ChangeLog rotatation and copyright year update
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright (C) 1990-2015 Free Software Foundation, Inc.
3
4 Original code by
5 Center for Software Science
6 Department of Computer Science
7 University of Utah
8 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
9 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
10 TLS support written by Randolph Chung <tausq@debian.org>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
28
29 #include "sysdep.h"
30 #include "bfd.h"
31 #include "libbfd.h"
32 #include "elf-bfd.h"
33 #include "elf/hppa.h"
34 #include "libhppa.h"
35 #include "elf32-hppa.h"
36 #define ARCH_SIZE 32
37 #include "elf32-hppa.h"
38 #include "elf-hppa.h"
39
40 /* In order to gain some understanding of code in this file without
41 knowing all the intricate details of the linker, note the
42 following:
43
44 Functions named elf32_hppa_* are called by external routines, other
45 functions are only called locally. elf32_hppa_* functions appear
46 in this file more or less in the order in which they are called
47 from external routines. eg. elf32_hppa_check_relocs is called
48 early in the link process, elf32_hppa_finish_dynamic_sections is
49 one of the last functions. */
50
51 /* We use two hash tables to hold information for linking PA ELF objects.
52
53 The first is the elf32_hppa_link_hash_table which is derived
54 from the standard ELF linker hash table. We use this as a place to
55 attach other hash tables and static information.
56
57 The second is the stub hash table which is derived from the
58 base BFD hash table. The stub hash table holds the information
59 necessary to build the linker stubs during a link.
60
61 There are a number of different stubs generated by the linker.
62
63 Long branch stub:
64 : ldil LR'X,%r1
65 : be,n RR'X(%sr4,%r1)
66
67 PIC long branch stub:
68 : b,l .+8,%r1
69 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
70 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
71
72 Import stub to call shared library routine from normal object file
73 (single sub-space version)
74 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
75 : ldw RR'lt_ptr+ltoff(%r1),%r21
76 : bv %r0(%r21)
77 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
78
79 Import stub to call shared library routine from shared library
80 (single sub-space version)
81 : addil LR'ltoff,%r19 ; get procedure entry point
82 : ldw RR'ltoff(%r1),%r21
83 : bv %r0(%r21)
84 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
85
86 Import stub to call shared library routine from normal object file
87 (multiple sub-space support)
88 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
89 : ldw RR'lt_ptr+ltoff(%r1),%r21
90 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
91 : ldsid (%r21),%r1
92 : mtsp %r1,%sr0
93 : be 0(%sr0,%r21) ; branch to target
94 : stw %rp,-24(%sp) ; save rp
95
96 Import stub to call shared library routine from shared library
97 (multiple sub-space support)
98 : addil LR'ltoff,%r19 ; get procedure entry point
99 : ldw RR'ltoff(%r1),%r21
100 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
101 : ldsid (%r21),%r1
102 : mtsp %r1,%sr0
103 : be 0(%sr0,%r21) ; branch to target
104 : stw %rp,-24(%sp) ; save rp
105
106 Export stub to return from shared lib routine (multiple sub-space support)
107 One of these is created for each exported procedure in a shared
108 library (and stored in the shared lib). Shared lib routines are
109 called via the first instruction in the export stub so that we can
110 do an inter-space return. Not required for single sub-space.
111 : bl,n X,%rp ; trap the return
112 : nop
113 : ldw -24(%sp),%rp ; restore the original rp
114 : ldsid (%rp),%r1
115 : mtsp %r1,%sr0
116 : be,n 0(%sr0,%rp) ; inter-space return. */
117
118
119 /* Variable names follow a coding style.
120 Please follow this (Apps Hungarian) style:
121
122 Structure/Variable Prefix
123 elf_link_hash_table "etab"
124 elf_link_hash_entry "eh"
125
126 elf32_hppa_link_hash_table "htab"
127 elf32_hppa_link_hash_entry "hh"
128
129 bfd_hash_table "btab"
130 bfd_hash_entry "bh"
131
132 bfd_hash_table containing stubs "bstab"
133 elf32_hppa_stub_hash_entry "hsh"
134
135 elf32_hppa_dyn_reloc_entry "hdh"
136
137 Always remember to use GNU Coding Style. */
138
139 #define PLT_ENTRY_SIZE 8
140 #define GOT_ENTRY_SIZE 4
141 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
142
143 static const bfd_byte plt_stub[] =
144 {
145 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
146 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
147 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
148 #define PLT_STUB_ENTRY (3*4)
149 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
150 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
151 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
152 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
153 };
154
155 /* Section name for stubs is the associated section name plus this
156 string. */
157 #define STUB_SUFFIX ".stub"
158
159 /* We don't need to copy certain PC- or GP-relative dynamic relocs
160 into a shared object's dynamic section. All the relocs of the
161 limited class we are interested in, are absolute. */
162 #ifndef RELATIVE_DYNRELOCS
163 #define RELATIVE_DYNRELOCS 0
164 #define IS_ABSOLUTE_RELOC(r_type) 1
165 #endif
166
167 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
168 copying dynamic variables from a shared lib into an app's dynbss
169 section, and instead use a dynamic relocation to point into the
170 shared lib. */
171 #define ELIMINATE_COPY_RELOCS 1
172
173 enum elf32_hppa_stub_type
174 {
175 hppa_stub_long_branch,
176 hppa_stub_long_branch_shared,
177 hppa_stub_import,
178 hppa_stub_import_shared,
179 hppa_stub_export,
180 hppa_stub_none
181 };
182
183 struct elf32_hppa_stub_hash_entry
184 {
185 /* Base hash table entry structure. */
186 struct bfd_hash_entry bh_root;
187
188 /* The stub section. */
189 asection *stub_sec;
190
191 /* Offset within stub_sec of the beginning of this stub. */
192 bfd_vma stub_offset;
193
194 /* Given the symbol's value and its section we can determine its final
195 value when building the stubs (so the stub knows where to jump. */
196 bfd_vma target_value;
197 asection *target_section;
198
199 enum elf32_hppa_stub_type stub_type;
200
201 /* The symbol table entry, if any, that this was derived from. */
202 struct elf32_hppa_link_hash_entry *hh;
203
204 /* Where this stub is being called from, or, in the case of combined
205 stub sections, the first input section in the group. */
206 asection *id_sec;
207 };
208
209 struct elf32_hppa_link_hash_entry
210 {
211 struct elf_link_hash_entry eh;
212
213 /* A pointer to the most recently used stub hash entry against this
214 symbol. */
215 struct elf32_hppa_stub_hash_entry *hsh_cache;
216
217 /* Used to count relocations for delayed sizing of relocation
218 sections. */
219 struct elf32_hppa_dyn_reloc_entry
220 {
221 /* Next relocation in the chain. */
222 struct elf32_hppa_dyn_reloc_entry *hdh_next;
223
224 /* The input section of the reloc. */
225 asection *sec;
226
227 /* Number of relocs copied in this section. */
228 bfd_size_type count;
229
230 #if RELATIVE_DYNRELOCS
231 /* Number of relative relocs copied for the input section. */
232 bfd_size_type relative_count;
233 #endif
234 } *dyn_relocs;
235
236 enum
237 {
238 GOT_UNKNOWN = 0, GOT_NORMAL = 1, GOT_TLS_GD = 2, GOT_TLS_LDM = 4, GOT_TLS_IE = 8
239 } tls_type;
240
241 /* Set if this symbol is used by a plabel reloc. */
242 unsigned int plabel:1;
243 };
244
245 struct elf32_hppa_link_hash_table
246 {
247 /* The main hash table. */
248 struct elf_link_hash_table etab;
249
250 /* The stub hash table. */
251 struct bfd_hash_table bstab;
252
253 /* Linker stub bfd. */
254 bfd *stub_bfd;
255
256 /* Linker call-backs. */
257 asection * (*add_stub_section) (const char *, asection *);
258 void (*layout_sections_again) (void);
259
260 /* Array to keep track of which stub sections have been created, and
261 information on stub grouping. */
262 struct map_stub
263 {
264 /* This is the section to which stubs in the group will be
265 attached. */
266 asection *link_sec;
267 /* The stub section. */
268 asection *stub_sec;
269 } *stub_group;
270
271 /* Assorted information used by elf32_hppa_size_stubs. */
272 unsigned int bfd_count;
273 int top_index;
274 asection **input_list;
275 Elf_Internal_Sym **all_local_syms;
276
277 /* Short-cuts to get to dynamic linker sections. */
278 asection *sgot;
279 asection *srelgot;
280 asection *splt;
281 asection *srelplt;
282 asection *sdynbss;
283 asection *srelbss;
284
285 /* Used during a final link to store the base of the text and data
286 segments so that we can perform SEGREL relocations. */
287 bfd_vma text_segment_base;
288 bfd_vma data_segment_base;
289
290 /* Whether we support multiple sub-spaces for shared libs. */
291 unsigned int multi_subspace:1;
292
293 /* Flags set when various size branches are detected. Used to
294 select suitable defaults for the stub group size. */
295 unsigned int has_12bit_branch:1;
296 unsigned int has_17bit_branch:1;
297 unsigned int has_22bit_branch:1;
298
299 /* Set if we need a .plt stub to support lazy dynamic linking. */
300 unsigned int need_plt_stub:1;
301
302 /* Small local sym cache. */
303 struct sym_cache sym_cache;
304
305 /* Data for LDM relocations. */
306 union
307 {
308 bfd_signed_vma refcount;
309 bfd_vma offset;
310 } tls_ldm_got;
311 };
312
313 /* Various hash macros and functions. */
314 #define hppa_link_hash_table(p) \
315 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
316 == HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL)
317
318 #define hppa_elf_hash_entry(ent) \
319 ((struct elf32_hppa_link_hash_entry *)(ent))
320
321 #define hppa_stub_hash_entry(ent) \
322 ((struct elf32_hppa_stub_hash_entry *)(ent))
323
324 #define hppa_stub_hash_lookup(table, string, create, copy) \
325 ((struct elf32_hppa_stub_hash_entry *) \
326 bfd_hash_lookup ((table), (string), (create), (copy)))
327
328 #define hppa_elf_local_got_tls_type(abfd) \
329 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
330
331 #define hh_name(hh) \
332 (hh ? hh->eh.root.root.string : "<undef>")
333
334 #define eh_name(eh) \
335 (eh ? eh->root.root.string : "<undef>")
336
337 /* Assorted hash table functions. */
338
339 /* Initialize an entry in the stub hash table. */
340
341 static struct bfd_hash_entry *
342 stub_hash_newfunc (struct bfd_hash_entry *entry,
343 struct bfd_hash_table *table,
344 const char *string)
345 {
346 /* Allocate the structure if it has not already been allocated by a
347 subclass. */
348 if (entry == NULL)
349 {
350 entry = bfd_hash_allocate (table,
351 sizeof (struct elf32_hppa_stub_hash_entry));
352 if (entry == NULL)
353 return entry;
354 }
355
356 /* Call the allocation method of the superclass. */
357 entry = bfd_hash_newfunc (entry, table, string);
358 if (entry != NULL)
359 {
360 struct elf32_hppa_stub_hash_entry *hsh;
361
362 /* Initialize the local fields. */
363 hsh = hppa_stub_hash_entry (entry);
364 hsh->stub_sec = NULL;
365 hsh->stub_offset = 0;
366 hsh->target_value = 0;
367 hsh->target_section = NULL;
368 hsh->stub_type = hppa_stub_long_branch;
369 hsh->hh = NULL;
370 hsh->id_sec = NULL;
371 }
372
373 return entry;
374 }
375
376 /* Initialize an entry in the link hash table. */
377
378 static struct bfd_hash_entry *
379 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
380 struct bfd_hash_table *table,
381 const char *string)
382 {
383 /* Allocate the structure if it has not already been allocated by a
384 subclass. */
385 if (entry == NULL)
386 {
387 entry = bfd_hash_allocate (table,
388 sizeof (struct elf32_hppa_link_hash_entry));
389 if (entry == NULL)
390 return entry;
391 }
392
393 /* Call the allocation method of the superclass. */
394 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
395 if (entry != NULL)
396 {
397 struct elf32_hppa_link_hash_entry *hh;
398
399 /* Initialize the local fields. */
400 hh = hppa_elf_hash_entry (entry);
401 hh->hsh_cache = NULL;
402 hh->dyn_relocs = NULL;
403 hh->plabel = 0;
404 hh->tls_type = GOT_UNKNOWN;
405 }
406
407 return entry;
408 }
409
410 /* Free the derived linker hash table. */
411
412 static void
413 elf32_hppa_link_hash_table_free (bfd *obfd)
414 {
415 struct elf32_hppa_link_hash_table *htab
416 = (struct elf32_hppa_link_hash_table *) obfd->link.hash;
417
418 bfd_hash_table_free (&htab->bstab);
419 _bfd_elf_link_hash_table_free (obfd);
420 }
421
422 /* Create the derived linker hash table. The PA ELF port uses the derived
423 hash table to keep information specific to the PA ELF linker (without
424 using static variables). */
425
426 static struct bfd_link_hash_table *
427 elf32_hppa_link_hash_table_create (bfd *abfd)
428 {
429 struct elf32_hppa_link_hash_table *htab;
430 bfd_size_type amt = sizeof (*htab);
431
432 htab = bfd_zmalloc (amt);
433 if (htab == NULL)
434 return NULL;
435
436 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
437 sizeof (struct elf32_hppa_link_hash_entry),
438 HPPA32_ELF_DATA))
439 {
440 free (htab);
441 return NULL;
442 }
443
444 /* Init the stub hash table too. */
445 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
446 sizeof (struct elf32_hppa_stub_hash_entry)))
447 {
448 _bfd_elf_link_hash_table_free (abfd);
449 return NULL;
450 }
451 htab->etab.root.hash_table_free = elf32_hppa_link_hash_table_free;
452
453 htab->text_segment_base = (bfd_vma) -1;
454 htab->data_segment_base = (bfd_vma) -1;
455 return &htab->etab.root;
456 }
457
458 /* Build a name for an entry in the stub hash table. */
459
460 static char *
461 hppa_stub_name (const asection *input_section,
462 const asection *sym_sec,
463 const struct elf32_hppa_link_hash_entry *hh,
464 const Elf_Internal_Rela *rela)
465 {
466 char *stub_name;
467 bfd_size_type len;
468
469 if (hh)
470 {
471 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
472 stub_name = bfd_malloc (len);
473 if (stub_name != NULL)
474 sprintf (stub_name, "%08x_%s+%x",
475 input_section->id & 0xffffffff,
476 hh_name (hh),
477 (int) rela->r_addend & 0xffffffff);
478 }
479 else
480 {
481 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
482 stub_name = bfd_malloc (len);
483 if (stub_name != NULL)
484 sprintf (stub_name, "%08x_%x:%x+%x",
485 input_section->id & 0xffffffff,
486 sym_sec->id & 0xffffffff,
487 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
488 (int) rela->r_addend & 0xffffffff);
489 }
490 return stub_name;
491 }
492
493 /* Look up an entry in the stub hash. Stub entries are cached because
494 creating the stub name takes a bit of time. */
495
496 static struct elf32_hppa_stub_hash_entry *
497 hppa_get_stub_entry (const asection *input_section,
498 const asection *sym_sec,
499 struct elf32_hppa_link_hash_entry *hh,
500 const Elf_Internal_Rela *rela,
501 struct elf32_hppa_link_hash_table *htab)
502 {
503 struct elf32_hppa_stub_hash_entry *hsh_entry;
504 const asection *id_sec;
505
506 /* If this input section is part of a group of sections sharing one
507 stub section, then use the id of the first section in the group.
