ELF: Copy dyn_relocs in _bfd_elf_link_hash_copy_indirect
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright (C) 1990-2020 Free Software Foundation, Inc.
3
4 Original code by
5 Center for Software Science
6 Department of Computer Science
7 University of Utah
8 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
9 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
10 TLS support written by Randolph Chung <tausq@debian.org>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
28
29 #include "sysdep.h"
30 #include "bfd.h"
31 #include "libbfd.h"
32 #include "elf-bfd.h"
33 #include "elf/hppa.h"
34 #include "libhppa.h"
35 #include "elf32-hppa.h"
36 #define ARCH_SIZE 32
37 #include "elf32-hppa.h"
38 #include "elf-hppa.h"
39
40 /* In order to gain some understanding of code in this file without
41 knowing all the intricate details of the linker, note the
42 following:
43
44 Functions named elf32_hppa_* are called by external routines, other
45 functions are only called locally. elf32_hppa_* functions appear
46 in this file more or less in the order in which they are called
47 from external routines. eg. elf32_hppa_check_relocs is called
48 early in the link process, elf32_hppa_finish_dynamic_sections is
49 one of the last functions. */
50
51 /* We use two hash tables to hold information for linking PA ELF objects.
52
53 The first is the elf32_hppa_link_hash_table which is derived
54 from the standard ELF linker hash table. We use this as a place to
55 attach other hash tables and static information.
56
57 The second is the stub hash table which is derived from the
58 base BFD hash table. The stub hash table holds the information
59 necessary to build the linker stubs during a link.
60
61 There are a number of different stubs generated by the linker.
62
63 Long branch stub:
64 : ldil LR'X,%r1
65 : be,n RR'X(%sr4,%r1)
66
67 PIC long branch stub:
68 : b,l .+8,%r1
69 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
70 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
71
72 Import stub to call shared library routine from normal object file
73 (single sub-space version)
74 : addil LR'lt_ptr+ltoff,%dp ; get PLT address
75 : ldo RR'lt_ptr+ltoff(%r1),%r22 ;
76 : ldw 0(%r22),%r21 ; get procedure entry point
77 : bv %r0(%r21)
78 : ldw 4(%r22),%r19 ; get new dlt value.
79
80 Import stub to call shared library routine from shared library
81 (single sub-space version)
82 : addil LR'ltoff,%r19 ; get PLT address
83 : ldo RR'ltoff(%r1),%r22
84 : ldw 0(%r22),%r21 ; get procedure entry point
85 : bv %r0(%r21)
86 : ldw 4(%r22),%r19 ; get new dlt value.
87
88 Import stub to call shared library routine from normal object file
89 (multiple sub-space support)
90 : addil LR'lt_ptr+ltoff,%dp ; get PLT address
91 : ldo RR'lt_ptr+ltoff(%r1),%r22 ;
92 : ldw 0(%r22),%r21 ; get procedure entry point
93 : ldsid (%r21),%r1 ; get target sid
94 : ldw 4(%r22),%r19 ; get new dlt value.
95 : mtsp %r1,%sr0
96 : be 0(%sr0,%r21) ; branch to target
97 : stw %rp,-24(%sp) ; save rp
98
99 Import stub to call shared library routine from shared library
100 (multiple sub-space support)
101 : addil LR'ltoff,%r19 ; get PLT address
102 : ldo RR'ltoff(%r1),%r22
103 : ldw 0(%r22),%r21 ; get procedure entry point
104 : ldsid (%r21),%r1 ; get target sid
105 : ldw 4(%r22),%r19 ; get new dlt value.
106 : mtsp %r1,%sr0
107 : be 0(%sr0,%r21) ; branch to target
108 : stw %rp,-24(%sp) ; save rp
109
110 Export stub to return from shared lib routine (multiple sub-space support)
111 One of these is created for each exported procedure in a shared
112 library (and stored in the shared lib). Shared lib routines are
113 called via the first instruction in the export stub so that we can
114 do an inter-space return. Not required for single sub-space.
115 : bl,n X,%rp ; trap the return
116 : nop
117 : ldw -24(%sp),%rp ; restore the original rp
118 : ldsid (%rp),%r1
119 : mtsp %r1,%sr0
120 : be,n 0(%sr0,%rp) ; inter-space return. */
121
122
123 /* Variable names follow a coding style.
124 Please follow this (Apps Hungarian) style:
125
126 Structure/Variable Prefix
127 elf_link_hash_table "etab"
128 elf_link_hash_entry "eh"
129
130 elf32_hppa_link_hash_table "htab"
131 elf32_hppa_link_hash_entry "hh"
132
133 bfd_hash_table "btab"
134 bfd_hash_entry "bh"
135
136 bfd_hash_table containing stubs "bstab"
137 elf32_hppa_stub_hash_entry "hsh"
138
139 Always remember to use GNU Coding Style. */
140
141 #define PLT_ENTRY_SIZE 8
142 #define GOT_ENTRY_SIZE 4
143 #define LONG_BRANCH_STUB_SIZE 8
144 #define LONG_BRANCH_SHARED_STUB_SIZE 12
145 #define IMPORT_STUB_SIZE 20
146 #define IMPORT_SHARED_STUB_SIZE 32
147 #define EXPORT_STUB_SIZE 24
148 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
149
150 static const bfd_byte plt_stub[] =
151 {
152 0x0e, 0x80, 0x10, 0x95, /* 1: ldw 0(%r20),%r21 */
153 0xea, 0xa0, 0xc0, 0x00, /* bv %r0(%r21) */
154 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
155 #define PLT_STUB_ENTRY (3*4)
156 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
157 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
158 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
159 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
160 };
161
162 /* Section name for stubs is the associated section name plus this
163 string. */
164 #define STUB_SUFFIX ".stub"
165
166 /* We don't need to copy certain PC- or GP-relative dynamic relocs
167 into a shared object's dynamic section. All the relocs of the
168 limited class we are interested in, are absolute. */
169 #ifndef RELATIVE_DYNRELOCS
170 #define RELATIVE_DYNRELOCS 0
171 #define IS_ABSOLUTE_RELOC(r_type) 1
172 #define pc_dynrelocs(hh) 0
173 #endif
174
175 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
176 copying dynamic variables from a shared lib into an app's dynbss
177 section, and instead use a dynamic relocation to point into the
178 shared lib. */
179 #define ELIMINATE_COPY_RELOCS 1
180
181 enum elf32_hppa_stub_type
182 {
183 hppa_stub_long_branch,
184 hppa_stub_long_branch_shared,
185 hppa_stub_import,
186 hppa_stub_import_shared,
187 hppa_stub_export,
188 hppa_stub_none
189 };
190
191 struct elf32_hppa_stub_hash_entry
192 {
193 /* Base hash table entry structure. */
194 struct bfd_hash_entry bh_root;
195
196 /* The stub section. */
197 asection *stub_sec;
198
199 /* Offset within stub_sec of the beginning of this stub. */
200 bfd_vma stub_offset;
201
202 /* Given the symbol's value and its section we can determine its final
203 value when building the stubs (so the stub knows where to jump. */
204 bfd_vma target_value;
205 asection *target_section;
206
207 enum elf32_hppa_stub_type stub_type;
208
209 /* The symbol table entry, if any, that this was derived from. */
210 struct elf32_hppa_link_hash_entry *hh;
211
212 /* Where this stub is being called from, or, in the case of combined
213 stub sections, the first input section in the group. */
214 asection *id_sec;
215 };
216
217 enum _tls_type
218 {
219 GOT_UNKNOWN = 0,
220 GOT_NORMAL = 1,
221 GOT_TLS_GD = 2,
222 GOT_TLS_LDM = 4,
223 GOT_TLS_IE = 8
224 };
225
226 struct elf32_hppa_link_hash_entry
227 {
228 struct elf_link_hash_entry eh;
229
230 /* A pointer to the most recently used stub hash entry against this
231 symbol. */
232 struct elf32_hppa_stub_hash_entry *hsh_cache;
233
234 ENUM_BITFIELD (_tls_type) tls_type : 8;
235
236 /* Set if this symbol is used by a plabel reloc. */
237 unsigned int plabel:1;
238 };
239
240 struct elf32_hppa_link_hash_table
241 {
242 /* The main hash table. */
243 struct elf_link_hash_table etab;
244
245 /* The stub hash table. */
246 struct bfd_hash_table bstab;
247
248 /* Linker stub bfd. */
249 bfd *stub_bfd;
250
251 /* Linker call-backs. */
252 asection * (*add_stub_section) (const char *, asection *);
253 void (*layout_sections_again) (void);
254
255 /* Array to keep track of which stub sections have been created, and
256 information on stub grouping. */
257 struct map_stub
258 {
259 /* This is the section to which stubs in the group will be
260 attached. */
261 asection *link_sec;
262 /* The stub section. */
263 asection *stub_sec;
264 } *stub_group;
265
266 /* Assorted information used by elf32_hppa_size_stubs. */
267 unsigned int bfd_count;
268 unsigned int top_index;
269 asection **input_list;
270 Elf_Internal_Sym **all_local_syms;
271
272 /* Used during a final link to store the base of the text and data
273 segments so that we can perform SEGREL relocations. */
274 bfd_vma text_segment_base;
275 bfd_vma data_segment_base;
276
277 /* Whether we support multiple sub-spaces for shared libs. */
278 unsigned int multi_subspace:1;
279
280 /* Flags set when various size branches are detected. Used to
281 select suitable defaults for the stub group size. */
282 unsigned int has_12bit_branch:1;
283 unsigned int has_17bit_branch:1;
284 unsigned int has_22bit_branch:1;
285
286 /* Set if we need a .plt stub to support lazy dynamic linking. */
287 unsigned int need_plt_stub:1;
288
289 /* Small local sym cache. */
290 struct sym_cache sym_cache;
291
292 /* Data for LDM relocations. */
293 union
294 {
295 bfd_signed_vma refcount;
296 bfd_vma offset;
297 } tls_ldm_got;
298 };
299
300 /* Various hash macros and functions. */
301 #define hppa_link_hash_table(p) \
302 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
303 == HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL)
304
305 #define hppa_elf_hash_entry(ent) \
306 ((struct elf32_hppa_link_hash_entry *)(ent))
307
308 #define hppa_stub_hash_entry(ent) \
309 ((struct elf32_hppa_stub_hash_entry *)(ent))
310
311 #define hppa_stub_hash_lookup(table, string, create, copy) \
312 ((struct elf32_hppa_stub_hash_entry *) \
313 bfd_hash_lookup ((table), (string), (create), (copy)))
314
315 #define hppa_elf_local_got_tls_type(abfd) \
316 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
317
318 #define hh_name(hh) \
319 (hh ? hh->eh.root.root.string : "<undef>")
320
321 #define eh_name(eh) \
322 (eh ? eh->root.root.string : "<undef>")
323
324 /* Assorted hash table functions. */
325
326 /* Initialize an entry in the stub hash table. */
327
328 static struct bfd_hash_entry *
329 stub_hash_newfunc (struct bfd_hash_entry *entry,
330 struct bfd_hash_table *table,
331 const char *string)
332 {
333 /* Allocate the structure if it has not already been allocated by a
334 subclass. */
335 if (entry == NULL)
336 {
337 entry = bfd_hash_allocate (table,
338 sizeof (struct elf32_hppa_stub_hash_entry));
339 if (entry == NULL)
340 return entry;
341 }
342
343 /* Call the allocation method of the superclass. */
344 entry = bfd_hash_newfunc (entry, table, string);
345 if (entry != NULL)
346 {
347 struct elf32_hppa_stub_hash_entry *hsh;
348
349 /* Initialize the local fields. */
350 hsh = hppa_stub_hash_entry (entry);
351 hsh->stub_sec = NULL;
352 hsh->stub_offset = 0;
353 hsh->target_value = 0;
354 hsh->target_section = NULL;
355 hsh->stub_type = hppa_stub_long_branch;
356 hsh->hh = NULL;
357 hsh->id_sec = NULL;
358 }
359
360 return entry;
361 }
362
363 /* Initialize an entry in the link hash table. */
364
365 static struct bfd_hash_entry *
366 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
367 struct bfd_hash_table *table,
368 const char *string)
369 {
370 /* Allocate the structure if it has not already been allocated by a
371 subclass. */
372 if (entry == NULL)
373 {
374 entry = bfd_hash_allocate (table,
375 sizeof (struct elf32_hppa_link_hash_entry));
376 if (entry == NULL)
377 return entry;
378 }
379
380 /* Call the allocation method of the superclass. */
381 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
382 if (entry != NULL)
383 {
384 struct elf32_hppa_link_hash_entry *hh;
385
386 /* Initialize the local fields. */
387 hh = hppa_elf_hash_entry (entry);
388 hh->hsh_cache = NULL;
389 hh->plabel = 0;
390 hh->tls_type = GOT_UNKNOWN;
391 }
392
393 return entry;
394 }
395
396 /* Free the derived linker hash table. */
397
398 static void
399 elf32_hppa_link_hash_table_free (bfd *obfd)
400 {
401 struct elf32_hppa_link_hash_table *htab
402 = (struct elf32_hppa_link_hash_table *) obfd->link.hash;
403
404 bfd_hash_table_free (&htab->bstab);
405 _bfd_elf_link_hash_table_free (obfd);
406 }
407
408 /* Create the derived linker hash table. The PA ELF port uses the derived
409 hash table to keep information specific to the PA ELF linker (without
410 using static variables). */
411
412 static struct bfd_link_hash_table *
413 elf32_hppa_link_hash_table_create (bfd *abfd)
414 {
415 struct elf32_hppa_link_hash_table *htab;
416 size_t amt = sizeof (*htab);
417
418 htab = bfd_zmalloc (amt);
419 if (htab == NULL)
420 return NULL;
421
422 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
423 sizeof (struct elf32_hppa_link_hash_entry),
424 HPPA32_ELF_DATA))
425 {
426 free (htab);
427 return NULL;
428 }
429
430 /* Init the stub hash table too. */
431 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
432 sizeof (struct elf32_hppa_stub_hash_entry)))
433 {
434 _bfd_elf_link_hash_table_free (abfd);
435 return NULL;
436 }
437 htab->etab.root.hash_table_free = elf32_hppa_link_hash_table_free;
438
439 htab->text_segment_base = (bfd_vma) -1;
440 htab->data_segment_base = (bfd_vma) -1;
441 return &htab->etab.root;
442 }
443
444 /* Initialize the linker stubs BFD so that we can use it for linker
445 created dynamic sections. */
446
447 void
448 elf32_hppa_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
449 {
450 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
451
452 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS32;
453 htab->etab.dynobj = abfd;
454 }
455
456 /* Build a name for an entry in the stub hash table. */
457
458 static char *
459 hppa_stub_name (const asection *input_section,
460 const asection *sym_sec,
461 const struct elf32_hppa_link_hash_entry *hh,
462 const Elf_Internal_Rela *rela)
463 {
464 char *stub_name;
465 bfd_size_type len;
466
467 if (hh)
468 {
469 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
470 stub_name = bfd_malloc (len);
471 if (stub_name != NULL)
472 sprintf (stub_name, "%08x_%s+%x",
473 input_section->id & 0xffffffff,
474 hh_name (hh),
475 (int) rela->r_addend & 0xffffffff);
476 }
477 else
478 {
479 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
480 stub_name = bfd_malloc (len);
481 if (stub_name != NULL)
482 sprintf (stub_name, "%08x_%x:%x+%x",
483 input_section->id & 0xffffffff,
484 sym_sec->id & 0xffffffff,
485 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
486 (int) rela->r_addend & 0xffffffff);
487 }
488 return stub_name;
489 }
490
491 /* Look up an entry in the stub hash. Stub entries are cached because
492 creating the stub name takes a bit of time. */
493
494 static struct elf32_hppa_stub_hash_entry *
495 hppa_get_stub_entry (const asection *input_section,
496 const asection *sym_sec,
497 struct elf32_hppa_link_hash_entry *hh,
498 const Elf_Internal_Rela *rela,
499 struct elf32_hppa_link_hash_table *htab)
500 {
501 struct elf32_hppa_stub_hash_entry *hsh_entry;
502 const asection *id_sec;
503
504 /* If this input section is part of a group of sections sharing one
505 stub section, then use the id of the first section in the group.
