Complain about mbind, ifunc, and unique in final_write
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
1 /* 32-bit ELF support for ARM
2 Copyright (C) 1998-2019 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include <limits.h>
23
24 #include "bfd.h"
25 #include "libiberty.h"
26 #include "libbfd.h"
27 #include "elf-bfd.h"
28 #include "elf-nacl.h"
29 #include "elf-vxworks.h"
30 #include "elf/arm.h"
31
32 /* Return the relocation section associated with NAME. HTAB is the
33 bfd's elf32_arm_link_hash_entry. */
34 #define RELOC_SECTION(HTAB, NAME) \
35 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
36
37 /* Return size of a relocation entry. HTAB is the bfd's
38 elf32_arm_link_hash_entry. */
39 #define RELOC_SIZE(HTAB) \
40 ((HTAB)->use_rel \
41 ? sizeof (Elf32_External_Rel) \
42 : sizeof (Elf32_External_Rela))
43
44 /* Return function to swap relocations in. HTAB is the bfd's
45 elf32_arm_link_hash_entry. */
46 #define SWAP_RELOC_IN(HTAB) \
47 ((HTAB)->use_rel \
48 ? bfd_elf32_swap_reloc_in \
49 : bfd_elf32_swap_reloca_in)
50
51 /* Return function to swap relocations out. HTAB is the bfd's
52 elf32_arm_link_hash_entry. */
53 #define SWAP_RELOC_OUT(HTAB) \
54 ((HTAB)->use_rel \
55 ? bfd_elf32_swap_reloc_out \
56 : bfd_elf32_swap_reloca_out)
57
58 #define elf_info_to_howto NULL
59 #define elf_info_to_howto_rel elf32_arm_info_to_howto
60
61 #define ARM_ELF_ABI_VERSION 0
62 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
63
64 /* The Adjusted Place, as defined by AAELF. */
65 #define Pa(X) ((X) & 0xfffffffc)
66
67 static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
68 struct bfd_link_info *link_info,
69 asection *sec,
70 bfd_byte *contents);
71
72 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
73 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
74 in that slot. */
75
76 static reloc_howto_type elf32_arm_howto_table_1[] =
77 {
78 /* No relocation. */
79 HOWTO (R_ARM_NONE, /* type */
80 0, /* rightshift */
81 3, /* size (0 = byte, 1 = short, 2 = long) */
82 0, /* bitsize */
83 FALSE, /* pc_relative */
84 0, /* bitpos */
85 complain_overflow_dont,/* complain_on_overflow */
86 bfd_elf_generic_reloc, /* special_function */
87 "R_ARM_NONE", /* name */
88 FALSE, /* partial_inplace */
89 0, /* src_mask */
90 0, /* dst_mask */
91 FALSE), /* pcrel_offset */
92
93 HOWTO (R_ARM_PC24, /* type */
94 2, /* rightshift */
95 2, /* size (0 = byte, 1 = short, 2 = long) */
96 24, /* bitsize */
97 TRUE, /* pc_relative */
98 0, /* bitpos */
99 complain_overflow_signed,/* complain_on_overflow */
100 bfd_elf_generic_reloc, /* special_function */
101 "R_ARM_PC24", /* name */
102 FALSE, /* partial_inplace */
103 0x00ffffff, /* src_mask */
104 0x00ffffff, /* dst_mask */
105 TRUE), /* pcrel_offset */
106
107 /* 32 bit absolute */
108 HOWTO (R_ARM_ABS32, /* type */
109 0, /* rightshift */
110 2, /* size (0 = byte, 1 = short, 2 = long) */
111 32, /* bitsize */
112 FALSE, /* pc_relative */
113 0, /* bitpos */
114 complain_overflow_bitfield,/* complain_on_overflow */
115 bfd_elf_generic_reloc, /* special_function */
116 "R_ARM_ABS32", /* name */
117 FALSE, /* partial_inplace */
118 0xffffffff, /* src_mask */
119 0xffffffff, /* dst_mask */
120 FALSE), /* pcrel_offset */
121
122 /* standard 32bit pc-relative reloc */
123 HOWTO (R_ARM_REL32, /* type */
124 0, /* rightshift */
125 2, /* size (0 = byte, 1 = short, 2 = long) */
126 32, /* bitsize */
127 TRUE, /* pc_relative */
128 0, /* bitpos */
129 complain_overflow_bitfield,/* complain_on_overflow */
130 bfd_elf_generic_reloc, /* special_function */
131 "R_ARM_REL32", /* name */
132 FALSE, /* partial_inplace */
133 0xffffffff, /* src_mask */
134 0xffffffff, /* dst_mask */
135 TRUE), /* pcrel_offset */
136
137 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
138 HOWTO (R_ARM_LDR_PC_G0, /* type */
139 0, /* rightshift */
140 0, /* size (0 = byte, 1 = short, 2 = long) */
141 32, /* bitsize */
142 TRUE, /* pc_relative */
143 0, /* bitpos */
144 complain_overflow_dont,/* complain_on_overflow */
145 bfd_elf_generic_reloc, /* special_function */
146 "R_ARM_LDR_PC_G0", /* name */
147 FALSE, /* partial_inplace */
148 0xffffffff, /* src_mask */
149 0xffffffff, /* dst_mask */
150 TRUE), /* pcrel_offset */
151
152 /* 16 bit absolute */
153 HOWTO (R_ARM_ABS16, /* type */
154 0, /* rightshift */
155 1, /* size (0 = byte, 1 = short, 2 = long) */
156 16, /* bitsize */
157 FALSE, /* pc_relative */
158 0, /* bitpos */
159 complain_overflow_bitfield,/* complain_on_overflow */
160 bfd_elf_generic_reloc, /* special_function */
161 "R_ARM_ABS16", /* name */
162 FALSE, /* partial_inplace */
163 0x0000ffff, /* src_mask */
164 0x0000ffff, /* dst_mask */
165 FALSE), /* pcrel_offset */
166
167 /* 12 bit absolute */
168 HOWTO (R_ARM_ABS12, /* type */
169 0, /* rightshift */
170 2, /* size (0 = byte, 1 = short, 2 = long) */
171 12, /* bitsize */
172 FALSE, /* pc_relative */
173 0, /* bitpos */
174 complain_overflow_bitfield,/* complain_on_overflow */
175 bfd_elf_generic_reloc, /* special_function */
176 "R_ARM_ABS12", /* name */
177 FALSE, /* partial_inplace */
178 0x00000fff, /* src_mask */
179 0x00000fff, /* dst_mask */
180 FALSE), /* pcrel_offset */
181
182 HOWTO (R_ARM_THM_ABS5, /* type */
183 6, /* rightshift */
184 1, /* size (0 = byte, 1 = short, 2 = long) */
185 5, /* bitsize */
186 FALSE, /* pc_relative */
187 0, /* bitpos */
188 complain_overflow_bitfield,/* complain_on_overflow */
189 bfd_elf_generic_reloc, /* special_function */
190 "R_ARM_THM_ABS5", /* name */
191 FALSE, /* partial_inplace */
192 0x000007e0, /* src_mask */
193 0x000007e0, /* dst_mask */
194 FALSE), /* pcrel_offset */
195
196 /* 8 bit absolute */
197 HOWTO (R_ARM_ABS8, /* type */
198 0, /* rightshift */
199 0, /* size (0 = byte, 1 = short, 2 = long) */
200 8, /* bitsize */
201 FALSE, /* pc_relative */
202 0, /* bitpos */
203 complain_overflow_bitfield,/* complain_on_overflow */
204 bfd_elf_generic_reloc, /* special_function */
205 "R_ARM_ABS8", /* name */
206 FALSE, /* partial_inplace */
207 0x000000ff, /* src_mask */
208 0x000000ff, /* dst_mask */
209 FALSE), /* pcrel_offset */
210
211 HOWTO (R_ARM_SBREL32, /* type */
212 0, /* rightshift */
213 2, /* size (0 = byte, 1 = short, 2 = long) */
214 32, /* bitsize */
215 FALSE, /* pc_relative */
216 0, /* bitpos */
217 complain_overflow_dont,/* complain_on_overflow */
218 bfd_elf_generic_reloc, /* special_function */
219 "R_ARM_SBREL32", /* name */
220 FALSE, /* partial_inplace */
221 0xffffffff, /* src_mask */
222 0xffffffff, /* dst_mask */
223 FALSE), /* pcrel_offset */
224
225 HOWTO (R_ARM_THM_CALL, /* type */
226 1, /* rightshift */
227 2, /* size (0 = byte, 1 = short, 2 = long) */
228 24, /* bitsize */
229 TRUE, /* pc_relative */
230 0, /* bitpos */
231 complain_overflow_signed,/* complain_on_overflow */
232 bfd_elf_generic_reloc, /* special_function */
233 "R_ARM_THM_CALL", /* name */
234 FALSE, /* partial_inplace */
235 0x07ff2fff, /* src_mask */
236 0x07ff2fff, /* dst_mask */
237 TRUE), /* pcrel_offset */
238
239 HOWTO (R_ARM_THM_PC8, /* type */
240 1, /* rightshift */
241 1, /* size (0 = byte, 1 = short, 2 = long) */
242 8, /* bitsize */
243 TRUE, /* pc_relative */
244 0, /* bitpos */
245 complain_overflow_signed,/* complain_on_overflow */
246 bfd_elf_generic_reloc, /* special_function */
247 "R_ARM_THM_PC8", /* name */
248 FALSE, /* partial_inplace */
249 0x000000ff, /* src_mask */
250 0x000000ff, /* dst_mask */
251 TRUE), /* pcrel_offset */
252
253 HOWTO (R_ARM_BREL_ADJ, /* type */
254 1, /* rightshift */
255 1, /* size (0 = byte, 1 = short, 2 = long) */
256 32, /* bitsize */
257 FALSE, /* pc_relative */
258 0, /* bitpos */
259 complain_overflow_signed,/* complain_on_overflow */
260 bfd_elf_generic_reloc, /* special_function */
261 "R_ARM_BREL_ADJ", /* name */
262 FALSE, /* partial_inplace */
263 0xffffffff, /* src_mask */
264 0xffffffff, /* dst_mask */
265 FALSE), /* pcrel_offset */
266
267 HOWTO (R_ARM_TLS_DESC, /* type */
268 0, /* rightshift */
269 2, /* size (0 = byte, 1 = short, 2 = long) */
270 32, /* bitsize */
271 FALSE, /* pc_relative */
272 0, /* bitpos */
273 complain_overflow_bitfield,/* complain_on_overflow */
274 bfd_elf_generic_reloc, /* special_function */
275 "R_ARM_TLS_DESC", /* name */
276 FALSE, /* partial_inplace */
277 0xffffffff, /* src_mask */
278 0xffffffff, /* dst_mask */
279 FALSE), /* pcrel_offset */
280
281 HOWTO (R_ARM_THM_SWI8, /* type */
282 0, /* rightshift */
283 0, /* size (0 = byte, 1 = short, 2 = long) */
284 0, /* bitsize */
285 FALSE, /* pc_relative */
286 0, /* bitpos */
287 complain_overflow_signed,/* complain_on_overflow */
288 bfd_elf_generic_reloc, /* special_function */
289 "R_ARM_SWI8", /* name */
290 FALSE, /* partial_inplace */
291 0x00000000, /* src_mask */
292 0x00000000, /* dst_mask */
293 FALSE), /* pcrel_offset */
294
295 /* BLX instruction for the ARM. */
296 HOWTO (R_ARM_XPC25, /* type */
297 2, /* rightshift */
298 2, /* size (0 = byte, 1 = short, 2 = long) */
299 24, /* bitsize */
300 TRUE, /* pc_relative */
301 0, /* bitpos */
302 complain_overflow_signed,/* complain_on_overflow */
303 bfd_elf_generic_reloc, /* special_function */
304 "R_ARM_XPC25", /* name */
305 FALSE, /* partial_inplace */
306 0x00ffffff, /* src_mask */
307 0x00ffffff, /* dst_mask */
308 TRUE), /* pcrel_offset */
309
310 /* BLX instruction for the Thumb. */
311 HOWTO (R_ARM_THM_XPC22, /* type */
312 2, /* rightshift */
313 2, /* size (0 = byte, 1 = short, 2 = long) */
314 24, /* bitsize */
315 TRUE, /* pc_relative */
316 0, /* bitpos */
317 complain_overflow_signed,/* complain_on_overflow */
318 bfd_elf_generic_reloc, /* special_function */
319 "R_ARM_THM_XPC22", /* name */
320 FALSE, /* partial_inplace */
321 0x07ff2fff, /* src_mask */
322 0x07ff2fff, /* dst_mask */
323 TRUE), /* pcrel_offset */
324
325 /* Dynamic TLS relocations. */
326
327 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
328 0, /* rightshift */
329 2, /* size (0 = byte, 1 = short, 2 = long) */
330 32, /* bitsize */
331 FALSE, /* pc_relative */
332 0, /* bitpos */
333 complain_overflow_bitfield,/* complain_on_overflow */
334 bfd_elf_generic_reloc, /* special_function */
335 "R_ARM_TLS_DTPMOD32", /* name */
336 TRUE, /* partial_inplace */
337 0xffffffff, /* src_mask */
338 0xffffffff, /* dst_mask */
339 FALSE), /* pcrel_offset */
340
341 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
342 0, /* rightshift */
343 2, /* size (0 = byte, 1 = short, 2 = long) */
344 32, /* bitsize */
345 FALSE, /* pc_relative */
346 0, /* bitpos */
347 complain_overflow_bitfield,/* complain_on_overflow */
348 bfd_elf_generic_reloc, /* special_function */
349 "R_ARM_TLS_DTPOFF32", /* name */
350 TRUE, /* partial_inplace */
351 0xffffffff, /* src_mask */
352 0xffffffff, /* dst_mask */
353 FALSE), /* pcrel_offset */
354
355 HOWTO (R_ARM_TLS_TPOFF32, /* type */
356 0, /* rightshift */
357 2, /* size (0 = byte, 1 = short, 2 = long) */
358 32, /* bitsize */
359 FALSE, /* pc_relative */
360 0, /* bitpos */
361 complain_overflow_bitfield,/* complain_on_overflow */
362 bfd_elf_generic_reloc, /* special_function */
363 "R_ARM_TLS_TPOFF32", /* name */
364 TRUE, /* partial_inplace */
365 0xffffffff, /* src_mask */
366 0xffffffff, /* dst_mask */
367 FALSE), /* pcrel_offset */
368
369 /* Relocs used in ARM Linux */
370
371 HOWTO (R_ARM_COPY, /* type */
372 0, /* rightshift */
373 2, /* size (0 = byte, 1 = short, 2 = long) */
374 32, /* bitsize */
375 FALSE, /* pc_relative */
376 0, /* bitpos */
377 complain_overflow_bitfield,/* complain_on_overflow */
378 bfd_elf_generic_reloc, /* special_function */
379 "R_ARM_COPY", /* name */
380 TRUE, /* partial_inplace */
381 0xffffffff, /* src_mask */
382 0xffffffff, /* dst_mask */
383 FALSE), /* pcrel_offset */
384
385 HOWTO (R_ARM_GLOB_DAT, /* type */
386 0, /* rightshift */
387 2, /* size (0 = byte, 1 = short, 2 = long) */
388 32, /* bitsize */
389 FALSE, /* pc_relative */
390 0, /* bitpos */
391 complain_overflow_bitfield,/* complain_on_overflow */
392 bfd_elf_generic_reloc, /* special_function */
393 "R_ARM_GLOB_DAT", /* name */
394 TRUE, /* partial_inplace */
395 0xffffffff, /* src_mask */
396 0xffffffff, /* dst_mask */
397 FALSE), /* pcrel_offset */
398
399 HOWTO (R_ARM_JUMP_SLOT, /* type */
400 0, /* rightshift */
401 2, /* size (0 = byte, 1 = short, 2 = long) */
402 32, /* bitsize */
403 FALSE, /* pc_relative */
404 0, /* bitpos */
405 complain_overflow_bitfield,/* complain_on_overflow */
406 bfd_elf_generic_reloc, /* special_function */
407 "R_ARM_JUMP_SLOT", /* name */
408 TRUE, /* partial_inplace */
409 0xffffffff, /* src_mask */
410 0xffffffff, /* dst_mask */
411 FALSE), /* pcrel_offset */
412
413 HOWTO (R_ARM_RELATIVE, /* type */
414 0, /* rightshift */
415 2, /* size (0 = byte, 1 = short, 2 = long) */
416 32, /* bitsize */
417 FALSE, /* pc_relative */
418 0, /* bitpos */
419 complain_overflow_bitfield,/* complain_on_overflow */
420 bfd_elf_generic_reloc, /* special_function */
421 "R_ARM_RELATIVE", /* name */
422 TRUE, /* partial_inplace */
423 0xffffffff, /* src_mask */
424 0xffffffff, /* dst_mask */
425 FALSE), /* pcrel_offset */
426
427 HOWTO (R_ARM_GOTOFF32, /* type */
428 0, /* rightshift */
429 2, /* size (0 = byte, 1 = short, 2 = long) */
430 32, /* bitsize */
431 FALSE, /* pc_relative */
432 0, /* bitpos */
433 complain_overflow_bitfield,/* complain_on_overflow */
434 bfd_elf_generic_reloc, /* special_function */
435 "R_ARM_GOTOFF32", /* name */
436 TRUE, /* partial_inplace */
437 0xffffffff, /* src_mask */
438 0xffffffff, /* dst_mask */
439 FALSE), /* pcrel_offset */
440
441 HOWTO (R_ARM_GOTPC, /* type */
442 0, /* rightshift */
443 2, /* size (0 = byte, 1 = short, 2 = long) */
444 32, /* bitsize */
445 TRUE, /* pc_relative */
446 0, /* bitpos */
447 complain_overflow_bitfield,/* complain_on_overflow */
448 bfd_elf_generic_reloc, /* special_function */
449 "R_ARM_GOTPC", /* name */
450 TRUE, /* partial_inplace */
451 0xffffffff, /* src_mask */
452 0xffffffff, /* dst_mask */
453 TRUE), /* pcrel_offset */
454
455 HOWTO (R_ARM_GOT32, /* type */
456 0, /* rightshift */
457 2, /* size (0 = byte, 1 = short, 2 = long) */
458 32, /* bitsize */
459 FALSE, /* pc_relative */
460 0, /* bitpos */
461 complain_overflow_bitfield,/* complain_on_overflow */
462 bfd_elf_generic_reloc, /* special_function */
463 "R_ARM_GOT32", /* name */
464 TRUE, /* partial_inplace */
465 0xffffffff, /* src_mask */
466 0xffffffff, /* dst_mask */
467 FALSE), /* pcrel_offset */
468
469 HOWTO (R_ARM_PLT32, /* type */
470 2, /* rightshift */
471 2, /* size (0 = byte, 1 = short, 2 = long) */
472 24, /* bitsize */
473 TRUE, /* pc_relative */
474 0, /* bitpos */
475 complain_overflow_bitfield,/* complain_on_overflow */
476 bfd_elf_generic_reloc, /* special_function */
477 "R_ARM_PLT32", /* name */
478 FALSE, /* partial_inplace */
479 0x00ffffff, /* src_mask */
480 0x00ffffff, /* dst_mask */
481 TRUE), /* pcrel_offset */
482
483 HOWTO (R_ARM_CALL, /* type */
484 2, /* rightshift */
485 2, /* size (0 = byte, 1 = short, 2 = long) */
486 24, /* bitsize */
487 TRUE, /* pc_relative */
488 0, /* bitpos */
489 complain_overflow_signed,/* complain_on_overflow */
490 bfd_elf_generic_reloc, /* special_function */
491 "R_ARM_CALL", /* name */
492 FALSE, /* partial_inplace */
493 0x00ffffff, /* src_mask */
494 0x00ffffff, /* dst_mask */
495 TRUE), /* pcrel_offset */
496
497 HOWTO (R_ARM_JUMP24, /* type */
498 2, /* rightshift */
499 2, /* size (0 = byte, 1 = short, 2 = long) */
500 24, /* bitsize */
501 TRUE, /* pc_relative */
502 0, /* bitpos */
503 complain_overflow_signed,/* complain_on_overflow */
504 bfd_elf_generic_reloc, /* special_function */
505 "R_ARM_JUMP24", /* name */
506 FALSE, /* partial_inplace */
507 0x00ffffff, /* src_mask */
508 0x00ffffff, /* dst_mask */
509 TRUE), /* pcrel_offset */
510
511 HOWTO (R_ARM_THM_JUMP24, /* type */
512 1, /* rightshift */
513 2, /* size (0 = byte, 1 = short, 2 = long) */
514 24, /* bitsize */
515 TRUE, /* pc_relative */
516 0, /* bitpos */
517 complain_overflow_signed,/* complain_on_overflow */
518 bfd_elf_generic_reloc, /* special_function */
519 "R_ARM_THM_JUMP24", /* name */
520 FALSE, /* partial_inplace */
521 0x07ff2fff, /* src_mask */
522 0x07ff2fff, /* dst_mask */
523 TRUE), /* pcrel_offset */
524
525 HOWTO (R_ARM_BASE_ABS, /* type */
526 0, /* rightshift */
527 2, /* size (0 = byte, 1 = short, 2 = long) */
528 32, /* bitsize */
529 FALSE, /* pc_relative */
530 0, /* bitpos */
531 complain_overflow_dont,/* complain_on_overflow */
532 bfd_elf_generic_reloc, /* special_function */
533 "R_ARM_BASE_ABS", /* name */
534 FALSE, /* partial_inplace */
535 0xffffffff, /* src_mask */
536 0xffffffff, /* dst_mask */
537 FALSE), /* pcrel_offset */
538
539 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
540 0, /* rightshift */
541 2, /* size (0 = byte, 1 = short, 2 = long) */
542 12, /* bitsize */
543 TRUE, /* pc_relative */
544 0, /* bitpos */
545 complain_overflow_dont,/* complain_on_overflow */
546 bfd_elf_generic_reloc, /* special_function */
547 "R_ARM_ALU_PCREL_7_0", /* name */
548 FALSE, /* partial_inplace */
549 0x00000fff, /* src_mask */
550 0x00000fff, /* dst_mask */
551 TRUE), /* pcrel_offset */
552
553 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
554 0, /* rightshift */
555 2, /* size (0 = byte, 1 = short, 2 = long) */
556 12, /* bitsize */
557 TRUE, /* pc_relative */
558 8, /* bitpos */
559 complain_overflow_dont,/* complain_on_overflow */
560 bfd_elf_generic_reloc, /* special_function */
561 "R_ARM_ALU_PCREL_15_8",/* name */
562 FALSE, /* partial_inplace */
563 0x00000fff, /* src_mask */
564 0x00000fff, /* dst_mask */
565 TRUE), /* pcrel_offset */
566
567 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
568 0, /* rightshift */
569 2, /* size (0 = byte, 1 = short, 2 = long) */
570 12, /* bitsize */
571 TRUE, /* pc_relative */
572 16, /* bitpos */
573 complain_overflow_dont,/* complain_on_overflow */
574 bfd_elf_generic_reloc, /* special_function */
575 "R_ARM_ALU_PCREL_23_15",/* name */
576 FALSE, /* partial_inplace */
577 0x00000fff, /* src_mask */
578 0x00000fff, /* dst_mask */
579 TRUE), /* pcrel_offset */
580
581 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
582 0, /* rightshift */
583 2, /* size (0 = byte, 1 = short, 2 = long) */
584 12, /* bitsize */
585 FALSE, /* pc_relative */
586 0, /* bitpos */
587 complain_overflow_dont,/* complain_on_overflow */
588 bfd_elf_generic_reloc, /* special_function */
589 "R_ARM_LDR_SBREL_11_0",/* name */
590 FALSE, /* partial_inplace */
591 0x00000fff, /* src_mask */
592 0x00000fff, /* dst_mask */
593 FALSE), /* pcrel_offset */
594
595 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
596 0, /* rightshift */
597 2, /* size (0 = byte, 1 = short, 2 = long) */
598 8, /* bitsize */
599 FALSE, /* pc_relative */
600 12, /* bitpos */
601 complain_overflow_dont,/* complain_on_overflow */
602 bfd_elf_generic_reloc, /* special_function */
603 "R_ARM_ALU_SBREL_19_12",/* name */
604 FALSE, /* partial_inplace */
605 0x000ff000, /* src_mask */
606 0x000ff000, /* dst_mask */
607 FALSE), /* pcrel_offset */
608
609 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
610 0, /* rightshift */
611 2, /* size (0 = byte, 1 = short, 2 = long) */
612 8, /* bitsize */
613 FALSE, /* pc_relative */
614 20, /* bitpos */
615 complain_overflow_dont,/* complain_on_overflow */
616 bfd_elf_generic_reloc, /* special_function */
617 "R_ARM_ALU_SBREL_27_20",/* name */
618 FALSE, /* partial_inplace */
619 0x0ff00000, /* src_mask */
620 0x0ff00000, /* dst_mask */
621 FALSE), /* pcrel_offset */
622
623 HOWTO (R_ARM_TARGET1, /* type */
624 0, /* rightshift */
625 2, /* size (0 = byte, 1 = short, 2 = long) */
626 32, /* bitsize */
627 FALSE, /* pc_relative */
628 0, /* bitpos */
629 complain_overflow_dont,/* complain_on_overflow */
630 bfd_elf_generic_reloc, /* special_function */
631 "R_ARM_TARGET1", /* name */
632 FALSE, /* partial_inplace */
633 0xffffffff, /* src_mask */
634 0xffffffff, /* dst_mask */
635 FALSE), /* pcrel_offset */
636
637 HOWTO (R_ARM_ROSEGREL32, /* type */
638 0, /* rightshift */
639 2, /* size (0 = byte, 1 = short, 2 = long) */
640 32, /* bitsize */
641 FALSE, /* pc_relative */
642 0, /* bitpos */
643 complain_overflow_dont,/* complain_on_overflow */
644 bfd_elf_generic_reloc, /* special_function */
645 "R_ARM_ROSEGREL32", /* name */
646 FALSE, /* partial_inplace */
647 0xffffffff, /* src_mask */
648 0xffffffff, /* dst_mask */
649 FALSE), /* pcrel_offset */
650
651 HOWTO (R_ARM_V4BX, /* type */
652 0, /* rightshift */
653 2, /* size (0 = byte, 1 = short, 2 = long) */
654 32, /* bitsize */
655 FALSE, /* pc_relative */
656 0, /* bitpos */
657 complain_overflow_dont,/* complain_on_overflow */
658 bfd_elf_generic_reloc, /* special_function */
659 "R_ARM_V4BX", /* name */
660 FALSE, /* partial_inplace */
661 0xffffffff, /* src_mask */
662 0xffffffff, /* dst_mask */
663 FALSE), /* pcrel_offset */
664
665 HOWTO (R_ARM_TARGET2, /* type */
666 0, /* rightshift */
667 2, /* size (0 = byte, 1 = short, 2 = long) */
668 32, /* bitsize */
669 FALSE, /* pc_relative */
670 0, /* bitpos */
671 complain_overflow_signed,/* complain_on_overflow */
672 bfd_elf_generic_reloc, /* special_function */
673 "R_ARM_TARGET2", /* name */
674 FALSE, /* partial_inplace */
675 0xffffffff, /* src_mask */
676 0xffffffff, /* dst_mask */
677 TRUE), /* pcrel_offset */
678
679 HOWTO (R_ARM_PREL31, /* type */
680 0, /* rightshift */
681 2, /* size (0 = byte, 1 = short, 2 = long) */
682 31, /* bitsize */
683 TRUE, /* pc_relative */
684 0, /* bitpos */
685 complain_overflow_signed,/* complain_on_overflow */
686 bfd_elf_generic_reloc, /* special_function */
687 "R_ARM_PREL31", /* name */
688 FALSE, /* partial_inplace */
689 0x7fffffff, /* src_mask */
690 0x7fffffff, /* dst_mask */
691 TRUE), /* pcrel_offset */
692
693 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
694 0, /* rightshift */
695 2, /* size (0 = byte, 1 = short, 2 = long) */
696 16, /* bitsize */
697 FALSE, /* pc_relative */
698 0, /* bitpos */
699 complain_overflow_dont,/* complain_on_overflow */
700 bfd_elf_generic_reloc, /* special_function */
701 "R_ARM_MOVW_ABS_NC", /* name */
702 FALSE, /* partial_inplace */
703 0x000f0fff, /* src_mask */
704 0x000f0fff, /* dst_mask */
705 FALSE), /* pcrel_offset */
706
707 HOWTO (R_ARM_MOVT_ABS, /* type */
708 0, /* rightshift */
709 2, /* size (0 = byte, 1 = short, 2 = long) */
710 16, /* bitsize */
711 FALSE, /* pc_relative */
712 0, /* bitpos */
713 complain_overflow_bitfield,/* complain_on_overflow */
714 bfd_elf_generic_reloc, /* special_function */
715 "R_ARM_MOVT_ABS", /* name */
716 FALSE, /* partial_inplace */
717 0x000f0fff, /* src_mask */
718 0x000f0fff, /* dst_mask */
719 FALSE), /* pcrel_offset */
720
721 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
722 0, /* rightshift */
723 2, /* size (0 = byte, 1 = short, 2 = long) */
724 16, /* bitsize */
725 TRUE, /* pc_relative */
726 0, /* bitpos */
727 complain_overflow_dont,/* complain_on_overflow */
728 bfd_elf_generic_reloc, /* special_function */
729 "R_ARM_MOVW_PREL_NC", /* name */
730 FALSE, /* partial_inplace */
731 0x000f0fff, /* src_mask */
732 0x000f0fff, /* dst_mask */
733 TRUE), /* pcrel_offset */
734
735 HOWTO (R_ARM_MOVT_PREL, /* type */
736 0, /* rightshift */
737 2, /* size (0 = byte, 1 = short, 2 = long) */
738 16, /* bitsize */
739 TRUE, /* pc_relative */
740 0, /* bitpos */
741 complain_overflow_bitfield,/* complain_on_overflow */
742 bfd_elf_generic_reloc, /* special_function */
743 "R_ARM_MOVT_PREL", /* name */
744 FALSE, /* partial_inplace */
745 0x000f0fff, /* src_mask */
746 0x000f0fff, /* dst_mask */
747 TRUE), /* pcrel_offset */
748
749 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
750 0, /* rightshift */
751 2, /* size (0 = byte, 1 = short, 2 = long) */
752 16, /* bitsize */
753 FALSE, /* pc_relative */
754 0, /* bitpos */
755 complain_overflow_dont,/* complain_on_overflow */
756 bfd_elf_generic_reloc, /* special_function */
757 "R_ARM_THM_MOVW_ABS_NC",/* name */
758 FALSE, /* partial_inplace */
759 0x040f70ff, /* src_mask */
760 0x040f70ff, /* dst_mask */
761 FALSE), /* pcrel_offset */
762
763 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
764 0, /* rightshift */
765 2, /* size (0 = byte, 1 = short, 2 = long) */
766 16, /* bitsize */
767 FALSE, /* pc_relative */
768 0, /* bitpos */
769 complain_overflow_bitfield,/* complain_on_overflow */
770 bfd_elf_generic_reloc, /* special_function */
771 "R_ARM_THM_MOVT_ABS", /* name */
772 FALSE, /* partial_inplace */
773 0x040f70ff, /* src_mask */
774 0x040f70ff, /* dst_mask */
775 FALSE), /* pcrel_offset */
776
777 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
778 0, /* rightshift */
779 2, /* size (0 = byte, 1 = short, 2 = long) */
780 16, /* bitsize */
781 TRUE, /* pc_relative */
782 0, /* bitpos */
783 complain_overflow_dont,/* complain_on_overflow */
784 bfd_elf_generic_reloc, /* special_function */
785 "R_ARM_THM_MOVW_PREL_NC",/* name */
786 FALSE, /* partial_inplace */
787 0x040f70ff, /* src_mask */
788 0x040f70ff, /* dst_mask */
789 TRUE), /* pcrel_offset */
790
791 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
792 0, /* rightshift */
793 2, /* size (0 = byte, 1 = short, 2 = long) */
794 16, /* bitsize */
795 TRUE, /* pc_relative */
796 0, /* bitpos */
797 complain_overflow_bitfield,/* complain_on_overflow */
798 bfd_elf_generic_reloc, /* special_function */
799 "R_ARM_THM_MOVT_PREL", /* name */
800 FALSE, /* partial_inplace */
801 0x040f70ff, /* src_mask */
802 0x040f70ff, /* dst_mask */
803 TRUE), /* pcrel_offset */
804
805 HOWTO (R_ARM_THM_JUMP19, /* type */
806 1, /* rightshift */
807 2, /* size (0 = byte, 1 = short, 2 = long) */
808 19, /* bitsize */
809 TRUE, /* pc_relative */
810 0, /* bitpos */
811 complain_overflow_signed,/* complain_on_overflow */
812 bfd_elf_generic_reloc, /* special_function */
813 "R_ARM_THM_JUMP19", /* name */
814 FALSE, /* partial_inplace */
815 0x043f2fff, /* src_mask */
816 0x043f2fff, /* dst_mask */
817 TRUE), /* pcrel_offset */
818
819 HOWTO (R_ARM_THM_JUMP6, /* type */
820 1, /* rightshift */
821 1, /* size (0 = byte, 1 = short, 2 = long) */
822 6, /* bitsize */
823 TRUE, /* pc_relative */
824 0, /* bitpos */
825 complain_overflow_unsigned,/* complain_on_overflow */
826 bfd_elf_generic_reloc, /* special_function */
827 "R_ARM_THM_JUMP6", /* name */
828 FALSE, /* partial_inplace */
829 0x02f8, /* src_mask */
830 0x02f8, /* dst_mask */
831 TRUE), /* pcrel_offset */
832
833 /* These are declared as 13-bit signed relocations because we can
834 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
835 versa. */
836 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
837 0, /* rightshift */
838 2, /* size (0 = byte, 1 = short, 2 = long) */
839 13, /* bitsize */
840 TRUE, /* pc_relative */
841 0, /* bitpos */
842 complain_overflow_dont,/* complain_on_overflow */
843 bfd_elf_generic_reloc, /* special_function */
844 "R_ARM_THM_ALU_PREL_11_0",/* name */
845 FALSE, /* partial_inplace */
846 0xffffffff, /* src_mask */
847 0xffffffff, /* dst_mask */
848 TRUE), /* pcrel_offset */
849
850 HOWTO (R_ARM_THM_PC12, /* type */
851 0, /* rightshift */
852 2, /* size (0 = byte, 1 = short, 2 = long) */
853 13, /* bitsize */
854 TRUE, /* pc_relative */
855 0, /* bitpos */
856 complain_overflow_dont,/* complain_on_overflow */
857 bfd_elf_generic_reloc, /* special_function */
858 "R_ARM_THM_PC12", /* name */
859 FALSE, /* partial_inplace */
860 0xffffffff, /* src_mask */
861 0xffffffff, /* dst_mask */
862 TRUE), /* pcrel_offset */
863
864 HOWTO (R_ARM_ABS32_NOI, /* type */
865 0, /* rightshift */
866 2, /* size (0 = byte, 1 = short, 2 = long) */
867 32, /* bitsize */
868 FALSE, /* pc_relative */
869 0, /* bitpos */
870 complain_overflow_dont,/* complain_on_overflow */
871 bfd_elf_generic_reloc, /* special_function */
872 "R_ARM_ABS32_NOI", /* name */
873 FALSE, /* partial_inplace */
874 0xffffffff, /* src_mask */
875 0xffffffff, /* dst_mask */
876 FALSE), /* pcrel_offset */
877
878 HOWTO (R_ARM_REL32_NOI, /* type */
879 0, /* rightshift */
880 2, /* size (0 = byte, 1 = short, 2 = long) */
881 32, /* bitsize */
882 TRUE, /* pc_relative */
883 0, /* bitpos */
884 complain_overflow_dont,/* complain_on_overflow */
885 bfd_elf_generic_reloc, /* special_function */
886 "R_ARM_REL32_NOI", /* name */
887 FALSE, /* partial_inplace */
888 0xffffffff, /* src_mask */
889 0xffffffff, /* dst_mask */
890 FALSE), /* pcrel_offset */
891
892 /* Group relocations. */
893
894 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
895 0, /* rightshift */
896 2, /* size (0 = byte, 1 = short, 2 = long) */
897 32, /* bitsize */
898 TRUE, /* pc_relative */
899 0, /* bitpos */
900 complain_overflow_dont,/* complain_on_overflow */
901 bfd_elf_generic_reloc, /* special_function */
902 "R_ARM_ALU_PC_G0_NC", /* name */
903 FALSE, /* partial_inplace */
904 0xffffffff, /* src_mask */
905 0xffffffff, /* dst_mask */
906 TRUE), /* pcrel_offset */
907
908 HOWTO (R_ARM_ALU_PC_G0, /* type */
909 0, /* rightshift */
910 2, /* size (0 = byte, 1 = short, 2 = long) */
911 32, /* bitsize */
912 TRUE, /* pc_relative */
913 0, /* bitpos */
914 complain_overflow_dont,/* complain_on_overflow */
915 bfd_elf_generic_reloc, /* special_function */
916 "R_ARM_ALU_PC_G0", /* name */
917 FALSE, /* partial_inplace */
918 0xffffffff, /* src_mask */
919 0xffffffff, /* dst_mask */
920 TRUE), /* pcrel_offset */
921
922 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
923 0, /* rightshift */
924 2, /* size (0 = byte, 1 = short, 2 = long) */
925 32, /* bitsize */
926 TRUE, /* pc_relative */
927 0, /* bitpos */
928 complain_overflow_dont,/* complain_on_overflow */
929 bfd_elf_generic_reloc, /* special_function */
930 "R_ARM_ALU_PC_G1_NC", /* name */
931 FALSE, /* partial_inplace */
932 0xffffffff, /* src_mask */
933 0xffffffff, /* dst_mask */
934 TRUE), /* pcrel_offset */
935
936 HOWTO (R_ARM_ALU_PC_G1, /* type */
937 0, /* rightshift */
938 2, /* size (0 = byte, 1 = short, 2 = long) */
939 32, /* bitsize */
940 TRUE, /* pc_relative */
941 0, /* bitpos */
942 complain_overflow_dont,/* complain_on_overflow */
943 bfd_elf_generic_reloc, /* special_function */
944 "R_ARM_ALU_PC_G1", /* name */
945 FALSE, /* partial_inplace */
946 0xffffffff, /* src_mask */
947 0xffffffff, /* dst_mask */
948 TRUE), /* pcrel_offset */
949
950 HOWTO (R_ARM_ALU_PC_G2, /* type */
951 0, /* rightshift */
952 2, /* size (0 = byte, 1 = short, 2 = long) */
953 32, /* bitsize */
954 TRUE, /* pc_relative */
955 0, /* bitpos */
956 complain_overflow_dont,/* complain_on_overflow */
957 bfd_elf_generic_reloc, /* special_function */
958 "R_ARM_ALU_PC_G2", /* name */
959 FALSE, /* partial_inplace */
960 0xffffffff, /* src_mask */
961 0xffffffff, /* dst_mask */
962 TRUE), /* pcrel_offset */
963
964 HOWTO (R_ARM_LDR_PC_G1, /* type */
965 0, /* rightshift */
966 2, /* size (0 = byte, 1 = short, 2 = long) */
967 32, /* bitsize */
968 TRUE, /* pc_relative */
969 0, /* bitpos */
970 complain_overflow_dont,/* complain_on_overflow */
971 bfd_elf_generic_reloc, /* special_function */
972 "R_ARM_LDR_PC_G1", /* name */
973 FALSE, /* partial_inplace */
974 0xffffffff, /* src_mask */
975 0xffffffff, /* dst_mask */
976 TRUE), /* pcrel_offset */
977
978 HOWTO (R_ARM_LDR_PC_G2, /* type */
979 0, /* rightshift */
980 2, /* size (0 = byte, 1 = short, 2 = long) */
981 32, /* bitsize */
982 TRUE, /* pc_relative */
983 0, /* bitpos */
984 complain_overflow_dont,/* complain_on_overflow */
985 bfd_elf_generic_reloc, /* special_function */
986 "R_ARM_LDR_PC_G2", /* name */
987 FALSE, /* partial_inplace */
988 0xffffffff, /* src_mask */
989 0xffffffff, /* dst_mask */
990 TRUE), /* pcrel_offset */
991
992 HOWTO (R_ARM_LDRS_PC_G0, /* type */
993 0, /* rightshift */
994 2, /* size (0 = byte, 1 = short, 2 = long) */
995 32, /* bitsize */
996 TRUE, /* pc_relative */
997 0, /* bitpos */
998 complain_overflow_dont,/* complain_on_overflow */
999 bfd_elf_generic_reloc, /* special_function */
1000 "R_ARM_LDRS_PC_G0", /* name */
1001 FALSE, /* partial_inplace */
1002 0xffffffff, /* src_mask */
1003 0xffffffff, /* dst_mask */
1004 TRUE), /* pcrel_offset */
1005
1006 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1007 0, /* rightshift */
1008 2, /* size (0 = byte, 1 = short, 2 = long) */
1009 32, /* bitsize */
1010 TRUE, /* pc_relative */
1011 0, /* bitpos */
1012 complain_overflow_dont,/* complain_on_overflow */
1013 bfd_elf_generic_reloc, /* special_function */
1014 "R_ARM_LDRS_PC_G1", /* name */
1015 FALSE, /* partial_inplace */
1016 0xffffffff, /* src_mask */
1017 0xffffffff, /* dst_mask */
1018 TRUE), /* pcrel_offset */
1019
1020 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1021 0, /* rightshift */
1022 2, /* size (0 = byte, 1 = short, 2 = long) */
1023 32, /* bitsize */
1024 TRUE, /* pc_relative */
1025 0, /* bitpos */
1026 complain_overflow_dont,/* complain_on_overflow */
1027 bfd_elf_generic_reloc, /* special_function */
1028 "R_ARM_LDRS_PC_G2", /* name */
1029 FALSE, /* partial_inplace */
1030 0xffffffff, /* src_mask */
1031 0xffffffff, /* dst_mask */
1032 TRUE), /* pcrel_offset */
1033
1034 HOWTO (R_ARM_LDC_PC_G0, /* type */
1035 0, /* rightshift */
1036 2, /* size (0 = byte, 1 = short, 2 = long) */
1037 32, /* bitsize */
1038 TRUE, /* pc_relative */
1039 0, /* bitpos */
1040 complain_overflow_dont,/* complain_on_overflow */
1041 bfd_elf_generic_reloc, /* special_function */
1042 "R_ARM_LDC_PC_G0", /* name */
1043 FALSE, /* partial_inplace */
1044 0xffffffff, /* src_mask */
1045 0xffffffff, /* dst_mask */
1046 TRUE), /* pcrel_offset */
1047
1048 HOWTO (R_ARM_LDC_PC_G1, /* type */
1049 0, /* rightshift */
1050 2, /* size (0 = byte, 1 = short, 2 = long) */
1051 32, /* bitsize */
1052 TRUE, /* pc_relative */
1053 0, /* bitpos */
1054 complain_overflow_dont,/* complain_on_overflow */
1055 bfd_elf_generic_reloc, /* special_function */
1056 "R_ARM_LDC_PC_G1", /* name */
1057 FALSE, /* partial_inplace */
1058 0xffffffff, /* src_mask */
1059 0xffffffff, /* dst_mask */
1060 TRUE), /* pcrel_offset */
1061
1062 HOWTO (R_ARM_LDC_PC_G2, /* type */
1063 0, /* rightshift */
1064 2, /* size (0 = byte, 1 = short, 2 = long) */
1065 32, /* bitsize */
1066 TRUE, /* pc_relative */
1067 0, /* bitpos */
1068 complain_overflow_dont,/* complain_on_overflow */
1069 bfd_elf_generic_reloc, /* special_function */
1070 "R_ARM_LDC_PC_G2", /* name */
1071 FALSE, /* partial_inplace */
1072 0xffffffff, /* src_mask */
1073 0xffffffff, /* dst_mask */
1074 TRUE), /* pcrel_offset */
1075
1076 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1077 0, /* rightshift */
1078 2, /* size (0 = byte, 1 = short, 2 = long) */
1079 32, /* bitsize */
1080 TRUE, /* pc_relative */
1081 0, /* bitpos */
1082 complain_overflow_dont,/* complain_on_overflow */
1083 bfd_elf_generic_reloc, /* special_function */
1084 "R_ARM_ALU_SB_G0_NC", /* name */
1085 FALSE, /* partial_inplace */
1086 0xffffffff, /* src_mask */
1087 0xffffffff, /* dst_mask */
1088 TRUE), /* pcrel_offset */
1089
1090 HOWTO (R_ARM_ALU_SB_G0, /* type */
1091 0, /* rightshift */
1092 2, /* size (0 = byte, 1 = short, 2 = long) */
1093 32, /* bitsize */
1094 TRUE, /* pc_relative */
1095 0, /* bitpos */
1096 complain_overflow_dont,/* complain_on_overflow */
1097 bfd_elf_generic_reloc, /* special_function */
1098 "R_ARM_ALU_SB_G0", /* name */
1099 FALSE, /* partial_inplace */
1100 0xffffffff, /* src_mask */
1101 0xffffffff, /* dst_mask */
1102 TRUE), /* pcrel_offset */
1103
1104 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1105 0, /* rightshift */
1106 2, /* size (0 = byte, 1 = short, 2 = long) */
1107 32, /* bitsize */
1108 TRUE, /* pc_relative */
1109 0, /* bitpos */
1110 complain_overflow_dont,/* complain_on_overflow */
1111 bfd_elf_generic_reloc, /* special_function */
1112 "R_ARM_ALU_SB_G1_NC", /* name */
1113 FALSE, /* partial_inplace */
1114 0xffffffff, /* src_mask */
1115 0xffffffff, /* dst_mask */
1116 TRUE), /* pcrel_offset */
1117
1118 HOWTO (R_ARM_ALU_SB_G1, /* type */
1119 0, /* rightshift */
1120 2, /* size (0 = byte, 1 = short, 2 = long) */
1121 32, /* bitsize */
1122 TRUE, /* pc_relative */
1123 0, /* bitpos */
1124 complain_overflow_dont,/* complain_on_overflow */
1125 bfd_elf_generic_reloc, /* special_function */
1126 "R_ARM_ALU_SB_G1", /* name */
1127 FALSE, /* partial_inplace */
1128 0xffffffff, /* src_mask */
1129 0xffffffff, /* dst_mask */
1130 TRUE), /* pcrel_offset */
1131
1132 HOWTO (R_ARM_ALU_SB_G2, /* type */
1133 0, /* rightshift */
1134 2, /* size (0 = byte, 1 = short, 2 = long) */
1135 32, /* bitsize */
1136 TRUE, /* pc_relative */
1137 0, /* bitpos */
1138 complain_overflow_dont,/* complain_on_overflow */
1139 bfd_elf_generic_reloc, /* special_function */
1140 "R_ARM_ALU_SB_G2", /* name */
1141 FALSE, /* partial_inplace */
1142 0xffffffff, /* src_mask */
1143 0xffffffff, /* dst_mask */
1144 TRUE), /* pcrel_offset */
1145
1146 HOWTO (R_ARM_LDR_SB_G0, /* type */
1147 0, /* rightshift */
1148 2, /* size (0 = byte, 1 = short, 2 = long) */
1149 32, /* bitsize */
1150 TRUE, /* pc_relative */
1151 0, /* bitpos */
1152 complain_overflow_dont,/* complain_on_overflow */
1153 bfd_elf_generic_reloc, /* special_function */
1154 "R_ARM_LDR_SB_G0", /* name */
1155 FALSE, /* partial_inplace */
1156 0xffffffff, /* src_mask */
1157 0xffffffff, /* dst_mask */
1158 TRUE), /* pcrel_offset */
1159
1160 HOWTO (R_ARM_LDR_SB_G1, /* type */
1161 0, /* rightshift */
1162 2, /* size (0 = byte, 1 = short, 2 = long) */
1163 32, /* bitsize */
1164 TRUE, /* pc_relative */
1165 0, /* bitpos */
1166 complain_overflow_dont,/* complain_on_overflow */
1167 bfd_elf_generic_reloc, /* special_function */
1168 "R_ARM_LDR_SB_G1", /* name */
1169 FALSE, /* partial_inplace */
1170 0xffffffff, /* src_mask */
1171 0xffffffff, /* dst_mask */
1172 TRUE), /* pcrel_offset */
1173
1174 HOWTO (R_ARM_LDR_SB_G2, /* type */
1175 0, /* rightshift */
1176 2, /* size (0 = byte, 1 = short, 2 = long) */
1177 32, /* bitsize */
1178 TRUE, /* pc_relative */
1179 0, /* bitpos */
1180 complain_overflow_dont,/* complain_on_overflow */
1181 bfd_elf_generic_reloc, /* special_function */
1182 "R_ARM_LDR_SB_G2", /* name */
1183 FALSE, /* partial_inplace */
1184 0xffffffff, /* src_mask */
1185 0xffffffff, /* dst_mask */
1186 TRUE), /* pcrel_offset */
1187
1188 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1189 0, /* rightshift */
1190 2, /* size (0 = byte, 1 = short, 2 = long) */
1191 32, /* bitsize */
1192 TRUE, /* pc_relative */
1193 0, /* bitpos */
1194 complain_overflow_dont,/* complain_on_overflow */
1195 bfd_elf_generic_reloc, /* special_function */
1196 "R_ARM_LDRS_SB_G0", /* name */
1197 FALSE, /* partial_inplace */
1198 0xffffffff, /* src_mask */
1199 0xffffffff, /* dst_mask */
1200 TRUE), /* pcrel_offset */
1201
1202 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1203 0, /* rightshift */
1204 2, /* size (0 = byte, 1 = short, 2 = long) */
1205 32, /* bitsize */
1206 TRUE, /* pc_relative */
1207 0, /* bitpos */
1208 complain_overflow_dont,/* complain_on_overflow */
1209 bfd_elf_generic_reloc, /* special_function */
1210 "R_ARM_LDRS_SB_G1", /* name */
1211 FALSE, /* partial_inplace */
1212 0xffffffff, /* src_mask */
1213 0xffffffff, /* dst_mask */
1214 TRUE), /* pcrel_offset */
1215
1216 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1217 0, /* rightshift */
1218 2, /* size (0 = byte, 1 = short, 2 = long) */
1219 32, /* bitsize */
1220 TRUE, /* pc_relative */
1221 0, /* bitpos */
1222 complain_overflow_dont,/* complain_on_overflow */
1223 bfd_elf_generic_reloc, /* special_function */
1224 "R_ARM_LDRS_SB_G2", /* name */
1225 FALSE, /* partial_inplace */
1226 0xffffffff, /* src_mask */
1227 0xffffffff, /* dst_mask */
1228 TRUE), /* pcrel_offset */
1229
1230 HOWTO (R_ARM_LDC_SB_G0, /* type */
1231 0, /* rightshift */
1232 2, /* size (0 = byte, 1 = short, 2 = long) */
1233 32, /* bitsize */
1234 TRUE, /* pc_relative */
1235 0, /* bitpos */
1236 complain_overflow_dont,/* complain_on_overflow */
1237 bfd_elf_generic_reloc, /* special_function */
1238 "R_ARM_LDC_SB_G0", /* name */
1239 FALSE, /* partial_inplace */
1240 0xffffffff, /* src_mask */
1241 0xffffffff, /* dst_mask */
1242 TRUE), /* pcrel_offset */
1243
1244 HOWTO (R_ARM_LDC_SB_G1, /* type */
1245 0, /* rightshift */
1246 2, /* size (0 = byte, 1 = short, 2 = long) */
1247 32, /* bitsize */
1248 TRUE, /* pc_relative */
1249 0, /* bitpos */
1250 complain_overflow_dont,/* complain_on_overflow */
1251 bfd_elf_generic_reloc, /* special_function */
1252 "R_ARM_LDC_SB_G1", /* name */
1253 FALSE, /* partial_inplace */
1254 0xffffffff, /* src_mask */
1255 0xffffffff, /* dst_mask */
1256 TRUE), /* pcrel_offset */
1257
1258 HOWTO (R_ARM_LDC_SB_G2, /* type */
1259 0, /* rightshift */
1260 2, /* size (0 = byte, 1 = short, 2 = long) */
1261 32, /* bitsize */
1262 TRUE, /* pc_relative */
1263 0, /* bitpos */
1264 complain_overflow_dont,/* complain_on_overflow */
1265 bfd_elf_generic_reloc, /* special_function */
1266 "R_ARM_LDC_SB_G2", /* name */
1267 FALSE, /* partial_inplace */
1268 0xffffffff, /* src_mask */
1269 0xffffffff, /* dst_mask */
1270 TRUE), /* pcrel_offset */
1271
1272 /* End of group relocations. */
1273
1274 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1275 0, /* rightshift */
1276 2, /* size (0 = byte, 1 = short, 2 = long) */
1277 16, /* bitsize */
1278 FALSE, /* pc_relative */
1279 0, /* bitpos */
1280 complain_overflow_dont,/* complain_on_overflow */
1281 bfd_elf_generic_reloc, /* special_function */
1282 "R_ARM_MOVW_BREL_NC", /* name */
1283 FALSE, /* partial_inplace */
1284 0x0000ffff, /* src_mask */
1285 0x0000ffff, /* dst_mask */
1286 FALSE), /* pcrel_offset */
1287
1288 HOWTO (R_ARM_MOVT_BREL, /* type */
1289 0, /* rightshift */
1290 2, /* size (0 = byte, 1 = short, 2 = long) */
1291 16, /* bitsize */
1292 FALSE, /* pc_relative */
1293 0, /* bitpos */
1294 complain_overflow_bitfield,/* complain_on_overflow */
1295 bfd_elf_generic_reloc, /* special_function */
1296 "R_ARM_MOVT_BREL", /* name */
1297 FALSE, /* partial_inplace */
1298 0x0000ffff, /* src_mask */
1299 0x0000ffff, /* dst_mask */
1300 FALSE), /* pcrel_offset */
1301
1302 HOWTO (R_ARM_MOVW_BREL, /* type */
1303 0, /* rightshift */
1304 2, /* size (0 = byte, 1 = short, 2 = long) */
1305 16, /* bitsize */
1306 FALSE, /* pc_relative */
1307 0, /* bitpos */
1308 complain_overflow_dont,/* complain_on_overflow */
1309 bfd_elf_generic_reloc, /* special_function */
1310 "R_ARM_MOVW_BREL", /* name */
1311 FALSE, /* partial_inplace */
1312 0x0000ffff, /* src_mask */
1313 0x0000ffff, /* dst_mask */
1314 FALSE), /* pcrel_offset */
1315
1316 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1317 0, /* rightshift */
1318 2, /* size (0 = byte, 1 = short, 2 = long) */
1319 16, /* bitsize */
1320 FALSE, /* pc_relative */
1321 0, /* bitpos */
1322 complain_overflow_dont,/* complain_on_overflow */
1323 bfd_elf_generic_reloc, /* special_function */
1324 "R_ARM_THM_MOVW_BREL_NC",/* name */
1325 FALSE, /* partial_inplace */
1326 0x040f70ff, /* src_mask */
1327 0x040f70ff, /* dst_mask */
1328 FALSE), /* pcrel_offset */
1329
1330 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1331 0, /* rightshift */
1332 2, /* size (0 = byte, 1 = short, 2 = long) */
1333 16, /* bitsize */
1334 FALSE, /* pc_relative */
1335 0, /* bitpos */
1336 complain_overflow_bitfield,/* complain_on_overflow */
1337 bfd_elf_generic_reloc, /* special_function */
1338 "R_ARM_THM_MOVT_BREL", /* name */
1339 FALSE, /* partial_inplace */
1340 0x040f70ff, /* src_mask */
1341 0x040f70ff, /* dst_mask */
1342 FALSE), /* pcrel_offset */
1343
1344 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1345 0, /* rightshift */
1346 2, /* size (0 = byte, 1 = short, 2 = long) */
1347 16, /* bitsize */
1348 FALSE, /* pc_relative */
1349 0, /* bitpos */
1350 complain_overflow_dont,/* complain_on_overflow */
1351 bfd_elf_generic_reloc, /* special_function */
1352 "R_ARM_THM_MOVW_BREL", /* name */
1353 FALSE, /* partial_inplace */
1354 0x040f70ff, /* src_mask */
1355 0x040f70ff, /* dst_mask */
1356 FALSE), /* pcrel_offset */
1357
1358 HOWTO (R_ARM_TLS_GOTDESC, /* type */
1359 0, /* rightshift */
1360 2, /* size (0 = byte, 1 = short, 2 = long) */
1361 32, /* bitsize */
1362 FALSE, /* pc_relative */
1363 0, /* bitpos */
1364 complain_overflow_bitfield,/* complain_on_overflow */
1365 NULL, /* special_function */
1366 "R_ARM_TLS_GOTDESC", /* name */
1367 TRUE, /* partial_inplace */
1368 0xffffffff, /* src_mask */
1369 0xffffffff, /* dst_mask */
1370 FALSE), /* pcrel_offset */
1371
1372 HOWTO (R_ARM_TLS_CALL, /* type */
1373 0, /* rightshift */
1374 2, /* size (0 = byte, 1 = short, 2 = long) */
1375 24, /* bitsize */
1376 FALSE, /* pc_relative */
1377 0, /* bitpos */
1378 complain_overflow_dont,/* complain_on_overflow */
1379 bfd_elf_generic_reloc, /* special_function */
1380 "R_ARM_TLS_CALL", /* name */
1381 FALSE, /* partial_inplace */
1382 0x00ffffff, /* src_mask */
1383 0x00ffffff, /* dst_mask */
1384 FALSE), /* pcrel_offset */
1385
1386 HOWTO (R_ARM_TLS_DESCSEQ, /* type */
1387 0, /* rightshift */
1388 2, /* size (0 = byte, 1 = short, 2 = long) */
1389 0, /* bitsize */
1390 FALSE, /* pc_relative */
1391 0, /* bitpos */
1392 complain_overflow_bitfield,/* complain_on_overflow */
1393 bfd_elf_generic_reloc, /* special_function */
1394 "R_ARM_TLS_DESCSEQ", /* name */
1395 FALSE, /* partial_inplace */
1396 0x00000000, /* src_mask */
1397 0x00000000, /* dst_mask */
1398 FALSE), /* pcrel_offset */
1399
1400 HOWTO (R_ARM_THM_TLS_CALL, /* type */
1401 0, /* rightshift */
1402 2, /* size (0 = byte, 1 = short, 2 = long) */
1403 24, /* bitsize */
1404 FALSE, /* pc_relative */
1405 0, /* bitpos */
1406 complain_overflow_dont,/* complain_on_overflow */
1407 bfd_elf_generic_reloc, /* special_function */
1408 "R_ARM_THM_TLS_CALL", /* name */
1409 FALSE, /* partial_inplace */
1410 0x07ff07ff, /* src_mask */
1411 0x07ff07ff, /* dst_mask */
1412 FALSE), /* pcrel_offset */
1413
1414 HOWTO (R_ARM_PLT32_ABS, /* type */
1415 0, /* rightshift */
1416 2, /* size (0 = byte, 1 = short, 2 = long) */
1417 32, /* bitsize */
1418 FALSE, /* pc_relative */
1419 0, /* bitpos */
1420 complain_overflow_dont,/* complain_on_overflow */
1421 bfd_elf_generic_reloc, /* special_function */
1422 "R_ARM_PLT32_ABS", /* name */
1423 FALSE, /* partial_inplace */
1424 0xffffffff, /* src_mask */
1425 0xffffffff, /* dst_mask */
1426 FALSE), /* pcrel_offset */
1427
1428 HOWTO (R_ARM_GOT_ABS, /* type */
1429 0, /* rightshift */
1430 2, /* size (0 = byte, 1 = short, 2 = long) */
1431 32, /* bitsize */
1432 FALSE, /* pc_relative */
1433 0, /* bitpos */
1434 complain_overflow_dont,/* complain_on_overflow */
1435 bfd_elf_generic_reloc, /* special_function */
1436 "R_ARM_GOT_ABS", /* name */
1437 FALSE, /* partial_inplace */
1438 0xffffffff, /* src_mask */
1439 0xffffffff, /* dst_mask */
1440 FALSE), /* pcrel_offset */
1441
1442 HOWTO (R_ARM_GOT_PREL, /* type */
1443 0, /* rightshift */
1444 2, /* size (0 = byte, 1 = short, 2 = long) */
1445 32, /* bitsize */
1446 TRUE, /* pc_relative */
1447 0, /* bitpos */
1448 complain_overflow_dont, /* complain_on_overflow */
1449 bfd_elf_generic_reloc, /* special_function */
1450 "R_ARM_GOT_PREL", /* name */
1451 FALSE, /* partial_inplace */
1452 0xffffffff, /* src_mask */
1453 0xffffffff, /* dst_mask */
1454 TRUE), /* pcrel_offset */
1455
1456 HOWTO (R_ARM_GOT_BREL12, /* type */
1457 0, /* rightshift */
1458 2, /* size (0 = byte, 1 = short, 2 = long) */
1459 12, /* bitsize */
1460 FALSE, /* pc_relative */
1461 0, /* bitpos */
1462 complain_overflow_bitfield,/* complain_on_overflow */
1463 bfd_elf_generic_reloc, /* special_function */
1464 "R_ARM_GOT_BREL12", /* name */
1465 FALSE, /* partial_inplace */
1466 0x00000fff, /* src_mask */
1467 0x00000fff, /* dst_mask */
1468 FALSE), /* pcrel_offset */
1469
1470 HOWTO (R_ARM_GOTOFF12, /* type */
1471 0, /* rightshift */
1472 2, /* size (0 = byte, 1 = short, 2 = long) */
1473 12, /* bitsize */
1474 FALSE, /* pc_relative */
1475 0, /* bitpos */
1476 complain_overflow_bitfield,/* complain_on_overflow */
1477 bfd_elf_generic_reloc, /* special_function */
1478 "R_ARM_GOTOFF12", /* name */
1479 FALSE, /* partial_inplace */
1480 0x00000fff, /* src_mask */
1481 0x00000fff, /* dst_mask */
1482 FALSE), /* pcrel_offset */
1483
1484 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1485
1486 /* GNU extension to record C++ vtable member usage */
1487 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1488 0, /* rightshift */
1489 2, /* size (0 = byte, 1 = short, 2 = long) */
1490 0, /* bitsize */
1491 FALSE, /* pc_relative */
1492 0, /* bitpos */
1493 complain_overflow_dont, /* complain_on_overflow */
1494 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1495 "R_ARM_GNU_VTENTRY", /* name */
1496 FALSE, /* partial_inplace */
1497 0, /* src_mask */
1498 0, /* dst_mask */
1499 FALSE), /* pcrel_offset */
1500
1501 /* GNU extension to record C++ vtable hierarchy */
1502 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1503 0, /* rightshift */
1504 2, /* size (0 = byte, 1 = short, 2 = long) */
1505 0, /* bitsize */
1506 FALSE, /* pc_relative */
1507 0, /* bitpos */
1508 complain_overflow_dont, /* complain_on_overflow */
1509 NULL, /* special_function */
1510 "R_ARM_GNU_VTINHERIT", /* name */
1511 FALSE, /* partial_inplace */
1512 0, /* src_mask */
1513 0, /* dst_mask */
1514 FALSE), /* pcrel_offset */
1515
1516 HOWTO (R_ARM_THM_JUMP11, /* type */
1517 1, /* rightshift */
1518 1, /* size (0 = byte, 1 = short, 2 = long) */
1519 11, /* bitsize */
1520 TRUE, /* pc_relative */
1521 0, /* bitpos */
1522 complain_overflow_signed, /* complain_on_overflow */
1523 bfd_elf_generic_reloc, /* special_function */
1524 "R_ARM_THM_JUMP11", /* name */
1525 FALSE, /* partial_inplace */
1526 0x000007ff, /* src_mask */
1527 0x000007ff, /* dst_mask */
1528 TRUE), /* pcrel_offset */
1529
1530 HOWTO (R_ARM_THM_JUMP8, /* type */
1531 1, /* rightshift */
1532 1, /* size (0 = byte, 1 = short, 2 = long) */
1533 8, /* bitsize */
1534 TRUE, /* pc_relative */
1535 0, /* bitpos */
1536 complain_overflow_signed, /* complain_on_overflow */
1537 bfd_elf_generic_reloc, /* special_function */
1538 "R_ARM_THM_JUMP8", /* name */
1539 FALSE, /* partial_inplace */
1540 0x000000ff, /* src_mask */
1541 0x000000ff, /* dst_mask */
1542 TRUE), /* pcrel_offset */
1543
1544 /* TLS relocations */
1545 HOWTO (R_ARM_TLS_GD32, /* type */
1546 0, /* rightshift */
1547 2, /* size (0 = byte, 1 = short, 2 = long) */
1548 32, /* bitsize */
1549 FALSE, /* pc_relative */
1550 0, /* bitpos */
1551 complain_overflow_bitfield,/* complain_on_overflow */
1552 NULL, /* special_function */
1553 "R_ARM_TLS_GD32", /* name */
1554 TRUE, /* partial_inplace */
1555 0xffffffff, /* src_mask */
1556 0xffffffff, /* dst_mask */
1557 FALSE), /* pcrel_offset */
1558
1559 HOWTO (R_ARM_TLS_LDM32, /* type */
1560 0, /* rightshift */
1561 2, /* size (0 = byte, 1 = short, 2 = long) */
1562 32, /* bitsize */
1563 FALSE, /* pc_relative */
1564 0, /* bitpos */
1565 complain_overflow_bitfield,/* complain_on_overflow */
1566 bfd_elf_generic_reloc, /* special_function */
1567 "R_ARM_TLS_LDM32", /* name */
1568 TRUE, /* partial_inplace */
1569 0xffffffff, /* src_mask */
1570 0xffffffff, /* dst_mask */
1571 FALSE), /* pcrel_offset */
1572
1573 HOWTO (R_ARM_TLS_LDO32, /* type */
1574 0, /* rightshift */
1575 2, /* size (0 = byte, 1 = short, 2 = long) */
1576 32, /* bitsize */
1577 FALSE, /* pc_relative */
1578 0, /* bitpos */
1579 complain_overflow_bitfield,/* complain_on_overflow */
1580 bfd_elf_generic_reloc, /* special_function */
1581 "R_ARM_TLS_LDO32", /* name */
1582 TRUE, /* partial_inplace */
1583 0xffffffff, /* src_mask */
1584 0xffffffff, /* dst_mask */
1585 FALSE), /* pcrel_offset */
1586
1587 HOWTO (R_ARM_TLS_IE32, /* type */
1588 0, /* rightshift */
1589 2, /* size (0 = byte, 1 = short, 2 = long) */
1590 32, /* bitsize */
1591 FALSE, /* pc_relative */
1592 0, /* bitpos */
1593 complain_overflow_bitfield,/* complain_on_overflow */
1594 NULL, /* special_function */
1595 "R_ARM_TLS_IE32", /* name */
1596 TRUE, /* partial_inplace */
1597 0xffffffff, /* src_mask */
1598 0xffffffff, /* dst_mask */
1599 FALSE), /* pcrel_offset */
1600
1601 HOWTO (R_ARM_TLS_LE32, /* type */
1602 0, /* rightshift */
1603 2, /* size (0 = byte, 1 = short, 2 = long) */
1604 32, /* bitsize */
1605 FALSE, /* pc_relative */
1606 0, /* bitpos */
1607 complain_overflow_bitfield,/* complain_on_overflow */
1608 NULL, /* special_function */
1609 "R_ARM_TLS_LE32", /* name */
1610 TRUE, /* partial_inplace */
1611 0xffffffff, /* src_mask */
1612 0xffffffff, /* dst_mask */
1613 FALSE), /* pcrel_offset */
1614
1615 HOWTO (R_ARM_TLS_LDO12, /* type */
1616 0, /* rightshift */
1617 2, /* size (0 = byte, 1 = short, 2 = long) */
1618 12, /* bitsize */
1619 FALSE, /* pc_relative */
1620 0, /* bitpos */
1621 complain_overflow_bitfield,/* complain_on_overflow */
1622 bfd_elf_generic_reloc, /* special_function */
1623 "R_ARM_TLS_LDO12", /* name */
1624 FALSE, /* partial_inplace */
1625 0x00000fff, /* src_mask */
1626 0x00000fff, /* dst_mask */
1627 FALSE), /* pcrel_offset */
1628
1629 HOWTO (R_ARM_TLS_LE12, /* type */
1630 0, /* rightshift */
1631 2, /* size (0 = byte, 1 = short, 2 = long) */
1632 12, /* bitsize */
1633 FALSE, /* pc_relative */
1634 0, /* bitpos */
1635 complain_overflow_bitfield,/* complain_on_overflow */
1636 bfd_elf_generic_reloc, /* special_function */
1637 "R_ARM_TLS_LE12", /* name */
1638 FALSE, /* partial_inplace */
1639 0x00000fff, /* src_mask */
1640 0x00000fff, /* dst_mask */
1641 FALSE), /* pcrel_offset */
1642
1643 HOWTO (R_ARM_TLS_IE12GP, /* type */
1644 0, /* rightshift */
1645 2, /* size (0 = byte, 1 = short, 2 = long) */
1646 12, /* bitsize */
1647 FALSE, /* pc_relative */
1648 0, /* bitpos */
1649 complain_overflow_bitfield,/* complain_on_overflow */
1650 bfd_elf_generic_reloc, /* special_function */
1651 "R_ARM_TLS_IE12GP", /* name */
1652 FALSE, /* partial_inplace */
1653 0x00000fff, /* src_mask */
1654 0x00000fff, /* dst_mask */
1655 FALSE), /* pcrel_offset */
1656
1657 /* 112-127 private relocations. */
1658 EMPTY_HOWTO (112),
1659 EMPTY_HOWTO (113),
1660 EMPTY_HOWTO (114),
1661 EMPTY_HOWTO (115),
1662 EMPTY_HOWTO (116),
1663 EMPTY_HOWTO (117),
1664 EMPTY_HOWTO (118),
1665 EMPTY_HOWTO (119),
1666 EMPTY_HOWTO (120),
1667 EMPTY_HOWTO (121),
1668 EMPTY_HOWTO (122),
1669 EMPTY_HOWTO (123),
1670 EMPTY_HOWTO (124),
1671 EMPTY_HOWTO (125),
1672 EMPTY_HOWTO (126),
1673 EMPTY_HOWTO (127),
1674
1675 /* R_ARM_ME_TOO, obsolete. */
1676 EMPTY_HOWTO (128),
1677
1678 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1679 0, /* rightshift */
1680 1, /* size (0 = byte, 1 = short, 2 = long) */
1681 0, /* bitsize */
1682 FALSE, /* pc_relative */
1683 0, /* bitpos */
1684 complain_overflow_bitfield,/* complain_on_overflow */
1685 bfd_elf_generic_reloc, /* special_function */
1686 "R_ARM_THM_TLS_DESCSEQ",/* name */
1687 FALSE, /* partial_inplace */
1688 0x00000000, /* src_mask */
1689 0x00000000, /* dst_mask */
1690 FALSE), /* pcrel_offset */
1691 EMPTY_HOWTO (130),
1692 EMPTY_HOWTO (131),
1693 HOWTO (R_ARM_THM_ALU_ABS_G0_NC,/* type. */
1694 0, /* rightshift. */
1695 1, /* size (0 = byte, 1 = short, 2 = long). */
1696 16, /* bitsize. */
1697 FALSE, /* pc_relative. */
1698 0, /* bitpos. */
1699 complain_overflow_bitfield,/* complain_on_overflow. */
1700 bfd_elf_generic_reloc, /* special_function. */
1701 "R_ARM_THM_ALU_ABS_G0_NC",/* name. */
1702 FALSE, /* partial_inplace. */
1703 0x00000000, /* src_mask. */
1704 0x00000000, /* dst_mask. */
1705 FALSE), /* pcrel_offset. */
1706 HOWTO (R_ARM_THM_ALU_ABS_G1_NC,/* type. */
1707 0, /* rightshift. */
1708 1, /* size (0 = byte, 1 = short, 2 = long). */
1709 16, /* bitsize. */
1710 FALSE, /* pc_relative. */
1711 0, /* bitpos. */
1712 complain_overflow_bitfield,/* complain_on_overflow. */
1713 bfd_elf_generic_reloc, /* special_function. */
1714 "R_ARM_THM_ALU_ABS_G1_NC",/* name. */
1715 FALSE, /* partial_inplace. */
1716 0x00000000, /* src_mask. */
1717 0x00000000, /* dst_mask. */
1718 FALSE), /* pcrel_offset. */
1719 HOWTO (R_ARM_THM_ALU_ABS_G2_NC,/* type. */
1720 0, /* rightshift. */
1721 1, /* size (0 = byte, 1 = short, 2 = long). */
1722 16, /* bitsize. */
1723 FALSE, /* pc_relative. */
1724 0, /* bitpos. */
1725 complain_overflow_bitfield,/* complain_on_overflow. */
1726 bfd_elf_generic_reloc, /* special_function. */
1727 "R_ARM_THM_ALU_ABS_G2_NC",/* name. */
1728 FALSE, /* partial_inplace. */
1729 0x00000000, /* src_mask. */
1730 0x00000000, /* dst_mask. */
1731 FALSE), /* pcrel_offset. */
1732 HOWTO (R_ARM_THM_ALU_ABS_G3_NC,/* type. */
1733 0, /* rightshift. */
1734 1, /* size (0 = byte, 1 = short, 2 = long). */
1735 16, /* bitsize. */
1736 FALSE, /* pc_relative. */
1737 0, /* bitpos. */
1738 complain_overflow_bitfield,/* complain_on_overflow. */
1739 bfd_elf_generic_reloc, /* special_function. */
1740 "R_ARM_THM_ALU_ABS_G3_NC",/* name. */
1741 FALSE, /* partial_inplace. */
1742 0x00000000, /* src_mask. */
1743 0x00000000, /* dst_mask. */
1744 FALSE), /* pcrel_offset. */
1745 /* Relocations for Armv8.1-M Mainline. */
1746 HOWTO (R_ARM_THM_BF16, /* type. */
1747 0, /* rightshift. */
1748 1, /* size (0 = byte, 1 = short, 2 = long). */
1749 16, /* bitsize. */
1750 TRUE, /* pc_relative. */
1751 0, /* bitpos. */
1752 complain_overflow_dont,/* do not complain_on_overflow. */
1753 bfd_elf_generic_reloc, /* special_function. */
1754 "R_ARM_THM_BF16", /* name. */
1755 FALSE, /* partial_inplace. */
1756 0x001f0ffe, /* src_mask. */
1757 0x001f0ffe, /* dst_mask. */
1758 TRUE), /* pcrel_offset. */
1759 HOWTO (R_ARM_THM_BF12, /* type. */
1760 0, /* rightshift. */
1761 1, /* size (0 = byte, 1 = short, 2 = long). */
1762 12, /* bitsize. */
1763 TRUE, /* pc_relative. */
1764 0, /* bitpos. */
1765 complain_overflow_dont,/* do not complain_on_overflow. */
1766 bfd_elf_generic_reloc, /* special_function. */
1767 "R_ARM_THM_BF12", /* name. */
1768 FALSE, /* partial_inplace. */
1769 0x00010ffe, /* src_mask. */
1770 0x00010ffe, /* dst_mask. */
1771 TRUE), /* pcrel_offset. */
1772 HOWTO (R_ARM_THM_BF18, /* type. */
1773 0, /* rightshift. */
1774 1, /* size (0 = byte, 1 = short, 2 = long). */
1775 18, /* bitsize. */
1776 TRUE, /* pc_relative. */
1777 0, /* bitpos. */
1778 complain_overflow_dont,/* do not complain_on_overflow. */
1779 bfd_elf_generic_reloc, /* special_function. */
1780 "R_ARM_THM_BF18", /* name. */
1781 FALSE, /* partial_inplace. */
1782 0x007f0ffe, /* src_mask. */
1783 0x007f0ffe, /* dst_mask. */
1784 TRUE), /* pcrel_offset. */
1785 };
1786
1787 /* 160 onwards: */
1788 static reloc_howto_type elf32_arm_howto_table_2[8] =
1789 {
1790 HOWTO (R_ARM_IRELATIVE, /* type */
1791 0, /* rightshift */
1792 2, /* size (0 = byte, 1 = short, 2 = long) */
1793 32, /* bitsize */
1794 FALSE, /* pc_relative */
1795 0, /* bitpos */
1796 complain_overflow_bitfield,/* complain_on_overflow */
1797 bfd_elf_generic_reloc, /* special_function */
1798 "R_ARM_IRELATIVE", /* name */
1799 TRUE, /* partial_inplace */
1800 0xffffffff, /* src_mask */
1801 0xffffffff, /* dst_mask */
1802 FALSE), /* pcrel_offset */
1803 HOWTO (R_ARM_GOTFUNCDESC, /* type */
1804 0, /* rightshift */
1805 2, /* size (0 = byte, 1 = short, 2 = long) */
1806 32, /* bitsize */
1807 FALSE, /* pc_relative */
1808 0, /* bitpos */
1809 complain_overflow_bitfield,/* complain_on_overflow */
1810 bfd_elf_generic_reloc, /* special_function */
1811 "R_ARM_GOTFUNCDESC", /* name */
1812 FALSE, /* partial_inplace */
1813 0, /* src_mask */
1814 0xffffffff, /* dst_mask */
1815 FALSE), /* pcrel_offset */
1816 HOWTO (R_ARM_GOTOFFFUNCDESC, /* type */
1817 0, /* rightshift */
1818 2, /* size (0 = byte, 1 = short, 2 = long) */
1819 32, /* bitsize */
1820 FALSE, /* pc_relative */
1821 0, /* bitpos */
1822 complain_overflow_bitfield,/* complain_on_overflow */
1823 bfd_elf_generic_reloc, /* special_function */
1824 "R_ARM_GOTOFFFUNCDESC",/* name */
1825 FALSE, /* partial_inplace */
1826 0, /* src_mask */
1827 0xffffffff, /* dst_mask */
1828 FALSE), /* pcrel_offset */
1829 HOWTO (R_ARM_FUNCDESC, /* type */
1830 0, /* rightshift */
1831 2, /* size (0 = byte, 1 = short, 2 = long) */
1832 32, /* bitsize */
1833 FALSE, /* pc_relative */
1834 0, /* bitpos */
1835 complain_overflow_bitfield,/* complain_on_overflow */
1836 bfd_elf_generic_reloc, /* special_function */
1837 "R_ARM_FUNCDESC", /* name */
1838 FALSE, /* partial_inplace */
1839 0, /* src_mask */
1840 0xffffffff, /* dst_mask */
1841 FALSE), /* pcrel_offset */
1842 HOWTO (R_ARM_FUNCDESC_VALUE, /* type */
1843 0, /* rightshift */
1844 2, /* size (0 = byte, 1 = short, 2 = long) */
1845 64, /* bitsize */
1846 FALSE, /* pc_relative */
1847 0, /* bitpos */
1848 complain_overflow_bitfield,/* complain_on_overflow */
1849 bfd_elf_generic_reloc, /* special_function */
1850 "R_ARM_FUNCDESC_VALUE",/* name */
1851 FALSE, /* partial_inplace */
1852 0, /* src_mask */
1853 0xffffffff, /* dst_mask */
1854 FALSE), /* pcrel_offset */
1855 HOWTO (R_ARM_TLS_GD32_FDPIC, /* type */
1856 0, /* rightshift */
1857 2, /* size (0 = byte, 1 = short, 2 = long) */
1858 32, /* bitsize */
1859 FALSE, /* pc_relative */
1860 0, /* bitpos */
1861 complain_overflow_bitfield,/* complain_on_overflow */
1862 bfd_elf_generic_reloc, /* special_function */
1863 "R_ARM_TLS_GD32_FDPIC",/* name */
1864 FALSE, /* partial_inplace */
1865 0, /* src_mask */
1866 0xffffffff, /* dst_mask */
1867 FALSE), /* pcrel_offset */
1868 HOWTO (R_ARM_TLS_LDM32_FDPIC, /* type */
1869 0, /* rightshift */
1870 2, /* size (0 = byte, 1 = short, 2 = long) */
1871 32, /* bitsize */
1872 FALSE, /* pc_relative */
1873 0, /* bitpos */
1874 complain_overflow_bitfield,/* complain_on_overflow */
1875 bfd_elf_generic_reloc, /* special_function */
1876 "R_ARM_TLS_LDM32_FDPIC",/* name */
1877 FALSE, /* partial_inplace */
1878 0, /* src_mask */
1879 0xffffffff, /* dst_mask */
1880 FALSE), /* pcrel_offset */
1881 HOWTO (R_ARM_TLS_IE32_FDPIC, /* type */
1882 0, /* rightshift */
1883 2, /* size (0 = byte, 1 = short, 2 = long) */
1884 32, /* bitsize */
1885 FALSE, /* pc_relative */
1886 0, /* bitpos */
1887 complain_overflow_bitfield,/* complain_on_overflow */
1888 bfd_elf_generic_reloc, /* special_function */
1889 "R_ARM_TLS_IE32_FDPIC",/* name */
1890 FALSE, /* partial_inplace */
1891 0, /* src_mask */
1892 0xffffffff, /* dst_mask */
1893 FALSE), /* pcrel_offset */
1894 };
1895
1896 /* 249-255 extended, currently unused, relocations: */
1897 static reloc_howto_type elf32_arm_howto_table_3[4] =
1898 {
1899 HOWTO (R_ARM_RREL32, /* type */
1900 0, /* rightshift */
1901 0, /* size (0 = byte, 1 = short, 2 = long) */
1902 0, /* bitsize */
1903 FALSE, /* pc_relative */
1904 0, /* bitpos */
1905 complain_overflow_dont,/* complain_on_overflow */
1906 bfd_elf_generic_reloc, /* special_function */
1907 "R_ARM_RREL32", /* name */
1908 FALSE, /* partial_inplace */
1909 0, /* src_mask */
1910 0, /* dst_mask */
1911 FALSE), /* pcrel_offset */
1912
1913 HOWTO (R_ARM_RABS32, /* type */
1914 0, /* rightshift */
1915 0, /* size (0 = byte, 1 = short, 2 = long) */
1916 0, /* bitsize */
1917 FALSE, /* pc_relative */
1918 0, /* bitpos */
1919 complain_overflow_dont,/* complain_on_overflow */
1920 bfd_elf_generic_reloc, /* special_function */
1921 "R_ARM_RABS32", /* name */
1922 FALSE, /* partial_inplace */
1923 0, /* src_mask */
1924 0, /* dst_mask */
1925 FALSE), /* pcrel_offset */
1926
1927 HOWTO (R_ARM_RPC24, /* type */
1928 0, /* rightshift */
1929 0, /* size (0 = byte, 1 = short, 2 = long) */
1930 0, /* bitsize */
1931 FALSE, /* pc_relative */
1932 0, /* bitpos */
1933 complain_overflow_dont,/* complain_on_overflow */
1934 bfd_elf_generic_reloc, /* special_function */
1935 "R_ARM_RPC24", /* name */
1936 FALSE, /* partial_inplace */
1937 0, /* src_mask */
1938 0, /* dst_mask */
1939 FALSE), /* pcrel_offset */
1940
1941 HOWTO (R_ARM_RBASE, /* type */
1942 0, /* rightshift */
1943 0, /* size (0 = byte, 1 = short, 2 = long) */
1944 0, /* bitsize */
1945 FALSE, /* pc_relative */
1946 0, /* bitpos */
1947 complain_overflow_dont,/* complain_on_overflow */
1948 bfd_elf_generic_reloc, /* special_function */
1949 "R_ARM_RBASE", /* name */
1950 FALSE, /* partial_inplace */
1951 0, /* src_mask */
1952 0, /* dst_mask */
1953 FALSE) /* pcrel_offset */
1954 };
1955
1956 static reloc_howto_type *
1957 elf32_arm_howto_from_type (unsigned int r_type)
1958 {
1959 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1960 return &elf32_arm_howto_table_1[r_type];
1961
1962 if (r_type >= R_ARM_IRELATIVE
1963 && r_type < R_ARM_IRELATIVE + ARRAY_SIZE (elf32_arm_howto_table_2))
1964 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1965
1966 if (r_type >= R_ARM_RREL32
1967 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1968 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
1969
1970 return NULL;
1971 }
1972
1973 static bfd_boolean
1974 elf32_arm_info_to_howto (bfd * abfd, arelent * bfd_reloc,
1975 Elf_Internal_Rela * elf_reloc)
1976 {
1977 unsigned int r_type;
1978
1979 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1980 if ((bfd_reloc->howto = elf32_arm_howto_from_type (r_type)) == NULL)
1981 {
1982 /* xgettext:c-format */
1983 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
1984 abfd, r_type);
1985 bfd_set_error (bfd_error_bad_value);
1986 return FALSE;
1987 }
1988 return TRUE;
1989 }
1990
1991 struct elf32_arm_reloc_map
1992 {
1993 bfd_reloc_code_real_type bfd_reloc_val;
1994 unsigned char elf_reloc_val;
1995 };
1996
1997 /* All entries in this list must also be present in elf32_arm_howto_table. */
1998 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1999 {
2000 {BFD_RELOC_NONE, R_ARM_NONE},
2001 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
2002 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
2003 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
2004 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
2005 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
2006 {BFD_RELOC_32, R_ARM_ABS32},
2007 {BFD_RELOC_32_PCREL, R_ARM_REL32},
2008 {BFD_RELOC_8, R_ARM_ABS8},
2009 {BFD_RELOC_16, R_ARM_ABS16},
2010 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
2011 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
2012 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
2013 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
2014 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
2015 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
2016 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
2017 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
2018 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
2019 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
2020 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
2021 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
2022 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
2023 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
2024 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
2025 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
2026 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
2027 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
2028 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
2029 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
2030 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
2031 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
2032 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC},
2033 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL},
2034 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL},
2035 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ},
2036 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ},
2037 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC},
2038 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
2039 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
2040 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
2041 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
2042 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
2043 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
2044 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
2045 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
2046 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE},
2047 {BFD_RELOC_ARM_GOTFUNCDESC, R_ARM_GOTFUNCDESC},
2048 {BFD_RELOC_ARM_GOTOFFFUNCDESC, R_ARM_GOTOFFFUNCDESC},
2049 {BFD_RELOC_ARM_FUNCDESC, R_ARM_FUNCDESC},
2050 {BFD_RELOC_ARM_FUNCDESC_VALUE, R_ARM_FUNCDESC_VALUE},
2051 {BFD_RELOC_ARM_TLS_GD32_FDPIC, R_ARM_TLS_GD32_FDPIC},
2052 {BFD_RELOC_ARM_TLS_LDM32_FDPIC, R_ARM_TLS_LDM32_FDPIC},
2053 {BFD_RELOC_ARM_TLS_IE32_FDPIC, R_ARM_TLS_IE32_FDPIC},
2054 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
2055 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
2056 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
2057 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
2058 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
2059 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
2060 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
2061 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
2062 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
2063 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
2064 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
2065 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
2066 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
2067 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
2068 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
2069 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
2070 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
2071 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
2072 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
2073 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
2074 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
2075 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
2076 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
2077 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
2078 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
2079 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
2080 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
2081 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
2082 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
2083 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
2084 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
2085 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
2086 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
2087 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
2088 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
2089 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
2090 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
2091 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
2092 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX},
2093 {BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC, R_ARM_THM_ALU_ABS_G3_NC},
2094 {BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC, R_ARM_THM_ALU_ABS_G2_NC},
2095 {BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC, R_ARM_THM_ALU_ABS_G1_NC},
2096 {BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC, R_ARM_THM_ALU_ABS_G0_NC},
2097 {BFD_RELOC_ARM_THUMB_BF17, R_ARM_THM_BF16},
2098 {BFD_RELOC_ARM_THUMB_BF13, R_ARM_THM_BF12},
2099 {BFD_RELOC_ARM_THUMB_BF19, R_ARM_THM_BF18}
2100 };
2101
2102 static reloc_howto_type *
2103 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2104 bfd_reloc_code_real_type code)
2105 {
2106 unsigned int i;
2107
2108 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
2109 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
2110 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
2111
2112 return NULL;
2113 }
2114
2115 static reloc_howto_type *
2116 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2117 const char *r_name)
2118 {
2119 unsigned int i;
2120
2121 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
2122 if (elf32_arm_howto_table_1[i].name != NULL
2123 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
2124 return &elf32_arm_howto_table_1[i];
2125
2126 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
2127 if (elf32_arm_howto_table_2[i].name != NULL
2128 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
2129 return &elf32_arm_howto_table_2[i];
2130
2131 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
2132 if (elf32_arm_howto_table_3[i].name != NULL
2133 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
2134 return &elf32_arm_howto_table_3[i];
2135
2136 return NULL;
2137 }
2138
2139 /* Support for core dump NOTE sections. */
2140
2141 static bfd_boolean
2142 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2143 {
2144 int offset;
2145 size_t size;
2146
2147 switch (note->descsz)
2148 {
2149 default:
2150 return FALSE;
2151
2152 case 148: /* Linux/ARM 32-bit. */
2153 /* pr_cursig */
2154 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2155
2156 /* pr_pid */
2157 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
2158
2159 /* pr_reg */
2160 offset = 72;
2161 size = 72;
2162
2163 break;
2164 }
2165
2166 /* Make a ".reg/999" section. */
2167 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2168 size, note->descpos + offset);
2169 }
2170
2171 static bfd_boolean
2172 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2173 {
2174 switch (note->descsz)
2175 {
2176 default:
2177 return FALSE;
2178
2179 case 124: /* Linux/ARM elf_prpsinfo. */
2180 elf_tdata (abfd)->core->pid
2181 = bfd_get_32 (abfd, note->descdata + 12);
2182 elf_tdata (abfd)->core->program
2183 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
2184 elf_tdata (abfd)->core->command
2185 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
2186 }
2187
2188 /* Note that for some reason, a spurious space is tacked
2189 onto the end of the args in some (at least one anyway)
2190 implementations, so strip it off if it exists. */
2191 {
2192 char *command = elf_tdata (abfd)->core->command;
2193 int n = strlen (command);
2194
2195 if (0 < n && command[n - 1] == ' ')
2196 command[n - 1] = '\0';
2197 }
2198
2199 return TRUE;
2200 }
2201
2202 static char *
2203 elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz,
2204 int note_type, ...)
