Correct spelling of "relocatable".
[deliverable/binutils-gdb.git] / bfd / elf32-arm.h
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 #ifndef USE_REL
21 #define USE_REL 0
22 #endif
23
24 typedef unsigned long int insn32;
25 typedef unsigned short int insn16;
26
27 static bfd_boolean elf32_arm_set_private_flags
28 PARAMS ((bfd *, flagword));
29 static bfd_boolean elf32_arm_copy_private_bfd_data
30 PARAMS ((bfd *, bfd *));
31 static bfd_boolean elf32_arm_merge_private_bfd_data
32 PARAMS ((bfd *, bfd *));
33 static bfd_boolean elf32_arm_print_private_bfd_data
34 PARAMS ((bfd *, PTR));
35 static int elf32_arm_get_symbol_type
36 PARAMS (( Elf_Internal_Sym *, int));
37 static struct bfd_link_hash_table *elf32_arm_link_hash_table_create
38 PARAMS ((bfd *));
39 static bfd_reloc_status_type elf32_arm_final_link_relocate
40 PARAMS ((reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
41 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
42 const char *, int, struct elf_link_hash_entry *));
43 static insn32 insert_thumb_branch
44 PARAMS ((insn32, int));
45 static struct elf_link_hash_entry *find_thumb_glue
46 PARAMS ((struct bfd_link_info *, const char *, bfd *));
47 static struct elf_link_hash_entry *find_arm_glue
48 PARAMS ((struct bfd_link_info *, const char *, bfd *));
49 static void elf32_arm_post_process_headers
50 PARAMS ((bfd *, struct bfd_link_info *));
51 static int elf32_arm_to_thumb_stub
52 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
53 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
54 static int elf32_thumb_to_arm_stub
55 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
56 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
57 static bfd_boolean elf32_arm_relocate_section
58 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
59 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
60 static asection * elf32_arm_gc_mark_hook
61 PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
62 struct elf_link_hash_entry *, Elf_Internal_Sym *));
63 static bfd_boolean elf32_arm_gc_sweep_hook
64 PARAMS ((bfd *, struct bfd_link_info *, asection *,
65 const Elf_Internal_Rela *));
66 static bfd_boolean elf32_arm_check_relocs
67 PARAMS ((bfd *, struct bfd_link_info *, asection *,
68 const Elf_Internal_Rela *));
69 static bfd_boolean elf32_arm_find_nearest_line
70 PARAMS ((bfd *, asection *, asymbol **, bfd_vma, const char **,
71 const char **, unsigned int *));
72 static bfd_boolean elf32_arm_adjust_dynamic_symbol
73 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
74 static bfd_boolean elf32_arm_size_dynamic_sections
75 PARAMS ((bfd *, struct bfd_link_info *));
76 static bfd_boolean elf32_arm_finish_dynamic_symbol
77 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
78 Elf_Internal_Sym *));
79 static bfd_boolean elf32_arm_finish_dynamic_sections
80 PARAMS ((bfd *, struct bfd_link_info *));
81 static struct bfd_hash_entry * elf32_arm_link_hash_newfunc
82 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
83 #if USE_REL
84 static void arm_add_to_rel
85 PARAMS ((bfd *, bfd_byte *, reloc_howto_type *, bfd_signed_vma));
86 #endif
87 static enum elf_reloc_type_class elf32_arm_reloc_type_class
88 PARAMS ((const Elf_Internal_Rela *));
89 static bfd_boolean elf32_arm_object_p
90 PARAMS ((bfd *));
91
92 #ifndef ELFARM_NABI_C_INCLUDED
93 static void record_arm_to_thumb_glue
94 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
95 static void record_thumb_to_arm_glue
96 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
97 bfd_boolean bfd_elf32_arm_allocate_interworking_sections
98 PARAMS ((struct bfd_link_info *));
99 bfd_boolean bfd_elf32_arm_get_bfd_for_interworking
100 PARAMS ((bfd *, struct bfd_link_info *));
101 bfd_boolean bfd_elf32_arm_process_before_allocation
102 PARAMS ((bfd *, struct bfd_link_info *, int));
103 #endif
104
105
106 #define INTERWORK_FLAG(abfd) (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK)
107
108 /* The linker script knows the section names for placement.
109 The entry_names are used to do simple name mangling on the stubs.
110 Given a function name, and its type, the stub can be found. The
111 name can be changed. The only requirement is the %s be present. */
112 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
113 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
114
115 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
116 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
117
118 /* The name of the dynamic interpreter. This is put in the .interp
119 section. */
120 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
121
122 /* The size in bytes of an entry in the procedure linkage table. */
123 #define PLT_ENTRY_SIZE 16
124
125 /* The first entry in a procedure linkage table looks like
126 this. It is set up so that any shared library function that is
127 called before the relocation has been set up calls the dynamic
128 linker first. */
129 static const bfd_vma elf32_arm_plt0_entry [PLT_ENTRY_SIZE / 4] =
130 {
131 0xe52de004, /* str lr, [sp, #-4]! */
132 0xe59fe010, /* ldr lr, [pc, #16] */
133 0xe08fe00e, /* add lr, pc, lr */
134 0xe5bef008 /* ldr pc, [lr, #8]! */
135 };
136
137 /* Subsequent entries in a procedure linkage table look like
138 this. */
139 static const bfd_vma elf32_arm_plt_entry [PLT_ENTRY_SIZE / 4] =
140 {
141 0xe59fc004, /* ldr ip, [pc, #4] */
142 0xe08fc00c, /* add ip, pc, ip */
143 0xe59cf000, /* ldr pc, [ip] */
144 0x00000000 /* offset to symbol in got */
145 };
146
147 /* The ARM linker needs to keep track of the number of relocs that it
148 decides to copy in check_relocs for each symbol. This is so that
149 it can discard PC relative relocs if it doesn't need them when
150 linking with -Bsymbolic. We store the information in a field
151 extending the regular ELF linker hash table. */
152
153 /* This structure keeps track of the number of PC relative relocs we
154 have copied for a given symbol. */
155 struct elf32_arm_pcrel_relocs_copied
156 {
157 /* Next section. */
158 struct elf32_arm_pcrel_relocs_copied * next;
159 /* A section in dynobj. */
160 asection * section;
161 /* Number of relocs copied in this section. */
162 bfd_size_type count;
163 };
164
165 /* Arm ELF linker hash entry. */
166 struct elf32_arm_link_hash_entry
167 {
168 struct elf_link_hash_entry root;
169
170 /* Number of PC relative relocs copied for this symbol. */
171 struct elf32_arm_pcrel_relocs_copied * pcrel_relocs_copied;
172 };
173
174 /* Declare this now that the above structures are defined. */
175 static bfd_boolean elf32_arm_discard_copies
176 PARAMS ((struct elf32_arm_link_hash_entry *, PTR));
177
178 /* Traverse an arm ELF linker hash table. */
179 #define elf32_arm_link_hash_traverse(table, func, info) \
180 (elf_link_hash_traverse \
181 (&(table)->root, \
182 (bfd_boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
183 (info)))
184
185 /* Get the ARM elf linker hash table from a link_info structure. */
186 #define elf32_arm_hash_table(info) \
187 ((struct elf32_arm_link_hash_table *) ((info)->hash))
188
189 /* ARM ELF linker hash table. */
190 struct elf32_arm_link_hash_table
191 {
192 /* The main hash table. */
193 struct elf_link_hash_table root;
194
195 /* The size in bytes of the section containg the Thumb-to-ARM glue. */
196 bfd_size_type thumb_glue_size;
197
198 /* The size in bytes of the section containg the ARM-to-Thumb glue. */
199 bfd_size_type arm_glue_size;
200
201 /* An arbitary input BFD chosen to hold the glue sections. */
202 bfd * bfd_of_glue_owner;
203
204 /* A boolean indicating whether knowledge of the ARM's pipeline
205 length should be applied by the linker. */
206 int no_pipeline_knowledge;
207 };
208
209 /* Create an entry in an ARM ELF linker hash table. */
210
211 static struct bfd_hash_entry *
212 elf32_arm_link_hash_newfunc (entry, table, string)
213 struct bfd_hash_entry * entry;
214 struct bfd_hash_table * table;
215 const char * string;
216 {
217 struct elf32_arm_link_hash_entry * ret =
218 (struct elf32_arm_link_hash_entry *) entry;
219
220 /* Allocate the structure if it has not already been allocated by a
221 subclass. */
222 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
223 ret = ((struct elf32_arm_link_hash_entry *)
224 bfd_hash_allocate (table,
225 sizeof (struct elf32_arm_link_hash_entry)));
226 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
227 return (struct bfd_hash_entry *) ret;
228
229 /* Call the allocation method of the superclass. */
230 ret = ((struct elf32_arm_link_hash_entry *)
231 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
232 table, string));
233 if (ret != (struct elf32_arm_link_hash_entry *) NULL)
234 ret->pcrel_relocs_copied = NULL;
235
236 return (struct bfd_hash_entry *) ret;
237 }
238
239 /* Create an ARM elf linker hash table. */
240
241 static struct bfd_link_hash_table *
242 elf32_arm_link_hash_table_create (abfd)
243 bfd *abfd;
244 {
245 struct elf32_arm_link_hash_table *ret;
246 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
247
248 ret = (struct elf32_arm_link_hash_table *) bfd_malloc (amt);
249 if (ret == (struct elf32_arm_link_hash_table *) NULL)
250 return NULL;
251
252 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
253 elf32_arm_link_hash_newfunc))
254 {
255 free (ret);
256 return NULL;
257 }
258
259 ret->thumb_glue_size = 0;
260 ret->arm_glue_size = 0;
261 ret->bfd_of_glue_owner = NULL;
262 ret->no_pipeline_knowledge = 0;
263
264 return &ret->root.root;
265 }
266
267 /* Locate the Thumb encoded calling stub for NAME. */
268
269 static struct elf_link_hash_entry *
270 find_thumb_glue (link_info, name, input_bfd)
271 struct bfd_link_info *link_info;
272 const char *name;
273 bfd *input_bfd;
274 {
275 char *tmp_name;
276 struct elf_link_hash_entry *hash;
277 struct elf32_arm_link_hash_table *hash_table;
278
279 /* We need a pointer to the armelf specific hash table. */
280 hash_table = elf32_arm_hash_table (link_info);
281
282 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
283 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
284
285 BFD_ASSERT (tmp_name);
286
287 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
288
289 hash = elf_link_hash_lookup
290 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
291
292 if (hash == NULL)
293 /* xgettext:c-format */
294 (*_bfd_error_handler) (_("%s: unable to find THUMB glue '%s' for `%s'"),
295 bfd_archive_filename (input_bfd), tmp_name, name);
296
297 free (tmp_name);
298
299 return hash;
300 }
301
302 /* Locate the ARM encoded calling stub for NAME. */
303
304 static struct elf_link_hash_entry *
305 find_arm_glue (link_info, name, input_bfd)
306 struct bfd_link_info *link_info;
307 const char *name;
308 bfd *input_bfd;
309 {
310 char *tmp_name;
311 struct elf_link_hash_entry *myh;
312 struct elf32_arm_link_hash_table *hash_table;
313
314 /* We need a pointer to the elfarm specific hash table. */
315 hash_table = elf32_arm_hash_table (link_info);
316
317 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
318 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
319
320 BFD_ASSERT (tmp_name);
321
322 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
323
324 myh = elf_link_hash_lookup
325 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
326
327 if (myh == NULL)
328 /* xgettext:c-format */
329 (*_bfd_error_handler) (_("%s: unable to find ARM glue '%s' for `%s'"),
330 bfd_archive_filename (input_bfd), tmp_name, name);
331
332 free (tmp_name);
333
334 return myh;
335 }
336
337 /* ARM->Thumb glue:
338
339 .arm
340 __func_from_arm:
341 ldr r12, __func_addr
342 bx r12
343 __func_addr:
344 .word func @ behave as if you saw a ARM_32 reloc. */
345
346 #define ARM2THUMB_GLUE_SIZE 12
347 static const insn32 a2t1_ldr_insn = 0xe59fc000;
348 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
349 static const insn32 a2t3_func_addr_insn = 0x00000001;
350
351 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
352
353 .thumb .thumb
354 .align 2 .align 2
355 __func_from_thumb: __func_from_thumb:
356 bx pc push {r6, lr}
357 nop ldr r6, __func_addr
358 .arm mov lr, pc
359 __func_change_to_arm: bx r6
360 b func .arm
361 __func_back_to_thumb:
362 ldmia r13! {r6, lr}
363 bx lr
364 __func_addr:
365 .word func */
366
367 #define THUMB2ARM_GLUE_SIZE 8
368 static const insn16 t2a1_bx_pc_insn = 0x4778;
369 static const insn16 t2a2_noop_insn = 0x46c0;
370 static const insn32 t2a3_b_insn = 0xea000000;
371
372 #ifndef ELFARM_NABI_C_INCLUDED
373 bfd_boolean
374 bfd_elf32_arm_allocate_interworking_sections (info)
375 struct bfd_link_info * info;
376 {
377 asection * s;
378 bfd_byte * foo;
379 struct elf32_arm_link_hash_table * globals;
380
381 globals = elf32_arm_hash_table (info);
382
383 BFD_ASSERT (globals != NULL);
384
385 if (globals->arm_glue_size != 0)
386 {
387 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
388
389 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
390 ARM2THUMB_GLUE_SECTION_NAME);
391
392 BFD_ASSERT (s != NULL);
393
394 foo = (bfd_byte *) bfd_alloc (globals->bfd_of_glue_owner,
395 globals->arm_glue_size);
396
397 s->_raw_size = s->_cooked_size = globals->arm_glue_size;
398 s->contents = foo;
399 }
400
401 if (globals->thumb_glue_size != 0)
402 {
403 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
404
405 s = bfd_get_section_by_name
406 (globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
407
408 BFD_ASSERT (s != NULL);
409
410 foo = (bfd_byte *) bfd_alloc (globals->bfd_of_glue_owner,
411 globals->thumb_glue_size);
412
413 s->_raw_size = s->_cooked_size = globals->thumb_glue_size;
414 s->contents = foo;
415 }
416
417 return TRUE;
418 }
419
420 static void
421 record_arm_to_thumb_glue (link_info, h)
422 struct bfd_link_info * link_info;
423 struct elf_link_hash_entry * h;
424 {
425 const char * name = h->root.root.string;
426 asection * s;
427 char * tmp_name;
428 struct elf_link_hash_entry * myh;
429 struct bfd_link_hash_entry * bh;
430 struct elf32_arm_link_hash_table * globals;
431 bfd_vma val;
432
433 globals = elf32_arm_hash_table (link_info);
434
435 BFD_ASSERT (globals != NULL);
436 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
437
438 s = bfd_get_section_by_name
439 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
440
441 BFD_ASSERT (s != NULL);
442
443 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
444 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
445
446 BFD_ASSERT (tmp_name);
447
448 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
449
450 myh = elf_link_hash_lookup
451 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
452
453 if (myh != NULL)
454 {
455 /* We've already seen this guy. */
456 free (tmp_name);
457 return;
458 }
459
460 /* The only trick here is using hash_table->arm_glue_size as the value. Even
461 though the section isn't allocated yet, this is where we will be putting
462 it. */
463 bh = NULL;
464 val = globals->arm_glue_size + 1;
465 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
466 tmp_name, BSF_GLOBAL, s, val,
467 NULL, TRUE, FALSE, &bh);
468
469 free (tmp_name);
470
471 globals->arm_glue_size += ARM2THUMB_GLUE_SIZE;
472
473 return;
474 }
475
476 static void
477 record_thumb_to_arm_glue (link_info, h)
478 struct bfd_link_info *link_info;
479 struct elf_link_hash_entry *h;
480 {
481 const char *name = h->root.root.string;
482 asection *s;
483 char *tmp_name;
484 struct elf_link_hash_entry *myh;
485 struct bfd_link_hash_entry *bh;
486 struct elf32_arm_link_hash_table *hash_table;
487 char bind;
488 bfd_vma val;
489
490 hash_table = elf32_arm_hash_table (link_info);
491
492 BFD_ASSERT (hash_table != NULL);
493 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
494
495 s = bfd_get_section_by_name
496 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
497
498 BFD_ASSERT (s != NULL);
499
500 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
501 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
502
503 BFD_ASSERT (tmp_name);
504
505 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
506
507 myh = elf_link_hash_lookup
508 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
509
510 if (myh != NULL)
511 {
512 /* We've already seen this guy. */
513 free (tmp_name);
514 return;
515 }
516
517 bh = NULL;
518 val = hash_table->thumb_glue_size + 1;
519 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
520 tmp_name, BSF_GLOBAL, s, val,
521 NULL, TRUE, FALSE, &bh);
522
523 /* If we mark it 'Thumb', the disassembler will do a better job. */
524 myh = (struct elf_link_hash_entry *) bh;
525 bind = ELF_ST_BIND (myh->type);
526 myh->type = ELF_ST_INFO (bind, STT_ARM_TFUNC);
527
528 free (tmp_name);
529
530 #define CHANGE_TO_ARM "__%s_change_to_arm"
531 #define BACK_FROM_ARM "__%s_back_from_arm"
532
533 /* Allocate another symbol to mark where we switch to Arm mode. */
534 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
535 + strlen (CHANGE_TO_ARM) + 1);
536
537 BFD_ASSERT (tmp_name);
538
539 sprintf (tmp_name, CHANGE_TO_ARM, name);
540
541 bh = NULL;
542 val = hash_table->thumb_glue_size + 4,
543 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
544 tmp_name, BSF_LOCAL, s, val,
545 NULL, TRUE, FALSE, &bh);
546
547 free (tmp_name);
548
549 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
550
551 return;
552 }
553
554 /* Add the glue sections to ABFD. This function is called from the
555 linker scripts in ld/emultempl/{armelf}.em. */
556
557 bfd_boolean
558 bfd_elf32_arm_add_glue_sections_to_bfd (abfd, info)
559 bfd *abfd;
560 struct bfd_link_info *info;
561 {
562 flagword flags;
563 asection *sec;
564
565 /* If we are only performing a partial
566 link do not bother adding the glue. */
567 if (info->relocatable)
568 return TRUE;
569
570 sec = bfd_get_section_by_name (abfd, ARM2THUMB_GLUE_SECTION_NAME);
571
572 if (sec == NULL)
573 {
574 /* Note: we do not include the flag SEC_LINKER_CREATED, as this
575 will prevent elf_link_input_bfd() from processing the contents
576 of this section. */
577 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
578
579 sec = bfd_make_section (abfd, ARM2THUMB_GLUE_SECTION_NAME);
580
581 if (sec == NULL
582 || !bfd_set_section_flags (abfd, sec, flags)
583 || !bfd_set_section_alignment (abfd, sec, 2))
584 return FALSE;
585
586 /* Set the gc mark to prevent the section from being removed by garbage
587 collection, despite the fact that no relocs refer to this section. */
588 sec->gc_mark = 1;
589 }
590
591 sec = bfd_get_section_by_name (abfd, THUMB2ARM_GLUE_SECTION_NAME);
592
593 if (sec == NULL)
594 {
595 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
596
597 sec = bfd_make_section (abfd, THUMB2ARM_GLUE_SECTION_NAME);
598
599 if (sec == NULL
600 || !bfd_set_section_flags (abfd, sec, flags)
601 || !bfd_set_section_alignment (abfd, sec, 2))
602 return FALSE;
603
604 sec->gc_mark = 1;
605 }
606
607 return TRUE;
608 }
609
610 /* Select a BFD to be used to hold the sections used by the glue code.
