* bfd/bfd-in.h (bfd_elf32_arm_process_before_allocation): Update.
[deliverable/binutils-gdb.git] / bfd / elf32-arm.h
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #ifndef USE_REL
22 #define USE_REL 0
23 #endif
24
25 typedef unsigned long int insn32;
26 typedef unsigned short int insn16;
27
28 static bfd_boolean elf32_arm_set_private_flags
29 PARAMS ((bfd *, flagword));
30 static bfd_boolean elf32_arm_copy_private_bfd_data
31 PARAMS ((bfd *, bfd *));
32 static bfd_boolean elf32_arm_merge_private_bfd_data
33 PARAMS ((bfd *, bfd *));
34 static bfd_boolean elf32_arm_print_private_bfd_data
35 PARAMS ((bfd *, PTR));
36 static int elf32_arm_get_symbol_type
37 PARAMS (( Elf_Internal_Sym *, int));
38 static struct bfd_link_hash_table *elf32_arm_link_hash_table_create
39 PARAMS ((bfd *));
40 static bfd_reloc_status_type elf32_arm_final_link_relocate
41 PARAMS ((reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
42 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
43 const char *, int, struct elf_link_hash_entry *));
44 static insn32 insert_thumb_branch
45 PARAMS ((insn32, int));
46 static struct elf_link_hash_entry *find_thumb_glue
47 PARAMS ((struct bfd_link_info *, const char *, bfd *));
48 static struct elf_link_hash_entry *find_arm_glue
49 PARAMS ((struct bfd_link_info *, const char *, bfd *));
50 static void elf32_arm_post_process_headers
51 PARAMS ((bfd *, struct bfd_link_info *));
52 static int elf32_arm_to_thumb_stub
53 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
54 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
55 static int elf32_thumb_to_arm_stub
56 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
57 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
58 static bfd_boolean elf32_arm_relocate_section
59 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
60 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
61 static asection * elf32_arm_gc_mark_hook
62 PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
63 struct elf_link_hash_entry *, Elf_Internal_Sym *));
64 static bfd_boolean elf32_arm_gc_sweep_hook
65 PARAMS ((bfd *, struct bfd_link_info *, asection *,
66 const Elf_Internal_Rela *));
67 static bfd_boolean elf32_arm_check_relocs
68 PARAMS ((bfd *, struct bfd_link_info *, asection *,
69 const Elf_Internal_Rela *));
70 static bfd_boolean elf32_arm_find_nearest_line
71 PARAMS ((bfd *, asection *, asymbol **, bfd_vma, const char **,
72 const char **, unsigned int *));
73 static bfd_boolean elf32_arm_adjust_dynamic_symbol
74 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
75 static bfd_boolean elf32_arm_size_dynamic_sections
76 PARAMS ((bfd *, struct bfd_link_info *));
77 static bfd_boolean elf32_arm_finish_dynamic_symbol
78 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
79 Elf_Internal_Sym *));
80 static bfd_boolean elf32_arm_finish_dynamic_sections
81 PARAMS ((bfd *, struct bfd_link_info *));
82 static struct bfd_hash_entry * elf32_arm_link_hash_newfunc
83 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
84 #if USE_REL
85 static void arm_add_to_rel
86 PARAMS ((bfd *, bfd_byte *, reloc_howto_type *, bfd_signed_vma));
87 #endif
88 static bfd_boolean allocate_dynrelocs
89 PARAMS ((struct elf_link_hash_entry *h, PTR inf));
90 static bfd_boolean create_got_section
91 PARAMS ((bfd * dynobj, struct bfd_link_info * info));
92 static bfd_boolean elf32_arm_create_dynamic_sections
93 PARAMS ((bfd * dynobj, struct bfd_link_info * info));
94 static enum elf_reloc_type_class elf32_arm_reloc_type_class
95 PARAMS ((const Elf_Internal_Rela *));
96 static bfd_boolean elf32_arm_object_p
97 PARAMS ((bfd *));
98
99 #ifndef ELFARM_NABI_C_INCLUDED
100 static void record_arm_to_thumb_glue
101 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
102 static void record_thumb_to_arm_glue
103 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
104 bfd_boolean bfd_elf32_arm_allocate_interworking_sections
105 PARAMS ((struct bfd_link_info *));
106 bfd_boolean bfd_elf32_arm_get_bfd_for_interworking
107 PARAMS ((bfd *, struct bfd_link_info *));
108 bfd_boolean bfd_elf32_arm_process_before_allocation
109 PARAMS ((bfd *, struct bfd_link_info *, int, int));
110 #endif
111
112
113 #define INTERWORK_FLAG(abfd) (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK)
114
115 /* The linker script knows the section names for placement.
116 The entry_names are used to do simple name mangling on the stubs.
117 Given a function name, and its type, the stub can be found. The
118 name can be changed. The only requirement is the %s be present. */
119 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
120 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
121
122 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
123 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
124
125 /* The name of the dynamic interpreter. This is put in the .interp
126 section. */
127 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
128
129 #ifdef FOUR_WORD_PLT
130
131 /* The size in bytes of the special first entry in the procedure
132 linkage table. */
133 #define PLT_HEADER_SIZE 16
134
135 /* The size in bytes of an entry in the procedure linkage table. */
136 #define PLT_ENTRY_SIZE 16
137
138 /* The first entry in a procedure linkage table looks like
139 this. It is set up so that any shared library function that is
140 called before the relocation has been set up calls the dynamic
141 linker first. */
142 static const bfd_vma elf32_arm_plt0_entry [PLT_HEADER_SIZE / 4] =
143 {
144 0xe52de004, /* str lr, [sp, #-4]! */
145 0xe59fe010, /* ldr lr, [pc, #16] */
146 0xe08fe00e, /* add lr, pc, lr */
147 0xe5bef008, /* ldr pc, [lr, #8]! */
148 };
149
150 /* Subsequent entries in a procedure linkage table look like
151 this. */
152 static const bfd_vma elf32_arm_plt_entry [PLT_ENTRY_SIZE / 4] =
153 {
154 0xe28fc600, /* add ip, pc, #NN */
155 0xe28cca00, /* add ip, ip, #NN */
156 0xe5bcf000, /* ldr pc, [ip, #NN]! */
157 0x00000000, /* unused */
158 };
159
160 #else
161
162 /* The size in bytes of the special first entry in the procedure
163 linkage table. */
164 #define PLT_HEADER_SIZE 20
165
166 /* The size in bytes of an entry in the procedure linkage table. */
167 #define PLT_ENTRY_SIZE 12
168
169 /* The first entry in a procedure linkage table looks like
170 this. It is set up so that any shared library function that is
171 called before the relocation has been set up calls the dynamic
172 linker first. */
173 static const bfd_vma elf32_arm_plt0_entry [PLT_HEADER_SIZE / 4] =
174 {
175 0xe52de004, /* str lr, [sp, #-4]! */
176 0xe59fe004, /* ldr lr, [pc, #4] */
177 0xe08fe00e, /* add lr, pc, lr */
178 0xe5bef008, /* ldr pc, [lr, #8]! */
179 0x00000000, /* &GOT[0] - . */
180 };
181
182 /* Subsequent entries in a procedure linkage table look like
183 this. */
184 static const bfd_vma elf32_arm_plt_entry [PLT_ENTRY_SIZE / 4] =
185 {
186 0xe28fc600, /* add ip, pc, #0xNN00000 */
187 0xe28cca00, /* add ip, ip, #0xNN000 */
188 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
189 };
190
191 #endif
192
193 /* Used to build a map of a section. This is required for mixed-endian
194 code/data. */
195
196 typedef struct elf32_elf_section_map
197 {
198 bfd_vma vma;
199 char type;
200 }
201 elf32_arm_section_map;
202
203 struct _arm_elf_section_data
204 {
205 struct bfd_elf_section_data elf;
206 int mapcount;
207 elf32_arm_section_map *map;
208 };
209
210 #define elf32_arm_section_data(sec) \
211 ((struct _arm_elf_section_data *) elf_section_data (sec))
212
213 /* The ARM linker needs to keep track of the number of relocs that it
214 decides to copy in check_relocs for each symbol. This is so that
215 it can discard PC relative relocs if it doesn't need them when
216 linking with -Bsymbolic. We store the information in a field
217 extending the regular ELF linker hash table. */
218
219 /* This structure keeps track of the number of PC relative relocs we
220 have copied for a given symbol. */
221 struct elf32_arm_relocs_copied
222 {
223 /* Next section. */
224 struct elf32_arm_relocs_copied * next;
225 /* A section in dynobj. */
226 asection * section;
227 /* Number of relocs copied in this section. */
228 bfd_size_type count;
229 };
230
231 /* Arm ELF linker hash entry. */
232 struct elf32_arm_link_hash_entry
233 {
234 struct elf_link_hash_entry root;
235
236 /* Number of PC relative relocs copied for this symbol. */
237 struct elf32_arm_relocs_copied * relocs_copied;
238 };
239
240 /* Traverse an arm ELF linker hash table. */
241 #define elf32_arm_link_hash_traverse(table, func, info) \
242 (elf_link_hash_traverse \
243 (&(table)->root, \
244 (bfd_boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
245 (info)))
246
247 /* Get the ARM elf linker hash table from a link_info structure. */
248 #define elf32_arm_hash_table(info) \
249 ((struct elf32_arm_link_hash_table *) ((info)->hash))
250
251 /* ARM ELF linker hash table. */
252 struct elf32_arm_link_hash_table
253 {
254 /* The main hash table. */
255 struct elf_link_hash_table root;
256
257 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
258 bfd_size_type thumb_glue_size;
259
260 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
261 bfd_size_type arm_glue_size;
262
263 /* An arbitrary input BFD chosen to hold the glue sections. */
264 bfd * bfd_of_glue_owner;
265
266 /* A boolean indicating whether knowledge of the ARM's pipeline
267 length should be applied by the linker. */
268 int no_pipeline_knowledge;
269
270 /* Nonzero to output a BE8 image. */
271 int byteswap_code;
272
273 /* Short-cuts to get to dynamic linker sections. */
274 asection *sgot;
275 asection *sgotplt;
276 asection *srelgot;
277 asection *splt;
278 asection *srelplt;
279 asection *sdynbss;
280 asection *srelbss;
281
282 /* Small local sym to section mapping cache. */
283 struct sym_sec_cache sym_sec;
284 };
285
286 /* Create an entry in an ARM ELF linker hash table. */
287
288 static struct bfd_hash_entry *
289 elf32_arm_link_hash_newfunc (entry, table, string)
290 struct bfd_hash_entry * entry;
291 struct bfd_hash_table * table;
292 const char * string;
293 {
294 struct elf32_arm_link_hash_entry * ret =
295 (struct elf32_arm_link_hash_entry *) entry;
296
297 /* Allocate the structure if it has not already been allocated by a
298 subclass. */
299 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
300 ret = ((struct elf32_arm_link_hash_entry *)
301 bfd_hash_allocate (table,
302 sizeof (struct elf32_arm_link_hash_entry)));
303 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
304 return (struct bfd_hash_entry *) ret;
305
306 /* Call the allocation method of the superclass. */
307 ret = ((struct elf32_arm_link_hash_entry *)
308 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
309 table, string));
310 if (ret != (struct elf32_arm_link_hash_entry *) NULL)
311 ret->relocs_copied = NULL;
312
313 return (struct bfd_hash_entry *) ret;
314 }
315
316 /* Create .got, .gotplt, and .rel.got sections in DYNOBJ, and set up
317 shortcuts to them in our hash table. */
318
319 static bfd_boolean
320 create_got_section (dynobj, info)
321 bfd *dynobj;
322 struct bfd_link_info *info;
323 {
324 struct elf32_arm_link_hash_table *htab;
325
326 if (! _bfd_elf_create_got_section (dynobj, info))
327 return FALSE;
328
329 htab = elf32_arm_hash_table (info);
330 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
331 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
332 if (!htab->sgot || !htab->sgotplt)
333 abort ();
334
335 htab->srelgot = bfd_make_section (dynobj, ".rel.got");
336 if (htab->srelgot == NULL
337 || ! bfd_set_section_flags (dynobj, htab->srelgot,
338 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
339 | SEC_IN_MEMORY | SEC_LINKER_CREATED
340 | SEC_READONLY))
341 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
342 return FALSE;
343 return TRUE;
344 }
345
346 /* Create .plt, .rel.plt, .got, .got.plt, .rel.got, .dynbss, and
347 .rel.bss sections in DYNOBJ, and set up shortcuts to them in our
348 hash table. */
349
350 static bfd_boolean
351 elf32_arm_create_dynamic_sections (dynobj, info)
352 bfd *dynobj;
353 struct bfd_link_info *info;
354 {
355 struct elf32_arm_link_hash_table *htab;
356
357 htab = elf32_arm_hash_table (info);
358 if (!htab->sgot && !create_got_section (dynobj, info))
359 return FALSE;
360
361 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
362 return FALSE;
363
364 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
365 htab->srelplt = bfd_get_section_by_name (dynobj, ".rel.plt");
366 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
367 if (!info->shared)
368 htab->srelbss = bfd_get_section_by_name (dynobj, ".rel.bss");
369
370 if (!htab->splt || !htab->srelplt || !htab->sdynbss
371 || (!info->shared && !htab->srelbss))
372 abort ();
373
374 return TRUE;
375 }
376
377 /* Copy the extra info we tack onto an elf_link_hash_entry. */
378
379 static void
380 elf32_arm_copy_indirect_symbol (const struct elf_backend_data *bed,
381 struct elf_link_hash_entry *dir,
382 struct elf_link_hash_entry *ind)
383 {
384 struct elf32_arm_link_hash_entry *edir, *eind;
385
386 edir = (struct elf32_arm_link_hash_entry *) dir;
387 eind = (struct elf32_arm_link_hash_entry *) ind;
388
389 if (eind->relocs_copied != NULL)
390 {
391 if (edir->relocs_copied != NULL)
392 {
393 struct elf32_arm_relocs_copied **pp;
394 struct elf32_arm_relocs_copied *p;
395
396 if (ind->root.type == bfd_link_hash_indirect)
397 abort ();
398
399 /* Add reloc counts against the weak sym to the strong sym
400 list. Merge any entries against the same section. */
401 for (pp = &eind->relocs_copied; (p = *pp) != NULL; )
402 {
403 struct elf32_arm_relocs_copied *q;
404
405 for (q = edir->relocs_copied; q != NULL; q = q->next)
406 if (q->section == p->section)
407 {
408 q->count += p->count;
409 *pp = p->next;
410 break;
411 }
412 if (q == NULL)
413 pp = &p->next;
414 }
415 *pp = edir->relocs_copied;
416 }
417
418 edir->relocs_copied = eind->relocs_copied;
419 eind->relocs_copied = NULL;
420 }
421
422 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
423 }
424
425 /* Create an ARM elf linker hash table. */
426
427 static struct bfd_link_hash_table *
428 elf32_arm_link_hash_table_create (abfd)
429 bfd *abfd;
430 {
431 struct elf32_arm_link_hash_table *ret;
432 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
433
434 ret = (struct elf32_arm_link_hash_table *) bfd_malloc (amt);
435 if (ret == (struct elf32_arm_link_hash_table *) NULL)
436 return NULL;
437
438 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
439 elf32_arm_link_hash_newfunc))
440 {
441 free (ret);
442 return NULL;
443 }
444
445 ret->sgot = NULL;
446 ret->sgotplt = NULL;
447 ret->srelgot = NULL;
448 ret->splt = NULL;
449 ret->srelplt = NULL;
450 ret->sdynbss = NULL;
451 ret->srelbss = NULL;
452 ret->thumb_glue_size = 0;
453 ret->arm_glue_size = 0;
454 ret->bfd_of_glue_owner = NULL;
455 ret->no_pipeline_knowledge = 0;
456 ret->byteswap_code = 0;
457 ret->sym_sec.abfd = NULL;
458
459 return &ret->root.root;
460 }
461
462 /* Locate the Thumb encoded calling stub for NAME. */
463
464 static struct elf_link_hash_entry *