506 Stub names need to include a section id, as there may well be
507 more than one stub used to reach say, printf, and we need to
508 distinguish between them. */
509 id_sec = htab->stub_group[input_section->id].link_sec;
510 if (id_sec == NULL)
511 return NULL;
512
513 if (hh != NULL && hh->hsh_cache != NULL
514 && hh->hsh_cache->hh == hh
515 && hh->hsh_cache->id_sec == id_sec)
516 {
517 hsh_entry = hh->hsh_cache;
518 }
519 else
520 {
521 char *stub_name;
522
523 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
524 if (stub_name == NULL)
525 return NULL;
526
527 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
528 stub_name, FALSE, FALSE);
529 if (hh != NULL)
530 hh->hsh_cache = hsh_entry;
531
532 free (stub_name);
533 }
534
535 return hsh_entry;
536 }
537
538 /* Add a new stub entry to the stub hash. Not all fields of the new
539 stub entry are initialised. */
540
541 static struct elf32_hppa_stub_hash_entry *
542 hppa_add_stub (const char *stub_name,
543 asection *section,
544 struct elf32_hppa_link_hash_table *htab)
545 {
546 asection *link_sec;
547 asection *stub_sec;
548 struct elf32_hppa_stub_hash_entry *hsh;
549
550 link_sec = htab->stub_group[section->id].link_sec;
551 stub_sec = htab->stub_group[section->id].stub_sec;
552 if (stub_sec == NULL)
553 {
554 stub_sec = htab->stub_group[link_sec->id].stub_sec;
555 if (stub_sec == NULL)
556 {
557 size_t namelen;
558 bfd_size_type len;
559 char *s_name;
560
561 namelen = strlen (link_sec->name);
562 len = namelen + sizeof (STUB_SUFFIX);
563 s_name = bfd_alloc (htab->stub_bfd, len);
564 if (s_name == NULL)
565 return NULL;
566
567 memcpy (s_name, link_sec->name, namelen);
568 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
569 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
570 if (stub_sec == NULL)
571 return NULL;
572 htab->stub_group[link_sec->id].stub_sec = stub_sec;
573 }
574 htab->stub_group[section->id].stub_sec = stub_sec;
575 }
576
577 /* Enter this entry into the linker stub hash table. */
578 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
579 TRUE, FALSE);
580 if (hsh == NULL)
581 {
582 /* xgettext:c-format */
583 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
584 section->owner, stub_name);
585 return NULL;
586 }
587
588 hsh->stub_sec = stub_sec;
589 hsh->stub_offset = 0;
590 hsh->id_sec = link_sec;
591 return hsh;
592 }
593
594 /* Determine the type of stub needed, if any, for a call. */
595
596 static enum elf32_hppa_stub_type
597 hppa_type_of_stub (asection *input_sec,
598 const Elf_Internal_Rela *rela,
599 struct elf32_hppa_link_hash_entry *hh,
600 bfd_vma destination,
601 struct bfd_link_info *info)
602 {
603 bfd_vma location;
604 bfd_vma branch_offset;
605 bfd_vma max_branch_offset;
606 unsigned int r_type;
607
608 if (hh != NULL
609 && hh->eh.plt.offset != (bfd_vma) -1
610 && hh->eh.dynindx != -1
611 && !hh->plabel
612 && (bfd_link_pic (info)
613 || !hh->eh.def_regular
614 || hh->eh.root.type == bfd_link_hash_defweak))
615 {
616 /* We need an import stub. Decide between hppa_stub_import
617 and hppa_stub_import_shared later. */
618 return hppa_stub_import;
619 }
620
621 if (destination == (bfd_vma) -1)
622 return hppa_stub_none;
623
624 /* Determine where the call point is. */
625 location = (input_sec->output_offset
626 + input_sec->output_section->vma
627 + rela->r_offset);
628
629 branch_offset = destination - location - 8;
630 r_type = ELF32_R_TYPE (rela->r_info);
631
632 /* Determine if a long branch stub is needed. parisc branch offsets
633 are relative to the second instruction past the branch, ie. +8
634 bytes on from the branch instruction location. The offset is
635 signed and counts in units of 4 bytes. */
636 if (r_type == (unsigned int) R_PARISC_PCREL17F)
637 max_branch_offset = (1 << (17 - 1)) << 2;
638
639 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
640 max_branch_offset = (1 << (12 - 1)) << 2;
641
642 else /* R_PARISC_PCREL22F. */
643 max_branch_offset = (1 << (22 - 1)) << 2;
644
645 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
646 return hppa_stub_long_branch;
647
648 return hppa_stub_none;
649 }
650
651 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
652 IN_ARG contains the link info pointer. */
653
654 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
655 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
656
657 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
658 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
659 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
660
661 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
662 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
663 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
664 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
665
666 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
667 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
668
669 #define LDO_R1_R22 0x34360000 /* ldo RR'XXX(%r1),%r22 */
670 #define LDW_R22_R21 0x0ec01095 /* ldw 0(%r22),%r21 */
671 #define LDW_R22_R19 0x0ec81093 /* ldw 4(%r22),%r19 */
672
673 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
674 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
675 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
676 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
677
678 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
679 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
680 #define NOP 0x08000240 /* nop */
681 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
682 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
683 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
684
685 #ifndef R19_STUBS
686 #define R19_STUBS 1
687 #endif
688
689 #if R19_STUBS
690 #define LDW_R1_DLT LDW_R1_R19
691 #else
692 #define LDW_R1_DLT LDW_R1_DP
693 #endif
694
695 static bfd_boolean
696 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
697 {
698 struct elf32_hppa_stub_hash_entry *hsh;
699 struct bfd_link_info *info;
700 struct elf32_hppa_link_hash_table *htab;
701 asection *stub_sec;
702 bfd *stub_bfd;
703 bfd_byte *loc;
704 bfd_vma sym_value;
705 bfd_vma insn;
706 bfd_vma off;
707 int val;
708 int size;
709
710 /* Massage our args to the form they really have. */
711 hsh = hppa_stub_hash_entry (bh);
712 info = (struct bfd_link_info *)in_arg;
713
714 htab = hppa_link_hash_table (info);
715 if (htab == NULL)
716 return FALSE;
717
718 stub_sec = hsh->stub_sec;
719
720 /* Make a note of the offset within the stubs for this entry. */
721 hsh->stub_offset = stub_sec->size;
722 loc = stub_sec->contents + hsh->stub_offset;
723
724 stub_bfd = stub_sec->owner;
725
726 switch (hsh->stub_type)
727 {
728 case hppa_stub_long_branch:
729 /* Fail if the target section could not be assigned to an output
730 section. The user should fix his linker script. */
731 if (hsh->target_section->output_section == NULL
732 && info->non_contiguous_regions)
733 info->callbacks->einfo (_("%F%P: Could not assign '%pA' to an output "
734 "section. Retry without "
735 "--enable-non-contiguous-regions.\n"),
736 hsh->target_section);
737
738 /* Create the long branch. A long branch is formed with "ldil"
739 loading the upper bits of the target address into a register,
740 then branching with "be" which adds in the lower bits.
741 The "be" has its delay slot nullified. */
742 sym_value = (hsh->target_value
743 + hsh->target_section->output_offset
744 + hsh->target_section->output_section->vma);
745
746 val = hppa_field_adjust (sym_value, 0, e_lrsel);
747 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
748 bfd_put_32 (stub_bfd, insn, loc);
749
750 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
751 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
752 bfd_put_32 (stub_bfd, insn, loc + 4);
753
754 size = LONG_BRANCH_STUB_SIZE;
755 break;
756
757 case hppa_stub_long_branch_shared:
758 /* Fail if the target section could not be assigned to an output
759 section. The user should fix his linker script. */
760 if (hsh->target_section->output_section == NULL
761 && info->non_contiguous_regions)
762 info->callbacks->einfo (_("%F%P: Could not assign %pA to an output "
763 "section. Retry without "
764 "--enable-non-contiguous-regions.\n"),
765 hsh->target_section);
766
767 /* Branches are relative. This is where we are going to. */
768 sym_value = (hsh->target_value
769 + hsh->target_section->output_offset
770 + hsh->target_section->output_section->vma);
771
772 /* And this is where we are coming from, more or less. */
773 sym_value -= (hsh->stub_offset
774 + stub_sec->output_offset
775 + stub_sec->output_section->vma);
776
777 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
778 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
779 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
780 bfd_put_32 (stub_bfd, insn, loc + 4);
781
782 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
783 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
784 bfd_put_32 (stub_bfd, insn, loc + 8);
785 size = LONG_BRANCH_SHARED_STUB_SIZE;
786 break;
787
788 case hppa_stub_import:
789 case hppa_stub_import_shared:
790 off = hsh->hh->eh.plt.offset;
791 if (off >= (bfd_vma) -2)
792 abort ();
793
794 off &= ~ (bfd_vma) 1;
795 sym_value = (off
796 + htab->etab.splt->output_offset
797 + htab->etab.splt->output_section->vma
798 - elf_gp (htab->etab.splt->output_section->owner));
799
800 insn = ADDIL_DP;
801 #if R19_STUBS
802 if (hsh->stub_type == hppa_stub_import_shared)
803 insn = ADDIL_R19;
804 #endif
805
806 /* Load function descriptor address into register %r22. It is
807 sometimes needed for lazy binding. */
808 val = hppa_field_adjust (sym_value, 0, e_lrsel),
809 insn = hppa_rebuild_insn ((int) insn, val, 21);
810 bfd_put_32 (stub_bfd, insn, loc);
811
812 val = hppa_field_adjust (sym_value, 0, e_rrsel);
813 insn = hppa_rebuild_insn ((int) LDO_R1_R22, val, 14);
814 bfd_put_32 (stub_bfd, insn, loc + 4);
815
816 bfd_put_32 (stub_bfd, (bfd_vma) LDW_R22_R21, loc + 8);
817
818 if (htab->multi_subspace)
819 {
820 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
821 bfd_put_32 (stub_bfd, (bfd_vma) LDW_R22_R19, loc + 16);
822 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 20);
823 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 24);
824 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 28);
825
826 size = IMPORT_SHARED_STUB_SIZE;
827 }
828 else
829 {
830 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 12);
831 bfd_put_32 (stub_bfd, (bfd_vma) LDW_R22_R19, loc + 16);
832
833 size = IMPORT_STUB_SIZE;
834 }
835
836 break;
837
838 case hppa_stub_export:
839 /* Fail if the target section could not be assigned to an output
840 section. The user should fix his linker script. */
841 if (hsh->target_section->output_section == NULL
842 && info->non_contiguous_regions)
843 info->callbacks->einfo (_("%F%P: Could not assign %pA to an output "
844 "section. Retry without "
845 "--enable-non-contiguous-regions.\n"),
846 hsh->target_section);
847
848 /* Branches are relative. This is where we are going to. */
849 sym_value = (hsh->target_value
850 + hsh->target_section->output_offset
851 + hsh->target_section->output_section->vma);
852
853 /* And this is where we are coming from. */
854 sym_value -= (hsh->stub_offset
855 + stub_sec->output_offset
856 + stub_sec->output_section->vma);
857
858 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
859 && (!htab->has_22bit_branch
860 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
861 {
862 _bfd_error_handler
863 /* xgettext:c-format */
864 (_("%pB(%pA+%#" PRIx64 "): "
865 "cannot reach %s, recompile with -ffunction-sections"),
866 hsh->target_section->owner,
867 stub_sec,
868 (uint64_t) hsh->stub_offset,
869 hsh->bh_root.string);
870 bfd_set_error (bfd_error_bad_value);
871 return FALSE;
872 }
873
874 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
875 if (!htab->has_22bit_branch)
876 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
877 else
878 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
879 bfd_put_32 (stub_bfd, insn, loc);
880
881 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
882 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
883 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
884 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
885 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
886
887 /* Point the function symbol at the stub. */
888 hsh->hh->eh.root.u.def.section = stub_sec;
889 hsh->hh->eh.root.u.def.value = stub_sec->size;
890
891 size = EXPORT_STUB_SIZE;
892 break;
893
894 default:
895 BFD_FAIL ();
896 return FALSE;
897 }
898
899 stub_sec->size += size;
900 return TRUE;
901 }
902
903 #undef LDIL_R1
904 #undef BE_SR4_R1
905 #undef BL_R1
906 #undef ADDIL_R1
907 #undef DEPI_R1
908 #undef LDW_R1_R21
909 #undef LDW_R1_DLT
910 #undef LDW_R1_R19
911 #undef ADDIL_R19
912 #undef LDW_R1_DP
913 #undef LDSID_R21_R1
914 #undef MTSP_R1
915 #undef BE_SR0_R21
916 #undef STW_RP
917 #undef BV_R0_R21
918 #undef BL_RP
919 #undef NOP
920 #undef LDW_RP
921 #undef LDSID_RP_R1
922 #undef BE_SR0_RP
923
924 /* As above, but don't actually build the stub. Just bump offset so
925 we know stub section sizes. */
926
927 static bfd_boolean
928 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
929 {
930 struct elf32_hppa_stub_hash_entry *hsh;
931 struct elf32_hppa_link_hash_table *htab;
932 int size;
933
934 /* Massage our args to the form they really have. */
935 hsh = hppa_stub_hash_entry (bh);
936 htab = in_arg;
937
938 if (hsh->stub_type == hppa_stub_long_branch)
939 size = LONG_BRANCH_STUB_SIZE;
940 else if (hsh->stub_type == hppa_stub_long_branch_shared)
941 size = LONG_BRANCH_SHARED_STUB_SIZE;
942 else if (hsh->stub_type == hppa_stub_export)
943 size = EXPORT_STUB_SIZE;
944 else /* hppa_stub_import or hppa_stub_import_shared. */
945 {
946 if (htab->multi_subspace)
947 size = IMPORT_SHARED_STUB_SIZE;
948 else
949 size = IMPORT_STUB_SIZE;
950 }
951
952 hsh->stub_sec->size += size;
953 return TRUE;
954 }
955
956 /* Return nonzero if ABFD represents an HPPA ELF32 file.
957 Additionally we set the default architecture and machine. */
958
959 static bfd_boolean
960 elf32_hppa_object_p (bfd *abfd)
961 {
962 Elf_Internal_Ehdr * i_ehdrp;
963 unsigned int flags;
964
965 i_ehdrp = elf_elfheader (abfd);
966 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
967 {
968 /* GCC on hppa-linux produces binaries with OSABI=GNU,
969 but the kernel produces corefiles with OSABI=SysV. */
970 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU &&
971 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
972 return FALSE;
973 }
974 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
975 {
976 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
977 but the kernel produces corefiles with OSABI=SysV. */
978 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
979 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
980 return FALSE;
981 }
982 else
983 {
984 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
985 return FALSE;
986 }
987
988 flags = i_ehdrp->e_flags;
989 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
990 {
991 case EFA_PARISC_1_0:
992 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
993 case EFA_PARISC_1_1:
994 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
995 case EFA_PARISC_2_0:
996 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
997 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
998 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
999 }
1000 return TRUE;
1001 }
1002
1003 /* Create the .plt and .got sections, and set up our hash table
1004 short-cuts to various dynamic sections. */
1005
1006 static bfd_boolean
1007 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
1008 {
1009 struct elf32_hppa_link_hash_table *htab;
1010 struct elf_link_hash_entry *eh;
1011
1012 /* Don't try to create the .plt and .got twice. */
1013 htab = hppa_link_hash_table (info);
1014 if (htab == NULL)
1015 return FALSE;
1016 if (htab->etab.splt != NULL)
1017 return TRUE;
1018
1019 /* Call the generic code to do most of the work. */
1020 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1021 return FALSE;
1022
1023 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
1024 application, because __canonicalize_funcptr_for_compare needs it. */
1025 eh = elf_hash_table (info)->hgot;
1026 eh->forced_local = 0;
1027 eh->other = STV_DEFAULT;
1028 return bfd_elf_link_record_dynamic_symbol (info, eh);
1029 }
1030
1031 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1032
1033 static void
1034 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1035 struct elf_link_hash_entry *eh_dir,
1036 struct elf_link_hash_entry *eh_ind)
1037 {
1038 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1039
1040 hh_dir = hppa_elf_hash_entry (eh_dir);
1041 hh_ind = hppa_elf_hash_entry (eh_ind);
1042
1043 if (eh_ind->root.type == bfd_link_hash_indirect)
1044 {
1045 hh_dir->plabel |= hh_ind->plabel;
1046 hh_dir->tls_type |= hh_ind->tls_type;
1047 hh_ind->tls_type = GOT_UNKNOWN;
1048 }
1049
1050 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1051 }
1052
1053 static int
1054 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1055 int r_type, int is_local ATTRIBUTE_UNUSED)
1056 {
1057 /* For now we don't support linker optimizations. */
1058 return r_type;
1059 }
1060
1061 /* Return a pointer to the local GOT, PLT and TLS reference counts
1062 for ABFD. Returns NULL if the storage allocation fails. */
1063
1064 static bfd_signed_vma *
1065 hppa32_elf_local_refcounts (bfd *abfd)
1066 {
1067 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1068 bfd_signed_vma *local_refcounts;
1069
1070 local_refcounts = elf_local_got_refcounts (abfd);
1071 if (local_refcounts == NULL)
1072 {
1073 bfd_size_type size;
1074
1075 /* Allocate space for local GOT and PLT reference
1076 counts. Done this way to save polluting elf_obj_tdata
1077 with another target specific pointer. */
1078 size = symtab_hdr->sh_info;
1079 size *= 2 * sizeof (bfd_signed_vma);
1080 /* Add in space to store the local GOT TLS types. */
1081 size += symtab_hdr->sh_info;
1082 local_refcounts = bfd_zalloc (abfd, size);
1083 if (local_refcounts == NULL)
1084 return NULL;
1085 elf_local_got_refcounts (abfd) = local_refcounts;
1086 memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
1087 symtab_hdr->sh_info);
1088 }
1089 return local_refcounts;
1090 }
1091
1092
1093 /* Look through the relocs for a section during the first phase, and
1094 calculate needed space in the global offset table, procedure linkage
1095 table, and dynamic reloc sections. At this point we haven't
1096 necessarily read all the input files. */
1097
1098 static bfd_boolean
1099 elf32_hppa_check_relocs (bfd *abfd,
1100 struct bfd_link_info *info,
1101 asection *sec,
1102 const Elf_Internal_Rela *relocs)
1103 {
1104 Elf_Internal_Shdr *symtab_hdr;
1105 struct elf_link_hash_entry **eh_syms;
1106 const Elf_Internal_Rela *rela;
1107 const Elf_Internal_Rela *rela_end;
1108 struct elf32_hppa_link_hash_table *htab;
1109 asection *sreloc;
1110
1111 if (bfd_link_relocatable (info))
1112 return TRUE;
1113
1114 htab = hppa_link_hash_table (info);
1115 if (htab == NULL)
1116 return FALSE;
1117 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1118 eh_syms = elf_sym_hashes (abfd);
1119 sreloc = NULL;
1120
1121 rela_end = relocs + sec->reloc_count;
1122 for (rela = relocs; rela < rela_end; rela++)
1123 {
1124 enum {
1125 NEED_GOT = 1,
1126 NEED_PLT = 2,
1127 NEED_DYNREL = 4,
1128 PLT_PLABEL = 8
1129 };
1130
1131 unsigned int r_symndx, r_type;
1132 struct elf32_hppa_link_hash_entry *hh;
1133 int need_entry = 0;
1134
1135 r_symndx = ELF32_R_SYM (rela->r_info);
1136
1137 if (r_symndx < symtab_hdr->sh_info)
1138 hh = NULL;
1139 else
1140 {
1141 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1142 while (hh->eh.root.type == bfd_link_hash_indirect
1143 || hh->eh.root.type == bfd_link_hash_warning)
1144 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1145 }
1146
1147 r_type = ELF32_R_TYPE (rela->r_info);
1148 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1149
1150 switch (r_type)
1151 {
1152 case R_PARISC_DLTIND14F:
1153 case R_PARISC_DLTIND14R:
1154 case R_PARISC_DLTIND21L:
1155 /* This symbol requires a global offset table entry. */
1156 need_entry = NEED_GOT;
1157 break;
1158
1159 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1160 case R_PARISC_PLABEL21L:
1161 case R_PARISC_PLABEL32:
1162 /* If the addend is non-zero, we break badly. */
1163 if (rela->r_addend != 0)
1164 abort ();
1165
1166 /* If we are creating a shared library, then we need to
1167 create a PLT entry for all PLABELs, because PLABELs with
1168 local symbols may be passed via a pointer to another
1169 object. Additionally, output a dynamic relocation
1170 pointing to the PLT entry.
1171
1172 For executables, the original 32-bit ABI allowed two
1173 different styles of PLABELs (function pointers): For
1174 global functions, the PLABEL word points into the .plt
1175 two bytes past a (function address, gp) pair, and for
1176 local functions the PLABEL points directly at the
1177 function. The magic +2 for the first type allows us to
1178 differentiate between the two. As you can imagine, this
1179 is a real pain when it comes to generating code to call
1180 functions indirectly or to compare function pointers.
