Replace bfd_get_filename with bfd_archive_filename in error message.
[deliverable/binutils-gdb.git] / bfd / elf32-arm.h
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 typedef unsigned long int insn32;
21 typedef unsigned short int insn16;
22
23 static boolean elf32_arm_set_private_flags
24 PARAMS ((bfd *, flagword));
25 static boolean elf32_arm_copy_private_bfd_data
26 PARAMS ((bfd *, bfd *));
27 static boolean elf32_arm_merge_private_bfd_data
28 PARAMS ((bfd *, bfd *));
29 static boolean elf32_arm_print_private_bfd_data
30 PARAMS ((bfd *, PTR));
31 static int elf32_arm_get_symbol_type
32 PARAMS (( Elf_Internal_Sym *, int));
33 static struct bfd_link_hash_table *elf32_arm_link_hash_table_create
34 PARAMS ((bfd *));
35 static bfd_reloc_status_type elf32_arm_final_link_relocate
36 PARAMS ((reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
37 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
38 const char *, int, struct elf_link_hash_entry *));
39 static insn32 insert_thumb_branch
40 PARAMS ((insn32, int));
41 static struct elf_link_hash_entry *find_thumb_glue
42 PARAMS ((struct bfd_link_info *, const char *, bfd *));
43 static struct elf_link_hash_entry *find_arm_glue
44 PARAMS ((struct bfd_link_info *, const char *, bfd *));
45 static void record_arm_to_thumb_glue
46 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
47 static void record_thumb_to_arm_glue
48 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
49 static void elf32_arm_post_process_headers
50 PARAMS ((bfd *, struct bfd_link_info *));
51 static int elf32_arm_to_thumb_stub
52 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
53 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
54 static int elf32_thumb_to_arm_stub
55 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
56 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
57 static boolean elf32_arm_relocate_section
58 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
59 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
60 static asection * elf32_arm_gc_mark_hook
61 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
62 struct elf_link_hash_entry *, Elf_Internal_Sym *));
63 static boolean elf32_arm_gc_sweep_hook
64 PARAMS ((bfd *, struct bfd_link_info *, asection *,
65 const Elf_Internal_Rela *));
66 static boolean elf32_arm_check_relocs
67 PARAMS ((bfd *, struct bfd_link_info *, asection *,
68 const Elf_Internal_Rela *));
69 static boolean elf32_arm_find_nearest_line
70 PARAMS ((bfd *, asection *, asymbol **, bfd_vma, const char **,
71 const char **, unsigned int *));
72 static boolean elf32_arm_adjust_dynamic_symbol
73 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
74 static boolean elf32_arm_size_dynamic_sections
75 PARAMS ((bfd *, struct bfd_link_info *));
76 static boolean elf32_arm_finish_dynamic_symbol
77 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
78 Elf_Internal_Sym *));
79 static boolean elf32_arm_finish_dynamic_sections
80 PARAMS ((bfd *, struct bfd_link_info *));
81 static struct bfd_hash_entry * elf32_arm_link_hash_newfunc
82 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
83 #ifdef USE_REL
84 static void arm_add_to_rel
85 PARAMS ((bfd *, bfd_byte *, reloc_howto_type *, bfd_signed_vma));
86 #endif
87
88 boolean bfd_elf32_arm_allocate_interworking_sections
89 PARAMS ((struct bfd_link_info *));
90 boolean bfd_elf32_arm_get_bfd_for_interworking
91 PARAMS ((bfd *, struct bfd_link_info *));
92 boolean bfd_elf32_arm_process_before_allocation
93 PARAMS ((bfd *, struct bfd_link_info *, int));
94 static enum elf_reloc_type_class elf32_arm_reloc_type_class
95 PARAMS ((const Elf_Internal_Rela *));
96
97 #define INTERWORK_FLAG(abfd) (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK)
98
99 /* The linker script knows the section names for placement.
100 The entry_names are used to do simple name mangling on the stubs.
101 Given a function name, and its type, the stub can be found. The
102 name can be changed. The only requirement is the %s be present. */
103 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
104 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
105
106 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
107 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
108
109 /* The name of the dynamic interpreter. This is put in the .interp
110 section. */
111 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
112
113 /* The size in bytes of an entry in the procedure linkage table. */
114 #define PLT_ENTRY_SIZE 16
115
116 /* The first entry in a procedure linkage table looks like
117 this. It is set up so that any shared library function that is
118 called before the relocation has been set up calls the dynamic
119 linker first. */
120 static const bfd_vma elf32_arm_plt0_entry [PLT_ENTRY_SIZE / 4] =
121 {
122 0xe52de004, /* str lr, [sp, #-4]! */
123 0xe59fe010, /* ldr lr, [pc, #16] */
124 0xe08fe00e, /* add lr, pc, lr */
125 0xe5bef008 /* ldr pc, [lr, #8]! */
126 };
127
128 /* Subsequent entries in a procedure linkage table look like
129 this. */
130 static const bfd_vma elf32_arm_plt_entry [PLT_ENTRY_SIZE / 4] =
131 {
132 0xe59fc004, /* ldr ip, [pc, #4] */
133 0xe08fc00c, /* add ip, pc, ip */
134 0xe59cf000, /* ldr pc, [ip] */
135 0x00000000 /* offset to symbol in got */
136 };
137
138 /* The ARM linker needs to keep track of the number of relocs that it
139 decides to copy in check_relocs for each symbol. This is so that
140 it can discard PC relative relocs if it doesn't need them when
141 linking with -Bsymbolic. We store the information in a field
142 extending the regular ELF linker hash table. */
143
144 /* This structure keeps track of the number of PC relative relocs we
145 have copied for a given symbol. */
146 struct elf32_arm_pcrel_relocs_copied
147 {
148 /* Next section. */
149 struct elf32_arm_pcrel_relocs_copied * next;
150 /* A section in dynobj. */
151 asection * section;
152 /* Number of relocs copied in this section. */
153 bfd_size_type count;
154 };
155
156 /* Arm ELF linker hash entry. */
157 struct elf32_arm_link_hash_entry
158 {
159 struct elf_link_hash_entry root;
160
161 /* Number of PC relative relocs copied for this symbol. */
162 struct elf32_arm_pcrel_relocs_copied * pcrel_relocs_copied;
163 };
164
165 /* Declare this now that the above structures are defined. */
166 static boolean elf32_arm_discard_copies
167 PARAMS ((struct elf32_arm_link_hash_entry *, PTR));
168
169 /* Traverse an arm ELF linker hash table. */
170 #define elf32_arm_link_hash_traverse(table, func, info) \
171 (elf_link_hash_traverse \
172 (&(table)->root, \
173 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
174 (info)))
175
176 /* Get the ARM elf linker hash table from a link_info structure. */
177 #define elf32_arm_hash_table(info) \
178 ((struct elf32_arm_link_hash_table *) ((info)->hash))
179
180 /* ARM ELF linker hash table. */
181 struct elf32_arm_link_hash_table
182 {
183 /* The main hash table. */
184 struct elf_link_hash_table root;
185
186 /* The size in bytes of the section containg the Thumb-to-ARM glue. */
187 bfd_size_type thumb_glue_size;
188
189 /* The size in bytes of the section containg the ARM-to-Thumb glue. */
190 bfd_size_type arm_glue_size;
191
192 /* An arbitary input BFD chosen to hold the glue sections. */
193 bfd * bfd_of_glue_owner;
194
195 /* A boolean indicating whether knowledge of the ARM's pipeline
196 length should be applied by the linker. */
197 int no_pipeline_knowledge;
198 };
199
200 /* Create an entry in an ARM ELF linker hash table. */
201
202 static struct bfd_hash_entry *
203 elf32_arm_link_hash_newfunc (entry, table, string)
204 struct bfd_hash_entry * entry;
205 struct bfd_hash_table * table;
206 const char * string;
207 {
208 struct elf32_arm_link_hash_entry * ret =
209 (struct elf32_arm_link_hash_entry *) entry;
210
211 /* Allocate the structure if it has not already been allocated by a
212 subclass. */
213 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
214 ret = ((struct elf32_arm_link_hash_entry *)
215 bfd_hash_allocate (table,
216 sizeof (struct elf32_arm_link_hash_entry)));
217 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
218 return (struct bfd_hash_entry *) ret;
219
220 /* Call the allocation method of the superclass. */
221 ret = ((struct elf32_arm_link_hash_entry *)
222 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
223 table, string));
224 if (ret != (struct elf32_arm_link_hash_entry *) NULL)
225 ret->pcrel_relocs_copied = NULL;
226
227 return (struct bfd_hash_entry *) ret;
228 }
229
230 /* Create an ARM elf linker hash table. */
231
232 static struct bfd_link_hash_table *
233 elf32_arm_link_hash_table_create (abfd)
234 bfd *abfd;
235 {
236 struct elf32_arm_link_hash_table *ret;
237 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
238
239 ret = (struct elf32_arm_link_hash_table *) bfd_alloc (abfd, amt);
240 if (ret == (struct elf32_arm_link_hash_table *) NULL)
241 return NULL;
242
243 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
244 elf32_arm_link_hash_newfunc))
245 {
246 bfd_release (abfd, ret);
247 return NULL;
248 }
249
250 ret->thumb_glue_size = 0;
251 ret->arm_glue_size = 0;
252 ret->bfd_of_glue_owner = NULL;
253 ret->no_pipeline_knowledge = 0;
254
255 return &ret->root.root;
256 }
257
258 /* Locate the Thumb encoded calling stub for NAME. */
259
260 static struct elf_link_hash_entry *
261 find_thumb_glue (link_info, name, input_bfd)
262 struct bfd_link_info *link_info;
263 const char *name;
264 bfd *input_bfd;
265 {
266 char *tmp_name;
267 struct elf_link_hash_entry *hash;
268 struct elf32_arm_link_hash_table *hash_table;
269
270 /* We need a pointer to the armelf specific hash table. */
271 hash_table = elf32_arm_hash_table (link_info);
272
273 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
274 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
275
276 BFD_ASSERT (tmp_name);
277
278 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
279
280 hash = elf_link_hash_lookup
281 (&(hash_table)->root, tmp_name, false, false, true);
282
283 if (hash == NULL)
284 /* xgettext:c-format */
285 (*_bfd_error_handler) (_("%s: unable to find THUMB glue '%s' for `%s'"),
286 bfd_archive_filename (input_bfd), tmp_name, name);
287
288 free (tmp_name);
289
290 return hash;
291 }
292
293 /* Locate the ARM encoded calling stub for NAME. */
294
295 static struct elf_link_hash_entry *
296 find_arm_glue (link_info, name, input_bfd)
297 struct bfd_link_info *link_info;
298 const char *name;
299 bfd *input_bfd;
300 {
301 char *tmp_name;
302 struct elf_link_hash_entry *myh;
303 struct elf32_arm_link_hash_table *hash_table;
304
305 /* We need a pointer to the elfarm specific hash table. */
306 hash_table = elf32_arm_hash_table (link_info);
307
308 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
309 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
310
311 BFD_ASSERT (tmp_name);
312
313 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
314
315 myh = elf_link_hash_lookup
316 (&(hash_table)->root, tmp_name, false, false, true);
317
318 if (myh == NULL)
319 /* xgettext:c-format */
320 (*_bfd_error_handler) (_("%s: unable to find ARM glue '%s' for `%s'"),
321 bfd_archive_filename (input_bfd), tmp_name, name);
322
323 free (tmp_name);
324
325 return myh;
326 }
327
328 /* ARM->Thumb glue:
329
330 .arm
331 __func_from_arm:
332 ldr r12, __func_addr
333 bx r12
334 __func_addr:
335 .word func @ behave as if you saw a ARM_32 reloc. */
336
337 #define ARM2THUMB_GLUE_SIZE 12
338 static const insn32 a2t1_ldr_insn = 0xe59fc000;
339 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
340 static const insn32 a2t3_func_addr_insn = 0x00000001;
341
342 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
343
344 .thumb .thumb
345 .align 2 .align 2
346 __func_from_thumb: __func_from_thumb:
347 bx pc push {r6, lr}
348 nop ldr r6, __func_addr
349 .arm mov lr, pc
350 __func_change_to_arm: bx r6
351 b func .arm
352 __func_back_to_thumb:
353 ldmia r13! {r6, lr}
354 bx lr
355 __func_addr:
356 .word func */
357
358 #define THUMB2ARM_GLUE_SIZE 8
359 static const insn16 t2a1_bx_pc_insn = 0x4778;
360 static const insn16 t2a2_noop_insn = 0x46c0;
361 static const insn32 t2a3_b_insn = 0xea000000;
362
363 static const insn16 t2a1_push_insn = 0xb540;
364 static const insn16 t2a2_ldr_insn = 0x4e03;
365 static const insn16 t2a3_mov_insn = 0x46fe;
366 static const insn16 t2a4_bx_insn = 0x4730;
367 static const insn32 t2a5_pop_insn = 0xe8bd4040;
368 static const insn32 t2a6_bx_insn = 0xe12fff1e;
369
370 boolean
371 bfd_elf32_arm_allocate_interworking_sections (info)
372 struct bfd_link_info * info;
373 {
374 asection * s;
375 bfd_byte * foo;
376 struct elf32_arm_link_hash_table * globals;
377
378 globals = elf32_arm_hash_table (info);
379
380 BFD_ASSERT (globals != NULL);
381
382 if (globals->arm_glue_size != 0)
383 {
384 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
385
386 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
387 ARM2THUMB_GLUE_SECTION_NAME);
388
389 BFD_ASSERT (s != NULL);
390
391 foo = (bfd_byte *) bfd_alloc (globals->bfd_of_glue_owner,
392 globals->arm_glue_size);
393
394 s->_raw_size = s->_cooked_size = globals->arm_glue_size;
395 s->contents = foo;
396 }
397
398 if (globals->thumb_glue_size != 0)
399 {
400 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
401
402 s = bfd_get_section_by_name
403 (globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
404
405 BFD_ASSERT (s != NULL);
406
407 foo = (bfd_byte *) bfd_alloc (globals->bfd_of_glue_owner,
408 globals->thumb_glue_size);
409
410 s->_raw_size = s->_cooked_size = globals->thumb_glue_size;
411 s->contents = foo;
412 }
413
414 return true;
415 }
416
417 static void
418 record_arm_to_thumb_glue (link_info, h)
419 struct bfd_link_info * link_info;
420 struct elf_link_hash_entry * h;
421 {
422 const char * name = h->root.root.string;
423 asection * s;
424 char * tmp_name;
425 struct elf_link_hash_entry * myh;
426 struct elf32_arm_link_hash_table * globals;
427 bfd_vma val;
428
429 globals = elf32_arm_hash_table (link_info);
430
431 BFD_ASSERT (globals != NULL);
432 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
433
434 s = bfd_get_section_by_name
435 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
436
437 BFD_ASSERT (s != NULL);
438
439 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
440 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
441
442 BFD_ASSERT (tmp_name);
443
444 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
445
446 myh = elf_link_hash_lookup
447 (&(globals)->root, tmp_name, false, false, true);
448
449 if (myh != NULL)
450 {
451 /* We've already seen this guy. */
452 free (tmp_name);
453 return;
454 }
455
456 /* The only trick here is using hash_table->arm_glue_size as the value. Even
457 though the section isn't allocated yet, this is where we will be putting
458 it. */
459 val = globals->arm_glue_size + 1;
460 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
461 tmp_name, BSF_GLOBAL, s, val,
462 NULL, true, false,
463 (struct bfd_link_hash_entry **) &myh);
464
465 free (tmp_name);
466
467 globals->arm_glue_size += ARM2THUMB_GLUE_SIZE;
468
469 return;
470 }
471
472 static void
473 record_thumb_to_arm_glue (link_info, h)
474 struct bfd_link_info *link_info;
475 struct elf_link_hash_entry *h;
476 {
477 const char *name = h->root.root.string;
478 asection *s;
479 char *tmp_name;
480 struct elf_link_hash_entry *myh;
481 struct elf32_arm_link_hash_table *hash_table;
482 char bind;
483 bfd_vma val;
484
485 hash_table = elf32_arm_hash_table (link_info);
486
487 BFD_ASSERT (hash_table != NULL);
488 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
489
490 s = bfd_get_section_by_name
491 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
492
493 BFD_ASSERT (s != NULL);
494
495 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
496 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
497
498 BFD_ASSERT (tmp_name);
499
500 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
501
502 myh = elf_link_hash_lookup
503 (&(hash_table)->root, tmp_name, false, false, true);
504
505 if (myh != NULL)
506 {
507 /* We've already seen this guy. */
508 free (tmp_name);
509 return;
510 }
511
512 val = hash_table->thumb_glue_size + 1;
513 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
514 tmp_name, BSF_GLOBAL, s, val,
515 NULL, true, false,
516 (struct bfd_link_hash_entry **) &myh);
517
518 /* If we mark it 'Thumb', the disassembler will do a better job. */
519 bind = ELF_ST_BIND (myh->type);
520 myh->type = ELF_ST_INFO (bind, STT_ARM_TFUNC);
521
522 free (tmp_name);
523
524 #define CHANGE_TO_ARM "__%s_change_to_arm"
525 #define BACK_FROM_ARM "__%s_back_from_arm"
526
527 /* Allocate another symbol to mark where we switch to Arm mode. */
528 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
529 + strlen (CHANGE_TO_ARM) + 1);
530
531 BFD_ASSERT (tmp_name);
532
533 sprintf (tmp_name, CHANGE_TO_ARM, name);
534
535 myh = NULL;
536
537 val = hash_table->thumb_glue_size + 4,
538 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
539 tmp_name, BSF_LOCAL, s, val,
540 NULL, true, false,
541 (struct bfd_link_hash_entry **) &myh);
542
543 free (tmp_name);
544
545 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
546
547 return;
548 }
549
550 /* Select a BFD to be used to hold the sections used by the glue code.