508 Stub names need to include a section id, as there may well be
509 more than one stub used to reach say, printf, and we need to
510 distinguish between them. */
511 id_sec = htab->stub_group[input_section->id].link_sec;
512
513 if (hh != NULL && hh->hsh_cache != NULL
514 && hh->hsh_cache->hh == hh
515 && hh->hsh_cache->id_sec == id_sec)
516 {
517 hsh_entry = hh->hsh_cache;
518 }
519 else
520 {
521 char *stub_name;
522
523 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
524 if (stub_name == NULL)
525 return NULL;
526
527 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
528 stub_name, FALSE, FALSE);
529 if (hh != NULL)
530 hh->hsh_cache = hsh_entry;
531
532 free (stub_name);
533 }
534
535 return hsh_entry;
536 }
537
538 /* Add a new stub entry to the stub hash. Not all fields of the new
539 stub entry are initialised. */
540
541 static struct elf32_hppa_stub_hash_entry *
542 hppa_add_stub (const char *stub_name,
543 asection *section,
544 struct elf32_hppa_link_hash_table *htab)
545 {
546 asection *link_sec;
547 asection *stub_sec;
548 struct elf32_hppa_stub_hash_entry *hsh;
549
550 link_sec = htab->stub_group[section->id].link_sec;
551 stub_sec = htab->stub_group[section->id].stub_sec;
552 if (stub_sec == NULL)
553 {
554 stub_sec = htab->stub_group[link_sec->id].stub_sec;
555 if (stub_sec == NULL)
556 {
557 size_t namelen;
558 bfd_size_type len;
559 char *s_name;
560
561 namelen = strlen (link_sec->name);
562 len = namelen + sizeof (STUB_SUFFIX);
563 s_name = bfd_alloc (htab->stub_bfd, len);
564 if (s_name == NULL)
565 return NULL;
566
567 memcpy (s_name, link_sec->name, namelen);
568 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
569 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
570 if (stub_sec == NULL)
571 return NULL;
572 htab->stub_group[link_sec->id].stub_sec = stub_sec;
573 }
574 htab->stub_group[section->id].stub_sec = stub_sec;
575 }
576
577 /* Enter this entry into the linker stub hash table. */
578 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
579 TRUE, FALSE);
580 if (hsh == NULL)
581 {
582 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
583 section->owner,
584 stub_name);
585 return NULL;
586 }
587
588 hsh->stub_sec = stub_sec;
589 hsh->stub_offset = 0;
590 hsh->id_sec = link_sec;
591 return hsh;
592 }
593
594 /* Determine the type of stub needed, if any, for a call. */
595
596 static enum elf32_hppa_stub_type
597 hppa_type_of_stub (asection *input_sec,
598 const Elf_Internal_Rela *rela,
599 struct elf32_hppa_link_hash_entry *hh,
600 bfd_vma destination,
601 struct bfd_link_info *info)
602 {
603 bfd_vma location;
604 bfd_vma branch_offset;
605 bfd_vma max_branch_offset;
606 unsigned int r_type;
607
608 if (hh != NULL
609 && hh->eh.plt.offset != (bfd_vma) -1
610 && hh->eh.dynindx != -1
611 && !hh->plabel
612 && (info->shared
613 || !hh->eh.def_regular
614 || hh->eh.root.type == bfd_link_hash_defweak))
615 {
616 /* We need an import stub. Decide between hppa_stub_import
617 and hppa_stub_import_shared later. */
618 return hppa_stub_import;
619 }
620
621 /* Determine where the call point is. */
622 location = (input_sec->output_offset
623 + input_sec->output_section->vma
624 + rela->r_offset);
625
626 branch_offset = destination - location - 8;
627 r_type = ELF32_R_TYPE (rela->r_info);
628
629 /* Determine if a long branch stub is needed. parisc branch offsets
630 are relative to the second instruction past the branch, ie. +8
631 bytes on from the branch instruction location. The offset is
632 signed and counts in units of 4 bytes. */
633 if (r_type == (unsigned int) R_PARISC_PCREL17F)
634 max_branch_offset = (1 << (17 - 1)) << 2;
635
636 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
637 max_branch_offset = (1 << (12 - 1)) << 2;
638
639 else /* R_PARISC_PCREL22F. */
640 max_branch_offset = (1 << (22 - 1)) << 2;
641
642 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
643 return hppa_stub_long_branch;
644
645 return hppa_stub_none;
646 }
647
648 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
649 IN_ARG contains the link info pointer. */
650
651 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
652 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
653
654 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
655 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
656 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
657
658 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
659 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
660 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
661 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
662
663 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
664 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
665
666 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
667 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
668 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
669 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
670
671 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
672 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
673 #define NOP 0x08000240 /* nop */
674 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
675 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
676 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
677
678 #ifndef R19_STUBS
679 #define R19_STUBS 1
680 #endif
681
682 #if R19_STUBS
683 #define LDW_R1_DLT LDW_R1_R19
684 #else
685 #define LDW_R1_DLT LDW_R1_DP
686 #endif
687
688 static bfd_boolean
689 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
690 {
691 struct elf32_hppa_stub_hash_entry *hsh;
692 struct bfd_link_info *info;
693 struct elf32_hppa_link_hash_table *htab;
694 asection *stub_sec;
695 bfd *stub_bfd;
696 bfd_byte *loc;
697 bfd_vma sym_value;
698 bfd_vma insn;
699 bfd_vma off;
700 int val;
701 int size;
702
703 /* Massage our args to the form they really have. */
704 hsh = hppa_stub_hash_entry (bh);
705 info = (struct bfd_link_info *)in_arg;
706
707 htab = hppa_link_hash_table (info);
708 if (htab == NULL)
709 return FALSE;
710
711 stub_sec = hsh->stub_sec;
712
713 /* Make a note of the offset within the stubs for this entry. */
714 hsh->stub_offset = stub_sec->size;
715 loc = stub_sec->contents + hsh->stub_offset;
716
717 stub_bfd = stub_sec->owner;
718
719 switch (hsh->stub_type)
720 {
721 case hppa_stub_long_branch:
722 /* Create the long branch. A long branch is formed with "ldil"
723 loading the upper bits of the target address into a register,
724 then branching with "be" which adds in the lower bits.
725 The "be" has its delay slot nullified. */
726 sym_value = (hsh->target_value
727 + hsh->target_section->output_offset
728 + hsh->target_section->output_section->vma);
729
730 val = hppa_field_adjust (sym_value, 0, e_lrsel);
731 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
732 bfd_put_32 (stub_bfd, insn, loc);
733
734 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
735 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
736 bfd_put_32 (stub_bfd, insn, loc + 4);
737
738 size = 8;
739 break;
740
741 case hppa_stub_long_branch_shared:
742 /* Branches are relative. This is where we are going to. */
743 sym_value = (hsh->target_value
744 + hsh->target_section->output_offset
745 + hsh->target_section->output_section->vma);
746
747 /* And this is where we are coming from, more or less. */
748 sym_value -= (hsh->stub_offset
749 + stub_sec->output_offset
750 + stub_sec->output_section->vma);
751
752 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
753 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
754 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
755 bfd_put_32 (stub_bfd, insn, loc + 4);
756
757 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
758 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
759 bfd_put_32 (stub_bfd, insn, loc + 8);
760 size = 12;
761 break;
762
763 case hppa_stub_import:
764 case hppa_stub_import_shared:
765 off = hsh->hh->eh.plt.offset;
766 if (off >= (bfd_vma) -2)
767 abort ();
768
769 off &= ~ (bfd_vma) 1;
770 sym_value = (off
771 + htab->splt->output_offset
772 + htab->splt->output_section->vma
773 - elf_gp (htab->splt->output_section->owner));
774
775 insn = ADDIL_DP;
776 #if R19_STUBS
777 if (hsh->stub_type == hppa_stub_import_shared)
778 insn = ADDIL_R19;
779 #endif
780 val = hppa_field_adjust (sym_value, 0, e_lrsel),
781 insn = hppa_rebuild_insn ((int) insn, val, 21);
782 bfd_put_32 (stub_bfd, insn, loc);
783
784 /* It is critical to use lrsel/rrsel here because we are using
785 two different offsets (+0 and +4) from sym_value. If we use
786 lsel/rsel then with unfortunate sym_values we will round
787 sym_value+4 up to the next 2k block leading to a mis-match
788 between the lsel and rsel value. */
789 val = hppa_field_adjust (sym_value, 0, e_rrsel);
790 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
791 bfd_put_32 (stub_bfd, insn, loc + 4);
792
793 if (htab->multi_subspace)
794 {
795 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
796 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
797 bfd_put_32 (stub_bfd, insn, loc + 8);
798
799 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
800 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
801 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
802 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
803
804 size = 28;
805 }
806 else
807 {
808 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
809 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
810 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
811 bfd_put_32 (stub_bfd, insn, loc + 12);
812
813 size = 16;
814 }
815
816 break;
817
818 case hppa_stub_export:
819 /* Branches are relative. This is where we are going to. */
820 sym_value = (hsh->target_value
821 + hsh->target_section->output_offset
822 + hsh->target_section->output_section->vma);
823
824 /* And this is where we are coming from. */
825 sym_value -= (hsh->stub_offset
826 + stub_sec->output_offset
827 + stub_sec->output_section->vma);
828
829 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
830 && (!htab->has_22bit_branch
831 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
832 {
833 (*_bfd_error_handler)
834 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
835 hsh->target_section->owner,
836 stub_sec,
837 (long) hsh->stub_offset,
838 hsh->bh_root.string);
839 bfd_set_error (bfd_error_bad_value);
840 return FALSE;
841 }
842
843 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
844 if (!htab->has_22bit_branch)
845 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
846 else
847 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
848 bfd_put_32 (stub_bfd, insn, loc);
849
850 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
851 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
852 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
853 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
854 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
855
856 /* Point the function symbol at the stub. */
857 hsh->hh->eh.root.u.def.section = stub_sec;
858 hsh->hh->eh.root.u.def.value = stub_sec->size;
859
860 size = 24;
861 break;
862
863 default:
864 BFD_FAIL ();
865 return FALSE;
866 }
867
868 stub_sec->size += size;
869 return TRUE;
870 }
871
872 #undef LDIL_R1
873 #undef BE_SR4_R1
874 #undef BL_R1
875 #undef ADDIL_R1
876 #undef DEPI_R1
877 #undef LDW_R1_R21
878 #undef LDW_R1_DLT
879 #undef LDW_R1_R19
880 #undef ADDIL_R19
881 #undef LDW_R1_DP
882 #undef LDSID_R21_R1
883 #undef MTSP_R1
884 #undef BE_SR0_R21
885 #undef STW_RP
886 #undef BV_R0_R21
887 #undef BL_RP
888 #undef NOP
889 #undef LDW_RP
890 #undef LDSID_RP_R1
891 #undef BE_SR0_RP
892
893 /* As above, but don't actually build the stub. Just bump offset so
894 we know stub section sizes. */
895
896 static bfd_boolean
897 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
898 {
899 struct elf32_hppa_stub_hash_entry *hsh;
900 struct elf32_hppa_link_hash_table *htab;
901 int size;
902
903 /* Massage our args to the form they really have. */
904 hsh = hppa_stub_hash_entry (bh);
905 htab = in_arg;
906
907 if (hsh->stub_type == hppa_stub_long_branch)
908 size = 8;
909 else if (hsh->stub_type == hppa_stub_long_branch_shared)
910 size = 12;
911 else if (hsh->stub_type == hppa_stub_export)
912 size = 24;
913 else /* hppa_stub_import or hppa_stub_import_shared. */
914 {
915 if (htab->multi_subspace)
916 size = 28;
917 else
918 size = 16;
919 }
920
921 hsh->stub_sec->size += size;
922 return TRUE;
923 }
924
925 /* Return nonzero if ABFD represents an HPPA ELF32 file.
926 Additionally we set the default architecture and machine. */
927
928 static bfd_boolean
929 elf32_hppa_object_p (bfd *abfd)
930 {
931 Elf_Internal_Ehdr * i_ehdrp;
932 unsigned int flags;
933
934 i_ehdrp = elf_elfheader (abfd);
935 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
936 {
937 /* GCC on hppa-linux produces binaries with OSABI=GNU,
938 but the kernel produces corefiles with OSABI=SysV. */
939 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU &&
940 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
941 return FALSE;
942 }
943 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
944 {
945 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
946 but the kernel produces corefiles with OSABI=SysV. */
947 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
948 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
949 return FALSE;
950 }
951 else
952 {
953 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
954 return FALSE;
955 }
956
957 flags = i_ehdrp->e_flags;
958 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
959 {
960 case EFA_PARISC_1_0:
961 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
962 case EFA_PARISC_1_1:
963 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
964 case EFA_PARISC_2_0:
965 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
966 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
967 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
968 }
969 return TRUE;
970 }
971
972 /* Create the .plt and .got sections, and set up our hash table
973 short-cuts to various dynamic sections. */
974
975 static bfd_boolean
976 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
977 {
978 struct elf32_hppa_link_hash_table *htab;
979 struct elf_link_hash_entry *eh;
980
981 /* Don't try to create the .plt and .got twice. */
982 htab = hppa_link_hash_table (info);
983 if (htab == NULL)
984 return FALSE;
985 if (htab->splt != NULL)
986 return TRUE;
987
988 /* Call the generic code to do most of the work. */
989 if (! _bfd_elf_create_dynamic_sections (abfd, info))
990 return FALSE;
991
992 htab->splt = bfd_get_linker_section (abfd, ".plt");
993 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
994
995 htab->sgot = bfd_get_linker_section (abfd, ".got");
996 htab->srelgot = bfd_get_linker_section (abfd, ".rela.got");
997
998 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
999 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
1000
1001 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
1002 application, because __canonicalize_funcptr_for_compare needs it. */
1003 eh = elf_hash_table (info)->hgot;
1004 eh->forced_local = 0;
1005 eh->other = STV_DEFAULT;
1006 return bfd_elf_link_record_dynamic_symbol (info, eh);
1007 }
1008
1009 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1010
1011 static void
1012 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1013 struct elf_link_hash_entry *eh_dir,
1014 struct elf_link_hash_entry *eh_ind)
1015 {
1016 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1017
1018 hh_dir = hppa_elf_hash_entry (eh_dir);
1019 hh_ind = hppa_elf_hash_entry (eh_ind);
1020
1021 if (hh_ind->dyn_relocs != NULL)
1022 {
1023 if (hh_dir->dyn_relocs != NULL)
1024 {
1025 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1026 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1027
1028 /* Add reloc counts against the indirect sym to the direct sym
1029 list. Merge any entries against the same section. */
1030 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1031 {
1032 struct elf32_hppa_dyn_reloc_entry *hdh_q;
1033
1034 for (hdh_q = hh_dir->dyn_relocs;
1035 hdh_q != NULL;
1036 hdh_q = hdh_q->hdh_next)
1037 if (hdh_q->sec == hdh_p->sec)
1038 {
1039 #if RELATIVE_DYNRELOCS
1040 hdh_q->relative_count += hdh_p->relative_count;
1041 #endif
1042 hdh_q->count += hdh_p->count;
1043 *hdh_pp = hdh_p->hdh_next;
1044 break;
1045 }
1046 if (hdh_q == NULL)
1047 hdh_pp = &hdh_p->hdh_next;
1048 }
1049 *hdh_pp = hh_dir->dyn_relocs;
1050 }
1051
1052 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1053 hh_ind->dyn_relocs = NULL;
1054 }
1055
1056 if (ELIMINATE_COPY_RELOCS
1057 && eh_ind->root.type != bfd_link_hash_indirect
1058 && eh_dir->dynamic_adjusted)
1059 {
1060 /* If called to transfer flags for a weakdef during processing
1061 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1062 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1063 eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1064 eh_dir->ref_regular |= eh_ind->ref_regular;
1065 eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1066 eh_dir->needs_plt |= eh_ind->needs_plt;
1067 }
1068 else
1069 {
1070 if (eh_ind->root.type == bfd_link_hash_indirect
1071 && eh_dir->got.refcount <= 0)
1072 {
1073 hh_dir->tls_type = hh_ind->tls_type;
1074 hh_ind->tls_type = GOT_UNKNOWN;
1075 }
1076
1077 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1078 }
1079 }
1080
1081 static int
1082 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1083 int r_type, int is_local ATTRIBUTE_UNUSED)
1084 {
1085 /* For now we don't support linker optimizations. */
1086 return r_type;
1087 }
1088
1089 /* Return a pointer to the local GOT, PLT and TLS reference counts
1090 for ABFD. Returns NULL if the storage allocation fails. */
1091
1092 static bfd_signed_vma *
1093 hppa32_elf_local_refcounts (bfd *abfd)
1094 {
1095 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1096 bfd_signed_vma *local_refcounts;
1097
1098 local_refcounts = elf_local_got_refcounts (abfd);
1099 if (local_refcounts == NULL)
1100 {
1101 bfd_size_type size;
1102
1103 /* Allocate space for local GOT and PLT reference
1104 counts. Done this way to save polluting elf_obj_tdata
1105 with another target specific pointer. */
1106 size = symtab_hdr->sh_info;
1107 size *= 2 * sizeof (bfd_signed_vma);
1108 /* Add in space to store the local GOT TLS types. */
1109 size += symtab_hdr->sh_info;
1110 local_refcounts = bfd_zalloc (abfd, size);
1111 if (local_refcounts == NULL)
1112 return NULL;
1113 elf_local_got_refcounts (abfd) = local_refcounts;
1114 memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
1115 symtab_hdr->sh_info);
1116 }
1117 return local_refcounts;
1118 }
1119
1120
1121 /* Look through the relocs for a section during the first phase, and
1122 calculate needed space in the global offset table, procedure linkage
1123 table, and dynamic reloc sections. At this point we haven't
1124 necessarily read all the input files. */
1125
1126 static bfd_boolean
1127 elf32_hppa_check_relocs (bfd *abfd,
1128 struct bfd_link_info *info,
1129 asection *sec,
1130 const Elf_Internal_Rela *relocs)
1131 {
1132 Elf_Internal_Shdr *symtab_hdr;
1133 struct elf_link_hash_entry **eh_syms;
1134 const Elf_Internal_Rela *rela;
1135 const Elf_Internal_Rela *rela_end;
1136 struct elf32_hppa_link_hash_table *htab;
1137 asection *sreloc;
1138 int tls_type = GOT_UNKNOWN, old_tls_type = GOT_UNKNOWN;
1139
1140 if (info->relocatable)
1141 return TRUE;
1142
1143 htab = hppa_link_hash_table (info);
1144 if (htab == NULL)
1145 return FALSE;
1146 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1147 eh_syms = elf_sym_hashes (abfd);
1148 sreloc = NULL;
1149
1150 rela_end = relocs + sec->reloc_count;
1151 for (rela = relocs; rela < rela_end; rela++)
1152 {
1153 enum {
1154 NEED_GOT = 1,
1155 NEED_PLT = 2,
1156 NEED_DYNREL = 4,
1157 PLT_PLABEL = 8
1158 };
1159
1160 unsigned int r_symndx, r_type;
1161 struct elf32_hppa_link_hash_entry *hh;
1162 int need_entry = 0;
1163
1164 r_symndx = ELF32_R_SYM (rela->r_info);
1165
1166 if (r_symndx < symtab_hdr->sh_info)
1167 hh = NULL;
1168 else
1169 {
1170 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1171 while (hh->eh.root.type == bfd_link_hash_indirect
1172 || hh->eh.root.type == bfd_link_hash_warning)
1173 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1174
1175 /* PR15323, ref flags aren't set for references in the same
1176 object. */
1177 hh->eh.root.non_ir_ref = 1;
1178 }
1179
1180 r_type = ELF32_R_TYPE (rela->r_info);
1181 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1182
1183 switch (r_type)
1184 {
1185 case R_PARISC_DLTIND14F:
1186 case R_PARISC_DLTIND14R:
1187 case R_PARISC_DLTIND21L:
1188 /* This symbol requires a global offset table entry. */
1189 need_entry = NEED_GOT;
1190 break;
1191
1192 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1193 case R_PARISC_PLABEL21L:
1194 case R_PARISC_PLABEL32:
1195 /* If the addend is non-zero, we break badly. */
1196 if (rela->r_addend != 0)
1197 abort ();
1198
1199 /* If we are creating a shared library, then we need to
1200 create a PLT entry for all PLABELs, because PLABELs with
1201 local symbols may be passed via a pointer to another
1202 object. Additionally, output a dynamic relocation
1203 pointing to the PLT entry.
1204
1205 For executables, the original 32-bit ABI allowed two
1206 different styles of PLABELs (function pointers): For
1207 global functions, the PLABEL word points into the .plt
1208 two bytes past a (function address, gp) pair, and for
1209 local functions the PLABEL points directly at the
1210 function. The magic +2 for the first type allows us to
1211 differentiate between the two. As you can imagine, this
1212 is a real pain when it comes to generating code to call
1213 functions indirectly or to compare function pointers.