1181 We avoid the mess by always pointing a PLABEL into the
1182 .plt, even for local functions. */
1183 need_entry = PLT_PLABEL | NEED_PLT;
1184 if (bfd_link_pic (info))
1185 need_entry |= NEED_DYNREL;
1186 break;
1187
1188 case R_PARISC_PCREL12F:
1189 htab->has_12bit_branch = 1;
1190 goto branch_common;
1191
1192 case R_PARISC_PCREL17C:
1193 case R_PARISC_PCREL17F:
1194 htab->has_17bit_branch = 1;
1195 goto branch_common;
1196
1197 case R_PARISC_PCREL22F:
1198 htab->has_22bit_branch = 1;
1199 branch_common:
1200 /* Function calls might need to go through the .plt, and
1201 might require long branch stubs. */
1202 if (hh == NULL)
1203 {
1204 /* We know local syms won't need a .plt entry, and if
1205 they need a long branch stub we can't guarantee that
1206 we can reach the stub. So just flag an error later
1207 if we're doing a shared link and find we need a long
1208 branch stub. */
1209 continue;
1210 }
1211 else
1212 {
1213 /* Global symbols will need a .plt entry if they remain
1214 global, and in most cases won't need a long branch
1215 stub. Unfortunately, we have to cater for the case
1216 where a symbol is forced local by versioning, or due
1217 to symbolic linking, and we lose the .plt entry. */
1218 need_entry = NEED_PLT;
1219 if (hh->eh.type == STT_PARISC_MILLI)
1220 need_entry = 0;
1221 }
1222 break;
1223
1224 case R_PARISC_SEGBASE: /* Used to set segment base. */
1225 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1226 case R_PARISC_PCREL14F: /* PC relative load/store. */
1227 case R_PARISC_PCREL14R:
1228 case R_PARISC_PCREL17R: /* External branches. */
1229 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1230 case R_PARISC_PCREL32:
1231 /* We don't need to propagate the relocation if linking a
1232 shared object since these are section relative. */
1233 continue;
1234
1235 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1236 case R_PARISC_DPREL14R:
1237 case R_PARISC_DPREL21L:
1238 if (bfd_link_pic (info))
1239 {
1240 _bfd_error_handler
1241 /* xgettext:c-format */
1242 (_("%pB: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1243 abfd,
1244 elf_hppa_howto_table[r_type].name);
1245 bfd_set_error (bfd_error_bad_value);
1246 return FALSE;
1247 }
1248 /* Fall through. */
1249
1250 case R_PARISC_DIR17F: /* Used for external branches. */
1251 case R_PARISC_DIR17R:
1252 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1253 case R_PARISC_DIR14R:
1254 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1255 case R_PARISC_DIR32: /* .word relocs. */
1256 /* We may want to output a dynamic relocation later. */
1257 need_entry = NEED_DYNREL;
1258 break;
1259
1260 /* This relocation describes the C++ object vtable hierarchy.
1261 Reconstruct it for later use during GC. */
1262 case R_PARISC_GNU_VTINHERIT:
1263 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1264 return FALSE;
1265 continue;
1266
1267 /* This relocation describes which C++ vtable entries are actually
1268 used. Record for later use during GC. */
1269 case R_PARISC_GNU_VTENTRY:
1270 if (!bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1271 return FALSE;
1272 continue;
1273
1274 case R_PARISC_TLS_GD21L:
1275 case R_PARISC_TLS_GD14R:
1276 case R_PARISC_TLS_LDM21L:
1277 case R_PARISC_TLS_LDM14R:
1278 need_entry = NEED_GOT;
1279 break;
1280
1281 case R_PARISC_TLS_IE21L:
1282 case R_PARISC_TLS_IE14R:
1283 if (bfd_link_dll (info))
1284 info->flags |= DF_STATIC_TLS;
1285 need_entry = NEED_GOT;
1286 break;
1287
1288 default:
1289 continue;
1290 }
1291
1292 /* Now carry out our orders. */
1293 if (need_entry & NEED_GOT)
1294 {
1295 int tls_type = GOT_NORMAL;
1296
1297 switch (r_type)
1298 {
1299 default:
1300 break;
1301 case R_PARISC_TLS_GD21L:
1302 case R_PARISC_TLS_GD14R:
1303 tls_type = GOT_TLS_GD;
1304 break;
1305 case R_PARISC_TLS_LDM21L:
1306 case R_PARISC_TLS_LDM14R:
1307 tls_type = GOT_TLS_LDM;
1308 break;
1309 case R_PARISC_TLS_IE21L:
1310 case R_PARISC_TLS_IE14R:
1311 tls_type = GOT_TLS_IE;
1312 break;
1313 }
1314
1315 /* Allocate space for a GOT entry, as well as a dynamic
1316 relocation for this entry. */
1317 if (htab->etab.sgot == NULL)
1318 {
1319 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1320 return FALSE;
1321 }
1322
1323 if (hh != NULL)
1324 {
1325 if (tls_type == GOT_TLS_LDM)
1326 htab->tls_ldm_got.refcount += 1;
1327 else
1328 hh->eh.got.refcount += 1;
1329 hh->tls_type |= tls_type;
1330 }
1331 else
1332 {
1333 bfd_signed_vma *local_got_refcounts;
1334
1335 /* This is a global offset table entry for a local symbol. */
1336 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1337 if (local_got_refcounts == NULL)
1338 return FALSE;
1339 if (tls_type == GOT_TLS_LDM)
1340 htab->tls_ldm_got.refcount += 1;
1341 else
1342 local_got_refcounts[r_symndx] += 1;
1343
1344 hppa_elf_local_got_tls_type (abfd) [r_symndx] |= tls_type;
1345 }
1346 }
1347
1348 if (need_entry & NEED_PLT)
1349 {
1350 /* If we are creating a shared library, and this is a reloc
1351 against a weak symbol or a global symbol in a dynamic
1352 object, then we will be creating an import stub and a
1353 .plt entry for the symbol. Similarly, on a normal link
1354 to symbols defined in a dynamic object we'll need the
1355 import stub and a .plt entry. We don't know yet whether
1356 the symbol is defined or not, so make an entry anyway and
1357 clean up later in adjust_dynamic_symbol. */
1358 if ((sec->flags & SEC_ALLOC) != 0)
1359 {
1360 if (hh != NULL)
1361 {
1362 hh->eh.needs_plt = 1;
1363 hh->eh.plt.refcount += 1;
1364
1365 /* If this .plt entry is for a plabel, mark it so
1366 that adjust_dynamic_symbol will keep the entry
1367 even if it appears to be local. */
1368 if (need_entry & PLT_PLABEL)
1369 hh->plabel = 1;
1370 }
1371 else if (need_entry & PLT_PLABEL)
1372 {
1373 bfd_signed_vma *local_got_refcounts;
1374 bfd_signed_vma *local_plt_refcounts;
1375
1376 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1377 if (local_got_refcounts == NULL)
1378 return FALSE;
1379 local_plt_refcounts = (local_got_refcounts
1380 + symtab_hdr->sh_info);
1381 local_plt_refcounts[r_symndx] += 1;
1382 }
1383 }
1384 }
1385
1386 if ((need_entry & NEED_DYNREL) != 0
1387 && (sec->flags & SEC_ALLOC) != 0)
1388 {
1389 /* Flag this symbol as having a non-got, non-plt reference
1390 so that we generate copy relocs if it turns out to be
1391 dynamic. */
1392 if (hh != NULL)
1393 hh->eh.non_got_ref = 1;
1394
1395 /* If we are creating a shared library then we need to copy
1396 the reloc into the shared library. However, if we are
1397 linking with -Bsymbolic, we need only copy absolute
1398 relocs or relocs against symbols that are not defined in
1399 an object we are including in the link. PC- or DP- or
1400 DLT-relative relocs against any local sym or global sym
1401 with DEF_REGULAR set, can be discarded. At this point we
1402 have not seen all the input files, so it is possible that
1403 DEF_REGULAR is not set now but will be set later (it is
1404 never cleared). We account for that possibility below by
1405 storing information in the dyn_relocs field of the
1406 hash table entry.
1407
1408 A similar situation to the -Bsymbolic case occurs when
1409 creating shared libraries and symbol visibility changes
1410 render the symbol local.
1411
1412 As it turns out, all the relocs we will be creating here
1413 are absolute, so we cannot remove them on -Bsymbolic
1414 links or visibility changes anyway. A STUB_REL reloc
1415 is absolute too, as in that case it is the reloc in the
1416 stub we will be creating, rather than copying the PCREL
1417 reloc in the branch.
1418
1419 If on the other hand, we are creating an executable, we
1420 may need to keep relocations for symbols satisfied by a
1421 dynamic library if we manage to avoid copy relocs for the
1422 symbol. */
1423 if ((bfd_link_pic (info)
1424 && (IS_ABSOLUTE_RELOC (r_type)
1425 || (hh != NULL
1426 && (!SYMBOLIC_BIND (info, &hh->eh)
1427 || hh->eh.root.type == bfd_link_hash_defweak
1428 || !hh->eh.def_regular))))
1429 || (ELIMINATE_COPY_RELOCS
1430 && !bfd_link_pic (info)
1431 && hh != NULL
1432 && (hh->eh.root.type == bfd_link_hash_defweak
1433 || !hh->eh.def_regular)))
1434 {
1435 struct elf_dyn_relocs *hdh_p;
1436 struct elf_dyn_relocs **hdh_head;
1437
1438 /* Create a reloc section in dynobj and make room for
1439 this reloc. */
1440 if (sreloc == NULL)
1441 {
1442 sreloc = _bfd_elf_make_dynamic_reloc_section
1443 (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
1444
1445 if (sreloc == NULL)
1446 {
1447 bfd_set_error (bfd_error_bad_value);
1448 return FALSE;
1449 }
1450 }
1451
1452 /* If this is a global symbol, we count the number of
1453 relocations we need for this symbol. */
1454 if (hh != NULL)
1455 {
1456 hdh_head = &hh->eh.dyn_relocs;
1457 }
1458 else
1459 {
1460 /* Track dynamic relocs needed for local syms too.
1461 We really need local syms available to do this
1462 easily. Oh well. */
1463 asection *sr;
1464 void *vpp;
1465 Elf_Internal_Sym *isym;
1466
1467 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1468 abfd, r_symndx);
1469 if (isym == NULL)
1470 return FALSE;
1471
1472 sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
1473 if (sr == NULL)
1474 sr = sec;
1475
1476 vpp = &elf_section_data (sr)->local_dynrel;
1477 hdh_head = (struct elf_dyn_relocs **) vpp;
1478 }
1479
1480 hdh_p = *hdh_head;
1481 if (hdh_p == NULL || hdh_p->sec != sec)
1482 {
1483 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1484 if (hdh_p == NULL)
1485 return FALSE;
1486 hdh_p->next = *hdh_head;
1487 *hdh_head = hdh_p;
1488 hdh_p->sec = sec;
1489 hdh_p->count = 0;
1490 #if RELATIVE_DYNRELOCS
1491 hdh_p->pc_count = 0;
1492 #endif
1493 }
1494
1495 hdh_p->count += 1;
1496 #if RELATIVE_DYNRELOCS
1497 if (!IS_ABSOLUTE_RELOC (rtype))
1498 hdh_p->pc_count += 1;
1499 #endif
1500 }
1501 }
1502 }
1503
1504 return TRUE;
1505 }
1506
1507 /* Return the section that should be marked against garbage collection
1508 for a given relocation. */
1509
1510 static asection *
1511 elf32_hppa_gc_mark_hook (asection *sec,
1512 struct bfd_link_info *info,
1513 Elf_Internal_Rela *rela,
1514 struct elf_link_hash_entry *hh,
1515 Elf_Internal_Sym *sym)
1516 {
1517 if (hh != NULL)
1518 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1519 {
1520 case R_PARISC_GNU_VTINHERIT:
1521 case R_PARISC_GNU_VTENTRY:
1522 return NULL;
1523 }
1524
1525 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1526 }
1527
1528 /* Support for core dump NOTE sections. */
1529
1530 static bfd_boolean
1531 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1532 {
1533 int offset;
1534 size_t size;
1535
1536 switch (note->descsz)
1537 {
1538 default:
1539 return FALSE;
1540
1541 case 396: /* Linux/hppa */
1542 /* pr_cursig */
1543 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1544
1545 /* pr_pid */
1546 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
1547
1548 /* pr_reg */
1549 offset = 72;
1550 size = 320;
1551
1552 break;
1553 }
1554
1555 /* Make a ".reg/999" section. */
1556 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1557 size, note->descpos + offset);
1558 }
1559
1560 static bfd_boolean
1561 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1562 {
1563 switch (note->descsz)
1564 {
1565 default:
1566 return FALSE;
1567
1568 case 124: /* Linux/hppa elf_prpsinfo. */
1569 elf_tdata (abfd)->core->program
1570 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1571 elf_tdata (abfd)->core->command
1572 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1573 }
1574
1575 /* Note that for some reason, a spurious space is tacked
1576 onto the end of the args in some (at least one anyway)
1577 implementations, so strip it off if it exists. */
1578 {
1579 char *command = elf_tdata (abfd)->core->command;
1580 int n = strlen (command);
1581
1582 if (0 < n && command[n - 1] == ' ')
1583 command[n - 1] = '\0';
1584 }
1585
1586 return TRUE;
1587 }
1588
1589 /* Our own version of hide_symbol, so that we can keep plt entries for
1590 plabels. */
1591
1592 static void
1593 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1594 struct elf_link_hash_entry *eh,
1595 bfd_boolean force_local)
1596 {
1597 if (force_local)
1598 {
1599 eh->forced_local = 1;
1600 if (eh->dynindx != -1)
1601 {
1602 eh->dynindx = -1;
1603 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1604 eh->dynstr_index);
1605 }
1606
1607 /* PR 16082: Remove version information from hidden symbol. */
1608 eh->verinfo.verdef = NULL;
1609 eh->verinfo.vertree = NULL;
1610 }
1611
1612 /* STT_GNU_IFUNC symbol must go through PLT. */
1613 if (! hppa_elf_hash_entry (eh)->plabel
1614 && eh->type != STT_GNU_IFUNC)
1615 {
1616 eh->needs_plt = 0;
1617 eh->plt = elf_hash_table (info)->init_plt_offset;
1618 }
1619 }
1620
1621 /* Return true if we have dynamic relocs against H or any of its weak
1622 aliases, that apply to read-only sections. Cannot be used after
1623 size_dynamic_sections. */
1624
1625 static bfd_boolean
1626 alias_readonly_dynrelocs (struct elf_link_hash_entry *eh)
1627 {
1628 struct elf32_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1629 do
1630 {
1631 if (_bfd_elf_readonly_dynrelocs (&hh->eh))
1632 return TRUE;
1633 hh = hppa_elf_hash_entry (hh->eh.u.alias);
1634 } while (hh != NULL && &hh->eh != eh);
1635
1636 return FALSE;
1637 }
1638
1639 /* Adjust a symbol defined by a dynamic object and referenced by a
1640 regular object. The current definition is in some section of the
1641 dynamic object, but we're not including those sections. We have to
1642 change the definition to something the rest of the link can
1643 understand. */
1644
1645 static bfd_boolean
1646 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1647 struct elf_link_hash_entry *eh)
1648 {
1649 struct elf32_hppa_link_hash_table *htab;
1650 asection *sec, *srel;
1651
1652 /* If this is a function, put it in the procedure linkage table. We
1653 will fill in the contents of the procedure linkage table later. */
1654 if (eh->type == STT_FUNC
1655 || eh->needs_plt)
1656 {
1657 bfd_boolean local = (SYMBOL_CALLS_LOCAL (info, eh)
1658 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh));
1659 /* Discard dyn_relocs when non-pic if we've decided that a
1660 function symbol is local. */
1661 if (!bfd_link_pic (info) && local)
1662 eh->dyn_relocs = NULL;
1663
1664 /* If the symbol is used by a plabel, we must allocate a PLT slot.
1665 The refcounts are not reliable when it has been hidden since
1666 hide_symbol can be called before the plabel flag is set. */
1667 if (hppa_elf_hash_entry (eh)->plabel)
1668 eh->plt.refcount = 1;
1669
1670 /* Note that unlike some other backends, the refcount is not
1671 incremented for a non-call (and non-plabel) function reference. */
1672 else if (eh->plt.refcount <= 0
1673 || local)
1674 {
1675 /* The .plt entry is not needed when:
1676 a) Garbage collection has removed all references to the
1677 symbol, or
1678 b) We know for certain the symbol is defined in this
1679 object, and it's not a weak definition, nor is the symbol
1680 used by a plabel relocation. Either this object is the
1681 application or we are doing a shared symbolic link. */
1682 eh->plt.offset = (bfd_vma) -1;
1683 eh->needs_plt = 0;
1684 }
1685
1686 /* Unlike other targets, elf32-hppa.c does not define a function
1687 symbol in a non-pic executable on PLT stub code, so we don't
1688 have a local definition in that case. ie. dyn_relocs can't
1689 be discarded. */
1690
1691 /* Function symbols can't have copy relocs. */
1692 return TRUE;
1693 }
1694 else
1695 eh->plt.offset = (bfd_vma) -1;
1696
1697 htab = hppa_link_hash_table (info);
1698 if (htab == NULL)
1699 return FALSE;
1700
1701 /* If this is a weak symbol, and there is a real definition, the
1702 processor independent code will have arranged for us to see the
1703 real definition first, and we can just use the same value. */
1704 if (eh->is_weakalias)
1705 {
1706 struct elf_link_hash_entry *def = weakdef (eh);
1707 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
1708 eh->root.u.def.section = def->root.u.def.section;
1709 eh->root.u.def.value = def->root.u.def.value;
1710 if (def->root.u.def.section == htab->etab.sdynbss
1711 || def->root.u.def.section == htab->etab.sdynrelro)
1712 eh->dyn_relocs = NULL;
1713 return TRUE;
1714 }
1715
1716 /* This is a reference to a symbol defined by a dynamic object which
1717 is not a function. */
1718
1719 /* If we are creating a shared library, we must presume that the
1720 only references to the symbol are via the global offset table.
