 }
8654 }
8655 }
8656 else
8657 {
8658 /* A7.7.37 IT p208
8659 IT blocks are only encoded in T1
8660 Encoding T1: IT{x{y{z}}} <firstcond>
8661 1 0 1 1 - 1 1 1 1 - firstcond - mask
8662 if mask = '0000' then see 'related encodings'
8663 We don't deal with UNPREDICTABLE, just ignore these.
8664 There can be no nested IT blocks so an IT block
8665 is naturally a new one for which it is worth
8666 computing its size. */
8667 bfd_boolean is_newitblock = ((insn & 0xff00) == 0xbf00)
8668 && ((insn & 0x000f) != 0x0000);
8669 /* If we have a new IT block we compute its size. */
8670 if (is_newitblock)
8671 {
8672 /* Compute the number of instructions controlled
8673 by the IT block, it will be used to decide
8674 whether we are inside an IT block or not. */
8675 unsigned int mask = insn & 0x000f;
8676 itblock_current_pos = 4 - ctz (mask);
8677 }
8678 }
8679
8680 i += insn_32bit ? 4 : 2;
8681 }
8682 }
8683
8684 if (contents != NULL
8685 && elf_section_data (sec)->this_hdr.contents != contents)
8686 free (contents);
8687 contents = NULL;
8688 }
8689
8690 return TRUE;
8691
8692 error_return:
8693 if (contents != NULL
8694 && elf_section_data (sec)->this_hdr.contents != contents)
8695 free (contents);
8696
8697 return FALSE;
8698 }
8699
8700 /* Set target relocation values needed during linking. */
8701
8702 void
8703 bfd_elf32_arm_set_target_params (struct bfd *output_bfd,
8704 struct bfd_link_info *link_info,
8705 struct elf32_arm_params *params)
8706 {
8707 struct elf32_arm_link_hash_table *globals;
8708
8709 globals = elf32_arm_hash_table (link_info);
8710 if (globals == NULL)
8711 return;
8712
8713 globals->target1_is_rel = params->target1_is_rel;
8714 if (strcmp (params->target2_type, "rel") == 0)
8715 globals->target2_reloc = R_ARM_REL32;
8716 else if (strcmp (params->target2_type, "abs") == 0)
8717 globals->target2_reloc = R_ARM_ABS32;
8718 else if (strcmp (params->target2_type, "got-rel") == 0)
8719 globals->target2_reloc = R_ARM_GOT_PREL;
8720 else
8721 {
8722 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
8723 params->target2_type);
8724 }
8725 globals->fix_v4bx = params->fix_v4bx;
8726 globals->use_blx |= params->use_blx;
8727 globals->vfp11_fix = params->vfp11_denorm_fix;
8728 globals->stm32l4xx_fix = params->stm32l4xx_fix;
8729 globals->pic_veneer = params->pic_veneer;
8730 globals->fix_cortex_a8 = params->fix_cortex_a8;
8731 globals->fix_arm1176 = params->fix_arm1176;
8732 globals->cmse_implib = params->cmse_implib;
8733 globals->in_implib_bfd = params->in_implib_bfd;
8734
8735 BFD_ASSERT (is_arm_elf (output_bfd));
8736 elf_arm_tdata (output_bfd)->no_enum_size_warning
8737 = params->no_enum_size_warning;
8738 elf_arm_tdata (output_bfd)->no_wchar_size_warning
8739 = params->no_wchar_size_warning;
8740 }
8741
8742 /* Replace the target offset of a Thumb bl or b.w instruction. */
8743
8744 static void
8745 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
8746 {
8747 bfd_vma upper;
8748 bfd_vma lower;
8749 int reloc_sign;
8750
8751 BFD_ASSERT ((offset & 1) == 0);
8752
8753 upper = bfd_get_16 (abfd, insn);
8754 lower = bfd_get_16 (abfd, insn + 2);
8755 reloc_sign = (offset < 0) ? 1 : 0;
8756 upper = (upper & ~(bfd_vma) 0x7ff)
8757 | ((offset >> 12) & 0x3ff)
8758 | (reloc_sign << 10);
8759 lower = (lower & ~(bfd_vma) 0x2fff)
8760 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
8761 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
8762 | ((offset >> 1) & 0x7ff);
8763 bfd_put_16 (abfd, upper, insn);
8764 bfd_put_16 (abfd, lower, insn + 2);
8765 }
8766
8767 /* Thumb code calling an ARM function. */
8768
8769 static int
8770 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
8771 const char * name,
8772 bfd * input_bfd,
8773 bfd * output_bfd,
8774 asection * input_section,
8775 bfd_byte * hit_data,
8776 asection * sym_sec,
8777 bfd_vma offset,
8778 bfd_signed_vma addend,
8779 bfd_vma val,
8780 char **error_message)
8781 {
8782 asection * s = 0;
8783 bfd_vma my_offset;
8784 long int ret_offset;
8785 struct elf_link_hash_entry * myh;
8786 struct elf32_arm_link_hash_table * globals;
8787
8788 myh = find_thumb_glue (info, name, error_message);
8789 if (myh == NULL)
8790 return FALSE;
8791
8792 globals = elf32_arm_hash_table (info);
8793 BFD_ASSERT (globals != NULL);
8794 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
8795
8796 my_offset = myh->root.u.def.value;
8797
8798 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
8799 THUMB2ARM_GLUE_SECTION_NAME);
8800
8801 BFD_ASSERT (s != NULL);
8802 BFD_ASSERT (s->contents != NULL);
8803 BFD_ASSERT (s->output_section != NULL);
8804
8805 if ((my_offset & 0x01) == 0x01)
8806 {
8807 if (sym_sec != NULL
8808 && sym_sec->owner != NULL
8809 && !INTERWORK_FLAG (sym_sec->owner))
8810 {
8811 _bfd_error_handler
8812 (_("%B(%s): warning: interworking not enabled.\n"
8813 " first occurrence: %B: Thumb call to ARM"),
8814 sym_sec->owner, name, input_bfd);
8815
8816 return FALSE;
8817 }
8818
8819 --my_offset;
8820 myh->root.u.def.value = my_offset;
8821
8822 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
8823 s->contents + my_offset);
8824
8825 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
8826 s->contents + my_offset + 2);
8827
8828 ret_offset =
8829 /* Address of destination of the stub. */
8830 ((bfd_signed_vma) val)
8831 - ((bfd_signed_vma)
8832 /* Offset from the start of the current section
8833 to the start of the stubs. */
8834 (s->output_offset
8835 /* Offset of the start of this stub from the start of the stubs. */
8836 + my_offset
8837 /* Address of the start of the current section. */
8838 + s->output_section->vma)
8839 /* The branch instruction is 4 bytes into the stub. */
8840 + 4
8841 /* ARM branches work from the pc of the instruction + 8. */
8842 + 8);
8843
8844 put_arm_insn (globals, output_bfd,
8845 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
8846 s->contents + my_offset + 4);
8847 }
8848
8849 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
8850
8851 /* Now go back and fix up the original BL insn to point to here. */
8852 ret_offset =
8853 /* Address of where the stub is located. */
8854 (s->output_section->vma + s->output_offset + my_offset)
8855 /* Address of where the BL is located. */
8856 - (input_section->output_section->vma + input_section->output_offset
8857 + offset)
8858 /* Addend in the relocation. */
8859 - addend
8860 /* Biassing for PC-relative addressing. */
8861 - 8;
8862
8863 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
8864
8865 return TRUE;
8866 }
8867
8868 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
8869
8870 static struct elf_link_hash_entry *
8871 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
8872 const char * name,
8873 bfd * input_bfd,
8874 bfd * output_bfd,
8875 asection * sym_sec,
8876 bfd_vma val,
8877 asection * s,
8878 char ** error_message)
8879 {
8880 bfd_vma my_offset;
8881 long int ret_offset;
8882 struct elf_link_hash_entry * myh;
8883 struct elf32_arm_link_hash_table * globals;
8884
8885 myh = find_arm_glue (info, name, error_message);
8886 if (myh == NULL)
8887 return NULL;
8888
8889 globals = elf32_arm_hash_table (info);
8890 BFD_ASSERT (globals != NULL);
8891 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
8892
8893 my_offset = myh->root.u.def.value;
8894
8895 if ((my_offset & 0x01) == 0x01)
8896 {
8897 if (sym_sec != NULL
8898 && sym_sec->owner != NULL
8899 && !INTERWORK_FLAG (sym_sec->owner))
8900 {
8901 _bfd_error_handler
8902 (_("%B(%s): warning: interworking not enabled.\n"
8903 " first occurrence: %B: arm call to thumb"),
8904 sym_sec->owner, name, input_bfd);
8905 }
8906
8907 --my_offset;
8908 myh->root.u.def.value = my_offset;
8909
8910 if (bfd_link_pic (info)
8911 || globals->root.is_relocatable_executable
8912 || globals->pic_veneer)
8913 {
8914 /* For relocatable objects we can't use absolute addresses,
8915 so construct the address from a relative offset. */
8916 /* TODO: If the offset is small it's probably worth
8917 constructing the address with adds. */
8918 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
8919 s->contents + my_offset);
8920 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
8921 s->contents + my_offset + 4);
8922 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
8923 s->contents + my_offset + 8);
8924 /* Adjust the offset by 4 for the position of the add,
8925 and 8 for the pipeline offset. */
8926 ret_offset = (val - (s->output_offset
8927 + s->output_section->vma
8928 + my_offset + 12))
8929 | 1;
8930 bfd_put_32 (output_bfd, ret_offset,
8931 s->contents + my_offset + 12);
8932 }
8933 else if (globals->use_blx)
8934 {
8935 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
8936 s->contents + my_offset);
8937
8938 /* It's a thumb address. Add the low order bit. */
8939 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
8940 s->contents + my_offset + 4);
8941 }
8942 else
8943 {
8944 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
8945 s->contents + my_offset);
8946
8947 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
8948 s->contents + my_offset + 4);
8949
8950 /* It's a thumb address. Add the low order bit. */
8951 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
8952 s->contents + my_offset + 8);
8953
8954 my_offset += 12;
8955 }
8956 }
8957
8958 BFD_ASSERT (my_offset <= globals->arm_glue_size);
8959
8960 return myh;
8961 }
8962
8963 /* Arm code calling a Thumb function. */
8964
8965 static int
8966 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
8967 const char * name,
8968 bfd * input_bfd,
8969 bfd * output_bfd,
8970 asection * input_section,
8971 bfd_byte * hit_data,
8972 asection * sym_sec,
8973 bfd_vma offset,
8974 bfd_signed_vma addend,
8975 bfd_vma val,
8976 char **error_message)
8977 {
8978 unsigned long int tmp;
8979 bfd_vma my_offset;
8980 asection * s;
8981 long int ret_offset;
8982 struct elf_link_hash_entry * myh;
8983 struct elf32_arm_link_hash_table * globals;
8984
8985 globals = elf32_arm_hash_table (info);
8986 BFD_ASSERT (globals != NULL);
8987 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
8988
8989 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
8990 ARM2THUMB_GLUE_SECTION_NAME);
8991 BFD_ASSERT (s != NULL);
8992 BFD_ASSERT (s->contents != NULL);
8993 BFD_ASSERT (s->output_section != NULL);
8994
8995 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
8996 sym_sec, val, s, error_message);
8997 if (!myh)
8998 return FALSE;
8999
9000 my_offset = myh->root.u.def.value;
9001 tmp = bfd_get_32 (input_bfd, hit_data);
9002 tmp = tmp & 0xFF000000;
9003
9004 /* Somehow these are both 4 too far, so subtract 8. */
9005 ret_offset = (s->output_offset
9006 + my_offset
9007 + s->output_section->vma
9008 - (input_section->output_offset
9009 + input_section->output_section->vma
9010 + offset + addend)
9011 - 8);
9012
9013 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
9014
9015 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
9016
9017 return TRUE;
9018 }
9019
9020 /* Populate Arm stub for an exported Thumb function. */
9021
9022 static bfd_boolean
9023 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
9024 {
9025 struct bfd_link_info * info = (struct bfd_link_info *) inf;
9026 asection * s;
9027 struct elf_link_hash_entry * myh;
9028 struct elf32_arm_link_hash_entry *eh;
9029 struct elf32_arm_link_hash_table * globals;
9030 asection *sec;
9031 bfd_vma val;
9032 char *error_message;
9033
9034 eh = elf32_arm_hash_entry (h);
9035 /* Allocate stubs for exported Thumb functions on v4t. */
9036 if (eh->export_glue == NULL)
9037 return TRUE;
9038
9039 globals = elf32_arm_hash_table (info);
9040 BFD_ASSERT (globals != NULL);
9041 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9042
9043 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9044 ARM2THUMB_GLUE_SECTION_NAME);
9045 BFD_ASSERT (s != NULL);
9046 BFD_ASSERT (s->contents != NULL);
9047 BFD_ASSERT (s->output_section != NULL);
9048
9049 sec = eh->export_glue->root.u.def.section;
9050
9051 BFD_ASSERT (sec->output_section != NULL);
9052
9053 val = eh->export_glue->root.u.def.value + sec->output_offset
9054 + sec->output_section->vma;
9055
9056 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
9057 h->root.u.def.section->owner,
9058 globals->obfd, sec, val, s,
9059 &error_message);
9060 BFD_ASSERT (myh);
9061 return TRUE;
9062 }
9063
9064 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
9065
9066 static bfd_vma
9067 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
9068 {
9069 bfd_byte *p;
9070 bfd_vma glue_addr;
9071 asection *s;
9072 struct elf32_arm_link_hash_table *globals;
9073
9074 globals = elf32_arm_hash_table (info);
9075 BFD_ASSERT (globals != NULL);
9076 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9077
9078 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9079 ARM_BX_GLUE_SECTION_NAME);
9080 BFD_ASSERT (s != NULL);
9081 BFD_ASSERT (s->contents != NULL);
9082 BFD_ASSERT (s->output_section != NULL);
9083
9084 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
9085
9086 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
9087
9088 if ((globals->bx_glue_offset[reg] & 1) == 0)
9089 {
9090 p = s->contents + glue_addr;
9091 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
9092 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
9093 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
9094 globals->bx_glue_offset[reg] |= 1;
9095 }
9096
9097 return glue_addr + s->output_section->vma + s->output_offset;
9098 }
9099
9100 /* Generate Arm stubs for exported Thumb symbols. */
9101 static void
9102 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
9103 struct bfd_link_info *link_info)
9104 {
9105 struct elf32_arm_link_hash_table * globals;
9106
9107 if (link_info == NULL)
9108 /* Ignore this if we are not called by the ELF backend linker. */
9109 return;
9110
9111 globals = elf32_arm_hash_table (link_info);
9112 if (globals == NULL)
9113 return;
9114
9115 /* If blx is available then exported Thumb symbols are OK and there is
9116 nothing to do. */
9117 if (globals->use_blx)
9118 return;
9119
9120 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
9121 link_info);
9122 }
9123
9124 /* Reserve space for COUNT dynamic relocations in relocation selection
9125 SRELOC. */
9126
9127 static void
9128 elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
9129 bfd_size_type count)
9130 {
9131 struct elf32_arm_link_hash_table *htab;
9132
9133 htab = elf32_arm_hash_table (info);
9134 BFD_ASSERT (htab->root.dynamic_sections_created);
9135 if (sreloc == NULL)
9136 abort ();
9137 sreloc->size += RELOC_SIZE (htab) * count;
9138 }
9139
9140 /* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
9141 dynamic, the relocations should go in SRELOC, otherwise they should
9142 go in the special .rel.iplt section. */
9143
9144 static void
9145 elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
9146 bfd_size_type count)
9147 {
9148 struct elf32_arm_link_hash_table *htab;
9149
9150 htab = elf32_arm_hash_table (info);
9151 if (!htab->root.dynamic_sections_created)
9152 htab->root.irelplt->size += RELOC_SIZE (htab) * count;
9153 else
9154 {
9155 BFD_ASSERT (sreloc != NULL);
9156 sreloc->size += RELOC_SIZE (htab) * count;
9157 }
9158 }
9159
9160 /* Add relocation REL to the end of relocation section SRELOC. */
9161
9162 static void
9163 elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
9164 asection *sreloc, Elf_Internal_Rela *rel)
9165 {
9166 bfd_byte *loc;
9167 struct elf32_arm_link_hash_table *htab;
9168
9169 htab = elf32_arm_hash_table (info);
9170 if (!htab->root.dynamic_sections_created
9171 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
9172 sreloc = htab->root.irelplt;
9173 if (sreloc == NULL)
9174 abort ();
9175 loc = sreloc->contents;
9176 loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
9177 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
9178 abort ();
9179 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
9180 }
9181
9182 /* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
9183 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
9184 to .plt. */
9185
9186 static void
9187 elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
9188 bfd_boolean is_iplt_entry,
9189 union gotplt_union *root_plt,
9190 struct arm_plt_info *arm_plt)
9191 {
9192 struct elf32_arm_link_hash_table *htab;
9193 asection *splt;
9194 asection *sgotplt;
9195
9196 htab = elf32_arm_hash_table (info);
9197
9198 if (is_iplt_entry)
9199 {
9200 splt = htab->root.iplt;
9201 sgotplt = htab->root.igotplt;
9202
9203 /* NaCl uses a special first entry in .iplt too. */
9204 if (htab->nacl_p && splt->size == 0)
9205 splt->size += htab->plt_header_size;
9206
9207 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
9208 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
9209 }
9210 else
9211 {
9212 splt = htab->root.splt;
9213 sgotplt = htab->root.sgotplt;
9214
9215 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
9216 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
9217
9218 /* If this is the first .plt entry, make room for the special
9219 first entry. */
9220 if (splt->size == 0)
9221 splt->size += htab->plt_header_size;
9222
9223 htab->next_tls_desc_index++;
9224 }
9225
9226 /* Allocate the PLT entry itself, including any leading Thumb stub. */
9227 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9228 splt->size += PLT_THUMB_STUB_SIZE;
9229 root_plt->offset = splt->size;
9230 splt->size += htab->plt_entry_size;
9231
9232 if (!htab->symbian_p)
9233 {
9234 /* We also need to make an entry in the .got.plt section, which
9235 will be placed in the .got section by the linker script. */
9236 if (is_iplt_entry)
9237 arm_plt->got_offset = sgotplt->size;
9238 else
9239 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
9240 sgotplt->size += 4;
9241 }
9242 }
9243
9244 static bfd_vma
9245 arm_movw_immediate (bfd_vma value)
9246 {
9247 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
9248 }
9249
9250 static bfd_vma
9251 arm_movt_immediate (bfd_vma value)
9252 {
9253 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
9254 }
9255
9256 /* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
9257 the entry lives in .iplt and resolves to (*SYM_VALUE)().
9258 Otherwise, DYNINDX is the index of the symbol in the dynamic
9259 symbol table and SYM_VALUE is undefined.
9260
9261 ROOT_PLT points to the offset of the PLT entry from the start of its
9262 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
9263 bookkeeping information.
9264
9265 Returns FALSE if there was a problem. */
9266
9267 static bfd_boolean
9268 elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
9269 union gotplt_union *root_plt,
9270 struct arm_plt_info *arm_plt,
9271 int dynindx, bfd_vma sym_value)
9272 {
9273 struct elf32_arm_link_hash_table *htab;
9274 asection *sgot;
9275 asection *splt;
9276 asection *srel;
9277 bfd_byte *loc;
9278 bfd_vma plt_index;
9279 Elf_Internal_Rela rel;
9280 bfd_vma plt_header_size;
9281 bfd_vma got_header_size;
9282
9283 htab = elf32_arm_hash_table (info);
9284
9285 /* Pick the appropriate sections and sizes. */
9286 if (dynindx == -1)
9287 {
9288 splt = htab->root.iplt;
9289 sgot = htab->root.igotplt;
9290 srel = htab->root.irelplt;
9291
9292 /* There are no reserved entries in .igot.plt, and no special
9293 first entry in .iplt. */
9294 got_header_size = 0;
9295 plt_header_size = 0;
9296 }
9297 else
9298 {
9299 splt = htab->root.splt;
9300 sgot = htab->root.sgotplt;
9301 srel = htab->root.srelplt;
9302
9303 got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
9304 plt_header_size = htab->plt_header_size;
9305 }
9306 BFD_ASSERT (splt != NULL && srel != NULL);
9307
9308 /* Fill in the entry in the procedure linkage table. */
9309 if (htab->symbian_p)
9310 {
9311 BFD_ASSERT (dynindx >= 0);
9312 put_arm_insn (htab, output_bfd,
9313 elf32_arm_symbian_plt_entry[0],
9314 splt->contents + root_plt->offset);
9315 bfd_put_32 (output_bfd,
9316 elf32_arm_symbian_plt_entry[1],
9317 splt->contents + root_plt->offset + 4);
9318
9319 /* Fill in the entry in the .rel.plt section. */
9320 rel.r_offset = (splt->output_section->vma
9321 + splt->output_offset
9322 + root_plt->offset + 4);
9323 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
9324
9325 /* Get the index in the procedure linkage table which
9326 corresponds to this symbol. This is the index of this symbol
9327 in all the symbols for which we are making plt entries. The
9328 first entry in the procedure linkage table is reserved. */
9329 plt_index = ((root_plt->offset - plt_header_size)
9330 / htab->plt_entry_size);
9331 }
9332 else
9333 {
9334 bfd_vma got_offset, got_address, plt_address;
9335 bfd_vma got_displacement, initial_got_entry;
9336 bfd_byte * ptr;
9337
9338 BFD_ASSERT (sgot != NULL);
9339
9340 /* Get the offset into the .(i)got.plt table of the entry that
9341 corresponds to this function. */
9342 got_offset = (arm_plt->got_offset & -2);
9343
9344 /* Get the index in the procedure linkage table which
9345 corresponds to this symbol. This is the index of this symbol
9346 in all the symbols for which we are making plt entries.
9347 After the reserved .got.plt entries, all symbols appear in
9348 the same order as in .plt. */
9349 plt_index = (got_offset - got_header_size) / 4;
9350
9351 /* Calculate the address of the GOT entry. */
9352 got_address = (sgot->output_section->vma
9353 + sgot->output_offset
9354 + got_offset);
9355
9356 /* ...and the address of the PLT entry. */
9357 plt_address = (splt->output_section->vma
9358 + splt->output_offset
9359 + root_plt->offset);
9360
9361 ptr = splt->contents + root_plt->offset;
9362 if (htab->vxworks_p && bfd_link_pic (info))
9363 {
9364 unsigned int i;
9365 bfd_vma val;
9366
9367 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9368 {
9369 val = elf32_arm_vxworks_shared_plt_entry[i];
9370 if (i == 2)
9371 val |= got_address - sgot->output_section->vma;
9372 if (i == 5)
9373 val |= plt_index * RELOC_SIZE (htab);
9374 if (i == 2 || i == 5)
9375 bfd_put_32 (output_bfd, val, ptr);
9376 else
9377 put_arm_insn (htab, output_bfd, val, ptr);
9378 }
9379 }
9380 else if (htab->vxworks_p)
9381 {
9382 unsigned int i;
9383 bfd_vma val;
9384
9385 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9386 {
9387 val = elf32_arm_vxworks_exec_plt_entry[i];
9388 if (i == 2)
9389 val |= got_address;
9390 if (i == 4)
9391 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
9392 if (i == 5)
9393 val |= plt_index * RELOC_SIZE (htab);
9394 if (i == 2 || i == 5)
9395 bfd_put_32 (output_bfd, val, ptr);
9396 else
9397 put_arm_insn (htab, output_bfd, val, ptr);
9398 }
9399
9400 loc = (htab->srelplt2->contents
9401 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
9402
9403 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
9404 referencing the GOT for this PLT entry. */
9405 rel.r_offset = plt_address + 8;
9406 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
9407 rel.r_addend = got_offset;
9408 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9409 loc += RELOC_SIZE (htab);
9410
9411 /* Create the R_ARM_ABS32 relocation referencing the
9412 beginning of the PLT for this GOT entry. */
9413 rel.r_offset = got_address;
9414 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
9415 rel.r_addend = 0;
9416 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9417 }
9418 else if (htab->nacl_p)
9419 {
9420 /* Calculate the displacement between the PLT slot and the
9421 common tail that's part of the special initial PLT slot. */
9422 int32_t tail_displacement
9423 = ((splt->output_section->vma + splt->output_offset
9424 + ARM_NACL_PLT_TAIL_OFFSET)
9425 - (plt_address + htab->plt_entry_size + 4));
9426 BFD_ASSERT ((tail_displacement & 3) == 0);
9427 tail_displacement >>= 2;
9428
9429 BFD_ASSERT ((tail_displacement & 0xff000000) == 0
9430 || (-tail_displacement & 0xff000000) == 0);
9431
9432 /* Calculate the displacement between the PLT slot and the entry
9433 in the GOT. The offset accounts for the value produced by
9434 adding to pc in the penultimate instruction of the PLT stub. */
9435 got_displacement = (got_address
9436 - (plt_address + htab->plt_entry_size));
9437
9438 /* NaCl does not support interworking at all. */
9439 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt));
9440
9441 put_arm_insn (htab, output_bfd,
9442 elf32_arm_nacl_plt_entry[0]
9443 | arm_movw_immediate (got_displacement),
9444 ptr + 0);
9445 put_arm_insn (htab, output_bfd,
9446 elf32_arm_nacl_plt_entry[1]
9447 | arm_movt_immediate (got_displacement),
9448 ptr + 4);
9449 put_arm_insn (htab, output_bfd,
9450 elf32_arm_nacl_plt_entry[2],
9451 ptr + 8);
9452 put_arm_insn (htab, output_bfd,
9453 elf32_arm_nacl_plt_entry[3]
9454 | (tail_displacement & 0x00ffffff),
9455 ptr + 12);
9456 }
9457 else if (using_thumb_only (htab))
9458 {
9459 /* PR ld/16017: Generate thumb only PLT entries. */
9460 if (!using_thumb2 (htab))
9461 {
9462 /* FIXME: We ought to be able to generate thumb-1 PLT
9463 instructions... */
9464 _bfd_error_handler (_("%B: Warning: thumb-1 mode PLT generation not currently supported"),
9465 output_bfd);
9466 return FALSE;
9467 }
9468
9469 /* Calculate the displacement between the PLT slot and the entry in
9470 the GOT. The 12-byte offset accounts for the value produced by
9471 adding to pc in the 3rd instruction of the PLT stub. */
9472 got_displacement = got_address - (plt_address + 12);
9473
9474 /* As we are using 32 bit instructions we have to use 'put_arm_insn'
9475 instead of 'put_thumb_insn'. */
9476 put_arm_insn (htab, output_bfd,
9477 elf32_thumb2_plt_entry[0]
9478 | ((got_displacement & 0x000000ff) << 16)
9479 | ((got_displacement & 0x00000700) << 20)
9480 | ((got_displacement & 0x00000800) >> 1)
9481 | ((got_displacement & 0x0000f000) >> 12),
9482 ptr + 0);
9483 put_arm_insn (htab, output_bfd,
9484 elf32_thumb2_plt_entry[1]
9485 | ((got_displacement & 0x00ff0000) )
9486 | ((got_displacement & 0x07000000) << 4)
9487 | ((got_displacement & 0x08000000) >> 17)
9488 | ((got_displacement & 0xf0000000) >> 28),
9489 ptr + 4);
9490 put_arm_insn (htab, output_bfd,
9491 elf32_thumb2_plt_entry[2],
9492 ptr + 8);
9493 put_arm_insn (htab, output_bfd,
9494 elf32_thumb2_plt_entry[3],
9495 ptr + 12);
9496 }
9497 else
9498 {
9499 /* Calculate the displacement between the PLT slot and the
9500 entry in the GOT. The eight-byte offset accounts for the
9501 value produced by adding to pc in the first instruction
9502 of the PLT stub. */
9503 got_displacement = got_address - (plt_address + 8);
9504
9505 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9506 {
9507 put_thumb_insn (htab, output_bfd,
9508 elf32_arm_plt_thumb_stub[0], ptr - 4);
9509 put_thumb_insn (htab, output_bfd,
9510 elf32_arm_plt_thumb_stub[1], ptr - 2);
9511 }
9512
9513 if (!elf32_arm_use_long_plt_entry)
9514 {
9515 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
9516
9517 put_arm_insn (htab, output_bfd,
9518 elf32_arm_plt_entry_short[0]
9519 | ((got_displacement & 0x0ff00000) >> 20),
9520 ptr + 0);
9521 put_arm_insn (htab, output_bfd,
9522 elf32_arm_plt_entry_short[1]
9523 | ((got_displacement & 0x000ff000) >> 12),
9524 ptr+ 4);
9525 put_arm_insn (htab, output_bfd,
9526 elf32_arm_plt_entry_short[2]
9527 | (got_displacement & 0x00000fff),
9528 ptr + 8);
9529 #ifdef FOUR_WORD_PLT
9530 bfd_put_32 (output_bfd, elf32_arm_plt_entry_short[3], ptr + 12);
9531 #endif
9532 }
9533 else
9534 {
9535 put_arm_insn (htab, output_bfd,
9536 elf32_arm_plt_entry_long[0]
9537 | ((got_displacement & 0xf0000000) >> 28),
9538 ptr + 0);
9539 put_arm_insn (htab, output_bfd,
9540 elf32_arm_plt_entry_long[1]
9541 | ((got_displacement & 0x0ff00000) >> 20),
9542 ptr + 4);
9543 put_arm_insn (htab, output_bfd,
9544 elf32_arm_plt_entry_long[2]
9545 | ((got_displacement & 0x000ff000) >> 12),
9546 ptr+ 8);
9547 put_arm_insn (htab, output_bfd,
9548 elf32_arm_plt_entry_long[3]
9549 | (got_displacement & 0x00000fff),
9550 ptr + 12);
9551 }
9552 }
9553
9554 /* Fill in the entry in the .rel(a).(i)plt section. */
9555 rel.r_offset = got_address;
9556 rel.r_addend = 0;
9557 if (dynindx == -1)
9558 {
9559 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
9560 The dynamic linker or static executable then calls SYM_VALUE
9561 to determine the correct run-time value of the .igot.plt entry. */
9562 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9563 initial_got_entry = sym_value;
9564 }
9565 else
9566 {
9567 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
9568 initial_got_entry = (splt->output_section->vma
9569 + splt->output_offset);
9570 }
9571
9572 /* Fill in the entry in the global offset table. */
9573 bfd_put_32 (output_bfd, initial_got_entry,
9574 sgot->contents + got_offset);
9575 }
9576
9577 if (dynindx == -1)
9578 elf32_arm_add_dynreloc (output_bfd, info, srel, &rel);
9579 else
9580 {
9581 loc = srel->contents + plt_index * RELOC_SIZE (htab);
9582 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9583 }
9584
9585 return TRUE;
9586 }
9587
9588 /* Some relocations map to different relocations depending on the
9589 target. Return the real relocation. */
9590
9591 static int
9592 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
9593 int r_type)
9594 {
9595 switch (r_type)
9596 {
9597 case R_ARM_TARGET1:
9598 if (globals->target1_is_rel)
9599 return R_ARM_REL32;
9600 else
9601 return R_ARM_ABS32;
9602
9603 case R_ARM_TARGET2:
9604 return globals->target2_reloc;
9605
9606 default:
9607 return r_type;
9608 }
9609 }
9610
9611 /* Return the base VMA address which should be subtracted from real addresses
9612 when resolving @dtpoff relocation.
9613 This is PT_TLS segment p_vaddr. */
9614
9615 static bfd_vma
9616 dtpoff_base (struct bfd_link_info *info)
9617 {
9618 /* If tls_sec is NULL, we should have signalled an error already. */
9619 if (elf_hash_table (info)->tls_sec == NULL)
9620 return 0;
9621 return elf_hash_table (info)->tls_sec->vma;
9622 }
9623
9624 /* Return the relocation value for @tpoff relocation
9625 if STT_TLS virtual address is ADDRESS. */
9626
9627 static bfd_vma
9628 tpoff (struct bfd_link_info *info, bfd_vma address)
9629 {
9630 struct elf_link_hash_table *htab = elf_hash_table (info);
9631 bfd_vma base;
9632
9633 /* If tls_sec is NULL, we should have signalled an error already. */
9634 if (htab->tls_sec == NULL)
9635 return 0;
9636 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
9637 return address - htab->tls_sec->vma + base;
9638 }
9639
9640 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
9641 VALUE is the relocation value. */
9642
9643 static bfd_reloc_status_type
9644 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
9645 {
9646 if (value > 0xfff)
9647 return bfd_reloc_overflow;
9648
9649 value |= bfd_get_32 (abfd, data) & 0xfffff000;
9650 bfd_put_32 (abfd, value, data);
9651 return bfd_reloc_ok;
9652 }
9653
9654 /* Handle TLS relaxations. Relaxing is possible for symbols that use
9655 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
9656 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
9657
9658 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
9659 is to then call final_link_relocate. Return other values in the
9660 case of error.
9661
9662 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
9663 the pre-relaxed code. It would be nice if the relocs were updated
9664 to match the optimization. */
9665
9666 static bfd_reloc_status_type
9667 elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
9668 bfd *input_bfd, asection *input_sec, bfd_byte *contents,
9669 Elf_Internal_Rela *rel, unsigned long is_local)
9670 {
9671 unsigned long insn;
9672
9673 switch (ELF32_R_TYPE (rel->r_info))
9674 {
9675 default:
9676 return bfd_reloc_notsupported;
9677
9678 case R_ARM_TLS_GOTDESC:
9679 if (is_local)
9680 insn = 0;
9681 else
9682 {
9683 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
9684 if (insn & 1)
9685 insn -= 5; /* THUMB */
9686 else
9687 insn -= 8; /* ARM */
9688 }
9689 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
9690 return bfd_reloc_continue;
9691
9692 case R_ARM_THM_TLS_DESCSEQ:
9693 /* Thumb insn. */
9694 insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
9695 if ((insn & 0xff78) == 0x4478) /* add rx, pc */
9696 {
9697 if (is_local)
9698 /* nop */
9699 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
9700 }
9701 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
9702 {
9703 if (is_local)
9704 /* nop */
9705 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
9706 else
9707 /* ldr rx,[ry] */
9708 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
9709 }
9710 else if ((insn & 0xff87) == 0x4780) /* blx rx */
9711 {
9712 if (is_local)
9713 /* nop */
9714 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
9715 else
9716 /* mov r0, rx */
9717 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
9718 contents + rel->r_offset);
9719 }
9720 else
9721 {
9722 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
9723 /* It's a 32 bit instruction, fetch the rest of it for
9724 error generation. */
9725 insn = (insn << 16)
9726 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
9727 _bfd_error_handler
9728 /* xgettext:c-format */
9729 (_("%B(%A+0x%lx): unexpected Thumb instruction '0x%x' in TLS trampoline"),
9730 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
9731 return bfd_reloc_notsupported;
9732 }
9733 break;
9734
9735 case R_ARM_TLS_DESCSEQ:
9736 /* arm insn. */
9737 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
9738 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
9739 {
9740 if (is_local)
9741 /* mov rx, ry */
9742 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
9743 contents + rel->r_offset);
9744 }
9745 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
9746 {
9747 if (is_local)
9748 /* nop */
9749 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
9750 else
9751 /* ldr rx,[ry] */
9752 bfd_put_32 (input_bfd, insn & 0xfffff000,
9753 contents + rel->r_offset);
9754 }
9755 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
9756 {
9757 if (is_local)
9758 /* nop */
9759 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
9760 else
9761 /* mov r0, rx */
9762 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
9763 contents + rel->r_offset);
9764 }
9765 else
9766 {
9767 _bfd_error_handler
9768 /* xgettext:c-format */
9769 (_("%B(%A+0x%lx): unexpected ARM instruction '0x%x' in TLS trampoline"),
9770 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
9771 return bfd_reloc_notsupported;
9772 }
9773 break;
9774
9775 case R_ARM_TLS_CALL:
9776 /* GD->IE relaxation, turn the instruction into 'nop' or
9777 'ldr r0, [pc,r0]' */
9778 insn = is_local ? 0xe1a00000 : 0xe79f0000;
9779 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
9780 break;
9781
9782 case R_ARM_THM_TLS_CALL:
9783 /* GD->IE relaxation. */
9784 if (!is_local)
9785 /* add r0,pc; ldr r0, [r0] */
9786 insn = 0x44786800;
9787 else if (using_thumb2 (globals))
9788 /* nop.w */
9789 insn = 0xf3af8000;
9790 else
9791 /* nop; nop */
9792 insn = 0xbf00bf00;
9793
9794 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
9795 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
9796 break;
9797 }
9798 return bfd_reloc_ok;
9799 }
9800
9801 /* For a given value of n, calculate the value of G_n as required to
9802 deal with group relocations. We return it in the form of an
9803 encoded constant-and-rotation, together with the final residual. If n is
9804 specified as less than zero, then final_residual is filled with the
9805 input value and no further action is performed. */
9806
9807 static bfd_vma
9808 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
9809 {
9810 int current_n;
9811 bfd_vma g_n;
9812 bfd_vma encoded_g_n = 0;
9813 bfd_vma residual = value; /* Also known as Y_n. */
9814
9815 for (current_n = 0; current_n <= n; current_n++)
9816 {
9817 int shift;
9818
9819 /* Calculate which part of the value to mask. */
9820 if (residual == 0)
9821 shift = 0;
9822 else
9823 {
9824 int msb;
9825
9826 /* Determine the most significant bit in the residual and
9827 align the resulting value to a 2-bit boundary. */
9828 for (msb = 30; msb >= 0; msb -= 2)
9829 if (residual & (3 << msb))
9830 break;
9831
9832 /* The desired shift is now (msb - 6), or zero, whichever
9833 is the greater. */
9834 shift = msb - 6;
9835 if (shift < 0)
9836 shift = 0;
9837 }
9838
9839 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
9840 g_n = residual & (0xff << shift);
9841 encoded_g_n = (g_n >> shift)
9842 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
9843
9844 /* Calculate the residual for the next time around. */
9845 residual &= ~g_n;
9846 }
9847
9848 *final_residual = residual;
9849
9850 return encoded_g_n;
9851 }
9852
9853 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
9854 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
9855
9856 static int
9857 identify_add_or_sub (bfd_vma insn)
9858 {
9859 int opcode = insn & 0x1e00000;
9860
9861 if (opcode == 1 << 23) /* ADD */
9862 return 1;
9863
9864 if (opcode == 1 << 22) /* SUB */
9865 return -1;
9866
9867 return 0;
9868 }
9869
9870 /* Perform a relocation as part of a final link. */
9871
9872 static bfd_reloc_status_type
9873 elf32_arm_final_link_relocate (reloc_howto_type * howto,
9874 bfd * input_bfd,
9875 bfd * output_bfd,
9876 asection * input_section,
9877 bfd_byte * contents,
9878 Elf_Internal_Rela * rel,
9879 bfd_vma value,
9880 struct bfd_link_info * info,
9881 asection * sym_sec,
9882 const char * sym_name,
9883 unsigned char st_type,
9884 enum arm_st_branch_type branch_type,
9885 struct elf_link_hash_entry * h,
9886 bfd_boolean * unresolved_reloc_p,
9887 char ** error_message)
9888 {
9889 unsigned long r_type = howto->type;
9890 unsigned long r_symndx;
9891 bfd_byte * hit_data = contents + rel->r_offset;
9892 bfd_vma * local_got_offsets;
9893 bfd_vma * local_tlsdesc_gotents;
9894 asection * sgot;
9895 asection * splt;
9896 asection * sreloc = NULL;
9897 asection * srelgot;
9898 bfd_vma addend;
9899 bfd_signed_vma signed_addend;
9900 unsigned char dynreloc_st_type;
9901 bfd_vma dynreloc_value;
9902 struct elf32_arm_link_hash_table * globals;
9903 struct elf32_arm_link_hash_entry *eh;
9904 union gotplt_union *root_plt;
9905 struct arm_plt_info *arm_plt;
9906 bfd_vma plt_offset;
9907 bfd_vma gotplt_offset;
9908 bfd_boolean has_iplt_entry;
9909
9910 globals = elf32_arm_hash_table (info);
9911 if (globals == NULL)
9912 return bfd_reloc_notsupported;
9913
9914 BFD_ASSERT (is_arm_elf (input_bfd));
9915
9916 /* Some relocation types map to different relocations depending on the
9917 target. We pick the right one here. */
9918 r_type = arm_real_reloc_type (globals, r_type);
9919
9920 /* It is possible to have linker relaxations on some TLS access
9921 models. Update our information here. */
9922 r_type = elf32_arm_tls_transition (info, r_type, h);
9923
9924 if (r_type != howto->type)
9925 howto = elf32_arm_howto_from_type (r_type);
9926
9927 eh = (struct elf32_arm_link_hash_entry *) h;
9928 sgot = globals->root.sgot;
9929 local_got_offsets = elf_local_got_offsets (input_bfd);
9930 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
9931
9932 if (globals->root.dynamic_sections_created)
9933 srelgot = globals->root.srelgot;
9934 else
9935 srelgot = NULL;
9936
9937 r_symndx = ELF32_R_SYM (rel->r_info);
9938
9939 if (globals->use_rel)
9940 {
9941 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
9942
9943 if (addend & ((howto->src_mask + 1) >> 1))
9944 {
9945 signed_addend = -1;
9946 signed_addend &= ~ howto->src_mask;
9947 signed_addend |= addend;
9948 }
9949 else
9950 signed_addend = addend;
9951 }
9952 else
9953 addend = signed_addend = rel->r_addend;
9954
9955 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
9956 are resolving a function call relocation. */
9957 if (using_thumb_only (globals)
9958 && (r_type == R_ARM_THM_CALL
9959 || r_type == R_ARM_THM_JUMP24)
9960 && branch_type == ST_BRANCH_TO_ARM)
9961 branch_type = ST_BRANCH_TO_THUMB;
9962
9963 /* Record the symbol information that should be used in dynamic
9964 relocations. */
9965 dynreloc_st_type = st_type;
9966 dynreloc_value = value;
9967 if (branch_type == ST_BRANCH_TO_THUMB)
9968 dynreloc_value |= 1;
9969
9970 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
9971 VALUE appropriately for relocations that we resolve at link time. */
9972 has_iplt_entry = FALSE;
9973 if (elf32_arm_get_plt_info (input_bfd, globals, eh, r_symndx, &root_plt,
9974 &arm_plt)
9975 && root_plt->offset != (bfd_vma) -1)
9976 {
9977 plt_offset = root_plt->offset;
9978 gotplt_offset = arm_plt->got_offset;
9979
9980 if (h == NULL || eh->is_iplt)
9981 {
9982 has_iplt_entry = TRUE;
9983 splt = globals->root.iplt;
9984
9985 /* Populate .iplt entries here, because not all of them will
9986 be seen by finish_dynamic_symbol. The lower bit is set if
9987 we have already populated the entry. */
9988 if (plt_offset & 1)
9989 plt_offset--;
9990 else
9991 {
9992 if (elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
9993 -1, dynreloc_value))
9994 root_plt->offset |= 1;
9995 else
9996 return bfd_reloc_notsupported;
9997 }
9998
9999 /* Static relocations always resolve to the .iplt entry. */
10000 st_type = STT_FUNC;
10001 value = (splt->output_section->vma
10002 + splt->output_offset
10003 + plt_offset);
10004 branch_type = ST_BRANCH_TO_ARM;
10005
10006 /* If there are non-call relocations that resolve to the .iplt
10007 entry, then all dynamic ones must too. */
10008 if (arm_plt->noncall_refcount != 0)
10009 {
10010 dynreloc_st_type = st_type;
10011 dynreloc_value = value;
10012 }
10013 }
10014 else
10015 /* We populate the .plt entry in finish_dynamic_symbol. */
10016 splt = globals->root.splt;
10017 }
10018 else
10019 {
10020 splt = NULL;
10021 plt_offset = (bfd_vma) -1;
10022 gotplt_offset = (bfd_vma) -1;
10023 }
10024
10025 switch (r_type)
10026 {
10027 case R_ARM_NONE:
10028 /* We don't need to find a value for this symbol. It's just a
10029 marker. */
10030 *unresolved_reloc_p = FALSE;
10031 return bfd_reloc_ok;
10032
10033 case R_ARM_ABS12:
10034 if (!globals->vxworks_p)
10035 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
10036 /* Fall through. */
10037
10038 case R_ARM_PC24:
10039 case R_ARM_ABS32:
10040 case R_ARM_ABS32_NOI:
10041 case R_ARM_REL32:
10042 case R_ARM_REL32_NOI:
10043 case R_ARM_CALL:
10044 case R_ARM_JUMP24:
10045 case R_ARM_XPC25:
10046 case R_ARM_PREL31:
10047 case R_ARM_PLT32:
10048 /* Handle relocations which should use the PLT entry. ABS32/REL32
10049 will use the symbol's value, which may point to a PLT entry, but we
10050 don't need to handle that here. If we created a PLT entry, all
10051 branches in this object should go to it, except if the PLT is too
10052 far away, in which case a long branch stub should be inserted. */
10053 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
10054 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
10055 && r_type != R_ARM_CALL
10056 && r_type != R_ARM_JUMP24
10057 && r_type != R_ARM_PLT32)
10058 && plt_offset != (bfd_vma) -1)
10059 {
10060 /* If we've created a .plt section, and assigned a PLT entry
10061 to this function, it must either be a STT_GNU_IFUNC reference
10062 or not be known to bind locally. In other cases, we should
10063 have cleared the PLT entry by now. */
10064 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
10065
10066 value = (splt->output_section->vma
10067 + splt->output_offset
10068 + plt_offset);
10069 *unresolved_reloc_p = FALSE;
10070 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10071 contents, rel->r_offset, value,
10072 rel->r_addend);
10073 }
10074
10075 /* When generating a shared object or relocatable executable, these
10076 relocations are copied into the output file to be resolved at
10077 run time. */
10078 if ((bfd_link_pic (info)
10079 || globals->root.is_relocatable_executable)
10080 && (input_section->flags & SEC_ALLOC)
10081 && !(globals->vxworks_p
10082 && strcmp (input_section->output_section->name,
10083 ".tls_vars") == 0)
10084 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
10085 || !SYMBOL_CALLS_LOCAL (info, h))
10086 && !(input_bfd == globals->stub_bfd
10087 && strstr (input_section->name, STUB_SUFFIX))
10088 && (h == NULL
10089 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10090 || h->root.type != bfd_link_hash_undefweak)
10091 && r_type != R_ARM_PC24
10092 && r_type != R_ARM_CALL
10093 && r_type != R_ARM_JUMP24
10094 && r_type != R_ARM_PREL31
10095 && r_type != R_ARM_PLT32)
10096 {
10097 Elf_Internal_Rela outrel;
10098 bfd_boolean skip, relocate;
10099
10100 if ((r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
10101 && !h->def_regular)
10102 {
10103 char *v = _("shared object");
10104
10105 if (bfd_link_executable (info))
10106 v = _("PIE executable");
10107
10108 _bfd_error_handler
10109 (_("%B: relocation %s against external or undefined symbol `%s'"
10110 " can not be used when making a %s; recompile with -fPIC"), input_bfd,
10111 elf32_arm_howto_table_1[r_type].name, h->root.root.string, v);
10112 return bfd_reloc_notsupported;
10113 }
10114
10115 *unresolved_reloc_p = FALSE;
10116
10117 if (sreloc == NULL && globals->root.dynamic_sections_created)
10118 {
10119 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
10120 ! globals->use_rel);
10121
10122 if (sreloc == NULL)
10123 return bfd_reloc_notsupported;
10124 }
10125
10126 skip = FALSE;
10127 relocate = FALSE;
10128
10129 outrel.r_addend = addend;
10130 outrel.r_offset =
10131 _bfd_elf_section_offset (output_bfd, info, input_section,
10132 rel->r_offset);
10133 if (outrel.r_offset == (bfd_vma) -1)
10134 skip = TRUE;
10135 else if (outrel.r_offset == (bfd_vma) -2)
10136 skip = TRUE, relocate = TRUE;
10137 outrel.r_offset += (input_section->output_section->vma
10138 + input_section->output_offset);
10139
10140 if (skip)
10141 memset (&outrel, 0, sizeof outrel);
10142 else if (h != NULL
10143 && h->dynindx != -1
10144 && (!bfd_link_pic (info)
10145 || !(bfd_link_pie (info)
10146 || SYMBOLIC_BIND (info, h))
10147 || !h->def_regular))
10148 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
10149 else
10150 {
10151 int symbol;
10152
10153 /* This symbol is local, or marked to become local. */
10154 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI);
10155 if (globals->symbian_p)
10156 {
10157 asection *osec;
10158
10159 /* On Symbian OS, the data segment and text segement
10160 can be relocated independently. Therefore, we
10161 must indicate the segment to which this
10162 relocation is relative. The BPABI allows us to
10163 use any symbol in the right segment; we just use
10164 the section symbol as it is convenient. (We
10165 cannot use the symbol given by "h" directly as it
10166 will not appear in the dynamic symbol table.)
