x86: Define GNU_PROPERTY_X86_ISA_1_AVX512_BF16
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright (C) 1990-2019 Free Software Foundation, Inc.
3
4 Original code by
5 Center for Software Science
6 Department of Computer Science
7 University of Utah
8 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
9 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
10 TLS support written by Randolph Chung <tausq@debian.org>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
28
29 #include "sysdep.h"
30 #include "bfd.h"
31 #include "libbfd.h"
32 #include "elf-bfd.h"
33 #include "elf/hppa.h"
34 #include "libhppa.h"
35 #include "elf32-hppa.h"
36 #define ARCH_SIZE 32
37 #include "elf32-hppa.h"
38 #include "elf-hppa.h"
39
40 /* In order to gain some understanding of code in this file without
41 knowing all the intricate details of the linker, note the
42 following:
43
44 Functions named elf32_hppa_* are called by external routines, other
45 functions are only called locally. elf32_hppa_* functions appear
46 in this file more or less in the order in which they are called
47 from external routines. eg. elf32_hppa_check_relocs is called
48 early in the link process, elf32_hppa_finish_dynamic_sections is
49 one of the last functions. */
50
51 /* We use two hash tables to hold information for linking PA ELF objects.
52
53 The first is the elf32_hppa_link_hash_table which is derived
54 from the standard ELF linker hash table. We use this as a place to
55 attach other hash tables and static information.
56
57 The second is the stub hash table which is derived from the
58 base BFD hash table. The stub hash table holds the information
59 necessary to build the linker stubs during a link.
60
61 There are a number of different stubs generated by the linker.
62
63 Long branch stub:
64 : ldil LR'X,%r1
65 : be,n RR'X(%sr4,%r1)
66
67 PIC long branch stub:
68 : b,l .+8,%r1
69 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
70 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
71
72 Import stub to call shared library routine from normal object file
73 (single sub-space version)
74 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
75 : ldw RR'lt_ptr+ltoff(%r1),%r21
76 : bv %r0(%r21)
77 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
78
79 Import stub to call shared library routine from shared library
80 (single sub-space version)
81 : addil LR'ltoff,%r19 ; get procedure entry point
82 : ldw RR'ltoff(%r1),%r21
83 : bv %r0(%r21)
84 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
85
86 Import stub to call shared library routine from normal object file
87 (multiple sub-space support)
88 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
89 : ldw RR'lt_ptr+ltoff(%r1),%r21
90 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
91 : ldsid (%r21),%r1
92 : mtsp %r1,%sr0
93 : be 0(%sr0,%r21) ; branch to target
94 : stw %rp,-24(%sp) ; save rp
95
96 Import stub to call shared library routine from shared library
97 (multiple sub-space support)
98 : addil LR'ltoff,%r19 ; get procedure entry point
99 : ldw RR'ltoff(%r1),%r21
100 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
101 : ldsid (%r21),%r1
102 : mtsp %r1,%sr0
103 : be 0(%sr0,%r21) ; branch to target
104 : stw %rp,-24(%sp) ; save rp
105
106 Export stub to return from shared lib routine (multiple sub-space support)
107 One of these is created for each exported procedure in a shared
108 library (and stored in the shared lib). Shared lib routines are
109 called via the first instruction in the export stub so that we can
110 do an inter-space return. Not required for single sub-space.
111 : bl,n X,%rp ; trap the return
112 : nop
113 : ldw -24(%sp),%rp ; restore the original rp
114 : ldsid (%rp),%r1
115 : mtsp %r1,%sr0
116 : be,n 0(%sr0,%rp) ; inter-space return. */
117
118
119 /* Variable names follow a coding style.
120 Please follow this (Apps Hungarian) style:
121
122 Structure/Variable Prefix
123 elf_link_hash_table "etab"
124 elf_link_hash_entry "eh"
125
126 elf32_hppa_link_hash_table "htab"
127 elf32_hppa_link_hash_entry "hh"
128
129 bfd_hash_table "btab"
130 bfd_hash_entry "bh"
131
132 bfd_hash_table containing stubs "bstab"
133 elf32_hppa_stub_hash_entry "hsh"
134
135 Always remember to use GNU Coding Style. */
136
137 #define PLT_ENTRY_SIZE 8
138 #define GOT_ENTRY_SIZE 4
139 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
140
141 static const bfd_byte plt_stub[] =
142 {
143 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
144 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
145 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
146 #define PLT_STUB_ENTRY (3*4)
147 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
148 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
149 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
150 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
151 };
152
153 /* Section name for stubs is the associated section name plus this
154 string. */
155 #define STUB_SUFFIX ".stub"
156
157 /* We don't need to copy certain PC- or GP-relative dynamic relocs
158 into a shared object's dynamic section. All the relocs of the
159 limited class we are interested in, are absolute. */
160 #ifndef RELATIVE_DYNRELOCS
161 #define RELATIVE_DYNRELOCS 0
162 #define IS_ABSOLUTE_RELOC(r_type) 1
163 #define pc_dynrelocs(hh) 0
164 #endif
165
166 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
167 copying dynamic variables from a shared lib into an app's dynbss
168 section, and instead use a dynamic relocation to point into the
169 shared lib. */
170 #define ELIMINATE_COPY_RELOCS 1
171
172 enum elf32_hppa_stub_type
173 {
174 hppa_stub_long_branch,
175 hppa_stub_long_branch_shared,
176 hppa_stub_import,
177 hppa_stub_import_shared,
178 hppa_stub_export,
179 hppa_stub_none
180 };
181
182 struct elf32_hppa_stub_hash_entry
183 {
184 /* Base hash table entry structure. */
185 struct bfd_hash_entry bh_root;
186
187 /* The stub section. */
188 asection *stub_sec;
189
190 /* Offset within stub_sec of the beginning of this stub. */
191 bfd_vma stub_offset;
192
193 /* Given the symbol's value and its section we can determine its final
194 value when building the stubs (so the stub knows where to jump. */
195 bfd_vma target_value;
196 asection *target_section;
197
198 enum elf32_hppa_stub_type stub_type;
199
200 /* The symbol table entry, if any, that this was derived from. */
201 struct elf32_hppa_link_hash_entry *hh;
202
203 /* Where this stub is being called from, or, in the case of combined
204 stub sections, the first input section in the group. */
205 asection *id_sec;
206 };
207
208 enum _tls_type
209 {
210 GOT_UNKNOWN = 0,
211 GOT_NORMAL = 1,
212 GOT_TLS_GD = 2,
213 GOT_TLS_LDM = 4,
214 GOT_TLS_IE = 8
215 };
216
217 struct elf32_hppa_link_hash_entry
218 {
219 struct elf_link_hash_entry eh;
220
221 /* A pointer to the most recently used stub hash entry against this
222 symbol. */
223 struct elf32_hppa_stub_hash_entry *hsh_cache;
224
225 /* Used to count relocations for delayed sizing of relocation
226 sections. */
227 struct elf_dyn_relocs *dyn_relocs;
228
229 ENUM_BITFIELD (_tls_type) tls_type : 8;
230
231 /* Set if this symbol is used by a plabel reloc. */
232 unsigned int plabel:1;
233 };
234
235 struct elf32_hppa_link_hash_table
236 {
237 /* The main hash table. */
238 struct elf_link_hash_table etab;
239
240 /* The stub hash table. */
241 struct bfd_hash_table bstab;
242
243 /* Linker stub bfd. */
244 bfd *stub_bfd;
245
246 /* Linker call-backs. */
247 asection * (*add_stub_section) (const char *, asection *);
248 void (*layout_sections_again) (void);
249
250 /* Array to keep track of which stub sections have been created, and
251 information on stub grouping. */
252 struct map_stub
253 {
254 /* This is the section to which stubs in the group will be
255 attached. */
256 asection *link_sec;
257 /* The stub section. */
258 asection *stub_sec;
259 } *stub_group;
260
261 /* Assorted information used by elf32_hppa_size_stubs. */
262 unsigned int bfd_count;
263 unsigned int top_index;
264 asection **input_list;
265 Elf_Internal_Sym **all_local_syms;
266
267 /* Used during a final link to store the base of the text and data
268 segments so that we can perform SEGREL relocations. */
269 bfd_vma text_segment_base;
270 bfd_vma data_segment_base;
271
272 /* Whether we support multiple sub-spaces for shared libs. */
273 unsigned int multi_subspace:1;
274
275 /* Flags set when various size branches are detected. Used to
276 select suitable defaults for the stub group size. */
277 unsigned int has_12bit_branch:1;
278 unsigned int has_17bit_branch:1;
279 unsigned int has_22bit_branch:1;
280
281 /* Set if we need a .plt stub to support lazy dynamic linking. */
282 unsigned int need_plt_stub:1;
283
284 /* Small local sym cache. */
285 struct sym_cache sym_cache;
286
287 /* Data for LDM relocations. */
288 union
289 {
290 bfd_signed_vma refcount;
291 bfd_vma offset;
292 } tls_ldm_got;
293 };
294
295 /* Various hash macros and functions. */
296 #define hppa_link_hash_table(p) \
297 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
298 == HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL)
299
300 #define hppa_elf_hash_entry(ent) \
301 ((struct elf32_hppa_link_hash_entry *)(ent))
302
303 #define hppa_stub_hash_entry(ent) \
304 ((struct elf32_hppa_stub_hash_entry *)(ent))
305
306 #define hppa_stub_hash_lookup(table, string, create, copy) \
307 ((struct elf32_hppa_stub_hash_entry *) \
308 bfd_hash_lookup ((table), (string), (create), (copy)))
309
310 #define hppa_elf_local_got_tls_type(abfd) \
311 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
312
313 #define hh_name(hh) \
314 (hh ? hh->eh.root.root.string : "<undef>")
315
316 #define eh_name(eh) \
317 (eh ? eh->root.root.string : "<undef>")
318
319 /* Assorted hash table functions. */
320
321 /* Initialize an entry in the stub hash table. */
322
323 static struct bfd_hash_entry *
324 stub_hash_newfunc (struct bfd_hash_entry *entry,
325 struct bfd_hash_table *table,
326 const char *string)
327 {
328 /* Allocate the structure if it has not already been allocated by a
329 subclass. */
330 if (entry == NULL)
331 {
332 entry = bfd_hash_allocate (table,
333 sizeof (struct elf32_hppa_stub_hash_entry));
334 if (entry == NULL)
335 return entry;
336 }
337
338 /* Call the allocation method of the superclass. */
339 entry = bfd_hash_newfunc (entry, table, string);
340 if (entry != NULL)
341 {
342 struct elf32_hppa_stub_hash_entry *hsh;
343
344 /* Initialize the local fields. */
345 hsh = hppa_stub_hash_entry (entry);
346 hsh->stub_sec = NULL;
347 hsh->stub_offset = 0;
348 hsh->target_value = 0;
349 hsh->target_section = NULL;
350 hsh->stub_type = hppa_stub_long_branch;
351 hsh->hh = NULL;
352 hsh->id_sec = NULL;
353 }
354
355 return entry;
356 }
357
358 /* Initialize an entry in the link hash table. */
359
360 static struct bfd_hash_entry *
361 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
362 struct bfd_hash_table *table,
363 const char *string)
364 {
365 /* Allocate the structure if it has not already been allocated by a
366 subclass. */
367 if (entry == NULL)
368 {
369 entry = bfd_hash_allocate (table,
370 sizeof (struct elf32_hppa_link_hash_entry));
371 if (entry == NULL)
372 return entry;
373 }
374
375 /* Call the allocation method of the superclass. */
376 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
377 if (entry != NULL)
378 {
379 struct elf32_hppa_link_hash_entry *hh;
380
381 /* Initialize the local fields. */
382 hh = hppa_elf_hash_entry (entry);
383 hh->hsh_cache = NULL;
384 hh->dyn_relocs = NULL;
385 hh->plabel = 0;
386 hh->tls_type = GOT_UNKNOWN;
387 }
388
389 return entry;
390 }
391
392 /* Free the derived linker hash table. */
393
394 static void
395 elf32_hppa_link_hash_table_free (bfd *obfd)
396 {
397 struct elf32_hppa_link_hash_table *htab
398 = (struct elf32_hppa_link_hash_table *) obfd->link.hash;
399
400 bfd_hash_table_free (&htab->bstab);
401 _bfd_elf_link_hash_table_free (obfd);
402 }
403
404 /* Create the derived linker hash table. The PA ELF port uses the derived
405 hash table to keep information specific to the PA ELF linker (without
406 using static variables). */
407
408 static struct bfd_link_hash_table *
409 elf32_hppa_link_hash_table_create (bfd *abfd)
410 {
411 struct elf32_hppa_link_hash_table *htab;
412 bfd_size_type amt = sizeof (*htab);
413
414 htab = bfd_zmalloc (amt);
415 if (htab == NULL)
416 return NULL;
417
418 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
419 sizeof (struct elf32_hppa_link_hash_entry),
420 HPPA32_ELF_DATA))
421 {
422 free (htab);
423 return NULL;
424 }
425
426 /* Init the stub hash table too. */
427 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
428 sizeof (struct elf32_hppa_stub_hash_entry)))
429 {
430 _bfd_elf_link_hash_table_free (abfd);
431 return NULL;
432 }
433 htab->etab.root.hash_table_free = elf32_hppa_link_hash_table_free;
434
435 htab->text_segment_base = (bfd_vma) -1;
436 htab->data_segment_base = (bfd_vma) -1;
437 return &htab->etab.root;
438 }
439
440 /* Initialize the linker stubs BFD so that we can use it for linker
441 created dynamic sections. */
442
443 void
444 elf32_hppa_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
445 {
446 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
447
448 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS32;
449 htab->etab.dynobj = abfd;
450 }
451
452 /* Build a name for an entry in the stub hash table. */
453
454 static char *
455 hppa_stub_name (const asection *input_section,
456 const asection *sym_sec,
457 const struct elf32_hppa_link_hash_entry *hh,
458 const Elf_Internal_Rela *rela)
459 {
460 char *stub_name;
461 bfd_size_type len;
462
463 if (hh)
464 {
465 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
466 stub_name = bfd_malloc (len);
467 if (stub_name != NULL)
468 sprintf (stub_name, "%08x_%s+%x",
469 input_section->id & 0xffffffff,
470 hh_name (hh),
471 (int) rela->r_addend & 0xffffffff);
472 }
473 else
474 {
475 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
476 stub_name = bfd_malloc (len);
477 if (stub_name != NULL)
478 sprintf (stub_name, "%08x_%x:%x+%x",
479 input_section->id & 0xffffffff,
480 sym_sec->id & 0xffffffff,
481 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
482 (int) rela->r_addend & 0xffffffff);
483 }
484 return stub_name;
485 }
486
487 /* Look up an entry in the stub hash. Stub entries are cached because
488 creating the stub name takes a bit of time. */
489
490 static struct elf32_hppa_stub_hash_entry *
491 hppa_get_stub_entry (const asection *input_section,
492 const asection *sym_sec,
493 struct elf32_hppa_link_hash_entry *hh,
494 const Elf_Internal_Rela *rela,
495 struct elf32_hppa_link_hash_table *htab)
496 {
497 struct elf32_hppa_stub_hash_entry *hsh_entry;
498 const asection *id_sec;
499
500 /* If this input section is part of a group of sections sharing one
501 stub section, then use the id of the first section in the group.
502 Stub names need to include a section id, as there may well be
503 more than one stub used to reach say, printf, and we need to
504 distinguish between them. */
505 id_sec = htab->stub_group[input_section->id].link_sec;
506 if (id_sec == NULL)
507 return NULL;
508
509 if (hh != NULL && hh->hsh_cache != NULL
510 && hh->hsh_cache->hh == hh
511 && hh->hsh_cache->id_sec == id_sec)
512 {
513 hsh_entry = hh->hsh_cache;
514 }
515 else
516 {
517 char *stub_name;
518
519 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
520 if (stub_name == NULL)
521 return NULL;
522
523 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
524 stub_name, FALSE, FALSE);
525 if (hh != NULL)
526 hh->hsh_cache = hsh_entry;
527
528 free (stub_name);
529 }
530
531 return hsh_entry;
532 }
533
534 /* Add a new stub entry to the stub hash. Not all fields of the new
535 stub entry are initialised. */
536
537 static struct elf32_hppa_stub_hash_entry *
538 hppa_add_stub (const char *stub_name,
539 asection *section,
540 struct elf32_hppa_link_hash_table *htab)
541 {
542 asection *link_sec;
543 asection *stub_sec;
544 struct elf32_hppa_stub_hash_entry *hsh;
545
546 link_sec = htab->stub_group[section->id].link_sec;
547 stub_sec = htab->stub_group[section->id].stub_sec;
548 if (stub_sec == NULL)
549 {
550 stub_sec = htab->stub_group[link_sec->id].stub_sec;
551 if (stub_sec == NULL)
552 {
553 size_t namelen;
554 bfd_size_type len;
555 char *s_name;
556
557 namelen = strlen (link_sec->name);
558 len = namelen + sizeof (STUB_SUFFIX);
559 s_name = bfd_alloc (htab->stub_bfd, len);
560 if (s_name == NULL)
561 return NULL;
562
563 memcpy (s_name, link_sec->name, namelen);
564 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
565 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
566 if (stub_sec == NULL)
567 return NULL;
568 htab->stub_group[link_sec->id].stub_sec = stub_sec;
569 }
570 htab->stub_group[section->id].stub_sec = stub_sec;
571 }
572
573 /* Enter this entry into the linker stub hash table. */
574 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
575 TRUE, FALSE);
576 if (hsh == NULL)
577 {
578 /* xgettext:c-format */
579 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
580 section->owner, stub_name);
581 return NULL;
582 }
583
584 hsh->stub_sec = stub_sec;
585 hsh->stub_offset = 0;
586 hsh->id_sec = link_sec;
587 return hsh;
588 }
589
590 /* Determine the type of stub needed, if any, for a call. */
591
592 static enum elf32_hppa_stub_type
593 hppa_type_of_stub (asection *input_sec,
594 const Elf_Internal_Rela *rela,
595 struct elf32_hppa_link_hash_entry *hh,
596 bfd_vma destination,
597 struct bfd_link_info *info)
598 {
599 bfd_vma location;
600 bfd_vma branch_offset;
601 bfd_vma max_branch_offset;
602 unsigned int r_type;
603
604 if (hh != NULL
605 && hh->eh.plt.offset != (bfd_vma) -1
606 && hh->eh.dynindx != -1
607 && !hh->plabel
608 && (bfd_link_pic (info)
609 || !hh->eh.def_regular
610 || hh->eh.root.type == bfd_link_hash_defweak))
611 {
612 /* We need an import stub. Decide between hppa_stub_import
613 and hppa_stub_import_shared later. */
614 return hppa_stub_import;
615 }
616
617 if (destination == (bfd_vma) -1)
618 return hppa_stub_none;
619
620 /* Determine where the call point is. */
621 location = (input_sec->output_offset
622 + input_sec->output_section->vma
623 + rela->r_offset);
624
625 branch_offset = destination - location - 8;
626 r_type = ELF32_R_TYPE (rela->r_info);
627
628 /* Determine if a long branch stub is needed. parisc branch offsets
629 are relative to the second instruction past the branch, ie. +8
630 bytes on from the branch instruction location. The offset is
631 signed and counts in units of 4 bytes. */
632 if (r_type == (unsigned int) R_PARISC_PCREL17F)
633 max_branch_offset = (1 << (17 - 1)) << 2;
634
635 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
636 max_branch_offset = (1 << (12 - 1)) << 2;
637
638 else /* R_PARISC_PCREL22F. */
639 max_branch_offset = (1 << (22 - 1)) << 2;
640
641 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
642 return hppa_stub_long_branch;
643
644 return hppa_stub_none;
645 }
646
647 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
648 IN_ARG contains the link info pointer. */
649
650 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
651 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
652
653 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
654 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
655 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
656
657 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
658 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
659 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
660 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
661
662 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
663 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
664
665 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
666 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
667 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
668 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
669
670 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
671 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
672 #define NOP 0x08000240 /* nop */
673 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
674 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
675 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
676
677 #ifndef R19_STUBS
678 #define R19_STUBS 1
679 #endif
680
681 #if R19_STUBS
682 #define LDW_R1_DLT LDW_R1_R19
683 #else
684 #define LDW_R1_DLT LDW_R1_DP
685 #endif
686
687 static bfd_boolean
688 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
689 {
690 struct elf32_hppa_stub_hash_entry *hsh;
691 struct bfd_link_info *info;
692 struct elf32_hppa_link_hash_table *htab;
693 asection *stub_sec;
694 bfd *stub_bfd;
695 bfd_byte *loc;
696 bfd_vma sym_value;
697 bfd_vma insn;
698 bfd_vma off;
699 int val;
700 int size;
701
702 /* Massage our args to the form they really have. */
703 hsh = hppa_stub_hash_entry (bh);
704 info = (struct bfd_link_info *)in_arg;
705
706 htab = hppa_link_hash_table (info);
707 if (htab == NULL)
708 return FALSE;
709
710 stub_sec = hsh->stub_sec;
711
712 /* Make a note of the offset within the stubs for this entry. */
713 hsh->stub_offset = stub_sec->size;
714 loc = stub_sec->contents + hsh->stub_offset;
715
716 stub_bfd = stub_sec->owner;
717
718 switch (hsh->stub_type)
719 {
720 case hppa_stub_long_branch:
721 /* Create the long branch. A long branch is formed with "ldil"
722 loading the upper bits of the target address into a register,
723 then branching with "be" which adds in the lower bits.
