Fix the behaviour of --allow-shlib-undefined, so that it does what it claims
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002, 2003 Free Software Foundation, Inc.
4
5 Original code by
6 Center for Software Science
7 Department of Computer Science
8 University of Utah
9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
26
27 #include "bfd.h"
28 #include "sysdep.h"
29 #include "libbfd.h"
30 #include "elf-bfd.h"
31 #include "elf/hppa.h"
32 #include "libhppa.h"
33 #include "elf32-hppa.h"
34 #define ARCH_SIZE 32
35 #include "elf32-hppa.h"
36 #include "elf-hppa.h"
37
38 /* In order to gain some understanding of code in this file without
39 knowing all the intricate details of the linker, note the
40 following:
41
42 Functions named elf32_hppa_* are called by external routines, other
43 functions are only called locally. elf32_hppa_* functions appear
44 in this file more or less in the order in which they are called
45 from external routines. eg. elf32_hppa_check_relocs is called
46 early in the link process, elf32_hppa_finish_dynamic_sections is
47 one of the last functions. */
48
49 /* We use two hash tables to hold information for linking PA ELF objects.
50
51 The first is the elf32_hppa_link_hash_table which is derived
52 from the standard ELF linker hash table. We use this as a place to
53 attach other hash tables and static information.
54
55 The second is the stub hash table which is derived from the
56 base BFD hash table. The stub hash table holds the information
57 necessary to build the linker stubs during a link.
58
59 There are a number of different stubs generated by the linker.
60
61 Long branch stub:
62 : ldil LR'X,%r1
63 : be,n RR'X(%sr4,%r1)
64
65 PIC long branch stub:
66 : b,l .+8,%r1
67 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
68 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
69
70 Import stub to call shared library routine from normal object file
71 (single sub-space version)
72 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
73 : ldw RR'lt_ptr+ltoff(%r1),%r21
74 : bv %r0(%r21)
75 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
76
77 Import stub to call shared library routine from shared library
78 (single sub-space version)
79 : addil LR'ltoff,%r19 ; get procedure entry point
80 : ldw RR'ltoff(%r1),%r21
81 : bv %r0(%r21)
82 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
83
84 Import stub to call shared library routine from normal object file
85 (multiple sub-space support)
86 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
87 : ldw RR'lt_ptr+ltoff(%r1),%r21
88 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
89 : ldsid (%r21),%r1
90 : mtsp %r1,%sr0
91 : be 0(%sr0,%r21) ; branch to target
92 : stw %rp,-24(%sp) ; save rp
93
94 Import stub to call shared library routine from shared library
95 (multiple sub-space support)
96 : addil LR'ltoff,%r19 ; get procedure entry point
97 : ldw RR'ltoff(%r1),%r21
98 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
99 : ldsid (%r21),%r1
100 : mtsp %r1,%sr0
101 : be 0(%sr0,%r21) ; branch to target
102 : stw %rp,-24(%sp) ; save rp
103
104 Export stub to return from shared lib routine (multiple sub-space support)
105 One of these is created for each exported procedure in a shared
106 library (and stored in the shared lib). Shared lib routines are
107 called via the first instruction in the export stub so that we can
108 do an inter-space return. Not required for single sub-space.
109 : bl,n X,%rp ; trap the return
110 : nop
111 : ldw -24(%sp),%rp ; restore the original rp
112 : ldsid (%rp),%r1
113 : mtsp %r1,%sr0
114 : be,n 0(%sr0,%rp) ; inter-space return. */
115
116 #define PLT_ENTRY_SIZE 8
117 #define GOT_ENTRY_SIZE 4
118 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
119
120 static const bfd_byte plt_stub[] =
121 {
122 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
123 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
124 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
125 #define PLT_STUB_ENTRY (3*4)
126 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
127 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
128 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
129 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
130 };
131
132 /* Section name for stubs is the associated section name plus this
133 string. */
134 #define STUB_SUFFIX ".stub"
135
136 /* We don't need to copy certain PC- or GP-relative dynamic relocs
137 into a shared object's dynamic section. All the relocs of the
138 limited class we are interested in, are absolute. */
139 #ifndef RELATIVE_DYNRELOCS
140 #define RELATIVE_DYNRELOCS 0
141 #define IS_ABSOLUTE_RELOC(r_type) 1
142 #endif
143
144 enum elf32_hppa_stub_type {
145 hppa_stub_long_branch,
146 hppa_stub_long_branch_shared,
147 hppa_stub_import,
148 hppa_stub_import_shared,
149 hppa_stub_export,
150 hppa_stub_none
151 };
152
153 struct elf32_hppa_stub_hash_entry {
154
155 /* Base hash table entry structure. */
156 struct bfd_hash_entry root;
157
158 /* The stub section. */
159 asection *stub_sec;
160
161 /* Offset within stub_sec of the beginning of this stub. */
162 bfd_vma stub_offset;
163
164 /* Given the symbol's value and its section we can determine its final
165 value when building the stubs (so the stub knows where to jump. */
166 bfd_vma target_value;
167 asection *target_section;
168
169 enum elf32_hppa_stub_type stub_type;
170
171 /* The symbol table entry, if any, that this was derived from. */
172 struct elf32_hppa_link_hash_entry *h;
173
174 /* Where this stub is being called from, or, in the case of combined
175 stub sections, the first input section in the group. */
176 asection *id_sec;
177 };
178
179 struct elf32_hppa_link_hash_entry {
180
181 struct elf_link_hash_entry elf;
182
183 /* A pointer to the most recently used stub hash entry against this
184 symbol. */
185 struct elf32_hppa_stub_hash_entry *stub_cache;
186
187 /* Used to count relocations for delayed sizing of relocation
188 sections. */
189 struct elf32_hppa_dyn_reloc_entry {
190
191 /* Next relocation in the chain. */
192 struct elf32_hppa_dyn_reloc_entry *next;
193
194 /* The input section of the reloc. */
195 asection *sec;
196
197 /* Number of relocs copied in this section. */
198 bfd_size_type count;
199
200 #if RELATIVE_DYNRELOCS
201 /* Number of relative relocs copied for the input section. */
202 bfd_size_type relative_count;
203 #endif
204 } *dyn_relocs;
205
206 /* Set if the only reason we need a .plt entry is for a non-PIC to
207 PIC function call. */
208 unsigned int pic_call:1;
209
210 /* Set if this symbol is used by a plabel reloc. */
211 unsigned int plabel:1;
212 };
213
214 struct elf32_hppa_link_hash_table {
215
216 /* The main hash table. */
217 struct elf_link_hash_table elf;
218
219 /* The stub hash table. */
220 struct bfd_hash_table stub_hash_table;
221
222 /* Linker stub bfd. */
223 bfd *stub_bfd;
224
225 /* Linker call-backs. */
226 asection * (*add_stub_section) PARAMS ((const char *, asection *));
227 void (*layout_sections_again) PARAMS ((void));
228
229 /* Array to keep track of which stub sections have been created, and
230 information on stub grouping. */
231 struct map_stub {
232 /* This is the section to which stubs in the group will be
233 attached. */
234 asection *link_sec;
235 /* The stub section. */
236 asection *stub_sec;
237 } *stub_group;
238
239 /* Assorted information used by elf32_hppa_size_stubs. */
240 unsigned int bfd_count;
241 int top_index;
242 asection **input_list;
243 Elf_Internal_Sym **all_local_syms;
244
245 /* Short-cuts to get to dynamic linker sections. */
246 asection *sgot;
247 asection *srelgot;
248 asection *splt;
249 asection *srelplt;
250 asection *sdynbss;
251 asection *srelbss;
252
253 /* Used during a final link to store the base of the text and data
254 segments so that we can perform SEGREL relocations. */
255 bfd_vma text_segment_base;
256 bfd_vma data_segment_base;
257
258 /* Whether we support multiple sub-spaces for shared libs. */
259 unsigned int multi_subspace:1;
260
261 /* Flags set when various size branches are detected. Used to
262 select suitable defaults for the stub group size. */
263 unsigned int has_12bit_branch:1;
264 unsigned int has_17bit_branch:1;
265 unsigned int has_22bit_branch:1;
266
267 /* Set if we need a .plt stub to support lazy dynamic linking. */
268 unsigned int need_plt_stub:1;
269
270 /* Small local sym to section mapping cache. */
271 struct sym_sec_cache sym_sec;
272 };
273
274 /* Various hash macros and functions. */
275 #define hppa_link_hash_table(p) \
276 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
277
278 #define hppa_stub_hash_lookup(table, string, create, copy) \
279 ((struct elf32_hppa_stub_hash_entry *) \
280 bfd_hash_lookup ((table), (string), (create), (copy)))
281
282 static struct bfd_hash_entry *stub_hash_newfunc
283 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
284
285 static struct bfd_hash_entry *hppa_link_hash_newfunc
286 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
287
288 static struct bfd_link_hash_table *elf32_hppa_link_hash_table_create
289 PARAMS ((bfd *));
290
291 static void elf32_hppa_link_hash_table_free
292 PARAMS ((struct bfd_link_hash_table *));
293
294 /* Stub handling functions. */
295 static char *hppa_stub_name
296 PARAMS ((const asection *, const asection *,
297 const struct elf32_hppa_link_hash_entry *,
298 const Elf_Internal_Rela *));
299
300 static struct elf32_hppa_stub_hash_entry *hppa_get_stub_entry
301 PARAMS ((const asection *, const asection *,
302 struct elf32_hppa_link_hash_entry *,
303 const Elf_Internal_Rela *,
304 struct elf32_hppa_link_hash_table *));
305
306 static struct elf32_hppa_stub_hash_entry *hppa_add_stub
307 PARAMS ((const char *, asection *, struct elf32_hppa_link_hash_table *));
308
309 static enum elf32_hppa_stub_type hppa_type_of_stub
310 PARAMS ((asection *, const Elf_Internal_Rela *,
311 struct elf32_hppa_link_hash_entry *, bfd_vma));
312
313 static bfd_boolean hppa_build_one_stub
314 PARAMS ((struct bfd_hash_entry *, PTR));
315
316 static bfd_boolean hppa_size_one_stub
317 PARAMS ((struct bfd_hash_entry *, PTR));
318
319 /* BFD and elf backend functions. */
320 static bfd_boolean elf32_hppa_object_p PARAMS ((bfd *));
321
322 static bfd_boolean elf32_hppa_add_symbol_hook
323 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
324 const char **, flagword *, asection **, bfd_vma *));
325
326 static bfd_boolean elf32_hppa_create_dynamic_sections
327 PARAMS ((bfd *, struct bfd_link_info *));
328
329 static void elf32_hppa_copy_indirect_symbol
330 PARAMS ((struct elf_backend_data *, struct elf_link_hash_entry *,
331 struct elf_link_hash_entry *));
332
333 static bfd_boolean elf32_hppa_check_relocs
334 PARAMS ((bfd *, struct bfd_link_info *,
335 asection *, const Elf_Internal_Rela *));
336
337 static asection *elf32_hppa_gc_mark_hook
338 PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
339 struct elf_link_hash_entry *, Elf_Internal_Sym *));
340
341 static bfd_boolean elf32_hppa_gc_sweep_hook
342 PARAMS ((bfd *, struct bfd_link_info *,
343 asection *, const Elf_Internal_Rela *));
344
345 static void elf32_hppa_hide_symbol
346 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *, bfd_boolean));
347
348 static bfd_boolean elf32_hppa_adjust_dynamic_symbol
349 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
350
351 static bfd_boolean mark_PIC_calls
352 PARAMS ((struct elf_link_hash_entry *, PTR));
353
354 static bfd_boolean allocate_plt_static
355 PARAMS ((struct elf_link_hash_entry *, PTR));
356
357 static bfd_boolean allocate_dynrelocs
358 PARAMS ((struct elf_link_hash_entry *, PTR));
359
360 static bfd_boolean readonly_dynrelocs
361 PARAMS ((struct elf_link_hash_entry *, PTR));
362
363 static bfd_boolean clobber_millicode_symbols
364 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
365
366 static bfd_boolean elf32_hppa_size_dynamic_sections
367 PARAMS ((bfd *, struct bfd_link_info *));
368
369 static void group_sections
370 PARAMS ((struct elf32_hppa_link_hash_table *, bfd_size_type, bfd_boolean));
371
372 static int get_local_syms
373 PARAMS ((bfd *, bfd *, struct bfd_link_info *));
374
375 static bfd_boolean elf32_hppa_final_link
376 PARAMS ((bfd *, struct bfd_link_info *));
377
378 static void hppa_record_segment_addr
379 PARAMS ((bfd *, asection *, PTR));
380
381 static bfd_reloc_status_type final_link_relocate
382 PARAMS ((asection *, bfd_byte *, const Elf_Internal_Rela *,
383 bfd_vma, struct elf32_hppa_link_hash_table *, asection *,
384 struct elf32_hppa_link_hash_entry *));
385
386 static bfd_boolean elf32_hppa_relocate_section
387 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *,
388 bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
389
390 static bfd_boolean elf32_hppa_finish_dynamic_symbol
391 PARAMS ((bfd *, struct bfd_link_info *,
392 struct elf_link_hash_entry *, Elf_Internal_Sym *));
393
394 static enum elf_reloc_type_class elf32_hppa_reloc_type_class
395 PARAMS ((const Elf_Internal_Rela *));
396
397 static bfd_boolean elf32_hppa_finish_dynamic_sections
398 PARAMS ((bfd *, struct bfd_link_info *));
399
400 static void elf32_hppa_post_process_headers
401 PARAMS ((bfd *, struct bfd_link_info *));
402
403 static int elf32_hppa_elf_get_symbol_type
404 PARAMS ((Elf_Internal_Sym *, int));
405
406 /* Assorted hash table functions. */
407
408 /* Initialize an entry in the stub hash table. */
409
410 static struct bfd_hash_entry *
411 stub_hash_newfunc (entry, table, string)
412 struct bfd_hash_entry *entry;
413 struct bfd_hash_table *table;
414 const char *string;
415 {
416 /* Allocate the structure if it has not already been allocated by a
417 subclass. */
418 if (entry == NULL)
419 {
420 entry = bfd_hash_allocate (table,
421 sizeof (struct elf32_hppa_stub_hash_entry));
422 if (entry == NULL)
423 return entry;
424 }
425
426 /* Call the allocation method of the superclass. */
427 entry = bfd_hash_newfunc (entry, table, string);
428 if (entry != NULL)
429 {
430 struct elf32_hppa_stub_hash_entry *eh;
431
432 /* Initialize the local fields. */
433 eh = (struct elf32_hppa_stub_hash_entry *) entry;
434 eh->stub_sec = NULL;
435 eh->stub_offset = 0;
436 eh->target_value = 0;
437 eh->target_section = NULL;
438 eh->stub_type = hppa_stub_long_branch;
439 eh->h = NULL;
440 eh->id_sec = NULL;
441 }
442
443 return entry;
444 }
445
446 /* Initialize an entry in the link hash table. */
447
448 static struct bfd_hash_entry *
449 hppa_link_hash_newfunc (entry, table, string)
450 struct bfd_hash_entry *entry;
451 struct bfd_hash_table *table;
452 const char *string;
453 {
454 /* Allocate the structure if it has not already been allocated by a
455 subclass. */
456 if (entry == NULL)
457 {
458 entry = bfd_hash_allocate (table,
459 sizeof (struct elf32_hppa_link_hash_entry));
460 if (entry == NULL)
461 return entry;
462 }
463
464 /* Call the allocation method of the superclass. */
465 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
466 if (entry != NULL)
467 {
468 struct elf32_hppa_link_hash_entry *eh;
469
470 /* Initialize the local fields. */
471 eh = (struct elf32_hppa_link_hash_entry *) entry;
472 eh->stub_cache = NULL;
473 eh->dyn_relocs = NULL;
474 eh->pic_call = 0;
475 eh->plabel = 0;
476 }
477
478 return entry;
479 }
480
481 /* Create the derived linker hash table. The PA ELF port uses the derived
482 hash table to keep information specific to the PA ELF linker (without
483 using static variables). */
484
485 static struct bfd_link_hash_table *
486 elf32_hppa_link_hash_table_create (abfd)
487 bfd *abfd;
488 {
489 struct elf32_hppa_link_hash_table *ret;
490 bfd_size_type amt = sizeof (*ret);
491
492 ret = (struct elf32_hppa_link_hash_table *) bfd_malloc (amt);
493 if (ret == NULL)
494 return NULL;
495
496 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, hppa_link_hash_newfunc))
497 {
498 free (ret);
499 return NULL;
500 }
501
502 /* Init the stub hash table too. */
503 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc))
504 return NULL;
505
506 ret->stub_bfd = NULL;
507 ret->add_stub_section = NULL;
508 ret->layout_sections_again = NULL;
509 ret->stub_group = NULL;
510 ret->sgot = NULL;
511 ret->srelgot = NULL;
512 ret->splt = NULL;
513 ret->srelplt = NULL;
514 ret->sdynbss = NULL;
515 ret->srelbss = NULL;
516 ret->text_segment_base = (bfd_vma) -1;
517 ret->data_segment_base = (bfd_vma) -1;
518 ret->multi_subspace = 0;
519 ret->has_12bit_branch = 0;
520 ret->has_17bit_branch = 0;
521 ret->has_22bit_branch = 0;
522 ret->need_plt_stub = 0;
523 ret->sym_sec.abfd = NULL;
524
525 return &ret->elf.root;
526 }
527
528 /* Free the derived linker hash table. */
529
530 static void
531 elf32_hppa_link_hash_table_free (hash)
532 struct bfd_link_hash_table *hash;
533 {
534 struct elf32_hppa_link_hash_table *ret
535 = (struct elf32_hppa_link_hash_table *) hash;
536
537 bfd_hash_table_free (&ret->stub_hash_table);
538 _bfd_generic_link_hash_table_free (hash);
539 }
540
541 /* Build a name for an entry in the stub hash table. */
542
543 static char *
544 hppa_stub_name (input_section, sym_sec, hash, rel)
545 const asection *input_section;
546 const asection *sym_sec;
547 const struct elf32_hppa_link_hash_entry *hash;
548 const Elf_Internal_Rela *rel;
549 {
550 char *stub_name;
551 bfd_size_type len;
552
553 if (hash)
554 {
555 len = 8 + 1 + strlen (hash->elf.root.root.string) + 1 + 8 + 1;
556 stub_name = bfd_malloc (len);
557 if (stub_name != NULL)
558 {
559 sprintf (stub_name, "%08x_%s+%x",
560 input_section->id & 0xffffffff,
561 hash->elf.root.root.string,
562 (int) rel->r_addend & 0xffffffff);
563 }
564 }
565 else
566 {
567 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
568 stub_name = bfd_malloc (len);
569 if (stub_name != NULL)
570 {
571 sprintf (stub_name, "%08x_%x:%x+%x",
572 input_section->id & 0xffffffff,
573 sym_sec->id & 0xffffffff,
574 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
575 (int) rel->r_addend & 0xffffffff);
576 }
577 }
578 return stub_name;
579 }
580
581 /* Look up an entry in the stub hash. Stub entries are cached because
582 creating the stub name takes a bit of time. */
583
584 static struct elf32_hppa_stub_hash_entry *
585 hppa_get_stub_entry (input_section, sym_sec, hash, rel, htab)
586 const asection *input_section;
587 const asection *sym_sec;
588 struct elf32_hppa_link_hash_entry *hash;
589 const Elf_Internal_Rela *rel;
590 struct elf32_hppa_link_hash_table *htab;
591 {
592 struct elf32_hppa_stub_hash_entry *stub_entry;
593 const asection *id_sec;
594
595 /* If this input section is part of a group of sections sharing one
596 stub section, then use the id of the first section in the group.