10167
10168 Note that the dynamic linker ignores the section
10169 symbol value, so we don't subtract osec->vma
10170 from the emitted reloc addend. */
10171 if (sym_sec)
10172 osec = sym_sec->output_section;
10173 else
10174 osec = input_section->output_section;
10175 symbol = elf_section_data (osec)->dynindx;
10176 if (symbol == 0)
10177 {
10178 struct elf_link_hash_table *htab = elf_hash_table (info);
10179
10180 if ((osec->flags & SEC_READONLY) == 0
10181 && htab->data_index_section != NULL)
10182 osec = htab->data_index_section;
10183 else
10184 osec = htab->text_index_section;
10185 symbol = elf_section_data (osec)->dynindx;
10186 }
10187 BFD_ASSERT (symbol != 0);
10188 }
10189 else
10190 /* On SVR4-ish systems, the dynamic loader cannot
10191 relocate the text and data segments independently,
10192 so the symbol does not matter. */
10193 symbol = 0;
10194 if (dynreloc_st_type == STT_GNU_IFUNC)
10195 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
10196 to the .iplt entry. Instead, every non-call reference
10197 must use an R_ARM_IRELATIVE relocation to obtain the
10198 correct run-time address. */
10199 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
10200 else
10201 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
10202 if (globals->use_rel)
10203 relocate = TRUE;
10204 else
10205 outrel.r_addend += dynreloc_value;
10206 }
10207
10208 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
10209
10210 /* If this reloc is against an external symbol, we do not want to
10211 fiddle with the addend. Otherwise, we need to include the symbol
10212 value so that it becomes an addend for the dynamic reloc. */
10213 if (! relocate)
10214 return bfd_reloc_ok;
10215
10216 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10217 contents, rel->r_offset,
10218 dynreloc_value, (bfd_vma) 0);
10219 }
10220 else switch (r_type)
10221 {
10222 case R_ARM_ABS12:
10223 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
10224
10225 case R_ARM_XPC25: /* Arm BLX instruction. */
10226 case R_ARM_CALL:
10227 case R_ARM_JUMP24:
10228 case R_ARM_PC24: /* Arm B/BL instruction. */
10229 case R_ARM_PLT32:
10230 {
10231 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
10232
10233 if (r_type == R_ARM_XPC25)
10234 {
10235 /* Check for Arm calling Arm function. */
10236 /* FIXME: Should we translate the instruction into a BL
10237 instruction instead ? */
10238 if (branch_type != ST_BRANCH_TO_THUMB)
10239 _bfd_error_handler
10240 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
10241 input_bfd,
10242 h ? h->root.root.string : "(local)");
10243 }
10244 else if (r_type == R_ARM_PC24)
10245 {
10246 /* Check for Arm calling Thumb function. */
10247 if (branch_type == ST_BRANCH_TO_THUMB)
10248 {
10249 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
10250 output_bfd, input_section,
10251 hit_data, sym_sec, rel->r_offset,
10252 signed_addend, value,
10253 error_message))
10254 return bfd_reloc_ok;
10255 else
10256 return bfd_reloc_dangerous;
10257 }
10258 }
10259
10260 /* Check if a stub has to be inserted because the
10261 destination is too far or we are changing mode. */
10262 if ( r_type == R_ARM_CALL
10263 || r_type == R_ARM_JUMP24
10264 || r_type == R_ARM_PLT32)
10265 {
10266 enum elf32_arm_stub_type stub_type = arm_stub_none;
10267 struct elf32_arm_link_hash_entry *hash;
10268
10269 hash = (struct elf32_arm_link_hash_entry *) h;
10270 stub_type = arm_type_of_stub (info, input_section, rel,
10271 st_type, &branch_type,
10272 hash, value, sym_sec,
10273 input_bfd, sym_name);
10274
10275 if (stub_type != arm_stub_none)
10276 {
10277 /* The target is out of reach, so redirect the
10278 branch to the local stub for this function. */
10279 stub_entry = elf32_arm_get_stub_entry (input_section,
10280 sym_sec, h,
10281 rel, globals,
10282 stub_type);
10283 {
10284 if (stub_entry != NULL)
10285 value = (stub_entry->stub_offset
10286 + stub_entry->stub_sec->output_offset
10287 + stub_entry->stub_sec->output_section->vma);
10288
10289 if (plt_offset != (bfd_vma) -1)
10290 *unresolved_reloc_p = FALSE;
10291 }
10292 }
10293 else
10294 {
10295 /* If the call goes through a PLT entry, make sure to
10296 check distance to the right destination address. */
10297 if (plt_offset != (bfd_vma) -1)
10298 {
10299 value = (splt->output_section->vma
10300 + splt->output_offset
10301 + plt_offset);
10302 *unresolved_reloc_p = FALSE;
10303 /* The PLT entry is in ARM mode, regardless of the
10304 target function. */
10305 branch_type = ST_BRANCH_TO_ARM;
10306 }
10307 }
10308 }
10309
10310 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
10311 where:
10312 S is the address of the symbol in the relocation.
10313 P is address of the instruction being relocated.
10314 A is the addend (extracted from the instruction) in bytes.
10315
10316 S is held in 'value'.
10317 P is the base address of the section containing the
10318 instruction plus the offset of the reloc into that
10319 section, ie:
10320 (input_section->output_section->vma +
10321 input_section->output_offset +
10322 rel->r_offset).
10323 A is the addend, converted into bytes, ie:
10324 (signed_addend * 4)
10325
10326 Note: None of these operations have knowledge of the pipeline
10327 size of the processor, thus it is up to the assembler to
10328 encode this information into the addend. */
10329 value -= (input_section->output_section->vma
10330 + input_section->output_offset);
10331 value -= rel->r_offset;
10332 if (globals->use_rel)
10333 value += (signed_addend << howto->size);
10334 else
10335 /* RELA addends do not have to be adjusted by howto->size. */
10336 value += signed_addend;
10337
10338 signed_addend = value;
10339 signed_addend >>= howto->rightshift;
10340
10341 /* A branch to an undefined weak symbol is turned into a jump to
10342 the next instruction unless a PLT entry will be created.
10343 Do the same for local undefined symbols (but not for STN_UNDEF).
10344 The jump to the next instruction is optimized as a NOP depending
10345 on the architecture. */
10346 if (h ? (h->root.type == bfd_link_hash_undefweak
10347 && plt_offset == (bfd_vma) -1)
10348 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
10349 {
10350 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
10351
10352 if (arch_has_arm_nop (globals))
10353 value |= 0x0320f000;
10354 else
10355 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
10356 }
10357 else
10358 {
10359 /* Perform a signed range check. */
10360 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
10361 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
10362 return bfd_reloc_overflow;
10363
10364 addend = (value & 2);
10365
10366 value = (signed_addend & howto->dst_mask)
10367 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
10368
10369 if (r_type == R_ARM_CALL)
10370 {
10371 /* Set the H bit in the BLX instruction. */
10372 if (branch_type == ST_BRANCH_TO_THUMB)
10373 {
10374 if (addend)
10375 value |= (1 << 24);
10376 else
10377 value &= ~(bfd_vma)(1 << 24);
10378 }
10379
10380 /* Select the correct instruction (BL or BLX). */
10381 /* Only if we are not handling a BL to a stub. In this
10382 case, mode switching is performed by the stub. */
10383 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
10384 value |= (1 << 28);
10385 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
10386 {
10387 value &= ~(bfd_vma)(1 << 28);
10388 value |= (1 << 24);
10389 }
10390 }
10391 }
10392 }
10393 break;
10394
10395 case R_ARM_ABS32:
10396 value += addend;
10397 if (branch_type == ST_BRANCH_TO_THUMB)
10398 value |= 1;
10399 break;
10400
10401 case R_ARM_ABS32_NOI:
10402 value += addend;
10403 break;
10404
10405 case R_ARM_REL32:
10406 value += addend;
10407 if (branch_type == ST_BRANCH_TO_THUMB)
10408 value |= 1;
10409 value -= (input_section->output_section->vma
10410 + input_section->output_offset + rel->r_offset);
10411 break;
10412
10413 case R_ARM_REL32_NOI:
10414 value += addend;
10415 value -= (input_section->output_section->vma
10416 + input_section->output_offset + rel->r_offset);
10417 break;
10418
10419 case R_ARM_PREL31:
10420 value -= (input_section->output_section->vma
10421 + input_section->output_offset + rel->r_offset);
10422 value += signed_addend;
10423 if (! h || h->root.type != bfd_link_hash_undefweak)
10424 {
10425 /* Check for overflow. */
10426 if ((value ^ (value >> 1)) & (1 << 30))
10427 return bfd_reloc_overflow;
10428 }
10429 value &= 0x7fffffff;
10430 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
10431 if (branch_type == ST_BRANCH_TO_THUMB)
10432 value |= 1;
10433 break;
10434 }
10435
10436 bfd_put_32 (input_bfd, value, hit_data);
10437 return bfd_reloc_ok;
10438
10439 case R_ARM_ABS8:
10440 /* PR 16202: Refectch the addend using the correct size. */
10441 if (globals->use_rel)
10442 addend = bfd_get_8 (input_bfd, hit_data);
10443 value += addend;
10444
10445 /* There is no way to tell whether the user intended to use a signed or
10446 unsigned addend. When checking for overflow we accept either,
10447 as specified by the AAELF. */
10448 if ((long) value > 0xff || (long) value < -0x80)
10449 return bfd_reloc_overflow;
10450
10451 bfd_put_8 (input_bfd, value, hit_data);
10452 return bfd_reloc_ok;
10453
10454 case R_ARM_ABS16:
10455 /* PR 16202: Refectch the addend using the correct size. */
10456 if (globals->use_rel)
10457 addend = bfd_get_16 (input_bfd, hit_data);
10458 value += addend;
10459
10460 /* See comment for R_ARM_ABS8. */
10461 if ((long) value > 0xffff || (long) value < -0x8000)
10462 return bfd_reloc_overflow;
10463
10464 bfd_put_16 (input_bfd, value, hit_data);
10465 return bfd_reloc_ok;
10466
10467 case R_ARM_THM_ABS5:
10468 /* Support ldr and str instructions for the thumb. */
10469 if (globals->use_rel)
10470 {
10471 /* Need to refetch addend. */
10472 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
10473 /* ??? Need to determine shift amount from operand size. */
10474 addend >>= howto->rightshift;
10475 }
10476 value += addend;
10477
10478 /* ??? Isn't value unsigned? */
10479 if ((long) value > 0x1f || (long) value < -0x10)
10480 return bfd_reloc_overflow;
10481
10482 /* ??? Value needs to be properly shifted into place first. */
10483 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
10484 bfd_put_16 (input_bfd, value, hit_data);
10485 return bfd_reloc_ok;
10486
10487 case R_ARM_THM_ALU_PREL_11_0:
10488 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
10489 {
10490 bfd_vma insn;
10491 bfd_signed_vma relocation;
10492
10493 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
10494 | bfd_get_16 (input_bfd, hit_data + 2);
10495
10496 if (globals->use_rel)
10497 {
10498 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
10499 | ((insn & (1 << 26)) >> 15);
10500 if (insn & 0xf00000)
10501 signed_addend = -signed_addend;
10502 }
10503
10504 relocation = value + signed_addend;
10505 relocation -= Pa (input_section->output_section->vma
10506 + input_section->output_offset
10507 + rel->r_offset);
10508
10509 value = relocation;
10510
10511 if (value >= 0x1000)
10512 return bfd_reloc_overflow;
10513
10514 insn = (insn & 0xfb0f8f00) | (value & 0xff)
10515 | ((value & 0x700) << 4)
10516 | ((value & 0x800) << 15);
10517 if (relocation < 0)
10518 insn |= 0xa00000;
10519
10520 bfd_put_16 (input_bfd, insn >> 16, hit_data);
10521 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10522
10523 return bfd_reloc_ok;
10524 }
10525
10526 case R_ARM_THM_PC8:
10527 /* PR 10073: This reloc is not generated by the GNU toolchain,
10528 but it is supported for compatibility with third party libraries
10529 generated by other compilers, specifically the ARM/IAR. */
10530 {
10531 bfd_vma insn;
10532 bfd_signed_vma relocation;
10533
10534 insn = bfd_get_16 (input_bfd, hit_data);
10535
10536 if (globals->use_rel)
10537 addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4;
10538
10539 relocation = value + addend;
10540 relocation -= Pa (input_section->output_section->vma
10541 + input_section->output_offset
10542 + rel->r_offset);
10543
10544 value = relocation;
10545
10546 /* We do not check for overflow of this reloc. Although strictly
10547 speaking this is incorrect, it appears to be necessary in order
10548 to work with IAR generated relocs. Since GCC and GAS do not
10549 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
10550 a problem for them. */
10551 value &= 0x3fc;
10552
10553 insn = (insn & 0xff00) | (value >> 2);
10554
10555 bfd_put_16 (input_bfd, insn, hit_data);
10556
10557 return bfd_reloc_ok;
10558 }
10559
10560 case R_ARM_THM_PC12:
10561 /* Corresponds to: ldr.w reg, [pc, #offset]. */
10562 {
10563 bfd_vma insn;
10564 bfd_signed_vma relocation;
10565
10566 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
10567 | bfd_get_16 (input_bfd, hit_data + 2);
10568
10569 if (globals->use_rel)
10570 {
10571 signed_addend = insn & 0xfff;
10572 if (!(insn & (1 << 23)))
10573 signed_addend = -signed_addend;
10574 }
10575
10576 relocation = value + signed_addend;
10577 relocation -= Pa (input_section->output_section->vma
10578 + input_section->output_offset
10579 + rel->r_offset);
10580
10581 value = relocation;
10582
10583 if (value >= 0x1000)
10584 return bfd_reloc_overflow;
10585
10586 insn = (insn & 0xff7ff000) | value;
10587 if (relocation >= 0)
10588 insn |= (1 << 23);
10589
10590 bfd_put_16 (input_bfd, insn >> 16, hit_data);
10591 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10592
10593 return bfd_reloc_ok;
10594 }
10595
10596 case R_ARM_THM_XPC22:
10597 case R_ARM_THM_CALL:
10598 case R_ARM_THM_JUMP24:
10599 /* Thumb BL (branch long instruction). */
10600 {
10601 bfd_vma relocation;
10602 bfd_vma reloc_sign;
10603 bfd_boolean overflow = FALSE;
10604 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
10605 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
10606 bfd_signed_vma reloc_signed_max;
10607 bfd_signed_vma reloc_signed_min;
10608 bfd_vma check;
10609 bfd_signed_vma signed_check;
10610 int bitsize;
10611 const int thumb2 = using_thumb2 (globals);
10612 const int thumb2_bl = using_thumb2_bl (globals);
10613
10614 /* A branch to an undefined weak symbol is turned into a jump to
10615 the next instruction unless a PLT entry will be created.
10616 The jump to the next instruction is optimized as a NOP.W for
10617 Thumb-2 enabled architectures. */
10618 if (h && h->root.type == bfd_link_hash_undefweak
10619 && plt_offset == (bfd_vma) -1)
10620 {
10621 if (thumb2)
10622 {
10623 bfd_put_16 (input_bfd, 0xf3af, hit_data);
10624 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
10625 }
10626 else
10627 {
10628 bfd_put_16 (input_bfd, 0xe000, hit_data);
10629 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
10630 }
10631 return bfd_reloc_ok;
10632 }
10633
10634 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
10635 with Thumb-1) involving the J1 and J2 bits. */
10636 if (globals->use_rel)
10637 {
10638 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
10639 bfd_vma upper = upper_insn & 0x3ff;
10640 bfd_vma lower = lower_insn & 0x7ff;
10641 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
10642 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
10643 bfd_vma i1 = j1 ^ s ? 0 : 1;
10644 bfd_vma i2 = j2 ^ s ? 0 : 1;
10645
10646 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
10647 /* Sign extend. */
10648 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
10649
10650 signed_addend = addend;
10651 }
10652
10653 if (r_type == R_ARM_THM_XPC22)
10654 {
10655 /* Check for Thumb to Thumb call. */
10656 /* FIXME: Should we translate the instruction into a BL
10657 instruction instead ? */
10658 if (branch_type == ST_BRANCH_TO_THUMB)
10659 _bfd_error_handler
10660 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
10661 input_bfd,
10662 h ? h->root.root.string : "(local)");
10663 }
10664 else
10665 {
10666 /* If it is not a call to Thumb, assume call to Arm.
10667 If it is a call relative to a section name, then it is not a
10668 function call at all, but rather a long jump. Calls through
10669 the PLT do not require stubs. */
10670 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
10671 {
10672 if (globals->use_blx && r_type == R_ARM_THM_CALL)
10673 {
10674 /* Convert BL to BLX. */
10675 lower_insn = (lower_insn & ~0x1000) | 0x0800;
10676 }
10677 else if (( r_type != R_ARM_THM_CALL)
10678 && (r_type != R_ARM_THM_JUMP24))
10679 {
10680 if (elf32_thumb_to_arm_stub
10681 (info, sym_name, input_bfd, output_bfd, input_section,
10682 hit_data, sym_sec, rel->r_offset, signed_addend, value,
10683 error_message))
10684 return bfd_reloc_ok;
10685 else
10686 return bfd_reloc_dangerous;
10687 }
10688 }
10689 else if (branch_type == ST_BRANCH_TO_THUMB
10690 && globals->use_blx
10691 && r_type == R_ARM_THM_CALL)
10692 {
10693 /* Make sure this is a BL. */
10694 lower_insn |= 0x1800;
10695 }
10696 }
10697
10698 enum elf32_arm_stub_type stub_type = arm_stub_none;
10699 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
10700 {
10701 /* Check if a stub has to be inserted because the destination
10702 is too far. */
10703 struct elf32_arm_stub_hash_entry *stub_entry;
10704 struct elf32_arm_link_hash_entry *hash;
10705
10706 hash = (struct elf32_arm_link_hash_entry *) h;
10707
10708 stub_type = arm_type_of_stub (info, input_section, rel,
10709 st_type, &branch_type,
10710 hash, value, sym_sec,
10711 input_bfd, sym_name);
10712
10713 if (stub_type != arm_stub_none)
10714 {
10715 /* The target is out of reach or we are changing modes, so
10716 redirect the branch to the local stub for this
10717 function. */
10718 stub_entry = elf32_arm_get_stub_entry (input_section,
10719 sym_sec, h,
10720 rel, globals,
10721 stub_type);
10722 if (stub_entry != NULL)
10723 {
10724 value = (stub_entry->stub_offset
10725 + stub_entry->stub_sec->output_offset
10726 + stub_entry->stub_sec->output_section->vma);
10727
10728 if (plt_offset != (bfd_vma) -1)
10729 *unresolved_reloc_p = FALSE;
10730 }
10731
10732 /* If this call becomes a call to Arm, force BLX. */
10733 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
10734 {
10735 if ((stub_entry
10736 && !arm_stub_is_thumb (stub_entry->stub_type))
10737 || branch_type != ST_BRANCH_TO_THUMB)
10738 lower_insn = (lower_insn & ~0x1000) | 0x0800;
10739 }
10740 }
10741 }
10742
10743 /* Handle calls via the PLT. */
10744 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
10745 {
10746 value = (splt->output_section->vma
10747 + splt->output_offset
10748 + plt_offset);
10749
10750 if (globals->use_blx
10751 && r_type == R_ARM_THM_CALL
10752 && ! using_thumb_only (globals))
10753 {
10754 /* If the Thumb BLX instruction is available, convert
10755 the BL to a BLX instruction to call the ARM-mode
10756 PLT entry. */
10757 lower_insn = (lower_insn & ~0x1000) | 0x0800;
10758 branch_type = ST_BRANCH_TO_ARM;
10759 }
10760 else
10761 {
10762 if (! using_thumb_only (globals))
10763 /* Target the Thumb stub before the ARM PLT entry. */
10764 value -= PLT_THUMB_STUB_SIZE;
10765 branch_type = ST_BRANCH_TO_THUMB;
10766 }
10767 *unresolved_reloc_p = FALSE;
10768 }
10769
10770 relocation = value + signed_addend;
10771
10772 relocation -= (input_section->output_section->vma
10773 + input_section->output_offset
10774 + rel->r_offset);
10775
10776 check = relocation >> howto->rightshift;
10777
10778 /* If this is a signed value, the rightshift just dropped
10779 leading 1 bits (assuming twos complement). */
10780 if ((bfd_signed_vma) relocation >= 0)
10781 signed_check = check;
10782 else
10783 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
10784
10785 /* Calculate the permissable maximum and minimum values for
10786 this relocation according to whether we're relocating for
10787 Thumb-2 or not. */
10788 bitsize = howto->bitsize;
10789 if (!thumb2_bl)
10790 bitsize -= 2;
10791 reloc_signed_max = (1 << (bitsize - 1)) - 1;
10792 reloc_signed_min = ~reloc_signed_max;
10793
10794 /* Assumes two's complement. */
10795 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
10796 overflow = TRUE;
10797
10798 if ((lower_insn & 0x5000) == 0x4000)
10799 /* For a BLX instruction, make sure that the relocation is rounded up
10800 to a word boundary. This follows the semantics of the instruction
10801 which specifies that bit 1 of the target address will come from bit
10802 1 of the base address. */
10803 relocation = (relocation + 2) & ~ 3;
10804
10805 /* Put RELOCATION back into the insn. Assumes two's complement.
10806 We use the Thumb-2 encoding, which is safe even if dealing with
10807 a Thumb-1 instruction by virtue of our overflow check above. */
10808 reloc_sign = (signed_check < 0) ? 1 : 0;
10809 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
10810 | ((relocation >> 12) & 0x3ff)
10811 | (reloc_sign << 10);
10812 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
10813 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
10814 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
10815 | ((relocation >> 1) & 0x7ff);
10816
10817 /* Put the relocated value back in the object file: */
10818 bfd_put_16 (input_bfd, upper_insn, hit_data);
10819 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
10820
10821 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
10822 }
10823 break;
10824
10825 case R_ARM_THM_JUMP19:
10826 /* Thumb32 conditional branch instruction. */
10827 {
10828 bfd_vma relocation;
10829 bfd_boolean overflow = FALSE;
10830 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
10831 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
10832 bfd_signed_vma reloc_signed_max = 0xffffe;
10833 bfd_signed_vma reloc_signed_min = -0x100000;
10834 bfd_signed_vma signed_check;
10835 enum elf32_arm_stub_type stub_type = arm_stub_none;
10836 struct elf32_arm_stub_hash_entry *stub_entry;
10837 struct elf32_arm_link_hash_entry *hash;
10838
10839 /* Need to refetch the addend, reconstruct the top three bits,
10840 and squish the two 11 bit pieces together. */
10841 if (globals->use_rel)
10842 {
10843 bfd_vma S = (upper_insn & 0x0400) >> 10;
10844 bfd_vma upper = (upper_insn & 0x003f);
10845 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
10846 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
10847 bfd_vma lower = (lower_insn & 0x07ff);
10848
10849 upper |= J1 << 6;
10850 upper |= J2 << 7;
10851 upper |= (!S) << 8;
10852 upper -= 0x0100; /* Sign extend. */
10853
10854 addend = (upper << 12) | (lower << 1);
10855 signed_addend = addend;
10856 }
10857
10858 /* Handle calls via the PLT. */
10859 if (plt_offset != (bfd_vma) -1)
10860 {
10861 value = (splt->output_section->vma
10862 + splt->output_offset
10863 + plt_offset);
10864 /* Target the Thumb stub before the ARM PLT entry. */
10865 value -= PLT_THUMB_STUB_SIZE;
10866 *unresolved_reloc_p = FALSE;
10867 }
10868
10869 hash = (struct elf32_arm_link_hash_entry *)h;
10870
10871 stub_type = arm_type_of_stub (info, input_section, rel,
10872 st_type, &branch_type,
10873 hash, value, sym_sec,
10874 input_bfd, sym_name);
10875 if (stub_type != arm_stub_none)
10876 {
10877 stub_entry = elf32_arm_get_stub_entry (input_section,
10878 sym_sec, h,
10879 rel, globals,
10880 stub_type);
10881 if (stub_entry != NULL)
10882 {
10883 value = (stub_entry->stub_offset
10884 + stub_entry->stub_sec->output_offset
10885 + stub_entry->stub_sec->output_section->vma);
10886 }
10887 }
10888
10889 relocation = value + signed_addend;
10890 relocation -= (input_section->output_section->vma
10891 + input_section->output_offset
10892 + rel->r_offset);
10893 signed_check = (bfd_signed_vma) relocation;
10894
10895 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
10896 overflow = TRUE;
10897
10898 /* Put RELOCATION back into the insn. */
10899 {
10900 bfd_vma S = (relocation & 0x00100000) >> 20;
10901 bfd_vma J2 = (relocation & 0x00080000) >> 19;
10902 bfd_vma J1 = (relocation & 0x00040000) >> 18;
10903 bfd_vma hi = (relocation & 0x0003f000) >> 12;
10904 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
10905
10906 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
10907 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
10908 }
10909
10910 /* Put the relocated value back in the object file: */
10911 bfd_put_16 (input_bfd, upper_insn, hit_data);
10912 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
10913
10914 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
10915 }
10916
10917 case R_ARM_THM_JUMP11:
10918 case R_ARM_THM_JUMP8:
10919 case R_ARM_THM_JUMP6:
10920 /* Thumb B (branch) instruction). */
10921 {
10922 bfd_signed_vma relocation;
10923 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
10924 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
10925 bfd_signed_vma signed_check;
10926
10927 /* CZB cannot jump backward. */
10928 if (r_type == R_ARM_THM_JUMP6)
10929 reloc_signed_min = 0;
10930
10931 if (globals->use_rel)
10932 {
10933 /* Need to refetch addend. */
10934 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
10935 if (addend & ((howto->src_mask + 1) >> 1))
10936 {
10937 signed_addend = -1;
10938 signed_addend &= ~ howto->src_mask;
10939 signed_addend |= addend;
10940 }
10941 else
10942 signed_addend = addend;
10943 /* The value in the insn has been right shifted. We need to
10944 undo this, so that we can perform the address calculation
10945 in terms of bytes. */
10946 signed_addend <<= howto->rightshift;
10947 }
10948 relocation = value + signed_addend;
10949
10950 relocation -= (input_section->output_section->vma
10951 + input_section->output_offset
10952 + rel->r_offset);
10953
10954 relocation >>= howto->rightshift;
10955 signed_check = relocation;
10956
10957 if (r_type == R_ARM_THM_JUMP6)
10958 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
10959 else
10960 relocation &= howto->dst_mask;
10961 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
10962
10963 bfd_put_16 (input_bfd, relocation, hit_data);
10964
10965 /* Assumes two's complement. */
10966 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
10967 return bfd_reloc_overflow;
10968
10969 return bfd_reloc_ok;
10970 }
10971
10972 case R_ARM_ALU_PCREL7_0:
10973 case R_ARM_ALU_PCREL15_8:
10974 case R_ARM_ALU_PCREL23_15:
10975 {
10976 bfd_vma insn;
10977 bfd_vma relocation;
10978
10979 insn = bfd_get_32 (input_bfd, hit_data);
10980 if (globals->use_rel)
10981 {
10982 /* Extract the addend. */
10983 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
10984 signed_addend = addend;
10985 }
10986 relocation = value + signed_addend;
10987
10988 relocation -= (input_section->output_section->vma
10989 + input_section->output_offset
10990 + rel->r_offset);
10991 insn = (insn & ~0xfff)
10992 | ((howto->bitpos << 7) & 0xf00)
10993 | ((relocation >> howto->bitpos) & 0xff);
10994 bfd_put_32 (input_bfd, value, hit_data);
10995 }
10996 return bfd_reloc_ok;
10997
10998 case R_ARM_GNU_VTINHERIT:
10999 case R_ARM_GNU_VTENTRY:
11000 return bfd_reloc_ok;
11001
11002 case R_ARM_GOTOFF32:
11003 /* Relocation is relative to the start of the
11004 global offset table. */
11005
11006 BFD_ASSERT (sgot != NULL);
11007 if (sgot == NULL)
11008 return bfd_reloc_notsupported;
11009
11010 /* If we are addressing a Thumb function, we need to adjust the
11011 address by one, so that attempts to call the function pointer will
11012 correctly interpret it as Thumb code. */
11013 if (branch_type == ST_BRANCH_TO_THUMB)
11014 value += 1;
11015
11016 /* Note that sgot->output_offset is not involved in this
11017 calculation. We always want the start of .got. If we
11018 define _GLOBAL_OFFSET_TABLE in a different way, as is
11019 permitted by the ABI, we might have to change this
11020 calculation. */
11021 value -= sgot->output_section->vma;
11022 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11023 contents, rel->r_offset, value,
11024 rel->r_addend);
11025
11026 case R_ARM_GOTPC:
11027 /* Use global offset table as symbol value. */
11028 BFD_ASSERT (sgot != NULL);
11029
11030 if (sgot == NULL)
11031 return bfd_reloc_notsupported;
11032
11033 *unresolved_reloc_p = FALSE;
11034 value = sgot->output_section->vma;
11035 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11036 contents, rel->r_offset, value,
11037 rel->r_addend);
11038
11039 case R_ARM_GOT32:
11040 case R_ARM_GOT_PREL:
11041 /* Relocation is to the entry for this symbol in the
11042 global offset table. */
11043 if (sgot == NULL)
11044 return bfd_reloc_notsupported;
11045
11046 if (dynreloc_st_type == STT_GNU_IFUNC
11047 && plt_offset != (bfd_vma) -1
11048 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
11049 {
11050 /* We have a relocation against a locally-binding STT_GNU_IFUNC
11051 symbol, and the relocation resolves directly to the runtime
11052 target rather than to the .iplt entry. This means that any
11053 .got entry would be the same value as the .igot.plt entry,
11054 so there's no point creating both. */
11055 sgot = globals->root.igotplt;
11056 value = sgot->output_offset + gotplt_offset;
11057 }
11058 else if (h != NULL)
11059 {
11060 bfd_vma off;
11061
11062 off = h->got.offset;
11063 BFD_ASSERT (off != (bfd_vma) -1);
11064 if ((off & 1) != 0)
11065 {
11066 /* We have already processsed one GOT relocation against
11067 this symbol. */
11068 off &= ~1;
11069 if (globals->root.dynamic_sections_created
11070 && !SYMBOL_REFERENCES_LOCAL (info, h))
11071 *unresolved_reloc_p = FALSE;
11072 }
11073 else
11074 {
11075 Elf_Internal_Rela outrel;
11076
11077 if (h->dynindx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
11078 {
11079 /* If the symbol doesn't resolve locally in a static
11080 object, we have an undefined reference. If the
11081 symbol doesn't resolve locally in a dynamic object,
11082 it should be resolved by the dynamic linker. */
11083 if (globals->root.dynamic_sections_created)
11084 {
11085 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
11086 *unresolved_reloc_p = FALSE;
11087 }
11088 else
11089 outrel.r_info = 0;
11090 outrel.r_addend = 0;
11091 }
11092 else
11093 {
11094 if (dynreloc_st_type == STT_GNU_IFUNC)
11095 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
11096 else if (bfd_link_pic (info)
11097 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11098 || h->root.type != bfd_link_hash_undefweak))
11099 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11100 else
11101 outrel.r_info = 0;
11102 outrel.r_addend = dynreloc_value;
11103 }
11104
11105 /* The GOT entry is initialized to zero by default.
11106 See if we should install a different value. */
11107 if (outrel.r_addend != 0
11108 && (outrel.r_info == 0 || globals->use_rel))
11109 {
11110 bfd_put_32 (output_bfd, outrel.r_addend,
11111 sgot->contents + off);
11112 outrel.r_addend = 0;
11113 }
11114
11115 if (outrel.r_info != 0)
11116 {
11117 outrel.r_offset = (sgot->output_section->vma
11118 + sgot->output_offset
11119 + off);
11120 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11121 }
11122 h->got.offset |= 1;
11123 }
11124 value = sgot->output_offset + off;
11125 }
11126 else
11127 {
11128 bfd_vma off;
11129
11130 BFD_ASSERT (local_got_offsets != NULL
11131 && local_got_offsets[r_symndx] != (bfd_vma) -1);
11132
11133 off = local_got_offsets[r_symndx];
11134
11135 /* The offset must always be a multiple of 4. We use the
11136 least significant bit to record whether we have already
11137 generated the necessary reloc. */
11138 if ((off & 1) != 0)
11139 off &= ~1;
11140 else
11141 {
11142 if (globals->use_rel)
11143 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
11144
11145 if (bfd_link_pic (info) || dynreloc_st_type == STT_GNU_IFUNC)
11146 {
11147 Elf_Internal_Rela outrel;
11148
11149 outrel.r_addend = addend + dynreloc_value;
11150 outrel.r_offset = (sgot->output_section->vma
11151 + sgot->output_offset
11152 + off);
11153 if (dynreloc_st_type == STT_GNU_IFUNC)
11154 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
11155 else
11156 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11157 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11158 }
11159
11160 local_got_offsets[r_symndx] |= 1;
11161 }
11162
11163 value = sgot->output_offset + off;
11164 }
11165 if (r_type != R_ARM_GOT32)
11166 value += sgot->output_section->vma;
11167
11168 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11169 contents, rel->r_offset, value,
11170 rel->r_addend);
11171
11172 case R_ARM_TLS_LDO32:
11173 value = value - dtpoff_base (info);
11174
11175 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11176 contents, rel->r_offset, value,
11177 rel->r_addend);
11178
11179 case R_ARM_TLS_LDM32:
11180 {
11181 bfd_vma off;
11182
11183 if (sgot == NULL)
11184 abort ();
11185
11186 off = globals->tls_ldm_got.offset;
11187
11188 if ((off & 1) != 0)
11189 off &= ~1;
11190 else
11191 {
11192 /* If we don't know the module number, create a relocation
11193 for it. */
11194 if (bfd_link_pic (info))
11195 {
11196 Elf_Internal_Rela outrel;
11197
11198 if (srelgot == NULL)
11199 abort ();
11200
11201 outrel.r_addend = 0;
11202 outrel.r_offset = (sgot->output_section->vma
11203 + sgot->output_offset + off);
11204 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
11205
11206 if (globals->use_rel)
11207 bfd_put_32 (output_bfd, outrel.r_addend,
11208 sgot->contents + off);
11209
11210 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11211 }
11212 else
11213 bfd_put_32 (output_bfd, 1, sgot->contents + off);
11214
11215 globals->tls_ldm_got.offset |= 1;
11216 }
11217
11218 value = sgot->output_section->vma + sgot->output_offset + off
11219 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
11220
11221 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11222 contents, rel->r_offset, value,
11223 rel->r_addend);
11224 }
11225
11226 case R_ARM_TLS_CALL:
11227 case R_ARM_THM_TLS_CALL:
11228 case R_ARM_TLS_GD32:
11229 case R_ARM_TLS_IE32:
11230 case R_ARM_TLS_GOTDESC:
11231 case R_ARM_TLS_DESCSEQ:
11232 case R_ARM_THM_TLS_DESCSEQ:
11233 {
11234 bfd_vma off, offplt;
11235 int indx = 0;
11236 char tls_type;
11237
11238 BFD_ASSERT (sgot != NULL);
11239
11240 if (h != NULL)
11241 {
11242 bfd_boolean dyn;
11243 dyn = globals->root.dynamic_sections_created;
11244 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
11245 bfd_link_pic (info),
11246 h)
11247 && (!bfd_link_pic (info)
11248 || !SYMBOL_REFERENCES_LOCAL (info, h)))
11249 {
11250 *unresolved_reloc_p = FALSE;
11251 indx = h->dynindx;
11252 }
11253 off = h->got.offset;
11254 offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
11255 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
11256 }
11257 else
11258 {
11259 BFD_ASSERT (local_got_offsets != NULL);
11260 off = local_got_offsets[r_symndx];
11261 offplt = local_tlsdesc_gotents[r_symndx];
11262 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
11263 }
11264
11265 /* Linker relaxations happens from one of the
11266 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
11267 if (ELF32_R_TYPE(rel->r_info) != r_type)
11268 tls_type = GOT_TLS_IE;
11269
11270 BFD_ASSERT (tls_type != GOT_UNKNOWN);
11271
11272 if ((off & 1) != 0)
11273 off &= ~1;
11274 else
11275 {
11276 bfd_boolean need_relocs = FALSE;
11277 Elf_Internal_Rela outrel;
11278 int cur_off = off;
11279
11280 /* The GOT entries have not been initialized yet. Do it
11281 now, and emit any relocations. If both an IE GOT and a
11282 GD GOT are necessary, we emit the GD first. */
11283
11284 if ((bfd_link_pic (info) || indx != 0)
11285 && (h == NULL
11286 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11287 || h->root.type != bfd_link_hash_undefweak))
11288 {
11289 need_relocs = TRUE;
11290 BFD_ASSERT (srelgot != NULL);
11291 }
11292
11293 if (tls_type & GOT_TLS_GDESC)
11294 {
11295 bfd_byte *loc;
11296
11297 /* We should have relaxed, unless this is an undefined
11298 weak symbol. */
11299 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
11300 || bfd_link_pic (info));
11301 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
11302 <= globals->root.sgotplt->size);
11303
11304 outrel.r_addend = 0;
11305 outrel.r_offset = (globals->root.sgotplt->output_section->vma
11306 + globals->root.sgotplt->output_offset
11307 + offplt
11308 + globals->sgotplt_jump_table_size);
11309
11310 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
11311 sreloc = globals->root.srelplt;
11312 loc = sreloc->contents;
11313 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
11314 BFD_ASSERT (loc + RELOC_SIZE (globals)
11315 <= sreloc->contents + sreloc->size);
11316
11317 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
11318
11319 /* For globals, the first word in the relocation gets
11320 the relocation index and the top bit set, or zero,
11321 if we're binding now. For locals, it gets the
11322 symbol's offset in the tls section. */
11323 bfd_put_32 (output_bfd,
11324 !h ? value - elf_hash_table (info)->tls_sec->vma
11325 : info->flags & DF_BIND_NOW ? 0
11326 : 0x80000000 | ELF32_R_SYM (outrel.r_info),
11327 globals->root.sgotplt->contents + offplt
11328 + globals->sgotplt_jump_table_size);
11329
11330 /* Second word in the relocation is always zero. */
11331 bfd_put_32 (output_bfd, 0,
11332 globals->root.sgotplt->contents + offplt
11333 + globals->sgotplt_jump_table_size + 4);
11334 }
11335 if (tls_type & GOT_TLS_GD)
11336 {
11337 if (need_relocs)
11338 {
11339 outrel.r_addend = 0;
11340 outrel.r_offset = (sgot->output_section->vma
11341 + sgot->output_offset
11342 + cur_off);
11343 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
11344
11345 if (globals->use_rel)
11346 bfd_put_32 (output_bfd, outrel.r_addend,
11347 sgot->contents + cur_off);
11348
11349 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11350
11351 if (indx == 0)
11352 bfd_put_32 (output_bfd, value - dtpoff_base (info),
11353 sgot->contents + cur_off + 4);
11354 else
11355 {
11356 outrel.r_addend = 0;
11357 outrel.r_info = ELF32_R_INFO (indx,
11358 R_ARM_TLS_DTPOFF32);
11359 outrel.r_offset += 4;
11360
11361 if (globals->use_rel)
11362 bfd_put_32 (output_bfd, outrel.r_addend,
11363 sgot->contents + cur_off + 4);
11364
11365 elf32_arm_add_dynreloc (output_bfd, info,
11366 srelgot, &outrel);
11367 }
11368 }
11369 else
11370 {
11371 /* If we are not emitting relocations for a
11372 general dynamic reference, then we must be in a
11373 static link or an executable link with the
11374 symbol binding locally. Mark it as belonging
11375 to module 1, the executable. */
11376 bfd_put_32 (output_bfd, 1,
11377 sgot->contents + cur_off);
11378 bfd_put_32 (output_bfd, value - dtpoff_base (info),
11379 sgot->contents + cur_off + 4);
11380 }
11381
11382 cur_off += 8;
11383 }
11384
11385 if (tls_type & GOT_TLS_IE)
11386 {
11387 if (need_relocs)
11388 {
11389 if (indx == 0)
11390 outrel.r_addend = value - dtpoff_base (info);
11391 else
11392 outrel.r_addend = 0;
11393 outrel.r_offset = (sgot->output_section->vma
11394 + sgot->output_offset
11395 + cur_off);
11396 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
11397
11398 if (globals->use_rel)
11399 bfd_put_32 (output_bfd, outrel.r_addend,
11400 sgot->contents + cur_off);
11401
11402 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11403 }
11404 else
11405 bfd_put_32 (output_bfd, tpoff (info, value),
11406 sgot->contents + cur_off);
11407 cur_off += 4;
11408 }
11409
11410 if (h != NULL)
11411 h->got.offset |= 1;
11412 else
11413 local_got_offsets[r_symndx] |= 1;
11414 }
11415
11416 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
11417 off += 8;
11418 else if (tls_type & GOT_TLS_GDESC)
11419 off = offplt;
11420
11421 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
11422 || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
11423 {
11424 bfd_signed_vma offset;
11425 /* TLS stubs are arm mode. The original symbol is a
11426 data object, so branch_type is bogus. */
11427 branch_type = ST_BRANCH_TO_ARM;
11428 enum elf32_arm_stub_type stub_type
11429 = arm_type_of_stub (info, input_section, rel,
11430 st_type, &branch_type,
11431 (struct elf32_arm_link_hash_entry *)h,
11432 globals->tls_trampoline, globals->root.splt,
11433 input_bfd, sym_name);
11434
11435 if (stub_type != arm_stub_none)
11436 {
11437 struct elf32_arm_stub_hash_entry *stub_entry
11438 = elf32_arm_get_stub_entry
11439 (input_section, globals->root.splt, 0, rel,
11440 globals, stub_type);
11441 offset = (stub_entry->stub_offset
11442 + stub_entry->stub_sec->output_offset
11443 + stub_entry->stub_sec->output_section->vma);
11444 }
11445 else
11446 offset = (globals->root.splt->output_section->vma
11447 + globals->root.splt->output_offset
11448 + globals->tls_trampoline);
11449
11450 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
11451 {
11452 unsigned long inst;
11453
11454 offset -= (input_section->output_section->vma
11455 + input_section->output_offset
11456 + rel->r_offset + 8);
11457
11458 inst = offset >> 2;
11459 inst &= 0x00ffffff;
11460 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
11461 }
11462 else
11463 {
11464 /* Thumb blx encodes the offset in a complicated
11465 fashion. */
11466 unsigned upper_insn, lower_insn;
11467 unsigned neg;
11468
11469 offset -= (input_section->output_section->vma
11470 + input_section->output_offset
11471 + rel->r_offset + 4);
11472
11473 if (stub_type != arm_stub_none
11474 && arm_stub_is_thumb (stub_type))
11475 {
11476 lower_insn = 0xd000;
11477 }
11478 else
11479 {
11480 lower_insn = 0xc000;
11481 /* Round up the offset to a word boundary. */
11482 offset = (offset + 2) & ~2;
11483 }
11484
11485 neg = offset < 0;
11486 upper_insn = (0xf000
11487 | ((offset >> 12) & 0x3ff)
11488 | (neg << 10));
11489 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
11490 | (((!((offset >> 22) & 1)) ^ neg) << 11)
11491 | ((offset >> 1) & 0x7ff);
11492 bfd_put_16 (input_bfd, upper_insn, hit_data);
11493 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11494 return bfd_reloc_ok;
11495 }
11496 }
11497 /* These relocations needs special care, as besides the fact
11498 they point somewhere in .gotplt, the addend must be
11499 adjusted accordingly depending on the type of instruction
11500 we refer to. */
11501 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
11502 {
11503 unsigned long data, insn;
11504 unsigned thumb;
11505
11506 data = bfd_get_32 (input_bfd, hit_data);
11507 thumb = data & 1;
11508 data &= ~1u;
11509
11510 if (thumb)
11511 {
11512 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
11513 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
11514 insn = (insn << 16)
11515 | bfd_get_16 (input_bfd,
11516 contents + rel->r_offset - data + 2);
11517 if ((insn & 0xf800c000) == 0xf000c000)
11518 /* bl/blx */
11519 value = -6;
11520 else if ((insn & 0xffffff00) == 0x4400)
11521 /* add */
11522 value = -5;
11523 else
11524 {
11525 _bfd_error_handler
11526 /* xgettext:c-format */
11527 (_("%B(%A+0x%lx): unexpected Thumb instruction '0x%x' referenced by TLS_GOTDESC"),
11528 input_bfd, input_section,
11529 (unsigned long)rel->r_offset, insn);
11530 return bfd_reloc_notsupported;
11531 }
11532 }
11533 else
11534 {
11535 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
11536
11537 switch (insn >> 24)
11538 {
11539 case 0xeb: /* bl */
11540 case 0xfa: /* blx */
11541 value = -4;
11542 break;
11543
11544 case 0xe0: /* add */
11545 value = -8;
11546 break;
11547
11548 default:
11549 _bfd_error_handler
11550 /* xgettext:c-format */
11551 (_("%B(%A+0x%lx): unexpected ARM instruction '0x%x' referenced by TLS_GOTDESC"),
11552 input_bfd, input_section,
11553 (unsigned long)rel->r_offset, insn);
11554 return bfd_reloc_notsupported;
11555 }
11556 }
11557
11558 value += ((globals->root.sgotplt->output_section->vma
11559 + globals->root.sgotplt->output_offset + off)
11560 - (input_section->output_section->vma
11561 + input_section->output_offset
11562 + rel->r_offset)
11563 + globals->sgotplt_jump_table_size);
11564 }
11565 else
11566 value = ((globals->root.sgot->output_section->vma
11567 + globals->root.sgot->output_offset + off)
11568 - (input_section->output_section->vma
11569 + input_section->output_offset + rel->r_offset));
11570
11571 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11572 contents, rel->r_offset, value,
11573 rel->r_addend);
11574 }
11575
11576 case R_ARM_TLS_LE32:
11577 if (bfd_link_dll (info))
11578 {
11579 _bfd_error_handler
11580 /* xgettext:c-format */
11581 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
11582 input_bfd, input_section,
11583 (long) rel->r_offset, howto->name);
11584 return bfd_reloc_notsupported;
11585 }
11586 else
11587 value = tpoff (info, value);
11588
11589 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11590 contents, rel->r_offset, value,
11591 rel->r_addend);
11592
11593 case R_ARM_V4BX:
11594 if (globals->fix_v4bx)
11595 {
11596 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11597
11598 /* Ensure that we have a BX instruction. */
11599 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
11600
11601 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
11602 {
11603 /* Branch to veneer. */
11604 bfd_vma glue_addr;
11605 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
11606 glue_addr -= input_section->output_section->vma
11607 + input_section->output_offset
11608 + rel->r_offset + 8;
11609 insn = (insn & 0xf0000000) | 0x0a000000
11610 | ((glue_addr >> 2) & 0x00ffffff);
11611 }
11612 else
11613 {
11614 /* Preserve Rm (lowest four bits) and the condition code
11615 (highest four bits). Other bits encode MOV PC,Rm. */
11616 insn = (insn & 0xf000000f) | 0x01a0f000;
11617 }
11618
11619 bfd_put_32 (input_bfd, insn, hit_data);
11620 }
11621 return bfd_reloc_ok;
11622
11623 case R_ARM_MOVW_ABS_NC:
11624 case R_ARM_MOVT_ABS:
11625 case R_ARM_MOVW_PREL_NC:
11626 case R_ARM_MOVT_PREL:
11627 /* Until we properly support segment-base-relative addressing then
11628 we assume the segment base to be zero, as for the group relocations.