724 The "be" has its delay slot nullified. */
725 sym_value = (hsh->target_value
726 + hsh->target_section->output_offset
727 + hsh->target_section->output_section->vma);
728
729 val = hppa_field_adjust (sym_value, 0, e_lrsel);
730 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
731 bfd_put_32 (stub_bfd, insn, loc);
732
733 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
734 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
735 bfd_put_32 (stub_bfd, insn, loc + 4);
736
737 size = 8;
738 break;
739
740 case hppa_stub_long_branch_shared:
741 /* Branches are relative. This is where we are going to. */
742 sym_value = (hsh->target_value
743 + hsh->target_section->output_offset
744 + hsh->target_section->output_section->vma);
745
746 /* And this is where we are coming from, more or less. */
747 sym_value -= (hsh->stub_offset
748 + stub_sec->output_offset
749 + stub_sec->output_section->vma);
750
751 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
752 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
753 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
754 bfd_put_32 (stub_bfd, insn, loc + 4);
755
756 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
757 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
758 bfd_put_32 (stub_bfd, insn, loc + 8);
759 size = 12;
760 break;
761
762 case hppa_stub_import:
763 case hppa_stub_import_shared:
764 off = hsh->hh->eh.plt.offset;
765 if (off >= (bfd_vma) -2)
766 abort ();
767
768 off &= ~ (bfd_vma) 1;
769 sym_value = (off
770 + htab->etab.splt->output_offset
771 + htab->etab.splt->output_section->vma
772 - elf_gp (htab->etab.splt->output_section->owner));
773
774 insn = ADDIL_DP;
775 #if R19_STUBS
776 if (hsh->stub_type == hppa_stub_import_shared)
777 insn = ADDIL_R19;
778 #endif
779 val = hppa_field_adjust (sym_value, 0, e_lrsel),
780 insn = hppa_rebuild_insn ((int) insn, val, 21);
781 bfd_put_32 (stub_bfd, insn, loc);
782
783 /* It is critical to use lrsel/rrsel here because we are using
784 two different offsets (+0 and +4) from sym_value. If we use
785 lsel/rsel then with unfortunate sym_values we will round
786 sym_value+4 up to the next 2k block leading to a mis-match
787 between the lsel and rsel value. */
788 val = hppa_field_adjust (sym_value, 0, e_rrsel);
789 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
790 bfd_put_32 (stub_bfd, insn, loc + 4);
791
792 if (htab->multi_subspace)
793 {
794 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
795 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
796 bfd_put_32 (stub_bfd, insn, loc + 8);
797
798 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
799 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
800 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
801 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
802
803 size = 28;
804 }
805 else
806 {
807 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
808 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
809 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
810 bfd_put_32 (stub_bfd, insn, loc + 12);
811
812 size = 16;
813 }
814
815 break;
816
817 case hppa_stub_export:
818 /* Branches are relative. This is where we are going to. */
819 sym_value = (hsh->target_value
820 + hsh->target_section->output_offset
821 + hsh->target_section->output_section->vma);
822
823 /* And this is where we are coming from. */
824 sym_value -= (hsh->stub_offset
825 + stub_sec->output_offset
826 + stub_sec->output_section->vma);
827
828 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
829 && (!htab->has_22bit_branch
830 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
831 {
832 _bfd_error_handler
833 /* xgettext:c-format */
834 (_("%pB(%pA+%#" PRIx64 "): "
835 "cannot reach %s, recompile with -ffunction-sections"),
836 hsh->target_section->owner,
837 stub_sec,
838 (uint64_t) hsh->stub_offset,
839 hsh->bh_root.string);
840 bfd_set_error (bfd_error_bad_value);
841 return FALSE;
842 }
843
844 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
845 if (!htab->has_22bit_branch)
846 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
847 else
848 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
849 bfd_put_32 (stub_bfd, insn, loc);
850
851 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
852 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
853 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
854 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
855 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
856
857 /* Point the function symbol at the stub. */
858 hsh->hh->eh.root.u.def.section = stub_sec;
859 hsh->hh->eh.root.u.def.value = stub_sec->size;
860
861 size = 24;
862 break;
863
864 default:
865 BFD_FAIL ();
866 return FALSE;
867 }
868
869 stub_sec->size += size;
870 return TRUE;
871 }
872
873 #undef LDIL_R1
874 #undef BE_SR4_R1
875 #undef BL_R1
876 #undef ADDIL_R1
877 #undef DEPI_R1
878 #undef LDW_R1_R21
879 #undef LDW_R1_DLT
880 #undef LDW_R1_R19
881 #undef ADDIL_R19
882 #undef LDW_R1_DP
883 #undef LDSID_R21_R1
884 #undef MTSP_R1
885 #undef BE_SR0_R21
886 #undef STW_RP
887 #undef BV_R0_R21
888 #undef BL_RP
889 #undef NOP
890 #undef LDW_RP
891 #undef LDSID_RP_R1
892 #undef BE_SR0_RP
893
894 /* As above, but don't actually build the stub. Just bump offset so
895 we know stub section sizes. */
896
897 static bfd_boolean
898 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
899 {
900 struct elf32_hppa_stub_hash_entry *hsh;
901 struct elf32_hppa_link_hash_table *htab;
902 int size;
903
904 /* Massage our args to the form they really have. */
905 hsh = hppa_stub_hash_entry (bh);
906 htab = in_arg;
907
908 if (hsh->stub_type == hppa_stub_long_branch)
909 size = 8;
910 else if (hsh->stub_type == hppa_stub_long_branch_shared)
911 size = 12;
912 else if (hsh->stub_type == hppa_stub_export)
913 size = 24;
914 else /* hppa_stub_import or hppa_stub_import_shared. */
915 {
916 if (htab->multi_subspace)
917 size = 28;
918 else
919 size = 16;
920 }
921
922 hsh->stub_sec->size += size;
923 return TRUE;
924 }
925
926 /* Return nonzero if ABFD represents an HPPA ELF32 file.
927 Additionally we set the default architecture and machine. */
928
929 static bfd_boolean
930 elf32_hppa_object_p (bfd *abfd)
931 {
932 Elf_Internal_Ehdr * i_ehdrp;
933 unsigned int flags;
934
935 i_ehdrp = elf_elfheader (abfd);
936 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
937 {
938 /* GCC on hppa-linux produces binaries with OSABI=GNU,
939 but the kernel produces corefiles with OSABI=SysV. */
940 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU &&
941 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
942 return FALSE;
943 }
944 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
945 {
946 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
947 but the kernel produces corefiles with OSABI=SysV. */
948 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
949 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
950 return FALSE;
951 }
952 else
953 {
954 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
955 return FALSE;
956 }
957
958 flags = i_ehdrp->e_flags;
959 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
960 {
961 case EFA_PARISC_1_0:
962 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
963 case EFA_PARISC_1_1:
964 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
965 case EFA_PARISC_2_0:
966 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
967 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
968 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
969 }
970 return TRUE;
971 }
972
973 /* Create the .plt and .got sections, and set up our hash table
974 short-cuts to various dynamic sections. */
975
976 static bfd_boolean
977 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
978 {
979 struct elf32_hppa_link_hash_table *htab;
980 struct elf_link_hash_entry *eh;
981
982 /* Don't try to create the .plt and .got twice. */
983 htab = hppa_link_hash_table (info);
984 if (htab == NULL)
985 return FALSE;
986 if (htab->etab.splt != NULL)
987 return TRUE;
988
989 /* Call the generic code to do most of the work. */
990 if (! _bfd_elf_create_dynamic_sections (abfd, info))
991 return FALSE;
992
993 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
994 application, because __canonicalize_funcptr_for_compare needs it. */
995 eh = elf_hash_table (info)->hgot;
996 eh->forced_local = 0;
997 eh->other = STV_DEFAULT;
998 return bfd_elf_link_record_dynamic_symbol (info, eh);
999 }
1000
1001 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1002
1003 static void
1004 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1005 struct elf_link_hash_entry *eh_dir,
1006 struct elf_link_hash_entry *eh_ind)
1007 {
1008 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1009
1010 hh_dir = hppa_elf_hash_entry (eh_dir);
1011 hh_ind = hppa_elf_hash_entry (eh_ind);
1012
1013 if (hh_ind->dyn_relocs != NULL
1014 && eh_ind->root.type == bfd_link_hash_indirect)
1015 {
1016 if (hh_dir->dyn_relocs != NULL)
1017 {
1018 struct elf_dyn_relocs **hdh_pp;
1019 struct elf_dyn_relocs *hdh_p;
1020
1021 /* Add reloc counts against the indirect sym to the direct sym
1022 list. Merge any entries against the same section. */
1023 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1024 {
1025 struct elf_dyn_relocs *hdh_q;
1026
1027 for (hdh_q = hh_dir->dyn_relocs;
1028 hdh_q != NULL;
1029 hdh_q = hdh_q->next)
1030 if (hdh_q->sec == hdh_p->sec)
1031 {
1032 #if RELATIVE_DYNRELOCS
1033 hdh_q->pc_count += hdh_p->pc_count;
1034 #endif
1035 hdh_q->count += hdh_p->count;
1036 *hdh_pp = hdh_p->next;
1037 break;
1038 }
1039 if (hdh_q == NULL)
1040 hdh_pp = &hdh_p->next;
1041 }
1042 *hdh_pp = hh_dir->dyn_relocs;
1043 }
1044
1045 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1046 hh_ind->dyn_relocs = NULL;
1047 }
1048
1049 if (eh_ind->root.type == bfd_link_hash_indirect)
1050 {
1051 hh_dir->plabel |= hh_ind->plabel;
1052 hh_dir->tls_type |= hh_ind->tls_type;
1053 hh_ind->tls_type = GOT_UNKNOWN;
1054 }
1055
1056 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1057 }
1058
1059 static int
1060 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1061 int r_type, int is_local ATTRIBUTE_UNUSED)
1062 {
1063 /* For now we don't support linker optimizations. */
1064 return r_type;
1065 }
1066
1067 /* Return a pointer to the local GOT, PLT and TLS reference counts
1068 for ABFD. Returns NULL if the storage allocation fails. */
1069
1070 static bfd_signed_vma *
1071 hppa32_elf_local_refcounts (bfd *abfd)
1072 {
1073 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1074 bfd_signed_vma *local_refcounts;
1075
1076 local_refcounts = elf_local_got_refcounts (abfd);
1077 if (local_refcounts == NULL)
1078 {
1079 bfd_size_type size;
1080
1081 /* Allocate space for local GOT and PLT reference
1082 counts. Done this way to save polluting elf_obj_tdata
1083 with another target specific pointer. */
1084 size = symtab_hdr->sh_info;
1085 size *= 2 * sizeof (bfd_signed_vma);
1086 /* Add in space to store the local GOT TLS types. */
1087 size += symtab_hdr->sh_info;
1088 local_refcounts = bfd_zalloc (abfd, size);
1089 if (local_refcounts == NULL)
1090 return NULL;
1091 elf_local_got_refcounts (abfd) = local_refcounts;
1092 memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
1093 symtab_hdr->sh_info);
1094 }
1095 return local_refcounts;
1096 }
1097
1098
1099 /* Look through the relocs for a section during the first phase, and
1100 calculate needed space in the global offset table, procedure linkage
1101 table, and dynamic reloc sections. At this point we haven't
1102 necessarily read all the input files. */
1103
1104 static bfd_boolean
1105 elf32_hppa_check_relocs (bfd *abfd,
1106 struct bfd_link_info *info,
1107 asection *sec,
1108 const Elf_Internal_Rela *relocs)
1109 {
1110 Elf_Internal_Shdr *symtab_hdr;
1111 struct elf_link_hash_entry **eh_syms;
1112 const Elf_Internal_Rela *rela;
1113 const Elf_Internal_Rela *rela_end;
1114 struct elf32_hppa_link_hash_table *htab;
1115 asection *sreloc;
1116
1117 if (bfd_link_relocatable (info))
1118 return TRUE;
1119
1120 htab = hppa_link_hash_table (info);
1121 if (htab == NULL)
1122 return FALSE;
1123 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1124 eh_syms = elf_sym_hashes (abfd);
1125 sreloc = NULL;
1126
1127 rela_end = relocs + sec->reloc_count;
1128 for (rela = relocs; rela < rela_end; rela++)
1129 {
1130 enum {
1131 NEED_GOT = 1,
1132 NEED_PLT = 2,
1133 NEED_DYNREL = 4,
1134 PLT_PLABEL = 8
1135 };
1136
1137 unsigned int r_symndx, r_type;
1138 struct elf32_hppa_link_hash_entry *hh;
1139 int need_entry = 0;
1140
1141 r_symndx = ELF32_R_SYM (rela->r_info);
1142
1143 if (r_symndx < symtab_hdr->sh_info)
1144 hh = NULL;
1145 else
1146 {
1147 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1148 while (hh->eh.root.type == bfd_link_hash_indirect
1149 || hh->eh.root.type == bfd_link_hash_warning)
1150 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1151 }
1152
1153 r_type = ELF32_R_TYPE (rela->r_info);
1154 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1155
1156 switch (r_type)
1157 {
1158 case R_PARISC_DLTIND14F:
1159 case R_PARISC_DLTIND14R:
1160 case R_PARISC_DLTIND21L:
1161 /* This symbol requires a global offset table entry. */
1162 need_entry = NEED_GOT;
1163 break;
1164
1165 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1166 case R_PARISC_PLABEL21L:
1167 case R_PARISC_PLABEL32:
1168 /* If the addend is non-zero, we break badly. */
1169 if (rela->r_addend != 0)
1170 abort ();
1171
1172 /* If we are creating a shared library, then we need to
1173 create a PLT entry for all PLABELs, because PLABELs with
1174 local symbols may be passed via a pointer to another
1175 object. Additionally, output a dynamic relocation
1176 pointing to the PLT entry.
1177
1178 For executables, the original 32-bit ABI allowed two
1179 different styles of PLABELs (function pointers): For
1180 global functions, the PLABEL word points into the .plt
1181 two bytes past a (function address, gp) pair, and for
1182 local functions the PLABEL points directly at the
1183 function. The magic +2 for the first type allows us to
1184 differentiate between the two. As you can imagine, this
1185 is a real pain when it comes to generating code to call
1186 functions indirectly or to compare function pointers.
1187 We avoid the mess by always pointing a PLABEL into the
1188 .plt, even for local functions. */
1189 need_entry = PLT_PLABEL | NEED_PLT;
1190 if (bfd_link_pic (info))
1191 need_entry |= NEED_DYNREL;
1192 break;
1193
1194 case R_PARISC_PCREL12F:
1195 htab->has_12bit_branch = 1;
1196 goto branch_common;
1197
1198 case R_PARISC_PCREL17C:
1199 case R_PARISC_PCREL17F:
1200 htab->has_17bit_branch = 1;
1201 goto branch_common;
1202
1203 case R_PARISC_PCREL22F:
1204 htab->has_22bit_branch = 1;
1205 branch_common:
1206 /* Function calls might need to go through the .plt, and
1207 might require long branch stubs. */
1208 if (hh == NULL)
1209 {
1210 /* We know local syms won't need a .plt entry, and if
1211 they need a long branch stub we can't guarantee that
1212 we can reach the stub. So just flag an error later
1213 if we're doing a shared link and find we need a long
1214 branch stub. */
1215 continue;
1216 }
1217 else
1218 {
1219 /* Global symbols will need a .plt entry if they remain
1220 global, and in most cases won't need a long branch
1221 stub. Unfortunately, we have to cater for the case
1222 where a symbol is forced local by versioning, or due
1223 to symbolic linking, and we lose the .plt entry. */
1224 need_entry = NEED_PLT;
1225 if (hh->eh.type == STT_PARISC_MILLI)
1226 need_entry = 0;
1227 }
1228 break;
1229
1230 case R_PARISC_SEGBASE: /* Used to set segment base. */
1231 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1232 case R_PARISC_PCREL14F: /* PC relative load/store. */
1233 case R_PARISC_PCREL14R:
1234 case R_PARISC_PCREL17R: /* External branches. */
1235 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1236 case R_PARISC_PCREL32:
1237 /* We don't need to propagate the relocation if linking a
1238 shared object since these are section relative. */
1239 continue;
1240
1241 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1242 case R_PARISC_DPREL14R:
1243 case R_PARISC_DPREL21L:
1244 if (bfd_link_pic (info))
1245 {
1246 _bfd_error_handler
1247 /* xgettext:c-format */
1248 (_("%pB: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1249 abfd,
1250 elf_hppa_howto_table[r_type].name);
1251 bfd_set_error (bfd_error_bad_value);
1252 return FALSE;
1253 }
1254 /* Fall through. */
1255
1256 case R_PARISC_DIR17F: /* Used for external branches. */
1257 case R_PARISC_DIR17R:
1258 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1259 case R_PARISC_DIR14R:
1260 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1261 case R_PARISC_DIR32: /* .word relocs. */
1262 /* We may want to output a dynamic relocation later. */
1263 need_entry = NEED_DYNREL;
1264 break;
1265
1266 /* This relocation describes the C++ object vtable hierarchy.
