arm: Check UNDEFWEAK_NO_DYNAMIC_RELOC
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
1 /* 32-bit ELF support for ARM
2 Copyright (C) 1998-2017 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include <limits.h>
23
24 #include "bfd.h"
25 #include "bfd_stdint.h"
26 #include "libiberty.h"
27 #include "libbfd.h"
28 #include "elf-bfd.h"
29 #include "elf-nacl.h"
30 #include "elf-vxworks.h"
31 #include "elf/arm.h"
32
33 /* Return the relocation section associated with NAME. HTAB is the
34 bfd's elf32_arm_link_hash_entry. */
35 #define RELOC_SECTION(HTAB, NAME) \
36 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
37
38 /* Return size of a relocation entry. HTAB is the bfd's
39 elf32_arm_link_hash_entry. */
40 #define RELOC_SIZE(HTAB) \
41 ((HTAB)->use_rel \
42 ? sizeof (Elf32_External_Rel) \
43 : sizeof (Elf32_External_Rela))
44
45 /* Return function to swap relocations in. HTAB is the bfd's
46 elf32_arm_link_hash_entry. */
47 #define SWAP_RELOC_IN(HTAB) \
48 ((HTAB)->use_rel \
49 ? bfd_elf32_swap_reloc_in \
50 : bfd_elf32_swap_reloca_in)
51
52 /* Return function to swap relocations out. HTAB is the bfd's
53 elf32_arm_link_hash_entry. */
54 #define SWAP_RELOC_OUT(HTAB) \
55 ((HTAB)->use_rel \
56 ? bfd_elf32_swap_reloc_out \
57 : bfd_elf32_swap_reloca_out)
58
59 #define elf_info_to_howto 0
60 #define elf_info_to_howto_rel elf32_arm_info_to_howto
61
62 #define ARM_ELF_ABI_VERSION 0
63 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
64
65 /* The Adjusted Place, as defined by AAELF. */
66 #define Pa(X) ((X) & 0xfffffffc)
67
68 static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
69 struct bfd_link_info *link_info,
70 asection *sec,
71 bfd_byte *contents);
72
73 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
74 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
75 in that slot. */
76
77 static reloc_howto_type elf32_arm_howto_table_1[] =
78 {
79 /* No relocation. */
80 HOWTO (R_ARM_NONE, /* type */
81 0, /* rightshift */
82 3, /* size (0 = byte, 1 = short, 2 = long) */
83 0, /* bitsize */
84 FALSE, /* pc_relative */
85 0, /* bitpos */
86 complain_overflow_dont,/* complain_on_overflow */
87 bfd_elf_generic_reloc, /* special_function */
88 "R_ARM_NONE", /* name */
89 FALSE, /* partial_inplace */
90 0, /* src_mask */
91 0, /* dst_mask */
92 FALSE), /* pcrel_offset */
93
94 HOWTO (R_ARM_PC24, /* type */
95 2, /* rightshift */
96 2, /* size (0 = byte, 1 = short, 2 = long) */
97 24, /* bitsize */
98 TRUE, /* pc_relative */
99 0, /* bitpos */
100 complain_overflow_signed,/* complain_on_overflow */
101 bfd_elf_generic_reloc, /* special_function */
102 "R_ARM_PC24", /* name */
103 FALSE, /* partial_inplace */
104 0x00ffffff, /* src_mask */
105 0x00ffffff, /* dst_mask */
106 TRUE), /* pcrel_offset */
107
108 /* 32 bit absolute */
109 HOWTO (R_ARM_ABS32, /* type */
110 0, /* rightshift */
111 2, /* size (0 = byte, 1 = short, 2 = long) */
112 32, /* bitsize */
113 FALSE, /* pc_relative */
114 0, /* bitpos */
115 complain_overflow_bitfield,/* complain_on_overflow */
116 bfd_elf_generic_reloc, /* special_function */
117 "R_ARM_ABS32", /* name */
118 FALSE, /* partial_inplace */
119 0xffffffff, /* src_mask */
120 0xffffffff, /* dst_mask */
121 FALSE), /* pcrel_offset */
122
123 /* standard 32bit pc-relative reloc */
124 HOWTO (R_ARM_REL32, /* type */
125 0, /* rightshift */
126 2, /* size (0 = byte, 1 = short, 2 = long) */
127 32, /* bitsize */
128 TRUE, /* pc_relative */
129 0, /* bitpos */
130 complain_overflow_bitfield,/* complain_on_overflow */
131 bfd_elf_generic_reloc, /* special_function */
132 "R_ARM_REL32", /* name */
133 FALSE, /* partial_inplace */
134 0xffffffff, /* src_mask */
135 0xffffffff, /* dst_mask */
136 TRUE), /* pcrel_offset */
137
138 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
139 HOWTO (R_ARM_LDR_PC_G0, /* type */
140 0, /* rightshift */
141 0, /* size (0 = byte, 1 = short, 2 = long) */
142 32, /* bitsize */
143 TRUE, /* pc_relative */
144 0, /* bitpos */
145 complain_overflow_dont,/* complain_on_overflow */
146 bfd_elf_generic_reloc, /* special_function */
147 "R_ARM_LDR_PC_G0", /* name */
148 FALSE, /* partial_inplace */
149 0xffffffff, /* src_mask */
150 0xffffffff, /* dst_mask */
151 TRUE), /* pcrel_offset */
152
153 /* 16 bit absolute */
154 HOWTO (R_ARM_ABS16, /* type */
155 0, /* rightshift */
156 1, /* size (0 = byte, 1 = short, 2 = long) */
157 16, /* bitsize */
158 FALSE, /* pc_relative */
159 0, /* bitpos */
160 complain_overflow_bitfield,/* complain_on_overflow */
161 bfd_elf_generic_reloc, /* special_function */
162 "R_ARM_ABS16", /* name */
163 FALSE, /* partial_inplace */
164 0x0000ffff, /* src_mask */
165 0x0000ffff, /* dst_mask */
166 FALSE), /* pcrel_offset */
167
168 /* 12 bit absolute */
169 HOWTO (R_ARM_ABS12, /* type */
170 0, /* rightshift */
171 2, /* size (0 = byte, 1 = short, 2 = long) */
172 12, /* bitsize */
173 FALSE, /* pc_relative */
174 0, /* bitpos */
175 complain_overflow_bitfield,/* complain_on_overflow */
176 bfd_elf_generic_reloc, /* special_function */
177 "R_ARM_ABS12", /* name */
178 FALSE, /* partial_inplace */
179 0x00000fff, /* src_mask */
180 0x00000fff, /* dst_mask */
181 FALSE), /* pcrel_offset */
182
183 HOWTO (R_ARM_THM_ABS5, /* type */
184 6, /* rightshift */
185 1, /* size (0 = byte, 1 = short, 2 = long) */
186 5, /* bitsize */
187 FALSE, /* pc_relative */
188 0, /* bitpos */
189 complain_overflow_bitfield,/* complain_on_overflow */
190 bfd_elf_generic_reloc, /* special_function */
191 "R_ARM_THM_ABS5", /* name */
192 FALSE, /* partial_inplace */
193 0x000007e0, /* src_mask */
194 0x000007e0, /* dst_mask */
195 FALSE), /* pcrel_offset */
196
197 /* 8 bit absolute */
198 HOWTO (R_ARM_ABS8, /* type */
199 0, /* rightshift */
200 0, /* size (0 = byte, 1 = short, 2 = long) */
201 8, /* bitsize */
202 FALSE, /* pc_relative */
203 0, /* bitpos */
204 complain_overflow_bitfield,/* complain_on_overflow */
205 bfd_elf_generic_reloc, /* special_function */
206 "R_ARM_ABS8", /* name */
207 FALSE, /* partial_inplace */
208 0x000000ff, /* src_mask */
209 0x000000ff, /* dst_mask */
210 FALSE), /* pcrel_offset */
211
212 HOWTO (R_ARM_SBREL32, /* type */
213 0, /* rightshift */
214 2, /* size (0 = byte, 1 = short, 2 = long) */
215 32, /* bitsize */
216 FALSE, /* pc_relative */
217 0, /* bitpos */
218 complain_overflow_dont,/* complain_on_overflow */
219 bfd_elf_generic_reloc, /* special_function */
220 "R_ARM_SBREL32", /* name */
221 FALSE, /* partial_inplace */
222 0xffffffff, /* src_mask */
223 0xffffffff, /* dst_mask */
224 FALSE), /* pcrel_offset */
225
226 HOWTO (R_ARM_THM_CALL, /* type */
227 1, /* rightshift */
228 2, /* size (0 = byte, 1 = short, 2 = long) */
229 24, /* bitsize */
230 TRUE, /* pc_relative */
231 0, /* bitpos */
232 complain_overflow_signed,/* complain_on_overflow */
233 bfd_elf_generic_reloc, /* special_function */
234 "R_ARM_THM_CALL", /* name */
235 FALSE, /* partial_inplace */
236 0x07ff2fff, /* src_mask */
237 0x07ff2fff, /* dst_mask */
238 TRUE), /* pcrel_offset */
239
240 HOWTO (R_ARM_THM_PC8, /* type */
241 1, /* rightshift */
242 1, /* size (0 = byte, 1 = short, 2 = long) */
243 8, /* bitsize */
244 TRUE, /* pc_relative */
245 0, /* bitpos */
246 complain_overflow_signed,/* complain_on_overflow */
247 bfd_elf_generic_reloc, /* special_function */
248 "R_ARM_THM_PC8", /* name */
249 FALSE, /* partial_inplace */
250 0x000000ff, /* src_mask */
251 0x000000ff, /* dst_mask */
252 TRUE), /* pcrel_offset */
253
254 HOWTO (R_ARM_BREL_ADJ, /* type */
255 1, /* rightshift */
256 1, /* size (0 = byte, 1 = short, 2 = long) */
257 32, /* bitsize */
258 FALSE, /* pc_relative */
259 0, /* bitpos */
260 complain_overflow_signed,/* complain_on_overflow */
261 bfd_elf_generic_reloc, /* special_function */
262 "R_ARM_BREL_ADJ", /* name */
263 FALSE, /* partial_inplace */
264 0xffffffff, /* src_mask */
265 0xffffffff, /* dst_mask */
266 FALSE), /* pcrel_offset */
267
268 HOWTO (R_ARM_TLS_DESC, /* type */
269 0, /* rightshift */
270 2, /* size (0 = byte, 1 = short, 2 = long) */
271 32, /* bitsize */
272 FALSE, /* pc_relative */
273 0, /* bitpos */
274 complain_overflow_bitfield,/* complain_on_overflow */
275 bfd_elf_generic_reloc, /* special_function */
276 "R_ARM_TLS_DESC", /* name */
277 FALSE, /* partial_inplace */
278 0xffffffff, /* src_mask */
279 0xffffffff, /* dst_mask */
280 FALSE), /* pcrel_offset */
281
282 HOWTO (R_ARM_THM_SWI8, /* type */
283 0, /* rightshift */
284 0, /* size (0 = byte, 1 = short, 2 = long) */
285 0, /* bitsize */
286 FALSE, /* pc_relative */
287 0, /* bitpos */
288 complain_overflow_signed,/* complain_on_overflow */
289 bfd_elf_generic_reloc, /* special_function */
290 "R_ARM_SWI8", /* name */
291 FALSE, /* partial_inplace */
292 0x00000000, /* src_mask */
293 0x00000000, /* dst_mask */
294 FALSE), /* pcrel_offset */
295
296 /* BLX instruction for the ARM. */
297 HOWTO (R_ARM_XPC25, /* type */
298 2, /* rightshift */
299 2, /* size (0 = byte, 1 = short, 2 = long) */
300 24, /* bitsize */
301 TRUE, /* pc_relative */
302 0, /* bitpos */
303 complain_overflow_signed,/* complain_on_overflow */
304 bfd_elf_generic_reloc, /* special_function */
305 "R_ARM_XPC25", /* name */
306 FALSE, /* partial_inplace */
307 0x00ffffff, /* src_mask */
308 0x00ffffff, /* dst_mask */
309 TRUE), /* pcrel_offset */
310
311 /* BLX instruction for the Thumb. */
312 HOWTO (R_ARM_THM_XPC22, /* type */
313 2, /* rightshift */
314 2, /* size (0 = byte, 1 = short, 2 = long) */
315 24, /* bitsize */
316 TRUE, /* pc_relative */
317 0, /* bitpos */
318 complain_overflow_signed,/* complain_on_overflow */
319 bfd_elf_generic_reloc, /* special_function */
320 "R_ARM_THM_XPC22", /* name */
321 FALSE, /* partial_inplace */
322 0x07ff2fff, /* src_mask */
323 0x07ff2fff, /* dst_mask */
324 TRUE), /* pcrel_offset */
325
326 /* Dynamic TLS relocations. */
327
328 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
329 0, /* rightshift */
330 2, /* size (0 = byte, 1 = short, 2 = long) */
331 32, /* bitsize */
332 FALSE, /* pc_relative */
333 0, /* bitpos */
334 complain_overflow_bitfield,/* complain_on_overflow */
335 bfd_elf_generic_reloc, /* special_function */
336 "R_ARM_TLS_DTPMOD32", /* name */
337 TRUE, /* partial_inplace */
338 0xffffffff, /* src_mask */
339 0xffffffff, /* dst_mask */
340 FALSE), /* pcrel_offset */
341
342 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
343 0, /* rightshift */
344 2, /* size (0 = byte, 1 = short, 2 = long) */
345 32, /* bitsize */
346 FALSE, /* pc_relative */
347 0, /* bitpos */
348 complain_overflow_bitfield,/* complain_on_overflow */
349 bfd_elf_generic_reloc, /* special_function */
350 "R_ARM_TLS_DTPOFF32", /* name */
351 TRUE, /* partial_inplace */
352 0xffffffff, /* src_mask */
353 0xffffffff, /* dst_mask */
354 FALSE), /* pcrel_offset */
355
356 HOWTO (R_ARM_TLS_TPOFF32, /* type */
357 0, /* rightshift */
358 2, /* size (0 = byte, 1 = short, 2 = long) */
359 32, /* bitsize */
360 FALSE, /* pc_relative */
361 0, /* bitpos */
362 complain_overflow_bitfield,/* complain_on_overflow */
363 bfd_elf_generic_reloc, /* special_function */
364 "R_ARM_TLS_TPOFF32", /* name */
365 TRUE, /* partial_inplace */
366 0xffffffff, /* src_mask */
367 0xffffffff, /* dst_mask */
368 FALSE), /* pcrel_offset */
369
370 /* Relocs used in ARM Linux */
371
372 HOWTO (R_ARM_COPY, /* type */
373 0, /* rightshift */
374 2, /* size (0 = byte, 1 = short, 2 = long) */
375 32, /* bitsize */
376 FALSE, /* pc_relative */
377 0, /* bitpos */
378 complain_overflow_bitfield,/* complain_on_overflow */
379 bfd_elf_generic_reloc, /* special_function */
380 "R_ARM_COPY", /* name */
381 TRUE, /* partial_inplace */
382 0xffffffff, /* src_mask */
383 0xffffffff, /* dst_mask */
384 FALSE), /* pcrel_offset */
385
386 HOWTO (R_ARM_GLOB_DAT, /* type */
387 0, /* rightshift */
388 2, /* size (0 = byte, 1 = short, 2 = long) */
389 32, /* bitsize */
390 FALSE, /* pc_relative */
391 0, /* bitpos */
392 complain_overflow_bitfield,/* complain_on_overflow */
393 bfd_elf_generic_reloc, /* special_function */
394 "R_ARM_GLOB_DAT", /* name */
395 TRUE, /* partial_inplace */
396 0xffffffff, /* src_mask */
397 0xffffffff, /* dst_mask */
398 FALSE), /* pcrel_offset */
399
400 HOWTO (R_ARM_JUMP_SLOT, /* type */
401 0, /* rightshift */
402 2, /* size (0 = byte, 1 = short, 2 = long) */
403 32, /* bitsize */
404 FALSE, /* pc_relative */
405 0, /* bitpos */
406 complain_overflow_bitfield,/* complain_on_overflow */
407 bfd_elf_generic_reloc, /* special_function */
408 "R_ARM_JUMP_SLOT", /* name */
409 TRUE, /* partial_inplace */
410 0xffffffff, /* src_mask */
411 0xffffffff, /* dst_mask */
412 FALSE), /* pcrel_offset */
413
414 HOWTO (R_ARM_RELATIVE, /* type */
415 0, /* rightshift */
416 2, /* size (0 = byte, 1 = short, 2 = long) */
417 32, /* bitsize */
418 FALSE, /* pc_relative */
419 0, /* bitpos */
420 complain_overflow_bitfield,/* complain_on_overflow */
421 bfd_elf_generic_reloc, /* special_function */
422 "R_ARM_RELATIVE", /* name */
423 TRUE, /* partial_inplace */
424 0xffffffff, /* src_mask */
425 0xffffffff, /* dst_mask */
426 FALSE), /* pcrel_offset */
427
428 HOWTO (R_ARM_GOTOFF32, /* type */
429 0, /* rightshift */
430 2, /* size (0 = byte, 1 = short, 2 = long) */
431 32, /* bitsize */
432 FALSE, /* pc_relative */
433 0, /* bitpos */
434 complain_overflow_bitfield,/* complain_on_overflow */
435 bfd_elf_generic_reloc, /* special_function */
436 "R_ARM_GOTOFF32", /* name */
437 TRUE, /* partial_inplace */
438 0xffffffff, /* src_mask */
439 0xffffffff, /* dst_mask */
440 FALSE), /* pcrel_offset */
441
442 HOWTO (R_ARM_GOTPC, /* type */
443 0, /* rightshift */
444 2, /* size (0 = byte, 1 = short, 2 = long) */
445 32, /* bitsize */
446 TRUE, /* pc_relative */
447 0, /* bitpos */
448 complain_overflow_bitfield,/* complain_on_overflow */
449 bfd_elf_generic_reloc, /* special_function */
450 "R_ARM_GOTPC", /* name */
451 TRUE, /* partial_inplace */
452 0xffffffff, /* src_mask */
453 0xffffffff, /* dst_mask */
454 TRUE), /* pcrel_offset */
455
456 HOWTO (R_ARM_GOT32, /* type */
457 0, /* rightshift */
458 2, /* size (0 = byte, 1 = short, 2 = long) */
459 32, /* bitsize */
460 FALSE, /* pc_relative */
461 0, /* bitpos */
462 complain_overflow_bitfield,/* complain_on_overflow */
463 bfd_elf_generic_reloc, /* special_function */
464 "R_ARM_GOT32", /* name */
465 TRUE, /* partial_inplace */
466 0xffffffff, /* src_mask */
467 0xffffffff, /* dst_mask */
468 FALSE), /* pcrel_offset */
469
470 HOWTO (R_ARM_PLT32, /* type */
471 2, /* rightshift */
472 2, /* size (0 = byte, 1 = short, 2 = long) */
473 24, /* bitsize */
474 TRUE, /* pc_relative */
475 0, /* bitpos */
476 complain_overflow_bitfield,/* complain_on_overflow */
477 bfd_elf_generic_reloc, /* special_function */
478 "R_ARM_PLT32", /* name */
479 FALSE, /* partial_inplace */
480 0x00ffffff, /* src_mask */
481 0x00ffffff, /* dst_mask */
482 TRUE), /* pcrel_offset */
483
484 HOWTO (R_ARM_CALL, /* type */
485 2, /* rightshift */
486 2, /* size (0 = byte, 1 = short, 2 = long) */
487 24, /* bitsize */
488 TRUE, /* pc_relative */
489 0, /* bitpos */
490 complain_overflow_signed,/* complain_on_overflow */
491 bfd_elf_generic_reloc, /* special_function */
492 "R_ARM_CALL", /* name */
493 FALSE, /* partial_inplace */
494 0x00ffffff, /* src_mask */
495 0x00ffffff, /* dst_mask */
496 TRUE), /* pcrel_offset */
497
498 HOWTO (R_ARM_JUMP24, /* type */
499 2, /* rightshift */
500 2, /* size (0 = byte, 1 = short, 2 = long) */
501 24, /* bitsize */
502 TRUE, /* pc_relative */
503 0, /* bitpos */
504 complain_overflow_signed,/* complain_on_overflow */
505 bfd_elf_generic_reloc, /* special_function */
506 "R_ARM_JUMP24", /* name */
507 FALSE, /* partial_inplace */
508 0x00ffffff, /* src_mask */
509 0x00ffffff, /* dst_mask */
510 TRUE), /* pcrel_offset */
511
512 HOWTO (R_ARM_THM_JUMP24, /* type */
513 1, /* rightshift */
514 2, /* size (0 = byte, 1 = short, 2 = long) */
515 24, /* bitsize */
516 TRUE, /* pc_relative */
517 0, /* bitpos */
518 complain_overflow_signed,/* complain_on_overflow */
519 bfd_elf_generic_reloc, /* special_function */
520 "R_ARM_THM_JUMP24", /* name */
521 FALSE, /* partial_inplace */
522 0x07ff2fff, /* src_mask */
523 0x07ff2fff, /* dst_mask */
524 TRUE), /* pcrel_offset */
525
526 HOWTO (R_ARM_BASE_ABS, /* type */
527 0, /* rightshift */
528 2, /* size (0 = byte, 1 = short, 2 = long) */
529 32, /* bitsize */
530 FALSE, /* pc_relative */
531 0, /* bitpos */
532 complain_overflow_dont,/* complain_on_overflow */
533 bfd_elf_generic_reloc, /* special_function */
534 "R_ARM_BASE_ABS", /* name */
535 FALSE, /* partial_inplace */
536 0xffffffff, /* src_mask */
537 0xffffffff, /* dst_mask */
538 FALSE), /* pcrel_offset */
539
540 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
541 0, /* rightshift */
542 2, /* size (0 = byte, 1 = short, 2 = long) */
543 12, /* bitsize */
544 TRUE, /* pc_relative */
545 0, /* bitpos */
546 complain_overflow_dont,/* complain_on_overflow */
547 bfd_elf_generic_reloc, /* special_function */
548 "R_ARM_ALU_PCREL_7_0", /* name */
549 FALSE, /* partial_inplace */
550 0x00000fff, /* src_mask */
551 0x00000fff, /* dst_mask */
552 TRUE), /* pcrel_offset */
553
554 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
555 0, /* rightshift */
556 2, /* size (0 = byte, 1 = short, 2 = long) */
557 12, /* bitsize */
558 TRUE, /* pc_relative */
559 8, /* bitpos */
560 complain_overflow_dont,/* complain_on_overflow */
561 bfd_elf_generic_reloc, /* special_function */
562 "R_ARM_ALU_PCREL_15_8",/* name */
563 FALSE, /* partial_inplace */
564 0x00000fff, /* src_mask */
565 0x00000fff, /* dst_mask */
566 TRUE), /* pcrel_offset */
567
568 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
569 0, /* rightshift */
570 2, /* size (0 = byte, 1 = short, 2 = long) */
571 12, /* bitsize */
572 TRUE, /* pc_relative */
573 16, /* bitpos */
574 complain_overflow_dont,/* complain_on_overflow */
575 bfd_elf_generic_reloc, /* special_function */
576 "R_ARM_ALU_PCREL_23_15",/* name */
577 FALSE, /* partial_inplace */
578 0x00000fff, /* src_mask */
579 0x00000fff, /* dst_mask */
580 TRUE), /* pcrel_offset */
581
582 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
583 0, /* rightshift */
584 2, /* size (0 = byte, 1 = short, 2 = long) */
585 12, /* bitsize */
586 FALSE, /* pc_relative */
587 0, /* bitpos */
588 complain_overflow_dont,/* complain_on_overflow */
589 bfd_elf_generic_reloc, /* special_function */
590 "R_ARM_LDR_SBREL_11_0",/* name */
591 FALSE, /* partial_inplace */
592 0x00000fff, /* src_mask */
593 0x00000fff, /* dst_mask */
594 FALSE), /* pcrel_offset */
595
596 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
597 0, /* rightshift */
598 2, /* size (0 = byte, 1 = short, 2 = long) */
599 8, /* bitsize */
600 FALSE, /* pc_relative */
601 12, /* bitpos */
602 complain_overflow_dont,/* complain_on_overflow */
603 bfd_elf_generic_reloc, /* special_function */
604 "R_ARM_ALU_SBREL_19_12",/* name */
605 FALSE, /* partial_inplace */
606 0x000ff000, /* src_mask */
607 0x000ff000, /* dst_mask */
608 FALSE), /* pcrel_offset */
609
610 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
611 0, /* rightshift */
612 2, /* size (0 = byte, 1 = short, 2 = long) */
613 8, /* bitsize */
614 FALSE, /* pc_relative */
615 20, /* bitpos */
616 complain_overflow_dont,/* complain_on_overflow */
617 bfd_elf_generic_reloc, /* special_function */
618 "R_ARM_ALU_SBREL_27_20",/* name */
619 FALSE, /* partial_inplace */
620 0x0ff00000, /* src_mask */
621 0x0ff00000, /* dst_mask */
622 FALSE), /* pcrel_offset */
623
624 HOWTO (R_ARM_TARGET1, /* type */
625 0, /* rightshift */
626 2, /* size (0 = byte, 1 = short, 2 = long) */
627 32, /* bitsize */
628 FALSE, /* pc_relative */
629 0, /* bitpos */
630 complain_overflow_dont,/* complain_on_overflow */
631 bfd_elf_generic_reloc, /* special_function */
632 "R_ARM_TARGET1", /* name */
633 FALSE, /* partial_inplace */
634 0xffffffff, /* src_mask */
635 0xffffffff, /* dst_mask */
636 FALSE), /* pcrel_offset */
637
638 HOWTO (R_ARM_ROSEGREL32, /* type */
639 0, /* rightshift */
640 2, /* size (0 = byte, 1 = short, 2 = long) */
641 32, /* bitsize */
642 FALSE, /* pc_relative */
643 0, /* bitpos */
644 complain_overflow_dont,/* complain_on_overflow */
645 bfd_elf_generic_reloc, /* special_function */
646 "R_ARM_ROSEGREL32", /* name */
647 FALSE, /* partial_inplace */
648 0xffffffff, /* src_mask */
649 0xffffffff, /* dst_mask */
650 FALSE), /* pcrel_offset */
651
652 HOWTO (R_ARM_V4BX, /* type */
653 0, /* rightshift */
654 2, /* size (0 = byte, 1 = short, 2 = long) */
655 32, /* bitsize */
656 FALSE, /* pc_relative */
657 0, /* bitpos */
658 complain_overflow_dont,/* complain_on_overflow */
659 bfd_elf_generic_reloc, /* special_function */
660 "R_ARM_V4BX", /* name */
661 FALSE, /* partial_inplace */
662 0xffffffff, /* src_mask */
663 0xffffffff, /* dst_mask */
664 FALSE), /* pcrel_offset */
665
666 HOWTO (R_ARM_TARGET2, /* type */
667 0, /* rightshift */
668 2, /* size (0 = byte, 1 = short, 2 = long) */
669 32, /* bitsize */
670 FALSE, /* pc_relative */
671 0, /* bitpos */
672 complain_overflow_signed,/* complain_on_overflow */
673 bfd_elf_generic_reloc, /* special_function */
674 "R_ARM_TARGET2", /* name */
675 FALSE, /* partial_inplace */
676 0xffffffff, /* src_mask */
677 0xffffffff, /* dst_mask */
678 TRUE), /* pcrel_offset */
679
680 HOWTO (R_ARM_PREL31, /* type */
681 0, /* rightshift */
682 2, /* size (0 = byte, 1 = short, 2 = long) */
683 31, /* bitsize */
684 TRUE, /* pc_relative */
685 0, /* bitpos */
686 complain_overflow_signed,/* complain_on_overflow */
687 bfd_elf_generic_reloc, /* special_function */
688 "R_ARM_PREL31", /* name */
689 FALSE, /* partial_inplace */
690 0x7fffffff, /* src_mask */
691 0x7fffffff, /* dst_mask */
692 TRUE), /* pcrel_offset */
693
694 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
695 0, /* rightshift */
696 2, /* size (0 = byte, 1 = short, 2 = long) */
697 16, /* bitsize */
698 FALSE, /* pc_relative */
699 0, /* bitpos */
700 complain_overflow_dont,/* complain_on_overflow */
701 bfd_elf_generic_reloc, /* special_function */
702 "R_ARM_MOVW_ABS_NC", /* name */
703 FALSE, /* partial_inplace */
704 0x000f0fff, /* src_mask */
705 0x000f0fff, /* dst_mask */
706 FALSE), /* pcrel_offset */
707
708 HOWTO (R_ARM_MOVT_ABS, /* type */
709 0, /* rightshift */
710 2, /* size (0 = byte, 1 = short, 2 = long) */
711 16, /* bitsize */
712 FALSE, /* pc_relative */
713 0, /* bitpos */
714 complain_overflow_bitfield,/* complain_on_overflow */
715 bfd_elf_generic_reloc, /* special_function */
716 "R_ARM_MOVT_ABS", /* name */
717 FALSE, /* partial_inplace */
718 0x000f0fff, /* src_mask */
719 0x000f0fff, /* dst_mask */
720 FALSE), /* pcrel_offset */
721
722 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
723 0, /* rightshift */
724 2, /* size (0 = byte, 1 = short, 2 = long) */
725 16, /* bitsize */
726 TRUE, /* pc_relative */
727 0, /* bitpos */
728 complain_overflow_dont,/* complain_on_overflow */
729 bfd_elf_generic_reloc, /* special_function */
730 "R_ARM_MOVW_PREL_NC", /* name */
731 FALSE, /* partial_inplace */
732 0x000f0fff, /* src_mask */
733 0x000f0fff, /* dst_mask */
734 TRUE), /* pcrel_offset */
735
736 HOWTO (R_ARM_MOVT_PREL, /* type */
737 0, /* rightshift */
738 2, /* size (0 = byte, 1 = short, 2 = long) */
739 16, /* bitsize */
740 TRUE, /* pc_relative */
741 0, /* bitpos */
742 complain_overflow_bitfield,/* complain_on_overflow */
743 bfd_elf_generic_reloc, /* special_function */
744 "R_ARM_MOVT_PREL", /* name */
745 FALSE, /* partial_inplace */
746 0x000f0fff, /* src_mask */
747 0x000f0fff, /* dst_mask */
748 TRUE), /* pcrel_offset */
749
750 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
751 0, /* rightshift */
752 2, /* size (0 = byte, 1 = short, 2 = long) */
753 16, /* bitsize */
754 FALSE, /* pc_relative */
755 0, /* bitpos */
756 complain_overflow_dont,/* complain_on_overflow */
757 bfd_elf_generic_reloc, /* special_function */
758 "R_ARM_THM_MOVW_ABS_NC",/* name */
759 FALSE, /* partial_inplace */
760 0x040f70ff, /* src_mask */
761 0x040f70ff, /* dst_mask */
762 FALSE), /* pcrel_offset */
763
764 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
765 0, /* rightshift */
766 2, /* size (0 = byte, 1 = short, 2 = long) */
767 16, /* bitsize */
768 FALSE, /* pc_relative */
769 0, /* bitpos */
770 complain_overflow_bitfield,/* complain_on_overflow */
771 bfd_elf_generic_reloc, /* special_function */
772 "R_ARM_THM_MOVT_ABS", /* name */
773 FALSE, /* partial_inplace */
774 0x040f70ff, /* src_mask */
775 0x040f70ff, /* dst_mask */
776 FALSE), /* pcrel_offset */
777
778 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
779 0, /* rightshift */
780 2, /* size (0 = byte, 1 = short, 2 = long) */
781 16, /* bitsize */
782 TRUE, /* pc_relative */
783 0, /* bitpos */
784 complain_overflow_dont,/* complain_on_overflow */
785 bfd_elf_generic_reloc, /* special_function */
786 "R_ARM_THM_MOVW_PREL_NC",/* name */
787 FALSE, /* partial_inplace */
788 0x040f70ff, /* src_mask */
789 0x040f70ff, /* dst_mask */
790 TRUE), /* pcrel_offset */
791
792 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
793 0, /* rightshift */
794 2, /* size (0 = byte, 1 = short, 2 = long) */
795 16, /* bitsize */
796 TRUE, /* pc_relative */
797 0, /* bitpos */
798 complain_overflow_bitfield,/* complain_on_overflow */
799 bfd_elf_generic_reloc, /* special_function */
800 "R_ARM_THM_MOVT_PREL", /* name */
801 FALSE, /* partial_inplace */
802 0x040f70ff, /* src_mask */
803 0x040f70ff, /* dst_mask */
804 TRUE), /* pcrel_offset */
805
806 HOWTO (R_ARM_THM_JUMP19, /* type */
807 1, /* rightshift */
808 2, /* size (0 = byte, 1 = short, 2 = long) */
809 19, /* bitsize */
810 TRUE, /* pc_relative */
811 0, /* bitpos */
812 complain_overflow_signed,/* complain_on_overflow */
813 bfd_elf_generic_reloc, /* special_function */
814 "R_ARM_THM_JUMP19", /* name */
815 FALSE, /* partial_inplace */
816 0x043f2fff, /* src_mask */
817 0x043f2fff, /* dst_mask */
818 TRUE), /* pcrel_offset */
819
820 HOWTO (R_ARM_THM_JUMP6, /* type */
821 1, /* rightshift */
822 1, /* size (0 = byte, 1 = short, 2 = long) */
823 6, /* bitsize */
824 TRUE, /* pc_relative */
825 0, /* bitpos */
826 complain_overflow_unsigned,/* complain_on_overflow */
827 bfd_elf_generic_reloc, /* special_function */
828 "R_ARM_THM_JUMP6", /* name */
829 FALSE, /* partial_inplace */
830 0x02f8, /* src_mask */
831 0x02f8, /* dst_mask */
832 TRUE), /* pcrel_offset */
833
834 /* These are declared as 13-bit signed relocations because we can
835 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
836 versa. */
837 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
838 0, /* rightshift */
839 2, /* size (0 = byte, 1 = short, 2 = long) */
840 13, /* bitsize */
841 TRUE, /* pc_relative */
842 0, /* bitpos */
843 complain_overflow_dont,/* complain_on_overflow */
844 bfd_elf_generic_reloc, /* special_function */
845 "R_ARM_THM_ALU_PREL_11_0",/* name */
846 FALSE, /* partial_inplace */
847 0xffffffff, /* src_mask */
848 0xffffffff, /* dst_mask */
849 TRUE), /* pcrel_offset */
850
851 HOWTO (R_ARM_THM_PC12, /* type */
852 0, /* rightshift */
853 2, /* size (0 = byte, 1 = short, 2 = long) */
854 13, /* bitsize */
855 TRUE, /* pc_relative */
856 0, /* bitpos */
857 complain_overflow_dont,/* complain_on_overflow */
858 bfd_elf_generic_reloc, /* special_function */
859 "R_ARM_THM_PC12", /* name */
860 FALSE, /* partial_inplace */
861 0xffffffff, /* src_mask */
862 0xffffffff, /* dst_mask */
863 TRUE), /* pcrel_offset */
864
865 HOWTO (R_ARM_ABS32_NOI, /* type */
866 0, /* rightshift */
867 2, /* size (0 = byte, 1 = short, 2 = long) */
868 32, /* bitsize */
869 FALSE, /* pc_relative */
870 0, /* bitpos */
871 complain_overflow_dont,/* complain_on_overflow */
872 bfd_elf_generic_reloc, /* special_function */
873 "R_ARM_ABS32_NOI", /* name */
874 FALSE, /* partial_inplace */
875 0xffffffff, /* src_mask */
876 0xffffffff, /* dst_mask */
877 FALSE), /* pcrel_offset */
878
879 HOWTO (R_ARM_REL32_NOI, /* type */
880 0, /* rightshift */
881 2, /* size (0 = byte, 1 = short, 2 = long) */
882 32, /* bitsize */
883 TRUE, /* pc_relative */
884 0, /* bitpos */
885 complain_overflow_dont,/* complain_on_overflow */
886 bfd_elf_generic_reloc, /* special_function */
887 "R_ARM_REL32_NOI", /* name */
888 FALSE, /* partial_inplace */
889 0xffffffff, /* src_mask */
890 0xffffffff, /* dst_mask */
891 FALSE), /* pcrel_offset */
892
893 /* Group relocations. */
894
895 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
896 0, /* rightshift */
897 2, /* size (0 = byte, 1 = short, 2 = long) */
898 32, /* bitsize */
899 TRUE, /* pc_relative */
900 0, /* bitpos */
901 complain_overflow_dont,/* complain_on_overflow */
902 bfd_elf_generic_reloc, /* special_function */
903 "R_ARM_ALU_PC_G0_NC", /* name */
904 FALSE, /* partial_inplace */
905 0xffffffff, /* src_mask */
906 0xffffffff, /* dst_mask */
907 TRUE), /* pcrel_offset */
908
909 HOWTO (R_ARM_ALU_PC_G0, /* type */
910 0, /* rightshift */
911 2, /* size (0 = byte, 1 = short, 2 = long) */
912 32, /* bitsize */
913 TRUE, /* pc_relative */
914 0, /* bitpos */
915 complain_overflow_dont,/* complain_on_overflow */
916 bfd_elf_generic_reloc, /* special_function */
917 "R_ARM_ALU_PC_G0", /* name */
918 FALSE, /* partial_inplace */
919 0xffffffff, /* src_mask */
920 0xffffffff, /* dst_mask */
921 TRUE), /* pcrel_offset */
922
923 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
924 0, /* rightshift */
925 2, /* size (0 = byte, 1 = short, 2 = long) */
926 32, /* bitsize */
927 TRUE, /* pc_relative */
928 0, /* bitpos */
929 complain_overflow_dont,/* complain_on_overflow */
930 bfd_elf_generic_reloc, /* special_function */
931 "R_ARM_ALU_PC_G1_NC", /* name */
932 FALSE, /* partial_inplace */
933 0xffffffff, /* src_mask */
934 0xffffffff, /* dst_mask */
935 TRUE), /* pcrel_offset */
936
937 HOWTO (R_ARM_ALU_PC_G1, /* type */
938 0, /* rightshift */
939 2, /* size (0 = byte, 1 = short, 2 = long) */
940 32, /* bitsize */
941 TRUE, /* pc_relative */
942 0, /* bitpos */
943 complain_overflow_dont,/* complain_on_overflow */
944 bfd_elf_generic_reloc, /* special_function */
945 "R_ARM_ALU_PC_G1", /* name */
946 FALSE, /* partial_inplace */
947 0xffffffff, /* src_mask */
948 0xffffffff, /* dst_mask */
949 TRUE), /* pcrel_offset */
950
951 HOWTO (R_ARM_ALU_PC_G2, /* type */
952 0, /* rightshift */
953 2, /* size (0 = byte, 1 = short, 2 = long) */
954 32, /* bitsize */
955 TRUE, /* pc_relative */
956 0, /* bitpos */
957 complain_overflow_dont,/* complain_on_overflow */
958 bfd_elf_generic_reloc, /* special_function */
959 "R_ARM_ALU_PC_G2", /* name */
960 FALSE, /* partial_inplace */
961 0xffffffff, /* src_mask */
962 0xffffffff, /* dst_mask */
963 TRUE), /* pcrel_offset */
964
965 HOWTO (R_ARM_LDR_PC_G1, /* type */
966 0, /* rightshift */
967 2, /* size (0 = byte, 1 = short, 2 = long) */
968 32, /* bitsize */
969 TRUE, /* pc_relative */
970 0, /* bitpos */
971 complain_overflow_dont,/* complain_on_overflow */
972 bfd_elf_generic_reloc, /* special_function */
973 "R_ARM_LDR_PC_G1", /* name */
974 FALSE, /* partial_inplace */
975 0xffffffff, /* src_mask */
976 0xffffffff, /* dst_mask */
977 TRUE), /* pcrel_offset */
978
979 HOWTO (R_ARM_LDR_PC_G2, /* type */
980 0, /* rightshift */
981 2, /* size (0 = byte, 1 = short, 2 = long) */
982 32, /* bitsize */
983 TRUE, /* pc_relative */
984 0, /* bitpos */
985 complain_overflow_dont,/* complain_on_overflow */
986 bfd_elf_generic_reloc, /* special_function */
987 "R_ARM_LDR_PC_G2", /* name */
988 FALSE, /* partial_inplace */
989 0xffffffff, /* src_mask */
990 0xffffffff, /* dst_mask */
991 TRUE), /* pcrel_offset */
992
993 HOWTO (R_ARM_LDRS_PC_G0, /* type */
994 0, /* rightshift */
995 2, /* size (0 = byte, 1 = short, 2 = long) */
996 32, /* bitsize */
997 TRUE, /* pc_relative */
998 0, /* bitpos */
999 complain_overflow_dont,/* complain_on_overflow */
1000 bfd_elf_generic_reloc, /* special_function */
1001 "R_ARM_LDRS_PC_G0", /* name */
1002 FALSE, /* partial_inplace */
1003 0xffffffff, /* src_mask */
1004 0xffffffff, /* dst_mask */
1005 TRUE), /* pcrel_offset */
1006
1007 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1008 0, /* rightshift */
1009 2, /* size (0 = byte, 1 = short, 2 = long) */
1010 32, /* bitsize */
1011 TRUE, /* pc_relative */
1012 0, /* bitpos */
1013 complain_overflow_dont,/* complain_on_overflow */
1014 bfd_elf_generic_reloc, /* special_function */
1015 "R_ARM_LDRS_PC_G1", /* name */
1016 FALSE, /* partial_inplace */
1017 0xffffffff, /* src_mask */
1018 0xffffffff, /* dst_mask */
1019 TRUE), /* pcrel_offset */
1020
1021 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1022 0, /* rightshift */
1023 2, /* size (0 = byte, 1 = short, 2 = long) */
1024 32, /* bitsize */
1025 TRUE, /* pc_relative */
1026 0, /* bitpos */
1027 complain_overflow_dont,/* complain_on_overflow */
1028 bfd_elf_generic_reloc, /* special_function */
1029 "R_ARM_LDRS_PC_G2", /* name */
1030 FALSE, /* partial_inplace */
1031 0xffffffff, /* src_mask */
1032 0xffffffff, /* dst_mask */
1033 TRUE), /* pcrel_offset */
1034
1035 HOWTO (R_ARM_LDC_PC_G0, /* type */
1036 0, /* rightshift */
1037 2, /* size (0 = byte, 1 = short, 2 = long) */
1038 32, /* bitsize */
1039 TRUE, /* pc_relative */
1040 0, /* bitpos */
1041 complain_overflow_dont,/* complain_on_overflow */
1042 bfd_elf_generic_reloc, /* special_function */
1043 "R_ARM_LDC_PC_G0", /* name */
1044 FALSE, /* partial_inplace */
1045 0xffffffff, /* src_mask */
1046 0xffffffff, /* dst_mask */
1047 TRUE), /* pcrel_offset */
1048
1049 HOWTO (R_ARM_LDC_PC_G1, /* type */
1050 0, /* rightshift */
1051 2, /* size (0 = byte, 1 = short, 2 = long) */
1052 32, /* bitsize */
1053 TRUE, /* pc_relative */
1054 0, /* bitpos */
1055 complain_overflow_dont,/* complain_on_overflow */
1056 bfd_elf_generic_reloc, /* special_function */
1057 "R_ARM_LDC_PC_G1", /* name */
1058 FALSE, /* partial_inplace */
1059 0xffffffff, /* src_mask */
1060 0xffffffff, /* dst_mask */
1061 TRUE), /* pcrel_offset */
1062
1063 HOWTO (R_ARM_LDC_PC_G2, /* type */
1064 0, /* rightshift */
1065 2, /* size (0 = byte, 1 = short, 2 = long) */
1066 32, /* bitsize */
1067 TRUE, /* pc_relative */
1068 0, /* bitpos */
1069 complain_overflow_dont,/* complain_on_overflow */
1070 bfd_elf_generic_reloc, /* special_function */
1071 "R_ARM_LDC_PC_G2", /* name */
1072 FALSE, /* partial_inplace */
1073 0xffffffff, /* src_mask */
1074 0xffffffff, /* dst_mask */
1075 TRUE), /* pcrel_offset */
1076
1077 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1078 0, /* rightshift */
1079 2, /* size (0 = byte, 1 = short, 2 = long) */
1080 32, /* bitsize */
1081 TRUE, /* pc_relative */
1082 0, /* bitpos */
1083 complain_overflow_dont,/* complain_on_overflow */
1084 bfd_elf_generic_reloc, /* special_function */
1085 "R_ARM_ALU_SB_G0_NC", /* name */
1086 FALSE, /* partial_inplace */
1087 0xffffffff, /* src_mask */
1088 0xffffffff, /* dst_mask */
1089 TRUE), /* pcrel_offset */
1090
1091 HOWTO (R_ARM_ALU_SB_G0, /* type */
1092 0, /* rightshift */
1093 2, /* size (0 = byte, 1 = short, 2 = long) */
1094 32, /* bitsize */
1095 TRUE, /* pc_relative */
1096 0, /* bitpos */
1097 complain_overflow_dont,/* complain_on_overflow */
1098 bfd_elf_generic_reloc, /* special_function */
1099 "R_ARM_ALU_SB_G0", /* name */
1100 FALSE, /* partial_inplace */
1101 0xffffffff, /* src_mask */
1102 0xffffffff, /* dst_mask */
1103 TRUE), /* pcrel_offset */
1104
1105 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1106 0, /* rightshift */
1107 2, /* size (0 = byte, 1 = short, 2 = long) */
1108 32, /* bitsize */
1109 TRUE, /* pc_relative */
1110 0, /* bitpos */
1111 complain_overflow_dont,/* complain_on_overflow */
1112 bfd_elf_generic_reloc, /* special_function */
1113 "R_ARM_ALU_SB_G1_NC", /* name */
1114 FALSE, /* partial_inplace */
1115 0xffffffff, /* src_mask */
1116 0xffffffff, /* dst_mask */
1117 TRUE), /* pcrel_offset */
1118
1119 HOWTO (R_ARM_ALU_SB_G1, /* type */
1120 0, /* rightshift */
1121 2, /* size (0 = byte, 1 = short, 2 = long) */
1122 32, /* bitsize */
1123 TRUE, /* pc_relative */
1124 0, /* bitpos */
1125 complain_overflow_dont,/* complain_on_overflow */
1126 bfd_elf_generic_reloc, /* special_function */
1127 "R_ARM_ALU_SB_G1", /* name */
1128 FALSE, /* partial_inplace */
1129 0xffffffff, /* src_mask */
1130 0xffffffff, /* dst_mask */
1131 TRUE), /* pcrel_offset */
1132
1133 HOWTO (R_ARM_ALU_SB_G2, /* type */
1134 0, /* rightshift */
1135 2, /* size (0 = byte, 1 = short, 2 = long) */
1136 32, /* bitsize */
1137 TRUE, /* pc_relative */
1138 0, /* bitpos */
1139 complain_overflow_dont,/* complain_on_overflow */
1140 bfd_elf_generic_reloc, /* special_function */
1141 "R_ARM_ALU_SB_G2", /* name */
1142 FALSE, /* partial_inplace */
1143 0xffffffff, /* src_mask */
1144 0xffffffff, /* dst_mask */
1145 TRUE), /* pcrel_offset */
1146
1147 HOWTO (R_ARM_LDR_SB_G0, /* type */
1148 0, /* rightshift */
1149 2, /* size (0 = byte, 1 = short, 2 = long) */
1150 32, /* bitsize */
1151 TRUE, /* pc_relative */
1152 0, /* bitpos */
1153 complain_overflow_dont,/* complain_on_overflow */
1154 bfd_elf_generic_reloc, /* special_function */
1155 "R_ARM_LDR_SB_G0", /* name */
1156 FALSE, /* partial_inplace */
1157 0xffffffff, /* src_mask */
1158 0xffffffff, /* dst_mask */
1159 TRUE), /* pcrel_offset */
1160
1161 HOWTO (R_ARM_LDR_SB_G1, /* type */
1162 0, /* rightshift */
1163 2, /* size (0 = byte, 1 = short, 2 = long) */
1164 32, /* bitsize */
1165 TRUE, /* pc_relative */
1166 0, /* bitpos */
1167 complain_overflow_dont,/* complain_on_overflow */
1168 bfd_elf_generic_reloc, /* special_function */
1169 "R_ARM_LDR_SB_G1", /* name */
1170 FALSE, /* partial_inplace */
1171 0xffffffff, /* src_mask */
1172 0xffffffff, /* dst_mask */
1173 TRUE), /* pcrel_offset */
1174
1175 HOWTO (R_ARM_LDR_SB_G2, /* type */
1176 0, /* rightshift */
1177 2, /* size (0 = byte, 1 = short, 2 = long) */
1178 32, /* bitsize */
1179 TRUE, /* pc_relative */
1180 0, /* bitpos */
1181 complain_overflow_dont,/* complain_on_overflow */
1182 bfd_elf_generic_reloc, /* special_function */
1183 "R_ARM_LDR_SB_G2", /* name */
1184 FALSE, /* partial_inplace */
1185 0xffffffff, /* src_mask */
1186 0xffffffff, /* dst_mask */
1187 TRUE), /* pcrel_offset */
1188
1189 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1190 0, /* rightshift */
1191 2, /* size (0 = byte, 1 = short, 2 = long) */
1192 32, /* bitsize */
1193 TRUE, /* pc_relative */
1194 0, /* bitpos */
1195 complain_overflow_dont,/* complain_on_overflow */
1196 bfd_elf_generic_reloc, /* special_function */
1197 "R_ARM_LDRS_SB_G0", /* name */
1198 FALSE, /* partial_inplace */
1199 0xffffffff, /* src_mask */
1200 0xffffffff, /* dst_mask */
1201 TRUE), /* pcrel_offset */
1202
1203 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1204 0, /* rightshift */
1205 2, /* size (0 = byte, 1 = short, 2 = long) */
1206 32, /* bitsize */
1207 TRUE, /* pc_relative */
1208 0, /* bitpos */
1209 complain_overflow_dont,/* complain_on_overflow */
1210 bfd_elf_generic_reloc, /* special_function */
1211 "R_ARM_LDRS_SB_G1", /* name */
1212 FALSE, /* partial_inplace */
1213 0xffffffff, /* src_mask */
1214 0xffffffff, /* dst_mask */
1215 TRUE), /* pcrel_offset */
1216
1217 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1218 0, /* rightshift */
1219 2, /* size (0 = byte, 1 = short, 2 = long) */
1220 32, /* bitsize */
1221 TRUE, /* pc_relative */
1222 0, /* bitpos */
1223 complain_overflow_dont,/* complain_on_overflow */
1224 bfd_elf_generic_reloc, /* special_function */
1225 "R_ARM_LDRS_SB_G2", /* name */
1226 FALSE, /* partial_inplace */
1227 0xffffffff, /* src_mask */
1228 0xffffffff, /* dst_mask */
1229 TRUE), /* pcrel_offset */
1230
1231 HOWTO (R_ARM_LDC_SB_G0, /* type */
1232 0, /* rightshift */
1233 2, /* size (0 = byte, 1 = short, 2 = long) */
1234 32, /* bitsize */
1235 TRUE, /* pc_relative */
1236 0, /* bitpos */
1237 complain_overflow_dont,/* complain_on_overflow */
1238 bfd_elf_generic_reloc, /* special_function */
1239 "R_ARM_LDC_SB_G0", /* name */
1240 FALSE, /* partial_inplace */
1241 0xffffffff, /* src_mask */
1242 0xffffffff, /* dst_mask */
1243 TRUE), /* pcrel_offset */
1244
1245 HOWTO (R_ARM_LDC_SB_G1, /* type */
1246 0, /* rightshift */
1247 2, /* size (0 = byte, 1 = short, 2 = long) */
1248 32, /* bitsize */
1249 TRUE, /* pc_relative */
1250 0, /* bitpos */
1251 complain_overflow_dont,/* complain_on_overflow */
1252 bfd_elf_generic_reloc, /* special_function */
1253 "R_ARM_LDC_SB_G1", /* name */
1254 FALSE, /* partial_inplace */
1255 0xffffffff, /* src_mask */
1256 0xffffffff, /* dst_mask */
1257 TRUE), /* pcrel_offset */
1258
1259 HOWTO (R_ARM_LDC_SB_G2, /* type */
1260 0, /* rightshift */
1261 2, /* size (0 = byte, 1 = short, 2 = long) */
1262 32, /* bitsize */
1263 TRUE, /* pc_relative */
1264 0, /* bitpos */
1265 complain_overflow_dont,/* complain_on_overflow */
1266 bfd_elf_generic_reloc, /* special_function */
1267 "R_ARM_LDC_SB_G2", /* name */
1268 FALSE, /* partial_inplace */
1269 0xffffffff, /* src_mask */
1270 0xffffffff, /* dst_mask */
1271 TRUE), /* pcrel_offset */
1272
1273 /* End of group relocations. */
1274
1275 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1276 0, /* rightshift */
1277 2, /* size (0 = byte, 1 = short, 2 = long) */
1278 16, /* bitsize */
1279 FALSE, /* pc_relative */
1280 0, /* bitpos */
1281 complain_overflow_dont,/* complain_on_overflow */
1282 bfd_elf_generic_reloc, /* special_function */
1283 "R_ARM_MOVW_BREL_NC", /* name */
1284 FALSE, /* partial_inplace */
1285 0x0000ffff, /* src_mask */
1286 0x0000ffff, /* dst_mask */
1287 FALSE), /* pcrel_offset */
1288
1289 HOWTO (R_ARM_MOVT_BREL, /* type */
1290 0, /* rightshift */
1291 2, /* size (0 = byte, 1 = short, 2 = long) */
1292 16, /* bitsize */
1293 FALSE, /* pc_relative */
1294 0, /* bitpos */
1295 complain_overflow_bitfield,/* complain_on_overflow */
1296 bfd_elf_generic_reloc, /* special_function */
1297 "R_ARM_MOVT_BREL", /* name */
1298 FALSE, /* partial_inplace */
1299 0x0000ffff, /* src_mask */
1300 0x0000ffff, /* dst_mask */
1301 FALSE), /* pcrel_offset */
1302
1303 HOWTO (R_ARM_MOVW_BREL, /* type */
1304 0, /* rightshift */
1305 2, /* size (0 = byte, 1 = short, 2 = long) */
1306 16, /* bitsize */
1307 FALSE, /* pc_relative */
1308 0, /* bitpos */
1309 complain_overflow_dont,/* complain_on_overflow */
1310 bfd_elf_generic_reloc, /* special_function */
1311 "R_ARM_MOVW_BREL", /* name */
1312 FALSE, /* partial_inplace */
1313 0x0000ffff, /* src_mask */
1314 0x0000ffff, /* dst_mask */
1315 FALSE), /* pcrel_offset */
1316
1317 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1318 0, /* rightshift */
1319 2, /* size (0 = byte, 1 = short, 2 = long) */
1320 16, /* bitsize */
1321 FALSE, /* pc_relative */
1322 0, /* bitpos */
1323 complain_overflow_dont,/* complain_on_overflow */
1324 bfd_elf_generic_reloc, /* special_function */
1325 "R_ARM_THM_MOVW_BREL_NC",/* name */
1326 FALSE, /* partial_inplace */
1327 0x040f70ff, /* src_mask */
1328 0x040f70ff, /* dst_mask */
1329 FALSE), /* pcrel_offset */
1330
1331 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1332 0, /* rightshift */
1333 2, /* size (0 = byte, 1 = short, 2 = long) */
1334 16, /* bitsize */
1335 FALSE, /* pc_relative */
1336 0, /* bitpos */
1337 complain_overflow_bitfield,/* complain_on_overflow */
1338 bfd_elf_generic_reloc, /* special_function */
1339 "R_ARM_THM_MOVT_BREL", /* name */
1340 FALSE, /* partial_inplace */
1341 0x040f70ff, /* src_mask */
1342 0x040f70ff, /* dst_mask */
1343 FALSE), /* pcrel_offset */
1344
1345 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1346 0, /* rightshift */
1347 2, /* size (0 = byte, 1 = short, 2 = long) */
1348 16, /* bitsize */
1349 FALSE, /* pc_relative */
1350 0, /* bitpos */
1351 complain_overflow_dont,/* complain_on_overflow */
1352 bfd_elf_generic_reloc, /* special_function */
1353 "R_ARM_THM_MOVW_BREL", /* name */
1354 FALSE, /* partial_inplace */
1355 0x040f70ff, /* src_mask */
1356 0x040f70ff, /* dst_mask */
1357 FALSE), /* pcrel_offset */
1358
1359 HOWTO (R_ARM_TLS_GOTDESC, /* type */
1360 0, /* rightshift */
1361 2, /* size (0 = byte, 1 = short, 2 = long) */
1362 32, /* bitsize */
1363 FALSE, /* pc_relative */
1364 0, /* bitpos */
1365 complain_overflow_bitfield,/* complain_on_overflow */
1366 NULL, /* special_function */
1367 "R_ARM_TLS_GOTDESC", /* name */
1368 TRUE, /* partial_inplace */
1369 0xffffffff, /* src_mask */
1370 0xffffffff, /* dst_mask */
1371 FALSE), /* pcrel_offset */
1372
1373 HOWTO (R_ARM_TLS_CALL, /* type */
1374 0, /* rightshift */
1375 2, /* size (0 = byte, 1 = short, 2 = long) */
1376 24, /* bitsize */
1377 FALSE, /* pc_relative */
1378 0, /* bitpos */
1379 complain_overflow_dont,/* complain_on_overflow */
1380 bfd_elf_generic_reloc, /* special_function */
1381 "R_ARM_TLS_CALL", /* name */
1382 FALSE, /* partial_inplace */
1383 0x00ffffff, /* src_mask */
1384 0x00ffffff, /* dst_mask */
1385 FALSE), /* pcrel_offset */
1386
1387 HOWTO (R_ARM_TLS_DESCSEQ, /* type */
1388 0, /* rightshift */
1389 2, /* size (0 = byte, 1 = short, 2 = long) */
1390 0, /* bitsize */
1391 FALSE, /* pc_relative */
1392 0, /* bitpos */
1393 complain_overflow_bitfield,/* complain_on_overflow */
1394 bfd_elf_generic_reloc, /* special_function */
1395 "R_ARM_TLS_DESCSEQ", /* name */
1396 FALSE, /* partial_inplace */
1397 0x00000000, /* src_mask */
1398 0x00000000, /* dst_mask */
1399 FALSE), /* pcrel_offset */
1400
1401 HOWTO (R_ARM_THM_TLS_CALL, /* type */
1402 0, /* rightshift */
1403 2, /* size (0 = byte, 1 = short, 2 = long) */
1404 24, /* bitsize */
1405 FALSE, /* pc_relative */
1406 0, /* bitpos */
1407 complain_overflow_dont,/* complain_on_overflow */
1408 bfd_elf_generic_reloc, /* special_function */
1409 "R_ARM_THM_TLS_CALL", /* name */
1410 FALSE, /* partial_inplace */
1411 0x07ff07ff, /* src_mask */
1412 0x07ff07ff, /* dst_mask */
1413 FALSE), /* pcrel_offset */
1414
1415 HOWTO (R_ARM_PLT32_ABS, /* type */
1416 0, /* rightshift */
1417 2, /* size (0 = byte, 1 = short, 2 = long) */
1418 32, /* bitsize */
1419 FALSE, /* pc_relative */
1420 0, /* bitpos */
1421 complain_overflow_dont,/* complain_on_overflow */
1422 bfd_elf_generic_reloc, /* special_function */
1423 "R_ARM_PLT32_ABS", /* name */
1424 FALSE, /* partial_inplace */
1425 0xffffffff, /* src_mask */
1426 0xffffffff, /* dst_mask */
1427 FALSE), /* pcrel_offset */
1428
1429 HOWTO (R_ARM_GOT_ABS, /* type */
1430 0, /* rightshift */
1431 2, /* size (0 = byte, 1 = short, 2 = long) */
1432 32, /* bitsize */
1433 FALSE, /* pc_relative */
1434 0, /* bitpos */
1435 complain_overflow_dont,/* complain_on_overflow */
1436 bfd_elf_generic_reloc, /* special_function */
1437 "R_ARM_GOT_ABS", /* name */
1438 FALSE, /* partial_inplace */
1439 0xffffffff, /* src_mask */
1440 0xffffffff, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1442
1443 HOWTO (R_ARM_GOT_PREL, /* type */
1444 0, /* rightshift */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1446 32, /* bitsize */
1447 TRUE, /* pc_relative */
1448 0, /* bitpos */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 bfd_elf_generic_reloc, /* special_function */
1451 "R_ARM_GOT_PREL", /* name */
1452 FALSE, /* partial_inplace */
1453 0xffffffff, /* src_mask */
1454 0xffffffff, /* dst_mask */
1455 TRUE), /* pcrel_offset */
1456
1457 HOWTO (R_ARM_GOT_BREL12, /* type */
1458 0, /* rightshift */
1459 2, /* size (0 = byte, 1 = short, 2 = long) */
1460 12, /* bitsize */
1461 FALSE, /* pc_relative */
1462 0, /* bitpos */
1463 complain_overflow_bitfield,/* complain_on_overflow */
1464 bfd_elf_generic_reloc, /* special_function */
1465 "R_ARM_GOT_BREL12", /* name */
1466 FALSE, /* partial_inplace */
1467 0x00000fff, /* src_mask */
1468 0x00000fff, /* dst_mask */
1469 FALSE), /* pcrel_offset */
1470
1471 HOWTO (R_ARM_GOTOFF12, /* type */
1472 0, /* rightshift */
1473 2, /* size (0 = byte, 1 = short, 2 = long) */
1474 12, /* bitsize */
1475 FALSE, /* pc_relative */
1476 0, /* bitpos */
1477 complain_overflow_bitfield,/* complain_on_overflow */
1478 bfd_elf_generic_reloc, /* special_function */
1479 "R_ARM_GOTOFF12", /* name */
1480 FALSE, /* partial_inplace */
1481 0x00000fff, /* src_mask */
1482 0x00000fff, /* dst_mask */
1483 FALSE), /* pcrel_offset */
1484
1485 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1486
1487 /* GNU extension to record C++ vtable member usage */
1488 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1489 0, /* rightshift */
1490 2, /* size (0 = byte, 1 = short, 2 = long) */
1491 0, /* bitsize */
1492 FALSE, /* pc_relative */
1493 0, /* bitpos */
1494 complain_overflow_dont, /* complain_on_overflow */
1495 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1496 "R_ARM_GNU_VTENTRY", /* name */
1497 FALSE, /* partial_inplace */
1498 0, /* src_mask */
1499 0, /* dst_mask */
1500 FALSE), /* pcrel_offset */
1501
1502 /* GNU extension to record C++ vtable hierarchy */
1503 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1504 0, /* rightshift */
1505 2, /* size (0 = byte, 1 = short, 2 = long) */
1506 0, /* bitsize */
1507 FALSE, /* pc_relative */
1508 0, /* bitpos */
1509 complain_overflow_dont, /* complain_on_overflow */
1510 NULL, /* special_function */
1511 "R_ARM_GNU_VTINHERIT", /* name */
1512 FALSE, /* partial_inplace */
1513 0, /* src_mask */
1514 0, /* dst_mask */
1515 FALSE), /* pcrel_offset */
1516
1517 HOWTO (R_ARM_THM_JUMP11, /* type */
1518 1, /* rightshift */
1519 1, /* size (0 = byte, 1 = short, 2 = long) */
1520 11, /* bitsize */
1521 TRUE, /* pc_relative */
1522 0, /* bitpos */
1523 complain_overflow_signed, /* complain_on_overflow */
1524 bfd_elf_generic_reloc, /* special_function */
1525 "R_ARM_THM_JUMP11", /* name */
1526 FALSE, /* partial_inplace */
1527 0x000007ff, /* src_mask */
1528 0x000007ff, /* dst_mask */
1529 TRUE), /* pcrel_offset */
1530
1531 HOWTO (R_ARM_THM_JUMP8, /* type */
1532 1, /* rightshift */
1533 1, /* size (0 = byte, 1 = short, 2 = long) */
1534 8, /* bitsize */
1535 TRUE, /* pc_relative */
1536 0, /* bitpos */
1537 complain_overflow_signed, /* complain_on_overflow */
1538 bfd_elf_generic_reloc, /* special_function */
1539 "R_ARM_THM_JUMP8", /* name */
1540 FALSE, /* partial_inplace */
1541 0x000000ff, /* src_mask */
1542 0x000000ff, /* dst_mask */
1543 TRUE), /* pcrel_offset */
1544
1545 /* TLS relocations */
1546 HOWTO (R_ARM_TLS_GD32, /* type */
1547 0, /* rightshift */
1548 2, /* size (0 = byte, 1 = short, 2 = long) */
1549 32, /* bitsize */
1550 FALSE, /* pc_relative */
1551 0, /* bitpos */
1552 complain_overflow_bitfield,/* complain_on_overflow */
1553 NULL, /* special_function */
1554 "R_ARM_TLS_GD32", /* name */
1555 TRUE, /* partial_inplace */
1556 0xffffffff, /* src_mask */
1557 0xffffffff, /* dst_mask */
1558 FALSE), /* pcrel_offset */
1559
1560 HOWTO (R_ARM_TLS_LDM32, /* type */
1561 0, /* rightshift */
1562 2, /* size (0 = byte, 1 = short, 2 = long) */
1563 32, /* bitsize */
1564 FALSE, /* pc_relative */
1565 0, /* bitpos */
1566 complain_overflow_bitfield,/* complain_on_overflow */
1567 bfd_elf_generic_reloc, /* special_function */
1568 "R_ARM_TLS_LDM32", /* name */
1569 TRUE, /* partial_inplace */
1570 0xffffffff, /* src_mask */
1571 0xffffffff, /* dst_mask */
1572 FALSE), /* pcrel_offset */
1573
1574 HOWTO (R_ARM_TLS_LDO32, /* type */
1575 0, /* rightshift */
1576 2, /* size (0 = byte, 1 = short, 2 = long) */
1577 32, /* bitsize */
1578 FALSE, /* pc_relative */
1579 0, /* bitpos */
1580 complain_overflow_bitfield,/* complain_on_overflow */
1581 bfd_elf_generic_reloc, /* special_function */
1582 "R_ARM_TLS_LDO32", /* name */
1583 TRUE, /* partial_inplace */
1584 0xffffffff, /* src_mask */
1585 0xffffffff, /* dst_mask */
1586 FALSE), /* pcrel_offset */
1587
1588 HOWTO (R_ARM_TLS_IE32, /* type */
1589 0, /* rightshift */
1590 2, /* size (0 = byte, 1 = short, 2 = long) */
1591 32, /* bitsize */
1592 FALSE, /* pc_relative */
1593 0, /* bitpos */
1594 complain_overflow_bitfield,/* complain_on_overflow */
1595 NULL, /* special_function */
1596 "R_ARM_TLS_IE32", /* name */
1597 TRUE, /* partial_inplace */
1598 0xffffffff, /* src_mask */
1599 0xffffffff, /* dst_mask */
1600 FALSE), /* pcrel_offset */
1601
1602 HOWTO (R_ARM_TLS_LE32, /* type */
1603 0, /* rightshift */
1604 2, /* size (0 = byte, 1 = short, 2 = long) */
1605 32, /* bitsize */
1606 FALSE, /* pc_relative */
1607 0, /* bitpos */
1608 complain_overflow_bitfield,/* complain_on_overflow */
1609 NULL, /* special_function */
1610 "R_ARM_TLS_LE32", /* name */
1611 TRUE, /* partial_inplace */
1612 0xffffffff, /* src_mask */
1613 0xffffffff, /* dst_mask */
1614 FALSE), /* pcrel_offset */
1615
1616 HOWTO (R_ARM_TLS_LDO12, /* type */
1617 0, /* rightshift */
1618 2, /* size (0 = byte, 1 = short, 2 = long) */
1619 12, /* bitsize */
1620 FALSE, /* pc_relative */
1621 0, /* bitpos */
1622 complain_overflow_bitfield,/* complain_on_overflow */
1623 bfd_elf_generic_reloc, /* special_function */
1624 "R_ARM_TLS_LDO12", /* name */
1625 FALSE, /* partial_inplace */
1626 0x00000fff, /* src_mask */
1627 0x00000fff, /* dst_mask */
1628 FALSE), /* pcrel_offset */
1629
1630 HOWTO (R_ARM_TLS_LE12, /* type */
1631 0, /* rightshift */
1632 2, /* size (0 = byte, 1 = short, 2 = long) */
1633 12, /* bitsize */
1634 FALSE, /* pc_relative */
1635 0, /* bitpos */
1636 complain_overflow_bitfield,/* complain_on_overflow */
1637 bfd_elf_generic_reloc, /* special_function */
1638 "R_ARM_TLS_LE12", /* name */
1639 FALSE, /* partial_inplace */
1640 0x00000fff, /* src_mask */
1641 0x00000fff, /* dst_mask */
1642 FALSE), /* pcrel_offset */
1643
1644 HOWTO (R_ARM_TLS_IE12GP, /* type */
1645 0, /* rightshift */
1646 2, /* size (0 = byte, 1 = short, 2 = long) */
1647 12, /* bitsize */
1648 FALSE, /* pc_relative */
1649 0, /* bitpos */
1650 complain_overflow_bitfield,/* complain_on_overflow */
1651 bfd_elf_generic_reloc, /* special_function */
1652 "R_ARM_TLS_IE12GP", /* name */
1653 FALSE, /* partial_inplace */
1654 0x00000fff, /* src_mask */
1655 0x00000fff, /* dst_mask */
1656 FALSE), /* pcrel_offset */
1657
1658 /* 112-127 private relocations. */
1659 EMPTY_HOWTO (112),
1660 EMPTY_HOWTO (113),
1661 EMPTY_HOWTO (114),
1662 EMPTY_HOWTO (115),
1663 EMPTY_HOWTO (116),
1664 EMPTY_HOWTO (117),
1665 EMPTY_HOWTO (118),
1666 EMPTY_HOWTO (119),
1667 EMPTY_HOWTO (120),
1668 EMPTY_HOWTO (121),
1669 EMPTY_HOWTO (122),
1670 EMPTY_HOWTO (123),
1671 EMPTY_HOWTO (124),
1672 EMPTY_HOWTO (125),
1673 EMPTY_HOWTO (126),
1674 EMPTY_HOWTO (127),
1675
1676 /* R_ARM_ME_TOO, obsolete. */
1677 EMPTY_HOWTO (128),
1678
1679 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1680 0, /* rightshift */
1681 1, /* size (0 = byte, 1 = short, 2 = long) */
1682 0, /* bitsize */
1683 FALSE, /* pc_relative */
1684 0, /* bitpos */
1685 complain_overflow_bitfield,/* complain_on_overflow */
1686 bfd_elf_generic_reloc, /* special_function */
1687 "R_ARM_THM_TLS_DESCSEQ",/* name */
1688 FALSE, /* partial_inplace */
1689 0x00000000, /* src_mask */
1690 0x00000000, /* dst_mask */
1691 FALSE), /* pcrel_offset */
1692 EMPTY_HOWTO (130),
1693 EMPTY_HOWTO (131),
1694 HOWTO (R_ARM_THM_ALU_ABS_G0_NC,/* type. */
1695 0, /* rightshift. */
1696 1, /* size (0 = byte, 1 = short, 2 = long). */
1697 16, /* bitsize. */
1698 FALSE, /* pc_relative. */
1699 0, /* bitpos. */
1700 complain_overflow_bitfield,/* complain_on_overflow. */
1701 bfd_elf_generic_reloc, /* special_function. */
1702 "R_ARM_THM_ALU_ABS_G0_NC",/* name. */
1703 FALSE, /* partial_inplace. */
1704 0x00000000, /* src_mask. */
1705 0x00000000, /* dst_mask. */
1706 FALSE), /* pcrel_offset. */
1707 HOWTO (R_ARM_THM_ALU_ABS_G1_NC,/* type. */
1708 0, /* rightshift. */
1709 1, /* size (0 = byte, 1 = short, 2 = long). */
1710 16, /* bitsize. */
1711 FALSE, /* pc_relative. */
1712 0, /* bitpos. */
1713 complain_overflow_bitfield,/* complain_on_overflow. */
1714 bfd_elf_generic_reloc, /* special_function. */
1715 "R_ARM_THM_ALU_ABS_G1_NC",/* name. */
1716 FALSE, /* partial_inplace. */
1717 0x00000000, /* src_mask. */
1718 0x00000000, /* dst_mask. */
1719 FALSE), /* pcrel_offset. */
1720 HOWTO (R_ARM_THM_ALU_ABS_G2_NC,/* type. */
1721 0, /* rightshift. */
1722 1, /* size (0 = byte, 1 = short, 2 = long). */
1723 16, /* bitsize. */
1724 FALSE, /* pc_relative. */
1725 0, /* bitpos. */
1726 complain_overflow_bitfield,/* complain_on_overflow. */
1727 bfd_elf_generic_reloc, /* special_function. */
1728 "R_ARM_THM_ALU_ABS_G2_NC",/* name. */
1729 FALSE, /* partial_inplace. */
1730 0x00000000, /* src_mask. */
1731 0x00000000, /* dst_mask. */
1732 FALSE), /* pcrel_offset. */
1733 HOWTO (R_ARM_THM_ALU_ABS_G3_NC,/* type. */
1734 0, /* rightshift. */
1735 1, /* size (0 = byte, 1 = short, 2 = long). */
1736 16, /* bitsize. */
1737 FALSE, /* pc_relative. */
1738 0, /* bitpos. */
1739 complain_overflow_bitfield,/* complain_on_overflow. */
1740 bfd_elf_generic_reloc, /* special_function. */
1741 "R_ARM_THM_ALU_ABS_G3_NC",/* name. */
1742 FALSE, /* partial_inplace. */
1743 0x00000000, /* src_mask. */
1744 0x00000000, /* dst_mask. */
1745 FALSE), /* pcrel_offset. */
1746 };
1747
1748 /* 160 onwards: */
1749 static reloc_howto_type elf32_arm_howto_table_2[1] =
1750 {
1751 HOWTO (R_ARM_IRELATIVE, /* type */
1752 0, /* rightshift */
1753 2, /* size (0 = byte, 1 = short, 2 = long) */
1754 32, /* bitsize */
1755 FALSE, /* pc_relative */
1756 0, /* bitpos */
1757 complain_overflow_bitfield,/* complain_on_overflow */
1758 bfd_elf_generic_reloc, /* special_function */
1759 "R_ARM_IRELATIVE", /* name */
1760 TRUE, /* partial_inplace */
1761 0xffffffff, /* src_mask */
1762 0xffffffff, /* dst_mask */
1763 FALSE) /* pcrel_offset */
1764 };
1765
1766 /* 249-255 extended, currently unused, relocations: */
1767 static reloc_howto_type elf32_arm_howto_table_3[4] =
1768 {
1769 HOWTO (R_ARM_RREL32, /* type */
1770 0, /* rightshift */
1771 0, /* size (0 = byte, 1 = short, 2 = long) */
1772 0, /* bitsize */
1773 FALSE, /* pc_relative */
1774 0, /* bitpos */
1775 complain_overflow_dont,/* complain_on_overflow */
1776 bfd_elf_generic_reloc, /* special_function */
1777 "R_ARM_RREL32", /* name */
1778 FALSE, /* partial_inplace */
1779 0, /* src_mask */
1780 0, /* dst_mask */
1781 FALSE), /* pcrel_offset */
1782
1783 HOWTO (R_ARM_RABS32, /* type */
1784 0, /* rightshift */
1785 0, /* size (0 = byte, 1 = short, 2 = long) */
1786 0, /* bitsize */
1787 FALSE, /* pc_relative */
1788 0, /* bitpos */
1789 complain_overflow_dont,/* complain_on_overflow */
1790 bfd_elf_generic_reloc, /* special_function */
1791 "R_ARM_RABS32", /* name */
1792 FALSE, /* partial_inplace */
1793 0, /* src_mask */
1794 0, /* dst_mask */
1795 FALSE), /* pcrel_offset */
1796
1797 HOWTO (R_ARM_RPC24, /* type */
1798 0, /* rightshift */
1799 0, /* size (0 = byte, 1 = short, 2 = long) */
1800 0, /* bitsize */
1801 FALSE, /* pc_relative */
1802 0, /* bitpos */
1803 complain_overflow_dont,/* complain_on_overflow */
1804 bfd_elf_generic_reloc, /* special_function */
1805 "R_ARM_RPC24", /* name */
1806 FALSE, /* partial_inplace */
1807 0, /* src_mask */
1808 0, /* dst_mask */
1809 FALSE), /* pcrel_offset */
1810
1811 HOWTO (R_ARM_RBASE, /* type */
1812 0, /* rightshift */
1813 0, /* size (0 = byte, 1 = short, 2 = long) */
1814 0, /* bitsize */
1815 FALSE, /* pc_relative */
1816 0, /* bitpos */
1817 complain_overflow_dont,/* complain_on_overflow */
1818 bfd_elf_generic_reloc, /* special_function */
1819 "R_ARM_RBASE", /* name */
1820 FALSE, /* partial_inplace */
1821 0, /* src_mask */
1822 0, /* dst_mask */
1823 FALSE) /* pcrel_offset */
1824 };
1825
1826 static reloc_howto_type *
1827 elf32_arm_howto_from_type (unsigned int r_type)
1828 {
1829 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1830 return &elf32_arm_howto_table_1[r_type];
1831
1832 if (r_type == R_ARM_IRELATIVE)
1833 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1834
1835 if (r_type >= R_ARM_RREL32
1836 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1837 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
1838
1839 return NULL;
1840 }
1841
1842 static void
1843 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1844 Elf_Internal_Rela * elf_reloc)
1845 {
1846 unsigned int r_type;
1847
1848 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1849 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1850 }
1851
1852 struct elf32_arm_reloc_map
1853 {
1854 bfd_reloc_code_real_type bfd_reloc_val;
1855 unsigned char elf_reloc_val;
1856 };
1857
1858 /* All entries in this list must also be present in elf32_arm_howto_table. */
1859 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1860 {
1861 {BFD_RELOC_NONE, R_ARM_NONE},
1862 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1863 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1864 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1865 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1866 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1867 {BFD_RELOC_32, R_ARM_ABS32},
1868 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1869 {BFD_RELOC_8, R_ARM_ABS8},
1870 {BFD_RELOC_16, R_ARM_ABS16},
1871 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1872 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1873 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1874 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1875 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1876 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1877 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1878 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1879 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1880 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1881 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1882 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1883 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1884 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
1885 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1886 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1887 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1888 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1889 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1890 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1891 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1892 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1893 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC},
1894 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL},
1895 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL},
1896 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ},
1897 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ},
1898 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC},
1899 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1900 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1901 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1902 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1903 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1904 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1905 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1906 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1907 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE},
1908 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1909 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1910 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1911 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1912 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1913 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1914 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1915 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1916 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1917 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1918 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1919 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1920 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1921 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1922 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1923 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1924 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1925 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1926 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1927 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1928 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1929 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1930 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1931 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1932 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1933 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1934 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1935 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1936 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1937 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1938 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1939 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1940 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1941 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1942 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1943 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1944 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1945 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1946 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX},
1947 {BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC, R_ARM_THM_ALU_ABS_G3_NC},
1948 {BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC, R_ARM_THM_ALU_ABS_G2_NC},
1949 {BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC, R_ARM_THM_ALU_ABS_G1_NC},
1950 {BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC, R_ARM_THM_ALU_ABS_G0_NC}
1951 };
1952
1953 static reloc_howto_type *
1954 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1955 bfd_reloc_code_real_type code)
1956 {
1957 unsigned int i;
1958
1959 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1960 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1961 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1962
1963 return NULL;
1964 }
1965
1966 static reloc_howto_type *
1967 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1968 const char *r_name)
1969 {
1970 unsigned int i;
1971
1972 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1973 if (elf32_arm_howto_table_1[i].name != NULL
1974 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1975 return &elf32_arm_howto_table_1[i];
1976
1977 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1978 if (elf32_arm_howto_table_2[i].name != NULL
1979 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1980 return &elf32_arm_howto_table_2[i];
1981
1982 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
1983 if (elf32_arm_howto_table_3[i].name != NULL
1984 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
1985 return &elf32_arm_howto_table_3[i];
1986
1987 return NULL;
1988 }
1989
1990 /* Support for core dump NOTE sections. */
1991
1992 static bfd_boolean
1993 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1994 {
1995 int offset;
1996 size_t size;
1997
1998 switch (note->descsz)
1999 {
2000 default:
2001 return FALSE;
2002
2003 case 148: /* Linux/ARM 32-bit. */
2004 /* pr_cursig */
2005 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2006
2007 /* pr_pid */
2008 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
2009
2010 /* pr_reg */
2011 offset = 72;
2012 size = 72;
2013
2014 break;
2015 }
2016
2017 /* Make a ".reg/999" section. */
2018 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2019 size, note->descpos + offset);
2020 }
2021
2022 static bfd_boolean
2023 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2024 {
2025 switch (note->descsz)
2026 {
2027 default:
2028 return FALSE;
2029
2030 case 124: /* Linux/ARM elf_prpsinfo. */
2031 elf_tdata (abfd)->core->pid
2032 = bfd_get_32 (abfd, note->descdata + 12);
2033 elf_tdata (abfd)->core->program
2034 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
2035 elf_tdata (abfd)->core->command
2036 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
2037 }
2038
2039 /* Note that for some reason, a spurious space is tacked
2040 onto the end of the args in some (at least one anyway)
2041 implementations, so strip it off if it exists. */
2042 {
2043 char *command = elf_tdata (abfd)->core->command;
2044 int n = strlen (command);
2045
2046 if (0 < n && command[n - 1] == ' ')
2047 command[n - 1] = '\0';
2048 }
2049
2050 return TRUE;
2051 }
2052
2053 static char *
2054 elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz,
2055 int note_type, ...)
2056 {
2057 switch (note_type)
2058 {
2059 default:
2060 return NULL;
2061
2062 case NT_PRPSINFO:
2063 {
2064 char data[124];
2065 va_list ap;
2066
2067 va_start (ap, note_type);
2068 memset (data, 0, sizeof (data));
2069 strncpy (data + 28, va_arg (ap, const char *), 16);
2070 strncpy (data + 44, va_arg (ap, const char *), 80);
2071 va_end (ap);
2072
2073 return elfcore_write_note (abfd, buf, bufsiz,
2074 "CORE", note_type, data, sizeof (data));
2075 }
2076
2077 case NT_PRSTATUS:
2078 {
2079 char data[148];
2080 va_list ap;
2081 long pid;
2082 int cursig;
2083 const void *greg;
2084
2085 va_start (ap, note_type);
2086 memset (data, 0, sizeof (data));
2087 pid = va_arg (ap, long);
2088 bfd_put_32 (abfd, pid, data + 24);
2089 cursig = va_arg (ap, int);
2090 bfd_put_16 (abfd, cursig, data + 12);
2091 greg = va_arg (ap, const void *);
2092 memcpy (data + 72, greg, 72);
2093 va_end (ap);
2094
2095 return elfcore_write_note (abfd, buf, bufsiz,
2096 "CORE", note_type, data, sizeof (data));
2097 }
2098 }
2099 }
2100
2101 #define TARGET_LITTLE_SYM arm_elf32_le_vec
2102 #define TARGET_LITTLE_NAME "elf32-littlearm"
2103 #define TARGET_BIG_SYM arm_elf32_be_vec
2104 #define TARGET_BIG_NAME "elf32-bigarm"
2105
2106 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
2107 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
2108 #define elf_backend_write_core_note elf32_arm_nabi_write_core_note
2109
2110 typedef unsigned long int insn32;
2111 typedef unsigned short int insn16;
2112
2113 /* In lieu of proper flags, assume all EABIv4 or later objects are
2114 interworkable. */
2115 #define INTERWORK_FLAG(abfd) \
2116 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
2117 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2118 || ((abfd)->flags & BFD_LINKER_CREATED))
2119
2120 /* The linker script knows the section names for placement.