597 Stub names need to include a section id, as there may well be
598 more than one stub used to reach say, printf, and we need to
599 distinguish between them. */
600 id_sec = htab->stub_group[input_section->id].link_sec;
601
602 if (hash != NULL && hash->stub_cache != NULL
603 && hash->stub_cache->h == hash
604 && hash->stub_cache->id_sec == id_sec)
605 {
606 stub_entry = hash->stub_cache;
607 }
608 else
609 {
610 char *stub_name;
611
612 stub_name = hppa_stub_name (id_sec, sym_sec, hash, rel);
613 if (stub_name == NULL)
614 return NULL;
615
616 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
617 stub_name, FALSE, FALSE);
618 if (hash != NULL)
619 hash->stub_cache = stub_entry;
620
621 free (stub_name);
622 }
623
624 return stub_entry;
625 }
626
627 /* Add a new stub entry to the stub hash. Not all fields of the new
628 stub entry are initialised. */
629
630 static struct elf32_hppa_stub_hash_entry *
631 hppa_add_stub (stub_name, section, htab)
632 const char *stub_name;
633 asection *section;
634 struct elf32_hppa_link_hash_table *htab;
635 {
636 asection *link_sec;
637 asection *stub_sec;
638 struct elf32_hppa_stub_hash_entry *stub_entry;
639
640 link_sec = htab->stub_group[section->id].link_sec;
641 stub_sec = htab->stub_group[section->id].stub_sec;
642 if (stub_sec == NULL)
643 {
644 stub_sec = htab->stub_group[link_sec->id].stub_sec;
645 if (stub_sec == NULL)
646 {
647 size_t namelen;
648 bfd_size_type len;
649 char *s_name;
650
651 namelen = strlen (link_sec->name);
652 len = namelen + sizeof (STUB_SUFFIX);
653 s_name = bfd_alloc (htab->stub_bfd, len);
654 if (s_name == NULL)
655 return NULL;
656
657 memcpy (s_name, link_sec->name, namelen);
658 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
659 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
660 if (stub_sec == NULL)
661 return NULL;
662 htab->stub_group[link_sec->id].stub_sec = stub_sec;
663 }
664 htab->stub_group[section->id].stub_sec = stub_sec;
665 }
666
667 /* Enter this entry into the linker stub hash table. */
668 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table, stub_name,
669 TRUE, FALSE);
670 if (stub_entry == NULL)
671 {
672 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
673 bfd_archive_filename (section->owner),
674 stub_name);
675 return NULL;
676 }
677
678 stub_entry->stub_sec = stub_sec;
679 stub_entry->stub_offset = 0;
680 stub_entry->id_sec = link_sec;
681 return stub_entry;
682 }
683
684 /* Determine the type of stub needed, if any, for a call. */
685
686 static enum elf32_hppa_stub_type
687 hppa_type_of_stub (input_sec, rel, hash, destination)
688 asection *input_sec;
689 const Elf_Internal_Rela *rel;
690 struct elf32_hppa_link_hash_entry *hash;
691 bfd_vma destination;
692 {
693 bfd_vma location;
694 bfd_vma branch_offset;
695 bfd_vma max_branch_offset;
696 unsigned int r_type;
697
698 if (hash != NULL
699 && hash->elf.plt.offset != (bfd_vma) -1
700 && (hash->elf.dynindx != -1 || hash->pic_call)
701 && !hash->plabel)
702 {
703 /* We need an import stub. Decide between hppa_stub_import
704 and hppa_stub_import_shared later. */
705 return hppa_stub_import;
706 }
707
708 /* Determine where the call point is. */
709 location = (input_sec->output_offset
710 + input_sec->output_section->vma
711 + rel->r_offset);
712
713 branch_offset = destination - location - 8;
714 r_type = ELF32_R_TYPE (rel->r_info);
715
716 /* Determine if a long branch stub is needed. parisc branch offsets
717 are relative to the second instruction past the branch, ie. +8
718 bytes on from the branch instruction location. The offset is
719 signed and counts in units of 4 bytes. */
720 if (r_type == (unsigned int) R_PARISC_PCREL17F)
721 {
722 max_branch_offset = (1 << (17-1)) << 2;
723 }
724 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
725 {
726 max_branch_offset = (1 << (12-1)) << 2;
727 }
728 else /* R_PARISC_PCREL22F. */
729 {
730 max_branch_offset = (1 << (22-1)) << 2;
731 }
732
733 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
734 return hppa_stub_long_branch;
735
736 return hppa_stub_none;
737 }
738
739 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
740 IN_ARG contains the link info pointer. */
741
742 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
743 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
744
745 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
746 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
747 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
748
749 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
750 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
751 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
752 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
753
754 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
755 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
756
757 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
758 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
759 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
760 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
761
762 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
763 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
764 #define NOP 0x08000240 /* nop */
765 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
766 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
767 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
768
769 #ifndef R19_STUBS
770 #define R19_STUBS 1
771 #endif
772
773 #if R19_STUBS
774 #define LDW_R1_DLT LDW_R1_R19
775 #else
776 #define LDW_R1_DLT LDW_R1_DP
777 #endif
778
779 static bfd_boolean
780 hppa_build_one_stub (gen_entry, in_arg)
781 struct bfd_hash_entry *gen_entry;
782 PTR in_arg;
783 {
784 struct elf32_hppa_stub_hash_entry *stub_entry;
785 struct bfd_link_info *info;
786 struct elf32_hppa_link_hash_table *htab;
787 asection *stub_sec;
788 bfd *stub_bfd;
789 bfd_byte *loc;
790 bfd_vma sym_value;
791 bfd_vma insn;
792 bfd_vma off;
793 int val;
794 int size;
795
796 /* Massage our args to the form they really have. */
797 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
798 info = (struct bfd_link_info *) in_arg;
799
800 htab = hppa_link_hash_table (info);
801 stub_sec = stub_entry->stub_sec;
802
803 /* Make a note of the offset within the stubs for this entry. */
804 stub_entry->stub_offset = stub_sec->_raw_size;
805 loc = stub_sec->contents + stub_entry->stub_offset;
806
807 stub_bfd = stub_sec->owner;
808
809 switch (stub_entry->stub_type)
810 {
811 case hppa_stub_long_branch:
812 /* Create the long branch. A long branch is formed with "ldil"
813 loading the upper bits of the target address into a register,
814 then branching with "be" which adds in the lower bits.
815 The "be" has its delay slot nullified. */
816 sym_value = (stub_entry->target_value
817 + stub_entry->target_section->output_offset
818 + stub_entry->target_section->output_section->vma);
819
820 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel);
821 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
822 bfd_put_32 (stub_bfd, insn, loc);
823
824 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel) >> 2;
825 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
826 bfd_put_32 (stub_bfd, insn, loc + 4);
827
828 size = 8;
829 break;
830
831 case hppa_stub_long_branch_shared:
832 /* Branches are relative. This is where we are going to. */
833 sym_value = (stub_entry->target_value
834 + stub_entry->target_section->output_offset
835 + stub_entry->target_section->output_section->vma);
836
837 /* And this is where we are coming from, more or less. */
838 sym_value -= (stub_entry->stub_offset
839 + stub_sec->output_offset
840 + stub_sec->output_section->vma);
841
842 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
843 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
844 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
845 bfd_put_32 (stub_bfd, insn, loc + 4);
846
847 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
848 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
849 bfd_put_32 (stub_bfd, insn, loc + 8);
850 size = 12;
851 break;
852
853 case hppa_stub_import:
854 case hppa_stub_import_shared:
855 off = stub_entry->h->elf.plt.offset;
856 if (off >= (bfd_vma) -2)
857 abort ();
858
859 off &= ~ (bfd_vma) 1;
860 sym_value = (off
861 + htab->splt->output_offset
862 + htab->splt->output_section->vma
863 - elf_gp (htab->splt->output_section->owner));
864
865 insn = ADDIL_DP;
866 #if R19_STUBS
867 if (stub_entry->stub_type == hppa_stub_import_shared)
868 insn = ADDIL_R19;
869 #endif
870 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel),
871 insn = hppa_rebuild_insn ((int) insn, val, 21);
872 bfd_put_32 (stub_bfd, insn, loc);
873
874 /* It is critical to use lrsel/rrsel here because we are using
875 two different offsets (+0 and +4) from sym_value. If we use
876 lsel/rsel then with unfortunate sym_values we will round
877 sym_value+4 up to the next 2k block leading to a mis-match
878 between the lsel and rsel value. */
879 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel);
880 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
881 bfd_put_32 (stub_bfd, insn, loc + 4);
882
883 if (htab->multi_subspace)
884 {
885 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
886 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
887 bfd_put_32 (stub_bfd, insn, loc + 8);
888
889 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
890 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
891 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
892 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
893
894 size = 28;
895 }
896 else
897 {
898 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
899 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
900 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
901 bfd_put_32 (stub_bfd, insn, loc + 12);
902
903 size = 16;
904 }
905
906 if (!info->shared
907 && stub_entry->h != NULL
908 && stub_entry->h->pic_call)
909 {
910 /* Build the .plt entry needed to call a PIC function from
911 statically linked code. We don't need any relocs. */
912 bfd *dynobj;
913 struct elf32_hppa_link_hash_entry *eh;
914 bfd_vma value;
915
916 dynobj = htab->elf.dynobj;
917 eh = (struct elf32_hppa_link_hash_entry *) stub_entry->h;
918
919 if (eh->elf.root.type != bfd_link_hash_defined
920 && eh->elf.root.type != bfd_link_hash_defweak)
921 abort ();
922
923 value = (eh->elf.root.u.def.value
924 + eh->elf.root.u.def.section->output_offset
925 + eh->elf.root.u.def.section->output_section->vma);
926
927 /* Fill in the entry in the procedure linkage table.
928
929 The format of a plt entry is
930 <funcaddr>
931 <__gp>. */
932
933 bfd_put_32 (htab->splt->owner, value,
934 htab->splt->contents + off);
935 value = elf_gp (htab->splt->output_section->owner);
936 bfd_put_32 (htab->splt->owner, value,
937 htab->splt->contents + off + 4);
938 }
939 break;
940
941 case hppa_stub_export:
942 /* Branches are relative. This is where we are going to. */
943 sym_value = (stub_entry->target_value
944 + stub_entry->target_section->output_offset
945 + stub_entry->target_section->output_section->vma);
946
947 /* And this is where we are coming from. */
948 sym_value -= (stub_entry->stub_offset
949 + stub_sec->output_offset
950 + stub_sec->output_section->vma);
951
952 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
953 && (!htab->has_22bit_branch
954 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
955 {
956 (*_bfd_error_handler)
957 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
958 bfd_archive_filename (stub_entry->target_section->owner),
959 stub_sec->name,
960 (long) stub_entry->stub_offset,
961 stub_entry->root.string);
962 bfd_set_error (bfd_error_bad_value);
963 return FALSE;
964 }
965
966 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
967 if (!htab->has_22bit_branch)
968 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
969 else
970 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
971 bfd_put_32 (stub_bfd, insn, loc);
972
973 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
974 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
975 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
976 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
977 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
978
979 /* Point the function symbol at the stub. */
980 stub_entry->h->elf.root.u.def.section = stub_sec;
981 stub_entry->h->elf.root.u.def.value = stub_sec->_raw_size;
982
983 size = 24;
984 break;
985
986 default:
987 BFD_FAIL ();
988 return FALSE;
989 }
990
991 stub_sec->_raw_size += size;
992 return TRUE;
993 }
994
995 #undef LDIL_R1
996 #undef BE_SR4_R1
997 #undef BL_R1
998 #undef ADDIL_R1
999 #undef DEPI_R1
1000 #undef ADDIL_DP
1001 #undef LDW_R1_R21
1002 #undef LDW_R1_DLT
1003 #undef LDW_R1_R19
1004 #undef ADDIL_R19
1005 #undef LDW_R1_DP
1006 #undef LDSID_R21_R1
1007 #undef MTSP_R1
1008 #undef BE_SR0_R21
1009 #undef STW_RP
1010 #undef BV_R0_R21
1011 #undef BL_RP
1012 #undef NOP
1013 #undef LDW_RP
1014 #undef LDSID_RP_R1
1015 #undef BE_SR0_RP
1016
1017 /* As above, but don't actually build the stub. Just bump offset so
1018 we know stub section sizes. */
1019
1020 static bfd_boolean
1021 hppa_size_one_stub (gen_entry, in_arg)
1022 struct bfd_hash_entry *gen_entry;
1023 PTR in_arg;
1024 {
1025 struct elf32_hppa_stub_hash_entry *stub_entry;
1026 struct elf32_hppa_link_hash_table *htab;
1027 int size;
1028
1029 /* Massage our args to the form they really have. */
1030 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
1031 htab = (struct elf32_hppa_link_hash_table *) in_arg;
1032
1033 if (stub_entry->stub_type == hppa_stub_long_branch)
1034 size = 8;
1035 else if (stub_entry->stub_type == hppa_stub_long_branch_shared)
1036 size = 12;
1037 else if (stub_entry->stub_type == hppa_stub_export)
1038 size = 24;
1039 else /* hppa_stub_import or hppa_stub_import_shared. */
1040 {
1041 if (htab->multi_subspace)
1042 size = 28;
1043 else
1044 size = 16;
1045 }
1046
1047 stub_entry->stub_sec->_raw_size += size;
1048 return TRUE;
1049 }
1050
1051 /* Return nonzero if ABFD represents an HPPA ELF32 file.
1052 Additionally we set the default architecture and machine. */
1053
1054 static bfd_boolean
1055 elf32_hppa_object_p (abfd)
1056 bfd *abfd;
1057 {
1058 Elf_Internal_Ehdr * i_ehdrp;
1059 unsigned int flags;
1060
1061 i_ehdrp = elf_elfheader (abfd);
1062 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
1063 {
1064 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX)
1065 return FALSE;
1066 }
1067 else
1068 {
1069 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
1070 return FALSE;
1071 }
1072
1073 flags = i_ehdrp->e_flags;
1074 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
1075 {
1076 case EFA_PARISC_1_0:
1077 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
1078 case EFA_PARISC_1_1:
1079 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
1080 case EFA_PARISC_2_0:
1081 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
1082 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
1083 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
1084 }
1085 return TRUE;
1086 }
1087
1088 /* Undo the generic ELF code's subtraction of section->vma from the
1089 value of each external symbol. */
1090
1091 static bfd_boolean
1092 elf32_hppa_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1093 bfd *abfd ATTRIBUTE_UNUSED;
1094 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1095 const Elf_Internal_Sym *sym ATTRIBUTE_UNUSED;
1096 const char **namep ATTRIBUTE_UNUSED;
1097 flagword *flagsp ATTRIBUTE_UNUSED;
1098 asection **secp;
1099 bfd_vma *valp;
1100 {
1101 *valp += (*secp)->vma;
1102 return TRUE;
1103 }
1104
1105 /* Create the .plt and .got sections, and set up our hash table
1106 short-cuts to various dynamic sections. */
1107
1108 static bfd_boolean
1109 elf32_hppa_create_dynamic_sections (abfd, info)
1110 bfd *abfd;
1111 struct bfd_link_info *info;
1112 {
1113 struct elf32_hppa_link_hash_table *htab;
1114
1115 /* Don't try to create the .plt and .got twice. */
1116 htab = hppa_link_hash_table (info);
1117 if (htab->splt != NULL)
1118 return TRUE;
1119
1120 /* Call the generic code to do most of the work. */
1121 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1122 return FALSE;
1123
1124 htab->splt = bfd_get_section_by_name (abfd, ".plt");
1125 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
1126
1127 htab->sgot = bfd_get_section_by_name (abfd, ".got");
1128 htab->srelgot = bfd_make_section (abfd, ".rela.got");
1129 if (htab->srelgot == NULL
1130 || ! bfd_set_section_flags (abfd, htab->srelgot,
1131 (SEC_ALLOC
1132 | SEC_LOAD
1133 | SEC_HAS_CONTENTS
1134 | SEC_IN_MEMORY
1135 | SEC_LINKER_CREATED
1136 | SEC_READONLY))
1137 || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
1138 return FALSE;
1139
1140 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
1141 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
1142
1143 return TRUE;
1144 }
1145
1146 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1147
1148 static void
1149 elf32_hppa_copy_indirect_symbol (bed, dir, ind)
1150 struct elf_backend_data *bed;
1151 struct elf_link_hash_entry *dir, *ind;
1152 {
1153 struct elf32_hppa_link_hash_entry *edir, *eind;
1154
1155 edir = (struct elf32_hppa_link_hash_entry *) dir;
1156 eind = (struct elf32_hppa_link_hash_entry *) ind;
1157
1158 if (eind->dyn_relocs != NULL)
1159 {
1160 if (edir->dyn_relocs != NULL)
1161 {
1162 struct elf32_hppa_dyn_reloc_entry **pp;
1163 struct elf32_hppa_dyn_reloc_entry *p;
1164
1165 if (ind->root.type == bfd_link_hash_indirect)
1166 abort ();
1167
1168 /* Add reloc counts against the weak sym to the strong sym
1169 list. Merge any entries against the same section. */
1170 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
1171 {
1172 struct elf32_hppa_dyn_reloc_entry *q;
1173
1174 for (q = edir->dyn_relocs; q != NULL; q = q->next)
1175 if (q->sec == p->sec)
1176 {
1177 #if RELATIVE_DYNRELOCS
1178 q->relative_count += p->relative_count;
1179 #endif
1180 q->count += p->count;
1181 *pp = p->next;
1182 break;
1183 }
1184 if (q == NULL)
1185 pp = &p->next;
1186 }
1187 *pp = edir->dyn_relocs;
1188 }
1189
1190 edir->dyn_relocs = eind->dyn_relocs;
1191 eind->dyn_relocs = NULL;
1192 }
1193
1194 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
1195 }
1196
1197 /* Look through the relocs for a section during the first phase, and
1198 calculate needed space in the global offset table, procedure linkage
1199 table, and dynamic reloc sections. At this point we haven't
1200 necessarily read all the input files. */
1201
1202 static bfd_boolean
1203 elf32_hppa_check_relocs (abfd, info, sec, relocs)
1204 bfd *abfd;
1205 struct bfd_link_info *info;
1206 asection *sec;
1207 const Elf_Internal_Rela *relocs;
1208 {
1209 Elf_Internal_Shdr *symtab_hdr;
1210 struct elf_link_hash_entry **sym_hashes;
1211 const Elf_Internal_Rela *rel;
1212 const Elf_Internal_Rela *rel_end;
1213 struct elf32_hppa_link_hash_table *htab;
1214 asection *sreloc;
1215 asection *stubreloc;
1216
1217 if (info->relocateable)
1218 return TRUE;
1219
1220 htab = hppa_link_hash_table (info);
1221 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1222 sym_hashes = elf_sym_hashes (abfd);
1223 sreloc = NULL;
1224 stubreloc = NULL;
1225
1226 rel_end = relocs + sec->reloc_count;
1227 for (rel = relocs; rel < rel_end; rel++)
1228 {
1229 enum {
1230 NEED_GOT = 1,
1231 NEED_PLT = 2,
1232 NEED_DYNREL = 4,
1233 PLT_PLABEL = 8
1234 };
1235
1236 unsigned int r_symndx, r_type;
1237 struct elf32_hppa_link_hash_entry *h;
1238 int need_entry;
1239
1240 r_symndx = ELF32_R_SYM (rel->r_info);
1241
1242 if (r_symndx < symtab_hdr->sh_info)
1243 h = NULL;
1244 else
1245 h = ((struct elf32_hppa_link_hash_entry *)
1246 sym_hashes[r_symndx - symtab_hdr->sh_info]);
1247
1248 r_type = ELF32_R_TYPE (rel->r_info);
1249
1250 switch (r_type)
1251 {
1252 case R_PARISC_DLTIND14F:
1253 case R_PARISC_DLTIND14R:
1254 case R_PARISC_DLTIND21L:
1255 /* This symbol requires a global offset table entry. */
1256 need_entry = NEED_GOT;
1257
1258 /* Mark this section as containing PIC code. */
1259 sec->flags |= SEC_HAS_GOT_REF;
1260 break;
1261
1262 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1263 case R_PARISC_PLABEL21L:
1264 case R_PARISC_PLABEL32:
1265 /* If the addend is non-zero, we break badly. */
1266 if (rel->r_addend != 0)
1267 abort ();
1268
1269 /* If we are creating a shared library, then we need to
1270 create a PLT entry for all PLABELs, because PLABELs with
1271 local symbols may be passed via a pointer to another
1272 object. Additionally, output a dynamic relocation
1273 pointing to the PLT entry.