1721 For such cases we need not do anything here; the relocations will
1722 be handled correctly by relocate_section. */
1723 if (bfd_link_pic (info))
1724 return TRUE;
1725
1726 /* If there are no references to this symbol that do not use the
1727 GOT, we don't need to generate a copy reloc. */
1728 if (!eh->non_got_ref)
1729 return TRUE;
1730
1731 /* If -z nocopyreloc was given, we won't generate them either. */
1732 if (info->nocopyreloc)
1733 return TRUE;
1734
1735 /* If we don't find any dynamic relocs in read-only sections, then
1736 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1737 if (ELIMINATE_COPY_RELOCS
1738 && !alias_readonly_dynrelocs (eh))
1739 return TRUE;
1740
1741 /* We must allocate the symbol in our .dynbss section, which will
1742 become part of the .bss section of the executable. There will be
1743 an entry for this symbol in the .dynsym section. The dynamic
1744 object will contain position independent code, so all references
1745 from the dynamic object to this symbol will go through the global
1746 offset table. The dynamic linker will use the .dynsym entry to
1747 determine the address it must put in the global offset table, so
1748 both the dynamic object and the regular object will refer to the
1749 same memory location for the variable. */
1750 if ((eh->root.u.def.section->flags & SEC_READONLY) != 0)
1751 {
1752 sec = htab->etab.sdynrelro;
1753 srel = htab->etab.sreldynrelro;
1754 }
1755 else
1756 {
1757 sec = htab->etab.sdynbss;
1758 srel = htab->etab.srelbss;
1759 }
1760 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0 && eh->size != 0)
1761 {
1762 /* We must generate a COPY reloc to tell the dynamic linker to
1763 copy the initial value out of the dynamic object and into the
1764 runtime process image. */
1765 srel->size += sizeof (Elf32_External_Rela);
1766 eh->needs_copy = 1;
1767 }
1768
1769 /* We no longer want dyn_relocs. */
1770 eh->dyn_relocs = NULL;
1771 return _bfd_elf_adjust_dynamic_copy (info, eh, sec);
1772 }
1773
1774 /* If EH is undefined, make it dynamic if that makes sense. */
1775
1776 static bfd_boolean
1777 ensure_undef_dynamic (struct bfd_link_info *info,
1778 struct elf_link_hash_entry *eh)
1779 {
1780 struct elf_link_hash_table *htab = elf_hash_table (info);
1781
1782 if (htab->dynamic_sections_created
1783 && (eh->root.type == bfd_link_hash_undefweak
1784 || eh->root.type == bfd_link_hash_undefined)
1785 && eh->dynindx == -1
1786 && !eh->forced_local
1787 && eh->type != STT_PARISC_MILLI
1788 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh)
1789 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
1790 return bfd_elf_link_record_dynamic_symbol (info, eh);
1791 return TRUE;
1792 }
1793
1794 /* Allocate space in the .plt for entries that won't have relocations.
1795 ie. plabel entries. */
1796
1797 static bfd_boolean
1798 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1799 {
1800 struct bfd_link_info *info;
1801 struct elf32_hppa_link_hash_table *htab;
1802 struct elf32_hppa_link_hash_entry *hh;
1803 asection *sec;
1804
1805 if (eh->root.type == bfd_link_hash_indirect)
1806 return TRUE;
1807
1808 info = (struct bfd_link_info *) inf;
1809 hh = hppa_elf_hash_entry (eh);
1810 htab = hppa_link_hash_table (info);
1811 if (htab == NULL)
1812 return FALSE;
1813
1814 if (htab->etab.dynamic_sections_created
1815 && eh->plt.refcount > 0)
1816 {
1817 if (!ensure_undef_dynamic (info, eh))
1818 return FALSE;
1819
1820 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), eh))
1821 {
1822 /* Allocate these later. From this point on, h->plabel
1823 means that the plt entry is only used by a plabel.
1824 We'll be using a normal plt entry for this symbol, so
1825 clear the plabel indicator. */
1826
1827 hh->plabel = 0;
1828 }
1829 else if (hh->plabel)
1830 {
1831 /* Make an entry in the .plt section for plabel references
1832 that won't have a .plt entry for other reasons. */
1833 sec = htab->etab.splt;
1834 eh->plt.offset = sec->size;
1835 sec->size += PLT_ENTRY_SIZE;
1836 if (bfd_link_pic (info))
1837 htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
1838 }
1839 else
1840 {
1841 /* No .plt entry needed. */
1842 eh->plt.offset = (bfd_vma) -1;
1843 eh->needs_plt = 0;
1844 }
1845 }
1846 else
1847 {
1848 eh->plt.offset = (bfd_vma) -1;
1849 eh->needs_plt = 0;
1850 }
1851
1852 return TRUE;
1853 }
1854
1855 /* Calculate size of GOT entries for symbol given its TLS_TYPE. */
1856
1857 static inline unsigned int
1858 got_entries_needed (int tls_type)
1859 {
1860 unsigned int need = 0;
1861
1862 if ((tls_type & GOT_NORMAL) != 0)
1863 need += GOT_ENTRY_SIZE;
1864 if ((tls_type & GOT_TLS_GD) != 0)
1865 need += GOT_ENTRY_SIZE * 2;
1866 if ((tls_type & GOT_TLS_IE) != 0)
1867 need += GOT_ENTRY_SIZE;
1868 return need;
1869 }
1870
1871 /* Calculate size of relocs needed for symbol given its TLS_TYPE and
1872 NEEDed GOT entries. TPREL_KNOWN says a TPREL offset can be
1873 calculated at link time. DTPREL_KNOWN says the same for a DTPREL
1874 offset. */
1875
1876 static inline unsigned int
1877 got_relocs_needed (int tls_type, unsigned int need,
1878 bfd_boolean dtprel_known, bfd_boolean tprel_known)
1879 {
1880 /* All the entries we allocated need relocs.
1881 Except for GD and IE with local symbols. */
1882 if ((tls_type & GOT_TLS_GD) != 0 && dtprel_known)
1883 need -= GOT_ENTRY_SIZE;
1884 if ((tls_type & GOT_TLS_IE) != 0 && tprel_known)
1885 need -= GOT_ENTRY_SIZE;
1886 return need * sizeof (Elf32_External_Rela) / GOT_ENTRY_SIZE;
1887 }
1888
1889 /* Allocate space in .plt, .got and associated reloc sections for
1890 global syms. */
1891
1892 static bfd_boolean
1893 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
1894 {
1895 struct bfd_link_info *info;
1896 struct elf32_hppa_link_hash_table *htab;
1897 asection *sec;
1898 struct elf32_hppa_link_hash_entry *hh;
1899 struct elf_dyn_relocs *hdh_p;
1900
1901 if (eh->root.type == bfd_link_hash_indirect)
1902 return TRUE;
1903
1904 info = inf;
1905 htab = hppa_link_hash_table (info);
1906 if (htab == NULL)
1907 return FALSE;
1908
1909 hh = hppa_elf_hash_entry (eh);
1910
1911 if (htab->etab.dynamic_sections_created
1912 && eh->plt.offset != (bfd_vma) -1
1913 && !hh->plabel
1914 && eh->plt.refcount > 0)
1915 {
1916 /* Make an entry in the .plt section. */
1917 sec = htab->etab.splt;
1918 eh->plt.offset = sec->size;
1919 sec->size += PLT_ENTRY_SIZE;
1920
1921 /* We also need to make an entry in the .rela.plt section. */
1922 htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
1923 htab->need_plt_stub = 1;
1924 }
1925
1926 if (eh->got.refcount > 0)
1927 {
1928 unsigned int need;
1929
1930 if (!ensure_undef_dynamic (info, eh))
1931 return FALSE;
1932
1933 sec = htab->etab.sgot;
1934 eh->got.offset = sec->size;
1935 need = got_entries_needed (hh->tls_type);
1936 sec->size += need;
1937 if (htab->etab.dynamic_sections_created
1938 && (bfd_link_dll (info)
1939 || (bfd_link_pic (info) && (hh->tls_type & GOT_NORMAL) != 0)
1940 || (eh->dynindx != -1
1941 && !SYMBOL_REFERENCES_LOCAL (info, eh)))
1942 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
1943 {
1944 bfd_boolean local = SYMBOL_REFERENCES_LOCAL (info, eh);
1945 htab->etab.srelgot->size
1946 += got_relocs_needed (hh->tls_type, need, local,
1947 local && bfd_link_executable (info));
1948 }
1949 }
1950 else
1951 eh->got.offset = (bfd_vma) -1;
1952
1953 /* If no dynamic sections we can't have dynamic relocs. */
1954 if (!htab->etab.dynamic_sections_created)
1955 eh->dyn_relocs = NULL;
1956
1957 /* Discard relocs on undefined syms with non-default visibility. */
1958 else if ((eh->root.type == bfd_link_hash_undefined
1959 && ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
1960 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
1961 eh->dyn_relocs = NULL;
1962
1963 if (eh->dyn_relocs == NULL)
1964 return TRUE;
1965
1966 /* If this is a -Bsymbolic shared link, then we need to discard all
1967 space allocated for dynamic pc-relative relocs against symbols
1968 defined in a regular object. For the normal shared case, discard
1969 space for relocs that have become local due to symbol visibility
1970 changes. */
1971 if (bfd_link_pic (info))
1972 {
1973 #if RELATIVE_DYNRELOCS
1974 if (SYMBOL_CALLS_LOCAL (info, eh))
1975 {
1976 struct elf_dyn_relocs **hdh_pp;
1977
1978 for (hdh_pp = &eh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1979 {
1980 hdh_p->count -= hdh_p->pc_count;
1981 hdh_p->pc_count = 0;
1982 if (hdh_p->count == 0)
1983 *hdh_pp = hdh_p->next;
1984 else
1985 hdh_pp = &hdh_p->next;
1986 }
1987 }
1988 #endif
1989
1990 if (eh->dyn_relocs != NULL)
1991 {
1992 if (!ensure_undef_dynamic (info, eh))
1993 return FALSE;
1994 }
1995 }
1996 else if (ELIMINATE_COPY_RELOCS)
1997 {
1998 /* For the non-shared case, discard space for relocs against
1999 symbols which turn out to need copy relocs or are not
2000 dynamic. */
2001
2002 if (eh->dynamic_adjusted
2003 && !eh->def_regular
2004 && !ELF_COMMON_DEF_P (eh))
2005 {
2006 if (!ensure_undef_dynamic (info, eh))
2007 return FALSE;
2008
2009 if (eh->dynindx == -1)
2010 eh->dyn_relocs = NULL;
2011 }
2012 else
2013 eh->dyn_relocs = NULL;
2014 }
2015
2016 /* Finally, allocate space. */
2017 for (hdh_p = eh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->next)
2018 {
2019 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2020 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2021 }
2022
2023 return TRUE;
2024 }
2025
2026 /* This function is called via elf_link_hash_traverse to force
2027 millicode symbols local so they do not end up as globals in the
2028 dynamic symbol table. We ought to be able to do this in
2029 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2030 for all dynamic symbols. Arguably, this is a bug in
2031 elf_adjust_dynamic_symbol. */
2032
2033 static bfd_boolean
2034 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2035 struct bfd_link_info *info)
2036 {
2037 if (eh->type == STT_PARISC_MILLI
2038 && !eh->forced_local)
2039 {
2040 elf32_hppa_hide_symbol (info, eh, TRUE);
2041 }
2042 return TRUE;
2043 }
2044
2045 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
2046 read-only sections. */
2047
2048 static bfd_boolean
2049 maybe_set_textrel (struct elf_link_hash_entry *eh, void *inf)
2050 {
2051 asection *sec;
2052
2053 if (eh->root.type == bfd_link_hash_indirect)
2054 return TRUE;
2055
2056 sec = _bfd_elf_readonly_dynrelocs (eh);
2057 if (sec != NULL)
2058 {
2059 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2060
2061 info->flags |= DF_TEXTREL;
2062 info->callbacks->minfo
2063 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
2064 sec->owner, eh->root.root.string, sec);
2065
2066 /* Not an error, just cut short the traversal. */
2067 return FALSE;
2068 }
2069 return TRUE;
2070 }
2071
2072 /* Set the sizes of the dynamic sections. */
2073
2074 static bfd_boolean
2075 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2076 struct bfd_link_info *info)
2077 {
2078 struct elf32_hppa_link_hash_table *htab;
2079 bfd *dynobj;
2080 bfd *ibfd;
2081 asection *sec;
2082 bfd_boolean relocs;
2083
2084 htab = hppa_link_hash_table (info);
2085 if (htab == NULL)
2086 return FALSE;
2087
2088 dynobj = htab->etab.dynobj;
2089 if (dynobj == NULL)
2090 abort ();
2091
2092 if (htab->etab.dynamic_sections_created)
2093 {
2094 /* Set the contents of the .interp section to the interpreter. */
2095 if (bfd_link_executable (info) && !info->nointerp)
2096 {
2097 sec = bfd_get_linker_section (dynobj, ".interp");
2098 if (sec == NULL)
2099 abort ();
2100 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2101 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2102 }
2103
2104 /* Force millicode symbols local. */
2105 elf_link_hash_traverse (&htab->etab,
2106 clobber_millicode_symbols,
2107 info);
2108 }
2109
2110 /* Set up .got and .plt offsets for local syms, and space for local
2111 dynamic relocs. */
2112 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
2113 {
2114 bfd_signed_vma *local_got;
2115 bfd_signed_vma *end_local_got;
2116 bfd_signed_vma *local_plt;
2117 bfd_signed_vma *end_local_plt;
2118 bfd_size_type locsymcount;
2119 Elf_Internal_Shdr *symtab_hdr;
2120 asection *srel;
2121 char *local_tls_type;
2122
2123 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2124 continue;
2125
2126 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2127 {
2128 struct elf_dyn_relocs *hdh_p;
2129
2130 for (hdh_p = ((struct elf_dyn_relocs *)
2131 elf_section_data (sec)->local_dynrel);
2132 hdh_p != NULL;
2133 hdh_p = hdh_p->next)
2134 {
2135 if (!bfd_is_abs_section (hdh_p->sec)
2136 && bfd_is_abs_section (hdh_p->sec->output_section))
2137 {
2138 /* Input section has been discarded, either because
2139 it is a copy of a linkonce section or due to
2140 linker script /DISCARD/, so we'll be discarding
2141 the relocs too. */
2142 }
2143 else if (hdh_p->count != 0)
2144 {
2145 srel = elf_section_data (hdh_p->sec)->sreloc;
2146 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2147 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2148 info->flags |= DF_TEXTREL;
2149 }
2150 }
2151 }
2152
2153 local_got = elf_local_got_refcounts (ibfd);
2154 if (!local_got)
2155 continue;
2156
2157 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2158 locsymcount = symtab_hdr->sh_info;
2159 end_local_got = local_got + locsymcount;
2160 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2161 sec = htab->etab.sgot;
2162 srel = htab->etab.srelgot;
2163 for (; local_got < end_local_got; ++local_got)
2164 {
2165 if (*local_got > 0)
2166 {
2167 unsigned int need;
2168
2169 *local_got = sec->size;
2170 need = got_entries_needed (*local_tls_type);
2171 sec->size += need;
2172 if (bfd_link_dll (info)
2173 || (bfd_link_pic (info)
2174 && (*local_tls_type & GOT_NORMAL) != 0))
2175 htab->etab.srelgot->size
2176 += got_relocs_needed (*local_tls_type, need, TRUE,
2177 bfd_link_executable (info));
2178 }
2179 else
2180 *local_got = (bfd_vma) -1;
2181
2182 ++local_tls_type;
2183 }
2184
2185 local_plt = end_local_got;
2186 end_local_plt = local_plt + locsymcount;
2187 if (! htab->etab.dynamic_sections_created)
2188 {
2189 /* Won't be used, but be safe. */
2190 for (; local_plt < end_local_plt; ++local_plt)
2191 *local_plt = (bfd_vma) -1;
2192 }
2193 else
2194 {
2195 sec = htab->etab.splt;
2196 srel = htab->etab.srelplt;
2197 for (; local_plt < end_local_plt; ++local_plt)
2198 {
2199 if (*local_plt > 0)
2200 {
2201 *local_plt = sec->size;
2202 sec->size += PLT_ENTRY_SIZE;
2203 if (bfd_link_pic (info))
2204 srel->size += sizeof (Elf32_External_Rela);
2205 }
2206 else
2207 *local_plt = (bfd_vma) -1;
2208 }
2209 }
2210 }
2211
2212 if (htab->tls_ldm_got.refcount > 0)
2213 {
2214 /* Allocate 2 got entries and 1 dynamic reloc for
2215 R_PARISC_TLS_DTPMOD32 relocs. */
2216 htab->tls_ldm_got.offset = htab->etab.sgot->size;
2217 htab->etab.sgot->size += (GOT_ENTRY_SIZE * 2);
2218 htab->etab.srelgot->size += sizeof (Elf32_External_Rela);
2219 }
2220 else
2221 htab->tls_ldm_got.offset = -1;
2222
2223 /* Do all the .plt entries without relocs first. The dynamic linker
2224 uses the last .plt reloc to find the end of the .plt (and hence
2225 the start of the .got) for lazy linking. */
2226 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2227
2228 /* Allocate global sym .plt and .got entries, and space for global
2229 sym dynamic relocs. */
2230 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2231
2232 /* The check_relocs and adjust_dynamic_symbol entry points have
2233 determined the sizes of the various dynamic sections. Allocate
2234 memory for them. */
2235 relocs = FALSE;
2236 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2237 {
2238 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2239 continue;
2240
2241 if (sec == htab->etab.splt)
2242 {
2243 if (htab->need_plt_stub)
2244 {
2245 /* Make space for the plt stub at the end of the .plt
2246 section. We want this stub right at the end, up
2247 against the .got section. */
2248 int gotalign = bfd_section_alignment (htab->etab.sgot);
2249 int pltalign = bfd_section_alignment (sec);
2250 int align = gotalign > 3 ? gotalign : 3;
2251 bfd_size_type mask;
2252
2253 if (align > pltalign)
2254 bfd_set_section_alignment (sec, align);
2255 mask = ((bfd_size_type) 1 << gotalign) - 1;
2256 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2257 }
2258 }
2259 else if (sec == htab->etab.sgot
2260 || sec == htab->etab.sdynbss
2261 || sec == htab->etab.sdynrelro)
2262 ;
2263 else if (CONST_STRNEQ (bfd_section_name (sec), ".rela"))
2264 {
2265 if (sec->size != 0)
2266 {
2267 /* Remember whether there are any reloc sections other
2268 than .rela.plt. */
2269 if (sec != htab->etab.srelplt)
2270 relocs = TRUE;
2271
2272 /* We use the reloc_count field as a counter if we need
2273 to copy relocs into the output file. */
2274 sec->reloc_count = 0;
2275 }
2276 }
2277 else
2278 {
2279 /* It's not one of our sections, so don't allocate space. */
2280 continue;
2281 }
2282
2283 if (sec->size == 0)
2284 {
2285 /* If we don't need this section, strip it from the
2286 output file. This is mostly to handle .rela.bss and
2287 .rela.plt. We must create both sections in
2288 create_dynamic_sections, because they must be created
2289 before the linker maps input sections to output
2290 sections. The linker does that before
2291 adjust_dynamic_symbol is called, and it is that
2292 function which decides whether anything needs to go
2293 into these sections. */
2294 sec->flags |= SEC_EXCLUDE;
2295 continue;
2296 }
2297
2298 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2299 continue;
2300
2301 /* Allocate memory for the section contents. Zero it, because
2302 we may not fill in all the reloc sections. */
2303 sec->contents = bfd_zalloc (dynobj, sec->size);
2304 if (sec->contents == NULL)
2305 return FALSE;
2306 }
2307
2308 if (htab->etab.dynamic_sections_created)
2309 {
2310 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2311 actually has nothing to do with the PLT, it is how we
2312 communicate the LTP value of a load module to the dynamic
2313 linker. */
2314 #define add_dynamic_entry(TAG, VAL) \
2315 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2316
2317 if (!add_dynamic_entry (DT_PLTGOT, 0))
2318 return FALSE;
2319
2320 /* Add some entries to the .dynamic section. We fill in the
2321 values later, in elf32_hppa_finish_dynamic_sections, but we
2322 must add the entries now so that we get the correct size for
2323 the .dynamic section. The DT_DEBUG entry is filled in by the
2324 dynamic linker and used by the debugger. */
2325 if (bfd_link_executable (info))
2326 {
2327 if (!add_dynamic_entry (DT_DEBUG, 0))
2328 return FALSE;
2329 }
2330
2331 if (htab->etab.srelplt->size != 0)
2332 {
2333 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2334 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2335 || !add_dynamic_entry (DT_JMPREL, 0))
2336 return FALSE;
2337 }
2338
2339 if (relocs)
2340 {
2341 if (!add_dynamic_entry (DT_RELA, 0)
2342 || !add_dynamic_entry (DT_RELASZ, 0)
2343 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2344 return FALSE;
2345
2346 /* If any dynamic relocs apply to a read-only section,
2347 then we need a DT_TEXTREL entry. */
2348 if ((info->flags & DF_TEXTREL) == 0)
2349 elf_link_hash_traverse (&htab->etab, maybe_set_textrel, info);
2350
2351 if ((info->flags & DF_TEXTREL) != 0)
2352 {
2353 if (!add_dynamic_entry (DT_TEXTREL, 0))
2354 return FALSE;
2355 }
2356 }
2357 }
2358 #undef add_dynamic_entry
2359
2360 return TRUE;
2361 }
2362
2363 /* External entry points for sizing and building linker stubs. */
2364
2365 /* Set up various things so that we can make a list of input sections
2366 for each output section included in the link. Returns -1 on error,
2367 0 when no stubs will be needed, and 1 on success. */
2368
2369 int
2370 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2371 {
2372 bfd *input_bfd;
2373 unsigned int bfd_count;
2374 unsigned int top_id, top_index;
2375 asection *section;
2376 asection **input_list, **list;
2377 size_t amt;
2378 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2379
2380 if (htab == NULL)
2381 return -1;
2382
2383 /* Count the number of input BFDs and find the top input section id. */
2384 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2385 input_bfd != NULL;
2386 input_bfd = input_bfd->link.next)
2387 {
2388 bfd_count += 1;
2389 for (section = input_bfd->sections;
2390 section != NULL;
2391 section = section->next)
2392 {
2393 if (top_id < section->id)
2394 top_id = section->id;
2395 }
2396 }
2397 htab->bfd_count = bfd_count;
2398
2399 amt = sizeof (struct map_stub) * (top_id + 1);
2400 htab->stub_group = bfd_zmalloc (amt);
2401 if (htab->stub_group == NULL)
2402 return -1;
2403
2404 /* We can't use output_bfd->section_count here to find the top output
2405 section index as some sections may have been removed, and
2406 strip_excluded_output_sections doesn't renumber the indices. */
2407 for (section = output_bfd->sections, top_index = 0;
2408 section != NULL;
2409 section = section->next)
2410 {
2411 if (top_index < section->index)
2412 top_index = section->index;
2413 }
2414
2415 htab->top_index = top_index;
2416 amt = sizeof (asection *) * (top_index + 1);
2417 input_list = bfd_malloc (amt);
2418 htab->input_list = input_list;
2419 if (input_list == NULL)
2420 return -1;
2421
2422 /* For sections we aren't interested in, mark their entries with a
2423 value we can check later. */
2424 list = input_list + top_index;
2425 do
2426 *list = bfd_abs_section_ptr;
2427 while (list-- != input_list);
2428
2429 for (section = output_bfd->sections;
2430 section != NULL;
2431 section = section->next)
2432 {
2433 if ((section->flags & SEC_CODE) != 0)
2434 input_list[section->index] = NULL;
2435 }
2436
2437 return 1;
2438 }
2439
2440 /* The linker repeatedly calls this function for each input section,
2441 in the order that input sections are linked into output sections.