1267 Reconstruct it for later use during GC. */
1268 case R_PARISC_GNU_VTINHERIT:
1269 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1270 return FALSE;
1271 continue;
1272
1273 /* This relocation describes which C++ vtable entries are actually
1274 used. Record for later use during GC. */
1275 case R_PARISC_GNU_VTENTRY:
1276 BFD_ASSERT (hh != NULL);
1277 if (hh != NULL
1278 && !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1279 return FALSE;
1280 continue;
1281
1282 case R_PARISC_TLS_GD21L:
1283 case R_PARISC_TLS_GD14R:
1284 case R_PARISC_TLS_LDM21L:
1285 case R_PARISC_TLS_LDM14R:
1286 need_entry = NEED_GOT;
1287 break;
1288
1289 case R_PARISC_TLS_IE21L:
1290 case R_PARISC_TLS_IE14R:
1291 if (bfd_link_dll (info))
1292 info->flags |= DF_STATIC_TLS;
1293 need_entry = NEED_GOT;
1294 break;
1295
1296 default:
1297 continue;
1298 }
1299
1300 /* Now carry out our orders. */
1301 if (need_entry & NEED_GOT)
1302 {
1303 int tls_type = GOT_NORMAL;
1304
1305 switch (r_type)
1306 {
1307 default:
1308 break;
1309 case R_PARISC_TLS_GD21L:
1310 case R_PARISC_TLS_GD14R:
1311 tls_type = GOT_TLS_GD;
1312 break;
1313 case R_PARISC_TLS_LDM21L:
1314 case R_PARISC_TLS_LDM14R:
1315 tls_type = GOT_TLS_LDM;
1316 break;
1317 case R_PARISC_TLS_IE21L:
1318 case R_PARISC_TLS_IE14R:
1319 tls_type = GOT_TLS_IE;
1320 break;
1321 }
1322
1323 /* Allocate space for a GOT entry, as well as a dynamic
1324 relocation for this entry. */
1325 if (htab->etab.sgot == NULL)
1326 {
1327 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1328 return FALSE;
1329 }
1330
1331 if (hh != NULL)
1332 {
1333 if (tls_type == GOT_TLS_LDM)
1334 htab->tls_ldm_got.refcount += 1;
1335 else
1336 hh->eh.got.refcount += 1;
1337 hh->tls_type |= tls_type;
1338 }
1339 else
1340 {
1341 bfd_signed_vma *local_got_refcounts;
1342
1343 /* This is a global offset table entry for a local symbol. */
1344 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1345 if (local_got_refcounts == NULL)
1346 return FALSE;
1347 if (tls_type == GOT_TLS_LDM)
1348 htab->tls_ldm_got.refcount += 1;
1349 else
1350 local_got_refcounts[r_symndx] += 1;
1351
1352 hppa_elf_local_got_tls_type (abfd) [r_symndx] |= tls_type;
1353 }
1354 }
1355
1356 if (need_entry & NEED_PLT)
1357 {
1358 /* If we are creating a shared library, and this is a reloc
1359 against a weak symbol or a global symbol in a dynamic
1360 object, then we will be creating an import stub and a
1361 .plt entry for the symbol. Similarly, on a normal link
1362 to symbols defined in a dynamic object we'll need the
1363 import stub and a .plt entry. We don't know yet whether
1364 the symbol is defined or not, so make an entry anyway and
1365 clean up later in adjust_dynamic_symbol. */
1366 if ((sec->flags & SEC_ALLOC) != 0)
1367 {
1368 if (hh != NULL)
1369 {
1370 hh->eh.needs_plt = 1;
1371 hh->eh.plt.refcount += 1;
1372
1373 /* If this .plt entry is for a plabel, mark it so
1374 that adjust_dynamic_symbol will keep the entry
1375 even if it appears to be local. */
1376 if (need_entry & PLT_PLABEL)
1377 hh->plabel = 1;
1378 }
1379 else if (need_entry & PLT_PLABEL)
1380 {
1381 bfd_signed_vma *local_got_refcounts;
1382 bfd_signed_vma *local_plt_refcounts;
1383
1384 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1385 if (local_got_refcounts == NULL)
1386 return FALSE;
1387 local_plt_refcounts = (local_got_refcounts
1388 + symtab_hdr->sh_info);
1389 local_plt_refcounts[r_symndx] += 1;
1390 }
1391 }
1392 }
1393
1394 if ((need_entry & NEED_DYNREL) != 0
1395 && (sec->flags & SEC_ALLOC) != 0)
1396 {
1397 /* Flag this symbol as having a non-got, non-plt reference
1398 so that we generate copy relocs if it turns out to be
1399 dynamic. */
1400 if (hh != NULL)
1401 hh->eh.non_got_ref = 1;
1402
1403 /* If we are creating a shared library then we need to copy
1404 the reloc into the shared library. However, if we are
1405 linking with -Bsymbolic, we need only copy absolute
1406 relocs or relocs against symbols that are not defined in
1407 an object we are including in the link. PC- or DP- or
1408 DLT-relative relocs against any local sym or global sym
1409 with DEF_REGULAR set, can be discarded. At this point we
1410 have not seen all the input files, so it is possible that
1411 DEF_REGULAR is not set now but will be set later (it is
1412 never cleared). We account for that possibility below by
1413 storing information in the dyn_relocs field of the
1414 hash table entry.
1415
1416 A similar situation to the -Bsymbolic case occurs when
1417 creating shared libraries and symbol visibility changes
1418 render the symbol local.
1419
1420 As it turns out, all the relocs we will be creating here
1421 are absolute, so we cannot remove them on -Bsymbolic
1422 links or visibility changes anyway. A STUB_REL reloc
1423 is absolute too, as in that case it is the reloc in the
1424 stub we will be creating, rather than copying the PCREL
1425 reloc in the branch.
1426
1427 If on the other hand, we are creating an executable, we
1428 may need to keep relocations for symbols satisfied by a
1429 dynamic library if we manage to avoid copy relocs for the
1430 symbol. */
1431 if ((bfd_link_pic (info)
1432 && (IS_ABSOLUTE_RELOC (r_type)
1433 || (hh != NULL
1434 && (!SYMBOLIC_BIND (info, &hh->eh)
1435 || hh->eh.root.type == bfd_link_hash_defweak
1436 || !hh->eh.def_regular))))
1437 || (ELIMINATE_COPY_RELOCS
1438 && !bfd_link_pic (info)
1439 && hh != NULL
1440 && (hh->eh.root.type == bfd_link_hash_defweak
1441 || !hh->eh.def_regular)))
1442 {
1443 struct elf_dyn_relocs *hdh_p;
1444 struct elf_dyn_relocs **hdh_head;
1445
1446 /* Create a reloc section in dynobj and make room for
1447 this reloc. */
1448 if (sreloc == NULL)
1449 {
1450 sreloc = _bfd_elf_make_dynamic_reloc_section
1451 (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
1452
1453 if (sreloc == NULL)
1454 {
1455 bfd_set_error (bfd_error_bad_value);
1456 return FALSE;
1457 }
1458 }
1459
1460 /* If this is a global symbol, we count the number of
1461 relocations we need for this symbol. */
1462 if (hh != NULL)
1463 {
1464 hdh_head = &hh->dyn_relocs;
1465 }
1466 else
1467 {
1468 /* Track dynamic relocs needed for local syms too.
1469 We really need local syms available to do this
1470 easily. Oh well. */
1471 asection *sr;
1472 void *vpp;
1473 Elf_Internal_Sym *isym;
1474
1475 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1476 abfd, r_symndx);
1477 if (isym == NULL)
1478 return FALSE;
1479
1480 sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
1481 if (sr == NULL)
1482 sr = sec;
1483
1484 vpp = &elf_section_data (sr)->local_dynrel;
1485 hdh_head = (struct elf_dyn_relocs **) vpp;
1486 }
1487
1488 hdh_p = *hdh_head;
1489 if (hdh_p == NULL || hdh_p->sec != sec)
1490 {
1491 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1492 if (hdh_p == NULL)
1493 return FALSE;
1494 hdh_p->next = *hdh_head;
1495 *hdh_head = hdh_p;
1496 hdh_p->sec = sec;
1497 hdh_p->count = 0;
1498 #if RELATIVE_DYNRELOCS
1499 hdh_p->pc_count = 0;
1500 #endif
1501 }
1502
1503 hdh_p->count += 1;
1504 #if RELATIVE_DYNRELOCS
1505 if (!IS_ABSOLUTE_RELOC (rtype))
1506 hdh_p->pc_count += 1;
1507 #endif
1508 }
1509 }
1510 }
1511
1512 return TRUE;
1513 }
1514
1515 /* Return the section that should be marked against garbage collection
1516 for a given relocation. */
1517
1518 static asection *
1519 elf32_hppa_gc_mark_hook (asection *sec,
1520 struct bfd_link_info *info,
1521 Elf_Internal_Rela *rela,
1522 struct elf_link_hash_entry *hh,
1523 Elf_Internal_Sym *sym)
1524 {
1525 if (hh != NULL)
1526 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1527 {
1528 case R_PARISC_GNU_VTINHERIT:
1529 case R_PARISC_GNU_VTENTRY:
1530 return NULL;
1531 }
1532
1533 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1534 }
1535
1536 /* Support for core dump NOTE sections. */
1537
1538 static bfd_boolean
1539 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1540 {
1541 int offset;
1542 size_t size;
1543
1544 switch (note->descsz)
1545 {
1546 default:
1547 return FALSE;
1548
1549 case 396: /* Linux/hppa */
1550 /* pr_cursig */
1551 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1552
1553 /* pr_pid */
1554 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
1555
1556 /* pr_reg */
1557 offset = 72;
1558 size = 320;
1559
1560 break;
1561 }
1562
1563 /* Make a ".reg/999" section. */
1564 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1565 size, note->descpos + offset);
1566 }
1567
1568 static bfd_boolean
1569 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1570 {
1571 switch (note->descsz)
1572 {
1573 default:
1574 return FALSE;
1575
1576 case 124: /* Linux/hppa elf_prpsinfo. */
1577 elf_tdata (abfd)->core->program
1578 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1579 elf_tdata (abfd)->core->command
1580 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1581 }
1582
1583 /* Note that for some reason, a spurious space is tacked
1584 onto the end of the args in some (at least one anyway)
1585 implementations, so strip it off if it exists. */
1586 {
1587 char *command = elf_tdata (abfd)->core->command;
1588 int n = strlen (command);
1589
1590 if (0 < n && command[n - 1] == ' ')
1591 command[n - 1] = '\0';
1592 }
1593
1594 return TRUE;
1595 }
1596
1597 /* Our own version of hide_symbol, so that we can keep plt entries for
1598 plabels. */
1599
1600 static void
1601 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1602 struct elf_link_hash_entry *eh,
1603 bfd_boolean force_local)
1604 {
1605 if (force_local)
1606 {
1607 eh->forced_local = 1;
1608 if (eh->dynindx != -1)
1609 {
1610 eh->dynindx = -1;
1611 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1612 eh->dynstr_index);
1613 }
1614
1615 /* PR 16082: Remove version information from hidden symbol. */
1616 eh->verinfo.verdef = NULL;
1617 eh->verinfo.vertree = NULL;
1618 }
1619
1620 /* STT_GNU_IFUNC symbol must go through PLT. */
1621 if (! hppa_elf_hash_entry (eh)->plabel
1622 && eh->type != STT_GNU_IFUNC)
1623 {
1624 eh->needs_plt = 0;
1625 eh->plt = elf_hash_table (info)->init_plt_offset;
1626 }
1627 }
1628
1629 /* Find any dynamic relocs that apply to read-only sections. */
1630
1631 static asection *
1632 readonly_dynrelocs (struct elf_link_hash_entry *eh)
1633 {
1634 struct elf32_hppa_link_hash_entry *hh;
1635 struct elf_dyn_relocs *hdh_p;
1636
1637 hh = hppa_elf_hash_entry (eh);
1638 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->next)
1639 {
1640 asection *sec = hdh_p->sec->output_section;
1641
1642 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1643 return hdh_p->sec;
1644 }
1645 return NULL;
1646 }
1647
1648 /* Return true if we have dynamic relocs against H or any of its weak
1649 aliases, that apply to read-only sections. Cannot be used after
1650 size_dynamic_sections. */
1651
1652 static bfd_boolean
1653 alias_readonly_dynrelocs (struct elf_link_hash_entry *eh)
1654 {
1655 struct elf32_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1656 do
1657 {
1658 if (readonly_dynrelocs (&hh->eh))
1659 return TRUE;
1660 hh = hppa_elf_hash_entry (hh->eh.u.alias);
1661 } while (hh != NULL && &hh->eh != eh);
1662
1663 return FALSE;
1664 }
1665
1666 /* Adjust a symbol defined by a dynamic object and referenced by a
1667 regular object. The current definition is in some section of the
1668 dynamic object, but we're not including those sections. We have to
1669 change the definition to something the rest of the link can
1670 understand. */
1671
1672 static bfd_boolean
1673 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1674 struct elf_link_hash_entry *eh)
1675 {
1676 struct elf32_hppa_link_hash_table *htab;
1677 asection *sec, *srel;
1678
1679 /* If this is a function, put it in the procedure linkage table. We
1680 will fill in the contents of the procedure linkage table later. */
1681 if (eh->type == STT_FUNC
1682 || eh->needs_plt)
1683 {
1684 bfd_boolean local = (SYMBOL_CALLS_LOCAL (info, eh)
1685 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh));
1686 /* Discard dyn_relocs when non-pic if we've decided that a
1687 function symbol is local. */
1688 if (!bfd_link_pic (info) && local)
1689 hppa_elf_hash_entry (eh)->dyn_relocs = NULL;
1690
1691 /* If the symbol is used by a plabel, we must allocate a PLT slot.
1692 The refcounts are not reliable when it has been hidden since
1693 hide_symbol can be called before the plabel flag is set. */
1694 if (hppa_elf_hash_entry (eh)->plabel)
1695 eh->plt.refcount = 1;
1696
1697 /* Note that unlike some other backends, the refcount is not
1698 incremented for a non-call (and non-plabel) function reference. */
1699 else if (eh->plt.refcount <= 0
1700 || local)
1701 {
1702 /* The .plt entry is not needed when:
1703 a) Garbage collection has removed all references to the
1704 symbol, or
1705 b) We know for certain the symbol is defined in this
1706 object, and it's not a weak definition, nor is the symbol
1707 used by a plabel relocation. Either this object is the
1708 application or we are doing a shared symbolic link. */
1709 eh->plt.offset = (bfd_vma) -1;
1710 eh->needs_plt = 0;
1711 }
1712
1713 /* Unlike other targets, elf32-hppa.c does not define a function
1714 symbol in a non-pic executable on PLT stub code, so we don't
1715 have a local definition in that case. ie. dyn_relocs can't
1716 be discarded. */
1717
1718 /* Function symbols can't have copy relocs. */
1719 return TRUE;
1720 }
1721 else
1722 eh->plt.offset = (bfd_vma) -1;
1723
1724 htab = hppa_link_hash_table (info);
1725 if (htab == NULL)
1726 return FALSE;
1727
1728 /* If this is a weak symbol, and there is a real definition, the
1729 processor independent code will have arranged for us to see the
1730 real definition first, and we can just use the same value. */
1731 if (eh->is_weakalias)
1732 {
1733 struct elf_link_hash_entry *def = weakdef (eh);
1734 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
1735 eh->root.u.def.section = def->root.u.def.section;
1736 eh->root.u.def.value = def->root.u.def.value;
1737 if (def->root.u.def.section == htab->etab.sdynbss
1738 || def->root.u.def.section == htab->etab.sdynrelro)
1739 hppa_elf_hash_entry (eh)->dyn_relocs = NULL;
1740 return TRUE;
1741 }
1742
1743 /* This is a reference to a symbol defined by a dynamic object which
1744 is not a function. */
1745
1746 /* If we are creating a shared library, we must presume that the
1747 only references to the symbol are via the global offset table.
