* elf-bfd.h (struct core_elf_obj_tdata): New.
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
5
6 Original code by
7 Center for Software Science
8 Department of Computer Science
9 University of Utah
10 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
11 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
12 TLS support written by Randolph Chung <tausq@debian.org>
13
14 This file is part of BFD, the Binary File Descriptor library.
15
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 3 of the License, or
19 (at your option) any later version.
20
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public License
27 along with this program; if not, write to the Free Software
28 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
29 MA 02110-1301, USA. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "elf-bfd.h"
35 #include "elf/hppa.h"
36 #include "libhppa.h"
37 #include "elf32-hppa.h"
38 #define ARCH_SIZE 32
39 #include "elf32-hppa.h"
40 #include "elf-hppa.h"
41
42 /* In order to gain some understanding of code in this file without
43 knowing all the intricate details of the linker, note the
44 following:
45
46 Functions named elf32_hppa_* are called by external routines, other
47 functions are only called locally. elf32_hppa_* functions appear
48 in this file more or less in the order in which they are called
49 from external routines. eg. elf32_hppa_check_relocs is called
50 early in the link process, elf32_hppa_finish_dynamic_sections is
51 one of the last functions. */
52
53 /* We use two hash tables to hold information for linking PA ELF objects.
54
55 The first is the elf32_hppa_link_hash_table which is derived
56 from the standard ELF linker hash table. We use this as a place to
57 attach other hash tables and static information.
58
59 The second is the stub hash table which is derived from the
60 base BFD hash table. The stub hash table holds the information
61 necessary to build the linker stubs during a link.
62
63 There are a number of different stubs generated by the linker.
64
65 Long branch stub:
66 : ldil LR'X,%r1
67 : be,n RR'X(%sr4,%r1)
68
69 PIC long branch stub:
70 : b,l .+8,%r1
71 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
72 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
73
74 Import stub to call shared library routine from normal object file
75 (single sub-space version)
76 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
77 : ldw RR'lt_ptr+ltoff(%r1),%r21
78 : bv %r0(%r21)
79 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
80
81 Import stub to call shared library routine from shared library
82 (single sub-space version)
83 : addil LR'ltoff,%r19 ; get procedure entry point
84 : ldw RR'ltoff(%r1),%r21
85 : bv %r0(%r21)
86 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
87
88 Import stub to call shared library routine from normal object file
89 (multiple sub-space support)
90 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
91 : ldw RR'lt_ptr+ltoff(%r1),%r21
92 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
93 : ldsid (%r21),%r1
94 : mtsp %r1,%sr0
95 : be 0(%sr0,%r21) ; branch to target
96 : stw %rp,-24(%sp) ; save rp
97
98 Import stub to call shared library routine from shared library
99 (multiple sub-space support)
100 : addil LR'ltoff,%r19 ; get procedure entry point
101 : ldw RR'ltoff(%r1),%r21
102 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
103 : ldsid (%r21),%r1
104 : mtsp %r1,%sr0
105 : be 0(%sr0,%r21) ; branch to target
106 : stw %rp,-24(%sp) ; save rp
107
108 Export stub to return from shared lib routine (multiple sub-space support)
109 One of these is created for each exported procedure in a shared
110 library (and stored in the shared lib). Shared lib routines are
111 called via the first instruction in the export stub so that we can
112 do an inter-space return. Not required for single sub-space.
113 : bl,n X,%rp ; trap the return
114 : nop
115 : ldw -24(%sp),%rp ; restore the original rp
116 : ldsid (%rp),%r1
117 : mtsp %r1,%sr0
118 : be,n 0(%sr0,%rp) ; inter-space return. */
119
120
121 /* Variable names follow a coding style.
122 Please follow this (Apps Hungarian) style:
123
124 Structure/Variable Prefix
125 elf_link_hash_table "etab"
126 elf_link_hash_entry "eh"
127
128 elf32_hppa_link_hash_table "htab"
129 elf32_hppa_link_hash_entry "hh"
130
131 bfd_hash_table "btab"
132 bfd_hash_entry "bh"
133
134 bfd_hash_table containing stubs "bstab"
135 elf32_hppa_stub_hash_entry "hsh"
136
137 elf32_hppa_dyn_reloc_entry "hdh"
138
139 Always remember to use GNU Coding Style. */
140
141 #define PLT_ENTRY_SIZE 8
142 #define GOT_ENTRY_SIZE 4
143 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
144
145 static const bfd_byte plt_stub[] =
146 {
147 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
148 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
149 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
150 #define PLT_STUB_ENTRY (3*4)
151 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
152 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
153 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
154 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
155 };
156
157 /* Section name for stubs is the associated section name plus this
158 string. */
159 #define STUB_SUFFIX ".stub"
160
161 /* We don't need to copy certain PC- or GP-relative dynamic relocs
162 into a shared object's dynamic section. All the relocs of the
163 limited class we are interested in, are absolute. */
164 #ifndef RELATIVE_DYNRELOCS
165 #define RELATIVE_DYNRELOCS 0
166 #define IS_ABSOLUTE_RELOC(r_type) 1
167 #endif
168
169 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
170 copying dynamic variables from a shared lib into an app's dynbss
171 section, and instead use a dynamic relocation to point into the
172 shared lib. */
173 #define ELIMINATE_COPY_RELOCS 1
174
175 enum elf32_hppa_stub_type
176 {
177 hppa_stub_long_branch,
178 hppa_stub_long_branch_shared,
179 hppa_stub_import,
180 hppa_stub_import_shared,
181 hppa_stub_export,
182 hppa_stub_none
183 };
184
185 struct elf32_hppa_stub_hash_entry
186 {
187 /* Base hash table entry structure. */
188 struct bfd_hash_entry bh_root;
189
190 /* The stub section. */
191 asection *stub_sec;
192
193 /* Offset within stub_sec of the beginning of this stub. */
194 bfd_vma stub_offset;
195
196 /* Given the symbol's value and its section we can determine its final
197 value when building the stubs (so the stub knows where to jump. */
198 bfd_vma target_value;
199 asection *target_section;
200
201 enum elf32_hppa_stub_type stub_type;
202
203 /* The symbol table entry, if any, that this was derived from. */
204 struct elf32_hppa_link_hash_entry *hh;
205
206 /* Where this stub is being called from, or, in the case of combined
207 stub sections, the first input section in the group. */
208 asection *id_sec;
209 };
210
211 struct elf32_hppa_link_hash_entry
212 {
213 struct elf_link_hash_entry eh;
214
215 /* A pointer to the most recently used stub hash entry against this
216 symbol. */
217 struct elf32_hppa_stub_hash_entry *hsh_cache;
218
219 /* Used to count relocations for delayed sizing of relocation
220 sections. */
221 struct elf32_hppa_dyn_reloc_entry
222 {
223 /* Next relocation in the chain. */
224 struct elf32_hppa_dyn_reloc_entry *hdh_next;
225
226 /* The input section of the reloc. */
227 asection *sec;
228
229 /* Number of relocs copied in this section. */
230 bfd_size_type count;
231
232 #if RELATIVE_DYNRELOCS
233 /* Number of relative relocs copied for the input section. */
234 bfd_size_type relative_count;
235 #endif
236 } *dyn_relocs;
237
238 enum
239 {
240 GOT_UNKNOWN = 0, GOT_NORMAL = 1, GOT_TLS_GD = 2, GOT_TLS_LDM = 4, GOT_TLS_IE = 8
241 } tls_type;
242
243 /* Set if this symbol is used by a plabel reloc. */
244 unsigned int plabel:1;
245 };
246
247 struct elf32_hppa_link_hash_table
248 {
249 /* The main hash table. */
250 struct elf_link_hash_table etab;
251
252 /* The stub hash table. */
253 struct bfd_hash_table bstab;
254
255 /* Linker stub bfd. */
256 bfd *stub_bfd;
257
258 /* Linker call-backs. */
259 asection * (*add_stub_section) (const char *, asection *);
260 void (*layout_sections_again) (void);
261
262 /* Array to keep track of which stub sections have been created, and
263 information on stub grouping. */
264 struct map_stub
265 {
266 /* This is the section to which stubs in the group will be
267 attached. */
268 asection *link_sec;
269 /* The stub section. */
270 asection *stub_sec;
271 } *stub_group;
272
273 /* Assorted information used by elf32_hppa_size_stubs. */
274 unsigned int bfd_count;
275 int top_index;
276 asection **input_list;
277 Elf_Internal_Sym **all_local_syms;
278
279 /* Short-cuts to get to dynamic linker sections. */
280 asection *sgot;
281 asection *srelgot;
282 asection *splt;
283 asection *srelplt;
284 asection *sdynbss;
285 asection *srelbss;
286
287 /* Used during a final link to store the base of the text and data
288 segments so that we can perform SEGREL relocations. */
289 bfd_vma text_segment_base;
290 bfd_vma data_segment_base;
291
292 /* Whether we support multiple sub-spaces for shared libs. */
293 unsigned int multi_subspace:1;
294
295 /* Flags set when various size branches are detected. Used to
296 select suitable defaults for the stub group size. */
297 unsigned int has_12bit_branch:1;
298 unsigned int has_17bit_branch:1;
299 unsigned int has_22bit_branch:1;
300
301 /* Set if we need a .plt stub to support lazy dynamic linking. */
302 unsigned int need_plt_stub:1;
303
304 /* Small local sym cache. */
305 struct sym_cache sym_cache;
306
307 /* Data for LDM relocations. */
308 union
309 {
310 bfd_signed_vma refcount;
311 bfd_vma offset;
312 } tls_ldm_got;
313 };
314
315 /* Various hash macros and functions. */
316 #define hppa_link_hash_table(p) \
317 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
318 == HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL)
319
320 #define hppa_elf_hash_entry(ent) \
321 ((struct elf32_hppa_link_hash_entry *)(ent))
322
323 #define hppa_stub_hash_entry(ent) \
324 ((struct elf32_hppa_stub_hash_entry *)(ent))
325
326 #define hppa_stub_hash_lookup(table, string, create, copy) \
327 ((struct elf32_hppa_stub_hash_entry *) \
328 bfd_hash_lookup ((table), (string), (create), (copy)))
329
330 #define hppa_elf_local_got_tls_type(abfd) \
331 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
332
333 #define hh_name(hh) \
334 (hh ? hh->eh.root.root.string : "<undef>")
335
336 #define eh_name(eh) \
337 (eh ? eh->root.root.string : "<undef>")
338
339 /* Assorted hash table functions. */
340
341 /* Initialize an entry in the stub hash table. */
342
343 static struct bfd_hash_entry *
344 stub_hash_newfunc (struct bfd_hash_entry *entry,
345 struct bfd_hash_table *table,
346 const char *string)
347 {
348 /* Allocate the structure if it has not already been allocated by a
349 subclass. */
350 if (entry == NULL)
351 {
352 entry = bfd_hash_allocate (table,
353 sizeof (struct elf32_hppa_stub_hash_entry));
354 if (entry == NULL)
355 return entry;
356 }
357
358 /* Call the allocation method of the superclass. */
359 entry = bfd_hash_newfunc (entry, table, string);
360 if (entry != NULL)
361 {
362 struct elf32_hppa_stub_hash_entry *hsh;
363
364 /* Initialize the local fields. */
365 hsh = hppa_stub_hash_entry (entry);
366 hsh->stub_sec = NULL;
367 hsh->stub_offset = 0;
368 hsh->target_value = 0;
369 hsh->target_section = NULL;
370 hsh->stub_type = hppa_stub_long_branch;
371 hsh->hh = NULL;
372 hsh->id_sec = NULL;
373 }
374
375 return entry;
376 }
377
378 /* Initialize an entry in the link hash table. */
379
380 static struct bfd_hash_entry *
381 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
382 struct bfd_hash_table *table,
383 const char *string)
384 {
385 /* Allocate the structure if it has not already been allocated by a
386 subclass. */
387 if (entry == NULL)
388 {
389 entry = bfd_hash_allocate (table,
390 sizeof (struct elf32_hppa_link_hash_entry));
391 if (entry == NULL)
392 return entry;
393 }
394
395 /* Call the allocation method of the superclass. */
396 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
397 if (entry != NULL)
398 {
399 struct elf32_hppa_link_hash_entry *hh;
400
401 /* Initialize the local fields. */
402 hh = hppa_elf_hash_entry (entry);
403 hh->hsh_cache = NULL;
404 hh->dyn_relocs = NULL;
405 hh->plabel = 0;
406 hh->tls_type = GOT_UNKNOWN;
407 }
408
409 return entry;
410 }
411
412 /* Create the derived linker hash table. The PA ELF port uses the derived
413 hash table to keep information specific to the PA ELF linker (without
414 using static variables). */
415
416 static struct bfd_link_hash_table *
417 elf32_hppa_link_hash_table_create (bfd *abfd)
418 {
419 struct elf32_hppa_link_hash_table *htab;
420 bfd_size_type amt = sizeof (*htab);
421
422 htab = bfd_zmalloc (amt);
423 if (htab == NULL)
424 return NULL;
425
426 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
427 sizeof (struct elf32_hppa_link_hash_entry),
428 HPPA32_ELF_DATA))
429 {
430 free (htab);
431 return NULL;
432 }
433
434 /* Init the stub hash table too. */
435 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
436 sizeof (struct elf32_hppa_stub_hash_entry)))
437 return NULL;
438
439 htab->text_segment_base = (bfd_vma) -1;
440 htab->data_segment_base = (bfd_vma) -1;
441 return &htab->etab.root;
442 }
443
444 /* Free the derived linker hash table. */
445
446 static void
447 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *btab)
448 {
449 struct elf32_hppa_link_hash_table *htab
450 = (struct elf32_hppa_link_hash_table *) btab;
451
452 bfd_hash_table_free (&htab->bstab);
453 _bfd_elf_link_hash_table_free (btab);
454 }
455
456 /* Build a name for an entry in the stub hash table. */
457
458 static char *
459 hppa_stub_name (const asection *input_section,
460 const asection *sym_sec,
461 const struct elf32_hppa_link_hash_entry *hh,
462 const Elf_Internal_Rela *rela)
463 {
464 char *stub_name;
465 bfd_size_type len;
466
467 if (hh)
468 {
469 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
470 stub_name = bfd_malloc (len);
471 if (stub_name != NULL)
472 sprintf (stub_name, "%08x_%s+%x",
473 input_section->id & 0xffffffff,
474 hh_name (hh),
475 (int) rela->r_addend & 0xffffffff);
476 }
477 else
478 {
479 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
480 stub_name = bfd_malloc (len);
481 if (stub_name != NULL)
482 sprintf (stub_name, "%08x_%x:%x+%x",
483 input_section->id & 0xffffffff,
484 sym_sec->id & 0xffffffff,
485 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
486 (int) rela->r_addend & 0xffffffff);
487 }
488 return stub_name;
489 }
490
491 /* Look up an entry in the stub hash. Stub entries are cached because
492 creating the stub name takes a bit of time. */
493
494 static struct elf32_hppa_stub_hash_entry *
495 hppa_get_stub_entry (const asection *input_section,
496 const asection *sym_sec,
497 struct elf32_hppa_link_hash_entry *hh,
498 const Elf_Internal_Rela *rela,
499 struct elf32_hppa_link_hash_table *htab)
500 {
501 struct elf32_hppa_stub_hash_entry *hsh_entry;
502 const asection *id_sec;
503
504 /* If this input section is part of a group of sections sharing one
505 stub section, then use the id of the first section in the group.