2442 Build lists of input sections to determine groupings between which
2443 we may insert linker stubs. */
2444
2445 void
2446 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2447 {
2448 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2449
2450 if (htab == NULL)
2451 return;
2452
2453 if (isec->output_section->index <= htab->top_index)
2454 {
2455 asection **list = htab->input_list + isec->output_section->index;
2456 if (*list != bfd_abs_section_ptr)
2457 {
2458 /* Steal the link_sec pointer for our list. */
2459 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2460 /* This happens to make the list in reverse order,
2461 which is what we want. */
2462 PREV_SEC (isec) = *list;
2463 *list = isec;
2464 }
2465 }
2466 }
2467
2468 /* See whether we can group stub sections together. Grouping stub
2469 sections may result in fewer stubs. More importantly, we need to
2470 put all .init* and .fini* stubs at the beginning of the .init or
2471 .fini output sections respectively, because glibc splits the
2472 _init and _fini functions into multiple parts. Putting a stub in
2473 the middle of a function is not a good idea. */
2474
2475 static void
2476 group_sections (struct elf32_hppa_link_hash_table *htab,
2477 bfd_size_type stub_group_size,
2478 bfd_boolean stubs_always_before_branch)
2479 {
2480 asection **list = htab->input_list + htab->top_index;
2481 do
2482 {
2483 asection *tail = *list;
2484 if (tail == bfd_abs_section_ptr)
2485 continue;
2486 while (tail != NULL)
2487 {
2488 asection *curr;
2489 asection *prev;
2490 bfd_size_type total;
2491 bfd_boolean big_sec;
2492
2493 curr = tail;
2494 total = tail->size;
2495 big_sec = total >= stub_group_size;
2496
2497 while ((prev = PREV_SEC (curr)) != NULL
2498 && ((total += curr->output_offset - prev->output_offset)
2499 < stub_group_size))
2500 curr = prev;
2501
2502 /* OK, the size from the start of CURR to the end is less
2503 than 240000 bytes and thus can be handled by one stub
2504 section. (or the tail section is itself larger than
2505 240000 bytes, in which case we may be toast.)
2506 We should really be keeping track of the total size of
2507 stubs added here, as stubs contribute to the final output
2508 section size. That's a little tricky, and this way will
2509 only break if stubs added total more than 22144 bytes, or
2510 2768 long branch stubs. It seems unlikely for more than
2511 2768 different functions to be called, especially from
2512 code only 240000 bytes long. This limit used to be
2513 250000, but c++ code tends to generate lots of little
2514 functions, and sometimes violated the assumption. */
2515 do
2516 {
2517 prev = PREV_SEC (tail);
2518 /* Set up this stub group. */
2519 htab->stub_group[tail->id].link_sec = curr;
2520 }
2521 while (tail != curr && (tail = prev) != NULL);
2522
2523 /* But wait, there's more! Input sections up to 240000
2524 bytes before the stub section can be handled by it too.
2525 Don't do this if we have a really large section after the
2526 stubs, as adding more stubs increases the chance that
2527 branches may not reach into the stub section. */
2528 if (!stubs_always_before_branch && !big_sec)
2529 {
2530 total = 0;
2531 while (prev != NULL
2532 && ((total += tail->output_offset - prev->output_offset)
2533 < stub_group_size))
2534 {
2535 tail = prev;
2536 prev = PREV_SEC (tail);
2537 htab->stub_group[tail->id].link_sec = curr;
2538 }
2539 }
2540 tail = prev;
2541 }
2542 }
2543 while (list-- != htab->input_list);
2544 free (htab->input_list);
2545 #undef PREV_SEC
2546 }
2547
2548 /* Read in all local syms for all input bfds, and create hash entries
2549 for export stubs if we are building a multi-subspace shared lib.
2550 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2551
2552 static int
2553 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2554 {
2555 unsigned int bfd_indx;
2556 Elf_Internal_Sym *local_syms, **all_local_syms;
2557 int stub_changed = 0;
2558 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2559
2560 if (htab == NULL)
2561 return -1;
2562
2563 /* We want to read in symbol extension records only once. To do this
2564 we need to read in the local symbols in parallel and save them for
2565 later use; so hold pointers to the local symbols in an array. */
2566 size_t amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2567 all_local_syms = bfd_zmalloc (amt);
2568 htab->all_local_syms = all_local_syms;
2569 if (all_local_syms == NULL)
2570 return -1;
2571
2572 /* Walk over all the input BFDs, swapping in local symbols.
2573 If we are creating a shared library, create hash entries for the
2574 export stubs. */
2575 for (bfd_indx = 0;
2576 input_bfd != NULL;
2577 input_bfd = input_bfd->link.next, bfd_indx++)
2578 {
2579 Elf_Internal_Shdr *symtab_hdr;
2580
2581 /* We'll need the symbol table in a second. */
2582 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2583 if (symtab_hdr->sh_info == 0)
2584 continue;
2585
2586 /* We need an array of the local symbols attached to the input bfd. */
2587 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2588 if (local_syms == NULL)
2589 {
2590 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2591 symtab_hdr->sh_info, 0,
2592 NULL, NULL, NULL);
2593 /* Cache them for elf_link_input_bfd. */
2594 symtab_hdr->contents = (unsigned char *) local_syms;
2595 }
2596 if (local_syms == NULL)
2597 return -1;
2598
2599 all_local_syms[bfd_indx] = local_syms;
2600
2601 if (bfd_link_pic (info) && htab->multi_subspace)
2602 {
2603 struct elf_link_hash_entry **eh_syms;
2604 struct elf_link_hash_entry **eh_symend;
2605 unsigned int symcount;
2606
2607 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2608 - symtab_hdr->sh_info);
2609 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2610 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2611
2612 /* Look through the global syms for functions; We need to
2613 build export stubs for all globally visible functions. */
2614 for (; eh_syms < eh_symend; eh_syms++)
2615 {
2616 struct elf32_hppa_link_hash_entry *hh;
2617
2618 hh = hppa_elf_hash_entry (*eh_syms);
2619
2620 while (hh->eh.root.type == bfd_link_hash_indirect
2621 || hh->eh.root.type == bfd_link_hash_warning)
2622 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2623
2624 /* At this point in the link, undefined syms have been
2625 resolved, so we need to check that the symbol was
2626 defined in this BFD. */
2627 if ((hh->eh.root.type == bfd_link_hash_defined
2628 || hh->eh.root.type == bfd_link_hash_defweak)
2629 && hh->eh.type == STT_FUNC
2630 && hh->eh.root.u.def.section->output_section != NULL
2631 && (hh->eh.root.u.def.section->output_section->owner
2632 == output_bfd)
2633 && hh->eh.root.u.def.section->owner == input_bfd
2634 && hh->eh.def_regular
2635 && !hh->eh.forced_local
2636 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2637 {
2638 asection *sec;
2639 const char *stub_name;
2640 struct elf32_hppa_stub_hash_entry *hsh;
2641
2642 sec = hh->eh.root.u.def.section;
2643 stub_name = hh_name (hh);
2644 hsh = hppa_stub_hash_lookup (&htab->bstab,
2645 stub_name,
2646 FALSE, FALSE);
2647 if (hsh == NULL)
2648 {
2649 hsh = hppa_add_stub (stub_name, sec, htab);
2650 if (!hsh)
2651 return -1;
2652
2653 hsh->target_value = hh->eh.root.u.def.value;
2654 hsh->target_section = hh->eh.root.u.def.section;
2655 hsh->stub_type = hppa_stub_export;
2656 hsh->hh = hh;
2657 stub_changed = 1;
2658 }
2659 else
2660 {
2661 /* xgettext:c-format */
2662 _bfd_error_handler (_("%pB: duplicate export stub %s"),
2663 input_bfd, stub_name);
2664 }
2665 }
2666 }
2667 }
2668 }
2669
2670 return stub_changed;
2671 }
2672
2673 /* Determine and set the size of the stub section for a final link.
2674
2675 The basic idea here is to examine all the relocations looking for
2676 PC-relative calls to a target that is unreachable with a "bl"
2677 instruction. */
2678
2679 bfd_boolean
2680 elf32_hppa_size_stubs
2681 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2682 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2683 asection * (*add_stub_section) (const char *, asection *),
2684 void (*layout_sections_again) (void))
2685 {
2686 bfd_size_type stub_group_size;
2687 bfd_boolean stubs_always_before_branch;
2688 bfd_boolean stub_changed;
2689 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2690
2691 if (htab == NULL)
2692 return FALSE;
2693
2694 /* Stash our params away. */
2695 htab->stub_bfd = stub_bfd;
2696 htab->multi_subspace = multi_subspace;
2697 htab->add_stub_section = add_stub_section;
2698 htab->layout_sections_again = layout_sections_again;
2699 stubs_always_before_branch = group_size < 0;
2700 if (group_size < 0)
2701 stub_group_size = -group_size;
2702 else
2703 stub_group_size = group_size;
2704 if (stub_group_size == 1)
2705 {
2706 /* Default values. */
2707 if (stubs_always_before_branch)
2708 {
2709 stub_group_size = 7680000;
2710 if (htab->has_17bit_branch || htab->multi_subspace)
2711 stub_group_size = 240000;
2712 if (htab->has_12bit_branch)
2713 stub_group_size = 7500;
2714 }
2715 else
2716 {
2717 stub_group_size = 6971392;
2718 if (htab->has_17bit_branch || htab->multi_subspace)
2719 stub_group_size = 217856;
2720 if (htab->has_12bit_branch)
2721 stub_group_size = 6808;
2722 }
2723 }
2724
2725 group_sections (htab, stub_group_size, stubs_always_before_branch);
2726
2727 switch (get_local_syms (output_bfd, info->input_bfds, info))
2728 {
2729 default:
2730 if (htab->all_local_syms)
2731 goto error_ret_free_local;
2732 return FALSE;
2733
2734 case 0:
2735 stub_changed = FALSE;
2736 break;
2737
2738 case 1:
2739 stub_changed = TRUE;
2740 break;
2741 }
2742
2743 while (1)
2744 {
2745 bfd *input_bfd;
2746 unsigned int bfd_indx;
2747 asection *stub_sec;
2748
2749 for (input_bfd = info->input_bfds, bfd_indx = 0;
2750 input_bfd != NULL;
2751 input_bfd = input_bfd->link.next, bfd_indx++)
2752 {
2753 Elf_Internal_Shdr *symtab_hdr;
2754 asection *section;
2755 Elf_Internal_Sym *local_syms;
2756
2757 /* We'll need the symbol table in a second. */
2758 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2759 if (symtab_hdr->sh_info == 0)
2760 continue;
2761
2762 local_syms = htab->all_local_syms[bfd_indx];
2763
2764 /* Walk over each section attached to the input bfd. */
2765 for (section = input_bfd->sections;
2766 section != NULL;
2767 section = section->next)
2768 {
2769 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2770
2771 /* If there aren't any relocs, then there's nothing more
2772 to do. */
2773 if ((section->flags & SEC_RELOC) == 0
2774 || (section->flags & SEC_ALLOC) == 0
2775 || (section->flags & SEC_LOAD) == 0
2776 || (section->flags & SEC_CODE) == 0
2777 || section->reloc_count == 0)
2778 continue;
2779
2780 /* If this section is a link-once section that will be
2781 discarded, then don't create any stubs. */
2782 if (section->output_section == NULL
2783 || section->output_section->owner != output_bfd)
2784 continue;
2785
2786 /* Get the relocs. */
2787 internal_relocs
2788 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2789 info->keep_memory);
2790 if (internal_relocs == NULL)
2791 goto error_ret_free_local;
2792
2793 /* Now examine each relocation. */
2794 irela = internal_relocs;
2795 irelaend = irela + section->reloc_count;
2796 for (; irela < irelaend; irela++)
2797 {
2798 unsigned int r_type, r_indx;
2799 enum elf32_hppa_stub_type stub_type;
2800 struct elf32_hppa_stub_hash_entry *hsh;
2801 asection *sym_sec;
2802 bfd_vma sym_value;
2803 bfd_vma destination;
2804 struct elf32_hppa_link_hash_entry *hh;
2805 char *stub_name;
2806 const asection *id_sec;
2807
2808 r_type = ELF32_R_TYPE (irela->r_info);
2809 r_indx = ELF32_R_SYM (irela->r_info);
2810
2811 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2812 {
2813 bfd_set_error (bfd_error_bad_value);
2814 error_ret_free_internal:
2815 if (elf_section_data (section)->relocs == NULL)
2816 free (internal_relocs);
2817 goto error_ret_free_local;
2818 }
2819
2820 /* Only look for stubs on call instructions. */
2821 if (r_type != (unsigned int) R_PARISC_PCREL12F
2822 && r_type != (unsigned int) R_PARISC_PCREL17F
2823 && r_type != (unsigned int) R_PARISC_PCREL22F)
2824 continue;
2825
2826 /* Now determine the call target, its name, value,
2827 section. */
2828 sym_sec = NULL;
2829 sym_value = 0;
2830 destination = -1;
2831 hh = NULL;
2832 if (r_indx < symtab_hdr->sh_info)
2833 {
2834 /* It's a local symbol. */
2835 Elf_Internal_Sym *sym;
2836 Elf_Internal_Shdr *hdr;
2837 unsigned int shndx;
2838
2839 sym = local_syms + r_indx;
2840 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2841 sym_value = sym->st_value;
2842 shndx = sym->st_shndx;
2843 if (shndx < elf_numsections (input_bfd))
2844 {
2845 hdr = elf_elfsections (input_bfd)[shndx];
2846 sym_sec = hdr->bfd_section;
2847 destination = (sym_value + irela->r_addend
2848 + sym_sec->output_offset
2849 + sym_sec->output_section->vma);
2850 }
2851 }
2852 else
2853 {
2854 /* It's an external symbol. */
2855 int e_indx;
2856
2857 e_indx = r_indx - symtab_hdr->sh_info;
2858 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2859
2860 while (hh->eh.root.type == bfd_link_hash_indirect
2861 || hh->eh.root.type == bfd_link_hash_warning)
2862 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2863
2864 if (hh->eh.root.type == bfd_link_hash_defined
2865 || hh->eh.root.type == bfd_link_hash_defweak)
2866 {
2867 sym_sec = hh->eh.root.u.def.section;
2868 sym_value = hh->eh.root.u.def.value;
2869 if (sym_sec->output_section != NULL)
2870 destination = (sym_value + irela->r_addend
2871 + sym_sec->output_offset
2872 + sym_sec->output_section->vma);
2873 }
2874 else if (hh->eh.root.type == bfd_link_hash_undefweak)
2875 {
2876 if (! bfd_link_pic (info))
2877 continue;
2878 }
2879 else if (hh->eh.root.type == bfd_link_hash_undefined)
2880 {
2881 if (! (info->unresolved_syms_in_objects == RM_IGNORE
2882 && (ELF_ST_VISIBILITY (hh->eh.other)
2883 == STV_DEFAULT)
2884 && hh->eh.type != STT_PARISC_MILLI))
2885 continue;
2886 }
2887 else
2888 {
2889 bfd_set_error (bfd_error_bad_value);
2890 goto error_ret_free_internal;
2891 }
2892 }
2893
2894 /* Determine what (if any) linker stub is needed. */
2895 stub_type = hppa_type_of_stub (section, irela, hh,
2896 destination, info);
2897 if (stub_type == hppa_stub_none)
2898 continue;
2899
2900 /* Support for grouping stub sections. */
2901 id_sec = htab->stub_group[section->id].link_sec;
2902
2903 /* Get the name of this stub. */
2904 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
2905 if (!stub_name)
2906 goto error_ret_free_internal;
2907
2908 hsh = hppa_stub_hash_lookup (&htab->bstab,
2909 stub_name,
2910 FALSE, FALSE);
2911 if (hsh != NULL)
2912 {
2913 /* The proper stub has already been created. */
2914 free (stub_name);
2915 continue;
2916 }
2917
2918 hsh = hppa_add_stub (stub_name, section, htab);
2919 if (hsh == NULL)
2920 {
2921 free (stub_name);
2922 goto error_ret_free_internal;
2923 }
2924
2925 hsh->target_value = sym_value;
2926 hsh->target_section = sym_sec;
2927 hsh->stub_type = stub_type;
2928 if (bfd_link_pic (info))
2929 {
2930 if (stub_type == hppa_stub_import)
2931 hsh->stub_type = hppa_stub_import_shared;
2932 else if (stub_type == hppa_stub_long_branch)
2933 hsh->stub_type = hppa_stub_long_branch_shared;
2934 }
2935 hsh->hh = hh;
2936 stub_changed = TRUE;
2937 }
2938
2939 /* We're done with the internal relocs, free them. */
2940 if (elf_section_data (section)->relocs == NULL)
2941 free (internal_relocs);
2942 }
2943 }
2944
2945 if (!stub_changed)
2946 break;
2947
2948 /* OK, we've added some stubs. Find out the new size of the
2949 stub sections. */
2950 for (stub_sec = htab->stub_bfd->sections;
2951 stub_sec != NULL;
2952 stub_sec = stub_sec->next)
2953 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
2954 stub_sec->size = 0;
2955
2956 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