2121 The entry_names are used to do simple name mangling on the stubs.
2122 Given a function name, and its type, the stub can be found. The
2123 name can be changed. The only requirement is the %s be present. */
2124 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2125 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2126
2127 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2128 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2129
2130 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2131 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2132
2133 #define STM32L4XX_ERRATUM_VENEER_SECTION_NAME ".text.stm32l4xx_veneer"
2134 #define STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "__stm32l4xx_veneer_%x"
2135
2136 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2137 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2138
2139 #define STUB_ENTRY_NAME "__%s_veneer"
2140
2141 #define CMSE_PREFIX "__acle_se_"
2142
2143 /* The name of the dynamic interpreter. This is put in the .interp
2144 section. */
2145 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2146
2147 static const unsigned long tls_trampoline [] =
2148 {
2149 0xe08e0000, /* add r0, lr, r0 */
2150 0xe5901004, /* ldr r1, [r0,#4] */
2151 0xe12fff11, /* bx r1 */
2152 };
2153
2154 static const unsigned long dl_tlsdesc_lazy_trampoline [] =
2155 {
2156 0xe52d2004, /* push {r2} */
2157 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2158 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2159 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2160 0xe081100f, /* 2: add r1, pc */
2161 0xe12fff12, /* bx r2 */
2162 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
2163 + dl_tlsdesc_lazy_resolver(GOT) */
2164 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2165 };
2166
2167 #ifdef FOUR_WORD_PLT
2168
2169 /* The first entry in a procedure linkage table looks like
2170 this. It is set up so that any shared library function that is
2171 called before the relocation has been set up calls the dynamic
2172 linker first. */
2173 static const bfd_vma elf32_arm_plt0_entry [] =
2174 {
2175 0xe52de004, /* str lr, [sp, #-4]! */
2176 0xe59fe010, /* ldr lr, [pc, #16] */
2177 0xe08fe00e, /* add lr, pc, lr */
2178 0xe5bef008, /* ldr pc, [lr, #8]! */
2179 };
2180
2181 /* Subsequent entries in a procedure linkage table look like
2182 this. */
2183 static const bfd_vma elf32_arm_plt_entry [] =
2184 {
2185 0xe28fc600, /* add ip, pc, #NN */
2186 0xe28cca00, /* add ip, ip, #NN */
2187 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2188 0x00000000, /* unused */
2189 };
2190
2191 #else /* not FOUR_WORD_PLT */
2192
2193 /* The first entry in a procedure linkage table looks like
2194 this. It is set up so that any shared library function that is
2195 called before the relocation has been set up calls the dynamic
2196 linker first. */
2197 static const bfd_vma elf32_arm_plt0_entry [] =
2198 {
2199 0xe52de004, /* str lr, [sp, #-4]! */
2200 0xe59fe004, /* ldr lr, [pc, #4] */
2201 0xe08fe00e, /* add lr, pc, lr */
2202 0xe5bef008, /* ldr pc, [lr, #8]! */
2203 0x00000000, /* &GOT[0] - . */
2204 };
2205
2206 /* By default subsequent entries in a procedure linkage table look like
2207 this. Offsets that don't fit into 28 bits will cause link error. */
2208 static const bfd_vma elf32_arm_plt_entry_short [] =
2209 {
2210 0xe28fc600, /* add ip, pc, #0xNN00000 */
2211 0xe28cca00, /* add ip, ip, #0xNN000 */
2212 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2213 };
2214
2215 /* When explicitly asked, we'll use this "long" entry format
2216 which can cope with arbitrary displacements. */
2217 static const bfd_vma elf32_arm_plt_entry_long [] =
2218 {
2219 0xe28fc200, /* add ip, pc, #0xN0000000 */
2220 0xe28cc600, /* add ip, ip, #0xNN00000 */
2221 0xe28cca00, /* add ip, ip, #0xNN000 */
2222 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2223 };
2224
2225 static bfd_boolean elf32_arm_use_long_plt_entry = FALSE;
2226
2227 #endif /* not FOUR_WORD_PLT */
2228
2229 /* The first entry in a procedure linkage table looks like this.
2230 It is set up so that any shared library function that is called before the
2231 relocation has been set up calls the dynamic linker first. */
2232 static const bfd_vma elf32_thumb2_plt0_entry [] =
2233 {
2234 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2235 an instruction maybe encoded to one or two array elements. */
2236 0xf8dfb500, /* push {lr} */
2237 0x44fee008, /* ldr.w lr, [pc, #8] */
2238 /* add lr, pc */
2239 0xff08f85e, /* ldr.w pc, [lr, #8]! */
2240 0x00000000, /* &GOT[0] - . */
2241 };
2242
2243 /* Subsequent entries in a procedure linkage table for thumb only target
2244 look like this. */
2245 static const bfd_vma elf32_thumb2_plt_entry [] =
2246 {
2247 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2248 an instruction maybe encoded to one or two array elements. */
2249 0x0c00f240, /* movw ip, #0xNNNN */
2250 0x0c00f2c0, /* movt ip, #0xNNNN */
2251 0xf8dc44fc, /* add ip, pc */
2252 0xbf00f000 /* ldr.w pc, [ip] */
2253 /* nop */
2254 };
2255
2256 /* The format of the first entry in the procedure linkage table
2257 for a VxWorks executable. */
2258 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
2259 {
2260 0xe52dc008, /* str ip,[sp,#-8]! */
2261 0xe59fc000, /* ldr ip,[pc] */
2262 0xe59cf008, /* ldr pc,[ip,#8] */
2263 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
2264 };
2265
2266 /* The format of subsequent entries in a VxWorks executable. */
2267 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
2268 {
2269 0xe59fc000, /* ldr ip,[pc] */
2270 0xe59cf000, /* ldr pc,[ip] */
2271 0x00000000, /* .long @got */
2272 0xe59fc000, /* ldr ip,[pc] */
2273 0xea000000, /* b _PLT */
2274 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2275 };
2276
2277 /* The format of entries in a VxWorks shared library. */
2278 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
2279 {
2280 0xe59fc000, /* ldr ip,[pc] */
2281 0xe79cf009, /* ldr pc,[ip,r9] */
2282 0x00000000, /* .long @got */
2283 0xe59fc000, /* ldr ip,[pc] */
2284 0xe599f008, /* ldr pc,[r9,#8] */
2285 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2286 };
2287
2288 /* An initial stub used if the PLT entry is referenced from Thumb code. */
2289 #define PLT_THUMB_STUB_SIZE 4
2290 static const bfd_vma elf32_arm_plt_thumb_stub [] =
2291 {
2292 0x4778, /* bx pc */
2293 0x46c0 /* nop */
2294 };
2295
2296 /* The entries in a PLT when using a DLL-based target with multiple
2297 address spaces. */
2298 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2299 {
2300 0xe51ff004, /* ldr pc, [pc, #-4] */
2301 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2302 };
2303
2304 /* The first entry in a procedure linkage table looks like
2305 this. It is set up so that any shared library function that is
2306 called before the relocation has been set up calls the dynamic
2307 linker first. */
2308 static const bfd_vma elf32_arm_nacl_plt0_entry [] =
2309 {
2310 /* First bundle: */
2311 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */
2312 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */
2313 0xe08cc00f, /* add ip, ip, pc */
2314 0xe52dc008, /* str ip, [sp, #-8]! */
2315 /* Second bundle: */
2316 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2317 0xe59cc000, /* ldr ip, [ip] */
2318 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2319 0xe12fff1c, /* bx ip */
2320 /* Third bundle: */
2321 0xe320f000, /* nop */
2322 0xe320f000, /* nop */
2323 0xe320f000, /* nop */
2324 /* .Lplt_tail: */
2325 0xe50dc004, /* str ip, [sp, #-4] */
2326 /* Fourth bundle: */
2327 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2328 0xe59cc000, /* ldr ip, [ip] */
2329 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2330 0xe12fff1c, /* bx ip */
2331 };
2332 #define ARM_NACL_PLT_TAIL_OFFSET (11 * 4)
2333
2334 /* Subsequent entries in a procedure linkage table look like this. */
2335 static const bfd_vma elf32_arm_nacl_plt_entry [] =
2336 {
2337 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */
2338 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */
2339 0xe08cc00f, /* add ip, ip, pc */
2340 0xea000000, /* b .Lplt_tail */
2341 };
2342
2343 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2344 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2345 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2346 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2347 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2348 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2349 #define THM2_MAX_FWD_COND_BRANCH_OFFSET (((1 << 20) -2) + 4)
2350 #define THM2_MAX_BWD_COND_BRANCH_OFFSET (-(1 << 20) + 4)
2351
2352 enum stub_insn_type
2353 {
2354 THUMB16_TYPE = 1,
2355 THUMB32_TYPE,
2356 ARM_TYPE,
2357 DATA_TYPE
2358 };
2359
2360 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2361 /* A bit of a hack. A Thumb conditional branch, in which the proper condition
2362 is inserted in arm_build_one_stub(). */
2363 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2364 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2365 #define THUMB32_MOVT(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVT_ABS, 0}
2366 #define THUMB32_MOVW(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVW_ABS_NC, 0}
2367 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2368 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2369 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2370 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2371
2372 typedef struct
2373 {
2374 bfd_vma data;
2375 enum stub_insn_type type;
2376 unsigned int r_type;
2377 int reloc_addend;
2378 } insn_sequence;
2379
2380 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2381 to reach the stub if necessary. */
2382 static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2383 {
2384 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2385 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2386 };
2387
2388 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2389 available. */
2390 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2391 {
2392 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2393 ARM_INSN (0xe12fff1c), /* bx ip */
2394 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2395 };
2396
2397 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2398 static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2399 {
2400 THUMB16_INSN (0xb401), /* push {r0} */
2401 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2402 THUMB16_INSN (0x4684), /* mov ip, r0 */
2403 THUMB16_INSN (0xbc01), /* pop {r0} */
2404 THUMB16_INSN (0x4760), /* bx ip */
2405 THUMB16_INSN (0xbf00), /* nop */
2406 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2407 };
2408
2409 /* Thumb -> Thumb long branch stub in thumb2 encoding. Used on armv7. */
2410 static const insn_sequence elf32_arm_stub_long_branch_thumb2_only[] =
2411 {
2412 THUMB32_INSN (0xf85ff000), /* ldr.w pc, [pc, #-0] */
2413 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(x) */
2414 };
2415
2416 /* Thumb -> Thumb long branch stub. Used for PureCode sections on Thumb2
2417 M-profile architectures. */
2418 static const insn_sequence elf32_arm_stub_long_branch_thumb2_only_pure[] =
2419 {
2420 THUMB32_MOVW (0xf2400c00), /* mov.w ip, R_ARM_MOVW_ABS_NC */
2421 THUMB32_MOVT (0xf2c00c00), /* movt ip, R_ARM_MOVT_ABS << 16 */
2422 THUMB16_INSN (0x4760), /* bx ip */
2423 };
2424
2425 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2426 allowed. */
2427 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2428 {
2429 THUMB16_INSN (0x4778), /* bx pc */
2430 THUMB16_INSN (0x46c0), /* nop */
2431 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2432 ARM_INSN (0xe12fff1c), /* bx ip */
2433 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2434 };
2435
2436 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2437 available. */
2438 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2439 {
2440 THUMB16_INSN (0x4778), /* bx pc */
2441 THUMB16_INSN (0x46c0), /* nop */
2442 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2443 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2444 };
2445
2446 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2447 one, when the destination is close enough. */
2448 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2449 {
2450 THUMB16_INSN (0x4778), /* bx pc */
2451 THUMB16_INSN (0x46c0), /* nop */
2452 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */
2453 };
2454
2455 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2456 blx to reach the stub if necessary. */
2457 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2458 {
2459 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */
2460 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */
2461 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2462 };
2463
2464 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2465 blx to reach the stub if necessary. We can not add into pc;
2466 it is not guaranteed to mode switch (different in ARMv6 and
2467 ARMv7). */
2468 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2469 {
2470 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2471 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2472 ARM_INSN (0xe12fff1c), /* bx ip */
2473 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2474 };
2475
2476 /* V4T ARM -> ARM long branch stub, PIC. */
2477 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2478 {
2479 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2480 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2481 ARM_INSN (0xe12fff1c), /* bx ip */
2482 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2483 };
2484
2485 /* V4T Thumb -> ARM long branch stub, PIC. */
2486 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2487 {
2488 THUMB16_INSN (0x4778), /* bx pc */
2489 THUMB16_INSN (0x46c0), /* nop */
2490 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2491 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */
2492 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2493 };
2494
2495 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2496 architectures. */
2497 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2498 {
2499 THUMB16_INSN (0xb401), /* push {r0} */
2500 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2501 THUMB16_INSN (0x46fc), /* mov ip, pc */
2502 THUMB16_INSN (0x4484), /* add ip, r0 */
2503 THUMB16_INSN (0xbc01), /* pop {r0} */
2504 THUMB16_INSN (0x4760), /* bx ip */
2505 DATA_WORD (0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2506 };
2507
2508 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2509 allowed. */
2510 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2511 {
2512 THUMB16_INSN (0x4778), /* bx pc */
2513 THUMB16_INSN (0x46c0), /* nop */
2514 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2515 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2516 ARM_INSN (0xe12fff1c), /* bx ip */
2517 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2518 };
2519
2520 /* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2521 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2522 static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2523 {
2524 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */
2525 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */
2526 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2527 };
2528
2529 /* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2530 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2531 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2532 {
2533 THUMB16_INSN (0x4778), /* bx pc */
2534 THUMB16_INSN (0x46c0), /* nop */
2535 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */
2536 ARM_INSN (0xe081f00f), /* add pc, r1, pc */
2537 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2538 };
2539
2540 /* NaCl ARM -> ARM long branch stub. */
2541 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl[] =
2542 {
2543 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2544 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2545 ARM_INSN (0xe12fff1c), /* bx ip */
2546 ARM_INSN (0xe320f000), /* nop */
2547 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2548 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2549 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2550 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2551 };
2552
2553 /* NaCl ARM -> ARM long branch stub, PIC. */
2554 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic[] =
2555 {
2556 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2557 ARM_INSN (0xe08cc00f), /* add ip, ip, pc */
2558 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2559 ARM_INSN (0xe12fff1c), /* bx ip */
2560 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2561 DATA_WORD (0, R_ARM_REL32, 8), /* dcd R_ARM_REL32(X+8) */
2562 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2563 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2564 };
2565
2566 /* Stub used for transition to secure state (aka SG veneer). */
2567 static const insn_sequence elf32_arm_stub_cmse_branch_thumb_only[] =
2568 {
2569 THUMB32_INSN (0xe97fe97f), /* sg. */
2570 THUMB32_B_INSN (0xf000b800, -4), /* b.w original_branch_dest. */
2571 };
2572
2573
2574 /* Cortex-A8 erratum-workaround stubs. */
2575
2576 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2577 can't use a conditional branch to reach this stub). */
2578
2579 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2580 {
2581 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */
2582 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */
2583 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */
2584 };
2585
2586 /* Stub used for b.w and bl.w instructions. */
2587
2588 static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2589 {
2590 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2591 };
2592
2593 static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2594 {
2595 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2596 };
2597
2598 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2599 instruction (which switches to ARM mode) to point to this stub. Jump to the
2600 real destination using an ARM-mode branch. */
2601
2602 static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2603 {
2604 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */
2605 };
2606
2607 /* For each section group there can be a specially created linker section
2608 to hold the stubs for that group. The name of the stub section is based
2609 upon the name of another section within that group with the suffix below
2610 applied.
2611
2612 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2613 create what appeared to be a linker stub section when it actually
2614 contained user code/data. For example, consider this fragment:
2615
2616 const char * stubborn_problems[] = { "np" };
2617
2618 If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2619 section called:
2620
2621 .data.rel.local.stubborn_problems
2622
2623 This then causes problems in arm32_arm_build_stubs() as it triggers:
2624
2625 // Ignore non-stub sections.
2626 if (!strstr (stub_sec->name, STUB_SUFFIX))
2627 continue;
2628
2629 And so the section would be ignored instead of being processed. Hence
2630 the change in definition of STUB_SUFFIX to a name that cannot be a valid
2631 C identifier. */
2632 #define STUB_SUFFIX ".__stub"
2633
2634 /* One entry per long/short branch stub defined above. */
2635 #define DEF_STUBS \
2636 DEF_STUB(long_branch_any_any) \
2637 DEF_STUB(long_branch_v4t_arm_thumb) \
2638 DEF_STUB(long_branch_thumb_only) \
2639 DEF_STUB(long_branch_v4t_thumb_thumb) \
2640 DEF_STUB(long_branch_v4t_thumb_arm) \
2641 DEF_STUB(short_branch_v4t_thumb_arm) \
2642 DEF_STUB(long_branch_any_arm_pic) \
2643 DEF_STUB(long_branch_any_thumb_pic) \
2644 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2645 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2646 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2647 DEF_STUB(long_branch_thumb_only_pic) \
2648 DEF_STUB(long_branch_any_tls_pic) \
2649 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
2650 DEF_STUB(long_branch_arm_nacl) \
2651 DEF_STUB(long_branch_arm_nacl_pic) \
2652 DEF_STUB(cmse_branch_thumb_only) \
2653 DEF_STUB(a8_veneer_b_cond) \
2654 DEF_STUB(a8_veneer_b) \
2655 DEF_STUB(a8_veneer_bl) \
2656 DEF_STUB(a8_veneer_blx) \
2657 DEF_STUB(long_branch_thumb2_only) \
2658 DEF_STUB(long_branch_thumb2_only_pure)
2659
2660 #define DEF_STUB(x) arm_stub_##x,
2661 enum elf32_arm_stub_type
2662 {
2663 arm_stub_none,
2664 DEF_STUBS
2665 max_stub_type
2666 };
2667 #undef DEF_STUB
2668
2669 /* Note the first a8_veneer type. */
2670 const unsigned arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond;
2671
2672 typedef struct
2673 {
2674 const insn_sequence* template_sequence;
2675 int template_size;
2676 } stub_def;
2677
2678 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2679 static const stub_def stub_definitions[] =
2680 {
2681 {NULL, 0},
2682 DEF_STUBS
2683 };
2684
2685 struct elf32_arm_stub_hash_entry
2686 {
2687 /* Base hash table entry structure. */
2688 struct bfd_hash_entry root;
2689
2690 /* The stub section. */
2691 asection *stub_sec;
2692
2693 /* Offset within stub_sec of the beginning of this stub. */
2694 bfd_vma stub_offset;
2695
2696 /* Given the symbol's value and its section we can determine its final
2697 value when building the stubs (so the stub knows where to jump). */
2698 bfd_vma target_value;
2699 asection *target_section;
2700
2701 /* Same as above but for the source of the branch to the stub. Used for
2702 Cortex-A8 erratum workaround to patch it to branch to the stub. As
2703 such, source section does not need to be recorded since Cortex-A8 erratum
2704 workaround stubs are only generated when both source and target are in the
2705 same section. */
2706 bfd_vma source_value;
2707
2708 /* The instruction which caused this stub to be generated (only valid for
2709 Cortex-A8 erratum workaround stubs at present). */
2710 unsigned long orig_insn;
2711
2712 /* The stub type. */
2713 enum elf32_arm_stub_type stub_type;
2714 /* Its encoding size in bytes. */
2715 int stub_size;
2716 /* Its template. */
2717 const insn_sequence *stub_template;
2718 /* The size of the template (number of entries). */
2719 int stub_template_size;
2720
2721 /* The symbol table entry, if any, that this was derived from. */
2722 struct elf32_arm_link_hash_entry *h;
2723
2724 /* Type of branch. */
2725 enum arm_st_branch_type branch_type;
2726
2727 /* Where this stub is being called from, or, in the case of combined
2728 stub sections, the first input section in the group. */
2729 asection *id_sec;
2730
2731 /* The name for the local symbol at the start of this stub. The
2732 stub name in the hash table has to be unique; this does not, so
2733 it can be friendlier. */
2734 char *output_name;
2735 };
2736
2737 /* Used to build a map of a section. This is required for mixed-endian
2738 code/data. */
2739
2740 typedef struct elf32_elf_section_map
2741 {
2742 bfd_vma vma;
2743 char type;
2744 }
2745 elf32_arm_section_map;
2746
2747 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2748
2749 typedef enum
2750 {
2751 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2752 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2753 VFP11_ERRATUM_ARM_VENEER,
2754 VFP11_ERRATUM_THUMB_VENEER
2755 }
2756 elf32_vfp11_erratum_type;
2757
2758 typedef struct elf32_vfp11_erratum_list
2759 {
2760 struct elf32_vfp11_erratum_list *next;
2761 bfd_vma vma;
2762 union
2763 {
2764 struct
2765 {
2766 struct elf32_vfp11_erratum_list *veneer;
2767 unsigned int vfp_insn;
2768 } b;
2769 struct
2770 {
2771 struct elf32_vfp11_erratum_list *branch;
2772 unsigned int id;
2773 } v;
2774 } u;
2775 elf32_vfp11_erratum_type type;
2776 }
2777 elf32_vfp11_erratum_list;
2778
2779 /* Information about a STM32L4XX erratum veneer, or a branch to such a
2780 veneer. */
2781 typedef enum
2782 {
2783 STM32L4XX_ERRATUM_BRANCH_TO_VENEER,
2784 STM32L4XX_ERRATUM_VENEER
2785 }
2786 elf32_stm32l4xx_erratum_type;
2787
2788 typedef struct elf32_stm32l4xx_erratum_list
2789 {
2790 struct elf32_stm32l4xx_erratum_list *next;
2791 bfd_vma vma;
2792 union
2793 {
2794 struct
2795 {
2796 struct elf32_stm32l4xx_erratum_list *veneer;
2797 unsigned int insn;
2798 } b;
2799 struct
2800 {
2801 struct elf32_stm32l4xx_erratum_list *branch;
2802 unsigned int id;
2803 } v;
2804 } u;
2805 elf32_stm32l4xx_erratum_type type;
2806 }
2807 elf32_stm32l4xx_erratum_list;
2808
2809 typedef enum
2810 {
2811 DELETE_EXIDX_ENTRY,
2812 INSERT_EXIDX_CANTUNWIND_AT_END
2813 }
2814 arm_unwind_edit_type;
2815
2816 /* A (sorted) list of edits to apply to an unwind table. */
2817 typedef struct arm_unwind_table_edit
2818 {
2819 arm_unwind_edit_type type;
2820 /* Note: we sometimes want to insert an unwind entry corresponding to a
2821 section different from the one we're currently writing out, so record the
2822 (text) section this edit relates to here. */
2823 asection *linked_section;
2824 unsigned int index;
2825 struct arm_unwind_table_edit *next;
2826 }
2827 arm_unwind_table_edit;
2828
2829 typedef struct _arm_elf_section_data
2830 {
2831 /* Information about mapping symbols. */
2832 struct bfd_elf_section_data elf;
2833 unsigned int mapcount;
2834 unsigned int mapsize;
2835 elf32_arm_section_map *map;
2836 /* Information about CPU errata. */
2837 unsigned int erratumcount;
2838 elf32_vfp11_erratum_list *erratumlist;
2839 unsigned int stm32l4xx_erratumcount;
2840 elf32_stm32l4xx_erratum_list *stm32l4xx_erratumlist;
2841 unsigned int additional_reloc_count;
2842 /* Information about unwind tables. */
2843 union
2844 {
2845 /* Unwind info attached to a text section. */
2846 struct
2847 {
2848 asection *arm_exidx_sec;
2849 } text;
2850
2851 /* Unwind info attached to an .ARM.exidx section. */
2852 struct
2853 {
2854 arm_unwind_table_edit *unwind_edit_list;
2855 arm_unwind_table_edit *unwind_edit_tail;
2856 } exidx;
2857 } u;
2858 }
2859 _arm_elf_section_data;
2860
2861 #define elf32_arm_section_data(sec) \
2862 ((_arm_elf_section_data *) elf_section_data (sec))
2863
2864 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2865 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2866 so may be created multiple times: we use an array of these entries whilst
2867 relaxing which we can refresh easily, then create stubs for each potentially
2868 erratum-triggering instruction once we've settled on a solution. */
2869
2870 struct a8_erratum_fix
2871 {
2872 bfd *input_bfd;
2873 asection *section;
2874 bfd_vma offset;
2875 bfd_vma target_offset;
2876 unsigned long orig_insn;
2877 char *stub_name;
2878 enum elf32_arm_stub_type stub_type;
2879 enum arm_st_branch_type branch_type;
2880 };
2881
2882 /* A table of relocs applied to branches which might trigger Cortex-A8
2883 erratum. */
2884
2885 struct a8_erratum_reloc
2886 {
2887 bfd_vma from;
2888 bfd_vma destination;
2889 struct elf32_arm_link_hash_entry *hash;
2890 const char *sym_name;
2891 unsigned int r_type;
2892 enum arm_st_branch_type branch_type;
2893 bfd_boolean non_a8_stub;
2894 };
2895
2896 /* The size of the thread control block. */
2897 #define TCB_SIZE 8
2898
2899 /* ARM-specific information about a PLT entry, over and above the usual
2900 gotplt_union. */
2901 struct arm_plt_info
2902 {
2903 /* We reference count Thumb references to a PLT entry separately,
2904 so that we can emit the Thumb trampoline only if needed. */
2905 bfd_signed_vma thumb_refcount;
2906
2907 /* Some references from Thumb code may be eliminated by BL->BLX
2908 conversion, so record them separately. */
2909 bfd_signed_vma maybe_thumb_refcount;
2910
2911 /* How many of the recorded PLT accesses were from non-call relocations.
2912 This information is useful when deciding whether anything takes the
2913 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
2914 non-call references to the function should resolve directly to the
2915 real runtime target. */
2916 unsigned int noncall_refcount;
2917
2918 /* Since PLT entries have variable size if the Thumb prologue is
2919 used, we need to record the index into .got.plt instead of
2920 recomputing it from the PLT offset. */
2921 bfd_signed_vma got_offset;
2922 };
2923
2924 /* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
2925 struct arm_local_iplt_info
2926 {
2927 /* The information that is usually found in the generic ELF part of
2928 the hash table entry. */
2929 union gotplt_union root;
2930
2931 /* The information that is usually found in the ARM-specific part of
2932 the hash table entry. */
2933 struct arm_plt_info arm;
2934
2935 /* A list of all potential dynamic relocations against this symbol. */
2936 struct elf_dyn_relocs *dyn_relocs;
2937 };
2938
2939 struct elf_arm_obj_tdata
2940 {
2941 struct elf_obj_tdata root;
2942
2943 /* tls_type for each local got entry. */
2944 char *local_got_tls_type;
2945
2946 /* GOTPLT entries for TLS descriptors. */
2947 bfd_vma *local_tlsdesc_gotent;
2948
2949 /* Information for local symbols that need entries in .iplt. */
2950 struct arm_local_iplt_info **local_iplt;
2951
2952 /* Zero to warn when linking objects with incompatible enum sizes. */
2953 int no_enum_size_warning;
2954
2955 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2956 int no_wchar_size_warning;
2957 };
2958
2959 #define elf_arm_tdata(bfd) \
2960 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2961
2962 #define elf32_arm_local_got_tls_type(bfd) \
2963 (elf_arm_tdata (bfd)->local_got_tls_type)
2964
2965 #define elf32_arm_local_tlsdesc_gotent(bfd) \
2966 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
2967
2968 #define elf32_arm_local_iplt(bfd) \
2969 (elf_arm_tdata (bfd)->local_iplt)
2970
2971 #define is_arm_elf(bfd) \
2972 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2973 && elf_tdata (bfd) != NULL \
2974 && elf_object_id (bfd) == ARM_ELF_DATA)
2975
2976 static bfd_boolean
2977 elf32_arm_mkobject (bfd *abfd)
2978 {
2979 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2980 ARM_ELF_DATA);
2981 }
2982
2983 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2984
2985 /* Arm ELF linker hash entry. */
2986 struct elf32_arm_link_hash_entry
2987 {
2988 struct elf_link_hash_entry root;
2989
2990 /* Track dynamic relocs copied for this symbol. */
2991 struct elf_dyn_relocs *dyn_relocs;
2992
2993 /* ARM-specific PLT information. */
2994 struct arm_plt_info plt;
2995
2996 #define GOT_UNKNOWN 0
2997 #define GOT_NORMAL 1
2998 #define GOT_TLS_GD 2
2999 #define GOT_TLS_IE 4
3000 #define GOT_TLS_GDESC 8
3001 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
3002 unsigned int tls_type : 8;
3003
3004 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
3005 unsigned int is_iplt : 1;
3006
3007 unsigned int unused : 23;
3008
3009 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
3010 starting at the end of the jump table. */
3011 bfd_vma tlsdesc_got;
3012
3013 /* The symbol marking the real symbol location for exported thumb
3014 symbols with Arm stubs. */
3015 struct elf_link_hash_entry *export_glue;
3016
3017 /* A pointer to the most recently used stub hash entry against this
3018 symbol. */
3019 struct elf32_arm_stub_hash_entry *stub_cache;
3020 };
3021
3022 /* Traverse an arm ELF linker hash table. */
3023 #define elf32_arm_link_hash_traverse(table, func, info) \
3024 (elf_link_hash_traverse \
3025 (&(table)->root, \
3026 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
3027 (info)))
3028
3029 /* Get the ARM elf linker hash table from a link_info structure. */
3030 #define elf32_arm_hash_table(info) \
3031 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
3032 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
3033
3034 #define arm_stub_hash_lookup(table, string, create, copy) \
3035 ((struct elf32_arm_stub_hash_entry *) \
3036 bfd_hash_lookup ((table), (string), (create), (copy)))
3037
3038 /* Array to keep track of which stub sections have been created, and
3039 information on stub grouping. */
3040 struct map_stub
3041 {
3042 /* This is the section to which stubs in the group will be
3043 attached. */
3044 asection *link_sec;
3045 /* The stub section. */
3046 asection *stub_sec;
3047 };
3048
3049 #define elf32_arm_compute_jump_table_size(htab) \
3050 ((htab)->next_tls_desc_index * 4)
3051
3052 /* ARM ELF linker hash table. */
3053 struct elf32_arm_link_hash_table
3054 {
3055 /* The main hash table. */
3056 struct elf_link_hash_table root;
3057
3058 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
3059 bfd_size_type thumb_glue_size;
3060
3061 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
3062 bfd_size_type arm_glue_size;
3063
3064 /* The size in bytes of section containing the ARMv4 BX veneers. */
3065 bfd_size_type bx_glue_size;
3066
3067 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
3068 veneer has been populated. */
3069 bfd_vma bx_glue_offset[15];
3070
3071 /* The size in bytes of the section containing glue for VFP11 erratum
3072 veneers. */
3073 bfd_size_type vfp11_erratum_glue_size;
3074
3075 /* The size in bytes of the section containing glue for STM32L4XX erratum
3076 veneers. */
3077 bfd_size_type stm32l4xx_erratum_glue_size;
3078
3079 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
3080 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
3081 elf32_arm_write_section(). */
3082 struct a8_erratum_fix *a8_erratum_fixes;
3083 unsigned int num_a8_erratum_fixes;
3084
3085 /* An arbitrary input BFD chosen to hold the glue sections. */
3086 bfd * bfd_of_glue_owner;
3087
3088 /* Nonzero to output a BE8 image. */
3089 int byteswap_code;
3090
3091 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
3092 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
3093 int target1_is_rel;
3094
3095 /* The relocation to use for R_ARM_TARGET2 relocations. */
3096 int target2_reloc;
3097
3098 /* 0 = Ignore R_ARM_V4BX.
3099 1 = Convert BX to MOV PC.
3100 2 = Generate v4 interworing stubs. */
3101 int fix_v4bx;
3102
3103 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
3104 int fix_cortex_a8;
3105
3106 /* Whether we should fix the ARM1176 BLX immediate issue. */
3107 int fix_arm1176;
3108
3109 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
3110 int use_blx;
3111
3112 /* What sort of code sequences we should look for which may trigger the
3113 VFP11 denorm erratum. */
3114 bfd_arm_vfp11_fix vfp11_fix;
3115
3116 /* Global counter for the number of fixes we have emitted. */
3117 int num_vfp11_fixes;
3118
3119 /* What sort of code sequences we should look for which may trigger the
3120 STM32L4XX erratum. */
3121 bfd_arm_stm32l4xx_fix stm32l4xx_fix;
3122
3123 /* Global counter for the number of fixes we have emitted. */
3124 int num_stm32l4xx_fixes;
3125
3126 /* Nonzero to force PIC branch veneers. */
3127 int pic_veneer;
3128
3129 /* The number of bytes in the initial entry in the PLT. */
3130 bfd_size_type plt_header_size;
3131
3132 /* The number of bytes in the subsequent PLT etries. */
3133 bfd_size_type plt_entry_size;
3134
3135 /* True if the target system is VxWorks. */
3136 int vxworks_p;
3137
3138 /* True if the target system is Symbian OS. */
3139 int symbian_p;
3140
3141 /* True if the target system is Native Client. */
3142 int nacl_p;
3143
3144 /* True if the target uses REL relocations. */
3145 int use_rel;
3146
3147 /* Nonzero if import library must be a secure gateway import library
3148 as per ARMv8-M Security Extensions. */
3149 int cmse_implib;
3150
3151 /* The import library whose symbols' address must remain stable in
3152 the import library generated. */
3153 bfd *in_implib_bfd;
3154
3155 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
3156 bfd_vma next_tls_desc_index;
3157
3158 /* How many R_ARM_TLS_DESC relocations were generated so far. */
3159 bfd_vma num_tls_desc;
3160
3161 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
3162 asection *srelplt2;
3163
3164 /* The offset into splt of the PLT entry for the TLS descriptor
3165 resolver. Special values are 0, if not necessary (or not found
3166 to be necessary yet), and -1 if needed but not determined
3167 yet. */
3168 bfd_vma dt_tlsdesc_plt;
3169
3170 /* The offset into sgot of the GOT entry used by the PLT entry
3171 above. */
3172 bfd_vma dt_tlsdesc_got;
3173
3174 /* Offset in .plt section of tls_arm_trampoline. */
3175 bfd_vma tls_trampoline;
3176
3177 /* Data for R_ARM_TLS_LDM32 relocations. */
3178 union
3179 {
3180 bfd_signed_vma refcount;
3181 bfd_vma offset;
3182 } tls_ldm_got;
3183
3184 /* Small local sym cache. */
3185 struct sym_cache sym_cache;
3186
3187 /* For convenience in allocate_dynrelocs. */
3188 bfd * obfd;
3189
3190 /* The amount of space used by the reserved portion of the sgotplt
3191 section, plus whatever space is used by the jump slots. */
3192 bfd_vma sgotplt_jump_table_size;
3193
3194 /* The stub hash table. */
3195 struct bfd_hash_table stub_hash_table;
3196
3197 /* Linker stub bfd. */
3198 bfd *stub_bfd;
3199
3200 /* Linker call-backs. */
3201 asection * (*add_stub_section) (const char *, asection *, asection *,
3202 unsigned int);
3203 void (*layout_sections_again) (void);
3204
3205 /* Array to keep track of which stub sections have been created, and
3206 information on stub grouping. */
3207 struct map_stub *stub_group;
3208
3209 /* Input stub section holding secure gateway veneers. */
3210 asection *cmse_stub_sec;
3211
3212 /* Offset in cmse_stub_sec where new SG veneers (not in input import library)
3213 start to be allocated. */
3214 bfd_vma new_cmse_stub_offset;
3215
3216 /* Number of elements in stub_group. */
3217 unsigned int top_id;
3218
3219 /* Assorted information used by elf32_arm_size_stubs. */
3220 unsigned int bfd_count;
3221 unsigned int top_index;
3222 asection **input_list;
3223 };
3224
3225 static inline int
3226 ctz (unsigned int mask)
3227 {
3228 #if GCC_VERSION >= 3004
3229 return __builtin_ctz (mask);
3230 #else
3231 unsigned int i;
3232
3233 for (i = 0; i < 8 * sizeof (mask); i++)
3234 {
3235 if (mask & 0x1)
3236 break;
3237 mask = (mask >> 1);
3238 }
3239 return i;
3240 #endif
3241 }
3242
3243 static inline int
3244 elf32_arm_popcount (unsigned int mask)
3245 {
3246 #if GCC_VERSION >= 3004
3247 return __builtin_popcount (mask);
3248 #else
3249 unsigned int i;
3250 int sum = 0;
3251
3252 for (i = 0; i < 8 * sizeof (mask); i++)
3253 {
3254 if (mask & 0x1)
3255 sum++;
3256 mask = (mask >> 1);
3257 }
3258 return sum;
3259 #endif
3260 }
3261
3262 /* Create an entry in an ARM ELF linker hash table. */
3263
3264 static struct bfd_hash_entry *
3265 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
3266 struct bfd_hash_table * table,
3267 const char * string)
3268 {
3269 struct elf32_arm_link_hash_entry * ret =
3270 (struct elf32_arm_link_hash_entry *) entry;
3271
3272 /* Allocate the structure if it has not already been allocated by a
3273 subclass. */
3274 if (ret == NULL)
3275 ret = (struct elf32_arm_link_hash_entry *)
3276 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
3277 if (ret == NULL)
3278 return (struct bfd_hash_entry *) ret;
3279
3280 /* Call the allocation method of the superclass. */
3281 ret = ((struct elf32_arm_link_hash_entry *)
3282 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3283 table, string));
3284 if (ret != NULL)
3285 {
3286 ret->dyn_relocs = NULL;
3287 ret->tls_type = GOT_UNKNOWN;
3288 ret->tlsdesc_got = (bfd_vma) -1;
3289 ret->plt.thumb_refcount = 0;
3290 ret->plt.maybe_thumb_refcount = 0;
3291 ret->plt.noncall_refcount = 0;
3292 ret->plt.got_offset = -1;
3293 ret->is_iplt = FALSE;
3294 ret->export_glue = NULL;
3295
3296 ret->stub_cache = NULL;
3297 }
3298
3299 return (struct bfd_hash_entry *) ret;
3300 }
3301
3302 /* Ensure that we have allocated bookkeeping structures for ABFD's local
3303 symbols. */
3304
3305 static bfd_boolean
3306 elf32_arm_allocate_local_sym_info (bfd *abfd)
3307 {
3308 if (elf_local_got_refcounts (abfd) == NULL)
3309 {
3310 bfd_size_type num_syms;
3311 bfd_size_type size;
3312 char *data;
3313
3314 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
3315 size = num_syms * (sizeof (bfd_signed_vma)
3316 + sizeof (struct arm_local_iplt_info *)
3317 + sizeof (bfd_vma)
3318 + sizeof (char));
3319 data = bfd_zalloc (abfd, size);
3320 if (data == NULL)
3321 return FALSE;
3322
3323 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
3324 data += num_syms * sizeof (bfd_signed_vma);
3325
3326 elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
3327 data += num_syms * sizeof (struct arm_local_iplt_info *);
3328
3329 elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
3330 data += num_syms * sizeof (bfd_vma);
3331
3332 elf32_arm_local_got_tls_type (abfd) = data;
3333 }
3334 return TRUE;
3335 }
3336
3337 /* Return the .iplt information for local symbol R_SYMNDX, which belongs
3338 to input bfd ABFD. Create the information if it doesn't already exist.
3339 Return null if an allocation fails. */
3340
3341 static struct arm_local_iplt_info *
3342 elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
3343 {
3344 struct arm_local_iplt_info **ptr;
3345
3346 if (!elf32_arm_allocate_local_sym_info (abfd))
3347 return NULL;
3348
3349 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
3350 ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
3351 if (*ptr == NULL)
3352 *ptr = bfd_zalloc (abfd, sizeof (**ptr));
3353 return *ptr;
3354 }
3355
3356 /* Try to obtain PLT information for the symbol with index R_SYMNDX
3357 in ABFD's symbol table. If the symbol is global, H points to its
3358 hash table entry, otherwise H is null.
3359
3360 Return true if the symbol does have PLT information. When returning
3361 true, point *ROOT_PLT at the target-independent reference count/offset
3362 union and *ARM_PLT at the ARM-specific information. */
3363
3364 static bfd_boolean
3365 elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_table *globals,
3366 struct elf32_arm_link_hash_entry *h,
3367 unsigned long r_symndx, union gotplt_union **root_plt,
3368 struct arm_plt_info **arm_plt)
3369 {
3370 struct arm_local_iplt_info *local_iplt;
3371
3372 if (globals->root.splt == NULL && globals->root.iplt == NULL)
3373 return FALSE;
3374
3375 if (h != NULL)
3376 {
3377 *root_plt = &h->root.plt;
3378 *arm_plt = &h->plt;
3379 return TRUE;
3380 }
3381
3382 if (elf32_arm_local_iplt (abfd) == NULL)
3383 return FALSE;
3384
3385 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
3386 if (local_iplt == NULL)
3387 return FALSE;
3388
3389 *root_plt = &local_iplt->root;
3390 *arm_plt = &local_iplt->arm;
3391 return TRUE;
3392 }
3393
3394 /* Return true if the PLT described by ARM_PLT requires a Thumb stub
3395 before it. */
3396
3397 static bfd_boolean
3398 elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3399 struct arm_plt_info *arm_plt)
3400 {
3401 struct elf32_arm_link_hash_table *htab;
3402
3403 htab = elf32_arm_hash_table (info);
3404 return (arm_plt->thumb_refcount != 0
3405 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0));
3406 }
3407
3408 /* Return a pointer to the head of the dynamic reloc list that should
3409 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3410 ABFD's symbol table. Return null if an error occurs. */
3411
3412 static struct elf_dyn_relocs **
3413 elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3414 Elf_Internal_Sym *isym)
3415 {
3416 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3417 {
3418 struct arm_local_iplt_info *local_iplt;
3419
3420 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3421 if (local_iplt == NULL)
3422 return NULL;
3423 return &local_iplt->dyn_relocs;
3424 }
3425 else
3426 {
3427 /* Track dynamic relocs needed for local syms too.
3428 We really need local syms available to do this
3429 easily. Oh well. */
3430 asection *s;
3431 void *vpp;
3432
3433 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3434 if (s == NULL)
3435 abort ();
3436
3437 vpp = &elf_section_data (s)->local_dynrel;
3438 return (struct elf_dyn_relocs **) vpp;
3439 }
3440 }
3441
3442 /* Initialize an entry in the stub hash table. */
3443
3444 static struct bfd_hash_entry *
3445 stub_hash_newfunc (struct bfd_hash_entry *entry,
3446 struct bfd_hash_table *table,
3447 const char *string)
3448 {
3449 /* Allocate the structure if it has not already been allocated by a
3450 subclass. */
3451 if (entry == NULL)
3452 {
3453 entry = (struct bfd_hash_entry *)
3454 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
3455 if (entry == NULL)
3456 return entry;
3457 }
3458
3459 /* Call the allocation method of the superclass. */
3460 entry = bfd_hash_newfunc (entry, table, string);
3461 if (entry != NULL)
3462 {
3463 struct elf32_arm_stub_hash_entry *eh;
3464
3465 /* Initialize the local fields. */
3466 eh = (struct elf32_arm_stub_hash_entry *) entry;
3467 eh->stub_sec = NULL;
3468 eh->stub_offset = (bfd_vma) -1;
3469 eh->source_value = 0;
3470 eh->target_value = 0;
3471 eh->target_section = NULL;
3472 eh->orig_insn = 0;
3473 eh->stub_type = arm_stub_none;
3474 eh->stub_size = 0;
3475 eh->stub_template = NULL;
3476 eh->stub_template_size = -1;
3477 eh->h = NULL;
3478 eh->id_sec = NULL;
3479 eh->output_name = NULL;
3480 }
3481
3482 return entry;
3483 }
3484
3485 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
3486 shortcuts to them in our hash table. */
3487
3488 static bfd_boolean
3489 create_got_section (bfd *dynobj, struct bfd_link_info *info)
3490 {
3491 struct elf32_arm_link_hash_table *htab;
3492
3493 htab = elf32_arm_hash_table (info);
3494 if (htab == NULL)
3495 return FALSE;
3496
3497 /* BPABI objects never have a GOT, or associated sections. */
3498 if (htab->symbian_p)
3499 return TRUE;
3500
3501 if (! _bfd_elf_create_got_section (dynobj, info))
3502 return FALSE;
3503
3504 return TRUE;
3505 }
3506
3507 /* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3508
3509 static bfd_boolean
3510 create_ifunc_sections (struct bfd_link_info *info)
3511 {
3512 struct elf32_arm_link_hash_table *htab;
3513 const struct elf_backend_data *bed;
3514 bfd *dynobj;
3515 asection *s;
3516 flagword flags;
3517
3518 htab = elf32_arm_hash_table (info);
3519 dynobj = htab->root.dynobj;
3520 bed = get_elf_backend_data (dynobj);
3521 flags = bed->dynamic_sec_flags;
3522
3523 if (htab->root.iplt == NULL)
3524 {
3525 s = bfd_make_section_anyway_with_flags (dynobj, ".iplt",
3526 flags | SEC_READONLY | SEC_CODE);
3527 if (s == NULL
3528 || !bfd_set_section_alignment (dynobj, s, bed->plt_alignment))
3529 return FALSE;
3530 htab->root.iplt = s;
3531 }
3532
3533 if (htab->root.irelplt == NULL)
3534 {
3535 s = bfd_make_section_anyway_with_flags (dynobj,
3536 RELOC_SECTION (htab, ".iplt"),
3537 flags | SEC_READONLY);
3538 if (s == NULL
3539 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3540 return FALSE;
3541 htab->root.irelplt = s;
3542 }
3543
3544 if (htab->root.igotplt == NULL)
3545 {
3546 s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags);
3547 if (s == NULL
3548 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3549 return FALSE;
3550 htab->root.igotplt = s;
3551 }
3552 return TRUE;
3553 }
3554
3555 /* Determine if we're dealing with a Thumb only architecture. */
3556
3557 static bfd_boolean
3558 using_thumb_only (struct elf32_arm_link_hash_table *globals)
3559 {
3560 int arch;
3561 int profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3562 Tag_CPU_arch_profile);
3563
3564 if (profile)
3565 return profile == 'M';
3566
3567 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3568
3569 /* Force return logic to be reviewed for each new architecture. */
3570 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8M_MAIN);
3571
3572 if (arch == TAG_CPU_ARCH_V6_M
3573 || arch == TAG_CPU_ARCH_V6S_M
3574 || arch == TAG_CPU_ARCH_V7E_M
3575 || arch == TAG_CPU_ARCH_V8M_BASE
3576 || arch == TAG_CPU_ARCH_V8M_MAIN)
3577 return TRUE;
3578
3579 return FALSE;
3580 }
3581
3582 /* Determine if we're dealing with a Thumb-2 object. */
3583
3584 static bfd_boolean
3585 using_thumb2 (struct elf32_arm_link_hash_table *globals)
3586 {
3587 int arch;
3588 int thumb_isa = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3589 Tag_THUMB_ISA_use);
3590
3591 if (thumb_isa)
3592 return thumb_isa == 2;
3593
3594 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3595
3596 /* Force return logic to be reviewed for each new architecture. */
3597 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8M_MAIN);
3598
3599 return (arch == TAG_CPU_ARCH_V6T2
3600 || arch == TAG_CPU_ARCH_V7
3601 || arch == TAG_CPU_ARCH_V7E_M
3602 || arch == TAG_CPU_ARCH_V8
3603 || arch == TAG_CPU_ARCH_V8R
3604 || arch == TAG_CPU_ARCH_V8M_MAIN);
3605 }
3606
3607 /* Determine whether Thumb-2 BL instruction is available. */
3608
3609 static bfd_boolean
3610 using_thumb2_bl (struct elf32_arm_link_hash_table *globals)
3611 {
3612 int arch =
3613 bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3614
3615 /* Force return logic to be reviewed for each new architecture. */
3616 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8M_MAIN);
3617
3618 /* Architecture was introduced after ARMv6T2 (eg. ARMv6-M). */
3619 return (arch == TAG_CPU_ARCH_V6T2
3620 || arch >= TAG_CPU_ARCH_V7);
3621 }
3622
3623 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3624 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
3625 hash table. */
3626
3627 static bfd_boolean
3628 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3629 {
3630 struct elf32_arm_link_hash_table *htab;
3631
3632 htab = elf32_arm_hash_table (info);
3633 if (htab == NULL)
3634 return FALSE;
3635
3636 if (!htab->root.sgot && !create_got_section (dynobj, info))
3637 return FALSE;
3638
3639 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3640 return FALSE;
3641
3642 if (htab->vxworks_p)
3643 {
3644 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
3645 return FALSE;
3646
3647 if (bfd_link_pic (info))
3648 {
3649 htab->plt_header_size = 0;
3650 htab->plt_entry_size
3651 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3652 }
3653 else
3654 {
3655 htab->plt_header_size
3656 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3657 htab->plt_entry_size
3658 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3659 }
3660
3661 if (elf_elfheader (dynobj))
3662 elf_elfheader (dynobj)->e_ident[EI_CLASS] = ELFCLASS32;
3663 }
3664 else
3665 {
3666 /* PR ld/16017
3667 Test for thumb only architectures. Note - we cannot just call
3668 using_thumb_only() as the attributes in the output bfd have not been
3669 initialised at this point, so instead we use the input bfd. */
3670 bfd * saved_obfd = htab->obfd;
3671
3672 htab->obfd = dynobj;
3673 if (using_thumb_only (htab))
3674 {
3675 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
3676 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
3677 }
3678 htab->obfd = saved_obfd;
3679 }
3680
3681 if (!htab->root.splt
3682 || !htab->root.srelplt
3683 || !htab->root.sdynbss
3684 || (!bfd_link_pic (info) && !htab->root.srelbss))
3685 abort ();
3686
3687 return TRUE;
3688 }
3689
3690 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3691
3692 static void
3693 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
3694 struct elf_link_hash_entry *dir,
3695 struct elf_link_hash_entry *ind)
3696 {
3697 struct elf32_arm_link_hash_entry *edir, *eind;
3698
3699 edir = (struct elf32_arm_link_hash_entry *) dir;
3700 eind = (struct elf32_arm_link_hash_entry *) ind;
3701
3702 if (eind->dyn_relocs != NULL)
3703 {
3704 if (edir->dyn_relocs != NULL)
3705 {
3706 struct elf_dyn_relocs **pp;
3707 struct elf_dyn_relocs *p;
3708
3709 /* Add reloc counts against the indirect sym to the direct sym
3710 list. Merge any entries against the same section. */
3711 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3712 {
3713 struct elf_dyn_relocs *q;
3714
3715 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3716 if (q->sec == p->sec)
3717 {
3718 q->pc_count += p->pc_count;
3719 q->count += p->count;
3720 *pp = p->next;
3721 break;
3722 }
3723 if (q == NULL)
3724 pp = &p->next;
3725 }
3726 *pp = edir->dyn_relocs;
3727 }
3728
3729 edir->dyn_relocs = eind->dyn_relocs;
3730 eind->dyn_relocs = NULL;
3731 }
3732
3733 if (ind->root.type == bfd_link_hash_indirect)
3734 {
3735 /* Copy over PLT info. */
3736 edir->plt.thumb_refcount += eind->plt.thumb_refcount;
3737 eind->plt.thumb_refcount = 0;
3738 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
3739 eind->plt.maybe_thumb_refcount = 0;
3740 edir->plt.noncall_refcount += eind->plt.noncall_refcount;
3741 eind->plt.noncall_refcount = 0;
3742
3743 /* We should only allocate a function to .iplt once the final
3744 symbol information is known. */
3745 BFD_ASSERT (!eind->is_iplt);
3746
3747 if (dir->got.refcount <= 0)
3748 {
3749 edir->tls_type = eind->tls_type;
3750 eind->tls_type = GOT_UNKNOWN;
3751 }
3752 }
3753
3754 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
3755 }
3756
3757 /* Destroy an ARM elf linker hash table. */
3758
3759 static void
3760 elf32_arm_link_hash_table_free (bfd *obfd)
3761 {
3762 struct elf32_arm_link_hash_table *ret
3763 = (struct elf32_arm_link_hash_table *) obfd->link.hash;
3764
3765 bfd_hash_table_free (&ret->stub_hash_table);
3766 _bfd_elf_link_hash_table_free (obfd);
3767 }
3768
3769 /* Create an ARM elf linker hash table. */
3770
3771 static struct bfd_link_hash_table *
3772 elf32_arm_link_hash_table_create (bfd *abfd)
3773 {
3774 struct elf32_arm_link_hash_table *ret;
3775 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
3776
3777 ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt);
3778 if (ret == NULL)
3779 return NULL;
3780
3781 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
3782 elf32_arm_link_hash_newfunc,
3783 sizeof (struct elf32_arm_link_hash_entry),
3784 ARM_ELF_DATA))
3785 {
3786 free (ret);
3787 return NULL;
3788 }
3789
3790 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
3791 ret->stm32l4xx_fix = BFD_ARM_STM32L4XX_FIX_NONE;
3792 #ifdef FOUR_WORD_PLT
3793 ret->plt_header_size = 16;
3794 ret->plt_entry_size = 16;
3795 #else
3796 ret->plt_header_size = 20;
3797 ret->plt_entry_size = elf32_arm_use_long_plt_entry ? 16 : 12;
3798 #endif
3799 ret->use_rel = 1;
3800 ret->obfd = abfd;
3801
3802 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
3803 sizeof (struct elf32_arm_stub_hash_entry)))
3804 {
3805 _bfd_elf_link_hash_table_free (abfd);
3806 return NULL;
3807 }
3808 ret->root.root.hash_table_free = elf32_arm_link_hash_table_free;
3809
3810 return &ret->root.root;
3811 }
3812
3813 /* Determine what kind of NOPs are available. */
3814
3815 static bfd_boolean
3816 arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
3817 {
3818 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3819 Tag_CPU_arch);
3820
3821 /* Force return logic to be reviewed for each new architecture. */
3822 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8M_MAIN);
3823
3824 return (arch == TAG_CPU_ARCH_V6T2
3825 || arch == TAG_CPU_ARCH_V6K
3826 || arch == TAG_CPU_ARCH_V7
3827 || arch == TAG_CPU_ARCH_V8
3828 || arch == TAG_CPU_ARCH_V8R);
3829 }
3830
3831 static bfd_boolean
3832 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
3833 {
3834 switch (stub_type)
3835 {
3836 case arm_stub_long_branch_thumb_only:
3837 case arm_stub_long_branch_thumb2_only:
3838 case arm_stub_long_branch_thumb2_only_pure:
3839 case arm_stub_long_branch_v4t_thumb_arm:
3840 case arm_stub_short_branch_v4t_thumb_arm:
3841 case arm_stub_long_branch_v4t_thumb_arm_pic:
3842 case arm_stub_long_branch_v4t_thumb_tls_pic:
3843 case arm_stub_long_branch_thumb_only_pic:
3844 case arm_stub_cmse_branch_thumb_only:
3845 return TRUE;
3846 case arm_stub_none:
3847 BFD_FAIL ();
3848 return FALSE;
3849 break;
3850 default:
3851 return FALSE;
3852 }
3853 }
3854
3855 /* Determine the type of stub needed, if any, for a call. */
3856
3857 static enum elf32_arm_stub_type
3858 arm_type_of_stub (struct bfd_link_info *info,
3859 asection *input_sec,
3860 const Elf_Internal_Rela *rel,
3861 unsigned char st_type,
3862 enum arm_st_branch_type *actual_branch_type,
3863 struct elf32_arm_link_hash_entry *hash,
3864 bfd_vma destination,
3865 asection *sym_sec,
3866 bfd *input_bfd,
3867 const char *name)
3868 {
3869 bfd_vma location;
3870 bfd_signed_vma branch_offset;
3871 unsigned int r_type;
3872 struct elf32_arm_link_hash_table * globals;
3873 bfd_boolean thumb2, thumb2_bl, thumb_only;
3874 enum elf32_arm_stub_type stub_type = arm_stub_none;
3875 int use_plt = 0;
3876 enum arm_st_branch_type branch_type = *actual_branch_type;
3877 union gotplt_union *root_plt;
3878 struct arm_plt_info *arm_plt;
3879 int arch;
3880 int thumb2_movw;
3881
3882 if (branch_type == ST_BRANCH_LONG)
3883 return stub_type;
3884
3885 globals = elf32_arm_hash_table (info);
3886 if (globals == NULL)
3887 return stub_type;
3888
3889 thumb_only = using_thumb_only (globals);
3890 thumb2 = using_thumb2 (globals);
3891 thumb2_bl = using_thumb2_bl (globals);
3892
3893 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3894
3895 /* True for architectures that implement the thumb2 movw instruction. */
3896 thumb2_movw = thumb2 || (arch == TAG_CPU_ARCH_V8M_BASE);
3897
3898 /* Determine where the call point is. */
3899 location = (input_sec->output_offset
3900 + input_sec->output_section->vma
3901 + rel->r_offset);
3902
3903 r_type = ELF32_R_TYPE (rel->r_info);
3904
3905 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
3906 are considering a function call relocation. */
3907 if (thumb_only && (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3908 || r_type == R_ARM_THM_JUMP19)
3909 && branch_type == ST_BRANCH_TO_ARM)
3910 branch_type = ST_BRANCH_TO_THUMB;
3911
3912 /* For TLS call relocs, it is the caller's responsibility to provide
3913 the address of the appropriate trampoline. */
3914 if (r_type != R_ARM_TLS_CALL
3915 && r_type != R_ARM_THM_TLS_CALL
3916 && elf32_arm_get_plt_info (input_bfd, globals, hash,
3917 ELF32_R_SYM (rel->r_info), &root_plt,
3918 &arm_plt)
3919 && root_plt->offset != (bfd_vma) -1)
3920 {
3921 asection *splt;
3922
3923 if (hash == NULL || hash->is_iplt)
3924 splt = globals->root.iplt;
3925 else
3926 splt = globals->root.splt;
3927 if (splt != NULL)
3928 {
3929 use_plt = 1;
3930
3931 /* Note when dealing with PLT entries: the main PLT stub is in
3932 ARM mode, so if the branch is in Thumb mode, another
3933 Thumb->ARM stub will be inserted later just before the ARM
3934 PLT stub. If a long branch stub is needed, we'll add a
3935 Thumb->Arm one and branch directly to the ARM PLT entry.
3936 Here, we have to check if a pre-PLT Thumb->ARM stub
3937 is needed and if it will be close enough. */
3938
3939 destination = (splt->output_section->vma
3940 + splt->output_offset
3941 + root_plt->offset);
3942 st_type = STT_FUNC;
3943
3944 /* Thumb branch/call to PLT: it can become a branch to ARM
3945 or to Thumb. We must perform the same checks and
3946 corrections as in elf32_arm_final_link_relocate. */
3947 if ((r_type == R_ARM_THM_CALL)
3948 || (r_type == R_ARM_THM_JUMP24))
3949 {
3950 if (globals->use_blx
3951 && r_type == R_ARM_THM_CALL
3952 && !thumb_only)
3953 {
3954 /* If the Thumb BLX instruction is available, convert
3955 the BL to a BLX instruction to call the ARM-mode
3956 PLT entry. */
3957 branch_type = ST_BRANCH_TO_ARM;
3958 }
3959 else
3960 {
3961 if (!thumb_only)
3962 /* Target the Thumb stub before the ARM PLT entry. */
3963 destination -= PLT_THUMB_STUB_SIZE;
3964 branch_type = ST_BRANCH_TO_THUMB;
3965 }
3966 }
3967 else
3968 {
3969 branch_type = ST_BRANCH_TO_ARM;
3970 }
3971 }
3972 }
3973 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
3974 BFD_ASSERT (st_type != STT_GNU_IFUNC);
3975
3976 branch_offset = (bfd_signed_vma)(destination - location);
3977
3978 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3979 || r_type == R_ARM_THM_TLS_CALL || r_type == R_ARM_THM_JUMP19)
3980 {
3981 /* Handle cases where:
3982 - this call goes too far (different Thumb/Thumb2 max
3983 distance)
3984 - it's a Thumb->Arm call and blx is not available, or it's a
3985 Thumb->Arm branch (not bl). A stub is needed in this case,
3986 but only if this call is not through a PLT entry. Indeed,
3987 PLT stubs handle mode switching already. */
3988 if ((!thumb2_bl
3989 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
3990 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
3991 || (thumb2_bl
3992 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
3993 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
3994 || (thumb2
3995 && (branch_offset > THM2_MAX_FWD_COND_BRANCH_OFFSET
3996 || (branch_offset < THM2_MAX_BWD_COND_BRANCH_OFFSET))
3997 && (r_type == R_ARM_THM_JUMP19))
3998 || (branch_type == ST_BRANCH_TO_ARM
3999 && (((r_type == R_ARM_THM_CALL
4000 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
4001 || (r_type == R_ARM_THM_JUMP24)
4002 || (r_type == R_ARM_THM_JUMP19))
4003 && !use_plt))
4004 {
4005 /* If we need to insert a Thumb-Thumb long branch stub to a
4006 PLT, use one that branches directly to the ARM PLT
4007 stub. If we pretended we'd use the pre-PLT Thumb->ARM
4008 stub, undo this now. */
4009 if ((branch_type == ST_BRANCH_TO_THUMB) && use_plt && !thumb_only)
4010 {
4011 branch_type = ST_BRANCH_TO_ARM;
4012 branch_offset += PLT_THUMB_STUB_SIZE;
4013 }
4014
4015 if (branch_type == ST_BRANCH_TO_THUMB)
4016 {
4017 /* Thumb to thumb. */
4018 if (!thumb_only)
4019 {
4020 if (input_sec->flags & SEC_ELF_PURECODE)
4021 _bfd_error_handler
4022 (_("%B(%A): warning: long branch veneers used in"
4023 " section with SHF_ARM_PURECODE section"
4024 " attribute is only supported for M-profile"
4025 " targets that implement the movw instruction."),
4026 input_bfd, input_sec);
4027
4028 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4029 /* PIC stubs. */
4030 ? ((globals->use_blx
4031 && (r_type == R_ARM_THM_CALL))
4032 /* V5T and above. Stub starts with ARM code, so
4033 we must be able to switch mode before
4034 reaching it, which is only possible for 'bl'
4035 (ie R_ARM_THM_CALL relocation). */
4036 ? arm_stub_long_branch_any_thumb_pic
4037 /* On V4T, use Thumb code only. */
4038 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4039
4040 /* non-PIC stubs. */
4041 : ((globals->use_blx
4042 && (r_type == R_ARM_THM_CALL))
4043 /* V5T and above. */
4044 ? arm_stub_long_branch_any_any
4045 /* V4T. */
4046 : arm_stub_long_branch_v4t_thumb_thumb);
4047 }
4048 else
4049 {
4050 if (thumb2_movw && (input_sec->flags & SEC_ELF_PURECODE))
4051 stub_type = arm_stub_long_branch_thumb2_only_pure;
4052 else
4053 {
4054 if (input_sec->flags & SEC_ELF_PURECODE)
4055 _bfd_error_handler
4056 (_("%B(%A): warning: long branch veneers used in"
4057 " section with SHF_ARM_PURECODE section"
4058 " attribute is only supported for M-profile"
4059 " targets that implement the movw instruction."),
4060 input_bfd, input_sec);
4061
4062 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4063 /* PIC stub. */
4064 ? arm_stub_long_branch_thumb_only_pic
4065 /* non-PIC stub. */
4066 : (thumb2 ? arm_stub_long_branch_thumb2_only
4067 : arm_stub_long_branch_thumb_only);
4068 }
4069 }
4070 }
4071 else
4072 {
4073 if (input_sec->flags & SEC_ELF_PURECODE)
4074 _bfd_error_handler
4075 (_("%B(%A): warning: long branch veneers used in"
4076 " section with SHF_ARM_PURECODE section"
4077 " attribute is only supported" " for M-profile"
4078 " targets that implement the movw instruction."),
4079 input_bfd, input_sec);
4080
4081 /* Thumb to arm. */
4082 if (sym_sec != NULL
4083 && sym_sec->owner != NULL
4084 && !INTERWORK_FLAG (sym_sec->owner))
4085 {
4086 _bfd_error_handler
4087 (_("%B(%s): warning: interworking not enabled.\n"
4088 " first occurrence: %B: Thumb call to ARM"),
4089 sym_sec->owner, name, input_bfd);
4090 }
4091
4092 stub_type =
4093 (bfd_link_pic (info) | globals->pic_veneer)
4094 /* PIC stubs. */
4095 ? (r_type == R_ARM_THM_TLS_CALL
4096 /* TLS PIC stubs. */
4097 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
4098 : arm_stub_long_branch_v4t_thumb_tls_pic)
4099 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
4100 /* V5T PIC and above. */
4101 ? arm_stub_long_branch_any_arm_pic
4102 /* V4T PIC stub. */
4103 : arm_stub_long_branch_v4t_thumb_arm_pic))
4104
4105 /* non-PIC stubs. */
4106 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
4107 /* V5T and above. */
4108 ? arm_stub_long_branch_any_any
4109 /* V4T. */
4110 : arm_stub_long_branch_v4t_thumb_arm);
4111
4112 /* Handle v4t short branches. */
4113 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4114 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4115 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4116 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4117 }
4118 }
4119 }
4120 else if (r_type == R_ARM_CALL
4121 || r_type == R_ARM_JUMP24
4122 || r_type == R_ARM_PLT32
4123 || r_type == R_ARM_TLS_CALL)
4124 {
4125 if (input_sec->flags & SEC_ELF_PURECODE)
4126 _bfd_error_handler
4127 (_("%B(%A): warning: long branch veneers used in"
4128 " section with SHF_ARM_PURECODE section"
4129 " attribute is only supported for M-profile"
4130 " targets that implement the movw instruction."),
4131 input_bfd, input_sec);
4132 if (branch_type == ST_BRANCH_TO_THUMB)
4133 {
4134 /* Arm to thumb. */
4135
4136 if (sym_sec != NULL
4137 && sym_sec->owner != NULL
4138 && !INTERWORK_FLAG (sym_sec->owner))
4139 {
4140 _bfd_error_handler
4141 (_("%B(%s): warning: interworking not enabled.\n"
4142 " first occurrence: %B: ARM call to Thumb"),
4143 sym_sec->owner, name, input_bfd);
4144 }
4145
4146 /* We have an extra 2-bytes reach because of
4147 the mode change (bit 24 (H) of BLX encoding). */
4148 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4149 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4150 || (r_type == R_ARM_CALL && !globals->use_blx)
4151 || (r_type == R_ARM_JUMP24)
4152 || (r_type == R_ARM_PLT32))
4153 {
4154 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4155 /* PIC stubs. */
4156 ? ((globals->use_blx)
4157 /* V5T and above. */
4158 ? arm_stub_long_branch_any_thumb_pic
4159 /* V4T stub. */
4160 : arm_stub_long_branch_v4t_arm_thumb_pic)
4161
4162 /* non-PIC stubs. */
4163 : ((globals->use_blx)
4164 /* V5T and above. */
4165 ? arm_stub_long_branch_any_any
4166 /* V4T. */
4167 : arm_stub_long_branch_v4t_arm_thumb);
4168 }
4169 }
4170 else
4171 {
4172 /* Arm to arm. */
4173 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4174 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4175 {
4176 stub_type =
4177 (bfd_link_pic (info) | globals->pic_veneer)
4178 /* PIC stubs. */
4179 ? (r_type == R_ARM_TLS_CALL
4180 /* TLS PIC Stub. */
4181 ? arm_stub_long_branch_any_tls_pic
4182 : (globals->nacl_p
4183 ? arm_stub_long_branch_arm_nacl_pic
4184 : arm_stub_long_branch_any_arm_pic))
4185 /* non-PIC stubs. */
4186 : (globals->nacl_p
4187 ? arm_stub_long_branch_arm_nacl
4188 : arm_stub_long_branch_any_any);
4189 }
4190 }
4191 }
4192
4193 /* If a stub is needed, record the actual destination type. */
4194 if (stub_type != arm_stub_none)
4195 *actual_branch_type = branch_type;
4196
4197 return stub_type;
4198 }
4199
4200 /* Build a name for an entry in the stub hash table. */
4201
4202 static char *
4203 elf32_arm_stub_name (const asection *input_section,
4204 const asection *sym_sec,
4205 const struct elf32_arm_link_hash_entry *hash,
4206 const Elf_Internal_Rela *rel,
4207 enum elf32_arm_stub_type stub_type)
4208 {
4209 char *stub_name;
4210 bfd_size_type len;
4211
4212 if (hash)
4213 {
4214 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
4215 stub_name = (char *) bfd_malloc (len);
4216 if (stub_name != NULL)
4217 sprintf (stub_name, "%08x_%s+%x_%d",
4218 input_section->id & 0xffffffff,
4219 hash->root.root.root.string,
4220 (int) rel->r_addend & 0xffffffff,
4221 (int) stub_type);
4222 }
4223 else
4224 {
4225 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
4226 stub_name = (char *) bfd_malloc (len);
4227 if (stub_name != NULL)
4228 sprintf (stub_name, "%08x_%x:%x+%x_%d",
4229 input_section->id & 0xffffffff,
4230 sym_sec->id & 0xffffffff,
4231 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
4232 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
4233 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
4234 (int) rel->r_addend & 0xffffffff,
4235 (int) stub_type);
4236 }
4237
4238 return stub_name;
4239 }
4240
4241 /* Look up an entry in the stub hash. Stub entries are cached because
4242 creating the stub name takes a bit of time. */
4243
4244 static struct elf32_arm_stub_hash_entry *
4245 elf32_arm_get_stub_entry (const asection *input_section,
4246 const asection *sym_sec,
4247 struct elf_link_hash_entry *hash,
4248 const Elf_Internal_Rela *rel,
4249 struct elf32_arm_link_hash_table *htab,
4250 enum elf32_arm_stub_type stub_type)
4251 {
4252 struct elf32_arm_stub_hash_entry *stub_entry;
4253 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
4254 const asection *id_sec;
4255
4256 if ((input_section->flags & SEC_CODE) == 0)
4257 return NULL;
4258
4259 /* If this input section is part of a group of sections sharing one
4260 stub section, then use the id of the first section in the group.
4261 Stub names need to include a section id, as there may well be
4262 more than one stub used to reach say, printf, and we need to
4263 distinguish between them. */
4264 BFD_ASSERT (input_section->id <= htab->top_id);
4265 id_sec = htab->stub_group[input_section->id].link_sec;
4266
4267 if (h != NULL && h->stub_cache != NULL
4268 && h->stub_cache->h == h
4269 && h->stub_cache->id_sec == id_sec
4270 && h->stub_cache->stub_type == stub_type)
4271 {
4272 stub_entry = h->stub_cache;
4273 }
4274 else
4275 {
4276 char *stub_name;
4277
4278 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
4279 if (stub_name == NULL)
4280 return NULL;
4281
4282 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
4283 stub_name, FALSE, FALSE);
4284 if (h != NULL)
4285 h->stub_cache = stub_entry;
4286
4287 free (stub_name);
4288 }
4289
4290 return stub_entry;
4291 }
4292
4293 /* Whether veneers of type STUB_TYPE require to be in a dedicated output
4294 section. */
4295
4296 static bfd_boolean
4297 arm_dedicated_stub_output_section_required (enum elf32_arm_stub_type stub_type)
4298 {
4299 if (stub_type >= max_stub_type)
4300 abort (); /* Should be unreachable. */
4301
4302 switch (stub_type)
4303 {
4304 case arm_stub_cmse_branch_thumb_only:
4305 return TRUE;
4306
4307 default:
4308 return FALSE;
4309 }
4310
4311 abort (); /* Should be unreachable. */
4312 }
4313
4314 /* Required alignment (as a power of 2) for the dedicated section holding
4315 veneers of type STUB_TYPE, or 0 if veneers of this type are interspersed
4316 with input sections. */
4317
4318 static int
4319 arm_dedicated_stub_output_section_required_alignment
4320 (enum elf32_arm_stub_type stub_type)
4321 {
4322 if (stub_type >= max_stub_type)
4323 abort (); /* Should be unreachable. */
4324
4325 switch (stub_type)
4326 {
4327 /* Vectors of Secure Gateway veneers must be aligned on 32byte
4328 boundary. */
4329 case arm_stub_cmse_branch_thumb_only:
4330 return 5;
4331
4332 default:
4333 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4334 return 0;
4335 }
4336
4337 abort (); /* Should be unreachable. */
4338 }
4339
4340 /* Name of the dedicated output section to put veneers of type STUB_TYPE, or
4341 NULL if veneers of this type are interspersed with input sections. */
4342
4343 static const char *
4344 arm_dedicated_stub_output_section_name (enum elf32_arm_stub_type stub_type)
4345 {
4346 if (stub_type >= max_stub_type)
4347 abort (); /* Should be unreachable. */
4348
4349 switch (stub_type)
4350 {
4351 case arm_stub_cmse_branch_thumb_only:
4352 return ".gnu.sgstubs";
4353
4354 default:
4355 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4356 return NULL;
4357 }
4358
4359 abort (); /* Should be unreachable. */
4360 }
4361
4362 /* If veneers of type STUB_TYPE should go in a dedicated output section,
4363 returns the address of the hash table field in HTAB holding a pointer to the
4364 corresponding input section. Otherwise, returns NULL. */
4365
4366 static asection **
4367 arm_dedicated_stub_input_section_ptr (struct elf32_arm_link_hash_table *htab,
4368 enum elf32_arm_stub_type stub_type)
4369 {
4370 if (stub_type >= max_stub_type)
4371 abort (); /* Should be unreachable. */
4372
4373 switch (stub_type)
4374 {
4375 case arm_stub_cmse_branch_thumb_only:
4376 return &htab->cmse_stub_sec;
4377
4378 default:
4379 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4380 return NULL;
4381 }
4382
4383 abort (); /* Should be unreachable. */
4384 }
4385
4386 /* Find or create a stub section to contain a stub of type STUB_TYPE. SECTION
4387 is the section that branch into veneer and can be NULL if stub should go in
4388 a dedicated output section. Returns a pointer to the stub section, and the
4389 section to which the stub section will be attached (in *LINK_SEC_P).
4390 LINK_SEC_P may be NULL. */
4391
4392 static asection *
4393 elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
4394 struct elf32_arm_link_hash_table *htab,
4395 enum elf32_arm_stub_type stub_type)
4396 {
4397 asection *link_sec, *out_sec, **stub_sec_p;
4398 const char *stub_sec_prefix;
4399 bfd_boolean dedicated_output_section =
4400 arm_dedicated_stub_output_section_required (stub_type);
4401 int align;
4402
4403 if (dedicated_output_section)
4404 {
4405 bfd *output_bfd = htab->obfd;
4406 const char *out_sec_name =
4407 arm_dedicated_stub_output_section_name (stub_type);
4408 link_sec = NULL;
4409 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
4410 stub_sec_prefix = out_sec_name;
4411 align = arm_dedicated_stub_output_section_required_alignment (stub_type);
4412 out_sec = bfd_get_section_by_name (output_bfd, out_sec_name);
4413 if (out_sec == NULL)
4414 {
4415 _bfd_error_handler (_("No address assigned to the veneers output "
4416 "section %s"), out_sec_name);
4417 return NULL;
4418 }
4419 }
4420 else
4421 {
4422 BFD_ASSERT (section->id <= htab->top_id);
4423 link_sec = htab->stub_group[section->id].link_sec;
4424 BFD_ASSERT (link_sec != NULL);
4425 stub_sec_p = &htab->stub_group[section->id].stub_sec;
4426 if (*stub_sec_p == NULL)
4427 stub_sec_p = &htab->stub_group[link_sec->id].stub_sec;
4428 stub_sec_prefix = link_sec->name;
4429 out_sec = link_sec->output_section;
4430 align = htab->nacl_p ? 4 : 3;
4431 }
4432
4433 if (*stub_sec_p == NULL)
4434 {
4435 size_t namelen;
4436 bfd_size_type len;
4437 char *s_name;
4438
4439 namelen = strlen (stub_sec_prefix);
4440 len = namelen + sizeof (STUB_SUFFIX);
4441 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
4442 if (s_name == NULL)
4443 return NULL;
4444
4445 memcpy (s_name, stub_sec_prefix, namelen);
4446 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4447 *stub_sec_p = (*htab->add_stub_section) (s_name, out_sec, link_sec,
4448 align);
4449 if (*stub_sec_p == NULL)
4450 return NULL;
4451
4452 out_sec->flags |= SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_CODE
4453 | SEC_HAS_CONTENTS | SEC_RELOC | SEC_IN_MEMORY
4454 | SEC_KEEP;
4455 }
4456
4457 if (!dedicated_output_section)
4458 htab->stub_group[section->id].stub_sec = *stub_sec_p;
4459
4460 if (link_sec_p)
4461 *link_sec_p = link_sec;
4462
4463 return *stub_sec_p;
4464 }
4465
4466 /* Add a new stub entry to the stub hash. Not all fields of the new
4467 stub entry are initialised. */
4468
4469 static struct elf32_arm_stub_hash_entry *
4470 elf32_arm_add_stub (const char *stub_name, asection *section,
4471 struct elf32_arm_link_hash_table *htab,
4472 enum elf32_arm_stub_type stub_type)
4473 {
4474 asection *link_sec;
4475 asection *stub_sec;
4476 struct elf32_arm_stub_hash_entry *stub_entry;
4477
4478 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab,
4479 stub_type);
4480 if (stub_sec == NULL)
4481 return NULL;
4482
4483 /* Enter this entry into the linker stub hash table. */
4484 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4485 TRUE, FALSE);
4486 if (stub_entry == NULL)
4487 {
4488 if (section == NULL)
4489 section = stub_sec;
4490 _bfd_error_handler (_("%B: cannot create stub entry %s"),
4491 section->owner, stub_name);
4492 return NULL;
4493 }
4494
4495 stub_entry->stub_sec = stub_sec;
4496 stub_entry->stub_offset = (bfd_vma) -1;
4497 stub_entry->id_sec = link_sec;
4498
4499 return stub_entry;
4500 }
4501
4502 /* Store an Arm insn into an output section not processed by
4503 elf32_arm_write_section. */
4504
4505 static void
4506 put_arm_insn (struct elf32_arm_link_hash_table * htab,
4507 bfd * output_bfd, bfd_vma val, void * ptr)
4508 {
4509 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4510 bfd_putl32 (val, ptr);
4511 else
4512 bfd_putb32 (val, ptr);
4513 }
4514
4515 /* Store a 16-bit Thumb insn into an output section not processed by
4516 elf32_arm_write_section. */
4517
4518 static void
4519 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
4520 bfd * output_bfd, bfd_vma val, void * ptr)
4521 {
4522 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4523 bfd_putl16 (val, ptr);
4524 else
4525 bfd_putb16 (val, ptr);
4526 }
4527
4528 /* Store a Thumb2 insn into an output section not processed by
4529 elf32_arm_write_section. */
4530
4531 static void
4532 put_thumb2_insn (struct elf32_arm_link_hash_table * htab,
4533 bfd * output_bfd, bfd_vma val, bfd_byte * ptr)
4534 {
4535 /* T2 instructions are 16-bit streamed. */
4536 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4537 {
4538 bfd_putl16 ((val >> 16) & 0xffff, ptr);
4539 bfd_putl16 ((val & 0xffff), ptr + 2);
4540 }
4541 else
4542 {
4543 bfd_putb16 ((val >> 16) & 0xffff, ptr);
4544 bfd_putb16 ((val & 0xffff), ptr + 2);
4545 }
4546 }
4547
4548 /* If it's possible to change R_TYPE to a more efficient access
4549 model, return the new reloc type. */
4550
4551 static unsigned
4552 elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
4553 struct elf_link_hash_entry *h)
4554 {
4555 int is_local = (h == NULL);
4556
4557 if (bfd_link_pic (info)
4558 || (h && h->root.type == bfd_link_hash_undefweak))
4559 return r_type;
4560
4561 /* We do not support relaxations for Old TLS models. */
4562 switch (r_type)
4563 {
4564 case R_ARM_TLS_GOTDESC:
4565 case R_ARM_TLS_CALL:
4566 case R_ARM_THM_TLS_CALL:
4567 case R_ARM_TLS_DESCSEQ:
4568 case R_ARM_THM_TLS_DESCSEQ:
4569 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
4570 }
4571
4572 return r_type;
4573 }
4574
4575 static bfd_reloc_status_type elf32_arm_final_link_relocate
4576 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
4577 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
4578 const char *, unsigned char, enum arm_st_branch_type,
4579 struct elf_link_hash_entry *, bfd_boolean *, char **);
4580
4581 static unsigned int
4582 arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
4583 {
4584 switch (stub_type)
4585 {
4586 case arm_stub_a8_veneer_b_cond:
4587 case arm_stub_a8_veneer_b:
4588 case arm_stub_a8_veneer_bl:
4589 return 2;
4590
4591 case arm_stub_long_branch_any_any:
4592 case arm_stub_long_branch_v4t_arm_thumb:
4593 case arm_stub_long_branch_thumb_only:
4594 case arm_stub_long_branch_thumb2_only:
4595 case arm_stub_long_branch_thumb2_only_pure:
4596 case arm_stub_long_branch_v4t_thumb_thumb:
4597 case arm_stub_long_branch_v4t_thumb_arm:
4598 case arm_stub_short_branch_v4t_thumb_arm:
4599 case arm_stub_long_branch_any_arm_pic:
4600 case arm_stub_long_branch_any_thumb_pic:
4601 case arm_stub_long_branch_v4t_thumb_thumb_pic:
4602 case arm_stub_long_branch_v4t_arm_thumb_pic:
4603 case arm_stub_long_branch_v4t_thumb_arm_pic:
4604 case arm_stub_long_branch_thumb_only_pic:
4605 case arm_stub_long_branch_any_tls_pic:
4606 case arm_stub_long_branch_v4t_thumb_tls_pic:
4607 case arm_stub_cmse_branch_thumb_only:
4608 case arm_stub_a8_veneer_blx:
4609 return 4;
4610
4611 case arm_stub_long_branch_arm_nacl:
4612 case arm_stub_long_branch_arm_nacl_pic:
4613 return 16;
4614
4615 default:
4616 abort (); /* Should be unreachable. */
4617 }
4618 }
4619
4620 /* Returns whether stubs of type STUB_TYPE take over the symbol they are
4621 veneering (TRUE) or have their own symbol (FALSE). */
4622
4623 static bfd_boolean
4624 arm_stub_sym_claimed (enum elf32_arm_stub_type stub_type)
4625 {
4626 if (stub_type >= max_stub_type)
4627 abort (); /* Should be unreachable. */
4628
4629 switch (stub_type)
4630 {
4631 case arm_stub_cmse_branch_thumb_only:
4632 return TRUE;
4633
4634 default:
4635 return FALSE;
4636 }
4637
4638 abort (); /* Should be unreachable. */
4639 }
4640
4641 /* Returns the padding needed for the dedicated section used stubs of type
4642 STUB_TYPE. */
4643
4644 static int
4645 arm_dedicated_stub_section_padding (enum elf32_arm_stub_type stub_type)
4646 {
4647 if (stub_type >= max_stub_type)
4648 abort (); /* Should be unreachable. */
4649
4650 switch (stub_type)
4651 {
4652 case arm_stub_cmse_branch_thumb_only:
4653 return 32;
4654
4655 default:
4656 return 0;
4657 }
4658
4659 abort (); /* Should be unreachable. */
4660 }
4661
4662 /* If veneers of type STUB_TYPE should go in a dedicated output section,
4663 returns the address of the hash table field in HTAB holding the offset at
4664 which new veneers should be layed out in the stub section. */
4665
4666 static bfd_vma*
4667 arm_new_stubs_start_offset_ptr (struct elf32_arm_link_hash_table *htab,
4668 enum elf32_arm_stub_type stub_type)
4669 {
4670 switch (stub_type)
4671 {
4672 case arm_stub_cmse_branch_thumb_only:
4673 return &htab->new_cmse_stub_offset;
4674
4675 default:
4676 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4677 return NULL;
4678 }
4679 }
4680
4681 static bfd_boolean
4682 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
4683 void * in_arg)
4684 {
4685 #define MAXRELOCS 3
4686 bfd_boolean removed_sg_veneer;
4687 struct elf32_arm_stub_hash_entry *stub_entry;
4688 struct elf32_arm_link_hash_table *globals;
4689 struct bfd_link_info *info;
4690 asection *stub_sec;
4691 bfd *stub_bfd;
4692 bfd_byte *loc;
4693 bfd_vma sym_value;
4694 int template_size;
4695 int size;
4696 const insn_sequence *template_sequence;
4697 int i;
4698 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
4699 int stub_reloc_offset[MAXRELOCS] = {0, 0};
4700 int nrelocs = 0;
4701 int just_allocated = 0;
4702
4703 /* Massage our args to the form they really have. */
4704 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4705 info = (struct bfd_link_info *) in_arg;
4706
4707 globals = elf32_arm_hash_table (info);
4708 if (globals == NULL)
4709 return FALSE;
4710
4711 stub_sec = stub_entry->stub_sec;
4712
4713 if ((globals->fix_cortex_a8 < 0)
4714 != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
4715 /* We have to do less-strictly-aligned fixes last. */
4716 return TRUE;
4717
4718 /* Assign a slot at the end of section if none assigned yet. */
4719 if (stub_entry->stub_offset == (bfd_vma) -1)
4720 {
4721 stub_entry->stub_offset = stub_sec->size;
4722 just_allocated = 1;
4723 }
4724 loc = stub_sec->contents + stub_entry->stub_offset;
4725
4726 stub_bfd = stub_sec->owner;
4727
4728 /* This is the address of the stub destination. */
4729 sym_value = (stub_entry->target_value
4730 + stub_entry->target_section->output_offset
4731 + stub_entry->target_section->output_section->vma);
4732
4733 template_sequence = stub_entry->stub_template;
4734 template_size = stub_entry->stub_template_size;
4735
4736 size = 0;
4737 for (i = 0; i < template_size; i++)
4738 {
4739 switch (template_sequence[i].type)
4740 {
4741 case THUMB16_TYPE:
4742 {
4743 bfd_vma data = (bfd_vma) template_sequence[i].data;
4744 if (template_sequence[i].reloc_addend != 0)
4745 {
4746 /* We've borrowed the reloc_addend field to mean we should
4747 insert a condition code into this (Thumb-1 branch)
4748 instruction. See THUMB16_BCOND_INSN. */
4749 BFD_ASSERT ((data & 0xff00) == 0xd000);
4750 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
4751 }
4752 bfd_put_16 (stub_bfd, data, loc + size);
4753 size += 2;
4754 }
4755 break;
4756
4757 case THUMB32_TYPE:
4758 bfd_put_16 (stub_bfd,
4759 (template_sequence[i].data >> 16) & 0xffff,
4760 loc + size);
4761 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
4762 loc + size + 2);
4763 if (template_sequence[i].r_type != R_ARM_NONE)
4764 {
4765 stub_reloc_idx[nrelocs] = i;
4766 stub_reloc_offset[nrelocs++] = size;
4767 }
4768 size += 4;
4769 break;
4770
4771 case ARM_TYPE:
4772 bfd_put_32 (stub_bfd, template_sequence[i].data,
4773 loc + size);
4774 /* Handle cases where the target is encoded within the
4775 instruction. */
4776 if (template_sequence[i].r_type == R_ARM_JUMP24)
4777 {
4778 stub_reloc_idx[nrelocs] = i;
4779 stub_reloc_offset[nrelocs++] = size;
4780 }
4781 size += 4;
4782 break;
4783
4784 case DATA_TYPE:
4785 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
4786 stub_reloc_idx[nrelocs] = i;
4787 stub_reloc_offset[nrelocs++] = size;
4788 size += 4;
4789 break;
4790
4791 default:
4792 BFD_FAIL ();
4793 return FALSE;
4794 }
4795 }
4796
4797 if (just_allocated)
4798 stub_sec->size += size;
4799
4800 /* Stub size has already been computed in arm_size_one_stub. Check
4801 consistency. */
4802 BFD_ASSERT (size == stub_entry->stub_size);
4803
4804 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
4805 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
4806 sym_value |= 1;
4807
4808 /* Assume non empty slots have at least one and at most MAXRELOCS entries
4809 to relocate in each stub. */
4810 removed_sg_veneer =
4811 (size == 0 && stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
4812 BFD_ASSERT (removed_sg_veneer || (nrelocs != 0 && nrelocs <= MAXRELOCS));
4813
4814 for (i = 0; i < nrelocs; i++)
4815 {
4816 Elf_Internal_Rela rel;
4817 bfd_boolean unresolved_reloc;
4818 char *error_message;
4819 bfd_vma points_to =
4820 sym_value + template_sequence[stub_reloc_idx[i]].reloc_addend;
4821
4822 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4823 rel.r_info = ELF32_R_INFO (0,
4824 template_sequence[stub_reloc_idx[i]].r_type);
4825 rel.r_addend = 0;
4826
4827 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
4828 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
4829 template should refer back to the instruction after the original
4830 branch. We use target_section as Cortex-A8 erratum workaround stubs
4831 are only generated when both source and target are in the same
4832 section. */
4833 points_to = stub_entry->target_section->output_section->vma
4834 + stub_entry->target_section->output_offset
4835 + stub_entry->source_value;
4836
4837 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4838 (template_sequence[stub_reloc_idx[i]].r_type),
4839 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
4840 points_to, info, stub_entry->target_section, "", STT_FUNC,
4841 stub_entry->branch_type,
4842 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
4843 &error_message);
4844 }
4845
4846 return TRUE;
4847 #undef MAXRELOCS
4848 }
4849
4850 /* Calculate the template, template size and instruction size for a stub.