2205 {
2206 switch (note_type)
2207 {
2208 default:
2209 return NULL;
2210
2211 case NT_PRPSINFO:
2212 {
2213 char data[124] ATTRIBUTE_NONSTRING;
2214 va_list ap;
2215
2216 va_start (ap, note_type);
2217 memset (data, 0, sizeof (data));
2218 strncpy (data + 28, va_arg (ap, const char *), 16);
2219 #if GCC_VERSION == 8000 || GCC_VERSION == 8001
2220 DIAGNOSTIC_PUSH;
2221 /* GCC 8.0 and 8.1 warn about 80 equals destination size with
2222 -Wstringop-truncation:
2223 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85643
2224 */
2225 DIAGNOSTIC_IGNORE_STRINGOP_TRUNCATION;
2226 #endif
2227 strncpy (data + 44, va_arg (ap, const char *), 80);
2228 #if GCC_VERSION == 8000 || GCC_VERSION == 8001
2229 DIAGNOSTIC_POP;
2230 #endif
2231 va_end (ap);
2232
2233 return elfcore_write_note (abfd, buf, bufsiz,
2234 "CORE", note_type, data, sizeof (data));
2235 }
2236
2237 case NT_PRSTATUS:
2238 {
2239 char data[148];
2240 va_list ap;
2241 long pid;
2242 int cursig;
2243 const void *greg;
2244
2245 va_start (ap, note_type);
2246 memset (data, 0, sizeof (data));
2247 pid = va_arg (ap, long);
2248 bfd_put_32 (abfd, pid, data + 24);
2249 cursig = va_arg (ap, int);
2250 bfd_put_16 (abfd, cursig, data + 12);
2251 greg = va_arg (ap, const void *);
2252 memcpy (data + 72, greg, 72);
2253 va_end (ap);
2254
2255 return elfcore_write_note (abfd, buf, bufsiz,
2256 "CORE", note_type, data, sizeof (data));
2257 }
2258 }
2259 }
2260
2261 #define TARGET_LITTLE_SYM arm_elf32_le_vec
2262 #define TARGET_LITTLE_NAME "elf32-littlearm"
2263 #define TARGET_BIG_SYM arm_elf32_be_vec
2264 #define TARGET_BIG_NAME "elf32-bigarm"
2265
2266 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
2267 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
2268 #define elf_backend_write_core_note elf32_arm_nabi_write_core_note
2269
2270 typedef unsigned long int insn32;
2271 typedef unsigned short int insn16;
2272
2273 /* In lieu of proper flags, assume all EABIv4 or later objects are
2274 interworkable. */
2275 #define INTERWORK_FLAG(abfd) \
2276 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
2277 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2278 || ((abfd)->flags & BFD_LINKER_CREATED))
2279
2280 /* The linker script knows the section names for placement.
2281 The entry_names are used to do simple name mangling on the stubs.
2282 Given a function name, and its type, the stub can be found. The
2283 name can be changed. The only requirement is the %s be present. */
2284 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2285 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2286
2287 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2288 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2289
2290 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2291 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2292
2293 #define STM32L4XX_ERRATUM_VENEER_SECTION_NAME ".text.stm32l4xx_veneer"
2294 #define STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "__stm32l4xx_veneer_%x"
2295
2296 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2297 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2298
2299 #define STUB_ENTRY_NAME "__%s_veneer"
2300
2301 #define CMSE_PREFIX "__acle_se_"
2302
2303 #define CMSE_STUB_NAME ".gnu.sgstubs"
2304
2305 /* The name of the dynamic interpreter. This is put in the .interp
2306 section. */
2307 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2308
2309 /* FDPIC default stack size. */
2310 #define DEFAULT_STACK_SIZE 0x8000
2311
2312 static const unsigned long tls_trampoline [] =
2313 {
2314 0xe08e0000, /* add r0, lr, r0 */
2315 0xe5901004, /* ldr r1, [r0,#4] */
2316 0xe12fff11, /* bx r1 */
2317 };
2318
2319 static const unsigned long dl_tlsdesc_lazy_trampoline [] =
2320 {
2321 0xe52d2004, /* push {r2} */
2322 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2323 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2324 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2325 0xe081100f, /* 2: add r1, pc */
2326 0xe12fff12, /* bx r2 */
2327 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
2328 + dl_tlsdesc_lazy_resolver(GOT) */
2329 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2330 };
2331
2332 /* ARM FDPIC PLT entry. */
2333 /* The last 5 words contain PLT lazy fragment code and data. */
2334 static const bfd_vma elf32_arm_fdpic_plt_entry [] =
2335 {
2336 0xe59fc008, /* ldr r12, .L1 */
2337 0xe08cc009, /* add r12, r12, r9 */
2338 0xe59c9004, /* ldr r9, [r12, #4] */
2339 0xe59cf000, /* ldr pc, [r12] */
2340 0x00000000, /* L1. .word foo(GOTOFFFUNCDESC) */
2341 0x00000000, /* L1. .word foo(funcdesc_value_reloc_offset) */
2342 0xe51fc00c, /* ldr r12, [pc, #-12] */
2343 0xe92d1000, /* push {r12} */
2344 0xe599c004, /* ldr r12, [r9, #4] */
2345 0xe599f000, /* ldr pc, [r9] */
2346 };
2347
2348 /* Thumb FDPIC PLT entry. */
2349 /* The last 5 words contain PLT lazy fragment code and data. */
2350 static const bfd_vma elf32_arm_fdpic_thumb_plt_entry [] =
2351 {
2352 0xc00cf8df, /* ldr.w r12, .L1 */
2353 0x0c09eb0c, /* add.w r12, r12, r9 */
2354 0x9004f8dc, /* ldr.w r9, [r12, #4] */
2355 0xf000f8dc, /* ldr.w pc, [r12] */
2356 0x00000000, /* .L1 .word foo(GOTOFFFUNCDESC) */
2357 0x00000000, /* .L2 .word foo(funcdesc_value_reloc_offset) */
2358 0xc008f85f, /* ldr.w r12, .L2 */
2359 0xcd04f84d, /* push {r12} */
2360 0xc004f8d9, /* ldr.w r12, [r9, #4] */
2361 0xf000f8d9, /* ldr.w pc, [r9] */
2362 };
2363
2364 #ifdef FOUR_WORD_PLT
2365
2366 /* The first entry in a procedure linkage table looks like
2367 this. It is set up so that any shared library function that is
2368 called before the relocation has been set up calls the dynamic
2369 linker first. */
2370 static const bfd_vma elf32_arm_plt0_entry [] =
2371 {
2372 0xe52de004, /* str lr, [sp, #-4]! */
2373 0xe59fe010, /* ldr lr, [pc, #16] */
2374 0xe08fe00e, /* add lr, pc, lr */
2375 0xe5bef008, /* ldr pc, [lr, #8]! */
2376 };
2377
2378 /* Subsequent entries in a procedure linkage table look like
2379 this. */
2380 static const bfd_vma elf32_arm_plt_entry [] =
2381 {
2382 0xe28fc600, /* add ip, pc, #NN */
2383 0xe28cca00, /* add ip, ip, #NN */
2384 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2385 0x00000000, /* unused */
2386 };
2387
2388 #else /* not FOUR_WORD_PLT */
2389
2390 /* The first entry in a procedure linkage table looks like
2391 this. It is set up so that any shared library function that is
2392 called before the relocation has been set up calls the dynamic
2393 linker first. */
2394 static const bfd_vma elf32_arm_plt0_entry [] =
2395 {
2396 0xe52de004, /* str lr, [sp, #-4]! */
2397 0xe59fe004, /* ldr lr, [pc, #4] */
2398 0xe08fe00e, /* add lr, pc, lr */
2399 0xe5bef008, /* ldr pc, [lr, #8]! */
2400 0x00000000, /* &GOT[0] - . */
2401 };
2402
2403 /* By default subsequent entries in a procedure linkage table look like
2404 this. Offsets that don't fit into 28 bits will cause link error. */
2405 static const bfd_vma elf32_arm_plt_entry_short [] =
2406 {
2407 0xe28fc600, /* add ip, pc, #0xNN00000 */
2408 0xe28cca00, /* add ip, ip, #0xNN000 */
2409 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2410 };
2411
2412 /* When explicitly asked, we'll use this "long" entry format
2413 which can cope with arbitrary displacements. */
2414 static const bfd_vma elf32_arm_plt_entry_long [] =
2415 {
2416 0xe28fc200, /* add ip, pc, #0xN0000000 */
2417 0xe28cc600, /* add ip, ip, #0xNN00000 */
2418 0xe28cca00, /* add ip, ip, #0xNN000 */
2419 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2420 };
2421
2422 static bfd_boolean elf32_arm_use_long_plt_entry = FALSE;
2423
2424 #endif /* not FOUR_WORD_PLT */
2425
2426 /* The first entry in a procedure linkage table looks like this.
2427 It is set up so that any shared library function that is called before the
2428 relocation has been set up calls the dynamic linker first. */
2429 static const bfd_vma elf32_thumb2_plt0_entry [] =
2430 {
2431 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2432 an instruction maybe encoded to one or two array elements. */
2433 0xf8dfb500, /* push {lr} */
2434 0x44fee008, /* ldr.w lr, [pc, #8] */
2435 /* add lr, pc */
2436 0xff08f85e, /* ldr.w pc, [lr, #8]! */
2437 0x00000000, /* &GOT[0] - . */
2438 };
2439
2440 /* Subsequent entries in a procedure linkage table for thumb only target
2441 look like this. */
2442 static const bfd_vma elf32_thumb2_plt_entry [] =
2443 {
2444 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2445 an instruction maybe encoded to one or two array elements. */
2446 0x0c00f240, /* movw ip, #0xNNNN */
2447 0x0c00f2c0, /* movt ip, #0xNNNN */
2448 0xf8dc44fc, /* add ip, pc */
2449 0xbf00f000 /* ldr.w pc, [ip] */
2450 /* nop */
2451 };
2452
2453 /* The format of the first entry in the procedure linkage table
2454 for a VxWorks executable. */
2455 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
2456 {
2457 0xe52dc008, /* str ip,[sp,#-8]! */
2458 0xe59fc000, /* ldr ip,[pc] */
2459 0xe59cf008, /* ldr pc,[ip,#8] */
2460 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
2461 };
2462
2463 /* The format of subsequent entries in a VxWorks executable. */
2464 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
2465 {
2466 0xe59fc000, /* ldr ip,[pc] */
2467 0xe59cf000, /* ldr pc,[ip] */
2468 0x00000000, /* .long @got */
2469 0xe59fc000, /* ldr ip,[pc] */
2470 0xea000000, /* b _PLT */
2471 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2472 };
2473
2474 /* The format of entries in a VxWorks shared library. */
2475 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
2476 {
2477 0xe59fc000, /* ldr ip,[pc] */
2478 0xe79cf009, /* ldr pc,[ip,r9] */
2479 0x00000000, /* .long @got */
2480 0xe59fc000, /* ldr ip,[pc] */
2481 0xe599f008, /* ldr pc,[r9,#8] */
2482 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2483 };
2484
2485 /* An initial stub used if the PLT entry is referenced from Thumb code. */
2486 #define PLT_THUMB_STUB_SIZE 4
2487 static const bfd_vma elf32_arm_plt_thumb_stub [] =
2488 {
2489 0x4778, /* bx pc */
2490 0x46c0 /* nop */
2491 };
2492
2493 /* The entries in a PLT when using a DLL-based target with multiple
2494 address spaces. */
2495 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2496 {
2497 0xe51ff004, /* ldr pc, [pc, #-4] */
2498 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2499 };
2500
2501 /* The first entry in a procedure linkage table looks like
2502 this. It is set up so that any shared library function that is
2503 called before the relocation has been set up calls the dynamic
2504 linker first. */
2505 static const bfd_vma elf32_arm_nacl_plt0_entry [] =
2506 {
2507 /* First bundle: */
2508 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */
2509 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */
2510 0xe08cc00f, /* add ip, ip, pc */
2511 0xe52dc008, /* str ip, [sp, #-8]! */
2512 /* Second bundle: */
2513 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2514 0xe59cc000, /* ldr ip, [ip] */
2515 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2516 0xe12fff1c, /* bx ip */
2517 /* Third bundle: */
2518 0xe320f000, /* nop */
2519 0xe320f000, /* nop */
2520 0xe320f000, /* nop */
2521 /* .Lplt_tail: */
2522 0xe50dc004, /* str ip, [sp, #-4] */
2523 /* Fourth bundle: */
2524 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2525 0xe59cc000, /* ldr ip, [ip] */
2526 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2527 0xe12fff1c, /* bx ip */
2528 };
2529 #define ARM_NACL_PLT_TAIL_OFFSET (11 * 4)
2530
2531 /* Subsequent entries in a procedure linkage table look like this. */
2532 static const bfd_vma elf32_arm_nacl_plt_entry [] =
2533 {
2534 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */
2535 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */
2536 0xe08cc00f, /* add ip, ip, pc */
2537 0xea000000, /* b .Lplt_tail */
2538 };
2539
2540 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2541 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2542 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2543 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2544 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2545 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2546 #define THM2_MAX_FWD_COND_BRANCH_OFFSET (((1 << 20) -2) + 4)
2547 #define THM2_MAX_BWD_COND_BRANCH_OFFSET (-(1 << 20) + 4)
2548
2549 enum stub_insn_type
2550 {
2551 THUMB16_TYPE = 1,
2552 THUMB32_TYPE,
2553 ARM_TYPE,
2554 DATA_TYPE
2555 };
2556
2557 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2558 /* A bit of a hack. A Thumb conditional branch, in which the proper condition
2559 is inserted in arm_build_one_stub(). */
2560 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2561 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2562 #define THUMB32_MOVT(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVT_ABS, 0}
2563 #define THUMB32_MOVW(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVW_ABS_NC, 0}
2564 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2565 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2566 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2567 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2568
2569 typedef struct
2570 {
2571 bfd_vma data;
2572 enum stub_insn_type type;
2573 unsigned int r_type;
2574 int reloc_addend;
2575 } insn_sequence;
2576
2577 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2578 to reach the stub if necessary. */
2579 static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2580 {
2581 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2582 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2583 };
2584
2585 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2586 available. */
2587 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2588 {
2589 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2590 ARM_INSN (0xe12fff1c), /* bx ip */
2591 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2592 };
2593
2594 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2595 static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2596 {
2597 THUMB16_INSN (0xb401), /* push {r0} */
2598 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2599 THUMB16_INSN (0x4684), /* mov ip, r0 */
2600 THUMB16_INSN (0xbc01), /* pop {r0} */
2601 THUMB16_INSN (0x4760), /* bx ip */
2602 THUMB16_INSN (0xbf00), /* nop */
2603 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2604 };
2605
2606 /* Thumb -> Thumb long branch stub in thumb2 encoding. Used on armv7. */
2607 static const insn_sequence elf32_arm_stub_long_branch_thumb2_only[] =
2608 {
2609 THUMB32_INSN (0xf85ff000), /* ldr.w pc, [pc, #-0] */
2610 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(x) */
2611 };
2612
2613 /* Thumb -> Thumb long branch stub. Used for PureCode sections on Thumb2
2614 M-profile architectures. */
2615 static const insn_sequence elf32_arm_stub_long_branch_thumb2_only_pure[] =
2616 {
2617 THUMB32_MOVW (0xf2400c00), /* mov.w ip, R_ARM_MOVW_ABS_NC */
2618 THUMB32_MOVT (0xf2c00c00), /* movt ip, R_ARM_MOVT_ABS << 16 */
2619 THUMB16_INSN (0x4760), /* bx ip */
2620 };
2621
2622 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2623 allowed. */
2624 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2625 {
2626 THUMB16_INSN (0x4778), /* bx pc */
2627 THUMB16_INSN (0x46c0), /* nop */
2628 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2629 ARM_INSN (0xe12fff1c), /* bx ip */
2630 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2631 };
2632
2633 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2634 available. */
2635 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2636 {
2637 THUMB16_INSN (0x4778), /* bx pc */
2638 THUMB16_INSN (0x46c0), /* nop */
2639 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2640 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2641 };
2642
2643 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2644 one, when the destination is close enough. */
2645 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2646 {
2647 THUMB16_INSN (0x4778), /* bx pc */
2648 THUMB16_INSN (0x46c0), /* nop */
2649 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */
2650 };
2651
2652 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2653 blx to reach the stub if necessary. */
2654 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2655 {
2656 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */
2657 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */
2658 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2659 };
2660
2661 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2662 blx to reach the stub if necessary. We can not add into pc;
2663 it is not guaranteed to mode switch (different in ARMv6 and
2664 ARMv7). */
2665 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2666 {
2667 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2668 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2669 ARM_INSN (0xe12fff1c), /* bx ip */
2670 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2671 };
2672
2673 /* V4T ARM -> ARM long branch stub, PIC. */
2674 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2675 {
2676 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2677 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2678 ARM_INSN (0xe12fff1c), /* bx ip */
2679 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2680 };
2681
2682 /* V4T Thumb -> ARM long branch stub, PIC. */
2683 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2684 {
2685 THUMB16_INSN (0x4778), /* bx pc */
2686 THUMB16_INSN (0x46c0), /* nop */
2687 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2688 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */
2689 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2690 };
2691
2692 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2693 architectures. */
2694 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2695 {
2696 THUMB16_INSN (0xb401), /* push {r0} */
2697 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2698 THUMB16_INSN (0x46fc), /* mov ip, pc */
2699 THUMB16_INSN (0x4484), /* add ip, r0 */
2700 THUMB16_INSN (0xbc01), /* pop {r0} */
2701 THUMB16_INSN (0x4760), /* bx ip */
2702 DATA_WORD (0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2703 };
2704
2705 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2706 allowed. */
2707 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2708 {
2709 THUMB16_INSN (0x4778), /* bx pc */
2710 THUMB16_INSN (0x46c0), /* nop */
2711 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2712 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2713 ARM_INSN (0xe12fff1c), /* bx ip */
2714 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2715 };
2716
2717 /* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2718 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2719 static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2720 {
2721 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */
2722 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */
2723 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2724 };
2725
2726 /* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2727 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2728 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2729 {
2730 THUMB16_INSN (0x4778), /* bx pc */
2731 THUMB16_INSN (0x46c0), /* nop */
2732 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */
2733 ARM_INSN (0xe081f00f), /* add pc, r1, pc */
2734 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2735 };
2736
2737 /* NaCl ARM -> ARM long branch stub. */
2738 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl[] =
2739 {
2740 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2741 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2742 ARM_INSN (0xe12fff1c), /* bx ip */
2743 ARM_INSN (0xe320f000), /* nop */
2744 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2745 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2746 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2747 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2748 };
2749
2750 /* NaCl ARM -> ARM long branch stub, PIC. */
2751 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic[] =
2752 {
2753 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2754 ARM_INSN (0xe08cc00f), /* add ip, ip, pc */
2755 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2756 ARM_INSN (0xe12fff1c), /* bx ip */
2757 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2758 DATA_WORD (0, R_ARM_REL32, 8), /* dcd R_ARM_REL32(X+8) */
2759 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2760 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2761 };
2762
2763 /* Stub used for transition to secure state (aka SG veneer). */
2764 static const insn_sequence elf32_arm_stub_cmse_branch_thumb_only[] =
2765 {
2766 THUMB32_INSN (0xe97fe97f), /* sg. */
2767 THUMB32_B_INSN (0xf000b800, -4), /* b.w original_branch_dest. */
2768 };
2769
2770
2771 /* Cortex-A8 erratum-workaround stubs. */
2772
2773 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2774 can't use a conditional branch to reach this stub). */
2775
2776 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2777 {
2778 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */
2779 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */
2780 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */
2781 };
2782
2783 /* Stub used for b.w and bl.w instructions. */
2784
2785 static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2786 {
2787 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2788 };
2789
2790 static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2791 {
2792 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2793 };
2794
2795 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2796 instruction (which switches to ARM mode) to point to this stub. Jump to the
2797 real destination using an ARM-mode branch. */
2798
2799 static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2800 {
2801 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */
2802 };
2803
2804 /* For each section group there can be a specially created linker section
2805 to hold the stubs for that group. The name of the stub section is based
2806 upon the name of another section within that group with the suffix below
2807 applied.
2808
2809 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2810 create what appeared to be a linker stub section when it actually
2811 contained user code/data. For example, consider this fragment:
2812
2813 const char * stubborn_problems[] = { "np" };
2814
2815 If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2816 section called:
2817
2818 .data.rel.local.stubborn_problems
2819
2820 This then causes problems in arm32_arm_build_stubs() as it triggers:
2821
2822 // Ignore non-stub sections.
2823 if (!strstr (stub_sec->name, STUB_SUFFIX))
2824 continue;
2825
2826 And so the section would be ignored instead of being processed. Hence
2827 the change in definition of STUB_SUFFIX to a name that cannot be a valid
2828 C identifier. */
2829 #define STUB_SUFFIX ".__stub"
2830
2831 /* One entry per long/short branch stub defined above. */
2832 #define DEF_STUBS \
2833 DEF_STUB(long_branch_any_any) \
2834 DEF_STUB(long_branch_v4t_arm_thumb) \
2835 DEF_STUB(long_branch_thumb_only) \
2836 DEF_STUB(long_branch_v4t_thumb_thumb) \
2837 DEF_STUB(long_branch_v4t_thumb_arm) \
2838 DEF_STUB(short_branch_v4t_thumb_arm) \
2839 DEF_STUB(long_branch_any_arm_pic) \
2840 DEF_STUB(long_branch_any_thumb_pic) \
2841 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2842 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2843 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2844 DEF_STUB(long_branch_thumb_only_pic) \
2845 DEF_STUB(long_branch_any_tls_pic) \
2846 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
2847 DEF_STUB(long_branch_arm_nacl) \
2848 DEF_STUB(long_branch_arm_nacl_pic) \
2849 DEF_STUB(cmse_branch_thumb_only) \
2850 DEF_STUB(a8_veneer_b_cond) \
2851 DEF_STUB(a8_veneer_b) \
2852 DEF_STUB(a8_veneer_bl) \
2853 DEF_STUB(a8_veneer_blx) \
2854 DEF_STUB(long_branch_thumb2_only) \
2855 DEF_STUB(long_branch_thumb2_only_pure)
2856
2857 #define DEF_STUB(x) arm_stub_##x,
2858 enum elf32_arm_stub_type
2859 {
2860 arm_stub_none,
2861 DEF_STUBS
2862 max_stub_type
2863 };
2864 #undef DEF_STUB
2865
2866 /* Note the first a8_veneer type. */
2867 const unsigned arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond;
2868
2869 typedef struct
2870 {
2871 const insn_sequence* template_sequence;
2872 int template_size;
2873 } stub_def;
2874
2875 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2876 static const stub_def stub_definitions[] =
2877 {
2878 {NULL, 0},
2879 DEF_STUBS
2880 };
2881
2882 struct elf32_arm_stub_hash_entry
2883 {
2884 /* Base hash table entry structure. */
2885 struct bfd_hash_entry root;
2886
2887 /* The stub section. */
2888 asection *stub_sec;
2889
2890 /* Offset within stub_sec of the beginning of this stub. */
2891 bfd_vma stub_offset;
2892
2893 /* Given the symbol's value and its section we can determine its final
2894 value when building the stubs (so the stub knows where to jump). */
2895 bfd_vma target_value;
2896 asection *target_section;
2897
2898 /* Same as above but for the source of the branch to the stub. Used for
2899 Cortex-A8 erratum workaround to patch it to branch to the stub. As
2900 such, source section does not need to be recorded since Cortex-A8 erratum
2901 workaround stubs are only generated when both source and target are in the
2902 same section. */
2903 bfd_vma source_value;
2904
2905 /* The instruction which caused this stub to be generated (only valid for
2906 Cortex-A8 erratum workaround stubs at present). */
2907 unsigned long orig_insn;
2908
2909 /* The stub type. */
2910 enum elf32_arm_stub_type stub_type;
2911 /* Its encoding size in bytes. */
2912 int stub_size;
2913 /* Its template. */
2914 const insn_sequence *stub_template;
2915 /* The size of the template (number of entries). */
2916 int stub_template_size;
2917
2918 /* The symbol table entry, if any, that this was derived from. */
2919 struct elf32_arm_link_hash_entry *h;
2920
2921 /* Type of branch. */
2922 enum arm_st_branch_type branch_type;
2923
2924 /* Where this stub is being called from, or, in the case of combined
2925 stub sections, the first input section in the group. */
2926 asection *id_sec;
2927
2928 /* The name for the local symbol at the start of this stub. The
2929 stub name in the hash table has to be unique; this does not, so
2930 it can be friendlier. */
2931 char *output_name;
2932 };
2933
2934 /* Used to build a map of a section. This is required for mixed-endian
2935 code/data. */
2936
2937 typedef struct elf32_elf_section_map
2938 {
2939 bfd_vma vma;
2940 char type;
2941 }
2942 elf32_arm_section_map;
2943
2944 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2945
2946 typedef enum
2947 {
2948 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2949 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2950 VFP11_ERRATUM_ARM_VENEER,
2951 VFP11_ERRATUM_THUMB_VENEER
2952 }
2953 elf32_vfp11_erratum_type;
2954
2955 typedef struct elf32_vfp11_erratum_list
2956 {
2957 struct elf32_vfp11_erratum_list *next;
2958 bfd_vma vma;
2959 union
2960 {
2961 struct
2962 {
2963 struct elf32_vfp11_erratum_list *veneer;
2964 unsigned int vfp_insn;
2965 } b;
2966 struct
2967 {
2968 struct elf32_vfp11_erratum_list *branch;
2969 unsigned int id;
2970 } v;
2971 } u;
2972 elf32_vfp11_erratum_type type;
2973 }
2974 elf32_vfp11_erratum_list;
2975
2976 /* Information about a STM32L4XX erratum veneer, or a branch to such a
2977 veneer. */
2978 typedef enum
2979 {
2980 STM32L4XX_ERRATUM_BRANCH_TO_VENEER,
2981 STM32L4XX_ERRATUM_VENEER
2982 }
2983 elf32_stm32l4xx_erratum_type;
2984
2985 typedef struct elf32_stm32l4xx_erratum_list
2986 {
2987 struct elf32_stm32l4xx_erratum_list *next;
2988 bfd_vma vma;
2989 union
2990 {
2991 struct
2992 {
2993 struct elf32_stm32l4xx_erratum_list *veneer;
2994 unsigned int insn;
2995 } b;
2996 struct
2997 {
2998 struct elf32_stm32l4xx_erratum_list *branch;
2999 unsigned int id;
3000 } v;
3001 } u;
3002 elf32_stm32l4xx_erratum_type type;
3003 }
3004 elf32_stm32l4xx_erratum_list;
3005
3006 typedef enum
3007 {
3008 DELETE_EXIDX_ENTRY,
3009 INSERT_EXIDX_CANTUNWIND_AT_END
3010 }
3011 arm_unwind_edit_type;
3012
3013 /* A (sorted) list of edits to apply to an unwind table. */
3014 typedef struct arm_unwind_table_edit
3015 {
3016 arm_unwind_edit_type type;
3017 /* Note: we sometimes want to insert an unwind entry corresponding to a
3018 section different from the one we're currently writing out, so record the
3019 (text) section this edit relates to here. */
3020 asection *linked_section;
3021 unsigned int index;
3022 struct arm_unwind_table_edit *next;
3023 }
3024 arm_unwind_table_edit;
3025
3026 typedef struct _arm_elf_section_data
3027 {
3028 /* Information about mapping symbols. */
3029 struct bfd_elf_section_data elf;
3030 unsigned int mapcount;
3031 unsigned int mapsize;
3032 elf32_arm_section_map *map;
3033 /* Information about CPU errata. */
3034 unsigned int erratumcount;
3035 elf32_vfp11_erratum_list *erratumlist;
3036 unsigned int stm32l4xx_erratumcount;
3037 elf32_stm32l4xx_erratum_list *stm32l4xx_erratumlist;
3038 unsigned int additional_reloc_count;
3039 /* Information about unwind tables. */
3040 union
3041 {
3042 /* Unwind info attached to a text section. */
3043 struct
3044 {
3045 asection *arm_exidx_sec;
3046 } text;
3047
3048 /* Unwind info attached to an .ARM.exidx section. */
3049 struct
3050 {
3051 arm_unwind_table_edit *unwind_edit_list;
3052 arm_unwind_table_edit *unwind_edit_tail;
3053 } exidx;
3054 } u;
3055 }
3056 _arm_elf_section_data;
3057
3058 #define elf32_arm_section_data(sec) \
3059 ((_arm_elf_section_data *) elf_section_data (sec))
3060
3061 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
3062 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
3063 so may be created multiple times: we use an array of these entries whilst
3064 relaxing which we can refresh easily, then create stubs for each potentially
3065 erratum-triggering instruction once we've settled on a solution. */
3066
3067 struct a8_erratum_fix
3068 {
3069 bfd *input_bfd;
3070 asection *section;
3071 bfd_vma offset;
3072 bfd_vma target_offset;
3073 unsigned long orig_insn;
3074 char *stub_name;
3075 enum elf32_arm_stub_type stub_type;
3076 enum arm_st_branch_type branch_type;
3077 };
3078
3079 /* A table of relocs applied to branches which might trigger Cortex-A8
3080 erratum. */
3081
3082 struct a8_erratum_reloc
3083 {
3084 bfd_vma from;
3085 bfd_vma destination;
3086 struct elf32_arm_link_hash_entry *hash;
3087 const char *sym_name;
3088 unsigned int r_type;
3089 enum arm_st_branch_type branch_type;
3090 bfd_boolean non_a8_stub;
3091 };
3092
3093 /* The size of the thread control block. */
3094 #define TCB_SIZE 8
3095
3096 /* ARM-specific information about a PLT entry, over and above the usual
3097 gotplt_union. */
3098 struct arm_plt_info
3099 {
3100 /* We reference count Thumb references to a PLT entry separately,
3101 so that we can emit the Thumb trampoline only if needed. */
3102 bfd_signed_vma thumb_refcount;
3103
3104 /* Some references from Thumb code may be eliminated by BL->BLX
3105 conversion, so record them separately. */
3106 bfd_signed_vma maybe_thumb_refcount;
3107
3108 /* How many of the recorded PLT accesses were from non-call relocations.
3109 This information is useful when deciding whether anything takes the
3110 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
3111 non-call references to the function should resolve directly to the
3112 real runtime target. */
3113 unsigned int noncall_refcount;
3114
3115 /* Since PLT entries have variable size if the Thumb prologue is
3116 used, we need to record the index into .got.plt instead of
3117 recomputing it from the PLT offset. */
3118 bfd_signed_vma got_offset;
3119 };
3120
3121 /* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
3122 struct arm_local_iplt_info
3123 {
3124 /* The information that is usually found in the generic ELF part of
3125 the hash table entry. */
3126 union gotplt_union root;
3127
3128 /* The information that is usually found in the ARM-specific part of
3129 the hash table entry. */
3130 struct arm_plt_info arm;
3131
3132 /* A list of all potential dynamic relocations against this symbol. */
3133 struct elf_dyn_relocs *dyn_relocs;
3134 };
3135
3136 /* Structure to handle FDPIC support for local functions. */
3137 struct fdpic_local {
3138 unsigned int funcdesc_cnt;
3139 unsigned int gotofffuncdesc_cnt;
3140 int funcdesc_offset;
3141 };
3142
3143 struct elf_arm_obj_tdata
3144 {
3145 struct elf_obj_tdata root;
3146
3147 /* tls_type for each local got entry. */
3148 char *local_got_tls_type;
3149
3150 /* GOTPLT entries for TLS descriptors. */
3151 bfd_vma *local_tlsdesc_gotent;
3152
3153 /* Information for local symbols that need entries in .iplt. */
3154 struct arm_local_iplt_info **local_iplt;
3155
3156 /* Zero to warn when linking objects with incompatible enum sizes. */
3157 int no_enum_size_warning;
3158
3159 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
3160 int no_wchar_size_warning;
3161
3162 /* Maintains FDPIC counters and funcdesc info. */
3163 struct fdpic_local *local_fdpic_cnts;
3164 };
3165
3166 #define elf_arm_tdata(bfd) \
3167 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
3168
3169 #define elf32_arm_local_got_tls_type(bfd) \
3170 (elf_arm_tdata (bfd)->local_got_tls_type)
3171
3172 #define elf32_arm_local_tlsdesc_gotent(bfd) \
3173 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
3174
3175 #define elf32_arm_local_iplt(bfd) \
3176 (elf_arm_tdata (bfd)->local_iplt)
3177
3178 #define elf32_arm_local_fdpic_cnts(bfd) \
3179 (elf_arm_tdata (bfd)->local_fdpic_cnts)
3180
3181 #define is_arm_elf(bfd) \
3182 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
3183 && elf_tdata (bfd) != NULL \
3184 && elf_object_id (bfd) == ARM_ELF_DATA)
3185
3186 static bfd_boolean
3187 elf32_arm_mkobject (bfd *abfd)
3188 {
3189 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
3190 ARM_ELF_DATA);
3191 }
3192
3193 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
3194
3195 /* Structure to handle FDPIC support for extern functions. */
3196 struct fdpic_global {
3197 unsigned int gotofffuncdesc_cnt;
3198 unsigned int gotfuncdesc_cnt;
3199 unsigned int funcdesc_cnt;
3200 int funcdesc_offset;
3201 int gotfuncdesc_offset;
3202 };
3203
3204 /* Arm ELF linker hash entry. */
3205 struct elf32_arm_link_hash_entry
3206 {
3207 struct elf_link_hash_entry root;
3208
3209 /* Track dynamic relocs copied for this symbol. */
3210 struct elf_dyn_relocs *dyn_relocs;
3211
3212 /* ARM-specific PLT information. */
3213 struct arm_plt_info plt;
3214
3215 #define GOT_UNKNOWN 0
3216 #define GOT_NORMAL 1
3217 #define GOT_TLS_GD 2
3218 #define GOT_TLS_IE 4
3219 #define GOT_TLS_GDESC 8
3220 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
3221 unsigned int tls_type : 8;
3222
3223 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
3224 unsigned int is_iplt : 1;
3225
3226 unsigned int unused : 23;
3227
3228 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
3229 starting at the end of the jump table. */
3230 bfd_vma tlsdesc_got;
3231
3232 /* The symbol marking the real symbol location for exported thumb
3233 symbols with Arm stubs. */
3234 struct elf_link_hash_entry *export_glue;
3235
3236 /* A pointer to the most recently used stub hash entry against this
3237 symbol. */
3238 struct elf32_arm_stub_hash_entry *stub_cache;
3239
3240 /* Counter for FDPIC relocations against this symbol. */
3241 struct fdpic_global fdpic_cnts;
3242 };
3243
3244 /* Traverse an arm ELF linker hash table. */
3245 #define elf32_arm_link_hash_traverse(table, func, info) \
3246 (elf_link_hash_traverse \
3247 (&(table)->root, \
3248 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
3249 (info)))
3250
3251 /* Get the ARM elf linker hash table from a link_info structure. */
3252 #define elf32_arm_hash_table(info) \
3253 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
3254 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
3255
3256 #define arm_stub_hash_lookup(table, string, create, copy) \
3257 ((struct elf32_arm_stub_hash_entry *) \
3258 bfd_hash_lookup ((table), (string), (create), (copy)))
3259
3260 /* Array to keep track of which stub sections have been created, and
3261 information on stub grouping. */
3262 struct map_stub
3263 {
3264 /* This is the section to which stubs in the group will be
3265 attached. */
3266 asection *link_sec;
3267 /* The stub section. */
3268 asection *stub_sec;
3269 };
3270
3271 #define elf32_arm_compute_jump_table_size(htab) \
3272 ((htab)->next_tls_desc_index * 4)
3273
3274 /* ARM ELF linker hash table. */
3275 struct elf32_arm_link_hash_table
3276 {
3277 /* The main hash table. */
3278 struct elf_link_hash_table root;
3279
3280 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
3281 bfd_size_type thumb_glue_size;
3282
3283 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
3284 bfd_size_type arm_glue_size;
3285
3286 /* The size in bytes of section containing the ARMv4 BX veneers. */
3287 bfd_size_type bx_glue_size;
3288
3289 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
3290 veneer has been populated. */
3291 bfd_vma bx_glue_offset[15];
3292
3293 /* The size in bytes of the section containing glue for VFP11 erratum
3294 veneers. */
3295 bfd_size_type vfp11_erratum_glue_size;
3296
3297 /* The size in bytes of the section containing glue for STM32L4XX erratum
3298 veneers. */
3299 bfd_size_type stm32l4xx_erratum_glue_size;
3300
3301 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
3302 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
3303 elf32_arm_write_section(). */
3304 struct a8_erratum_fix *a8_erratum_fixes;
3305 unsigned int num_a8_erratum_fixes;
3306
3307 /* An arbitrary input BFD chosen to hold the glue sections. */
3308 bfd * bfd_of_glue_owner;
3309
3310 /* Nonzero to output a BE8 image. */
3311 int byteswap_code;
3312
3313 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
3314 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
3315 int target1_is_rel;
3316
3317 /* The relocation to use for R_ARM_TARGET2 relocations. */
3318 int target2_reloc;
3319
3320 /* 0 = Ignore R_ARM_V4BX.
3321 1 = Convert BX to MOV PC.
3322 2 = Generate v4 interworing stubs. */
3323 int fix_v4bx;
3324
3325 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
3326 int fix_cortex_a8;
3327
3328 /* Whether we should fix the ARM1176 BLX immediate issue. */
3329 int fix_arm1176;
3330
3331 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
3332 int use_blx;
3333
3334 /* What sort of code sequences we should look for which may trigger the
3335 VFP11 denorm erratum. */
3336 bfd_arm_vfp11_fix vfp11_fix;
3337
3338 /* Global counter for the number of fixes we have emitted. */
3339 int num_vfp11_fixes;
3340
3341 /* What sort of code sequences we should look for which may trigger the
3342 STM32L4XX erratum. */
3343 bfd_arm_stm32l4xx_fix stm32l4xx_fix;
3344
3345 /* Global counter for the number of fixes we have emitted. */
3346 int num_stm32l4xx_fixes;
3347
3348 /* Nonzero to force PIC branch veneers. */
3349 int pic_veneer;
3350
3351 /* The number of bytes in the initial entry in the PLT. */
3352 bfd_size_type plt_header_size;
3353
3354 /* The number of bytes in the subsequent PLT etries. */
3355 bfd_size_type plt_entry_size;
3356
3357 /* True if the target system is VxWorks. */
3358 int vxworks_p;
3359
3360 /* True if the target system is Symbian OS. */
3361 int symbian_p;
3362
3363 /* True if the target system is Native Client. */
3364 int nacl_p;
3365
3366 /* True if the target uses REL relocations. */
3367 bfd_boolean use_rel;
3368
3369 /* Nonzero if import library must be a secure gateway import library
3370 as per ARMv8-M Security Extensions. */
3371 int cmse_implib;
3372
3373 /* The import library whose symbols' address must remain stable in
3374 the import library generated. */
3375 bfd *in_implib_bfd;
3376
3377 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
3378 bfd_vma next_tls_desc_index;
3379
3380 /* How many R_ARM_TLS_DESC relocations were generated so far. */
3381 bfd_vma num_tls_desc;
3382
3383 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
3384 asection *srelplt2;
3385
3386 /* The offset into splt of the PLT entry for the TLS descriptor
3387 resolver. Special values are 0, if not necessary (or not found
3388 to be necessary yet), and -1 if needed but not determined
3389 yet. */
3390 bfd_vma dt_tlsdesc_plt;
3391
3392 /* The offset into sgot of the GOT entry used by the PLT entry
3393 above. */
3394 bfd_vma dt_tlsdesc_got;
3395
3396 /* Offset in .plt section of tls_arm_trampoline. */
3397 bfd_vma tls_trampoline;
3398
3399 /* Data for R_ARM_TLS_LDM32/R_ARM_TLS_LDM32_FDPIC relocations. */
3400 union
3401 {
3402 bfd_signed_vma refcount;
3403 bfd_vma offset;
3404 } tls_ldm_got;
3405
3406 /* Small local sym cache. */
3407 struct sym_cache sym_cache;
3408
3409 /* For convenience in allocate_dynrelocs. */
3410 bfd * obfd;
3411
3412 /* The amount of space used by the reserved portion of the sgotplt
3413 section, plus whatever space is used by the jump slots. */
3414 bfd_vma sgotplt_jump_table_size;
3415
3416 /* The stub hash table. */
3417 struct bfd_hash_table stub_hash_table;
3418
3419 /* Linker stub bfd. */
3420 bfd *stub_bfd;
3421
3422 /* Linker call-backs. */
3423 asection * (*add_stub_section) (const char *, asection *, asection *,
3424 unsigned int);
3425 void (*layout_sections_again) (void);
3426
3427 /* Array to keep track of which stub sections have been created, and
3428 information on stub grouping. */
3429 struct map_stub *stub_group;
3430
3431 /* Input stub section holding secure gateway veneers. */
3432 asection *cmse_stub_sec;
3433
3434 /* Offset in cmse_stub_sec where new SG veneers (not in input import library)
3435 start to be allocated. */
3436 bfd_vma new_cmse_stub_offset;
3437
3438 /* Number of elements in stub_group. */
3439 unsigned int top_id;
3440
3441 /* Assorted information used by elf32_arm_size_stubs. */
3442 unsigned int bfd_count;
3443 unsigned int top_index;
3444 asection **input_list;
3445
3446 /* True if the target system uses FDPIC. */
3447 int fdpic_p;
3448
3449 /* Fixup section. Used for FDPIC. */
3450 asection *srofixup;
3451 };
3452
3453 /* Add an FDPIC read-only fixup. */
3454 static void
3455 arm_elf_add_rofixup (bfd *output_bfd, asection *srofixup, bfd_vma offset)
3456 {
3457 bfd_vma fixup_offset;
3458
3459 fixup_offset = srofixup->reloc_count++ * 4;
3460 BFD_ASSERT (fixup_offset < srofixup->size);
3461 bfd_put_32 (output_bfd, offset, srofixup->contents + fixup_offset);
3462 }
3463
3464 static inline int
3465 ctz (unsigned int mask)
3466 {
3467 #if GCC_VERSION >= 3004
3468 return __builtin_ctz (mask);
3469 #else
3470 unsigned int i;
3471
3472 for (i = 0; i < 8 * sizeof (mask); i++)
3473 {
3474 if (mask & 0x1)
3475 break;
3476 mask = (mask >> 1);
3477 }
3478 return i;
3479 #endif
3480 }
3481
3482 static inline int
3483 elf32_arm_popcount (unsigned int mask)
3484 {
3485 #if GCC_VERSION >= 3004
3486 return __builtin_popcount (mask);
3487 #else
3488 unsigned int i;
3489 int sum = 0;
3490
3491 for (i = 0; i < 8 * sizeof (mask); i++)
3492 {
3493 if (mask & 0x1)
3494 sum++;
3495 mask = (mask >> 1);
3496 }
3497 return sum;
3498 #endif
3499 }
3500
3501 static void elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
3502 asection *sreloc, Elf_Internal_Rela *rel);
3503
3504 static void
3505 arm_elf_fill_funcdesc(bfd *output_bfd,
3506 struct bfd_link_info *info,
3507 int *funcdesc_offset,
3508 int dynindx,
3509 int offset,
3510 bfd_vma addr,
3511 bfd_vma dynreloc_value,
3512 bfd_vma seg)
3513 {
3514 if ((*funcdesc_offset & 1) == 0)
3515 {
3516 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
3517 asection *sgot = globals->root.sgot;
3518
3519 if (bfd_link_pic(info))
3520 {
3521 asection *srelgot = globals->root.srelgot;
3522 Elf_Internal_Rela outrel;
3523
3524 outrel.r_info = ELF32_R_INFO (dynindx, R_ARM_FUNCDESC_VALUE);
3525 outrel.r_offset = sgot->output_section->vma + sgot->output_offset + offset;
3526 outrel.r_addend = 0;
3527
3528 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
3529 bfd_put_32 (output_bfd, addr, sgot->contents + offset);
3530 bfd_put_32 (output_bfd, seg, sgot->contents + offset + 4);
3531 }
3532 else
3533 {
3534 struct elf_link_hash_entry *hgot = globals->root.hgot;
3535 bfd_vma got_value = hgot->root.u.def.value
3536 + hgot->root.u.def.section->output_section->vma
3537 + hgot->root.u.def.section->output_offset;
3538
3539 arm_elf_add_rofixup(output_bfd, globals->srofixup,
3540 sgot->output_section->vma + sgot->output_offset
3541 + offset);
3542 arm_elf_add_rofixup(output_bfd, globals->srofixup,
3543 sgot->output_section->vma + sgot->output_offset
3544 + offset + 4);
3545 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + offset);
3546 bfd_put_32 (output_bfd, got_value, sgot->contents + offset + 4);
3547 }
3548 *funcdesc_offset |= 1;
3549 }
3550 }
3551
3552 /* Create an entry in an ARM ELF linker hash table. */
3553
3554 static struct bfd_hash_entry *
3555 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
3556 struct bfd_hash_table * table,
3557 const char * string)
3558 {
3559 struct elf32_arm_link_hash_entry * ret =
3560 (struct elf32_arm_link_hash_entry *) entry;
3561
3562 /* Allocate the structure if it has not already been allocated by a
3563 subclass. */
3564 if (ret == NULL)
3565 ret = (struct elf32_arm_link_hash_entry *)
3566 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
3567 if (ret == NULL)
3568 return (struct bfd_hash_entry *) ret;
3569
3570 /* Call the allocation method of the superclass. */
3571 ret = ((struct elf32_arm_link_hash_entry *)
3572 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3573 table, string));
3574 if (ret != NULL)
3575 {
3576 ret->dyn_relocs = NULL;
3577 ret->tls_type = GOT_UNKNOWN;
3578 ret->tlsdesc_got = (bfd_vma) -1;
3579 ret->plt.thumb_refcount = 0;
3580 ret->plt.maybe_thumb_refcount = 0;
3581 ret->plt.noncall_refcount = 0;
3582 ret->plt.got_offset = -1;
3583 ret->is_iplt = FALSE;
3584 ret->export_glue = NULL;
3585
3586 ret->stub_cache = NULL;
3587
3588 ret->fdpic_cnts.gotofffuncdesc_cnt = 0;
3589 ret->fdpic_cnts.gotfuncdesc_cnt = 0;
3590 ret->fdpic_cnts.funcdesc_cnt = 0;
3591 ret->fdpic_cnts.funcdesc_offset = -1;
3592 ret->fdpic_cnts.gotfuncdesc_offset = -1;
3593 }
3594
3595 return (struct bfd_hash_entry *) ret;
3596 }
3597
3598 /* Ensure that we have allocated bookkeeping structures for ABFD's local
3599 symbols. */
3600
3601 static bfd_boolean
3602 elf32_arm_allocate_local_sym_info (bfd *abfd)
3603 {
3604 if (elf_local_got_refcounts (abfd) == NULL)
3605 {
3606 bfd_size_type num_syms;
3607 bfd_size_type size;
3608 char *data;
3609
3610 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
3611 size = num_syms * (sizeof (bfd_signed_vma)
3612 + sizeof (struct arm_local_iplt_info *)
3613 + sizeof (bfd_vma)
3614 + sizeof (char)
3615 + sizeof (struct fdpic_local));
3616 data = bfd_zalloc (abfd, size);
3617 if (data == NULL)
3618 return FALSE;
3619
3620 elf32_arm_local_fdpic_cnts (abfd) = (struct fdpic_local *) data;
3621 data += num_syms * sizeof (struct fdpic_local);
3622
3623 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
3624 data += num_syms * sizeof (bfd_signed_vma);
3625
3626 elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
3627 data += num_syms * sizeof (struct arm_local_iplt_info *);
3628
3629 elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
3630 data += num_syms * sizeof (bfd_vma);
3631
3632 elf32_arm_local_got_tls_type (abfd) = data;
3633 }
3634 return TRUE;
3635 }
3636
3637 /* Return the .iplt information for local symbol R_SYMNDX, which belongs
3638 to input bfd ABFD. Create the information if it doesn't already exist.
3639 Return null if an allocation fails. */
3640
3641 static struct arm_local_iplt_info *
3642 elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
3643 {
3644 struct arm_local_iplt_info **ptr;
3645
3646 if (!elf32_arm_allocate_local_sym_info (abfd))
3647 return NULL;
3648
3649 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
3650 ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
3651 if (*ptr == NULL)
3652 *ptr = bfd_zalloc (abfd, sizeof (**ptr));
3653 return *ptr;
3654 }
3655
3656 /* Try to obtain PLT information for the symbol with index R_SYMNDX
3657 in ABFD's symbol table. If the symbol is global, H points to its
3658 hash table entry, otherwise H is null.
3659
3660 Return true if the symbol does have PLT information. When returning
3661 true, point *ROOT_PLT at the target-independent reference count/offset
3662 union and *ARM_PLT at the ARM-specific information. */
3663
3664 static bfd_boolean
3665 elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_table *globals,
3666 struct elf32_arm_link_hash_entry *h,
3667 unsigned long r_symndx, union gotplt_union **root_plt,
3668 struct arm_plt_info **arm_plt)
3669 {
3670 struct arm_local_iplt_info *local_iplt;
3671
3672 if (globals->root.splt == NULL && globals->root.iplt == NULL)
3673 return FALSE;
3674
3675 if (h != NULL)
3676 {
3677 *root_plt = &h->root.plt;
3678 *arm_plt = &h->plt;
3679 return TRUE;
3680 }
3681
3682 if (elf32_arm_local_iplt (abfd) == NULL)
3683 return FALSE;
3684
3685 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
3686 if (local_iplt == NULL)
3687 return FALSE;
3688
3689 *root_plt = &local_iplt->root;
3690 *arm_plt = &local_iplt->arm;
3691 return TRUE;
3692 }
3693
3694 static bfd_boolean using_thumb_only (struct elf32_arm_link_hash_table *globals);
3695
3696 /* Return true if the PLT described by ARM_PLT requires a Thumb stub
3697 before it. */
3698
3699 static bfd_boolean
3700 elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3701 struct arm_plt_info *arm_plt)
3702 {
3703 struct elf32_arm_link_hash_table *htab;
3704
3705 htab = elf32_arm_hash_table (info);
3706
3707 return (!using_thumb_only(htab) && (arm_plt->thumb_refcount != 0
3708 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0)));
3709 }
3710
3711 /* Return a pointer to the head of the dynamic reloc list that should
3712 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3713 ABFD's symbol table. Return null if an error occurs. */
3714
3715 static struct elf_dyn_relocs **
3716 elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3717 Elf_Internal_Sym *isym)
3718 {
3719 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3720 {
3721 struct arm_local_iplt_info *local_iplt;
3722
3723 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3724 if (local_iplt == NULL)
3725 return NULL;
3726 return &local_iplt->dyn_relocs;
3727 }
3728 else
3729 {
3730 /* Track dynamic relocs needed for local syms too.
3731 We really need local syms available to do this
3732 easily. Oh well. */
3733 asection *s;
3734 void *vpp;
3735
3736 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3737 if (s == NULL)
3738 abort ();
3739
3740 vpp = &elf_section_data (s)->local_dynrel;
3741 return (struct elf_dyn_relocs **) vpp;
3742 }
3743 }
3744
3745 /* Initialize an entry in the stub hash table. */
3746
3747 static struct bfd_hash_entry *
3748 stub_hash_newfunc (struct bfd_hash_entry *entry,
3749 struct bfd_hash_table *table,
3750 const char *string)
3751 {
3752 /* Allocate the structure if it has not already been allocated by a
3753 subclass. */
3754 if (entry == NULL)
3755 {
3756 entry = (struct bfd_hash_entry *)
3757 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
3758 if (entry == NULL)
3759 return entry;
3760 }
3761
3762 /* Call the allocation method of the superclass. */
3763 entry = bfd_hash_newfunc (entry, table, string);
3764 if (entry != NULL)
3765 {
3766 struct elf32_arm_stub_hash_entry *eh;
3767
3768 /* Initialize the local fields. */
3769 eh = (struct elf32_arm_stub_hash_entry *) entry;
3770 eh->stub_sec = NULL;
3771 eh->stub_offset = (bfd_vma) -1;
3772 eh->source_value = 0;
3773 eh->target_value = 0;
3774 eh->target_section = NULL;
3775 eh->orig_insn = 0;
3776 eh->stub_type = arm_stub_none;
3777 eh->stub_size = 0;
3778 eh->stub_template = NULL;
3779 eh->stub_template_size = -1;
3780 eh->h = NULL;
3781 eh->id_sec = NULL;
3782 eh->output_name = NULL;
3783 }
3784
3785 return entry;
3786 }
3787
3788 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
3789 shortcuts to them in our hash table. */
3790
3791 static bfd_boolean
3792 create_got_section (bfd *dynobj, struct bfd_link_info *info)
3793 {
3794 struct elf32_arm_link_hash_table *htab;
3795
3796 htab = elf32_arm_hash_table (info);
3797 if (htab == NULL)
3798 return FALSE;
3799
3800 /* BPABI objects never have a GOT, or associated sections. */
3801 if (htab->symbian_p)
3802 return TRUE;
3803
3804 if (! _bfd_elf_create_got_section (dynobj, info))
3805 return FALSE;
3806
3807 /* Also create .rofixup. */
3808 if (htab->fdpic_p)
3809 {
3810 htab->srofixup = bfd_make_section_with_flags (dynobj, ".rofixup",
3811 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3812 | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_READONLY));
3813 if (htab->srofixup == NULL || ! bfd_set_section_alignment (dynobj, htab->srofixup, 2))
3814 return FALSE;
3815 }
3816
3817 return TRUE;
3818 }
3819
3820 /* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3821
3822 static bfd_boolean
3823 create_ifunc_sections (struct bfd_link_info *info)
3824 {
3825 struct elf32_arm_link_hash_table *htab;
3826 const struct elf_backend_data *bed;
3827 bfd *dynobj;
3828 asection *s;
3829 flagword flags;
3830
3831 htab = elf32_arm_hash_table (info);
3832 dynobj = htab->root.dynobj;
3833 bed = get_elf_backend_data (dynobj);
3834 flags = bed->dynamic_sec_flags;
3835
3836 if (htab->root.iplt == NULL)
3837 {
3838 s = bfd_make_section_anyway_with_flags (dynobj, ".iplt",
3839 flags | SEC_READONLY | SEC_CODE);
3840 if (s == NULL
3841 || !bfd_set_section_alignment (dynobj, s, bed->plt_alignment))
3842 return FALSE;
3843 htab->root.iplt = s;
3844 }
3845
3846 if (htab->root.irelplt == NULL)
3847 {
3848 s = bfd_make_section_anyway_with_flags (dynobj,
3849 RELOC_SECTION (htab, ".iplt"),
3850 flags | SEC_READONLY);
3851 if (s == NULL
3852 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3853 return FALSE;
3854 htab->root.irelplt = s;
3855 }
3856
3857 if (htab->root.igotplt == NULL)
3858 {
3859 s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags);
3860 if (s == NULL
3861 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3862 return FALSE;
3863 htab->root.igotplt = s;
3864 }
3865 return TRUE;
3866 }
3867
3868 /* Determine if we're dealing with a Thumb only architecture. */
3869
3870 static bfd_boolean
3871 using_thumb_only (struct elf32_arm_link_hash_table *globals)
3872 {
3873 int arch;
3874 int profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3875 Tag_CPU_arch_profile);
3876
3877 if (profile)
3878 return profile == 'M';
3879
3880 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3881
3882 /* Force return logic to be reviewed for each new architecture. */
3883 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
3884
3885 if (arch == TAG_CPU_ARCH_V6_M
3886 || arch == TAG_CPU_ARCH_V6S_M
3887 || arch == TAG_CPU_ARCH_V7E_M
3888 || arch == TAG_CPU_ARCH_V8M_BASE
3889 || arch == TAG_CPU_ARCH_V8M_MAIN
3890 || arch == TAG_CPU_ARCH_V8_1M_MAIN)
3891 return TRUE;
3892
3893 return FALSE;
3894 }
3895
3896 /* Determine if we're dealing with a Thumb-2 object. */
3897
3898 static bfd_boolean
3899 using_thumb2 (struct elf32_arm_link_hash_table *globals)
3900 {
3901 int arch;
3902 int thumb_isa = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3903 Tag_THUMB_ISA_use);
3904
3905 if (thumb_isa)
3906 return thumb_isa == 2;
3907
3908 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3909
3910 /* Force return logic to be reviewed for each new architecture. */
3911 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
3912
3913 return (arch == TAG_CPU_ARCH_V6T2
3914 || arch == TAG_CPU_ARCH_V7
3915 || arch == TAG_CPU_ARCH_V7E_M
3916 || arch == TAG_CPU_ARCH_V8
3917 || arch == TAG_CPU_ARCH_V8R
3918 || arch == TAG_CPU_ARCH_V8M_MAIN
3919 || arch == TAG_CPU_ARCH_V8_1M_MAIN);
3920 }
3921
3922 /* Determine whether Thumb-2 BL instruction is available. */
3923
3924 static bfd_boolean
3925 using_thumb2_bl (struct elf32_arm_link_hash_table *globals)
3926 {
3927 int arch =
3928 bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3929
3930 /* Force return logic to be reviewed for each new architecture. */
3931 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
3932
3933 /* Architecture was introduced after ARMv6T2 (eg. ARMv6-M). */
3934 return (arch == TAG_CPU_ARCH_V6T2
3935 || arch >= TAG_CPU_ARCH_V7);
3936 }
3937
3938 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3939 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
3940 hash table. */
3941
3942 static bfd_boolean
3943 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3944 {
3945 struct elf32_arm_link_hash_table *htab;
3946
3947 htab = elf32_arm_hash_table (info);
3948 if (htab == NULL)
3949 return FALSE;
3950
3951 if (!htab->root.sgot && !create_got_section (dynobj, info))
3952 return FALSE;
3953
3954 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3955 return FALSE;
3956
3957 if (htab->vxworks_p)
3958 {
3959 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
3960 return FALSE;
3961
3962 if (bfd_link_pic (info))
3963 {
3964 htab->plt_header_size = 0;
3965 htab->plt_entry_size
3966 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3967 }
3968 else
3969 {
3970 htab->plt_header_size
3971 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3972 htab->plt_entry_size
3973 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3974 }
3975
3976 if (elf_elfheader (dynobj))
3977 elf_elfheader (dynobj)->e_ident[EI_CLASS] = ELFCLASS32;
3978 }
3979 else
3980 {
3981 /* PR ld/16017
3982 Test for thumb only architectures. Note - we cannot just call
3983 using_thumb_only() as the attributes in the output bfd have not been
3984 initialised at this point, so instead we use the input bfd. */
3985 bfd * saved_obfd = htab->obfd;
3986
3987 htab->obfd = dynobj;
3988 if (using_thumb_only (htab))
3989 {
3990 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
3991 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
3992 }
3993 htab->obfd = saved_obfd;
3994 }
3995
3996 if (htab->fdpic_p) {
3997 htab->plt_header_size = 0;
3998 if (info->flags & DF_BIND_NOW)
3999 htab->plt_entry_size = 4 * (ARRAY_SIZE(elf32_arm_fdpic_plt_entry) - 5);
4000 else
4001 htab->plt_entry_size = 4 * ARRAY_SIZE(elf32_arm_fdpic_plt_entry);
4002 }
4003
4004 if (!htab->root.splt
4005 || !htab->root.srelplt
4006 || !htab->root.sdynbss
4007 || (!bfd_link_pic (info) && !htab->root.srelbss))
4008 abort ();
4009
4010 return TRUE;
4011 }
4012
4013 /* Copy the extra info we tack onto an elf_link_hash_entry. */
4014
4015 static void
4016 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
4017 struct elf_link_hash_entry *dir,
4018 struct elf_link_hash_entry *ind)
4019 {
4020 struct elf32_arm_link_hash_entry *edir, *eind;
4021
4022 edir = (struct elf32_arm_link_hash_entry *) dir;
4023 eind = (struct elf32_arm_link_hash_entry *) ind;
4024
4025 if (eind->dyn_relocs != NULL)
4026 {
4027 if (edir->dyn_relocs != NULL)
4028 {
4029 struct elf_dyn_relocs **pp;
4030 struct elf_dyn_relocs *p;
4031
4032 /* Add reloc counts against the indirect sym to the direct sym
4033 list. Merge any entries against the same section. */
4034 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
4035 {
4036 struct elf_dyn_relocs *q;
4037
4038 for (q = edir->dyn_relocs; q != NULL; q = q->next)
4039 if (q->sec == p->sec)
4040 {
4041 q->pc_count += p->pc_count;
4042 q->count += p->count;
4043 *pp = p->next;
4044 break;
4045 }
4046 if (q == NULL)
4047 pp = &p->next;
4048 }
4049 *pp = edir->dyn_relocs;
4050 }
4051
4052 edir->dyn_relocs = eind->dyn_relocs;
4053 eind->dyn_relocs = NULL;
4054 }
4055
4056 if (ind->root.type == bfd_link_hash_indirect)
4057 {
4058 /* Copy over PLT info. */
4059 edir->plt.thumb_refcount += eind->plt.thumb_refcount;
4060 eind->plt.thumb_refcount = 0;
4061 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
4062 eind->plt.maybe_thumb_refcount = 0;
4063 edir->plt.noncall_refcount += eind->plt.noncall_refcount;
4064 eind->plt.noncall_refcount = 0;
4065
4066 /* Copy FDPIC counters. */
4067 edir->fdpic_cnts.gotofffuncdesc_cnt += eind->fdpic_cnts.gotofffuncdesc_cnt;
4068 edir->fdpic_cnts.gotfuncdesc_cnt += eind->fdpic_cnts.gotfuncdesc_cnt;
4069 edir->fdpic_cnts.funcdesc_cnt += eind->fdpic_cnts.funcdesc_cnt;
4070
4071 /* We should only allocate a function to .iplt once the final
4072 symbol information is known. */
4073 BFD_ASSERT (!eind->is_iplt);
4074
4075 if (dir->got.refcount <= 0)
4076 {
4077 edir->tls_type = eind->tls_type;
4078 eind->tls_type = GOT_UNKNOWN;
4079 }
4080 }
4081
4082 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
4083 }
4084
4085 /* Destroy an ARM elf linker hash table. */
4086
4087 static void
4088 elf32_arm_link_hash_table_free (bfd *obfd)
4089 {
4090 struct elf32_arm_link_hash_table *ret
4091 = (struct elf32_arm_link_hash_table *) obfd->link.hash;
4092
4093 bfd_hash_table_free (&ret->stub_hash_table);
4094 _bfd_elf_link_hash_table_free (obfd);
4095 }
4096
4097 /* Create an ARM elf linker hash table. */
4098
4099 static struct bfd_link_hash_table *
4100 elf32_arm_link_hash_table_create (bfd *abfd)
4101 {
4102 struct elf32_arm_link_hash_table *ret;
4103 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
4104
4105 ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt);
4106 if (ret == NULL)
4107 return NULL;
4108
4109 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
4110 elf32_arm_link_hash_newfunc,
4111 sizeof (struct elf32_arm_link_hash_entry),
4112 ARM_ELF_DATA))
4113 {
4114 free (ret);
4115 return NULL;
4116 }
4117
4118 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
4119 ret->stm32l4xx_fix = BFD_ARM_STM32L4XX_FIX_NONE;
4120 #ifdef FOUR_WORD_PLT
4121 ret->plt_header_size = 16;
4122 ret->plt_entry_size = 16;
4123 #else
4124 ret->plt_header_size = 20;
4125 ret->plt_entry_size = elf32_arm_use_long_plt_entry ? 16 : 12;
4126 #endif
4127 ret->use_rel = TRUE;
4128 ret->obfd = abfd;
4129 ret->fdpic_p = 0;
4130
4131 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
4132 sizeof (struct elf32_arm_stub_hash_entry)))
4133 {
4134 _bfd_elf_link_hash_table_free (abfd);
4135 return NULL;
4136 }
4137 ret->root.root.hash_table_free = elf32_arm_link_hash_table_free;
4138
4139 return &ret->root.root;
4140 }
4141
4142 /* Determine what kind of NOPs are available. */
4143
4144 static bfd_boolean
4145 arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
4146 {
4147 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
4148 Tag_CPU_arch);
4149
4150 /* Force return logic to be reviewed for each new architecture. */
4151 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
4152
4153 return (arch == TAG_CPU_ARCH_V6T2
4154 || arch == TAG_CPU_ARCH_V6K
4155 || arch == TAG_CPU_ARCH_V7
4156 || arch == TAG_CPU_ARCH_V8
4157 || arch == TAG_CPU_ARCH_V8R);
4158 }
4159
4160 static bfd_boolean
4161 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
4162 {
4163 switch (stub_type)
4164 {
4165 case arm_stub_long_branch_thumb_only:
4166 case arm_stub_long_branch_thumb2_only:
4167 case arm_stub_long_branch_thumb2_only_pure:
4168 case arm_stub_long_branch_v4t_thumb_arm:
4169 case arm_stub_short_branch_v4t_thumb_arm:
4170 case arm_stub_long_branch_v4t_thumb_arm_pic:
4171 case arm_stub_long_branch_v4t_thumb_tls_pic:
4172 case arm_stub_long_branch_thumb_only_pic:
4173 case arm_stub_cmse_branch_thumb_only:
4174 return TRUE;
4175 case arm_stub_none:
4176 BFD_FAIL ();
4177 return FALSE;
4178 break;
4179 default:
4180 return FALSE;
4181 }
4182 }
4183
4184 /* Determine the type of stub needed, if any, for a call. */
4185
4186 static enum elf32_arm_stub_type
4187 arm_type_of_stub (struct bfd_link_info *info,
4188 asection *input_sec,
4189 const Elf_Internal_Rela *rel,
4190 unsigned char st_type,
4191 enum arm_st_branch_type *actual_branch_type,
4192 struct elf32_arm_link_hash_entry *hash,
4193 bfd_vma destination,
4194 asection *sym_sec,
4195 bfd *input_bfd,
4196 const char *name)
4197 {
4198 bfd_vma location;
4199 bfd_signed_vma branch_offset;
4200 unsigned int r_type;
4201 struct elf32_arm_link_hash_table * globals;
4202 bfd_boolean thumb2, thumb2_bl, thumb_only;
4203 enum elf32_arm_stub_type stub_type = arm_stub_none;
4204 int use_plt = 0;
4205 enum arm_st_branch_type branch_type = *actual_branch_type;
4206 union gotplt_union *root_plt;
4207 struct arm_plt_info *arm_plt;
4208 int arch;
4209 int thumb2_movw;
4210
4211 if (branch_type == ST_BRANCH_LONG)
4212 return stub_type;
4213
4214 globals = elf32_arm_hash_table (info);
4215 if (globals == NULL)
4216 return stub_type;
4217
4218 thumb_only = using_thumb_only (globals);
4219 thumb2 = using_thumb2 (globals);
4220 thumb2_bl = using_thumb2_bl (globals);
4221
4222 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
4223
4224 /* True for architectures that implement the thumb2 movw instruction. */
4225 thumb2_movw = thumb2 || (arch == TAG_CPU_ARCH_V8M_BASE);
4226
4227 /* Determine where the call point is. */
4228 location = (input_sec->output_offset
4229 + input_sec->output_section->vma
4230 + rel->r_offset);
4231
4232 r_type = ELF32_R_TYPE (rel->r_info);
4233
4234 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
4235 are considering a function call relocation. */
4236 if (thumb_only && (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
4237 || r_type == R_ARM_THM_JUMP19)
4238 && branch_type == ST_BRANCH_TO_ARM)
4239 branch_type = ST_BRANCH_TO_THUMB;
4240
4241 /* For TLS call relocs, it is the caller's responsibility to provide
4242 the address of the appropriate trampoline. */
4243 if (r_type != R_ARM_TLS_CALL
4244 && r_type != R_ARM_THM_TLS_CALL
4245 && elf32_arm_get_plt_info (input_bfd, globals, hash,
4246 ELF32_R_SYM (rel->r_info), &root_plt,
4247 &arm_plt)
4248 && root_plt->offset != (bfd_vma) -1)
4249 {
4250 asection *splt;
4251
4252 if (hash == NULL || hash->is_iplt)
4253 splt = globals->root.iplt;
4254 else
4255 splt = globals->root.splt;
4256 if (splt != NULL)
4257 {
4258 use_plt = 1;
4259
4260 /* Note when dealing with PLT entries: the main PLT stub is in
4261 ARM mode, so if the branch is in Thumb mode, another
4262 Thumb->ARM stub will be inserted later just before the ARM
4263 PLT stub. If a long branch stub is needed, we'll add a
4264 Thumb->Arm one and branch directly to the ARM PLT entry.
4265 Here, we have to check if a pre-PLT Thumb->ARM stub
4266 is needed and if it will be close enough. */
4267
4268 destination = (splt->output_section->vma
4269 + splt->output_offset
4270 + root_plt->offset);
4271 st_type = STT_FUNC;
4272
4273 /* Thumb branch/call to PLT: it can become a branch to ARM
4274 or to Thumb. We must perform the same checks and
4275 corrections as in elf32_arm_final_link_relocate. */
4276 if ((r_type == R_ARM_THM_CALL)
4277 || (r_type == R_ARM_THM_JUMP24))
4278 {
4279 if (globals->use_blx
4280 && r_type == R_ARM_THM_CALL
4281 && !thumb_only)
4282 {
4283 /* If the Thumb BLX instruction is available, convert
4284 the BL to a BLX instruction to call the ARM-mode
4285 PLT entry. */
4286 branch_type = ST_BRANCH_TO_ARM;
4287 }
4288 else
4289 {
4290 if (!thumb_only)
4291 /* Target the Thumb stub before the ARM PLT entry. */
4292 destination -= PLT_THUMB_STUB_SIZE;
4293 branch_type = ST_BRANCH_TO_THUMB;
4294 }
4295 }
4296 else
4297 {
4298 branch_type = ST_BRANCH_TO_ARM;
4299 }
4300 }
4301 }
4302 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
4303 BFD_ASSERT (st_type != STT_GNU_IFUNC);
4304
4305 branch_offset = (bfd_signed_vma)(destination - location);
4306
4307 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
4308 || r_type == R_ARM_THM_TLS_CALL || r_type == R_ARM_THM_JUMP19)
4309 {
4310 /* Handle cases where:
4311 - this call goes too far (different Thumb/Thumb2 max
4312 distance)
4313 - it's a Thumb->Arm call and blx is not available, or it's a
4314 Thumb->Arm branch (not bl). A stub is needed in this case,
4315 but only if this call is not through a PLT entry. Indeed,
4316 PLT stubs handle mode switching already. */
4317 if ((!thumb2_bl
4318 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4319 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4320 || (thumb2_bl
4321 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4322 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4323 || (thumb2
4324 && (branch_offset > THM2_MAX_FWD_COND_BRANCH_OFFSET
4325 || (branch_offset < THM2_MAX_BWD_COND_BRANCH_OFFSET))
4326 && (r_type == R_ARM_THM_JUMP19))
4327 || (branch_type == ST_BRANCH_TO_ARM
4328 && (((r_type == R_ARM_THM_CALL
4329 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
4330 || (r_type == R_ARM_THM_JUMP24)
4331 || (r_type == R_ARM_THM_JUMP19))
4332 && !use_plt))
4333 {
4334 /* If we need to insert a Thumb-Thumb long branch stub to a
4335 PLT, use one that branches directly to the ARM PLT
4336 stub. If we pretended we'd use the pre-PLT Thumb->ARM
4337 stub, undo this now. */
4338 if ((branch_type == ST_BRANCH_TO_THUMB) && use_plt && !thumb_only)
4339 {
4340 branch_type = ST_BRANCH_TO_ARM;
4341 branch_offset += PLT_THUMB_STUB_SIZE;
4342 }
4343
4344 if (branch_type == ST_BRANCH_TO_THUMB)
4345 {
4346 /* Thumb to thumb. */
4347 if (!thumb_only)
4348 {
4349 if (input_sec->flags & SEC_ELF_PURECODE)
4350 _bfd_error_handler
4351 (_("%pB(%pA): warning: long branch veneers used in"
4352 " section with SHF_ARM_PURECODE section"
4353 " attribute is only supported for M-profile"
4354 " targets that implement the movw instruction"),
4355 input_bfd, input_sec);
4356
4357 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4358 /* PIC stubs. */
4359 ? ((globals->use_blx
4360 && (r_type == R_ARM_THM_CALL))
4361 /* V5T and above. Stub starts with ARM code, so
4362 we must be able to switch mode before
4363 reaching it, which is only possible for 'bl'
4364 (ie R_ARM_THM_CALL relocation). */
4365 ? arm_stub_long_branch_any_thumb_pic
4366 /* On V4T, use Thumb code only. */
4367 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4368
4369 /* non-PIC stubs. */
4370 : ((globals->use_blx
4371 && (r_type == R_ARM_THM_CALL))
4372 /* V5T and above. */
4373 ? arm_stub_long_branch_any_any
4374 /* V4T. */
4375 : arm_stub_long_branch_v4t_thumb_thumb);
4376 }
4377 else
4378 {
4379 if (thumb2_movw && (input_sec->flags & SEC_ELF_PURECODE))
4380 stub_type = arm_stub_long_branch_thumb2_only_pure;
4381 else
4382 {
4383 if (input_sec->flags & SEC_ELF_PURECODE)
4384 _bfd_error_handler
4385 (_("%pB(%pA): warning: long branch veneers used in"
4386 " section with SHF_ARM_PURECODE section"
4387 " attribute is only supported for M-profile"
4388 " targets that implement the movw instruction"),
4389 input_bfd, input_sec);
4390
4391 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4392 /* PIC stub. */
4393 ? arm_stub_long_branch_thumb_only_pic
4394 /* non-PIC stub. */
4395 : (thumb2 ? arm_stub_long_branch_thumb2_only
4396 : arm_stub_long_branch_thumb_only);
4397 }
4398 }
4399 }
4400 else
4401 {
4402 if (input_sec->flags & SEC_ELF_PURECODE)
4403 _bfd_error_handler
4404 (_("%pB(%pA): warning: long branch veneers used in"
4405 " section with SHF_ARM_PURECODE section"
4406 " attribute is only supported" " for M-profile"
4407 " targets that implement the movw instruction"),
4408 input_bfd, input_sec);
4409
4410 /* Thumb to arm. */
4411 if (sym_sec != NULL
4412 && sym_sec->owner != NULL
4413 && !INTERWORK_FLAG (sym_sec->owner))
4414 {
4415 _bfd_error_handler
4416 (_("%pB(%s): warning: interworking not enabled;"
4417 " first occurrence: %pB: %s call to %s"),
4418 sym_sec->owner, name, input_bfd, "Thumb", "ARM");
4419 }
4420
4421 stub_type =
4422 (bfd_link_pic (info) | globals->pic_veneer)
4423 /* PIC stubs. */
4424 ? (r_type == R_ARM_THM_TLS_CALL
4425 /* TLS PIC stubs. */
4426 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
4427 : arm_stub_long_branch_v4t_thumb_tls_pic)
4428 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
4429 /* V5T PIC and above. */
4430 ? arm_stub_long_branch_any_arm_pic
4431 /* V4T PIC stub. */
4432 : arm_stub_long_branch_v4t_thumb_arm_pic))
4433
4434 /* non-PIC stubs. */
4435 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
4436 /* V5T and above. */
4437 ? arm_stub_long_branch_any_any
4438 /* V4T. */
4439 : arm_stub_long_branch_v4t_thumb_arm);
4440
4441 /* Handle v4t short branches. */
4442 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4443 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4444 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4445 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4446 }
4447 }
4448 }
4449 else if (r_type == R_ARM_CALL
4450 || r_type == R_ARM_JUMP24
4451 || r_type == R_ARM_PLT32
4452 || r_type == R_ARM_TLS_CALL)
4453 {
4454 if (input_sec->flags & SEC_ELF_PURECODE)
4455 _bfd_error_handler
4456 (_("%pB(%pA): warning: long branch veneers used in"
4457 " section with SHF_ARM_PURECODE section"
4458 " attribute is only supported for M-profile"
4459 " targets that implement the movw instruction"),
4460 input_bfd, input_sec);
4461 if (branch_type == ST_BRANCH_TO_THUMB)
4462 {
4463 /* Arm to thumb. */
4464
4465 if (sym_sec != NULL
4466 && sym_sec->owner != NULL
4467 && !INTERWORK_FLAG (sym_sec->owner))
4468 {
4469 _bfd_error_handler
4470 (_("%pB(%s): warning: interworking not enabled;"
4471 " first occurrence: %pB: %s call to %s"),
4472 sym_sec->owner, name, input_bfd, "ARM", "Thumb");
4473 }
4474
4475 /* We have an extra 2-bytes reach because of
4476 the mode change (bit 24 (H) of BLX encoding). */
4477 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4478 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4479 || (r_type == R_ARM_CALL && !globals->use_blx)
4480 || (r_type == R_ARM_JUMP24)
4481 || (r_type == R_ARM_PLT32))
4482 {
4483 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4484 /* PIC stubs. */
4485 ? ((globals->use_blx)
4486 /* V5T and above. */
4487 ? arm_stub_long_branch_any_thumb_pic
4488 /* V4T stub. */
4489 : arm_stub_long_branch_v4t_arm_thumb_pic)
4490
4491 /* non-PIC stubs. */
4492 : ((globals->use_blx)
4493 /* V5T and above. */
4494 ? arm_stub_long_branch_any_any
4495 /* V4T. */
4496 : arm_stub_long_branch_v4t_arm_thumb);
4497 }
4498 }
4499 else
4500 {
4501 /* Arm to arm. */
4502 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4503 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4504 {
4505 stub_type =
4506 (bfd_link_pic (info) | globals->pic_veneer)
4507 /* PIC stubs. */
4508 ? (r_type == R_ARM_TLS_CALL
4509 /* TLS PIC Stub. */
4510 ? arm_stub_long_branch_any_tls_pic
4511 : (globals->nacl_p
4512 ? arm_stub_long_branch_arm_nacl_pic
4513 : arm_stub_long_branch_any_arm_pic))
4514 /* non-PIC stubs. */
4515 : (globals->nacl_p
4516 ? arm_stub_long_branch_arm_nacl
4517 : arm_stub_long_branch_any_any);
4518 }
4519 }
4520 }
4521
4522 /* If a stub is needed, record the actual destination type. */
4523 if (stub_type != arm_stub_none)
4524 *actual_branch_type = branch_type;
4525
4526 return stub_type;
4527 }
4528
4529 /* Build a name for an entry in the stub hash table. */
4530
4531 static char *
4532 elf32_arm_stub_name (const asection *input_section,
4533 const asection *sym_sec,
4534 const struct elf32_arm_link_hash_entry *hash,
4535 const Elf_Internal_Rela *rel,
4536 enum elf32_arm_stub_type stub_type)
4537 {
4538 char *stub_name;
4539 bfd_size_type len;
4540
4541 if (hash)
4542 {
4543 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
4544 stub_name = (char *) bfd_malloc (len);
4545 if (stub_name != NULL)
4546 sprintf (stub_name, "%08x_%s+%x_%d",
4547 input_section->id & 0xffffffff,
4548 hash->root.root.root.string,
4549 (int) rel->r_addend & 0xffffffff,
4550 (int) stub_type);
4551 }
4552 else
4553 {
4554 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
4555 stub_name = (char *) bfd_malloc (len);
4556 if (stub_name != NULL)
4557 sprintf (stub_name, "%08x_%x:%x+%x_%d",
4558 input_section->id & 0xffffffff,
4559 sym_sec->id & 0xffffffff,
4560 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
4561 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
4562 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
4563 (int) rel->r_addend & 0xffffffff,
4564 (int) stub_type);
4565 }
4566
4567 return stub_name;
4568 }
4569
4570 /* Look up an entry in the stub hash. Stub entries are cached because
4571 creating the stub name takes a bit of time. */
4572
4573 static struct elf32_arm_stub_hash_entry *
4574 elf32_arm_get_stub_entry (const asection *input_section,
4575 const asection *sym_sec,
4576 struct elf_link_hash_entry *hash,
4577 const Elf_Internal_Rela *rel,
4578 struct elf32_arm_link_hash_table *htab,
4579 enum elf32_arm_stub_type stub_type)
4580 {
4581 struct elf32_arm_stub_hash_entry *stub_entry;
4582 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
4583 const asection *id_sec;
4584
4585 if ((input_section->flags & SEC_CODE) == 0)
4586 return NULL;
4587
4588 /* If the input section is the CMSE stubs one and it needs a long
4589 branch stub to reach it's final destination, give up with an
4590 error message: this is not supported. See PR ld/24709. */
4591 if (!strncmp (input_section->name, CMSE_STUB_NAME, strlen(CMSE_STUB_NAME)))
4592 {
4593 bfd *output_bfd = htab->obfd;
4594 asection *out_sec = bfd_get_section_by_name (output_bfd, CMSE_STUB_NAME);
4595
4596 _bfd_error_handler (_("ERROR: CMSE stub (%s section) too far "
4597 "(%#" PRIx64 ") from destination (%#" PRIx64 ")"),
4598 CMSE_STUB_NAME,
4599 (uint64_t)out_sec->output_section->vma
4600 + out_sec->output_offset,
4601 (uint64_t)sym_sec->output_section->vma
4602 + sym_sec->output_offset
4603 + h->root.root.u.def.value);
4604 /* Exit, rather than leave incompletely processed
4605 relocations. */
4606 xexit(1);
4607 }
4608
4609 /* If this input section is part of a group of sections sharing one
4610 stub section, then use the id of the first section in the group.
4611 Stub names need to include a section id, as there may well be
4612 more than one stub used to reach say, printf, and we need to
4613 distinguish between them. */
4614 BFD_ASSERT (input_section->id <= htab->top_id);
4615 id_sec = htab->stub_group[input_section->id].link_sec;
4616
4617 if (h != NULL && h->stub_cache != NULL
4618 && h->stub_cache->h == h
4619 && h->stub_cache->id_sec == id_sec
4620 && h->stub_cache->stub_type == stub_type)
4621 {
4622 stub_entry = h->stub_cache;
4623 }
4624 else
4625 {
4626 char *stub_name;
4627
4628 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
4629 if (stub_name == NULL)
4630 return NULL;
4631
4632 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
4633 stub_name, FALSE, FALSE);
4634 if (h != NULL)
4635 h->stub_cache = stub_entry;
4636
4637 free (stub_name);
4638 }
4639
4640 return stub_entry;
4641 }
4642
4643 /* Whether veneers of type STUB_TYPE require to be in a dedicated output
4644 section. */
4645
4646 static bfd_boolean
4647 arm_dedicated_stub_output_section_required (enum elf32_arm_stub_type stub_type)
4648 {
4649 if (stub_type >= max_stub_type)
4650 abort (); /* Should be unreachable. */
4651
4652 switch (stub_type)
4653 {
4654 case arm_stub_cmse_branch_thumb_only:
4655 return TRUE;
4656
4657 default:
4658 return FALSE;
4659 }
4660
4661 abort (); /* Should be unreachable. */
4662 }
4663
4664 /* Required alignment (as a power of 2) for the dedicated section holding
4665 veneers of type STUB_TYPE, or 0 if veneers of this type are interspersed
4666 with input sections. */
4667
4668 static int
4669 arm_dedicated_stub_output_section_required_alignment
4670 (enum elf32_arm_stub_type stub_type)
4671 {
4672 if (stub_type >= max_stub_type)
4673 abort (); /* Should be unreachable. */
4674
4675 switch (stub_type)
4676 {
4677 /* Vectors of Secure Gateway veneers must be aligned on 32byte
4678 boundary. */
4679 case arm_stub_cmse_branch_thumb_only:
4680 return 5;
4681
4682 default:
4683 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4684 return 0;
4685 }
4686
4687 abort (); /* Should be unreachable. */
4688 }
4689
4690 /* Name of the dedicated output section to put veneers of type STUB_TYPE, or
4691 NULL if veneers of this type are interspersed with input sections. */
4692
4693 static const char *
4694 arm_dedicated_stub_output_section_name (enum elf32_arm_stub_type stub_type)
4695 {
4696 if (stub_type >= max_stub_type)
4697 abort (); /* Should be unreachable. */
4698
4699 switch (stub_type)
4700 {
4701 case arm_stub_cmse_branch_thumb_only:
4702 return CMSE_STUB_NAME;
4703
4704 default:
4705 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4706 return NULL;
4707 }
4708
4709 abort (); /* Should be unreachable. */
4710 }
4711
4712 /* If veneers of type STUB_TYPE should go in a dedicated output section,
4713 returns the address of the hash table field in HTAB holding a pointer to the
4714 corresponding input section. Otherwise, returns NULL. */
4715
4716 static asection **
4717 arm_dedicated_stub_input_section_ptr (struct elf32_arm_link_hash_table *htab,
4718 enum elf32_arm_stub_type stub_type)
4719 {
4720 if (stub_type >= max_stub_type)
4721 abort (); /* Should be unreachable. */
4722
4723 switch (stub_type)
4724 {
4725 case arm_stub_cmse_branch_thumb_only:
4726 return &htab->cmse_stub_sec;
4727
4728 default:
4729 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4730 return NULL;
4731 }
4732
4733 abort (); /* Should be unreachable. */
4734 }
4735
4736 /* Find or create a stub section to contain a stub of type STUB_TYPE. SECTION
4737 is the section that branch into veneer and can be NULL if stub should go in
4738 a dedicated output section. Returns a pointer to the stub section, and the
4739 section to which the stub section will be attached (in *LINK_SEC_P).