506 Stub names need to include a section id, as there may well be
507 more than one stub used to reach say, printf, and we need to
508 distinguish between them. */
509 id_sec = htab->stub_group[input_section->id].link_sec;
510
511 if (hh != NULL && hh->hsh_cache != NULL
512 && hh->hsh_cache->hh == hh
513 && hh->hsh_cache->id_sec == id_sec)
514 {
515 hsh_entry = hh->hsh_cache;
516 }
517 else
518 {
519 char *stub_name;
520
521 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
522 if (stub_name == NULL)
523 return NULL;
524
525 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
526 stub_name, FALSE, FALSE);
527 if (hh != NULL)
528 hh->hsh_cache = hsh_entry;
529
530 free (stub_name);
531 }
532
533 return hsh_entry;
534 }
535
536 /* Add a new stub entry to the stub hash. Not all fields of the new
537 stub entry are initialised. */
538
539 static struct elf32_hppa_stub_hash_entry *
540 hppa_add_stub (const char *stub_name,
541 asection *section,
542 struct elf32_hppa_link_hash_table *htab)
543 {
544 asection *link_sec;
545 asection *stub_sec;
546 struct elf32_hppa_stub_hash_entry *hsh;
547
548 link_sec = htab->stub_group[section->id].link_sec;
549 stub_sec = htab->stub_group[section->id].stub_sec;
550 if (stub_sec == NULL)
551 {
552 stub_sec = htab->stub_group[link_sec->id].stub_sec;
553 if (stub_sec == NULL)
554 {
555 size_t namelen;
556 bfd_size_type len;
557 char *s_name;
558
559 namelen = strlen (link_sec->name);
560 len = namelen + sizeof (STUB_SUFFIX);
561 s_name = bfd_alloc (htab->stub_bfd, len);
562 if (s_name == NULL)
563 return NULL;
564
565 memcpy (s_name, link_sec->name, namelen);
566 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
567 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
568 if (stub_sec == NULL)
569 return NULL;
570 htab->stub_group[link_sec->id].stub_sec = stub_sec;
571 }
572 htab->stub_group[section->id].stub_sec = stub_sec;
573 }
574
575 /* Enter this entry into the linker stub hash table. */
576 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
577 TRUE, FALSE);
578 if (hsh == NULL)
579 {
580 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
581 section->owner,
582 stub_name);
583 return NULL;
584 }
585
586 hsh->stub_sec = stub_sec;
587 hsh->stub_offset = 0;
588 hsh->id_sec = link_sec;
589 return hsh;
590 }
591
592 /* Determine the type of stub needed, if any, for a call. */
593
594 static enum elf32_hppa_stub_type
595 hppa_type_of_stub (asection *input_sec,
596 const Elf_Internal_Rela *rela,
597 struct elf32_hppa_link_hash_entry *hh,
598 bfd_vma destination,
599 struct bfd_link_info *info)
600 {
601 bfd_vma location;
602 bfd_vma branch_offset;
603 bfd_vma max_branch_offset;
604 unsigned int r_type;
605
606 if (hh != NULL
607 && hh->eh.plt.offset != (bfd_vma) -1
608 && hh->eh.dynindx != -1
609 && !hh->plabel
610 && (info->shared
611 || !hh->eh.def_regular
612 || hh->eh.root.type == bfd_link_hash_defweak))
613 {
614 /* We need an import stub. Decide between hppa_stub_import
615 and hppa_stub_import_shared later. */
616 return hppa_stub_import;
617 }
618
619 /* Determine where the call point is. */
620 location = (input_sec->output_offset
621 + input_sec->output_section->vma
622 + rela->r_offset);
623
624 branch_offset = destination - location - 8;
625 r_type = ELF32_R_TYPE (rela->r_info);
626
627 /* Determine if a long branch stub is needed. parisc branch offsets
628 are relative to the second instruction past the branch, ie. +8
629 bytes on from the branch instruction location. The offset is
630 signed and counts in units of 4 bytes. */
631 if (r_type == (unsigned int) R_PARISC_PCREL17F)
632 max_branch_offset = (1 << (17 - 1)) << 2;
633
634 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
635 max_branch_offset = (1 << (12 - 1)) << 2;
636
637 else /* R_PARISC_PCREL22F. */
638 max_branch_offset = (1 << (22 - 1)) << 2;
639
640 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
641 return hppa_stub_long_branch;
642
643 return hppa_stub_none;
644 }
645
646 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
647 IN_ARG contains the link info pointer. */
648
649 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
650 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
651
652 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
653 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
654 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
655
656 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
657 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
658 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
659 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
660
661 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
662 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
663
664 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
665 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
666 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
667 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
668
669 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
670 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
671 #define NOP 0x08000240 /* nop */
672 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
673 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
674 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
675
676 #ifndef R19_STUBS
677 #define R19_STUBS 1
678 #endif
679
680 #if R19_STUBS
681 #define LDW_R1_DLT LDW_R1_R19
682 #else
683 #define LDW_R1_DLT LDW_R1_DP
684 #endif
685
686 static bfd_boolean
687 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
688 {
689 struct elf32_hppa_stub_hash_entry *hsh;
690 struct bfd_link_info *info;
691 struct elf32_hppa_link_hash_table *htab;
692 asection *stub_sec;
693 bfd *stub_bfd;
694 bfd_byte *loc;
695 bfd_vma sym_value;
696 bfd_vma insn;
697 bfd_vma off;
698 int val;
699 int size;
700
701 /* Massage our args to the form they really have. */
702 hsh = hppa_stub_hash_entry (bh);
703 info = (struct bfd_link_info *)in_arg;
704
705 htab = hppa_link_hash_table (info);
706 if (htab == NULL)
707 return FALSE;
708
709 stub_sec = hsh->stub_sec;
710
711 /* Make a note of the offset within the stubs for this entry. */
712 hsh->stub_offset = stub_sec->size;
713 loc = stub_sec->contents + hsh->stub_offset;
714
715 stub_bfd = stub_sec->owner;
716
717 switch (hsh->stub_type)
718 {
719 case hppa_stub_long_branch:
720 /* Create the long branch. A long branch is formed with "ldil"
721 loading the upper bits of the target address into a register,
722 then branching with "be" which adds in the lower bits.
723 The "be" has its delay slot nullified. */
724 sym_value = (hsh->target_value
725 + hsh->target_section->output_offset
726 + hsh->target_section->output_section->vma);
727
728 val = hppa_field_adjust (sym_value, 0, e_lrsel);
729 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
730 bfd_put_32 (stub_bfd, insn, loc);
731
732 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
733 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
734 bfd_put_32 (stub_bfd, insn, loc + 4);
735
736 size = 8;
737 break;
738
739 case hppa_stub_long_branch_shared:
740 /* Branches are relative. This is where we are going to. */
741 sym_value = (hsh->target_value
742 + hsh->target_section->output_offset
743 + hsh->target_section->output_section->vma);
744
745 /* And this is where we are coming from, more or less. */
746 sym_value -= (hsh->stub_offset
747 + stub_sec->output_offset
748 + stub_sec->output_section->vma);
749
750 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
751 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
752 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
753 bfd_put_32 (stub_bfd, insn, loc + 4);
754
755 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
756 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
757 bfd_put_32 (stub_bfd, insn, loc + 8);
758 size = 12;
759 break;
760
761 case hppa_stub_import:
762 case hppa_stub_import_shared:
763 off = hsh->hh->eh.plt.offset;
764 if (off >= (bfd_vma) -2)
765 abort ();
766
767 off &= ~ (bfd_vma) 1;
768 sym_value = (off
769 + htab->splt->output_offset
770 + htab->splt->output_section->vma
771 - elf_gp (htab->splt->output_section->owner));
772
773 insn = ADDIL_DP;
774 #if R19_STUBS
775 if (hsh->stub_type == hppa_stub_import_shared)
776 insn = ADDIL_R19;
777 #endif
778 val = hppa_field_adjust (sym_value, 0, e_lrsel),
779 insn = hppa_rebuild_insn ((int) insn, val, 21);
780 bfd_put_32 (stub_bfd, insn, loc);
781
782 /* It is critical to use lrsel/rrsel here because we are using
783 two different offsets (+0 and +4) from sym_value. If we use
784 lsel/rsel then with unfortunate sym_values we will round
785 sym_value+4 up to the next 2k block leading to a mis-match
786 between the lsel and rsel value. */
787 val = hppa_field_adjust (sym_value, 0, e_rrsel);
788 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
789 bfd_put_32 (stub_bfd, insn, loc + 4);
790
791 if (htab->multi_subspace)
792 {
793 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
794 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
795 bfd_put_32 (stub_bfd, insn, loc + 8);
796
797 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
798 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
799 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
800 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
801
802 size = 28;
803 }
804 else
805 {
806 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
807 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
808 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
809 bfd_put_32 (stub_bfd, insn, loc + 12);
810
811 size = 16;
812 }
813
814 break;
815
816 case hppa_stub_export:
817 /* Branches are relative. This is where we are going to. */
818 sym_value = (hsh->target_value
819 + hsh->target_section->output_offset
820 + hsh->target_section->output_section->vma);
821
822 /* And this is where we are coming from. */
823 sym_value -= (hsh->stub_offset
824 + stub_sec->output_offset
825 + stub_sec->output_section->vma);
826
827 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
828 && (!htab->has_22bit_branch
829 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
830 {
831 (*_bfd_error_handler)
832 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
833 hsh->target_section->owner,
834 stub_sec,
835 (long) hsh->stub_offset,
836 hsh->bh_root.string);
837 bfd_set_error (bfd_error_bad_value);
838 return FALSE;
839 }
840
841 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
842 if (!htab->has_22bit_branch)
843 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
844 else
845 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
846 bfd_put_32 (stub_bfd, insn, loc);
847
848 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
849 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
850 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
851 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
852 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
853
854 /* Point the function symbol at the stub. */
855 hsh->hh->eh.root.u.def.section = stub_sec;
856 hsh->hh->eh.root.u.def.value = stub_sec->size;
857
858 size = 24;
859 break;
860
861 default:
862 BFD_FAIL ();
863 return FALSE;
864 }
865
866 stub_sec->size += size;
867 return TRUE;
868 }
869
870 #undef LDIL_R1
871 #undef BE_SR4_R1
872 #undef BL_R1
873 #undef ADDIL_R1
874 #undef DEPI_R1
875 #undef LDW_R1_R21
876 #undef LDW_R1_DLT
877 #undef LDW_R1_R19
878 #undef ADDIL_R19
879 #undef LDW_R1_DP
880 #undef LDSID_R21_R1
881 #undef MTSP_R1
882 #undef BE_SR0_R21
883 #undef STW_RP
884 #undef BV_R0_R21
885 #undef BL_RP
886 #undef NOP
887 #undef LDW_RP
888 #undef LDSID_RP_R1
889 #undef BE_SR0_RP
890
891 /* As above, but don't actually build the stub. Just bump offset so
892 we know stub section sizes. */
893
894 static bfd_boolean
895 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
896 {
897 struct elf32_hppa_stub_hash_entry *hsh;
898 struct elf32_hppa_link_hash_table *htab;
899 int size;
900
901 /* Massage our args to the form they really have. */
902 hsh = hppa_stub_hash_entry (bh);
903 htab = in_arg;
904
905 if (hsh->stub_type == hppa_stub_long_branch)
906 size = 8;
907 else if (hsh->stub_type == hppa_stub_long_branch_shared)
908 size = 12;
909 else if (hsh->stub_type == hppa_stub_export)
910 size = 24;
911 else /* hppa_stub_import or hppa_stub_import_shared. */
912 {
913 if (htab->multi_subspace)
914 size = 28;
915 else
916 size = 16;
917 }
918
919 hsh->stub_sec->size += size;
920 return TRUE;
921 }
922
923 /* Return nonzero if ABFD represents an HPPA ELF32 file.
924 Additionally we set the default architecture and machine. */
925
926 static bfd_boolean
927 elf32_hppa_object_p (bfd *abfd)
928 {
929 Elf_Internal_Ehdr * i_ehdrp;
930 unsigned int flags;
931
932 i_ehdrp = elf_elfheader (abfd);
933 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
934 {
935 /* GCC on hppa-linux produces binaries with OSABI=GNU,
936 but the kernel produces corefiles with OSABI=SysV. */
937 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU &&
938 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
939 return FALSE;
940 }
941 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
942 {
943 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
944 but the kernel produces corefiles with OSABI=SysV. */
945 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
946 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
947 return FALSE;
948 }
949 else
950 {
951 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
952 return FALSE;
953 }
954
955 flags = i_ehdrp->e_flags;
956 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
957 {
958 case EFA_PARISC_1_0:
959 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
960 case EFA_PARISC_1_1:
961 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
962 case EFA_PARISC_2_0:
963 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
964 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
965 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
966 }
967 return TRUE;
968 }
969
970 /* Create the .plt and .got sections, and set up our hash table
971 short-cuts to various dynamic sections. */
972
973 static bfd_boolean
974 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
975 {
976 struct elf32_hppa_link_hash_table *htab;
977 struct elf_link_hash_entry *eh;
978
979 /* Don't try to create the .plt and .got twice. */
980 htab = hppa_link_hash_table (info);
981 if (htab == NULL)
982 return FALSE;
983 if (htab->splt != NULL)
984 return TRUE;
985
986 /* Call the generic code to do most of the work. */
987 if (! _bfd_elf_create_dynamic_sections (abfd, info))
988 return FALSE;
989
990 htab->splt = bfd_get_linker_section (abfd, ".plt");
991 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
992
993 htab->sgot = bfd_get_linker_section (abfd, ".got");
994 htab->srelgot = bfd_get_linker_section (abfd, ".rela.got");
995
996 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
997 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
998
999 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
1000 application, because __canonicalize_funcptr_for_compare needs it. */
1001 eh = elf_hash_table (info)->hgot;
1002 eh->forced_local = 0;
1003 eh->other = STV_DEFAULT;
1004 return bfd_elf_link_record_dynamic_symbol (info, eh);
1005 }
1006
1007 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1008
1009 static void
1010 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1011 struct elf_link_hash_entry *eh_dir,
1012 struct elf_link_hash_entry *eh_ind)
1013 {
1014 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1015
1016 hh_dir = hppa_elf_hash_entry (eh_dir);
1017 hh_ind = hppa_elf_hash_entry (eh_ind);
1018
1019 if (hh_ind->dyn_relocs != NULL)
1020 {
1021 if (hh_dir->dyn_relocs != NULL)
1022 {
1023 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1024 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1025
1026 /* Add reloc counts against the indirect sym to the direct sym
1027 list. Merge any entries against the same section. */
1028 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1029 {
1030 struct elf32_hppa_dyn_reloc_entry *hdh_q;
1031
1032 for (hdh_q = hh_dir->dyn_relocs;
1033 hdh_q != NULL;
1034 hdh_q = hdh_q->hdh_next)
1035 if (hdh_q->sec == hdh_p->sec)
1036 {
1037 #if RELATIVE_DYNRELOCS
1038 hdh_q->relative_count += hdh_p->relative_count;
1039 #endif
1040 hdh_q->count += hdh_p->count;
1041 *hdh_pp = hdh_p->hdh_next;
1042 break;
1043 }
1044 if (hdh_q == NULL)
1045 hdh_pp = &hdh_p->hdh_next;
1046 }
1047 *hdh_pp = hh_dir->dyn_relocs;
1048 }
1049
1050 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1051 hh_ind->dyn_relocs = NULL;
1052 }
1053
1054 if (ELIMINATE_COPY_RELOCS
1055 && eh_ind->root.type != bfd_link_hash_indirect
1056 && eh_dir->dynamic_adjusted)
1057 {
1058 /* If called to transfer flags for a weakdef during processing
1059 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1060 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1061 eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1062 eh_dir->ref_regular |= eh_ind->ref_regular;
1063 eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1064 eh_dir->needs_plt |= eh_ind->needs_plt;
1065 }
1066 else
1067 {
1068 if (eh_ind->root.type == bfd_link_hash_indirect
1069 && eh_dir->got.refcount <= 0)
1070 {
1071 hh_dir->tls_type = hh_ind->tls_type;
1072 hh_ind->tls_type = GOT_UNKNOWN;
1073 }
1074
1075 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1076 }
1077 }
1078
1079 static int
1080 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1081 int r_type, int is_local ATTRIBUTE_UNUSED)
1082 {
1083 /* For now we don't support linker optimizations. */
1084 return r_type;
1085 }
1086
1087 /* Return a pointer to the local GOT, PLT and TLS reference counts
1088 for ABFD. Returns NULL if the storage allocation fails. */
1089
1090 static bfd_signed_vma *
1091 hppa32_elf_local_refcounts (bfd *abfd)
1092 {
1093 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1094 bfd_signed_vma *local_refcounts;
1095
1096 local_refcounts = elf_local_got_refcounts (abfd);
1097 if (local_refcounts == NULL)
1098 {
1099 bfd_size_type size;
1100
1101 /* Allocate space for local GOT and PLT reference
1102 counts. Done this way to save polluting elf_obj_tdata
1103 with another target specific pointer. */
1104 size = symtab_hdr->sh_info;
1105 size *= 2 * sizeof (bfd_signed_vma);
1106 /* Add in space to store the local GOT TLS types. */
1107 size += symtab_hdr->sh_info;
1108 local_refcounts = bfd_zalloc (abfd, size);
1109 if (local_refcounts == NULL)
1110 return NULL;
1111 elf_local_got_refcounts (abfd) = local_refcounts;
1112 memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
1113 symtab_hdr->sh_info);
1114 }
1115 return local_refcounts;
1116 }
1117
1118
1119 /* Look through the relocs for a section during the first phase, and
1120 calculate needed space in the global offset table, procedure linkage
1121 table, and dynamic reloc sections. At this point we haven't
1122 necessarily read all the input files. */
1123
1124 static bfd_boolean
1125 elf32_hppa_check_relocs (bfd *abfd,
1126 struct bfd_link_info *info,
1127 asection *sec,
1128 const Elf_Internal_Rela *relocs)
1129 {
1130 Elf_Internal_Shdr *symtab_hdr;
1131 struct elf_link_hash_entry **eh_syms;
1132 const Elf_Internal_Rela *rela;
1133 const Elf_Internal_Rela *rela_end;
1134 struct elf32_hppa_link_hash_table *htab;
1135 asection *sreloc;
1136 int tls_type = GOT_UNKNOWN, old_tls_type = GOT_UNKNOWN;
1137
1138 if (info->relocatable)
1139 return TRUE;
1140
1141 htab = hppa_link_hash_table (info);
1142 if (htab == NULL)
1143 return FALSE;
1144 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1145 eh_syms = elf_sym_hashes (abfd);
1146 sreloc = NULL;
1147
1148 rela_end = relocs + sec->reloc_count;
1149 for (rela = relocs; rela < rela_end; rela++)
1150 {
1151 enum {
1152 NEED_GOT = 1,
1153 NEED_PLT = 2,
1154 NEED_DYNREL = 4,
1155 PLT_PLABEL = 8
1156 };
1157
1158 unsigned int r_symndx, r_type;
1159 struct elf32_hppa_link_hash_entry *hh;
1160 int need_entry = 0;
1161
1162 r_symndx = ELF32_R_SYM (rela->r_info);
1163
1164 if (r_symndx < symtab_hdr->sh_info)
1165 hh = NULL;
1166 else
1167 {
1168 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1169 while (hh->eh.root.type == bfd_link_hash_indirect
1170 || hh->eh.root.type == bfd_link_hash_warning)
1171 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1172 }
1173
1174 r_type = ELF32_R_TYPE (rela->r_info);
1175 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1176
1177 switch (r_type)
1178 {
1179 case R_PARISC_DLTIND14F:
1180 case R_PARISC_DLTIND14R:
1181 case R_PARISC_DLTIND21L:
1182 /* This symbol requires a global offset table entry. */
1183 need_entry = NEED_GOT;
1184 break;
1185
1186 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1187 case R_PARISC_PLABEL21L:
1188 case R_PARISC_PLABEL32:
1189 /* If the addend is non-zero, we break badly. */
1190 if (rela->r_addend != 0)
1191 abort ();
1192
1193 /* If we are creating a shared library, then we need to
1194 create a PLT entry for all PLABELs, because PLABELs with
1195 local symbols may be passed via a pointer to another
1196 object. Additionally, output a dynamic relocation
1197 pointing to the PLT entry.
1198
1199 For executables, the original 32-bit ABI allowed two
1200 different styles of PLABELs (function pointers): For
1201 global functions, the PLABEL word points into the .plt
1202 two bytes past a (function address, gp) pair, and for
1203 local functions the PLABEL points directly at the
1204 function. The magic +2 for the first type allows us to
1205 differentiate between the two. As you can imagine, this
1206 is a real pain when it comes to generating code to call
1207 functions indirectly or to compare function pointers.