11629 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
11630 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
11631 case R_ARM_MOVW_BREL_NC:
11632 case R_ARM_MOVW_BREL:
11633 case R_ARM_MOVT_BREL:
11634 {
11635 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11636
11637 if (globals->use_rel)
11638 {
11639 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
11640 signed_addend = (addend ^ 0x8000) - 0x8000;
11641 }
11642
11643 value += signed_addend;
11644
11645 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
11646 value -= (input_section->output_section->vma
11647 + input_section->output_offset + rel->r_offset);
11648
11649 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
11650 return bfd_reloc_overflow;
11651
11652 if (branch_type == ST_BRANCH_TO_THUMB)
11653 value |= 1;
11654
11655 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
11656 || r_type == R_ARM_MOVT_BREL)
11657 value >>= 16;
11658
11659 insn &= 0xfff0f000;
11660 insn |= value & 0xfff;
11661 insn |= (value & 0xf000) << 4;
11662 bfd_put_32 (input_bfd, insn, hit_data);
11663 }
11664 return bfd_reloc_ok;
11665
11666 case R_ARM_THM_MOVW_ABS_NC:
11667 case R_ARM_THM_MOVT_ABS:
11668 case R_ARM_THM_MOVW_PREL_NC:
11669 case R_ARM_THM_MOVT_PREL:
11670 /* Until we properly support segment-base-relative addressing then
11671 we assume the segment base to be zero, as for the above relocations.
11672 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
11673 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
11674 as R_ARM_THM_MOVT_ABS. */
11675 case R_ARM_THM_MOVW_BREL_NC:
11676 case R_ARM_THM_MOVW_BREL:
11677 case R_ARM_THM_MOVT_BREL:
11678 {
11679 bfd_vma insn;
11680
11681 insn = bfd_get_16 (input_bfd, hit_data) << 16;
11682 insn |= bfd_get_16 (input_bfd, hit_data + 2);
11683
11684 if (globals->use_rel)
11685 {
11686 addend = ((insn >> 4) & 0xf000)
11687 | ((insn >> 15) & 0x0800)
11688 | ((insn >> 4) & 0x0700)
11689 | (insn & 0x00ff);
11690 signed_addend = (addend ^ 0x8000) - 0x8000;
11691 }
11692
11693 value += signed_addend;
11694
11695 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
11696 value -= (input_section->output_section->vma
11697 + input_section->output_offset + rel->r_offset);
11698
11699 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
11700 return bfd_reloc_overflow;
11701
11702 if (branch_type == ST_BRANCH_TO_THUMB)
11703 value |= 1;
11704
11705 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
11706 || r_type == R_ARM_THM_MOVT_BREL)
11707 value >>= 16;
11708
11709 insn &= 0xfbf08f00;
11710 insn |= (value & 0xf000) << 4;
11711 insn |= (value & 0x0800) << 15;
11712 insn |= (value & 0x0700) << 4;
11713 insn |= (value & 0x00ff);
11714
11715 bfd_put_16 (input_bfd, insn >> 16, hit_data);
11716 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
11717 }
11718 return bfd_reloc_ok;
11719
11720 case R_ARM_ALU_PC_G0_NC:
11721 case R_ARM_ALU_PC_G1_NC:
11722 case R_ARM_ALU_PC_G0:
11723 case R_ARM_ALU_PC_G1:
11724 case R_ARM_ALU_PC_G2:
11725 case R_ARM_ALU_SB_G0_NC:
11726 case R_ARM_ALU_SB_G1_NC:
11727 case R_ARM_ALU_SB_G0:
11728 case R_ARM_ALU_SB_G1:
11729 case R_ARM_ALU_SB_G2:
11730 {
11731 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11732 bfd_vma pc = input_section->output_section->vma
11733 + input_section->output_offset + rel->r_offset;
11734 /* sb is the origin of the *segment* containing the symbol. */
11735 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
11736 bfd_vma residual;
11737 bfd_vma g_n;
11738 bfd_signed_vma signed_value;
11739 int group = 0;
11740
11741 /* Determine which group of bits to select. */
11742 switch (r_type)
11743 {
11744 case R_ARM_ALU_PC_G0_NC:
11745 case R_ARM_ALU_PC_G0:
11746 case R_ARM_ALU_SB_G0_NC:
11747 case R_ARM_ALU_SB_G0:
11748 group = 0;
11749 break;
11750
11751 case R_ARM_ALU_PC_G1_NC:
11752 case R_ARM_ALU_PC_G1:
11753 case R_ARM_ALU_SB_G1_NC:
11754 case R_ARM_ALU_SB_G1:
11755 group = 1;
11756 break;
11757
11758 case R_ARM_ALU_PC_G2:
11759 case R_ARM_ALU_SB_G2:
11760 group = 2;
11761 break;
11762
11763 default:
11764 abort ();
11765 }
11766
11767 /* If REL, extract the addend from the insn. If RELA, it will
11768 have already been fetched for us. */
11769 if (globals->use_rel)
11770 {
11771 int negative;
11772 bfd_vma constant = insn & 0xff;
11773 bfd_vma rotation = (insn & 0xf00) >> 8;
11774
11775 if (rotation == 0)
11776 signed_addend = constant;
11777 else
11778 {
11779 /* Compensate for the fact that in the instruction, the
11780 rotation is stored in multiples of 2 bits. */
11781 rotation *= 2;
11782
11783 /* Rotate "constant" right by "rotation" bits. */
11784 signed_addend = (constant >> rotation) |
11785 (constant << (8 * sizeof (bfd_vma) - rotation));
11786 }
11787
11788 /* Determine if the instruction is an ADD or a SUB.
11789 (For REL, this determines the sign of the addend.) */
11790 negative = identify_add_or_sub (insn);
11791 if (negative == 0)
11792 {
11793 _bfd_error_handler
11794 /* xgettext:c-format */
11795 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
11796 input_bfd, input_section,
11797 (long) rel->r_offset, howto->name);
11798 return bfd_reloc_overflow;
11799 }
11800
11801 signed_addend *= negative;
11802 }
11803
11804 /* Compute the value (X) to go in the place. */
11805 if (r_type == R_ARM_ALU_PC_G0_NC
11806 || r_type == R_ARM_ALU_PC_G1_NC
11807 || r_type == R_ARM_ALU_PC_G0
11808 || r_type == R_ARM_ALU_PC_G1
11809 || r_type == R_ARM_ALU_PC_G2)
11810 /* PC relative. */
11811 signed_value = value - pc + signed_addend;
11812 else
11813 /* Section base relative. */
11814 signed_value = value - sb + signed_addend;
11815
11816 /* If the target symbol is a Thumb function, then set the
11817 Thumb bit in the address. */
11818 if (branch_type == ST_BRANCH_TO_THUMB)
11819 signed_value |= 1;
11820
11821 /* Calculate the value of the relevant G_n, in encoded
11822 constant-with-rotation format. */
11823 g_n = calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
11824 group, &residual);
11825
11826 /* Check for overflow if required. */
11827 if ((r_type == R_ARM_ALU_PC_G0
11828 || r_type == R_ARM_ALU_PC_G1
11829 || r_type == R_ARM_ALU_PC_G2
11830 || r_type == R_ARM_ALU_SB_G0
11831 || r_type == R_ARM_ALU_SB_G1
11832 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
11833 {
11834 _bfd_error_handler
11835 /* xgettext:c-format */
11836 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
11837 input_bfd, input_section,
11838 (long) rel->r_offset, signed_value < 0 ? - signed_value : signed_value,
11839 howto->name);
11840 return bfd_reloc_overflow;
11841 }
11842
11843 /* Mask out the value and the ADD/SUB part of the opcode; take care
11844 not to destroy the S bit. */
11845 insn &= 0xff1ff000;
11846
11847 /* Set the opcode according to whether the value to go in the
11848 place is negative. */
11849 if (signed_value < 0)
11850 insn |= 1 << 22;
11851 else
11852 insn |= 1 << 23;
11853
11854 /* Encode the offset. */
11855 insn |= g_n;
11856
11857 bfd_put_32 (input_bfd, insn, hit_data);
11858 }
11859 return bfd_reloc_ok;
11860
11861 case R_ARM_LDR_PC_G0:
11862 case R_ARM_LDR_PC_G1:
11863 case R_ARM_LDR_PC_G2:
11864 case R_ARM_LDR_SB_G0:
11865 case R_ARM_LDR_SB_G1:
11866 case R_ARM_LDR_SB_G2:
11867 {
11868 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11869 bfd_vma pc = input_section->output_section->vma
11870 + input_section->output_offset + rel->r_offset;
11871 /* sb is the origin of the *segment* containing the symbol. */
11872 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
11873 bfd_vma residual;
11874 bfd_signed_vma signed_value;
11875 int group = 0;
11876
11877 /* Determine which groups of bits to calculate. */
11878 switch (r_type)
11879 {
11880 case R_ARM_LDR_PC_G0:
11881 case R_ARM_LDR_SB_G0:
11882 group = 0;
11883 break;
11884
11885 case R_ARM_LDR_PC_G1:
11886 case R_ARM_LDR_SB_G1:
11887 group = 1;
11888 break;
11889
11890 case R_ARM_LDR_PC_G2:
11891 case R_ARM_LDR_SB_G2:
11892 group = 2;
11893 break;
11894
11895 default:
11896 abort ();
11897 }
11898
11899 /* If REL, extract the addend from the insn. If RELA, it will
11900 have already been fetched for us. */
11901 if (globals->use_rel)
11902 {
11903 int negative = (insn & (1 << 23)) ? 1 : -1;
11904 signed_addend = negative * (insn & 0xfff);
11905 }
11906
11907 /* Compute the value (X) to go in the place. */
11908 if (r_type == R_ARM_LDR_PC_G0
11909 || r_type == R_ARM_LDR_PC_G1
11910 || r_type == R_ARM_LDR_PC_G2)
11911 /* PC relative. */
11912 signed_value = value - pc + signed_addend;
11913 else
11914 /* Section base relative. */
11915 signed_value = value - sb + signed_addend;
11916
11917 /* Calculate the value of the relevant G_{n-1} to obtain
11918 the residual at that stage. */
11919 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
11920 group - 1, &residual);
11921
11922 /* Check for overflow. */
11923 if (residual >= 0x1000)
11924 {
11925 _bfd_error_handler
11926 /* xgettext:c-format */
11927 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
11928 input_bfd, input_section,
11929 (long) rel->r_offset, labs (signed_value), howto->name);
11930 return bfd_reloc_overflow;
11931 }
11932
11933 /* Mask out the value and U bit. */
11934 insn &= 0xff7ff000;
11935
11936 /* Set the U bit if the value to go in the place is non-negative. */
11937 if (signed_value >= 0)
11938 insn |= 1 << 23;
11939
11940 /* Encode the offset. */
11941 insn |= residual;
11942
11943 bfd_put_32 (input_bfd, insn, hit_data);
11944 }
11945 return bfd_reloc_ok;
11946
11947 case R_ARM_LDRS_PC_G0:
11948 case R_ARM_LDRS_PC_G1:
11949 case R_ARM_LDRS_PC_G2:
11950 case R_ARM_LDRS_SB_G0:
11951 case R_ARM_LDRS_SB_G1:
11952 case R_ARM_LDRS_SB_G2:
11953 {
11954 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11955 bfd_vma pc = input_section->output_section->vma
11956 + input_section->output_offset + rel->r_offset;
11957 /* sb is the origin of the *segment* containing the symbol. */
11958 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
11959 bfd_vma residual;
11960 bfd_signed_vma signed_value;
11961 int group = 0;
11962
11963 /* Determine which groups of bits to calculate. */
11964 switch (r_type)
11965 {
11966 case R_ARM_LDRS_PC_G0:
11967 case R_ARM_LDRS_SB_G0:
11968 group = 0;
11969 break;
11970
11971 case R_ARM_LDRS_PC_G1:
11972 case R_ARM_LDRS_SB_G1:
11973 group = 1;
11974 break;
11975
11976 case R_ARM_LDRS_PC_G2:
11977 case R_ARM_LDRS_SB_G2:
11978 group = 2;
11979 break;
11980
11981 default:
11982 abort ();
11983 }
11984
11985 /* If REL, extract the addend from the insn. If RELA, it will
11986 have already been fetched for us. */
11987 if (globals->use_rel)
11988 {
11989 int negative = (insn & (1 << 23)) ? 1 : -1;
11990 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
11991 }
11992
11993 /* Compute the value (X) to go in the place. */
11994 if (r_type == R_ARM_LDRS_PC_G0
11995 || r_type == R_ARM_LDRS_PC_G1
11996 || r_type == R_ARM_LDRS_PC_G2)
11997 /* PC relative. */
11998 signed_value = value - pc + signed_addend;
11999 else
12000 /* Section base relative. */
12001 signed_value = value - sb + signed_addend;
12002
12003 /* Calculate the value of the relevant G_{n-1} to obtain
12004 the residual at that stage. */
12005 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12006 group - 1, &residual);
12007
12008 /* Check for overflow. */
12009 if (residual >= 0x100)
12010 {
12011 _bfd_error_handler
12012 /* xgettext:c-format */
12013 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
12014 input_bfd, input_section,
12015 (long) rel->r_offset, labs (signed_value), howto->name);
12016 return bfd_reloc_overflow;
12017 }
12018
12019 /* Mask out the value and U bit. */
12020 insn &= 0xff7ff0f0;
12021
12022 /* Set the U bit if the value to go in the place is non-negative. */
12023 if (signed_value >= 0)
12024 insn |= 1 << 23;
12025
12026 /* Encode the offset. */
12027 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
12028
12029 bfd_put_32 (input_bfd, insn, hit_data);
12030 }
12031 return bfd_reloc_ok;
12032
12033 case R_ARM_LDC_PC_G0:
12034 case R_ARM_LDC_PC_G1:
12035 case R_ARM_LDC_PC_G2:
12036 case R_ARM_LDC_SB_G0:
12037 case R_ARM_LDC_SB_G1:
12038 case R_ARM_LDC_SB_G2:
12039 {
12040 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12041 bfd_vma pc = input_section->output_section->vma
12042 + input_section->output_offset + rel->r_offset;
12043 /* sb is the origin of the *segment* containing the symbol. */
12044 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12045 bfd_vma residual;
12046 bfd_signed_vma signed_value;
12047 int group = 0;
12048
12049 /* Determine which groups of bits to calculate. */
12050 switch (r_type)
12051 {
12052 case R_ARM_LDC_PC_G0:
12053 case R_ARM_LDC_SB_G0:
12054 group = 0;
12055 break;
12056
12057 case R_ARM_LDC_PC_G1:
12058 case R_ARM_LDC_SB_G1:
12059 group = 1;
12060 break;
12061
12062 case R_ARM_LDC_PC_G2:
12063 case R_ARM_LDC_SB_G2:
12064 group = 2;
12065 break;
12066
12067 default:
12068 abort ();
12069 }
12070
12071 /* If REL, extract the addend from the insn. If RELA, it will
12072 have already been fetched for us. */
12073 if (globals->use_rel)
12074 {
12075 int negative = (insn & (1 << 23)) ? 1 : -1;
12076 signed_addend = negative * ((insn & 0xff) << 2);
12077 }
12078
12079 /* Compute the value (X) to go in the place. */
12080 if (r_type == R_ARM_LDC_PC_G0
12081 || r_type == R_ARM_LDC_PC_G1
12082 || r_type == R_ARM_LDC_PC_G2)
12083 /* PC relative. */
12084 signed_value = value - pc + signed_addend;
12085 else
12086 /* Section base relative. */
12087 signed_value = value - sb + signed_addend;
12088
12089 /* Calculate the value of the relevant G_{n-1} to obtain
12090 the residual at that stage. */
12091 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12092 group - 1, &residual);
12093
12094 /* Check for overflow. (The absolute value to go in the place must be
12095 divisible by four and, after having been divided by four, must
12096 fit in eight bits.) */
12097 if ((residual & 0x3) != 0 || residual >= 0x400)
12098 {
12099 _bfd_error_handler
12100 /* xgettext:c-format */
12101 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
12102 input_bfd, input_section,
12103 (long) rel->r_offset, labs (signed_value), howto->name);
12104 return bfd_reloc_overflow;
12105 }
12106
12107 /* Mask out the value and U bit. */
12108 insn &= 0xff7fff00;
12109
12110 /* Set the U bit if the value to go in the place is non-negative. */
12111 if (signed_value >= 0)
12112 insn |= 1 << 23;
12113
12114 /* Encode the offset. */
12115 insn |= residual >> 2;
12116
12117 bfd_put_32 (input_bfd, insn, hit_data);
12118 }
12119 return bfd_reloc_ok;
12120
12121 case R_ARM_THM_ALU_ABS_G0_NC:
12122 case R_ARM_THM_ALU_ABS_G1_NC:
12123 case R_ARM_THM_ALU_ABS_G2_NC:
12124 case R_ARM_THM_ALU_ABS_G3_NC:
12125 {
12126 const int shift_array[4] = {0, 8, 16, 24};
12127 bfd_vma insn = bfd_get_16 (input_bfd, hit_data);
12128 bfd_vma addr = value;
12129 int shift = shift_array[r_type - R_ARM_THM_ALU_ABS_G0_NC];
12130
12131 /* Compute address. */
12132 if (globals->use_rel)
12133 signed_addend = insn & 0xff;
12134 addr += signed_addend;
12135 if (branch_type == ST_BRANCH_TO_THUMB)
12136 addr |= 1;
12137 /* Clean imm8 insn. */
12138 insn &= 0xff00;
12139 /* And update with correct part of address. */
12140 insn |= (addr >> shift) & 0xff;
12141 /* Update insn. */
12142 bfd_put_16 (input_bfd, insn, hit_data);
12143 }
12144
12145 *unresolved_reloc_p = FALSE;
12146 return bfd_reloc_ok;
12147
12148 default:
12149 return bfd_reloc_notsupported;
12150 }
12151 }
12152
12153 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
12154 static void
12155 arm_add_to_rel (bfd * abfd,
12156 bfd_byte * address,
12157 reloc_howto_type * howto,
12158 bfd_signed_vma increment)
12159 {
12160 bfd_signed_vma addend;
12161
12162 if (howto->type == R_ARM_THM_CALL
12163 || howto->type == R_ARM_THM_JUMP24)
12164 {
12165 int upper_insn, lower_insn;
12166 int upper, lower;
12167
12168 upper_insn = bfd_get_16 (abfd, address);
12169 lower_insn = bfd_get_16 (abfd, address + 2);
12170 upper = upper_insn & 0x7ff;
12171 lower = lower_insn & 0x7ff;
12172
12173 addend = (upper << 12) | (lower << 1);
12174 addend += increment;
12175 addend >>= 1;
12176
12177 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
12178 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
12179
12180 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
12181 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
12182 }
12183 else
12184 {
12185 bfd_vma contents;
12186
12187 contents = bfd_get_32 (abfd, address);
12188
12189 /* Get the (signed) value from the instruction. */
12190 addend = contents & howto->src_mask;
12191 if (addend & ((howto->src_mask + 1) >> 1))
12192 {
12193 bfd_signed_vma mask;
12194
12195 mask = -1;
12196 mask &= ~ howto->src_mask;
12197 addend |= mask;
12198 }
12199
12200 /* Add in the increment, (which is a byte value). */
12201 switch (howto->type)
12202 {
12203 default:
12204 addend += increment;
12205 break;
12206
12207 case R_ARM_PC24:
12208 case R_ARM_PLT32:
12209 case R_ARM_CALL:
12210 case R_ARM_JUMP24:
12211 addend <<= howto->size;
12212 addend += increment;
12213
12214 /* Should we check for overflow here ? */
12215
12216 /* Drop any undesired bits. */
12217 addend >>= howto->rightshift;
12218 break;
12219 }
12220
12221 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
12222
12223 bfd_put_32 (abfd, contents, address);
12224 }
12225 }
12226
12227 #define IS_ARM_TLS_RELOC(R_TYPE) \
12228 ((R_TYPE) == R_ARM_TLS_GD32 \
12229 || (R_TYPE) == R_ARM_TLS_LDO32 \
12230 || (R_TYPE) == R_ARM_TLS_LDM32 \
12231 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
12232 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
12233 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
12234 || (R_TYPE) == R_ARM_TLS_LE32 \
12235 || (R_TYPE) == R_ARM_TLS_IE32 \
12236 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
12237
12238 /* Specific set of relocations for the gnu tls dialect. */
12239 #define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
12240 ((R_TYPE) == R_ARM_TLS_GOTDESC \
12241 || (R_TYPE) == R_ARM_TLS_CALL \
12242 || (R_TYPE) == R_ARM_THM_TLS_CALL \
12243 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
12244 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
12245
12246 /* Relocate an ARM ELF section. */
12247
12248 static bfd_boolean
12249 elf32_arm_relocate_section (bfd * output_bfd,
12250 struct bfd_link_info * info,
12251 bfd * input_bfd,
12252 asection * input_section,
12253 bfd_byte * contents,
12254 Elf_Internal_Rela * relocs,
12255 Elf_Internal_Sym * local_syms,
12256 asection ** local_sections)
12257 {
12258 Elf_Internal_Shdr *symtab_hdr;
12259 struct elf_link_hash_entry **sym_hashes;
12260 Elf_Internal_Rela *rel;
12261 Elf_Internal_Rela *relend;
12262 const char *name;
12263 struct elf32_arm_link_hash_table * globals;
12264
12265 globals = elf32_arm_hash_table (info);
12266 if (globals == NULL)
12267 return FALSE;
12268
12269 symtab_hdr = & elf_symtab_hdr (input_bfd);
12270 sym_hashes = elf_sym_hashes (input_bfd);
12271
12272 rel = relocs;
12273 relend = relocs + input_section->reloc_count;
12274 for (; rel < relend; rel++)
12275 {
12276 int r_type;
12277 reloc_howto_type * howto;
12278 unsigned long r_symndx;
12279 Elf_Internal_Sym * sym;
12280 asection * sec;
12281 struct elf_link_hash_entry * h;
12282 bfd_vma relocation;
12283 bfd_reloc_status_type r;
12284 arelent bfd_reloc;
12285 char sym_type;
12286 bfd_boolean unresolved_reloc = FALSE;
12287 char *error_message = NULL;
12288
12289 r_symndx = ELF32_R_SYM (rel->r_info);
12290 r_type = ELF32_R_TYPE (rel->r_info);
12291 r_type = arm_real_reloc_type (globals, r_type);
12292
12293 if ( r_type == R_ARM_GNU_VTENTRY
12294 || r_type == R_ARM_GNU_VTINHERIT)
12295 continue;
12296
12297 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
12298 howto = bfd_reloc.howto;
12299
12300 h = NULL;
12301 sym = NULL;
12302 sec = NULL;
12303
12304 if (r_symndx < symtab_hdr->sh_info)
12305 {
12306 sym = local_syms + r_symndx;
12307 sym_type = ELF32_ST_TYPE (sym->st_info);
12308 sec = local_sections[r_symndx];
12309
12310 /* An object file might have a reference to a local
12311 undefined symbol. This is a daft object file, but we
12312 should at least do something about it. V4BX & NONE
12313 relocations do not use the symbol and are explicitly
12314 allowed to use the undefined symbol, so allow those.
12315 Likewise for relocations against STN_UNDEF. */
12316 if (r_type != R_ARM_V4BX
12317 && r_type != R_ARM_NONE
12318 && r_symndx != STN_UNDEF
12319 && bfd_is_und_section (sec)
12320 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
12321 (*info->callbacks->undefined_symbol)
12322 (info, bfd_elf_string_from_elf_section
12323 (input_bfd, symtab_hdr->sh_link, sym->st_name),
12324 input_bfd, input_section,
12325 rel->r_offset, TRUE);
12326
12327 if (globals->use_rel)
12328 {
12329 relocation = (sec->output_section->vma
12330 + sec->output_offset
12331 + sym->st_value);
12332 if (!bfd_link_relocatable (info)
12333 && (sec->flags & SEC_MERGE)
12334 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
12335 {
12336 asection *msec;
12337 bfd_vma addend, value;
12338
12339 switch (r_type)
12340 {
12341 case R_ARM_MOVW_ABS_NC:
12342 case R_ARM_MOVT_ABS:
12343 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
12344 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
12345 addend = (addend ^ 0x8000) - 0x8000;
12346 break;
12347
12348 case R_ARM_THM_MOVW_ABS_NC:
12349 case R_ARM_THM_MOVT_ABS:
12350 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
12351 << 16;
12352 value |= bfd_get_16 (input_bfd,
12353 contents + rel->r_offset + 2);
12354 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
12355 | ((value & 0x04000000) >> 15);
12356 addend = (addend ^ 0x8000) - 0x8000;
12357 break;
12358
12359 default:
12360 if (howto->rightshift
12361 || (howto->src_mask & (howto->src_mask + 1)))
12362 {
12363 _bfd_error_handler
12364 /* xgettext:c-format */
12365 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
12366 input_bfd, input_section,
12367 (long) rel->r_offset, howto->name);
12368 return FALSE;
12369 }
12370
12371 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
12372
12373 /* Get the (signed) value from the instruction. */
12374 addend = value & howto->src_mask;
12375 if (addend & ((howto->src_mask + 1) >> 1))
12376 {
12377 bfd_signed_vma mask;
12378
12379 mask = -1;
12380 mask &= ~ howto->src_mask;
12381 addend |= mask;
12382 }
12383 break;
12384 }
12385
12386 msec = sec;
12387 addend =
12388 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
12389 - relocation;
12390 addend += msec->output_section->vma + msec->output_offset;
12391
12392 /* Cases here must match those in the preceding
12393 switch statement. */
12394 switch (r_type)
12395 {
12396 case R_ARM_MOVW_ABS_NC:
12397 case R_ARM_MOVT_ABS:
12398 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
12399 | (addend & 0xfff);
12400 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
12401 break;
12402
12403 case R_ARM_THM_MOVW_ABS_NC:
12404 case R_ARM_THM_MOVT_ABS:
12405 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
12406 | (addend & 0xff) | ((addend & 0x0800) << 15);
12407 bfd_put_16 (input_bfd, value >> 16,
12408 contents + rel->r_offset);
12409 bfd_put_16 (input_bfd, value,
12410 contents + rel->r_offset + 2);
12411 break;
12412
12413 default:
12414 value = (value & ~ howto->dst_mask)
12415 | (addend & howto->dst_mask);
12416 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
12417 break;
12418 }
12419 }
12420 }
12421 else
12422 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
12423 }
12424 else
12425 {
12426 bfd_boolean warned, ignored;
12427
12428 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
12429 r_symndx, symtab_hdr, sym_hashes,
12430 h, sec, relocation,
12431 unresolved_reloc, warned, ignored);
12432
12433 sym_type = h->type;
12434 }
12435
12436 if (sec != NULL && discarded_section (sec))
12437 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
12438 rel, 1, relend, howto, 0, contents);
12439
12440 if (bfd_link_relocatable (info))
12441 {
12442 /* This is a relocatable link. We don't have to change
12443 anything, unless the reloc is against a section symbol,
12444 in which case we have to adjust according to where the
12445 section symbol winds up in the output section. */
12446 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
12447 {
12448 if (globals->use_rel)
12449 arm_add_to_rel (input_bfd, contents + rel->r_offset,
12450 howto, (bfd_signed_vma) sec->output_offset);
12451 else
12452 rel->r_addend += sec->output_offset;
12453 }
12454 continue;
12455 }
12456
12457 if (h != NULL)
12458 name = h->root.root.string;
12459 else
12460 {
12461 name = (bfd_elf_string_from_elf_section
12462 (input_bfd, symtab_hdr->sh_link, sym->st_name));
12463 if (name == NULL || *name == '\0')
12464 name = bfd_section_name (input_bfd, sec);
12465 }
12466
12467 if (r_symndx != STN_UNDEF
12468 && r_type != R_ARM_NONE
12469 && (h == NULL
12470 || h->root.type == bfd_link_hash_defined
12471 || h->root.type == bfd_link_hash_defweak)
12472 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
12473 {
12474 _bfd_error_handler
12475 ((sym_type == STT_TLS
12476 /* xgettext:c-format */
12477 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
12478 /* xgettext:c-format */
12479 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
12480 input_bfd,
12481 input_section,
12482 (long) rel->r_offset,
12483 howto->name,
12484 name);
12485 }
12486
12487 /* We call elf32_arm_final_link_relocate unless we're completely
12488 done, i.e., the relaxation produced the final output we want,
12489 and we won't let anybody mess with it. Also, we have to do
12490 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
12491 both in relaxed and non-relaxed cases. */
12492 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
12493 || (IS_ARM_TLS_GNU_RELOC (r_type)
12494 && !((h ? elf32_arm_hash_entry (h)->tls_type :
12495 elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
12496 & GOT_TLS_GDESC)))
12497 {
12498 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
12499 contents, rel, h == NULL);
12500 /* This may have been marked unresolved because it came from
12501 a shared library. But we've just dealt with that. */
12502 unresolved_reloc = 0;
12503 }
12504 else
12505 r = bfd_reloc_continue;
12506
12507 if (r == bfd_reloc_continue)
12508 {
12509 unsigned char branch_type =
12510 h ? ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
12511 : ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
12512
12513 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
12514 input_section, contents, rel,
12515 relocation, info, sec, name,
12516 sym_type, branch_type, h,
12517 &unresolved_reloc,
12518 &error_message);
12519 }
12520
12521 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
12522 because such sections are not SEC_ALLOC and thus ld.so will
12523 not process them. */
12524 if (unresolved_reloc
12525 && !((input_section->flags & SEC_DEBUGGING) != 0
12526 && h->def_dynamic)
12527 && _bfd_elf_section_offset (output_bfd, info, input_section,
12528 rel->r_offset) != (bfd_vma) -1)
12529 {
12530 _bfd_error_handler
12531 /* xgettext:c-format */
12532 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
12533 input_bfd,
12534 input_section,
12535 (long) rel->r_offset,
12536 howto->name,
12537 h->root.root.string);
12538 return FALSE;
12539 }
12540
12541 if (r != bfd_reloc_ok)
12542 {
12543 switch (r)
12544 {
12545 case bfd_reloc_overflow:
12546 /* If the overflowing reloc was to an undefined symbol,
12547 we have already printed one error message and there
12548 is no point complaining again. */
12549 if (!h || h->root.type != bfd_link_hash_undefined)
12550 (*info->callbacks->reloc_overflow)
12551 (info, (h ? &h->root : NULL), name, howto->name,
12552 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
12553 break;
12554
12555 case bfd_reloc_undefined:
12556 (*info->callbacks->undefined_symbol)
12557 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
12558 break;
12559
12560 case bfd_reloc_outofrange:
12561 error_message = _("out of range");
12562 goto common_error;
12563
12564 case bfd_reloc_notsupported:
12565 error_message = _("unsupported relocation");
12566 goto common_error;
12567
12568 case bfd_reloc_dangerous:
12569 /* error_message should already be set. */
12570 goto common_error;
12571
12572 default:
12573 error_message = _("unknown error");
12574 /* Fall through. */
12575
12576 common_error:
12577 BFD_ASSERT (error_message != NULL);
12578 (*info->callbacks->reloc_dangerous)
12579 (info, error_message, input_bfd, input_section, rel->r_offset);
12580 break;
12581 }
12582 }
12583 }
12584
12585 return TRUE;
12586 }
12587
12588 /* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
12589 adds the edit to the start of the list. (The list must be built in order of
12590 ascending TINDEX: the function's callers are primarily responsible for
12591 maintaining that condition). */
12592
12593 static void
12594 add_unwind_table_edit (arm_unwind_table_edit **head,
12595 arm_unwind_table_edit **tail,
12596 arm_unwind_edit_type type,
12597 asection *linked_section,
12598 unsigned int tindex)
12599 {
12600 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
12601 xmalloc (sizeof (arm_unwind_table_edit));
12602
12603 new_edit->type = type;
12604 new_edit->linked_section = linked_section;
12605 new_edit->index = tindex;
12606
12607 if (tindex > 0)
12608 {
12609 new_edit->next = NULL;
12610
12611 if (*tail)
12612 (*tail)->next = new_edit;
12613
12614 (*tail) = new_edit;
12615
12616 if (!*head)
12617 (*head) = new_edit;
12618 }
12619 else
12620 {
12621 new_edit->next = *head;
12622
12623 if (!*tail)
12624 *tail = new_edit;
12625
12626 *head = new_edit;
12627 }
12628 }
12629
12630 static _arm_elf_section_data *get_arm_elf_section_data (asection *);
12631
12632 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
12633 static void
12634 adjust_exidx_size(asection *exidx_sec, int adjust)
12635 {
12636 asection *out_sec;
12637
12638 if (!exidx_sec->rawsize)
12639 exidx_sec->rawsize = exidx_sec->size;
12640
12641 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
12642 out_sec = exidx_sec->output_section;
12643 /* Adjust size of output section. */
12644 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
12645 }
12646
12647 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
12648 static void
12649 insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
12650 {
12651 struct _arm_elf_section_data *exidx_arm_data;
12652
12653 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
12654 add_unwind_table_edit (
12655 &exidx_arm_data->u.exidx.unwind_edit_list,
12656 &exidx_arm_data->u.exidx.unwind_edit_tail,
12657 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
12658
12659 exidx_arm_data->additional_reloc_count++;
12660
12661 adjust_exidx_size(exidx_sec, 8);
12662 }
12663
12664 /* Scan .ARM.exidx tables, and create a list describing edits which should be
12665 made to those tables, such that:
12666
12667 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
12668 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
12669 codes which have been inlined into the index).