4851 Return value is the instruction size. */
4852
4853 static unsigned int
4854 find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
4855 const insn_sequence **stub_template,
4856 int *stub_template_size)
4857 {
4858 const insn_sequence *template_sequence = NULL;
4859 int template_size = 0, i;
4860 unsigned int size;
4861
4862 template_sequence = stub_definitions[stub_type].template_sequence;
4863 if (stub_template)
4864 *stub_template = template_sequence;
4865
4866 template_size = stub_definitions[stub_type].template_size;
4867 if (stub_template_size)
4868 *stub_template_size = template_size;
4869
4870 size = 0;
4871 for (i = 0; i < template_size; i++)
4872 {
4873 switch (template_sequence[i].type)
4874 {
4875 case THUMB16_TYPE:
4876 size += 2;
4877 break;
4878
4879 case ARM_TYPE:
4880 case THUMB32_TYPE:
4881 case DATA_TYPE:
4882 size += 4;
4883 break;
4884
4885 default:
4886 BFD_FAIL ();
4887 return 0;
4888 }
4889 }
4890
4891 return size;
4892 }
4893
4894 /* As above, but don't actually build the stub. Just bump offset so
4895 we know stub section sizes. */
4896
4897 static bfd_boolean
4898 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
4899 void *in_arg ATTRIBUTE_UNUSED)
4900 {
4901 struct elf32_arm_stub_hash_entry *stub_entry;
4902 const insn_sequence *template_sequence;
4903 int template_size, size;
4904
4905 /* Massage our args to the form they really have. */
4906 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4907
4908 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
4909 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
4910
4911 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
4912 &template_size);
4913
4914 /* Initialized to -1. Null size indicates an empty slot full of zeros. */
4915 if (stub_entry->stub_template_size)
4916 {
4917 stub_entry->stub_size = size;
4918 stub_entry->stub_template = template_sequence;
4919 stub_entry->stub_template_size = template_size;
4920 }
4921
4922 /* Already accounted for. */
4923 if (stub_entry->stub_offset != (bfd_vma) -1)
4924 return TRUE;
4925
4926 size = (size + 7) & ~7;
4927 stub_entry->stub_sec->size += size;
4928
4929 return TRUE;
4930 }
4931
4932 /* External entry points for sizing and building linker stubs. */
4933
4934 /* Set up various things so that we can make a list of input sections
4935 for each output section included in the link. Returns -1 on error,
4936 0 when no stubs will be needed, and 1 on success. */
4937
4938 int
4939 elf32_arm_setup_section_lists (bfd *output_bfd,
4940 struct bfd_link_info *info)
4941 {
4942 bfd *input_bfd;
4943 unsigned int bfd_count;
4944 unsigned int top_id, top_index;
4945 asection *section;
4946 asection **input_list, **list;
4947 bfd_size_type amt;
4948 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4949
4950 if (htab == NULL)
4951 return 0;
4952 if (! is_elf_hash_table (htab))
4953 return 0;
4954
4955 /* Count the number of input BFDs and find the top input section id. */
4956 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
4957 input_bfd != NULL;
4958 input_bfd = input_bfd->link.next)
4959 {
4960 bfd_count += 1;
4961 for (section = input_bfd->sections;
4962 section != NULL;
4963 section = section->next)
4964 {
4965 if (top_id < section->id)
4966 top_id = section->id;
4967 }
4968 }
4969 htab->bfd_count = bfd_count;
4970
4971 amt = sizeof (struct map_stub) * (top_id + 1);
4972 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
4973 if (htab->stub_group == NULL)
4974 return -1;
4975 htab->top_id = top_id;
4976
4977 /* We can't use output_bfd->section_count here to find the top output
4978 section index as some sections may have been removed, and
4979 _bfd_strip_section_from_output doesn't renumber the indices. */
4980 for (section = output_bfd->sections, top_index = 0;
4981 section != NULL;
4982 section = section->next)
4983 {
4984 if (top_index < section->index)
4985 top_index = section->index;
4986 }
4987
4988 htab->top_index = top_index;
4989 amt = sizeof (asection *) * (top_index + 1);
4990 input_list = (asection **) bfd_malloc (amt);
4991 htab->input_list = input_list;
4992 if (input_list == NULL)
4993 return -1;
4994
4995 /* For sections we aren't interested in, mark their entries with a
4996 value we can check later. */
4997 list = input_list + top_index;
4998 do
4999 *list = bfd_abs_section_ptr;
5000 while (list-- != input_list);
5001
5002 for (section = output_bfd->sections;
5003 section != NULL;
5004 section = section->next)
5005 {
5006 if ((section->flags & SEC_CODE) != 0)
5007 input_list[section->index] = NULL;
5008 }
5009
5010 return 1;
5011 }
5012
5013 /* The linker repeatedly calls this function for each input section,
5014 in the order that input sections are linked into output sections.
5015 Build lists of input sections to determine groupings between which
5016 we may insert linker stubs. */
5017
5018 void
5019 elf32_arm_next_input_section (struct bfd_link_info *info,
5020 asection *isec)
5021 {
5022 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5023
5024 if (htab == NULL)
5025 return;
5026
5027 if (isec->output_section->index <= htab->top_index)
5028 {
5029 asection **list = htab->input_list + isec->output_section->index;
5030
5031 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
5032 {
5033 /* Steal the link_sec pointer for our list. */
5034 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
5035 /* This happens to make the list in reverse order,
5036 which we reverse later. */
5037 PREV_SEC (isec) = *list;
5038 *list = isec;
5039 }
5040 }
5041 }
5042
5043 /* See whether we can group stub sections together. Grouping stub
5044 sections may result in fewer stubs. More importantly, we need to
5045 put all .init* and .fini* stubs at the end of the .init or
5046 .fini output sections respectively, because glibc splits the
5047 _init and _fini functions into multiple parts. Putting a stub in
5048 the middle of a function is not a good idea. */
5049
5050 static void
5051 group_sections (struct elf32_arm_link_hash_table *htab,
5052 bfd_size_type stub_group_size,
5053 bfd_boolean stubs_always_after_branch)
5054 {
5055 asection **list = htab->input_list;
5056
5057 do
5058 {
5059 asection *tail = *list;
5060 asection *head;
5061
5062 if (tail == bfd_abs_section_ptr)
5063 continue;
5064
5065 /* Reverse the list: we must avoid placing stubs at the
5066 beginning of the section because the beginning of the text
5067 section may be required for an interrupt vector in bare metal
5068 code. */
5069 #define NEXT_SEC PREV_SEC
5070 head = NULL;
5071 while (tail != NULL)
5072 {
5073 /* Pop from tail. */
5074 asection *item = tail;
5075 tail = PREV_SEC (item);
5076
5077 /* Push on head. */
5078 NEXT_SEC (item) = head;
5079 head = item;
5080 }
5081
5082 while (head != NULL)
5083 {
5084 asection *curr;
5085 asection *next;
5086 bfd_vma stub_group_start = head->output_offset;
5087 bfd_vma end_of_next;
5088
5089 curr = head;
5090 while (NEXT_SEC (curr) != NULL)
5091 {
5092 next = NEXT_SEC (curr);
5093 end_of_next = next->output_offset + next->size;
5094 if (end_of_next - stub_group_start >= stub_group_size)
5095 /* End of NEXT is too far from start, so stop. */
5096 break;
5097 /* Add NEXT to the group. */
5098 curr = next;
5099 }
5100
5101 /* OK, the size from the start to the start of CURR is less
5102 than stub_group_size and thus can be handled by one stub
5103 section. (Or the head section is itself larger than
5104 stub_group_size, in which case we may be toast.)
5105 We should really be keeping track of the total size of
5106 stubs added here, as stubs contribute to the final output
5107 section size. */
5108 do
5109 {
5110 next = NEXT_SEC (head);
5111 /* Set up this stub group. */
5112 htab->stub_group[head->id].link_sec = curr;
5113 }
5114 while (head != curr && (head = next) != NULL);
5115
5116 /* But wait, there's more! Input sections up to stub_group_size
5117 bytes after the stub section can be handled by it too. */
5118 if (!stubs_always_after_branch)
5119 {
5120 stub_group_start = curr->output_offset + curr->size;
5121
5122 while (next != NULL)
5123 {
5124 end_of_next = next->output_offset + next->size;
5125 if (end_of_next - stub_group_start >= stub_group_size)
5126 /* End of NEXT is too far from stubs, so stop. */
5127 break;
5128 /* Add NEXT to the stub group. */
5129 head = next;
5130 next = NEXT_SEC (head);
5131 htab->stub_group[head->id].link_sec = curr;
5132 }
5133 }
5134 head = next;
5135 }
5136 }
5137 while (list++ != htab->input_list + htab->top_index);
5138
5139 free (htab->input_list);
5140 #undef PREV_SEC
5141 #undef NEXT_SEC
5142 }
5143
5144 /* Comparison function for sorting/searching relocations relating to Cortex-A8
5145 erratum fix. */
5146
5147 static int
5148 a8_reloc_compare (const void *a, const void *b)
5149 {
5150 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
5151 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
5152
5153 if (ra->from < rb->from)
5154 return -1;
5155 else if (ra->from > rb->from)
5156 return 1;
5157 else
5158 return 0;
5159 }
5160
5161 static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
5162 const char *, char **);
5163
5164 /* Helper function to scan code for sequences which might trigger the Cortex-A8
5165 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
5166 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
5167 otherwise. */
5168
5169 static bfd_boolean
5170 cortex_a8_erratum_scan (bfd *input_bfd,
5171 struct bfd_link_info *info,
5172 struct a8_erratum_fix **a8_fixes_p,
5173 unsigned int *num_a8_fixes_p,
5174 unsigned int *a8_fix_table_size_p,
5175 struct a8_erratum_reloc *a8_relocs,
5176 unsigned int num_a8_relocs,
5177 unsigned prev_num_a8_fixes,
5178 bfd_boolean *stub_changed_p)
5179 {
5180 asection *section;
5181 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5182 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
5183 unsigned int num_a8_fixes = *num_a8_fixes_p;
5184 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
5185
5186 if (htab == NULL)
5187 return FALSE;
5188
5189 for (section = input_bfd->sections;
5190 section != NULL;
5191 section = section->next)
5192 {
5193 bfd_byte *contents = NULL;
5194 struct _arm_elf_section_data *sec_data;
5195 unsigned int span;
5196 bfd_vma base_vma;
5197
5198 if (elf_section_type (section) != SHT_PROGBITS
5199 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
5200 || (section->flags & SEC_EXCLUDE) != 0
5201 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
5202 || (section->output_section == bfd_abs_section_ptr))
5203 continue;
5204
5205 base_vma = section->output_section->vma + section->output_offset;
5206
5207 if (elf_section_data (section)->this_hdr.contents != NULL)
5208 contents = elf_section_data (section)->this_hdr.contents;
5209 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
5210 return TRUE;
5211
5212 sec_data = elf32_arm_section_data (section);
5213
5214 for (span = 0; span < sec_data->mapcount; span++)
5215 {
5216 unsigned int span_start = sec_data->map[span].vma;
5217 unsigned int span_end = (span == sec_data->mapcount - 1)
5218 ? section->size : sec_data->map[span + 1].vma;
5219 unsigned int i;
5220 char span_type = sec_data->map[span].type;
5221 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
5222
5223 if (span_type != 't')
5224 continue;
5225
5226 /* Span is entirely within a single 4KB region: skip scanning. */
5227 if (((base_vma + span_start) & ~0xfff)
5228 == ((base_vma + span_end) & ~0xfff))
5229 continue;
5230
5231 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
5232
5233 * The opcode is BLX.W, BL.W, B.W, Bcc.W
5234 * The branch target is in the same 4KB region as the
5235 first half of the branch.
5236 * The instruction before the branch is a 32-bit
5237 length non-branch instruction. */
5238 for (i = span_start; i < span_end;)
5239 {
5240 unsigned int insn = bfd_getl16 (&contents[i]);
5241 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
5242 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
5243
5244 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
5245 insn_32bit = TRUE;
5246
5247 if (insn_32bit)
5248 {
5249 /* Load the rest of the insn (in manual-friendly order). */
5250 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
5251
5252 /* Encoding T4: B<c>.W. */
5253 is_b = (insn & 0xf800d000) == 0xf0009000;
5254 /* Encoding T1: BL<c>.W. */
5255 is_bl = (insn & 0xf800d000) == 0xf000d000;
5256 /* Encoding T2: BLX<c>.W. */
5257 is_blx = (insn & 0xf800d000) == 0xf000c000;
5258 /* Encoding T3: B<c>.W (not permitted in IT block). */
5259 is_bcc = (insn & 0xf800d000) == 0xf0008000
5260 && (insn & 0x07f00000) != 0x03800000;
5261 }
5262
5263 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
5264
5265 if (((base_vma + i) & 0xfff) == 0xffe
5266 && insn_32bit
5267 && is_32bit_branch
5268 && last_was_32bit
5269 && ! last_was_branch)
5270 {
5271 bfd_signed_vma offset = 0;
5272 bfd_boolean force_target_arm = FALSE;
5273 bfd_boolean force_target_thumb = FALSE;
5274 bfd_vma target;
5275 enum elf32_arm_stub_type stub_type = arm_stub_none;
5276 struct a8_erratum_reloc key, *found;
5277 bfd_boolean use_plt = FALSE;
5278
5279 key.from = base_vma + i;
5280 found = (struct a8_erratum_reloc *)
5281 bsearch (&key, a8_relocs, num_a8_relocs,
5282 sizeof (struct a8_erratum_reloc),
5283 &a8_reloc_compare);
5284
5285 if (found)
5286 {
5287 char *error_message = NULL;
5288 struct elf_link_hash_entry *entry;
5289
5290 /* We don't care about the error returned from this
5291 function, only if there is glue or not. */
5292 entry = find_thumb_glue (info, found->sym_name,
5293 &error_message);
5294
5295 if (entry)
5296 found->non_a8_stub = TRUE;
5297
5298 /* Keep a simpler condition, for the sake of clarity. */
5299 if (htab->root.splt != NULL && found->hash != NULL
5300 && found->hash->root.plt.offset != (bfd_vma) -1)
5301 use_plt = TRUE;
5302
5303 if (found->r_type == R_ARM_THM_CALL)
5304 {
5305 if (found->branch_type == ST_BRANCH_TO_ARM
5306 || use_plt)
5307 force_target_arm = TRUE;
5308 else
5309 force_target_thumb = TRUE;
5310 }
5311 }
5312
5313 /* Check if we have an offending branch instruction. */
5314
5315 if (found && found->non_a8_stub)
5316 /* We've already made a stub for this instruction, e.g.
5317 it's a long branch or a Thumb->ARM stub. Assume that
5318 stub will suffice to work around the A8 erratum (see
5319 setting of always_after_branch above). */
5320 ;
5321 else if (is_bcc)
5322 {
5323 offset = (insn & 0x7ff) << 1;
5324 offset |= (insn & 0x3f0000) >> 4;
5325 offset |= (insn & 0x2000) ? 0x40000 : 0;
5326 offset |= (insn & 0x800) ? 0x80000 : 0;
5327 offset |= (insn & 0x4000000) ? 0x100000 : 0;
5328 if (offset & 0x100000)
5329 offset |= ~ ((bfd_signed_vma) 0xfffff);
5330 stub_type = arm_stub_a8_veneer_b_cond;
5331 }
5332 else if (is_b || is_bl || is_blx)
5333 {
5334 int s = (insn & 0x4000000) != 0;
5335 int j1 = (insn & 0x2000) != 0;
5336 int j2 = (insn & 0x800) != 0;
5337 int i1 = !(j1 ^ s);
5338 int i2 = !(j2 ^ s);
5339
5340 offset = (insn & 0x7ff) << 1;
5341 offset |= (insn & 0x3ff0000) >> 4;
5342 offset |= i2 << 22;
5343 offset |= i1 << 23;
5344 offset |= s << 24;
5345 if (offset & 0x1000000)
5346 offset |= ~ ((bfd_signed_vma) 0xffffff);
5347
5348 if (is_blx)
5349 offset &= ~ ((bfd_signed_vma) 3);
5350
5351 stub_type = is_blx ? arm_stub_a8_veneer_blx :
5352 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
5353 }
5354
5355 if (stub_type != arm_stub_none)
5356 {
5357 bfd_vma pc_for_insn = base_vma + i + 4;
5358
5359 /* The original instruction is a BL, but the target is
5360 an ARM instruction. If we were not making a stub,
5361 the BL would have been converted to a BLX. Use the
5362 BLX stub instead in that case. */
5363 if (htab->use_blx && force_target_arm
5364 && stub_type == arm_stub_a8_veneer_bl)
5365 {
5366 stub_type = arm_stub_a8_veneer_blx;
5367 is_blx = TRUE;
5368 is_bl = FALSE;
5369 }
5370 /* Conversely, if the original instruction was
5371 BLX but the target is Thumb mode, use the BL
5372 stub. */
5373 else if (force_target_thumb
5374 && stub_type == arm_stub_a8_veneer_blx)
5375 {
5376 stub_type = arm_stub_a8_veneer_bl;
5377 is_blx = FALSE;
5378 is_bl = TRUE;
5379 }
5380
5381 if (is_blx)
5382 pc_for_insn &= ~ ((bfd_vma) 3);
5383
5384 /* If we found a relocation, use the proper destination,
5385 not the offset in the (unrelocated) instruction.
5386 Note this is always done if we switched the stub type
5387 above. */
5388 if (found)
5389 offset =
5390 (bfd_signed_vma) (found->destination - pc_for_insn);
5391
5392 /* If the stub will use a Thumb-mode branch to a
5393 PLT target, redirect it to the preceding Thumb
5394 entry point. */
5395 if (stub_type != arm_stub_a8_veneer_blx && use_plt)
5396 offset -= PLT_THUMB_STUB_SIZE;
5397
5398 target = pc_for_insn + offset;
5399
5400 /* The BLX stub is ARM-mode code. Adjust the offset to
5401 take the different PC value (+8 instead of +4) into
5402 account. */
5403 if (stub_type == arm_stub_a8_veneer_blx)
5404 offset += 4;
5405
5406 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
5407 {
5408 char *stub_name = NULL;
5409
5410 if (num_a8_fixes == a8_fix_table_size)
5411 {
5412 a8_fix_table_size *= 2;
5413 a8_fixes = (struct a8_erratum_fix *)
5414 bfd_realloc (a8_fixes,
5415 sizeof (struct a8_erratum_fix)
5416 * a8_fix_table_size);
5417 }
5418
5419 if (num_a8_fixes < prev_num_a8_fixes)
5420 {
5421 /* If we're doing a subsequent scan,
5422 check if we've found the same fix as
5423 before, and try and reuse the stub
5424 name. */
5425 stub_name = a8_fixes[num_a8_fixes].stub_name;
5426 if ((a8_fixes[num_a8_fixes].section != section)
5427 || (a8_fixes[num_a8_fixes].offset != i))
5428 {
5429 free (stub_name);
5430 stub_name = NULL;
5431 *stub_changed_p = TRUE;
5432 }
5433 }
5434
5435 if (!stub_name)
5436 {
5437 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
5438 if (stub_name != NULL)
5439 sprintf (stub_name, "%x:%x", section->id, i);
5440 }
5441
5442 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
5443 a8_fixes[num_a8_fixes].section = section;
5444 a8_fixes[num_a8_fixes].offset = i;
5445 a8_fixes[num_a8_fixes].target_offset =
5446 target - base_vma;
5447 a8_fixes[num_a8_fixes].orig_insn = insn;
5448 a8_fixes[num_a8_fixes].stub_name = stub_name;
5449 a8_fixes[num_a8_fixes].stub_type = stub_type;
5450 a8_fixes[num_a8_fixes].branch_type =
5451 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
5452
5453 num_a8_fixes++;
5454 }
5455 }
5456 }
5457
5458 i += insn_32bit ? 4 : 2;
5459 last_was_32bit = insn_32bit;
5460 last_was_branch = is_32bit_branch;
5461 }
5462 }
5463
5464 if (elf_section_data (section)->this_hdr.contents == NULL)
5465 free (contents);
5466 }
5467
5468 *a8_fixes_p = a8_fixes;
5469 *num_a8_fixes_p = num_a8_fixes;
5470 *a8_fix_table_size_p = a8_fix_table_size;
5471
5472 return FALSE;
5473 }
5474
5475 /* Create or update a stub entry depending on whether the stub can already be
5476 found in HTAB. The stub is identified by:
5477 - its type STUB_TYPE
5478 - its source branch (note that several can share the same stub) whose
5479 section and relocation (if any) are given by SECTION and IRELA
5480 respectively
5481 - its target symbol whose input section, hash, name, value and branch type
5482 are given in SYM_SEC, HASH, SYM_NAME, SYM_VALUE and BRANCH_TYPE
5483 respectively
5484
5485 If found, the value of the stub's target symbol is updated from SYM_VALUE
5486 and *NEW_STUB is set to FALSE. Otherwise, *NEW_STUB is set to
5487 TRUE and the stub entry is initialized.
5488
5489 Returns the stub that was created or updated, or NULL if an error
5490 occurred. */
5491
5492 static struct elf32_arm_stub_hash_entry *
5493 elf32_arm_create_stub (struct elf32_arm_link_hash_table *htab,
5494 enum elf32_arm_stub_type stub_type, asection *section,
5495 Elf_Internal_Rela *irela, asection *sym_sec,
5496 struct elf32_arm_link_hash_entry *hash, char *sym_name,
5497 bfd_vma sym_value, enum arm_st_branch_type branch_type,
5498 bfd_boolean *new_stub)
5499 {
5500 const asection *id_sec;
5501 char *stub_name;
5502 struct elf32_arm_stub_hash_entry *stub_entry;
5503 unsigned int r_type;
5504 bfd_boolean sym_claimed = arm_stub_sym_claimed (stub_type);
5505
5506 BFD_ASSERT (stub_type != arm_stub_none);
5507 *new_stub = FALSE;
5508
5509 if (sym_claimed)
5510 stub_name = sym_name;
5511 else
5512 {
5513 BFD_ASSERT (irela);
5514 BFD_ASSERT (section);
5515 BFD_ASSERT (section->id <= htab->top_id);
5516
5517 /* Support for grouping stub sections. */
5518 id_sec = htab->stub_group[section->id].link_sec;
5519
5520 /* Get the name of this stub. */
5521 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela,
5522 stub_type);
5523 if (!stub_name)
5524 return NULL;
5525 }
5526
5527 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name, FALSE,
5528 FALSE);
5529 /* The proper stub has already been created, just update its value. */
5530 if (stub_entry != NULL)
5531 {
5532 if (!sym_claimed)
5533 free (stub_name);
5534 stub_entry->target_value = sym_value;
5535 return stub_entry;
5536 }
5537
5538 stub_entry = elf32_arm_add_stub (stub_name, section, htab, stub_type);
5539 if (stub_entry == NULL)
5540 {
5541 if (!sym_claimed)
5542 free (stub_name);
5543 return NULL;
5544 }
5545
5546 stub_entry->target_value = sym_value;
5547 stub_entry->target_section = sym_sec;
5548 stub_entry->stub_type = stub_type;
5549 stub_entry->h = hash;
5550 stub_entry->branch_type = branch_type;
5551
5552 if (sym_claimed)
5553 stub_entry->output_name = sym_name;
5554 else
5555 {
5556 if (sym_name == NULL)
5557 sym_name = "unnamed";
5558 stub_entry->output_name = (char *)
5559 bfd_alloc (htab->stub_bfd, sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5560 + strlen (sym_name));
5561 if (stub_entry->output_name == NULL)
5562 {
5563 free (stub_name);
5564 return NULL;
5565 }
5566
5567 /* For historical reasons, use the existing names for ARM-to-Thumb and
5568 Thumb-to-ARM stubs. */
5569 r_type = ELF32_R_TYPE (irela->r_info);
5570 if ((r_type == (unsigned int) R_ARM_THM_CALL
5571 || r_type == (unsigned int) R_ARM_THM_JUMP24
5572 || r_type == (unsigned int) R_ARM_THM_JUMP19)
5573 && branch_type == ST_BRANCH_TO_ARM)
5574 sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5575 else if ((r_type == (unsigned int) R_ARM_CALL
5576 || r_type == (unsigned int) R_ARM_JUMP24)
5577 && branch_type == ST_BRANCH_TO_THUMB)
5578 sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5579 else
5580 sprintf (stub_entry->output_name, STUB_ENTRY_NAME, sym_name);
5581 }
5582
5583 *new_stub = TRUE;
5584 return stub_entry;
5585 }
5586
5587 /* Scan symbols in INPUT_BFD to identify secure entry functions needing a
5588 gateway veneer to transition from non secure to secure state and create them
5589 accordingly.
5590
5591 "ARMv8-M Security Extensions: Requirements on Development Tools" document
5592 defines the conditions that govern Secure Gateway veneer creation for a
5593 given symbol <SYM> as follows:
5594 - it has function type
5595 - it has non local binding
5596 - a symbol named __acle_se_<SYM> (called special symbol) exists with the
5597 same type, binding and value as <SYM> (called normal symbol).
5598 An entry function can handle secure state transition itself in which case
5599 its special symbol would have a different value from the normal symbol.
5600
5601 OUT_ATTR gives the output attributes, SYM_HASHES the symbol index to hash
5602 entry mapping while HTAB gives the name to hash entry mapping.
5603 *CMSE_STUB_CREATED is increased by the number of secure gateway veneer
5604 created.
5605
5606 The return value gives whether a stub failed to be allocated. */
5607
5608 static bfd_boolean
5609 cmse_scan (bfd *input_bfd, struct elf32_arm_link_hash_table *htab,
5610 obj_attribute *out_attr, struct elf_link_hash_entry **sym_hashes,
5611 int *cmse_stub_created)
5612 {
5613 const struct elf_backend_data *bed;
5614 Elf_Internal_Shdr *symtab_hdr;
5615 unsigned i, j, sym_count, ext_start;
5616 Elf_Internal_Sym *cmse_sym, *local_syms;
5617 struct elf32_arm_link_hash_entry *hash, *cmse_hash = NULL;
5618 enum arm_st_branch_type branch_type;
5619 char *sym_name, *lsym_name;
5620 bfd_vma sym_value;
5621 asection *section;
5622 struct elf32_arm_stub_hash_entry *stub_entry;
5623 bfd_boolean is_v8m, new_stub, cmse_invalid, ret = TRUE;
5624
5625 bed = get_elf_backend_data (input_bfd);
5626 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5627 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
5628 ext_start = symtab_hdr->sh_info;
5629 is_v8m = (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
5630 && out_attr[Tag_CPU_arch_profile].i == 'M');
5631
5632 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
5633 if (local_syms == NULL)
5634 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
5635 symtab_hdr->sh_info, 0, NULL, NULL,
5636 NULL);
5637 if (symtab_hdr->sh_info && local_syms == NULL)
5638 return FALSE;
5639
5640 /* Scan symbols. */
5641 for (i = 0; i < sym_count; i++)
5642 {
5643 cmse_invalid = FALSE;
5644
5645 if (i < ext_start)
5646 {
5647 cmse_sym = &local_syms[i];
5648 /* Not a special symbol. */
5649 if (!ARM_GET_SYM_CMSE_SPCL (cmse_sym->st_target_internal))
5650 continue;
5651 sym_name = bfd_elf_string_from_elf_section (input_bfd,
5652 symtab_hdr->sh_link,
5653 cmse_sym->st_name);
5654 /* Special symbol with local binding. */
5655 cmse_invalid = TRUE;
5656 }
5657 else
5658 {
5659 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
5660 sym_name = (char *) cmse_hash->root.root.root.string;
5661
5662 /* Not a special symbol. */
5663 if (!ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
5664 continue;
5665
5666 /* Special symbol has incorrect binding or type. */
5667 if ((cmse_hash->root.root.type != bfd_link_hash_defined
5668 && cmse_hash->root.root.type != bfd_link_hash_defweak)
5669 || cmse_hash->root.type != STT_FUNC)
5670 cmse_invalid = TRUE;
5671 }
5672
5673 if (!is_v8m)
5674 {
5675 _bfd_error_handler (_("%B: Special symbol `%s' only allowed for "
5676 "ARMv8-M architecture or later."),
5677 input_bfd, sym_name);
5678 is_v8m = TRUE; /* Avoid multiple warning. */
5679 ret = FALSE;
5680 }
5681
5682 if (cmse_invalid)
5683 {
5684 _bfd_error_handler (_("%B: invalid special symbol `%s'."),
5685 input_bfd, sym_name);
5686 _bfd_error_handler (_("It must be a global or weak function "
5687 "symbol."));
5688 ret = FALSE;
5689 if (i < ext_start)
5690 continue;
5691 }
5692
5693 sym_name += strlen (CMSE_PREFIX);
5694 hash = (struct elf32_arm_link_hash_entry *)
5695 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
5696
5697 /* No associated normal symbol or it is neither global nor weak. */
5698 if (!hash
5699 || (hash->root.root.type != bfd_link_hash_defined
5700 && hash->root.root.type != bfd_link_hash_defweak)
5701 || hash->root.type != STT_FUNC)
5702 {
5703 /* Initialize here to avoid warning about use of possibly
5704 uninitialized variable. */
5705 j = 0;
5706
5707 if (!hash)
5708 {
5709 /* Searching for a normal symbol with local binding. */
5710 for (; j < ext_start; j++)
5711 {
5712 lsym_name =
5713 bfd_elf_string_from_elf_section (input_bfd,
5714 symtab_hdr->sh_link,
5715 local_syms[j].st_name);
5716 if (!strcmp (sym_name, lsym_name))
5717 break;
5718 }
5719 }
5720
5721 if (hash || j < ext_start)
5722 {
5723 _bfd_error_handler
5724 (_("%B: invalid standard symbol `%s'."), input_bfd, sym_name);
5725 _bfd_error_handler
5726 (_("It must be a global or weak function symbol."));
5727 }
5728 else
5729 _bfd_error_handler
5730 (_("%B: absent standard symbol `%s'."), input_bfd, sym_name);
5731 ret = FALSE;
5732 if (!hash)
5733 continue;
5734 }
5735
5736 sym_value = hash->root.root.u.def.value;
5737 section = hash->root.root.u.def.section;
5738
5739 if (cmse_hash->root.root.u.def.section != section)
5740 {
5741 _bfd_error_handler
5742 (_("%B: `%s' and its special symbol are in different sections."),
5743 input_bfd, sym_name);
5744 ret = FALSE;
5745 }
5746 if (cmse_hash->root.root.u.def.value != sym_value)
5747 continue; /* Ignore: could be an entry function starting with SG. */
5748
5749 /* If this section is a link-once section that will be discarded, then
5750 don't create any stubs. */
5751 if (section->output_section == NULL)
5752 {
5753 _bfd_error_handler
5754 (_("%B: entry function `%s' not output."), input_bfd, sym_name);
5755 continue;
5756 }
5757
5758 if (hash->root.size == 0)
5759 {
5760 _bfd_error_handler
5761 (_("%B: entry function `%s' is empty."), input_bfd, sym_name);
5762 ret = FALSE;
5763 }
5764
5765 if (!ret)
5766 continue;
5767 branch_type = ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
5768 stub_entry
5769 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
5770 NULL, NULL, section, hash, sym_name,
5771 sym_value, branch_type, &new_stub);
5772
5773 if (stub_entry == NULL)
5774 ret = FALSE;
5775 else
5776 {
5777 BFD_ASSERT (new_stub);
5778 (*cmse_stub_created)++;
5779 }
5780 }
5781
5782 if (!symtab_hdr->contents)
5783 free (local_syms);
5784 return ret;
5785 }
5786
5787 /* Return TRUE iff a symbol identified by its linker HASH entry is a secure
5788 code entry function, ie can be called from non secure code without using a
5789 veneer. */
5790
5791 static bfd_boolean
5792 cmse_entry_fct_p (struct elf32_arm_link_hash_entry *hash)
5793 {
5794 bfd_byte contents[4];
5795 uint32_t first_insn;
5796 asection *section;
5797 file_ptr offset;
5798 bfd *abfd;
5799
5800 /* Defined symbol of function type. */
5801 if (hash->root.root.type != bfd_link_hash_defined
5802 && hash->root.root.type != bfd_link_hash_defweak)
5803 return FALSE;
5804 if (hash->root.type != STT_FUNC)
5805 return FALSE;
5806
5807 /* Read first instruction. */
5808 section = hash->root.root.u.def.section;
5809 abfd = section->owner;
5810 offset = hash->root.root.u.def.value - section->vma;
5811 if (!bfd_get_section_contents (abfd, section, contents, offset,
5812 sizeof (contents)))
5813 return FALSE;
5814
5815 first_insn = bfd_get_32 (abfd, contents);
5816
5817 /* Starts by SG instruction. */
5818 return first_insn == 0xe97fe97f;
5819 }
5820
5821 /* Output the name (in symbol table) of the veneer GEN_ENTRY if it is a new
5822 secure gateway veneers (ie. the veneers was not in the input import library)
5823 and there is no output import library (GEN_INFO->out_implib_bfd is NULL. */
5824
5825 static bfd_boolean
5826 arm_list_new_cmse_stub (struct bfd_hash_entry *gen_entry, void *gen_info)
5827 {
5828 struct elf32_arm_stub_hash_entry *stub_entry;
5829 struct bfd_link_info *info;
5830
5831 /* Massage our args to the form they really have. */
5832 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
5833 info = (struct bfd_link_info *) gen_info;
5834
5835 if (info->out_implib_bfd)
5836 return TRUE;
5837
5838 if (stub_entry->stub_type != arm_stub_cmse_branch_thumb_only)
5839 return TRUE;
5840
5841 if (stub_entry->stub_offset == (bfd_vma) -1)
5842 _bfd_error_handler (" %s", stub_entry->output_name);
5843
5844 return TRUE;
5845 }
5846
5847 /* Set offset of each secure gateway veneers so that its address remain
5848 identical to the one in the input import library referred by
5849 HTAB->in_implib_bfd. A warning is issued for veneers that disappeared
5850 (present in input import library but absent from the executable being
5851 linked) or if new veneers appeared and there is no output import library
5852 (INFO->out_implib_bfd is NULL and *CMSE_STUB_CREATED is bigger than the
5853 number of secure gateway veneers found in the input import library.
5854
5855 The function returns whether an error occurred. If no error occurred,
5856 *CMSE_STUB_CREATED gives the number of SG veneers created by both cmse_scan
5857 and this function and HTAB->new_cmse_stub_offset is set to the biggest
5858 veneer observed set for new veneers to be layed out after. */
5859
5860 static bfd_boolean
5861 set_cmse_veneer_addr_from_implib (struct bfd_link_info *info,
5862 struct elf32_arm_link_hash_table *htab,
5863 int *cmse_stub_created)
5864 {
5865 long symsize;
5866 char *sym_name;
5867 flagword flags;
5868 long i, symcount;
5869 bfd *in_implib_bfd;
5870 asection *stub_out_sec;
5871 bfd_boolean ret = TRUE;
5872 Elf_Internal_Sym *intsym;
5873 const char *out_sec_name;
5874 bfd_size_type cmse_stub_size;
5875 asymbol **sympp = NULL, *sym;
5876 struct elf32_arm_link_hash_entry *hash;
5877 const insn_sequence *cmse_stub_template;
5878 struct elf32_arm_stub_hash_entry *stub_entry;
5879 int cmse_stub_template_size, new_cmse_stubs_created = *cmse_stub_created;
5880 bfd_vma veneer_value, stub_offset, next_cmse_stub_offset;
5881 bfd_vma cmse_stub_array_start = (bfd_vma) -1, cmse_stub_sec_vma = 0;
5882
5883 /* No input secure gateway import library. */
5884 if (!htab->in_implib_bfd)
5885 return TRUE;
5886
5887 in_implib_bfd = htab->in_implib_bfd;
5888 if (!htab->cmse_implib)
5889 {
5890 _bfd_error_handler (_("%B: --in-implib only supported for Secure "
5891 "Gateway import libraries."), in_implib_bfd);
5892 return FALSE;
5893 }
5894
5895 /* Get symbol table size. */
5896 symsize = bfd_get_symtab_upper_bound (in_implib_bfd);
5897 if (symsize < 0)
5898 return FALSE;
5899
5900 /* Read in the input secure gateway import library's symbol table. */
5901 sympp = (asymbol **) xmalloc (symsize);
5902 symcount = bfd_canonicalize_symtab (in_implib_bfd, sympp);
5903 if (symcount < 0)
5904 {
5905 ret = FALSE;
5906 goto free_sym_buf;
5907 }
5908
5909 htab->new_cmse_stub_offset = 0;
5910 cmse_stub_size =
5911 find_stub_size_and_template (arm_stub_cmse_branch_thumb_only,
5912 &cmse_stub_template,
5913 &cmse_stub_template_size);
5914 out_sec_name =
5915 arm_dedicated_stub_output_section_name (arm_stub_cmse_branch_thumb_only);
5916 stub_out_sec =
5917 bfd_get_section_by_name (htab->obfd, out_sec_name);
5918 if (stub_out_sec != NULL)
5919 cmse_stub_sec_vma = stub_out_sec->vma;
5920
5921 /* Set addresses of veneers mentionned in input secure gateway import
5922 library's symbol table. */
5923 for (i = 0; i < symcount; i++)
5924 {
5925 sym = sympp[i];
5926 flags = sym->flags;
5927 sym_name = (char *) bfd_asymbol_name (sym);
5928 intsym = &((elf_symbol_type *) sym)->internal_elf_sym;
5929
5930 if (sym->section != bfd_abs_section_ptr
5931 || !(flags & (BSF_GLOBAL | BSF_WEAK))
5932 || (flags & BSF_FUNCTION) != BSF_FUNCTION
5933 || (ARM_GET_SYM_BRANCH_TYPE (intsym->st_target_internal)
5934 != ST_BRANCH_TO_THUMB))
5935 {
5936 _bfd_error_handler (_("%B: invalid import library entry: `%s'."),
5937 in_implib_bfd, sym_name);
5938 _bfd_error_handler (_("Symbol should be absolute, global and "
5939 "refer to Thumb functions."));
5940 ret = FALSE;
5941 continue;
5942 }
5943
5944 veneer_value = bfd_asymbol_value (sym);
5945 stub_offset = veneer_value - cmse_stub_sec_vma;
5946 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, sym_name,
5947 FALSE, FALSE);
5948 hash = (struct elf32_arm_link_hash_entry *)
5949 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
5950
5951 /* Stub entry should have been created by cmse_scan or the symbol be of
5952 a secure function callable from non secure code. */
5953 if (!stub_entry && !hash)
5954 {
5955 bfd_boolean new_stub;
5956
5957 _bfd_error_handler
5958 (_("Entry function `%s' disappeared from secure code."), sym_name);
5959 hash = (struct elf32_arm_link_hash_entry *)
5960 elf_link_hash_lookup (&(htab)->root, sym_name, TRUE, TRUE, TRUE);
5961 stub_entry
5962 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
5963 NULL, NULL, bfd_abs_section_ptr, hash,
5964 sym_name, veneer_value,
5965 ST_BRANCH_TO_THUMB, &new_stub);
5966 if (stub_entry == NULL)
5967 ret = FALSE;
5968 else
5969 {
5970 BFD_ASSERT (new_stub);
5971 new_cmse_stubs_created++;
5972 (*cmse_stub_created)++;
5973 }
5974 stub_entry->stub_template_size = stub_entry->stub_size = 0;
5975 stub_entry->stub_offset = stub_offset;
5976 }
5977 /* Symbol found is not callable from non secure code. */
5978 else if (!stub_entry)
5979 {
5980 if (!cmse_entry_fct_p (hash))
5981 {
5982 _bfd_error_handler (_("`%s' refers to a non entry function."),
5983 sym_name);
5984 ret = FALSE;
5985 }
5986 continue;
5987 }
5988 else
5989 {
5990 /* Only stubs for SG veneers should have been created. */
5991 BFD_ASSERT (stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
5992
5993 /* Check visibility hasn't changed. */
5994 if (!!(flags & BSF_GLOBAL)
5995 != (hash->root.root.type == bfd_link_hash_defined))
5996 _bfd_error_handler
5997 (_("%B: visibility of symbol `%s' has changed."), in_implib_bfd,
5998 sym_name);
5999
6000 stub_entry->stub_offset = stub_offset;
6001 }
6002
6003 /* Size should match that of a SG veneer. */
6004 if (intsym->st_size != cmse_stub_size)
6005 {
6006 _bfd_error_handler (_("%B: incorrect size for symbol `%s'."),
6007 in_implib_bfd, sym_name);
6008 ret = FALSE;
6009 }
6010
6011 /* Previous veneer address is before current SG veneer section. */
6012 if (veneer_value < cmse_stub_sec_vma)
6013 {
6014 /* Avoid offset underflow. */
6015 if (stub_entry)
6016 stub_entry->stub_offset = 0;
6017 stub_offset = 0;
6018 ret = FALSE;
6019 }
6020
6021 /* Complain if stub offset not a multiple of stub size. */
6022 if (stub_offset % cmse_stub_size)
6023 {
6024 _bfd_error_handler
6025 (_("Offset of veneer for entry function `%s' not a multiple of "
6026 "its size."), sym_name);
6027 ret = FALSE;
6028 }
6029
6030 if (!ret)
6031 continue;
6032
6033 new_cmse_stubs_created--;
6034 if (veneer_value < cmse_stub_array_start)
6035 cmse_stub_array_start = veneer_value;
6036 next_cmse_stub_offset = stub_offset + ((cmse_stub_size + 7) & ~7);
6037 if (next_cmse_stub_offset > htab->new_cmse_stub_offset)
6038 htab->new_cmse_stub_offset = next_cmse_stub_offset;
6039 }
6040
6041 if (!info->out_implib_bfd && new_cmse_stubs_created != 0)
6042 {
6043 BFD_ASSERT (new_cmse_stubs_created > 0);
6044 _bfd_error_handler
6045 (_("new entry function(s) introduced but no output import library "
6046 "specified:"));
6047 bfd_hash_traverse (&htab->stub_hash_table, arm_list_new_cmse_stub, info);
6048 }
6049
6050 if (cmse_stub_array_start != cmse_stub_sec_vma)
6051 {
6052 _bfd_error_handler
6053 (_("Start address of `%s' is different from previous link."),
6054 out_sec_name);
6055 ret = FALSE;
6056 }
6057
6058 free_sym_buf:
6059 free (sympp);
6060 return ret;
6061 }
6062
6063 /* Determine and set the size of the stub section for a final link.
6064
6065 The basic idea here is to examine all the relocations looking for
6066 PC-relative calls to a target that is unreachable with a "bl"
6067 instruction. */
6068
6069 bfd_boolean
6070 elf32_arm_size_stubs (bfd *output_bfd,
6071 bfd *stub_bfd,
6072 struct bfd_link_info *info,
6073 bfd_signed_vma group_size,
6074 asection * (*add_stub_section) (const char *, asection *,
6075 asection *,
6076 unsigned int),
6077 void (*layout_sections_again) (void))
6078 {
6079 bfd_boolean ret = TRUE;
6080 obj_attribute *out_attr;
6081 int cmse_stub_created = 0;
6082 bfd_size_type stub_group_size;
6083 bfd_boolean m_profile, stubs_always_after_branch, first_veneer_scan = TRUE;
6084 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
6085 struct a8_erratum_fix *a8_fixes = NULL;
6086 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
6087 struct a8_erratum_reloc *a8_relocs = NULL;
6088 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
6089
6090 if (htab == NULL)
6091 return FALSE;
6092
6093 if (htab->fix_cortex_a8)
6094 {
6095 a8_fixes = (struct a8_erratum_fix *)
6096 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
6097 a8_relocs = (struct a8_erratum_reloc *)
6098 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
6099 }
6100
6101 /* Propagate mach to stub bfd, because it may not have been
6102 finalized when we created stub_bfd. */
6103 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
6104 bfd_get_mach (output_bfd));
6105
6106 /* Stash our params away. */
6107 htab->stub_bfd = stub_bfd;
6108 htab->add_stub_section = add_stub_section;
6109 htab->layout_sections_again = layout_sections_again;
6110 stubs_always_after_branch = group_size < 0;
6111
6112 out_attr = elf_known_obj_attributes_proc (output_bfd);
6113 m_profile = out_attr[Tag_CPU_arch_profile].i == 'M';
6114
6115 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
6116 as the first half of a 32-bit branch straddling two 4K pages. This is a
6117 crude way of enforcing that. */
6118 if (htab->fix_cortex_a8)
6119 stubs_always_after_branch = 1;
6120
6121 if (group_size < 0)
6122 stub_group_size = -group_size;
6123 else
6124 stub_group_size = group_size;
6125
6126 if (stub_group_size == 1)
6127 {
6128 /* Default values. */
6129 /* Thumb branch range is +-4MB has to be used as the default
6130 maximum size (a given section can contain both ARM and Thumb
6131 code, so the worst case has to be taken into account).
6132
6133 This value is 24K less than that, which allows for 2025
6134 12-byte stubs. If we exceed that, then we will fail to link.
6135 The user will have to relink with an explicit group size
6136 option. */
6137 stub_group_size = 4170000;
6138 }
6139
6140 group_sections (htab, stub_group_size, stubs_always_after_branch);
6141
6142 /* If we're applying the cortex A8 fix, we need to determine the
6143 program header size now, because we cannot change it later --
6144 that could alter section placements. Notice the A8 erratum fix
6145 ends up requiring the section addresses to remain unchanged
6146 modulo the page size. That's something we cannot represent
6147 inside BFD, and we don't want to force the section alignment to
6148 be the page size. */
6149 if (htab->fix_cortex_a8)
6150 (*htab->layout_sections_again) ();
6151
6152 while (1)
6153 {
6154 bfd *input_bfd;
6155 unsigned int bfd_indx;
6156 asection *stub_sec;
6157 enum elf32_arm_stub_type stub_type;
6158 bfd_boolean stub_changed = FALSE;
6159 unsigned prev_num_a8_fixes = num_a8_fixes;
6160
6161 num_a8_fixes = 0;
6162 for (input_bfd = info->input_bfds, bfd_indx = 0;
6163 input_bfd != NULL;
6164 input_bfd = input_bfd->link.next, bfd_indx++)
6165 {
6166 Elf_Internal_Shdr *symtab_hdr;
6167 asection *section;
6168 Elf_Internal_Sym *local_syms = NULL;
6169
6170 if (!is_arm_elf (input_bfd))
6171 continue;
6172
6173 num_a8_relocs = 0;
6174
6175 /* We'll need the symbol table in a second. */
6176 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6177 if (symtab_hdr->sh_info == 0)
6178 continue;
6179
6180 /* Limit scan of symbols to object file whose profile is
6181 Microcontroller to not hinder performance in the general case. */
6182 if (m_profile && first_veneer_scan)
6183 {
6184 struct elf_link_hash_entry **sym_hashes;
6185
6186 sym_hashes = elf_sym_hashes (input_bfd);
6187 if (!cmse_scan (input_bfd, htab, out_attr, sym_hashes,
6188 &cmse_stub_created))
6189 goto error_ret_free_local;
6190
6191 if (cmse_stub_created != 0)
6192 stub_changed = TRUE;
6193 }
6194
6195 /* Walk over each section attached to the input bfd. */
6196 for (section = input_bfd->sections;
6197 section != NULL;
6198 section = section->next)
6199 {
6200 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
6201
6202 /* If there aren't any relocs, then there's nothing more
6203 to do. */
6204 if ((section->flags & SEC_RELOC) == 0
6205 || section->reloc_count == 0
6206 || (section->flags & SEC_CODE) == 0)
6207 continue;
6208
6209 /* If this section is a link-once section that will be
6210 discarded, then don't create any stubs. */
6211 if (section->output_section == NULL
6212 || section->output_section->owner != output_bfd)
6213 continue;
6214
6215 /* Get the relocs. */
6216 internal_relocs
6217 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
6218 NULL, info->keep_memory);
6219 if (internal_relocs == NULL)
6220 goto error_ret_free_local;
6221
6222 /* Now examine each relocation. */
6223 irela = internal_relocs;
6224 irelaend = irela + section->reloc_count;
6225 for (; irela < irelaend; irela++)
6226 {
6227 unsigned int r_type, r_indx;
6228 asection *sym_sec;
6229 bfd_vma sym_value;
6230 bfd_vma destination;
6231 struct elf32_arm_link_hash_entry *hash;
6232 const char *sym_name;
6233 unsigned char st_type;
6234 enum arm_st_branch_type branch_type;
6235 bfd_boolean created_stub = FALSE;
6236
6237 r_type = ELF32_R_TYPE (irela->r_info);
6238 r_indx = ELF32_R_SYM (irela->r_info);
6239
6240 if (r_type >= (unsigned int) R_ARM_max)
6241 {
6242 bfd_set_error (bfd_error_bad_value);
6243 error_ret_free_internal:
6244 if (elf_section_data (section)->relocs == NULL)
6245 free (internal_relocs);
6246 /* Fall through. */
6247 error_ret_free_local:
6248 if (local_syms != NULL
6249 && (symtab_hdr->contents
6250 != (unsigned char *) local_syms))
6251 free (local_syms);
6252 return FALSE;
6253 }
6254
6255 hash = NULL;
6256 if (r_indx >= symtab_hdr->sh_info)
6257 hash = elf32_arm_hash_entry
6258 (elf_sym_hashes (input_bfd)
6259 [r_indx - symtab_hdr->sh_info]);
6260
6261 /* Only look for stubs on branch instructions, or
6262 non-relaxed TLSCALL */
6263 if ((r_type != (unsigned int) R_ARM_CALL)
6264 && (r_type != (unsigned int) R_ARM_THM_CALL)
6265 && (r_type != (unsigned int) R_ARM_JUMP24)
6266 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
6267 && (r_type != (unsigned int) R_ARM_THM_XPC22)
6268 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
6269 && (r_type != (unsigned int) R_ARM_PLT32)
6270 && !((r_type == (unsigned int) R_ARM_TLS_CALL
6271 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6272 && r_type == elf32_arm_tls_transition
6273 (info, r_type, &hash->root)
6274 && ((hash ? hash->tls_type
6275 : (elf32_arm_local_got_tls_type
6276 (input_bfd)[r_indx]))
6277 & GOT_TLS_GDESC) != 0))
6278 continue;
6279
6280 /* Now determine the call target, its name, value,
6281 section. */
6282 sym_sec = NULL;
6283 sym_value = 0;
6284 destination = 0;
6285 sym_name = NULL;
6286
6287 if (r_type == (unsigned int) R_ARM_TLS_CALL
6288 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6289 {
6290 /* A non-relaxed TLS call. The target is the
6291 plt-resident trampoline and nothing to do
6292 with the symbol. */
6293 BFD_ASSERT (htab->tls_trampoline > 0);
6294 sym_sec = htab->root.splt;
6295 sym_value = htab->tls_trampoline;
6296 hash = 0;
6297 st_type = STT_FUNC;
6298 branch_type = ST_BRANCH_TO_ARM;
6299 }
6300 else if (!hash)
6301 {
6302 /* It's a local symbol. */
6303 Elf_Internal_Sym *sym;
6304
6305 if (local_syms == NULL)
6306 {
6307 local_syms
6308 = (Elf_Internal_Sym *) symtab_hdr->contents;
6309 if (local_syms == NULL)
6310 local_syms
6311 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
6312 symtab_hdr->sh_info, 0,
6313 NULL, NULL, NULL);
6314 if (local_syms == NULL)
6315 goto error_ret_free_internal;
6316 }
6317
6318 sym = local_syms + r_indx;
6319 if (sym->st_shndx == SHN_UNDEF)
6320 sym_sec = bfd_und_section_ptr;
6321 else if (sym->st_shndx == SHN_ABS)
6322 sym_sec = bfd_abs_section_ptr;
6323 else if (sym->st_shndx == SHN_COMMON)
6324 sym_sec = bfd_com_section_ptr;
6325 else
6326 sym_sec =
6327 bfd_section_from_elf_index (input_bfd, sym->st_shndx);
6328
6329 if (!sym_sec)
6330 /* This is an undefined symbol. It can never
6331 be resolved. */
6332 continue;
6333
6334 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
6335 sym_value = sym->st_value;
6336 destination = (sym_value + irela->r_addend
6337 + sym_sec->output_offset
6338 + sym_sec->output_section->vma);
6339 st_type = ELF_ST_TYPE (sym->st_info);
6340 branch_type =
6341 ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
6342 sym_name
6343 = bfd_elf_string_from_elf_section (input_bfd,
6344 symtab_hdr->sh_link,
6345 sym->st_name);
6346 }
6347 else
6348 {
6349 /* It's an external symbol. */
6350 while (hash->root.root.type == bfd_link_hash_indirect
6351 || hash->root.root.type == bfd_link_hash_warning)
6352 hash = ((struct elf32_arm_link_hash_entry *)
6353 hash->root.root.u.i.link);
6354
6355 if (hash->root.root.type == bfd_link_hash_defined
6356 || hash->root.root.type == bfd_link_hash_defweak)
6357 {
6358 sym_sec = hash->root.root.u.def.section;
6359 sym_value = hash->root.root.u.def.value;
6360
6361 struct elf32_arm_link_hash_table *globals =
6362 elf32_arm_hash_table (info);
6363
6364 /* For a destination in a shared library,
6365 use the PLT stub as target address to
6366 decide whether a branch stub is
6367 needed. */
6368 if (globals != NULL
6369 && globals->root.splt != NULL
6370 && hash != NULL
6371 && hash->root.plt.offset != (bfd_vma) -1)
6372 {
6373 sym_sec = globals->root.splt;
6374 sym_value = hash->root.plt.offset;
6375 if (sym_sec->output_section != NULL)
6376 destination = (sym_value
6377 + sym_sec->output_offset
6378 + sym_sec->output_section->vma);
6379 }
6380 else if (sym_sec->output_section != NULL)
6381 destination = (sym_value + irela->r_addend
6382 + sym_sec->output_offset
6383 + sym_sec->output_section->vma);
6384 }
6385 else if ((hash->root.root.type == bfd_link_hash_undefined)
6386 || (hash->root.root.type == bfd_link_hash_undefweak))
6387 {
6388 /* For a shared library, use the PLT stub as
6389 target address to decide whether a long
6390 branch stub is needed.
6391 For absolute code, they cannot be handled. */
6392 struct elf32_arm_link_hash_table *globals =
6393 elf32_arm_hash_table (info);
6394
6395 if (globals != NULL
6396 && globals->root.splt != NULL
6397 && hash != NULL
6398 && hash->root.plt.offset != (bfd_vma) -1)
6399 {
6400 sym_sec = globals->root.splt;
6401 sym_value = hash->root.plt.offset;
6402 if (sym_sec->output_section != NULL)
6403 destination = (sym_value
6404 + sym_sec->output_offset
6405 + sym_sec->output_section->vma);
6406 }
6407 else
6408 continue;
6409 }
6410 else
6411 {
6412 bfd_set_error (bfd_error_bad_value);
6413 goto error_ret_free_internal;
6414 }
6415 st_type = hash->root.type;
6416 branch_type =
6417 ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
6418 sym_name = hash->root.root.root.string;
6419 }
6420
6421 do
6422 {
6423 bfd_boolean new_stub;
6424 struct elf32_arm_stub_hash_entry *stub_entry;
6425
6426 /* Determine what (if any) linker stub is needed. */
6427 stub_type = arm_type_of_stub (info, section, irela,
6428 st_type, &branch_type,
6429 hash, destination, sym_sec,
6430 input_bfd, sym_name);
6431 if (stub_type == arm_stub_none)
6432 break;
6433
6434 /* We've either created a stub for this reloc already,
6435 or we are about to. */
6436 stub_entry =
6437 elf32_arm_create_stub (htab, stub_type, section, irela,
6438 sym_sec, hash,
6439 (char *) sym_name, sym_value,
6440 branch_type, &new_stub);
6441
6442 created_stub = stub_entry != NULL;
6443 if (!created_stub)
6444 goto error_ret_free_internal;
6445 else if (!new_stub)
6446 break;
6447 else
6448 stub_changed = TRUE;
6449 }
6450 while (0);
6451
6452 /* Look for relocations which might trigger Cortex-A8
6453 erratum. */
6454 if (htab->fix_cortex_a8
6455 && (r_type == (unsigned int) R_ARM_THM_JUMP24
6456 || r_type == (unsigned int) R_ARM_THM_JUMP19
6457 || r_type == (unsigned int) R_ARM_THM_CALL
6458 || r_type == (unsigned int) R_ARM_THM_XPC22))
6459 {
6460 bfd_vma from = section->output_section->vma
6461 + section->output_offset
6462 + irela->r_offset;
6463
6464 if ((from & 0xfff) == 0xffe)
6465 {
6466 /* Found a candidate. Note we haven't checked the
6467 destination is within 4K here: if we do so (and
6468 don't create an entry in a8_relocs) we can't tell
6469 that a branch should have been relocated when
6470 scanning later. */
6471 if (num_a8_relocs == a8_reloc_table_size)
6472 {
6473 a8_reloc_table_size *= 2;
6474 a8_relocs = (struct a8_erratum_reloc *)
6475 bfd_realloc (a8_relocs,
6476 sizeof (struct a8_erratum_reloc)
6477 * a8_reloc_table_size);
6478 }
6479
6480 a8_relocs[num_a8_relocs].from = from;
6481 a8_relocs[num_a8_relocs].destination = destination;
6482 a8_relocs[num_a8_relocs].r_type = r_type;
6483 a8_relocs[num_a8_relocs].branch_type = branch_type;
6484 a8_relocs[num_a8_relocs].sym_name = sym_name;
6485 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
6486 a8_relocs[num_a8_relocs].hash = hash;
6487
6488 num_a8_relocs++;
6489 }
6490 }
6491 }
6492
6493 /* We're done with the internal relocs, free them. */
6494 if (elf_section_data (section)->relocs == NULL)
6495 free (internal_relocs);
6496 }
6497
6498 if (htab->fix_cortex_a8)
6499 {
6500 /* Sort relocs which might apply to Cortex-A8 erratum. */
6501 qsort (a8_relocs, num_a8_relocs,
6502 sizeof (struct a8_erratum_reloc),
6503 &a8_reloc_compare);
6504
6505 /* Scan for branches which might trigger Cortex-A8 erratum. */
6506 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
6507 &num_a8_fixes, &a8_fix_table_size,
6508 a8_relocs, num_a8_relocs,
6509 prev_num_a8_fixes, &stub_changed)
6510 != 0)
6511 goto error_ret_free_local;
6512 }
6513
6514 if (local_syms != NULL
6515 && symtab_hdr->contents != (unsigned char *) local_syms)
6516 {
6517 if (!info->keep_memory)
6518 free (local_syms);
6519 else
6520 symtab_hdr->contents = (unsigned char *) local_syms;
6521 }
6522 }
6523
6524 if (first_veneer_scan
6525 && !set_cmse_veneer_addr_from_implib (info, htab,
6526 &cmse_stub_created))
6527 ret = FALSE;
6528
6529 if (prev_num_a8_fixes != num_a8_fixes)
6530 stub_changed = TRUE;
6531
6532 if (!stub_changed)
6533 break;
6534
6535 /* OK, we've added some stubs. Find out the new size of the
6536 stub sections. */
6537 for (stub_sec = htab->stub_bfd->sections;
6538 stub_sec != NULL;
6539 stub_sec = stub_sec->next)
6540 {
6541 /* Ignore non-stub sections. */
6542 if (!strstr (stub_sec->name, STUB_SUFFIX))
6543 continue;
6544
6545 stub_sec->size = 0;
6546 }
6547
6548 /* Add new SG veneers after those already in the input import
6549 library. */
6550 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6551 stub_type++)
6552 {
6553 bfd_vma *start_offset_p;
6554 asection **stub_sec_p;
6555
6556 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
6557 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6558 if (start_offset_p == NULL)
6559 continue;
6560
6561 BFD_ASSERT (stub_sec_p != NULL);
6562 if (*stub_sec_p != NULL)
6563 (*stub_sec_p)->size = *start_offset_p;
6564 }
6565
6566 /* Compute stub section size, considering padding. */
6567 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
6568 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6569 stub_type++)
6570 {
6571 int size, padding;
6572 asection **stub_sec_p;
6573
6574 padding = arm_dedicated_stub_section_padding (stub_type);
6575 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6576 /* Skip if no stub input section or no stub section padding
6577 required. */
6578 if ((stub_sec_p != NULL && *stub_sec_p == NULL) || padding == 0)
6579 continue;
6580 /* Stub section padding required but no dedicated section. */
6581 BFD_ASSERT (stub_sec_p);
6582
6583 size = (*stub_sec_p)->size;
6584 size = (size + padding - 1) & ~(padding - 1);
6585 (*stub_sec_p)->size = size;
6586 }
6587
6588 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
6589 if (htab->fix_cortex_a8)
6590 for (i = 0; i < num_a8_fixes; i++)
6591 {
6592 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
6593 a8_fixes[i].section, htab, a8_fixes[i].stub_type);
6594
6595 if (stub_sec == NULL)
6596 return FALSE;
6597
6598 stub_sec->size
6599 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
6600 NULL);
6601 }
6602
6603
6604 /* Ask the linker to do its stuff. */
6605 (*htab->layout_sections_again) ();
6606 first_veneer_scan = FALSE;
6607 }
6608
6609 /* Add stubs for Cortex-A8 erratum fixes now. */
6610 if (htab->fix_cortex_a8)
6611 {
6612 for (i = 0; i < num_a8_fixes; i++)
6613 {
6614 struct elf32_arm_stub_hash_entry *stub_entry;
6615 char *stub_name = a8_fixes[i].stub_name;
6616 asection *section = a8_fixes[i].section;
6617 unsigned int section_id = a8_fixes[i].section->id;
6618 asection *link_sec = htab->stub_group[section_id].link_sec;
6619 asection *stub_sec = htab->stub_group[section_id].stub_sec;
6620 const insn_sequence *template_sequence;
6621 int template_size, size = 0;
6622
6623 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
6624 TRUE, FALSE);
6625 if (stub_entry == NULL)
6626 {
6627 _bfd_error_handler (_("%B: cannot create stub entry %s"),
6628 section->owner, stub_name);
6629 return FALSE;
6630 }
6631
6632 stub_entry->stub_sec = stub_sec;
6633 stub_entry->stub_offset = (bfd_vma) -1;
6634 stub_entry->id_sec = link_sec;
6635 stub_entry->stub_type = a8_fixes[i].stub_type;
6636 stub_entry->source_value = a8_fixes[i].offset;
6637 stub_entry->target_section = a8_fixes[i].section;
6638 stub_entry->target_value = a8_fixes[i].target_offset;
6639 stub_entry->orig_insn = a8_fixes[i].orig_insn;
6640 stub_entry->branch_type = a8_fixes[i].branch_type;
6641
6642 size = find_stub_size_and_template (a8_fixes[i].stub_type,
6643 &template_sequence,
6644 &template_size);
6645
6646 stub_entry->stub_size = size;
6647 stub_entry->stub_template = template_sequence;
6648 stub_entry->stub_template_size = template_size;
6649 }
6650
6651 /* Stash the Cortex-A8 erratum fix array for use later in
6652 elf32_arm_write_section(). */
6653 htab->a8_erratum_fixes = a8_fixes;
6654 htab->num_a8_erratum_fixes = num_a8_fixes;
6655 }
6656 else
6657 {
6658 htab->a8_erratum_fixes = NULL;
6659 htab->num_a8_erratum_fixes = 0;
6660 }
6661 return ret;
6662 }
6663
6664 /* Build all the stubs associated with the current output file. The
6665 stubs are kept in a hash table attached to the main linker hash
6666 table. We also set up the .plt entries for statically linked PIC
6667 functions here. This function is called via arm_elf_finish in the
6668 linker. */
6669
6670 bfd_boolean
6671 elf32_arm_build_stubs (struct bfd_link_info *info)
6672 {
6673 asection *stub_sec;
6674 struct bfd_hash_table *table;
6675 enum elf32_arm_stub_type stub_type;
6676 struct elf32_arm_link_hash_table *htab;
6677
6678 htab = elf32_arm_hash_table (info);
6679 if (htab == NULL)
6680 return FALSE;
6681
6682 for (stub_sec = htab->stub_bfd->sections;
6683 stub_sec != NULL;
6684 stub_sec = stub_sec->next)
6685 {
6686 bfd_size_type size;
6687
6688 /* Ignore non-stub sections. */
6689 if (!strstr (stub_sec->name, STUB_SUFFIX))
6690 continue;
6691
6692 /* Allocate memory to hold the linker stubs. Zeroing the stub sections
6693 must at least be done for stub section requiring padding and for SG
6694 veneers to ensure that a non secure code branching to a removed SG
6695 veneer causes an error. */
6696 size = stub_sec->size;
6697 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
6698 if (stub_sec->contents == NULL && size != 0)
6699 return FALSE;
6700
6701 stub_sec->size = 0;
6702 }
6703
6704 /* Add new SG veneers after those already in the input import library. */
6705 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
6706 {
6707 bfd_vma *start_offset_p;
6708 asection **stub_sec_p;
6709
6710 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
6711 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6712 if (start_offset_p == NULL)
6713 continue;
6714
6715 BFD_ASSERT (stub_sec_p != NULL);
6716 if (*stub_sec_p != NULL)
6717 (*stub_sec_p)->size = *start_offset_p;
6718 }
6719
6720 /* Build the stubs as directed by the stub hash table. */
6721 table = &htab->stub_hash_table;
6722 bfd_hash_traverse (table, arm_build_one_stub, info);
6723 if (htab->fix_cortex_a8)
6724 {
6725 /* Place the cortex a8 stubs last. */
6726 htab->fix_cortex_a8 = -1;
6727 bfd_hash_traverse (table, arm_build_one_stub, info);
6728 }
6729
6730 return TRUE;
6731 }
6732
6733 /* Locate the Thumb encoded calling stub for NAME. */
6734
6735 static struct elf_link_hash_entry *
6736 find_thumb_glue (struct bfd_link_info *link_info,
6737 const char *name,
6738 char **error_message)
6739 {
6740 char *tmp_name;
6741 struct elf_link_hash_entry *hash;
6742 struct elf32_arm_link_hash_table *hash_table;
6743
6744 /* We need a pointer to the armelf specific hash table. */
6745 hash_table = elf32_arm_hash_table (link_info);
6746 if (hash_table == NULL)
6747 return NULL;
6748
6749 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
6750 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
6751
6752 BFD_ASSERT (tmp_name);
6753
6754 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
6755
6756 hash = elf_link_hash_lookup
6757 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
6758
6759 if (hash == NULL
6760 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
6761 tmp_name, name) == -1)
6762 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
6763
6764 free (tmp_name);
6765
6766 return hash;
6767 }
6768
6769 /* Locate the ARM encoded calling stub for NAME. */
6770
6771 static struct elf_link_hash_entry *
6772 find_arm_glue (struct bfd_link_info *link_info,
6773 const char *name,
6774 char **error_message)
6775 {
6776 char *tmp_name;
6777 struct elf_link_hash_entry *myh;
6778 struct elf32_arm_link_hash_table *hash_table;
6779
6780 /* We need a pointer to the elfarm specific hash table. */
6781 hash_table = elf32_arm_hash_table (link_info);
6782 if (hash_table == NULL)
6783 return NULL;
6784
6785 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
6786 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
6787
6788 BFD_ASSERT (tmp_name);
6789
6790 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
6791
6792 myh = elf_link_hash_lookup
6793 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
6794
6795 if (myh == NULL
6796 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
6797 tmp_name, name) == -1)
6798 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
6799
6800 free (tmp_name);
6801
6802 return myh;
6803 }
6804
6805 /* ARM->Thumb glue (static images):
6806
6807 .arm
6808 __func_from_arm:
6809 ldr r12, __func_addr
6810 bx r12
6811 __func_addr:
6812 .word func @ behave as if you saw a ARM_32 reloc.
6813
6814 (v5t static images)
6815 .arm
6816 __func_from_arm:
6817 ldr pc, __func_addr
6818 __func_addr:
6819 .word func @ behave as if you saw a ARM_32 reloc.
6820
6821 (relocatable images)
6822 .arm
6823 __func_from_arm:
6824 ldr r12, __func_offset
6825 add r12, r12, pc
6826 bx r12
6827 __func_offset:
6828 .word func - . */
6829
6830 #define ARM2THUMB_STATIC_GLUE_SIZE 12
6831 static const insn32 a2t1_ldr_insn = 0xe59fc000;
6832 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
6833 static const insn32 a2t3_func_addr_insn = 0x00000001;
6834
6835 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
6836 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
6837 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
6838
6839 #define ARM2THUMB_PIC_GLUE_SIZE 16
6840 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
6841 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
6842 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
6843
6844 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
6845
6846 .thumb .thumb
6847 .align 2 .align 2
6848 __func_from_thumb: __func_from_thumb:
6849 bx pc push {r6, lr}
6850 nop ldr r6, __func_addr
6851 .arm mov lr, pc
6852 b func bx r6
6853 .arm
6854 ;; back_to_thumb
6855 ldmia r13! {r6, lr}
6856 bx lr
6857 __func_addr:
6858 .word func */
6859
6860 #define THUMB2ARM_GLUE_SIZE 8
6861 static const insn16 t2a1_bx_pc_insn = 0x4778;
6862 static const insn16 t2a2_noop_insn = 0x46c0;
6863 static const insn32 t2a3_b_insn = 0xea000000;
6864
6865 #define VFP11_ERRATUM_VENEER_SIZE 8
6866 #define STM32L4XX_ERRATUM_LDM_VENEER_SIZE 16
6867 #define STM32L4XX_ERRATUM_VLDM_VENEER_SIZE 24
6868
6869 #define ARM_BX_VENEER_SIZE 12
6870 static const insn32 armbx1_tst_insn = 0xe3100001;
6871 static const insn32 armbx2_moveq_insn = 0x01a0f000;
6872 static const insn32 armbx3_bx_insn = 0xe12fff10;
6873
6874 #ifndef ELFARM_NABI_C_INCLUDED
6875 static void
6876 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
6877 {
6878 asection * s;
6879 bfd_byte * contents;
6880
6881 if (size == 0)
6882 {
6883 /* Do not include empty glue sections in the output. */
6884 if (abfd != NULL)
6885 {
6886 s = bfd_get_linker_section (abfd, name);
6887 if (s != NULL)
6888 s->flags |= SEC_EXCLUDE;
6889 }
6890 return;
6891 }
6892
6893 BFD_ASSERT (abfd != NULL);
6894
6895 s = bfd_get_linker_section (abfd, name);
6896 BFD_ASSERT (s != NULL);
6897
6898 contents = (bfd_byte *) bfd_alloc (abfd, size);
6899
6900 BFD_ASSERT (s->size == size);
6901 s->contents = contents;
6902 }
6903
6904 bfd_boolean
6905 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
6906 {
6907 struct elf32_arm_link_hash_table * globals;
6908
6909 globals = elf32_arm_hash_table (info);
6910 BFD_ASSERT (globals != NULL);
6911
6912 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6913 globals->arm_glue_size,
6914 ARM2THUMB_GLUE_SECTION_NAME);
6915
6916 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6917 globals->thumb_glue_size,
6918 THUMB2ARM_GLUE_SECTION_NAME);
6919
6920 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6921 globals->vfp11_erratum_glue_size,
6922 VFP11_ERRATUM_VENEER_SECTION_NAME);
6923
6924 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6925 globals->stm32l4xx_erratum_glue_size,
6926 STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
6927
6928 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6929 globals->bx_glue_size,
6930 ARM_BX_GLUE_SECTION_NAME);
6931
6932 return TRUE;
6933 }
6934
6935 /* Allocate space and symbols for calling a Thumb function from Arm mode.
6936 returns the symbol identifying the stub. */
6937
6938 static struct elf_link_hash_entry *
6939 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
6940 struct elf_link_hash_entry * h)
6941 {
6942 const char * name = h->root.root.string;
6943 asection * s;
6944 char * tmp_name;
6945 struct elf_link_hash_entry * myh;
6946 struct bfd_link_hash_entry * bh;
6947 struct elf32_arm_link_hash_table * globals;
6948 bfd_vma val;
6949 bfd_size_type size;
6950
6951 globals = elf32_arm_hash_table (link_info);
6952 BFD_ASSERT (globals != NULL);
6953 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6954
6955 s = bfd_get_linker_section
6956 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
6957
6958 BFD_ASSERT (s != NULL);
6959
6960 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
6961 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
6962
6963 BFD_ASSERT (tmp_name);
6964
6965 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
6966
6967 myh = elf_link_hash_lookup
6968 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6969
6970 if (myh != NULL)
6971 {
6972 /* We've already seen this guy. */
6973 free (tmp_name);
6974 return myh;
6975 }
6976
6977 /* The only trick here is using hash_table->arm_glue_size as the value.