4740 LINK_SEC_P may be NULL. */
4741
4742 static asection *
4743 elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
4744 struct elf32_arm_link_hash_table *htab,
4745 enum elf32_arm_stub_type stub_type)
4746 {
4747 asection *link_sec, *out_sec, **stub_sec_p;
4748 const char *stub_sec_prefix;
4749 bfd_boolean dedicated_output_section =
4750 arm_dedicated_stub_output_section_required (stub_type);
4751 int align;
4752
4753 if (dedicated_output_section)
4754 {
4755 bfd *output_bfd = htab->obfd;
4756 const char *out_sec_name =
4757 arm_dedicated_stub_output_section_name (stub_type);
4758 link_sec = NULL;
4759 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
4760 stub_sec_prefix = out_sec_name;
4761 align = arm_dedicated_stub_output_section_required_alignment (stub_type);
4762 out_sec = bfd_get_section_by_name (output_bfd, out_sec_name);
4763 if (out_sec == NULL)
4764 {
4765 _bfd_error_handler (_("no address assigned to the veneers output "
4766 "section %s"), out_sec_name);
4767 return NULL;
4768 }
4769 }
4770 else
4771 {
4772 BFD_ASSERT (section->id <= htab->top_id);
4773 link_sec = htab->stub_group[section->id].link_sec;
4774 BFD_ASSERT (link_sec != NULL);
4775 stub_sec_p = &htab->stub_group[section->id].stub_sec;
4776 if (*stub_sec_p == NULL)
4777 stub_sec_p = &htab->stub_group[link_sec->id].stub_sec;
4778 stub_sec_prefix = link_sec->name;
4779 out_sec = link_sec->output_section;
4780 align = htab->nacl_p ? 4 : 3;
4781 }
4782
4783 if (*stub_sec_p == NULL)
4784 {
4785 size_t namelen;
4786 bfd_size_type len;
4787 char *s_name;
4788
4789 namelen = strlen (stub_sec_prefix);
4790 len = namelen + sizeof (STUB_SUFFIX);
4791 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
4792 if (s_name == NULL)
4793 return NULL;
4794
4795 memcpy (s_name, stub_sec_prefix, namelen);
4796 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4797 *stub_sec_p = (*htab->add_stub_section) (s_name, out_sec, link_sec,
4798 align);
4799 if (*stub_sec_p == NULL)
4800 return NULL;
4801
4802 out_sec->flags |= SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_CODE
4803 | SEC_HAS_CONTENTS | SEC_RELOC | SEC_IN_MEMORY
4804 | SEC_KEEP;
4805 }
4806
4807 if (!dedicated_output_section)
4808 htab->stub_group[section->id].stub_sec = *stub_sec_p;
4809
4810 if (link_sec_p)
4811 *link_sec_p = link_sec;
4812
4813 return *stub_sec_p;
4814 }
4815
4816 /* Add a new stub entry to the stub hash. Not all fields of the new
4817 stub entry are initialised. */
4818
4819 static struct elf32_arm_stub_hash_entry *
4820 elf32_arm_add_stub (const char *stub_name, asection *section,
4821 struct elf32_arm_link_hash_table *htab,
4822 enum elf32_arm_stub_type stub_type)
4823 {
4824 asection *link_sec;
4825 asection *stub_sec;
4826 struct elf32_arm_stub_hash_entry *stub_entry;
4827
4828 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab,
4829 stub_type);
4830 if (stub_sec == NULL)
4831 return NULL;
4832
4833 /* Enter this entry into the linker stub hash table. */
4834 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4835 TRUE, FALSE);
4836 if (stub_entry == NULL)
4837 {
4838 if (section == NULL)
4839 section = stub_sec;
4840 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
4841 section->owner, stub_name);
4842 return NULL;
4843 }
4844
4845 stub_entry->stub_sec = stub_sec;
4846 stub_entry->stub_offset = (bfd_vma) -1;
4847 stub_entry->id_sec = link_sec;
4848
4849 return stub_entry;
4850 }
4851
4852 /* Store an Arm insn into an output section not processed by
4853 elf32_arm_write_section. */
4854
4855 static void
4856 put_arm_insn (struct elf32_arm_link_hash_table * htab,
4857 bfd * output_bfd, bfd_vma val, void * ptr)
4858 {
4859 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4860 bfd_putl32 (val, ptr);
4861 else
4862 bfd_putb32 (val, ptr);
4863 }
4864
4865 /* Store a 16-bit Thumb insn into an output section not processed by
4866 elf32_arm_write_section. */
4867
4868 static void
4869 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
4870 bfd * output_bfd, bfd_vma val, void * ptr)
4871 {
4872 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4873 bfd_putl16 (val, ptr);
4874 else
4875 bfd_putb16 (val, ptr);
4876 }
4877
4878 /* Store a Thumb2 insn into an output section not processed by
4879 elf32_arm_write_section. */
4880
4881 static void
4882 put_thumb2_insn (struct elf32_arm_link_hash_table * htab,
4883 bfd * output_bfd, bfd_vma val, bfd_byte * ptr)
4884 {
4885 /* T2 instructions are 16-bit streamed. */
4886 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4887 {
4888 bfd_putl16 ((val >> 16) & 0xffff, ptr);
4889 bfd_putl16 ((val & 0xffff), ptr + 2);
4890 }
4891 else
4892 {
4893 bfd_putb16 ((val >> 16) & 0xffff, ptr);
4894 bfd_putb16 ((val & 0xffff), ptr + 2);
4895 }
4896 }
4897
4898 /* If it's possible to change R_TYPE to a more efficient access
4899 model, return the new reloc type. */
4900
4901 static unsigned
4902 elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
4903 struct elf_link_hash_entry *h)
4904 {
4905 int is_local = (h == NULL);
4906
4907 if (bfd_link_pic (info)
4908 || (h && h->root.type == bfd_link_hash_undefweak))
4909 return r_type;
4910
4911 /* We do not support relaxations for Old TLS models. */
4912 switch (r_type)
4913 {
4914 case R_ARM_TLS_GOTDESC:
4915 case R_ARM_TLS_CALL:
4916 case R_ARM_THM_TLS_CALL:
4917 case R_ARM_TLS_DESCSEQ:
4918 case R_ARM_THM_TLS_DESCSEQ:
4919 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
4920 }
4921
4922 return r_type;
4923 }
4924
4925 static bfd_reloc_status_type elf32_arm_final_link_relocate
4926 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
4927 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
4928 const char *, unsigned char, enum arm_st_branch_type,
4929 struct elf_link_hash_entry *, bfd_boolean *, char **);
4930
4931 static unsigned int
4932 arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
4933 {
4934 switch (stub_type)
4935 {
4936 case arm_stub_a8_veneer_b_cond:
4937 case arm_stub_a8_veneer_b:
4938 case arm_stub_a8_veneer_bl:
4939 return 2;
4940
4941 case arm_stub_long_branch_any_any:
4942 case arm_stub_long_branch_v4t_arm_thumb:
4943 case arm_stub_long_branch_thumb_only:
4944 case arm_stub_long_branch_thumb2_only:
4945 case arm_stub_long_branch_thumb2_only_pure:
4946 case arm_stub_long_branch_v4t_thumb_thumb:
4947 case arm_stub_long_branch_v4t_thumb_arm:
4948 case arm_stub_short_branch_v4t_thumb_arm:
4949 case arm_stub_long_branch_any_arm_pic:
4950 case arm_stub_long_branch_any_thumb_pic:
4951 case arm_stub_long_branch_v4t_thumb_thumb_pic:
4952 case arm_stub_long_branch_v4t_arm_thumb_pic:
4953 case arm_stub_long_branch_v4t_thumb_arm_pic:
4954 case arm_stub_long_branch_thumb_only_pic:
4955 case arm_stub_long_branch_any_tls_pic:
4956 case arm_stub_long_branch_v4t_thumb_tls_pic:
4957 case arm_stub_cmse_branch_thumb_only:
4958 case arm_stub_a8_veneer_blx:
4959 return 4;
4960
4961 case arm_stub_long_branch_arm_nacl:
4962 case arm_stub_long_branch_arm_nacl_pic:
4963 return 16;
4964
4965 default:
4966 abort (); /* Should be unreachable. */
4967 }
4968 }
4969
4970 /* Returns whether stubs of type STUB_TYPE take over the symbol they are
4971 veneering (TRUE) or have their own symbol (FALSE). */
4972
4973 static bfd_boolean
4974 arm_stub_sym_claimed (enum elf32_arm_stub_type stub_type)
4975 {
4976 if (stub_type >= max_stub_type)
4977 abort (); /* Should be unreachable. */
4978
4979 switch (stub_type)
4980 {
4981 case arm_stub_cmse_branch_thumb_only:
4982 return TRUE;
4983
4984 default:
4985 return FALSE;
4986 }
4987
4988 abort (); /* Should be unreachable. */
4989 }
4990
4991 /* Returns the padding needed for the dedicated section used stubs of type
4992 STUB_TYPE. */
4993
4994 static int
4995 arm_dedicated_stub_section_padding (enum elf32_arm_stub_type stub_type)
4996 {
4997 if (stub_type >= max_stub_type)
4998 abort (); /* Should be unreachable. */
4999
5000 switch (stub_type)
5001 {
5002 case arm_stub_cmse_branch_thumb_only:
5003 return 32;
5004
5005 default:
5006 return 0;
5007 }
5008
5009 abort (); /* Should be unreachable. */
5010 }
5011
5012 /* If veneers of type STUB_TYPE should go in a dedicated output section,
5013 returns the address of the hash table field in HTAB holding the offset at
5014 which new veneers should be layed out in the stub section. */
5015
5016 static bfd_vma*
5017 arm_new_stubs_start_offset_ptr (struct elf32_arm_link_hash_table *htab,
5018 enum elf32_arm_stub_type stub_type)
5019 {
5020 switch (stub_type)
5021 {
5022 case arm_stub_cmse_branch_thumb_only:
5023 return &htab->new_cmse_stub_offset;
5024
5025 default:
5026 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
5027 return NULL;
5028 }
5029 }
5030
5031 static bfd_boolean
5032 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
5033 void * in_arg)
5034 {
5035 #define MAXRELOCS 3
5036 bfd_boolean removed_sg_veneer;
5037 struct elf32_arm_stub_hash_entry *stub_entry;
5038 struct elf32_arm_link_hash_table *globals;
5039 struct bfd_link_info *info;
5040 asection *stub_sec;
5041 bfd *stub_bfd;
5042 bfd_byte *loc;
5043 bfd_vma sym_value;
5044 int template_size;
5045 int size;
5046 const insn_sequence *template_sequence;
5047 int i;
5048 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
5049 int stub_reloc_offset[MAXRELOCS] = {0, 0};
5050 int nrelocs = 0;
5051 int just_allocated = 0;
5052
5053 /* Massage our args to the form they really have. */
5054 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
5055 info = (struct bfd_link_info *) in_arg;
5056
5057 globals = elf32_arm_hash_table (info);
5058 if (globals == NULL)
5059 return FALSE;
5060
5061 stub_sec = stub_entry->stub_sec;
5062
5063 if ((globals->fix_cortex_a8 < 0)
5064 != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
5065 /* We have to do less-strictly-aligned fixes last. */
5066 return TRUE;
5067
5068 /* Assign a slot at the end of section if none assigned yet. */
5069 if (stub_entry->stub_offset == (bfd_vma) -1)
5070 {
5071 stub_entry->stub_offset = stub_sec->size;
5072 just_allocated = 1;
5073 }
5074 loc = stub_sec->contents + stub_entry->stub_offset;
5075
5076 stub_bfd = stub_sec->owner;
5077
5078 /* This is the address of the stub destination. */
5079 sym_value = (stub_entry->target_value
5080 + stub_entry->target_section->output_offset
5081 + stub_entry->target_section->output_section->vma);
5082
5083 template_sequence = stub_entry->stub_template;
5084 template_size = stub_entry->stub_template_size;
5085
5086 size = 0;
5087 for (i = 0; i < template_size; i++)
5088 {
5089 switch (template_sequence[i].type)
5090 {
5091 case THUMB16_TYPE:
5092 {
5093 bfd_vma data = (bfd_vma) template_sequence[i].data;
5094 if (template_sequence[i].reloc_addend != 0)
5095 {
5096 /* We've borrowed the reloc_addend field to mean we should
5097 insert a condition code into this (Thumb-1 branch)
5098 instruction. See THUMB16_BCOND_INSN. */
5099 BFD_ASSERT ((data & 0xff00) == 0xd000);
5100 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
5101 }
5102 bfd_put_16 (stub_bfd, data, loc + size);
5103 size += 2;
5104 }
5105 break;
5106
5107 case THUMB32_TYPE:
5108 bfd_put_16 (stub_bfd,
5109 (template_sequence[i].data >> 16) & 0xffff,
5110 loc + size);
5111 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
5112 loc + size + 2);
5113 if (template_sequence[i].r_type != R_ARM_NONE)
5114 {
5115 stub_reloc_idx[nrelocs] = i;
5116 stub_reloc_offset[nrelocs++] = size;
5117 }
5118 size += 4;
5119 break;
5120
5121 case ARM_TYPE:
5122 bfd_put_32 (stub_bfd, template_sequence[i].data,
5123 loc + size);
5124 /* Handle cases where the target is encoded within the
5125 instruction. */
5126 if (template_sequence[i].r_type == R_ARM_JUMP24)
5127 {
5128 stub_reloc_idx[nrelocs] = i;
5129 stub_reloc_offset[nrelocs++] = size;
5130 }
5131 size += 4;
5132 break;
5133
5134 case DATA_TYPE:
5135 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
5136 stub_reloc_idx[nrelocs] = i;
5137 stub_reloc_offset[nrelocs++] = size;
5138 size += 4;
5139 break;
5140
5141 default:
5142 BFD_FAIL ();
5143 return FALSE;
5144 }
5145 }
5146
5147 if (just_allocated)
5148 stub_sec->size += size;
5149
5150 /* Stub size has already been computed in arm_size_one_stub. Check
5151 consistency. */
5152 BFD_ASSERT (size == stub_entry->stub_size);
5153
5154 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
5155 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
5156 sym_value |= 1;
5157
5158 /* Assume non empty slots have at least one and at most MAXRELOCS entries
5159 to relocate in each stub. */
5160 removed_sg_veneer =
5161 (size == 0 && stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
5162 BFD_ASSERT (removed_sg_veneer || (nrelocs != 0 && nrelocs <= MAXRELOCS));
5163
5164 for (i = 0; i < nrelocs; i++)
5165 {
5166 Elf_Internal_Rela rel;
5167 bfd_boolean unresolved_reloc;
5168 char *error_message;
5169 bfd_vma points_to =
5170 sym_value + template_sequence[stub_reloc_idx[i]].reloc_addend;
5171
5172 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
5173 rel.r_info = ELF32_R_INFO (0,
5174 template_sequence[stub_reloc_idx[i]].r_type);
5175 rel.r_addend = 0;
5176
5177 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
5178 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
5179 template should refer back to the instruction after the original
5180 branch. We use target_section as Cortex-A8 erratum workaround stubs
5181 are only generated when both source and target are in the same
5182 section. */
5183 points_to = stub_entry->target_section->output_section->vma
5184 + stub_entry->target_section->output_offset
5185 + stub_entry->source_value;
5186
5187 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
5188 (template_sequence[stub_reloc_idx[i]].r_type),
5189 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
5190 points_to, info, stub_entry->target_section, "", STT_FUNC,
5191 stub_entry->branch_type,
5192 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
5193 &error_message);
5194 }
5195
5196 return TRUE;
5197 #undef MAXRELOCS
5198 }
5199
5200 /* Calculate the template, template size and instruction size for a stub.
5201 Return value is the instruction size. */
5202
5203 static unsigned int
5204 find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
5205 const insn_sequence **stub_template,
5206 int *stub_template_size)
5207 {
5208 const insn_sequence *template_sequence = NULL;
5209 int template_size = 0, i;
5210 unsigned int size;
5211
5212 template_sequence = stub_definitions[stub_type].template_sequence;
5213 if (stub_template)
5214 *stub_template = template_sequence;
5215
5216 template_size = stub_definitions[stub_type].template_size;
5217 if (stub_template_size)
5218 *stub_template_size = template_size;
5219
5220 size = 0;
5221 for (i = 0; i < template_size; i++)
5222 {
5223 switch (template_sequence[i].type)
5224 {
5225 case THUMB16_TYPE:
5226 size += 2;
5227 break;
5228
5229 case ARM_TYPE:
5230 case THUMB32_TYPE:
5231 case DATA_TYPE:
5232 size += 4;
5233 break;
5234
5235 default:
5236 BFD_FAIL ();
5237 return 0;
5238 }
5239 }
5240
5241 return size;
5242 }
5243
5244 /* As above, but don't actually build the stub. Just bump offset so
5245 we know stub section sizes. */
5246
5247 static bfd_boolean
5248 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
5249 void *in_arg ATTRIBUTE_UNUSED)
5250 {
5251 struct elf32_arm_stub_hash_entry *stub_entry;
5252 const insn_sequence *template_sequence;
5253 int template_size, size;
5254
5255 /* Massage our args to the form they really have. */
5256 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
5257
5258 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
5259 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
5260
5261 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
5262 &template_size);
5263
5264 /* Initialized to -1. Null size indicates an empty slot full of zeros. */
5265 if (stub_entry->stub_template_size)
5266 {
5267 stub_entry->stub_size = size;
5268 stub_entry->stub_template = template_sequence;
5269 stub_entry->stub_template_size = template_size;
5270 }
5271
5272 /* Already accounted for. */
5273 if (stub_entry->stub_offset != (bfd_vma) -1)
5274 return TRUE;
5275
5276 size = (size + 7) & ~7;
5277 stub_entry->stub_sec->size += size;
5278
5279 return TRUE;
5280 }
5281
5282 /* External entry points for sizing and building linker stubs. */
5283
5284 /* Set up various things so that we can make a list of input sections
5285 for each output section included in the link. Returns -1 on error,
5286 0 when no stubs will be needed, and 1 on success. */
5287
5288 int
5289 elf32_arm_setup_section_lists (bfd *output_bfd,
5290 struct bfd_link_info *info)
5291 {
5292 bfd *input_bfd;
5293 unsigned int bfd_count;
5294 unsigned int top_id, top_index;
5295 asection *section;
5296 asection **input_list, **list;
5297 bfd_size_type amt;
5298 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5299
5300 if (htab == NULL)
5301 return 0;
5302 if (! is_elf_hash_table (htab))
5303 return 0;
5304
5305 /* Count the number of input BFDs and find the top input section id. */
5306 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
5307 input_bfd != NULL;
5308 input_bfd = input_bfd->link.next)
5309 {
5310 bfd_count += 1;
5311 for (section = input_bfd->sections;
5312 section != NULL;
5313 section = section->next)
5314 {
5315 if (top_id < section->id)
5316 top_id = section->id;
5317 }
5318 }
5319 htab->bfd_count = bfd_count;
5320
5321 amt = sizeof (struct map_stub) * (top_id + 1);
5322 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
5323 if (htab->stub_group == NULL)
5324 return -1;
5325 htab->top_id = top_id;
5326
5327 /* We can't use output_bfd->section_count here to find the top output
5328 section index as some sections may have been removed, and
5329 _bfd_strip_section_from_output doesn't renumber the indices. */
5330 for (section = output_bfd->sections, top_index = 0;
5331 section != NULL;
5332 section = section->next)
5333 {
5334 if (top_index < section->index)
5335 top_index = section->index;
5336 }
5337
5338 htab->top_index = top_index;
5339 amt = sizeof (asection *) * (top_index + 1);
5340 input_list = (asection **) bfd_malloc (amt);
5341 htab->input_list = input_list;
5342 if (input_list == NULL)
5343 return -1;
5344
5345 /* For sections we aren't interested in, mark their entries with a
5346 value we can check later. */
5347 list = input_list + top_index;
5348 do
5349 *list = bfd_abs_section_ptr;
5350 while (list-- != input_list);
5351
5352 for (section = output_bfd->sections;
5353 section != NULL;
5354 section = section->next)
5355 {
5356 if ((section->flags & SEC_CODE) != 0)
5357 input_list[section->index] = NULL;
5358 }
5359
5360 return 1;
5361 }
5362
5363 /* The linker repeatedly calls this function for each input section,
5364 in the order that input sections are linked into output sections.
5365 Build lists of input sections to determine groupings between which
5366 we may insert linker stubs. */
5367
5368 void
5369 elf32_arm_next_input_section (struct bfd_link_info *info,
5370 asection *isec)
5371 {
5372 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5373
5374 if (htab == NULL)
5375 return;
5376
5377 if (isec->output_section->index <= htab->top_index)
5378 {
5379 asection **list = htab->input_list + isec->output_section->index;
5380
5381 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
5382 {
5383 /* Steal the link_sec pointer for our list. */
5384 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
5385 /* This happens to make the list in reverse order,
5386 which we reverse later. */
5387 PREV_SEC (isec) = *list;
5388 *list = isec;
5389 }
5390 }
5391 }
5392
5393 /* See whether we can group stub sections together. Grouping stub
5394 sections may result in fewer stubs. More importantly, we need to
5395 put all .init* and .fini* stubs at the end of the .init or
5396 .fini output sections respectively, because glibc splits the
5397 _init and _fini functions into multiple parts. Putting a stub in
5398 the middle of a function is not a good idea. */
5399
5400 static void
5401 group_sections (struct elf32_arm_link_hash_table *htab,
5402 bfd_size_type stub_group_size,
5403 bfd_boolean stubs_always_after_branch)
5404 {
5405 asection **list = htab->input_list;
5406
5407 do
5408 {
5409 asection *tail = *list;
5410 asection *head;
5411
5412 if (tail == bfd_abs_section_ptr)
5413 continue;
5414
5415 /* Reverse the list: we must avoid placing stubs at the
5416 beginning of the section because the beginning of the text
5417 section may be required for an interrupt vector in bare metal
5418 code. */
5419 #define NEXT_SEC PREV_SEC
5420 head = NULL;
5421 while (tail != NULL)
5422 {
5423 /* Pop from tail. */
5424 asection *item = tail;
5425 tail = PREV_SEC (item);
5426
5427 /* Push on head. */
5428 NEXT_SEC (item) = head;
5429 head = item;
5430 }
5431
5432 while (head != NULL)
5433 {
5434 asection *curr;
5435 asection *next;
5436 bfd_vma stub_group_start = head->output_offset;
5437 bfd_vma end_of_next;
5438
5439 curr = head;
5440 while (NEXT_SEC (curr) != NULL)
5441 {
5442 next = NEXT_SEC (curr);
5443 end_of_next = next->output_offset + next->size;
5444 if (end_of_next - stub_group_start >= stub_group_size)
5445 /* End of NEXT is too far from start, so stop. */
5446 break;
5447 /* Add NEXT to the group. */
5448 curr = next;
5449 }
5450
5451 /* OK, the size from the start to the start of CURR is less
5452 than stub_group_size and thus can be handled by one stub
5453 section. (Or the head section is itself larger than
5454 stub_group_size, in which case we may be toast.)
5455 We should really be keeping track of the total size of
5456 stubs added here, as stubs contribute to the final output
5457 section size. */
5458 do
5459 {
5460 next = NEXT_SEC (head);
5461 /* Set up this stub group. */
5462 htab->stub_group[head->id].link_sec = curr;
5463 }
5464 while (head != curr && (head = next) != NULL);
5465
5466 /* But wait, there's more! Input sections up to stub_group_size
5467 bytes after the stub section can be handled by it too. */
5468 if (!stubs_always_after_branch)
5469 {
5470 stub_group_start = curr->output_offset + curr->size;
5471
5472 while (next != NULL)
5473 {
5474 end_of_next = next->output_offset + next->size;
5475 if (end_of_next - stub_group_start >= stub_group_size)
5476 /* End of NEXT is too far from stubs, so stop. */
5477 break;
5478 /* Add NEXT to the stub group. */
5479 head = next;
5480 next = NEXT_SEC (head);
5481 htab->stub_group[head->id].link_sec = curr;
5482 }
5483 }
5484 head = next;
5485 }
5486 }
5487 while (list++ != htab->input_list + htab->top_index);
5488
5489 free (htab->input_list);
5490 #undef PREV_SEC
5491 #undef NEXT_SEC
5492 }
5493
5494 /* Comparison function for sorting/searching relocations relating to Cortex-A8
5495 erratum fix. */
5496
5497 static int
5498 a8_reloc_compare (const void *a, const void *b)
5499 {
5500 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
5501 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
5502
5503 if (ra->from < rb->from)
5504 return -1;
5505 else if (ra->from > rb->from)
5506 return 1;
5507 else
5508 return 0;
5509 }
5510
5511 static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
5512 const char *, char **);
5513
5514 /* Helper function to scan code for sequences which might trigger the Cortex-A8
5515 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
5516 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
5517 otherwise. */
5518
5519 static bfd_boolean
5520 cortex_a8_erratum_scan (bfd *input_bfd,
5521 struct bfd_link_info *info,
5522 struct a8_erratum_fix **a8_fixes_p,
5523 unsigned int *num_a8_fixes_p,
5524 unsigned int *a8_fix_table_size_p,
5525 struct a8_erratum_reloc *a8_relocs,
5526 unsigned int num_a8_relocs,
5527 unsigned prev_num_a8_fixes,
5528 bfd_boolean *stub_changed_p)
5529 {
5530 asection *section;
5531 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5532 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
5533 unsigned int num_a8_fixes = *num_a8_fixes_p;
5534 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
5535
5536 if (htab == NULL)
5537 return FALSE;
5538
5539 for (section = input_bfd->sections;
5540 section != NULL;
5541 section = section->next)
5542 {
5543 bfd_byte *contents = NULL;
5544 struct _arm_elf_section_data *sec_data;
5545 unsigned int span;
5546 bfd_vma base_vma;
5547
5548 if (elf_section_type (section) != SHT_PROGBITS
5549 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
5550 || (section->flags & SEC_EXCLUDE) != 0
5551 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
5552 || (section->output_section == bfd_abs_section_ptr))
5553 continue;
5554
5555 base_vma = section->output_section->vma + section->output_offset;
5556
5557 if (elf_section_data (section)->this_hdr.contents != NULL)
5558 contents = elf_section_data (section)->this_hdr.contents;
5559 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
5560 return TRUE;
5561
5562 sec_data = elf32_arm_section_data (section);
5563
5564 for (span = 0; span < sec_data->mapcount; span++)
5565 {
5566 unsigned int span_start = sec_data->map[span].vma;
5567 unsigned int span_end = (span == sec_data->mapcount - 1)
5568 ? section->size : sec_data->map[span + 1].vma;
5569 unsigned int i;
5570 char span_type = sec_data->map[span].type;
5571 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
5572
5573 if (span_type != 't')
5574 continue;
5575
5576 /* Span is entirely within a single 4KB region: skip scanning. */
5577 if (((base_vma + span_start) & ~0xfff)
5578 == ((base_vma + span_end) & ~0xfff))
5579 continue;
5580
5581 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
5582
5583 * The opcode is BLX.W, BL.W, B.W, Bcc.W
5584 * The branch target is in the same 4KB region as the
5585 first half of the branch.
5586 * The instruction before the branch is a 32-bit
5587 length non-branch instruction. */
5588 for (i = span_start; i < span_end;)
5589 {
5590 unsigned int insn = bfd_getl16 (&contents[i]);
5591 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
5592 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
5593
5594 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
5595 insn_32bit = TRUE;
5596
5597 if (insn_32bit)
5598 {
5599 /* Load the rest of the insn (in manual-friendly order). */
5600 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
5601
5602 /* Encoding T4: B<c>.W. */
5603 is_b = (insn & 0xf800d000) == 0xf0009000;
5604 /* Encoding T1: BL<c>.W. */
5605 is_bl = (insn & 0xf800d000) == 0xf000d000;
5606 /* Encoding T2: BLX<c>.W. */
5607 is_blx = (insn & 0xf800d000) == 0xf000c000;
5608 /* Encoding T3: B<c>.W (not permitted in IT block). */
5609 is_bcc = (insn & 0xf800d000) == 0xf0008000
5610 && (insn & 0x07f00000) != 0x03800000;
5611 }
5612
5613 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
5614
5615 if (((base_vma + i) & 0xfff) == 0xffe
5616 && insn_32bit
5617 && is_32bit_branch
5618 && last_was_32bit
5619 && ! last_was_branch)
5620 {
5621 bfd_signed_vma offset = 0;
5622 bfd_boolean force_target_arm = FALSE;
5623 bfd_boolean force_target_thumb = FALSE;
5624 bfd_vma target;
5625 enum elf32_arm_stub_type stub_type = arm_stub_none;
5626 struct a8_erratum_reloc key, *found;
5627 bfd_boolean use_plt = FALSE;
5628
5629 key.from = base_vma + i;
5630 found = (struct a8_erratum_reloc *)
5631 bsearch (&key, a8_relocs, num_a8_relocs,
5632 sizeof (struct a8_erratum_reloc),
5633 &a8_reloc_compare);
5634
5635 if (found)
5636 {
5637 char *error_message = NULL;
5638 struct elf_link_hash_entry *entry;
5639
5640 /* We don't care about the error returned from this
5641 function, only if there is glue or not. */
5642 entry = find_thumb_glue (info, found->sym_name,
5643 &error_message);
5644
5645 if (entry)
5646 found->non_a8_stub = TRUE;
5647
5648 /* Keep a simpler condition, for the sake of clarity. */
5649 if (htab->root.splt != NULL && found->hash != NULL
5650 && found->hash->root.plt.offset != (bfd_vma) -1)
5651 use_plt = TRUE;
5652
5653 if (found->r_type == R_ARM_THM_CALL)
5654 {
5655 if (found->branch_type == ST_BRANCH_TO_ARM
5656 || use_plt)
5657 force_target_arm = TRUE;
5658 else
5659 force_target_thumb = TRUE;
5660 }
5661 }
5662
5663 /* Check if we have an offending branch instruction. */
5664
5665 if (found && found->non_a8_stub)
5666 /* We've already made a stub for this instruction, e.g.
5667 it's a long branch or a Thumb->ARM stub. Assume that
5668 stub will suffice to work around the A8 erratum (see
5669 setting of always_after_branch above). */
5670 ;
5671 else if (is_bcc)
5672 {
5673 offset = (insn & 0x7ff) << 1;
5674 offset |= (insn & 0x3f0000) >> 4;
5675 offset |= (insn & 0x2000) ? 0x40000 : 0;
5676 offset |= (insn & 0x800) ? 0x80000 : 0;
5677 offset |= (insn & 0x4000000) ? 0x100000 : 0;
5678 if (offset & 0x100000)
5679 offset |= ~ ((bfd_signed_vma) 0xfffff);
5680 stub_type = arm_stub_a8_veneer_b_cond;
5681 }
5682 else if (is_b || is_bl || is_blx)
5683 {
5684 int s = (insn & 0x4000000) != 0;
5685 int j1 = (insn & 0x2000) != 0;
5686 int j2 = (insn & 0x800) != 0;
5687 int i1 = !(j1 ^ s);
5688 int i2 = !(j2 ^ s);
5689
5690 offset = (insn & 0x7ff) << 1;
5691 offset |= (insn & 0x3ff0000) >> 4;
5692 offset |= i2 << 22;
5693 offset |= i1 << 23;
5694 offset |= s << 24;
5695 if (offset & 0x1000000)
5696 offset |= ~ ((bfd_signed_vma) 0xffffff);
5697
5698 if (is_blx)
5699 offset &= ~ ((bfd_signed_vma) 3);
5700
5701 stub_type = is_blx ? arm_stub_a8_veneer_blx :
5702 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
5703 }
5704
5705 if (stub_type != arm_stub_none)
5706 {
5707 bfd_vma pc_for_insn = base_vma + i + 4;
5708
5709 /* The original instruction is a BL, but the target is
5710 an ARM instruction. If we were not making a stub,
5711 the BL would have been converted to a BLX. Use the
5712 BLX stub instead in that case. */
5713 if (htab->use_blx && force_target_arm
5714 && stub_type == arm_stub_a8_veneer_bl)
5715 {
5716 stub_type = arm_stub_a8_veneer_blx;
5717 is_blx = TRUE;
5718 is_bl = FALSE;
5719 }
5720 /* Conversely, if the original instruction was
5721 BLX but the target is Thumb mode, use the BL
5722 stub. */
5723 else if (force_target_thumb
5724 && stub_type == arm_stub_a8_veneer_blx)
5725 {
5726 stub_type = arm_stub_a8_veneer_bl;
5727 is_blx = FALSE;
5728 is_bl = TRUE;
5729 }
5730
5731 if (is_blx)
5732 pc_for_insn &= ~ ((bfd_vma) 3);
5733
5734 /* If we found a relocation, use the proper destination,
5735 not the offset in the (unrelocated) instruction.
5736 Note this is always done if we switched the stub type
5737 above. */
5738 if (found)
5739 offset =
5740 (bfd_signed_vma) (found->destination - pc_for_insn);
5741
5742 /* If the stub will use a Thumb-mode branch to a
5743 PLT target, redirect it to the preceding Thumb
5744 entry point. */
5745 if (stub_type != arm_stub_a8_veneer_blx && use_plt)
5746 offset -= PLT_THUMB_STUB_SIZE;
5747
5748 target = pc_for_insn + offset;
5749
5750 /* The BLX stub is ARM-mode code. Adjust the offset to
5751 take the different PC value (+8 instead of +4) into
5752 account. */
5753 if (stub_type == arm_stub_a8_veneer_blx)
5754 offset += 4;
5755
5756 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
5757 {
5758 char *stub_name = NULL;
5759
5760 if (num_a8_fixes == a8_fix_table_size)
5761 {
5762 a8_fix_table_size *= 2;
5763 a8_fixes = (struct a8_erratum_fix *)
5764 bfd_realloc (a8_fixes,
5765 sizeof (struct a8_erratum_fix)
5766 * a8_fix_table_size);
5767 }
5768
5769 if (num_a8_fixes < prev_num_a8_fixes)
5770 {
5771 /* If we're doing a subsequent scan,
5772 check if we've found the same fix as
5773 before, and try and reuse the stub
5774 name. */
5775 stub_name = a8_fixes[num_a8_fixes].stub_name;
5776 if ((a8_fixes[num_a8_fixes].section != section)
5777 || (a8_fixes[num_a8_fixes].offset != i))
5778 {
5779 free (stub_name);
5780 stub_name = NULL;
5781 *stub_changed_p = TRUE;
5782 }
5783 }
5784
5785 if (!stub_name)
5786 {
5787 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
5788 if (stub_name != NULL)
5789 sprintf (stub_name, "%x:%x", section->id, i);
5790 }
5791
5792 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
5793 a8_fixes[num_a8_fixes].section = section;
5794 a8_fixes[num_a8_fixes].offset = i;
5795 a8_fixes[num_a8_fixes].target_offset =
5796 target - base_vma;
5797 a8_fixes[num_a8_fixes].orig_insn = insn;
5798 a8_fixes[num_a8_fixes].stub_name = stub_name;
5799 a8_fixes[num_a8_fixes].stub_type = stub_type;
5800 a8_fixes[num_a8_fixes].branch_type =
5801 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
5802
5803 num_a8_fixes++;
5804 }
5805 }
5806 }
5807
5808 i += insn_32bit ? 4 : 2;
5809 last_was_32bit = insn_32bit;
5810 last_was_branch = is_32bit_branch;
5811 }
5812 }
5813
5814 if (elf_section_data (section)->this_hdr.contents == NULL)
5815 free (contents);
5816 }
5817
5818 *a8_fixes_p = a8_fixes;
5819 *num_a8_fixes_p = num_a8_fixes;
5820 *a8_fix_table_size_p = a8_fix_table_size;
5821
5822 return FALSE;
5823 }
5824
5825 /* Create or update a stub entry depending on whether the stub can already be
5826 found in HTAB. The stub is identified by:
5827 - its type STUB_TYPE
5828 - its source branch (note that several can share the same stub) whose
5829 section and relocation (if any) are given by SECTION and IRELA
5830 respectively
5831 - its target symbol whose input section, hash, name, value and branch type
5832 are given in SYM_SEC, HASH, SYM_NAME, SYM_VALUE and BRANCH_TYPE
5833 respectively
5834
5835 If found, the value of the stub's target symbol is updated from SYM_VALUE
5836 and *NEW_STUB is set to FALSE. Otherwise, *NEW_STUB is set to
5837 TRUE and the stub entry is initialized.
5838
5839 Returns the stub that was created or updated, or NULL if an error
5840 occurred. */
5841
5842 static struct elf32_arm_stub_hash_entry *
5843 elf32_arm_create_stub (struct elf32_arm_link_hash_table *htab,
5844 enum elf32_arm_stub_type stub_type, asection *section,
5845 Elf_Internal_Rela *irela, asection *sym_sec,
5846 struct elf32_arm_link_hash_entry *hash, char *sym_name,
5847 bfd_vma sym_value, enum arm_st_branch_type branch_type,
5848 bfd_boolean *new_stub)
5849 {
5850 const asection *id_sec;
5851 char *stub_name;
5852 struct elf32_arm_stub_hash_entry *stub_entry;
5853 unsigned int r_type;
5854 bfd_boolean sym_claimed = arm_stub_sym_claimed (stub_type);
5855
5856 BFD_ASSERT (stub_type != arm_stub_none);
5857 *new_stub = FALSE;
5858
5859 if (sym_claimed)
5860 stub_name = sym_name;
5861 else
5862 {
5863 BFD_ASSERT (irela);
5864 BFD_ASSERT (section);
5865 BFD_ASSERT (section->id <= htab->top_id);
5866
5867 /* Support for grouping stub sections. */
5868 id_sec = htab->stub_group[section->id].link_sec;
5869
5870 /* Get the name of this stub. */
5871 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela,
5872 stub_type);
5873 if (!stub_name)
5874 return NULL;
5875 }
5876
5877 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name, FALSE,
5878 FALSE);
5879 /* The proper stub has already been created, just update its value. */
5880 if (stub_entry != NULL)
5881 {
5882 if (!sym_claimed)
5883 free (stub_name);
5884 stub_entry->target_value = sym_value;
5885 return stub_entry;
5886 }
5887
5888 stub_entry = elf32_arm_add_stub (stub_name, section, htab, stub_type);
5889 if (stub_entry == NULL)
5890 {
5891 if (!sym_claimed)
5892 free (stub_name);
5893 return NULL;
5894 }
5895
5896 stub_entry->target_value = sym_value;
5897 stub_entry->target_section = sym_sec;
5898 stub_entry->stub_type = stub_type;
5899 stub_entry->h = hash;
5900 stub_entry->branch_type = branch_type;
5901
5902 if (sym_claimed)
5903 stub_entry->output_name = sym_name;
5904 else
5905 {
5906 if (sym_name == NULL)
5907 sym_name = "unnamed";
5908 stub_entry->output_name = (char *)
5909 bfd_alloc (htab->stub_bfd, sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5910 + strlen (sym_name));
5911 if (stub_entry->output_name == NULL)
5912 {
5913 free (stub_name);
5914 return NULL;
5915 }
5916
5917 /* For historical reasons, use the existing names for ARM-to-Thumb and
5918 Thumb-to-ARM stubs. */
5919 r_type = ELF32_R_TYPE (irela->r_info);
5920 if ((r_type == (unsigned int) R_ARM_THM_CALL
5921 || r_type == (unsigned int) R_ARM_THM_JUMP24
5922 || r_type == (unsigned int) R_ARM_THM_JUMP19)
5923 && branch_type == ST_BRANCH_TO_ARM)
5924 sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5925 else if ((r_type == (unsigned int) R_ARM_CALL
5926 || r_type == (unsigned int) R_ARM_JUMP24)
5927 && branch_type == ST_BRANCH_TO_THUMB)
5928 sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5929 else
5930 sprintf (stub_entry->output_name, STUB_ENTRY_NAME, sym_name);
5931 }
5932
5933 *new_stub = TRUE;
5934 return stub_entry;
5935 }
5936
5937 /* Scan symbols in INPUT_BFD to identify secure entry functions needing a
5938 gateway veneer to transition from non secure to secure state and create them
5939 accordingly.
5940
5941 "ARMv8-M Security Extensions: Requirements on Development Tools" document
5942 defines the conditions that govern Secure Gateway veneer creation for a
5943 given symbol <SYM> as follows:
5944 - it has function type
5945 - it has non local binding
5946 - a symbol named __acle_se_<SYM> (called special symbol) exists with the
5947 same type, binding and value as <SYM> (called normal symbol).
5948 An entry function can handle secure state transition itself in which case
5949 its special symbol would have a different value from the normal symbol.
5950
5951 OUT_ATTR gives the output attributes, SYM_HASHES the symbol index to hash
5952 entry mapping while HTAB gives the name to hash entry mapping.
5953 *CMSE_STUB_CREATED is increased by the number of secure gateway veneer
5954 created.
5955
5956 The return value gives whether a stub failed to be allocated. */
5957
5958 static bfd_boolean
5959 cmse_scan (bfd *input_bfd, struct elf32_arm_link_hash_table *htab,
5960 obj_attribute *out_attr, struct elf_link_hash_entry **sym_hashes,
5961 int *cmse_stub_created)
5962 {
5963 const struct elf_backend_data *bed;
5964 Elf_Internal_Shdr *symtab_hdr;
5965 unsigned i, j, sym_count, ext_start;
5966 Elf_Internal_Sym *cmse_sym, *local_syms;
5967 struct elf32_arm_link_hash_entry *hash, *cmse_hash = NULL;
5968 enum arm_st_branch_type branch_type;
5969 char *sym_name, *lsym_name;
5970 bfd_vma sym_value;
5971 asection *section;
5972 struct elf32_arm_stub_hash_entry *stub_entry;
5973 bfd_boolean is_v8m, new_stub, cmse_invalid, ret = TRUE;
5974
5975 bed = get_elf_backend_data (input_bfd);
5976 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5977 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
5978 ext_start = symtab_hdr->sh_info;
5979 is_v8m = (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
5980 && out_attr[Tag_CPU_arch_profile].i == 'M');
5981
5982 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
5983 if (local_syms == NULL)
5984 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
5985 symtab_hdr->sh_info, 0, NULL, NULL,
5986 NULL);
5987 if (symtab_hdr->sh_info && local_syms == NULL)
5988 return FALSE;
5989
5990 /* Scan symbols. */
5991 for (i = 0; i < sym_count; i++)
5992 {
5993 cmse_invalid = FALSE;
5994
5995 if (i < ext_start)
5996 {
5997 cmse_sym = &local_syms[i];
5998 /* Not a special symbol. */
5999 if (!ARM_GET_SYM_CMSE_SPCL (cmse_sym->st_target_internal))
6000 continue;
6001 sym_name = bfd_elf_string_from_elf_section (input_bfd,
6002 symtab_hdr->sh_link,
6003 cmse_sym->st_name);
6004 /* Special symbol with local binding. */
6005 cmse_invalid = TRUE;
6006 }
6007 else
6008 {
6009 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
6010 sym_name = (char *) cmse_hash->root.root.root.string;
6011
6012 /* Not a special symbol. */
6013 if (!ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
6014 continue;
6015
6016 /* Special symbol has incorrect binding or type. */
6017 if ((cmse_hash->root.root.type != bfd_link_hash_defined
6018 && cmse_hash->root.root.type != bfd_link_hash_defweak)
6019 || cmse_hash->root.type != STT_FUNC)
6020 cmse_invalid = TRUE;
6021 }
6022
6023 if (!is_v8m)
6024 {
6025 _bfd_error_handler (_("%pB: special symbol `%s' only allowed for "
6026 "ARMv8-M architecture or later"),
6027 input_bfd, sym_name);
6028 is_v8m = TRUE; /* Avoid multiple warning. */
6029 ret = FALSE;
6030 }
6031
6032 if (cmse_invalid)
6033 {
6034 _bfd_error_handler (_("%pB: invalid special symbol `%s'; it must be"
6035 " a global or weak function symbol"),
6036 input_bfd, sym_name);
6037 ret = FALSE;
6038 if (i < ext_start)
6039 continue;
6040 }
6041
6042 sym_name += strlen (CMSE_PREFIX);
6043 hash = (struct elf32_arm_link_hash_entry *)
6044 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
6045
6046 /* No associated normal symbol or it is neither global nor weak. */
6047 if (!hash
6048 || (hash->root.root.type != bfd_link_hash_defined
6049 && hash->root.root.type != bfd_link_hash_defweak)
6050 || hash->root.type != STT_FUNC)
6051 {
6052 /* Initialize here to avoid warning about use of possibly
6053 uninitialized variable. */
6054 j = 0;
6055
6056 if (!hash)
6057 {
6058 /* Searching for a normal symbol with local binding. */
6059 for (; j < ext_start; j++)
6060 {
6061 lsym_name =
6062 bfd_elf_string_from_elf_section (input_bfd,
6063 symtab_hdr->sh_link,
6064 local_syms[j].st_name);
6065 if (!strcmp (sym_name, lsym_name))
6066 break;
6067 }
6068 }
6069
6070 if (hash || j < ext_start)
6071 {
6072 _bfd_error_handler
6073 (_("%pB: invalid standard symbol `%s'; it must be "
6074 "a global or weak function symbol"),
6075 input_bfd, sym_name);
6076 }
6077 else
6078 _bfd_error_handler
6079 (_("%pB: absent standard symbol `%s'"), input_bfd, sym_name);
6080 ret = FALSE;
6081 if (!hash)
6082 continue;
6083 }
6084
6085 sym_value = hash->root.root.u.def.value;
6086 section = hash->root.root.u.def.section;
6087
6088 if (cmse_hash->root.root.u.def.section != section)
6089 {
6090 _bfd_error_handler
6091 (_("%pB: `%s' and its special symbol are in different sections"),
6092 input_bfd, sym_name);
6093 ret = FALSE;
6094 }
6095 if (cmse_hash->root.root.u.def.value != sym_value)
6096 continue; /* Ignore: could be an entry function starting with SG. */
6097
6098 /* If this section is a link-once section that will be discarded, then
6099 don't create any stubs. */
6100 if (section->output_section == NULL)
6101 {
6102 _bfd_error_handler
6103 (_("%pB: entry function `%s' not output"), input_bfd, sym_name);
6104 continue;
6105 }
6106
6107 if (hash->root.size == 0)
6108 {
6109 _bfd_error_handler
6110 (_("%pB: entry function `%s' is empty"), input_bfd, sym_name);
6111 ret = FALSE;
6112 }
6113
6114 if (!ret)
6115 continue;
6116 branch_type = ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
6117 stub_entry
6118 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
6119 NULL, NULL, section, hash, sym_name,
6120 sym_value, branch_type, &new_stub);
6121
6122 if (stub_entry == NULL)
6123 ret = FALSE;
6124 else
6125 {
6126 BFD_ASSERT (new_stub);
6127 (*cmse_stub_created)++;
6128 }
6129 }
6130
6131 if (!symtab_hdr->contents)
6132 free (local_syms);
6133 return ret;
6134 }
6135
6136 /* Return TRUE iff a symbol identified by its linker HASH entry is a secure
6137 code entry function, ie can be called from non secure code without using a
6138 veneer. */
6139
6140 static bfd_boolean
6141 cmse_entry_fct_p (struct elf32_arm_link_hash_entry *hash)
6142 {
6143 bfd_byte contents[4];
6144 uint32_t first_insn;
6145 asection *section;
6146 file_ptr offset;
6147 bfd *abfd;
6148
6149 /* Defined symbol of function type. */
6150 if (hash->root.root.type != bfd_link_hash_defined
6151 && hash->root.root.type != bfd_link_hash_defweak)
6152 return FALSE;
6153 if (hash->root.type != STT_FUNC)
6154 return FALSE;
6155
6156 /* Read first instruction. */
6157 section = hash->root.root.u.def.section;
6158 abfd = section->owner;
6159 offset = hash->root.root.u.def.value - section->vma;
6160 if (!bfd_get_section_contents (abfd, section, contents, offset,
6161 sizeof (contents)))
6162 return FALSE;
6163
6164 first_insn = bfd_get_32 (abfd, contents);
6165
6166 /* Starts by SG instruction. */
6167 return first_insn == 0xe97fe97f;
6168 }
6169
6170 /* Output the name (in symbol table) of the veneer GEN_ENTRY if it is a new
6171 secure gateway veneers (ie. the veneers was not in the input import library)
6172 and there is no output import library (GEN_INFO->out_implib_bfd is NULL. */
6173
6174 static bfd_boolean
6175 arm_list_new_cmse_stub (struct bfd_hash_entry *gen_entry, void *gen_info)
6176 {
6177 struct elf32_arm_stub_hash_entry *stub_entry;
6178 struct bfd_link_info *info;
6179
6180 /* Massage our args to the form they really have. */
6181 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
6182 info = (struct bfd_link_info *) gen_info;
6183
6184 if (info->out_implib_bfd)
6185 return TRUE;
6186
6187 if (stub_entry->stub_type != arm_stub_cmse_branch_thumb_only)
6188 return TRUE;
6189
6190 if (stub_entry->stub_offset == (bfd_vma) -1)
6191 _bfd_error_handler (" %s", stub_entry->output_name);
6192
6193 return TRUE;
6194 }
6195
6196 /* Set offset of each secure gateway veneers so that its address remain
6197 identical to the one in the input import library referred by
6198 HTAB->in_implib_bfd. A warning is issued for veneers that disappeared
6199 (present in input import library but absent from the executable being
6200 linked) or if new veneers appeared and there is no output import library
6201 (INFO->out_implib_bfd is NULL and *CMSE_STUB_CREATED is bigger than the
6202 number of secure gateway veneers found in the input import library.
6203
6204 The function returns whether an error occurred. If no error occurred,
6205 *CMSE_STUB_CREATED gives the number of SG veneers created by both cmse_scan
6206 and this function and HTAB->new_cmse_stub_offset is set to the biggest
6207 veneer observed set for new veneers to be layed out after. */
6208
6209 static bfd_boolean
6210 set_cmse_veneer_addr_from_implib (struct bfd_link_info *info,
6211 struct elf32_arm_link_hash_table *htab,
6212 int *cmse_stub_created)
6213 {
6214 long symsize;
6215 char *sym_name;
6216 flagword flags;
6217 long i, symcount;
6218 bfd *in_implib_bfd;
6219 asection *stub_out_sec;
6220 bfd_boolean ret = TRUE;
6221 Elf_Internal_Sym *intsym;
6222 const char *out_sec_name;
6223 bfd_size_type cmse_stub_size;
6224 asymbol **sympp = NULL, *sym;
6225 struct elf32_arm_link_hash_entry *hash;
6226 const insn_sequence *cmse_stub_template;
6227 struct elf32_arm_stub_hash_entry *stub_entry;
6228 int cmse_stub_template_size, new_cmse_stubs_created = *cmse_stub_created;
6229 bfd_vma veneer_value, stub_offset, next_cmse_stub_offset;
6230 bfd_vma cmse_stub_array_start = (bfd_vma) -1, cmse_stub_sec_vma = 0;
6231
6232 /* No input secure gateway import library. */
6233 if (!htab->in_implib_bfd)
6234 return TRUE;
6235
6236 in_implib_bfd = htab->in_implib_bfd;
6237 if (!htab->cmse_implib)
6238 {
6239 _bfd_error_handler (_("%pB: --in-implib only supported for Secure "
6240 "Gateway import libraries"), in_implib_bfd);
6241 return FALSE;
6242 }
6243
6244 /* Get symbol table size. */
6245 symsize = bfd_get_symtab_upper_bound (in_implib_bfd);
6246 if (symsize < 0)
6247 return FALSE;
6248
6249 /* Read in the input secure gateway import library's symbol table. */
6250 sympp = (asymbol **) xmalloc (symsize);
6251 symcount = bfd_canonicalize_symtab (in_implib_bfd, sympp);
6252 if (symcount < 0)
6253 {
6254 ret = FALSE;
6255 goto free_sym_buf;
6256 }
6257
6258 htab->new_cmse_stub_offset = 0;
6259 cmse_stub_size =
6260 find_stub_size_and_template (arm_stub_cmse_branch_thumb_only,
6261 &cmse_stub_template,
6262 &cmse_stub_template_size);
6263 out_sec_name =
6264 arm_dedicated_stub_output_section_name (arm_stub_cmse_branch_thumb_only);
6265 stub_out_sec =
6266 bfd_get_section_by_name (htab->obfd, out_sec_name);
6267 if (stub_out_sec != NULL)
6268 cmse_stub_sec_vma = stub_out_sec->vma;
6269
6270 /* Set addresses of veneers mentionned in input secure gateway import
6271 library's symbol table. */
6272 for (i = 0; i < symcount; i++)
6273 {
6274 sym = sympp[i];
6275 flags = sym->flags;
6276 sym_name = (char *) bfd_asymbol_name (sym);
6277 intsym = &((elf_symbol_type *) sym)->internal_elf_sym;
6278
6279 if (sym->section != bfd_abs_section_ptr
6280 || !(flags & (BSF_GLOBAL | BSF_WEAK))
6281 || (flags & BSF_FUNCTION) != BSF_FUNCTION
6282 || (ARM_GET_SYM_BRANCH_TYPE (intsym->st_target_internal)
6283 != ST_BRANCH_TO_THUMB))
6284 {
6285 _bfd_error_handler (_("%pB: invalid import library entry: `%s'; "
6286 "symbol should be absolute, global and "
6287 "refer to Thumb functions"),
6288 in_implib_bfd, sym_name);
6289 ret = FALSE;
6290 continue;
6291 }
6292
6293 veneer_value = bfd_asymbol_value (sym);
6294 stub_offset = veneer_value - cmse_stub_sec_vma;
6295 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, sym_name,
6296 FALSE, FALSE);
6297 hash = (struct elf32_arm_link_hash_entry *)
6298 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
6299
6300 /* Stub entry should have been created by cmse_scan or the symbol be of
6301 a secure function callable from non secure code. */
6302 if (!stub_entry && !hash)
6303 {
6304 bfd_boolean new_stub;
6305
6306 _bfd_error_handler
6307 (_("entry function `%s' disappeared from secure code"), sym_name);
6308 hash = (struct elf32_arm_link_hash_entry *)
6309 elf_link_hash_lookup (&(htab)->root, sym_name, TRUE, TRUE, TRUE);
6310 stub_entry
6311 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
6312 NULL, NULL, bfd_abs_section_ptr, hash,
6313 sym_name, veneer_value,
6314 ST_BRANCH_TO_THUMB, &new_stub);
6315 if (stub_entry == NULL)
6316 ret = FALSE;
6317 else
6318 {
6319 BFD_ASSERT (new_stub);
6320 new_cmse_stubs_created++;
6321 (*cmse_stub_created)++;
6322 }
6323 stub_entry->stub_template_size = stub_entry->stub_size = 0;
6324 stub_entry->stub_offset = stub_offset;
6325 }
6326 /* Symbol found is not callable from non secure code. */
6327 else if (!stub_entry)
6328 {
6329 if (!cmse_entry_fct_p (hash))
6330 {
6331 _bfd_error_handler (_("`%s' refers to a non entry function"),
6332 sym_name);
6333 ret = FALSE;
6334 }
6335 continue;
6336 }
6337 else
6338 {
6339 /* Only stubs for SG veneers should have been created. */
6340 BFD_ASSERT (stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
6341
6342 /* Check visibility hasn't changed. */
6343 if (!!(flags & BSF_GLOBAL)
6344 != (hash->root.root.type == bfd_link_hash_defined))
6345 _bfd_error_handler
6346 (_("%pB: visibility of symbol `%s' has changed"), in_implib_bfd,
6347 sym_name);
6348
6349 stub_entry->stub_offset = stub_offset;
6350 }
6351
6352 /* Size should match that of a SG veneer. */
6353 if (intsym->st_size != cmse_stub_size)
6354 {
6355 _bfd_error_handler (_("%pB: incorrect size for symbol `%s'"),
6356 in_implib_bfd, sym_name);
6357 ret = FALSE;
6358 }
6359
6360 /* Previous veneer address is before current SG veneer section. */
6361 if (veneer_value < cmse_stub_sec_vma)
6362 {
6363 /* Avoid offset underflow. */
6364 if (stub_entry)
6365 stub_entry->stub_offset = 0;
6366 stub_offset = 0;
6367 ret = FALSE;
6368 }
6369
6370 /* Complain if stub offset not a multiple of stub size. */
6371 if (stub_offset % cmse_stub_size)
6372 {
6373 _bfd_error_handler
6374 (_("offset of veneer for entry function `%s' not a multiple of "
6375 "its size"), sym_name);
6376 ret = FALSE;
6377 }
6378
6379 if (!ret)
6380 continue;
6381
6382 new_cmse_stubs_created--;
6383 if (veneer_value < cmse_stub_array_start)
6384 cmse_stub_array_start = veneer_value;
6385 next_cmse_stub_offset = stub_offset + ((cmse_stub_size + 7) & ~7);
6386 if (next_cmse_stub_offset > htab->new_cmse_stub_offset)
6387 htab->new_cmse_stub_offset = next_cmse_stub_offset;
6388 }
6389
6390 if (!info->out_implib_bfd && new_cmse_stubs_created != 0)
6391 {
6392 BFD_ASSERT (new_cmse_stubs_created > 0);
6393 _bfd_error_handler
6394 (_("new entry function(s) introduced but no output import library "
6395 "specified:"));
6396 bfd_hash_traverse (&htab->stub_hash_table, arm_list_new_cmse_stub, info);
6397 }
6398
6399 if (cmse_stub_array_start != cmse_stub_sec_vma)
6400 {
6401 _bfd_error_handler
6402 (_("start address of `%s' is different from previous link"),
6403 out_sec_name);
6404 ret = FALSE;
6405 }
6406
6407 free_sym_buf:
6408 free (sympp);
6409 return ret;
6410 }
6411
6412 /* Determine and set the size of the stub section for a final link.
6413
6414 The basic idea here is to examine all the relocations looking for
6415 PC-relative calls to a target that is unreachable with a "bl"
6416 instruction. */
6417
6418 bfd_boolean
6419 elf32_arm_size_stubs (bfd *output_bfd,
6420 bfd *stub_bfd,
6421 struct bfd_link_info *info,
6422 bfd_signed_vma group_size,
6423 asection * (*add_stub_section) (const char *, asection *,
6424 asection *,
6425 unsigned int),
6426 void (*layout_sections_again) (void))
6427 {
6428 bfd_boolean ret = TRUE;
6429 obj_attribute *out_attr;
6430 int cmse_stub_created = 0;
6431 bfd_size_type stub_group_size;
6432 bfd_boolean m_profile, stubs_always_after_branch, first_veneer_scan = TRUE;
6433 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
6434 struct a8_erratum_fix *a8_fixes = NULL;
6435 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
6436 struct a8_erratum_reloc *a8_relocs = NULL;
6437 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
6438
6439 if (htab == NULL)
6440 return FALSE;
6441
6442 if (htab->fix_cortex_a8)
6443 {
6444 a8_fixes = (struct a8_erratum_fix *)
6445 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
6446 a8_relocs = (struct a8_erratum_reloc *)
6447 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
6448 }
6449
6450 /* Propagate mach to stub bfd, because it may not have been
6451 finalized when we created stub_bfd. */
6452 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
6453 bfd_get_mach (output_bfd));
6454
6455 /* Stash our params away. */
6456 htab->stub_bfd = stub_bfd;
6457 htab->add_stub_section = add_stub_section;
6458 htab->layout_sections_again = layout_sections_again;
6459 stubs_always_after_branch = group_size < 0;
6460
6461 out_attr = elf_known_obj_attributes_proc (output_bfd);
6462 m_profile = out_attr[Tag_CPU_arch_profile].i == 'M';
6463
6464 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
6465 as the first half of a 32-bit branch straddling two 4K pages. This is a
6466 crude way of enforcing that. */
6467 if (htab->fix_cortex_a8)
6468 stubs_always_after_branch = 1;
6469
6470 if (group_size < 0)
6471 stub_group_size = -group_size;
6472 else
6473 stub_group_size = group_size;
6474
6475 if (stub_group_size == 1)
6476 {
6477 /* Default values. */
6478 /* Thumb branch range is +-4MB has to be used as the default
6479 maximum size (a given section can contain both ARM and Thumb
6480 code, so the worst case has to be taken into account).
6481
6482 This value is 24K less than that, which allows for 2025
6483 12-byte stubs. If we exceed that, then we will fail to link.
6484 The user will have to relink with an explicit group size
6485 option. */
6486 stub_group_size = 4170000;
6487 }
6488
6489 group_sections (htab, stub_group_size, stubs_always_after_branch);
6490
6491 /* If we're applying the cortex A8 fix, we need to determine the
6492 program header size now, because we cannot change it later --
6493 that could alter section placements. Notice the A8 erratum fix
6494 ends up requiring the section addresses to remain unchanged
6495 modulo the page size. That's something we cannot represent
6496 inside BFD, and we don't want to force the section alignment to
6497 be the page size. */
6498 if (htab->fix_cortex_a8)
6499 (*htab->layout_sections_again) ();
6500
6501 while (1)
6502 {
6503 bfd *input_bfd;
6504 unsigned int bfd_indx;
6505 asection *stub_sec;
6506 enum elf32_arm_stub_type stub_type;
6507 bfd_boolean stub_changed = FALSE;
6508 unsigned prev_num_a8_fixes = num_a8_fixes;
6509
6510 num_a8_fixes = 0;
6511 for (input_bfd = info->input_bfds, bfd_indx = 0;
6512 input_bfd != NULL;
6513 input_bfd = input_bfd->link.next, bfd_indx++)
6514 {
6515 Elf_Internal_Shdr *symtab_hdr;
6516 asection *section;
6517 Elf_Internal_Sym *local_syms = NULL;
6518
6519 if (!is_arm_elf (input_bfd)
6520 || (elf_dyn_lib_class (input_bfd) & DYN_AS_NEEDED) != 0)
6521 continue;
6522
6523 num_a8_relocs = 0;
6524
6525 /* We'll need the symbol table in a second. */
6526 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6527 if (symtab_hdr->sh_info == 0)
6528 continue;
6529
6530 /* Limit scan of symbols to object file whose profile is
6531 Microcontroller to not hinder performance in the general case. */
6532 if (m_profile && first_veneer_scan)
6533 {
6534 struct elf_link_hash_entry **sym_hashes;
6535
6536 sym_hashes = elf_sym_hashes (input_bfd);
6537 if (!cmse_scan (input_bfd, htab, out_attr, sym_hashes,
6538 &cmse_stub_created))
6539 goto error_ret_free_local;
6540
6541 if (cmse_stub_created != 0)
6542 stub_changed = TRUE;
6543 }
6544
6545 /* Walk over each section attached to the input bfd. */
6546 for (section = input_bfd->sections;
6547 section != NULL;
6548 section = section->next)
6549 {
6550 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
6551
6552 /* If there aren't any relocs, then there's nothing more
6553 to do. */
6554 if ((section->flags & SEC_RELOC) == 0
6555 || section->reloc_count == 0
6556 || (section->flags & SEC_CODE) == 0)
6557 continue;
6558
6559 /* If this section is a link-once section that will be
6560 discarded, then don't create any stubs. */
6561 if (section->output_section == NULL
6562 || section->output_section->owner != output_bfd)
6563 continue;
6564
6565 /* Get the relocs. */
6566 internal_relocs
6567 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
6568 NULL, info->keep_memory);
6569 if (internal_relocs == NULL)
6570 goto error_ret_free_local;
6571
6572 /* Now examine each relocation. */
6573 irela = internal_relocs;
6574 irelaend = irela + section->reloc_count;
6575 for (; irela < irelaend; irela++)
6576 {
6577 unsigned int r_type, r_indx;
6578 asection *sym_sec;
6579 bfd_vma sym_value;
6580 bfd_vma destination;
6581 struct elf32_arm_link_hash_entry *hash;
6582 const char *sym_name;
6583 unsigned char st_type;
6584 enum arm_st_branch_type branch_type;
6585 bfd_boolean created_stub = FALSE;
6586
6587 r_type = ELF32_R_TYPE (irela->r_info);
6588 r_indx = ELF32_R_SYM (irela->r_info);
6589
6590 if (r_type >= (unsigned int) R_ARM_max)
6591 {
6592 bfd_set_error (bfd_error_bad_value);
6593 error_ret_free_internal:
6594 if (elf_section_data (section)->relocs == NULL)
6595 free (internal_relocs);
6596 /* Fall through. */
6597 error_ret_free_local:
6598 if (local_syms != NULL
6599 && (symtab_hdr->contents
6600 != (unsigned char *) local_syms))
6601 free (local_syms);
6602 return FALSE;
6603 }
6604
6605 hash = NULL;
6606 if (r_indx >= symtab_hdr->sh_info)
6607 hash = elf32_arm_hash_entry
6608 (elf_sym_hashes (input_bfd)
6609 [r_indx - symtab_hdr->sh_info]);
6610
6611 /* Only look for stubs on branch instructions, or
6612 non-relaxed TLSCALL */
6613 if ((r_type != (unsigned int) R_ARM_CALL)
6614 && (r_type != (unsigned int) R_ARM_THM_CALL)
6615 && (r_type != (unsigned int) R_ARM_JUMP24)
6616 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
6617 && (r_type != (unsigned int) R_ARM_THM_XPC22)
6618 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
6619 && (r_type != (unsigned int) R_ARM_PLT32)
6620 && !((r_type == (unsigned int) R_ARM_TLS_CALL
6621 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6622 && r_type == elf32_arm_tls_transition
6623 (info, r_type, &hash->root)
6624 && ((hash ? hash->tls_type
6625 : (elf32_arm_local_got_tls_type
6626 (input_bfd)[r_indx]))
6627 & GOT_TLS_GDESC) != 0))
6628 continue;
6629
6630 /* Now determine the call target, its name, value,
6631 section. */
6632 sym_sec = NULL;
6633 sym_value = 0;
6634 destination = 0;
6635 sym_name = NULL;
6636
6637 if (r_type == (unsigned int) R_ARM_TLS_CALL
6638 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6639 {
6640 /* A non-relaxed TLS call. The target is the
6641 plt-resident trampoline and nothing to do
6642 with the symbol. */
6643 BFD_ASSERT (htab->tls_trampoline > 0);
6644 sym_sec = htab->root.splt;
6645 sym_value = htab->tls_trampoline;
6646 hash = 0;
6647 st_type = STT_FUNC;
6648 branch_type = ST_BRANCH_TO_ARM;
6649 }
6650 else if (!hash)
6651 {
6652 /* It's a local symbol. */
6653 Elf_Internal_Sym *sym;
6654
6655 if (local_syms == NULL)
6656 {
6657 local_syms
6658 = (Elf_Internal_Sym *) symtab_hdr->contents;
6659 if (local_syms == NULL)
6660 local_syms
6661 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
6662 symtab_hdr->sh_info, 0,
6663 NULL, NULL, NULL);
6664 if (local_syms == NULL)
6665 goto error_ret_free_internal;
6666 }
6667
6668 sym = local_syms + r_indx;
6669 if (sym->st_shndx == SHN_UNDEF)
6670 sym_sec = bfd_und_section_ptr;
6671 else if (sym->st_shndx == SHN_ABS)
6672 sym_sec = bfd_abs_section_ptr;
6673 else if (sym->st_shndx == SHN_COMMON)
6674 sym_sec = bfd_com_section_ptr;
6675 else
6676 sym_sec =
6677 bfd_section_from_elf_index (input_bfd, sym->st_shndx);
6678
6679 if (!sym_sec)
6680 /* This is an undefined symbol. It can never
6681 be resolved. */
6682 continue;
6683
6684 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
6685 sym_value = sym->st_value;
6686 destination = (sym_value + irela->r_addend
6687 + sym_sec->output_offset
6688 + sym_sec->output_section->vma);
6689 st_type = ELF_ST_TYPE (sym->st_info);
6690 branch_type =
6691 ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
6692 sym_name
6693 = bfd_elf_string_from_elf_section (input_bfd,
6694 symtab_hdr->sh_link,
6695 sym->st_name);
6696 }
6697 else
6698 {
6699 /* It's an external symbol. */
6700 while (hash->root.root.type == bfd_link_hash_indirect
6701 || hash->root.root.type == bfd_link_hash_warning)
6702 hash = ((struct elf32_arm_link_hash_entry *)
6703 hash->root.root.u.i.link);
6704
6705 if (hash->root.root.type == bfd_link_hash_defined
6706 || hash->root.root.type == bfd_link_hash_defweak)
6707 {
6708 sym_sec = hash->root.root.u.def.section;
6709 sym_value = hash->root.root.u.def.value;
6710
6711 struct elf32_arm_link_hash_table *globals =
6712 elf32_arm_hash_table (info);
6713
6714 /* For a destination in a shared library,
6715 use the PLT stub as target address to
6716 decide whether a branch stub is
6717 needed. */
6718 if (globals != NULL
6719 && globals->root.splt != NULL
6720 && hash != NULL
6721 && hash->root.plt.offset != (bfd_vma) -1)
6722 {
6723 sym_sec = globals->root.splt;
6724 sym_value = hash->root.plt.offset;
6725 if (sym_sec->output_section != NULL)
6726 destination = (sym_value
6727 + sym_sec->output_offset
6728 + sym_sec->output_section->vma);
6729 }
6730 else if (sym_sec->output_section != NULL)
6731 destination = (sym_value + irela->r_addend
6732 + sym_sec->output_offset
6733 + sym_sec->output_section->vma);
6734 }
6735 else if ((hash->root.root.type == bfd_link_hash_undefined)
6736 || (hash->root.root.type == bfd_link_hash_undefweak))
6737 {
6738 /* For a shared library, use the PLT stub as
6739 target address to decide whether a long
6740 branch stub is needed.
6741 For absolute code, they cannot be handled. */
6742 struct elf32_arm_link_hash_table *globals =
6743 elf32_arm_hash_table (info);
6744
6745 if (globals != NULL
6746 && globals->root.splt != NULL
6747 && hash != NULL
6748 && hash->root.plt.offset != (bfd_vma) -1)
6749 {
6750 sym_sec = globals->root.splt;
6751 sym_value = hash->root.plt.offset;
6752 if (sym_sec->output_section != NULL)
6753 destination = (sym_value
6754 + sym_sec->output_offset
6755 + sym_sec->output_section->vma);
6756 }
6757 else
6758 continue;
6759 }
6760 else
6761 {
6762 bfd_set_error (bfd_error_bad_value);
6763 goto error_ret_free_internal;
6764 }
6765 st_type = hash->root.type;
6766 branch_type =
6767 ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
6768 sym_name = hash->root.root.root.string;
6769 }
6770
6771 do
6772 {
6773 bfd_boolean new_stub;
6774 struct elf32_arm_stub_hash_entry *stub_entry;
6775
6776 /* Determine what (if any) linker stub is needed. */
6777 stub_type = arm_type_of_stub (info, section, irela,
6778 st_type, &branch_type,
6779 hash, destination, sym_sec,
6780 input_bfd, sym_name);
6781 if (stub_type == arm_stub_none)
6782 break;
6783
6784 /* We've either created a stub for this reloc already,
6785 or we are about to. */
6786 stub_entry =
6787 elf32_arm_create_stub (htab, stub_type, section, irela,
6788 sym_sec, hash,
6789 (char *) sym_name, sym_value,
6790 branch_type, &new_stub);
6791
6792 created_stub = stub_entry != NULL;
6793 if (!created_stub)
6794 goto error_ret_free_internal;
6795 else if (!new_stub)
6796 break;
6797 else
6798 stub_changed = TRUE;
6799 }
6800 while (0);
6801
6802 /* Look for relocations which might trigger Cortex-A8
6803 erratum. */
6804 if (htab->fix_cortex_a8
6805 && (r_type == (unsigned int) R_ARM_THM_JUMP24
6806 || r_type == (unsigned int) R_ARM_THM_JUMP19
6807 || r_type == (unsigned int) R_ARM_THM_CALL
6808 || r_type == (unsigned int) R_ARM_THM_XPC22))
6809 {
6810 bfd_vma from = section->output_section->vma
6811 + section->output_offset
6812 + irela->r_offset;
6813
6814 if ((from & 0xfff) == 0xffe)
6815 {
6816 /* Found a candidate. Note we haven't checked the
6817 destination is within 4K here: if we do so (and
6818 don't create an entry in a8_relocs) we can't tell
6819 that a branch should have been relocated when
6820 scanning later. */
6821 if (num_a8_relocs == a8_reloc_table_size)
6822 {
6823 a8_reloc_table_size *= 2;
6824 a8_relocs = (struct a8_erratum_reloc *)
6825 bfd_realloc (a8_relocs,
6826 sizeof (struct a8_erratum_reloc)
6827 * a8_reloc_table_size);
6828 }
6829
6830 a8_relocs[num_a8_relocs].from = from;
6831 a8_relocs[num_a8_relocs].destination = destination;
6832 a8_relocs[num_a8_relocs].r_type = r_type;
6833 a8_relocs[num_a8_relocs].branch_type = branch_type;
6834 a8_relocs[num_a8_relocs].sym_name = sym_name;
6835 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
6836 a8_relocs[num_a8_relocs].hash = hash;
6837
6838 num_a8_relocs++;
6839 }
6840 }
6841 }
6842
6843 /* We're done with the internal relocs, free them. */
6844 if (elf_section_data (section)->relocs == NULL)
6845 free (internal_relocs);
6846 }
6847
6848 if (htab->fix_cortex_a8)
6849 {
6850 /* Sort relocs which might apply to Cortex-A8 erratum. */
6851 qsort (a8_relocs, num_a8_relocs,
6852 sizeof (struct a8_erratum_reloc),
6853 &a8_reloc_compare);
6854
6855 /* Scan for branches which might trigger Cortex-A8 erratum. */
6856 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
6857 &num_a8_fixes, &a8_fix_table_size,
6858 a8_relocs, num_a8_relocs,
6859 prev_num_a8_fixes, &stub_changed)
6860 != 0)
6861 goto error_ret_free_local;
6862 }
6863
6864 if (local_syms != NULL
6865 && symtab_hdr->contents != (unsigned char *) local_syms)
6866 {
6867 if (!info->keep_memory)
6868 free (local_syms);
6869 else
6870 symtab_hdr->contents = (unsigned char *) local_syms;
6871 }
6872 }
6873
6874 if (first_veneer_scan
6875 && !set_cmse_veneer_addr_from_implib (info, htab,
6876 &cmse_stub_created))
6877 ret = FALSE;
6878
6879 if (prev_num_a8_fixes != num_a8_fixes)
6880 stub_changed = TRUE;
6881
6882 if (!stub_changed)
6883 break;
6884
6885 /* OK, we've added some stubs. Find out the new size of the
6886 stub sections. */
6887 for (stub_sec = htab->stub_bfd->sections;
6888 stub_sec != NULL;
6889 stub_sec = stub_sec->next)
6890 {
6891 /* Ignore non-stub sections. */
6892 if (!strstr (stub_sec->name, STUB_SUFFIX))
6893 continue;
6894
6895 stub_sec->size = 0;
6896 }
6897
6898 /* Add new SG veneers after those already in the input import
6899 library. */
6900 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6901 stub_type++)
6902 {
6903 bfd_vma *start_offset_p;
6904 asection **stub_sec_p;
6905
6906 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
6907 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6908 if (start_offset_p == NULL)
6909 continue;
6910
6911 BFD_ASSERT (stub_sec_p != NULL);
6912 if (*stub_sec_p != NULL)
6913 (*stub_sec_p)->size = *start_offset_p;
6914 }
6915
6916 /* Compute stub section size, considering padding. */
6917 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
6918 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6919 stub_type++)
6920 {
6921 int size, padding;
6922 asection **stub_sec_p;
6923
6924 padding = arm_dedicated_stub_section_padding (stub_type);
6925 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6926 /* Skip if no stub input section or no stub section padding
6927 required. */
6928 if ((stub_sec_p != NULL && *stub_sec_p == NULL) || padding == 0)
6929 continue;
6930 /* Stub section padding required but no dedicated section. */
6931 BFD_ASSERT (stub_sec_p);
6932
6933 size = (*stub_sec_p)->size;
6934 size = (size + padding - 1) & ~(padding - 1);
6935 (*stub_sec_p)->size = size;
6936 }
6937
6938 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
6939 if (htab->fix_cortex_a8)
6940 for (i = 0; i < num_a8_fixes; i++)
6941 {
6942 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
6943 a8_fixes[i].section, htab, a8_fixes[i].stub_type);
6944
6945 if (stub_sec == NULL)
6946 return FALSE;
6947
6948 stub_sec->size
6949 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
6950 NULL);
6951 }
6952
6953
6954 /* Ask the linker to do its stuff. */
6955 (*htab->layout_sections_again) ();
6956 first_veneer_scan = FALSE;
6957 }
6958
6959 /* Add stubs for Cortex-A8 erratum fixes now. */
6960 if (htab->fix_cortex_a8)
6961 {
6962 for (i = 0; i < num_a8_fixes; i++)
6963 {
6964 struct elf32_arm_stub_hash_entry *stub_entry;
6965 char *stub_name = a8_fixes[i].stub_name;
6966 asection *section = a8_fixes[i].section;
6967 unsigned int section_id = a8_fixes[i].section->id;
6968 asection *link_sec = htab->stub_group[section_id].link_sec;
6969 asection *stub_sec = htab->stub_group[section_id].stub_sec;
6970 const insn_sequence *template_sequence;
6971 int template_size, size = 0;
6972
6973 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
6974 TRUE, FALSE);
6975 if (stub_entry == NULL)
6976 {
6977 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
6978 section->owner, stub_name);
6979 return FALSE;
6980 }
6981
6982 stub_entry->stub_sec = stub_sec;
6983 stub_entry->stub_offset = (bfd_vma) -1;
6984 stub_entry->id_sec = link_sec;
6985 stub_entry->stub_type = a8_fixes[i].stub_type;
6986 stub_entry->source_value = a8_fixes[i].offset;
6987 stub_entry->target_section = a8_fixes[i].section;
6988 stub_entry->target_value = a8_fixes[i].target_offset;
6989 stub_entry->orig_insn = a8_fixes[i].orig_insn;
6990 stub_entry->branch_type = a8_fixes[i].branch_type;
6991
6992 size = find_stub_size_and_template (a8_fixes[i].stub_type,
6993 &template_sequence,
6994 &template_size);
6995
6996 stub_entry->stub_size = size;
6997 stub_entry->stub_template = template_sequence;
6998 stub_entry->stub_template_size = template_size;
6999 }
7000
7001 /* Stash the Cortex-A8 erratum fix array for use later in
7002 elf32_arm_write_section(). */
7003 htab->a8_erratum_fixes = a8_fixes;
7004 htab->num_a8_erratum_fixes = num_a8_fixes;
7005 }
7006 else
7007 {
7008 htab->a8_erratum_fixes = NULL;
7009 htab->num_a8_erratum_fixes = 0;
7010 }
7011 return ret;
7012 }
7013
7014 /* Build all the stubs associated with the current output file. The
7015 stubs are kept in a hash table attached to the main linker hash
7016 table. We also set up the .plt entries for statically linked PIC
7017 functions here. This function is called via arm_elf_finish in the
7018 linker. */
7019
7020 bfd_boolean
7021 elf32_arm_build_stubs (struct bfd_link_info *info)
7022 {
7023 asection *stub_sec;
7024 struct bfd_hash_table *table;
7025 enum elf32_arm_stub_type stub_type;
7026 struct elf32_arm_link_hash_table *htab;
7027
7028 htab = elf32_arm_hash_table (info);
7029 if (htab == NULL)
7030 return FALSE;
7031
7032 for (stub_sec = htab->stub_bfd->sections;
7033 stub_sec != NULL;
7034 stub_sec = stub_sec->next)
7035 {
7036 bfd_size_type size;
7037
7038 /* Ignore non-stub sections. */
7039 if (!strstr (stub_sec->name, STUB_SUFFIX))
7040 continue;
7041
7042 /* Allocate memory to hold the linker stubs. Zeroing the stub sections
7043 must at least be done for stub section requiring padding and for SG
7044 veneers to ensure that a non secure code branching to a removed SG
7045 veneer causes an error. */
7046 size = stub_sec->size;
7047 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
7048 if (stub_sec->contents == NULL && size != 0)
7049 return FALSE;
7050
7051 stub_sec->size = 0;
7052 }
7053
7054 /* Add new SG veneers after those already in the input import library. */
7055 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
7056 {
7057 bfd_vma *start_offset_p;
7058 asection **stub_sec_p;
7059
7060 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
7061 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
7062 if (start_offset_p == NULL)
7063 continue;
7064
7065 BFD_ASSERT (stub_sec_p != NULL);
7066 if (*stub_sec_p != NULL)
7067 (*stub_sec_p)->size = *start_offset_p;
7068 }
7069
7070 /* Build the stubs as directed by the stub hash table. */
7071 table = &htab->stub_hash_table;
7072 bfd_hash_traverse (table, arm_build_one_stub, info);
7073 if (htab->fix_cortex_a8)
7074 {
7075 /* Place the cortex a8 stubs last. */
7076 htab->fix_cortex_a8 = -1;
7077 bfd_hash_traverse (table, arm_build_one_stub, info);
7078 }
7079
7080 return TRUE;
7081 }
7082
7083 /* Locate the Thumb encoded calling stub for NAME. */
7084
7085 static struct elf_link_hash_entry *
7086 find_thumb_glue (struct bfd_link_info *link_info,
7087 const char *name,
7088 char **error_message)
7089 {
7090 char *tmp_name;
7091 struct elf_link_hash_entry *hash;
7092 struct elf32_arm_link_hash_table *hash_table;
7093
7094 /* We need a pointer to the armelf specific hash table. */
7095 hash_table = elf32_arm_hash_table (link_info);
7096 if (hash_table == NULL)
7097 return NULL;
7098
7099 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
7100 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
7101
7102 BFD_ASSERT (tmp_name);
7103
7104 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
7105
7106 hash = elf_link_hash_lookup
7107 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
7108
7109 if (hash == NULL
7110 && asprintf (error_message, _("unable to find %s glue '%s' for '%s'"),
7111 "Thumb", tmp_name, name) == -1)
7112 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
7113
7114 free (tmp_name);
7115
7116 return hash;
7117 }
7118
7119 /* Locate the ARM encoded calling stub for NAME. */
7120
7121 static struct elf_link_hash_entry *
7122 find_arm_glue (struct bfd_link_info *link_info,
7123 const char *name,
7124 char **error_message)
7125 {
7126 char *tmp_name;
7127 struct elf_link_hash_entry *myh;
7128 struct elf32_arm_link_hash_table *hash_table;
7129
7130 /* We need a pointer to the elfarm specific hash table. */
7131 hash_table = elf32_arm_hash_table (link_info);
7132 if (hash_table == NULL)
7133 return NULL;
7134
7135 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
7136 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
7137
7138 BFD_ASSERT (tmp_name);
7139
7140 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
7141
7142 myh = elf_link_hash_lookup
7143 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
7144
7145 if (myh == NULL
7146 && asprintf (error_message, _("unable to find %s glue '%s' for '%s'"),
7147 "ARM", tmp_name, name) == -1)
7148 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
7149
7150 free (tmp_name);
7151
7152 return myh;
7153 }
7154
7155 /* ARM->Thumb glue (static images):
7156
7157 .arm
7158 __func_from_arm:
7159 ldr r12, __func_addr
7160 bx r12
7161 __func_addr:
7162 .word func @ behave as if you saw a ARM_32 reloc.
7163
7164 (v5t static images)
7165 .arm
7166 __func_from_arm:
7167 ldr pc, __func_addr
7168 __func_addr:
7169 .word func @ behave as if you saw a ARM_32 reloc.
7170
7171 (relocatable images)
7172 .arm
7173 __func_from_arm:
7174 ldr r12, __func_offset
7175 add r12, r12, pc
7176 bx r12
7177 __func_offset:
7178 .word func - . */
7179
7180 #define ARM2THUMB_STATIC_GLUE_SIZE 12
7181 static const insn32 a2t1_ldr_insn = 0xe59fc000;
7182 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
7183 static const insn32 a2t3_func_addr_insn = 0x00000001;
7184
7185 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
7186 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
7187 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
7188
7189 #define ARM2THUMB_PIC_GLUE_SIZE 16
7190 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
7191 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
7192 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
7193
7194 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
7195
7196 .thumb .thumb
7197 .align 2 .align 2
7198 __func_from_thumb: __func_from_thumb:
7199 bx pc push {r6, lr}
7200 nop ldr r6, __func_addr
7201 .arm mov lr, pc
7202 b func bx r6
7203 .arm
7204 ;; back_to_thumb
7205 ldmia r13! {r6, lr}
7206 bx lr
7207 __func_addr:
7208 .word func */
7209
7210 #define THUMB2ARM_GLUE_SIZE 8
7211 static const insn16 t2a1_bx_pc_insn = 0x4778;
7212 static const insn16 t2a2_noop_insn = 0x46c0;
7213 static const insn32 t2a3_b_insn = 0xea000000;
7214
7215 #define VFP11_ERRATUM_VENEER_SIZE 8
7216 #define STM32L4XX_ERRATUM_LDM_VENEER_SIZE 16
7217 #define STM32L4XX_ERRATUM_VLDM_VENEER_SIZE 24
7218
7219 #define ARM_BX_VENEER_SIZE 12
7220 static const insn32 armbx1_tst_insn = 0xe3100001;
7221 static const insn32 armbx2_moveq_insn = 0x01a0f000;
7222 static const insn32 armbx3_bx_insn = 0xe12fff10;
7223
7224 #ifndef ELFARM_NABI_C_INCLUDED
7225 static void
7226 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
7227 {
7228 asection * s;
7229 bfd_byte * contents;
7230
7231 if (size == 0)
7232 {
7233 /* Do not include empty glue sections in the output. */
7234 if (abfd != NULL)
7235 {
7236 s = bfd_get_linker_section (abfd, name);
7237 if (s != NULL)
7238 s->flags |= SEC_EXCLUDE;
7239 }
7240 return;
7241 }
7242
7243 BFD_ASSERT (abfd != NULL);
7244
7245 s = bfd_get_linker_section (abfd, name);
7246 BFD_ASSERT (s != NULL);
7247
7248 contents = (bfd_byte *) bfd_zalloc (abfd, size);
7249
7250 BFD_ASSERT (s->size == size);
7251 s->contents = contents;
7252 }
7253
7254 bfd_boolean
7255 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
7256 {
7257 struct elf32_arm_link_hash_table * globals;
7258
7259 globals = elf32_arm_hash_table (info);
7260 BFD_ASSERT (globals != NULL);
7261
7262 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7263 globals->arm_glue_size,
7264 ARM2THUMB_GLUE_SECTION_NAME);
7265
7266 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7267 globals->thumb_glue_size,
7268 THUMB2ARM_GLUE_SECTION_NAME);
7269
7270 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7271 globals->vfp11_erratum_glue_size,
7272 VFP11_ERRATUM_VENEER_SECTION_NAME);
7273
7274 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7275 globals->stm32l4xx_erratum_glue_size,
7276 STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7277
7278 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7279 globals->bx_glue_size,
7280 ARM_BX_GLUE_SECTION_NAME);
7281
7282 return TRUE;
7283 }
7284
7285 /* Allocate space and symbols for calling a Thumb function from Arm mode.
7286 returns the symbol identifying the stub. */
7287
7288 static struct elf_link_hash_entry *
7289 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
7290 struct elf_link_hash_entry * h)
7291 {
7292 const char * name = h->root.root.string;
7293 asection * s;
7294 char * tmp_name;
7295 struct elf_link_hash_entry * myh;
7296 struct bfd_link_hash_entry * bh;
7297 struct elf32_arm_link_hash_table * globals;
7298 bfd_vma val;
7299 bfd_size_type size;
7300
7301 globals = elf32_arm_hash_table (link_info);
7302 BFD_ASSERT (globals != NULL);
7303 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7304
7305 s = bfd_get_linker_section
7306 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
7307
7308 BFD_ASSERT (s != NULL);
7309
7310 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
7311 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
7312
7313 BFD_ASSERT (tmp_name);
7314
7315 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
7316
7317 myh = elf_link_hash_lookup
7318 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
7319
7320 if (myh != NULL)
7321 {
7322 /* We've already seen this guy. */
7323 free (tmp_name);
7324 return myh;
7325 }
7326
7327 /* The only trick here is using hash_table->arm_glue_size as the value.