465 find_thumb_glue (link_info, name, input_bfd)
466 struct bfd_link_info *link_info;
467 const char *name;
468 bfd *input_bfd;
469 {
470 char *tmp_name;
471 struct elf_link_hash_entry *hash;
472 struct elf32_arm_link_hash_table *hash_table;
473
474 /* We need a pointer to the armelf specific hash table. */
475 hash_table = elf32_arm_hash_table (link_info);
476
477 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
478 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
479
480 BFD_ASSERT (tmp_name);
481
482 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
483
484 hash = elf_link_hash_lookup
485 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
486
487 if (hash == NULL)
488 /* xgettext:c-format */
489 (*_bfd_error_handler) (_("%s: unable to find THUMB glue '%s' for `%s'"),
490 bfd_archive_filename (input_bfd), tmp_name, name);
491
492 free (tmp_name);
493
494 return hash;
495 }
496
497 /* Locate the ARM encoded calling stub for NAME. */
498
499 static struct elf_link_hash_entry *
500 find_arm_glue (link_info, name, input_bfd)
501 struct bfd_link_info *link_info;
502 const char *name;
503 bfd *input_bfd;
504 {
505 char *tmp_name;
506 struct elf_link_hash_entry *myh;
507 struct elf32_arm_link_hash_table *hash_table;
508
509 /* We need a pointer to the elfarm specific hash table. */
510 hash_table = elf32_arm_hash_table (link_info);
511
512 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
513 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
514
515 BFD_ASSERT (tmp_name);
516
517 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
518
519 myh = elf_link_hash_lookup
520 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
521
522 if (myh == NULL)
523 /* xgettext:c-format */
524 (*_bfd_error_handler) (_("%s: unable to find ARM glue '%s' for `%s'"),
525 bfd_archive_filename (input_bfd), tmp_name, name);
526
527 free (tmp_name);
528
529 return myh;
530 }
531
532 /* ARM->Thumb glue:
533
534 .arm
535 __func_from_arm:
536 ldr r12, __func_addr
537 bx r12
538 __func_addr:
539 .word func @ behave as if you saw a ARM_32 reloc. */
540
541 #define ARM2THUMB_GLUE_SIZE 12
542 static const insn32 a2t1_ldr_insn = 0xe59fc000;
543 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
544 static const insn32 a2t3_func_addr_insn = 0x00000001;
545
546 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
547
548 .thumb .thumb
549 .align 2 .align 2
550 __func_from_thumb: __func_from_thumb:
551 bx pc push {r6, lr}
552 nop ldr r6, __func_addr
553 .arm mov lr, pc
554 __func_change_to_arm: bx r6
555 b func .arm
556 __func_back_to_thumb:
557 ldmia r13! {r6, lr}
558 bx lr
559 __func_addr:
560 .word func */
561
562 #define THUMB2ARM_GLUE_SIZE 8
563 static const insn16 t2a1_bx_pc_insn = 0x4778;
564 static const insn16 t2a2_noop_insn = 0x46c0;
565 static const insn32 t2a3_b_insn = 0xea000000;
566
567 #ifndef ELFARM_NABI_C_INCLUDED
568 bfd_boolean
569 bfd_elf32_arm_allocate_interworking_sections (info)
570 struct bfd_link_info * info;
571 {
572 asection * s;
573 bfd_byte * foo;
574 struct elf32_arm_link_hash_table * globals;
575
576 globals = elf32_arm_hash_table (info);
577
578 BFD_ASSERT (globals != NULL);
579
580 if (globals->arm_glue_size != 0)
581 {
582 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
583
584 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
585 ARM2THUMB_GLUE_SECTION_NAME);
586
587 BFD_ASSERT (s != NULL);
588
589 foo = (bfd_byte *) bfd_alloc (globals->bfd_of_glue_owner,
590 globals->arm_glue_size);
591
592 s->_raw_size = s->_cooked_size = globals->arm_glue_size;
593 s->contents = foo;
594 }
595
596 if (globals->thumb_glue_size != 0)
597 {
598 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
599
600 s = bfd_get_section_by_name
601 (globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
602
603 BFD_ASSERT (s != NULL);
604
605 foo = (bfd_byte *) bfd_alloc (globals->bfd_of_glue_owner,
606 globals->thumb_glue_size);
607
608 s->_raw_size = s->_cooked_size = globals->thumb_glue_size;
609 s->contents = foo;
610 }
611
612 return TRUE;
613 }
614
615 static void
616 record_arm_to_thumb_glue (link_info, h)
617 struct bfd_link_info * link_info;
618 struct elf_link_hash_entry * h;
619 {
620 const char * name = h->root.root.string;
621 asection * s;
622 char * tmp_name;
623 struct elf_link_hash_entry * myh;
624 struct bfd_link_hash_entry * bh;
625 struct elf32_arm_link_hash_table * globals;
626 bfd_vma val;
627
628 globals = elf32_arm_hash_table (link_info);
629
630 BFD_ASSERT (globals != NULL);
631 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
632
633 s = bfd_get_section_by_name
634 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
635
636 BFD_ASSERT (s != NULL);
637
638 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
639 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
640
641 BFD_ASSERT (tmp_name);
642
643 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
644
645 myh = elf_link_hash_lookup
646 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
647
648 if (myh != NULL)
649 {
650 /* We've already seen this guy. */
651 free (tmp_name);
652 return;
653 }
654
655 /* The only trick here is using hash_table->arm_glue_size as the value. Even
656 though the section isn't allocated yet, this is where we will be putting
657 it. */
658 bh = NULL;
659 val = globals->arm_glue_size + 1;
660 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
661 tmp_name, BSF_GLOBAL, s, val,
662 NULL, TRUE, FALSE, &bh);
663
664 free (tmp_name);
665
666 globals->arm_glue_size += ARM2THUMB_GLUE_SIZE;
667
668 return;
669 }
670
671 static void
672 record_thumb_to_arm_glue (link_info, h)
673 struct bfd_link_info *link_info;
674 struct elf_link_hash_entry *h;
675 {
676 const char *name = h->root.root.string;
677 asection *s;
678 char *tmp_name;
679 struct elf_link_hash_entry *myh;
680 struct bfd_link_hash_entry *bh;
681 struct elf32_arm_link_hash_table *hash_table;
682 char bind;
683 bfd_vma val;
684
685 hash_table = elf32_arm_hash_table (link_info);
686
687 BFD_ASSERT (hash_table != NULL);
688 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
689
690 s = bfd_get_section_by_name
691 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
692
693 BFD_ASSERT (s != NULL);
694
695 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
696 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
697
698 BFD_ASSERT (tmp_name);
699
700 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
701
702 myh = elf_link_hash_lookup
703 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
704
705 if (myh != NULL)
706 {
707 /* We've already seen this guy. */
708 free (tmp_name);
709 return;
710 }
711
712 bh = NULL;
713 val = hash_table->thumb_glue_size + 1;
714 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
715 tmp_name, BSF_GLOBAL, s, val,
716 NULL, TRUE, FALSE, &bh);
717
718 /* If we mark it 'Thumb', the disassembler will do a better job. */
719 myh = (struct elf_link_hash_entry *) bh;
720 bind = ELF_ST_BIND (myh->type);
721 myh->type = ELF_ST_INFO (bind, STT_ARM_TFUNC);
722
723 free (tmp_name);
724
725 #define CHANGE_TO_ARM "__%s_change_to_arm"
726 #define BACK_FROM_ARM "__%s_back_from_arm"
727
728 /* Allocate another symbol to mark where we switch to Arm mode. */
729 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
730 + strlen (CHANGE_TO_ARM) + 1);
731
732 BFD_ASSERT (tmp_name);
733
734 sprintf (tmp_name, CHANGE_TO_ARM, name);
735
736 bh = NULL;
737 val = hash_table->thumb_glue_size + 4,
738 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
739 tmp_name, BSF_LOCAL, s, val,
740 NULL, TRUE, FALSE, &bh);
741
742 free (tmp_name);
743
744 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
745
746 return;
747 }
748
749 /* Add the glue sections to ABFD. This function is called from the
750 linker scripts in ld/emultempl/{armelf}.em. */
751
752 bfd_boolean
753 bfd_elf32_arm_add_glue_sections_to_bfd (abfd, info)
754 bfd *abfd;
755 struct bfd_link_info *info;
756 {
757 flagword flags;
758 asection *sec;
759
760 /* If we are only performing a partial
761 link do not bother adding the glue. */
762 if (info->relocatable)
763 return TRUE;
764
765 sec = bfd_get_section_by_name (abfd, ARM2THUMB_GLUE_SECTION_NAME);
766
767 if (sec == NULL)
768 {
769 /* Note: we do not include the flag SEC_LINKER_CREATED, as this
770 will prevent elf_link_input_bfd() from processing the contents
771 of this section. */
772 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
773
774 sec = bfd_make_section (abfd, ARM2THUMB_GLUE_SECTION_NAME);
775
776 if (sec == NULL
777 || !bfd_set_section_flags (abfd, sec, flags)
778 || !bfd_set_section_alignment (abfd, sec, 2))
779 return FALSE;
780
781 /* Set the gc mark to prevent the section from being removed by garbage
782 collection, despite the fact that no relocs refer to this section. */
783 sec->gc_mark = 1;
784 }
785
786 sec = bfd_get_section_by_name (abfd, THUMB2ARM_GLUE_SECTION_NAME);
787
788 if (sec == NULL)
789 {
790 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
791
792 sec = bfd_make_section (abfd, THUMB2ARM_GLUE_SECTION_NAME);
793
794 if (sec == NULL
795 || !bfd_set_section_flags (abfd, sec, flags)
796 || !bfd_set_section_alignment (abfd, sec, 2))
797 return FALSE;
798
799 sec->gc_mark = 1;
800 }
801
802 return TRUE;
803 }
804
805 /* Select a BFD to be used to hold the sections used by the glue code.
806 This function is called from the linker scripts in ld/emultempl/
807 {armelf/pe}.em */
808
809 bfd_boolean
810 bfd_elf32_arm_get_bfd_for_interworking (abfd, info)
811 bfd *abfd;
812 struct bfd_link_info *info;
813 {
814 struct elf32_arm_link_hash_table *globals;
815
816 /* If we are only performing a partial link
817 do not bother getting a bfd to hold the glue. */
818 if (info->relocatable)
819 return TRUE;
820
821 globals = elf32_arm_hash_table (info);
822
823 BFD_ASSERT (globals != NULL);
824
825 if (globals->bfd_of_glue_owner != NULL)
826 return TRUE;
827
828 /* Save the bfd for later use. */
829 globals->bfd_of_glue_owner = abfd;
830
831 return TRUE;
832 }
833
834 bfd_boolean
835 bfd_elf32_arm_process_before_allocation (abfd, link_info,
836 no_pipeline_knowledge,
837 byteswap_code)
838 bfd *abfd;
839 struct bfd_link_info *link_info;
840 int no_pipeline_knowledge;
841 int byteswap_code;
842 {
843 Elf_Internal_Shdr *symtab_hdr;
844 Elf_Internal_Rela *internal_relocs = NULL;
845 Elf_Internal_Rela *irel, *irelend;
846 bfd_byte *contents = NULL;
847
848 asection *sec;
849 struct elf32_arm_link_hash_table *globals;
850
851 /* If we are only performing a partial link do not bother
852 to construct any glue. */
853 if (link_info->relocatable)
854 return TRUE;
855
856 /* Here we have a bfd that is to be included on the link. We have a hook
857 to do reloc rummaging, before section sizes are nailed down. */
858 globals = elf32_arm_hash_table (link_info);
859
860 BFD_ASSERT (globals != NULL);
861 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
862
863 globals->no_pipeline_knowledge = no_pipeline_knowledge;
864 if (byteswap_code && !bfd_big_endian (abfd))
865 {
866 _bfd_error_handler (
867 _("%s: BE8 images only valid in big-endian mode."),
868 bfd_archive_filename (abfd));
869 return FALSE;
870 }
871 globals->byteswap_code = byteswap_code;
872
873 /* Rummage around all the relocs and map the glue vectors. */
874 sec = abfd->sections;
875
876 if (sec == NULL)
877 return TRUE;
878
879 for (; sec != NULL; sec = sec->next)
880 {
881 if (sec->reloc_count == 0)
882 continue;
883
884 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
885
886 /* Load the relocs. */
887 internal_relocs
888 = _bfd_elf_link_read_relocs (abfd, sec, (PTR) NULL,
889 (Elf_Internal_Rela *) NULL, FALSE);
890
891 if (internal_relocs == NULL)
892 goto error_return;
893
894 irelend = internal_relocs + sec->reloc_count;
895 for (irel = internal_relocs; irel < irelend; irel++)
896 {
897 long r_type;
898 unsigned long r_index;
899
900 struct elf_link_hash_entry *h;
901
902 r_type = ELF32_R_TYPE (irel->r_info);
903 r_index = ELF32_R_SYM (irel->r_info);
904
905 /* These are the only relocation types we care about. */
906 if ( r_type != R_ARM_PC24
907 && r_type != R_ARM_THM_PC22)
908 continue;
909
910 /* Get the section contents if we haven't done so already. */
911 if (contents == NULL)
912 {
913 /* Get cached copy if it exists. */
914 if (elf_section_data (sec)->this_hdr.contents != NULL)
915 contents = elf_section_data (sec)->this_hdr.contents;
916 else
917 {
918 /* Go get them off disk. */
919 contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
920 if (contents == NULL)
921 goto error_return;
922
923 if (!bfd_get_section_contents (abfd, sec, contents,
924 (file_ptr) 0, sec->_raw_size))
925 goto error_return;
926 }
927 }
928
929 /* If the relocation is not against a symbol it cannot concern us. */
930 h = NULL;
931
932 /* We don't care about local symbols. */
933 if (r_index < symtab_hdr->sh_info)
934 continue;
935
936 /* This is an external symbol. */
937 r_index -= symtab_hdr->sh_info;
938 h = (struct elf_link_hash_entry *)
939 elf_sym_hashes (abfd)[r_index];
940
941 /* If the relocation is against a static symbol it must be within
942 the current section and so cannot be a cross ARM/Thumb relocation. */
943 if (h == NULL)
944 continue;
945
946 switch (r_type)
947 {
948 case R_ARM_PC24:
949 /* This one is a call from arm code. We need to look up
950 the target of the call. If it is a thumb target, we
951 insert glue. */
952 if (ELF_ST_TYPE(h->type) == STT_ARM_TFUNC)
953 record_arm_to_thumb_glue (link_info, h);
954 break;
955
956 case R_ARM_THM_PC22:
957 /* This one is a call from thumb code. We look
958 up the target of the call. If it is not a thumb
959 target, we insert glue. */
960 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC)
961 record_thumb_to_arm_glue (link_info, h);
962 break;
963
964 default:
965 break;
966 }
967 }
968
969 if (contents != NULL
970 && elf_section_data (sec)->this_hdr.contents != contents)
971 free (contents);
972 contents = NULL;
973
974 if (internal_relocs != NULL
975 && elf_section_data (sec)->relocs != internal_relocs)
976 free (internal_relocs);
977 internal_relocs = NULL;
978 }
979
980 return TRUE;
981
982 error_return:
983 if (contents != NULL
984 && elf_section_data (sec)->this_hdr.contents != contents)
985 free (contents);
986 if (internal_relocs != NULL
987 && elf_section_data (sec)->relocs != internal_relocs)
988 free (internal_relocs);
989
990 return FALSE;
991 }
992 #endif
993
994 /* The thumb form of a long branch is a bit finicky, because the offset
995 encoding is split over two fields, each in it's own instruction. They
996 can occur in any order. So given a thumb form of long branch, and an
997 offset, insert the offset into the thumb branch and return finished
998 instruction.
999
1000 It takes two thumb instructions to encode the target address. Each has
1001 11 bits to invest. The upper 11 bits are stored in one (identified by
1002 H-0.. see below), the lower 11 bits are stored in the other (identified
1003 by H-1).
1004
1005 Combine together and shifted left by 1 (it's a half word address) and
1006 there you have it.