611 This function is called from the linker scripts in ld/emultempl/
612 {armelf/pe}.em */
613
614 bfd_boolean
615 bfd_elf32_arm_get_bfd_for_interworking (abfd, info)
616 bfd *abfd;
617 struct bfd_link_info *info;
618 {
619 struct elf32_arm_link_hash_table *globals;
620
621 /* If we are only performing a partial link
622 do not bother getting a bfd to hold the glue. */
623 if (info->relocatable)
624 return TRUE;
625
626 globals = elf32_arm_hash_table (info);
627
628 BFD_ASSERT (globals != NULL);
629
630 if (globals->bfd_of_glue_owner != NULL)
631 return TRUE;
632
633 /* Save the bfd for later use. */
634 globals->bfd_of_glue_owner = abfd;
635
636 return TRUE;
637 }
638
639 bfd_boolean
640 bfd_elf32_arm_process_before_allocation (abfd, link_info, no_pipeline_knowledge)
641 bfd *abfd;
642 struct bfd_link_info *link_info;
643 int no_pipeline_knowledge;
644 {
645 Elf_Internal_Shdr *symtab_hdr;
646 Elf_Internal_Rela *internal_relocs = NULL;
647 Elf_Internal_Rela *irel, *irelend;
648 bfd_byte *contents = NULL;
649
650 asection *sec;
651 struct elf32_arm_link_hash_table *globals;
652
653 /* If we are only performing a partial link do not bother
654 to construct any glue. */
655 if (link_info->relocatable)
656 return TRUE;
657
658 /* Here we have a bfd that is to be included on the link. We have a hook
659 to do reloc rummaging, before section sizes are nailed down. */
660 globals = elf32_arm_hash_table (link_info);
661
662 BFD_ASSERT (globals != NULL);
663 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
664
665 globals->no_pipeline_knowledge = no_pipeline_knowledge;
666
667 /* Rummage around all the relocs and map the glue vectors. */
668 sec = abfd->sections;
669
670 if (sec == NULL)
671 return TRUE;
672
673 for (; sec != NULL; sec = sec->next)
674 {
675 if (sec->reloc_count == 0)
676 continue;
677
678 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
679
680 /* Load the relocs. */
681 internal_relocs
682 = _bfd_elf_link_read_relocs (abfd, sec, (PTR) NULL,
683 (Elf_Internal_Rela *) NULL, FALSE);
684
685 if (internal_relocs == NULL)
686 goto error_return;
687
688 irelend = internal_relocs + sec->reloc_count;
689 for (irel = internal_relocs; irel < irelend; irel++)
690 {
691 long r_type;
692 unsigned long r_index;
693
694 struct elf_link_hash_entry *h;
695
696 r_type = ELF32_R_TYPE (irel->r_info);
697 r_index = ELF32_R_SYM (irel->r_info);
698
699 /* These are the only relocation types we care about. */
700 if ( r_type != R_ARM_PC24
701 && r_type != R_ARM_THM_PC22)
702 continue;
703
704 /* Get the section contents if we haven't done so already. */
705 if (contents == NULL)
706 {
707 /* Get cached copy if it exists. */
708 if (elf_section_data (sec)->this_hdr.contents != NULL)
709 contents = elf_section_data (sec)->this_hdr.contents;
710 else
711 {
712 /* Go get them off disk. */
713 contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
714 if (contents == NULL)
715 goto error_return;
716
717 if (!bfd_get_section_contents (abfd, sec, contents,
718 (file_ptr) 0, sec->_raw_size))
719 goto error_return;
720 }
721 }
722
723 /* If the relocation is not against a symbol it cannot concern us. */
724 h = NULL;
725
726 /* We don't care about local symbols. */
727 if (r_index < symtab_hdr->sh_info)
728 continue;
729
730 /* This is an external symbol. */
731 r_index -= symtab_hdr->sh_info;
732 h = (struct elf_link_hash_entry *)
733 elf_sym_hashes (abfd)[r_index];
734
735 /* If the relocation is against a static symbol it must be within
736 the current section and so cannot be a cross ARM/Thumb relocation. */
737 if (h == NULL)
738 continue;
739
740 switch (r_type)
741 {
742 case R_ARM_PC24:
743 /* This one is a call from arm code. We need to look up
744 the target of the call. If it is a thumb target, we
745 insert glue. */
746 if (ELF_ST_TYPE(h->type) == STT_ARM_TFUNC)
747 record_arm_to_thumb_glue (link_info, h);
748 break;
749
750 case R_ARM_THM_PC22:
751 /* This one is a call from thumb code. We look
752 up the target of the call. If it is not a thumb
753 target, we insert glue. */
754 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC)
755 record_thumb_to_arm_glue (link_info, h);
756 break;
757
758 default:
759 break;
760 }
761 }
762
763 if (contents != NULL
764 && elf_section_data (sec)->this_hdr.contents != contents)
765 free (contents);
766 contents = NULL;
767
768 if (internal_relocs != NULL
769 && elf_section_data (sec)->relocs != internal_relocs)
770 free (internal_relocs);
771 internal_relocs = NULL;
772 }
773
774 return TRUE;
775
776 error_return:
777 if (contents != NULL
778 && elf_section_data (sec)->this_hdr.contents != contents)
779 free (contents);
780 if (internal_relocs != NULL
781 && elf_section_data (sec)->relocs != internal_relocs)
782 free (internal_relocs);
783
784 return FALSE;
785 }
786 #endif
787
788 /* The thumb form of a long branch is a bit finicky, because the offset
789 encoding is split over two fields, each in it's own instruction. They
790 can occur in any order. So given a thumb form of long branch, and an
791 offset, insert the offset into the thumb branch and return finished
792 instruction.
793
794 It takes two thumb instructions to encode the target address. Each has
795 11 bits to invest. The upper 11 bits are stored in one (identifed by
796 H-0.. see below), the lower 11 bits are stored in the other (identified
797 by H-1).
798
799 Combine together and shifted left by 1 (it's a half word address) and
800 there you have it.
801
802 Op: 1111 = F,
803 H-0, upper address-0 = 000
804 Op: 1111 = F,
805 H-1, lower address-0 = 800
806
807 They can be ordered either way, but the arm tools I've seen always put
808 the lower one first. It probably doesn't matter. krk@cygnus.com
809
810 XXX: Actually the order does matter. The second instruction (H-1)
811 moves the computed address into the PC, so it must be the second one
812 in the sequence. The problem, however is that whilst little endian code
813 stores the instructions in HI then LOW order, big endian code does the
814 reverse. nickc@cygnus.com. */
815
816 #define LOW_HI_ORDER 0xF800F000
817 #define HI_LOW_ORDER 0xF000F800
818
819 static insn32
820 insert_thumb_branch (br_insn, rel_off)
821 insn32 br_insn;
822 int rel_off;
823 {
824 unsigned int low_bits;
825 unsigned int high_bits;
826
827 BFD_ASSERT ((rel_off & 1) != 1);
828
829 rel_off >>= 1; /* Half word aligned address. */
830 low_bits = rel_off & 0x000007FF; /* The bottom 11 bits. */
831 high_bits = (rel_off >> 11) & 0x000007FF; /* The top 11 bits. */
832
833 if ((br_insn & LOW_HI_ORDER) == LOW_HI_ORDER)
834 br_insn = LOW_HI_ORDER | (low_bits << 16) | high_bits;
835 else if ((br_insn & HI_LOW_ORDER) == HI_LOW_ORDER)
836 br_insn = HI_LOW_ORDER | (high_bits << 16) | low_bits;
837 else
838 /* FIXME: abort is probably not the right call. krk@cygnus.com */
839 abort (); /* error - not a valid branch instruction form. */
840
841 return br_insn;
842 }
843
844 /* Thumb code calling an ARM function. */
845
846 static int
847 elf32_thumb_to_arm_stub (info, name, input_bfd, output_bfd, input_section,
848 hit_data, sym_sec, offset, addend, val)
849 struct bfd_link_info * info;
850 const char * name;
851 bfd * input_bfd;
852 bfd * output_bfd;
853 asection * input_section;
854 bfd_byte * hit_data;
855 asection * sym_sec;
856 bfd_vma offset;
857 bfd_signed_vma addend;
858 bfd_vma val;
859 {
860 asection * s = 0;
861 bfd_vma my_offset;
862 unsigned long int tmp;
863 long int ret_offset;
864 struct elf_link_hash_entry * myh;
865 struct elf32_arm_link_hash_table * globals;
866
867 myh = find_thumb_glue (info, name, input_bfd);
868 if (myh == NULL)
869 return FALSE;
870
871 globals = elf32_arm_hash_table (info);
872
873 BFD_ASSERT (globals != NULL);
874 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
875
876 my_offset = myh->root.u.def.value;
877
878 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
879 THUMB2ARM_GLUE_SECTION_NAME);
880
881 BFD_ASSERT (s != NULL);
882 BFD_ASSERT (s->contents != NULL);
883 BFD_ASSERT (s->output_section != NULL);
884
885 if ((my_offset & 0x01) == 0x01)
886 {
887 if (sym_sec != NULL
888 && sym_sec->owner != NULL
889 && !INTERWORK_FLAG (sym_sec->owner))
890 {
891 (*_bfd_error_handler)
892 (_("%s(%s): warning: interworking not enabled."),
893 bfd_archive_filename (sym_sec->owner), name);
894 (*_bfd_error_handler)
895 (_(" first occurrence: %s: thumb call to arm"),
896 bfd_archive_filename (input_bfd));
897
898 return FALSE;
899 }
900
901 --my_offset;
902 myh->root.u.def.value = my_offset;
903
904 bfd_put_16 (output_bfd, (bfd_vma) t2a1_bx_pc_insn,
905 s->contents + my_offset);
906
907 bfd_put_16 (output_bfd, (bfd_vma) t2a2_noop_insn,
908 s->contents + my_offset + 2);
909
910 ret_offset =
911 /* Address of destination of the stub. */
912 ((bfd_signed_vma) val)
913 - ((bfd_signed_vma)
914 /* Offset from the start of the current section to the start of the stubs. */
915 (s->output_offset
916 /* Offset of the start of this stub from the start of the stubs. */
917 + my_offset
918 /* Address of the start of the current section. */
919 + s->output_section->vma)
920 /* The branch instruction is 4 bytes into the stub. */
921 + 4
922 /* ARM branches work from the pc of the instruction + 8. */
923 + 8);
924
925 bfd_put_32 (output_bfd,
926 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
927 s->contents + my_offset + 4);
928 }
929
930 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
931
932 /* Now go back and fix up the original BL insn to point to here. */
933 ret_offset =
934 /* Address of where the stub is located. */
935 (s->output_section->vma + s->output_offset + my_offset)
936 /* Address of where the BL is located. */
937 - (input_section->output_section->vma + input_section->output_offset + offset)
938 /* Addend in the relocation. */
939 - addend
940 /* Biassing for PC-relative addressing. */
941 - 8;
942
943 tmp = bfd_get_32 (input_bfd, hit_data
944 - input_section->vma);
945
946 bfd_put_32 (output_bfd,
947 (bfd_vma) insert_thumb_branch (tmp, ret_offset),
948 hit_data - input_section->vma);
949
950 return TRUE;
951 }
952
953 /* Arm code calling a Thumb function. */
954
955 static int
956 elf32_arm_to_thumb_stub (info, name, input_bfd, output_bfd, input_section,
957 hit_data, sym_sec, offset, addend, val)
958 struct bfd_link_info * info;
959 const char * name;
960 bfd * input_bfd;
961 bfd * output_bfd;
962 asection * input_section;
963 bfd_byte * hit_data;
964 asection * sym_sec;
965 bfd_vma offset;
966 bfd_signed_vma addend;
967 bfd_vma val;
968 {
969 unsigned long int tmp;
970 bfd_vma my_offset;
971 asection * s;
972 long int ret_offset;
973 struct elf_link_hash_entry * myh;
974 struct elf32_arm_link_hash_table * globals;
975
976 myh = find_arm_glue (info, name, input_bfd);
977 if (myh == NULL)
978 return FALSE;
979
980 globals = elf32_arm_hash_table (info);
981
982 BFD_ASSERT (globals != NULL);
983 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
984
985 my_offset = myh->root.u.def.value;
986 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
987 ARM2THUMB_GLUE_SECTION_NAME);
988 BFD_ASSERT (s != NULL);
989 BFD_ASSERT (s->contents != NULL);
990 BFD_ASSERT (s->output_section != NULL);
991
992 if ((my_offset & 0x01) == 0x01)
993 {
994 if (sym_sec != NULL
995 && sym_sec->owner != NULL
996 && !INTERWORK_FLAG (sym_sec->owner))
997 {
998 (*_bfd_error_handler)
999 (_("%s(%s): warning: interworking not enabled."),
1000 bfd_archive_filename (sym_sec->owner), name);
1001 (*_bfd_error_handler)
1002 (_(" first occurrence: %s: arm call to thumb"),
1003 bfd_archive_filename (input_bfd));
1004 }
1005
1006 --my_offset;
1007 myh->root.u.def.value = my_offset;
1008
1009 bfd_put_32 (output_bfd, (bfd_vma) a2t1_ldr_insn,
1010 s->contents + my_offset);
1011
1012 bfd_put_32 (output_bfd, (bfd_vma) a2t2_bx_r12_insn,
1013 s->contents + my_offset + 4);
1014
1015 /* It's a thumb address. Add the low order bit. */
1016 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
1017 s->contents + my_offset + 8);
1018 }
1019
1020 BFD_ASSERT (my_offset <= globals->arm_glue_size);
1021
1022 tmp = bfd_get_32 (input_bfd, hit_data);
1023 tmp = tmp & 0xFF000000;
1024
1025 /* Somehow these are both 4 too far, so subtract 8. */
1026 ret_offset = (s->output_offset
1027 + my_offset
1028 + s->output_section->vma
1029 - (input_section->output_offset
1030 + input_section->output_section->vma
1031 + offset + addend)
1032 - 8);
1033
1034 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
1035
1036 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
1037
1038 return TRUE;
1039 }
1040
1041 /* Perform a relocation as part of a final link. */
1042
1043 static bfd_reloc_status_type
1044 elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
1045 input_section, contents, rel, value,
1046 info, sym_sec, sym_name, sym_flags, h)
1047 reloc_howto_type * howto;
1048 bfd * input_bfd;
1049 bfd * output_bfd;
1050 asection * input_section;
1051 bfd_byte * contents;
1052 Elf_Internal_Rela * rel;
1053 bfd_vma value;
1054 struct bfd_link_info * info;
1055 asection * sym_sec;
1056 const char * sym_name;
1057 int sym_flags;
1058 struct elf_link_hash_entry * h;
1059 {
1060 unsigned long r_type = howto->type;
1061 unsigned long r_symndx;
1062 bfd_byte * hit_data = contents + rel->r_offset;
1063 bfd * dynobj = NULL;
1064 Elf_Internal_Shdr * symtab_hdr;
1065 struct elf_link_hash_entry ** sym_hashes;
1066 bfd_vma * local_got_offsets;
1067 asection * sgot = NULL;
1068 asection * splt = NULL;
1069 asection * sreloc = NULL;
1070 bfd_vma addend;
1071 bfd_signed_vma signed_addend;
1072 struct elf32_arm_link_hash_table * globals;
1073
1074 /* If the start address has been set, then set the EF_ARM_HASENTRY
1075 flag. Setting this more than once is redundant, but the cost is
1076 not too high, and it keeps the code simple.