7328 Even though the section isn't allocated yet, this is where we will be
7329 putting it. The +1 on the value marks that the stub has not been
7330 output yet - not that it is a Thumb function. */
7331 bh = NULL;
7332 val = globals->arm_glue_size + 1;
7333 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
7334 tmp_name, BSF_GLOBAL, s, val,
7335 NULL, TRUE, FALSE, &bh);
7336
7337 myh = (struct elf_link_hash_entry *) bh;
7338 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7339 myh->forced_local = 1;
7340
7341 free (tmp_name);
7342
7343 if (bfd_link_pic (link_info)
7344 || globals->root.is_relocatable_executable
7345 || globals->pic_veneer)
7346 size = ARM2THUMB_PIC_GLUE_SIZE;
7347 else if (globals->use_blx)
7348 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
7349 else
7350 size = ARM2THUMB_STATIC_GLUE_SIZE;
7351
7352 s->size += size;
7353 globals->arm_glue_size += size;
7354
7355 return myh;
7356 }
7357
7358 /* Allocate space for ARMv4 BX veneers. */
7359
7360 static void
7361 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
7362 {
7363 asection * s;
7364 struct elf32_arm_link_hash_table *globals;
7365 char *tmp_name;
7366 struct elf_link_hash_entry *myh;
7367 struct bfd_link_hash_entry *bh;
7368 bfd_vma val;
7369
7370 /* BX PC does not need a veneer. */
7371 if (reg == 15)
7372 return;
7373
7374 globals = elf32_arm_hash_table (link_info);
7375 BFD_ASSERT (globals != NULL);
7376 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7377
7378 /* Check if this veneer has already been allocated. */
7379 if (globals->bx_glue_offset[reg])
7380 return;
7381
7382 s = bfd_get_linker_section
7383 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
7384
7385 BFD_ASSERT (s != NULL);
7386
7387 /* Add symbol for veneer. */
7388 tmp_name = (char *)
7389 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
7390
7391 BFD_ASSERT (tmp_name);
7392
7393 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
7394
7395 myh = elf_link_hash_lookup
7396 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
7397
7398 BFD_ASSERT (myh == NULL);
7399
7400 bh = NULL;
7401 val = globals->bx_glue_size;
7402 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
7403 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7404 NULL, TRUE, FALSE, &bh);
7405
7406 myh = (struct elf_link_hash_entry *) bh;
7407 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7408 myh->forced_local = 1;
7409
7410 s->size += ARM_BX_VENEER_SIZE;
7411 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
7412 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
7413 }
7414
7415
7416 /* Add an entry to the code/data map for section SEC. */
7417
7418 static void
7419 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
7420 {
7421 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
7422 unsigned int newidx;
7423
7424 if (sec_data->map == NULL)
7425 {
7426 sec_data->map = (elf32_arm_section_map *)
7427 bfd_malloc (sizeof (elf32_arm_section_map));
7428 sec_data->mapcount = 0;
7429 sec_data->mapsize = 1;
7430 }
7431
7432 newidx = sec_data->mapcount++;
7433
7434 if (sec_data->mapcount > sec_data->mapsize)
7435 {
7436 sec_data->mapsize *= 2;
7437 sec_data->map = (elf32_arm_section_map *)
7438 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
7439 * sizeof (elf32_arm_section_map));
7440 }
7441
7442 if (sec_data->map)
7443 {
7444 sec_data->map[newidx].vma = vma;
7445 sec_data->map[newidx].type = type;
7446 }
7447 }
7448
7449
7450 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
7451 veneers are handled for now. */
7452
7453 static bfd_vma
7454 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
7455 elf32_vfp11_erratum_list *branch,
7456 bfd *branch_bfd,
7457 asection *branch_sec,
7458 unsigned int offset)
7459 {
7460 asection *s;
7461 struct elf32_arm_link_hash_table *hash_table;
7462 char *tmp_name;
7463 struct elf_link_hash_entry *myh;
7464 struct bfd_link_hash_entry *bh;
7465 bfd_vma val;
7466 struct _arm_elf_section_data *sec_data;
7467 elf32_vfp11_erratum_list *newerr;
7468
7469 hash_table = elf32_arm_hash_table (link_info);
7470 BFD_ASSERT (hash_table != NULL);
7471 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
7472
7473 s = bfd_get_linker_section
7474 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
7475
7476 sec_data = elf32_arm_section_data (s);
7477
7478 BFD_ASSERT (s != NULL);
7479
7480 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7481 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
7482
7483 BFD_ASSERT (tmp_name);
7484
7485 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
7486 hash_table->num_vfp11_fixes);
7487
7488 myh = elf_link_hash_lookup
7489 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7490
7491 BFD_ASSERT (myh == NULL);
7492
7493 bh = NULL;
7494 val = hash_table->vfp11_erratum_glue_size;
7495 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
7496 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7497 NULL, TRUE, FALSE, &bh);
7498
7499 myh = (struct elf_link_hash_entry *) bh;
7500 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7501 myh->forced_local = 1;
7502
7503 /* Link veneer back to calling location. */
7504 sec_data->erratumcount += 1;
7505 newerr = (elf32_vfp11_erratum_list *)
7506 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
7507
7508 newerr->type = VFP11_ERRATUM_ARM_VENEER;
7509 newerr->vma = -1;
7510 newerr->u.v.branch = branch;
7511 newerr->u.v.id = hash_table->num_vfp11_fixes;
7512 branch->u.b.veneer = newerr;
7513
7514 newerr->next = sec_data->erratumlist;
7515 sec_data->erratumlist = newerr;
7516
7517 /* A symbol for the return from the veneer. */
7518 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
7519 hash_table->num_vfp11_fixes);
7520
7521 myh = elf_link_hash_lookup
7522 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7523
7524 if (myh != NULL)
7525 abort ();
7526
7527 bh = NULL;
7528 val = offset + 4;
7529 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
7530 branch_sec, val, NULL, TRUE, FALSE, &bh);
7531
7532 myh = (struct elf_link_hash_entry *) bh;
7533 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7534 myh->forced_local = 1;
7535
7536 free (tmp_name);
7537
7538 /* Generate a mapping symbol for the veneer section, and explicitly add an
7539 entry for that symbol to the code/data map for the section. */
7540 if (hash_table->vfp11_erratum_glue_size == 0)
7541 {
7542 bh = NULL;
7543 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
7544 ever requires this erratum fix. */
7545 _bfd_generic_link_add_one_symbol (link_info,
7546 hash_table->bfd_of_glue_owner, "$a",
7547 BSF_LOCAL, s, 0, NULL,
7548 TRUE, FALSE, &bh);
7549
7550 myh = (struct elf_link_hash_entry *) bh;
7551 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7552 myh->forced_local = 1;
7553
7554 /* The elf32_arm_init_maps function only cares about symbols from input
7555 BFDs. We must make a note of this generated mapping symbol
7556 ourselves so that code byteswapping works properly in
7557 elf32_arm_write_section. */
7558 elf32_arm_section_map_add (s, 'a', 0);
7559 }
7560
7561 s->size += VFP11_ERRATUM_VENEER_SIZE;
7562 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
7563 hash_table->num_vfp11_fixes++;
7564
7565 /* The offset of the veneer. */
7566 return val;
7567 }
7568
7569 /* Record information about a STM32L4XX STM erratum veneer. Only THUMB-mode
7570 veneers need to be handled because used only in Cortex-M. */
7571
7572 static bfd_vma
7573 record_stm32l4xx_erratum_veneer (struct bfd_link_info *link_info,
7574 elf32_stm32l4xx_erratum_list *branch,
7575 bfd *branch_bfd,
7576 asection *branch_sec,
7577 unsigned int offset,
7578 bfd_size_type veneer_size)
7579 {
7580 asection *s;
7581 struct elf32_arm_link_hash_table *hash_table;
7582 char *tmp_name;
7583 struct elf_link_hash_entry *myh;
7584 struct bfd_link_hash_entry *bh;
7585 bfd_vma val;
7586 struct _arm_elf_section_data *sec_data;
7587 elf32_stm32l4xx_erratum_list *newerr;
7588
7589 hash_table = elf32_arm_hash_table (link_info);
7590 BFD_ASSERT (hash_table != NULL);
7591 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
7592
7593 s = bfd_get_linker_section
7594 (hash_table->bfd_of_glue_owner, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7595
7596 BFD_ASSERT (s != NULL);
7597
7598 sec_data = elf32_arm_section_data (s);
7599
7600 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7601 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
7602
7603 BFD_ASSERT (tmp_name);
7604
7605 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
7606 hash_table->num_stm32l4xx_fixes);
7607
7608 myh = elf_link_hash_lookup
7609 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7610
7611 BFD_ASSERT (myh == NULL);
7612
7613 bh = NULL;
7614 val = hash_table->stm32l4xx_erratum_glue_size;
7615 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
7616 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7617 NULL, TRUE, FALSE, &bh);
7618
7619 myh = (struct elf_link_hash_entry *) bh;
7620 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7621 myh->forced_local = 1;
7622
7623 /* Link veneer back to calling location. */
7624 sec_data->stm32l4xx_erratumcount += 1;
7625 newerr = (elf32_stm32l4xx_erratum_list *)
7626 bfd_zmalloc (sizeof (elf32_stm32l4xx_erratum_list));
7627
7628 newerr->type = STM32L4XX_ERRATUM_VENEER;
7629 newerr->vma = -1;
7630 newerr->u.v.branch = branch;
7631 newerr->u.v.id = hash_table->num_stm32l4xx_fixes;
7632 branch->u.b.veneer = newerr;
7633
7634 newerr->next = sec_data->stm32l4xx_erratumlist;
7635 sec_data->stm32l4xx_erratumlist = newerr;
7636
7637 /* A symbol for the return from the veneer. */
7638 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
7639 hash_table->num_stm32l4xx_fixes);
7640
7641 myh = elf_link_hash_lookup
7642 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7643
7644 if (myh != NULL)
7645 abort ();
7646
7647 bh = NULL;
7648 val = offset + 4;
7649 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
7650 branch_sec, val, NULL, TRUE, FALSE, &bh);
7651
7652 myh = (struct elf_link_hash_entry *) bh;
7653 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7654 myh->forced_local = 1;
7655
7656 free (tmp_name);
7657
7658 /* Generate a mapping symbol for the veneer section, and explicitly add an
7659 entry for that symbol to the code/data map for the section. */
7660 if (hash_table->stm32l4xx_erratum_glue_size == 0)
7661 {
7662 bh = NULL;
7663 /* Creates a THUMB symbol since there is no other choice. */
7664 _bfd_generic_link_add_one_symbol (link_info,
7665 hash_table->bfd_of_glue_owner, "$t",
7666 BSF_LOCAL, s, 0, NULL,
7667 TRUE, FALSE, &bh);
7668
7669 myh = (struct elf_link_hash_entry *) bh;
7670 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7671 myh->forced_local = 1;
7672
7673 /* The elf32_arm_init_maps function only cares about symbols from input
7674 BFDs. We must make a note of this generated mapping symbol
7675 ourselves so that code byteswapping works properly in
7676 elf32_arm_write_section. */
7677 elf32_arm_section_map_add (s, 't', 0);
7678 }
7679
7680 s->size += veneer_size;
7681 hash_table->stm32l4xx_erratum_glue_size += veneer_size;
7682 hash_table->num_stm32l4xx_fixes++;
7683
7684 /* The offset of the veneer. */
7685 return val;
7686 }
7687
7688 #define ARM_GLUE_SECTION_FLAGS \
7689 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
7690 | SEC_READONLY | SEC_LINKER_CREATED)
7691
7692 /* Create a fake section for use by the ARM backend of the linker. */
7693
7694 static bfd_boolean
7695 arm_make_glue_section (bfd * abfd, const char * name)
7696 {
7697 asection * sec;
7698
7699 sec = bfd_get_linker_section (abfd, name);
7700 if (sec != NULL)
7701 /* Already made. */
7702 return TRUE;
7703
7704 sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
7705
7706 if (sec == NULL
7707 || !bfd_set_section_alignment (abfd, sec, 2))
7708 return FALSE;
7709
7710 /* Set the gc mark to prevent the section from being removed by garbage
7711 collection, despite the fact that no relocs refer to this section. */
7712 sec->gc_mark = 1;
7713
7714 return TRUE;
7715 }
7716
7717 /* Set size of .plt entries. This function is called from the
7718 linker scripts in ld/emultempl/{armelf}.em. */
7719
7720 void
7721 bfd_elf32_arm_use_long_plt (void)
7722 {
7723 elf32_arm_use_long_plt_entry = TRUE;
7724 }
7725
7726 /* Add the glue sections to ABFD. This function is called from the
7727 linker scripts in ld/emultempl/{armelf}.em. */
7728
7729 bfd_boolean
7730 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
7731 struct bfd_link_info *info)
7732 {
7733 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
7734 bfd_boolean dostm32l4xx = globals
7735 && globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE;
7736 bfd_boolean addglue;
7737
7738 /* If we are only performing a partial
7739 link do not bother adding the glue. */
7740 if (bfd_link_relocatable (info))
7741 return TRUE;
7742
7743 addglue = arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
7744 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
7745 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
7746 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
7747
7748 if (!dostm32l4xx)
7749 return addglue;
7750
7751 return addglue
7752 && arm_make_glue_section (abfd, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7753 }
7754
7755 /* Mark output sections of veneers needing a dedicated one with SEC_KEEP. This
7756 ensures they are not marked for deletion by
7757 strip_excluded_output_sections () when veneers are going to be created
7758 later. Not doing so would trigger assert on empty section size in
7759 lang_size_sections_1 (). */
7760
7761 void
7762 bfd_elf32_arm_keep_private_stub_output_sections (struct bfd_link_info *info)
7763 {
7764 enum elf32_arm_stub_type stub_type;
7765
7766 /* If we are only performing a partial
7767 link do not bother adding the glue. */
7768 if (bfd_link_relocatable (info))
7769 return;
7770
7771 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
7772 {
7773 asection *out_sec;
7774 const char *out_sec_name;
7775
7776 if (!arm_dedicated_stub_output_section_required (stub_type))
7777 continue;
7778
7779 out_sec_name = arm_dedicated_stub_output_section_name (stub_type);
7780 out_sec = bfd_get_section_by_name (info->output_bfd, out_sec_name);
7781 if (out_sec != NULL)
7782 out_sec->flags |= SEC_KEEP;
7783 }
7784 }
7785
7786 /* Select a BFD to be used to hold the sections used by the glue code.
7787 This function is called from the linker scripts in ld/emultempl/
7788 {armelf/pe}.em. */
7789
7790 bfd_boolean
7791 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
7792 {
7793 struct elf32_arm_link_hash_table *globals;
7794
7795 /* If we are only performing a partial link
7796 do not bother getting a bfd to hold the glue. */
7797 if (bfd_link_relocatable (info))
7798 return TRUE;
7799
7800 /* Make sure we don't attach the glue sections to a dynamic object. */
7801 BFD_ASSERT (!(abfd->flags & DYNAMIC));
7802
7803 globals = elf32_arm_hash_table (info);
7804 BFD_ASSERT (globals != NULL);
7805
7806 if (globals->bfd_of_glue_owner != NULL)
7807 return TRUE;
7808
7809 /* Save the bfd for later use. */
7810 globals->bfd_of_glue_owner = abfd;
7811
7812 return TRUE;
7813 }
7814
7815 static void
7816 check_use_blx (struct elf32_arm_link_hash_table *globals)
7817 {
7818 int cpu_arch;
7819
7820 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
7821 Tag_CPU_arch);
7822
7823 if (globals->fix_arm1176)
7824 {
7825 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
7826 globals->use_blx = 1;
7827 }
7828 else
7829 {
7830 if (cpu_arch > TAG_CPU_ARCH_V4T)
7831 globals->use_blx = 1;
7832 }
7833 }
7834
7835 bfd_boolean
7836 bfd_elf32_arm_process_before_allocation (bfd *abfd,
7837 struct bfd_link_info *link_info)
7838 {
7839 Elf_Internal_Shdr *symtab_hdr;
7840 Elf_Internal_Rela *internal_relocs = NULL;
7841 Elf_Internal_Rela *irel, *irelend;
7842 bfd_byte *contents = NULL;
7843
7844 asection *sec;
7845 struct elf32_arm_link_hash_table *globals;
7846
7847 /* If we are only performing a partial link do not bother
7848 to construct any glue. */
7849 if (bfd_link_relocatable (link_info))
7850 return TRUE;
7851
7852 /* Here we have a bfd that is to be included on the link. We have a
7853 hook to do reloc rummaging, before section sizes are nailed down. */
7854 globals = elf32_arm_hash_table (link_info);
7855 BFD_ASSERT (globals != NULL);
7856
7857 check_use_blx (globals);
7858
7859 if (globals->byteswap_code && !bfd_big_endian (abfd))
7860 {
7861 _bfd_error_handler (_("%pB: BE8 images only valid in big-endian mode"),
7862 abfd);
7863 return FALSE;
7864 }
7865
7866 /* PR 5398: If we have not decided to include any loadable sections in
7867 the output then we will not have a glue owner bfd. This is OK, it
7868 just means that there is nothing else for us to do here. */
7869 if (globals->bfd_of_glue_owner == NULL)
7870 return TRUE;
7871
7872 /* Rummage around all the relocs and map the glue vectors. */
7873 sec = abfd->sections;
7874
7875 if (sec == NULL)
7876 return TRUE;
7877
7878 for (; sec != NULL; sec = sec->next)
7879 {
7880 if (sec->reloc_count == 0)
7881 continue;
7882
7883 if ((sec->flags & SEC_EXCLUDE) != 0)
7884 continue;
7885
7886 symtab_hdr = & elf_symtab_hdr (abfd);
7887
7888 /* Load the relocs. */
7889 internal_relocs
7890 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
7891
7892 if (internal_relocs == NULL)
7893 goto error_return;
7894
7895 irelend = internal_relocs + sec->reloc_count;
7896 for (irel = internal_relocs; irel < irelend; irel++)
7897 {
7898 long r_type;
7899 unsigned long r_index;
7900
7901 struct elf_link_hash_entry *h;
7902
7903 r_type = ELF32_R_TYPE (irel->r_info);
7904 r_index = ELF32_R_SYM (irel->r_info);
7905
7906 /* These are the only relocation types we care about. */
7907 if ( r_type != R_ARM_PC24
7908 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
7909 continue;
7910
7911 /* Get the section contents if we haven't done so already. */
7912 if (contents == NULL)
7913 {
7914 /* Get cached copy if it exists. */
7915 if (elf_section_data (sec)->this_hdr.contents != NULL)
7916 contents = elf_section_data (sec)->this_hdr.contents;
7917 else
7918 {
7919 /* Go get them off disk. */
7920 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
7921 goto error_return;
7922 }
7923 }
7924
7925 if (r_type == R_ARM_V4BX)
7926 {
7927 int reg;
7928
7929 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
7930 record_arm_bx_glue (link_info, reg);
7931 continue;
7932 }
7933
7934 /* If the relocation is not against a symbol it cannot concern us. */
7935 h = NULL;
7936
7937 /* We don't care about local symbols. */
7938 if (r_index < symtab_hdr->sh_info)
7939 continue;
7940
7941 /* This is an external symbol. */
7942 r_index -= symtab_hdr->sh_info;
7943 h = (struct elf_link_hash_entry *)
7944 elf_sym_hashes (abfd)[r_index];
7945
7946 /* If the relocation is against a static symbol it must be within
7947 the current section and so cannot be a cross ARM/Thumb relocation. */
7948 if (h == NULL)
7949 continue;
7950
7951 /* If the call will go through a PLT entry then we do not need
7952 glue. */
7953 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
7954 continue;
7955
7956 switch (r_type)
7957 {
7958 case R_ARM_PC24:
7959 /* This one is a call from arm code. We need to look up
7960 the target of the call. If it is a thumb target, we
7961 insert glue. */
7962 if (ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
7963 == ST_BRANCH_TO_THUMB)
7964 record_arm_to_thumb_glue (link_info, h);
7965 break;
7966
7967 default:
7968 abort ();
7969 }
7970 }
7971
7972 if (contents != NULL
7973 && elf_section_data (sec)->this_hdr.contents != contents)
7974 free (contents);
7975 contents = NULL;
7976
7977 if (internal_relocs != NULL
7978 && elf_section_data (sec)->relocs != internal_relocs)
7979 free (internal_relocs);
7980 internal_relocs = NULL;
7981 }
7982
7983 return TRUE;
7984
7985 error_return:
7986 if (contents != NULL
7987 && elf_section_data (sec)->this_hdr.contents != contents)
7988 free (contents);
7989 if (internal_relocs != NULL
7990 && elf_section_data (sec)->relocs != internal_relocs)
7991 free (internal_relocs);
7992
7993 return FALSE;
7994 }
7995 #endif
7996
7997
7998 /* Initialise maps of ARM/Thumb/data for input BFDs. */
7999
8000 void
8001 bfd_elf32_arm_init_maps (bfd *abfd)
8002 {
8003 Elf_Internal_Sym *isymbuf;
8004 Elf_Internal_Shdr *hdr;
8005 unsigned int i, localsyms;
8006
8007 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
8008 if (! is_arm_elf (abfd))
8009 return;
8010
8011 if ((abfd->flags & DYNAMIC) != 0)
8012 return;
8013
8014 hdr = & elf_symtab_hdr (abfd);
8015 localsyms = hdr->sh_info;
8016
8017 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
8018 should contain the number of local symbols, which should come before any
8019 global symbols. Mapping symbols are always local. */
8020 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
8021 NULL);
8022
8023 /* No internal symbols read? Skip this BFD. */
8024 if (isymbuf == NULL)
8025 return;
8026
8027 for (i = 0; i < localsyms; i++)
8028 {
8029 Elf_Internal_Sym *isym = &isymbuf[i];
8030 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
8031 const char *name;
8032
8033 if (sec != NULL
8034 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
8035 {
8036 name = bfd_elf_string_from_elf_section (abfd,
8037 hdr->sh_link, isym->st_name);
8038
8039 if (bfd_is_arm_special_symbol_name (name,
8040 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
8041 elf32_arm_section_map_add (sec, name[1], isym->st_value);
8042 }
8043 }
8044 }
8045
8046
8047 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
8048 say what they wanted. */
8049
8050 void
8051 bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
8052 {
8053 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8054 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
8055
8056 if (globals == NULL)
8057 return;
8058
8059 if (globals->fix_cortex_a8 == -1)
8060 {
8061 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
8062 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
8063 && (out_attr[Tag_CPU_arch_profile].i == 'A'
8064 || out_attr[Tag_CPU_arch_profile].i == 0))
8065 globals->fix_cortex_a8 = 1;
8066 else
8067 globals->fix_cortex_a8 = 0;
8068 }
8069 }
8070
8071
8072 void
8073 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
8074 {
8075 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8076 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
8077
8078 if (globals == NULL)
8079 return;
8080 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
8081 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
8082 {
8083 switch (globals->vfp11_fix)
8084 {
8085 case BFD_ARM_VFP11_FIX_DEFAULT:
8086 case BFD_ARM_VFP11_FIX_NONE:
8087 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
8088 break;
8089
8090 default:
8091 /* Give a warning, but do as the user requests anyway. */
8092 _bfd_error_handler (_("%pB: warning: selected VFP11 erratum "
8093 "workaround is not necessary for target architecture"), obfd);
8094 }
8095 }
8096 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
8097 /* For earlier architectures, we might need the workaround, but do not
8098 enable it by default. If users is running with broken hardware, they
8099 must enable the erratum fix explicitly. */
8100 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
8101 }
8102
8103 void
8104 bfd_elf32_arm_set_stm32l4xx_fix (bfd *obfd, struct bfd_link_info *link_info)
8105 {
8106 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8107 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
8108
8109 if (globals == NULL)
8110 return;
8111
8112 /* We assume only Cortex-M4 may require the fix. */
8113 if (out_attr[Tag_CPU_arch].i != TAG_CPU_ARCH_V7E_M
8114 || out_attr[Tag_CPU_arch_profile].i != 'M')
8115 {
8116 if (globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE)
8117 /* Give a warning, but do as the user requests anyway. */
8118 _bfd_error_handler
8119 (_("%pB: warning: selected STM32L4XX erratum "
8120 "workaround is not necessary for target architecture"), obfd);
8121 }
8122 }
8123
8124 enum bfd_arm_vfp11_pipe
8125 {
8126 VFP11_FMAC,
8127 VFP11_LS,
8128 VFP11_DS,
8129 VFP11_BAD
8130 };
8131
8132 /* Return a VFP register number. This is encoded as RX:X for single-precision
8133 registers, or X:RX for double-precision registers, where RX is the group of
8134 four bits in the instruction encoding and X is the single extension bit.
8135 RX and X fields are specified using their lowest (starting) bit. The return
8136 value is:
8137
8138 0...31: single-precision registers s0...s31
8139 32...63: double-precision registers d0...d31.
8140
8141 Although X should be zero for VFP11 (encoding d0...d15 only), we might
8142 encounter VFP3 instructions, so we allow the full range for DP registers. */
8143
8144 static unsigned int
8145 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
8146 unsigned int x)
8147 {
8148 if (is_double)
8149 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
8150 else
8151 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
8152 }
8153
8154 /* Set bits in *WMASK according to a register number REG as encoded by
8155 bfd_arm_vfp11_regno(). Ignore d16-d31. */
8156
8157 static void
8158 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
8159 {
8160 if (reg < 32)
8161 *wmask |= 1 << reg;
8162 else if (reg < 48)
8163 *wmask |= 3 << ((reg - 32) * 2);
8164 }
8165
8166 /* Return TRUE if WMASK overwrites anything in REGS. */
8167
8168 static bfd_boolean
8169 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
8170 {
8171 int i;
8172
8173 for (i = 0; i < numregs; i++)
8174 {
8175 unsigned int reg = regs[i];
8176
8177 if (reg < 32 && (wmask & (1 << reg)) != 0)
8178 return TRUE;
8179
8180 reg -= 32;
8181
8182 if (reg >= 16)
8183 continue;
8184
8185 if ((wmask & (3 << (reg * 2))) != 0)
8186 return TRUE;
8187 }
8188
8189 return FALSE;
8190 }
8191
8192 /* In this function, we're interested in two things: finding input registers
8193 for VFP data-processing instructions, and finding the set of registers which
8194 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
8195 hold the written set, so FLDM etc. are easy to deal with (we're only
8196 interested in 32 SP registers or 16 dp registers, due to the VFP version
8197 implemented by the chip in question). DP registers are marked by setting
8198 both SP registers in the write mask). */
8199
8200 static enum bfd_arm_vfp11_pipe
8201 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
8202 int *numregs)
8203 {
8204 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
8205 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
8206
8207 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
8208 {
8209 unsigned int pqrs;
8210 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
8211 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
8212
8213 pqrs = ((insn & 0x00800000) >> 20)
8214 | ((insn & 0x00300000) >> 19)
8215 | ((insn & 0x00000040) >> 6);
8216
8217 switch (pqrs)
8218 {
8219 case 0: /* fmac[sd]. */
8220 case 1: /* fnmac[sd]. */
8221 case 2: /* fmsc[sd]. */
8222 case 3: /* fnmsc[sd]. */
8223 vpipe = VFP11_FMAC;
8224 bfd_arm_vfp11_write_mask (destmask, fd);
8225 regs[0] = fd;
8226 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
8227 regs[2] = fm;
8228 *numregs = 3;
8229 break;
8230
8231 case 4: /* fmul[sd]. */
8232 case 5: /* fnmul[sd]. */
8233 case 6: /* fadd[sd]. */
8234 case 7: /* fsub[sd]. */
8235 vpipe = VFP11_FMAC;
8236 goto vfp_binop;
8237
8238 case 8: /* fdiv[sd]. */
8239 vpipe = VFP11_DS;
8240 vfp_binop:
8241 bfd_arm_vfp11_write_mask (destmask, fd);
8242 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
8243 regs[1] = fm;
8244 *numregs = 2;
8245 break;
8246
8247 case 15: /* extended opcode. */
8248 {
8249 unsigned int extn = ((insn >> 15) & 0x1e)
8250 | ((insn >> 7) & 1);
8251
8252 switch (extn)
8253 {
8254 case 0: /* fcpy[sd]. */
8255 case 1: /* fabs[sd]. */
8256 case 2: /* fneg[sd]. */
8257 case 8: /* fcmp[sd]. */
8258 case 9: /* fcmpe[sd]. */
8259 case 10: /* fcmpz[sd]. */
8260 case 11: /* fcmpez[sd]. */
8261 case 16: /* fuito[sd]. */
8262 case 17: /* fsito[sd]. */
8263 case 24: /* ftoui[sd]. */
8264 case 25: /* ftouiz[sd]. */
8265 case 26: /* ftosi[sd]. */
8266 case 27: /* ftosiz[sd]. */
8267 /* These instructions will not bounce due to underflow. */
8268 *numregs = 0;
8269 vpipe = VFP11_FMAC;
8270 break;
8271
8272 case 3: /* fsqrt[sd]. */
8273 /* fsqrt cannot underflow, but it can (perhaps) overwrite
8274 registers to cause the erratum in previous instructions. */
8275 bfd_arm_vfp11_write_mask (destmask, fd);
8276 vpipe = VFP11_DS;
8277 break;
8278
8279 case 15: /* fcvt{ds,sd}. */
8280 {
8281 int rnum = 0;
8282
8283 bfd_arm_vfp11_write_mask (destmask, fd);
8284
8285 /* Only FCVTSD can underflow. */
8286 if ((insn & 0x100) != 0)
8287 regs[rnum++] = fm;
8288
8289 *numregs = rnum;
8290
8291 vpipe = VFP11_FMAC;
8292 }
8293 break;
8294
8295 default:
8296 return VFP11_BAD;
8297 }
8298 }
8299 break;
8300
8301 default:
8302 return VFP11_BAD;
8303 }
8304 }
8305 /* Two-register transfer. */
8306 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
8307 {
8308 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
8309
8310 if ((insn & 0x100000) == 0)
8311 {
8312 if (is_double)
8313 bfd_arm_vfp11_write_mask (destmask, fm);
8314 else
8315 {
8316 bfd_arm_vfp11_write_mask (destmask, fm);
8317 bfd_arm_vfp11_write_mask (destmask, fm + 1);
8318 }
8319 }
8320
8321 vpipe = VFP11_LS;
8322 }
8323 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
8324 {
8325 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
8326 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
8327
8328 switch (puw)
8329 {
8330 case 0: /* Two-reg transfer. We should catch these above. */
8331 abort ();
8332
8333 case 2: /* fldm[sdx]. */
8334 case 3:
8335 case 5:
8336 {
8337 unsigned int i, offset = insn & 0xff;
8338
8339 if (is_double)
8340 offset >>= 1;
8341
8342 for (i = fd; i < fd + offset; i++)
8343 bfd_arm_vfp11_write_mask (destmask, i);
8344 }
8345 break;
8346
8347 case 4: /* fld[sd]. */
8348 case 6:
8349 bfd_arm_vfp11_write_mask (destmask, fd);
8350 break;
8351
8352 default:
8353 return VFP11_BAD;
8354 }
8355
8356 vpipe = VFP11_LS;
8357 }
8358 /* Single-register transfer. Note L==0. */
8359 else if ((insn & 0x0f100e10) == 0x0e000a10)
8360 {
8361 unsigned int opcode = (insn >> 21) & 7;
8362 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
8363
8364 switch (opcode)
8365 {
8366 case 0: /* fmsr/fmdlr. */
8367 case 1: /* fmdhr. */
8368 /* Mark fmdhr and fmdlr as writing to the whole of the DP
8369 destination register. I don't know if this is exactly right,
8370 but it is the conservative choice. */
8371 bfd_arm_vfp11_write_mask (destmask, fn);
8372 break;
8373
8374 case 7: /* fmxr. */
8375 break;
8376 }
8377
8378 vpipe = VFP11_LS;
8379 }
8380
8381 return vpipe;
8382 }
8383
8384
8385 static int elf32_arm_compare_mapping (const void * a, const void * b);
8386
8387
8388 /* Look for potentially-troublesome code sequences which might trigger the
8389 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
8390 (available from ARM) for details of the erratum. A short version is
8391 described in ld.texinfo. */
8392
8393 bfd_boolean
8394 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
8395 {
8396 asection *sec;
8397 bfd_byte *contents = NULL;
8398 int state = 0;
8399 int regs[3], numregs = 0;
8400 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8401 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
8402
8403 if (globals == NULL)
8404 return FALSE;
8405
8406 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
8407 The states transition as follows:
8408
8409 0 -> 1 (vector) or 0 -> 2 (scalar)
8410 A VFP FMAC-pipeline instruction has been seen. Fill
8411 regs[0]..regs[numregs-1] with its input operands. Remember this
8412 instruction in 'first_fmac'.
8413
8414 1 -> 2
8415 Any instruction, except for a VFP instruction which overwrites
8416 regs[*].
8417
8418 1 -> 3 [ -> 0 ] or
8419 2 -> 3 [ -> 0 ]
8420 A VFP instruction has been seen which overwrites any of regs[*].
8421 We must make a veneer! Reset state to 0 before examining next
8422 instruction.
8423
8424 2 -> 0
8425 If we fail to match anything in state 2, reset to state 0 and reset
8426 the instruction pointer to the instruction after 'first_fmac'.
8427
8428 If the VFP11 vector mode is in use, there must be at least two unrelated
8429 instructions between anti-dependent VFP11 instructions to properly avoid
8430 triggering the erratum, hence the use of the extra state 1. */
8431
8432 /* If we are only performing a partial link do not bother
8433 to construct any glue. */
8434 if (bfd_link_relocatable (link_info))
8435 return TRUE;
8436
8437 /* Skip if this bfd does not correspond to an ELF image. */
8438 if (! is_arm_elf (abfd))
8439 return TRUE;
8440
8441 /* We should have chosen a fix type by the time we get here. */
8442 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
8443
8444 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
8445 return TRUE;
8446
8447 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8448 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8449 return TRUE;
8450
8451 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8452 {
8453 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
8454 struct _arm_elf_section_data *sec_data;
8455
8456 /* If we don't have executable progbits, we're not interested in this
8457 section. Also skip if section is to be excluded. */
8458 if (elf_section_type (sec) != SHT_PROGBITS
8459 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8460 || (sec->flags & SEC_EXCLUDE) != 0
8461 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8462 || sec->output_section == bfd_abs_section_ptr
8463 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
8464 continue;
8465
8466 sec_data = elf32_arm_section_data (sec);
8467
8468 if (sec_data->mapcount == 0)
8469 continue;
8470
8471 if (elf_section_data (sec)->this_hdr.contents != NULL)
8472 contents = elf_section_data (sec)->this_hdr.contents;
8473 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8474 goto error_return;
8475
8476 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8477 elf32_arm_compare_mapping);
8478
8479 for (span = 0; span < sec_data->mapcount; span++)
8480 {
8481 unsigned int span_start = sec_data->map[span].vma;
8482 unsigned int span_end = (span == sec_data->mapcount - 1)
8483 ? sec->size : sec_data->map[span + 1].vma;
8484 char span_type = sec_data->map[span].type;
8485
8486 /* FIXME: Only ARM mode is supported at present. We may need to
8487 support Thumb-2 mode also at some point. */
8488 if (span_type != 'a')
8489 continue;
8490
8491 for (i = span_start; i < span_end;)
8492 {
8493 unsigned int next_i = i + 4;
8494 unsigned int insn = bfd_big_endian (abfd)
8495 ? (contents[i] << 24)
8496 | (contents[i + 1] << 16)
8497 | (contents[i + 2] << 8)
8498 | contents[i + 3]
8499 : (contents[i + 3] << 24)
8500 | (contents[i + 2] << 16)
8501 | (contents[i + 1] << 8)
8502 | contents[i];
8503 unsigned int writemask = 0;
8504 enum bfd_arm_vfp11_pipe vpipe;
8505
8506 switch (state)
8507 {
8508 case 0:
8509 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
8510 &numregs);
8511 /* I'm assuming the VFP11 erratum can trigger with denorm
8512 operands on either the FMAC or the DS pipeline. This might
8513 lead to slightly overenthusiastic veneer insertion. */
8514 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
8515 {
8516 state = use_vector ? 1 : 2;
8517 first_fmac = i;
8518 veneer_of_insn = insn;
8519 }
8520 break;
8521
8522 case 1:
8523 {
8524 int other_regs[3], other_numregs;
8525 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
8526 other_regs,
8527 &other_numregs);
8528 if (vpipe != VFP11_BAD
8529 && bfd_arm_vfp11_antidependency (writemask, regs,
8530 numregs))
8531 state = 3;
8532 else
8533 state = 2;
8534 }
8535 break;
8536
8537 case 2:
8538 {
8539 int other_regs[3], other_numregs;
8540 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
8541 other_regs,
8542 &other_numregs);
8543 if (vpipe != VFP11_BAD
8544 && bfd_arm_vfp11_antidependency (writemask, regs,
8545 numregs))
8546 state = 3;
8547 else
8548 {
8549 state = 0;
8550 next_i = first_fmac + 4;
8551 }
8552 }
8553 break;
8554
8555 case 3:
8556 abort (); /* Should be unreachable. */
8557 }
8558
8559 if (state == 3)
8560 {
8561 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
8562 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
8563
8564 elf32_arm_section_data (sec)->erratumcount += 1;
8565
8566 newerr->u.b.vfp_insn = veneer_of_insn;
8567
8568 switch (span_type)
8569 {
8570 case 'a':
8571 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
8572 break;
8573
8574 default:
8575 abort ();
8576 }
8577
8578 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
8579 first_fmac);
8580
8581 newerr->vma = -1;
8582
8583 newerr->next = sec_data->erratumlist;
8584 sec_data->erratumlist = newerr;
8585
8586 state = 0;
8587 }
8588
8589 i = next_i;
8590 }
8591 }
8592
8593 if (contents != NULL
8594 && elf_section_data (sec)->this_hdr.contents != contents)
8595 free (contents);
8596 contents = NULL;
8597 }
8598
8599 return TRUE;
8600
8601 error_return:
8602 if (contents != NULL
8603 && elf_section_data (sec)->this_hdr.contents != contents)
8604 free (contents);
8605
8606 return FALSE;
8607 }
8608
8609 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
8610 after sections have been laid out, using specially-named symbols. */
8611
8612 void
8613 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
8614 struct bfd_link_info *link_info)
8615 {
8616 asection *sec;
8617 struct elf32_arm_link_hash_table *globals;
8618 char *tmp_name;
8619
8620 if (bfd_link_relocatable (link_info))
8621 return;
8622
8623 /* Skip if this bfd does not correspond to an ELF image. */
8624 if (! is_arm_elf (abfd))
8625 return;
8626
8627 globals = elf32_arm_hash_table (link_info);
8628 if (globals == NULL)
8629 return;
8630
8631 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
8632 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
8633
8634 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8635 {
8636 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8637 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
8638
8639 for (; errnode != NULL; errnode = errnode->next)
8640 {
8641 struct elf_link_hash_entry *myh;
8642 bfd_vma vma;
8643
8644 switch (errnode->type)
8645 {
8646 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
8647 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
8648 /* Find veneer symbol. */
8649 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
8650 errnode->u.b.veneer->u.v.id);
8651
8652 myh = elf_link_hash_lookup
8653 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8654
8655 if (myh == NULL)
8656 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8657 abfd, "VFP11", tmp_name);
8658
8659 vma = myh->root.u.def.section->output_section->vma
8660 + myh->root.u.def.section->output_offset
8661 + myh->root.u.def.value;
8662
8663 errnode->u.b.veneer->vma = vma;
8664 break;
8665
8666 case VFP11_ERRATUM_ARM_VENEER:
8667 case VFP11_ERRATUM_THUMB_VENEER:
8668 /* Find return location. */
8669 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
8670 errnode->u.v.id);
8671
8672 myh = elf_link_hash_lookup
8673 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8674
8675 if (myh == NULL)
8676 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8677 abfd, "VFP11", tmp_name);
8678
8679 vma = myh->root.u.def.section->output_section->vma
8680 + myh->root.u.def.section->output_offset
8681 + myh->root.u.def.value;
8682
8683 errnode->u.v.branch->vma = vma;
8684 break;
8685
8686 default:
8687 abort ();
8688 }
8689 }
8690 }
8691
8692 free (tmp_name);
8693 }
8694
8695 /* Find virtual-memory addresses for STM32L4XX erratum veneers and
8696 return locations after sections have been laid out, using
8697 specially-named symbols. */
8698
8699 void
8700 bfd_elf32_arm_stm32l4xx_fix_veneer_locations (bfd *abfd,
8701 struct bfd_link_info *link_info)
8702 {
8703 asection *sec;
8704 struct elf32_arm_link_hash_table *globals;
8705 char *tmp_name;
8706
8707 if (bfd_link_relocatable (link_info))
8708 return;
8709
8710 /* Skip if this bfd does not correspond to an ELF image. */
8711 if (! is_arm_elf (abfd))
8712 return;
8713
8714 globals = elf32_arm_hash_table (link_info);
8715 if (globals == NULL)
8716 return;
8717
8718 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
8719 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
8720
8721 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8722 {
8723 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8724 elf32_stm32l4xx_erratum_list *errnode = sec_data->stm32l4xx_erratumlist;
8725
8726 for (; errnode != NULL; errnode = errnode->next)
8727 {
8728 struct elf_link_hash_entry *myh;
8729 bfd_vma vma;
8730
8731 switch (errnode->type)
8732 {
8733 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
8734 /* Find veneer symbol. */
8735 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
8736 errnode->u.b.veneer->u.v.id);
8737
8738 myh = elf_link_hash_lookup
8739 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8740
8741 if (myh == NULL)
8742 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8743 abfd, "STM32L4XX", tmp_name);
8744
8745 vma = myh->root.u.def.section->output_section->vma
8746 + myh->root.u.def.section->output_offset
8747 + myh->root.u.def.value;
8748
8749 errnode->u.b.veneer->vma = vma;
8750 break;
8751
8752 case STM32L4XX_ERRATUM_VENEER:
8753 /* Find return location. */
8754 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
8755 errnode->u.v.id);
8756
8757 myh = elf_link_hash_lookup
8758 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8759
8760 if (myh == NULL)
8761 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8762 abfd, "STM32L4XX", tmp_name);
8763
8764 vma = myh->root.u.def.section->output_section->vma
8765 + myh->root.u.def.section->output_offset
8766 + myh->root.u.def.value;
8767
8768 errnode->u.v.branch->vma = vma;
8769 break;
8770
8771 default:
8772 abort ();
8773 }
8774 }
8775 }
8776
8777 free (tmp_name);
8778 }
8779
8780 static inline bfd_boolean
8781 is_thumb2_ldmia (const insn32 insn)
8782 {
8783 /* Encoding T2: LDM<c>.W <Rn>{!},<registers>
8784 1110 - 1000 - 10W1 - rrrr - PM (0) l - llll - llll - llll. */
8785 return (insn & 0xffd02000) == 0xe8900000;
8786 }
8787
8788 static inline bfd_boolean
8789 is_thumb2_ldmdb (const insn32 insn)
8790 {
8791 /* Encoding T1: LDMDB<c> <Rn>{!},<registers>
8792 1110 - 1001 - 00W1 - rrrr - PM (0) l - llll - llll - llll. */
8793 return (insn & 0xffd02000) == 0xe9100000;
8794 }
8795
8796 static inline bfd_boolean
8797 is_thumb2_vldm (const insn32 insn)
8798 {
8799 /* A6.5 Extension register load or store instruction
8800 A7.7.229
8801 We look for SP 32-bit and DP 64-bit registers.
8802 Encoding T1 VLDM{mode}<c> <Rn>{!}, <list>
8803 <list> is consecutive 64-bit registers
8804 1110 - 110P - UDW1 - rrrr - vvvv - 1011 - iiii - iiii
8805 Encoding T2 VLDM{mode}<c> <Rn>{!}, <list>
8806 <list> is consecutive 32-bit registers
8807 1110 - 110P - UDW1 - rrrr - vvvv - 1010 - iiii - iiii
8808 if P==0 && U==1 && W==1 && Rn=1101 VPOP
8809 if PUW=010 || PUW=011 || PUW=101 VLDM. */
8810 return
8811 (((insn & 0xfe100f00) == 0xec100b00) ||
8812 ((insn & 0xfe100f00) == 0xec100a00))
8813 && /* (IA without !). */
8814 (((((insn << 7) >> 28) & 0xd) == 0x4)
8815 /* (IA with !), includes VPOP (when reg number is SP). */
8816 || ((((insn << 7) >> 28) & 0xd) == 0x5)
8817 /* (DB with !). */
8818 || ((((insn << 7) >> 28) & 0xd) == 0x9));
8819 }
8820
8821 /* STM STM32L4XX erratum : This function assumes that it receives an LDM or
8822 VLDM opcode and:
8823 - computes the number and the mode of memory accesses
8824 - decides if the replacement should be done:
8825 . replaces only if > 8-word accesses
8826 . or (testing purposes only) replaces all accesses. */
8827
8828 static bfd_boolean
8829 stm32l4xx_need_create_replacing_stub (const insn32 insn,
8830 bfd_arm_stm32l4xx_fix stm32l4xx_fix)
8831 {
8832 int nb_words = 0;
8833
8834 /* The field encoding the register list is the same for both LDMIA
8835 and LDMDB encodings. */
8836 if (is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn))
8837 nb_words = elf32_arm_popcount (insn & 0x0000ffff);
8838 else if (is_thumb2_vldm (insn))
8839 nb_words = (insn & 0xff);
8840
8841 /* DEFAULT mode accounts for the real bug condition situation,
8842 ALL mode inserts stubs for each LDM/VLDM instruction (testing). */
8843 return
8844 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_DEFAULT) ? nb_words > 8 :
8845 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_ALL) ? TRUE : FALSE;
8846 }
8847
8848 /* Look for potentially-troublesome code sequences which might trigger
8849 the STM STM32L4XX erratum. */
8850
8851 bfd_boolean
8852 bfd_elf32_arm_stm32l4xx_erratum_scan (bfd *abfd,
8853 struct bfd_link_info *link_info)
8854 {
8855 asection *sec;
8856 bfd_byte *contents = NULL;
8857 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8858
8859 if (globals == NULL)
8860 return FALSE;
8861
8862 /* If we are only performing a partial link do not bother
8863 to construct any glue. */
8864 if (bfd_link_relocatable (link_info))
8865 return TRUE;
8866
8867 /* Skip if this bfd does not correspond to an ELF image. */
8868 if (! is_arm_elf (abfd))
8869 return TRUE;
8870
8871 if (globals->stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_NONE)
8872 return TRUE;
8873
8874 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8875 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8876 return TRUE;
8877
8878 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8879 {
8880 unsigned int i, span;
8881 struct _arm_elf_section_data *sec_data;
8882
8883 /* If we don't have executable progbits, we're not interested in this
8884 section. Also skip if section is to be excluded. */
8885 if (elf_section_type (sec) != SHT_PROGBITS
8886 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8887 || (sec->flags & SEC_EXCLUDE) != 0
8888 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8889 || sec->output_section == bfd_abs_section_ptr
8890 || strcmp (sec->name, STM32L4XX_ERRATUM_VENEER_SECTION_NAME) == 0)
8891 continue;
8892
8893 sec_data = elf32_arm_section_data (sec);
8894
8895 if (sec_data->mapcount == 0)
8896 continue;
8897
8898 if (elf_section_data (sec)->this_hdr.contents != NULL)
8899 contents = elf_section_data (sec)->this_hdr.contents;
8900 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8901 goto error_return;
8902
8903 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8904 elf32_arm_compare_mapping);
8905
8906 for (span = 0; span < sec_data->mapcount; span++)
8907 {
8908 unsigned int span_start = sec_data->map[span].vma;
8909 unsigned int span_end = (span == sec_data->mapcount - 1)
8910 ? sec->size : sec_data->map[span + 1].vma;
8911 char span_type = sec_data->map[span].type;
8912 int itblock_current_pos = 0;
8913
8914 /* Only Thumb2 mode need be supported with this CM4 specific
8915 code, we should not encounter any arm mode eg span_type
8916 != 'a'. */
8917 if (span_type != 't')
8918 continue;
8919
8920 for (i = span_start; i < span_end;)
8921 {
8922 unsigned int insn = bfd_get_16 (abfd, &contents[i]);
8923 bfd_boolean insn_32bit = FALSE;
8924 bfd_boolean is_ldm = FALSE;
8925 bfd_boolean is_vldm = FALSE;
8926 bfd_boolean is_not_last_in_it_block = FALSE;
8927
8928 /* The first 16-bits of all 32-bit thumb2 instructions start
8929 with opcode[15..13]=0b111 and the encoded op1 can be anything
8930 except opcode[12..11]!=0b00.
8931 See 32-bit Thumb instruction encoding. */
8932 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
8933 insn_32bit = TRUE;
8934
8935 /* Compute the predicate that tells if the instruction
8936 is concerned by the IT block
8937 - Creates an error if there is a ldm that is not
8938 last in the IT block thus cannot be replaced
8939 - Otherwise we can create a branch at the end of the
8940 IT block, it will be controlled naturally by IT
8941 with the proper pseudo-predicate
8942 - So the only interesting predicate is the one that
8943 tells that we are not on the last item of an IT
8944 block. */
8945 if (itblock_current_pos != 0)
8946 is_not_last_in_it_block = !!--itblock_current_pos;
8947
8948 if (insn_32bit)
8949 {
8950 /* Load the rest of the insn (in manual-friendly order). */
8951 insn = (insn << 16) | bfd_get_16 (abfd, &contents[i + 2]);
8952 is_ldm = is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn);
8953 is_vldm = is_thumb2_vldm (insn);
8954
8955 /* Veneers are created for (v)ldm depending on
8956 option flags and memory accesses conditions; but
8957 if the instruction is not the last instruction of
8958 an IT block, we cannot create a jump there, so we
8959 bail out. */
8960 if ((is_ldm || is_vldm)
8961 && stm32l4xx_need_create_replacing_stub
8962 (insn, globals->stm32l4xx_fix))
8963 {
8964 if (is_not_last_in_it_block)
8965 {
8966 _bfd_error_handler
8967 /* xgettext:c-format */
8968 (_("%pB(%pA+%#x): error: multiple load detected"
8969 " in non-last IT block instruction:"
8970 " STM32L4XX veneer cannot be generated; "
8971 "use gcc option -mrestrict-it to generate"
8972 " only one instruction per IT block"),
8973 abfd, sec, i);
8974 }
8975 else
8976 {
8977 elf32_stm32l4xx_erratum_list *newerr =
8978 (elf32_stm32l4xx_erratum_list *)
8979 bfd_zmalloc
8980 (sizeof (elf32_stm32l4xx_erratum_list));
8981
8982 elf32_arm_section_data (sec)
8983 ->stm32l4xx_erratumcount += 1;
8984 newerr->u.b.insn = insn;
8985 /* We create only thumb branches. */
8986 newerr->type =
8987 STM32L4XX_ERRATUM_BRANCH_TO_VENEER;
8988 record_stm32l4xx_erratum_veneer
8989 (link_info, newerr, abfd, sec,
8990 i,
8991 is_ldm ?
8992 STM32L4XX_ERRATUM_LDM_VENEER_SIZE:
8993 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
8994 newerr->vma = -1;
8995 newerr->next = sec_data->stm32l4xx_erratumlist;
8996 sec_data->stm32l4xx_erratumlist = newerr;
8997 }
8998 }
8999 }
9000 else
9001 {
9002 /* A7.7.37 IT p208
9003 IT blocks are only encoded in T1
9004 Encoding T1: IT{x{y{z}}} <firstcond>
9005 1 0 1 1 - 1 1 1 1 - firstcond - mask
9006 if mask = '0000' then see 'related encodings'
9007 We don't deal with UNPREDICTABLE, just ignore these.
9008 There can be no nested IT blocks so an IT block
9009 is naturally a new one for which it is worth
9010 computing its size. */
9011 bfd_boolean is_newitblock = ((insn & 0xff00) == 0xbf00)
9012 && ((insn & 0x000f) != 0x0000);
9013 /* If we have a new IT block we compute its size. */
9014 if (is_newitblock)
9015 {
9016 /* Compute the number of instructions controlled
9017 by the IT block, it will be used to decide
9018 whether we are inside an IT block or not. */
9019 unsigned int mask = insn & 0x000f;
9020 itblock_current_pos = 4 - ctz (mask);
9021 }
9022 }
9023
9024 i += insn_32bit ? 4 : 2;
9025 }
9026 }
9027
9028 if (contents != NULL
9029 && elf_section_data (sec)->this_hdr.contents != contents)
9030 free (contents);
9031 contents = NULL;
9032 }
9033
9034 return TRUE;
9035
9036 error_return:
9037 if (contents != NULL
9038 && elf_section_data (sec)->this_hdr.contents != contents)
9039 free (contents);
9040
9041 return FALSE;
9042 }
9043
9044 /* Set target relocation values needed during linking. */
9045
9046 void
9047 bfd_elf32_arm_set_target_params (struct bfd *output_bfd,
9048 struct bfd_link_info *link_info,
9049 struct elf32_arm_params *params)
9050 {
9051 struct elf32_arm_link_hash_table *globals;
9052
9053 globals = elf32_arm_hash_table (link_info);
9054 if (globals == NULL)
9055 return;
9056
9057 globals->target1_is_rel = params->target1_is_rel;
9058 if (globals->fdpic_p)
9059 globals->target2_reloc = R_ARM_GOT32;
9060 else if (strcmp (params->target2_type, "rel") == 0)
9061 globals->target2_reloc = R_ARM_REL32;
9062 else if (strcmp (params->target2_type, "abs") == 0)
9063 globals->target2_reloc = R_ARM_ABS32;
9064 else if (strcmp (params->target2_type, "got-rel") == 0)
9065 globals->target2_reloc = R_ARM_GOT_PREL;
9066 else
9067 {
9068 _bfd_error_handler (_("invalid TARGET2 relocation type '%s'"),
9069 params->target2_type);
9070 }
9071 globals->fix_v4bx = params->fix_v4bx;
9072 globals->use_blx |= params->use_blx;
9073 globals->vfp11_fix = params->vfp11_denorm_fix;
9074 globals->stm32l4xx_fix = params->stm32l4xx_fix;
9075 if (globals->fdpic_p)
9076 globals->pic_veneer = 1;
9077 else
9078 globals->pic_veneer = params->pic_veneer;
9079 globals->fix_cortex_a8 = params->fix_cortex_a8;
9080 globals->fix_arm1176 = params->fix_arm1176;
9081 globals->cmse_implib = params->cmse_implib;
9082 globals->in_implib_bfd = params->in_implib_bfd;
9083
9084 BFD_ASSERT (is_arm_elf (output_bfd));
9085 elf_arm_tdata (output_bfd)->no_enum_size_warning
9086 = params->no_enum_size_warning;
9087 elf_arm_tdata (output_bfd)->no_wchar_size_warning
9088 = params->no_wchar_size_warning;
9089 }
9090
9091 /* Replace the target offset of a Thumb bl or b.w instruction. */
9092
9093 static void
9094 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
9095 {
9096 bfd_vma upper;
9097 bfd_vma lower;
9098 int reloc_sign;
9099
9100 BFD_ASSERT ((offset & 1) == 0);
9101
9102 upper = bfd_get_16 (abfd, insn);
9103 lower = bfd_get_16 (abfd, insn + 2);
9104 reloc_sign = (offset < 0) ? 1 : 0;
9105 upper = (upper & ~(bfd_vma) 0x7ff)
9106 | ((offset >> 12) & 0x3ff)
9107 | (reloc_sign << 10);
9108 lower = (lower & ~(bfd_vma) 0x2fff)
9109 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
9110 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
9111 | ((offset >> 1) & 0x7ff);
9112 bfd_put_16 (abfd, upper, insn);
9113 bfd_put_16 (abfd, lower, insn + 2);
9114 }
9115
9116 /* Thumb code calling an ARM function. */
9117
9118 static int
9119 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
9120 const char * name,
9121 bfd * input_bfd,
9122 bfd * output_bfd,
9123 asection * input_section,
9124 bfd_byte * hit_data,
9125 asection * sym_sec,
9126 bfd_vma offset,
9127 bfd_signed_vma addend,
9128 bfd_vma val,
9129 char **error_message)
9130 {
9131 asection * s = 0;
9132 bfd_vma my_offset;
9133 long int ret_offset;
9134 struct elf_link_hash_entry * myh;
9135 struct elf32_arm_link_hash_table * globals;
9136
9137 myh = find_thumb_glue (info, name, error_message);
9138 if (myh == NULL)
9139 return FALSE;
9140
9141 globals = elf32_arm_hash_table (info);
9142 BFD_ASSERT (globals != NULL);
9143 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9144
9145 my_offset = myh->root.u.def.value;
9146
9147 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9148 THUMB2ARM_GLUE_SECTION_NAME);
9149
9150 BFD_ASSERT (s != NULL);
9151 BFD_ASSERT (s->contents != NULL);
9152 BFD_ASSERT (s->output_section != NULL);
9153
9154 if ((my_offset & 0x01) == 0x01)
9155 {
9156 if (sym_sec != NULL
9157 && sym_sec->owner != NULL
9158 && !INTERWORK_FLAG (sym_sec->owner))
9159 {
9160 _bfd_error_handler
9161 (_("%pB(%s): warning: interworking not enabled;"
9162 " first occurrence: %pB: %s call to %s"),
9163 sym_sec->owner, name, input_bfd, "Thumb", "ARM");
9164
9165 return FALSE;
9166 }
9167
9168 --my_offset;
9169 myh->root.u.def.value = my_offset;
9170
9171 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
9172 s->contents + my_offset);
9173
9174 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
9175 s->contents + my_offset + 2);
9176
9177 ret_offset =
9178 /* Address of destination of the stub. */
9179 ((bfd_signed_vma) val)
9180 - ((bfd_signed_vma)
9181 /* Offset from the start of the current section
9182 to the start of the stubs. */
9183 (s->output_offset
9184 /* Offset of the start of this stub from the start of the stubs. */
9185 + my_offset
9186 /* Address of the start of the current section. */
9187 + s->output_section->vma)
9188 /* The branch instruction is 4 bytes into the stub. */
9189 + 4
9190 /* ARM branches work from the pc of the instruction + 8. */
9191 + 8);
9192
9193 put_arm_insn (globals, output_bfd,
9194 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
9195 s->contents + my_offset + 4);
9196 }
9197
9198 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
9199
9200 /* Now go back and fix up the original BL insn to point to here. */
9201 ret_offset =
9202 /* Address of where the stub is located. */
9203 (s->output_section->vma + s->output_offset + my_offset)
9204 /* Address of where the BL is located. */
9205 - (input_section->output_section->vma + input_section->output_offset
9206 + offset)
9207 /* Addend in the relocation. */
9208 - addend
9209 /* Biassing for PC-relative addressing. */
9210 - 8;
9211
9212 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
9213
9214 return TRUE;
9215 }
9216
9217 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
9218
9219 static struct elf_link_hash_entry *
9220 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
9221 const char * name,
9222 bfd * input_bfd,
9223 bfd * output_bfd,
9224 asection * sym_sec,
9225 bfd_vma val,
9226 asection * s,
9227 char ** error_message)
9228 {
9229 bfd_vma my_offset;
9230 long int ret_offset;
9231 struct elf_link_hash_entry * myh;
9232 struct elf32_arm_link_hash_table * globals;
9233
9234 myh = find_arm_glue (info, name, error_message);
9235 if (myh == NULL)
9236 return NULL;
9237
9238 globals = elf32_arm_hash_table (info);
9239 BFD_ASSERT (globals != NULL);
9240 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9241
9242 my_offset = myh->root.u.def.value;
9243
9244 if ((my_offset & 0x01) == 0x01)
9245 {
9246 if (sym_sec != NULL
9247 && sym_sec->owner != NULL
9248 && !INTERWORK_FLAG (sym_sec->owner))
9249 {
9250 _bfd_error_handler
9251 (_("%pB(%s): warning: interworking not enabled;"
9252 " first occurrence: %pB: %s call to %s"),
9253 sym_sec->owner, name, input_bfd, "ARM", "Thumb");
9254 }
9255
9256 --my_offset;
9257 myh->root.u.def.value = my_offset;
9258
9259 if (bfd_link_pic (info)
9260 || globals->root.is_relocatable_executable
9261 || globals->pic_veneer)
9262 {
9263 /* For relocatable objects we can't use absolute addresses,
9264 so construct the address from a relative offset. */
9265 /* TODO: If the offset is small it's probably worth
9266 constructing the address with adds. */
9267 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
9268 s->contents + my_offset);
9269 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
9270 s->contents + my_offset + 4);
9271 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
9272 s->contents + my_offset + 8);
9273 /* Adjust the offset by 4 for the position of the add,
9274 and 8 for the pipeline offset. */
9275 ret_offset = (val - (s->output_offset
9276 + s->output_section->vma
9277 + my_offset + 12))
9278 | 1;
9279 bfd_put_32 (output_bfd, ret_offset,
9280 s->contents + my_offset + 12);
9281 }
9282 else if (globals->use_blx)
9283 {
9284 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
9285 s->contents + my_offset);
9286
9287 /* It's a thumb address. Add the low order bit. */
9288 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
9289 s->contents + my_offset + 4);
9290 }
9291 else
9292 {
9293 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
9294 s->contents + my_offset);
9295
9296 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
9297 s->contents + my_offset + 4);
9298
9299 /* It's a thumb address. Add the low order bit. */
9300 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
9301 s->contents + my_offset + 8);
9302
9303 my_offset += 12;
9304 }
9305 }
9306
9307 BFD_ASSERT (my_offset <= globals->arm_glue_size);
9308
9309 return myh;
9310 }
9311
9312 /* Arm code calling a Thumb function. */
9313
9314 static int
9315 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
9316 const char * name,
9317 bfd * input_bfd,
9318 bfd * output_bfd,
9319 asection * input_section,
9320 bfd_byte * hit_data,
9321 asection * sym_sec,
9322 bfd_vma offset,
9323 bfd_signed_vma addend,
9324 bfd_vma val,
9325 char **error_message)
9326 {
9327 unsigned long int tmp;
9328 bfd_vma my_offset;
9329 asection * s;
9330 long int ret_offset;
9331 struct elf_link_hash_entry * myh;
9332 struct elf32_arm_link_hash_table * globals;
9333
9334 globals = elf32_arm_hash_table (info);
9335 BFD_ASSERT (globals != NULL);
9336 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9337
9338 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9339 ARM2THUMB_GLUE_SECTION_NAME);
9340 BFD_ASSERT (s != NULL);
9341 BFD_ASSERT (s->contents != NULL);
9342 BFD_ASSERT (s->output_section != NULL);
9343
9344 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
9345 sym_sec, val, s, error_message);
9346 if (!myh)
9347 return FALSE;
9348
9349 my_offset = myh->root.u.def.value;
9350 tmp = bfd_get_32 (input_bfd, hit_data);
9351 tmp = tmp & 0xFF000000;
9352
9353 /* Somehow these are both 4 too far, so subtract 8. */
9354 ret_offset = (s->output_offset
9355 + my_offset
9356 + s->output_section->vma
9357 - (input_section->output_offset
9358 + input_section->output_section->vma
9359 + offset + addend)
9360 - 8);
9361
9362 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
9363
9364 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
9365
9366 return TRUE;
9367 }
9368
9369 /* Populate Arm stub for an exported Thumb function. */
9370
9371 static bfd_boolean
9372 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
9373 {
9374 struct bfd_link_info * info = (struct bfd_link_info *) inf;
9375 asection * s;
9376 struct elf_link_hash_entry * myh;
9377 struct elf32_arm_link_hash_entry *eh;
9378 struct elf32_arm_link_hash_table * globals;
9379 asection *sec;
9380 bfd_vma val;
9381 char *error_message;
9382
9383 eh = elf32_arm_hash_entry (h);
9384 /* Allocate stubs for exported Thumb functions on v4t. */
9385 if (eh->export_glue == NULL)
9386 return TRUE;
9387
9388 globals = elf32_arm_hash_table (info);
9389 BFD_ASSERT (globals != NULL);
9390 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9391
9392 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9393 ARM2THUMB_GLUE_SECTION_NAME);
9394 BFD_ASSERT (s != NULL);
9395 BFD_ASSERT (s->contents != NULL);
9396 BFD_ASSERT (s->output_section != NULL);
9397
9398 sec = eh->export_glue->root.u.def.section;
9399
9400 BFD_ASSERT (sec->output_section != NULL);
9401
9402 val = eh->export_glue->root.u.def.value + sec->output_offset
9403 + sec->output_section->vma;
9404
9405 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
9406 h->root.u.def.section->owner,
9407 globals->obfd, sec, val, s,
9408 &error_message);
9409 BFD_ASSERT (myh);
9410 return TRUE;
9411 }
9412
9413 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
9414
9415 static bfd_vma
9416 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
9417 {
9418 bfd_byte *p;
9419 bfd_vma glue_addr;
9420 asection *s;
9421 struct elf32_arm_link_hash_table *globals;
9422
9423 globals = elf32_arm_hash_table (info);
9424 BFD_ASSERT (globals != NULL);
9425 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9426
9427 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9428 ARM_BX_GLUE_SECTION_NAME);
9429 BFD_ASSERT (s != NULL);
9430 BFD_ASSERT (s->contents != NULL);
9431 BFD_ASSERT (s->output_section != NULL);
9432
9433 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
9434
9435 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
9436
9437 if ((globals->bx_glue_offset[reg] & 1) == 0)
9438 {
9439 p = s->contents + glue_addr;
9440 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
9441 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
9442 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
9443 globals->bx_glue_offset[reg] |= 1;
9444 }
9445
9446 return glue_addr + s->output_section->vma + s->output_offset;
9447 }
9448
9449 /* Generate Arm stubs for exported Thumb symbols. */
9450 static void
9451 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
9452 struct bfd_link_info *link_info)
9453 {
9454 struct elf32_arm_link_hash_table * globals;
9455
9456 if (link_info == NULL)
9457 /* Ignore this if we are not called by the ELF backend linker. */
9458 return;
9459
9460 globals = elf32_arm_hash_table (link_info);
9461 if (globals == NULL)
9462 return;
9463
9464 /* If blx is available then exported Thumb symbols are OK and there is
9465 nothing to do. */
9466 if (globals->use_blx)
9467 return;
9468
9469 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
9470 link_info);
9471 }
9472
9473 /* Reserve space for COUNT dynamic relocations in relocation selection
9474 SRELOC. */
9475
9476 static void
9477 elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
9478 bfd_size_type count)
9479 {
9480 struct elf32_arm_link_hash_table *htab;
9481
9482 htab = elf32_arm_hash_table (info);
9483 BFD_ASSERT (htab->root.dynamic_sections_created);
9484 if (sreloc == NULL)
9485 abort ();
9486 sreloc->size += RELOC_SIZE (htab) * count;
9487 }
9488
9489 /* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
9490 dynamic, the relocations should go in SRELOC, otherwise they should
9491 go in the special .rel.iplt section. */
9492
9493 static void
9494 elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
9495 bfd_size_type count)
9496 {
9497 struct elf32_arm_link_hash_table *htab;
9498
9499 htab = elf32_arm_hash_table (info);
9500 if (!htab->root.dynamic_sections_created)
9501 htab->root.irelplt->size += RELOC_SIZE (htab) * count;
9502 else
9503 {
9504 BFD_ASSERT (sreloc != NULL);
9505 sreloc->size += RELOC_SIZE (htab) * count;
9506 }
9507 }
9508
9509 /* Add relocation REL to the end of relocation section SRELOC. */
9510
9511 static void
9512 elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
9513 asection *sreloc, Elf_Internal_Rela *rel)
9514 {
9515 bfd_byte *loc;
9516 struct elf32_arm_link_hash_table *htab;
9517
9518 htab = elf32_arm_hash_table (info);
9519 if (!htab->root.dynamic_sections_created
9520 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
9521 sreloc = htab->root.irelplt;
9522 if (sreloc == NULL)
9523 abort ();
9524 loc = sreloc->contents;
9525 loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
9526 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
9527 abort ();
9528 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
9529 }
9530
9531 /* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
9532 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
9533 to .plt. */
9534
9535 static void
9536 elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
9537 bfd_boolean is_iplt_entry,
9538 union gotplt_union *root_plt,
9539 struct arm_plt_info *arm_plt)
9540 {
9541 struct elf32_arm_link_hash_table *htab;
9542 asection *splt;
9543 asection *sgotplt;
9544
9545 htab = elf32_arm_hash_table (info);
9546
9547 if (is_iplt_entry)
9548 {
9549 splt = htab->root.iplt;
9550 sgotplt = htab->root.igotplt;
9551
9552 /* NaCl uses a special first entry in .iplt too. */
9553 if (htab->nacl_p && splt->size == 0)
9554 splt->size += htab->plt_header_size;
9555
9556 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
9557 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
9558 }
9559 else
9560 {
9561 splt = htab->root.splt;
9562 sgotplt = htab->root.sgotplt;
9563
9564 if (htab->fdpic_p)
9565 {
9566 /* Allocate room for R_ARM_FUNCDESC_VALUE. */
9567 /* For lazy binding, relocations will be put into .rel.plt, in
9568 .rel.got otherwise. */
9569 /* FIXME: today we don't support lazy binding so put it in .rel.got */
9570 if (info->flags & DF_BIND_NOW)
9571 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
9572 else
9573 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
9574 }
9575 else
9576 {
9577 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
9578 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
9579 }
9580
9581 /* If this is the first .plt entry, make room for the special
9582 first entry. */
9583 if (splt->size == 0)
9584 splt->size += htab->plt_header_size;
9585
9586 htab->next_tls_desc_index++;
9587 }
9588
9589 /* Allocate the PLT entry itself, including any leading Thumb stub. */
9590 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9591 splt->size += PLT_THUMB_STUB_SIZE;
9592 root_plt->offset = splt->size;
9593 splt->size += htab->plt_entry_size;
9594
9595 if (!htab->symbian_p)
9596 {
9597 /* We also need to make an entry in the .got.plt section, which
9598 will be placed in the .got section by the linker script. */
9599 if (is_iplt_entry)
9600 arm_plt->got_offset = sgotplt->size;
9601 else
9602 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
9603 if (htab->fdpic_p)
9604 /* Function descriptor takes 64 bits in GOT. */
9605 sgotplt->size += 8;
9606 else
9607 sgotplt->size += 4;
9608 }
9609 }
9610
9611 static bfd_vma
9612 arm_movw_immediate (bfd_vma value)
9613 {
9614 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
9615 }
9616
9617 static bfd_vma
9618 arm_movt_immediate (bfd_vma value)
9619 {
9620 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
9621 }
9622
9623 /* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
9624 the entry lives in .iplt and resolves to (*SYM_VALUE)().
9625 Otherwise, DYNINDX is the index of the symbol in the dynamic
9626 symbol table and SYM_VALUE is undefined.
9627
9628 ROOT_PLT points to the offset of the PLT entry from the start of its
9629 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
9630 bookkeeping information.
9631
9632 Returns FALSE if there was a problem. */
9633
9634 static bfd_boolean
9635 elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
9636 union gotplt_union *root_plt,
9637 struct arm_plt_info *arm_plt,
9638 int dynindx, bfd_vma sym_value)
9639 {
9640 struct elf32_arm_link_hash_table *htab;
9641 asection *sgot;
9642 asection *splt;
9643 asection *srel;
9644 bfd_byte *loc;
9645 bfd_vma plt_index;
9646 Elf_Internal_Rela rel;
9647 bfd_vma plt_header_size;
9648 bfd_vma got_header_size;
9649
9650 htab = elf32_arm_hash_table (info);
9651
9652 /* Pick the appropriate sections and sizes. */
9653 if (dynindx == -1)
9654 {
9655 splt = htab->root.iplt;
9656 sgot = htab->root.igotplt;
9657 srel = htab->root.irelplt;
9658
9659 /* There are no reserved entries in .igot.plt, and no special
9660 first entry in .iplt. */
9661 got_header_size = 0;
9662 plt_header_size = 0;
9663 }
9664 else
9665 {
9666 splt = htab->root.splt;
9667 sgot = htab->root.sgotplt;
9668 srel = htab->root.srelplt;
9669
9670 got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
9671 plt_header_size = htab->plt_header_size;
9672 }
9673 BFD_ASSERT (splt != NULL && srel != NULL);
9674
9675 /* Fill in the entry in the procedure linkage table. */
9676 if (htab->symbian_p)
9677 {
9678 BFD_ASSERT (dynindx >= 0);
9679 put_arm_insn (htab, output_bfd,
9680 elf32_arm_symbian_plt_entry[0],
9681 splt->contents + root_plt->offset);
9682 bfd_put_32 (output_bfd,
9683 elf32_arm_symbian_plt_entry[1],
9684 splt->contents + root_plt->offset + 4);
9685
9686 /* Fill in the entry in the .rel.plt section. */
9687 rel.r_offset = (splt->output_section->vma
9688 + splt->output_offset
9689 + root_plt->offset + 4);
9690 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
9691
9692 /* Get the index in the procedure linkage table which
9693 corresponds to this symbol. This is the index of this symbol
9694 in all the symbols for which we are making plt entries. The
9695 first entry in the procedure linkage table is reserved. */
9696 plt_index = ((root_plt->offset - plt_header_size)
9697 / htab->plt_entry_size);
9698 }
9699 else
9700 {
9701 bfd_vma got_offset, got_address, plt_address;
9702 bfd_vma got_displacement, initial_got_entry;
9703 bfd_byte * ptr;
9704
9705 BFD_ASSERT (sgot != NULL);
9706
9707 /* Get the offset into the .(i)got.plt table of the entry that
9708 corresponds to this function. */
9709 got_offset = (arm_plt->got_offset & -2);
9710
9711 /* Get the index in the procedure linkage table which
9712 corresponds to this symbol. This is the index of this symbol
9713 in all the symbols for which we are making plt entries.
9714 After the reserved .got.plt entries, all symbols appear in
9715 the same order as in .plt. */
9716 if (htab->fdpic_p)
9717 /* Function descriptor takes 8 bytes. */
9718 plt_index = (got_offset - got_header_size) / 8;
9719 else
9720 plt_index = (got_offset - got_header_size) / 4;
9721
9722 /* Calculate the address of the GOT entry. */
9723 got_address = (sgot->output_section->vma
9724 + sgot->output_offset
9725 + got_offset);
9726
9727 /* ...and the address of the PLT entry. */
9728 plt_address = (splt->output_section->vma
9729 + splt->output_offset
9730 + root_plt->offset);
9731
9732 ptr = splt->contents + root_plt->offset;
9733 if (htab->vxworks_p && bfd_link_pic (info))
9734 {
9735 unsigned int i;
9736 bfd_vma val;
9737
9738 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9739 {
9740 val = elf32_arm_vxworks_shared_plt_entry[i];
9741 if (i == 2)
9742 val |= got_address - sgot->output_section->vma;
9743 if (i == 5)
9744 val |= plt_index * RELOC_SIZE (htab);
9745 if (i == 2 || i == 5)
9746 bfd_put_32 (output_bfd, val, ptr);
9747 else
9748 put_arm_insn (htab, output_bfd, val, ptr);
9749 }
9750 }
9751 else if (htab->vxworks_p)
9752 {
9753 unsigned int i;
9754 bfd_vma val;
9755
9756 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9757 {
9758 val = elf32_arm_vxworks_exec_plt_entry[i];
9759 if (i == 2)
9760 val |= got_address;
9761 if (i == 4)
9762 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
9763 if (i == 5)
9764 val |= plt_index * RELOC_SIZE (htab);
9765 if (i == 2 || i == 5)
9766 bfd_put_32 (output_bfd, val, ptr);
9767 else
9768 put_arm_insn (htab, output_bfd, val, ptr);
9769 }
9770
9771 loc = (htab->srelplt2->contents
9772 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
9773
9774 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
9775 referencing the GOT for this PLT entry. */
9776 rel.r_offset = plt_address + 8;
9777 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
9778 rel.r_addend = got_offset;
9779 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9780 loc += RELOC_SIZE (htab);
9781
9782 /* Create the R_ARM_ABS32 relocation referencing the
9783 beginning of the PLT for this GOT entry. */
9784 rel.r_offset = got_address;
9785 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
9786 rel.r_addend = 0;
9787 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9788 }
9789 else if (htab->nacl_p)
9790 {
9791 /* Calculate the displacement between the PLT slot and the
9792 common tail that's part of the special initial PLT slot. */
9793 int32_t tail_displacement
9794 = ((splt->output_section->vma + splt->output_offset
9795 + ARM_NACL_PLT_TAIL_OFFSET)
9796 - (plt_address + htab->plt_entry_size + 4));
9797 BFD_ASSERT ((tail_displacement & 3) == 0);
9798 tail_displacement >>= 2;
9799
9800 BFD_ASSERT ((tail_displacement & 0xff000000) == 0
9801 || (-tail_displacement & 0xff000000) == 0);
9802
9803 /* Calculate the displacement between the PLT slot and the entry
9804 in the GOT. The offset accounts for the value produced by
9805 adding to pc in the penultimate instruction of the PLT stub. */
9806 got_displacement = (got_address
9807 - (plt_address + htab->plt_entry_size));
9808
9809 /* NaCl does not support interworking at all. */
9810 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt));
9811
9812 put_arm_insn (htab, output_bfd,
9813 elf32_arm_nacl_plt_entry[0]
9814 | arm_movw_immediate (got_displacement),
9815 ptr + 0);
9816 put_arm_insn (htab, output_bfd,
9817 elf32_arm_nacl_plt_entry[1]
9818 | arm_movt_immediate (got_displacement),
9819 ptr + 4);
9820 put_arm_insn (htab, output_bfd,
9821 elf32_arm_nacl_plt_entry[2],
9822 ptr + 8);
9823 put_arm_insn (htab, output_bfd,
9824 elf32_arm_nacl_plt_entry[3]
9825 | (tail_displacement & 0x00ffffff),
9826 ptr + 12);
9827 }
9828 else if (htab->fdpic_p)
9829 {
9830 const bfd_vma *plt_entry = using_thumb_only(htab)
9831 ? elf32_arm_fdpic_thumb_plt_entry
9832 : elf32_arm_fdpic_plt_entry;
9833
9834 /* Fill-up Thumb stub if needed. */
9835 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9836 {
9837 put_thumb_insn (htab, output_bfd,
9838 elf32_arm_plt_thumb_stub[0], ptr - 4);
9839 put_thumb_insn (htab, output_bfd,
9840 elf32_arm_plt_thumb_stub[1], ptr - 2);
9841 }
9842 /* As we are using 32 bit instructions even for the Thumb
9843 version, we have to use 'put_arm_insn' instead of
9844 'put_thumb_insn'. */
9845 put_arm_insn(htab, output_bfd, plt_entry[0], ptr + 0);
9846 put_arm_insn(htab, output_bfd, plt_entry[1], ptr + 4);
9847 put_arm_insn(htab, output_bfd, plt_entry[2], ptr + 8);
9848 put_arm_insn(htab, output_bfd, plt_entry[3], ptr + 12);
9849 bfd_put_32 (output_bfd, got_offset, ptr + 16);
9850
9851 if (!(info->flags & DF_BIND_NOW))
9852 {
9853 /* funcdesc_value_reloc_offset. */
9854 bfd_put_32 (output_bfd,
9855 htab->root.srelplt->reloc_count * RELOC_SIZE (htab),
9856 ptr + 20);
9857 put_arm_insn(htab, output_bfd, plt_entry[6], ptr + 24);
9858 put_arm_insn(htab, output_bfd, plt_entry[7], ptr + 28);
9859 put_arm_insn(htab, output_bfd, plt_entry[8], ptr + 32);
9860 put_arm_insn(htab, output_bfd, plt_entry[9], ptr + 36);
9861 }
9862 }
9863 else if (using_thumb_only (htab))
9864 {
9865 /* PR ld/16017: Generate thumb only PLT entries. */
9866 if (!using_thumb2 (htab))
9867 {
9868 /* FIXME: We ought to be able to generate thumb-1 PLT
9869 instructions... */
9870 _bfd_error_handler (_("%pB: warning: thumb-1 mode PLT generation not currently supported"),
9871 output_bfd);
9872 return FALSE;
9873 }
9874
9875 /* Calculate the displacement between the PLT slot and the entry in
9876 the GOT. The 12-byte offset accounts for the value produced by
9877 adding to pc in the 3rd instruction of the PLT stub. */
9878 got_displacement = got_address - (plt_address + 12);
9879
9880 /* As we are using 32 bit instructions we have to use 'put_arm_insn'
9881 instead of 'put_thumb_insn'. */
9882 put_arm_insn (htab, output_bfd,
9883 elf32_thumb2_plt_entry[0]
9884 | ((got_displacement & 0x000000ff) << 16)
9885 | ((got_displacement & 0x00000700) << 20)
9886 | ((got_displacement & 0x00000800) >> 1)
9887 | ((got_displacement & 0x0000f000) >> 12),
9888 ptr + 0);
9889 put_arm_insn (htab, output_bfd,
9890 elf32_thumb2_plt_entry[1]
9891 | ((got_displacement & 0x00ff0000) )
9892 | ((got_displacement & 0x07000000) << 4)
9893 | ((got_displacement & 0x08000000) >> 17)
9894 | ((got_displacement & 0xf0000000) >> 28),
9895 ptr + 4);
9896 put_arm_insn (htab, output_bfd,
9897 elf32_thumb2_plt_entry[2],
9898 ptr + 8);
9899 put_arm_insn (htab, output_bfd,
9900 elf32_thumb2_plt_entry[3],
9901 ptr + 12);
9902 }
9903 else
9904 {
9905 /* Calculate the displacement between the PLT slot and the
9906 entry in the GOT. The eight-byte offset accounts for the
9907 value produced by adding to pc in the first instruction
9908 of the PLT stub. */
9909 got_displacement = got_address - (plt_address + 8);
9910
9911 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9912 {
9913 put_thumb_insn (htab, output_bfd,
9914 elf32_arm_plt_thumb_stub[0], ptr - 4);
9915 put_thumb_insn (htab, output_bfd,
9916 elf32_arm_plt_thumb_stub[1], ptr - 2);
9917 }
9918
9919 if (!elf32_arm_use_long_plt_entry)
9920 {
9921 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
9922
9923 put_arm_insn (htab, output_bfd,
9924 elf32_arm_plt_entry_short[0]
9925 | ((got_displacement & 0x0ff00000) >> 20),
9926 ptr + 0);
9927 put_arm_insn (htab, output_bfd,
9928 elf32_arm_plt_entry_short[1]
9929 | ((got_displacement & 0x000ff000) >> 12),
9930 ptr+ 4);
9931 put_arm_insn (htab, output_bfd,
9932 elf32_arm_plt_entry_short[2]
9933 | (got_displacement & 0x00000fff),
9934 ptr + 8);
9935 #ifdef FOUR_WORD_PLT
9936 bfd_put_32 (output_bfd, elf32_arm_plt_entry_short[3], ptr + 12);
9937 #endif
9938 }
9939 else
9940 {
9941 put_arm_insn (htab, output_bfd,
9942 elf32_arm_plt_entry_long[0]
9943 | ((got_displacement & 0xf0000000) >> 28),
9944 ptr + 0);
9945 put_arm_insn (htab, output_bfd,
9946 elf32_arm_plt_entry_long[1]
9947 | ((got_displacement & 0x0ff00000) >> 20),
9948 ptr + 4);
9949 put_arm_insn (htab, output_bfd,
9950 elf32_arm_plt_entry_long[2]
9951 | ((got_displacement & 0x000ff000) >> 12),
9952 ptr+ 8);
9953 put_arm_insn (htab, output_bfd,
9954 elf32_arm_plt_entry_long[3]
9955 | (got_displacement & 0x00000fff),
9956 ptr + 12);
9957 }
9958 }
9959
9960 /* Fill in the entry in the .rel(a).(i)plt section. */
9961 rel.r_offset = got_address;
9962 rel.r_addend = 0;
9963 if (dynindx == -1)
9964 {
9965 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
9966 The dynamic linker or static executable then calls SYM_VALUE
9967 to determine the correct run-time value of the .igot.plt entry. */
9968 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9969 initial_got_entry = sym_value;
9970 }
9971 else
9972 {
9973 /* For FDPIC we will have to resolve a R_ARM_FUNCDESC_VALUE
9974 used by PLT entry. */
9975 if (htab->fdpic_p)
9976 {
9977 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_FUNCDESC_VALUE);
9978 initial_got_entry = 0;
9979 }
9980 else
9981 {
9982 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
9983 initial_got_entry = (splt->output_section->vma
9984 + splt->output_offset);
9985 }
9986 }
9987
9988 /* Fill in the entry in the global offset table. */
9989 bfd_put_32 (output_bfd, initial_got_entry,
9990 sgot->contents + got_offset);
9991
9992 if (htab->fdpic_p && !(info->flags & DF_BIND_NOW))
9993 {
9994 /* Setup initial funcdesc value. */
9995 /* FIXME: we don't support lazy binding because there is a
9996 race condition between both words getting written and
9997 some other thread attempting to read them. The ARM
9998 architecture does not have an atomic 64 bit load/store
9999 instruction that could be used to prevent it; it is
10000 recommended that threaded FDPIC applications run with the
10001 LD_BIND_NOW environment variable set. */
10002 bfd_put_32(output_bfd, plt_address + 0x18,
10003 sgot->contents + got_offset);
10004 bfd_put_32(output_bfd, -1 /*TODO*/,
10005 sgot->contents + got_offset + 4);
10006 }
10007 }
10008
10009 if (dynindx == -1)
10010 elf32_arm_add_dynreloc (output_bfd, info, srel, &rel);
10011 else
10012 {
10013 if (htab->fdpic_p)
10014 {
10015 /* For FDPIC we put PLT relocationss into .rel.got when not
10016 lazy binding otherwise we put them in .rel.plt. For now,
10017 we don't support lazy binding so put it in .rel.got. */
10018 if (info->flags & DF_BIND_NOW)
10019 elf32_arm_add_dynreloc(output_bfd, info, htab->root.srelgot, &rel);
10020 else
10021 elf32_arm_add_dynreloc(output_bfd, info, htab->root.srelplt, &rel);
10022 }
10023 else
10024 {
10025 loc = srel->contents + plt_index * RELOC_SIZE (htab);
10026 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10027 }
10028 }
10029
10030 return TRUE;
10031 }
10032
10033 /* Some relocations map to different relocations depending on the
10034 target. Return the real relocation. */
10035
10036 static int
10037 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
10038 int r_type)
10039 {
10040 switch (r_type)
10041 {
10042 case R_ARM_TARGET1:
10043 if (globals->target1_is_rel)
10044 return R_ARM_REL32;
10045 else
10046 return R_ARM_ABS32;
10047
10048 case R_ARM_TARGET2:
10049 return globals->target2_reloc;
10050
10051 default:
10052 return r_type;
10053 }
10054 }
10055
10056 /* Return the base VMA address which should be subtracted from real addresses
10057 when resolving @dtpoff relocation.
10058 This is PT_TLS segment p_vaddr. */
10059
10060 static bfd_vma
10061 dtpoff_base (struct bfd_link_info *info)
10062 {
10063 /* If tls_sec is NULL, we should have signalled an error already. */
10064 if (elf_hash_table (info)->tls_sec == NULL)
10065 return 0;
10066 return elf_hash_table (info)->tls_sec->vma;
10067 }
10068
10069 /* Return the relocation value for @tpoff relocation
10070 if STT_TLS virtual address is ADDRESS. */
10071
10072 static bfd_vma
10073 tpoff (struct bfd_link_info *info, bfd_vma address)
10074 {
10075 struct elf_link_hash_table *htab = elf_hash_table (info);
10076 bfd_vma base;
10077
10078 /* If tls_sec is NULL, we should have signalled an error already. */
10079 if (htab->tls_sec == NULL)
10080 return 0;
10081 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
10082 return address - htab->tls_sec->vma + base;
10083 }
10084
10085 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
10086 VALUE is the relocation value. */
10087
10088 static bfd_reloc_status_type
10089 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
10090 {
10091 if (value > 0xfff)
10092 return bfd_reloc_overflow;
10093
10094 value |= bfd_get_32 (abfd, data) & 0xfffff000;
10095 bfd_put_32 (abfd, value, data);
10096 return bfd_reloc_ok;
10097 }
10098
10099 /* Handle TLS relaxations. Relaxing is possible for symbols that use
10100 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
10101 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
10102
10103 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
10104 is to then call final_link_relocate. Return other values in the
10105 case of error.
10106
10107 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
10108 the pre-relaxed code. It would be nice if the relocs were updated
10109 to match the optimization. */
10110
10111 static bfd_reloc_status_type
10112 elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
10113 bfd *input_bfd, asection *input_sec, bfd_byte *contents,
10114 Elf_Internal_Rela *rel, unsigned long is_local)
10115 {
10116 unsigned long insn;
10117
10118 switch (ELF32_R_TYPE (rel->r_info))
10119 {
10120 default:
10121 return bfd_reloc_notsupported;
10122
10123 case R_ARM_TLS_GOTDESC:
10124 if (is_local)
10125 insn = 0;
10126 else
10127 {
10128 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
10129 if (insn & 1)
10130 insn -= 5; /* THUMB */
10131 else
10132 insn -= 8; /* ARM */
10133 }
10134 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
10135 return bfd_reloc_continue;
10136
10137 case R_ARM_THM_TLS_DESCSEQ:
10138 /* Thumb insn. */
10139 insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
10140 if ((insn & 0xff78) == 0x4478) /* add rx, pc */
10141 {
10142 if (is_local)
10143 /* nop */
10144 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10145 }
10146 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
10147 {
10148 if (is_local)
10149 /* nop */
10150 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10151 else
10152 /* ldr rx,[ry] */
10153 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
10154 }
10155 else if ((insn & 0xff87) == 0x4780) /* blx rx */
10156 {
10157 if (is_local)
10158 /* nop */
10159 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10160 else
10161 /* mov r0, rx */
10162 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
10163 contents + rel->r_offset);
10164 }
10165 else
10166 {
10167 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
10168 /* It's a 32 bit instruction, fetch the rest of it for
10169 error generation. */
10170 insn = (insn << 16)
10171 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
10172 _bfd_error_handler
10173 /* xgettext:c-format */
10174 (_("%pB(%pA+%#" PRIx64 "): "
10175 "unexpected %s instruction '%#lx' in TLS trampoline"),
10176 input_bfd, input_sec, (uint64_t) rel->r_offset,
10177 "Thumb", insn);
10178 return bfd_reloc_notsupported;
10179 }
10180 break;
10181
10182 case R_ARM_TLS_DESCSEQ:
10183 /* arm insn. */
10184 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
10185 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
10186 {
10187 if (is_local)
10188 /* mov rx, ry */
10189 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
10190 contents + rel->r_offset);
10191 }
10192 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
10193 {
10194 if (is_local)
10195 /* nop */
10196 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
10197 else
10198 /* ldr rx,[ry] */
10199 bfd_put_32 (input_bfd, insn & 0xfffff000,
10200 contents + rel->r_offset);
10201 }
10202 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
10203 {
10204 if (is_local)
10205 /* nop */
10206 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
10207 else
10208 /* mov r0, rx */
10209 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
10210 contents + rel->r_offset);
10211 }
10212 else
10213 {
10214 _bfd_error_handler
10215 /* xgettext:c-format */
10216 (_("%pB(%pA+%#" PRIx64 "): "
10217 "unexpected %s instruction '%#lx' in TLS trampoline"),
10218 input_bfd, input_sec, (uint64_t) rel->r_offset,
10219 "ARM", insn);
10220 return bfd_reloc_notsupported;
10221 }
10222 break;
10223
10224 case R_ARM_TLS_CALL:
10225 /* GD->IE relaxation, turn the instruction into 'nop' or
10226 'ldr r0, [pc,r0]' */
10227 insn = is_local ? 0xe1a00000 : 0xe79f0000;
10228 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
10229 break;
10230
10231 case R_ARM_THM_TLS_CALL:
10232 /* GD->IE relaxation. */
10233 if (!is_local)
10234 /* add r0,pc; ldr r0, [r0] */
10235 insn = 0x44786800;
10236 else if (using_thumb2 (globals))
10237 /* nop.w */
10238 insn = 0xf3af8000;
10239 else
10240 /* nop; nop */
10241 insn = 0xbf00bf00;
10242
10243 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
10244 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
10245 break;
10246 }
10247 return bfd_reloc_ok;
10248 }
10249
10250 /* For a given value of n, calculate the value of G_n as required to
10251 deal with group relocations. We return it in the form of an
10252 encoded constant-and-rotation, together with the final residual. If n is
10253 specified as less than zero, then final_residual is filled with the
10254 input value and no further action is performed. */
10255
10256 static bfd_vma
10257 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
10258 {
10259 int current_n;
10260 bfd_vma g_n;
10261 bfd_vma encoded_g_n = 0;
10262 bfd_vma residual = value; /* Also known as Y_n. */
10263
10264 for (current_n = 0; current_n <= n; current_n++)
10265 {
10266 int shift;
10267
10268 /* Calculate which part of the value to mask. */
10269 if (residual == 0)
10270 shift = 0;
10271 else
10272 {
10273 int msb;
10274
10275 /* Determine the most significant bit in the residual and
10276 align the resulting value to a 2-bit boundary. */
10277 for (msb = 30; msb >= 0; msb -= 2)
10278 if (residual & (3 << msb))
10279 break;
10280
10281 /* The desired shift is now (msb - 6), or zero, whichever
10282 is the greater. */
10283 shift = msb - 6;
10284 if (shift < 0)
10285 shift = 0;
10286 }
10287
10288 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
10289 g_n = residual & (0xff << shift);
10290 encoded_g_n = (g_n >> shift)
10291 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
10292
10293 /* Calculate the residual for the next time around. */
10294 residual &= ~g_n;
10295 }
10296
10297 *final_residual = residual;
10298
10299 return encoded_g_n;
10300 }
10301
10302 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
10303 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
10304
10305 static int
10306 identify_add_or_sub (bfd_vma insn)
10307 {
10308 int opcode = insn & 0x1e00000;
10309
10310 if (opcode == 1 << 23) /* ADD */
10311 return 1;
10312
10313 if (opcode == 1 << 22) /* SUB */
10314 return -1;
10315
10316 return 0;
10317 }
10318
10319 /* Perform a relocation as part of a final link. */
10320
10321 static bfd_reloc_status_type
10322 elf32_arm_final_link_relocate (reloc_howto_type * howto,
10323 bfd * input_bfd,
10324 bfd * output_bfd,
10325 asection * input_section,
10326 bfd_byte * contents,
10327 Elf_Internal_Rela * rel,
10328 bfd_vma value,
10329 struct bfd_link_info * info,
10330 asection * sym_sec,
10331 const char * sym_name,
10332 unsigned char st_type,
10333 enum arm_st_branch_type branch_type,
10334 struct elf_link_hash_entry * h,
10335 bfd_boolean * unresolved_reloc_p,
10336 char ** error_message)
10337 {
10338 unsigned long r_type = howto->type;
10339 unsigned long r_symndx;
10340 bfd_byte * hit_data = contents + rel->r_offset;
10341 bfd_vma * local_got_offsets;
10342 bfd_vma * local_tlsdesc_gotents;
10343 asection * sgot;
10344 asection * splt;
10345 asection * sreloc = NULL;
10346 asection * srelgot;
10347 bfd_vma addend;
10348 bfd_signed_vma signed_addend;
10349 unsigned char dynreloc_st_type;
10350 bfd_vma dynreloc_value;
10351 struct elf32_arm_link_hash_table * globals;
10352 struct elf32_arm_link_hash_entry *eh;
10353 union gotplt_union *root_plt;
10354 struct arm_plt_info *arm_plt;
10355 bfd_vma plt_offset;
10356 bfd_vma gotplt_offset;
10357 bfd_boolean has_iplt_entry;
10358 bfd_boolean resolved_to_zero;
10359
10360 globals = elf32_arm_hash_table (info);
10361 if (globals == NULL)
10362 return bfd_reloc_notsupported;
10363
10364 BFD_ASSERT (is_arm_elf (input_bfd));
10365 BFD_ASSERT (howto != NULL);
10366
10367 /* Some relocation types map to different relocations depending on the
10368 target. We pick the right one here. */
10369 r_type = arm_real_reloc_type (globals, r_type);
10370
10371 /* It is possible to have linker relaxations on some TLS access
10372 models. Update our information here. */
10373 r_type = elf32_arm_tls_transition (info, r_type, h);
10374
10375 if (r_type != howto->type)
10376 howto = elf32_arm_howto_from_type (r_type);
10377
10378 eh = (struct elf32_arm_link_hash_entry *) h;
10379 sgot = globals->root.sgot;
10380 local_got_offsets = elf_local_got_offsets (input_bfd);
10381 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
10382
10383 if (globals->root.dynamic_sections_created)
10384 srelgot = globals->root.srelgot;
10385 else
10386 srelgot = NULL;
10387
10388 r_symndx = ELF32_R_SYM (rel->r_info);
10389
10390 if (globals->use_rel)
10391 {
10392 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
10393
10394 if (addend & ((howto->src_mask + 1) >> 1))
10395 {
10396 signed_addend = -1;
10397 signed_addend &= ~ howto->src_mask;
10398 signed_addend |= addend;
10399 }
10400 else
10401 signed_addend = addend;
10402 }
10403 else
10404 addend = signed_addend = rel->r_addend;
10405
10406 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
10407 are resolving a function call relocation. */
10408 if (using_thumb_only (globals)
10409 && (r_type == R_ARM_THM_CALL
10410 || r_type == R_ARM_THM_JUMP24)
10411 && branch_type == ST_BRANCH_TO_ARM)
10412 branch_type = ST_BRANCH_TO_THUMB;
10413
10414 /* Record the symbol information that should be used in dynamic
10415 relocations. */
10416 dynreloc_st_type = st_type;
10417 dynreloc_value = value;
10418 if (branch_type == ST_BRANCH_TO_THUMB)
10419 dynreloc_value |= 1;
10420
10421 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
10422 VALUE appropriately for relocations that we resolve at link time. */
10423 has_iplt_entry = FALSE;
10424 if (elf32_arm_get_plt_info (input_bfd, globals, eh, r_symndx, &root_plt,
10425 &arm_plt)
10426 && root_plt->offset != (bfd_vma) -1)
10427 {
10428 plt_offset = root_plt->offset;
10429 gotplt_offset = arm_plt->got_offset;
10430
10431 if (h == NULL || eh->is_iplt)
10432 {
10433 has_iplt_entry = TRUE;
10434 splt = globals->root.iplt;
10435
10436 /* Populate .iplt entries here, because not all of them will
10437 be seen by finish_dynamic_symbol. The lower bit is set if
10438 we have already populated the entry. */
10439 if (plt_offset & 1)
10440 plt_offset--;
10441 else
10442 {
10443 if (elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
10444 -1, dynreloc_value))
10445 root_plt->offset |= 1;
10446 else
10447 return bfd_reloc_notsupported;
10448 }
10449
10450 /* Static relocations always resolve to the .iplt entry. */
10451 st_type = STT_FUNC;
10452 value = (splt->output_section->vma
10453 + splt->output_offset
10454 + plt_offset);
10455 branch_type = ST_BRANCH_TO_ARM;
10456
10457 /* If there are non-call relocations that resolve to the .iplt
10458 entry, then all dynamic ones must too. */
10459 if (arm_plt->noncall_refcount != 0)
10460 {
10461 dynreloc_st_type = st_type;
10462 dynreloc_value = value;
10463 }
10464 }
10465 else
10466 /* We populate the .plt entry in finish_dynamic_symbol. */
10467 splt = globals->root.splt;
10468 }
10469 else
10470 {
10471 splt = NULL;
10472 plt_offset = (bfd_vma) -1;
10473 gotplt_offset = (bfd_vma) -1;
10474 }
10475
10476 resolved_to_zero = (h != NULL
10477 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
10478
10479 switch (r_type)
10480 {
10481 case R_ARM_NONE:
10482 /* We don't need to find a value for this symbol. It's just a
10483 marker. */
10484 *unresolved_reloc_p = FALSE;
10485 return bfd_reloc_ok;
10486
10487 case R_ARM_ABS12:
10488 if (!globals->vxworks_p)
10489 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
10490 /* Fall through. */
10491
10492 case R_ARM_PC24:
10493 case R_ARM_ABS32:
10494 case R_ARM_ABS32_NOI:
10495 case R_ARM_REL32:
10496 case R_ARM_REL32_NOI:
10497 case R_ARM_CALL:
10498 case R_ARM_JUMP24:
10499 case R_ARM_XPC25:
10500 case R_ARM_PREL31:
10501 case R_ARM_PLT32:
10502 /* Handle relocations which should use the PLT entry. ABS32/REL32
10503 will use the symbol's value, which may point to a PLT entry, but we
10504 don't need to handle that here. If we created a PLT entry, all
10505 branches in this object should go to it, except if the PLT is too
10506 far away, in which case a long branch stub should be inserted. */
10507 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
10508 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
10509 && r_type != R_ARM_CALL
10510 && r_type != R_ARM_JUMP24
10511 && r_type != R_ARM_PLT32)
10512 && plt_offset != (bfd_vma) -1)
10513 {
10514 /* If we've created a .plt section, and assigned a PLT entry
10515 to this function, it must either be a STT_GNU_IFUNC reference
10516 or not be known to bind locally. In other cases, we should
10517 have cleared the PLT entry by now. */
10518 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
10519
10520 value = (splt->output_section->vma
10521 + splt->output_offset
10522 + plt_offset);
10523 *unresolved_reloc_p = FALSE;
10524 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10525 contents, rel->r_offset, value,
10526 rel->r_addend);
10527 }
10528
10529 /* When generating a shared object or relocatable executable, these
10530 relocations are copied into the output file to be resolved at
10531 run time. */
10532 if ((bfd_link_pic (info)
10533 || globals->root.is_relocatable_executable
10534 || globals->fdpic_p)
10535 && (input_section->flags & SEC_ALLOC)
10536 && !(globals->vxworks_p
10537 && strcmp (input_section->output_section->name,
10538 ".tls_vars") == 0)
10539 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
10540 || !SYMBOL_CALLS_LOCAL (info, h))
10541 && !(input_bfd == globals->stub_bfd
10542 && strstr (input_section->name, STUB_SUFFIX))
10543 && (h == NULL
10544 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10545 && !resolved_to_zero)
10546 || h->root.type != bfd_link_hash_undefweak)
10547 && r_type != R_ARM_PC24
10548 && r_type != R_ARM_CALL
10549 && r_type != R_ARM_JUMP24
10550 && r_type != R_ARM_PREL31
10551 && r_type != R_ARM_PLT32)
10552 {
10553 Elf_Internal_Rela outrel;
10554 bfd_boolean skip, relocate;
10555 int isrofixup = 0;
10556
10557 if ((r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
10558 && !h->def_regular)
10559 {
10560 char *v = _("shared object");
10561
10562 if (bfd_link_executable (info))
10563 v = _("PIE executable");
10564
10565 _bfd_error_handler
10566 (_("%pB: relocation %s against external or undefined symbol `%s'"
10567 " can not be used when making a %s; recompile with -fPIC"), input_bfd,
10568 elf32_arm_howto_table_1[r_type].name, h->root.root.string, v);
10569 return bfd_reloc_notsupported;
10570 }
10571
10572 *unresolved_reloc_p = FALSE;
10573
10574 if (sreloc == NULL && globals->root.dynamic_sections_created)
10575 {
10576 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
10577 ! globals->use_rel);
10578
10579 if (sreloc == NULL)
10580 return bfd_reloc_notsupported;
10581 }
10582
10583 skip = FALSE;
10584 relocate = FALSE;
10585
10586 outrel.r_addend = addend;
10587 outrel.r_offset =
10588 _bfd_elf_section_offset (output_bfd, info, input_section,
10589 rel->r_offset);
10590 if (outrel.r_offset == (bfd_vma) -1)
10591 skip = TRUE;
10592 else if (outrel.r_offset == (bfd_vma) -2)
10593 skip = TRUE, relocate = TRUE;
10594 outrel.r_offset += (input_section->output_section->vma
10595 + input_section->output_offset);
10596
10597 if (skip)
10598 memset (&outrel, 0, sizeof outrel);
10599 else if (h != NULL
10600 && h->dynindx != -1
10601 && (!bfd_link_pic (info)
10602 || !(bfd_link_pie (info)
10603 || SYMBOLIC_BIND (info, h))
10604 || !h->def_regular))
10605 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
10606 else
10607 {
10608 int symbol;
10609
10610 /* This symbol is local, or marked to become local. */
10611 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI
10612 || (globals->fdpic_p && !bfd_link_pic(info)));
10613 if (globals->symbian_p)
10614 {
10615 asection *osec;
10616
10617 /* On Symbian OS, the data segment and text segement
10618 can be relocated independently. Therefore, we
10619 must indicate the segment to which this
10620 relocation is relative. The BPABI allows us to
10621 use any symbol in the right segment; we just use
10622 the section symbol as it is convenient. (We
10623 cannot use the symbol given by "h" directly as it
10624 will not appear in the dynamic symbol table.)