1007
1008 Op: 1111 = F,
1009 H-0, upper address-0 = 000
1010 Op: 1111 = F,
1011 H-1, lower address-0 = 800
1012
1013 They can be ordered either way, but the arm tools I've seen always put
1014 the lower one first. It probably doesn't matter. krk@cygnus.com
1015
1016 XXX: Actually the order does matter. The second instruction (H-1)
1017 moves the computed address into the PC, so it must be the second one
1018 in the sequence. The problem, however is that whilst little endian code
1019 stores the instructions in HI then LOW order, big endian code does the
1020 reverse. nickc@cygnus.com. */
1021
1022 #define LOW_HI_ORDER 0xF800F000
1023 #define HI_LOW_ORDER 0xF000F800
1024
1025 static insn32
1026 insert_thumb_branch (br_insn, rel_off)
1027 insn32 br_insn;
1028 int rel_off;
1029 {
1030 unsigned int low_bits;
1031 unsigned int high_bits;
1032
1033 BFD_ASSERT ((rel_off & 1) != 1);
1034
1035 rel_off >>= 1; /* Half word aligned address. */
1036 low_bits = rel_off & 0x000007FF; /* The bottom 11 bits. */
1037 high_bits = (rel_off >> 11) & 0x000007FF; /* The top 11 bits. */
1038
1039 if ((br_insn & LOW_HI_ORDER) == LOW_HI_ORDER)
1040 br_insn = LOW_HI_ORDER | (low_bits << 16) | high_bits;
1041 else if ((br_insn & HI_LOW_ORDER) == HI_LOW_ORDER)
1042 br_insn = HI_LOW_ORDER | (high_bits << 16) | low_bits;
1043 else
1044 /* FIXME: abort is probably not the right call. krk@cygnus.com */
1045 abort (); /* error - not a valid branch instruction form. */
1046
1047 return br_insn;
1048 }
1049
1050 /* Thumb code calling an ARM function. */
1051
1052 static int
1053 elf32_thumb_to_arm_stub (info, name, input_bfd, output_bfd, input_section,
1054 hit_data, sym_sec, offset, addend, val)
1055 struct bfd_link_info * info;
1056 const char * name;
1057 bfd * input_bfd;
1058 bfd * output_bfd;
1059 asection * input_section;
1060 bfd_byte * hit_data;
1061 asection * sym_sec;
1062 bfd_vma offset;
1063 bfd_signed_vma addend;
1064 bfd_vma val;
1065 {
1066 asection * s = 0;
1067 bfd_vma my_offset;
1068 unsigned long int tmp;
1069 long int ret_offset;
1070 struct elf_link_hash_entry * myh;
1071 struct elf32_arm_link_hash_table * globals;
1072
1073 myh = find_thumb_glue (info, name, input_bfd);
1074 if (myh == NULL)
1075 return FALSE;
1076
1077 globals = elf32_arm_hash_table (info);
1078
1079 BFD_ASSERT (globals != NULL);
1080 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
1081
1082 my_offset = myh->root.u.def.value;
1083
1084 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
1085 THUMB2ARM_GLUE_SECTION_NAME);
1086
1087 BFD_ASSERT (s != NULL);
1088 BFD_ASSERT (s->contents != NULL);
1089 BFD_ASSERT (s->output_section != NULL);
1090
1091 if ((my_offset & 0x01) == 0x01)
1092 {
1093 if (sym_sec != NULL
1094 && sym_sec->owner != NULL
1095 && !INTERWORK_FLAG (sym_sec->owner))
1096 {
1097 (*_bfd_error_handler)
1098 (_("%s(%s): warning: interworking not enabled."),
1099 bfd_archive_filename (sym_sec->owner), name);
1100 (*_bfd_error_handler)
1101 (_(" first occurrence: %s: thumb call to arm"),
1102 bfd_archive_filename (input_bfd));
1103
1104 return FALSE;
1105 }
1106
1107 --my_offset;
1108 myh->root.u.def.value = my_offset;
1109
1110 bfd_put_16 (output_bfd, (bfd_vma) t2a1_bx_pc_insn,
1111 s->contents + my_offset);
1112
1113 bfd_put_16 (output_bfd, (bfd_vma) t2a2_noop_insn,
1114 s->contents + my_offset + 2);
1115
1116 ret_offset =
1117 /* Address of destination of the stub. */
1118 ((bfd_signed_vma) val)
1119 - ((bfd_signed_vma)
1120 /* Offset from the start of the current section to the start of the stubs. */
1121 (s->output_offset
1122 /* Offset of the start of this stub from the start of the stubs. */
1123 + my_offset
1124 /* Address of the start of the current section. */
1125 + s->output_section->vma)
1126 /* The branch instruction is 4 bytes into the stub. */
1127 + 4
1128 /* ARM branches work from the pc of the instruction + 8. */
1129 + 8);
1130
1131 bfd_put_32 (output_bfd,
1132 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
1133 s->contents + my_offset + 4);
1134 }
1135
1136 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
1137
1138 /* Now go back and fix up the original BL insn to point to here. */
1139 ret_offset =
1140 /* Address of where the stub is located. */
1141 (s->output_section->vma + s->output_offset + my_offset)
1142 /* Address of where the BL is located. */
1143 - (input_section->output_section->vma + input_section->output_offset + offset)
1144 /* Addend in the relocation. */
1145 - addend
1146 /* Biassing for PC-relative addressing. */
1147 - 8;
1148
1149 tmp = bfd_get_32 (input_bfd, hit_data
1150 - input_section->vma);
1151
1152 bfd_put_32 (output_bfd,
1153 (bfd_vma) insert_thumb_branch (tmp, ret_offset),
1154 hit_data - input_section->vma);
1155
1156 return TRUE;
1157 }
1158
1159 /* Arm code calling a Thumb function. */
1160
1161 static int
1162 elf32_arm_to_thumb_stub (info, name, input_bfd, output_bfd, input_section,
1163 hit_data, sym_sec, offset, addend, val)
1164 struct bfd_link_info * info;
1165 const char * name;
1166 bfd * input_bfd;
1167 bfd * output_bfd;
1168 asection * input_section;
1169 bfd_byte * hit_data;
1170 asection * sym_sec;
1171 bfd_vma offset;
1172 bfd_signed_vma addend;
1173 bfd_vma val;
1174 {
1175 unsigned long int tmp;
1176 bfd_vma my_offset;
1177 asection * s;
1178 long int ret_offset;
1179 struct elf_link_hash_entry * myh;
1180 struct elf32_arm_link_hash_table * globals;
1181
1182 myh = find_arm_glue (info, name, input_bfd);
1183 if (myh == NULL)
1184 return FALSE;
1185
1186 globals = elf32_arm_hash_table (info);
1187
1188 BFD_ASSERT (globals != NULL);
1189 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
1190
1191 my_offset = myh->root.u.def.value;
1192 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
1193 ARM2THUMB_GLUE_SECTION_NAME);
1194 BFD_ASSERT (s != NULL);
1195 BFD_ASSERT (s->contents != NULL);
1196 BFD_ASSERT (s->output_section != NULL);
1197
1198 if ((my_offset & 0x01) == 0x01)
1199 {
1200 if (sym_sec != NULL
1201 && sym_sec->owner != NULL
1202 && !INTERWORK_FLAG (sym_sec->owner))
1203 {
1204 (*_bfd_error_handler)
1205 (_("%s(%s): warning: interworking not enabled."),
1206 bfd_archive_filename (sym_sec->owner), name);
1207 (*_bfd_error_handler)
1208 (_(" first occurrence: %s: arm call to thumb"),
1209 bfd_archive_filename (input_bfd));
1210 }
1211
1212 --my_offset;
1213 myh->root.u.def.value = my_offset;
1214
1215 bfd_put_32 (output_bfd, (bfd_vma) a2t1_ldr_insn,
1216 s->contents + my_offset);
1217
1218 bfd_put_32 (output_bfd, (bfd_vma) a2t2_bx_r12_insn,
1219 s->contents + my_offset + 4);
1220
1221 /* It's a thumb address. Add the low order bit. */
1222 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
1223 s->contents + my_offset + 8);
1224 }
1225
1226 BFD_ASSERT (my_offset <= globals->arm_glue_size);
1227
1228 tmp = bfd_get_32 (input_bfd, hit_data);
1229 tmp = tmp & 0xFF000000;
1230
1231 /* Somehow these are both 4 too far, so subtract 8. */
1232 ret_offset = (s->output_offset
1233 + my_offset
1234 + s->output_section->vma
1235 - (input_section->output_offset
1236 + input_section->output_section->vma
1237 + offset + addend)
1238 - 8);
1239
1240 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
1241
1242 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
1243
1244 return TRUE;
1245 }
1246
1247 /* Perform a relocation as part of a final link. */
1248
1249 static bfd_reloc_status_type
1250 elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
1251 input_section, contents, rel, value,
1252 info, sym_sec, sym_name, sym_flags, h)
1253 reloc_howto_type * howto;
1254 bfd * input_bfd;
1255 bfd * output_bfd;
1256 asection * input_section;
1257 bfd_byte * contents;
1258 Elf_Internal_Rela * rel;
1259 bfd_vma value;
1260 struct bfd_link_info * info;
1261 asection * sym_sec;
1262 const char * sym_name;
1263 int sym_flags;
1264 struct elf_link_hash_entry * h;
1265 {
1266 unsigned long r_type = howto->type;
1267 unsigned long r_symndx;
1268 bfd_byte * hit_data = contents + rel->r_offset;
1269 bfd * dynobj = NULL;
1270 Elf_Internal_Shdr * symtab_hdr;
1271 struct elf_link_hash_entry ** sym_hashes;
1272 bfd_vma * local_got_offsets;
1273 asection * sgot = NULL;
1274 asection * splt = NULL;
1275 asection * sreloc = NULL;
1276 bfd_vma addend;
1277 bfd_signed_vma signed_addend;
1278 struct elf32_arm_link_hash_table * globals;
1279
1280 /* If the start address has been set, then set the EF_ARM_HASENTRY
1281 flag. Setting this more than once is redundant, but the cost is
1282 not too high, and it keeps the code simple.
1283
1284 The test is done here, rather than somewhere else, because the
1285 start address is only set just before the final link commences.
1286
1287 Note - if the user deliberately sets a start address of 0, the
1288 flag will not be set. */
1289 if (bfd_get_start_address (output_bfd) != 0)
1290 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
1291
1292 globals = elf32_arm_hash_table (info);
1293
1294 dynobj = elf_hash_table (info)->dynobj;
1295 if (dynobj)
1296 {
1297 sgot = bfd_get_section_by_name (dynobj, ".got");
1298 splt = bfd_get_section_by_name (dynobj, ".plt");
1299 }
1300 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1301 sym_hashes = elf_sym_hashes (input_bfd);
1302 local_got_offsets = elf_local_got_offsets (input_bfd);
1303 r_symndx = ELF32_R_SYM (rel->r_info);
1304
1305 #if USE_REL
1306 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
1307
1308 if (addend & ((howto->src_mask + 1) >> 1))
1309 {
1310 signed_addend = -1;
1311 signed_addend &= ~ howto->src_mask;
1312 signed_addend |= addend;
1313 }
1314 else
1315 signed_addend = addend;
1316 #else
1317 addend = signed_addend = rel->r_addend;
1318 #endif
1319
1320 switch (r_type)
1321 {
1322 case R_ARM_NONE:
1323 return bfd_reloc_ok;
1324
1325 case R_ARM_PC24:
1326 case R_ARM_ABS32:
1327 case R_ARM_REL32:
1328 #ifndef OLD_ARM_ABI
1329 case R_ARM_XPC25:
1330 #endif
1331 case R_ARM_PLT32:
1332 /* r_symndx will be zero only for relocs against symbols
1333 from removed linkonce sections, or sections discarded by
1334 a linker script. */
1335 if (r_symndx == 0)
1336 return bfd_reloc_ok;
1337
1338 /* Handle relocations which should use the PLT entry. ABS32/REL32
1339 will use the symbol's value, which may point to a PLT entry, but we
1340 don't need to handle that here. If we created a PLT entry, all
1341 branches in this object should go to it. */
1342 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32)
1343 && h != NULL
1344 && splt != NULL
1345 && h->plt.offset != (bfd_vma) -1)
1346 {
1347 /* If we've created a .plt section, and assigned a PLT entry to
1348 this function, it should not be known to bind locally. If
1349 it were, we would have cleared the PLT entry. */
1350 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info, h));
1351
1352 value = (splt->output_section->vma
1353 + splt->output_offset
1354 + h->plt.offset);
1355 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1356 contents, rel->r_offset, value,
1357 (bfd_vma) 0);
1358 }
1359
1360 /* When generating a shared object, these relocations are copied
1361 into the output file to be resolved at run time. */
1362 if (info->shared
1363 && (input_section->flags & SEC_ALLOC)
1364 && (h == NULL
1365 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
1366 || h->root.type != bfd_link_hash_undefweak)
1367 && r_type != R_ARM_PC24
1368 && r_type != R_ARM_PLT32)
1369 {
1370 Elf_Internal_Rela outrel;
1371 bfd_byte *loc;
1372 bfd_boolean skip, relocate;
1373
1374 if (sreloc == NULL)
1375 {
1376 const char * name;
1377
1378 name = (bfd_elf_string_from_elf_section
1379 (input_bfd,
1380 elf_elfheader (input_bfd)->e_shstrndx,
1381 elf_section_data (input_section)->rel_hdr.sh_name));
1382 if (name == NULL)
1383 return bfd_reloc_notsupported;
1384
1385 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
1386 && strcmp (bfd_get_section_name (input_bfd,
1387 input_section),
1388 name + 4) == 0);
1389
1390 sreloc = bfd_get_section_by_name (dynobj, name);
1391 BFD_ASSERT (sreloc != NULL);
1392 }
1393
1394 skip = FALSE;
1395 relocate = FALSE;
1396
1397 outrel.r_offset =
1398 _bfd_elf_section_offset (output_bfd, info, input_section,
1399 rel->r_offset);
1400 if (outrel.r_offset == (bfd_vma) -1)
1401 skip = TRUE;
1402 else if (outrel.r_offset == (bfd_vma) -2)
1403 skip = TRUE, relocate = TRUE;
1404 outrel.r_offset += (input_section->output_section->vma
1405 + input_section->output_offset);
1406
1407 if (skip)
1408 memset (&outrel, 0, sizeof outrel);
1409 else if (h != NULL
1410 && h->dynindx != -1
1411 && (!info->shared
1412 || !info->symbolic
1413 || (h->elf_link_hash_flags
1414 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1415 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
1416 else
1417 {
1418 /* This symbol is local, or marked to become local. */
1419 relocate = TRUE;
1420 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1421 }
1422
1423 loc = sreloc->contents;
1424 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rel);
1425 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
1426
1427 /* If this reloc is against an external symbol, we do not want to
1428 fiddle with the addend. Otherwise, we need to include the symbol
1429 value so that it becomes an addend for the dynamic reloc. */
1430 if (! relocate)
1431 return bfd_reloc_ok;
1432
1433 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1434 contents, rel->r_offset, value,
1435 (bfd_vma) 0);
1436 }
1437 else switch (r_type)
1438 {
1439 #ifndef OLD_ARM_ABI
1440 case R_ARM_XPC25: /* Arm BLX instruction. */
1441 #endif
1442 case R_ARM_PC24: /* Arm B/BL instruction */
1443 case R_ARM_PLT32:
1444 #ifndef OLD_ARM_ABI
1445 if (r_type == R_ARM_XPC25)
1446 {
1447 /* Check for Arm calling Arm function. */
1448 /* FIXME: Should we translate the instruction into a BL
1449 instruction instead ? */
1450 if (sym_flags != STT_ARM_TFUNC)
1451 (*_bfd_error_handler) (_("\
1452 %s: Warning: Arm BLX instruction targets Arm function '%s'."),
1453 bfd_archive_filename (input_bfd),
1454 h ? h->root.root.string : "(local)");
1455 }
1456 else
1457 #endif
1458 {
1459 /* Check for Arm calling Thumb function. */
1460 if (sym_flags == STT_ARM_TFUNC)
1461 {
1462 elf32_arm_to_thumb_stub (info, sym_name, input_bfd, output_bfd,
1463 input_section, hit_data, sym_sec, rel->r_offset,
1464 signed_addend, value);
1465 return bfd_reloc_ok;
1466 }
1467 }
1468
1469 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1470 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0)
1471 {
1472 /* The old way of doing things. Trearing the addend as a
1473 byte sized field and adding in the pipeline offset. */
1474 value -= (input_section->output_section->vma
1475 + input_section->output_offset);
1476 value -= rel->r_offset;
1477 value += addend;
1478
1479 if (! globals->no_pipeline_knowledge)
1480 value -= 8;
1481 }
1482 else
1483 {
1484 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
1485 where:
1486 S is the address of the symbol in the relocation.
1487 P is address of the instruction being relocated.
1488 A is the addend (extracted from the instruction) in bytes.
1489
1490 S is held in 'value'.
1491 P is the base address of the section containing the instruction
1492 plus the offset of the reloc into that section, ie:
1493 (input_section->output_section->vma +
1494 input_section->output_offset +
1495 rel->r_offset).
1496 A is the addend, converted into bytes, ie:
1497 (signed_addend * 4)
1498
1499 Note: None of these operations have knowledge of the pipeline
1500 size of the processor, thus it is up to the assembler to encode
1501 this information into the addend. */
1502 value -= (input_section->output_section->vma
1503 + input_section->output_offset);
1504 value -= rel->r_offset;
1505 value += (signed_addend << howto->size);
1506
1507 /* Previous versions of this code also used to add in the pipeline
1508 offset here. This is wrong because the linker is not supposed
1509 to know about such things, and one day it might change. In order
1510 to support old binaries that need the old behaviour however, so
1511 we attempt to detect which ABI was used to create the reloc. */
1512 if (! globals->no_pipeline_knowledge)
1513 {
1514 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form */
1515
1516 i_ehdrp = elf_elfheader (input_bfd);
1517
1518 if (i_ehdrp->e_ident[EI_OSABI] == 0)
1519 value -= 8;
1520 }
1521 }
1522
1523 signed_addend = value;
1524 signed_addend >>= howto->rightshift;
1525
1526 /* It is not an error for an undefined weak reference to be
1527 out of range. Any program that branches to such a symbol
1528 is going to crash anyway, so there is no point worrying
1529 about getting the destination exactly right. */
1530 if (! h || h->root.type != bfd_link_hash_undefweak)
1531 {
1532 /* Perform a signed range check. */
1533 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
1534 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
1535 return bfd_reloc_overflow;
1536 }
1537
1538 #ifndef OLD_ARM_ABI
1539 /* If necessary set the H bit in the BLX instruction. */
1540 if (r_type == R_ARM_XPC25 && ((value & 2) == 2))
1541 value = (signed_addend & howto->dst_mask)
1542 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask))
1543 | (1 << 24);
1544 else
1545 #endif
1546 value = (signed_addend & howto->dst_mask)
1547 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
1548 break;
1549
1550 case R_ARM_ABS32:
1551 value += addend;
1552 if (sym_flags == STT_ARM_TFUNC)
1553 value |= 1;
1554 break;
1555
1556 case R_ARM_REL32:
1557 value -= (input_section->output_section->vma
1558 + input_section->output_offset + rel->r_offset);
1559 value += addend;
1560 break;
1561 }
1562
1563 bfd_put_32 (input_bfd, value, hit_data);
1564 return bfd_reloc_ok;
1565
1566 case R_ARM_ABS8:
1567 value += addend;
1568 if ((long) value > 0x7f || (long) value < -0x80)
1569 return bfd_reloc_overflow;
1570
1571 bfd_put_8 (input_bfd, value, hit_data);
1572 return bfd_reloc_ok;
1573
1574 case R_ARM_ABS16:
1575 value += addend;
1576
1577 if ((long) value > 0x7fff || (long) value < -0x8000)
1578 return bfd_reloc_overflow;
1579
1580 bfd_put_16 (input_bfd, value, hit_data);
1581 return bfd_reloc_ok;
1582
1583 case R_ARM_ABS12:
1584 /* Support ldr and str instruction for the arm */
1585 /* Also thumb b (unconditional branch). ??? Really? */
1586 value += addend;
1587
1588 if ((long) value > 0x7ff || (long) value < -0x800)
1589 return bfd_reloc_overflow;
1590
1591 value |= (bfd_get_32 (input_bfd, hit_data) & 0xfffff000);
1592 bfd_put_32 (input_bfd, value, hit_data);
1593 return bfd_reloc_ok;
1594
1595 case R_ARM_THM_ABS5:
1596 /* Support ldr and str instructions for the thumb. */
1597 #if USE_REL
1598 /* Need to refetch addend. */
1599 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1600 /* ??? Need to determine shift amount from operand size. */
1601 addend >>= howto->rightshift;
1602 #endif
1603 value += addend;
1604
1605 /* ??? Isn't value unsigned? */
1606 if ((long) value > 0x1f || (long) value < -0x10)
1607 return bfd_reloc_overflow;
1608
1609 /* ??? Value needs to be properly shifted into place first. */
1610 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
1611 bfd_put_16 (input_bfd, value, hit_data);
1612 return bfd_reloc_ok;
1613
1614 #ifndef OLD_ARM_ABI
1615 case R_ARM_THM_XPC22:
1616 #endif
1617 case R_ARM_THM_PC22:
1618 /* Thumb BL (branch long instruction). */
1619 {
1620 bfd_vma relocation;
1621 bfd_boolean overflow = FALSE;
1622 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
1623 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
1624 bfd_signed_vma reloc_signed_max = ((1 << (howto->bitsize - 1)) - 1) >> howto->rightshift;
1625 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1626 bfd_vma check;
1627 bfd_signed_vma signed_check;
1628
1629 #if USE_REL
1630 /* Need to refetch the addend and squish the two 11 bit pieces
1631 together. */
1632 {
1633 bfd_vma upper = upper_insn & 0x7ff;
1634 bfd_vma lower = lower_insn & 0x7ff;
1635 upper = (upper ^ 0x400) - 0x400; /* Sign extend. */
1636 addend = (upper << 12) | (lower << 1);
1637 signed_addend = addend;
1638 }
1639 #endif
1640 #ifndef OLD_ARM_ABI
1641 if (r_type == R_ARM_THM_XPC22)
1642 {
1643 /* Check for Thumb to Thumb call. */
1644 /* FIXME: Should we translate the instruction into a BL
1645 instruction instead ? */
1646 if (sym_flags == STT_ARM_TFUNC)
1647 (*_bfd_error_handler) (_("\
1648 %s: Warning: Thumb BLX instruction targets thumb function '%s'."),
1649 bfd_archive_filename (input_bfd),
1650 h ? h->root.root.string : "(local)");
1651 }
1652 else
1653 #endif
1654 {
1655 /* If it is not a call to Thumb, assume call to Arm.