1214 We avoid the mess by always pointing a PLABEL into the
1215 .plt, even for local functions. */
1216 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1217 break;
1218
1219 case R_PARISC_PCREL12F:
1220 htab->has_12bit_branch = 1;
1221 goto branch_common;
1222
1223 case R_PARISC_PCREL17C:
1224 case R_PARISC_PCREL17F:
1225 htab->has_17bit_branch = 1;
1226 goto branch_common;
1227
1228 case R_PARISC_PCREL22F:
1229 htab->has_22bit_branch = 1;
1230 branch_common:
1231 /* Function calls might need to go through the .plt, and
1232 might require long branch stubs. */
1233 if (hh == NULL)
1234 {
1235 /* We know local syms won't need a .plt entry, and if
1236 they need a long branch stub we can't guarantee that
1237 we can reach the stub. So just flag an error later
1238 if we're doing a shared link and find we need a long
1239 branch stub. */
1240 continue;
1241 }
1242 else
1243 {
1244 /* Global symbols will need a .plt entry if they remain
1245 global, and in most cases won't need a long branch
1246 stub. Unfortunately, we have to cater for the case
1247 where a symbol is forced local by versioning, or due
1248 to symbolic linking, and we lose the .plt entry. */
1249 need_entry = NEED_PLT;
1250 if (hh->eh.type == STT_PARISC_MILLI)
1251 need_entry = 0;
1252 }
1253 break;
1254
1255 case R_PARISC_SEGBASE: /* Used to set segment base. */
1256 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1257 case R_PARISC_PCREL14F: /* PC relative load/store. */
1258 case R_PARISC_PCREL14R:
1259 case R_PARISC_PCREL17R: /* External branches. */
1260 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1261 case R_PARISC_PCREL32:
1262 /* We don't need to propagate the relocation if linking a
1263 shared object since these are section relative. */
1264 continue;
1265
1266 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1267 case R_PARISC_DPREL14R:
1268 case R_PARISC_DPREL21L:
1269 if (info->shared)
1270 {
1271 (*_bfd_error_handler)
1272 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1273 abfd,
1274 elf_hppa_howto_table[r_type].name);
1275 bfd_set_error (bfd_error_bad_value);
1276 return FALSE;
1277 }
1278 /* Fall through. */
1279
1280 case R_PARISC_DIR17F: /* Used for external branches. */
1281 case R_PARISC_DIR17R:
1282 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1283 case R_PARISC_DIR14R:
1284 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1285 case R_PARISC_DIR32: /* .word relocs. */
1286 /* We may want to output a dynamic relocation later. */
1287 need_entry = NEED_DYNREL;
1288 break;
1289
1290 /* This relocation describes the C++ object vtable hierarchy.
1291 Reconstruct it for later use during GC. */
1292 case R_PARISC_GNU_VTINHERIT:
1293 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1294 return FALSE;
1295 continue;
1296
1297 /* This relocation describes which C++ vtable entries are actually
1298 used. Record for later use during GC. */
1299 case R_PARISC_GNU_VTENTRY:
1300 BFD_ASSERT (hh != NULL);
1301 if (hh != NULL
1302 && !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1303 return FALSE;
1304 continue;
1305
1306 case R_PARISC_TLS_GD21L:
1307 case R_PARISC_TLS_GD14R:
1308 case R_PARISC_TLS_LDM21L:
1309 case R_PARISC_TLS_LDM14R:
1310 need_entry = NEED_GOT;
1311 break;
1312
1313 case R_PARISC_TLS_IE21L:
1314 case R_PARISC_TLS_IE14R:
1315 if (info->shared)
1316 info->flags |= DF_STATIC_TLS;
1317 need_entry = NEED_GOT;
1318 break;
1319
1320 default:
1321 continue;
1322 }
1323
1324 /* Now carry out our orders. */
1325 if (need_entry & NEED_GOT)
1326 {
1327 switch (r_type)
1328 {
1329 default:
1330 tls_type = GOT_NORMAL;
1331 break;
1332 case R_PARISC_TLS_GD21L:
1333 case R_PARISC_TLS_GD14R:
1334 tls_type |= GOT_TLS_GD;
1335 break;
1336 case R_PARISC_TLS_LDM21L:
1337 case R_PARISC_TLS_LDM14R:
1338 tls_type |= GOT_TLS_LDM;
1339 break;
1340 case R_PARISC_TLS_IE21L:
1341 case R_PARISC_TLS_IE14R:
1342 tls_type |= GOT_TLS_IE;
1343 break;
1344 }
1345
1346 /* Allocate space for a GOT entry, as well as a dynamic
1347 relocation for this entry. */
1348 if (htab->sgot == NULL)
1349 {
1350 if (htab->etab.dynobj == NULL)
1351 htab->etab.dynobj = abfd;
1352 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1353 return FALSE;
1354 }
1355
1356 if (r_type == R_PARISC_TLS_LDM21L
1357 || r_type == R_PARISC_TLS_LDM14R)
1358 htab->tls_ldm_got.refcount += 1;
1359 else
1360 {
1361 if (hh != NULL)
1362 {
1363 hh->eh.got.refcount += 1;
1364 old_tls_type = hh->tls_type;
1365 }
1366 else
1367 {
1368 bfd_signed_vma *local_got_refcounts;
1369
1370 /* This is a global offset table entry for a local symbol. */
1371 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1372 if (local_got_refcounts == NULL)
1373 return FALSE;
1374 local_got_refcounts[r_symndx] += 1;
1375
1376 old_tls_type = hppa_elf_local_got_tls_type (abfd) [r_symndx];
1377 }
1378
1379 tls_type |= old_tls_type;
1380
1381 if (old_tls_type != tls_type)
1382 {
1383 if (hh != NULL)
1384 hh->tls_type = tls_type;
1385 else
1386 hppa_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
1387 }
1388
1389 }
1390 }
1391
1392 if (need_entry & NEED_PLT)
1393 {
1394 /* If we are creating a shared library, and this is a reloc
1395 against a weak symbol or a global symbol in a dynamic
1396 object, then we will be creating an import stub and a
1397 .plt entry for the symbol. Similarly, on a normal link
1398 to symbols defined in a dynamic object we'll need the
1399 import stub and a .plt entry. We don't know yet whether
1400 the symbol is defined or not, so make an entry anyway and
1401 clean up later in adjust_dynamic_symbol. */
1402 if ((sec->flags & SEC_ALLOC) != 0)
1403 {
1404 if (hh != NULL)
1405 {
1406 hh->eh.needs_plt = 1;
1407 hh->eh.plt.refcount += 1;
1408
1409 /* If this .plt entry is for a plabel, mark it so
1410 that adjust_dynamic_symbol will keep the entry
1411 even if it appears to be local. */
1412 if (need_entry & PLT_PLABEL)
1413 hh->plabel = 1;
1414 }
1415 else if (need_entry & PLT_PLABEL)
1416 {
1417 bfd_signed_vma *local_got_refcounts;
1418 bfd_signed_vma *local_plt_refcounts;
1419
1420 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1421 if (local_got_refcounts == NULL)
1422 return FALSE;
1423 local_plt_refcounts = (local_got_refcounts
1424 + symtab_hdr->sh_info);
1425 local_plt_refcounts[r_symndx] += 1;
1426 }
1427 }
1428 }
1429
1430 if (need_entry & NEED_DYNREL)
1431 {
1432 /* Flag this symbol as having a non-got, non-plt reference
1433 so that we generate copy relocs if it turns out to be
1434 dynamic. */
1435 if (hh != NULL && !info->shared)
1436 hh->eh.non_got_ref = 1;
1437
1438 /* If we are creating a shared library then we need to copy
1439 the reloc into the shared library. However, if we are
1440 linking with -Bsymbolic, we need only copy absolute
1441 relocs or relocs against symbols that are not defined in
1442 an object we are including in the link. PC- or DP- or
1443 DLT-relative relocs against any local sym or global sym
1444 with DEF_REGULAR set, can be discarded. At this point we
1445 have not seen all the input files, so it is possible that
1446 DEF_REGULAR is not set now but will be set later (it is
1447 never cleared). We account for that possibility below by
1448 storing information in the dyn_relocs field of the
1449 hash table entry.
1450
1451 A similar situation to the -Bsymbolic case occurs when
1452 creating shared libraries and symbol visibility changes
1453 render the symbol local.
1454
1455 As it turns out, all the relocs we will be creating here
1456 are absolute, so we cannot remove them on -Bsymbolic
1457 links or visibility changes anyway. A STUB_REL reloc
1458 is absolute too, as in that case it is the reloc in the
1459 stub we will be creating, rather than copying the PCREL
1460 reloc in the branch.
1461
1462 If on the other hand, we are creating an executable, we
1463 may need to keep relocations for symbols satisfied by a
1464 dynamic library if we manage to avoid copy relocs for the
1465 symbol. */
1466 if ((info->shared
1467 && (sec->flags & SEC_ALLOC) != 0
1468 && (IS_ABSOLUTE_RELOC (r_type)
1469 || (hh != NULL
1470 && (!info->symbolic
1471 || hh->eh.root.type == bfd_link_hash_defweak
1472 || !hh->eh.def_regular))))
1473 || (ELIMINATE_COPY_RELOCS
1474 && !info->shared
1475 && (sec->flags & SEC_ALLOC) != 0
1476 && hh != NULL
1477 && (hh->eh.root.type == bfd_link_hash_defweak
1478 || !hh->eh.def_regular)))
1479 {
1480 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1481 struct elf32_hppa_dyn_reloc_entry **hdh_head;
1482
1483 /* Create a reloc section in dynobj and make room for
1484 this reloc. */
1485 if (sreloc == NULL)
1486 {
1487 if (htab->etab.dynobj == NULL)
1488 htab->etab.dynobj = abfd;
1489
1490 sreloc = _bfd_elf_make_dynamic_reloc_section
1491 (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
1492
1493 if (sreloc == NULL)
1494 {
1495 bfd_set_error (bfd_error_bad_value);
1496 return FALSE;
1497 }
1498 }
1499
1500 /* If this is a global symbol, we count the number of
1501 relocations we need for this symbol. */
1502 if (hh != NULL)
1503 {
1504 hdh_head = &hh->dyn_relocs;
1505 }
1506 else
1507 {
1508 /* Track dynamic relocs needed for local syms too.
1509 We really need local syms available to do this
1510 easily. Oh well. */
1511 asection *sr;
1512 void *vpp;
1513 Elf_Internal_Sym *isym;
1514
1515 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1516 abfd, r_symndx);
1517 if (isym == NULL)
1518 return FALSE;
1519
1520 sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
1521 if (sr == NULL)
1522 sr = sec;
1523
1524 vpp = &elf_section_data (sr)->local_dynrel;
1525 hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
1526 }
1527
1528 hdh_p = *hdh_head;
1529 if (hdh_p == NULL || hdh_p->sec != sec)
1530 {
1531 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1532 if (hdh_p == NULL)
1533 return FALSE;
1534 hdh_p->hdh_next = *hdh_head;
1535 *hdh_head = hdh_p;
1536 hdh_p->sec = sec;
1537 hdh_p->count = 0;
1538 #if RELATIVE_DYNRELOCS
1539 hdh_p->relative_count = 0;
1540 #endif
1541 }
1542
1543 hdh_p->count += 1;
1544 #if RELATIVE_DYNRELOCS
1545 if (!IS_ABSOLUTE_RELOC (rtype))
1546 hdh_p->relative_count += 1;
1547 #endif
1548 }
1549 }
1550 }
1551
1552 return TRUE;
1553 }
1554
1555 /* Return the section that should be marked against garbage collection
1556 for a given relocation. */
1557
1558 static asection *
1559 elf32_hppa_gc_mark_hook (asection *sec,
1560 struct bfd_link_info *info,
1561 Elf_Internal_Rela *rela,
1562 struct elf_link_hash_entry *hh,
1563 Elf_Internal_Sym *sym)
1564 {
1565 if (hh != NULL)
1566 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1567 {
1568 case R_PARISC_GNU_VTINHERIT:
1569 case R_PARISC_GNU_VTENTRY:
1570 return NULL;
1571 }
1572
1573 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1574 }
1575
1576 /* Update the got and plt entry reference counts for the section being
1577 removed. */
1578
1579 static bfd_boolean
1580 elf32_hppa_gc_sweep_hook (bfd *abfd,
1581 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1582 asection *sec,
1583 const Elf_Internal_Rela *relocs)
1584 {
1585 Elf_Internal_Shdr *symtab_hdr;
1586 struct elf_link_hash_entry **eh_syms;
1587 bfd_signed_vma *local_got_refcounts;
1588 bfd_signed_vma *local_plt_refcounts;
1589 const Elf_Internal_Rela *rela, *relend;
1590 struct elf32_hppa_link_hash_table *htab;
1591
1592 if (info->relocatable)
1593 return TRUE;
1594
1595 htab = hppa_link_hash_table (info);
1596 if (htab == NULL)
1597 return FALSE;
1598
1599 elf_section_data (sec)->local_dynrel = NULL;
1600
1601 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1602 eh_syms = elf_sym_hashes (abfd);
1603 local_got_refcounts = elf_local_got_refcounts (abfd);
1604 local_plt_refcounts = local_got_refcounts;
1605 if (local_plt_refcounts != NULL)
1606 local_plt_refcounts += symtab_hdr->sh_info;
1607
1608 relend = relocs + sec->reloc_count;
1609 for (rela = relocs; rela < relend; rela++)
1610 {
1611 unsigned long r_symndx;
1612 unsigned int r_type;
1613 struct elf_link_hash_entry *eh = NULL;
1614
1615 r_symndx = ELF32_R_SYM (rela->r_info);
1616 if (r_symndx >= symtab_hdr->sh_info)
1617 {
1618 struct elf32_hppa_link_hash_entry *hh;
1619 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1620 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1621
1622 eh = eh_syms[r_symndx - symtab_hdr->sh_info];
1623 while (eh->root.type == bfd_link_hash_indirect
1624 || eh->root.type == bfd_link_hash_warning)
1625 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1626 hh = hppa_elf_hash_entry (eh);
1627
1628 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
1629 if (hdh_p->sec == sec)
1630 {
1631 /* Everything must go for SEC. */
1632 *hdh_pp = hdh_p->hdh_next;
1633 break;
1634 }
1635 }
1636
1637 r_type = ELF32_R_TYPE (rela->r_info);
1638 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, eh != NULL);
1639
1640 switch (r_type)
1641 {
1642 case R_PARISC_DLTIND14F:
1643 case R_PARISC_DLTIND14R:
1644 case R_PARISC_DLTIND21L:
1645 case R_PARISC_TLS_GD21L:
1646 case R_PARISC_TLS_GD14R:
1647 case R_PARISC_TLS_IE21L:
1648 case R_PARISC_TLS_IE14R:
1649 if (eh != NULL)
1650 {
1651 if (eh->got.refcount > 0)
1652 eh->got.refcount -= 1;
1653 }
1654 else if (local_got_refcounts != NULL)
1655 {
1656 if (local_got_refcounts[r_symndx] > 0)
1657 local_got_refcounts[r_symndx] -= 1;
1658 }
1659 break;
1660
1661 case R_PARISC_TLS_LDM21L:
1662 case R_PARISC_TLS_LDM14R:
1663 htab->tls_ldm_got.refcount -= 1;
1664 break;
1665
1666 case R_PARISC_PCREL12F:
1667 case R_PARISC_PCREL17C:
1668 case R_PARISC_PCREL17F:
1669 case R_PARISC_PCREL22F:
1670 if (eh != NULL)
1671 {
1672 if (eh->plt.refcount > 0)
1673 eh->plt.refcount -= 1;
1674 }
1675 break;
1676
1677 case R_PARISC_PLABEL14R:
1678 case R_PARISC_PLABEL21L:
1679 case R_PARISC_PLABEL32:
1680 if (eh != NULL)
1681 {
1682 if (eh->plt.refcount > 0)
1683 eh->plt.refcount -= 1;
1684 }
1685 else if (local_plt_refcounts != NULL)
1686 {
1687 if (local_plt_refcounts[r_symndx] > 0)
1688 local_plt_refcounts[r_symndx] -= 1;
1689 }
1690 break;
1691
1692 default:
1693 break;
1694 }
1695 }
1696
1697 return TRUE;
1698 }
1699
1700 /* Support for core dump NOTE sections. */
1701
1702 static bfd_boolean
1703 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1704 {
1705 int offset;
1706 size_t size;
1707
1708 switch (note->descsz)
1709 {
1710 default:
1711 return FALSE;
1712
1713 case 396: /* Linux/hppa */
1714 /* pr_cursig */
1715 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1716
1717 /* pr_pid */
1718 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
1719
1720 /* pr_reg */
1721 offset = 72;
1722 size = 320;
1723
1724 break;
1725 }
1726
1727 /* Make a ".reg/999" section. */
1728 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1729 size, note->descpos + offset);
1730 }
1731
1732 static bfd_boolean
1733 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1734 {
1735 switch (note->descsz)
1736 {
1737 default:
1738 return FALSE;
1739
1740 case 124: /* Linux/hppa elf_prpsinfo. */
1741 elf_tdata (abfd)->core->program
1742 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1743 elf_tdata (abfd)->core->command
1744 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1745 }
1746
1747 /* Note that for some reason, a spurious space is tacked
1748 onto the end of the args in some (at least one anyway)
1749 implementations, so strip it off if it exists. */
1750 {
1751 char *command = elf_tdata (abfd)->core->command;
1752 int n = strlen (command);
1753
1754 if (0 < n && command[n - 1] == ' ')
1755 command[n - 1] = '\0';
1756 }
1757
1758 return TRUE;
1759 }
1760
1761 /* Our own version of hide_symbol, so that we can keep plt entries for
1762 plabels. */
1763
1764 static void
1765 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1766 struct elf_link_hash_entry *eh,
1767 bfd_boolean force_local)
1768 {
1769 if (force_local)
1770 {
1771 eh->forced_local = 1;
1772 if (eh->dynindx != -1)
1773 {
1774 eh->dynindx = -1;
1775 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1776 eh->dynstr_index);
1777 }
1778
1779 /* PR 16082: Remove version information from hidden symbol. */
1780 eh->verinfo.verdef = NULL;
1781 eh->verinfo.vertree = NULL;
1782 }
1783
1784 /* STT_GNU_IFUNC symbol must go through PLT. */
1785 if (! hppa_elf_hash_entry (eh)->plabel
1786 && eh->type != STT_GNU_IFUNC)
1787 {
1788 eh->needs_plt = 0;
1789 eh->plt = elf_hash_table (info)->init_plt_offset;
1790 }
1791 }
1792
1793 /* Adjust a symbol defined by a dynamic object and referenced by a
1794 regular object. The current definition is in some section of the
1795 dynamic object, but we're not including those sections. We have to
1796 change the definition to something the rest of the link can
1797 understand. */
1798
1799 static bfd_boolean
1800 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1801 struct elf_link_hash_entry *eh)
1802 {
1803 struct elf32_hppa_link_hash_table *htab;
1804 asection *sec;
1805
1806 /* If this is a function, put it in the procedure linkage table. We
1807 will fill in the contents of the procedure linkage table later. */
1808 if (eh->type == STT_FUNC
1809 || eh->needs_plt)
1810 {
1811 /* If the symbol is used by a plabel, we must allocate a PLT slot.