10625
10626 Note that the dynamic linker ignores the section
10627 symbol value, so we don't subtract osec->vma
10628 from the emitted reloc addend. */
10629 if (sym_sec)
10630 osec = sym_sec->output_section;
10631 else
10632 osec = input_section->output_section;
10633 symbol = elf_section_data (osec)->dynindx;
10634 if (symbol == 0)
10635 {
10636 struct elf_link_hash_table *htab = elf_hash_table (info);
10637
10638 if ((osec->flags & SEC_READONLY) == 0
10639 && htab->data_index_section != NULL)
10640 osec = htab->data_index_section;
10641 else
10642 osec = htab->text_index_section;
10643 symbol = elf_section_data (osec)->dynindx;
10644 }
10645 BFD_ASSERT (symbol != 0);
10646 }
10647 else
10648 /* On SVR4-ish systems, the dynamic loader cannot
10649 relocate the text and data segments independently,
10650 so the symbol does not matter. */
10651 symbol = 0;
10652 if (dynreloc_st_type == STT_GNU_IFUNC)
10653 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
10654 to the .iplt entry. Instead, every non-call reference
10655 must use an R_ARM_IRELATIVE relocation to obtain the
10656 correct run-time address. */
10657 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
10658 else if (globals->fdpic_p && !bfd_link_pic(info))
10659 isrofixup = 1;
10660 else
10661 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
10662 if (globals->use_rel)
10663 relocate = TRUE;
10664 else
10665 outrel.r_addend += dynreloc_value;
10666 }
10667
10668 if (isrofixup)
10669 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset);
10670 else
10671 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
10672
10673 /* If this reloc is against an external symbol, we do not want to
10674 fiddle with the addend. Otherwise, we need to include the symbol
10675 value so that it becomes an addend for the dynamic reloc. */
10676 if (! relocate)
10677 return bfd_reloc_ok;
10678
10679 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10680 contents, rel->r_offset,
10681 dynreloc_value, (bfd_vma) 0);
10682 }
10683 else switch (r_type)
10684 {
10685 case R_ARM_ABS12:
10686 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
10687
10688 case R_ARM_XPC25: /* Arm BLX instruction. */
10689 case R_ARM_CALL:
10690 case R_ARM_JUMP24:
10691 case R_ARM_PC24: /* Arm B/BL instruction. */
10692 case R_ARM_PLT32:
10693 {
10694 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
10695
10696 if (r_type == R_ARM_XPC25)
10697 {
10698 /* Check for Arm calling Arm function. */
10699 /* FIXME: Should we translate the instruction into a BL
10700 instruction instead ? */
10701 if (branch_type != ST_BRANCH_TO_THUMB)
10702 _bfd_error_handler
10703 (_("\%pB: warning: %s BLX instruction targets"
10704 " %s function '%s'"),
10705 input_bfd, "ARM",
10706 "ARM", h ? h->root.root.string : "(local)");
10707 }
10708 else if (r_type == R_ARM_PC24)
10709 {
10710 /* Check for Arm calling Thumb function. */
10711 if (branch_type == ST_BRANCH_TO_THUMB)
10712 {
10713 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
10714 output_bfd, input_section,
10715 hit_data, sym_sec, rel->r_offset,
10716 signed_addend, value,
10717 error_message))
10718 return bfd_reloc_ok;
10719 else
10720 return bfd_reloc_dangerous;
10721 }
10722 }
10723
10724 /* Check if a stub has to be inserted because the
10725 destination is too far or we are changing mode. */
10726 if ( r_type == R_ARM_CALL
10727 || r_type == R_ARM_JUMP24
10728 || r_type == R_ARM_PLT32)
10729 {
10730 enum elf32_arm_stub_type stub_type = arm_stub_none;
10731 struct elf32_arm_link_hash_entry *hash;
10732
10733 hash = (struct elf32_arm_link_hash_entry *) h;
10734 stub_type = arm_type_of_stub (info, input_section, rel,
10735 st_type, &branch_type,
10736 hash, value, sym_sec,
10737 input_bfd, sym_name);
10738
10739 if (stub_type != arm_stub_none)
10740 {
10741 /* The target is out of reach, so redirect the
10742 branch to the local stub for this function. */
10743 stub_entry = elf32_arm_get_stub_entry (input_section,
10744 sym_sec, h,
10745 rel, globals,
10746 stub_type);
10747 {
10748 if (stub_entry != NULL)
10749 value = (stub_entry->stub_offset
10750 + stub_entry->stub_sec->output_offset
10751 + stub_entry->stub_sec->output_section->vma);
10752
10753 if (plt_offset != (bfd_vma) -1)
10754 *unresolved_reloc_p = FALSE;
10755 }
10756 }
10757 else
10758 {
10759 /* If the call goes through a PLT entry, make sure to
10760 check distance to the right destination address. */
10761 if (plt_offset != (bfd_vma) -1)
10762 {
10763 value = (splt->output_section->vma
10764 + splt->output_offset
10765 + plt_offset);
10766 *unresolved_reloc_p = FALSE;
10767 /* The PLT entry is in ARM mode, regardless of the
10768 target function. */
10769 branch_type = ST_BRANCH_TO_ARM;
10770 }
10771 }
10772 }
10773
10774 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
10775 where:
10776 S is the address of the symbol in the relocation.
10777 P is address of the instruction being relocated.
10778 A is the addend (extracted from the instruction) in bytes.
10779
10780 S is held in 'value'.
10781 P is the base address of the section containing the
10782 instruction plus the offset of the reloc into that
10783 section, ie:
10784 (input_section->output_section->vma +
10785 input_section->output_offset +
10786 rel->r_offset).
10787 A is the addend, converted into bytes, ie:
10788 (signed_addend * 4)
10789
10790 Note: None of these operations have knowledge of the pipeline
10791 size of the processor, thus it is up to the assembler to
10792 encode this information into the addend. */
10793 value -= (input_section->output_section->vma
10794 + input_section->output_offset);
10795 value -= rel->r_offset;
10796 if (globals->use_rel)
10797 value += (signed_addend << howto->size);
10798 else
10799 /* RELA addends do not have to be adjusted by howto->size. */
10800 value += signed_addend;
10801
10802 signed_addend = value;
10803 signed_addend >>= howto->rightshift;
10804
10805 /* A branch to an undefined weak symbol is turned into a jump to
10806 the next instruction unless a PLT entry will be created.
10807 Do the same for local undefined symbols (but not for STN_UNDEF).
10808 The jump to the next instruction is optimized as a NOP depending
10809 on the architecture. */
10810 if (h ? (h->root.type == bfd_link_hash_undefweak
10811 && plt_offset == (bfd_vma) -1)
10812 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
10813 {
10814 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
10815
10816 if (arch_has_arm_nop (globals))
10817 value |= 0x0320f000;
10818 else
10819 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
10820 }
10821 else
10822 {
10823 /* Perform a signed range check. */
10824 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
10825 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
10826 return bfd_reloc_overflow;
10827
10828 addend = (value & 2);
10829
10830 value = (signed_addend & howto->dst_mask)
10831 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
10832
10833 if (r_type == R_ARM_CALL)
10834 {
10835 /* Set the H bit in the BLX instruction. */
10836 if (branch_type == ST_BRANCH_TO_THUMB)
10837 {
10838 if (addend)
10839 value |= (1 << 24);
10840 else
10841 value &= ~(bfd_vma)(1 << 24);
10842 }
10843
10844 /* Select the correct instruction (BL or BLX). */
10845 /* Only if we are not handling a BL to a stub. In this
10846 case, mode switching is performed by the stub. */
10847 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
10848 value |= (1 << 28);
10849 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
10850 {
10851 value &= ~(bfd_vma)(1 << 28);
10852 value |= (1 << 24);
10853 }
10854 }
10855 }
10856 }
10857 break;
10858
10859 case R_ARM_ABS32:
10860 value += addend;
10861 if (branch_type == ST_BRANCH_TO_THUMB)
10862 value |= 1;
10863 break;
10864
10865 case R_ARM_ABS32_NOI:
10866 value += addend;
10867 break;
10868
10869 case R_ARM_REL32:
10870 value += addend;
10871 if (branch_type == ST_BRANCH_TO_THUMB)
10872 value |= 1;
10873 value -= (input_section->output_section->vma
10874 + input_section->output_offset + rel->r_offset);
10875 break;
10876
10877 case R_ARM_REL32_NOI:
10878 value += addend;
10879 value -= (input_section->output_section->vma
10880 + input_section->output_offset + rel->r_offset);
10881 break;
10882
10883 case R_ARM_PREL31:
10884 value -= (input_section->output_section->vma
10885 + input_section->output_offset + rel->r_offset);
10886 value += signed_addend;
10887 if (! h || h->root.type != bfd_link_hash_undefweak)
10888 {
10889 /* Check for overflow. */
10890 if ((value ^ (value >> 1)) & (1 << 30))
10891 return bfd_reloc_overflow;
10892 }
10893 value &= 0x7fffffff;
10894 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
10895 if (branch_type == ST_BRANCH_TO_THUMB)
10896 value |= 1;
10897 break;
10898 }
10899
10900 bfd_put_32 (input_bfd, value, hit_data);
10901 return bfd_reloc_ok;
10902
10903 case R_ARM_ABS8:
10904 /* PR 16202: Refectch the addend using the correct size. */
10905 if (globals->use_rel)
10906 addend = bfd_get_8 (input_bfd, hit_data);
10907 value += addend;
10908
10909 /* There is no way to tell whether the user intended to use a signed or
10910 unsigned addend. When checking for overflow we accept either,
10911 as specified by the AAELF. */
10912 if ((long) value > 0xff || (long) value < -0x80)
10913 return bfd_reloc_overflow;
10914
10915 bfd_put_8 (input_bfd, value, hit_data);
10916 return bfd_reloc_ok;
10917
10918 case R_ARM_ABS16:
10919 /* PR 16202: Refectch the addend using the correct size. */
10920 if (globals->use_rel)
10921 addend = bfd_get_16 (input_bfd, hit_data);
10922 value += addend;
10923
10924 /* See comment for R_ARM_ABS8. */
10925 if ((long) value > 0xffff || (long) value < -0x8000)
10926 return bfd_reloc_overflow;
10927
10928 bfd_put_16 (input_bfd, value, hit_data);
10929 return bfd_reloc_ok;
10930
10931 case R_ARM_THM_ABS5:
10932 /* Support ldr and str instructions for the thumb. */
10933 if (globals->use_rel)
10934 {
10935 /* Need to refetch addend. */
10936 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
10937 /* ??? Need to determine shift amount from operand size. */
10938 addend >>= howto->rightshift;
10939 }
10940 value += addend;
10941
10942 /* ??? Isn't value unsigned? */
10943 if ((long) value > 0x1f || (long) value < -0x10)
10944 return bfd_reloc_overflow;
10945
10946 /* ??? Value needs to be properly shifted into place first. */
10947 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
10948 bfd_put_16 (input_bfd, value, hit_data);
10949 return bfd_reloc_ok;
10950
10951 case R_ARM_THM_ALU_PREL_11_0:
10952 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
10953 {
10954 bfd_vma insn;
10955 bfd_signed_vma relocation;
10956
10957 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
10958 | bfd_get_16 (input_bfd, hit_data + 2);
10959
10960 if (globals->use_rel)
10961 {
10962 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
10963 | ((insn & (1 << 26)) >> 15);
10964 if (insn & 0xf00000)
10965 signed_addend = -signed_addend;
10966 }
10967
10968 relocation = value + signed_addend;
10969 relocation -= Pa (input_section->output_section->vma
10970 + input_section->output_offset
10971 + rel->r_offset);
10972
10973 /* PR 21523: Use an absolute value. The user of this reloc will
10974 have already selected an ADD or SUB insn appropriately. */
10975 value = llabs (relocation);
10976
10977 if (value >= 0x1000)
10978 return bfd_reloc_overflow;
10979
10980 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
10981 if (branch_type == ST_BRANCH_TO_THUMB)
10982 value |= 1;
10983
10984 insn = (insn & 0xfb0f8f00) | (value & 0xff)
10985 | ((value & 0x700) << 4)
10986 | ((value & 0x800) << 15);
10987 if (relocation < 0)
10988 insn |= 0xa00000;
10989
10990 bfd_put_16 (input_bfd, insn >> 16, hit_data);
10991 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10992
10993 return bfd_reloc_ok;
10994 }
10995
10996 case R_ARM_THM_PC8:
10997 /* PR 10073: This reloc is not generated by the GNU toolchain,
10998 but it is supported for compatibility with third party libraries
10999 generated by other compilers, specifically the ARM/IAR. */
11000 {
11001 bfd_vma insn;
11002 bfd_signed_vma relocation;
11003
11004 insn = bfd_get_16 (input_bfd, hit_data);
11005
11006 if (globals->use_rel)
11007 addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4;
11008
11009 relocation = value + addend;
11010 relocation -= Pa (input_section->output_section->vma
11011 + input_section->output_offset
11012 + rel->r_offset);
11013
11014 value = relocation;
11015
11016 /* We do not check for overflow of this reloc. Although strictly
11017 speaking this is incorrect, it appears to be necessary in order
11018 to work with IAR generated relocs. Since GCC and GAS do not
11019 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
11020 a problem for them. */
11021 value &= 0x3fc;
11022
11023 insn = (insn & 0xff00) | (value >> 2);
11024
11025 bfd_put_16 (input_bfd, insn, hit_data);
11026
11027 return bfd_reloc_ok;
11028 }
11029
11030 case R_ARM_THM_PC12:
11031 /* Corresponds to: ldr.w reg, [pc, #offset]. */
11032 {
11033 bfd_vma insn;
11034 bfd_signed_vma relocation;
11035
11036 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
11037 | bfd_get_16 (input_bfd, hit_data + 2);
11038
11039 if (globals->use_rel)
11040 {
11041 signed_addend = insn & 0xfff;
11042 if (!(insn & (1 << 23)))
11043 signed_addend = -signed_addend;
11044 }
11045
11046 relocation = value + signed_addend;
11047 relocation -= Pa (input_section->output_section->vma
11048 + input_section->output_offset
11049 + rel->r_offset);
11050
11051 value = relocation;
11052
11053 if (value >= 0x1000)
11054 return bfd_reloc_overflow;
11055
11056 insn = (insn & 0xff7ff000) | value;
11057 if (relocation >= 0)
11058 insn |= (1 << 23);
11059
11060 bfd_put_16 (input_bfd, insn >> 16, hit_data);
11061 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
11062
11063 return bfd_reloc_ok;
11064 }
11065
11066 case R_ARM_THM_XPC22:
11067 case R_ARM_THM_CALL:
11068 case R_ARM_THM_JUMP24:
11069 /* Thumb BL (branch long instruction). */
11070 {
11071 bfd_vma relocation;
11072 bfd_vma reloc_sign;
11073 bfd_boolean overflow = FALSE;
11074 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
11075 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
11076 bfd_signed_vma reloc_signed_max;
11077 bfd_signed_vma reloc_signed_min;
11078 bfd_vma check;
11079 bfd_signed_vma signed_check;
11080 int bitsize;
11081 const int thumb2 = using_thumb2 (globals);
11082 const int thumb2_bl = using_thumb2_bl (globals);
11083
11084 /* A branch to an undefined weak symbol is turned into a jump to
11085 the next instruction unless a PLT entry will be created.
11086 The jump to the next instruction is optimized as a NOP.W for
11087 Thumb-2 enabled architectures. */
11088 if (h && h->root.type == bfd_link_hash_undefweak
11089 && plt_offset == (bfd_vma) -1)
11090 {
11091 if (thumb2)
11092 {
11093 bfd_put_16 (input_bfd, 0xf3af, hit_data);
11094 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
11095 }
11096 else
11097 {
11098 bfd_put_16 (input_bfd, 0xe000, hit_data);
11099 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
11100 }
11101 return bfd_reloc_ok;
11102 }
11103
11104 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
11105 with Thumb-1) involving the J1 and J2 bits. */
11106 if (globals->use_rel)
11107 {
11108 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
11109 bfd_vma upper = upper_insn & 0x3ff;
11110 bfd_vma lower = lower_insn & 0x7ff;
11111 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
11112 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
11113 bfd_vma i1 = j1 ^ s ? 0 : 1;
11114 bfd_vma i2 = j2 ^ s ? 0 : 1;
11115
11116 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
11117 /* Sign extend. */
11118 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
11119
11120 signed_addend = addend;
11121 }
11122
11123 if (r_type == R_ARM_THM_XPC22)
11124 {
11125 /* Check for Thumb to Thumb call. */
11126 /* FIXME: Should we translate the instruction into a BL
11127 instruction instead ? */
11128 if (branch_type == ST_BRANCH_TO_THUMB)
11129 _bfd_error_handler
11130 (_("%pB: warning: %s BLX instruction targets"
11131 " %s function '%s'"),
11132 input_bfd, "Thumb",
11133 "Thumb", h ? h->root.root.string : "(local)");
11134 }
11135 else
11136 {
11137 /* If it is not a call to Thumb, assume call to Arm.
11138 If it is a call relative to a section name, then it is not a
11139 function call at all, but rather a long jump. Calls through
11140 the PLT do not require stubs. */
11141 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
11142 {
11143 if (globals->use_blx && r_type == R_ARM_THM_CALL)
11144 {
11145 /* Convert BL to BLX. */
11146 lower_insn = (lower_insn & ~0x1000) | 0x0800;
11147 }
11148 else if (( r_type != R_ARM_THM_CALL)
11149 && (r_type != R_ARM_THM_JUMP24))
11150 {
11151 if (elf32_thumb_to_arm_stub
11152 (info, sym_name, input_bfd, output_bfd, input_section,
11153 hit_data, sym_sec, rel->r_offset, signed_addend, value,
11154 error_message))
11155 return bfd_reloc_ok;
11156 else
11157 return bfd_reloc_dangerous;
11158 }
11159 }
11160 else if (branch_type == ST_BRANCH_TO_THUMB
11161 && globals->use_blx
11162 && r_type == R_ARM_THM_CALL)
11163 {
11164 /* Make sure this is a BL. */
11165 lower_insn |= 0x1800;
11166 }
11167 }
11168
11169 enum elf32_arm_stub_type stub_type = arm_stub_none;
11170 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
11171 {
11172 /* Check if a stub has to be inserted because the destination
11173 is too far. */
11174 struct elf32_arm_stub_hash_entry *stub_entry;
11175 struct elf32_arm_link_hash_entry *hash;
11176
11177 hash = (struct elf32_arm_link_hash_entry *) h;
11178
11179 stub_type = arm_type_of_stub (info, input_section, rel,
11180 st_type, &branch_type,
11181 hash, value, sym_sec,
11182 input_bfd, sym_name);
11183
11184 if (stub_type != arm_stub_none)
11185 {
11186 /* The target is out of reach or we are changing modes, so
11187 redirect the branch to the local stub for this
11188 function. */
11189 stub_entry = elf32_arm_get_stub_entry (input_section,
11190 sym_sec, h,
11191 rel, globals,
11192 stub_type);
11193 if (stub_entry != NULL)
11194 {
11195 value = (stub_entry->stub_offset
11196 + stub_entry->stub_sec->output_offset
11197 + stub_entry->stub_sec->output_section->vma);
11198
11199 if (plt_offset != (bfd_vma) -1)
11200 *unresolved_reloc_p = FALSE;
11201 }
11202
11203 /* If this call becomes a call to Arm, force BLX. */
11204 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
11205 {
11206 if ((stub_entry
11207 && !arm_stub_is_thumb (stub_entry->stub_type))
11208 || branch_type != ST_BRANCH_TO_THUMB)
11209 lower_insn = (lower_insn & ~0x1000) | 0x0800;
11210 }
11211 }
11212 }
11213
11214 /* Handle calls via the PLT. */
11215 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
11216 {
11217 value = (splt->output_section->vma
11218 + splt->output_offset
11219 + plt_offset);
11220
11221 if (globals->use_blx
11222 && r_type == R_ARM_THM_CALL
11223 && ! using_thumb_only (globals))
11224 {
11225 /* If the Thumb BLX instruction is available, convert
11226 the BL to a BLX instruction to call the ARM-mode
11227 PLT entry. */
11228 lower_insn = (lower_insn & ~0x1000) | 0x0800;
11229 branch_type = ST_BRANCH_TO_ARM;
11230 }
11231 else
11232 {
11233 if (! using_thumb_only (globals))
11234 /* Target the Thumb stub before the ARM PLT entry. */
11235 value -= PLT_THUMB_STUB_SIZE;
11236 branch_type = ST_BRANCH_TO_THUMB;
11237 }
11238 *unresolved_reloc_p = FALSE;
11239 }
11240
11241 relocation = value + signed_addend;
11242
11243 relocation -= (input_section->output_section->vma
11244 + input_section->output_offset
11245 + rel->r_offset);
11246
11247 check = relocation >> howto->rightshift;
11248
11249 /* If this is a signed value, the rightshift just dropped
11250 leading 1 bits (assuming twos complement). */
11251 if ((bfd_signed_vma) relocation >= 0)
11252 signed_check = check;
11253 else
11254 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
11255
11256 /* Calculate the permissable maximum and minimum values for
11257 this relocation according to whether we're relocating for
11258 Thumb-2 or not. */
11259 bitsize = howto->bitsize;
11260 if (!thumb2_bl)
11261 bitsize -= 2;
11262 reloc_signed_max = (1 << (bitsize - 1)) - 1;
11263 reloc_signed_min = ~reloc_signed_max;
11264
11265 /* Assumes two's complement. */
11266 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
11267 overflow = TRUE;
11268
11269 if ((lower_insn & 0x5000) == 0x4000)
11270 /* For a BLX instruction, make sure that the relocation is rounded up
11271 to a word boundary. This follows the semantics of the instruction
11272 which specifies that bit 1 of the target address will come from bit
11273 1 of the base address. */
11274 relocation = (relocation + 2) & ~ 3;
11275
11276 /* Put RELOCATION back into the insn. Assumes two's complement.
11277 We use the Thumb-2 encoding, which is safe even if dealing with
11278 a Thumb-1 instruction by virtue of our overflow check above. */
11279 reloc_sign = (signed_check < 0) ? 1 : 0;
11280 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
11281 | ((relocation >> 12) & 0x3ff)
11282 | (reloc_sign << 10);
11283 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
11284 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
11285 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
11286 | ((relocation >> 1) & 0x7ff);
11287
11288 /* Put the relocated value back in the object file: */
11289 bfd_put_16 (input_bfd, upper_insn, hit_data);
11290 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11291
11292 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
11293 }
11294 break;
11295
11296 case R_ARM_THM_JUMP19:
11297 /* Thumb32 conditional branch instruction. */
11298 {
11299 bfd_vma relocation;
11300 bfd_boolean overflow = FALSE;
11301 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
11302 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
11303 bfd_signed_vma reloc_signed_max = 0xffffe;
11304 bfd_signed_vma reloc_signed_min = -0x100000;
11305 bfd_signed_vma signed_check;
11306 enum elf32_arm_stub_type stub_type = arm_stub_none;
11307 struct elf32_arm_stub_hash_entry *stub_entry;
11308 struct elf32_arm_link_hash_entry *hash;
11309
11310 /* Need to refetch the addend, reconstruct the top three bits,
11311 and squish the two 11 bit pieces together. */
11312 if (globals->use_rel)
11313 {
11314 bfd_vma S = (upper_insn & 0x0400) >> 10;
11315 bfd_vma upper = (upper_insn & 0x003f);
11316 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
11317 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
11318 bfd_vma lower = (lower_insn & 0x07ff);
11319
11320 upper |= J1 << 6;
11321 upper |= J2 << 7;
11322 upper |= (!S) << 8;
11323 upper -= 0x0100; /* Sign extend. */
11324
11325 addend = (upper << 12) | (lower << 1);
11326 signed_addend = addend;
11327 }
11328
11329 /* Handle calls via the PLT. */
11330 if (plt_offset != (bfd_vma) -1)
11331 {
11332 value = (splt->output_section->vma
11333 + splt->output_offset
11334 + plt_offset);
11335 /* Target the Thumb stub before the ARM PLT entry. */
11336 value -= PLT_THUMB_STUB_SIZE;
11337 *unresolved_reloc_p = FALSE;
11338 }
11339
11340 hash = (struct elf32_arm_link_hash_entry *)h;
11341
11342 stub_type = arm_type_of_stub (info, input_section, rel,
11343 st_type, &branch_type,
11344 hash, value, sym_sec,
11345 input_bfd, sym_name);
11346 if (stub_type != arm_stub_none)
11347 {
11348 stub_entry = elf32_arm_get_stub_entry (input_section,
11349 sym_sec, h,
11350 rel, globals,
11351 stub_type);
11352 if (stub_entry != NULL)
11353 {
11354 value = (stub_entry->stub_offset
11355 + stub_entry->stub_sec->output_offset
11356 + stub_entry->stub_sec->output_section->vma);
11357 }
11358 }
11359
11360 relocation = value + signed_addend;
11361 relocation -= (input_section->output_section->vma
11362 + input_section->output_offset
11363 + rel->r_offset);
11364 signed_check = (bfd_signed_vma) relocation;
11365
11366 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
11367 overflow = TRUE;
11368
11369 /* Put RELOCATION back into the insn. */
11370 {
11371 bfd_vma S = (relocation & 0x00100000) >> 20;
11372 bfd_vma J2 = (relocation & 0x00080000) >> 19;
11373 bfd_vma J1 = (relocation & 0x00040000) >> 18;
11374 bfd_vma hi = (relocation & 0x0003f000) >> 12;
11375 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
11376
11377 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
11378 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
11379 }
11380
11381 /* Put the relocated value back in the object file: */
11382 bfd_put_16 (input_bfd, upper_insn, hit_data);
11383 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11384
11385 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
11386 }
11387
11388 case R_ARM_THM_JUMP11:
11389 case R_ARM_THM_JUMP8:
11390 case R_ARM_THM_JUMP6:
11391 /* Thumb B (branch) instruction). */
11392 {
11393 bfd_signed_vma relocation;
11394 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
11395 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
11396 bfd_signed_vma signed_check;
11397
11398 /* CZB cannot jump backward. */
11399 if (r_type == R_ARM_THM_JUMP6)
11400 reloc_signed_min = 0;
11401
11402 if (globals->use_rel)
11403 {
11404 /* Need to refetch addend. */
11405 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
11406 if (addend & ((howto->src_mask + 1) >> 1))
11407 {
11408 signed_addend = -1;
11409 signed_addend &= ~ howto->src_mask;
11410 signed_addend |= addend;
11411 }
11412 else
11413 signed_addend = addend;
11414 /* The value in the insn has been right shifted. We need to
11415 undo this, so that we can perform the address calculation
11416 in terms of bytes. */
11417 signed_addend <<= howto->rightshift;
11418 }
11419 relocation = value + signed_addend;
11420
11421 relocation -= (input_section->output_section->vma
11422 + input_section->output_offset
11423 + rel->r_offset);
11424
11425 relocation >>= howto->rightshift;
11426 signed_check = relocation;
11427
11428 if (r_type == R_ARM_THM_JUMP6)
11429 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
11430 else
11431 relocation &= howto->dst_mask;
11432 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
11433
11434 bfd_put_16 (input_bfd, relocation, hit_data);
11435
11436 /* Assumes two's complement. */
11437 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
11438 return bfd_reloc_overflow;
11439
11440 return bfd_reloc_ok;
11441 }
11442
11443 case R_ARM_ALU_PCREL7_0:
11444 case R_ARM_ALU_PCREL15_8:
11445 case R_ARM_ALU_PCREL23_15:
11446 {
11447 bfd_vma insn;
11448 bfd_vma relocation;
11449
11450 insn = bfd_get_32 (input_bfd, hit_data);
11451 if (globals->use_rel)
11452 {
11453 /* Extract the addend. */
11454 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
11455 signed_addend = addend;
11456 }
11457 relocation = value + signed_addend;
11458
11459 relocation -= (input_section->output_section->vma
11460 + input_section->output_offset
11461 + rel->r_offset);
11462 insn = (insn & ~0xfff)
11463 | ((howto->bitpos << 7) & 0xf00)
11464 | ((relocation >> howto->bitpos) & 0xff);
11465 bfd_put_32 (input_bfd, value, hit_data);
11466 }
11467 return bfd_reloc_ok;
11468
11469 case R_ARM_GNU_VTINHERIT:
11470 case R_ARM_GNU_VTENTRY:
11471 return bfd_reloc_ok;
11472
11473 case R_ARM_GOTOFF32:
11474 /* Relocation is relative to the start of the
11475 global offset table. */
11476
11477 BFD_ASSERT (sgot != NULL);
11478 if (sgot == NULL)
11479 return bfd_reloc_notsupported;
11480
11481 /* If we are addressing a Thumb function, we need to adjust the
11482 address by one, so that attempts to call the function pointer will
11483 correctly interpret it as Thumb code. */
11484 if (branch_type == ST_BRANCH_TO_THUMB)
11485 value += 1;
11486
11487 /* Note that sgot->output_offset is not involved in this
11488 calculation. We always want the start of .got. If we
11489 define _GLOBAL_OFFSET_TABLE in a different way, as is
11490 permitted by the ABI, we might have to change this
11491 calculation. */
11492 value -= sgot->output_section->vma;
11493 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11494 contents, rel->r_offset, value,
11495 rel->r_addend);
11496
11497 case R_ARM_GOTPC:
11498 /* Use global offset table as symbol value. */
11499 BFD_ASSERT (sgot != NULL);
11500
11501 if (sgot == NULL)
11502 return bfd_reloc_notsupported;
11503
11504 *unresolved_reloc_p = FALSE;
11505 value = sgot->output_section->vma;
11506 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11507 contents, rel->r_offset, value,
11508 rel->r_addend);
11509
11510 case R_ARM_GOT32:
11511 case R_ARM_GOT_PREL:
11512 /* Relocation is to the entry for this symbol in the
11513 global offset table. */
11514 if (sgot == NULL)
11515 return bfd_reloc_notsupported;
11516
11517 if (dynreloc_st_type == STT_GNU_IFUNC
11518 && plt_offset != (bfd_vma) -1
11519 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
11520 {
11521 /* We have a relocation against a locally-binding STT_GNU_IFUNC
11522 symbol, and the relocation resolves directly to the runtime
11523 target rather than to the .iplt entry. This means that any
11524 .got entry would be the same value as the .igot.plt entry,
11525 so there's no point creating both. */
11526 sgot = globals->root.igotplt;
11527 value = sgot->output_offset + gotplt_offset;
11528 }
11529 else if (h != NULL)
11530 {
11531 bfd_vma off;
11532
11533 off = h->got.offset;
11534 BFD_ASSERT (off != (bfd_vma) -1);
11535 if ((off & 1) != 0)
11536 {
11537 /* We have already processsed one GOT relocation against
11538 this symbol. */
11539 off &= ~1;
11540 if (globals->root.dynamic_sections_created
11541 && !SYMBOL_REFERENCES_LOCAL (info, h))
11542 *unresolved_reloc_p = FALSE;
11543 }
11544 else
11545 {
11546 Elf_Internal_Rela outrel;
11547 int isrofixup = 0;
11548
11549 if (((h->dynindx != -1) || globals->fdpic_p)
11550 && !SYMBOL_REFERENCES_LOCAL (info, h))
11551 {
11552 /* If the symbol doesn't resolve locally in a static
11553 object, we have an undefined reference. If the
11554 symbol doesn't resolve locally in a dynamic object,
11555 it should be resolved by the dynamic linker. */
11556 if (globals->root.dynamic_sections_created)
11557 {
11558 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
11559 *unresolved_reloc_p = FALSE;
11560 }
11561 else
11562 outrel.r_info = 0;
11563 outrel.r_addend = 0;
11564 }
11565 else
11566 {
11567 if (dynreloc_st_type == STT_GNU_IFUNC)
11568 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
11569 else if (bfd_link_pic (info)
11570 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11571 || h->root.type != bfd_link_hash_undefweak))
11572 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11573 else
11574 {
11575 outrel.r_info = 0;
11576 if (globals->fdpic_p)
11577 isrofixup = 1;
11578 }
11579 outrel.r_addend = dynreloc_value;
11580 }
11581
11582 /* The GOT entry is initialized to zero by default.
11583 See if we should install a different value. */
11584 if (outrel.r_addend != 0
11585 && (globals->use_rel || outrel.r_info == 0))
11586 {
11587 bfd_put_32 (output_bfd, outrel.r_addend,
11588 sgot->contents + off);
11589 outrel.r_addend = 0;
11590 }
11591
11592 if (isrofixup)
11593 arm_elf_add_rofixup (output_bfd,
11594 elf32_arm_hash_table(info)->srofixup,
11595 sgot->output_section->vma
11596 + sgot->output_offset + off);
11597
11598 else if (outrel.r_info != 0)
11599 {
11600 outrel.r_offset = (sgot->output_section->vma
11601 + sgot->output_offset
11602 + off);
11603 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11604 }
11605
11606 h->got.offset |= 1;
11607 }
11608 value = sgot->output_offset + off;
11609 }
11610 else
11611 {
11612 bfd_vma off;
11613
11614 BFD_ASSERT (local_got_offsets != NULL
11615 && local_got_offsets[r_symndx] != (bfd_vma) -1);
11616
11617 off = local_got_offsets[r_symndx];
11618
11619 /* The offset must always be a multiple of 4. We use the
11620 least significant bit to record whether we have already
11621 generated the necessary reloc. */
11622 if ((off & 1) != 0)
11623 off &= ~1;
11624 else
11625 {
11626 Elf_Internal_Rela outrel;
11627 int isrofixup = 0;
11628
11629 if (dynreloc_st_type == STT_GNU_IFUNC)
11630 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
11631 else if (bfd_link_pic (info))
11632 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11633 else
11634 {
11635 outrel.r_info = 0;
11636 if (globals->fdpic_p)
11637 isrofixup = 1;
11638 }
11639
11640 /* The GOT entry is initialized to zero by default.
11641 See if we should install a different value. */
11642 if (globals->use_rel || outrel.r_info == 0)
11643 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
11644
11645 if (isrofixup)
11646 arm_elf_add_rofixup (output_bfd,
11647 globals->srofixup,
11648 sgot->output_section->vma
11649 + sgot->output_offset + off);
11650
11651 else if (outrel.r_info != 0)
11652 {
11653 outrel.r_addend = addend + dynreloc_value;
11654 outrel.r_offset = (sgot->output_section->vma
11655 + sgot->output_offset
11656 + off);
11657 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11658 }
11659
11660 local_got_offsets[r_symndx] |= 1;
11661 }
11662
11663 value = sgot->output_offset + off;
11664 }
11665 if (r_type != R_ARM_GOT32)
11666 value += sgot->output_section->vma;
11667
11668 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11669 contents, rel->r_offset, value,
11670 rel->r_addend);
11671
11672 case R_ARM_TLS_LDO32:
11673 value = value - dtpoff_base (info);
11674
11675 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11676 contents, rel->r_offset, value,
11677 rel->r_addend);
11678
11679 case R_ARM_TLS_LDM32:
11680 case R_ARM_TLS_LDM32_FDPIC:
11681 {
11682 bfd_vma off;
11683
11684 if (sgot == NULL)
11685 abort ();
11686
11687 off = globals->tls_ldm_got.offset;
11688
11689 if ((off & 1) != 0)
11690 off &= ~1;
11691 else
11692 {
11693 /* If we don't know the module number, create a relocation
11694 for it. */
11695 if (bfd_link_pic (info))
11696 {
11697 Elf_Internal_Rela outrel;
11698
11699 if (srelgot == NULL)
11700 abort ();
11701
11702 outrel.r_addend = 0;
11703 outrel.r_offset = (sgot->output_section->vma
11704 + sgot->output_offset + off);
11705 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
11706
11707 if (globals->use_rel)
11708 bfd_put_32 (output_bfd, outrel.r_addend,
11709 sgot->contents + off);
11710
11711 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11712 }
11713 else
11714 bfd_put_32 (output_bfd, 1, sgot->contents + off);
11715
11716 globals->tls_ldm_got.offset |= 1;
11717 }
11718
11719 if (r_type == R_ARM_TLS_LDM32_FDPIC)
11720 {
11721 bfd_put_32(output_bfd,
11722 globals->root.sgot->output_offset + off,
11723 contents + rel->r_offset);
11724
11725 return bfd_reloc_ok;
11726 }
11727 else
11728 {
11729 value = sgot->output_section->vma + sgot->output_offset + off
11730 - (input_section->output_section->vma
11731 + input_section->output_offset + rel->r_offset);
11732
11733 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11734 contents, rel->r_offset, value,
11735 rel->r_addend);
11736 }
11737 }
11738
11739 case R_ARM_TLS_CALL:
11740 case R_ARM_THM_TLS_CALL:
11741 case R_ARM_TLS_GD32:
11742 case R_ARM_TLS_GD32_FDPIC:
11743 case R_ARM_TLS_IE32:
11744 case R_ARM_TLS_IE32_FDPIC:
11745 case R_ARM_TLS_GOTDESC:
11746 case R_ARM_TLS_DESCSEQ:
11747 case R_ARM_THM_TLS_DESCSEQ:
11748 {
11749 bfd_vma off, offplt;
11750 int indx = 0;
11751 char tls_type;
11752
11753 BFD_ASSERT (sgot != NULL);
11754
11755 if (h != NULL)
11756 {
11757 bfd_boolean dyn;
11758 dyn = globals->root.dynamic_sections_created;
11759 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
11760 bfd_link_pic (info),
11761 h)
11762 && (!bfd_link_pic (info)
11763 || !SYMBOL_REFERENCES_LOCAL (info, h)))
11764 {
11765 *unresolved_reloc_p = FALSE;
11766 indx = h->dynindx;
11767 }
11768 off = h->got.offset;
11769 offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
11770 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
11771 }
11772 else
11773 {
11774 BFD_ASSERT (local_got_offsets != NULL);
11775 off = local_got_offsets[r_symndx];
11776 offplt = local_tlsdesc_gotents[r_symndx];
11777 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
11778 }
11779
11780 /* Linker relaxations happens from one of the
11781 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
11782 if (ELF32_R_TYPE(rel->r_info) != r_type)
11783 tls_type = GOT_TLS_IE;
11784
11785 BFD_ASSERT (tls_type != GOT_UNKNOWN);
11786
11787 if ((off & 1) != 0)
11788 off &= ~1;
11789 else
11790 {
11791 bfd_boolean need_relocs = FALSE;
11792 Elf_Internal_Rela outrel;
11793 int cur_off = off;
11794
11795 /* The GOT entries have not been initialized yet. Do it
11796 now, and emit any relocations. If both an IE GOT and a
11797 GD GOT are necessary, we emit the GD first. */
11798
11799 if ((bfd_link_pic (info) || indx != 0)
11800 && (h == NULL
11801 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11802 && !resolved_to_zero)
11803 || h->root.type != bfd_link_hash_undefweak))
11804 {
11805 need_relocs = TRUE;
11806 BFD_ASSERT (srelgot != NULL);
11807 }
11808
11809 if (tls_type & GOT_TLS_GDESC)
11810 {
11811 bfd_byte *loc;
11812
11813 /* We should have relaxed, unless this is an undefined
11814 weak symbol. */
11815 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
11816 || bfd_link_pic (info));
11817 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
11818 <= globals->root.sgotplt->size);
11819
11820 outrel.r_addend = 0;
11821 outrel.r_offset = (globals->root.sgotplt->output_section->vma
11822 + globals->root.sgotplt->output_offset
11823 + offplt
11824 + globals->sgotplt_jump_table_size);
11825
11826 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
11827 sreloc = globals->root.srelplt;
11828 loc = sreloc->contents;
11829 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
11830 BFD_ASSERT (loc + RELOC_SIZE (globals)
11831 <= sreloc->contents + sreloc->size);
11832
11833 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
11834
11835 /* For globals, the first word in the relocation gets
11836 the relocation index and the top bit set, or zero,
11837 if we're binding now. For locals, it gets the
11838 symbol's offset in the tls section. */
11839 bfd_put_32 (output_bfd,
11840 !h ? value - elf_hash_table (info)->tls_sec->vma
11841 : info->flags & DF_BIND_NOW ? 0
11842 : 0x80000000 | ELF32_R_SYM (outrel.r_info),
11843 globals->root.sgotplt->contents + offplt
11844 + globals->sgotplt_jump_table_size);
11845
11846 /* Second word in the relocation is always zero. */
11847 bfd_put_32 (output_bfd, 0,
11848 globals->root.sgotplt->contents + offplt
11849 + globals->sgotplt_jump_table_size + 4);
11850 }
11851 if (tls_type & GOT_TLS_GD)
11852 {
11853 if (need_relocs)
11854 {
11855 outrel.r_addend = 0;
11856 outrel.r_offset = (sgot->output_section->vma
11857 + sgot->output_offset
11858 + cur_off);
11859 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
11860
11861 if (globals->use_rel)
11862 bfd_put_32 (output_bfd, outrel.r_addend,
11863 sgot->contents + cur_off);
11864
11865 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11866
11867 if (indx == 0)
11868 bfd_put_32 (output_bfd, value - dtpoff_base (info),
11869 sgot->contents + cur_off + 4);
11870 else
11871 {
11872 outrel.r_addend = 0;
11873 outrel.r_info = ELF32_R_INFO (indx,
11874 R_ARM_TLS_DTPOFF32);
11875 outrel.r_offset += 4;
11876
11877 if (globals->use_rel)
11878 bfd_put_32 (output_bfd, outrel.r_addend,
11879 sgot->contents + cur_off + 4);
11880
11881 elf32_arm_add_dynreloc (output_bfd, info,
11882 srelgot, &outrel);
11883 }
11884 }
11885 else
11886 {
11887 /* If we are not emitting relocations for a
11888 general dynamic reference, then we must be in a
11889 static link or an executable link with the
11890 symbol binding locally. Mark it as belonging
11891 to module 1, the executable. */
11892 bfd_put_32 (output_bfd, 1,
11893 sgot->contents + cur_off);
11894 bfd_put_32 (output_bfd, value - dtpoff_base (info),
11895 sgot->contents + cur_off + 4);
11896 }
11897
11898 cur_off += 8;
11899 }
11900
11901 if (tls_type & GOT_TLS_IE)
11902 {
11903 if (need_relocs)
11904 {
11905 if (indx == 0)
11906 outrel.r_addend = value - dtpoff_base (info);
11907 else
11908 outrel.r_addend = 0;
11909 outrel.r_offset = (sgot->output_section->vma
11910 + sgot->output_offset
11911 + cur_off);
11912 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
11913
11914 if (globals->use_rel)
11915 bfd_put_32 (output_bfd, outrel.r_addend,
11916 sgot->contents + cur_off);
11917
11918 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11919 }
11920 else
11921 bfd_put_32 (output_bfd, tpoff (info, value),
11922 sgot->contents + cur_off);
11923 cur_off += 4;
11924 }
11925
11926 if (h != NULL)
11927 h->got.offset |= 1;
11928 else
11929 local_got_offsets[r_symndx] |= 1;
11930 }
11931
11932 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32 && r_type != R_ARM_TLS_GD32_FDPIC)
11933 off += 8;
11934 else if (tls_type & GOT_TLS_GDESC)
11935 off = offplt;
11936
11937 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
11938 || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
11939 {
11940 bfd_signed_vma offset;
11941 /* TLS stubs are arm mode. The original symbol is a
11942 data object, so branch_type is bogus. */
11943 branch_type = ST_BRANCH_TO_ARM;
11944 enum elf32_arm_stub_type stub_type
11945 = arm_type_of_stub (info, input_section, rel,
11946 st_type, &branch_type,
11947 (struct elf32_arm_link_hash_entry *)h,
11948 globals->tls_trampoline, globals->root.splt,
11949 input_bfd, sym_name);
11950
11951 if (stub_type != arm_stub_none)
11952 {
11953 struct elf32_arm_stub_hash_entry *stub_entry
11954 = elf32_arm_get_stub_entry
11955 (input_section, globals->root.splt, 0, rel,
11956 globals, stub_type);
11957 offset = (stub_entry->stub_offset
11958 + stub_entry->stub_sec->output_offset
11959 + stub_entry->stub_sec->output_section->vma);
11960 }
11961 else
11962 offset = (globals->root.splt->output_section->vma
11963 + globals->root.splt->output_offset
11964 + globals->tls_trampoline);
11965
11966 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
11967 {
11968 unsigned long inst;
11969
11970 offset -= (input_section->output_section->vma
11971 + input_section->output_offset
11972 + rel->r_offset + 8);
11973
11974 inst = offset >> 2;
11975 inst &= 0x00ffffff;
11976 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
11977 }
11978 else
11979 {
11980 /* Thumb blx encodes the offset in a complicated
11981 fashion. */
11982 unsigned upper_insn, lower_insn;
11983 unsigned neg;
11984
11985 offset -= (input_section->output_section->vma
11986 + input_section->output_offset
11987 + rel->r_offset + 4);
11988
11989 if (stub_type != arm_stub_none
11990 && arm_stub_is_thumb (stub_type))
11991 {
11992 lower_insn = 0xd000;
11993 }
11994 else
11995 {
11996 lower_insn = 0xc000;
11997 /* Round up the offset to a word boundary. */
11998 offset = (offset + 2) & ~2;
11999 }
12000
12001 neg = offset < 0;
12002 upper_insn = (0xf000
12003 | ((offset >> 12) & 0x3ff)
12004 | (neg << 10));
12005 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
12006 | (((!((offset >> 22) & 1)) ^ neg) << 11)
12007 | ((offset >> 1) & 0x7ff);
12008 bfd_put_16 (input_bfd, upper_insn, hit_data);
12009 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
12010 return bfd_reloc_ok;
12011 }
12012 }
12013 /* These relocations needs special care, as besides the fact
12014 they point somewhere in .gotplt, the addend must be
12015 adjusted accordingly depending on the type of instruction
12016 we refer to. */
12017 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
12018 {
12019 unsigned long data, insn;
12020 unsigned thumb;
12021
12022 data = bfd_get_32 (input_bfd, hit_data);
12023 thumb = data & 1;
12024 data &= ~1u;
12025
12026 if (thumb)
12027 {
12028 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
12029 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
12030 insn = (insn << 16)
12031 | bfd_get_16 (input_bfd,
12032 contents + rel->r_offset - data + 2);
12033 if ((insn & 0xf800c000) == 0xf000c000)
12034 /* bl/blx */
12035 value = -6;
12036 else if ((insn & 0xffffff00) == 0x4400)
12037 /* add */
12038 value = -5;
12039 else
12040 {
12041 _bfd_error_handler
12042 /* xgettext:c-format */
12043 (_("%pB(%pA+%#" PRIx64 "): "
12044 "unexpected %s instruction '%#lx' "
12045 "referenced by TLS_GOTDESC"),
12046 input_bfd, input_section, (uint64_t) rel->r_offset,
12047 "Thumb", insn);
12048 return bfd_reloc_notsupported;
12049 }
12050 }
12051 else
12052 {
12053 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
12054
12055 switch (insn >> 24)
12056 {
12057 case 0xeb: /* bl */
12058 case 0xfa: /* blx */
12059 value = -4;
12060 break;
12061
12062 case 0xe0: /* add */
12063 value = -8;
12064 break;
12065
12066 default:
12067 _bfd_error_handler
12068 /* xgettext:c-format */
12069 (_("%pB(%pA+%#" PRIx64 "): "
12070 "unexpected %s instruction '%#lx' "
12071 "referenced by TLS_GOTDESC"),
12072 input_bfd, input_section, (uint64_t) rel->r_offset,
12073 "ARM", insn);
12074 return bfd_reloc_notsupported;
12075 }
12076 }
12077
12078 value += ((globals->root.sgotplt->output_section->vma
12079 + globals->root.sgotplt->output_offset + off)
12080 - (input_section->output_section->vma
12081 + input_section->output_offset
12082 + rel->r_offset)
12083 + globals->sgotplt_jump_table_size);
12084 }
12085 else
12086 value = ((globals->root.sgot->output_section->vma
12087 + globals->root.sgot->output_offset + off)
12088 - (input_section->output_section->vma
12089 + input_section->output_offset + rel->r_offset));
12090
12091 if (globals->fdpic_p && (r_type == R_ARM_TLS_GD32_FDPIC ||
12092 r_type == R_ARM_TLS_IE32_FDPIC))
12093 {
12094 /* For FDPIC relocations, resolve to the offset of the GOT
12095 entry from the start of GOT. */
12096 bfd_put_32(output_bfd,
12097 globals->root.sgot->output_offset + off,
12098 contents + rel->r_offset);
12099
12100 return bfd_reloc_ok;
12101 }
12102 else
12103 {
12104 return _bfd_final_link_relocate (howto, input_bfd, input_section,
12105 contents, rel->r_offset, value,
12106 rel->r_addend);
12107 }
12108 }
12109
12110 case R_ARM_TLS_LE32:
12111 if (bfd_link_dll (info))
12112 {
12113 _bfd_error_handler
12114 /* xgettext:c-format */
12115 (_("%pB(%pA+%#" PRIx64 "): %s relocation not permitted "
12116 "in shared object"),
12117 input_bfd, input_section, (uint64_t) rel->r_offset, howto->name);
12118 return bfd_reloc_notsupported;
12119 }
12120 else
12121 value = tpoff (info, value);
12122
12123 return _bfd_final_link_relocate (howto, input_bfd, input_section,
12124 contents, rel->r_offset, value,
12125 rel->r_addend);
12126
12127 case R_ARM_V4BX:
12128 if (globals->fix_v4bx)
12129 {
12130 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12131
12132 /* Ensure that we have a BX instruction. */
12133 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
12134
12135 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
12136 {
12137 /* Branch to veneer. */
12138 bfd_vma glue_addr;
12139 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
12140 glue_addr -= input_section->output_section->vma
12141 + input_section->output_offset
12142 + rel->r_offset + 8;
12143 insn = (insn & 0xf0000000) | 0x0a000000
12144 | ((glue_addr >> 2) & 0x00ffffff);
12145 }
12146 else
12147 {
12148 /* Preserve Rm (lowest four bits) and the condition code
12149 (highest four bits). Other bits encode MOV PC,Rm. */
12150 insn = (insn & 0xf000000f) | 0x01a0f000;
12151 }
12152
12153 bfd_put_32 (input_bfd, insn, hit_data);
12154 }
12155 return bfd_reloc_ok;
12156
12157 case R_ARM_MOVW_ABS_NC:
12158 case R_ARM_MOVT_ABS:
12159 case R_ARM_MOVW_PREL_NC:
12160 case R_ARM_MOVT_PREL:
12161 /* Until we properly support segment-base-relative addressing then
12162 we assume the segment base to be zero, as for the group relocations.
12163 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
12164 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
12165 case R_ARM_MOVW_BREL_NC:
12166 case R_ARM_MOVW_BREL:
12167 case R_ARM_MOVT_BREL:
12168 {
12169 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12170
12171 if (globals->use_rel)
12172 {
12173 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
12174 signed_addend = (addend ^ 0x8000) - 0x8000;
12175 }
12176
12177 value += signed_addend;
12178
12179 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
12180 value -= (input_section->output_section->vma
12181 + input_section->output_offset + rel->r_offset);
12182
12183 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
12184 return bfd_reloc_overflow;
12185
12186 if (branch_type == ST_BRANCH_TO_THUMB)
12187 value |= 1;
12188
12189 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
12190 || r_type == R_ARM_MOVT_BREL)
12191 value >>= 16;
12192
12193 insn &= 0xfff0f000;
12194 insn |= value & 0xfff;
12195 insn |= (value & 0xf000) << 4;
12196 bfd_put_32 (input_bfd, insn, hit_data);
12197 }
12198 return bfd_reloc_ok;
12199
12200 case R_ARM_THM_MOVW_ABS_NC:
12201 case R_ARM_THM_MOVT_ABS:
12202 case R_ARM_THM_MOVW_PREL_NC:
12203 case R_ARM_THM_MOVT_PREL:
12204 /* Until we properly support segment-base-relative addressing then
12205 we assume the segment base to be zero, as for the above relocations.
12206 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
12207 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
12208 as R_ARM_THM_MOVT_ABS. */
12209 case R_ARM_THM_MOVW_BREL_NC:
12210 case R_ARM_THM_MOVW_BREL:
12211 case R_ARM_THM_MOVT_BREL:
12212 {
12213 bfd_vma insn;
12214
12215 insn = bfd_get_16 (input_bfd, hit_data) << 16;
12216 insn |= bfd_get_16 (input_bfd, hit_data + 2);
12217
12218 if (globals->use_rel)
12219 {
12220 addend = ((insn >> 4) & 0xf000)
12221 | ((insn >> 15) & 0x0800)
12222 | ((insn >> 4) & 0x0700)
12223 | (insn & 0x00ff);
12224 signed_addend = (addend ^ 0x8000) - 0x8000;
12225 }
12226
12227 value += signed_addend;
12228
12229 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
12230 value -= (input_section->output_section->vma
12231 + input_section->output_offset + rel->r_offset);
12232
12233 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
12234 return bfd_reloc_overflow;
12235
12236 if (branch_type == ST_BRANCH_TO_THUMB)
12237 value |= 1;
12238
12239 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
12240 || r_type == R_ARM_THM_MOVT_BREL)
12241 value >>= 16;
12242
12243 insn &= 0xfbf08f00;
12244 insn |= (value & 0xf000) << 4;
12245 insn |= (value & 0x0800) << 15;
12246 insn |= (value & 0x0700) << 4;
12247 insn |= (value & 0x00ff);
12248
12249 bfd_put_16 (input_bfd, insn >> 16, hit_data);
12250 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
12251 }
12252 return bfd_reloc_ok;
12253
12254 case R_ARM_ALU_PC_G0_NC:
12255 case R_ARM_ALU_PC_G1_NC:
12256 case R_ARM_ALU_PC_G0:
12257 case R_ARM_ALU_PC_G1:
12258 case R_ARM_ALU_PC_G2:
12259 case R_ARM_ALU_SB_G0_NC:
12260 case R_ARM_ALU_SB_G1_NC:
12261 case R_ARM_ALU_SB_G0:
12262 case R_ARM_ALU_SB_G1:
12263 case R_ARM_ALU_SB_G2:
12264 {
12265 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12266 bfd_vma pc = input_section->output_section->vma
12267 + input_section->output_offset + rel->r_offset;
12268 /* sb is the origin of the *segment* containing the symbol. */
12269 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12270 bfd_vma residual;
12271 bfd_vma g_n;
12272 bfd_signed_vma signed_value;
12273 int group = 0;
12274
12275 /* Determine which group of bits to select. */
12276 switch (r_type)
12277 {
12278 case R_ARM_ALU_PC_G0_NC:
12279 case R_ARM_ALU_PC_G0:
12280 case R_ARM_ALU_SB_G0_NC:
12281 case R_ARM_ALU_SB_G0:
12282 group = 0;
12283 break;
12284
12285 case R_ARM_ALU_PC_G1_NC:
12286 case R_ARM_ALU_PC_G1:
12287 case R_ARM_ALU_SB_G1_NC:
12288 case R_ARM_ALU_SB_G1:
12289 group = 1;
12290 break;
12291
12292 case R_ARM_ALU_PC_G2:
12293 case R_ARM_ALU_SB_G2:
12294 group = 2;
12295 break;
12296
12297 default:
12298 abort ();
12299 }
12300
12301 /* If REL, extract the addend from the insn. If RELA, it will
12302 have already been fetched for us. */
12303 if (globals->use_rel)
12304 {
12305 int negative;
12306 bfd_vma constant = insn & 0xff;
12307 bfd_vma rotation = (insn & 0xf00) >> 8;
12308
12309 if (rotation == 0)
12310 signed_addend = constant;
12311 else
12312 {
12313 /* Compensate for the fact that in the instruction, the
12314 rotation is stored in multiples of 2 bits. */
12315 rotation *= 2;
12316
12317 /* Rotate "constant" right by "rotation" bits. */
12318 signed_addend = (constant >> rotation) |
12319 (constant << (8 * sizeof (bfd_vma) - rotation));
12320 }
12321
12322 /* Determine if the instruction is an ADD or a SUB.
12323 (For REL, this determines the sign of the addend.) */
12324 negative = identify_add_or_sub (insn);
12325 if (negative == 0)
12326 {
12327 _bfd_error_handler
12328 /* xgettext:c-format */
12329 (_("%pB(%pA+%#" PRIx64 "): only ADD or SUB instructions "
12330 "are allowed for ALU group relocations"),
12331 input_bfd, input_section, (uint64_t) rel->r_offset);
12332 return bfd_reloc_overflow;
12333 }
12334
12335 signed_addend *= negative;
12336 }
12337
12338 /* Compute the value (X) to go in the place. */
12339 if (r_type == R_ARM_ALU_PC_G0_NC
12340 || r_type == R_ARM_ALU_PC_G1_NC
12341 || r_type == R_ARM_ALU_PC_G0
12342 || r_type == R_ARM_ALU_PC_G1
12343 || r_type == R_ARM_ALU_PC_G2)
12344 /* PC relative. */
12345 signed_value = value - pc + signed_addend;
12346 else
12347 /* Section base relative. */
12348 signed_value = value - sb + signed_addend;
12349
12350 /* If the target symbol is a Thumb function, then set the
12351 Thumb bit in the address. */
12352 if (branch_type == ST_BRANCH_TO_THUMB)
12353 signed_value |= 1;
12354
12355 /* Calculate the value of the relevant G_n, in encoded
12356 constant-with-rotation format. */
12357 g_n = calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12358 group, &residual);
12359
12360 /* Check for overflow if required. */
12361 if ((r_type == R_ARM_ALU_PC_G0
12362 || r_type == R_ARM_ALU_PC_G1
12363 || r_type == R_ARM_ALU_PC_G2
12364 || r_type == R_ARM_ALU_SB_G0
12365 || r_type == R_ARM_ALU_SB_G1
12366 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
12367 {
12368 _bfd_error_handler
12369 /* xgettext:c-format */
12370 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
12371 "splitting %#" PRIx64 " for group relocation %s"),
12372 input_bfd, input_section, (uint64_t) rel->r_offset,
12373 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12374 howto->name);
12375 return bfd_reloc_overflow;
12376 }
12377
12378 /* Mask out the value and the ADD/SUB part of the opcode; take care
12379 not to destroy the S bit. */
12380 insn &= 0xff1ff000;
12381
12382 /* Set the opcode according to whether the value to go in the
12383 place is negative. */
12384 if (signed_value < 0)
12385 insn |= 1 << 22;
12386 else
12387 insn |= 1 << 23;
12388
12389 /* Encode the offset. */
12390 insn |= g_n;
12391
12392 bfd_put_32 (input_bfd, insn, hit_data);
12393 }
12394 return bfd_reloc_ok;
12395
12396 case R_ARM_LDR_PC_G0:
12397 case R_ARM_LDR_PC_G1:
12398 case R_ARM_LDR_PC_G2:
12399 case R_ARM_LDR_SB_G0:
12400 case R_ARM_LDR_SB_G1:
12401 case R_ARM_LDR_SB_G2:
12402 {
12403 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12404 bfd_vma pc = input_section->output_section->vma
12405 + input_section->output_offset + rel->r_offset;
12406 /* sb is the origin of the *segment* containing the symbol. */
12407 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12408 bfd_vma residual;
12409 bfd_signed_vma signed_value;
12410 int group = 0;
12411
12412 /* Determine which groups of bits to calculate. */
12413 switch (r_type)
12414 {
12415 case R_ARM_LDR_PC_G0:
12416 case R_ARM_LDR_SB_G0:
12417 group = 0;
12418 break;
12419
12420 case R_ARM_LDR_PC_G1:
12421 case R_ARM_LDR_SB_G1:
12422 group = 1;
12423 break;
12424
12425 case R_ARM_LDR_PC_G2:
12426 case R_ARM_LDR_SB_G2:
12427 group = 2;
12428 break;
12429
12430 default:
12431 abort ();
12432 }
12433
12434 /* If REL, extract the addend from the insn. If RELA, it will
12435 have already been fetched for us. */
12436 if (globals->use_rel)
12437 {
12438 int negative = (insn & (1 << 23)) ? 1 : -1;
12439 signed_addend = negative * (insn & 0xfff);
12440 }
12441
12442 /* Compute the value (X) to go in the place. */
12443 if (r_type == R_ARM_LDR_PC_G0
12444 || r_type == R_ARM_LDR_PC_G1
12445 || r_type == R_ARM_LDR_PC_G2)
12446 /* PC relative. */
12447 signed_value = value - pc + signed_addend;
12448 else
12449 /* Section base relative. */
12450 signed_value = value - sb + signed_addend;
12451
12452 /* Calculate the value of the relevant G_{n-1} to obtain
12453 the residual at that stage. */
12454 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12455 group - 1, &residual);
12456
12457 /* Check for overflow. */
12458 if (residual >= 0x1000)
12459 {
12460 _bfd_error_handler
12461 /* xgettext:c-format */
12462 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
12463 "splitting %#" PRIx64 " for group relocation %s"),
12464 input_bfd, input_section, (uint64_t) rel->r_offset,
12465 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12466 howto->name);
12467 return bfd_reloc_overflow;
12468 }
12469
12470 /* Mask out the value and U bit. */
12471 insn &= 0xff7ff000;
12472
12473 /* Set the U bit if the value to go in the place is non-negative. */
12474 if (signed_value >= 0)
12475 insn |= 1 << 23;
12476
12477 /* Encode the offset. */
12478 insn |= residual;
12479
12480 bfd_put_32 (input_bfd, insn, hit_data);
12481 }
12482 return bfd_reloc_ok;
12483
12484 case R_ARM_LDRS_PC_G0:
12485 case R_ARM_LDRS_PC_G1:
12486 case R_ARM_LDRS_PC_G2:
12487 case R_ARM_LDRS_SB_G0:
12488 case R_ARM_LDRS_SB_G1:
12489 case R_ARM_LDRS_SB_G2:
12490 {
12491 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12492 bfd_vma pc = input_section->output_section->vma
12493 + input_section->output_offset + rel->r_offset;
12494 /* sb is the origin of the *segment* containing the symbol. */
12495 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12496 bfd_vma residual;
12497 bfd_signed_vma signed_value;
12498 int group = 0;
12499
12500 /* Determine which groups of bits to calculate. */
12501 switch (r_type)
12502 {
12503 case R_ARM_LDRS_PC_G0:
12504 case R_ARM_LDRS_SB_G0:
12505 group = 0;
12506 break;
12507
12508 case R_ARM_LDRS_PC_G1:
12509 case R_ARM_LDRS_SB_G1:
12510 group = 1;
12511 break;
12512
12513 case R_ARM_LDRS_PC_G2:
12514 case R_ARM_LDRS_SB_G2:
12515 group = 2;
12516 break;
12517
12518 default:
12519 abort ();
12520 }
12521
12522 /* If REL, extract the addend from the insn. If RELA, it will
12523 have already been fetched for us. */
12524 if (globals->use_rel)
12525 {
12526 int negative = (insn & (1 << 23)) ? 1 : -1;
12527 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
12528 }
12529
12530 /* Compute the value (X) to go in the place. */
12531 if (r_type == R_ARM_LDRS_PC_G0
12532 || r_type == R_ARM_LDRS_PC_G1
12533 || r_type == R_ARM_LDRS_PC_G2)
12534 /* PC relative. */
12535 signed_value = value - pc + signed_addend;
12536 else
12537 /* Section base relative. */
12538 signed_value = value - sb + signed_addend;
12539
12540 /* Calculate the value of the relevant G_{n-1} to obtain
12541 the residual at that stage. */
12542 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12543 group - 1, &residual);
12544
12545 /* Check for overflow. */
12546 if (residual >= 0x100)
12547 {
12548 _bfd_error_handler
12549 /* xgettext:c-format */
12550 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
12551 "splitting %#" PRIx64 " for group relocation %s"),
12552 input_bfd, input_section, (uint64_t) rel->r_offset,
12553 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12554 howto->name);
12555 return bfd_reloc_overflow;
12556 }
12557
12558 /* Mask out the value and U bit. */
12559 insn &= 0xff7ff0f0;
12560
12561 /* Set the U bit if the value to go in the place is non-negative. */
12562 if (signed_value >= 0)
12563 insn |= 1 << 23;
12564
12565 /* Encode the offset. */
12566 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
12567
12568 bfd_put_32 (input_bfd, insn, hit_data);
12569 }
12570 return bfd_reloc_ok;
12571
12572 case R_ARM_LDC_PC_G0:
12573 case R_ARM_LDC_PC_G1:
12574 case R_ARM_LDC_PC_G2:
12575 case R_ARM_LDC_SB_G0:
12576 case R_ARM_LDC_SB_G1:
12577 case R_ARM_LDC_SB_G2:
12578 {
12579 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12580 bfd_vma pc = input_section->output_section->vma
12581 + input_section->output_offset + rel->r_offset;
12582 /* sb is the origin of the *segment* containing the symbol. */
12583 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12584 bfd_vma residual;
12585 bfd_signed_vma signed_value;
12586 int group = 0;
12587
12588 /* Determine which groups of bits to calculate. */
12589 switch (r_type)
12590 {
12591 case R_ARM_LDC_PC_G0:
12592 case R_ARM_LDC_SB_G0:
12593 group = 0;
12594 break;
12595
12596 case R_ARM_LDC_PC_G1:
12597 case R_ARM_LDC_SB_G1:
12598 group = 1;
12599 break;
12600
12601 case R_ARM_LDC_PC_G2:
12602 case R_ARM_LDC_SB_G2:
12603 group = 2;
12604 break;
12605
12606 default:
12607 abort ();
12608 }
12609
12610 /* If REL, extract the addend from the insn. If RELA, it will
12611 have already been fetched for us. */
12612 if (globals->use_rel)
12613 {
12614 int negative = (insn & (1 << 23)) ? 1 : -1;
12615 signed_addend = negative * ((insn & 0xff) << 2);
12616 }
12617
12618 /* Compute the value (X) to go in the place. */
12619 if (r_type == R_ARM_LDC_PC_G0
12620 || r_type == R_ARM_LDC_PC_G1
12621 || r_type == R_ARM_LDC_PC_G2)
12622 /* PC relative. */
12623 signed_value = value - pc + signed_addend;
12624 else
12625 /* Section base relative. */
12626 signed_value = value - sb + signed_addend;
12627
12628 /* Calculate the value of the relevant G_{n-1} to obtain
12629 the residual at that stage. */
12630 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12631 group - 1, &residual);
12632
12633 /* Check for overflow. (The absolute value to go in the place must be
12634 divisible by four and, after having been divided by four, must
12635 fit in eight bits.) */
12636 if ((residual & 0x3) != 0 || residual >= 0x400)
12637 {
12638 _bfd_error_handler
12639 /* xgettext:c-format */
12640 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
12641 "splitting %#" PRIx64 " for group relocation %s"),
12642 input_bfd, input_section, (uint64_t) rel->r_offset,
12643 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12644 howto->name);
12645 return bfd_reloc_overflow;
12646 }
12647
12648 /* Mask out the value and U bit. */
12649 insn &= 0xff7fff00;
12650
12651 /* Set the U bit if the value to go in the place is non-negative. */
12652 if (signed_value >= 0)
12653 insn |= 1 << 23;
12654
12655 /* Encode the offset. */
12656 insn |= residual >> 2;
12657
12658 bfd_put_32 (input_bfd, insn, hit_data);
12659 }
12660 return bfd_reloc_ok;
12661
12662 case R_ARM_THM_ALU_ABS_G0_NC:
12663 case R_ARM_THM_ALU_ABS_G1_NC:
12664 case R_ARM_THM_ALU_ABS_G2_NC:
12665 case R_ARM_THM_ALU_ABS_G3_NC:
12666 {
12667 const int shift_array[4] = {0, 8, 16, 24};
12668 bfd_vma insn = bfd_get_16 (input_bfd, hit_data);
12669 bfd_vma addr = value;
12670 int shift = shift_array[r_type - R_ARM_THM_ALU_ABS_G0_NC];
12671
12672 /* Compute address. */
12673 if (globals->use_rel)
12674 signed_addend = insn & 0xff;
12675 addr += signed_addend;
12676 if (branch_type == ST_BRANCH_TO_THUMB)
12677 addr |= 1;
12678 /* Clean imm8 insn. */
12679 insn &= 0xff00;
12680 /* And update with correct part of address. */
12681 insn |= (addr >> shift) & 0xff;
12682 /* Update insn. */
12683 bfd_put_16 (input_bfd, insn, hit_data);
12684 }
12685
12686 *unresolved_reloc_p = FALSE;
12687 return bfd_reloc_ok;
12688
12689 case R_ARM_GOTOFFFUNCDESC:
12690 {
12691 if (h == NULL)
12692 {
12693 struct fdpic_local *local_fdpic_cnts = elf32_arm_local_fdpic_cnts(input_bfd);
12694 int dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12695 int offset = local_fdpic_cnts[r_symndx].funcdesc_offset & ~1;
12696 bfd_vma addr = dynreloc_value - sym_sec->output_section->vma;
12697 bfd_vma seg = -1;
12698
12699 if (bfd_link_pic(info) && dynindx == 0)
12700 abort();
12701
12702 /* Resolve relocation. */
12703 bfd_put_32(output_bfd, (offset + sgot->output_offset)
12704 , contents + rel->r_offset);
12705 /* Emit R_ARM_FUNCDESC_VALUE or two fixups on funcdesc if
12706 not done yet. */
12707 arm_elf_fill_funcdesc(output_bfd, info,
12708 &local_fdpic_cnts[r_symndx].funcdesc_offset,
12709 dynindx, offset, addr, dynreloc_value, seg);
12710 }
12711 else
12712 {
12713 int dynindx;
12714 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12715 bfd_vma addr;
12716 bfd_vma seg = -1;
12717
12718 /* For static binaries, sym_sec can be null. */
12719 if (sym_sec)
12720 {
12721 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12722 addr = dynreloc_value - sym_sec->output_section->vma;
12723 }
12724 else
12725 {
12726 dynindx = 0;
12727 addr = 0;
12728 }
12729
12730 if (bfd_link_pic(info) && dynindx == 0)
12731 abort();
12732
12733 /* This case cannot occur since funcdesc is allocated by
12734 the dynamic loader so we cannot resolve the relocation. */
12735 if (h->dynindx != -1)
12736 abort();
12737
12738 /* Resolve relocation. */
12739 bfd_put_32(output_bfd, (offset + sgot->output_offset),
12740 contents + rel->r_offset);
12741 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12742 arm_elf_fill_funcdesc(output_bfd, info,
12743 &eh->fdpic_cnts.funcdesc_offset,
12744 dynindx, offset, addr, dynreloc_value, seg);
12745 }
12746 }
12747 *unresolved_reloc_p = FALSE;
12748 return bfd_reloc_ok;
12749
12750 case R_ARM_GOTFUNCDESC:
12751 {
12752 if (h != NULL)
12753 {
12754 Elf_Internal_Rela outrel;
12755
12756 /* Resolve relocation. */
12757 bfd_put_32(output_bfd, ((eh->fdpic_cnts.gotfuncdesc_offset & ~1)
12758 + sgot->output_offset),
12759 contents + rel->r_offset);
12760 /* Add funcdesc and associated R_ARM_FUNCDESC_VALUE. */
12761 if(h->dynindx == -1)
12762 {
12763 int dynindx;
12764 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12765 bfd_vma addr;
12766 bfd_vma seg = -1;
12767
12768 /* For static binaries sym_sec can be null. */
12769 if (sym_sec)
12770 {
12771 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12772 addr = dynreloc_value - sym_sec->output_section->vma;
12773 }
12774 else
12775 {
12776 dynindx = 0;
12777 addr = 0;
12778 }
12779
12780 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12781 arm_elf_fill_funcdesc(output_bfd, info,
12782 &eh->fdpic_cnts.funcdesc_offset,
12783 dynindx, offset, addr, dynreloc_value, seg);
12784 }
12785
12786 /* Add a dynamic relocation on GOT entry if not already done. */
12787 if ((eh->fdpic_cnts.gotfuncdesc_offset & 1) == 0)
12788 {
12789 if (h->dynindx == -1)
12790 {
12791 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12792 if (h->root.type == bfd_link_hash_undefweak)
12793 bfd_put_32(output_bfd, 0, sgot->contents
12794 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1));
12795 else
12796 bfd_put_32(output_bfd, sgot->output_section->vma
12797 + sgot->output_offset
12798 + (eh->fdpic_cnts.funcdesc_offset & ~1),
12799 sgot->contents
12800 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1));
12801 }
12802 else
12803 {
12804 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_FUNCDESC);
12805 }
12806 outrel.r_offset = sgot->output_section->vma
12807 + sgot->output_offset
12808 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1);
12809 outrel.r_addend = 0;
12810 if (h->dynindx == -1 && !bfd_link_pic(info))
12811 if (h->root.type == bfd_link_hash_undefweak)
12812 arm_elf_add_rofixup(output_bfd, globals->srofixup, -1);
12813 else
12814 arm_elf_add_rofixup(output_bfd, globals->srofixup,
12815 outrel.r_offset);
12816 else
12817 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12818 eh->fdpic_cnts.gotfuncdesc_offset |= 1;
12819 }
12820 }
12821 else
12822 {
12823 /* Such relocation on static function should not have been
12824 emitted by the compiler. */
12825 abort();
12826 }
12827 }
12828 *unresolved_reloc_p = FALSE;
12829 return bfd_reloc_ok;
12830
12831 case R_ARM_FUNCDESC:
12832 {
12833 if (h == NULL)
12834 {
12835 struct fdpic_local *local_fdpic_cnts = elf32_arm_local_fdpic_cnts(input_bfd);
12836 Elf_Internal_Rela outrel;
12837 int dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12838 int offset = local_fdpic_cnts[r_symndx].funcdesc_offset & ~1;
12839 bfd_vma addr = dynreloc_value - sym_sec->output_section->vma;
12840 bfd_vma seg = -1;
12841
12842 if (bfd_link_pic(info) && dynindx == 0)
12843 abort();
12844
12845 /* Replace static FUNCDESC relocation with a
12846 R_ARM_RELATIVE dynamic relocation or with a rofixup for
12847 executable. */
12848 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12849 outrel.r_offset = input_section->output_section->vma
12850 + input_section->output_offset + rel->r_offset;
12851 outrel.r_addend = 0;
12852 if (bfd_link_pic(info))
12853 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12854 else
12855 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset);
12856
12857 bfd_put_32 (input_bfd, sgot->output_section->vma
12858 + sgot->output_offset + offset, hit_data);
12859
12860 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12861 arm_elf_fill_funcdesc(output_bfd, info,
12862 &local_fdpic_cnts[r_symndx].funcdesc_offset,
12863 dynindx, offset, addr, dynreloc_value, seg);
12864 }
12865 else
12866 {
12867 if (h->dynindx == -1)
12868 {
12869 int dynindx;
12870 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12871 bfd_vma addr;
12872 bfd_vma seg = -1;
12873 Elf_Internal_Rela outrel;
12874
12875 /* For static binaries sym_sec can be null. */
12876 if (sym_sec)
12877 {
12878 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12879 addr = dynreloc_value - sym_sec->output_section->vma;
12880 }
12881 else
12882 {
12883 dynindx = 0;
12884 addr = 0;
12885 }
12886
12887 if (bfd_link_pic(info) && dynindx == 0)
12888 abort();
12889
12890 /* Replace static FUNCDESC relocation with a
12891 R_ARM_RELATIVE dynamic relocation. */
12892 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12893 outrel.r_offset = input_section->output_section->vma
12894 + input_section->output_offset + rel->r_offset;
12895 outrel.r_addend = 0;
12896 if (bfd_link_pic(info))
12897 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12898 else
12899 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset);
12900
12901 bfd_put_32 (input_bfd, sgot->output_section->vma
12902 + sgot->output_offset + offset, hit_data);
12903
12904 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12905 arm_elf_fill_funcdesc(output_bfd, info,
12906 &eh->fdpic_cnts.funcdesc_offset,
12907 dynindx, offset, addr, dynreloc_value, seg);
12908 }
12909 else
12910 {
12911 Elf_Internal_Rela outrel;
12912
12913 /* Add a dynamic relocation. */
12914 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_FUNCDESC);
12915 outrel.r_offset = input_section->output_section->vma
12916 + input_section->output_offset + rel->r_offset;
12917 outrel.r_addend = 0;
12918 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12919 }
12920 }
12921 }
12922 *unresolved_reloc_p = FALSE;
12923 return bfd_reloc_ok;
12924
12925 case R_ARM_THM_BF16:
12926 {
12927 bfd_vma relocation;
12928 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
12929 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
12930
12931 if (globals->use_rel)
12932 {
12933 bfd_vma immA = (upper_insn & 0x001f);
12934 bfd_vma immB = (lower_insn & 0x07fe) >> 1;
12935 bfd_vma immC = (lower_insn & 0x0800) >> 11;
12936 addend = (immA << 12);
12937 addend |= (immB << 2);
12938 addend |= (immC << 1);
12939 addend |= 1;
12940 /* Sign extend. */
12941 signed_addend = (addend & 0x10000) ? addend - (1 << 17) : addend;
12942 }
12943
12944 relocation = value + signed_addend;
12945 relocation -= (input_section->output_section->vma
12946 + input_section->output_offset
12947 + rel->r_offset);
12948
12949 /* Put RELOCATION back into the insn. */
12950 {
12951 bfd_vma immA = (relocation & 0x0001f000) >> 12;
12952 bfd_vma immB = (relocation & 0x00000ffc) >> 2;
12953 bfd_vma immC = (relocation & 0x00000002) >> 1;
12954
12955 upper_insn = (upper_insn & 0xffe0) | immA;
12956 lower_insn = (lower_insn & 0xf001) | (immC << 11) | (immB << 1);
12957 }
12958
12959 /* Put the relocated value back in the object file: */
12960 bfd_put_16 (input_bfd, upper_insn, hit_data);
12961 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
12962
12963 return bfd_reloc_ok;
12964 }
12965
12966 case R_ARM_THM_BF12:
12967 {
12968 bfd_vma relocation;
12969 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
12970 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
12971
12972 if (globals->use_rel)
12973 {
12974 bfd_vma immA = (upper_insn & 0x0001);
12975 bfd_vma immB = (lower_insn & 0x07fe) >> 1;
12976 bfd_vma immC = (lower_insn & 0x0800) >> 11;
12977 addend = (immA << 12);
12978 addend |= (immB << 2);
12979 addend |= (immC << 1);
12980 addend |= 1;
12981 /* Sign extend. */
12982 addend = (addend & 0x1000) ? addend - (1 << 13) : addend;
12983 signed_addend = addend;
12984 }
12985
12986 relocation = value + signed_addend;
12987 relocation -= (input_section->output_section->vma
12988 + input_section->output_offset
12989 + rel->r_offset);
12990
12991 /* Put RELOCATION back into the insn. */
12992 {
12993 bfd_vma immA = (relocation & 0x00001000) >> 12;
12994 bfd_vma immB = (relocation & 0x00000ffc) >> 2;
12995 bfd_vma immC = (relocation & 0x00000002) >> 1;
12996
12997 upper_insn = (upper_insn & 0xfffe) | immA;
12998 lower_insn = (lower_insn & 0xf001) | (immC << 11) | (immB << 1);
12999 }
13000
13001 /* Put the relocated value back in the object file: */
13002 bfd_put_16 (input_bfd, upper_insn, hit_data);
13003 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
13004
13005 return bfd_reloc_ok;
13006 }
13007
13008 case R_ARM_THM_BF18:
13009 {
13010 bfd_vma relocation;
13011 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
13012 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
13013
13014 if (globals->use_rel)
13015 {
13016 bfd_vma immA = (upper_insn & 0x007f);
13017 bfd_vma immB = (lower_insn & 0x07fe) >> 1;
13018 bfd_vma immC = (lower_insn & 0x0800) >> 11;
13019 addend = (immA << 12);
13020 addend |= (immB << 2);
13021 addend |= (immC << 1);
13022 addend |= 1;
13023 /* Sign extend. */
13024 addend = (addend & 0x40000) ? addend - (1 << 19) : addend;
13025 signed_addend = addend;
13026 }
13027
13028 relocation = value + signed_addend;
13029 relocation -= (input_section->output_section->vma
13030 + input_section->output_offset
13031 + rel->r_offset);
13032
13033 /* Put RELOCATION back into the insn. */
13034 {
13035 bfd_vma immA = (relocation & 0x0007f000) >> 12;
13036 bfd_vma immB = (relocation & 0x00000ffc) >> 2;
13037 bfd_vma immC = (relocation & 0x00000002) >> 1;
13038
13039 upper_insn = (upper_insn & 0xff80) | immA;
13040 lower_insn = (lower_insn & 0xf001) | (immC << 11) | (immB << 1);
13041 }
13042
13043 /* Put the relocated value back in the object file: */
13044 bfd_put_16 (input_bfd, upper_insn, hit_data);
13045 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
13046
13047 return bfd_reloc_ok;
13048 }
13049
13050 default:
13051 return bfd_reloc_notsupported;
13052 }
13053 }
13054
13055 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
13056 static void
13057 arm_add_to_rel (bfd * abfd,
13058 bfd_byte * address,
13059 reloc_howto_type * howto,
13060 bfd_signed_vma increment)
13061 {
13062 bfd_signed_vma addend;
13063
13064 if (howto->type == R_ARM_THM_CALL
13065 || howto->type == R_ARM_THM_JUMP24)
13066 {
13067 int upper_insn, lower_insn;
13068 int upper, lower;
13069
13070 upper_insn = bfd_get_16 (abfd, address);
13071 lower_insn = bfd_get_16 (abfd, address + 2);
13072 upper = upper_insn & 0x7ff;
13073 lower = lower_insn & 0x7ff;
13074
13075 addend = (upper << 12) | (lower << 1);
13076 addend += increment;
13077 addend >>= 1;
13078
13079 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
13080 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
13081
13082 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
13083 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
13084 }
13085 else
13086 {
13087 bfd_vma contents;
13088
13089 contents = bfd_get_32 (abfd, address);
13090
13091 /* Get the (signed) value from the instruction. */
13092 addend = contents & howto->src_mask;
13093 if (addend & ((howto->src_mask + 1) >> 1))
13094 {
13095 bfd_signed_vma mask;
13096
13097 mask = -1;
13098 mask &= ~ howto->src_mask;
13099 addend |= mask;
13100 }
13101
13102 /* Add in the increment, (which is a byte value). */
13103 switch (howto->type)
13104 {
13105 default:
13106 addend += increment;
13107 break;
13108
13109 case R_ARM_PC24:
13110 case R_ARM_PLT32:
13111 case R_ARM_CALL:
13112 case R_ARM_JUMP24:
13113 addend <<= howto->size;
13114 addend += increment;
13115
13116 /* Should we check for overflow here ? */
13117
13118 /* Drop any undesired bits. */
13119 addend >>= howto->rightshift;
13120 break;
13121 }
13122
13123 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
13124
13125 bfd_put_32 (abfd, contents, address);
13126 }
13127 }
13128
13129 #define IS_ARM_TLS_RELOC(R_TYPE) \
13130 ((R_TYPE) == R_ARM_TLS_GD32 \
13131 || (R_TYPE) == R_ARM_TLS_GD32_FDPIC \
13132 || (R_TYPE) == R_ARM_TLS_LDO32 \
13133 || (R_TYPE) == R_ARM_TLS_LDM32 \
13134 || (R_TYPE) == R_ARM_TLS_LDM32_FDPIC \
13135 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
13136 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
13137 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
13138 || (R_TYPE) == R_ARM_TLS_LE32 \
13139 || (R_TYPE) == R_ARM_TLS_IE32 \
13140 || (R_TYPE) == R_ARM_TLS_IE32_FDPIC \
13141 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
13142
13143 /* Specific set of relocations for the gnu tls dialect. */
13144 #define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
13145 ((R_TYPE) == R_ARM_TLS_GOTDESC \
13146 || (R_TYPE) == R_ARM_TLS_CALL \
13147 || (R_TYPE) == R_ARM_THM_TLS_CALL \
13148 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
13149 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
13150
13151 /* Relocate an ARM ELF section. */
13152
13153 static bfd_boolean
13154 elf32_arm_relocate_section (bfd * output_bfd,
13155 struct bfd_link_info * info,
13156 bfd * input_bfd,
13157 asection * input_section,
13158 bfd_byte * contents,
13159 Elf_Internal_Rela * relocs,
13160 Elf_Internal_Sym * local_syms,
13161 asection ** local_sections)
13162 {
13163 Elf_Internal_Shdr *symtab_hdr;
13164 struct elf_link_hash_entry **sym_hashes;
13165 Elf_Internal_Rela *rel;
13166 Elf_Internal_Rela *relend;
13167 const char *name;
13168 struct elf32_arm_link_hash_table * globals;
13169
13170 globals = elf32_arm_hash_table (info);
13171 if (globals == NULL)
13172 return FALSE;
13173
13174 symtab_hdr = & elf_symtab_hdr (input_bfd);
13175 sym_hashes = elf_sym_hashes (input_bfd);
13176
13177 rel = relocs;
13178 relend = relocs + input_section->reloc_count;
13179 for (; rel < relend; rel++)
13180 {
13181 int r_type;
13182 reloc_howto_type * howto;
13183 unsigned long r_symndx;
13184 Elf_Internal_Sym * sym;
13185 asection * sec;
13186 struct elf_link_hash_entry * h;
13187 bfd_vma relocation;
13188 bfd_reloc_status_type r;
13189 arelent bfd_reloc;
13190 char sym_type;
13191 bfd_boolean unresolved_reloc = FALSE;
13192 char *error_message = NULL;
13193
13194 r_symndx = ELF32_R_SYM (rel->r_info);
13195 r_type = ELF32_R_TYPE (rel->r_info);
13196 r_type = arm_real_reloc_type (globals, r_type);
13197
13198 if ( r_type == R_ARM_GNU_VTENTRY
13199 || r_type == R_ARM_GNU_VTINHERIT)
13200 continue;
13201
13202 howto = bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
13203
13204 if (howto == NULL)
13205 return _bfd_unrecognized_reloc (input_bfd, input_section, r_type);
13206
13207 h = NULL;
13208 sym = NULL;
13209 sec = NULL;
13210
13211 if (r_symndx < symtab_hdr->sh_info)
13212 {
13213 sym = local_syms + r_symndx;
13214 sym_type = ELF32_ST_TYPE (sym->st_info);
13215 sec = local_sections[r_symndx];
13216
13217 /* An object file might have a reference to a local
13218 undefined symbol. This is a daft object file, but we
13219 should at least do something about it. V4BX & NONE
13220 relocations do not use the symbol and are explicitly
13221 allowed to use the undefined symbol, so allow those.