1656 If it is a call relative to a section name, then it is not a
1657 function call at all, but rather a long jump. */
1658 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION)
1659 {
1660 if (elf32_thumb_to_arm_stub
1661 (info, sym_name, input_bfd, output_bfd, input_section,
1662 hit_data, sym_sec, rel->r_offset, signed_addend, value))
1663 return bfd_reloc_ok;
1664 else
1665 return bfd_reloc_dangerous;
1666 }
1667 }
1668
1669 relocation = value + signed_addend;
1670
1671 relocation -= (input_section->output_section->vma
1672 + input_section->output_offset
1673 + rel->r_offset);
1674
1675 if (! globals->no_pipeline_knowledge)
1676 {
1677 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form. */
1678
1679 i_ehdrp = elf_elfheader (input_bfd);
1680
1681 /* Previous versions of this code also used to add in the pipline
1682 offset here. This is wrong because the linker is not supposed
1683 to know about such things, and one day it might change. In order
1684 to support old binaries that need the old behaviour however, so
1685 we attempt to detect which ABI was used to create the reloc. */
1686 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1687 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0
1688 || i_ehdrp->e_ident[EI_OSABI] == 0)
1689 relocation += 4;
1690 }
1691
1692 check = relocation >> howto->rightshift;
1693
1694 /* If this is a signed value, the rightshift just dropped
1695 leading 1 bits (assuming twos complement). */
1696 if ((bfd_signed_vma) relocation >= 0)
1697 signed_check = check;
1698 else
1699 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
1700
1701 /* Assumes two's complement. */
1702 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1703 overflow = TRUE;
1704
1705 #ifndef OLD_ARM_ABI
1706 if (r_type == R_ARM_THM_XPC22
1707 && ((lower_insn & 0x1800) == 0x0800))
1708 /* For a BLX instruction, make sure that the relocation is rounded up
1709 to a word boundary. This follows the semantics of the instruction
1710 which specifies that bit 1 of the target address will come from bit
1711 1 of the base address. */
1712 relocation = (relocation + 2) & ~ 3;
1713 #endif
1714 /* Put RELOCATION back into the insn. */
1715 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 12) & 0x7ff);
1716 lower_insn = (lower_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 1) & 0x7ff);
1717
1718 /* Put the relocated value back in the object file: */
1719 bfd_put_16 (input_bfd, upper_insn, hit_data);
1720 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
1721
1722 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
1723 }
1724 break;
1725
1726 case R_ARM_THM_PC11:
1727 /* Thumb B (branch) instruction). */
1728 {
1729 bfd_signed_vma relocation;
1730 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
1731 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1732 bfd_signed_vma signed_check;
1733
1734 #if USE_REL
1735 /* Need to refetch addend. */
1736 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1737 if (addend & ((howto->src_mask + 1) >> 1))
1738 {
1739 signed_addend = -1;
1740 signed_addend &= ~ howto->src_mask;
1741 signed_addend |= addend;
1742 }
1743 else
1744 signed_addend = addend;
1745 /* The value in the insn has been right shifted. We need to
1746 undo this, so that we can perform the address calculation
1747 in terms of bytes. */
1748 signed_addend <<= howto->rightshift;
1749 #endif
1750 relocation = value + signed_addend;
1751
1752 relocation -= (input_section->output_section->vma
1753 + input_section->output_offset
1754 + rel->r_offset);
1755
1756 relocation >>= howto->rightshift;
1757 signed_check = relocation;
1758 relocation &= howto->dst_mask;
1759 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
1760
1761 bfd_put_16 (input_bfd, relocation, hit_data);
1762
1763 /* Assumes two's complement. */
1764 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1765 return bfd_reloc_overflow;
1766
1767 return bfd_reloc_ok;
1768 }
1769
1770 case R_ARM_ALU_PCREL7_0:
1771 case R_ARM_ALU_PCREL15_8:
1772 case R_ARM_ALU_PCREL23_15:
1773 {
1774 bfd_vma insn;
1775 bfd_vma relocation;
1776
1777 insn = bfd_get_32 (input_bfd, hit_data);
1778 #if USE_REL
1779 /* Extract the addend. */
1780 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
1781 signed_addend = addend;
1782 #endif
1783 relocation = value + signed_addend;
1784
1785 relocation -= (input_section->output_section->vma
1786 + input_section->output_offset
1787 + rel->r_offset);
1788 insn = (insn & ~0xfff)
1789 | ((howto->bitpos << 7) & 0xf00)
1790 | ((relocation >> howto->bitpos) & 0xff);
1791 bfd_put_32 (input_bfd, value, hit_data);
1792 }
1793 return bfd_reloc_ok;
1794
1795 case R_ARM_GNU_VTINHERIT:
1796 case R_ARM_GNU_VTENTRY:
1797 return bfd_reloc_ok;
1798
1799 case R_ARM_COPY:
1800 return bfd_reloc_notsupported;
1801
1802 case R_ARM_GLOB_DAT:
1803 return bfd_reloc_notsupported;
1804
1805 case R_ARM_JUMP_SLOT:
1806 return bfd_reloc_notsupported;
1807
1808 case R_ARM_RELATIVE:
1809 return bfd_reloc_notsupported;
1810
1811 case R_ARM_GOTOFF:
1812 /* Relocation is relative to the start of the
1813 global offset table. */
1814
1815 BFD_ASSERT (sgot != NULL);
1816 if (sgot == NULL)
1817 return bfd_reloc_notsupported;
1818
1819 /* If we are addressing a Thumb function, we need to adjust the
1820 address by one, so that attempts to call the function pointer will
1821 correctly interpret it as Thumb code. */
1822 if (sym_flags == STT_ARM_TFUNC)
1823 value += 1;
1824
1825 /* Note that sgot->output_offset is not involved in this
1826 calculation. We always want the start of .got. If we
1827 define _GLOBAL_OFFSET_TABLE in a different way, as is
1828 permitted by the ABI, we might have to change this
1829 calculation. */
1830 value -= sgot->output_section->vma;
1831 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1832 contents, rel->r_offset, value,
1833 (bfd_vma) 0);
1834
1835 case R_ARM_GOTPC:
1836 /* Use global offset table as symbol value. */
1837 BFD_ASSERT (sgot != NULL);
1838
1839 if (sgot == NULL)
1840 return bfd_reloc_notsupported;
1841
1842 value = sgot->output_section->vma;
1843 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1844 contents, rel->r_offset, value,
1845 (bfd_vma) 0);
1846
1847 case R_ARM_GOT32:
1848 /* Relocation is to the entry for this symbol in the
1849 global offset table. */
1850 if (sgot == NULL)
1851 return bfd_reloc_notsupported;
1852
1853 if (h != NULL)
1854 {
1855 bfd_vma off;
1856 bfd_boolean dyn;
1857
1858 off = h->got.offset;
1859 BFD_ASSERT (off != (bfd_vma) -1);
1860 dyn = globals->root.dynamic_sections_created;
1861
1862 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
1863 || (info->shared
1864 && SYMBOL_REFERENCES_LOCAL (info, h))
1865 || (ELF_ST_VISIBILITY (h->other)
1866 && h->root.type == bfd_link_hash_undefweak))
1867 {
1868 /* This is actually a static link, or it is a -Bsymbolic link
1869 and the symbol is defined locally. We must initialize this
1870 entry in the global offset table. Since the offset must
1871 always be a multiple of 4, we use the least significant bit
1872 to record whether we have initialized it already.
1873
1874 When doing a dynamic link, we create a .rel.got relocation
1875 entry to initialize the value. This is done in the
1876 finish_dynamic_symbol routine. */
1877 if ((off & 1) != 0)
1878 off &= ~1;
1879 else
1880 {
1881 /* If we are addressing a Thumb function, we need to
1882 adjust the address by one, so that attempts to
1883 call the function pointer will correctly
1884 interpret it as Thumb code. */
1885 if (sym_flags == STT_ARM_TFUNC)
1886 value |= 1;
1887
1888 bfd_put_32 (output_bfd, value, sgot->contents + off);
1889 h->got.offset |= 1;
1890 }
1891 }
1892
1893 value = sgot->output_offset + off;
1894 }
1895 else
1896 {
1897 bfd_vma off;
1898
1899 BFD_ASSERT (local_got_offsets != NULL &&
1900 local_got_offsets[r_symndx] != (bfd_vma) -1);
1901
1902 off = local_got_offsets[r_symndx];
1903
1904 /* The offset must always be a multiple of 4. We use the
1905 least significant bit to record whether we have already
1906 generated the necessary reloc. */
1907 if ((off & 1) != 0)
1908 off &= ~1;
1909 else
1910 {
1911 bfd_put_32 (output_bfd, value, sgot->contents + off);
1912
1913 if (info->shared)
1914 {
1915 asection * srelgot;
1916 Elf_Internal_Rela outrel;
1917 bfd_byte *loc;
1918
1919 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
1920 BFD_ASSERT (srelgot != NULL);
1921
1922 outrel.r_offset = (sgot->output_section->vma
1923 + sgot->output_offset
1924 + off);
1925 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1926 loc = srelgot->contents;
1927 loc += srelgot->reloc_count++ * sizeof (Elf32_External_Rel);
1928 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
1929 }
1930
1931 local_got_offsets[r_symndx] |= 1;
1932 }
1933
1934 value = sgot->output_offset + off;
1935 }
1936
1937 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1938 contents, rel->r_offset, value,
1939 (bfd_vma) 0);
1940
1941 case R_ARM_SBREL32:
1942 return bfd_reloc_notsupported;
1943
1944 case R_ARM_AMP_VCALL9:
1945 return bfd_reloc_notsupported;
1946
1947 case R_ARM_RSBREL32:
1948 return bfd_reloc_notsupported;
1949
1950 case R_ARM_THM_RPC22:
1951 return bfd_reloc_notsupported;
1952
1953 case R_ARM_RREL32:
1954 return bfd_reloc_notsupported;
1955
1956 case R_ARM_RABS32:
1957 return bfd_reloc_notsupported;
1958
1959 case R_ARM_RPC24:
1960 return bfd_reloc_notsupported;
1961
1962 case R_ARM_RBASE:
1963 return bfd_reloc_notsupported;
1964
1965 default:
1966 return bfd_reloc_notsupported;
1967 }
1968 }
1969
1970 #if USE_REL
1971 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
1972 static void
1973 arm_add_to_rel (abfd, address, howto, increment)
1974 bfd * abfd;
1975 bfd_byte * address;
1976 reloc_howto_type * howto;
1977 bfd_signed_vma increment;
1978 {
1979 bfd_signed_vma addend;
1980
1981 if (howto->type == R_ARM_THM_PC22)
1982 {
1983 int upper_insn, lower_insn;
1984 int upper, lower;
1985
1986 upper_insn = bfd_get_16 (abfd, address);
1987 lower_insn = bfd_get_16 (abfd, address + 2);
1988 upper = upper_insn & 0x7ff;
1989 lower = lower_insn & 0x7ff;
1990
1991 addend = (upper << 12) | (lower << 1);
1992 addend += increment;
1993 addend >>= 1;
1994
1995 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
1996 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
1997
1998 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
1999 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
2000 }
2001 else
2002 {
2003 bfd_vma contents;
2004
2005 contents = bfd_get_32 (abfd, address);
2006
2007 /* Get the (signed) value from the instruction. */
2008 addend = contents & howto->src_mask;
2009 if (addend & ((howto->src_mask + 1) >> 1))
2010 {
2011 bfd_signed_vma mask;
2012
2013 mask = -1;
2014 mask &= ~ howto->src_mask;
2015 addend |= mask;
2016 }
2017
2018 /* Add in the increment, (which is a byte value). */
2019 switch (howto->type)
2020 {
2021 default:
2022 addend += increment;
2023 break;
2024
2025 case R_ARM_PC24:
2026 addend <<= howto->size;
2027 addend += increment;
2028
2029 /* Should we check for overflow here ? */
2030
2031 /* Drop any undesired bits. */
2032 addend >>= howto->rightshift;
2033 break;
2034 }
2035
2036 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
2037
2038 bfd_put_32 (abfd, contents, address);
2039 }
2040 }
2041 #endif /* USE_REL */
2042
2043 /* Relocate an ARM ELF section. */
2044 static bfd_boolean
2045 elf32_arm_relocate_section (output_bfd, info, input_bfd, input_section,
2046 contents, relocs, local_syms, local_sections)
2047 bfd *output_bfd;
2048 struct bfd_link_info *info;
2049 bfd *input_bfd;
2050 asection *input_section;
2051 bfd_byte *contents;
2052 Elf_Internal_Rela *relocs;
2053 Elf_Internal_Sym *local_syms;
2054 asection **local_sections;
2055 {
2056 Elf_Internal_Shdr *symtab_hdr;
2057 struct elf_link_hash_entry **sym_hashes;
2058 Elf_Internal_Rela *rel;
2059 Elf_Internal_Rela *relend;
2060 const char *name;
2061
2062 #if !USE_REL
2063 if (info->relocatable)
2064 return TRUE;
2065 #endif
2066
2067 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
2068 sym_hashes = elf_sym_hashes (input_bfd);
2069
2070 rel = relocs;
2071 relend = relocs + input_section->reloc_count;
2072 for (; rel < relend; rel++)
2073 {
2074 int r_type;
2075 reloc_howto_type * howto;
2076 unsigned long r_symndx;
2077 Elf_Internal_Sym * sym;
2078 asection * sec;
2079 struct elf_link_hash_entry * h;
2080 bfd_vma relocation;
2081 bfd_reloc_status_type r;
2082 arelent bfd_reloc;
2083
2084 r_symndx = ELF32_R_SYM (rel->r_info);
2085 r_type = ELF32_R_TYPE (rel->r_info);
2086
2087 if ( r_type == R_ARM_GNU_VTENTRY
2088 || r_type == R_ARM_GNU_VTINHERIT)
2089 continue;
2090
2091 elf32_arm_info_to_howto (input_bfd, & bfd_reloc, rel);
2092 howto = bfd_reloc.howto;
2093
2094 #if USE_REL
2095 if (info->relocatable)
2096 {
2097 /* This is a relocatable link. We don't have to change
2098 anything, unless the reloc is against a section symbol,
2099 in which case we have to adjust according to where the
2100 section symbol winds up in the output section. */
2101 if (r_symndx < symtab_hdr->sh_info)
2102 {
2103 sym = local_syms + r_symndx;
2104 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2105 {
2106 sec = local_sections[r_symndx];
2107 arm_add_to_rel (input_bfd, contents + rel->r_offset,
2108 howto,
2109 (bfd_signed_vma) (sec->output_offset
2110 + sym->st_value));
2111 }
2112 }
2113
2114 continue;
2115 }
2116 #endif
2117
2118 /* This is a final link. */
2119 h = NULL;
2120 sym = NULL;
2121 sec = NULL;
2122
2123 if (r_symndx < symtab_hdr->sh_info)
2124 {
2125 sym = local_syms + r_symndx;
2126 sec = local_sections[r_symndx];
2127 #if USE_REL
2128 relocation = (sec->output_section->vma
2129 + sec->output_offset
2130 + sym->st_value);
2131 if ((sec->flags & SEC_MERGE)
2132 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2133 {
2134 asection *msec;
2135 bfd_vma addend, value;
2136
2137 if (howto->rightshift)
2138 {
2139 (*_bfd_error_handler)
2140 (_("%s(%s+0x%lx): %s relocation against SEC_MERGE section"),
2141 bfd_archive_filename (input_bfd),
2142 bfd_get_section_name (input_bfd, input_section),
2143 (long) rel->r_offset, howto->name);
2144 return FALSE;
2145 }
2146
2147 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
2148
2149 /* Get the (signed) value from the instruction. */
2150 addend = value & howto->src_mask;
2151 if (addend & ((howto->src_mask + 1) >> 1))
2152 {
2153 bfd_signed_vma mask;
2154
2155 mask = -1;
2156 mask &= ~ howto->src_mask;
2157 addend |= mask;
2158 }
2159 msec = sec;
2160 addend =
2161 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
2162 - relocation;
2163 addend += msec->output_section->vma + msec->output_offset;
2164 value = (value & ~ howto->dst_mask) | (addend & howto->dst_mask);
2165 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
2166 }
2167 #else
2168 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2169 #endif
2170 }
2171 else
2172 {
2173 bfd_boolean warned;
2174 bfd_boolean unresolved_reloc;
2175
2176 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2177 r_symndx, symtab_hdr, sym_hashes,
2178 h, sec, relocation,
2179 unresolved_reloc, warned);
2180
2181 if (unresolved_reloc || relocation != 0)
2182 {
2183 /* In these cases, we don't need the relocation value.