1748 For such cases we need not do anything here; the relocations will
1749 be handled correctly by relocate_section. */
1750 if (bfd_link_pic (info))
1751 return TRUE;
1752
1753 /* If there are no references to this symbol that do not use the
1754 GOT, we don't need to generate a copy reloc. */
1755 if (!eh->non_got_ref)
1756 return TRUE;
1757
1758 /* If -z nocopyreloc was given, we won't generate them either. */
1759 if (info->nocopyreloc)
1760 return TRUE;
1761
1762 /* If we don't find any dynamic relocs in read-only sections, then
1763 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1764 if (ELIMINATE_COPY_RELOCS
1765 && !alias_readonly_dynrelocs (eh))
1766 return TRUE;
1767
1768 /* We must allocate the symbol in our .dynbss section, which will
1769 become part of the .bss section of the executable. There will be
1770 an entry for this symbol in the .dynsym section. The dynamic
1771 object will contain position independent code, so all references
1772 from the dynamic object to this symbol will go through the global
1773 offset table. The dynamic linker will use the .dynsym entry to
1774 determine the address it must put in the global offset table, so
1775 both the dynamic object and the regular object will refer to the
1776 same memory location for the variable. */
1777 if ((eh->root.u.def.section->flags & SEC_READONLY) != 0)
1778 {
1779 sec = htab->etab.sdynrelro;
1780 srel = htab->etab.sreldynrelro;
1781 }
1782 else
1783 {
1784 sec = htab->etab.sdynbss;
1785 srel = htab->etab.srelbss;
1786 }
1787 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0 && eh->size != 0)
1788 {
1789 /* We must generate a COPY reloc to tell the dynamic linker to
1790 copy the initial value out of the dynamic object and into the
1791 runtime process image. */
1792 srel->size += sizeof (Elf32_External_Rela);
1793 eh->needs_copy = 1;
1794 }
1795
1796 /* We no longer want dyn_relocs. */
1797 hppa_elf_hash_entry (eh)->dyn_relocs = NULL;
1798 return _bfd_elf_adjust_dynamic_copy (info, eh, sec);
1799 }
1800
1801 /* If EH is undefined, make it dynamic if that makes sense. */
1802
1803 static bfd_boolean
1804 ensure_undef_dynamic (struct bfd_link_info *info,
1805 struct elf_link_hash_entry *eh)
1806 {
1807 struct elf_link_hash_table *htab = elf_hash_table (info);
1808
1809 if (htab->dynamic_sections_created
1810 && (eh->root.type == bfd_link_hash_undefweak
1811 || eh->root.type == bfd_link_hash_undefined)
1812 && eh->dynindx == -1
1813 && !eh->forced_local
1814 && eh->type != STT_PARISC_MILLI
1815 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh)
1816 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
1817 return bfd_elf_link_record_dynamic_symbol (info, eh);
1818 return TRUE;
1819 }
1820
1821 /* Allocate space in the .plt for entries that won't have relocations.
1822 ie. plabel entries. */
1823
1824 static bfd_boolean
1825 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1826 {
1827 struct bfd_link_info *info;
1828 struct elf32_hppa_link_hash_table *htab;
1829 struct elf32_hppa_link_hash_entry *hh;
1830 asection *sec;
1831
1832 if (eh->root.type == bfd_link_hash_indirect)
1833 return TRUE;
1834
1835 info = (struct bfd_link_info *) inf;
1836 hh = hppa_elf_hash_entry (eh);
1837 htab = hppa_link_hash_table (info);
1838 if (htab == NULL)
1839 return FALSE;
1840
1841 if (htab->etab.dynamic_sections_created
1842 && eh->plt.refcount > 0)
1843 {
1844 if (!ensure_undef_dynamic (info, eh))
1845 return FALSE;
1846
1847 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), eh))
1848 {
1849 /* Allocate these later. From this point on, h->plabel
1850 means that the plt entry is only used by a plabel.
1851 We'll be using a normal plt entry for this symbol, so
1852 clear the plabel indicator. */
1853
1854 hh->plabel = 0;
1855 }
1856 else if (hh->plabel)
1857 {
1858 /* Make an entry in the .plt section for plabel references
1859 that won't have a .plt entry for other reasons. */
1860 sec = htab->etab.splt;
1861 eh->plt.offset = sec->size;
1862 sec->size += PLT_ENTRY_SIZE;
1863 if (bfd_link_pic (info))
1864 htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
1865 }
1866 else
1867 {
1868 /* No .plt entry needed. */
1869 eh->plt.offset = (bfd_vma) -1;
1870 eh->needs_plt = 0;
1871 }
1872 }
1873 else
1874 {
1875 eh->plt.offset = (bfd_vma) -1;
1876 eh->needs_plt = 0;
1877 }
1878
1879 return TRUE;
1880 }
1881
1882 /* Calculate size of GOT entries for symbol given its TLS_TYPE. */
1883
1884 static inline unsigned int
1885 got_entries_needed (int tls_type)
1886 {
1887 unsigned int need = 0;
1888
1889 if ((tls_type & GOT_NORMAL) != 0)
1890 need += GOT_ENTRY_SIZE;
1891 if ((tls_type & GOT_TLS_GD) != 0)
1892 need += GOT_ENTRY_SIZE * 2;
1893 if ((tls_type & GOT_TLS_IE) != 0)
1894 need += GOT_ENTRY_SIZE;
1895 return need;
1896 }
1897
1898 /* Calculate size of relocs needed for symbol given its TLS_TYPE and
1899 NEEDed GOT entries. TPREL_KNOWN says a TPREL offset can be
1900 calculated at link time. DTPREL_KNOWN says the same for a DTPREL
1901 offset. */
1902
1903 static inline unsigned int
1904 got_relocs_needed (int tls_type, unsigned int need,
1905 bfd_boolean dtprel_known, bfd_boolean tprel_known)
1906 {
1907 /* All the entries we allocated need relocs.
1908 Except for GD and IE with local symbols. */
1909 if ((tls_type & GOT_TLS_GD) != 0 && dtprel_known)
1910 need -= GOT_ENTRY_SIZE;
1911 if ((tls_type & GOT_TLS_IE) != 0 && tprel_known)
1912 need -= GOT_ENTRY_SIZE;
1913 return need * sizeof (Elf32_External_Rela) / GOT_ENTRY_SIZE;
1914 }
1915
1916 /* Allocate space in .plt, .got and associated reloc sections for
1917 global syms. */
1918
1919 static bfd_boolean
1920 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
1921 {
1922 struct bfd_link_info *info;
1923 struct elf32_hppa_link_hash_table *htab;
1924 asection *sec;
1925 struct elf32_hppa_link_hash_entry *hh;
1926 struct elf_dyn_relocs *hdh_p;
1927
1928 if (eh->root.type == bfd_link_hash_indirect)
1929 return TRUE;
1930
1931 info = inf;
1932 htab = hppa_link_hash_table (info);
1933 if (htab == NULL)
1934 return FALSE;
1935
1936 hh = hppa_elf_hash_entry (eh);
1937
1938 if (htab->etab.dynamic_sections_created
1939 && eh->plt.offset != (bfd_vma) -1
1940 && !hh->plabel
1941 && eh->plt.refcount > 0)
1942 {
1943 /* Make an entry in the .plt section. */
1944 sec = htab->etab.splt;
1945 eh->plt.offset = sec->size;
1946 sec->size += PLT_ENTRY_SIZE;
1947
1948 /* We also need to make an entry in the .rela.plt section. */
1949 htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
1950 htab->need_plt_stub = 1;
1951 }
1952
1953 if (eh->got.refcount > 0)
1954 {
1955 unsigned int need;
1956
1957 if (!ensure_undef_dynamic (info, eh))
1958 return FALSE;
1959
1960 sec = htab->etab.sgot;
1961 eh->got.offset = sec->size;
1962 need = got_entries_needed (hh->tls_type);
1963 sec->size += need;
1964 if (htab->etab.dynamic_sections_created
1965 && (bfd_link_dll (info)
1966 || (bfd_link_pic (info) && (hh->tls_type & GOT_NORMAL) != 0)
1967 || (eh->dynindx != -1
1968 && !SYMBOL_REFERENCES_LOCAL (info, eh)))
1969 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
1970 {
1971 bfd_boolean local = SYMBOL_REFERENCES_LOCAL (info, eh);
1972 htab->etab.srelgot->size
1973 += got_relocs_needed (hh->tls_type, need, local,
1974 local && bfd_link_executable (info));
1975 }
1976 }
1977 else
1978 eh->got.offset = (bfd_vma) -1;
1979
1980 /* If no dynamic sections we can't have dynamic relocs. */
1981 if (!htab->etab.dynamic_sections_created)
1982 hh->dyn_relocs = NULL;
1983
1984 /* Discard relocs on undefined syms with non-default visibility. */
1985 else if ((eh->root.type == bfd_link_hash_undefined
1986 && ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
1987 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
1988 hh->dyn_relocs = NULL;
1989
1990 if (hh->dyn_relocs == NULL)
1991 return TRUE;
1992
1993 /* If this is a -Bsymbolic shared link, then we need to discard all
1994 space allocated for dynamic pc-relative relocs against symbols
1995 defined in a regular object. For the normal shared case, discard
1996 space for relocs that have become local due to symbol visibility
1997 changes. */
1998 if (bfd_link_pic (info))
1999 {
2000 #if RELATIVE_DYNRELOCS
2001 if (SYMBOL_CALLS_LOCAL (info, eh))
2002 {
2003 struct elf_dyn_relocs **hdh_pp;
2004
2005 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2006 {
2007 hdh_p->count -= hdh_p->pc_count;
2008 hdh_p->pc_count = 0;
2009 if (hdh_p->count == 0)
2010 *hdh_pp = hdh_p->next;
2011 else
2012 hdh_pp = &hdh_p->next;
2013 }
2014 }
2015 #endif
2016
2017 if (hh->dyn_relocs != NULL)
2018 {
2019 if (!ensure_undef_dynamic (info, eh))
2020 return FALSE;
2021 }
2022 }
2023 else if (ELIMINATE_COPY_RELOCS)
2024 {
2025 /* For the non-shared case, discard space for relocs against
2026 symbols which turn out to need copy relocs or are not
2027 dynamic. */
2028
2029 if (eh->dynamic_adjusted
2030 && !eh->def_regular
2031 && !ELF_COMMON_DEF_P (eh))
2032 {
2033 if (!ensure_undef_dynamic (info, eh))
2034 return FALSE;
2035
2036 if (eh->dynindx == -1)
2037 hh->dyn_relocs = NULL;
2038 }
2039 else
2040 hh->dyn_relocs = NULL;
2041 }
2042
2043 /* Finally, allocate space. */
2044 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->next)
2045 {
2046 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2047 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2048 }
2049
2050 return TRUE;
2051 }
2052
2053 /* This function is called via elf_link_hash_traverse to force
2054 millicode symbols local so they do not end up as globals in the
2055 dynamic symbol table. We ought to be able to do this in
2056 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2057 for all dynamic symbols. Arguably, this is a bug in
2058 elf_adjust_dynamic_symbol. */
2059
2060 static bfd_boolean
2061 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2062 struct bfd_link_info *info)
2063 {
2064 if (eh->type == STT_PARISC_MILLI
2065 && !eh->forced_local)
2066 {
2067 elf32_hppa_hide_symbol (info, eh, TRUE);
2068 }
2069 return TRUE;
2070 }
2071
2072 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
2073 read-only sections. */
2074
2075 static bfd_boolean
2076 maybe_set_textrel (struct elf_link_hash_entry *eh, void *inf)
2077 {
2078 asection *sec;
2079
2080 if (eh->root.type == bfd_link_hash_indirect)
2081 return TRUE;
2082
2083 sec = readonly_dynrelocs (eh);
2084 if (sec != NULL)
2085 {
2086 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2087
2088 info->flags |= DF_TEXTREL;
2089 info->callbacks->minfo
2090 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
2091 sec->owner, eh->root.root.string, sec);
2092
2093 /* Not an error, just cut short the traversal. */
2094 return FALSE;
2095 }
2096 return TRUE;
2097 }
2098
2099 /* Set the sizes of the dynamic sections. */
2100
2101 static bfd_boolean
2102 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2103 struct bfd_link_info *info)
2104 {
2105 struct elf32_hppa_link_hash_table *htab;
2106 bfd *dynobj;
2107 bfd *ibfd;
2108 asection *sec;
2109 bfd_boolean relocs;
2110
2111 htab = hppa_link_hash_table (info);
2112 if (htab == NULL)
2113 return FALSE;
2114
2115 dynobj = htab->etab.dynobj;
2116 if (dynobj == NULL)
2117 abort ();
2118
2119 if (htab->etab.dynamic_sections_created)
2120 {
2121 /* Set the contents of the .interp section to the interpreter. */
2122 if (bfd_link_executable (info) && !info->nointerp)
2123 {
2124 sec = bfd_get_linker_section (dynobj, ".interp");
2125 if (sec == NULL)
2126 abort ();
2127 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2128 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2129 }
2130
2131 /* Force millicode symbols local. */
2132 elf_link_hash_traverse (&htab->etab,
2133 clobber_millicode_symbols,
2134 info);
2135 }
2136
2137 /* Set up .got and .plt offsets for local syms, and space for local
2138 dynamic relocs. */
2139 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
2140 {
2141 bfd_signed_vma *local_got;
2142 bfd_signed_vma *end_local_got;
2143 bfd_signed_vma *local_plt;
2144 bfd_signed_vma *end_local_plt;
2145 bfd_size_type locsymcount;
2146 Elf_Internal_Shdr *symtab_hdr;
2147 asection *srel;
2148 char *local_tls_type;
2149
2150 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2151 continue;
2152
2153 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2154 {
2155 struct elf_dyn_relocs *hdh_p;
2156
2157 for (hdh_p = ((struct elf_dyn_relocs *)
2158 elf_section_data (sec)->local_dynrel);
2159 hdh_p != NULL;
2160 hdh_p = hdh_p->next)
2161 {
2162 if (!bfd_is_abs_section (hdh_p->sec)
2163 && bfd_is_abs_section (hdh_p->sec->output_section))
2164 {
2165 /* Input section has been discarded, either because
2166 it is a copy of a linkonce section or due to
2167 linker script /DISCARD/, so we'll be discarding
2168 the relocs too. */
2169 }
2170 else if (hdh_p->count != 0)
2171 {
2172 srel = elf_section_data (hdh_p->sec)->sreloc;
2173 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2174 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2175 info->flags |= DF_TEXTREL;
2176 }
2177 }
2178 }
2179
2180 local_got = elf_local_got_refcounts (ibfd);
2181 if (!local_got)
2182 continue;
2183
2184 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2185 locsymcount = symtab_hdr->sh_info;
2186 end_local_got = local_got + locsymcount;
2187 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2188 sec = htab->etab.sgot;
2189 srel = htab->etab.srelgot;
2190 for (; local_got < end_local_got; ++local_got)
2191 {
2192 if (*local_got > 0)
2193 {
2194 unsigned int need;
2195
2196 *local_got = sec->size;
2197 need = got_entries_needed (*local_tls_type);
2198 sec->size += need;
2199 if (bfd_link_dll (info)
2200 || (bfd_link_pic (info)
2201 && (*local_tls_type & GOT_NORMAL) != 0))
2202 htab->etab.srelgot->size
2203 += got_relocs_needed (*local_tls_type, need, TRUE,
2204 bfd_link_executable (info));
2205 }
2206 else
2207 *local_got = (bfd_vma) -1;
2208
2209 ++local_tls_type;
2210 }
2211
2212 local_plt = end_local_got;
2213 end_local_plt = local_plt + locsymcount;
2214 if (! htab->etab.dynamic_sections_created)
2215 {
2216 /* Won't be used, but be safe. */
2217 for (; local_plt < end_local_plt; ++local_plt)
2218 *local_plt = (bfd_vma) -1;
2219 }
2220 else
2221 {
2222 sec = htab->etab.splt;
2223 srel = htab->etab.srelplt;
2224 for (; local_plt < end_local_plt; ++local_plt)
2225 {
2226 if (*local_plt > 0)
2227 {
2228 *local_plt = sec->size;
2229 sec->size += PLT_ENTRY_SIZE;
2230 if (bfd_link_pic (info))
2231 srel->size += sizeof (Elf32_External_Rela);
2232 }
2233 else
2234 *local_plt = (bfd_vma) -1;
2235 }
2236 }
2237 }
2238
2239 if (htab->tls_ldm_got.refcount > 0)
2240 {
2241 /* Allocate 2 got entries and 1 dynamic reloc for
2242 R_PARISC_TLS_DTPMOD32 relocs. */
2243 htab->tls_ldm_got.offset = htab->etab.sgot->size;
2244 htab->etab.sgot->size += (GOT_ENTRY_SIZE * 2);
2245 htab->etab.srelgot->size += sizeof (Elf32_External_Rela);
2246 }
2247 else
2248 htab->tls_ldm_got.offset = -1;
2249
2250 /* Do all the .plt entries without relocs first. The dynamic linker
2251 uses the last .plt reloc to find the end of the .plt (and hence
2252 the start of the .got) for lazy linking. */
2253 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2254
2255 /* Allocate global sym .plt and .got entries, and space for global
2256 sym dynamic relocs. */
2257 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2258
2259 /* The check_relocs and adjust_dynamic_symbol entry points have
2260 determined the sizes of the various dynamic sections. Allocate
2261 memory for them. */
2262 relocs = FALSE;
2263 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2264 {
2265 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2266 continue;
2267
2268 if (sec == htab->etab.splt)
2269 {
2270 if (htab->need_plt_stub)
2271 {
2272 /* Make space for the plt stub at the end of the .plt
2273 section. We want this stub right at the end, up
2274 against the .got section. */
2275 int gotalign = bfd_section_alignment (dynobj, htab->etab.sgot);
2276 int pltalign = bfd_section_alignment (dynobj, sec);
2277 bfd_size_type mask;
2278
2279 if (gotalign > pltalign)
2280 (void) bfd_set_section_alignment (dynobj, sec, gotalign);
2281 mask = ((bfd_size_type) 1 << gotalign) - 1;
2282 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2283 }
2284 }
2285 else if (sec == htab->etab.sgot
2286 || sec == htab->etab.sdynbss
2287 || sec == htab->etab.sdynrelro)
2288 ;
2289 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
2290 {
2291 if (sec->size != 0)
2292 {
2293 /* Remember whether there are any reloc sections other
2294 than .rela.plt. */
2295 if (sec != htab->etab.srelplt)
2296 relocs = TRUE;
2297
2298 /* We use the reloc_count field as a counter if we need
2299 to copy relocs into the output file. */
2300 sec->reloc_count = 0;
2301 }
2302 }
2303 else
2304 {
2305 /* It's not one of our sections, so don't allocate space. */
2306 continue;
2307 }
2308
2309 if (sec->size == 0)
2310 {
2311 /* If we don't need this section, strip it from the
2312 output file. This is mostly to handle .rela.bss and
2313 .rela.plt. We must create both sections in
2314 create_dynamic_sections, because they must be created
2315 before the linker maps input sections to output
2316 sections. The linker does that before
2317 adjust_dynamic_symbol is called, and it is that
2318 function which decides whether anything needs to go
2319 into these sections. */
2320 sec->flags |= SEC_EXCLUDE;
2321 continue;
2322 }
2323
2324 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2325 continue;
2326
2327 /* Allocate memory for the section contents. Zero it, because
2328 we may not fill in all the reloc sections. */
2329 sec->contents = bfd_zalloc (dynobj, sec->size);
2330 if (sec->contents == NULL)
2331 return FALSE;
2332 }
2333
2334 if (htab->etab.dynamic_sections_created)
2335 {
2336 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2337 actually has nothing to do with the PLT, it is how we
2338 communicate the LTP value of a load module to the dynamic
2339 linker. */
2340 #define add_dynamic_entry(TAG, VAL) \
2341 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2342
2343 if (!add_dynamic_entry (DT_PLTGOT, 0))
2344 return FALSE;
2345
2346 /* Add some entries to the .dynamic section. We fill in the
2347 values later, in elf32_hppa_finish_dynamic_sections, but we
2348 must add the entries now so that we get the correct size for
2349 the .dynamic section. The DT_DEBUG entry is filled in by the
2350 dynamic linker and used by the debugger. */
2351 if (bfd_link_executable (info))
2352 {
2353 if (!add_dynamic_entry (DT_DEBUG, 0))
2354 return FALSE;
2355 }
2356
2357 if (htab->etab.srelplt->size != 0)
2358 {
2359 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2360 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2361 || !add_dynamic_entry (DT_JMPREL, 0))
2362 return FALSE;
2363 }
2364
2365 if (relocs)
2366 {
2367 if (!add_dynamic_entry (DT_RELA, 0)
2368 || !add_dynamic_entry (DT_RELASZ, 0)
2369 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2370 return FALSE;
2371
2372 /* If any dynamic relocs apply to a read-only section,
2373 then we need a DT_TEXTREL entry. */
2374 if ((info->flags & DF_TEXTREL) == 0)
2375 elf_link_hash_traverse (&htab->etab, maybe_set_textrel, info);
2376
2377 if ((info->flags & DF_TEXTREL) != 0)
2378 {
2379 if (!add_dynamic_entry (DT_TEXTREL, 0))
2380 return FALSE;
2381 }
2382 }
2383 }
2384 #undef add_dynamic_entry
2385
2386 return TRUE;
2387 }
2388
2389 /* External entry points for sizing and building linker stubs. */
2390
2391 /* Set up various things so that we can make a list of input sections
2392 for each output section included in the link. Returns -1 on error,
2393 0 when no stubs will be needed, and 1 on success. */
2394
2395 int
2396 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2397 {
2398 bfd *input_bfd;
2399 unsigned int bfd_count;
2400 unsigned int top_id, top_index;
2401 asection *section;
2402 asection **input_list, **list;
2403 bfd_size_type amt;
2404 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2405
2406 if (htab == NULL)
2407 return -1;
2408
2409 /* Count the number of input BFDs and find the top input section id. */
2410 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2411 input_bfd != NULL;
2412 input_bfd = input_bfd->link.next)
2413 {
2414 bfd_count += 1;
2415 for (section = input_bfd->sections;
2416 section != NULL;
2417 section = section->next)
2418 {
2419 if (top_id < section->id)
2420 top_id = section->id;
2421 }
2422 }
2423 htab->bfd_count = bfd_count;
2424
2425 amt = sizeof (struct map_stub) * (top_id + 1);
2426 htab->stub_group = bfd_zmalloc (amt);
2427 if (htab->stub_group == NULL)
2428 return -1;
2429
2430 /* We can't use output_bfd->section_count here to find the top output
2431 section index as some sections may have been removed, and
2432 strip_excluded_output_sections doesn't renumber the indices. */
2433 for (section = output_bfd->sections, top_index = 0;
2434 section != NULL;
2435 section = section->next)
2436 {
2437 if (top_index < section->index)
2438 top_index = section->index;
2439 }
2440
2441 htab->top_index = top_index;
2442 amt = sizeof (asection *) * (top_index + 1);
2443 input_list = bfd_malloc (amt);
2444 htab->input_list = input_list;
2445 if (input_list == NULL)
2446 return -1;
2447
2448 /* For sections we aren't interested in, mark their entries with a
2449 value we can check later. */
2450 list = input_list + top_index;
2451 do
2452 *list = bfd_abs_section_ptr;
2453 while (list-- != input_list);
2454
2455 for (section = output_bfd->sections;
2456 section != NULL;
2457 section = section->next)
2458 {
2459 if ((section->flags & SEC_CODE) != 0)
2460 input_list[section->index] = NULL;
2461 }
2462
2463 return 1;
2464 }
2465
2466 /* The linker repeatedly calls this function for each input section,
2467 in the order that input sections are linked into output sections.