2957
2958 /* Ask the linker to do its stuff. */
2959 (*htab->layout_sections_again) ();
2960 stub_changed = FALSE;
2961 }
2962
2963 free (htab->all_local_syms);
2964 return TRUE;
2965
2966 error_ret_free_local:
2967 free (htab->all_local_syms);
2968 return FALSE;
2969 }
2970
2971 /* For a final link, this function is called after we have sized the
2972 stubs to provide a value for __gp. */
2973
2974 bfd_boolean
2975 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
2976 {
2977 struct bfd_link_hash_entry *h;
2978 asection *sec = NULL;
2979 bfd_vma gp_val = 0;
2980
2981 h = bfd_link_hash_lookup (info->hash, "$global$", FALSE, FALSE, FALSE);
2982
2983 if (h != NULL
2984 && (h->type == bfd_link_hash_defined
2985 || h->type == bfd_link_hash_defweak))
2986 {
2987 gp_val = h->u.def.value;
2988 sec = h->u.def.section;
2989 }
2990 else
2991 {
2992 asection *splt = bfd_get_section_by_name (abfd, ".plt");
2993 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2994
2995 /* Choose to point our LTP at, in this order, one of .plt, .got,
2996 or .data, if these sections exist. In the case of choosing
2997 .plt try to make the LTP ideal for addressing anywhere in the
2998 .plt or .got with a 14 bit signed offset. Typically, the end
2999 of the .plt is the start of the .got, so choose .plt + 0x2000
3000 if either the .plt or .got is larger than 0x2000. If both
3001 the .plt and .got are smaller than 0x2000, choose the end of
3002 the .plt section. */
3003 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3004 ? NULL : splt;
3005 if (sec != NULL)
3006 {
3007 gp_val = sec->size;
3008 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3009 {
3010 gp_val = 0x2000;
3011 }
3012 }
3013 else
3014 {
3015 sec = sgot;
3016 if (sec != NULL)
3017 {
3018 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3019 {
3020 /* We know we don't have a .plt. If .got is large,
3021 offset our LTP. */
3022 if (sec->size > 0x2000)
3023 gp_val = 0x2000;
3024 }
3025 }
3026 else
3027 {
3028 /* No .plt or .got. Who cares what the LTP is? */
3029 sec = bfd_get_section_by_name (abfd, ".data");
3030 }
3031 }
3032
3033 if (h != NULL)
3034 {
3035 h->type = bfd_link_hash_defined;
3036 h->u.def.value = gp_val;
3037 if (sec != NULL)
3038 h->u.def.section = sec;
3039 else
3040 h->u.def.section = bfd_abs_section_ptr;
3041 }
3042 }
3043
3044 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
3045 {
3046 if (sec != NULL && sec->output_section != NULL)
3047 gp_val += sec->output_section->vma + sec->output_offset;
3048
3049 elf_gp (abfd) = gp_val;
3050 }
3051 return TRUE;
3052 }
3053
3054 /* Build all the stubs associated with the current output file. The
3055 stubs are kept in a hash table attached to the main linker hash
3056 table. We also set up the .plt entries for statically linked PIC
3057 functions here. This function is called via hppaelf_finish in the
3058 linker. */
3059
3060 bfd_boolean
3061 elf32_hppa_build_stubs (struct bfd_link_info *info)
3062 {
3063 asection *stub_sec;
3064 struct bfd_hash_table *table;
3065 struct elf32_hppa_link_hash_table *htab;
3066
3067 htab = hppa_link_hash_table (info);
3068 if (htab == NULL)
3069 return FALSE;
3070
3071 for (stub_sec = htab->stub_bfd->sections;
3072 stub_sec != NULL;
3073 stub_sec = stub_sec->next)
3074 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
3075 && stub_sec->size != 0)
3076 {
3077 /* Allocate memory to hold the linker stubs. */
3078 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
3079 if (stub_sec->contents == NULL)
3080 return FALSE;
3081 stub_sec->size = 0;
3082 }
3083
3084 /* Build the stubs as directed by the stub hash table. */
3085 table = &htab->bstab;
3086 bfd_hash_traverse (table, hppa_build_one_stub, info);
3087
3088 return TRUE;
3089 }
3090
3091 /* Return the base vma address which should be subtracted from the real
3092 address when resolving a dtpoff relocation.
3093 This is PT_TLS segment p_vaddr. */
3094
3095 static bfd_vma
3096 dtpoff_base (struct bfd_link_info *info)
3097 {
3098 /* If tls_sec is NULL, we should have signalled an error already. */
3099 if (elf_hash_table (info)->tls_sec == NULL)
3100 return 0;
3101 return elf_hash_table (info)->tls_sec->vma;
3102 }
3103
3104 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3105
3106 static bfd_vma
3107 tpoff (struct bfd_link_info *info, bfd_vma address)
3108 {
3109 struct elf_link_hash_table *htab = elf_hash_table (info);
3110
3111 /* If tls_sec is NULL, we should have signalled an error already. */
3112 if (htab->tls_sec == NULL)
3113 return 0;
3114 /* hppa TLS ABI is variant I and static TLS block start just after
3115 tcbhead structure which has 2 pointer fields. */
3116 return (address - htab->tls_sec->vma
3117 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3118 }
3119
3120 /* Perform a final link. */
3121
3122 static bfd_boolean
3123 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3124 {
3125 struct stat buf;
3126
3127 /* Invoke the regular ELF linker to do all the work. */
3128 if (!bfd_elf_final_link (abfd, info))
3129 return FALSE;
3130
3131 /* If we're producing a final executable, sort the contents of the
3132 unwind section. */
3133 if (bfd_link_relocatable (info))
3134 return TRUE;
3135
3136 /* Do not attempt to sort non-regular files. This is here
3137 especially for configure scripts and kernel builds which run
3138 tests with "ld [...] -o /dev/null". */
3139 if (stat (bfd_get_filename (abfd), &buf) != 0
3140 || !S_ISREG(buf.st_mode))
3141 return TRUE;
3142
3143 return elf_hppa_sort_unwind (abfd);
3144 }
3145
3146 /* Record the lowest address for the data and text segments. */
3147
3148 static void
3149 hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3150 {
3151 struct elf32_hppa_link_hash_table *htab;
3152
3153 htab = (struct elf32_hppa_link_hash_table*) data;
3154 if (htab == NULL)
3155 return;
3156
3157 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3158 {
3159 bfd_vma value;
3160 Elf_Internal_Phdr *p;
3161
3162 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3163 BFD_ASSERT (p != NULL);
3164 value = p->p_vaddr;
3165
3166 if ((section->flags & SEC_READONLY) != 0)
3167 {
3168 if (value < htab->text_segment_base)
3169 htab->text_segment_base = value;
3170 }
3171 else
3172 {
3173 if (value < htab->data_segment_base)
3174 htab->data_segment_base = value;
3175 }
3176 }
3177 }
3178
3179 /* Perform a relocation as part of a final link. */
3180
3181 static bfd_reloc_status_type
3182 final_link_relocate (asection *input_section,
3183 bfd_byte *contents,
3184 const Elf_Internal_Rela *rela,
3185 bfd_vma value,
3186 struct elf32_hppa_link_hash_table *htab,
3187 asection *sym_sec,
3188 struct elf32_hppa_link_hash_entry *hh,
3189 struct bfd_link_info *info)
3190 {
3191 unsigned int insn;
3192 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3193 unsigned int orig_r_type = r_type;
3194 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3195 int r_format = howto->bitsize;
3196 enum hppa_reloc_field_selector_type_alt r_field;
3197 bfd *input_bfd = input_section->owner;
3198 bfd_vma offset = rela->r_offset;
3199 bfd_vma max_branch_offset = 0;
3200 bfd_byte *hit_data = contents + offset;
3201 bfd_signed_vma addend = rela->r_addend;
3202 bfd_vma location;
3203 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3204 int val;
3205
3206 if (r_type == R_PARISC_NONE)
3207 return bfd_reloc_ok;
3208
3209 insn = bfd_get_32 (input_bfd, hit_data);
3210
3211 /* Find out where we are and where we're going. */
3212 location = (offset +
3213 input_section->output_offset +
3214 input_section->output_section->vma);
3215
3216 /* If we are not building a shared library, convert DLTIND relocs to
3217 DPREL relocs. */
3218 if (!bfd_link_pic (info))
3219 {
3220 switch (r_type)
3221 {
3222 case R_PARISC_DLTIND21L:
3223 case R_PARISC_TLS_GD21L:
3224 case R_PARISC_TLS_LDM21L:
3225 case R_PARISC_TLS_IE21L:
3226 r_type = R_PARISC_DPREL21L;
3227 break;
3228
3229 case R_PARISC_DLTIND14R:
3230 case R_PARISC_TLS_GD14R:
3231 case R_PARISC_TLS_LDM14R:
3232 case R_PARISC_TLS_IE14R:
3233 r_type = R_PARISC_DPREL14R;
3234 break;
3235
3236 case R_PARISC_DLTIND14F:
3237 r_type = R_PARISC_DPREL14F;
3238 break;
3239 }
3240 }
3241
3242 switch (r_type)
3243 {
3244 case R_PARISC_PCREL12F:
3245 case R_PARISC_PCREL17F:
3246 case R_PARISC_PCREL22F:
3247 /* If this call should go via the plt, find the import stub in
3248 the stub hash. */
3249 if (sym_sec == NULL
3250 || sym_sec->output_section == NULL
3251 || (hh != NULL
3252 && hh->eh.plt.offset != (bfd_vma) -1
3253 && hh->eh.dynindx != -1
3254 && !hh->plabel
3255 && (bfd_link_pic (info)
3256 || !hh->eh.def_regular
3257 || hh->eh.root.type == bfd_link_hash_defweak)))
3258 {
3259 hsh = hppa_get_stub_entry (input_section, sym_sec,
3260 hh, rela, htab);
3261 if (hsh != NULL)
3262 {
3263 value = (hsh->stub_offset
3264 + hsh->stub_sec->output_offset
3265 + hsh->stub_sec->output_section->vma);
3266 addend = 0;
3267 }
3268 else if (sym_sec == NULL && hh != NULL
3269 && hh->eh.root.type == bfd_link_hash_undefweak)
3270 {
3271 /* It's OK if undefined weak. Calls to undefined weak
3272 symbols behave as if the "called" function
3273 immediately returns. We can thus call to a weak
3274 function without first checking whether the function
3275 is defined. */
3276 value = location;
3277 addend = 8;
3278 }
3279 else
3280 return bfd_reloc_undefined;
3281 }
3282 /* Fall thru. */
3283
3284 case R_PARISC_PCREL21L:
3285 case R_PARISC_PCREL17C:
3286 case R_PARISC_PCREL17R:
3287 case R_PARISC_PCREL14R:
3288 case R_PARISC_PCREL14F:
3289 case R_PARISC_PCREL32:
3290 /* Make it a pc relative offset. */
3291 value -= location;
3292 addend -= 8;
3293 break;
3294
3295 case R_PARISC_DPREL21L:
3296 case R_PARISC_DPREL14R:
3297 case R_PARISC_DPREL14F:
3298 /* Convert instructions that use the linkage table pointer (r19) to
3299 instructions that use the global data pointer (dp). This is the
3300 most efficient way of using PIC code in an incomplete executable,
3301 but the user must follow the standard runtime conventions for
3302 accessing data for this to work. */
3303 if (orig_r_type != r_type)
3304 {
3305 if (r_type == R_PARISC_DPREL21L)
3306 {
3307 /* GCC sometimes uses a register other than r19 for the
3308 operation, so we must convert any addil instruction
3309 that uses this relocation. */
3310 if ((insn & 0xfc000000) == OP_ADDIL << 26)
3311 insn = ADDIL_DP;
3312 else
3313 /* We must have a ldil instruction. It's too hard to find
3314 and convert the associated add instruction, so issue an
3315 error. */
3316 _bfd_error_handler
3317 /* xgettext:c-format */
3318 (_("%pB(%pA+%#" PRIx64 "): %s fixup for insn %#x "
3319 "is not supported in a non-shared link"),
3320 input_bfd,
3321 input_section,
3322 (uint64_t) offset,
3323 howto->name,
3324 insn);
3325 }
3326 else if (r_type == R_PARISC_DPREL14F)
3327 {
3328 /* This must be a format 1 load/store. Change the base
3329 register to dp. */
3330 insn = (insn & 0xfc1ffff) | (27 << 21);
3331 }
3332 }
3333
3334 /* For all the DP relative relocations, we need to examine the symbol's
3335 section. If it has no section or if it's a code section, then
3336 "data pointer relative" makes no sense. In that case we don't
3337 adjust the "value", and for 21 bit addil instructions, we change the
3338 source addend register from %dp to %r0. This situation commonly
3339 arises for undefined weak symbols and when a variable's "constness"
3340 is declared differently from the way the variable is defined. For
3341 instance: "extern int foo" with foo defined as "const int foo". */
3342 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3343 {
3344 if ((insn & ((0x3fu << 26) | (0x1f << 21)))
3345 == ((OP_ADDIL << 26) | (27 << 21)))
3346 {
3347 insn &= ~ (0x1f << 21);
3348 }
3349 /* Now try to make things easy for the dynamic linker. */
3350
3351 break;
3352 }
3353 /* Fall thru. */
3354
3355 case R_PARISC_DLTIND21L:
3356 case R_PARISC_DLTIND14R:
3357 case R_PARISC_DLTIND14F:
3358 case R_PARISC_TLS_GD21L:
3359 case R_PARISC_TLS_LDM21L:
3360 case R_PARISC_TLS_IE21L:
3361 case R_PARISC_TLS_GD14R:
3362 case R_PARISC_TLS_LDM14R:
3363 case R_PARISC_TLS_IE14R:
3364 value -= elf_gp (input_section->output_section->owner);
3365 break;
3366
3367 case R_PARISC_SEGREL32:
3368 if ((sym_sec->flags & SEC_CODE) != 0)
3369 value -= htab->text_segment_base;
3370 else
3371 value -= htab->data_segment_base;
3372 break;
3373
3374 default:
3375 break;
3376 }
3377
3378 switch (r_type)
3379 {
3380 case R_PARISC_DIR32:
3381 case R_PARISC_DIR14F:
3382 case R_PARISC_DIR17F:
3383 case R_PARISC_PCREL17C:
3384 case R_PARISC_PCREL14F:
3385 case R_PARISC_PCREL32:
3386 case R_PARISC_DPREL14F:
3387 case R_PARISC_PLABEL32:
3388 case R_PARISC_DLTIND14F:
3389 case R_PARISC_SEGBASE:
3390 case R_PARISC_SEGREL32:
3391 case R_PARISC_TLS_DTPMOD32:
3392 case R_PARISC_TLS_DTPOFF32:
3393 case R_PARISC_TLS_TPREL32:
3394 r_field = e_fsel;
3395 break;
3396
3397 case R_PARISC_DLTIND21L:
3398 case R_PARISC_PCREL21L:
3399 case R_PARISC_PLABEL21L:
3400 r_field = e_lsel;
3401 break;
3402
3403 case R_PARISC_DIR21L:
3404 case R_PARISC_DPREL21L:
3405 case R_PARISC_TLS_GD21L:
3406 case R_PARISC_TLS_LDM21L:
3407 case R_PARISC_TLS_LDO21L:
3408 case R_PARISC_TLS_IE21L:
3409 case R_PARISC_TLS_LE21L:
3410 r_field = e_lrsel;
3411 break;
3412
3413 case R_PARISC_PCREL17R:
3414 case R_PARISC_PCREL14R:
3415 case R_PARISC_PLABEL14R:
3416 case R_PARISC_DLTIND14R:
3417 r_field = e_rsel;
3418 break;
3419
3420 case R_PARISC_DIR17R:
3421 case R_PARISC_DIR14R:
3422 case R_PARISC_DPREL14R:
3423 case R_PARISC_TLS_GD14R:
3424 case R_PARISC_TLS_LDM14R:
3425 case R_PARISC_TLS_LDO14R:
3426 case R_PARISC_TLS_IE14R:
3427 case R_PARISC_TLS_LE14R:
3428 r_field = e_rrsel;
3429 break;
3430
3431 case R_PARISC_PCREL12F:
3432 case R_PARISC_PCREL17F:
3433 case R_PARISC_PCREL22F:
3434 r_field = e_fsel;
3435
3436 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3437 {
3438 max_branch_offset = (1 << (17-1)) << 2;
3439 }
3440 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3441 {
3442 max_branch_offset = (1 << (12-1)) << 2;
3443 }
3444 else
3445 {
3446 max_branch_offset = (1 << (22-1)) << 2;
3447 }
3448
3449 /* sym_sec is NULL on undefined weak syms or when shared on
3450 undefined syms. We've already checked for a stub for the
3451 shared undefined case. */
3452 if (sym_sec == NULL)
3453 break;
3454
3455 /* If the branch is out of reach, then redirect the
3456 call to the local stub for this function. */
3457 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3458 {
3459 hsh = hppa_get_stub_entry (input_section, sym_sec,
3460 hh, rela, htab);
3461 if (hsh == NULL)
3462 return bfd_reloc_undefined;
3463
3464 /* Munge up the value and addend so that we call the stub
3465 rather than the procedure directly. */
3466 value = (hsh->stub_offset
3467 + hsh->stub_sec->output_offset
3468 + hsh->stub_sec->output_section->vma
3469 - location);
3470 addend = -8;
3471 }
3472 break;
3473
3474 /* Something we don't know how to handle. */
3475 default:
3476 return bfd_reloc_notsupported;
3477 }
3478
3479 /* Make sure we can reach the stub. */
3480 if (max_branch_offset != 0
3481 && value + addend + max_branch_offset >= 2*max_branch_offset)
3482 {
3483 _bfd_error_handler
3484 /* xgettext:c-format */
3485 (_("%pB(%pA+%#" PRIx64 "): cannot reach %s, "
3486 "recompile with -ffunction-sections"),
3487 input_bfd,
3488 input_section,
3489 (uint64_t) offset,
3490 hsh->bh_root.string);
3491 bfd_set_error (bfd_error_bad_value);
3492 return bfd_reloc_notsupported;
3493 }
3494
3495 val = hppa_field_adjust (value, addend, r_field);
3496
3497 switch (r_type)
3498 {
3499 case R_PARISC_PCREL12F:
3500 case R_PARISC_PCREL17C:
3501 case R_PARISC_PCREL17F:
3502 case R_PARISC_PCREL17R:
3503 case R_PARISC_PCREL22F:
3504 case R_PARISC_DIR17F:
3505 case R_PARISC_DIR17R:
3506 /* This is a branch. Divide the offset by four.