551 This function is called from the linker scripts in ld/emultempl/
552 {armelf/pe}.em */
553
554 boolean
555 bfd_elf32_arm_get_bfd_for_interworking (abfd, info)
556 bfd *abfd;
557 struct bfd_link_info *info;
558 {
559 struct elf32_arm_link_hash_table *globals;
560 flagword flags;
561 asection *sec;
562
563 /* If we are only performing a partial link do not bother
564 getting a bfd to hold the glue. */
565 if (info->relocateable)
566 return true;
567
568 globals = elf32_arm_hash_table (info);
569
570 BFD_ASSERT (globals != NULL);
571
572 if (globals->bfd_of_glue_owner != NULL)
573 return true;
574
575 sec = bfd_get_section_by_name (abfd, ARM2THUMB_GLUE_SECTION_NAME);
576
577 if (sec == NULL)
578 {
579 /* Note: we do not include the flag SEC_LINKER_CREATED, as this
580 will prevent elf_link_input_bfd() from processing the contents
581 of this section. */
582 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
583
584 sec = bfd_make_section (abfd, ARM2THUMB_GLUE_SECTION_NAME);
585
586 if (sec == NULL
587 || !bfd_set_section_flags (abfd, sec, flags)
588 || !bfd_set_section_alignment (abfd, sec, 2))
589 return false;
590
591 /* Set the gc mark to prevent the section from being removed by garbage
592 collection, despite the fact that no relocs refer to this section. */
593 sec->gc_mark = 1;
594 }
595
596 sec = bfd_get_section_by_name (abfd, THUMB2ARM_GLUE_SECTION_NAME);
597
598 if (sec == NULL)
599 {
600 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
601
602 sec = bfd_make_section (abfd, THUMB2ARM_GLUE_SECTION_NAME);
603
604 if (sec == NULL
605 || !bfd_set_section_flags (abfd, sec, flags)
606 || !bfd_set_section_alignment (abfd, sec, 2))
607 return false;
608
609 sec->gc_mark = 1;
610 }
611
612 /* Save the bfd for later use. */
613 globals->bfd_of_glue_owner = abfd;
614
615 return true;
616 }
617
618 boolean
619 bfd_elf32_arm_process_before_allocation (abfd, link_info, no_pipeline_knowledge)
620 bfd *abfd;
621 struct bfd_link_info *link_info;
622 int no_pipeline_knowledge;
623 {
624 Elf_Internal_Shdr *symtab_hdr;
625 Elf_Internal_Rela *free_relocs = NULL;
626 Elf_Internal_Rela *irel, *irelend;
627 bfd_byte *contents = NULL;
628 bfd_byte *free_contents = NULL;
629 Elf32_External_Sym *extsyms = NULL;
630 Elf32_External_Sym *free_extsyms = NULL;
631
632 asection *sec;
633 struct elf32_arm_link_hash_table *globals;
634
635 /* If we are only performing a partial link do not bother
636 to construct any glue. */
637 if (link_info->relocateable)
638 return true;
639
640 /* Here we have a bfd that is to be included on the link. We have a hook
641 to do reloc rummaging, before section sizes are nailed down. */
642 globals = elf32_arm_hash_table (link_info);
643
644 BFD_ASSERT (globals != NULL);
645 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
646
647 globals->no_pipeline_knowledge = no_pipeline_knowledge;
648
649 /* Rummage around all the relocs and map the glue vectors. */
650 sec = abfd->sections;
651
652 if (sec == NULL)
653 return true;
654
655 for (; sec != NULL; sec = sec->next)
656 {
657 if (sec->reloc_count == 0)
658 continue;
659
660 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
661
662 /* Load the relocs. */
663 irel = (_bfd_elf32_link_read_relocs (abfd, sec, (PTR) NULL,
664 (Elf_Internal_Rela *) NULL, false));
665
666 BFD_ASSERT (irel != 0);
667
668 irelend = irel + sec->reloc_count;
669 for (; irel < irelend; irel++)
670 {
671 long r_type;
672 unsigned long r_index;
673
674 struct elf_link_hash_entry *h;
675
676 r_type = ELF32_R_TYPE (irel->r_info);
677 r_index = ELF32_R_SYM (irel->r_info);
678
679 /* These are the only relocation types we care about. */
680 if ( r_type != R_ARM_PC24
681 && r_type != R_ARM_THM_PC22)
682 continue;
683
684 /* Get the section contents if we haven't done so already. */
685 if (contents == NULL)
686 {
687 /* Get cached copy if it exists. */
688 if (elf_section_data (sec)->this_hdr.contents != NULL)
689 contents = elf_section_data (sec)->this_hdr.contents;
690 else
691 {
692 /* Go get them off disk. */
693 contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
694 if (contents == NULL)
695 goto error_return;
696
697 free_contents = contents;
698
699 if (!bfd_get_section_contents (abfd, sec, contents,
700 (file_ptr) 0, sec->_raw_size))
701 goto error_return;
702 }
703 }
704
705 /* Read this BFD's symbols if we haven't done so already. */
706 if (extsyms == NULL)
707 {
708 /* Get cached copy if it exists. */
709 if (symtab_hdr->contents != NULL)
710 extsyms = (Elf32_External_Sym *) symtab_hdr->contents;
711 else
712 {
713 /* Go get them off disk. */
714 extsyms = ((Elf32_External_Sym *)
715 bfd_malloc (symtab_hdr->sh_size));
716 if (extsyms == NULL)
717 goto error_return;
718
719 free_extsyms = extsyms;
720
721 if (bfd_seek (abfd, symtab_hdr->sh_offset, SEEK_SET) != 0
722 || (bfd_bread (extsyms, symtab_hdr->sh_size, abfd)
723 != symtab_hdr->sh_size))
724 goto error_return;
725 }
726 }
727
728 /* If the relocation is not against a symbol it cannot concern us. */
729 h = NULL;
730
731 /* We don't care about local symbols. */
732 if (r_index < symtab_hdr->sh_info)
733 continue;
734
735 /* This is an external symbol. */
736 r_index -= symtab_hdr->sh_info;
737 h = (struct elf_link_hash_entry *)
738 elf_sym_hashes (abfd)[r_index];
739
740 /* If the relocation is against a static symbol it must be within
741 the current section and so cannot be a cross ARM/Thumb relocation. */
742 if (h == NULL)
743 continue;
744
745 switch (r_type)
746 {
747 case R_ARM_PC24:
748 /* This one is a call from arm code. We need to look up
749 the target of the call. If it is a thumb target, we
750 insert glue. */
751 if (ELF_ST_TYPE(h->type) == STT_ARM_TFUNC)
752 record_arm_to_thumb_glue (link_info, h);
753 break;
754
755 case R_ARM_THM_PC22:
756 /* This one is a call from thumb code. We look
757 up the target of the call. If it is not a thumb
758 target, we insert glue. */
759 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC)
760 record_thumb_to_arm_glue (link_info, h);
761 break;
762
763 default:
764 break;
765 }
766 }
767 }
768
769 return true;
770
771 error_return:
772 if (free_relocs != NULL)
773 free (free_relocs);
774 if (free_contents != NULL)
775 free (free_contents);
776 if (free_extsyms != NULL)
777 free (free_extsyms);
778
779 return false;
780 }
781
782 /* The thumb form of a long branch is a bit finicky, because the offset
783 encoding is split over two fields, each in it's own instruction. They
784 can occur in any order. So given a thumb form of long branch, and an
785 offset, insert the offset into the thumb branch and return finished
786 instruction.
787
788 It takes two thumb instructions to encode the target address. Each has
789 11 bits to invest. The upper 11 bits are stored in one (identifed by
790 H-0.. see below), the lower 11 bits are stored in the other (identified
791 by H-1).
792
793 Combine together and shifted left by 1 (it's a half word address) and
794 there you have it.