1812 The refcounts are not reliable when it has been hidden since
1813 hide_symbol can be called before the plabel flag is set. */
1814 if (hppa_elf_hash_entry (eh)->plabel
1815 && eh->plt.refcount <= 0)
1816 eh->plt.refcount = 1;
1817
1818 if (eh->plt.refcount <= 0
1819 || (eh->def_regular
1820 && eh->root.type != bfd_link_hash_defweak
1821 && ! hppa_elf_hash_entry (eh)->plabel
1822 && (!info->shared || info->symbolic)))
1823 {
1824 /* The .plt entry is not needed when:
1825 a) Garbage collection has removed all references to the
1826 symbol, or
1827 b) We know for certain the symbol is defined in this
1828 object, and it's not a weak definition, nor is the symbol
1829 used by a plabel relocation. Either this object is the
1830 application or we are doing a shared symbolic link. */
1831
1832 eh->plt.offset = (bfd_vma) -1;
1833 eh->needs_plt = 0;
1834 }
1835
1836 return TRUE;
1837 }
1838 else
1839 eh->plt.offset = (bfd_vma) -1;
1840
1841 /* If this is a weak symbol, and there is a real definition, the
1842 processor independent code will have arranged for us to see the
1843 real definition first, and we can just use the same value. */
1844 if (eh->u.weakdef != NULL)
1845 {
1846 if (eh->u.weakdef->root.type != bfd_link_hash_defined
1847 && eh->u.weakdef->root.type != bfd_link_hash_defweak)
1848 abort ();
1849 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1850 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1851 if (ELIMINATE_COPY_RELOCS)
1852 eh->non_got_ref = eh->u.weakdef->non_got_ref;
1853 return TRUE;
1854 }
1855
1856 /* This is a reference to a symbol defined by a dynamic object which
1857 is not a function. */
1858
1859 /* If we are creating a shared library, we must presume that the
1860 only references to the symbol are via the global offset table.
1861 For such cases we need not do anything here; the relocations will
1862 be handled correctly by relocate_section. */
1863 if (info->shared)
1864 return TRUE;
1865
1866 /* If there are no references to this symbol that do not use the
1867 GOT, we don't need to generate a copy reloc. */
1868 if (!eh->non_got_ref)
1869 return TRUE;
1870
1871 if (ELIMINATE_COPY_RELOCS)
1872 {
1873 struct elf32_hppa_link_hash_entry *hh;
1874 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1875
1876 hh = hppa_elf_hash_entry (eh);
1877 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
1878 {
1879 sec = hdh_p->sec->output_section;
1880 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1881 break;
1882 }
1883
1884 /* If we didn't find any dynamic relocs in read-only sections, then
1885 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1886 if (hdh_p == NULL)
1887 {
1888 eh->non_got_ref = 0;
1889 return TRUE;
1890 }
1891 }
1892
1893 /* We must allocate the symbol in our .dynbss section, which will
1894 become part of the .bss section of the executable. There will be
1895 an entry for this symbol in the .dynsym section. The dynamic
1896 object will contain position independent code, so all references
1897 from the dynamic object to this symbol will go through the global
1898 offset table. The dynamic linker will use the .dynsym entry to
1899 determine the address it must put in the global offset table, so
1900 both the dynamic object and the regular object will refer to the
1901 same memory location for the variable. */
1902
1903 htab = hppa_link_hash_table (info);
1904 if (htab == NULL)
1905 return FALSE;
1906
1907 /* We must generate a COPY reloc to tell the dynamic linker to
1908 copy the initial value out of the dynamic object and into the
1909 runtime process image. */
1910 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0 && eh->size != 0)
1911 {
1912 htab->srelbss->size += sizeof (Elf32_External_Rela);
1913 eh->needs_copy = 1;
1914 }
1915
1916 sec = htab->sdynbss;
1917
1918 return _bfd_elf_adjust_dynamic_copy (info, eh, sec);
1919 }
1920
1921 /* Allocate space in the .plt for entries that won't have relocations.
1922 ie. plabel entries. */
1923
1924 static bfd_boolean
1925 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1926 {
1927 struct bfd_link_info *info;
1928 struct elf32_hppa_link_hash_table *htab;
1929 struct elf32_hppa_link_hash_entry *hh;
1930 asection *sec;
1931
1932 if (eh->root.type == bfd_link_hash_indirect)
1933 return TRUE;
1934
1935 info = (struct bfd_link_info *) inf;
1936 hh = hppa_elf_hash_entry (eh);
1937 htab = hppa_link_hash_table (info);
1938 if (htab == NULL)
1939 return FALSE;
1940
1941 if (htab->etab.dynamic_sections_created
1942 && eh->plt.refcount > 0)
1943 {
1944 /* Make sure this symbol is output as a dynamic symbol.
1945 Undefined weak syms won't yet be marked as dynamic. */
1946 if (eh->dynindx == -1
1947 && !eh->forced_local
1948 && eh->type != STT_PARISC_MILLI)
1949 {
1950 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
1951 return FALSE;
1952 }
1953
1954 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, eh))
1955 {
1956 /* Allocate these later. From this point on, h->plabel
1957 means that the plt entry is only used by a plabel.
1958 We'll be using a normal plt entry for this symbol, so
1959 clear the plabel indicator. */
1960
1961 hh->plabel = 0;
1962 }
1963 else if (hh->plabel)
1964 {
1965 /* Make an entry in the .plt section for plabel references
1966 that won't have a .plt entry for other reasons. */
1967 sec = htab->splt;
1968 eh->plt.offset = sec->size;
1969 sec->size += PLT_ENTRY_SIZE;
1970 }
1971 else
1972 {
1973 /* No .plt entry needed. */
1974 eh->plt.offset = (bfd_vma) -1;
1975 eh->needs_plt = 0;
1976 }
1977 }
1978 else
1979 {
1980 eh->plt.offset = (bfd_vma) -1;
1981 eh->needs_plt = 0;
1982 }
1983
1984 return TRUE;
1985 }
1986
1987 /* Allocate space in .plt, .got and associated reloc sections for
1988 global syms. */
1989
1990 static bfd_boolean
1991 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
1992 {
1993 struct bfd_link_info *info;
1994 struct elf32_hppa_link_hash_table *htab;
1995 asection *sec;
1996 struct elf32_hppa_link_hash_entry *hh;
1997 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1998
1999 if (eh->root.type == bfd_link_hash_indirect)
2000 return TRUE;
2001
2002 info = inf;
2003 htab = hppa_link_hash_table (info);
2004 if (htab == NULL)
2005 return FALSE;
2006
2007 hh = hppa_elf_hash_entry (eh);
2008
2009 if (htab->etab.dynamic_sections_created
2010 && eh->plt.offset != (bfd_vma) -1
2011 && !hh->plabel
2012 && eh->plt.refcount > 0)
2013 {
2014 /* Make an entry in the .plt section. */
2015 sec = htab->splt;
2016 eh->plt.offset = sec->size;
2017 sec->size += PLT_ENTRY_SIZE;
2018
2019 /* We also need to make an entry in the .rela.plt section. */
2020 htab->srelplt->size += sizeof (Elf32_External_Rela);
2021 htab->need_plt_stub = 1;
2022 }
2023
2024 if (eh->got.refcount > 0)
2025 {
2026 /* Make sure this symbol is output as a dynamic symbol.
2027 Undefined weak syms won't yet be marked as dynamic. */
2028 if (eh->dynindx == -1
2029 && !eh->forced_local
2030 && eh->type != STT_PARISC_MILLI)
2031 {
2032 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2033 return FALSE;
2034 }
2035
2036 sec = htab->sgot;
2037 eh->got.offset = sec->size;
2038 sec->size += GOT_ENTRY_SIZE;
2039 /* R_PARISC_TLS_GD* needs two GOT entries */
2040 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2041 sec->size += GOT_ENTRY_SIZE * 2;
2042 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2043 sec->size += GOT_ENTRY_SIZE;
2044 if (htab->etab.dynamic_sections_created
2045 && (info->shared
2046 || (eh->dynindx != -1
2047 && !eh->forced_local)))
2048 {
2049 htab->srelgot->size += sizeof (Elf32_External_Rela);
2050 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2051 htab->srelgot->size += 2 * sizeof (Elf32_External_Rela);
2052 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2053 htab->srelgot->size += sizeof (Elf32_External_Rela);
2054 }
2055 }
2056 else
2057 eh->got.offset = (bfd_vma) -1;
2058
2059 if (hh->dyn_relocs == NULL)
2060 return TRUE;
2061
2062 /* If this is a -Bsymbolic shared link, then we need to discard all
2063 space allocated for dynamic pc-relative relocs against symbols
2064 defined in a regular object. For the normal shared case, discard
2065 space for relocs that have become local due to symbol visibility
2066 changes. */
2067 if (info->shared)
2068 {
2069 #if RELATIVE_DYNRELOCS
2070 if (SYMBOL_CALLS_LOCAL (info, eh))
2071 {
2072 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
2073
2074 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2075 {
2076 hdh_p->count -= hdh_p->relative_count;
2077 hdh_p->relative_count = 0;
2078 if (hdh_p->count == 0)
2079 *hdh_pp = hdh_p->hdh_next;
2080 else
2081 hdh_pp = &hdh_p->hdh_next;
2082 }
2083 }
2084 #endif
2085
2086 /* Also discard relocs on undefined weak syms with non-default
2087 visibility. */
2088 if (hh->dyn_relocs != NULL
2089 && eh->root.type == bfd_link_hash_undefweak)
2090 {
2091 if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
2092 hh->dyn_relocs = NULL;
2093
2094 /* Make sure undefined weak symbols are output as a dynamic
2095 symbol in PIEs. */
2096 else if (eh->dynindx == -1
2097 && !eh->forced_local)
2098 {
2099 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2100 return FALSE;
2101 }
2102 }
2103 }
2104 else
2105 {
2106 /* For the non-shared case, discard space for relocs against
2107 symbols which turn out to need copy relocs or are not
2108 dynamic. */
2109
2110 if (!eh->non_got_ref
2111 && ((ELIMINATE_COPY_RELOCS
2112 && eh->def_dynamic
2113 && !eh->def_regular)
2114 || (htab->etab.dynamic_sections_created
2115 && (eh->root.type == bfd_link_hash_undefweak
2116 || eh->root.type == bfd_link_hash_undefined))))
2117 {
2118 /* Make sure this symbol is output as a dynamic symbol.
2119 Undefined weak syms won't yet be marked as dynamic. */
2120 if (eh->dynindx == -1
2121 && !eh->forced_local
2122 && eh->type != STT_PARISC_MILLI)
2123 {
2124 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2125 return FALSE;
2126 }
2127
2128 /* If that succeeded, we know we'll be keeping all the
2129 relocs. */
2130 if (eh->dynindx != -1)
2131 goto keep;
2132 }
2133
2134 hh->dyn_relocs = NULL;
2135 return TRUE;
2136
2137 keep: ;
2138 }
2139
2140 /* Finally, allocate space. */
2141 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2142 {
2143 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2144 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2145 }
2146
2147 return TRUE;
2148 }
2149
2150 /* This function is called via elf_link_hash_traverse to force
2151 millicode symbols local so they do not end up as globals in the
2152 dynamic symbol table. We ought to be able to do this in
2153 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2154 for all dynamic symbols. Arguably, this is a bug in
2155 elf_adjust_dynamic_symbol. */
2156
2157 static bfd_boolean
2158 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2159 struct bfd_link_info *info)
2160 {
2161 if (eh->type == STT_PARISC_MILLI
2162 && !eh->forced_local)
2163 {
2164 elf32_hppa_hide_symbol (info, eh, TRUE);
2165 }
2166 return TRUE;
2167 }
2168
2169 /* Find any dynamic relocs that apply to read-only sections. */
2170
2171 static bfd_boolean
2172 readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2173 {
2174 struct elf32_hppa_link_hash_entry *hh;
2175 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2176
2177 hh = hppa_elf_hash_entry (eh);
2178 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2179 {
2180 asection *sec = hdh_p->sec->output_section;
2181
2182 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
2183 {
2184 struct bfd_link_info *info = inf;
2185
2186 info->flags |= DF_TEXTREL;
2187
2188 /* Not an error, just cut short the traversal. */
2189 return FALSE;
2190 }
2191 }
2192 return TRUE;
2193 }
2194
2195 /* Set the sizes of the dynamic sections. */
2196
2197 static bfd_boolean
2198 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2199 struct bfd_link_info *info)
2200 {
2201 struct elf32_hppa_link_hash_table *htab;
2202 bfd *dynobj;
2203 bfd *ibfd;
2204 asection *sec;
2205 bfd_boolean relocs;
2206
2207 htab = hppa_link_hash_table (info);
2208 if (htab == NULL)
2209 return FALSE;
2210
2211 dynobj = htab->etab.dynobj;
2212 if (dynobj == NULL)
2213 abort ();
2214
2215 if (htab->etab.dynamic_sections_created)
2216 {
2217 /* Set the contents of the .interp section to the interpreter. */
2218 if (info->executable)
2219 {
2220 sec = bfd_get_linker_section (dynobj, ".interp");
2221 if (sec == NULL)
2222 abort ();
2223 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2224 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2225 }
2226
2227 /* Force millicode symbols local. */
2228 elf_link_hash_traverse (&htab->etab,
2229 clobber_millicode_symbols,
2230 info);
2231 }
2232
2233 /* Set up .got and .plt offsets for local syms, and space for local
2234 dynamic relocs. */
2235 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
2236 {
2237 bfd_signed_vma *local_got;
2238 bfd_signed_vma *end_local_got;
2239 bfd_signed_vma *local_plt;
2240 bfd_signed_vma *end_local_plt;
2241 bfd_size_type locsymcount;
2242 Elf_Internal_Shdr *symtab_hdr;
2243 asection *srel;
2244 char *local_tls_type;
2245
2246 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2247 continue;
2248
2249 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2250 {
2251 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2252
2253 for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2254 elf_section_data (sec)->local_dynrel);
2255 hdh_p != NULL;
2256 hdh_p = hdh_p->hdh_next)
2257 {
2258 if (!bfd_is_abs_section (hdh_p->sec)
2259 && bfd_is_abs_section (hdh_p->sec->output_section))
2260 {
2261 /* Input section has been discarded, either because
2262 it is a copy of a linkonce section or due to
2263 linker script /DISCARD/, so we'll be discarding
2264 the relocs too. */
2265 }
2266 else if (hdh_p->count != 0)
2267 {
2268 srel = elf_section_data (hdh_p->sec)->sreloc;
2269 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2270 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2271 info->flags |= DF_TEXTREL;
2272 }
2273 }
2274 }
2275
2276 local_got = elf_local_got_refcounts (ibfd);
2277 if (!local_got)
2278 continue;
2279
2280 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2281 locsymcount = symtab_hdr->sh_info;
2282 end_local_got = local_got + locsymcount;
2283 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2284 sec = htab->sgot;
2285 srel = htab->srelgot;
2286 for (; local_got < end_local_got; ++local_got)
2287 {
2288 if (*local_got > 0)
2289 {
2290 *local_got = sec->size;
2291 sec->size += GOT_ENTRY_SIZE;
2292 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2293 sec->size += 2 * GOT_ENTRY_SIZE;
2294 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2295 sec->size += GOT_ENTRY_SIZE;
2296 if (info->shared)
2297 {
2298 srel->size += sizeof (Elf32_External_Rela);
2299 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2300 srel->size += 2 * sizeof (Elf32_External_Rela);
2301 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2302 srel->size += sizeof (Elf32_External_Rela);
2303 }
2304 }
2305 else
2306 *local_got = (bfd_vma) -1;
2307
2308 ++local_tls_type;
2309 }
2310
2311 local_plt = end_local_got;
2312 end_local_plt = local_plt + locsymcount;
2313 if (! htab->etab.dynamic_sections_created)
2314 {
2315 /* Won't be used, but be safe. */