1077
1078 The test is done here, rather than somewhere else, because the
1079 start address is only set just before the final link commences.
1080
1081 Note - if the user deliberately sets a start address of 0, the
1082 flag will not be set. */
1083 if (bfd_get_start_address (output_bfd) != 0)
1084 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
1085
1086 globals = elf32_arm_hash_table (info);
1087
1088 dynobj = elf_hash_table (info)->dynobj;
1089 if (dynobj)
1090 {
1091 sgot = bfd_get_section_by_name (dynobj, ".got");
1092 splt = bfd_get_section_by_name (dynobj, ".plt");
1093 }
1094 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1095 sym_hashes = elf_sym_hashes (input_bfd);
1096 local_got_offsets = elf_local_got_offsets (input_bfd);
1097 r_symndx = ELF32_R_SYM (rel->r_info);
1098
1099 #if USE_REL
1100 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
1101
1102 if (addend & ((howto->src_mask + 1) >> 1))
1103 {
1104 signed_addend = -1;
1105 signed_addend &= ~ howto->src_mask;
1106 signed_addend |= addend;
1107 }
1108 else
1109 signed_addend = addend;
1110 #else
1111 addend = signed_addend = rel->r_addend;
1112 #endif
1113
1114 switch (r_type)
1115 {
1116 case R_ARM_NONE:
1117 return bfd_reloc_ok;
1118
1119 case R_ARM_PC24:
1120 case R_ARM_ABS32:
1121 case R_ARM_REL32:
1122 #ifndef OLD_ARM_ABI
1123 case R_ARM_XPC25:
1124 #endif
1125 /* When generating a shared object, these relocations are copied
1126 into the output file to be resolved at run time. */
1127 if (info->shared
1128 && r_symndx != 0
1129 && (r_type != R_ARM_PC24
1130 || (h != NULL
1131 && h->dynindx != -1
1132 && (! info->symbolic
1133 || (h->elf_link_hash_flags
1134 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1135 {
1136 Elf_Internal_Rela outrel;
1137 bfd_byte *loc;
1138 bfd_boolean skip, relocate;
1139
1140 if (sreloc == NULL)
1141 {
1142 const char * name;
1143
1144 name = (bfd_elf_string_from_elf_section
1145 (input_bfd,
1146 elf_elfheader (input_bfd)->e_shstrndx,
1147 elf_section_data (input_section)->rel_hdr.sh_name));
1148 if (name == NULL)
1149 return bfd_reloc_notsupported;
1150
1151 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
1152 && strcmp (bfd_get_section_name (input_bfd,
1153 input_section),
1154 name + 4) == 0);
1155
1156 sreloc = bfd_get_section_by_name (dynobj, name);
1157 BFD_ASSERT (sreloc != NULL);
1158 }
1159
1160 skip = FALSE;
1161 relocate = FALSE;
1162
1163 outrel.r_offset =
1164 _bfd_elf_section_offset (output_bfd, info, input_section,
1165 rel->r_offset);
1166 if (outrel.r_offset == (bfd_vma) -1)
1167 skip = TRUE;
1168 else if (outrel.r_offset == (bfd_vma) -2)
1169 skip = TRUE, relocate = TRUE;
1170 outrel.r_offset += (input_section->output_section->vma
1171 + input_section->output_offset);
1172
1173 if (skip)
1174 memset (&outrel, 0, sizeof outrel);
1175 else if (r_type == R_ARM_PC24)
1176 {
1177 BFD_ASSERT (h != NULL && h->dynindx != -1);
1178 if ((input_section->flags & SEC_ALLOC) == 0)
1179 relocate = TRUE;
1180 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_PC24);
1181 }
1182 else
1183 {
1184 if (h == NULL
1185 || ((info->symbolic || h->dynindx == -1)
1186 && (h->elf_link_hash_flags
1187 & ELF_LINK_HASH_DEF_REGULAR) != 0))
1188 {
1189 relocate = TRUE;
1190 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1191 }
1192 else
1193 {
1194 BFD_ASSERT (h->dynindx != -1);
1195 if ((input_section->flags & SEC_ALLOC) == 0)
1196 relocate = TRUE;
1197 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_ABS32);
1198 }
1199 }
1200
1201 loc = sreloc->contents;
1202 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rel);
1203 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
1204
1205 /* If this reloc is against an external symbol, we do not want to
1206 fiddle with the addend. Otherwise, we need to include the symbol
1207 value so that it becomes an addend for the dynamic reloc. */
1208 if (! relocate)
1209 return bfd_reloc_ok;
1210
1211 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1212 contents, rel->r_offset, value,
1213 (bfd_vma) 0);
1214 }
1215 else switch (r_type)
1216 {
1217 #ifndef OLD_ARM_ABI
1218 case R_ARM_XPC25: /* Arm BLX instruction. */
1219 #endif
1220 case R_ARM_PC24: /* Arm B/BL instruction */
1221 #ifndef OLD_ARM_ABI
1222 if (r_type == R_ARM_XPC25)
1223 {
1224 /* Check for Arm calling Arm function. */
1225 /* FIXME: Should we translate the instruction into a BL
1226 instruction instead ? */
1227 if (sym_flags != STT_ARM_TFUNC)
1228 (*_bfd_error_handler) (_("\
1229 %s: Warning: Arm BLX instruction targets Arm function '%s'."),
1230 bfd_archive_filename (input_bfd),
1231 h ? h->root.root.string : "(local)");
1232 }
1233 else
1234 #endif
1235 {
1236 /* Check for Arm calling Thumb function. */
1237 if (sym_flags == STT_ARM_TFUNC)
1238 {
1239 elf32_arm_to_thumb_stub (info, sym_name, input_bfd, output_bfd,
1240 input_section, hit_data, sym_sec, rel->r_offset,
1241 signed_addend, value);
1242 return bfd_reloc_ok;
1243 }
1244 }
1245
1246 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1247 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0)
1248 {
1249 /* The old way of doing things. Trearing the addend as a
1250 byte sized field and adding in the pipeline offset. */
1251 value -= (input_section->output_section->vma
1252 + input_section->output_offset);
1253 value -= rel->r_offset;
1254 value += addend;
1255
1256 if (! globals->no_pipeline_knowledge)
1257 value -= 8;
1258 }
1259 else
1260 {
1261 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
1262 where:
1263 S is the address of the symbol in the relocation.
1264 P is address of the instruction being relocated.
1265 A is the addend (extracted from the instruction) in bytes.
1266
1267 S is held in 'value'.
1268 P is the base address of the section containing the instruction
1269 plus the offset of the reloc into that section, ie:
1270 (input_section->output_section->vma +
1271 input_section->output_offset +
1272 rel->r_offset).
1273 A is the addend, converted into bytes, ie:
1274 (signed_addend * 4)
1275
1276 Note: None of these operations have knowledge of the pipeline
1277 size of the processor, thus it is up to the assembler to encode
1278 this information into the addend. */
1279 value -= (input_section->output_section->vma
1280 + input_section->output_offset);
1281 value -= rel->r_offset;
1282 value += (signed_addend << howto->size);
1283
1284 /* Previous versions of this code also used to add in the pipeline
1285 offset here. This is wrong because the linker is not supposed
1286 to know about such things, and one day it might change. In order
1287 to support old binaries that need the old behaviour however, so
1288 we attempt to detect which ABI was used to create the reloc. */
1289 if (! globals->no_pipeline_knowledge)
1290 {
1291 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form */
1292
1293 i_ehdrp = elf_elfheader (input_bfd);
1294
1295 if (i_ehdrp->e_ident[EI_OSABI] == 0)
1296 value -= 8;
1297 }
1298 }
1299
1300 signed_addend = value;
1301 signed_addend >>= howto->rightshift;
1302
1303 /* It is not an error for an undefined weak reference to be
1304 out of range. Any program that branches to such a symbol
1305 is going to crash anyway, so there is no point worrying
1306 about getting the destination exactly right. */
1307 if (! h || h->root.type != bfd_link_hash_undefweak)
1308 {
1309 /* Perform a signed range check. */
1310 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
1311 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
1312 return bfd_reloc_overflow;
1313 }
1314
1315 #ifndef OLD_ARM_ABI
1316 /* If necessary set the H bit in the BLX instruction. */
1317 if (r_type == R_ARM_XPC25 && ((value & 2) == 2))
1318 value = (signed_addend & howto->dst_mask)
1319 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask))
1320 | (1 << 24);
1321 else
1322 #endif
1323 value = (signed_addend & howto->dst_mask)
1324 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
1325 break;
1326
1327 case R_ARM_ABS32:
1328 value += addend;
1329 if (sym_flags == STT_ARM_TFUNC)
1330 value |= 1;
1331 break;
1332
1333 case R_ARM_REL32:
1334 value -= (input_section->output_section->vma
1335 + input_section->output_offset + rel->r_offset);
1336 value += addend;
1337 break;
1338 }
1339
1340 bfd_put_32 (input_bfd, value, hit_data);
1341 return bfd_reloc_ok;
1342
1343 case R_ARM_ABS8:
1344 value += addend;
1345 if ((long) value > 0x7f || (long) value < -0x80)
1346 return bfd_reloc_overflow;
1347
1348 bfd_put_8 (input_bfd, value, hit_data);
1349 return bfd_reloc_ok;
1350
1351 case R_ARM_ABS16:
1352 value += addend;
1353
1354 if ((long) value > 0x7fff || (long) value < -0x8000)
1355 return bfd_reloc_overflow;
1356
1357 bfd_put_16 (input_bfd, value, hit_data);
1358 return bfd_reloc_ok;
1359
1360 case R_ARM_ABS12:
1361 /* Support ldr and str instruction for the arm */
1362 /* Also thumb b (unconditional branch). ??? Really? */
1363 value += addend;
1364
1365 if ((long) value > 0x7ff || (long) value < -0x800)
1366 return bfd_reloc_overflow;
1367
1368 value |= (bfd_get_32 (input_bfd, hit_data) & 0xfffff000);
1369 bfd_put_32 (input_bfd, value, hit_data);
1370 return bfd_reloc_ok;
1371
1372 case R_ARM_THM_ABS5:
1373 /* Support ldr and str instructions for the thumb. */
1374 #if USE_REL
1375 /* Need to refetch addend. */
1376 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1377 /* ??? Need to determine shift amount from operand size. */
1378 addend >>= howto->rightshift;
1379 #endif
1380 value += addend;
1381
1382 /* ??? Isn't value unsigned? */
1383 if ((long) value > 0x1f || (long) value < -0x10)
1384 return bfd_reloc_overflow;
1385
1386 /* ??? Value needs to be properly shifted into place first. */
1387 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
1388 bfd_put_16 (input_bfd, value, hit_data);
1389 return bfd_reloc_ok;
1390
1391 #ifndef OLD_ARM_ABI
1392 case R_ARM_THM_XPC22:
1393 #endif
1394 case R_ARM_THM_PC22:
1395 /* Thumb BL (branch long instruction). */
1396 {
1397 bfd_vma relocation;
1398 bfd_boolean overflow = FALSE;
1399 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
1400 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
1401 bfd_signed_vma reloc_signed_max = ((1 << (howto->bitsize - 1)) - 1) >> howto->rightshift;
1402 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1403 bfd_vma check;
1404 bfd_signed_vma signed_check;
1405
1406 #if USE_REL
1407 /* Need to refetch the addend and squish the two 11 bit pieces
1408 together. */
1409 {
1410 bfd_vma upper = upper_insn & 0x7ff;
1411 bfd_vma lower = lower_insn & 0x7ff;
1412 upper = (upper ^ 0x400) - 0x400; /* Sign extend. */
1413 addend = (upper << 12) | (lower << 1);
1414 signed_addend = addend;
1415 }
1416 #endif
1417 #ifndef OLD_ARM_ABI
1418 if (r_type == R_ARM_THM_XPC22)
1419 {
1420 /* Check for Thumb to Thumb call. */
1421 /* FIXME: Should we translate the instruction into a BL
1422 instruction instead ? */
1423 if (sym_flags == STT_ARM_TFUNC)
1424 (*_bfd_error_handler) (_("\
1425 %s: Warning: Thumb BLX instruction targets thumb function '%s'."),
1426 bfd_archive_filename (input_bfd),
1427 h ? h->root.root.string : "(local)");
1428 }
1429 else
1430 #endif
1431 {
1432 /* If it is not a call to Thumb, assume call to Arm.