795
796 Op: 1111 = F,
797 H-0, upper address-0 = 000
798 Op: 1111 = F,
799 H-1, lower address-0 = 800
800
801 They can be ordered either way, but the arm tools I've seen always put
802 the lower one first. It probably doesn't matter. krk@cygnus.com
803
804 XXX: Actually the order does matter. The second instruction (H-1)
805 moves the computed address into the PC, so it must be the second one
806 in the sequence. The problem, however is that whilst little endian code
807 stores the instructions in HI then LOW order, big endian code does the
808 reverse. nickc@cygnus.com. */
809
810 #define LOW_HI_ORDER 0xF800F000
811 #define HI_LOW_ORDER 0xF000F800
812
813 static insn32
814 insert_thumb_branch (br_insn, rel_off)
815 insn32 br_insn;
816 int rel_off;
817 {
818 unsigned int low_bits;
819 unsigned int high_bits;
820
821 BFD_ASSERT ((rel_off & 1) != 1);
822
823 rel_off >>= 1; /* Half word aligned address. */
824 low_bits = rel_off & 0x000007FF; /* The bottom 11 bits. */
825 high_bits = (rel_off >> 11) & 0x000007FF; /* The top 11 bits. */
826
827 if ((br_insn & LOW_HI_ORDER) == LOW_HI_ORDER)
828 br_insn = LOW_HI_ORDER | (low_bits << 16) | high_bits;
829 else if ((br_insn & HI_LOW_ORDER) == HI_LOW_ORDER)
830 br_insn = HI_LOW_ORDER | (high_bits << 16) | low_bits;
831 else
832 /* FIXME: abort is probably not the right call. krk@cygnus.com */
833 abort (); /* error - not a valid branch instruction form. */
834
835 return br_insn;
836 }
837
838 /* Thumb code calling an ARM function. */
839
840 static int
841 elf32_thumb_to_arm_stub (info, name, input_bfd, output_bfd, input_section,
842 hit_data, sym_sec, offset, addend, val)
843 struct bfd_link_info * info;
844 const char * name;
845 bfd * input_bfd;
846 bfd * output_bfd;
847 asection * input_section;
848 bfd_byte * hit_data;
849 asection * sym_sec;
850 bfd_vma offset;
851 bfd_signed_vma addend;
852 bfd_vma val;
853 {
854 asection * s = 0;
855 bfd_vma my_offset;
856 unsigned long int tmp;
857 long int ret_offset;
858 struct elf_link_hash_entry * myh;
859 struct elf32_arm_link_hash_table * globals;
860
861 myh = find_thumb_glue (info, name, input_bfd);
862 if (myh == NULL)
863 return false;
864
865 globals = elf32_arm_hash_table (info);
866
867 BFD_ASSERT (globals != NULL);
868 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
869
870 my_offset = myh->root.u.def.value;
871
872 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
873 THUMB2ARM_GLUE_SECTION_NAME);
874
875 BFD_ASSERT (s != NULL);
876 BFD_ASSERT (s->contents != NULL);
877 BFD_ASSERT (s->output_section != NULL);
878
879 if ((my_offset & 0x01) == 0x01)
880 {
881 if (sym_sec != NULL
882 && sym_sec->owner != NULL
883 && !INTERWORK_FLAG (sym_sec->owner))
884 {
885 (*_bfd_error_handler)
886 (_("%s(%s): warning: interworking not enabled."),
887 bfd_archive_filename (sym_sec->owner), name);
888 (*_bfd_error_handler)
889 (_(" first occurrence: %s: thumb call to arm"),
890 bfd_archive_filename (input_bfd));
891
892 return false;
893 }
894
895 --my_offset;
896 myh->root.u.def.value = my_offset;
897
898 bfd_put_16 (output_bfd, (bfd_vma) t2a1_bx_pc_insn,
899 s->contents + my_offset);
900
901 bfd_put_16 (output_bfd, (bfd_vma) t2a2_noop_insn,
902 s->contents + my_offset + 2);
903
904 ret_offset =
905 /* Address of destination of the stub. */
906 ((bfd_signed_vma) val)
907 - ((bfd_signed_vma)
908 /* Offset from the start of the current section to the start of the stubs. */
909 (s->output_offset
910 /* Offset of the start of this stub from the start of the stubs. */
911 + my_offset
912 /* Address of the start of the current section. */
913 + s->output_section->vma)
914 /* The branch instruction is 4 bytes into the stub. */
915 + 4
916 /* ARM branches work from the pc of the instruction + 8. */
917 + 8);
918
919 bfd_put_32 (output_bfd,
920 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
921 s->contents + my_offset + 4);
922 }
923
924 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
925
926 /* Now go back and fix up the original BL insn to point
927 to here. */
928 ret_offset = (s->output_offset
929 + my_offset
930 - (input_section->output_offset
931 + offset + addend)
932 - 8);
933
934 tmp = bfd_get_32 (input_bfd, hit_data
935 - input_section->vma);
936
937 bfd_put_32 (output_bfd,
938 (bfd_vma) insert_thumb_branch (tmp, ret_offset),
939 hit_data - input_section->vma);
940
941 return true;
942 }
943
944 /* Arm code calling a Thumb function. */
945
946 static int
947 elf32_arm_to_thumb_stub (info, name, input_bfd, output_bfd, input_section,
948 hit_data, sym_sec, offset, addend, val)
949 struct bfd_link_info * info;
950 const char * name;
951 bfd * input_bfd;
952 bfd * output_bfd;
953 asection * input_section;
954 bfd_byte * hit_data;
955 asection * sym_sec;
956 bfd_vma offset;
957 bfd_signed_vma addend;
958 bfd_vma val;
959 {
960 unsigned long int tmp;
961 bfd_vma my_offset;
962 asection * s;
963 long int ret_offset;
964 struct elf_link_hash_entry * myh;
965 struct elf32_arm_link_hash_table * globals;
966
967 myh = find_arm_glue (info, name, input_bfd);
968 if (myh == NULL)
969 return false;
970
971 globals = elf32_arm_hash_table (info);
972
973 BFD_ASSERT (globals != NULL);
974 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
975
976 my_offset = myh->root.u.def.value;
977 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
978 ARM2THUMB_GLUE_SECTION_NAME);
979 BFD_ASSERT (s != NULL);
980 BFD_ASSERT (s->contents != NULL);
981 BFD_ASSERT (s->output_section != NULL);
982
983 if ((my_offset & 0x01) == 0x01)
984 {
985 if (sym_sec != NULL
986 && sym_sec->owner != NULL
987 && !INTERWORK_FLAG (sym_sec->owner))
988 {
989 (*_bfd_error_handler)
990 (_("%s(%s): warning: interworking not enabled."),
991 bfd_archive_filename (sym_sec->owner), name);
992 (*_bfd_error_handler)
993 (_(" first occurrence: %s: arm call to thumb"),
994 bfd_archive_filename (input_bfd));
995 }
996
997 --my_offset;
998 myh->root.u.def.value = my_offset;
999
1000 bfd_put_32 (output_bfd, (bfd_vma) a2t1_ldr_insn,
1001 s->contents + my_offset);
1002
1003 bfd_put_32 (output_bfd, (bfd_vma) a2t2_bx_r12_insn,
1004 s->contents + my_offset + 4);
1005
1006 /* It's a thumb address. Add the low order bit. */
1007 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
1008 s->contents + my_offset + 8);
1009 }
1010
1011 BFD_ASSERT (my_offset <= globals->arm_glue_size);
1012
1013 tmp = bfd_get_32 (input_bfd, hit_data);
1014 tmp = tmp & 0xFF000000;
1015
1016 /* Somehow these are both 4 too far, so subtract 8. */
1017 ret_offset = (s->output_offset
1018 + my_offset
1019 + s->output_section->vma
1020 - (input_section->output_offset
1021 + input_section->output_section->vma
1022 + offset + addend)
1023 - 8);
1024
1025 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
1026
1027 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
1028
1029 return true;
1030 }
1031
1032 /* Perform a relocation as part of a final link. */
1033
1034 static bfd_reloc_status_type
1035 elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
1036 input_section, contents, rel, value,
1037 info, sym_sec, sym_name, sym_flags, h)
1038 reloc_howto_type * howto;
1039 bfd * input_bfd;
1040 bfd * output_bfd;
1041 asection * input_section;
1042 bfd_byte * contents;
1043 Elf_Internal_Rela * rel;
1044 bfd_vma value;
1045 struct bfd_link_info * info;
1046 asection * sym_sec;
1047 const char * sym_name;
1048 int sym_flags;
1049 struct elf_link_hash_entry * h;
1050 {
1051 unsigned long r_type = howto->type;
1052 unsigned long r_symndx;
1053 bfd_byte * hit_data = contents + rel->r_offset;
1054 bfd * dynobj = NULL;
1055 Elf_Internal_Shdr * symtab_hdr;
1056 struct elf_link_hash_entry ** sym_hashes;
1057 bfd_vma * local_got_offsets;
1058 asection * sgot = NULL;
1059 asection * splt = NULL;
1060 asection * sreloc = NULL;
1061 bfd_vma addend;
1062 bfd_signed_vma signed_addend;
1063 struct elf32_arm_link_hash_table * globals;
1064
1065 /* If the start address has been set, then set the EF_ARM_HASENTRY
1066 flag. Setting this more than once is redundant, but the cost is
1067 not too high, and it keeps the code simple.
1068
1069 The test is done here, rather than somewhere else, because the
1070 start address is only set just before the final link commences.
1071
1072 Note - if the user deliberately sets a start address of 0, the
1073 flag will not be set. */
1074 if (bfd_get_start_address (output_bfd) != 0)
1075 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
1076
1077 globals = elf32_arm_hash_table (info);
1078
1079 dynobj = elf_hash_table (info)->dynobj;
1080 if (dynobj)
1081 {
1082 sgot = bfd_get_section_by_name (dynobj, ".got");
1083 splt = bfd_get_section_by_name (dynobj, ".plt");
1084 }
1085 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1086 sym_hashes = elf_sym_hashes (input_bfd);
1087 local_got_offsets = elf_local_got_offsets (input_bfd);
1088 r_symndx = ELF32_R_SYM (rel->r_info);
1089
1090 #ifdef USE_REL
1091 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
1092
1093 if (addend & ((howto->src_mask + 1) >> 1))
1094 {
1095 signed_addend = -1;
1096 signed_addend &= ~ howto->src_mask;
1097 signed_addend |= addend;
1098 }
1099 else
1100 signed_addend = addend;
1101 #else
1102 addend = signed_addend = rel->r_addend;
1103 #endif
1104
1105 switch (r_type)
1106 {
1107 case R_ARM_NONE:
1108 return bfd_reloc_ok;
1109
1110 case R_ARM_PC24:
1111 case R_ARM_ABS32:
1112 case R_ARM_REL32:
1113 #ifndef OLD_ARM_ABI
1114 case R_ARM_XPC25:
1115 #endif
1116 /* When generating a shared object, these relocations are copied
1117 into the output file to be resolved at run time. */
1118 if (info->shared
1119 && (r_type != R_ARM_PC24
1120 || (h != NULL
1121 && h->dynindx != -1
1122 && (! info->symbolic
1123 || (h->elf_link_hash_flags
1124 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1125 {
1126 Elf_Internal_Rel outrel;
1127 boolean skip, relocate;
1128
1129 if (sreloc == NULL)
1130 {
1131 const char * name;
1132
1133 name = (bfd_elf_string_from_elf_section
1134 (input_bfd,
1135 elf_elfheader (input_bfd)->e_shstrndx,
1136 elf_section_data (input_section)->rel_hdr.sh_name));
1137 if (name == NULL)
1138 return bfd_reloc_notsupported;
1139
1140 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
1141 && strcmp (bfd_get_section_name (input_bfd,
1142 input_section),
1143 name + 4) == 0);
1144
1145 sreloc = bfd_get_section_by_name (dynobj, name);
1146 BFD_ASSERT (sreloc != NULL);
1147 }
1148
1149 skip = false;
1150
1151 if (elf_section_data (input_section)->stab_info == NULL)
1152 outrel.r_offset = rel->r_offset;
1153 else
1154 {
1155 bfd_vma off;
1156
1157 off = (_bfd_stab_section_offset
1158 (output_bfd, &elf_hash_table (info)->stab_info,
1159 input_section,
1160 & elf_section_data (input_section)->stab_info,
1161 rel->r_offset));
1162 if (off == (bfd_vma) -1)
1163 skip = true;
1164 outrel.r_offset = off;
1165 }
1166
1167 outrel.r_offset += (input_section->output_section->vma
1168 + input_section->output_offset);
1169
1170 if (skip)
1171 {
1172 memset (&outrel, 0, sizeof outrel);
1173 relocate = false;
1174 }
1175 else if (r_type == R_ARM_PC24)
1176 {
1177 BFD_ASSERT (h != NULL && h->dynindx != -1);
1178 if ((input_section->flags & SEC_ALLOC) != 0)
1179 relocate = false;
1180 else
1181 relocate = true;
1182 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_PC24);
1183 }
1184 else
1185 {
1186 if (h == NULL
1187 || ((info->symbolic || h->dynindx == -1)
1188 && (h->elf_link_hash_flags
1189 & ELF_LINK_HASH_DEF_REGULAR) != 0))
1190 {
1191 relocate = true;
1192 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1193 }
1194 else
1195 {
1196 BFD_ASSERT (h->dynindx != -1);
1197 if ((input_section->flags & SEC_ALLOC) != 0)
1198 relocate = false;
1199 else
1200 relocate = true;
1201 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_ABS32);
1202 }
1203 }
1204
1205 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1206 (((Elf32_External_Rel *)
1207 sreloc->contents)
1208 + sreloc->reloc_count));
1209 ++sreloc->reloc_count;
1210
1211 /* If this reloc is against an external symbol, we do not want to
1212 fiddle with the addend. Otherwise, we need to include the symbol
1213 value so that it becomes an addend for the dynamic reloc. */
1214 if (! relocate)
1215 return bfd_reloc_ok;
1216
1217 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1218 contents, rel->r_offset, value,
1219 (bfd_vma) 0);
1220 }
1221 else switch (r_type)
1222 {
1223 #ifndef OLD_ARM_ABI
1224 case R_ARM_XPC25: /* Arm BLX instruction. */
1225 #endif
1226 case R_ARM_PC24: /* Arm B/BL instruction */
1227 #ifndef OLD_ARM_ABI
1228 if (r_type == R_ARM_XPC25)
1229 {
1230 /* Check for Arm calling Arm function. */
1231 /* FIXME: Should we translate the instruction into a BL
1232 instruction instead ? */
1233 if (sym_flags != STT_ARM_TFUNC)
1234 (*_bfd_error_handler) (_("\
1235 %s: Warning: Arm BLX instruction targets Arm function '%s'."),
1236 bfd_archive_filename (input_bfd),
1237 h ? h->root.root.string : "(local)");
1238 }
1239 else
1240 #endif
1241 {
1242 /* Check for Arm calling Thumb function. */
1243 if (sym_flags == STT_ARM_TFUNC)
1244 {
1245 elf32_arm_to_thumb_stub (info, sym_name, input_bfd, output_bfd,
1246 input_section, hit_data, sym_sec, rel->r_offset,
1247 signed_addend, value);
1248 return bfd_reloc_ok;
1249 }
1250 }
1251
1252 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1253 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0)
1254 {
1255 /* The old way of doing things. Trearing the addend as a
1256 byte sized field and adding in the pipeline offset. */
1257 value -= (input_section->output_section->vma
1258 + input_section->output_offset);
1259 value -= rel->r_offset;
1260 value += addend;
1261
1262 if (! globals->no_pipeline_knowledge)
1263 value -= 8;
1264 }
1265 else
1266 {
1267 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
1268 where:
1269 S is the address of the symbol in the relocation.
1270 P is address of the instruction being relocated.
1271 A is the addend (extracted from the instruction) in bytes.
1272
1273 S is held in 'value'.
1274 P is the base address of the section containing the instruction
1275 plus the offset of the reloc into that section, ie:
1276 (input_section->output_section->vma +
1277 input_section->output_offset +
1278 rel->r_offset).