6978 Even though the section isn't allocated yet, this is where we will be
6979 putting it. The +1 on the value marks that the stub has not been
6980 output yet - not that it is a Thumb function. */
6981 bh = NULL;
6982 val = globals->arm_glue_size + 1;
6983 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
6984 tmp_name, BSF_GLOBAL, s, val,
6985 NULL, TRUE, FALSE, &bh);
6986
6987 myh = (struct elf_link_hash_entry *) bh;
6988 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
6989 myh->forced_local = 1;
6990
6991 free (tmp_name);
6992
6993 if (bfd_link_pic (link_info)
6994 || globals->root.is_relocatable_executable
6995 || globals->pic_veneer)
6996 size = ARM2THUMB_PIC_GLUE_SIZE;
6997 else if (globals->use_blx)
6998 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
6999 else
7000 size = ARM2THUMB_STATIC_GLUE_SIZE;
7001
7002 s->size += size;
7003 globals->arm_glue_size += size;
7004
7005 return myh;
7006 }
7007
7008 /* Allocate space for ARMv4 BX veneers. */
7009
7010 static void
7011 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
7012 {
7013 asection * s;
7014 struct elf32_arm_link_hash_table *globals;
7015 char *tmp_name;
7016 struct elf_link_hash_entry *myh;
7017 struct bfd_link_hash_entry *bh;
7018 bfd_vma val;
7019
7020 /* BX PC does not need a veneer. */
7021 if (reg == 15)
7022 return;
7023
7024 globals = elf32_arm_hash_table (link_info);
7025 BFD_ASSERT (globals != NULL);
7026 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7027
7028 /* Check if this veneer has already been allocated. */
7029 if (globals->bx_glue_offset[reg])
7030 return;
7031
7032 s = bfd_get_linker_section
7033 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
7034
7035 BFD_ASSERT (s != NULL);
7036
7037 /* Add symbol for veneer. */
7038 tmp_name = (char *)
7039 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
7040
7041 BFD_ASSERT (tmp_name);
7042
7043 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
7044
7045 myh = elf_link_hash_lookup
7046 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
7047
7048 BFD_ASSERT (myh == NULL);
7049
7050 bh = NULL;
7051 val = globals->bx_glue_size;
7052 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
7053 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7054 NULL, TRUE, FALSE, &bh);
7055
7056 myh = (struct elf_link_hash_entry *) bh;
7057 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7058 myh->forced_local = 1;
7059
7060 s->size += ARM_BX_VENEER_SIZE;
7061 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
7062 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
7063 }
7064
7065
7066 /* Add an entry to the code/data map for section SEC. */
7067
7068 static void
7069 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
7070 {
7071 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
7072 unsigned int newidx;
7073
7074 if (sec_data->map == NULL)
7075 {
7076 sec_data->map = (elf32_arm_section_map *)
7077 bfd_malloc (sizeof (elf32_arm_section_map));
7078 sec_data->mapcount = 0;
7079 sec_data->mapsize = 1;
7080 }
7081
7082 newidx = sec_data->mapcount++;
7083
7084 if (sec_data->mapcount > sec_data->mapsize)
7085 {
7086 sec_data->mapsize *= 2;
7087 sec_data->map = (elf32_arm_section_map *)
7088 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
7089 * sizeof (elf32_arm_section_map));
7090 }
7091
7092 if (sec_data->map)
7093 {
7094 sec_data->map[newidx].vma = vma;
7095 sec_data->map[newidx].type = type;
7096 }
7097 }
7098
7099
7100 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
7101 veneers are handled for now. */
7102
7103 static bfd_vma
7104 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
7105 elf32_vfp11_erratum_list *branch,
7106 bfd *branch_bfd,
7107 asection *branch_sec,
7108 unsigned int offset)
7109 {
7110 asection *s;
7111 struct elf32_arm_link_hash_table *hash_table;
7112 char *tmp_name;
7113 struct elf_link_hash_entry *myh;
7114 struct bfd_link_hash_entry *bh;
7115 bfd_vma val;
7116 struct _arm_elf_section_data *sec_data;
7117 elf32_vfp11_erratum_list *newerr;
7118
7119 hash_table = elf32_arm_hash_table (link_info);
7120 BFD_ASSERT (hash_table != NULL);
7121 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
7122
7123 s = bfd_get_linker_section
7124 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
7125
7126 sec_data = elf32_arm_section_data (s);
7127
7128 BFD_ASSERT (s != NULL);
7129
7130 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7131 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
7132
7133 BFD_ASSERT (tmp_name);
7134
7135 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
7136 hash_table->num_vfp11_fixes);
7137
7138 myh = elf_link_hash_lookup
7139 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7140
7141 BFD_ASSERT (myh == NULL);
7142
7143 bh = NULL;
7144 val = hash_table->vfp11_erratum_glue_size;
7145 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
7146 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7147 NULL, TRUE, FALSE, &bh);
7148
7149 myh = (struct elf_link_hash_entry *) bh;
7150 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7151 myh->forced_local = 1;
7152
7153 /* Link veneer back to calling location. */
7154 sec_data->erratumcount += 1;
7155 newerr = (elf32_vfp11_erratum_list *)
7156 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
7157
7158 newerr->type = VFP11_ERRATUM_ARM_VENEER;
7159 newerr->vma = -1;
7160 newerr->u.v.branch = branch;
7161 newerr->u.v.id = hash_table->num_vfp11_fixes;
7162 branch->u.b.veneer = newerr;
7163
7164 newerr->next = sec_data->erratumlist;
7165 sec_data->erratumlist = newerr;
7166
7167 /* A symbol for the return from the veneer. */
7168 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
7169 hash_table->num_vfp11_fixes);
7170
7171 myh = elf_link_hash_lookup
7172 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7173
7174 if (myh != NULL)
7175 abort ();
7176
7177 bh = NULL;
7178 val = offset + 4;
7179 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
7180 branch_sec, val, NULL, TRUE, FALSE, &bh);
7181
7182 myh = (struct elf_link_hash_entry *) bh;
7183 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7184 myh->forced_local = 1;
7185
7186 free (tmp_name);
7187
7188 /* Generate a mapping symbol for the veneer section, and explicitly add an
7189 entry for that symbol to the code/data map for the section. */
7190 if (hash_table->vfp11_erratum_glue_size == 0)
7191 {
7192 bh = NULL;
7193 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
7194 ever requires this erratum fix. */
7195 _bfd_generic_link_add_one_symbol (link_info,
7196 hash_table->bfd_of_glue_owner, "$a",
7197 BSF_LOCAL, s, 0, NULL,
7198 TRUE, FALSE, &bh);
7199
7200 myh = (struct elf_link_hash_entry *) bh;
7201 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7202 myh->forced_local = 1;
7203
7204 /* The elf32_arm_init_maps function only cares about symbols from input
7205 BFDs. We must make a note of this generated mapping symbol
7206 ourselves so that code byteswapping works properly in
7207 elf32_arm_write_section. */
7208 elf32_arm_section_map_add (s, 'a', 0);
7209 }
7210
7211 s->size += VFP11_ERRATUM_VENEER_SIZE;
7212 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
7213 hash_table->num_vfp11_fixes++;
7214
7215 /* The offset of the veneer. */
7216 return val;
7217 }
7218
7219 /* Record information about a STM32L4XX STM erratum veneer. Only THUMB-mode
7220 veneers need to be handled because used only in Cortex-M. */
7221
7222 static bfd_vma
7223 record_stm32l4xx_erratum_veneer (struct bfd_link_info *link_info,
7224 elf32_stm32l4xx_erratum_list *branch,
7225 bfd *branch_bfd,
7226 asection *branch_sec,
7227 unsigned int offset,
7228 bfd_size_type veneer_size)
7229 {
7230 asection *s;
7231 struct elf32_arm_link_hash_table *hash_table;
7232 char *tmp_name;
7233 struct elf_link_hash_entry *myh;
7234 struct bfd_link_hash_entry *bh;
7235 bfd_vma val;
7236 struct _arm_elf_section_data *sec_data;
7237 elf32_stm32l4xx_erratum_list *newerr;
7238
7239 hash_table = elf32_arm_hash_table (link_info);
7240 BFD_ASSERT (hash_table != NULL);
7241 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
7242
7243 s = bfd_get_linker_section
7244 (hash_table->bfd_of_glue_owner, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7245
7246 BFD_ASSERT (s != NULL);
7247
7248 sec_data = elf32_arm_section_data (s);
7249
7250 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7251 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
7252
7253 BFD_ASSERT (tmp_name);
7254
7255 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
7256 hash_table->num_stm32l4xx_fixes);
7257
7258 myh = elf_link_hash_lookup
7259 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7260
7261 BFD_ASSERT (myh == NULL);
7262
7263 bh = NULL;
7264 val = hash_table->stm32l4xx_erratum_glue_size;
7265 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
7266 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7267 NULL, TRUE, FALSE, &bh);
7268
7269 myh = (struct elf_link_hash_entry *) bh;
7270 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7271 myh->forced_local = 1;
7272
7273 /* Link veneer back to calling location. */
7274 sec_data->stm32l4xx_erratumcount += 1;
7275 newerr = (elf32_stm32l4xx_erratum_list *)
7276 bfd_zmalloc (sizeof (elf32_stm32l4xx_erratum_list));
7277
7278 newerr->type = STM32L4XX_ERRATUM_VENEER;
7279 newerr->vma = -1;
7280 newerr->u.v.branch = branch;
7281 newerr->u.v.id = hash_table->num_stm32l4xx_fixes;
7282 branch->u.b.veneer = newerr;
7283
7284 newerr->next = sec_data->stm32l4xx_erratumlist;
7285 sec_data->stm32l4xx_erratumlist = newerr;
7286
7287 /* A symbol for the return from the veneer. */
7288 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
7289 hash_table->num_stm32l4xx_fixes);
7290
7291 myh = elf_link_hash_lookup
7292 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7293
7294 if (myh != NULL)
7295 abort ();
7296
7297 bh = NULL;
7298 val = offset + 4;
7299 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
7300 branch_sec, val, NULL, TRUE, FALSE, &bh);
7301
7302 myh = (struct elf_link_hash_entry *) bh;
7303 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7304 myh->forced_local = 1;
7305
7306 free (tmp_name);
7307
7308 /* Generate a mapping symbol for the veneer section, and explicitly add an
7309 entry for that symbol to the code/data map for the section. */
7310 if (hash_table->stm32l4xx_erratum_glue_size == 0)
7311 {
7312 bh = NULL;
7313 /* Creates a THUMB symbol since there is no other choice. */
7314 _bfd_generic_link_add_one_symbol (link_info,
7315 hash_table->bfd_of_glue_owner, "$t",
7316 BSF_LOCAL, s, 0, NULL,
7317 TRUE, FALSE, &bh);
7318
7319 myh = (struct elf_link_hash_entry *) bh;
7320 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7321 myh->forced_local = 1;
7322
7323 /* The elf32_arm_init_maps function only cares about symbols from input
7324 BFDs. We must make a note of this generated mapping symbol
7325 ourselves so that code byteswapping works properly in
7326 elf32_arm_write_section. */
7327 elf32_arm_section_map_add (s, 't', 0);
7328 }
7329
7330 s->size += veneer_size;
7331 hash_table->stm32l4xx_erratum_glue_size += veneer_size;
7332 hash_table->num_stm32l4xx_fixes++;
7333
7334 /* The offset of the veneer. */
7335 return val;
7336 }
7337
7338 #define ARM_GLUE_SECTION_FLAGS \
7339 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
7340 | SEC_READONLY | SEC_LINKER_CREATED)
7341
7342 /* Create a fake section for use by the ARM backend of the linker. */
7343
7344 static bfd_boolean
7345 arm_make_glue_section (bfd * abfd, const char * name)
7346 {
7347 asection * sec;
7348
7349 sec = bfd_get_linker_section (abfd, name);
7350 if (sec != NULL)
7351 /* Already made. */
7352 return TRUE;
7353
7354 sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
7355
7356 if (sec == NULL
7357 || !bfd_set_section_alignment (abfd, sec, 2))
7358 return FALSE;
7359
7360 /* Set the gc mark to prevent the section from being removed by garbage
7361 collection, despite the fact that no relocs refer to this section. */
7362 sec->gc_mark = 1;
7363
7364 return TRUE;
7365 }
7366
7367 /* Set size of .plt entries. This function is called from the
7368 linker scripts in ld/emultempl/{armelf}.em. */
7369
7370 void
7371 bfd_elf32_arm_use_long_plt (void)
7372 {
7373 elf32_arm_use_long_plt_entry = TRUE;
7374 }
7375
7376 /* Add the glue sections to ABFD. This function is called from the
7377 linker scripts in ld/emultempl/{armelf}.em. */
7378
7379 bfd_boolean
7380 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
7381 struct bfd_link_info *info)
7382 {
7383 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
7384 bfd_boolean dostm32l4xx = globals
7385 && globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE;
7386 bfd_boolean addglue;
7387
7388 /* If we are only performing a partial
7389 link do not bother adding the glue. */
7390 if (bfd_link_relocatable (info))
7391 return TRUE;
7392
7393 addglue = arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
7394 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
7395 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
7396 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
7397
7398 if (!dostm32l4xx)
7399 return addglue;
7400
7401 return addglue
7402 && arm_make_glue_section (abfd, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7403 }
7404
7405 /* Mark output sections of veneers needing a dedicated one with SEC_KEEP. This
7406 ensures they are not marked for deletion by
7407 strip_excluded_output_sections () when veneers are going to be created
7408 later. Not doing so would trigger assert on empty section size in
7409 lang_size_sections_1 (). */
7410
7411 void
7412 bfd_elf32_arm_keep_private_stub_output_sections (struct bfd_link_info *info)
7413 {
7414 enum elf32_arm_stub_type stub_type;
7415
7416 /* If we are only performing a partial
7417 link do not bother adding the glue. */
7418 if (bfd_link_relocatable (info))
7419 return;
7420
7421 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
7422 {
7423 asection *out_sec;
7424 const char *out_sec_name;
7425
7426 if (!arm_dedicated_stub_output_section_required (stub_type))
7427 continue;
7428
7429 out_sec_name = arm_dedicated_stub_output_section_name (stub_type);
7430 out_sec = bfd_get_section_by_name (info->output_bfd, out_sec_name);
7431 if (out_sec != NULL)
7432 out_sec->flags |= SEC_KEEP;
7433 }
7434 }
7435
7436 /* Select a BFD to be used to hold the sections used by the glue code.
7437 This function is called from the linker scripts in ld/emultempl/
7438 {armelf/pe}.em. */
7439
7440 bfd_boolean
7441 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
7442 {
7443 struct elf32_arm_link_hash_table *globals;
7444
7445 /* If we are only performing a partial link
7446 do not bother getting a bfd to hold the glue. */
7447 if (bfd_link_relocatable (info))
7448 return TRUE;
7449
7450 /* Make sure we don't attach the glue sections to a dynamic object. */
7451 BFD_ASSERT (!(abfd->flags & DYNAMIC));
7452
7453 globals = elf32_arm_hash_table (info);
7454 BFD_ASSERT (globals != NULL);
7455
7456 if (globals->bfd_of_glue_owner != NULL)
7457 return TRUE;
7458
7459 /* Save the bfd for later use. */
7460 globals->bfd_of_glue_owner = abfd;
7461
7462 return TRUE;
7463 }
7464
7465 static void
7466 check_use_blx (struct elf32_arm_link_hash_table *globals)
7467 {
7468 int cpu_arch;
7469
7470 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
7471 Tag_CPU_arch);
7472
7473 if (globals->fix_arm1176)
7474 {
7475 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
7476 globals->use_blx = 1;
7477 }
7478 else
7479 {
7480 if (cpu_arch > TAG_CPU_ARCH_V4T)
7481 globals->use_blx = 1;
7482 }
7483 }
7484
7485 bfd_boolean
7486 bfd_elf32_arm_process_before_allocation (bfd *abfd,
7487 struct bfd_link_info *link_info)
7488 {
7489 Elf_Internal_Shdr *symtab_hdr;
7490 Elf_Internal_Rela *internal_relocs = NULL;
7491 Elf_Internal_Rela *irel, *irelend;
7492 bfd_byte *contents = NULL;
7493
7494 asection *sec;
7495 struct elf32_arm_link_hash_table *globals;
7496
7497 /* If we are only performing a partial link do not bother
7498 to construct any glue. */
7499 if (bfd_link_relocatable (link_info))
7500 return TRUE;
7501
7502 /* Here we have a bfd that is to be included on the link. We have a
7503 hook to do reloc rummaging, before section sizes are nailed down. */
7504 globals = elf32_arm_hash_table (link_info);
7505 BFD_ASSERT (globals != NULL);
7506
7507 check_use_blx (globals);
7508
7509 if (globals->byteswap_code && !bfd_big_endian (abfd))
7510 {
7511 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
7512 abfd);
7513 return FALSE;
7514 }
7515
7516 /* PR 5398: If we have not decided to include any loadable sections in
7517 the output then we will not have a glue owner bfd. This is OK, it
7518 just means that there is nothing else for us to do here. */
7519 if (globals->bfd_of_glue_owner == NULL)
7520 return TRUE;
7521
7522 /* Rummage around all the relocs and map the glue vectors. */
7523 sec = abfd->sections;
7524
7525 if (sec == NULL)
7526 return TRUE;
7527
7528 for (; sec != NULL; sec = sec->next)
7529 {
7530 if (sec->reloc_count == 0)
7531 continue;
7532
7533 if ((sec->flags & SEC_EXCLUDE) != 0)
7534 continue;
7535
7536 symtab_hdr = & elf_symtab_hdr (abfd);
7537
7538 /* Load the relocs. */
7539 internal_relocs
7540 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
7541
7542 if (internal_relocs == NULL)
7543 goto error_return;
7544
7545 irelend = internal_relocs + sec->reloc_count;
7546 for (irel = internal_relocs; irel < irelend; irel++)
7547 {
7548 long r_type;
7549 unsigned long r_index;
7550
7551 struct elf_link_hash_entry *h;
7552
7553 r_type = ELF32_R_TYPE (irel->r_info);
7554 r_index = ELF32_R_SYM (irel->r_info);
7555
7556 /* These are the only relocation types we care about. */
7557 if ( r_type != R_ARM_PC24
7558 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
7559 continue;
7560
7561 /* Get the section contents if we haven't done so already. */
7562 if (contents == NULL)
7563 {
7564 /* Get cached copy if it exists. */
7565 if (elf_section_data (sec)->this_hdr.contents != NULL)
7566 contents = elf_section_data (sec)->this_hdr.contents;
7567 else
7568 {
7569 /* Go get them off disk. */
7570 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
7571 goto error_return;
7572 }
7573 }
7574
7575 if (r_type == R_ARM_V4BX)
7576 {
7577 int reg;
7578
7579 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
7580 record_arm_bx_glue (link_info, reg);
7581 continue;
7582 }
7583
7584 /* If the relocation is not against a symbol it cannot concern us. */
7585 h = NULL;
7586
7587 /* We don't care about local symbols. */
7588 if (r_index < symtab_hdr->sh_info)
7589 continue;
7590
7591 /* This is an external symbol. */
7592 r_index -= symtab_hdr->sh_info;
7593 h = (struct elf_link_hash_entry *)
7594 elf_sym_hashes (abfd)[r_index];
7595
7596 /* If the relocation is against a static symbol it must be within
7597 the current section and so cannot be a cross ARM/Thumb relocation. */
7598 if (h == NULL)
7599 continue;
7600
7601 /* If the call will go through a PLT entry then we do not need
7602 glue. */
7603 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
7604 continue;
7605
7606 switch (r_type)
7607 {
7608 case R_ARM_PC24:
7609 /* This one is a call from arm code. We need to look up
7610 the target of the call. If it is a thumb target, we
7611 insert glue. */
7612 if (ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
7613 == ST_BRANCH_TO_THUMB)
7614 record_arm_to_thumb_glue (link_info, h);
7615 break;
7616
7617 default:
7618 abort ();
7619 }
7620 }
7621
7622 if (contents != NULL
7623 && elf_section_data (sec)->this_hdr.contents != contents)
7624 free (contents);
7625 contents = NULL;
7626
7627 if (internal_relocs != NULL
7628 && elf_section_data (sec)->relocs != internal_relocs)
7629 free (internal_relocs);
7630 internal_relocs = NULL;
7631 }
7632
7633 return TRUE;
7634
7635 error_return:
7636 if (contents != NULL
7637 && elf_section_data (sec)->this_hdr.contents != contents)
7638 free (contents);
7639 if (internal_relocs != NULL
7640 && elf_section_data (sec)->relocs != internal_relocs)
7641 free (internal_relocs);
7642
7643 return FALSE;
7644 }
7645 #endif
7646
7647
7648 /* Initialise maps of ARM/Thumb/data for input BFDs. */
7649
7650 void
7651 bfd_elf32_arm_init_maps (bfd *abfd)
7652 {
7653 Elf_Internal_Sym *isymbuf;
7654 Elf_Internal_Shdr *hdr;
7655 unsigned int i, localsyms;
7656
7657 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
7658 if (! is_arm_elf (abfd))
7659 return;
7660
7661 if ((abfd->flags & DYNAMIC) != 0)
7662 return;
7663
7664 hdr = & elf_symtab_hdr (abfd);
7665 localsyms = hdr->sh_info;
7666
7667 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
7668 should contain the number of local symbols, which should come before any
7669 global symbols. Mapping symbols are always local. */
7670 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
7671 NULL);
7672
7673 /* No internal symbols read? Skip this BFD. */
7674 if (isymbuf == NULL)
7675 return;
7676
7677 for (i = 0; i < localsyms; i++)
7678 {
7679 Elf_Internal_Sym *isym = &isymbuf[i];
7680 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
7681 const char *name;
7682
7683 if (sec != NULL
7684 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
7685 {
7686 name = bfd_elf_string_from_elf_section (abfd,
7687 hdr->sh_link, isym->st_name);
7688
7689 if (bfd_is_arm_special_symbol_name (name,
7690 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
7691 elf32_arm_section_map_add (sec, name[1], isym->st_value);
7692 }
7693 }
7694 }
7695
7696
7697 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
7698 say what they wanted. */
7699
7700 void
7701 bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
7702 {
7703 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
7704 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
7705
7706 if (globals == NULL)
7707 return;
7708
7709 if (globals->fix_cortex_a8 == -1)
7710 {
7711 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
7712 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
7713 && (out_attr[Tag_CPU_arch_profile].i == 'A'
7714 || out_attr[Tag_CPU_arch_profile].i == 0))
7715 globals->fix_cortex_a8 = 1;
7716 else
7717 globals->fix_cortex_a8 = 0;
7718 }
7719 }
7720
7721
7722 void
7723 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
7724 {
7725 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
7726 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
7727
7728 if (globals == NULL)
7729 return;
7730 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
7731 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
7732 {
7733 switch (globals->vfp11_fix)
7734 {
7735 case BFD_ARM_VFP11_FIX_DEFAULT:
7736 case BFD_ARM_VFP11_FIX_NONE:
7737 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
7738 break;
7739
7740 default:
7741 /* Give a warning, but do as the user requests anyway. */
7742 _bfd_error_handler (_("%B: warning: selected VFP11 erratum "
7743 "workaround is not necessary for target architecture"), obfd);
7744 }
7745 }
7746 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
7747 /* For earlier architectures, we might need the workaround, but do not
7748 enable it by default. If users is running with broken hardware, they
7749 must enable the erratum fix explicitly. */
7750 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
7751 }
7752
7753 void
7754 bfd_elf32_arm_set_stm32l4xx_fix (bfd *obfd, struct bfd_link_info *link_info)
7755 {
7756 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
7757 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
7758
7759 if (globals == NULL)
7760 return;
7761
7762 /* We assume only Cortex-M4 may require the fix. */
7763 if (out_attr[Tag_CPU_arch].i != TAG_CPU_ARCH_V7E_M
7764 || out_attr[Tag_CPU_arch_profile].i != 'M')
7765 {
7766 if (globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE)
7767 /* Give a warning, but do as the user requests anyway. */
7768 _bfd_error_handler
7769 (_("%B: warning: selected STM32L4XX erratum "
7770 "workaround is not necessary for target architecture"), obfd);
7771 }
7772 }
7773
7774 enum bfd_arm_vfp11_pipe
7775 {
7776 VFP11_FMAC,
7777 VFP11_LS,
7778 VFP11_DS,
7779 VFP11_BAD
7780 };
7781
7782 /* Return a VFP register number. This is encoded as RX:X for single-precision
7783 registers, or X:RX for double-precision registers, where RX is the group of
7784 four bits in the instruction encoding and X is the single extension bit.
7785 RX and X fields are specified using their lowest (starting) bit. The return
7786 value is:
7787
7788 0...31: single-precision registers s0...s31
7789 32...63: double-precision registers d0...d31.
7790
7791 Although X should be zero for VFP11 (encoding d0...d15 only), we might
7792 encounter VFP3 instructions, so we allow the full range for DP registers. */
7793
7794 static unsigned int
7795 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
7796 unsigned int x)
7797 {
7798 if (is_double)
7799 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
7800 else
7801 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
7802 }
7803
7804 /* Set bits in *WMASK according to a register number REG as encoded by
7805 bfd_arm_vfp11_regno(). Ignore d16-d31. */
7806
7807 static void
7808 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
7809 {
7810 if (reg < 32)
7811 *wmask |= 1 << reg;
7812 else if (reg < 48)
7813 *wmask |= 3 << ((reg - 32) * 2);
7814 }
7815
7816 /* Return TRUE if WMASK overwrites anything in REGS. */
7817
7818 static bfd_boolean
7819 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
7820 {
7821 int i;
7822
7823 for (i = 0; i < numregs; i++)
7824 {
7825 unsigned int reg = regs[i];
7826
7827 if (reg < 32 && (wmask & (1 << reg)) != 0)
7828 return TRUE;
7829
7830 reg -= 32;
7831
7832 if (reg >= 16)
7833 continue;
7834
7835 if ((wmask & (3 << (reg * 2))) != 0)
7836 return TRUE;
7837 }
7838
7839 return FALSE;
7840 }
7841
7842 /* In this function, we're interested in two things: finding input registers
7843 for VFP data-processing instructions, and finding the set of registers which
7844 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
7845 hold the written set, so FLDM etc. are easy to deal with (we're only
7846 interested in 32 SP registers or 16 dp registers, due to the VFP version
7847 implemented by the chip in question). DP registers are marked by setting
7848 both SP registers in the write mask). */
7849
7850 static enum bfd_arm_vfp11_pipe
7851 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
7852 int *numregs)
7853 {
7854 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
7855 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
7856
7857 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
7858 {
7859 unsigned int pqrs;
7860 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
7861 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
7862
7863 pqrs = ((insn & 0x00800000) >> 20)
7864 | ((insn & 0x00300000) >> 19)
7865 | ((insn & 0x00000040) >> 6);
7866
7867 switch (pqrs)
7868 {
7869 case 0: /* fmac[sd]. */
7870 case 1: /* fnmac[sd]. */
7871 case 2: /* fmsc[sd]. */
7872 case 3: /* fnmsc[sd]. */
7873 vpipe = VFP11_FMAC;
7874 bfd_arm_vfp11_write_mask (destmask, fd);
7875 regs[0] = fd;
7876 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
7877 regs[2] = fm;
7878 *numregs = 3;
7879 break;
7880
7881 case 4: /* fmul[sd]. */
7882 case 5: /* fnmul[sd]. */
7883 case 6: /* fadd[sd]. */
7884 case 7: /* fsub[sd]. */
7885 vpipe = VFP11_FMAC;
7886 goto vfp_binop;
7887
7888 case 8: /* fdiv[sd]. */
7889 vpipe = VFP11_DS;
7890 vfp_binop:
7891 bfd_arm_vfp11_write_mask (destmask, fd);
7892 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
7893 regs[1] = fm;
7894 *numregs = 2;
7895 break;
7896
7897 case 15: /* extended opcode. */
7898 {
7899 unsigned int extn = ((insn >> 15) & 0x1e)
7900 | ((insn >> 7) & 1);
7901
7902 switch (extn)
7903 {
7904 case 0: /* fcpy[sd]. */
7905 case 1: /* fabs[sd]. */
7906 case 2: /* fneg[sd]. */
7907 case 8: /* fcmp[sd]. */
7908 case 9: /* fcmpe[sd]. */
7909 case 10: /* fcmpz[sd]. */
7910 case 11: /* fcmpez[sd]. */
7911 case 16: /* fuito[sd]. */
7912 case 17: /* fsito[sd]. */
7913 case 24: /* ftoui[sd]. */
7914 case 25: /* ftouiz[sd]. */
7915 case 26: /* ftosi[sd]. */
7916 case 27: /* ftosiz[sd]. */
7917 /* These instructions will not bounce due to underflow. */
7918 *numregs = 0;
7919 vpipe = VFP11_FMAC;
7920 break;
7921
7922 case 3: /* fsqrt[sd]. */
7923 /* fsqrt cannot underflow, but it can (perhaps) overwrite
7924 registers to cause the erratum in previous instructions. */
7925 bfd_arm_vfp11_write_mask (destmask, fd);
7926 vpipe = VFP11_DS;
7927 break;
7928
7929 case 15: /* fcvt{ds,sd}. */
7930 {
7931 int rnum = 0;
7932
7933 bfd_arm_vfp11_write_mask (destmask, fd);
7934
7935 /* Only FCVTSD can underflow. */
7936 if ((insn & 0x100) != 0)
7937 regs[rnum++] = fm;
7938
7939 *numregs = rnum;
7940
7941 vpipe = VFP11_FMAC;
7942 }
7943 break;
7944
7945 default:
7946 return VFP11_BAD;
7947 }
7948 }
7949 break;
7950
7951 default:
7952 return VFP11_BAD;
7953 }
7954 }
7955 /* Two-register transfer. */
7956 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
7957 {
7958 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
7959
7960 if ((insn & 0x100000) == 0)
7961 {
7962 if (is_double)
7963 bfd_arm_vfp11_write_mask (destmask, fm);
7964 else
7965 {
7966 bfd_arm_vfp11_write_mask (destmask, fm);
7967 bfd_arm_vfp11_write_mask (destmask, fm + 1);
7968 }
7969 }
7970
7971 vpipe = VFP11_LS;
7972 }
7973 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
7974 {
7975 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
7976 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
7977
7978 switch (puw)
7979 {
7980 case 0: /* Two-reg transfer. We should catch these above. */
7981 abort ();
7982
7983 case 2: /* fldm[sdx]. */
7984 case 3:
7985 case 5:
7986 {
7987 unsigned int i, offset = insn & 0xff;
7988
7989 if (is_double)
7990 offset >>= 1;
7991
7992 for (i = fd; i < fd + offset; i++)
7993 bfd_arm_vfp11_write_mask (destmask, i);
7994 }
7995 break;
7996
7997 case 4: /* fld[sd]. */
7998 case 6:
7999 bfd_arm_vfp11_write_mask (destmask, fd);
8000 break;
8001
8002 default:
8003 return VFP11_BAD;
8004 }
8005
8006 vpipe = VFP11_LS;
8007 }
8008 /* Single-register transfer. Note L==0. */
8009 else if ((insn & 0x0f100e10) == 0x0e000a10)
8010 {
8011 unsigned int opcode = (insn >> 21) & 7;
8012 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
8013
8014 switch (opcode)
8015 {
8016 case 0: /* fmsr/fmdlr. */
8017 case 1: /* fmdhr. */
8018 /* Mark fmdhr and fmdlr as writing to the whole of the DP
8019 destination register. I don't know if this is exactly right,
8020 but it is the conservative choice. */
8021 bfd_arm_vfp11_write_mask (destmask, fn);
8022 break;
8023
8024 case 7: /* fmxr. */
8025 break;
8026 }
8027
8028 vpipe = VFP11_LS;
8029 }
8030
8031 return vpipe;
8032 }
8033
8034
8035 static int elf32_arm_compare_mapping (const void * a, const void * b);
8036
8037
8038 /* Look for potentially-troublesome code sequences which might trigger the
8039 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
8040 (available from ARM) for details of the erratum. A short version is
8041 described in ld.texinfo. */
8042
8043 bfd_boolean
8044 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
8045 {
8046 asection *sec;
8047 bfd_byte *contents = NULL;
8048 int state = 0;
8049 int regs[3], numregs = 0;
8050 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8051 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
8052
8053 if (globals == NULL)
8054 return FALSE;
8055
8056 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
8057 The states transition as follows:
8058
8059 0 -> 1 (vector) or 0 -> 2 (scalar)
8060 A VFP FMAC-pipeline instruction has been seen. Fill
8061 regs[0]..regs[numregs-1] with its input operands. Remember this
8062 instruction in 'first_fmac'.
8063
8064 1 -> 2
8065 Any instruction, except for a VFP instruction which overwrites
8066 regs[*].
8067
8068 1 -> 3 [ -> 0 ] or
8069 2 -> 3 [ -> 0 ]
8070 A VFP instruction has been seen which overwrites any of regs[*].
8071 We must make a veneer! Reset state to 0 before examining next
8072 instruction.
8073
8074 2 -> 0
8075 If we fail to match anything in state 2, reset to state 0 and reset
8076 the instruction pointer to the instruction after 'first_fmac'.
8077
8078 If the VFP11 vector mode is in use, there must be at least two unrelated
8079 instructions between anti-dependent VFP11 instructions to properly avoid
8080 triggering the erratum, hence the use of the extra state 1. */
8081
8082 /* If we are only performing a partial link do not bother
8083 to construct any glue. */
8084 if (bfd_link_relocatable (link_info))
8085 return TRUE;
8086
8087 /* Skip if this bfd does not correspond to an ELF image. */
8088 if (! is_arm_elf (abfd))
8089 return TRUE;
8090
8091 /* We should have chosen a fix type by the time we get here. */
8092 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
8093
8094 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
8095 return TRUE;
8096
8097 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8098 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8099 return TRUE;
8100
8101 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8102 {
8103 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
8104 struct _arm_elf_section_data *sec_data;
8105
8106 /* If we don't have executable progbits, we're not interested in this
8107 section. Also skip if section is to be excluded. */
8108 if (elf_section_type (sec) != SHT_PROGBITS
8109 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8110 || (sec->flags & SEC_EXCLUDE) != 0
8111 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8112 || sec->output_section == bfd_abs_section_ptr
8113 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
8114 continue;
8115
8116 sec_data = elf32_arm_section_data (sec);
8117
8118 if (sec_data->mapcount == 0)
8119 continue;
8120
8121 if (elf_section_data (sec)->this_hdr.contents != NULL)
8122 contents = elf_section_data (sec)->this_hdr.contents;
8123 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8124 goto error_return;
8125
8126 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8127 elf32_arm_compare_mapping);
8128
8129 for (span = 0; span < sec_data->mapcount; span++)
8130 {
8131 unsigned int span_start = sec_data->map[span].vma;
8132 unsigned int span_end = (span == sec_data->mapcount - 1)
8133 ? sec->size : sec_data->map[span + 1].vma;
8134 char span_type = sec_data->map[span].type;
8135
8136 /* FIXME: Only ARM mode is supported at present. We may need to
8137 support Thumb-2 mode also at some point. */
8138 if (span_type != 'a')
8139 continue;
8140
8141 for (i = span_start; i < span_end;)
8142 {
8143 unsigned int next_i = i + 4;
8144 unsigned int insn = bfd_big_endian (abfd)
8145 ? (contents[i] << 24)
8146 | (contents[i + 1] << 16)
8147 | (contents[i + 2] << 8)
8148 | contents[i + 3]
8149 : (contents[i + 3] << 24)
8150 | (contents[i + 2] << 16)
8151 | (contents[i + 1] << 8)
8152 | contents[i];
8153 unsigned int writemask = 0;
8154 enum bfd_arm_vfp11_pipe vpipe;
8155
8156 switch (state)
8157 {
8158 case 0:
8159 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
8160 &numregs);
8161 /* I'm assuming the VFP11 erratum can trigger with denorm
8162 operands on either the FMAC or the DS pipeline. This might
8163 lead to slightly overenthusiastic veneer insertion. */
8164 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
8165 {
8166 state = use_vector ? 1 : 2;
8167 first_fmac = i;
8168 veneer_of_insn = insn;
8169 }
8170 break;
8171
8172 case 1:
8173 {
8174 int other_regs[3], other_numregs;
8175 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
8176 other_regs,
8177 &other_numregs);
8178 if (vpipe != VFP11_BAD
8179 && bfd_arm_vfp11_antidependency (writemask, regs,
8180 numregs))
8181 state = 3;
8182 else
8183 state = 2;
8184 }
8185 break;
8186
8187 case 2:
8188 {
8189 int other_regs[3], other_numregs;
8190 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
8191 other_regs,
8192 &other_numregs);
8193 if (vpipe != VFP11_BAD
8194 && bfd_arm_vfp11_antidependency (writemask, regs,
8195 numregs))
8196 state = 3;
8197 else
8198 {
8199 state = 0;
8200 next_i = first_fmac + 4;
8201 }
8202 }
8203 break;
8204
8205 case 3:
8206 abort (); /* Should be unreachable. */
8207 }
8208
8209 if (state == 3)
8210 {
8211 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
8212 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
8213
8214 elf32_arm_section_data (sec)->erratumcount += 1;
8215
8216 newerr->u.b.vfp_insn = veneer_of_insn;
8217
8218 switch (span_type)
8219 {
8220 case 'a':
8221 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
8222 break;
8223
8224 default:
8225 abort ();
8226 }
8227
8228 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
8229 first_fmac);
8230
8231 newerr->vma = -1;
8232
8233 newerr->next = sec_data->erratumlist;
8234 sec_data->erratumlist = newerr;
8235
8236 state = 0;
8237 }
8238
8239 i = next_i;
8240 }
8241 }
8242
8243 if (contents != NULL
8244 && elf_section_data (sec)->this_hdr.contents != contents)
8245 free (contents);
8246 contents = NULL;
8247 }
8248
8249 return TRUE;
8250
8251 error_return:
8252 if (contents != NULL
8253 && elf_section_data (sec)->this_hdr.contents != contents)
8254 free (contents);
8255
8256 return FALSE;
8257 }
8258
8259 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
8260 after sections have been laid out, using specially-named symbols. */
8261
8262 void
8263 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
8264 struct bfd_link_info *link_info)
8265 {
8266 asection *sec;
8267 struct elf32_arm_link_hash_table *globals;
8268 char *tmp_name;
8269
8270 if (bfd_link_relocatable (link_info))
8271 return;
8272
8273 /* Skip if this bfd does not correspond to an ELF image. */
8274 if (! is_arm_elf (abfd))
8275 return;
8276
8277 globals = elf32_arm_hash_table (link_info);
8278 if (globals == NULL)
8279 return;
8280
8281 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
8282 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
8283
8284 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8285 {
8286 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8287 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
8288
8289 for (; errnode != NULL; errnode = errnode->next)
8290 {
8291 struct elf_link_hash_entry *myh;
8292 bfd_vma vma;
8293
8294 switch (errnode->type)
8295 {
8296 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
8297 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
8298 /* Find veneer symbol. */
8299 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
8300 errnode->u.b.veneer->u.v.id);
8301
8302 myh = elf_link_hash_lookup
8303 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8304
8305 if (myh == NULL)
8306 _bfd_error_handler (_("%B: unable to find VFP11 veneer "
8307 "`%s'"), abfd, tmp_name);
8308
8309 vma = myh->root.u.def.section->output_section->vma
8310 + myh->root.u.def.section->output_offset
8311 + myh->root.u.def.value;
8312
8313 errnode->u.b.veneer->vma = vma;
8314 break;
8315
8316 case VFP11_ERRATUM_ARM_VENEER:
8317 case VFP11_ERRATUM_THUMB_VENEER:
8318 /* Find return location. */
8319 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
8320 errnode->u.v.id);
8321
8322 myh = elf_link_hash_lookup
8323 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8324
8325 if (myh == NULL)
8326 _bfd_error_handler (_("%B: unable to find VFP11 veneer "
8327 "`%s'"), abfd, tmp_name);
8328
8329 vma = myh->root.u.def.section->output_section->vma
8330 + myh->root.u.def.section->output_offset
8331 + myh->root.u.def.value;
8332
8333 errnode->u.v.branch->vma = vma;
8334 break;
8335
8336 default:
8337 abort ();
8338 }
8339 }
8340 }
8341
8342 free (tmp_name);
8343 }
8344
8345 /* Find virtual-memory addresses for STM32L4XX erratum veneers and
8346 return locations after sections have been laid out, using
8347 specially-named symbols. */
8348
8349 void
8350 bfd_elf32_arm_stm32l4xx_fix_veneer_locations (bfd *abfd,
8351 struct bfd_link_info *link_info)
8352 {
8353 asection *sec;
8354 struct elf32_arm_link_hash_table *globals;
8355 char *tmp_name;
8356
8357 if (bfd_link_relocatable (link_info))
8358 return;
8359
8360 /* Skip if this bfd does not correspond to an ELF image. */
8361 if (! is_arm_elf (abfd))
8362 return;
8363
8364 globals = elf32_arm_hash_table (link_info);
8365 if (globals == NULL)
8366 return;
8367
8368 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
8369 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
8370
8371 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8372 {
8373 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8374 elf32_stm32l4xx_erratum_list *errnode = sec_data->stm32l4xx_erratumlist;
8375
8376 for (; errnode != NULL; errnode = errnode->next)
8377 {
8378 struct elf_link_hash_entry *myh;
8379 bfd_vma vma;
8380
8381 switch (errnode->type)
8382 {
8383 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
8384 /* Find veneer symbol. */
8385 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
8386 errnode->u.b.veneer->u.v.id);
8387
8388 myh = elf_link_hash_lookup
8389 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8390
8391 if (myh == NULL)
8392 _bfd_error_handler (_("%B: unable to find STM32L4XX veneer "
8393 "`%s'"), abfd, tmp_name);
8394
8395 vma = myh->root.u.def.section->output_section->vma
8396 + myh->root.u.def.section->output_offset
8397 + myh->root.u.def.value;
8398
8399 errnode->u.b.veneer->vma = vma;
8400 break;
8401
8402 case STM32L4XX_ERRATUM_VENEER:
8403 /* Find return location. */
8404 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
8405 errnode->u.v.id);
8406
8407 myh = elf_link_hash_lookup
8408 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8409
8410 if (myh == NULL)
8411 _bfd_error_handler (_("%B: unable to find STM32L4XX veneer "
8412 "`%s'"), abfd, tmp_name);
8413
8414 vma = myh->root.u.def.section->output_section->vma
8415 + myh->root.u.def.section->output_offset
8416 + myh->root.u.def.value;
8417
8418 errnode->u.v.branch->vma = vma;
8419 break;
8420
8421 default:
8422 abort ();
8423 }
8424 }
8425 }
8426
8427 free (tmp_name);
8428 }
8429
8430 static inline bfd_boolean
8431 is_thumb2_ldmia (const insn32 insn)
8432 {
8433 /* Encoding T2: LDM<c>.W <Rn>{!},<registers>
8434 1110 - 1000 - 10W1 - rrrr - PM (0) l - llll - llll - llll. */
8435 return (insn & 0xffd02000) == 0xe8900000;
8436 }
8437
8438 static inline bfd_boolean
8439 is_thumb2_ldmdb (const insn32 insn)
8440 {
8441 /* Encoding T1: LDMDB<c> <Rn>{!},<registers>
8442 1110 - 1001 - 00W1 - rrrr - PM (0) l - llll - llll - llll. */
8443 return (insn & 0xffd02000) == 0xe9100000;
8444 }
8445
8446 static inline bfd_boolean
8447 is_thumb2_vldm (const insn32 insn)
8448 {
8449 /* A6.5 Extension register load or store instruction
8450 A7.7.229
8451 We look for SP 32-bit and DP 64-bit registers.
8452 Encoding T1 VLDM{mode}<c> <Rn>{!}, <list>
8453 <list> is consecutive 64-bit registers
8454 1110 - 110P - UDW1 - rrrr - vvvv - 1011 - iiii - iiii
8455 Encoding T2 VLDM{mode}<c> <Rn>{!}, <list>
8456 <list> is consecutive 32-bit registers
8457 1110 - 110P - UDW1 - rrrr - vvvv - 1010 - iiii - iiii
8458 if P==0 && U==1 && W==1 && Rn=1101 VPOP
8459 if PUW=010 || PUW=011 || PUW=101 VLDM. */
8460 return
8461 (((insn & 0xfe100f00) == 0xec100b00) ||
8462 ((insn & 0xfe100f00) == 0xec100a00))
8463 && /* (IA without !). */
8464 (((((insn << 7) >> 28) & 0xd) == 0x4)
8465 /* (IA with !), includes VPOP (when reg number is SP). */
8466 || ((((insn << 7) >> 28) & 0xd) == 0x5)
8467 /* (DB with !). */
8468 || ((((insn << 7) >> 28) & 0xd) == 0x9));
8469 }
8470
8471 /* STM STM32L4XX erratum : This function assumes that it receives an LDM or
8472 VLDM opcode and:
8473 - computes the number and the mode of memory accesses
8474 - decides if the replacement should be done:
8475 . replaces only if > 8-word accesses
8476 . or (testing purposes only) replaces all accesses. */
8477
8478 static bfd_boolean
8479 stm32l4xx_need_create_replacing_stub (const insn32 insn,
8480 bfd_arm_stm32l4xx_fix stm32l4xx_fix)
8481 {
8482 int nb_words = 0;
8483
8484 /* The field encoding the register list is the same for both LDMIA
8485 and LDMDB encodings. */
8486 if (is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn))
8487 nb_words = elf32_arm_popcount (insn & 0x0000ffff);
8488 else if (is_thumb2_vldm (insn))
8489 nb_words = (insn & 0xff);
8490
8491 /* DEFAULT mode accounts for the real bug condition situation,
8492 ALL mode inserts stubs for each LDM/VLDM instruction (testing). */
8493 return
8494 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_DEFAULT) ? nb_words > 8 :
8495 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_ALL) ? TRUE : FALSE;
8496 }
8497
8498 /* Look for potentially-troublesome code sequences which might trigger
8499 the STM STM32L4XX erratum. */
8500
8501 bfd_boolean
8502 bfd_elf32_arm_stm32l4xx_erratum_scan (bfd *abfd,
8503 struct bfd_link_info *link_info)
8504 {
8505 asection *sec;
8506 bfd_byte *contents = NULL;
8507 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8508
8509 if (globals == NULL)
8510 return FALSE;
8511
8512 /* If we are only performing a partial link do not bother
8513 to construct any glue. */
8514 if (bfd_link_relocatable (link_info))
8515 return TRUE;
8516
8517 /* Skip if this bfd does not correspond to an ELF image. */
8518 if (! is_arm_elf (abfd))
8519 return TRUE;
8520
8521 if (globals->stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_NONE)
8522 return TRUE;
8523
8524 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8525 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8526 return TRUE;
8527
8528 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8529 {
8530 unsigned int i, span;
8531 struct _arm_elf_section_data *sec_data;
8532
8533 /* If we don't have executable progbits, we're not interested in this
8534 section. Also skip if section is to be excluded. */
8535 if (elf_section_type (sec) != SHT_PROGBITS
8536 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8537 || (sec->flags & SEC_EXCLUDE) != 0
8538 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8539 || sec->output_section == bfd_abs_section_ptr
8540 || strcmp (sec->name, STM32L4XX_ERRATUM_VENEER_SECTION_NAME) == 0)
8541 continue;
8542
8543 sec_data = elf32_arm_section_data (sec);
8544
8545 if (sec_data->mapcount == 0)
8546 continue;
8547
8548 if (elf_section_data (sec)->this_hdr.contents != NULL)
8549 contents = elf_section_data (sec)->this_hdr.contents;
8550 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8551 goto error_return;
8552
8553 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8554 elf32_arm_compare_mapping);
8555
8556 for (span = 0; span < sec_data->mapcount; span++)
8557 {
8558 unsigned int span_start = sec_data->map[span].vma;
8559 unsigned int span_end = (span == sec_data->mapcount - 1)
8560 ? sec->size : sec_data->map[span + 1].vma;
8561 char span_type = sec_data->map[span].type;
8562 int itblock_current_pos = 0;
8563
8564 /* Only Thumb2 mode need be supported with this CM4 specific
8565 code, we should not encounter any arm mode eg span_type
8566 != 'a'. */
8567 if (span_type != 't')
8568 continue;
8569
8570 for (i = span_start; i < span_end;)
8571 {
8572 unsigned int insn = bfd_get_16 (abfd, &contents[i]);
8573 bfd_boolean insn_32bit = FALSE;
8574 bfd_boolean is_ldm = FALSE;
8575 bfd_boolean is_vldm = FALSE;
8576 bfd_boolean is_not_last_in_it_block = FALSE;
8577
8578 /* The first 16-bits of all 32-bit thumb2 instructions start
8579 with opcode[15..13]=0b111 and the encoded op1 can be anything
8580 except opcode[12..11]!=0b00.
8581 See 32-bit Thumb instruction encoding. */
8582 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
8583 insn_32bit = TRUE;
8584
8585 /* Compute the predicate that tells if the instruction
8586 is concerned by the IT block
8587 - Creates an error if there is a ldm that is not
8588 last in the IT block thus cannot be replaced
8589 - Otherwise we can create a branch at the end of the
8590 IT block, it will be controlled naturally by IT
8591 with the proper pseudo-predicate
8592 - So the only interesting predicate is the one that
8593 tells that we are not on the last item of an IT
8594 block. */
8595 if (itblock_current_pos != 0)
8596 is_not_last_in_it_block = !!--itblock_current_pos;
8597
8598 if (insn_32bit)
8599 {
8600 /* Load the rest of the insn (in manual-friendly order). */
8601 insn = (insn << 16) | bfd_get_16 (abfd, &contents[i + 2]);
8602 is_ldm = is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn);
8603 is_vldm = is_thumb2_vldm (insn);
8604
8605 /* Veneers are created for (v)ldm depending on
8606 option flags and memory accesses conditions; but
8607 if the instruction is not the last instruction of
8608 an IT block, we cannot create a jump there, so we
8609 bail out. */
8610 if ((is_ldm || is_vldm)
8611 && stm32l4xx_need_create_replacing_stub
8612 (insn, globals->stm32l4xx_fix))
8613 {
8614 if (is_not_last_in_it_block)
8615 {
8616 _bfd_error_handler
8617 /* xgettext:c-format */
8618 (_("%B(%A+%#x): error: multiple load detected"
8619 " in non-last IT block instruction :"
8620 " STM32L4XX veneer cannot be generated.\n"
8621 "Use gcc option -mrestrict-it to generate"
8622 " only one instruction per IT block.\n"),
8623 abfd, sec, i);
8624 }
8625 else
8626 {
8627 elf32_stm32l4xx_erratum_list *newerr =
8628 (elf32_stm32l4xx_erratum_list *)
8629 bfd_zmalloc
8630 (sizeof (elf32_stm32l4xx_erratum_list));
8631
8632 elf32_arm_section_data (sec)
8633 ->stm32l4xx_erratumcount += 1;
8634 newerr->u.b.insn = insn;
8635 /* We create only thumb branches. */
8636 newerr->type =
8637 STM32L4XX_ERRATUM_BRANCH_TO_VENEER;
8638 record_stm32l4xx_erratum_veneer
8639 (link_info, newerr, abfd, sec,
8640 i,
8641 is_ldm ?
8642 STM32L4XX_ERRATUM_LDM_VENEER_SIZE:
8643 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
8644 newerr->vma = -1;
8645 newerr->next = sec_data->stm32l4xx_erratumlist;
8646 sec_data->stm32l4xx_erratumlist = newerr;
8647 }
8648 }
8649 }
8650 else
8651 {
8652 /* A7.7.37 IT p208
8653 IT blocks are only encoded in T1
8654 Encoding T1: IT{x{y{z}}} <firstcond>
8655 1 0 1 1 - 1 1 1 1 - firstcond - mask
8656 if mask = '0000' then see 'related encodings'
8657 We don't deal with UNPREDICTABLE, just ignore these.
8658 There can be no nested IT blocks so an IT block
8659 is naturally a new one for which it is worth
8660 computing its size. */
8661 bfd_boolean is_newitblock = ((insn & 0xff00) == 0xbf00)
8662 && ((insn & 0x000f) != 0x0000);
8663 /* If we have a new IT block we compute its size. */
8664 if (is_newitblock)
8665 {
8666 /* Compute the number of instructions controlled
8667 by the IT block, it will be used to decide
8668 whether we are inside an IT block or not. */
8669 unsigned int mask = insn & 0x000f;
8670 itblock_current_pos = 4 - ctz (mask);
8671 }
8672 }
8673
8674 i += insn_32bit ? 4 : 2;
8675 }
8676 }
8677
8678 if (contents != NULL
8679 && elf_section_data (sec)->this_hdr.contents != contents)
8680 free (contents);
8681 contents = NULL;
8682 }
8683
8684 return TRUE;
8685
8686 error_return:
8687 if (contents != NULL
8688 && elf_section_data (sec)->this_hdr.contents != contents)
8689 free (contents);
8690
8691 return FALSE;
8692 }
8693
8694 /* Set target relocation values needed during linking. */
8695
8696 void
8697 bfd_elf32_arm_set_target_params (struct bfd *output_bfd,
8698 struct bfd_link_info *link_info,
8699 struct elf32_arm_params *params)
8700 {
8701 struct elf32_arm_link_hash_table *globals;
8702
8703 globals = elf32_arm_hash_table (link_info);
8704 if (globals == NULL)
8705 return;
8706
8707 globals->target1_is_rel = params->target1_is_rel;
8708 if (strcmp (params->target2_type, "rel") == 0)
8709 globals->target2_reloc = R_ARM_REL32;
8710 else if (strcmp (params->target2_type, "abs") == 0)
8711 globals->target2_reloc = R_ARM_ABS32;
8712 else if (strcmp (params->target2_type, "got-rel") == 0)
8713 globals->target2_reloc = R_ARM_GOT_PREL;
8714 else
8715 {
8716 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
8717 params->target2_type);
8718 }
8719 globals->fix_v4bx = params->fix_v4bx;
8720 globals->use_blx |= params->use_blx;
8721 globals->vfp11_fix = params->vfp11_denorm_fix;
8722 globals->stm32l4xx_fix = params->stm32l4xx_fix;
8723 globals->pic_veneer = params->pic_veneer;
8724 globals->fix_cortex_a8 = params->fix_cortex_a8;
8725 globals->fix_arm1176 = params->fix_arm1176;
8726 globals->cmse_implib = params->cmse_implib;
8727 globals->in_implib_bfd = params->in_implib_bfd;
8728
8729 BFD_ASSERT (is_arm_elf (output_bfd));
8730 elf_arm_tdata (output_bfd)->no_enum_size_warning
8731 = params->no_enum_size_warning;
8732 elf_arm_tdata (output_bfd)->no_wchar_size_warning
8733 = params->no_wchar_size_warning;
8734 }
8735
8736 /* Replace the target offset of a Thumb bl or b.w instruction. */
8737
8738 static void
8739 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
8740 {
8741 bfd_vma upper;
8742 bfd_vma lower;
8743 int reloc_sign;
8744
8745 BFD_ASSERT ((offset & 1) == 0);
8746
8747 upper = bfd_get_16 (abfd, insn);
8748 lower = bfd_get_16 (abfd, insn + 2);
8749 reloc_sign = (offset < 0) ? 1 : 0;
8750 upper = (upper & ~(bfd_vma) 0x7ff)
8751 | ((offset >> 12) & 0x3ff)
8752 | (reloc_sign << 10);
8753 lower = (lower & ~(bfd_vma) 0x2fff)
8754 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
8755 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
8756 | ((offset >> 1) & 0x7ff);
8757 bfd_put_16 (abfd, upper, insn);
8758 bfd_put_16 (abfd, lower, insn + 2);
8759 }
8760
8761 /* Thumb code calling an ARM function. */
8762
8763 static int
8764 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
8765 const char * name,
8766 bfd * input_bfd,
8767 bfd * output_bfd,
8768 asection * input_section,
8769 bfd_byte * hit_data,
8770 asection * sym_sec,
8771 bfd_vma offset,
8772 bfd_signed_vma addend,
8773 bfd_vma val,
8774 char **error_message)
8775 {
8776 asection * s = 0;
8777 bfd_vma my_offset;
8778 long int ret_offset;
8779 struct elf_link_hash_entry * myh;
8780 struct elf32_arm_link_hash_table * globals;
8781
8782 myh = find_thumb_glue (info, name, error_message);
8783 if (myh == NULL)
8784 return FALSE;
8785
8786 globals = elf32_arm_hash_table (info);
8787 BFD_ASSERT (globals != NULL);
8788 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
8789
8790 my_offset = myh->root.u.def.value;
8791
8792 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
8793 THUMB2ARM_GLUE_SECTION_NAME);
8794
8795 BFD_ASSERT (s != NULL);
8796 BFD_ASSERT (s->contents != NULL);
8797 BFD_ASSERT (s->output_section != NULL);
8798
8799 if ((my_offset & 0x01) == 0x01)
8800 {
8801 if (sym_sec != NULL
8802 && sym_sec->owner != NULL
8803 && !INTERWORK_FLAG (sym_sec->owner))
8804 {
8805 _bfd_error_handler
8806 (_("%B(%s): warning: interworking not enabled.\n"
8807 " first occurrence: %B: Thumb call to ARM"),
8808 sym_sec->owner, name, input_bfd);
8809
8810 return FALSE;
8811 }
8812
8813 --my_offset;
8814 myh->root.u.def.value = my_offset;
8815
8816 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
8817 s->contents + my_offset);
8818
8819 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
8820 s->contents + my_offset + 2);
8821
8822 ret_offset =
8823 /* Address of destination of the stub. */
8824 ((bfd_signed_vma) val)
8825 - ((bfd_signed_vma)
8826 /* Offset from the start of the current section
8827 to the start of the stubs. */
8828 (s->output_offset
8829 /* Offset of the start of this stub from the start of the stubs. */
8830 + my_offset
8831 /* Address of the start of the current section. */
8832 + s->output_section->vma)
8833 /* The branch instruction is 4 bytes into the stub. */
8834 + 4
8835 /* ARM branches work from the pc of the instruction + 8. */
8836 + 8);
8837
8838 put_arm_insn (globals, output_bfd,
8839 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
8840 s->contents + my_offset + 4);
8841 }
8842
8843 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
8844
8845 /* Now go back and fix up the original BL insn to point to here. */
8846 ret_offset =
8847 /* Address of where the stub is located. */
8848 (s->output_section->vma + s->output_offset + my_offset)
8849 /* Address of where the BL is located. */
8850 - (input_section->output_section->vma + input_section->output_offset
8851 + offset)
8852 /* Addend in the relocation. */
8853 - addend
8854 /* Biassing for PC-relative addressing. */
8855 - 8;
8856
8857 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
8858
8859 return TRUE;
8860 }
8861
8862 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
8863
8864 static struct elf_link_hash_entry *
8865 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
8866 const char * name,
8867 bfd * input_bfd,
8868 bfd * output_bfd,
8869 asection * sym_sec,
8870 bfd_vma val,
8871 asection * s,
8872 char ** error_message)
8873 {
8874 bfd_vma my_offset;
8875 long int ret_offset;
8876 struct elf_link_hash_entry * myh;
8877 struct elf32_arm_link_hash_table * globals;
8878
8879 myh = find_arm_glue (info, name, error_message);
8880 if (myh == NULL)
8881 return NULL;
8882
8883 globals = elf32_arm_hash_table (info);
8884 BFD_ASSERT (globals != NULL);
8885 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
8886
8887 my_offset = myh->root.u.def.value;
8888
8889 if ((my_offset & 0x01) == 0x01)
8890 {
8891 if (sym_sec != NULL
8892 && sym_sec->owner != NULL
8893 && !INTERWORK_FLAG (sym_sec->owner))
8894 {
8895 _bfd_error_handler
8896 (_("%B(%s): warning: interworking not enabled.\n"
8897 " first occurrence: %B: arm call to thumb"),
8898 sym_sec->owner, name, input_bfd);
8899 }
8900
8901 --my_offset;
8902 myh->root.u.def.value = my_offset;
8903
8904 if (bfd_link_pic (info)
8905 || globals->root.is_relocatable_executable
8906 || globals->pic_veneer)
8907 {
8908 /* For relocatable objects we can't use absolute addresses,
8909 so construct the address from a relative offset. */
8910 /* TODO: If the offset is small it's probably worth
8911 constructing the address with adds. */
8912 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
8913 s->contents + my_offset);
8914 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
8915 s->contents + my_offset + 4);
8916 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
8917 s->contents + my_offset + 8);
8918 /* Adjust the offset by 4 for the position of the add,
8919 and 8 for the pipeline offset. */
8920 ret_offset = (val - (s->output_offset
8921 + s->output_section->vma
8922 + my_offset + 12))
8923 | 1;
8924 bfd_put_32 (output_bfd, ret_offset,
8925 s->contents + my_offset + 12);
8926 }
8927 else if (globals->use_blx)
8928 {
8929 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
8930 s->contents + my_offset);
8931
8932 /* It's a thumb address. Add the low order bit. */
8933 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
8934 s->contents + my_offset + 4);
8935 }
8936 else
8937 {
8938 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
8939 s->contents + my_offset);
8940
8941 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
8942 s->contents + my_offset + 4);
8943
8944 /* It's a thumb address. Add the low order bit. */
8945 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
8946 s->contents + my_offset + 8);
8947
8948 my_offset += 12;
8949 }
8950 }
8951
8952 BFD_ASSERT (my_offset <= globals->arm_glue_size);
8953
8954 return myh;
8955 }
8956
8957 /* Arm code calling a Thumb function. */
8958
8959 static int
8960 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
8961 const char * name,
8962 bfd * input_bfd,
8963 bfd * output_bfd,
8964 asection * input_section,
8965 bfd_byte * hit_data,
8966 asection * sym_sec,
8967 bfd_vma offset,
8968 bfd_signed_vma addend,
8969 bfd_vma val,
8970 char **error_message)
8971 {
8972 unsigned long int tmp;
8973 bfd_vma my_offset;
8974 asection * s;
8975 long int ret_offset;
8976 struct elf_link_hash_entry * myh;
8977 struct elf32_arm_link_hash_table * globals;
8978
8979 globals = elf32_arm_hash_table (info);
8980 BFD_ASSERT (globals != NULL);
8981 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
8982
8983 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
8984 ARM2THUMB_GLUE_SECTION_NAME);
8985 BFD_ASSERT (s != NULL);
8986 BFD_ASSERT (s->contents != NULL);
8987 BFD_ASSERT (s->output_section != NULL);
8988
8989 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
8990 sym_sec, val, s, error_message);
8991 if (!myh)
8992 return FALSE;
8993
8994 my_offset = myh->root.u.def.value;
8995 tmp = bfd_get_32 (input_bfd, hit_data);
8996 tmp = tmp & 0xFF000000;
8997
8998 /* Somehow these are both 4 too far, so subtract 8. */
8999 ret_offset = (s->output_offset
9000 + my_offset
9001 + s->output_section->vma
9002 - (input_section->output_offset
9003 + input_section->output_section->vma
9004 + offset + addend)
9005 - 8);
9006
9007 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
9008
9009 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
9010
9011 return TRUE;
9012 }
9013
9014 /* Populate Arm stub for an exported Thumb function. */
9015
9016 static bfd_boolean
9017 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
9018 {
9019 struct bfd_link_info * info = (struct bfd_link_info *) inf;
9020 asection * s;
9021 struct elf_link_hash_entry * myh;
9022 struct elf32_arm_link_hash_entry *eh;
9023 struct elf32_arm_link_hash_table * globals;
9024 asection *sec;
9025 bfd_vma val;
9026 char *error_message;
9027
9028 eh = elf32_arm_hash_entry (h);
9029 /* Allocate stubs for exported Thumb functions on v4t. */
9030 if (eh->export_glue == NULL)
9031 return TRUE;
9032
9033 globals = elf32_arm_hash_table (info);
9034 BFD_ASSERT (globals != NULL);
9035 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9036
9037 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9038 ARM2THUMB_GLUE_SECTION_NAME);
9039 BFD_ASSERT (s != NULL);
9040 BFD_ASSERT (s->contents != NULL);
9041 BFD_ASSERT (s->output_section != NULL);
9042
9043 sec = eh->export_glue->root.u.def.section;
9044
9045 BFD_ASSERT (sec->output_section != NULL);
9046
9047 val = eh->export_glue->root.u.def.value + sec->output_offset
9048 + sec->output_section->vma;
9049
9050 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
9051 h->root.u.def.section->owner,
9052 globals->obfd, sec, val, s,
9053 &error_message);
9054 BFD_ASSERT (myh);
9055 return TRUE;
9056 }
9057
9058 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
9059
9060 static bfd_vma
9061 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
9062 {
9063 bfd_byte *p;
9064 bfd_vma glue_addr;
9065 asection *s;
9066 struct elf32_arm_link_hash_table *globals;
9067
9068 globals = elf32_arm_hash_table (info);
9069 BFD_ASSERT (globals != NULL);
9070 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9071
9072 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9073 ARM_BX_GLUE_SECTION_NAME);
9074 BFD_ASSERT (s != NULL);
9075 BFD_ASSERT (s->contents != NULL);
9076 BFD_ASSERT (s->output_section != NULL);
9077
9078 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
9079
9080 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
9081
9082 if ((globals->bx_glue_offset[reg] & 1) == 0)
9083 {
9084 p = s->contents + glue_addr;
9085 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
9086 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
9087 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
9088 globals->bx_glue_offset[reg] |= 1;
9089 }
9090
9091 return glue_addr + s->output_section->vma + s->output_offset;
9092 }
9093
9094 /* Generate Arm stubs for exported Thumb symbols. */
9095 static void
9096 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
9097 struct bfd_link_info *link_info)
9098 {
9099 struct elf32_arm_link_hash_table * globals;
9100
9101 if (link_info == NULL)
9102 /* Ignore this if we are not called by the ELF backend linker. */
9103 return;
9104
9105 globals = elf32_arm_hash_table (link_info);
9106 if (globals == NULL)
9107 return;
9108
9109 /* If blx is available then exported Thumb symbols are OK and there is
9110 nothing to do. */
9111 if (globals->use_blx)
9112 return;
9113
9114 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
9115 link_info);
9116 }
9117
9118 /* Reserve space for COUNT dynamic relocations in relocation selection
9119 SRELOC. */
9120
9121 static void
9122 elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
9123 bfd_size_type count)
9124 {
9125 struct elf32_arm_link_hash_table *htab;
9126
9127 htab = elf32_arm_hash_table (info);
9128 BFD_ASSERT (htab->root.dynamic_sections_created);
9129 if (sreloc == NULL)
9130 abort ();
9131 sreloc->size += RELOC_SIZE (htab) * count;
9132 }
9133
9134 /* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
9135 dynamic, the relocations should go in SRELOC, otherwise they should
9136 go in the special .rel.iplt section. */
9137
9138 static void
9139 elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
9140 bfd_size_type count)
9141 {
9142 struct elf32_arm_link_hash_table *htab;
9143
9144 htab = elf32_arm_hash_table (info);
9145 if (!htab->root.dynamic_sections_created)
9146 htab->root.irelplt->size += RELOC_SIZE (htab) * count;
9147 else
9148 {
9149 BFD_ASSERT (sreloc != NULL);
9150 sreloc->size += RELOC_SIZE (htab) * count;
9151 }
9152 }
9153
9154 /* Add relocation REL to the end of relocation section SRELOC. */
9155
9156 static void
9157 elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
9158 asection *sreloc, Elf_Internal_Rela *rel)
9159 {
9160 bfd_byte *loc;
9161 struct elf32_arm_link_hash_table *htab;
9162
9163 htab = elf32_arm_hash_table (info);
9164 if (!htab->root.dynamic_sections_created
9165 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
9166 sreloc = htab->root.irelplt;
9167 if (sreloc == NULL)
9168 abort ();
9169 loc = sreloc->contents;
9170 loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
9171 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
9172 abort ();
9173 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
9174 }
9175
9176 /* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
9177 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
9178 to .plt. */
9179
9180 static void
9181 elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
9182 bfd_boolean is_iplt_entry,
9183 union gotplt_union *root_plt,
9184 struct arm_plt_info *arm_plt)
9185 {
9186 struct elf32_arm_link_hash_table *htab;
9187 asection *splt;
9188 asection *sgotplt;
9189
9190 htab = elf32_arm_hash_table (info);
9191
9192 if (is_iplt_entry)
9193 {
9194 splt = htab->root.iplt;
9195 sgotplt = htab->root.igotplt;
9196
9197 /* NaCl uses a special first entry in .iplt too. */
9198 if (htab->nacl_p && splt->size == 0)
9199 splt->size += htab->plt_header_size;
9200
9201 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
9202 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
9203 }
9204 else
9205 {
9206 splt = htab->root.splt;
9207 sgotplt = htab->root.sgotplt;
9208
9209 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
9210 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
9211
9212 /* If this is the first .plt entry, make room for the special
9213 first entry. */
9214 if (splt->size == 0)
9215 splt->size += htab->plt_header_size;
9216
9217 htab->next_tls_desc_index++;
9218 }
9219
9220 /* Allocate the PLT entry itself, including any leading Thumb stub. */
9221 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9222 splt->size += PLT_THUMB_STUB_SIZE;
9223 root_plt->offset = splt->size;
9224 splt->size += htab->plt_entry_size;
9225
9226 if (!htab->symbian_p)
9227 {
9228 /* We also need to make an entry in the .got.plt section, which
9229 will be placed in the .got section by the linker script. */
9230 if (is_iplt_entry)
9231 arm_plt->got_offset = sgotplt->size;
9232 else
9233 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
9234 sgotplt->size += 4;
9235 }
9236 }
9237
9238 static bfd_vma
9239 arm_movw_immediate (bfd_vma value)
9240 {
9241 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
9242 }
9243
9244 static bfd_vma
9245 arm_movt_immediate (bfd_vma value)
9246 {
9247 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
9248 }
9249
9250 /* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
9251 the entry lives in .iplt and resolves to (*SYM_VALUE)().
9252 Otherwise, DYNINDX is the index of the symbol in the dynamic
9253 symbol table and SYM_VALUE is undefined.
9254
9255 ROOT_PLT points to the offset of the PLT entry from the start of its
9256 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
9257 bookkeeping information.
9258
9259 Returns FALSE if there was a problem. */
9260
9261 static bfd_boolean
9262 elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
9263 union gotplt_union *root_plt,
9264 struct arm_plt_info *arm_plt,
9265 int dynindx, bfd_vma sym_value)
9266 {
9267 struct elf32_arm_link_hash_table *htab;
9268 asection *sgot;
9269 asection *splt;
9270 asection *srel;
9271 bfd_byte *loc;
9272 bfd_vma plt_index;
9273 Elf_Internal_Rela rel;
9274 bfd_vma plt_header_size;
9275 bfd_vma got_header_size;
9276
9277 htab = elf32_arm_hash_table (info);
9278
9279 /* Pick the appropriate sections and sizes. */
9280 if (dynindx == -1)
9281 {
9282 splt = htab->root.iplt;
9283 sgot = htab->root.igotplt;
9284 srel = htab->root.irelplt;
9285
9286 /* There are no reserved entries in .igot.plt, and no special
9287 first entry in .iplt. */
9288 got_header_size = 0;
9289 plt_header_size = 0;
9290 }
9291 else
9292 {
9293 splt = htab->root.splt;
9294 sgot = htab->root.sgotplt;
9295 srel = htab->root.srelplt;
9296
9297 got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
9298 plt_header_size = htab->plt_header_size;
9299 }
9300 BFD_ASSERT (splt != NULL && srel != NULL);
9301
9302 /* Fill in the entry in the procedure linkage table. */
9303 if (htab->symbian_p)
9304 {
9305 BFD_ASSERT (dynindx >= 0);
9306 put_arm_insn (htab, output_bfd,
9307 elf32_arm_symbian_plt_entry[0],
9308 splt->contents + root_plt->offset);
9309 bfd_put_32 (output_bfd,
9310 elf32_arm_symbian_plt_entry[1],
9311 splt->contents + root_plt->offset + 4);
9312
9313 /* Fill in the entry in the .rel.plt section. */
9314 rel.r_offset = (splt->output_section->vma
9315 + splt->output_offset
9316 + root_plt->offset + 4);
9317 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
9318
9319 /* Get the index in the procedure linkage table which
9320 corresponds to this symbol. This is the index of this symbol
9321 in all the symbols for which we are making plt entries. The
9322 first entry in the procedure linkage table is reserved. */
9323 plt_index = ((root_plt->offset - plt_header_size)
9324 / htab->plt_entry_size);
9325 }
9326 else
9327 {
9328 bfd_vma got_offset, got_address, plt_address;
9329 bfd_vma got_displacement, initial_got_entry;
9330 bfd_byte * ptr;
9331
9332 BFD_ASSERT (sgot != NULL);
9333
9334 /* Get the offset into the .(i)got.plt table of the entry that
9335 corresponds to this function. */
9336 got_offset = (arm_plt->got_offset & -2);
9337
9338 /* Get the index in the procedure linkage table which
9339 corresponds to this symbol. This is the index of this symbol
9340 in all the symbols for which we are making plt entries.
9341 After the reserved .got.plt entries, all symbols appear in
9342 the same order as in .plt. */
9343 plt_index = (got_offset - got_header_size) / 4;
9344
9345 /* Calculate the address of the GOT entry. */
9346 got_address = (sgot->output_section->vma
9347 + sgot->output_offset
9348 + got_offset);
9349
9350 /* ...and the address of the PLT entry. */
9351 plt_address = (splt->output_section->vma
9352 + splt->output_offset
9353 + root_plt->offset);
9354
9355 ptr = splt->contents + root_plt->offset;
9356 if (htab->vxworks_p && bfd_link_pic (info))
9357 {
9358 unsigned int i;
9359 bfd_vma val;
9360
9361 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9362 {
9363 val = elf32_arm_vxworks_shared_plt_entry[i];
9364 if (i == 2)
9365 val |= got_address - sgot->output_section->vma;
9366 if (i == 5)
9367 val |= plt_index * RELOC_SIZE (htab);
9368 if (i == 2 || i == 5)
9369 bfd_put_32 (output_bfd, val, ptr);
9370 else
9371 put_arm_insn (htab, output_bfd, val, ptr);
9372 }
9373 }
9374 else if (htab->vxworks_p)
9375 {
9376 unsigned int i;
9377 bfd_vma val;
9378
9379 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9380 {
9381 val = elf32_arm_vxworks_exec_plt_entry[i];
9382 if (i == 2)
9383 val |= got_address;
9384 if (i == 4)
9385 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
9386 if (i == 5)
9387 val |= plt_index * RELOC_SIZE (htab);
9388 if (i == 2 || i == 5)
9389 bfd_put_32 (output_bfd, val, ptr);
9390 else
9391 put_arm_insn (htab, output_bfd, val, ptr);
9392 }
9393
9394 loc = (htab->srelplt2->contents
9395 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
9396
9397 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
9398 referencing the GOT for this PLT entry. */
9399 rel.r_offset = plt_address + 8;
9400 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
9401 rel.r_addend = got_offset;
9402 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9403 loc += RELOC_SIZE (htab);
9404
9405 /* Create the R_ARM_ABS32 relocation referencing the
9406 beginning of the PLT for this GOT entry. */
9407 rel.r_offset = got_address;
9408 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
9409 rel.r_addend = 0;
9410 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9411 }
9412 else if (htab->nacl_p)
9413 {
9414 /* Calculate the displacement between the PLT slot and the
9415 common tail that's part of the special initial PLT slot. */
9416 int32_t tail_displacement
9417 = ((splt->output_section->vma + splt->output_offset
9418 + ARM_NACL_PLT_TAIL_OFFSET)
9419 - (plt_address + htab->plt_entry_size + 4));
9420 BFD_ASSERT ((tail_displacement & 3) == 0);
9421 tail_displacement >>= 2;
9422
9423 BFD_ASSERT ((tail_displacement & 0xff000000) == 0
9424 || (-tail_displacement & 0xff000000) == 0);
9425
9426 /* Calculate the displacement between the PLT slot and the entry
9427 in the GOT. The offset accounts for the value produced by
9428 adding to pc in the penultimate instruction of the PLT stub. */
9429 got_displacement = (got_address
9430 - (plt_address + htab->plt_entry_size));
9431
9432 /* NaCl does not support interworking at all. */
9433 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt));
9434
9435 put_arm_insn (htab, output_bfd,
9436 elf32_arm_nacl_plt_entry[0]
9437 | arm_movw_immediate (got_displacement),
9438 ptr + 0);
9439 put_arm_insn (htab, output_bfd,
9440 elf32_arm_nacl_plt_entry[1]
9441 | arm_movt_immediate (got_displacement),
9442 ptr + 4);
9443 put_arm_insn (htab, output_bfd,
9444 elf32_arm_nacl_plt_entry[2],
9445 ptr + 8);
9446 put_arm_insn (htab, output_bfd,
9447 elf32_arm_nacl_plt_entry[3]
9448 | (tail_displacement & 0x00ffffff),
9449 ptr + 12);
9450 }
9451 else if (using_thumb_only (htab))
9452 {
9453 /* PR ld/16017: Generate thumb only PLT entries. */
9454 if (!using_thumb2 (htab))
9455 {
9456 /* FIXME: We ought to be able to generate thumb-1 PLT
9457 instructions... */
9458 _bfd_error_handler (_("%B: Warning: thumb-1 mode PLT generation not currently supported"),
9459 output_bfd);
9460 return FALSE;
9461 }
9462
9463 /* Calculate the displacement between the PLT slot and the entry in
9464 the GOT. The 12-byte offset accounts for the value produced by
9465 adding to pc in the 3rd instruction of the PLT stub. */
9466 got_displacement = got_address - (plt_address + 12);
9467
9468 /* As we are using 32 bit instructions we have to use 'put_arm_insn'
9469 instead of 'put_thumb_insn'. */
9470 put_arm_insn (htab, output_bfd,
9471 elf32_thumb2_plt_entry[0]
9472 | ((got_displacement & 0x000000ff) << 16)
9473 | ((got_displacement & 0x00000700) << 20)
9474 | ((got_displacement & 0x00000800) >> 1)
9475 | ((got_displacement & 0x0000f000) >> 12),
9476 ptr + 0);
9477 put_arm_insn (htab, output_bfd,
9478 elf32_thumb2_plt_entry[1]
9479 | ((got_displacement & 0x00ff0000) )
9480 | ((got_displacement & 0x07000000) << 4)
9481 | ((got_displacement & 0x08000000) >> 17)
9482 | ((got_displacement & 0xf0000000) >> 28),
9483 ptr + 4);
9484 put_arm_insn (htab, output_bfd,
9485 elf32_thumb2_plt_entry[2],
9486 ptr + 8);
9487 put_arm_insn (htab, output_bfd,
9488 elf32_thumb2_plt_entry[3],
9489 ptr + 12);
9490 }
9491 else
9492 {
9493 /* Calculate the displacement between the PLT slot and the
9494 entry in the GOT. The eight-byte offset accounts for the
9495 value produced by adding to pc in the first instruction
9496 of the PLT stub. */
9497 got_displacement = got_address - (plt_address + 8);
9498
9499 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9500 {
9501 put_thumb_insn (htab, output_bfd,
9502 elf32_arm_plt_thumb_stub[0], ptr - 4);
9503 put_thumb_insn (htab, output_bfd,
9504 elf32_arm_plt_thumb_stub[1], ptr - 2);
9505 }
9506
9507 if (!elf32_arm_use_long_plt_entry)
9508 {
9509 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
9510
9511 put_arm_insn (htab, output_bfd,
9512 elf32_arm_plt_entry_short[0]
9513 | ((got_displacement & 0x0ff00000) >> 20),
9514 ptr + 0);
9515 put_arm_insn (htab, output_bfd,
9516 elf32_arm_plt_entry_short[1]
9517 | ((got_displacement & 0x000ff000) >> 12),
9518 ptr+ 4);
9519 put_arm_insn (htab, output_bfd,
9520 elf32_arm_plt_entry_short[2]
9521 | (got_displacement & 0x00000fff),
9522 ptr + 8);
9523 #ifdef FOUR_WORD_PLT
9524 bfd_put_32 (output_bfd, elf32_arm_plt_entry_short[3], ptr + 12);
9525 #endif
9526 }
9527 else
9528 {
9529 put_arm_insn (htab, output_bfd,
9530 elf32_arm_plt_entry_long[0]
9531 | ((got_displacement & 0xf0000000) >> 28),
9532 ptr + 0);
9533 put_arm_insn (htab, output_bfd,
9534 elf32_arm_plt_entry_long[1]
9535 | ((got_displacement & 0x0ff00000) >> 20),
9536 ptr + 4);
9537 put_arm_insn (htab, output_bfd,
9538 elf32_arm_plt_entry_long[2]
9539 | ((got_displacement & 0x000ff000) >> 12),
9540 ptr+ 8);
9541 put_arm_insn (htab, output_bfd,
9542 elf32_arm_plt_entry_long[3]
9543 | (got_displacement & 0x00000fff),
9544 ptr + 12);
9545 }
9546 }
9547
9548 /* Fill in the entry in the .rel(a).(i)plt section. */
9549 rel.r_offset = got_address;
9550 rel.r_addend = 0;
9551 if (dynindx == -1)
9552 {
9553 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
9554 The dynamic linker or static executable then calls SYM_VALUE
9555 to determine the correct run-time value of the .igot.plt entry. */
9556 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9557 initial_got_entry = sym_value;
9558 }
9559 else
9560 {
9561 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
9562 initial_got_entry = (splt->output_section->vma
9563 + splt->output_offset);
9564 }
9565
9566 /* Fill in the entry in the global offset table. */
9567 bfd_put_32 (output_bfd, initial_got_entry,
9568 sgot->contents + got_offset);
9569 }
9570
9571 if (dynindx == -1)
9572 elf32_arm_add_dynreloc (output_bfd, info, srel, &rel);
9573 else
9574 {
9575 loc = srel->contents + plt_index * RELOC_SIZE (htab);
9576 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9577 }
9578
9579 return TRUE;
9580 }
9581
9582 /* Some relocations map to different relocations depending on the
9583 target. Return the real relocation. */
9584
9585 static int
9586 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
9587 int r_type)
9588 {
9589 switch (r_type)
9590 {
9591 case R_ARM_TARGET1:
9592 if (globals->target1_is_rel)
9593 return R_ARM_REL32;
9594 else
9595 return R_ARM_ABS32;
9596
9597 case R_ARM_TARGET2:
9598 return globals->target2_reloc;
9599
9600 default:
9601 return r_type;
9602 }
9603 }
9604
9605 /* Return the base VMA address which should be subtracted from real addresses
9606 when resolving @dtpoff relocation.
9607 This is PT_TLS segment p_vaddr. */
9608
9609 static bfd_vma
9610 dtpoff_base (struct bfd_link_info *info)
9611 {
9612 /* If tls_sec is NULL, we should have signalled an error already. */
9613 if (elf_hash_table (info)->tls_sec == NULL)
9614 return 0;
9615 return elf_hash_table (info)->tls_sec->vma;
9616 }
9617
9618 /* Return the relocation value for @tpoff relocation
9619 if STT_TLS virtual address is ADDRESS. */
9620
9621 static bfd_vma
9622 tpoff (struct bfd_link_info *info, bfd_vma address)
9623 {
9624 struct elf_link_hash_table *htab = elf_hash_table (info);
9625 bfd_vma base;
9626
9627 /* If tls_sec is NULL, we should have signalled an error already. */
9628 if (htab->tls_sec == NULL)
9629 return 0;
9630 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
9631 return address - htab->tls_sec->vma + base;
9632 }
9633
9634 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
9635 VALUE is the relocation value. */
9636
9637 static bfd_reloc_status_type
9638 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
9639 {
9640 if (value > 0xfff)
9641 return bfd_reloc_overflow;
9642
9643 value |= bfd_get_32 (abfd, data) & 0xfffff000;
9644 bfd_put_32 (abfd, value, data);
9645 return bfd_reloc_ok;
9646 }
9647
9648 /* Handle TLS relaxations. Relaxing is possible for symbols that use
9649 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
9650 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
9651
9652 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
9653 is to then call final_link_relocate. Return other values in the
9654 case of error.