12670
12671 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
12672
12673 The edits are applied when the tables are written
12674 (in elf32_arm_write_section). */
12675
12676 bfd_boolean
12677 elf32_arm_fix_exidx_coverage (asection **text_section_order,
12678 unsigned int num_text_sections,
12679 struct bfd_link_info *info,
12680 bfd_boolean merge_exidx_entries)
12681 {
12682 bfd *inp;
12683 unsigned int last_second_word = 0, i;
12684 asection *last_exidx_sec = NULL;
12685 asection *last_text_sec = NULL;
12686 int last_unwind_type = -1;
12687
12688 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
12689 text sections. */
12690 for (inp = info->input_bfds; inp != NULL; inp = inp->link.next)
12691 {
12692 asection *sec;
12693
12694 for (sec = inp->sections; sec != NULL; sec = sec->next)
12695 {
12696 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
12697 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
12698
12699 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
12700 continue;
12701
12702 if (elf_sec->linked_to)
12703 {
12704 Elf_Internal_Shdr *linked_hdr
12705 = &elf_section_data (elf_sec->linked_to)->this_hdr;
12706 struct _arm_elf_section_data *linked_sec_arm_data
12707 = get_arm_elf_section_data (linked_hdr->bfd_section);
12708
12709 if (linked_sec_arm_data == NULL)
12710 continue;
12711
12712 /* Link this .ARM.exidx section back from the text section it
12713 describes. */
12714 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
12715 }
12716 }
12717 }
12718
12719 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
12720 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
12721 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
12722
12723 for (i = 0; i < num_text_sections; i++)
12724 {
12725 asection *sec = text_section_order[i];
12726 asection *exidx_sec;
12727 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
12728 struct _arm_elf_section_data *exidx_arm_data;
12729 bfd_byte *contents = NULL;
12730 int deleted_exidx_bytes = 0;
12731 bfd_vma j;
12732 arm_unwind_table_edit *unwind_edit_head = NULL;
12733 arm_unwind_table_edit *unwind_edit_tail = NULL;
12734 Elf_Internal_Shdr *hdr;
12735 bfd *ibfd;
12736
12737 if (arm_data == NULL)
12738 continue;
12739
12740 exidx_sec = arm_data->u.text.arm_exidx_sec;
12741 if (exidx_sec == NULL)
12742 {
12743 /* Section has no unwind data. */
12744 if (last_unwind_type == 0 || !last_exidx_sec)
12745 continue;
12746
12747 /* Ignore zero sized sections. */
12748 if (sec->size == 0)
12749 continue;
12750
12751 insert_cantunwind_after(last_text_sec, last_exidx_sec);
12752 last_unwind_type = 0;
12753 continue;
12754 }
12755
12756 /* Skip /DISCARD/ sections. */
12757 if (bfd_is_abs_section (exidx_sec->output_section))
12758 continue;
12759
12760 hdr = &elf_section_data (exidx_sec)->this_hdr;
12761 if (hdr->sh_type != SHT_ARM_EXIDX)
12762 continue;
12763
12764 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
12765 if (exidx_arm_data == NULL)
12766 continue;
12767
12768 ibfd = exidx_sec->owner;
12769
12770 if (hdr->contents != NULL)
12771 contents = hdr->contents;
12772 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
12773 /* An error? */
12774 continue;
12775
12776 if (last_unwind_type > 0)
12777 {
12778 unsigned int first_word = bfd_get_32 (ibfd, contents);
12779 /* Add cantunwind if first unwind item does not match section
12780 start. */
12781 if (first_word != sec->vma)
12782 {
12783 insert_cantunwind_after (last_text_sec, last_exidx_sec);
12784 last_unwind_type = 0;
12785 }
12786 }
12787
12788 for (j = 0; j < hdr->sh_size; j += 8)
12789 {
12790 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
12791 int unwind_type;
12792 int elide = 0;
12793
12794 /* An EXIDX_CANTUNWIND entry. */
12795 if (second_word == 1)
12796 {
12797 if (last_unwind_type == 0)
12798 elide = 1;
12799 unwind_type = 0;
12800 }
12801 /* Inlined unwinding data. Merge if equal to previous. */
12802 else if ((second_word & 0x80000000) != 0)
12803 {
12804 if (merge_exidx_entries
12805 && last_second_word == second_word && last_unwind_type == 1)
12806 elide = 1;
12807 unwind_type = 1;
12808 last_second_word = second_word;
12809 }
12810 /* Normal table entry. In theory we could merge these too,
12811 but duplicate entries are likely to be much less common. */
12812 else
12813 unwind_type = 2;
12814
12815 if (elide && !bfd_link_relocatable (info))
12816 {
12817 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
12818 DELETE_EXIDX_ENTRY, NULL, j / 8);
12819
12820 deleted_exidx_bytes += 8;
12821 }
12822
12823 last_unwind_type = unwind_type;
12824 }
12825
12826 /* Free contents if we allocated it ourselves. */
12827 if (contents != hdr->contents)
12828 free (contents);
12829
12830 /* Record edits to be applied later (in elf32_arm_write_section). */
12831 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
12832 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
12833
12834 if (deleted_exidx_bytes > 0)
12835 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
12836
12837 last_exidx_sec = exidx_sec;
12838 last_text_sec = sec;
12839 }
12840
12841 /* Add terminating CANTUNWIND entry. */
12842 if (!bfd_link_relocatable (info) && last_exidx_sec
12843 && last_unwind_type != 0)
12844 insert_cantunwind_after(last_text_sec, last_exidx_sec);
12845
12846 return TRUE;
12847 }
12848
12849 static bfd_boolean
12850 elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
12851 bfd *ibfd, const char *name)
12852 {
12853 asection *sec, *osec;
12854
12855 sec = bfd_get_linker_section (ibfd, name);
12856 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
12857 return TRUE;
12858
12859 osec = sec->output_section;
12860 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
12861 return TRUE;
12862
12863 if (! bfd_set_section_contents (obfd, osec, sec->contents,
12864 sec->output_offset, sec->size))
12865 return FALSE;
12866
12867 return TRUE;
12868 }
12869
12870 static bfd_boolean
12871 elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
12872 {
12873 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
12874 asection *sec, *osec;
12875
12876 if (globals == NULL)
12877 return FALSE;
12878
12879 /* Invoke the regular ELF backend linker to do all the work. */
12880 if (!bfd_elf_final_link (abfd, info))
12881 return FALSE;
12882
12883 /* Process stub sections (eg BE8 encoding, ...). */
12884 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
12885 unsigned int i;
12886 for (i=0; i<htab->top_id; i++)
12887 {
12888 sec = htab->stub_group[i].stub_sec;
12889 /* Only process it once, in its link_sec slot. */
12890 if (sec && i == htab->stub_group[i].link_sec->id)
12891 {
12892 osec = sec->output_section;
12893 elf32_arm_write_section (abfd, info, sec, sec->contents);
12894 if (! bfd_set_section_contents (abfd, osec, sec->contents,
12895 sec->output_offset, sec->size))
12896 return FALSE;
12897 }
12898 }
12899
12900 /* Write out any glue sections now that we have created all the
12901 stubs. */
12902 if (globals->bfd_of_glue_owner != NULL)
12903 {
12904 if (! elf32_arm_output_glue_section (info, abfd,
12905 globals->bfd_of_glue_owner,
12906 ARM2THUMB_GLUE_SECTION_NAME))
12907 return FALSE;
12908
12909 if (! elf32_arm_output_glue_section (info, abfd,
12910 globals->bfd_of_glue_owner,
12911 THUMB2ARM_GLUE_SECTION_NAME))
12912 return FALSE;
12913
12914 if (! elf32_arm_output_glue_section (info, abfd,
12915 globals->bfd_of_glue_owner,
12916 VFP11_ERRATUM_VENEER_SECTION_NAME))
12917 return FALSE;
12918
12919 if (! elf32_arm_output_glue_section (info, abfd,
12920 globals->bfd_of_glue_owner,
12921 STM32L4XX_ERRATUM_VENEER_SECTION_NAME))
12922 return FALSE;
12923
12924 if (! elf32_arm_output_glue_section (info, abfd,
12925 globals->bfd_of_glue_owner,
12926 ARM_BX_GLUE_SECTION_NAME))
12927 return FALSE;
12928 }
12929
12930 return TRUE;
12931 }
12932
12933 /* Return a best guess for the machine number based on the attributes. */
12934
12935 static unsigned int
12936 bfd_arm_get_mach_from_attributes (bfd * abfd)
12937 {
12938 int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch);
12939
12940 switch (arch)
12941 {
12942 case TAG_CPU_ARCH_V4: return bfd_mach_arm_4;
12943 case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T;
12944 case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T;
12945
12946 case TAG_CPU_ARCH_V5TE:
12947 {
12948 char * name;
12949
12950 BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES);
12951 name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s;
12952
12953 if (name)
12954 {
12955 if (strcmp (name, "IWMMXT2") == 0)
12956 return bfd_mach_arm_iWMMXt2;
12957
12958 if (strcmp (name, "IWMMXT") == 0)
12959 return bfd_mach_arm_iWMMXt;
12960
12961 if (strcmp (name, "XSCALE") == 0)
12962 {
12963 int wmmx;
12964
12965 BFD_ASSERT (Tag_WMMX_arch < NUM_KNOWN_OBJ_ATTRIBUTES);
12966 wmmx = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_WMMX_arch].i;
12967 switch (wmmx)
12968 {
12969 case 1: return bfd_mach_arm_iWMMXt;
12970 case 2: return bfd_mach_arm_iWMMXt2;
12971 default: return bfd_mach_arm_XScale;
12972 }
12973 }
12974 }
12975
12976 return bfd_mach_arm_5TE;
12977 }
12978
12979 default:
12980 return bfd_mach_arm_unknown;
12981 }
12982 }
12983
12984 /* Set the right machine number. */
12985
12986 static bfd_boolean
12987 elf32_arm_object_p (bfd *abfd)
12988 {
12989 unsigned int mach;
12990
12991 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
12992
12993 if (mach == bfd_mach_arm_unknown)
12994 {
12995 if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
12996 mach = bfd_mach_arm_ep9312;
12997 else
12998 mach = bfd_arm_get_mach_from_attributes (abfd);
12999 }
13000
13001 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
13002 return TRUE;
13003 }
13004
13005 /* Function to keep ARM specific flags in the ELF header. */
13006
13007 static bfd_boolean
13008 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
13009 {
13010 if (elf_flags_init (abfd)
13011 && elf_elfheader (abfd)->e_flags != flags)
13012 {
13013 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
13014 {
13015 if (flags & EF_ARM_INTERWORK)
13016 _bfd_error_handler
13017 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
13018 abfd);
13019 else
13020 _bfd_error_handler
13021 (_("Warning: Clearing the interworking flag of %B due to outside request"),
13022 abfd);
13023 }
13024 }
13025 else
13026 {
13027 elf_elfheader (abfd)->e_flags = flags;
13028 elf_flags_init (abfd) = TRUE;
13029 }
13030
13031 return TRUE;
13032 }
13033
13034 /* Copy backend specific data from one object module to another. */
13035
13036 static bfd_boolean
13037 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
13038 {
13039 flagword in_flags;
13040 flagword out_flags;
13041
13042 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
13043 return TRUE;
13044
13045 in_flags = elf_elfheader (ibfd)->e_flags;
13046 out_flags = elf_elfheader (obfd)->e_flags;
13047
13048 if (elf_flags_init (obfd)
13049 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
13050 && in_flags != out_flags)
13051 {
13052 /* Cannot mix APCS26 and APCS32 code. */
13053 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
13054 return FALSE;
13055
13056 /* Cannot mix float APCS and non-float APCS code. */
13057 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
13058 return FALSE;
13059
13060 /* If the src and dest have different interworking flags
13061 then turn off the interworking bit. */
13062 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
13063 {
13064 if (out_flags & EF_ARM_INTERWORK)
13065 _bfd_error_handler
13066 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
13067 obfd, ibfd);
13068
13069 in_flags &= ~EF_ARM_INTERWORK;
13070 }
13071
13072 /* Likewise for PIC, though don't warn for this case. */
13073 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
13074 in_flags &= ~EF_ARM_PIC;
13075 }
13076
13077 elf_elfheader (obfd)->e_flags = in_flags;
13078 elf_flags_init (obfd) = TRUE;
13079
13080 return _bfd_elf_copy_private_bfd_data (ibfd, obfd);
13081 }
13082
13083 /* Values for Tag_ABI_PCS_R9_use. */
13084 enum
13085 {
13086 AEABI_R9_V6,
13087 AEABI_R9_SB,
13088 AEABI_R9_TLS,
13089 AEABI_R9_unused
13090 };
13091
13092 /* Values for Tag_ABI_PCS_RW_data. */
13093 enum
13094 {
13095 AEABI_PCS_RW_data_absolute,
13096 AEABI_PCS_RW_data_PCrel,
13097 AEABI_PCS_RW_data_SBrel,
13098 AEABI_PCS_RW_data_unused
13099 };
13100
13101 /* Values for Tag_ABI_enum_size. */
13102 enum
13103 {
13104 AEABI_enum_unused,
13105 AEABI_enum_short,
13106 AEABI_enum_wide,
13107 AEABI_enum_forced_wide
13108 };
13109
13110 /* Determine whether an object attribute tag takes an integer, a
13111 string or both. */
13112
13113 static int
13114 elf32_arm_obj_attrs_arg_type (int tag)
13115 {
13116 if (tag == Tag_compatibility)
13117 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
13118 else if (tag == Tag_nodefaults)
13119 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
13120 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
13121 return ATTR_TYPE_FLAG_STR_VAL;
13122 else if (tag < 32)
13123 return ATTR_TYPE_FLAG_INT_VAL;
13124 else
13125 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
13126 }
13127
13128 /* The ABI defines that Tag_conformance should be emitted first, and that
13129 Tag_nodefaults should be second (if either is defined). This sets those
13130 two positions, and bumps up the position of all the remaining tags to
13131 compensate. */
13132 static int
13133 elf32_arm_obj_attrs_order (int num)
13134 {
13135 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
13136 return Tag_conformance;
13137 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
13138 return Tag_nodefaults;
13139 if ((num - 2) < Tag_nodefaults)
13140 return num - 2;
13141 if ((num - 1) < Tag_conformance)
13142 return num - 1;
13143 return num;
13144 }
13145
13146 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
13147 static bfd_boolean
13148 elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
13149 {
13150 if ((tag & 127) < 64)
13151 {
13152 _bfd_error_handler
13153 (_("%B: Unknown mandatory EABI object attribute %d"),
13154 abfd, tag);
13155 bfd_set_error (bfd_error_bad_value);
13156 return FALSE;
13157 }
13158 else
13159 {
13160 _bfd_error_handler
13161 (_("Warning: %B: Unknown EABI object attribute %d"),
13162 abfd, tag);
13163 return TRUE;
13164 }
13165 }
13166
13167 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
13168 Returns -1 if no architecture could be read. */
13169
13170 static int
13171 get_secondary_compatible_arch (bfd *abfd)
13172 {
13173 obj_attribute *attr =
13174 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
13175
13176 /* Note: the tag and its argument below are uleb128 values, though
13177 currently-defined values fit in one byte for each. */
13178 if (attr->s
13179 && attr->s[0] == Tag_CPU_arch
13180 && (attr->s[1] & 128) != 128
13181 && attr->s[2] == 0)
13182 return attr->s[1];
13183
13184 /* This tag is "safely ignorable", so don't complain if it looks funny. */
13185 return -1;
13186 }
13187
13188 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
13189 The tag is removed if ARCH is -1. */
13190
13191 static void
13192 set_secondary_compatible_arch (bfd *abfd, int arch)
13193 {
13194 obj_attribute *attr =
13195 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
13196
13197 if (arch == -1)
13198 {
13199 attr->s = NULL;
13200 return;
13201 }
13202
13203 /* Note: the tag and its argument below are uleb128 values, though
13204 currently-defined values fit in one byte for each. */
13205 if (!attr->s)
13206 attr->s = (char *) bfd_alloc (abfd, 3);
13207 attr->s[0] = Tag_CPU_arch;
13208 attr->s[1] = arch;
13209 attr->s[2] = '\0';
13210 }
13211
13212 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
13213 into account. */
13214
13215 static int
13216 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
13217 int newtag, int secondary_compat)
13218 {
13219 #define T(X) TAG_CPU_ARCH_##X
13220 int tagl, tagh, result;
13221 const int v6t2[] =
13222 {
13223 T(V6T2), /* PRE_V4. */
13224 T(V6T2), /* V4. */
13225 T(V6T2), /* V4T. */
13226 T(V6T2), /* V5T. */
13227 T(V6T2), /* V5TE. */
13228 T(V6T2), /* V5TEJ. */
13229 T(V6T2), /* V6. */
13230 T(V7), /* V6KZ. */
13231 T(V6T2) /* V6T2. */
13232 };
13233 const int v6k[] =
13234 {
13235 T(V6K), /* PRE_V4. */
13236 T(V6K), /* V4. */
13237 T(V6K), /* V4T. */
13238 T(V6K), /* V5T. */
13239 T(V6K), /* V5TE. */
13240 T(V6K), /* V5TEJ. */
13241 T(V6K), /* V6. */
13242 T(V6KZ), /* V6KZ. */
13243 T(V7), /* V6T2. */
13244 T(V6K) /* V6K. */
13245 };
13246 const int v7[] =
13247 {
13248 T(V7), /* PRE_V4. */
13249 T(V7), /* V4. */
13250 T(V7), /* V4T. */
13251 T(V7), /* V5T. */
13252 T(V7), /* V5TE. */
13253 T(V7), /* V5TEJ. */
13254 T(V7), /* V6. */
13255 T(V7), /* V6KZ. */
13256 T(V7), /* V6T2. */
13257 T(V7), /* V6K. */
13258 T(V7) /* V7. */
13259 };
13260 const int v6_m[] =
13261 {
13262 -1, /* PRE_V4. */
13263 -1, /* V4. */
13264 T(V6K), /* V4T. */
13265 T(V6K), /* V5T. */
13266 T(V6K), /* V5TE. */
13267 T(V6K), /* V5TEJ. */
13268 T(V6K), /* V6. */
13269 T(V6KZ), /* V6KZ. */
13270 T(V7), /* V6T2. */
13271 T(V6K), /* V6K. */
13272 T(V7), /* V7. */
13273 T(V6_M) /* V6_M. */
13274 };
13275 const int v6s_m[] =
13276 {
13277 -1, /* PRE_V4. */
13278 -1, /* V4. */
13279 T(V6K), /* V4T. */
13280 T(V6K), /* V5T. */
13281 T(V6K), /* V5TE. */
13282 T(V6K), /* V5TEJ. */
13283 T(V6K), /* V6. */
13284 T(V6KZ), /* V6KZ. */
13285 T(V7), /* V6T2. */
13286 T(V6K), /* V6K. */
13287 T(V7), /* V7. */
13288 T(V6S_M), /* V6_M. */
13289 T(V6S_M) /* V6S_M. */
13290 };
13291 const int v7e_m[] =
13292 {
13293 -1, /* PRE_V4. */
13294 -1, /* V4. */
13295 T(V7E_M), /* V4T. */
13296 T(V7E_M), /* V5T. */
13297 T(V7E_M), /* V5TE. */
13298 T(V7E_M), /* V5TEJ. */
13299 T(V7E_M), /* V6. */
13300 T(V7E_M), /* V6KZ. */
13301 T(V7E_M), /* V6T2. */
13302 T(V7E_M), /* V6K. */
13303 T(V7E_M), /* V7. */
13304 T(V7E_M), /* V6_M. */
13305 T(V7E_M), /* V6S_M. */
13306 T(V7E_M) /* V7E_M. */
13307 };
13308 const int v8[] =
13309 {
13310 T(V8), /* PRE_V4. */
13311 T(V8), /* V4. */
13312 T(V8), /* V4T. */
13313 T(V8), /* V5T. */
13314 T(V8), /* V5TE. */
13315 T(V8), /* V5TEJ. */
13316 T(V8), /* V6. */
13317 T(V8), /* V6KZ. */
13318 T(V8), /* V6T2. */
13319 T(V8), /* V6K. */
13320 T(V8), /* V7. */
13321 T(V8), /* V6_M. */
13322 T(V8), /* V6S_M. */
13323 T(V8), /* V7E_M. */
13324 T(V8) /* V8. */
13325 };
13326 const int v8m_baseline[] =
13327 {
13328 -1, /* PRE_V4. */
13329 -1, /* V4. */
13330 -1, /* V4T. */
13331 -1, /* V5T. */
13332 -1, /* V5TE. */
13333 -1, /* V5TEJ. */
13334 -1, /* V6. */
13335 -1, /* V6KZ. */
13336 -1, /* V6T2. */
13337 -1, /* V6K. */
13338 -1, /* V7. */
13339 T(V8M_BASE), /* V6_M. */
13340 T(V8M_BASE), /* V6S_M. */
13341 -1, /* V7E_M. */
13342 -1, /* V8. */
13343 -1,
13344 T(V8M_BASE) /* V8-M BASELINE. */
13345 };
13346 const int v8m_mainline[] =
13347 {
13348 -1, /* PRE_V4. */
13349 -1, /* V4. */
13350 -1, /* V4T. */
13351 -1, /* V5T. */
13352 -1, /* V5TE. */
13353 -1, /* V5TEJ. */
13354 -1, /* V6. */
13355 -1, /* V6KZ. */
13356 -1, /* V6T2. */
13357 -1, /* V6K. */
13358 T(V8M_MAIN), /* V7. */
13359 T(V8M_MAIN), /* V6_M. */
13360 T(V8M_MAIN), /* V6S_M. */
13361 T(V8M_MAIN), /* V7E_M. */
13362 -1, /* V8. */
13363 -1,
13364 T(V8M_MAIN), /* V8-M BASELINE. */
13365 T(V8M_MAIN) /* V8-M MAINLINE. */
13366 };
13367 const int v4t_plus_v6_m[] =
13368 {
13369 -1, /* PRE_V4. */
13370 -1, /* V4. */
13371 T(V4T), /* V4T. */
13372 T(V5T), /* V5T. */
13373 T(V5TE), /* V5TE. */
13374 T(V5TEJ), /* V5TEJ. */
13375 T(V6), /* V6. */
13376 T(V6KZ), /* V6KZ. */
13377 T(V6T2), /* V6T2. */
13378 T(V6K), /* V6K. */
13379 T(V7), /* V7. */
13380 T(V6_M), /* V6_M. */
13381 T(V6S_M), /* V6S_M. */
13382 T(V7E_M), /* V7E_M. */
13383 T(V8), /* V8. */
13384 -1, /* Unused. */
13385 T(V8M_BASE), /* V8-M BASELINE. */
13386 T(V8M_MAIN), /* V8-M MAINLINE. */
13387 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
13388 };
13389 const int *comb[] =
13390 {
13391 v6t2,
13392 v6k,
13393 v7,
13394 v6_m,
13395 v6s_m,
13396 v7e_m,
13397 v8,
13398 NULL,
13399 v8m_baseline,
13400 v8m_mainline,
13401 /* Pseudo-architecture. */
13402 v4t_plus_v6_m
13403 };
13404
13405 /* Check we've not got a higher architecture than we know about. */
13406
13407 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
13408 {
13409 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
13410 return -1;
13411 }
13412
13413 /* Override old tag if we have a Tag_also_compatible_with on the output. */
13414
13415 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
13416 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
13417 oldtag = T(V4T_PLUS_V6_M);
13418
13419 /* And override the new tag if we have a Tag_also_compatible_with on the
13420 input. */
13421
13422 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
13423 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
13424 newtag = T(V4T_PLUS_V6_M);
13425
13426 tagl = (oldtag < newtag) ? oldtag : newtag;
13427 result = tagh = (oldtag > newtag) ? oldtag : newtag;
13428
13429 /* Architectures before V6KZ add features monotonically. */
13430 if (tagh <= TAG_CPU_ARCH_V6KZ)
13431 return result;
13432
13433 result = comb[tagh - T(V6T2)] ? comb[tagh - T(V6T2)][tagl] : -1;
13434
13435 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
13436 as the canonical version. */
13437 if (result == T(V4T_PLUS_V6_M))
13438 {
13439 result = T(V4T);
13440 *secondary_compat_out = T(V6_M);
13441 }
13442 else
13443 *secondary_compat_out = -1;
13444
13445 if (result == -1)
13446 {
13447 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
13448 ibfd, oldtag, newtag);
13449 return -1;
13450 }
13451
13452 return result;
13453 #undef T
13454 }
13455
13456 /* Query attributes object to see if integer divide instructions may be
13457 present in an object. */
13458 static bfd_boolean
13459 elf32_arm_attributes_accept_div (const obj_attribute *attr)
13460 {
13461 int arch = attr[Tag_CPU_arch].i;
13462 int profile = attr[Tag_CPU_arch_profile].i;
13463
13464 switch (attr[Tag_DIV_use].i)
13465 {
13466 case 0:
13467 /* Integer divide allowed if instruction contained in archetecture. */
13468 if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
13469 return TRUE;
13470 else if (arch >= TAG_CPU_ARCH_V7E_M)
13471 return TRUE;
13472 else
13473 return FALSE;
13474
13475 case 1:
13476 /* Integer divide explicitly prohibited. */
13477 return FALSE;
13478
13479 default:
13480 /* Unrecognised case - treat as allowing divide everywhere. */
13481 case 2:
13482 /* Integer divide allowed in ARM state. */
13483 return TRUE;
13484 }
13485 }
13486
13487 /* Query attributes object to see if integer divide instructions are
13488 forbidden to be in the object. This is not the inverse of
13489 elf32_arm_attributes_accept_div. */
13490 static bfd_boolean
13491 elf32_arm_attributes_forbid_div (const obj_attribute *attr)
13492 {
13493 return attr[Tag_DIV_use].i == 1;
13494 }
13495
13496 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
13497 are conflicting attributes. */
13498
13499 static bfd_boolean
13500 elf32_arm_merge_eabi_attributes (bfd *ibfd, struct bfd_link_info *info)
13501 {
13502 bfd *obfd = info->output_bfd;
13503 obj_attribute *in_attr;
13504 obj_attribute *out_attr;
13505 /* Some tags have 0 = don't care, 1 = strong requirement,
13506 2 = weak requirement. */
13507 static const int order_021[3] = {0, 2, 1};
13508 int i;
13509 bfd_boolean result = TRUE;
13510 const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section;
13511
13512 /* Skip the linker stubs file. This preserves previous behavior
13513 of accepting unknown attributes in the first input file - but
13514 is that a bug? */
13515 if (ibfd->flags & BFD_LINKER_CREATED)
13516 return TRUE;
13517
13518 /* Skip any input that hasn't attribute section.
13519 This enables to link object files without attribute section with
13520 any others. */
13521 if (bfd_get_section_by_name (ibfd, sec_name) == NULL)
13522 return TRUE;
13523
13524 if (!elf_known_obj_attributes_proc (obfd)[0].i)
13525 {
13526 /* This is the first object. Copy the attributes. */
13527 _bfd_elf_copy_obj_attributes (ibfd, obfd);
13528
13529 out_attr = elf_known_obj_attributes_proc (obfd);
13530
13531 /* Use the Tag_null value to indicate the attributes have been
13532 initialized. */
13533 out_attr[0].i = 1;
13534
13535 /* We do not output objects with Tag_MPextension_use_legacy - we move
13536 the attribute's value to Tag_MPextension_use. */
13537 if (out_attr[Tag_MPextension_use_legacy].i != 0)
13538 {
13539 if (out_attr[Tag_MPextension_use].i != 0
13540 && out_attr[Tag_MPextension_use_legacy].i
13541 != out_attr[Tag_MPextension_use].i)
13542 {
13543 _bfd_error_handler
13544 (_("Error: %B has both the current and legacy "
13545 "Tag_MPextension_use attributes"), ibfd);
13546 result = FALSE;
13547 }
13548
13549 out_attr[Tag_MPextension_use] =
13550 out_attr[Tag_MPextension_use_legacy];
13551 out_attr[Tag_MPextension_use_legacy].type = 0;
13552 out_attr[Tag_MPextension_use_legacy].i = 0;
13553 }
13554
13555 return result;
13556 }
13557
13558 in_attr = elf_known_obj_attributes_proc (ibfd);
13559 out_attr = elf_known_obj_attributes_proc (obfd);
13560 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
13561 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
13562 {
13563 /* Ignore mismatches if the object doesn't use floating point or is
13564 floating point ABI independent. */
13565 if (out_attr[Tag_ABI_FP_number_model].i == AEABI_FP_number_model_none
13566 || (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
13567 && out_attr[Tag_ABI_VFP_args].i == AEABI_VFP_args_compatible))
13568 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
13569 else if (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
13570 && in_attr[Tag_ABI_VFP_args].i != AEABI_VFP_args_compatible)
13571 {
13572 _bfd_error_handler
13573 (_("error: %B uses VFP register arguments, %B does not"),
13574 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
13575 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
13576 result = FALSE;
13577 }
13578 }
13579
13580 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
13581 {
13582 /* Merge this attribute with existing attributes. */
13583 switch (i)
13584 {
13585 case Tag_CPU_raw_name:
13586 case Tag_CPU_name:
13587 /* These are merged after Tag_CPU_arch. */
13588 break;
13589
13590 case Tag_ABI_optimization_goals:
13591 case Tag_ABI_FP_optimization_goals:
13592 /* Use the first value seen. */
13593 break;
13594
13595 case Tag_CPU_arch:
13596 {
13597 int secondary_compat = -1, secondary_compat_out = -1;
13598 unsigned int saved_out_attr = out_attr[i].i;
13599 int arch_attr;
13600 static const char *name_table[] =
13601 {
13602 /* These aren't real CPU names, but we can't guess
13603 that from the architecture version alone. */
13604 "Pre v4",
13605 "ARM v4",
13606 "ARM v4T",
13607 "ARM v5T",
13608 "ARM v5TE",
13609 "ARM v5TEJ",
13610 "ARM v6",
13611 "ARM v6KZ",
13612 "ARM v6T2",
13613 "ARM v6K",
13614 "ARM v7",
13615 "ARM v6-M",
13616 "ARM v6S-M",
13617 "ARM v8",
13618 "",
13619 "ARM v8-M.baseline",
13620 "ARM v8-M.mainline",
13621 };
13622
13623 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
13624 secondary_compat = get_secondary_compatible_arch (ibfd);
13625 secondary_compat_out = get_secondary_compatible_arch (obfd);
13626 arch_attr = tag_cpu_arch_combine (ibfd, out_attr[i].i,
13627 &secondary_compat_out,
13628 in_attr[i].i,
13629 secondary_compat);
13630
13631 /* Return with error if failed to merge. */
13632 if (arch_attr == -1)
13633 return FALSE;
13634
13635 out_attr[i].i = arch_attr;
13636
13637 set_secondary_compatible_arch (obfd, secondary_compat_out);
13638
13639 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
13640 if (out_attr[i].i == saved_out_attr)
13641 ; /* Leave the names alone. */
13642 else if (out_attr[i].i == in_attr[i].i)
13643 {
13644 /* The output architecture has been changed to match the
13645 input architecture. Use the input names. */
13646 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
13647 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
13648 : NULL;
13649 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
13650 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
13651 : NULL;
13652 }
13653 else
13654 {
13655 out_attr[Tag_CPU_name].s = NULL;
13656 out_attr[Tag_CPU_raw_name].s = NULL;
13657 }
13658
13659 /* If we still don't have a value for Tag_CPU_name,
13660 make one up now. Tag_CPU_raw_name remains blank. */
13661 if (out_attr[Tag_CPU_name].s == NULL
13662 && out_attr[i].i < ARRAY_SIZE (name_table))
13663 out_attr[Tag_CPU_name].s =
13664 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
13665 }
13666 break;
13667
13668 case Tag_ARM_ISA_use:
13669 case Tag_THUMB_ISA_use:
13670 case Tag_WMMX_arch:
13671 case Tag_Advanced_SIMD_arch:
13672 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
13673 case Tag_ABI_FP_rounding:
13674 case Tag_ABI_FP_exceptions:
13675 case Tag_ABI_FP_user_exceptions:
13676 case Tag_ABI_FP_number_model:
13677 case Tag_FP_HP_extension:
13678 case Tag_CPU_unaligned_access:
13679 case Tag_T2EE_use:
13680 case Tag_MPextension_use:
13681 /* Use the largest value specified. */
13682 if (in_attr[i].i > out_attr[i].i)
13683 out_attr[i].i = in_attr[i].i;
13684 break;
13685
13686 case Tag_ABI_align_preserved:
13687 case Tag_ABI_PCS_RO_data:
13688 /* Use the smallest value specified. */
13689 if (in_attr[i].i < out_attr[i].i)
13690 out_attr[i].i = in_attr[i].i;
13691 break;
13692
13693 case Tag_ABI_align_needed:
13694 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
13695 && (in_attr[Tag_ABI_align_preserved].i == 0
13696 || out_attr[Tag_ABI_align_preserved].i == 0))
13697 {
13698 /* This error message should be enabled once all non-conformant
13699 binaries in the toolchain have had the attributes set
13700 properly.
13701 _bfd_error_handler
13702 (_("error: %B: 8-byte data alignment conflicts with %B"),
13703 obfd, ibfd);
13704 result = FALSE; */
13705 }
13706 /* Fall through. */
13707 case Tag_ABI_FP_denormal:
13708 case Tag_ABI_PCS_GOT_use:
13709 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
13710 value if greater than 2 (for future-proofing). */
13711 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
13712 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
13713 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
13714 out_attr[i].i = in_attr[i].i;
13715 break;
13716
13717 case Tag_Virtualization_use:
13718 /* The virtualization tag effectively stores two bits of
13719 information: the intended use of TrustZone (in bit 0), and the
13720 intended use of Virtualization (in bit 1). */
13721 if (out_attr[i].i == 0)
13722 out_attr[i].i = in_attr[i].i;
13723 else if (in_attr[i].i != 0
13724 && in_attr[i].i != out_attr[i].i)
13725 {
13726 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
13727 out_attr[i].i = 3;
13728 else
13729 {
13730 _bfd_error_handler
13731 (_("error: %B: unable to merge virtualization attributes "
13732 "with %B"),
13733 obfd, ibfd);
13734 result = FALSE;
13735 }
13736 }
13737 break;
13738
13739 case Tag_CPU_arch_profile:
13740 if (out_attr[i].i != in_attr[i].i)
13741 {
13742 /* 0 will merge with anything.
13743 'A' and 'S' merge to 'A'.
13744 'R' and 'S' merge to 'R'.
13745 'M' and 'A|R|S' is an error. */
13746 if (out_attr[i].i == 0
13747 || (out_attr[i].i == 'S'
13748 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
13749 out_attr[i].i = in_attr[i].i;
13750 else if (in_attr[i].i == 0
13751 || (in_attr[i].i == 'S'
13752 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
13753 ; /* Do nothing. */
13754 else
13755 {
13756 _bfd_error_handler
13757 (_("error: %B: Conflicting architecture profiles %c/%c"),
13758 ibfd,
13759 in_attr[i].i ? in_attr[i].i : '0',
13760 out_attr[i].i ? out_attr[i].i : '0');
13761 result = FALSE;
13762 }
13763 }
13764 break;
13765
13766 case Tag_DSP_extension:
13767 /* No need to change output value if any of:
13768 - pre (<=) ARMv5T input architecture (do not have DSP)
13769 - M input profile not ARMv7E-M and do not have DSP. */
13770 if (in_attr[Tag_CPU_arch].i <= 3
13771 || (in_attr[Tag_CPU_arch_profile].i == 'M'
13772 && in_attr[Tag_CPU_arch].i != 13
13773 && in_attr[i].i == 0))
13774 ; /* Do nothing. */
13775 /* Output value should be 0 if DSP part of architecture, ie.
13776 - post (>=) ARMv5te architecture output
13777 - A, R or S profile output or ARMv7E-M output architecture. */
13778 else if (out_attr[Tag_CPU_arch].i >= 4
13779 && (out_attr[Tag_CPU_arch_profile].i == 'A'
13780 || out_attr[Tag_CPU_arch_profile].i == 'R'
13781 || out_attr[Tag_CPU_arch_profile].i == 'S'
13782 || out_attr[Tag_CPU_arch].i == 13))
13783 out_attr[i].i = 0;
13784 /* Otherwise, DSP instructions are added and not part of output
13785 architecture. */
13786 else
13787 out_attr[i].i = 1;
13788 break;
13789
13790 case Tag_FP_arch:
13791 {
13792 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
13793 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
13794 when it's 0. It might mean absence of FP hardware if
13795 Tag_FP_arch is zero. */
13796
13797 #define VFP_VERSION_COUNT 9
13798 static const struct
13799 {
13800 int ver;
13801 int regs;
13802 } vfp_versions[VFP_VERSION_COUNT] =
13803 {
13804 {0, 0},
13805 {1, 16},
13806 {2, 16},
13807 {3, 32},
13808 {3, 16},
13809 {4, 32},
13810 {4, 16},
13811 {8, 32},
13812 {8, 16}
13813 };
13814 int ver;
13815 int regs;
13816 int newval;
13817
13818 /* If the output has no requirement about FP hardware,
13819 follow the requirement of the input. */
13820 if (out_attr[i].i == 0)
13821 {
13822 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
13823 out_attr[i].i = in_attr[i].i;
13824 out_attr[Tag_ABI_HardFP_use].i
13825 = in_attr[Tag_ABI_HardFP_use].i;
13826 break;
13827 }
13828 /* If the input has no requirement about FP hardware, do
13829 nothing. */
13830 else if (in_attr[i].i == 0)
13831 {
13832 BFD_ASSERT (in_attr[Tag_ABI_HardFP_use].i == 0);
13833 break;
13834 }
13835
13836 /* Both the input and the output have nonzero Tag_FP_arch.
13837 So Tag_ABI_HardFP_use is implied by Tag_FP_arch when it's zero. */
13838
13839 /* If both the input and the output have zero Tag_ABI_HardFP_use,
13840 do nothing. */
13841 if (in_attr[Tag_ABI_HardFP_use].i == 0
13842 && out_attr[Tag_ABI_HardFP_use].i == 0)
13843 ;
13844 /* If the input and the output have different Tag_ABI_HardFP_use,
13845 the combination of them is 0 (implied by Tag_FP_arch). */
13846 else if (in_attr[Tag_ABI_HardFP_use].i
13847 != out_attr[Tag_ABI_HardFP_use].i)
13848 out_attr[Tag_ABI_HardFP_use].i = 0;
13849
13850 /* Now we can handle Tag_FP_arch. */
13851
13852 /* Values of VFP_VERSION_COUNT or more aren't defined, so just
13853 pick the biggest. */
13854 if (in_attr[i].i >= VFP_VERSION_COUNT
13855 && in_attr[i].i > out_attr[i].i)
13856 {
13857 out_attr[i] = in_attr[i];
13858 break;
13859 }
13860 /* The output uses the superset of input features
13861 (ISA version) and registers. */
13862 ver = vfp_versions[in_attr[i].i].ver;
13863 if (ver < vfp_versions[out_attr[i].i].ver)
13864 ver = vfp_versions[out_attr[i].i].ver;
13865 regs = vfp_versions[in_attr[i].i].regs;
13866 if (regs < vfp_versions[out_attr[i].i].regs)
13867 regs = vfp_versions[out_attr[i].i].regs;
13868 /* This assumes all possible supersets are also a valid
13869 options. */
13870 for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--)
13871 {
13872 if (regs == vfp_versions[newval].regs
13873 && ver == vfp_versions[newval].ver)
13874 break;
13875 }
13876 out_attr[i].i = newval;
13877 }
13878 break;
13879 case Tag_PCS_config:
13880 if (out_attr[i].i == 0)
13881 out_attr[i].i = in_attr[i].i;
13882 else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i)
13883 {
13884 /* It's sometimes ok to mix different configs, so this is only
13885 a warning. */
13886 _bfd_error_handler
13887 (_("Warning: %B: Conflicting platform configuration"), ibfd);
13888 }
13889 break;
13890 case Tag_ABI_PCS_R9_use:
13891 if (in_attr[i].i != out_attr[i].i
13892 && out_attr[i].i != AEABI_R9_unused
13893 && in_attr[i].i != AEABI_R9_unused)
13894 {
13895 _bfd_error_handler
13896 (_("error: %B: Conflicting use of R9"), ibfd);
13897 result = FALSE;
13898 }
13899 if (out_attr[i].i == AEABI_R9_unused)
13900 out_attr[i].i = in_attr[i].i;
13901 break;
13902 case Tag_ABI_PCS_RW_data:
13903 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
13904 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
13905 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
13906 {
13907 _bfd_error_handler
13908 (_("error: %B: SB relative addressing conflicts with use of R9"),
13909 ibfd);
13910 result = FALSE;
13911 }
13912 /* Use the smallest value specified. */
13913 if (in_attr[i].i < out_attr[i].i)
13914 out_attr[i].i = in_attr[i].i;
13915 break;
13916 case Tag_ABI_PCS_wchar_t:
13917 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
13918 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
13919 {
13920 _bfd_error_handler
13921 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
13922 ibfd, in_attr[i].i, out_attr[i].i);
13923 }
13924 else if (in_attr[i].i && !out_attr[i].i)
13925 out_attr[i].i = in_attr[i].i;
13926 break;
13927 case Tag_ABI_enum_size:
13928 if (in_attr[i].i != AEABI_enum_unused)
13929 {
13930 if (out_attr[i].i == AEABI_enum_unused
13931 || out_attr[i].i == AEABI_enum_forced_wide)
13932 {
13933 /* The existing object is compatible with anything.
13934 Use whatever requirements the new object has. */
13935 out_attr[i].i = in_attr[i].i;
13936 }
13937 else if (in_attr[i].i != AEABI_enum_forced_wide
13938 && out_attr[i].i != in_attr[i].i
13939 && !elf_arm_tdata (obfd)->no_enum_size_warning)
13940 {
13941 static const char *aeabi_enum_names[] =
13942 { "", "variable-size", "32-bit", "" };
13943 const char *in_name =
13944 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
13945 ? aeabi_enum_names[in_attr[i].i]
13946 : "<unknown>";
13947 const char *out_name =
13948 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
13949 ? aeabi_enum_names[out_attr[i].i]
13950 : "<unknown>";
13951 _bfd_error_handler
13952 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
13953 ibfd, in_name, out_name);
13954 }
13955 }
13956 break;
13957 case Tag_ABI_VFP_args:
13958 /* Aready done. */
13959 break;
13960 case Tag_ABI_WMMX_args:
13961 if (in_attr[i].i != out_attr[i].i)
13962 {
13963 _bfd_error_handler
13964 (_("error: %B uses iWMMXt register arguments, %B does not"),
13965 ibfd, obfd);
13966 result = FALSE;
13967 }
13968 break;
13969 case Tag_compatibility:
13970 /* Merged in target-independent code. */
13971 break;
13972 case Tag_ABI_HardFP_use:
13973 /* This is handled along with Tag_FP_arch. */
13974 break;
13975 case Tag_ABI_FP_16bit_format:
13976 if (in_attr[i].i != 0 && out_attr[i].i != 0)
13977 {
13978 if (in_attr[i].i != out_attr[i].i)
13979 {
13980 _bfd_error_handler
13981 (_("error: fp16 format mismatch between %B and %B"),
13982 ibfd, obfd);
13983 result = FALSE;
13984 }
13985 }
13986 if (in_attr[i].i != 0)
13987 out_attr[i].i = in_attr[i].i;
13988 break;
13989
13990 case Tag_DIV_use:
13991 /* A value of zero on input means that the divide instruction may
13992 be used if available in the base architecture as specified via
13993 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that
13994 the user did not want divide instructions. A value of 2
13995 explicitly means that divide instructions were allowed in ARM
13996 and Thumb state. */
13997 if (in_attr[i].i == out_attr[i].i)
13998 /* Do nothing. */ ;
13999 else if (elf32_arm_attributes_forbid_div (in_attr)
14000 && !elf32_arm_attributes_accept_div (out_attr))
14001 out_attr[i].i = 1;
14002 else if (elf32_arm_attributes_forbid_div (out_attr)
14003 && elf32_arm_attributes_accept_div (in_attr))
14004 out_attr[i].i = in_attr[i].i;
14005 else if (in_attr[i].i == 2)
14006 out_attr[i].i = in_attr[i].i;
14007 break;
14008
14009 case Tag_MPextension_use_legacy:
14010 /* We don't output objects with Tag_MPextension_use_legacy - we
14011 move the value to Tag_MPextension_use. */
14012 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
14013 {
14014 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
14015 {
14016 _bfd_error_handler
14017 (_("%B has has both the current and legacy "
14018 "Tag_MPextension_use attributes"),
14019 ibfd);
14020 result = FALSE;
14021 }
14022 }
14023
14024 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
14025 out_attr[Tag_MPextension_use] = in_attr[i];
14026
14027 break;
14028
14029 case Tag_nodefaults:
14030 /* This tag is set if it exists, but the value is unused (and is
14031 typically zero). We don't actually need to do anything here -
14032 the merge happens automatically when the type flags are merged
14033 below. */
14034 break;
14035 case Tag_also_compatible_with:
14036 /* Already done in Tag_CPU_arch. */
14037 break;
14038 case Tag_conformance:
14039 /* Keep the attribute if it matches. Throw it away otherwise.