1279 A is the addend, converted into bytes, ie:
1280 (signed_addend * 4)
1281
1282 Note: None of these operations have knowledge of the pipeline
1283 size of the processor, thus it is up to the assembler to encode
1284 this information into the addend. */
1285 value -= (input_section->output_section->vma
1286 + input_section->output_offset);
1287 value -= rel->r_offset;
1288 value += (signed_addend << howto->size);
1289
1290 /* Previous versions of this code also used to add in the pipeline
1291 offset here. This is wrong because the linker is not supposed
1292 to know about such things, and one day it might change. In order
1293 to support old binaries that need the old behaviour however, so
1294 we attempt to detect which ABI was used to create the reloc. */
1295 if (! globals->no_pipeline_knowledge)
1296 {
1297 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form */
1298
1299 i_ehdrp = elf_elfheader (input_bfd);
1300
1301 if (i_ehdrp->e_ident[EI_OSABI] == 0)
1302 value -= 8;
1303 }
1304 }
1305
1306 signed_addend = value;
1307 signed_addend >>= howto->rightshift;
1308
1309 /* It is not an error for an undefined weak reference to be
1310 out of range. Any program that branches to such a symbol
1311 is going to crash anyway, so there is no point worrying
1312 about getting the destination exactly right. */
1313 if (! h || h->root.type != bfd_link_hash_undefweak)
1314 {
1315 /* Perform a signed range check. */
1316 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
1317 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
1318 return bfd_reloc_overflow;
1319 }
1320
1321 #ifndef OLD_ARM_ABI
1322 /* If necessary set the H bit in the BLX instruction. */
1323 if (r_type == R_ARM_XPC25 && ((value & 2) == 2))
1324 value = (signed_addend & howto->dst_mask)
1325 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask))
1326 | (1 << 24);
1327 else
1328 #endif
1329 value = (signed_addend & howto->dst_mask)
1330 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
1331 break;
1332
1333 case R_ARM_ABS32:
1334 value += addend;
1335 if (sym_flags == STT_ARM_TFUNC)
1336 value |= 1;
1337 break;
1338
1339 case R_ARM_REL32:
1340 value -= (input_section->output_section->vma
1341 + input_section->output_offset + rel->r_offset);
1342 value += addend;
1343 break;
1344 }
1345
1346 bfd_put_32 (input_bfd, value, hit_data);
1347 return bfd_reloc_ok;
1348
1349 case R_ARM_ABS8:
1350 value += addend;
1351 if ((long) value > 0x7f || (long) value < -0x80)
1352 return bfd_reloc_overflow;
1353
1354 bfd_put_8 (input_bfd, value, hit_data);
1355 return bfd_reloc_ok;
1356
1357 case R_ARM_ABS16:
1358 value += addend;
1359
1360 if ((long) value > 0x7fff || (long) value < -0x8000)
1361 return bfd_reloc_overflow;
1362
1363 bfd_put_16 (input_bfd, value, hit_data);
1364 return bfd_reloc_ok;
1365
1366 case R_ARM_ABS12:
1367 /* Support ldr and str instruction for the arm */
1368 /* Also thumb b (unconditional branch). ??? Really? */
1369 value += addend;
1370
1371 if ((long) value > 0x7ff || (long) value < -0x800)
1372 return bfd_reloc_overflow;
1373
1374 value |= (bfd_get_32 (input_bfd, hit_data) & 0xfffff000);
1375 bfd_put_32 (input_bfd, value, hit_data);
1376 return bfd_reloc_ok;
1377
1378 case R_ARM_THM_ABS5:
1379 /* Support ldr and str instructions for the thumb. */
1380 #ifdef USE_REL
1381 /* Need to refetch addend. */
1382 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1383 /* ??? Need to determine shift amount from operand size. */
1384 addend >>= howto->rightshift;
1385 #endif
1386 value += addend;
1387
1388 /* ??? Isn't value unsigned? */
1389 if ((long) value > 0x1f || (long) value < -0x10)
1390 return bfd_reloc_overflow;
1391
1392 /* ??? Value needs to be properly shifted into place first. */
1393 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
1394 bfd_put_16 (input_bfd, value, hit_data);
1395 return bfd_reloc_ok;
1396
1397 #ifndef OLD_ARM_ABI
1398 case R_ARM_THM_XPC22:
1399 #endif
1400 case R_ARM_THM_PC22:
1401 /* Thumb BL (branch long instruction). */
1402 {
1403 bfd_vma relocation;
1404 boolean overflow = false;
1405 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
1406 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
1407 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
1408 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1409 bfd_vma check;
1410 bfd_signed_vma signed_check;
1411
1412 #ifdef USE_REL
1413 /* Need to refetch the addend and squish the two 11 bit pieces
1414 together. */
1415 {
1416 bfd_vma upper = upper_insn & 0x7ff;
1417 bfd_vma lower = lower_insn & 0x7ff;
1418 upper = (upper ^ 0x400) - 0x400; /* Sign extend. */
1419 addend = (upper << 12) | (lower << 1);
1420 signed_addend = addend;
1421 }
1422 #endif
1423 #ifndef OLD_ARM_ABI
1424 if (r_type == R_ARM_THM_XPC22)
1425 {
1426 /* Check for Thumb to Thumb call. */
1427 /* FIXME: Should we translate the instruction into a BL
1428 instruction instead ? */
1429 if (sym_flags == STT_ARM_TFUNC)
1430 (*_bfd_error_handler) (_("\
1431 %s: Warning: Thumb BLX instruction targets thumb function '%s'."),
1432 bfd_archive_filename (input_bfd),
1433 h ? h->root.root.string : "(local)");
1434 }
1435 else
1436 #endif
1437 {
1438 /* If it is not a call to Thumb, assume call to Arm.
1439 If it is a call relative to a section name, then it is not a
1440 function call at all, but rather a long jump. */
1441 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION)
1442 {
1443 if (elf32_thumb_to_arm_stub
1444 (info, sym_name, input_bfd, output_bfd, input_section,
1445 hit_data, sym_sec, rel->r_offset, signed_addend, value))
1446 return bfd_reloc_ok;
1447 else
1448 return bfd_reloc_dangerous;
1449 }
1450 }
1451
1452 relocation = value + signed_addend;
1453
1454 relocation -= (input_section->output_section->vma
1455 + input_section->output_offset
1456 + rel->r_offset);
1457
1458 if (! globals->no_pipeline_knowledge)
1459 {
1460 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form. */
1461
1462 i_ehdrp = elf_elfheader (input_bfd);
1463
1464 /* Previous versions of this code also used to add in the pipline
1465 offset here. This is wrong because the linker is not supposed
1466 to know about such things, and one day it might change. In order
1467 to support old binaries that need the old behaviour however, so
1468 we attempt to detect which ABI was used to create the reloc. */
1469 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1470 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0
1471 || i_ehdrp->e_ident[EI_OSABI] == 0)
1472 relocation += 4;
1473 }
1474
1475 check = relocation >> howto->rightshift;
1476
1477 /* If this is a signed value, the rightshift just dropped
1478 leading 1 bits (assuming twos complement). */
1479 if ((bfd_signed_vma) relocation >= 0)
1480 signed_check = check;
1481 else
1482 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
1483
1484 /* Assumes two's complement. */
1485 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1486 overflow = true;
1487
1488 /* Put RELOCATION back into the insn. */
1489 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 12) & 0x7ff);
1490 lower_insn = (lower_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 1) & 0x7ff);
1491
1492 #ifndef OLD_ARM_ABI
1493 if (r_type == R_ARM_THM_XPC22
1494 && ((lower_insn & 0x1800) == 0x0800))
1495 /* Remove bit zero of the adjusted offset. Bit zero can only be
1496 set if the upper insn is at a half-word boundary, since the
1497 destination address, an ARM instruction, must always be on a
1498 word boundary. The semantics of the BLX (1) instruction, however,
1499 are that bit zero in the offset must always be zero, and the
1500 corresponding bit one in the target address will be set from bit
1501 one of the source address. */
1502 lower_insn &= ~1;
1503 #endif
1504 /* Put the relocated value back in the object file: */
1505 bfd_put_16 (input_bfd, upper_insn, hit_data);
1506 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
1507
1508 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
1509 }
1510 break;
1511
1512 case R_ARM_GNU_VTINHERIT:
1513 case R_ARM_GNU_VTENTRY:
1514 return bfd_reloc_ok;
1515
1516 case R_ARM_COPY:
1517 return bfd_reloc_notsupported;
1518
1519 case R_ARM_GLOB_DAT:
1520 return bfd_reloc_notsupported;
1521
1522 case R_ARM_JUMP_SLOT:
1523 return bfd_reloc_notsupported;
1524
1525 case R_ARM_RELATIVE:
1526 return bfd_reloc_notsupported;
1527
1528 case R_ARM_GOTOFF:
1529 /* Relocation is relative to the start of the
1530 global offset table. */
1531
1532 BFD_ASSERT (sgot != NULL);
1533 if (sgot == NULL)
1534 return bfd_reloc_notsupported;
1535
1536 /* Note that sgot->output_offset is not involved in this
1537 calculation. We always want the start of .got. If we
1538 define _GLOBAL_OFFSET_TABLE in a different way, as is
1539 permitted by the ABI, we might have to change this
1540 calculation. */
1541 value -= sgot->output_section->vma;
1542 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1543 contents, rel->r_offset, value,
1544 (bfd_vma) 0);
1545
1546 case R_ARM_GOTPC:
1547 /* Use global offset table as symbol value. */
1548 BFD_ASSERT (sgot != NULL);
1549
1550 if (sgot == NULL)
1551 return bfd_reloc_notsupported;
1552
1553 value = sgot->output_section->vma;
1554 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1555 contents, rel->r_offset, value,
1556 (bfd_vma) 0);
1557
1558 case R_ARM_GOT32:
1559 /* Relocation is to the entry for this symbol in the
1560 global offset table. */
1561 if (sgot == NULL)
1562 return bfd_reloc_notsupported;
1563
1564 if (h != NULL)
1565 {
1566 bfd_vma off;
1567
1568 off = h->got.offset;
1569 BFD_ASSERT (off != (bfd_vma) -1);
1570
1571 if (!elf_hash_table (info)->dynamic_sections_created ||
1572 (info->shared && (info->symbolic || h->dynindx == -1)
1573 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1574 {
1575 /* This is actually a static link, or it is a -Bsymbolic link
1576 and the symbol is defined locally. We must initialize this
1577 entry in the global offset table. Since the offset must
1578 always be a multiple of 4, we use the least significant bit
1579 to record whether we have initialized it already.
1580
1581 When doing a dynamic link, we create a .rel.got relocation
1582 entry to initialize the value. This is done in the
1583 finish_dynamic_symbol routine. */
1584 if ((off & 1) != 0)
1585 off &= ~1;
1586 else
1587 {
1588 bfd_put_32 (output_bfd, value, sgot->contents + off);
1589 h->got.offset |= 1;
1590 }
1591 }
1592
1593 value = sgot->output_offset + off;
1594 }
1595 else
1596 {
1597 bfd_vma off;
1598
1599 BFD_ASSERT (local_got_offsets != NULL &&
1600 local_got_offsets[r_symndx] != (bfd_vma) -1);
1601
1602 off = local_got_offsets[r_symndx];
1603
1604 /* The offset must always be a multiple of 4. We use the
1605 least significant bit to record whether we have already
1606 generated the necessary reloc. */
1607 if ((off & 1) != 0)
1608 off &= ~1;
1609 else
1610 {
1611 bfd_put_32 (output_bfd, value, sgot->contents + off);
1612
1613 if (info->shared)
1614 {
1615 asection * srelgot;
1616 Elf_Internal_Rel outrel;
1617
1618 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
1619 BFD_ASSERT (srelgot != NULL);
1620
1621 outrel.r_offset = (sgot->output_section->vma
1622 + sgot->output_offset
1623 + off);
1624 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1625 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1626 (((Elf32_External_Rel *)
1627 srelgot->contents)
1628 + srelgot->reloc_count));
1629 ++srelgot->reloc_count;
1630 }
1631
1632 local_got_offsets[r_symndx] |= 1;
1633 }
1634
1635 value = sgot->output_offset + off;
1636 }
1637
1638 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1639 contents, rel->r_offset, value,
1640 (bfd_vma) 0);
1641
1642 case R_ARM_PLT32:
1643 /* Relocation is to the entry for this symbol in the
1644 procedure linkage table. */
1645
1646 /* Resolve a PLT32 reloc against a local symbol directly,
1647 without using the procedure linkage table. */
1648 if (h == NULL)
1649 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1650 contents, rel->r_offset, value,
1651 (bfd_vma) 0);
1652
1653 if (h->plt.offset == (bfd_vma) -1)
1654 /* We didn't make a PLT entry for this symbol. This
1655 happens when statically linking PIC code, or when
1656 using -Bsymbolic. */
1657 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1658 contents, rel->r_offset, value,
1659 (bfd_vma) 0);
1660
1661 BFD_ASSERT(splt != NULL);
1662 if (splt == NULL)
1663 return bfd_reloc_notsupported;
1664
1665 value = (splt->output_section->vma
1666 + splt->output_offset
1667 + h->plt.offset);
1668 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1669 contents, rel->r_offset, value,
1670 (bfd_vma) 0);
1671
1672 case R_ARM_SBREL32:
1673 return bfd_reloc_notsupported;
1674
1675 case R_ARM_AMP_VCALL9:
1676 return bfd_reloc_notsupported;
1677
1678 case R_ARM_RSBREL32:
1679 return bfd_reloc_notsupported;
1680
1681 case R_ARM_THM_RPC22:
1682 return bfd_reloc_notsupported;
1683
1684 case R_ARM_RREL32:
1685 return bfd_reloc_notsupported;
1686
1687 case R_ARM_RABS32:
1688 return bfd_reloc_notsupported;
1689
1690 case R_ARM_RPC24:
1691 return bfd_reloc_notsupported;
1692
1693 case R_ARM_RBASE:
1694 return bfd_reloc_notsupported;
1695
1696 default:
1697 return bfd_reloc_notsupported;
1698 }
1699 }
1700
1701 #ifdef USE_REL
1702 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
1703 static void
1704 arm_add_to_rel (abfd, address, howto, increment)
1705 bfd * abfd;
1706 bfd_byte * address;
1707 reloc_howto_type * howto;
1708 bfd_signed_vma increment;
1709 {
1710 bfd_signed_vma addend;
1711
1712 if (howto->type == R_ARM_THM_PC22)
1713 {
1714 int upper_insn, lower_insn;
1715 int upper, lower;
1716
1717 upper_insn = bfd_get_16 (abfd, address);
1718 lower_insn = bfd_get_16 (abfd, address + 2);
1719 upper = upper_insn & 0x7ff;
1720 lower = lower_insn & 0x7ff;
1721
1722 addend = (upper << 12) | (lower << 1);
1723 addend += increment;
1724 addend >>= 1;
1725
1726 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
1727 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
1728
1729 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
1730 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
1731 }
1732 else
1733 {
1734 bfd_vma contents;
1735
1736 contents = bfd_get_32 (abfd, address);
1737
1738 /* Get the (signed) value from the instruction. */
1739 addend = contents & howto->src_mask;
1740 if (addend & ((howto->src_mask + 1) >> 1))
1741 {
1742 bfd_signed_vma mask;
1743
1744 mask = -1;
1745 mask &= ~ howto->src_mask;
1746 addend |= mask;
1747 }
1748
1749 /* Add in the increment, (which is a byte value). */
1750 switch (howto->type)
1751 {
1752 default:
1753 addend += increment;
1754 break;
1755
1756 case R_ARM_PC24:
1757 addend <<= howto->size;
1758 addend += increment;
1759
1760 /* Should we check for overflow here ? */
1761
1762 /* Drop any undesired bits. */
1763 addend >>= howto->rightshift;
1764 break;
1765 }
1766
1767 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
1768
1769 bfd_put_32 (abfd, contents, address);
1770 }
1771 }
1772 #endif /* USE_REL */
1773
1774 /* Relocate an ARM ELF section. */
1775 static boolean
1776 elf32_arm_relocate_section (output_bfd, info, input_bfd, input_section,
1777 contents, relocs, local_syms, local_sections)
1778 bfd * output_bfd;
1779 struct bfd_link_info * info;
1780 bfd * input_bfd;
1781 asection * input_section;
1782 bfd_byte * contents;
1783 Elf_Internal_Rela * relocs;
1784 Elf_Internal_Sym * local_syms;
1785 asection ** local_sections;
1786 {
1787 Elf_Internal_Shdr * symtab_hdr;
1788 struct elf_link_hash_entry ** sym_hashes;
1789 Elf_Internal_Rela * rel;
1790 Elf_Internal_Rela * relend;
1791 const char * name;
1792
1793 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1794 sym_hashes = elf_sym_hashes (input_bfd);
1795
1796 rel = relocs;
1797 relend = relocs + input_section->reloc_count;
1798 for (; rel < relend; rel++)
1799 {
1800 int r_type;
1801 reloc_howto_type * howto;
1802 unsigned long r_symndx;
1803 Elf_Internal_Sym * sym;
1804 asection * sec;
1805 struct elf_link_hash_entry * h;
1806 bfd_vma relocation;
1807 bfd_reloc_status_type r;
1808 arelent bfd_reloc;
1809
1810 r_symndx = ELF32_R_SYM (rel->r_info);
1811 r_type = ELF32_R_TYPE (rel->r_info);
1812
1813 if ( r_type == R_ARM_GNU_VTENTRY
1814 || r_type == R_ARM_GNU_VTINHERIT)
1815 continue;
1816
1817 #ifdef USE_REL
1818 elf32_arm_info_to_howto (input_bfd, & bfd_reloc,
1819 (Elf_Internal_Rel *) rel);
1820 #else
1821 elf32_arm_info_to_howto (input_bfd, & bfd_reloc, rel);
1822 #endif
1823 howto = bfd_reloc.howto;
1824
1825 if (info->relocateable)
1826 {
1827 /* This is a relocateable link. We don't have to change
1828 anything, unless the reloc is against a section symbol,
1829 in which case we have to adjust according to where the
1830 section symbol winds up in the output section. */
1831 if (r_symndx < symtab_hdr->sh_info)
1832 {
1833 sym = local_syms + r_symndx;
1834 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1835 {
1836 sec = local_sections[r_symndx];
1837 #ifdef USE_REL
1838 arm_add_to_rel (input_bfd, contents + rel->r_offset,
1839 howto,
1840 (bfd_signed_vma) (sec->output_offset
1841 + sym->st_value));
1842 #else
1843 rel->r_addend += (sec->output_offset + sym->st_value);
1844 #endif
1845 }
1846 }
1847
1848 continue;
1849 }
1850
1851 /* This is a final link. */
1852 h = NULL;
1853 sym = NULL;
1854 sec = NULL;
1855
1856 if (r_symndx < symtab_hdr->sh_info)
1857 {
1858 sym = local_syms + r_symndx;
1859 sec = local_sections[r_symndx];
1860 relocation = (sec->output_section->vma
1861 + sec->output_offset
1862 + sym->st_value);
1863 }
1864 else
1865 {
1866 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1867
1868 while ( h->root.type == bfd_link_hash_indirect
1869 || h->root.type == bfd_link_hash_warning)
1870 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1871
1872 if ( h->root.type == bfd_link_hash_defined
1873 || h->root.type == bfd_link_hash_defweak)
1874 {
1875 int relocation_needed = 1;
1876
1877 sec = h->root.u.def.section;
1878
1879 /* In these cases, we don't need the relocation value.