9655
9656 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
9657 the pre-relaxed code. It would be nice if the relocs were updated
9658 to match the optimization. */
9659
9660 static bfd_reloc_status_type
9661 elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
9662 bfd *input_bfd, asection *input_sec, bfd_byte *contents,
9663 Elf_Internal_Rela *rel, unsigned long is_local)
9664 {
9665 unsigned long insn;
9666
9667 switch (ELF32_R_TYPE (rel->r_info))
9668 {
9669 default:
9670 return bfd_reloc_notsupported;
9671
9672 case R_ARM_TLS_GOTDESC:
9673 if (is_local)
9674 insn = 0;
9675 else
9676 {
9677 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
9678 if (insn & 1)
9679 insn -= 5; /* THUMB */
9680 else
9681 insn -= 8; /* ARM */
9682 }
9683 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
9684 return bfd_reloc_continue;
9685
9686 case R_ARM_THM_TLS_DESCSEQ:
9687 /* Thumb insn. */
9688 insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
9689 if ((insn & 0xff78) == 0x4478) /* add rx, pc */
9690 {
9691 if (is_local)
9692 /* nop */
9693 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
9694 }
9695 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
9696 {
9697 if (is_local)
9698 /* nop */
9699 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
9700 else
9701 /* ldr rx,[ry] */
9702 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
9703 }
9704 else if ((insn & 0xff87) == 0x4780) /* blx rx */
9705 {
9706 if (is_local)
9707 /* nop */
9708 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
9709 else
9710 /* mov r0, rx */
9711 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
9712 contents + rel->r_offset);
9713 }
9714 else
9715 {
9716 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
9717 /* It's a 32 bit instruction, fetch the rest of it for
9718 error generation. */
9719 insn = (insn << 16)
9720 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
9721 _bfd_error_handler
9722 /* xgettext:c-format */
9723 (_("%B(%A+%#Lx): unexpected Thumb instruction '%#lx' in TLS trampoline"),
9724 input_bfd, input_sec, rel->r_offset, insn);
9725 return bfd_reloc_notsupported;
9726 }
9727 break;
9728
9729 case R_ARM_TLS_DESCSEQ:
9730 /* arm insn. */
9731 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
9732 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
9733 {
9734 if (is_local)
9735 /* mov rx, ry */
9736 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
9737 contents + rel->r_offset);
9738 }
9739 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
9740 {
9741 if (is_local)
9742 /* nop */
9743 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
9744 else
9745 /* ldr rx,[ry] */
9746 bfd_put_32 (input_bfd, insn & 0xfffff000,
9747 contents + rel->r_offset);
9748 }
9749 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
9750 {
9751 if (is_local)
9752 /* nop */
9753 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
9754 else
9755 /* mov r0, rx */
9756 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
9757 contents + rel->r_offset);
9758 }
9759 else
9760 {
9761 _bfd_error_handler
9762 /* xgettext:c-format */
9763 (_("%B(%A+%#Lx): unexpected ARM instruction '%#lx' in TLS trampoline"),
9764 input_bfd, input_sec, rel->r_offset, insn);
9765 return bfd_reloc_notsupported;
9766 }
9767 break;
9768
9769 case R_ARM_TLS_CALL:
9770 /* GD->IE relaxation, turn the instruction into 'nop' or
9771 'ldr r0, [pc,r0]' */
9772 insn = is_local ? 0xe1a00000 : 0xe79f0000;
9773 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
9774 break;
9775
9776 case R_ARM_THM_TLS_CALL:
9777 /* GD->IE relaxation. */
9778 if (!is_local)
9779 /* add r0,pc; ldr r0, [r0] */
9780 insn = 0x44786800;
9781 else if (using_thumb2 (globals))
9782 /* nop.w */
9783 insn = 0xf3af8000;
9784 else
9785 /* nop; nop */
9786 insn = 0xbf00bf00;
9787
9788 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
9789 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
9790 break;
9791 }
9792 return bfd_reloc_ok;
9793 }
9794
9795 /* For a given value of n, calculate the value of G_n as required to
9796 deal with group relocations. We return it in the form of an
9797 encoded constant-and-rotation, together with the final residual. If n is
9798 specified as less than zero, then final_residual is filled with the
9799 input value and no further action is performed. */
9800
9801 static bfd_vma
9802 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
9803 {
9804 int current_n;
9805 bfd_vma g_n;
9806 bfd_vma encoded_g_n = 0;
9807 bfd_vma residual = value; /* Also known as Y_n. */
9808
9809 for (current_n = 0; current_n <= n; current_n++)
9810 {
9811 int shift;
9812
9813 /* Calculate which part of the value to mask. */
9814 if (residual == 0)
9815 shift = 0;
9816 else
9817 {
9818 int msb;
9819
9820 /* Determine the most significant bit in the residual and
9821 align the resulting value to a 2-bit boundary. */
9822 for (msb = 30; msb >= 0; msb -= 2)
9823 if (residual & (3 << msb))
9824 break;
9825
9826 /* The desired shift is now (msb - 6), or zero, whichever
9827 is the greater. */
9828 shift = msb - 6;
9829 if (shift < 0)
9830 shift = 0;
9831 }
9832
9833 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
9834 g_n = residual & (0xff << shift);
9835 encoded_g_n = (g_n >> shift)
9836 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
9837
9838 /* Calculate the residual for the next time around. */
9839 residual &= ~g_n;
9840 }
9841
9842 *final_residual = residual;
9843
9844 return encoded_g_n;
9845 }
9846
9847 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
9848 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
9849
9850 static int
9851 identify_add_or_sub (bfd_vma insn)
9852 {
9853 int opcode = insn & 0x1e00000;
9854
9855 if (opcode == 1 << 23) /* ADD */
9856 return 1;
9857
9858 if (opcode == 1 << 22) /* SUB */
9859 return -1;
9860
9861 return 0;
9862 }
9863
9864 /* Perform a relocation as part of a final link. */
9865
9866 static bfd_reloc_status_type
9867 elf32_arm_final_link_relocate (reloc_howto_type * howto,
9868 bfd * input_bfd,
9869 bfd * output_bfd,
9870 asection * input_section,
9871 bfd_byte * contents,
9872 Elf_Internal_Rela * rel,
9873 bfd_vma value,
9874 struct bfd_link_info * info,
9875 asection * sym_sec,
9876 const char * sym_name,
9877 unsigned char st_type,
9878 enum arm_st_branch_type branch_type,
9879 struct elf_link_hash_entry * h,
9880 bfd_boolean * unresolved_reloc_p,
9881 char ** error_message)
9882 {
9883 unsigned long r_type = howto->type;
9884 unsigned long r_symndx;
9885 bfd_byte * hit_data = contents + rel->r_offset;
9886 bfd_vma * local_got_offsets;
9887 bfd_vma * local_tlsdesc_gotents;
9888 asection * sgot;
9889 asection * splt;
9890 asection * sreloc = NULL;
9891 asection * srelgot;
9892 bfd_vma addend;
9893 bfd_signed_vma signed_addend;
9894 unsigned char dynreloc_st_type;
9895 bfd_vma dynreloc_value;
9896 struct elf32_arm_link_hash_table * globals;
9897 struct elf32_arm_link_hash_entry *eh;
9898 union gotplt_union *root_plt;
9899 struct arm_plt_info *arm_plt;
9900 bfd_vma plt_offset;
9901 bfd_vma gotplt_offset;
9902 bfd_boolean has_iplt_entry;
9903 bfd_boolean resolved_to_zero;
9904
9905 globals = elf32_arm_hash_table (info);
9906 if (globals == NULL)
9907 return bfd_reloc_notsupported;
9908
9909 BFD_ASSERT (is_arm_elf (input_bfd));
9910 BFD_ASSERT (howto != NULL);
9911
9912 /* Some relocation types map to different relocations depending on the
9913 target. We pick the right one here. */
9914 r_type = arm_real_reloc_type (globals, r_type);
9915
9916 /* It is possible to have linker relaxations on some TLS access
9917 models. Update our information here. */
9918 r_type = elf32_arm_tls_transition (info, r_type, h);
9919
9920 if (r_type != howto->type)
9921 howto = elf32_arm_howto_from_type (r_type);
9922
9923 eh = (struct elf32_arm_link_hash_entry *) h;
9924 sgot = globals->root.sgot;
9925 local_got_offsets = elf_local_got_offsets (input_bfd);
9926 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
9927
9928 if (globals->root.dynamic_sections_created)
9929 srelgot = globals->root.srelgot;
9930 else
9931 srelgot = NULL;
9932
9933 r_symndx = ELF32_R_SYM (rel->r_info);
9934
9935 if (globals->use_rel)
9936 {
9937 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
9938
9939 if (addend & ((howto->src_mask + 1) >> 1))
9940 {
9941 signed_addend = -1;
9942 signed_addend &= ~ howto->src_mask;
9943 signed_addend |= addend;
9944 }
9945 else
9946 signed_addend = addend;
9947 }
9948 else
9949 addend = signed_addend = rel->r_addend;
9950
9951 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
9952 are resolving a function call relocation. */
9953 if (using_thumb_only (globals)
9954 && (r_type == R_ARM_THM_CALL
9955 || r_type == R_ARM_THM_JUMP24)
9956 && branch_type == ST_BRANCH_TO_ARM)
9957 branch_type = ST_BRANCH_TO_THUMB;
9958
9959 /* Record the symbol information that should be used in dynamic
9960 relocations. */
9961 dynreloc_st_type = st_type;
9962 dynreloc_value = value;
9963 if (branch_type == ST_BRANCH_TO_THUMB)
9964 dynreloc_value |= 1;
9965
9966 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
9967 VALUE appropriately for relocations that we resolve at link time. */
9968 has_iplt_entry = FALSE;
9969 if (elf32_arm_get_plt_info (input_bfd, globals, eh, r_symndx, &root_plt,
9970 &arm_plt)
9971 && root_plt->offset != (bfd_vma) -1)
9972 {
9973 plt_offset = root_plt->offset;
9974 gotplt_offset = arm_plt->got_offset;
9975
9976 if (h == NULL || eh->is_iplt)
9977 {
9978 has_iplt_entry = TRUE;
9979 splt = globals->root.iplt;
9980
9981 /* Populate .iplt entries here, because not all of them will
9982 be seen by finish_dynamic_symbol. The lower bit is set if
9983 we have already populated the entry. */
9984 if (plt_offset & 1)
9985 plt_offset--;
9986 else
9987 {
9988 if (elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
9989 -1, dynreloc_value))
9990 root_plt->offset |= 1;
9991 else
9992 return bfd_reloc_notsupported;
9993 }
9994
9995 /* Static relocations always resolve to the .iplt entry. */
9996 st_type = STT_FUNC;
9997 value = (splt->output_section->vma
9998 + splt->output_offset
9999 + plt_offset);
10000 branch_type = ST_BRANCH_TO_ARM;
10001
10002 /* If there are non-call relocations that resolve to the .iplt
10003 entry, then all dynamic ones must too. */
10004 if (arm_plt->noncall_refcount != 0)
10005 {
10006 dynreloc_st_type = st_type;
10007 dynreloc_value = value;
10008 }
10009 }
10010 else
10011 /* We populate the .plt entry in finish_dynamic_symbol. */
10012 splt = globals->root.splt;
10013 }
10014 else
10015 {
10016 splt = NULL;
10017 plt_offset = (bfd_vma) -1;
10018 gotplt_offset = (bfd_vma) -1;
10019 }
10020
10021 resolved_to_zero = (h != NULL
10022 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
10023
10024 switch (r_type)
10025 {
10026 case R_ARM_NONE:
10027 /* We don't need to find a value for this symbol. It's just a
10028 marker. */
10029 *unresolved_reloc_p = FALSE;
10030 return bfd_reloc_ok;
10031
10032 case R_ARM_ABS12:
10033 if (!globals->vxworks_p)
10034 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
10035 /* Fall through. */
10036
10037 case R_ARM_PC24:
10038 case R_ARM_ABS32:
10039 case R_ARM_ABS32_NOI:
10040 case R_ARM_REL32:
10041 case R_ARM_REL32_NOI:
10042 case R_ARM_CALL:
10043 case R_ARM_JUMP24:
10044 case R_ARM_XPC25:
10045 case R_ARM_PREL31:
10046 case R_ARM_PLT32:
10047 /* Handle relocations which should use the PLT entry. ABS32/REL32
10048 will use the symbol's value, which may point to a PLT entry, but we
10049 don't need to handle that here. If we created a PLT entry, all
10050 branches in this object should go to it, except if the PLT is too
10051 far away, in which case a long branch stub should be inserted. */
10052 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
10053 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
10054 && r_type != R_ARM_CALL
10055 && r_type != R_ARM_JUMP24
10056 && r_type != R_ARM_PLT32)
10057 && plt_offset != (bfd_vma) -1)
10058 {
10059 /* If we've created a .plt section, and assigned a PLT entry
10060 to this function, it must either be a STT_GNU_IFUNC reference
10061 or not be known to bind locally. In other cases, we should
10062 have cleared the PLT entry by now. */
10063 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
10064
10065 value = (splt->output_section->vma
10066 + splt->output_offset
10067 + plt_offset);
10068 *unresolved_reloc_p = FALSE;
10069 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10070 contents, rel->r_offset, value,
10071 rel->r_addend);
10072 }
10073
10074 /* When generating a shared object or relocatable executable, these
10075 relocations are copied into the output file to be resolved at
10076 run time. */
10077 if ((bfd_link_pic (info)
10078 || globals->root.is_relocatable_executable)
10079 && (input_section->flags & SEC_ALLOC)
10080 && !(globals->vxworks_p
10081 && strcmp (input_section->output_section->name,
10082 ".tls_vars") == 0)
10083 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
10084 || !SYMBOL_CALLS_LOCAL (info, h))
10085 && !(input_bfd == globals->stub_bfd
10086 && strstr (input_section->name, STUB_SUFFIX))
10087 && (h == NULL
10088 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10089 && !resolved_to_zero)
10090 || h->root.type != bfd_link_hash_undefweak)
10091 && r_type != R_ARM_PC24
10092 && r_type != R_ARM_CALL
10093 && r_type != R_ARM_JUMP24
10094 && r_type != R_ARM_PREL31
10095 && r_type != R_ARM_PLT32)
10096 {
10097 Elf_Internal_Rela outrel;
10098 bfd_boolean skip, relocate;
10099
10100 if ((r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
10101 && !h->def_regular)
10102 {
10103 char *v = _("shared object");
10104
10105 if (bfd_link_executable (info))
10106 v = _("PIE executable");
10107
10108 _bfd_error_handler
10109 (_("%B: relocation %s against external or undefined symbol `%s'"
10110 " can not be used when making a %s; recompile with -fPIC"), input_bfd,
10111 elf32_arm_howto_table_1[r_type].name, h->root.root.string, v);
10112 return bfd_reloc_notsupported;
10113 }
10114
10115 *unresolved_reloc_p = FALSE;
10116
10117 if (sreloc == NULL && globals->root.dynamic_sections_created)
10118 {
10119 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
10120 ! globals->use_rel);
10121
10122 if (sreloc == NULL)
10123 return bfd_reloc_notsupported;
10124 }
10125
10126 skip = FALSE;
10127 relocate = FALSE;
10128
10129 outrel.r_addend = addend;
10130 outrel.r_offset =
10131 _bfd_elf_section_offset (output_bfd, info, input_section,
10132 rel->r_offset);
10133 if (outrel.r_offset == (bfd_vma) -1)
10134 skip = TRUE;
10135 else if (outrel.r_offset == (bfd_vma) -2)
10136 skip = TRUE, relocate = TRUE;
10137 outrel.r_offset += (input_section->output_section->vma
10138 + input_section->output_offset);
10139
10140 if (skip)
10141 memset (&outrel, 0, sizeof outrel);
10142 else if (h != NULL
10143 && h->dynindx != -1
10144 && (!bfd_link_pic (info)
10145 || !(bfd_link_pie (info)
10146 || SYMBOLIC_BIND (info, h))
10147 || !h->def_regular))
10148 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
10149 else
10150 {
10151 int symbol;
10152
10153 /* This symbol is local, or marked to become local. */
10154 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI);
10155 if (globals->symbian_p)
10156 {
10157 asection *osec;
10158
10159 /* On Symbian OS, the data segment and text segement
10160 can be relocated independently. Therefore, we
10161 must indicate the segment to which this
10162 relocation is relative. The BPABI allows us to
10163 use any symbol in the right segment; we just use
10164 the section symbol as it is convenient. (We
10165 cannot use the symbol given by "h" directly as it
10166 will not appear in the dynamic symbol table.)
10167
10168 Note that the dynamic linker ignores the section
10169 symbol value, so we don't subtract osec->vma
10170 from the emitted reloc addend. */
10171 if (sym_sec)
10172 osec = sym_sec->output_section;
10173 else
10174 osec = input_section->output_section;
10175 symbol = elf_section_data (osec)->dynindx;
10176 if (symbol == 0)
10177 {
10178 struct elf_link_hash_table *htab = elf_hash_table (info);
10179
10180 if ((osec->flags & SEC_READONLY) == 0
10181 && htab->data_index_section != NULL)
10182 osec = htab->data_index_section;
10183 else
10184 osec = htab->text_index_section;
10185 symbol = elf_section_data (osec)->dynindx;
10186 }
10187 BFD_ASSERT (symbol != 0);
10188 }
10189 else
10190 /* On SVR4-ish systems, the dynamic loader cannot
10191 relocate the text and data segments independently,
10192 so the symbol does not matter. */
10193 symbol = 0;
10194 if (dynreloc_st_type == STT_GNU_IFUNC)
10195 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
10196 to the .iplt entry. Instead, every non-call reference
10197 must use an R_ARM_IRELATIVE relocation to obtain the
10198 correct run-time address. */
10199 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
10200 else
10201 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
10202 if (globals->use_rel)
10203 relocate = TRUE;
10204 else
10205 outrel.r_addend += dynreloc_value;
10206 }
10207
10208 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
10209
10210 /* If this reloc is against an external symbol, we do not want to
10211 fiddle with the addend. Otherwise, we need to include the symbol
10212 value so that it becomes an addend for the dynamic reloc. */
10213 if (! relocate)
10214 return bfd_reloc_ok;
10215
10216 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10217 contents, rel->r_offset,
10218 dynreloc_value, (bfd_vma) 0);
10219 }
10220 else switch (r_type)
10221 {
10222 case R_ARM_ABS12:
10223 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
10224
10225 case R_ARM_XPC25: /* Arm BLX instruction. */
10226 case R_ARM_CALL:
10227 case R_ARM_JUMP24:
10228 case R_ARM_PC24: /* Arm B/BL instruction. */
10229 case R_ARM_PLT32:
10230 {
10231 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
10232
10233 if (r_type == R_ARM_XPC25)
10234 {
10235 /* Check for Arm calling Arm function. */
10236 /* FIXME: Should we translate the instruction into a BL
10237 instruction instead ? */
10238 if (branch_type != ST_BRANCH_TO_THUMB)
10239 _bfd_error_handler
10240 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
10241 input_bfd,
10242 h ? h->root.root.string : "(local)");
10243 }
10244 else if (r_type == R_ARM_PC24)
10245 {
10246 /* Check for Arm calling Thumb function. */
10247 if (branch_type == ST_BRANCH_TO_THUMB)
10248 {
10249 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
10250 output_bfd, input_section,
10251 hit_data, sym_sec, rel->r_offset,
10252 signed_addend, value,
10253 error_message))
10254 return bfd_reloc_ok;
10255 else
10256 return bfd_reloc_dangerous;
10257 }
10258 }
10259
10260 /* Check if a stub has to be inserted because the
10261 destination is too far or we are changing mode. */
10262 if ( r_type == R_ARM_CALL
10263 || r_type == R_ARM_JUMP24
10264 || r_type == R_ARM_PLT32)
10265 {
10266 enum elf32_arm_stub_type stub_type = arm_stub_none;
10267 struct elf32_arm_link_hash_entry *hash;
10268
10269 hash = (struct elf32_arm_link_hash_entry *) h;
10270 stub_type = arm_type_of_stub (info, input_section, rel,
10271 st_type, &branch_type,
10272 hash, value, sym_sec,
10273 input_bfd, sym_name);
10274
10275 if (stub_type != arm_stub_none)
10276 {
10277 /* The target is out of reach, so redirect the
10278 branch to the local stub for this function. */
10279 stub_entry = elf32_arm_get_stub_entry (input_section,
10280 sym_sec, h,
10281 rel, globals,
10282 stub_type);
10283 {
10284 if (stub_entry != NULL)
10285 value = (stub_entry->stub_offset
10286 + stub_entry->stub_sec->output_offset
10287 + stub_entry->stub_sec->output_section->vma);
10288
10289 if (plt_offset != (bfd_vma) -1)
10290 *unresolved_reloc_p = FALSE;
10291 }
10292 }
10293 else
10294 {
10295 /* If the call goes through a PLT entry, make sure to
10296 check distance to the right destination address. */
10297 if (plt_offset != (bfd_vma) -1)
10298 {
10299 value = (splt->output_section->vma
10300 + splt->output_offset
10301 + plt_offset);
10302 *unresolved_reloc_p = FALSE;
10303 /* The PLT entry is in ARM mode, regardless of the
10304 target function. */
10305 branch_type = ST_BRANCH_TO_ARM;
10306 }
10307 }
10308 }
10309
10310 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
10311 where:
10312 S is the address of the symbol in the relocation.
10313 P is address of the instruction being relocated.
10314 A is the addend (extracted from the instruction) in bytes.
10315
10316 S is held in 'value'.
10317 P is the base address of the section containing the
10318 instruction plus the offset of the reloc into that
10319 section, ie:
10320 (input_section->output_section->vma +
10321 input_section->output_offset +
10322 rel->r_offset).
10323 A is the addend, converted into bytes, ie:
10324 (signed_addend * 4)
10325
10326 Note: None of these operations have knowledge of the pipeline
10327 size of the processor, thus it is up to the assembler to
10328 encode this information into the addend. */
10329 value -= (input_section->output_section->vma
10330 + input_section->output_offset);
10331 value -= rel->r_offset;
10332 if (globals->use_rel)
10333 value += (signed_addend << howto->size);
10334 else
10335 /* RELA addends do not have to be adjusted by howto->size. */
10336 value += signed_addend;
10337
10338 signed_addend = value;
10339 signed_addend >>= howto->rightshift;
10340
10341 /* A branch to an undefined weak symbol is turned into a jump to
10342 the next instruction unless a PLT entry will be created.
10343 Do the same for local undefined symbols (but not for STN_UNDEF).
10344 The jump to the next instruction is optimized as a NOP depending
10345 on the architecture. */
10346 if (h ? (h->root.type == bfd_link_hash_undefweak
10347 && plt_offset == (bfd_vma) -1)
10348 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
10349 {
10350 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
10351
10352 if (arch_has_arm_nop (globals))
10353 value |= 0x0320f000;
10354 else
10355 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
10356 }
10357 else
10358 {
10359 /* Perform a signed range check. */
10360 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
10361 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
10362 return bfd_reloc_overflow;
10363
10364 addend = (value & 2);
10365
10366 value = (signed_addend & howto->dst_mask)
10367 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
10368
10369 if (r_type == R_ARM_CALL)
10370 {
10371 /* Set the H bit in the BLX instruction. */
10372 if (branch_type == ST_BRANCH_TO_THUMB)
10373 {
10374 if (addend)
10375 value |= (1 << 24);
10376 else
10377 value &= ~(bfd_vma)(1 << 24);
10378 }
10379
10380 /* Select the correct instruction (BL or BLX). */
10381 /* Only if we are not handling a BL to a stub. In this
10382 case, mode switching is performed by the stub. */
10383 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
10384 value |= (1 << 28);
10385 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
10386 {
10387 value &= ~(bfd_vma)(1 << 28);
10388 value |= (1 << 24);
10389 }
10390 }
10391 }
10392 }
10393 break;
10394
10395 case R_ARM_ABS32:
10396 value += addend;
10397 if (branch_type == ST_BRANCH_TO_THUMB)
10398 value |= 1;
10399 break;
10400
10401 case R_ARM_ABS32_NOI:
10402 value += addend;
10403 break;
10404
10405 case R_ARM_REL32:
10406 value += addend;
10407 if (branch_type == ST_BRANCH_TO_THUMB)
10408 value |= 1;
10409 value -= (input_section->output_section->vma
10410 + input_section->output_offset + rel->r_offset);
10411 break;
10412
10413 case R_ARM_REL32_NOI:
10414 value += addend;
10415 value -= (input_section->output_section->vma
10416 + input_section->output_offset + rel->r_offset);
10417 break;
10418
10419 case R_ARM_PREL31:
10420 value -= (input_section->output_section->vma
10421 + input_section->output_offset + rel->r_offset);
10422 value += signed_addend;
10423 if (! h || h->root.type != bfd_link_hash_undefweak)
10424 {
10425 /* Check for overflow. */
10426 if ((value ^ (value >> 1)) & (1 << 30))
10427 return bfd_reloc_overflow;
10428 }
10429 value &= 0x7fffffff;
10430 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
10431 if (branch_type == ST_BRANCH_TO_THUMB)
10432 value |= 1;
10433 break;
10434 }
10435
10436 bfd_put_32 (input_bfd, value, hit_data);
10437 return bfd_reloc_ok;
10438
10439 case R_ARM_ABS8:
10440 /* PR 16202: Refectch the addend using the correct size. */
10441 if (globals->use_rel)
10442 addend = bfd_get_8 (input_bfd, hit_data);
10443 value += addend;
10444
10445 /* There is no way to tell whether the user intended to use a signed or
10446 unsigned addend. When checking for overflow we accept either,
10447 as specified by the AAELF. */
10448 if ((long) value > 0xff || (long) value < -0x80)
10449 return bfd_reloc_overflow;
10450
10451 bfd_put_8 (input_bfd, value, hit_data);
10452 return bfd_reloc_ok;
10453
10454 case R_ARM_ABS16:
10455 /* PR 16202: Refectch the addend using the correct size. */
10456 if (globals->use_rel)
10457 addend = bfd_get_16 (input_bfd, hit_data);
10458 value += addend;
10459
10460 /* See comment for R_ARM_ABS8. */
10461 if ((long) value > 0xffff || (long) value < -0x8000)
10462 return bfd_reloc_overflow;
10463
10464 bfd_put_16 (input_bfd, value, hit_data);
10465 return bfd_reloc_ok;
10466
10467 case R_ARM_THM_ABS5:
10468 /* Support ldr and str instructions for the thumb. */
10469 if (globals->use_rel)
10470 {
10471 /* Need to refetch addend. */
10472 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
10473 /* ??? Need to determine shift amount from operand size. */
10474 addend >>= howto->rightshift;
10475 }
10476 value += addend;
10477
10478 /* ??? Isn't value unsigned? */
10479 if ((long) value > 0x1f || (long) value < -0x10)
10480 return bfd_reloc_overflow;
10481
10482 /* ??? Value needs to be properly shifted into place first. */
10483 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
10484 bfd_put_16 (input_bfd, value, hit_data);
10485 return bfd_reloc_ok;
10486
10487 case R_ARM_THM_ALU_PREL_11_0:
10488 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
10489 {
10490 bfd_vma insn;
10491 bfd_signed_vma relocation;
10492
10493 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
10494 | bfd_get_16 (input_bfd, hit_data + 2);
10495
10496 if (globals->use_rel)
10497 {
10498 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
10499 | ((insn & (1 << 26)) >> 15);
10500 if (insn & 0xf00000)
10501 signed_addend = -signed_addend;
10502 }
10503
10504 relocation = value + signed_addend;
10505 relocation -= Pa (input_section->output_section->vma
10506 + input_section->output_offset
10507 + rel->r_offset);
10508
10509 /* PR 21523: Use an absolute value. The user of this reloc will
10510 have already selected an ADD or SUB insn appropriately. */
10511 value = labs (relocation);
10512
10513 if (value >= 0x1000)
10514 return bfd_reloc_overflow;
10515
10516 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
10517 if (branch_type == ST_BRANCH_TO_THUMB)
10518 value |= 1;
10519
10520 insn = (insn & 0xfb0f8f00) | (value & 0xff)
10521 | ((value & 0x700) << 4)
10522 | ((value & 0x800) << 15);
10523 if (relocation < 0)
10524 insn |= 0xa00000;
10525
10526 bfd_put_16 (input_bfd, insn >> 16, hit_data);
10527 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10528
10529 return bfd_reloc_ok;
10530 }
10531
10532 case R_ARM_THM_PC8:
10533 /* PR 10073: This reloc is not generated by the GNU toolchain,
10534 but it is supported for compatibility with third party libraries
10535 generated by other compilers, specifically the ARM/IAR. */
10536 {
10537 bfd_vma insn;
10538 bfd_signed_vma relocation;
10539
10540 insn = bfd_get_16 (input_bfd, hit_data);
10541
10542 if (globals->use_rel)
10543 addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4;
10544
10545 relocation = value + addend;
10546 relocation -= Pa (input_section->output_section->vma
10547 + input_section->output_offset
10548 + rel->r_offset);
10549
10550 value = relocation;
10551
10552 /* We do not check for overflow of this reloc. Although strictly
10553 speaking this is incorrect, it appears to be necessary in order
10554 to work with IAR generated relocs. Since GCC and GAS do not
10555 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
10556 a problem for them. */
10557 value &= 0x3fc;
10558
10559 insn = (insn & 0xff00) | (value >> 2);
10560
10561 bfd_put_16 (input_bfd, insn, hit_data);
10562
10563 return bfd_reloc_ok;
10564 }
10565
10566 case R_ARM_THM_PC12:
10567 /* Corresponds to: ldr.w reg, [pc, #offset]. */
10568 {
10569 bfd_vma insn;
10570 bfd_signed_vma relocation;
10571
10572 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
10573 | bfd_get_16 (input_bfd, hit_data + 2);
10574
10575 if (globals->use_rel)
10576 {
10577 signed_addend = insn & 0xfff;
10578 if (!(insn & (1 << 23)))
10579 signed_addend = -signed_addend;
10580 }
10581
10582 relocation = value + signed_addend;
10583 relocation -= Pa (input_section->output_section->vma
10584 + input_section->output_offset
10585 + rel->r_offset);
10586
10587 value = relocation;
10588
10589 if (value >= 0x1000)
10590 return bfd_reloc_overflow;
10591
10592 insn = (insn & 0xff7ff000) | value;
10593 if (relocation >= 0)
10594 insn |= (1 << 23);
10595
10596 bfd_put_16 (input_bfd, insn >> 16, hit_data);
10597 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10598
10599 return bfd_reloc_ok;
10600 }
10601
10602 case R_ARM_THM_XPC22:
10603 case R_ARM_THM_CALL:
10604 case R_ARM_THM_JUMP24:
10605 /* Thumb BL (branch long instruction). */
10606 {
10607 bfd_vma relocation;
10608 bfd_vma reloc_sign;
10609 bfd_boolean overflow = FALSE;
10610 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
10611 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
10612 bfd_signed_vma reloc_signed_max;
10613 bfd_signed_vma reloc_signed_min;
10614 bfd_vma check;
10615 bfd_signed_vma signed_check;
10616 int bitsize;
10617 const int thumb2 = using_thumb2 (globals);
10618 const int thumb2_bl = using_thumb2_bl (globals);
10619
10620 /* A branch to an undefined weak symbol is turned into a jump to
10621 the next instruction unless a PLT entry will be created.
10622 The jump to the next instruction is optimized as a NOP.W for
10623 Thumb-2 enabled architectures. */
10624 if (h && h->root.type == bfd_link_hash_undefweak
10625 && plt_offset == (bfd_vma) -1)
10626 {
10627 if (thumb2)
10628 {
10629 bfd_put_16 (input_bfd, 0xf3af, hit_data);
10630 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
10631 }
10632 else
10633 {
10634 bfd_put_16 (input_bfd, 0xe000, hit_data);
10635 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
10636 }
10637 return bfd_reloc_ok;
10638 }
10639
10640 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
10641 with Thumb-1) involving the J1 and J2 bits. */
10642 if (globals->use_rel)
10643 {
10644 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
10645 bfd_vma upper = upper_insn & 0x3ff;
10646 bfd_vma lower = lower_insn & 0x7ff;
10647 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
10648 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
10649 bfd_vma i1 = j1 ^ s ? 0 : 1;
10650 bfd_vma i2 = j2 ^ s ? 0 : 1;
10651
10652 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
10653 /* Sign extend. */
10654 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
10655
10656 signed_addend = addend;
10657 }
10658
10659 if (r_type == R_ARM_THM_XPC22)
10660 {
10661 /* Check for Thumb to Thumb call. */
10662 /* FIXME: Should we translate the instruction into a BL
10663 instruction instead ? */
10664 if (branch_type == ST_BRANCH_TO_THUMB)
10665 _bfd_error_handler
10666 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
10667 input_bfd,
10668 h ? h->root.root.string : "(local)");
10669 }
10670 else
10671 {
10672 /* If it is not a call to Thumb, assume call to Arm.
10673 If it is a call relative to a section name, then it is not a
10674 function call at all, but rather a long jump. Calls through
10675 the PLT do not require stubs. */
10676 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
10677 {
10678 if (globals->use_blx && r_type == R_ARM_THM_CALL)
10679 {
10680 /* Convert BL to BLX. */
10681 lower_insn = (lower_insn & ~0x1000) | 0x0800;
10682 }
10683 else if (( r_type != R_ARM_THM_CALL)
10684 && (r_type != R_ARM_THM_JUMP24))
10685 {
10686 if (elf32_thumb_to_arm_stub
10687 (info, sym_name, input_bfd, output_bfd, input_section,
10688 hit_data, sym_sec, rel->r_offset, signed_addend, value,
10689 error_message))
10690 return bfd_reloc_ok;
10691 else
10692 return bfd_reloc_dangerous;
10693 }
10694 }
10695 else if (branch_type == ST_BRANCH_TO_THUMB
10696 && globals->use_blx
10697 && r_type == R_ARM_THM_CALL)
10698 {
10699 /* Make sure this is a BL. */
10700 lower_insn |= 0x1800;
10701 }
10702 }
10703
10704 enum elf32_arm_stub_type stub_type = arm_stub_none;
10705 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
10706 {
10707 /* Check if a stub has to be inserted because the destination
10708 is too far. */
10709 struct elf32_arm_stub_hash_entry *stub_entry;
10710 struct elf32_arm_link_hash_entry *hash;
10711
10712 hash = (struct elf32_arm_link_hash_entry *) h;
10713
10714 stub_type = arm_type_of_stub (info, input_section, rel,
10715 st_type, &branch_type,
10716 hash, value, sym_sec,
10717 input_bfd, sym_name);
10718
10719 if (stub_type != arm_stub_none)
10720 {
10721 /* The target is out of reach or we are changing modes, so
10722 redirect the branch to the local stub for this
10723 function. */
10724 stub_entry = elf32_arm_get_stub_entry (input_section,
10725 sym_sec, h,
10726 rel, globals,
10727 stub_type);
10728 if (stub_entry != NULL)
10729 {
10730 value = (stub_entry->stub_offset
10731 + stub_entry->stub_sec->output_offset
10732 + stub_entry->stub_sec->output_section->vma);
10733
10734 if (plt_offset != (bfd_vma) -1)
10735 *unresolved_reloc_p = FALSE;
10736 }
10737
10738 /* If this call becomes a call to Arm, force BLX. */
10739 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
10740 {
10741 if ((stub_entry
10742 && !arm_stub_is_thumb (stub_entry->stub_type))
10743 || branch_type != ST_BRANCH_TO_THUMB)
10744 lower_insn = (lower_insn & ~0x1000) | 0x0800;
10745 }
10746 }
10747 }
10748
10749 /* Handle calls via the PLT. */
10750 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
10751 {
10752 value = (splt->output_section->vma
10753 + splt->output_offset
10754 + plt_offset);
10755
10756 if (globals->use_blx
10757 && r_type == R_ARM_THM_CALL
10758 && ! using_thumb_only (globals))
10759 {
10760 /* If the Thumb BLX instruction is available, convert
10761 the BL to a BLX instruction to call the ARM-mode
10762 PLT entry. */
10763 lower_insn = (lower_insn & ~0x1000) | 0x0800;
10764 branch_type = ST_BRANCH_TO_ARM;
10765 }
10766 else
10767 {
10768 if (! using_thumb_only (globals))
10769 /* Target the Thumb stub before the ARM PLT entry. */
10770 value -= PLT_THUMB_STUB_SIZE;
10771 branch_type = ST_BRANCH_TO_THUMB;
10772 }
10773 *unresolved_reloc_p = FALSE;
10774 }
10775
10776 relocation = value + signed_addend;
10777
10778 relocation -= (input_section->output_section->vma
10779 + input_section->output_offset
10780 + rel->r_offset);
10781
10782 check = relocation >> howto->rightshift;
10783
10784 /* If this is a signed value, the rightshift just dropped
10785 leading 1 bits (assuming twos complement). */
10786 if ((bfd_signed_vma) relocation >= 0)
10787 signed_check = check;
10788 else
10789 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
10790
10791 /* Calculate the permissable maximum and minimum values for
10792 this relocation according to whether we're relocating for
10793 Thumb-2 or not. */
10794 bitsize = howto->bitsize;
10795 if (!thumb2_bl)
10796 bitsize -= 2;
10797 reloc_signed_max = (1 << (bitsize - 1)) - 1;
10798 reloc_signed_min = ~reloc_signed_max;
10799
10800 /* Assumes two's complement. */
10801 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
10802 overflow = TRUE;
10803
10804 if ((lower_insn & 0x5000) == 0x4000)
10805 /* For a BLX instruction, make sure that the relocation is rounded up
10806 to a word boundary. This follows the semantics of the instruction
10807 which specifies that bit 1 of the target address will come from bit
10808 1 of the base address. */
10809 relocation = (relocation + 2) & ~ 3;
10810
10811 /* Put RELOCATION back into the insn. Assumes two's complement.
10812 We use the Thumb-2 encoding, which is safe even if dealing with
10813 a Thumb-1 instruction by virtue of our overflow check above. */
10814 reloc_sign = (signed_check < 0) ? 1 : 0;
10815 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
10816 | ((relocation >> 12) & 0x3ff)
10817 | (reloc_sign << 10);
10818 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
10819 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
10820 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
10821 | ((relocation >> 1) & 0x7ff);
10822
10823 /* Put the relocated value back in the object file: */
10824 bfd_put_16 (input_bfd, upper_insn, hit_data);
10825 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
10826
10827 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
10828 }
10829 break;
10830
10831 case R_ARM_THM_JUMP19:
10832 /* Thumb32 conditional branch instruction. */
10833 {
10834 bfd_vma relocation;
10835 bfd_boolean overflow = FALSE;
10836 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
10837 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
10838 bfd_signed_vma reloc_signed_max = 0xffffe;
10839 bfd_signed_vma reloc_signed_min = -0x100000;
10840 bfd_signed_vma signed_check;
10841 enum elf32_arm_stub_type stub_type = arm_stub_none;
10842 struct elf32_arm_stub_hash_entry *stub_entry;
10843 struct elf32_arm_link_hash_entry *hash;
10844
10845 /* Need to refetch the addend, reconstruct the top three bits,
10846 and squish the two 11 bit pieces together. */
10847 if (globals->use_rel)
10848 {
10849 bfd_vma S = (upper_insn & 0x0400) >> 10;
10850 bfd_vma upper = (upper_insn & 0x003f);
10851 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
10852 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
10853 bfd_vma lower = (lower_insn & 0x07ff);
10854
10855 upper |= J1 << 6;
10856 upper |= J2 << 7;
10857 upper |= (!S) << 8;
10858 upper -= 0x0100; /* Sign extend. */
10859
10860 addend = (upper << 12) | (lower << 1);
10861 signed_addend = addend;
10862 }
10863
10864 /* Handle calls via the PLT. */
10865 if (plt_offset != (bfd_vma) -1)
10866 {
10867 value = (splt->output_section->vma
10868 + splt->output_offset
10869 + plt_offset);
10870 /* Target the Thumb stub before the ARM PLT entry. */
10871 value -= PLT_THUMB_STUB_SIZE;
10872 *unresolved_reloc_p = FALSE;
10873 }
10874
10875 hash = (struct elf32_arm_link_hash_entry *)h;
10876
10877 stub_type = arm_type_of_stub (info, input_section, rel,
10878 st_type, &branch_type,
10879 hash, value, sym_sec,
10880 input_bfd, sym_name);
10881 if (stub_type != arm_stub_none)
10882 {
10883 stub_entry = elf32_arm_get_stub_entry (input_section,
10884 sym_sec, h,
10885 rel, globals,
10886 stub_type);
10887 if (stub_entry != NULL)
10888 {
10889 value = (stub_entry->stub_offset
10890 + stub_entry->stub_sec->output_offset
10891 + stub_entry->stub_sec->output_section->vma);
10892 }
10893 }
10894
10895 relocation = value + signed_addend;
10896 relocation -= (input_section->output_section->vma
10897 + input_section->output_offset
10898 + rel->r_offset);
10899 signed_check = (bfd_signed_vma) relocation;
10900
10901 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
10902 overflow = TRUE;
10903
10904 /* Put RELOCATION back into the insn. */
10905 {
10906 bfd_vma S = (relocation & 0x00100000) >> 20;
10907 bfd_vma J2 = (relocation & 0x00080000) >> 19;
10908 bfd_vma J1 = (relocation & 0x00040000) >> 18;
10909 bfd_vma hi = (relocation & 0x0003f000) >> 12;
10910 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
10911
10912 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
10913 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
10914 }
10915
10916 /* Put the relocated value back in the object file: */
10917 bfd_put_16 (input_bfd, upper_insn, hit_data);
10918 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
10919
10920 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
10921 }
10922
10923 case R_ARM_THM_JUMP11:
10924 case R_ARM_THM_JUMP8:
10925 case R_ARM_THM_JUMP6:
10926 /* Thumb B (branch) instruction). */
10927 {
10928 bfd_signed_vma relocation;
10929 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
10930 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
10931 bfd_signed_vma signed_check;
10932
10933 /* CZB cannot jump backward. */
10934 if (r_type == R_ARM_THM_JUMP6)
10935 reloc_signed_min = 0;
10936
10937 if (globals->use_rel)
10938 {
10939 /* Need to refetch addend. */
10940 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
10941 if (addend & ((howto->src_mask + 1) >> 1))
10942 {
10943 signed_addend = -1;
10944 signed_addend &= ~ howto->src_mask;
10945 signed_addend |= addend;
10946 }
10947 else
10948 signed_addend = addend;
10949 /* The value in the insn has been right shifted. We need to
10950 undo this, so that we can perform the address calculation
10951 in terms of bytes. */
10952 signed_addend <<= howto->rightshift;
10953 }
10954 relocation = value + signed_addend;
10955
10956 relocation -= (input_section->output_section->vma
10957 + input_section->output_offset
10958 + rel->r_offset);
10959
10960 relocation >>= howto->rightshift;
10961 signed_check = relocation;
10962
10963 if (r_type == R_ARM_THM_JUMP6)
10964 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
10965 else
10966 relocation &= howto->dst_mask;
10967 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
10968
10969 bfd_put_16 (input_bfd, relocation, hit_data);
10970
10971 /* Assumes two's complement. */
10972 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
10973 return bfd_reloc_overflow;
10974
10975 return bfd_reloc_ok;
10976 }
10977
10978 case R_ARM_ALU_PCREL7_0:
10979 case R_ARM_ALU_PCREL15_8:
10980 case R_ARM_ALU_PCREL23_15:
10981 {
10982 bfd_vma insn;
10983 bfd_vma relocation;
10984
10985 insn = bfd_get_32 (input_bfd, hit_data);
10986 if (globals->use_rel)
10987 {
10988 /* Extract the addend. */
10989 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
10990 signed_addend = addend;
10991 }
10992 relocation = value + signed_addend;
10993
10994 relocation -= (input_section->output_section->vma
10995 + input_section->output_offset
10996 + rel->r_offset);
10997 insn = (insn & ~0xfff)
10998 | ((howto->bitpos << 7) & 0xf00)
10999 | ((relocation >> howto->bitpos) & 0xff);
11000 bfd_put_32 (input_bfd, value, hit_data);
11001 }
11002 return bfd_reloc_ok;
11003
11004 case R_ARM_GNU_VTINHERIT:
11005 case R_ARM_GNU_VTENTRY:
11006 return bfd_reloc_ok;
11007
11008 case R_ARM_GOTOFF32:
11009 /* Relocation is relative to the start of the
11010 global offset table. */
11011
11012 BFD_ASSERT (sgot != NULL);
11013 if (sgot == NULL)
11014 return bfd_reloc_notsupported;
11015
11016 /* If we are addressing a Thumb function, we need to adjust the
11017 address by one, so that attempts to call the function pointer will
11018 correctly interpret it as Thumb code. */
11019 if (branch_type == ST_BRANCH_TO_THUMB)
11020 value += 1;
11021
11022 /* Note that sgot->output_offset is not involved in this
11023 calculation. We always want the start of .got. If we
11024 define _GLOBAL_OFFSET_TABLE in a different way, as is
11025 permitted by the ABI, we might have to change this
11026 calculation. */
11027 value -= sgot->output_section->vma;
11028 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11029 contents, rel->r_offset, value,
11030 rel->r_addend);
11031
11032 case R_ARM_GOTPC:
11033 /* Use global offset table as symbol value. */
11034 BFD_ASSERT (sgot != NULL);
11035
11036 if (sgot == NULL)
11037 return bfd_reloc_notsupported;
11038
11039 *unresolved_reloc_p = FALSE;
11040 value = sgot->output_section->vma;
11041 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11042 contents, rel->r_offset, value,
11043 rel->r_addend);
11044
11045 case R_ARM_GOT32:
11046 case R_ARM_GOT_PREL:
11047 /* Relocation is to the entry for this symbol in the
11048 global offset table. */
11049 if (sgot == NULL)
11050 return bfd_reloc_notsupported;
11051
11052 if (dynreloc_st_type == STT_GNU_IFUNC
11053 && plt_offset != (bfd_vma) -1
11054 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
11055 {
11056 /* We have a relocation against a locally-binding STT_GNU_IFUNC
11057 symbol, and the relocation resolves directly to the runtime
11058 target rather than to the .iplt entry. This means that any
11059 .got entry would be the same value as the .igot.plt entry,
11060 so there's no point creating both. */
11061 sgot = globals->root.igotplt;
11062 value = sgot->output_offset + gotplt_offset;
11063 }
11064 else if (h != NULL)
11065 {
11066 bfd_vma off;
11067
11068 off = h->got.offset;
11069 BFD_ASSERT (off != (bfd_vma) -1);
11070 if ((off & 1) != 0)
11071 {
11072 /* We have already processsed one GOT relocation against
11073 this symbol. */
11074 off &= ~1;
11075 if (globals->root.dynamic_sections_created
11076 && !SYMBOL_REFERENCES_LOCAL (info, h))
11077 *unresolved_reloc_p = FALSE;
11078 }
11079 else
11080 {
11081 Elf_Internal_Rela outrel;
11082
11083 if (h->dynindx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
11084 {
11085 /* If the symbol doesn't resolve locally in a static
11086 object, we have an undefined reference. If the
11087 symbol doesn't resolve locally in a dynamic object,
11088 it should be resolved by the dynamic linker. */
11089 if (globals->root.dynamic_sections_created)
11090 {
11091 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
11092 *unresolved_reloc_p = FALSE;
11093 }
11094 else
11095 outrel.r_info = 0;
11096 outrel.r_addend = 0;
11097 }
11098 else
11099 {
11100 if (dynreloc_st_type == STT_GNU_IFUNC)
11101 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
11102 else if (bfd_link_pic (info)
11103 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11104 || h->root.type != bfd_link_hash_undefweak))
11105 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11106 else
11107 outrel.r_info = 0;
11108 outrel.r_addend = dynreloc_value;
11109 }
11110
11111 /* The GOT entry is initialized to zero by default.
11112 See if we should install a different value. */
11113 if (outrel.r_addend != 0
11114 && (outrel.r_info == 0 || globals->use_rel))
11115 {
11116 bfd_put_32 (output_bfd, outrel.r_addend,
11117 sgot->contents + off);
11118 outrel.r_addend = 0;
11119 }
11120
11121 if (outrel.r_info != 0)
11122 {
11123 outrel.r_offset = (sgot->output_section->vma
11124 + sgot->output_offset
11125 + off);
11126 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11127 }
11128 h->got.offset |= 1;
11129 }
11130 value = sgot->output_offset + off;
11131 }
11132 else
11133 {
11134 bfd_vma off;
11135
11136 BFD_ASSERT (local_got_offsets != NULL
11137 && local_got_offsets[r_symndx] != (bfd_vma) -1);
11138
11139 off = local_got_offsets[r_symndx];
11140
11141 /* The offset must always be a multiple of 4. We use the
11142 least significant bit to record whether we have already
11143 generated the necessary reloc. */
11144 if ((off & 1) != 0)
11145 off &= ~1;
11146 else
11147 {
11148 if (globals->use_rel)
11149 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
11150
11151 if (bfd_link_pic (info) || dynreloc_st_type == STT_GNU_IFUNC)
11152 {
11153 Elf_Internal_Rela outrel;
11154
11155 outrel.r_addend = addend + dynreloc_value;
11156 outrel.r_offset = (sgot->output_section->vma
11157 + sgot->output_offset
11158 + off);
11159 if (dynreloc_st_type == STT_GNU_IFUNC)
11160 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
11161 else
11162 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11163 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11164 }
11165
11166 local_got_offsets[r_symndx] |= 1;
11167 }
11168
11169 value = sgot->output_offset + off;
11170 }
11171 if (r_type != R_ARM_GOT32)
11172 value += sgot->output_section->vma;
11173
11174 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11175 contents, rel->r_offset, value,
11176 rel->r_addend);
11177
11178 case R_ARM_TLS_LDO32:
11179 value = value - dtpoff_base (info);
11180
11181 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11182 contents, rel->r_offset, value,
11183 rel->r_addend);
11184
11185 case R_ARM_TLS_LDM32:
11186 {
11187 bfd_vma off;
11188
11189 if (sgot == NULL)
11190 abort ();
11191
11192 off = globals->tls_ldm_got.offset;
11193
11194 if ((off & 1) != 0)
11195 off &= ~1;
11196 else
11197 {
11198 /* If we don't know the module number, create a relocation
11199 for it. */
11200 if (bfd_link_pic (info))
11201 {
11202 Elf_Internal_Rela outrel;
11203
11204 if (srelgot == NULL)
11205 abort ();
11206
11207 outrel.r_addend = 0;
11208 outrel.r_offset = (sgot->output_section->vma
11209 + sgot->output_offset + off);
11210 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
11211
11212 if (globals->use_rel)
11213 bfd_put_32 (output_bfd, outrel.r_addend,
11214 sgot->contents + off);
11215
11216 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11217 }
11218 else
11219 bfd_put_32 (output_bfd, 1, sgot->contents + off);
11220
11221 globals->tls_ldm_got.offset |= 1;
11222 }
11223
11224 value = sgot->output_section->vma + sgot->output_offset + off
11225 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
11226
11227 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11228 contents, rel->r_offset, value,
11229 rel->r_addend);
11230 }
11231
11232 case R_ARM_TLS_CALL:
11233 case R_ARM_THM_TLS_CALL:
11234 case R_ARM_TLS_GD32:
11235 case R_ARM_TLS_IE32:
11236 case R_ARM_TLS_GOTDESC:
11237 case R_ARM_TLS_DESCSEQ:
11238 case R_ARM_THM_TLS_DESCSEQ:
11239 {
11240 bfd_vma off, offplt;
11241 int indx = 0;
11242 char tls_type;
11243
11244 BFD_ASSERT (sgot != NULL);
11245
11246 if (h != NULL)
11247 {
11248 bfd_boolean dyn;
11249 dyn = globals->root.dynamic_sections_created;
11250 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
11251 bfd_link_pic (info),
11252 h)
11253 && (!bfd_link_pic (info)
11254 || !SYMBOL_REFERENCES_LOCAL (info, h)))
11255 {
11256 *unresolved_reloc_p = FALSE;
11257 indx = h->dynindx;
11258 }
11259 off = h->got.offset;
11260 offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
11261 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
11262 }
11263 else
11264 {
11265 BFD_ASSERT (local_got_offsets != NULL);
11266 off = local_got_offsets[r_symndx];
11267 offplt = local_tlsdesc_gotents[r_symndx];
11268 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
11269 }
11270
11271 /* Linker relaxations happens from one of the
11272 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
11273 if (ELF32_R_TYPE(rel->r_info) != r_type)
11274 tls_type = GOT_TLS_IE;
11275
11276 BFD_ASSERT (tls_type != GOT_UNKNOWN);
11277
11278 if ((off & 1) != 0)
11279 off &= ~1;
11280 else
11281 {
11282 bfd_boolean need_relocs = FALSE;
11283 Elf_Internal_Rela outrel;
11284 int cur_off = off;
11285
11286 /* The GOT entries have not been initialized yet. Do it
11287 now, and emit any relocations. If both an IE GOT and a
11288 GD GOT are necessary, we emit the GD first. */
11289
11290 if ((bfd_link_pic (info) || indx != 0)
11291 && (h == NULL
11292 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11293 && !resolved_to_zero)
11294 || h->root.type != bfd_link_hash_undefweak))
11295 {
11296 need_relocs = TRUE;
11297 BFD_ASSERT (srelgot != NULL);
11298 }
11299
11300 if (tls_type & GOT_TLS_GDESC)
11301 {
11302 bfd_byte *loc;
11303
11304 /* We should have relaxed, unless this is an undefined
11305 weak symbol. */
11306 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
11307 || bfd_link_pic (info));
11308 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
11309 <= globals->root.sgotplt->size);
11310
11311 outrel.r_addend = 0;
11312 outrel.r_offset = (globals->root.sgotplt->output_section->vma
11313 + globals->root.sgotplt->output_offset
11314 + offplt
11315 + globals->sgotplt_jump_table_size);
11316
11317 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
11318 sreloc = globals->root.srelplt;
11319 loc = sreloc->contents;
11320 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
11321 BFD_ASSERT (loc + RELOC_SIZE (globals)
11322 <= sreloc->contents + sreloc->size);
11323
11324 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
11325
11326 /* For globals, the first word in the relocation gets
11327 the relocation index and the top bit set, or zero,
11328 if we're binding now. For locals, it gets the
11329 symbol's offset in the tls section. */
11330 bfd_put_32 (output_bfd,
11331 !h ? value - elf_hash_table (info)->tls_sec->vma
11332 : info->flags & DF_BIND_NOW ? 0
11333 : 0x80000000 | ELF32_R_SYM (outrel.r_info),
11334 globals->root.sgotplt->contents + offplt
11335 + globals->sgotplt_jump_table_size);
11336
11337 /* Second word in the relocation is always zero. */
11338 bfd_put_32 (output_bfd, 0,
11339 globals->root.sgotplt->contents + offplt
11340 + globals->sgotplt_jump_table_size + 4);
11341 }
11342 if (tls_type & GOT_TLS_GD)
11343 {
11344 if (need_relocs)
11345 {
11346 outrel.r_addend = 0;
11347 outrel.r_offset = (sgot->output_section->vma
11348 + sgot->output_offset
11349 + cur_off);
11350 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
11351
11352 if (globals->use_rel)
11353 bfd_put_32 (output_bfd, outrel.r_addend,
11354 sgot->contents + cur_off);
11355
11356 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11357
11358 if (indx == 0)
11359 bfd_put_32 (output_bfd, value - dtpoff_base (info),
11360 sgot->contents + cur_off + 4);
11361 else
11362 {
11363 outrel.r_addend = 0;
11364 outrel.r_info = ELF32_R_INFO (indx,
11365 R_ARM_TLS_DTPOFF32);
11366 outrel.r_offset += 4;
11367
11368 if (globals->use_rel)
11369 bfd_put_32 (output_bfd, outrel.r_addend,
11370 sgot->contents + cur_off + 4);
11371
11372 elf32_arm_add_dynreloc (output_bfd, info,
11373 srelgot, &outrel);
11374 }
11375 }
11376 else
11377 {
11378 /* If we are not emitting relocations for a
11379 general dynamic reference, then we must be in a
11380 static link or an executable link with the
11381 symbol binding locally. Mark it as belonging
11382 to module 1, the executable. */
11383 bfd_put_32 (output_bfd, 1,
11384 sgot->contents + cur_off);
11385 bfd_put_32 (output_bfd, value - dtpoff_base (info),
11386 sgot->contents + cur_off + 4);
11387 }
11388
11389 cur_off += 8;
11390 }
11391
11392 if (tls_type & GOT_TLS_IE)
11393 {
11394 if (need_relocs)
11395 {
11396 if (indx == 0)
11397 outrel.r_addend = value - dtpoff_base (info);
11398 else
11399 outrel.r_addend = 0;
11400 outrel.r_offset = (sgot->output_section->vma
11401 + sgot->output_offset
11402 + cur_off);
11403 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
11404
11405 if (globals->use_rel)
11406 bfd_put_32 (output_bfd, outrel.r_addend,
11407 sgot->contents + cur_off);
11408
11409 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11410 }
11411 else
11412 bfd_put_32 (output_bfd, tpoff (info, value),
11413 sgot->contents + cur_off);
11414 cur_off += 4;
11415 }
11416
11417 if (h != NULL)
11418 h->got.offset |= 1;
11419 else
11420 local_got_offsets[r_symndx] |= 1;
11421 }
11422
11423 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
11424 off += 8;
11425 else if (tls_type & GOT_TLS_GDESC)
11426 off = offplt;
11427
11428 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
11429 || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
11430 {
11431 bfd_signed_vma offset;
11432 /* TLS stubs are arm mode. The original symbol is a
11433 data object, so branch_type is bogus. */
11434 branch_type = ST_BRANCH_TO_ARM;
11435 enum elf32_arm_stub_type stub_type
11436 = arm_type_of_stub (info, input_section, rel,
11437 st_type, &branch_type,
11438 (struct elf32_arm_link_hash_entry *)h,
11439 globals->tls_trampoline, globals->root.splt,
11440 input_bfd, sym_name);
11441
11442 if (stub_type != arm_stub_none)
11443 {
11444 struct elf32_arm_stub_hash_entry *stub_entry
11445 = elf32_arm_get_stub_entry
11446 (input_section, globals->root.splt, 0, rel,
11447 globals, stub_type);
11448 offset = (stub_entry->stub_offset
11449 + stub_entry->stub_sec->output_offset
11450 + stub_entry->stub_sec->output_section->vma);
11451 }
11452 else
11453 offset = (globals->root.splt->output_section->vma
11454 + globals->root.splt->output_offset
11455 + globals->tls_trampoline);
11456
11457 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
11458 {
11459 unsigned long inst;
11460
11461 offset -= (input_section->output_section->vma
11462 + input_section->output_offset
11463 + rel->r_offset + 8);
11464
11465 inst = offset >> 2;
11466 inst &= 0x00ffffff;
11467 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
11468 }
11469 else
11470 {
11471 /* Thumb blx encodes the offset in a complicated
11472 fashion. */
11473 unsigned upper_insn, lower_insn;
11474 unsigned neg;
11475
11476 offset -= (input_section->output_section->vma
11477 + input_section->output_offset
11478 + rel->r_offset + 4);
11479
11480 if (stub_type != arm_stub_none
11481 && arm_stub_is_thumb (stub_type))
11482 {
11483 lower_insn = 0xd000;
11484 }
11485 else
11486 {
11487 lower_insn = 0xc000;
11488 /* Round up the offset to a word boundary. */
11489 offset = (offset + 2) & ~2;
11490 }
11491
11492 neg = offset < 0;
11493 upper_insn = (0xf000
11494 | ((offset >> 12) & 0x3ff)
11495 | (neg << 10));
11496 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
11497 | (((!((offset >> 22) & 1)) ^ neg) << 11)
11498 | ((offset >> 1) & 0x7ff);
11499 bfd_put_16 (input_bfd, upper_insn, hit_data);
11500 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11501 return bfd_reloc_ok;
11502 }
11503 }
11504 /* These relocations needs special care, as besides the fact
11505 they point somewhere in .gotplt, the addend must be
11506 adjusted accordingly depending on the type of instruction
11507 we refer to. */
11508 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
11509 {
11510 unsigned long data, insn;
11511 unsigned thumb;
11512
11513 data = bfd_get_32 (input_bfd, hit_data);
11514 thumb = data & 1;
11515 data &= ~1u;
11516
11517 if (thumb)
11518 {
11519 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
11520 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
11521 insn = (insn << 16)
11522 | bfd_get_16 (input_bfd,
11523 contents + rel->r_offset - data + 2);
11524 if ((insn & 0xf800c000) == 0xf000c000)
11525 /* bl/blx */
11526 value = -6;
11527 else if ((insn & 0xffffff00) == 0x4400)
11528 /* add */
11529 value = -5;
11530 else
11531 {
11532 _bfd_error_handler
11533 /* xgettext:c-format */
11534 (_("%B(%A+%#Lx): unexpected Thumb instruction '%#lx' referenced by TLS_GOTDESC"),
11535 input_bfd, input_section, rel->r_offset, insn);
11536 return bfd_reloc_notsupported;
11537 }
11538 }
11539 else
11540 {
11541 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
11542
11543 switch (insn >> 24)
11544 {
11545 case 0xeb: /* bl */
11546 case 0xfa: /* blx */
11547 value = -4;
11548 break;
11549
11550 case 0xe0: /* add */
11551 value = -8;
11552 break;
11553
11554 default:
11555 _bfd_error_handler
11556 /* xgettext:c-format */
11557 (_("%B(%A+%#Lx): unexpected ARM instruction '%#lx' referenced by TLS_GOTDESC"),
11558 input_bfd, input_section, rel->r_offset, insn);
11559 return bfd_reloc_notsupported;
11560 }
11561 }
11562
11563 value += ((globals->root.sgotplt->output_section->vma
11564 + globals->root.sgotplt->output_offset + off)
11565 - (input_section->output_section->vma
11566 + input_section->output_offset
11567 + rel->r_offset)
11568 + globals->sgotplt_jump_table_size);
11569 }
11570 else
11571 value = ((globals->root.sgot->output_section->vma
11572 + globals->root.sgot->output_offset + off)
11573 - (input_section->output_section->vma
11574 + input_section->output_offset + rel->r_offset));
11575
11576 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11577 contents, rel->r_offset, value,
11578 rel->r_addend);
11579 }
11580
11581 case R_ARM_TLS_LE32:
11582 if (bfd_link_dll (info))
11583 {
11584 _bfd_error_handler
11585 /* xgettext:c-format */
11586 (_("%B(%A+%#Lx): %s relocation not permitted in shared object"),
11587 input_bfd, input_section, rel->r_offset, howto->name);
11588 return bfd_reloc_notsupported;
11589 }
11590 else
11591 value = tpoff (info, value);
11592
11593 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11594 contents, rel->r_offset, value,
11595 rel->r_addend);
11596
11597 case R_ARM_V4BX:
11598 if (globals->fix_v4bx)
11599 {
11600 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11601
11602 /* Ensure that we have a BX instruction. */
11603 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
11604
11605 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
11606 {
11607 /* Branch to veneer. */
11608 bfd_vma glue_addr;
11609 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
11610 glue_addr -= input_section->output_section->vma
11611 + input_section->output_offset
11612 + rel->r_offset + 8;
11613 insn = (insn & 0xf0000000) | 0x0a000000
11614 | ((glue_addr >> 2) & 0x00ffffff);
11615 }
11616 else
11617 {
11618 /* Preserve Rm (lowest four bits) and the condition code
11619 (highest four bits). Other bits encode MOV PC,Rm. */
11620 insn = (insn & 0xf000000f) | 0x01a0f000;
11621 }
11622
11623 bfd_put_32 (input_bfd, insn, hit_data);
11624 }
11625 return bfd_reloc_ok;
11626
11627 case R_ARM_MOVW_ABS_NC:
11628 case R_ARM_MOVT_ABS:
11629 case R_ARM_MOVW_PREL_NC:
11630 case R_ARM_MOVT_PREL:
11631 /* Until we properly support segment-base-relative addressing then
11632 we assume the segment base to be zero, as for the group relocations.
11633 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
11634 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
11635 case R_ARM_MOVW_BREL_NC:
11636 case R_ARM_MOVW_BREL:
11637 case R_ARM_MOVT_BREL:
11638 {
11639 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11640
11641 if (globals->use_rel)
11642 {
11643 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
11644 signed_addend = (addend ^ 0x8000) - 0x8000;
11645 }
11646
11647 value += signed_addend;
11648
11649 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
11650 value -= (input_section->output_section->vma
11651 + input_section->output_offset + rel->r_offset);
11652
11653 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
11654 return bfd_reloc_overflow;
11655
11656 if (branch_type == ST_BRANCH_TO_THUMB)
11657 value |= 1;
11658
11659 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
11660 || r_type == R_ARM_MOVT_BREL)
11661 value >>= 16;
11662
11663 insn &= 0xfff0f000;
11664 insn |= value & 0xfff;
11665 insn |= (value & 0xf000) << 4;
11666 bfd_put_32 (input_bfd, insn, hit_data);
11667 }
11668 return bfd_reloc_ok;
11669
11670 case R_ARM_THM_MOVW_ABS_NC:
11671 case R_ARM_THM_MOVT_ABS:
11672 case R_ARM_THM_MOVW_PREL_NC:
11673 case R_ARM_THM_MOVT_PREL:
11674 /* Until we properly support segment-base-relative addressing then
11675 we assume the segment base to be zero, as for the above relocations.
11676 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
11677 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
11678 as R_ARM_THM_MOVT_ABS. */
11679 case R_ARM_THM_MOVW_BREL_NC:
11680 case R_ARM_THM_MOVW_BREL:
11681 case R_ARM_THM_MOVT_BREL:
11682 {
11683 bfd_vma insn;
11684
11685 insn = bfd_get_16 (input_bfd, hit_data) << 16;
11686 insn |= bfd_get_16 (input_bfd, hit_data + 2);
11687
11688 if (globals->use_rel)
11689 {
11690 addend = ((insn >> 4) & 0xf000)
11691 | ((insn >> 15) & 0x0800)
11692 | ((insn >> 4) & 0x0700)
11693 | (insn & 0x00ff);
11694 signed_addend = (addend ^ 0x8000) - 0x8000;
11695 }
11696
11697 value += signed_addend;
11698
11699 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
11700 value -= (input_section->output_section->vma
11701 + input_section->output_offset + rel->r_offset);
11702
11703 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
11704 return bfd_reloc_overflow;
11705
11706 if (branch_type == ST_BRANCH_TO_THUMB)
11707 value |= 1;
11708
11709 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
11710 || r_type == R_ARM_THM_MOVT_BREL)
11711 value >>= 16;
11712
11713 insn &= 0xfbf08f00;
11714 insn |= (value & 0xf000) << 4;
11715 insn |= (value & 0x0800) << 15;
11716 insn |= (value & 0x0700) << 4;
11717 insn |= (value & 0x00ff);
11718
11719 bfd_put_16 (input_bfd, insn >> 16, hit_data);
11720 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
11721 }
11722 return bfd_reloc_ok;
11723
11724 case R_ARM_ALU_PC_G0_NC:
11725 case R_ARM_ALU_PC_G1_NC:
11726 case R_ARM_ALU_PC_G0:
11727 case R_ARM_ALU_PC_G1:
11728 case R_ARM_ALU_PC_G2:
11729 case R_ARM_ALU_SB_G0_NC:
11730 case R_ARM_ALU_SB_G1_NC:
11731 case R_ARM_ALU_SB_G0:
11732 case R_ARM_ALU_SB_G1:
11733 case R_ARM_ALU_SB_G2:
11734 {
11735 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11736 bfd_vma pc = input_section->output_section->vma
11737 + input_section->output_offset + rel->r_offset;
11738 /* sb is the origin of the *segment* containing the symbol. */
11739 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
11740 bfd_vma residual;
11741 bfd_vma g_n;
11742 bfd_signed_vma signed_value;
11743 int group = 0;
11744
11745 /* Determine which group of bits to select. */
11746 switch (r_type)
11747 {
11748 case R_ARM_ALU_PC_G0_NC:
11749 case R_ARM_ALU_PC_G0:
11750 case R_ARM_ALU_SB_G0_NC:
11751 case R_ARM_ALU_SB_G0:
11752 group = 0;
11753 break;
11754
11755 case R_ARM_ALU_PC_G1_NC:
11756 case R_ARM_ALU_PC_G1:
11757 case R_ARM_ALU_SB_G1_NC:
11758 case R_ARM_ALU_SB_G1:
11759 group = 1;
11760 break;
11761
11762 case R_ARM_ALU_PC_G2:
11763 case R_ARM_ALU_SB_G2:
11764 group = 2;
11765 break;
11766
11767 default:
11768 abort ();
11769 }
11770
11771 /* If REL, extract the addend from the insn. If RELA, it will
11772 have already been fetched for us. */
11773 if (globals->use_rel)
11774 {
11775 int negative;
11776 bfd_vma constant = insn & 0xff;
11777 bfd_vma rotation = (insn & 0xf00) >> 8;
11778
11779 if (rotation == 0)
11780 signed_addend = constant;
11781 else
11782 {
11783 /* Compensate for the fact that in the instruction, the
11784 rotation is stored in multiples of 2 bits. */
11785 rotation *= 2;
11786
11787 /* Rotate "constant" right by "rotation" bits. */
11788 signed_addend = (constant >> rotation) |
11789 (constant << (8 * sizeof (bfd_vma) - rotation));
11790 }
11791
11792 /* Determine if the instruction is an ADD or a SUB.
11793 (For REL, this determines the sign of the addend.) */
11794 negative = identify_add_or_sub (insn);
11795 if (negative == 0)
11796 {
11797 _bfd_error_handler
11798 /* xgettext:c-format */
11799 (_("%B(%A+%#Lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
11800 input_bfd, input_section, rel->r_offset);
11801 return bfd_reloc_overflow;
11802 }
11803
11804 signed_addend *= negative;
11805 }
11806
11807 /* Compute the value (X) to go in the place. */
11808 if (r_type == R_ARM_ALU_PC_G0_NC
11809 || r_type == R_ARM_ALU_PC_G1_NC
11810 || r_type == R_ARM_ALU_PC_G0
11811 || r_type == R_ARM_ALU_PC_G1
11812 || r_type == R_ARM_ALU_PC_G2)
11813 /* PC relative. */
11814 signed_value = value - pc + signed_addend;
11815 else
11816 /* Section base relative. */
11817 signed_value = value - sb + signed_addend;
11818
11819 /* If the target symbol is a Thumb function, then set the
11820 Thumb bit in the address. */
11821 if (branch_type == ST_BRANCH_TO_THUMB)
11822 signed_value |= 1;
11823
11824 /* Calculate the value of the relevant G_n, in encoded
11825 constant-with-rotation format. */
11826 g_n = calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
11827 group, &residual);
11828
11829 /* Check for overflow if required. */
11830 if ((r_type == R_ARM_ALU_PC_G0
11831 || r_type == R_ARM_ALU_PC_G1
11832 || r_type == R_ARM_ALU_PC_G2
11833 || r_type == R_ARM_ALU_SB_G0
11834 || r_type == R_ARM_ALU_SB_G1
11835 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
11836 {
11837 _bfd_error_handler
11838 /* xgettext:c-format */
11839 (_("%B(%A+%#Lx): Overflow whilst splitting %#Lx for group relocation %s"),
11840 input_bfd, input_section, rel->r_offset,
11841 signed_value < 0 ? -signed_value : signed_value, howto->name);
11842 return bfd_reloc_overflow;
11843 }
11844
11845 /* Mask out the value and the ADD/SUB part of the opcode; take care
11846 not to destroy the S bit. */
11847 insn &= 0xff1ff000;
11848
11849 /* Set the opcode according to whether the value to go in the
11850 place is negative. */
11851 if (signed_value < 0)
11852 insn |= 1 << 22;
11853 else
11854 insn |= 1 << 23;
11855
11856 /* Encode the offset. */
11857 insn |= g_n;
11858
11859 bfd_put_32 (input_bfd, insn, hit_data);
11860 }
11861 return bfd_reloc_ok;
11862
11863 case R_ARM_LDR_PC_G0:
11864 case R_ARM_LDR_PC_G1:
11865 case R_ARM_LDR_PC_G2:
11866 case R_ARM_LDR_SB_G0:
11867 case R_ARM_LDR_SB_G1:
11868 case R_ARM_LDR_SB_G2:
11869 {
11870 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11871 bfd_vma pc = input_section->output_section->vma
11872 + input_section->output_offset + rel->r_offset;
11873 /* sb is the origin of the *segment* containing the symbol. */
11874 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
11875 bfd_vma residual;
11876 bfd_signed_vma signed_value;
11877 int group = 0;
11878
11879 /* Determine which groups of bits to calculate. */
11880 switch (r_type)
11881 {
11882 case R_ARM_LDR_PC_G0:
11883 case R_ARM_LDR_SB_G0:
11884 group = 0;
11885 break;
11886
11887 case R_ARM_LDR_PC_G1:
11888 case R_ARM_LDR_SB_G1:
11889 group = 1;
11890 break;
11891
11892 case R_ARM_LDR_PC_G2:
11893 case R_ARM_LDR_SB_G2:
11894 group = 2;
11895 break;
11896
11897 default:
11898 abort ();
11899 }
11900
11901 /* If REL, extract the addend from the insn. If RELA, it will
11902 have already been fetched for us. */
11903 if (globals->use_rel)
11904 {
11905 int negative = (insn & (1 << 23)) ? 1 : -1;
11906 signed_addend = negative * (insn & 0xfff);
11907 }
11908
11909 /* Compute the value (X) to go in the place. */
11910 if (r_type == R_ARM_LDR_PC_G0
11911 || r_type == R_ARM_LDR_PC_G1
11912 || r_type == R_ARM_LDR_PC_G2)
11913 /* PC relative. */
11914 signed_value = value - pc + signed_addend;
11915 else
11916 /* Section base relative. */
11917 signed_value = value - sb + signed_addend;
11918
11919 /* Calculate the value of the relevant G_{n-1} to obtain
11920 the residual at that stage. */
11921 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
11922 group - 1, &residual);
11923
11924 /* Check for overflow. */
11925 if (residual >= 0x1000)
11926 {
11927 _bfd_error_handler
11928 /* xgettext:c-format */
11929 (_("%B(%A+%#Lx): Overflow whilst splitting %#Lx for group relocation %s"),
11930 input_bfd, input_section, rel->r_offset,
11931 signed_value < 0 ? -signed_value : signed_value, howto->name);
11932 return bfd_reloc_overflow;
11933 }
11934
11935 /* Mask out the value and U bit. */
11936 insn &= 0xff7ff000;
11937
11938 /* Set the U bit if the value to go in the place is non-negative. */
11939 if (signed_value >= 0)
11940 insn |= 1 << 23;
11941
11942 /* Encode the offset. */
11943 insn |= residual;
11944
11945 bfd_put_32 (input_bfd, insn, hit_data);
11946 }
11947 return bfd_reloc_ok;
11948
11949 case R_ARM_LDRS_PC_G0:
11950 case R_ARM_LDRS_PC_G1:
11951 case R_ARM_LDRS_PC_G2:
11952 case R_ARM_LDRS_SB_G0:
11953 case R_ARM_LDRS_SB_G1:
11954 case R_ARM_LDRS_SB_G2:
11955 {
11956 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11957 bfd_vma pc = input_section->output_section->vma
11958 + input_section->output_offset + rel->r_offset;
11959 /* sb is the origin of the *segment* containing the symbol. */
11960 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
11961 bfd_vma residual;
11962 bfd_signed_vma signed_value;
11963 int group = 0;
11964
11965 /* Determine which groups of bits to calculate. */
11966 switch (r_type)
11967 {
11968 case R_ARM_LDRS_PC_G0:
11969 case R_ARM_LDRS_SB_G0:
11970 group = 0;
11971 break;
11972
11973 case R_ARM_LDRS_PC_G1:
11974 case R_ARM_LDRS_SB_G1:
11975 group = 1;
11976 break;
11977
11978 case R_ARM_LDRS_PC_G2:
11979 case R_ARM_LDRS_SB_G2:
11980 group = 2;
11981 break;
11982
11983 default:
11984 abort ();
11985 }
11986
11987 /* If REL, extract the addend from the insn. If RELA, it will
11988 have already been fetched for us. */
11989 if (globals->use_rel)
11990 {
11991 int negative = (insn & (1 << 23)) ? 1 : -1;
11992 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
11993 }
11994
11995 /* Compute the value (X) to go in the place. */
11996 if (r_type == R_ARM_LDRS_PC_G0
11997 || r_type == R_ARM_LDRS_PC_G1
11998 || r_type == R_ARM_LDRS_PC_G2)
11999 /* PC relative. */
12000 signed_value = value - pc + signed_addend;
12001 else
12002 /* Section base relative. */
12003 signed_value = value - sb + signed_addend;
12004
12005 /* Calculate the value of the relevant G_{n-1} to obtain
12006 the residual at that stage. */
12007 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12008 group - 1, &residual);
12009
12010 /* Check for overflow. */
12011 if (residual >= 0x100)
12012 {
12013 _bfd_error_handler
12014 /* xgettext:c-format */
12015 (_("%B(%A+%#Lx): Overflow whilst splitting %#Lx for group relocation %s"),
12016 input_bfd, input_section, rel->r_offset,
12017 signed_value < 0 ? -signed_value : signed_value, howto->name);
12018 return bfd_reloc_overflow;
12019 }
12020
12021 /* Mask out the value and U bit. */
12022 insn &= 0xff7ff0f0;
12023
12024 /* Set the U bit if the value to go in the place is non-negative. */
12025 if (signed_value >= 0)
12026 insn |= 1 << 23;
12027
12028 /* Encode the offset. */
12029 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
12030
12031 bfd_put_32 (input_bfd, insn, hit_data);
12032 }
12033 return bfd_reloc_ok;
12034
12035 case R_ARM_LDC_PC_G0:
12036 case R_ARM_LDC_PC_G1:
12037 case R_ARM_LDC_PC_G2:
12038 case R_ARM_LDC_SB_G0:
12039 case R_ARM_LDC_SB_G1:
12040 case R_ARM_LDC_SB_G2:
12041 {
12042 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12043 bfd_vma pc = input_section->output_section->vma
12044 + input_section->output_offset + rel->r_offset;
12045 /* sb is the origin of the *segment* containing the symbol. */
12046 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12047 bfd_vma residual;
12048 bfd_signed_vma signed_value;
12049 int group = 0;
12050
12051 /* Determine which groups of bits to calculate. */
12052 switch (r_type)
12053 {
12054 case R_ARM_LDC_PC_G0:
12055 case R_ARM_LDC_SB_G0:
12056 group = 0;
12057 break;
12058
12059 case R_ARM_LDC_PC_G1:
12060 case R_ARM_LDC_SB_G1:
12061 group = 1;
12062 break;
12063
12064 case R_ARM_LDC_PC_G2:
12065 case R_ARM_LDC_SB_G2:
12066 group = 2;
12067 break;
12068
12069 default:
12070 abort ();
12071 }
12072
12073 /* If REL, extract the addend from the insn. If RELA, it will
12074 have already been fetched for us. */
12075 if (globals->use_rel)
12076 {
12077 int negative = (insn & (1 << 23)) ? 1 : -1;
12078 signed_addend = negative * ((insn & 0xff) << 2);
12079 }
12080
12081 /* Compute the value (X) to go in the place. */
12082 if (r_type == R_ARM_LDC_PC_G0
12083 || r_type == R_ARM_LDC_PC_G1
12084 || r_type == R_ARM_LDC_PC_G2)
12085 /* PC relative. */
12086 signed_value = value - pc + signed_addend;
12087 else
12088 /* Section base relative. */
12089 signed_value = value - sb + signed_addend;
12090
12091 /* Calculate the value of the relevant G_{n-1} to obtain
12092 the residual at that stage. */
12093 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12094 group - 1, &residual);
12095
12096 /* Check for overflow. (The absolute value to go in the place must be
12097 divisible by four and, after having been divided by four, must
12098 fit in eight bits.) */
12099 if ((residual & 0x3) != 0 || residual >= 0x400)
12100 {
12101 _bfd_error_handler
12102 /* xgettext:c-format */
12103 (_("%B(%A+%#Lx): Overflow whilst splitting %#Lx for group relocation %s"),
12104 input_bfd, input_section, rel->r_offset,
12105 signed_value < 0 ? -signed_value : signed_value, howto->name);
12106 return bfd_reloc_overflow;
12107 }
12108
12109 /* Mask out the value and U bit. */
12110 insn &= 0xff7fff00;
12111
12112 /* Set the U bit if the value to go in the place is non-negative. */
12113 if (signed_value >= 0)
12114 insn |= 1 << 23;
12115
12116 /* Encode the offset. */
12117 insn |= residual >> 2;
12118
12119 bfd_put_32 (input_bfd, insn, hit_data);
12120 }
12121 return bfd_reloc_ok;
12122
12123 case R_ARM_THM_ALU_ABS_G0_NC:
12124 case R_ARM_THM_ALU_ABS_G1_NC:
12125 case R_ARM_THM_ALU_ABS_G2_NC:
12126 case R_ARM_THM_ALU_ABS_G3_NC:
12127 {
12128 const int shift_array[4] = {0, 8, 16, 24};
12129 bfd_vma insn = bfd_get_16 (input_bfd, hit_data);
12130 bfd_vma addr = value;
12131 int shift = shift_array[r_type - R_ARM_THM_ALU_ABS_G0_NC];
12132
12133 /* Compute address. */
12134 if (globals->use_rel)
12135 signed_addend = insn & 0xff;
12136 addr += signed_addend;
12137 if (branch_type == ST_BRANCH_TO_THUMB)
12138 addr |= 1;
12139 /* Clean imm8 insn. */
12140 insn &= 0xff00;
12141 /* And update with correct part of address. */
12142 insn |= (addr >> shift) & 0xff;
12143 /* Update insn. */
12144 bfd_put_16 (input_bfd, insn, hit_data);
12145 }
12146
12147 *unresolved_reloc_p = FALSE;
12148 return bfd_reloc_ok;
12149
12150 default:
12151 return bfd_reloc_notsupported;
12152 }
12153 }
12154
12155 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
12156 static void
12157 arm_add_to_rel (bfd * abfd,
12158 bfd_byte * address,
12159 reloc_howto_type * howto,
12160 bfd_signed_vma increment)
12161 {
12162 bfd_signed_vma addend;
12163
12164 if (howto->type == R_ARM_THM_CALL
12165 || howto->type == R_ARM_THM_JUMP24)
12166 {
12167 int upper_insn, lower_insn;
12168 int upper, lower;
12169
12170 upper_insn = bfd_get_16 (abfd, address);
12171 lower_insn = bfd_get_16 (abfd, address + 2);
12172 upper = upper_insn & 0x7ff;
12173 lower = lower_insn & 0x7ff;
12174
12175 addend = (upper << 12) | (lower << 1);
12176 addend += increment;
12177 addend >>= 1;
12178
12179 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
12180 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
12181
12182 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
12183 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
12184 }
12185 else
12186 {
12187 bfd_vma contents;
12188
12189 contents = bfd_get_32 (abfd, address);
12190
12191 /* Get the (signed) value from the instruction. */
12192 addend = contents & howto->src_mask;
12193 if (addend & ((howto->src_mask + 1) >> 1))
12194 {
12195 bfd_signed_vma mask;
12196
12197 mask = -1;
12198 mask &= ~ howto->src_mask;
12199 addend |= mask;
12200 }
12201
12202 /* Add in the increment, (which is a byte value). */
12203 switch (howto->type)
12204 {
12205 default:
12206 addend += increment;
12207 break;
12208
12209 case R_ARM_PC24:
12210 case R_ARM_PLT32:
12211 case R_ARM_CALL:
12212 case R_ARM_JUMP24:
12213 addend <<= howto->size;
12214 addend += increment;
12215
12216 /* Should we check for overflow here ? */
12217
12218 /* Drop any undesired bits. */
12219 addend >>= howto->rightshift;
12220 break;
12221 }
12222
12223 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
12224
12225 bfd_put_32 (abfd, contents, address);
12226 }
12227 }
12228
12229 #define IS_ARM_TLS_RELOC(R_TYPE) \
12230 ((R_TYPE) == R_ARM_TLS_GD32 \
12231 || (R_TYPE) == R_ARM_TLS_LDO32 \
12232 || (R_TYPE) == R_ARM_TLS_LDM32 \
12233 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
12234 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
12235 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
12236 || (R_TYPE) == R_ARM_TLS_LE32 \
12237 || (R_TYPE) == R_ARM_TLS_IE32 \
12238 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
12239
12240 /* Specific set of relocations for the gnu tls dialect. */
12241 #define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
12242 ((R_TYPE) == R_ARM_TLS_GOTDESC \
12243 || (R_TYPE) == R_ARM_TLS_CALL \
12244 || (R_TYPE) == R_ARM_THM_TLS_CALL \
12245 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
12246 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
12247
12248 /* Relocate an ARM ELF section. */
12249
12250 static bfd_boolean
12251 elf32_arm_relocate_section (bfd * output_bfd,
12252 struct bfd_link_info * info,
12253 bfd * input_bfd,
12254 asection * input_section,
12255 bfd_byte * contents,
12256 Elf_Internal_Rela * relocs,
12257 Elf_Internal_Sym * local_syms,
12258 asection ** local_sections)
12259 {
12260 Elf_Internal_Shdr *symtab_hdr;
12261 struct elf_link_hash_entry **sym_hashes;
12262 Elf_Internal_Rela *rel;
12263 Elf_Internal_Rela *relend;
12264 const char *name;
12265 struct elf32_arm_link_hash_table * globals;
12266
12267 globals = elf32_arm_hash_table (info);
12268 if (globals == NULL)
12269 return FALSE;
12270
12271 symtab_hdr = & elf_symtab_hdr (input_bfd);
12272 sym_hashes = elf_sym_hashes (input_bfd);
12273
12274 rel = relocs;
12275 relend = relocs + input_section->reloc_count;
12276 for (; rel < relend; rel++)
12277 {
12278 int r_type;
12279 reloc_howto_type * howto;
12280 unsigned long r_symndx;
12281 Elf_Internal_Sym * sym;
12282 asection * sec;
12283 struct elf_link_hash_entry * h;
12284 bfd_vma relocation;
12285 bfd_reloc_status_type r;
12286 arelent bfd_reloc;
12287 char sym_type;
12288 bfd_boolean unresolved_reloc = FALSE;
12289 char *error_message = NULL;
12290
12291 r_symndx = ELF32_R_SYM (rel->r_info);
12292 r_type = ELF32_R_TYPE (rel->r_info);
12293 r_type = arm_real_reloc_type (globals, r_type);
12294
12295 if ( r_type == R_ARM_GNU_VTENTRY
12296 || r_type == R_ARM_GNU_VTINHERIT)
12297 continue;
12298
12299 howto = bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
12300
12301 if (howto == NULL)
12302 return _bfd_unrecognized_reloc (input_bfd, input_section, r_type);
12303
12304 h = NULL;
12305 sym = NULL;
12306 sec = NULL;
12307
12308 if (r_symndx < symtab_hdr->sh_info)
12309 {
12310 sym = local_syms + r_symndx;
12311 sym_type = ELF32_ST_TYPE (sym->st_info);
12312 sec = local_sections[r_symndx];
12313
12314 /* An object file might have a reference to a local
12315 undefined symbol. This is a daft object file, but we
12316 should at least do something about it. V4BX & NONE
12317 relocations do not use the symbol and are explicitly
12318 allowed to use the undefined symbol, so allow those.