13222 Likewise for relocations against STN_UNDEF. */
13223 if (r_type != R_ARM_V4BX
13224 && r_type != R_ARM_NONE
13225 && r_symndx != STN_UNDEF
13226 && bfd_is_und_section (sec)
13227 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
13228 (*info->callbacks->undefined_symbol)
13229 (info, bfd_elf_string_from_elf_section
13230 (input_bfd, symtab_hdr->sh_link, sym->st_name),
13231 input_bfd, input_section,
13232 rel->r_offset, TRUE);
13233
13234 if (globals->use_rel)
13235 {
13236 relocation = (sec->output_section->vma
13237 + sec->output_offset
13238 + sym->st_value);
13239 if (!bfd_link_relocatable (info)
13240 && (sec->flags & SEC_MERGE)
13241 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
13242 {
13243 asection *msec;
13244 bfd_vma addend, value;
13245
13246 switch (r_type)
13247 {
13248 case R_ARM_MOVW_ABS_NC:
13249 case R_ARM_MOVT_ABS:
13250 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
13251 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
13252 addend = (addend ^ 0x8000) - 0x8000;
13253 break;
13254
13255 case R_ARM_THM_MOVW_ABS_NC:
13256 case R_ARM_THM_MOVT_ABS:
13257 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
13258 << 16;
13259 value |= bfd_get_16 (input_bfd,
13260 contents + rel->r_offset + 2);
13261 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
13262 | ((value & 0x04000000) >> 15);
13263 addend = (addend ^ 0x8000) - 0x8000;
13264 break;
13265
13266 default:
13267 if (howto->rightshift
13268 || (howto->src_mask & (howto->src_mask + 1)))
13269 {
13270 _bfd_error_handler
13271 /* xgettext:c-format */
13272 (_("%pB(%pA+%#" PRIx64 "): "
13273 "%s relocation against SEC_MERGE section"),
13274 input_bfd, input_section,
13275 (uint64_t) rel->r_offset, howto->name);
13276 return FALSE;
13277 }
13278
13279 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
13280
13281 /* Get the (signed) value from the instruction. */
13282 addend = value & howto->src_mask;
13283 if (addend & ((howto->src_mask + 1) >> 1))
13284 {
13285 bfd_signed_vma mask;
13286
13287 mask = -1;
13288 mask &= ~ howto->src_mask;
13289 addend |= mask;
13290 }
13291 break;
13292 }
13293
13294 msec = sec;
13295 addend =
13296 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
13297 - relocation;
13298 addend += msec->output_section->vma + msec->output_offset;
13299
13300 /* Cases here must match those in the preceding
13301 switch statement. */
13302 switch (r_type)
13303 {
13304 case R_ARM_MOVW_ABS_NC:
13305 case R_ARM_MOVT_ABS:
13306 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
13307 | (addend & 0xfff);
13308 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
13309 break;
13310
13311 case R_ARM_THM_MOVW_ABS_NC:
13312 case R_ARM_THM_MOVT_ABS:
13313 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
13314 | (addend & 0xff) | ((addend & 0x0800) << 15);
13315 bfd_put_16 (input_bfd, value >> 16,
13316 contents + rel->r_offset);
13317 bfd_put_16 (input_bfd, value,
13318 contents + rel->r_offset + 2);
13319 break;
13320
13321 default:
13322 value = (value & ~ howto->dst_mask)
13323 | (addend & howto->dst_mask);
13324 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
13325 break;
13326 }
13327 }
13328 }
13329 else
13330 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
13331 }
13332 else
13333 {
13334 bfd_boolean warned, ignored;
13335
13336 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
13337 r_symndx, symtab_hdr, sym_hashes,
13338 h, sec, relocation,
13339 unresolved_reloc, warned, ignored);
13340
13341 sym_type = h->type;
13342 }
13343
13344 if (sec != NULL && discarded_section (sec))
13345 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
13346 rel, 1, relend, howto, 0, contents);
13347
13348 if (bfd_link_relocatable (info))
13349 {
13350 /* This is a relocatable link. We don't have to change
13351 anything, unless the reloc is against a section symbol,
13352 in which case we have to adjust according to where the
13353 section symbol winds up in the output section. */
13354 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
13355 {
13356 if (globals->use_rel)
13357 arm_add_to_rel (input_bfd, contents + rel->r_offset,
13358 howto, (bfd_signed_vma) sec->output_offset);
13359 else
13360 rel->r_addend += sec->output_offset;
13361 }
13362 continue;
13363 }
13364
13365 if (h != NULL)
13366 name = h->root.root.string;
13367 else
13368 {
13369 name = (bfd_elf_string_from_elf_section
13370 (input_bfd, symtab_hdr->sh_link, sym->st_name));
13371 if (name == NULL || *name == '\0')
13372 name = bfd_section_name (input_bfd, sec);
13373 }
13374
13375 if (r_symndx != STN_UNDEF
13376 && r_type != R_ARM_NONE
13377 && (h == NULL
13378 || h->root.type == bfd_link_hash_defined
13379 || h->root.type == bfd_link_hash_defweak)
13380 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
13381 {
13382 _bfd_error_handler
13383 ((sym_type == STT_TLS
13384 /* xgettext:c-format */
13385 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
13386 /* xgettext:c-format */
13387 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
13388 input_bfd,
13389 input_section,
13390 (uint64_t) rel->r_offset,
13391 howto->name,
13392 name);
13393 }
13394
13395 /* We call elf32_arm_final_link_relocate unless we're completely
13396 done, i.e., the relaxation produced the final output we want,
13397 and we won't let anybody mess with it. Also, we have to do
13398 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
13399 both in relaxed and non-relaxed cases. */
13400 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
13401 || (IS_ARM_TLS_GNU_RELOC (r_type)
13402 && !((h ? elf32_arm_hash_entry (h)->tls_type :
13403 elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
13404 & GOT_TLS_GDESC)))
13405 {
13406 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
13407 contents, rel, h == NULL);
13408 /* This may have been marked unresolved because it came from
13409 a shared library. But we've just dealt with that. */
13410 unresolved_reloc = 0;
13411 }
13412 else
13413 r = bfd_reloc_continue;
13414
13415 if (r == bfd_reloc_continue)
13416 {
13417 unsigned char branch_type =
13418 h ? ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
13419 : ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
13420
13421 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
13422 input_section, contents, rel,
13423 relocation, info, sec, name,
13424 sym_type, branch_type, h,
13425 &unresolved_reloc,
13426 &error_message);
13427 }
13428
13429 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
13430 because such sections are not SEC_ALLOC and thus ld.so will
13431 not process them. */
13432 if (unresolved_reloc
13433 && !((input_section->flags & SEC_DEBUGGING) != 0
13434 && h->def_dynamic)
13435 && _bfd_elf_section_offset (output_bfd, info, input_section,
13436 rel->r_offset) != (bfd_vma) -1)
13437 {
13438 _bfd_error_handler
13439 /* xgettext:c-format */
13440 (_("%pB(%pA+%#" PRIx64 "): "
13441 "unresolvable %s relocation against symbol `%s'"),
13442 input_bfd,
13443 input_section,
13444 (uint64_t) rel->r_offset,
13445 howto->name,
13446 h->root.root.string);
13447 return FALSE;
13448 }
13449
13450 if (r != bfd_reloc_ok)
13451 {
13452 switch (r)
13453 {
13454 case bfd_reloc_overflow:
13455 /* If the overflowing reloc was to an undefined symbol,
13456 we have already printed one error message and there
13457 is no point complaining again. */
13458 if (!h || h->root.type != bfd_link_hash_undefined)
13459 (*info->callbacks->reloc_overflow)
13460 (info, (h ? &h->root : NULL), name, howto->name,
13461 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
13462 break;
13463
13464 case bfd_reloc_undefined:
13465 (*info->callbacks->undefined_symbol)
13466 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
13467 break;
13468
13469 case bfd_reloc_outofrange:
13470 error_message = _("out of range");
13471 goto common_error;
13472
13473 case bfd_reloc_notsupported:
13474 error_message = _("unsupported relocation");
13475 goto common_error;
13476
13477 case bfd_reloc_dangerous:
13478 /* error_message should already be set. */
13479 goto common_error;
13480
13481 default:
13482 error_message = _("unknown error");
13483 /* Fall through. */
13484
13485 common_error:
13486 BFD_ASSERT (error_message != NULL);
13487 (*info->callbacks->reloc_dangerous)
13488 (info, error_message, input_bfd, input_section, rel->r_offset);
13489 break;
13490 }
13491 }
13492 }
13493
13494 return TRUE;
13495 }
13496
13497 /* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
13498 adds the edit to the start of the list. (The list must be built in order of
13499 ascending TINDEX: the function's callers are primarily responsible for
13500 maintaining that condition). */
13501
13502 static void
13503 add_unwind_table_edit (arm_unwind_table_edit **head,
13504 arm_unwind_table_edit **tail,
13505 arm_unwind_edit_type type,
13506 asection *linked_section,
13507 unsigned int tindex)
13508 {
13509 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
13510 xmalloc (sizeof (arm_unwind_table_edit));
13511
13512 new_edit->type = type;
13513 new_edit->linked_section = linked_section;
13514 new_edit->index = tindex;
13515
13516 if (tindex > 0)
13517 {
13518 new_edit->next = NULL;
13519
13520 if (*tail)
13521 (*tail)->next = new_edit;
13522
13523 (*tail) = new_edit;
13524
13525 if (!*head)
13526 (*head) = new_edit;
13527 }
13528 else
13529 {
13530 new_edit->next = *head;
13531
13532 if (!*tail)
13533 *tail = new_edit;
13534
13535 *head = new_edit;
13536 }
13537 }
13538
13539 static _arm_elf_section_data *get_arm_elf_section_data (asection *);
13540
13541 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
13542 static void
13543 adjust_exidx_size(asection *exidx_sec, int adjust)
13544 {
13545 asection *out_sec;
13546
13547 if (!exidx_sec->rawsize)
13548 exidx_sec->rawsize = exidx_sec->size;
13549
13550 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
13551 out_sec = exidx_sec->output_section;
13552 /* Adjust size of output section. */
13553 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
13554 }
13555
13556 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
13557 static void
13558 insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
13559 {
13560 struct _arm_elf_section_data *exidx_arm_data;
13561
13562 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
13563 add_unwind_table_edit (
13564 &exidx_arm_data->u.exidx.unwind_edit_list,
13565 &exidx_arm_data->u.exidx.unwind_edit_tail,
13566 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
13567
13568 exidx_arm_data->additional_reloc_count++;
13569
13570 adjust_exidx_size(exidx_sec, 8);
13571 }
13572
13573 /* Scan .ARM.exidx tables, and create a list describing edits which should be
13574 made to those tables, such that:
13575
13576 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
13577 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
13578 codes which have been inlined into the index).
13579
13580 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
13581
13582 The edits are applied when the tables are written
13583 (in elf32_arm_write_section). */
13584
13585 bfd_boolean
13586 elf32_arm_fix_exidx_coverage (asection **text_section_order,
13587 unsigned int num_text_sections,
13588 struct bfd_link_info *info,
13589 bfd_boolean merge_exidx_entries)
13590 {
13591 bfd *inp;
13592 unsigned int last_second_word = 0, i;
13593 asection *last_exidx_sec = NULL;
13594 asection *last_text_sec = NULL;
13595 int last_unwind_type = -1;
13596
13597 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
13598 text sections. */
13599 for (inp = info->input_bfds; inp != NULL; inp = inp->link.next)
13600 {
13601 asection *sec;
13602
13603 for (sec = inp->sections; sec != NULL; sec = sec->next)
13604 {
13605 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
13606 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
13607
13608 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
13609 continue;
13610
13611 if (elf_sec->linked_to)
13612 {
13613 Elf_Internal_Shdr *linked_hdr
13614 = &elf_section_data (elf_sec->linked_to)->this_hdr;
13615 struct _arm_elf_section_data *linked_sec_arm_data
13616 = get_arm_elf_section_data (linked_hdr->bfd_section);
13617
13618 if (linked_sec_arm_data == NULL)
13619 continue;
13620
13621 /* Link this .ARM.exidx section back from the text section it
13622 describes. */
13623 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
13624 }
13625 }
13626 }
13627
13628 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
13629 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
13630 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
13631
13632 for (i = 0; i < num_text_sections; i++)
13633 {
13634 asection *sec = text_section_order[i];
13635 asection *exidx_sec;
13636 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
13637 struct _arm_elf_section_data *exidx_arm_data;
13638 bfd_byte *contents = NULL;
13639 int deleted_exidx_bytes = 0;
13640 bfd_vma j;
13641 arm_unwind_table_edit *unwind_edit_head = NULL;
13642 arm_unwind_table_edit *unwind_edit_tail = NULL;
13643 Elf_Internal_Shdr *hdr;
13644 bfd *ibfd;
13645
13646 if (arm_data == NULL)
13647 continue;
13648
13649 exidx_sec = arm_data->u.text.arm_exidx_sec;
13650 if (exidx_sec == NULL)
13651 {
13652 /* Section has no unwind data. */
13653 if (last_unwind_type == 0 || !last_exidx_sec)
13654 continue;
13655
13656 /* Ignore zero sized sections. */
13657 if (sec->size == 0)
13658 continue;
13659
13660 insert_cantunwind_after(last_text_sec, last_exidx_sec);
13661 last_unwind_type = 0;
13662 continue;
13663 }
13664
13665 /* Skip /DISCARD/ sections. */
13666 if (bfd_is_abs_section (exidx_sec->output_section))
13667 continue;
13668
13669 hdr = &elf_section_data (exidx_sec)->this_hdr;
13670 if (hdr->sh_type != SHT_ARM_EXIDX)
13671 continue;
13672
13673 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
13674 if (exidx_arm_data == NULL)
13675 continue;
13676
13677 ibfd = exidx_sec->owner;
13678
13679 if (hdr->contents != NULL)
13680 contents = hdr->contents;
13681 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
13682 /* An error? */
13683 continue;
13684
13685 if (last_unwind_type > 0)
13686 {
13687 unsigned int first_word = bfd_get_32 (ibfd, contents);
13688 /* Add cantunwind if first unwind item does not match section
13689 start. */
13690 if (first_word != sec->vma)
13691 {
13692 insert_cantunwind_after (last_text_sec, last_exidx_sec);
13693 last_unwind_type = 0;
13694 }
13695 }
13696
13697 for (j = 0; j < hdr->sh_size; j += 8)
13698 {
13699 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
13700 int unwind_type;
13701 int elide = 0;
13702
13703 /* An EXIDX_CANTUNWIND entry. */
13704 if (second_word == 1)
13705 {
13706 if (last_unwind_type == 0)
13707 elide = 1;
13708 unwind_type = 0;
13709 }
13710 /* Inlined unwinding data. Merge if equal to previous. */
13711 else if ((second_word & 0x80000000) != 0)
13712 {
13713 if (merge_exidx_entries
13714 && last_second_word == second_word && last_unwind_type == 1)
13715 elide = 1;
13716 unwind_type = 1;
13717 last_second_word = second_word;
13718 }
13719 /* Normal table entry. In theory we could merge these too,
13720 but duplicate entries are likely to be much less common. */
13721 else
13722 unwind_type = 2;
13723
13724 if (elide && !bfd_link_relocatable (info))
13725 {
13726 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
13727 DELETE_EXIDX_ENTRY, NULL, j / 8);
13728
13729 deleted_exidx_bytes += 8;
13730 }
13731
13732 last_unwind_type = unwind_type;
13733 }
13734
13735 /* Free contents if we allocated it ourselves. */
13736 if (contents != hdr->contents)
13737 free (contents);
13738
13739 /* Record edits to be applied later (in elf32_arm_write_section). */
13740 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
13741 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
13742
13743 if (deleted_exidx_bytes > 0)
13744 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
13745
13746 last_exidx_sec = exidx_sec;
13747 last_text_sec = sec;
13748 }
13749
13750 /* Add terminating CANTUNWIND entry. */
13751 if (!bfd_link_relocatable (info) && last_exidx_sec
13752 && last_unwind_type != 0)
13753 insert_cantunwind_after(last_text_sec, last_exidx_sec);
13754
13755 return TRUE;
13756 }
13757
13758 static bfd_boolean
13759 elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
13760 bfd *ibfd, const char *name)
13761 {
13762 asection *sec, *osec;
13763
13764 sec = bfd_get_linker_section (ibfd, name);
13765 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
13766 return TRUE;
13767
13768 osec = sec->output_section;
13769 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
13770 return TRUE;
13771
13772 if (! bfd_set_section_contents (obfd, osec, sec->contents,
13773 sec->output_offset, sec->size))
13774 return FALSE;
13775
13776 return TRUE;
13777 }
13778
13779 static bfd_boolean
13780 elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
13781 {
13782 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
13783 asection *sec, *osec;
13784
13785 if (globals == NULL)
13786 return FALSE;
13787
13788 /* Invoke the regular ELF backend linker to do all the work. */
13789 if (!bfd_elf_final_link (abfd, info))
13790 return FALSE;
13791
13792 /* Process stub sections (eg BE8 encoding, ...). */
13793 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
13794 unsigned int i;
13795 for (i=0; i<htab->top_id; i++)
13796 {
13797 sec = htab->stub_group[i].stub_sec;
13798 /* Only process it once, in its link_sec slot. */
13799 if (sec && i == htab->stub_group[i].link_sec->id)
13800 {
13801 osec = sec->output_section;
13802 elf32_arm_write_section (abfd, info, sec, sec->contents);
13803 if (! bfd_set_section_contents (abfd, osec, sec->contents,
13804 sec->output_offset, sec->size))
13805 return FALSE;
13806 }
13807 }
13808
13809 /* Write out any glue sections now that we have created all the
13810 stubs. */
13811 if (globals->bfd_of_glue_owner != NULL)
13812 {
13813 if (! elf32_arm_output_glue_section (info, abfd,
13814 globals->bfd_of_glue_owner,
13815 ARM2THUMB_GLUE_SECTION_NAME))
13816 return FALSE;
13817
13818 if (! elf32_arm_output_glue_section (info, abfd,
13819 globals->bfd_of_glue_owner,
13820 THUMB2ARM_GLUE_SECTION_NAME))
13821 return FALSE;
13822
13823 if (! elf32_arm_output_glue_section (info, abfd,
13824 globals->bfd_of_glue_owner,
13825 VFP11_ERRATUM_VENEER_SECTION_NAME))
13826 return FALSE;
13827
13828 if (! elf32_arm_output_glue_section (info, abfd,
13829 globals->bfd_of_glue_owner,
13830 STM32L4XX_ERRATUM_VENEER_SECTION_NAME))
13831 return FALSE;
13832
13833 if (! elf32_arm_output_glue_section (info, abfd,
13834 globals->bfd_of_glue_owner,
13835 ARM_BX_GLUE_SECTION_NAME))
13836 return FALSE;
13837 }
13838
13839 return TRUE;
13840 }
13841
13842 /* Return a best guess for the machine number based on the attributes. */
13843
13844 static unsigned int
13845 bfd_arm_get_mach_from_attributes (bfd * abfd)
13846 {
13847 int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch);
13848
13849 switch (arch)
13850 {
13851 case TAG_CPU_ARCH_PRE_V4: return bfd_mach_arm_3M;
13852 case TAG_CPU_ARCH_V4: return bfd_mach_arm_4;
13853 case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T;
13854 case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T;
13855
13856 case TAG_CPU_ARCH_V5TE:
13857 {
13858 char * name;
13859
13860 BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES);
13861 name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s;
13862
13863 if (name)
13864 {
13865 if (strcmp (name, "IWMMXT2") == 0)
13866 return bfd_mach_arm_iWMMXt2;
13867
13868 if (strcmp (name, "IWMMXT") == 0)
13869 return bfd_mach_arm_iWMMXt;
13870
13871 if (strcmp (name, "XSCALE") == 0)
13872 {
13873 int wmmx;
13874
13875 BFD_ASSERT (Tag_WMMX_arch < NUM_KNOWN_OBJ_ATTRIBUTES);
13876 wmmx = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_WMMX_arch].i;
13877 switch (wmmx)
13878 {
13879 case 1: return bfd_mach_arm_iWMMXt;
13880 case 2: return bfd_mach_arm_iWMMXt2;
13881 default: return bfd_mach_arm_XScale;
13882 }
13883 }
13884 }
13885
13886 return bfd_mach_arm_5TE;
13887 }
13888
13889 case TAG_CPU_ARCH_V5TEJ:
13890 return bfd_mach_arm_5TEJ;
13891 case TAG_CPU_ARCH_V6:
13892 return bfd_mach_arm_6;
13893 case TAG_CPU_ARCH_V6KZ:
13894 return bfd_mach_arm_6KZ;
13895 case TAG_CPU_ARCH_V6T2:
13896 return bfd_mach_arm_6T2;
13897 case TAG_CPU_ARCH_V6K:
13898 return bfd_mach_arm_6K;
13899 case TAG_CPU_ARCH_V7:
13900 return bfd_mach_arm_7;
13901 case TAG_CPU_ARCH_V6_M:
13902 return bfd_mach_arm_6M;
13903 case TAG_CPU_ARCH_V6S_M:
13904 return bfd_mach_arm_6SM;
13905 case TAG_CPU_ARCH_V7E_M:
13906 return bfd_mach_arm_7EM;
13907 case TAG_CPU_ARCH_V8:
13908 return bfd_mach_arm_8;
13909 case TAG_CPU_ARCH_V8R:
13910 return bfd_mach_arm_8R;
13911 case TAG_CPU_ARCH_V8M_BASE:
13912 return bfd_mach_arm_8M_BASE;
13913 case TAG_CPU_ARCH_V8M_MAIN:
13914 return bfd_mach_arm_8M_MAIN;
13915 case TAG_CPU_ARCH_V8_1M_MAIN:
13916 return bfd_mach_arm_8_1M_MAIN;
13917
13918 default:
13919 /* Force entry to be added for any new known Tag_CPU_arch value. */
13920 BFD_ASSERT (arch > MAX_TAG_CPU_ARCH);
13921
13922 /* Unknown Tag_CPU_arch value. */
13923 return bfd_mach_arm_unknown;
13924 }
13925 }
13926
13927 /* Set the right machine number. */
13928
13929 static bfd_boolean
13930 elf32_arm_object_p (bfd *abfd)
13931 {
13932 unsigned int mach;
13933
13934 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
13935
13936 if (mach == bfd_mach_arm_unknown)
13937 {
13938 if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
13939 mach = bfd_mach_arm_ep9312;
13940 else
13941 mach = bfd_arm_get_mach_from_attributes (abfd);
13942 }
13943
13944 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
13945 return TRUE;
13946 }
13947
13948 /* Function to keep ARM specific flags in the ELF header. */
13949
13950 static bfd_boolean
13951 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
13952 {
13953 if (elf_flags_init (abfd)
13954 && elf_elfheader (abfd)->e_flags != flags)
13955 {
13956 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
13957 {
13958 if (flags & EF_ARM_INTERWORK)
13959 _bfd_error_handler
13960 (_("warning: not setting interworking flag of %pB since it has already been specified as non-interworking"),
13961 abfd);
13962 else
13963 _bfd_error_handler
13964 (_("warning: clearing the interworking flag of %pB due to outside request"),
13965 abfd);
13966 }
13967 }
13968 else
13969 {
13970 elf_elfheader (abfd)->e_flags = flags;
13971 elf_flags_init (abfd) = TRUE;
13972 }
13973
13974 return TRUE;
13975 }
13976
13977 /* Copy backend specific data from one object module to another. */
13978
13979 static bfd_boolean
13980 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
13981 {
13982 flagword in_flags;
13983 flagword out_flags;
13984
13985 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
13986 return TRUE;
13987
13988 in_flags = elf_elfheader (ibfd)->e_flags;
13989 out_flags = elf_elfheader (obfd)->e_flags;
13990
13991 if (elf_flags_init (obfd)
13992 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
13993 && in_flags != out_flags)
13994 {
13995 /* Cannot mix APCS26 and APCS32 code. */
13996 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
13997 return FALSE;
13998
13999 /* Cannot mix float APCS and non-float APCS code. */
14000 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
14001 return FALSE;
14002
14003 /* If the src and dest have different interworking flags
14004 then turn off the interworking bit. */
14005 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
14006 {
14007 if (out_flags & EF_ARM_INTERWORK)
14008 _bfd_error_handler
14009 (_("warning: clearing the interworking flag of %pB because non-interworking code in %pB has been linked with it"),
14010 obfd, ibfd);
14011
14012 in_flags &= ~EF_ARM_INTERWORK;
14013 }
14014
14015 /* Likewise for PIC, though don't warn for this case. */
14016 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
14017 in_flags &= ~EF_ARM_PIC;
14018 }
14019
14020 elf_elfheader (obfd)->e_flags = in_flags;
14021 elf_flags_init (obfd) = TRUE;
14022
14023 return _bfd_elf_copy_private_bfd_data (ibfd, obfd);
14024 }
14025
14026 /* Values for Tag_ABI_PCS_R9_use. */
14027 enum
14028 {
14029 AEABI_R9_V6,
14030 AEABI_R9_SB,
14031 AEABI_R9_TLS,
14032 AEABI_R9_unused
14033 };
14034
14035 /* Values for Tag_ABI_PCS_RW_data. */
14036 enum
14037 {
14038 AEABI_PCS_RW_data_absolute,
14039 AEABI_PCS_RW_data_PCrel,
14040 AEABI_PCS_RW_data_SBrel,
14041 AEABI_PCS_RW_data_unused
14042 };
14043
14044 /* Values for Tag_ABI_enum_size. */
14045 enum
14046 {
14047 AEABI_enum_unused,
14048 AEABI_enum_short,
14049 AEABI_enum_wide,
14050 AEABI_enum_forced_wide
14051 };
14052
14053 /* Determine whether an object attribute tag takes an integer, a
14054 string or both. */
14055
14056 static int
14057 elf32_arm_obj_attrs_arg_type (int tag)
14058 {
14059 if (tag == Tag_compatibility)
14060 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
14061 else if (tag == Tag_nodefaults)
14062 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
14063 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
14064 return ATTR_TYPE_FLAG_STR_VAL;
14065 else if (tag < 32)
14066 return ATTR_TYPE_FLAG_INT_VAL;
14067 else
14068 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
14069 }
14070
14071 /* The ABI defines that Tag_conformance should be emitted first, and that
14072 Tag_nodefaults should be second (if either is defined). This sets those
14073 two positions, and bumps up the position of all the remaining tags to
14074 compensate. */
14075 static int
14076 elf32_arm_obj_attrs_order (int num)
14077 {
14078 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
14079 return Tag_conformance;
14080 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
14081 return Tag_nodefaults;
14082 if ((num - 2) < Tag_nodefaults)
14083 return num - 2;
14084 if ((num - 1) < Tag_conformance)
14085 return num - 1;
14086 return num;
14087 }
14088
14089 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
14090 static bfd_boolean
14091 elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
14092 {
14093 if ((tag & 127) < 64)
14094 {
14095 _bfd_error_handler
14096 (_("%pB: unknown mandatory EABI object attribute %d"),
14097 abfd, tag);
14098 bfd_set_error (bfd_error_bad_value);
14099 return FALSE;
14100 }
14101 else
14102 {
14103 _bfd_error_handler
14104 (_("warning: %pB: unknown EABI object attribute %d"),
14105 abfd, tag);
14106 return TRUE;
14107 }
14108 }
14109
14110 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
14111 Returns -1 if no architecture could be read. */
14112
14113 static int
14114 get_secondary_compatible_arch (bfd *abfd)
14115 {
14116 obj_attribute *attr =
14117 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
14118
14119 /* Note: the tag and its argument below are uleb128 values, though
14120 currently-defined values fit in one byte for each. */
14121 if (attr->s
14122 && attr->s[0] == Tag_CPU_arch
14123 && (attr->s[1] & 128) != 128
14124 && attr->s[2] == 0)
14125 return attr->s[1];
14126
14127 /* This tag is "safely ignorable", so don't complain if it looks funny. */
14128 return -1;
14129 }
14130
14131 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
14132 The tag is removed if ARCH is -1. */
14133
14134 static void
14135 set_secondary_compatible_arch (bfd *abfd, int arch)
14136 {
14137 obj_attribute *attr =
14138 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
14139
14140 if (arch == -1)
14141 {
14142 attr->s = NULL;
14143 return;
14144 }
14145
14146 /* Note: the tag and its argument below are uleb128 values, though
14147 currently-defined values fit in one byte for each. */
14148 if (!attr->s)
14149 attr->s = (char *) bfd_alloc (abfd, 3);
14150 attr->s[0] = Tag_CPU_arch;
14151 attr->s[1] = arch;
14152 attr->s[2] = '\0';
14153 }
14154
14155 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
14156 into account. */
14157
14158 static int
14159 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
14160 int newtag, int secondary_compat)
14161 {
14162 #define T(X) TAG_CPU_ARCH_##X
14163 int tagl, tagh, result;
14164 const int v6t2[] =
14165 {
14166 T(V6T2), /* PRE_V4. */
14167 T(V6T2), /* V4. */
14168 T(V6T2), /* V4T. */
14169 T(V6T2), /* V5T. */
14170 T(V6T2), /* V5TE. */
14171 T(V6T2), /* V5TEJ. */
14172 T(V6T2), /* V6. */
14173 T(V7), /* V6KZ. */
14174 T(V6T2) /* V6T2. */
14175 };
14176 const int v6k[] =
14177 {
14178 T(V6K), /* PRE_V4. */
14179 T(V6K), /* V4. */
14180 T(V6K), /* V4T. */
14181 T(V6K), /* V5T. */
14182 T(V6K), /* V5TE. */
14183 T(V6K), /* V5TEJ. */
14184 T(V6K), /* V6. */
14185 T(V6KZ), /* V6KZ. */
14186 T(V7), /* V6T2. */
14187 T(V6K) /* V6K. */
14188 };
14189 const int v7[] =
14190 {
14191 T(V7), /* PRE_V4. */
14192 T(V7), /* V4. */
14193 T(V7), /* V4T. */
14194 T(V7), /* V5T. */
14195 T(V7), /* V5TE. */
14196 T(V7), /* V5TEJ. */
14197 T(V7), /* V6. */
14198 T(V7), /* V6KZ. */
14199 T(V7), /* V6T2. */
14200 T(V7), /* V6K. */
14201 T(V7) /* V7. */
14202 };
14203 const int v6_m[] =
14204 {
14205 -1, /* PRE_V4. */
14206 -1, /* V4. */
14207 T(V6K), /* V4T. */
14208 T(V6K), /* V5T. */
14209 T(V6K), /* V5TE. */
14210 T(V6K), /* V5TEJ. */
14211 T(V6K), /* V6. */
14212 T(V6KZ), /* V6KZ. */
14213 T(V7), /* V6T2. */
14214 T(V6K), /* V6K. */
14215 T(V7), /* V7. */
14216 T(V6_M) /* V6_M. */
14217 };
14218 const int v6s_m[] =
14219 {
14220 -1, /* PRE_V4. */
14221 -1, /* V4. */
14222 T(V6K), /* V4T. */
14223 T(V6K), /* V5T. */
14224 T(V6K), /* V5TE. */
14225 T(V6K), /* V5TEJ. */
14226 T(V6K), /* V6. */
14227 T(V6KZ), /* V6KZ. */
14228 T(V7), /* V6T2. */
14229 T(V6K), /* V6K. */
14230 T(V7), /* V7. */
14231 T(V6S_M), /* V6_M. */
14232 T(V6S_M) /* V6S_M. */
14233 };
14234 const int v7e_m[] =
14235 {
14236 -1, /* PRE_V4. */
14237 -1, /* V4. */
14238 T(V7E_M), /* V4T. */
14239 T(V7E_M), /* V5T. */
14240 T(V7E_M), /* V5TE. */
14241 T(V7E_M), /* V5TEJ. */
14242 T(V7E_M), /* V6. */
14243 T(V7E_M), /* V6KZ. */
14244 T(V7E_M), /* V6T2. */
14245 T(V7E_M), /* V6K. */
14246 T(V7E_M), /* V7. */
14247 T(V7E_M), /* V6_M. */
14248 T(V7E_M), /* V6S_M. */
14249 T(V7E_M) /* V7E_M. */
14250 };
14251 const int v8[] =
14252 {
14253 T(V8), /* PRE_V4. */
14254 T(V8), /* V4. */
14255 T(V8), /* V4T. */
14256 T(V8), /* V5T. */
14257 T(V8), /* V5TE. */
14258 T(V8), /* V5TEJ. */
14259 T(V8), /* V6. */
14260 T(V8), /* V6KZ. */
14261 T(V8), /* V6T2. */
14262 T(V8), /* V6K. */
14263 T(V8), /* V7. */
14264 T(V8), /* V6_M. */
14265 T(V8), /* V6S_M. */
14266 T(V8), /* V7E_M. */
14267 T(V8) /* V8. */
14268 };
14269 const int v8r[] =
14270 {
14271 T(V8R), /* PRE_V4. */
14272 T(V8R), /* V4. */
14273 T(V8R), /* V4T. */
14274 T(V8R), /* V5T. */
14275 T(V8R), /* V5TE. */
14276 T(V8R), /* V5TEJ. */
14277 T(V8R), /* V6. */
14278 T(V8R), /* V6KZ. */
14279 T(V8R), /* V6T2. */
14280 T(V8R), /* V6K. */
14281 T(V8R), /* V7. */
14282 T(V8R), /* V6_M. */
14283 T(V8R), /* V6S_M. */
14284 T(V8R), /* V7E_M. */
14285 T(V8), /* V8. */
14286 T(V8R), /* V8R. */
14287 };
14288 const int v8m_baseline[] =
14289 {
14290 -1, /* PRE_V4. */
14291 -1, /* V4. */
14292 -1, /* V4T. */
14293 -1, /* V5T. */
14294 -1, /* V5TE. */
14295 -1, /* V5TEJ. */
14296 -1, /* V6. */
14297 -1, /* V6KZ. */
14298 -1, /* V6T2. */
14299 -1, /* V6K. */
14300 -1, /* V7. */
14301 T(V8M_BASE), /* V6_M. */
14302 T(V8M_BASE), /* V6S_M. */
14303 -1, /* V7E_M. */
14304 -1, /* V8. */
14305 -1, /* V8R. */
14306 T(V8M_BASE) /* V8-M BASELINE. */
14307 };
14308 const int v8m_mainline[] =
14309 {
14310 -1, /* PRE_V4. */
14311 -1, /* V4. */
14312 -1, /* V4T. */
14313 -1, /* V5T. */
14314 -1, /* V5TE. */
14315 -1, /* V5TEJ. */
14316 -1, /* V6. */
14317 -1, /* V6KZ. */
14318 -1, /* V6T2. */
14319 -1, /* V6K. */
14320 T(V8M_MAIN), /* V7. */
14321 T(V8M_MAIN), /* V6_M. */
14322 T(V8M_MAIN), /* V6S_M. */
14323 T(V8M_MAIN), /* V7E_M. */
14324 -1, /* V8. */
14325 -1, /* V8R. */
14326 T(V8M_MAIN), /* V8-M BASELINE. */
14327 T(V8M_MAIN) /* V8-M MAINLINE. */
14328 };
14329 const int v8_1m_mainline[] =
14330 {
14331 -1, /* PRE_V4. */
14332 -1, /* V4. */
14333 -1, /* V4T. */
14334 -1, /* V5T. */
14335 -1, /* V5TE. */
14336 -1, /* V5TEJ. */
14337 -1, /* V6. */
14338 -1, /* V6KZ. */
14339 -1, /* V6T2. */
14340 -1, /* V6K. */
14341 T(V8_1M_MAIN), /* V7. */
14342 T(V8_1M_MAIN), /* V6_M. */
14343 T(V8_1M_MAIN), /* V6S_M. */
14344 T(V8_1M_MAIN), /* V7E_M. */
14345 -1, /* V8. */
14346 -1, /* V8R. */
14347 T(V8_1M_MAIN), /* V8-M BASELINE. */
14348 T(V8_1M_MAIN), /* V8-M MAINLINE. */
14349 -1, /* Unused (18). */
14350 -1, /* Unused (19). */
14351 -1, /* Unused (20). */
14352 T(V8_1M_MAIN) /* V8.1-M MAINLINE. */
14353 };
14354 const int v4t_plus_v6_m[] =
14355 {
14356 -1, /* PRE_V4. */
14357 -1, /* V4. */
14358 T(V4T), /* V4T. */
14359 T(V5T), /* V5T. */
14360 T(V5TE), /* V5TE. */
14361 T(V5TEJ), /* V5TEJ. */
14362 T(V6), /* V6. */
14363 T(V6KZ), /* V6KZ. */
14364 T(V6T2), /* V6T2. */
14365 T(V6K), /* V6K. */
14366 T(V7), /* V7. */
14367 T(V6_M), /* V6_M. */
14368 T(V6S_M), /* V6S_M. */
14369 T(V7E_M), /* V7E_M. */
14370 T(V8), /* V8. */
14371 -1, /* V8R. */
14372 T(V8M_BASE), /* V8-M BASELINE. */
14373 T(V8M_MAIN), /* V8-M MAINLINE. */
14374 -1, /* Unused (18). */
14375 -1, /* Unused (19). */
14376 -1, /* Unused (20). */
14377 T(V8_1M_MAIN), /* V8.1-M MAINLINE. */
14378 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
14379 };
14380 const int *comb[] =
14381 {
14382 v6t2,
14383 v6k,
14384 v7,
14385 v6_m,
14386 v6s_m,
14387 v7e_m,
14388 v8,
14389 v8r,
14390 v8m_baseline,
14391 v8m_mainline,
14392 NULL,
14393 NULL,
14394 NULL,
14395 v8_1m_mainline,
14396 /* Pseudo-architecture. */
14397 v4t_plus_v6_m
14398 };
14399
14400 /* Check we've not got a higher architecture than we know about. */
14401
14402 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
14403 {
14404 _bfd_error_handler (_("error: %pB: unknown CPU architecture"), ibfd);
14405 return -1;
14406 }
14407
14408 /* Override old tag if we have a Tag_also_compatible_with on the output. */
14409
14410 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
14411 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
14412 oldtag = T(V4T_PLUS_V6_M);
14413
14414 /* And override the new tag if we have a Tag_also_compatible_with on the
14415 input. */
14416
14417 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
14418 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
14419 newtag = T(V4T_PLUS_V6_M);
14420
14421 tagl = (oldtag < newtag) ? oldtag : newtag;
14422 result = tagh = (oldtag > newtag) ? oldtag : newtag;
14423
14424 /* Architectures before V6KZ add features monotonically. */
14425 if (tagh <= TAG_CPU_ARCH_V6KZ)
14426 return result;
14427
14428 result = comb[tagh - T(V6T2)] ? comb[tagh - T(V6T2)][tagl] : -1;
14429
14430 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
14431 as the canonical version. */
14432 if (result == T(V4T_PLUS_V6_M))
14433 {
14434 result = T(V4T);
14435 *secondary_compat_out = T(V6_M);
14436 }
14437 else
14438 *secondary_compat_out = -1;
14439
14440 if (result == -1)
14441 {
14442 _bfd_error_handler (_("error: %pB: conflicting CPU architectures %d/%d"),
14443 ibfd, oldtag, newtag);
14444 return -1;
14445 }
14446
14447 return result;
14448 #undef T
14449 }
14450
14451 /* Query attributes object to see if integer divide instructions may be
14452 present in an object. */
14453 static bfd_boolean
14454 elf32_arm_attributes_accept_div (const obj_attribute *attr)
14455 {
14456 int arch = attr[Tag_CPU_arch].i;
14457 int profile = attr[Tag_CPU_arch_profile].i;
14458
14459 switch (attr[Tag_DIV_use].i)
14460 {
14461 case 0:
14462 /* Integer divide allowed if instruction contained in archetecture. */
14463 if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
14464 return TRUE;
14465 else if (arch >= TAG_CPU_ARCH_V7E_M)
14466 return TRUE;
14467 else
14468 return FALSE;
14469
14470 case 1:
14471 /* Integer divide explicitly prohibited. */
14472 return FALSE;
14473
14474 default:
14475 /* Unrecognised case - treat as allowing divide everywhere. */
14476 case 2:
14477 /* Integer divide allowed in ARM state. */
14478 return TRUE;
14479 }
14480 }
14481
14482 /* Query attributes object to see if integer divide instructions are
14483 forbidden to be in the object. This is not the inverse of
14484 elf32_arm_attributes_accept_div. */
14485 static bfd_boolean
14486 elf32_arm_attributes_forbid_div (const obj_attribute *attr)
14487 {
14488 return attr[Tag_DIV_use].i == 1;
14489 }
14490
14491 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
14492 are conflicting attributes. */
14493
14494 static bfd_boolean
14495 elf32_arm_merge_eabi_attributes (bfd *ibfd, struct bfd_link_info *info)
14496 {
14497 bfd *obfd = info->output_bfd;
14498 obj_attribute *in_attr;
14499 obj_attribute *out_attr;
14500 /* Some tags have 0 = don't care, 1 = strong requirement,
14501 2 = weak requirement. */
14502 static const int order_021[3] = {0, 2, 1};
14503 int i;
14504 bfd_boolean result = TRUE;
14505 const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section;
14506
14507 /* Skip the linker stubs file. This preserves previous behavior
14508 of accepting unknown attributes in the first input file - but
14509 is that a bug? */
14510 if (ibfd->flags & BFD_LINKER_CREATED)
14511 return TRUE;
14512
14513 /* Skip any input that hasn't attribute section.
14514 This enables to link object files without attribute section with
14515 any others. */
14516 if (bfd_get_section_by_name (ibfd, sec_name) == NULL)
14517 return TRUE;
14518
14519 if (!elf_known_obj_attributes_proc (obfd)[0].i)
14520 {
14521 /* This is the first object. Copy the attributes. */
14522 _bfd_elf_copy_obj_attributes (ibfd, obfd);
14523
14524 out_attr = elf_known_obj_attributes_proc (obfd);
14525
14526 /* Use the Tag_null value to indicate the attributes have been
14527 initialized. */
14528 out_attr[0].i = 1;
14529
14530 /* We do not output objects with Tag_MPextension_use_legacy - we move
14531 the attribute's value to Tag_MPextension_use. */
14532 if (out_attr[Tag_MPextension_use_legacy].i != 0)
14533 {
14534 if (out_attr[Tag_MPextension_use].i != 0
14535 && out_attr[Tag_MPextension_use_legacy].i
14536 != out_attr[Tag_MPextension_use].i)
14537 {
14538 _bfd_error_handler
14539 (_("Error: %pB has both the current and legacy "
14540 "Tag_MPextension_use attributes"), ibfd);
14541 result = FALSE;
14542 }
14543
14544 out_attr[Tag_MPextension_use] =
14545 out_attr[Tag_MPextension_use_legacy];
14546 out_attr[Tag_MPextension_use_legacy].type = 0;
14547 out_attr[Tag_MPextension_use_legacy].i = 0;
14548 }
14549
14550 return result;
14551 }
14552
14553 in_attr = elf_known_obj_attributes_proc (ibfd);
14554 out_attr = elf_known_obj_attributes_proc (obfd);
14555 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
14556 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
14557 {
14558 /* Ignore mismatches if the object doesn't use floating point or is
14559 floating point ABI independent. */
14560 if (out_attr[Tag_ABI_FP_number_model].i == AEABI_FP_number_model_none
14561 || (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
14562 && out_attr[Tag_ABI_VFP_args].i == AEABI_VFP_args_compatible))
14563 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
14564 else if (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
14565 && in_attr[Tag_ABI_VFP_args].i != AEABI_VFP_args_compatible)
14566 {
14567 _bfd_error_handler
14568 (_("error: %pB uses VFP register arguments, %pB does not"),
14569 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
14570 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
14571 result = FALSE;
14572 }
14573 }
14574
14575 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
14576 {
14577 /* Merge this attribute with existing attributes. */
14578 switch (i)
14579 {
14580 case Tag_CPU_raw_name:
14581 case Tag_CPU_name:
14582 /* These are merged after Tag_CPU_arch. */
14583 break;
14584
14585 case Tag_ABI_optimization_goals:
14586 case Tag_ABI_FP_optimization_goals:
14587 /* Use the first value seen. */
14588 break;
14589
14590 case Tag_CPU_arch:
14591 {
14592 int secondary_compat = -1, secondary_compat_out = -1;
14593 unsigned int saved_out_attr = out_attr[i].i;
14594 int arch_attr;
14595 static const char *name_table[] =
14596 {
14597 /* These aren't real CPU names, but we can't guess
14598 that from the architecture version alone. */
14599 "Pre v4",
14600 "ARM v4",
14601 "ARM v4T",
14602 "ARM v5T",
14603 "ARM v5TE",
14604 "ARM v5TEJ",
14605 "ARM v6",
14606 "ARM v6KZ",
14607 "ARM v6T2",
14608 "ARM v6K",
14609 "ARM v7",
14610 "ARM v6-M",
14611 "ARM v6S-M",
14612 "ARM v8",
14613 "",
14614 "ARM v8-M.baseline",
14615 "ARM v8-M.mainline",
14616 };
14617
14618 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
14619 secondary_compat = get_secondary_compatible_arch (ibfd);
14620 secondary_compat_out = get_secondary_compatible_arch (obfd);
14621 arch_attr = tag_cpu_arch_combine (ibfd, out_attr[i].i,
14622 &secondary_compat_out,
14623 in_attr[i].i,
14624 secondary_compat);
14625
14626 /* Return with error if failed to merge. */
14627 if (arch_attr == -1)
14628 return FALSE;
14629
14630 out_attr[i].i = arch_attr;
14631
14632 set_secondary_compatible_arch (obfd, secondary_compat_out);
14633
14634 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
14635 if (out_attr[i].i == saved_out_attr)
14636 ; /* Leave the names alone. */
14637 else if (out_attr[i].i == in_attr[i].i)
14638 {
14639 /* The output architecture has been changed to match the
14640 input architecture. Use the input names. */
14641 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
14642 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
14643 : NULL;
14644 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
14645 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
14646 : NULL;
14647 }
14648 else
14649 {
14650 out_attr[Tag_CPU_name].s = NULL;
14651 out_attr[Tag_CPU_raw_name].s = NULL;
14652 }
14653
14654 /* If we still don't have a value for Tag_CPU_name,
14655 make one up now. Tag_CPU_raw_name remains blank. */
14656 if (out_attr[Tag_CPU_name].s == NULL
14657 && out_attr[i].i < ARRAY_SIZE (name_table))
14658 out_attr[Tag_CPU_name].s =
14659 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
14660 }
14661 break;
14662
14663 case Tag_ARM_ISA_use:
14664 case Tag_THUMB_ISA_use:
14665 case Tag_WMMX_arch:
14666 case Tag_Advanced_SIMD_arch:
14667 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
14668 case Tag_ABI_FP_rounding:
14669 case Tag_ABI_FP_exceptions:
14670 case Tag_ABI_FP_user_exceptions:
14671 case Tag_ABI_FP_number_model:
14672 case Tag_FP_HP_extension:
14673 case Tag_CPU_unaligned_access:
14674 case Tag_T2EE_use:
14675 case Tag_MPextension_use:
14676 case Tag_MVE_arch:
14677 /* Use the largest value specified. */
14678 if (in_attr[i].i > out_attr[i].i)
14679 out_attr[i].i = in_attr[i].i;
14680 break;
14681
14682 case Tag_ABI_align_preserved:
14683 case Tag_ABI_PCS_RO_data:
14684 /* Use the smallest value specified. */
14685 if (in_attr[i].i < out_attr[i].i)
14686 out_attr[i].i = in_attr[i].i;
14687 break;
14688
14689 case Tag_ABI_align_needed:
14690 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
14691 && (in_attr[Tag_ABI_align_preserved].i == 0
14692 || out_attr[Tag_ABI_align_preserved].i == 0))
14693 {
14694 /* This error message should be enabled once all non-conformant
14695 binaries in the toolchain have had the attributes set
14696 properly.
14697 _bfd_error_handler
14698 (_("error: %pB: 8-byte data alignment conflicts with %pB"),
14699 obfd, ibfd);
14700 result = FALSE; */
14701 }
14702 /* Fall through. */
14703 case Tag_ABI_FP_denormal:
14704 case Tag_ABI_PCS_GOT_use:
14705 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
14706 value if greater than 2 (for future-proofing). */
14707 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
14708 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
14709 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
14710 out_attr[i].i = in_attr[i].i;
14711 break;
14712
14713 case Tag_Virtualization_use:
14714 /* The virtualization tag effectively stores two bits of
14715 information: the intended use of TrustZone (in bit 0), and the
14716 intended use of Virtualization (in bit 1). */
14717 if (out_attr[i].i == 0)
14718 out_attr[i].i = in_attr[i].i;
14719 else if (in_attr[i].i != 0
14720 && in_attr[i].i != out_attr[i].i)
14721 {
14722 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
14723 out_attr[i].i = 3;
14724 else
14725 {
14726 _bfd_error_handler
14727 (_("error: %pB: unable to merge virtualization attributes "
14728 "with %pB"),
14729 obfd, ibfd);
14730 result = FALSE;
14731 }
14732 }
14733 break;
14734
14735 case Tag_CPU_arch_profile:
14736 if (out_attr[i].i != in_attr[i].i)
14737 {
14738 /* 0 will merge with anything.
14739 'A' and 'S' merge to 'A'.
14740 'R' and 'S' merge to 'R'.
14741 'M' and 'A|R|S' is an error. */
14742 if (out_attr[i].i == 0
14743 || (out_attr[i].i == 'S'
14744 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
14745 out_attr[i].i = in_attr[i].i;
14746 else if (in_attr[i].i == 0
14747 || (in_attr[i].i == 'S'
14748 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
14749 ; /* Do nothing. */
14750 else
14751 {
14752 _bfd_error_handler
14753 (_("error: %pB: conflicting architecture profiles %c/%c"),
14754 ibfd,
14755 in_attr[i].i ? in_attr[i].i : '0',
14756 out_attr[i].i ? out_attr[i].i : '0');
14757 result = FALSE;
14758 }
14759 }
14760 break;
14761
14762 case Tag_DSP_extension:
14763 /* No need to change output value if any of:
14764 - pre (<=) ARMv5T input architecture (do not have DSP)
14765 - M input profile not ARMv7E-M and do not have DSP. */
14766 if (in_attr[Tag_CPU_arch].i <= 3
14767 || (in_attr[Tag_CPU_arch_profile].i == 'M'
14768 && in_attr[Tag_CPU_arch].i != 13
14769 && in_attr[i].i == 0))
14770 ; /* Do nothing. */
14771 /* Output value should be 0 if DSP part of architecture, ie.
14772 - post (>=) ARMv5te architecture output
14773 - A, R or S profile output or ARMv7E-M output architecture. */
14774 else if (out_attr[Tag_CPU_arch].i >= 4
14775 && (out_attr[Tag_CPU_arch_profile].i == 'A'
14776 || out_attr[Tag_CPU_arch_profile].i == 'R'
14777 || out_attr[Tag_CPU_arch_profile].i == 'S'
14778 || out_attr[Tag_CPU_arch].i == 13))
14779 out_attr[i].i = 0;
14780 /* Otherwise, DSP instructions are added and not part of output
14781 architecture. */
14782 else
14783 out_attr[i].i = 1;
14784 break;
14785
14786 case Tag_FP_arch:
14787 {
14788 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
14789 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
14790 when it's 0. It might mean absence of FP hardware if
14791 Tag_FP_arch is zero. */
14792
14793 #define VFP_VERSION_COUNT 9
14794 static const struct
14795 {
14796 int ver;
14797 int regs;
14798 } vfp_versions[VFP_VERSION_COUNT] =
14799 {
14800 {0, 0},
14801 {1, 16},
14802 {2, 16},
14803 {3, 32},
14804 {3, 16},
14805 {4, 32},
14806 {4, 16},
14807 {8, 32},
14808 {8, 16}
14809 };
14810 int ver;
14811 int regs;
14812 int newval;
14813
14814 /* If the output has no requirement about FP hardware,
14815 follow the requirement of the input. */
14816 if (out_attr[i].i == 0)
14817 {
14818 /* This assert is still reasonable, we shouldn't
14819 produce the suspicious build attribute
14820 combination (See below for in_attr). */
14821 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
14822 out_attr[i].i = in_attr[i].i;
14823 out_attr[Tag_ABI_HardFP_use].i
14824 = in_attr[Tag_ABI_HardFP_use].i;
14825 break;
14826 }
14827 /* If the input has no requirement about FP hardware, do
14828 nothing. */
14829 else if (in_attr[i].i == 0)
14830 {
14831 /* We used to assert that Tag_ABI_HardFP_use was
14832 zero here, but we should never assert when
14833 consuming an object file that has suspicious
14834 build attributes. The single precision variant
14835 of 'no FP architecture' is still 'no FP
14836 architecture', so we just ignore the tag in this
14837 case. */
14838 break;
14839 }
14840
14841 /* Both the input and the output have nonzero Tag_FP_arch.
14842 So Tag_ABI_HardFP_use is implied by Tag_FP_arch when it's zero. */
14843
14844 /* If both the input and the output have zero Tag_ABI_HardFP_use,
14845 do nothing. */
14846 if (in_attr[Tag_ABI_HardFP_use].i == 0
14847 && out_attr[Tag_ABI_HardFP_use].i == 0)
14848 ;
14849 /* If the input and the output have different Tag_ABI_HardFP_use,
14850 the combination of them is 0 (implied by Tag_FP_arch). */
14851 else if (in_attr[Tag_ABI_HardFP_use].i
14852 != out_attr[Tag_ABI_HardFP_use].i)
14853 out_attr[Tag_ABI_HardFP_use].i = 0;
14854
14855 /* Now we can handle Tag_FP_arch. */
14856
14857 /* Values of VFP_VERSION_COUNT or more aren't defined, so just
14858 pick the biggest. */
14859 if (in_attr[i].i >= VFP_VERSION_COUNT
14860 && in_attr[i].i > out_attr[i].i)
14861 {
14862 out_attr[i] = in_attr[i];
14863 break;
14864 }
14865 /* The output uses the superset of input features
14866 (ISA version) and registers. */
14867 ver = vfp_versions[in_attr[i].i].ver;
14868 if (ver < vfp_versions[out_attr[i].i].ver)
14869 ver = vfp_versions[out_attr[i].i].ver;
14870 regs = vfp_versions[in_attr[i].i].regs;
14871 if (regs < vfp_versions[out_attr[i].i].regs)
14872 regs = vfp_versions[out_attr[i].i].regs;
14873 /* This assumes all possible supersets are also a valid
14874 options. */
14875 for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--)
14876 {
14877 if (regs == vfp_versions[newval].regs
14878 && ver == vfp_versions[newval].ver)
14879 break;
14880 }
14881 out_attr[i].i = newval;
14882 }
14883 break;
14884 case Tag_PCS_config:
14885 if (out_attr[i].i == 0)
14886 out_attr[i].i = in_attr[i].i;
14887 else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i)
14888 {
14889 /* It's sometimes ok to mix different configs, so this is only
14890 a warning. */
14891 _bfd_error_handler
14892 (_("warning: %pB: conflicting platform configuration"), ibfd);
14893 }
14894 break;
14895 case Tag_ABI_PCS_R9_use:
14896 if (in_attr[i].i != out_attr[i].i
14897 && out_attr[i].i != AEABI_R9_unused
14898 && in_attr[i].i != AEABI_R9_unused)
14899 {
14900 _bfd_error_handler
14901 (_("error: %pB: conflicting use of R9"), ibfd);
14902 result = FALSE;
14903 }
14904 if (out_attr[i].i == AEABI_R9_unused)
14905 out_attr[i].i = in_attr[i].i;
14906 break;
14907 case Tag_ABI_PCS_RW_data:
14908 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
14909 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
14910 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
14911 {
14912 _bfd_error_handler
14913 (_("error: %pB: SB relative addressing conflicts with use of R9"),
14914 ibfd);
14915 result = FALSE;
14916 }
14917 /* Use the smallest value specified. */
14918 if (in_attr[i].i < out_attr[i].i)
14919 out_attr[i].i = in_attr[i].i;
14920 break;
14921 case Tag_ABI_PCS_wchar_t:
14922 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
14923 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
14924 {
14925 _bfd_error_handler
14926 (_("warning: %pB uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
14927 ibfd, in_attr[i].i, out_attr[i].i);
14928 }
14929 else if (in_attr[i].i && !out_attr[i].i)
14930 out_attr[i].i = in_attr[i].i;
14931 break;
14932 case Tag_ABI_enum_size:
14933 if (in_attr[i].i != AEABI_enum_unused)
14934 {
14935 if (out_attr[i].i == AEABI_enum_unused
14936 || out_attr[i].i == AEABI_enum_forced_wide)
14937 {
14938 /* The existing object is compatible with anything.
14939 Use whatever requirements the new object has. */
14940 out_attr[i].i = in_attr[i].i;
14941 }
14942 else if (in_attr[i].i != AEABI_enum_forced_wide
14943 && out_attr[i].i != in_attr[i].i
14944 && !elf_arm_tdata (obfd)->no_enum_size_warning)
14945 {
14946 static const char *aeabi_enum_names[] =
14947 { "", "variable-size", "32-bit", "" };
14948 const char *in_name =
14949 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
14950 ? aeabi_enum_names[in_attr[i].i]
14951 : "<unknown>";
14952 const char *out_name =
14953 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
14954 ? aeabi_enum_names[out_attr[i].i]
14955 : "<unknown>";
14956 _bfd_error_handler
14957 (_("warning: %pB uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
14958 ibfd, in_name, out_name);
14959 }
14960 }
14961 break;
14962 case Tag_ABI_VFP_args:
14963 /* Aready done. */
14964 break;
14965 case Tag_ABI_WMMX_args:
14966 if (in_attr[i].i != out_attr[i].i)
14967 {
14968 _bfd_error_handler
14969 (_("error: %pB uses iWMMXt register arguments, %pB does not"),
14970 ibfd, obfd);
14971 result = FALSE;
14972 }
14973 break;
14974 case Tag_compatibility:
14975 /* Merged in target-independent code. */
14976 break;
14977 case Tag_ABI_HardFP_use:
14978 /* This is handled along with Tag_FP_arch. */
14979 break;
14980 case Tag_ABI_FP_16bit_format:
14981 if (in_attr[i].i != 0 && out_attr[i].i != 0)
14982 {
14983 if (in_attr[i].i != out_attr[i].i)
14984 {
14985 _bfd_error_handler
14986 (_("error: fp16 format mismatch between %pB and %pB"),
14987 ibfd, obfd);
14988 result = FALSE;
14989 }
14990 }
14991 if (in_attr[i].i != 0)
14992 out_attr[i].i = in_attr[i].i;
14993 break;
14994
14995 case Tag_DIV_use:
14996 /* A value of zero on input means that the divide instruction may
14997 be used if available in the base architecture as specified via
14998 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that
14999 the user did not want divide instructions. A value of 2
15000 explicitly means that divide instructions were allowed in ARM
15001 and Thumb state. */
15002 if (in_attr[i].i == out_attr[i].i)
15003 /* Do nothing. */ ;
15004 else if (elf32_arm_attributes_forbid_div (in_attr)
15005 && !elf32_arm_attributes_accept_div (out_attr))
15006 out_attr[i].i = 1;
15007 else if (elf32_arm_attributes_forbid_div (out_attr)
15008 && elf32_arm_attributes_accept_div (in_attr))
15009 out_attr[i].i = in_attr[i].i;
15010 else if (in_attr[i].i == 2)
15011 out_attr[i].i = in_attr[i].i;
15012 break;
15013
15014 case Tag_MPextension_use_legacy:
15015 /* We don't output objects with Tag_MPextension_use_legacy - we
15016 move the value to Tag_MPextension_use. */
15017 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
15018 {
15019 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
15020 {
15021 _bfd_error_handler
15022 (_("%pB has both the current and legacy "
15023 "Tag_MPextension_use attributes"),
15024 ibfd);
15025 result = FALSE;
15026 }
15027 }
15028
15029 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
15030 out_attr[Tag_MPextension_use] = in_attr[i];
15031
15032 break;
15033
15034 case Tag_nodefaults:
15035 /* This tag is set if it exists, but the value is unused (and is
15036 typically zero). We don't actually need to do anything here -
15037 the merge happens automatically when the type flags are merged
15038 below. */
15039 break;
15040 case Tag_also_compatible_with:
15041 /* Already done in Tag_CPU_arch. */
15042 break;
15043 case Tag_conformance:
15044 /* Keep the attribute if it matches. Throw it away otherwise.
15045 No attribute means no claim to conform. */
15046 if (!in_attr[i].s || !out_attr[i].s
15047 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
15048 out_attr[i].s = NULL;
15049 break;
15050
15051 default:
15052 result
15053 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
15054 }
15055
15056 /* If out_attr was copied from in_attr then it won't have a type yet. */
15057 if (in_attr[i].type && !out_attr[i].type)
15058 out_attr[i].type = in_attr[i].type;
15059 }
15060
15061 /* Merge Tag_compatibility attributes and any common GNU ones. */
15062 if (!_bfd_elf_merge_object_attributes (ibfd, info))
15063 return FALSE;
15064
15065 /* Check for any attributes not known on ARM. */
15066 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
15067
15068 return result;
15069 }
15070
15071
15072 /* Return TRUE if the two EABI versions are incompatible. */
15073
15074 static bfd_boolean
15075 elf32_arm_versions_compatible (unsigned iver, unsigned over)
15076 {
15077 /* v4 and v5 are the same spec before and after it was released,
15078 so allow mixing them. */
15079 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
15080 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
15081 return TRUE;
15082
15083 return (iver == over);
15084 }
15085
15086 /* Merge backend specific data from an object file to the output
15087 object file when linking. */
15088
15089 static bfd_boolean
15090 elf32_arm_merge_private_bfd_data (bfd *, struct bfd_link_info *);
15091
15092 /* Display the flags field. */
15093
15094 static bfd_boolean
15095 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
15096 {
15097 FILE * file = (FILE *) ptr;
15098 unsigned long flags;
15099
15100 BFD_ASSERT (abfd != NULL && ptr != NULL);
15101
15102 /* Print normal ELF private data. */
15103 _bfd_elf_print_private_bfd_data (abfd, ptr);
15104
15105 flags = elf_elfheader (abfd)->e_flags;
15106 /* Ignore init flag - it may not be set, despite the flags field
15107 containing valid data. */
15108
15109 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15110
15111 switch (EF_ARM_EABI_VERSION (flags))
15112 {
15113 case EF_ARM_EABI_UNKNOWN:
15114 /* The following flag bits are GNU extensions and not part of the
15115 official ARM ELF extended ABI. Hence they are only decoded if
15116 the EABI version is not set. */
15117 if (flags & EF_ARM_INTERWORK)
15118 fprintf (file, _(" [interworking enabled]"));
15119
15120 if (flags & EF_ARM_APCS_26)
15121 fprintf (file, " [APCS-26]");
15122 else
15123 fprintf (file, " [APCS-32]");
15124
15125 if (flags & EF_ARM_VFP_FLOAT)
15126 fprintf (file, _(" [VFP float format]"));
15127 else if (flags & EF_ARM_MAVERICK_FLOAT)
15128 fprintf (file, _(" [Maverick float format]"));
15129 else
15130 fprintf (file, _(" [FPA float format]"));
15131
15132 if (flags & EF_ARM_APCS_FLOAT)
15133 fprintf (file, _(" [floats passed in float registers]"));
15134
15135 if (flags & EF_ARM_PIC)
15136 fprintf (file, _(" [position independent]"));
15137
15138 if (flags & EF_ARM_NEW_ABI)
15139 fprintf (file, _(" [new ABI]"));
15140
15141 if (flags & EF_ARM_OLD_ABI)
15142 fprintf (file, _(" [old ABI]"));
15143
15144 if (flags & EF_ARM_SOFT_FLOAT)
15145 fprintf (file, _(" [software FP]"));
15146
15147 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
15148 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
15149 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
15150 | EF_ARM_MAVERICK_FLOAT);
15151 break;
15152
15153 case EF_ARM_EABI_VER1:
15154 fprintf (file, _(" [Version1 EABI]"));
15155
15156 if (flags & EF_ARM_SYMSARESORTED)
15157 fprintf (file, _(" [sorted symbol table]"));
15158 else
15159 fprintf (file, _(" [unsorted symbol table]"));
15160
15161 flags &= ~ EF_ARM_SYMSARESORTED;
15162 break;
15163
15164 case EF_ARM_EABI_VER2:
15165 fprintf (file, _(" [Version2 EABI]"));
15166
15167 if (flags & EF_ARM_SYMSARESORTED)
15168 fprintf (file, _(" [sorted symbol table]"));
15169 else
15170 fprintf (file, _(" [unsorted symbol table]"));
15171
15172 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
15173 fprintf (file, _(" [dynamic symbols use segment index]"));
15174
15175 if (flags & EF_ARM_MAPSYMSFIRST)
15176 fprintf (file, _(" [mapping symbols precede others]"));
15177
15178 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
15179 | EF_ARM_MAPSYMSFIRST);
15180 break;
15181
15182 case EF_ARM_EABI_VER3:
15183 fprintf (file, _(" [Version3 EABI]"));
15184 break;
15185
15186 case EF_ARM_EABI_VER4:
15187 fprintf (file, _(" [Version4 EABI]"));
15188 goto eabi;
15189
15190 case EF_ARM_EABI_VER5:
15191 fprintf (file, _(" [Version5 EABI]"));
15192
15193 if (flags & EF_ARM_ABI_FLOAT_SOFT)
15194 fprintf (file, _(" [soft-float ABI]"));
15195
15196 if (flags & EF_ARM_ABI_FLOAT_HARD)
15197 fprintf (file, _(" [hard-float ABI]"));
15198
15199 flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD);
15200
15201 eabi:
15202 if (flags & EF_ARM_BE8)
15203 fprintf (file, _(" [BE8]"));
15204
15205 if (flags & EF_ARM_LE8)
15206 fprintf (file, _(" [LE8]"));
15207
15208 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
15209 break;
15210
15211 default:
15212 fprintf (file, _(" <EABI version unrecognised>"));
15213 break;
15214 }
15215
15216 flags &= ~ EF_ARM_EABIMASK;
15217
15218 if (flags & EF_ARM_RELEXEC)
15219 fprintf (file, _(" [relocatable executable]"));
15220
15221 if (flags & EF_ARM_PIC)
15222 fprintf (file, _(" [position independent]"));
15223
15224 if (elf_elfheader (abfd)->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC)
15225 fprintf (file, _(" [FDPIC ABI supplement]"));
15226
15227 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_PIC);
15228
15229 if (flags)
15230 fprintf (file, _("<Unrecognised flag bits set>"));
15231
15232 fputc ('\n', file);
15233
15234 return TRUE;
15235 }
15236
15237 static int
15238 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
15239 {
15240 switch (ELF_ST_TYPE (elf_sym->st_info))
15241 {
15242 case STT_ARM_TFUNC:
15243 return ELF_ST_TYPE (elf_sym->st_info);
15244
15245 case STT_ARM_16BIT:
15246 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
15247 This allows us to distinguish between data used by Thumb instructions
15248 and non-data (which is probably code) inside Thumb regions of an
15249 executable. */
15250 if (type != STT_OBJECT && type != STT_TLS)
15251 return ELF_ST_TYPE (elf_sym->st_info);
15252 break;
15253
15254 default:
15255 break;
15256 }
15257
15258 return type;
15259 }
15260
15261 static asection *
15262 elf32_arm_gc_mark_hook (asection *sec,
15263 struct bfd_link_info *info,
15264 Elf_Internal_Rela *rel,
15265 struct elf_link_hash_entry *h,
15266 Elf_Internal_Sym *sym)
15267 {
15268 if (h != NULL)
15269 switch (ELF32_R_TYPE (rel->r_info))
15270 {
15271 case R_ARM_GNU_VTINHERIT:
15272 case R_ARM_GNU_VTENTRY:
15273 return NULL;
15274 }
15275
15276 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
15277 }
15278
15279 /* Look through the relocs for a section during the first phase. */
15280
15281 static bfd_boolean
15282 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
15283 asection *sec, const Elf_Internal_Rela *relocs)
15284 {
15285 Elf_Internal_Shdr *symtab_hdr;
15286 struct elf_link_hash_entry **sym_hashes;
15287 const Elf_Internal_Rela *rel;
15288 const Elf_Internal_Rela *rel_end;
15289 bfd *dynobj;
15290 asection *sreloc;
15291 struct elf32_arm_link_hash_table *htab;
15292 bfd_boolean call_reloc_p;
15293 bfd_boolean may_become_dynamic_p;
15294 bfd_boolean may_need_local_target_p;
15295 unsigned long nsyms;
15296
15297 if (bfd_link_relocatable (info))
15298 return TRUE;
15299
15300 BFD_ASSERT (is_arm_elf (abfd));
15301
15302 htab = elf32_arm_hash_table (info);
15303 if (htab == NULL)
15304 return FALSE;
15305
15306 sreloc = NULL;
15307
15308 /* Create dynamic sections for relocatable executables so that we can
15309 copy relocations. */
15310 if (htab->root.is_relocatable_executable
15311 && ! htab->root.dynamic_sections_created)
15312 {
15313 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
15314 return FALSE;
15315 }
15316
15317 if (htab->root.dynobj == NULL)
15318 htab->root.dynobj = abfd;
15319 if (!create_ifunc_sections (info))
15320 return FALSE;
15321
15322 dynobj = htab->root.dynobj;
15323
15324 symtab_hdr = & elf_symtab_hdr (abfd);
15325 sym_hashes = elf_sym_hashes (abfd);
15326 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
15327
15328 rel_end = relocs + sec->reloc_count;
15329 for (rel = relocs; rel < rel_end; rel++)
15330 {
15331 Elf_Internal_Sym *isym;
15332 struct elf_link_hash_entry *h;
15333 struct elf32_arm_link_hash_entry *eh;
15334 unsigned int r_symndx;
15335 int r_type;
15336
15337 r_symndx = ELF32_R_SYM (rel->r_info);
15338 r_type = ELF32_R_TYPE (rel->r_info);
15339 r_type = arm_real_reloc_type (htab, r_type);
15340
15341 if (r_symndx >= nsyms
15342 /* PR 9934: It is possible to have relocations that do not
15343 refer to symbols, thus it is also possible to have an
15344 object file containing relocations but no symbol table. */
15345 && (r_symndx > STN_UNDEF || nsyms > 0))
15346 {
15347 _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd,
15348 r_symndx);
15349 return FALSE;
15350 }
15351
15352 h = NULL;
15353 isym = NULL;
15354 if (nsyms > 0)
15355 {
15356 if (r_symndx < symtab_hdr->sh_info)
15357 {
15358 /* A local symbol. */
15359 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
15360 abfd, r_symndx);
15361 if (isym == NULL)
15362 return FALSE;
15363 }
15364 else
15365 {
15366 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
15367 while (h->root.type == bfd_link_hash_indirect
15368 || h->root.type == bfd_link_hash_warning)
15369 h = (struct elf_link_hash_entry *) h->root.u.i.link;
15370 }
15371 }
15372
15373 eh = (struct elf32_arm_link_hash_entry *) h;
15374
15375 call_reloc_p = FALSE;
15376 may_become_dynamic_p = FALSE;
15377 may_need_local_target_p = FALSE;
15378
15379 /* Could be done earlier, if h were already available. */
15380 r_type = elf32_arm_tls_transition (info, r_type, h);
15381 switch (r_type)
15382 {
15383 case R_ARM_GOTOFFFUNCDESC:
15384 {
15385 if (h == NULL)
15386 {
15387 if (!elf32_arm_allocate_local_sym_info (abfd))
15388 return FALSE;
15389 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].gotofffuncdesc_cnt += 1;
15390 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].funcdesc_offset = -1;
15391 }
15392 else
15393 {
15394 eh->fdpic_cnts.gotofffuncdesc_cnt++;
15395 }
15396 }
15397 break;
15398
15399 case R_ARM_GOTFUNCDESC:
15400 {
15401 if (h == NULL)
15402 {
15403 /* Such a relocation is not supposed to be generated
15404 by gcc on a static function. */
15405 /* Anyway if needed it could be handled. */
15406 abort();
15407 }
15408 else
15409 {
15410 eh->fdpic_cnts.gotfuncdesc_cnt++;
15411 }
15412 }
15413 break;
15414
15415 case R_ARM_FUNCDESC:
15416 {
15417 if (h == NULL)
15418 {
15419 if (!elf32_arm_allocate_local_sym_info (abfd))
15420 return FALSE;
15421 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].funcdesc_cnt += 1;
15422 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].funcdesc_offset = -1;
15423 }
15424 else
15425 {
15426 eh->fdpic_cnts.funcdesc_cnt++;
15427 }
15428 }
15429 break;
15430
15431 case R_ARM_GOT32:
15432 case R_ARM_GOT_PREL:
15433 case R_ARM_TLS_GD32:
15434 case R_ARM_TLS_GD32_FDPIC:
15435 case R_ARM_TLS_IE32:
15436 case R_ARM_TLS_IE32_FDPIC:
15437 case R_ARM_TLS_GOTDESC:
15438 case R_ARM_TLS_DESCSEQ:
15439 case R_ARM_THM_TLS_DESCSEQ:
15440 case R_ARM_TLS_CALL:
15441 case R_ARM_THM_TLS_CALL:
15442 /* This symbol requires a global offset table entry. */
15443 {
15444 int tls_type, old_tls_type;
15445
15446 switch (r_type)
15447 {
15448 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
15449 case R_ARM_TLS_GD32_FDPIC: tls_type = GOT_TLS_GD; break;
15450
15451 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
15452 case R_ARM_TLS_IE32_FDPIC: tls_type = GOT_TLS_IE; break;
15453
15454 case R_ARM_TLS_GOTDESC:
15455 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
15456 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
15457 tls_type = GOT_TLS_GDESC; break;
15458
15459 default: tls_type = GOT_NORMAL; break;
15460 }
15461
15462 if (!bfd_link_executable (info) && (tls_type & GOT_TLS_IE))
15463 info->flags |= DF_STATIC_TLS;
15464
15465 if (h != NULL)
15466 {
15467 h->got.refcount++;
15468 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
15469 }
15470 else
15471 {
15472 /* This is a global offset table entry for a local symbol. */
15473 if (!elf32_arm_allocate_local_sym_info (abfd))
15474 return FALSE;
15475 elf_local_got_refcounts (abfd)[r_symndx] += 1;
15476 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
15477 }
15478
15479 /* If a variable is accessed with both tls methods, two
15480 slots may be created. */
15481 if (GOT_TLS_GD_ANY_P (old_tls_type)
15482 && GOT_TLS_GD_ANY_P (tls_type))
15483 tls_type |= old_tls_type;
15484
15485 /* We will already have issued an error message if there
15486 is a TLS/non-TLS mismatch, based on the symbol
15487 type. So just combine any TLS types needed. */
15488 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
15489 && tls_type != GOT_NORMAL)
15490 tls_type |= old_tls_type;
15491
15492 /* If the symbol is accessed in both IE and GDESC
15493 method, we're able to relax. Turn off the GDESC flag,
15494 without messing up with any other kind of tls types
15495 that may be involved. */
15496 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
15497 tls_type &= ~GOT_TLS_GDESC;
15498
15499 if (old_tls_type != tls_type)
15500 {
15501 if (h != NULL)
15502 elf32_arm_hash_entry (h)->tls_type = tls_type;
15503 else
15504 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
15505 }
15506 }
15507 /* Fall through. */
15508
15509 case R_ARM_TLS_LDM32:
15510 case R_ARM_TLS_LDM32_FDPIC:
15511 if (r_type == R_ARM_TLS_LDM32 || r_type == R_ARM_TLS_LDM32_FDPIC)
15512 htab->tls_ldm_got.refcount++;
15513 /* Fall through. */
15514
15515 case R_ARM_GOTOFF32:
15516 case R_ARM_GOTPC:
15517 if (htab->root.sgot == NULL
15518 && !create_got_section (htab->root.dynobj, info))
15519 return FALSE;
15520 break;
15521
15522 case R_ARM_PC24:
15523 case R_ARM_PLT32:
15524 case R_ARM_CALL:
15525 case R_ARM_JUMP24:
15526 case R_ARM_PREL31:
15527 case R_ARM_THM_CALL:
15528 case R_ARM_THM_JUMP24:
15529 case R_ARM_THM_JUMP19:
15530 call_reloc_p = TRUE;
15531 may_need_local_target_p = TRUE;
15532 break;
15533
15534 case R_ARM_ABS12:
15535 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
15536 ldr __GOTT_INDEX__ offsets. */
15537 if (!htab->vxworks_p)
15538 {
15539 may_need_local_target_p = TRUE;
15540 break;
15541 }
15542 else goto jump_over;
15543
15544 /* Fall through. */
15545
15546 case R_ARM_MOVW_ABS_NC:
15547 case R_ARM_MOVT_ABS:
15548 case R_ARM_THM_MOVW_ABS_NC:
15549 case R_ARM_THM_MOVT_ABS:
15550 if (bfd_link_pic (info))
15551 {
15552 _bfd_error_handler
15553 (_("%pB: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
15554 abfd, elf32_arm_howto_table_1[r_type].name,
15555 (h) ? h->root.root.string : "a local symbol");
15556 bfd_set_error (bfd_error_bad_value);
15557 return FALSE;
15558 }
15559
15560 /* Fall through. */
15561 case R_ARM_ABS32:
15562 case R_ARM_ABS32_NOI:
15563 jump_over:
15564 if (h != NULL && bfd_link_executable (info))
15565 {
15566 h->pointer_equality_needed = 1;
15567 }
15568 /* Fall through. */
15569 case R_ARM_REL32:
15570 case R_ARM_REL32_NOI:
15571 case R_ARM_MOVW_PREL_NC:
15572 case R_ARM_MOVT_PREL:
15573 case R_ARM_THM_MOVW_PREL_NC:
15574 case R_ARM_THM_MOVT_PREL:
15575
15576 /* Should the interworking branches be listed here? */
15577 if ((bfd_link_pic (info) || htab->root.is_relocatable_executable
15578 || htab->fdpic_p)
15579 && (sec->flags & SEC_ALLOC) != 0)
15580 {
15581 if (h == NULL
15582 && elf32_arm_howto_from_type (r_type)->pc_relative)
15583 {
15584 /* In shared libraries and relocatable executables,
15585 we treat local relative references as calls;
15586 see the related SYMBOL_CALLS_LOCAL code in
15587 allocate_dynrelocs. */
15588 call_reloc_p = TRUE;
15589 may_need_local_target_p = TRUE;
15590 }
15591 else
15592 /* We are creating a shared library or relocatable
15593 executable, and this is a reloc against a global symbol,
15594 or a non-PC-relative reloc against a local symbol.
15595 We may need to copy the reloc into the output. */
15596 may_become_dynamic_p = TRUE;
15597 }
15598 else
15599 may_need_local_target_p = TRUE;
15600 break;
15601
15602 /* This relocation describes the C++ object vtable hierarchy.
15603 Reconstruct it for later use during GC. */
15604 case R_ARM_GNU_VTINHERIT:
15605 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
15606 return FALSE;
15607 break;
15608
15609 /* This relocation describes which C++ vtable entries are actually
15610 used. Record for later use during GC. */
15611 case R_ARM_GNU_VTENTRY:
15612 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
15613 return FALSE;
15614 break;
15615 }
15616
15617 if (h != NULL)
15618 {
15619 if (call_reloc_p)
15620 /* We may need a .plt entry if the function this reloc
15621 refers to is in a different object, regardless of the
15622 symbol's type. We can't tell for sure yet, because
15623 something later might force the symbol local. */
15624 h->needs_plt = 1;
15625 else if (may_need_local_target_p)
15626 /* If this reloc is in a read-only section, we might
15627 need a copy reloc. We can't check reliably at this
15628 stage whether the section is read-only, as input
15629 sections have not yet been mapped to output sections.