14040 No attribute means no claim to conform. */
14041 if (!in_attr[i].s || !out_attr[i].s
14042 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
14043 out_attr[i].s = NULL;
14044 break;
14045
14046 default:
14047 result
14048 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
14049 }
14050
14051 /* If out_attr was copied from in_attr then it won't have a type yet. */
14052 if (in_attr[i].type && !out_attr[i].type)
14053 out_attr[i].type = in_attr[i].type;
14054 }
14055
14056 /* Merge Tag_compatibility attributes and any common GNU ones. */
14057 if (!_bfd_elf_merge_object_attributes (ibfd, info))
14058 return FALSE;
14059
14060 /* Check for any attributes not known on ARM. */
14061 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
14062
14063 return result;
14064 }
14065
14066
14067 /* Return TRUE if the two EABI versions are incompatible. */
14068
14069 static bfd_boolean
14070 elf32_arm_versions_compatible (unsigned iver, unsigned over)
14071 {
14072 /* v4 and v5 are the same spec before and after it was released,
14073 so allow mixing them. */
14074 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
14075 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
14076 return TRUE;
14077
14078 return (iver == over);
14079 }
14080
14081 /* Merge backend specific data from an object file to the output
14082 object file when linking. */
14083
14084 static bfd_boolean
14085 elf32_arm_merge_private_bfd_data (bfd *, struct bfd_link_info *);
14086
14087 /* Display the flags field. */
14088
14089 static bfd_boolean
14090 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
14091 {
14092 FILE * file = (FILE *) ptr;
14093 unsigned long flags;
14094
14095 BFD_ASSERT (abfd != NULL && ptr != NULL);
14096
14097 /* Print normal ELF private data. */
14098 _bfd_elf_print_private_bfd_data (abfd, ptr);
14099
14100 flags = elf_elfheader (abfd)->e_flags;
14101 /* Ignore init flag - it may not be set, despite the flags field
14102 containing valid data. */
14103
14104 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14105
14106 switch (EF_ARM_EABI_VERSION (flags))
14107 {
14108 case EF_ARM_EABI_UNKNOWN:
14109 /* The following flag bits are GNU extensions and not part of the
14110 official ARM ELF extended ABI. Hence they are only decoded if
14111 the EABI version is not set. */
14112 if (flags & EF_ARM_INTERWORK)
14113 fprintf (file, _(" [interworking enabled]"));
14114
14115 if (flags & EF_ARM_APCS_26)
14116 fprintf (file, " [APCS-26]");
14117 else
14118 fprintf (file, " [APCS-32]");
14119
14120 if (flags & EF_ARM_VFP_FLOAT)
14121 fprintf (file, _(" [VFP float format]"));
14122 else if (flags & EF_ARM_MAVERICK_FLOAT)
14123 fprintf (file, _(" [Maverick float format]"));
14124 else
14125 fprintf (file, _(" [FPA float format]"));
14126
14127 if (flags & EF_ARM_APCS_FLOAT)
14128 fprintf (file, _(" [floats passed in float registers]"));
14129
14130 if (flags & EF_ARM_PIC)
14131 fprintf (file, _(" [position independent]"));
14132
14133 if (flags & EF_ARM_NEW_ABI)
14134 fprintf (file, _(" [new ABI]"));
14135
14136 if (flags & EF_ARM_OLD_ABI)
14137 fprintf (file, _(" [old ABI]"));
14138
14139 if (flags & EF_ARM_SOFT_FLOAT)
14140 fprintf (file, _(" [software FP]"));
14141
14142 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
14143 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
14144 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
14145 | EF_ARM_MAVERICK_FLOAT);
14146 break;
14147
14148 case EF_ARM_EABI_VER1:
14149 fprintf (file, _(" [Version1 EABI]"));
14150
14151 if (flags & EF_ARM_SYMSARESORTED)
14152 fprintf (file, _(" [sorted symbol table]"));
14153 else
14154 fprintf (file, _(" [unsorted symbol table]"));
14155
14156 flags &= ~ EF_ARM_SYMSARESORTED;
14157 break;
14158
14159 case EF_ARM_EABI_VER2:
14160 fprintf (file, _(" [Version2 EABI]"));
14161
14162 if (flags & EF_ARM_SYMSARESORTED)
14163 fprintf (file, _(" [sorted symbol table]"));
14164 else
14165 fprintf (file, _(" [unsorted symbol table]"));
14166
14167 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
14168 fprintf (file, _(" [dynamic symbols use segment index]"));
14169
14170 if (flags & EF_ARM_MAPSYMSFIRST)
14171 fprintf (file, _(" [mapping symbols precede others]"));
14172
14173 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
14174 | EF_ARM_MAPSYMSFIRST);
14175 break;
14176
14177 case EF_ARM_EABI_VER3:
14178 fprintf (file, _(" [Version3 EABI]"));
14179 break;
14180
14181 case EF_ARM_EABI_VER4:
14182 fprintf (file, _(" [Version4 EABI]"));
14183 goto eabi;
14184
14185 case EF_ARM_EABI_VER5:
14186 fprintf (file, _(" [Version5 EABI]"));
14187
14188 if (flags & EF_ARM_ABI_FLOAT_SOFT)
14189 fprintf (file, _(" [soft-float ABI]"));
14190
14191 if (flags & EF_ARM_ABI_FLOAT_HARD)
14192 fprintf (file, _(" [hard-float ABI]"));
14193
14194 flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD);
14195
14196 eabi:
14197 if (flags & EF_ARM_BE8)
14198 fprintf (file, _(" [BE8]"));
14199
14200 if (flags & EF_ARM_LE8)
14201 fprintf (file, _(" [LE8]"));
14202
14203 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
14204 break;
14205
14206 default:
14207 fprintf (file, _(" <EABI version unrecognised>"));
14208 break;
14209 }
14210
14211 flags &= ~ EF_ARM_EABIMASK;
14212
14213 if (flags & EF_ARM_RELEXEC)
14214 fprintf (file, _(" [relocatable executable]"));
14215
14216 flags &= ~EF_ARM_RELEXEC;
14217
14218 if (flags)
14219 fprintf (file, _("<Unrecognised flag bits set>"));
14220
14221 fputc ('\n', file);
14222
14223 return TRUE;
14224 }
14225
14226 static int
14227 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
14228 {
14229 switch (ELF_ST_TYPE (elf_sym->st_info))
14230 {
14231 case STT_ARM_TFUNC:
14232 return ELF_ST_TYPE (elf_sym->st_info);
14233
14234 case STT_ARM_16BIT:
14235 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
14236 This allows us to distinguish between data used by Thumb instructions
14237 and non-data (which is probably code) inside Thumb regions of an
14238 executable. */
14239 if (type != STT_OBJECT && type != STT_TLS)
14240 return ELF_ST_TYPE (elf_sym->st_info);
14241 break;
14242
14243 default:
14244 break;
14245 }
14246
14247 return type;
14248 }
14249
14250 static asection *
14251 elf32_arm_gc_mark_hook (asection *sec,
14252 struct bfd_link_info *info,
14253 Elf_Internal_Rela *rel,
14254 struct elf_link_hash_entry *h,
14255 Elf_Internal_Sym *sym)
14256 {
14257 if (h != NULL)
14258 switch (ELF32_R_TYPE (rel->r_info))
14259 {
14260 case R_ARM_GNU_VTINHERIT:
14261 case R_ARM_GNU_VTENTRY:
14262 return NULL;
14263 }
14264
14265 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
14266 }
14267
14268 /* Update the got entry reference counts for the section being removed. */
14269
14270 static bfd_boolean
14271 elf32_arm_gc_sweep_hook (bfd * abfd,
14272 struct bfd_link_info * info,
14273 asection * sec,
14274 const Elf_Internal_Rela * relocs)
14275 {
14276 Elf_Internal_Shdr *symtab_hdr;
14277 struct elf_link_hash_entry **sym_hashes;
14278 bfd_signed_vma *local_got_refcounts;
14279 const Elf_Internal_Rela *rel, *relend;
14280 struct elf32_arm_link_hash_table * globals;
14281
14282 if (bfd_link_relocatable (info))
14283 return TRUE;
14284
14285 globals = elf32_arm_hash_table (info);
14286 if (globals == NULL)
14287 return FALSE;
14288
14289 elf_section_data (sec)->local_dynrel = NULL;
14290
14291 symtab_hdr = & elf_symtab_hdr (abfd);
14292 sym_hashes = elf_sym_hashes (abfd);
14293 local_got_refcounts = elf_local_got_refcounts (abfd);
14294
14295 check_use_blx (globals);
14296
14297 relend = relocs + sec->reloc_count;
14298 for (rel = relocs; rel < relend; rel++)
14299 {
14300 unsigned long r_symndx;
14301 struct elf_link_hash_entry *h = NULL;
14302 struct elf32_arm_link_hash_entry *eh;
14303 int r_type;
14304 bfd_boolean call_reloc_p;
14305 bfd_boolean may_become_dynamic_p;
14306 bfd_boolean may_need_local_target_p;
14307 union gotplt_union *root_plt;
14308 struct arm_plt_info *arm_plt;
14309
14310 r_symndx = ELF32_R_SYM (rel->r_info);
14311 if (r_symndx >= symtab_hdr->sh_info)
14312 {
14313 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
14314 while (h->root.type == bfd_link_hash_indirect
14315 || h->root.type == bfd_link_hash_warning)
14316 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14317 }
14318 eh = (struct elf32_arm_link_hash_entry *) h;
14319
14320 call_reloc_p = FALSE;
14321 may_become_dynamic_p = FALSE;
14322 may_need_local_target_p = FALSE;
14323
14324 r_type = ELF32_R_TYPE (rel->r_info);
14325 r_type = arm_real_reloc_type (globals, r_type);
14326 switch (r_type)
14327 {
14328 case R_ARM_GOT32:
14329 case R_ARM_GOT_PREL:
14330 case R_ARM_TLS_GD32:
14331 case R_ARM_TLS_IE32:
14332 if (h != NULL)
14333 {
14334 if (h->got.refcount > 0)
14335 h->got.refcount -= 1;
14336 }
14337 else if (local_got_refcounts != NULL)
14338 {
14339 if (local_got_refcounts[r_symndx] > 0)
14340 local_got_refcounts[r_symndx] -= 1;
14341 }
14342 break;
14343
14344 case R_ARM_TLS_LDM32:
14345 globals->tls_ldm_got.refcount -= 1;
14346 break;
14347
14348 case R_ARM_PC24:
14349 case R_ARM_PLT32:
14350 case R_ARM_CALL:
14351 case R_ARM_JUMP24:
14352 case R_ARM_PREL31:
14353 case R_ARM_THM_CALL:
14354 case R_ARM_THM_JUMP24:
14355 case R_ARM_THM_JUMP19:
14356 call_reloc_p = TRUE;
14357 may_need_local_target_p = TRUE;
14358 break;
14359
14360 case R_ARM_ABS12:
14361 if (!globals->vxworks_p)
14362 {
14363 may_need_local_target_p = TRUE;
14364 break;
14365 }
14366 /* Fall through. */
14367 case R_ARM_ABS32:
14368 case R_ARM_ABS32_NOI:
14369 case R_ARM_REL32:
14370 case R_ARM_REL32_NOI:
14371 case R_ARM_MOVW_ABS_NC:
14372 case R_ARM_MOVT_ABS:
14373 case R_ARM_MOVW_PREL_NC:
14374 case R_ARM_MOVT_PREL:
14375 case R_ARM_THM_MOVW_ABS_NC:
14376 case R_ARM_THM_MOVT_ABS:
14377 case R_ARM_THM_MOVW_PREL_NC:
14378 case R_ARM_THM_MOVT_PREL:
14379 /* Should the interworking branches be here also? */
14380 if ((bfd_link_pic (info) || globals->root.is_relocatable_executable)
14381 && (sec->flags & SEC_ALLOC) != 0)
14382 {
14383 if (h == NULL
14384 && elf32_arm_howto_from_type (r_type)->pc_relative)
14385 {
14386 call_reloc_p = TRUE;
14387 may_need_local_target_p = TRUE;
14388 }
14389 else
14390 may_become_dynamic_p = TRUE;
14391 }
14392 else
14393 may_need_local_target_p = TRUE;
14394 break;
14395
14396 default:
14397 break;
14398 }
14399
14400 if (may_need_local_target_p
14401 && elf32_arm_get_plt_info (abfd, globals, eh, r_symndx, &root_plt,
14402 &arm_plt))
14403 {
14404 /* If PLT refcount book-keeping is wrong and too low, we'll
14405 see a zero value (going to -1) for the root PLT reference
14406 count. */
14407 if (root_plt->refcount >= 0)
14408 {
14409 BFD_ASSERT (root_plt->refcount != 0);
14410 root_plt->refcount -= 1;
14411 }
14412 else
14413 /* A value of -1 means the symbol has become local, forced
14414 or seeing a hidden definition. Any other negative value
14415 is an error. */
14416 BFD_ASSERT (root_plt->refcount == -1);
14417
14418 if (!call_reloc_p)
14419 arm_plt->noncall_refcount--;
14420
14421 if (r_type == R_ARM_THM_CALL)
14422 arm_plt->maybe_thumb_refcount--;
14423
14424 if (r_type == R_ARM_THM_JUMP24
14425 || r_type == R_ARM_THM_JUMP19)
14426 arm_plt->thumb_refcount--;
14427 }
14428
14429 if (may_become_dynamic_p)
14430 {
14431 struct elf_dyn_relocs **pp;
14432 struct elf_dyn_relocs *p;
14433
14434 if (h != NULL)
14435 pp = &(eh->dyn_relocs);
14436 else
14437 {
14438 Elf_Internal_Sym *isym;
14439
14440 isym = bfd_sym_from_r_symndx (&globals->sym_cache,
14441 abfd, r_symndx);
14442 if (isym == NULL)
14443 return FALSE;
14444 pp = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
14445 if (pp == NULL)
14446 return FALSE;
14447 }
14448 for (; (p = *pp) != NULL; pp = &p->next)
14449 if (p->sec == sec)
14450 {
14451 /* Everything must go for SEC. */
14452 *pp = p->next;
14453 break;
14454 }
14455 }
14456 }
14457
14458 return TRUE;
14459 }
14460
14461 /* Look through the relocs for a section during the first phase. */
14462
14463 static bfd_boolean
14464 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
14465 asection *sec, const Elf_Internal_Rela *relocs)
14466 {
14467 Elf_Internal_Shdr *symtab_hdr;
14468 struct elf_link_hash_entry **sym_hashes;
14469 const Elf_Internal_Rela *rel;
14470 const Elf_Internal_Rela *rel_end;
14471 bfd *dynobj;
14472 asection *sreloc;
14473 struct elf32_arm_link_hash_table *htab;
14474 bfd_boolean call_reloc_p;
14475 bfd_boolean may_become_dynamic_p;
14476 bfd_boolean may_need_local_target_p;
14477 unsigned long nsyms;
14478
14479 if (bfd_link_relocatable (info))
14480 return TRUE;
14481
14482 BFD_ASSERT (is_arm_elf (abfd));
14483
14484 htab = elf32_arm_hash_table (info);
14485 if (htab == NULL)
14486 return FALSE;
14487
14488 sreloc = NULL;
14489
14490 /* Create dynamic sections for relocatable executables so that we can
14491 copy relocations. */
14492 if (htab->root.is_relocatable_executable
14493 && ! htab->root.dynamic_sections_created)
14494 {
14495 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
14496 return FALSE;
14497 }
14498
14499 if (htab->root.dynobj == NULL)
14500 htab->root.dynobj = abfd;
14501 if (!create_ifunc_sections (info))
14502 return FALSE;
14503
14504 dynobj = htab->root.dynobj;
14505
14506 symtab_hdr = & elf_symtab_hdr (abfd);
14507 sym_hashes = elf_sym_hashes (abfd);
14508 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
14509
14510 rel_end = relocs + sec->reloc_count;
14511 for (rel = relocs; rel < rel_end; rel++)
14512 {
14513 Elf_Internal_Sym *isym;
14514 struct elf_link_hash_entry *h;
14515 struct elf32_arm_link_hash_entry *eh;
14516 unsigned long r_symndx;
14517 int r_type;
14518
14519 r_symndx = ELF32_R_SYM (rel->r_info);
14520 r_type = ELF32_R_TYPE (rel->r_info);
14521 r_type = arm_real_reloc_type (htab, r_type);
14522
14523 if (r_symndx >= nsyms
14524 /* PR 9934: It is possible to have relocations that do not
14525 refer to symbols, thus it is also possible to have an
14526 object file containing relocations but no symbol table. */
14527 && (r_symndx > STN_UNDEF || nsyms > 0))
14528 {
14529 _bfd_error_handler (_("%B: bad symbol index: %d"), abfd,
14530 r_symndx);
14531 return FALSE;
14532 }
14533
14534 h = NULL;
14535 isym = NULL;
14536 if (nsyms > 0)
14537 {
14538 if (r_symndx < symtab_hdr->sh_info)
14539 {
14540 /* A local symbol. */
14541 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
14542 abfd, r_symndx);
14543 if (isym == NULL)
14544 return FALSE;
14545 }
14546 else
14547 {
14548 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
14549 while (h->root.type == bfd_link_hash_indirect
14550 || h->root.type == bfd_link_hash_warning)
14551 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14552
14553 /* PR15323, ref flags aren't set for references in the
14554 same object. */
14555 h->root.non_ir_ref = 1;
14556 }
14557 }
14558
14559 eh = (struct elf32_arm_link_hash_entry *) h;
14560
14561 call_reloc_p = FALSE;
14562 may_become_dynamic_p = FALSE;
14563 may_need_local_target_p = FALSE;
14564
14565 /* Could be done earlier, if h were already available. */
14566 r_type = elf32_arm_tls_transition (info, r_type, h);
14567 switch (r_type)
14568 {
14569 case R_ARM_GOT32:
14570 case R_ARM_GOT_PREL:
14571 case R_ARM_TLS_GD32:
14572 case R_ARM_TLS_IE32:
14573 case R_ARM_TLS_GOTDESC:
14574 case R_ARM_TLS_DESCSEQ:
14575 case R_ARM_THM_TLS_DESCSEQ:
14576 case R_ARM_TLS_CALL:
14577 case R_ARM_THM_TLS_CALL:
14578 /* This symbol requires a global offset table entry. */
14579 {
14580 int tls_type, old_tls_type;
14581
14582 switch (r_type)
14583 {
14584 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
14585
14586 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
14587
14588 case R_ARM_TLS_GOTDESC:
14589 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
14590 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
14591 tls_type = GOT_TLS_GDESC; break;
14592
14593 default: tls_type = GOT_NORMAL; break;
14594 }
14595
14596 if (!bfd_link_executable (info) && (tls_type & GOT_TLS_IE))
14597 info->flags |= DF_STATIC_TLS;
14598
14599 if (h != NULL)
14600 {
14601 h->got.refcount++;
14602 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
14603 }
14604 else
14605 {
14606 /* This is a global offset table entry for a local symbol. */
14607 if (!elf32_arm_allocate_local_sym_info (abfd))
14608 return FALSE;
14609 elf_local_got_refcounts (abfd)[r_symndx] += 1;
14610 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
14611 }
14612
14613 /* If a variable is accessed with both tls methods, two
14614 slots may be created. */
14615 if (GOT_TLS_GD_ANY_P (old_tls_type)
14616 && GOT_TLS_GD_ANY_P (tls_type))
14617 tls_type |= old_tls_type;
14618
14619 /* We will already have issued an error message if there
14620 is a TLS/non-TLS mismatch, based on the symbol
14621 type. So just combine any TLS types needed. */
14622 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
14623 && tls_type != GOT_NORMAL)
14624 tls_type |= old_tls_type;
14625
14626 /* If the symbol is accessed in both IE and GDESC
14627 method, we're able to relax. Turn off the GDESC flag,
14628 without messing up with any other kind of tls types
14629 that may be involved. */
14630 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
14631 tls_type &= ~GOT_TLS_GDESC;
14632
14633 if (old_tls_type != tls_type)
14634 {
14635 if (h != NULL)
14636 elf32_arm_hash_entry (h)->tls_type = tls_type;
14637 else
14638 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
14639 }
14640 }
14641 /* Fall through. */
14642
14643 case R_ARM_TLS_LDM32:
14644 if (r_type == R_ARM_TLS_LDM32)
14645 htab->tls_ldm_got.refcount++;
14646 /* Fall through. */
14647
14648 case R_ARM_GOTOFF32:
14649 case R_ARM_GOTPC:
14650 if (htab->root.sgot == NULL
14651 && !create_got_section (htab->root.dynobj, info))
14652 return FALSE;
14653 break;
14654
14655 case R_ARM_PC24:
14656 case R_ARM_PLT32:
14657 case R_ARM_CALL:
14658 case R_ARM_JUMP24:
14659 case R_ARM_PREL31:
14660 case R_ARM_THM_CALL:
14661 case R_ARM_THM_JUMP24:
14662 case R_ARM_THM_JUMP19:
14663 call_reloc_p = TRUE;
14664 may_need_local_target_p = TRUE;
14665 break;
14666
14667 case R_ARM_ABS12:
14668 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
14669 ldr __GOTT_INDEX__ offsets. */
14670 if (!htab->vxworks_p)
14671 {
14672 may_need_local_target_p = TRUE;
14673 break;
14674 }
14675 else goto jump_over;
14676
14677 /* Fall through. */
14678
14679 case R_ARM_MOVW_ABS_NC:
14680 case R_ARM_MOVT_ABS:
14681 case R_ARM_THM_MOVW_ABS_NC:
14682 case R_ARM_THM_MOVT_ABS:
14683 if (bfd_link_pic (info))
14684 {
14685 _bfd_error_handler
14686 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
14687 abfd, elf32_arm_howto_table_1[r_type].name,
14688 (h) ? h->root.root.string : "a local symbol");
14689 bfd_set_error (bfd_error_bad_value);
14690 return FALSE;
14691 }
14692
14693 /* Fall through. */
14694 case R_ARM_ABS32:
14695 case R_ARM_ABS32_NOI:
14696 jump_over:
14697 if (h != NULL && bfd_link_executable (info))
14698 {
14699 h->pointer_equality_needed = 1;
14700 }
14701 /* Fall through. */
14702 case R_ARM_REL32:
14703 case R_ARM_REL32_NOI:
14704 case R_ARM_MOVW_PREL_NC:
14705 case R_ARM_MOVT_PREL:
14706 case R_ARM_THM_MOVW_PREL_NC:
14707 case R_ARM_THM_MOVT_PREL:
14708
14709 /* Should the interworking branches be listed here? */
14710 if ((bfd_link_pic (info) || htab->root.is_relocatable_executable)
14711 && (sec->flags & SEC_ALLOC) != 0)
14712 {
14713 if (h == NULL
14714 && elf32_arm_howto_from_type (r_type)->pc_relative)
14715 {
14716 /* In shared libraries and relocatable executables,
14717 we treat local relative references as calls;
14718 see the related SYMBOL_CALLS_LOCAL code in
14719 allocate_dynrelocs. */
14720 call_reloc_p = TRUE;
14721 may_need_local_target_p = TRUE;
14722 }
14723 else
14724 /* We are creating a shared library or relocatable
14725 executable, and this is a reloc against a global symbol,
14726 or a non-PC-relative reloc against a local symbol.
14727 We may need to copy the reloc into the output. */
14728 may_become_dynamic_p = TRUE;
14729 }
14730 else
14731 may_need_local_target_p = TRUE;
14732 break;
14733
14734 /* This relocation describes the C++ object vtable hierarchy.
14735 Reconstruct it for later use during GC. */
14736 case R_ARM_GNU_VTINHERIT:
14737 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
14738 return FALSE;
14739 break;
14740
14741 /* This relocation describes which C++ vtable entries are actually
14742 used. Record for later use during GC. */
14743 case R_ARM_GNU_VTENTRY:
14744 BFD_ASSERT (h != NULL);
14745 if (h != NULL
14746 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
14747 return FALSE;
14748 break;
14749 }
14750
14751 if (h != NULL)
14752 {
14753 if (call_reloc_p)
14754 /* We may need a .plt entry if the function this reloc
14755 refers to is in a different object, regardless of the
14756 symbol's type. We can't tell for sure yet, because
14757 something later might force the symbol local. */
14758 h->needs_plt = 1;
14759 else if (may_need_local_target_p)
14760 /* If this reloc is in a read-only section, we might
14761 need a copy reloc. We can't check reliably at this
14762 stage whether the section is read-only, as input
14763 sections have not yet been mapped to output sections.
14764 Tentatively set the flag for now, and correct in
14765 adjust_dynamic_symbol. */
14766 h->non_got_ref = 1;
14767 }
14768
14769 if (may_need_local_target_p
14770 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
14771 {
14772 union gotplt_union *root_plt;
14773 struct arm_plt_info *arm_plt;
14774 struct arm_local_iplt_info *local_iplt;
14775
14776 if (h != NULL)
14777 {
14778 root_plt = &h->plt;
14779 arm_plt = &eh->plt;
14780 }
14781 else
14782 {
14783 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
14784 if (local_iplt == NULL)
14785 return FALSE;
14786 root_plt = &local_iplt->root;
14787 arm_plt = &local_iplt->arm;
14788 }
14789
14790 /* If the symbol is a function that doesn't bind locally,
14791 this relocation will need a PLT entry. */
14792 if (root_plt->refcount != -1)
14793 root_plt->refcount += 1;
14794
14795 if (!call_reloc_p)
14796 arm_plt->noncall_refcount++;
14797
14798 /* It's too early to use htab->use_blx here, so we have to
14799 record possible blx references separately from
14800 relocs that definitely need a thumb stub. */
14801
14802 if (r_type == R_ARM_THM_CALL)
14803 arm_plt->maybe_thumb_refcount += 1;
14804
14805 if (r_type == R_ARM_THM_JUMP24
14806 || r_type == R_ARM_THM_JUMP19)
14807 arm_plt->thumb_refcount += 1;
14808 }
14809
14810 if (may_become_dynamic_p)
14811 {
14812 struct elf_dyn_relocs *p, **head;
14813
14814 /* Create a reloc section in dynobj. */
14815 if (sreloc == NULL)
14816 {
14817 sreloc = _bfd_elf_make_dynamic_reloc_section
14818 (sec, dynobj, 2, abfd, ! htab->use_rel);
14819
14820 if (sreloc == NULL)
14821 return FALSE;
14822
14823 /* BPABI objects never have dynamic relocations mapped. */
14824 if (htab->symbian_p)
14825 {
14826 flagword flags;
14827
14828 flags = bfd_get_section_flags (dynobj, sreloc);
14829 flags &= ~(SEC_LOAD | SEC_ALLOC);
14830 bfd_set_section_flags (dynobj, sreloc, flags);
14831 }
14832 }
14833
14834 /* If this is a global symbol, count the number of
14835 relocations we need for this symbol. */
14836 if (h != NULL)
14837 head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
14838 else
14839 {
14840 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
14841 if (head == NULL)
14842 return FALSE;
14843 }
14844
14845 p = *head;
14846 if (p == NULL || p->sec != sec)
14847 {
14848 bfd_size_type amt = sizeof *p;
14849
14850 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
14851 if (p == NULL)
14852 return FALSE;
14853 p->next = *head;
14854 *head = p;
14855 p->sec = sec;
14856 p->count = 0;
14857 p->pc_count = 0;
14858 }
14859
14860 if (elf32_arm_howto_from_type (r_type)->pc_relative)
14861 p->pc_count += 1;
14862 p->count += 1;
14863 }
14864 }
14865
14866 return TRUE;
14867 }
14868
14869 static void
14870 elf32_arm_update_relocs (asection *o,
14871 struct bfd_elf_section_reloc_data *reldata)
14872 {
14873 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
14874 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
14875 const struct elf_backend_data *bed;
14876 _arm_elf_section_data *eado;
14877 struct bfd_link_order *p;
14878 bfd_byte *erela_head, *erela;
14879 Elf_Internal_Rela *irela_head, *irela;
14880 Elf_Internal_Shdr *rel_hdr;
14881 bfd *abfd;
14882 unsigned int count;
14883
14884 eado = get_arm_elf_section_data (o);
14885
14886 if (!eado || eado->elf.this_hdr.sh_type != SHT_ARM_EXIDX)
14887 return;
14888
14889 abfd = o->owner;
14890 bed = get_elf_backend_data (abfd);
14891 rel_hdr = reldata->hdr;
14892
14893 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
14894 {
14895 swap_in = bed->s->swap_reloc_in;
14896 swap_out = bed->s->swap_reloc_out;
14897 }
14898 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
14899 {
14900 swap_in = bed->s->swap_reloca_in;
14901 swap_out = bed->s->swap_reloca_out;
14902 }
14903 else
14904 abort ();
14905
14906 erela_head = rel_hdr->contents;
14907 irela_head = (Elf_Internal_Rela *) bfd_zmalloc
14908 ((NUM_SHDR_ENTRIES (rel_hdr) + 1) * sizeof (*irela_head));
14909
14910 erela = erela_head;
14911 irela = irela_head;
14912 count = 0;
14913
14914 for (p = o->map_head.link_order; p; p = p->next)
14915 {
14916 if (p->type == bfd_section_reloc_link_order
14917 || p->type == bfd_symbol_reloc_link_order)
14918 {
14919 (*swap_in) (abfd, erela, irela);
14920 erela += rel_hdr->sh_entsize;
14921 irela++;
14922 count++;
14923 }
14924 else if (p->type == bfd_indirect_link_order)
14925 {
14926 struct bfd_elf_section_reloc_data *input_reldata;
14927 arm_unwind_table_edit *edit_list, *edit_tail;
14928 _arm_elf_section_data *eadi;
14929 bfd_size_type j;
14930 bfd_vma offset;
14931 asection *i;
14932
14933 i = p->u.indirect.section;
14934
14935 eadi = get_arm_elf_section_data (i);
14936 edit_list = eadi->u.exidx.unwind_edit_list;
14937 edit_tail = eadi->u.exidx.unwind_edit_tail;
14938 offset = o->vma + i->output_offset;
14939
14940 if (eadi->elf.rel.hdr &&
14941 eadi->elf.rel.hdr->sh_entsize == rel_hdr->sh_entsize)
14942 input_reldata = &eadi->elf.rel;
14943 else if (eadi->elf.rela.hdr &&
14944 eadi->elf.rela.hdr->sh_entsize == rel_hdr->sh_entsize)
14945 input_reldata = &eadi->elf.rela;
14946 else
14947 abort ();
14948
14949 if (edit_list)
14950 {
14951 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
14952 {
14953 arm_unwind_table_edit *edit_node, *edit_next;
14954 bfd_vma bias;
14955 bfd_vma reloc_index;
14956
14957 (*swap_in) (abfd, erela, irela);
14958 reloc_index = (irela->r_offset - offset) / 8;
14959
14960 bias = 0;
14961 edit_node = edit_list;
14962 for (edit_next = edit_list;
14963 edit_next && edit_next->index <= reloc_index;
14964 edit_next = edit_node->next)
14965 {
14966 bias++;
14967 edit_node = edit_next;
14968 }
14969
14970 if (edit_node->type != DELETE_EXIDX_ENTRY
14971 || edit_node->index != reloc_index)
14972 {
14973 irela->r_offset -= bias * 8;
14974 irela++;
14975 count++;
14976 }
14977
14978 erela += rel_hdr->sh_entsize;
14979 }
14980
14981 if (edit_tail->type == INSERT_EXIDX_CANTUNWIND_AT_END)
14982 {
14983 /* New relocation entity. */
14984 asection *text_sec = edit_tail->linked_section;
14985 asection *text_out = text_sec->output_section;
14986 bfd_vma exidx_offset = offset + i->size - 8;
14987
14988 irela->r_addend = 0;
14989 irela->r_offset = exidx_offset;
14990 irela->r_info = ELF32_R_INFO
14991 (text_out->target_index, R_ARM_PREL31);
14992 irela++;
14993 count++;
14994 }
14995 }
14996 else
14997 {
14998 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
14999 {
15000 (*swap_in) (abfd, erela, irela);
15001 erela += rel_hdr->sh_entsize;
15002 irela++;
15003 }
15004
15005 count += NUM_SHDR_ENTRIES (input_reldata->hdr);
15006 }
15007 }
15008 }
15009
15010 reldata->count = count;
15011 rel_hdr->sh_size = count * rel_hdr->sh_entsize;
15012
15013 erela = erela_head;
15014 irela = irela_head;
15015 while (count > 0)
15016 {
15017 (*swap_out) (abfd, irela, erela);
15018 erela += rel_hdr->sh_entsize;
15019 irela++;
15020 count--;
15021 }
15022
15023 free (irela_head);
15024
15025 /* Hashes are no longer valid. */
15026 free (reldata->hashes);
15027 reldata->hashes = NULL;
15028 }
15029
15030 /* Unwinding tables are not referenced directly. This pass marks them as
15031 required if the corresponding code section is marked. Similarly, ARMv8-M
15032 secure entry functions can only be referenced by SG veneers which are
15033 created after the GC process. They need to be marked in case they reside in
15034 their own section (as would be the case if code was compiled with
15035 -ffunction-sections). */
15036
15037 static bfd_boolean
15038 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
15039 elf_gc_mark_hook_fn gc_mark_hook)
15040 {
15041 bfd *sub;
15042 Elf_Internal_Shdr **elf_shdrp;
15043 asection *cmse_sec;
15044 obj_attribute *out_attr;
15045 Elf_Internal_Shdr *symtab_hdr;
15046 unsigned i, sym_count, ext_start;
15047 const struct elf_backend_data *bed;
15048 struct elf_link_hash_entry **sym_hashes;
15049 struct elf32_arm_link_hash_entry *cmse_hash;
15050 bfd_boolean again, is_v8m, first_bfd_browse = TRUE;
15051
15052 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
15053
15054 out_attr = elf_known_obj_attributes_proc (info->output_bfd);
15055 is_v8m = out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
15056 && out_attr[Tag_CPU_arch_profile].i == 'M';
15057
15058 /* Marking EH data may cause additional code sections to be marked,
15059 requiring multiple passes. */
15060 again = TRUE;
15061 while (again)
15062 {
15063 again = FALSE;
15064 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
15065 {
15066 asection *o;
15067
15068 if (! is_arm_elf (sub))
15069 continue;
15070
15071 elf_shdrp = elf_elfsections (sub);
15072 for (o = sub->sections; o != NULL; o = o->next)
15073 {
15074 Elf_Internal_Shdr *hdr;
15075
15076 hdr = &elf_section_data (o)->this_hdr;
15077 if (hdr->sh_type == SHT_ARM_EXIDX
15078 && hdr->sh_link
15079 && hdr->sh_link < elf_numsections (sub)
15080 && !o->gc_mark
15081 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
15082 {
15083 again = TRUE;
15084 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
15085 return FALSE;
15086 }
15087 }
15088
15089 /* Mark section holding ARMv8-M secure entry functions. We mark all
15090 of them so no need for a second browsing. */
15091 if (is_v8m && first_bfd_browse)
15092 {
15093 sym_hashes = elf_sym_hashes (sub);
15094 bed = get_elf_backend_data (sub);
15095 symtab_hdr = &elf_tdata (sub)->symtab_hdr;
15096 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
15097 ext_start = symtab_hdr->sh_info;
15098
15099 /* Scan symbols. */
15100 for (i = ext_start; i < sym_count; i++)
15101 {
15102 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
15103
15104 /* Assume it is a special symbol. If not, cmse_scan will
15105 warn about it and user can do something about it. */
15106 if (ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
15107 {
15108 cmse_sec = cmse_hash->root.root.u.def.section;
15109 if (!cmse_sec->gc_mark
15110 && !_bfd_elf_gc_mark (info, cmse_sec, gc_mark_hook))
15111 return FALSE;
15112 }
15113 }
15114 }
15115 }
15116 first_bfd_browse = FALSE;
15117 }
15118
15119 return TRUE;
15120 }
15121
15122 /* Treat mapping symbols as special target symbols. */
15123
15124 static bfd_boolean
15125 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
15126 {
15127 return bfd_is_arm_special_symbol_name (sym->name,
15128 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
15129 }
15130
15131 /* This is a copy of elf_find_function() from elf.c except that
15132 ARM mapping symbols are ignored when looking for function names
15133 and STT_ARM_TFUNC is considered to a function type. */
15134
15135 static bfd_boolean
15136 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
15137 asymbol ** symbols,
15138 asection * section,
15139 bfd_vma offset,
15140 const char ** filename_ptr,
15141 const char ** functionname_ptr)
15142 {
15143 const char * filename = NULL;
15144 asymbol * func = NULL;
15145 bfd_vma low_func = 0;
15146 asymbol ** p;
15147
15148 for (p = symbols; *p != NULL; p++)
15149 {
15150 elf_symbol_type *q;
15151
15152 q = (elf_symbol_type *) *p;
15153
15154 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
15155 {
15156 default:
15157 break;
15158 case STT_FILE:
15159 filename = bfd_asymbol_name (&q->symbol);
15160 break;
15161 case STT_FUNC:
15162 case STT_ARM_TFUNC:
15163 case STT_NOTYPE:
15164 /* Skip mapping symbols. */
15165 if ((q->symbol.flags & BSF_LOCAL)
15166 && bfd_is_arm_special_symbol_name (q->symbol.name,
15167 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
15168 continue;
15169 /* Fall through. */
15170 if (bfd_get_section (&q->symbol) == section
15171 && q->symbol.value >= low_func
15172 && q->symbol.value <= offset)
15173 {
15174 func = (asymbol *) q;
15175 low_func = q->symbol.value;
15176 }
15177 break;
15178 }
15179 }
15180
15181 if (func == NULL)
15182 return FALSE;
15183
15184 if (filename_ptr)
15185 *filename_ptr = filename;
15186 if (functionname_ptr)
15187 *functionname_ptr = bfd_asymbol_name (func);
15188
15189 return TRUE;
15190 }
15191
15192
15193 /* Find the nearest line to a particular section and offset, for error
15194 reporting. This code is a duplicate of the code in elf.c, except
15195 that it uses arm_elf_find_function. */
15196
15197 static bfd_boolean
15198 elf32_arm_find_nearest_line (bfd * abfd,
15199 asymbol ** symbols,
15200 asection * section,
15201 bfd_vma offset,
15202 const char ** filename_ptr,
15203 const char ** functionname_ptr,
15204 unsigned int * line_ptr,
15205 unsigned int * discriminator_ptr)
15206 {
15207 bfd_boolean found = FALSE;
15208
15209 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
15210 filename_ptr, functionname_ptr,
15211 line_ptr, discriminator_ptr,
15212 dwarf_debug_sections, 0,
15213 & elf_tdata (abfd)->dwarf2_find_line_info))
15214 {
15215 if (!*functionname_ptr)
15216 arm_elf_find_function (abfd, symbols, section, offset,
15217 *filename_ptr ? NULL : filename_ptr,
15218 functionname_ptr);
15219
15220 return TRUE;
15221 }
15222
15223 /* Skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain
15224 uses DWARF1. */
15225
15226 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
15227 & found, filename_ptr,
15228 functionname_ptr, line_ptr,
15229 & elf_tdata (abfd)->line_info))
15230 return FALSE;
15231
15232 if (found && (*functionname_ptr || *line_ptr))
15233 return TRUE;
15234
15235 if (symbols == NULL)
15236 return FALSE;
15237
15238 if (! arm_elf_find_function (abfd, symbols, section, offset,
15239 filename_ptr, functionname_ptr))
15240 return FALSE;
15241
15242 *line_ptr = 0;
15243 return TRUE;
15244 }
15245
15246 static bfd_boolean
15247 elf32_arm_find_inliner_info (bfd * abfd,
15248 const char ** filename_ptr,
15249 const char ** functionname_ptr,
15250 unsigned int * line_ptr)
15251 {
15252 bfd_boolean found;
15253 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
15254 functionname_ptr, line_ptr,
15255 & elf_tdata (abfd)->dwarf2_find_line_info);
15256 return found;
15257 }
15258
15259 /* Adjust a symbol defined by a dynamic object and referenced by a
15260 regular object. The current definition is in some section of the
15261 dynamic object, but we're not including those sections. We have to
15262 change the definition to something the rest of the link can
15263 understand. */
15264
15265 static bfd_boolean
15266 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
15267 struct elf_link_hash_entry * h)
15268 {
15269 bfd * dynobj;
15270 asection *s, *srel;
15271 struct elf32_arm_link_hash_entry * eh;
15272 struct elf32_arm_link_hash_table *globals;
15273
15274 globals = elf32_arm_hash_table (info);
15275 if (globals == NULL)
15276 return FALSE;
15277
15278 dynobj = elf_hash_table (info)->dynobj;
15279
15280 /* Make sure we know what is going on here. */
15281 BFD_ASSERT (dynobj != NULL
15282 && (h->needs_plt
15283 || h->type == STT_GNU_IFUNC
15284 || h->u.weakdef != NULL
15285 || (h->def_dynamic
15286 && h->ref_regular
15287 && !h->def_regular)));
15288
15289 eh = (struct elf32_arm_link_hash_entry *) h;
15290
15291 /* If this is a function, put it in the procedure linkage table. We
15292 will fill in the contents of the procedure linkage table later,
15293 when we know the address of the .got section. */
15294 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
15295 {
15296 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
15297 symbol binds locally. */
15298 if (h->plt.refcount <= 0
15299 || (h->type != STT_GNU_IFUNC
15300 && (SYMBOL_CALLS_LOCAL (info, h)
15301 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
15302 && h->root.type == bfd_link_hash_undefweak))))
15303 {
15304 /* This case can occur if we saw a PLT32 reloc in an input
15305 file, but the symbol was never referred to by a dynamic
15306 object, or if all references were garbage collected. In
15307 such a case, we don't actually need to build a procedure
15308 linkage table, and we can just do a PC24 reloc instead. */
15309 h->plt.offset = (bfd_vma) -1;
15310 eh->plt.thumb_refcount = 0;
15311 eh->plt.maybe_thumb_refcount = 0;
15312 eh->plt.noncall_refcount = 0;
15313 h->needs_plt = 0;
15314 }
15315
15316 return TRUE;
15317 }
15318 else
15319 {
15320 /* It's possible that we incorrectly decided a .plt reloc was
15321 needed for an R_ARM_PC24 or similar reloc to a non-function sym
15322 in check_relocs. We can't decide accurately between function
15323 and non-function syms in check-relocs; Objects loaded later in
15324 the link may change h->type. So fix it now. */
15325 h->plt.offset = (bfd_vma) -1;
15326 eh->plt.thumb_refcount = 0;
15327 eh->plt.maybe_thumb_refcount = 0;
15328 eh->plt.noncall_refcount = 0;
15329 }
15330
15331 /* If this is a weak symbol, and there is a real definition, the
15332 processor independent code will have arranged for us to see the
15333 real definition first, and we can just use the same value. */
15334 if (h->u.weakdef != NULL)
15335 {
15336 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
15337 || h->u.weakdef->root.type == bfd_link_hash_defweak);
15338 h->root.u.def.section = h->u.weakdef->root.u.def.section;
15339 h->root.u.def.value = h->u.weakdef->root.u.def.value;
15340 return TRUE;
15341 }
15342
15343 /* If there are no non-GOT references, we do not need a copy
15344 relocation. */
15345 if (!h->non_got_ref)
15346 return TRUE;
15347
15348 /* This is a reference to a symbol defined by a dynamic object which
15349 is not a function. */
15350
15351 /* If we are creating a shared library, we must presume that the
15352 only references to the symbol are via the global offset table.
15353 For such cases we need not do anything here; the relocations will
15354 be handled correctly by relocate_section. Relocatable executables
15355 can reference data in shared objects directly, so we don't need to
15356 do anything here. */
15357 if (bfd_link_pic (info) || globals->root.is_relocatable_executable)
15358 return TRUE;
15359
15360 /* We must allocate the symbol in our .dynbss section, which will
15361 become part of the .bss section of the executable. There will be
15362 an entry for this symbol in the .dynsym section. The dynamic
15363 object will contain position independent code, so all references
15364 from the dynamic object to this symbol will go through the global
15365 offset table. The dynamic linker will use the .dynsym entry to
15366 determine the address it must put in the global offset table, so
15367 both the dynamic object and the regular object will refer to the
15368 same memory location for the variable. */
15369 /* If allowed, we must generate a R_ARM_COPY reloc to tell the dynamic
15370 linker to copy the initial value out of the dynamic object and into
15371 the runtime process image. We need to remember the offset into the
15372 .rel(a).bss section we are going to use. */
15373 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
15374 {
15375 s = globals->root.sdynrelro;
15376 srel = globals->root.sreldynrelro;
15377 }
15378 else
15379 {
15380 s = globals->root.sdynbss;
15381 srel = globals->root.srelbss;
15382 }
15383 if (info->nocopyreloc == 0
15384 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
15385 && h->size != 0)
15386 {
15387 elf32_arm_allocate_dynrelocs (info, srel, 1);
15388 h->needs_copy = 1;
15389 }
15390
15391 return _bfd_elf_adjust_dynamic_copy (info, h, s);
15392 }
15393
15394 /* Allocate space in .plt, .got and associated reloc sections for
15395 dynamic relocs. */
15396
15397 static bfd_boolean
15398 allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
15399 {
15400 struct bfd_link_info *info;
15401 struct elf32_arm_link_hash_table *htab;
15402 struct elf32_arm_link_hash_entry *eh;
15403 struct elf_dyn_relocs *p;
15404
15405 if (h->root.type == bfd_link_hash_indirect)
15406 return TRUE;
15407
15408 eh = (struct elf32_arm_link_hash_entry *) h;
15409
15410 info = (struct bfd_link_info *) inf;
15411 htab = elf32_arm_hash_table (info);
15412 if (htab == NULL)
15413 return FALSE;
15414
15415 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
15416 && h->plt.refcount > 0)
15417 {
15418 /* Make sure this symbol is output as a dynamic symbol.
15419 Undefined weak syms won't yet be marked as dynamic. */
15420 if (h->dynindx == -1
15421 && !h->forced_local)
15422 {
15423 if (! bfd_elf_link_record_dynamic_symbol (info, h))
15424 return FALSE;
15425 }
15426
15427 /* If the call in the PLT entry binds locally, the associated
15428 GOT entry should use an R_ARM_IRELATIVE relocation instead of
15429 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
15430 than the .plt section. */
15431 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
15432 {
15433 eh->is_iplt = 1;
15434 if (eh->plt.noncall_refcount == 0
15435 && SYMBOL_REFERENCES_LOCAL (info, h))
15436 /* All non-call references can be resolved directly.
15437 This means that they can (and in some cases, must)
15438 resolve directly to the run-time target, rather than
15439 to the PLT. That in turns means that any .got entry
15440 would be equal to the .igot.plt entry, so there's
15441 no point having both. */
15442 h->got.refcount = 0;
15443 }
15444
15445 if (bfd_link_pic (info)
15446 || eh->is_iplt
15447 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
15448 {
15449 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
15450
15451 /* If this symbol is not defined in a regular file, and we are
15452 not generating a shared library, then set the symbol to this
15453 location in the .plt. This is required to make function
15454 pointers compare as equal between the normal executable and
15455 the shared library. */
15456 if (! bfd_link_pic (info)
15457 && !h->def_regular)
15458 {
15459 h->root.u.def.section = htab->root.splt;
15460 h->root.u.def.value = h->plt.offset;
15461
15462 /* Make sure the function is not marked as Thumb, in case
15463 it is the target of an ABS32 relocation, which will
15464 point to the PLT entry. */
15465 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
15466 }
15467
15468 /* VxWorks executables have a second set of relocations for
15469 each PLT entry. They go in a separate relocation section,
15470 which is processed by the kernel loader. */
15471 if (htab->vxworks_p && !bfd_link_pic (info))
15472 {
15473 /* There is a relocation for the initial PLT entry:
15474 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
15475 if (h->plt.offset == htab->plt_header_size)
15476 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
15477
15478 /* There are two extra relocations for each subsequent
15479 PLT entry: an R_ARM_32 relocation for the GOT entry,
15480 and an R_ARM_32 relocation for the PLT entry. */
15481 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
15482 }
15483 }
15484 else
15485 {
15486 h->plt.offset = (bfd_vma) -1;
15487 h->needs_plt = 0;
15488 }
15489 }
15490 else
15491 {
15492 h->plt.offset = (bfd_vma) -1;
15493 h->needs_plt = 0;
15494 }
15495
15496 eh = (struct elf32_arm_link_hash_entry *) h;
15497 eh->tlsdesc_got = (bfd_vma) -1;
15498
15499 if (h->got.refcount > 0)
15500 {
15501 asection *s;
15502 bfd_boolean dyn;
15503 int tls_type = elf32_arm_hash_entry (h)->tls_type;
15504 int indx;
15505
15506 /* Make sure this symbol is output as a dynamic symbol.
15507 Undefined weak syms won't yet be marked as dynamic. */
15508 if (h->dynindx == -1
15509 && !h->forced_local)
15510 {
15511 if (! bfd_elf_link_record_dynamic_symbol (info, h))
15512 return FALSE;
15513 }
15514
15515 if (!htab->symbian_p)
15516 {
15517 s = htab->root.sgot;
15518 h->got.offset = s->size;
15519
15520 if (tls_type == GOT_UNKNOWN)
15521 abort ();
15522
15523 if (tls_type == GOT_NORMAL)
15524 /* Non-TLS symbols need one GOT slot. */
15525 s->size += 4;
15526 else
15527 {
15528 if (tls_type & GOT_TLS_GDESC)
15529 {
15530 /* R_ARM_TLS_DESC needs 2 GOT slots. */
15531 eh->tlsdesc_got
15532 = (htab->root.sgotplt->size
15533 - elf32_arm_compute_jump_table_size (htab));
15534 htab->root.sgotplt->size += 8;
15535 h->got.offset = (bfd_vma) -2;
15536 /* plt.got_offset needs to know there's a TLS_DESC
15537 reloc in the middle of .got.plt. */
15538 htab->num_tls_desc++;
15539 }
15540
15541 if (tls_type & GOT_TLS_GD)
15542 {
15543 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. If
15544 the symbol is both GD and GDESC, got.offset may
15545 have been overwritten. */
15546 h->got.offset = s->size;
15547 s->size += 8;
15548 }
15549
15550 if (tls_type & GOT_TLS_IE)
15551 /* R_ARM_TLS_IE32 needs one GOT slot. */
15552 s->size += 4;
15553 }
15554
15555 dyn = htab->root.dynamic_sections_created;
15556
15557 indx = 0;
15558 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
15559 bfd_link_pic (info),
15560 h)
15561 && (!bfd_link_pic (info)
15562 || !SYMBOL_REFERENCES_LOCAL (info, h)))
15563 indx = h->dynindx;
15564
15565 if (tls_type != GOT_NORMAL
15566 && (bfd_link_pic (info) || indx != 0)
15567 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
15568 || h->root.type != bfd_link_hash_undefweak))
15569 {
15570 if (tls_type & GOT_TLS_IE)
15571 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15572
15573 if (tls_type & GOT_TLS_GD)
15574 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15575
15576 if (tls_type & GOT_TLS_GDESC)
15577 {
15578 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
15579 /* GDESC needs a trampoline to jump to. */
15580 htab->tls_trampoline = -1;
15581 }
15582
15583 /* Only GD needs it. GDESC just emits one relocation per
15584 2 entries. */
15585 if ((tls_type & GOT_TLS_GD) && indx != 0)
15586 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15587 }
15588 else if (indx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
15589 {
15590 if (htab->root.dynamic_sections_created)
15591 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
15592 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15593 }
15594 else if (h->type == STT_GNU_IFUNC
15595 && eh->plt.noncall_refcount == 0)
15596 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
15597 they all resolve dynamically instead. Reserve room for the
15598 GOT entry's R_ARM_IRELATIVE relocation. */
15599 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
15600 else if (bfd_link_pic (info)
15601 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
15602 || h->root.type != bfd_link_hash_undefweak))
15603 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
15604 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15605 }
15606 }
15607 else
15608 h->got.offset = (bfd_vma) -1;
15609
15610 /* Allocate stubs for exported Thumb functions on v4t. */
15611 if (!htab->use_blx && h->dynindx != -1
15612 && h->def_regular
15613 && ARM_GET_SYM_BRANCH_TYPE (h->target_internal) == ST_BRANCH_TO_THUMB
15614 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
15615 {
15616 struct elf_link_hash_entry * th;
15617 struct bfd_link_hash_entry * bh;
15618 struct elf_link_hash_entry * myh;
15619 char name[1024];
15620 asection *s;
15621 bh = NULL;
15622 /* Create a new symbol to regist the real location of the function. */
15623 s = h->root.u.def.section;
15624 sprintf (name, "__real_%s", h->root.root.string);
15625 _bfd_generic_link_add_one_symbol (info, s->owner,
15626 name, BSF_GLOBAL, s,
15627 h->root.u.def.value,
15628 NULL, TRUE, FALSE, &bh);
15629
15630 myh = (struct elf_link_hash_entry *) bh;
15631 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
15632 myh->forced_local = 1;
15633 ARM_SET_SYM_BRANCH_TYPE (myh->target_internal, ST_BRANCH_TO_THUMB);
15634 eh->export_glue = myh;
15635 th = record_arm_to_thumb_glue (info, h);
15636 /* Point the symbol at the stub. */
15637 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
15638 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
15639 h->root.u.def.section = th->root.u.def.section;
15640 h->root.u.def.value = th->root.u.def.value & ~1;
15641 }
15642
15643 if (eh->dyn_relocs == NULL)
15644 return TRUE;
15645
15646 /* In the shared -Bsymbolic case, discard space allocated for
15647 dynamic pc-relative relocs against symbols which turn out to be
15648 defined in regular objects. For the normal shared case, discard
15649 space for pc-relative relocs that have become local due to symbol
15650 visibility changes. */
15651
15652 if (bfd_link_pic (info) || htab->root.is_relocatable_executable)
15653 {
15654 /* Relocs that use pc_count are PC-relative forms, which will appear
15655 on something like ".long foo - ." or "movw REG, foo - .". We want
15656 calls to protected symbols to resolve directly to the function
15657 rather than going via the plt. If people want function pointer
15658 comparisons to work as expected then they should avoid writing
15659 assembly like ".long foo - .". */
15660 if (SYMBOL_CALLS_LOCAL (info, h))
15661 {
15662 struct elf_dyn_relocs **pp;
15663
15664 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
15665 {
15666 p->count -= p->pc_count;
15667 p->pc_count = 0;
15668 if (p->count == 0)
15669 *pp = p->next;
15670 else
15671 pp = &p->next;
15672 }
15673 }
15674
15675 if (htab->vxworks_p)
15676 {
15677 struct elf_dyn_relocs **pp;
15678
15679 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
15680 {
15681 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
15682 *pp = p->next;
15683 else
15684 pp = &p->next;
15685 }
15686 }
15687
15688 /* Also discard relocs on undefined weak syms with non-default
15689 visibility. */
15690 if (eh->dyn_relocs != NULL
15691 && h->root.type == bfd_link_hash_undefweak)
15692 {
15693 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
15694 eh->dyn_relocs = NULL;
15695
15696 /* Make sure undefined weak symbols are output as a dynamic
15697 symbol in PIEs. */
15698 else if (h->dynindx == -1
15699 && !h->forced_local)
15700 {
15701 if (! bfd_elf_link_record_dynamic_symbol (info, h))
15702 return FALSE;
15703 }
15704 }
15705
15706 else if (htab->root.is_relocatable_executable && h->dynindx == -1
15707 && h->root.type == bfd_link_hash_new)
15708 {
15709 /* Output absolute symbols so that we can create relocations
15710 against them. For normal symbols we output a relocation
15711 against the section that contains them. */
15712 if (! bfd_elf_link_record_dynamic_symbol (info, h))
15713 return FALSE;
15714 }
15715
15716 }
15717 else
15718 {
15719 /* For the non-shared case, discard space for relocs against
15720 symbols which turn out to need copy relocs or are not
15721 dynamic. */
15722
15723 if (!h->non_got_ref
15724 && ((h->def_dynamic
15725 && !h->def_regular)
15726 || (htab->root.dynamic_sections_created
15727 && (h->root.type == bfd_link_hash_undefweak
15728 || h->root.type == bfd_link_hash_undefined))))
15729 {
15730 /* Make sure this symbol is output as a dynamic symbol.