12319 Likewise for relocations against STN_UNDEF. */
12320 if (r_type != R_ARM_V4BX
12321 && r_type != R_ARM_NONE
12322 && r_symndx != STN_UNDEF
12323 && bfd_is_und_section (sec)
12324 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
12325 (*info->callbacks->undefined_symbol)
12326 (info, bfd_elf_string_from_elf_section
12327 (input_bfd, symtab_hdr->sh_link, sym->st_name),
12328 input_bfd, input_section,
12329 rel->r_offset, TRUE);
12330
12331 if (globals->use_rel)
12332 {
12333 relocation = (sec->output_section->vma
12334 + sec->output_offset
12335 + sym->st_value);
12336 if (!bfd_link_relocatable (info)
12337 && (sec->flags & SEC_MERGE)
12338 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
12339 {
12340 asection *msec;
12341 bfd_vma addend, value;
12342
12343 switch (r_type)
12344 {
12345 case R_ARM_MOVW_ABS_NC:
12346 case R_ARM_MOVT_ABS:
12347 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
12348 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
12349 addend = (addend ^ 0x8000) - 0x8000;
12350 break;
12351
12352 case R_ARM_THM_MOVW_ABS_NC:
12353 case R_ARM_THM_MOVT_ABS:
12354 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
12355 << 16;
12356 value |= bfd_get_16 (input_bfd,
12357 contents + rel->r_offset + 2);
12358 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
12359 | ((value & 0x04000000) >> 15);
12360 addend = (addend ^ 0x8000) - 0x8000;
12361 break;
12362
12363 default:
12364 if (howto->rightshift
12365 || (howto->src_mask & (howto->src_mask + 1)))
12366 {
12367 _bfd_error_handler
12368 /* xgettext:c-format */
12369 (_("%B(%A+%#Lx): %s relocation against SEC_MERGE section"),
12370 input_bfd, input_section,
12371 rel->r_offset, howto->name);
12372 return FALSE;
12373 }
12374
12375 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
12376
12377 /* Get the (signed) value from the instruction. */
12378 addend = value & howto->src_mask;
12379 if (addend & ((howto->src_mask + 1) >> 1))
12380 {
12381 bfd_signed_vma mask;
12382
12383 mask = -1;
12384 mask &= ~ howto->src_mask;
12385 addend |= mask;
12386 }
12387 break;
12388 }
12389
12390 msec = sec;
12391 addend =
12392 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
12393 - relocation;
12394 addend += msec->output_section->vma + msec->output_offset;
12395
12396 /* Cases here must match those in the preceding
12397 switch statement. */
12398 switch (r_type)
12399 {
12400 case R_ARM_MOVW_ABS_NC:
12401 case R_ARM_MOVT_ABS:
12402 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
12403 | (addend & 0xfff);
12404 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
12405 break;
12406
12407 case R_ARM_THM_MOVW_ABS_NC:
12408 case R_ARM_THM_MOVT_ABS:
12409 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
12410 | (addend & 0xff) | ((addend & 0x0800) << 15);
12411 bfd_put_16 (input_bfd, value >> 16,
12412 contents + rel->r_offset);
12413 bfd_put_16 (input_bfd, value,
12414 contents + rel->r_offset + 2);
12415 break;
12416
12417 default:
12418 value = (value & ~ howto->dst_mask)
12419 | (addend & howto->dst_mask);
12420 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
12421 break;
12422 }
12423 }
12424 }
12425 else
12426 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
12427 }
12428 else
12429 {
12430 bfd_boolean warned, ignored;
12431
12432 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
12433 r_symndx, symtab_hdr, sym_hashes,
12434 h, sec, relocation,
12435 unresolved_reloc, warned, ignored);
12436
12437 sym_type = h->type;
12438 }
12439
12440 if (sec != NULL && discarded_section (sec))
12441 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
12442 rel, 1, relend, howto, 0, contents);
12443
12444 if (bfd_link_relocatable (info))
12445 {
12446 /* This is a relocatable link. We don't have to change
12447 anything, unless the reloc is against a section symbol,
12448 in which case we have to adjust according to where the
12449 section symbol winds up in the output section. */
12450 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
12451 {
12452 if (globals->use_rel)
12453 arm_add_to_rel (input_bfd, contents + rel->r_offset,
12454 howto, (bfd_signed_vma) sec->output_offset);
12455 else
12456 rel->r_addend += sec->output_offset;
12457 }
12458 continue;
12459 }
12460
12461 if (h != NULL)
12462 name = h->root.root.string;
12463 else
12464 {
12465 name = (bfd_elf_string_from_elf_section
12466 (input_bfd, symtab_hdr->sh_link, sym->st_name));
12467 if (name == NULL || *name == '\0')
12468 name = bfd_section_name (input_bfd, sec);
12469 }
12470
12471 if (r_symndx != STN_UNDEF
12472 && r_type != R_ARM_NONE
12473 && (h == NULL
12474 || h->root.type == bfd_link_hash_defined
12475 || h->root.type == bfd_link_hash_defweak)
12476 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
12477 {
12478 _bfd_error_handler
12479 ((sym_type == STT_TLS
12480 /* xgettext:c-format */
12481 ? _("%B(%A+%#Lx): %s used with TLS symbol %s")
12482 /* xgettext:c-format */
12483 : _("%B(%A+%#Lx): %s used with non-TLS symbol %s")),
12484 input_bfd,
12485 input_section,
12486 rel->r_offset,
12487 howto->name,
12488 name);
12489 }
12490
12491 /* We call elf32_arm_final_link_relocate unless we're completely
12492 done, i.e., the relaxation produced the final output we want,
12493 and we won't let anybody mess with it. Also, we have to do
12494 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
12495 both in relaxed and non-relaxed cases. */
12496 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
12497 || (IS_ARM_TLS_GNU_RELOC (r_type)
12498 && !((h ? elf32_arm_hash_entry (h)->tls_type :
12499 elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
12500 & GOT_TLS_GDESC)))
12501 {
12502 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
12503 contents, rel, h == NULL);
12504 /* This may have been marked unresolved because it came from
12505 a shared library. But we've just dealt with that. */
12506 unresolved_reloc = 0;
12507 }
12508 else
12509 r = bfd_reloc_continue;
12510
12511 if (r == bfd_reloc_continue)
12512 {
12513 unsigned char branch_type =
12514 h ? ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
12515 : ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
12516
12517 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
12518 input_section, contents, rel,
12519 relocation, info, sec, name,
12520 sym_type, branch_type, h,
12521 &unresolved_reloc,
12522 &error_message);
12523 }
12524
12525 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
12526 because such sections are not SEC_ALLOC and thus ld.so will
12527 not process them. */
12528 if (unresolved_reloc
12529 && !((input_section->flags & SEC_DEBUGGING) != 0
12530 && h->def_dynamic)
12531 && _bfd_elf_section_offset (output_bfd, info, input_section,
12532 rel->r_offset) != (bfd_vma) -1)
12533 {
12534 _bfd_error_handler
12535 /* xgettext:c-format */
12536 (_("%B(%A+%#Lx): unresolvable %s relocation against symbol `%s'"),
12537 input_bfd,
12538 input_section,
12539 rel->r_offset,
12540 howto->name,
12541 h->root.root.string);
12542 return FALSE;
12543 }
12544
12545 if (r != bfd_reloc_ok)
12546 {
12547 switch (r)
12548 {
12549 case bfd_reloc_overflow:
12550 /* If the overflowing reloc was to an undefined symbol,
12551 we have already printed one error message and there
12552 is no point complaining again. */
12553 if (!h || h->root.type != bfd_link_hash_undefined)
12554 (*info->callbacks->reloc_overflow)
12555 (info, (h ? &h->root : NULL), name, howto->name,
12556 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
12557 break;
12558
12559 case bfd_reloc_undefined:
12560 (*info->callbacks->undefined_symbol)
12561 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
12562 break;
12563
12564 case bfd_reloc_outofrange:
12565 error_message = _("out of range");
12566 goto common_error;
12567
12568 case bfd_reloc_notsupported:
12569 error_message = _("unsupported relocation");
12570 goto common_error;
12571
12572 case bfd_reloc_dangerous:
12573 /* error_message should already be set. */
12574 goto common_error;
12575
12576 default:
12577 error_message = _("unknown error");
12578 /* Fall through. */
12579
12580 common_error:
12581 BFD_ASSERT (error_message != NULL);
12582 (*info->callbacks->reloc_dangerous)
12583 (info, error_message, input_bfd, input_section, rel->r_offset);
12584 break;
12585 }
12586 }
12587 }
12588
12589 return TRUE;
12590 }
12591
12592 /* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
12593 adds the edit to the start of the list. (The list must be built in order of
12594 ascending TINDEX: the function's callers are primarily responsible for
12595 maintaining that condition). */
12596
12597 static void
12598 add_unwind_table_edit (arm_unwind_table_edit **head,
12599 arm_unwind_table_edit **tail,
12600 arm_unwind_edit_type type,
12601 asection *linked_section,
12602 unsigned int tindex)
12603 {
12604 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
12605 xmalloc (sizeof (arm_unwind_table_edit));
12606
12607 new_edit->type = type;
12608 new_edit->linked_section = linked_section;
12609 new_edit->index = tindex;
12610
12611 if (tindex > 0)
12612 {
12613 new_edit->next = NULL;
12614
12615 if (*tail)
12616 (*tail)->next = new_edit;
12617
12618 (*tail) = new_edit;
12619
12620 if (!*head)
12621 (*head) = new_edit;
12622 }
12623 else
12624 {
12625 new_edit->next = *head;
12626
12627 if (!*tail)
12628 *tail = new_edit;
12629
12630 *head = new_edit;
12631 }
12632 }
12633
12634 static _arm_elf_section_data *get_arm_elf_section_data (asection *);
12635
12636 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
12637 static void
12638 adjust_exidx_size(asection *exidx_sec, int adjust)
12639 {
12640 asection *out_sec;
12641
12642 if (!exidx_sec->rawsize)
12643 exidx_sec->rawsize = exidx_sec->size;
12644
12645 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
12646 out_sec = exidx_sec->output_section;
12647 /* Adjust size of output section. */
12648 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
12649 }
12650
12651 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
12652 static void
12653 insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
12654 {
12655 struct _arm_elf_section_data *exidx_arm_data;
12656
12657 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
12658 add_unwind_table_edit (
12659 &exidx_arm_data->u.exidx.unwind_edit_list,
12660 &exidx_arm_data->u.exidx.unwind_edit_tail,
12661 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
12662
12663 exidx_arm_data->additional_reloc_count++;
12664
12665 adjust_exidx_size(exidx_sec, 8);
12666 }
12667
12668 /* Scan .ARM.exidx tables, and create a list describing edits which should be
12669 made to those tables, such that:
12670
12671 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
12672 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
12673 codes which have been inlined into the index).
12674
12675 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
12676
12677 The edits are applied when the tables are written
12678 (in elf32_arm_write_section). */
12679
12680 bfd_boolean
12681 elf32_arm_fix_exidx_coverage (asection **text_section_order,
12682 unsigned int num_text_sections,
12683 struct bfd_link_info *info,
12684 bfd_boolean merge_exidx_entries)
12685 {
12686 bfd *inp;
12687 unsigned int last_second_word = 0, i;
12688 asection *last_exidx_sec = NULL;
12689 asection *last_text_sec = NULL;
12690 int last_unwind_type = -1;
12691
12692 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
12693 text sections. */
12694 for (inp = info->input_bfds; inp != NULL; inp = inp->link.next)
12695 {
12696 asection *sec;
12697
12698 for (sec = inp->sections; sec != NULL; sec = sec->next)
12699 {
12700 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
12701 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
12702
12703 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
12704 continue;
12705
12706 if (elf_sec->linked_to)
12707 {
12708 Elf_Internal_Shdr *linked_hdr
12709 = &elf_section_data (elf_sec->linked_to)->this_hdr;
12710 struct _arm_elf_section_data *linked_sec_arm_data
12711 = get_arm_elf_section_data (linked_hdr->bfd_section);
12712
12713 if (linked_sec_arm_data == NULL)
12714 continue;
12715
12716 /* Link this .ARM.exidx section back from the text section it
12717 describes. */
12718 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
12719 }
12720 }
12721 }
12722
12723 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
12724 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
12725 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
12726
12727 for (i = 0; i < num_text_sections; i++)
12728 {
12729 asection *sec = text_section_order[i];
12730 asection *exidx_sec;
12731 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
12732 struct _arm_elf_section_data *exidx_arm_data;
12733 bfd_byte *contents = NULL;
12734 int deleted_exidx_bytes = 0;
12735 bfd_vma j;
12736 arm_unwind_table_edit *unwind_edit_head = NULL;
12737 arm_unwind_table_edit *unwind_edit_tail = NULL;
12738 Elf_Internal_Shdr *hdr;
12739 bfd *ibfd;
12740
12741 if (arm_data == NULL)
12742 continue;
12743
12744 exidx_sec = arm_data->u.text.arm_exidx_sec;
12745 if (exidx_sec == NULL)
12746 {
12747 /* Section has no unwind data. */
12748 if (last_unwind_type == 0 || !last_exidx_sec)
12749 continue;
12750
12751 /* Ignore zero sized sections. */
12752 if (sec->size == 0)
12753 continue;
12754
12755 insert_cantunwind_after(last_text_sec, last_exidx_sec);
12756 last_unwind_type = 0;
12757 continue;
12758 }
12759
12760 /* Skip /DISCARD/ sections. */
12761 if (bfd_is_abs_section (exidx_sec->output_section))
12762 continue;
12763
12764 hdr = &elf_section_data (exidx_sec)->this_hdr;
12765 if (hdr->sh_type != SHT_ARM_EXIDX)
12766 continue;
12767
12768 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
12769 if (exidx_arm_data == NULL)
12770 continue;
12771
12772 ibfd = exidx_sec->owner;
12773
12774 if (hdr->contents != NULL)
12775 contents = hdr->contents;
12776 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
12777 /* An error? */
12778 continue;
12779
12780 if (last_unwind_type > 0)
12781 {
12782 unsigned int first_word = bfd_get_32 (ibfd, contents);
12783 /* Add cantunwind if first unwind item does not match section
12784 start. */
12785 if (first_word != sec->vma)
12786 {
12787 insert_cantunwind_after (last_text_sec, last_exidx_sec);
12788 last_unwind_type = 0;
12789 }
12790 }
12791
12792 for (j = 0; j < hdr->sh_size; j += 8)
12793 {
12794 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
12795 int unwind_type;
12796 int elide = 0;
12797
12798 /* An EXIDX_CANTUNWIND entry. */
12799 if (second_word == 1)
12800 {
12801 if (last_unwind_type == 0)
12802 elide = 1;
12803 unwind_type = 0;
12804 }
12805 /* Inlined unwinding data. Merge if equal to previous. */
12806 else if ((second_word & 0x80000000) != 0)
12807 {
12808 if (merge_exidx_entries
12809 && last_second_word == second_word && last_unwind_type == 1)
12810 elide = 1;
12811 unwind_type = 1;
12812 last_second_word = second_word;
12813 }
12814 /* Normal table entry. In theory we could merge these too,
12815 but duplicate entries are likely to be much less common. */
12816 else
12817 unwind_type = 2;
12818
12819 if (elide && !bfd_link_relocatable (info))
12820 {
12821 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
12822 DELETE_EXIDX_ENTRY, NULL, j / 8);
12823
12824 deleted_exidx_bytes += 8;
12825 }
12826
12827 last_unwind_type = unwind_type;
12828 }
12829
12830 /* Free contents if we allocated it ourselves. */
12831 if (contents != hdr->contents)
12832 free (contents);
12833
12834 /* Record edits to be applied later (in elf32_arm_write_section). */
12835 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
12836 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
12837
12838 if (deleted_exidx_bytes > 0)
12839 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
12840
12841 last_exidx_sec = exidx_sec;
12842 last_text_sec = sec;
12843 }
12844
12845 /* Add terminating CANTUNWIND entry. */
12846 if (!bfd_link_relocatable (info) && last_exidx_sec
12847 && last_unwind_type != 0)
12848 insert_cantunwind_after(last_text_sec, last_exidx_sec);
12849
12850 return TRUE;
12851 }
12852
12853 static bfd_boolean
12854 elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
12855 bfd *ibfd, const char *name)
12856 {
12857 asection *sec, *osec;
12858
12859 sec = bfd_get_linker_section (ibfd, name);
12860 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
12861 return TRUE;
12862
12863 osec = sec->output_section;
12864 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
12865 return TRUE;
12866
12867 if (! bfd_set_section_contents (obfd, osec, sec->contents,
12868 sec->output_offset, sec->size))
12869 return FALSE;
12870
12871 return TRUE;
12872 }
12873
12874 static bfd_boolean
12875 elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
12876 {
12877 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
12878 asection *sec, *osec;
12879
12880 if (globals == NULL)
12881 return FALSE;
12882
12883 /* Invoke the regular ELF backend linker to do all the work. */
12884 if (!bfd_elf_final_link (abfd, info))
12885 return FALSE;
12886
12887 /* Process stub sections (eg BE8 encoding, ...). */
12888 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
12889 unsigned int i;
12890 for (i=0; i<htab->top_id; i++)
12891 {
12892 sec = htab->stub_group[i].stub_sec;
12893 /* Only process it once, in its link_sec slot. */
12894 if (sec && i == htab->stub_group[i].link_sec->id)
12895 {
12896 osec = sec->output_section;
12897 elf32_arm_write_section (abfd, info, sec, sec->contents);
12898 if (! bfd_set_section_contents (abfd, osec, sec->contents,
12899 sec->output_offset, sec->size))
12900 return FALSE;
12901 }
12902 }
12903
12904 /* Write out any glue sections now that we have created all the
12905 stubs. */
12906 if (globals->bfd_of_glue_owner != NULL)
12907 {
12908 if (! elf32_arm_output_glue_section (info, abfd,
12909 globals->bfd_of_glue_owner,
12910 ARM2THUMB_GLUE_SECTION_NAME))
12911 return FALSE;
12912
12913 if (! elf32_arm_output_glue_section (info, abfd,
12914 globals->bfd_of_glue_owner,
12915 THUMB2ARM_GLUE_SECTION_NAME))
12916 return FALSE;
12917
12918 if (! elf32_arm_output_glue_section (info, abfd,
12919 globals->bfd_of_glue_owner,
12920 VFP11_ERRATUM_VENEER_SECTION_NAME))
12921 return FALSE;
12922
12923 if (! elf32_arm_output_glue_section (info, abfd,
12924 globals->bfd_of_glue_owner,
12925 STM32L4XX_ERRATUM_VENEER_SECTION_NAME))
12926 return FALSE;
12927
12928 if (! elf32_arm_output_glue_section (info, abfd,
12929 globals->bfd_of_glue_owner,
12930 ARM_BX_GLUE_SECTION_NAME))
12931 return FALSE;
12932 }
12933
12934 return TRUE;
12935 }
12936
12937 /* Return a best guess for the machine number based on the attributes. */
12938
12939 static unsigned int
12940 bfd_arm_get_mach_from_attributes (bfd * abfd)
12941 {
12942 int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch);
12943
12944 switch (arch)
12945 {
12946 case TAG_CPU_ARCH_V4: return bfd_mach_arm_4;
12947 case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T;
12948 case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T;
12949
12950 case TAG_CPU_ARCH_V5TE:
12951 {
12952 char * name;
12953
12954 BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES);
12955 name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s;
12956
12957 if (name)
12958 {
12959 if (strcmp (name, "IWMMXT2") == 0)
12960 return bfd_mach_arm_iWMMXt2;
12961
12962 if (strcmp (name, "IWMMXT") == 0)
12963 return bfd_mach_arm_iWMMXt;
12964
12965 if (strcmp (name, "XSCALE") == 0)
12966 {
12967 int wmmx;
12968
12969 BFD_ASSERT (Tag_WMMX_arch < NUM_KNOWN_OBJ_ATTRIBUTES);
12970 wmmx = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_WMMX_arch].i;
12971 switch (wmmx)
12972 {
12973 case 1: return bfd_mach_arm_iWMMXt;
12974 case 2: return bfd_mach_arm_iWMMXt2;
12975 default: return bfd_mach_arm_XScale;
12976 }
12977 }
12978 }
12979
12980 return bfd_mach_arm_5TE;
12981 }
12982
12983 default:
12984 return bfd_mach_arm_unknown;
12985 }
12986 }
12987
12988 /* Set the right machine number. */
12989
12990 static bfd_boolean
12991 elf32_arm_object_p (bfd *abfd)
12992 {
12993 unsigned int mach;
12994
12995 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
12996
12997 if (mach == bfd_mach_arm_unknown)
12998 {
12999 if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
13000 mach = bfd_mach_arm_ep9312;
13001 else
13002 mach = bfd_arm_get_mach_from_attributes (abfd);
13003 }
13004
13005 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
13006 return TRUE;
13007 }
13008
13009 /* Function to keep ARM specific flags in the ELF header. */
13010
13011 static bfd_boolean
13012 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
13013 {
13014 if (elf_flags_init (abfd)
13015 && elf_elfheader (abfd)->e_flags != flags)
13016 {
13017 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
13018 {
13019 if (flags & EF_ARM_INTERWORK)
13020 _bfd_error_handler
13021 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
13022 abfd);
13023 else
13024 _bfd_error_handler
13025 (_("Warning: Clearing the interworking flag of %B due to outside request"),
13026 abfd);
13027 }
13028 }
13029 else
13030 {
13031 elf_elfheader (abfd)->e_flags = flags;
13032 elf_flags_init (abfd) = TRUE;
13033 }
13034
13035 return TRUE;
13036 }
13037
13038 /* Copy backend specific data from one object module to another. */
13039
13040 static bfd_boolean
13041 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
13042 {
13043 flagword in_flags;
13044 flagword out_flags;
13045
13046 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
13047 return TRUE;
13048
13049 in_flags = elf_elfheader (ibfd)->e_flags;
13050 out_flags = elf_elfheader (obfd)->e_flags;
13051
13052 if (elf_flags_init (obfd)
13053 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
13054 && in_flags != out_flags)
13055 {
13056 /* Cannot mix APCS26 and APCS32 code. */
13057 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
13058 return FALSE;
13059
13060 /* Cannot mix float APCS and non-float APCS code. */
13061 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
13062 return FALSE;
13063
13064 /* If the src and dest have different interworking flags
13065 then turn off the interworking bit. */
13066 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
13067 {
13068 if (out_flags & EF_ARM_INTERWORK)
13069 _bfd_error_handler
13070 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
13071 obfd, ibfd);
13072
13073 in_flags &= ~EF_ARM_INTERWORK;
13074 }
13075
13076 /* Likewise for PIC, though don't warn for this case. */
13077 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
13078 in_flags &= ~EF_ARM_PIC;
13079 }
13080
13081 elf_elfheader (obfd)->e_flags = in_flags;
13082 elf_flags_init (obfd) = TRUE;
13083
13084 return _bfd_elf_copy_private_bfd_data (ibfd, obfd);
13085 }
13086
13087 /* Values for Tag_ABI_PCS_R9_use. */
13088 enum
13089 {
13090 AEABI_R9_V6,
13091 AEABI_R9_SB,
13092 AEABI_R9_TLS,
13093 AEABI_R9_unused
13094 };
13095
13096 /* Values for Tag_ABI_PCS_RW_data. */
13097 enum
13098 {
13099 AEABI_PCS_RW_data_absolute,
13100 AEABI_PCS_RW_data_PCrel,
13101 AEABI_PCS_RW_data_SBrel,
13102 AEABI_PCS_RW_data_unused
13103 };
13104
13105 /* Values for Tag_ABI_enum_size. */
13106 enum
13107 {
13108 AEABI_enum_unused,
13109 AEABI_enum_short,
13110 AEABI_enum_wide,
13111 AEABI_enum_forced_wide
13112 };
13113
13114 /* Determine whether an object attribute tag takes an integer, a
13115 string or both. */
13116
13117 static int
13118 elf32_arm_obj_attrs_arg_type (int tag)
13119 {
13120 if (tag == Tag_compatibility)
13121 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
13122 else if (tag == Tag_nodefaults)
13123 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
13124 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
13125 return ATTR_TYPE_FLAG_STR_VAL;
13126 else if (tag < 32)
13127 return ATTR_TYPE_FLAG_INT_VAL;
13128 else
13129 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
13130 }
13131
13132 /* The ABI defines that Tag_conformance should be emitted first, and that
13133 Tag_nodefaults should be second (if either is defined). This sets those
13134 two positions, and bumps up the position of all the remaining tags to
13135 compensate. */
13136 static int
13137 elf32_arm_obj_attrs_order (int num)
13138 {
13139 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
13140 return Tag_conformance;
13141 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
13142 return Tag_nodefaults;
13143 if ((num - 2) < Tag_nodefaults)
13144 return num - 2;
13145 if ((num - 1) < Tag_conformance)
13146 return num - 1;
13147 return num;
13148 }
13149
13150 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
13151 static bfd_boolean
13152 elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
13153 {
13154 if ((tag & 127) < 64)
13155 {
13156 _bfd_error_handler
13157 (_("%B: Unknown mandatory EABI object attribute %d"),
13158 abfd, tag);
13159 bfd_set_error (bfd_error_bad_value);
13160 return FALSE;
13161 }
13162 else
13163 {
13164 _bfd_error_handler
13165 (_("Warning: %B: Unknown EABI object attribute %d"),
13166 abfd, tag);
13167 return TRUE;
13168 }
13169 }
13170
13171 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
13172 Returns -1 if no architecture could be read. */
13173
13174 static int
13175 get_secondary_compatible_arch (bfd *abfd)
13176 {
13177 obj_attribute *attr =
13178 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
13179
13180 /* Note: the tag and its argument below are uleb128 values, though
13181 currently-defined values fit in one byte for each. */
13182 if (attr->s
13183 && attr->s[0] == Tag_CPU_arch
13184 && (attr->s[1] & 128) != 128
13185 && attr->s[2] == 0)
13186 return attr->s[1];
13187
13188 /* This tag is "safely ignorable", so don't complain if it looks funny. */
13189 return -1;
13190 }
13191
13192 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
13193 The tag is removed if ARCH is -1. */
13194
13195 static void
13196 set_secondary_compatible_arch (bfd *abfd, int arch)
13197 {
13198 obj_attribute *attr =
13199 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
13200
13201 if (arch == -1)
13202 {
13203 attr->s = NULL;
13204 return;
13205 }
13206
13207 /* Note: the tag and its argument below are uleb128 values, though
13208 currently-defined values fit in one byte for each. */
13209 if (!attr->s)
13210 attr->s = (char *) bfd_alloc (abfd, 3);
13211 attr->s[0] = Tag_CPU_arch;
13212 attr->s[1] = arch;
13213 attr->s[2] = '\0';
13214 }
13215
13216 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
13217 into account. */
13218
13219 static int
13220 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
13221 int newtag, int secondary_compat)
13222 {
13223 #define T(X) TAG_CPU_ARCH_##X
13224 int tagl, tagh, result;
13225 const int v6t2[] =
13226 {
13227 T(V6T2), /* PRE_V4. */
13228 T(V6T2), /* V4. */
13229 T(V6T2), /* V4T. */
13230 T(V6T2), /* V5T. */
13231 T(V6T2), /* V5TE. */
13232 T(V6T2), /* V5TEJ. */
13233 T(V6T2), /* V6. */
13234 T(V7), /* V6KZ. */
13235 T(V6T2) /* V6T2. */
13236 };
13237 const int v6k[] =
13238 {
13239 T(V6K), /* PRE_V4. */
13240 T(V6K), /* V4. */
13241 T(V6K), /* V4T. */
13242 T(V6K), /* V5T. */
13243 T(V6K), /* V5TE. */
13244 T(V6K), /* V5TEJ. */
13245 T(V6K), /* V6. */
13246 T(V6KZ), /* V6KZ. */
13247 T(V7), /* V6T2. */
13248 T(V6K) /* V6K. */
13249 };
13250 const int v7[] =
13251 {
13252 T(V7), /* PRE_V4. */
13253 T(V7), /* V4. */
13254 T(V7), /* V4T. */
13255 T(V7), /* V5T. */
13256 T(V7), /* V5TE. */
13257 T(V7), /* V5TEJ. */
13258 T(V7), /* V6. */
13259 T(V7), /* V6KZ. */
13260 T(V7), /* V6T2. */
13261 T(V7), /* V6K. */
13262 T(V7) /* V7. */
13263 };
13264 const int v6_m[] =
13265 {
13266 -1, /* PRE_V4. */
13267 -1, /* V4. */
13268 T(V6K), /* V4T. */
13269 T(V6K), /* V5T. */
13270 T(V6K), /* V5TE. */
13271 T(V6K), /* V5TEJ. */
13272 T(V6K), /* V6. */
13273 T(V6KZ), /* V6KZ. */
13274 T(V7), /* V6T2. */
13275 T(V6K), /* V6K. */
13276 T(V7), /* V7. */
13277 T(V6_M) /* V6_M. */
13278 };
13279 const int v6s_m[] =
13280 {
13281 -1, /* PRE_V4. */
13282 -1, /* V4. */
13283 T(V6K), /* V4T. */
13284 T(V6K), /* V5T. */
13285 T(V6K), /* V5TE. */
13286 T(V6K), /* V5TEJ. */
13287 T(V6K), /* V6. */
13288 T(V6KZ), /* V6KZ. */
13289 T(V7), /* V6T2. */
13290 T(V6K), /* V6K. */
13291 T(V7), /* V7. */
13292 T(V6S_M), /* V6_M. */
13293 T(V6S_M) /* V6S_M. */
13294 };
13295 const int v7e_m[] =
13296 {
13297 -1, /* PRE_V4. */
13298 -1, /* V4. */
13299 T(V7E_M), /* V4T. */
13300 T(V7E_M), /* V5T. */
13301 T(V7E_M), /* V5TE. */
13302 T(V7E_M), /* V5TEJ. */
13303 T(V7E_M), /* V6. */
13304 T(V7E_M), /* V6KZ. */
13305 T(V7E_M), /* V6T2. */
13306 T(V7E_M), /* V6K. */
13307 T(V7E_M), /* V7. */
13308 T(V7E_M), /* V6_M. */
13309 T(V7E_M), /* V6S_M. */
13310 T(V7E_M) /* V7E_M. */
13311 };
13312 const int v8[] =
13313 {
13314 T(V8), /* PRE_V4. */
13315 T(V8), /* V4. */
13316 T(V8), /* V4T. */
13317 T(V8), /* V5T. */
13318 T(V8), /* V5TE. */
13319 T(V8), /* V5TEJ. */
13320 T(V8), /* V6. */
13321 T(V8), /* V6KZ. */
13322 T(V8), /* V6T2. */
13323 T(V8), /* V6K. */
13324 T(V8), /* V7. */
13325 T(V8), /* V6_M. */
13326 T(V8), /* V6S_M. */
13327 T(V8), /* V7E_M. */
13328 T(V8) /* V8. */
13329 };
13330 const int v8r[] =
13331 {
13332 T(V8R), /* PRE_V4. */
13333 T(V8R), /* V4. */
13334 T(V8R), /* V4T. */
13335 T(V8R), /* V5T. */
13336 T(V8R), /* V5TE. */
13337 T(V8R), /* V5TEJ. */
13338 T(V8R), /* V6. */
13339 T(V8R), /* V6KZ. */
13340 T(V8R), /* V6T2. */
13341 T(V8R), /* V6K. */
13342 T(V8R), /* V7. */
13343 T(V8R), /* V6_M. */
13344 T(V8R), /* V6S_M. */
13345 T(V8R), /* V7E_M. */
13346 T(V8), /* V8. */
13347 T(V8R), /* V8R. */
13348 };
13349 const int v8m_baseline[] =
13350 {
13351 -1, /* PRE_V4. */
13352 -1, /* V4. */
13353 -1, /* V4T. */
13354 -1, /* V5T. */
13355 -1, /* V5TE. */
13356 -1, /* V5TEJ. */
13357 -1, /* V6. */
13358 -1, /* V6KZ. */
13359 -1, /* V6T2. */
13360 -1, /* V6K. */
13361 -1, /* V7. */
13362 T(V8M_BASE), /* V6_M. */
13363 T(V8M_BASE), /* V6S_M. */
13364 -1, /* V7E_M. */
13365 -1, /* V8. */
13366 -1, /* V8R. */
13367 T(V8M_BASE) /* V8-M BASELINE. */
13368 };
13369 const int v8m_mainline[] =
13370 {
13371 -1, /* PRE_V4. */
13372 -1, /* V4. */
13373 -1, /* V4T. */
13374 -1, /* V5T. */
13375 -1, /* V5TE. */
13376 -1, /* V5TEJ. */
13377 -1, /* V6. */
13378 -1, /* V6KZ. */
13379 -1, /* V6T2. */
13380 -1, /* V6K. */
13381 T(V8M_MAIN), /* V7. */
13382 T(V8M_MAIN), /* V6_M. */
13383 T(V8M_MAIN), /* V6S_M. */
13384 T(V8M_MAIN), /* V7E_M. */
13385 -1, /* V8. */
13386 -1, /* V8R. */
13387 T(V8M_MAIN), /* V8-M BASELINE. */
13388 T(V8M_MAIN) /* V8-M MAINLINE. */
13389 };
13390 const int v4t_plus_v6_m[] =
13391 {
13392 -1, /* PRE_V4. */
13393 -1, /* V4. */
13394 T(V4T), /* V4T. */
13395 T(V5T), /* V5T. */
13396 T(V5TE), /* V5TE. */
13397 T(V5TEJ), /* V5TEJ. */
13398 T(V6), /* V6. */
13399 T(V6KZ), /* V6KZ. */
13400 T(V6T2), /* V6T2. */
13401 T(V6K), /* V6K. */
13402 T(V7), /* V7. */
13403 T(V6_M), /* V6_M. */
13404 T(V6S_M), /* V6S_M. */
13405 T(V7E_M), /* V7E_M. */
13406 T(V8), /* V8. */
13407 -1, /* V8R. */
13408 T(V8M_BASE), /* V8-M BASELINE. */
13409 T(V8M_MAIN), /* V8-M MAINLINE. */
13410 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
13411 };
13412 const int *comb[] =
13413 {
13414 v6t2,
13415 v6k,
13416 v7,
13417 v6_m,
13418 v6s_m,
13419 v7e_m,
13420 v8,
13421 v8r,
13422 v8m_baseline,
13423 v8m_mainline,
13424 /* Pseudo-architecture. */
13425 v4t_plus_v6_m
13426 };
13427
13428 /* Check we've not got a higher architecture than we know about. */
13429
13430 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
13431 {
13432 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
13433 return -1;
13434 }
13435
13436 /* Override old tag if we have a Tag_also_compatible_with on the output. */
13437
13438 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
13439 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
13440 oldtag = T(V4T_PLUS_V6_M);
13441
13442 /* And override the new tag if we have a Tag_also_compatible_with on the
13443 input. */
13444
13445 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
13446 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
13447 newtag = T(V4T_PLUS_V6_M);
13448
13449 tagl = (oldtag < newtag) ? oldtag : newtag;
13450 result = tagh = (oldtag > newtag) ? oldtag : newtag;
13451
13452 /* Architectures before V6KZ add features monotonically. */
13453 if (tagh <= TAG_CPU_ARCH_V6KZ)
13454 return result;
13455
13456 result = comb[tagh - T(V6T2)] ? comb[tagh - T(V6T2)][tagl] : -1;
13457
13458 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
13459 as the canonical version. */
13460 if (result == T(V4T_PLUS_V6_M))
13461 {
13462 result = T(V4T);
13463 *secondary_compat_out = T(V6_M);
13464 }
13465 else
13466 *secondary_compat_out = -1;
13467
13468 if (result == -1)
13469 {
13470 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
13471 ibfd, oldtag, newtag);
13472 return -1;
13473 }
13474
13475 return result;
13476 #undef T
13477 }
13478
13479 /* Query attributes object to see if integer divide instructions may be
13480 present in an object. */
13481 static bfd_boolean
13482 elf32_arm_attributes_accept_div (const obj_attribute *attr)
13483 {
13484 int arch = attr[Tag_CPU_arch].i;
13485 int profile = attr[Tag_CPU_arch_profile].i;
13486
13487 switch (attr[Tag_DIV_use].i)
13488 {
13489 case 0:
13490 /* Integer divide allowed if instruction contained in archetecture. */
13491 if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
13492 return TRUE;
13493 else if (arch >= TAG_CPU_ARCH_V7E_M)
13494 return TRUE;
13495 else
13496 return FALSE;
13497
13498 case 1:
13499 /* Integer divide explicitly prohibited. */
13500 return FALSE;
13501
13502 default:
13503 /* Unrecognised case - treat as allowing divide everywhere. */
13504 case 2:
13505 /* Integer divide allowed in ARM state. */
13506 return TRUE;
13507 }
13508 }
13509
13510 /* Query attributes object to see if integer divide instructions are
13511 forbidden to be in the object. This is not the inverse of
13512 elf32_arm_attributes_accept_div. */
13513 static bfd_boolean
13514 elf32_arm_attributes_forbid_div (const obj_attribute *attr)
13515 {
13516 return attr[Tag_DIV_use].i == 1;
13517 }
13518
13519 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
13520 are conflicting attributes. */
13521
13522 static bfd_boolean
13523 elf32_arm_merge_eabi_attributes (bfd *ibfd, struct bfd_link_info *info)
13524 {
13525 bfd *obfd = info->output_bfd;
13526 obj_attribute *in_attr;
13527 obj_attribute *out_attr;
13528 /* Some tags have 0 = don't care, 1 = strong requirement,
13529 2 = weak requirement. */
13530 static const int order_021[3] = {0, 2, 1};
13531 int i;
13532 bfd_boolean result = TRUE;
13533 const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section;
13534
13535 /* Skip the linker stubs file. This preserves previous behavior
13536 of accepting unknown attributes in the first input file - but
13537 is that a bug? */
13538 if (ibfd->flags & BFD_LINKER_CREATED)
13539 return TRUE;
13540
13541 /* Skip any input that hasn't attribute section.
13542 This enables to link object files without attribute section with
13543 any others. */
13544 if (bfd_get_section_by_name (ibfd, sec_name) == NULL)
13545 return TRUE;
13546
13547 if (!elf_known_obj_attributes_proc (obfd)[0].i)
13548 {
13549 /* This is the first object. Copy the attributes. */
13550 _bfd_elf_copy_obj_attributes (ibfd, obfd);
13551
13552 out_attr = elf_known_obj_attributes_proc (obfd);
13553
13554 /* Use the Tag_null value to indicate the attributes have been
13555 initialized. */
13556 out_attr[0].i = 1;
13557
13558 /* We do not output objects with Tag_MPextension_use_legacy - we move
13559 the attribute's value to Tag_MPextension_use. */
13560 if (out_attr[Tag_MPextension_use_legacy].i != 0)
13561 {
13562 if (out_attr[Tag_MPextension_use].i != 0
13563 && out_attr[Tag_MPextension_use_legacy].i
13564 != out_attr[Tag_MPextension_use].i)
13565 {
13566 _bfd_error_handler
13567 (_("Error: %B has both the current and legacy "
13568 "Tag_MPextension_use attributes"), ibfd);
13569 result = FALSE;
13570 }
13571
13572 out_attr[Tag_MPextension_use] =
13573 out_attr[Tag_MPextension_use_legacy];
13574 out_attr[Tag_MPextension_use_legacy].type = 0;
13575 out_attr[Tag_MPextension_use_legacy].i = 0;
13576 }
13577
13578 return result;
13579 }
13580
13581 in_attr = elf_known_obj_attributes_proc (ibfd);
13582 out_attr = elf_known_obj_attributes_proc (obfd);
13583 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
13584 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
13585 {
13586 /* Ignore mismatches if the object doesn't use floating point or is
13587 floating point ABI independent. */
13588 if (out_attr[Tag_ABI_FP_number_model].i == AEABI_FP_number_model_none
13589 || (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
13590 && out_attr[Tag_ABI_VFP_args].i == AEABI_VFP_args_compatible))
13591 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
13592 else if (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
13593 && in_attr[Tag_ABI_VFP_args].i != AEABI_VFP_args_compatible)
13594 {
13595 _bfd_error_handler
13596 (_("error: %B uses VFP register arguments, %B does not"),
13597 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
13598 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
13599 result = FALSE;
13600 }
13601 }
13602
13603 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
13604 {
13605 /* Merge this attribute with existing attributes. */
13606 switch (i)
13607 {
13608 case Tag_CPU_raw_name:
13609 case Tag_CPU_name:
13610 /* These are merged after Tag_CPU_arch. */
13611 break;
13612
13613 case Tag_ABI_optimization_goals:
13614 case Tag_ABI_FP_optimization_goals:
13615 /* Use the first value seen. */
13616 break;
13617
13618 case Tag_CPU_arch:
13619 {
13620 int secondary_compat = -1, secondary_compat_out = -1;
13621 unsigned int saved_out_attr = out_attr[i].i;
13622 int arch_attr;
13623 static const char *name_table[] =
13624 {
13625 /* These aren't real CPU names, but we can't guess
13626 that from the architecture version alone. */
13627 "Pre v4",
13628 "ARM v4",
13629 "ARM v4T",
13630 "ARM v5T",
13631 "ARM v5TE",
13632 "ARM v5TEJ",
13633 "ARM v6",
13634 "ARM v6KZ",
13635 "ARM v6T2",
13636 "ARM v6K",
13637 "ARM v7",
13638 "ARM v6-M",
13639 "ARM v6S-M",
13640 "ARM v8",
13641 "",
13642 "ARM v8-M.baseline",
13643 "ARM v8-M.mainline",
13644 };
13645
13646 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
13647 secondary_compat = get_secondary_compatible_arch (ibfd);
13648 secondary_compat_out = get_secondary_compatible_arch (obfd);
13649 arch_attr = tag_cpu_arch_combine (ibfd, out_attr[i].i,
13650 &secondary_compat_out,
13651 in_attr[i].i,
13652 secondary_compat);
13653
13654 /* Return with error if failed to merge. */
13655 if (arch_attr == -1)
13656 return FALSE;
13657
13658 out_attr[i].i = arch_attr;
13659
13660 set_secondary_compatible_arch (obfd, secondary_compat_out);
13661
13662 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
13663 if (out_attr[i].i == saved_out_attr)
13664 ; /* Leave the names alone. */
13665 else if (out_attr[i].i == in_attr[i].i)
13666 {
13667 /* The output architecture has been changed to match the
13668 input architecture. Use the input names. */
13669 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
13670 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
13671 : NULL;
13672 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
13673 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
13674 : NULL;
13675 }
13676 else
13677 {
13678 out_attr[Tag_CPU_name].s = NULL;
13679 out_attr[Tag_CPU_raw_name].s = NULL;
13680 }
13681
13682 /* If we still don't have a value for Tag_CPU_name,
13683 make one up now. Tag_CPU_raw_name remains blank. */
13684 if (out_attr[Tag_CPU_name].s == NULL
13685 && out_attr[i].i < ARRAY_SIZE (name_table))
13686 out_attr[Tag_CPU_name].s =
13687 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
13688 }
13689 break;
13690
13691 case Tag_ARM_ISA_use:
13692 case Tag_THUMB_ISA_use:
13693 case Tag_WMMX_arch:
13694 case Tag_Advanced_SIMD_arch:
13695 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
13696 case Tag_ABI_FP_rounding:
13697 case Tag_ABI_FP_exceptions:
13698 case Tag_ABI_FP_user_exceptions:
13699 case Tag_ABI_FP_number_model:
13700 case Tag_FP_HP_extension:
13701 case Tag_CPU_unaligned_access:
13702 case Tag_T2EE_use:
13703 case Tag_MPextension_use:
13704 /* Use the largest value specified. */
13705 if (in_attr[i].i > out_attr[i].i)
13706 out_attr[i].i = in_attr[i].i;
13707 break;
13708
13709 case Tag_ABI_align_preserved:
13710 case Tag_ABI_PCS_RO_data:
13711 /* Use the smallest value specified. */
13712 if (in_attr[i].i < out_attr[i].i)
13713 out_attr[i].i = in_attr[i].i;
13714 break;
13715
13716 case Tag_ABI_align_needed:
13717 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
13718 && (in_attr[Tag_ABI_align_preserved].i == 0
13719 || out_attr[Tag_ABI_align_preserved].i == 0))
13720 {
13721 /* This error message should be enabled once all non-conformant
13722 binaries in the toolchain have had the attributes set
13723 properly.
13724 _bfd_error_handler
13725 (_("error: %B: 8-byte data alignment conflicts with %B"),
13726 obfd, ibfd);
13727 result = FALSE; */
13728 }
13729 /* Fall through. */
13730 case Tag_ABI_FP_denormal:
13731 case Tag_ABI_PCS_GOT_use:
13732 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
13733 value if greater than 2 (for future-proofing). */
13734 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
13735 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
13736 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
13737 out_attr[i].i = in_attr[i].i;
13738 break;
13739
13740 case Tag_Virtualization_use:
13741 /* The virtualization tag effectively stores two bits of
13742 information: the intended use of TrustZone (in bit 0), and the
13743 intended use of Virtualization (in bit 1). */
13744 if (out_attr[i].i == 0)
13745 out_attr[i].i = in_attr[i].i;
13746 else if (in_attr[i].i != 0
13747 && in_attr[i].i != out_attr[i].i)
13748 {
13749 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
13750 out_attr[i].i = 3;
13751 else
13752 {
13753 _bfd_error_handler
13754 (_("error: %B: unable to merge virtualization attributes "
13755 "with %B"),
13756 obfd, ibfd);
13757 result = FALSE;
13758 }
13759 }
13760 break;
13761
13762 case Tag_CPU_arch_profile:
13763 if (out_attr[i].i != in_attr[i].i)
13764 {
13765 /* 0 will merge with anything.
13766 'A' and 'S' merge to 'A'.
13767 'R' and 'S' merge to 'R'.
13768 'M' and 'A|R|S' is an error. */
13769 if (out_attr[i].i == 0
13770 || (out_attr[i].i == 'S'
13771 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
13772 out_attr[i].i = in_attr[i].i;
13773 else if (in_attr[i].i == 0
13774 || (in_attr[i].i == 'S'
13775 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
13776 ; /* Do nothing. */
13777 else
13778 {
13779 _bfd_error_handler
13780 (_("error: %B: Conflicting architecture profiles %c/%c"),
13781 ibfd,
13782 in_attr[i].i ? in_attr[i].i : '0',
13783 out_attr[i].i ? out_attr[i].i : '0');
13784 result = FALSE;
13785 }
13786 }
13787 break;
13788
13789 case Tag_DSP_extension:
13790 /* No need to change output value if any of:
13791 - pre (<=) ARMv5T input architecture (do not have DSP)
13792 - M input profile not ARMv7E-M and do not have DSP. */
13793 if (in_attr[Tag_CPU_arch].i <= 3
13794 || (in_attr[Tag_CPU_arch_profile].i == 'M'
13795 && in_attr[Tag_CPU_arch].i != 13
13796 && in_attr[i].i == 0))
13797 ; /* Do nothing. */
13798 /* Output value should be 0 if DSP part of architecture, ie.
13799 - post (>=) ARMv5te architecture output
13800 - A, R or S profile output or ARMv7E-M output architecture. */
13801 else if (out_attr[Tag_CPU_arch].i >= 4
13802 && (out_attr[Tag_CPU_arch_profile].i == 'A'
13803 || out_attr[Tag_CPU_arch_profile].i == 'R'
13804 || out_attr[Tag_CPU_arch_profile].i == 'S'
13805 || out_attr[Tag_CPU_arch].i == 13))
13806 out_attr[i].i = 0;
13807 /* Otherwise, DSP instructions are added and not part of output
13808 architecture. */
13809 else
13810 out_attr[i].i = 1;
13811 break;
13812
13813 case Tag_FP_arch:
13814 {
13815 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
13816 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
13817 when it's 0. It might mean absence of FP hardware if
13818 Tag_FP_arch is zero. */
13819
13820 #define VFP_VERSION_COUNT 9
13821 static const struct
13822 {
13823 int ver;
13824 int regs;
13825 } vfp_versions[VFP_VERSION_COUNT] =
13826 {
13827 {0, 0},
13828 {1, 16},
13829 {2, 16},
13830 {3, 32},
13831 {3, 16},
13832 {4, 32},
13833 {4, 16},
13834 {8, 32},
13835 {8, 16}
13836 };
13837 int ver;
13838 int regs;
13839 int newval;
13840
13841 /* If the output has no requirement about FP hardware,
13842 follow the requirement of the input. */
13843 if (out_attr[i].i == 0)
13844 {
13845 /* This assert is still reasonable, we shouldn't
13846 produce the suspicious build attribute
13847 combination (See below for in_attr). */
13848 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
13849 out_attr[i].i = in_attr[i].i;
13850 out_attr[Tag_ABI_HardFP_use].i
13851 = in_attr[Tag_ABI_HardFP_use].i;
13852 break;
13853 }
13854 /* If the input has no requirement about FP hardware, do
13855 nothing. */
13856 else if (in_attr[i].i == 0)
13857 {
13858 /* We used to assert that Tag_ABI_HardFP_use was
13859 zero here, but we should never assert when
13860 consuming an object file that has suspicious
13861 build attributes. The single precision variant
13862 of 'no FP architecture' is still 'no FP
13863 architecture', so we just ignore the tag in this
13864 case. */
13865 break;
13866 }
13867
13868 /* Both the input and the output have nonzero Tag_FP_arch.
13869 So Tag_ABI_HardFP_use is implied by Tag_FP_arch when it's zero. */
13870
13871 /* If both the input and the output have zero Tag_ABI_HardFP_use,
13872 do nothing. */
13873 if (in_attr[Tag_ABI_HardFP_use].i == 0
13874 && out_attr[Tag_ABI_HardFP_use].i == 0)
13875 ;
13876 /* If the input and the output have different Tag_ABI_HardFP_use,
13877 the combination of them is 0 (implied by Tag_FP_arch). */
13878 else if (in_attr[Tag_ABI_HardFP_use].i
13879 != out_attr[Tag_ABI_HardFP_use].i)
13880 out_attr[Tag_ABI_HardFP_use].i = 0;
13881
13882 /* Now we can handle Tag_FP_arch. */
13883
13884 /* Values of VFP_VERSION_COUNT or more aren't defined, so just
13885 pick the biggest. */
13886 if (in_attr[i].i >= VFP_VERSION_COUNT
13887 && in_attr[i].i > out_attr[i].i)
13888 {
13889 out_attr[i] = in_attr[i];
13890 break;
13891 }
13892 /* The output uses the superset of input features
13893 (ISA version) and registers. */
13894 ver = vfp_versions[in_attr[i].i].ver;
13895 if (ver < vfp_versions[out_attr[i].i].ver)
13896 ver = vfp_versions[out_attr[i].i].ver;
13897 regs = vfp_versions[in_attr[i].i].regs;
13898 if (regs < vfp_versions[out_attr[i].i].regs)
13899 regs = vfp_versions[out_attr[i].i].regs;
13900 /* This assumes all possible supersets are also a valid
13901 options. */
13902 for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--)
13903 {
13904 if (regs == vfp_versions[newval].regs
13905 && ver == vfp_versions[newval].ver)
13906 break;
13907 }
13908 out_attr[i].i = newval;
13909 }
13910 break;
13911 case Tag_PCS_config:
13912 if (out_attr[i].i == 0)
13913 out_attr[i].i = in_attr[i].i;
13914 else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i)
13915 {
13916 /* It's sometimes ok to mix different configs, so this is only
13917 a warning. */
13918 _bfd_error_handler
13919 (_("Warning: %B: Conflicting platform configuration"), ibfd);
13920 }
13921 break;
13922 case Tag_ABI_PCS_R9_use:
13923 if (in_attr[i].i != out_attr[i].i
13924 && out_attr[i].i != AEABI_R9_unused
13925 && in_attr[i].i != AEABI_R9_unused)
13926 {
13927 _bfd_error_handler
13928 (_("error: %B: Conflicting use of R9"), ibfd);
13929 result = FALSE;
13930 }
13931 if (out_attr[i].i == AEABI_R9_unused)
13932 out_attr[i].i = in_attr[i].i;
13933 break;
13934 case Tag_ABI_PCS_RW_data:
13935 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
13936 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
13937 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
13938 {
13939 _bfd_error_handler
13940 (_("error: %B: SB relative addressing conflicts with use of R9"),
13941 ibfd);
13942 result = FALSE;
13943 }
13944 /* Use the smallest value specified. */
13945 if (in_attr[i].i < out_attr[i].i)
13946 out_attr[i].i = in_attr[i].i;
13947 break;
13948 case Tag_ABI_PCS_wchar_t:
13949 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
13950 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
13951 {
13952 _bfd_error_handler
13953 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
13954 ibfd, in_attr[i].i, out_attr[i].i);
13955 }
13956 else if (in_attr[i].i && !out_attr[i].i)
13957 out_attr[i].i = in_attr[i].i;
13958 break;
13959 case Tag_ABI_enum_size:
13960 if (in_attr[i].i != AEABI_enum_unused)
13961 {
13962 if (out_attr[i].i == AEABI_enum_unused
13963 || out_attr[i].i == AEABI_enum_forced_wide)
13964 {
13965 /* The existing object is compatible with anything.
13966 Use whatever requirements the new object has. */
13967 out_attr[i].i = in_attr[i].i;
13968 }
13969 else if (in_attr[i].i != AEABI_enum_forced_wide
13970 && out_attr[i].i != in_attr[i].i
13971 && !elf_arm_tdata (obfd)->no_enum_size_warning)
13972 {
13973 static const char *aeabi_enum_names[] =
13974 { "", "variable-size", "32-bit", "" };
13975 const char *in_name =
13976 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
13977 ? aeabi_enum_names[in_attr[i].i]
13978 : "<unknown>";
13979 const char *out_name =
13980 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
13981 ? aeabi_enum_names[out_attr[i].i]
13982 : "<unknown>";
13983 _bfd_error_handler
13984 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
13985 ibfd, in_name, out_name);
13986 }
13987 }
13988 break;
13989 case Tag_ABI_VFP_args:
13990 /* Aready done. */
13991 break;
13992 case Tag_ABI_WMMX_args:
13993 if (in_attr[i].i != out_attr[i].i)
13994 {
13995 _bfd_error_handler
13996 (_("error: %B uses iWMMXt register arguments, %B does not"),
13997 ibfd, obfd);
13998 result = FALSE;
13999 }
14000 break;
14001 case Tag_compatibility:
14002 /* Merged in target-independent code. */
14003 break;
14004 case Tag_ABI_HardFP_use:
14005 /* This is handled along with Tag_FP_arch. */
14006 break;
14007 case Tag_ABI_FP_16bit_format:
14008 if (in_attr[i].i != 0 && out_attr[i].i != 0)
14009 {
14010 if (in_attr[i].i != out_attr[i].i)
14011 {
14012 _bfd_error_handler
14013 (_("error: fp16 format mismatch between %B and %B"),
14014 ibfd, obfd);
14015 result = FALSE;
14016 }
14017 }
14018 if (in_attr[i].i != 0)
14019 out_attr[i].i = in_attr[i].i;
14020 break;
14021
14022 case Tag_DIV_use:
14023 /* A value of zero on input means that the divide instruction may
14024 be used if available in the base architecture as specified via
14025 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that
14026 the user did not want divide instructions. A value of 2
14027 explicitly means that divide instructions were allowed in ARM
14028 and Thumb state. */
14029 if (in_attr[i].i == out_attr[i].i)
14030 /* Do nothing. */ ;
14031 else if (elf32_arm_attributes_forbid_div (in_attr)
14032 && !elf32_arm_attributes_accept_div (out_attr))
14033 out_attr[i].i = 1;
14034 else if (elf32_arm_attributes_forbid_div (out_attr)
14035 && elf32_arm_attributes_accept_div (in_attr))
14036 out_attr[i].i = in_attr[i].i;
14037 else if (in_attr[i].i == 2)
14038 out_attr[i].i = in_attr[i].i;
14039 break;
14040
14041 case Tag_MPextension_use_legacy:
14042 /* We don't output objects with Tag_MPextension_use_legacy - we
14043 move the value to Tag_MPextension_use. */
14044 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
14045 {
14046 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
14047 {
14048 _bfd_error_handler
14049 (_("%B has both the current and legacy "
14050 "Tag_MPextension_use attributes"),
14051 ibfd);
14052 result = FALSE;
14053 }
14054 }
14055
14056 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
14057 out_attr[Tag_MPextension_use] = in_attr[i];
14058
14059 break;
14060
14061 case Tag_nodefaults:
14062 /* This tag is set if it exists, but the value is unused (and is
14063 typically zero). We don't actually need to do anything here -
14064 the merge happens automatically when the type flags are merged
14065 below. */
14066 break;
14067 case Tag_also_compatible_with:
14068 /* Already done in Tag_CPU_arch. */
14069 break;
14070 case Tag_conformance:
14071 /* Keep the attribute if it matches. Throw it away otherwise.
14072 No attribute means no claim to conform. */
14073 if (!in_attr[i].s || !out_attr[i].s
14074 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
14075 out_attr[i].s = NULL;
14076 break;
14077
14078 default:
14079 result
14080 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
14081 }
14082
14083 /* If out_attr was copied from in_attr then it won't have a type yet. */
14084 if (in_attr[i].type && !out_attr[i].type)
14085 out_attr[i].type = in_attr[i].type;
14086 }
14087
14088 /* Merge Tag_compatibility attributes and any common GNU ones. */
14089 if (!_bfd_elf_merge_object_attributes (ibfd, info))
14090 return FALSE;
14091
14092 /* Check for any attributes not known on ARM. */
14093 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
14094
14095 return result;
14096 }
14097
14098
14099 /* Return TRUE if the two EABI versions are incompatible. */
14100
14101 static bfd_boolean
14102 elf32_arm_versions_compatible (unsigned iver, unsigned over)
14103 {
14104 /* v4 and v5 are the same spec before and after it was released,
14105 so allow mixing them. */
14106 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
14107 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
14108 return TRUE;
14109
14110 return (iver == over);
14111 }
14112
14113 /* Merge backend specific data from an object file to the output
14114 object file when linking. */
14115
14116 static bfd_boolean
14117 elf32_arm_merge_private_bfd_data (bfd *, struct bfd_link_info *);
14118
14119 /* Display the flags field. */
14120
14121 static bfd_boolean
14122 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
14123 {
14124 FILE * file = (FILE *) ptr;
14125 unsigned long flags;
14126
14127 BFD_ASSERT (abfd != NULL && ptr != NULL);
14128
14129 /* Print normal ELF private data. */
14130 _bfd_elf_print_private_bfd_data (abfd, ptr);
14131
14132 flags = elf_elfheader (abfd)->e_flags;
14133 /* Ignore init flag - it may not be set, despite the flags field
14134 containing valid data. */
14135
14136 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14137
14138 switch (EF_ARM_EABI_VERSION (flags))
14139 {
14140 case EF_ARM_EABI_UNKNOWN:
14141 /* The following flag bits are GNU extensions and not part of the
14142 official ARM ELF extended ABI. Hence they are only decoded if
14143 the EABI version is not set. */
14144 if (flags & EF_ARM_INTERWORK)
14145 fprintf (file, _(" [interworking enabled]"));
14146
14147 if (flags & EF_ARM_APCS_26)
14148 fprintf (file, " [APCS-26]");
14149 else
14150 fprintf (file, " [APCS-32]");
14151
14152 if (flags & EF_ARM_VFP_FLOAT)
14153 fprintf (file, _(" [VFP float format]"));
14154 else if (flags & EF_ARM_MAVERICK_FLOAT)
14155 fprintf (file, _(" [Maverick float format]"));
14156 else
14157 fprintf (file, _(" [FPA float format]"));
14158
14159 if (flags & EF_ARM_APCS_FLOAT)
14160 fprintf (file, _(" [floats passed in float registers]"));
14161
14162 if (flags & EF_ARM_PIC)
14163 fprintf (file, _(" [position independent]"));
14164
14165 if (flags & EF_ARM_NEW_ABI)
14166 fprintf (file, _(" [new ABI]"));
14167
14168 if (flags & EF_ARM_OLD_ABI)
14169 fprintf (file, _(" [old ABI]"));
14170
14171 if (flags & EF_ARM_SOFT_FLOAT)
14172 fprintf (file, _(" [software FP]"));
14173
14174 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
14175 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
14176 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
14177 | EF_ARM_MAVERICK_FLOAT);
14178 break;
14179
14180 case EF_ARM_EABI_VER1:
14181 fprintf (file, _(" [Version1 EABI]"));
14182
14183 if (flags & EF_ARM_SYMSARESORTED)
14184 fprintf (file, _(" [sorted symbol table]"));
14185 else
14186 fprintf (file, _(" [unsorted symbol table]"));
14187
14188 flags &= ~ EF_ARM_SYMSARESORTED;
14189 break;
14190
14191 case EF_ARM_EABI_VER2:
14192 fprintf (file, _(" [Version2 EABI]"));
14193
14194 if (flags & EF_ARM_SYMSARESORTED)
14195 fprintf (file, _(" [sorted symbol table]"));
14196 else
14197 fprintf (file, _(" [unsorted symbol table]"));
14198
14199 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
14200 fprintf (file, _(" [dynamic symbols use segment index]"));
14201
14202 if (flags & EF_ARM_MAPSYMSFIRST)
14203 fprintf (file, _(" [mapping symbols precede others]"));
14204
14205 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
14206 | EF_ARM_MAPSYMSFIRST);
14207 break;
14208
14209 case EF_ARM_EABI_VER3:
14210 fprintf (file, _(" [Version3 EABI]"));
14211 break;
14212
14213 case EF_ARM_EABI_VER4:
14214 fprintf (file, _(" [Version4 EABI]"));
14215 goto eabi;
14216
14217 case EF_ARM_EABI_VER5:
14218 fprintf (file, _(" [Version5 EABI]"));
14219
14220 if (flags & EF_ARM_ABI_FLOAT_SOFT)
14221 fprintf (file, _(" [soft-float ABI]"));
14222
14223 if (flags & EF_ARM_ABI_FLOAT_HARD)
14224 fprintf (file, _(" [hard-float ABI]"));
14225
14226 flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD);
14227
14228 eabi:
14229 if (flags & EF_ARM_BE8)
14230 fprintf (file, _(" [BE8]"));
14231
14232 if (flags & EF_ARM_LE8)
14233 fprintf (file, _(" [LE8]"));
14234
14235 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
14236 break;
14237
14238 default:
14239 fprintf (file, _(" <EABI version unrecognised>"));
14240 break;
14241 }
14242
14243 flags &= ~ EF_ARM_EABIMASK;
14244
14245 if (flags & EF_ARM_RELEXEC)
14246 fprintf (file, _(" [relocatable executable]"));
14247
14248 flags &= ~EF_ARM_RELEXEC;
14249
14250 if (flags)
14251 fprintf (file, _("<Unrecognised flag bits set>"));
14252
14253 fputc ('\n', file);
14254
14255 return TRUE;
14256 }
14257
14258 static int
14259 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
14260 {
14261 switch (ELF_ST_TYPE (elf_sym->st_info))
14262 {
14263 case STT_ARM_TFUNC:
14264 return ELF_ST_TYPE (elf_sym->st_info);
14265
14266 case STT_ARM_16BIT:
14267 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
14268 This allows us to distinguish between data used by Thumb instructions
14269 and non-data (which is probably code) inside Thumb regions of an
14270 executable. */
14271 if (type != STT_OBJECT && type != STT_TLS)
14272 return ELF_ST_TYPE (elf_sym->st_info);
14273 break;
14274
14275 default:
14276 break;
14277 }
14278
14279 return type;
14280 }
14281
14282 static asection *
14283 elf32_arm_gc_mark_hook (asection *sec,
14284 struct bfd_link_info *info,
14285 Elf_Internal_Rela *rel,
14286 struct elf_link_hash_entry *h,
14287 Elf_Internal_Sym *sym)
14288 {
14289 if (h != NULL)
14290 switch (ELF32_R_TYPE (rel->r_info))
14291 {
14292 case R_ARM_GNU_VTINHERIT:
14293 case R_ARM_GNU_VTENTRY:
14294 return NULL;
14295 }
14296
14297 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
14298 }
14299
14300 /* Update the got entry reference counts for the section being removed. */
14301
14302 static bfd_boolean
14303 elf32_arm_gc_sweep_hook (bfd * abfd,
14304 struct bfd_link_info * info,
14305 asection * sec,
14306 const Elf_Internal_Rela * relocs)
14307 {
14308 Elf_Internal_Shdr *symtab_hdr;
14309 struct elf_link_hash_entry **sym_hashes;
14310 bfd_signed_vma *local_got_refcounts;
14311 const Elf_Internal_Rela *rel, *relend;
14312 struct elf32_arm_link_hash_table * globals;
14313
14314 if (bfd_link_relocatable (info))
14315 return TRUE;
14316
14317 globals = elf32_arm_hash_table (info);
14318 if (globals == NULL)
14319 return FALSE;
14320
14321 elf_section_data (sec)->local_dynrel = NULL;
14322
14323 symtab_hdr = & elf_symtab_hdr (abfd);
14324 sym_hashes = elf_sym_hashes (abfd);
14325 local_got_refcounts = elf_local_got_refcounts (abfd);
14326
14327 check_use_blx (globals);
14328
14329 relend = relocs + sec->reloc_count;
14330 for (rel = relocs; rel < relend; rel++)
14331 {
14332 unsigned long r_symndx;
14333 struct elf_link_hash_entry *h = NULL;
14334 struct elf32_arm_link_hash_entry *eh;
14335 int r_type;
14336 bfd_boolean call_reloc_p;
14337 bfd_boolean may_become_dynamic_p;
14338 bfd_boolean may_need_local_target_p;
14339 union gotplt_union *root_plt;
14340 struct arm_plt_info *arm_plt;
14341
14342 r_symndx = ELF32_R_SYM (rel->r_info);
14343 if (r_symndx >= symtab_hdr->sh_info)
14344 {
14345 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
14346 while (h->root.type == bfd_link_hash_indirect
14347 || h->root.type == bfd_link_hash_warning)
14348 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14349 }
14350 eh = (struct elf32_arm_link_hash_entry *) h;
14351
14352 call_reloc_p = FALSE;
14353 may_become_dynamic_p = FALSE;
14354 may_need_local_target_p = FALSE;
14355
14356 r_type = ELF32_R_TYPE (rel->r_info);
14357 r_type = arm_real_reloc_type (globals, r_type);
14358 switch (r_type)
14359 {
14360 case R_ARM_GOT32:
14361 case R_ARM_GOT_PREL:
14362 case R_ARM_TLS_GD32:
14363 case R_ARM_TLS_IE32:
14364 if (h != NULL)
14365 {
14366 if (h->got.refcount > 0)
14367 h->got.refcount -= 1;
14368 }
14369 else if (local_got_refcounts != NULL)
14370 {
14371 if (local_got_refcounts[r_symndx] > 0)
14372 local_got_refcounts[r_symndx] -= 1;
14373 }
14374 break;
14375
14376 case R_ARM_TLS_LDM32:
14377 globals->tls_ldm_got.refcount -= 1;
14378 break;
14379
14380 case R_ARM_PC24:
14381 case R_ARM_PLT32:
14382 case R_ARM_CALL:
14383 case R_ARM_JUMP24:
14384 case R_ARM_PREL31:
14385 case R_ARM_THM_CALL:
14386 case R_ARM_THM_JUMP24:
14387 case R_ARM_THM_JUMP19:
14388 call_reloc_p = TRUE;
14389 may_need_local_target_p = TRUE;
14390 break;
14391
14392 case R_ARM_ABS12:
14393 if (!globals->vxworks_p)
14394 {
14395 may_need_local_target_p = TRUE;
14396 break;
14397 }
14398 /* Fall through. */
14399 case R_ARM_ABS32:
14400 case R_ARM_ABS32_NOI:
14401 case R_ARM_REL32:
14402 case R_ARM_REL32_NOI:
14403 case R_ARM_MOVW_ABS_NC:
14404 case R_ARM_MOVT_ABS:
14405 case R_ARM_MOVW_PREL_NC:
14406 case R_ARM_MOVT_PREL:
14407 case R_ARM_THM_MOVW_ABS_NC:
14408 case R_ARM_THM_MOVT_ABS:
14409 case R_ARM_THM_MOVW_PREL_NC:
14410 case R_ARM_THM_MOVT_PREL:
14411 /* Should the interworking branches be here also? */
14412 if ((bfd_link_pic (info) || globals->root.is_relocatable_executable)
14413 && (sec->flags & SEC_ALLOC) != 0)
14414 {
14415 if (h == NULL
14416 && elf32_arm_howto_from_type (r_type)->pc_relative)
14417 {
14418 call_reloc_p = TRUE;
14419 may_need_local_target_p = TRUE;
14420 }
14421 else
14422 may_become_dynamic_p = TRUE;
14423 }
14424 else
14425 may_need_local_target_p = TRUE;
14426 break;
14427
14428 default:
14429 break;
14430 }
14431
14432 if (may_need_local_target_p
14433 && elf32_arm_get_plt_info (abfd, globals, eh, r_symndx, &root_plt,
14434 &arm_plt))
14435 {
14436 /* If PLT refcount book-keeping is wrong and too low, we'll
14437 see a zero value (going to -1) for the root PLT reference
14438 count. */
14439 if (root_plt->refcount >= 0)
14440 {
14441 BFD_ASSERT (root_plt->refcount != 0);
14442 root_plt->refcount -= 1;
14443 }
14444 else
14445 /* A value of -1 means the symbol has become local, forced
14446 or seeing a hidden definition. Any other negative value
14447 is an error. */
14448 BFD_ASSERT (root_plt->refcount == -1);
14449
14450 if (!call_reloc_p)
14451 arm_plt->noncall_refcount--;
14452
14453 if (r_type == R_ARM_THM_CALL)
14454 arm_plt->maybe_thumb_refcount--;
14455
14456 if (r_type == R_ARM_THM_JUMP24
14457 || r_type == R_ARM_THM_JUMP19)
14458 arm_plt->thumb_refcount--;
14459 }
14460
14461 if (may_become_dynamic_p)
14462 {
14463 struct elf_dyn_relocs **pp;
14464 struct elf_dyn_relocs *p;
14465
14466 if (h != NULL)
14467 pp = &(eh->dyn_relocs);
14468 else
14469 {
14470 Elf_Internal_Sym *isym;
14471
14472 isym = bfd_sym_from_r_symndx (&globals->sym_cache,
14473 abfd, r_symndx);
14474 if (isym == NULL)
14475 return FALSE;
14476 pp = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
14477 if (pp == NULL)
14478 return FALSE;
14479 }
14480 for (; (p = *pp) != NULL; pp = &p->next)
14481 if (p->sec == sec)
14482 {
14483 /* Everything must go for SEC. */
14484 *pp = p->next;
14485 break;
14486 }
14487 }
14488 }
14489
14490 return TRUE;
14491 }
14492
14493 /* Look through the relocs for a section during the first phase. */
14494
14495 static bfd_boolean
14496 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
14497 asection *sec, const Elf_Internal_Rela *relocs)
14498 {
14499 Elf_Internal_Shdr *symtab_hdr;
14500 struct elf_link_hash_entry **sym_hashes;
14501 const Elf_Internal_Rela *rel;
14502 const Elf_Internal_Rela *rel_end;
14503 bfd *dynobj;
14504 asection *sreloc;
14505 struct elf32_arm_link_hash_table *htab;
14506 bfd_boolean call_reloc_p;
14507 bfd_boolean may_become_dynamic_p;
14508 bfd_boolean may_need_local_target_p;
14509 unsigned long nsyms;
14510
14511 if (bfd_link_relocatable (info))
14512 return TRUE;
14513
14514 BFD_ASSERT (is_arm_elf (abfd));
14515
14516 htab = elf32_arm_hash_table (info);
14517 if (htab == NULL)
14518 return FALSE;
14519
14520 sreloc = NULL;
14521
14522 /* Create dynamic sections for relocatable executables so that we can
14523 copy relocations. */
14524 if (htab->root.is_relocatable_executable
14525 && ! htab->root.dynamic_sections_created)
14526 {
14527 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
14528 return FALSE;
14529 }
14530
14531 if (htab->root.dynobj == NULL)
14532 htab->root.dynobj = abfd;
14533 if (!create_ifunc_sections (info))
14534 return FALSE;
14535
14536 dynobj = htab->root.dynobj;
14537
14538 symtab_hdr = & elf_symtab_hdr (abfd);
14539 sym_hashes = elf_sym_hashes (abfd);
14540 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
14541
14542 rel_end = relocs + sec->reloc_count;
14543 for (rel = relocs; rel < rel_end; rel++)
14544 {
14545 Elf_Internal_Sym *isym;
14546 struct elf_link_hash_entry *h;
14547 struct elf32_arm_link_hash_entry *eh;
14548 unsigned int r_symndx;
14549 int r_type;
14550
14551 r_symndx = ELF32_R_SYM (rel->r_info);
14552 r_type = ELF32_R_TYPE (rel->r_info);
14553 r_type = arm_real_reloc_type (htab, r_type);
14554
14555 if (r_symndx >= nsyms
14556 /* PR 9934: It is possible to have relocations that do not
14557 refer to symbols, thus it is also possible to have an
14558 object file containing relocations but no symbol table. */
14559 && (r_symndx > STN_UNDEF || nsyms > 0))
14560 {
14561 _bfd_error_handler (_("%B: bad symbol index: %d"), abfd,
14562 r_symndx);
14563 return FALSE;
14564 }
14565
14566 h = NULL;
14567 isym = NULL;
14568 if (nsyms > 0)
14569 {
14570 if (r_symndx < symtab_hdr->sh_info)
14571 {
14572 /* A local symbol. */
14573 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
14574 abfd, r_symndx);
14575 if (isym == NULL)
14576 return FALSE;
14577 }
14578 else
14579 {
14580 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
14581 while (h->root.type == bfd_link_hash_indirect
14582 || h->root.type == bfd_link_hash_warning)
14583 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14584
14585 /* PR15323, ref flags aren't set for references in the
14586 same object. */
14587 h->root.non_ir_ref_regular = 1;
14588 }
14589 }
14590
14591 eh = (struct elf32_arm_link_hash_entry *) h;
14592
14593 call_reloc_p = FALSE;
14594 may_become_dynamic_p = FALSE;
14595 may_need_local_target_p = FALSE;
14596
14597 /* Could be done earlier, if h were already available. */
14598 r_type = elf32_arm_tls_transition (info, r_type, h);
14599 switch (r_type)
14600 {
14601 case R_ARM_GOT32:
14602 case R_ARM_GOT_PREL:
14603 case R_ARM_TLS_GD32:
14604 case R_ARM_TLS_IE32:
14605 case R_ARM_TLS_GOTDESC:
14606 case R_ARM_TLS_DESCSEQ:
14607 case R_ARM_THM_TLS_DESCSEQ:
14608 case R_ARM_TLS_CALL:
14609 case R_ARM_THM_TLS_CALL:
14610 /* This symbol requires a global offset table entry. */
14611 {
14612 int tls_type, old_tls_type;
14613
14614 switch (r_type)
14615 {
14616 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
14617
14618 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
14619
14620 case R_ARM_TLS_GOTDESC:
14621 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
14622 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
14623 tls_type = GOT_TLS_GDESC; break;
14624
14625 default: tls_type = GOT_NORMAL; break;
14626 }
14627
14628 if (!bfd_link_executable (info) && (tls_type & GOT_TLS_IE))
14629 info->flags |= DF_STATIC_TLS;
14630
14631 if (h != NULL)
14632 {
14633 h->got.refcount++;
14634 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
14635 }
14636 else
14637 {
14638 /* This is a global offset table entry for a local symbol. */
14639 if (!elf32_arm_allocate_local_sym_info (abfd))
14640 return FALSE;
14641 elf_local_got_refcounts (abfd)[r_symndx] += 1;
14642 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
14643 }
14644
14645 /* If a variable is accessed with both tls methods, two
14646 slots may be created. */
14647 if (GOT_TLS_GD_ANY_P (old_tls_type)
14648 && GOT_TLS_GD_ANY_P (tls_type))
14649 tls_type |= old_tls_type;
14650
14651 /* We will already have issued an error message if there
14652 is a TLS/non-TLS mismatch, based on the symbol
14653 type. So just combine any TLS types needed. */
14654 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
14655 && tls_type != GOT_NORMAL)
14656 tls_type |= old_tls_type;
14657
14658 /* If the symbol is accessed in both IE and GDESC
14659 method, we're able to relax. Turn off the GDESC flag,
14660 without messing up with any other kind of tls types
14661 that may be involved. */
14662 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
14663 tls_type &= ~GOT_TLS_GDESC;
14664
14665 if (old_tls_type != tls_type)
14666 {
14667 if (h != NULL)
14668 elf32_arm_hash_entry (h)->tls_type = tls_type;
14669 else
14670 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
14671 }
14672 }
14673 /* Fall through. */
14674
14675 case R_ARM_TLS_LDM32:
14676 if (r_type == R_ARM_TLS_LDM32)
14677 htab->tls_ldm_got.refcount++;
14678 /* Fall through. */
14679
14680 case R_ARM_GOTOFF32:
14681 case R_ARM_GOTPC:
14682 if (htab->root.sgot == NULL
14683 && !create_got_section (htab->root.dynobj, info))
14684 return FALSE;
14685 break;
14686
14687 case R_ARM_PC24:
14688 case R_ARM_PLT32:
14689 case R_ARM_CALL:
14690 case R_ARM_JUMP24:
14691 case R_ARM_PREL31:
14692 case R_ARM_THM_CALL:
14693 case R_ARM_THM_JUMP24:
14694 case R_ARM_THM_JUMP19:
14695 call_reloc_p = TRUE;
14696 may_need_local_target_p = TRUE;
14697 break;
14698
14699 case R_ARM_ABS12:
14700 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
14701 ldr __GOTT_INDEX__ offsets. */
14702 if (!htab->vxworks_p)
14703 {
14704 may_need_local_target_p = TRUE;
14705 break;
14706 }
14707 else goto jump_over;
14708
14709 /* Fall through. */
14710
14711 case R_ARM_MOVW_ABS_NC:
14712 case R_ARM_MOVT_ABS:
14713 case R_ARM_THM_MOVW_ABS_NC:
14714 case R_ARM_THM_MOVT_ABS:
14715 if (bfd_link_pic (info))
14716 {
14717 _bfd_error_handler
14718 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
14719 abfd, elf32_arm_howto_table_1[r_type].name,
14720 (h) ? h->root.root.string : "a local symbol");
14721 bfd_set_error (bfd_error_bad_value);
14722 return FALSE;
14723 }
14724
14725 /* Fall through. */
14726 case R_ARM_ABS32:
14727 case R_ARM_ABS32_NOI:
14728 jump_over:
14729 if (h != NULL && bfd_link_executable (info))
14730 {
14731 h->pointer_equality_needed = 1;
14732 }
14733 /* Fall through. */
14734 case R_ARM_REL32:
14735 case R_ARM_REL32_NOI:
14736 case R_ARM_MOVW_PREL_NC:
14737 case R_ARM_MOVT_PREL:
14738 case R_ARM_THM_MOVW_PREL_NC:
14739 case R_ARM_THM_MOVT_PREL:
14740
14741 /* Should the interworking branches be listed here? */
14742 if ((bfd_link_pic (info) || htab->root.is_relocatable_executable)
14743 && (sec->flags & SEC_ALLOC) != 0)
14744 {
14745 if (h == NULL
14746 && elf32_arm_howto_from_type (r_type)->pc_relative)
14747 {
14748 /* In shared libraries and relocatable executables,
14749 we treat local relative references as calls;
14750 see the related SYMBOL_CALLS_LOCAL code in
14751 allocate_dynrelocs. */
14752 call_reloc_p = TRUE;
14753 may_need_local_target_p = TRUE;
14754 }
14755 else
14756 /* We are creating a shared library or relocatable
14757 executable, and this is a reloc against a global symbol,
14758 or a non-PC-relative reloc against a local symbol.
14759 We may need to copy the reloc into the output. */
14760 may_become_dynamic_p = TRUE;
14761 }
14762 else
14763 may_need_local_target_p = TRUE;
14764 break;
14765
14766 /* This relocation describes the C++ object vtable hierarchy.
14767 Reconstruct it for later use during GC. */
14768 case R_ARM_GNU_VTINHERIT:
14769 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
14770 return FALSE;
14771 break;
14772
14773 /* This relocation describes which C++ vtable entries are actually
14774 used. Record for later use during GC. */
14775 case R_ARM_GNU_VTENTRY:
14776 BFD_ASSERT (h != NULL);
14777 if (h != NULL
14778 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
14779 return FALSE;
14780 break;
14781 }
14782
14783 if (h != NULL)
14784 {
14785 if (call_reloc_p)
14786 /* We may need a .plt entry if the function this reloc
14787 refers to is in a different object, regardless of the
14788 symbol's type. We can't tell for sure yet, because
14789 something later might force the symbol local. */
14790 h->needs_plt = 1;
14791 else if (may_need_local_target_p)
14792 /* If this reloc is in a read-only section, we might
14793 need a copy reloc. We can't check reliably at this
14794 stage whether the section is read-only, as input
14795 sections have not yet been mapped to output sections.