1208 We avoid the mess by always pointing a PLABEL into the
1209 .plt, even for local functions. */
1210 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1211 break;
1212
1213 case R_PARISC_PCREL12F:
1214 htab->has_12bit_branch = 1;
1215 goto branch_common;
1216
1217 case R_PARISC_PCREL17C:
1218 case R_PARISC_PCREL17F:
1219 htab->has_17bit_branch = 1;
1220 goto branch_common;
1221
1222 case R_PARISC_PCREL22F:
1223 htab->has_22bit_branch = 1;
1224 branch_common:
1225 /* Function calls might need to go through the .plt, and
1226 might require long branch stubs. */
1227 if (hh == NULL)
1228 {
1229 /* We know local syms won't need a .plt entry, and if
1230 they need a long branch stub we can't guarantee that
1231 we can reach the stub. So just flag an error later
1232 if we're doing a shared link and find we need a long
1233 branch stub. */
1234 continue;
1235 }
1236 else
1237 {
1238 /* Global symbols will need a .plt entry if they remain
1239 global, and in most cases won't need a long branch
1240 stub. Unfortunately, we have to cater for the case
1241 where a symbol is forced local by versioning, or due
1242 to symbolic linking, and we lose the .plt entry. */
1243 need_entry = NEED_PLT;
1244 if (hh->eh.type == STT_PARISC_MILLI)
1245 need_entry = 0;
1246 }
1247 break;
1248
1249 case R_PARISC_SEGBASE: /* Used to set segment base. */
1250 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1251 case R_PARISC_PCREL14F: /* PC relative load/store. */
1252 case R_PARISC_PCREL14R:
1253 case R_PARISC_PCREL17R: /* External branches. */
1254 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1255 case R_PARISC_PCREL32:
1256 /* We don't need to propagate the relocation if linking a
1257 shared object since these are section relative. */
1258 continue;
1259
1260 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1261 case R_PARISC_DPREL14R:
1262 case R_PARISC_DPREL21L:
1263 if (info->shared)
1264 {
1265 (*_bfd_error_handler)
1266 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1267 abfd,
1268 elf_hppa_howto_table[r_type].name);
1269 bfd_set_error (bfd_error_bad_value);
1270 return FALSE;
1271 }
1272 /* Fall through. */
1273
1274 case R_PARISC_DIR17F: /* Used for external branches. */
1275 case R_PARISC_DIR17R:
1276 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1277 case R_PARISC_DIR14R:
1278 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1279 case R_PARISC_DIR32: /* .word relocs. */
1280 /* We may want to output a dynamic relocation later. */
1281 need_entry = NEED_DYNREL;
1282 break;
1283
1284 /* This relocation describes the C++ object vtable hierarchy.
1285 Reconstruct it for later use during GC. */
1286 case R_PARISC_GNU_VTINHERIT:
1287 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1288 return FALSE;
1289 continue;
1290
1291 /* This relocation describes which C++ vtable entries are actually
1292 used. Record for later use during GC. */
1293 case R_PARISC_GNU_VTENTRY:
1294 BFD_ASSERT (hh != NULL);
1295 if (hh != NULL
1296 && !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1297 return FALSE;
1298 continue;
1299
1300 case R_PARISC_TLS_GD21L:
1301 case R_PARISC_TLS_GD14R:
1302 case R_PARISC_TLS_LDM21L:
1303 case R_PARISC_TLS_LDM14R:
1304 need_entry = NEED_GOT;
1305 break;
1306
1307 case R_PARISC_TLS_IE21L:
1308 case R_PARISC_TLS_IE14R:
1309 if (info->shared)
1310 info->flags |= DF_STATIC_TLS;
1311 need_entry = NEED_GOT;
1312 break;
1313
1314 default:
1315 continue;
1316 }
1317
1318 /* Now carry out our orders. */
1319 if (need_entry & NEED_GOT)
1320 {
1321 switch (r_type)
1322 {
1323 default:
1324 tls_type = GOT_NORMAL;
1325 break;
1326 case R_PARISC_TLS_GD21L:
1327 case R_PARISC_TLS_GD14R:
1328 tls_type |= GOT_TLS_GD;
1329 break;
1330 case R_PARISC_TLS_LDM21L:
1331 case R_PARISC_TLS_LDM14R:
1332 tls_type |= GOT_TLS_LDM;
1333 break;
1334 case R_PARISC_TLS_IE21L:
1335 case R_PARISC_TLS_IE14R:
1336 tls_type |= GOT_TLS_IE;
1337 break;
1338 }
1339
1340 /* Allocate space for a GOT entry, as well as a dynamic
1341 relocation for this entry. */
1342 if (htab->sgot == NULL)
1343 {
1344 if (htab->etab.dynobj == NULL)
1345 htab->etab.dynobj = abfd;
1346 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1347 return FALSE;
1348 }
1349
1350 if (r_type == R_PARISC_TLS_LDM21L
1351 || r_type == R_PARISC_TLS_LDM14R)
1352 htab->tls_ldm_got.refcount += 1;
1353 else
1354 {
1355 if (hh != NULL)
1356 {
1357 hh->eh.got.refcount += 1;
1358 old_tls_type = hh->tls_type;
1359 }
1360 else
1361 {
1362 bfd_signed_vma *local_got_refcounts;
1363
1364 /* This is a global offset table entry for a local symbol. */
1365 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1366 if (local_got_refcounts == NULL)
1367 return FALSE;
1368 local_got_refcounts[r_symndx] += 1;
1369
1370 old_tls_type = hppa_elf_local_got_tls_type (abfd) [r_symndx];
1371 }
1372
1373 tls_type |= old_tls_type;
1374
1375 if (old_tls_type != tls_type)
1376 {
1377 if (hh != NULL)
1378 hh->tls_type = tls_type;
1379 else
1380 hppa_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
1381 }
1382
1383 }
1384 }
1385
1386 if (need_entry & NEED_PLT)
1387 {
1388 /* If we are creating a shared library, and this is a reloc
1389 against a weak symbol or a global symbol in a dynamic
1390 object, then we will be creating an import stub and a
1391 .plt entry for the symbol. Similarly, on a normal link
1392 to symbols defined in a dynamic object we'll need the
1393 import stub and a .plt entry. We don't know yet whether
1394 the symbol is defined or not, so make an entry anyway and
1395 clean up later in adjust_dynamic_symbol. */
1396 if ((sec->flags & SEC_ALLOC) != 0)
1397 {
1398 if (hh != NULL)
1399 {
1400 hh->eh.needs_plt = 1;
1401 hh->eh.plt.refcount += 1;
1402
1403 /* If this .plt entry is for a plabel, mark it so
1404 that adjust_dynamic_symbol will keep the entry
1405 even if it appears to be local. */
1406 if (need_entry & PLT_PLABEL)
1407 hh->plabel = 1;
1408 }
1409 else if (need_entry & PLT_PLABEL)
1410 {
1411 bfd_signed_vma *local_got_refcounts;
1412 bfd_signed_vma *local_plt_refcounts;
1413
1414 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1415 if (local_got_refcounts == NULL)
1416 return FALSE;
1417 local_plt_refcounts = (local_got_refcounts
1418 + symtab_hdr->sh_info);
1419 local_plt_refcounts[r_symndx] += 1;
1420 }
1421 }
1422 }
1423
1424 if (need_entry & NEED_DYNREL)
1425 {
1426 /* Flag this symbol as having a non-got, non-plt reference
1427 so that we generate copy relocs if it turns out to be
1428 dynamic. */
1429 if (hh != NULL && !info->shared)
1430 hh->eh.non_got_ref = 1;
1431
1432 /* If we are creating a shared library then we need to copy
1433 the reloc into the shared library. However, if we are
1434 linking with -Bsymbolic, we need only copy absolute
1435 relocs or relocs against symbols that are not defined in
1436 an object we are including in the link. PC- or DP- or
1437 DLT-relative relocs against any local sym or global sym
1438 with DEF_REGULAR set, can be discarded. At this point we
1439 have not seen all the input files, so it is possible that
1440 DEF_REGULAR is not set now but will be set later (it is
1441 never cleared). We account for that possibility below by
1442 storing information in the dyn_relocs field of the
1443 hash table entry.
1444
1445 A similar situation to the -Bsymbolic case occurs when
1446 creating shared libraries and symbol visibility changes
1447 render the symbol local.
1448
1449 As it turns out, all the relocs we will be creating here
1450 are absolute, so we cannot remove them on -Bsymbolic
1451 links or visibility changes anyway. A STUB_REL reloc
1452 is absolute too, as in that case it is the reloc in the
1453 stub we will be creating, rather than copying the PCREL
1454 reloc in the branch.
1455
1456 If on the other hand, we are creating an executable, we
1457 may need to keep relocations for symbols satisfied by a
1458 dynamic library if we manage to avoid copy relocs for the
1459 symbol. */
1460 if ((info->shared
1461 && (sec->flags & SEC_ALLOC) != 0
1462 && (IS_ABSOLUTE_RELOC (r_type)
1463 || (hh != NULL
1464 && (!info->symbolic
1465 || hh->eh.root.type == bfd_link_hash_defweak
1466 || !hh->eh.def_regular))))
1467 || (ELIMINATE_COPY_RELOCS
1468 && !info->shared
1469 && (sec->flags & SEC_ALLOC) != 0
1470 && hh != NULL
1471 && (hh->eh.root.type == bfd_link_hash_defweak
1472 || !hh->eh.def_regular)))
1473 {
1474 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1475 struct elf32_hppa_dyn_reloc_entry **hdh_head;
1476
1477 /* Create a reloc section in dynobj and make room for
1478 this reloc. */
1479 if (sreloc == NULL)
1480 {
1481 if (htab->etab.dynobj == NULL)
1482 htab->etab.dynobj = abfd;
1483
1484 sreloc = _bfd_elf_make_dynamic_reloc_section
1485 (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
1486
1487 if (sreloc == NULL)
1488 {
1489 bfd_set_error (bfd_error_bad_value);
1490 return FALSE;
1491 }
1492 }
1493
1494 /* If this is a global symbol, we count the number of
1495 relocations we need for this symbol. */
1496 if (hh != NULL)
1497 {
1498 hdh_head = &hh->dyn_relocs;
1499 }
1500 else
1501 {
1502 /* Track dynamic relocs needed for local syms too.
1503 We really need local syms available to do this
1504 easily. Oh well. */
1505 asection *sr;
1506 void *vpp;
1507 Elf_Internal_Sym *isym;
1508
1509 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1510 abfd, r_symndx);
1511 if (isym == NULL)
1512 return FALSE;
1513
1514 sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
1515 if (sr == NULL)
1516 sr = sec;
1517
1518 vpp = &elf_section_data (sr)->local_dynrel;
1519 hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
1520 }
1521
1522 hdh_p = *hdh_head;
1523 if (hdh_p == NULL || hdh_p->sec != sec)
1524 {
1525 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1526 if (hdh_p == NULL)
1527 return FALSE;
1528 hdh_p->hdh_next = *hdh_head;
1529 *hdh_head = hdh_p;
1530 hdh_p->sec = sec;
1531 hdh_p->count = 0;
1532 #if RELATIVE_DYNRELOCS
1533 hdh_p->relative_count = 0;
1534 #endif
1535 }
1536
1537 hdh_p->count += 1;
1538 #if RELATIVE_DYNRELOCS
1539 if (!IS_ABSOLUTE_RELOC (rtype))
1540 hdh_p->relative_count += 1;
1541 #endif
1542 }
1543 }
1544 }
1545
1546 return TRUE;
1547 }
1548
1549 /* Return the section that should be marked against garbage collection
1550 for a given relocation. */
1551
1552 static asection *
1553 elf32_hppa_gc_mark_hook (asection *sec,
1554 struct bfd_link_info *info,
1555 Elf_Internal_Rela *rela,
1556 struct elf_link_hash_entry *hh,
1557 Elf_Internal_Sym *sym)
1558 {
1559 if (hh != NULL)
1560 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1561 {
1562 case R_PARISC_GNU_VTINHERIT:
1563 case R_PARISC_GNU_VTENTRY:
1564 return NULL;
1565 }
1566
1567 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1568 }
1569
1570 /* Update the got and plt entry reference counts for the section being
1571 removed. */
1572
1573 static bfd_boolean
1574 elf32_hppa_gc_sweep_hook (bfd *abfd,
1575 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1576 asection *sec,
1577 const Elf_Internal_Rela *relocs)
1578 {
1579 Elf_Internal_Shdr *symtab_hdr;
1580 struct elf_link_hash_entry **eh_syms;
1581 bfd_signed_vma *local_got_refcounts;
1582 bfd_signed_vma *local_plt_refcounts;
1583 const Elf_Internal_Rela *rela, *relend;
1584 struct elf32_hppa_link_hash_table *htab;
1585
1586 if (info->relocatable)
1587 return TRUE;
1588
1589 htab = hppa_link_hash_table (info);
1590 if (htab == NULL)
1591 return FALSE;
1592
1593 elf_section_data (sec)->local_dynrel = NULL;
1594
1595 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1596 eh_syms = elf_sym_hashes (abfd);
1597 local_got_refcounts = elf_local_got_refcounts (abfd);
1598 local_plt_refcounts = local_got_refcounts;
1599 if (local_plt_refcounts != NULL)
1600 local_plt_refcounts += symtab_hdr->sh_info;
1601
1602 relend = relocs + sec->reloc_count;
1603 for (rela = relocs; rela < relend; rela++)
1604 {
1605 unsigned long r_symndx;
1606 unsigned int r_type;
1607 struct elf_link_hash_entry *eh = NULL;
1608
1609 r_symndx = ELF32_R_SYM (rela->r_info);
1610 if (r_symndx >= symtab_hdr->sh_info)
1611 {
1612 struct elf32_hppa_link_hash_entry *hh;
1613 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1614 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1615
1616 eh = eh_syms[r_symndx - symtab_hdr->sh_info];
1617 while (eh->root.type == bfd_link_hash_indirect
1618 || eh->root.type == bfd_link_hash_warning)
1619 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1620 hh = hppa_elf_hash_entry (eh);
1621
1622 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
1623 if (hdh_p->sec == sec)
1624 {
1625 /* Everything must go for SEC. */
1626 *hdh_pp = hdh_p->hdh_next;
1627 break;
1628 }
1629 }
1630
1631 r_type = ELF32_R_TYPE (rela->r_info);
1632 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, eh != NULL);
1633
1634 switch (r_type)
1635 {
1636 case R_PARISC_DLTIND14F:
1637 case R_PARISC_DLTIND14R:
1638 case R_PARISC_DLTIND21L:
1639 case R_PARISC_TLS_GD21L:
1640 case R_PARISC_TLS_GD14R:
1641 case R_PARISC_TLS_IE21L:
1642 case R_PARISC_TLS_IE14R:
1643 if (eh != NULL)
1644 {
1645 if (eh->got.refcount > 0)
1646 eh->got.refcount -= 1;
1647 }
1648 else if (local_got_refcounts != NULL)
1649 {
1650 if (local_got_refcounts[r_symndx] > 0)
1651 local_got_refcounts[r_symndx] -= 1;
1652 }
1653 break;
1654
1655 case R_PARISC_TLS_LDM21L:
1656 case R_PARISC_TLS_LDM14R:
1657 htab->tls_ldm_got.refcount -= 1;
1658 break;
1659
1660 case R_PARISC_PCREL12F:
1661 case R_PARISC_PCREL17C:
1662 case R_PARISC_PCREL17F:
1663 case R_PARISC_PCREL22F:
1664 if (eh != NULL)
1665 {
1666 if (eh->plt.refcount > 0)
1667 eh->plt.refcount -= 1;
1668 }
1669 break;
1670
1671 case R_PARISC_PLABEL14R:
1672 case R_PARISC_PLABEL21L:
1673 case R_PARISC_PLABEL32:
1674 if (eh != NULL)
1675 {
1676 if (eh->plt.refcount > 0)
1677 eh->plt.refcount -= 1;
1678 }
1679 else if (local_plt_refcounts != NULL)
1680 {
1681 if (local_plt_refcounts[r_symndx] > 0)
1682 local_plt_refcounts[r_symndx] -= 1;
1683 }
1684 break;
1685
1686 default:
1687 break;
1688 }
1689 }
1690
1691 return TRUE;
1692 }
1693
1694 /* Support for core dump NOTE sections. */
1695
1696 static bfd_boolean
1697 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1698 {
1699 int offset;
1700 size_t size;
1701
1702 switch (note->descsz)
1703 {
1704 default:
1705 return FALSE;
1706
1707 case 396: /* Linux/hppa */
1708 /* pr_cursig */
1709 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1710
1711 /* pr_pid */
1712 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
1713
1714 /* pr_reg */
1715 offset = 72;
1716 size = 320;
1717
1718 break;
1719 }
1720
1721 /* Make a ".reg/999" section. */
1722 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1723 size, note->descpos + offset);
1724 }
1725
1726 static bfd_boolean
1727 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1728 {
1729 switch (note->descsz)
1730 {
1731 default:
1732 return FALSE;
1733
1734 case 124: /* Linux/hppa elf_prpsinfo. */
1735 elf_tdata (abfd)->core->program
1736 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1737 elf_tdata (abfd)->core->command
1738 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1739 }
1740
1741 /* Note that for some reason, a spurious space is tacked
1742 onto the end of the args in some (at least one anyway)
1743 implementations, so strip it off if it exists. */
1744 {
1745 char *command = elf_tdata (abfd)->core->command;
1746 int n = strlen (command);
1747
1748 if (0 < n && command[n - 1] == ' ')
1749 command[n - 1] = '\0';
1750 }
1751
1752 return TRUE;
1753 }
1754
1755 /* Our own version of hide_symbol, so that we can keep plt entries for
1756 plabels. */
1757
1758 static void
1759 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1760 struct elf_link_hash_entry *eh,
1761 bfd_boolean force_local)
1762 {
1763 if (force_local)
1764 {
1765 eh->forced_local = 1;
1766 if (eh->dynindx != -1)
1767 {
1768 eh->dynindx = -1;
1769 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1770 eh->dynstr_index);
1771 }
1772 }
1773
1774 /* STT_GNU_IFUNC symbol must go through PLT. */
1775 if (! hppa_elf_hash_entry (eh)->plabel
1776 && eh->type != STT_GNU_IFUNC)
1777 {
1778 eh->needs_plt = 0;
1779 eh->plt = elf_hash_table (info)->init_plt_offset;
1780 }
1781 }
1782
1783 /* Adjust a symbol defined by a dynamic object and referenced by a
1784 regular object. The current definition is in some section of the
1785 dynamic object, but we're not including those sections. We have to
1786 change the definition to something the rest of the link can
1787 understand. */
1788
1789 static bfd_boolean
1790 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1791 struct elf_link_hash_entry *eh)
1792 {
1793 struct elf32_hppa_link_hash_table *htab;
1794 asection *sec;
1795
1796 /* If this is a function, put it in the procedure linkage table. We
1797 will fill in the contents of the procedure linkage table later. */
1798 if (eh->type == STT_FUNC
1799 || eh->needs_plt)
1800 {
1801 /* If the symbol is used by a plabel, we must allocate a PLT slot.