1274 For executables, the original 32-bit ABI allowed two
1275 different styles of PLABELs (function pointers): For
1276 global functions, the PLABEL word points into the .plt
1277 two bytes past a (function address, gp) pair, and for
1278 local functions the PLABEL points directly at the
1279 function. The magic +2 for the first type allows us to
1280 differentiate between the two. As you can imagine, this
1281 is a real pain when it comes to generating code to call
1282 functions indirectly or to compare function pointers.
1283 We avoid the mess by always pointing a PLABEL into the
1284 .plt, even for local functions. */
1285 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1286 break;
1287
1288 case R_PARISC_PCREL12F:
1289 htab->has_12bit_branch = 1;
1290 goto branch_common;
1291
1292 case R_PARISC_PCREL17C:
1293 case R_PARISC_PCREL17F:
1294 htab->has_17bit_branch = 1;
1295 goto branch_common;
1296
1297 case R_PARISC_PCREL22F:
1298 htab->has_22bit_branch = 1;
1299 branch_common:
1300 /* Function calls might need to go through the .plt, and
1301 might require long branch stubs. */
1302 if (h == NULL)
1303 {
1304 /* We know local syms won't need a .plt entry, and if
1305 they need a long branch stub we can't guarantee that
1306 we can reach the stub. So just flag an error later
1307 if we're doing a shared link and find we need a long
1308 branch stub. */
1309 continue;
1310 }
1311 else
1312 {
1313 /* Global symbols will need a .plt entry if they remain
1314 global, and in most cases won't need a long branch
1315 stub. Unfortunately, we have to cater for the case
1316 where a symbol is forced local by versioning, or due
1317 to symbolic linking, and we lose the .plt entry. */
1318 need_entry = NEED_PLT;
1319 if (h->elf.type == STT_PARISC_MILLI)
1320 need_entry = 0;
1321 }
1322 break;
1323
1324 case R_PARISC_SEGBASE: /* Used to set segment base. */
1325 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1326 case R_PARISC_PCREL14F: /* PC relative load/store. */
1327 case R_PARISC_PCREL14R:
1328 case R_PARISC_PCREL17R: /* External branches. */
1329 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1330 /* We don't need to propagate the relocation if linking a
1331 shared object since these are section relative. */
1332 continue;
1333
1334 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1335 case R_PARISC_DPREL14R:
1336 case R_PARISC_DPREL21L:
1337 if (info->shared)
1338 {
1339 (*_bfd_error_handler)
1340 (_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1341 bfd_archive_filename (abfd),
1342 elf_hppa_howto_table[r_type].name);
1343 bfd_set_error (bfd_error_bad_value);
1344 return FALSE;
1345 }
1346 /* Fall through. */
1347
1348 case R_PARISC_DIR17F: /* Used for external branches. */
1349 case R_PARISC_DIR17R:
1350 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1351 case R_PARISC_DIR14R:
1352 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1353 #if 0
1354 /* Help debug shared library creation. Any of the above
1355 relocs can be used in shared libs, but they may cause
1356 pages to become unshared. */
1357 if (info->shared)
1358 {
1359 (*_bfd_error_handler)
1360 (_("%s: relocation %s should not be used when making a shared object; recompile with -fPIC"),
1361 bfd_archive_filename (abfd),
1362 elf_hppa_howto_table[r_type].name);
1363 }
1364 /* Fall through. */
1365 #endif
1366
1367 case R_PARISC_DIR32: /* .word relocs. */
1368 /* We may want to output a dynamic relocation later. */
1369 need_entry = NEED_DYNREL;
1370 break;
1371
1372 /* This relocation describes the C++ object vtable hierarchy.
1373 Reconstruct it for later use during GC. */
1374 case R_PARISC_GNU_VTINHERIT:
1375 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec,
1376 &h->elf, rel->r_offset))
1377 return FALSE;
1378 continue;
1379
1380 /* This relocation describes which C++ vtable entries are actually
1381 used. Record for later use during GC. */
1382 case R_PARISC_GNU_VTENTRY:
1383 if (!_bfd_elf32_gc_record_vtentry (abfd, sec,
1384 &h->elf, rel->r_addend))
1385 return FALSE;
1386 continue;
1387
1388 default:
1389 continue;
1390 }
1391
1392 /* Now carry out our orders. */
1393 if (need_entry & NEED_GOT)
1394 {
1395 /* Allocate space for a GOT entry, as well as a dynamic
1396 relocation for this entry. */
1397 if (htab->sgot == NULL)
1398 {
1399 if (htab->elf.dynobj == NULL)
1400 htab->elf.dynobj = abfd;
1401 if (!elf32_hppa_create_dynamic_sections (htab->elf.dynobj, info))
1402 return FALSE;
1403 }
1404
1405 if (h != NULL)
1406 {
1407 h->elf.got.refcount += 1;
1408 }
1409 else
1410 {
1411 bfd_signed_vma *local_got_refcounts;
1412
1413 /* This is a global offset table entry for a local symbol. */
1414 local_got_refcounts = elf_local_got_refcounts (abfd);
1415 if (local_got_refcounts == NULL)
1416 {
1417 bfd_size_type size;
1418
1419 /* Allocate space for local got offsets and local
1420 plt offsets. Done this way to save polluting
1421 elf_obj_tdata with another target specific
1422 pointer. */
1423 size = symtab_hdr->sh_info;
1424 size *= 2 * sizeof (bfd_signed_vma);
1425 local_got_refcounts = ((bfd_signed_vma *)
1426 bfd_zalloc (abfd, size));
1427 if (local_got_refcounts == NULL)
1428 return FALSE;
1429 elf_local_got_refcounts (abfd) = local_got_refcounts;
1430 }
1431 local_got_refcounts[r_symndx] += 1;
1432 }
1433 }
1434
1435 if (need_entry & NEED_PLT)
1436 {
1437 /* If we are creating a shared library, and this is a reloc
1438 against a weak symbol or a global symbol in a dynamic
1439 object, then we will be creating an import stub and a
1440 .plt entry for the symbol. Similarly, on a normal link
1441 to symbols defined in a dynamic object we'll need the
1442 import stub and a .plt entry. We don't know yet whether
1443 the symbol is defined or not, so make an entry anyway and
1444 clean up later in adjust_dynamic_symbol. */
1445 if ((sec->flags & SEC_ALLOC) != 0)
1446 {
1447 if (h != NULL)
1448 {
1449 h->elf.elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1450 h->elf.plt.refcount += 1;
1451
1452 /* If this .plt entry is for a plabel, mark it so
1453 that adjust_dynamic_symbol will keep the entry
1454 even if it appears to be local. */
1455 if (need_entry & PLT_PLABEL)
1456 h->plabel = 1;
1457 }
1458 else if (need_entry & PLT_PLABEL)
1459 {
1460 bfd_signed_vma *local_got_refcounts;
1461 bfd_signed_vma *local_plt_refcounts;
1462
1463 local_got_refcounts = elf_local_got_refcounts (abfd);
1464 if (local_got_refcounts == NULL)
1465 {
1466 bfd_size_type size;
1467
1468 /* Allocate space for local got offsets and local
1469 plt offsets. */
1470 size = symtab_hdr->sh_info;
1471 size *= 2 * sizeof (bfd_signed_vma);
1472 local_got_refcounts = ((bfd_signed_vma *)
1473 bfd_zalloc (abfd, size));
1474 if (local_got_refcounts == NULL)
1475 return FALSE;
1476 elf_local_got_refcounts (abfd) = local_got_refcounts;
1477 }
1478 local_plt_refcounts = (local_got_refcounts
1479 + symtab_hdr->sh_info);
1480 local_plt_refcounts[r_symndx] += 1;
1481 }
1482 }
1483 }
1484
1485 if (need_entry & NEED_DYNREL)
1486 {
1487 /* Flag this symbol as having a non-got, non-plt reference
1488 so that we generate copy relocs if it turns out to be
1489 dynamic. */
1490 if (h != NULL && !info->shared)
1491 h->elf.elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
1492
1493 /* If we are creating a shared library then we need to copy
1494 the reloc into the shared library. However, if we are
1495 linking with -Bsymbolic, we need only copy absolute
1496 relocs or relocs against symbols that are not defined in
1497 an object we are including in the link. PC- or DP- or
1498 DLT-relative relocs against any local sym or global sym
1499 with DEF_REGULAR set, can be discarded. At this point we
1500 have not seen all the input files, so it is possible that
1501 DEF_REGULAR is not set now but will be set later (it is
1502 never cleared). We account for that possibility below by
1503 storing information in the dyn_relocs field of the
1504 hash table entry.
1505
1506 A similar situation to the -Bsymbolic case occurs when
1507 creating shared libraries and symbol visibility changes
1508 render the symbol local.
1509
1510 As it turns out, all the relocs we will be creating here
1511 are absolute, so we cannot remove them on -Bsymbolic
1512 links or visibility changes anyway. A STUB_REL reloc
1513 is absolute too, as in that case it is the reloc in the
1514 stub we will be creating, rather than copying the PCREL
1515 reloc in the branch.
1516
1517 If on the other hand, we are creating an executable, we
1518 may need to keep relocations for symbols satisfied by a
1519 dynamic library if we manage to avoid copy relocs for the
1520 symbol. */
1521 if ((info->shared
1522 && (sec->flags & SEC_ALLOC) != 0
1523 && (IS_ABSOLUTE_RELOC (r_type)
1524 || (h != NULL
1525 && (!info->symbolic
1526 || h->elf.root.type == bfd_link_hash_defweak
1527 || (h->elf.elf_link_hash_flags
1528 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1529 || (!info->shared
1530 && (sec->flags & SEC_ALLOC) != 0
1531 && h != NULL
1532 && (h->elf.root.type == bfd_link_hash_defweak
1533 || (h->elf.elf_link_hash_flags
1534 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
1535 {
1536 struct elf32_hppa_dyn_reloc_entry *p;
1537 struct elf32_hppa_dyn_reloc_entry **head;
1538
1539 /* Create a reloc section in dynobj and make room for
1540 this reloc. */
1541 if (sreloc == NULL)
1542 {
1543 char *name;
1544 bfd *dynobj;
1545
1546 name = (bfd_elf_string_from_elf_section
1547 (abfd,
1548 elf_elfheader (abfd)->e_shstrndx,
1549 elf_section_data (sec)->rel_hdr.sh_name));
1550 if (name == NULL)
1551 {
1552 (*_bfd_error_handler)
1553 (_("Could not find relocation section for %s"),
1554 sec->name);
1555 bfd_set_error (bfd_error_bad_value);
1556 return FALSE;
1557 }
1558
1559 if (htab->elf.dynobj == NULL)
1560 htab->elf.dynobj = abfd;
1561
1562 dynobj = htab->elf.dynobj;
1563 sreloc = bfd_get_section_by_name (dynobj, name);
1564 if (sreloc == NULL)
1565 {
1566 flagword flags;
1567
1568 sreloc = bfd_make_section (dynobj, name);
1569 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1570 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1571 if ((sec->flags & SEC_ALLOC) != 0)
1572 flags |= SEC_ALLOC | SEC_LOAD;
1573 if (sreloc == NULL
1574 || !bfd_set_section_flags (dynobj, sreloc, flags)
1575 || !bfd_set_section_alignment (dynobj, sreloc, 2))
1576 return FALSE;
1577 }
1578
1579 elf_section_data (sec)->sreloc = sreloc;
1580 }
1581
1582 /* If this is a global symbol, we count the number of
1583 relocations we need for this symbol. */
1584 if (h != NULL)
1585 {
1586 head = &h->dyn_relocs;
1587 }
1588 else
1589 {
1590 /* Track dynamic relocs needed for local syms too.