14796 Tentatively set the flag for now, and correct in
14797 adjust_dynamic_symbol. */
14798 h->non_got_ref = 1;
14799 }
14800
14801 if (may_need_local_target_p
14802 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
14803 {
14804 union gotplt_union *root_plt;
14805 struct arm_plt_info *arm_plt;
14806 struct arm_local_iplt_info *local_iplt;
14807
14808 if (h != NULL)
14809 {
14810 root_plt = &h->plt;
14811 arm_plt = &eh->plt;
14812 }
14813 else
14814 {
14815 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
14816 if (local_iplt == NULL)
14817 return FALSE;
14818 root_plt = &local_iplt->root;
14819 arm_plt = &local_iplt->arm;
14820 }
14821
14822 /* If the symbol is a function that doesn't bind locally,
14823 this relocation will need a PLT entry. */
14824 if (root_plt->refcount != -1)
14825 root_plt->refcount += 1;
14826
14827 if (!call_reloc_p)
14828 arm_plt->noncall_refcount++;
14829
14830 /* It's too early to use htab->use_blx here, so we have to
14831 record possible blx references separately from
14832 relocs that definitely need a thumb stub. */
14833
14834 if (r_type == R_ARM_THM_CALL)
14835 arm_plt->maybe_thumb_refcount += 1;
14836
14837 if (r_type == R_ARM_THM_JUMP24
14838 || r_type == R_ARM_THM_JUMP19)
14839 arm_plt->thumb_refcount += 1;
14840 }
14841
14842 if (may_become_dynamic_p)
14843 {
14844 struct elf_dyn_relocs *p, **head;
14845
14846 /* Create a reloc section in dynobj. */
14847 if (sreloc == NULL)
14848 {
14849 sreloc = _bfd_elf_make_dynamic_reloc_section
14850 (sec, dynobj, 2, abfd, ! htab->use_rel);
14851
14852 if (sreloc == NULL)
14853 return FALSE;
14854
14855 /* BPABI objects never have dynamic relocations mapped. */
14856 if (htab->symbian_p)
14857 {
14858 flagword flags;
14859
14860 flags = bfd_get_section_flags (dynobj, sreloc);
14861 flags &= ~(SEC_LOAD | SEC_ALLOC);
14862 bfd_set_section_flags (dynobj, sreloc, flags);
14863 }
14864 }
14865
14866 /* If this is a global symbol, count the number of
14867 relocations we need for this symbol. */
14868 if (h != NULL)
14869 head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
14870 else
14871 {
14872 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
14873 if (head == NULL)
14874 return FALSE;
14875 }
14876
14877 p = *head;
14878 if (p == NULL || p->sec != sec)
14879 {
14880 bfd_size_type amt = sizeof *p;
14881
14882 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
14883 if (p == NULL)
14884 return FALSE;
14885 p->next = *head;
14886 *head = p;
14887 p->sec = sec;
14888 p->count = 0;
14889 p->pc_count = 0;
14890 }
14891
14892 if (elf32_arm_howto_from_type (r_type)->pc_relative)
14893 p->pc_count += 1;
14894 p->count += 1;
14895 }
14896 }
14897
14898 return TRUE;
14899 }
14900
14901 static void
14902 elf32_arm_update_relocs (asection *o,
14903 struct bfd_elf_section_reloc_data *reldata)
14904 {
14905 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
14906 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
14907 const struct elf_backend_data *bed;
14908 _arm_elf_section_data *eado;
14909 struct bfd_link_order *p;
14910 bfd_byte *erela_head, *erela;
14911 Elf_Internal_Rela *irela_head, *irela;
14912 Elf_Internal_Shdr *rel_hdr;
14913 bfd *abfd;
14914 unsigned int count;
14915
14916 eado = get_arm_elf_section_data (o);
14917
14918 if (!eado || eado->elf.this_hdr.sh_type != SHT_ARM_EXIDX)
14919 return;
14920
14921 abfd = o->owner;
14922 bed = get_elf_backend_data (abfd);
14923 rel_hdr = reldata->hdr;
14924
14925 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
14926 {
14927 swap_in = bed->s->swap_reloc_in;
14928 swap_out = bed->s->swap_reloc_out;
14929 }
14930 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
14931 {
14932 swap_in = bed->s->swap_reloca_in;
14933 swap_out = bed->s->swap_reloca_out;
14934 }
14935 else
14936 abort ();
14937
14938 erela_head = rel_hdr->contents;
14939 irela_head = (Elf_Internal_Rela *) bfd_zmalloc
14940 ((NUM_SHDR_ENTRIES (rel_hdr) + 1) * sizeof (*irela_head));
14941
14942 erela = erela_head;
14943 irela = irela_head;
14944 count = 0;
14945
14946 for (p = o->map_head.link_order; p; p = p->next)
14947 {
14948 if (p->type == bfd_section_reloc_link_order
14949 || p->type == bfd_symbol_reloc_link_order)
14950 {
14951 (*swap_in) (abfd, erela, irela);
14952 erela += rel_hdr->sh_entsize;
14953 irela++;
14954 count++;
14955 }
14956 else if (p->type == bfd_indirect_link_order)
14957 {
14958 struct bfd_elf_section_reloc_data *input_reldata;
14959 arm_unwind_table_edit *edit_list, *edit_tail;
14960 _arm_elf_section_data *eadi;
14961 bfd_size_type j;
14962 bfd_vma offset;
14963 asection *i;
14964
14965 i = p->u.indirect.section;
14966
14967 eadi = get_arm_elf_section_data (i);
14968 edit_list = eadi->u.exidx.unwind_edit_list;
14969 edit_tail = eadi->u.exidx.unwind_edit_tail;
14970 offset = o->vma + i->output_offset;
14971
14972 if (eadi->elf.rel.hdr &&
14973 eadi->elf.rel.hdr->sh_entsize == rel_hdr->sh_entsize)
14974 input_reldata = &eadi->elf.rel;
14975 else if (eadi->elf.rela.hdr &&
14976 eadi->elf.rela.hdr->sh_entsize == rel_hdr->sh_entsize)
14977 input_reldata = &eadi->elf.rela;
14978 else
14979 abort ();
14980
14981 if (edit_list)
14982 {
14983 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
14984 {
14985 arm_unwind_table_edit *edit_node, *edit_next;
14986 bfd_vma bias;
14987 bfd_vma reloc_index;
14988
14989 (*swap_in) (abfd, erela, irela);
14990 reloc_index = (irela->r_offset - offset) / 8;
14991
14992 bias = 0;
14993 edit_node = edit_list;
14994 for (edit_next = edit_list;
14995 edit_next && edit_next->index <= reloc_index;
14996 edit_next = edit_node->next)
14997 {
14998 bias++;
14999 edit_node = edit_next;
15000 }
15001
15002 if (edit_node->type != DELETE_EXIDX_ENTRY
15003 || edit_node->index != reloc_index)
15004 {
15005 irela->r_offset -= bias * 8;
15006 irela++;
15007 count++;
15008 }
15009
15010 erela += rel_hdr->sh_entsize;
15011 }
15012
15013 if (edit_tail->type == INSERT_EXIDX_CANTUNWIND_AT_END)
15014 {
15015 /* New relocation entity. */
15016 asection *text_sec = edit_tail->linked_section;
15017 asection *text_out = text_sec->output_section;
15018 bfd_vma exidx_offset = offset + i->size - 8;
15019
15020 irela->r_addend = 0;
15021 irela->r_offset = exidx_offset;
15022 irela->r_info = ELF32_R_INFO
15023 (text_out->target_index, R_ARM_PREL31);
15024 irela++;
15025 count++;
15026 }
15027 }
15028 else
15029 {
15030 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
15031 {
15032 (*swap_in) (abfd, erela, irela);
15033 erela += rel_hdr->sh_entsize;
15034 irela++;
15035 }
15036
15037 count += NUM_SHDR_ENTRIES (input_reldata->hdr);
15038 }
15039 }
15040 }
15041
15042 reldata->count = count;
15043 rel_hdr->sh_size = count * rel_hdr->sh_entsize;
15044
15045 erela = erela_head;
15046 irela = irela_head;
15047 while (count > 0)
15048 {
15049 (*swap_out) (abfd, irela, erela);
15050 erela += rel_hdr->sh_entsize;
15051 irela++;
15052 count--;
15053 }
15054
15055 free (irela_head);
15056
15057 /* Hashes are no longer valid. */
15058 free (reldata->hashes);
15059 reldata->hashes = NULL;
15060 }
15061
15062 /* Unwinding tables are not referenced directly. This pass marks them as
15063 required if the corresponding code section is marked. Similarly, ARMv8-M
15064 secure entry functions can only be referenced by SG veneers which are
15065 created after the GC process. They need to be marked in case they reside in
15066 their own section (as would be the case if code was compiled with
15067 -ffunction-sections). */
15068
15069 static bfd_boolean
15070 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
15071 elf_gc_mark_hook_fn gc_mark_hook)
15072 {
15073 bfd *sub;
15074 Elf_Internal_Shdr **elf_shdrp;
15075 asection *cmse_sec;
15076 obj_attribute *out_attr;
15077 Elf_Internal_Shdr *symtab_hdr;
15078 unsigned i, sym_count, ext_start;
15079 const struct elf_backend_data *bed;
15080 struct elf_link_hash_entry **sym_hashes;
15081 struct elf32_arm_link_hash_entry *cmse_hash;
15082 bfd_boolean again, is_v8m, first_bfd_browse = TRUE;
15083
15084 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
15085
15086 out_attr = elf_known_obj_attributes_proc (info->output_bfd);
15087 is_v8m = out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
15088 && out_attr[Tag_CPU_arch_profile].i == 'M';
15089
15090 /* Marking EH data may cause additional code sections to be marked,
15091 requiring multiple passes. */
15092 again = TRUE;
15093 while (again)
15094 {
15095 again = FALSE;
15096 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
15097 {
15098 asection *o;
15099
15100 if (! is_arm_elf (sub))
15101 continue;
15102
15103 elf_shdrp = elf_elfsections (sub);
15104 for (o = sub->sections; o != NULL; o = o->next)
15105 {
15106 Elf_Internal_Shdr *hdr;
15107
15108 hdr = &elf_section_data (o)->this_hdr;
15109 if (hdr->sh_type == SHT_ARM_EXIDX
15110 && hdr->sh_link
15111 && hdr->sh_link < elf_numsections (sub)
15112 && !o->gc_mark
15113 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
15114 {
15115 again = TRUE;
15116 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
15117 return FALSE;
15118 }
15119 }
15120
15121 /* Mark section holding ARMv8-M secure entry functions. We mark all
15122 of them so no need for a second browsing. */
15123 if (is_v8m && first_bfd_browse)
15124 {
15125 sym_hashes = elf_sym_hashes (sub);
15126 bed = get_elf_backend_data (sub);
15127 symtab_hdr = &elf_tdata (sub)->symtab_hdr;
15128 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
15129 ext_start = symtab_hdr->sh_info;
15130
15131 /* Scan symbols. */
15132 for (i = ext_start; i < sym_count; i++)
15133 {
15134 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
15135
15136 /* Assume it is a special symbol. If not, cmse_scan will
15137 warn about it and user can do something about it. */
15138 if (ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
15139 {
15140 cmse_sec = cmse_hash->root.root.u.def.section;
15141 if (!cmse_sec->gc_mark
15142 && !_bfd_elf_gc_mark (info, cmse_sec, gc_mark_hook))
15143 return FALSE;
15144 }
15145 }
15146 }
15147 }
15148 first_bfd_browse = FALSE;
15149 }
15150
15151 return TRUE;
15152 }
15153
15154 /* Treat mapping symbols as special target symbols. */
15155
15156 static bfd_boolean
15157 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
15158 {
15159 return bfd_is_arm_special_symbol_name (sym->name,
15160 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
15161 }
15162
15163 /* This is a copy of elf_find_function() from elf.c except that
15164 ARM mapping symbols are ignored when looking for function names
15165 and STT_ARM_TFUNC is considered to a function type. */
15166
15167 static bfd_boolean
15168 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
15169 asymbol ** symbols,
15170 asection * section,
15171 bfd_vma offset,
15172 const char ** filename_ptr,
15173 const char ** functionname_ptr)
15174 {
15175 const char * filename = NULL;
15176 asymbol * func = NULL;
15177 bfd_vma low_func = 0;
15178 asymbol ** p;
15179
15180 for (p = symbols; *p != NULL; p++)
15181 {
15182 elf_symbol_type *q;
15183
15184 q = (elf_symbol_type *) *p;
15185
15186 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
15187 {
15188 default:
15189 break;
15190 case STT_FILE:
15191 filename = bfd_asymbol_name (&q->symbol);
15192 break;
15193 case STT_FUNC:
15194 case STT_ARM_TFUNC:
15195 case STT_NOTYPE:
15196 /* Skip mapping symbols. */
15197 if ((q->symbol.flags & BSF_LOCAL)
15198 && bfd_is_arm_special_symbol_name (q->symbol.name,
15199 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
15200 continue;
15201 /* Fall through. */
15202 if (bfd_get_section (&q->symbol) == section
15203 && q->symbol.value >= low_func
15204 && q->symbol.value <= offset)
15205 {
15206 func = (asymbol *) q;
15207 low_func = q->symbol.value;
15208 }
15209 break;
15210 }
15211 }
15212
15213 if (func == NULL)
15214 return FALSE;
15215
15216 if (filename_ptr)
15217 *filename_ptr = filename;
15218 if (functionname_ptr)
15219 *functionname_ptr = bfd_asymbol_name (func);
15220
15221 return TRUE;
15222 }
15223
15224
15225 /* Find the nearest line to a particular section and offset, for error
15226 reporting. This code is a duplicate of the code in elf.c, except
15227 that it uses arm_elf_find_function. */
15228
15229 static bfd_boolean
15230 elf32_arm_find_nearest_line (bfd * abfd,
15231 asymbol ** symbols,
15232 asection * section,
15233 bfd_vma offset,
15234 const char ** filename_ptr,
15235 const char ** functionname_ptr,
15236 unsigned int * line_ptr,
15237 unsigned int * discriminator_ptr)
15238 {
15239 bfd_boolean found = FALSE;
15240
15241 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
15242 filename_ptr, functionname_ptr,
15243 line_ptr, discriminator_ptr,
15244 dwarf_debug_sections, 0,
15245 & elf_tdata (abfd)->dwarf2_find_line_info))
15246 {
15247 if (!*functionname_ptr)
15248 arm_elf_find_function (abfd, symbols, section, offset,
15249 *filename_ptr ? NULL : filename_ptr,
15250 functionname_ptr);
15251
15252 return TRUE;
15253 }
15254
15255 /* Skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain
15256 uses DWARF1. */
15257
15258 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
15259 & found, filename_ptr,
15260 functionname_ptr, line_ptr,
15261 & elf_tdata (abfd)->line_info))
15262 return FALSE;
15263
15264 if (found && (*functionname_ptr || *line_ptr))
15265 return TRUE;
15266
15267 if (symbols == NULL)
15268 return FALSE;
15269
15270 if (! arm_elf_find_function (abfd, symbols, section, offset,
15271 filename_ptr, functionname_ptr))
15272 return FALSE;
15273
15274 *line_ptr = 0;
15275 return TRUE;
15276 }
15277
15278 static bfd_boolean
15279 elf32_arm_find_inliner_info (bfd * abfd,
15280 const char ** filename_ptr,
15281 const char ** functionname_ptr,
15282 unsigned int * line_ptr)
15283 {
15284 bfd_boolean found;
15285 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
15286 functionname_ptr, line_ptr,
15287 & elf_tdata (abfd)->dwarf2_find_line_info);
15288 return found;
15289 }
15290
15291 /* Adjust a symbol defined by a dynamic object and referenced by a
15292 regular object. The current definition is in some section of the
15293 dynamic object, but we're not including those sections. We have to
15294 change the definition to something the rest of the link can
15295 understand. */
15296
15297 static bfd_boolean
15298 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
15299 struct elf_link_hash_entry * h)
15300 {
15301 bfd * dynobj;
15302 asection *s, *srel;
15303 struct elf32_arm_link_hash_entry * eh;
15304 struct elf32_arm_link_hash_table *globals;
15305
15306 globals = elf32_arm_hash_table (info);
15307 if (globals == NULL)
15308 return FALSE;
15309
15310 dynobj = elf_hash_table (info)->dynobj;
15311
15312 /* Make sure we know what is going on here. */
15313 BFD_ASSERT (dynobj != NULL
15314 && (h->needs_plt
15315 || h->type == STT_GNU_IFUNC
15316 || h->u.weakdef != NULL
15317 || (h->def_dynamic
15318 && h->ref_regular
15319 && !h->def_regular)));
15320
15321 eh = (struct elf32_arm_link_hash_entry *) h;
15322
15323 /* If this is a function, put it in the procedure linkage table. We
15324 will fill in the contents of the procedure linkage table later,
15325 when we know the address of the .got section. */
15326 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
15327 {
15328 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
15329 symbol binds locally. */
15330 if (h->plt.refcount <= 0
15331 || (h->type != STT_GNU_IFUNC
15332 && (SYMBOL_CALLS_LOCAL (info, h)
15333 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
15334 && h->root.type == bfd_link_hash_undefweak))))
15335 {
15336 /* This case can occur if we saw a PLT32 reloc in an input
15337 file, but the symbol was never referred to by a dynamic
15338 object, or if all references were garbage collected. In
15339 such a case, we don't actually need to build a procedure
15340 linkage table, and we can just do a PC24 reloc instead. */
15341 h->plt.offset = (bfd_vma) -1;
15342 eh->plt.thumb_refcount = 0;
15343 eh->plt.maybe_thumb_refcount = 0;
15344 eh->plt.noncall_refcount = 0;
15345 h->needs_plt = 0;
15346 }
15347
15348 return TRUE;
15349 }
15350 else
15351 {
15352 /* It's possible that we incorrectly decided a .plt reloc was
15353 needed for an R_ARM_PC24 or similar reloc to a non-function sym
15354 in check_relocs. We can't decide accurately between function
15355 and non-function syms in check-relocs; Objects loaded later in
15356 the link may change h->type. So fix it now. */
15357 h->plt.offset = (bfd_vma) -1;
15358 eh->plt.thumb_refcount = 0;
15359 eh->plt.maybe_thumb_refcount = 0;
15360 eh->plt.noncall_refcount = 0;
15361 }
15362
15363 /* If this is a weak symbol, and there is a real definition, the
15364 processor independent code will have arranged for us to see the
15365 real definition first, and we can just use the same value. */
15366 if (h->u.weakdef != NULL)
15367 {
15368 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
15369 || h->u.weakdef->root.type == bfd_link_hash_defweak);
15370 h->root.u.def.section = h->u.weakdef->root.u.def.section;
15371 h->root.u.def.value = h->u.weakdef->root.u.def.value;
15372 return TRUE;
15373 }
15374
15375 /* If there are no non-GOT references, we do not need a copy
15376 relocation. */
15377 if (!h->non_got_ref)
15378 return TRUE;
15379
15380 /* This is a reference to a symbol defined by a dynamic object which
15381 is not a function. */
15382
15383 /* If we are creating a shared library, we must presume that the
15384 only references to the symbol are via the global offset table.
15385 For such cases we need not do anything here; the relocations will
15386 be handled correctly by relocate_section. Relocatable executables
15387 can reference data in shared objects directly, so we don't need to
15388 do anything here. */
15389 if (bfd_link_pic (info) || globals->root.is_relocatable_executable)
15390 return TRUE;
15391
15392 /* We must allocate the symbol in our .dynbss section, which will
15393 become part of the .bss section of the executable. There will be
15394 an entry for this symbol in the .dynsym section. The dynamic
15395 object will contain position independent code, so all references
15396 from the dynamic object to this symbol will go through the global
15397 offset table. The dynamic linker will use the .dynsym entry to
15398 determine the address it must put in the global offset table, so
15399 both the dynamic object and the regular object will refer to the
15400 same memory location for the variable. */
15401 /* If allowed, we must generate a R_ARM_COPY reloc to tell the dynamic
15402 linker to copy the initial value out of the dynamic object and into
15403 the runtime process image. We need to remember the offset into the
15404 .rel(a).bss section we are going to use. */
15405 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
15406 {
15407 s = globals->root.sdynrelro;
15408 srel = globals->root.sreldynrelro;
15409 }
15410 else
15411 {
15412 s = globals->root.sdynbss;
15413 srel = globals->root.srelbss;
15414 }
15415 if (info->nocopyreloc == 0
15416 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
15417 && h->size != 0)
15418 {
15419 elf32_arm_allocate_dynrelocs (info, srel, 1);
15420 h->needs_copy = 1;
15421 }
15422
15423 return _bfd_elf_adjust_dynamic_copy (info, h, s);
15424 }
15425
15426 /* Allocate space in .plt, .got and associated reloc sections for
15427 dynamic relocs. */
15428
15429 static bfd_boolean
15430 allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
15431 {
15432 struct bfd_link_info *info;
15433 struct elf32_arm_link_hash_table *htab;
15434 struct elf32_arm_link_hash_entry *eh;
15435 struct elf_dyn_relocs *p;
15436
15437 if (h->root.type == bfd_link_hash_indirect)
15438 return TRUE;
15439
15440 eh = (struct elf32_arm_link_hash_entry *) h;
15441
15442 info = (struct bfd_link_info *) inf;
15443 htab = elf32_arm_hash_table (info);
15444 if (htab == NULL)
15445 return FALSE;
15446
15447 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
15448 && h->plt.refcount > 0)
15449 {
15450 /* Make sure this symbol is output as a dynamic symbol.
15451 Undefined weak syms won't yet be marked as dynamic. */
15452 if (h->dynindx == -1 && !h->forced_local
15453 && h->root.type == bfd_link_hash_undefweak)
15454 {
15455 if (! bfd_elf_link_record_dynamic_symbol (info, h))
15456 return FALSE;
15457 }
15458
15459 /* If the call in the PLT entry binds locally, the associated
15460 GOT entry should use an R_ARM_IRELATIVE relocation instead of
15461 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
15462 than the .plt section. */
15463 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
15464 {
15465 eh->is_iplt = 1;
15466 if (eh->plt.noncall_refcount == 0
15467 && SYMBOL_REFERENCES_LOCAL (info, h))
15468 /* All non-call references can be resolved directly.
15469 This means that they can (and in some cases, must)
15470 resolve directly to the run-time target, rather than
15471 to the PLT. That in turns means that any .got entry
15472 would be equal to the .igot.plt entry, so there's
15473 no point having both. */
15474 h->got.refcount = 0;
15475 }
15476
15477 if (bfd_link_pic (info)
15478 || eh->is_iplt
15479 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
15480 {
15481 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
15482
15483 /* If this symbol is not defined in a regular file, and we are
15484 not generating a shared library, then set the symbol to this
15485 location in the .plt. This is required to make function
15486 pointers compare as equal between the normal executable and
15487 the shared library. */
15488 if (! bfd_link_pic (info)
15489 && !h->def_regular)
15490 {
15491 h->root.u.def.section = htab->root.splt;
15492 h->root.u.def.value = h->plt.offset;
15493
15494 /* Make sure the function is not marked as Thumb, in case
15495 it is the target of an ABS32 relocation, which will
15496 point to the PLT entry. */
15497 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
15498 }
15499
15500 /* VxWorks executables have a second set of relocations for
15501 each PLT entry. They go in a separate relocation section,
15502 which is processed by the kernel loader. */
15503 if (htab->vxworks_p && !bfd_link_pic (info))
15504 {
15505 /* There is a relocation for the initial PLT entry:
15506 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
15507 if (h->plt.offset == htab->plt_header_size)
15508 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
15509
15510 /* There are two extra relocations for each subsequent
15511 PLT entry: an R_ARM_32 relocation for the GOT entry,
15512 and an R_ARM_32 relocation for the PLT entry. */
15513 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
15514 }
15515 }
15516 else
15517 {
15518 h->plt.offset = (bfd_vma) -1;
15519 h->needs_plt = 0;
15520 }
15521 }
15522 else
15523 {
15524 h->plt.offset = (bfd_vma) -1;
15525 h->needs_plt = 0;
15526 }
15527
15528 eh = (struct elf32_arm_link_hash_entry *) h;
15529 eh->tlsdesc_got = (bfd_vma) -1;
15530
15531 if (h->got.refcount > 0)
15532 {
15533 asection *s;
15534 bfd_boolean dyn;
15535 int tls_type = elf32_arm_hash_entry (h)->tls_type;
15536 int indx;
15537
15538 /* Make sure this symbol is output as a dynamic symbol.
15539 Undefined weak syms won't yet be marked as dynamic. */
15540 if (h->dynindx == -1 && !h->forced_local
15541 && h->root.type == bfd_link_hash_undefweak)
15542 {
15543 if (! bfd_elf_link_record_dynamic_symbol (info, h))
15544 return FALSE;
15545 }
15546
15547 if (!htab->symbian_p)
15548 {
15549 s = htab->root.sgot;
15550 h->got.offset = s->size;
15551
15552 if (tls_type == GOT_UNKNOWN)
15553 abort ();
15554
15555 if (tls_type == GOT_NORMAL)
15556 /* Non-TLS symbols need one GOT slot. */
15557 s->size += 4;
15558 else
15559 {
15560 if (tls_type & GOT_TLS_GDESC)
15561 {
15562 /* R_ARM_TLS_DESC needs 2 GOT slots. */
15563 eh->tlsdesc_got
15564 = (htab->root.sgotplt->size
15565 - elf32_arm_compute_jump_table_size (htab));
15566 htab->root.sgotplt->size += 8;
15567 h->got.offset = (bfd_vma) -2;
15568 /* plt.got_offset needs to know there's a TLS_DESC
15569 reloc in the middle of .got.plt. */
15570 htab->num_tls_desc++;
15571 }
15572
15573 if (tls_type & GOT_TLS_GD)
15574 {
15575 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. If
15576 the symbol is both GD and GDESC, got.offset may
15577 have been overwritten. */
15578 h->got.offset = s->size;
15579 s->size += 8;
15580 }
15581
15582 if (tls_type & GOT_TLS_IE)
15583 /* R_ARM_TLS_IE32 needs one GOT slot. */
15584 s->size += 4;
15585 }
15586
15587 dyn = htab->root.dynamic_sections_created;
15588
15589 indx = 0;
15590 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
15591 bfd_link_pic (info),
15592 h)
15593 && (!bfd_link_pic (info)
15594 || !SYMBOL_REFERENCES_LOCAL (info, h)))
15595 indx = h->dynindx;
15596
15597 if (tls_type != GOT_NORMAL
15598 && (bfd_link_pic (info) || indx != 0)
15599 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
15600 || h->root.type != bfd_link_hash_undefweak))
15601 {
15602 if (tls_type & GOT_TLS_IE)
15603 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15604
15605 if (tls_type & GOT_TLS_GD)
15606 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15607
15608 if (tls_type & GOT_TLS_GDESC)
15609 {
15610 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
15611 /* GDESC needs a trampoline to jump to. */
15612 htab->tls_trampoline = -1;
15613 }
15614
15615 /* Only GD needs it. GDESC just emits one relocation per
15616 2 entries. */
15617 if ((tls_type & GOT_TLS_GD) && indx != 0)
15618 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15619 }
15620 else if (indx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
15621 {
15622 if (htab->root.dynamic_sections_created)
15623 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
15624 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15625 }
15626 else if (h->type == STT_GNU_IFUNC
15627 && eh->plt.noncall_refcount == 0)
15628 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
15629 they all resolve dynamically instead. Reserve room for the
15630 GOT entry's R_ARM_IRELATIVE relocation. */
15631 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
15632 else if (bfd_link_pic (info)
15633 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
15634 || h->root.type != bfd_link_hash_undefweak))
15635 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
15636 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15637 }
15638 }
15639 else
15640 h->got.offset = (bfd_vma) -1;
15641
15642 /* Allocate stubs for exported Thumb functions on v4t. */
15643 if (!htab->use_blx && h->dynindx != -1
15644 && h->def_regular
15645 && ARM_GET_SYM_BRANCH_TYPE (h->target_internal) == ST_BRANCH_TO_THUMB
15646 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
15647 {
15648 struct elf_link_hash_entry * th;
15649 struct bfd_link_hash_entry * bh;
15650 struct elf_link_hash_entry * myh;
15651 char name[1024];
15652 asection *s;
15653 bh = NULL;
15654 /* Create a new symbol to regist the real location of the function. */
15655 s = h->root.u.def.section;
15656 sprintf (name, "__real_%s", h->root.root.string);
15657 _bfd_generic_link_add_one_symbol (info, s->owner,
15658 name, BSF_GLOBAL, s,
15659 h->root.u.def.value,
15660 NULL, TRUE, FALSE, &bh);
15661
15662 myh = (struct elf_link_hash_entry *) bh;
15663 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
15664 myh->forced_local = 1;
15665 ARM_SET_SYM_BRANCH_TYPE (myh->target_internal, ST_BRANCH_TO_THUMB);
15666 eh->export_glue = myh;
15667 th = record_arm_to_thumb_glue (info, h);
15668 /* Point the symbol at the stub. */
15669 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
15670 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
15671 h->root.u.def.section = th->root.u.def.section;
15672 h->root.u.def.value = th->root.u.def.value & ~1;
15673 }
15674
15675 if (eh->dyn_relocs == NULL)
15676 return TRUE;
15677
15678 /* In the shared -Bsymbolic case, discard space allocated for
15679 dynamic pc-relative relocs against symbols which turn out to be
15680 defined in regular objects. For the normal shared case, discard
15681 space for pc-relative relocs that have become local due to symbol
15682 visibility changes. */
15683
15684 if (bfd_link_pic (info) || htab->root.is_relocatable_executable)
15685 {
15686 /* Relocs that use pc_count are PC-relative forms, which will appear
15687 on something like ".long foo - ." or "movw REG, foo - .". We want
15688 calls to protected symbols to resolve directly to the function
15689 rather than going via the plt. If people want function pointer
15690 comparisons to work as expected then they should avoid writing
15691 assembly like ".long foo - .". */
15692 if (SYMBOL_CALLS_LOCAL (info, h))
15693 {
15694 struct elf_dyn_relocs **pp;
15695
15696 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
15697 {
15698 p->count -= p->pc_count;
15699 p->pc_count = 0;
15700 if (p->count == 0)
15701 *pp = p->next;
15702 else
15703 pp = &p->next;
15704 }
15705 }
15706
15707 if (htab->vxworks_p)
15708 {
15709 struct elf_dyn_relocs **pp;
15710
15711 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
15712 {
15713 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
15714 *pp = p->next;
15715 else
15716 pp = &p->next;
15717 }
15718 }
15719
15720 /* Also discard relocs on undefined weak syms with non-default
15721 visibility. */
15722 if (eh->dyn_relocs != NULL
15723 && h->root.type == bfd_link_hash_undefweak)
15724 {
15725 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
15726 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
15727 eh->dyn_relocs = NULL;
15728
15729 /* Make sure undefined weak symbols are output as a dynamic
15730 symbol in PIEs. */
15731 else if (h->dynindx == -1
15732 && !h->forced_local)
15733 {
15734 if (! bfd_elf_link_record_dynamic_symbol (info, h))
15735 return FALSE;
15736 }
15737 }
15738
15739 else if (htab->root.is_relocatable_executable && h->dynindx == -1
15740 && h->root.type == bfd_link_hash_new)
15741 {
15742 /* Output absolute symbols so that we can create relocations
15743 against them. For normal symbols we output a relocation
15744 against the section that contains them. */
15745 if (! bfd_elf_link_record_dynamic_symbol (info, h))
15746 return FALSE;
15747 }
15748
15749 }
15750 else
15751 {
15752 /* For the non-shared case, discard space for relocs against
15753 symbols which turn out to need copy relocs or are not
15754 dynamic. */
15755
15756 if (!h->non_got_ref
15757 && ((h->def_dynamic
15758 && !h->def_regular)
15759 || (htab->root.dynamic_sections_created
15760 && (h->root.type == bfd_link_hash_undefweak
15761 || h->root.type == bfd_link_hash_undefined))))
15762 {
15763 /* Make sure this symbol is output as a dynamic symbol.
15764 Undefined weak syms won't yet be marked as dynamic. */
15765 if (h->dynindx == -1 && !h->forced_local
15766 && h->root.type == bfd_link_hash_undefweak)
15767 {
15768 if (! bfd_elf_link_record_dynamic_symbol (info, h))
15769 return FALSE;
15770 }
15771
15772 /* If that succeeded, we know we'll be keeping all the
15773 relocs. */
15774 if (h->dynindx != -1)
15775 goto keep;
15776 }
15777
15778 eh->dyn_relocs = NULL;
15779
15780 keep: ;
15781 }
15782
15783 /* Finally, allocate space. */
15784 for (p = eh->dyn_relocs; p != NULL; p = p->next)
15785 {
15786 asection *sreloc = elf_section_data (p->sec)->sreloc;
15787 if (h->type == STT_GNU_IFUNC
15788 && eh->plt.noncall_refcount == 0
15789 && SYMBOL_REFERENCES_LOCAL (info, h))
15790 elf32_arm_allocate_irelocs (info, sreloc, p->count);
15791 else
15792 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
15793 }
15794
15795 return TRUE;
15796 }
15797
15798 /* Find any dynamic relocs that apply to read-only sections. */
15799
15800 static bfd_boolean
15801 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
15802 {
15803 struct elf32_arm_link_hash_entry * eh;
15804 struct elf_dyn_relocs * p;
15805
15806 eh = (struct elf32_arm_link_hash_entry *) h;
15807 for (p = eh->dyn_relocs; p != NULL; p = p->next)
15808 {
15809 asection *s = p->sec;
15810
15811 if (s != NULL && (s->flags & SEC_READONLY) != 0)
15812 {
15813 struct bfd_link_info *info = (struct bfd_link_info *) inf;
15814
15815 info->flags |= DF_TEXTREL;
15816
15817 /* Not an error, just cut short the traversal. */
15818 return FALSE;
15819 }
15820 }
15821 return TRUE;
15822 }
15823
15824 void
15825 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
15826 int byteswap_code)
15827 {
15828 struct elf32_arm_link_hash_table *globals;
15829
15830 globals = elf32_arm_hash_table (info);
15831 if (globals == NULL)
15832 return;
15833
15834 globals->byteswap_code = byteswap_code;
15835 }
15836
15837 /* Set the sizes of the dynamic sections. */
15838
15839 static bfd_boolean
15840 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
15841 struct bfd_link_info * info)
15842 {
15843 bfd * dynobj;
15844 asection * s;
15845 bfd_boolean plt;
15846 bfd_boolean relocs;
15847 bfd *ibfd;
15848 struct elf32_arm_link_hash_table *htab;
15849
15850 htab = elf32_arm_hash_table (info);
15851 if (htab == NULL)
15852 return FALSE;
15853
15854 dynobj = elf_hash_table (info)->dynobj;
15855 BFD_ASSERT (dynobj != NULL);
15856 check_use_blx (htab);
15857
15858 if (elf_hash_table (info)->dynamic_sections_created)
15859 {
15860 /* Set the contents of the .interp section to the interpreter. */
15861 if (bfd_link_executable (info) && !info->nointerp)
15862 {
15863 s = bfd_get_linker_section (dynobj, ".interp");
15864 BFD_ASSERT (s != NULL);
15865 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
15866 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
15867 }
15868 }
15869
15870 /* Set up .got offsets for local syms, and space for local dynamic
15871 relocs. */
15872 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
15873 {
15874 bfd_signed_vma *local_got;
15875 bfd_signed_vma *end_local_got;
15876 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
15877 char *local_tls_type;
15878 bfd_vma *local_tlsdesc_gotent;
15879 bfd_size_type locsymcount;
15880 Elf_Internal_Shdr *symtab_hdr;
15881 asection *srel;
15882 bfd_boolean is_vxworks = htab->vxworks_p;
15883 unsigned int symndx;
15884
15885 if (! is_arm_elf (ibfd))
15886 continue;
15887
15888 for (s = ibfd->sections; s != NULL; s = s->next)
15889 {
15890 struct elf_dyn_relocs *p;
15891
15892 for (p = (struct elf_dyn_relocs *)
15893 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
15894 {
15895 if (!bfd_is_abs_section (p->sec)
15896 && bfd_is_abs_section (p->sec->output_section))
15897 {
15898 /* Input section has been discarded, either because
15899 it is a copy of a linkonce section or due to
15900 linker script /DISCARD/, so we'll be discarding
15901 the relocs too. */
15902 }
15903 else if (is_vxworks
15904 && strcmp (p->sec->output_section->name,
15905 ".tls_vars") == 0)
15906 {
15907 /* Relocations in vxworks .tls_vars sections are
15908 handled specially by the loader. */
15909 }
15910 else if (p->count != 0)
15911 {
15912 srel = elf_section_data (p->sec)->sreloc;
15913 elf32_arm_allocate_dynrelocs (info, srel, p->count);
15914 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
15915 info->flags |= DF_TEXTREL;
15916 }
15917 }
15918 }
15919
15920 local_got = elf_local_got_refcounts (ibfd);
15921 if (!local_got)
15922 continue;
15923
15924 symtab_hdr = & elf_symtab_hdr (ibfd);
15925 locsymcount = symtab_hdr->sh_info;
15926 end_local_got = local_got + locsymcount;
15927 local_iplt_ptr = elf32_arm_local_iplt (ibfd);
15928 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
15929 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
15930 symndx = 0;
15931 s = htab->root.sgot;
15932 srel = htab->root.srelgot;
15933 for (; local_got < end_local_got;
15934 ++local_got, ++local_iplt_ptr, ++local_tls_type,
15935 ++local_tlsdesc_gotent, ++symndx)
15936 {
15937 *local_tlsdesc_gotent = (bfd_vma) -1;
15938 local_iplt = *local_iplt_ptr;
15939 if (local_iplt != NULL)
15940 {
15941 struct elf_dyn_relocs *p;
15942
15943 if (local_iplt->root.refcount > 0)
15944 {
15945 elf32_arm_allocate_plt_entry (info, TRUE,
15946 &local_iplt->root,
15947 &local_iplt->arm);
15948 if (local_iplt->arm.noncall_refcount == 0)
15949 /* All references to the PLT are calls, so all
15950 non-call references can resolve directly to the
15951 run-time target. This means that the .got entry
15952 would be the same as the .igot.plt entry, so there's
15953 no point creating both. */
15954 *local_got = 0;
15955 }
15956 else
15957 {
15958 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
15959 local_iplt->root.offset = (bfd_vma) -1;
15960 }
15961
15962 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
15963 {
15964 asection *psrel;
15965
15966 psrel = elf_section_data (p->sec)->sreloc;
15967 if (local_iplt->arm.noncall_refcount == 0)
15968 elf32_arm_allocate_irelocs (info, psrel, p->count);
15969 else
15970 elf32_arm_allocate_dynrelocs (info, psrel, p->count);
15971 }
15972 }
15973 if (*local_got > 0)
15974 {
15975 Elf_Internal_Sym *isym;
15976
15977 *local_got = s->size;
15978 if (*local_tls_type & GOT_TLS_GD)
15979 /* TLS_GD relocs need an 8-byte structure in the GOT. */
15980 s->size += 8;
15981 if (*local_tls_type & GOT_TLS_GDESC)
15982 {
15983 *local_tlsdesc_gotent = htab->root.sgotplt->size
15984 - elf32_arm_compute_jump_table_size (htab);
15985 htab->root.sgotplt->size += 8;
15986 *local_got = (bfd_vma) -2;
15987 /* plt.got_offset needs to know there's a TLS_DESC
15988 reloc in the middle of .got.plt. */
15989 htab->num_tls_desc++;
15990 }
15991 if (*local_tls_type & GOT_TLS_IE)
15992 s->size += 4;
15993
15994 if (*local_tls_type & GOT_NORMAL)
15995 {
15996 /* If the symbol is both GD and GDESC, *local_got
15997 may have been overwritten. */
15998 *local_got = s->size;
15999 s->size += 4;
16000 }
16001
16002 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
16003 if (isym == NULL)
16004 return FALSE;
16005
16006 /* If all references to an STT_GNU_IFUNC PLT are calls,
16007 then all non-call references, including this GOT entry,
16008 resolve directly to the run-time target. */
16009 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
16010 && (local_iplt == NULL
16011 || local_iplt->arm.noncall_refcount == 0))
16012 elf32_arm_allocate_irelocs (info, srel, 1);
16013 else if (bfd_link_pic (info) || output_bfd->flags & DYNAMIC)
16014 {
16015 if ((bfd_link_pic (info) && !(*local_tls_type & GOT_TLS_GDESC))
16016 || *local_tls_type & GOT_TLS_GD)
16017 elf32_arm_allocate_dynrelocs (info, srel, 1);
16018
16019 if (bfd_link_pic (info) && *local_tls_type & GOT_TLS_GDESC)
16020 {
16021 elf32_arm_allocate_dynrelocs (info,
16022 htab->root.srelplt, 1);
16023 htab->tls_trampoline = -1;
16024 }
16025 }
16026 }
16027 else
16028 *local_got = (bfd_vma) -1;
16029 }
16030 }
16031
16032 if (htab->tls_ldm_got.refcount > 0)
16033 {
16034 /* Allocate two GOT entries and one dynamic relocation (if necessary)
16035 for R_ARM_TLS_LDM32 relocations. */
16036 htab->tls_ldm_got.offset = htab->root.sgot->size;
16037 htab->root.sgot->size += 8;
16038 if (bfd_link_pic (info))
16039 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16040 }
16041 else
16042 htab->tls_ldm_got.offset = -1;
16043
16044 /* Allocate global sym .plt and .got entries, and space for global
16045 sym dynamic relocs. */
16046 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
16047
16048 /* Here we rummage through the found bfds to collect glue information. */
16049 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
16050 {
16051 if (! is_arm_elf (ibfd))
16052 continue;
16053
16054 /* Initialise mapping tables for code/data. */
16055 bfd_elf32_arm_init_maps (ibfd);
16056
16057 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
16058 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info)
16059 || !bfd_elf32_arm_stm32l4xx_erratum_scan (ibfd, info))
16060 _bfd_error_handler (_("Errors encountered processing file %B"), ibfd);
16061 }
16062
16063 /* Allocate space for the glue sections now that we've sized them. */
16064 bfd_elf32_arm_allocate_interworking_sections (info);
16065
16066 /* For every jump slot reserved in the sgotplt, reloc_count is
16067 incremented. However, when we reserve space for TLS descriptors,
16068 it's not incremented, so in order to compute the space reserved
16069 for them, it suffices to multiply the reloc count by the jump
16070 slot size. */
16071 if (htab->root.srelplt)
16072 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
16073
16074 if (htab->tls_trampoline)
16075 {
16076 if (htab->root.splt->size == 0)
16077 htab->root.splt->size += htab->plt_header_size;
16078
16079 htab->tls_trampoline = htab->root.splt->size;
16080 htab->root.splt->size += htab->plt_entry_size;
16081
16082 /* If we're not using lazy TLS relocations, don't generate the
16083 PLT and GOT entries they require. */
16084 if (!(info->flags & DF_BIND_NOW))
16085 {
16086 htab->dt_tlsdesc_got = htab->root.sgot->size;
16087 htab->root.sgot->size += 4;
16088
16089 htab->dt_tlsdesc_plt = htab->root.splt->size;
16090 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
16091 }
16092 }
16093
16094 /* The check_relocs and adjust_dynamic_symbol entry points have
16095 determined the sizes of the various dynamic sections. Allocate
16096 memory for them. */
16097 plt = FALSE;
16098 relocs = FALSE;
16099 for (s = dynobj->sections; s != NULL; s = s->next)
16100 {
16101 const char * name;
16102
16103 if ((s->flags & SEC_LINKER_CREATED) == 0)
16104 continue;
16105
16106 /* It's OK to base decisions on the section name, because none
16107 of the dynobj section names depend upon the input files. */
16108 name = bfd_get_section_name (dynobj, s);
16109
16110 if (s == htab->root.splt)
16111 {
16112 /* Remember whether there is a PLT. */
16113 plt = s->size != 0;
16114 }
16115 else if (CONST_STRNEQ (name, ".rel"))
16116 {
16117 if (s->size != 0)
16118 {
16119 /* Remember whether there are any reloc sections other
16120 than .rel(a).plt and .rela.plt.unloaded. */
16121 if (s != htab->root.srelplt && s != htab->srelplt2)
16122 relocs = TRUE;
16123
16124 /* We use the reloc_count field as a counter if we need
16125 to copy relocs into the output file. */
16126 s->reloc_count = 0;
16127 }
16128 }
16129 else if (s != htab->root.sgot
16130 && s != htab->root.sgotplt
16131 && s != htab->root.iplt
16132 && s != htab->root.igotplt
16133 && s != htab->root.sdynbss
16134 && s != htab->root.sdynrelro)
16135 {
16136 /* It's not one of our sections, so don't allocate space. */
16137 continue;
16138 }
16139
16140 if (s->size == 0)
16141 {
16142 /* If we don't need this section, strip it from the
16143 output file. This is mostly to handle .rel(a).bss and
16144 .rel(a).plt. We must create both sections in
16145 create_dynamic_sections, because they must be created
16146 before the linker maps input sections to output
16147 sections. The linker does that before
16148 adjust_dynamic_symbol is called, and it is that
16149 function which decides whether anything needs to go
16150 into these sections. */
16151 s->flags |= SEC_EXCLUDE;
16152 continue;
16153 }
16154
16155 if ((s->flags & SEC_HAS_CONTENTS) == 0)
16156 continue;
16157
16158 /* Allocate memory for the section contents. */
16159 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
16160 if (s->contents == NULL)
16161 return FALSE;
16162 }
16163
16164 if (elf_hash_table (info)->dynamic_sections_created)
16165 {
16166 /* Add some entries to the .dynamic section. We fill in the
16167 values later, in elf32_arm_finish_dynamic_sections, but we
16168 must add the entries now so that we get the correct size for
16169 the .dynamic section. The DT_DEBUG entry is filled in by the
16170 dynamic linker and used by the debugger. */
16171 #define add_dynamic_entry(TAG, VAL) \
16172 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
16173
16174 if (bfd_link_executable (info))
16175 {
16176 if (!add_dynamic_entry (DT_DEBUG, 0))
16177 return FALSE;
16178 }
16179
16180 if (plt)
16181 {
16182 if ( !add_dynamic_entry (DT_PLTGOT, 0)
16183 || !add_dynamic_entry (DT_PLTRELSZ, 0)
16184 || !add_dynamic_entry (DT_PLTREL,
16185 htab->use_rel ? DT_REL : DT_RELA)
16186 || !add_dynamic_entry (DT_JMPREL, 0))
16187 return FALSE;
16188
16189 if (htab->dt_tlsdesc_plt
16190 && (!add_dynamic_entry (DT_TLSDESC_PLT,0)
16191 || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
16192 return FALSE;
16193 }
16194
16195 if (relocs)
16196 {
16197 if (htab->use_rel)
16198 {
16199 if (!add_dynamic_entry (DT_REL, 0)
16200 || !add_dynamic_entry (DT_RELSZ, 0)
16201 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
16202 return FALSE;
16203 }
16204 else
16205 {
16206 if (!add_dynamic_entry (DT_RELA, 0)
16207 || !add_dynamic_entry (DT_RELASZ, 0)
16208 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
16209 return FALSE;
16210 }
16211 }
16212
16213 /* If any dynamic relocs apply to a read-only section,
16214 then we need a DT_TEXTREL entry. */
16215 if ((info->flags & DF_TEXTREL) == 0)
16216 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
16217 info);
16218
16219 if ((info->flags & DF_TEXTREL) != 0)
16220 {
16221 if (!add_dynamic_entry (DT_TEXTREL, 0))
16222 return FALSE;
16223 }
16224 if (htab->vxworks_p
16225 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
16226 return FALSE;
16227 }
16228 #undef add_dynamic_entry
16229
16230 return TRUE;
16231 }
16232
16233 /* Size sections even though they're not dynamic. We use it to setup
16234 _TLS_MODULE_BASE_, if needed. */
16235
16236 static bfd_boolean
16237 elf32_arm_always_size_sections (bfd *output_bfd,
16238 struct bfd_link_info *info)
16239 {
16240 asection *tls_sec;
16241
16242 if (bfd_link_relocatable (info))
16243 return TRUE;
16244
16245 tls_sec = elf_hash_table (info)->tls_sec;
16246
16247 if (tls_sec)
16248 {
16249 struct elf_link_hash_entry *tlsbase;
16250
16251 tlsbase = elf_link_hash_lookup
16252 (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
16253
16254 if (tlsbase)
16255 {
16256 struct bfd_link_hash_entry *bh = NULL;
16257 const struct elf_backend_data *bed
16258 = get_elf_backend_data (output_bfd);
16259
16260 if (!(_bfd_generic_link_add_one_symbol
16261 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
16262 tls_sec, 0, NULL, FALSE,
16263 bed->collect, &bh)))
16264 return FALSE;
16265
16266 tlsbase->type = STT_TLS;
16267 tlsbase = (struct elf_link_hash_entry *)bh;
16268 tlsbase->def_regular = 1;
16269 tlsbase->other = STV_HIDDEN;
16270 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
16271 }
16272 }
16273 return TRUE;
16274 }
16275
16276 /* Finish up dynamic symbol handling. We set the contents of various
16277 dynamic sections here. */
16278
16279 static bfd_boolean
16280 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
16281 struct bfd_link_info * info,
16282 struct elf_link_hash_entry * h,
16283 Elf_Internal_Sym * sym)
16284 {
16285 struct elf32_arm_link_hash_table *htab;
16286 struct elf32_arm_link_hash_entry *eh;
16287
16288 htab = elf32_arm_hash_table (info);
16289 if (htab == NULL)
16290 return FALSE;
16291
16292 eh = (struct elf32_arm_link_hash_entry *) h;
16293
16294 if (h->plt.offset != (bfd_vma) -1)
16295 {
16296 if (!eh->is_iplt)
16297 {
16298 BFD_ASSERT (h->dynindx != -1);
16299 if (! elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
16300 h->dynindx, 0))
16301 return FALSE;
16302 }
16303
16304 if (!h->def_regular)
16305 {
16306 /* Mark the symbol as undefined, rather than as defined in
16307 the .plt section. */
16308 sym->st_shndx = SHN_UNDEF;
16309 /* If the symbol is weak we need to clear the value.
16310 Otherwise, the PLT entry would provide a definition for
16311 the symbol even if the symbol wasn't defined anywhere,
16312 and so the symbol would never be NULL. Leave the value if
16313 there were any relocations where pointer equality matters
16314 (this is a clue for the dynamic linker, to make function
16315 pointer comparisons work between an application and shared
16316 library). */
16317 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
16318 sym->st_value = 0;
16319 }
16320 else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
16321 {
16322 /* At least one non-call relocation references this .iplt entry,
16323 so the .iplt entry is the function's canonical address. */
16324 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
16325 ARM_SET_SYM_BRANCH_TYPE (sym->st_target_internal, ST_BRANCH_TO_ARM);
16326 sym->st_shndx = (_bfd_elf_section_from_bfd_section
16327 (output_bfd, htab->root.iplt->output_section));
16328 sym->st_value = (h->plt.offset
16329 + htab->root.iplt->output_section->vma
16330 + htab->root.iplt->output_offset);
16331 }
16332 }
16333
16334 if (h->needs_copy)
16335 {
16336 asection * s;
16337 Elf_Internal_Rela rel;
16338
16339 /* This symbol needs a copy reloc. Set it up. */
16340 BFD_ASSERT (h->dynindx != -1
16341 && (h->root.type == bfd_link_hash_defined
16342 || h->root.type == bfd_link_hash_defweak));
16343
16344 rel.r_addend = 0;
16345 rel.r_offset = (h->root.u.def.value
16346 + h->root.u.def.section->output_section->vma
16347 + h->root.u.def.section->output_offset);
16348 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
16349 if (h->root.u.def.section == htab->root.sdynrelro)
16350 s = htab->root.sreldynrelro;
16351 else
16352 s = htab->root.srelbss;
16353 elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
16354 }
16355
16356 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
16357 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
16358 to the ".got" section. */
16359 if (h == htab->root.hdynamic
16360 || (!htab->vxworks_p && h == htab->root.hgot))
16361 sym->st_shndx = SHN_ABS;
16362
16363 return TRUE;
16364 }
16365
16366 static void
16367 arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
16368 void *contents,
16369 const unsigned long *template, unsigned count)
16370 {
16371 unsigned ix;
16372
16373 for (ix = 0; ix != count; ix++)
16374 {
16375 unsigned long insn = template[ix];
16376
16377 /* Emit mov pc,rx if bx is not permitted. */
16378 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
16379 insn = (insn & 0xf000000f) | 0x01a0f000;
16380 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
16381 }
16382 }
16383
16384 /* Install the special first PLT entry for elf32-arm-nacl. Unlike
16385 other variants, NaCl needs this entry in a static executable's
16386 .iplt too. When we're handling that case, GOT_DISPLACEMENT is
16387 zero. For .iplt really only the last bundle is useful, and .iplt
16388 could have a shorter first entry, with each individual PLT entry's
16389 relative branch calculated differently so it targets the last
16390 bundle instead of the instruction before it (labelled .Lplt_tail
16391 above). But it's simpler to keep the size and layout of PLT0
16392 consistent with the dynamic case, at the cost of some dead code at
16393 the start of .iplt and the one dead store to the stack at the start
16394 of .Lplt_tail. */
16395 static void
16396 arm_nacl_put_plt0 (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
16397 asection *plt, bfd_vma got_displacement)
16398 {
16399 unsigned int i;
16400
16401 put_arm_insn (htab, output_bfd,
16402 elf32_arm_nacl_plt0_entry[0]
16403 | arm_movw_immediate (got_displacement),
16404 plt->contents + 0);
16405 put_arm_insn (htab, output_bfd,
16406 elf32_arm_nacl_plt0_entry[1]
16407 | arm_movt_immediate (got_displacement),
16408 plt->contents + 4);
16409
16410 for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i)
16411 put_arm_insn (htab, output_bfd,
16412 elf32_arm_nacl_plt0_entry[i],
16413 plt->contents + (i * 4));
16414 }
16415
16416 /* Finish up the dynamic sections. */
16417
16418 static bfd_boolean
16419 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
16420 {
16421 bfd * dynobj;
16422 asection * sgot;
16423 asection * sdyn;
16424 struct elf32_arm_link_hash_table *htab;
16425
16426 htab = elf32_arm_hash_table (info);
16427 if (htab == NULL)
16428 return FALSE;
16429
16430 dynobj = elf_hash_table (info)->dynobj;
16431
16432 sgot = htab->root.sgotplt;
16433 /* A broken linker script might have discarded the dynamic sections.
16434 Catch this here so that we do not seg-fault later on. */
16435 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
16436 return FALSE;
16437 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
16438
16439 if (elf_hash_table (info)->dynamic_sections_created)
16440 {
16441 asection *splt;
16442 Elf32_External_Dyn *dyncon, *dynconend;
16443
16444 splt = htab->root.splt;
16445 BFD_ASSERT (splt != NULL && sdyn != NULL);
16446 BFD_ASSERT (htab->symbian_p || sgot != NULL);
16447
16448 dyncon = (Elf32_External_Dyn *) sdyn->contents;
16449 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
16450
16451 for (; dyncon < dynconend; dyncon++)
16452 {
16453 Elf_Internal_Dyn dyn;
16454 const char * name;
16455 asection * s;
16456
16457 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
16458
16459 switch (dyn.d_tag)
16460 {
16461 unsigned int type;
16462
16463 default:
16464 if (htab->vxworks_p
16465 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
16466 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16467 break;
16468
16469 case DT_HASH:
16470 name = ".hash";
16471 goto get_vma_if_bpabi;
16472 case DT_STRTAB:
16473 name = ".dynstr";
16474 goto get_vma_if_bpabi;
16475 case DT_SYMTAB:
16476 name = ".dynsym";
16477 goto get_vma_if_bpabi;
16478 case DT_VERSYM:
16479 name = ".gnu.version";
16480 goto get_vma_if_bpabi;
16481 case DT_VERDEF:
16482 name = ".gnu.version_d";
16483 goto get_vma_if_bpabi;
16484 case DT_VERNEED:
16485 name = ".gnu.version_r";
16486 goto get_vma_if_bpabi;
16487
16488 case DT_PLTGOT:
16489 name = htab->symbian_p ? ".got" : ".got.plt";
16490 goto get_vma;
16491 case DT_JMPREL:
16492 name = RELOC_SECTION (htab, ".plt");
16493 get_vma:
16494 s = bfd_get_linker_section (dynobj, name);
16495 if (s == NULL)
16496 {
16497 _bfd_error_handler
16498 (_("could not find section %s"), name);
16499 bfd_set_error (bfd_error_invalid_operation);
16500 return FALSE;
16501 }
16502 if (!htab->symbian_p)
16503 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
16504 else
16505 /* In the BPABI, tags in the PT_DYNAMIC section point
16506 at the file offset, not the memory address, for the
16507 convenience of the post linker. */
16508 dyn.d_un.d_ptr = s->output_section->filepos + s->output_offset;
16509 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16510 break;
16511
16512 get_vma_if_bpabi:
16513 if (htab->symbian_p)
16514 goto get_vma;
16515 break;
16516
16517 case DT_PLTRELSZ:
16518 s = htab->root.srelplt;
16519 BFD_ASSERT (s != NULL);
16520 dyn.d_un.d_val = s->size;
16521 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16522 break;
16523
16524 case DT_RELSZ:
16525 case DT_RELASZ:
16526 case DT_REL:
16527 case DT_RELA:
16528 /* In the BPABI, the DT_REL tag must point at the file
16529 offset, not the VMA, of the first relocation
16530 section. So, we use code similar to that in
16531 elflink.c, but do not check for SHF_ALLOC on the
16532 relocation section, since relocation sections are
16533 never allocated under the BPABI. PLT relocs are also
16534 included. */
16535 if (htab->symbian_p)
16536 {
16537 unsigned int i;
16538 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
16539 ? SHT_REL : SHT_RELA);
16540 dyn.d_un.d_val = 0;
16541 for (i = 1; i < elf_numsections (output_bfd); i++)
16542 {
16543 Elf_Internal_Shdr *hdr
16544 = elf_elfsections (output_bfd)[i];
16545 if (hdr->sh_type == type)
16546 {
16547 if (dyn.d_tag == DT_RELSZ
16548 || dyn.d_tag == DT_RELASZ)
16549 dyn.d_un.d_val += hdr->sh_size;
16550 else if ((ufile_ptr) hdr->sh_offset
16551 <= dyn.d_un.d_val - 1)
16552 dyn.d_un.d_val = hdr->sh_offset;
16553 }
16554 }
16555 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16556 }
16557 break;
16558
16559 case DT_TLSDESC_PLT:
16560 s = htab->root.splt;
16561 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
16562 + htab->dt_tlsdesc_plt);
16563 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16564 break;
16565
16566 case DT_TLSDESC_GOT:
16567 s = htab->root.sgot;
16568 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
16569 + htab->dt_tlsdesc_got);
16570 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16571 break;
16572
16573 /* Set the bottom bit of DT_INIT/FINI if the
16574 corresponding function is Thumb. */
16575 case DT_INIT:
16576 name = info->init_function;
16577 goto get_sym;
16578 case DT_FINI:
16579 name = info->fini_function;
16580 get_sym:
16581 /* If it wasn't set by elf_bfd_final_link
16582 then there is nothing to adjust. */
16583 if (dyn.d_un.d_val != 0)
16584 {
16585 struct elf_link_hash_entry * eh;
16586
16587 eh = elf_link_hash_lookup (elf_hash_table (info), name,
16588 FALSE, FALSE, TRUE);
16589 if (eh != NULL
16590 && ARM_GET_SYM_BRANCH_TYPE (eh->target_internal)
16591 == ST_BRANCH_TO_THUMB)
16592 {
16593 dyn.d_un.d_val |= 1;
16594 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16595 }
16596 }
16597 break;
16598 }
16599 }
16600
16601 /* Fill in the first entry in the procedure linkage table. */
16602 if (splt->size > 0 && htab->plt_header_size)
16603 {
16604 const bfd_vma *plt0_entry;
16605 bfd_vma got_address, plt_address, got_displacement;
16606
16607 /* Calculate the addresses of the GOT and PLT. */
16608 got_address = sgot->output_section->vma + sgot->output_offset;
16609 plt_address = splt->output_section->vma + splt->output_offset;
16610
16611 if (htab->vxworks_p)
16612 {
16613 /* The VxWorks GOT is relocated by the dynamic linker.
16614 Therefore, we must emit relocations rather than simply
16615 computing the values now. */
16616 Elf_Internal_Rela rel;
16617
16618 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
16619 put_arm_insn (htab, output_bfd, plt0_entry[0],
16620 splt->contents + 0);
16621 put_arm_insn (htab, output_bfd, plt0_entry[1],
16622 splt->contents + 4);
16623 put_arm_insn (htab, output_bfd, plt0_entry[2],
16624 splt->contents + 8);
16625 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
16626
16627 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
16628 rel.r_offset = plt_address + 12;
16629 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
16630 rel.r_addend = 0;
16631 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
16632 htab->srelplt2->contents);
16633 }
16634 else if (htab->nacl_p)
16635 arm_nacl_put_plt0 (htab, output_bfd, splt,
16636 got_address + 8 - (plt_address + 16));
16637 else if (using_thumb_only (htab))
16638 {
16639 got_displacement = got_address - (plt_address + 12);
16640
16641 plt0_entry = elf32_thumb2_plt0_entry;
16642 put_arm_insn (htab, output_bfd, plt0_entry[0],
16643 splt->contents + 0);
16644 put_arm_insn (htab, output_bfd, plt0_entry[1],
16645 splt->contents + 4);
16646 put_arm_insn (htab, output_bfd, plt0_entry[2],
16647 splt->contents + 8);
16648
16649 bfd_put_32 (output_bfd, got_displacement, splt->contents + 12);
16650 }
16651 else
16652 {
16653 got_displacement = got_address - (plt_address + 16);
16654
16655 plt0_entry = elf32_arm_plt0_entry;
16656 put_arm_insn (htab, output_bfd, plt0_entry[0],
16657 splt->contents + 0);
16658 put_arm_insn (htab, output_bfd, plt0_entry[1],
16659 splt->contents + 4);
16660 put_arm_insn (htab, output_bfd, plt0_entry[2],
16661 splt->contents + 8);
16662 put_arm_insn (htab, output_bfd, plt0_entry[3],
16663 splt->contents + 12);
16664
16665 #ifdef FOUR_WORD_PLT
16666 /* The displacement value goes in the otherwise-unused
16667 last word of the second entry. */
16668 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
16669 #else
16670 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
16671 #endif
16672 }
16673 }
16674
16675 /* UnixWare sets the entsize of .plt to 4, although that doesn't
16676 really seem like the right value. */
16677 if (splt->output_section->owner == output_bfd)
16678 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
16679
16680 if (htab->dt_tlsdesc_plt)
16681 {
16682 bfd_vma got_address
16683 = sgot->output_section->vma + sgot->output_offset;
16684 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
16685 + htab->root.sgot->output_offset);
16686 bfd_vma plt_address
16687 = splt->output_section->vma + splt->output_offset;
16688
16689 arm_put_trampoline (htab, output_bfd,
16690 splt->contents + htab->dt_tlsdesc_plt,
16691 dl_tlsdesc_lazy_trampoline, 6);
16692
16693 bfd_put_32 (output_bfd,
16694 gotplt_address + htab->dt_tlsdesc_got
16695 - (plt_address + htab->dt_tlsdesc_plt)
16696 - dl_tlsdesc_lazy_trampoline[6],
16697 splt->contents + htab->dt_tlsdesc_plt + 24);
16698 bfd_put_32 (output_bfd,
16699 got_address - (plt_address + htab->dt_tlsdesc_plt)
16700 - dl_tlsdesc_lazy_trampoline[7],
16701 splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
16702 }
16703
16704 if (htab->tls_trampoline)
16705 {
16706 arm_put_trampoline (htab, output_bfd,
16707 splt->contents + htab->tls_trampoline,
16708 tls_trampoline, 3);
16709 #ifdef FOUR_WORD_PLT
16710 bfd_put_32 (output_bfd, 0x00000000,
16711 splt->contents + htab->tls_trampoline + 12);
16712 #endif
16713 }
16714
16715 if (htab->vxworks_p
16716 && !bfd_link_pic (info)
16717 && htab->root.splt->size > 0)
16718 {
16719 /* Correct the .rel(a).plt.unloaded relocations. They will have
16720 incorrect symbol indexes. */
16721 int num_plts;
16722 unsigned char *p;
16723
16724 num_plts = ((htab->root.splt->size - htab->plt_header_size)
16725 / htab->plt_entry_size);
16726 p = htab->srelplt2->contents + RELOC_SIZE (htab);
16727
16728 for (; num_plts; num_plts--)
16729 {
16730 Elf_Internal_Rela rel;
16731
16732 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
16733 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
16734 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
16735 p += RELOC_SIZE (htab);
16736
16737 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
16738 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
16739 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
16740 p += RELOC_SIZE (htab);
16741 }
16742 }
16743 }
16744
16745 if (htab->nacl_p && htab->root.iplt != NULL && htab->root.iplt->size > 0)
16746 /* NaCl uses a special first entry in .iplt too. */
16747 arm_nacl_put_plt0 (htab, output_bfd, htab->root.iplt, 0);
16748
16749 /* Fill in the first three entries in the global offset table. */
16750 if (sgot)
16751 {
16752 if (sgot->size > 0)
16753 {
16754 if (sdyn == NULL)
16755 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
16756 else
16757 bfd_put_32 (output_bfd,
16758 sdyn->output_section->vma + sdyn->output_offset,
16759 sgot->contents);
16760 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
16761 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
16762 }
16763
16764 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
16765 }
16766
16767 return TRUE;
16768 }
16769
16770 static void
16771 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
16772 {
16773 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
16774 struct elf32_arm_link_hash_table *globals;
16775 struct elf_segment_map *m;
16776
16777 i_ehdrp = elf_elfheader (abfd);
16778
16779 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
16780 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
16781 else
16782 _bfd_elf_post_process_headers (abfd, link_info);
16783 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
16784
16785 if (link_info)
16786 {
16787 globals = elf32_arm_hash_table (link_info);
16788 if (globals != NULL && globals->byteswap_code)
16789 i_ehdrp->e_flags |= EF_ARM_BE8;
16790 }
16791
16792 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5
16793 && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC)))
16794 {
16795 int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args);
16796 if (abi == AEABI_VFP_args_vfp)
16797 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD;
16798 else
16799 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT;
16800 }
16801
16802 /* Scan segment to set p_flags attribute if it contains only sections with
16803 SHF_ARM_PURECODE flag. */
16804 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
16805 {
16806 unsigned int j;
16807
16808 if (m->count == 0)
16809 continue;
16810 for (j = 0; j < m->count; j++)
16811 {
16812 if (!(elf_section_flags (m->sections[j]) & SHF_ARM_PURECODE))
16813 break;
16814 }
16815 if (j == m->count)
16816 {
16817 m->p_flags = PF_X;
16818 m->p_flags_valid = 1;
16819 }
16820 }
16821 }
16822
16823 static enum elf_reloc_type_class
16824 elf32_arm_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
16825 const asection *rel_sec ATTRIBUTE_UNUSED,
16826 const Elf_Internal_Rela *rela)
16827 {
16828 switch ((int) ELF32_R_TYPE (rela->r_info))
16829 {
16830 case R_ARM_RELATIVE:
16831 return reloc_class_relative;
16832 case R_ARM_JUMP_SLOT:
16833 return reloc_class_plt;
16834 case R_ARM_COPY:
16835 return reloc_class_copy;
16836 case R_ARM_IRELATIVE:
16837 return reloc_class_ifunc;
16838 default:
16839 return reloc_class_normal;
16840 }
16841 }
16842
16843 static void
16844 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
16845 {
16846 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
16847 }
16848
16849 /* Return TRUE if this is an unwinding table entry. */
16850
16851 static bfd_boolean
16852 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
16853 {
16854 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
16855 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
16856 }
16857
16858
16859 /* Set the type and flags for an ARM section. We do this by
16860 the section name, which is a hack, but ought to work. */
16861
16862 static bfd_boolean
16863 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
16864 {
16865 const char * name;
16866
16867 name = bfd_get_section_name (abfd, sec);
16868
16869 if (is_arm_elf_unwind_section_name (abfd, name))
16870 {
16871 hdr->sh_type = SHT_ARM_EXIDX;
16872 hdr->sh_flags |= SHF_LINK_ORDER;
16873 }
16874
16875 if (sec->flags & SEC_ELF_PURECODE)
16876 hdr->sh_flags |= SHF_ARM_PURECODE;
16877
16878 return TRUE;
16879 }
16880
16881 /* Handle an ARM specific section when reading an object file. This is
16882 called when bfd_section_from_shdr finds a section with an unknown
16883 type. */
16884
16885 static bfd_boolean
16886 elf32_arm_section_from_shdr (bfd *abfd,
16887 Elf_Internal_Shdr * hdr,
16888 const char *name,
16889 int shindex)
16890 {
16891 /* There ought to be a place to keep ELF backend specific flags, but
16892 at the moment there isn't one. We just keep track of the
16893 sections by their name, instead. Fortunately, the ABI gives
16894 names for all the ARM specific sections, so we will probably get
16895 away with this. */
16896 switch (hdr->sh_type)
16897 {
16898 case SHT_ARM_EXIDX:
16899 case SHT_ARM_PREEMPTMAP:
16900 case SHT_ARM_ATTRIBUTES:
16901 break;
16902
16903 default:
16904 return FALSE;
16905 }
16906
16907 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
16908 return FALSE;
16909
16910 return TRUE;
16911 }
16912
16913 static _arm_elf_section_data *
16914 get_arm_elf_section_data (asection * sec)
16915 {
16916 if (sec && sec->owner && is_arm_elf (sec->owner))
16917 return elf32_arm_section_data (sec);
16918 else
16919 return NULL;
16920 }
16921
16922 typedef struct
16923 {
16924 void *flaginfo;
16925 struct bfd_link_info *info;
16926 asection *sec;
16927 int sec_shndx;
16928 int (*func) (void *, const char *, Elf_Internal_Sym *,
16929 asection *, struct elf_link_hash_entry *);
16930 } output_arch_syminfo;
16931
16932 enum map_symbol_type
16933 {
16934 ARM_MAP_ARM,
16935 ARM_MAP_THUMB,
16936 ARM_MAP_DATA
16937 };
16938
16939
16940 /* Output a single mapping symbol. */
16941
16942 static bfd_boolean
16943 elf32_arm_output_map_sym (output_arch_syminfo *osi,
16944 enum map_symbol_type type,
16945 bfd_vma offset)
16946 {
16947 static const char *names[3] = {"$a", "$t", "$d"};
16948 Elf_Internal_Sym sym;
16949
16950 sym.st_value = osi->sec->output_section->vma
16951 + osi->sec->output_offset
16952 + offset;
16953 sym.st_size = 0;
16954 sym.st_other = 0;
16955 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
16956 sym.st_shndx = osi->sec_shndx;
16957 sym.st_target_internal = 0;
16958 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
16959 return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1;
16960 }
16961
16962 /* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
16963 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
16964
16965 static bfd_boolean
16966 elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
16967 bfd_boolean is_iplt_entry_p,
16968 union gotplt_union *root_plt,
16969 struct arm_plt_info *arm_plt)
16970 {
16971 struct elf32_arm_link_hash_table *htab;
16972 bfd_vma addr, plt_header_size;
16973
16974 if (root_plt->offset == (bfd_vma) -1)
16975 return TRUE;
16976
16977 htab = elf32_arm_hash_table (osi->info);
16978 if (htab == NULL)
16979 return FALSE;
16980
16981 if (is_iplt_entry_p)
16982 {
16983 osi->sec = htab->root.iplt;
16984 plt_header_size = 0;
16985 }
16986 else
16987 {
16988 osi->sec = htab->root.splt;
16989 plt_header_size = htab->plt_header_size;
16990 }
16991 osi->sec_shndx = (_bfd_elf_section_from_bfd_section
16992 (osi->info->output_bfd, osi->sec->output_section));
16993
16994 addr = root_plt->offset & -2;
16995 if (htab->symbian_p)
16996 {
16997 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
16998 return FALSE;
16999 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
17000 return FALSE;
17001 }
17002 else if (htab->vxworks_p)
17003 {
17004 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
17005 return FALSE;
17006 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
17007 return FALSE;
17008 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
17009 return FALSE;
17010 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
17011 return FALSE;
17012 }
17013 else if (htab->nacl_p)
17014 {
17015 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
17016 return FALSE;
17017 }
17018 else if (using_thumb_only (htab))
17019 {
17020 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
17021 return FALSE;
17022 }
17023 else
17024 {
17025 bfd_boolean thumb_stub_p;
17026
17027 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
17028 if (thumb_stub_p)
17029 {
17030 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
17031 return FALSE;
17032 }
17033 #ifdef FOUR_WORD_PLT
17034 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
17035 return FALSE;
17036 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
17037 return FALSE;
17038 #else
17039 /* A three-word PLT with no Thumb thunk contains only Arm code,
17040 so only need to output a mapping symbol for the first PLT entry and
17041 entries with thumb thunks. */
17042 if (thumb_stub_p || addr == plt_header_size)
17043 {
17044 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
17045 return FALSE;
17046 }
17047 #endif
17048 }
17049
17050 return TRUE;
17051 }
17052
17053 /* Output mapping symbols for PLT entries associated with H. */
17054
17055 static bfd_boolean
17056 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
17057 {
17058 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
17059 struct elf32_arm_link_hash_entry *eh;
17060
17061 if (h->root.type == bfd_link_hash_indirect)
17062 return TRUE;
17063
17064 if (h->root.type == bfd_link_hash_warning)
17065 /* When warning symbols are created, they **replace** the "real"
17066 entry in the hash table, thus we never get to see the real
17067 symbol in a hash traversal. So look at it now. */
17068 h = (struct elf_link_hash_entry *) h->root.u.i.link;
17069
17070 eh = (struct elf32_arm_link_hash_entry *) h;
17071 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
17072 &h->plt, &eh->plt);
17073 }
17074
17075 /* Bind a veneered symbol to its veneer identified by its hash entry
17076 STUB_ENTRY. The veneered location thus loose its symbol. */
17077
17078 static void
17079 arm_stub_claim_sym (struct elf32_arm_stub_hash_entry *stub_entry)
17080 {
17081 struct elf32_arm_link_hash_entry *hash = stub_entry->h;
17082
17083 BFD_ASSERT (hash);
17084 hash->root.root.u.def.section = stub_entry->stub_sec;
17085 hash->root.root.u.def.value = stub_entry->stub_offset;
17086 hash->root.size = stub_entry->stub_size;
17087 }
17088
17089 /* Output a single local symbol for a generated stub. */
17090
17091 static bfd_boolean
17092 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
17093 bfd_vma offset, bfd_vma size)
17094 {
17095 Elf_Internal_Sym sym;
17096
17097 sym.st_value = osi->sec->output_section->vma
17098 + osi->sec->output_offset
17099 + offset;
17100 sym.st_size = size;
17101 sym.st_other = 0;
17102 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
17103 sym.st_shndx = osi->sec_shndx;
17104 sym.st_target_internal = 0;
17105 return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1;
17106 }
17107
17108 static bfd_boolean
17109 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
17110 void * in_arg)
17111 {
17112 struct elf32_arm_stub_hash_entry *stub_entry;
17113 asection *stub_sec;
17114 bfd_vma addr;
17115 char *stub_name;
17116 output_arch_syminfo *osi;
17117 const insn_sequence *template_sequence;
17118 enum stub_insn_type prev_type;
17119 int size;
17120 int i;
17121 enum map_symbol_type sym_type;
17122
17123 /* Massage our args to the form they really have. */
17124 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
17125 osi = (output_arch_syminfo *) in_arg;
17126
17127 stub_sec = stub_entry->stub_sec;
17128
17129 /* Ensure this stub is attached to the current section being
17130 processed. */
17131 if (stub_sec != osi->sec)
17132 return TRUE;
17133
17134 addr = (bfd_vma) stub_entry->stub_offset;
17135 template_sequence = stub_entry->stub_template;
17136
17137 if (arm_stub_sym_claimed (stub_entry->stub_type))
17138 arm_stub_claim_sym (stub_entry);
17139 else
17140 {
17141 stub_name = stub_entry->output_name;
17142 switch (template_sequence[0].type)
17143 {
17144 case ARM_TYPE:
17145 if (!elf32_arm_output_stub_sym (osi, stub_name, addr,
17146 stub_entry->stub_size))
17147 return FALSE;
17148 break;
17149 case THUMB16_TYPE:
17150 case THUMB32_TYPE:
17151 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
17152 stub_entry->stub_size))
17153 return FALSE;
17154 break;
17155 default:
17156 BFD_FAIL ();
17157 return 0;
17158 }
17159 }
17160
17161 prev_type = DATA_TYPE;
17162 size = 0;
17163 for (i = 0; i < stub_entry->stub_template_size; i++)
17164 {
17165 switch (template_sequence[i].type)
17166 {
17167 case ARM_TYPE:
17168 sym_type = ARM_MAP_ARM;
17169 break;
17170
17171 case THUMB16_TYPE:
17172 case THUMB32_TYPE:
17173 sym_type = ARM_MAP_THUMB;
17174 break;
17175
17176 case DATA_TYPE:
17177 sym_type = ARM_MAP_DATA;
17178 break;
17179
17180 default:
17181 BFD_FAIL ();
17182 return FALSE;
17183 }
17184
17185 if (template_sequence[i].type != prev_type)
17186 {
17187 prev_type = template_sequence[i].type;
17188 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
17189 return FALSE;
17190 }
17191
17192 switch (template_sequence[i].type)
17193 {
17194 case ARM_TYPE:
17195 case THUMB32_TYPE:
17196 size += 4;
17197 break;
17198
17199 case THUMB16_TYPE:
17200 size += 2;
17201 break;
17202
17203 case DATA_TYPE:
17204 size += 4;
17205 break;
17206
17207 default:
17208 BFD_FAIL ();
17209 return FALSE;
17210 }
17211 }
17212
17213 return TRUE;
17214 }
17215
17216 /* Output mapping symbols for linker generated sections,
17217 and for those data-only sections that do not have a
17218 $d. */
17219
17220 static bfd_boolean
17221 elf32_arm_output_arch_local_syms (bfd *output_bfd,
17222 struct bfd_link_info *info,
17223 void *flaginfo,
17224 int (*func) (void *, const char *,
17225 Elf_Internal_Sym *,
17226 asection *,
17227 struct elf_link_hash_entry *))
17228 {
17229 output_arch_syminfo osi;
17230 struct elf32_arm_link_hash_table *htab;
17231 bfd_vma offset;
17232 bfd_size_type size;
17233 bfd *input_bfd;
17234
17235 htab = elf32_arm_hash_table (info);
17236 if (htab == NULL)
17237 return FALSE;
17238
17239 check_use_blx (htab);
17240
17241 osi.flaginfo = flaginfo;
17242 osi.info = info;
17243 osi.func = func;
17244
17245 /* Add a $d mapping symbol to data-only sections that
17246 don't have any mapping symbol. This may result in (harmless) redundant
17247 mapping symbols. */
17248 for (input_bfd = info->input_bfds;
17249 input_bfd != NULL;
17250 input_bfd = input_bfd->link.next)
17251 {
17252 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
17253 for (osi.sec = input_bfd->sections;
17254 osi.sec != NULL;
17255 osi.sec = osi.sec->next)
17256 {
17257 if (osi.sec->output_section != NULL
17258 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
17259 != 0)
17260 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
17261 == SEC_HAS_CONTENTS
17262 && get_arm_elf_section_data (osi.sec) != NULL
17263 && get_arm_elf_section_data (osi.sec)->mapcount == 0
17264 && osi.sec->size > 0
17265 && (osi.sec->flags & SEC_EXCLUDE) == 0)
17266 {
17267 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17268 (output_bfd, osi.sec->output_section);
17269 if (osi.sec_shndx != (int)SHN_BAD)
17270 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
17271 }
17272 }
17273 }
17274
17275 /* ARM->Thumb glue. */
17276 if (htab->arm_glue_size > 0)
17277 {
17278 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
17279 ARM2THUMB_GLUE_SECTION_NAME);
17280
17281 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17282 (output_bfd, osi.sec->output_section);
17283 if (bfd_link_pic (info) || htab->root.is_relocatable_executable
17284 || htab->pic_veneer)
17285 size = ARM2THUMB_PIC_GLUE_SIZE;
17286 else if (htab->use_blx)
17287 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
17288 else
17289 size = ARM2THUMB_STATIC_GLUE_SIZE;
17290
17291 for (offset = 0; offset < htab->arm_glue_size; offset += size)
17292 {
17293 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
17294 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
17295 }
17296 }
17297
17298 /* Thumb->ARM glue. */
17299 if (htab->thumb_glue_size > 0)
17300 {
17301 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
17302 THUMB2ARM_GLUE_SECTION_NAME);
17303
17304 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17305 (output_bfd, osi.sec->output_section);
17306 size = THUMB2ARM_GLUE_SIZE;
17307
17308 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
17309 {
17310 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
17311 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
17312 }
17313 }
17314
17315 /* ARMv4 BX veneers. */
17316 if (htab->bx_glue_size > 0)
17317 {
17318 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
17319 ARM_BX_GLUE_SECTION_NAME);
17320
17321 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17322 (output_bfd, osi.sec->output_section);
17323
17324 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
17325 }
17326
17327 /* Long calls stubs. */
17328 if (htab->stub_bfd && htab->stub_bfd->sections)
17329 {
17330 asection* stub_sec;
17331
17332 for (stub_sec = htab->stub_bfd->sections;
17333 stub_sec != NULL;
17334 stub_sec = stub_sec->next)
17335 {
17336 /* Ignore non-stub sections. */
17337 if (!strstr (stub_sec->name, STUB_SUFFIX))
17338 continue;
17339
17340 osi.sec = stub_sec;
17341
17342 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17343 (output_bfd, osi.sec->output_section);
17344
17345 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
17346 }
17347 }
17348
17349 /* Finally, output mapping symbols for the PLT. */
17350 if (htab->root.splt && htab->root.splt->size > 0)
17351 {
17352 osi.sec = htab->root.splt;
17353 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
17354 (output_bfd, osi.sec->output_section));
17355
17356 /* Output mapping symbols for the plt header. SymbianOS does not have a
17357 plt header. */
17358 if (htab->vxworks_p)
17359 {
17360 /* VxWorks shared libraries have no PLT header. */
17361 if (!bfd_link_pic (info))
17362 {
17363 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
17364 return FALSE;
17365 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
17366 return FALSE;
17367 }
17368 }
17369 else if (htab->nacl_p)
17370 {
17371 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
17372 return FALSE;
17373 }
17374 else if (using_thumb_only (htab))
17375 {
17376 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 0))
17377 return FALSE;
17378 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
17379 return FALSE;
17380 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 16))
17381 return FALSE;
17382 }
17383 else if (!htab->symbian_p)
17384 {
17385 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
17386 return FALSE;
17387 #ifndef FOUR_WORD_PLT
17388 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
17389 return FALSE;
17390 #endif
17391 }
17392 }
17393 if (htab->nacl_p && htab->root.iplt && htab->root.iplt->size > 0)
17394 {
17395 /* NaCl uses a special first entry in .iplt too. */
17396 osi.sec = htab->root.iplt;
17397 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
17398 (output_bfd, osi.sec->output_section));
17399 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
17400 return FALSE;
17401 }
17402 if ((htab->root.splt && htab->root.splt->size > 0)
17403 || (htab->root.iplt && htab->root.iplt->size > 0))
17404 {
17405 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
17406 for (input_bfd = info->input_bfds;
17407 input_bfd != NULL;
17408 input_bfd = input_bfd->link.next)
17409 {
17410 struct arm_local_iplt_info **local_iplt;
17411 unsigned int i, num_syms;
17412
17413 local_iplt = elf32_arm_local_iplt (input_bfd);
17414 if (local_iplt != NULL)
17415 {
17416 num_syms = elf_symtab_hdr (input_bfd).sh_info;
17417 for (i = 0; i < num_syms; i++)
17418 if (local_iplt[i] != NULL
17419 && !elf32_arm_output_plt_map_1 (&osi, TRUE,
17420 &local_iplt[i]->root,
17421 &local_iplt[i]->arm))
17422 return FALSE;
17423 }
17424 }
17425 }
17426 if (htab->dt_tlsdesc_plt != 0)
17427 {
17428 /* Mapping symbols for the lazy tls trampoline. */
17429 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
17430 return FALSE;
17431
17432 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
17433 htab->dt_tlsdesc_plt + 24))
17434 return FALSE;
17435 }
17436 if (htab->tls_trampoline != 0)
17437 {
17438 /* Mapping symbols for the tls trampoline. */
17439 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
17440 return FALSE;
17441 #ifdef FOUR_WORD_PLT
17442 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
17443 htab->tls_trampoline + 12))
17444 return FALSE;
17445 #endif
17446 }
17447
17448 return TRUE;
17449 }
17450
17451 /* Filter normal symbols of CMSE entry functions of ABFD to include in
17452 the import library. All SYMCOUNT symbols of ABFD can be examined
17453 from their pointers in SYMS. Pointers of symbols to keep should be
17454 stored continuously at the beginning of that array.
17455
17456 Returns the number of symbols to keep. */
17457
17458 static unsigned int
17459 elf32_arm_filter_cmse_symbols (bfd *abfd ATTRIBUTE_UNUSED,
17460 struct bfd_link_info *info,
17461 asymbol **syms, long symcount)
17462 {
17463 size_t maxnamelen;
17464 char *cmse_name;
17465 long src_count, dst_count = 0;
17466 struct elf32_arm_link_hash_table *htab;
17467
17468 htab = elf32_arm_hash_table (info);
17469 if (!htab->stub_bfd || !htab->stub_bfd->sections)
17470 symcount = 0;
17471
17472 maxnamelen = 128;
17473 cmse_name = (char *) bfd_malloc (maxnamelen);
17474 for (src_count = 0; src_count < symcount; src_count++)
17475 {
17476 struct elf32_arm_link_hash_entry *cmse_hash;
17477 asymbol *sym;
17478 flagword flags;
17479 char *name;
17480 size_t namelen;
17481
17482 sym = syms[src_count];
17483 flags = sym->flags;
17484 name = (char *) bfd_asymbol_name (sym);
17485
17486 if ((flags & BSF_FUNCTION) != BSF_FUNCTION)
17487 continue;
17488 if (!(flags & (BSF_GLOBAL | BSF_WEAK)))
17489 continue;
17490
17491 namelen = strlen (name) + sizeof (CMSE_PREFIX) + 1;
17492 if (namelen > maxnamelen)
17493 {
17494 cmse_name = (char *)
17495 bfd_realloc (cmse_name, namelen);
17496 maxnamelen = namelen;
17497 }
17498 snprintf (cmse_name, maxnamelen, "%s%s", CMSE_PREFIX, name);
17499 cmse_hash = (struct elf32_arm_link_hash_entry *)
17500 elf_link_hash_lookup (&(htab)->root, cmse_name, FALSE, FALSE, TRUE);
17501
17502 if (!cmse_hash
17503 || (cmse_hash->root.root.type != bfd_link_hash_defined
17504 && cmse_hash->root.root.type != bfd_link_hash_defweak)
17505 || cmse_hash->root.type != STT_FUNC)
17506 continue;
17507
17508 if (!ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
17509 continue;
17510
17511 syms[dst_count++] = sym;
17512 }
17513 free (cmse_name);
17514
17515 syms[dst_count] = NULL;
17516
17517 return dst_count;
17518 }
17519
17520 /* Filter symbols of ABFD to include in the import library. All
17521 SYMCOUNT symbols of ABFD can be examined from their pointers in
17522 SYMS. Pointers of symbols to keep should be stored continuously at
17523 the beginning of that array.