15630 Tentatively set the flag for now, and correct in
15631 adjust_dynamic_symbol. */
15632 h->non_got_ref = 1;
15633 }
15634
15635 if (may_need_local_target_p
15636 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
15637 {
15638 union gotplt_union *root_plt;
15639 struct arm_plt_info *arm_plt;
15640 struct arm_local_iplt_info *local_iplt;
15641
15642 if (h != NULL)
15643 {
15644 root_plt = &h->plt;
15645 arm_plt = &eh->plt;
15646 }
15647 else
15648 {
15649 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
15650 if (local_iplt == NULL)
15651 return FALSE;
15652 root_plt = &local_iplt->root;
15653 arm_plt = &local_iplt->arm;
15654 }
15655
15656 /* If the symbol is a function that doesn't bind locally,
15657 this relocation will need a PLT entry. */
15658 if (root_plt->refcount != -1)
15659 root_plt->refcount += 1;
15660
15661 if (!call_reloc_p)
15662 arm_plt->noncall_refcount++;
15663
15664 /* It's too early to use htab->use_blx here, so we have to
15665 record possible blx references separately from
15666 relocs that definitely need a thumb stub. */
15667
15668 if (r_type == R_ARM_THM_CALL)
15669 arm_plt->maybe_thumb_refcount += 1;
15670
15671 if (r_type == R_ARM_THM_JUMP24
15672 || r_type == R_ARM_THM_JUMP19)
15673 arm_plt->thumb_refcount += 1;
15674 }
15675
15676 if (may_become_dynamic_p)
15677 {
15678 struct elf_dyn_relocs *p, **head;
15679
15680 /* Create a reloc section in dynobj. */
15681 if (sreloc == NULL)
15682 {
15683 sreloc = _bfd_elf_make_dynamic_reloc_section
15684 (sec, dynobj, 2, abfd, ! htab->use_rel);
15685
15686 if (sreloc == NULL)
15687 return FALSE;
15688
15689 /* BPABI objects never have dynamic relocations mapped. */
15690 if (htab->symbian_p)
15691 {
15692 flagword flags;
15693
15694 flags = bfd_get_section_flags (dynobj, sreloc);
15695 flags &= ~(SEC_LOAD | SEC_ALLOC);
15696 bfd_set_section_flags (dynobj, sreloc, flags);
15697 }
15698 }
15699
15700 /* If this is a global symbol, count the number of
15701 relocations we need for this symbol. */
15702 if (h != NULL)
15703 head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
15704 else
15705 {
15706 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
15707 if (head == NULL)
15708 return FALSE;
15709 }
15710
15711 p = *head;
15712 if (p == NULL || p->sec != sec)
15713 {
15714 bfd_size_type amt = sizeof *p;
15715
15716 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
15717 if (p == NULL)
15718 return FALSE;
15719 p->next = *head;
15720 *head = p;
15721 p->sec = sec;
15722 p->count = 0;
15723 p->pc_count = 0;
15724 }
15725
15726 if (elf32_arm_howto_from_type (r_type)->pc_relative)
15727 p->pc_count += 1;
15728 p->count += 1;
15729 if (h == NULL && htab->fdpic_p && !bfd_link_pic(info)
15730 && r_type != R_ARM_ABS32 && r_type != R_ARM_ABS32_NOI) {
15731 /* Here we only support R_ARM_ABS32 and R_ARM_ABS32_NOI
15732 that will become rofixup. */
15733 /* This is due to the fact that we suppose all will become rofixup. */
15734 fprintf(stderr, "FDPIC does not yet support %d relocation to become dynamic for executable\n", r_type);
15735 _bfd_error_handler
15736 (_("FDPIC does not yet support %s relocation"
15737 " to become dynamic for executable"),
15738 elf32_arm_howto_table_1[r_type].name);
15739 abort();
15740 }
15741 }
15742 }
15743
15744 return TRUE;
15745 }
15746
15747 static void
15748 elf32_arm_update_relocs (asection *o,
15749 struct bfd_elf_section_reloc_data *reldata)
15750 {
15751 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
15752 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
15753 const struct elf_backend_data *bed;
15754 _arm_elf_section_data *eado;
15755 struct bfd_link_order *p;
15756 bfd_byte *erela_head, *erela;
15757 Elf_Internal_Rela *irela_head, *irela;
15758 Elf_Internal_Shdr *rel_hdr;
15759 bfd *abfd;
15760 unsigned int count;
15761
15762 eado = get_arm_elf_section_data (o);
15763
15764 if (!eado || eado->elf.this_hdr.sh_type != SHT_ARM_EXIDX)
15765 return;
15766
15767 abfd = o->owner;
15768 bed = get_elf_backend_data (abfd);
15769 rel_hdr = reldata->hdr;
15770
15771 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
15772 {
15773 swap_in = bed->s->swap_reloc_in;
15774 swap_out = bed->s->swap_reloc_out;
15775 }
15776 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
15777 {
15778 swap_in = bed->s->swap_reloca_in;
15779 swap_out = bed->s->swap_reloca_out;
15780 }
15781 else
15782 abort ();
15783
15784 erela_head = rel_hdr->contents;
15785 irela_head = (Elf_Internal_Rela *) bfd_zmalloc
15786 ((NUM_SHDR_ENTRIES (rel_hdr) + 1) * sizeof (*irela_head));
15787
15788 erela = erela_head;
15789 irela = irela_head;
15790 count = 0;
15791
15792 for (p = o->map_head.link_order; p; p = p->next)
15793 {
15794 if (p->type == bfd_section_reloc_link_order
15795 || p->type == bfd_symbol_reloc_link_order)
15796 {
15797 (*swap_in) (abfd, erela, irela);
15798 erela += rel_hdr->sh_entsize;
15799 irela++;
15800 count++;
15801 }
15802 else if (p->type == bfd_indirect_link_order)
15803 {
15804 struct bfd_elf_section_reloc_data *input_reldata;
15805 arm_unwind_table_edit *edit_list, *edit_tail;
15806 _arm_elf_section_data *eadi;
15807 bfd_size_type j;
15808 bfd_vma offset;
15809 asection *i;
15810
15811 i = p->u.indirect.section;
15812
15813 eadi = get_arm_elf_section_data (i);
15814 edit_list = eadi->u.exidx.unwind_edit_list;
15815 edit_tail = eadi->u.exidx.unwind_edit_tail;
15816 offset = i->output_offset;
15817
15818 if (eadi->elf.rel.hdr &&
15819 eadi->elf.rel.hdr->sh_entsize == rel_hdr->sh_entsize)
15820 input_reldata = &eadi->elf.rel;
15821 else if (eadi->elf.rela.hdr &&
15822 eadi->elf.rela.hdr->sh_entsize == rel_hdr->sh_entsize)
15823 input_reldata = &eadi->elf.rela;
15824 else
15825 abort ();
15826
15827 if (edit_list)
15828 {
15829 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
15830 {
15831 arm_unwind_table_edit *edit_node, *edit_next;
15832 bfd_vma bias;
15833 bfd_vma reloc_index;
15834
15835 (*swap_in) (abfd, erela, irela);
15836 reloc_index = (irela->r_offset - offset) / 8;
15837
15838 bias = 0;
15839 edit_node = edit_list;
15840 for (edit_next = edit_list;
15841 edit_next && edit_next->index <= reloc_index;
15842 edit_next = edit_node->next)
15843 {
15844 bias++;
15845 edit_node = edit_next;
15846 }
15847
15848 if (edit_node->type != DELETE_EXIDX_ENTRY
15849 || edit_node->index != reloc_index)
15850 {
15851 irela->r_offset -= bias * 8;
15852 irela++;
15853 count++;
15854 }
15855
15856 erela += rel_hdr->sh_entsize;
15857 }
15858
15859 if (edit_tail->type == INSERT_EXIDX_CANTUNWIND_AT_END)
15860 {
15861 /* New relocation entity. */
15862 asection *text_sec = edit_tail->linked_section;
15863 asection *text_out = text_sec->output_section;
15864 bfd_vma exidx_offset = offset + i->size - 8;
15865
15866 irela->r_addend = 0;
15867 irela->r_offset = exidx_offset;
15868 irela->r_info = ELF32_R_INFO
15869 (text_out->target_index, R_ARM_PREL31);
15870 irela++;
15871 count++;
15872 }
15873 }
15874 else
15875 {
15876 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
15877 {
15878 (*swap_in) (abfd, erela, irela);
15879 erela += rel_hdr->sh_entsize;
15880 irela++;
15881 }
15882
15883 count += NUM_SHDR_ENTRIES (input_reldata->hdr);
15884 }
15885 }
15886 }
15887
15888 reldata->count = count;
15889 rel_hdr->sh_size = count * rel_hdr->sh_entsize;
15890
15891 erela = erela_head;
15892 irela = irela_head;
15893 while (count > 0)
15894 {
15895 (*swap_out) (abfd, irela, erela);
15896 erela += rel_hdr->sh_entsize;
15897 irela++;
15898 count--;
15899 }
15900
15901 free (irela_head);
15902
15903 /* Hashes are no longer valid. */
15904 free (reldata->hashes);
15905 reldata->hashes = NULL;
15906 }
15907
15908 /* Unwinding tables are not referenced directly. This pass marks them as
15909 required if the corresponding code section is marked. Similarly, ARMv8-M
15910 secure entry functions can only be referenced by SG veneers which are
15911 created after the GC process. They need to be marked in case they reside in
15912 their own section (as would be the case if code was compiled with
15913 -ffunction-sections). */
15914
15915 static bfd_boolean
15916 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
15917 elf_gc_mark_hook_fn gc_mark_hook)
15918 {
15919 bfd *sub;
15920 Elf_Internal_Shdr **elf_shdrp;
15921 asection *cmse_sec;
15922 obj_attribute *out_attr;
15923 Elf_Internal_Shdr *symtab_hdr;
15924 unsigned i, sym_count, ext_start;
15925 const struct elf_backend_data *bed;
15926 struct elf_link_hash_entry **sym_hashes;
15927 struct elf32_arm_link_hash_entry *cmse_hash;
15928 bfd_boolean again, is_v8m, first_bfd_browse = TRUE;
15929 bfd_boolean debug_sec_need_to_be_marked = FALSE;
15930 asection *isec;
15931
15932 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
15933
15934 out_attr = elf_known_obj_attributes_proc (info->output_bfd);
15935 is_v8m = out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
15936 && out_attr[Tag_CPU_arch_profile].i == 'M';
15937
15938 /* Marking EH data may cause additional code sections to be marked,
15939 requiring multiple passes. */
15940 again = TRUE;
15941 while (again)
15942 {
15943 again = FALSE;
15944 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
15945 {
15946 asection *o;
15947
15948 if (! is_arm_elf (sub))
15949 continue;
15950
15951 elf_shdrp = elf_elfsections (sub);
15952 for (o = sub->sections; o != NULL; o = o->next)
15953 {
15954 Elf_Internal_Shdr *hdr;
15955
15956 hdr = &elf_section_data (o)->this_hdr;
15957 if (hdr->sh_type == SHT_ARM_EXIDX
15958 && hdr->sh_link
15959 && hdr->sh_link < elf_numsections (sub)
15960 && !o->gc_mark
15961 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
15962 {
15963 again = TRUE;
15964 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
15965 return FALSE;
15966 }
15967 }
15968
15969 /* Mark section holding ARMv8-M secure entry functions. We mark all
15970 of them so no need for a second browsing. */
15971 if (is_v8m && first_bfd_browse)
15972 {
15973 sym_hashes = elf_sym_hashes (sub);
15974 bed = get_elf_backend_data (sub);
15975 symtab_hdr = &elf_tdata (sub)->symtab_hdr;
15976 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
15977 ext_start = symtab_hdr->sh_info;
15978
15979 /* Scan symbols. */
15980 for (i = ext_start; i < sym_count; i++)
15981 {
15982 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
15983
15984 /* Assume it is a special symbol. If not, cmse_scan will
15985 warn about it and user can do something about it. */
15986 if (ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
15987 {
15988 cmse_sec = cmse_hash->root.root.u.def.section;
15989 if (!cmse_sec->gc_mark
15990 && !_bfd_elf_gc_mark (info, cmse_sec, gc_mark_hook))
15991 return FALSE;
15992 /* The debug sections related to these secure entry
15993 functions are marked on enabling below flag. */
15994 debug_sec_need_to_be_marked = TRUE;
15995 }
15996 }
15997
15998 if (debug_sec_need_to_be_marked)
15999 {
16000 /* Looping over all the sections of the object file containing
16001 Armv8-M secure entry functions and marking all the debug
16002 sections. */
16003 for (isec = sub->sections; isec != NULL; isec = isec->next)
16004 {
16005 /* If not a debug sections, skip it. */
16006 if (!isec->gc_mark && (isec->flags & SEC_DEBUGGING))
16007 isec->gc_mark = 1 ;
16008 }
16009 debug_sec_need_to_be_marked = FALSE;
16010 }
16011 }
16012 }
16013 first_bfd_browse = FALSE;
16014 }
16015
16016 return TRUE;
16017 }
16018
16019 /* Treat mapping symbols as special target symbols. */
16020
16021 static bfd_boolean
16022 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
16023 {
16024 return bfd_is_arm_special_symbol_name (sym->name,
16025 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
16026 }
16027
16028 /* This is a version of _bfd_elf_find_function() from dwarf2.c except that
16029 ARM mapping symbols are ignored when looking for function names
16030 and STT_ARM_TFUNC is considered to a function type. */
16031
16032 static bfd_boolean
16033 arm_elf_find_function (bfd * abfd,
16034 asymbol ** symbols,
16035 asection * section,
16036 bfd_vma offset,
16037 const char ** filename_ptr,
16038 const char ** functionname_ptr)
16039 {
16040 const char * filename = NULL;
16041 asymbol * func = NULL;
16042 bfd_vma low_func = 0;
16043 asymbol ** p;
16044
16045 if (symbols == NULL)
16046 return FALSE;
16047
16048 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
16049 return FALSE;
16050
16051 for (p = symbols; *p != NULL; p++)
16052 {
16053 elf_symbol_type *q;
16054
16055 q = (elf_symbol_type *) *p;
16056
16057 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
16058 {
16059 default:
16060 break;
16061 case STT_FILE:
16062 filename = bfd_asymbol_name (&q->symbol);
16063 break;
16064 case STT_FUNC:
16065 case STT_ARM_TFUNC:
16066 case STT_NOTYPE:
16067 /* Skip mapping symbols. */
16068 if ((q->symbol.flags & BSF_LOCAL)
16069 && bfd_is_arm_special_symbol_name (q->symbol.name,
16070 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
16071 continue;
16072 /* Fall through. */
16073 if (bfd_get_section (&q->symbol) == section
16074 && q->symbol.value >= low_func
16075 && q->symbol.value <= offset)
16076 {
16077 func = (asymbol *) q;
16078 low_func = q->symbol.value;
16079 }
16080 break;
16081 }
16082 }
16083
16084 if (func == NULL)
16085 return FALSE;
16086
16087 if (filename_ptr)
16088 *filename_ptr = filename;
16089 if (functionname_ptr)
16090 *functionname_ptr = bfd_asymbol_name (func);
16091
16092 return TRUE;
16093 }
16094
16095
16096 /* Find the nearest line to a particular section and offset, for error
16097 reporting. This code is a duplicate of the code in elf.c, except
16098 that it uses arm_elf_find_function. */
16099
16100 static bfd_boolean
16101 elf32_arm_find_nearest_line (bfd * abfd,
16102 asymbol ** symbols,
16103 asection * section,
16104 bfd_vma offset,
16105 const char ** filename_ptr,
16106 const char ** functionname_ptr,
16107 unsigned int * line_ptr,
16108 unsigned int * discriminator_ptr)
16109 {
16110 bfd_boolean found = FALSE;
16111
16112 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
16113 filename_ptr, functionname_ptr,
16114 line_ptr, discriminator_ptr,
16115 dwarf_debug_sections, 0,
16116 & elf_tdata (abfd)->dwarf2_find_line_info))
16117 {
16118 if (!*functionname_ptr)
16119 arm_elf_find_function (abfd, symbols, section, offset,
16120 *filename_ptr ? NULL : filename_ptr,
16121 functionname_ptr);
16122
16123 return TRUE;
16124 }
16125
16126 /* Skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain
16127 uses DWARF1. */
16128
16129 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
16130 & found, filename_ptr,
16131 functionname_ptr, line_ptr,
16132 & elf_tdata (abfd)->line_info))
16133 return FALSE;
16134
16135 if (found && (*functionname_ptr || *line_ptr))
16136 return TRUE;
16137
16138 if (symbols == NULL)
16139 return FALSE;
16140
16141 if (! arm_elf_find_function (abfd, symbols, section, offset,
16142 filename_ptr, functionname_ptr))
16143 return FALSE;
16144
16145 *line_ptr = 0;
16146 return TRUE;
16147 }
16148
16149 static bfd_boolean
16150 elf32_arm_find_inliner_info (bfd * abfd,
16151 const char ** filename_ptr,
16152 const char ** functionname_ptr,
16153 unsigned int * line_ptr)
16154 {
16155 bfd_boolean found;
16156 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
16157 functionname_ptr, line_ptr,
16158 & elf_tdata (abfd)->dwarf2_find_line_info);
16159 return found;
16160 }
16161
16162 /* Find dynamic relocs for H that apply to read-only sections. */
16163
16164 static asection *
16165 readonly_dynrelocs (struct elf_link_hash_entry *h)
16166 {
16167 struct elf_dyn_relocs *p;
16168
16169 for (p = elf32_arm_hash_entry (h)->dyn_relocs; p != NULL; p = p->next)
16170 {
16171 asection *s = p->sec->output_section;
16172
16173 if (s != NULL && (s->flags & SEC_READONLY) != 0)
16174 return p->sec;
16175 }
16176 return NULL;
16177 }
16178
16179 /* Adjust a symbol defined by a dynamic object and referenced by a
16180 regular object. The current definition is in some section of the
16181 dynamic object, but we're not including those sections. We have to
16182 change the definition to something the rest of the link can
16183 understand. */
16184
16185 static bfd_boolean
16186 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
16187 struct elf_link_hash_entry * h)
16188 {
16189 bfd * dynobj;
16190 asection *s, *srel;
16191 struct elf32_arm_link_hash_entry * eh;
16192 struct elf32_arm_link_hash_table *globals;
16193
16194 globals = elf32_arm_hash_table (info);
16195 if (globals == NULL)
16196 return FALSE;
16197
16198 dynobj = elf_hash_table (info)->dynobj;
16199
16200 /* Make sure we know what is going on here. */
16201 BFD_ASSERT (dynobj != NULL
16202 && (h->needs_plt
16203 || h->type == STT_GNU_IFUNC
16204 || h->is_weakalias
16205 || (h->def_dynamic
16206 && h->ref_regular
16207 && !h->def_regular)));
16208
16209 eh = (struct elf32_arm_link_hash_entry *) h;
16210
16211 /* If this is a function, put it in the procedure linkage table. We
16212 will fill in the contents of the procedure linkage table later,
16213 when we know the address of the .got section. */
16214 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
16215 {
16216 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
16217 symbol binds locally. */
16218 if (h->plt.refcount <= 0
16219 || (h->type != STT_GNU_IFUNC
16220 && (SYMBOL_CALLS_LOCAL (info, h)
16221 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
16222 && h->root.type == bfd_link_hash_undefweak))))
16223 {
16224 /* This case can occur if we saw a PLT32 reloc in an input
16225 file, but the symbol was never referred to by a dynamic
16226 object, or if all references were garbage collected. In
16227 such a case, we don't actually need to build a procedure
16228 linkage table, and we can just do a PC24 reloc instead. */
16229 h->plt.offset = (bfd_vma) -1;
16230 eh->plt.thumb_refcount = 0;
16231 eh->plt.maybe_thumb_refcount = 0;
16232 eh->plt.noncall_refcount = 0;
16233 h->needs_plt = 0;
16234 }
16235
16236 return TRUE;
16237 }
16238 else
16239 {
16240 /* It's possible that we incorrectly decided a .plt reloc was
16241 needed for an R_ARM_PC24 or similar reloc to a non-function sym
16242 in check_relocs. We can't decide accurately between function
16243 and non-function syms in check-relocs; Objects loaded later in
16244 the link may change h->type. So fix it now. */
16245 h->plt.offset = (bfd_vma) -1;
16246 eh->plt.thumb_refcount = 0;
16247 eh->plt.maybe_thumb_refcount = 0;
16248 eh->plt.noncall_refcount = 0;
16249 }
16250
16251 /* If this is a weak symbol, and there is a real definition, the
16252 processor independent code will have arranged for us to see the
16253 real definition first, and we can just use the same value. */
16254 if (h->is_weakalias)
16255 {
16256 struct elf_link_hash_entry *def = weakdef (h);
16257 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
16258 h->root.u.def.section = def->root.u.def.section;
16259 h->root.u.def.value = def->root.u.def.value;
16260 return TRUE;
16261 }
16262
16263 /* If there are no non-GOT references, we do not need a copy
16264 relocation. */
16265 if (!h->non_got_ref)
16266 return TRUE;
16267
16268 /* This is a reference to a symbol defined by a dynamic object which
16269 is not a function. */
16270
16271 /* If we are creating a shared library, we must presume that the
16272 only references to the symbol are via the global offset table.
16273 For such cases we need not do anything here; the relocations will
16274 be handled correctly by relocate_section. Relocatable executables
16275 can reference data in shared objects directly, so we don't need to
16276 do anything here. */
16277 if (bfd_link_pic (info) || globals->root.is_relocatable_executable)
16278 return TRUE;
16279
16280 /* We must allocate the symbol in our .dynbss section, which will
16281 become part of the .bss section of the executable. There will be
16282 an entry for this symbol in the .dynsym section. The dynamic
16283 object will contain position independent code, so all references
16284 from the dynamic object to this symbol will go through the global
16285 offset table. The dynamic linker will use the .dynsym entry to
16286 determine the address it must put in the global offset table, so
16287 both the dynamic object and the regular object will refer to the
16288 same memory location for the variable. */
16289 /* If allowed, we must generate a R_ARM_COPY reloc to tell the dynamic
16290 linker to copy the initial value out of the dynamic object and into
16291 the runtime process image. We need to remember the offset into the
16292 .rel(a).bss section we are going to use. */
16293 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
16294 {
16295 s = globals->root.sdynrelro;
16296 srel = globals->root.sreldynrelro;
16297 }
16298 else
16299 {
16300 s = globals->root.sdynbss;
16301 srel = globals->root.srelbss;
16302 }
16303 if (info->nocopyreloc == 0
16304 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
16305 && h->size != 0)
16306 {
16307 elf32_arm_allocate_dynrelocs (info, srel, 1);
16308 h->needs_copy = 1;
16309 }
16310
16311 return _bfd_elf_adjust_dynamic_copy (info, h, s);
16312 }
16313
16314 /* Allocate space in .plt, .got and associated reloc sections for
16315 dynamic relocs. */
16316
16317 static bfd_boolean
16318 allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
16319 {
16320 struct bfd_link_info *info;
16321 struct elf32_arm_link_hash_table *htab;
16322 struct elf32_arm_link_hash_entry *eh;
16323 struct elf_dyn_relocs *p;
16324
16325 if (h->root.type == bfd_link_hash_indirect)
16326 return TRUE;
16327
16328 eh = (struct elf32_arm_link_hash_entry *) h;
16329
16330 info = (struct bfd_link_info *) inf;
16331 htab = elf32_arm_hash_table (info);
16332 if (htab == NULL)
16333 return FALSE;
16334
16335 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
16336 && h->plt.refcount > 0)
16337 {
16338 /* Make sure this symbol is output as a dynamic symbol.
16339 Undefined weak syms won't yet be marked as dynamic. */
16340 if (h->dynindx == -1 && !h->forced_local
16341 && h->root.type == bfd_link_hash_undefweak)
16342 {
16343 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16344 return FALSE;
16345 }
16346
16347 /* If the call in the PLT entry binds locally, the associated
16348 GOT entry should use an R_ARM_IRELATIVE relocation instead of
16349 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
16350 than the .plt section. */
16351 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
16352 {
16353 eh->is_iplt = 1;
16354 if (eh->plt.noncall_refcount == 0
16355 && SYMBOL_REFERENCES_LOCAL (info, h))
16356 /* All non-call references can be resolved directly.
16357 This means that they can (and in some cases, must)
16358 resolve directly to the run-time target, rather than
16359 to the PLT. That in turns means that any .got entry
16360 would be equal to the .igot.plt entry, so there's
16361 no point having both. */
16362 h->got.refcount = 0;
16363 }
16364
16365 if (bfd_link_pic (info)
16366 || eh->is_iplt
16367 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
16368 {
16369 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
16370
16371 /* If this symbol is not defined in a regular file, and we are
16372 not generating a shared library, then set the symbol to this
16373 location in the .plt. This is required to make function
16374 pointers compare as equal between the normal executable and
16375 the shared library. */
16376 if (! bfd_link_pic (info)
16377 && !h->def_regular)
16378 {
16379 h->root.u.def.section = htab->root.splt;
16380 h->root.u.def.value = h->plt.offset;
16381
16382 /* Make sure the function is not marked as Thumb, in case
16383 it is the target of an ABS32 relocation, which will
16384 point to the PLT entry. */
16385 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
16386 }
16387
16388 /* VxWorks executables have a second set of relocations for
16389 each PLT entry. They go in a separate relocation section,
16390 which is processed by the kernel loader. */
16391 if (htab->vxworks_p && !bfd_link_pic (info))
16392 {
16393 /* There is a relocation for the initial PLT entry:
16394 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
16395 if (h->plt.offset == htab->plt_header_size)
16396 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
16397
16398 /* There are two extra relocations for each subsequent
16399 PLT entry: an R_ARM_32 relocation for the GOT entry,
16400 and an R_ARM_32 relocation for the PLT entry. */
16401 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
16402 }
16403 }
16404 else
16405 {
16406 h->plt.offset = (bfd_vma) -1;
16407 h->needs_plt = 0;
16408 }
16409 }
16410 else
16411 {
16412 h->plt.offset = (bfd_vma) -1;
16413 h->needs_plt = 0;
16414 }
16415
16416 eh = (struct elf32_arm_link_hash_entry *) h;
16417 eh->tlsdesc_got = (bfd_vma) -1;
16418
16419 if (h->got.refcount > 0)
16420 {
16421 asection *s;
16422 bfd_boolean dyn;
16423 int tls_type = elf32_arm_hash_entry (h)->tls_type;
16424 int indx;
16425
16426 /* Make sure this symbol is output as a dynamic symbol.
16427 Undefined weak syms won't yet be marked as dynamic. */
16428 if (htab->root.dynamic_sections_created && h->dynindx == -1 && !h->forced_local
16429 && h->root.type == bfd_link_hash_undefweak)
16430 {
16431 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16432 return FALSE;
16433 }
16434
16435 if (!htab->symbian_p)
16436 {
16437 s = htab->root.sgot;
16438 h->got.offset = s->size;
16439
16440 if (tls_type == GOT_UNKNOWN)
16441 abort ();
16442
16443 if (tls_type == GOT_NORMAL)
16444 /* Non-TLS symbols need one GOT slot. */
16445 s->size += 4;
16446 else
16447 {
16448 if (tls_type & GOT_TLS_GDESC)
16449 {
16450 /* R_ARM_TLS_DESC needs 2 GOT slots. */
16451 eh->tlsdesc_got
16452 = (htab->root.sgotplt->size
16453 - elf32_arm_compute_jump_table_size (htab));
16454 htab->root.sgotplt->size += 8;
16455 h->got.offset = (bfd_vma) -2;
16456 /* plt.got_offset needs to know there's a TLS_DESC
16457 reloc in the middle of .got.plt. */
16458 htab->num_tls_desc++;
16459 }
16460
16461 if (tls_type & GOT_TLS_GD)
16462 {
16463 /* R_ARM_TLS_GD32 and R_ARM_TLS_GD32_FDPIC need two
16464 consecutive GOT slots. If the symbol is both GD
16465 and GDESC, got.offset may have been
16466 overwritten. */
16467 h->got.offset = s->size;
16468 s->size += 8;
16469 }
16470
16471 if (tls_type & GOT_TLS_IE)
16472 /* R_ARM_TLS_IE32/R_ARM_TLS_IE32_FDPIC need one GOT
16473 slot. */
16474 s->size += 4;
16475 }
16476
16477 dyn = htab->root.dynamic_sections_created;
16478
16479 indx = 0;
16480 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
16481 bfd_link_pic (info),
16482 h)
16483 && (!bfd_link_pic (info)
16484 || !SYMBOL_REFERENCES_LOCAL (info, h)))
16485 indx = h->dynindx;
16486
16487 if (tls_type != GOT_NORMAL
16488 && (bfd_link_pic (info) || indx != 0)
16489 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
16490 || h->root.type != bfd_link_hash_undefweak))
16491 {
16492 if (tls_type & GOT_TLS_IE)
16493 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16494
16495 if (tls_type & GOT_TLS_GD)
16496 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16497
16498 if (tls_type & GOT_TLS_GDESC)
16499 {
16500 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
16501 /* GDESC needs a trampoline to jump to. */
16502 htab->tls_trampoline = -1;
16503 }
16504
16505 /* Only GD needs it. GDESC just emits one relocation per
16506 2 entries. */
16507 if ((tls_type & GOT_TLS_GD) && indx != 0)
16508 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16509 }
16510 else if (((indx != -1) || htab->fdpic_p)
16511 && !SYMBOL_REFERENCES_LOCAL (info, h))
16512 {
16513 if (htab->root.dynamic_sections_created)
16514 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
16515 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16516 }
16517 else if (h->type == STT_GNU_IFUNC
16518 && eh->plt.noncall_refcount == 0)
16519 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
16520 they all resolve dynamically instead. Reserve room for the
16521 GOT entry's R_ARM_IRELATIVE relocation. */
16522 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
16523 else if (bfd_link_pic (info)
16524 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
16525 || h->root.type != bfd_link_hash_undefweak))
16526 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
16527 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16528 else if (htab->fdpic_p && tls_type == GOT_NORMAL)
16529 /* Reserve room for rofixup for FDPIC executable. */
16530 /* TLS relocs do not need space since they are completely
16531 resolved. */
16532 htab->srofixup->size += 4;
16533 }
16534 }
16535 else
16536 h->got.offset = (bfd_vma) -1;
16537
16538 /* FDPIC support. */
16539 if (eh->fdpic_cnts.gotofffuncdesc_cnt > 0)
16540 {
16541 /* Symbol musn't be exported. */
16542 if (h->dynindx != -1)
16543 abort();
16544
16545 /* We only allocate one function descriptor with its associated relocation. */
16546 if (eh->fdpic_cnts.funcdesc_offset == -1)
16547 {
16548 asection *s = htab->root.sgot;
16549
16550 eh->fdpic_cnts.funcdesc_offset = s->size;
16551 s->size += 8;
16552 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16553 if (bfd_link_pic(info))
16554 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16555 else
16556 htab->srofixup->size += 8;
16557 }
16558 }
16559
16560 if (eh->fdpic_cnts.gotfuncdesc_cnt > 0)
16561 {
16562 asection *s = htab->root.sgot;
16563
16564 if (htab->root.dynamic_sections_created && h->dynindx == -1
16565 && !h->forced_local)
16566 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16567 return FALSE;
16568
16569 if (h->dynindx == -1)
16570 {
16571 /* We only allocate one function descriptor with its associated relocation. q */
16572 if (eh->fdpic_cnts.funcdesc_offset == -1)
16573 {
16574
16575 eh->fdpic_cnts.funcdesc_offset = s->size;
16576 s->size += 8;
16577 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16578 if (bfd_link_pic(info))
16579 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16580 else
16581 htab->srofixup->size += 8;
16582 }
16583 }
16584
16585 /* Add one entry into the GOT and a R_ARM_FUNCDESC or
16586 R_ARM_RELATIVE/rofixup relocation on it. */
16587 eh->fdpic_cnts.gotfuncdesc_offset = s->size;
16588 s->size += 4;
16589 if (h->dynindx == -1 && !bfd_link_pic(info))
16590 htab->srofixup->size += 4;
16591 else
16592 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16593 }
16594
16595 if (eh->fdpic_cnts.funcdesc_cnt > 0)
16596 {
16597 if (htab->root.dynamic_sections_created && h->dynindx == -1
16598 && !h->forced_local)
16599 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16600 return FALSE;
16601
16602 if (h->dynindx == -1)
16603 {
16604 /* We only allocate one function descriptor with its associated relocation. */
16605 if (eh->fdpic_cnts.funcdesc_offset == -1)
16606 {
16607 asection *s = htab->root.sgot;
16608
16609 eh->fdpic_cnts.funcdesc_offset = s->size;
16610 s->size += 8;
16611 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16612 if (bfd_link_pic(info))
16613 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16614 else
16615 htab->srofixup->size += 8;
16616 }
16617 }
16618 if (h->dynindx == -1 && !bfd_link_pic(info))
16619 {
16620 /* For FDPIC executable we replace R_ARM_RELATIVE with a rofixup. */
16621 htab->srofixup->size += 4 * eh->fdpic_cnts.funcdesc_cnt;
16622 }
16623 else
16624 {
16625 /* Will need one dynamic reloc per reference. will be either
16626 R_ARM_FUNCDESC or R_ARM_RELATIVE for hidden symbols. */
16627 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot,
16628 eh->fdpic_cnts.funcdesc_cnt);
16629 }
16630 }
16631
16632 /* Allocate stubs for exported Thumb functions on v4t. */
16633 if (!htab->use_blx && h->dynindx != -1
16634 && h->def_regular
16635 && ARM_GET_SYM_BRANCH_TYPE (h->target_internal) == ST_BRANCH_TO_THUMB
16636 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
16637 {
16638 struct elf_link_hash_entry * th;
16639 struct bfd_link_hash_entry * bh;
16640 struct elf_link_hash_entry * myh;
16641 char name[1024];
16642 asection *s;
16643 bh = NULL;
16644 /* Create a new symbol to regist the real location of the function. */
16645 s = h->root.u.def.section;
16646 sprintf (name, "__real_%s", h->root.root.string);
16647 _bfd_generic_link_add_one_symbol (info, s->owner,
16648 name, BSF_GLOBAL, s,
16649 h->root.u.def.value,
16650 NULL, TRUE, FALSE, &bh);
16651
16652 myh = (struct elf_link_hash_entry *) bh;
16653 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
16654 myh->forced_local = 1;
16655 ARM_SET_SYM_BRANCH_TYPE (myh->target_internal, ST_BRANCH_TO_THUMB);
16656 eh->export_glue = myh;
16657 th = record_arm_to_thumb_glue (info, h);
16658 /* Point the symbol at the stub. */
16659 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
16660 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
16661 h->root.u.def.section = th->root.u.def.section;
16662 h->root.u.def.value = th->root.u.def.value & ~1;
16663 }
16664
16665 if (eh->dyn_relocs == NULL)
16666 return TRUE;
16667
16668 /* In the shared -Bsymbolic case, discard space allocated for
16669 dynamic pc-relative relocs against symbols which turn out to be
16670 defined in regular objects. For the normal shared case, discard
16671 space for pc-relative relocs that have become local due to symbol
16672 visibility changes. */
16673
16674 if (bfd_link_pic (info) || htab->root.is_relocatable_executable || htab->fdpic_p)
16675 {
16676 /* Relocs that use pc_count are PC-relative forms, which will appear
16677 on something like ".long foo - ." or "movw REG, foo - .". We want
16678 calls to protected symbols to resolve directly to the function
16679 rather than going via the plt. If people want function pointer
16680 comparisons to work as expected then they should avoid writing
16681 assembly like ".long foo - .". */
16682 if (SYMBOL_CALLS_LOCAL (info, h))
16683 {
16684 struct elf_dyn_relocs **pp;
16685
16686 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
16687 {
16688 p->count -= p->pc_count;
16689 p->pc_count = 0;
16690 if (p->count == 0)
16691 *pp = p->next;
16692 else
16693 pp = &p->next;
16694 }
16695 }
16696
16697 if (htab->vxworks_p)
16698 {
16699 struct elf_dyn_relocs **pp;
16700
16701 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
16702 {
16703 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
16704 *pp = p->next;
16705 else
16706 pp = &p->next;
16707 }
16708 }
16709
16710 /* Also discard relocs on undefined weak syms with non-default
16711 visibility. */
16712 if (eh->dyn_relocs != NULL
16713 && h->root.type == bfd_link_hash_undefweak)
16714 {
16715 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
16716 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
16717 eh->dyn_relocs = NULL;
16718
16719 /* Make sure undefined weak symbols are output as a dynamic
16720 symbol in PIEs. */
16721 else if (htab->root.dynamic_sections_created && h->dynindx == -1
16722 && !h->forced_local)
16723 {
16724 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16725 return FALSE;
16726 }
16727 }
16728
16729 else if (htab->root.is_relocatable_executable && h->dynindx == -1
16730 && h->root.type == bfd_link_hash_new)
16731 {
16732 /* Output absolute symbols so that we can create relocations
16733 against them. For normal symbols we output a relocation
16734 against the section that contains them. */
16735 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16736 return FALSE;
16737 }
16738
16739 }
16740 else
16741 {
16742 /* For the non-shared case, discard space for relocs against
16743 symbols which turn out to need copy relocs or are not
16744 dynamic. */
16745
16746 if (!h->non_got_ref
16747 && ((h->def_dynamic
16748 && !h->def_regular)
16749 || (htab->root.dynamic_sections_created
16750 && (h->root.type == bfd_link_hash_undefweak
16751 || h->root.type == bfd_link_hash_undefined))))
16752 {
16753 /* Make sure this symbol is output as a dynamic symbol.
16754 Undefined weak syms won't yet be marked as dynamic. */
16755 if (h->dynindx == -1 && !h->forced_local
16756 && h->root.type == bfd_link_hash_undefweak)
16757 {
16758 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16759 return FALSE;
16760 }
16761
16762 /* If that succeeded, we know we'll be keeping all the
16763 relocs. */
16764 if (h->dynindx != -1)
16765 goto keep;
16766 }
16767
16768 eh->dyn_relocs = NULL;
16769
16770 keep: ;
16771 }
16772
16773 /* Finally, allocate space. */
16774 for (p = eh->dyn_relocs; p != NULL; p = p->next)
16775 {
16776 asection *sreloc = elf_section_data (p->sec)->sreloc;
16777
16778 if (h->type == STT_GNU_IFUNC
16779 && eh->plt.noncall_refcount == 0
16780 && SYMBOL_REFERENCES_LOCAL (info, h))
16781 elf32_arm_allocate_irelocs (info, sreloc, p->count);
16782 else if (h->dynindx != -1 && (!bfd_link_pic(info) || !info->symbolic || !h->def_regular))
16783 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
16784 else if (htab->fdpic_p && !bfd_link_pic(info))
16785 htab->srofixup->size += 4 * p->count;
16786 else
16787 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
16788 }
16789
16790 return TRUE;
16791 }
16792
16793 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
16794 read-only sections. */
16795
16796 static bfd_boolean
16797 maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p)
16798 {
16799 asection *sec;
16800
16801 if (h->root.type == bfd_link_hash_indirect)
16802 return TRUE;
16803
16804 sec = readonly_dynrelocs (h);
16805 if (sec != NULL)
16806 {
16807 struct bfd_link_info *info = (struct bfd_link_info *) info_p;
16808
16809 info->flags |= DF_TEXTREL;
16810 info->callbacks->minfo
16811 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
16812 sec->owner, h->root.root.string, sec);
16813
16814 /* Not an error, just cut short the traversal. */
16815 return FALSE;
16816 }
16817
16818 return TRUE;
16819 }
16820
16821 void
16822 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
16823 int byteswap_code)
16824 {
16825 struct elf32_arm_link_hash_table *globals;
16826
16827 globals = elf32_arm_hash_table (info);
16828 if (globals == NULL)
16829 return;
16830
16831 globals->byteswap_code = byteswap_code;
16832 }
16833
16834 /* Set the sizes of the dynamic sections. */
16835
16836 static bfd_boolean
16837 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
16838 struct bfd_link_info * info)
16839 {
16840 bfd * dynobj;
16841 asection * s;
16842 bfd_boolean plt;
16843 bfd_boolean relocs;
16844 bfd *ibfd;
16845 struct elf32_arm_link_hash_table *htab;
16846
16847 htab = elf32_arm_hash_table (info);
16848 if (htab == NULL)
16849 return FALSE;
16850
16851 dynobj = elf_hash_table (info)->dynobj;
16852 BFD_ASSERT (dynobj != NULL);
16853 check_use_blx (htab);
16854
16855 if (elf_hash_table (info)->dynamic_sections_created)
16856 {
16857 /* Set the contents of the .interp section to the interpreter. */
16858 if (bfd_link_executable (info) && !info->nointerp)
16859 {
16860 s = bfd_get_linker_section (dynobj, ".interp");
16861 BFD_ASSERT (s != NULL);
16862 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
16863 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
16864 }
16865 }
16866
16867 /* Set up .got offsets for local syms, and space for local dynamic
16868 relocs. */
16869 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
16870 {
16871 bfd_signed_vma *local_got;
16872 bfd_signed_vma *end_local_got;
16873 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
16874 char *local_tls_type;
16875 bfd_vma *local_tlsdesc_gotent;
16876 bfd_size_type locsymcount;
16877 Elf_Internal_Shdr *symtab_hdr;
16878 asection *srel;
16879 bfd_boolean is_vxworks = htab->vxworks_p;
16880 unsigned int symndx;
16881 struct fdpic_local *local_fdpic_cnts;
16882
16883 if (! is_arm_elf (ibfd))
16884 continue;
16885
16886 for (s = ibfd->sections; s != NULL; s = s->next)
16887 {
16888 struct elf_dyn_relocs *p;
16889
16890 for (p = (struct elf_dyn_relocs *)
16891 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
16892 {
16893 if (!bfd_is_abs_section (p->sec)
16894 && bfd_is_abs_section (p->sec->output_section))
16895 {
16896 /* Input section has been discarded, either because
16897 it is a copy of a linkonce section or due to
16898 linker script /DISCARD/, so we'll be discarding
16899 the relocs too. */
16900 }
16901 else if (is_vxworks
16902 && strcmp (p->sec->output_section->name,
16903 ".tls_vars") == 0)
16904 {
16905 /* Relocations in vxworks .tls_vars sections are
16906 handled specially by the loader. */
16907 }
16908 else if (p->count != 0)
16909 {
16910 srel = elf_section_data (p->sec)->sreloc;
16911 if (htab->fdpic_p && !bfd_link_pic(info))
16912 htab->srofixup->size += 4 * p->count;
16913 else
16914 elf32_arm_allocate_dynrelocs (info, srel, p->count);
16915 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
16916 info->flags |= DF_TEXTREL;
16917 }
16918 }
16919 }
16920
16921 local_got = elf_local_got_refcounts (ibfd);
16922 if (!local_got)
16923 continue;
16924
16925 symtab_hdr = & elf_symtab_hdr (ibfd);
16926 locsymcount = symtab_hdr->sh_info;
16927 end_local_got = local_got + locsymcount;
16928 local_iplt_ptr = elf32_arm_local_iplt (ibfd);
16929 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
16930 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
16931 local_fdpic_cnts = elf32_arm_local_fdpic_cnts (ibfd);
16932 symndx = 0;
16933 s = htab->root.sgot;
16934 srel = htab->root.srelgot;
16935 for (; local_got < end_local_got;
16936 ++local_got, ++local_iplt_ptr, ++local_tls_type,
16937 ++local_tlsdesc_gotent, ++symndx, ++local_fdpic_cnts)
16938 {
16939 *local_tlsdesc_gotent = (bfd_vma) -1;
16940 local_iplt = *local_iplt_ptr;
16941
16942 /* FDPIC support. */
16943 if (local_fdpic_cnts->gotofffuncdesc_cnt > 0)
16944 {
16945 if (local_fdpic_cnts->funcdesc_offset == -1)
16946 {
16947 local_fdpic_cnts->funcdesc_offset = s->size;
16948 s->size += 8;
16949
16950 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16951 if (bfd_link_pic(info))
16952 elf32_arm_allocate_dynrelocs (info, srel, 1);
16953 else
16954 htab->srofixup->size += 8;
16955 }
16956 }
16957
16958 if (local_fdpic_cnts->funcdesc_cnt > 0)
16959 {
16960 if (local_fdpic_cnts->funcdesc_offset == -1)
16961 {
16962 local_fdpic_cnts->funcdesc_offset = s->size;
16963 s->size += 8;
16964
16965 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16966 if (bfd_link_pic(info))
16967 elf32_arm_allocate_dynrelocs (info, srel, 1);
16968 else
16969 htab->srofixup->size += 8;
16970 }
16971
16972 /* We will add n R_ARM_RELATIVE relocations or n rofixups. */
16973 if (bfd_link_pic(info))
16974 elf32_arm_allocate_dynrelocs (info, srel, local_fdpic_cnts->funcdesc_cnt);
16975 else
16976 htab->srofixup->size += 4 * local_fdpic_cnts->funcdesc_cnt;
16977 }
16978
16979 if (local_iplt != NULL)
16980 {
16981 struct elf_dyn_relocs *p;
16982
16983 if (local_iplt->root.refcount > 0)
16984 {
16985 elf32_arm_allocate_plt_entry (info, TRUE,
16986 &local_iplt->root,
16987 &local_iplt->arm);
16988 if (local_iplt->arm.noncall_refcount == 0)
16989 /* All references to the PLT are calls, so all
16990 non-call references can resolve directly to the
16991 run-time target. This means that the .got entry
16992 would be the same as the .igot.plt entry, so there's
16993 no point creating both. */
16994 *local_got = 0;
16995 }
16996 else
16997 {
16998 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
16999 local_iplt->root.offset = (bfd_vma) -1;
17000 }
17001
17002 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
17003 {
17004 asection *psrel;
17005
17006 psrel = elf_section_data (p->sec)->sreloc;
17007 if (local_iplt->arm.noncall_refcount == 0)
17008 elf32_arm_allocate_irelocs (info, psrel, p->count);
17009 else
17010 elf32_arm_allocate_dynrelocs (info, psrel, p->count);
17011 }
17012 }
17013 if (*local_got > 0)
17014 {
17015 Elf_Internal_Sym *isym;
17016
17017 *local_got = s->size;
17018 if (*local_tls_type & GOT_TLS_GD)
17019 /* TLS_GD relocs need an 8-byte structure in the GOT. */
17020 s->size += 8;
17021 if (*local_tls_type & GOT_TLS_GDESC)
17022 {
17023 *local_tlsdesc_gotent = htab->root.sgotplt->size
17024 - elf32_arm_compute_jump_table_size (htab);
17025 htab->root.sgotplt->size += 8;
17026 *local_got = (bfd_vma) -2;
17027 /* plt.got_offset needs to know there's a TLS_DESC
17028 reloc in the middle of .got.plt. */
17029 htab->num_tls_desc++;
17030 }
17031 if (*local_tls_type & GOT_TLS_IE)
17032 s->size += 4;
17033
17034 if (*local_tls_type & GOT_NORMAL)
17035 {
17036 /* If the symbol is both GD and GDESC, *local_got
17037 may have been overwritten. */
17038 *local_got = s->size;
17039 s->size += 4;
17040 }
17041
17042 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
17043 if (isym == NULL)
17044 return FALSE;
17045
17046 /* If all references to an STT_GNU_IFUNC PLT are calls,
17047 then all non-call references, including this GOT entry,
17048 resolve directly to the run-time target. */
17049 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
17050 && (local_iplt == NULL
17051 || local_iplt->arm.noncall_refcount == 0))
17052 elf32_arm_allocate_irelocs (info, srel, 1);
17053 else if (bfd_link_pic (info) || output_bfd->flags & DYNAMIC || htab->fdpic_p)
17054 {
17055 if ((bfd_link_pic (info) && !(*local_tls_type & GOT_TLS_GDESC)))
17056 elf32_arm_allocate_dynrelocs (info, srel, 1);
17057 else if (htab->fdpic_p && *local_tls_type & GOT_NORMAL)
17058 htab->srofixup->size += 4;
17059
17060 if ((bfd_link_pic (info) || htab->fdpic_p)
17061 && *local_tls_type & GOT_TLS_GDESC)
17062 {
17063 elf32_arm_allocate_dynrelocs (info,
17064 htab->root.srelplt, 1);
17065 htab->tls_trampoline = -1;
17066 }
17067 }
17068 }
17069 else
17070 *local_got = (bfd_vma) -1;
17071 }
17072 }
17073
17074 if (htab->tls_ldm_got.refcount > 0)
17075 {
17076 /* Allocate two GOT entries and one dynamic relocation (if necessary)
17077 for R_ARM_TLS_LDM32/R_ARM_TLS_LDM32_FDPIC relocations. */
17078 htab->tls_ldm_got.offset = htab->root.sgot->size;
17079 htab->root.sgot->size += 8;
17080 if (bfd_link_pic (info))
17081 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
17082 }
17083 else
17084 htab->tls_ldm_got.offset = -1;
17085
17086 /* At the very end of the .rofixup section is a pointer to the GOT,
17087 reserve space for it. */
17088 if (htab->fdpic_p && htab->srofixup != NULL)
17089 htab->srofixup->size += 4;
17090
17091 /* Allocate global sym .plt and .got entries, and space for global
17092 sym dynamic relocs. */
17093 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
17094
17095 /* Here we rummage through the found bfds to collect glue information. */
17096 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
17097 {
17098 if (! is_arm_elf (ibfd))
17099 continue;
17100
17101 /* Initialise mapping tables for code/data. */
17102 bfd_elf32_arm_init_maps (ibfd);
17103
17104 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
17105 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info)
17106 || !bfd_elf32_arm_stm32l4xx_erratum_scan (ibfd, info))
17107 _bfd_error_handler (_("errors encountered processing file %pB"), ibfd);
17108 }
17109
17110 /* Allocate space for the glue sections now that we've sized them. */
17111 bfd_elf32_arm_allocate_interworking_sections (info);
17112
17113 /* For every jump slot reserved in the sgotplt, reloc_count is
17114 incremented. However, when we reserve space for TLS descriptors,
17115 it's not incremented, so in order to compute the space reserved
17116 for them, it suffices to multiply the reloc count by the jump
17117 slot size. */
17118 if (htab->root.srelplt)
17119 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
17120
17121 if (htab->tls_trampoline)
17122 {
17123 if (htab->root.splt->size == 0)
17124 htab->root.splt->size += htab->plt_header_size;
17125
17126 htab->tls_trampoline = htab->root.splt->size;
17127 htab->root.splt->size += htab->plt_entry_size;
17128
17129 /* If we're not using lazy TLS relocations, don't generate the
17130 PLT and GOT entries they require. */
17131 if (!(info->flags & DF_BIND_NOW))
17132 {
17133 htab->dt_tlsdesc_got = htab->root.sgot->size;
17134 htab->root.sgot->size += 4;
17135
17136 htab->dt_tlsdesc_plt = htab->root.splt->size;
17137 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
17138 }
17139 }
17140
17141 /* The check_relocs and adjust_dynamic_symbol entry points have
17142 determined the sizes of the various dynamic sections. Allocate
17143 memory for them. */
17144 plt = FALSE;
17145 relocs = FALSE;
17146 for (s = dynobj->sections; s != NULL; s = s->next)
17147 {
17148 const char * name;
17149
17150 if ((s->flags & SEC_LINKER_CREATED) == 0)
17151 continue;
17152
17153 /* It's OK to base decisions on the section name, because none
17154 of the dynobj section names depend upon the input files. */
17155 name = bfd_get_section_name (dynobj, s);
17156
17157 if (s == htab->root.splt)
17158 {
17159 /* Remember whether there is a PLT. */
17160 plt = s->size != 0;
17161 }
17162 else if (CONST_STRNEQ (name, ".rel"))
17163 {
17164 if (s->size != 0)
17165 {
17166 /* Remember whether there are any reloc sections other
17167 than .rel(a).plt and .rela.plt.unloaded. */
17168 if (s != htab->root.srelplt && s != htab->srelplt2)
17169 relocs = TRUE;
17170
17171 /* We use the reloc_count field as a counter if we need
17172 to copy relocs into the output file. */
17173 s->reloc_count = 0;
17174 }
17175 }
17176 else if (s != htab->root.sgot
17177 && s != htab->root.sgotplt
17178 && s != htab->root.iplt
17179 && s != htab->root.igotplt
17180 && s != htab->root.sdynbss
17181 && s != htab->root.sdynrelro
17182 && s != htab->srofixup)
17183 {
17184 /* It's not one of our sections, so don't allocate space. */
17185 continue;
17186 }
17187
17188 if (s->size == 0)
17189 {
17190 /* If we don't need this section, strip it from the
17191 output file. This is mostly to handle .rel(a).bss and
17192 .rel(a).plt. We must create both sections in
17193 create_dynamic_sections, because they must be created
17194 before the linker maps input sections to output
17195 sections. The linker does that before
17196 adjust_dynamic_symbol is called, and it is that
17197 function which decides whether anything needs to go
17198 into these sections. */
17199 s->flags |= SEC_EXCLUDE;
17200 continue;
17201 }
17202
17203 if ((s->flags & SEC_HAS_CONTENTS) == 0)
17204 continue;
17205
17206 /* Allocate memory for the section contents. */
17207 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
17208 if (s->contents == NULL)
17209 return FALSE;
17210 }
17211
17212 if (elf_hash_table (info)->dynamic_sections_created)
17213 {
17214 /* Add some entries to the .dynamic section. We fill in the
17215 values later, in elf32_arm_finish_dynamic_sections, but we
17216 must add the entries now so that we get the correct size for
17217 the .dynamic section. The DT_DEBUG entry is filled in by the
17218 dynamic linker and used by the debugger. */
17219 #define add_dynamic_entry(TAG, VAL) \
17220 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
17221
17222 if (bfd_link_executable (info))
17223 {
17224 if (!add_dynamic_entry (DT_DEBUG, 0))
17225 return FALSE;
17226 }
17227
17228 if (plt)
17229 {
17230 if ( !add_dynamic_entry (DT_PLTGOT, 0)
17231 || !add_dynamic_entry (DT_PLTRELSZ, 0)
17232 || !add_dynamic_entry (DT_PLTREL,
17233 htab->use_rel ? DT_REL : DT_RELA)
17234 || !add_dynamic_entry (DT_JMPREL, 0))
17235 return FALSE;
17236
17237 if (htab->dt_tlsdesc_plt
17238 && (!add_dynamic_entry (DT_TLSDESC_PLT,0)
17239 || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
17240 return FALSE;
17241 }
17242
17243 if (relocs)
17244 {
17245 if (htab->use_rel)
17246 {
17247 if (!add_dynamic_entry (DT_REL, 0)
17248 || !add_dynamic_entry (DT_RELSZ, 0)
17249 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
17250 return FALSE;
17251 }
17252 else
17253 {
17254 if (!add_dynamic_entry (DT_RELA, 0)
17255 || !add_dynamic_entry (DT_RELASZ, 0)
17256 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
17257 return FALSE;
17258 }
17259 }
17260
17261 /* If any dynamic relocs apply to a read-only section,
17262 then we need a DT_TEXTREL entry. */
17263 if ((info->flags & DF_TEXTREL) == 0)
17264 elf_link_hash_traverse (&htab->root, maybe_set_textrel, info);
17265
17266 if ((info->flags & DF_TEXTREL) != 0)
17267 {
17268 if (!add_dynamic_entry (DT_TEXTREL, 0))
17269 return FALSE;
17270 }
17271 if (htab->vxworks_p
17272 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
17273 return FALSE;
17274 }
17275 #undef add_dynamic_entry
17276
17277 return TRUE;
17278 }
17279
17280 /* Size sections even though they're not dynamic. We use it to setup
17281 _TLS_MODULE_BASE_, if needed. */
17282
17283 static bfd_boolean
17284 elf32_arm_always_size_sections (bfd *output_bfd,
17285 struct bfd_link_info *info)
17286 {
17287 asection *tls_sec;
17288 struct elf32_arm_link_hash_table *htab;
17289
17290 htab = elf32_arm_hash_table (info);
17291
17292 if (bfd_link_relocatable (info))
17293 return TRUE;
17294
17295 tls_sec = elf_hash_table (info)->tls_sec;
17296
17297 if (tls_sec)
17298 {
17299 struct elf_link_hash_entry *tlsbase;
17300
17301 tlsbase = elf_link_hash_lookup
17302 (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
17303
17304 if (tlsbase)
17305 {
17306 struct bfd_link_hash_entry *bh = NULL;
17307 const struct elf_backend_data *bed
17308 = get_elf_backend_data (output_bfd);
17309
17310 if (!(_bfd_generic_link_add_one_symbol
17311 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
17312 tls_sec, 0, NULL, FALSE,
17313 bed->collect, &bh)))
17314 return FALSE;
17315
17316 tlsbase->type = STT_TLS;
17317 tlsbase = (struct elf_link_hash_entry *)bh;
17318 tlsbase->def_regular = 1;
17319 tlsbase->other = STV_HIDDEN;
17320 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
17321 }
17322 }
17323
17324 if (htab->fdpic_p && !bfd_link_relocatable (info)
17325 && !bfd_elf_stack_segment_size (output_bfd, info,
17326 "__stacksize", DEFAULT_STACK_SIZE))
17327 return FALSE;
17328
17329 return TRUE;
17330 }
17331
17332 /* Finish up dynamic symbol handling. We set the contents of various
17333 dynamic sections here. */
17334
17335 static bfd_boolean
17336 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
17337 struct bfd_link_info * info,
17338 struct elf_link_hash_entry * h,
17339 Elf_Internal_Sym * sym)
17340 {
17341 struct elf32_arm_link_hash_table *htab;
17342 struct elf32_arm_link_hash_entry *eh;
17343
17344 htab = elf32_arm_hash_table (info);
17345 if (htab == NULL)
17346 return FALSE;
17347
17348 eh = (struct elf32_arm_link_hash_entry *) h;
17349
17350 if (h->plt.offset != (bfd_vma) -1)
17351 {
17352 if (!eh->is_iplt)
17353 {
17354 BFD_ASSERT (h->dynindx != -1);
17355 if (! elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
17356 h->dynindx, 0))
17357 return FALSE;
17358 }
17359
17360 if (!h->def_regular)
17361 {
17362 /* Mark the symbol as undefined, rather than as defined in
17363 the .plt section. */
17364 sym->st_shndx = SHN_UNDEF;
17365 /* If the symbol is weak we need to clear the value.
17366 Otherwise, the PLT entry would provide a definition for
17367 the symbol even if the symbol wasn't defined anywhere,
17368 and so the symbol would never be NULL. Leave the value if
17369 there were any relocations where pointer equality matters
17370 (this is a clue for the dynamic linker, to make function
17371 pointer comparisons work between an application and shared
17372 library). */
17373 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
17374 sym->st_value = 0;
17375 }
17376 else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
17377 {
17378 /* At least one non-call relocation references this .iplt entry,
17379 so the .iplt entry is the function's canonical address. */
17380 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
17381 ARM_SET_SYM_BRANCH_TYPE (sym->st_target_internal, ST_BRANCH_TO_ARM);
17382 sym->st_shndx = (_bfd_elf_section_from_bfd_section
17383 (output_bfd, htab->root.iplt->output_section));
17384 sym->st_value = (h->plt.offset
17385 + htab->root.iplt->output_section->vma
17386 + htab->root.iplt->output_offset);
17387 }
17388 }
17389
17390 if (h->needs_copy)
17391 {
17392 asection * s;
17393 Elf_Internal_Rela rel;
17394
17395 /* This symbol needs a copy reloc. Set it up. */
17396 BFD_ASSERT (h->dynindx != -1
17397 && (h->root.type == bfd_link_hash_defined
17398 || h->root.type == bfd_link_hash_defweak));
17399
17400 rel.r_addend = 0;
17401 rel.r_offset = (h->root.u.def.value
17402 + h->root.u.def.section->output_section->vma
17403 + h->root.u.def.section->output_offset);
17404 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
17405 if (h->root.u.def.section == htab->root.sdynrelro)
17406 s = htab->root.sreldynrelro;
17407 else
17408 s = htab->root.srelbss;
17409 elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
17410 }
17411
17412 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
17413 and for FDPIC, the _GLOBAL_OFFSET_TABLE_ symbol is not absolute:
17414 it is relative to the ".got" section. */
17415 if (h == htab->root.hdynamic
17416 || (!htab->fdpic_p && !htab->vxworks_p && h == htab->root.hgot))
17417 sym->st_shndx = SHN_ABS;
17418
17419 return TRUE;
17420 }
17421
17422 static void
17423 arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
17424 void *contents,
17425 const unsigned long *template, unsigned count)
17426 {
17427 unsigned ix;
17428
17429 for (ix = 0; ix != count; ix++)
17430 {
17431 unsigned long insn = template[ix];
17432
17433 /* Emit mov pc,rx if bx is not permitted. */
17434 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
17435 insn = (insn & 0xf000000f) | 0x01a0f000;
17436 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
17437 }
17438 }
17439
17440 /* Install the special first PLT entry for elf32-arm-nacl. Unlike
17441 other variants, NaCl needs this entry in a static executable's
17442 .iplt too. When we're handling that case, GOT_DISPLACEMENT is
17443 zero. For .iplt really only the last bundle is useful, and .iplt
17444 could have a shorter first entry, with each individual PLT entry's
17445 relative branch calculated differently so it targets the last
17446 bundle instead of the instruction before it (labelled .Lplt_tail
17447 above). But it's simpler to keep the size and layout of PLT0
17448 consistent with the dynamic case, at the cost of some dead code at
17449 the start of .iplt and the one dead store to the stack at the start
17450 of .Lplt_tail. */
17451 static void
17452 arm_nacl_put_plt0 (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
17453 asection *plt, bfd_vma got_displacement)
17454 {
17455 unsigned int i;
17456
17457 put_arm_insn (htab, output_bfd,
17458 elf32_arm_nacl_plt0_entry[0]
17459 | arm_movw_immediate (got_displacement),
17460 plt->contents + 0);
17461 put_arm_insn (htab, output_bfd,
17462 elf32_arm_nacl_plt0_entry[1]
17463 | arm_movt_immediate (got_displacement),
17464 plt->contents + 4);
17465
17466 for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i)
17467 put_arm_insn (htab, output_bfd,
17468 elf32_arm_nacl_plt0_entry[i],
17469 plt->contents + (i * 4));
17470 }
17471
17472 /* Finish up the dynamic sections. */
17473
17474 static bfd_boolean
17475 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
17476 {
17477 bfd * dynobj;
17478 asection * sgot;
17479 asection * sdyn;
17480 struct elf32_arm_link_hash_table *htab;
17481
17482 htab = elf32_arm_hash_table (info);
17483 if (htab == NULL)
17484 return FALSE;
17485
17486 dynobj = elf_hash_table (info)->dynobj;
17487
17488 sgot = htab->root.sgotplt;
17489 /* A broken linker script might have discarded the dynamic sections.
17490 Catch this here so that we do not seg-fault later on. */
17491 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
17492 return FALSE;
17493 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
17494
17495 if (elf_hash_table (info)->dynamic_sections_created)
17496 {
17497 asection *splt;
17498 Elf32_External_Dyn *dyncon, *dynconend;
17499
17500 splt = htab->root.splt;
17501 BFD_ASSERT (splt != NULL && sdyn != NULL);
17502 BFD_ASSERT (htab->symbian_p || sgot != NULL);
17503
17504 dyncon = (Elf32_External_Dyn *) sdyn->contents;
17505 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
17506
17507 for (; dyncon < dynconend; dyncon++)
17508 {
17509 Elf_Internal_Dyn dyn;
17510 const char * name;
17511 asection * s;
17512
17513 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
17514
17515 switch (dyn.d_tag)
17516 {
17517 unsigned int type;
17518
17519 default:
17520 if (htab->vxworks_p
17521 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
17522 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17523 break;
17524
17525 case DT_HASH:
17526 name = ".hash";
17527 goto get_vma_if_bpabi;
17528 case DT_STRTAB:
17529 name = ".dynstr";
17530 goto get_vma_if_bpabi;
17531 case DT_SYMTAB:
17532 name = ".dynsym";
17533 goto get_vma_if_bpabi;
17534 case DT_VERSYM:
17535 name = ".gnu.version";
17536 goto get_vma_if_bpabi;
17537 case DT_VERDEF:
17538 name = ".gnu.version_d";
17539 goto get_vma_if_bpabi;
17540 case DT_VERNEED:
17541 name = ".gnu.version_r";
17542 goto get_vma_if_bpabi;
17543
17544 case DT_PLTGOT:
17545 name = htab->symbian_p ? ".got" : ".got.plt";
17546 goto get_vma;
17547 case DT_JMPREL:
17548 name = RELOC_SECTION (htab, ".plt");
17549 get_vma:
17550 s = bfd_get_linker_section (dynobj, name);
17551 if (s == NULL)
17552 {
17553 _bfd_error_handler
17554 (_("could not find section %s"), name);
17555 bfd_set_error (bfd_error_invalid_operation);
17556 return FALSE;
17557 }
17558 if (!htab->symbian_p)
17559 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
17560 else
17561 /* In the BPABI, tags in the PT_DYNAMIC section point
17562 at the file offset, not the memory address, for the
17563 convenience of the post linker. */
17564 dyn.d_un.d_ptr = s->output_section->filepos + s->output_offset;
17565 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17566 break;
17567
17568 get_vma_if_bpabi:
17569 if (htab->symbian_p)
17570 goto get_vma;
17571 break;
17572
17573 case DT_PLTRELSZ:
17574 s = htab->root.srelplt;
17575 BFD_ASSERT (s != NULL);
17576 dyn.d_un.d_val = s->size;
17577 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17578 break;
17579
17580 case DT_RELSZ:
17581 case DT_RELASZ:
17582 case DT_REL:
17583 case DT_RELA:
17584 /* In the BPABI, the DT_REL tag must point at the file
17585 offset, not the VMA, of the first relocation
17586 section. So, we use code similar to that in
17587 elflink.c, but do not check for SHF_ALLOC on the
17588 relocation section, since relocation sections are
17589 never allocated under the BPABI. PLT relocs are also
17590 included. */
17591 if (htab->symbian_p)
17592 {
17593 unsigned int i;
17594 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
17595 ? SHT_REL : SHT_RELA);
17596 dyn.d_un.d_val = 0;
17597 for (i = 1; i < elf_numsections (output_bfd); i++)
17598 {
17599 Elf_Internal_Shdr *hdr
17600 = elf_elfsections (output_bfd)[i];
17601 if (hdr->sh_type == type)
17602 {
17603 if (dyn.d_tag == DT_RELSZ
17604 || dyn.d_tag == DT_RELASZ)
17605 dyn.d_un.d_val += hdr->sh_size;
17606 else if ((ufile_ptr) hdr->sh_offset
17607 <= dyn.d_un.d_val - 1)
17608 dyn.d_un.d_val = hdr->sh_offset;
17609 }
17610 }
17611 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17612 }
17613 break;
17614
17615 case DT_TLSDESC_PLT:
17616 s = htab->root.splt;
17617 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
17618 + htab->dt_tlsdesc_plt);
17619 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17620 break;
17621
17622 case DT_TLSDESC_GOT:
17623 s = htab->root.sgot;
17624 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
17625 + htab->dt_tlsdesc_got);
17626 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17627 break;
17628
17629 /* Set the bottom bit of DT_INIT/FINI if the
17630 corresponding function is Thumb. */
17631 case DT_INIT:
17632 name = info->init_function;
17633 goto get_sym;
17634 case DT_FINI:
17635 name = info->fini_function;
17636 get_sym:
17637 /* If it wasn't set by elf_bfd_final_link
17638 then there is nothing to adjust. */
17639 if (dyn.d_un.d_val != 0)
17640 {
17641 struct elf_link_hash_entry * eh;
17642
17643 eh = elf_link_hash_lookup (elf_hash_table (info), name,
17644 FALSE, FALSE, TRUE);
17645 if (eh != NULL
17646 && ARM_GET_SYM_BRANCH_TYPE (eh->target_internal)
17647 == ST_BRANCH_TO_THUMB)
17648 {
17649 dyn.d_un.d_val |= 1;
17650 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17651 }
17652 }
17653 break;
17654 }
17655 }
17656
17657 /* Fill in the first entry in the procedure linkage table. */
17658 if (splt->size > 0 && htab->plt_header_size)
17659 {
17660 const bfd_vma *plt0_entry;
17661 bfd_vma got_address, plt_address, got_displacement;
17662
17663 /* Calculate the addresses of the GOT and PLT. */
17664 got_address = sgot->output_section->vma + sgot->output_offset;
17665 plt_address = splt->output_section->vma + splt->output_offset;
17666
17667 if (htab->vxworks_p)
17668 {
17669 /* The VxWorks GOT is relocated by the dynamic linker.
17670 Therefore, we must emit relocations rather than simply
17671 computing the values now. */
17672 Elf_Internal_Rela rel;
17673
17674 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
17675 put_arm_insn (htab, output_bfd, plt0_entry[0],
17676 splt->contents + 0);
17677 put_arm_insn (htab, output_bfd, plt0_entry[1],
17678 splt->contents + 4);
17679 put_arm_insn (htab, output_bfd, plt0_entry[2],
17680 splt->contents + 8);
17681 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
17682
17683 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
17684 rel.r_offset = plt_address + 12;
17685 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
17686 rel.r_addend = 0;
17687 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
17688 htab->srelplt2->contents);
17689 }
17690 else if (htab->nacl_p)
17691 arm_nacl_put_plt0 (htab, output_bfd, splt,
17692 got_address + 8 - (plt_address + 16));
17693 else if (using_thumb_only (htab))
17694 {
17695 got_displacement = got_address - (plt_address + 12);
17696
17697 plt0_entry = elf32_thumb2_plt0_entry;
17698 put_arm_insn (htab, output_bfd, plt0_entry[0],
17699 splt->contents + 0);
17700 put_arm_insn (htab, output_bfd, plt0_entry[1],
17701 splt->contents + 4);
17702 put_arm_insn (htab, output_bfd, plt0_entry[2],
17703 splt->contents + 8);
17704
17705 bfd_put_32 (output_bfd, got_displacement, splt->contents + 12);
17706 }
17707 else
17708 {
17709 got_displacement = got_address - (plt_address + 16);
17710
17711 plt0_entry = elf32_arm_plt0_entry;
17712 put_arm_insn (htab, output_bfd, plt0_entry[0],
17713 splt->contents + 0);
17714 put_arm_insn (htab, output_bfd, plt0_entry[1],
17715 splt->contents + 4);
17716 put_arm_insn (htab, output_bfd, plt0_entry[2],
17717 splt->contents + 8);
17718 put_arm_insn (htab, output_bfd, plt0_entry[3],
17719 splt->contents + 12);
17720
17721 #ifdef FOUR_WORD_PLT
17722 /* The displacement value goes in the otherwise-unused
17723 last word of the second entry. */
17724 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
17725 #else
17726 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
17727 #endif
17728 }
17729 }
17730
17731 /* UnixWare sets the entsize of .plt to 4, although that doesn't
17732 really seem like the right value. */
17733 if (splt->output_section->owner == output_bfd)
17734 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
17735
17736 if (htab->dt_tlsdesc_plt)
17737 {
17738 bfd_vma got_address
17739 = sgot->output_section->vma + sgot->output_offset;
17740 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
17741 + htab->root.sgot->output_offset);
17742 bfd_vma plt_address
17743 = splt->output_section->vma + splt->output_offset;
17744
17745 arm_put_trampoline (htab, output_bfd,
17746 splt->contents + htab->dt_tlsdesc_plt,
17747 dl_tlsdesc_lazy_trampoline, 6);
17748
17749 bfd_put_32 (output_bfd,
17750 gotplt_address + htab->dt_tlsdesc_got
17751 - (plt_address + htab->dt_tlsdesc_plt)
17752 - dl_tlsdesc_lazy_trampoline[6],
17753 splt->contents + htab->dt_tlsdesc_plt + 24);
17754 bfd_put_32 (output_bfd,
17755 got_address - (plt_address + htab->dt_tlsdesc_plt)
17756 - dl_tlsdesc_lazy_trampoline[7],
17757 splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
17758 }
17759
17760 if (htab->tls_trampoline)
17761 {
17762 arm_put_trampoline (htab, output_bfd,
17763 splt->contents + htab->tls_trampoline,
17764 tls_trampoline, 3);
17765 #ifdef FOUR_WORD_PLT
17766 bfd_put_32 (output_bfd, 0x00000000,
17767 splt->contents + htab->tls_trampoline + 12);
17768 #endif
17769 }
17770
17771 if (htab->vxworks_p
17772 && !bfd_link_pic (info)
17773 && htab->root.splt->size > 0)
17774 {
17775 /* Correct the .rel(a).plt.unloaded relocations. They will have
17776 incorrect symbol indexes. */
17777 int num_plts;
17778 unsigned char *p;
17779
17780 num_plts = ((htab->root.splt->size - htab->plt_header_size)
17781 / htab->plt_entry_size);
17782 p = htab->srelplt2->contents + RELOC_SIZE (htab);
17783
17784 for (; num_plts; num_plts--)
17785 {
17786 Elf_Internal_Rela rel;
17787
17788 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
17789 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
17790 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
17791 p += RELOC_SIZE (htab);
17792
17793 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
17794 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
17795 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
17796 p += RELOC_SIZE (htab);
17797 }
17798 }
17799 }
17800
17801 if (htab->nacl_p && htab->root.iplt != NULL && htab->root.iplt->size > 0)
17802 /* NaCl uses a special first entry in .iplt too. */
17803 arm_nacl_put_plt0 (htab, output_bfd, htab->root.iplt, 0);
17804
17805 /* Fill in the first three entries in the global offset table. */
17806 if (sgot)
17807 {
17808 if (sgot->size > 0)
17809 {
17810 if (sdyn == NULL)
17811 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
17812 else
17813 bfd_put_32 (output_bfd,
17814 sdyn->output_section->vma + sdyn->output_offset,
17815 sgot->contents);
17816 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
17817 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
17818 }
17819
17820 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
17821 }
17822
17823 /* At the very end of the .rofixup section is a pointer to the GOT. */
17824 if (htab->fdpic_p && htab->srofixup != NULL)
17825 {
17826 struct elf_link_hash_entry *hgot = htab->root.hgot;
17827
17828 bfd_vma got_value = hgot->root.u.def.value
17829 + hgot->root.u.def.section->output_section->vma
17830 + hgot->root.u.def.section->output_offset;
17831
17832 arm_elf_add_rofixup(output_bfd, htab->srofixup, got_value);
17833
17834 /* Make sure we allocated and generated the same number of fixups. */
17835 BFD_ASSERT (htab->srofixup->reloc_count * 4 == htab->srofixup->size);
17836 }
17837
17838 return TRUE;
17839 }
17840
17841 static void
17842 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
17843 {
17844 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
17845 struct elf32_arm_link_hash_table *globals;
17846 struct elf_segment_map *m;
17847
17848 i_ehdrp = elf_elfheader (abfd);
17849
17850 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
17851 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
17852 else
17853 _bfd_elf_post_process_headers (abfd, link_info);
17854 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
17855
17856 if (link_info)
17857 {
17858 globals = elf32_arm_hash_table (link_info);
17859 if (globals != NULL && globals->byteswap_code)
17860 i_ehdrp->e_flags |= EF_ARM_BE8;
17861
17862 if (globals->fdpic_p)
17863 i_ehdrp->e_ident[EI_OSABI] |= ELFOSABI_ARM_FDPIC;
17864 }
17865
17866 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5
17867 && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC)))
17868 {
17869 int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args);
17870 if (abi == AEABI_VFP_args_vfp)
17871 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD;
17872 else
17873 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT;
17874 }
17875
17876 /* Scan segment to set p_flags attribute if it contains only sections with
17877 SHF_ARM_PURECODE flag. */
17878 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
17879 {
17880 unsigned int j;
17881
17882 if (m->count == 0)
17883 continue;
17884 for (j = 0; j < m->count; j++)
17885 {
17886 if (!(elf_section_flags (m->sections[j]) & SHF_ARM_PURECODE))
17887 break;
17888 }
17889 if (j == m->count)
17890 {
17891 m->p_flags = PF_X;
17892 m->p_flags_valid = 1;
17893 }
17894 }
17895 }
17896
17897 static enum elf_reloc_type_class
17898 elf32_arm_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
17899 const asection *rel_sec ATTRIBUTE_UNUSED,
17900 const Elf_Internal_Rela *rela)
17901 {
17902 switch ((int) ELF32_R_TYPE (rela->r_info))
17903 {
17904 case R_ARM_RELATIVE:
17905 return reloc_class_relative;
17906 case R_ARM_JUMP_SLOT:
17907 return reloc_class_plt;
17908 case R_ARM_COPY:
17909 return reloc_class_copy;
17910 case R_ARM_IRELATIVE:
17911 return reloc_class_ifunc;
17912 default:
17913 return reloc_class_normal;
17914 }
17915 }
17916
17917 static void
17918 arm_final_write_processing (bfd *abfd)
17919 {
17920 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
17921 }
17922
17923 static bfd_boolean
17924 elf32_arm_final_write_processing (bfd *abfd)
17925 {
17926 arm_final_write_processing (abfd);
17927 return _bfd_elf_final_write_processing (abfd);
17928 }
17929
17930 /* Return TRUE if this is an unwinding table entry. */
17931
17932 static bfd_boolean
17933 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
17934 {
17935 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
17936 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
17937 }
17938
17939
17940 /* Set the type and flags for an ARM section. We do this by
17941 the section name, which is a hack, but ought to work. */
17942
17943 static bfd_boolean
17944 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
17945 {
17946 const char * name;
17947
17948 name = bfd_get_section_name (abfd, sec);
17949
17950 if (is_arm_elf_unwind_section_name (abfd, name))
17951 {
17952 hdr->sh_type = SHT_ARM_EXIDX;
17953 hdr->sh_flags |= SHF_LINK_ORDER;
17954 }
17955
17956 if (sec->flags & SEC_ELF_PURECODE)
17957 hdr->sh_flags |= SHF_ARM_PURECODE;
17958
17959 return TRUE;
17960 }
17961
17962 /* Handle an ARM specific section when reading an object file. This is
17963 called when bfd_section_from_shdr finds a section with an unknown
17964 type. */
17965
17966 static bfd_boolean
17967 elf32_arm_section_from_shdr (bfd *abfd,
17968 Elf_Internal_Shdr * hdr,
17969 const char *name,
17970 int shindex)
17971 {
17972 /* There ought to be a place to keep ELF backend specific flags, but
17973 at the moment there isn't one. We just keep track of the
17974 sections by their name, instead. Fortunately, the ABI gives
17975 names for all the ARM specific sections, so we will probably get
17976 away with this. */
17977 switch (hdr->sh_type)
17978 {
17979 case SHT_ARM_EXIDX:
17980 case SHT_ARM_PREEMPTMAP:
17981 case SHT_ARM_ATTRIBUTES:
17982 break;
17983
17984 default:
17985 return FALSE;
17986 }
17987
17988 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
17989 return FALSE;
17990
17991 return TRUE;
17992 }
17993
17994 static _arm_elf_section_data *
17995 get_arm_elf_section_data (asection * sec)
17996 {
17997 if (sec && sec->owner && is_arm_elf (sec->owner))
17998 return elf32_arm_section_data (sec);
17999 else
18000 return NULL;
18001 }
18002
18003 typedef struct
18004 {
18005 void *flaginfo;
18006 struct bfd_link_info *info;
18007 asection *sec;
18008 int sec_shndx;
18009 int (*func) (void *, const char *, Elf_Internal_Sym *,
18010 asection *, struct elf_link_hash_entry *);
18011 } output_arch_syminfo;
18012
18013 enum map_symbol_type
18014 {
18015 ARM_MAP_ARM,
18016 ARM_MAP_THUMB,
18017 ARM_MAP_DATA
18018 };
18019
18020
18021 /* Output a single mapping symbol. */
18022
18023 static bfd_boolean
18024 elf32_arm_output_map_sym (output_arch_syminfo *osi,
18025 enum map_symbol_type type,
18026 bfd_vma offset)
18027 {
18028 static const char *names[3] = {"$a", "$t", "$d"};
18029 Elf_Internal_Sym sym;
18030
18031 sym.st_value = osi->sec->output_section->vma
18032 + osi->sec->output_offset
18033 + offset;
18034 sym.st_size = 0;
18035 sym.st_other = 0;
18036 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
18037 sym.st_shndx = osi->sec_shndx;
18038 sym.st_target_internal = 0;
18039 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
18040 return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1;
18041 }
18042
18043 /* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
18044 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
18045
18046 static bfd_boolean
18047 elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
18048 bfd_boolean is_iplt_entry_p,
18049 union gotplt_union *root_plt,
18050 struct arm_plt_info *arm_plt)
18051 {
18052 struct elf32_arm_link_hash_table *htab;
18053 bfd_vma addr, plt_header_size;
18054
18055 if (root_plt->offset == (bfd_vma) -1)
18056 return TRUE;
18057
18058 htab = elf32_arm_hash_table (osi->info);
18059 if (htab == NULL)
18060 return FALSE;
18061
18062 if (is_iplt_entry_p)
18063 {
18064 osi->sec = htab->root.iplt;
18065 plt_header_size = 0;
18066 }
18067 else
18068 {
18069 osi->sec = htab->root.splt;
18070 plt_header_size = htab->plt_header_size;
18071 }
18072 osi->sec_shndx = (_bfd_elf_section_from_bfd_section
18073 (osi->info->output_bfd, osi->sec->output_section));
18074
18075 addr = root_plt->offset & -2;
18076 if (htab->symbian_p)
18077 {
18078 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
18079 return FALSE;
18080 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
18081 return FALSE;
18082 }
18083 else if (htab->vxworks_p)
18084 {
18085 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
18086 return FALSE;
18087 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
18088 return FALSE;
18089 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
18090 return FALSE;
18091 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
18092 return FALSE;
18093 }
18094 else if (htab->nacl_p)
18095 {
18096 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
18097 return FALSE;
18098 }
18099 else if (htab->fdpic_p)
18100 {
18101 enum map_symbol_type type = using_thumb_only(htab)
18102 ? ARM_MAP_THUMB
18103 : ARM_MAP_ARM;
18104
18105 if (elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt))
18106 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
18107 return FALSE;
18108 if (!elf32_arm_output_map_sym (osi, type, addr))
18109 return FALSE;
18110 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 16))
18111 return FALSE;
18112 if (htab->plt_entry_size == 4 * ARRAY_SIZE(elf32_arm_fdpic_plt_entry))
18113 if (!elf32_arm_output_map_sym (osi, type, addr + 24))
18114 return FALSE;
18115 }
18116 else if (using_thumb_only (htab))
18117 {
18118 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
18119 return FALSE;
18120 }
18121 else
18122 {
18123 bfd_boolean thumb_stub_p;
18124
18125 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
18126 if (thumb_stub_p)
18127 {
18128 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
18129 return FALSE;
18130 }
18131 #ifdef FOUR_WORD_PLT
18132 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
18133 return FALSE;
18134 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
18135 return FALSE;
18136 #else
18137 /* A three-word PLT with no Thumb thunk contains only Arm code,
18138 so only need to output a mapping symbol for the first PLT entry and
18139 entries with thumb thunks. */
18140 if (thumb_stub_p || addr == plt_header_size)
18141 {
18142 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
18143 return FALSE;
18144 }
18145 #endif
18146 }
18147
18148 return TRUE;
18149 }
18150
18151 /* Output mapping symbols for PLT entries associated with H. */
18152
18153 static bfd_boolean
18154 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
18155 {
18156 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
18157 struct elf32_arm_link_hash_entry *eh;
18158
18159 if (h->root.type == bfd_link_hash_indirect)
18160 return TRUE;
18161
18162 if (h->root.type == bfd_link_hash_warning)
18163 /* When warning symbols are created, they **replace** the "real"
18164 entry in the hash table, thus we never get to see the real
18165 symbol in a hash traversal. So look at it now. */
18166 h = (struct elf_link_hash_entry *) h->root.u.i.link;
18167
18168 eh = (struct elf32_arm_link_hash_entry *) h;
18169 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
18170 &h->plt, &eh->plt);
18171 }
18172
18173 /* Bind a veneered symbol to its veneer identified by its hash entry
18174 STUB_ENTRY. The veneered location thus loose its symbol. */
18175
18176 static void
18177 arm_stub_claim_sym (struct elf32_arm_stub_hash_entry *stub_entry)
18178 {
18179 struct elf32_arm_link_hash_entry *hash = stub_entry->h;
18180
18181 BFD_ASSERT (hash);
18182 hash->root.root.u.def.section = stub_entry->stub_sec;
18183 hash->root.root.u.def.value = stub_entry->stub_offset;
18184 hash->root.size = stub_entry->stub_size;
18185 }
18186
18187 /* Output a single local symbol for a generated stub. */
18188
18189 static bfd_boolean
18190 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
18191 bfd_vma offset, bfd_vma size)
18192 {
18193 Elf_Internal_Sym sym;
18194
18195 sym.st_value = osi->sec->output_section->vma
18196 + osi->sec->output_offset
18197 + offset;
18198 sym.st_size = size;
18199 sym.st_other = 0;
18200 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
18201 sym.st_shndx = osi->sec_shndx;
18202 sym.st_target_internal = 0;
18203 return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1;
18204 }
18205
18206 static bfd_boolean
18207 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
18208 void * in_arg)
18209 {
18210 struct elf32_arm_stub_hash_entry *stub_entry;
18211 asection *stub_sec;
18212 bfd_vma addr;
18213 char *stub_name;
18214 output_arch_syminfo *osi;
18215 const insn_sequence *template_sequence;
18216 enum stub_insn_type prev_type;
18217 int size;
18218 int i;
18219 enum map_symbol_type sym_type;
18220
18221 /* Massage our args to the form they really have. */
18222 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
18223 osi = (output_arch_syminfo *) in_arg;
18224
18225 stub_sec = stub_entry->stub_sec;
18226
18227 /* Ensure this stub is attached to the current section being
18228 processed. */
18229 if (stub_sec != osi->sec)
18230 return TRUE;
18231
18232 addr = (bfd_vma) stub_entry->stub_offset;
18233 template_sequence = stub_entry->stub_template;
18234
18235 if (arm_stub_sym_claimed (stub_entry->stub_type))
18236 arm_stub_claim_sym (stub_entry);
18237 else
18238 {
18239 stub_name = stub_entry->output_name;
18240 switch (template_sequence[0].type)
18241 {
18242 case ARM_TYPE:
18243 if (!elf32_arm_output_stub_sym (osi, stub_name, addr,
18244 stub_entry->stub_size))
18245 return FALSE;
18246 break;
18247 case THUMB16_TYPE:
18248 case THUMB32_TYPE:
18249 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
18250 stub_entry->stub_size))
18251 return FALSE;
18252 break;
18253 default:
18254 BFD_FAIL ();
18255 return 0;
18256 }
18257 }
18258
18259 prev_type = DATA_TYPE;
18260 size = 0;
18261 for (i = 0; i < stub_entry->stub_template_size; i++)
18262 {
18263 switch (template_sequence[i].type)
18264 {
18265 case ARM_TYPE:
18266 sym_type = ARM_MAP_ARM;
18267 break;
18268
18269 case THUMB16_TYPE:
18270 case THUMB32_TYPE:
18271 sym_type = ARM_MAP_THUMB;
18272 break;
18273
18274 case DATA_TYPE:
18275 sym_type = ARM_MAP_DATA;
18276 break;
18277
18278 default:
18279 BFD_FAIL ();
18280 return FALSE;
18281 }
18282
18283 if (template_sequence[i].type != prev_type)
18284 {
18285 prev_type = template_sequence[i].type;
18286 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
18287 return FALSE;
18288 }
18289
18290 switch (template_sequence[i].type)
18291 {
18292 case ARM_TYPE:
18293 case THUMB32_TYPE:
18294 size += 4;
18295 break;
18296
18297 case THUMB16_TYPE:
18298 size += 2;
18299 break;
18300
18301 case DATA_TYPE:
18302 size += 4;
18303 break;
18304
18305 default:
18306 BFD_FAIL ();
18307 return FALSE;
18308 }
18309 }
18310
18311 return TRUE;
18312 }
18313
18314 /* Output mapping symbols for linker generated sections,
18315 and for those data-only sections that do not have a
18316 $d. */
18317
18318 static bfd_boolean
18319 elf32_arm_output_arch_local_syms (bfd *output_bfd,
18320 struct bfd_link_info *info,
18321 void *flaginfo,
18322 int (*func) (void *, const char *,
18323 Elf_Internal_Sym *,
18324 asection *,
18325 struct elf_link_hash_entry *))
18326 {
18327 output_arch_syminfo osi;
18328 struct elf32_arm_link_hash_table *htab;
18329 bfd_vma offset;
18330 bfd_size_type size;
18331 bfd *input_bfd;
18332
18333 htab = elf32_arm_hash_table (info);
18334 if (htab == NULL)
18335 return FALSE;
18336
18337 check_use_blx (htab);
18338
18339 osi.flaginfo = flaginfo;
18340 osi.info = info;
18341 osi.func = func;
18342
18343 /* Add a $d mapping symbol to data-only sections that
18344 don't have any mapping symbol. This may result in (harmless) redundant
18345 mapping symbols. */
18346 for (input_bfd = info->input_bfds;
18347 input_bfd != NULL;
18348 input_bfd = input_bfd->link.next)
18349 {
18350 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
18351 for (osi.sec = input_bfd->sections;
18352 osi.sec != NULL;
18353 osi.sec = osi.sec->next)
18354 {
18355 if (osi.sec->output_section != NULL
18356 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
18357 != 0)
18358 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
18359 == SEC_HAS_CONTENTS
18360 && get_arm_elf_section_data (osi.sec) != NULL
18361 && get_arm_elf_section_data (osi.sec)->mapcount == 0
18362 && osi.sec->size > 0
18363 && (osi.sec->flags & SEC_EXCLUDE) == 0)
18364 {
18365 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18366 (output_bfd, osi.sec->output_section);
18367 if (osi.sec_shndx != (int)SHN_BAD)
18368 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
18369 }
18370 }
18371 }
18372
18373 /* ARM->Thumb glue. */
18374 if (htab->arm_glue_size > 0)
18375 {
18376 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18377 ARM2THUMB_GLUE_SECTION_NAME);
18378
18379 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18380 (output_bfd, osi.sec->output_section);
18381 if (bfd_link_pic (info) || htab->root.is_relocatable_executable
18382 || htab->pic_veneer)
18383 size = ARM2THUMB_PIC_GLUE_SIZE;
18384 else if (htab->use_blx)
18385 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
18386 else
18387 size = ARM2THUMB_STATIC_GLUE_SIZE;
18388
18389 for (offset = 0; offset < htab->arm_glue_size; offset += size)
18390 {
18391 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
18392 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
18393 }
18394 }
18395
18396 /* Thumb->ARM glue. */
18397 if (htab->thumb_glue_size > 0)
18398 {
18399 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18400 THUMB2ARM_GLUE_SECTION_NAME);
18401
18402 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18403 (output_bfd, osi.sec->output_section);
18404 size = THUMB2ARM_GLUE_SIZE;
18405
18406 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
18407 {
18408 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
18409 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
18410 }
18411 }
18412
18413 /* ARMv4 BX veneers. */
18414 if (htab->bx_glue_size > 0)
18415 {
18416 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18417 ARM_BX_GLUE_SECTION_NAME);
18418
18419 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18420 (output_bfd, osi.sec->output_section);
18421
18422 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
18423 }
18424
18425 /* Long calls stubs. */
18426 if (htab->stub_bfd && htab->stub_bfd->sections)
18427 {
18428 asection* stub_sec;
18429
18430 for (stub_sec = htab->stub_bfd->sections;
18431 stub_sec != NULL;
18432 stub_sec = stub_sec->next)
18433 {
18434 /* Ignore non-stub sections. */
18435 if (!strstr (stub_sec->name, STUB_SUFFIX))
18436 continue;
18437
18438 osi.sec = stub_sec;
18439
18440 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18441 (output_bfd, osi.sec->output_section);
18442
18443 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
18444 }
18445 }
18446
18447 /* Finally, output mapping symbols for the PLT. */
18448 if (htab->root.splt && htab->root.splt->size > 0)
18449 {
18450 osi.sec = htab->root.splt;
18451 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
18452 (output_bfd, osi.sec->output_section));
18453
18454 /* Output mapping symbols for the plt header. SymbianOS does not have a
18455 plt header. */
18456 if (htab->vxworks_p)
18457 {
18458 /* VxWorks shared libraries have no PLT header. */
18459 if (!bfd_link_pic (info))
18460 {
18461 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18462 return FALSE;
18463 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
18464 return FALSE;
18465 }
18466 }
18467 else if (htab->nacl_p)
18468 {
18469 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18470 return FALSE;
18471 }
18472 else if (using_thumb_only (htab) && !htab->fdpic_p)
18473 {
18474 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 0))
18475 return FALSE;
18476 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
18477 return FALSE;
18478 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 16))
18479 return FALSE;
18480 }
18481 else if (!htab->symbian_p && !htab->fdpic_p)
18482 {
18483 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18484 return FALSE;
18485 #ifndef FOUR_WORD_PLT
18486 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
18487 return FALSE;
18488 #endif
18489 }
18490 }
18491 if (htab->nacl_p && htab->root.iplt && htab->root.iplt->size > 0)
18492 {
18493 /* NaCl uses a special first entry in .iplt too. */
18494 osi.sec = htab->root.iplt;
18495 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
18496 (output_bfd, osi.sec->output_section));
18497 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18498 return FALSE;
18499 }
18500 if ((htab->root.splt && htab->root.splt->size > 0)
18501 || (htab->root.iplt && htab->root.iplt->size > 0))
18502 {
18503 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
18504 for (input_bfd = info->input_bfds;
18505 input_bfd != NULL;
18506 input_bfd = input_bfd->link.next)
18507 {
18508 struct arm_local_iplt_info **local_iplt;
18509 unsigned int i, num_syms;
18510
18511 local_iplt = elf32_arm_local_iplt (input_bfd);
18512 if (local_iplt != NULL)
18513 {
18514 num_syms = elf_symtab_hdr (input_bfd).sh_info;
18515 for (i = 0; i < num_syms; i++)
18516 if (local_iplt[i] != NULL
18517 && !elf32_arm_output_plt_map_1 (&osi, TRUE,
18518 &local_iplt[i]->root,
18519 &local_iplt[i]->arm))
18520 return FALSE;
18521 }
18522 }
18523 }
18524 if (htab->dt_tlsdesc_plt != 0)
18525 {
18526 /* Mapping symbols for the lazy tls trampoline. */
18527 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
18528 return FALSE;
18529
18530 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
18531 htab->dt_tlsdesc_plt + 24))
18532 return FALSE;
18533 }
18534 if (htab->tls_trampoline != 0)
18535 {
18536 /* Mapping symbols for the tls trampoline. */
18537 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
18538 return FALSE;
18539 #ifdef FOUR_WORD_PLT
18540 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
18541 htab->tls_trampoline + 12))
18542 return FALSE;
18543 #endif
18544 }
18545
18546 return TRUE;
18547 }
18548
18549 /* Filter normal symbols of CMSE entry functions of ABFD to include in
18550 the import library. All SYMCOUNT symbols of ABFD can be examined
18551 from their pointers in SYMS. Pointers of symbols to keep should be
18552 stored continuously at the beginning of that array.