2184 We check specially because in some obscure cases
2185 sec->output_section will be NULL. */
2186 switch (r_type)
2187 {
2188 case R_ARM_PC24:
2189 case R_ARM_ABS32:
2190 case R_ARM_THM_PC22:
2191 if (info->shared
2192 && (
2193 (!info->symbolic && h->dynindx != -1)
2194 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
2195 )
2196 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2197 && ((input_section->flags & SEC_ALLOC) != 0
2198 /* DWARF will emit R_ARM_ABS32 relocations in its
2199 sections against symbols defined externally
2200 in shared libraries. We can't do anything
2201 with them here. */
2202 || ((input_section->flags & SEC_DEBUGGING) != 0
2203 && (h->elf_link_hash_flags
2204 & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
2205 )
2206 relocation = 0;
2207 break;
2208
2209 case R_ARM_GOTPC:
2210 relocation = 0;
2211 break;
2212
2213 case R_ARM_GOT32:
2214 if ((WILL_CALL_FINISH_DYNAMIC_SYMBOL
2215 (elf_hash_table (info)->dynamic_sections_created,
2216 info->shared, h))
2217 && (!info->shared
2218 || (!info->symbolic && h->dynindx != -1)
2219 || (h->elf_link_hash_flags
2220 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2221 relocation = 0;
2222 break;
2223
2224 case R_ARM_PLT32:
2225 if (h->plt.offset != (bfd_vma)-1)
2226 relocation = 0;
2227 break;
2228
2229 default:
2230 if (unresolved_reloc)
2231 _bfd_error_handler
2232 (_("%s: warning: unresolvable relocation %d against symbol `%s' from %s section"),
2233 bfd_archive_filename (input_bfd),
2234 r_type,
2235 h->root.root.string,
2236 bfd_get_section_name (input_bfd, input_section));
2237 break;
2238 }
2239 }
2240 }
2241
2242 if (h != NULL)
2243 name = h->root.root.string;
2244 else
2245 {
2246 name = (bfd_elf_string_from_elf_section
2247 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2248 if (name == NULL || *name == '\0')
2249 name = bfd_section_name (input_bfd, sec);
2250 }
2251
2252 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
2253 input_section, contents, rel,
2254 relocation, info, sec, name,
2255 (h ? ELF_ST_TYPE (h->type) :
2256 ELF_ST_TYPE (sym->st_info)), h);
2257
2258 if (r != bfd_reloc_ok)
2259 {
2260 const char * msg = (const char *) 0;
2261
2262 switch (r)
2263 {
2264 case bfd_reloc_overflow:
2265 /* If the overflowing reloc was to an undefined symbol,
2266 we have already printed one error message and there
2267 is no point complaining again. */
2268 if ((! h ||
2269 h->root.type != bfd_link_hash_undefined)
2270 && (!((*info->callbacks->reloc_overflow)
2271 (info, name, howto->name, (bfd_vma) 0,
2272 input_bfd, input_section, rel->r_offset))))
2273 return FALSE;
2274 break;
2275
2276 case bfd_reloc_undefined:
2277 if (!((*info->callbacks->undefined_symbol)
2278 (info, name, input_bfd, input_section,
2279 rel->r_offset, TRUE)))
2280 return FALSE;
2281 break;
2282
2283 case bfd_reloc_outofrange:
2284 msg = _("internal error: out of range error");
2285 goto common_error;
2286
2287 case bfd_reloc_notsupported:
2288 msg = _("internal error: unsupported relocation error");
2289 goto common_error;
2290
2291 case bfd_reloc_dangerous:
2292 msg = _("internal error: dangerous error");
2293 goto common_error;
2294
2295 default:
2296 msg = _("internal error: unknown error");
2297 /* fall through */
2298
2299 common_error:
2300 if (!((*info->callbacks->warning)
2301 (info, msg, name, input_bfd, input_section,
2302 rel->r_offset)))
2303 return FALSE;
2304 break;
2305 }
2306 }
2307 }
2308
2309 return TRUE;
2310 }
2311
2312 /* Set the right machine number. */
2313
2314 static bfd_boolean
2315 elf32_arm_object_p (abfd)
2316 bfd *abfd;
2317 {
2318 unsigned int mach;
2319
2320 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
2321
2322 if (mach != bfd_mach_arm_unknown)
2323 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
2324
2325 else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
2326 bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
2327
2328 else
2329 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
2330
2331 return TRUE;
2332 }
2333
2334 /* Function to keep ARM specific flags in the ELF header. */
2335 static bfd_boolean
2336 elf32_arm_set_private_flags (abfd, flags)
2337 bfd *abfd;
2338 flagword flags;
2339 {
2340 if (elf_flags_init (abfd)
2341 && elf_elfheader (abfd)->e_flags != flags)
2342 {
2343 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
2344 {
2345 if (flags & EF_ARM_INTERWORK)
2346 (*_bfd_error_handler) (_("\
2347 Warning: Not setting interworking flag of %s since it has already been specified as non-interworking"),
2348 bfd_archive_filename (abfd));
2349 else
2350 _bfd_error_handler (_("\
2351 Warning: Clearing the interworking flag of %s due to outside request"),
2352 bfd_archive_filename (abfd));
2353 }
2354 }
2355 else
2356 {
2357 elf_elfheader (abfd)->e_flags = flags;
2358 elf_flags_init (abfd) = TRUE;
2359 }
2360
2361 return TRUE;
2362 }
2363
2364 /* Copy backend specific data from one object module to another. */
2365
2366 static bfd_boolean
2367 elf32_arm_copy_private_bfd_data (ibfd, obfd)
2368 bfd *ibfd;
2369 bfd *obfd;
2370 {
2371 flagword in_flags;
2372 flagword out_flags;
2373
2374 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2375 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2376 return TRUE;
2377
2378 in_flags = elf_elfheader (ibfd)->e_flags;
2379 out_flags = elf_elfheader (obfd)->e_flags;
2380
2381 if (elf_flags_init (obfd)
2382 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
2383 && in_flags != out_flags)
2384 {
2385 /* Cannot mix APCS26 and APCS32 code. */
2386 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2387 return FALSE;
2388
2389 /* Cannot mix float APCS and non-float APCS code. */
2390 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2391 return FALSE;
2392
2393 /* If the src and dest have different interworking flags
2394 then turn off the interworking bit. */
2395 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2396 {
2397 if (out_flags & EF_ARM_INTERWORK)
2398 _bfd_error_handler (_("\
2399 Warning: Clearing the interworking flag of %s because non-interworking code in %s has been linked with it"),
2400 bfd_get_filename (obfd),
2401 bfd_archive_filename (ibfd));
2402
2403 in_flags &= ~EF_ARM_INTERWORK;
2404 }
2405
2406 /* Likewise for PIC, though don't warn for this case. */
2407 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
2408 in_flags &= ~EF_ARM_PIC;
2409 }
2410
2411 elf_elfheader (obfd)->e_flags = in_flags;
2412 elf_flags_init (obfd) = TRUE;
2413
2414 return TRUE;
2415 }
2416
2417 /* Merge backend specific data from an object file to the output
2418 object file when linking. */
2419
2420 static bfd_boolean
2421 elf32_arm_merge_private_bfd_data (ibfd, obfd)
2422 bfd * ibfd;
2423 bfd * obfd;
2424 {
2425 flagword out_flags;
2426 flagword in_flags;
2427 bfd_boolean flags_compatible = TRUE;
2428 asection *sec;
2429
2430 /* Check if we have the same endianess. */
2431 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
2432 return FALSE;
2433
2434 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2435 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2436 return TRUE;
2437
2438 /* The input BFD must have had its flags initialised. */
2439 /* The following seems bogus to me -- The flags are initialized in
2440 the assembler but I don't think an elf_flags_init field is
2441 written into the object. */
2442 /* BFD_ASSERT (elf_flags_init (ibfd)); */
2443
2444 in_flags = elf_elfheader (ibfd)->e_flags;
2445 out_flags = elf_elfheader (obfd)->e_flags;
2446
2447 if (!elf_flags_init (obfd))
2448 {
2449 /* If the input is the default architecture and had the default
2450 flags then do not bother setting the flags for the output
2451 architecture, instead allow future merges to do this. If no
2452 future merges ever set these flags then they will retain their
2453 uninitialised values, which surprise surprise, correspond
2454 to the default values. */
2455 if (bfd_get_arch_info (ibfd)->the_default
2456 && elf_elfheader (ibfd)->e_flags == 0)
2457 return TRUE;
2458
2459 elf_flags_init (obfd) = TRUE;
2460 elf_elfheader (obfd)->e_flags = in_flags;
2461
2462 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2463 && bfd_get_arch_info (obfd)->the_default)
2464 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
2465
2466 return TRUE;
2467 }
2468
2469 /* Determine what should happen if the input ARM architecture
2470 does not match the output ARM architecture. */
2471 if (! bfd_arm_merge_machines (ibfd, obfd))
2472 return FALSE;
2473
2474 /* Identical flags must be compatible. */
2475 if (in_flags == out_flags)
2476 return TRUE;
2477
2478 /* Check to see if the input BFD actually contains any sections. If
2479 not, its flags may not have been initialised either, but it
2480 cannot actually cause any incompatibility. Do not short-circuit
2481 dynamic objects; their section list may be emptied by
2482 elf_link_add_object_symbols.
2483
2484 Also check to see if there are no code sections in the input.
2485 In this case there is no need to check for code specific flags.
2486 XXX - do we need to worry about floating-point format compatability
2487 in data sections ? */
2488 if (!(ibfd->flags & DYNAMIC))
2489 {
2490 bfd_boolean null_input_bfd = TRUE;
2491 bfd_boolean only_data_sections = TRUE;
2492
2493 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2494 {
2495 /* Ignore synthetic glue sections. */
2496 if (strcmp (sec->name, ".glue_7")
2497 && strcmp (sec->name, ".glue_7t"))
2498 {
2499 if ((bfd_get_section_flags (ibfd, sec)
2500 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
2501 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
2502 only_data_sections = FALSE;
2503
2504 null_input_bfd = FALSE;
2505 break;
2506 }
2507 }
2508
2509 if (null_input_bfd || only_data_sections)
2510 return TRUE;
2511 }
2512
2513 /* Complain about various flag mismatches. */
2514 if (EF_ARM_EABI_VERSION (in_flags) != EF_ARM_EABI_VERSION (out_flags))
2515 {
2516 _bfd_error_handler (_("\
2517 ERROR: %s is compiled for EABI version %d, whereas %s is compiled for version %d"),
2518 bfd_archive_filename (ibfd),
2519 (in_flags & EF_ARM_EABIMASK) >> 24,
2520 bfd_get_filename (obfd),
2521 (out_flags & EF_ARM_EABIMASK) >> 24);
2522 return FALSE;
2523 }
2524
2525 /* Not sure what needs to be checked for EABI versions >= 1. */
2526 if (EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
2527 {
2528 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2529 {
2530 _bfd_error_handler (_("\
2531 ERROR: %s is compiled for APCS-%d, whereas target %s uses APCS-%d"),
2532 bfd_archive_filename (ibfd),
2533 in_flags & EF_ARM_APCS_26 ? 26 : 32,
2534 bfd_get_filename (obfd),
2535 out_flags & EF_ARM_APCS_26 ? 26 : 32);
2536 flags_compatible = FALSE;
2537 }
2538
2539 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2540 {
2541 if (in_flags & EF_ARM_APCS_FLOAT)
2542 _bfd_error_handler (_("\
2543 ERROR: %s passes floats in float registers, whereas %s passes them in integer registers"),
2544 bfd_archive_filename (ibfd),
2545 bfd_get_filename (obfd));
2546 else
2547 _bfd_error_handler (_("\
2548 ERROR: %s passes floats in integer registers, whereas %s passes them in float registers"),
2549 bfd_archive_filename (ibfd),
2550 bfd_get_filename (obfd));
2551
2552 flags_compatible = FALSE;
2553 }
2554
2555 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
2556 {
2557 if (in_flags & EF_ARM_VFP_FLOAT)
2558 _bfd_error_handler (_("\
2559 ERROR: %s uses VFP instructions, whereas %s does not"),
2560 bfd_archive_filename (ibfd),
2561 bfd_get_filename (obfd));
2562 else
2563 _bfd_error_handler (_("\
2564 ERROR: %s uses FPA instructions, whereas %s does not"),
2565 bfd_archive_filename (ibfd),
2566 bfd_get_filename (obfd));
2567
2568 flags_compatible = FALSE;
2569 }
2570
2571 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
2572 {
2573 if (in_flags & EF_ARM_MAVERICK_FLOAT)
2574 _bfd_error_handler (_("\
2575 ERROR: %s uses Maverick instructions, whereas %s does not"),
2576 bfd_archive_filename (ibfd),
2577 bfd_get_filename (obfd));
2578 else
2579 _bfd_error_handler (_("\
2580 ERROR: %s does not use Maverick instructions, whereas %s does"),
2581 bfd_archive_filename (ibfd),
2582 bfd_get_filename (obfd));
2583
2584 flags_compatible = FALSE;
2585 }
2586
2587 #ifdef EF_ARM_SOFT_FLOAT
2588 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
2589 {
2590 /* We can allow interworking between code that is VFP format
2591 layout, and uses either soft float or integer regs for
2592 passing floating point arguments and results. We already
2593 know that the APCS_FLOAT flags match; similarly for VFP
2594 flags. */
2595 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
2596 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
2597 {
2598 if (in_flags & EF_ARM_SOFT_FLOAT)
2599 _bfd_error_handler (_("\
2600 ERROR: %s uses software FP, whereas %s uses hardware FP"),
2601 bfd_archive_filename (ibfd),
2602 bfd_get_filename (obfd));
2603 else
2604 _bfd_error_handler (_("\
2605 ERROR: %s uses hardware FP, whereas %s uses software FP"),
2606 bfd_archive_filename (ibfd),
2607 bfd_get_filename (obfd));
2608
2609 flags_compatible = FALSE;
2610 }
2611 }
2612 #endif
2613
2614 /* Interworking mismatch is only a warning. */
2615 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2616 {
2617 if (in_flags & EF_ARM_INTERWORK)
2618 {
2619 _bfd_error_handler (_("\
2620 Warning: %s supports interworking, whereas %s does not"),
2621 bfd_archive_filename (ibfd),
2622 bfd_get_filename (obfd));
2623 }
2624 else
2625 {
2626 _bfd_error_handler (_("\
2627 Warning: %s does not support interworking, whereas %s does"),
2628 bfd_archive_filename (ibfd),
2629 bfd_get_filename (obfd));
2630 }
2631 }
2632 }
2633
2634 return flags_compatible;
2635 }
2636
2637 /* Display the flags field. */
2638
2639 static bfd_boolean
2640 elf32_arm_print_private_bfd_data (abfd, ptr)
2641 bfd *abfd;
2642 PTR ptr;
2643 {
2644 FILE * file = (FILE *) ptr;
2645 unsigned long flags;
2646
2647 BFD_ASSERT (abfd != NULL && ptr != NULL);
2648
2649 /* Print normal ELF private data. */
2650 _bfd_elf_print_private_bfd_data (abfd, ptr);
2651
2652 flags = elf_elfheader (abfd)->e_flags;
2653 /* Ignore init flag - it may not be set, despite the flags field
2654 containing valid data. */
2655
2656 /* xgettext:c-format */
2657 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
2658
2659 switch (EF_ARM_EABI_VERSION (flags))
2660 {
2661 case EF_ARM_EABI_UNKNOWN:
2662 /* The following flag bits are GNU extensions and not part of the
2663 official ARM ELF extended ABI. Hence they are only decoded if
2664 the EABI version is not set. */
2665 if (flags & EF_ARM_INTERWORK)
2666 fprintf (file, _(" [interworking enabled]"));
2667
2668 if (flags & EF_ARM_APCS_26)
2669 fprintf (file, " [APCS-26]");
2670 else
2671 fprintf (file, " [APCS-32]");
2672
2673 if (flags & EF_ARM_VFP_FLOAT)
2674 fprintf (file, _(" [VFP float format]"));
2675 else if (flags & EF_ARM_MAVERICK_FLOAT)
2676 fprintf (file, _(" [Maverick float format]"));
2677 else
2678 fprintf (file, _(" [FPA float format]"));
2679
2680 if (flags & EF_ARM_APCS_FLOAT)
2681 fprintf (file, _(" [floats passed in float registers]"));
2682
2683 if (flags & EF_ARM_PIC)
2684 fprintf (file, _(" [position independent]"));
2685
2686 if (flags & EF_ARM_NEW_ABI)
2687 fprintf (file, _(" [new ABI]"));
2688
2689 if (flags & EF_ARM_OLD_ABI)
2690 fprintf (file, _(" [old ABI]"));
2691
2692 if (flags & EF_ARM_SOFT_FLOAT)
2693 fprintf (file, _(" [software FP]"));
2694
2695 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
2696 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
2697 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
2698 | EF_ARM_MAVERICK_FLOAT);
2699 break;
2700
2701 case EF_ARM_EABI_VER1:
2702 fprintf (file, _(" [Version1 EABI]"));
2703
2704 if (flags & EF_ARM_SYMSARESORTED)
2705 fprintf (file, _(" [sorted symbol table]"));
2706 else
2707 fprintf (file, _(" [unsorted symbol table]"));
2708
2709 flags &= ~ EF_ARM_SYMSARESORTED;
2710 break;
2711
2712 case EF_ARM_EABI_VER2:
2713 fprintf (file, _(" [Version2 EABI]"));
2714
2715 if (flags & EF_ARM_SYMSARESORTED)
2716 fprintf (file, _(" [sorted symbol table]"));
2717 else
2718 fprintf (file, _(" [unsorted symbol table]"));
2719
2720 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
2721 fprintf (file, _(" [dynamic symbols use segment index]"));
2722
2723 if (flags & EF_ARM_MAPSYMSFIRST)
2724 fprintf (file, _(" [mapping symbols precede others]"));
2725
2726 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
2727 | EF_ARM_MAPSYMSFIRST);
2728 break;
2729
2730 case EF_ARM_EABI_VER3:
2731 fprintf (file, _(" [Version3 EABI]"));
2732
2733 if (flags & EF_ARM_BE8)