1880 We check specially because in some obscure cases
1881 sec->output_section will be NULL. */
1882 switch (r_type)
1883 {
1884 case R_ARM_PC24:
1885 case R_ARM_ABS32:
1886 if (info->shared
1887 && (
1888 (!info->symbolic && h->dynindx != -1)
1889 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1890 )
1891 && ((input_section->flags & SEC_ALLOC) != 0
1892 /* DWARF will emit R_ARM_ABS32 relocations in its
1893 sections against symbols defined externally
1894 in shared libraries. We can't do anything
1895 with them here. */
1896 || ((input_section->flags & SEC_DEBUGGING) != 0
1897 && (h->elf_link_hash_flags
1898 & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
1899 )
1900 relocation_needed = 0;
1901 break;
1902
1903 case R_ARM_GOTPC:
1904 relocation_needed = 0;
1905 break;
1906
1907 case R_ARM_GOT32:
1908 if (elf_hash_table(info)->dynamic_sections_created
1909 && (!info->shared
1910 || (!info->symbolic && h->dynindx != -1)
1911 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1912 )
1913 )
1914 relocation_needed = 0;
1915 break;
1916
1917 case R_ARM_PLT32:
1918 if (h->plt.offset != (bfd_vma)-1)
1919 relocation_needed = 0;
1920 break;
1921
1922 default:
1923 if (sec->output_section == NULL)
1924 {
1925 (*_bfd_error_handler)
1926 (_("%s: warning: unresolvable relocation against symbol `%s' from %s section"),
1927 bfd_archive_filename (input_bfd), h->root.root.string,
1928 bfd_get_section_name (input_bfd, input_section));
1929 relocation_needed = 0;
1930 }
1931 }
1932
1933 if (relocation_needed)
1934 relocation = h->root.u.def.value
1935 + sec->output_section->vma
1936 + sec->output_offset;
1937 else
1938 relocation = 0;
1939 }
1940 else if (h->root.type == bfd_link_hash_undefweak)
1941 relocation = 0;
1942 else if (info->shared && !info->symbolic
1943 && !info->no_undefined
1944 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1945 relocation = 0;
1946 else
1947 {
1948 if (!((*info->callbacks->undefined_symbol)
1949 (info, h->root.root.string, input_bfd,
1950 input_section, rel->r_offset,
1951 (!info->shared || info->no_undefined
1952 || ELF_ST_VISIBILITY (h->other)))))
1953 return false;
1954 relocation = 0;
1955 }
1956 }
1957
1958 if (h != NULL)
1959 name = h->root.root.string;
1960 else
1961 {
1962 name = (bfd_elf_string_from_elf_section
1963 (input_bfd, symtab_hdr->sh_link, sym->st_name));
1964 if (name == NULL || *name == '\0')
1965 name = bfd_section_name (input_bfd, sec);
1966 }
1967
1968 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
1969 input_section, contents, rel,
1970 relocation, info, sec, name,
1971 (h ? ELF_ST_TYPE (h->type) :
1972 ELF_ST_TYPE (sym->st_info)), h);
1973
1974 if (r != bfd_reloc_ok)
1975 {
1976 const char * msg = (const char *) 0;
1977
1978 switch (r)
1979 {
1980 case bfd_reloc_overflow:
1981 /* If the overflowing reloc was to an undefined symbol,
1982 we have already printed one error message and there
1983 is no point complaining again. */
1984 if ((! h ||
1985 h->root.type != bfd_link_hash_undefined)
1986 && (!((*info->callbacks->reloc_overflow)
1987 (info, name, howto->name, (bfd_vma) 0,
1988 input_bfd, input_section, rel->r_offset))))
1989 return false;
1990 break;
1991
1992 case bfd_reloc_undefined:
1993 if (!((*info->callbacks->undefined_symbol)
1994 (info, name, input_bfd, input_section,
1995 rel->r_offset, true)))
1996 return false;
1997 break;
1998
1999 case bfd_reloc_outofrange:
2000 msg = _("internal error: out of range error");
2001 goto common_error;
2002
2003 case bfd_reloc_notsupported:
2004 msg = _("internal error: unsupported relocation error");
2005 goto common_error;
2006
2007 case bfd_reloc_dangerous:
2008 msg = _("internal error: dangerous error");
2009 goto common_error;
2010
2011 default:
2012 msg = _("internal error: unknown error");
2013 /* fall through */
2014
2015 common_error:
2016 if (!((*info->callbacks->warning)
2017 (info, msg, name, input_bfd, input_section,
2018 rel->r_offset)))
2019 return false;
2020 break;
2021 }
2022 }
2023 }
2024
2025 return true;
2026 }
2027
2028 /* Function to keep ARM specific flags in the ELF header. */
2029 static boolean
2030 elf32_arm_set_private_flags (abfd, flags)
2031 bfd *abfd;
2032 flagword flags;
2033 {
2034 if (elf_flags_init (abfd)
2035 && elf_elfheader (abfd)->e_flags != flags)
2036 {
2037 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
2038 {
2039 if (flags & EF_ARM_INTERWORK)
2040 (*_bfd_error_handler) (_("\
2041 Warning: Not setting interwork flag of %s since it has already been specified as non-interworking"),
2042 bfd_archive_filename (abfd));
2043 else
2044 _bfd_error_handler (_("\
2045 Warning: Clearing the interwork flag of %s due to outside request"),
2046 bfd_archive_filename (abfd));
2047 }
2048 }
2049 else
2050 {
2051 elf_elfheader (abfd)->e_flags = flags;
2052 elf_flags_init (abfd) = true;
2053 }
2054
2055 return true;
2056 }
2057
2058 /* Copy backend specific data from one object module to another. */
2059
2060 static boolean
2061 elf32_arm_copy_private_bfd_data (ibfd, obfd)
2062 bfd *ibfd;
2063 bfd *obfd;
2064 {
2065 flagword in_flags;
2066 flagword out_flags;
2067
2068 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2069 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2070 return true;
2071
2072 in_flags = elf_elfheader (ibfd)->e_flags;
2073 out_flags = elf_elfheader (obfd)->e_flags;
2074
2075 if (elf_flags_init (obfd)
2076 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
2077 && in_flags != out_flags)
2078 {
2079 /* Cannot mix APCS26 and APCS32 code. */
2080 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2081 return false;
2082
2083 /* Cannot mix float APCS and non-float APCS code. */
2084 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2085 return false;
2086
2087 /* If the src and dest have different interworking flags
2088 then turn off the interworking bit. */
2089 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2090 {
2091 if (out_flags & EF_ARM_INTERWORK)
2092 _bfd_error_handler (_("\
2093 Warning: Clearing the interwork flag in %s because non-interworking code in %s has been linked with it"),
2094 bfd_archive_filename (obfd),
2095 bfd_archive_filename (ibfd));
2096
2097 in_flags &= ~EF_ARM_INTERWORK;
2098 }
2099
2100 /* Likewise for PIC, though don't warn for this case. */
2101 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
2102 in_flags &= ~EF_ARM_PIC;
2103 }
2104
2105 elf_elfheader (obfd)->e_flags = in_flags;
2106 elf_flags_init (obfd) = true;
2107
2108 return true;
2109 }
2110
2111 /* Merge backend specific data from an object file to the output
2112 object file when linking. */
2113
2114 static boolean
2115 elf32_arm_merge_private_bfd_data (ibfd, obfd)
2116 bfd * ibfd;
2117 bfd * obfd;
2118 {
2119 flagword out_flags;
2120 flagword in_flags;
2121 boolean flags_compatible = true;
2122 boolean null_input_bfd = true;
2123 asection *sec;
2124
2125 /* Check if we have the same endianess. */
2126 if (_bfd_generic_verify_endian_match (ibfd, obfd) == false)
2127 return false;
2128
2129 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2130 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2131 return true;
2132
2133 /* The input BFD must have had its flags initialised. */
2134 /* The following seems bogus to me -- The flags are initialized in
2135 the assembler but I don't think an elf_flags_init field is
2136 written into the object. */
2137 /* BFD_ASSERT (elf_flags_init (ibfd)); */
2138
2139 in_flags = elf_elfheader (ibfd)->e_flags;
2140 out_flags = elf_elfheader (obfd)->e_flags;
2141
2142 if (!elf_flags_init (obfd))
2143 {
2144 /* If the input is the default architecture and had the default
2145 flags then do not bother setting the flags for the output
2146 architecture, instead allow future merges to do this. If no
2147 future merges ever set these flags then they will retain their
2148 uninitialised values, which surprise surprise, correspond
2149 to the default values. */
2150 if (bfd_get_arch_info (ibfd)->the_default
2151 && elf_elfheader (ibfd)->e_flags == 0)
2152 return true;
2153
2154 elf_flags_init (obfd) = true;
2155 elf_elfheader (obfd)->e_flags = in_flags;
2156
2157 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2158 && bfd_get_arch_info (obfd)->the_default)
2159 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
2160
2161 return true;
2162 }
2163
2164 /* Identical flags must be compatible. */
2165 if (in_flags == out_flags)
2166 return true;
2167
2168 /* Check to see if the input BFD actually contains any sections.