2316 for (; local_plt < end_local_plt; ++local_plt)
2317 *local_plt = (bfd_vma) -1;
2318 }
2319 else
2320 {
2321 sec = htab->splt;
2322 srel = htab->srelplt;
2323 for (; local_plt < end_local_plt; ++local_plt)
2324 {
2325 if (*local_plt > 0)
2326 {
2327 *local_plt = sec->size;
2328 sec->size += PLT_ENTRY_SIZE;
2329 if (info->shared)
2330 srel->size += sizeof (Elf32_External_Rela);
2331 }
2332 else
2333 *local_plt = (bfd_vma) -1;
2334 }
2335 }
2336 }
2337
2338 if (htab->tls_ldm_got.refcount > 0)
2339 {
2340 /* Allocate 2 got entries and 1 dynamic reloc for
2341 R_PARISC_TLS_DTPMOD32 relocs. */
2342 htab->tls_ldm_got.offset = htab->sgot->size;
2343 htab->sgot->size += (GOT_ENTRY_SIZE * 2);
2344 htab->srelgot->size += sizeof (Elf32_External_Rela);
2345 }
2346 else
2347 htab->tls_ldm_got.offset = -1;
2348
2349 /* Do all the .plt entries without relocs first. The dynamic linker
2350 uses the last .plt reloc to find the end of the .plt (and hence
2351 the start of the .got) for lazy linking. */
2352 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2353
2354 /* Allocate global sym .plt and .got entries, and space for global
2355 sym dynamic relocs. */
2356 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2357
2358 /* The check_relocs and adjust_dynamic_symbol entry points have
2359 determined the sizes of the various dynamic sections. Allocate
2360 memory for them. */
2361 relocs = FALSE;
2362 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2363 {
2364 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2365 continue;
2366
2367 if (sec == htab->splt)
2368 {
2369 if (htab->need_plt_stub)
2370 {
2371 /* Make space for the plt stub at the end of the .plt
2372 section. We want this stub right at the end, up
2373 against the .got section. */
2374 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2375 int pltalign = bfd_section_alignment (dynobj, sec);
2376 bfd_size_type mask;
2377
2378 if (gotalign > pltalign)
2379 (void) bfd_set_section_alignment (dynobj, sec, gotalign);
2380 mask = ((bfd_size_type) 1 << gotalign) - 1;
2381 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2382 }
2383 }
2384 else if (sec == htab->sgot
2385 || sec == htab->sdynbss)
2386 ;
2387 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
2388 {
2389 if (sec->size != 0)
2390 {
2391 /* Remember whether there are any reloc sections other
2392 than .rela.plt. */
2393 if (sec != htab->srelplt)
2394 relocs = TRUE;
2395
2396 /* We use the reloc_count field as a counter if we need
2397 to copy relocs into the output file. */
2398 sec->reloc_count = 0;
2399 }
2400 }
2401 else
2402 {
2403 /* It's not one of our sections, so don't allocate space. */
2404 continue;
2405 }
2406
2407 if (sec->size == 0)
2408 {
2409 /* If we don't need this section, strip it from the
2410 output file. This is mostly to handle .rela.bss and
2411 .rela.plt. We must create both sections in
2412 create_dynamic_sections, because they must be created
2413 before the linker maps input sections to output
2414 sections. The linker does that before
2415 adjust_dynamic_symbol is called, and it is that
2416 function which decides whether anything needs to go
2417 into these sections. */
2418 sec->flags |= SEC_EXCLUDE;
2419 continue;
2420 }
2421
2422 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2423 continue;
2424
2425 /* Allocate memory for the section contents. Zero it, because
2426 we may not fill in all the reloc sections. */
2427 sec->contents = bfd_zalloc (dynobj, sec->size);
2428 if (sec->contents == NULL)
2429 return FALSE;
2430 }
2431
2432 if (htab->etab.dynamic_sections_created)
2433 {
2434 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2435 actually has nothing to do with the PLT, it is how we
2436 communicate the LTP value of a load module to the dynamic
2437 linker. */
2438 #define add_dynamic_entry(TAG, VAL) \
2439 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2440
2441 if (!add_dynamic_entry (DT_PLTGOT, 0))
2442 return FALSE;
2443
2444 /* Add some entries to the .dynamic section. We fill in the
2445 values later, in elf32_hppa_finish_dynamic_sections, but we
2446 must add the entries now so that we get the correct size for
2447 the .dynamic section. The DT_DEBUG entry is filled in by the
2448 dynamic linker and used by the debugger. */
2449 if (info->executable)
2450 {
2451 if (!add_dynamic_entry (DT_DEBUG, 0))
2452 return FALSE;
2453 }
2454
2455 if (htab->srelplt->size != 0)
2456 {
2457 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2458 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2459 || !add_dynamic_entry (DT_JMPREL, 0))
2460 return FALSE;
2461 }
2462
2463 if (relocs)
2464 {
2465 if (!add_dynamic_entry (DT_RELA, 0)
2466 || !add_dynamic_entry (DT_RELASZ, 0)
2467 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2468 return FALSE;
2469
2470 /* If any dynamic relocs apply to a read-only section,
2471 then we need a DT_TEXTREL entry. */
2472 if ((info->flags & DF_TEXTREL) == 0)
2473 elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
2474
2475 if ((info->flags & DF_TEXTREL) != 0)
2476 {
2477 if (!add_dynamic_entry (DT_TEXTREL, 0))
2478 return FALSE;
2479 }
2480 }
2481 }
2482 #undef add_dynamic_entry
2483
2484 return TRUE;
2485 }
2486
2487 /* External entry points for sizing and building linker stubs. */
2488
2489 /* Set up various things so that we can make a list of input sections
2490 for each output section included in the link. Returns -1 on error,
2491 0 when no stubs will be needed, and 1 on success. */
2492
2493 int
2494 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2495 {
2496 bfd *input_bfd;
2497 unsigned int bfd_count;
2498 int top_id, top_index;
2499 asection *section;
2500 asection **input_list, **list;
2501 bfd_size_type amt;
2502 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2503
2504 if (htab == NULL)
2505 return -1;
2506
2507 /* Count the number of input BFDs and find the top input section id. */
2508 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2509 input_bfd != NULL;
2510 input_bfd = input_bfd->link.next)
2511 {
2512 bfd_count += 1;
2513 for (section = input_bfd->sections;
2514 section != NULL;
2515 section = section->next)
2516 {
2517 if (top_id < section->id)
2518 top_id = section->id;
2519 }
2520 }
2521 htab->bfd_count = bfd_count;
2522
2523 amt = sizeof (struct map_stub) * (top_id + 1);
2524 htab->stub_group = bfd_zmalloc (amt);
2525 if (htab->stub_group == NULL)
2526 return -1;
2527
2528 /* We can't use output_bfd->section_count here to find the top output
2529 section index as some sections may have been removed, and
2530 strip_excluded_output_sections doesn't renumber the indices. */
2531 for (section = output_bfd->sections, top_index = 0;
2532 section != NULL;
2533 section = section->next)
2534 {
2535 if (top_index < section->index)
2536 top_index = section->index;
2537 }
2538
2539 htab->top_index = top_index;
2540 amt = sizeof (asection *) * (top_index + 1);
2541 input_list = bfd_malloc (amt);
2542 htab->input_list = input_list;
2543 if (input_list == NULL)
2544 return -1;
2545
2546 /* For sections we aren't interested in, mark their entries with a
2547 value we can check later. */
2548 list = input_list + top_index;
2549 do
2550 *list = bfd_abs_section_ptr;
2551 while (list-- != input_list);
2552
2553 for (section = output_bfd->sections;
2554 section != NULL;
2555 section = section->next)
2556 {
2557 if ((section->flags & SEC_CODE) != 0)
2558 input_list[section->index] = NULL;
2559 }
2560
2561 return 1;
2562 }
2563
2564 /* The linker repeatedly calls this function for each input section,
2565 in the order that input sections are linked into output sections.
2566 Build lists of input sections to determine groupings between which
2567 we may insert linker stubs. */
2568
2569 void
2570 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2571 {
2572 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2573
2574 if (htab == NULL)
2575 return;
2576
2577 if (isec->output_section->index <= htab->top_index)
2578 {
2579 asection **list = htab->input_list + isec->output_section->index;
2580 if (*list != bfd_abs_section_ptr)
2581 {
2582 /* Steal the link_sec pointer for our list. */
2583 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2584 /* This happens to make the list in reverse order,
2585 which is what we want. */
2586 PREV_SEC (isec) = *list;
2587 *list = isec;
2588 }
2589 }
2590 }
2591
2592 /* See whether we can group stub sections together. Grouping stub
2593 sections may result in fewer stubs. More importantly, we need to
2594 put all .init* and .fini* stubs at the beginning of the .init or
2595 .fini output sections respectively, because glibc splits the
2596 _init and _fini functions into multiple parts. Putting a stub in
2597 the middle of a function is not a good idea. */
2598
2599 static void
2600 group_sections (struct elf32_hppa_link_hash_table *htab,
2601 bfd_size_type stub_group_size,
2602 bfd_boolean stubs_always_before_branch)
2603 {
2604 asection **list = htab->input_list + htab->top_index;
2605 do
2606 {
2607 asection *tail = *list;
2608 if (tail == bfd_abs_section_ptr)
2609 continue;
2610 while (tail != NULL)
2611 {
2612 asection *curr;
2613 asection *prev;
2614 bfd_size_type total;
2615 bfd_boolean big_sec;
2616
2617 curr = tail;
2618 total = tail->size;
2619 big_sec = total >= stub_group_size;
2620
2621 while ((prev = PREV_SEC (curr)) != NULL
2622 && ((total += curr->output_offset - prev->output_offset)
2623 < stub_group_size))
2624 curr = prev;
2625
2626 /* OK, the size from the start of CURR to the end is less
2627 than 240000 bytes and thus can be handled by one stub
2628 section. (or the tail section is itself larger than
2629 240000 bytes, in which case we may be toast.)
2630 We should really be keeping track of the total size of
2631 stubs added here, as stubs contribute to the final output
2632 section size. That's a little tricky, and this way will
2633 only break if stubs added total more than 22144 bytes, or
2634 2768 long branch stubs. It seems unlikely for more than
2635 2768 different functions to be called, especially from
2636 code only 240000 bytes long. This limit used to be
2637 250000, but c++ code tends to generate lots of little
2638 functions, and sometimes violated the assumption. */
2639 do
2640 {
2641 prev = PREV_SEC (tail);
2642 /* Set up this stub group. */
2643 htab->stub_group[tail->id].link_sec = curr;
2644 }
2645 while (tail != curr && (tail = prev) != NULL);
2646
2647 /* But wait, there's more! Input sections up to 240000
2648 bytes before the stub section can be handled by it too.
2649 Don't do this if we have a really large section after the
2650 stubs, as adding more stubs increases the chance that
2651 branches may not reach into the stub section. */
2652 if (!stubs_always_before_branch && !big_sec)
2653 {
2654 total = 0;
2655 while (prev != NULL
2656 && ((total += tail->output_offset - prev->output_offset)
2657 < stub_group_size))
2658 {
2659 tail = prev;
2660 prev = PREV_SEC (tail);
2661 htab->stub_group[tail->id].link_sec = curr;
2662 }
2663 }
2664 tail = prev;
2665 }
2666 }
2667 while (list-- != htab->input_list);
2668 free (htab->input_list);
2669 #undef PREV_SEC
2670 }
2671
2672 /* Read in all local syms for all input bfds, and create hash entries
2673 for export stubs if we are building a multi-subspace shared lib.
2674 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2675
2676 static int
2677 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2678 {
2679 unsigned int bfd_indx;
2680 Elf_Internal_Sym *local_syms, **all_local_syms;
2681 int stub_changed = 0;
2682 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2683
2684 if (htab == NULL)
2685 return -1;
2686
2687 /* We want to read in symbol extension records only once. To do this
2688 we need to read in the local symbols in parallel and save them for
2689 later use; so hold pointers to the local symbols in an array. */
2690 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2691 all_local_syms = bfd_zmalloc (amt);
2692 htab->all_local_syms = all_local_syms;
2693 if (all_local_syms == NULL)
2694 return -1;
2695
2696 /* Walk over all the input BFDs, swapping in local symbols.
2697 If we are creating a shared library, create hash entries for the
2698 export stubs. */
2699 for (bfd_indx = 0;
2700 input_bfd != NULL;
2701 input_bfd = input_bfd->link.next, bfd_indx++)
2702 {
2703 Elf_Internal_Shdr *symtab_hdr;
2704
2705 /* We'll need the symbol table in a second. */
2706 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2707 if (symtab_hdr->sh_info == 0)
2708 continue;
2709
2710 /* We need an array of the local symbols attached to the input bfd. */
2711 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2712 if (local_syms == NULL)
2713 {
2714 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2715 symtab_hdr->sh_info, 0,
2716 NULL, NULL, NULL);
2717 /* Cache them for elf_link_input_bfd. */
2718 symtab_hdr->contents = (unsigned char *) local_syms;
2719 }
2720 if (local_syms == NULL)
2721 return -1;
2722
2723 all_local_syms[bfd_indx] = local_syms;
2724
2725 if (info->shared && htab->multi_subspace)
2726 {
2727 struct elf_link_hash_entry **eh_syms;
2728 struct elf_link_hash_entry **eh_symend;
2729 unsigned int symcount;
2730
2731 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2732 - symtab_hdr->sh_info);
2733 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2734 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2735
2736 /* Look through the global syms for functions; We need to
2737 build export stubs for all globally visible functions. */
2738 for (; eh_syms < eh_symend; eh_syms++)
2739 {
2740 struct elf32_hppa_link_hash_entry *hh;
2741
2742 hh = hppa_elf_hash_entry (*eh_syms);
2743
2744 while (hh->eh.root.type == bfd_link_hash_indirect
2745 || hh->eh.root.type == bfd_link_hash_warning)
2746 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2747
2748 /* At this point in the link, undefined syms have been
2749 resolved, so we need to check that the symbol was
2750 defined in this BFD. */
2751 if ((hh->eh.root.type == bfd_link_hash_defined
2752 || hh->eh.root.type == bfd_link_hash_defweak)
2753 && hh->eh.type == STT_FUNC
2754 && hh->eh.root.u.def.section->output_section != NULL
2755 && (hh->eh.root.u.def.section->output_section->owner
2756 == output_bfd)
2757 && hh->eh.root.u.def.section->owner == input_bfd
2758 && hh->eh.def_regular
2759 && !hh->eh.forced_local
2760 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2761 {
2762 asection *sec;
2763 const char *stub_name;
2764 struct elf32_hppa_stub_hash_entry *hsh;
2765
2766 sec = hh->eh.root.u.def.section;
2767 stub_name = hh_name (hh);
2768 hsh = hppa_stub_hash_lookup (&htab->bstab,
2769 stub_name,
2770 FALSE, FALSE);
2771 if (hsh == NULL)
2772 {
2773 hsh = hppa_add_stub (stub_name, sec, htab);
2774 if (!hsh)
2775 return -1;
2776
2777 hsh->target_value = hh->eh.root.u.def.value;
2778 hsh->target_section = hh->eh.root.u.def.section;
2779 hsh->stub_type = hppa_stub_export;
2780 hsh->hh = hh;
2781 stub_changed = 1;
2782 }
2783 else
2784 {
2785 (*_bfd_error_handler) (_("%B: duplicate export stub %s"),
2786 input_bfd,
2787 stub_name);
2788 }
2789 }
2790 }
2791 }
2792 }
2793
2794 return stub_changed;
2795 }
2796
2797 /* Determine and set the size of the stub section for a final link.