1433 If it is a call relative to a section name, then it is not a
1434 function call at all, but rather a long jump. */
1435 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION)
1436 {
1437 if (elf32_thumb_to_arm_stub
1438 (info, sym_name, input_bfd, output_bfd, input_section,
1439 hit_data, sym_sec, rel->r_offset, signed_addend, value))
1440 return bfd_reloc_ok;
1441 else
1442 return bfd_reloc_dangerous;
1443 }
1444 }
1445
1446 relocation = value + signed_addend;
1447
1448 relocation -= (input_section->output_section->vma
1449 + input_section->output_offset
1450 + rel->r_offset);
1451
1452 if (! globals->no_pipeline_knowledge)
1453 {
1454 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form. */
1455
1456 i_ehdrp = elf_elfheader (input_bfd);
1457
1458 /* Previous versions of this code also used to add in the pipline
1459 offset here. This is wrong because the linker is not supposed
1460 to know about such things, and one day it might change. In order
1461 to support old binaries that need the old behaviour however, so
1462 we attempt to detect which ABI was used to create the reloc. */
1463 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1464 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0
1465 || i_ehdrp->e_ident[EI_OSABI] == 0)
1466 relocation += 4;
1467 }
1468
1469 check = relocation >> howto->rightshift;
1470
1471 /* If this is a signed value, the rightshift just dropped
1472 leading 1 bits (assuming twos complement). */
1473 if ((bfd_signed_vma) relocation >= 0)
1474 signed_check = check;
1475 else
1476 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
1477
1478 /* Assumes two's complement. */
1479 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1480 overflow = TRUE;
1481
1482 #ifndef OLD_ARM_ABI
1483 if (r_type == R_ARM_THM_XPC22
1484 && ((lower_insn & 0x1800) == 0x0800))
1485 /* For a BLX instruction, make sure that the relocation is rounded up
1486 to a word boundary. This follows the semantics of the instruction
1487 which specifies that bit 1 of the target address will come from bit
1488 1 of the base address. */
1489 relocation = (relocation + 2) & ~ 3;
1490 #endif
1491 /* Put RELOCATION back into the insn. */
1492 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 12) & 0x7ff);
1493 lower_insn = (lower_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 1) & 0x7ff);
1494
1495 /* Put the relocated value back in the object file: */
1496 bfd_put_16 (input_bfd, upper_insn, hit_data);
1497 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
1498
1499 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
1500 }
1501 break;
1502
1503 case R_ARM_THM_PC11:
1504 /* Thumb B (branch) instruction). */
1505 {
1506 bfd_signed_vma relocation;
1507 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
1508 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1509 bfd_signed_vma signed_check;
1510
1511 #if USE_REL
1512 /* Need to refetch addend. */
1513 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1514 if (addend & ((howto->src_mask + 1) >> 1))
1515 {
1516 signed_addend = -1;
1517 signed_addend &= ~ howto->src_mask;
1518 signed_addend |= addend;
1519 }
1520 else
1521 signed_addend = addend;
1522 /* The value in the insn has been right shifted. We need to
1523 undo this, so that we can perform the address calculation
1524 in terms of bytes. */
1525 signed_addend <<= howto->rightshift;
1526 #endif
1527 relocation = value + signed_addend;
1528
1529 relocation -= (input_section->output_section->vma
1530 + input_section->output_offset
1531 + rel->r_offset);
1532
1533 relocation >>= howto->rightshift;
1534 signed_check = relocation;
1535 relocation &= howto->dst_mask;
1536 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
1537
1538 bfd_put_16 (input_bfd, relocation, hit_data);
1539
1540 /* Assumes two's complement. */
1541 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1542 return bfd_reloc_overflow;
1543
1544 return bfd_reloc_ok;
1545 }
1546
1547 case R_ARM_GNU_VTINHERIT:
1548 case R_ARM_GNU_VTENTRY:
1549 return bfd_reloc_ok;
1550
1551 case R_ARM_COPY:
1552 return bfd_reloc_notsupported;
1553
1554 case R_ARM_GLOB_DAT:
1555 return bfd_reloc_notsupported;
1556
1557 case R_ARM_JUMP_SLOT:
1558 return bfd_reloc_notsupported;
1559
1560 case R_ARM_RELATIVE:
1561 return bfd_reloc_notsupported;
1562
1563 case R_ARM_GOTOFF:
1564 /* Relocation is relative to the start of the
1565 global offset table. */
1566
1567 BFD_ASSERT (sgot != NULL);
1568 if (sgot == NULL)
1569 return bfd_reloc_notsupported;
1570
1571 /* If we are addressing a Thumb function, we need to adjust the
1572 address by one, so that attempts to call the function pointer will
1573 correctly interpret it as Thumb code. */
1574 if (sym_flags == STT_ARM_TFUNC)
1575 value += 1;
1576
1577 /* Note that sgot->output_offset is not involved in this
1578 calculation. We always want the start of .got. If we
1579 define _GLOBAL_OFFSET_TABLE in a different way, as is
1580 permitted by the ABI, we might have to change this
1581 calculation. */
1582 value -= sgot->output_section->vma;
1583 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1584 contents, rel->r_offset, value,
1585 (bfd_vma) 0);
1586
1587 case R_ARM_GOTPC:
1588 /* Use global offset table as symbol value. */
1589 BFD_ASSERT (sgot != NULL);
1590
1591 if (sgot == NULL)
1592 return bfd_reloc_notsupported;
1593
1594 value = sgot->output_section->vma;
1595 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1596 contents, rel->r_offset, value,
1597 (bfd_vma) 0);
1598
1599 case R_ARM_GOT32:
1600 /* Relocation is to the entry for this symbol in the
1601 global offset table. */
1602 if (sgot == NULL)
1603 return bfd_reloc_notsupported;
1604
1605 if (h != NULL)
1606 {
1607 bfd_vma off;
1608
1609 off = h->got.offset;
1610 BFD_ASSERT (off != (bfd_vma) -1);
1611
1612 if (!elf_hash_table (info)->dynamic_sections_created ||
1613 (info->shared && (info->symbolic || h->dynindx == -1)
1614 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1615 {
1616 /* This is actually a static link, or it is a -Bsymbolic link
1617 and the symbol is defined locally. We must initialize this
1618 entry in the global offset table. Since the offset must
1619 always be a multiple of 4, we use the least significant bit
1620 to record whether we have initialized it already.
1621
1622 When doing a dynamic link, we create a .rel.got relocation
1623 entry to initialize the value. This is done in the
1624 finish_dynamic_symbol routine. */
1625 if ((off & 1) != 0)
1626 off &= ~1;
1627 else
1628 {
1629 /* If we are addressing a Thumb function, we need to
1630 adjust the address by one, so that attempts to
1631 call the function pointer will correctly
1632 interpret it as Thumb code. */
1633 if (sym_flags == STT_ARM_TFUNC)
1634 value |= 1;
1635
1636 bfd_put_32 (output_bfd, value, sgot->contents + off);
1637 h->got.offset |= 1;
1638 }
1639 }
1640
1641 value = sgot->output_offset + off;
1642 }
1643 else
1644 {
1645 bfd_vma off;
1646
1647 BFD_ASSERT (local_got_offsets != NULL &&
1648 local_got_offsets[r_symndx] != (bfd_vma) -1);
1649
1650 off = local_got_offsets[r_symndx];
1651
1652 /* The offset must always be a multiple of 4. We use the
1653 least significant bit to record whether we have already
1654 generated the necessary reloc. */
1655 if ((off & 1) != 0)
1656 off &= ~1;
1657 else
1658 {
1659 bfd_put_32 (output_bfd, value, sgot->contents + off);
1660
1661 if (info->shared)
1662 {
1663 asection * srelgot;
1664 Elf_Internal_Rela outrel;
1665 bfd_byte *loc;
1666
1667 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
1668 BFD_ASSERT (srelgot != NULL);
1669
1670 outrel.r_offset = (sgot->output_section->vma
1671 + sgot->output_offset
1672 + off);
1673 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1674 loc = srelgot->contents;
1675 loc += srelgot->reloc_count++ * sizeof (Elf32_External_Rel);
1676 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
1677 }
1678
1679 local_got_offsets[r_symndx] |= 1;
1680 }
1681
1682 value = sgot->output_offset + off;
1683 }
1684
1685 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1686 contents, rel->r_offset, value,
1687 (bfd_vma) 0);
1688
1689 case R_ARM_PLT32:
1690 /* Relocation is to the entry for this symbol in the
1691 procedure linkage table. */
1692
1693 /* Resolve a PLT32 reloc against a local symbol directly,
1694 without using the procedure linkage table. */
1695 if (h == NULL)
1696 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1697 contents, rel->r_offset, value,
1698 (bfd_vma) 0);
1699
1700 if (h->plt.offset == (bfd_vma) -1)
1701 /* We didn't make a PLT entry for this symbol. This
1702 happens when statically linking PIC code, or when
1703 using -Bsymbolic. */
1704 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1705 contents, rel->r_offset, value,
1706 (bfd_vma) 0);
1707
1708 BFD_ASSERT(splt != NULL);
1709 if (splt == NULL)
1710 return bfd_reloc_notsupported;
1711
1712 value = (splt->output_section->vma
1713 + splt->output_offset
1714 + h->plt.offset);
1715 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1716 contents, rel->r_offset, value,
1717 (bfd_vma) 0);
1718
1719 case R_ARM_SBREL32:
1720 return bfd_reloc_notsupported;
1721
1722 case R_ARM_AMP_VCALL9:
1723 return bfd_reloc_notsupported;
1724
1725 case R_ARM_RSBREL32:
1726 return bfd_reloc_notsupported;
1727
1728 case R_ARM_THM_RPC22:
1729 return bfd_reloc_notsupported;
1730
1731 case R_ARM_RREL32:
1732 return bfd_reloc_notsupported;
1733
1734 case R_ARM_RABS32:
1735 return bfd_reloc_notsupported;
1736
1737 case R_ARM_RPC24:
1738 return bfd_reloc_notsupported;
1739
1740 case R_ARM_RBASE:
1741 return bfd_reloc_notsupported;
1742
1743 default:
1744 return bfd_reloc_notsupported;
1745 }
1746 }
1747
1748 #if USE_REL
1749 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
1750 static void
1751 arm_add_to_rel (abfd, address, howto, increment)
1752 bfd * abfd;
1753 bfd_byte * address;
1754 reloc_howto_type * howto;
1755 bfd_signed_vma increment;
1756 {
1757 bfd_signed_vma addend;
1758
1759 if (howto->type == R_ARM_THM_PC22)
1760 {
1761 int upper_insn, lower_insn;
1762 int upper, lower;
1763
1764 upper_insn = bfd_get_16 (abfd, address);
1765 lower_insn = bfd_get_16 (abfd, address + 2);
1766 upper = upper_insn & 0x7ff;
1767 lower = lower_insn & 0x7ff;
1768
1769 addend = (upper << 12) | (lower << 1);
1770 addend += increment;
1771 addend >>= 1;
1772
1773 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
1774 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
1775
1776 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
1777 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
1778 }
1779 else
1780 {
1781 bfd_vma contents;
1782
1783 contents = bfd_get_32 (abfd, address);
1784
1785 /* Get the (signed) value from the instruction. */
1786 addend = contents & howto->src_mask;
1787 if (addend & ((howto->src_mask + 1) >> 1))
1788 {
1789 bfd_signed_vma mask;
1790
1791 mask = -1;
1792 mask &= ~ howto->src_mask;
1793 addend |= mask;
1794 }
1795
1796 /* Add in the increment, (which is a byte value). */
1797 switch (howto->type)
1798 {
1799 default:
1800 addend += increment;
1801 break;
1802
1803 case R_ARM_PC24:
1804 addend <<= howto->size;
1805 addend += increment;
1806
1807 /* Should we check for overflow here ? */
1808
1809 /* Drop any undesired bits. */
1810 addend >>= howto->rightshift;
1811 break;
1812 }
1813
1814 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
1815
1816 bfd_put_32 (abfd, contents, address);
1817 }
1818 }
1819 #endif /* USE_REL */
1820
1821 /* Relocate an ARM ELF section. */
1822 static bfd_boolean
1823 elf32_arm_relocate_section (output_bfd, info, input_bfd, input_section,
1824 contents, relocs, local_syms, local_sections)
1825 bfd *output_bfd;
1826 struct bfd_link_info *info;
1827 bfd *input_bfd;
1828 asection *input_section;
1829 bfd_byte *contents;
1830 Elf_Internal_Rela *relocs;
1831 Elf_Internal_Sym *local_syms;
1832 asection **local_sections;
1833 {
1834 Elf_Internal_Shdr *symtab_hdr;
1835 struct elf_link_hash_entry **sym_hashes;
1836 Elf_Internal_Rela *rel;
1837 Elf_Internal_Rela *relend;
1838 const char *name;
1839
1840 #if !USE_REL
1841 if (info->relocatable)
1842 return TRUE;
1843 #endif
1844
1845 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1846 sym_hashes = elf_sym_hashes (input_bfd);
1847
1848 rel = relocs;
1849 relend = relocs + input_section->reloc_count;
1850 for (; rel < relend; rel++)
1851 {
1852 int r_type;
1853 reloc_howto_type * howto;
1854 unsigned long r_symndx;
1855 Elf_Internal_Sym * sym;
1856 asection * sec;
1857 struct elf_link_hash_entry * h;
1858 bfd_vma relocation;
1859 bfd_reloc_status_type r;
1860 arelent bfd_reloc;
1861
1862 r_symndx = ELF32_R_SYM (rel->r_info);
1863 r_type = ELF32_R_TYPE (rel->r_info);
1864
1865 if ( r_type == R_ARM_GNU_VTENTRY
1866 || r_type == R_ARM_GNU_VTINHERIT)
1867 continue;
1868
1869 elf32_arm_info_to_howto (input_bfd, & bfd_reloc, rel);
1870 howto = bfd_reloc.howto;
1871
1872 #if USE_REL
1873 if (info->relocatable)
1874 {
1875 /* This is a relocatable link. We don't have to change
1876 anything, unless the reloc is against a section symbol,
1877 in which case we have to adjust according to where the
1878 section symbol winds up in the output section. */
1879 if (r_symndx < symtab_hdr->sh_info)
1880 {
1881 sym = local_syms + r_symndx;
1882 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1883 {
1884 sec = local_sections[r_symndx];
1885 arm_add_to_rel (input_bfd, contents + rel->r_offset,
1886 howto,
1887 (bfd_signed_vma) (sec->output_offset
1888 + sym->st_value));
1889 }
1890 }
1891
1892 continue;
1893 }
1894 #endif
1895
1896 /* This is a final link. */
1897 h = NULL;
1898 sym = NULL;
1899 sec = NULL;
1900
1901 if (r_symndx < symtab_hdr->sh_info)
1902 {
1903 sym = local_syms + r_symndx;
1904 sec = local_sections[r_symndx];
1905 #if USE_REL
1906 relocation = (sec->output_section->vma
1907 + sec->output_offset
1908 + sym->st_value);
1909 if ((sec->flags & SEC_MERGE)
1910 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1911 {
1912 asection *msec;
1913 bfd_vma addend, value;
1914
1915 if (howto->rightshift)
1916 {
1917 (*_bfd_error_handler)
1918 (_("%s(%s+0x%lx): %s relocation against SEC_MERGE section"),
1919 bfd_archive_filename (input_bfd),
1920 bfd_get_section_name (input_bfd, input_section),
1921 (long) rel->r_offset, howto->name);
1922 return FALSE;
1923 }
1924
1925 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
1926
1927 /* Get the (signed) value from the instruction. */
1928 addend = value & howto->src_mask;
1929 if (addend & ((howto->src_mask + 1) >> 1))
1930 {
1931 bfd_signed_vma mask;
1932
1933 mask = -1;
1934 mask &= ~ howto->src_mask;
1935 addend |= mask;
1936 }
1937 msec = sec;
1938 addend =
1939 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
1940 - relocation;
1941 addend += msec->output_section->vma + msec->output_offset;
1942 value = (value & ~ howto->dst_mask) | (addend & howto->dst_mask);
1943 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
1944 }
1945 #else
1946 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sec, rel);
1947 #endif
1948 }
1949 else
1950 {
1951 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1952
1953 while ( h->root.type == bfd_link_hash_indirect
1954 || h->root.type == bfd_link_hash_warning)
1955 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1956
1957 if ( h->root.type == bfd_link_hash_defined
1958 || h->root.type == bfd_link_hash_defweak)
1959 {
1960 int relocation_needed = 1;
1961
1962 sec = h->root.u.def.section;
1963
1964 /* In these cases, we don't need the relocation value.