2468 Build lists of input sections to determine groupings between which
2469 we may insert linker stubs. */
2470
2471 void
2472 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2473 {
2474 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2475
2476 if (htab == NULL)
2477 return;
2478
2479 if (isec->output_section->index <= htab->top_index)
2480 {
2481 asection **list = htab->input_list + isec->output_section->index;
2482 if (*list != bfd_abs_section_ptr)
2483 {
2484 /* Steal the link_sec pointer for our list. */
2485 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2486 /* This happens to make the list in reverse order,
2487 which is what we want. */
2488 PREV_SEC (isec) = *list;
2489 *list = isec;
2490 }
2491 }
2492 }
2493
2494 /* See whether we can group stub sections together. Grouping stub
2495 sections may result in fewer stubs. More importantly, we need to
2496 put all .init* and .fini* stubs at the beginning of the .init or
2497 .fini output sections respectively, because glibc splits the
2498 _init and _fini functions into multiple parts. Putting a stub in
2499 the middle of a function is not a good idea. */
2500
2501 static void
2502 group_sections (struct elf32_hppa_link_hash_table *htab,
2503 bfd_size_type stub_group_size,
2504 bfd_boolean stubs_always_before_branch)
2505 {
2506 asection **list = htab->input_list + htab->top_index;
2507 do
2508 {
2509 asection *tail = *list;
2510 if (tail == bfd_abs_section_ptr)
2511 continue;
2512 while (tail != NULL)
2513 {
2514 asection *curr;
2515 asection *prev;
2516 bfd_size_type total;
2517 bfd_boolean big_sec;
2518
2519 curr = tail;
2520 total = tail->size;
2521 big_sec = total >= stub_group_size;
2522
2523 while ((prev = PREV_SEC (curr)) != NULL
2524 && ((total += curr->output_offset - prev->output_offset)
2525 < stub_group_size))
2526 curr = prev;
2527
2528 /* OK, the size from the start of CURR to the end is less
2529 than 240000 bytes and thus can be handled by one stub
2530 section. (or the tail section is itself larger than
2531 240000 bytes, in which case we may be toast.)
2532 We should really be keeping track of the total size of
2533 stubs added here, as stubs contribute to the final output
2534 section size. That's a little tricky, and this way will
2535 only break if stubs added total more than 22144 bytes, or
2536 2768 long branch stubs. It seems unlikely for more than
2537 2768 different functions to be called, especially from
2538 code only 240000 bytes long. This limit used to be
2539 250000, but c++ code tends to generate lots of little
2540 functions, and sometimes violated the assumption. */
2541 do
2542 {
2543 prev = PREV_SEC (tail);
2544 /* Set up this stub group. */
2545 htab->stub_group[tail->id].link_sec = curr;
2546 }
2547 while (tail != curr && (tail = prev) != NULL);
2548
2549 /* But wait, there's more! Input sections up to 240000
2550 bytes before the stub section can be handled by it too.
2551 Don't do this if we have a really large section after the
2552 stubs, as adding more stubs increases the chance that
2553 branches may not reach into the stub section. */
2554 if (!stubs_always_before_branch && !big_sec)
2555 {
2556 total = 0;
2557 while (prev != NULL
2558 && ((total += tail->output_offset - prev->output_offset)
2559 < stub_group_size))
2560 {
2561 tail = prev;
2562 prev = PREV_SEC (tail);
2563 htab->stub_group[tail->id].link_sec = curr;
2564 }
2565 }
2566 tail = prev;
2567 }
2568 }
2569 while (list-- != htab->input_list);
2570 free (htab->input_list);
2571 #undef PREV_SEC
2572 }
2573
2574 /* Read in all local syms for all input bfds, and create hash entries
2575 for export stubs if we are building a multi-subspace shared lib.
2576 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2577
2578 static int
2579 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2580 {
2581 unsigned int bfd_indx;
2582 Elf_Internal_Sym *local_syms, **all_local_syms;
2583 int stub_changed = 0;
2584 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2585
2586 if (htab == NULL)
2587 return -1;
2588
2589 /* We want to read in symbol extension records only once. To do this
2590 we need to read in the local symbols in parallel and save them for
2591 later use; so hold pointers to the local symbols in an array. */
2592 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2593 all_local_syms = bfd_zmalloc (amt);
2594 htab->all_local_syms = all_local_syms;
2595 if (all_local_syms == NULL)
2596 return -1;
2597
2598 /* Walk over all the input BFDs, swapping in local symbols.
2599 If we are creating a shared library, create hash entries for the
2600 export stubs. */
2601 for (bfd_indx = 0;
2602 input_bfd != NULL;
2603 input_bfd = input_bfd->link.next, bfd_indx++)
2604 {
2605 Elf_Internal_Shdr *symtab_hdr;
2606
2607 /* We'll need the symbol table in a second. */
2608 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2609 if (symtab_hdr->sh_info == 0)
2610 continue;
2611
2612 /* We need an array of the local symbols attached to the input bfd. */
2613 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2614 if (local_syms == NULL)
2615 {
2616 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2617 symtab_hdr->sh_info, 0,
2618 NULL, NULL, NULL);
2619 /* Cache them for elf_link_input_bfd. */
2620 symtab_hdr->contents = (unsigned char *) local_syms;
2621 }
2622 if (local_syms == NULL)
2623 return -1;
2624
2625 all_local_syms[bfd_indx] = local_syms;
2626
2627 if (bfd_link_pic (info) && htab->multi_subspace)
2628 {
2629 struct elf_link_hash_entry **eh_syms;
2630 struct elf_link_hash_entry **eh_symend;
2631 unsigned int symcount;
2632
2633 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2634 - symtab_hdr->sh_info);
2635 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2636 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2637
2638 /* Look through the global syms for functions; We need to
2639 build export stubs for all globally visible functions. */
2640 for (; eh_syms < eh_symend; eh_syms++)
2641 {
2642 struct elf32_hppa_link_hash_entry *hh;
2643
2644 hh = hppa_elf_hash_entry (*eh_syms);
2645
2646 while (hh->eh.root.type == bfd_link_hash_indirect
2647 || hh->eh.root.type == bfd_link_hash_warning)
2648 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2649
2650 /* At this point in the link, undefined syms have been
2651 resolved, so we need to check that the symbol was
2652 defined in this BFD. */
2653 if ((hh->eh.root.type == bfd_link_hash_defined
2654 || hh->eh.root.type == bfd_link_hash_defweak)
2655 && hh->eh.type == STT_FUNC
2656 && hh->eh.root.u.def.section->output_section != NULL
2657 && (hh->eh.root.u.def.section->output_section->owner
2658 == output_bfd)
2659 && hh->eh.root.u.def.section->owner == input_bfd
2660 && hh->eh.def_regular
2661 && !hh->eh.forced_local
2662 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2663 {
2664 asection *sec;
2665 const char *stub_name;
2666 struct elf32_hppa_stub_hash_entry *hsh;
2667
2668 sec = hh->eh.root.u.def.section;
2669 stub_name = hh_name (hh);
2670 hsh = hppa_stub_hash_lookup (&htab->bstab,
2671 stub_name,
2672 FALSE, FALSE);
2673 if (hsh == NULL)
2674 {
2675 hsh = hppa_add_stub (stub_name, sec, htab);
2676 if (!hsh)
2677 return -1;
2678
2679 hsh->target_value = hh->eh.root.u.def.value;
2680 hsh->target_section = hh->eh.root.u.def.section;
2681 hsh->stub_type = hppa_stub_export;
2682 hsh->hh = hh;
2683 stub_changed = 1;
2684 }
2685 else
2686 {
2687 /* xgettext:c-format */
2688 _bfd_error_handler (_("%pB: duplicate export stub %s"),
2689 input_bfd, stub_name);
2690 }
2691 }
2692 }
2693 }
2694 }
2695
2696 return stub_changed;
2697 }
2698
2699 /* Determine and set the size of the stub section for a final link.
2700
2701 The basic idea here is to examine all the relocations looking for
2702 PC-relative calls to a target that is unreachable with a "bl"
2703 instruction. */
2704
2705 bfd_boolean
2706 elf32_hppa_size_stubs
2707 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2708 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2709 asection * (*add_stub_section) (const char *, asection *),
2710 void (*layout_sections_again) (void))
2711 {
2712 bfd_size_type stub_group_size;
2713 bfd_boolean stubs_always_before_branch;
2714 bfd_boolean stub_changed;
2715 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2716
2717 if (htab == NULL)
2718 return FALSE;
2719
2720 /* Stash our params away. */
2721 htab->stub_bfd = stub_bfd;
2722 htab->multi_subspace = multi_subspace;
2723 htab->add_stub_section = add_stub_section;
2724 htab->layout_sections_again = layout_sections_again;
2725 stubs_always_before_branch = group_size < 0;
2726 if (group_size < 0)
2727 stub_group_size = -group_size;
2728 else
2729 stub_group_size = group_size;
2730 if (stub_group_size == 1)
2731 {
2732 /* Default values. */
2733 if (stubs_always_before_branch)
2734 {
2735 stub_group_size = 7680000;
2736 if (htab->has_17bit_branch || htab->multi_subspace)
2737 stub_group_size = 240000;
2738 if (htab->has_12bit_branch)
2739 stub_group_size = 7500;
2740 }
2741 else
2742 {
2743 stub_group_size = 6971392;
2744 if (htab->has_17bit_branch || htab->multi_subspace)
2745 stub_group_size = 217856;
2746 if (htab->has_12bit_branch)
2747 stub_group_size = 6808;
2748 }
2749 }
2750
2751 group_sections (htab, stub_group_size, stubs_always_before_branch);
2752
2753 switch (get_local_syms (output_bfd, info->input_bfds, info))
2754 {
2755 default:
2756 if (htab->all_local_syms)
2757 goto error_ret_free_local;
2758 return FALSE;
2759
2760 case 0:
2761 stub_changed = FALSE;
2762 break;
2763
2764 case 1:
2765 stub_changed = TRUE;
2766 break;
2767 }
2768
2769 while (1)
2770 {
2771 bfd *input_bfd;
2772 unsigned int bfd_indx;
2773 asection *stub_sec;
2774
2775 for (input_bfd = info->input_bfds, bfd_indx = 0;
2776 input_bfd != NULL;
2777 input_bfd = input_bfd->link.next, bfd_indx++)
2778 {
2779 Elf_Internal_Shdr *symtab_hdr;
2780 asection *section;
2781 Elf_Internal_Sym *local_syms;
2782
2783 /* We'll need the symbol table in a second. */
2784 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2785 if (symtab_hdr->sh_info == 0)
2786 continue;
2787
2788 local_syms = htab->all_local_syms[bfd_indx];
2789
2790 /* Walk over each section attached to the input bfd. */
2791 for (section = input_bfd->sections;
2792 section != NULL;
2793 section = section->next)
2794 {
2795 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2796
2797 /* If there aren't any relocs, then there's nothing more
2798 to do. */
2799 if ((section->flags & SEC_RELOC) == 0
2800 || (section->flags & SEC_ALLOC) == 0
2801 || (section->flags & SEC_LOAD) == 0
2802 || (section->flags & SEC_CODE) == 0
2803 || section->reloc_count == 0)
2804 continue;
2805
2806 /* If this section is a link-once section that will be
2807 discarded, then don't create any stubs. */
2808 if (section->output_section == NULL
2809 || section->output_section->owner != output_bfd)
2810 continue;
2811
2812 /* Get the relocs. */
2813 internal_relocs
2814 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2815 info->keep_memory);
2816 if (internal_relocs == NULL)
2817 goto error_ret_free_local;
2818
2819 /* Now examine each relocation. */
2820 irela = internal_relocs;
2821 irelaend = irela + section->reloc_count;
2822 for (; irela < irelaend; irela++)
2823 {
2824 unsigned int r_type, r_indx;
2825 enum elf32_hppa_stub_type stub_type;
2826 struct elf32_hppa_stub_hash_entry *hsh;
2827 asection *sym_sec;
2828 bfd_vma sym_value;
2829 bfd_vma destination;
2830 struct elf32_hppa_link_hash_entry *hh;
2831 char *stub_name;
2832 const asection *id_sec;
2833
2834 r_type = ELF32_R_TYPE (irela->r_info);
2835 r_indx = ELF32_R_SYM (irela->r_info);
2836
2837 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2838 {
2839 bfd_set_error (bfd_error_bad_value);
2840 error_ret_free_internal:
2841 if (elf_section_data (section)->relocs == NULL)
2842 free (internal_relocs);
2843 goto error_ret_free_local;
2844 }
2845
2846 /* Only look for stubs on call instructions. */
2847 if (r_type != (unsigned int) R_PARISC_PCREL12F
2848 && r_type != (unsigned int) R_PARISC_PCREL17F
2849 && r_type != (unsigned int) R_PARISC_PCREL22F)
2850 continue;
2851
2852 /* Now determine the call target, its name, value,
2853 section. */
2854 sym_sec = NULL;
2855 sym_value = 0;
2856 destination = -1;
2857 hh = NULL;
2858 if (r_indx < symtab_hdr->sh_info)
2859 {
2860 /* It's a local symbol. */
2861 Elf_Internal_Sym *sym;
2862 Elf_Internal_Shdr *hdr;
2863 unsigned int shndx;
2864
2865 sym = local_syms + r_indx;
2866 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2867 sym_value = sym->st_value;
2868 shndx = sym->st_shndx;
2869 if (shndx < elf_numsections (input_bfd))
2870 {
2871 hdr = elf_elfsections (input_bfd)[shndx];
2872 sym_sec = hdr->bfd_section;
2873 destination = (sym_value + irela->r_addend
2874 + sym_sec->output_offset
2875 + sym_sec->output_section->vma);
2876 }
2877 }
2878 else
2879 {
2880 /* It's an external symbol. */
2881 int e_indx;
2882
2883 e_indx = r_indx - symtab_hdr->sh_info;
2884 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2885
2886 while (hh->eh.root.type == bfd_link_hash_indirect
2887 || hh->eh.root.type == bfd_link_hash_warning)
2888 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2889
2890 if (hh->eh.root.type == bfd_link_hash_defined
2891 || hh->eh.root.type == bfd_link_hash_defweak)
2892 {
2893 sym_sec = hh->eh.root.u.def.section;
2894 sym_value = hh->eh.root.u.def.value;
2895 if (sym_sec->output_section != NULL)
2896 destination = (sym_value + irela->r_addend
2897 + sym_sec->output_offset
2898 + sym_sec->output_section->vma);
2899 }
2900 else if (hh->eh.root.type == bfd_link_hash_undefweak)
2901 {
2902 if (! bfd_link_pic (info))
2903 continue;
2904 }
2905 else if (hh->eh.root.type == bfd_link_hash_undefined)
2906 {
2907 if (! (info->unresolved_syms_in_objects == RM_IGNORE
2908 && (ELF_ST_VISIBILITY (hh->eh.other)
2909 == STV_DEFAULT)
2910 && hh->eh.type != STT_PARISC_MILLI))
2911 continue;
2912 }
2913 else
2914 {
2915 bfd_set_error (bfd_error_bad_value);
2916 goto error_ret_free_internal;
2917 }
2918 }
2919
2920 /* Determine what (if any) linker stub is needed. */
2921 stub_type = hppa_type_of_stub (section, irela, hh,
2922 destination, info);
2923 if (stub_type == hppa_stub_none)
2924 continue;
2925
2926 /* Support for grouping stub sections. */
2927 id_sec = htab->stub_group[section->id].link_sec;
2928
2929 /* Get the name of this stub. */
2930 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
2931 if (!stub_name)
2932 goto error_ret_free_internal;
2933
2934 hsh = hppa_stub_hash_lookup (&htab->bstab,
2935 stub_name,
2936 FALSE, FALSE);
2937 if (hsh != NULL)
2938 {
2939 /* The proper stub has already been created. */
2940 free (stub_name);
2941 continue;
2942 }
2943
2944 hsh = hppa_add_stub (stub_name, section, htab);
2945 if (hsh == NULL)
2946 {
2947 free (stub_name);
2948 goto error_ret_free_internal;
2949 }
2950
2951 hsh->target_value = sym_value;
2952 hsh->target_section = sym_sec;
2953 hsh->stub_type = stub_type;
2954 if (bfd_link_pic (info))
2955 {
2956 if (stub_type == hppa_stub_import)
2957 hsh->stub_type = hppa_stub_import_shared;
2958 else if (stub_type == hppa_stub_long_branch)
2959 hsh->stub_type = hppa_stub_long_branch_shared;
2960 }
2961 hsh->hh = hh;
2962 stub_changed = TRUE;
2963 }
2964
2965 /* We're done with the internal relocs, free them. */
2966 if (elf_section_data (section)->relocs == NULL)
2967 free (internal_relocs);
2968 }
2969 }
2970
2971 if (!stub_changed)
2972 break;
2973
2974 /* OK, we've added some stubs. Find out the new size of the
2975 stub sections. */
2976 for (stub_sec = htab->stub_bfd->sections;
2977 stub_sec != NULL;
2978 stub_sec = stub_sec->next)
2979 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
2980 stub_sec->size = 0;
2981
2982 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
2983