17524
17525 Returns the number of symbols to keep. */
17526
17527 static unsigned int
17528 elf32_arm_filter_implib_symbols (bfd *abfd ATTRIBUTE_UNUSED,
17529 struct bfd_link_info *info,
17530 asymbol **syms, long symcount)
17531 {
17532 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
17533
17534 /* Requirement 8 of "ARM v8-M Security Extensions: Requirements on
17535 Development Tools" (ARM-ECM-0359818) mandates Secure Gateway import
17536 library to be a relocatable object file. */
17537 BFD_ASSERT (!(bfd_get_file_flags (info->out_implib_bfd) & EXEC_P));
17538 if (globals->cmse_implib)
17539 return elf32_arm_filter_cmse_symbols (abfd, info, syms, symcount);
17540 else
17541 return _bfd_elf_filter_global_symbols (abfd, info, syms, symcount);
17542 }
17543
17544 /* Allocate target specific section data. */
17545
17546 static bfd_boolean
17547 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
17548 {
17549 if (!sec->used_by_bfd)
17550 {
17551 _arm_elf_section_data *sdata;
17552 bfd_size_type amt = sizeof (*sdata);
17553
17554 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
17555 if (sdata == NULL)
17556 return FALSE;
17557 sec->used_by_bfd = sdata;
17558 }
17559
17560 return _bfd_elf_new_section_hook (abfd, sec);
17561 }
17562
17563
17564 /* Used to order a list of mapping symbols by address. */
17565
17566 static int
17567 elf32_arm_compare_mapping (const void * a, const void * b)
17568 {
17569 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
17570 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
17571
17572 if (amap->vma > bmap->vma)
17573 return 1;
17574 else if (amap->vma < bmap->vma)
17575 return -1;
17576 else if (amap->type > bmap->type)
17577 /* Ensure results do not depend on the host qsort for objects with
17578 multiple mapping symbols at the same address by sorting on type
17579 after vma. */
17580 return 1;
17581 else if (amap->type < bmap->type)
17582 return -1;
17583 else
17584 return 0;
17585 }
17586
17587 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
17588
17589 static unsigned long
17590 offset_prel31 (unsigned long addr, bfd_vma offset)
17591 {
17592 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
17593 }
17594
17595 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
17596 relocations. */
17597
17598 static void
17599 copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
17600 {
17601 unsigned long first_word = bfd_get_32 (output_bfd, from);
17602 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
17603
17604 /* High bit of first word is supposed to be zero. */
17605 if ((first_word & 0x80000000ul) == 0)
17606 first_word = offset_prel31 (first_word, offset);
17607
17608 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
17609 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
17610 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
17611 second_word = offset_prel31 (second_word, offset);
17612
17613 bfd_put_32 (output_bfd, first_word, to);
17614 bfd_put_32 (output_bfd, second_word, to + 4);
17615 }
17616
17617 /* Data for make_branch_to_a8_stub(). */
17618
17619 struct a8_branch_to_stub_data
17620 {
17621 asection *writing_section;
17622 bfd_byte *contents;
17623 };
17624
17625
17626 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
17627 places for a particular section. */
17628
17629 static bfd_boolean
17630 make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
17631 void *in_arg)
17632 {
17633 struct elf32_arm_stub_hash_entry *stub_entry;
17634 struct a8_branch_to_stub_data *data;
17635 bfd_byte *contents;
17636 unsigned long branch_insn;
17637 bfd_vma veneered_insn_loc, veneer_entry_loc;
17638 bfd_signed_vma branch_offset;
17639 bfd *abfd;
17640 unsigned int loc;
17641
17642 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
17643 data = (struct a8_branch_to_stub_data *) in_arg;
17644
17645 if (stub_entry->target_section != data->writing_section
17646 || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
17647 return TRUE;
17648
17649 contents = data->contents;
17650
17651 /* We use target_section as Cortex-A8 erratum workaround stubs are only
17652 generated when both source and target are in the same section. */
17653 veneered_insn_loc = stub_entry->target_section->output_section->vma
17654 + stub_entry->target_section->output_offset
17655 + stub_entry->source_value;
17656
17657 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
17658 + stub_entry->stub_sec->output_offset
17659 + stub_entry->stub_offset;
17660
17661 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
17662 veneered_insn_loc &= ~3u;
17663
17664 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
17665
17666 abfd = stub_entry->target_section->owner;
17667 loc = stub_entry->source_value;
17668
17669 /* We attempt to avoid this condition by setting stubs_always_after_branch
17670 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
17671 This check is just to be on the safe side... */
17672 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
17673 {
17674 _bfd_error_handler (_("%B: error: Cortex-A8 erratum stub is "
17675 "allocated in unsafe location"), abfd);
17676 return FALSE;
17677 }
17678
17679 switch (stub_entry->stub_type)
17680 {
17681 case arm_stub_a8_veneer_b:
17682 case arm_stub_a8_veneer_b_cond:
17683 branch_insn = 0xf0009000;
17684 goto jump24;
17685
17686 case arm_stub_a8_veneer_blx:
17687 branch_insn = 0xf000e800;
17688 goto jump24;
17689
17690 case arm_stub_a8_veneer_bl:
17691 {
17692 unsigned int i1, j1, i2, j2, s;
17693
17694 branch_insn = 0xf000d000;
17695
17696 jump24:
17697 if (branch_offset < -16777216 || branch_offset > 16777214)
17698 {
17699 /* There's not much we can do apart from complain if this
17700 happens. */
17701 _bfd_error_handler (_("%B: error: Cortex-A8 erratum stub out "
17702 "of range (input file too large)"), abfd);
17703 return FALSE;
17704 }
17705
17706 /* i1 = not(j1 eor s), so:
17707 not i1 = j1 eor s
17708 j1 = (not i1) eor s. */
17709
17710 branch_insn |= (branch_offset >> 1) & 0x7ff;
17711 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
17712 i2 = (branch_offset >> 22) & 1;
17713 i1 = (branch_offset >> 23) & 1;
17714 s = (branch_offset >> 24) & 1;
17715 j1 = (!i1) ^ s;
17716 j2 = (!i2) ^ s;
17717 branch_insn |= j2 << 11;
17718 branch_insn |= j1 << 13;
17719 branch_insn |= s << 26;
17720 }
17721 break;
17722
17723 default:
17724 BFD_FAIL ();
17725 return FALSE;
17726 }
17727
17728 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[loc]);
17729 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[loc + 2]);
17730
17731 return TRUE;
17732 }
17733
17734 /* Beginning of stm32l4xx work-around. */
17735
17736 /* Functions encoding instructions necessary for the emission of the
17737 fix-stm32l4xx-629360.
17738 Encoding is extracted from the
17739 ARM (C) Architecture Reference Manual
17740 ARMv7-A and ARMv7-R edition
17741 ARM DDI 0406C.b (ID072512). */
17742
17743 static inline bfd_vma
17744 create_instruction_branch_absolute (int branch_offset)
17745 {
17746 /* A8.8.18 B (A8-334)
17747 B target_address (Encoding T4). */
17748 /* 1111 - 0Sii - iiii - iiii - 10J1 - Jiii - iiii - iiii. */
17749 /* jump offset is: S:I1:I2:imm10:imm11:0. */
17750 /* with : I1 = NOT (J1 EOR S) I2 = NOT (J2 EOR S). */
17751
17752 int s = ((branch_offset & 0x1000000) >> 24);
17753 int j1 = s ^ !((branch_offset & 0x800000) >> 23);
17754 int j2 = s ^ !((branch_offset & 0x400000) >> 22);
17755
17756 if (branch_offset < -(1 << 24) || branch_offset >= (1 << 24))
17757 BFD_ASSERT (0 && "Error: branch out of range. Cannot create branch.");
17758
17759 bfd_vma patched_inst = 0xf0009000
17760 | s << 26 /* S. */
17761 | (((unsigned long) (branch_offset) >> 12) & 0x3ff) << 16 /* imm10. */
17762 | j1 << 13 /* J1. */
17763 | j2 << 11 /* J2. */
17764 | (((unsigned long) (branch_offset) >> 1) & 0x7ff); /* imm11. */
17765
17766 return patched_inst;
17767 }
17768
17769 static inline bfd_vma
17770 create_instruction_ldmia (int base_reg, int wback, int reg_mask)
17771 {
17772 /* A8.8.57 LDM/LDMIA/LDMFD (A8-396)
17773 LDMIA Rn!, {Ra, Rb, Rc, ...} (Encoding T2). */
17774 bfd_vma patched_inst = 0xe8900000
17775 | (/*W=*/wback << 21)
17776 | (base_reg << 16)
17777 | (reg_mask & 0x0000ffff);
17778
17779 return patched_inst;
17780 }
17781
17782 static inline bfd_vma
17783 create_instruction_ldmdb (int base_reg, int wback, int reg_mask)
17784 {
17785 /* A8.8.60 LDMDB/LDMEA (A8-402)
17786 LDMDB Rn!, {Ra, Rb, Rc, ...} (Encoding T1). */
17787 bfd_vma patched_inst = 0xe9100000
17788 | (/*W=*/wback << 21)
17789 | (base_reg << 16)
17790 | (reg_mask & 0x0000ffff);
17791
17792 return patched_inst;
17793 }
17794
17795 static inline bfd_vma
17796 create_instruction_mov (int target_reg, int source_reg)
17797 {
17798 /* A8.8.103 MOV (register) (A8-486)
17799 MOV Rd, Rm (Encoding T1). */
17800 bfd_vma patched_inst = 0x4600
17801 | (target_reg & 0x7)
17802 | ((target_reg & 0x8) >> 3) << 7
17803 | (source_reg << 3);
17804
17805 return patched_inst;
17806 }
17807
17808 static inline bfd_vma
17809 create_instruction_sub (int target_reg, int source_reg, int value)
17810 {
17811 /* A8.8.221 SUB (immediate) (A8-708)
17812 SUB Rd, Rn, #value (Encoding T3). */
17813 bfd_vma patched_inst = 0xf1a00000
17814 | (target_reg << 8)
17815 | (source_reg << 16)
17816 | (/*S=*/0 << 20)
17817 | ((value & 0x800) >> 11) << 26
17818 | ((value & 0x700) >> 8) << 12
17819 | (value & 0x0ff);
17820
17821 return patched_inst;
17822 }
17823
17824 static inline bfd_vma
17825 create_instruction_vldmia (int base_reg, int is_dp, int wback, int num_words,
17826 int first_reg)
17827 {
17828 /* A8.8.332 VLDM (A8-922)
17829 VLMD{MODE} Rn{!}, {list} (Encoding T1 or T2). */
17830 bfd_vma patched_inst = (is_dp ? 0xec900b00 : 0xec900a00)
17831 | (/*W=*/wback << 21)
17832 | (base_reg << 16)
17833 | (num_words & 0x000000ff)
17834 | (((unsigned)first_reg >> 1) & 0x0000000f) << 12
17835 | (first_reg & 0x00000001) << 22;
17836
17837 return patched_inst;
17838 }
17839
17840 static inline bfd_vma
17841 create_instruction_vldmdb (int base_reg, int is_dp, int num_words,
17842 int first_reg)
17843 {
17844 /* A8.8.332 VLDM (A8-922)
17845 VLMD{MODE} Rn!, {} (Encoding T1 or T2). */
17846 bfd_vma patched_inst = (is_dp ? 0xed300b00 : 0xed300a00)
17847 | (base_reg << 16)
17848 | (num_words & 0x000000ff)
17849 | (((unsigned)first_reg >>1 ) & 0x0000000f) << 12
17850 | (first_reg & 0x00000001) << 22;
17851
17852 return patched_inst;
17853 }
17854
17855 static inline bfd_vma
17856 create_instruction_udf_w (int value)
17857 {
17858 /* A8.8.247 UDF (A8-758)
17859 Undefined (Encoding T2). */
17860 bfd_vma patched_inst = 0xf7f0a000
17861 | (value & 0x00000fff)
17862 | (value & 0x000f0000) << 16;
17863
17864 return patched_inst;
17865 }
17866
17867 static inline bfd_vma
17868 create_instruction_udf (int value)
17869 {
17870 /* A8.8.247 UDF (A8-758)
17871 Undefined (Encoding T1). */
17872 bfd_vma patched_inst = 0xde00
17873 | (value & 0xff);
17874
17875 return patched_inst;
17876 }
17877
17878 /* Functions writing an instruction in memory, returning the next
17879 memory position to write to. */
17880
17881 static inline bfd_byte *
17882 push_thumb2_insn32 (struct elf32_arm_link_hash_table * htab,
17883 bfd * output_bfd, bfd_byte *pt, insn32 insn)
17884 {
17885 put_thumb2_insn (htab, output_bfd, insn, pt);
17886 return pt + 4;
17887 }
17888
17889 static inline bfd_byte *
17890 push_thumb2_insn16 (struct elf32_arm_link_hash_table * htab,
17891 bfd * output_bfd, bfd_byte *pt, insn32 insn)
17892 {
17893 put_thumb_insn (htab, output_bfd, insn, pt);
17894 return pt + 2;
17895 }
17896
17897 /* Function filling up a region in memory with T1 and T2 UDFs taking
17898 care of alignment. */
17899
17900 static bfd_byte *
17901 stm32l4xx_fill_stub_udf (struct elf32_arm_link_hash_table * htab,
17902 bfd * output_bfd,
17903 const bfd_byte * const base_stub_contents,
17904 bfd_byte * const from_stub_contents,
17905 const bfd_byte * const end_stub_contents)
17906 {
17907 bfd_byte *current_stub_contents = from_stub_contents;
17908
17909 /* Fill the remaining of the stub with deterministic contents : UDF
17910 instructions.
17911 Check if realignment is needed on modulo 4 frontier using T1, to
17912 further use T2. */
17913 if ((current_stub_contents < end_stub_contents)
17914 && !((current_stub_contents - base_stub_contents) % 2)
17915 && ((current_stub_contents - base_stub_contents) % 4))
17916 current_stub_contents =
17917 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
17918 create_instruction_udf (0));
17919
17920 for (; current_stub_contents < end_stub_contents;)
17921 current_stub_contents =
17922 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17923 create_instruction_udf_w (0));
17924
17925 return current_stub_contents;
17926 }
17927
17928 /* Functions writing the stream of instructions equivalent to the
17929 derived sequence for ldmia, ldmdb, vldm respectively. */
17930
17931 static void
17932 stm32l4xx_create_replacing_stub_ldmia (struct elf32_arm_link_hash_table * htab,
17933 bfd * output_bfd,
17934 const insn32 initial_insn,
17935 const bfd_byte *const initial_insn_addr,
17936 bfd_byte *const base_stub_contents)
17937 {
17938 int wback = (initial_insn & 0x00200000) >> 21;
17939 int ri, rn = (initial_insn & 0x000F0000) >> 16;
17940 int insn_all_registers = initial_insn & 0x0000ffff;
17941 int insn_low_registers, insn_high_registers;
17942 int usable_register_mask;
17943 int nb_registers = elf32_arm_popcount (insn_all_registers);
17944 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
17945 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
17946 bfd_byte *current_stub_contents = base_stub_contents;
17947
17948 BFD_ASSERT (is_thumb2_ldmia (initial_insn));
17949
17950 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
17951 smaller than 8 registers load sequences that do not cause the
17952 hardware issue. */
17953 if (nb_registers <= 8)
17954 {
17955 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
17956 current_stub_contents =
17957 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17958 initial_insn);
17959
17960 /* B initial_insn_addr+4. */
17961 if (!restore_pc)
17962 current_stub_contents =
17963 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17964 create_instruction_branch_absolute
17965 (initial_insn_addr - current_stub_contents));
17966
17967 /* Fill the remaining of the stub with deterministic contents. */
17968 current_stub_contents =
17969 stm32l4xx_fill_stub_udf (htab, output_bfd,
17970 base_stub_contents, current_stub_contents,
17971 base_stub_contents +
17972 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
17973
17974 return;
17975 }
17976
17977 /* - reg_list[13] == 0. */
17978 BFD_ASSERT ((insn_all_registers & (1 << 13))==0);
17979
17980 /* - reg_list[14] & reg_list[15] != 1. */
17981 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
17982
17983 /* - if (wback==1) reg_list[rn] == 0. */
17984 BFD_ASSERT (!wback || !restore_rn);
17985
17986 /* - nb_registers > 8. */
17987 BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8);
17988
17989 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
17990
17991 /* In the following algorithm, we split this wide LDM using 2 LDM insns:
17992 - One with the 7 lowest registers (register mask 0x007F)
17993 This LDM will finally contain between 2 and 7 registers
17994 - One with the 7 highest registers (register mask 0xDF80)
17995 This ldm will finally contain between 2 and 7 registers. */
17996 insn_low_registers = insn_all_registers & 0x007F;
17997 insn_high_registers = insn_all_registers & 0xDF80;
17998
17999 /* A spare register may be needed during this veneer to temporarily
18000 handle the base register. This register will be restored with the
18001 last LDM operation.
18002 The usable register may be any general purpose register (that
18003 excludes PC, SP, LR : register mask is 0x1FFF). */
18004 usable_register_mask = 0x1FFF;
18005
18006 /* Generate the stub function. */
18007 if (wback)
18008 {
18009 /* LDMIA Rn!, {R-low-register-list} : (Encoding T2). */
18010 current_stub_contents =
18011 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18012 create_instruction_ldmia
18013 (rn, /*wback=*/1, insn_low_registers));
18014
18015 /* LDMIA Rn!, {R-high-register-list} : (Encoding T2). */
18016 current_stub_contents =
18017 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18018 create_instruction_ldmia
18019 (rn, /*wback=*/1, insn_high_registers));
18020 if (!restore_pc)
18021 {
18022 /* B initial_insn_addr+4. */
18023 current_stub_contents =
18024 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18025 create_instruction_branch_absolute
18026 (initial_insn_addr - current_stub_contents));
18027 }
18028 }
18029 else /* if (!wback). */
18030 {
18031 ri = rn;
18032
18033 /* If Rn is not part of the high-register-list, move it there. */
18034 if (!(insn_high_registers & (1 << rn)))
18035 {
18036 /* Choose a Ri in the high-register-list that will be restored. */
18037 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18038
18039 /* MOV Ri, Rn. */
18040 current_stub_contents =
18041 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18042 create_instruction_mov (ri, rn));
18043 }
18044
18045 /* LDMIA Ri!, {R-low-register-list} : (Encoding T2). */
18046 current_stub_contents =
18047 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18048 create_instruction_ldmia
18049 (ri, /*wback=*/1, insn_low_registers));
18050
18051 /* LDMIA Ri, {R-high-register-list} : (Encoding T2). */
18052 current_stub_contents =
18053 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18054 create_instruction_ldmia
18055 (ri, /*wback=*/0, insn_high_registers));
18056
18057 if (!restore_pc)
18058 {
18059 /* B initial_insn_addr+4. */
18060 current_stub_contents =
18061 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18062 create_instruction_branch_absolute
18063 (initial_insn_addr - current_stub_contents));
18064 }
18065 }
18066
18067 /* Fill the remaining of the stub with deterministic contents. */
18068 current_stub_contents =
18069 stm32l4xx_fill_stub_udf (htab, output_bfd,
18070 base_stub_contents, current_stub_contents,
18071 base_stub_contents +
18072 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
18073 }
18074
18075 static void
18076 stm32l4xx_create_replacing_stub_ldmdb (struct elf32_arm_link_hash_table * htab,
18077 bfd * output_bfd,
18078 const insn32 initial_insn,
18079 const bfd_byte *const initial_insn_addr,
18080 bfd_byte *const base_stub_contents)
18081 {
18082 int wback = (initial_insn & 0x00200000) >> 21;
18083 int ri, rn = (initial_insn & 0x000f0000) >> 16;
18084 int insn_all_registers = initial_insn & 0x0000ffff;
18085 int insn_low_registers, insn_high_registers;
18086 int usable_register_mask;
18087 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
18088 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
18089 int nb_registers = elf32_arm_popcount (insn_all_registers);
18090 bfd_byte *current_stub_contents = base_stub_contents;
18091
18092 BFD_ASSERT (is_thumb2_ldmdb (initial_insn));
18093
18094 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
18095 smaller than 8 registers load sequences that do not cause the
18096 hardware issue. */
18097 if (nb_registers <= 8)
18098 {
18099 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
18100 current_stub_contents =
18101 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18102 initial_insn);
18103
18104 /* B initial_insn_addr+4. */
18105 current_stub_contents =
18106 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18107 create_instruction_branch_absolute
18108 (initial_insn_addr - current_stub_contents));
18109
18110 /* Fill the remaining of the stub with deterministic contents. */
18111 current_stub_contents =
18112 stm32l4xx_fill_stub_udf (htab, output_bfd,
18113 base_stub_contents, current_stub_contents,
18114 base_stub_contents +
18115 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
18116
18117 return;
18118 }
18119
18120 /* - reg_list[13] == 0. */
18121 BFD_ASSERT ((insn_all_registers & (1 << 13)) == 0);
18122
18123 /* - reg_list[14] & reg_list[15] != 1. */
18124 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
18125
18126 /* - if (wback==1) reg_list[rn] == 0. */
18127 BFD_ASSERT (!wback || !restore_rn);
18128
18129 /* - nb_registers > 8. */
18130 BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8);
18131
18132 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
18133
18134 /* In the following algorithm, we split this wide LDM using 2 LDM insn:
18135 - One with the 7 lowest registers (register mask 0x007F)
18136 This LDM will finally contain between 2 and 7 registers
18137 - One with the 7 highest registers (register mask 0xDF80)
18138 This ldm will finally contain between 2 and 7 registers. */
18139 insn_low_registers = insn_all_registers & 0x007F;
18140 insn_high_registers = insn_all_registers & 0xDF80;
18141
18142 /* A spare register may be needed during this veneer to temporarily
18143 handle the base register. This register will be restored with
18144 the last LDM operation.
18145 The usable register may be any general purpose register (that excludes
18146 PC, SP, LR : register mask is 0x1FFF). */
18147 usable_register_mask = 0x1FFF;
18148
18149 /* Generate the stub function. */
18150 if (!wback && !restore_pc && !restore_rn)
18151 {
18152 /* Choose a Ri in the low-register-list that will be restored. */
18153 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
18154
18155 /* MOV Ri, Rn. */
18156 current_stub_contents =
18157 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18158 create_instruction_mov (ri, rn));
18159
18160 /* LDMDB Ri!, {R-high-register-list}. */
18161 current_stub_contents =
18162 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18163 create_instruction_ldmdb
18164 (ri, /*wback=*/1, insn_high_registers));
18165
18166 /* LDMDB Ri, {R-low-register-list}. */
18167 current_stub_contents =
18168 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18169 create_instruction_ldmdb
18170 (ri, /*wback=*/0, insn_low_registers));
18171
18172 /* B initial_insn_addr+4. */
18173 current_stub_contents =
18174 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18175 create_instruction_branch_absolute
18176 (initial_insn_addr - current_stub_contents));
18177 }
18178 else if (wback && !restore_pc && !restore_rn)
18179 {
18180 /* LDMDB Rn!, {R-high-register-list}. */
18181 current_stub_contents =
18182 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18183 create_instruction_ldmdb
18184 (rn, /*wback=*/1, insn_high_registers));
18185
18186 /* LDMDB Rn!, {R-low-register-list}. */
18187 current_stub_contents =
18188 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18189 create_instruction_ldmdb
18190 (rn, /*wback=*/1, insn_low_registers));
18191
18192 /* B initial_insn_addr+4. */
18193 current_stub_contents =
18194 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18195 create_instruction_branch_absolute
18196 (initial_insn_addr - current_stub_contents));
18197 }
18198 else if (!wback && restore_pc && !restore_rn)
18199 {
18200 /* Choose a Ri in the high-register-list that will be restored. */
18201 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18202
18203 /* SUB Ri, Rn, #(4*nb_registers). */
18204 current_stub_contents =
18205 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18206 create_instruction_sub (ri, rn, (4 * nb_registers)));
18207
18208 /* LDMIA Ri!, {R-low-register-list}. */
18209 current_stub_contents =
18210 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18211 create_instruction_ldmia
18212 (ri, /*wback=*/1, insn_low_registers));
18213
18214 /* LDMIA Ri, {R-high-register-list}. */
18215 current_stub_contents =
18216 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18217 create_instruction_ldmia
18218 (ri, /*wback=*/0, insn_high_registers));
18219 }
18220 else if (wback && restore_pc && !restore_rn)
18221 {
18222 /* Choose a Ri in the high-register-list that will be restored. */
18223 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18224
18225 /* SUB Rn, Rn, #(4*nb_registers) */
18226 current_stub_contents =
18227 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18228 create_instruction_sub (rn, rn, (4 * nb_registers)));
18229
18230 /* MOV Ri, Rn. */
18231 current_stub_contents =
18232 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18233 create_instruction_mov (ri, rn));
18234
18235 /* LDMIA Ri!, {R-low-register-list}. */
18236 current_stub_contents =
18237 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18238 create_instruction_ldmia
18239 (ri, /*wback=*/1, insn_low_registers));
18240
18241 /* LDMIA Ri, {R-high-register-list}. */
18242 current_stub_contents =
18243 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18244 create_instruction_ldmia
18245 (ri, /*wback=*/0, insn_high_registers));
18246 }
18247 else if (!wback && !restore_pc && restore_rn)
18248 {
18249 ri = rn;
18250 if (!(insn_low_registers & (1 << rn)))
18251 {
18252 /* Choose a Ri in the low-register-list that will be restored. */
18253 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
18254
18255 /* MOV Ri, Rn. */
18256 current_stub_contents =
18257 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18258 create_instruction_mov (ri, rn));
18259 }
18260
18261 /* LDMDB Ri!, {R-high-register-list}. */
18262 current_stub_contents =
18263 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18264 create_instruction_ldmdb
18265 (ri, /*wback=*/1, insn_high_registers));
18266
18267 /* LDMDB Ri, {R-low-register-list}. */
18268 current_stub_contents =
18269 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18270 create_instruction_ldmdb
18271 (ri, /*wback=*/0, insn_low_registers));
18272
18273 /* B initial_insn_addr+4. */
18274 current_stub_contents =
18275 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18276 create_instruction_branch_absolute
18277 (initial_insn_addr - current_stub_contents));
18278 }
18279 else if (!wback && restore_pc && restore_rn)
18280 {
18281 ri = rn;
18282 if (!(insn_high_registers & (1 << rn)))
18283 {
18284 /* Choose a Ri in the high-register-list that will be restored. */
18285 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18286 }
18287
18288 /* SUB Ri, Rn, #(4*nb_registers). */
18289 current_stub_contents =
18290 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18291 create_instruction_sub (ri, rn, (4 * nb_registers)));
18292
18293 /* LDMIA Ri!, {R-low-register-list}. */
18294 current_stub_contents =
18295 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18296 create_instruction_ldmia
18297 (ri, /*wback=*/1, insn_low_registers));
18298
18299 /* LDMIA Ri, {R-high-register-list}. */
18300 current_stub_contents =
18301 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18302 create_instruction_ldmia
18303 (ri, /*wback=*/0, insn_high_registers));
18304 }
18305 else if (wback && restore_rn)
18306 {
18307 /* The assembler should not have accepted to encode this. */
18308 BFD_ASSERT (0 && "Cannot patch an instruction that has an "
18309 "undefined behavior.\n");
18310 }
18311
18312 /* Fill the remaining of the stub with deterministic contents. */
18313 current_stub_contents =
18314 stm32l4xx_fill_stub_udf (htab, output_bfd,
18315 base_stub_contents, current_stub_contents,
18316 base_stub_contents +
18317 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
18318
18319 }
18320
18321 static void
18322 stm32l4xx_create_replacing_stub_vldm (struct elf32_arm_link_hash_table * htab,
18323 bfd * output_bfd,
18324 const insn32 initial_insn,
18325 const bfd_byte *const initial_insn_addr,
18326 bfd_byte *const base_stub_contents)
18327 {
18328 int num_words = ((unsigned int) initial_insn << 24) >> 24;
18329 bfd_byte *current_stub_contents = base_stub_contents;
18330
18331 BFD_ASSERT (is_thumb2_vldm (initial_insn));
18332
18333 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
18334 smaller than 8 words load sequences that do not cause the
18335 hardware issue. */
18336 if (num_words <= 8)
18337 {
18338 /* Untouched instruction. */
18339 current_stub_contents =
18340 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18341 initial_insn);
18342
18343 /* B initial_insn_addr+4. */
18344 current_stub_contents =
18345 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18346 create_instruction_branch_absolute
18347 (initial_insn_addr - current_stub_contents));
18348 }
18349 else
18350 {
18351 bfd_boolean is_dp = /* DP encoding. */
18352 (initial_insn & 0xfe100f00) == 0xec100b00;
18353 bfd_boolean is_ia_nobang = /* (IA without !). */
18354 (((initial_insn << 7) >> 28) & 0xd) == 0x4;
18355 bfd_boolean is_ia_bang = /* (IA with !) - includes VPOP. */
18356 (((initial_insn << 7) >> 28) & 0xd) == 0x5;
18357 bfd_boolean is_db_bang = /* (DB with !). */
18358 (((initial_insn << 7) >> 28) & 0xd) == 0x9;
18359 int base_reg = ((unsigned int) initial_insn << 12) >> 28;
18360 /* d = UInt (Vd:D);. */
18361 int first_reg = ((((unsigned int) initial_insn << 16) >> 28) << 1)
18362 | (((unsigned int)initial_insn << 9) >> 31);
18363
18364 /* Compute the number of 8-words chunks needed to split. */
18365 int chunks = (num_words % 8) ? (num_words / 8 + 1) : (num_words / 8);
18366 int chunk;
18367
18368 /* The test coverage has been done assuming the following
18369 hypothesis that exactly one of the previous is_ predicates is
18370 true. */
18371 BFD_ASSERT ( (is_ia_nobang ^ is_ia_bang ^ is_db_bang)
18372 && !(is_ia_nobang & is_ia_bang & is_db_bang));
18373
18374 /* We treat the cutting of the words in one pass for all
18375 cases, then we emit the adjustments:
18376
18377 vldm rx, {...}
18378 -> vldm rx!, {8_words_or_less} for each needed 8_word
18379 -> sub rx, rx, #size (list)
18380
18381 vldm rx!, {...}
18382 -> vldm rx!, {8_words_or_less} for each needed 8_word
18383 This also handles vpop instruction (when rx is sp)
18384
18385 vldmd rx!, {...}
18386 -> vldmb rx!, {8_words_or_less} for each needed 8_word. */
18387 for (chunk = 0; chunk < chunks; ++chunk)
18388 {
18389 bfd_vma new_insn = 0;
18390
18391 if (is_ia_nobang || is_ia_bang)
18392 {
18393 new_insn = create_instruction_vldmia
18394 (base_reg,
18395 is_dp,
18396 /*wback= . */1,
18397 chunks - (chunk + 1) ?
18398 8 : num_words - chunk * 8,
18399 first_reg + chunk * 8);
18400 }
18401 else if (is_db_bang)
18402 {
18403 new_insn = create_instruction_vldmdb
18404 (base_reg,
18405 is_dp,
18406 chunks - (chunk + 1) ?
18407 8 : num_words - chunk * 8,
18408 first_reg + chunk * 8);
18409 }
18410
18411 if (new_insn)
18412 current_stub_contents =
18413 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18414 new_insn);
18415 }
18416
18417 /* Only this case requires the base register compensation
18418 subtract. */
18419 if (is_ia_nobang)
18420 {
18421 current_stub_contents =
18422 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18423 create_instruction_sub
18424 (base_reg, base_reg, 4*num_words));
18425 }
18426
18427 /* B initial_insn_addr+4. */
18428 current_stub_contents =
18429 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18430 create_instruction_branch_absolute
18431 (initial_insn_addr - current_stub_contents));
18432 }
18433
18434 /* Fill the remaining of the stub with deterministic contents. */
18435 current_stub_contents =
18436 stm32l4xx_fill_stub_udf (htab, output_bfd,
18437 base_stub_contents, current_stub_contents,
18438 base_stub_contents +
18439 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
18440 }
18441
18442 static void
18443 stm32l4xx_create_replacing_stub (struct elf32_arm_link_hash_table * htab,
18444 bfd * output_bfd,
18445 const insn32 wrong_insn,
18446 const bfd_byte *const wrong_insn_addr,
18447 bfd_byte *const stub_contents)
18448 {
18449 if (is_thumb2_ldmia (wrong_insn))
18450 stm32l4xx_create_replacing_stub_ldmia (htab, output_bfd,
18451 wrong_insn, wrong_insn_addr,
18452 stub_contents);
18453 else if (is_thumb2_ldmdb (wrong_insn))
18454 stm32l4xx_create_replacing_stub_ldmdb (htab, output_bfd,
18455 wrong_insn, wrong_insn_addr,
18456 stub_contents);
18457 else if (is_thumb2_vldm (wrong_insn))
18458 stm32l4xx_create_replacing_stub_vldm (htab, output_bfd,
18459 wrong_insn, wrong_insn_addr,
18460 stub_contents);
18461 }
18462
18463 /* End of stm32l4xx work-around. */
18464
18465
18466 /* Do code byteswapping. Return FALSE afterwards so that the section is
18467 written out as normal. */
18468
18469 static bfd_boolean
18470 elf32_arm_write_section (bfd *output_bfd,
18471 struct bfd_link_info *link_info,
18472 asection *sec,
18473 bfd_byte *contents)
18474 {
18475 unsigned int mapcount, errcount;
18476 _arm_elf_section_data *arm_data;
18477 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
18478 elf32_arm_section_map *map;
18479 elf32_vfp11_erratum_list *errnode;
18480 elf32_stm32l4xx_erratum_list *stm32l4xx_errnode;
18481 bfd_vma ptr;
18482 bfd_vma end;
18483 bfd_vma offset = sec->output_section->vma + sec->output_offset;
18484 bfd_byte tmp;
18485 unsigned int i;
18486
18487 if (globals == NULL)
18488 return FALSE;
18489
18490 /* If this section has not been allocated an _arm_elf_section_data
18491 structure then we cannot record anything. */
18492 arm_data = get_arm_elf_section_data (sec);
18493 if (arm_data == NULL)
18494 return FALSE;
18495
18496 mapcount = arm_data->mapcount;
18497 map = arm_data->map;
18498 errcount = arm_data->erratumcount;
18499
18500 if (errcount != 0)
18501 {
18502 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
18503
18504 for (errnode = arm_data->erratumlist; errnode != 0;
18505 errnode = errnode->next)
18506 {
18507 bfd_vma target = errnode->vma - offset;
18508
18509 switch (errnode->type)
18510 {
18511 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
18512 {
18513 bfd_vma branch_to_veneer;
18514 /* Original condition code of instruction, plus bit mask for
18515 ARM B instruction. */
18516 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
18517 | 0x0a000000;
18518
18519 /* The instruction is before the label. */
18520 target -= 4;
18521
18522 /* Above offset included in -4 below. */
18523 branch_to_veneer = errnode->u.b.veneer->vma
18524 - errnode->vma - 4;
18525
18526 if ((signed) branch_to_veneer < -(1 << 25)
18527 || (signed) branch_to_veneer >= (1 << 25))
18528 _bfd_error_handler (_("%B: error: VFP11 veneer out of "
18529 "range"), output_bfd);
18530
18531 insn |= (branch_to_veneer >> 2) & 0xffffff;
18532 contents[endianflip ^ target] = insn & 0xff;
18533 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
18534 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
18535 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
18536 }
18537 break;
18538
18539 case VFP11_ERRATUM_ARM_VENEER:
18540 {
18541 bfd_vma branch_from_veneer;
18542 unsigned int insn;
18543
18544 /* Take size of veneer into account. */
18545 branch_from_veneer = errnode->u.v.branch->vma
18546 - errnode->vma - 12;
18547
18548 if ((signed) branch_from_veneer < -(1 << 25)
18549 || (signed) branch_from_veneer >= (1 << 25))
18550 _bfd_error_handler (_("%B: error: VFP11 veneer out of "
18551 "range"), output_bfd);
18552
18553 /* Original instruction. */
18554 insn = errnode->u.v.branch->u.b.vfp_insn;
18555 contents[endianflip ^ target] = insn & 0xff;
18556 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
18557 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
18558 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
18559
18560 /* Branch back to insn after original insn. */
18561 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
18562 contents[endianflip ^ (target + 4)] = insn & 0xff;
18563 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
18564 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
18565 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
18566 }
18567 break;
18568
18569 default:
18570 abort ();
18571 }
18572 }
18573 }
18574
18575 if (arm_data->stm32l4xx_erratumcount != 0)
18576 {
18577 for (stm32l4xx_errnode = arm_data->stm32l4xx_erratumlist;
18578 stm32l4xx_errnode != 0;
18579 stm32l4xx_errnode = stm32l4xx_errnode->next)
18580 {
18581 bfd_vma target = stm32l4xx_errnode->vma - offset;
18582
18583 switch (stm32l4xx_errnode->type)
18584 {
18585 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
18586 {
18587 unsigned int insn;
18588 bfd_vma branch_to_veneer =
18589 stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma;
18590
18591 if ((signed) branch_to_veneer < -(1 << 24)
18592 || (signed) branch_to_veneer >= (1 << 24))
18593 {
18594 bfd_vma out_of_range =
18595 ((signed) branch_to_veneer < -(1 << 24)) ?
18596 - branch_to_veneer - (1 << 24) :
18597 ((signed) branch_to_veneer >= (1 << 24)) ?
18598 branch_to_veneer - (1 << 24) : 0;
18599
18600 _bfd_error_handler
18601 (_("%B(%#Lx): error: Cannot create STM32L4XX veneer. "
18602 "Jump out of range by %Ld bytes. "
18603 "Cannot encode branch instruction. "),
18604 output_bfd,
18605 stm32l4xx_errnode->vma - 4,
18606 out_of_range);
18607 continue;
18608 }
18609
18610 insn = create_instruction_branch_absolute
18611 (stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma);
18612
18613 /* The instruction is before the label. */
18614 target -= 4;
18615
18616 put_thumb2_insn (globals, output_bfd,
18617 (bfd_vma) insn, contents + target);
18618 }
18619 break;
18620
18621 case STM32L4XX_ERRATUM_VENEER:
18622 {
18623 bfd_byte * veneer;
18624 bfd_byte * veneer_r;
18625 unsigned int insn;
18626
18627 veneer = contents + target;
18628 veneer_r = veneer
18629 + stm32l4xx_errnode->u.b.veneer->vma
18630 - stm32l4xx_errnode->vma - 4;
18631
18632 if ((signed) (veneer_r - veneer -
18633 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE >
18634 STM32L4XX_ERRATUM_LDM_VENEER_SIZE ?
18635 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE :
18636 STM32L4XX_ERRATUM_LDM_VENEER_SIZE) < -(1 << 24)
18637 || (signed) (veneer_r - veneer) >= (1 << 24))
18638 {
18639 _bfd_error_handler (_("%B: error: Cannot create STM32L4XX "
18640 "veneer."), output_bfd);
18641 continue;
18642 }
18643
18644 /* Original instruction. */
18645 insn = stm32l4xx_errnode->u.v.branch->u.b.insn;
18646
18647 stm32l4xx_create_replacing_stub
18648 (globals, output_bfd, insn, (void*)veneer_r, (void*)veneer);
18649 }
18650 break;
18651
18652 default:
18653 abort ();
18654 }
18655 }
18656 }
18657
18658 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
18659 {
18660 arm_unwind_table_edit *edit_node
18661 = arm_data->u.exidx.unwind_edit_list;
18662 /* Now, sec->size is the size of the section we will write. The original
18663 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
18664 markers) was sec->rawsize. (This isn't the case if we perform no
18665 edits, then rawsize will be zero and we should use size). */
18666 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
18667 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
18668 unsigned int in_index, out_index;
18669 bfd_vma add_to_offsets = 0;
18670
18671 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
18672 {
18673 if (edit_node)
18674 {
18675 unsigned int edit_index = edit_node->index;
18676
18677 if (in_index < edit_index && in_index * 8 < input_size)
18678 {
18679 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
18680 contents + in_index * 8, add_to_offsets);
18681 out_index++;
18682 in_index++;
18683 }
18684 else if (in_index == edit_index
18685 || (in_index * 8 >= input_size
18686 && edit_index == UINT_MAX))
18687 {
18688 switch (edit_node->type)
18689 {
18690 case DELETE_EXIDX_ENTRY:
18691 in_index++;
18692 add_to_offsets += 8;
18693 break;
18694
18695 case INSERT_EXIDX_CANTUNWIND_AT_END:
18696 {
18697 asection *text_sec = edit_node->linked_section;
18698 bfd_vma text_offset = text_sec->output_section->vma
18699 + text_sec->output_offset
18700 + text_sec->size;
18701 bfd_vma exidx_offset = offset + out_index * 8;
18702 unsigned long prel31_offset;
18703
18704 /* Note: this is meant to be equivalent to an
18705 R_ARM_PREL31 relocation. These synthetic
18706 EXIDX_CANTUNWIND markers are not relocated by the
18707 usual BFD method. */
18708 prel31_offset = (text_offset - exidx_offset)
18709 & 0x7ffffffful;
18710 if (bfd_link_relocatable (link_info))
18711 {
18712 /* Here relocation for new EXIDX_CANTUNWIND is
18713 created, so there is no need to
18714 adjust offset by hand. */
18715 prel31_offset = text_sec->output_offset
18716 + text_sec->size;
18717 }
18718
18719 /* First address we can't unwind. */
18720 bfd_put_32 (output_bfd, prel31_offset,
18721 &edited_contents[out_index * 8]);
18722
18723 /* Code for EXIDX_CANTUNWIND. */
18724 bfd_put_32 (output_bfd, 0x1,
18725 &edited_contents[out_index * 8 + 4]);
18726
18727 out_index++;
18728 add_to_offsets -= 8;
18729 }
18730 break;
18731 }
18732
18733 edit_node = edit_node->next;
18734 }
18735 }
18736 else
18737 {
18738 /* No more edits, copy remaining entries verbatim. */
18739 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
18740 contents + in_index * 8, add_to_offsets);
18741 out_index++;
18742 in_index++;
18743 }
18744 }
18745
18746 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
18747 bfd_set_section_contents (output_bfd, sec->output_section,
18748 edited_contents,
18749 (file_ptr) sec->output_offset, sec->size);
18750
18751 return TRUE;
18752 }
18753
18754 /* Fix code to point to Cortex-A8 erratum stubs. */
18755 if (globals->fix_cortex_a8)
18756 {
18757 struct a8_branch_to_stub_data data;
18758
18759 data.writing_section = sec;
18760 data.contents = contents;
18761
18762 bfd_hash_traverse (& globals->stub_hash_table, make_branch_to_a8_stub,
18763 & data);
18764 }
18765
18766 if (mapcount == 0)
18767 return FALSE;
18768
18769 if (globals->byteswap_code)
18770 {
18771 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
18772
18773 ptr = map[0].vma;
18774 for (i = 0; i < mapcount; i++)
18775 {
18776 if (i == mapcount - 1)
18777 end = sec->size;
18778 else
18779 end = map[i + 1].vma;
18780
18781 switch (map[i].type)
18782 {
18783 case 'a':
18784 /* Byte swap code words. */
18785 while (ptr + 3 < end)
18786 {
18787 tmp = contents[ptr];
18788 contents[ptr] = contents[ptr + 3];
18789 contents[ptr + 3] = tmp;
18790 tmp = contents[ptr + 1];
18791 contents[ptr + 1] = contents[ptr + 2];
18792 contents[ptr + 2] = tmp;
18793 ptr += 4;
18794 }
18795 break;
18796
18797 case 't':
18798 /* Byte swap code halfwords. */
18799 while (ptr + 1 < end)
18800 {
18801 tmp = contents[ptr];
18802 contents[ptr] = contents[ptr + 1];
18803 contents[ptr + 1] = tmp;
18804 ptr += 2;
18805 }
18806 break;
18807
18808 case 'd':
18809 /* Leave data alone. */
18810 break;
18811 }
18812 ptr = end;
18813 }
18814 }
18815
18816 free (map);
18817 arm_data->mapcount = -1;
18818 arm_data->mapsize = 0;
18819 arm_data->map = NULL;
18820
18821 return FALSE;
18822 }
18823
18824 /* Mangle thumb function symbols as we read them in. */
18825
18826 static bfd_boolean
18827 elf32_arm_swap_symbol_in (bfd * abfd,
18828 const void *psrc,
18829 const void *pshn,
18830 Elf_Internal_Sym *dst)
18831 {
18832 Elf_Internal_Shdr *symtab_hdr;
18833 const char *name = NULL;
18834
18835 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
18836 return FALSE;
18837 dst->st_target_internal = 0;
18838
18839 /* New EABI objects mark thumb function symbols by setting the low bit of
18840 the address. */
18841 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
18842 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
18843 {
18844 if (dst->st_value & 1)
18845 {
18846 dst->st_value &= ~(bfd_vma) 1;
18847 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal,
18848 ST_BRANCH_TO_THUMB);
18849 }
18850 else
18851 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_ARM);
18852 }
18853 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
18854 {
18855 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
18856 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_THUMB);
18857 }
18858 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
18859 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_LONG);
18860 else
18861 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_UNKNOWN);
18862
18863 /* Mark CMSE special symbols. */
18864 symtab_hdr = & elf_symtab_hdr (abfd);
18865 if (symtab_hdr->sh_size)
18866 name = bfd_elf_sym_name (abfd, symtab_hdr, dst, NULL);
18867 if (name && CONST_STRNEQ (name, CMSE_PREFIX))
18868 ARM_SET_SYM_CMSE_SPCL (dst->st_target_internal);
18869
18870 return TRUE;
18871 }
18872
18873
18874 /* Mangle thumb function symbols as we write them out. */
18875
18876 static void
18877 elf32_arm_swap_symbol_out (bfd *abfd,
18878 const Elf_Internal_Sym *src,
18879 void *cdst,
18880 void *shndx)
18881 {
18882 Elf_Internal_Sym newsym;
18883
18884 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
18885 of the address set, as per the new EABI. We do this unconditionally
18886 because objcopy does not set the elf header flags until after
18887 it writes out the symbol table. */
18888 if (ARM_GET_SYM_BRANCH_TYPE (src->st_target_internal) == ST_BRANCH_TO_THUMB)
18889 {
18890 newsym = *src;
18891 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
18892 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
18893 if (newsym.st_shndx != SHN_UNDEF)
18894 {
18895 /* Do this only for defined symbols. At link type, the static
18896 linker will simulate the work of dynamic linker of resolving
18897 symbols and will carry over the thumbness of found symbols to
18898 the output symbol table. It's not clear how it happens, but
18899 the thumbness of undefined symbols can well be different at
18900 runtime, and writing '1' for them will be confusing for users
18901 and possibly for dynamic linker itself.
18902 */
18903 newsym.st_value |= 1;
18904 }
18905
18906 src = &newsym;
18907 }
18908 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
18909 }
18910
18911 /* Add the PT_ARM_EXIDX program header. */
18912
18913 static bfd_boolean
18914 elf32_arm_modify_segment_map (bfd *abfd,
18915 struct bfd_link_info *info ATTRIBUTE_UNUSED)
18916 {
18917 struct elf_segment_map *m;
18918 asection *sec;
18919
18920 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
18921 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
18922 {
18923 /* If there is already a PT_ARM_EXIDX header, then we do not
18924 want to add another one. This situation arises when running
18925 "strip"; the input binary already has the header. */
18926 m = elf_seg_map (abfd);
18927 while (m && m->p_type != PT_ARM_EXIDX)
18928 m = m->next;
18929 if (!m)
18930 {
18931 m = (struct elf_segment_map *)
18932 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
18933 if (m == NULL)
18934 return FALSE;
18935 m->p_type = PT_ARM_EXIDX;
18936 m->count = 1;
18937 m->sections[0] = sec;
18938
18939 m->next = elf_seg_map (abfd);
18940 elf_seg_map (abfd) = m;
18941 }
18942 }
18943
18944 return TRUE;
18945 }
18946
18947 /* We may add a PT_ARM_EXIDX program header. */
18948
18949 static int
18950 elf32_arm_additional_program_headers (bfd *abfd,
18951 struct bfd_link_info *info ATTRIBUTE_UNUSED)
18952 {
18953 asection *sec;
18954
18955 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
18956 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
18957 return 1;
18958 else
18959 return 0;
18960 }
18961
18962 /* Hook called by the linker routine which adds symbols from an object
18963 file. */
18964
18965 static bfd_boolean
18966 elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
18967 Elf_Internal_Sym *sym, const char **namep,
18968 flagword *flagsp, asection **secp, bfd_vma *valp)
18969 {
18970 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
18971 && (abfd->flags & DYNAMIC) == 0
18972 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
18973 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_ifunc;
18974
18975 if (elf32_arm_hash_table (info) == NULL)
18976 return FALSE;
18977
18978 if (elf32_arm_hash_table (info)->vxworks_p
18979 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
18980 flagsp, secp, valp))
18981 return FALSE;
18982
18983 return TRUE;
18984 }
18985
18986 /* We use this to override swap_symbol_in and swap_symbol_out. */
18987 const struct elf_size_info elf32_arm_size_info =
18988 {
18989 sizeof (Elf32_External_Ehdr),
18990 sizeof (Elf32_External_Phdr),
18991 sizeof (Elf32_External_Shdr),
18992 sizeof (Elf32_External_Rel),
18993 sizeof (Elf32_External_Rela),
18994 sizeof (Elf32_External_Sym),
18995 sizeof (Elf32_External_Dyn),
18996 sizeof (Elf_External_Note),
18997 4,
18998 1,
18999 32, 2,
19000 ELFCLASS32, EV_CURRENT,
19001 bfd_elf32_write_out_phdrs,
19002 bfd_elf32_write_shdrs_and_ehdr,
19003 bfd_elf32_checksum_contents,
19004 bfd_elf32_write_relocs,
19005 elf32_arm_swap_symbol_in,
19006 elf32_arm_swap_symbol_out,
19007 bfd_elf32_slurp_reloc_table,
19008 bfd_elf32_slurp_symbol_table,
19009 bfd_elf32_swap_dyn_in,
19010 bfd_elf32_swap_dyn_out,
19011 bfd_elf32_swap_reloc_in,
19012 bfd_elf32_swap_reloc_out,
19013 bfd_elf32_swap_reloca_in,
19014 bfd_elf32_swap_reloca_out
19015 };
19016
19017 static bfd_vma
19018 read_code32 (const bfd *abfd, const bfd_byte *addr)
19019 {
19020 /* V7 BE8 code is always little endian. */
19021 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
19022 return bfd_getl32 (addr);
19023
19024 return bfd_get_32 (abfd, addr);
19025 }
19026
19027 static bfd_vma
19028 read_code16 (const bfd *abfd, const bfd_byte *addr)
19029 {
19030 /* V7 BE8 code is always little endian. */
19031 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
19032 return bfd_getl16 (addr);
19033
19034 return bfd_get_16 (abfd, addr);
19035 }
19036
19037 /* Return size of plt0 entry starting at ADDR
19038 or (bfd_vma) -1 if size can not be determined. */
19039
19040 static bfd_vma
19041 elf32_arm_plt0_size (const bfd *abfd, const bfd_byte *addr)
19042 {
19043 bfd_vma first_word;
19044 bfd_vma plt0_size;
19045
19046 first_word = read_code32 (abfd, addr);
19047
19048 if (first_word == elf32_arm_plt0_entry[0])
19049 plt0_size = 4 * ARRAY_SIZE (elf32_arm_plt0_entry);
19050 else if (first_word == elf32_thumb2_plt0_entry[0])
19051 plt0_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
19052 else
19053 /* We don't yet handle this PLT format. */
19054 return (bfd_vma) -1;
19055
19056 return plt0_size;
19057 }
19058
19059 /* Return size of plt entry starting at offset OFFSET
19060 of plt section located at address START
19061 or (bfd_vma) -1 if size can not be determined. */
19062
19063 static bfd_vma
19064 elf32_arm_plt_size (const bfd *abfd, const bfd_byte *start, bfd_vma offset)
19065 {
19066 bfd_vma first_insn;
19067 bfd_vma plt_size = 0;
19068 const bfd_byte *addr = start + offset;
19069
19070 /* PLT entry size if fixed on Thumb-only platforms. */
19071 if (read_code32 (abfd, start) == elf32_thumb2_plt0_entry[0])
19072 return 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
19073
19074 /* Respect Thumb stub if necessary. */
19075 if (read_code16 (abfd, addr) == elf32_arm_plt_thumb_stub[0])
19076 {
19077 plt_size += 2 * ARRAY_SIZE(elf32_arm_plt_thumb_stub);
19078 }
19079
19080 /* Strip immediate from first add. */
19081 first_insn = read_code32 (abfd, addr + plt_size) & 0xffffff00;
19082
19083 #ifdef FOUR_WORD_PLT
19084 if (first_insn == elf32_arm_plt_entry[0])
19085 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry);
19086 #else
19087 if (first_insn == elf32_arm_plt_entry_long[0])
19088 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_long);
19089 else if (first_insn == elf32_arm_plt_entry_short[0])
19090 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_short);
19091 #endif
19092 else
19093 /* We don't yet handle this PLT format. */
19094 return (bfd_vma) -1;
19095
19096 return plt_size;
19097 }
19098
19099 /* Implementation is shamelessly borrowed from _bfd_elf_get_synthetic_symtab. */
19100
19101 static long
19102 elf32_arm_get_synthetic_symtab (bfd *abfd,
19103 long symcount ATTRIBUTE_UNUSED,
19104 asymbol **syms ATTRIBUTE_UNUSED,
19105 long dynsymcount,
19106 asymbol **dynsyms,
19107 asymbol **ret)
19108 {
19109 asection *relplt;
19110 asymbol *s;
19111 arelent *p;
19112 long count, i, n;
19113 size_t size;
19114 Elf_Internal_Shdr *hdr;
19115 char *names;
19116 asection *plt;
19117 bfd_vma offset;
19118 bfd_byte *data;
19119
19120 *ret = NULL;
19121
19122 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
19123 return 0;
19124
19125 if (dynsymcount <= 0)
19126 return 0;
19127
19128 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
19129 if (relplt == NULL)
19130 return 0;
19131
19132 hdr = &elf_section_data (relplt)->this_hdr;
19133 if (hdr->sh_link != elf_dynsymtab (abfd)
19134 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
19135 return 0;
19136
19137 plt = bfd_get_section_by_name (abfd, ".plt");
19138 if (plt == NULL)
19139 return 0;
19140
19141 if (!elf32_arm_size_info.slurp_reloc_table (abfd, relplt, dynsyms, TRUE))
19142 return -1;
19143
19144 data = plt->contents;
19145 if (data == NULL)
19146 {
19147 if (!bfd_get_full_section_contents(abfd, (asection *) plt, &data) || data == NULL)
19148 return -1;
19149 bfd_cache_section_contents((asection *) plt, data);
19150 }
19151
19152 count = relplt->size / hdr->sh_entsize;
19153 size = count * sizeof (asymbol);
19154 p = relplt->relocation;
19155 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
19156 {
19157 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
19158 if (p->addend != 0)
19159 size += sizeof ("+0x") - 1 + 8;
19160 }
19161
19162 s = *ret = (asymbol *) bfd_malloc (size);
19163 if (s == NULL)
19164 return -1;
19165
19166 offset = elf32_arm_plt0_size (abfd, data);
19167 if (offset == (bfd_vma) -1)
19168 return -1;
19169
19170 names = (char *) (s + count);
19171 p = relplt->relocation;
19172 n = 0;
19173 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
19174 {
19175 size_t len;
19176
19177 bfd_vma plt_size = elf32_arm_plt_size (abfd, data, offset);
19178 if (plt_size == (bfd_vma) -1)
19179 break;
19180
19181 *s = **p->sym_ptr_ptr;
19182 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
19183 we are defining a symbol, ensure one of them is set. */
19184 if ((s->flags & BSF_LOCAL) == 0)
19185 s->flags |= BSF_GLOBAL;
19186 s->flags |= BSF_SYNTHETIC;
19187 s->section = plt;
19188 s->value = offset;
19189 s->name = names;
19190 s->udata.p = NULL;
19191 len = strlen ((*p->sym_ptr_ptr)->name);
19192 memcpy (names, (*p->sym_ptr_ptr)->name, len);
19193 names += len;
19194 if (p->addend != 0)
19195 {
19196 char buf[30], *a;
19197
19198 memcpy (names, "+0x", sizeof ("+0x") - 1);
19199 names += sizeof ("+0x") - 1;
19200 bfd_sprintf_vma (abfd, buf, p->addend);
19201 for (a = buf; *a == '0'; ++a)
19202 ;
19203 len = strlen (a);
19204 memcpy (names, a, len);
19205 names += len;
19206 }
19207 memcpy (names, "@plt", sizeof ("@plt"));
19208 names += sizeof ("@plt");
19209 ++s, ++n;
19210 offset += plt_size;
19211 }
19212
19213 return n;
19214 }
19215
19216 static bfd_boolean
19217 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr * hdr)
19218 {
19219 if (hdr->sh_flags & SHF_ARM_PURECODE)
19220 *flags |= SEC_ELF_PURECODE;
19221 return TRUE;
19222 }
19223
19224 static flagword
19225 elf32_arm_lookup_section_flags (char *flag_name)
19226 {
19227 if (!strcmp (flag_name, "SHF_ARM_PURECODE"))
19228 return SHF_ARM_PURECODE;
19229
19230 return SEC_NO_FLAGS;
19231 }
19232
19233 static unsigned int
19234 elf32_arm_count_additional_relocs (asection *sec)
19235 {
19236 struct _arm_elf_section_data *arm_data;
19237 arm_data = get_arm_elf_section_data (sec);
19238
19239 return arm_data == NULL ? 0 : arm_data->additional_reloc_count;
19240 }
19241
19242 /* Called to set the sh_flags, sh_link and sh_info fields of OSECTION which
19243 has a type >= SHT_LOOS. Returns TRUE if these fields were initialised
19244 FALSE otherwise. ISECTION is the best guess matching section from the
19245 input bfd IBFD, but it might be NULL. */
19246
19247 static bfd_boolean
19248 elf32_arm_copy_special_section_fields (const bfd *ibfd ATTRIBUTE_UNUSED,
19249 bfd *obfd ATTRIBUTE_UNUSED,
19250 const Elf_Internal_Shdr *isection ATTRIBUTE_UNUSED,
19251 Elf_Internal_Shdr *osection)
19252 {
19253 switch (osection->sh_type)
19254 {
19255 case SHT_ARM_EXIDX:
19256 {
19257 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
19258 Elf_Internal_Shdr **iheaders = elf_elfsections (ibfd);
19259 unsigned i = 0;
19260
19261 osection->sh_flags = SHF_ALLOC | SHF_LINK_ORDER;
19262 osection->sh_info = 0;
19263
19264 /* The sh_link field must be set to the text section associated with
19265 this index section. Unfortunately the ARM EHABI does not specify
19266 exactly how to determine this association. Our caller does try
19267 to match up OSECTION with its corresponding input section however
19268 so that is a good first guess. */
19269 if (isection != NULL
19270 && osection->bfd_section != NULL
19271 && isection->bfd_section != NULL
19272 && isection->bfd_section->output_section != NULL
19273 && isection->bfd_section->output_section == osection->bfd_section
19274 && iheaders != NULL
19275 && isection->sh_link > 0
19276 && isection->sh_link < elf_numsections (ibfd)
19277 && iheaders[isection->sh_link]->bfd_section != NULL
19278 && iheaders[isection->sh_link]->bfd_section->output_section != NULL
19279 )
19280 {
19281 for (i = elf_numsections (obfd); i-- > 0;)
19282 if (oheaders[i]->bfd_section
19283 == iheaders[isection->sh_link]->bfd_section->output_section)
19284 break;
19285 }
19286
19287 if (i == 0)
19288 {
19289 /* Failing that we have to find a matching section ourselves. If
19290 we had the output section name available we could compare that
19291 with input section names. Unfortunately we don't. So instead
19292 we use a simple heuristic and look for the nearest executable
19293 section before this one. */
19294 for (i = elf_numsections (obfd); i-- > 0;)
19295 if (oheaders[i] == osection)
19296 break;
19297 if (i == 0)
19298 break;
19299
19300 while (i-- > 0)
19301 if (oheaders[i]->sh_type == SHT_PROGBITS
19302 && (oheaders[i]->sh_flags & (SHF_ALLOC | SHF_EXECINSTR))
19303 == (SHF_ALLOC | SHF_EXECINSTR))
19304 break;
19305 }
19306
19307 if (i)
19308 {
19309 osection->sh_link = i;
19310 /* If the text section was part of a group
19311 then the index section should be too. */
19312 if (oheaders[i]->sh_flags & SHF_GROUP)
19313 osection->sh_flags |= SHF_GROUP;
19314 return TRUE;
19315 }
19316 }
19317 break;
19318
19319 case SHT_ARM_PREEMPTMAP:
19320 osection->sh_flags = SHF_ALLOC;
19321 break;
19322
19323 case SHT_ARM_ATTRIBUTES:
19324 case SHT_ARM_DEBUGOVERLAY:
19325 case SHT_ARM_OVERLAYSECTION:
19326 default:
19327 break;
19328 }
19329
19330 return FALSE;
19331 }
19332
19333 /* Returns TRUE if NAME is an ARM mapping symbol.
19334 Traditionally the symbols $a, $d and $t have been used.
19335 The ARM ELF standard also defines $x (for A64 code). It also allows a
19336 period initiated suffix to be added to the symbol: "$[adtx]\.[:sym_char]+".
19337 Other tools might also produce $b (Thumb BL), $f, $p, $m and $v, but we do
19338 not support them here. $t.x indicates the start of ThumbEE instructions. */
19339
19340 static bfd_boolean
19341 is_arm_mapping_symbol (const char * name)
19342 {
19343 return name != NULL /* Paranoia. */
19344 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
19345 the mapping symbols could have acquired a prefix.
19346 We do not support this here, since such symbols no
19347 longer conform to the ARM ELF ABI. */
19348 && (name[1] == 'a' || name[1] == 'd' || name[1] == 't' || name[1] == 'x')
19349 && (name[2] == 0 || name[2] == '.');
19350 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
19351 any characters that follow the period are legal characters for the body
19352 of a symbol's name. For now we just assume that this is the case. */
19353 }
19354
19355 /* Make sure that mapping symbols in object files are not removed via the
19356 "strip --strip-unneeded" tool. These symbols are needed in order to
19357 correctly generate interworking veneers, and for byte swapping code
19358 regions. Once an object file has been linked, it is safe to remove the
19359 symbols as they will no longer be needed. */
19360
19361 static void
19362 elf32_arm_backend_symbol_processing (bfd *abfd, asymbol *sym)
19363 {
19364 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
19365 && sym->section != bfd_abs_section_ptr
19366 && is_arm_mapping_symbol (sym->name))
19367 sym->flags |= BSF_KEEP;
19368 }
19369
19370 #undef elf_backend_copy_special_section_fields
19371 #define elf_backend_copy_special_section_fields elf32_arm_copy_special_section_fields
19372
19373 #define ELF_ARCH bfd_arch_arm
19374 #define ELF_TARGET_ID ARM_ELF_DATA
19375 #define ELF_MACHINE_CODE EM_ARM
19376 #ifdef __QNXTARGET__
19377 #define ELF_MAXPAGESIZE 0x1000
19378 #else
19379 #define ELF_MAXPAGESIZE 0x10000
19380 #endif
19381 #define ELF_MINPAGESIZE 0x1000
19382 #define ELF_COMMONPAGESIZE 0x1000
19383
19384 #define bfd_elf32_mkobject elf32_arm_mkobject
19385
19386 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
19387 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
19388 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
19389 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
19390 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
19391 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
19392 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
19393 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
19394 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
19395 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
19396 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
19397 #define bfd_elf32_bfd_final_link elf32_arm_final_link
19398 #define bfd_elf32_get_synthetic_symtab elf32_arm_get_synthetic_symtab
19399
19400 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
19401 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
19402 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
19403 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
19404 #define elf_backend_check_relocs elf32_arm_check_relocs
19405 #define elf_backend_update_relocs elf32_arm_update_relocs
19406 #define elf_backend_relocate_section elf32_arm_relocate_section
19407 #define elf_backend_write_section elf32_arm_write_section
19408 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
19409 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
19410 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
19411 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
19412 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
19413 #define elf_backend_always_size_sections elf32_arm_always_size_sections
19414 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
19415 #define elf_backend_post_process_headers elf32_arm_post_process_headers
19416 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
19417 #define elf_backend_object_p elf32_arm_object_p
19418 #define elf_backend_fake_sections elf32_arm_fake_sections
19419 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
19420 #define elf_backend_final_write_processing elf32_arm_final_write_processing
19421 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
19422 #define elf_backend_size_info elf32_arm_size_info
19423 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
19424 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
19425 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
19426 #define elf_backend_filter_implib_symbols elf32_arm_filter_implib_symbols
19427 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
19428 #define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
19429 #define elf_backend_count_additional_relocs elf32_arm_count_additional_relocs
19430 #define elf_backend_symbol_processing elf32_arm_backend_symbol_processing
19431
19432 #define elf_backend_can_refcount 1
19433 #define elf_backend_can_gc_sections 1
19434 #define elf_backend_plt_readonly 1
19435 #define elf_backend_want_got_plt 1
19436 #define elf_backend_want_plt_sym 0
19437 #define elf_backend_want_dynrelro 1
19438 #define elf_backend_may_use_rel_p 1
19439 #define elf_backend_may_use_rela_p 0
19440 #define elf_backend_default_use_rela_p 0
19441 #define elf_backend_dtrel_excludes_plt 1
19442
19443 #define elf_backend_got_header_size 12
19444 #define elf_backend_extern_protected_data 1
19445
19446 #undef elf_backend_obj_attrs_vendor
19447 #define elf_backend_obj_attrs_vendor "aeabi"
19448 #undef elf_backend_obj_attrs_section
19449 #define elf_backend_obj_attrs_section ".ARM.attributes"
19450 #undef elf_backend_obj_attrs_arg_type
19451 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
19452 #undef elf_backend_obj_attrs_section_type
19453 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
19454 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
19455 #define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
19456
19457 #undef elf_backend_section_flags
19458 #define elf_backend_section_flags elf32_arm_section_flags
19459 #undef elf_backend_lookup_section_flags_hook
19460 #define elf_backend_lookup_section_flags_hook elf32_arm_lookup_section_flags
19461
19462 #define elf_backend_linux_prpsinfo32_ugid16 TRUE
19463
19464 #include "elf32-target.h"
19465
19466 /* Native Client targets. */
19467
19468 #undef TARGET_LITTLE_SYM
19469 #define TARGET_LITTLE_SYM arm_elf32_nacl_le_vec
19470 #undef TARGET_LITTLE_NAME
19471 #define TARGET_LITTLE_NAME "elf32-littlearm-nacl"
19472 #undef TARGET_BIG_SYM
19473 #define TARGET_BIG_SYM arm_elf32_nacl_be_vec
19474 #undef TARGET_BIG_NAME
19475 #define TARGET_BIG_NAME "elf32-bigarm-nacl"
19476
19477 /* Like elf32_arm_link_hash_table_create -- but overrides
19478 appropriately for NaCl. */
19479
19480 static struct bfd_link_hash_table *
19481 elf32_arm_nacl_link_hash_table_create (bfd *abfd)
19482 {
19483 struct bfd_link_hash_table *ret;
19484
19485 ret = elf32_arm_link_hash_table_create (abfd);
19486 if (ret)
19487 {
19488 struct elf32_arm_link_hash_table *htab
19489 = (struct elf32_arm_link_hash_table *) ret;
19490
19491 htab->nacl_p = 1;
19492
19493 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry);
19494 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry);
19495 }
19496 return ret;
19497 }
19498
19499 /* Since NaCl doesn't use the ARM-specific unwind format, we don't
19500 really need to use elf32_arm_modify_segment_map. But we do it
19501 anyway just to reduce gratuitous differences with the stock ARM backend. */
19502
19503 static bfd_boolean
19504 elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
19505 {
19506 return (elf32_arm_modify_segment_map (abfd, info)
19507 && nacl_modify_segment_map (abfd, info));
19508 }
19509
19510 static void
19511 elf32_arm_nacl_final_write_processing (bfd *abfd, bfd_boolean linker)
19512 {
19513 elf32_arm_final_write_processing (abfd, linker);
19514 nacl_final_write_processing (abfd, linker);
19515 }
19516
19517 static bfd_vma
19518 elf32_arm_nacl_plt_sym_val (bfd_vma i, const asection *plt,
19519 const arelent *rel ATTRIBUTE_UNUSED)
19520 {
19521 return plt->vma
19522 + 4 * (ARRAY_SIZE (elf32_arm_nacl_plt0_entry) +
19523 i * ARRAY_SIZE (elf32_arm_nacl_plt_entry));
19524 }
19525
19526 #undef elf32_bed
19527 #define elf32_bed elf32_arm_nacl_bed
19528 #undef bfd_elf32_bfd_link_hash_table_create
19529 #define bfd_elf32_bfd_link_hash_table_create \
19530 elf32_arm_nacl_link_hash_table_create
19531 #undef elf_backend_plt_alignment
19532 #define elf_backend_plt_alignment 4
19533 #undef elf_backend_modify_segment_map
19534 #define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map
19535 #undef elf_backend_modify_program_headers
19536 #define elf_backend_modify_program_headers nacl_modify_program_headers
19537 #undef elf_backend_final_write_processing
19538 #define elf_backend_final_write_processing elf32_arm_nacl_final_write_processing
19539 #undef bfd_elf32_get_synthetic_symtab
19540 #undef elf_backend_plt_sym_val
19541 #define elf_backend_plt_sym_val elf32_arm_nacl_plt_sym_val
19542 #undef elf_backend_copy_special_section_fields
19543
19544 #undef ELF_MINPAGESIZE
19545 #undef ELF_COMMONPAGESIZE
19546
19547
19548 #include "elf32-target.h"
19549
19550 /* Reset to defaults. */
19551 #undef elf_backend_plt_alignment
19552 #undef elf_backend_modify_segment_map
19553 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
19554 #undef elf_backend_modify_program_headers
19555 #undef elf_backend_final_write_processing
19556 #define elf_backend_final_write_processing elf32_arm_final_write_processing
19557 #undef ELF_MINPAGESIZE
19558 #define ELF_MINPAGESIZE 0x1000
19559 #undef ELF_COMMONPAGESIZE
19560 #define ELF_COMMONPAGESIZE 0x1000
19561
19562
19563 /* VxWorks Targets. */
19564
19565 #undef TARGET_LITTLE_SYM
19566 #define TARGET_LITTLE_SYM arm_elf32_vxworks_le_vec
19567 #undef TARGET_LITTLE_NAME
19568 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
19569 #undef TARGET_BIG_SYM
19570 #define TARGET_BIG_SYM arm_elf32_vxworks_be_vec
19571 #undef TARGET_BIG_NAME
19572 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
19573
19574 /* Like elf32_arm_link_hash_table_create -- but overrides
19575 appropriately for VxWorks. */
19576
19577 static struct bfd_link_hash_table *
19578 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
19579 {
19580 struct bfd_link_hash_table *ret;
19581
19582 ret = elf32_arm_link_hash_table_create (abfd);
19583 if (ret)
19584 {
19585 struct elf32_arm_link_hash_table *htab
19586 = (struct elf32_arm_link_hash_table *) ret;
19587 htab->use_rel = 0;
19588 htab->vxworks_p = 1;
19589 }
19590 return ret;
19591 }
19592
19593 static void
19594 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
19595 {
19596 elf32_arm_final_write_processing (abfd, linker);
19597 elf_vxworks_final_write_processing (abfd, linker);
19598 }
19599
19600 #undef elf32_bed
19601 #define elf32_bed elf32_arm_vxworks_bed
19602
19603 #undef bfd_elf32_bfd_link_hash_table_create
19604 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
19605 #undef elf_backend_final_write_processing
19606 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
19607 #undef elf_backend_emit_relocs
19608 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
19609
19610 #undef elf_backend_may_use_rel_p
19611 #define elf_backend_may_use_rel_p 0
19612 #undef elf_backend_may_use_rela_p
19613 #define elf_backend_may_use_rela_p 1
19614 #undef elf_backend_default_use_rela_p
19615 #define elf_backend_default_use_rela_p 1
19616 #undef elf_backend_want_plt_sym
19617 #define elf_backend_want_plt_sym 1
19618 #undef ELF_MAXPAGESIZE
19619 #define ELF_MAXPAGESIZE 0x1000
19620
19621 #include "elf32-target.h"
19622
19623
19624 /* Merge backend specific data from an object file to the output
19625 object file when linking. */
19626
19627 static bfd_boolean
19628 elf32_arm_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
19629 {
19630 bfd *obfd = info->output_bfd;
19631 flagword out_flags;
19632 flagword in_flags;
19633 bfd_boolean flags_compatible = TRUE;
19634 asection *sec;
19635
19636 /* Check if we have the same endianness. */
19637 if (! _bfd_generic_verify_endian_match (ibfd, info))
19638 return FALSE;
19639
19640 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
19641 return TRUE;
19642
19643 if (!elf32_arm_merge_eabi_attributes (ibfd, info))
19644 return FALSE;
19645
19646 /* The input BFD must have had its flags initialised. */
19647 /* The following seems bogus to me -- The flags are initialized in
19648 the assembler but I don't think an elf_flags_init field is
19649 written into the object. */
19650 /* BFD_ASSERT (elf_flags_init (ibfd)); */
19651
19652 in_flags = elf_elfheader (ibfd)->e_flags;
19653 out_flags = elf_elfheader (obfd)->e_flags;
19654
19655 /* In theory there is no reason why we couldn't handle this. However
19656 in practice it isn't even close to working and there is no real
19657 reason to want it. */
19658 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
19659 && !(ibfd->flags & DYNAMIC)
19660 && (in_flags & EF_ARM_BE8))
19661 {
19662 _bfd_error_handler (_("error: %B is already in final BE8 format"),
19663 ibfd);
19664 return FALSE;
19665 }
19666
19667 if (!elf_flags_init (obfd))
19668 {
19669 /* If the input is the default architecture and had the default
19670 flags then do not bother setting the flags for the output
19671 architecture, instead allow future merges to do this. If no
19672 future merges ever set these flags then they will retain their
19673 uninitialised values, which surprise surprise, correspond
19674 to the default values. */
19675 if (bfd_get_arch_info (ibfd)->the_default
19676 && elf_elfheader (ibfd)->e_flags == 0)
19677 return TRUE;
19678
19679 elf_flags_init (obfd) = TRUE;
19680 elf_elfheader (obfd)->e_flags = in_flags;
19681
19682 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
19683 && bfd_get_arch_info (obfd)->the_default)
19684 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
19685
19686 return TRUE;
19687 }
19688
19689 /* Determine what should happen if the input ARM architecture
19690 does not match the output ARM architecture. */
19691 if (! bfd_arm_merge_machines (ibfd, obfd))
19692 return FALSE;
19693
19694 /* Identical flags must be compatible. */
19695 if (in_flags == out_flags)
19696 return TRUE;
19697
19698 /* Check to see if the input BFD actually contains any sections. If
19699 not, its flags may not have been initialised either, but it
19700 cannot actually cause any incompatiblity. Do not short-circuit
19701 dynamic objects; their section list may be emptied by
19702 elf_link_add_object_symbols.
19703
19704 Also check to see if there are no code sections in the input.
19705 In this case there is no need to check for code specific flags.
19706 XXX - do we need to worry about floating-point format compatability
19707 in data sections ? */
19708 if (!(ibfd->flags & DYNAMIC))
19709 {
19710 bfd_boolean null_input_bfd = TRUE;
19711 bfd_boolean only_data_sections = TRUE;
19712
19713 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
19714 {
19715 /* Ignore synthetic glue sections. */
19716 if (strcmp (sec->name, ".glue_7")
19717 && strcmp (sec->name, ".glue_7t"))
19718 {
19719 if ((bfd_get_section_flags (ibfd, sec)
19720 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
19721 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
19722 only_data_sections = FALSE;
19723
19724 null_input_bfd = FALSE;
19725 break;
19726 }
19727 }
19728
19729 if (null_input_bfd || only_data_sections)
19730 return TRUE;
19731 }
19732
19733 /* Complain about various flag mismatches. */
19734 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
19735 EF_ARM_EABI_VERSION (out_flags)))
19736 {
19737 _bfd_error_handler
19738 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
19739 ibfd, (in_flags & EF_ARM_EABIMASK) >> 24,
19740 obfd, (out_flags & EF_ARM_EABIMASK) >> 24);
19741 return FALSE;
19742 }
19743
19744 /* Not sure what needs to be checked for EABI versions >= 1. */
19745 /* VxWorks libraries do not use these flags. */
19746 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
19747 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
19748 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
19749 {
19750 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
19751 {
19752 _bfd_error_handler
19753 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
19754 ibfd, in_flags & EF_ARM_APCS_26 ? 26 : 32,
19755 obfd, out_flags & EF_ARM_APCS_26 ? 26 : 32);
19756 flags_compatible = FALSE;
19757 }
19758
19759 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
19760 {
19761 if (in_flags & EF_ARM_APCS_FLOAT)
19762 _bfd_error_handler
19763 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
19764 ibfd, obfd);
19765 else
19766 _bfd_error_handler
19767 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
19768 ibfd, obfd);
19769
19770 flags_compatible = FALSE;
19771 }
19772
19773 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
19774 {
19775 if (in_flags & EF_ARM_VFP_FLOAT)
19776 _bfd_error_handler
19777 (_("error: %B uses VFP instructions, whereas %B does not"),
19778 ibfd, obfd);
19779 else
19780 _bfd_error_handler
19781 (_("error: %B uses FPA instructions, whereas %B does not"),
19782 ibfd, obfd);
19783
19784 flags_compatible = FALSE;
19785 }
19786
19787 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
19788 {
19789 if (in_flags & EF_ARM_MAVERICK_FLOAT)
19790 _bfd_error_handler
19791 (_("error: %B uses Maverick instructions, whereas %B does not"),
19792 ibfd, obfd);
19793 else
19794 _bfd_error_handler
19795 (_("error: %B does not use Maverick instructions, whereas %B does"),
19796 ibfd, obfd);
19797
19798 flags_compatible = FALSE;
19799 }
19800
19801 #ifdef EF_ARM_SOFT_FLOAT
19802 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
19803 {
19804 /* We can allow interworking between code that is VFP format
19805 layout, and uses either soft float or integer regs for
19806 passing floating point arguments and results. We already
19807 know that the APCS_FLOAT flags match; similarly for VFP
19808 flags. */
19809 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
19810 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
19811 {
19812 if (in_flags & EF_ARM_SOFT_FLOAT)
19813 _bfd_error_handler
19814 (_("error: %B uses software FP, whereas %B uses hardware FP"),
19815 ibfd, obfd);
19816 else
19817 _bfd_error_handler
19818 (_("error: %B uses hardware FP, whereas %B uses software FP"),
19819 ibfd, obfd);
19820
19821 flags_compatible = FALSE;
19822 }
19823 }
19824 #endif
19825
19826 /* Interworking mismatch is only a warning. */
19827 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
19828 {
19829 if (in_flags & EF_ARM_INTERWORK)
19830 {
19831 _bfd_error_handler
19832 (_("Warning: %B supports interworking, whereas %B does not"),
19833 ibfd, obfd);
19834 }
19835 else
19836 {
19837 _bfd_error_handler
19838 (_("Warning: %B does not support interworking, whereas %B does"),
19839 ibfd, obfd);
19840 }
19841 }
19842 }
19843
19844 return flags_compatible;
19845 }
19846
19847
19848 /* Symbian OS Targets. */
19849
19850 #undef TARGET_LITTLE_SYM
19851 #define TARGET_LITTLE_SYM arm_elf32_symbian_le_vec
19852 #undef TARGET_LITTLE_NAME
19853 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
19854 #undef TARGET_BIG_SYM
19855 #define TARGET_BIG_SYM arm_elf32_symbian_be_vec
19856 #undef TARGET_BIG_NAME
19857 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
19858
19859 /* Like elf32_arm_link_hash_table_create -- but overrides
19860 appropriately for Symbian OS. */
19861
19862 static struct bfd_link_hash_table *
19863 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
19864 {
19865 struct bfd_link_hash_table *ret;
19866
19867 ret = elf32_arm_link_hash_table_create (abfd);
19868 if (ret)
19869 {
19870 struct elf32_arm_link_hash_table *htab
19871 = (struct elf32_arm_link_hash_table *)ret;
19872 /* There is no PLT header for Symbian OS. */
19873 htab->plt_header_size = 0;
19874 /* The PLT entries are each one instruction and one word. */
19875 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
19876 htab->symbian_p = 1;
19877 /* Symbian uses armv5t or above, so use_blx is always true. */
19878 htab->use_blx = 1;
19879 htab->root.is_relocatable_executable = 1;
19880 }
19881 return ret;
19882 }
19883
19884 static const struct bfd_elf_special_section
19885 elf32_arm_symbian_special_sections[] =
19886 {
19887 /* In a BPABI executable, the dynamic linking sections do not go in
19888 the loadable read-only segment. The post-linker may wish to
19889 refer to these sections, but they are not part of the final
19890 program image. */
19891 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
19892 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
19893 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
19894 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
19895 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
19896 /* These sections do not need to be writable as the SymbianOS
19897 postlinker will arrange things so that no dynamic relocation is
19898 required. */
19899 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
19900 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
19901 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
19902 { NULL, 0, 0, 0, 0 }
19903 };
19904
19905 static void
19906 elf32_arm_symbian_begin_write_processing (bfd *abfd,
19907 struct bfd_link_info *link_info)
19908 {
19909 /* BPABI objects are never loaded directly by an OS kernel; they are
19910 processed by a postlinker first, into an OS-specific format. If
19911 the D_PAGED bit is set on the file, BFD will align segments on
19912 page boundaries, so that an OS can directly map the file. With
19913 BPABI objects, that just results in wasted space. In addition,
19914 because we clear the D_PAGED bit, map_sections_to_segments will
19915 recognize that the program headers should not be mapped into any
19916 loadable segment. */
19917 abfd->flags &= ~D_PAGED;
19918 elf32_arm_begin_write_processing (abfd, link_info);
19919 }
19920
19921 static bfd_boolean
19922 elf32_arm_symbian_modify_segment_map (bfd *abfd,
19923 struct bfd_link_info *info)
19924 {
19925 struct elf_segment_map *m;
19926 asection *dynsec;
19927
19928 /* BPABI shared libraries and executables should have a PT_DYNAMIC
19929 segment. However, because the .dynamic section is not marked
19930 with SEC_LOAD, the generic ELF code will not create such a
19931 segment. */
19932 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
19933 if (dynsec)
19934 {
19935 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
19936 if (m->p_type == PT_DYNAMIC)
19937 break;
19938
19939 if (m == NULL)
19940 {
19941 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
19942 m->next = elf_seg_map (abfd);
19943 elf_seg_map (abfd) = m;
19944 }
19945 }
19946
19947 /* Also call the generic arm routine. */
19948 return elf32_arm_modify_segment_map (abfd, info);
19949 }
19950
19951 /* Return address for Ith PLT stub in section PLT, for relocation REL
19952 or (bfd_vma) -1 if it should not be included. */
19953
19954 static bfd_vma
19955 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
19956 const arelent *rel ATTRIBUTE_UNUSED)
19957 {
19958 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
19959 }
19960
19961 #undef elf32_bed
19962 #define elf32_bed elf32_arm_symbian_bed
19963
19964 /* The dynamic sections are not allocated on SymbianOS; the postlinker
19965 will process them and then discard them. */
19966 #undef ELF_DYNAMIC_SEC_FLAGS
19967 #define ELF_DYNAMIC_SEC_FLAGS \
19968 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
19969
19970 #undef elf_backend_emit_relocs
19971
19972 #undef bfd_elf32_bfd_link_hash_table_create
19973 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
19974 #undef elf_backend_special_sections
19975 #define elf_backend_special_sections elf32_arm_symbian_special_sections
19976 #undef elf_backend_begin_write_processing
19977 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
19978 #undef elf_backend_final_write_processing
19979 #define elf_backend_final_write_processing elf32_arm_final_write_processing
19980
19981 #undef elf_backend_modify_segment_map
19982 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
19983
19984 /* There is no .got section for BPABI objects, and hence no header. */
19985 #undef elf_backend_got_header_size
19986 #define elf_backend_got_header_size 0
19987
19988 /* Similarly, there is no .got.plt section. */
19989 #undef elf_backend_want_got_plt
19990 #define elf_backend_want_got_plt 0
19991
19992 #undef elf_backend_plt_sym_val
19993 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
19994
19995 #undef elf_backend_may_use_rel_p
19996 #define elf_backend_may_use_rel_p 1
19997 #undef elf_backend_may_use_rela_p
19998 #define elf_backend_may_use_rela_p 0
19999 #undef elf_backend_default_use_rela_p
20000 #define elf_backend_default_use_rela_p 0
20001 #undef elf_backend_want_plt_sym
20002 #define elf_backend_want_plt_sym 0
20003 #undef elf_backend_dtrel_excludes_plt
20004 #define elf_backend_dtrel_excludes_plt 0
20005 #undef ELF_MAXPAGESIZE
20006 #define ELF_MAXPAGESIZE 0x8000
20007
20008 #include "elf32-target.h"
This page took 0.408892 seconds and 5 git commands to generate.