1965 We check specially because in some obscure cases
1966 sec->output_section will be NULL. */
1967 switch (r_type)
1968 {
1969 case R_ARM_PC24:
1970 case R_ARM_ABS32:
1971 case R_ARM_THM_PC22:
1972 if (info->shared
1973 && (
1974 (!info->symbolic && h->dynindx != -1)
1975 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1976 )
1977 && ((input_section->flags & SEC_ALLOC) != 0
1978 /* DWARF will emit R_ARM_ABS32 relocations in its
1979 sections against symbols defined externally
1980 in shared libraries. We can't do anything
1981 with them here. */
1982 || ((input_section->flags & SEC_DEBUGGING) != 0
1983 && (h->elf_link_hash_flags
1984 & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
1985 )
1986 relocation_needed = 0;
1987 break;
1988
1989 case R_ARM_GOTPC:
1990 relocation_needed = 0;
1991 break;
1992
1993 case R_ARM_GOT32:
1994 if (elf_hash_table(info)->dynamic_sections_created
1995 && (!info->shared
1996 || (!info->symbolic && h->dynindx != -1)
1997 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1998 )
1999 )
2000 relocation_needed = 0;
2001 break;
2002
2003 case R_ARM_PLT32:
2004 if (h->plt.offset != (bfd_vma)-1)
2005 relocation_needed = 0;
2006 break;
2007
2008 default:
2009 if (sec->output_section == NULL)
2010 {
2011 (*_bfd_error_handler)
2012 (_("%s: warning: unresolvable relocation %d against symbol `%s' from %s section"),
2013 bfd_archive_filename (input_bfd),
2014 r_type,
2015 h->root.root.string,
2016 bfd_get_section_name (input_bfd, input_section));
2017 relocation_needed = 0;
2018 }
2019 }
2020
2021 if (relocation_needed)
2022 relocation = h->root.u.def.value
2023 + sec->output_section->vma
2024 + sec->output_offset;
2025 else
2026 relocation = 0;
2027 }
2028 else if (h->root.type == bfd_link_hash_undefweak)
2029 relocation = 0;
2030 else if (info->shared && !info->symbolic
2031 && !info->no_undefined
2032 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2033 relocation = 0;
2034 else
2035 {
2036 if (!((*info->callbacks->undefined_symbol)
2037 (info, h->root.root.string, input_bfd,
2038 input_section, rel->r_offset,
2039 (!info->shared || info->no_undefined
2040 || ELF_ST_VISIBILITY (h->other)))))
2041 return FALSE;
2042 relocation = 0;
2043 }
2044 }
2045
2046 if (h != NULL)
2047 name = h->root.root.string;
2048 else
2049 {
2050 name = (bfd_elf_string_from_elf_section
2051 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2052 if (name == NULL || *name == '\0')
2053 name = bfd_section_name (input_bfd, sec);
2054 }
2055
2056 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
2057 input_section, contents, rel,
2058 relocation, info, sec, name,
2059 (h ? ELF_ST_TYPE (h->type) :
2060 ELF_ST_TYPE (sym->st_info)), h);
2061
2062 if (r != bfd_reloc_ok)
2063 {
2064 const char * msg = (const char *) 0;
2065
2066 switch (r)
2067 {
2068 case bfd_reloc_overflow:
2069 /* If the overflowing reloc was to an undefined symbol,
2070 we have already printed one error message and there
2071 is no point complaining again. */
2072 if ((! h ||
2073 h->root.type != bfd_link_hash_undefined)
2074 && (!((*info->callbacks->reloc_overflow)
2075 (info, name, howto->name, (bfd_vma) 0,
2076 input_bfd, input_section, rel->r_offset))))
2077 return FALSE;
2078 break;
2079
2080 case bfd_reloc_undefined:
2081 if (!((*info->callbacks->undefined_symbol)
2082 (info, name, input_bfd, input_section,
2083 rel->r_offset, TRUE)))
2084 return FALSE;
2085 break;
2086
2087 case bfd_reloc_outofrange:
2088 msg = _("internal error: out of range error");
2089 goto common_error;
2090
2091 case bfd_reloc_notsupported:
2092 msg = _("internal error: unsupported relocation error");
2093 goto common_error;
2094
2095 case bfd_reloc_dangerous:
2096 msg = _("internal error: dangerous error");
2097 goto common_error;
2098
2099 default:
2100 msg = _("internal error: unknown error");
2101 /* fall through */
2102
2103 common_error:
2104 if (!((*info->callbacks->warning)
2105 (info, msg, name, input_bfd, input_section,
2106 rel->r_offset)))
2107 return FALSE;
2108 break;
2109 }
2110 }
2111 }
2112
2113 return TRUE;
2114 }
2115
2116 /* Set the right machine number. */
2117
2118 static bfd_boolean
2119 elf32_arm_object_p (abfd)
2120 bfd *abfd;
2121 {
2122 unsigned int mach;
2123
2124 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
2125
2126 if (mach != bfd_mach_arm_unknown)
2127 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
2128
2129 else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
2130 bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
2131
2132 else
2133 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
2134
2135 return TRUE;
2136 }
2137
2138 /* Function to keep ARM specific flags in the ELF header. */
2139 static bfd_boolean
2140 elf32_arm_set_private_flags (abfd, flags)
2141 bfd *abfd;
2142 flagword flags;
2143 {
2144 if (elf_flags_init (abfd)
2145 && elf_elfheader (abfd)->e_flags != flags)
2146 {
2147 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
2148 {
2149 if (flags & EF_ARM_INTERWORK)
2150 (*_bfd_error_handler) (_("\
2151 Warning: Not setting interworking flag of %s since it has already been specified as non-interworking"),
2152 bfd_archive_filename (abfd));
2153 else
2154 _bfd_error_handler (_("\
2155 Warning: Clearing the interworking flag of %s due to outside request"),
2156 bfd_archive_filename (abfd));
2157 }
2158 }
2159 else
2160 {
2161 elf_elfheader (abfd)->e_flags = flags;
2162 elf_flags_init (abfd) = TRUE;
2163 }
2164
2165 return TRUE;
2166 }
2167
2168 /* Copy backend specific data from one object module to another. */
2169
2170 static bfd_boolean
2171 elf32_arm_copy_private_bfd_data (ibfd, obfd)
2172 bfd *ibfd;
2173 bfd *obfd;
2174 {
2175 flagword in_flags;
2176 flagword out_flags;
2177
2178 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2179 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2180 return TRUE;
2181
2182 in_flags = elf_elfheader (ibfd)->e_flags;
2183 out_flags = elf_elfheader (obfd)->e_flags;
2184
2185 if (elf_flags_init (obfd)
2186 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
2187 && in_flags != out_flags)
2188 {
2189 /* Cannot mix APCS26 and APCS32 code. */
2190 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2191 return FALSE;
2192
2193 /* Cannot mix float APCS and non-float APCS code. */
2194 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2195 return FALSE;
2196
2197 /* If the src and dest have different interworking flags
2198 then turn off the interworking bit. */
2199 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2200 {
2201 if (out_flags & EF_ARM_INTERWORK)
2202 _bfd_error_handler (_("\
2203 Warning: Clearing the interworking flag of %s because non-interworking code in %s has been linked with it"),
2204 bfd_get_filename (obfd),
2205 bfd_archive_filename (ibfd));
2206
2207 in_flags &= ~EF_ARM_INTERWORK;
2208 }
2209
2210 /* Likewise for PIC, though don't warn for this case. */
2211 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
2212 in_flags &= ~EF_ARM_PIC;
2213 }
2214
2215 elf_elfheader (obfd)->e_flags = in_flags;
2216 elf_flags_init (obfd) = TRUE;
2217
2218 return TRUE;
2219 }
2220
2221 /* Merge backend specific data from an object file to the output
2222 object file when linking. */
2223
2224 static bfd_boolean
2225 elf32_arm_merge_private_bfd_data (ibfd, obfd)
2226 bfd * ibfd;
2227 bfd * obfd;
2228 {
2229 flagword out_flags;
2230 flagword in_flags;
2231 bfd_boolean flags_compatible = TRUE;
2232 bfd_boolean null_input_bfd = TRUE;
2233 asection *sec;
2234
2235 /* Check if we have the same endianess. */
2236 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
2237 return FALSE;
2238
2239 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2240 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2241 return TRUE;
2242
2243 /* The input BFD must have had its flags initialised. */
2244 /* The following seems bogus to me -- The flags are initialized in
2245 the assembler but I don't think an elf_flags_init field is
2246 written into the object. */
2247 /* BFD_ASSERT (elf_flags_init (ibfd)); */
2248
2249 in_flags = elf_elfheader (ibfd)->e_flags;
2250 out_flags = elf_elfheader (obfd)->e_flags;
2251
2252 if (!elf_flags_init (obfd))
2253 {
2254 /* If the input is the default architecture and had the default
2255 flags then do not bother setting the flags for the output
2256 architecture, instead allow future merges to do this. If no
2257 future merges ever set these flags then they will retain their
2258 uninitialised values, which surprise surprise, correspond
2259 to the default values. */
2260 if (bfd_get_arch_info (ibfd)->the_default
2261 && elf_elfheader (ibfd)->e_flags == 0)
2262 return TRUE;
2263
2264 elf_flags_init (obfd) = TRUE;
2265 elf_elfheader (obfd)->e_flags = in_flags;
2266
2267 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2268 && bfd_get_arch_info (obfd)->the_default)
2269 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
2270
2271 return TRUE;
2272 }
2273
2274 /* Determine what should happen if the input ARM architecture
2275 does not match the output ARM architecture. */
2276 if (! bfd_arm_merge_machines (ibfd, obfd))
2277 return FALSE;
2278
2279 /* Identical flags must be compatible. */
2280 if (in_flags == out_flags)
2281 return TRUE;
2282
2283 /* Check to see if the input BFD actually contains any sections.