2984 /* Ask the linker to do its stuff. */
2985 (*htab->layout_sections_again) ();
2986 stub_changed = FALSE;
2987 }
2988
2989 free (htab->all_local_syms);
2990 return TRUE;
2991
2992 error_ret_free_local:
2993 free (htab->all_local_syms);
2994 return FALSE;
2995 }
2996
2997 /* For a final link, this function is called after we have sized the
2998 stubs to provide a value for __gp. */
2999
3000 bfd_boolean
3001 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3002 {
3003 struct bfd_link_hash_entry *h;
3004 asection *sec = NULL;
3005 bfd_vma gp_val = 0;
3006
3007 h = bfd_link_hash_lookup (info->hash, "$global$", FALSE, FALSE, FALSE);
3008
3009 if (h != NULL
3010 && (h->type == bfd_link_hash_defined
3011 || h->type == bfd_link_hash_defweak))
3012 {
3013 gp_val = h->u.def.value;
3014 sec = h->u.def.section;
3015 }
3016 else
3017 {
3018 asection *splt = bfd_get_section_by_name (abfd, ".plt");
3019 asection *sgot = bfd_get_section_by_name (abfd, ".got");
3020
3021 /* Choose to point our LTP at, in this order, one of .plt, .got,
3022 or .data, if these sections exist. In the case of choosing
3023 .plt try to make the LTP ideal for addressing anywhere in the
3024 .plt or .got with a 14 bit signed offset. Typically, the end
3025 of the .plt is the start of the .got, so choose .plt + 0x2000
3026 if either the .plt or .got is larger than 0x2000. If both
3027 the .plt and .got are smaller than 0x2000, choose the end of
3028 the .plt section. */
3029 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3030 ? NULL : splt;
3031 if (sec != NULL)
3032 {
3033 gp_val = sec->size;
3034 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3035 {
3036 gp_val = 0x2000;
3037 }
3038 }
3039 else
3040 {
3041 sec = sgot;
3042 if (sec != NULL)
3043 {
3044 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3045 {
3046 /* We know we don't have a .plt. If .got is large,
3047 offset our LTP. */
3048 if (sec->size > 0x2000)
3049 gp_val = 0x2000;
3050 }
3051 }
3052 else
3053 {
3054 /* No .plt or .got. Who cares what the LTP is? */
3055 sec = bfd_get_section_by_name (abfd, ".data");
3056 }
3057 }
3058
3059 if (h != NULL)
3060 {
3061 h->type = bfd_link_hash_defined;
3062 h->u.def.value = gp_val;
3063 if (sec != NULL)
3064 h->u.def.section = sec;
3065 else
3066 h->u.def.section = bfd_abs_section_ptr;
3067 }
3068 }
3069
3070 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
3071 {
3072 if (sec != NULL && sec->output_section != NULL)
3073 gp_val += sec->output_section->vma + sec->output_offset;
3074
3075 elf_gp (abfd) = gp_val;
3076 }
3077 return TRUE;
3078 }
3079
3080 /* Build all the stubs associated with the current output file. The
3081 stubs are kept in a hash table attached to the main linker hash
3082 table. We also set up the .plt entries for statically linked PIC
3083 functions here. This function is called via hppaelf_finish in the
3084 linker. */
3085
3086 bfd_boolean
3087 elf32_hppa_build_stubs (struct bfd_link_info *info)
3088 {
3089 asection *stub_sec;
3090 struct bfd_hash_table *table;
3091 struct elf32_hppa_link_hash_table *htab;
3092
3093 htab = hppa_link_hash_table (info);
3094 if (htab == NULL)
3095 return FALSE;
3096
3097 for (stub_sec = htab->stub_bfd->sections;
3098 stub_sec != NULL;
3099 stub_sec = stub_sec->next)
3100 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
3101 && stub_sec->size != 0)
3102 {
3103 /* Allocate memory to hold the linker stubs. */
3104 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
3105 if (stub_sec->contents == NULL)
3106 return FALSE;
3107 stub_sec->size = 0;
3108 }
3109
3110 /* Build the stubs as directed by the stub hash table. */
3111 table = &htab->bstab;
3112 bfd_hash_traverse (table, hppa_build_one_stub, info);
3113
3114 return TRUE;
3115 }
3116
3117 /* Return the base vma address which should be subtracted from the real
3118 address when resolving a dtpoff relocation.
3119 This is PT_TLS segment p_vaddr. */
3120
3121 static bfd_vma
3122 dtpoff_base (struct bfd_link_info *info)
3123 {
3124 /* If tls_sec is NULL, we should have signalled an error already. */
3125 if (elf_hash_table (info)->tls_sec == NULL)
3126 return 0;
3127 return elf_hash_table (info)->tls_sec->vma;
3128 }
3129
3130 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3131
3132 static bfd_vma
3133 tpoff (struct bfd_link_info *info, bfd_vma address)
3134 {
3135 struct elf_link_hash_table *htab = elf_hash_table (info);
3136
3137 /* If tls_sec is NULL, we should have signalled an error already. */
3138 if (htab->tls_sec == NULL)
3139 return 0;
3140 /* hppa TLS ABI is variant I and static TLS block start just after
3141 tcbhead structure which has 2 pointer fields. */
3142 return (address - htab->tls_sec->vma
3143 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3144 }
3145
3146 /* Perform a final link. */
3147
3148 static bfd_boolean
3149 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3150 {
3151 struct stat buf;
3152
3153 /* Invoke the regular ELF linker to do all the work. */
3154 if (!bfd_elf_final_link (abfd, info))
3155 return FALSE;
3156
3157 /* If we're producing a final executable, sort the contents of the
3158 unwind section. */
3159 if (bfd_link_relocatable (info))
3160 return TRUE;
3161
3162 /* Do not attempt to sort non-regular files. This is here
3163 especially for configure scripts and kernel builds which run
3164 tests with "ld [...] -o /dev/null". */
3165 if (stat (abfd->filename, &buf) != 0
3166 || !S_ISREG(buf.st_mode))
3167 return TRUE;
3168
3169 return elf_hppa_sort_unwind (abfd);
3170 }
3171
3172 /* Record the lowest address for the data and text segments. */
3173
3174 static void
3175 hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3176 {
3177 struct elf32_hppa_link_hash_table *htab;
3178
3179 htab = (struct elf32_hppa_link_hash_table*) data;
3180 if (htab == NULL)
3181 return;
3182
3183 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3184 {
3185 bfd_vma value;
3186 Elf_Internal_Phdr *p;
3187
3188 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3189 BFD_ASSERT (p != NULL);
3190 value = p->p_vaddr;
3191
3192 if ((section->flags & SEC_READONLY) != 0)
3193 {
3194 if (value < htab->text_segment_base)
3195 htab->text_segment_base = value;
3196 }
3197 else
3198 {
3199 if (value < htab->data_segment_base)
3200 htab->data_segment_base = value;
3201 }
3202 }
3203 }
3204
3205 /* Perform a relocation as part of a final link. */
3206
3207 static bfd_reloc_status_type
3208 final_link_relocate (asection *input_section,
3209 bfd_byte *contents,
3210 const Elf_Internal_Rela *rela,
3211 bfd_vma value,
3212 struct elf32_hppa_link_hash_table *htab,
3213 asection *sym_sec,
3214 struct elf32_hppa_link_hash_entry *hh,
3215 struct bfd_link_info *info)
3216 {
3217 int insn;
3218 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3219 unsigned int orig_r_type = r_type;
3220 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3221 int r_format = howto->bitsize;
3222 enum hppa_reloc_field_selector_type_alt r_field;
3223 bfd *input_bfd = input_section->owner;
3224 bfd_vma offset = rela->r_offset;
3225 bfd_vma max_branch_offset = 0;
3226 bfd_byte *hit_data = contents + offset;
3227 bfd_signed_vma addend = rela->r_addend;
3228 bfd_vma location;
3229 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3230 int val;
3231
3232 if (r_type == R_PARISC_NONE)
3233 return bfd_reloc_ok;
3234
3235 insn = bfd_get_32 (input_bfd, hit_data);
3236
3237 /* Find out where we are and where we're going. */
3238 location = (offset +
3239 input_section->output_offset +
3240 input_section->output_section->vma);
3241
3242 /* If we are not building a shared library, convert DLTIND relocs to
3243 DPREL relocs. */
3244 if (!bfd_link_pic (info))
3245 {
3246 switch (r_type)
3247 {
3248 case R_PARISC_DLTIND21L:
3249 case R_PARISC_TLS_GD21L:
3250 case R_PARISC_TLS_LDM21L:
3251 case R_PARISC_TLS_IE21L:
3252 r_type = R_PARISC_DPREL21L;
3253 break;
3254
3255 case R_PARISC_DLTIND14R:
3256 case R_PARISC_TLS_GD14R:
3257 case R_PARISC_TLS_LDM14R:
3258 case R_PARISC_TLS_IE14R:
3259 r_type = R_PARISC_DPREL14R;
3260 break;
3261
3262 case R_PARISC_DLTIND14F:
3263 r_type = R_PARISC_DPREL14F;
3264 break;
3265 }
3266 }
3267
3268 switch (r_type)
3269 {
3270 case R_PARISC_PCREL12F:
3271 case R_PARISC_PCREL17F:
3272 case R_PARISC_PCREL22F:
3273 /* If this call should go via the plt, find the import stub in
3274 the stub hash. */
3275 if (sym_sec == NULL
3276 || sym_sec->output_section == NULL
3277 || (hh != NULL
3278 && hh->eh.plt.offset != (bfd_vma) -1
3279 && hh->eh.dynindx != -1
3280 && !hh->plabel
3281 && (bfd_link_pic (info)
3282 || !hh->eh.def_regular
3283 || hh->eh.root.type == bfd_link_hash_defweak)))
3284 {
3285 hsh = hppa_get_stub_entry (input_section, sym_sec,
3286 hh, rela, htab);
3287 if (hsh != NULL)
3288 {
3289 value = (hsh->stub_offset
3290 + hsh->stub_sec->output_offset
3291 + hsh->stub_sec->output_section->vma);
3292 addend = 0;
3293 }
3294 else if (sym_sec == NULL && hh != NULL
3295 && hh->eh.root.type == bfd_link_hash_undefweak)
3296 {
3297 /* It's OK if undefined weak. Calls to undefined weak
3298 symbols behave as if the "called" function
3299 immediately returns. We can thus call to a weak
3300 function without first checking whether the function
3301 is defined. */
3302 value = location;
3303 addend = 8;
3304 }
3305 else
3306 return bfd_reloc_undefined;
3307 }
3308 /* Fall thru. */
3309
3310 case R_PARISC_PCREL21L:
3311 case R_PARISC_PCREL17C:
3312 case R_PARISC_PCREL17R:
3313 case R_PARISC_PCREL14R:
3314 case R_PARISC_PCREL14F:
3315 case R_PARISC_PCREL32:
3316 /* Make it a pc relative offset. */
3317 value -= location;
3318 addend -= 8;
3319 break;
3320
3321 case R_PARISC_DPREL21L:
3322 case R_PARISC_DPREL14R:
3323 case R_PARISC_DPREL14F:
3324 /* Convert instructions that use the linkage table pointer (r19) to
3325 instructions that use the global data pointer (dp). This is the
3326 most efficient way of using PIC code in an incomplete executable,
3327 but the user must follow the standard runtime conventions for
3328 accessing data for this to work. */
3329 if (orig_r_type != r_type)
3330 {
3331 if (r_type == R_PARISC_DPREL21L)
3332 {
3333 /* GCC sometimes uses a register other than r19 for the
3334 operation, so we must convert any addil instruction
3335 that uses this relocation. */
3336 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3337 insn = ADDIL_DP;
3338 else
3339 /* We must have a ldil instruction. It's too hard to find
3340 and convert the associated add instruction, so issue an
3341 error. */
3342 _bfd_error_handler
3343 /* xgettext:c-format */
3344 (_("%pB(%pA+%#" PRIx64 "): %s fixup for insn %#x "
3345 "is not supported in a non-shared link"),
3346 input_bfd,
3347 input_section,
3348 (uint64_t) offset,
3349 howto->name,
3350 insn);
3351 }
3352 else if (r_type == R_PARISC_DPREL14F)
3353 {
3354 /* This must be a format 1 load/store. Change the base
3355 register to dp. */
3356 insn = (insn & 0xfc1ffff) | (27 << 21);
3357 }
3358 }
3359
3360 /* For all the DP relative relocations, we need to examine the symbol's
3361 section. If it has no section or if it's a code section, then
3362 "data pointer relative" makes no sense. In that case we don't
3363 adjust the "value", and for 21 bit addil instructions, we change the
3364 source addend register from %dp to %r0. This situation commonly
3365 arises for undefined weak symbols and when a variable's "constness"
3366 is declared differently from the way the variable is defined. For
3367 instance: "extern int foo" with foo defined as "const int foo". */
3368 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3369 {
3370 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3371 == (((int) OP_ADDIL << 26) | (27 << 21)))
3372 {
3373 insn &= ~ (0x1f << 21);
3374 }
3375 /* Now try to make things easy for the dynamic linker. */
3376
3377 break;
3378 }
3379 /* Fall thru. */
3380
3381 case R_PARISC_DLTIND21L:
3382 case R_PARISC_DLTIND14R:
3383 case R_PARISC_DLTIND14F:
3384 case R_PARISC_TLS_GD21L:
3385 case R_PARISC_TLS_LDM21L:
3386 case R_PARISC_TLS_IE21L:
3387 case R_PARISC_TLS_GD14R:
3388 case R_PARISC_TLS_LDM14R:
3389 case R_PARISC_TLS_IE14R:
3390 value -= elf_gp (input_section->output_section->owner);
3391 break;
3392
3393 case R_PARISC_SEGREL32:
3394 if ((sym_sec->flags & SEC_CODE) != 0)
3395 value -= htab->text_segment_base;
3396 else
3397 value -= htab->data_segment_base;
3398 break;
3399
3400 default:
3401 break;
3402 }
3403
3404 switch (r_type)
3405 {
3406 case R_PARISC_DIR32:
3407 case R_PARISC_DIR14F:
3408 case R_PARISC_DIR17F:
3409 case R_PARISC_PCREL17C:
3410 case R_PARISC_PCREL14F:
3411 case R_PARISC_PCREL32:
3412 case R_PARISC_DPREL14F:
3413 case R_PARISC_PLABEL32:
3414 case R_PARISC_DLTIND14F:
3415 case R_PARISC_SEGBASE:
3416 case R_PARISC_SEGREL32:
3417 case R_PARISC_TLS_DTPMOD32:
3418 case R_PARISC_TLS_DTPOFF32:
3419 case R_PARISC_TLS_TPREL32:
3420 r_field = e_fsel;
3421 break;
3422
3423 case R_PARISC_DLTIND21L:
3424 case R_PARISC_PCREL21L:
3425 case R_PARISC_PLABEL21L:
3426 r_field = e_lsel;
3427 break;
3428
3429 case R_PARISC_DIR21L:
3430 case R_PARISC_DPREL21L:
3431 case R_PARISC_TLS_GD21L:
3432 case R_PARISC_TLS_LDM21L:
3433 case R_PARISC_TLS_LDO21L:
3434 case R_PARISC_TLS_IE21L:
3435 case R_PARISC_TLS_LE21L:
3436 r_field = e_lrsel;
3437 break;
3438
3439 case R_PARISC_PCREL17R:
3440 case R_PARISC_PCREL14R:
3441 case R_PARISC_PLABEL14R:
3442 case R_PARISC_DLTIND14R:
3443 r_field = e_rsel;
3444 break;
3445
3446 case R_PARISC_DIR17R:
3447 case R_PARISC_DIR14R:
3448 case R_PARISC_DPREL14R:
3449 case R_PARISC_TLS_GD14R:
3450 case R_PARISC_TLS_LDM14R:
3451 case R_PARISC_TLS_LDO14R:
3452 case R_PARISC_TLS_IE14R:
3453 case R_PARISC_TLS_LE14R:
3454 r_field = e_rrsel;
3455 break;
3456
3457 case R_PARISC_PCREL12F:
3458 case R_PARISC_PCREL17F:
3459 case R_PARISC_PCREL22F:
3460 r_field = e_fsel;
3461
3462 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3463 {
3464 max_branch_offset = (1 << (17-1)) << 2;
3465 }
3466 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3467 {
3468 max_branch_offset = (1 << (12-1)) << 2;
3469 }
3470 else
3471 {
3472 max_branch_offset = (1 << (22-1)) << 2;
3473 }
3474
3475 /* sym_sec is NULL on undefined weak syms or when shared on
3476 undefined syms. We've already checked for a stub for the
3477 shared undefined case. */
3478 if (sym_sec == NULL)
3479 break;
3480
3481 /* If the branch is out of reach, then redirect the
3482 call to the local stub for this function. */
3483 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3484 {
3485 hsh = hppa_get_stub_entry (input_section, sym_sec,
3486 hh, rela, htab);
3487 if (hsh == NULL)
3488 return bfd_reloc_undefined;
3489
3490 /* Munge up the value and addend so that we call the stub
3491 rather than the procedure directly. */
3492 value = (hsh->stub_offset
3493 + hsh->stub_sec->output_offset
3494 + hsh->stub_sec->output_section->vma
3495 - location);
3496 addend = -8;
3497 }
3498 break;
3499
3500 /* Something we don't know how to handle. */
3501 default:
3502 return bfd_reloc_notsupported;
3503 }
3504
3505 /* Make sure we can reach the stub. */
3506 if (max_branch_offset != 0
3507 && value + addend + max_branch_offset >= 2*max_branch_offset)
3508 {
3509 _bfd_error_handler
3510 /* xgettext:c-format */
3511 (_("%pB(%pA+%#" PRIx64 "): cannot reach %s, "
3512 "recompile with -ffunction-sections"),
3513 input_bfd,
3514 input_section,
3515 (uint64_t) offset,
3516 hsh->bh_root.string);
3517 bfd_set_error (bfd_error_bad_value);
3518 return bfd_reloc_notsupported;
3519 }
3520
3521 val = hppa_field_adjust (value, addend, r_field);
3522
3523 switch (r_type)
3524 {
3525 case R_PARISC_PCREL12F:
3526 case R_PARISC_PCREL17C:
3527 case R_PARISC_PCREL17F:
3528 case R_PARISC_PCREL17R:
3529 case R_PARISC_PCREL22F:
3530 case R_PARISC_DIR17F:
3531 case R_PARISC_DIR17R:
3532 /* This is a branch. Divide the offset by four.