18553
18554 Returns the number of symbols to keep. */
18555
18556 static unsigned int
18557 elf32_arm_filter_cmse_symbols (bfd *abfd ATTRIBUTE_UNUSED,
18558 struct bfd_link_info *info,
18559 asymbol **syms, long symcount)
18560 {
18561 size_t maxnamelen;
18562 char *cmse_name;
18563 long src_count, dst_count = 0;
18564 struct elf32_arm_link_hash_table *htab;
18565
18566 htab = elf32_arm_hash_table (info);
18567 if (!htab->stub_bfd || !htab->stub_bfd->sections)
18568 symcount = 0;
18569
18570 maxnamelen = 128;
18571 cmse_name = (char *) bfd_malloc (maxnamelen);
18572 for (src_count = 0; src_count < symcount; src_count++)
18573 {
18574 struct elf32_arm_link_hash_entry *cmse_hash;
18575 asymbol *sym;
18576 flagword flags;
18577 char *name;
18578 size_t namelen;
18579
18580 sym = syms[src_count];
18581 flags = sym->flags;
18582 name = (char *) bfd_asymbol_name (sym);
18583
18584 if ((flags & BSF_FUNCTION) != BSF_FUNCTION)
18585 continue;
18586 if (!(flags & (BSF_GLOBAL | BSF_WEAK)))
18587 continue;
18588
18589 namelen = strlen (name) + sizeof (CMSE_PREFIX) + 1;
18590 if (namelen > maxnamelen)
18591 {
18592 cmse_name = (char *)
18593 bfd_realloc (cmse_name, namelen);
18594 maxnamelen = namelen;
18595 }
18596 snprintf (cmse_name, maxnamelen, "%s%s", CMSE_PREFIX, name);
18597 cmse_hash = (struct elf32_arm_link_hash_entry *)
18598 elf_link_hash_lookup (&(htab)->root, cmse_name, FALSE, FALSE, TRUE);
18599
18600 if (!cmse_hash
18601 || (cmse_hash->root.root.type != bfd_link_hash_defined
18602 && cmse_hash->root.root.type != bfd_link_hash_defweak)
18603 || cmse_hash->root.type != STT_FUNC)
18604 continue;
18605
18606 if (!ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
18607 continue;
18608
18609 syms[dst_count++] = sym;
18610 }
18611 free (cmse_name);
18612
18613 syms[dst_count] = NULL;
18614
18615 return dst_count;
18616 }
18617
18618 /* Filter symbols of ABFD to include in the import library. All
18619 SYMCOUNT symbols of ABFD can be examined from their pointers in
18620 SYMS. Pointers of symbols to keep should be stored continuously at
18621 the beginning of that array.
18622
18623 Returns the number of symbols to keep. */
18624
18625 static unsigned int
18626 elf32_arm_filter_implib_symbols (bfd *abfd ATTRIBUTE_UNUSED,
18627 struct bfd_link_info *info,
18628 asymbol **syms, long symcount)
18629 {
18630 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
18631
18632 /* Requirement 8 of "ARM v8-M Security Extensions: Requirements on
18633 Development Tools" (ARM-ECM-0359818) mandates Secure Gateway import
18634 library to be a relocatable object file. */
18635 BFD_ASSERT (!(bfd_get_file_flags (info->out_implib_bfd) & EXEC_P));
18636 if (globals->cmse_implib)
18637 return elf32_arm_filter_cmse_symbols (abfd, info, syms, symcount);
18638 else
18639 return _bfd_elf_filter_global_symbols (abfd, info, syms, symcount);
18640 }
18641
18642 /* Allocate target specific section data. */
18643
18644 static bfd_boolean
18645 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
18646 {
18647 if (!sec->used_by_bfd)
18648 {
18649 _arm_elf_section_data *sdata;
18650 bfd_size_type amt = sizeof (*sdata);
18651
18652 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
18653 if (sdata == NULL)
18654 return FALSE;
18655 sec->used_by_bfd = sdata;
18656 }
18657
18658 return _bfd_elf_new_section_hook (abfd, sec);
18659 }
18660
18661
18662 /* Used to order a list of mapping symbols by address. */
18663
18664 static int
18665 elf32_arm_compare_mapping (const void * a, const void * b)
18666 {
18667 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
18668 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
18669
18670 if (amap->vma > bmap->vma)
18671 return 1;
18672 else if (amap->vma < bmap->vma)
18673 return -1;
18674 else if (amap->type > bmap->type)
18675 /* Ensure results do not depend on the host qsort for objects with
18676 multiple mapping symbols at the same address by sorting on type
18677 after vma. */
18678 return 1;
18679 else if (amap->type < bmap->type)
18680 return -1;
18681 else
18682 return 0;
18683 }
18684
18685 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
18686
18687 static unsigned long
18688 offset_prel31 (unsigned long addr, bfd_vma offset)
18689 {
18690 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
18691 }
18692
18693 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
18694 relocations. */
18695
18696 static void
18697 copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
18698 {
18699 unsigned long first_word = bfd_get_32 (output_bfd, from);
18700 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
18701
18702 /* High bit of first word is supposed to be zero. */
18703 if ((first_word & 0x80000000ul) == 0)
18704 first_word = offset_prel31 (first_word, offset);
18705
18706 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
18707 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
18708 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
18709 second_word = offset_prel31 (second_word, offset);
18710
18711 bfd_put_32 (output_bfd, first_word, to);
18712 bfd_put_32 (output_bfd, second_word, to + 4);
18713 }
18714
18715 /* Data for make_branch_to_a8_stub(). */
18716
18717 struct a8_branch_to_stub_data
18718 {
18719 asection *writing_section;
18720 bfd_byte *contents;
18721 };
18722
18723
18724 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
18725 places for a particular section. */
18726
18727 static bfd_boolean
18728 make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
18729 void *in_arg)
18730 {
18731 struct elf32_arm_stub_hash_entry *stub_entry;
18732 struct a8_branch_to_stub_data *data;
18733 bfd_byte *contents;
18734 unsigned long branch_insn;
18735 bfd_vma veneered_insn_loc, veneer_entry_loc;
18736 bfd_signed_vma branch_offset;
18737 bfd *abfd;
18738 unsigned int loc;
18739
18740 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
18741 data = (struct a8_branch_to_stub_data *) in_arg;
18742
18743 if (stub_entry->target_section != data->writing_section
18744 || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
18745 return TRUE;
18746
18747 contents = data->contents;
18748
18749 /* We use target_section as Cortex-A8 erratum workaround stubs are only
18750 generated when both source and target are in the same section. */
18751 veneered_insn_loc = stub_entry->target_section->output_section->vma
18752 + stub_entry->target_section->output_offset
18753 + stub_entry->source_value;
18754
18755 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
18756 + stub_entry->stub_sec->output_offset
18757 + stub_entry->stub_offset;
18758
18759 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
18760 veneered_insn_loc &= ~3u;
18761
18762 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
18763
18764 abfd = stub_entry->target_section->owner;
18765 loc = stub_entry->source_value;
18766
18767 /* We attempt to avoid this condition by setting stubs_always_after_branch
18768 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
18769 This check is just to be on the safe side... */
18770 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
18771 {
18772 _bfd_error_handler (_("%pB: error: Cortex-A8 erratum stub is "
18773 "allocated in unsafe location"), abfd);
18774 return FALSE;
18775 }
18776
18777 switch (stub_entry->stub_type)
18778 {
18779 case arm_stub_a8_veneer_b:
18780 case arm_stub_a8_veneer_b_cond:
18781 branch_insn = 0xf0009000;
18782 goto jump24;
18783
18784 case arm_stub_a8_veneer_blx:
18785 branch_insn = 0xf000e800;
18786 goto jump24;
18787
18788 case arm_stub_a8_veneer_bl:
18789 {
18790 unsigned int i1, j1, i2, j2, s;
18791
18792 branch_insn = 0xf000d000;
18793
18794 jump24:
18795 if (branch_offset < -16777216 || branch_offset > 16777214)
18796 {
18797 /* There's not much we can do apart from complain if this
18798 happens. */
18799 _bfd_error_handler (_("%pB: error: Cortex-A8 erratum stub out "
18800 "of range (input file too large)"), abfd);
18801 return FALSE;
18802 }
18803
18804 /* i1 = not(j1 eor s), so:
18805 not i1 = j1 eor s
18806 j1 = (not i1) eor s. */
18807
18808 branch_insn |= (branch_offset >> 1) & 0x7ff;
18809 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
18810 i2 = (branch_offset >> 22) & 1;
18811 i1 = (branch_offset >> 23) & 1;
18812 s = (branch_offset >> 24) & 1;
18813 j1 = (!i1) ^ s;
18814 j2 = (!i2) ^ s;
18815 branch_insn |= j2 << 11;
18816 branch_insn |= j1 << 13;
18817 branch_insn |= s << 26;
18818 }
18819 break;
18820
18821 default:
18822 BFD_FAIL ();
18823 return FALSE;
18824 }
18825
18826 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[loc]);
18827 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[loc + 2]);
18828
18829 return TRUE;
18830 }
18831
18832 /* Beginning of stm32l4xx work-around. */
18833
18834 /* Functions encoding instructions necessary for the emission of the
18835 fix-stm32l4xx-629360.
18836 Encoding is extracted from the
18837 ARM (C) Architecture Reference Manual
18838 ARMv7-A and ARMv7-R edition
18839 ARM DDI 0406C.b (ID072512). */
18840
18841 static inline bfd_vma
18842 create_instruction_branch_absolute (int branch_offset)
18843 {
18844 /* A8.8.18 B (A8-334)
18845 B target_address (Encoding T4). */
18846 /* 1111 - 0Sii - iiii - iiii - 10J1 - Jiii - iiii - iiii. */
18847 /* jump offset is: S:I1:I2:imm10:imm11:0. */
18848 /* with : I1 = NOT (J1 EOR S) I2 = NOT (J2 EOR S). */
18849
18850 int s = ((branch_offset & 0x1000000) >> 24);
18851 int j1 = s ^ !((branch_offset & 0x800000) >> 23);
18852 int j2 = s ^ !((branch_offset & 0x400000) >> 22);
18853
18854 if (branch_offset < -(1 << 24) || branch_offset >= (1 << 24))
18855 BFD_ASSERT (0 && "Error: branch out of range. Cannot create branch.");
18856
18857 bfd_vma patched_inst = 0xf0009000
18858 | s << 26 /* S. */
18859 | (((unsigned long) (branch_offset) >> 12) & 0x3ff) << 16 /* imm10. */
18860 | j1 << 13 /* J1. */
18861 | j2 << 11 /* J2. */
18862 | (((unsigned long) (branch_offset) >> 1) & 0x7ff); /* imm11. */
18863
18864 return patched_inst;
18865 }
18866
18867 static inline bfd_vma
18868 create_instruction_ldmia (int base_reg, int wback, int reg_mask)
18869 {
18870 /* A8.8.57 LDM/LDMIA/LDMFD (A8-396)
18871 LDMIA Rn!, {Ra, Rb, Rc, ...} (Encoding T2). */
18872 bfd_vma patched_inst = 0xe8900000
18873 | (/*W=*/wback << 21)
18874 | (base_reg << 16)
18875 | (reg_mask & 0x0000ffff);
18876
18877 return patched_inst;
18878 }
18879
18880 static inline bfd_vma
18881 create_instruction_ldmdb (int base_reg, int wback, int reg_mask)
18882 {
18883 /* A8.8.60 LDMDB/LDMEA (A8-402)
18884 LDMDB Rn!, {Ra, Rb, Rc, ...} (Encoding T1). */
18885 bfd_vma patched_inst = 0xe9100000
18886 | (/*W=*/wback << 21)
18887 | (base_reg << 16)
18888 | (reg_mask & 0x0000ffff);
18889
18890 return patched_inst;
18891 }
18892
18893 static inline bfd_vma
18894 create_instruction_mov (int target_reg, int source_reg)
18895 {
18896 /* A8.8.103 MOV (register) (A8-486)
18897 MOV Rd, Rm (Encoding T1). */
18898 bfd_vma patched_inst = 0x4600
18899 | (target_reg & 0x7)
18900 | ((target_reg & 0x8) >> 3) << 7
18901 | (source_reg << 3);
18902
18903 return patched_inst;
18904 }
18905
18906 static inline bfd_vma
18907 create_instruction_sub (int target_reg, int source_reg, int value)
18908 {
18909 /* A8.8.221 SUB (immediate) (A8-708)
18910 SUB Rd, Rn, #value (Encoding T3). */
18911 bfd_vma patched_inst = 0xf1a00000
18912 | (target_reg << 8)
18913 | (source_reg << 16)
18914 | (/*S=*/0 << 20)
18915 | ((value & 0x800) >> 11) << 26
18916 | ((value & 0x700) >> 8) << 12
18917 | (value & 0x0ff);
18918
18919 return patched_inst;
18920 }
18921
18922 static inline bfd_vma
18923 create_instruction_vldmia (int base_reg, int is_dp, int wback, int num_words,
18924 int first_reg)
18925 {
18926 /* A8.8.332 VLDM (A8-922)
18927 VLMD{MODE} Rn{!}, {list} (Encoding T1 or T2). */
18928 bfd_vma patched_inst = (is_dp ? 0xec900b00 : 0xec900a00)
18929 | (/*W=*/wback << 21)
18930 | (base_reg << 16)
18931 | (num_words & 0x000000ff)
18932 | (((unsigned)first_reg >> 1) & 0x0000000f) << 12
18933 | (first_reg & 0x00000001) << 22;
18934
18935 return patched_inst;
18936 }
18937
18938 static inline bfd_vma
18939 create_instruction_vldmdb (int base_reg, int is_dp, int num_words,
18940 int first_reg)
18941 {
18942 /* A8.8.332 VLDM (A8-922)
18943 VLMD{MODE} Rn!, {} (Encoding T1 or T2). */
18944 bfd_vma patched_inst = (is_dp ? 0xed300b00 : 0xed300a00)
18945 | (base_reg << 16)
18946 | (num_words & 0x000000ff)
18947 | (((unsigned)first_reg >>1 ) & 0x0000000f) << 12
18948 | (first_reg & 0x00000001) << 22;
18949
18950 return patched_inst;
18951 }
18952
18953 static inline bfd_vma
18954 create_instruction_udf_w (int value)
18955 {
18956 /* A8.8.247 UDF (A8-758)
18957 Undefined (Encoding T2). */
18958 bfd_vma patched_inst = 0xf7f0a000
18959 | (value & 0x00000fff)
18960 | (value & 0x000f0000) << 16;
18961
18962 return patched_inst;
18963 }
18964
18965 static inline bfd_vma
18966 create_instruction_udf (int value)
18967 {
18968 /* A8.8.247 UDF (A8-758)
18969 Undefined (Encoding T1). */
18970 bfd_vma patched_inst = 0xde00
18971 | (value & 0xff);
18972
18973 return patched_inst;
18974 }
18975
18976 /* Functions writing an instruction in memory, returning the next
18977 memory position to write to. */
18978
18979 static inline bfd_byte *
18980 push_thumb2_insn32 (struct elf32_arm_link_hash_table * htab,
18981 bfd * output_bfd, bfd_byte *pt, insn32 insn)
18982 {
18983 put_thumb2_insn (htab, output_bfd, insn, pt);
18984 return pt + 4;
18985 }
18986
18987 static inline bfd_byte *
18988 push_thumb2_insn16 (struct elf32_arm_link_hash_table * htab,
18989 bfd * output_bfd, bfd_byte *pt, insn32 insn)
18990 {
18991 put_thumb_insn (htab, output_bfd, insn, pt);
18992 return pt + 2;
18993 }
18994
18995 /* Function filling up a region in memory with T1 and T2 UDFs taking
18996 care of alignment. */
18997
18998 static bfd_byte *
18999 stm32l4xx_fill_stub_udf (struct elf32_arm_link_hash_table * htab,
19000 bfd * output_bfd,
19001 const bfd_byte * const base_stub_contents,
19002 bfd_byte * const from_stub_contents,
19003 const bfd_byte * const end_stub_contents)
19004 {
19005 bfd_byte *current_stub_contents = from_stub_contents;
19006
19007 /* Fill the remaining of the stub with deterministic contents : UDF
19008 instructions.
19009 Check if realignment is needed on modulo 4 frontier using T1, to
19010 further use T2. */
19011 if ((current_stub_contents < end_stub_contents)
19012 && !((current_stub_contents - base_stub_contents) % 2)
19013 && ((current_stub_contents - base_stub_contents) % 4))
19014 current_stub_contents =
19015 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19016 create_instruction_udf (0));
19017
19018 for (; current_stub_contents < end_stub_contents;)
19019 current_stub_contents =
19020 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19021 create_instruction_udf_w (0));
19022
19023 return current_stub_contents;
19024 }
19025
19026 /* Functions writing the stream of instructions equivalent to the
19027 derived sequence for ldmia, ldmdb, vldm respectively. */
19028
19029 static void
19030 stm32l4xx_create_replacing_stub_ldmia (struct elf32_arm_link_hash_table * htab,
19031 bfd * output_bfd,
19032 const insn32 initial_insn,
19033 const bfd_byte *const initial_insn_addr,
19034 bfd_byte *const base_stub_contents)
19035 {
19036 int wback = (initial_insn & 0x00200000) >> 21;
19037 int ri, rn = (initial_insn & 0x000F0000) >> 16;
19038 int insn_all_registers = initial_insn & 0x0000ffff;
19039 int insn_low_registers, insn_high_registers;
19040 int usable_register_mask;
19041 int nb_registers = elf32_arm_popcount (insn_all_registers);
19042 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
19043 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
19044 bfd_byte *current_stub_contents = base_stub_contents;
19045
19046 BFD_ASSERT (is_thumb2_ldmia (initial_insn));
19047
19048 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
19049 smaller than 8 registers load sequences that do not cause the
19050 hardware issue. */
19051 if (nb_registers <= 8)
19052 {
19053 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
19054 current_stub_contents =
19055 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19056 initial_insn);
19057
19058 /* B initial_insn_addr+4. */
19059 if (!restore_pc)
19060 current_stub_contents =
19061 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19062 create_instruction_branch_absolute
19063 (initial_insn_addr - current_stub_contents));
19064
19065 /* Fill the remaining of the stub with deterministic contents. */
19066 current_stub_contents =
19067 stm32l4xx_fill_stub_udf (htab, output_bfd,
19068 base_stub_contents, current_stub_contents,
19069 base_stub_contents +
19070 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19071
19072 return;
19073 }
19074
19075 /* - reg_list[13] == 0. */
19076 BFD_ASSERT ((insn_all_registers & (1 << 13))==0);
19077
19078 /* - reg_list[14] & reg_list[15] != 1. */
19079 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
19080
19081 /* - if (wback==1) reg_list[rn] == 0. */
19082 BFD_ASSERT (!wback || !restore_rn);
19083
19084 /* - nb_registers > 8. */
19085 BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8);
19086
19087 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
19088
19089 /* In the following algorithm, we split this wide LDM using 2 LDM insns:
19090 - One with the 7 lowest registers (register mask 0x007F)
19091 This LDM will finally contain between 2 and 7 registers
19092 - One with the 7 highest registers (register mask 0xDF80)
19093 This ldm will finally contain between 2 and 7 registers. */
19094 insn_low_registers = insn_all_registers & 0x007F;
19095 insn_high_registers = insn_all_registers & 0xDF80;
19096
19097 /* A spare register may be needed during this veneer to temporarily
19098 handle the base register. This register will be restored with the
19099 last LDM operation.
19100 The usable register may be any general purpose register (that
19101 excludes PC, SP, LR : register mask is 0x1FFF). */
19102 usable_register_mask = 0x1FFF;
19103
19104 /* Generate the stub function. */
19105 if (wback)
19106 {
19107 /* LDMIA Rn!, {R-low-register-list} : (Encoding T2). */
19108 current_stub_contents =
19109 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19110 create_instruction_ldmia
19111 (rn, /*wback=*/1, insn_low_registers));
19112
19113 /* LDMIA Rn!, {R-high-register-list} : (Encoding T2). */
19114 current_stub_contents =
19115 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19116 create_instruction_ldmia
19117 (rn, /*wback=*/1, insn_high_registers));
19118 if (!restore_pc)
19119 {
19120 /* B initial_insn_addr+4. */
19121 current_stub_contents =
19122 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19123 create_instruction_branch_absolute
19124 (initial_insn_addr - current_stub_contents));
19125 }
19126 }
19127 else /* if (!wback). */
19128 {
19129 ri = rn;
19130
19131 /* If Rn is not part of the high-register-list, move it there. */
19132 if (!(insn_high_registers & (1 << rn)))
19133 {
19134 /* Choose a Ri in the high-register-list that will be restored. */
19135 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19136
19137 /* MOV Ri, Rn. */
19138 current_stub_contents =
19139 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19140 create_instruction_mov (ri, rn));
19141 }
19142
19143 /* LDMIA Ri!, {R-low-register-list} : (Encoding T2). */
19144 current_stub_contents =
19145 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19146 create_instruction_ldmia
19147 (ri, /*wback=*/1, insn_low_registers));
19148
19149 /* LDMIA Ri, {R-high-register-list} : (Encoding T2). */
19150 current_stub_contents =
19151 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19152 create_instruction_ldmia
19153 (ri, /*wback=*/0, insn_high_registers));
19154
19155 if (!restore_pc)
19156 {
19157 /* B initial_insn_addr+4. */
19158 current_stub_contents =
19159 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19160 create_instruction_branch_absolute
19161 (initial_insn_addr - current_stub_contents));
19162 }
19163 }
19164
19165 /* Fill the remaining of the stub with deterministic contents. */
19166 current_stub_contents =
19167 stm32l4xx_fill_stub_udf (htab, output_bfd,
19168 base_stub_contents, current_stub_contents,
19169 base_stub_contents +
19170 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19171 }
19172
19173 static void
19174 stm32l4xx_create_replacing_stub_ldmdb (struct elf32_arm_link_hash_table * htab,
19175 bfd * output_bfd,
19176 const insn32 initial_insn,
19177 const bfd_byte *const initial_insn_addr,
19178 bfd_byte *const base_stub_contents)
19179 {
19180 int wback = (initial_insn & 0x00200000) >> 21;
19181 int ri, rn = (initial_insn & 0x000f0000) >> 16;
19182 int insn_all_registers = initial_insn & 0x0000ffff;
19183 int insn_low_registers, insn_high_registers;
19184 int usable_register_mask;
19185 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
19186 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
19187 int nb_registers = elf32_arm_popcount (insn_all_registers);
19188 bfd_byte *current_stub_contents = base_stub_contents;
19189
19190 BFD_ASSERT (is_thumb2_ldmdb (initial_insn));
19191
19192 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
19193 smaller than 8 registers load sequences that do not cause the
19194 hardware issue. */
19195 if (nb_registers <= 8)
19196 {
19197 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
19198 current_stub_contents =
19199 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19200 initial_insn);
19201
19202 /* B initial_insn_addr+4. */
19203 current_stub_contents =
19204 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19205 create_instruction_branch_absolute
19206 (initial_insn_addr - current_stub_contents));
19207
19208 /* Fill the remaining of the stub with deterministic contents. */
19209 current_stub_contents =
19210 stm32l4xx_fill_stub_udf (htab, output_bfd,
19211 base_stub_contents, current_stub_contents,
19212 base_stub_contents +
19213 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19214
19215 return;
19216 }
19217
19218 /* - reg_list[13] == 0. */
19219 BFD_ASSERT ((insn_all_registers & (1 << 13)) == 0);
19220
19221 /* - reg_list[14] & reg_list[15] != 1. */
19222 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
19223
19224 /* - if (wback==1) reg_list[rn] == 0. */
19225 BFD_ASSERT (!wback || !restore_rn);
19226
19227 /* - nb_registers > 8. */
19228 BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8);
19229
19230 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
19231
19232 /* In the following algorithm, we split this wide LDM using 2 LDM insn:
19233 - One with the 7 lowest registers (register mask 0x007F)
19234 This LDM will finally contain between 2 and 7 registers
19235 - One with the 7 highest registers (register mask 0xDF80)
19236 This ldm will finally contain between 2 and 7 registers. */
19237 insn_low_registers = insn_all_registers & 0x007F;
19238 insn_high_registers = insn_all_registers & 0xDF80;
19239
19240 /* A spare register may be needed during this veneer to temporarily
19241 handle the base register. This register will be restored with
19242 the last LDM operation.
19243 The usable register may be any general purpose register (that excludes
19244 PC, SP, LR : register mask is 0x1FFF). */
19245 usable_register_mask = 0x1FFF;
19246
19247 /* Generate the stub function. */
19248 if (!wback && !restore_pc && !restore_rn)
19249 {
19250 /* Choose a Ri in the low-register-list that will be restored. */
19251 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
19252
19253 /* MOV Ri, Rn. */
19254 current_stub_contents =
19255 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19256 create_instruction_mov (ri, rn));
19257
19258 /* LDMDB Ri!, {R-high-register-list}. */
19259 current_stub_contents =
19260 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19261 create_instruction_ldmdb
19262 (ri, /*wback=*/1, insn_high_registers));
19263
19264 /* LDMDB Ri, {R-low-register-list}. */
19265 current_stub_contents =
19266 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19267 create_instruction_ldmdb
19268 (ri, /*wback=*/0, insn_low_registers));
19269
19270 /* B initial_insn_addr+4. */
19271 current_stub_contents =
19272 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19273 create_instruction_branch_absolute
19274 (initial_insn_addr - current_stub_contents));
19275 }
19276 else if (wback && !restore_pc && !restore_rn)
19277 {
19278 /* LDMDB Rn!, {R-high-register-list}. */
19279 current_stub_contents =
19280 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19281 create_instruction_ldmdb
19282 (rn, /*wback=*/1, insn_high_registers));
19283
19284 /* LDMDB Rn!, {R-low-register-list}. */
19285 current_stub_contents =
19286 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19287 create_instruction_ldmdb
19288 (rn, /*wback=*/1, insn_low_registers));
19289
19290 /* B initial_insn_addr+4. */
19291 current_stub_contents =
19292 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19293 create_instruction_branch_absolute
19294 (initial_insn_addr - current_stub_contents));
19295 }
19296 else if (!wback && restore_pc && !restore_rn)
19297 {
19298 /* Choose a Ri in the high-register-list that will be restored. */
19299 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19300
19301 /* SUB Ri, Rn, #(4*nb_registers). */
19302 current_stub_contents =
19303 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19304 create_instruction_sub (ri, rn, (4 * nb_registers)));
19305
19306 /* LDMIA Ri!, {R-low-register-list}. */
19307 current_stub_contents =
19308 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19309 create_instruction_ldmia
19310 (ri, /*wback=*/1, insn_low_registers));
19311
19312 /* LDMIA Ri, {R-high-register-list}. */
19313 current_stub_contents =
19314 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19315 create_instruction_ldmia
19316 (ri, /*wback=*/0, insn_high_registers));
19317 }
19318 else if (wback && restore_pc && !restore_rn)
19319 {
19320 /* Choose a Ri in the high-register-list that will be restored. */
19321 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19322
19323 /* SUB Rn, Rn, #(4*nb_registers) */
19324 current_stub_contents =
19325 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19326 create_instruction_sub (rn, rn, (4 * nb_registers)));
19327
19328 /* MOV Ri, Rn. */
19329 current_stub_contents =
19330 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19331 create_instruction_mov (ri, rn));
19332
19333 /* LDMIA Ri!, {R-low-register-list}. */
19334 current_stub_contents =
19335 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19336 create_instruction_ldmia
19337 (ri, /*wback=*/1, insn_low_registers));
19338
19339 /* LDMIA Ri, {R-high-register-list}. */
19340 current_stub_contents =
19341 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19342 create_instruction_ldmia
19343 (ri, /*wback=*/0, insn_high_registers));
19344 }
19345 else if (!wback && !restore_pc && restore_rn)
19346 {
19347 ri = rn;
19348 if (!(insn_low_registers & (1 << rn)))
19349 {
19350 /* Choose a Ri in the low-register-list that will be restored. */
19351 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
19352
19353 /* MOV Ri, Rn. */
19354 current_stub_contents =
19355 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19356 create_instruction_mov (ri, rn));
19357 }
19358
19359 /* LDMDB Ri!, {R-high-register-list}. */
19360 current_stub_contents =
19361 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19362 create_instruction_ldmdb
19363 (ri, /*wback=*/1, insn_high_registers));
19364
19365 /* LDMDB Ri, {R-low-register-list}. */
19366 current_stub_contents =
19367 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19368 create_instruction_ldmdb
19369 (ri, /*wback=*/0, insn_low_registers));
19370
19371 /* B initial_insn_addr+4. */
19372 current_stub_contents =
19373 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19374 create_instruction_branch_absolute
19375 (initial_insn_addr - current_stub_contents));
19376 }
19377 else if (!wback && restore_pc && restore_rn)
19378 {
19379 ri = rn;
19380 if (!(insn_high_registers & (1 << rn)))
19381 {
19382 /* Choose a Ri in the high-register-list that will be restored. */
19383 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19384 }
19385
19386 /* SUB Ri, Rn, #(4*nb_registers). */
19387 current_stub_contents =
19388 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19389 create_instruction_sub (ri, rn, (4 * nb_registers)));
19390
19391 /* LDMIA Ri!, {R-low-register-list}. */
19392 current_stub_contents =
19393 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19394 create_instruction_ldmia
19395 (ri, /*wback=*/1, insn_low_registers));
19396
19397 /* LDMIA Ri, {R-high-register-list}. */
19398 current_stub_contents =
19399 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19400 create_instruction_ldmia
19401 (ri, /*wback=*/0, insn_high_registers));
19402 }
19403 else if (wback && restore_rn)
19404 {
19405 /* The assembler should not have accepted to encode this. */
19406 BFD_ASSERT (0 && "Cannot patch an instruction that has an "
19407 "undefined behavior.\n");
19408 }
19409
19410 /* Fill the remaining of the stub with deterministic contents. */
19411 current_stub_contents =
19412 stm32l4xx_fill_stub_udf (htab, output_bfd,
19413 base_stub_contents, current_stub_contents,
19414 base_stub_contents +
19415 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19416
19417 }
19418
19419 static void
19420 stm32l4xx_create_replacing_stub_vldm (struct elf32_arm_link_hash_table * htab,
19421 bfd * output_bfd,
19422 const insn32 initial_insn,
19423 const bfd_byte *const initial_insn_addr,
19424 bfd_byte *const base_stub_contents)
19425 {
19426 int num_words = ((unsigned int) initial_insn << 24) >> 24;
19427 bfd_byte *current_stub_contents = base_stub_contents;
19428
19429 BFD_ASSERT (is_thumb2_vldm (initial_insn));
19430
19431 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
19432 smaller than 8 words load sequences that do not cause the
19433 hardware issue. */
19434 if (num_words <= 8)
19435 {
19436 /* Untouched instruction. */
19437 current_stub_contents =
19438 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19439 initial_insn);
19440
19441 /* B initial_insn_addr+4. */
19442 current_stub_contents =
19443 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19444 create_instruction_branch_absolute
19445 (initial_insn_addr - current_stub_contents));
19446 }
19447 else
19448 {
19449 bfd_boolean is_dp = /* DP encoding. */
19450 (initial_insn & 0xfe100f00) == 0xec100b00;
19451 bfd_boolean is_ia_nobang = /* (IA without !). */
19452 (((initial_insn << 7) >> 28) & 0xd) == 0x4;
19453 bfd_boolean is_ia_bang = /* (IA with !) - includes VPOP. */
19454 (((initial_insn << 7) >> 28) & 0xd) == 0x5;
19455 bfd_boolean is_db_bang = /* (DB with !). */
19456 (((initial_insn << 7) >> 28) & 0xd) == 0x9;
19457 int base_reg = ((unsigned int) initial_insn << 12) >> 28;
19458 /* d = UInt (Vd:D);. */
19459 int first_reg = ((((unsigned int) initial_insn << 16) >> 28) << 1)
19460 | (((unsigned int)initial_insn << 9) >> 31);
19461
19462 /* Compute the number of 8-words chunks needed to split. */
19463 int chunks = (num_words % 8) ? (num_words / 8 + 1) : (num_words / 8);
19464 int chunk;
19465
19466 /* The test coverage has been done assuming the following
19467 hypothesis that exactly one of the previous is_ predicates is
19468 true. */
19469 BFD_ASSERT ( (is_ia_nobang ^ is_ia_bang ^ is_db_bang)
19470 && !(is_ia_nobang & is_ia_bang & is_db_bang));
19471
19472 /* We treat the cutting of the words in one pass for all
19473 cases, then we emit the adjustments:
19474
19475 vldm rx, {...}
19476 -> vldm rx!, {8_words_or_less} for each needed 8_word
19477 -> sub rx, rx, #size (list)
19478
19479 vldm rx!, {...}
19480 -> vldm rx!, {8_words_or_less} for each needed 8_word
19481 This also handles vpop instruction (when rx is sp)
19482
19483 vldmd rx!, {...}
19484 -> vldmb rx!, {8_words_or_less} for each needed 8_word. */
19485 for (chunk = 0; chunk < chunks; ++chunk)
19486 {
19487 bfd_vma new_insn = 0;
19488
19489 if (is_ia_nobang || is_ia_bang)
19490 {
19491 new_insn = create_instruction_vldmia
19492 (base_reg,
19493 is_dp,
19494 /*wback= . */1,
19495 chunks - (chunk + 1) ?
19496 8 : num_words - chunk * 8,
19497 first_reg + chunk * 8);
19498 }
19499 else if (is_db_bang)
19500 {
19501 new_insn = create_instruction_vldmdb
19502 (base_reg,
19503 is_dp,
19504 chunks - (chunk + 1) ?
19505 8 : num_words - chunk * 8,
19506 first_reg + chunk * 8);
19507 }
19508
19509 if (new_insn)
19510 current_stub_contents =
19511 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19512 new_insn);
19513 }
19514
19515 /* Only this case requires the base register compensation
19516 subtract. */
19517 if (is_ia_nobang)
19518 {
19519 current_stub_contents =
19520 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19521 create_instruction_sub
19522 (base_reg, base_reg, 4*num_words));
19523 }
19524
19525 /* B initial_insn_addr+4. */
19526 current_stub_contents =
19527 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19528 create_instruction_branch_absolute
19529 (initial_insn_addr - current_stub_contents));
19530 }
19531
19532 /* Fill the remaining of the stub with deterministic contents. */
19533 current_stub_contents =
19534 stm32l4xx_fill_stub_udf (htab, output_bfd,
19535 base_stub_contents, current_stub_contents,
19536 base_stub_contents +
19537 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
19538 }
19539
19540 static void
19541 stm32l4xx_create_replacing_stub (struct elf32_arm_link_hash_table * htab,
19542 bfd * output_bfd,
19543 const insn32 wrong_insn,
19544 const bfd_byte *const wrong_insn_addr,
19545 bfd_byte *const stub_contents)
19546 {
19547 if (is_thumb2_ldmia (wrong_insn))
19548 stm32l4xx_create_replacing_stub_ldmia (htab, output_bfd,
19549 wrong_insn, wrong_insn_addr,
19550 stub_contents);
19551 else if (is_thumb2_ldmdb (wrong_insn))
19552 stm32l4xx_create_replacing_stub_ldmdb (htab, output_bfd,
19553 wrong_insn, wrong_insn_addr,
19554 stub_contents);
19555 else if (is_thumb2_vldm (wrong_insn))
19556 stm32l4xx_create_replacing_stub_vldm (htab, output_bfd,
19557 wrong_insn, wrong_insn_addr,
19558 stub_contents);
19559 }
19560
19561 /* End of stm32l4xx work-around. */
19562
19563
19564 /* Do code byteswapping. Return FALSE afterwards so that the section is
19565 written out as normal. */
19566
19567 static bfd_boolean
19568 elf32_arm_write_section (bfd *output_bfd,
19569 struct bfd_link_info *link_info,
19570 asection *sec,
19571 bfd_byte *contents)
19572 {
19573 unsigned int mapcount, errcount;
19574 _arm_elf_section_data *arm_data;
19575 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
19576 elf32_arm_section_map *map;
19577 elf32_vfp11_erratum_list *errnode;
19578 elf32_stm32l4xx_erratum_list *stm32l4xx_errnode;
19579 bfd_vma ptr;
19580 bfd_vma end;
19581 bfd_vma offset = sec->output_section->vma + sec->output_offset;
19582 bfd_byte tmp;
19583 unsigned int i;
19584
19585 if (globals == NULL)
19586 return FALSE;
19587
19588 /* If this section has not been allocated an _arm_elf_section_data
19589 structure then we cannot record anything. */
19590 arm_data = get_arm_elf_section_data (sec);
19591 if (arm_data == NULL)
19592 return FALSE;
19593
19594 mapcount = arm_data->mapcount;
19595 map = arm_data->map;
19596 errcount = arm_data->erratumcount;
19597
19598 if (errcount != 0)
19599 {
19600 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
19601
19602 for (errnode = arm_data->erratumlist; errnode != 0;
19603 errnode = errnode->next)
19604 {
19605 bfd_vma target = errnode->vma - offset;
19606
19607 switch (errnode->type)
19608 {
19609 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
19610 {
19611 bfd_vma branch_to_veneer;
19612 /* Original condition code of instruction, plus bit mask for
19613 ARM B instruction. */
19614 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
19615 | 0x0a000000;
19616
19617 /* The instruction is before the label. */
19618 target -= 4;
19619
19620 /* Above offset included in -4 below. */
19621 branch_to_veneer = errnode->u.b.veneer->vma
19622 - errnode->vma - 4;
19623
19624 if ((signed) branch_to_veneer < -(1 << 25)
19625 || (signed) branch_to_veneer >= (1 << 25))
19626 _bfd_error_handler (_("%pB: error: VFP11 veneer out of "
19627 "range"), output_bfd);
19628
19629 insn |= (branch_to_veneer >> 2) & 0xffffff;
19630 contents[endianflip ^ target] = insn & 0xff;
19631 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
19632 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
19633 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
19634 }
19635 break;
19636
19637 case VFP11_ERRATUM_ARM_VENEER:
19638 {
19639 bfd_vma branch_from_veneer;
19640 unsigned int insn;
19641
19642 /* Take size of veneer into account. */
19643 branch_from_veneer = errnode->u.v.branch->vma
19644 - errnode->vma - 12;
19645
19646 if ((signed) branch_from_veneer < -(1 << 25)
19647 || (signed) branch_from_veneer >= (1 << 25))
19648 _bfd_error_handler (_("%pB: error: VFP11 veneer out of "
19649 "range"), output_bfd);
19650
19651 /* Original instruction. */
19652 insn = errnode->u.v.branch->u.b.vfp_insn;
19653 contents[endianflip ^ target] = insn & 0xff;
19654 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
19655 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
19656 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
19657
19658 /* Branch back to insn after original insn. */
19659 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
19660 contents[endianflip ^ (target + 4)] = insn & 0xff;
19661 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
19662 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
19663 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
19664 }
19665 break;
19666
19667 default:
19668 abort ();
19669 }
19670 }
19671 }
19672
19673 if (arm_data->stm32l4xx_erratumcount != 0)
19674 {
19675 for (stm32l4xx_errnode = arm_data->stm32l4xx_erratumlist;
19676 stm32l4xx_errnode != 0;
19677 stm32l4xx_errnode = stm32l4xx_errnode->next)
19678 {
19679 bfd_vma target = stm32l4xx_errnode->vma - offset;
19680
19681 switch (stm32l4xx_errnode->type)
19682 {
19683 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
19684 {
19685 unsigned int insn;
19686 bfd_vma branch_to_veneer =
19687 stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma;
19688
19689 if ((signed) branch_to_veneer < -(1 << 24)
19690 || (signed) branch_to_veneer >= (1 << 24))
19691 {
19692 bfd_vma out_of_range =
19693 ((signed) branch_to_veneer < -(1 << 24)) ?
19694 - branch_to_veneer - (1 << 24) :
19695 ((signed) branch_to_veneer >= (1 << 24)) ?
19696 branch_to_veneer - (1 << 24) : 0;
19697
19698 _bfd_error_handler
19699 (_("%pB(%#" PRIx64 "): error: "
19700 "cannot create STM32L4XX veneer; "
19701 "jump out of range by %" PRId64 " bytes; "
19702 "cannot encode branch instruction"),
19703 output_bfd,
19704 (uint64_t) (stm32l4xx_errnode->vma - 4),
19705 (int64_t) out_of_range);
19706 continue;
19707 }
19708
19709 insn = create_instruction_branch_absolute
19710 (stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma);
19711
19712 /* The instruction is before the label. */
19713 target -= 4;
19714
19715 put_thumb2_insn (globals, output_bfd,
19716 (bfd_vma) insn, contents + target);
19717 }
19718 break;
19719
19720 case STM32L4XX_ERRATUM_VENEER:
19721 {
19722 bfd_byte * veneer;
19723 bfd_byte * veneer_r;
19724 unsigned int insn;
19725
19726 veneer = contents + target;
19727 veneer_r = veneer
19728 + stm32l4xx_errnode->u.b.veneer->vma
19729 - stm32l4xx_errnode->vma - 4;
19730
19731 if ((signed) (veneer_r - veneer -
19732 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE >
19733 STM32L4XX_ERRATUM_LDM_VENEER_SIZE ?
19734 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE :
19735 STM32L4XX_ERRATUM_LDM_VENEER_SIZE) < -(1 << 24)
19736 || (signed) (veneer_r - veneer) >= (1 << 24))
19737 {
19738 _bfd_error_handler (_("%pB: error: cannot create STM32L4XX "
19739 "veneer"), output_bfd);
19740 continue;
19741 }
19742
19743 /* Original instruction. */
19744 insn = stm32l4xx_errnode->u.v.branch->u.b.insn;
19745
19746 stm32l4xx_create_replacing_stub
19747 (globals, output_bfd, insn, (void*)veneer_r, (void*)veneer);
19748 }
19749 break;
19750
19751 default:
19752 abort ();
19753 }
19754 }
19755 }
19756
19757 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
19758 {
19759 arm_unwind_table_edit *edit_node
19760 = arm_data->u.exidx.unwind_edit_list;
19761 /* Now, sec->size is the size of the section we will write. The original
19762 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
19763 markers) was sec->rawsize. (This isn't the case if we perform no
19764 edits, then rawsize will be zero and we should use size). */
19765 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
19766 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
19767 unsigned int in_index, out_index;
19768 bfd_vma add_to_offsets = 0;
19769
19770 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
19771 {
19772 if (edit_node)
19773 {
19774 unsigned int edit_index = edit_node->index;
19775
19776 if (in_index < edit_index && in_index * 8 < input_size)
19777 {
19778 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
19779 contents + in_index * 8, add_to_offsets);
19780 out_index++;
19781 in_index++;
19782 }
19783 else if (in_index == edit_index
19784 || (in_index * 8 >= input_size
19785 && edit_index == UINT_MAX))
19786 {
19787 switch (edit_node->type)
19788 {
19789 case DELETE_EXIDX_ENTRY:
19790 in_index++;
19791 add_to_offsets += 8;
19792 break;
19793
19794 case INSERT_EXIDX_CANTUNWIND_AT_END:
19795 {
19796 asection *text_sec = edit_node->linked_section;
19797 bfd_vma text_offset = text_sec->output_section->vma
19798 + text_sec->output_offset
19799 + text_sec->size;
19800 bfd_vma exidx_offset = offset + out_index * 8;
19801 unsigned long prel31_offset;
19802
19803 /* Note: this is meant to be equivalent to an
19804 R_ARM_PREL31 relocation. These synthetic
19805 EXIDX_CANTUNWIND markers are not relocated by the
19806 usual BFD method. */
19807 prel31_offset = (text_offset - exidx_offset)
19808 & 0x7ffffffful;
19809 if (bfd_link_relocatable (link_info))
19810 {
19811 /* Here relocation for new EXIDX_CANTUNWIND is
19812 created, so there is no need to
19813 adjust offset by hand. */
19814 prel31_offset = text_sec->output_offset
19815 + text_sec->size;
19816 }
19817
19818 /* First address we can't unwind. */
19819 bfd_put_32 (output_bfd, prel31_offset,
19820 &edited_contents[out_index * 8]);
19821
19822 /* Code for EXIDX_CANTUNWIND. */
19823 bfd_put_32 (output_bfd, 0x1,
19824 &edited_contents[out_index * 8 + 4]);
19825
19826 out_index++;
19827 add_to_offsets -= 8;
19828 }
19829 break;
19830 }
19831
19832 edit_node = edit_node->next;
19833 }
19834 }
19835 else
19836 {
19837 /* No more edits, copy remaining entries verbatim. */
19838 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
19839 contents + in_index * 8, add_to_offsets);
19840 out_index++;
19841 in_index++;
19842 }
19843 }
19844
19845 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
19846 bfd_set_section_contents (output_bfd, sec->output_section,
19847 edited_contents,
19848 (file_ptr) sec->output_offset, sec->size);
19849
19850 return TRUE;
19851 }
19852
19853 /* Fix code to point to Cortex-A8 erratum stubs. */
19854 if (globals->fix_cortex_a8)
19855 {
19856 struct a8_branch_to_stub_data data;
19857
19858 data.writing_section = sec;
19859 data.contents = contents;
19860
19861 bfd_hash_traverse (& globals->stub_hash_table, make_branch_to_a8_stub,
19862 & data);
19863 }
19864
19865 if (mapcount == 0)
19866 return FALSE;
19867
19868 if (globals->byteswap_code)
19869 {
19870 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
19871
19872 ptr = map[0].vma;
19873 for (i = 0; i < mapcount; i++)
19874 {
19875 if (i == mapcount - 1)
19876 end = sec->size;
19877 else
19878 end = map[i + 1].vma;
19879
19880 switch (map[i].type)
19881 {
19882 case 'a':
19883 /* Byte swap code words. */
19884 while (ptr + 3 < end)
19885 {
19886 tmp = contents[ptr];
19887 contents[ptr] = contents[ptr + 3];
19888 contents[ptr + 3] = tmp;
19889 tmp = contents[ptr + 1];
19890 contents[ptr + 1] = contents[ptr + 2];
19891 contents[ptr + 2] = tmp;
19892 ptr += 4;
19893 }
19894 break;
19895
19896 case 't':
19897 /* Byte swap code halfwords. */
19898 while (ptr + 1 < end)
19899 {
19900 tmp = contents[ptr];
19901 contents[ptr] = contents[ptr + 1];
19902 contents[ptr + 1] = tmp;
19903 ptr += 2;
19904 }
19905 break;
19906
19907 case 'd':
19908 /* Leave data alone. */
19909 break;
19910 }
19911 ptr = end;
19912 }
19913 }
19914
19915 free (map);
19916 arm_data->mapcount = -1;
19917 arm_data->mapsize = 0;
19918 arm_data->map = NULL;
19919
19920 return FALSE;
19921 }
19922
19923 /* Mangle thumb function symbols as we read them in. */
19924
19925 static bfd_boolean
19926 elf32_arm_swap_symbol_in (bfd * abfd,
19927 const void *psrc,
19928 const void *pshn,
19929 Elf_Internal_Sym *dst)
19930 {
19931 Elf_Internal_Shdr *symtab_hdr;
19932 const char *name = NULL;
19933
19934 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
19935 return FALSE;
19936 dst->st_target_internal = 0;
19937
19938 /* New EABI objects mark thumb function symbols by setting the low bit of
19939 the address. */
19940 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
19941 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
19942 {
19943 if (dst->st_value & 1)
19944 {
19945 dst->st_value &= ~(bfd_vma) 1;
19946 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal,
19947 ST_BRANCH_TO_THUMB);
19948 }
19949 else
19950 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_ARM);
19951 }
19952 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
19953 {
19954 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
19955 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_THUMB);
19956 }
19957 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
19958 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_LONG);
19959 else
19960 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_UNKNOWN);
19961
19962 /* Mark CMSE special symbols. */
19963 symtab_hdr = & elf_symtab_hdr (abfd);
19964 if (symtab_hdr->sh_size)
19965 name = bfd_elf_sym_name (abfd, symtab_hdr, dst, NULL);
19966 if (name && CONST_STRNEQ (name, CMSE_PREFIX))
19967 ARM_SET_SYM_CMSE_SPCL (dst->st_target_internal);
19968
19969 return TRUE;
19970 }
19971
19972
19973 /* Mangle thumb function symbols as we write them out. */
19974
19975 static void
19976 elf32_arm_swap_symbol_out (bfd *abfd,
19977 const Elf_Internal_Sym *src,
19978 void *cdst,
19979 void *shndx)
19980 {
19981 Elf_Internal_Sym newsym;
19982
19983 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
19984 of the address set, as per the new EABI. We do this unconditionally
19985 because objcopy does not set the elf header flags until after
19986 it writes out the symbol table. */
19987 if (ARM_GET_SYM_BRANCH_TYPE (src->st_target_internal) == ST_BRANCH_TO_THUMB)
19988 {
19989 newsym = *src;
19990 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
19991 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
19992 if (newsym.st_shndx != SHN_UNDEF)
19993 {
19994 /* Do this only for defined symbols. At link type, the static
19995 linker will simulate the work of dynamic linker of resolving
19996 symbols and will carry over the thumbness of found symbols to
19997 the output symbol table. It's not clear how it happens, but
19998 the thumbness of undefined symbols can well be different at
19999 runtime, and writing '1' for them will be confusing for users
20000 and possibly for dynamic linker itself.
20001 */
20002 newsym.st_value |= 1;
20003 }
20004
20005 src = &newsym;
20006 }
20007 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
20008 }
20009
20010 /* Add the PT_ARM_EXIDX program header. */
20011
20012 static bfd_boolean
20013 elf32_arm_modify_segment_map (bfd *abfd,
20014 struct bfd_link_info *info ATTRIBUTE_UNUSED)
20015 {
20016 struct elf_segment_map *m;
20017 asection *sec;
20018
20019 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
20020 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
20021 {
20022 /* If there is already a PT_ARM_EXIDX header, then we do not
20023 want to add another one. This situation arises when running
20024 "strip"; the input binary already has the header. */
20025 m = elf_seg_map (abfd);
20026 while (m && m->p_type != PT_ARM_EXIDX)
20027 m = m->next;
20028 if (!m)
20029 {
20030 m = (struct elf_segment_map *)
20031 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
20032 if (m == NULL)
20033 return FALSE;
20034 m->p_type = PT_ARM_EXIDX;
20035 m->count = 1;
20036 m->sections[0] = sec;
20037
20038 m->next = elf_seg_map (abfd);
20039 elf_seg_map (abfd) = m;
20040 }
20041 }
20042
20043 return TRUE;
20044 }
20045
20046 /* We may add a PT_ARM_EXIDX program header. */
20047
20048 static int
20049 elf32_arm_additional_program_headers (bfd *abfd,
20050 struct bfd_link_info *info ATTRIBUTE_UNUSED)
20051 {
20052 asection *sec;
20053
20054 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
20055 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
20056 return 1;
20057 else
20058 return 0;
20059 }
20060
20061 /* Hook called by the linker routine which adds symbols from an object
20062 file. */
20063
20064 static bfd_boolean
20065 elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
20066 Elf_Internal_Sym *sym, const char **namep,
20067 flagword *flagsp, asection **secp, bfd_vma *valp)
20068 {
20069 if (elf32_arm_hash_table (info) == NULL)
20070 return FALSE;
20071
20072 if (elf32_arm_hash_table (info)->vxworks_p
20073 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
20074 flagsp, secp, valp))
20075 return FALSE;
20076
20077 return TRUE;
20078 }
20079
20080 /* We use this to override swap_symbol_in and swap_symbol_out. */
20081 const struct elf_size_info elf32_arm_size_info =
20082 {
20083 sizeof (Elf32_External_Ehdr),
20084 sizeof (Elf32_External_Phdr),
20085 sizeof (Elf32_External_Shdr),
20086 sizeof (Elf32_External_Rel),
20087 sizeof (Elf32_External_Rela),
20088 sizeof (Elf32_External_Sym),
20089 sizeof (Elf32_External_Dyn),
20090 sizeof (Elf_External_Note),
20091 4,
20092 1,
20093 32, 2,
20094 ELFCLASS32, EV_CURRENT,
20095 bfd_elf32_write_out_phdrs,
20096 bfd_elf32_write_shdrs_and_ehdr,
20097 bfd_elf32_checksum_contents,
20098 bfd_elf32_write_relocs,
20099 elf32_arm_swap_symbol_in,
20100 elf32_arm_swap_symbol_out,
20101 bfd_elf32_slurp_reloc_table,
20102 bfd_elf32_slurp_symbol_table,
20103 bfd_elf32_swap_dyn_in,
20104 bfd_elf32_swap_dyn_out,
20105 bfd_elf32_swap_reloc_in,
20106 bfd_elf32_swap_reloc_out,
20107 bfd_elf32_swap_reloca_in,
20108 bfd_elf32_swap_reloca_out
20109 };
20110
20111 static bfd_vma
20112 read_code32 (const bfd *abfd, const bfd_byte *addr)
20113 {
20114 /* V7 BE8 code is always little endian. */
20115 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
20116 return bfd_getl32 (addr);
20117
20118 return bfd_get_32 (abfd, addr);
20119 }
20120
20121 static bfd_vma
20122 read_code16 (const bfd *abfd, const bfd_byte *addr)
20123 {
20124 /* V7 BE8 code is always little endian. */
20125 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
20126 return bfd_getl16 (addr);
20127
20128 return bfd_get_16 (abfd, addr);
20129 }
20130
20131 /* Return size of plt0 entry starting at ADDR
20132 or (bfd_vma) -1 if size can not be determined. */
20133
20134 static bfd_vma
20135 elf32_arm_plt0_size (const bfd *abfd, const bfd_byte *addr)
20136 {
20137 bfd_vma first_word;
20138 bfd_vma plt0_size;
20139
20140 first_word = read_code32 (abfd, addr);
20141
20142 if (first_word == elf32_arm_plt0_entry[0])
20143 plt0_size = 4 * ARRAY_SIZE (elf32_arm_plt0_entry);
20144 else if (first_word == elf32_thumb2_plt0_entry[0])
20145 plt0_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
20146 else
20147 /* We don't yet handle this PLT format. */
20148 return (bfd_vma) -1;
20149
20150 return plt0_size;
20151 }
20152
20153 /* Return size of plt entry starting at offset OFFSET
20154 of plt section located at address START
20155 or (bfd_vma) -1 if size can not be determined. */
20156
20157 static bfd_vma
20158 elf32_arm_plt_size (const bfd *abfd, const bfd_byte *start, bfd_vma offset)
20159 {
20160 bfd_vma first_insn;
20161 bfd_vma plt_size = 0;
20162 const bfd_byte *addr = start + offset;
20163
20164 /* PLT entry size if fixed on Thumb-only platforms. */
20165 if (read_code32 (abfd, start) == elf32_thumb2_plt0_entry[0])
20166 return 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
20167
20168 /* Respect Thumb stub if necessary. */
20169 if (read_code16 (abfd, addr) == elf32_arm_plt_thumb_stub[0])
20170 {
20171 plt_size += 2 * ARRAY_SIZE(elf32_arm_plt_thumb_stub);
20172 }
20173
20174 /* Strip immediate from first add. */
20175 first_insn = read_code32 (abfd, addr + plt_size) & 0xffffff00;
20176
20177 #ifdef FOUR_WORD_PLT
20178 if (first_insn == elf32_arm_plt_entry[0])
20179 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry);
20180 #else
20181 if (first_insn == elf32_arm_plt_entry_long[0])
20182 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_long);
20183 else if (first_insn == elf32_arm_plt_entry_short[0])
20184 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_short);
20185 #endif
20186 else
20187 /* We don't yet handle this PLT format. */
20188 return (bfd_vma) -1;
20189
20190 return plt_size;
20191 }
20192
20193 /* Implementation is shamelessly borrowed from _bfd_elf_get_synthetic_symtab. */
20194
20195 static long
20196 elf32_arm_get_synthetic_symtab (bfd *abfd,
20197 long symcount ATTRIBUTE_UNUSED,
20198 asymbol **syms ATTRIBUTE_UNUSED,
20199 long dynsymcount,
20200 asymbol **dynsyms,
20201 asymbol **ret)
20202 {
20203 asection *relplt;
20204 asymbol *s;
20205 arelent *p;
20206 long count, i, n;
20207 size_t size;
20208 Elf_Internal_Shdr *hdr;
20209 char *names;
20210 asection *plt;
20211 bfd_vma offset;
20212 bfd_byte *data;
20213
20214 *ret = NULL;
20215
20216 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
20217 return 0;
20218
20219 if (dynsymcount <= 0)
20220 return 0;
20221
20222 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
20223 if (relplt == NULL)
20224 return 0;
20225
20226 hdr = &elf_section_data (relplt)->this_hdr;
20227 if (hdr->sh_link != elf_dynsymtab (abfd)
20228 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
20229 return 0;
20230
20231 plt = bfd_get_section_by_name (abfd, ".plt");
20232 if (plt == NULL)
20233 return 0;
20234
20235 if (!elf32_arm_size_info.slurp_reloc_table (abfd, relplt, dynsyms, TRUE))
20236 return -1;
20237
20238 data = plt->contents;
20239 if (data == NULL)
20240 {
20241 if (!bfd_get_full_section_contents(abfd, (asection *) plt, &data) || data == NULL)
20242 return -1;
20243 bfd_cache_section_contents((asection *) plt, data);
20244 }
20245
20246 count = relplt->size / hdr->sh_entsize;
20247 size = count * sizeof (asymbol);
20248 p = relplt->relocation;
20249 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
20250 {
20251 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
20252 if (p->addend != 0)
20253 size += sizeof ("+0x") - 1 + 8;
20254 }
20255
20256 s = *ret = (asymbol *) bfd_malloc (size);
20257 if (s == NULL)
20258 return -1;
20259
20260 offset = elf32_arm_plt0_size (abfd, data);
20261 if (offset == (bfd_vma) -1)
20262 return -1;
20263
20264 names = (char *) (s + count);
20265 p = relplt->relocation;
20266 n = 0;
20267 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
20268 {
20269 size_t len;
20270
20271 bfd_vma plt_size = elf32_arm_plt_size (abfd, data, offset);
20272 if (plt_size == (bfd_vma) -1)
20273 break;
20274
20275 *s = **p->sym_ptr_ptr;
20276 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
20277 we are defining a symbol, ensure one of them is set. */
20278 if ((s->flags & BSF_LOCAL) == 0)
20279 s->flags |= BSF_GLOBAL;
20280 s->flags |= BSF_SYNTHETIC;
20281 s->section = plt;
20282 s->value = offset;
20283 s->name = names;
20284 s->udata.p = NULL;
20285 len = strlen ((*p->sym_ptr_ptr)->name);
20286 memcpy (names, (*p->sym_ptr_ptr)->name, len);
20287 names += len;
20288 if (p->addend != 0)
20289 {
20290 char buf[30], *a;
20291
20292 memcpy (names, "+0x", sizeof ("+0x") - 1);
20293 names += sizeof ("+0x") - 1;
20294 bfd_sprintf_vma (abfd, buf, p->addend);
20295 for (a = buf; *a == '0'; ++a)
20296 ;
20297 len = strlen (a);
20298 memcpy (names, a, len);
20299 names += len;
20300 }
20301 memcpy (names, "@plt", sizeof ("@plt"));
20302 names += sizeof ("@plt");
20303 ++s, ++n;
20304 offset += plt_size;
20305 }
20306
20307 return n;
20308 }
20309
20310 static bfd_boolean
20311 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr * hdr)
20312 {
20313 if (hdr->sh_flags & SHF_ARM_PURECODE)
20314 *flags |= SEC_ELF_PURECODE;
20315 return TRUE;
20316 }
20317
20318 static flagword
20319 elf32_arm_lookup_section_flags (char *flag_name)
20320 {
20321 if (!strcmp (flag_name, "SHF_ARM_PURECODE"))
20322 return SHF_ARM_PURECODE;
20323
20324 return SEC_NO_FLAGS;
20325 }
20326
20327 static unsigned int
20328 elf32_arm_count_additional_relocs (asection *sec)
20329 {
20330 struct _arm_elf_section_data *arm_data;
20331 arm_data = get_arm_elf_section_data (sec);
20332
20333 return arm_data == NULL ? 0 : arm_data->additional_reloc_count;
20334 }
20335
20336 /* Called to set the sh_flags, sh_link and sh_info fields of OSECTION which
20337 has a type >= SHT_LOOS. Returns TRUE if these fields were initialised
20338 FALSE otherwise. ISECTION is the best guess matching section from the
20339 input bfd IBFD, but it might be NULL. */
20340
20341 static bfd_boolean
20342 elf32_arm_copy_special_section_fields (const bfd *ibfd ATTRIBUTE_UNUSED,
20343 bfd *obfd ATTRIBUTE_UNUSED,
20344 const Elf_Internal_Shdr *isection ATTRIBUTE_UNUSED,
20345 Elf_Internal_Shdr *osection)
20346 {
20347 switch (osection->sh_type)
20348 {
20349 case SHT_ARM_EXIDX:
20350 {
20351 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
20352 Elf_Internal_Shdr **iheaders = elf_elfsections (ibfd);
20353 unsigned i = 0;
20354
20355 osection->sh_flags = SHF_ALLOC | SHF_LINK_ORDER;
20356 osection->sh_info = 0;
20357
20358 /* The sh_link field must be set to the text section associated with
20359 this index section. Unfortunately the ARM EHABI does not specify
20360 exactly how to determine this association. Our caller does try
20361 to match up OSECTION with its corresponding input section however
20362 so that is a good first guess. */
20363 if (isection != NULL
20364 && osection->bfd_section != NULL
20365 && isection->bfd_section != NULL
20366 && isection->bfd_section->output_section != NULL
20367 && isection->bfd_section->output_section == osection->bfd_section
20368 && iheaders != NULL
20369 && isection->sh_link > 0
20370 && isection->sh_link < elf_numsections (ibfd)
20371 && iheaders[isection->sh_link]->bfd_section != NULL
20372 && iheaders[isection->sh_link]->bfd_section->output_section != NULL
20373 )
20374 {
20375 for (i = elf_numsections (obfd); i-- > 0;)
20376 if (oheaders[i]->bfd_section
20377 == iheaders[isection->sh_link]->bfd_section->output_section)
20378 break;
20379 }
20380
20381 if (i == 0)
20382 {
20383 /* Failing that we have to find a matching section ourselves. If
20384 we had the output section name available we could compare that
20385 with input section names. Unfortunately we don't. So instead
20386 we use a simple heuristic and look for the nearest executable
20387 section before this one. */
20388 for (i = elf_numsections (obfd); i-- > 0;)
20389 if (oheaders[i] == osection)
20390 break;
20391 if (i == 0)
20392 break;
20393
20394 while (i-- > 0)
20395 if (oheaders[i]->sh_type == SHT_PROGBITS
20396 && (oheaders[i]->sh_flags & (SHF_ALLOC | SHF_EXECINSTR))
20397 == (SHF_ALLOC | SHF_EXECINSTR))
20398 break;
20399 }
20400
20401 if (i)
20402 {
20403 osection->sh_link = i;
20404 /* If the text section was part of a group
20405 then the index section should be too. */
20406 if (oheaders[i]->sh_flags & SHF_GROUP)
20407 osection->sh_flags |= SHF_GROUP;
20408 return TRUE;
20409 }
20410 }
20411 break;
20412
20413 case SHT_ARM_PREEMPTMAP:
20414 osection->sh_flags = SHF_ALLOC;
20415 break;
20416
20417 case SHT_ARM_ATTRIBUTES:
20418 case SHT_ARM_DEBUGOVERLAY:
20419 case SHT_ARM_OVERLAYSECTION:
20420 default:
20421 break;
20422 }
20423
20424 return FALSE;
20425 }
20426
20427 /* Returns TRUE if NAME is an ARM mapping symbol.
20428 Traditionally the symbols $a, $d and $t have been used.
20429 The ARM ELF standard also defines $x (for A64 code). It also allows a
20430 period initiated suffix to be added to the symbol: "$[adtx]\.[:sym_char]+".
20431 Other tools might also produce $b (Thumb BL), $f, $p, $m and $v, but we do
20432 not support them here. $t.x indicates the start of ThumbEE instructions. */
20433
20434 static bfd_boolean
20435 is_arm_mapping_symbol (const char * name)
20436 {
20437 return name != NULL /* Paranoia. */
20438 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
20439 the mapping symbols could have acquired a prefix.
20440 We do not support this here, since such symbols no
20441 longer conform to the ARM ELF ABI. */
20442 && (name[1] == 'a' || name[1] == 'd' || name[1] == 't' || name[1] == 'x')
20443 && (name[2] == 0 || name[2] == '.');
20444 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
20445 any characters that follow the period are legal characters for the body
20446 of a symbol's name. For now we just assume that this is the case. */
20447 }
20448
20449 /* Make sure that mapping symbols in object files are not removed via the
20450 "strip --strip-unneeded" tool. These symbols are needed in order to
20451 correctly generate interworking veneers, and for byte swapping code
20452 regions. Once an object file has been linked, it is safe to remove the
20453 symbols as they will no longer be needed. */
20454
20455 static void
20456 elf32_arm_backend_symbol_processing (bfd *abfd, asymbol *sym)
20457 {
20458 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
20459 && sym->section != bfd_abs_section_ptr
20460 && is_arm_mapping_symbol (sym->name))
20461 sym->flags |= BSF_KEEP;
20462 }
20463
20464 #undef elf_backend_copy_special_section_fields
20465 #define elf_backend_copy_special_section_fields elf32_arm_copy_special_section_fields
20466
20467 #define ELF_ARCH bfd_arch_arm
20468 #define ELF_TARGET_ID ARM_ELF_DATA
20469 #define ELF_MACHINE_CODE EM_ARM
20470 #ifdef __QNXTARGET__
20471 #define ELF_MAXPAGESIZE 0x1000
20472 #else
20473 #define ELF_MAXPAGESIZE 0x10000
20474 #endif
20475 #define ELF_MINPAGESIZE 0x1000
20476 #define ELF_COMMONPAGESIZE 0x1000
20477
20478 #define bfd_elf32_mkobject elf32_arm_mkobject
20479
20480 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
20481 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
20482 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
20483 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
20484 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
20485 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
20486 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
20487 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
20488 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
20489 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
20490 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
20491 #define bfd_elf32_bfd_final_link elf32_arm_final_link
20492 #define bfd_elf32_get_synthetic_symtab elf32_arm_get_synthetic_symtab
20493
20494 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
20495 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
20496 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
20497 #define elf_backend_check_relocs elf32_arm_check_relocs
20498 #define elf_backend_update_relocs elf32_arm_update_relocs
20499 #define elf_backend_relocate_section elf32_arm_relocate_section
20500 #define elf_backend_write_section elf32_arm_write_section
20501 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
20502 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
20503 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
20504 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
20505 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
20506 #define elf_backend_always_size_sections elf32_arm_always_size_sections
20507 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
20508 #define elf_backend_post_process_headers elf32_arm_post_process_headers
20509 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
20510 #define elf_backend_object_p elf32_arm_object_p
20511 #define elf_backend_fake_sections elf32_arm_fake_sections
20512 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
20513 #define elf_backend_final_write_processing elf32_arm_final_write_processing
20514 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
20515 #define elf_backend_size_info elf32_arm_size_info
20516 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
20517 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
20518 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
20519 #define elf_backend_filter_implib_symbols elf32_arm_filter_implib_symbols
20520 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
20521 #define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
20522 #define elf_backend_count_additional_relocs elf32_arm_count_additional_relocs
20523 #define elf_backend_symbol_processing elf32_arm_backend_symbol_processing
20524
20525 #define elf_backend_can_refcount 1
20526 #define elf_backend_can_gc_sections 1
20527 #define elf_backend_plt_readonly 1
20528 #define elf_backend_want_got_plt 1
20529 #define elf_backend_want_plt_sym 0
20530 #define elf_backend_want_dynrelro 1
20531 #define elf_backend_may_use_rel_p 1
20532 #define elf_backend_may_use_rela_p 0
20533 #define elf_backend_default_use_rela_p 0
20534 #define elf_backend_dtrel_excludes_plt 1
20535
20536 #define elf_backend_got_header_size 12
20537 #define elf_backend_extern_protected_data 1
20538
20539 #undef elf_backend_obj_attrs_vendor
20540 #define elf_backend_obj_attrs_vendor "aeabi"
20541 #undef elf_backend_obj_attrs_section
20542 #define elf_backend_obj_attrs_section ".ARM.attributes"
20543 #undef elf_backend_obj_attrs_arg_type
20544 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
20545 #undef elf_backend_obj_attrs_section_type
20546 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
20547 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
20548 #define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
20549
20550 #undef elf_backend_section_flags
20551 #define elf_backend_section_flags elf32_arm_section_flags
20552 #undef elf_backend_lookup_section_flags_hook
20553 #define elf_backend_lookup_section_flags_hook elf32_arm_lookup_section_flags
20554
20555 #define elf_backend_linux_prpsinfo32_ugid16 TRUE
20556
20557 #include "elf32-target.h"
20558
20559 /* Native Client targets. */
20560
20561 #undef TARGET_LITTLE_SYM
20562 #define TARGET_LITTLE_SYM arm_elf32_nacl_le_vec
20563 #undef TARGET_LITTLE_NAME
20564 #define TARGET_LITTLE_NAME "elf32-littlearm-nacl"
20565 #undef TARGET_BIG_SYM
20566 #define TARGET_BIG_SYM arm_elf32_nacl_be_vec
20567 #undef TARGET_BIG_NAME
20568 #define TARGET_BIG_NAME "elf32-bigarm-nacl"
20569
20570 /* Like elf32_arm_link_hash_table_create -- but overrides
20571 appropriately for NaCl. */
20572
20573 static struct bfd_link_hash_table *
20574 elf32_arm_nacl_link_hash_table_create (bfd *abfd)
20575 {
20576 struct bfd_link_hash_table *ret;
20577
20578 ret = elf32_arm_link_hash_table_create (abfd);
20579 if (ret)
20580 {
20581 struct elf32_arm_link_hash_table *htab
20582 = (struct elf32_arm_link_hash_table *) ret;
20583
20584 htab->nacl_p = 1;
20585
20586 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry);
20587 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry);
20588 }
20589 return ret;
20590 }
20591
20592 /* Since NaCl doesn't use the ARM-specific unwind format, we don't
20593 really need to use elf32_arm_modify_segment_map. But we do it
20594 anyway just to reduce gratuitous differences with the stock ARM backend. */
20595
20596 static bfd_boolean
20597 elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
20598 {
20599 return (elf32_arm_modify_segment_map (abfd, info)
20600 && nacl_modify_segment_map (abfd, info));
20601 }
20602
20603 static bfd_boolean
20604 elf32_arm_nacl_final_write_processing (bfd *abfd)
20605 {
20606 arm_final_write_processing (abfd);
20607 return nacl_final_write_processing (abfd);
20608 }
20609
20610 static bfd_vma
20611 elf32_arm_nacl_plt_sym_val (bfd_vma i, const asection *plt,
20612 const arelent *rel ATTRIBUTE_UNUSED)
20613 {
20614 return plt->vma
20615 + 4 * (ARRAY_SIZE (elf32_arm_nacl_plt0_entry) +
20616 i * ARRAY_SIZE (elf32_arm_nacl_plt_entry));
20617 }
20618
20619 #undef elf32_bed
20620 #define elf32_bed elf32_arm_nacl_bed
20621 #undef bfd_elf32_bfd_link_hash_table_create
20622 #define bfd_elf32_bfd_link_hash_table_create \
20623 elf32_arm_nacl_link_hash_table_create
20624 #undef elf_backend_plt_alignment
20625 #define elf_backend_plt_alignment 4
20626 #undef elf_backend_modify_segment_map
20627 #define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map
20628 #undef elf_backend_modify_program_headers
20629 #define elf_backend_modify_program_headers nacl_modify_program_headers
20630 #undef elf_backend_final_write_processing
20631 #define elf_backend_final_write_processing elf32_arm_nacl_final_write_processing
20632 #undef bfd_elf32_get_synthetic_symtab
20633 #undef elf_backend_plt_sym_val
20634 #define elf_backend_plt_sym_val elf32_arm_nacl_plt_sym_val
20635 #undef elf_backend_copy_special_section_fields
20636
20637 #undef ELF_MINPAGESIZE
20638 #undef ELF_COMMONPAGESIZE
20639
20640
20641 #include "elf32-target.h"
20642
20643 /* Reset to defaults. */
20644 #undef elf_backend_plt_alignment
20645 #undef elf_backend_modify_segment_map
20646 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
20647 #undef elf_backend_modify_program_headers
20648 #undef elf_backend_final_write_processing
20649 #define elf_backend_final_write_processing elf32_arm_final_write_processing
20650 #undef ELF_MINPAGESIZE
20651 #define ELF_MINPAGESIZE 0x1000
20652 #undef ELF_COMMONPAGESIZE
20653 #define ELF_COMMONPAGESIZE 0x1000
20654
20655
20656 /* FDPIC Targets. */
20657
20658 #undef TARGET_LITTLE_SYM
20659 #define TARGET_LITTLE_SYM arm_elf32_fdpic_le_vec
20660 #undef TARGET_LITTLE_NAME
20661 #define TARGET_LITTLE_NAME "elf32-littlearm-fdpic"
20662 #undef TARGET_BIG_SYM
20663 #define TARGET_BIG_SYM arm_elf32_fdpic_be_vec
20664 #undef TARGET_BIG_NAME
20665 #define TARGET_BIG_NAME "elf32-bigarm-fdpic"
20666 #undef elf_match_priority
20667 #define elf_match_priority 128
20668 #undef ELF_OSABI
20669 #define ELF_OSABI ELFOSABI_ARM_FDPIC
20670
20671 /* Like elf32_arm_link_hash_table_create -- but overrides
20672 appropriately for FDPIC. */
20673
20674 static struct bfd_link_hash_table *
20675 elf32_arm_fdpic_link_hash_table_create (bfd *abfd)
20676 {
20677 struct bfd_link_hash_table *ret;
20678
20679 ret = elf32_arm_link_hash_table_create (abfd);
20680 if (ret)
20681 {
20682 struct elf32_arm_link_hash_table *htab = (struct elf32_arm_link_hash_table *) ret;
20683
20684 htab->fdpic_p = 1;
20685 }
20686 return ret;
20687 }
20688
20689 /* We need dynamic symbols for every section, since segments can
20690 relocate independently. */
20691 static bfd_boolean
20692 elf32_arm_fdpic_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
20693 struct bfd_link_info *info
20694 ATTRIBUTE_UNUSED,
20695 asection *p ATTRIBUTE_UNUSED)
20696 {
20697 switch (elf_section_data (p)->this_hdr.sh_type)
20698 {
20699 case SHT_PROGBITS:
20700 case SHT_NOBITS:
20701 /* If sh_type is yet undecided, assume it could be
20702 SHT_PROGBITS/SHT_NOBITS. */
20703 case SHT_NULL:
20704 return FALSE;
20705
20706 /* There shouldn't be section relative relocations
20707 against any other section. */
20708 default:
20709 return TRUE;
20710 }
20711 }
20712
20713 #undef elf32_bed
20714 #define elf32_bed elf32_arm_fdpic_bed
20715
20716 #undef bfd_elf32_bfd_link_hash_table_create
20717 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_fdpic_link_hash_table_create
20718
20719 #undef elf_backend_omit_section_dynsym
20720 #define elf_backend_omit_section_dynsym elf32_arm_fdpic_omit_section_dynsym
20721
20722 #include "elf32-target.h"
20723
20724 #undef elf_match_priority
20725 #undef ELF_OSABI
20726 #undef elf_backend_omit_section_dynsym
20727
20728 /* VxWorks Targets. */
20729
20730 #undef TARGET_LITTLE_SYM
20731 #define TARGET_LITTLE_SYM arm_elf32_vxworks_le_vec
20732 #undef TARGET_LITTLE_NAME
20733 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
20734 #undef TARGET_BIG_SYM
20735 #define TARGET_BIG_SYM arm_elf32_vxworks_be_vec
20736 #undef TARGET_BIG_NAME
20737 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
20738
20739 /* Like elf32_arm_link_hash_table_create -- but overrides
20740 appropriately for VxWorks. */
20741
20742 static struct bfd_link_hash_table *
20743 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
20744 {
20745 struct bfd_link_hash_table *ret;
20746
20747 ret = elf32_arm_link_hash_table_create (abfd);
20748 if (ret)
20749 {
20750 struct elf32_arm_link_hash_table *htab
20751 = (struct elf32_arm_link_hash_table *) ret;
20752 htab->use_rel = 0;
20753 htab->vxworks_p = 1;
20754 }
20755 return ret;
20756 }
20757
20758 static bfd_boolean
20759 elf32_arm_vxworks_final_write_processing (bfd *abfd)
20760 {
20761 arm_final_write_processing (abfd);
20762 return elf_vxworks_final_write_processing (abfd);
20763 }
20764
20765 #undef elf32_bed
20766 #define elf32_bed elf32_arm_vxworks_bed
20767
20768 #undef bfd_elf32_bfd_link_hash_table_create
20769 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
20770 #undef elf_backend_final_write_processing
20771 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
20772 #undef elf_backend_emit_relocs
20773 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
20774
20775 #undef elf_backend_may_use_rel_p
20776 #define elf_backend_may_use_rel_p 0
20777 #undef elf_backend_may_use_rela_p
20778 #define elf_backend_may_use_rela_p 1
20779 #undef elf_backend_default_use_rela_p
20780 #define elf_backend_default_use_rela_p 1
20781 #undef elf_backend_want_plt_sym
20782 #define elf_backend_want_plt_sym 1
20783 #undef ELF_MAXPAGESIZE
20784 #define ELF_MAXPAGESIZE 0x1000
20785
20786 #include "elf32-target.h"
20787
20788
20789 /* Merge backend specific data from an object file to the output
20790 object file when linking. */
20791
20792 static bfd_boolean
20793 elf32_arm_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
20794 {
20795 bfd *obfd = info->output_bfd;
20796 flagword out_flags;
20797 flagword in_flags;
20798 bfd_boolean flags_compatible = TRUE;
20799 asection *sec;
20800
20801 /* Check if we have the same endianness. */
20802 if (! _bfd_generic_verify_endian_match (ibfd, info))
20803 return FALSE;
20804
20805 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
20806 return TRUE;
20807
20808 if (!elf32_arm_merge_eabi_attributes (ibfd, info))
20809 return FALSE;
20810
20811 /* The input BFD must have had its flags initialised. */
20812 /* The following seems bogus to me -- The flags are initialized in
20813 the assembler but I don't think an elf_flags_init field is
20814 written into the object. */
20815 /* BFD_ASSERT (elf_flags_init (ibfd)); */
20816
20817 in_flags = elf_elfheader (ibfd)->e_flags;
20818 out_flags = elf_elfheader (obfd)->e_flags;
20819
20820 /* In theory there is no reason why we couldn't handle this. However
20821 in practice it isn't even close to working and there is no real
20822 reason to want it. */
20823 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
20824 && !(ibfd->flags & DYNAMIC)
20825 && (in_flags & EF_ARM_BE8))
20826 {
20827 _bfd_error_handler (_("error: %pB is already in final BE8 format"),
20828 ibfd);
20829 return FALSE;
20830 }
20831
20832 if (!elf_flags_init (obfd))
20833 {
20834 /* If the input is the default architecture and had the default
20835 flags then do not bother setting the flags for the output
20836 architecture, instead allow future merges to do this. If no
20837 future merges ever set these flags then they will retain their
20838 uninitialised values, which surprise surprise, correspond
20839 to the default values. */
20840 if (bfd_get_arch_info (ibfd)->the_default
20841 && elf_elfheader (ibfd)->e_flags == 0)
20842 return TRUE;
20843
20844 elf_flags_init (obfd) = TRUE;
20845 elf_elfheader (obfd)->e_flags = in_flags;
20846
20847 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
20848 && bfd_get_arch_info (obfd)->the_default)
20849 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
20850
20851 return TRUE;
20852 }
20853
20854 /* Determine what should happen if the input ARM architecture
20855 does not match the output ARM architecture. */
20856 if (! bfd_arm_merge_machines (ibfd, obfd))
20857 return FALSE;
20858
20859 /* Identical flags must be compatible. */
20860 if (in_flags == out_flags)
20861 return TRUE;
20862
20863 /* Check to see if the input BFD actually contains any sections. If
20864 not, its flags may not have been initialised either, but it
20865 cannot actually cause any incompatiblity. Do not short-circuit
20866 dynamic objects; their section list may be emptied by
20867 elf_link_add_object_symbols.
20868
20869 Also check to see if there are no code sections in the input.
20870 In this case there is no need to check for code specific flags.
20871 XXX - do we need to worry about floating-point format compatability
20872 in data sections ? */
20873 if (!(ibfd->flags & DYNAMIC))
20874 {
20875 bfd_boolean null_input_bfd = TRUE;
20876 bfd_boolean only_data_sections = TRUE;
20877
20878 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
20879 {
20880 /* Ignore synthetic glue sections. */
20881 if (strcmp (sec->name, ".glue_7")
20882 && strcmp (sec->name, ".glue_7t"))
20883 {
20884 if ((bfd_get_section_flags (ibfd, sec)
20885 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
20886 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
20887 only_data_sections = FALSE;
20888
20889 null_input_bfd = FALSE;
20890 break;
20891 }
20892 }
20893
20894 if (null_input_bfd || only_data_sections)
20895 return TRUE;
20896 }
20897
20898 /* Complain about various flag mismatches. */
20899 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
20900 EF_ARM_EABI_VERSION (out_flags)))
20901 {
20902 _bfd_error_handler
20903 (_("error: source object %pB has EABI version %d, but target %pB has EABI version %d"),
20904 ibfd, (in_flags & EF_ARM_EABIMASK) >> 24,
20905 obfd, (out_flags & EF_ARM_EABIMASK) >> 24);
20906 return FALSE;
20907 }
20908
20909 /* Not sure what needs to be checked for EABI versions >= 1. */
20910 /* VxWorks libraries do not use these flags. */
20911 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
20912 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
20913 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
20914 {
20915 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
20916 {
20917 _bfd_error_handler
20918 (_("error: %pB is compiled for APCS-%d, whereas target %pB uses APCS-%d"),
20919 ibfd, in_flags & EF_ARM_APCS_26 ? 26 : 32,
20920 obfd, out_flags & EF_ARM_APCS_26 ? 26 : 32);
20921 flags_compatible = FALSE;
20922 }
20923
20924 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
20925 {
20926 if (in_flags & EF_ARM_APCS_FLOAT)
20927 _bfd_error_handler
20928 (_("error: %pB passes floats in float registers, whereas %pB passes them in integer registers"),
20929 ibfd, obfd);
20930 else
20931 _bfd_error_handler
20932 (_("error: %pB passes floats in integer registers, whereas %pB passes them in float registers"),
20933 ibfd, obfd);
20934
20935 flags_compatible = FALSE;
20936 }
20937
20938 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
20939 {
20940 if (in_flags & EF_ARM_VFP_FLOAT)
20941 _bfd_error_handler
20942 (_("error: %pB uses %s instructions, whereas %pB does not"),
20943 ibfd, "VFP", obfd);
20944 else
20945 _bfd_error_handler
20946 (_("error: %pB uses %s instructions, whereas %pB does not"),
20947 ibfd, "FPA", obfd);
20948
20949 flags_compatible = FALSE;
20950 }
20951
20952 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
20953 {
20954 if (in_flags & EF_ARM_MAVERICK_FLOAT)
20955 _bfd_error_handler
20956 (_("error: %pB uses %s instructions, whereas %pB does not"),
20957 ibfd, "Maverick", obfd);
20958 else
20959 _bfd_error_handler
20960 (_("error: %pB does not use %s instructions, whereas %pB does"),
20961 ibfd, "Maverick", obfd);
20962
20963 flags_compatible = FALSE;
20964 }
20965
20966 #ifdef EF_ARM_SOFT_FLOAT
20967 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
20968 {
20969 /* We can allow interworking between code that is VFP format
20970 layout, and uses either soft float or integer regs for
20971 passing floating point arguments and results. We already
20972 know that the APCS_FLOAT flags match; similarly for VFP
20973 flags. */
20974 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
20975 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
20976 {
20977 if (in_flags & EF_ARM_SOFT_FLOAT)
20978 _bfd_error_handler
20979 (_("error: %pB uses software FP, whereas %pB uses hardware FP"),
20980 ibfd, obfd);
20981 else
20982 _bfd_error_handler
20983 (_("error: %pB uses hardware FP, whereas %pB uses software FP"),
20984 ibfd, obfd);
20985
20986 flags_compatible = FALSE;
20987 }
20988 }
20989 #endif
20990
20991 /* Interworking mismatch is only a warning. */
20992 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
20993 {
20994 if (in_flags & EF_ARM_INTERWORK)
20995 {
20996 _bfd_error_handler
20997 (_("warning: %pB supports interworking, whereas %pB does not"),
20998 ibfd, obfd);
20999 }
21000 else
21001 {
21002 _bfd_error_handler
21003 (_("warning: %pB does not support interworking, whereas %pB does"),
21004 ibfd, obfd);
21005 }
21006 }
21007 }
21008
21009 return flags_compatible;
21010 }
21011
21012
21013 /* Symbian OS Targets. */
21014
21015 #undef TARGET_LITTLE_SYM
21016 #define TARGET_LITTLE_SYM arm_elf32_symbian_le_vec
21017 #undef TARGET_LITTLE_NAME
21018 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
21019 #undef TARGET_BIG_SYM
21020 #define TARGET_BIG_SYM arm_elf32_symbian_be_vec
21021 #undef TARGET_BIG_NAME
21022 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
21023
21024 /* Like elf32_arm_link_hash_table_create -- but overrides
21025 appropriately for Symbian OS. */
21026
21027 static struct bfd_link_hash_table *
21028 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
21029 {
21030 struct bfd_link_hash_table *ret;
21031
21032 ret = elf32_arm_link_hash_table_create (abfd);
21033 if (ret)
21034 {
21035 struct elf32_arm_link_hash_table *htab
21036 = (struct elf32_arm_link_hash_table *)ret;
21037 /* There is no PLT header for Symbian OS. */
21038 htab->plt_header_size = 0;
21039 /* The PLT entries are each one instruction and one word. */
21040 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
21041 htab->symbian_p = 1;
21042 /* Symbian uses armv5t or above, so use_blx is always true. */
21043 htab->use_blx = 1;
21044 htab->root.is_relocatable_executable = 1;
21045 }
21046 return ret;
21047 }
21048
21049 static const struct bfd_elf_special_section
21050 elf32_arm_symbian_special_sections[] =
21051 {
21052 /* In a BPABI executable, the dynamic linking sections do not go in
21053 the loadable read-only segment. The post-linker may wish to
21054 refer to these sections, but they are not part of the final
21055 program image. */
21056 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
21057 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
21058 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
21059 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
21060 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
21061 /* These sections do not need to be writable as the SymbianOS
21062 postlinker will arrange things so that no dynamic relocation is
21063 required. */
21064 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
21065 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
21066 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
21067 { NULL, 0, 0, 0, 0 }
21068 };
21069
21070 static void
21071 elf32_arm_symbian_begin_write_processing (bfd *abfd,
21072 struct bfd_link_info *link_info)
21073 {
21074 /* BPABI objects are never loaded directly by an OS kernel; they are
21075 processed by a postlinker first, into an OS-specific format. If
21076 the D_PAGED bit is set on the file, BFD will align segments on
21077 page boundaries, so that an OS can directly map the file. With
21078 BPABI objects, that just results in wasted space. In addition,
21079 because we clear the D_PAGED bit, map_sections_to_segments will
21080 recognize that the program headers should not be mapped into any
21081 loadable segment. */
21082 abfd->flags &= ~D_PAGED;
21083 elf32_arm_begin_write_processing (abfd, link_info);
21084 }
21085
21086 static bfd_boolean
21087 elf32_arm_symbian_modify_segment_map (bfd *abfd,
21088 struct bfd_link_info *info)
21089 {
21090 struct elf_segment_map *m;
21091 asection *dynsec;
21092
21093 /* BPABI shared libraries and executables should have a PT_DYNAMIC
21094 segment. However, because the .dynamic section is not marked
21095 with SEC_LOAD, the generic ELF code will not create such a
21096 segment. */
21097 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
21098 if (dynsec)
21099 {
21100 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
21101 if (m->p_type == PT_DYNAMIC)
21102 break;
21103
21104 if (m == NULL)
21105 {
21106 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
21107 m->next = elf_seg_map (abfd);
21108 elf_seg_map (abfd) = m;
21109 }
21110 }
21111
21112 /* Also call the generic arm routine. */
21113 return elf32_arm_modify_segment_map (abfd, info);
21114 }
21115
21116 /* Return address for Ith PLT stub in section PLT, for relocation REL
21117 or (bfd_vma) -1 if it should not be included. */
21118
21119 static bfd_vma
21120 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
21121 const arelent *rel ATTRIBUTE_UNUSED)
21122 {
21123 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
21124 }
21125
21126 #undef elf32_bed
21127 #define elf32_bed elf32_arm_symbian_bed
21128
21129 /* The dynamic sections are not allocated on SymbianOS; the postlinker
21130 will process them and then discard them. */
21131 #undef ELF_DYNAMIC_SEC_FLAGS
21132 #define ELF_DYNAMIC_SEC_FLAGS \
21133 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
21134
21135 #undef elf_backend_emit_relocs
21136
21137 #undef bfd_elf32_bfd_link_hash_table_create
21138 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
21139 #undef elf_backend_special_sections
21140 #define elf_backend_special_sections elf32_arm_symbian_special_sections
21141 #undef elf_backend_begin_write_processing
21142 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
21143 #undef elf_backend_final_write_processing
21144 #define elf_backend_final_write_processing elf32_arm_final_write_processing
21145
21146 #undef elf_backend_modify_segment_map
21147 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
21148
21149 /* There is no .got section for BPABI objects, and hence no header. */
21150 #undef elf_backend_got_header_size
21151 #define elf_backend_got_header_size 0
21152
21153 /* Similarly, there is no .got.plt section. */
21154 #undef elf_backend_want_got_plt
21155 #define elf_backend_want_got_plt 0
21156
21157 #undef elf_backend_plt_sym_val
21158 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
21159
21160 #undef elf_backend_may_use_rel_p
21161 #define elf_backend_may_use_rel_p 1
21162 #undef elf_backend_may_use_rela_p
21163 #define elf_backend_may_use_rela_p 0
21164 #undef elf_backend_default_use_rela_p
21165 #define elf_backend_default_use_rela_p 0
21166 #undef elf_backend_want_plt_sym
21167 #define elf_backend_want_plt_sym 0
21168 #undef elf_backend_dtrel_excludes_plt
21169 #define elf_backend_dtrel_excludes_plt 0
21170 #undef ELF_MAXPAGESIZE
21171 #define ELF_MAXPAGESIZE 0x8000
21172
21173 #include "elf32-target.h"
This page took 0.481605 seconds and 5 git commands to generate.