2284 If not, its flags may not have been initialised either, but it cannot
2285 actually cause any incompatibility. */
2286 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2287 {
2288 /* Ignore synthetic glue sections. */
2289 if (strcmp (sec->name, ".glue_7")
2290 && strcmp (sec->name, ".glue_7t"))
2291 {
2292 null_input_bfd = FALSE;
2293 break;
2294 }
2295 }
2296 if (null_input_bfd)
2297 return TRUE;
2298
2299 /* Complain about various flag mismatches. */
2300 if (EF_ARM_EABI_VERSION (in_flags) != EF_ARM_EABI_VERSION (out_flags))
2301 {
2302 _bfd_error_handler (_("\
2303 ERROR: %s is compiled for EABI version %d, whereas %s is compiled for version %d"),
2304 bfd_archive_filename (ibfd),
2305 (in_flags & EF_ARM_EABIMASK) >> 24,
2306 bfd_get_filename (obfd),
2307 (out_flags & EF_ARM_EABIMASK) >> 24);
2308 return FALSE;
2309 }
2310
2311 /* Not sure what needs to be checked for EABI versions >= 1. */
2312 if (EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
2313 {
2314 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2315 {
2316 _bfd_error_handler (_("\
2317 ERROR: %s is compiled for APCS-%d, whereas target %s uses APCS-%d"),
2318 bfd_archive_filename (ibfd),
2319 in_flags & EF_ARM_APCS_26 ? 26 : 32,
2320 bfd_get_filename (obfd),
2321 out_flags & EF_ARM_APCS_26 ? 26 : 32);
2322 flags_compatible = FALSE;
2323 }
2324
2325 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2326 {
2327 if (in_flags & EF_ARM_APCS_FLOAT)
2328 _bfd_error_handler (_("\
2329 ERROR: %s passes floats in float registers, whereas %s passes them in integer registers"),
2330 bfd_archive_filename (ibfd),
2331 bfd_get_filename (obfd));
2332 else
2333 _bfd_error_handler (_("\
2334 ERROR: %s passes floats in integer registers, whereas %s passes them in float registers"),
2335 bfd_archive_filename (ibfd),
2336 bfd_get_filename (obfd));
2337
2338 flags_compatible = FALSE;
2339 }
2340
2341 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
2342 {
2343 if (in_flags & EF_ARM_VFP_FLOAT)
2344 _bfd_error_handler (_("\
2345 ERROR: %s uses VFP instructions, whereas %s does not"),
2346 bfd_archive_filename (ibfd),
2347 bfd_get_filename (obfd));
2348 else
2349 _bfd_error_handler (_("\
2350 ERROR: %s uses FPA instructions, whereas %s does not"),
2351 bfd_archive_filename (ibfd),
2352 bfd_get_filename (obfd));
2353
2354 flags_compatible = FALSE;
2355 }
2356
2357 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
2358 {
2359 if (in_flags & EF_ARM_MAVERICK_FLOAT)
2360 _bfd_error_handler (_("\
2361 ERROR: %s uses Maverick instructions, whereas %s does not"),
2362 bfd_archive_filename (ibfd),
2363 bfd_get_filename (obfd));
2364 else
2365 _bfd_error_handler (_("\
2366 ERROR: %s uses Maverick instructions, whereas %s does not"),
2367 bfd_archive_filename (ibfd),
2368 bfd_get_filename (obfd));
2369
2370 flags_compatible = FALSE;
2371 }
2372
2373 #ifdef EF_ARM_SOFT_FLOAT
2374 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
2375 {
2376 /* We can allow interworking between code that is VFP format
2377 layout, and uses either soft float or integer regs for
2378 passing floating point arguments and results. We already
2379 know that the APCS_FLOAT flags match; similarly for VFP
2380 flags. */
2381 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
2382 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
2383 {
2384 if (in_flags & EF_ARM_SOFT_FLOAT)
2385 _bfd_error_handler (_("\
2386 ERROR: %s uses software FP, whereas %s uses hardware FP"),
2387 bfd_archive_filename (ibfd),
2388 bfd_get_filename (obfd));
2389 else
2390 _bfd_error_handler (_("\
2391 ERROR: %s uses hardware FP, whereas %s uses software FP"),
2392 bfd_archive_filename (ibfd),
2393 bfd_get_filename (obfd));
2394
2395 flags_compatible = FALSE;
2396 }
2397 }
2398 #endif
2399
2400 /* Interworking mismatch is only a warning. */
2401 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2402 {
2403 if (in_flags & EF_ARM_INTERWORK)
2404 {
2405 _bfd_error_handler (_("\
2406 Warning: %s supports interworking, whereas %s does not"),
2407 bfd_archive_filename (ibfd),
2408 bfd_get_filename (obfd));
2409 }
2410 else
2411 {
2412 _bfd_error_handler (_("\
2413 Warning: %s does not support interworking, whereas %s does"),
2414 bfd_archive_filename (ibfd),
2415 bfd_get_filename (obfd));
2416 }
2417 }
2418 }
2419
2420 return flags_compatible;
2421 }
2422
2423 /* Display the flags field. */
2424
2425 static bfd_boolean
2426 elf32_arm_print_private_bfd_data (abfd, ptr)
2427 bfd *abfd;
2428 PTR ptr;
2429 {
2430 FILE * file = (FILE *) ptr;
2431 unsigned long flags;
2432
2433 BFD_ASSERT (abfd != NULL && ptr != NULL);
2434
2435 /* Print normal ELF private data. */
2436 _bfd_elf_print_private_bfd_data (abfd, ptr);
2437
2438 flags = elf_elfheader (abfd)->e_flags;
2439 /* Ignore init flag - it may not be set, despite the flags field
2440 containing valid data. */
2441
2442 /* xgettext:c-format */
2443 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
2444
2445 switch (EF_ARM_EABI_VERSION (flags))
2446 {
2447 case EF_ARM_EABI_UNKNOWN:
2448 /* The following flag bits are GNU extenstions and not part of the
2449 official ARM ELF extended ABI. Hence they are only decoded if
2450 the EABI version is not set. */
2451 if (flags & EF_ARM_INTERWORK)
2452 fprintf (file, _(" [interworking enabled]"));
2453
2454 if (flags & EF_ARM_APCS_26)
2455 fprintf (file, " [APCS-26]");
2456 else
2457 fprintf (file, " [APCS-32]");
2458
2459 if (flags & EF_ARM_VFP_FLOAT)
2460 fprintf (file, _(" [VFP float format]"));
2461 else if (flags & EF_ARM_MAVERICK_FLOAT)
2462 fprintf (file, _(" [Maverick float format]"));
2463 else
2464 fprintf (file, _(" [FPA float format]"));
2465
2466 if (flags & EF_ARM_APCS_FLOAT)
2467 fprintf (file, _(" [floats passed in float registers]"));
2468
2469 if (flags & EF_ARM_PIC)
2470 fprintf (file, _(" [position independent]"));
2471
2472 if (flags & EF_ARM_NEW_ABI)
2473 fprintf (file, _(" [new ABI]"));
2474
2475 if (flags & EF_ARM_OLD_ABI)
2476 fprintf (file, _(" [old ABI]"));
2477
2478 if (flags & EF_ARM_SOFT_FLOAT)
2479 fprintf (file, _(" [software FP]"));
2480
2481 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
2482 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
2483 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
2484 | EF_ARM_MAVERICK_FLOAT);
2485 break;
2486
2487 case EF_ARM_EABI_VER1:
2488 fprintf (file, _(" [Version1 EABI]"));
2489
2490 if (flags & EF_ARM_SYMSARESORTED)
2491 fprintf (file, _(" [sorted symbol table]"));
2492 else
2493 fprintf (file, _(" [unsorted symbol table]"));
2494
2495 flags &= ~ EF_ARM_SYMSARESORTED;
2496 break;
2497
2498 case EF_ARM_EABI_VER2:
2499 fprintf (file, _(" [Version2 EABI]"));
2500
2501 if (flags & EF_ARM_SYMSARESORTED)
2502 fprintf (file, _(" [sorted symbol table]"));
2503 else
2504 fprintf (file, _(" [unsorted symbol table]"));
2505
2506 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
2507 fprintf (file, _(" [dynamic symbols use segment index]"));
2508
2509 if (flags & EF_ARM_MAPSYMSFIRST)
2510 fprintf (file, _(" [mapping symbols precede others]"));
2511
2512 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
2513 | EF_ARM_MAPSYMSFIRST);
2514 break;
2515
2516 default:
2517 fprintf (file, _(" <EABI version unrecognised>"));
2518 break;
2519 }
2520
2521 flags &= ~ EF_ARM_EABIMASK;
2522
2523 if (flags & EF_ARM_RELEXEC)
2524 fprintf (file, _(" [relocatable executable]"));
2525
2526 if (flags & EF_ARM_HASENTRY)
2527 fprintf (file, _(" [has entry point]"));
2528
2529 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
2530
2531 if (flags)
2532 fprintf (file, _("<Unrecognised flag bits set>"));
2533
2534 fputc ('\n', file);
2535
2536 return TRUE;
2537 }
2538
2539 static int
2540 elf32_arm_get_symbol_type (elf_sym, type)
2541 Elf_Internal_Sym * elf_sym;
2542 int type;
2543 {
2544 switch (ELF_ST_TYPE (elf_sym->st_info))
2545 {
2546 case STT_ARM_TFUNC:
2547 return ELF_ST_TYPE (elf_sym->st_info);
2548
2549 case STT_ARM_16BIT:
2550 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
2551 This allows us to distinguish between data used by Thumb instructions
2552 and non-data (which is probably code) inside Thumb regions of an
2553 executable. */
2554 if (type != STT_OBJECT)
2555 return ELF_ST_TYPE (elf_sym->st_info);
2556 break;
2557
2558 default:
2559 break;
2560 }
2561
2562 return type;
2563 }
2564
2565 static asection *
2566 elf32_arm_gc_mark_hook (sec, info, rel, h, sym)
2567 asection *sec;
2568 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2569 Elf_Internal_Rela *rel;
2570 struct elf_link_hash_entry *h;
2571 Elf_Internal_Sym *sym;
2572 {
2573 if (h != NULL)
2574 {
2575 switch (ELF32_R_TYPE (rel->r_info))
2576 {
2577 case R_ARM_GNU_VTINHERIT:
2578 case R_ARM_GNU_VTENTRY:
2579 break;
2580
2581 default:
2582 switch (h->root.type)
2583 {
2584 case bfd_link_hash_defined:
2585 case bfd_link_hash_defweak:
2586 return h->root.u.def.section;
2587
2588 case bfd_link_hash_common:
2589 return h->root.u.c.p->section;
2590
2591 default:
2592 break;
2593 }
2594 }
2595 }
2596 else
2597 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
2598
2599 return NULL;
2600 }
2601
2602 /* Update the got entry reference counts for the section being removed. */
2603
2604 static bfd_boolean
2605 elf32_arm_gc_sweep_hook (abfd, info, sec, relocs)
2606 bfd *abfd ATTRIBUTE_UNUSED;
2607 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2608 asection *sec ATTRIBUTE_UNUSED;
2609 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
2610 {
2611 /* We don't support garbage collection of GOT and PLT relocs yet. */
2612 return TRUE;
2613 }
2614
2615 /* Look through the relocs for a section during the first phase. */
2616
2617 static bfd_boolean
2618 elf32_arm_check_relocs (abfd, info, sec, relocs)
2619 bfd *abfd;
2620 struct bfd_link_info *info;
2621 asection *sec;
2622 const Elf_Internal_Rela *relocs;
2623 {
2624 Elf_Internal_Shdr *symtab_hdr;
2625 struct elf_link_hash_entry **sym_hashes;
2626 struct elf_link_hash_entry **sym_hashes_end;
2627 const Elf_Internal_Rela *rel;
2628 const Elf_Internal_Rela *rel_end;
2629 bfd *dynobj;
2630 asection *sgot, *srelgot, *sreloc;
2631 bfd_vma *local_got_offsets;
2632
2633 if (info->relocatable)
2634 return TRUE;
2635
2636 sgot = srelgot = sreloc = NULL;
2637
2638 dynobj = elf_hash_table (info)->dynobj;
2639 local_got_offsets = elf_local_got_offsets (abfd);
2640
2641 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2642 sym_hashes = elf_sym_hashes (abfd);
2643 sym_hashes_end = sym_hashes
2644 + symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
2645
2646 if (!elf_bad_symtab (abfd))
2647 sym_hashes_end -= symtab_hdr->sh_info;
2648
2649 rel_end = relocs + sec->reloc_count;
2650 for (rel = relocs; rel < rel_end; rel++)
2651 {
2652 struct elf_link_hash_entry *h;
2653 unsigned long r_symndx;
2654
2655 r_symndx = ELF32_R_SYM (rel->r_info);
2656 if (r_symndx < symtab_hdr->sh_info)
2657 h = NULL;
2658 else
2659 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2660
2661 /* Some relocs require a global offset table. */
2662 if (dynobj == NULL)
2663 {
2664 switch (ELF32_R_TYPE (rel->r_info))
2665 {
2666 case R_ARM_GOT32:
2667 case R_ARM_GOTOFF:
2668 case R_ARM_GOTPC:
2669 elf_hash_table (info)->dynobj = dynobj = abfd;
2670 if (! _bfd_elf_create_got_section (dynobj, info))
2671 return FALSE;
2672 break;
2673
2674 default:
2675 break;
2676 }
2677 }
2678
2679 switch (ELF32_R_TYPE (rel->r_info))
2680 {
2681 case R_ARM_GOT32:
2682 /* This symbol requires a global offset table entry. */
2683 if (sgot == NULL)
2684 {
2685 sgot = bfd_get_section_by_name (dynobj, ".got");
2686 BFD_ASSERT (sgot != NULL);
2687 }
2688
2689 /* Get the got relocation section if necessary. */
2690 if (srelgot == NULL
2691 && (h != NULL || info->shared))
2692 {
2693 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
2694
2695 /* If no got relocation section, make one and initialize. */
2696 if (srelgot == NULL)
2697 {
2698 srelgot = bfd_make_section (dynobj, ".rel.got");
2699 if (srelgot == NULL
2700 || ! bfd_set_section_flags (dynobj, srelgot,
2701 (SEC_ALLOC
2702 | SEC_LOAD
2703 | SEC_HAS_CONTENTS
2704 | SEC_IN_MEMORY
2705 | SEC_LINKER_CREATED
2706 | SEC_READONLY))
2707 || ! bfd_set_section_alignment (dynobj, srelgot, 2))
2708 return FALSE;
2709 }
2710 }
2711
2712 if (h != NULL)
2713 {
2714 if (h->got.offset != (bfd_vma) -1)
2715 /* We have already allocated space in the .got. */
2716 break;
2717
2718 h->got.offset = sgot->_raw_size;
2719
2720 /* Make sure this symbol is output as a dynamic symbol. */
2721 if (h->dynindx == -1)
2722 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2723 return FALSE;
2724
2725 srelgot->_raw_size += sizeof (Elf32_External_Rel);
2726 }
2727 else
2728 {
2729 /* This is a global offset table entry for a local
2730 symbol. */
2731 if (local_got_offsets == NULL)
2732 {
2733 bfd_size_type size;
2734 unsigned int i;
2735
2736 size = symtab_hdr->sh_info;
2737 size *= sizeof (bfd_vma);
2738 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
2739 if (local_got_offsets == NULL)
2740 return FALSE;
2741 elf_local_got_offsets (abfd) = local_got_offsets;
2742 for (i = 0; i < symtab_hdr->sh_info; i++)
2743 local_got_offsets[i] = (bfd_vma) -1;
2744 }
2745
2746 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
2747 /* We have already allocated space in the .got. */
2748 break;
2749
2750 local_got_offsets[r_symndx] = sgot->_raw_size;
2751
2752 if (info->shared)
2753 /* If we are generating a shared object, we need to
2754 output a R_ARM_RELATIVE reloc so that the dynamic
2755 linker can adjust this GOT entry. */
2756 srelgot->_raw_size += sizeof (Elf32_External_Rel);
2757 }
2758
2759 sgot->_raw_size += 4;
2760 break;
2761
2762 case R_ARM_PLT32:
2763 /* This symbol requires a procedure linkage table entry. We
2764 actually build the entry in adjust_dynamic_symbol,
2765 because this might be a case of linking PIC code which is
2766 never referenced by a dynamic object, in which case we
2767 don't need to generate a procedure linkage table entry
2768 after all. */
2769
2770 /* If this is a local symbol, we resolve it directly without
2771 creating a procedure linkage table entry. */
2772 if (h == NULL)
2773 continue;
2774
2775 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
2776 break;
2777
2778 case R_ARM_ABS32:
2779 case R_ARM_REL32:
2780 case R_ARM_PC24:
2781 /* If we are creating a shared library, and this is a reloc
2782 against a global symbol, or a non PC relative reloc
2783 against a local symbol, then we need to copy the reloc
2784 into the shared library. However, if we are linking with
2785 -Bsymbolic, we do not need to copy a reloc against a
2786 global symbol which is defined in an object we are
2787 including in the link (i.e., DEF_REGULAR is set). At
2788 this point we have not seen all the input files, so it is
2789 possible that DEF_REGULAR is not set now but will be set
2790 later (it is never cleared). We account for that
2791 possibility below by storing information in the
2792 pcrel_relocs_copied field of the hash table entry. */
2793 if (info->shared
2794 && (ELF32_R_TYPE (rel->r_info) != R_ARM_PC24
2795 || (h != NULL
2796 && (! info->symbolic
2797 || (h->elf_link_hash_flags
2798 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
2799 {
2800 /* When creating a shared object, we must copy these
2801 reloc types into the output file. We create a reloc
2802 section in dynobj and make room for this reloc. */
2803 if (sreloc == NULL)
2804 {
2805 const char * name;
2806
2807 name = (bfd_elf_string_from_elf_section
2808 (abfd,
2809 elf_elfheader (abfd)->e_shstrndx,
2810 elf_section_data (sec)->rel_hdr.sh_name));
2811 if (name == NULL)
2812 return FALSE;
2813
2814 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
2815 && strcmp (bfd_get_section_name (abfd, sec),
2816 name + 4) == 0);
2817
2818 sreloc = bfd_get_section_by_name (dynobj, name);
2819 if (sreloc == NULL)
2820 {
2821 flagword flags;
2822
2823 sreloc = bfd_make_section (dynobj, name);
2824 flags = (SEC_HAS_CONTENTS | SEC_READONLY
2825 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2826 if ((sec->flags & SEC_ALLOC) != 0)
2827 flags |= SEC_ALLOC | SEC_LOAD;
2828 if (sreloc == NULL
2829 || ! bfd_set_section_flags (dynobj, sreloc, flags)
2830 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
2831 return FALSE;
2832 }
2833 if (sec->flags & SEC_READONLY)
2834 info->flags |= DF_TEXTREL;
2835 }
2836
2837 sreloc->_raw_size += sizeof (Elf32_External_Rel);
2838 /* If we are linking with -Bsymbolic, and this is a
2839 global symbol, we count the number of PC relative
2840 relocations we have entered for this symbol, so that
2841 we can discard them again if the symbol is later
2842 defined by a regular object. Note that this function
2843 is only called if we are using an elf_i386 linker
2844 hash table, which means that h is really a pointer to
2845 an elf_i386_link_hash_entry. */
2846 if (h != NULL && info->symbolic
2847 && ELF32_R_TYPE (rel->r_info) == R_ARM_PC24)
2848 {
2849 struct elf32_arm_link_hash_entry * eh;
2850 struct elf32_arm_pcrel_relocs_copied * p;
2851
2852 eh = (struct elf32_arm_link_hash_entry *) h;
2853
2854 for (p = eh->pcrel_relocs_copied; p != NULL; p = p->next)
2855 if (p->section == sreloc)
2856 break;
2857
2858 if (p == NULL)
2859 {
2860 p = ((struct elf32_arm_pcrel_relocs_copied *)
2861 bfd_alloc (dynobj, (bfd_size_type) sizeof * p));
2862 if (p == NULL)
2863 return FALSE;
2864 p->next = eh->pcrel_relocs_copied;
2865 eh->pcrel_relocs_copied = p;
2866 p->section = sreloc;
2867 p->count = 0;
2868 }
2869
2870 ++p->count;
2871 }
2872 }
2873 break;
2874
2875 /* This relocation describes the C++ object vtable hierarchy.