1802 The refcounts are not reliable when it has been hidden since
1803 hide_symbol can be called before the plabel flag is set. */
1804 if (hppa_elf_hash_entry (eh)->plabel
1805 && eh->plt.refcount <= 0)
1806 eh->plt.refcount = 1;
1807
1808 if (eh->plt.refcount <= 0
1809 || (eh->def_regular
1810 && eh->root.type != bfd_link_hash_defweak
1811 && ! hppa_elf_hash_entry (eh)->plabel
1812 && (!info->shared || info->symbolic)))
1813 {
1814 /* The .plt entry is not needed when:
1815 a) Garbage collection has removed all references to the
1816 symbol, or
1817 b) We know for certain the symbol is defined in this
1818 object, and it's not a weak definition, nor is the symbol
1819 used by a plabel relocation. Either this object is the
1820 application or we are doing a shared symbolic link. */
1821
1822 eh->plt.offset = (bfd_vma) -1;
1823 eh->needs_plt = 0;
1824 }
1825
1826 return TRUE;
1827 }
1828 else
1829 eh->plt.offset = (bfd_vma) -1;
1830
1831 /* If this is a weak symbol, and there is a real definition, the
1832 processor independent code will have arranged for us to see the
1833 real definition first, and we can just use the same value. */
1834 if (eh->u.weakdef != NULL)
1835 {
1836 if (eh->u.weakdef->root.type != bfd_link_hash_defined
1837 && eh->u.weakdef->root.type != bfd_link_hash_defweak)
1838 abort ();
1839 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1840 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1841 if (ELIMINATE_COPY_RELOCS)
1842 eh->non_got_ref = eh->u.weakdef->non_got_ref;
1843 return TRUE;
1844 }
1845
1846 /* This is a reference to a symbol defined by a dynamic object which
1847 is not a function. */
1848
1849 /* If we are creating a shared library, we must presume that the
1850 only references to the symbol are via the global offset table.
1851 For such cases we need not do anything here; the relocations will
1852 be handled correctly by relocate_section. */
1853 if (info->shared)
1854 return TRUE;
1855
1856 /* If there are no references to this symbol that do not use the
1857 GOT, we don't need to generate a copy reloc. */
1858 if (!eh->non_got_ref)
1859 return TRUE;
1860
1861 if (ELIMINATE_COPY_RELOCS)
1862 {
1863 struct elf32_hppa_link_hash_entry *hh;
1864 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1865
1866 hh = hppa_elf_hash_entry (eh);
1867 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
1868 {
1869 sec = hdh_p->sec->output_section;
1870 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1871 break;
1872 }
1873
1874 /* If we didn't find any dynamic relocs in read-only sections, then
1875 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1876 if (hdh_p == NULL)
1877 {
1878 eh->non_got_ref = 0;
1879 return TRUE;
1880 }
1881 }
1882
1883 /* We must allocate the symbol in our .dynbss section, which will
1884 become part of the .bss section of the executable. There will be
1885 an entry for this symbol in the .dynsym section. The dynamic
1886 object will contain position independent code, so all references
1887 from the dynamic object to this symbol will go through the global
1888 offset table. The dynamic linker will use the .dynsym entry to
1889 determine the address it must put in the global offset table, so
1890 both the dynamic object and the regular object will refer to the
1891 same memory location for the variable. */
1892
1893 htab = hppa_link_hash_table (info);
1894 if (htab == NULL)
1895 return FALSE;
1896
1897 /* We must generate a COPY reloc to tell the dynamic linker to
1898 copy the initial value out of the dynamic object and into the
1899 runtime process image. */
1900 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0 && eh->size != 0)
1901 {
1902 htab->srelbss->size += sizeof (Elf32_External_Rela);
1903 eh->needs_copy = 1;
1904 }
1905
1906 sec = htab->sdynbss;
1907
1908 return _bfd_elf_adjust_dynamic_copy (eh, sec);
1909 }
1910
1911 /* Allocate space in the .plt for entries that won't have relocations.
1912 ie. plabel entries. */
1913
1914 static bfd_boolean
1915 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1916 {
1917 struct bfd_link_info *info;
1918 struct elf32_hppa_link_hash_table *htab;
1919 struct elf32_hppa_link_hash_entry *hh;
1920 asection *sec;
1921
1922 if (eh->root.type == bfd_link_hash_indirect)
1923 return TRUE;
1924
1925 info = (struct bfd_link_info *) inf;
1926 hh = hppa_elf_hash_entry (eh);
1927 htab = hppa_link_hash_table (info);
1928 if (htab == NULL)
1929 return FALSE;
1930
1931 if (htab->etab.dynamic_sections_created
1932 && eh->plt.refcount > 0)
1933 {
1934 /* Make sure this symbol is output as a dynamic symbol.
1935 Undefined weak syms won't yet be marked as dynamic. */
1936 if (eh->dynindx == -1
1937 && !eh->forced_local
1938 && eh->type != STT_PARISC_MILLI)
1939 {
1940 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
1941 return FALSE;
1942 }
1943
1944 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, eh))
1945 {
1946 /* Allocate these later. From this point on, h->plabel
1947 means that the plt entry is only used by a plabel.
1948 We'll be using a normal plt entry for this symbol, so
1949 clear the plabel indicator. */
1950
1951 hh->plabel = 0;
1952 }
1953 else if (hh->plabel)
1954 {
1955 /* Make an entry in the .plt section for plabel references
1956 that won't have a .plt entry for other reasons. */
1957 sec = htab->splt;
1958 eh->plt.offset = sec->size;
1959 sec->size += PLT_ENTRY_SIZE;
1960 }
1961 else
1962 {
1963 /* No .plt entry needed. */
1964 eh->plt.offset = (bfd_vma) -1;
1965 eh->needs_plt = 0;
1966 }
1967 }
1968 else
1969 {
1970 eh->plt.offset = (bfd_vma) -1;
1971 eh->needs_plt = 0;
1972 }
1973
1974 return TRUE;
1975 }
1976
1977 /* Allocate space in .plt, .got and associated reloc sections for
1978 global syms. */
1979
1980 static bfd_boolean
1981 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
1982 {
1983 struct bfd_link_info *info;
1984 struct elf32_hppa_link_hash_table *htab;
1985 asection *sec;
1986 struct elf32_hppa_link_hash_entry *hh;
1987 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1988
1989 if (eh->root.type == bfd_link_hash_indirect)
1990 return TRUE;
1991
1992 info = inf;
1993 htab = hppa_link_hash_table (info);
1994 if (htab == NULL)
1995 return FALSE;
1996
1997 hh = hppa_elf_hash_entry (eh);
1998
1999 if (htab->etab.dynamic_sections_created
2000 && eh->plt.offset != (bfd_vma) -1
2001 && !hh->plabel
2002 && eh->plt.refcount > 0)
2003 {
2004 /* Make an entry in the .plt section. */
2005 sec = htab->splt;
2006 eh->plt.offset = sec->size;
2007 sec->size += PLT_ENTRY_SIZE;
2008
2009 /* We also need to make an entry in the .rela.plt section. */
2010 htab->srelplt->size += sizeof (Elf32_External_Rela);
2011 htab->need_plt_stub = 1;
2012 }
2013
2014 if (eh->got.refcount > 0)
2015 {
2016 /* Make sure this symbol is output as a dynamic symbol.
2017 Undefined weak syms won't yet be marked as dynamic. */
2018 if (eh->dynindx == -1
2019 && !eh->forced_local
2020 && eh->type != STT_PARISC_MILLI)
2021 {
2022 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2023 return FALSE;
2024 }
2025
2026 sec = htab->sgot;
2027 eh->got.offset = sec->size;
2028 sec->size += GOT_ENTRY_SIZE;
2029 /* R_PARISC_TLS_GD* needs two GOT entries */
2030 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2031 sec->size += GOT_ENTRY_SIZE * 2;
2032 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2033 sec->size += GOT_ENTRY_SIZE;
2034 if (htab->etab.dynamic_sections_created
2035 && (info->shared
2036 || (eh->dynindx != -1
2037 && !eh->forced_local)))
2038 {
2039 htab->srelgot->size += sizeof (Elf32_External_Rela);
2040 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2041 htab->srelgot->size += 2 * sizeof (Elf32_External_Rela);
2042 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2043 htab->srelgot->size += sizeof (Elf32_External_Rela);
2044 }
2045 }
2046 else
2047 eh->got.offset = (bfd_vma) -1;
2048
2049 if (hh->dyn_relocs == NULL)
2050 return TRUE;
2051
2052 /* If this is a -Bsymbolic shared link, then we need to discard all
2053 space allocated for dynamic pc-relative relocs against symbols
2054 defined in a regular object. For the normal shared case, discard
2055 space for relocs that have become local due to symbol visibility
2056 changes. */
2057 if (info->shared)
2058 {
2059 #if RELATIVE_DYNRELOCS
2060 if (SYMBOL_CALLS_LOCAL (info, eh))
2061 {
2062 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
2063
2064 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2065 {
2066 hdh_p->count -= hdh_p->relative_count;
2067 hdh_p->relative_count = 0;
2068 if (hdh_p->count == 0)
2069 *hdh_pp = hdh_p->hdh_next;
2070 else
2071 hdh_pp = &hdh_p->hdh_next;
2072 }
2073 }
2074 #endif
2075
2076 /* Also discard relocs on undefined weak syms with non-default
2077 visibility. */
2078 if (hh->dyn_relocs != NULL
2079 && eh->root.type == bfd_link_hash_undefweak)
2080 {
2081 if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
2082 hh->dyn_relocs = NULL;
2083
2084 /* Make sure undefined weak symbols are output as a dynamic
2085 symbol in PIEs. */
2086 else if (eh->dynindx == -1
2087 && !eh->forced_local)
2088 {
2089 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2090 return FALSE;
2091 }
2092 }
2093 }
2094 else
2095 {
2096 /* For the non-shared case, discard space for relocs against
2097 symbols which turn out to need copy relocs or are not
2098 dynamic. */
2099
2100 if (!eh->non_got_ref
2101 && ((ELIMINATE_COPY_RELOCS
2102 && eh->def_dynamic
2103 && !eh->def_regular)
2104 || (htab->etab.dynamic_sections_created
2105 && (eh->root.type == bfd_link_hash_undefweak
2106 || eh->root.type == bfd_link_hash_undefined))))
2107 {
2108 /* Make sure this symbol is output as a dynamic symbol.
2109 Undefined weak syms won't yet be marked as dynamic. */
2110 if (eh->dynindx == -1
2111 && !eh->forced_local
2112 && eh->type != STT_PARISC_MILLI)
2113 {
2114 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2115 return FALSE;
2116 }
2117
2118 /* If that succeeded, we know we'll be keeping all the
2119 relocs. */
2120 if (eh->dynindx != -1)
2121 goto keep;
2122 }
2123
2124 hh->dyn_relocs = NULL;
2125 return TRUE;
2126
2127 keep: ;
2128 }
2129
2130 /* Finally, allocate space. */
2131 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2132 {
2133 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2134 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2135 }
2136
2137 return TRUE;
2138 }
2139
2140 /* This function is called via elf_link_hash_traverse to force
2141 millicode symbols local so they do not end up as globals in the
2142 dynamic symbol table. We ought to be able to do this in
2143 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2144 for all dynamic symbols. Arguably, this is a bug in
2145 elf_adjust_dynamic_symbol. */
2146
2147 static bfd_boolean
2148 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2149 struct bfd_link_info *info)
2150 {
2151 if (eh->type == STT_PARISC_MILLI
2152 && !eh->forced_local)
2153 {
2154 elf32_hppa_hide_symbol (info, eh, TRUE);
2155 }
2156 return TRUE;
2157 }
2158
2159 /* Find any dynamic relocs that apply to read-only sections. */
2160
2161 static bfd_boolean
2162 readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2163 {
2164 struct elf32_hppa_link_hash_entry *hh;
2165 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2166
2167 hh = hppa_elf_hash_entry (eh);
2168 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2169 {
2170 asection *sec = hdh_p->sec->output_section;
2171
2172 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
2173 {
2174 struct bfd_link_info *info = inf;
2175
2176 info->flags |= DF_TEXTREL;
2177
2178 /* Not an error, just cut short the traversal. */
2179 return FALSE;
2180 }
2181 }
2182 return TRUE;
2183 }
2184
2185 /* Set the sizes of the dynamic sections. */
2186
2187 static bfd_boolean
2188 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2189 struct bfd_link_info *info)
2190 {
2191 struct elf32_hppa_link_hash_table *htab;
2192 bfd *dynobj;
2193 bfd *ibfd;
2194 asection *sec;
2195 bfd_boolean relocs;
2196
2197 htab = hppa_link_hash_table (info);
2198 if (htab == NULL)
2199 return FALSE;
2200
2201 dynobj = htab->etab.dynobj;
2202 if (dynobj == NULL)
2203 abort ();
2204
2205 if (htab->etab.dynamic_sections_created)
2206 {
2207 /* Set the contents of the .interp section to the interpreter. */
2208 if (info->executable)
2209 {
2210 sec = bfd_get_linker_section (dynobj, ".interp");
2211 if (sec == NULL)
2212 abort ();
2213 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2214 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2215 }
2216
2217 /* Force millicode symbols local. */
2218 elf_link_hash_traverse (&htab->etab,
2219 clobber_millicode_symbols,
2220 info);
2221 }
2222
2223 /* Set up .got and .plt offsets for local syms, and space for local
2224 dynamic relocs. */
2225 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2226 {
2227 bfd_signed_vma *local_got;
2228 bfd_signed_vma *end_local_got;
2229 bfd_signed_vma *local_plt;
2230 bfd_signed_vma *end_local_plt;
2231 bfd_size_type locsymcount;
2232 Elf_Internal_Shdr *symtab_hdr;
2233 asection *srel;
2234 char *local_tls_type;
2235
2236 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2237 continue;
2238
2239 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2240 {
2241 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2242
2243 for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2244 elf_section_data (sec)->local_dynrel);
2245 hdh_p != NULL;
2246 hdh_p = hdh_p->hdh_next)
2247 {
2248 if (!bfd_is_abs_section (hdh_p->sec)
2249 && bfd_is_abs_section (hdh_p->sec->output_section))
2250 {
2251 /* Input section has been discarded, either because
2252 it is a copy of a linkonce section or due to
2253 linker script /DISCARD/, so we'll be discarding
2254 the relocs too. */
2255 }
2256 else if (hdh_p->count != 0)
2257 {
2258 srel = elf_section_data (hdh_p->sec)->sreloc;
2259 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2260 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2261 info->flags |= DF_TEXTREL;
2262 }
2263 }
2264 }
2265
2266 local_got = elf_local_got_refcounts (ibfd);
2267 if (!local_got)
2268 continue;
2269
2270 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2271 locsymcount = symtab_hdr->sh_info;
2272 end_local_got = local_got + locsymcount;
2273 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2274 sec = htab->sgot;
2275 srel = htab->srelgot;
2276 for (; local_got < end_local_got; ++local_got)
2277 {
2278 if (*local_got > 0)
2279 {
2280 *local_got = sec->size;
2281 sec->size += GOT_ENTRY_SIZE;
2282 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2283 sec->size += 2 * GOT_ENTRY_SIZE;
2284 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2285 sec->size += GOT_ENTRY_SIZE;
2286 if (info->shared)
2287 {
2288 srel->size += sizeof (Elf32_External_Rela);
2289 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2290 srel->size += 2 * sizeof (Elf32_External_Rela);
2291 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2292 srel->size += sizeof (Elf32_External_Rela);
2293 }
2294 }
2295 else
2296 *local_got = (bfd_vma) -1;
2297
2298 ++local_tls_type;
2299 }
2300
2301 local_plt = end_local_got;
2302 end_local_plt = local_plt + locsymcount;
2303 if (! htab->etab.dynamic_sections_created)
2304 {
2305 /* Won't be used, but be safe. */