15731 Undefined weak syms won't yet be marked as dynamic. */
15732 if (h->dynindx == -1
15733 && !h->forced_local)
15734 {
15735 if (! bfd_elf_link_record_dynamic_symbol (info, h))
15736 return FALSE;
15737 }
15738
15739 /* If that succeeded, we know we'll be keeping all the
15740 relocs. */
15741 if (h->dynindx != -1)
15742 goto keep;
15743 }
15744
15745 eh->dyn_relocs = NULL;
15746
15747 keep: ;
15748 }
15749
15750 /* Finally, allocate space. */
15751 for (p = eh->dyn_relocs; p != NULL; p = p->next)
15752 {
15753 asection *sreloc = elf_section_data (p->sec)->sreloc;
15754 if (h->type == STT_GNU_IFUNC
15755 && eh->plt.noncall_refcount == 0
15756 && SYMBOL_REFERENCES_LOCAL (info, h))
15757 elf32_arm_allocate_irelocs (info, sreloc, p->count);
15758 else
15759 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
15760 }
15761
15762 return TRUE;
15763 }
15764
15765 /* Find any dynamic relocs that apply to read-only sections. */
15766
15767 static bfd_boolean
15768 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
15769 {
15770 struct elf32_arm_link_hash_entry * eh;
15771 struct elf_dyn_relocs * p;
15772
15773 eh = (struct elf32_arm_link_hash_entry *) h;
15774 for (p = eh->dyn_relocs; p != NULL; p = p->next)
15775 {
15776 asection *s = p->sec;
15777
15778 if (s != NULL && (s->flags & SEC_READONLY) != 0)
15779 {
15780 struct bfd_link_info *info = (struct bfd_link_info *) inf;
15781
15782 info->flags |= DF_TEXTREL;
15783
15784 /* Not an error, just cut short the traversal. */
15785 return FALSE;
15786 }
15787 }
15788 return TRUE;
15789 }
15790
15791 void
15792 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
15793 int byteswap_code)
15794 {
15795 struct elf32_arm_link_hash_table *globals;
15796
15797 globals = elf32_arm_hash_table (info);
15798 if (globals == NULL)
15799 return;
15800
15801 globals->byteswap_code = byteswap_code;
15802 }
15803
15804 /* Set the sizes of the dynamic sections. */
15805
15806 static bfd_boolean
15807 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
15808 struct bfd_link_info * info)
15809 {
15810 bfd * dynobj;
15811 asection * s;
15812 bfd_boolean plt;
15813 bfd_boolean relocs;
15814 bfd *ibfd;
15815 struct elf32_arm_link_hash_table *htab;
15816
15817 htab = elf32_arm_hash_table (info);
15818 if (htab == NULL)
15819 return FALSE;
15820
15821 dynobj = elf_hash_table (info)->dynobj;
15822 BFD_ASSERT (dynobj != NULL);
15823 check_use_blx (htab);
15824
15825 if (elf_hash_table (info)->dynamic_sections_created)
15826 {
15827 /* Set the contents of the .interp section to the interpreter. */
15828 if (bfd_link_executable (info) && !info->nointerp)
15829 {
15830 s = bfd_get_linker_section (dynobj, ".interp");
15831 BFD_ASSERT (s != NULL);
15832 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
15833 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
15834 }
15835 }
15836
15837 /* Set up .got offsets for local syms, and space for local dynamic
15838 relocs. */
15839 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
15840 {
15841 bfd_signed_vma *local_got;
15842 bfd_signed_vma *end_local_got;
15843 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
15844 char *local_tls_type;
15845 bfd_vma *local_tlsdesc_gotent;
15846 bfd_size_type locsymcount;
15847 Elf_Internal_Shdr *symtab_hdr;
15848 asection *srel;
15849 bfd_boolean is_vxworks = htab->vxworks_p;
15850 unsigned int symndx;
15851
15852 if (! is_arm_elf (ibfd))
15853 continue;
15854
15855 for (s = ibfd->sections; s != NULL; s = s->next)
15856 {
15857 struct elf_dyn_relocs *p;
15858
15859 for (p = (struct elf_dyn_relocs *)
15860 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
15861 {
15862 if (!bfd_is_abs_section (p->sec)
15863 && bfd_is_abs_section (p->sec->output_section))
15864 {
15865 /* Input section has been discarded, either because
15866 it is a copy of a linkonce section or due to
15867 linker script /DISCARD/, so we'll be discarding
15868 the relocs too. */
15869 }
15870 else if (is_vxworks
15871 && strcmp (p->sec->output_section->name,
15872 ".tls_vars") == 0)
15873 {
15874 /* Relocations in vxworks .tls_vars sections are
15875 handled specially by the loader. */
15876 }
15877 else if (p->count != 0)
15878 {
15879 srel = elf_section_data (p->sec)->sreloc;
15880 elf32_arm_allocate_dynrelocs (info, srel, p->count);
15881 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
15882 info->flags |= DF_TEXTREL;
15883 }
15884 }
15885 }
15886
15887 local_got = elf_local_got_refcounts (ibfd);
15888 if (!local_got)
15889 continue;
15890
15891 symtab_hdr = & elf_symtab_hdr (ibfd);
15892 locsymcount = symtab_hdr->sh_info;
15893 end_local_got = local_got + locsymcount;
15894 local_iplt_ptr = elf32_arm_local_iplt (ibfd);
15895 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
15896 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
15897 symndx = 0;
15898 s = htab->root.sgot;
15899 srel = htab->root.srelgot;
15900 for (; local_got < end_local_got;
15901 ++local_got, ++local_iplt_ptr, ++local_tls_type,
15902 ++local_tlsdesc_gotent, ++symndx)
15903 {
15904 *local_tlsdesc_gotent = (bfd_vma) -1;
15905 local_iplt = *local_iplt_ptr;
15906 if (local_iplt != NULL)
15907 {
15908 struct elf_dyn_relocs *p;
15909
15910 if (local_iplt->root.refcount > 0)
15911 {
15912 elf32_arm_allocate_plt_entry (info, TRUE,
15913 &local_iplt->root,
15914 &local_iplt->arm);
15915 if (local_iplt->arm.noncall_refcount == 0)
15916 /* All references to the PLT are calls, so all
15917 non-call references can resolve directly to the
15918 run-time target. This means that the .got entry
15919 would be the same as the .igot.plt entry, so there's
15920 no point creating both. */
15921 *local_got = 0;
15922 }
15923 else
15924 {
15925 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
15926 local_iplt->root.offset = (bfd_vma) -1;
15927 }
15928
15929 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
15930 {
15931 asection *psrel;
15932
15933 psrel = elf_section_data (p->sec)->sreloc;
15934 if (local_iplt->arm.noncall_refcount == 0)
15935 elf32_arm_allocate_irelocs (info, psrel, p->count);
15936 else
15937 elf32_arm_allocate_dynrelocs (info, psrel, p->count);
15938 }
15939 }
15940 if (*local_got > 0)
15941 {
15942 Elf_Internal_Sym *isym;
15943
15944 *local_got = s->size;
15945 if (*local_tls_type & GOT_TLS_GD)
15946 /* TLS_GD relocs need an 8-byte structure in the GOT. */
15947 s->size += 8;
15948 if (*local_tls_type & GOT_TLS_GDESC)
15949 {
15950 *local_tlsdesc_gotent = htab->root.sgotplt->size
15951 - elf32_arm_compute_jump_table_size (htab);
15952 htab->root.sgotplt->size += 8;
15953 *local_got = (bfd_vma) -2;
15954 /* plt.got_offset needs to know there's a TLS_DESC
15955 reloc in the middle of .got.plt. */
15956 htab->num_tls_desc++;
15957 }
15958 if (*local_tls_type & GOT_TLS_IE)
15959 s->size += 4;
15960
15961 if (*local_tls_type & GOT_NORMAL)
15962 {
15963 /* If the symbol is both GD and GDESC, *local_got
15964 may have been overwritten. */
15965 *local_got = s->size;
15966 s->size += 4;
15967 }
15968
15969 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
15970 if (isym == NULL)
15971 return FALSE;
15972
15973 /* If all references to an STT_GNU_IFUNC PLT are calls,
15974 then all non-call references, including this GOT entry,
15975 resolve directly to the run-time target. */
15976 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
15977 && (local_iplt == NULL
15978 || local_iplt->arm.noncall_refcount == 0))
15979 elf32_arm_allocate_irelocs (info, srel, 1);
15980 else if (bfd_link_pic (info) || output_bfd->flags & DYNAMIC)
15981 {
15982 if ((bfd_link_pic (info) && !(*local_tls_type & GOT_TLS_GDESC))
15983 || *local_tls_type & GOT_TLS_GD)
15984 elf32_arm_allocate_dynrelocs (info, srel, 1);
15985
15986 if (bfd_link_pic (info) && *local_tls_type & GOT_TLS_GDESC)
15987 {
15988 elf32_arm_allocate_dynrelocs (info,
15989 htab->root.srelplt, 1);
15990 htab->tls_trampoline = -1;
15991 }
15992 }
15993 }
15994 else
15995 *local_got = (bfd_vma) -1;
15996 }
15997 }
15998
15999 if (htab->tls_ldm_got.refcount > 0)
16000 {
16001 /* Allocate two GOT entries and one dynamic relocation (if necessary)
16002 for R_ARM_TLS_LDM32 relocations. */
16003 htab->tls_ldm_got.offset = htab->root.sgot->size;
16004 htab->root.sgot->size += 8;
16005 if (bfd_link_pic (info))
16006 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16007 }
16008 else
16009 htab->tls_ldm_got.offset = -1;
16010
16011 /* Allocate global sym .plt and .got entries, and space for global
16012 sym dynamic relocs. */
16013 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
16014
16015 /* Here we rummage through the found bfds to collect glue information. */
16016 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
16017 {
16018 if (! is_arm_elf (ibfd))
16019 continue;
16020
16021 /* Initialise mapping tables for code/data. */
16022 bfd_elf32_arm_init_maps (ibfd);
16023
16024 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
16025 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info)
16026 || !bfd_elf32_arm_stm32l4xx_erratum_scan (ibfd, info))
16027 _bfd_error_handler (_("Errors encountered processing file %B"), ibfd);
16028 }
16029
16030 /* Allocate space for the glue sections now that we've sized them. */
16031 bfd_elf32_arm_allocate_interworking_sections (info);
16032
16033 /* For every jump slot reserved in the sgotplt, reloc_count is
16034 incremented. However, when we reserve space for TLS descriptors,
16035 it's not incremented, so in order to compute the space reserved
16036 for them, it suffices to multiply the reloc count by the jump
16037 slot size. */
16038 if (htab->root.srelplt)
16039 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
16040
16041 if (htab->tls_trampoline)
16042 {
16043 if (htab->root.splt->size == 0)
16044 htab->root.splt->size += htab->plt_header_size;
16045
16046 htab->tls_trampoline = htab->root.splt->size;
16047 htab->root.splt->size += htab->plt_entry_size;
16048
16049 /* If we're not using lazy TLS relocations, don't generate the
16050 PLT and GOT entries they require. */
16051 if (!(info->flags & DF_BIND_NOW))
16052 {
16053 htab->dt_tlsdesc_got = htab->root.sgot->size;
16054 htab->root.sgot->size += 4;
16055
16056 htab->dt_tlsdesc_plt = htab->root.splt->size;
16057 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
16058 }
16059 }
16060
16061 /* The check_relocs and adjust_dynamic_symbol entry points have
16062 determined the sizes of the various dynamic sections. Allocate
16063 memory for them. */
16064 plt = FALSE;
16065 relocs = FALSE;
16066 for (s = dynobj->sections; s != NULL; s = s->next)
16067 {
16068 const char * name;
16069
16070 if ((s->flags & SEC_LINKER_CREATED) == 0)
16071 continue;
16072
16073 /* It's OK to base decisions on the section name, because none
16074 of the dynobj section names depend upon the input files. */
16075 name = bfd_get_section_name (dynobj, s);
16076
16077 if (s == htab->root.splt)
16078 {
16079 /* Remember whether there is a PLT. */
16080 plt = s->size != 0;
16081 }
16082 else if (CONST_STRNEQ (name, ".rel"))
16083 {
16084 if (s->size != 0)
16085 {
16086 /* Remember whether there are any reloc sections other
16087 than .rel(a).plt and .rela.plt.unloaded. */
16088 if (s != htab->root.srelplt && s != htab->srelplt2)
16089 relocs = TRUE;
16090
16091 /* We use the reloc_count field as a counter if we need
16092 to copy relocs into the output file. */
16093 s->reloc_count = 0;
16094 }
16095 }
16096 else if (s != htab->root.sgot
16097 && s != htab->root.sgotplt
16098 && s != htab->root.iplt
16099 && s != htab->root.igotplt
16100 && s != htab->root.sdynbss
16101 && s != htab->root.sdynrelro)
16102 {
16103 /* It's not one of our sections, so don't allocate space. */
16104 continue;
16105 }
16106
16107 if (s->size == 0)
16108 {
16109 /* If we don't need this section, strip it from the
16110 output file. This is mostly to handle .rel(a).bss and
16111 .rel(a).plt. We must create both sections in
16112 create_dynamic_sections, because they must be created
16113 before the linker maps input sections to output
16114 sections. The linker does that before
16115 adjust_dynamic_symbol is called, and it is that
16116 function which decides whether anything needs to go
16117 into these sections. */
16118 s->flags |= SEC_EXCLUDE;
16119 continue;
16120 }
16121
16122 if ((s->flags & SEC_HAS_CONTENTS) == 0)
16123 continue;
16124
16125 /* Allocate memory for the section contents. */
16126 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
16127 if (s->contents == NULL)
16128 return FALSE;
16129 }
16130
16131 if (elf_hash_table (info)->dynamic_sections_created)
16132 {
16133 /* Add some entries to the .dynamic section. We fill in the
16134 values later, in elf32_arm_finish_dynamic_sections, but we
16135 must add the entries now so that we get the correct size for
16136 the .dynamic section. The DT_DEBUG entry is filled in by the
16137 dynamic linker and used by the debugger. */
16138 #define add_dynamic_entry(TAG, VAL) \
16139 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
16140
16141 if (bfd_link_executable (info))
16142 {
16143 if (!add_dynamic_entry (DT_DEBUG, 0))
16144 return FALSE;
16145 }
16146
16147 if (plt)
16148 {
16149 if ( !add_dynamic_entry (DT_PLTGOT, 0)
16150 || !add_dynamic_entry (DT_PLTRELSZ, 0)
16151 || !add_dynamic_entry (DT_PLTREL,
16152 htab->use_rel ? DT_REL : DT_RELA)
16153 || !add_dynamic_entry (DT_JMPREL, 0))
16154 return FALSE;
16155
16156 if (htab->dt_tlsdesc_plt
16157 && (!add_dynamic_entry (DT_TLSDESC_PLT,0)
16158 || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
16159 return FALSE;
16160 }
16161
16162 if (relocs)
16163 {
16164 if (htab->use_rel)
16165 {
16166 if (!add_dynamic_entry (DT_REL, 0)
16167 || !add_dynamic_entry (DT_RELSZ, 0)
16168 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
16169 return FALSE;
16170 }
16171 else
16172 {
16173 if (!add_dynamic_entry (DT_RELA, 0)
16174 || !add_dynamic_entry (DT_RELASZ, 0)
16175 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
16176 return FALSE;
16177 }
16178 }
16179
16180 /* If any dynamic relocs apply to a read-only section,
16181 then we need a DT_TEXTREL entry. */
16182 if ((info->flags & DF_TEXTREL) == 0)
16183 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
16184 info);
16185
16186 if ((info->flags & DF_TEXTREL) != 0)
16187 {
16188 if (!add_dynamic_entry (DT_TEXTREL, 0))
16189 return FALSE;
16190 }
16191 if (htab->vxworks_p
16192 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
16193 return FALSE;
16194 }
16195 #undef add_dynamic_entry
16196
16197 return TRUE;
16198 }
16199
16200 /* Size sections even though they're not dynamic. We use it to setup
16201 _TLS_MODULE_BASE_, if needed. */
16202
16203 static bfd_boolean
16204 elf32_arm_always_size_sections (bfd *output_bfd,
16205 struct bfd_link_info *info)
16206 {
16207 asection *tls_sec;
16208
16209 if (bfd_link_relocatable (info))
16210 return TRUE;
16211
16212 tls_sec = elf_hash_table (info)->tls_sec;
16213
16214 if (tls_sec)
16215 {
16216 struct elf_link_hash_entry *tlsbase;
16217
16218 tlsbase = elf_link_hash_lookup
16219 (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
16220
16221 if (tlsbase)
16222 {
16223 struct bfd_link_hash_entry *bh = NULL;
16224 const struct elf_backend_data *bed
16225 = get_elf_backend_data (output_bfd);
16226
16227 if (!(_bfd_generic_link_add_one_symbol
16228 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
16229 tls_sec, 0, NULL, FALSE,
16230 bed->collect, &bh)))
16231 return FALSE;
16232
16233 tlsbase->type = STT_TLS;
16234 tlsbase = (struct elf_link_hash_entry *)bh;
16235 tlsbase->def_regular = 1;
16236 tlsbase->other = STV_HIDDEN;
16237 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
16238 }
16239 }
16240 return TRUE;
16241 }
16242
16243 /* Finish up dynamic symbol handling. We set the contents of various
16244 dynamic sections here. */
16245
16246 static bfd_boolean
16247 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
16248 struct bfd_link_info * info,
16249 struct elf_link_hash_entry * h,
16250 Elf_Internal_Sym * sym)
16251 {
16252 struct elf32_arm_link_hash_table *htab;
16253 struct elf32_arm_link_hash_entry *eh;
16254
16255 htab = elf32_arm_hash_table (info);
16256 if (htab == NULL)
16257 return FALSE;
16258
16259 eh = (struct elf32_arm_link_hash_entry *) h;
16260
16261 if (h->plt.offset != (bfd_vma) -1)
16262 {
16263 if (!eh->is_iplt)
16264 {
16265 BFD_ASSERT (h->dynindx != -1);
16266 if (! elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
16267 h->dynindx, 0))
16268 return FALSE;
16269 }
16270
16271 if (!h->def_regular)
16272 {
16273 /* Mark the symbol as undefined, rather than as defined in
16274 the .plt section. */
16275 sym->st_shndx = SHN_UNDEF;
16276 /* If the symbol is weak we need to clear the value.
16277 Otherwise, the PLT entry would provide a definition for
16278 the symbol even if the symbol wasn't defined anywhere,
16279 and so the symbol would never be NULL. Leave the value if
16280 there were any relocations where pointer equality matters
16281 (this is a clue for the dynamic linker, to make function
16282 pointer comparisons work between an application and shared
16283 library). */
16284 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
16285 sym->st_value = 0;
16286 }
16287 else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
16288 {
16289 /* At least one non-call relocation references this .iplt entry,
16290 so the .iplt entry is the function's canonical address. */
16291 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
16292 ARM_SET_SYM_BRANCH_TYPE (sym->st_target_internal, ST_BRANCH_TO_ARM);
16293 sym->st_shndx = (_bfd_elf_section_from_bfd_section
16294 (output_bfd, htab->root.iplt->output_section));
16295 sym->st_value = (h->plt.offset
16296 + htab->root.iplt->output_section->vma
16297 + htab->root.iplt->output_offset);
16298 }
16299 }
16300
16301 if (h->needs_copy)
16302 {
16303 asection * s;
16304 Elf_Internal_Rela rel;
16305
16306 /* This symbol needs a copy reloc. Set it up. */
16307 BFD_ASSERT (h->dynindx != -1
16308 && (h->root.type == bfd_link_hash_defined
16309 || h->root.type == bfd_link_hash_defweak));
16310
16311 rel.r_addend = 0;
16312 rel.r_offset = (h->root.u.def.value
16313 + h->root.u.def.section->output_section->vma
16314 + h->root.u.def.section->output_offset);
16315 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
16316 if (h->root.u.def.section == htab->root.sdynrelro)
16317 s = htab->root.sreldynrelro;
16318 else
16319 s = htab->root.srelbss;
16320 elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
16321 }
16322
16323 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
16324 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
16325 to the ".got" section. */
16326 if (h == htab->root.hdynamic
16327 || (!htab->vxworks_p && h == htab->root.hgot))
16328 sym->st_shndx = SHN_ABS;
16329
16330 return TRUE;
16331 }
16332
16333 static void
16334 arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
16335 void *contents,
16336 const unsigned long *template, unsigned count)
16337 {
16338 unsigned ix;
16339
16340 for (ix = 0; ix != count; ix++)
16341 {
16342 unsigned long insn = template[ix];
16343
16344 /* Emit mov pc,rx if bx is not permitted. */
16345 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
16346 insn = (insn & 0xf000000f) | 0x01a0f000;
16347 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
16348 }
16349 }
16350
16351 /* Install the special first PLT entry for elf32-arm-nacl. Unlike
16352 other variants, NaCl needs this entry in a static executable's
16353 .iplt too. When we're handling that case, GOT_DISPLACEMENT is
16354 zero. For .iplt really only the last bundle is useful, and .iplt
16355 could have a shorter first entry, with each individual PLT entry's
16356 relative branch calculated differently so it targets the last
16357 bundle instead of the instruction before it (labelled .Lplt_tail
16358 above). But it's simpler to keep the size and layout of PLT0
16359 consistent with the dynamic case, at the cost of some dead code at
16360 the start of .iplt and the one dead store to the stack at the start
16361 of .Lplt_tail. */
16362 static void
16363 arm_nacl_put_plt0 (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
16364 asection *plt, bfd_vma got_displacement)
16365 {
16366 unsigned int i;
16367
16368 put_arm_insn (htab, output_bfd,
16369 elf32_arm_nacl_plt0_entry[0]
16370 | arm_movw_immediate (got_displacement),
16371 plt->contents + 0);
16372 put_arm_insn (htab, output_bfd,
16373 elf32_arm_nacl_plt0_entry[1]
16374 | arm_movt_immediate (got_displacement),
16375 plt->contents + 4);
16376
16377 for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i)
16378 put_arm_insn (htab, output_bfd,
16379 elf32_arm_nacl_plt0_entry[i],
16380 plt->contents + (i * 4));
16381 }
16382
16383 /* Finish up the dynamic sections. */
16384
16385 static bfd_boolean
16386 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
16387 {
16388 bfd * dynobj;
16389 asection * sgot;
16390 asection * sdyn;
16391 struct elf32_arm_link_hash_table *htab;
16392
16393 htab = elf32_arm_hash_table (info);
16394 if (htab == NULL)
16395 return FALSE;
16396
16397 dynobj = elf_hash_table (info)->dynobj;
16398
16399 sgot = htab->root.sgotplt;
16400 /* A broken linker script might have discarded the dynamic sections.
16401 Catch this here so that we do not seg-fault later on. */
16402 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
16403 return FALSE;
16404 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
16405
16406 if (elf_hash_table (info)->dynamic_sections_created)
16407 {
16408 asection *splt;
16409 Elf32_External_Dyn *dyncon, *dynconend;
16410
16411 splt = htab->root.splt;
16412 BFD_ASSERT (splt != NULL && sdyn != NULL);
16413 BFD_ASSERT (htab->symbian_p || sgot != NULL);
16414
16415 dyncon = (Elf32_External_Dyn *) sdyn->contents;
16416 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
16417
16418 for (; dyncon < dynconend; dyncon++)
16419 {
16420 Elf_Internal_Dyn dyn;
16421 const char * name;
16422 asection * s;
16423
16424 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
16425
16426 switch (dyn.d_tag)
16427 {
16428 unsigned int type;
16429
16430 default:
16431 if (htab->vxworks_p
16432 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
16433 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16434 break;
16435
16436 case DT_HASH:
16437 name = ".hash";
16438 goto get_vma_if_bpabi;
16439 case DT_STRTAB:
16440 name = ".dynstr";
16441 goto get_vma_if_bpabi;
16442 case DT_SYMTAB:
16443 name = ".dynsym";
16444 goto get_vma_if_bpabi;
16445 case DT_VERSYM:
16446 name = ".gnu.version";
16447 goto get_vma_if_bpabi;
16448 case DT_VERDEF:
16449 name = ".gnu.version_d";
16450 goto get_vma_if_bpabi;
16451 case DT_VERNEED:
16452 name = ".gnu.version_r";
16453 goto get_vma_if_bpabi;
16454
16455 case DT_PLTGOT:
16456 name = htab->symbian_p ? ".got" : ".got.plt";
16457 goto get_vma;
16458 case DT_JMPREL:
16459 name = RELOC_SECTION (htab, ".plt");
16460 get_vma:
16461 s = bfd_get_linker_section (dynobj, name);
16462 if (s == NULL)
16463 {
16464 _bfd_error_handler
16465 (_("could not find section %s"), name);
16466 bfd_set_error (bfd_error_invalid_operation);
16467 return FALSE;
16468 }
16469 if (!htab->symbian_p)
16470 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
16471 else
16472 /* In the BPABI, tags in the PT_DYNAMIC section point
16473 at the file offset, not the memory address, for the
16474 convenience of the post linker. */
16475 dyn.d_un.d_ptr = s->output_section->filepos + s->output_offset;
16476 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16477 break;
16478
16479 get_vma_if_bpabi:
16480 if (htab->symbian_p)
16481 goto get_vma;
16482 break;
16483
16484 case DT_PLTRELSZ:
16485 s = htab->root.srelplt;
16486 BFD_ASSERT (s != NULL);
16487 dyn.d_un.d_val = s->size;
16488 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16489 break;
16490
16491 case DT_RELSZ:
16492 case DT_RELASZ:
16493 case DT_REL:
16494 case DT_RELA:
16495 /* In the BPABI, the DT_REL tag must point at the file
16496 offset, not the VMA, of the first relocation
16497 section. So, we use code similar to that in
16498 elflink.c, but do not check for SHF_ALLOC on the
16499 relocation section, since relocation sections are
16500 never allocated under the BPABI. PLT relocs are also
16501 included. */
16502 if (htab->symbian_p)
16503 {
16504 unsigned int i;
16505 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
16506 ? SHT_REL : SHT_RELA);
16507 dyn.d_un.d_val = 0;
16508 for (i = 1; i < elf_numsections (output_bfd); i++)
16509 {
16510 Elf_Internal_Shdr *hdr
16511 = elf_elfsections (output_bfd)[i];
16512 if (hdr->sh_type == type)
16513 {
16514 if (dyn.d_tag == DT_RELSZ
16515 || dyn.d_tag == DT_RELASZ)
16516 dyn.d_un.d_val += hdr->sh_size;
16517 else if ((ufile_ptr) hdr->sh_offset
16518 <= dyn.d_un.d_val - 1)
16519 dyn.d_un.d_val = hdr->sh_offset;
16520 }
16521 }
16522 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16523 }
16524 break;
16525
16526 case DT_TLSDESC_PLT:
16527 s = htab->root.splt;
16528 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
16529 + htab->dt_tlsdesc_plt);
16530 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16531 break;
16532
16533 case DT_TLSDESC_GOT:
16534 s = htab->root.sgot;
16535 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
16536 + htab->dt_tlsdesc_got);
16537 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16538 break;
16539
16540 /* Set the bottom bit of DT_INIT/FINI if the
16541 corresponding function is Thumb. */
16542 case DT_INIT:
16543 name = info->init_function;
16544 goto get_sym;
16545 case DT_FINI:
16546 name = info->fini_function;
16547 get_sym:
16548 /* If it wasn't set by elf_bfd_final_link
16549 then there is nothing to adjust. */
16550 if (dyn.d_un.d_val != 0)
16551 {
16552 struct elf_link_hash_entry * eh;
16553
16554 eh = elf_link_hash_lookup (elf_hash_table (info), name,
16555 FALSE, FALSE, TRUE);
16556 if (eh != NULL
16557 && ARM_GET_SYM_BRANCH_TYPE (eh->target_internal)
16558 == ST_BRANCH_TO_THUMB)
16559 {
16560 dyn.d_un.d_val |= 1;
16561 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16562 }
16563 }
16564 break;
16565 }
16566 }
16567
16568 /* Fill in the first entry in the procedure linkage table. */
16569 if (splt->size > 0 && htab->plt_header_size)
16570 {
16571 const bfd_vma *plt0_entry;
16572 bfd_vma got_address, plt_address, got_displacement;
16573
16574 /* Calculate the addresses of the GOT and PLT. */
16575 got_address = sgot->output_section->vma + sgot->output_offset;
16576 plt_address = splt->output_section->vma + splt->output_offset;
16577
16578 if (htab->vxworks_p)
16579 {
16580 /* The VxWorks GOT is relocated by the dynamic linker.
16581 Therefore, we must emit relocations rather than simply
16582 computing the values now. */
16583 Elf_Internal_Rela rel;
16584
16585 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
16586 put_arm_insn (htab, output_bfd, plt0_entry[0],
16587 splt->contents + 0);
16588 put_arm_insn (htab, output_bfd, plt0_entry[1],
16589 splt->contents + 4);
16590 put_arm_insn (htab, output_bfd, plt0_entry[2],
16591 splt->contents + 8);
16592 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
16593
16594 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
16595 rel.r_offset = plt_address + 12;
16596 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
16597 rel.r_addend = 0;
16598 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
16599 htab->srelplt2->contents);
16600 }
16601 else if (htab->nacl_p)
16602 arm_nacl_put_plt0 (htab, output_bfd, splt,
16603 got_address + 8 - (plt_address + 16));
16604 else if (using_thumb_only (htab))
16605 {
16606 got_displacement = got_address - (plt_address + 12);
16607
16608 plt0_entry = elf32_thumb2_plt0_entry;
16609 put_arm_insn (htab, output_bfd, plt0_entry[0],
16610 splt->contents + 0);
16611 put_arm_insn (htab, output_bfd, plt0_entry[1],
16612 splt->contents + 4);
16613 put_arm_insn (htab, output_bfd, plt0_entry[2],
16614 splt->contents + 8);
16615
16616 bfd_put_32 (output_bfd, got_displacement, splt->contents + 12);
16617 }
16618 else
16619 {
16620 got_displacement = got_address - (plt_address + 16);
16621
16622 plt0_entry = elf32_arm_plt0_entry;
16623 put_arm_insn (htab, output_bfd, plt0_entry[0],
16624 splt->contents + 0);
16625 put_arm_insn (htab, output_bfd, plt0_entry[1],
16626 splt->contents + 4);
16627 put_arm_insn (htab, output_bfd, plt0_entry[2],
16628 splt->contents + 8);
16629 put_arm_insn (htab, output_bfd, plt0_entry[3],
16630 splt->contents + 12);
16631
16632 #ifdef FOUR_WORD_PLT
16633 /* The displacement value goes in the otherwise-unused
16634 last word of the second entry. */
16635 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
16636 #else
16637 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
16638 #endif
16639 }
16640 }
16641
16642 /* UnixWare sets the entsize of .plt to 4, although that doesn't
16643 really seem like the right value. */
16644 if (splt->output_section->owner == output_bfd)
16645 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
16646
16647 if (htab->dt_tlsdesc_plt)
16648 {
16649 bfd_vma got_address
16650 = sgot->output_section->vma + sgot->output_offset;
16651 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
16652 + htab->root.sgot->output_offset);
16653 bfd_vma plt_address
16654 = splt->output_section->vma + splt->output_offset;
16655
16656 arm_put_trampoline (htab, output_bfd,
16657 splt->contents + htab->dt_tlsdesc_plt,
16658 dl_tlsdesc_lazy_trampoline, 6);
16659
16660 bfd_put_32 (output_bfd,
16661 gotplt_address + htab->dt_tlsdesc_got
16662 - (plt_address + htab->dt_tlsdesc_plt)
16663 - dl_tlsdesc_lazy_trampoline[6],
16664 splt->contents + htab->dt_tlsdesc_plt + 24);
16665 bfd_put_32 (output_bfd,
16666 got_address - (plt_address + htab->dt_tlsdesc_plt)
16667 - dl_tlsdesc_lazy_trampoline[7],
16668 splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
16669 }
16670
16671 if (htab->tls_trampoline)
16672 {
16673 arm_put_trampoline (htab, output_bfd,
16674 splt->contents + htab->tls_trampoline,
16675 tls_trampoline, 3);
16676 #ifdef FOUR_WORD_PLT
16677 bfd_put_32 (output_bfd, 0x00000000,
16678 splt->contents + htab->tls_trampoline + 12);
16679 #endif
16680 }
16681
16682 if (htab->vxworks_p
16683 && !bfd_link_pic (info)
16684 && htab->root.splt->size > 0)
16685 {
16686 /* Correct the .rel(a).plt.unloaded relocations. They will have
16687 incorrect symbol indexes. */
16688 int num_plts;
16689 unsigned char *p;
16690
16691 num_plts = ((htab->root.splt->size - htab->plt_header_size)
16692 / htab->plt_entry_size);
16693 p = htab->srelplt2->contents + RELOC_SIZE (htab);
16694
16695 for (; num_plts; num_plts--)
16696 {
16697 Elf_Internal_Rela rel;
16698
16699 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
16700 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
16701 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
16702 p += RELOC_SIZE (htab);
16703
16704 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
16705 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
16706 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
16707 p += RELOC_SIZE (htab);
16708 }
16709 }
16710 }
16711
16712 if (htab->nacl_p && htab->root.iplt != NULL && htab->root.iplt->size > 0)
16713 /* NaCl uses a special first entry in .iplt too. */
16714 arm_nacl_put_plt0 (htab, output_bfd, htab->root.iplt, 0);
16715
16716 /* Fill in the first three entries in the global offset table. */
16717 if (sgot)
16718 {
16719 if (sgot->size > 0)
16720 {
16721 if (sdyn == NULL)
16722 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
16723 else
16724 bfd_put_32 (output_bfd,
16725 sdyn->output_section->vma + sdyn->output_offset,
16726 sgot->contents);
16727 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
16728 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
16729 }
16730
16731 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
16732 }
16733
16734 return TRUE;
16735 }
16736
16737 static void
16738 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
16739 {
16740 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
16741 struct elf32_arm_link_hash_table *globals;
16742 struct elf_segment_map *m;
16743
16744 i_ehdrp = elf_elfheader (abfd);
16745
16746 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
16747 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
16748 else
16749 _bfd_elf_post_process_headers (abfd, link_info);
16750 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
16751
16752 if (link_info)
16753 {
16754 globals = elf32_arm_hash_table (link_info);
16755 if (globals != NULL && globals->byteswap_code)
16756 i_ehdrp->e_flags |= EF_ARM_BE8;
16757 }
16758
16759 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5
16760 && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC)))
16761 {
16762 int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args);
16763 if (abi == AEABI_VFP_args_vfp)
16764 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD;
16765 else
16766 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT;
16767 }
16768
16769 /* Scan segment to set p_flags attribute if it contains only sections with
16770 SHF_ARM_PURECODE flag. */
16771 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
16772 {
16773 unsigned int j;
16774
16775 if (m->count == 0)
16776 continue;
16777 for (j = 0; j < m->count; j++)
16778 {
16779 if (!(elf_section_flags (m->sections[j]) & SHF_ARM_PURECODE))
16780 break;
16781 }
16782 if (j == m->count)
16783 {
16784 m->p_flags = PF_X;
16785 m->p_flags_valid = 1;
16786 }
16787 }
16788 }
16789
16790 static enum elf_reloc_type_class
16791 elf32_arm_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
16792 const asection *rel_sec ATTRIBUTE_UNUSED,
16793 const Elf_Internal_Rela *rela)
16794 {
16795 switch ((int) ELF32_R_TYPE (rela->r_info))
16796 {
16797 case R_ARM_RELATIVE:
16798 return reloc_class_relative;
16799 case R_ARM_JUMP_SLOT:
16800 return reloc_class_plt;
16801 case R_ARM_COPY:
16802 return reloc_class_copy;
16803 case R_ARM_IRELATIVE:
16804 return reloc_class_ifunc;
16805 default:
16806 return reloc_class_normal;
16807 }
16808 }
16809
16810 static void
16811 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
16812 {
16813 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
16814 }
16815
16816 /* Return TRUE if this is an unwinding table entry. */
16817
16818 static bfd_boolean
16819 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
16820 {
16821 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
16822 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
16823 }
16824
16825
16826 /* Set the type and flags for an ARM section. We do this by
16827 the section name, which is a hack, but ought to work. */
16828
16829 static bfd_boolean
16830 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
16831 {
16832 const char * name;
16833
16834 name = bfd_get_section_name (abfd, sec);
16835
16836 if (is_arm_elf_unwind_section_name (abfd, name))
16837 {
16838 hdr->sh_type = SHT_ARM_EXIDX;
16839 hdr->sh_flags |= SHF_LINK_ORDER;
16840 }
16841
16842 if (sec->flags & SEC_ELF_PURECODE)
16843 hdr->sh_flags |= SHF_ARM_PURECODE;
16844
16845 return TRUE;
16846 }
16847
16848 /* Handle an ARM specific section when reading an object file. This is
16849 called when bfd_section_from_shdr finds a section with an unknown
16850 type. */
16851
16852 static bfd_boolean
16853 elf32_arm_section_from_shdr (bfd *abfd,
16854 Elf_Internal_Shdr * hdr,
16855 const char *name,
16856 int shindex)
16857 {
16858 /* There ought to be a place to keep ELF backend specific flags, but
16859 at the moment there isn't one. We just keep track of the
16860 sections by their name, instead. Fortunately, the ABI gives
16861 names for all the ARM specific sections, so we will probably get
16862 away with this. */
16863 switch (hdr->sh_type)
16864 {
16865 case SHT_ARM_EXIDX:
16866 case SHT_ARM_PREEMPTMAP:
16867 case SHT_ARM_ATTRIBUTES:
16868 break;
16869
16870 default:
16871 return FALSE;
16872 }
16873
16874 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
16875 return FALSE;
16876
16877 return TRUE;
16878 }
16879
16880 static _arm_elf_section_data *
16881 get_arm_elf_section_data (asection * sec)
16882 {
16883 if (sec && sec->owner && is_arm_elf (sec->owner))
16884 return elf32_arm_section_data (sec);
16885 else
16886 return NULL;
16887 }
16888
16889 typedef struct
16890 {
16891 void *flaginfo;
16892 struct bfd_link_info *info;
16893 asection *sec;
16894 int sec_shndx;
16895 int (*func) (void *, const char *, Elf_Internal_Sym *,
16896 asection *, struct elf_link_hash_entry *);
16897 } output_arch_syminfo;
16898
16899 enum map_symbol_type
16900 {
16901 ARM_MAP_ARM,
16902 ARM_MAP_THUMB,
16903 ARM_MAP_DATA
16904 };
16905
16906
16907 /* Output a single mapping symbol. */
16908
16909 static bfd_boolean
16910 elf32_arm_output_map_sym (output_arch_syminfo *osi,
16911 enum map_symbol_type type,
16912 bfd_vma offset)
16913 {
16914 static const char *names[3] = {"$a", "$t", "$d"};
16915 Elf_Internal_Sym sym;
16916
16917 sym.st_value = osi->sec->output_section->vma
16918 + osi->sec->output_offset
16919 + offset;
16920 sym.st_size = 0;
16921 sym.st_other = 0;
16922 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
16923 sym.st_shndx = osi->sec_shndx;
16924 sym.st_target_internal = 0;
16925 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
16926 return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1;
16927 }
16928
16929 /* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
16930 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
16931
16932 static bfd_boolean
16933 elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
16934 bfd_boolean is_iplt_entry_p,
16935 union gotplt_union *root_plt,
16936 struct arm_plt_info *arm_plt)
16937 {
16938 struct elf32_arm_link_hash_table *htab;
16939 bfd_vma addr, plt_header_size;
16940
16941 if (root_plt->offset == (bfd_vma) -1)
16942 return TRUE;
16943
16944 htab = elf32_arm_hash_table (osi->info);
16945 if (htab == NULL)
16946 return FALSE;
16947
16948 if (is_iplt_entry_p)
16949 {
16950 osi->sec = htab->root.iplt;
16951 plt_header_size = 0;
16952 }
16953 else
16954 {
16955 osi->sec = htab->root.splt;
16956 plt_header_size = htab->plt_header_size;
16957 }
16958 osi->sec_shndx = (_bfd_elf_section_from_bfd_section
16959 (osi->info->output_bfd, osi->sec->output_section));
16960
16961 addr = root_plt->offset & -2;
16962 if (htab->symbian_p)
16963 {
16964 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
16965 return FALSE;
16966 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
16967 return FALSE;
16968 }
16969 else if (htab->vxworks_p)
16970 {
16971 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
16972 return FALSE;
16973 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
16974 return FALSE;
16975 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
16976 return FALSE;
16977 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
16978 return FALSE;
16979 }
16980 else if (htab->nacl_p)
16981 {
16982 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
16983 return FALSE;
16984 }
16985 else if (using_thumb_only (htab))
16986 {
16987 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
16988 return FALSE;
16989 }
16990 else
16991 {
16992 bfd_boolean thumb_stub_p;
16993
16994 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
16995 if (thumb_stub_p)
16996 {
16997 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
16998 return FALSE;
16999 }
17000 #ifdef FOUR_WORD_PLT
17001 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
17002 return FALSE;
17003 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
17004 return FALSE;
17005 #else
17006 /* A three-word PLT with no Thumb thunk contains only Arm code,
17007 so only need to output a mapping symbol for the first PLT entry and
17008 entries with thumb thunks. */
17009 if (thumb_stub_p || addr == plt_header_size)
17010 {
17011 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
17012 return FALSE;
17013 }
17014 #endif
17015 }
17016
17017 return TRUE;
17018 }
17019
17020 /* Output mapping symbols for PLT entries associated with H. */
17021
17022 static bfd_boolean
17023 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
17024 {
17025 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
17026 struct elf32_arm_link_hash_entry *eh;
17027
17028 if (h->root.type == bfd_link_hash_indirect)
17029 return TRUE;
17030
17031 if (h->root.type == bfd_link_hash_warning)
17032 /* When warning symbols are created, they **replace** the "real"
17033 entry in the hash table, thus we never get to see the real
17034 symbol in a hash traversal. So look at it now. */
17035 h = (struct elf_link_hash_entry *) h->root.u.i.link;
17036
17037 eh = (struct elf32_arm_link_hash_entry *) h;
17038 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
17039 &h->plt, &eh->plt);
17040 }
17041
17042 /* Bind a veneered symbol to its veneer identified by its hash entry
17043 STUB_ENTRY. The veneered location thus loose its symbol. */
17044
17045 static void
17046 arm_stub_claim_sym (struct elf32_arm_stub_hash_entry *stub_entry)
17047 {
17048 struct elf32_arm_link_hash_entry *hash = stub_entry->h;
17049
17050 BFD_ASSERT (hash);
17051 hash->root.root.u.def.section = stub_entry->stub_sec;
17052 hash->root.root.u.def.value = stub_entry->stub_offset;
17053 hash->root.size = stub_entry->stub_size;
17054 }
17055
17056 /* Output a single local symbol for a generated stub. */
17057
17058 static bfd_boolean
17059 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
17060 bfd_vma offset, bfd_vma size)
17061 {
17062 Elf_Internal_Sym sym;
17063
17064 sym.st_value = osi->sec->output_section->vma
17065 + osi->sec->output_offset
17066 + offset;
17067 sym.st_size = size;
17068 sym.st_other = 0;
17069 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
17070 sym.st_shndx = osi->sec_shndx;
17071 sym.st_target_internal = 0;
17072 return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1;
17073 }
17074
17075 static bfd_boolean
17076 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
17077 void * in_arg)
17078 {
17079 struct elf32_arm_stub_hash_entry *stub_entry;
17080 asection *stub_sec;
17081 bfd_vma addr;
17082 char *stub_name;
17083 output_arch_syminfo *osi;
17084 const insn_sequence *template_sequence;
17085 enum stub_insn_type prev_type;
17086 int size;
17087 int i;
17088 enum map_symbol_type sym_type;
17089
17090 /* Massage our args to the form they really have. */
17091 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
17092 osi = (output_arch_syminfo *) in_arg;
17093
17094 stub_sec = stub_entry->stub_sec;
17095
17096 /* Ensure this stub is attached to the current section being
17097 processed. */
17098 if (stub_sec != osi->sec)
17099 return TRUE;
17100
17101 addr = (bfd_vma) stub_entry->stub_offset;
17102 template_sequence = stub_entry->stub_template;
17103
17104 if (arm_stub_sym_claimed (stub_entry->stub_type))
17105 arm_stub_claim_sym (stub_entry);
17106 else
17107 {
17108 stub_name = stub_entry->output_name;
17109 switch (template_sequence[0].type)
17110 {
17111 case ARM_TYPE:
17112 if (!elf32_arm_output_stub_sym (osi, stub_name, addr,
17113 stub_entry->stub_size))
17114 return FALSE;
17115 break;
17116 case THUMB16_TYPE:
17117 case THUMB32_TYPE:
17118 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
17119 stub_entry->stub_size))
17120 return FALSE;
17121 break;
17122 default:
17123 BFD_FAIL ();
17124 return 0;
17125 }
17126 }
17127
17128 prev_type = DATA_TYPE;
17129 size = 0;
17130 for (i = 0; i < stub_entry->stub_template_size; i++)
17131 {
17132 switch (template_sequence[i].type)
17133 {
17134 case ARM_TYPE:
17135 sym_type = ARM_MAP_ARM;
17136 break;
17137
17138 case THUMB16_TYPE:
17139 case THUMB32_TYPE:
17140 sym_type = ARM_MAP_THUMB;
17141 break;
17142
17143 case DATA_TYPE:
17144 sym_type = ARM_MAP_DATA;
17145 break;
17146
17147 default:
17148 BFD_FAIL ();
17149 return FALSE;
17150 }
17151
17152 if (template_sequence[i].type != prev_type)
17153 {
17154 prev_type = template_sequence[i].type;
17155 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
17156 return FALSE;
17157 }
17158
17159 switch (template_sequence[i].type)
17160 {
17161 case ARM_TYPE:
17162 case THUMB32_TYPE:
17163 size += 4;
17164 break;
17165
17166 case THUMB16_TYPE:
17167 size += 2;
17168 break;
17169
17170 case DATA_TYPE:
17171 size += 4;
17172 break;
17173
17174 default:
17175 BFD_FAIL ();
17176 return FALSE;
17177 }
17178 }
17179
17180 return TRUE;
17181 }
17182
17183 /* Output mapping symbols for linker generated sections,
17184 and for those data-only sections that do not have a
17185 $d. */
17186
17187 static bfd_boolean
17188 elf32_arm_output_arch_local_syms (bfd *output_bfd,
17189 struct bfd_link_info *info,
17190 void *flaginfo,
17191 int (*func) (void *, const char *,
17192 Elf_Internal_Sym *,
17193 asection *,
17194 struct elf_link_hash_entry *))
17195 {
17196 output_arch_syminfo osi;
17197 struct elf32_arm_link_hash_table *htab;
17198 bfd_vma offset;
17199 bfd_size_type size;
17200 bfd *input_bfd;
17201
17202 htab = elf32_arm_hash_table (info);
17203 if (htab == NULL)
17204 return FALSE;
17205
17206 check_use_blx (htab);
17207
17208 osi.flaginfo = flaginfo;
17209 osi.info = info;
17210 osi.func = func;
17211
17212 /* Add a $d mapping symbol to data-only sections that
17213 don't have any mapping symbol. This may result in (harmless) redundant
17214 mapping symbols. */
17215 for (input_bfd = info->input_bfds;
17216 input_bfd != NULL;
17217 input_bfd = input_bfd->link.next)
17218 {
17219 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
17220 for (osi.sec = input_bfd->sections;
17221 osi.sec != NULL;
17222 osi.sec = osi.sec->next)
17223 {
17224 if (osi.sec->output_section != NULL
17225 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
17226 != 0)
17227 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
17228 == SEC_HAS_CONTENTS
17229 && get_arm_elf_section_data (osi.sec) != NULL
17230 && get_arm_elf_section_data (osi.sec)->mapcount == 0
17231 && osi.sec->size > 0
17232 && (osi.sec->flags & SEC_EXCLUDE) == 0)
17233 {
17234 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17235 (output_bfd, osi.sec->output_section);
17236 if (osi.sec_shndx != (int)SHN_BAD)
17237 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
17238 }
17239 }
17240 }
17241
17242 /* ARM->Thumb glue. */
17243 if (htab->arm_glue_size > 0)
17244 {
17245 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
17246 ARM2THUMB_GLUE_SECTION_NAME);
17247
17248 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17249 (output_bfd, osi.sec->output_section);
17250 if (bfd_link_pic (info) || htab->root.is_relocatable_executable
17251 || htab->pic_veneer)
17252 size = ARM2THUMB_PIC_GLUE_SIZE;
17253 else if (htab->use_blx)
17254 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
17255 else
17256 size = ARM2THUMB_STATIC_GLUE_SIZE;
17257
17258 for (offset = 0; offset < htab->arm_glue_size; offset += size)
17259 {
17260 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
17261 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
17262 }
17263 }
17264
17265 /* Thumb->ARM glue. */
17266 if (htab->thumb_glue_size > 0)
17267 {
17268 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
17269 THUMB2ARM_GLUE_SECTION_NAME);
17270
17271 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17272 (output_bfd, osi.sec->output_section);
17273 size = THUMB2ARM_GLUE_SIZE;
17274
17275 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
17276 {
17277 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
17278 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
17279 }
17280 }
17281
17282 /* ARMv4 BX veneers. */
17283 if (htab->bx_glue_size > 0)
17284 {
17285 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
17286 ARM_BX_GLUE_SECTION_NAME);
17287
17288 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17289 (output_bfd, osi.sec->output_section);
17290
17291 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
17292 }
17293
17294 /* Long calls stubs. */
17295 if (htab->stub_bfd && htab->stub_bfd->sections)
17296 {
17297 asection* stub_sec;
17298
17299 for (stub_sec = htab->stub_bfd->sections;
17300 stub_sec != NULL;
17301 stub_sec = stub_sec->next)
17302 {
17303 /* Ignore non-stub sections. */
17304 if (!strstr (stub_sec->name, STUB_SUFFIX))
17305 continue;
17306
17307 osi.sec = stub_sec;
17308
17309 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17310 (output_bfd, osi.sec->output_section);
17311
17312 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
17313 }
17314 }
17315
17316 /* Finally, output mapping symbols for the PLT. */
17317 if (htab->root.splt && htab->root.splt->size > 0)
17318 {
17319 osi.sec = htab->root.splt;
17320 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
17321 (output_bfd, osi.sec->output_section));
17322
17323 /* Output mapping symbols for the plt header. SymbianOS does not have a
17324 plt header. */
17325 if (htab->vxworks_p)
17326 {
17327 /* VxWorks shared libraries have no PLT header. */
17328 if (!bfd_link_pic (info))
17329 {
17330 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
17331 return FALSE;
17332 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
17333 return FALSE;
17334 }
17335 }
17336 else if (htab->nacl_p)
17337 {
17338 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
17339 return FALSE;
17340 }
17341 else if (using_thumb_only (htab))
17342 {
17343 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 0))
17344 return FALSE;
17345 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
17346 return FALSE;
17347 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 16))
17348 return FALSE;
17349 }
17350 else if (!htab->symbian_p)
17351 {
17352 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
17353 return FALSE;
17354 #ifndef FOUR_WORD_PLT
17355 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
17356 return FALSE;
17357 #endif
17358 }
17359 }
17360 if (htab->nacl_p && htab->root.iplt && htab->root.iplt->size > 0)
17361 {
17362 /* NaCl uses a special first entry in .iplt too. */
17363 osi.sec = htab->root.iplt;
17364 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
17365 (output_bfd, osi.sec->output_section));
17366 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
17367 return FALSE;
17368 }
17369 if ((htab->root.splt && htab->root.splt->size > 0)
17370 || (htab->root.iplt && htab->root.iplt->size > 0))
17371 {
17372 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
17373 for (input_bfd = info->input_bfds;
17374 input_bfd != NULL;
17375 input_bfd = input_bfd->link.next)
17376 {
17377 struct arm_local_iplt_info **local_iplt;
17378 unsigned int i, num_syms;
17379
17380 local_iplt = elf32_arm_local_iplt (input_bfd);
17381 if (local_iplt != NULL)
17382 {
17383 num_syms = elf_symtab_hdr (input_bfd).sh_info;
17384 for (i = 0; i < num_syms; i++)
17385 if (local_iplt[i] != NULL
17386 && !elf32_arm_output_plt_map_1 (&osi, TRUE,
17387 &local_iplt[i]->root,
17388 &local_iplt[i]->arm))
17389 return FALSE;
17390 }
17391 }
17392 }
17393 if (htab->dt_tlsdesc_plt != 0)
17394 {
17395 /* Mapping symbols for the lazy tls trampoline. */
17396 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
17397 return FALSE;
17398
17399 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
17400 htab->dt_tlsdesc_plt + 24))
17401 return FALSE;
17402 }
17403 if (htab->tls_trampoline != 0)
17404 {
17405 /* Mapping symbols for the tls trampoline. */
17406 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
17407 return FALSE;
17408 #ifdef FOUR_WORD_PLT
17409 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
17410 htab->tls_trampoline + 12))
17411 return FALSE;
17412 #endif
17413 }
17414
17415 return TRUE;
17416 }
17417
17418 /* Filter normal symbols of CMSE entry functions of ABFD to include in
17419 the import library. All SYMCOUNT symbols of ABFD can be examined
17420 from their pointers in SYMS. Pointers of symbols to keep should be
17421 stored continuously at the beginning of that array.