2798
2799 The basic idea here is to examine all the relocations looking for
2800 PC-relative calls to a target that is unreachable with a "bl"
2801 instruction. */
2802
2803 bfd_boolean
2804 elf32_hppa_size_stubs
2805 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2806 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2807 asection * (*add_stub_section) (const char *, asection *),
2808 void (*layout_sections_again) (void))
2809 {
2810 bfd_size_type stub_group_size;
2811 bfd_boolean stubs_always_before_branch;
2812 bfd_boolean stub_changed;
2813 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2814
2815 if (htab == NULL)
2816 return FALSE;
2817
2818 /* Stash our params away. */
2819 htab->stub_bfd = stub_bfd;
2820 htab->multi_subspace = multi_subspace;
2821 htab->add_stub_section = add_stub_section;
2822 htab->layout_sections_again = layout_sections_again;
2823 stubs_always_before_branch = group_size < 0;
2824 if (group_size < 0)
2825 stub_group_size = -group_size;
2826 else
2827 stub_group_size = group_size;
2828 if (stub_group_size == 1)
2829 {
2830 /* Default values. */
2831 if (stubs_always_before_branch)
2832 {
2833 stub_group_size = 7680000;
2834 if (htab->has_17bit_branch || htab->multi_subspace)
2835 stub_group_size = 240000;
2836 if (htab->has_12bit_branch)
2837 stub_group_size = 7500;
2838 }
2839 else
2840 {
2841 stub_group_size = 6971392;
2842 if (htab->has_17bit_branch || htab->multi_subspace)
2843 stub_group_size = 217856;
2844 if (htab->has_12bit_branch)
2845 stub_group_size = 6808;
2846 }
2847 }
2848
2849 group_sections (htab, stub_group_size, stubs_always_before_branch);
2850
2851 switch (get_local_syms (output_bfd, info->input_bfds, info))
2852 {
2853 default:
2854 if (htab->all_local_syms)
2855 goto error_ret_free_local;
2856 return FALSE;
2857
2858 case 0:
2859 stub_changed = FALSE;
2860 break;
2861
2862 case 1:
2863 stub_changed = TRUE;
2864 break;
2865 }
2866
2867 while (1)
2868 {
2869 bfd *input_bfd;
2870 unsigned int bfd_indx;
2871 asection *stub_sec;
2872
2873 for (input_bfd = info->input_bfds, bfd_indx = 0;
2874 input_bfd != NULL;
2875 input_bfd = input_bfd->link.next, bfd_indx++)
2876 {
2877 Elf_Internal_Shdr *symtab_hdr;
2878 asection *section;
2879 Elf_Internal_Sym *local_syms;
2880
2881 /* We'll need the symbol table in a second. */
2882 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2883 if (symtab_hdr->sh_info == 0)
2884 continue;
2885
2886 local_syms = htab->all_local_syms[bfd_indx];
2887
2888 /* Walk over each section attached to the input bfd. */
2889 for (section = input_bfd->sections;
2890 section != NULL;
2891 section = section->next)
2892 {
2893 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2894
2895 /* If there aren't any relocs, then there's nothing more
2896 to do. */
2897 if ((section->flags & SEC_RELOC) == 0
2898 || section->reloc_count == 0)
2899 continue;
2900
2901 /* If this section is a link-once section that will be
2902 discarded, then don't create any stubs. */
2903 if (section->output_section == NULL
2904 || section->output_section->owner != output_bfd)
2905 continue;
2906
2907 /* Get the relocs. */
2908 internal_relocs
2909 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2910 info->keep_memory);
2911 if (internal_relocs == NULL)
2912 goto error_ret_free_local;
2913
2914 /* Now examine each relocation. */
2915 irela = internal_relocs;
2916 irelaend = irela + section->reloc_count;
2917 for (; irela < irelaend; irela++)
2918 {
2919 unsigned int r_type, r_indx;
2920 enum elf32_hppa_stub_type stub_type;
2921 struct elf32_hppa_stub_hash_entry *hsh;
2922 asection *sym_sec;
2923 bfd_vma sym_value;
2924 bfd_vma destination;
2925 struct elf32_hppa_link_hash_entry *hh;
2926 char *stub_name;
2927 const asection *id_sec;
2928
2929 r_type = ELF32_R_TYPE (irela->r_info);
2930 r_indx = ELF32_R_SYM (irela->r_info);
2931
2932 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2933 {
2934 bfd_set_error (bfd_error_bad_value);
2935 error_ret_free_internal:
2936 if (elf_section_data (section)->relocs == NULL)
2937 free (internal_relocs);
2938 goto error_ret_free_local;
2939 }
2940
2941 /* Only look for stubs on call instructions. */
2942 if (r_type != (unsigned int) R_PARISC_PCREL12F
2943 && r_type != (unsigned int) R_PARISC_PCREL17F
2944 && r_type != (unsigned int) R_PARISC_PCREL22F)
2945 continue;
2946
2947 /* Now determine the call target, its name, value,
2948 section. */
2949 sym_sec = NULL;
2950 sym_value = 0;
2951 destination = 0;
2952 hh = NULL;
2953 if (r_indx < symtab_hdr->sh_info)
2954 {
2955 /* It's a local symbol. */
2956 Elf_Internal_Sym *sym;
2957 Elf_Internal_Shdr *hdr;
2958 unsigned int shndx;
2959
2960 sym = local_syms + r_indx;
2961 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2962 sym_value = sym->st_value;
2963 shndx = sym->st_shndx;
2964 if (shndx < elf_numsections (input_bfd))
2965 {
2966 hdr = elf_elfsections (input_bfd)[shndx];
2967 sym_sec = hdr->bfd_section;
2968 destination = (sym_value + irela->r_addend
2969 + sym_sec->output_offset
2970 + sym_sec->output_section->vma);
2971 }
2972 }
2973 else
2974 {
2975 /* It's an external symbol. */
2976 int e_indx;
2977
2978 e_indx = r_indx - symtab_hdr->sh_info;
2979 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2980
2981 while (hh->eh.root.type == bfd_link_hash_indirect
2982 || hh->eh.root.type == bfd_link_hash_warning)
2983 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2984
2985 if (hh->eh.root.type == bfd_link_hash_defined
2986 || hh->eh.root.type == bfd_link_hash_defweak)
2987 {
2988 sym_sec = hh->eh.root.u.def.section;
2989 sym_value = hh->eh.root.u.def.value;
2990 if (sym_sec->output_section != NULL)
2991 destination = (sym_value + irela->r_addend
2992 + sym_sec->output_offset
2993 + sym_sec->output_section->vma);
2994 }
2995 else if (hh->eh.root.type == bfd_link_hash_undefweak)
2996 {
2997 if (! info->shared)
2998 continue;
2999 }
3000 else if (hh->eh.root.type == bfd_link_hash_undefined)
3001 {
3002 if (! (info->unresolved_syms_in_objects == RM_IGNORE
3003 && (ELF_ST_VISIBILITY (hh->eh.other)
3004 == STV_DEFAULT)
3005 && hh->eh.type != STT_PARISC_MILLI))
3006 continue;
3007 }
3008 else
3009 {
3010 bfd_set_error (bfd_error_bad_value);
3011 goto error_ret_free_internal;
3012 }
3013 }
3014
3015 /* Determine what (if any) linker stub is needed. */
3016 stub_type = hppa_type_of_stub (section, irela, hh,
3017 destination, info);
3018 if (stub_type == hppa_stub_none)
3019 continue;
3020
3021 /* Support for grouping stub sections. */
3022 id_sec = htab->stub_group[section->id].link_sec;
3023
3024 /* Get the name of this stub. */
3025 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
3026 if (!stub_name)
3027 goto error_ret_free_internal;
3028
3029 hsh = hppa_stub_hash_lookup (&htab->bstab,
3030 stub_name,
3031 FALSE, FALSE);
3032 if (hsh != NULL)
3033 {
3034 /* The proper stub has already been created. */
3035 free (stub_name);
3036 continue;
3037 }
3038
3039 hsh = hppa_add_stub (stub_name, section, htab);
3040 if (hsh == NULL)
3041 {
3042 free (stub_name);
3043 goto error_ret_free_internal;
3044 }
3045
3046 hsh->target_value = sym_value;
3047 hsh->target_section = sym_sec;
3048 hsh->stub_type = stub_type;
3049 if (info->shared)
3050 {
3051 if (stub_type == hppa_stub_import)
3052 hsh->stub_type = hppa_stub_import_shared;
3053 else if (stub_type == hppa_stub_long_branch)
3054 hsh->stub_type = hppa_stub_long_branch_shared;
3055 }
3056 hsh->hh = hh;
3057 stub_changed = TRUE;
3058 }
3059
3060 /* We're done with the internal relocs, free them. */
3061 if (elf_section_data (section)->relocs == NULL)
3062 free (internal_relocs);
3063 }
3064 }
3065
3066 if (!stub_changed)
3067 break;
3068
3069 /* OK, we've added some stubs. Find out the new size of the
3070 stub sections. */
3071 for (stub_sec = htab->stub_bfd->sections;
3072 stub_sec != NULL;
3073 stub_sec = stub_sec->next)
3074 stub_sec->size = 0;
3075
3076 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
3077
3078 /* Ask the linker to do its stuff. */
3079 (*htab->layout_sections_again) ();
3080 stub_changed = FALSE;
3081 }
3082
3083 free (htab->all_local_syms);
3084 return TRUE;
3085
3086 error_ret_free_local:
3087 free (htab->all_local_syms);
3088 return FALSE;
3089 }
3090
3091 /* For a final link, this function is called after we have sized the
3092 stubs to provide a value for __gp. */
3093
3094 bfd_boolean
3095 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3096 {
3097 struct bfd_link_hash_entry *h;
3098 asection *sec = NULL;
3099 bfd_vma gp_val = 0;
3100 struct elf32_hppa_link_hash_table *htab;
3101
3102 htab = hppa_link_hash_table (info);
3103 if (htab == NULL)
3104 return FALSE;
3105
3106 h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE);
3107
3108 if (h != NULL
3109 && (h->type == bfd_link_hash_defined
3110 || h->type == bfd_link_hash_defweak))
3111 {
3112 gp_val = h->u.def.value;
3113 sec = h->u.def.section;
3114 }
3115 else
3116 {
3117 asection *splt = bfd_get_section_by_name (abfd, ".plt");
3118 asection *sgot = bfd_get_section_by_name (abfd, ".got");
3119
3120 /* Choose to point our LTP at, in this order, one of .plt, .got,
3121 or .data, if these sections exist. In the case of choosing
3122 .plt try to make the LTP ideal for addressing anywhere in the
3123 .plt or .got with a 14 bit signed offset. Typically, the end
3124 of the .plt is the start of the .got, so choose .plt + 0x2000
3125 if either the .plt or .got is larger than 0x2000. If both
3126 the .plt and .got are smaller than 0x2000, choose the end of
3127 the .plt section. */
3128 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3129 ? NULL : splt;
3130 if (sec != NULL)
3131 {
3132 gp_val = sec->size;
3133 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3134 {
3135 gp_val = 0x2000;
3136 }
3137 }
3138 else
3139 {
3140 sec = sgot;
3141 if (sec != NULL)
3142 {
3143 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3144 {
3145 /* We know we don't have a .plt. If .got is large,
3146 offset our LTP. */
3147 if (sec->size > 0x2000)
3148 gp_val = 0x2000;
3149 }
3150 }
3151 else
3152 {
3153 /* No .plt or .got. Who cares what the LTP is? */
3154 sec = bfd_get_section_by_name (abfd, ".data");
3155 }
3156 }
3157
3158 if (h != NULL)
3159 {
3160 h->type = bfd_link_hash_defined;
3161 h->u.def.value = gp_val;
3162 if (sec != NULL)
3163 h->u.def.section = sec;
3164 else
3165 h->u.def.section = bfd_abs_section_ptr;
3166 }
3167 }
3168
3169 if (sec != NULL && sec->output_section != NULL)
3170 gp_val += sec->output_section->vma + sec->output_offset;
3171
3172 elf_gp (abfd) = gp_val;
3173 return TRUE;
3174 }
3175
3176 /* Build all the stubs associated with the current output file. The
3177 stubs are kept in a hash table attached to the main linker hash
3178 table. We also set up the .plt entries for statically linked PIC
3179 functions here. This function is called via hppaelf_finish in the
3180 linker. */
3181
3182 bfd_boolean
3183 elf32_hppa_build_stubs (struct bfd_link_info *info)
3184 {
3185 asection *stub_sec;
3186 struct bfd_hash_table *table;
3187 struct elf32_hppa_link_hash_table *htab;
3188
3189 htab = hppa_link_hash_table (info);
3190 if (htab == NULL)
3191 return FALSE;
3192
3193 for (stub_sec = htab->stub_bfd->sections;
3194 stub_sec != NULL;
3195 stub_sec = stub_sec->next)
3196 {
3197 bfd_size_type size;
3198
3199 /* Allocate memory to hold the linker stubs. */
3200 size = stub_sec->size;
3201 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3202 if (stub_sec->contents == NULL && size != 0)
3203 return FALSE;
3204 stub_sec->size = 0;
3205 }
3206
3207 /* Build the stubs as directed by the stub hash table. */
3208 table = &htab->bstab;
3209 bfd_hash_traverse (table, hppa_build_one_stub, info);
3210
3211 return TRUE;
3212 }
3213
3214 /* Return the base vma address which should be subtracted from the real
3215 address when resolving a dtpoff relocation.
3216 This is PT_TLS segment p_vaddr. */
3217
3218 static bfd_vma
3219 dtpoff_base (struct bfd_link_info *info)
3220 {
3221 /* If tls_sec is NULL, we should have signalled an error already. */
3222 if (elf_hash_table (info)->tls_sec == NULL)
3223 return 0;
3224 return elf_hash_table (info)->tls_sec->vma;
3225 }
3226
3227 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3228
3229 static bfd_vma
3230 tpoff (struct bfd_link_info *info, bfd_vma address)
3231 {
3232 struct elf_link_hash_table *htab = elf_hash_table (info);
3233
3234 /* If tls_sec is NULL, we should have signalled an error already. */
3235 if (htab->tls_sec == NULL)
3236 return 0;
3237 /* hppa TLS ABI is variant I and static TLS block start just after
3238 tcbhead structure which has 2 pointer fields. */
3239 return (address - htab->tls_sec->vma
3240 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3241 }
3242
3243 /* Perform a final link. */
3244
3245 static bfd_boolean
3246 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3247 {
3248 /* Invoke the regular ELF linker to do all the work. */
3249 if (!bfd_elf_final_link (abfd, info))
3250 return FALSE;
3251
3252 /* If we're producing a final executable, sort the contents of the
3253 unwind section. */
3254 if (info->relocatable)
3255 return TRUE;
3256
3257 return elf_hppa_sort_unwind (abfd);
3258 }
3259
3260 /* Record the lowest address for the data and text segments. */
3261
3262 static void
3263 hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3264 {
3265 struct elf32_hppa_link_hash_table *htab;
3266
3267 htab = (struct elf32_hppa_link_hash_table*) data;
3268 if (htab == NULL)
3269 return;
3270
3271 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3272 {
3273 bfd_vma value;
3274 Elf_Internal_Phdr *p;
3275
3276 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3277 BFD_ASSERT (p != NULL);
3278 value = p->p_vaddr;
3279
3280 if ((section->flags & SEC_READONLY) != 0)
3281 {
3282 if (value < htab->text_segment_base)
3283 htab->text_segment_base = value;
3284 }
3285 else
3286 {
3287 if (value < htab->data_segment_base)
3288 htab->data_segment_base = value;
3289 }
3290 }
3291 }
3292
3293 /* Perform a relocation as part of a final link. */
3294
3295 static bfd_reloc_status_type
3296 final_link_relocate (asection *input_section,
3297 bfd_byte *contents,
3298 const Elf_Internal_Rela *rela,
3299 bfd_vma value,
3300 struct elf32_hppa_link_hash_table *htab,
3301 asection *sym_sec,
3302 struct elf32_hppa_link_hash_entry *hh,
3303 struct bfd_link_info *info)
3304 {
3305 int insn;
3306 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3307 unsigned int orig_r_type = r_type;
3308 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3309 int r_format = howto->bitsize;
3310 enum hppa_reloc_field_selector_type_alt r_field;
3311 bfd *input_bfd = input_section->owner;
3312 bfd_vma offset = rela->r_offset;
3313 bfd_vma max_branch_offset = 0;
3314 bfd_byte *hit_data = contents + offset;
3315 bfd_signed_vma addend = rela->r_addend;
3316 bfd_vma location;
3317 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3318 int val;
3319
3320 if (r_type == R_PARISC_NONE)
3321 return bfd_reloc_ok;
3322
3323 insn = bfd_get_32 (input_bfd, hit_data);
3324
3325 /* Find out where we are and where we're going. */
3326 location = (offset +
3327 input_section->output_offset +
3328 input_section->output_section->vma);
3329
3330 /* If we are not building a shared library, convert DLTIND relocs to
3331 DPREL relocs. */
3332 if (!info->shared)
3333 {
3334 switch (r_type)
3335 {
3336 case R_PARISC_DLTIND21L:
3337 case R_PARISC_TLS_GD21L:
3338 case R_PARISC_TLS_LDM21L:
3339 case R_PARISC_TLS_IE21L:
3340 r_type = R_PARISC_DPREL21L;
3341 break;
3342
3343 case R_PARISC_DLTIND14R:
3344 case R_PARISC_TLS_GD14R:
3345 case R_PARISC_TLS_LDM14R:
3346 case R_PARISC_TLS_IE14R:
3347 r_type = R_PARISC_DPREL14R;
3348 break;
3349
3350 case R_PARISC_DLTIND14F:
3351 r_type = R_PARISC_DPREL14F;
3352 break;
3353 }
3354 }
3355
3356 switch (r_type)
3357 {
3358 case R_PARISC_PCREL12F:
3359 case R_PARISC_PCREL17F:
3360 case R_PARISC_PCREL22F:
3361 /* If this call should go via the plt, find the import stub in
3362 the stub hash. */
3363 if (sym_sec == NULL
3364 || sym_sec->output_section == NULL
3365 || (hh != NULL
3366 && hh->eh.plt.offset != (bfd_vma) -1
3367 && hh->eh.dynindx != -1
3368 && !hh->plabel
3369 && (info->shared
3370 || !hh->eh.def_regular
3371 || hh->eh.root.type == bfd_link_hash_defweak)))
3372 {
3373 hsh = hppa_get_stub_entry (input_section, sym_sec,
3374 hh, rela, htab);
3375 if (hsh != NULL)
3376 {
3377 value = (hsh->stub_offset
3378 + hsh->stub_sec->output_offset
3379 + hsh->stub_sec->output_section->vma);
3380 addend = 0;
3381 }
3382 else if (sym_sec == NULL && hh != NULL
3383 && hh->eh.root.type == bfd_link_hash_undefweak)
3384 {
3385 /* It's OK if undefined weak. Calls to undefined weak
3386 symbols behave as if the "called" function
3387 immediately returns. We can thus call to a weak
3388 function without first checking whether the function
3389 is defined. */
3390 value = location;
3391 addend = 8;
3392 }
3393 else
3394 return bfd_reloc_undefined;
3395 }
3396 /* Fall thru. */
3397
3398 case R_PARISC_PCREL21L:
3399 case R_PARISC_PCREL17C:
3400 case R_PARISC_PCREL17R:
3401 case R_PARISC_PCREL14R:
3402 case R_PARISC_PCREL14F:
3403 case R_PARISC_PCREL32:
3404 /* Make it a pc relative offset. */
3405 value -= location;
3406 addend -= 8;
3407 break;
3408
3409 case R_PARISC_DPREL21L:
3410 case R_PARISC_DPREL14R:
3411 case R_PARISC_DPREL14F:
3412 /* Convert instructions that use the linkage table pointer (r19) to
3413 instructions that use the global data pointer (dp). This is the
3414 most efficient way of using PIC code in an incomplete executable,
3415 but the user must follow the standard runtime conventions for
3416 accessing data for this to work. */
3417 if (orig_r_type != r_type)
3418 {
3419 if (r_type == R_PARISC_DPREL21L)
3420 {
3421 /* GCC sometimes uses a register other than r19 for the
3422 operation, so we must convert any addil instruction
3423 that uses this relocation. */
3424 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3425 insn = ADDIL_DP;
3426 else
3427 /* We must have a ldil instruction. It's too hard to find
3428 and convert the associated add instruction, so issue an
3429 error. */
3430 (*_bfd_error_handler)
3431 (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3432 input_bfd,
3433 input_section,
3434 (long) offset,
3435 howto->name,
3436 insn);
3437 }
3438 else if (r_type == R_PARISC_DPREL14F)
3439 {
3440 /* This must be a format 1 load/store. Change the base
3441 register to dp. */
3442 insn = (insn & 0xfc1ffff) | (27 << 21);
3443 }
3444 }
3445
3446 /* For all the DP relative relocations, we need to examine the symbol's
3447 section. If it has no section or if it's a code section, then
3448 "data pointer relative" makes no sense. In that case we don't
3449 adjust the "value", and for 21 bit addil instructions, we change the
3450 source addend register from %dp to %r0. This situation commonly
3451 arises for undefined weak symbols and when a variable's "constness"
3452 is declared differently from the way the variable is defined. For
3453 instance: "extern int foo" with foo defined as "const int foo". */
3454 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3455 {
3456 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3457 == (((int) OP_ADDIL << 26) | (27 << 21)))
3458 {
3459 insn &= ~ (0x1f << 21);
3460 }
3461 /* Now try to make things easy for the dynamic linker. */
3462
3463 break;
3464 }
3465 /* Fall thru. */
3466
3467 case R_PARISC_DLTIND21L:
3468 case R_PARISC_DLTIND14R:
3469 case R_PARISC_DLTIND14F:
3470 case R_PARISC_TLS_GD21L:
3471 case R_PARISC_TLS_LDM21L:
3472 case R_PARISC_TLS_IE21L:
3473 case R_PARISC_TLS_GD14R:
3474 case R_PARISC_TLS_LDM14R:
3475 case R_PARISC_TLS_IE14R:
3476 value -= elf_gp (input_section->output_section->owner);
3477 break;
3478
3479 case R_PARISC_SEGREL32:
3480 if ((sym_sec->flags & SEC_CODE) != 0)
3481 value -= htab->text_segment_base;
3482 else
3483 value -= htab->data_segment_base;
3484 break;
3485
3486 default:
3487 break;
3488 }
3489
3490 switch (r_type)
3491 {
3492 case R_PARISC_DIR32:
3493 case R_PARISC_DIR14F:
3494 case R_PARISC_DIR17F:
3495 case R_PARISC_PCREL17C:
3496 case R_PARISC_PCREL14F:
3497 case R_PARISC_PCREL32:
3498 case R_PARISC_DPREL14F:
3499 case R_PARISC_PLABEL32:
3500 case R_PARISC_DLTIND14F:
3501 case R_PARISC_SEGBASE:
3502 case R_PARISC_SEGREL32:
3503 case R_PARISC_TLS_DTPMOD32:
3504 case R_PARISC_TLS_DTPOFF32:
3505 case R_PARISC_TLS_TPREL32:
3506 r_field = e_fsel;
3507 break;
3508
3509 case R_PARISC_DLTIND21L:
3510 case R_PARISC_PCREL21L:
3511 case R_PARISC_PLABEL21L:
3512 r_field = e_lsel;
3513 break;
3514
3515 case R_PARISC_DIR21L:
3516 case R_PARISC_DPREL21L:
3517 case R_PARISC_TLS_GD21L:
3518 case R_PARISC_TLS_LDM21L:
3519 case R_PARISC_TLS_LDO21L:
3520 case R_PARISC_TLS_IE21L:
3521 case R_PARISC_TLS_LE21L:
3522 r_field = e_lrsel;
3523 break;
3524
3525 case R_PARISC_PCREL17R:
3526 case R_PARISC_PCREL14R:
3527 case R_PARISC_PLABEL14R:
3528 case R_PARISC_DLTIND14R:
3529 r_field = e_rsel;
3530 break;
3531
3532 case R_PARISC_DIR17R:
3533 case R_PARISC_DIR14R:
3534 case R_PARISC_DPREL14R:
3535 case R_PARISC_TLS_GD14R:
3536 case R_PARISC_TLS_LDM14R:
3537 case R_PARISC_TLS_LDO14R:
3538 case R_PARISC_TLS_IE14R:
3539 case R_PARISC_TLS_LE14R:
3540 r_field = e_rrsel;
3541 break;
3542
3543 case R_PARISC_PCREL12F:
3544 case R_PARISC_PCREL17F:
3545 case R_PARISC_PCREL22F:
3546 r_field = e_fsel;
3547
3548 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3549 {
3550 max_branch_offset = (1 << (17-1)) << 2;
3551 }
3552 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3553 {
3554 max_branch_offset = (1 << (12-1)) << 2;
3555 }
3556 else
3557 {
3558 max_branch_offset = (1 << (22-1)) << 2;
3559 }
3560
3561 /* sym_sec is NULL on undefined weak syms or when shared on
3562 undefined syms. We've already checked for a stub for the
3563 shared undefined case. */
3564 if (sym_sec == NULL)
3565 break;
3566
3567 /* If the branch is out of reach, then redirect the
3568 call to the local stub for this function. */
3569 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3570 {
3571 hsh = hppa_get_stub_entry (input_section, sym_sec,
3572 hh, rela, htab);
3573 if (hsh == NULL)
3574 return bfd_reloc_undefined;
3575
3576 /* Munge up the value and addend so that we call the stub
3577 rather than the procedure directly. */
3578 value = (hsh->stub_offset
3579 + hsh->stub_sec->output_offset
3580 + hsh->stub_sec->output_section->vma
3581 - location);
3582 addend = -8;
3583 }
3584 break;
3585
3586 /* Something we don't know how to handle. */
3587 default:
3588 return bfd_reloc_notsupported;
3589 }
3590
3591 /* Make sure we can reach the stub. */
3592 if (max_branch_offset != 0
3593 && value + addend + max_branch_offset >= 2*max_branch_offset)
3594 {
3595 (*_bfd_error_handler)
3596 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3597 input_bfd,
3598 input_section,
3599 (long) offset,
3600 hsh->bh_root.string);
3601 bfd_set_error (bfd_error_bad_value);
3602 return bfd_reloc_notsupported;
3603 }
3604
3605 val = hppa_field_adjust (value, addend, r_field);
3606
3607 switch (r_type)
3608 {
3609 case R_PARISC_PCREL12F:
3610 case R_PARISC_PCREL17C:
3611 case R_PARISC_PCREL17F:
3612 case R_PARISC_PCREL17R:
3613 case R_PARISC_PCREL22F:
3614 case R_PARISC_DIR17F:
3615 case R_PARISC_DIR17R:
3616 /* This is a branch. Divide the offset by four.