2306 for (; local_plt < end_local_plt; ++local_plt)
2307 *local_plt = (bfd_vma) -1;
2308 }
2309 else
2310 {
2311 sec = htab->splt;
2312 srel = htab->srelplt;
2313 for (; local_plt < end_local_plt; ++local_plt)
2314 {
2315 if (*local_plt > 0)
2316 {
2317 *local_plt = sec->size;
2318 sec->size += PLT_ENTRY_SIZE;
2319 if (info->shared)
2320 srel->size += sizeof (Elf32_External_Rela);
2321 }
2322 else
2323 *local_plt = (bfd_vma) -1;
2324 }
2325 }
2326 }
2327
2328 if (htab->tls_ldm_got.refcount > 0)
2329 {
2330 /* Allocate 2 got entries and 1 dynamic reloc for
2331 R_PARISC_TLS_DTPMOD32 relocs. */
2332 htab->tls_ldm_got.offset = htab->sgot->size;
2333 htab->sgot->size += (GOT_ENTRY_SIZE * 2);
2334 htab->srelgot->size += sizeof (Elf32_External_Rela);
2335 }
2336 else
2337 htab->tls_ldm_got.offset = -1;
2338
2339 /* Do all the .plt entries without relocs first. The dynamic linker
2340 uses the last .plt reloc to find the end of the .plt (and hence
2341 the start of the .got) for lazy linking. */
2342 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2343
2344 /* Allocate global sym .plt and .got entries, and space for global
2345 sym dynamic relocs. */
2346 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2347
2348 /* The check_relocs and adjust_dynamic_symbol entry points have
2349 determined the sizes of the various dynamic sections. Allocate
2350 memory for them. */
2351 relocs = FALSE;
2352 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2353 {
2354 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2355 continue;
2356
2357 if (sec == htab->splt)
2358 {
2359 if (htab->need_plt_stub)
2360 {
2361 /* Make space for the plt stub at the end of the .plt
2362 section. We want this stub right at the end, up
2363 against the .got section. */
2364 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2365 int pltalign = bfd_section_alignment (dynobj, sec);
2366 bfd_size_type mask;
2367
2368 if (gotalign > pltalign)
2369 bfd_set_section_alignment (dynobj, sec, gotalign);
2370 mask = ((bfd_size_type) 1 << gotalign) - 1;
2371 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2372 }
2373 }
2374 else if (sec == htab->sgot
2375 || sec == htab->sdynbss)
2376 ;
2377 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
2378 {
2379 if (sec->size != 0)
2380 {
2381 /* Remember whether there are any reloc sections other
2382 than .rela.plt. */
2383 if (sec != htab->srelplt)
2384 relocs = TRUE;
2385
2386 /* We use the reloc_count field as a counter if we need
2387 to copy relocs into the output file. */
2388 sec->reloc_count = 0;
2389 }
2390 }
2391 else
2392 {
2393 /* It's not one of our sections, so don't allocate space. */
2394 continue;
2395 }
2396
2397 if (sec->size == 0)
2398 {
2399 /* If we don't need this section, strip it from the
2400 output file. This is mostly to handle .rela.bss and
2401 .rela.plt. We must create both sections in
2402 create_dynamic_sections, because they must be created
2403 before the linker maps input sections to output
2404 sections. The linker does that before
2405 adjust_dynamic_symbol is called, and it is that
2406 function which decides whether anything needs to go
2407 into these sections. */
2408 sec->flags |= SEC_EXCLUDE;
2409 continue;
2410 }
2411
2412 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2413 continue;
2414
2415 /* Allocate memory for the section contents. Zero it, because
2416 we may not fill in all the reloc sections. */
2417 sec->contents = bfd_zalloc (dynobj, sec->size);
2418 if (sec->contents == NULL)
2419 return FALSE;
2420 }
2421
2422 if (htab->etab.dynamic_sections_created)
2423 {
2424 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2425 actually has nothing to do with the PLT, it is how we
2426 communicate the LTP value of a load module to the dynamic
2427 linker. */
2428 #define add_dynamic_entry(TAG, VAL) \
2429 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2430
2431 if (!add_dynamic_entry (DT_PLTGOT, 0))
2432 return FALSE;
2433
2434 /* Add some entries to the .dynamic section. We fill in the
2435 values later, in elf32_hppa_finish_dynamic_sections, but we
2436 must add the entries now so that we get the correct size for
2437 the .dynamic section. The DT_DEBUG entry is filled in by the
2438 dynamic linker and used by the debugger. */
2439 if (info->executable)
2440 {
2441 if (!add_dynamic_entry (DT_DEBUG, 0))
2442 return FALSE;
2443 }
2444
2445 if (htab->srelplt->size != 0)
2446 {
2447 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2448 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2449 || !add_dynamic_entry (DT_JMPREL, 0))
2450 return FALSE;
2451 }
2452
2453 if (relocs)
2454 {
2455 if (!add_dynamic_entry (DT_RELA, 0)
2456 || !add_dynamic_entry (DT_RELASZ, 0)
2457 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2458 return FALSE;
2459
2460 /* If any dynamic relocs apply to a read-only section,
2461 then we need a DT_TEXTREL entry. */
2462 if ((info->flags & DF_TEXTREL) == 0)
2463 elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
2464
2465 if ((info->flags & DF_TEXTREL) != 0)
2466 {
2467 if (!add_dynamic_entry (DT_TEXTREL, 0))
2468 return FALSE;
2469 }
2470 }
2471 }
2472 #undef add_dynamic_entry
2473
2474 return TRUE;
2475 }
2476
2477 /* External entry points for sizing and building linker stubs. */
2478
2479 /* Set up various things so that we can make a list of input sections
2480 for each output section included in the link. Returns -1 on error,
2481 0 when no stubs will be needed, and 1 on success. */
2482
2483 int
2484 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2485 {
2486 bfd *input_bfd;
2487 unsigned int bfd_count;
2488 int top_id, top_index;
2489 asection *section;
2490 asection **input_list, **list;
2491 bfd_size_type amt;
2492 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2493
2494 if (htab == NULL)
2495 return -1;
2496
2497 /* Count the number of input BFDs and find the top input section id. */
2498 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2499 input_bfd != NULL;
2500 input_bfd = input_bfd->link_next)
2501 {
2502 bfd_count += 1;
2503 for (section = input_bfd->sections;
2504 section != NULL;
2505 section = section->next)
2506 {
2507 if (top_id < section->id)
2508 top_id = section->id;
2509 }
2510 }
2511 htab->bfd_count = bfd_count;
2512
2513 amt = sizeof (struct map_stub) * (top_id + 1);
2514 htab->stub_group = bfd_zmalloc (amt);
2515 if (htab->stub_group == NULL)
2516 return -1;
2517
2518 /* We can't use output_bfd->section_count here to find the top output
2519 section index as some sections may have been removed, and
2520 strip_excluded_output_sections doesn't renumber the indices. */
2521 for (section = output_bfd->sections, top_index = 0;
2522 section != NULL;
2523 section = section->next)
2524 {
2525 if (top_index < section->index)
2526 top_index = section->index;
2527 }
2528
2529 htab->top_index = top_index;
2530 amt = sizeof (asection *) * (top_index + 1);
2531 input_list = bfd_malloc (amt);
2532 htab->input_list = input_list;
2533 if (input_list == NULL)
2534 return -1;
2535
2536 /* For sections we aren't interested in, mark their entries with a
2537 value we can check later. */
2538 list = input_list + top_index;
2539 do
2540 *list = bfd_abs_section_ptr;
2541 while (list-- != input_list);
2542
2543 for (section = output_bfd->sections;
2544 section != NULL;
2545 section = section->next)
2546 {
2547 if ((section->flags & SEC_CODE) != 0)
2548 input_list[section->index] = NULL;
2549 }
2550
2551 return 1;
2552 }
2553
2554 /* The linker repeatedly calls this function for each input section,
2555 in the order that input sections are linked into output sections.
2556 Build lists of input sections to determine groupings between which
2557 we may insert linker stubs. */
2558
2559 void
2560 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2561 {
2562 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2563
2564 if (htab == NULL)
2565 return;
2566
2567 if (isec->output_section->index <= htab->top_index)
2568 {
2569 asection **list = htab->input_list + isec->output_section->index;
2570 if (*list != bfd_abs_section_ptr)
2571 {
2572 /* Steal the link_sec pointer for our list. */
2573 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2574 /* This happens to make the list in reverse order,
2575 which is what we want. */
2576 PREV_SEC (isec) = *list;
2577 *list = isec;
2578 }
2579 }
2580 }
2581
2582 /* See whether we can group stub sections together. Grouping stub
2583 sections may result in fewer stubs. More importantly, we need to
2584 put all .init* and .fini* stubs at the beginning of the .init or
2585 .fini output sections respectively, because glibc splits the
2586 _init and _fini functions into multiple parts. Putting a stub in
2587 the middle of a function is not a good idea. */
2588
2589 static void
2590 group_sections (struct elf32_hppa_link_hash_table *htab,
2591 bfd_size_type stub_group_size,
2592 bfd_boolean stubs_always_before_branch)
2593 {
2594 asection **list = htab->input_list + htab->top_index;
2595 do
2596 {
2597 asection *tail = *list;
2598 if (tail == bfd_abs_section_ptr)
2599 continue;
2600 while (tail != NULL)
2601 {
2602 asection *curr;
2603 asection *prev;
2604 bfd_size_type total;
2605 bfd_boolean big_sec;
2606
2607 curr = tail;
2608 total = tail->size;
2609 big_sec = total >= stub_group_size;
2610
2611 while ((prev = PREV_SEC (curr)) != NULL
2612 && ((total += curr->output_offset - prev->output_offset)
2613 < stub_group_size))
2614 curr = prev;
2615
2616 /* OK, the size from the start of CURR to the end is less
2617 than 240000 bytes and thus can be handled by one stub
2618 section. (or the tail section is itself larger than
2619 240000 bytes, in which case we may be toast.)
2620 We should really be keeping track of the total size of
2621 stubs added here, as stubs contribute to the final output
2622 section size. That's a little tricky, and this way will
2623 only break if stubs added total more than 22144 bytes, or
2624 2768 long branch stubs. It seems unlikely for more than
2625 2768 different functions to be called, especially from
2626 code only 240000 bytes long. This limit used to be
2627 250000, but c++ code tends to generate lots of little
2628 functions, and sometimes violated the assumption. */
2629 do
2630 {
2631 prev = PREV_SEC (tail);
2632 /* Set up this stub group. */
2633 htab->stub_group[tail->id].link_sec = curr;
2634 }
2635 while (tail != curr && (tail = prev) != NULL);
2636
2637 /* But wait, there's more! Input sections up to 240000
2638 bytes before the stub section can be handled by it too.
2639 Don't do this if we have a really large section after the
2640 stubs, as adding more stubs increases the chance that
2641 branches may not reach into the stub section. */
2642 if (!stubs_always_before_branch && !big_sec)
2643 {
2644 total = 0;
2645 while (prev != NULL
2646 && ((total += tail->output_offset - prev->output_offset)
2647 < stub_group_size))
2648 {
2649 tail = prev;
2650 prev = PREV_SEC (tail);
2651 htab->stub_group[tail->id].link_sec = curr;
2652 }
2653 }
2654 tail = prev;
2655 }
2656 }
2657 while (list-- != htab->input_list);
2658 free (htab->input_list);
2659 #undef PREV_SEC
2660 }
2661
2662 /* Read in all local syms for all input bfds, and create hash entries
2663 for export stubs if we are building a multi-subspace shared lib.
2664 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2665
2666 static int
2667 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2668 {
2669 unsigned int bfd_indx;
2670 Elf_Internal_Sym *local_syms, **all_local_syms;
2671 int stub_changed = 0;
2672 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2673
2674 if (htab == NULL)
2675 return -1;
2676
2677 /* We want to read in symbol extension records only once. To do this
2678 we need to read in the local symbols in parallel and save them for
2679 later use; so hold pointers to the local symbols in an array. */
2680 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2681 all_local_syms = bfd_zmalloc (amt);
2682 htab->all_local_syms = all_local_syms;
2683 if (all_local_syms == NULL)
2684 return -1;
2685
2686 /* Walk over all the input BFDs, swapping in local symbols.
2687 If we are creating a shared library, create hash entries for the
2688 export stubs. */
2689 for (bfd_indx = 0;
2690 input_bfd != NULL;
2691 input_bfd = input_bfd->link_next, bfd_indx++)
2692 {
2693 Elf_Internal_Shdr *symtab_hdr;
2694
2695 /* We'll need the symbol table in a second. */
2696 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2697 if (symtab_hdr->sh_info == 0)
2698 continue;
2699
2700 /* We need an array of the local symbols attached to the input bfd. */
2701 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2702 if (local_syms == NULL)
2703 {
2704 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2705 symtab_hdr->sh_info, 0,
2706 NULL, NULL, NULL);
2707 /* Cache them for elf_link_input_bfd. */
2708 symtab_hdr->contents = (unsigned char *) local_syms;
2709 }
2710 if (local_syms == NULL)
2711 return -1;
2712
2713 all_local_syms[bfd_indx] = local_syms;
2714
2715 if (info->shared && htab->multi_subspace)
2716 {
2717 struct elf_link_hash_entry **eh_syms;
2718 struct elf_link_hash_entry **eh_symend;
2719 unsigned int symcount;
2720
2721 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2722 - symtab_hdr->sh_info);
2723 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2724 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2725
2726 /* Look through the global syms for functions; We need to
2727 build export stubs for all globally visible functions. */
2728 for (; eh_syms < eh_symend; eh_syms++)
2729 {
2730 struct elf32_hppa_link_hash_entry *hh;
2731
2732 hh = hppa_elf_hash_entry (*eh_syms);
2733
2734 while (hh->eh.root.type == bfd_link_hash_indirect
2735 || hh->eh.root.type == bfd_link_hash_warning)
2736 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2737
2738 /* At this point in the link, undefined syms have been
2739 resolved, so we need to check that the symbol was
2740 defined in this BFD. */
2741 if ((hh->eh.root.type == bfd_link_hash_defined
2742 || hh->eh.root.type == bfd_link_hash_defweak)
2743 && hh->eh.type == STT_FUNC
2744 && hh->eh.root.u.def.section->output_section != NULL
2745 && (hh->eh.root.u.def.section->output_section->owner
2746 == output_bfd)
2747 && hh->eh.root.u.def.section->owner == input_bfd
2748 && hh->eh.def_regular
2749 && !hh->eh.forced_local
2750 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2751 {
2752 asection *sec;
2753 const char *stub_name;
2754 struct elf32_hppa_stub_hash_entry *hsh;
2755
2756 sec = hh->eh.root.u.def.section;
2757 stub_name = hh_name (hh);
2758 hsh = hppa_stub_hash_lookup (&htab->bstab,
2759 stub_name,
2760 FALSE, FALSE);
2761 if (hsh == NULL)
2762 {
2763 hsh = hppa_add_stub (stub_name, sec, htab);
2764 if (!hsh)
2765 return -1;
2766
2767 hsh->target_value = hh->eh.root.u.def.value;
2768 hsh->target_section = hh->eh.root.u.def.section;
2769 hsh->stub_type = hppa_stub_export;
2770 hsh->hh = hh;
2771 stub_changed = 1;
2772 }
2773 else
2774 {
2775 (*_bfd_error_handler) (_("%B: duplicate export stub %s"),
2776 input_bfd,
2777 stub_name);
2778 }
2779 }
2780 }
2781 }
2782 }
2783
2784 return stub_changed;
2785 }
2786
2787 /* Determine and set the size of the stub section for a final link.