3533 Note that we need to decide whether it's a branch or
3534 otherwise by inspecting the reloc. Inspecting insn won't
3535 work as insn might be from a .word directive. */
3536 val >>= 2;
3537 break;
3538
3539 default:
3540 break;
3541 }
3542
3543 insn = hppa_rebuild_insn (insn, val, r_format);
3544
3545 /* Update the instruction word. */
3546 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3547 return bfd_reloc_ok;
3548 }
3549
3550 /* Relocate an HPPA ELF section. */
3551
3552 static bfd_boolean
3553 elf32_hppa_relocate_section (bfd *output_bfd,
3554 struct bfd_link_info *info,
3555 bfd *input_bfd,
3556 asection *input_section,
3557 bfd_byte *contents,
3558 Elf_Internal_Rela *relocs,
3559 Elf_Internal_Sym *local_syms,
3560 asection **local_sections)
3561 {
3562 bfd_vma *local_got_offsets;
3563 struct elf32_hppa_link_hash_table *htab;
3564 Elf_Internal_Shdr *symtab_hdr;
3565 Elf_Internal_Rela *rela;
3566 Elf_Internal_Rela *relend;
3567
3568 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3569
3570 htab = hppa_link_hash_table (info);
3571 if (htab == NULL)
3572 return FALSE;
3573
3574 local_got_offsets = elf_local_got_offsets (input_bfd);
3575
3576 rela = relocs;
3577 relend = relocs + input_section->reloc_count;
3578 for (; rela < relend; rela++)
3579 {
3580 unsigned int r_type;
3581 reloc_howto_type *howto;
3582 unsigned int r_symndx;
3583 struct elf32_hppa_link_hash_entry *hh;
3584 Elf_Internal_Sym *sym;
3585 asection *sym_sec;
3586 bfd_vma relocation;
3587 bfd_reloc_status_type rstatus;
3588 const char *sym_name;
3589 bfd_boolean plabel;
3590 bfd_boolean warned_undef;
3591
3592 r_type = ELF32_R_TYPE (rela->r_info);
3593 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3594 {
3595 bfd_set_error (bfd_error_bad_value);
3596 return FALSE;
3597 }
3598 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3599 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3600 continue;
3601
3602 r_symndx = ELF32_R_SYM (rela->r_info);
3603 hh = NULL;
3604 sym = NULL;
3605 sym_sec = NULL;
3606 warned_undef = FALSE;
3607 if (r_symndx < symtab_hdr->sh_info)
3608 {
3609 /* This is a local symbol, h defaults to NULL. */
3610 sym = local_syms + r_symndx;
3611 sym_sec = local_sections[r_symndx];
3612 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3613 }
3614 else
3615 {
3616 struct elf_link_hash_entry *eh;
3617 bfd_boolean unresolved_reloc, ignored;
3618 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3619
3620 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3621 r_symndx, symtab_hdr, sym_hashes,
3622 eh, sym_sec, relocation,
3623 unresolved_reloc, warned_undef,
3624 ignored);
3625
3626 if (!bfd_link_relocatable (info)
3627 && relocation == 0
3628 && eh->root.type != bfd_link_hash_defined
3629 && eh->root.type != bfd_link_hash_defweak
3630 && eh->root.type != bfd_link_hash_undefweak)
3631 {
3632 if (info->unresolved_syms_in_objects == RM_IGNORE
3633 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3634 && eh->type == STT_PARISC_MILLI)
3635 {
3636 (*info->callbacks->undefined_symbol)
3637 (info, eh_name (eh), input_bfd,
3638 input_section, rela->r_offset, FALSE);
3639 warned_undef = TRUE;
3640 }
3641 }
3642 hh = hppa_elf_hash_entry (eh);
3643 }
3644
3645 if (sym_sec != NULL && discarded_section (sym_sec))
3646 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3647 rela, 1, relend,
3648 elf_hppa_howto_table + r_type, 0,
3649 contents);
3650
3651 if (bfd_link_relocatable (info))
3652 continue;
3653
3654 /* Do any required modifications to the relocation value, and
3655 determine what types of dynamic info we need to output, if
3656 any. */
3657 plabel = 0;
3658 switch (r_type)
3659 {
3660 case R_PARISC_DLTIND14F:
3661 case R_PARISC_DLTIND14R:
3662 case R_PARISC_DLTIND21L:
3663 {
3664 bfd_vma off;
3665 bfd_boolean do_got = FALSE;
3666 bfd_boolean reloc = bfd_link_pic (info);
3667
3668 /* Relocation is to the entry for this symbol in the
3669 global offset table. */
3670 if (hh != NULL)
3671 {
3672 bfd_boolean dyn;
3673
3674 off = hh->eh.got.offset;
3675 dyn = htab->etab.dynamic_sections_created;
3676 reloc = (!UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh)
3677 && (reloc
3678 || (hh->eh.dynindx != -1
3679 && !SYMBOL_REFERENCES_LOCAL (info, &hh->eh))));
3680 if (!reloc
3681 || !WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
3682 bfd_link_pic (info),
3683 &hh->eh))
3684 {
3685 /* If we aren't going to call finish_dynamic_symbol,
3686 then we need to handle initialisation of the .got
3687 entry and create needed relocs here. Since the
3688 offset must always be a multiple of 4, we use the
3689 least significant bit to record whether we have
3690 initialised it already. */
3691 if ((off & 1) != 0)
3692 off &= ~1;
3693 else
3694 {
3695 hh->eh.got.offset |= 1;
3696 do_got = TRUE;
3697 }
3698 }
3699 }
3700 else
3701 {
3702 /* Local symbol case. */
3703 if (local_got_offsets == NULL)
3704 abort ();
3705
3706 off = local_got_offsets[r_symndx];
3707
3708 /* The offset must always be a multiple of 4. We use
3709 the least significant bit to record whether we have
3710 already generated the necessary reloc. */
3711 if ((off & 1) != 0)
3712 off &= ~1;
3713 else
3714 {
3715 local_got_offsets[r_symndx] |= 1;
3716 do_got = TRUE;
3717 }
3718 }
3719
3720 if (do_got)
3721 {
3722 if (reloc)
3723 {
3724 /* Output a dynamic relocation for this GOT entry.
3725 In this case it is relative to the base of the
3726 object because the symbol index is zero. */
3727 Elf_Internal_Rela outrel;
3728 bfd_byte *loc;
3729 asection *sec = htab->etab.srelgot;
3730
3731 outrel.r_offset = (off
3732 + htab->etab.sgot->output_offset
3733 + htab->etab.sgot->output_section->vma);
3734 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3735 outrel.r_addend = relocation;
3736 loc = sec->contents;
3737 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3738 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3739 }
3740 else
3741 bfd_put_32 (output_bfd, relocation,
3742 htab->etab.sgot->contents + off);
3743 }
3744
3745 if (off >= (bfd_vma) -2)
3746 abort ();
3747
3748 /* Add the base of the GOT to the relocation value. */
3749 relocation = (off
3750 + htab->etab.sgot->output_offset
3751 + htab->etab.sgot->output_section->vma);
3752 }
3753 break;
3754
3755 case R_PARISC_SEGREL32:
3756 /* If this is the first SEGREL relocation, then initialize
3757 the segment base values. */
3758 if (htab->text_segment_base == (bfd_vma) -1)
3759 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3760 break;
3761
3762 case R_PARISC_PLABEL14R:
3763 case R_PARISC_PLABEL21L:
3764 case R_PARISC_PLABEL32:
3765 if (htab->etab.dynamic_sections_created)
3766 {
3767 bfd_vma off;
3768 bfd_boolean do_plt = 0;
3769 /* If we have a global symbol with a PLT slot, then
3770 redirect this relocation to it. */
3771 if (hh != NULL)
3772 {
3773 off = hh->eh.plt.offset;
3774 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1,
3775 bfd_link_pic (info),
3776 &hh->eh))
3777 {
3778 /* In a non-shared link, adjust_dynamic_symbol
3779 isn't called for symbols forced local. We
3780 need to write out the plt entry here. */
3781 if ((off & 1) != 0)
3782 off &= ~1;
3783 else
3784 {
3785 hh->eh.plt.offset |= 1;
3786 do_plt = 1;
3787 }
3788 }
3789 }
3790 else
3791 {
3792 bfd_vma *local_plt_offsets;
3793
3794 if (local_got_offsets == NULL)
3795 abort ();
3796
3797 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3798 off = local_plt_offsets[r_symndx];
3799
3800 /* As for the local .got entry case, we use the last
3801 bit to record whether we've already initialised
3802 this local .plt entry. */
3803 if ((off & 1) != 0)
3804 off &= ~1;
3805 else
3806 {
3807 local_plt_offsets[r_symndx] |= 1;
3808 do_plt = 1;
3809 }
3810 }
3811
3812 if (do_plt)
3813 {
3814 if (bfd_link_pic (info))
3815 {
3816 /* Output a dynamic IPLT relocation for this
3817 PLT entry. */
3818 Elf_Internal_Rela outrel;
3819 bfd_byte *loc;
3820 asection *s = htab->etab.srelplt;
3821
3822 outrel.r_offset = (off
3823 + htab->etab.splt->output_offset
3824 + htab->etab.splt->output_section->vma);
3825 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3826 outrel.r_addend = relocation;
3827 loc = s->contents;
3828 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3829 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3830 }
3831 else
3832 {
3833 bfd_put_32 (output_bfd,
3834 relocation,
3835 htab->etab.splt->contents + off);
3836 bfd_put_32 (output_bfd,
3837 elf_gp (htab->etab.splt->output_section->owner),
3838 htab->etab.splt->contents + off + 4);
3839 }
3840 }
3841
3842 if (off >= (bfd_vma) -2)
3843 abort ();
3844
3845 /* PLABELs contain function pointers. Relocation is to
3846 the entry for the function in the .plt. The magic +2
3847 offset signals to $$dyncall that the function pointer
3848 is in the .plt and thus has a gp pointer too.
3849 Exception: Undefined PLABELs should have a value of
3850 zero. */
3851 if (hh == NULL
3852 || (hh->eh.root.type != bfd_link_hash_undefweak
3853 && hh->eh.root.type != bfd_link_hash_undefined))
3854 {
3855 relocation = (off
3856 + htab->etab.splt->output_offset
3857 + htab->etab.splt->output_section->vma
3858 + 2);
3859 }
3860 plabel = 1;
3861 }
3862 /* Fall through. */
3863
3864 case R_PARISC_DIR17F:
3865 case R_PARISC_DIR17R:
3866 case R_PARISC_DIR14F:
3867 case R_PARISC_DIR14R:
3868 case R_PARISC_DIR21L:
3869 case R_PARISC_DPREL14F:
3870 case R_PARISC_DPREL14R:
3871 case R_PARISC_DPREL21L:
3872 case R_PARISC_DIR32:
3873 if ((input_section->flags & SEC_ALLOC) == 0)
3874 break;
3875
3876 if (bfd_link_pic (info)
3877 ? ((hh == NULL
3878 || hh->dyn_relocs != NULL)
3879 && ((hh != NULL && pc_dynrelocs (hh))
3880 || IS_ABSOLUTE_RELOC (r_type)))
3881 : (hh != NULL
3882 && hh->dyn_relocs != NULL))
3883 {
3884 Elf_Internal_Rela outrel;
3885 bfd_boolean skip;
3886 asection *sreloc;
3887 bfd_byte *loc;
3888
3889 /* When generating a shared object, these relocations
3890 are copied into the output file to be resolved at run
3891 time. */
3892
3893 outrel.r_addend = rela->r_addend;
3894 outrel.r_offset =
3895 _bfd_elf_section_offset (output_bfd, info, input_section,
3896 rela->r_offset);
3897 skip = (outrel.r_offset == (bfd_vma) -1
3898 || outrel.r_offset == (bfd_vma) -2);
3899 outrel.r_offset += (input_section->output_offset
3900 + input_section->output_section->vma);
3901
3902 if (skip)
3903 {
3904 memset (&outrel, 0, sizeof (outrel));
3905 }
3906 else if (hh != NULL
3907 && hh->eh.dynindx != -1
3908 && (plabel
3909 || !IS_ABSOLUTE_RELOC (r_type)
3910 || !bfd_link_pic (info)
3911 || !SYMBOLIC_BIND (info, &hh->eh)
3912 || !hh->eh.def_regular))
3913 {
3914 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
3915 }
3916 else /* It's a local symbol, or one marked to become local. */
3917 {
3918 int indx = 0;
3919
3920 /* Add the absolute offset of the symbol. */
3921 outrel.r_addend += relocation;
3922
3923 /* Global plabels need to be processed by the
3924 dynamic linker so that functions have at most one
3925 fptr. For this reason, we need to differentiate
3926 between global and local plabels, which we do by
3927 providing the function symbol for a global plabel
3928 reloc, and no symbol for local plabels. */
3929 if (! plabel
3930 && sym_sec != NULL
3931 && sym_sec->output_section != NULL
3932 && ! bfd_is_abs_section (sym_sec))
3933 {
3934 asection *osec;
3935
3936 osec = sym_sec->output_section;
3937 indx = elf_section_data (osec)->dynindx;
3938 if (indx == 0)
3939 {
3940 osec = htab->etab.text_index_section;
3941 indx = elf_section_data (osec)->dynindx;
3942 }
3943 BFD_ASSERT (indx != 0);
3944
3945 /* We are turning this relocation into one
3946 against a section symbol, so subtract out the
3947 output section's address but not the offset
3948 of the input section in the output section. */
3949 outrel.r_addend -= osec->vma;
3950 }
3951
3952 outrel.r_info = ELF32_R_INFO (indx, r_type);
3953 }
3954 sreloc = elf_section_data (input_section)->sreloc;
3955 if (sreloc == NULL)
3956 abort ();
3957
3958 loc = sreloc->contents;
3959 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3960 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3961 }
3962 break;
3963
3964 case R_PARISC_TLS_LDM21L:
3965 case R_PARISC_TLS_LDM14R:
3966 {
3967 bfd_vma off;
3968
3969 off = htab->tls_ldm_got.offset;
3970 if (off & 1)
3971 off &= ~1;
3972 else
3973 {
3974 Elf_Internal_Rela outrel;
3975 bfd_byte *loc;
3976
3977 outrel.r_offset = (off
3978 + htab->etab.sgot->output_section->vma
3979 + htab->etab.sgot->output_offset);
3980 outrel.r_addend = 0;
3981 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
3982 loc = htab->etab.srelgot->contents;
3983 loc += htab->etab.srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
3984
3985 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3986 htab->tls_ldm_got.offset |= 1;
3987 }
3988
3989 /* Add the base of the GOT to the relocation value. */
3990 relocation = (off
3991 + htab->etab.sgot->output_offset
3992 + htab->etab.sgot->output_section->vma);
3993
3994 break;
3995 }
3996
3997 case R_PARISC_TLS_LDO21L:
3998 case R_PARISC_TLS_LDO14R:
3999 relocation -= dtpoff_base (info);
4000 break;
4001
4002 case R_PARISC_TLS_GD21L:
4003 case R_PARISC_TLS_GD14R:
4004 case R_PARISC_TLS_IE21L:
4005 case R_PARISC_TLS_IE14R:
4006 {
4007 bfd_vma off;
4008 int indx;
4009 char tls_type;
4010
4011 indx = 0;
4012 if (hh != NULL)
4013 {
4014 if (!htab->etab.dynamic_sections_created
4015 || hh->eh.dynindx == -1
4016 || SYMBOL_REFERENCES_LOCAL (info, &hh->eh)
4017 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh))
4018 /* This is actually a static link, or it is a
4019 -Bsymbolic link and the symbol is defined
4020 locally, or the symbol was forced to be local
4021 because of a version file. */
4022 ;
4023 else
4024 indx = hh->eh.dynindx;
4025 off = hh->eh.got.offset;
4026 tls_type = hh->tls_type;
4027 }
4028 else
4029 {
4030 off = local_got_offsets[r_symndx];
4031 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4032 }
4033
4034 if (tls_type == GOT_UNKNOWN)
4035 abort ();
4036
4037 if ((off & 1) != 0)
4038 off &= ~1;
4039 else
4040 {
4041 bfd_boolean need_relocs = FALSE;
4042 Elf_Internal_Rela outrel;
4043 bfd_byte *loc = NULL;
4044 int cur_off = off;
4045
4046 /* The GOT entries have not been initialized yet. Do it
4047 now, and emit any relocations. If both an IE GOT and a
4048 GD GOT are necessary, we emit the GD first. */
4049
4050 if (indx != 0
4051 || (bfd_link_dll (info)
4052 && (hh == NULL
4053 || !UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh))))
4054 {
4055 need_relocs = TRUE;
4056 loc = htab->etab.srelgot->contents;
4057 loc += (htab->etab.srelgot->reloc_count
4058 * sizeof (Elf32_External_Rela));
4059 }
4060
4061 if (tls_type & GOT_TLS_GD)
4062 {
4063 if (need_relocs)
4064 {
4065 outrel.r_offset
4066 = (cur_off
4067 + htab->etab.sgot->output_section->vma
4068 + htab->etab.sgot->output_offset);
4069 outrel.r_info
4070 = ELF32_R_INFO (indx, R_PARISC_TLS_DTPMOD32);
4071 outrel.r_addend = 0;
4072 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4073 htab->etab.srelgot->reloc_count++;
4074 loc += sizeof (Elf32_External_Rela);
4075 bfd_put_32 (output_bfd, 0,
4076 htab->etab.sgot->contents + cur_off);
4077 }
4078 else
4079 /* If we are not emitting relocations for a
4080 general dynamic reference, then we must be in a
4081 static link or an executable link with the
4082 symbol binding locally. Mark it as belonging
4083 to module 1, the executable. */
4084 bfd_put_32 (output_bfd, 1,
4085 htab->etab.sgot->contents + cur_off);
4086
4087 if (indx != 0)
4088 {
4089 outrel.r_info
4090 = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4091 outrel.r_offset += 4;
4092 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4093 htab->etab.srelgot->reloc_count++;