1591 We really need local syms available to do this
1592 easily. Oh well. */
1593
1594 asection *s;
1595 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1596 sec, r_symndx);
1597 if (s == NULL)
1598 return FALSE;
1599
1600 head = ((struct elf32_hppa_dyn_reloc_entry **)
1601 &elf_section_data (s)->local_dynrel);
1602 }
1603
1604 p = *head;
1605 if (p == NULL || p->sec != sec)
1606 {
1607 p = ((struct elf32_hppa_dyn_reloc_entry *)
1608 bfd_alloc (htab->elf.dynobj,
1609 (bfd_size_type) sizeof *p));
1610 if (p == NULL)
1611 return FALSE;
1612 p->next = *head;
1613 *head = p;
1614 p->sec = sec;
1615 p->count = 0;
1616 #if RELATIVE_DYNRELOCS
1617 p->relative_count = 0;
1618 #endif
1619 }
1620
1621 p->count += 1;
1622 #if RELATIVE_DYNRELOCS
1623 if (!IS_ABSOLUTE_RELOC (rtype))
1624 p->relative_count += 1;
1625 #endif
1626 }
1627 }
1628 }
1629
1630 return TRUE;
1631 }
1632
1633 /* Return the section that should be marked against garbage collection
1634 for a given relocation. */
1635
1636 static asection *
1637 elf32_hppa_gc_mark_hook (sec, info, rel, h, sym)
1638 asection *sec;
1639 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1640 Elf_Internal_Rela *rel;
1641 struct elf_link_hash_entry *h;
1642 Elf_Internal_Sym *sym;
1643 {
1644 if (h != NULL)
1645 {
1646 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1647 {
1648 case R_PARISC_GNU_VTINHERIT:
1649 case R_PARISC_GNU_VTENTRY:
1650 break;
1651
1652 default:
1653 switch (h->root.type)
1654 {
1655 case bfd_link_hash_defined:
1656 case bfd_link_hash_defweak:
1657 return h->root.u.def.section;
1658
1659 case bfd_link_hash_common:
1660 return h->root.u.c.p->section;
1661
1662 default:
1663 break;
1664 }
1665 }
1666 }
1667 else
1668 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1669
1670 return NULL;
1671 }
1672
1673 /* Update the got and plt entry reference counts for the section being
1674 removed. */
1675
1676 static bfd_boolean
1677 elf32_hppa_gc_sweep_hook (abfd, info, sec, relocs)
1678 bfd *abfd;
1679 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1680 asection *sec;
1681 const Elf_Internal_Rela *relocs;
1682 {
1683 Elf_Internal_Shdr *symtab_hdr;
1684 struct elf_link_hash_entry **sym_hashes;
1685 bfd_signed_vma *local_got_refcounts;
1686 bfd_signed_vma *local_plt_refcounts;
1687 const Elf_Internal_Rela *rel, *relend;
1688 unsigned long r_symndx;
1689 struct elf_link_hash_entry *h;
1690 struct elf32_hppa_link_hash_table *htab;
1691 bfd *dynobj;
1692
1693 elf_section_data (sec)->local_dynrel = NULL;
1694
1695 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1696 sym_hashes = elf_sym_hashes (abfd);
1697 local_got_refcounts = elf_local_got_refcounts (abfd);
1698 local_plt_refcounts = local_got_refcounts;
1699 if (local_plt_refcounts != NULL)
1700 local_plt_refcounts += symtab_hdr->sh_info;
1701 htab = hppa_link_hash_table (info);
1702 dynobj = htab->elf.dynobj;
1703 if (dynobj == NULL)
1704 return TRUE;
1705
1706 relend = relocs + sec->reloc_count;
1707 for (rel = relocs; rel < relend; rel++)
1708 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1709 {
1710 case R_PARISC_DLTIND14F:
1711 case R_PARISC_DLTIND14R:
1712 case R_PARISC_DLTIND21L:
1713 r_symndx = ELF32_R_SYM (rel->r_info);
1714 if (r_symndx >= symtab_hdr->sh_info)
1715 {
1716 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1717 if (h->got.refcount > 0)
1718 h->got.refcount -= 1;
1719 }
1720 else if (local_got_refcounts != NULL)
1721 {
1722 if (local_got_refcounts[r_symndx] > 0)
1723 local_got_refcounts[r_symndx] -= 1;
1724 }
1725 break;
1726
1727 case R_PARISC_PCREL12F:
1728 case R_PARISC_PCREL17C:
1729 case R_PARISC_PCREL17F:
1730 case R_PARISC_PCREL22F:
1731 r_symndx = ELF32_R_SYM (rel->r_info);
1732 if (r_symndx >= symtab_hdr->sh_info)
1733 {
1734 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1735 if (h->plt.refcount > 0)
1736 h->plt.refcount -= 1;
1737 }
1738 break;
1739
1740 case R_PARISC_PLABEL14R:
1741 case R_PARISC_PLABEL21L:
1742 case R_PARISC_PLABEL32:
1743 r_symndx = ELF32_R_SYM (rel->r_info);
1744 if (r_symndx >= symtab_hdr->sh_info)
1745 {
1746 struct elf32_hppa_link_hash_entry *eh;
1747 struct elf32_hppa_dyn_reloc_entry **pp;
1748 struct elf32_hppa_dyn_reloc_entry *p;
1749
1750 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1751
1752 if (h->plt.refcount > 0)
1753 h->plt.refcount -= 1;
1754
1755 eh = (struct elf32_hppa_link_hash_entry *) h;
1756
1757 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1758 if (p->sec == sec)
1759 {
1760 #if RELATIVE_DYNRELOCS
1761 if (!IS_ABSOLUTE_RELOC (rtype))
1762 p->relative_count -= 1;
1763 #endif
1764 p->count -= 1;
1765 if (p->count == 0)
1766 *pp = p->next;
1767 break;
1768 }
1769 }
1770 else if (local_plt_refcounts != NULL)
1771 {
1772 if (local_plt_refcounts[r_symndx] > 0)
1773 local_plt_refcounts[r_symndx] -= 1;
1774 }
1775 break;
1776
1777 case R_PARISC_DIR32:
1778 r_symndx = ELF32_R_SYM (rel->r_info);
1779 if (r_symndx >= symtab_hdr->sh_info)
1780 {
1781 struct elf32_hppa_link_hash_entry *eh;
1782 struct elf32_hppa_dyn_reloc_entry **pp;
1783 struct elf32_hppa_dyn_reloc_entry *p;
1784
1785 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1786
1787 eh = (struct elf32_hppa_link_hash_entry *) h;
1788
1789 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1790 if (p->sec == sec)
1791 {
1792 #if RELATIVE_DYNRELOCS
1793 if (!IS_ABSOLUTE_RELOC (R_PARISC_DIR32))
1794 p->relative_count -= 1;
1795 #endif
1796 p->count -= 1;
1797 if (p->count == 0)
1798 *pp = p->next;
1799 break;
1800 }
1801 }
1802 break;
1803
1804 default:
1805 break;
1806 }
1807
1808 return TRUE;
1809 }
1810
1811 /* Our own version of hide_symbol, so that we can keep plt entries for
1812 plabels. */
1813
1814 static void
1815 elf32_hppa_hide_symbol (info, h, force_local)
1816 struct bfd_link_info *info;
1817 struct elf_link_hash_entry *h;
1818 bfd_boolean force_local;
1819 {
1820 if (force_local)
1821 {
1822 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1823 if (h->dynindx != -1)
1824 {
1825 h->dynindx = -1;
1826 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1827 h->dynstr_index);
1828 }
1829 }
1830
1831 if (! ((struct elf32_hppa_link_hash_entry *) h)->plabel)
1832 {
1833 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1834 h->plt.offset = (bfd_vma) -1;
1835 }
1836 }
1837
1838 /* This is the condition under which elf32_hppa_finish_dynamic_symbol
1839 will be called from elflink.h. If elflink.h doesn't call our
1840 finish_dynamic_symbol routine, we'll need to do something about
1841 initializing any .plt and .got entries in elf32_hppa_relocate_section. */
1842 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1843 ((DYN) \
1844 && ((INFO)->shared \
1845 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1846 && ((H)->dynindx != -1 \
1847 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1848
1849 /* Adjust a symbol defined by a dynamic object and referenced by a
1850 regular object. The current definition is in some section of the
1851 dynamic object, but we're not including those sections. We have to
1852 change the definition to something the rest of the link can
1853 understand. */
1854
1855 static bfd_boolean
1856 elf32_hppa_adjust_dynamic_symbol (info, h)
1857 struct bfd_link_info *info;
1858 struct elf_link_hash_entry *h;
1859 {
1860 struct elf32_hppa_link_hash_table *htab;
1861 struct elf32_hppa_link_hash_entry *eh;
1862 struct elf32_hppa_dyn_reloc_entry *p;
1863 asection *s;
1864 unsigned int power_of_two;
1865
1866 /* If this is a function, put it in the procedure linkage table. We
1867 will fill in the contents of the procedure linkage table later. */
1868 if (h->type == STT_FUNC
1869 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1870 {
1871 if (h->plt.refcount <= 0
1872 || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1873 && h->root.type != bfd_link_hash_defweak
1874 && ! ((struct elf32_hppa_link_hash_entry *) h)->plabel
1875 && (!info->shared || info->symbolic)))
1876 {
1877 /* The .plt entry is not needed when:
1878 a) Garbage collection has removed all references to the
1879 symbol, or
1880 b) We know for certain the symbol is defined in this
1881 object, and it's not a weak definition, nor is the symbol
1882 used by a plabel relocation. Either this object is the
1883 application or we are doing a shared symbolic link. */
1884
1885 /* As a special sop to the hppa ABI, we keep a .plt entry
1886 for functions in sections containing PIC code. */
1887 if (!info->shared
1888 && h->plt.refcount > 0
1889 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1890 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0)
1891 ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
1892 else
1893 {
1894 h->plt.offset = (bfd_vma) -1;
1895 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1896 }
1897 }
1898
1899 return TRUE;
1900 }
1901 else
1902 h->plt.offset = (bfd_vma) -1;
1903
1904 /* If this is a weak symbol, and there is a real definition, the
1905 processor independent code will have arranged for us to see the
1906 real definition first, and we can just use the same value. */
1907 if (h->weakdef != NULL)
1908 {
1909 if (h->weakdef->root.type != bfd_link_hash_defined
1910 && h->weakdef->root.type != bfd_link_hash_defweak)
1911 abort ();
1912 h->root.u.def.section = h->weakdef->root.u.def.section;
1913 h->root.u.def.value = h->weakdef->root.u.def.value;
1914 return TRUE;
1915 }
1916
1917 /* This is a reference to a symbol defined by a dynamic object which
1918 is not a function. */
1919
1920 /* If we are creating a shared library, we must presume that the
1921 only references to the symbol are via the global offset table.
1922 For such cases we need not do anything here; the relocations will
1923 be handled correctly by relocate_section. */
1924 if (info->shared)
1925 return TRUE;
1926
1927 /* If there are no references to this symbol that do not use the
1928 GOT, we don't need to generate a copy reloc. */
1929 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1930 return TRUE;
1931
1932 eh = (struct elf32_hppa_link_hash_entry *) h;
1933 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1934 {
1935 s = p->sec->output_section;
1936 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1937 break;
1938 }
1939
1940 /* If we didn't find any dynamic relocs in read-only sections, then
1941 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1942 if (p == NULL)
1943 {
1944 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1945 return TRUE;
1946 }
1947
1948 /* We must allocate the symbol in our .dynbss section, which will
1949 become part of the .bss section of the executable. There will be
1950 an entry for this symbol in the .dynsym section. The dynamic
1951 object will contain position independent code, so all references
1952 from the dynamic object to this symbol will go through the global
1953 offset table. The dynamic linker will use the .dynsym entry to
1954 determine the address it must put in the global offset table, so
1955 both the dynamic object and the regular object will refer to the
1956 same memory location for the variable. */
1957
1958 htab = hppa_link_hash_table (info);
1959
1960 /* We must generate a COPY reloc to tell the dynamic linker to
1961 copy the initial value out of the dynamic object and into the
1962 runtime process image. */
1963 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1964 {
1965 htab->srelbss->_raw_size += sizeof (Elf32_External_Rela);
1966 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1967 }
1968
1969 /* We need to figure out the alignment required for this symbol. I
1970 have no idea how other ELF linkers handle this. */
1971
1972 power_of_two = bfd_log2 (h->size);
1973 if (power_of_two > 3)
1974 power_of_two = 3;
1975
1976 /* Apply the required alignment. */
1977 s = htab->sdynbss;
1978 s->_raw_size = BFD_ALIGN (s->_raw_size,
1979 (bfd_size_type) (1 << power_of_two));
1980 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1981 {
1982 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1983 return FALSE;
1984 }
1985
1986 /* Define the symbol as being at this point in the section. */
1987 h->root.u.def.section = s;
1988 h->root.u.def.value = s->_raw_size;
1989
1990 /* Increment the section size to make room for the symbol. */
1991 s->_raw_size += h->size;
1992
1993 return TRUE;
1994 }
1995
1996 /* Called via elf_link_hash_traverse to create .plt entries for an
1997 application that uses statically linked PIC functions. Similar to
1998 the first part of elf32_hppa_adjust_dynamic_symbol. */
1999
2000 static bfd_boolean
2001 mark_PIC_calls (h, inf)
2002 struct elf_link_hash_entry *h;
2003 PTR inf ATTRIBUTE_UNUSED;
2004 {
2005 if (h->root.type == bfd_link_hash_warning)
2006 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2007
2008 if (! (h->plt.refcount > 0
2009 && (h->root.type == bfd_link_hash_defined
2010 || h->root.type == bfd_link_hash_defweak)
2011 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0))
2012 {
2013 h->plt.offset = (bfd_vma) -1;
2014 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2015 return TRUE;
2016 }
2017
2018 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
2019 ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
2020
2021 return TRUE;
2022 }
2023
2024 /* Allocate space in the .plt for entries that won't have relocations.
2025 ie. pic_call and plabel entries. */
2026
2027 static bfd_boolean
2028 allocate_plt_static (h, inf)
2029 struct elf_link_hash_entry *h;
2030 PTR inf;
2031 {
2032 struct bfd_link_info *info;
2033 struct elf32_hppa_link_hash_table *htab;
2034 asection *s;
2035
2036 if (h->root.type == bfd_link_hash_indirect)
2037 return TRUE;
2038
2039 if (h->root.type == bfd_link_hash_warning)
2040 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2041
2042 info = (struct bfd_link_info *) inf;
2043 htab = hppa_link_hash_table (info);
2044 if (((struct elf32_hppa_link_hash_entry *) h)->pic_call)
2045 {
2046 /* Make an entry in the .plt section for non-pic code that is
2047 calling pic code. */
2048 ((struct elf32_hppa_link_hash_entry *) h)->plabel = 0;
2049 s = htab->splt;
2050 h->plt.offset = s->_raw_size;
2051 s->_raw_size += PLT_ENTRY_SIZE;
2052 }
2053 else if (htab->elf.dynamic_sections_created
2054 && h->plt.refcount > 0)
2055 {
2056 /* Make sure this symbol is output as a dynamic symbol.
2057 Undefined weak syms won't yet be marked as dynamic. */
2058 if (h->dynindx == -1
2059 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2060 && h->type != STT_PARISC_MILLI)
2061 {
2062 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2063 return FALSE;
2064 }
2065
2066 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
2067 {
2068 /* Allocate these later. From this point on, h->plabel
2069 means that the plt entry is only used by a plabel.
2070 We'll be using a normal plt entry for this symbol, so
2071 clear the plabel indicator. */
2072 ((struct elf32_hppa_link_hash_entry *) h)->plabel = 0;
2073 }
2074 else if (((struct elf32_hppa_link_hash_entry *) h)->plabel)
2075 {
2076 /* Make an entry in the .plt section for plabel references
2077 that won't have a .plt entry for other reasons. */
2078 s = htab->splt;
2079 h->plt.offset = s->_raw_size;
2080 s->_raw_size += PLT_ENTRY_SIZE;
2081 }
2082 else
2083 {
2084 /* No .plt entry needed. */
2085 h->plt.offset = (bfd_vma) -1;
2086 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2087 }
2088 }
2089 else
2090 {
2091 h->plt.offset = (bfd_vma) -1;
2092 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2093 }
2094
2095 return TRUE;
2096 }
2097
2098 /* Allocate space in .plt, .got and associated reloc sections for
2099 global syms. */
2100
2101 static bfd_boolean
2102 allocate_dynrelocs (h, inf)
2103 struct elf_link_hash_entry *h;
2104 PTR inf;
2105 {
2106 struct bfd_link_info *info;
2107 struct elf32_hppa_link_hash_table *htab;
2108 asection *s;
2109 struct elf32_hppa_link_hash_entry *eh;
2110 struct elf32_hppa_dyn_reloc_entry *p;
2111
2112 if (h->root.type == bfd_link_hash_indirect)
2113 return TRUE;
2114
2115 if (h->root.type == bfd_link_hash_warning)
2116 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2117
2118 info = (struct bfd_link_info *) inf;
2119 htab = hppa_link_hash_table (info);
2120 if (htab->elf.dynamic_sections_created
2121 && h->plt.offset != (bfd_vma) -1
2122 && !((struct elf32_hppa_link_hash_entry *) h)->pic_call
2123 && !((struct elf32_hppa_link_hash_entry *) h)->plabel)
2124 {
2125 /* Make an entry in the .plt section. */
2126 s = htab->splt;
2127 h->plt.offset = s->_raw_size;
2128 s->_raw_size += PLT_ENTRY_SIZE;
2129
2130 /* We also need to make an entry in the .rela.plt section. */
2131 htab->srelplt->_raw_size += sizeof (Elf32_External_Rela);
2132 htab->need_plt_stub = 1;
2133 }
2134
2135 if (h->got.refcount > 0)
2136 {
2137 /* Make sure this symbol is output as a dynamic symbol.
2138 Undefined weak syms won't yet be marked as dynamic. */
2139 if (h->dynindx == -1
2140 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2141 && h->type != STT_PARISC_MILLI)
2142 {
2143 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2144 return FALSE;
2145 }
2146
2147 s = htab->sgot;
2148 h->got.offset = s->_raw_size;
2149 s->_raw_size += GOT_ENTRY_SIZE;
2150 if (htab->elf.dynamic_sections_created
2151 && (info->shared
2152 || (h->dynindx != -1
2153 && h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0))
2154 {
2155 htab->srelgot->_raw_size += sizeof (Elf32_External_Rela);
2156 }
2157 }
2158 else
2159 h->got.offset = (bfd_vma) -1;
2160
2161 eh = (struct elf32_hppa_link_hash_entry *) h;
2162 if (eh->dyn_relocs == NULL)
2163 return TRUE;
2164
2165 /* If this is a -Bsymbolic shared link, then we need to discard all
2166 space allocated for dynamic pc-relative relocs against symbols
2167 defined in a regular object. For the normal shared case, discard
2168 space for relocs that have become local due to symbol visibility
2169 changes. */
2170 if (info->shared)
2171 {
2172 #if RELATIVE_DYNRELOCS
2173 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
2174 && ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
2175 || info->symbolic))
2176 {
2177 struct elf32_hppa_dyn_reloc_entry **pp;
2178
2179 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2180 {
2181 p->count -= p->relative_count;
2182 p->relative_count = 0;
2183 if (p->count == 0)
2184 *pp = p->next;
2185 else
2186 pp = &p->next;
2187 }
2188 }
2189 #endif
2190 }
2191 else
2192 {
2193 /* For the non-shared case, discard space for relocs against
2194 symbols which turn out to need copy relocs or are not
2195 dynamic. */
2196 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
2197 && (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2198 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2199 || (htab->elf.dynamic_sections_created
2200 && (h->root.type == bfd_link_hash_undefweak
2201 || h->root.type == bfd_link_hash_undefined))))
2202 {
2203 /* Make sure this symbol is output as a dynamic symbol.