2788
2789 The basic idea here is to examine all the relocations looking for
2790 PC-relative calls to a target that is unreachable with a "bl"
2791 instruction. */
2792
2793 bfd_boolean
2794 elf32_hppa_size_stubs
2795 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2796 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2797 asection * (*add_stub_section) (const char *, asection *),
2798 void (*layout_sections_again) (void))
2799 {
2800 bfd_size_type stub_group_size;
2801 bfd_boolean stubs_always_before_branch;
2802 bfd_boolean stub_changed;
2803 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2804
2805 if (htab == NULL)
2806 return FALSE;
2807
2808 /* Stash our params away. */
2809 htab->stub_bfd = stub_bfd;
2810 htab->multi_subspace = multi_subspace;
2811 htab->add_stub_section = add_stub_section;
2812 htab->layout_sections_again = layout_sections_again;
2813 stubs_always_before_branch = group_size < 0;
2814 if (group_size < 0)
2815 stub_group_size = -group_size;
2816 else
2817 stub_group_size = group_size;
2818 if (stub_group_size == 1)
2819 {
2820 /* Default values. */
2821 if (stubs_always_before_branch)
2822 {
2823 stub_group_size = 7680000;
2824 if (htab->has_17bit_branch || htab->multi_subspace)
2825 stub_group_size = 240000;
2826 if (htab->has_12bit_branch)
2827 stub_group_size = 7500;
2828 }
2829 else
2830 {
2831 stub_group_size = 6971392;
2832 if (htab->has_17bit_branch || htab->multi_subspace)
2833 stub_group_size = 217856;
2834 if (htab->has_12bit_branch)
2835 stub_group_size = 6808;
2836 }
2837 }
2838
2839 group_sections (htab, stub_group_size, stubs_always_before_branch);
2840
2841 switch (get_local_syms (output_bfd, info->input_bfds, info))
2842 {
2843 default:
2844 if (htab->all_local_syms)
2845 goto error_ret_free_local;
2846 return FALSE;
2847
2848 case 0:
2849 stub_changed = FALSE;
2850 break;
2851
2852 case 1:
2853 stub_changed = TRUE;
2854 break;
2855 }
2856
2857 while (1)
2858 {
2859 bfd *input_bfd;
2860 unsigned int bfd_indx;
2861 asection *stub_sec;
2862
2863 for (input_bfd = info->input_bfds, bfd_indx = 0;
2864 input_bfd != NULL;
2865 input_bfd = input_bfd->link_next, bfd_indx++)
2866 {
2867 Elf_Internal_Shdr *symtab_hdr;
2868 asection *section;
2869 Elf_Internal_Sym *local_syms;
2870
2871 /* We'll need the symbol table in a second. */
2872 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2873 if (symtab_hdr->sh_info == 0)
2874 continue;
2875
2876 local_syms = htab->all_local_syms[bfd_indx];
2877
2878 /* Walk over each section attached to the input bfd. */
2879 for (section = input_bfd->sections;
2880 section != NULL;
2881 section = section->next)
2882 {
2883 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2884
2885 /* If there aren't any relocs, then there's nothing more
2886 to do. */
2887 if ((section->flags & SEC_RELOC) == 0
2888 || section->reloc_count == 0)
2889 continue;
2890
2891 /* If this section is a link-once section that will be
2892 discarded, then don't create any stubs. */
2893 if (section->output_section == NULL
2894 || section->output_section->owner != output_bfd)
2895 continue;
2896
2897 /* Get the relocs. */
2898 internal_relocs
2899 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2900 info->keep_memory);
2901 if (internal_relocs == NULL)
2902 goto error_ret_free_local;
2903
2904 /* Now examine each relocation. */
2905 irela = internal_relocs;
2906 irelaend = irela + section->reloc_count;
2907 for (; irela < irelaend; irela++)
2908 {
2909 unsigned int r_type, r_indx;
2910 enum elf32_hppa_stub_type stub_type;
2911 struct elf32_hppa_stub_hash_entry *hsh;
2912 asection *sym_sec;
2913 bfd_vma sym_value;
2914 bfd_vma destination;
2915 struct elf32_hppa_link_hash_entry *hh;
2916 char *stub_name;
2917 const asection *id_sec;
2918
2919 r_type = ELF32_R_TYPE (irela->r_info);
2920 r_indx = ELF32_R_SYM (irela->r_info);
2921
2922 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2923 {
2924 bfd_set_error (bfd_error_bad_value);
2925 error_ret_free_internal:
2926 if (elf_section_data (section)->relocs == NULL)
2927 free (internal_relocs);
2928 goto error_ret_free_local;
2929 }
2930
2931 /* Only look for stubs on call instructions. */
2932 if (r_type != (unsigned int) R_PARISC_PCREL12F
2933 && r_type != (unsigned int) R_PARISC_PCREL17F
2934 && r_type != (unsigned int) R_PARISC_PCREL22F)
2935 continue;
2936
2937 /* Now determine the call target, its name, value,
2938 section. */
2939 sym_sec = NULL;
2940 sym_value = 0;
2941 destination = 0;
2942 hh = NULL;
2943 if (r_indx < symtab_hdr->sh_info)
2944 {
2945 /* It's a local symbol. */
2946 Elf_Internal_Sym *sym;
2947 Elf_Internal_Shdr *hdr;
2948 unsigned int shndx;
2949
2950 sym = local_syms + r_indx;
2951 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2952 sym_value = sym->st_value;
2953 shndx = sym->st_shndx;
2954 if (shndx < elf_numsections (input_bfd))
2955 {
2956 hdr = elf_elfsections (input_bfd)[shndx];
2957 sym_sec = hdr->bfd_section;
2958 destination = (sym_value + irela->r_addend
2959 + sym_sec->output_offset
2960 + sym_sec->output_section->vma);
2961 }
2962 }
2963 else
2964 {
2965 /* It's an external symbol. */
2966 int e_indx;
2967
2968 e_indx = r_indx - symtab_hdr->sh_info;
2969 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2970
2971 while (hh->eh.root.type == bfd_link_hash_indirect
2972 || hh->eh.root.type == bfd_link_hash_warning)
2973 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2974
2975 if (hh->eh.root.type == bfd_link_hash_defined
2976 || hh->eh.root.type == bfd_link_hash_defweak)
2977 {
2978 sym_sec = hh->eh.root.u.def.section;
2979 sym_value = hh->eh.root.u.def.value;
2980 if (sym_sec->output_section != NULL)
2981 destination = (sym_value + irela->r_addend
2982 + sym_sec->output_offset
2983 + sym_sec->output_section->vma);
2984 }
2985 else if (hh->eh.root.type == bfd_link_hash_undefweak)
2986 {
2987 if (! info->shared)
2988 continue;
2989 }
2990 else if (hh->eh.root.type == bfd_link_hash_undefined)
2991 {
2992 if (! (info->unresolved_syms_in_objects == RM_IGNORE
2993 && (ELF_ST_VISIBILITY (hh->eh.other)
2994 == STV_DEFAULT)
2995 && hh->eh.type != STT_PARISC_MILLI))
2996 continue;
2997 }
2998 else
2999 {
3000 bfd_set_error (bfd_error_bad_value);
3001 goto error_ret_free_internal;
3002 }
3003 }
3004
3005 /* Determine what (if any) linker stub is needed. */
3006 stub_type = hppa_type_of_stub (section, irela, hh,
3007 destination, info);
3008 if (stub_type == hppa_stub_none)
3009 continue;
3010
3011 /* Support for grouping stub sections. */
3012 id_sec = htab->stub_group[section->id].link_sec;
3013
3014 /* Get the name of this stub. */
3015 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
3016 if (!stub_name)
3017 goto error_ret_free_internal;
3018
3019 hsh = hppa_stub_hash_lookup (&htab->bstab,
3020 stub_name,
3021 FALSE, FALSE);
3022 if (hsh != NULL)
3023 {
3024 /* The proper stub has already been created. */
3025 free (stub_name);
3026 continue;
3027 }
3028
3029 hsh = hppa_add_stub (stub_name, section, htab);
3030 if (hsh == NULL)
3031 {
3032 free (stub_name);
3033 goto error_ret_free_internal;
3034 }
3035
3036 hsh->target_value = sym_value;
3037 hsh->target_section = sym_sec;
3038 hsh->stub_type = stub_type;
3039 if (info->shared)
3040 {
3041 if (stub_type == hppa_stub_import)
3042 hsh->stub_type = hppa_stub_import_shared;
3043 else if (stub_type == hppa_stub_long_branch)
3044 hsh->stub_type = hppa_stub_long_branch_shared;
3045 }
3046 hsh->hh = hh;
3047 stub_changed = TRUE;
3048 }
3049
3050 /* We're done with the internal relocs, free them. */
3051 if (elf_section_data (section)->relocs == NULL)
3052 free (internal_relocs);
3053 }
3054 }
3055
3056 if (!stub_changed)
3057 break;
3058
3059 /* OK, we've added some stubs. Find out the new size of the
3060 stub sections. */
3061 for (stub_sec = htab->stub_bfd->sections;
3062 stub_sec != NULL;
3063 stub_sec = stub_sec->next)
3064 stub_sec->size = 0;
3065
3066 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
3067
3068 /* Ask the linker to do its stuff. */
3069 (*htab->layout_sections_again) ();
3070 stub_changed = FALSE;
3071 }
3072
3073 free (htab->all_local_syms);
3074 return TRUE;
3075
3076 error_ret_free_local:
3077 free (htab->all_local_syms);
3078 return FALSE;
3079 }
3080
3081 /* For a final link, this function is called after we have sized the
3082 stubs to provide a value for __gp. */
3083
3084 bfd_boolean
3085 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3086 {
3087 struct bfd_link_hash_entry *h;
3088 asection *sec = NULL;
3089 bfd_vma gp_val = 0;
3090 struct elf32_hppa_link_hash_table *htab;
3091
3092 htab = hppa_link_hash_table (info);
3093 if (htab == NULL)
3094 return FALSE;
3095
3096 h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE);
3097
3098 if (h != NULL
3099 && (h->type == bfd_link_hash_defined
3100 || h->type == bfd_link_hash_defweak))
3101 {
3102 gp_val = h->u.def.value;
3103 sec = h->u.def.section;
3104 }
3105 else
3106 {
3107 asection *splt = bfd_get_section_by_name (abfd, ".plt");
3108 asection *sgot = bfd_get_section_by_name (abfd, ".got");
3109
3110 /* Choose to point our LTP at, in this order, one of .plt, .got,
3111 or .data, if these sections exist. In the case of choosing
3112 .plt try to make the LTP ideal for addressing anywhere in the
3113 .plt or .got with a 14 bit signed offset. Typically, the end
3114 of the .plt is the start of the .got, so choose .plt + 0x2000
3115 if either the .plt or .got is larger than 0x2000. If both
3116 the .plt and .got are smaller than 0x2000, choose the end of
3117 the .plt section. */
3118 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3119 ? NULL : splt;
3120 if (sec != NULL)
3121 {
3122 gp_val = sec->size;
3123 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3124 {
3125 gp_val = 0x2000;
3126 }
3127 }
3128 else
3129 {
3130 sec = sgot;
3131 if (sec != NULL)
3132 {
3133 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3134 {
3135 /* We know we don't have a .plt. If .got is large,
3136 offset our LTP. */
3137 if (sec->size > 0x2000)
3138 gp_val = 0x2000;
3139 }
3140 }
3141 else
3142 {
3143 /* No .plt or .got. Who cares what the LTP is? */
3144 sec = bfd_get_section_by_name (abfd, ".data");
3145 }
3146 }
3147
3148 if (h != NULL)
3149 {
3150 h->type = bfd_link_hash_defined;
3151 h->u.def.value = gp_val;
3152 if (sec != NULL)
3153 h->u.def.section = sec;
3154 else
3155 h->u.def.section = bfd_abs_section_ptr;
3156 }
3157 }
3158
3159 if (sec != NULL && sec->output_section != NULL)
3160 gp_val += sec->output_section->vma + sec->output_offset;
3161
3162 elf_gp (abfd) = gp_val;
3163 return TRUE;
3164 }
3165
3166 /* Build all the stubs associated with the current output file. The
3167 stubs are kept in a hash table attached to the main linker hash
3168 table. We also set up the .plt entries for statically linked PIC
3169 functions here. This function is called via hppaelf_finish in the
3170 linker. */
3171
3172 bfd_boolean
3173 elf32_hppa_build_stubs (struct bfd_link_info *info)
3174 {
3175 asection *stub_sec;
3176 struct bfd_hash_table *table;
3177 struct elf32_hppa_link_hash_table *htab;
3178
3179 htab = hppa_link_hash_table (info);
3180 if (htab == NULL)
3181 return FALSE;
3182
3183 for (stub_sec = htab->stub_bfd->sections;
3184 stub_sec != NULL;
3185 stub_sec = stub_sec->next)
3186 {
3187 bfd_size_type size;
3188
3189 /* Allocate memory to hold the linker stubs. */
3190 size = stub_sec->size;
3191 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3192 if (stub_sec->contents == NULL && size != 0)
3193 return FALSE;
3194 stub_sec->size = 0;
3195 }
3196
3197 /* Build the stubs as directed by the stub hash table. */
3198 table = &htab->bstab;
3199 bfd_hash_traverse (table, hppa_build_one_stub, info);
3200
3201 return TRUE;
3202 }
3203
3204 /* Return the base vma address which should be subtracted from the real
3205 address when resolving a dtpoff relocation.
3206 This is PT_TLS segment p_vaddr. */
3207
3208 static bfd_vma
3209 dtpoff_base (struct bfd_link_info *info)
3210 {
3211 /* If tls_sec is NULL, we should have signalled an error already. */
3212 if (elf_hash_table (info)->tls_sec == NULL)
3213 return 0;
3214 return elf_hash_table (info)->tls_sec->vma;
3215 }
3216
3217 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3218
3219 static bfd_vma
3220 tpoff (struct bfd_link_info *info, bfd_vma address)
3221 {
3222 struct elf_link_hash_table *htab = elf_hash_table (info);
3223
3224 /* If tls_sec is NULL, we should have signalled an error already. */
3225 if (htab->tls_sec == NULL)
3226 return 0;
3227 /* hppa TLS ABI is variant I and static TLS block start just after
3228 tcbhead structure which has 2 pointer fields. */
3229 return (address - htab->tls_sec->vma
3230 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3231 }
3232
3233 /* Perform a final link. */
3234
3235 static bfd_boolean
3236 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3237 {
3238 /* Invoke the regular ELF linker to do all the work. */
3239 if (!bfd_elf_final_link (abfd, info))
3240 return FALSE;
3241
3242 /* If we're producing a final executable, sort the contents of the
3243 unwind section. */
3244 if (info->relocatable)
3245 return TRUE;
3246
3247 return elf_hppa_sort_unwind (abfd);
3248 }
3249
3250 /* Record the lowest address for the data and text segments. */
3251
3252 static void
3253 hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3254 {
3255 struct elf32_hppa_link_hash_table *htab;
3256
3257 htab = (struct elf32_hppa_link_hash_table*) data;
3258 if (htab == NULL)
3259 return;
3260
3261 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3262 {
3263 bfd_vma value;
3264 Elf_Internal_Phdr *p;
3265
3266 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3267 BFD_ASSERT (p != NULL);
3268 value = p->p_vaddr;
3269
3270 if ((section->flags & SEC_READONLY) != 0)
3271 {
3272 if (value < htab->text_segment_base)
3273 htab->text_segment_base = value;
3274 }
3275 else
3276 {
3277 if (value < htab->data_segment_base)
3278 htab->data_segment_base = value;
3279 }
3280 }
3281 }
3282
3283 /* Perform a relocation as part of a final link. */
3284
3285 static bfd_reloc_status_type
3286 final_link_relocate (asection *input_section,
3287 bfd_byte *contents,
3288 const Elf_Internal_Rela *rela,
3289 bfd_vma value,
3290 struct elf32_hppa_link_hash_table *htab,
3291 asection *sym_sec,
3292 struct elf32_hppa_link_hash_entry *hh,
3293 struct bfd_link_info *info)
3294 {
3295 int insn;
3296 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3297 unsigned int orig_r_type = r_type;
3298 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3299 int r_format = howto->bitsize;
3300 enum hppa_reloc_field_selector_type_alt r_field;
3301 bfd *input_bfd = input_section->owner;
3302 bfd_vma offset = rela->r_offset;
3303 bfd_vma max_branch_offset = 0;
3304 bfd_byte *hit_data = contents + offset;
3305 bfd_signed_vma addend = rela->r_addend;
3306 bfd_vma location;
3307 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3308 int val;
3309
3310 if (r_type == R_PARISC_NONE)
3311 return bfd_reloc_ok;
3312
3313 insn = bfd_get_32 (input_bfd, hit_data);
3314
3315 /* Find out where we are and where we're going. */
3316 location = (offset +
3317 input_section->output_offset +
3318 input_section->output_section->vma);
3319
3320 /* If we are not building a shared library, convert DLTIND relocs to
3321 DPREL relocs. */
3322 if (!info->shared)
3323 {
3324 switch (r_type)
3325 {
3326 case R_PARISC_DLTIND21L:
3327 case R_PARISC_TLS_GD21L:
3328 case R_PARISC_TLS_LDM21L:
3329 case R_PARISC_TLS_IE21L:
3330 r_type = R_PARISC_DPREL21L;
3331 break;
3332
3333 case R_PARISC_DLTIND14R:
3334 case R_PARISC_TLS_GD14R:
3335 case R_PARISC_TLS_LDM14R:
3336 case R_PARISC_TLS_IE14R:
3337 r_type = R_PARISC_DPREL14R;
3338 break;
3339
3340 case R_PARISC_DLTIND14F:
3341 r_type = R_PARISC_DPREL14F;
3342 break;
3343 }
3344 }
3345
3346 switch (r_type)
3347 {
3348 case R_PARISC_PCREL12F:
3349 case R_PARISC_PCREL17F:
3350 case R_PARISC_PCREL22F:
3351 /* If this call should go via the plt, find the import stub in
3352 the stub hash. */
3353 if (sym_sec == NULL
3354 || sym_sec->output_section == NULL
3355 || (hh != NULL
3356 && hh->eh.plt.offset != (bfd_vma) -1
3357 && hh->eh.dynindx != -1
3358 && !hh->plabel
3359 && (info->shared
3360 || !hh->eh.def_regular
3361 || hh->eh.root.type == bfd_link_hash_defweak)))
3362 {
3363 hsh = hppa_get_stub_entry (input_section, sym_sec,
3364 hh, rela, htab);
3365 if (hsh != NULL)
3366 {
3367 value = (hsh->stub_offset
3368 + hsh->stub_sec->output_offset
3369 + hsh->stub_sec->output_section->vma);
3370 addend = 0;
3371 }
3372 else if (sym_sec == NULL && hh != NULL
3373 && hh->eh.root.type == bfd_link_hash_undefweak)
3374 {
3375 /* It's OK if undefined weak. Calls to undefined weak
3376 symbols behave as if the "called" function
3377 immediately returns. We can thus call to a weak
3378 function without first checking whether the function
3379 is defined. */
3380 value = location;
3381 addend = 8;
3382 }
3383 else
3384 return bfd_reloc_undefined;
3385 }
3386 /* Fall thru. */
3387
3388 case R_PARISC_PCREL21L:
3389 case R_PARISC_PCREL17C:
3390 case R_PARISC_PCREL17R:
3391 case R_PARISC_PCREL14R:
3392 case R_PARISC_PCREL14F:
3393 case R_PARISC_PCREL32:
3394 /* Make it a pc relative offset. */
3395 value -= location;
3396 addend -= 8;
3397 break;
3398
3399 case R_PARISC_DPREL21L:
3400 case R_PARISC_DPREL14R:
3401 case R_PARISC_DPREL14F:
3402 /* Convert instructions that use the linkage table pointer (r19) to
3403 instructions that use the global data pointer (dp). This is the
3404 most efficient way of using PIC code in an incomplete executable,
3405 but the user must follow the standard runtime conventions for
3406 accessing data for this to work. */
3407 if (orig_r_type != r_type)
3408 {
3409 if (r_type == R_PARISC_DPREL21L)
3410 {
3411 /* GCC sometimes uses a register other than r19 for the
3412 operation, so we must convert any addil instruction
3413 that uses this relocation. */
3414 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3415 insn = ADDIL_DP;
3416 else
3417 /* We must have a ldil instruction. It's too hard to find
3418 and convert the associated add instruction, so issue an
3419 error. */
3420 (*_bfd_error_handler)
3421 (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3422 input_bfd,
3423 input_section,
3424 (long) offset,
3425 howto->name,
3426 insn);
3427 }
3428 else if (r_type == R_PARISC_DPREL14F)
3429 {
3430 /* This must be a format 1 load/store. Change the base
3431 register to dp. */
3432 insn = (insn & 0xfc1ffff) | (27 << 21);
3433 }
3434 }
3435
3436 /* For all the DP relative relocations, we need to examine the symbol's
3437 section. If it has no section or if it's a code section, then
3438 "data pointer relative" makes no sense. In that case we don't
3439 adjust the "value", and for 21 bit addil instructions, we change the
3440 source addend register from %dp to %r0. This situation commonly
3441 arises for undefined weak symbols and when a variable's "constness"
3442 is declared differently from the way the variable is defined. For
3443 instance: "extern int foo" with foo defined as "const int foo". */
3444 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3445 {
3446 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3447 == (((int) OP_ADDIL << 26) | (27 << 21)))
3448 {
3449 insn &= ~ (0x1f << 21);
3450 }
3451 /* Now try to make things easy for the dynamic linker. */
3452
3453 break;
3454 }
3455 /* Fall thru. */
3456
3457 case R_PARISC_DLTIND21L:
3458 case R_PARISC_DLTIND14R:
3459 case R_PARISC_DLTIND14F:
3460 case R_PARISC_TLS_GD21L:
3461 case R_PARISC_TLS_LDM21L:
3462 case R_PARISC_TLS_IE21L:
3463 case R_PARISC_TLS_GD14R:
3464 case R_PARISC_TLS_LDM14R:
3465 case R_PARISC_TLS_IE14R:
3466 value -= elf_gp (input_section->output_section->owner);
3467 break;
3468
3469 case R_PARISC_SEGREL32:
3470 if ((sym_sec->flags & SEC_CODE) != 0)
3471 value -= htab->text_segment_base;
3472 else
3473 value -= htab->data_segment_base;
3474 break;
3475
3476 default:
3477 break;
3478 }
3479
3480 switch (r_type)
3481 {
3482 case R_PARISC_DIR32:
3483 case R_PARISC_DIR14F:
3484 case R_PARISC_DIR17F:
3485 case R_PARISC_PCREL17C:
3486 case R_PARISC_PCREL14F:
3487 case R_PARISC_PCREL32:
3488 case R_PARISC_DPREL14F:
3489 case R_PARISC_PLABEL32:
3490 case R_PARISC_DLTIND14F:
3491 case R_PARISC_SEGBASE:
3492 case R_PARISC_SEGREL32:
3493 case R_PARISC_TLS_DTPMOD32:
3494 case R_PARISC_TLS_DTPOFF32:
3495 case R_PARISC_TLS_TPREL32:
3496 r_field = e_fsel;
3497 break;
3498
3499 case R_PARISC_DLTIND21L:
3500 case R_PARISC_PCREL21L:
3501 case R_PARISC_PLABEL21L:
3502 r_field = e_lsel;
3503 break;
3504
3505 case R_PARISC_DIR21L:
3506 case R_PARISC_DPREL21L:
3507 case R_PARISC_TLS_GD21L:
3508 case R_PARISC_TLS_LDM21L:
3509 case R_PARISC_TLS_LDO21L:
3510 case R_PARISC_TLS_IE21L:
3511 case R_PARISC_TLS_LE21L:
3512 r_field = e_lrsel;
3513 break;
3514
3515 case R_PARISC_PCREL17R:
3516 case R_PARISC_PCREL14R:
3517 case R_PARISC_PLABEL14R:
3518 case R_PARISC_DLTIND14R:
3519 r_field = e_rsel;
3520 break;
3521
3522 case R_PARISC_DIR17R:
3523 case R_PARISC_DIR14R:
3524 case R_PARISC_DPREL14R:
3525 case R_PARISC_TLS_GD14R:
3526 case R_PARISC_TLS_LDM14R:
3527 case R_PARISC_TLS_LDO14R:
3528 case R_PARISC_TLS_IE14R:
3529 case R_PARISC_TLS_LE14R:
3530 r_field = e_rrsel;
3531 break;
3532
3533 case R_PARISC_PCREL12F:
3534 case R_PARISC_PCREL17F:
3535 case R_PARISC_PCREL22F:
3536 r_field = e_fsel;
3537
3538 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3539 {
3540 max_branch_offset = (1 << (17-1)) << 2;
3541 }
3542 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3543 {
3544 max_branch_offset = (1 << (12-1)) << 2;
3545 }
3546 else
3547 {
3548 max_branch_offset = (1 << (22-1)) << 2;
3549 }
3550
3551 /* sym_sec is NULL on undefined weak syms or when shared on
3552 undefined syms. We've already checked for a stub for the
3553 shared undefined case. */
3554 if (sym_sec == NULL)
3555 break;
3556
3557 /* If the branch is out of reach, then redirect the
3558 call to the local stub for this function. */
3559 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3560 {
3561 hsh = hppa_get_stub_entry (input_section, sym_sec,
3562 hh, rela, htab);
3563 if (hsh == NULL)
3564 return bfd_reloc_undefined;
3565
3566 /* Munge up the value and addend so that we call the stub
3567 rather than the procedure directly. */
3568 value = (hsh->stub_offset
3569 + hsh->stub_sec->output_offset
3570 + hsh->stub_sec->output_section->vma
3571 - location);
3572 addend = -8;
3573 }
3574 break;
3575
3576 /* Something we don't know how to handle. */
3577 default:
3578 return bfd_reloc_notsupported;
3579 }
3580
3581 /* Make sure we can reach the stub. */
3582 if (max_branch_offset != 0
3583 && value + addend + max_branch_offset >= 2*max_branch_offset)
3584 {
3585 (*_bfd_error_handler)
3586 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3587 input_bfd,
3588 input_section,
3589 (long) offset,
3590 hsh->bh_root.string);
3591 bfd_set_error (bfd_error_bad_value);
3592 return bfd_reloc_notsupported;
3593 }
3594
3595 val = hppa_field_adjust (value, addend, r_field);
3596
3597 switch (r_type)
3598 {
3599 case R_PARISC_PCREL12F:
3600 case R_PARISC_PCREL17C:
3601 case R_PARISC_PCREL17F:
3602 case R_PARISC_PCREL17R:
3603 case R_PARISC_PCREL22F:
3604 case R_PARISC_DIR17F:
3605 case R_PARISC_DIR17R:
3606 /* This is a branch. Divide the offset by four.