3617 Note that we need to decide whether it's a branch or
3618 otherwise by inspecting the reloc. Inspecting insn won't
3619 work as insn might be from a .word directive. */
3620 val >>= 2;
3621 break;
3622
3623 default:
3624 break;
3625 }
3626
3627 insn = hppa_rebuild_insn (insn, val, r_format);
3628
3629 /* Update the instruction word. */
3630 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3631 return bfd_reloc_ok;
3632 }
3633
3634 /* Relocate an HPPA ELF section. */
3635
3636 static bfd_boolean
3637 elf32_hppa_relocate_section (bfd *output_bfd,
3638 struct bfd_link_info *info,
3639 bfd *input_bfd,
3640 asection *input_section,
3641 bfd_byte *contents,
3642 Elf_Internal_Rela *relocs,
3643 Elf_Internal_Sym *local_syms,
3644 asection **local_sections)
3645 {
3646 bfd_vma *local_got_offsets;
3647 struct elf32_hppa_link_hash_table *htab;
3648 Elf_Internal_Shdr *symtab_hdr;
3649 Elf_Internal_Rela *rela;
3650 Elf_Internal_Rela *relend;
3651
3652 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3653
3654 htab = hppa_link_hash_table (info);
3655 if (htab == NULL)
3656 return FALSE;
3657
3658 local_got_offsets = elf_local_got_offsets (input_bfd);
3659
3660 rela = relocs;
3661 relend = relocs + input_section->reloc_count;
3662 for (; rela < relend; rela++)
3663 {
3664 unsigned int r_type;
3665 reloc_howto_type *howto;
3666 unsigned int r_symndx;
3667 struct elf32_hppa_link_hash_entry *hh;
3668 Elf_Internal_Sym *sym;
3669 asection *sym_sec;
3670 bfd_vma relocation;
3671 bfd_reloc_status_type rstatus;
3672 const char *sym_name;
3673 bfd_boolean plabel;
3674 bfd_boolean warned_undef;
3675
3676 r_type = ELF32_R_TYPE (rela->r_info);
3677 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3678 {
3679 bfd_set_error (bfd_error_bad_value);
3680 return FALSE;
3681 }
3682 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3683 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3684 continue;
3685
3686 r_symndx = ELF32_R_SYM (rela->r_info);
3687 hh = NULL;
3688 sym = NULL;
3689 sym_sec = NULL;
3690 warned_undef = FALSE;
3691 if (r_symndx < symtab_hdr->sh_info)
3692 {
3693 /* This is a local symbol, h defaults to NULL. */
3694 sym = local_syms + r_symndx;
3695 sym_sec = local_sections[r_symndx];
3696 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3697 }
3698 else
3699 {
3700 struct elf_link_hash_entry *eh;
3701 bfd_boolean unresolved_reloc, ignored;
3702 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3703
3704 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3705 r_symndx, symtab_hdr, sym_hashes,
3706 eh, sym_sec, relocation,
3707 unresolved_reloc, warned_undef,
3708 ignored);
3709
3710 if (!info->relocatable
3711 && relocation == 0
3712 && eh->root.type != bfd_link_hash_defined
3713 && eh->root.type != bfd_link_hash_defweak
3714 && eh->root.type != bfd_link_hash_undefweak)
3715 {
3716 if (info->unresolved_syms_in_objects == RM_IGNORE
3717 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3718 && eh->type == STT_PARISC_MILLI)
3719 {
3720 if (! info->callbacks->undefined_symbol
3721 (info, eh_name (eh), input_bfd,
3722 input_section, rela->r_offset, FALSE))
3723 return FALSE;
3724 warned_undef = TRUE;
3725 }
3726 }
3727 hh = hppa_elf_hash_entry (eh);
3728 }
3729
3730 if (sym_sec != NULL && discarded_section (sym_sec))
3731 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3732 rela, 1, relend,
3733 elf_hppa_howto_table + r_type, 0,
3734 contents);
3735
3736 if (info->relocatable)
3737 continue;
3738
3739 /* Do any required modifications to the relocation value, and
3740 determine what types of dynamic info we need to output, if
3741 any. */
3742 plabel = 0;
3743 switch (r_type)
3744 {
3745 case R_PARISC_DLTIND14F:
3746 case R_PARISC_DLTIND14R:
3747 case R_PARISC_DLTIND21L:
3748 {
3749 bfd_vma off;
3750 bfd_boolean do_got = 0;
3751
3752 /* Relocation is to the entry for this symbol in the
3753 global offset table. */
3754 if (hh != NULL)
3755 {
3756 bfd_boolean dyn;
3757
3758 off = hh->eh.got.offset;
3759 dyn = htab->etab.dynamic_sections_created;
3760 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
3761 &hh->eh))
3762 {
3763 /* If we aren't going to call finish_dynamic_symbol,
3764 then we need to handle initialisation of the .got
3765 entry and create needed relocs here. Since the
3766 offset must always be a multiple of 4, we use the
3767 least significant bit to record whether we have
3768 initialised it already. */
3769 if ((off & 1) != 0)
3770 off &= ~1;
3771 else
3772 {
3773 hh->eh.got.offset |= 1;
3774 do_got = 1;
3775 }
3776 }
3777 }
3778 else
3779 {
3780 /* Local symbol case. */
3781 if (local_got_offsets == NULL)
3782 abort ();
3783
3784 off = local_got_offsets[r_symndx];
3785
3786 /* The offset must always be a multiple of 4. We use
3787 the least significant bit to record whether we have
3788 already generated the necessary reloc. */
3789 if ((off & 1) != 0)
3790 off &= ~1;
3791 else
3792 {
3793 local_got_offsets[r_symndx] |= 1;
3794 do_got = 1;
3795 }
3796 }
3797
3798 if (do_got)
3799 {
3800 if (info->shared)
3801 {
3802 /* Output a dynamic relocation for this GOT entry.
3803 In this case it is relative to the base of the
3804 object because the symbol index is zero. */
3805 Elf_Internal_Rela outrel;
3806 bfd_byte *loc;
3807 asection *sec = htab->srelgot;
3808
3809 outrel.r_offset = (off
3810 + htab->sgot->output_offset
3811 + htab->sgot->output_section->vma);
3812 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3813 outrel.r_addend = relocation;
3814 loc = sec->contents;
3815 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3816 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3817 }
3818 else
3819 bfd_put_32 (output_bfd, relocation,
3820 htab->sgot->contents + off);
3821 }
3822
3823 if (off >= (bfd_vma) -2)
3824 abort ();
3825
3826 /* Add the base of the GOT to the relocation value. */
3827 relocation = (off
3828 + htab->sgot->output_offset
3829 + htab->sgot->output_section->vma);
3830 }
3831 break;
3832
3833 case R_PARISC_SEGREL32:
3834 /* If this is the first SEGREL relocation, then initialize
3835 the segment base values. */
3836 if (htab->text_segment_base == (bfd_vma) -1)
3837 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3838 break;
3839
3840 case R_PARISC_PLABEL14R:
3841 case R_PARISC_PLABEL21L:
3842 case R_PARISC_PLABEL32:
3843 if (htab->etab.dynamic_sections_created)
3844 {
3845 bfd_vma off;
3846 bfd_boolean do_plt = 0;
3847 /* If we have a global symbol with a PLT slot, then
3848 redirect this relocation to it. */
3849 if (hh != NULL)
3850 {
3851 off = hh->eh.plt.offset;
3852 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared,
3853 &hh->eh))
3854 {
3855 /* In a non-shared link, adjust_dynamic_symbols
3856 isn't called for symbols forced local. We
3857 need to write out the plt entry here. */
3858 if ((off & 1) != 0)
3859 off &= ~1;
3860 else
3861 {
3862 hh->eh.plt.offset |= 1;
3863 do_plt = 1;
3864 }
3865 }
3866 }
3867 else
3868 {
3869 bfd_vma *local_plt_offsets;
3870
3871 if (local_got_offsets == NULL)
3872 abort ();
3873
3874 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3875 off = local_plt_offsets[r_symndx];
3876
3877 /* As for the local .got entry case, we use the last
3878 bit to record whether we've already initialised
3879 this local .plt entry. */
3880 if ((off & 1) != 0)
3881 off &= ~1;
3882 else
3883 {
3884 local_plt_offsets[r_symndx] |= 1;
3885 do_plt = 1;
3886 }
3887 }
3888
3889 if (do_plt)
3890 {
3891 if (info->shared)
3892 {
3893 /* Output a dynamic IPLT relocation for this
3894 PLT entry. */
3895 Elf_Internal_Rela outrel;
3896 bfd_byte *loc;
3897 asection *s = htab->srelplt;
3898
3899 outrel.r_offset = (off
3900 + htab->splt->output_offset
3901 + htab->splt->output_section->vma);
3902 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3903 outrel.r_addend = relocation;
3904 loc = s->contents;
3905 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3906 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3907 }
3908 else
3909 {
3910 bfd_put_32 (output_bfd,
3911 relocation,
3912 htab->splt->contents + off);
3913 bfd_put_32 (output_bfd,
3914 elf_gp (htab->splt->output_section->owner),
3915 htab->splt->contents + off + 4);
3916 }
3917 }
3918
3919 if (off >= (bfd_vma) -2)
3920 abort ();
3921
3922 /* PLABELs contain function pointers. Relocation is to
3923 the entry for the function in the .plt. The magic +2
3924 offset signals to $$dyncall that the function pointer
3925 is in the .plt and thus has a gp pointer too.
3926 Exception: Undefined PLABELs should have a value of
3927 zero. */
3928 if (hh == NULL
3929 || (hh->eh.root.type != bfd_link_hash_undefweak
3930 && hh->eh.root.type != bfd_link_hash_undefined))
3931 {
3932 relocation = (off
3933 + htab->splt->output_offset
3934 + htab->splt->output_section->vma
3935 + 2);
3936 }
3937 plabel = 1;
3938 }
3939 /* Fall through and possibly emit a dynamic relocation. */
3940
3941 case R_PARISC_DIR17F:
3942 case R_PARISC_DIR17R:
3943 case R_PARISC_DIR14F:
3944 case R_PARISC_DIR14R:
3945 case R_PARISC_DIR21L:
3946 case R_PARISC_DPREL14F:
3947 case R_PARISC_DPREL14R:
3948 case R_PARISC_DPREL21L:
3949 case R_PARISC_DIR32:
3950 if ((input_section->flags & SEC_ALLOC) == 0)
3951 break;
3952
3953 /* The reloc types handled here and this conditional
3954 expression must match the code in ..check_relocs and
3955 allocate_dynrelocs. ie. We need exactly the same condition
3956 as in ..check_relocs, with some extra conditions (dynindx
3957 test in this case) to cater for relocs removed by
3958 allocate_dynrelocs. If you squint, the non-shared test
3959 here does indeed match the one in ..check_relocs, the
3960 difference being that here we test DEF_DYNAMIC as well as
3961 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3962 which is why we can't use just that test here.