2169 If not, its flags may not have been initialised either, but it cannot
2170 actually cause any incompatibility. */
2171 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2172 {
2173 /* Ignore synthetic glue sections. */
2174 if (strcmp (sec->name, ".glue_7")
2175 && strcmp (sec->name, ".glue_7t"))
2176 {
2177 null_input_bfd = false;
2178 break;
2179 }
2180 }
2181 if (null_input_bfd)
2182 return true;
2183
2184 /* Complain about various flag mismatches. */
2185 if (EF_ARM_EABI_VERSION (in_flags) != EF_ARM_EABI_VERSION (out_flags))
2186 {
2187 _bfd_error_handler (_("\
2188 Error: %s compiled for EABI version %d, whereas %s is compiled for version %d"),
2189 bfd_archive_filename (ibfd),
2190 (in_flags & EF_ARM_EABIMASK) >> 24,
2191 bfd_archive_filename (obfd),
2192 (out_flags & EF_ARM_EABIMASK) >> 24);
2193 return false;
2194 }
2195
2196 /* Not sure what needs to be checked for EABI versions >= 1. */
2197 if (EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
2198 {
2199 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2200 {
2201 _bfd_error_handler (_("\
2202 Error: %s compiled for APCS-%d, whereas %s is compiled for APCS-%d"),
2203 bfd_archive_filename (ibfd),
2204 in_flags & EF_ARM_APCS_26 ? 26 : 32,
2205 bfd_archive_filename (obfd),
2206 out_flags & EF_ARM_APCS_26 ? 26 : 32);
2207 flags_compatible = false;
2208 }
2209
2210 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2211 {
2212 char *s1 = in_flags & EF_ARM_APCS_FLOAT ? _("float") : _("integer");
2213 char *s2 = out_flags & EF_ARM_APCS_FLOAT ? _("float") : _("integer");
2214
2215 _bfd_error_handler (_("\
2216 Error: %s passes floats in %s registers, whereas %s passes them in %s registers"),
2217 bfd_archive_filename (ibfd), s1,
2218 bfd_archive_filename (obfd), s2);
2219 flags_compatible = false;
2220 }
2221
2222 #ifdef EF_ARM_SOFT_FLOAT
2223 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
2224 {
2225 char *s1 = in_flags & EF_ARM_SOFT_FLOAT ? _("soft") : _("hard");
2226 char *s2 = out_flags & EF_ARM_SOFT_FLOAT ? _("soft") : _("hard");
2227
2228 _bfd_error_handler (_ ("\
2229 Error: %s uses %s floating point, whereas %s uses %s floating point"),
2230 bfd_archive_filename (ibfd), s1,
2231 bfd_archive_filename (obfd), s2);
2232 flags_compatible = false;
2233 }
2234 #endif
2235
2236 /* Interworking mismatch is only a warning. */
2237 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2238 {
2239 char *s1 = (in_flags & EF_ARM_INTERWORK
2240 ? _("supports") : _("does not support"));
2241 char *s2 = out_flags & EF_ARM_INTERWORK ? _("does") : _("does not");
2242
2243 _bfd_error_handler (_("\
2244 Warning: %s %s interworking, whereas %s %s"),
2245 bfd_archive_filename (ibfd), s1,
2246 bfd_archive_filename (obfd), s2);
2247 }
2248 }
2249
2250 return flags_compatible;
2251 }
2252
2253 /* Display the flags field. */
2254
2255 static boolean
2256 elf32_arm_print_private_bfd_data (abfd, ptr)
2257 bfd *abfd;
2258 PTR ptr;
2259 {
2260 FILE * file = (FILE *) ptr;
2261 unsigned long flags;
2262
2263 BFD_ASSERT (abfd != NULL && ptr != NULL);
2264
2265 /* Print normal ELF private data. */
2266 _bfd_elf_print_private_bfd_data (abfd, ptr);
2267
2268 flags = elf_elfheader (abfd)->e_flags;
2269 /* Ignore init flag - it may not be set, despite the flags field
2270 containing valid data. */
2271
2272 /* xgettext:c-format */
2273 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
2274
2275 switch (EF_ARM_EABI_VERSION (flags))
2276 {
2277 case EF_ARM_EABI_UNKNOWN:
2278 /* The following flag bits are GNU extenstions and not part of the
2279 official ARM ELF extended ABI. Hence they are only decoded if
2280 the EABI version is not set. */
2281 if (flags & EF_ARM_INTERWORK)
2282 fprintf (file, _(" [interworking enabled]"));
2283
2284 if (flags & EF_ARM_APCS_26)
2285 fprintf (file, _(" [APCS-26]"));
2286 else
2287 fprintf (file, _(" [APCS-32]"));
2288
2289 if (flags & EF_ARM_APCS_FLOAT)
2290 fprintf (file, _(" [floats passed in float registers]"));
2291
2292 if (flags & EF_ARM_PIC)
2293 fprintf (file, _(" [position independent]"));
2294
2295 if (flags & EF_ARM_NEW_ABI)
2296 fprintf (file, _(" [new ABI]"));
2297
2298 if (flags & EF_ARM_OLD_ABI)
2299 fprintf (file, _(" [old ABI]"));
2300
2301 if (flags & EF_ARM_SOFT_FLOAT)
2302 fprintf (file, _(" [software FP]"));
2303
2304 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT | EF_ARM_PIC
2305 | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI | EF_ARM_SOFT_FLOAT);
2306 break;
2307
2308 case EF_ARM_EABI_VER1:
2309 fprintf (file, _(" [Version1 EABI]"));
2310
2311 if (flags & EF_ARM_SYMSARESORTED)
2312 fprintf (file, _(" [sorted symbol table]"));
2313 else
2314 fprintf (file, _(" [unsorted symbol table]"));
2315
2316 flags &= ~ EF_ARM_SYMSARESORTED;
2317 break;
2318
2319 case EF_ARM_EABI_VER2:
2320 fprintf (file, _(" [Version2 EABI]"));
2321
2322 if (flags & EF_ARM_SYMSARESORTED)
2323 fprintf (file, _(" [sorted symbol table]"));
2324 else
2325 fprintf (file, _(" [unsorted symbol table]"));
2326
2327 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
2328 fprintf (file, _(" [dynamic symbols use segment index]"));
2329
2330 if (flags & EF_ARM_MAPSYMSFIRST)
2331 fprintf (file, _(" [mapping symbols precede others]"));
2332
2333 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
2334 | EF_ARM_MAPSYMSFIRST);
2335 break;
2336
2337 default:
2338 fprintf (file, _(" <EABI version unrecognised>"));
2339 break;
2340 }
2341
2342 flags &= ~ EF_ARM_EABIMASK;
2343
2344 if (flags & EF_ARM_RELEXEC)
2345 fprintf (file, _(" [relocatable executable]"));
2346
2347 if (flags & EF_ARM_HASENTRY)
2348 fprintf (file, _(" [has entry point]"));
2349
2350 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
2351
2352 if (flags)
2353 fprintf (file, _("<Unrecognised flag bits set>"));
2354
2355 fputc ('\n', file);
2356
2357 return true;
2358 }
2359
2360 static int
2361 elf32_arm_get_symbol_type (elf_sym, type)
2362 Elf_Internal_Sym * elf_sym;
2363 int type;
2364 {
2365 switch (ELF_ST_TYPE (elf_sym->st_info))
2366 {
2367 case STT_ARM_TFUNC:
2368 return ELF_ST_TYPE (elf_sym->st_info);
2369
2370 case STT_ARM_16BIT:
2371 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
2372 This allows us to distinguish between data used by Thumb instructions
2373 and non-data (which is probably code) inside Thumb regions of an
2374 executable. */
2375 if (type != STT_OBJECT)
2376 return ELF_ST_TYPE (elf_sym->st_info);
2377 break;
2378
2379 default:
2380 break;
2381 }
2382
2383 return type;
2384 }
2385
2386 static asection *
2387 elf32_arm_gc_mark_hook (abfd, info, rel, h, sym)
2388 bfd *abfd;
2389 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2390 Elf_Internal_Rela *rel;
2391 struct elf_link_hash_entry *h;
2392 Elf_Internal_Sym *sym;
2393 {
2394 if (h != NULL)
2395 {
2396 switch (ELF32_R_TYPE (rel->r_info))
2397 {
2398 case R_ARM_GNU_VTINHERIT:
2399 case R_ARM_GNU_VTENTRY:
2400 break;
2401
2402 default:
2403 switch (h->root.type)
2404 {
2405 case bfd_link_hash_defined:
2406 case bfd_link_hash_defweak:
2407 return h->root.u.def.section;
2408
2409 case bfd_link_hash_common:
2410 return h->root.u.c.p->section;
2411
2412 default:
2413 break;
2414 }
2415 }
2416 }
2417 else
2418 {
2419 if (!(elf_bad_symtab (abfd)
2420 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
2421 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
2422 && sym->st_shndx != SHN_COMMON))
2423 {
2424 return bfd_section_from_elf_index (abfd, sym->st_shndx);
2425 }
2426 }
2427 return NULL;
2428 }
2429
2430 /* Update the got entry reference counts for the section being removed. */
2431
2432 static boolean
2433 elf32_arm_gc_sweep_hook (abfd, info, sec, relocs)
2434 bfd *abfd ATTRIBUTE_UNUSED;
2435 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2436 asection *sec ATTRIBUTE_UNUSED;
2437 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
2438 {
2439 /* We don't support garbage collection of GOT and PLT relocs yet. */
2440 return true;
2441 }
2442
2443 /* Look through the relocs for a section during the first phase. */
2444
2445 static boolean
2446 elf32_arm_check_relocs (abfd, info, sec, relocs)
2447 bfd * abfd;
2448 struct bfd_link_info * info;
2449 asection * sec;
2450 const Elf_Internal_Rela * relocs;
2451 {
2452 Elf_Internal_Shdr * symtab_hdr;
2453 struct elf_link_hash_entry ** sym_hashes;
2454 struct elf_link_hash_entry ** sym_hashes_end;
2455 const Elf_Internal_Rela * rel;
2456 const Elf_Internal_Rela * rel_end;
2457 bfd * dynobj;
2458 asection * sgot, *srelgot, *sreloc;
2459 bfd_vma * local_got_offsets;
2460
2461 if (info->relocateable)
2462 return true;
2463
2464 sgot = srelgot = sreloc = NULL;
2465
2466 dynobj = elf_hash_table (info)->dynobj;
2467 local_got_offsets = elf_local_got_offsets (abfd);
2468
2469 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2470 sym_hashes = elf_sym_hashes (abfd);
2471 sym_hashes_end = sym_hashes
2472 + symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
2473
2474 if (!elf_bad_symtab (abfd))
2475 sym_hashes_end -= symtab_hdr->sh_info;
2476
2477 rel_end = relocs + sec->reloc_count;
2478 for (rel = relocs; rel < rel_end; rel++)
2479 {
2480 struct elf_link_hash_entry *h;
2481 unsigned long r_symndx;
2482
2483 r_symndx = ELF32_R_SYM (rel->r_info);
2484 if (r_symndx < symtab_hdr->sh_info)
2485 h = NULL;
2486 else
2487 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2488
2489 /* Some relocs require a global offset table. */
2490 if (dynobj == NULL)
2491 {
2492 switch (ELF32_R_TYPE (rel->r_info))
2493 {
2494 case R_ARM_GOT32:
2495 case R_ARM_GOTOFF:
2496 case R_ARM_GOTPC:
2497 elf_hash_table (info)->dynobj = dynobj = abfd;
2498 if (! _bfd_elf_create_got_section (dynobj, info))
2499 return false;
2500 break;
2501
2502 default:
2503 break;
2504 }
2505 }
2506
2507 switch (ELF32_R_TYPE (rel->r_info))
2508 {
2509 case R_ARM_GOT32:
2510 /* This symbol requires a global offset table entry. */
2511 if (sgot == NULL)
2512 {
2513 sgot = bfd_get_section_by_name (dynobj, ".got");
2514 BFD_ASSERT (sgot != NULL);
2515 }
2516
2517 /* Get the got relocation section if necessary. */
2518 if (srelgot == NULL
2519 && (h != NULL || info->shared))
2520 {
2521 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
2522
2523 /* If no got relocation section, make one and initialize. */
2524 if (srelgot == NULL)
2525 {
2526 srelgot = bfd_make_section (dynobj, ".rel.got");
2527 if (srelgot == NULL
2528 || ! bfd_set_section_flags (dynobj, srelgot,
2529 (SEC_ALLOC
2530 | SEC_LOAD
2531 | SEC_HAS_CONTENTS
2532 | SEC_IN_MEMORY
2533 | SEC_LINKER_CREATED
2534 | SEC_READONLY))
2535 || ! bfd_set_section_alignment (dynobj, srelgot, 2))
2536 return false;
2537 }
2538 }
2539
2540 if (h != NULL)
2541 {
2542 if (h->got.offset != (bfd_vma) -1)
2543 /* We have already allocated space in the .got. */
2544 break;
2545
2546 h->got.offset = sgot->_raw_size;
2547
2548 /* Make sure this symbol is output as a dynamic symbol. */
2549 if (h->dynindx == -1)
2550 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2551 return false;
2552
2553 srelgot->_raw_size += sizeof (Elf32_External_Rel);
2554 }
2555 else
2556 {
2557 /* This is a global offset table entry for a local
2558 symbol. */
2559 if (local_got_offsets == NULL)
2560 {
2561 bfd_size_type size;
2562 unsigned int i;
2563
2564 size = symtab_hdr->sh_info;
2565 size *= sizeof (bfd_vma);
2566 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
2567 if (local_got_offsets == NULL)
2568 return false;
2569 elf_local_got_offsets (abfd) = local_got_offsets;
2570 for (i = 0; i < symtab_hdr->sh_info; i++)
2571 local_got_offsets[i] = (bfd_vma) -1;
2572 }
2573
2574 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
2575 /* We have already allocated space in the .got. */
2576 break;
2577
2578 local_got_offsets[r_symndx] = sgot->_raw_size;
2579
2580 if (info->shared)
2581 /* If we are generating a shared object, we need to
2582 output a R_ARM_RELATIVE reloc so that the dynamic
2583 linker can adjust this GOT entry. */
2584 srelgot->_raw_size += sizeof (Elf32_External_Rel);
2585 }
2586
2587 sgot->_raw_size += 4;
2588 break;
2589
2590 case R_ARM_PLT32:
2591 /* This symbol requires a procedure linkage table entry. We
2592 actually build the entry in adjust_dynamic_symbol,
2593 because this might be a case of linking PIC code which is
2594 never referenced by a dynamic object, in which case we
2595 don't need to generate a procedure linkage table entry
2596 after all. */
2597
2598 /* If this is a local symbol, we resolve it directly without
2599 creating a procedure linkage table entry. */
2600 if (h == NULL)
2601 continue;
2602
2603 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
2604 break;
2605
2606 case R_ARM_ABS32:
2607 case R_ARM_REL32:
2608 case R_ARM_PC24:
2609 /* If we are creating a shared library, and this is a reloc
2610 against a global symbol, or a non PC relative reloc
2611 against a local symbol, then we need to copy the reloc
2612 into the shared library. However, if we are linking with
2613 -Bsymbolic, we do not need to copy a reloc against a
2614 global symbol which is defined in an object we are
2615 including in the link (i.e., DEF_REGULAR is set). At
2616 this point we have not seen all the input files, so it is
2617 possible that DEF_REGULAR is not set now but will be set
2618 later (it is never cleared). We account for that
2619 possibility below by storing information in the
2620 pcrel_relocs_copied field of the hash table entry. */
2621 if (info->shared
2622 && (ELF32_R_TYPE (rel->r_info) != R_ARM_PC24
2623 || (h != NULL
2624 && (! info->symbolic
2625 || (h->elf_link_hash_flags
2626 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
2627 {
2628 /* When creating a shared object, we must copy these
2629 reloc types into the output file. We create a reloc
2630 section in dynobj and make room for this reloc. */
2631 if (sreloc == NULL)
2632 {
2633 const char * name;
2634
2635 name = (bfd_elf_string_from_elf_section
2636 (abfd,
2637 elf_elfheader (abfd)->e_shstrndx,
2638 elf_section_data (sec)->rel_hdr.sh_name));
2639 if (name == NULL)
2640 return false;
2641
2642 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
2643 && strcmp (bfd_get_section_name (abfd, sec),
2644 name + 4) == 0);
2645
2646 sreloc = bfd_get_section_by_name (dynobj, name);
2647 if (sreloc == NULL)
2648 {
2649 flagword flags;
2650
2651 sreloc = bfd_make_section (dynobj, name);
2652 flags = (SEC_HAS_CONTENTS | SEC_READONLY
2653 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2654 if ((sec->flags & SEC_ALLOC) != 0)
2655 flags |= SEC_ALLOC | SEC_LOAD;
2656 if (sreloc == NULL
2657 || ! bfd_set_section_flags (dynobj, sreloc, flags)
2658 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
2659 return false;
2660 }
2661 if (sec->flags & SEC_READONLY)
2662 info->flags |= DF_TEXTREL;
2663 }
2664
2665 sreloc->_raw_size += sizeof (Elf32_External_Rel);
2666 /* If we are linking with -Bsymbolic, and this is a
2667 global symbol, we count the number of PC relative
2668 relocations we have entered for this symbol, so that
2669 we can discard them again if the symbol is later
2670 defined by a regular object. Note that this function
2671 is only called if we are using an elf_i386 linker
2672 hash table, which means that h is really a pointer to
2673 an elf_i386_link_hash_entry. */
2674 if (h != NULL && info->symbolic
2675 && ELF32_R_TYPE (rel->r_info) == R_ARM_PC24)
2676 {
2677 struct elf32_arm_link_hash_entry * eh;
2678 struct elf32_arm_pcrel_relocs_copied * p;
2679
2680 eh = (struct elf32_arm_link_hash_entry *) h;
2681
2682 for (p = eh->pcrel_relocs_copied; p != NULL; p = p->next)
2683 if (p->section == sreloc)
2684 break;
2685
2686 if (p == NULL)
2687 {
2688 p = ((struct elf32_arm_pcrel_relocs_copied *)
2689 bfd_alloc (dynobj, (bfd_size_type) sizeof * p));
2690 if (p == NULL)
2691 return false;
2692 p->next = eh->pcrel_relocs_copied;
2693 eh->pcrel_relocs_copied = p;
2694 p->section = sreloc;
2695 p->count = 0;
2696 }
2697
2698 ++p->count;
2699 }
2700 }
2701 break;
2702
2703 /* This relocation describes the C++ object vtable hierarchy.