17422
17423 Returns the number of symbols to keep. */
17424
17425 static unsigned int
17426 elf32_arm_filter_cmse_symbols (bfd *abfd ATTRIBUTE_UNUSED,
17427 struct bfd_link_info *info,
17428 asymbol **syms, long symcount)
17429 {
17430 size_t maxnamelen;
17431 char *cmse_name;
17432 long src_count, dst_count = 0;
17433 struct elf32_arm_link_hash_table *htab;
17434
17435 htab = elf32_arm_hash_table (info);
17436 if (!htab->stub_bfd || !htab->stub_bfd->sections)
17437 symcount = 0;
17438
17439 maxnamelen = 128;
17440 cmse_name = (char *) bfd_malloc (maxnamelen);
17441 for (src_count = 0; src_count < symcount; src_count++)
17442 {
17443 struct elf32_arm_link_hash_entry *cmse_hash;
17444 asymbol *sym;
17445 flagword flags;
17446 char *name;
17447 size_t namelen;
17448
17449 sym = syms[src_count];
17450 flags = sym->flags;
17451 name = (char *) bfd_asymbol_name (sym);
17452
17453 if ((flags & BSF_FUNCTION) != BSF_FUNCTION)
17454 continue;
17455 if (!(flags & (BSF_GLOBAL | BSF_WEAK)))
17456 continue;
17457
17458 namelen = strlen (name) + sizeof (CMSE_PREFIX) + 1;
17459 if (namelen > maxnamelen)
17460 {
17461 cmse_name = (char *)
17462 bfd_realloc (cmse_name, namelen);
17463 maxnamelen = namelen;
17464 }
17465 snprintf (cmse_name, maxnamelen, "%s%s", CMSE_PREFIX, name);
17466 cmse_hash = (struct elf32_arm_link_hash_entry *)
17467 elf_link_hash_lookup (&(htab)->root, cmse_name, FALSE, FALSE, TRUE);
17468
17469 if (!cmse_hash
17470 || (cmse_hash->root.root.type != bfd_link_hash_defined
17471 && cmse_hash->root.root.type != bfd_link_hash_defweak)
17472 || cmse_hash->root.type != STT_FUNC)
17473 continue;
17474
17475 if (!ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
17476 continue;
17477
17478 syms[dst_count++] = sym;
17479 }
17480 free (cmse_name);
17481
17482 syms[dst_count] = NULL;
17483
17484 return dst_count;
17485 }
17486
17487 /* Filter symbols of ABFD to include in the import library. All
17488 SYMCOUNT symbols of ABFD can be examined from their pointers in
17489 SYMS. Pointers of symbols to keep should be stored continuously at
17490 the beginning of that array.
17491
17492 Returns the number of symbols to keep. */
17493
17494 static unsigned int
17495 elf32_arm_filter_implib_symbols (bfd *abfd ATTRIBUTE_UNUSED,
17496 struct bfd_link_info *info,
17497 asymbol **syms, long symcount)
17498 {
17499 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
17500
17501 /* Requirement 8 of "ARM v8-M Security Extensions: Requirements on
17502 Development Tools" (ARM-ECM-0359818) mandates Secure Gateway import
17503 library to be a relocatable object file. */
17504 BFD_ASSERT (!(bfd_get_file_flags (info->out_implib_bfd) & EXEC_P));
17505 if (globals->cmse_implib)
17506 return elf32_arm_filter_cmse_symbols (abfd, info, syms, symcount);
17507 else
17508 return _bfd_elf_filter_global_symbols (abfd, info, syms, symcount);
17509 }
17510
17511 /* Allocate target specific section data. */
17512
17513 static bfd_boolean
17514 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
17515 {
17516 if (!sec->used_by_bfd)
17517 {
17518 _arm_elf_section_data *sdata;
17519 bfd_size_type amt = sizeof (*sdata);
17520
17521 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
17522 if (sdata == NULL)
17523 return FALSE;
17524 sec->used_by_bfd = sdata;
17525 }
17526
17527 return _bfd_elf_new_section_hook (abfd, sec);
17528 }
17529
17530
17531 /* Used to order a list of mapping symbols by address. */
17532
17533 static int
17534 elf32_arm_compare_mapping (const void * a, const void * b)
17535 {
17536 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
17537 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
17538
17539 if (amap->vma > bmap->vma)
17540 return 1;
17541 else if (amap->vma < bmap->vma)
17542 return -1;
17543 else if (amap->type > bmap->type)
17544 /* Ensure results do not depend on the host qsort for objects with
17545 multiple mapping symbols at the same address by sorting on type
17546 after vma. */
17547 return 1;
17548 else if (amap->type < bmap->type)
17549 return -1;
17550 else
17551 return 0;
17552 }
17553
17554 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
17555
17556 static unsigned long
17557 offset_prel31 (unsigned long addr, bfd_vma offset)
17558 {
17559 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
17560 }
17561
17562 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
17563 relocations. */
17564
17565 static void
17566 copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
17567 {
17568 unsigned long first_word = bfd_get_32 (output_bfd, from);
17569 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
17570
17571 /* High bit of first word is supposed to be zero. */
17572 if ((first_word & 0x80000000ul) == 0)
17573 first_word = offset_prel31 (first_word, offset);
17574
17575 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
17576 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
17577 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
17578 second_word = offset_prel31 (second_word, offset);
17579
17580 bfd_put_32 (output_bfd, first_word, to);
17581 bfd_put_32 (output_bfd, second_word, to + 4);
17582 }
17583
17584 /* Data for make_branch_to_a8_stub(). */
17585
17586 struct a8_branch_to_stub_data
17587 {
17588 asection *writing_section;
17589 bfd_byte *contents;
17590 };
17591
17592
17593 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
17594 places for a particular section. */
17595
17596 static bfd_boolean
17597 make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
17598 void *in_arg)
17599 {
17600 struct elf32_arm_stub_hash_entry *stub_entry;
17601 struct a8_branch_to_stub_data *data;
17602 bfd_byte *contents;
17603 unsigned long branch_insn;
17604 bfd_vma veneered_insn_loc, veneer_entry_loc;
17605 bfd_signed_vma branch_offset;
17606 bfd *abfd;
17607 unsigned int loc;
17608
17609 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
17610 data = (struct a8_branch_to_stub_data *) in_arg;
17611
17612 if (stub_entry->target_section != data->writing_section
17613 || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
17614 return TRUE;
17615
17616 contents = data->contents;
17617
17618 /* We use target_section as Cortex-A8 erratum workaround stubs are only
17619 generated when both source and target are in the same section. */
17620 veneered_insn_loc = stub_entry->target_section->output_section->vma
17621 + stub_entry->target_section->output_offset
17622 + stub_entry->source_value;
17623
17624 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
17625 + stub_entry->stub_sec->output_offset
17626 + stub_entry->stub_offset;
17627
17628 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
17629 veneered_insn_loc &= ~3u;
17630
17631 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
17632
17633 abfd = stub_entry->target_section->owner;
17634 loc = stub_entry->source_value;
17635
17636 /* We attempt to avoid this condition by setting stubs_always_after_branch
17637 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
17638 This check is just to be on the safe side... */
17639 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
17640 {
17641 _bfd_error_handler (_("%B: error: Cortex-A8 erratum stub is "
17642 "allocated in unsafe location"), abfd);
17643 return FALSE;
17644 }
17645
17646 switch (stub_entry->stub_type)
17647 {
17648 case arm_stub_a8_veneer_b:
17649 case arm_stub_a8_veneer_b_cond:
17650 branch_insn = 0xf0009000;
17651 goto jump24;
17652
17653 case arm_stub_a8_veneer_blx:
17654 branch_insn = 0xf000e800;
17655 goto jump24;
17656
17657 case arm_stub_a8_veneer_bl:
17658 {
17659 unsigned int i1, j1, i2, j2, s;
17660
17661 branch_insn = 0xf000d000;
17662
17663 jump24:
17664 if (branch_offset < -16777216 || branch_offset > 16777214)
17665 {
17666 /* There's not much we can do apart from complain if this
17667 happens. */
17668 _bfd_error_handler (_("%B: error: Cortex-A8 erratum stub out "
17669 "of range (input file too large)"), abfd);
17670 return FALSE;
17671 }
17672
17673 /* i1 = not(j1 eor s), so:
17674 not i1 = j1 eor s
17675 j1 = (not i1) eor s. */
17676
17677 branch_insn |= (branch_offset >> 1) & 0x7ff;
17678 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
17679 i2 = (branch_offset >> 22) & 1;
17680 i1 = (branch_offset >> 23) & 1;
17681 s = (branch_offset >> 24) & 1;
17682 j1 = (!i1) ^ s;
17683 j2 = (!i2) ^ s;
17684 branch_insn |= j2 << 11;
17685 branch_insn |= j1 << 13;
17686 branch_insn |= s << 26;
17687 }
17688 break;
17689
17690 default:
17691 BFD_FAIL ();
17692 return FALSE;
17693 }
17694
17695 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[loc]);
17696 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[loc + 2]);
17697
17698 return TRUE;
17699 }
17700
17701 /* Beginning of stm32l4xx work-around. */
17702
17703 /* Functions encoding instructions necessary for the emission of the
17704 fix-stm32l4xx-629360.
17705 Encoding is extracted from the
17706 ARM (C) Architecture Reference Manual
17707 ARMv7-A and ARMv7-R edition
17708 ARM DDI 0406C.b (ID072512). */
17709
17710 static inline bfd_vma
17711 create_instruction_branch_absolute (int branch_offset)
17712 {
17713 /* A8.8.18 B (A8-334)
17714 B target_address (Encoding T4). */
17715 /* 1111 - 0Sii - iiii - iiii - 10J1 - Jiii - iiii - iiii. */
17716 /* jump offset is: S:I1:I2:imm10:imm11:0. */
17717 /* with : I1 = NOT (J1 EOR S) I2 = NOT (J2 EOR S). */
17718
17719 int s = ((branch_offset & 0x1000000) >> 24);
17720 int j1 = s ^ !((branch_offset & 0x800000) >> 23);
17721 int j2 = s ^ !((branch_offset & 0x400000) >> 22);
17722
17723 if (branch_offset < -(1 << 24) || branch_offset >= (1 << 24))
17724 BFD_ASSERT (0 && "Error: branch out of range. Cannot create branch.");
17725
17726 bfd_vma patched_inst = 0xf0009000
17727 | s << 26 /* S. */
17728 | (((unsigned long) (branch_offset) >> 12) & 0x3ff) << 16 /* imm10. */
17729 | j1 << 13 /* J1. */
17730 | j2 << 11 /* J2. */
17731 | (((unsigned long) (branch_offset) >> 1) & 0x7ff); /* imm11. */
17732
17733 return patched_inst;
17734 }
17735
17736 static inline bfd_vma
17737 create_instruction_ldmia (int base_reg, int wback, int reg_mask)
17738 {
17739 /* A8.8.57 LDM/LDMIA/LDMFD (A8-396)
17740 LDMIA Rn!, {Ra, Rb, Rc, ...} (Encoding T2). */
17741 bfd_vma patched_inst = 0xe8900000
17742 | (/*W=*/wback << 21)
17743 | (base_reg << 16)
17744 | (reg_mask & 0x0000ffff);
17745
17746 return patched_inst;
17747 }
17748
17749 static inline bfd_vma
17750 create_instruction_ldmdb (int base_reg, int wback, int reg_mask)
17751 {
17752 /* A8.8.60 LDMDB/LDMEA (A8-402)
17753 LDMDB Rn!, {Ra, Rb, Rc, ...} (Encoding T1). */
17754 bfd_vma patched_inst = 0xe9100000
17755 | (/*W=*/wback << 21)
17756 | (base_reg << 16)
17757 | (reg_mask & 0x0000ffff);
17758
17759 return patched_inst;
17760 }
17761
17762 static inline bfd_vma
17763 create_instruction_mov (int target_reg, int source_reg)
17764 {
17765 /* A8.8.103 MOV (register) (A8-486)
17766 MOV Rd, Rm (Encoding T1). */
17767 bfd_vma patched_inst = 0x4600
17768 | (target_reg & 0x7)
17769 | ((target_reg & 0x8) >> 3) << 7
17770 | (source_reg << 3);
17771
17772 return patched_inst;
17773 }
17774
17775 static inline bfd_vma
17776 create_instruction_sub (int target_reg, int source_reg, int value)
17777 {
17778 /* A8.8.221 SUB (immediate) (A8-708)
17779 SUB Rd, Rn, #value (Encoding T3). */
17780 bfd_vma patched_inst = 0xf1a00000
17781 | (target_reg << 8)
17782 | (source_reg << 16)
17783 | (/*S=*/0 << 20)
17784 | ((value & 0x800) >> 11) << 26
17785 | ((value & 0x700) >> 8) << 12
17786 | (value & 0x0ff);
17787
17788 return patched_inst;
17789 }
17790
17791 static inline bfd_vma
17792 create_instruction_vldmia (int base_reg, int is_dp, int wback, int num_words,
17793 int first_reg)
17794 {
17795 /* A8.8.332 VLDM (A8-922)
17796 VLMD{MODE} Rn{!}, {list} (Encoding T1 or T2). */
17797 bfd_vma patched_inst = (is_dp ? 0xec900b00 : 0xec900a00)
17798 | (/*W=*/wback << 21)
17799 | (base_reg << 16)
17800 | (num_words & 0x000000ff)
17801 | (((unsigned)first_reg >> 1) & 0x0000000f) << 12
17802 | (first_reg & 0x00000001) << 22;
17803
17804 return patched_inst;
17805 }
17806
17807 static inline bfd_vma
17808 create_instruction_vldmdb (int base_reg, int is_dp, int num_words,
17809 int first_reg)
17810 {
17811 /* A8.8.332 VLDM (A8-922)
17812 VLMD{MODE} Rn!, {} (Encoding T1 or T2). */
17813 bfd_vma patched_inst = (is_dp ? 0xed300b00 : 0xed300a00)
17814 | (base_reg << 16)
17815 | (num_words & 0x000000ff)
17816 | (((unsigned)first_reg >>1 ) & 0x0000000f) << 12
17817 | (first_reg & 0x00000001) << 22;
17818
17819 return patched_inst;
17820 }
17821
17822 static inline bfd_vma
17823 create_instruction_udf_w (int value)
17824 {
17825 /* A8.8.247 UDF (A8-758)
17826 Undefined (Encoding T2). */
17827 bfd_vma patched_inst = 0xf7f0a000
17828 | (value & 0x00000fff)
17829 | (value & 0x000f0000) << 16;
17830
17831 return patched_inst;
17832 }
17833
17834 static inline bfd_vma
17835 create_instruction_udf (int value)
17836 {
17837 /* A8.8.247 UDF (A8-758)
17838 Undefined (Encoding T1). */
17839 bfd_vma patched_inst = 0xde00
17840 | (value & 0xff);
17841
17842 return patched_inst;
17843 }
17844
17845 /* Functions writing an instruction in memory, returning the next
17846 memory position to write to. */
17847
17848 static inline bfd_byte *
17849 push_thumb2_insn32 (struct elf32_arm_link_hash_table * htab,
17850 bfd * output_bfd, bfd_byte *pt, insn32 insn)
17851 {
17852 put_thumb2_insn (htab, output_bfd, insn, pt);
17853 return pt + 4;
17854 }
17855
17856 static inline bfd_byte *
17857 push_thumb2_insn16 (struct elf32_arm_link_hash_table * htab,
17858 bfd * output_bfd, bfd_byte *pt, insn32 insn)
17859 {
17860 put_thumb_insn (htab, output_bfd, insn, pt);
17861 return pt + 2;
17862 }
17863
17864 /* Function filling up a region in memory with T1 and T2 UDFs taking
17865 care of alignment. */
17866
17867 static bfd_byte *
17868 stm32l4xx_fill_stub_udf (struct elf32_arm_link_hash_table * htab,
17869 bfd * output_bfd,
17870 const bfd_byte * const base_stub_contents,
17871 bfd_byte * const from_stub_contents,
17872 const bfd_byte * const end_stub_contents)
17873 {
17874 bfd_byte *current_stub_contents = from_stub_contents;
17875
17876 /* Fill the remaining of the stub with deterministic contents : UDF
17877 instructions.
17878 Check if realignment is needed on modulo 4 frontier using T1, to
17879 further use T2. */
17880 if ((current_stub_contents < end_stub_contents)
17881 && !((current_stub_contents - base_stub_contents) % 2)
17882 && ((current_stub_contents - base_stub_contents) % 4))
17883 current_stub_contents =
17884 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
17885 create_instruction_udf (0));
17886
17887 for (; current_stub_contents < end_stub_contents;)
17888 current_stub_contents =
17889 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17890 create_instruction_udf_w (0));
17891
17892 return current_stub_contents;
17893 }
17894
17895 /* Functions writing the stream of instructions equivalent to the
17896 derived sequence for ldmia, ldmdb, vldm respectively. */
17897
17898 static void
17899 stm32l4xx_create_replacing_stub_ldmia (struct elf32_arm_link_hash_table * htab,
17900 bfd * output_bfd,
17901 const insn32 initial_insn,
17902 const bfd_byte *const initial_insn_addr,
17903 bfd_byte *const base_stub_contents)
17904 {
17905 int wback = (initial_insn & 0x00200000) >> 21;
17906 int ri, rn = (initial_insn & 0x000F0000) >> 16;
17907 int insn_all_registers = initial_insn & 0x0000ffff;
17908 int insn_low_registers, insn_high_registers;
17909 int usable_register_mask;
17910 int nb_registers = elf32_arm_popcount (insn_all_registers);
17911 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
17912 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
17913 bfd_byte *current_stub_contents = base_stub_contents;
17914
17915 BFD_ASSERT (is_thumb2_ldmia (initial_insn));
17916
17917 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
17918 smaller than 8 registers load sequences that do not cause the
17919 hardware issue. */
17920 if (nb_registers <= 8)
17921 {
17922 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
17923 current_stub_contents =
17924 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17925 initial_insn);
17926
17927 /* B initial_insn_addr+4. */
17928 if (!restore_pc)
17929 current_stub_contents =
17930 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17931 create_instruction_branch_absolute
17932 (initial_insn_addr - current_stub_contents));
17933
17934 /* Fill the remaining of the stub with deterministic contents. */
17935 current_stub_contents =
17936 stm32l4xx_fill_stub_udf (htab, output_bfd,
17937 base_stub_contents, current_stub_contents,
17938 base_stub_contents +
17939 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
17940
17941 return;
17942 }
17943
17944 /* - reg_list[13] == 0. */
17945 BFD_ASSERT ((insn_all_registers & (1 << 13))==0);
17946
17947 /* - reg_list[14] & reg_list[15] != 1. */
17948 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
17949
17950 /* - if (wback==1) reg_list[rn] == 0. */
17951 BFD_ASSERT (!wback || !restore_rn);
17952
17953 /* - nb_registers > 8. */
17954 BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8);
17955
17956 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
17957
17958 /* In the following algorithm, we split this wide LDM using 2 LDM insns:
17959 - One with the 7 lowest registers (register mask 0x007F)
17960 This LDM will finally contain between 2 and 7 registers
17961 - One with the 7 highest registers (register mask 0xDF80)
17962 This ldm will finally contain between 2 and 7 registers. */
17963 insn_low_registers = insn_all_registers & 0x007F;
17964 insn_high_registers = insn_all_registers & 0xDF80;
17965
17966 /* A spare register may be needed during this veneer to temporarily
17967 handle the base register. This register will be restored with the
17968 last LDM operation.
17969 The usable register may be any general purpose register (that
17970 excludes PC, SP, LR : register mask is 0x1FFF). */
17971 usable_register_mask = 0x1FFF;
17972
17973 /* Generate the stub function. */
17974 if (wback)
17975 {
17976 /* LDMIA Rn!, {R-low-register-list} : (Encoding T2). */
17977 current_stub_contents =
17978 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17979 create_instruction_ldmia
17980 (rn, /*wback=*/1, insn_low_registers));
17981
17982 /* LDMIA Rn!, {R-high-register-list} : (Encoding T2). */
17983 current_stub_contents =
17984 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17985 create_instruction_ldmia
17986 (rn, /*wback=*/1, insn_high_registers));
17987 if (!restore_pc)
17988 {
17989 /* B initial_insn_addr+4. */
17990 current_stub_contents =
17991 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17992 create_instruction_branch_absolute
17993 (initial_insn_addr - current_stub_contents));
17994 }
17995 }
17996 else /* if (!wback). */
17997 {
17998 ri = rn;
17999
18000 /* If Rn is not part of the high-register-list, move it there. */
18001 if (!(insn_high_registers & (1 << rn)))
18002 {
18003 /* Choose a Ri in the high-register-list that will be restored. */
18004 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18005
18006 /* MOV Ri, Rn. */
18007 current_stub_contents =
18008 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18009 create_instruction_mov (ri, rn));
18010 }
18011
18012 /* LDMIA Ri!, {R-low-register-list} : (Encoding T2). */
18013 current_stub_contents =
18014 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18015 create_instruction_ldmia
18016 (ri, /*wback=*/1, insn_low_registers));
18017
18018 /* LDMIA Ri, {R-high-register-list} : (Encoding T2). */
18019 current_stub_contents =
18020 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18021 create_instruction_ldmia
18022 (ri, /*wback=*/0, insn_high_registers));
18023
18024 if (!restore_pc)
18025 {
18026 /* B initial_insn_addr+4. */
18027 current_stub_contents =
18028 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18029 create_instruction_branch_absolute
18030 (initial_insn_addr - current_stub_contents));
18031 }
18032 }
18033
18034 /* Fill the remaining of the stub with deterministic contents. */
18035 current_stub_contents =
18036 stm32l4xx_fill_stub_udf (htab, output_bfd,
18037 base_stub_contents, current_stub_contents,
18038 base_stub_contents +
18039 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
18040 }
18041
18042 static void
18043 stm32l4xx_create_replacing_stub_ldmdb (struct elf32_arm_link_hash_table * htab,
18044 bfd * output_bfd,
18045 const insn32 initial_insn,
18046 const bfd_byte *const initial_insn_addr,
18047 bfd_byte *const base_stub_contents)
18048 {
18049 int wback = (initial_insn & 0x00200000) >> 21;
18050 int ri, rn = (initial_insn & 0x000f0000) >> 16;
18051 int insn_all_registers = initial_insn & 0x0000ffff;
18052 int insn_low_registers, insn_high_registers;
18053 int usable_register_mask;
18054 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
18055 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
18056 int nb_registers = elf32_arm_popcount (insn_all_registers);
18057 bfd_byte *current_stub_contents = base_stub_contents;
18058
18059 BFD_ASSERT (is_thumb2_ldmdb (initial_insn));
18060
18061 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
18062 smaller than 8 registers load sequences that do not cause the
18063 hardware issue. */
18064 if (nb_registers <= 8)
18065 {
18066 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
18067 current_stub_contents =
18068 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18069 initial_insn);
18070
18071 /* B initial_insn_addr+4. */
18072 current_stub_contents =
18073 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18074 create_instruction_branch_absolute
18075 (initial_insn_addr - current_stub_contents));
18076
18077 /* Fill the remaining of the stub with deterministic contents. */
18078 current_stub_contents =
18079 stm32l4xx_fill_stub_udf (htab, output_bfd,
18080 base_stub_contents, current_stub_contents,
18081 base_stub_contents +
18082 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
18083
18084 return;
18085 }
18086
18087 /* - reg_list[13] == 0. */
18088 BFD_ASSERT ((insn_all_registers & (1 << 13)) == 0);
18089
18090 /* - reg_list[14] & reg_list[15] != 1. */
18091 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
18092
18093 /* - if (wback==1) reg_list[rn] == 0. */
18094 BFD_ASSERT (!wback || !restore_rn);
18095
18096 /* - nb_registers > 8. */
18097 BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8);
18098
18099 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
18100
18101 /* In the following algorithm, we split this wide LDM using 2 LDM insn:
18102 - One with the 7 lowest registers (register mask 0x007F)
18103 This LDM will finally contain between 2 and 7 registers
18104 - One with the 7 highest registers (register mask 0xDF80)
18105 This ldm will finally contain between 2 and 7 registers. */
18106 insn_low_registers = insn_all_registers & 0x007F;
18107 insn_high_registers = insn_all_registers & 0xDF80;
18108
18109 /* A spare register may be needed during this veneer to temporarily
18110 handle the base register. This register will be restored with
18111 the last LDM operation.
18112 The usable register may be any general purpose register (that excludes
18113 PC, SP, LR : register mask is 0x1FFF). */
18114 usable_register_mask = 0x1FFF;
18115
18116 /* Generate the stub function. */
18117 if (!wback && !restore_pc && !restore_rn)
18118 {
18119 /* Choose a Ri in the low-register-list that will be restored. */
18120 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
18121
18122 /* MOV Ri, Rn. */
18123 current_stub_contents =
18124 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18125 create_instruction_mov (ri, rn));
18126
18127 /* LDMDB Ri!, {R-high-register-list}. */
18128 current_stub_contents =
18129 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18130 create_instruction_ldmdb
18131 (ri, /*wback=*/1, insn_high_registers));
18132
18133 /* LDMDB Ri, {R-low-register-list}. */
18134 current_stub_contents =
18135 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18136 create_instruction_ldmdb
18137 (ri, /*wback=*/0, insn_low_registers));
18138
18139 /* B initial_insn_addr+4. */
18140 current_stub_contents =
18141 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18142 create_instruction_branch_absolute
18143 (initial_insn_addr - current_stub_contents));
18144 }
18145 else if (wback && !restore_pc && !restore_rn)
18146 {
18147 /* LDMDB Rn!, {R-high-register-list}. */
18148 current_stub_contents =
18149 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18150 create_instruction_ldmdb
18151 (rn, /*wback=*/1, insn_high_registers));
18152
18153 /* LDMDB Rn!, {R-low-register-list}. */
18154 current_stub_contents =
18155 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18156 create_instruction_ldmdb
18157 (rn, /*wback=*/1, insn_low_registers));
18158
18159 /* B initial_insn_addr+4. */
18160 current_stub_contents =
18161 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18162 create_instruction_branch_absolute
18163 (initial_insn_addr - current_stub_contents));
18164 }
18165 else if (!wback && restore_pc && !restore_rn)
18166 {
18167 /* Choose a Ri in the high-register-list that will be restored. */
18168 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18169
18170 /* SUB Ri, Rn, #(4*nb_registers). */
18171 current_stub_contents =
18172 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18173 create_instruction_sub (ri, rn, (4 * nb_registers)));
18174
18175 /* LDMIA Ri!, {R-low-register-list}. */
18176 current_stub_contents =
18177 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18178 create_instruction_ldmia
18179 (ri, /*wback=*/1, insn_low_registers));
18180
18181 /* LDMIA Ri, {R-high-register-list}. */
18182 current_stub_contents =
18183 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18184 create_instruction_ldmia
18185 (ri, /*wback=*/0, insn_high_registers));
18186 }
18187 else if (wback && restore_pc && !restore_rn)
18188 {
18189 /* Choose a Ri in the high-register-list that will be restored. */
18190 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18191
18192 /* SUB Rn, Rn, #(4*nb_registers) */
18193 current_stub_contents =
18194 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18195 create_instruction_sub (rn, rn, (4 * nb_registers)));
18196
18197 /* MOV Ri, Rn. */
18198 current_stub_contents =
18199 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18200 create_instruction_mov (ri, rn));
18201
18202 /* LDMIA Ri!, {R-low-register-list}. */
18203 current_stub_contents =
18204 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18205 create_instruction_ldmia
18206 (ri, /*wback=*/1, insn_low_registers));
18207
18208 /* LDMIA Ri, {R-high-register-list}. */
18209 current_stub_contents =
18210 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18211 create_instruction_ldmia
18212 (ri, /*wback=*/0, insn_high_registers));
18213 }
18214 else if (!wback && !restore_pc && restore_rn)
18215 {
18216 ri = rn;
18217 if (!(insn_low_registers & (1 << rn)))
18218 {
18219 /* Choose a Ri in the low-register-list that will be restored. */
18220 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
18221
18222 /* MOV Ri, Rn. */
18223 current_stub_contents =
18224 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18225 create_instruction_mov (ri, rn));
18226 }
18227
18228 /* LDMDB Ri!, {R-high-register-list}. */
18229 current_stub_contents =
18230 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18231 create_instruction_ldmdb
18232 (ri, /*wback=*/1, insn_high_registers));
18233
18234 /* LDMDB Ri, {R-low-register-list}. */
18235 current_stub_contents =
18236 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18237 create_instruction_ldmdb
18238 (ri, /*wback=*/0, insn_low_registers));
18239
18240 /* B initial_insn_addr+4. */
18241 current_stub_contents =
18242 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18243 create_instruction_branch_absolute
18244 (initial_insn_addr - current_stub_contents));
18245 }
18246 else if (!wback && restore_pc && restore_rn)
18247 {
18248 ri = rn;
18249 if (!(insn_high_registers & (1 << rn)))
18250 {
18251 /* Choose a Ri in the high-register-list that will be restored. */
18252 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18253 }
18254
18255 /* SUB Ri, Rn, #(4*nb_registers). */
18256 current_stub_contents =
18257 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18258 create_instruction_sub (ri, rn, (4 * nb_registers)));
18259
18260 /* LDMIA Ri!, {R-low-register-list}. */
18261 current_stub_contents =
18262 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18263 create_instruction_ldmia
18264 (ri, /*wback=*/1, insn_low_registers));
18265
18266 /* LDMIA Ri, {R-high-register-list}. */
18267 current_stub_contents =
18268 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18269 create_instruction_ldmia
18270 (ri, /*wback=*/0, insn_high_registers));
18271 }
18272 else if (wback && restore_rn)
18273 {
18274 /* The assembler should not have accepted to encode this. */
18275 BFD_ASSERT (0 && "Cannot patch an instruction that has an "
18276 "undefined behavior.\n");
18277 }
18278
18279 /* Fill the remaining of the stub with deterministic contents. */
18280 current_stub_contents =
18281 stm32l4xx_fill_stub_udf (htab, output_bfd,
18282 base_stub_contents, current_stub_contents,
18283 base_stub_contents +
18284 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
18285
18286 }
18287
18288 static void
18289 stm32l4xx_create_replacing_stub_vldm (struct elf32_arm_link_hash_table * htab,
18290 bfd * output_bfd,
18291 const insn32 initial_insn,
18292 const bfd_byte *const initial_insn_addr,
18293 bfd_byte *const base_stub_contents)
18294 {
18295 int num_words = ((unsigned int) initial_insn << 24) >> 24;
18296 bfd_byte *current_stub_contents = base_stub_contents;
18297
18298 BFD_ASSERT (is_thumb2_vldm (initial_insn));
18299
18300 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
18301 smaller than 8 words load sequences that do not cause the
18302 hardware issue. */
18303 if (num_words <= 8)
18304 {
18305 /* Untouched instruction. */
18306 current_stub_contents =
18307 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18308 initial_insn);
18309
18310 /* B initial_insn_addr+4. */
18311 current_stub_contents =
18312 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18313 create_instruction_branch_absolute
18314 (initial_insn_addr - current_stub_contents));
18315 }
18316 else
18317 {
18318 bfd_boolean is_dp = /* DP encoding. */
18319 (initial_insn & 0xfe100f00) == 0xec100b00;
18320 bfd_boolean is_ia_nobang = /* (IA without !). */
18321 (((initial_insn << 7) >> 28) & 0xd) == 0x4;
18322 bfd_boolean is_ia_bang = /* (IA with !) - includes VPOP. */
18323 (((initial_insn << 7) >> 28) & 0xd) == 0x5;
18324 bfd_boolean is_db_bang = /* (DB with !). */
18325 (((initial_insn << 7) >> 28) & 0xd) == 0x9;
18326 int base_reg = ((unsigned int) initial_insn << 12) >> 28;
18327 /* d = UInt (Vd:D);. */
18328 int first_reg = ((((unsigned int) initial_insn << 16) >> 28) << 1)
18329 | (((unsigned int)initial_insn << 9) >> 31);
18330
18331 /* Compute the number of 8-words chunks needed to split. */
18332 int chunks = (num_words % 8) ? (num_words / 8 + 1) : (num_words / 8);
18333 int chunk;
18334
18335 /* The test coverage has been done assuming the following
18336 hypothesis that exactly one of the previous is_ predicates is
18337 true. */
18338 BFD_ASSERT ( (is_ia_nobang ^ is_ia_bang ^ is_db_bang)
18339 && !(is_ia_nobang & is_ia_bang & is_db_bang));
18340
18341 /* We treat the cutting of the words in one pass for all
18342 cases, then we emit the adjustments:
18343
18344 vldm rx, {...}
18345 -> vldm rx!, {8_words_or_less} for each needed 8_word
18346 -> sub rx, rx, #size (list)
18347
18348 vldm rx!, {...}
18349 -> vldm rx!, {8_words_or_less} for each needed 8_word
18350 This also handles vpop instruction (when rx is sp)
18351
18352 vldmd rx!, {...}
18353 -> vldmb rx!, {8_words_or_less} for each needed 8_word. */
18354 for (chunk = 0; chunk < chunks; ++chunk)
18355 {
18356 bfd_vma new_insn = 0;
18357
18358 if (is_ia_nobang || is_ia_bang)
18359 {
18360 new_insn = create_instruction_vldmia
18361 (base_reg,
18362 is_dp,
18363 /*wback= . */1,
18364 chunks - (chunk + 1) ?
18365 8 : num_words - chunk * 8,
18366 first_reg + chunk * 8);
18367 }
18368 else if (is_db_bang)
18369 {
18370 new_insn = create_instruction_vldmdb
18371 (base_reg,
18372 is_dp,
18373 chunks - (chunk + 1) ?
18374 8 : num_words - chunk * 8,
18375 first_reg + chunk * 8);
18376 }
18377
18378 if (new_insn)
18379 current_stub_contents =
18380 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18381 new_insn);
18382 }
18383
18384 /* Only this case requires the base register compensation
18385 subtract. */
18386 if (is_ia_nobang)
18387 {
18388 current_stub_contents =
18389 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18390 create_instruction_sub
18391 (base_reg, base_reg, 4*num_words));
18392 }
18393
18394 /* B initial_insn_addr+4. */
18395 current_stub_contents =
18396 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18397 create_instruction_branch_absolute
18398 (initial_insn_addr - current_stub_contents));
18399 }
18400
18401 /* Fill the remaining of the stub with deterministic contents. */
18402 current_stub_contents =
18403 stm32l4xx_fill_stub_udf (htab, output_bfd,
18404 base_stub_contents, current_stub_contents,
18405 base_stub_contents +
18406 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
18407 }
18408
18409 static void
18410 stm32l4xx_create_replacing_stub (struct elf32_arm_link_hash_table * htab,
18411 bfd * output_bfd,
18412 const insn32 wrong_insn,
18413 const bfd_byte *const wrong_insn_addr,
18414 bfd_byte *const stub_contents)
18415 {
18416 if (is_thumb2_ldmia (wrong_insn))
18417 stm32l4xx_create_replacing_stub_ldmia (htab, output_bfd,
18418 wrong_insn, wrong_insn_addr,
18419 stub_contents);
18420 else if (is_thumb2_ldmdb (wrong_insn))
18421 stm32l4xx_create_replacing_stub_ldmdb (htab, output_bfd,
18422 wrong_insn, wrong_insn_addr,
18423 stub_contents);
18424 else if (is_thumb2_vldm (wrong_insn))
18425 stm32l4xx_create_replacing_stub_vldm (htab, output_bfd,
18426 wrong_insn, wrong_insn_addr,
18427 stub_contents);
18428 }
18429
18430 /* End of stm32l4xx work-around. */
18431
18432
18433 /* Do code byteswapping. Return FALSE afterwards so that the section is
18434 written out as normal. */
18435
18436 static bfd_boolean
18437 elf32_arm_write_section (bfd *output_bfd,
18438 struct bfd_link_info *link_info,
18439 asection *sec,
18440 bfd_byte *contents)
18441 {
18442 unsigned int mapcount, errcount;
18443 _arm_elf_section_data *arm_data;
18444 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
18445 elf32_arm_section_map *map;
18446 elf32_vfp11_erratum_list *errnode;
18447 elf32_stm32l4xx_erratum_list *stm32l4xx_errnode;
18448 bfd_vma ptr;
18449 bfd_vma end;
18450 bfd_vma offset = sec->output_section->vma + sec->output_offset;
18451 bfd_byte tmp;
18452 unsigned int i;
18453
18454 if (globals == NULL)
18455 return FALSE;
18456
18457 /* If this section has not been allocated an _arm_elf_section_data
18458 structure then we cannot record anything. */
18459 arm_data = get_arm_elf_section_data (sec);
18460 if (arm_data == NULL)
18461 return FALSE;
18462
18463 mapcount = arm_data->mapcount;
18464 map = arm_data->map;
18465 errcount = arm_data->erratumcount;
18466
18467 if (errcount != 0)
18468 {
18469 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
18470
18471 for (errnode = arm_data->erratumlist; errnode != 0;
18472 errnode = errnode->next)
18473 {
18474 bfd_vma target = errnode->vma - offset;
18475
18476 switch (errnode->type)
18477 {
18478 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
18479 {
18480 bfd_vma branch_to_veneer;
18481 /* Original condition code of instruction, plus bit mask for
18482 ARM B instruction. */
18483 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
18484 | 0x0a000000;
18485
18486 /* The instruction is before the label. */
18487 target -= 4;
18488
18489 /* Above offset included in -4 below. */
18490 branch_to_veneer = errnode->u.b.veneer->vma
18491 - errnode->vma - 4;
18492
18493 if ((signed) branch_to_veneer < -(1 << 25)
18494 || (signed) branch_to_veneer >= (1 << 25))
18495 _bfd_error_handler (_("%B: error: VFP11 veneer out of "
18496 "range"), output_bfd);
18497
18498 insn |= (branch_to_veneer >> 2) & 0xffffff;
18499 contents[endianflip ^ target] = insn & 0xff;
18500 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
18501 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
18502 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
18503 }
18504 break;
18505
18506 case VFP11_ERRATUM_ARM_VENEER:
18507 {
18508 bfd_vma branch_from_veneer;
18509 unsigned int insn;
18510
18511 /* Take size of veneer into account. */
18512 branch_from_veneer = errnode->u.v.branch->vma
18513 - errnode->vma - 12;
18514
18515 if ((signed) branch_from_veneer < -(1 << 25)
18516 || (signed) branch_from_veneer >= (1 << 25))
18517 _bfd_error_handler (_("%B: error: VFP11 veneer out of "
18518 "range"), output_bfd);
18519
18520 /* Original instruction. */
18521 insn = errnode->u.v.branch->u.b.vfp_insn;
18522 contents[endianflip ^ target] = insn & 0xff;
18523 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
18524 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
18525 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
18526
18527 /* Branch back to insn after original insn. */
18528 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
18529 contents[endianflip ^ (target + 4)] = insn & 0xff;
18530 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
18531 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
18532 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
18533 }
18534 break;
18535
18536 default:
18537 abort ();
18538 }
18539 }
18540 }
18541
18542 if (arm_data->stm32l4xx_erratumcount != 0)
18543 {
18544 for (stm32l4xx_errnode = arm_data->stm32l4xx_erratumlist;
18545 stm32l4xx_errnode != 0;
18546 stm32l4xx_errnode = stm32l4xx_errnode->next)
18547 {
18548 bfd_vma target = stm32l4xx_errnode->vma - offset;
18549
18550 switch (stm32l4xx_errnode->type)
18551 {
18552 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
18553 {
18554 unsigned int insn;
18555 bfd_vma branch_to_veneer =
18556 stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma;
18557
18558 if ((signed) branch_to_veneer < -(1 << 24)
18559 || (signed) branch_to_veneer >= (1 << 24))
18560 {
18561 bfd_vma out_of_range =
18562 ((signed) branch_to_veneer < -(1 << 24)) ?
18563 - branch_to_veneer - (1 << 24) :
18564 ((signed) branch_to_veneer >= (1 << 24)) ?