2734 fprintf (file, _(" [BE8]"));
2735
2736 if (flags & EF_ARM_LE8)
2737 fprintf (file, _(" [LE8]"));
2738
2739 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
2740 break;
2741
2742 default:
2743 fprintf (file, _(" <EABI version unrecognised>"));
2744 break;
2745 }
2746
2747 flags &= ~ EF_ARM_EABIMASK;
2748
2749 if (flags & EF_ARM_RELEXEC)
2750 fprintf (file, _(" [relocatable executable]"));
2751
2752 if (flags & EF_ARM_HASENTRY)
2753 fprintf (file, _(" [has entry point]"));
2754
2755 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
2756
2757 if (flags)
2758 fprintf (file, _("<Unrecognised flag bits set>"));
2759
2760 fputc ('\n', file);
2761
2762 return TRUE;
2763 }
2764
2765 static int
2766 elf32_arm_get_symbol_type (elf_sym, type)
2767 Elf_Internal_Sym * elf_sym;
2768 int type;
2769 {
2770 switch (ELF_ST_TYPE (elf_sym->st_info))
2771 {
2772 case STT_ARM_TFUNC:
2773 return ELF_ST_TYPE (elf_sym->st_info);
2774
2775 case STT_ARM_16BIT:
2776 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
2777 This allows us to distinguish between data used by Thumb instructions
2778 and non-data (which is probably code) inside Thumb regions of an
2779 executable. */
2780 if (type != STT_OBJECT)
2781 return ELF_ST_TYPE (elf_sym->st_info);
2782 break;
2783
2784 default:
2785 break;
2786 }
2787
2788 return type;
2789 }
2790
2791 static asection *
2792 elf32_arm_gc_mark_hook (sec, info, rel, h, sym)
2793 asection *sec;
2794 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2795 Elf_Internal_Rela *rel;
2796 struct elf_link_hash_entry *h;
2797 Elf_Internal_Sym *sym;
2798 {
2799 if (h != NULL)
2800 {
2801 switch (ELF32_R_TYPE (rel->r_info))
2802 {
2803 case R_ARM_GNU_VTINHERIT:
2804 case R_ARM_GNU_VTENTRY:
2805 break;
2806
2807 default:
2808 switch (h->root.type)
2809 {
2810 case bfd_link_hash_defined:
2811 case bfd_link_hash_defweak:
2812 return h->root.u.def.section;
2813
2814 case bfd_link_hash_common:
2815 return h->root.u.c.p->section;
2816
2817 default:
2818 break;
2819 }
2820 }
2821 }
2822 else
2823 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
2824
2825 return NULL;
2826 }
2827
2828 /* Update the got entry reference counts for the section being removed. */
2829
2830 static bfd_boolean
2831 elf32_arm_gc_sweep_hook (abfd, info, sec, relocs)
2832 bfd *abfd ATTRIBUTE_UNUSED;
2833 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2834 asection *sec ATTRIBUTE_UNUSED;
2835 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
2836 {
2837 Elf_Internal_Shdr *symtab_hdr;
2838 struct elf_link_hash_entry **sym_hashes;
2839 bfd_signed_vma *local_got_refcounts;
2840 const Elf_Internal_Rela *rel, *relend;
2841 unsigned long r_symndx;
2842 struct elf_link_hash_entry *h;
2843
2844 elf_section_data (sec)->local_dynrel = NULL;
2845
2846 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2847 sym_hashes = elf_sym_hashes (abfd);
2848 local_got_refcounts = elf_local_got_refcounts (abfd);
2849
2850 relend = relocs + sec->reloc_count;
2851 for (rel = relocs; rel < relend; rel++)
2852 switch (ELF32_R_TYPE (rel->r_info))
2853 {
2854 case R_ARM_GOT32:
2855 r_symndx = ELF32_R_SYM (rel->r_info);
2856 if (r_symndx >= symtab_hdr->sh_info)
2857 {
2858 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2859 if (h->got.refcount > 0)
2860 h->got.refcount -= 1;
2861 }
2862 else if (local_got_refcounts != NULL)
2863 {
2864 if (local_got_refcounts[r_symndx] > 0)
2865 local_got_refcounts[r_symndx] -= 1;
2866 }
2867 break;
2868
2869 case R_ARM_ABS32:
2870 case R_ARM_REL32:
2871 case R_ARM_PC24:
2872 case R_ARM_PLT32:
2873 r_symndx = ELF32_R_SYM (rel->r_info);
2874 if (r_symndx >= symtab_hdr->sh_info)
2875 {
2876 struct elf32_arm_link_hash_entry *eh;
2877 struct elf32_arm_relocs_copied **pp;
2878 struct elf32_arm_relocs_copied *p;
2879
2880 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2881
2882 if (h->plt.refcount > 0)
2883 h->plt.refcount -= 1;
2884
2885 if (ELF32_R_TYPE (rel->r_info) == R_ARM_ABS32
2886 || ELF32_R_TYPE (rel->r_info) == R_ARM_REL32)
2887 {
2888 eh = (struct elf32_arm_link_hash_entry *) h;
2889
2890 for (pp = &eh->relocs_copied; (p = *pp) != NULL;
2891 pp = &p->next)
2892 if (p->section == sec)
2893 {
2894 p->count -= 1;
2895 if (p->count == 0)
2896 *pp = p->next;
2897 break;
2898 }
2899 }
2900 }
2901 break;
2902
2903 default:
2904 break;
2905 }
2906
2907 return TRUE;
2908 }
2909
2910 /* Look through the relocs for a section during the first phase. */
2911
2912 static bfd_boolean
2913 elf32_arm_check_relocs (abfd, info, sec, relocs)
2914 bfd *abfd;
2915 struct bfd_link_info *info;
2916 asection *sec;
2917 const Elf_Internal_Rela *relocs;
2918 {
2919 Elf_Internal_Shdr *symtab_hdr;
2920 struct elf_link_hash_entry **sym_hashes;
2921 struct elf_link_hash_entry **sym_hashes_end;
2922 const Elf_Internal_Rela *rel;
2923 const Elf_Internal_Rela *rel_end;
2924 bfd *dynobj;
2925 asection *sreloc;
2926 bfd_vma *local_got_offsets;
2927 struct elf32_arm_link_hash_table *htab;
2928
2929 if (info->relocatable)
2930 return TRUE;
2931
2932 htab = elf32_arm_hash_table (info);
2933 sreloc = NULL;
2934
2935 dynobj = elf_hash_table (info)->dynobj;
2936 local_got_offsets = elf_local_got_offsets (abfd);
2937
2938 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2939 sym_hashes = elf_sym_hashes (abfd);
2940 sym_hashes_end = sym_hashes
2941 + symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
2942
2943 if (!elf_bad_symtab (abfd))
2944 sym_hashes_end -= symtab_hdr->sh_info;
2945
2946 rel_end = relocs + sec->reloc_count;
2947 for (rel = relocs; rel < rel_end; rel++)
2948 {
2949 struct elf_link_hash_entry *h;
2950 unsigned long r_symndx;
2951
2952 r_symndx = ELF32_R_SYM (rel->r_info);
2953 if (r_symndx < symtab_hdr->sh_info)
2954 h = NULL;
2955 else
2956 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2957
2958 switch (ELF32_R_TYPE (rel->r_info))
2959 {
2960 case R_ARM_GOT32:
2961 /* This symbol requires a global offset table entry. */
2962 if (h != NULL)
2963 {
2964 h->got.refcount++;
2965 }
2966 else
2967 {
2968 bfd_signed_vma *local_got_refcounts;
2969
2970 /* This is a global offset table entry for a local symbol. */
2971 local_got_refcounts = elf_local_got_refcounts (abfd);
2972 if (local_got_refcounts == NULL)
2973 {
2974 bfd_size_type size;
2975
2976 size = symtab_hdr->sh_info;
2977 size *= (sizeof (bfd_signed_vma) + sizeof(char));
2978 local_got_refcounts = ((bfd_signed_vma *)
2979 bfd_zalloc (abfd, size));
2980 if (local_got_refcounts == NULL)
2981 return FALSE;
2982 elf_local_got_refcounts (abfd) = local_got_refcounts;
2983 }
2984 local_got_refcounts[r_symndx] += 1;
2985 }
2986 break;
2987
2988 case R_ARM_GOTOFF:
2989 case R_ARM_GOTPC:
2990 if (htab->sgot == NULL)
2991 {
2992 if (htab->root.dynobj == NULL)
2993 htab->root.dynobj = abfd;
2994 if (!create_got_section (htab->root.dynobj, info))
2995 return FALSE;
2996 }
2997 break;
2998
2999 case R_ARM_ABS32:
3000 case R_ARM_REL32:
3001 case R_ARM_PC24:
3002 case R_ARM_PLT32:
3003 if (h != NULL)
3004 {
3005 /* If this reloc is in a read-only section, we might
3006 need a copy reloc. We can't check reliably at this
3007 stage whether the section is read-only, as input
3008 sections have not yet been mapped to output sections.
3009 Tentatively set the flag for now, and correct in
3010 adjust_dynamic_symbol. */
3011 if (!info->shared)
3012 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
3013
3014 /* We may need a .plt entry if the function this reloc
3015 refers to is in a different object. We can't tell for
3016 sure yet, because something later might force the
3017 symbol local. */
3018 if (ELF32_R_TYPE (rel->r_info) == R_ARM_PC24
3019 || ELF32_R_TYPE (rel->r_info) == R_ARM_PLT32)
3020 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
3021
3022 /* If we create a PLT entry, this relocation will reference
3023 it, even if it's an ABS32 relocation. */
3024 h->plt.refcount += 1;
3025 }
3026
3027 /* If we are creating a shared library, and this is a reloc
3028 against a global symbol, or a non PC relative reloc
3029 against a local symbol, then we need to copy the reloc
3030 into the shared library. However, if we are linking with
3031 -Bsymbolic, we do not need to copy a reloc against a
3032 global symbol which is defined in an object we are
3033 including in the link (i.e., DEF_REGULAR is set). At
3034 this point we have not seen all the input files, so it is
3035 possible that DEF_REGULAR is not set now but will be set
3036 later (it is never cleared). We account for that
3037 possibility below by storing information in the
3038 relocs_copied field of the hash table entry. */
3039 if (info->shared
3040 && (sec->flags & SEC_ALLOC) != 0
3041 && ((ELF32_R_TYPE (rel->r_info) != R_ARM_PC24
3042 && ELF32_R_TYPE (rel->r_info) != R_ARM_PLT32)
3043 || (h != NULL
3044 && (! info->symbolic
3045 || (h->elf_link_hash_flags
3046 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
3047 {
3048 struct elf32_arm_relocs_copied *p, **head;
3049
3050 /* When creating a shared object, we must copy these
3051 reloc types into the output file. We create a reloc
3052 section in dynobj and make room for this reloc. */
3053 if (sreloc == NULL)
3054 {
3055 const char * name;
3056
3057 name = (bfd_elf_string_from_elf_section
3058 (abfd,
3059 elf_elfheader (abfd)->e_shstrndx,
3060 elf_section_data (sec)->rel_hdr.sh_name));
3061 if (name == NULL)
3062 return FALSE;
3063
3064 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
3065 && strcmp (bfd_get_section_name (abfd, sec),
3066 name + 4) == 0);
3067
3068 sreloc = bfd_get_section_by_name (dynobj, name);
3069 if (sreloc == NULL)
3070 {
3071 flagword flags;
3072
3073 sreloc = bfd_make_section (dynobj, name);
3074 flags = (SEC_HAS_CONTENTS | SEC_READONLY
3075 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3076 if ((sec->flags & SEC_ALLOC) != 0)
3077 flags |= SEC_ALLOC | SEC_LOAD;
3078 if (sreloc == NULL
3079 || ! bfd_set_section_flags (dynobj, sreloc, flags)
3080 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
3081 return FALSE;
3082 }
3083
3084 elf_section_data (sec)->sreloc = sreloc;
3085 }
3086
3087 /* If this is a global symbol, we count the number of
3088 relocations we need for this symbol. */
3089 if (h != NULL)
3090 {
3091 head = &((struct elf32_arm_link_hash_entry *) h)->relocs_copied;
3092 }
3093 else
3094 {
3095 /* Track dynamic relocs needed for local syms too.
3096 We really need local syms available to do this
3097 easily. Oh well. */
3098
3099 asection *s;
3100 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
3101 sec, r_symndx);
3102 if (s == NULL)
3103 return FALSE;
3104
3105 head = ((struct elf32_arm_relocs_copied **)
3106 &elf_section_data (s)->local_dynrel);
3107 }
3108
3109 p = *head;
3110 if (p == NULL || p->section != sec)
3111 {
3112 bfd_size_type amt = sizeof *p;
3113 p = bfd_alloc (htab->root.dynobj, amt);
3114 if (p == NULL)
3115 return FALSE;
3116 p->next = *head;
3117 *head = p;
3118 p->section = sec;
3119 p->count = 0;
3120 }
3121
3122 if (ELF32_R_TYPE (rel->r_info) == R_ARM_ABS32
3123 || ELF32_R_TYPE (rel->r_info) == R_ARM_REL32)
3124 p->count += 1;
3125 }
3126 break;
3127
3128 /* This relocation describes the C++ object vtable hierarchy.
3129 Reconstruct it for later use during GC. */
3130 case R_ARM_GNU_VTINHERIT:
3131 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
3132 return FALSE;
3133 break;
3134
3135 /* This relocation describes which C++ vtable entries are actually
3136 used. Record for later use during GC. */
3137 case R_ARM_GNU_VTENTRY:
3138 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
3139 return FALSE;
3140 break;
3141 }
3142 }
3143
3144 return TRUE;
3145 }
3146
3147 /* Find the nearest line to a particular section and offset, for error
3148 reporting. This code is a duplicate of the code in elf.c, except
3149 that it also accepts STT_ARM_TFUNC as a symbol that names a function. */
3150
3151 static bfd_boolean
3152 elf32_arm_find_nearest_line
3153 (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr)
3154 bfd *abfd;
3155 asection *section;
3156 asymbol **symbols;
3157 bfd_vma offset;
3158 const char **filename_ptr;
3159 const char **functionname_ptr;
3160 unsigned int *line_ptr;
3161 {
3162 bfd_boolean found;
3163 const char *filename;
3164 asymbol *func;
3165 bfd_vma low_func;
3166 asymbol **p;
3167
3168 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
3169 filename_ptr, functionname_ptr,
3170 line_ptr, 0,
3171 &elf_tdata (abfd)->dwarf2_find_line_info))
3172 return TRUE;
3173
3174 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
3175 &found, filename_ptr,
3176 functionname_ptr, line_ptr,
3177 &elf_tdata (abfd)->line_info))
3178 return FALSE;
3179
3180 if (found)
3181 return TRUE;
3182
3183 if (symbols == NULL)
3184 return FALSE;
3185
3186 filename = NULL;
3187 func = NULL;
3188 low_func = 0;
3189
3190 for (p = symbols; *p != NULL; p++)
3191 {
3192 elf_symbol_type *q;
3193
3194 q = (elf_symbol_type *) *p;
3195
3196 if (bfd_get_section (&q->symbol) != section)
3197 continue;
3198
3199 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
3200 {
3201 default:
3202 break;
3203 case STT_FILE:
3204 filename = bfd_asymbol_name (&q->symbol);
3205 break;
3206 case STT_NOTYPE:
3207 case STT_FUNC:
3208 case STT_ARM_TFUNC:
3209 if (q->symbol.section == section
3210 && q->symbol.value >= low_func
3211 && q->symbol.value <= offset)
3212 {
3213 func = (asymbol *) q;
3214 low_func = q->symbol.value;
3215 }
3216 break;
3217 }
3218 }
3219
3220 if (func == NULL)
3221 return FALSE;
3222
3223 *filename_ptr = filename;
3224 *functionname_ptr = bfd_asymbol_name (func);
3225 *line_ptr = 0;
3226
3227 return TRUE;
3228 }
3229
3230 /* Adjust a symbol defined by a dynamic object and referenced by a
3231 regular object. The current definition is in some section of the
3232 dynamic object, but we're not including those sections. We have to
3233 change the definition to something the rest of the link can
3234 understand. */
3235
3236 static bfd_boolean
3237 elf32_arm_adjust_dynamic_symbol (info, h)
3238 struct bfd_link_info * info;
3239 struct elf_link_hash_entry * h;
3240 {
3241 bfd * dynobj;
3242 asection * s;
3243 unsigned int power_of_two;
3244
3245 dynobj = elf_hash_table (info)->dynobj;
3246
3247 /* Make sure we know what is going on here. */
3248 BFD_ASSERT (dynobj != NULL
3249 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
3250 || h->weakdef != NULL
3251 || ((h->elf_link_hash_flags
3252 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3253 && (h->elf_link_hash_flags
3254 & ELF_LINK_HASH_REF_REGULAR) != 0
3255 && (h->elf_link_hash_flags
3256 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
3257
3258 /* If this is a function, put it in the procedure linkage table. We
3259 will fill in the contents of the procedure linkage table later,
3260 when we know the address of the .got section. */
3261 if (h->type == STT_FUNC
3262 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
3263 {
3264 if (h->plt.refcount <= 0
3265 || SYMBOL_CALLS_LOCAL (info, h)
3266 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
3267 && h->root.type == bfd_link_hash_undefweak))
3268 {
3269 /* This case can occur if we saw a PLT32 reloc in an input
3270 file, but the symbol was never referred to by a dynamic
3271 object, or if all references were garbage collected. In
3272 such a case, we don't actually need to build a procedure
3273 linkage table, and we can just do a PC24 reloc instead. */
3274 h->plt.offset = (bfd_vma) -1;
3275 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
3276 }
3277
3278 return TRUE;
3279 }
3280 else
3281 /* It's possible that we incorrectly decided a .plt reloc was
3282 needed for an R_ARM_PC24 reloc to a non-function sym in
3283 check_relocs. We can't decide accurately between function and
3284 non-function syms in check-relocs; Objects loaded later in
3285 the link may change h->type. So fix it now. */
3286 h->plt.offset = (bfd_vma) -1;
3287
3288 /* If this is a weak symbol, and there is a real definition, the
3289 processor independent code will have arranged for us to see the
3290 real definition first, and we can just use the same value. */
3291 if (h->weakdef != NULL)
3292 {
3293 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
3294 || h->weakdef->root.type == bfd_link_hash_defweak);
3295 h->root.u.def.section = h->weakdef->root.u.def.section;
3296 h->root.u.def.value = h->weakdef->root.u.def.value;
3297 return TRUE;
3298 }
3299
3300 /* This is a reference to a symbol defined by a dynamic object which
3301 is not a function. */
3302
3303 /* If we are creating a shared library, we must presume that the
3304 only references to the symbol are via the global offset table.