3507 Note that we need to decide whether it's a branch or
3508 otherwise by inspecting the reloc. Inspecting insn won't
3509 work as insn might be from a .word directive. */
3510 val >>= 2;
3511 break;
3512
3513 default:
3514 break;
3515 }
3516
3517 insn = hppa_rebuild_insn (insn, val, r_format);
3518
3519 /* Update the instruction word. */
3520 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3521 return bfd_reloc_ok;
3522 }
3523
3524 /* Relocate an HPPA ELF section. */
3525
3526 static bfd_boolean
3527 elf32_hppa_relocate_section (bfd *output_bfd,
3528 struct bfd_link_info *info,
3529 bfd *input_bfd,
3530 asection *input_section,
3531 bfd_byte *contents,
3532 Elf_Internal_Rela *relocs,
3533 Elf_Internal_Sym *local_syms,
3534 asection **local_sections)
3535 {
3536 bfd_vma *local_got_offsets;
3537 struct elf32_hppa_link_hash_table *htab;
3538 Elf_Internal_Shdr *symtab_hdr;
3539 Elf_Internal_Rela *rela;
3540 Elf_Internal_Rela *relend;
3541
3542 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3543
3544 htab = hppa_link_hash_table (info);
3545 if (htab == NULL)
3546 return FALSE;
3547
3548 local_got_offsets = elf_local_got_offsets (input_bfd);
3549
3550 rela = relocs;
3551 relend = relocs + input_section->reloc_count;
3552 for (; rela < relend; rela++)
3553 {
3554 unsigned int r_type;
3555 reloc_howto_type *howto;
3556 unsigned int r_symndx;
3557 struct elf32_hppa_link_hash_entry *hh;
3558 Elf_Internal_Sym *sym;
3559 asection *sym_sec;
3560 bfd_vma relocation;
3561 bfd_reloc_status_type rstatus;
3562 const char *sym_name;
3563 bfd_boolean plabel;
3564 bfd_boolean warned_undef;
3565
3566 r_type = ELF32_R_TYPE (rela->r_info);
3567 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3568 {
3569 bfd_set_error (bfd_error_bad_value);
3570 return FALSE;
3571 }
3572 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3573 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3574 continue;
3575
3576 r_symndx = ELF32_R_SYM (rela->r_info);
3577 hh = NULL;
3578 sym = NULL;
3579 sym_sec = NULL;
3580 warned_undef = FALSE;
3581 if (r_symndx < symtab_hdr->sh_info)
3582 {
3583 /* This is a local symbol, h defaults to NULL. */
3584 sym = local_syms + r_symndx;
3585 sym_sec = local_sections[r_symndx];
3586 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3587 }
3588 else
3589 {
3590 struct elf_link_hash_entry *eh;
3591 bfd_boolean unresolved_reloc, ignored;
3592 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3593
3594 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3595 r_symndx, symtab_hdr, sym_hashes,
3596 eh, sym_sec, relocation,
3597 unresolved_reloc, warned_undef,
3598 ignored);
3599
3600 if (!bfd_link_relocatable (info)
3601 && relocation == 0
3602 && eh->root.type != bfd_link_hash_defined
3603 && eh->root.type != bfd_link_hash_defweak
3604 && eh->root.type != bfd_link_hash_undefweak)
3605 {
3606 if (info->unresolved_syms_in_objects == RM_IGNORE
3607 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3608 && eh->type == STT_PARISC_MILLI)
3609 {
3610 (*info->callbacks->undefined_symbol)
3611 (info, eh_name (eh), input_bfd,
3612 input_section, rela->r_offset, FALSE);
3613 warned_undef = TRUE;
3614 }
3615 }
3616 hh = hppa_elf_hash_entry (eh);
3617 }
3618
3619 if (sym_sec != NULL && discarded_section (sym_sec))
3620 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3621 rela, 1, relend,
3622 elf_hppa_howto_table + r_type, 0,
3623 contents);
3624
3625 if (bfd_link_relocatable (info))
3626 continue;
3627
3628 /* Do any required modifications to the relocation value, and
3629 determine what types of dynamic info we need to output, if
3630 any. */
3631 plabel = 0;
3632 switch (r_type)
3633 {
3634 case R_PARISC_DLTIND14F:
3635 case R_PARISC_DLTIND14R:
3636 case R_PARISC_DLTIND21L:
3637 {
3638 bfd_vma off;
3639 bfd_boolean do_got = FALSE;
3640 bfd_boolean reloc = bfd_link_pic (info);
3641
3642 /* Relocation is to the entry for this symbol in the
3643 global offset table. */
3644 if (hh != NULL)
3645 {
3646 bfd_boolean dyn;
3647
3648 off = hh->eh.got.offset;
3649 dyn = htab->etab.dynamic_sections_created;
3650 reloc = (!UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh)
3651 && (reloc
3652 || (hh->eh.dynindx != -1
3653 && !SYMBOL_REFERENCES_LOCAL (info, &hh->eh))));
3654 if (!reloc
3655 || !WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
3656 bfd_link_pic (info),
3657 &hh->eh))
3658 {
3659 /* If we aren't going to call finish_dynamic_symbol,
3660 then we need to handle initialisation of the .got
3661 entry and create needed relocs here. Since the
3662 offset must always be a multiple of 4, we use the
3663 least significant bit to record whether we have
3664 initialised it already. */
3665 if ((off & 1) != 0)
3666 off &= ~1;
3667 else
3668 {
3669 hh->eh.got.offset |= 1;
3670 do_got = TRUE;
3671 }
3672 }
3673 }
3674 else
3675 {
3676 /* Local symbol case. */
3677 if (local_got_offsets == NULL)
3678 abort ();
3679
3680 off = local_got_offsets[r_symndx];
3681
3682 /* The offset must always be a multiple of 4. We use
3683 the least significant bit to record whether we have
3684 already generated the necessary reloc. */
3685 if ((off & 1) != 0)
3686 off &= ~1;
3687 else
3688 {
3689 local_got_offsets[r_symndx] |= 1;
3690 do_got = TRUE;
3691 }
3692 }
3693
3694 if (do_got)
3695 {
3696 if (reloc)
3697 {
3698 /* Output a dynamic relocation for this GOT entry.
3699 In this case it is relative to the base of the
3700 object because the symbol index is zero. */
3701 Elf_Internal_Rela outrel;
3702 bfd_byte *loc;
3703 asection *sec = htab->etab.srelgot;
3704
3705 outrel.r_offset = (off
3706 + htab->etab.sgot->output_offset
3707 + htab->etab.sgot->output_section->vma);
3708 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3709 outrel.r_addend = relocation;
3710 loc = sec->contents;
3711 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3712 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3713 }
3714 else
3715 bfd_put_32 (output_bfd, relocation,
3716 htab->etab.sgot->contents + off);
3717 }
3718
3719 if (off >= (bfd_vma) -2)
3720 abort ();
3721
3722 /* Add the base of the GOT to the relocation value. */
3723 relocation = (off
3724 + htab->etab.sgot->output_offset
3725 + htab->etab.sgot->output_section->vma);
3726 }
3727 break;
3728
3729 case R_PARISC_SEGREL32:
3730 /* If this is the first SEGREL relocation, then initialize
3731 the segment base values. */
3732 if (htab->text_segment_base == (bfd_vma) -1)
3733 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3734 break;
3735
3736 case R_PARISC_PLABEL14R:
3737 case R_PARISC_PLABEL21L:
3738 case R_PARISC_PLABEL32:
3739 if (htab->etab.dynamic_sections_created)
3740 {
3741 bfd_vma off;
3742 bfd_boolean do_plt = 0;
3743 /* If we have a global symbol with a PLT slot, then
3744 redirect this relocation to it. */
3745 if (hh != NULL)
3746 {
3747 off = hh->eh.plt.offset;
3748 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1,
3749 bfd_link_pic (info),
3750 &hh->eh))
3751 {
3752 /* In a non-shared link, adjust_dynamic_symbol
3753 isn't called for symbols forced local. We
3754 need to write out the plt entry here. */
3755 if ((off & 1) != 0)
3756 off &= ~1;
3757 else
3758 {
3759 hh->eh.plt.offset |= 1;
3760 do_plt = 1;
3761 }
3762 }
3763 }
3764 else
3765 {
3766 bfd_vma *local_plt_offsets;
3767
3768 if (local_got_offsets == NULL)
3769 abort ();
3770
3771 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3772 off = local_plt_offsets[r_symndx];
3773
3774 /* As for the local .got entry case, we use the last
3775 bit to record whether we've already initialised
3776 this local .plt entry. */
3777 if ((off & 1) != 0)
3778 off &= ~1;
3779 else
3780 {
3781 local_plt_offsets[r_symndx] |= 1;
3782 do_plt = 1;
3783 }
3784 }
3785
3786 if (do_plt)
3787 {
3788 if (bfd_link_pic (info))
3789 {
3790 /* Output a dynamic IPLT relocation for this
3791 PLT entry. */
3792 Elf_Internal_Rela outrel;
3793 bfd_byte *loc;
3794 asection *s = htab->etab.srelplt;
3795
3796 outrel.r_offset = (off
3797 + htab->etab.splt->output_offset
3798 + htab->etab.splt->output_section->vma);
3799 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3800 outrel.r_addend = relocation;
3801 loc = s->contents;
3802 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3803 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3804 }
3805 else
3806 {
3807 bfd_put_32 (output_bfd,
3808 relocation,
3809 htab->etab.splt->contents + off);
3810 bfd_put_32 (output_bfd,
3811 elf_gp (htab->etab.splt->output_section->owner),
3812 htab->etab.splt->contents + off + 4);
3813 }
3814 }
3815
3816 if (off >= (bfd_vma) -2)
3817 abort ();
3818
3819 /* PLABELs contain function pointers. Relocation is to
3820 the entry for the function in the .plt. The magic +2
3821 offset signals to $$dyncall that the function pointer
3822 is in the .plt and thus has a gp pointer too.
3823 Exception: Undefined PLABELs should have a value of
3824 zero. */
3825 if (hh == NULL
3826 || (hh->eh.root.type != bfd_link_hash_undefweak
3827 && hh->eh.root.type != bfd_link_hash_undefined))
3828 {
3829 relocation = (off
3830 + htab->etab.splt->output_offset
3831 + htab->etab.splt->output_section->vma
3832 + 2);
3833 }
3834 plabel = 1;
3835 }
3836 /* Fall through. */
3837
3838 case R_PARISC_DIR17F:
3839 case R_PARISC_DIR17R:
3840 case R_PARISC_DIR14F:
3841 case R_PARISC_DIR14R:
3842 case R_PARISC_DIR21L:
3843 case R_PARISC_DPREL14F:
3844 case R_PARISC_DPREL14R:
3845 case R_PARISC_DPREL21L:
3846 case R_PARISC_DIR32:
3847 if ((input_section->flags & SEC_ALLOC) == 0)
3848 break;
3849
3850 if (bfd_link_pic (info)
3851 ? ((hh == NULL
3852 || hh->eh.dyn_relocs != NULL)
3853 && ((hh != NULL && pc_dynrelocs (hh))
3854 || IS_ABSOLUTE_RELOC (r_type)))
3855 : (hh != NULL
3856 && hh->eh.dyn_relocs != NULL))
3857 {
3858 Elf_Internal_Rela outrel;
3859 bfd_boolean skip;
3860 asection *sreloc;
3861 bfd_byte *loc;
3862
3863 /* When generating a shared object, these relocations
3864 are copied into the output file to be resolved at run
3865 time. */
3866
3867 outrel.r_addend = rela->r_addend;
3868 outrel.r_offset =
3869 _bfd_elf_section_offset (output_bfd, info, input_section,
3870 rela->r_offset);
3871 skip = (outrel.r_offset == (bfd_vma) -1
3872 || outrel.r_offset == (bfd_vma) -2);
3873 outrel.r_offset += (input_section->output_offset
3874 + input_section->output_section->vma);
3875
3876 if (skip)
3877 {
3878 memset (&outrel, 0, sizeof (outrel));
3879 }
3880 else if (hh != NULL
3881 && hh->eh.dynindx != -1
3882 && (plabel
3883 || !IS_ABSOLUTE_RELOC (r_type)
3884 || !bfd_link_pic (info)
3885 || !SYMBOLIC_BIND (info, &hh->eh)
3886 || !hh->eh.def_regular))
3887 {
3888 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
3889 }
3890 else /* It's a local symbol, or one marked to become local. */
3891 {
3892 int indx = 0;
3893
3894 /* Add the absolute offset of the symbol. */
3895 outrel.r_addend += relocation;
3896
3897 /* Global plabels need to be processed by the
3898 dynamic linker so that functions have at most one
3899 fptr. For this reason, we need to differentiate
3900 between global and local plabels, which we do by
3901 providing the function symbol for a global plabel
3902 reloc, and no symbol for local plabels. */
3903 if (! plabel
3904 && sym_sec != NULL
3905 && sym_sec->output_section != NULL
3906 && ! bfd_is_abs_section (sym_sec))
3907 {
3908 asection *osec;
3909
3910 osec = sym_sec->output_section;
3911 indx = elf_section_data (osec)->dynindx;
3912 if (indx == 0)
3913 {
3914 osec = htab->etab.text_index_section;
3915 indx = elf_section_data (osec)->dynindx;
3916 }
3917 BFD_ASSERT (indx != 0);
3918
3919 /* We are turning this relocation into one
3920 against a section symbol, so subtract out the
3921 output section's address but not the offset
3922 of the input section in the output section. */
3923 outrel.r_addend -= osec->vma;
3924 }
3925
3926 outrel.r_info = ELF32_R_INFO (indx, r_type);
3927 }
3928 sreloc = elf_section_data (input_section)->sreloc;
3929 if (sreloc == NULL)
3930 abort ();
3931
3932 loc = sreloc->contents;
3933 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3934 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3935 }
3936 break;
3937
3938 case R_PARISC_TLS_LDM21L:
3939 case R_PARISC_TLS_LDM14R:
3940 {
3941 bfd_vma off;
3942
3943 off = htab->tls_ldm_got.offset;
3944 if (off & 1)
3945 off &= ~1;
3946 else
3947 {
3948 Elf_Internal_Rela outrel;
3949 bfd_byte *loc;
3950
3951 outrel.r_offset = (off
3952 + htab->etab.sgot->output_section->vma
3953 + htab->etab.sgot->output_offset);
3954 outrel.r_addend = 0;
3955 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
3956 loc = htab->etab.srelgot->contents;
3957 loc += htab->etab.srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
3958
3959 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3960 htab->tls_ldm_got.offset |= 1;
3961 }
3962
3963 /* Add the base of the GOT to the relocation value. */
3964 relocation = (off
3965 + htab->etab.sgot->output_offset
3966 + htab->etab.sgot->output_section->vma);
3967
3968 break;
3969 }
3970
3971 case R_PARISC_TLS_LDO21L:
3972 case R_PARISC_TLS_LDO14R:
3973 relocation -= dtpoff_base (info);
3974 break;
3975
3976 case R_PARISC_TLS_GD21L:
3977 case R_PARISC_TLS_GD14R:
3978 case R_PARISC_TLS_IE21L:
3979 case R_PARISC_TLS_IE14R:
3980 {
3981 bfd_vma off;
3982 int indx;
3983 char tls_type;
3984
3985 indx = 0;
3986 if (hh != NULL)
3987 {
3988 if (!htab->etab.dynamic_sections_created
3989 || hh->eh.dynindx == -1
3990 || SYMBOL_REFERENCES_LOCAL (info, &hh->eh)
3991 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh))
3992 /* This is actually a static link, or it is a
3993 -Bsymbolic link and the symbol is defined
3994 locally, or the symbol was forced to be local
3995 because of a version file. */
3996 ;
3997 else
3998 indx = hh->eh.dynindx;
3999 off = hh->eh.got.offset;
4000 tls_type = hh->tls_type;
4001 }
4002 else
4003 {
4004 off = local_got_offsets[r_symndx];
4005 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4006 }
4007
4008 if (tls_type == GOT_UNKNOWN)
4009 abort ();
4010
4011 if ((off & 1) != 0)
4012 off &= ~1;
4013 else
4014 {
4015 bfd_boolean need_relocs = FALSE;
4016 Elf_Internal_Rela outrel;
4017 bfd_byte *loc = NULL;
4018 int cur_off = off;
4019
4020 /* The GOT entries have not been initialized yet. Do it
4021 now, and emit any relocations. If both an IE GOT and a
4022 GD GOT are necessary, we emit the GD first. */
4023
4024 if (indx != 0
4025 || (bfd_link_dll (info)
4026 && (hh == NULL
4027 || !UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh))))
4028 {
4029 need_relocs = TRUE;
4030 loc = htab->etab.srelgot->contents;
4031 loc += (htab->etab.srelgot->reloc_count
4032 * sizeof (Elf32_External_Rela));
4033 }
4034
4035 if (tls_type & GOT_TLS_GD)
4036 {
4037 if (need_relocs)
4038 {
4039 outrel.r_offset
4040 = (cur_off
4041 + htab->etab.sgot->output_section->vma
4042 + htab->etab.sgot->output_offset);
4043 outrel.r_info
4044 = ELF32_R_INFO (indx, R_PARISC_TLS_DTPMOD32);
4045 outrel.r_addend = 0;
4046 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4047 htab->etab.srelgot->reloc_count++;
4048 loc += sizeof (Elf32_External_Rela);
4049 bfd_put_32 (output_bfd, 0,
4050 htab->etab.sgot->contents + cur_off);
4051 }
4052 else
4053 /* If we are not emitting relocations for a
4054 general dynamic reference, then we must be in a
4055 static link or an executable link with the
4056 symbol binding locally. Mark it as belonging
4057 to module 1, the executable. */
4058 bfd_put_32 (output_bfd, 1,
4059 htab->etab.sgot->contents + cur_off);
4060
4061 if (indx != 0)
4062 {
4063 outrel.r_info
4064 = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4065 outrel.r_offset += 4;
4066 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4067 htab->etab.srelgot->reloc_count++;