2704 Reconstruct it for later use during GC. */
2705 case R_ARM_GNU_VTINHERIT:
2706 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2707 return false;
2708 break;
2709
2710 /* This relocation describes which C++ vtable entries are actually
2711 used. Record for later use during GC. */
2712 case R_ARM_GNU_VTENTRY:
2713 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
2714 return false;
2715 break;
2716 }
2717 }
2718
2719 return true;
2720 }
2721
2722 /* Find the nearest line to a particular section and offset, for error
2723 reporting. This code is a duplicate of the code in elf.c, except
2724 that it also accepts STT_ARM_TFUNC as a symbol that names a function. */
2725
2726 static boolean
2727 elf32_arm_find_nearest_line
2728 (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr)
2729 bfd * abfd;
2730 asection * section;
2731 asymbol ** symbols;
2732 bfd_vma offset;
2733 const char ** filename_ptr;
2734 const char ** functionname_ptr;
2735 unsigned int * line_ptr;
2736 {
2737 boolean found;
2738 const char * filename;
2739 asymbol * func;
2740 bfd_vma low_func;
2741 asymbol ** p;
2742
2743 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
2744 filename_ptr, functionname_ptr,
2745 line_ptr, 0,
2746 &elf_tdata (abfd)->dwarf2_find_line_info))
2747 return true;
2748
2749 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
2750 &found, filename_ptr,
2751 functionname_ptr, line_ptr,
2752 &elf_tdata (abfd)->line_info))
2753 return false;
2754
2755 if (found)
2756 return true;
2757
2758 if (symbols == NULL)
2759 return false;
2760
2761 filename = NULL;
2762 func = NULL;
2763 low_func = 0;
2764
2765 for (p = symbols; *p != NULL; p++)
2766 {
2767 elf_symbol_type *q;
2768
2769 q = (elf_symbol_type *) *p;
2770
2771 if (bfd_get_section (&q->symbol) != section)
2772 continue;
2773
2774 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
2775 {
2776 default:
2777 break;
2778 case STT_FILE:
2779 filename = bfd_asymbol_name (&q->symbol);
2780 break;
2781 case STT_NOTYPE:
2782 case STT_FUNC:
2783 case STT_ARM_TFUNC:
2784 if (q->symbol.section == section
2785 && q->symbol.value >= low_func
2786 && q->symbol.value <= offset)
2787 {
2788 func = (asymbol *) q;
2789 low_func = q->symbol.value;
2790 }
2791 break;
2792 }
2793 }
2794
2795 if (func == NULL)
2796 return false;
2797
2798 *filename_ptr = filename;
2799 *functionname_ptr = bfd_asymbol_name (func);
2800 *line_ptr = 0;
2801
2802 return true;
2803 }
2804
2805 /* Adjust a symbol defined by a dynamic object and referenced by a
2806 regular object. The current definition is in some section of the
2807 dynamic object, but we're not including those sections. We have to
2808 change the definition to something the rest of the link can
2809 understand. */
2810
2811 static boolean
2812 elf32_arm_adjust_dynamic_symbol (info, h)
2813 struct bfd_link_info * info;
2814 struct elf_link_hash_entry * h;
2815 {
2816 bfd * dynobj;
2817 asection * s;
2818 unsigned int power_of_two;
2819
2820 dynobj = elf_hash_table (info)->dynobj;
2821
2822 /* Make sure we know what is going on here. */
2823 BFD_ASSERT (dynobj != NULL
2824 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
2825 || h->weakdef != NULL
2826 || ((h->elf_link_hash_flags
2827 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2828 && (h->elf_link_hash_flags
2829 & ELF_LINK_HASH_REF_REGULAR) != 0
2830 && (h->elf_link_hash_flags
2831 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
2832
2833 /* If this is a function, put it in the procedure linkage table. We
2834 will fill in the contents of the procedure linkage table later,
2835 when we know the address of the .got section. */
2836 if (h->type == STT_FUNC
2837 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
2838 {
2839 if (! info->shared
2840 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
2841 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0)
2842 {
2843 /* This case can occur if we saw a PLT32 reloc in an input
2844 file, but the symbol was never referred to by a dynamic
2845 object. In such a case, we don't actually need to build
2846 a procedure linkage table, and we can just do a PC32
2847 reloc instead. */
2848 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
2849 return true;
2850 }
2851
2852 /* Make sure this symbol is output as a dynamic symbol. */
2853 if (h->dynindx == -1)
2854 {
2855 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2856 return false;
2857 }
2858
2859 s = bfd_get_section_by_name (dynobj, ".plt");
2860 BFD_ASSERT (s != NULL);
2861
2862 /* If this is the first .plt entry, make room for the special
2863 first entry. */
2864 if (s->_raw_size == 0)
2865 s->_raw_size += PLT_ENTRY_SIZE;
2866
2867 /* If this symbol is not defined in a regular file, and we are
2868 not generating a shared library, then set the symbol to this
2869 location in the .plt. This is required to make function
2870 pointers compare as equal between the normal executable and
2871 the shared library. */
2872 if (! info->shared
2873 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2874 {
2875 h->root.u.def.section = s;
2876 h->root.u.def.value = s->_raw_size;
2877 }
2878
2879 h->plt.offset = s->_raw_size;
2880
2881 /* Make room for this entry. */
2882 s->_raw_size += PLT_ENTRY_SIZE;
2883
2884 /* We also need to make an entry in the .got.plt section, which
2885 will be placed in the .got section by the linker script. */
2886 s = bfd_get_section_by_name (dynobj, ".got.plt");
2887 BFD_ASSERT (s != NULL);
2888 s->_raw_size += 4;
2889
2890 /* We also need to make an entry in the .rel.plt section. */
2891
2892 s = bfd_get_section_by_name (dynobj, ".rel.plt");
2893 BFD_ASSERT (s != NULL);
2894 s->_raw_size += sizeof (Elf32_External_Rel);
2895
2896 return true;
2897 }
2898
2899 /* If this is a weak symbol, and there is a real definition, the
2900 processor independent code will have arranged for us to see the
2901 real definition first, and we can just use the same value. */
2902 if (h->weakdef != NULL)
2903 {
2904 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
2905 || h->weakdef->root.type == bfd_link_hash_defweak);
2906 h->root.u.def.section = h->weakdef->root.u.def.section;
2907 h->root.u.def.value = h->weakdef->root.u.def.value;
2908 return true;
2909 }
2910
2911 /* This is a reference to a symbol defined by a dynamic object which
2912 is not a function. */
2913
2914 /* If we are creating a shared library, we must presume that the
2915 only references to the symbol are via the global offset table.
2916 For such cases we need not do anything here; the relocations will
2917 be handled correctly by relocate_section. */
2918 if (info->shared)
2919 return true;
2920
2921 /* We must allocate the symbol in our .dynbss section, which will
2922 become part of the .bss section of the executable. There will be
2923 an entry for this symbol in the .dynsym section. The dynamic
2924 object will contain position independent code, so all references
2925 from the dynamic object to this symbol will go through the global
2926 offset table. The dynamic linker will use the .dynsym entry to
2927 determine the address it must put in the global offset table, so
2928 both the dynamic object and the regular object will refer to the
2929 same memory location for the variable. */
2930 s = bfd_get_section_by_name (dynobj, ".dynbss");
2931 BFD_ASSERT (s != NULL);
2932
2933 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
2934 copy the initial value out of the dynamic object and into the
2935 runtime process image. We need to remember the offset into the
2936 .rel.bss section we are going to use. */
2937 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
2938 {
2939 asection *srel;
2940
2941 srel = bfd_get_section_by_name (dynobj, ".rel.bss");
2942 BFD_ASSERT (srel != NULL);
2943 srel->_raw_size += sizeof (Elf32_External_Rel);
2944 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
2945 }
2946
2947 /* We need to figure out the alignment required for this symbol. I
2948 have no idea how ELF linkers handle this. */
2949 power_of_two = bfd_log2 (h->size);
2950 if (power_of_two > 3)
2951 power_of_two = 3;
2952
2953 /* Apply the required alignment. */
2954 s->_raw_size = BFD_ALIGN (s->_raw_size,
2955 (bfd_size_type) (1 << power_of_two));
2956 if (power_of_two > bfd_get_section_alignment (dynobj, s))
2957 {
2958 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
2959 return false;
2960 }
2961
2962 /* Define the symbol as being at this point in the section. */
2963 h->root.u.def.section = s;
2964 h->root.u.def.value = s->_raw_size;
2965
2966 /* Increment the section size to make room for the symbol. */
2967 s->_raw_size += h->size;
2968
2969 return true;
2970 }
2971
2972 /* Set the sizes of the dynamic sections. */
2973
2974 static boolean
2975 elf32_arm_size_dynamic_sections (output_bfd, info)
2976 bfd * output_bfd ATTRIBUTE_UNUSED;
2977 struct bfd_link_info * info;
2978 {
2979 bfd * dynobj;
2980 asection * s;
2981 boolean plt;
2982 boolean relocs;
2983
2984 dynobj = elf_hash_table (info)->dynobj;
2985 BFD_ASSERT (dynobj != NULL);
2986
2987 if (elf_hash_table (info)->dynamic_sections_created)
2988 {
2989 /* Set the contents of the .interp section to the interpreter. */
2990 if (! info->shared)
2991 {
2992 s = bfd_get_section_by_name (dynobj, ".interp");
2993 BFD_ASSERT (s != NULL);
2994 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
2995 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2996 }
2997 }
2998 else
2999 {
3000 /* We may have created entries in the .rel.got section.
3001 However, if we are not creating the dynamic sections, we will
3002 not actually use these entries. Reset the size of .rel.got,
3003 which will cause it to get stripped from the output file
3004 below. */
3005 s = bfd_get_section_by_name (dynobj, ".rel.got");
3006 if (s != NULL)
3007 s->_raw_size = 0;