2876 Reconstruct it for later use during GC. */
2877 case R_ARM_GNU_VTINHERIT:
2878 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2879 return FALSE;
2880 break;
2881
2882 /* This relocation describes which C++ vtable entries are actually
2883 used. Record for later use during GC. */
2884 case R_ARM_GNU_VTENTRY:
2885 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
2886 return FALSE;
2887 break;
2888 }
2889 }
2890
2891 return TRUE;
2892 }
2893
2894 /* Find the nearest line to a particular section and offset, for error
2895 reporting. This code is a duplicate of the code in elf.c, except
2896 that it also accepts STT_ARM_TFUNC as a symbol that names a function. */
2897
2898 static bfd_boolean
2899 elf32_arm_find_nearest_line
2900 (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr)
2901 bfd *abfd;
2902 asection *section;
2903 asymbol **symbols;
2904 bfd_vma offset;
2905 const char **filename_ptr;
2906 const char **functionname_ptr;
2907 unsigned int *line_ptr;
2908 {
2909 bfd_boolean found;
2910 const char *filename;
2911 asymbol *func;
2912 bfd_vma low_func;
2913 asymbol **p;
2914
2915 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
2916 filename_ptr, functionname_ptr,
2917 line_ptr, 0,
2918 &elf_tdata (abfd)->dwarf2_find_line_info))
2919 return TRUE;
2920
2921 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
2922 &found, filename_ptr,
2923 functionname_ptr, line_ptr,
2924 &elf_tdata (abfd)->line_info))
2925 return FALSE;
2926
2927 if (found)
2928 return TRUE;
2929
2930 if (symbols == NULL)
2931 return FALSE;
2932
2933 filename = NULL;
2934 func = NULL;
2935 low_func = 0;
2936
2937 for (p = symbols; *p != NULL; p++)
2938 {
2939 elf_symbol_type *q;
2940
2941 q = (elf_symbol_type *) *p;
2942
2943 if (bfd_get_section (&q->symbol) != section)
2944 continue;
2945
2946 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
2947 {
2948 default:
2949 break;
2950 case STT_FILE:
2951 filename = bfd_asymbol_name (&q->symbol);
2952 break;
2953 case STT_NOTYPE:
2954 case STT_FUNC:
2955 case STT_ARM_TFUNC:
2956 if (q->symbol.section == section
2957 && q->symbol.value >= low_func
2958 && q->symbol.value <= offset)
2959 {
2960 func = (asymbol *) q;
2961 low_func = q->symbol.value;
2962 }
2963 break;
2964 }
2965 }
2966
2967 if (func == NULL)
2968 return FALSE;
2969
2970 *filename_ptr = filename;
2971 *functionname_ptr = bfd_asymbol_name (func);
2972 *line_ptr = 0;
2973
2974 return TRUE;
2975 }
2976
2977 /* Adjust a symbol defined by a dynamic object and referenced by a
2978 regular object. The current definition is in some section of the
2979 dynamic object, but we're not including those sections. We have to
2980 change the definition to something the rest of the link can
2981 understand. */
2982
2983 static bfd_boolean
2984 elf32_arm_adjust_dynamic_symbol (info, h)
2985 struct bfd_link_info * info;
2986 struct elf_link_hash_entry * h;
2987 {
2988 bfd * dynobj;
2989 asection * s;
2990 unsigned int power_of_two;
2991
2992 dynobj = elf_hash_table (info)->dynobj;
2993
2994 /* Make sure we know what is going on here. */
2995 BFD_ASSERT (dynobj != NULL
2996 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
2997 || h->weakdef != NULL
2998 || ((h->elf_link_hash_flags
2999 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3000 && (h->elf_link_hash_flags
3001 & ELF_LINK_HASH_REF_REGULAR) != 0
3002 && (h->elf_link_hash_flags
3003 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
3004
3005 /* If this is a function, put it in the procedure linkage table. We
3006 will fill in the contents of the procedure linkage table later,
3007 when we know the address of the .got section. */
3008 if (h->type == STT_FUNC
3009 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
3010 {
3011 /* If we link a program (not a DSO), we'll get rid of unnecessary
3012 PLT entries; we point to the actual symbols -- even for pic
3013 relocs, because a program built with -fpic should have the same
3014 result as one built without -fpic, specifically considering weak
3015 symbols.
3016 FIXME: m68k and i386 differ here, for unclear reasons. */
3017 if (! info->shared
3018 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0)
3019 {
3020 /* This case can occur if we saw a PLT32 reloc in an input
3021 file, but the symbol was not defined by a dynamic object.
3022 In such a case, we don't actually need to build a
3023 procedure linkage table, and we can just do a PC32 reloc
3024 instead. */
3025 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
3026 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
3027 return TRUE;
3028 }
3029
3030 /* Make sure this symbol is output as a dynamic symbol. */
3031 if (h->dynindx == -1)
3032 {
3033 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
3034 return FALSE;
3035 }
3036
3037 s = bfd_get_section_by_name (dynobj, ".plt");
3038 BFD_ASSERT (s != NULL);
3039
3040 /* If this is the first .plt entry, make room for the special
3041 first entry. */
3042 if (s->_raw_size == 0)
3043 s->_raw_size += PLT_ENTRY_SIZE;
3044
3045 /* If this symbol is not defined in a regular file, and we are
3046 not generating a shared library, then set the symbol to this
3047 location in the .plt. This is required to make function
3048 pointers compare as equal between the normal executable and
3049 the shared library. */
3050 if (! info->shared
3051 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3052 {
3053 h->root.u.def.section = s;
3054 h->root.u.def.value = s->_raw_size;
3055 }
3056
3057 h->plt.offset = s->_raw_size;
3058
3059 /* Make room for this entry. */
3060 s->_raw_size += PLT_ENTRY_SIZE;
3061
3062 /* We also need to make an entry in the .got.plt section, which
3063 will be placed in the .got section by the linker script. */
3064 s = bfd_get_section_by_name (dynobj, ".got.plt");
3065 BFD_ASSERT (s != NULL);
3066 s->_raw_size += 4;
3067
3068 /* We also need to make an entry in the .rel.plt section. */
3069
3070 s = bfd_get_section_by_name (dynobj, ".rel.plt");
3071 BFD_ASSERT (s != NULL);
3072 s->_raw_size += sizeof (Elf32_External_Rel);
3073
3074 return TRUE;
3075 }
3076
3077 /* If this is a weak symbol, and there is a real definition, the
3078 processor independent code will have arranged for us to see the
3079 real definition first, and we can just use the same value. */
3080 if (h->weakdef != NULL)
3081 {
3082 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
3083 || h->weakdef->root.type == bfd_link_hash_defweak);
3084 h->root.u.def.section = h->weakdef->root.u.def.section;
3085 h->root.u.def.value = h->weakdef->root.u.def.value;
3086 return TRUE;
3087 }
3088
3089 /* This is a reference to a symbol defined by a dynamic object which
3090 is not a function. */
3091
3092 /* If we are creating a shared library, we must presume that the
3093 only references to the symbol are via the global offset table.
3094 For such cases we need not do anything here; the relocations will
3095 be handled correctly by relocate_section. */
3096 if (info->shared)
3097 return TRUE;
3098
3099 /* We must allocate the symbol in our .dynbss section, which will
3100 become part of the .bss section of the executable. There will be
3101 an entry for this symbol in the .dynsym section. The dynamic
3102 object will contain position independent code, so all references
3103 from the dynamic object to this symbol will go through the global
3104 offset table. The dynamic linker will use the .dynsym entry to
3105 determine the address it must put in the global offset table, so
3106 both the dynamic object and the regular object will refer to the
3107 same memory location for the variable. */
3108 s = bfd_get_section_by_name (dynobj, ".dynbss");
3109 BFD_ASSERT (s != NULL);
3110
3111 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
3112 copy the initial value out of the dynamic object and into the
3113 runtime process image. We need to remember the offset into the
3114 .rel.bss section we are going to use. */
3115 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
3116 {
3117 asection *srel;
3118
3119 srel = bfd_get_section_by_name (dynobj, ".rel.bss");
3120 BFD_ASSERT (srel != NULL);
3121 srel->_raw_size += sizeof (Elf32_External_Rel);
3122 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
3123 }
3124
3125 /* We need to figure out the alignment required for this symbol. I
3126 have no idea how ELF linkers handle this. */
3127 power_of_two = bfd_log2 (h->size);
3128 if (power_of_two > 3)
3129 power_of_two = 3;
3130
3131 /* Apply the required alignment. */
3132 s->_raw_size = BFD_ALIGN (s->_raw_size,
3133 (bfd_size_type) (1 << power_of_two));
3134 if (power_of_two > bfd_get_section_alignment (dynobj, s))
3135 {
3136 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
3137 return FALSE;
3138 }
3139
3140 /* Define the symbol as being at this point in the section. */
3141 h->root.u.def.section = s;
3142 h->root.u.def.value = s->_raw_size;
3143
3144 /* Increment the section size to make room for the symbol. */
3145 s->_raw_size += h->size;
3146
3147 return TRUE;
3148 }
3149
3150 /* Set the sizes of the dynamic sections. */
3151
3152 static bfd_boolean
3153 elf32_arm_size_dynamic_sections (output_bfd, info)
3154 bfd * output_bfd ATTRIBUTE_UNUSED;
3155 struct bfd_link_info * info;
3156 {
3157 bfd * dynobj;
3158 asection * s;
3159 bfd_boolean plt;
3160 bfd_boolean relocs;
3161
3162 dynobj = elf_hash_table (info)->dynobj;
3163 BFD_ASSERT (dynobj != NULL);
3164
3165 if (elf_hash_table (info)->dynamic_sections_created)
3166 {
3167 /* Set the contents of the .interp section to the interpreter. */
3168 if (! info->shared)
3169 {
3170 s = bfd_get_section_by_name (dynobj, ".interp");
3171 BFD_ASSERT (s != NULL);
3172 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
3173 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
3174 }
3175 }
3176 else
3177 {
3178 /* We may have created entries in the .rel.got section.
3179 However, if we are not creating the dynamic sections, we will
3180 not actually use these entries. Reset the size of .rel.got,
3181 which will cause it to get stripped from the output file
3182 below. */
3183 s = bfd_get_section_by_name (dynobj, ".rel.got");
3184 if (s != NULL)
3185 s->_raw_size = 0;