3305 For such cases we need not do anything here; the relocations will
3306 be handled correctly by relocate_section. */
3307 if (info->shared)
3308 return TRUE;
3309
3310 /* We must allocate the symbol in our .dynbss section, which will
3311 become part of the .bss section of the executable. There will be
3312 an entry for this symbol in the .dynsym section. The dynamic
3313 object will contain position independent code, so all references
3314 from the dynamic object to this symbol will go through the global
3315 offset table. The dynamic linker will use the .dynsym entry to
3316 determine the address it must put in the global offset table, so
3317 both the dynamic object and the regular object will refer to the
3318 same memory location for the variable. */
3319 s = bfd_get_section_by_name (dynobj, ".dynbss");
3320 BFD_ASSERT (s != NULL);
3321
3322 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
3323 copy the initial value out of the dynamic object and into the
3324 runtime process image. We need to remember the offset into the
3325 .rel.bss section we are going to use. */
3326 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
3327 {
3328 asection *srel;
3329
3330 srel = bfd_get_section_by_name (dynobj, ".rel.bss");
3331 BFD_ASSERT (srel != NULL);
3332 srel->_raw_size += sizeof (Elf32_External_Rel);
3333 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
3334 }
3335
3336 /* We need to figure out the alignment required for this symbol. I
3337 have no idea how ELF linkers handle this. */
3338 power_of_two = bfd_log2 (h->size);
3339 if (power_of_two > 3)
3340 power_of_two = 3;
3341
3342 /* Apply the required alignment. */
3343 s->_raw_size = BFD_ALIGN (s->_raw_size,
3344 (bfd_size_type) (1 << power_of_two));
3345 if (power_of_two > bfd_get_section_alignment (dynobj, s))
3346 {
3347 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
3348 return FALSE;
3349 }
3350
3351 /* Define the symbol as being at this point in the section. */
3352 h->root.u.def.section = s;
3353 h->root.u.def.value = s->_raw_size;
3354
3355 /* Increment the section size to make room for the symbol. */
3356 s->_raw_size += h->size;
3357
3358 return TRUE;
3359 }
3360
3361 /* Allocate space in .plt, .got and associated reloc sections for
3362 dynamic relocs. */
3363
3364 static bfd_boolean
3365 allocate_dynrelocs (h, inf)
3366 struct elf_link_hash_entry *h;
3367 PTR inf;
3368 {
3369 struct bfd_link_info *info;
3370 struct elf32_arm_link_hash_table *htab;
3371 struct elf32_arm_link_hash_entry *eh;
3372 struct elf32_arm_relocs_copied *p;
3373
3374 if (h->root.type == bfd_link_hash_indirect)
3375 return TRUE;
3376
3377 if (h->root.type == bfd_link_hash_warning)
3378 /* When warning symbols are created, they **replace** the "real"
3379 entry in the hash table, thus we never get to see the real
3380 symbol in a hash traversal. So look at it now. */
3381 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3382
3383 info = (struct bfd_link_info *) inf;
3384 htab = elf32_arm_hash_table (info);
3385
3386 if (htab->root.dynamic_sections_created
3387 && h->plt.refcount > 0)
3388 {
3389 /* Make sure this symbol is output as a dynamic symbol.
3390 Undefined weak syms won't yet be marked as dynamic. */
3391 if (h->dynindx == -1
3392 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
3393 {
3394 if (! bfd_elf_link_record_dynamic_symbol (info, h))
3395 return FALSE;
3396 }
3397
3398 if (info->shared
3399 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
3400 {
3401 asection *s = htab->splt;
3402
3403 /* If this is the first .plt entry, make room for the special
3404 first entry. */
3405 if (s->_raw_size == 0)
3406 s->_raw_size += PLT_HEADER_SIZE;
3407
3408 h->plt.offset = s->_raw_size;
3409
3410 /* If this symbol is not defined in a regular file, and we are
3411 not generating a shared library, then set the symbol to this
3412 location in the .plt. This is required to make function
3413 pointers compare as equal between the normal executable and
3414 the shared library. */
3415 if (! info->shared
3416 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3417 {
3418 h->root.u.def.section = s;
3419 h->root.u.def.value = h->plt.offset;
3420 }
3421
3422 /* Make room for this entry. */
3423 s->_raw_size += PLT_ENTRY_SIZE;
3424
3425 /* We also need to make an entry in the .got.plt section, which
3426 will be placed in the .got section by the linker script. */
3427 htab->sgotplt->_raw_size += 4;
3428
3429 /* We also need to make an entry in the .rel.plt section. */
3430 htab->srelplt->_raw_size += sizeof (Elf32_External_Rel);
3431 }
3432 else
3433 {
3434 h->plt.offset = (bfd_vma) -1;
3435 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
3436 }
3437 }
3438 else
3439 {
3440 h->plt.offset = (bfd_vma) -1;
3441 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
3442 }
3443
3444 if (h->got.refcount > 0)
3445 {
3446 asection *s;
3447 bfd_boolean dyn;
3448
3449 /* Make sure this symbol is output as a dynamic symbol.
3450 Undefined weak syms won't yet be marked as dynamic. */
3451 if (h->dynindx == -1
3452 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
3453 {
3454 if (! bfd_elf_link_record_dynamic_symbol (info, h))
3455 return FALSE;
3456 }
3457
3458 s = htab->sgot;
3459 h->got.offset = s->_raw_size;
3460 s->_raw_size += 4;
3461 dyn = htab->root.dynamic_sections_created;
3462 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3463 || h->root.type != bfd_link_hash_undefweak)
3464 && (info->shared
3465 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
3466 htab->srelgot->_raw_size += sizeof (Elf32_External_Rel);
3467 }
3468 else
3469 h->got.offset = (bfd_vma) -1;
3470
3471 eh = (struct elf32_arm_link_hash_entry *) h;
3472 if (eh->relocs_copied == NULL)
3473 return TRUE;
3474
3475 /* In the shared -Bsymbolic case, discard space allocated for
3476 dynamic pc-relative relocs against symbols which turn out to be
3477 defined in regular objects. For the normal shared case, discard
3478 space for pc-relative relocs that have become local due to symbol
3479 visibility changes. */
3480
3481 if (info->shared)
3482 {
3483 /* Discard relocs on undefined weak syms with non-default
3484 visibility. */
3485 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
3486 && h->root.type == bfd_link_hash_undefweak)
3487 eh->relocs_copied = NULL;
3488 }
3489 else
3490 {
3491 /* For the non-shared case, discard space for relocs against
3492 symbols which turn out to need copy relocs or are not
3493 dynamic. */
3494
3495 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
3496 && (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3497 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3498 || (htab->root.dynamic_sections_created
3499 && (h->root.type == bfd_link_hash_undefweak
3500 || h->root.type == bfd_link_hash_undefined))))
3501 {
3502 /* Make sure this symbol is output as a dynamic symbol.
3503 Undefined weak syms won't yet be marked as dynamic. */
3504 if (h->dynindx == -1
3505 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
3506 {
3507 if (! bfd_elf_link_record_dynamic_symbol (info, h))
3508 return FALSE;
3509 }
3510
3511 /* If that succeeded, we know we'll be keeping all the
3512 relocs. */
3513 if (h->dynindx != -1)
3514 goto keep;
3515 }
3516
3517 eh->relocs_copied = NULL;
3518
3519 keep: ;
3520 }
3521
3522 /* Finally, allocate space. */
3523 for (p = eh->relocs_copied; p != NULL; p = p->next)
3524 {
3525 asection *sreloc = elf_section_data (p->section)->sreloc;
3526 sreloc->_raw_size += p->count * sizeof (Elf32_External_Rel);
3527 }
3528
3529 return TRUE;
3530 }
3531
3532 /* Set the sizes of the dynamic sections. */
3533
3534 static bfd_boolean
3535 elf32_arm_size_dynamic_sections (output_bfd, info)
3536 bfd * output_bfd ATTRIBUTE_UNUSED;
3537 struct bfd_link_info * info;
3538 {
3539 bfd * dynobj;
3540 asection * s;
3541 bfd_boolean plt;
3542 bfd_boolean relocs;
3543 bfd *ibfd;
3544 struct elf32_arm_link_hash_table *htab;
3545
3546 htab = elf32_arm_hash_table (info);
3547 dynobj = elf_hash_table (info)->dynobj;
3548 BFD_ASSERT (dynobj != NULL);
3549
3550 if (elf_hash_table (info)->dynamic_sections_created)
3551 {
3552 /* Set the contents of the .interp section to the interpreter. */
3553 if (info->executable)
3554 {
3555 s = bfd_get_section_by_name (dynobj, ".interp");
3556 BFD_ASSERT (s != NULL);
3557 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
3558 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
3559 }
3560 }
3561
3562 /* Set up .got offsets for local syms, and space for local dynamic
3563 relocs. */
3564 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
3565 {
3566 bfd_signed_vma *local_got;
3567 bfd_signed_vma *end_local_got;
3568 char *local_tls_type;
3569 bfd_size_type locsymcount;
3570 Elf_Internal_Shdr *symtab_hdr;
3571 asection *srel;
3572
3573 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
3574 continue;
3575
3576 for (s = ibfd->sections; s != NULL; s = s->next)
3577 {
3578 struct elf32_arm_relocs_copied *p;
3579
3580 for (p = *((struct elf32_arm_relocs_copied **)
3581 &elf_section_data (s)->local_dynrel);
3582 p != NULL;
3583 p = p->next)
3584 {
3585 if (!bfd_is_abs_section (p->section)
3586 && bfd_is_abs_section (p->section->output_section))
3587 {
3588 /* Input section has been discarded, either because
3589 it is a copy of a linkonce section or due to
3590 linker script /DISCARD/, so we'll be discarding
3591 the relocs too. */
3592 }
3593 else if (p->count != 0)
3594 {
3595 srel = elf_section_data (p->section)->sreloc;
3596 srel->_raw_size += p->count * sizeof (Elf32_External_Rel);
3597 if ((p->section->output_section->flags & SEC_READONLY) != 0)
3598 info->flags |= DF_TEXTREL;
3599 }
3600 }
3601 }
3602
3603 local_got = elf_local_got_refcounts (ibfd);
3604 if (!local_got)
3605 continue;
3606
3607 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
3608 locsymcount = symtab_hdr->sh_info;
3609 end_local_got = local_got + locsymcount;
3610 s = htab->sgot;
3611 srel = htab->srelgot;
3612 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
3613 {
3614 if (*local_got > 0)
3615 {
3616 *local_got = s->_raw_size;
3617 s->_raw_size += 4;
3618 if (info->shared)
3619 srel->_raw_size += sizeof (Elf32_External_Rel);
3620 }
3621 else
3622 *local_got = (bfd_vma) -1;
3623 }
3624 }
3625
3626 /* Allocate global sym .plt and .got entries, and space for global
3627 sym dynamic relocs. */
3628 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, (PTR) info);
3629
3630 /* The check_relocs and adjust_dynamic_symbol entry points have
3631 determined the sizes of the various dynamic sections. Allocate
3632 memory for them. */
3633 plt = FALSE;
3634 relocs = FALSE;
3635 for (s = dynobj->sections; s != NULL; s = s->next)
3636 {
3637 const char * name;
3638 bfd_boolean strip;
3639
3640 if ((s->flags & SEC_LINKER_CREATED) == 0)
3641 continue;
3642
3643 /* It's OK to base decisions on the section name, because none
3644 of the dynobj section names depend upon the input files. */
3645 name = bfd_get_section_name (dynobj, s);
3646
3647 strip = FALSE;
3648
3649 if (strcmp (name, ".plt") == 0)
3650 {
3651 if (s->_raw_size == 0)
3652 {
3653 /* Strip this section if we don't need it; see the
3654 comment below. */
3655 strip = TRUE;
3656 }
3657 else
3658 {
3659 /* Remember whether there is a PLT. */
3660 plt = TRUE;
3661 }
3662 }
3663 else if (strncmp (name, ".rel", 4) == 0)
3664 {
3665 if (s->_raw_size == 0)
3666 {
3667 /* If we don't need this section, strip it from the
3668 output file. This is mostly to handle .rel.bss and
3669 .rel.plt. We must create both sections in
3670 create_dynamic_sections, because they must be created
3671 before the linker maps input sections to output
3672 sections. The linker does that before
3673 adjust_dynamic_symbol is called, and it is that
3674 function which decides whether anything needs to go
3675 into these sections. */
3676 strip = TRUE;
3677 }
3678 else
3679 {
3680 /* Remember whether there are any reloc sections other
3681 than .rel.plt. */
3682 if (strcmp (name, ".rel.plt") != 0)
3683 relocs = TRUE;
3684
3685 /* We use the reloc_count field as a counter if we need
3686 to copy relocs into the output file. */
3687 s->reloc_count = 0;
3688 }
3689 }
3690 else if (strncmp (name, ".got", 4) != 0)
3691 {
3692 /* It's not one of our sections, so don't allocate space. */
3693 continue;
3694 }
3695
3696 if (strip)
3697 {
3698 _bfd_strip_section_from_output (info, s);
3699 continue;
3700 }
3701
3702 /* Allocate memory for the section contents. */
3703 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
3704 if (s->contents == NULL && s->_raw_size != 0)
3705 return FALSE;
3706 }
3707
3708 if (elf_hash_table (info)->dynamic_sections_created)
3709 {
3710 /* Add some entries to the .dynamic section. We fill in the
3711 values later, in elf32_arm_finish_dynamic_sections, but we
3712 must add the entries now so that we get the correct size for
3713 the .dynamic section. The DT_DEBUG entry is filled in by the
3714 dynamic linker and used by the debugger. */
3715 #define add_dynamic_entry(TAG, VAL) \
3716 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3717
3718 if (!info->shared)
3719 {
3720 if (!add_dynamic_entry (DT_DEBUG, 0))
3721 return FALSE;
3722 }
3723
3724 if (plt)
3725 {
3726 if ( !add_dynamic_entry (DT_PLTGOT, 0)
3727 || !add_dynamic_entry (DT_PLTRELSZ, 0)
3728 || !add_dynamic_entry (DT_PLTREL, DT_REL)
3729 || !add_dynamic_entry (DT_JMPREL, 0))
3730 return FALSE;
3731 }
3732
3733 if (relocs)
3734 {
3735 if ( !add_dynamic_entry (DT_REL, 0)
3736 || !add_dynamic_entry (DT_RELSZ, 0)
3737 || !add_dynamic_entry (DT_RELENT, sizeof (Elf32_External_Rel)))
3738 return FALSE;
3739 }
3740
3741 if ((info->flags & DF_TEXTREL) != 0)
3742 {
3743 if (!add_dynamic_entry (DT_TEXTREL, 0))
3744 return FALSE;
3745 info->flags |= DF_TEXTREL;
3746 }
3747 }
3748 #undef add_synamic_entry
3749
3750 return TRUE;
3751 }
3752
3753 /* Finish up dynamic symbol handling. We set the contents of various
3754 dynamic sections here. */
3755
3756 static bfd_boolean
3757 elf32_arm_finish_dynamic_symbol (output_bfd, info, h, sym)
3758 bfd * output_bfd;
3759 struct bfd_link_info * info;
3760 struct elf_link_hash_entry * h;
3761 Elf_Internal_Sym * sym;
3762 {
3763 bfd * dynobj;
3764
3765 dynobj = elf_hash_table (info)->dynobj;
3766
3767 if (h->plt.offset != (bfd_vma) -1)
3768 {
3769 asection * splt;
3770 asection * sgot;
3771 asection * srel;
3772 bfd_vma plt_index;
3773 bfd_vma got_offset;
3774 Elf_Internal_Rela rel;
3775 bfd_byte *loc;
3776 bfd_vma got_displacement;
3777
3778 /* This symbol has an entry in the procedure linkage table. Set
3779 it up. */
3780
3781 BFD_ASSERT (h->dynindx != -1);
3782
3783 splt = bfd_get_section_by_name (dynobj, ".plt");
3784 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3785 srel = bfd_get_section_by_name (dynobj, ".rel.plt");
3786 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
3787
3788 /* Get the index in the procedure linkage table which
3789 corresponds to this symbol. This is the index of this symbol
3790 in all the symbols for which we are making plt entries. The
3791 first entry in the procedure linkage table is reserved. */
3792 plt_index = (h->plt.offset - PLT_HEADER_SIZE) / PLT_ENTRY_SIZE;
3793
3794 /* Get the offset into the .got table of the entry that
3795 corresponds to this function. Each .got entry is 4 bytes.