18565 branch_to_veneer - (1 << 24) : 0;
18566
18567 _bfd_error_handler
18568 (_("%B(%#x): error: Cannot create STM32L4XX veneer. "
18569 "Jump out of range by %ld bytes. "
18570 "Cannot encode branch instruction. "),
18571 output_bfd,
18572 (long) (stm32l4xx_errnode->vma - 4),
18573 out_of_range);
18574 continue;
18575 }
18576
18577 insn = create_instruction_branch_absolute
18578 (stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma);
18579
18580 /* The instruction is before the label. */
18581 target -= 4;
18582
18583 put_thumb2_insn (globals, output_bfd,
18584 (bfd_vma) insn, contents + target);
18585 }
18586 break;
18587
18588 case STM32L4XX_ERRATUM_VENEER:
18589 {
18590 bfd_byte * veneer;
18591 bfd_byte * veneer_r;
18592 unsigned int insn;
18593
18594 veneer = contents + target;
18595 veneer_r = veneer
18596 + stm32l4xx_errnode->u.b.veneer->vma
18597 - stm32l4xx_errnode->vma - 4;
18598
18599 if ((signed) (veneer_r - veneer -
18600 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE >
18601 STM32L4XX_ERRATUM_LDM_VENEER_SIZE ?
18602 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE :
18603 STM32L4XX_ERRATUM_LDM_VENEER_SIZE) < -(1 << 24)
18604 || (signed) (veneer_r - veneer) >= (1 << 24))
18605 {
18606 _bfd_error_handler (_("%B: error: Cannot create STM32L4XX "
18607 "veneer."), output_bfd);
18608 continue;
18609 }
18610
18611 /* Original instruction. */
18612 insn = stm32l4xx_errnode->u.v.branch->u.b.insn;
18613
18614 stm32l4xx_create_replacing_stub
18615 (globals, output_bfd, insn, (void*)veneer_r, (void*)veneer);
18616 }
18617 break;
18618
18619 default:
18620 abort ();
18621 }
18622 }
18623 }
18624
18625 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
18626 {
18627 arm_unwind_table_edit *edit_node
18628 = arm_data->u.exidx.unwind_edit_list;
18629 /* Now, sec->size is the size of the section we will write. The original
18630 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
18631 markers) was sec->rawsize. (This isn't the case if we perform no
18632 edits, then rawsize will be zero and we should use size). */
18633 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
18634 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
18635 unsigned int in_index, out_index;
18636 bfd_vma add_to_offsets = 0;
18637
18638 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
18639 {
18640 if (edit_node)
18641 {
18642 unsigned int edit_index = edit_node->index;
18643
18644 if (in_index < edit_index && in_index * 8 < input_size)
18645 {
18646 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
18647 contents + in_index * 8, add_to_offsets);
18648 out_index++;
18649 in_index++;
18650 }
18651 else if (in_index == edit_index
18652 || (in_index * 8 >= input_size
18653 && edit_index == UINT_MAX))
18654 {
18655 switch (edit_node->type)
18656 {
18657 case DELETE_EXIDX_ENTRY:
18658 in_index++;
18659 add_to_offsets += 8;
18660 break;
18661
18662 case INSERT_EXIDX_CANTUNWIND_AT_END:
18663 {
18664 asection *text_sec = edit_node->linked_section;
18665 bfd_vma text_offset = text_sec->output_section->vma
18666 + text_sec->output_offset
18667 + text_sec->size;
18668 bfd_vma exidx_offset = offset + out_index * 8;
18669 unsigned long prel31_offset;
18670
18671 /* Note: this is meant to be equivalent to an
18672 R_ARM_PREL31 relocation. These synthetic
18673 EXIDX_CANTUNWIND markers are not relocated by the
18674 usual BFD method. */
18675 prel31_offset = (text_offset - exidx_offset)
18676 & 0x7ffffffful;
18677 if (bfd_link_relocatable (link_info))
18678 {
18679 /* Here relocation for new EXIDX_CANTUNWIND is
18680 created, so there is no need to
18681 adjust offset by hand. */
18682 prel31_offset = text_sec->output_offset
18683 + text_sec->size;
18684 }
18685
18686 /* First address we can't unwind. */
18687 bfd_put_32 (output_bfd, prel31_offset,
18688 &edited_contents[out_index * 8]);
18689
18690 /* Code for EXIDX_CANTUNWIND. */
18691 bfd_put_32 (output_bfd, 0x1,
18692 &edited_contents[out_index * 8 + 4]);
18693
18694 out_index++;
18695 add_to_offsets -= 8;
18696 }
18697 break;
18698 }
18699
18700 edit_node = edit_node->next;
18701 }
18702 }
18703 else
18704 {
18705 /* No more edits, copy remaining entries verbatim. */
18706 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
18707 contents + in_index * 8, add_to_offsets);
18708 out_index++;
18709 in_index++;
18710 }
18711 }
18712
18713 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
18714 bfd_set_section_contents (output_bfd, sec->output_section,
18715 edited_contents,
18716 (file_ptr) sec->output_offset, sec->size);
18717
18718 return TRUE;
18719 }
18720
18721 /* Fix code to point to Cortex-A8 erratum stubs. */
18722 if (globals->fix_cortex_a8)
18723 {
18724 struct a8_branch_to_stub_data data;
18725
18726 data.writing_section = sec;
18727 data.contents = contents;
18728
18729 bfd_hash_traverse (& globals->stub_hash_table, make_branch_to_a8_stub,
18730 & data);
18731 }
18732
18733 if (mapcount == 0)
18734 return FALSE;
18735
18736 if (globals->byteswap_code)
18737 {
18738 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
18739
18740 ptr = map[0].vma;
18741 for (i = 0; i < mapcount; i++)
18742 {
18743 if (i == mapcount - 1)
18744 end = sec->size;
18745 else
18746 end = map[i + 1].vma;
18747
18748 switch (map[i].type)
18749 {
18750 case 'a':
18751 /* Byte swap code words. */
18752 while (ptr + 3 < end)
18753 {
18754 tmp = contents[ptr];
18755 contents[ptr] = contents[ptr + 3];
18756 contents[ptr + 3] = tmp;
18757 tmp = contents[ptr + 1];
18758 contents[ptr + 1] = contents[ptr + 2];
18759 contents[ptr + 2] = tmp;
18760 ptr += 4;
18761 }
18762 break;
18763
18764 case 't':
18765 /* Byte swap code halfwords. */
18766 while (ptr + 1 < end)
18767 {
18768 tmp = contents[ptr];
18769 contents[ptr] = contents[ptr + 1];
18770 contents[ptr + 1] = tmp;
18771 ptr += 2;
18772 }
18773 break;
18774
18775 case 'd':
18776 /* Leave data alone. */
18777 break;
18778 }
18779 ptr = end;
18780 }
18781 }
18782
18783 free (map);
18784 arm_data->mapcount = -1;
18785 arm_data->mapsize = 0;
18786 arm_data->map = NULL;
18787
18788 return FALSE;
18789 }
18790
18791 /* Mangle thumb function symbols as we read them in. */
18792
18793 static bfd_boolean
18794 elf32_arm_swap_symbol_in (bfd * abfd,
18795 const void *psrc,
18796 const void *pshn,
18797 Elf_Internal_Sym *dst)
18798 {
18799 Elf_Internal_Shdr *symtab_hdr;
18800 const char *name = NULL;
18801
18802 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
18803 return FALSE;
18804 dst->st_target_internal = 0;
18805
18806 /* New EABI objects mark thumb function symbols by setting the low bit of
18807 the address. */
18808 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
18809 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
18810 {
18811 if (dst->st_value & 1)
18812 {
18813 dst->st_value &= ~(bfd_vma) 1;
18814 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal,
18815 ST_BRANCH_TO_THUMB);
18816 }
18817 else
18818 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_ARM);
18819 }
18820 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
18821 {
18822 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
18823 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_THUMB);
18824 }
18825 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
18826 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_LONG);
18827 else
18828 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_UNKNOWN);
18829
18830 /* Mark CMSE special symbols. */
18831 symtab_hdr = & elf_symtab_hdr (abfd);
18832 if (symtab_hdr->sh_size)
18833 name = bfd_elf_sym_name (abfd, symtab_hdr, dst, NULL);
18834 if (name && CONST_STRNEQ (name, CMSE_PREFIX))
18835 ARM_SET_SYM_CMSE_SPCL (dst->st_target_internal);
18836
18837 return TRUE;
18838 }
18839
18840
18841 /* Mangle thumb function symbols as we write them out. */
18842
18843 static void
18844 elf32_arm_swap_symbol_out (bfd *abfd,
18845 const Elf_Internal_Sym *src,
18846 void *cdst,
18847 void *shndx)
18848 {
18849 Elf_Internal_Sym newsym;
18850
18851 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
18852 of the address set, as per the new EABI. We do this unconditionally
18853 because objcopy does not set the elf header flags until after
18854 it writes out the symbol table. */
18855 if (ARM_GET_SYM_BRANCH_TYPE (src->st_target_internal) == ST_BRANCH_TO_THUMB)
18856 {
18857 newsym = *src;
18858 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
18859 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
18860 if (newsym.st_shndx != SHN_UNDEF)
18861 {
18862 /* Do this only for defined symbols. At link type, the static
18863 linker will simulate the work of dynamic linker of resolving
18864 symbols and will carry over the thumbness of found symbols to
18865 the output symbol table. It's not clear how it happens, but
18866 the thumbness of undefined symbols can well be different at
18867 runtime, and writing '1' for them will be confusing for users
18868 and possibly for dynamic linker itself.
18869 */
18870 newsym.st_value |= 1;
18871 }
18872
18873 src = &newsym;
18874 }
18875 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
18876 }
18877
18878 /* Add the PT_ARM_EXIDX program header. */
18879
18880 static bfd_boolean
18881 elf32_arm_modify_segment_map (bfd *abfd,
18882 struct bfd_link_info *info ATTRIBUTE_UNUSED)
18883 {
18884 struct elf_segment_map *m;
18885 asection *sec;
18886
18887 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
18888 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
18889 {
18890 /* If there is already a PT_ARM_EXIDX header, then we do not
18891 want to add another one. This situation arises when running
18892 "strip"; the input binary already has the header. */
18893 m = elf_seg_map (abfd);
18894 while (m && m->p_type != PT_ARM_EXIDX)
18895 m = m->next;
18896 if (!m)
18897 {
18898 m = (struct elf_segment_map *)
18899 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
18900 if (m == NULL)
18901 return FALSE;
18902 m->p_type = PT_ARM_EXIDX;
18903 m->count = 1;
18904 m->sections[0] = sec;
18905
18906 m->next = elf_seg_map (abfd);
18907 elf_seg_map (abfd) = m;
18908 }
18909 }
18910
18911 return TRUE;
18912 }
18913
18914 /* We may add a PT_ARM_EXIDX program header. */
18915
18916 static int
18917 elf32_arm_additional_program_headers (bfd *abfd,
18918 struct bfd_link_info *info ATTRIBUTE_UNUSED)
18919 {
18920 asection *sec;
18921
18922 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
18923 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
18924 return 1;
18925 else
18926 return 0;
18927 }
18928
18929 /* Hook called by the linker routine which adds symbols from an object
18930 file. */
18931
18932 static bfd_boolean
18933 elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
18934 Elf_Internal_Sym *sym, const char **namep,
18935 flagword *flagsp, asection **secp, bfd_vma *valp)
18936 {
18937 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
18938 && (abfd->flags & DYNAMIC) == 0
18939 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
18940 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_ifunc;
18941
18942 if (elf32_arm_hash_table (info) == NULL)
18943 return FALSE;
18944
18945 if (elf32_arm_hash_table (info)->vxworks_p
18946 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
18947 flagsp, secp, valp))
18948 return FALSE;
18949
18950 return TRUE;
18951 }
18952
18953 /* We use this to override swap_symbol_in and swap_symbol_out. */
18954 const struct elf_size_info elf32_arm_size_info =
18955 {
18956 sizeof (Elf32_External_Ehdr),
18957 sizeof (Elf32_External_Phdr),
18958 sizeof (Elf32_External_Shdr),
18959 sizeof (Elf32_External_Rel),
18960 sizeof (Elf32_External_Rela),
18961 sizeof (Elf32_External_Sym),
18962 sizeof (Elf32_External_Dyn),
18963 sizeof (Elf_External_Note),
18964 4,
18965 1,
18966 32, 2,
18967 ELFCLASS32, EV_CURRENT,
18968 bfd_elf32_write_out_phdrs,
18969 bfd_elf32_write_shdrs_and_ehdr,
18970 bfd_elf32_checksum_contents,
18971 bfd_elf32_write_relocs,
18972 elf32_arm_swap_symbol_in,
18973 elf32_arm_swap_symbol_out,
18974 bfd_elf32_slurp_reloc_table,
18975 bfd_elf32_slurp_symbol_table,
18976 bfd_elf32_swap_dyn_in,
18977 bfd_elf32_swap_dyn_out,
18978 bfd_elf32_swap_reloc_in,
18979 bfd_elf32_swap_reloc_out,
18980 bfd_elf32_swap_reloca_in,
18981 bfd_elf32_swap_reloca_out
18982 };
18983
18984 static bfd_vma
18985 read_code32 (const bfd *abfd, const bfd_byte *addr)
18986 {
18987 /* V7 BE8 code is always little endian. */
18988 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
18989 return bfd_getl32 (addr);
18990
18991 return bfd_get_32 (abfd, addr);
18992 }
18993
18994 static bfd_vma
18995 read_code16 (const bfd *abfd, const bfd_byte *addr)
18996 {
18997 /* V7 BE8 code is always little endian. */
18998 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
18999 return bfd_getl16 (addr);
19000
19001 return bfd_get_16 (abfd, addr);
19002 }
19003
19004 /* Return size of plt0 entry starting at ADDR
19005 or (bfd_vma) -1 if size can not be determined. */
19006
19007 static bfd_vma
19008 elf32_arm_plt0_size (const bfd *abfd, const bfd_byte *addr)
19009 {
19010 bfd_vma first_word;
19011 bfd_vma plt0_size;
19012
19013 first_word = read_code32 (abfd, addr);
19014
19015 if (first_word == elf32_arm_plt0_entry[0])
19016 plt0_size = 4 * ARRAY_SIZE (elf32_arm_plt0_entry);
19017 else if (first_word == elf32_thumb2_plt0_entry[0])
19018 plt0_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
19019 else
19020 /* We don't yet handle this PLT format. */
19021 return (bfd_vma) -1;
19022
19023 return plt0_size;
19024 }
19025
19026 /* Return size of plt entry starting at offset OFFSET
19027 of plt section located at address START
19028 or (bfd_vma) -1 if size can not be determined. */
19029
19030 static bfd_vma
19031 elf32_arm_plt_size (const bfd *abfd, const bfd_byte *start, bfd_vma offset)
19032 {
19033 bfd_vma first_insn;
19034 bfd_vma plt_size = 0;
19035 const bfd_byte *addr = start + offset;
19036
19037 /* PLT entry size if fixed on Thumb-only platforms. */
19038 if (read_code32 (abfd, start) == elf32_thumb2_plt0_entry[0])
19039 return 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
19040
19041 /* Respect Thumb stub if necessary. */
19042 if (read_code16 (abfd, addr) == elf32_arm_plt_thumb_stub[0])
19043 {
19044 plt_size += 2 * ARRAY_SIZE(elf32_arm_plt_thumb_stub);
19045 }
19046
19047 /* Strip immediate from first add. */
19048 first_insn = read_code32 (abfd, addr + plt_size) & 0xffffff00;
19049
19050 #ifdef FOUR_WORD_PLT
19051 if (first_insn == elf32_arm_plt_entry[0])
19052 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry);
19053 #else
19054 if (first_insn == elf32_arm_plt_entry_long[0])
19055 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_long);
19056 else if (first_insn == elf32_arm_plt_entry_short[0])
19057 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_short);
19058 #endif
19059 else
19060 /* We don't yet handle this PLT format. */
19061 return (bfd_vma) -1;
19062
19063 return plt_size;
19064 }
19065
19066 /* Implementation is shamelessly borrowed from _bfd_elf_get_synthetic_symtab. */
19067
19068 static long
19069 elf32_arm_get_synthetic_symtab (bfd *abfd,
19070 long symcount ATTRIBUTE_UNUSED,
19071 asymbol **syms ATTRIBUTE_UNUSED,
19072 long dynsymcount,
19073 asymbol **dynsyms,
19074 asymbol **ret)
19075 {
19076 asection *relplt;
19077 asymbol *s;
19078 arelent *p;
19079 long count, i, n;
19080 size_t size;
19081 Elf_Internal_Shdr *hdr;
19082 char *names;
19083 asection *plt;
19084 bfd_vma offset;
19085 bfd_byte *data;
19086
19087 *ret = NULL;
19088
19089 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
19090 return 0;
19091
19092 if (dynsymcount <= 0)
19093 return 0;
19094
19095 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
19096 if (relplt == NULL)
19097 return 0;
19098
19099 hdr = &elf_section_data (relplt)->this_hdr;
19100 if (hdr->sh_link != elf_dynsymtab (abfd)
19101 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
19102 return 0;
19103
19104 plt = bfd_get_section_by_name (abfd, ".plt");
19105 if (plt == NULL)
19106 return 0;
19107
19108 if (!elf32_arm_size_info.slurp_reloc_table (abfd, relplt, dynsyms, TRUE))
19109 return -1;
19110
19111 data = plt->contents;
19112 if (data == NULL)
19113 {
19114 if (!bfd_get_full_section_contents(abfd, (asection *) plt, &data) || data == NULL)
19115 return -1;
19116 bfd_cache_section_contents((asection *) plt, data);
19117 }
19118
19119 count = relplt->size / hdr->sh_entsize;
19120 size = count * sizeof (asymbol);
19121 p = relplt->relocation;
19122 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
19123 {
19124 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
19125 if (p->addend != 0)
19126 size += sizeof ("+0x") - 1 + 8;
19127 }
19128
19129 s = *ret = (asymbol *) bfd_malloc (size);
19130 if (s == NULL)
19131 return -1;
19132
19133 offset = elf32_arm_plt0_size (abfd, data);
19134 if (offset == (bfd_vma) -1)
19135 return -1;
19136
19137 names = (char *) (s + count);
19138 p = relplt->relocation;
19139 n = 0;
19140 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
19141 {
19142 size_t len;
19143
19144 bfd_vma plt_size = elf32_arm_plt_size (abfd, data, offset);
19145 if (plt_size == (bfd_vma) -1)
19146 break;
19147
19148 *s = **p->sym_ptr_ptr;
19149 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
19150 we are defining a symbol, ensure one of them is set. */
19151 if ((s->flags & BSF_LOCAL) == 0)
19152 s->flags |= BSF_GLOBAL;
19153 s->flags |= BSF_SYNTHETIC;
19154 s->section = plt;
19155 s->value = offset;
19156 s->name = names;
19157 s->udata.p = NULL;
19158 len = strlen ((*p->sym_ptr_ptr)->name);
19159 memcpy (names, (*p->sym_ptr_ptr)->name, len);
19160 names += len;
19161 if (p->addend != 0)
19162 {
19163 char buf[30], *a;
19164
19165 memcpy (names, "+0x", sizeof ("+0x") - 1);
19166 names += sizeof ("+0x") - 1;
19167 bfd_sprintf_vma (abfd, buf, p->addend);
19168 for (a = buf; *a == '0'; ++a)
19169 ;
19170 len = strlen (a);
19171 memcpy (names, a, len);
19172 names += len;
19173 }
19174 memcpy (names, "@plt", sizeof ("@plt"));
19175 names += sizeof ("@plt");
19176 ++s, ++n;
19177 offset += plt_size;
19178 }
19179
19180 return n;
19181 }
19182
19183 static bfd_boolean
19184 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr * hdr)
19185 {
19186 if (hdr->sh_flags & SHF_ARM_PURECODE)
19187 *flags |= SEC_ELF_PURECODE;
19188 return TRUE;
19189 }
19190
19191 static flagword
19192 elf32_arm_lookup_section_flags (char *flag_name)
19193 {
19194 if (!strcmp (flag_name, "SHF_ARM_PURECODE"))
19195 return SHF_ARM_PURECODE;
19196
19197 return SEC_NO_FLAGS;
19198 }
19199
19200 static unsigned int
19201 elf32_arm_count_additional_relocs (asection *sec)
19202 {
19203 struct _arm_elf_section_data *arm_data;
19204 arm_data = get_arm_elf_section_data (sec);
19205
19206 return arm_data == NULL ? 0 : arm_data->additional_reloc_count;
19207 }
19208
19209 /* Called to set the sh_flags, sh_link and sh_info fields of OSECTION which
19210 has a type >= SHT_LOOS. Returns TRUE if these fields were initialised
19211 FALSE otherwise. ISECTION is the best guess matching section from the
19212 input bfd IBFD, but it might be NULL. */
19213
19214 static bfd_boolean
19215 elf32_arm_copy_special_section_fields (const bfd *ibfd ATTRIBUTE_UNUSED,
19216 bfd *obfd ATTRIBUTE_UNUSED,
19217 const Elf_Internal_Shdr *isection ATTRIBUTE_UNUSED,
19218 Elf_Internal_Shdr *osection)
19219 {
19220 switch (osection->sh_type)
19221 {
19222 case SHT_ARM_EXIDX:
19223 {
19224 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
19225 Elf_Internal_Shdr **iheaders = elf_elfsections (ibfd);
19226 unsigned i = 0;
19227
19228 osection->sh_flags = SHF_ALLOC | SHF_LINK_ORDER;
19229 osection->sh_info = 0;
19230
19231 /* The sh_link field must be set to the text section associated with
19232 this index section. Unfortunately the ARM EHABI does not specify
19233 exactly how to determine this association. Our caller does try
19234 to match up OSECTION with its corresponding input section however
19235 so that is a good first guess. */
19236 if (isection != NULL
19237 && osection->bfd_section != NULL
19238 && isection->bfd_section != NULL
19239 && isection->bfd_section->output_section != NULL
19240 && isection->bfd_section->output_section == osection->bfd_section
19241 && iheaders != NULL
19242 && isection->sh_link > 0
19243 && isection->sh_link < elf_numsections (ibfd)
19244 && iheaders[isection->sh_link]->bfd_section != NULL
19245 && iheaders[isection->sh_link]->bfd_section->output_section != NULL
19246 )
19247 {
19248 for (i = elf_numsections (obfd); i-- > 0;)
19249 if (oheaders[i]->bfd_section
19250 == iheaders[isection->sh_link]->bfd_section->output_section)
19251 break;
19252 }
19253
19254 if (i == 0)
19255 {
19256 /* Failing that we have to find a matching section ourselves. If
19257 we had the output section name available we could compare that
19258 with input section names. Unfortunately we don't. So instead
19259 we use a simple heuristic and look for the nearest executable
19260 section before this one. */
19261 for (i = elf_numsections (obfd); i-- > 0;)
19262 if (oheaders[i] == osection)
19263 break;
19264 if (i == 0)
19265 break;
19266
19267 while (i-- > 0)
19268 if (oheaders[i]->sh_type == SHT_PROGBITS
19269 && (oheaders[i]->sh_flags & (SHF_ALLOC | SHF_EXECINSTR))
19270 == (SHF_ALLOC | SHF_EXECINSTR))
19271 break;
19272 }
19273
19274 if (i)
19275 {
19276 osection->sh_link = i;
19277 /* If the text section was part of a group
19278 then the index section should be too. */
19279 if (oheaders[i]->sh_flags & SHF_GROUP)
19280 osection->sh_flags |= SHF_GROUP;
19281 return TRUE;
19282 }
19283 }
19284 break;
19285
19286 case SHT_ARM_PREEMPTMAP:
19287 osection->sh_flags = SHF_ALLOC;
19288 break;
19289
19290 case SHT_ARM_ATTRIBUTES:
19291 case SHT_ARM_DEBUGOVERLAY:
19292 case SHT_ARM_OVERLAYSECTION:
19293 default:
19294 break;
19295 }
19296
19297 return FALSE;
19298 }
19299
19300 /* Returns TRUE if NAME is an ARM mapping symbol.
19301 Traditionally the symbols $a, $d and $t have been used.
19302 The ARM ELF standard also defines $x (for A64 code). It also allows a
19303 period initiated suffix to be added to the symbol: "$[adtx]\.[:sym_char]+".
19304 Other tools might also produce $b (Thumb BL), $f, $p, $m and $v, but we do
19305 not support them here. $t.x indicates the start of ThumbEE instructions. */
19306
19307 static bfd_boolean
19308 is_arm_mapping_symbol (const char * name)
19309 {
19310 return name != NULL /* Paranoia. */
19311 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
19312 the mapping symbols could have acquired a prefix.
19313 We do not support this here, since such symbols no
19314 longer conform to the ARM ELF ABI. */
19315 && (name[1] == 'a' || name[1] == 'd' || name[1] == 't' || name[1] == 'x')
19316 && (name[2] == 0 || name[2] == '.');
19317 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
19318 any characters that follow the period are legal characters for the body
19319 of a symbol's name. For now we just assume that this is the case. */
19320 }
19321
19322 /* Make sure that mapping symbols in object files are not removed via the
19323 "strip --strip-unneeded" tool. These symbols are needed in order to
19324 correctly generate interworking veneers, and for byte swapping code
19325 regions. Once an object file has been linked, it is safe to remove the
19326 symbols as they will no longer be needed. */
19327
19328 static void
19329 elf32_arm_backend_symbol_processing (bfd *abfd, asymbol *sym)
19330 {
19331 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
19332 && sym->section != bfd_abs_section_ptr
19333 && is_arm_mapping_symbol (sym->name))
19334 sym->flags |= BSF_KEEP;
19335 }
19336
19337 #undef elf_backend_copy_special_section_fields
19338 #define elf_backend_copy_special_section_fields elf32_arm_copy_special_section_fields
19339
19340 #define ELF_ARCH bfd_arch_arm
19341 #define ELF_TARGET_ID ARM_ELF_DATA
19342 #define ELF_MACHINE_CODE EM_ARM
19343 #ifdef __QNXTARGET__
19344 #define ELF_MAXPAGESIZE 0x1000
19345 #else
19346 #define ELF_MAXPAGESIZE 0x10000
19347 #endif
19348 #define ELF_MINPAGESIZE 0x1000
19349 #define ELF_COMMONPAGESIZE 0x1000
19350
19351 #define bfd_elf32_mkobject elf32_arm_mkobject
19352
19353 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
19354 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
19355 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
19356 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
19357 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
19358 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
19359 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
19360 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
19361 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
19362 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
19363 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
19364 #define bfd_elf32_bfd_final_link elf32_arm_final_link
19365 #define bfd_elf32_get_synthetic_symtab elf32_arm_get_synthetic_symtab
19366
19367 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
19368 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
19369 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
19370 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
19371 #define elf_backend_check_relocs elf32_arm_check_relocs
19372 #define elf_backend_update_relocs elf32_arm_update_relocs
19373 #define elf_backend_relocate_section elf32_arm_relocate_section
19374 #define elf_backend_write_section elf32_arm_write_section
19375 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
19376 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
19377 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
19378 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
19379 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
19380 #define elf_backend_always_size_sections elf32_arm_always_size_sections
19381 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
19382 #define elf_backend_post_process_headers elf32_arm_post_process_headers
19383 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
19384 #define elf_backend_object_p elf32_arm_object_p
19385 #define elf_backend_fake_sections elf32_arm_fake_sections
19386 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
19387 #define elf_backend_final_write_processing elf32_arm_final_write_processing
19388 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
19389 #define elf_backend_size_info elf32_arm_size_info
19390 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
19391 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
19392 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
19393 #define elf_backend_filter_implib_symbols elf32_arm_filter_implib_symbols
19394 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
19395 #define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
19396 #define elf_backend_count_additional_relocs elf32_arm_count_additional_relocs
19397 #define elf_backend_symbol_processing elf32_arm_backend_symbol_processing
19398
19399 #define elf_backend_can_refcount 1
19400 #define elf_backend_can_gc_sections 1
19401 #define elf_backend_plt_readonly 1
19402 #define elf_backend_want_got_plt 1
19403 #define elf_backend_want_plt_sym 0
19404 #define elf_backend_want_dynrelro 1
19405 #define elf_backend_may_use_rel_p 1
19406 #define elf_backend_may_use_rela_p 0
19407 #define elf_backend_default_use_rela_p 0
19408 #define elf_backend_dtrel_excludes_plt 1
19409
19410 #define elf_backend_got_header_size 12
19411 #define elf_backend_extern_protected_data 1
19412
19413 #undef elf_backend_obj_attrs_vendor
19414 #define elf_backend_obj_attrs_vendor "aeabi"
19415 #undef elf_backend_obj_attrs_section
19416 #define elf_backend_obj_attrs_section ".ARM.attributes"
19417 #undef elf_backend_obj_attrs_arg_type
19418 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
19419 #undef elf_backend_obj_attrs_section_type
19420 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
19421 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
19422 #define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
19423
19424 #undef elf_backend_section_flags
19425 #define elf_backend_section_flags elf32_arm_section_flags
19426 #undef elf_backend_lookup_section_flags_hook
19427 #define elf_backend_lookup_section_flags_hook elf32_arm_lookup_section_flags
19428
19429 #include "elf32-target.h"
19430
19431 /* Native Client targets. */
19432
19433 #undef TARGET_LITTLE_SYM
19434 #define TARGET_LITTLE_SYM arm_elf32_nacl_le_vec
19435 #undef TARGET_LITTLE_NAME
19436 #define TARGET_LITTLE_NAME "elf32-littlearm-nacl"
19437 #undef TARGET_BIG_SYM
19438 #define TARGET_BIG_SYM arm_elf32_nacl_be_vec
19439 #undef TARGET_BIG_NAME
19440 #define TARGET_BIG_NAME "elf32-bigarm-nacl"
19441
19442 /* Like elf32_arm_link_hash_table_create -- but overrides
19443 appropriately for NaCl. */
19444
19445 static struct bfd_link_hash_table *
19446 elf32_arm_nacl_link_hash_table_create (bfd *abfd)
19447 {
19448 struct bfd_link_hash_table *ret;
19449
19450 ret = elf32_arm_link_hash_table_create (abfd);
19451 if (ret)
19452 {
19453 struct elf32_arm_link_hash_table *htab
19454 = (struct elf32_arm_link_hash_table *) ret;
19455
19456 htab->nacl_p = 1;
19457
19458 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry);
19459 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry);
19460 }
19461 return ret;
19462 }
19463
19464 /* Since NaCl doesn't use the ARM-specific unwind format, we don't
19465 really need to use elf32_arm_modify_segment_map. But we do it
19466 anyway just to reduce gratuitous differences with the stock ARM backend. */
19467
19468 static bfd_boolean
19469 elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
19470 {
19471 return (elf32_arm_modify_segment_map (abfd, info)
19472 && nacl_modify_segment_map (abfd, info));
19473 }
19474
19475 static void
19476 elf32_arm_nacl_final_write_processing (bfd *abfd, bfd_boolean linker)
19477 {
19478 elf32_arm_final_write_processing (abfd, linker);
19479 nacl_final_write_processing (abfd, linker);
19480 }
19481
19482 static bfd_vma
19483 elf32_arm_nacl_plt_sym_val (bfd_vma i, const asection *plt,
19484 const arelent *rel ATTRIBUTE_UNUSED)
19485 {
19486 return plt->vma
19487 + 4 * (ARRAY_SIZE (elf32_arm_nacl_plt0_entry) +
19488 i * ARRAY_SIZE (elf32_arm_nacl_plt_entry));
19489 }
19490
19491 #undef elf32_bed
19492 #define elf32_bed elf32_arm_nacl_bed
19493 #undef bfd_elf32_bfd_link_hash_table_create
19494 #define bfd_elf32_bfd_link_hash_table_create \
19495 elf32_arm_nacl_link_hash_table_create
19496 #undef elf_backend_plt_alignment
19497 #define elf_backend_plt_alignment 4
19498 #undef elf_backend_modify_segment_map
19499 #define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map
19500 #undef elf_backend_modify_program_headers
19501 #define elf_backend_modify_program_headers nacl_modify_program_headers
19502 #undef elf_backend_final_write_processing
19503 #define elf_backend_final_write_processing elf32_arm_nacl_final_write_processing
19504 #undef bfd_elf32_get_synthetic_symtab
19505 #undef elf_backend_plt_sym_val
19506 #define elf_backend_plt_sym_val elf32_arm_nacl_plt_sym_val
19507 #undef elf_backend_copy_special_section_fields
19508
19509 #undef ELF_MINPAGESIZE
19510 #undef ELF_COMMONPAGESIZE
19511
19512
19513 #include "elf32-target.h"
19514
19515 /* Reset to defaults. */
19516 #undef elf_backend_plt_alignment
19517 #undef elf_backend_modify_segment_map
19518 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
19519 #undef elf_backend_modify_program_headers
19520 #undef elf_backend_final_write_processing
19521 #define elf_backend_final_write_processing elf32_arm_final_write_processing
19522 #undef ELF_MINPAGESIZE
19523 #define ELF_MINPAGESIZE 0x1000
19524 #undef ELF_COMMONPAGESIZE
19525 #define ELF_COMMONPAGESIZE 0x1000
19526
19527
19528 /* VxWorks Targets. */
19529
19530 #undef TARGET_LITTLE_SYM
19531 #define TARGET_LITTLE_SYM arm_elf32_vxworks_le_vec
19532 #undef TARGET_LITTLE_NAME
19533 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
19534 #undef TARGET_BIG_SYM
19535 #define TARGET_BIG_SYM arm_elf32_vxworks_be_vec
19536 #undef TARGET_BIG_NAME
19537 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
19538
19539 /* Like elf32_arm_link_hash_table_create -- but overrides
19540 appropriately for VxWorks. */
19541
19542 static struct bfd_link_hash_table *
19543 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
19544 {
19545 struct bfd_link_hash_table *ret;
19546
19547 ret = elf32_arm_link_hash_table_create (abfd);
19548 if (ret)
19549 {
19550 struct elf32_arm_link_hash_table *htab
19551 = (struct elf32_arm_link_hash_table *) ret;
19552 htab->use_rel = 0;
19553 htab->vxworks_p = 1;
19554 }
19555 return ret;
19556 }
19557
19558 static void
19559 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
19560 {
19561 elf32_arm_final_write_processing (abfd, linker);
19562 elf_vxworks_final_write_processing (abfd, linker);
19563 }
19564
19565 #undef elf32_bed
19566 #define elf32_bed elf32_arm_vxworks_bed
19567
19568 #undef bfd_elf32_bfd_link_hash_table_create
19569 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
19570 #undef elf_backend_final_write_processing
19571 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
19572 #undef elf_backend_emit_relocs
19573 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
19574
19575 #undef elf_backend_may_use_rel_p
19576 #define elf_backend_may_use_rel_p 0
19577 #undef elf_backend_may_use_rela_p
19578 #define elf_backend_may_use_rela_p 1
19579 #undef elf_backend_default_use_rela_p
19580 #define elf_backend_default_use_rela_p 1
19581 #undef elf_backend_want_plt_sym
19582 #define elf_backend_want_plt_sym 1
19583 #undef ELF_MAXPAGESIZE
19584 #define ELF_MAXPAGESIZE 0x1000
19585
19586 #include "elf32-target.h"
19587
19588
19589 /* Merge backend specific data from an object file to the output
19590 object file when linking. */
19591
19592 static bfd_boolean
19593 elf32_arm_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
19594 {
19595 bfd *obfd = info->output_bfd;
19596 flagword out_flags;
19597 flagword in_flags;
19598 bfd_boolean flags_compatible = TRUE;
19599 asection *sec;
19600
19601 /* Check if we have the same endianness. */
19602 if (! _bfd_generic_verify_endian_match (ibfd, info))
19603 return FALSE;
19604
19605 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
19606 return TRUE;
19607
19608 if (!elf32_arm_merge_eabi_attributes (ibfd, info))
19609 return FALSE;
19610
19611 /* The input BFD must have had its flags initialised. */
19612 /* The following seems bogus to me -- The flags are initialized in
19613 the assembler but I don't think an elf_flags_init field is
19614 written into the object. */
19615 /* BFD_ASSERT (elf_flags_init (ibfd)); */
19616
19617 in_flags = elf_elfheader (ibfd)->e_flags;
19618 out_flags = elf_elfheader (obfd)->e_flags;
19619
19620 /* In theory there is no reason why we couldn't handle this. However
19621 in practice it isn't even close to working and there is no real
19622 reason to want it. */
19623 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
19624 && !(ibfd->flags & DYNAMIC)
19625 && (in_flags & EF_ARM_BE8))
19626 {
19627 _bfd_error_handler (_("error: %B is already in final BE8 format"),
19628 ibfd);
19629 return FALSE;
19630 }
19631
19632 if (!elf_flags_init (obfd))
19633 {
19634 /* If the input is the default architecture and had the default
19635 flags then do not bother setting the flags for the output
19636 architecture, instead allow future merges to do this. If no
19637 future merges ever set these flags then they will retain their
19638 uninitialised values, which surprise surprise, correspond
19639 to the default values. */
19640 if (bfd_get_arch_info (ibfd)->the_default
19641 && elf_elfheader (ibfd)->e_flags == 0)
19642 return TRUE;
19643
19644 elf_flags_init (obfd) = TRUE;
19645 elf_elfheader (obfd)->e_flags = in_flags;
19646
19647 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
19648 && bfd_get_arch_info (obfd)->the_default)
19649 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
19650
19651 return TRUE;
19652 }
19653
19654 /* Determine what should happen if the input ARM architecture
19655 does not match the output ARM architecture. */
19656 if (! bfd_arm_merge_machines (ibfd, obfd))
19657 return FALSE;
19658
19659 /* Identical flags must be compatible. */
19660 if (in_flags == out_flags)
19661 return TRUE;
19662
19663 /* Check to see if the input BFD actually contains any sections. If
19664 not, its flags may not have been initialised either, but it
19665 cannot actually cause any incompatiblity. Do not short-circuit
19666 dynamic objects; their section list may be emptied by
19667 elf_link_add_object_symbols.
19668
19669 Also check to see if there are no code sections in the input.
19670 In this case there is no need to check for code specific flags.
19671 XXX - do we need to worry about floating-point format compatability
19672 in data sections ? */
19673 if (!(ibfd->flags & DYNAMIC))
19674 {
19675 bfd_boolean null_input_bfd = TRUE;
19676 bfd_boolean only_data_sections = TRUE;
19677
19678 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
19679 {
19680 /* Ignore synthetic glue sections. */
19681 if (strcmp (sec->name, ".glue_7")
19682 && strcmp (sec->name, ".glue_7t"))
19683 {
19684 if ((bfd_get_section_flags (ibfd, sec)
19685 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
19686 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
19687 only_data_sections = FALSE;
19688
19689 null_input_bfd = FALSE;
19690 break;
19691 }
19692 }
19693
19694 if (null_input_bfd || only_data_sections)
19695 return TRUE;
19696 }
19697
19698 /* Complain about various flag mismatches. */
19699 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
19700 EF_ARM_EABI_VERSION (out_flags)))
19701 {
19702 _bfd_error_handler
19703 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
19704 ibfd, (in_flags & EF_ARM_EABIMASK) >> 24,
19705 obfd, (out_flags & EF_ARM_EABIMASK) >> 24);
19706 return FALSE;
19707 }
19708
19709 /* Not sure what needs to be checked for EABI versions >= 1. */
19710 /* VxWorks libraries do not use these flags. */
19711 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
19712 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
19713 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
19714 {
19715 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
19716 {
19717 _bfd_error_handler
19718 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
19719 ibfd, in_flags & EF_ARM_APCS_26 ? 26 : 32,
19720 obfd, out_flags & EF_ARM_APCS_26 ? 26 : 32);
19721 flags_compatible = FALSE;
19722 }
19723
19724 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
19725 {
19726 if (in_flags & EF_ARM_APCS_FLOAT)
19727 _bfd_error_handler
19728 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
19729 ibfd, obfd);
19730 else
19731 _bfd_error_handler
19732 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
19733 ibfd, obfd);
19734
19735 flags_compatible = FALSE;
19736 }
19737
19738 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
19739 {
19740 if (in_flags & EF_ARM_VFP_FLOAT)
19741 _bfd_error_handler
19742 (_("error: %B uses VFP instructions, whereas %B does not"),
19743 ibfd, obfd);
19744 else
19745 _bfd_error_handler
19746 (_("error: %B uses FPA instructions, whereas %B does not"),
19747 ibfd, obfd);
19748
19749 flags_compatible = FALSE;
19750 }
19751
19752 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
19753 {
19754 if (in_flags & EF_ARM_MAVERICK_FLOAT)
19755 _bfd_error_handler
19756 (_("error: %B uses Maverick instructions, whereas %B does not"),
19757 ibfd, obfd);
19758 else
19759 _bfd_error_handler
19760 (_("error: %B does not use Maverick instructions, whereas %B does"),
19761 ibfd, obfd);
19762
19763 flags_compatible = FALSE;
19764 }
19765
19766 #ifdef EF_ARM_SOFT_FLOAT
19767 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
19768 {
19769 /* We can allow interworking between code that is VFP format
19770 layout, and uses either soft float or integer regs for
19771 passing floating point arguments and results. We already
19772 know that the APCS_FLOAT flags match; similarly for VFP
19773 flags. */
19774 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
19775 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
19776 {
19777 if (in_flags & EF_ARM_SOFT_FLOAT)
19778 _bfd_error_handler
19779 (_("error: %B uses software FP, whereas %B uses hardware FP"),
19780 ibfd, obfd);
19781 else
19782 _bfd_error_handler
19783 (_("error: %B uses hardware FP, whereas %B uses software FP"),
19784 ibfd, obfd);
19785
19786 flags_compatible = FALSE;
19787 }
19788 }
19789 #endif
19790
19791 /* Interworking mismatch is only a warning. */
19792 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
19793 {
19794 if (in_flags & EF_ARM_INTERWORK)
19795 {
19796 _bfd_error_handler
19797 (_("Warning: %B supports interworking, whereas %B does not"),
19798 ibfd, obfd);
19799 }
19800 else
19801 {
19802 _bfd_error_handler
19803 (_("Warning: %B does not support interworking, whereas %B does"),
19804 ibfd, obfd);
19805 }
19806 }
19807 }
19808
19809 return flags_compatible;
19810 }
19811
19812
19813 /* Symbian OS Targets. */
19814
19815 #undef TARGET_LITTLE_SYM
19816 #define TARGET_LITTLE_SYM arm_elf32_symbian_le_vec
19817 #undef TARGET_LITTLE_NAME
19818 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
19819 #undef TARGET_BIG_SYM
19820 #define TARGET_BIG_SYM arm_elf32_symbian_be_vec
19821 #undef TARGET_BIG_NAME
19822 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
19823
19824 /* Like elf32_arm_link_hash_table_create -- but overrides
19825 appropriately for Symbian OS. */
19826
19827 static struct bfd_link_hash_table *
19828 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
19829 {
19830 struct bfd_link_hash_table *ret;
19831
19832 ret = elf32_arm_link_hash_table_create (abfd);
19833 if (ret)
19834 {
19835 struct elf32_arm_link_hash_table *htab
19836 = (struct elf32_arm_link_hash_table *)ret;
19837 /* There is no PLT header for Symbian OS. */
19838 htab->plt_header_size = 0;
19839 /* The PLT entries are each one instruction and one word. */
19840 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
19841 htab->symbian_p = 1;
19842 /* Symbian uses armv5t or above, so use_blx is always true. */
19843 htab->use_blx = 1;
19844 htab->root.is_relocatable_executable = 1;
19845 }
19846 return ret;
19847 }
19848
19849 static const struct bfd_elf_special_section
19850 elf32_arm_symbian_special_sections[] =
19851 {
19852 /* In a BPABI executable, the dynamic linking sections do not go in
19853 the loadable read-only segment. The post-linker may wish to
19854 refer to these sections, but they are not part of the final
19855 program image. */
19856 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
19857 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
19858 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
19859 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
19860 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
19861 /* These sections do not need to be writable as the SymbianOS
19862 postlinker will arrange things so that no dynamic relocation is
19863 required. */
19864 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
19865 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
19866 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
19867 { NULL, 0, 0, 0, 0 }
19868 };
19869
19870 static void
19871 elf32_arm_symbian_begin_write_processing (bfd *abfd,
19872 struct bfd_link_info *link_info)
19873 {
19874 /* BPABI objects are never loaded directly by an OS kernel; they are
19875 processed by a postlinker first, into an OS-specific format. If
19876 the D_PAGED bit is set on the file, BFD will align segments on
19877 page boundaries, so that an OS can directly map the file. With
19878 BPABI objects, that just results in wasted space. In addition,
19879 because we clear the D_PAGED bit, map_sections_to_segments will
19880 recognize that the program headers should not be mapped into any
19881 loadable segment. */
19882 abfd->flags &= ~D_PAGED;
19883 elf32_arm_begin_write_processing (abfd, link_info);
19884 }
19885
19886 static bfd_boolean
19887 elf32_arm_symbian_modify_segment_map (bfd *abfd,
19888 struct bfd_link_info *info)
19889 {
19890 struct elf_segment_map *m;
19891 asection *dynsec;
19892
19893 /* BPABI shared libraries and executables should have a PT_DYNAMIC
19894 segment. However, because the .dynamic section is not marked
19895 with SEC_LOAD, the generic ELF code will not create such a
19896 segment. */
19897 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
19898 if (dynsec)
19899 {
19900 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
19901 if (m->p_type == PT_DYNAMIC)
19902 break;
19903
19904 if (m == NULL)
19905 {
19906 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
19907 m->next = elf_seg_map (abfd);
19908 elf_seg_map (abfd) = m;
19909 }
19910 }
19911
19912 /* Also call the generic arm routine. */
19913 return elf32_arm_modify_segment_map (abfd, info);
19914 }
19915
19916 /* Return address for Ith PLT stub in section PLT, for relocation REL
19917 or (bfd_vma) -1 if it should not be included. */
19918
19919 static bfd_vma
19920 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
19921 const arelent *rel ATTRIBUTE_UNUSED)
19922 {
19923 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
19924 }
19925
19926 #undef elf32_bed
19927 #define elf32_bed elf32_arm_symbian_bed
19928
19929 /* The dynamic sections are not allocated on SymbianOS; the postlinker
19930 will process them and then discard them. */
19931 #undef ELF_DYNAMIC_SEC_FLAGS
19932 #define ELF_DYNAMIC_SEC_FLAGS \
19933 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
19934
19935 #undef elf_backend_emit_relocs
19936
19937 #undef bfd_elf32_bfd_link_hash_table_create
19938 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
19939 #undef elf_backend_special_sections
19940 #define elf_backend_special_sections elf32_arm_symbian_special_sections
19941 #undef elf_backend_begin_write_processing
19942 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
19943 #undef elf_backend_final_write_processing
19944 #define elf_backend_final_write_processing elf32_arm_final_write_processing
19945
19946 #undef elf_backend_modify_segment_map
19947 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
19948
19949 /* There is no .got section for BPABI objects, and hence no header. */
19950 #undef elf_backend_got_header_size
19951 #define elf_backend_got_header_size 0
19952
19953 /* Similarly, there is no .got.plt section. */
19954 #undef elf_backend_want_got_plt
19955 #define elf_backend_want_got_plt 0
19956
19957 #undef elf_backend_plt_sym_val
19958 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
19959
19960 #undef elf_backend_may_use_rel_p
19961 #define elf_backend_may_use_rel_p 1
19962 #undef elf_backend_may_use_rela_p
19963 #define elf_backend_may_use_rela_p 0
19964 #undef elf_backend_default_use_rela_p
19965 #define elf_backend_default_use_rela_p 0
19966 #undef elf_backend_want_plt_sym
19967 #define elf_backend_want_plt_sym 0
19968 #undef elf_backend_dtrel_excludes_plt
19969 #define elf_backend_dtrel_excludes_plt 0
19970 #undef ELF_MAXPAGESIZE
19971 #define ELF_MAXPAGESIZE 0x8000
19972
19973 #include "elf32-target.h"
This page took 0.481646 seconds and 5 git commands to generate.