2204 Undefined weak syms won't yet be marked as dynamic. */
2205 if (h->dynindx == -1
2206 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2207 && h->type != STT_PARISC_MILLI)
2208 {
2209 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2210 return FALSE;
2211 }
2212
2213 /* If that succeeded, we know we'll be keeping all the
2214 relocs. */
2215 if (h->dynindx != -1)
2216 goto keep;
2217 }
2218
2219 eh->dyn_relocs = NULL;
2220 return TRUE;
2221
2222 keep: ;
2223 }
2224
2225 /* Finally, allocate space. */
2226 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2227 {
2228 asection *sreloc = elf_section_data (p->sec)->sreloc;
2229 sreloc->_raw_size += p->count * sizeof (Elf32_External_Rela);
2230 }
2231
2232 return TRUE;
2233 }
2234
2235 /* This function is called via elf_link_hash_traverse to force
2236 millicode symbols local so they do not end up as globals in the
2237 dynamic symbol table. We ought to be able to do this in
2238 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2239 for all dynamic symbols. Arguably, this is a bug in
2240 elf_adjust_dynamic_symbol. */
2241
2242 static bfd_boolean
2243 clobber_millicode_symbols (h, info)
2244 struct elf_link_hash_entry *h;
2245 struct bfd_link_info *info;
2246 {
2247 if (h->root.type == bfd_link_hash_warning)
2248 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2249
2250 if (h->type == STT_PARISC_MILLI
2251 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
2252 {
2253 elf32_hppa_hide_symbol (info, h, TRUE);
2254 }
2255 return TRUE;
2256 }
2257
2258 /* Find any dynamic relocs that apply to read-only sections. */
2259
2260 static bfd_boolean
2261 readonly_dynrelocs (h, inf)
2262 struct elf_link_hash_entry *h;
2263 PTR inf;
2264 {
2265 struct elf32_hppa_link_hash_entry *eh;
2266 struct elf32_hppa_dyn_reloc_entry *p;
2267
2268 if (h->root.type == bfd_link_hash_warning)
2269 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2270
2271 eh = (struct elf32_hppa_link_hash_entry *) h;
2272 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2273 {
2274 asection *s = p->sec->output_section;
2275
2276 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2277 {
2278 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2279
2280 info->flags |= DF_TEXTREL;
2281
2282 /* Not an error, just cut short the traversal. */
2283 return FALSE;
2284 }
2285 }
2286 return TRUE;
2287 }
2288
2289 /* Set the sizes of the dynamic sections. */
2290
2291 static bfd_boolean
2292 elf32_hppa_size_dynamic_sections (output_bfd, info)
2293 bfd *output_bfd ATTRIBUTE_UNUSED;
2294 struct bfd_link_info *info;
2295 {
2296 struct elf32_hppa_link_hash_table *htab;
2297 bfd *dynobj;
2298 bfd *ibfd;
2299 asection *s;
2300 bfd_boolean relocs;
2301
2302 htab = hppa_link_hash_table (info);
2303 dynobj = htab->elf.dynobj;
2304 if (dynobj == NULL)
2305 abort ();
2306
2307 if (htab->elf.dynamic_sections_created)
2308 {
2309 /* Set the contents of the .interp section to the interpreter. */
2310 if (! info->shared)
2311 {
2312 s = bfd_get_section_by_name (dynobj, ".interp");
2313 if (s == NULL)
2314 abort ();
2315 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
2316 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2317 }
2318
2319 /* Force millicode symbols local. */
2320 elf_link_hash_traverse (&htab->elf,
2321 clobber_millicode_symbols,
2322 info);
2323 }
2324 else
2325 {
2326 /* Run through the function symbols, looking for any that are
2327 PIC, and mark them as needing .plt entries so that %r19 will
2328 be set up. */
2329 if (! info->shared)
2330 elf_link_hash_traverse (&htab->elf, mark_PIC_calls, (PTR) info);
2331 }
2332
2333 /* Set up .got and .plt offsets for local syms, and space for local
2334 dynamic relocs. */
2335 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2336 {
2337 bfd_signed_vma *local_got;
2338 bfd_signed_vma *end_local_got;
2339 bfd_signed_vma *local_plt;
2340 bfd_signed_vma *end_local_plt;
2341 bfd_size_type locsymcount;
2342 Elf_Internal_Shdr *symtab_hdr;
2343 asection *srel;
2344
2345 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2346 continue;
2347
2348 for (s = ibfd->sections; s != NULL; s = s->next)
2349 {
2350 struct elf32_hppa_dyn_reloc_entry *p;
2351
2352 for (p = ((struct elf32_hppa_dyn_reloc_entry *)
2353 elf_section_data (s)->local_dynrel);
2354 p != NULL;
2355 p = p->next)
2356 {
2357 if (!bfd_is_abs_section (p->sec)
2358 && bfd_is_abs_section (p->sec->output_section))
2359 {
2360 /* Input section has been discarded, either because
2361 it is a copy of a linkonce section or due to
2362 linker script /DISCARD/, so we'll be discarding
2363 the relocs too. */
2364 }
2365 else if (p->count != 0)
2366 {
2367 srel = elf_section_data (p->sec)->sreloc;
2368 srel->_raw_size += p->count * sizeof (Elf32_External_Rela);
2369 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
2370 info->flags |= DF_TEXTREL;
2371 }
2372 }
2373 }
2374
2375 local_got = elf_local_got_refcounts (ibfd);
2376 if (!local_got)
2377 continue;
2378
2379 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2380 locsymcount = symtab_hdr->sh_info;
2381 end_local_got = local_got + locsymcount;
2382 s = htab->sgot;
2383 srel = htab->srelgot;
2384 for (; local_got < end_local_got; ++local_got)
2385 {
2386 if (*local_got > 0)
2387 {
2388 *local_got = s->_raw_size;
2389 s->_raw_size += GOT_ENTRY_SIZE;
2390 if (info->shared)
2391 srel->_raw_size += sizeof (Elf32_External_Rela);
2392 }
2393 else
2394 *local_got = (bfd_vma) -1;
2395 }
2396
2397 local_plt = end_local_got;
2398 end_local_plt = local_plt + locsymcount;
2399 if (! htab->elf.dynamic_sections_created)
2400 {
2401 /* Won't be used, but be safe. */
2402 for (; local_plt < end_local_plt; ++local_plt)
2403 *local_plt = (bfd_vma) -1;
2404 }
2405 else
2406 {
2407 s = htab->splt;
2408 srel = htab->srelplt;
2409 for (; local_plt < end_local_plt; ++local_plt)
2410 {
2411 if (*local_plt > 0)
2412 {
2413 *local_plt = s->_raw_size;
2414 s->_raw_size += PLT_ENTRY_SIZE;
2415 if (info->shared)
2416 srel->_raw_size += sizeof (Elf32_External_Rela);
2417 }
2418 else
2419 *local_plt = (bfd_vma) -1;
2420 }
2421 }
2422 }
2423
2424 /* Do all the .plt entries without relocs first. The dynamic linker
2425 uses the last .plt reloc to find the end of the .plt (and hence
2426 the start of the .got) for lazy linking. */
2427 elf_link_hash_traverse (&htab->elf, allocate_plt_static, (PTR) info);
2428
2429 /* Allocate global sym .plt and .got entries, and space for global
2430 sym dynamic relocs. */
2431 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
2432
2433 /* The check_relocs and adjust_dynamic_symbol entry points have
2434 determined the sizes of the various dynamic sections. Allocate
2435 memory for them. */
2436 relocs = FALSE;
2437 for (s = dynobj->sections; s != NULL; s = s->next)
2438 {
2439 if ((s->flags & SEC_LINKER_CREATED) == 0)
2440 continue;
2441
2442 if (s == htab->splt)
2443 {
2444 if (htab->need_plt_stub)
2445 {
2446 /* Make space for the plt stub at the end of the .plt
2447 section. We want this stub right at the end, up
2448 against the .got section. */
2449 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2450 int pltalign = bfd_section_alignment (dynobj, s);
2451 bfd_size_type mask;
2452
2453 if (gotalign > pltalign)
2454 bfd_set_section_alignment (dynobj, s, gotalign);
2455 mask = ((bfd_size_type) 1 << gotalign) - 1;
2456 s->_raw_size = (s->_raw_size + sizeof (plt_stub) + mask) & ~mask;
2457 }
2458 }
2459 else if (s == htab->sgot)
2460 ;
2461 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
2462 {
2463 if (s->_raw_size != 0)
2464 {
2465 /* Remember whether there are any reloc sections other
2466 than .rela.plt. */
2467 if (s != htab->srelplt)
2468 relocs = TRUE;
2469
2470 /* We use the reloc_count field as a counter if we need
2471 to copy relocs into the output file. */
2472 s->reloc_count = 0;
2473 }
2474 }
2475 else
2476 {
2477 /* It's not one of our sections, so don't allocate space. */
2478 continue;
2479 }
2480
2481 if (s->_raw_size == 0)
2482 {
2483 /* If we don't need this section, strip it from the
2484 output file. This is mostly to handle .rela.bss and
2485 .rela.plt. We must create both sections in
2486 create_dynamic_sections, because they must be created
2487 before the linker maps input sections to output
2488 sections. The linker does that before
2489 adjust_dynamic_symbol is called, and it is that
2490 function which decides whether anything needs to go
2491 into these sections. */
2492 _bfd_strip_section_from_output (info, s);
2493 continue;
2494 }
2495
2496 /* Allocate memory for the section contents. Zero it, because
2497 we may not fill in all the reloc sections. */
2498 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
2499 if (s->contents == NULL && s->_raw_size != 0)
2500 return FALSE;
2501 }
2502
2503 if (htab->elf.dynamic_sections_created)
2504 {
2505 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2506 actually has nothing to do with the PLT, it is how we
2507 communicate the LTP value of a load module to the dynamic
2508 linker. */
2509 #define add_dynamic_entry(TAG, VAL) \
2510 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
2511
2512 if (!add_dynamic_entry (DT_PLTGOT, 0))
2513 return FALSE;
2514
2515 /* Add some entries to the .dynamic section. We fill in the
2516 values later, in elf32_hppa_finish_dynamic_sections, but we
2517 must add the entries now so that we get the correct size for
2518 the .dynamic section. The DT_DEBUG entry is filled in by the
2519 dynamic linker and used by the debugger. */
2520 if (!info->shared)
2521 {
2522 if (!add_dynamic_entry (DT_DEBUG, 0))
2523 return FALSE;
2524 }
2525
2526 if (htab->srelplt->_raw_size != 0)
2527 {
2528 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2529 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2530 || !add_dynamic_entry (DT_JMPREL, 0))
2531 return FALSE;
2532 }
2533
2534 if (relocs)
2535 {
2536 if (!add_dynamic_entry (DT_RELA, 0)
2537 || !add_dynamic_entry (DT_RELASZ, 0)
2538 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2539 return FALSE;
2540
2541 /* If any dynamic relocs apply to a read-only section,
2542 then we need a DT_TEXTREL entry. */
2543 if ((info->flags & DF_TEXTREL) == 0)
2544 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs,
2545 (PTR) info);
2546
2547 if ((info->flags & DF_TEXTREL) != 0)
2548 {
2549 if (!add_dynamic_entry (DT_TEXTREL, 0))
2550 return FALSE;
2551 }
2552 }
2553 }
2554 #undef add_dynamic_entry
2555
2556 return TRUE;
2557 }
2558
2559 /* External entry points for sizing and building linker stubs. */
2560
2561 /* Set up various things so that we can make a list of input sections
2562 for each output section included in the link. Returns -1 on error,
2563 0 when no stubs will be needed, and 1 on success. */
2564
2565 int
2566 elf32_hppa_setup_section_lists (output_bfd, info)
2567 bfd *output_bfd;
2568 struct bfd_link_info *info;
2569 {
2570 bfd *input_bfd;
2571 unsigned int bfd_count;
2572 int top_id, top_index;
2573 asection *section;
2574 asection **input_list, **list;
2575 bfd_size_type amt;
2576 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2577
2578 if (htab->elf.root.creator->flavour != bfd_target_elf_flavour)
2579 return 0;
2580
2581 /* Count the number of input BFDs and find the top input section id. */
2582 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2583 input_bfd != NULL;
2584 input_bfd = input_bfd->link_next)
2585 {
2586 bfd_count += 1;
2587 for (section = input_bfd->sections;
2588 section != NULL;
2589 section = section->next)
2590 {
2591 if (top_id < section->id)
2592 top_id = section->id;
2593 }
2594 }
2595 htab->bfd_count = bfd_count;
2596
2597 amt = sizeof (struct map_stub) * (top_id + 1);
2598 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
2599 if (htab->stub_group == NULL)
2600 return -1;
2601
2602 /* We can't use output_bfd->section_count here to find the top output
2603 section index as some sections may have been removed, and
2604 _bfd_strip_section_from_output doesn't renumber the indices. */
2605 for (section = output_bfd->sections, top_index = 0;
2606 section != NULL;
2607 section = section->next)
2608 {
2609 if (top_index < section->index)
2610 top_index = section->index;
2611 }
2612
2613 htab->top_index = top_index;
2614 amt = sizeof (asection *) * (top_index + 1);
2615 input_list = (asection **) bfd_malloc (amt);
2616 htab->input_list = input_list;
2617 if (input_list == NULL)
2618 return -1;
2619
2620 /* For sections we aren't interested in, mark their entries with a
2621 value we can check later. */
2622 list = input_list + top_index;
2623 do
2624 *list = bfd_abs_section_ptr;
2625 while (list-- != input_list);
2626
2627 for (section = output_bfd->sections;
2628 section != NULL;
2629 section = section->next)
2630 {
2631 if ((section->flags & SEC_CODE) != 0)
2632 input_list[section->index] = NULL;
2633 }
2634
2635 return 1;
2636 }
2637
2638 /* The linker repeatedly calls this function for each input section,
2639 in the order that input sections are linked into output sections.
2640 Build lists of input sections to determine groupings between which
2641 we may insert linker stubs. */
2642
2643 void
2644 elf32_hppa_next_input_section (info, isec)
2645 struct bfd_link_info *info;
2646 asection *isec;
2647 {
2648 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2649
2650 if (isec->output_section->index <= htab->top_index)
2651 {
2652 asection **list = htab->input_list + isec->output_section->index;
2653 if (*list != bfd_abs_section_ptr)
2654 {
2655 /* Steal the link_sec pointer for our list. */
2656 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2657 /* This happens to make the list in reverse order,
2658 which is what we want. */
2659 PREV_SEC (isec) = *list;
2660 *list = isec;
2661 }
2662 }
2663 }
2664
2665 /* See whether we can group stub sections together. Grouping stub
2666 sections may result in fewer stubs. More importantly, we need to
2667 put all .init* and .fini* stubs at the beginning of the .init or
2668 .fini output sections respectively, because glibc splits the
2669 _init and _fini functions into multiple parts. Putting a stub in
2670 the middle of a function is not a good idea. */
2671
2672 static void
2673 group_sections (htab, stub_group_size, stubs_always_before_branch)
2674 struct elf32_hppa_link_hash_table *htab;
2675 bfd_size_type stub_group_size;
2676 bfd_boolean stubs_always_before_branch;
2677 {
2678 asection **list = htab->input_list + htab->top_index;
2679 do
2680 {
2681 asection *tail = *list;
2682 if (tail == bfd_abs_section_ptr)
2683 continue;
2684 while (tail != NULL)
2685 {
2686 asection *curr;
2687 asection *prev;
2688 bfd_size_type total;
2689 bfd_boolean big_sec;
2690
2691 curr = tail;
2692 if (tail->_cooked_size)
2693 total = tail->_cooked_size;
2694 else
2695 total = tail->_raw_size;
2696 big_sec = total >= stub_group_size;
2697
2698 while ((prev = PREV_SEC (curr)) != NULL
2699 && ((total += curr->output_offset - prev->output_offset)
2700 < stub_group_size))
2701 curr = prev;
2702
2703 /* OK, the size from the start of CURR to the end is less
2704 than 240000 bytes and thus can be handled by one stub
2705 section. (or the tail section is itself larger than
2706 240000 bytes, in which case we may be toast.)
2707 We should really be keeping track of the total size of
2708 stubs added here, as stubs contribute to the final output
2709 section size. That's a little tricky, and this way will
2710 only break if stubs added total more than 22144 bytes, or
2711 2768 long branch stubs. It seems unlikely for more than
2712 2768 different functions to be called, especially from
2713 code only 240000 bytes long. This limit used to be
2714 250000, but c++ code tends to generate lots of little
2715 functions, and sometimes violated the assumption. */
2716 do
2717 {
2718 prev = PREV_SEC (tail);
2719 /* Set up this stub group. */
2720 htab->stub_group[tail->id].link_sec = curr;
2721 }
2722 while (tail != curr && (tail = prev) != NULL);
2723
2724 /* But wait, there's more! Input sections up to 240000
2725 bytes before the stub section can be handled by it too.
2726 Don't do this if we have a really large section after the
2727 stubs, as adding more stubs increases the chance that
2728 branches may not reach into the stub section. */
2729 if (!stubs_always_before_branch && !big_sec)
2730 {
2731 total = 0;
2732 while (prev != NULL
2733 && ((total += tail->output_offset - prev->output_offset)
2734 < stub_group_size))
2735 {
2736 tail = prev;
2737 prev = PREV_SEC (tail);
2738 htab->stub_group[tail->id].link_sec = curr;
2739 }
2740 }
2741 tail = prev;
2742 }
2743 }
2744 while (list-- != htab->input_list);
2745 free (htab->input_list);
2746 #undef PREV_SEC
2747 }
2748
2749 /* Read in all local syms for all input bfds, and create hash entries
2750 for export stubs if we are building a multi-subspace shared lib.
2751 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2752
2753 static int
2754 get_local_syms (output_bfd, input_bfd, info)
2755 bfd *output_bfd;
2756 bfd *input_bfd;
2757 struct bfd_link_info *info;
2758 {
2759 unsigned int bfd_indx;
2760 Elf_Internal_Sym *local_syms, **all_local_syms;
2761 int stub_changed = 0;
2762 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2763
2764 /* We want to read in symbol extension records only once. To do this
2765 we need to read in the local symbols in parallel and save them for
2766 later use; so hold pointers to the local symbols in an array. */
2767 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2768 all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt);
2769 htab->all_local_syms = all_local_syms;
2770 if (all_local_syms == NULL)
2771 return -1;
2772
2773 /* Walk over all the input BFDs, swapping in local symbols.