3796 The first three are reserved. */
3797 got_offset = (plt_index + 3) * 4;
3798
3799 /* Calculate the displacement between the PLT slot and the
3800 entry in the GOT. */
3801 got_displacement = (sgot->output_section->vma
3802 + sgot->output_offset
3803 + got_offset
3804 - splt->output_section->vma
3805 - splt->output_offset
3806 - h->plt.offset
3807 - 8);
3808
3809 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
3810
3811 /* Fill in the entry in the procedure linkage table. */
3812 bfd_put_32 (output_bfd, elf32_arm_plt_entry[0] | ((got_displacement & 0x0ff00000) >> 20),
3813 splt->contents + h->plt.offset + 0);
3814 bfd_put_32 (output_bfd, elf32_arm_plt_entry[1] | ((got_displacement & 0x000ff000) >> 12),
3815 splt->contents + h->plt.offset + 4);
3816 bfd_put_32 (output_bfd, elf32_arm_plt_entry[2] | (got_displacement & 0x00000fff),
3817 splt->contents + h->plt.offset + 8);
3818 #ifdef FOUR_WORD_PLT
3819 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3],
3820 splt->contents + h->plt.offset + 12);
3821 #endif
3822
3823 /* Fill in the entry in the global offset table. */
3824 bfd_put_32 (output_bfd,
3825 (splt->output_section->vma
3826 + splt->output_offset),
3827 sgot->contents + got_offset);
3828
3829 /* Fill in the entry in the .rel.plt section. */
3830 rel.r_offset = (sgot->output_section->vma
3831 + sgot->output_offset
3832 + got_offset);
3833 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
3834 loc = srel->contents + plt_index * sizeof (Elf32_External_Rel);
3835 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3836
3837 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3838 {
3839 /* Mark the symbol as undefined, rather than as defined in
3840 the .plt section. Leave the value alone. */
3841 sym->st_shndx = SHN_UNDEF;
3842 /* If the symbol is weak, we do need to clear the value.
3843 Otherwise, the PLT entry would provide a definition for
3844 the symbol even if the symbol wasn't defined anywhere,
3845 and so the symbol would never be NULL. */
3846 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
3847 == 0)
3848 sym->st_value = 0;
3849 }
3850 }
3851
3852 if (h->got.offset != (bfd_vma) -1)
3853 {
3854 asection * sgot;
3855 asection * srel;
3856 Elf_Internal_Rela rel;
3857 bfd_byte *loc;
3858
3859 /* This symbol has an entry in the global offset table. Set it
3860 up. */
3861 sgot = bfd_get_section_by_name (dynobj, ".got");
3862 srel = bfd_get_section_by_name (dynobj, ".rel.got");
3863 BFD_ASSERT (sgot != NULL && srel != NULL);
3864
3865 rel.r_offset = (sgot->output_section->vma
3866 + sgot->output_offset
3867 + (h->got.offset &~ (bfd_vma) 1));
3868
3869 /* If this is a static link, or it is a -Bsymbolic link and the
3870 symbol is defined locally or was forced to be local because
3871 of a version file, we just want to emit a RELATIVE reloc.
3872 The entry in the global offset table will already have been
3873 initialized in the relocate_section function. */
3874 if (info->shared
3875 && SYMBOL_REFERENCES_LOCAL (info, h))
3876 {
3877 BFD_ASSERT((h->got.offset & 1) != 0);
3878 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
3879 }
3880 else
3881 {
3882 BFD_ASSERT((h->got.offset & 1) == 0);
3883 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
3884 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
3885 }
3886
3887 loc = srel->contents + srel->reloc_count++ * sizeof (Elf32_External_Rel);
3888 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3889 }
3890
3891 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
3892 {
3893 asection * s;
3894 Elf_Internal_Rela rel;
3895 bfd_byte *loc;
3896
3897 /* This symbol needs a copy reloc. Set it up. */
3898 BFD_ASSERT (h->dynindx != -1
3899 && (h->root.type == bfd_link_hash_defined
3900 || h->root.type == bfd_link_hash_defweak));
3901
3902 s = bfd_get_section_by_name (h->root.u.def.section->owner,
3903 ".rel.bss");
3904 BFD_ASSERT (s != NULL);
3905
3906 rel.r_offset = (h->root.u.def.value
3907 + h->root.u.def.section->output_section->vma
3908 + h->root.u.def.section->output_offset);
3909 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
3910 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rel);
3911 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3912 }
3913
3914 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3915 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
3916 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3917 sym->st_shndx = SHN_ABS;
3918
3919 return TRUE;
3920 }
3921
3922 /* Finish up the dynamic sections. */
3923
3924 static bfd_boolean
3925 elf32_arm_finish_dynamic_sections (output_bfd, info)
3926 bfd * output_bfd;
3927 struct bfd_link_info * info;
3928 {
3929 bfd * dynobj;
3930 asection * sgot;
3931 asection * sdyn;
3932
3933 dynobj = elf_hash_table (info)->dynobj;
3934
3935 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3936 BFD_ASSERT (sgot != NULL);
3937 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3938
3939 if (elf_hash_table (info)->dynamic_sections_created)
3940 {
3941 asection *splt;
3942 Elf32_External_Dyn *dyncon, *dynconend;
3943
3944 splt = bfd_get_section_by_name (dynobj, ".plt");
3945 BFD_ASSERT (splt != NULL && sdyn != NULL);
3946
3947 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3948 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
3949
3950 for (; dyncon < dynconend; dyncon++)
3951 {
3952 Elf_Internal_Dyn dyn;
3953 const char * name;
3954 asection * s;
3955
3956 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3957
3958 switch (dyn.d_tag)
3959 {
3960 default:
3961 break;
3962
3963 case DT_PLTGOT:
3964 name = ".got";
3965 goto get_vma;
3966 case DT_JMPREL:
3967 name = ".rel.plt";
3968 get_vma:
3969 s = bfd_get_section_by_name (output_bfd, name);
3970 BFD_ASSERT (s != NULL);
3971 dyn.d_un.d_ptr = s->vma;
3972 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3973 break;
3974
3975 case DT_PLTRELSZ:
3976 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3977 BFD_ASSERT (s != NULL);
3978 if (s->_cooked_size != 0)
3979 dyn.d_un.d_val = s->_cooked_size;
3980 else
3981 dyn.d_un.d_val = s->_raw_size;
3982 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3983 break;
3984
3985 case DT_RELSZ:
3986 /* My reading of the SVR4 ABI indicates that the
3987 procedure linkage table relocs (DT_JMPREL) should be
3988 included in the overall relocs (DT_REL). This is
3989 what Solaris does. However, UnixWare can not handle
3990 that case. Therefore, we override the DT_RELSZ entry
3991 here to make it not include the JMPREL relocs. Since
3992 the linker script arranges for .rel.plt to follow all
3993 other relocation sections, we don't have to worry
3994 about changing the DT_REL entry. */
3995 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3996 if (s != NULL)
3997 {
3998 if (s->_cooked_size != 0)
3999 dyn.d_un.d_val -= s->_cooked_size;
4000 else
4001 dyn.d_un.d_val -= s->_raw_size;
4002 }
4003 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4004 break;
4005
4006 /* Set the bottom bit of DT_INIT/FINI if the
4007 corresponding function is Thumb. */
4008 case DT_INIT:
4009 name = info->init_function;
4010 goto get_sym;
4011 case DT_FINI:
4012 name = info->fini_function;
4013 get_sym:
4014 /* If it wasn't set by elf_bfd_final_link
4015 then there is nothing to adjust. */
4016 if (dyn.d_un.d_val != 0)
4017 {
4018 struct elf_link_hash_entry * eh;
4019
4020 eh = elf_link_hash_lookup (elf_hash_table (info), name,
4021 FALSE, FALSE, TRUE);
4022 if (eh != (struct elf_link_hash_entry *) NULL
4023 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
4024 {
4025 dyn.d_un.d_val |= 1;
4026 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4027 }
4028 }
4029 break;
4030 }
4031 }
4032
4033 /* Fill in the first entry in the procedure linkage table. */
4034 if (splt->_raw_size > 0)
4035 {
4036 bfd_vma got_displacement;
4037
4038 /* Calculate the displacement between the PLT slot and &GOT[0]. */
4039 got_displacement = (sgot->output_section->vma
4040 + sgot->output_offset
4041 - splt->output_section->vma
4042 - splt->output_offset
4043 - 16);
4044
4045 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[0], splt->contents + 0);
4046 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[1], splt->contents + 4);
4047 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[2], splt->contents + 8);
4048 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[3], splt->contents + 12);
4049 #ifdef FOUR_WORD_PLT
4050 /* The displacement value goes in the otherwise-unused last word of
4051 the second entry. */
4052 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
4053 #else
4054 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
4055 #endif
4056 }
4057
4058 /* UnixWare sets the entsize of .plt to 4, although that doesn't
4059 really seem like the right value. */
4060 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
4061 }
4062
4063 /* Fill in the first three entries in the global offset table. */
4064 if (sgot->_raw_size > 0)
4065 {
4066 if (sdyn == NULL)
4067 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
4068 else
4069 bfd_put_32 (output_bfd,
4070 sdyn->output_section->vma + sdyn->output_offset,
4071 sgot->contents);
4072 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
4073 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
4074 }
4075
4076 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
4077
4078 return TRUE;
4079 }
4080
4081 static void
4082 elf32_arm_post_process_headers (abfd, link_info)
4083 bfd * abfd;
4084 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
4085 {
4086 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
4087 struct elf32_arm_link_hash_table *globals;
4088
4089 i_ehdrp = elf_elfheader (abfd);
4090
4091 i_ehdrp->e_ident[EI_OSABI] = ARM_ELF_OS_ABI_VERSION;
4092 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
4093
4094 globals = elf32_arm_hash_table (link_info);
4095 if (globals->byteswap_code)
4096 i_ehdrp->e_flags |= EF_ARM_BE8;
4097 }
4098
4099 static enum elf_reloc_type_class
4100 elf32_arm_reloc_type_class (rela)
4101 const Elf_Internal_Rela *rela;
4102 {
4103 switch ((int) ELF32_R_TYPE (rela->r_info))
4104 {
4105 case R_ARM_RELATIVE:
4106 return reloc_class_relative;
4107 case R_ARM_JUMP_SLOT:
4108 return reloc_class_plt;
4109 case R_ARM_COPY:
4110 return reloc_class_copy;
4111 default:
4112 return reloc_class_normal;
4113 }
4114 }
4115
4116 static bfd_boolean elf32_arm_section_flags PARAMS ((flagword *, Elf_Internal_Shdr *));
4117 static void elf32_arm_final_write_processing PARAMS ((bfd *, bfd_boolean));
4118
4119 /* Set the right machine number for an Arm ELF file. */
4120
4121 static bfd_boolean
4122 elf32_arm_section_flags (flags, hdr)
4123 flagword *flags;
4124 Elf_Internal_Shdr *hdr;
4125 {
4126 if (hdr->sh_type == SHT_NOTE)
4127 *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
4128
4129 return TRUE;
4130 }
4131
4132 static void
4133 elf32_arm_final_write_processing (abfd, linker)
4134 bfd *abfd;
4135 bfd_boolean linker ATTRIBUTE_UNUSED;
4136 {
4137 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
4138 }
4139
4140
4141 /* Called for each symbol. Builds a section map based on mapping symbols.
4142 Does not alter any of the symbols. */
4143
4144 static bfd_boolean
4145 elf32_arm_output_symbol_hook (struct bfd_link_info *info,
4146 const char *name,
4147 Elf_Internal_Sym *elfsym,
4148 asection *input_sec,
4149 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
4150 {
4151 int mapcount;
4152 elf32_arm_section_map *map;
4153 struct elf32_arm_link_hash_table *globals;
4154
4155 /* Only do this on final link. */
4156 if (info->relocatable)
4157 return TRUE;
4158
4159 /* Only build a map if we need to byteswap code. */
4160 globals = elf32_arm_hash_table (info);
4161 if (!globals->byteswap_code)
4162 return TRUE;
4163
4164 /* We only want mapping symbols. */
4165 if (name == NULL
4166 || name[0] != '$'
4167 || (name[1] != 'a'
4168 && name[1] != 't'
4169 && name[1] != 'd'))
4170 return TRUE;
4171
4172 mapcount = ++(elf32_arm_section_data (input_sec)->mapcount);
4173 map = elf32_arm_section_data (input_sec)->map;
4174 /* TODO: This may be inefficient, but we probably don't usually have many
4175 mapping symbols per section. */
4176 map = bfd_realloc (map, mapcount * sizeof (elf32_arm_section_map));
4177 elf32_arm_section_data (input_sec)->map = map;
4178
4179 map[mapcount - 1].vma = elfsym->st_value;
4180 map[mapcount - 1].type = name[1];
4181 return TRUE;
4182 }
4183
4184
4185 /* Allocate target specific section data. */
4186
4187 static bfd_boolean
4188 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
4189 {
4190 struct _arm_elf_section_data *sdata;
4191 bfd_size_type amt = sizeof (*sdata);
4192
4193 sdata = bfd_zalloc (abfd, amt);
4194 if (sdata == NULL)
4195 return FALSE;
4196 sec->used_by_bfd = sdata;
4197
4198 return _bfd_elf_new_section_hook (abfd, sec);
4199 }
4200
4201
4202 /* Used to order a list of mapping symbols by address. */
4203
4204 static int
4205 elf32_arm_compare_mapping (const void * a, const void * b)
4206 {
4207 return ((const elf32_arm_section_map *) a)->vma
4208 > ((const elf32_arm_section_map *) b)->vma;
4209 }
4210
4211
4212 /* Do code byteswapping. Return FALSE afterwards so that the section is
4213 written out as normal. */
4214
4215 static bfd_boolean
4216 elf32_arm_write_section (bfd *output_bfd ATTRIBUTE_UNUSED, asection *sec,
4217 bfd_byte *contents)
4218 {
4219 int mapcount;
4220 elf32_arm_section_map *map;
4221 bfd_vma ptr;
4222 bfd_vma end;
4223 bfd_vma offset;
4224 bfd_byte tmp;
4225 int i;
4226
4227 mapcount = elf32_arm_section_data (sec)->mapcount;
4228 map = elf32_arm_section_data (sec)->map;
4229
4230 if (mapcount == 0)
4231 return FALSE;
4232
4233 qsort (map, mapcount, sizeof (elf32_arm_section_map),
4234 elf32_arm_compare_mapping);
4235
4236 offset = sec->output_section->vma + sec->output_offset;
4237 ptr = map[0].vma - offset;
4238 for (i = 0; i < mapcount; i++)
4239 {
4240 if (i == mapcount - 1)
4241 end = bfd_section_size (output_bfd, sec);
4242 else
4243 end = map[i + 1].vma - offset;
4244
4245 switch (map[i].type)
4246 {
4247 case 'a':
4248 /* Byte swap code words. */
4249 while (ptr + 3 < end)
4250 {
4251 tmp = contents[ptr];
4252 contents[ptr] = contents[ptr + 3];
4253 contents[ptr + 3] = tmp;
4254 tmp = contents[ptr + 1];
4255 contents[ptr + 1] = contents[ptr + 2];
4256 contents[ptr + 2] = tmp;
4257 ptr += 4;
4258 }
4259 break;
4260
4261 case 't':
4262 /* Byte swap code halfwords. */
4263 while (ptr + 1 < end)
4264 {
4265 tmp = contents[ptr];
4266 contents[ptr] = contents[ptr + 1];
4267 contents[ptr + 1] = tmp;
4268 ptr += 2;
4269 }
4270 break;
4271
4272 case 'd':
4273 /* Leave data alone. */
4274 break;
4275 }
4276 ptr = end;
4277 }
4278 bfd_free (map);
4279 return FALSE;
4280 }
4281
4282 #define ELF_ARCH bfd_arch_arm
4283 #define ELF_MACHINE_CODE EM_ARM
4284 #ifdef __QNXTARGET__
4285 #define ELF_MAXPAGESIZE 0x1000
4286 #else
4287 #define ELF_MAXPAGESIZE 0x8000
4288 #endif
4289
4290 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
4291 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
4292 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
4293 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
4294 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
4295 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
4296 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
4297 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
4298
4299 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
4300 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
4301 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
4302 #define elf_backend_check_relocs elf32_arm_check_relocs
4303 #define elf_backend_relocate_section elf32_arm_relocate_section
4304 #define elf_backend_write_section elf32_arm_write_section
4305 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
4306 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
4307 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
4308 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
4309 #define elf_backend_link_output_symbol_hook elf32_arm_output_symbol_hook
4310 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
4311 #define elf_backend_post_process_headers elf32_arm_post_process_headers
4312 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
4313 #define elf_backend_object_p elf32_arm_object_p
4314 #define elf_backend_section_flags elf32_arm_section_flags
4315 #define elf_backend_final_write_processing elf32_arm_final_write_processing
4316 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
4317
4318 #define elf_backend_can_refcount 1
4319 #define elf_backend_can_gc_sections 1
4320 #define elf_backend_plt_readonly 1
4321 #define elf_backend_want_got_plt 1
4322 #define elf_backend_want_plt_sym 0
4323 #if !USE_REL
4324 #define elf_backend_rela_normal 1
4325 #endif
4326
4327 #define elf_backend_got_header_size 12
4328
4329 #include "elf32-target.h"
4330
This page took 0.124571 seconds and 5 git commands to generate.