3963 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3964 there all files have not been loaded. */
3965 if ((info->shared
3966 && (hh == NULL
3967 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
3968 || hh->eh.root.type != bfd_link_hash_undefweak)
3969 && (IS_ABSOLUTE_RELOC (r_type)
3970 || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
3971 || (!info->shared
3972 && hh != NULL
3973 && hh->eh.dynindx != -1
3974 && !hh->eh.non_got_ref
3975 && ((ELIMINATE_COPY_RELOCS
3976 && hh->eh.def_dynamic
3977 && !hh->eh.def_regular)
3978 || hh->eh.root.type == bfd_link_hash_undefweak
3979 || hh->eh.root.type == bfd_link_hash_undefined)))
3980 {
3981 Elf_Internal_Rela outrel;
3982 bfd_boolean skip;
3983 asection *sreloc;
3984 bfd_byte *loc;
3985
3986 /* When generating a shared object, these relocations
3987 are copied into the output file to be resolved at run
3988 time. */
3989
3990 outrel.r_addend = rela->r_addend;
3991 outrel.r_offset =
3992 _bfd_elf_section_offset (output_bfd, info, input_section,
3993 rela->r_offset);
3994 skip = (outrel.r_offset == (bfd_vma) -1
3995 || outrel.r_offset == (bfd_vma) -2);
3996 outrel.r_offset += (input_section->output_offset
3997 + input_section->output_section->vma);
3998
3999 if (skip)
4000 {
4001 memset (&outrel, 0, sizeof (outrel));
4002 }
4003 else if (hh != NULL
4004 && hh->eh.dynindx != -1
4005 && (plabel
4006 || !IS_ABSOLUTE_RELOC (r_type)
4007 || !info->shared
4008 || !info->symbolic
4009 || !hh->eh.def_regular))
4010 {
4011 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
4012 }
4013 else /* It's a local symbol, or one marked to become local. */
4014 {
4015 int indx = 0;
4016
4017 /* Add the absolute offset of the symbol. */
4018 outrel.r_addend += relocation;
4019
4020 /* Global plabels need to be processed by the
4021 dynamic linker so that functions have at most one
4022 fptr. For this reason, we need to differentiate
4023 between global and local plabels, which we do by
4024 providing the function symbol for a global plabel
4025 reloc, and no symbol for local plabels. */
4026 if (! plabel
4027 && sym_sec != NULL
4028 && sym_sec->output_section != NULL
4029 && ! bfd_is_abs_section (sym_sec))
4030 {
4031 asection *osec;
4032
4033 osec = sym_sec->output_section;
4034 indx = elf_section_data (osec)->dynindx;
4035 if (indx == 0)
4036 {
4037 osec = htab->etab.text_index_section;
4038 indx = elf_section_data (osec)->dynindx;
4039 }
4040 BFD_ASSERT (indx != 0);
4041
4042 /* We are turning this relocation into one
4043 against a section symbol, so subtract out the
4044 output section's address but not the offset
4045 of the input section in the output section. */
4046 outrel.r_addend -= osec->vma;
4047 }
4048
4049 outrel.r_info = ELF32_R_INFO (indx, r_type);
4050 }
4051 sreloc = elf_section_data (input_section)->sreloc;
4052 if (sreloc == NULL)
4053 abort ();
4054
4055 loc = sreloc->contents;
4056 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4057 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4058 }
4059 break;
4060
4061 case R_PARISC_TLS_LDM21L:
4062 case R_PARISC_TLS_LDM14R:
4063 {
4064 bfd_vma off;
4065
4066 off = htab->tls_ldm_got.offset;
4067 if (off & 1)
4068 off &= ~1;
4069 else
4070 {
4071 Elf_Internal_Rela outrel;
4072 bfd_byte *loc;
4073
4074 outrel.r_offset = (off
4075 + htab->sgot->output_section->vma
4076 + htab->sgot->output_offset);
4077 outrel.r_addend = 0;
4078 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
4079 loc = htab->srelgot->contents;
4080 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4081
4082 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4083 htab->tls_ldm_got.offset |= 1;
4084 }
4085
4086 /* Add the base of the GOT to the relocation value. */
4087 relocation = (off
4088 + htab->sgot->output_offset
4089 + htab->sgot->output_section->vma);
4090
4091 break;
4092 }
4093
4094 case R_PARISC_TLS_LDO21L:
4095 case R_PARISC_TLS_LDO14R:
4096 relocation -= dtpoff_base (info);
4097 break;
4098
4099 case R_PARISC_TLS_GD21L:
4100 case R_PARISC_TLS_GD14R:
4101 case R_PARISC_TLS_IE21L:
4102 case R_PARISC_TLS_IE14R:
4103 {
4104 bfd_vma off;
4105 int indx;
4106 char tls_type;
4107
4108 indx = 0;
4109 if (hh != NULL)
4110 {
4111 bfd_boolean dyn;
4112 dyn = htab->etab.dynamic_sections_created;
4113
4114 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &hh->eh)
4115 && (!info->shared
4116 || !SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4117 {
4118 indx = hh->eh.dynindx;
4119 }
4120 off = hh->eh.got.offset;
4121 tls_type = hh->tls_type;
4122 }
4123 else
4124 {
4125 off = local_got_offsets[r_symndx];
4126 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4127 }
4128
4129 if (tls_type == GOT_UNKNOWN)
4130 abort ();
4131
4132 if ((off & 1) != 0)
4133 off &= ~1;
4134 else
4135 {
4136 bfd_boolean need_relocs = FALSE;
4137 Elf_Internal_Rela outrel;
4138 bfd_byte *loc = NULL;
4139 int cur_off = off;
4140
4141 /* The GOT entries have not been initialized yet. Do it
4142 now, and emit any relocations. If both an IE GOT and a
4143 GD GOT are necessary, we emit the GD first. */
4144
4145 if ((info->shared || indx != 0)
4146 && (hh == NULL
4147 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
4148 || hh->eh.root.type != bfd_link_hash_undefweak))
4149 {
4150 need_relocs = TRUE;
4151 loc = htab->srelgot->contents;
4152 /* FIXME (CAO): Should this be reloc_count++ ? */
4153 loc += htab->srelgot->reloc_count * sizeof (Elf32_External_Rela);
4154 }
4155
4156 if (tls_type & GOT_TLS_GD)
4157 {
4158 if (need_relocs)
4159 {
4160 outrel.r_offset = (cur_off
4161 + htab->sgot->output_section->vma
4162 + htab->sgot->output_offset);
4163 outrel.r_info = ELF32_R_INFO (indx,R_PARISC_TLS_DTPMOD32);
4164 outrel.r_addend = 0;
4165 bfd_put_32 (output_bfd, 0, htab->sgot->contents + cur_off);
4166 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4167 htab->srelgot->reloc_count++;
4168 loc += sizeof (Elf32_External_Rela);
4169
4170 if (indx == 0)
4171 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4172 htab->sgot->contents + cur_off + 4);
4173 else
4174 {
4175 bfd_put_32 (output_bfd, 0,
4176 htab->sgot->contents + cur_off + 4);
4177 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4178 outrel.r_offset += 4;
4179 bfd_elf32_swap_reloca_out (output_bfd, &outrel,loc);
4180 htab->srelgot->reloc_count++;
4181 loc += sizeof (Elf32_External_Rela);
4182 }
4183 }
4184 else
4185 {
4186 /* If we are not emitting relocations for a
4187 general dynamic reference, then we must be in a
4188 static link or an executable link with the
4189 symbol binding locally. Mark it as belonging
4190 to module 1, the executable. */
4191 bfd_put_32 (output_bfd, 1,
4192 htab->sgot->contents + cur_off);
4193 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4194 htab->sgot->contents + cur_off + 4);
4195 }
4196
4197
4198 cur_off += 8;
4199 }
4200
4201 if (tls_type & GOT_TLS_IE)
4202 {
4203 if (need_relocs)
4204 {
4205 outrel.r_offset = (cur_off
4206 + htab->sgot->output_section->vma
4207 + htab->sgot->output_offset);
4208 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_TPREL32);
4209
4210 if (indx == 0)
4211 outrel.r_addend = relocation - dtpoff_base (info);
4212 else
4213 outrel.r_addend = 0;
4214
4215 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4216 htab->srelgot->reloc_count++;
4217 loc += sizeof (Elf32_External_Rela);
4218 }
4219 else
4220 bfd_put_32 (output_bfd, tpoff (info, relocation),
4221 htab->sgot->contents + cur_off);
4222
4223 cur_off += 4;
4224 }
4225
4226 if (hh != NULL)
4227 hh->eh.got.offset |= 1;
4228 else
4229 local_got_offsets[r_symndx] |= 1;
4230 }
4231
4232 if ((tls_type & GOT_TLS_GD)
4233 && r_type != R_PARISC_TLS_GD21L
4234 && r_type != R_PARISC_TLS_GD14R)
4235 off += 2 * GOT_ENTRY_SIZE;
4236
4237 /* Add the base of the GOT to the relocation value. */
4238 relocation = (off
4239 + htab->sgot->output_offset
4240 + htab->sgot->output_section->vma);
4241
4242 break;
4243 }
4244
4245 case R_PARISC_TLS_LE21L:
4246 case R_PARISC_TLS_LE14R:
4247 {
4248 relocation = tpoff (info, relocation);
4249 break;
4250 }
4251 break;
4252
4253 default:
4254 break;
4255 }
4256
4257 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4258 htab, sym_sec, hh, info);
4259
4260 if (rstatus == bfd_reloc_ok)
4261 continue;
4262
4263 if (hh != NULL)
4264 sym_name = hh_name (hh);
4265 else
4266 {
4267 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4268 symtab_hdr->sh_link,
4269 sym->st_name);
4270 if (sym_name == NULL)
4271 return FALSE;
4272 if (*sym_name == '\0')
4273 sym_name = bfd_section_name (input_bfd, sym_sec);
4274 }
4275
4276 howto = elf_hppa_howto_table + r_type;
4277
4278 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4279 {
4280 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4281 {
4282 (*_bfd_error_handler)
4283 (_("%B(%A+0x%lx): cannot handle %s for %s"),
4284 input_bfd,
4285 input_section,
4286 (long) rela->r_offset,
4287 howto->name,
4288 sym_name);
4289 bfd_set_error (bfd_error_bad_value);
4290 return FALSE;
4291 }
4292 }
4293 else
4294 {
4295 if (!((*info->callbacks->reloc_overflow)
4296 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4297 (bfd_vma) 0, input_bfd, input_section, rela->r_offset)))
4298 return FALSE;
4299 }
4300 }
4301
4302 return TRUE;
4303 }
4304
4305 /* Finish up dynamic symbol handling. We set the contents of various
4306 dynamic sections here. */
4307
4308 static bfd_boolean
4309 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4310 struct bfd_link_info *info,
4311 struct elf_link_hash_entry *eh,
4312 Elf_Internal_Sym *sym)
4313 {
4314 struct elf32_hppa_link_hash_table *htab;
4315 Elf_Internal_Rela rela;
4316 bfd_byte *loc;
4317
4318 htab = hppa_link_hash_table (info);
4319 if (htab == NULL)
4320 return FALSE;
4321
4322 if (eh->plt.offset != (bfd_vma) -1)
4323 {
4324 bfd_vma value;
4325
4326 if (eh->plt.offset & 1)
4327 abort ();
4328
4329 /* This symbol has an entry in the procedure linkage table. Set
4330 it up.
4331
4332 The format of a plt entry is
4333 <funcaddr>
4334 <__gp>
4335 */
4336 value = 0;
4337 if (eh->root.type == bfd_link_hash_defined
4338 || eh->root.type == bfd_link_hash_defweak)
4339 {
4340 value = eh->root.u.def.value;
4341 if (eh->root.u.def.section->output_section != NULL)
4342 value += (eh->root.u.def.section->output_offset
4343 + eh->root.u.def.section->output_section->vma);
4344 }
4345
4346 /* Create a dynamic IPLT relocation for this entry. */
4347 rela.r_offset = (eh->plt.offset
4348 + htab->splt->output_offset
4349 + htab->splt->output_section->vma);
4350 if (eh->dynindx != -1)
4351 {
4352 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4353 rela.r_addend = 0;
4354 }
4355 else
4356 {
4357 /* This symbol has been marked to become local, and is
4358 used by a plabel so must be kept in the .plt. */
4359 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4360 rela.r_addend = value;
4361 }
4362
4363 loc = htab->srelplt->contents;
4364 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4365 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rela, loc);
4366
4367 if (!eh->def_regular)
4368 {
4369 /* Mark the symbol as undefined, rather than as defined in
4370 the .plt section. Leave the value alone. */
4371 sym->st_shndx = SHN_UNDEF;
4372 }
4373 }
4374
4375 if (eh->got.offset != (bfd_vma) -1
4376 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_GD) == 0
4377 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_IE) == 0)
4378 {
4379 /* This symbol has an entry in the global offset table. Set it
4380 up. */
4381
4382 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4383 + htab->sgot->output_offset
4384 + htab->sgot->output_section->vma);
4385
4386 /* If this is a -Bsymbolic link and the symbol is defined
4387 locally or was forced to be local because of a version file,
4388 we just want to emit a RELATIVE reloc. The entry in the
4389 global offset table will already have been initialized in the
4390 relocate_section function. */
4391 if (info->shared
4392 && (info->symbolic || eh->dynindx == -1)
4393 && eh->def_regular)
4394 {
4395 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4396 rela.r_addend = (eh->root.u.def.value
4397 + eh->root.u.def.section->output_offset
4398 + eh->root.u.def.section->output_section->vma);
4399 }
4400 else
4401 {
4402 if ((eh->got.offset & 1) != 0)
4403 abort ();
4404
4405 bfd_put_32 (output_bfd, 0, htab->sgot->contents + (eh->got.offset & ~1));
4406 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4407 rela.r_addend = 0;
4408 }
4409
4410 loc = htab->srelgot->contents;
4411 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4412 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4413 }
4414
4415 if (eh->needs_copy)
4416 {
4417 asection *sec;
4418
4419 /* This symbol needs a copy reloc. Set it up. */
4420
4421 if (! (eh->dynindx != -1
4422 && (eh->root.type == bfd_link_hash_defined
4423 || eh->root.type == bfd_link_hash_defweak)))
4424 abort ();
4425
4426 sec = htab->srelbss;
4427
4428 rela.r_offset = (eh->root.u.def.value
4429 + eh->root.u.def.section->output_offset
4430 + eh->root.u.def.section->output_section->vma);
4431 rela.r_addend = 0;
4432 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4433 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4434 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4435 }
4436
4437 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4438 if (eh == htab->etab.hdynamic || eh == htab->etab.hgot)
4439 {
4440 sym->st_shndx = SHN_ABS;
4441 }
4442
4443 return TRUE;
4444 }
4445
4446 /* Used to decide how to sort relocs in an optimal manner for the
4447 dynamic linker, before writing them out. */
4448
4449 static enum elf_reloc_type_class
4450 elf32_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4451 const asection *rel_sec ATTRIBUTE_UNUSED,
4452 const Elf_Internal_Rela *rela)
4453 {
4454 /* Handle TLS relocs first; we don't want them to be marked
4455 relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)"
4456 check below. */
4457 switch ((int) ELF32_R_TYPE (rela->r_info))
4458 {
4459 case R_PARISC_TLS_DTPMOD32:
4460 case R_PARISC_TLS_DTPOFF32:
4461 case R_PARISC_TLS_TPREL32:
4462 return reloc_class_normal;
4463 }
4464
4465 if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)
4466 return reloc_class_relative;
4467
4468 switch ((int) ELF32_R_TYPE (rela->r_info))
4469 {
4470 case R_PARISC_IPLT:
4471 return reloc_class_plt;
4472 case R_PARISC_COPY:
4473 return reloc_class_copy;
4474 default:
4475 return reloc_class_normal;
4476 }
4477 }
4478
4479 /* Finish up the dynamic sections. */
4480
4481 static bfd_boolean
4482 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4483 struct bfd_link_info *info)
4484 {
4485 bfd *dynobj;
4486 struct elf32_hppa_link_hash_table *htab;
4487 asection *sdyn;
4488 asection * sgot;
4489
4490 htab = hppa_link_hash_table (info);
4491 if (htab == NULL)
4492 return FALSE;
4493
4494 dynobj = htab->etab.dynobj;
4495
4496 sgot = htab->sgot;
4497 /* A broken linker script might have discarded the dynamic sections.
4498 Catch this here so that we do not seg-fault later on. */
4499 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
4500 return FALSE;
4501
4502 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4503
4504 if (htab->etab.dynamic_sections_created)
4505 {
4506 Elf32_External_Dyn *dyncon, *dynconend;
4507
4508 if (sdyn == NULL)
4509 abort ();
4510
4511 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4512 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4513 for (; dyncon < dynconend; dyncon++)
4514 {
4515 Elf_Internal_Dyn dyn;
4516 asection *s;
4517
4518 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4519
4520 switch (dyn.d_tag)
4521 {
4522 default:
4523 continue;
4524
4525 case DT_PLTGOT:
4526 /* Use PLTGOT to set the GOT register. */
4527 dyn.d_un.d_ptr = elf_gp (output_bfd);
4528 break;
4529
4530 case DT_JMPREL:
4531 s = htab->srelplt;
4532 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4533 break;
4534
4535 case DT_PLTRELSZ:
4536 s = htab->srelplt;
4537 dyn.d_un.d_val = s->size;
4538 break;
4539
4540 case DT_RELASZ:
4541 /* Don't count procedure linkage table relocs in the
4542 overall reloc count. */
4543 s = htab->srelplt;
4544 if (s == NULL)
4545 continue;
4546 dyn.d_un.d_val -= s->size;
4547 break;
4548
4549 case DT_RELA:
4550 /* We may not be using the standard ELF linker script.
4551 If .rela.plt is the first .rela section, we adjust
4552 DT_RELA to not include it. */
4553 s = htab->srelplt;
4554 if (s == NULL)
4555 continue;
4556 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4557 continue;
4558 dyn.d_un.d_ptr += s->size;
4559 break;
4560 }
4561
4562 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4563 }
4564 }
4565
4566 if (sgot != NULL && sgot->size != 0)
4567 {
4568 /* Fill in the first entry in the global offset table.
4569 We use it to point to our dynamic section, if we have one. */
4570 bfd_put_32 (output_bfd,
4571 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4572 sgot->contents);
4573
4574 /* The second entry is reserved for use by the dynamic linker. */
4575 memset (sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4576
4577 /* Set .got entry size. */
4578 elf_section_data (sgot->output_section)
4579 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4580 }
4581
4582 if (htab->splt != NULL && htab->splt->size != 0)
4583 {
4584 /* Set plt entry size. */
4585 elf_section_data (htab->splt->output_section)
4586 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4587
4588 if (htab->need_plt_stub)
4589 {
4590 /* Set up the .plt stub. */
4591 memcpy (htab->splt->contents
4592 + htab->splt->size - sizeof (plt_stub),
4593 plt_stub, sizeof (plt_stub));
4594
4595 if ((htab->splt->output_offset
4596 + htab->splt->output_section->vma
4597 + htab->splt->size)
4598 != (sgot->output_offset
4599 + sgot->output_section->vma))
4600 {
4601 (*_bfd_error_handler)
4602 (_(".got section not immediately after .plt section"));
4603 return FALSE;
4604 }
4605 }
4606 }
4607
4608 return TRUE;
4609 }
4610
4611 /* Called when writing out an object file to decide the type of a
4612 symbol. */
4613 static int
4614 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4615 {
4616 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4617 return STT_PARISC_MILLI;
4618 else
4619 return type;
4620 }
4621
4622 /* Misc BFD support code. */
4623 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4624 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4625 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4626 #define elf_info_to_howto elf_hppa_info_to_howto
4627 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4628
4629 /* Stuff for the BFD linker. */
4630 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4631 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4632 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4633 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4634 #define elf_backend_check_relocs elf32_hppa_check_relocs
4635 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4636 #define elf_backend_fake_sections elf_hppa_fake_sections
4637 #define elf_backend_relocate_section elf32_hppa_relocate_section
4638 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4639 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4640 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4641 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4642 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4643 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4644 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4645 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4646 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4647 #define elf_backend_object_p elf32_hppa_object_p
4648 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4649 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4650 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4651 #define elf_backend_action_discarded elf_hppa_action_discarded
4652
4653 #define elf_backend_can_gc_sections 1
4654 #define elf_backend_can_refcount 1
4655 #define elf_backend_plt_alignment 2
4656 #define elf_backend_want_got_plt 0
4657 #define elf_backend_plt_readonly 0
4658 #define elf_backend_want_plt_sym 0
4659 #define elf_backend_got_header_size 8
4660 #define elf_backend_rela_normal 1
4661
4662 #define TARGET_BIG_SYM hppa_elf32_vec
4663 #define TARGET_BIG_NAME "elf32-hppa"
4664 #define ELF_ARCH bfd_arch_hppa
4665 #define ELF_TARGET_ID HPPA32_ELF_DATA
4666 #define ELF_MACHINE_CODE EM_PARISC
4667 #define ELF_MAXPAGESIZE 0x1000
4668 #define ELF_OSABI ELFOSABI_HPUX
4669 #define elf32_bed elf32_hppa_hpux_bed
4670
4671 #include "elf32-target.h"
4672
4673 #undef TARGET_BIG_SYM
4674 #define TARGET_BIG_SYM hppa_elf32_linux_vec
4675 #undef TARGET_BIG_NAME
4676 #define TARGET_BIG_NAME "elf32-hppa-linux"
4677 #undef ELF_OSABI
4678 #define ELF_OSABI ELFOSABI_GNU
4679 #undef elf32_bed
4680 #define elf32_bed elf32_hppa_linux_bed
4681
4682 #include "elf32-target.h"
4683
4684 #undef TARGET_BIG_SYM
4685 #define TARGET_BIG_SYM hppa_elf32_nbsd_vec
4686 #undef TARGET_BIG_NAME
4687 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4688 #undef ELF_OSABI
4689 #define ELF_OSABI ELFOSABI_NETBSD
4690 #undef elf32_bed
4691 #define elf32_bed elf32_hppa_netbsd_bed
4692
4693 #include "elf32-target.h"
This page took 0.212341 seconds and 4 git commands to generate.