3607 Note that we need to decide whether it's a branch or
3608 otherwise by inspecting the reloc. Inspecting insn won't
3609 work as insn might be from a .word directive. */
3610 val >>= 2;
3611 break;
3612
3613 default:
3614 break;
3615 }
3616
3617 insn = hppa_rebuild_insn (insn, val, r_format);
3618
3619 /* Update the instruction word. */
3620 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3621 return bfd_reloc_ok;
3622 }
3623
3624 /* Relocate an HPPA ELF section. */
3625
3626 static bfd_boolean
3627 elf32_hppa_relocate_section (bfd *output_bfd,
3628 struct bfd_link_info *info,
3629 bfd *input_bfd,
3630 asection *input_section,
3631 bfd_byte *contents,
3632 Elf_Internal_Rela *relocs,
3633 Elf_Internal_Sym *local_syms,
3634 asection **local_sections)
3635 {
3636 bfd_vma *local_got_offsets;
3637 struct elf32_hppa_link_hash_table *htab;
3638 Elf_Internal_Shdr *symtab_hdr;
3639 Elf_Internal_Rela *rela;
3640 Elf_Internal_Rela *relend;
3641
3642 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3643
3644 htab = hppa_link_hash_table (info);
3645 if (htab == NULL)
3646 return FALSE;
3647
3648 local_got_offsets = elf_local_got_offsets (input_bfd);
3649
3650 rela = relocs;
3651 relend = relocs + input_section->reloc_count;
3652 for (; rela < relend; rela++)
3653 {
3654 unsigned int r_type;
3655 reloc_howto_type *howto;
3656 unsigned int r_symndx;
3657 struct elf32_hppa_link_hash_entry *hh;
3658 Elf_Internal_Sym *sym;
3659 asection *sym_sec;
3660 bfd_vma relocation;
3661 bfd_reloc_status_type rstatus;
3662 const char *sym_name;
3663 bfd_boolean plabel;
3664 bfd_boolean warned_undef;
3665
3666 r_type = ELF32_R_TYPE (rela->r_info);
3667 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3668 {
3669 bfd_set_error (bfd_error_bad_value);
3670 return FALSE;
3671 }
3672 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3673 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3674 continue;
3675
3676 r_symndx = ELF32_R_SYM (rela->r_info);
3677 hh = NULL;
3678 sym = NULL;
3679 sym_sec = NULL;
3680 warned_undef = FALSE;
3681 if (r_symndx < symtab_hdr->sh_info)
3682 {
3683 /* This is a local symbol, h defaults to NULL. */
3684 sym = local_syms + r_symndx;
3685 sym_sec = local_sections[r_symndx];
3686 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3687 }
3688 else
3689 {
3690 struct elf_link_hash_entry *eh;
3691 bfd_boolean unresolved_reloc;
3692 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3693
3694 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3695 r_symndx, symtab_hdr, sym_hashes,
3696 eh, sym_sec, relocation,
3697 unresolved_reloc, warned_undef);
3698
3699 if (!info->relocatable
3700 && relocation == 0
3701 && eh->root.type != bfd_link_hash_defined
3702 && eh->root.type != bfd_link_hash_defweak
3703 && eh->root.type != bfd_link_hash_undefweak)
3704 {
3705 if (info->unresolved_syms_in_objects == RM_IGNORE
3706 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3707 && eh->type == STT_PARISC_MILLI)
3708 {
3709 if (! info->callbacks->undefined_symbol
3710 (info, eh_name (eh), input_bfd,
3711 input_section, rela->r_offset, FALSE))
3712 return FALSE;
3713 warned_undef = TRUE;
3714 }
3715 }
3716 hh = hppa_elf_hash_entry (eh);
3717 }
3718
3719 if (sym_sec != NULL && discarded_section (sym_sec))
3720 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3721 rela, 1, relend,
3722 elf_hppa_howto_table + r_type, 0,
3723 contents);
3724
3725 if (info->relocatable)
3726 continue;
3727
3728 /* Do any required modifications to the relocation value, and
3729 determine what types of dynamic info we need to output, if
3730 any. */
3731 plabel = 0;
3732 switch (r_type)
3733 {
3734 case R_PARISC_DLTIND14F:
3735 case R_PARISC_DLTIND14R:
3736 case R_PARISC_DLTIND21L:
3737 {
3738 bfd_vma off;
3739 bfd_boolean do_got = 0;
3740
3741 /* Relocation is to the entry for this symbol in the
3742 global offset table. */
3743 if (hh != NULL)
3744 {
3745 bfd_boolean dyn;
3746
3747 off = hh->eh.got.offset;
3748 dyn = htab->etab.dynamic_sections_created;
3749 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
3750 &hh->eh))
3751 {
3752 /* If we aren't going to call finish_dynamic_symbol,
3753 then we need to handle initialisation of the .got
3754 entry and create needed relocs here. Since the
3755 offset must always be a multiple of 4, we use the
3756 least significant bit to record whether we have
3757 initialised it already. */
3758 if ((off & 1) != 0)
3759 off &= ~1;
3760 else
3761 {
3762 hh->eh.got.offset |= 1;
3763 do_got = 1;
3764 }
3765 }
3766 }
3767 else
3768 {
3769 /* Local symbol case. */
3770 if (local_got_offsets == NULL)
3771 abort ();
3772
3773 off = local_got_offsets[r_symndx];
3774
3775 /* The offset must always be a multiple of 4. We use
3776 the least significant bit to record whether we have
3777 already generated the necessary reloc. */
3778 if ((off & 1) != 0)
3779 off &= ~1;
3780 else
3781 {
3782 local_got_offsets[r_symndx] |= 1;
3783 do_got = 1;
3784 }
3785 }
3786
3787 if (do_got)
3788 {
3789 if (info->shared)
3790 {
3791 /* Output a dynamic relocation for this GOT entry.
3792 In this case it is relative to the base of the
3793 object because the symbol index is zero. */
3794 Elf_Internal_Rela outrel;
3795 bfd_byte *loc;
3796 asection *sec = htab->srelgot;
3797
3798 outrel.r_offset = (off
3799 + htab->sgot->output_offset
3800 + htab->sgot->output_section->vma);
3801 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3802 outrel.r_addend = relocation;
3803 loc = sec->contents;
3804 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3805 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3806 }
3807 else
3808 bfd_put_32 (output_bfd, relocation,
3809 htab->sgot->contents + off);
3810 }
3811
3812 if (off >= (bfd_vma) -2)
3813 abort ();
3814
3815 /* Add the base of the GOT to the relocation value. */
3816 relocation = (off
3817 + htab->sgot->output_offset
3818 + htab->sgot->output_section->vma);
3819 }
3820 break;
3821
3822 case R_PARISC_SEGREL32:
3823 /* If this is the first SEGREL relocation, then initialize
3824 the segment base values. */
3825 if (htab->text_segment_base == (bfd_vma) -1)
3826 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3827 break;
3828
3829 case R_PARISC_PLABEL14R:
3830 case R_PARISC_PLABEL21L:
3831 case R_PARISC_PLABEL32:
3832 if (htab->etab.dynamic_sections_created)
3833 {
3834 bfd_vma off;
3835 bfd_boolean do_plt = 0;
3836 /* If we have a global symbol with a PLT slot, then
3837 redirect this relocation to it. */
3838 if (hh != NULL)
3839 {
3840 off = hh->eh.plt.offset;
3841 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared,
3842 &hh->eh))
3843 {
3844 /* In a non-shared link, adjust_dynamic_symbols
3845 isn't called for symbols forced local. We
3846 need to write out the plt entry here. */
3847 if ((off & 1) != 0)
3848 off &= ~1;
3849 else
3850 {
3851 hh->eh.plt.offset |= 1;
3852 do_plt = 1;
3853 }
3854 }
3855 }
3856 else
3857 {
3858 bfd_vma *local_plt_offsets;
3859
3860 if (local_got_offsets == NULL)
3861 abort ();
3862
3863 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3864 off = local_plt_offsets[r_symndx];
3865
3866 /* As for the local .got entry case, we use the last
3867 bit to record whether we've already initialised
3868 this local .plt entry. */
3869 if ((off & 1) != 0)
3870 off &= ~1;
3871 else
3872 {
3873 local_plt_offsets[r_symndx] |= 1;
3874 do_plt = 1;
3875 }
3876 }
3877
3878 if (do_plt)
3879 {
3880 if (info->shared)
3881 {
3882 /* Output a dynamic IPLT relocation for this
3883 PLT entry. */
3884 Elf_Internal_Rela outrel;
3885 bfd_byte *loc;
3886 asection *s = htab->srelplt;
3887
3888 outrel.r_offset = (off
3889 + htab->splt->output_offset
3890 + htab->splt->output_section->vma);
3891 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3892 outrel.r_addend = relocation;
3893 loc = s->contents;
3894 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3895 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3896 }
3897 else
3898 {
3899 bfd_put_32 (output_bfd,
3900 relocation,
3901 htab->splt->contents + off);
3902 bfd_put_32 (output_bfd,
3903 elf_gp (htab->splt->output_section->owner),
3904 htab->splt->contents + off + 4);
3905 }
3906 }
3907
3908 if (off >= (bfd_vma) -2)
3909 abort ();
3910
3911 /* PLABELs contain function pointers. Relocation is to
3912 the entry for the function in the .plt. The magic +2
3913 offset signals to $$dyncall that the function pointer
3914 is in the .plt and thus has a gp pointer too.
3915 Exception: Undefined PLABELs should have a value of
3916 zero. */
3917 if (hh == NULL
3918 || (hh->eh.root.type != bfd_link_hash_undefweak
3919 && hh->eh.root.type != bfd_link_hash_undefined))
3920 {
3921 relocation = (off
3922 + htab->splt->output_offset
3923 + htab->splt->output_section->vma
3924 + 2);
3925 }
3926 plabel = 1;
3927 }
3928 /* Fall through and possibly emit a dynamic relocation. */
3929
3930 case R_PARISC_DIR17F:
3931 case R_PARISC_DIR17R:
3932 case R_PARISC_DIR14F:
3933 case R_PARISC_DIR14R:
3934 case R_PARISC_DIR21L:
3935 case R_PARISC_DPREL14F:
3936 case R_PARISC_DPREL14R:
3937 case R_PARISC_DPREL21L:
3938 case R_PARISC_DIR32:
3939 if ((input_section->flags & SEC_ALLOC) == 0)
3940 break;
3941
3942 /* The reloc types handled here and this conditional
3943 expression must match the code in ..check_relocs and
3944 allocate_dynrelocs. ie. We need exactly the same condition
3945 as in ..check_relocs, with some extra conditions (dynindx
3946 test in this case) to cater for relocs removed by
3947 allocate_dynrelocs. If you squint, the non-shared test
3948 here does indeed match the one in ..check_relocs, the
3949 difference being that here we test DEF_DYNAMIC as well as
3950 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3951 which is why we can't use just that test here.