3186 }
3187
3188 /* If this is a -Bsymbolic shared link, then we need to discard all
3189 PC relative relocs against symbols defined in a regular object.
3190 We allocated space for them in the check_relocs routine, but we
3191 will not fill them in in the relocate_section routine. */
3192 if (info->shared && info->symbolic)
3193 elf32_arm_link_hash_traverse (elf32_arm_hash_table (info),
3194 elf32_arm_discard_copies,
3195 (PTR) NULL);
3196
3197 /* The check_relocs and adjust_dynamic_symbol entry points have
3198 determined the sizes of the various dynamic sections. Allocate
3199 memory for them. */
3200 plt = FALSE;
3201 relocs = FALSE;
3202 for (s = dynobj->sections; s != NULL; s = s->next)
3203 {
3204 const char * name;
3205 bfd_boolean strip;
3206
3207 if ((s->flags & SEC_LINKER_CREATED) == 0)
3208 continue;
3209
3210 /* It's OK to base decisions on the section name, because none
3211 of the dynobj section names depend upon the input files. */
3212 name = bfd_get_section_name (dynobj, s);
3213
3214 strip = FALSE;
3215
3216 if (strcmp (name, ".plt") == 0)
3217 {
3218 if (s->_raw_size == 0)
3219 {
3220 /* Strip this section if we don't need it; see the
3221 comment below. */
3222 strip = TRUE;
3223 }
3224 else
3225 {
3226 /* Remember whether there is a PLT. */
3227 plt = TRUE;
3228 }
3229 }
3230 else if (strncmp (name, ".rel", 4) == 0)
3231 {
3232 if (s->_raw_size == 0)
3233 {
3234 /* If we don't need this section, strip it from the
3235 output file. This is mostly to handle .rel.bss and
3236 .rel.plt. We must create both sections in
3237 create_dynamic_sections, because they must be created
3238 before the linker maps input sections to output
3239 sections. The linker does that before
3240 adjust_dynamic_symbol is called, and it is that
3241 function which decides whether anything needs to go
3242 into these sections. */
3243 strip = TRUE;
3244 }
3245 else
3246 {
3247 /* Remember whether there are any reloc sections other
3248 than .rel.plt. */
3249 if (strcmp (name, ".rel.plt") != 0)
3250 relocs = TRUE;
3251
3252 /* We use the reloc_count field as a counter if we need
3253 to copy relocs into the output file. */
3254 s->reloc_count = 0;
3255 }
3256 }
3257 else if (strncmp (name, ".got", 4) != 0)
3258 {
3259 /* It's not one of our sections, so don't allocate space. */
3260 continue;
3261 }
3262
3263 if (strip)
3264 {
3265 _bfd_strip_section_from_output (info, s);
3266 continue;
3267 }
3268
3269 /* Allocate memory for the section contents. */
3270 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
3271 if (s->contents == NULL && s->_raw_size != 0)
3272 return FALSE;
3273 }
3274
3275 if (elf_hash_table (info)->dynamic_sections_created)
3276 {
3277 /* Add some entries to the .dynamic section. We fill in the
3278 values later, in elf32_arm_finish_dynamic_sections, but we
3279 must add the entries now so that we get the correct size for
3280 the .dynamic section. The DT_DEBUG entry is filled in by the
3281 dynamic linker and used by the debugger. */
3282 #define add_dynamic_entry(TAG, VAL) \
3283 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
3284
3285 if (!info->shared)
3286 {
3287 if (!add_dynamic_entry (DT_DEBUG, 0))
3288 return FALSE;
3289 }
3290
3291 if (plt)
3292 {
3293 if ( !add_dynamic_entry (DT_PLTGOT, 0)
3294 || !add_dynamic_entry (DT_PLTRELSZ, 0)
3295 || !add_dynamic_entry (DT_PLTREL, DT_REL)
3296 || !add_dynamic_entry (DT_JMPREL, 0))
3297 return FALSE;
3298 }
3299
3300 if (relocs)
3301 {
3302 if ( !add_dynamic_entry (DT_REL, 0)
3303 || !add_dynamic_entry (DT_RELSZ, 0)
3304 || !add_dynamic_entry (DT_RELENT, sizeof (Elf32_External_Rel)))
3305 return FALSE;
3306 }
3307
3308 if ((info->flags & DF_TEXTREL) != 0)
3309 {
3310 if (!add_dynamic_entry (DT_TEXTREL, 0))
3311 return FALSE;
3312 info->flags |= DF_TEXTREL;
3313 }
3314 }
3315 #undef add_synamic_entry
3316
3317 return TRUE;
3318 }
3319
3320 /* This function is called via elf32_arm_link_hash_traverse if we are
3321 creating a shared object with -Bsymbolic. It discards the space
3322 allocated to copy PC relative relocs against symbols which are
3323 defined in regular objects. We allocated space for them in the
3324 check_relocs routine, but we won't fill them in in the
3325 relocate_section routine. */
3326
3327 static bfd_boolean
3328 elf32_arm_discard_copies (h, ignore)
3329 struct elf32_arm_link_hash_entry * h;
3330 PTR ignore ATTRIBUTE_UNUSED;
3331 {
3332 struct elf32_arm_pcrel_relocs_copied * s;
3333
3334 if (h->root.root.type == bfd_link_hash_warning)
3335 h = (struct elf32_arm_link_hash_entry *) h->root.root.u.i.link;
3336
3337 /* We only discard relocs for symbols defined in a regular object. */
3338 if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3339 return TRUE;
3340
3341 for (s = h->pcrel_relocs_copied; s != NULL; s = s->next)
3342 s->section->_raw_size -= s->count * sizeof (Elf32_External_Rel);
3343
3344 return TRUE;
3345 }
3346
3347 /* Finish up dynamic symbol handling. We set the contents of various
3348 dynamic sections here. */
3349
3350 static bfd_boolean
3351 elf32_arm_finish_dynamic_symbol (output_bfd, info, h, sym)
3352 bfd * output_bfd;
3353 struct bfd_link_info * info;
3354 struct elf_link_hash_entry * h;
3355 Elf_Internal_Sym * sym;
3356 {
3357 bfd * dynobj;
3358
3359 dynobj = elf_hash_table (info)->dynobj;
3360
3361 if (h->plt.offset != (bfd_vma) -1)
3362 {
3363 asection * splt;
3364 asection * sgot;
3365 asection * srel;
3366 bfd_vma plt_index;
3367 bfd_vma got_offset;
3368 Elf_Internal_Rela rel;
3369 bfd_byte *loc;
3370
3371 /* This symbol has an entry in the procedure linkage table. Set
3372 it up. */
3373
3374 BFD_ASSERT (h->dynindx != -1);
3375
3376 splt = bfd_get_section_by_name (dynobj, ".plt");
3377 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3378 srel = bfd_get_section_by_name (dynobj, ".rel.plt");
3379 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
3380
3381 /* Get the index in the procedure linkage table which
3382 corresponds to this symbol. This is the index of this symbol
3383 in all the symbols for which we are making plt entries. The
3384 first entry in the procedure linkage table is reserved. */
3385 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3386
3387 /* Get the offset into the .got table of the entry that
3388 corresponds to this function. Each .got entry is 4 bytes.
3389 The first three are reserved. */
3390 got_offset = (plt_index + 3) * 4;
3391
3392 /* Fill in the entry in the procedure linkage table. */
3393 bfd_put_32 (output_bfd, elf32_arm_plt_entry[0],
3394 splt->contents + h->plt.offset + 0);
3395 bfd_put_32 (output_bfd, elf32_arm_plt_entry[1],
3396 splt->contents + h->plt.offset + 4);
3397 bfd_put_32 (output_bfd, elf32_arm_plt_entry[2],
3398 splt->contents + h->plt.offset + 8);
3399 bfd_put_32 (output_bfd,
3400 (sgot->output_section->vma
3401 + sgot->output_offset
3402 + got_offset
3403 - splt->output_section->vma
3404 - splt->output_offset
3405 - h->plt.offset - 12),
3406 splt->contents + h->plt.offset + 12);
3407
3408 /* Fill in the entry in the global offset table. */
3409 bfd_put_32 (output_bfd,
3410 (splt->output_section->vma
3411 + splt->output_offset),
3412 sgot->contents + got_offset);
3413
3414 /* Fill in the entry in the .rel.plt section. */
3415 rel.r_offset = (sgot->output_section->vma
3416 + sgot->output_offset
3417 + got_offset);
3418 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
3419 loc = srel->contents + plt_index * sizeof (Elf32_External_Rel);
3420 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3421
3422 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3423 {
3424 /* Mark the symbol as undefined, rather than as defined in
3425 the .plt section. Leave the value alone. */
3426 sym->st_shndx = SHN_UNDEF;
3427 /* If the symbol is weak, we do need to clear the value.
3428 Otherwise, the PLT entry would provide a definition for
3429 the symbol even if the symbol wasn't defined anywhere,
3430 and so the symbol would never be NULL. */
3431 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
3432 == 0)
3433 sym->st_value = 0;
3434 }
3435 }
3436
3437 if (h->got.offset != (bfd_vma) -1)
3438 {
3439 asection * sgot;
3440 asection * srel;
3441 Elf_Internal_Rela rel;
3442 bfd_byte *loc;
3443
3444 /* This symbol has an entry in the global offset table. Set it
3445 up. */
3446 sgot = bfd_get_section_by_name (dynobj, ".got");
3447 srel = bfd_get_section_by_name (dynobj, ".rel.got");
3448 BFD_ASSERT (sgot != NULL && srel != NULL);
3449
3450 rel.r_offset = (sgot->output_section->vma
3451 + sgot->output_offset
3452 + (h->got.offset &~ (bfd_vma) 1));
3453
3454 /* If this is a -Bsymbolic link, and the symbol is defined
3455 locally, we just want to emit a RELATIVE reloc. The entry in
3456 the global offset table will already have been initialized in
3457 the relocate_section function. */
3458 if (info->shared
3459 && (info->symbolic || h->dynindx == -1)
3460 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
3461 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
3462 else
3463 {
3464 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
3465 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
3466 }
3467
3468 loc = srel->contents + srel->reloc_count++ * sizeof (Elf32_External_Rel);
3469 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3470 }
3471
3472 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
3473 {
3474 asection * s;
3475 Elf_Internal_Rela rel;
3476 bfd_byte *loc;
3477
3478 /* This symbol needs a copy reloc. Set it up. */
3479 BFD_ASSERT (h->dynindx != -1
3480 && (h->root.type == bfd_link_hash_defined
3481 || h->root.type == bfd_link_hash_defweak));
3482
3483 s = bfd_get_section_by_name (h->root.u.def.section->owner,
3484 ".rel.bss");
3485 BFD_ASSERT (s != NULL);
3486
3487 rel.r_offset = (h->root.u.def.value
3488 + h->root.u.def.section->output_section->vma
3489 + h->root.u.def.section->output_offset);
3490 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
3491 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rel);
3492 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3493 }
3494
3495 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3496 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
3497 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3498 sym->st_shndx = SHN_ABS;
3499
3500 return TRUE;
3501 }
3502
3503 /* Finish up the dynamic sections. */
3504
3505 static bfd_boolean
3506 elf32_arm_finish_dynamic_sections (output_bfd, info)
3507 bfd * output_bfd;
3508 struct bfd_link_info * info;
3509 {
3510 bfd * dynobj;
3511 asection * sgot;
3512 asection * sdyn;
3513
3514 dynobj = elf_hash_table (info)->dynobj;
3515
3516 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3517 BFD_ASSERT (sgot != NULL);
3518 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3519
3520 if (elf_hash_table (info)->dynamic_sections_created)
3521 {
3522 asection *splt;
3523 Elf32_External_Dyn *dyncon, *dynconend;
3524
3525 splt = bfd_get_section_by_name (dynobj, ".plt");
3526 BFD_ASSERT (splt != NULL && sdyn != NULL);
3527
3528 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3529 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
3530
3531 for (; dyncon < dynconend; dyncon++)
3532 {
3533 Elf_Internal_Dyn dyn;
3534 const char * name;
3535 asection * s;
3536
3537 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3538
3539 switch (dyn.d_tag)
3540 {
3541 default:
3542 break;
3543
3544 case DT_PLTGOT:
3545 name = ".got";
3546 goto get_vma;
3547 case DT_JMPREL:
3548 name = ".rel.plt";
3549 get_vma:
3550 s = bfd_get_section_by_name (output_bfd, name);
3551 BFD_ASSERT (s != NULL);
3552 dyn.d_un.d_ptr = s->vma;
3553 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3554 break;
3555
3556 case DT_PLTRELSZ:
3557 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3558 BFD_ASSERT (s != NULL);
3559 if (s->_cooked_size != 0)
3560 dyn.d_un.d_val = s->_cooked_size;
3561 else
3562 dyn.d_un.d_val = s->_raw_size;
3563 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3564 break;
3565
3566 case DT_RELSZ:
3567 /* My reading of the SVR4 ABI indicates that the
3568 procedure linkage table relocs (DT_JMPREL) should be
3569 included in the overall relocs (DT_REL). This is
3570 what Solaris does. However, UnixWare can not handle
3571 that case. Therefore, we override the DT_RELSZ entry
3572 here to make it not include the JMPREL relocs. Since
3573 the linker script arranges for .rel.plt to follow all
3574 other relocation sections, we don't have to worry
3575 about changing the DT_REL entry. */
3576 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3577 if (s != NULL)
3578 {
3579 if (s->_cooked_size != 0)
3580 dyn.d_un.d_val -= s->_cooked_size;
3581 else
3582 dyn.d_un.d_val -= s->_raw_size;
3583 }
3584 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3585 break;
3586
3587 /* Set the bottom bit of DT_INIT/FINI if the
3588 corresponding function is Thumb. */
3589 case DT_INIT:
3590 name = info->init_function;
3591 goto get_sym;
3592 case DT_FINI:
3593 name = info->fini_function;
3594 get_sym:
3595 /* If it wasn't set by elf_bfd_final_link
3596 then there is nothing to ajdust. */
3597 if (dyn.d_un.d_val != 0)
3598 {
3599 struct elf_link_hash_entry * eh;
3600
3601 eh = elf_link_hash_lookup (elf_hash_table (info), name,
3602 FALSE, FALSE, TRUE);
3603 if (eh != (struct elf_link_hash_entry *) NULL
3604 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
3605 {
3606 dyn.d_un.d_val |= 1;
3607 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3608 }
3609 }
3610 break;
3611 }
3612 }
3613
3614 /* Fill in the first entry in the procedure linkage table. */
3615 if (splt->_raw_size > 0)
3616 {
3617 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[0], splt->contents + 0);
3618 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[1], splt->contents + 4);
3619 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[2], splt->contents + 8);
3620 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[3], splt->contents + 12);
3621 }
3622
3623 /* UnixWare sets the entsize of .plt to 4, although that doesn't
3624 really seem like the right value. */
3625 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
3626 }
3627
3628 /* Fill in the first three entries in the global offset table. */
3629 if (sgot->_raw_size > 0)
3630 {
3631 if (sdyn == NULL)
3632 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
3633 else
3634 bfd_put_32 (output_bfd,
3635 sdyn->output_section->vma + sdyn->output_offset,
3636 sgot->contents);
3637 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
3638 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
3639 }
3640
3641 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
3642
3643 return TRUE;
3644 }
3645
3646 static void
3647 elf32_arm_post_process_headers (abfd, link_info)
3648 bfd * abfd;
3649 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
3650 {
3651 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
3652
3653 i_ehdrp = elf_elfheader (abfd);
3654
3655 i_ehdrp->e_ident[EI_OSABI] = ARM_ELF_OS_ABI_VERSION;
3656 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
3657 }
3658
3659 static enum elf_reloc_type_class
3660 elf32_arm_reloc_type_class (rela)
3661 const Elf_Internal_Rela *rela;
3662 {
3663 switch ((int) ELF32_R_TYPE (rela->r_info))
3664 {
3665 case R_ARM_RELATIVE:
3666 return reloc_class_relative;
3667 case R_ARM_JUMP_SLOT:
3668 return reloc_class_plt;
3669 case R_ARM_COPY:
3670 return reloc_class_copy;
3671 default:
3672 return reloc_class_normal;
3673 }
3674 }
3675
3676 static bfd_boolean elf32_arm_section_flags PARAMS ((flagword *, Elf_Internal_Shdr *));
3677 static void elf32_arm_final_write_processing PARAMS ((bfd *, bfd_boolean));
3678
3679 /* Set the right machine number for an Arm ELF file. */
3680
3681 static bfd_boolean
3682 elf32_arm_section_flags (flags, hdr)
3683 flagword *flags;
3684 Elf_Internal_Shdr *hdr;
3685 {
3686 if (hdr->sh_type == SHT_NOTE)
3687 *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
3688
3689 return TRUE;
3690 }
3691
3692 void
3693 elf32_arm_final_write_processing (abfd, linker)
3694 bfd *abfd;
3695 bfd_boolean linker ATTRIBUTE_UNUSED;
3696 {
3697 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
3698 }
3699
3700 #define ELF_ARCH bfd_arch_arm
3701 #define ELF_MACHINE_CODE EM_ARM
3702 #define ELF_MAXPAGESIZE 0x8000
3703
3704 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
3705 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
3706 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
3707 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
3708 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
3709 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
3710 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
3711
3712 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
3713 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
3714 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
3715 #define elf_backend_check_relocs elf32_arm_check_relocs
3716 #define elf_backend_relocate_section elf32_arm_relocate_section
3717 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
3718 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
3719 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
3720 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
3721 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
3722 #define elf_backend_post_process_headers elf32_arm_post_process_headers
3723 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
3724 #define elf_backend_object_p elf32_arm_object_p
3725 #define elf_backend_section_flags elf32_arm_section_flags
3726 #define elf_backend_final_write_processing elf32_arm_final_write_processing
3727
3728 #define elf_backend_can_gc_sections 1
3729 #define elf_backend_plt_readonly 1
3730 #define elf_backend_want_got_plt 1
3731 #define elf_backend_want_plt_sym 0
3732 #if !USE_REL
3733 #define elf_backend_rela_normal 1
3734 #endif
3735
3736 #define elf_backend_got_header_size 12
3737 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
3738
3739 #include "elf32-target.h"
3740
This page took 0.142259 seconds and 4 git commands to generate.