2774 If we are creating a shared library, create hash entries for the
2775 export stubs. */
2776 for (bfd_indx = 0;
2777 input_bfd != NULL;
2778 input_bfd = input_bfd->link_next, bfd_indx++)
2779 {
2780 Elf_Internal_Shdr *symtab_hdr;
2781
2782 /* We'll need the symbol table in a second. */
2783 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2784 if (symtab_hdr->sh_info == 0)
2785 continue;
2786
2787 /* We need an array of the local symbols attached to the input bfd. */
2788 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2789 if (local_syms == NULL)
2790 {
2791 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2792 symtab_hdr->sh_info, 0,
2793 NULL, NULL, NULL);
2794 /* Cache them for elf_link_input_bfd. */
2795 symtab_hdr->contents = (unsigned char *) local_syms;
2796 }
2797 if (local_syms == NULL)
2798 return -1;
2799
2800 all_local_syms[bfd_indx] = local_syms;
2801
2802 if (info->shared && htab->multi_subspace)
2803 {
2804 struct elf_link_hash_entry **sym_hashes;
2805 struct elf_link_hash_entry **end_hashes;
2806 unsigned int symcount;
2807
2808 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2809 - symtab_hdr->sh_info);
2810 sym_hashes = elf_sym_hashes (input_bfd);
2811 end_hashes = sym_hashes + symcount;
2812
2813 /* Look through the global syms for functions; We need to
2814 build export stubs for all globally visible functions. */
2815 for (; sym_hashes < end_hashes; sym_hashes++)
2816 {
2817 struct elf32_hppa_link_hash_entry *hash;
2818
2819 hash = (struct elf32_hppa_link_hash_entry *) *sym_hashes;
2820
2821 while (hash->elf.root.type == bfd_link_hash_indirect
2822 || hash->elf.root.type == bfd_link_hash_warning)
2823 hash = ((struct elf32_hppa_link_hash_entry *)
2824 hash->elf.root.u.i.link);
2825
2826 /* At this point in the link, undefined syms have been
2827 resolved, so we need to check that the symbol was
2828 defined in this BFD. */
2829 if ((hash->elf.root.type == bfd_link_hash_defined
2830 || hash->elf.root.type == bfd_link_hash_defweak)
2831 && hash->elf.type == STT_FUNC
2832 && hash->elf.root.u.def.section->output_section != NULL
2833 && (hash->elf.root.u.def.section->output_section->owner
2834 == output_bfd)
2835 && hash->elf.root.u.def.section->owner == input_bfd
2836 && (hash->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
2837 && !(hash->elf.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)
2838 && ELF_ST_VISIBILITY (hash->elf.other) == STV_DEFAULT)
2839 {
2840 asection *sec;
2841 const char *stub_name;
2842 struct elf32_hppa_stub_hash_entry *stub_entry;
2843
2844 sec = hash->elf.root.u.def.section;
2845 stub_name = hash->elf.root.root.string;
2846 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
2847 stub_name,
2848 FALSE, FALSE);
2849 if (stub_entry == NULL)
2850 {
2851 stub_entry = hppa_add_stub (stub_name, sec, htab);
2852 if (!stub_entry)
2853 return -1;
2854
2855 stub_entry->target_value = hash->elf.root.u.def.value;
2856 stub_entry->target_section = hash->elf.root.u.def.section;
2857 stub_entry->stub_type = hppa_stub_export;
2858 stub_entry->h = hash;
2859 stub_changed = 1;
2860 }
2861 else
2862 {
2863 (*_bfd_error_handler) (_("%s: duplicate export stub %s"),
2864 bfd_archive_filename (input_bfd),
2865 stub_name);
2866 }
2867 }
2868 }
2869 }
2870 }
2871
2872 return stub_changed;
2873 }
2874
2875 /* Determine and set the size of the stub section for a final link.
2876
2877 The basic idea here is to examine all the relocations looking for
2878 PC-relative calls to a target that is unreachable with a "bl"
2879 instruction. */
2880
2881 bfd_boolean
2882 elf32_hppa_size_stubs (output_bfd, stub_bfd, info, multi_subspace, group_size,
2883 add_stub_section, layout_sections_again)
2884 bfd *output_bfd;
2885 bfd *stub_bfd;
2886 struct bfd_link_info *info;
2887 bfd_boolean multi_subspace;
2888 bfd_signed_vma group_size;
2889 asection * (*add_stub_section) PARAMS ((const char *, asection *));
2890 void (*layout_sections_again) PARAMS ((void));
2891 {
2892 bfd_size_type stub_group_size;
2893 bfd_boolean stubs_always_before_branch;
2894 bfd_boolean stub_changed;
2895 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2896
2897 /* Stash our params away. */
2898 htab->stub_bfd = stub_bfd;
2899 htab->multi_subspace = multi_subspace;
2900 htab->add_stub_section = add_stub_section;
2901 htab->layout_sections_again = layout_sections_again;
2902 stubs_always_before_branch = group_size < 0;
2903 if (group_size < 0)
2904 stub_group_size = -group_size;
2905 else
2906 stub_group_size = group_size;
2907 if (stub_group_size == 1)
2908 {
2909 /* Default values. */
2910 if (stubs_always_before_branch)
2911 {
2912 stub_group_size = 7680000;
2913 if (htab->has_17bit_branch || htab->multi_subspace)
2914 stub_group_size = 240000;
2915 if (htab->has_12bit_branch)
2916 stub_group_size = 7500;
2917 }
2918 else
2919 {
2920 stub_group_size = 6971392;
2921 if (htab->has_17bit_branch || htab->multi_subspace)
2922 stub_group_size = 217856;
2923 if (htab->has_12bit_branch)
2924 stub_group_size = 6808;
2925 }
2926 }
2927
2928 group_sections (htab, stub_group_size, stubs_always_before_branch);
2929
2930 switch (get_local_syms (output_bfd, info->input_bfds, info))
2931 {
2932 default:
2933 if (htab->all_local_syms)
2934 goto error_ret_free_local;
2935 return FALSE;
2936
2937 case 0:
2938 stub_changed = FALSE;
2939 break;
2940
2941 case 1:
2942 stub_changed = TRUE;
2943 break;
2944 }
2945
2946 while (1)
2947 {
2948 bfd *input_bfd;
2949 unsigned int bfd_indx;
2950 asection *stub_sec;
2951
2952 for (input_bfd = info->input_bfds, bfd_indx = 0;
2953 input_bfd != NULL;
2954 input_bfd = input_bfd->link_next, bfd_indx++)
2955 {
2956 Elf_Internal_Shdr *symtab_hdr;
2957 asection *section;
2958 Elf_Internal_Sym *local_syms;
2959
2960 /* We'll need the symbol table in a second. */
2961 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2962 if (symtab_hdr->sh_info == 0)
2963 continue;
2964
2965 local_syms = htab->all_local_syms[bfd_indx];
2966
2967 /* Walk over each section attached to the input bfd. */
2968 for (section = input_bfd->sections;
2969 section != NULL;
2970 section = section->next)
2971 {
2972 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2973
2974 /* If there aren't any relocs, then there's nothing more
2975 to do. */
2976 if ((section->flags & SEC_RELOC) == 0
2977 || section->reloc_count == 0)
2978 continue;
2979
2980 /* If this section is a link-once section that will be
2981 discarded, then don't create any stubs. */
2982 if (section->output_section == NULL
2983 || section->output_section->owner != output_bfd)
2984 continue;
2985
2986 /* Get the relocs. */
2987 internal_relocs
2988 = _bfd_elf32_link_read_relocs (input_bfd, section, NULL,
2989 (Elf_Internal_Rela *) NULL,
2990 info->keep_memory);
2991 if (internal_relocs == NULL)
2992 goto error_ret_free_local;
2993
2994 /* Now examine each relocation. */
2995 irela = internal_relocs;
2996 irelaend = irela + section->reloc_count;
2997 for (; irela < irelaend; irela++)
2998 {
2999 unsigned int r_type, r_indx;
3000 enum elf32_hppa_stub_type stub_type;
3001 struct elf32_hppa_stub_hash_entry *stub_entry;
3002 asection *sym_sec;
3003 bfd_vma sym_value;
3004 bfd_vma destination;
3005 struct elf32_hppa_link_hash_entry *hash;
3006 char *stub_name;
3007 const asection *id_sec;
3008
3009 r_type = ELF32_R_TYPE (irela->r_info);
3010 r_indx = ELF32_R_SYM (irela->r_info);
3011
3012 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3013 {
3014 bfd_set_error (bfd_error_bad_value);
3015 error_ret_free_internal:
3016 if (elf_section_data (section)->relocs == NULL)
3017 free (internal_relocs);
3018 goto error_ret_free_local;
3019 }
3020
3021 /* Only look for stubs on call instructions. */
3022 if (r_type != (unsigned int) R_PARISC_PCREL12F
3023 && r_type != (unsigned int) R_PARISC_PCREL17F
3024 && r_type != (unsigned int) R_PARISC_PCREL22F)
3025 continue;
3026
3027 /* Now determine the call target, its name, value,
3028 section. */
3029 sym_sec = NULL;
3030 sym_value = 0;
3031 destination = 0;
3032 hash = NULL;
3033 if (r_indx < symtab_hdr->sh_info)
3034 {
3035 /* It's a local symbol. */
3036 Elf_Internal_Sym *sym;
3037 Elf_Internal_Shdr *hdr;
3038
3039 sym = local_syms + r_indx;
3040 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
3041 sym_sec = hdr->bfd_section;
3042 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
3043 sym_value = sym->st_value;
3044 destination = (sym_value + irela->r_addend
3045 + sym_sec->output_offset
3046 + sym_sec->output_section->vma);
3047 }
3048 else
3049 {
3050 /* It's an external symbol. */
3051 int e_indx;
3052
3053 e_indx = r_indx - symtab_hdr->sh_info;
3054 hash = ((struct elf32_hppa_link_hash_entry *)
3055 elf_sym_hashes (input_bfd)[e_indx]);
3056
3057 while (hash->elf.root.type == bfd_link_hash_indirect
3058 || hash->elf.root.type == bfd_link_hash_warning)
3059 hash = ((struct elf32_hppa_link_hash_entry *)
3060 hash->elf.root.u.i.link);
3061
3062 if (hash->elf.root.type == bfd_link_hash_defined
3063 || hash->elf.root.type == bfd_link_hash_defweak)
3064 {
3065 sym_sec = hash->elf.root.u.def.section;
3066 sym_value = hash->elf.root.u.def.value;
3067 if (sym_sec->output_section != NULL)
3068 destination = (sym_value + irela->r_addend
3069 + sym_sec->output_offset
3070 + sym_sec->output_section->vma);
3071 }
3072 else if (hash->elf.root.type == bfd_link_hash_undefweak)
3073 {
3074 if (! info->shared)
3075 continue;
3076 }
3077 else if (hash->elf.root.type == bfd_link_hash_undefined)
3078 {
3079 if (! (info->shared
3080 && !info->no_undefined
3081 && (ELF_ST_VISIBILITY (hash->elf.other)
3082 == STV_DEFAULT)
3083 && hash->elf.type != STT_PARISC_MILLI))
3084 continue;
3085 }
3086 else
3087 {
3088 bfd_set_error (bfd_error_bad_value);
3089 goto error_ret_free_internal;
3090 }
3091 }
3092
3093 /* Determine what (if any) linker stub is needed. */
3094 stub_type = hppa_type_of_stub (section, irela, hash,
3095 destination);
3096 if (stub_type == hppa_stub_none)
3097 continue;
3098
3099 /* Support for grouping stub sections. */
3100 id_sec = htab->stub_group[section->id].link_sec;
3101
3102 /* Get the name of this stub. */
3103 stub_name = hppa_stub_name (id_sec, sym_sec, hash, irela);
3104 if (!stub_name)
3105 goto error_ret_free_internal;
3106
3107 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
3108 stub_name,
3109 FALSE, FALSE);
3110 if (stub_entry != NULL)
3111 {
3112 /* The proper stub has already been created. */
3113 free (stub_name);
3114 continue;
3115 }
3116
3117 stub_entry = hppa_add_stub (stub_name, section, htab);
3118 if (stub_entry == NULL)
3119 {
3120 free (stub_name);
3121 goto error_ret_free_internal;
3122 }
3123
3124 stub_entry->target_value = sym_value;
3125 stub_entry->target_section = sym_sec;
3126 stub_entry->stub_type = stub_type;
3127 if (info->shared)
3128 {
3129 if (stub_type == hppa_stub_import)
3130 stub_entry->stub_type = hppa_stub_import_shared;
3131 else if (stub_type == hppa_stub_long_branch)
3132 stub_entry->stub_type = hppa_stub_long_branch_shared;
3133 }
3134 stub_entry->h = hash;
3135 stub_changed = TRUE;
3136 }
3137
3138 /* We're done with the internal relocs, free them. */
3139 if (elf_section_data (section)->relocs == NULL)
3140 free (internal_relocs);
3141 }
3142 }
3143
3144 if (!stub_changed)
3145 break;
3146
3147 /* OK, we've added some stubs. Find out the new size of the
3148 stub sections. */
3149 for (stub_sec = htab->stub_bfd->sections;
3150 stub_sec != NULL;
3151 stub_sec = stub_sec->next)
3152 {
3153 stub_sec->_raw_size = 0;
3154 stub_sec->_cooked_size = 0;
3155 }
3156
3157 bfd_hash_traverse (&htab->stub_hash_table, hppa_size_one_stub, htab);
3158
3159 /* Ask the linker to do its stuff. */
3160 (*htab->layout_sections_again) ();
3161 stub_changed = FALSE;
3162 }
3163
3164 free (htab->all_local_syms);
3165 return TRUE;
3166
3167 error_ret_free_local:
3168 free (htab->all_local_syms);
3169 return FALSE;
3170 }
3171
3172 /* For a final link, this function is called after we have sized the
3173 stubs to provide a value for __gp. */
3174
3175 bfd_boolean
3176 elf32_hppa_set_gp (abfd, info)
3177 bfd *abfd;
3178 struct bfd_link_info *info;
3179 {
3180 struct bfd_link_hash_entry *h;
3181 asection *sec = NULL;
3182 bfd_vma gp_val = 0;
3183 struct elf32_hppa_link_hash_table *htab;
3184
3185 htab = hppa_link_hash_table (info);
3186 h = bfd_link_hash_lookup (&htab->elf.root, "$global$", FALSE, FALSE, FALSE);
3187
3188 if (h != NULL
3189 && (h->type == bfd_link_hash_defined
3190 || h->type == bfd_link_hash_defweak))
3191 {
3192 gp_val = h->u.def.value;
3193 sec = h->u.def.section;
3194 }
3195 else
3196 {
3197 asection *splt;
3198 asection *sgot;
3199
3200 if (htab->elf.root.creator->flavour == bfd_target_elf_flavour)
3201 {
3202 splt = htab->splt;
3203 sgot = htab->sgot;
3204 }
3205 else
3206 {
3207 /* If we're not elf, look up the output sections in the
3208 hope we may actually find them. */
3209 splt = bfd_get_section_by_name (abfd, ".plt");
3210 sgot = bfd_get_section_by_name (abfd, ".got");
3211 }
3212
3213 /* Choose to point our LTP at, in this order, one of .plt, .got,
3214 or .data, if these sections exist. In the case of choosing
3215 .plt try to make the LTP ideal for addressing anywhere in the
3216 .plt or .got with a 14 bit signed offset. Typically, the end
3217 of the .plt is the start of the .got, so choose .plt + 0x2000
3218 if either the .plt or .got is larger than 0x2000. If both
3219 the .plt and .got are smaller than 0x2000, choose the end of
3220 the .plt section. */
3221 sec = splt;
3222 if (sec != NULL)
3223 {
3224 gp_val = sec->_raw_size;
3225 if (gp_val > 0x2000 || (sgot && sgot->_raw_size > 0x2000))
3226 {
3227 gp_val = 0x2000;
3228 }
3229 }
3230 else
3231 {
3232 sec = sgot;
3233 if (sec != NULL)
3234 {
3235 /* We know we don't have a .plt. If .got is large,
3236 offset our LTP. */
3237 if (sec->_raw_size > 0x2000)
3238 gp_val = 0x2000;
3239 }
3240 else
3241 {
3242 /* No .plt or .got. Who cares what the LTP is? */
3243 sec = bfd_get_section_by_name (abfd, ".data");
3244 }
3245 }
3246
3247 if (h != NULL)
3248 {
3249 h->type = bfd_link_hash_defined;
3250 h->u.def.value = gp_val;
3251 if (sec != NULL)
3252 h->u.def.section = sec;
3253 else
3254 h->u.def.section = bfd_abs_section_ptr;
3255 }
3256 }
3257
3258 if (sec != NULL && sec->output_section != NULL)
3259 gp_val += sec->output_section->vma + sec->output_offset;
3260
3261 elf_gp (abfd) = gp_val;
3262 return TRUE;
3263 }
3264
3265 /* Build all the stubs associated with the current output file. The
3266 stubs are kept in a hash table attached to the main linker hash
3267 table. We also set up the .plt entries for statically linked PIC
3268 functions here. This function is called via hppaelf_finish in the
3269 linker. */
3270
3271 bfd_boolean
3272 elf32_hppa_build_stubs (info)
3273 struct bfd_link_info *info;
3274 {
3275 asection *stub_sec;
3276 struct bfd_hash_table *table;
3277 struct elf32_hppa_link_hash_table *htab;
3278
3279 htab = hppa_link_hash_table (info);
3280
3281 for (stub_sec = htab->stub_bfd->sections;
3282 stub_sec != NULL;
3283 stub_sec = stub_sec->next)
3284 {
3285 bfd_size_type size;
3286
3287 /* Allocate memory to hold the linker stubs. */
3288 size = stub_sec->_raw_size;
3289 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
3290 if (stub_sec->contents == NULL && size != 0)
3291 return FALSE;
3292 stub_sec->_raw_size = 0;
3293 }
3294
3295 /* Build the stubs as directed by the stub hash table. */
3296 table = &htab->stub_hash_table;
3297 bfd_hash_traverse (table, hppa_build_one_stub, info);
3298
3299 return TRUE;
3300 }
3301
3302 /* Perform a final link. */
3303
3304 static bfd_boolean
3305 elf32_hppa_final_link (abfd, info)
3306 bfd *abfd;
3307 struct bfd_link_info *info;
3308 {
3309 /* Invoke the regular ELF linker to do all the work. */
3310 if (!bfd_elf32_bfd_final_link (abfd, info))
3311 return FALSE;
3312
3313 /* If we're producing a final executable, sort the contents of the
3314 unwind section. */
3315 return elf_hppa_sort_unwind (abfd);
3316 }
3317
3318 /* Record the lowest address for the data and text segments. */
3319
3320 static void
3321 hppa_record_segment_addr (abfd, section, data)
3322 bfd *abfd ATTRIBUTE_UNUSED;
3323 asection *section;
3324 PTR data;
3325 {
3326 struct elf32_hppa_link_hash_table *htab;
3327
3328 htab = (struct elf32_hppa_link_hash_table *) data;
3329
3330 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3331 {