4068 loc += sizeof (Elf32_External_Rela);
4069 bfd_put_32 (output_bfd, 0,
4070 htab->etab.sgot->contents + cur_off + 4);
4071 }
4072 else
4073 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4074 htab->etab.sgot->contents + cur_off + 4);
4075 cur_off += 8;
4076 }
4077
4078 if (tls_type & GOT_TLS_IE)
4079 {
4080 if (need_relocs
4081 && !(bfd_link_executable (info)
4082 && SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4083 {
4084 outrel.r_offset
4085 = (cur_off
4086 + htab->etab.sgot->output_section->vma
4087 + htab->etab.sgot->output_offset);
4088 outrel.r_info = ELF32_R_INFO (indx,
4089 R_PARISC_TLS_TPREL32);
4090 if (indx == 0)
4091 outrel.r_addend = relocation - dtpoff_base (info);
4092 else
4093 outrel.r_addend = 0;
4094 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4095 htab->etab.srelgot->reloc_count++;
4096 loc += sizeof (Elf32_External_Rela);
4097 }
4098 else
4099 bfd_put_32 (output_bfd, tpoff (info, relocation),
4100 htab->etab.sgot->contents + cur_off);
4101 cur_off += 4;
4102 }
4103
4104 if (hh != NULL)
4105 hh->eh.got.offset |= 1;
4106 else
4107 local_got_offsets[r_symndx] |= 1;
4108 }
4109
4110 if ((tls_type & GOT_NORMAL) != 0
4111 && (tls_type & (GOT_TLS_GD | GOT_TLS_LDM | GOT_TLS_IE)) != 0)
4112 {
4113 if (hh != NULL)
4114 _bfd_error_handler (_("%s has both normal and TLS relocs"),
4115 hh_name (hh));
4116 else
4117 {
4118 Elf_Internal_Sym *isym
4119 = bfd_sym_from_r_symndx (&htab->sym_cache,
4120 input_bfd, r_symndx);
4121 if (isym == NULL)
4122 return FALSE;
4123 sym_name
4124 = bfd_elf_string_from_elf_section (input_bfd,
4125 symtab_hdr->sh_link,
4126 isym->st_name);
4127 if (sym_name == NULL)
4128 return FALSE;
4129 if (*sym_name == '\0')
4130 sym_name = bfd_section_name (sym_sec);
4131 _bfd_error_handler
4132 (_("%pB:%s has both normal and TLS relocs"),
4133 input_bfd, sym_name);
4134 }
4135 bfd_set_error (bfd_error_bad_value);
4136 return FALSE;
4137 }
4138
4139 if ((tls_type & GOT_TLS_GD)
4140 && r_type != R_PARISC_TLS_GD21L
4141 && r_type != R_PARISC_TLS_GD14R)
4142 off += 2 * GOT_ENTRY_SIZE;
4143
4144 /* Add the base of the GOT to the relocation value. */
4145 relocation = (off
4146 + htab->etab.sgot->output_offset
4147 + htab->etab.sgot->output_section->vma);
4148
4149 break;
4150 }
4151
4152 case R_PARISC_TLS_LE21L:
4153 case R_PARISC_TLS_LE14R:
4154 {
4155 relocation = tpoff (info, relocation);
4156 break;
4157 }
4158 break;
4159
4160 default:
4161 break;
4162 }
4163
4164 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4165 htab, sym_sec, hh, info);
4166
4167 if (rstatus == bfd_reloc_ok)
4168 continue;
4169
4170 if (hh != NULL)
4171 sym_name = hh_name (hh);
4172 else
4173 {
4174 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4175 symtab_hdr->sh_link,
4176 sym->st_name);
4177 if (sym_name == NULL)
4178 return FALSE;
4179 if (*sym_name == '\0')
4180 sym_name = bfd_section_name (sym_sec);
4181 }
4182
4183 howto = elf_hppa_howto_table + r_type;
4184
4185 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4186 {
4187 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4188 {
4189 _bfd_error_handler
4190 /* xgettext:c-format */
4191 (_("%pB(%pA+%#" PRIx64 "): cannot handle %s for %s"),
4192 input_bfd,
4193 input_section,
4194 (uint64_t) rela->r_offset,
4195 howto->name,
4196 sym_name);
4197 bfd_set_error (bfd_error_bad_value);
4198 return FALSE;
4199 }
4200 }
4201 else
4202 (*info->callbacks->reloc_overflow)
4203 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4204 (bfd_vma) 0, input_bfd, input_section, rela->r_offset);
4205 }
4206
4207 return TRUE;
4208 }
4209
4210 /* Finish up dynamic symbol handling. We set the contents of various
4211 dynamic sections here. */
4212
4213 static bfd_boolean
4214 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4215 struct bfd_link_info *info,
4216 struct elf_link_hash_entry *eh,
4217 Elf_Internal_Sym *sym)
4218 {
4219 struct elf32_hppa_link_hash_table *htab;
4220 Elf_Internal_Rela rela;
4221 bfd_byte *loc;
4222
4223 htab = hppa_link_hash_table (info);
4224 if (htab == NULL)
4225 return FALSE;
4226
4227 if (eh->plt.offset != (bfd_vma) -1)
4228 {
4229 bfd_vma value;
4230
4231 if (eh->plt.offset & 1)
4232 abort ();
4233
4234 /* This symbol has an entry in the procedure linkage table. Set
4235 it up.
4236
4237 The format of a plt entry is
4238 <funcaddr>
4239 <__gp>
4240 */
4241 value = 0;
4242 if (eh->root.type == bfd_link_hash_defined
4243 || eh->root.type == bfd_link_hash_defweak)
4244 {
4245 value = eh->root.u.def.value;
4246 if (eh->root.u.def.section->output_section != NULL)
4247 value += (eh->root.u.def.section->output_offset
4248 + eh->root.u.def.section->output_section->vma);
4249 }
4250
4251 /* Create a dynamic IPLT relocation for this entry. */
4252 rela.r_offset = (eh->plt.offset
4253 + htab->etab.splt->output_offset
4254 + htab->etab.splt->output_section->vma);
4255 if (eh->dynindx != -1)
4256 {
4257 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4258 rela.r_addend = 0;
4259 }
4260 else
4261 {
4262 /* This symbol has been marked to become local, and is
4263 used by a plabel so must be kept in the .plt. */
4264 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4265 rela.r_addend = value;
4266 }
4267
4268 loc = htab->etab.srelplt->contents;
4269 loc += htab->etab.srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4270 bfd_elf32_swap_reloca_out (htab->etab.splt->output_section->owner, &rela, loc);
4271
4272 if (!eh->def_regular)
4273 {
4274 /* Mark the symbol as undefined, rather than as defined in
4275 the .plt section. Leave the value alone. */
4276 sym->st_shndx = SHN_UNDEF;
4277 }
4278 }
4279
4280 if (eh->got.offset != (bfd_vma) -1
4281 && (hppa_elf_hash_entry (eh)->tls_type & GOT_NORMAL) != 0
4282 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
4283 {
4284 bfd_boolean is_dyn = (eh->dynindx != -1
4285 && !SYMBOL_REFERENCES_LOCAL (info, eh));
4286
4287 if (is_dyn || bfd_link_pic (info))
4288 {
4289 /* This symbol has an entry in the global offset table. Set
4290 it up. */
4291
4292 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4293 + htab->etab.sgot->output_offset
4294 + htab->etab.sgot->output_section->vma);
4295
4296 /* If this is a -Bsymbolic link and the symbol is defined
4297 locally or was forced to be local because of a version
4298 file, we just want to emit a RELATIVE reloc. The entry
4299 in the global offset table will already have been
4300 initialized in the relocate_section function. */
4301 if (!is_dyn)
4302 {
4303 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4304 rela.r_addend = (eh->root.u.def.value
4305 + eh->root.u.def.section->output_offset
4306 + eh->root.u.def.section->output_section->vma);
4307 }
4308 else
4309 {
4310 if ((eh->got.offset & 1) != 0)
4311 abort ();
4312
4313 bfd_put_32 (output_bfd, 0,
4314 htab->etab.sgot->contents + (eh->got.offset & ~1));
4315 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4316 rela.r_addend = 0;
4317 }
4318
4319 loc = htab->etab.srelgot->contents;
4320 loc += (htab->etab.srelgot->reloc_count++
4321 * sizeof (Elf32_External_Rela));
4322 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4323 }
4324 }
4325
4326 if (eh->needs_copy)
4327 {
4328 asection *sec;
4329
4330 /* This symbol needs a copy reloc. Set it up. */
4331
4332 if (! (eh->dynindx != -1
4333 && (eh->root.type == bfd_link_hash_defined
4334 || eh->root.type == bfd_link_hash_defweak)))
4335 abort ();
4336
4337 rela.r_offset = (eh->root.u.def.value
4338 + eh->root.u.def.section->output_offset
4339 + eh->root.u.def.section->output_section->vma);
4340 rela.r_addend = 0;
4341 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4342 if (eh->root.u.def.section == htab->etab.sdynrelro)
4343 sec = htab->etab.sreldynrelro;
4344 else
4345 sec = htab->etab.srelbss;
4346 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4347 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4348 }
4349
4350 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4351 if (eh == htab->etab.hdynamic || eh == htab->etab.hgot)
4352 {
4353 sym->st_shndx = SHN_ABS;
4354 }
4355
4356 return TRUE;
4357 }
4358
4359 /* Used to decide how to sort relocs in an optimal manner for the
4360 dynamic linker, before writing them out. */
4361
4362 static enum elf_reloc_type_class
4363 elf32_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4364 const asection *rel_sec ATTRIBUTE_UNUSED,
4365 const Elf_Internal_Rela *rela)
4366 {
4367 /* Handle TLS relocs first; we don't want them to be marked
4368 relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)"
4369 check below. */
4370 switch ((int) ELF32_R_TYPE (rela->r_info))
4371 {
4372 case R_PARISC_TLS_DTPMOD32:
4373 case R_PARISC_TLS_DTPOFF32:
4374 case R_PARISC_TLS_TPREL32:
4375 return reloc_class_normal;
4376 }
4377
4378 if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)
4379 return reloc_class_relative;
4380
4381 switch ((int) ELF32_R_TYPE (rela->r_info))
4382 {
4383 case R_PARISC_IPLT:
4384 return reloc_class_plt;
4385 case R_PARISC_COPY:
4386 return reloc_class_copy;
4387 default:
4388 return reloc_class_normal;
4389 }
4390 }
4391
4392 /* Finish up the dynamic sections. */
4393
4394 static bfd_boolean
4395 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4396 struct bfd_link_info *info)
4397 {
4398 bfd *dynobj;
4399 struct elf32_hppa_link_hash_table *htab;
4400 asection *sdyn;
4401 asection * sgot;
4402
4403 htab = hppa_link_hash_table (info);
4404 if (htab == NULL)
4405 return FALSE;
4406
4407 dynobj = htab->etab.dynobj;
4408
4409 sgot = htab->etab.sgot;
4410 /* A broken linker script might have discarded the dynamic sections.
4411 Catch this here so that we do not seg-fault later on. */
4412 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
4413 return FALSE;
4414
4415 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4416
4417 if (htab->etab.dynamic_sections_created)
4418 {
4419 Elf32_External_Dyn *dyncon, *dynconend;
4420
4421 if (sdyn == NULL)
4422 abort ();
4423
4424 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4425 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4426 for (; dyncon < dynconend; dyncon++)
4427 {
4428 Elf_Internal_Dyn dyn;
4429 asection *s;
4430
4431 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4432
4433 switch (dyn.d_tag)
4434 {
4435 default:
4436 continue;
4437
4438 case DT_PLTGOT:
4439 /* Use PLTGOT to set the GOT register. */
4440 dyn.d_un.d_ptr = elf_gp (output_bfd);
4441 break;
4442
4443 case DT_JMPREL:
4444 s = htab->etab.srelplt;
4445 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4446 break;
4447
4448 case DT_PLTRELSZ:
4449 s = htab->etab.srelplt;
4450 dyn.d_un.d_val = s->size;
4451 break;
4452 }
4453
4454 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4455 }
4456 }
4457
4458 if (sgot != NULL && sgot->size != 0)
4459 {
4460 /* Fill in the first entry in the global offset table.
4461 We use it to point to our dynamic section, if we have one. */
4462 bfd_put_32 (output_bfd,
4463 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4464 sgot->contents);
4465
4466 /* The second entry is reserved for use by the dynamic linker. */
4467 memset (sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4468
4469 /* Set .got entry size. */
4470 elf_section_data (sgot->output_section)
4471 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4472 }
4473
4474 if (htab->etab.splt != NULL && htab->etab.splt->size != 0)
4475 {
4476 /* Set plt entry size to 0 instead of PLT_ENTRY_SIZE, since we add the
4477 plt stubs and as such the section does not hold a table of fixed-size
4478 entries. */
4479 elf_section_data (htab->etab.splt->output_section)->this_hdr.sh_entsize = 0;
4480
4481 if (htab->need_plt_stub)
4482 {
4483 /* Set up the .plt stub. */
4484 memcpy (htab->etab.splt->contents
4485 + htab->etab.splt->size - sizeof (plt_stub),
4486 plt_stub, sizeof (plt_stub));
4487
4488 if ((htab->etab.splt->output_offset
4489 + htab->etab.splt->output_section->vma
4490 + htab->etab.splt->size)
4491 != (sgot->output_offset
4492 + sgot->output_section->vma))
4493 {
4494 _bfd_error_handler
4495 (_(".got section not immediately after .plt section"));
4496 return FALSE;
4497 }
4498 }
4499 }
4500
4501 return TRUE;
4502 }
4503
4504 /* Called when writing out an object file to decide the type of a
4505 symbol. */
4506 static int
4507 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4508 {
4509 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4510 return STT_PARISC_MILLI;
4511 else
4512 return type;
4513 }
4514
4515 /* Misc BFD support code. */
4516 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4517 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4518 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4519 #define elf_info_to_howto elf_hppa_info_to_howto
4520 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4521
4522 /* Stuff for the BFD linker. */
4523 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4524 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4525 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4526 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4527 #define elf_backend_check_relocs elf32_hppa_check_relocs
4528 #define elf_backend_relocs_compatible _bfd_elf_relocs_compatible
4529 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4530 #define elf_backend_fake_sections elf_hppa_fake_sections
4531 #define elf_backend_relocate_section elf32_hppa_relocate_section
4532 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4533 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4534 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4535 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4536 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4537 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4538 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4539 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4540 #define elf_backend_object_p elf32_hppa_object_p
4541 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4542 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4543 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4544 #define elf_backend_action_discarded elf_hppa_action_discarded
4545
4546 #define elf_backend_can_gc_sections 1
4547 #define elf_backend_can_refcount 1
4548 #define elf_backend_plt_alignment 2
4549 #define elf_backend_want_got_plt 0
4550 #define elf_backend_plt_readonly 0
4551 #define elf_backend_want_plt_sym 0
4552 #define elf_backend_got_header_size 8
4553 #define elf_backend_want_dynrelro 1
4554 #define elf_backend_rela_normal 1
4555 #define elf_backend_dtrel_excludes_plt 1
4556 #define elf_backend_no_page_alias 1
4557
4558 #define TARGET_BIG_SYM hppa_elf32_vec
4559 #define TARGET_BIG_NAME "elf32-hppa"
4560 #define ELF_ARCH bfd_arch_hppa
4561 #define ELF_TARGET_ID HPPA32_ELF_DATA
4562 #define ELF_MACHINE_CODE EM_PARISC
4563 #define ELF_MAXPAGESIZE 0x1000
4564 #define ELF_OSABI ELFOSABI_HPUX
4565 #define elf32_bed elf32_hppa_hpux_bed
4566
4567 #include "elf32-target.h"
4568
4569 #undef TARGET_BIG_SYM
4570 #define TARGET_BIG_SYM hppa_elf32_linux_vec
4571 #undef TARGET_BIG_NAME
4572 #define TARGET_BIG_NAME "elf32-hppa-linux"
4573 #undef ELF_OSABI
4574 #define ELF_OSABI ELFOSABI_GNU
4575 #undef elf32_bed
4576 #define elf32_bed elf32_hppa_linux_bed
4577
4578 #include "elf32-target.h"
4579
4580 #undef TARGET_BIG_SYM
4581 #define TARGET_BIG_SYM hppa_elf32_nbsd_vec
4582 #undef TARGET_BIG_NAME
4583 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4584 #undef ELF_OSABI
4585 #define ELF_OSABI ELFOSABI_NETBSD
4586 #undef elf32_bed
4587 #define elf32_bed elf32_hppa_netbsd_bed
4588
4589 #include "elf32-target.h"
This page took 0.127528 seconds and 4 git commands to generate.