3952 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3953 there all files have not been loaded. */
3954 if ((info->shared
3955 && (hh == NULL
3956 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
3957 || hh->eh.root.type != bfd_link_hash_undefweak)
3958 && (IS_ABSOLUTE_RELOC (r_type)
3959 || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
3960 || (!info->shared
3961 && hh != NULL
3962 && hh->eh.dynindx != -1
3963 && !hh->eh.non_got_ref
3964 && ((ELIMINATE_COPY_RELOCS
3965 && hh->eh.def_dynamic
3966 && !hh->eh.def_regular)
3967 || hh->eh.root.type == bfd_link_hash_undefweak
3968 || hh->eh.root.type == bfd_link_hash_undefined)))
3969 {
3970 Elf_Internal_Rela outrel;
3971 bfd_boolean skip;
3972 asection *sreloc;
3973 bfd_byte *loc;
3974
3975 /* When generating a shared object, these relocations
3976 are copied into the output file to be resolved at run
3977 time. */
3978
3979 outrel.r_addend = rela->r_addend;
3980 outrel.r_offset =
3981 _bfd_elf_section_offset (output_bfd, info, input_section,
3982 rela->r_offset);
3983 skip = (outrel.r_offset == (bfd_vma) -1
3984 || outrel.r_offset == (bfd_vma) -2);
3985 outrel.r_offset += (input_section->output_offset
3986 + input_section->output_section->vma);
3987
3988 if (skip)
3989 {
3990 memset (&outrel, 0, sizeof (outrel));
3991 }
3992 else if (hh != NULL
3993 && hh->eh.dynindx != -1
3994 && (plabel
3995 || !IS_ABSOLUTE_RELOC (r_type)
3996 || !info->shared
3997 || !info->symbolic
3998 || !hh->eh.def_regular))
3999 {
4000 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
4001 }
4002 else /* It's a local symbol, or one marked to become local. */
4003 {
4004 int indx = 0;
4005
4006 /* Add the absolute offset of the symbol. */
4007 outrel.r_addend += relocation;
4008
4009 /* Global plabels need to be processed by the
4010 dynamic linker so that functions have at most one
4011 fptr. For this reason, we need to differentiate
4012 between global and local plabels, which we do by
4013 providing the function symbol for a global plabel
4014 reloc, and no symbol for local plabels. */
4015 if (! plabel
4016 && sym_sec != NULL
4017 && sym_sec->output_section != NULL
4018 && ! bfd_is_abs_section (sym_sec))
4019 {
4020 asection *osec;
4021
4022 osec = sym_sec->output_section;
4023 indx = elf_section_data (osec)->dynindx;
4024 if (indx == 0)
4025 {
4026 osec = htab->etab.text_index_section;
4027 indx = elf_section_data (osec)->dynindx;
4028 }
4029 BFD_ASSERT (indx != 0);
4030
4031 /* We are turning this relocation into one
4032 against a section symbol, so subtract out the
4033 output section's address but not the offset
4034 of the input section in the output section. */
4035 outrel.r_addend -= osec->vma;
4036 }
4037
4038 outrel.r_info = ELF32_R_INFO (indx, r_type);
4039 }
4040 sreloc = elf_section_data (input_section)->sreloc;
4041 if (sreloc == NULL)
4042 abort ();
4043
4044 loc = sreloc->contents;
4045 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4046 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4047 }
4048 break;
4049
4050 case R_PARISC_TLS_LDM21L:
4051 case R_PARISC_TLS_LDM14R:
4052 {
4053 bfd_vma off;
4054
4055 off = htab->tls_ldm_got.offset;
4056 if (off & 1)
4057 off &= ~1;
4058 else
4059 {
4060 Elf_Internal_Rela outrel;
4061 bfd_byte *loc;
4062
4063 outrel.r_offset = (off
4064 + htab->sgot->output_section->vma
4065 + htab->sgot->output_offset);
4066 outrel.r_addend = 0;
4067 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
4068 loc = htab->srelgot->contents;
4069 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4070
4071 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4072 htab->tls_ldm_got.offset |= 1;
4073 }
4074
4075 /* Add the base of the GOT to the relocation value. */
4076 relocation = (off
4077 + htab->sgot->output_offset
4078 + htab->sgot->output_section->vma);
4079
4080 break;
4081 }
4082
4083 case R_PARISC_TLS_LDO21L:
4084 case R_PARISC_TLS_LDO14R:
4085 relocation -= dtpoff_base (info);
4086 break;
4087
4088 case R_PARISC_TLS_GD21L:
4089 case R_PARISC_TLS_GD14R:
4090 case R_PARISC_TLS_IE21L:
4091 case R_PARISC_TLS_IE14R:
4092 {
4093 bfd_vma off;
4094 int indx;
4095 char tls_type;
4096
4097 indx = 0;
4098 if (hh != NULL)
4099 {
4100 bfd_boolean dyn;
4101 dyn = htab->etab.dynamic_sections_created;
4102
4103 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &hh->eh)
4104 && (!info->shared
4105 || !SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4106 {
4107 indx = hh->eh.dynindx;
4108 }
4109 off = hh->eh.got.offset;
4110 tls_type = hh->tls_type;
4111 }
4112 else
4113 {
4114 off = local_got_offsets[r_symndx];
4115 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4116 }
4117
4118 if (tls_type == GOT_UNKNOWN)
4119 abort ();
4120
4121 if ((off & 1) != 0)
4122 off &= ~1;
4123 else
4124 {
4125 bfd_boolean need_relocs = FALSE;
4126 Elf_Internal_Rela outrel;
4127 bfd_byte *loc = NULL;
4128 int cur_off = off;
4129
4130 /* The GOT entries have not been initialized yet. Do it
4131 now, and emit any relocations. If both an IE GOT and a
4132 GD GOT are necessary, we emit the GD first. */
4133
4134 if ((info->shared || indx != 0)
4135 && (hh == NULL
4136 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
4137 || hh->eh.root.type != bfd_link_hash_undefweak))
4138 {
4139 need_relocs = TRUE;
4140 loc = htab->srelgot->contents;
4141 /* FIXME (CAO): Should this be reloc_count++ ? */
4142 loc += htab->srelgot->reloc_count * sizeof (Elf32_External_Rela);
4143 }
4144
4145 if (tls_type & GOT_TLS_GD)
4146 {
4147 if (need_relocs)
4148 {
4149 outrel.r_offset = (cur_off
4150 + htab->sgot->output_section->vma
4151 + htab->sgot->output_offset);
4152 outrel.r_info = ELF32_R_INFO (indx,R_PARISC_TLS_DTPMOD32);
4153 outrel.r_addend = 0;
4154 bfd_put_32 (output_bfd, 0, htab->sgot->contents + cur_off);
4155 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4156 htab->srelgot->reloc_count++;
4157 loc += sizeof (Elf32_External_Rela);
4158
4159 if (indx == 0)
4160 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4161 htab->sgot->contents + cur_off + 4);
4162 else
4163 {
4164 bfd_put_32 (output_bfd, 0,
4165 htab->sgot->contents + cur_off + 4);
4166 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4167 outrel.r_offset += 4;
4168 bfd_elf32_swap_reloca_out (output_bfd, &outrel,loc);
4169 htab->srelgot->reloc_count++;
4170 loc += sizeof (Elf32_External_Rela);
4171 }
4172 }
4173 else
4174 {
4175 /* If we are not emitting relocations for a
4176 general dynamic reference, then we must be in a
4177 static link or an executable link with the
4178 symbol binding locally. Mark it as belonging
4179 to module 1, the executable. */
4180 bfd_put_32 (output_bfd, 1,
4181 htab->sgot->contents + cur_off);
4182 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4183 htab->sgot->contents + cur_off + 4);
4184 }
4185
4186
4187 cur_off += 8;
4188 }
4189
4190 if (tls_type & GOT_TLS_IE)
4191 {
4192 if (need_relocs)
4193 {
4194 outrel.r_offset = (cur_off
4195 + htab->sgot->output_section->vma
4196 + htab->sgot->output_offset);
4197 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_TPREL32);
4198
4199 if (indx == 0)
4200 outrel.r_addend = relocation - dtpoff_base (info);
4201 else
4202 outrel.r_addend = 0;
4203
4204 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4205 htab->srelgot->reloc_count++;
4206 loc += sizeof (Elf32_External_Rela);
4207 }
4208 else
4209 bfd_put_32 (output_bfd, tpoff (info, relocation),
4210 htab->sgot->contents + cur_off);
4211
4212 cur_off += 4;
4213 }
4214
4215 if (hh != NULL)
4216 hh->eh.got.offset |= 1;
4217 else
4218 local_got_offsets[r_symndx] |= 1;
4219 }
4220
4221 if ((tls_type & GOT_TLS_GD)
4222 && r_type != R_PARISC_TLS_GD21L
4223 && r_type != R_PARISC_TLS_GD14R)
4224 off += 2 * GOT_ENTRY_SIZE;
4225
4226 /* Add the base of the GOT to the relocation value. */
4227 relocation = (off
4228 + htab->sgot->output_offset
4229 + htab->sgot->output_section->vma);
4230
4231 break;
4232 }
4233
4234 case R_PARISC_TLS_LE21L:
4235 case R_PARISC_TLS_LE14R:
4236 {
4237 relocation = tpoff (info, relocation);
4238 break;
4239 }
4240 break;
4241
4242 default:
4243 break;
4244 }
4245
4246 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4247 htab, sym_sec, hh, info);
4248
4249 if (rstatus == bfd_reloc_ok)
4250 continue;
4251
4252 if (hh != NULL)
4253 sym_name = hh_name (hh);
4254 else
4255 {
4256 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4257 symtab_hdr->sh_link,
4258 sym->st_name);
4259 if (sym_name == NULL)
4260 return FALSE;
4261 if (*sym_name == '\0')
4262 sym_name = bfd_section_name (input_bfd, sym_sec);
4263 }
4264
4265 howto = elf_hppa_howto_table + r_type;
4266
4267 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4268 {
4269 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4270 {
4271 (*_bfd_error_handler)
4272 (_("%B(%A+0x%lx): cannot handle %s for %s"),
4273 input_bfd,
4274 input_section,
4275 (long) rela->r_offset,
4276 howto->name,
4277 sym_name);
4278 bfd_set_error (bfd_error_bad_value);
4279 return FALSE;
4280 }
4281 }
4282 else
4283 {
4284 if (!((*info->callbacks->reloc_overflow)
4285 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4286 (bfd_vma) 0, input_bfd, input_section, rela->r_offset)))
4287 return FALSE;
4288 }
4289 }
4290
4291 return TRUE;
4292 }
4293
4294 /* Finish up dynamic symbol handling. We set the contents of various
4295 dynamic sections here. */
4296
4297 static bfd_boolean
4298 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4299 struct bfd_link_info *info,
4300 struct elf_link_hash_entry *eh,
4301 Elf_Internal_Sym *sym)
4302 {
4303 struct elf32_hppa_link_hash_table *htab;
4304 Elf_Internal_Rela rela;
4305 bfd_byte *loc;
4306
4307 htab = hppa_link_hash_table (info);
4308 if (htab == NULL)
4309 return FALSE;
4310
4311 if (eh->plt.offset != (bfd_vma) -1)
4312 {
4313 bfd_vma value;
4314
4315 if (eh->plt.offset & 1)
4316 abort ();
4317
4318 /* This symbol has an entry in the procedure linkage table. Set
4319 it up.
4320
4321 The format of a plt entry is
4322 <funcaddr>
4323 <__gp>
4324 */
4325 value = 0;
4326 if (eh->root.type == bfd_link_hash_defined
4327 || eh->root.type == bfd_link_hash_defweak)
4328 {
4329 value = eh->root.u.def.value;
4330 if (eh->root.u.def.section->output_section != NULL)
4331 value += (eh->root.u.def.section->output_offset
4332 + eh->root.u.def.section->output_section->vma);
4333 }
4334
4335 /* Create a dynamic IPLT relocation for this entry. */
4336 rela.r_offset = (eh->plt.offset
4337 + htab->splt->output_offset
4338 + htab->splt->output_section->vma);
4339 if (eh->dynindx != -1)
4340 {
4341 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4342 rela.r_addend = 0;
4343 }
4344 else
4345 {
4346 /* This symbol has been marked to become local, and is
4347 used by a plabel so must be kept in the .plt. */
4348 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4349 rela.r_addend = value;
4350 }
4351
4352 loc = htab->srelplt->contents;
4353 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4354 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rela, loc);
4355
4356 if (!eh->def_regular)
4357 {
4358 /* Mark the symbol as undefined, rather than as defined in
4359 the .plt section. Leave the value alone. */
4360 sym->st_shndx = SHN_UNDEF;
4361 }
4362 }
4363
4364 if (eh->got.offset != (bfd_vma) -1
4365 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_GD) == 0
4366 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_IE) == 0)
4367 {
4368 /* This symbol has an entry in the global offset table. Set it
4369 up. */
4370
4371 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4372 + htab->sgot->output_offset
4373 + htab->sgot->output_section->vma);
4374
4375 /* If this is a -Bsymbolic link and the symbol is defined
4376 locally or was forced to be local because of a version file,
4377 we just want to emit a RELATIVE reloc. The entry in the
4378 global offset table will already have been initialized in the
4379 relocate_section function. */
4380 if (info->shared
4381 && (info->symbolic || eh->dynindx == -1)
4382 && eh->def_regular)
4383 {
4384 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4385 rela.r_addend = (eh->root.u.def.value
4386 + eh->root.u.def.section->output_offset
4387 + eh->root.u.def.section->output_section->vma);
4388 }
4389 else
4390 {
4391 if ((eh->got.offset & 1) != 0)
4392 abort ();
4393
4394 bfd_put_32 (output_bfd, 0, htab->sgot->contents + (eh->got.offset & ~1));
4395 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4396 rela.r_addend = 0;
4397 }
4398
4399 loc = htab->srelgot->contents;
4400 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4401 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4402 }
4403
4404 if (eh->needs_copy)
4405 {
4406 asection *sec;
4407
4408 /* This symbol needs a copy reloc. Set it up. */
4409
4410 if (! (eh->dynindx != -1
4411 && (eh->root.type == bfd_link_hash_defined
4412 || eh->root.type == bfd_link_hash_defweak)))
4413 abort ();
4414
4415 sec = htab->srelbss;
4416
4417 rela.r_offset = (eh->root.u.def.value
4418 + eh->root.u.def.section->output_offset
4419 + eh->root.u.def.section->output_section->vma);
4420 rela.r_addend = 0;
4421 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4422 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4423 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4424 }
4425
4426 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4427 if (eh == htab->etab.hdynamic || eh == htab->etab.hgot)
4428 {
4429 sym->st_shndx = SHN_ABS;
4430 }
4431
4432 return TRUE;
4433 }
4434
4435 /* Used to decide how to sort relocs in an optimal manner for the
4436 dynamic linker, before writing them out. */
4437
4438 static enum elf_reloc_type_class
4439 elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
4440 {
4441 /* Handle TLS relocs first; we don't want them to be marked
4442 relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)"
4443 check below. */
4444 switch ((int) ELF32_R_TYPE (rela->r_info))
4445 {
4446 case R_PARISC_TLS_DTPMOD32:
4447 case R_PARISC_TLS_DTPOFF32:
4448 case R_PARISC_TLS_TPREL32:
4449 return reloc_class_normal;
4450 }
4451
4452 if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)
4453 return reloc_class_relative;
4454
4455 switch ((int) ELF32_R_TYPE (rela->r_info))
4456 {
4457 case R_PARISC_IPLT:
4458 return reloc_class_plt;
4459 case R_PARISC_COPY:
4460 return reloc_class_copy;
4461 default:
4462 return reloc_class_normal;
4463 }
4464 }
4465
4466 /* Finish up the dynamic sections. */
4467
4468 static bfd_boolean
4469 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4470 struct bfd_link_info *info)
4471 {
4472 bfd *dynobj;
4473 struct elf32_hppa_link_hash_table *htab;
4474 asection *sdyn;
4475 asection * sgot;
4476
4477 htab = hppa_link_hash_table (info);
4478 if (htab == NULL)
4479 return FALSE;
4480
4481 dynobj = htab->etab.dynobj;
4482
4483 sgot = htab->sgot;
4484 /* A broken linker script might have discarded the dynamic sections.
4485 Catch this here so that we do not seg-fault later on. */
4486 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
4487 return FALSE;
4488
4489 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4490
4491 if (htab->etab.dynamic_sections_created)
4492 {
4493 Elf32_External_Dyn *dyncon, *dynconend;
4494
4495 if (sdyn == NULL)
4496 abort ();
4497
4498 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4499 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4500 for (; dyncon < dynconend; dyncon++)
4501 {
4502 Elf_Internal_Dyn dyn;
4503 asection *s;
4504
4505 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4506
4507 switch (dyn.d_tag)
4508 {
4509 default:
4510 continue;
4511
4512 case DT_PLTGOT:
4513 /* Use PLTGOT to set the GOT register. */
4514 dyn.d_un.d_ptr = elf_gp (output_bfd);
4515 break;
4516
4517 case DT_JMPREL:
4518 s = htab->srelplt;
4519 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4520 break;
4521
4522 case DT_PLTRELSZ:
4523 s = htab->srelplt;
4524 dyn.d_un.d_val = s->size;
4525 break;
4526
4527 case DT_RELASZ:
4528 /* Don't count procedure linkage table relocs in the
4529 overall reloc count. */
4530 s = htab->srelplt;
4531 if (s == NULL)
4532 continue;
4533 dyn.d_un.d_val -= s->size;
4534 break;
4535
4536 case DT_RELA:
4537 /* We may not be using the standard ELF linker script.
4538 If .rela.plt is the first .rela section, we adjust
4539 DT_RELA to not include it. */
4540 s = htab->srelplt;
4541 if (s == NULL)
4542 continue;
4543 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4544 continue;
4545 dyn.d_un.d_ptr += s->size;
4546 break;
4547 }
4548
4549 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4550 }
4551 }
4552
4553 if (sgot != NULL && sgot->size != 0)
4554 {
4555 /* Fill in the first entry in the global offset table.
4556 We use it to point to our dynamic section, if we have one. */
4557 bfd_put_32 (output_bfd,
4558 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4559 sgot->contents);
4560
4561 /* The second entry is reserved for use by the dynamic linker. */
4562 memset (sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4563
4564 /* Set .got entry size. */
4565 elf_section_data (sgot->output_section)
4566 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4567 }
4568
4569 if (htab->splt != NULL && htab->splt->size != 0)
4570 {
4571 /* Set plt entry size. */
4572 elf_section_data (htab->splt->output_section)
4573 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4574
4575 if (htab->need_plt_stub)
4576 {
4577 /* Set up the .plt stub. */
4578 memcpy (htab->splt->contents
4579 + htab->splt->size - sizeof (plt_stub),
4580 plt_stub, sizeof (plt_stub));
4581
4582 if ((htab->splt->output_offset
4583 + htab->splt->output_section->vma
4584 + htab->splt->size)
4585 != (sgot->output_offset
4586 + sgot->output_section->vma))
4587 {
4588 (*_bfd_error_handler)
4589 (_(".got section not immediately after .plt section"));
4590 return FALSE;
4591 }
4592 }
4593 }
4594
4595 return TRUE;
4596 }
4597
4598 /* Called when writing out an object file to decide the type of a
4599 symbol. */
4600 static int
4601 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4602 {
4603 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4604 return STT_PARISC_MILLI;
4605 else
4606 return type;
4607 }
4608
4609 /* Misc BFD support code. */
4610 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4611 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4612 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4613 #define elf_info_to_howto elf_hppa_info_to_howto
4614 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4615
4616 /* Stuff for the BFD linker. */
4617 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4618 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4619 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4620 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4621 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4622 #define elf_backend_check_relocs elf32_hppa_check_relocs
4623 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4624 #define elf_backend_fake_sections elf_hppa_fake_sections
4625 #define elf_backend_relocate_section elf32_hppa_relocate_section
4626 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4627 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4628 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4629 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4630 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4631 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4632 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4633 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4634 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4635 #define elf_backend_object_p elf32_hppa_object_p
4636 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4637 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4638 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4639 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4640 #define elf_backend_action_discarded elf_hppa_action_discarded
4641
4642 #define elf_backend_can_gc_sections 1
4643 #define elf_backend_can_refcount 1
4644 #define elf_backend_plt_alignment 2
4645 #define elf_backend_want_got_plt 0
4646 #define elf_backend_plt_readonly 0
4647 #define elf_backend_want_plt_sym 0
4648 #define elf_backend_got_header_size 8
4649 #define elf_backend_rela_normal 1
4650
4651 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4652 #define TARGET_BIG_NAME "elf32-hppa"
4653 #define ELF_ARCH bfd_arch_hppa
4654 #define ELF_TARGET_ID HPPA32_ELF_DATA
4655 #define ELF_MACHINE_CODE EM_PARISC
4656 #define ELF_MAXPAGESIZE 0x1000
4657 #define ELF_OSABI ELFOSABI_HPUX
4658 #define elf32_bed elf32_hppa_hpux_bed
4659
4660 #include "elf32-target.h"
4661
4662 #undef TARGET_BIG_SYM
4663 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4664 #undef TARGET_BIG_NAME
4665 #define TARGET_BIG_NAME "elf32-hppa-linux"
4666 #undef ELF_OSABI
4667 #define ELF_OSABI ELFOSABI_GNU
4668 #undef elf32_bed
4669 #define elf32_bed elf32_hppa_linux_bed
4670
4671 #include "elf32-target.h"
4672
4673 #undef TARGET_BIG_SYM
4674 #define TARGET_BIG_SYM bfd_elf32_hppa_nbsd_vec
4675 #undef TARGET_BIG_NAME
4676 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4677 #undef ELF_OSABI
4678 #define ELF_OSABI ELFOSABI_NETBSD
4679 #undef elf32_bed
4680 #define elf32_bed elf32_hppa_netbsd_bed
4681
4682 #include "elf32-target.h"
This page took 0.207468 seconds and 4 git commands to generate.