3332 bfd_vma value = section->vma - section->filepos;
3333
3334 if ((section->flags & SEC_READONLY) != 0)
3335 {
3336 if (value < htab->text_segment_base)
3337 htab->text_segment_base = value;
3338 }
3339 else
3340 {
3341 if (value < htab->data_segment_base)
3342 htab->data_segment_base = value;
3343 }
3344 }
3345 }
3346
3347 /* Perform a relocation as part of a final link. */
3348
3349 static bfd_reloc_status_type
3350 final_link_relocate (input_section, contents, rel, value, htab, sym_sec, h)
3351 asection *input_section;
3352 bfd_byte *contents;
3353 const Elf_Internal_Rela *rel;
3354 bfd_vma value;
3355 struct elf32_hppa_link_hash_table *htab;
3356 asection *sym_sec;
3357 struct elf32_hppa_link_hash_entry *h;
3358 {
3359 int insn;
3360 unsigned int r_type = ELF32_R_TYPE (rel->r_info);
3361 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3362 int r_format = howto->bitsize;
3363 enum hppa_reloc_field_selector_type_alt r_field;
3364 bfd *input_bfd = input_section->owner;
3365 bfd_vma offset = rel->r_offset;
3366 bfd_vma max_branch_offset = 0;
3367 bfd_byte *hit_data = contents + offset;
3368 bfd_signed_vma addend = rel->r_addend;
3369 bfd_vma location;
3370 struct elf32_hppa_stub_hash_entry *stub_entry = NULL;
3371 int val;
3372
3373 if (r_type == R_PARISC_NONE)
3374 return bfd_reloc_ok;
3375
3376 insn = bfd_get_32 (input_bfd, hit_data);
3377
3378 /* Find out where we are and where we're going. */
3379 location = (offset +
3380 input_section->output_offset +
3381 input_section->output_section->vma);
3382
3383 switch (r_type)
3384 {
3385 case R_PARISC_PCREL12F:
3386 case R_PARISC_PCREL17F:
3387 case R_PARISC_PCREL22F:
3388 /* If this call should go via the plt, find the import stub in
3389 the stub hash. */
3390 if (sym_sec == NULL
3391 || sym_sec->output_section == NULL
3392 || (h != NULL
3393 && h->elf.plt.offset != (bfd_vma) -1
3394 && (h->elf.dynindx != -1 || h->pic_call)
3395 && !h->plabel))
3396 {
3397 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3398 h, rel, htab);
3399 if (stub_entry != NULL)
3400 {
3401 value = (stub_entry->stub_offset
3402 + stub_entry->stub_sec->output_offset
3403 + stub_entry->stub_sec->output_section->vma);
3404 addend = 0;
3405 }
3406 else if (sym_sec == NULL && h != NULL
3407 && h->elf.root.type == bfd_link_hash_undefweak)
3408 {
3409 /* It's OK if undefined weak. Calls to undefined weak
3410 symbols behave as if the "called" function
3411 immediately returns. We can thus call to a weak
3412 function without first checking whether the function
3413 is defined. */
3414 value = location;
3415 addend = 8;
3416 }
3417 else
3418 return bfd_reloc_undefined;
3419 }
3420 /* Fall thru. */
3421
3422 case R_PARISC_PCREL21L:
3423 case R_PARISC_PCREL17C:
3424 case R_PARISC_PCREL17R:
3425 case R_PARISC_PCREL14R:
3426 case R_PARISC_PCREL14F:
3427 /* Make it a pc relative offset. */
3428 value -= location;
3429 addend -= 8;
3430 break;
3431
3432 case R_PARISC_DPREL21L:
3433 case R_PARISC_DPREL14R:
3434 case R_PARISC_DPREL14F:
3435 /* For all the DP relative relocations, we need to examine the symbol's
3436 section. If it has no section or if it's a code section, then
3437 "data pointer relative" makes no sense. In that case we don't
3438 adjust the "value", and for 21 bit addil instructions, we change the
3439 source addend register from %dp to %r0. This situation commonly
3440 arises for undefined weak symbols and when a variable's "constness"
3441 is declared differently from the way the variable is defined. For
3442 instance: "extern int foo" with foo defined as "const int foo". */
3443 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3444 {
3445 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3446 == (((int) OP_ADDIL << 26) | (27 << 21)))
3447 {
3448 insn &= ~ (0x1f << 21);
3449 #if 0 /* debug them. */
3450 (*_bfd_error_handler)
3451 (_("%s(%s+0x%lx): fixing %s"),
3452 bfd_archive_filename (input_bfd),
3453 input_section->name,
3454 (long) rel->r_offset,
3455 howto->name);
3456 #endif
3457 }
3458 /* Now try to make things easy for the dynamic linker. */
3459
3460 break;
3461 }
3462 /* Fall thru. */
3463
3464 case R_PARISC_DLTIND21L:
3465 case R_PARISC_DLTIND14R:
3466 case R_PARISC_DLTIND14F:
3467 value -= elf_gp (input_section->output_section->owner);
3468 break;
3469
3470 case R_PARISC_SEGREL32:
3471 if ((sym_sec->flags & SEC_CODE) != 0)
3472 value -= htab->text_segment_base;
3473 else
3474 value -= htab->data_segment_base;
3475 break;
3476
3477 default:
3478 break;
3479 }
3480
3481 switch (r_type)
3482 {
3483 case R_PARISC_DIR32:
3484 case R_PARISC_DIR14F:
3485 case R_PARISC_DIR17F:
3486 case R_PARISC_PCREL17C:
3487 case R_PARISC_PCREL14F:
3488 case R_PARISC_DPREL14F:
3489 case R_PARISC_PLABEL32:
3490 case R_PARISC_DLTIND14F:
3491 case R_PARISC_SEGBASE:
3492 case R_PARISC_SEGREL32:
3493 r_field = e_fsel;
3494 break;
3495
3496 case R_PARISC_DLTIND21L:
3497 case R_PARISC_PCREL21L:
3498 case R_PARISC_PLABEL21L:
3499 r_field = e_lsel;
3500 break;
3501
3502 case R_PARISC_DIR21L:
3503 case R_PARISC_DPREL21L:
3504 r_field = e_lrsel;
3505 break;
3506
3507 case R_PARISC_PCREL17R:
3508 case R_PARISC_PCREL14R:
3509 case R_PARISC_PLABEL14R:
3510 case R_PARISC_DLTIND14R:
3511 r_field = e_rsel;
3512 break;
3513
3514 case R_PARISC_DIR17R:
3515 case R_PARISC_DIR14R:
3516 case R_PARISC_DPREL14R:
3517 r_field = e_rrsel;
3518 break;
3519
3520 case R_PARISC_PCREL12F:
3521 case R_PARISC_PCREL17F:
3522 case R_PARISC_PCREL22F:
3523 r_field = e_fsel;
3524
3525 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3526 {
3527 max_branch_offset = (1 << (17-1)) << 2;
3528 }
3529 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3530 {
3531 max_branch_offset = (1 << (12-1)) << 2;
3532 }
3533 else
3534 {
3535 max_branch_offset = (1 << (22-1)) << 2;
3536 }
3537
3538 /* sym_sec is NULL on undefined weak syms or when shared on
3539 undefined syms. We've already checked for a stub for the
3540 shared undefined case. */
3541 if (sym_sec == NULL)
3542 break;
3543
3544 /* If the branch is out of reach, then redirect the
3545 call to the local stub for this function. */
3546 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3547 {
3548 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3549 h, rel, htab);
3550 if (stub_entry == NULL)
3551 return bfd_reloc_undefined;
3552
3553 /* Munge up the value and addend so that we call the stub
3554 rather than the procedure directly. */
3555 value = (stub_entry->stub_offset
3556 + stub_entry->stub_sec->output_offset
3557 + stub_entry->stub_sec->output_section->vma
3558 - location);
3559 addend = -8;
3560 }
3561 break;
3562
3563 /* Something we don't know how to handle. */
3564 default:
3565 return bfd_reloc_notsupported;
3566 }
3567
3568 /* Make sure we can reach the stub. */
3569 if (max_branch_offset != 0
3570 && value + addend + max_branch_offset >= 2*max_branch_offset)
3571 {
3572 (*_bfd_error_handler)
3573 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3574 bfd_archive_filename (input_bfd),
3575 input_section->name,
3576 (long) rel->r_offset,
3577 stub_entry->root.string);
3578 bfd_set_error (bfd_error_bad_value);
3579 return bfd_reloc_notsupported;
3580 }
3581
3582 val = hppa_field_adjust (value, addend, r_field);
3583
3584 switch (r_type)
3585 {
3586 case R_PARISC_PCREL12F:
3587 case R_PARISC_PCREL17C:
3588 case R_PARISC_PCREL17F:
3589 case R_PARISC_PCREL17R:
3590 case R_PARISC_PCREL22F:
3591 case R_PARISC_DIR17F:
3592 case R_PARISC_DIR17R:
3593 /* This is a branch. Divide the offset by four.
3594 Note that we need to decide whether it's a branch or
3595 otherwise by inspecting the reloc. Inspecting insn won't
3596 work as insn might be from a .word directive. */
3597 val >>= 2;
3598 break;
3599
3600 default:
3601 break;
3602 }
3603
3604 insn = hppa_rebuild_insn (insn, val, r_format);
3605
3606 /* Update the instruction word. */
3607 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3608 return bfd_reloc_ok;
3609 }
3610
3611 /* Relocate an HPPA ELF section. */
3612
3613 static bfd_boolean
3614 elf32_hppa_relocate_section (output_bfd, info, input_bfd, input_section,
3615 contents, relocs, local_syms, local_sections)
3616 bfd *output_bfd;
3617 struct bfd_link_info *info;
3618 bfd *input_bfd;
3619 asection *input_section;
3620 bfd_byte *contents;
3621 Elf_Internal_Rela *relocs;
3622 Elf_Internal_Sym *local_syms;
3623 asection **local_sections;
3624 {
3625 bfd_vma *local_got_offsets;
3626 struct elf32_hppa_link_hash_table *htab;
3627 Elf_Internal_Shdr *symtab_hdr;
3628 Elf_Internal_Rela *rel;
3629 Elf_Internal_Rela *relend;
3630
3631 if (info->relocateable)
3632 return TRUE;
3633
3634 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3635
3636 htab = hppa_link_hash_table (info);
3637 local_got_offsets = elf_local_got_offsets (input_bfd);
3638
3639 rel = relocs;
3640 relend = relocs + input_section->reloc_count;
3641 for (; rel < relend; rel++)
3642 {
3643 unsigned int r_type;
3644 reloc_howto_type *howto;
3645 unsigned int r_symndx;
3646 struct elf32_hppa_link_hash_entry *h;
3647 Elf_Internal_Sym *sym;
3648 asection *sym_sec;
3649 bfd_vma relocation;
3650 bfd_reloc_status_type r;
3651 const char *sym_name;
3652 bfd_boolean plabel;
3653 bfd_boolean warned_undef;
3654
3655 r_type = ELF32_R_TYPE (rel->r_info);
3656 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3657 {
3658 bfd_set_error (bfd_error_bad_value);
3659 return FALSE;
3660 }
3661 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3662 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3663 continue;
3664
3665 /* This is a final link. */
3666 r_symndx = ELF32_R_SYM (rel->r_info);
3667 h = NULL;
3668 sym = NULL;
3669 sym_sec = NULL;
3670 warned_undef = FALSE;
3671 if (r_symndx < symtab_hdr->sh_info)
3672 {
3673 /* This is a local symbol, h defaults to NULL. */
3674 sym = local_syms + r_symndx;
3675 sym_sec = local_sections[r_symndx];
3676 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sym_sec, rel);
3677 }
3678 else
3679 {
3680 int indx;
3681
3682 /* It's a global; Find its entry in the link hash. */
3683 indx = r_symndx - symtab_hdr->sh_info;
3684 h = ((struct elf32_hppa_link_hash_entry *)
3685 elf_sym_hashes (input_bfd)[indx]);
3686 while (h->elf.root.type == bfd_link_hash_indirect
3687 || h->elf.root.type == bfd_link_hash_warning)
3688 h = (struct elf32_hppa_link_hash_entry *) h->elf.root.u.i.link;
3689
3690 relocation = 0;
3691 if (h->elf.root.type == bfd_link_hash_defined
3692 || h->elf.root.type == bfd_link_hash_defweak)
3693 {
3694 sym_sec = h->elf.root.u.def.section;
3695 /* If sym_sec->output_section is NULL, then it's a
3696 symbol defined in a shared library. */
3697 if (sym_sec->output_section != NULL)
3698 relocation = (h->elf.root.u.def.value
3699 + sym_sec->output_offset
3700 + sym_sec->output_section->vma);
3701 }
3702 else if (h->elf.root.type == bfd_link_hash_undefweak)
3703 ;
3704 else if (info->shared && !info->no_undefined
3705 && ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
3706 && h->elf.type != STT_PARISC_MILLI)
3707 {
3708 if (!((*info->callbacks->undefined_symbol)
3709 (info, h->elf.root.root.string, input_bfd,
3710 input_section, rel->r_offset, FALSE)))
3711 return FALSE;
3712 warned_undef = TRUE;
3713 }
3714 else
3715 {
3716 if (!((*info->callbacks->undefined_symbol)
3717 (info, h->elf.root.root.string, input_bfd,
3718 input_section, rel->r_offset, TRUE)))
3719 return FALSE;
3720 warned_undef = TRUE;
3721 }
3722 }
3723
3724 /* Do any required modifications to the relocation value, and
3725 determine what types of dynamic info we need to output, if
3726 any. */
3727 plabel = 0;
3728 switch (r_type)
3729 {
3730 case R_PARISC_DLTIND14F:
3731 case R_PARISC_DLTIND14R:
3732 case R_PARISC_DLTIND21L:
3733 {
3734 bfd_vma off;
3735 bfd_boolean do_got = 0;
3736
3737 /* Relocation is to the entry for this symbol in the
3738 global offset table. */
3739 if (h != NULL)
3740 {
3741 bfd_boolean dyn;
3742
3743 off = h->elf.got.offset;
3744 dyn = htab->elf.dynamic_sections_created;
3745 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, &h->elf))
3746 {
3747 /* If we aren't going to call finish_dynamic_symbol,
3748 then we need to handle initialisation of the .got
3749 entry and create needed relocs here. Since the
3750 offset must always be a multiple of 4, we use the
3751 least significant bit to record whether we have
3752 initialised it already. */
3753 if ((off & 1) != 0)
3754 off &= ~1;
3755 else
3756 {
3757 h->elf.got.offset |= 1;
3758 do_got = 1;
3759 }
3760 }
3761 }
3762 else
3763 {
3764 /* Local symbol case. */
3765 if (local_got_offsets == NULL)
3766 abort ();
3767
3768 off = local_got_offsets[r_symndx];
3769
3770 /* The offset must always be a multiple of 4. We use
3771 the least significant bit to record whether we have
3772 already generated the necessary reloc. */
3773 if ((off & 1) != 0)
3774 off &= ~1;
3775 else
3776 {
3777 local_got_offsets[r_symndx] |= 1;
3778 do_got = 1;
3779 }
3780 }
3781
3782 if (do_got)
3783 {
3784 if (info->shared)
3785 {
3786 /* Output a dynamic relocation for this GOT entry.
3787 In this case it is relative to the base of the
3788 object because the symbol index is zero. */
3789 Elf_Internal_Rela outrel;
3790 bfd_byte *loc;
3791 asection *s = htab->srelgot;
3792
3793 outrel.r_offset = (off
3794 + htab->sgot->output_offset
3795 + htab->sgot->output_section->vma);
3796 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3797 outrel.r_addend = relocation;
3798 loc = s->contents;
3799 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3800 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3801 }
3802 else
3803 bfd_put_32 (output_bfd, relocation,
3804 htab->sgot->contents + off);
3805 }
3806
3807 if (off >= (bfd_vma) -2)
3808 abort ();
3809
3810 /* Add the base of the GOT to the relocation value. */
3811 relocation = (off
3812 + htab->sgot->output_offset
3813 + htab->sgot->output_section->vma);
3814 }
3815 break;
3816
3817 case R_PARISC_SEGREL32:
3818 /* If this is the first SEGREL relocation, then initialize
3819 the segment base values. */
3820 if (htab->text_segment_base == (bfd_vma) -1)
3821 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3822 break;
3823
3824 case R_PARISC_PLABEL14R:
3825 case R_PARISC_PLABEL21L:
3826 case R_PARISC_PLABEL32:
3827 if (htab->elf.dynamic_sections_created)
3828 {
3829 bfd_vma off;
3830 bfd_boolean do_plt = 0;
3831
3832 /* If we have a global symbol with a PLT slot, then
3833 redirect this relocation to it. */
3834 if (h != NULL)
3835 {
3836 off = h->elf.plt.offset;
3837 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, &h->elf))
3838 {
3839 /* In a non-shared link, adjust_dynamic_symbols
3840 isn't called for symbols forced local. We
3841 need to write out the plt entry here. */
3842 if ((off & 1) != 0)
3843 off &= ~1;
3844 else
3845 {
3846 h->elf.plt.offset |= 1;
3847 do_plt = 1;
3848 }
3849 }
3850 }
3851 else
3852 {
3853 bfd_vma *local_plt_offsets;
3854
3855 if (local_got_offsets == NULL)
3856 abort ();
3857
3858 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3859 off = local_plt_offsets[r_symndx];
3860
3861 /* As for the local .got entry case, we use the last
3862 bit to record whether we've already initialised
3863 this local .plt entry. */
3864 if ((off & 1) != 0)
3865 off &= ~1;
3866 else
3867 {
3868 local_plt_offsets[r_symndx] |= 1;
3869 do_plt = 1;
3870 }
3871 }
3872
3873 if (do_plt)
3874 {
3875 if (info->shared)
3876 {
3877 /* Output a dynamic IPLT relocation for this
3878 PLT entry. */
3879 Elf_Internal_Rela outrel;
3880 bfd_byte *loc;
3881 asection *s = htab->srelplt;
3882
3883 outrel.r_offset = (off
3884 + htab->splt->output_offset
3885 + htab->splt->output_section->vma);
3886 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3887 outrel.r_addend = relocation;
3888 loc = s->contents;
3889 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3890 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3891 }
3892 else
3893 {
3894 bfd_put_32 (output_bfd,
3895 relocation,
3896 htab->splt->contents + off);
3897 bfd_put_32 (output_bfd,
3898 elf_gp (htab->splt->output_section->owner),
3899 htab->splt->contents + off + 4);
3900 }
3901 }
3902
3903 if (off >= (bfd_vma) -2)
3904 abort ();
3905
3906 /* PLABELs contain function pointers. Relocation is to
3907 the entry for the function in the .plt. The magic +2
3908 offset signals to $$dyncall that the function pointer
3909 is in the .plt and thus has a gp pointer too.