4094 loc += sizeof (Elf32_External_Rela);
4095 bfd_put_32 (output_bfd, 0,
4096 htab->etab.sgot->contents + cur_off + 4);
4097 }
4098 else
4099 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4100 htab->etab.sgot->contents + cur_off + 4);
4101 cur_off += 8;
4102 }
4103
4104 if (tls_type & GOT_TLS_IE)
4105 {
4106 if (need_relocs
4107 && !(bfd_link_executable (info)
4108 && SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4109 {
4110 outrel.r_offset
4111 = (cur_off
4112 + htab->etab.sgot->output_section->vma
4113 + htab->etab.sgot->output_offset);
4114 outrel.r_info = ELF32_R_INFO (indx,
4115 R_PARISC_TLS_TPREL32);
4116 if (indx == 0)
4117 outrel.r_addend = relocation - dtpoff_base (info);
4118 else
4119 outrel.r_addend = 0;
4120 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4121 htab->etab.srelgot->reloc_count++;
4122 loc += sizeof (Elf32_External_Rela);
4123 }
4124 else
4125 bfd_put_32 (output_bfd, tpoff (info, relocation),
4126 htab->etab.sgot->contents + cur_off);
4127 cur_off += 4;
4128 }
4129
4130 if (hh != NULL)
4131 hh->eh.got.offset |= 1;
4132 else
4133 local_got_offsets[r_symndx] |= 1;
4134 }
4135
4136 if ((tls_type & GOT_NORMAL) != 0
4137 && (tls_type & (GOT_TLS_GD | GOT_TLS_LDM | GOT_TLS_IE)) != 0)
4138 {
4139 if (hh != NULL)
4140 _bfd_error_handler (_("%s has both normal and TLS relocs"),
4141 hh_name (hh));
4142 else
4143 {
4144 Elf_Internal_Sym *isym
4145 = bfd_sym_from_r_symndx (&htab->sym_cache,
4146 input_bfd, r_symndx);
4147 if (isym == NULL)
4148 return FALSE;
4149 sym_name
4150 = bfd_elf_string_from_elf_section (input_bfd,
4151 symtab_hdr->sh_link,
4152 isym->st_name);
4153 if (sym_name == NULL)
4154 return FALSE;
4155 if (*sym_name == '\0')
4156 sym_name = bfd_section_name (input_bfd, sym_sec);
4157 _bfd_error_handler
4158 (_("%pB:%s has both normal and TLS relocs"),
4159 input_bfd, sym_name);
4160 }
4161 bfd_set_error (bfd_error_bad_value);
4162 return FALSE;
4163 }
4164
4165 if ((tls_type & GOT_TLS_GD)
4166 && r_type != R_PARISC_TLS_GD21L
4167 && r_type != R_PARISC_TLS_GD14R)
4168 off += 2 * GOT_ENTRY_SIZE;
4169
4170 /* Add the base of the GOT to the relocation value. */
4171 relocation = (off
4172 + htab->etab.sgot->output_offset
4173 + htab->etab.sgot->output_section->vma);
4174
4175 break;
4176 }
4177
4178 case R_PARISC_TLS_LE21L:
4179 case R_PARISC_TLS_LE14R:
4180 {
4181 relocation = tpoff (info, relocation);
4182 break;
4183 }
4184 break;
4185
4186 default:
4187 break;
4188 }
4189
4190 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4191 htab, sym_sec, hh, info);
4192
4193 if (rstatus == bfd_reloc_ok)
4194 continue;
4195
4196 if (hh != NULL)
4197 sym_name = hh_name (hh);
4198 else
4199 {
4200 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4201 symtab_hdr->sh_link,
4202 sym->st_name);
4203 if (sym_name == NULL)
4204 return FALSE;
4205 if (*sym_name == '\0')
4206 sym_name = bfd_section_name (input_bfd, sym_sec);
4207 }
4208
4209 howto = elf_hppa_howto_table + r_type;
4210
4211 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4212 {
4213 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4214 {
4215 _bfd_error_handler
4216 /* xgettext:c-format */
4217 (_("%pB(%pA+%#" PRIx64 "): cannot handle %s for %s"),
4218 input_bfd,
4219 input_section,
4220 (uint64_t) rela->r_offset,
4221 howto->name,
4222 sym_name);
4223 bfd_set_error (bfd_error_bad_value);
4224 return FALSE;
4225 }
4226 }
4227 else
4228 (*info->callbacks->reloc_overflow)
4229 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4230 (bfd_vma) 0, input_bfd, input_section, rela->r_offset);
4231 }
4232
4233 return TRUE;
4234 }
4235
4236 /* Finish up dynamic symbol handling. We set the contents of various
4237 dynamic sections here. */
4238
4239 static bfd_boolean
4240 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4241 struct bfd_link_info *info,
4242 struct elf_link_hash_entry *eh,
4243 Elf_Internal_Sym *sym)
4244 {
4245 struct elf32_hppa_link_hash_table *htab;
4246 Elf_Internal_Rela rela;
4247 bfd_byte *loc;
4248
4249 htab = hppa_link_hash_table (info);
4250 if (htab == NULL)
4251 return FALSE;
4252
4253 if (eh->plt.offset != (bfd_vma) -1)
4254 {
4255 bfd_vma value;
4256
4257 if (eh->plt.offset & 1)
4258 abort ();
4259
4260 /* This symbol has an entry in the procedure linkage table. Set
4261 it up.
4262
4263 The format of a plt entry is
4264 <funcaddr>
4265 <__gp>
4266 */
4267 value = 0;
4268 if (eh->root.type == bfd_link_hash_defined
4269 || eh->root.type == bfd_link_hash_defweak)
4270 {
4271 value = eh->root.u.def.value;
4272 if (eh->root.u.def.section->output_section != NULL)
4273 value += (eh->root.u.def.section->output_offset
4274 + eh->root.u.def.section->output_section->vma);
4275 }
4276
4277 /* Create a dynamic IPLT relocation for this entry. */
4278 rela.r_offset = (eh->plt.offset
4279 + htab->etab.splt->output_offset
4280 + htab->etab.splt->output_section->vma);
4281 if (eh->dynindx != -1)
4282 {
4283 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4284 rela.r_addend = 0;
4285 }
4286 else
4287 {
4288 /* This symbol has been marked to become local, and is
4289 used by a plabel so must be kept in the .plt. */
4290 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4291 rela.r_addend = value;
4292 }
4293
4294 loc = htab->etab.srelplt->contents;
4295 loc += htab->etab.srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4296 bfd_elf32_swap_reloca_out (htab->etab.splt->output_section->owner, &rela, loc);
4297
4298 if (!eh->def_regular)
4299 {
4300 /* Mark the symbol as undefined, rather than as defined in
4301 the .plt section. Leave the value alone. */
4302 sym->st_shndx = SHN_UNDEF;
4303 }
4304 }
4305
4306 if (eh->got.offset != (bfd_vma) -1
4307 && (hppa_elf_hash_entry (eh)->tls_type & GOT_NORMAL) != 0
4308 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
4309 {
4310 bfd_boolean is_dyn = (eh->dynindx != -1
4311 && !SYMBOL_REFERENCES_LOCAL (info, eh));
4312
4313 if (is_dyn || bfd_link_pic (info))
4314 {
4315 /* This symbol has an entry in the global offset table. Set
4316 it up. */
4317
4318 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4319 + htab->etab.sgot->output_offset
4320 + htab->etab.sgot->output_section->vma);
4321
4322 /* If this is a -Bsymbolic link and the symbol is defined
4323 locally or was forced to be local because of a version
4324 file, we just want to emit a RELATIVE reloc. The entry
4325 in the global offset table will already have been
4326 initialized in the relocate_section function. */
4327 if (!is_dyn)
4328 {
4329 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4330 rela.r_addend = (eh->root.u.def.value
4331 + eh->root.u.def.section->output_offset
4332 + eh->root.u.def.section->output_section->vma);
4333 }
4334 else
4335 {
4336 if ((eh->got.offset & 1) != 0)
4337 abort ();
4338
4339 bfd_put_32 (output_bfd, 0,
4340 htab->etab.sgot->contents + (eh->got.offset & ~1));
4341 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4342 rela.r_addend = 0;
4343 }
4344
4345 loc = htab->etab.srelgot->contents;
4346 loc += (htab->etab.srelgot->reloc_count++
4347 * sizeof (Elf32_External_Rela));
4348 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4349 }
4350 }
4351
4352 if (eh->needs_copy)
4353 {
4354 asection *sec;
4355
4356 /* This symbol needs a copy reloc. Set it up. */
4357
4358 if (! (eh->dynindx != -1
4359 && (eh->root.type == bfd_link_hash_defined
4360 || eh->root.type == bfd_link_hash_defweak)))
4361 abort ();
4362
4363 rela.r_offset = (eh->root.u.def.value
4364 + eh->root.u.def.section->output_offset
4365 + eh->root.u.def.section->output_section->vma);
4366 rela.r_addend = 0;
4367 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4368 if (eh->root.u.def.section == htab->etab.sdynrelro)
4369 sec = htab->etab.sreldynrelro;
4370 else
4371 sec = htab->etab.srelbss;
4372 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4373 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4374 }
4375
4376 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4377 if (eh == htab->etab.hdynamic || eh == htab->etab.hgot)
4378 {
4379 sym->st_shndx = SHN_ABS;
4380 }
4381
4382 return TRUE;
4383 }
4384
4385 /* Used to decide how to sort relocs in an optimal manner for the
4386 dynamic linker, before writing them out. */
4387
4388 static enum elf_reloc_type_class
4389 elf32_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4390 const asection *rel_sec ATTRIBUTE_UNUSED,
4391 const Elf_Internal_Rela *rela)
4392 {
4393 /* Handle TLS relocs first; we don't want them to be marked
4394 relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)"
4395 check below. */
4396 switch ((int) ELF32_R_TYPE (rela->r_info))
4397 {
4398 case R_PARISC_TLS_DTPMOD32:
4399 case R_PARISC_TLS_DTPOFF32:
4400 case R_PARISC_TLS_TPREL32:
4401 return reloc_class_normal;
4402 }
4403
4404 if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)
4405 return reloc_class_relative;
4406
4407 switch ((int) ELF32_R_TYPE (rela->r_info))
4408 {
4409 case R_PARISC_IPLT:
4410 return reloc_class_plt;
4411 case R_PARISC_COPY:
4412 return reloc_class_copy;
4413 default:
4414 return reloc_class_normal;
4415 }
4416 }
4417
4418 /* Finish up the dynamic sections. */
4419
4420 static bfd_boolean
4421 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4422 struct bfd_link_info *info)
4423 {
4424 bfd *dynobj;
4425 struct elf32_hppa_link_hash_table *htab;
4426 asection *sdyn;
4427 asection * sgot;
4428
4429 htab = hppa_link_hash_table (info);
4430 if (htab == NULL)
4431 return FALSE;
4432
4433 dynobj = htab->etab.dynobj;
4434
4435 sgot = htab->etab.sgot;
4436 /* A broken linker script might have discarded the dynamic sections.
4437 Catch this here so that we do not seg-fault later on. */
4438 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
4439 return FALSE;
4440
4441 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4442
4443 if (htab->etab.dynamic_sections_created)
4444 {
4445 Elf32_External_Dyn *dyncon, *dynconend;
4446
4447 if (sdyn == NULL)
4448 abort ();
4449
4450 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4451 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4452 for (; dyncon < dynconend; dyncon++)
4453 {
4454 Elf_Internal_Dyn dyn;
4455 asection *s;
4456
4457 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4458
4459 switch (dyn.d_tag)
4460 {
4461 default:
4462 continue;
4463
4464 case DT_PLTGOT:
4465 /* Use PLTGOT to set the GOT register. */
4466 dyn.d_un.d_ptr = elf_gp (output_bfd);
4467 break;
4468
4469 case DT_JMPREL:
4470 s = htab->etab.srelplt;
4471 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4472 break;
4473
4474 case DT_PLTRELSZ:
4475 s = htab->etab.srelplt;
4476 dyn.d_un.d_val = s->size;
4477 break;
4478 }
4479
4480 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4481 }
4482 }
4483
4484 if (sgot != NULL && sgot->size != 0)
4485 {
4486 /* Fill in the first entry in the global offset table.
4487 We use it to point to our dynamic section, if we have one. */
4488 bfd_put_32 (output_bfd,
4489 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4490 sgot->contents);
4491
4492 /* The second entry is reserved for use by the dynamic linker. */
4493 memset (sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4494
4495 /* Set .got entry size. */
4496 elf_section_data (sgot->output_section)
4497 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4498 }
4499
4500 if (htab->etab.splt != NULL && htab->etab.splt->size != 0)
4501 {
4502 /* Set plt entry size to 0 instead of PLT_ENTRY_SIZE, since we add the
4503 plt stubs and as such the section does not hold a table of fixed-size
4504 entries. */
4505 elf_section_data (htab->etab.splt->output_section)->this_hdr.sh_entsize = 0;
4506
4507 if (htab->need_plt_stub)
4508 {
4509 /* Set up the .plt stub. */
4510 memcpy (htab->etab.splt->contents
4511 + htab->etab.splt->size - sizeof (plt_stub),
4512 plt_stub, sizeof (plt_stub));
4513
4514 if ((htab->etab.splt->output_offset
4515 + htab->etab.splt->output_section->vma
4516 + htab->etab.splt->size)
4517 != (sgot->output_offset
4518 + sgot->output_section->vma))
4519 {
4520 _bfd_error_handler
4521 (_(".got section not immediately after .plt section"));
4522 return FALSE;
4523 }
4524 }
4525 }
4526
4527 return TRUE;
4528 }
4529
4530 /* Called when writing out an object file to decide the type of a
4531 symbol. */
4532 static int
4533 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4534 {
4535 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4536 return STT_PARISC_MILLI;
4537 else
4538 return type;
4539 }
4540
4541 /* Misc BFD support code. */
4542 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4543 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4544 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4545 #define elf_info_to_howto elf_hppa_info_to_howto
4546 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4547
4548 /* Stuff for the BFD linker. */
4549 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4550 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4551 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4552 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4553 #define elf_backend_check_relocs elf32_hppa_check_relocs
4554 #define elf_backend_relocs_compatible _bfd_elf_relocs_compatible
4555 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4556 #define elf_backend_fake_sections elf_hppa_fake_sections
4557 #define elf_backend_relocate_section elf32_hppa_relocate_section
4558 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4559 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4560 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4561 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4562 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4563 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4564 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4565 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4566 #define elf_backend_object_p elf32_hppa_object_p
4567 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4568 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4569 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4570 #define elf_backend_action_discarded elf_hppa_action_discarded
4571
4572 #define elf_backend_can_gc_sections 1
4573 #define elf_backend_can_refcount 1
4574 #define elf_backend_plt_alignment 2
4575 #define elf_backend_want_got_plt 0
4576 #define elf_backend_plt_readonly 0
4577 #define elf_backend_want_plt_sym 0
4578 #define elf_backend_got_header_size 8
4579 #define elf_backend_want_dynrelro 1
4580 #define elf_backend_rela_normal 1
4581 #define elf_backend_dtrel_excludes_plt 1
4582 #define elf_backend_no_page_alias 1
4583
4584 #define TARGET_BIG_SYM hppa_elf32_vec
4585 #define TARGET_BIG_NAME "elf32-hppa"
4586 #define ELF_ARCH bfd_arch_hppa
4587 #define ELF_TARGET_ID HPPA32_ELF_DATA
4588 #define ELF_MACHINE_CODE EM_PARISC
4589 #define ELF_MAXPAGESIZE 0x1000
4590 #define ELF_OSABI ELFOSABI_HPUX
4591 #define elf32_bed elf32_hppa_hpux_bed
4592
4593 #include "elf32-target.h"
4594
4595 #undef TARGET_BIG_SYM
4596 #define TARGET_BIG_SYM hppa_elf32_linux_vec
4597 #undef TARGET_BIG_NAME
4598 #define TARGET_BIG_NAME "elf32-hppa-linux"
4599 #undef ELF_OSABI
4600 #define ELF_OSABI ELFOSABI_GNU
4601 #undef elf32_bed
4602 #define elf32_bed elf32_hppa_linux_bed
4603
4604 #include "elf32-target.h"
4605
4606 #undef TARGET_BIG_SYM
4607 #define TARGET_BIG_SYM hppa_elf32_nbsd_vec
4608 #undef TARGET_BIG_NAME
4609 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4610 #undef ELF_OSABI
4611 #define ELF_OSABI ELFOSABI_NETBSD
4612 #undef elf32_bed
4613 #define elf32_bed elf32_hppa_netbsd_bed
4614
4615 #include "elf32-target.h"
This page took 0.187064 seconds and 4 git commands to generate.