3008 }
3009
3010 /* If this is a -Bsymbolic shared link, then we need to discard all
3011 PC relative relocs against symbols defined in a regular object.
3012 We allocated space for them in the check_relocs routine, but we
3013 will not fill them in in the relocate_section routine. */
3014 if (info->shared && info->symbolic)
3015 elf32_arm_link_hash_traverse (elf32_arm_hash_table (info),
3016 elf32_arm_discard_copies,
3017 (PTR) NULL);
3018
3019 /* The check_relocs and adjust_dynamic_symbol entry points have
3020 determined the sizes of the various dynamic sections. Allocate
3021 memory for them. */
3022 plt = false;
3023 relocs = false;
3024 for (s = dynobj->sections; s != NULL; s = s->next)
3025 {
3026 const char * name;
3027 boolean strip;
3028
3029 if ((s->flags & SEC_LINKER_CREATED) == 0)
3030 continue;
3031
3032 /* It's OK to base decisions on the section name, because none
3033 of the dynobj section names depend upon the input files. */
3034 name = bfd_get_section_name (dynobj, s);
3035
3036 strip = false;
3037
3038 if (strcmp (name, ".plt") == 0)
3039 {
3040 if (s->_raw_size == 0)
3041 {
3042 /* Strip this section if we don't need it; see the
3043 comment below. */
3044 strip = true;
3045 }
3046 else
3047 {
3048 /* Remember whether there is a PLT. */
3049 plt = true;
3050 }
3051 }
3052 else if (strncmp (name, ".rel", 4) == 0)
3053 {
3054 if (s->_raw_size == 0)
3055 {
3056 /* If we don't need this section, strip it from the
3057 output file. This is mostly to handle .rel.bss and
3058 .rel.plt. We must create both sections in
3059 create_dynamic_sections, because they must be created
3060 before the linker maps input sections to output
3061 sections. The linker does that before
3062 adjust_dynamic_symbol is called, and it is that
3063 function which decides whether anything needs to go
3064 into these sections. */
3065 strip = true;
3066 }
3067 else
3068 {
3069 /* Remember whether there are any reloc sections other
3070 than .rel.plt. */
3071 if (strcmp (name, ".rel.plt") != 0)
3072 relocs = true;
3073
3074 /* We use the reloc_count field as a counter if we need
3075 to copy relocs into the output file. */
3076 s->reloc_count = 0;
3077 }
3078 }
3079 else if (strncmp (name, ".got", 4) != 0)
3080 {
3081 /* It's not one of our sections, so don't allocate space. */
3082 continue;
3083 }
3084
3085 if (strip)
3086 {
3087 asection ** spp;
3088
3089 for (spp = &s->output_section->owner->sections;
3090 *spp != s->output_section;
3091 spp = &(*spp)->next)
3092 ;
3093 *spp = s->output_section->next;
3094 --s->output_section->owner->section_count;
3095
3096 continue;
3097 }
3098
3099 /* Allocate memory for the section contents. */
3100 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
3101 if (s->contents == NULL && s->_raw_size != 0)
3102 return false;
3103 }
3104
3105 if (elf_hash_table (info)->dynamic_sections_created)
3106 {
3107 /* Add some entries to the .dynamic section. We fill in the
3108 values later, in elf32_arm_finish_dynamic_sections, but we
3109 must add the entries now so that we get the correct size for
3110 the .dynamic section. The DT_DEBUG entry is filled in by the
3111 dynamic linker and used by the debugger. */
3112 #define add_dynamic_entry(TAG, VAL) \
3113 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
3114
3115 if (!info->shared)
3116 {
3117 if (!add_dynamic_entry (DT_DEBUG, 0))
3118 return false;
3119 }
3120
3121 if (plt)
3122 {
3123 if ( !add_dynamic_entry (DT_PLTGOT, 0)
3124 || !add_dynamic_entry (DT_PLTRELSZ, 0)
3125 || !add_dynamic_entry (DT_PLTREL, DT_REL)
3126 || !add_dynamic_entry (DT_JMPREL, 0))
3127 return false;
3128 }
3129
3130 if (relocs)
3131 {
3132 if ( !add_dynamic_entry (DT_REL, 0)
3133 || !add_dynamic_entry (DT_RELSZ, 0)
3134 || !add_dynamic_entry (DT_RELENT, sizeof (Elf32_External_Rel)))
3135 return false;
3136 }
3137
3138 if ((info->flags & DF_TEXTREL) != 0)
3139 {
3140 if (!add_dynamic_entry (DT_TEXTREL, 0))
3141 return false;
3142 info->flags |= DF_TEXTREL;
3143 }
3144 }
3145 #undef add_synamic_entry
3146
3147 return true;
3148 }
3149
3150 /* This function is called via elf32_arm_link_hash_traverse if we are
3151 creating a shared object with -Bsymbolic. It discards the space
3152 allocated to copy PC relative relocs against symbols which are
3153 defined in regular objects. We allocated space for them in the
3154 check_relocs routine, but we won't fill them in in the
3155 relocate_section routine. */
3156
3157 static boolean
3158 elf32_arm_discard_copies (h, ignore)
3159 struct elf32_arm_link_hash_entry * h;
3160 PTR ignore ATTRIBUTE_UNUSED;
3161 {
3162 struct elf32_arm_pcrel_relocs_copied * s;
3163
3164 /* We only discard relocs for symbols defined in a regular object. */
3165 if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3166 return true;
3167
3168 for (s = h->pcrel_relocs_copied; s != NULL; s = s->next)
3169 s->section->_raw_size -= s->count * sizeof (Elf32_External_Rel);
3170
3171 return true;
3172 }
3173
3174 /* Finish up dynamic symbol handling. We set the contents of various
3175 dynamic sections here. */
3176
3177 static boolean
3178 elf32_arm_finish_dynamic_symbol (output_bfd, info, h, sym)
3179 bfd * output_bfd;
3180 struct bfd_link_info * info;
3181 struct elf_link_hash_entry * h;
3182 Elf_Internal_Sym * sym;
3183 {
3184 bfd * dynobj;
3185
3186 dynobj = elf_hash_table (info)->dynobj;
3187
3188 if (h->plt.offset != (bfd_vma) -1)
3189 {
3190 asection * splt;
3191 asection * sgot;
3192 asection * srel;
3193 bfd_vma plt_index;
3194 bfd_vma got_offset;
3195 Elf_Internal_Rel rel;
3196
3197 /* This symbol has an entry in the procedure linkage table. Set
3198 it up. */
3199
3200 BFD_ASSERT (h->dynindx != -1);
3201
3202 splt = bfd_get_section_by_name (dynobj, ".plt");
3203 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3204 srel = bfd_get_section_by_name (dynobj, ".rel.plt");
3205 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
3206
3207 /* Get the index in the procedure linkage table which
3208 corresponds to this symbol. This is the index of this symbol
3209 in all the symbols for which we are making plt entries. The
3210 first entry in the procedure linkage table is reserved. */
3211 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3212
3213 /* Get the offset into the .got table of the entry that
3214 corresponds to this function. Each .got entry is 4 bytes.
3215 The first three are reserved. */
3216 got_offset = (plt_index + 3) * 4;
3217
3218 /* Fill in the entry in the procedure linkage table. */
3219 bfd_put_32 (output_bfd, elf32_arm_plt_entry[0],
3220 splt->contents + h->plt.offset + 0);
3221 bfd_put_32 (output_bfd, elf32_arm_plt_entry[1],
3222 splt->contents + h->plt.offset + 4);
3223 bfd_put_32 (output_bfd, elf32_arm_plt_entry[2],
3224 splt->contents + h->plt.offset + 8);
3225 bfd_put_32 (output_bfd,
3226 (sgot->output_section->vma
3227 + sgot->output_offset
3228 + got_offset
3229 - splt->output_section->vma
3230 - splt->output_offset
3231 - h->plt.offset - 12),
3232 splt->contents + h->plt.offset + 12);
3233
3234 /* Fill in the entry in the global offset table. */
3235 bfd_put_32 (output_bfd,
3236 (splt->output_section->vma
3237 + splt->output_offset),
3238 sgot->contents + got_offset);
3239
3240 /* Fill in the entry in the .rel.plt section. */
3241 rel.r_offset = (sgot->output_section->vma
3242 + sgot->output_offset
3243 + got_offset);
3244 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
3245 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3246 ((Elf32_External_Rel *) srel->contents
3247 + plt_index));
3248
3249 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3250 {
3251 /* Mark the symbol as undefined, rather than as defined in
3252 the .plt section. Leave the value alone. */
3253 sym->st_shndx = SHN_UNDEF;
3254 /* If the symbol is weak, we do need to clear the value.
3255 Otherwise, the PLT entry would provide a definition for
3256 the symbol even if the symbol wasn't defined anywhere,
3257 and so the symbol would never be NULL. */
3258 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
3259 == 0)
3260 sym->st_value = 0;
3261 }
3262 }
3263
3264 if (h->got.offset != (bfd_vma) -1)
3265 {
3266 asection * sgot;
3267 asection * srel;
3268 Elf_Internal_Rel rel;
3269
3270 /* This symbol has an entry in the global offset table. Set it
3271 up. */
3272 sgot = bfd_get_section_by_name (dynobj, ".got");
3273 srel = bfd_get_section_by_name (dynobj, ".rel.got");
3274 BFD_ASSERT (sgot != NULL && srel != NULL);
3275
3276 rel.r_offset = (sgot->output_section->vma
3277 + sgot->output_offset
3278 + (h->got.offset &~ (bfd_vma) 1));
3279
3280 /* If this is a -Bsymbolic link, and the symbol is defined
3281 locally, we just want to emit a RELATIVE reloc. The entry in
3282 the global offset table will already have been initialized in
3283 the relocate_section function. */
3284 if (info->shared
3285 && (info->symbolic || h->dynindx == -1)
3286 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
3287 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
3288 else
3289 {
3290 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
3291 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
3292 }
3293
3294 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3295 ((Elf32_External_Rel *) srel->contents
3296 + srel->reloc_count));
3297 ++srel->reloc_count;
3298 }
3299
3300 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
3301 {
3302 asection * s;
3303 Elf_Internal_Rel rel;
3304
3305 /* This symbol needs a copy reloc. Set it up. */
3306 BFD_ASSERT (h->dynindx != -1
3307 && (h->root.type == bfd_link_hash_defined
3308 || h->root.type == bfd_link_hash_defweak));
3309
3310 s = bfd_get_section_by_name (h->root.u.def.section->owner,
3311 ".rel.bss");
3312 BFD_ASSERT (s != NULL);
3313
3314 rel.r_offset = (h->root.u.def.value
3315 + h->root.u.def.section->output_section->vma
3316 + h->root.u.def.section->output_offset);
3317 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
3318 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3319 ((Elf32_External_Rel *) s->contents
3320 + s->reloc_count));
3321 ++s->reloc_count;
3322 }
3323
3324 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3325 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
3326 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3327 sym->st_shndx = SHN_ABS;
3328
3329 return true;
3330 }
3331
3332 /* Finish up the dynamic sections. */
3333
3334 static boolean
3335 elf32_arm_finish_dynamic_sections (output_bfd, info)
3336 bfd * output_bfd;
3337 struct bfd_link_info * info;
3338 {
3339 bfd * dynobj;
3340 asection * sgot;
3341 asection * sdyn;
3342
3343 dynobj = elf_hash_table (info)->dynobj;
3344
3345 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3346 BFD_ASSERT (sgot != NULL);
3347 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3348
3349 if (elf_hash_table (info)->dynamic_sections_created)
3350 {
3351 asection *splt;
3352 Elf32_External_Dyn *dyncon, *dynconend;
3353
3354 splt = bfd_get_section_by_name (dynobj, ".plt");
3355 BFD_ASSERT (splt != NULL && sdyn != NULL);
3356
3357 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3358 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
3359
3360 for (; dyncon < dynconend; dyncon++)
3361 {
3362 Elf_Internal_Dyn dyn;
3363 const char * name;
3364 asection * s;
3365
3366 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3367
3368 switch (dyn.d_tag)
3369 {
3370 default:
3371 break;
3372
3373 case DT_PLTGOT:
3374 name = ".got";
3375 goto get_vma;
3376 case DT_JMPREL:
3377 name = ".rel.plt";
3378 get_vma:
3379 s = bfd_get_section_by_name (output_bfd, name);
3380 BFD_ASSERT (s != NULL);
3381 dyn.d_un.d_ptr = s->vma;
3382 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3383 break;
3384
3385 case DT_PLTRELSZ:
3386 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3387 BFD_ASSERT (s != NULL);
3388 if (s->_cooked_size != 0)
3389 dyn.d_un.d_val = s->_cooked_size;
3390 else
3391 dyn.d_un.d_val = s->_raw_size;
3392 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3393 break;
3394
3395 case DT_RELSZ:
3396 /* My reading of the SVR4 ABI indicates that the
3397 procedure linkage table relocs (DT_JMPREL) should be
3398 included in the overall relocs (DT_REL). This is
3399 what Solaris does. However, UnixWare can not handle
3400 that case. Therefore, we override the DT_RELSZ entry
3401 here to make it not include the JMPREL relocs. Since
3402 the linker script arranges for .rel.plt to follow all
3403 other relocation sections, we don't have to worry
3404 about changing the DT_REL entry. */
3405 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3406 if (s != NULL)
3407 {
3408 if (s->_cooked_size != 0)
3409 dyn.d_un.d_val -= s->_cooked_size;
3410 else
3411 dyn.d_un.d_val -= s->_raw_size;
3412 }
3413 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3414 break;
3415 }
3416 }
3417
3418 /* Fill in the first entry in the procedure linkage table. */
3419 if (splt->_raw_size > 0)
3420 {
3421 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[0], splt->contents + 0);
3422 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[1], splt->contents + 4);
3423 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[2], splt->contents + 8);
3424 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[3], splt->contents + 12);
3425 }
3426
3427 /* UnixWare sets the entsize of .plt to 4, although that doesn't
3428 really seem like the right value. */
3429 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
3430 }
3431
3432 /* Fill in the first three entries in the global offset table. */
3433 if (sgot->_raw_size > 0)
3434 {
3435 if (sdyn == NULL)
3436 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
3437 else
3438 bfd_put_32 (output_bfd,
3439 sdyn->output_section->vma + sdyn->output_offset,
3440 sgot->contents);
3441 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
3442 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
3443 }
3444
3445 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
3446
3447 return true;
3448 }
3449
3450 static void
3451 elf32_arm_post_process_headers (abfd, link_info)
3452 bfd * abfd;
3453 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
3454 {
3455 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
3456
3457 i_ehdrp = elf_elfheader (abfd);
3458
3459 i_ehdrp->e_ident[EI_OSABI] = ARM_ELF_OS_ABI_VERSION;
3460 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
3461 }
3462
3463 static enum elf_reloc_type_class
3464 elf32_arm_reloc_type_class (rela)
3465 const Elf_Internal_Rela *rela;
3466 {
3467 switch ((int) ELF32_R_TYPE (rela->r_info))
3468 {
3469 case R_ARM_RELATIVE:
3470 return reloc_class_relative;
3471 case R_ARM_JUMP_SLOT:
3472 return reloc_class_plt;
3473 case R_ARM_COPY:
3474 return reloc_class_copy;
3475 default:
3476 return reloc_class_normal;
3477 }
3478 }
3479
3480
3481 #define ELF_ARCH bfd_arch_arm
3482 #define ELF_MACHINE_CODE EM_ARM
3483 #define ELF_MAXPAGESIZE 0x8000
3484
3485 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
3486 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
3487 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
3488 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
3489 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
3490 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
3491 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
3492
3493 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
3494 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
3495 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
3496 #define elf_backend_check_relocs elf32_arm_check_relocs
3497 #define elf_backend_relocate_section elf32_arm_relocate_section
3498 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
3499 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
3500 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
3501 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
3502 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
3503 #define elf_backend_post_process_headers elf32_arm_post_process_headers
3504 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
3505
3506 #define elf_backend_can_gc_sections 1
3507 #define elf_backend_plt_readonly 1
3508 #define elf_backend_want_got_plt 1
3509 #define elf_backend_want_plt_sym 0
3510
3511 #define elf_backend_got_header_size 12
3512 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
3513
3514 #include "elf32-target.h"
This page took 0.099438 seconds and 5 git commands to generate.