3910 Exception: Undefined PLABELs should have a value of
3911 zero. */
3912 if (h == NULL
3913 || (h->elf.root.type != bfd_link_hash_undefweak
3914 && h->elf.root.type != bfd_link_hash_undefined))
3915 {
3916 relocation = (off
3917 + htab->splt->output_offset
3918 + htab->splt->output_section->vma
3919 + 2);
3920 }
3921 plabel = 1;
3922 }
3923 /* Fall through and possibly emit a dynamic relocation. */
3924
3925 case R_PARISC_DIR17F:
3926 case R_PARISC_DIR17R:
3927 case R_PARISC_DIR14F:
3928 case R_PARISC_DIR14R:
3929 case R_PARISC_DIR21L:
3930 case R_PARISC_DPREL14F:
3931 case R_PARISC_DPREL14R:
3932 case R_PARISC_DPREL21L:
3933 case R_PARISC_DIR32:
3934 /* r_symndx will be zero only for relocs against symbols
3935 from removed linkonce sections, or sections discarded by
3936 a linker script. */
3937 if (r_symndx == 0
3938 || (input_section->flags & SEC_ALLOC) == 0)
3939 break;
3940
3941 /* The reloc types handled here and this conditional
3942 expression must match the code in ..check_relocs and
3943 allocate_dynrelocs. ie. We need exactly the same condition
3944 as in ..check_relocs, with some extra conditions (dynindx
3945 test in this case) to cater for relocs removed by
3946 allocate_dynrelocs. If you squint, the non-shared test
3947 here does indeed match the one in ..check_relocs, the
3948 difference being that here we test DEF_DYNAMIC as well as
3949 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3950 which is why we can't use just that test here.
3951 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3952 there all files have not been loaded. */
3953 if ((info->shared
3954 && (IS_ABSOLUTE_RELOC (r_type)
3955 || (h != NULL
3956 && h->elf.dynindx != -1
3957 && (!info->symbolic
3958 || (h->elf.elf_link_hash_flags
3959 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
3960 || (!info->shared
3961 && h != NULL
3962 && h->elf.dynindx != -1
3963 && (h->elf.elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
3964 && (((h->elf.elf_link_hash_flags
3965 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3966 && (h->elf.elf_link_hash_flags
3967 & ELF_LINK_HASH_DEF_REGULAR) == 0)
3968 || h->elf.root.type == bfd_link_hash_undefweak
3969 || h->elf.root.type == bfd_link_hash_undefined)))
3970 {
3971 Elf_Internal_Rela outrel;
3972 bfd_boolean skip;
3973 asection *sreloc;
3974 bfd_byte *loc;
3975
3976 /* When generating a shared object, these relocations
3977 are copied into the output file to be resolved at run
3978 time. */
3979
3980 outrel.r_addend = rel->r_addend;
3981 outrel.r_offset =
3982 _bfd_elf_section_offset (output_bfd, info, input_section,
3983 rel->r_offset);
3984 skip = (outrel.r_offset == (bfd_vma) -1
3985 || outrel.r_offset == (bfd_vma) -2);
3986 outrel.r_offset += (input_section->output_offset
3987 + input_section->output_section->vma);
3988
3989 if (skip)
3990 {
3991 memset (&outrel, 0, sizeof (outrel));
3992 }
3993 else if (h != NULL
3994 && h->elf.dynindx != -1
3995 && (plabel
3996 || !IS_ABSOLUTE_RELOC (r_type)
3997 || !info->shared
3998 || !info->symbolic
3999 || (h->elf.elf_link_hash_flags
4000 & ELF_LINK_HASH_DEF_REGULAR) == 0))
4001 {
4002 outrel.r_info = ELF32_R_INFO (h->elf.dynindx, r_type);
4003 }
4004 else /* It's a local symbol, or one marked to become local. */
4005 {
4006 int indx = 0;
4007
4008 /* Add the absolute offset of the symbol. */
4009 outrel.r_addend += relocation;
4010
4011 /* Global plabels need to be processed by the
4012 dynamic linker so that functions have at most one
4013 fptr. For this reason, we need to differentiate
4014 between global and local plabels, which we do by
4015 providing the function symbol for a global plabel
4016 reloc, and no symbol for local plabels. */
4017 if (! plabel
4018 && sym_sec != NULL
4019 && sym_sec->output_section != NULL
4020 && ! bfd_is_abs_section (sym_sec))
4021 {
4022 indx = elf_section_data (sym_sec->output_section)->dynindx;
4023 /* We are turning this relocation into one
4024 against a section symbol, so subtract out the
4025 output section's address but not the offset
4026 of the input section in the output section. */
4027 outrel.r_addend -= sym_sec->output_section->vma;
4028 }
4029
4030 outrel.r_info = ELF32_R_INFO (indx, r_type);
4031 }
4032 #if 0
4033 /* EH info can cause unaligned DIR32 relocs.
4034 Tweak the reloc type for the dynamic linker. */
4035 if (r_type == R_PARISC_DIR32 && (outrel.r_offset & 3) != 0)
4036 outrel.r_info = ELF32_R_INFO (ELF32_R_SYM (outrel.r_info),
4037 R_PARISC_DIR32U);
4038 #endif
4039 sreloc = elf_section_data (input_section)->sreloc;
4040 if (sreloc == NULL)
4041 abort ();
4042
4043 loc = sreloc->contents;
4044 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4045 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4046 }
4047 break;
4048
4049 default:
4050 break;
4051 }
4052
4053 r = final_link_relocate (input_section, contents, rel, relocation,
4054 htab, sym_sec, h);
4055
4056 if (r == bfd_reloc_ok)
4057 continue;
4058
4059 if (h != NULL)
4060 sym_name = h->elf.root.root.string;
4061 else
4062 {
4063 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4064 symtab_hdr->sh_link,
4065 sym->st_name);
4066 if (sym_name == NULL)
4067 return FALSE;
4068 if (*sym_name == '\0')
4069 sym_name = bfd_section_name (input_bfd, sym_sec);
4070 }
4071
4072 howto = elf_hppa_howto_table + r_type;
4073
4074 if (r == bfd_reloc_undefined || r == bfd_reloc_notsupported)
4075 {
4076 if (r == bfd_reloc_notsupported || !warned_undef)
4077 {
4078 (*_bfd_error_handler)
4079 (_("%s(%s+0x%lx): cannot handle %s for %s"),
4080 bfd_archive_filename (input_bfd),
4081 input_section->name,
4082 (long) rel->r_offset,
4083 howto->name,
4084 sym_name);
4085 bfd_set_error (bfd_error_bad_value);
4086 return FALSE;
4087 }
4088 }
4089 else
4090 {
4091 if (!((*info->callbacks->reloc_overflow)
4092 (info, sym_name, howto->name, (bfd_vma) 0,
4093 input_bfd, input_section, rel->r_offset)))
4094 return FALSE;
4095 }
4096 }
4097
4098 return TRUE;
4099 }
4100
4101 /* Finish up dynamic symbol handling. We set the contents of various
4102 dynamic sections here. */
4103
4104 static bfd_boolean
4105 elf32_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
4106 bfd *output_bfd;
4107 struct bfd_link_info *info;
4108 struct elf_link_hash_entry *h;
4109 Elf_Internal_Sym *sym;
4110 {
4111 struct elf32_hppa_link_hash_table *htab;
4112
4113 htab = hppa_link_hash_table (info);
4114
4115 if (h->plt.offset != (bfd_vma) -1)
4116 {
4117 bfd_vma value;
4118
4119 if (h->plt.offset & 1)
4120 abort ();
4121
4122 /* This symbol has an entry in the procedure linkage table. Set
4123 it up.
4124
4125 The format of a plt entry is
4126 <funcaddr>
4127 <__gp>
4128 */
4129 value = 0;
4130 if (h->root.type == bfd_link_hash_defined
4131 || h->root.type == bfd_link_hash_defweak)
4132 {
4133 value = h->root.u.def.value;
4134 if (h->root.u.def.section->output_section != NULL)
4135 value += (h->root.u.def.section->output_offset
4136 + h->root.u.def.section->output_section->vma);
4137 }
4138
4139 if (! ((struct elf32_hppa_link_hash_entry *) h)->pic_call)
4140 {
4141 Elf_Internal_Rela rel;
4142 bfd_byte *loc;
4143
4144 /* Create a dynamic IPLT relocation for this entry. */
4145 rel.r_offset = (h->plt.offset
4146 + htab->splt->output_offset
4147 + htab->splt->output_section->vma);
4148 if (h->dynindx != -1)
4149 {
4150 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_IPLT);
4151 rel.r_addend = 0;
4152 }
4153 else
4154 {
4155 /* This symbol has been marked to become local, and is
4156 used by a plabel so must be kept in the .plt. */
4157 rel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4158 rel.r_addend = value;
4159 }
4160
4161 loc = htab->srelplt->contents;
4162 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4163 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner,
4164 &rel, loc);
4165 }
4166 else
4167 {
4168 bfd_put_32 (htab->splt->owner,
4169 value,
4170 htab->splt->contents + h->plt.offset);
4171 bfd_put_32 (htab->splt->owner,
4172 elf_gp (htab->splt->output_section->owner),
4173 htab->splt->contents + h->plt.offset + 4);
4174 }
4175
4176 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4177 {
4178 /* Mark the symbol as undefined, rather than as defined in
4179 the .plt section. Leave the value alone. */
4180 sym->st_shndx = SHN_UNDEF;
4181 }
4182 }
4183
4184 if (h->got.offset != (bfd_vma) -1)
4185 {
4186 Elf_Internal_Rela rel;
4187 bfd_byte *loc;
4188
4189 /* This symbol has an entry in the global offset table. Set it
4190 up. */
4191
4192 rel.r_offset = ((h->got.offset &~ (bfd_vma) 1)
4193 + htab->sgot->output_offset
4194 + htab->sgot->output_section->vma);
4195
4196 /* If this is a -Bsymbolic link and the symbol is defined
4197 locally or was forced to be local because of a version file,
4198 we just want to emit a RELATIVE reloc. The entry in the
4199 global offset table will already have been initialized in the
4200 relocate_section function. */
4201 if (info->shared
4202 && (info->symbolic || h->dynindx == -1)
4203 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
4204 {
4205 rel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4206 rel.r_addend = (h->root.u.def.value
4207 + h->root.u.def.section->output_offset
4208 + h->root.u.def.section->output_section->vma);
4209 }
4210 else
4211 {
4212 if ((h->got.offset & 1) != 0)
4213 abort ();
4214 bfd_put_32 (output_bfd, (bfd_vma) 0,
4215 htab->sgot->contents + h->got.offset);
4216 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_DIR32);
4217 rel.r_addend = 0;
4218 }
4219
4220 loc = htab->srelgot->contents;
4221 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4222 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
4223 }
4224
4225 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
4226 {
4227 asection *s;
4228 Elf_Internal_Rela rel;
4229 bfd_byte *loc;
4230
4231 /* This symbol needs a copy reloc. Set it up. */
4232
4233 if (! (h->dynindx != -1
4234 && (h->root.type == bfd_link_hash_defined
4235 || h->root.type == bfd_link_hash_defweak)))
4236 abort ();
4237
4238 s = htab->srelbss;
4239
4240 rel.r_offset = (h->root.u.def.value
4241 + h->root.u.def.section->output_offset
4242 + h->root.u.def.section->output_section->vma);
4243 rel.r_addend = 0;
4244 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_COPY);
4245 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4246 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
4247 }
4248
4249 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4250 if (h->root.root.string[0] == '_'
4251 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
4252 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0))
4253 {
4254 sym->st_shndx = SHN_ABS;
4255 }
4256
4257 return TRUE;
4258 }
4259
4260 /* Used to decide how to sort relocs in an optimal manner for the
4261 dynamic linker, before writing them out. */
4262
4263 static enum elf_reloc_type_class
4264 elf32_hppa_reloc_type_class (rela)
4265 const Elf_Internal_Rela *rela;
4266 {
4267 if (ELF32_R_SYM (rela->r_info) == 0)
4268 return reloc_class_relative;
4269
4270 switch ((int) ELF32_R_TYPE (rela->r_info))
4271 {
4272 case R_PARISC_IPLT:
4273 return reloc_class_plt;
4274 case R_PARISC_COPY:
4275 return reloc_class_copy;
4276 default:
4277 return reloc_class_normal;
4278 }
4279 }
4280
4281 /* Finish up the dynamic sections. */
4282
4283 static bfd_boolean
4284 elf32_hppa_finish_dynamic_sections (output_bfd, info)
4285 bfd *output_bfd;
4286 struct bfd_link_info *info;
4287 {
4288 bfd *dynobj;
4289 struct elf32_hppa_link_hash_table *htab;
4290 asection *sdyn;
4291
4292 htab = hppa_link_hash_table (info);
4293 dynobj = htab->elf.dynobj;
4294
4295 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4296
4297 if (htab->elf.dynamic_sections_created)
4298 {
4299 Elf32_External_Dyn *dyncon, *dynconend;
4300
4301 if (sdyn == NULL)
4302 abort ();
4303
4304 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4305 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
4306 for (; dyncon < dynconend; dyncon++)
4307 {
4308 Elf_Internal_Dyn dyn;
4309 asection *s;
4310
4311 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4312
4313 switch (dyn.d_tag)
4314 {
4315 default:
4316 continue;
4317
4318 case DT_PLTGOT:
4319 /* Use PLTGOT to set the GOT register. */
4320 dyn.d_un.d_ptr = elf_gp (output_bfd);
4321 break;
4322
4323 case DT_JMPREL:
4324 s = htab->srelplt;
4325 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4326 break;
4327
4328 case DT_PLTRELSZ:
4329 s = htab->srelplt;
4330 dyn.d_un.d_val = s->_raw_size;
4331 break;
4332
4333 case DT_RELASZ:
4334 /* Don't count procedure linkage table relocs in the
4335 overall reloc count. */
4336 s = htab->srelplt;
4337 if (s == NULL)
4338 continue;
4339 dyn.d_un.d_val -= s->_raw_size;
4340 break;
4341
4342 case DT_RELA:
4343 /* We may not be using the standard ELF linker script.
4344 If .rela.plt is the first .rela section, we adjust
4345 DT_RELA to not include it. */
4346 s = htab->srelplt;
4347 if (s == NULL)
4348 continue;
4349 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4350 continue;
4351 dyn.d_un.d_ptr += s->_raw_size;
4352 break;
4353 }
4354
4355 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4356 }
4357 }
4358
4359 if (htab->sgot != NULL && htab->sgot->_raw_size != 0)
4360 {
4361 /* Fill in the first entry in the global offset table.
4362 We use it to point to our dynamic section, if we have one. */
4363 bfd_put_32 (output_bfd,
4364 (sdyn != NULL
4365 ? sdyn->output_section->vma + sdyn->output_offset
4366 : (bfd_vma) 0),
4367 htab->sgot->contents);
4368
4369 /* The second entry is reserved for use by the dynamic linker. */
4370 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4371
4372 /* Set .got entry size. */
4373 elf_section_data (htab->sgot->output_section)
4374 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4375 }
4376
4377 if (htab->splt != NULL && htab->splt->_raw_size != 0)
4378 {
4379 /* Set plt entry size. */
4380 elf_section_data (htab->splt->output_section)
4381 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4382
4383 if (htab->need_plt_stub)
4384 {
4385 /* Set up the .plt stub. */
4386 memcpy (htab->splt->contents
4387 + htab->splt->_raw_size - sizeof (plt_stub),
4388 plt_stub, sizeof (plt_stub));
4389
4390 if ((htab->splt->output_offset
4391 + htab->splt->output_section->vma
4392 + htab->splt->_raw_size)
4393 != (htab->sgot->output_offset
4394 + htab->sgot->output_section->vma))
4395 {
4396 (*_bfd_error_handler)
4397 (_(".got section not immediately after .plt section"));
4398 return FALSE;
4399 }
4400 }
4401 }
4402
4403 return TRUE;
4404 }
4405
4406 /* Tweak the OSABI field of the elf header. */
4407
4408 static void
4409 elf32_hppa_post_process_headers (abfd, link_info)
4410 bfd *abfd;
4411 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
4412 {
4413 Elf_Internal_Ehdr * i_ehdrp;
4414
4415 i_ehdrp = elf_elfheader (abfd);
4416
4417 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
4418 {
4419 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
4420 }
4421 else
4422 {
4423 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
4424 }
4425 }
4426
4427 /* Called when writing out an object file to decide the type of a
4428 symbol. */
4429 static int
4430 elf32_hppa_elf_get_symbol_type (elf_sym, type)
4431 Elf_Internal_Sym *elf_sym;
4432 int type;
4433 {
4434 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4435 return STT_PARISC_MILLI;
4436 else
4437 return type;
4438 }
4439
4440 /* Misc BFD support code. */
4441 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4442 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4443 #define elf_info_to_howto elf_hppa_info_to_howto
4444 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4445
4446 /* Stuff for the BFD linker. */
4447 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4448 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4449 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4450 #define elf_backend_add_symbol_hook elf32_hppa_add_symbol_hook
4451 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4452 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4453 #define elf_backend_check_relocs elf32_hppa_check_relocs
4454 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4455 #define elf_backend_fake_sections elf_hppa_fake_sections
4456 #define elf_backend_relocate_section elf32_hppa_relocate_section
4457 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4458 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4459 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4460 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4461 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4462 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4463 #define elf_backend_object_p elf32_hppa_object_p
4464 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4465 #define elf_backend_post_process_headers elf32_hppa_post_process_headers
4466 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4467 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4468
4469 #define elf_backend_can_gc_sections 1
4470 #define elf_backend_can_refcount 1
4471 #define elf_backend_plt_alignment 2
4472 #define elf_backend_want_got_plt 0
4473 #define elf_backend_plt_readonly 0
4474 #define elf_backend_want_plt_sym 0
4475 #define elf_backend_got_header_size 8
4476 #define elf_backend_rela_normal 1
4477
4478 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4479 #define TARGET_BIG_NAME "elf32-hppa"
4480 #define ELF_ARCH bfd_arch_hppa
4481 #define ELF_MACHINE_CODE EM_PARISC
4482 #define ELF_MAXPAGESIZE 0x1000
4483
4484 #include "elf32-target.h"
4485
4486 #undef TARGET_BIG_SYM
4487 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4488 #undef TARGET_BIG_NAME
4489 #define TARGET_BIG_NAME "elf32-hppa-linux"
4490
4491 #define INCLUDED_TARGET_FILE 1
4492 #include "elf32-target.h"
This page took 0.159272 seconds and 4 git commands to generate.