Use %pA and %pB in messages rather than %A and %B
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright (C) 1990-2018 Free Software Foundation, Inc.
3
4 Original code by
5 Center for Software Science
6 Department of Computer Science
7 University of Utah
8 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
9 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
10 TLS support written by Randolph Chung <tausq@debian.org>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
28
29 #include "sysdep.h"
30 #include "bfd.h"
31 #include "libbfd.h"
32 #include "elf-bfd.h"
33 #include "elf/hppa.h"
34 #include "libhppa.h"
35 #include "elf32-hppa.h"
36 #define ARCH_SIZE 32
37 #include "elf32-hppa.h"
38 #include "elf-hppa.h"
39
40 /* In order to gain some understanding of code in this file without
41 knowing all the intricate details of the linker, note the
42 following:
43
44 Functions named elf32_hppa_* are called by external routines, other
45 functions are only called locally. elf32_hppa_* functions appear
46 in this file more or less in the order in which they are called
47 from external routines. eg. elf32_hppa_check_relocs is called
48 early in the link process, elf32_hppa_finish_dynamic_sections is
49 one of the last functions. */
50
51 /* We use two hash tables to hold information for linking PA ELF objects.
52
53 The first is the elf32_hppa_link_hash_table which is derived
54 from the standard ELF linker hash table. We use this as a place to
55 attach other hash tables and static information.
56
57 The second is the stub hash table which is derived from the
58 base BFD hash table. The stub hash table holds the information
59 necessary to build the linker stubs during a link.
60
61 There are a number of different stubs generated by the linker.
62
63 Long branch stub:
64 : ldil LR'X,%r1
65 : be,n RR'X(%sr4,%r1)
66
67 PIC long branch stub:
68 : b,l .+8,%r1
69 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
70 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
71
72 Import stub to call shared library routine from normal object file
73 (single sub-space version)
74 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
75 : ldw RR'lt_ptr+ltoff(%r1),%r21
76 : bv %r0(%r21)
77 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
78
79 Import stub to call shared library routine from shared library
80 (single sub-space version)
81 : addil LR'ltoff,%r19 ; get procedure entry point
82 : ldw RR'ltoff(%r1),%r21
83 : bv %r0(%r21)
84 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
85
86 Import stub to call shared library routine from normal object file
87 (multiple sub-space support)
88 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
89 : ldw RR'lt_ptr+ltoff(%r1),%r21
90 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
91 : ldsid (%r21),%r1
92 : mtsp %r1,%sr0
93 : be 0(%sr0,%r21) ; branch to target
94 : stw %rp,-24(%sp) ; save rp
95
96 Import stub to call shared library routine from shared library
97 (multiple sub-space support)
98 : addil LR'ltoff,%r19 ; get procedure entry point
99 : ldw RR'ltoff(%r1),%r21
100 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
101 : ldsid (%r21),%r1
102 : mtsp %r1,%sr0
103 : be 0(%sr0,%r21) ; branch to target
104 : stw %rp,-24(%sp) ; save rp
105
106 Export stub to return from shared lib routine (multiple sub-space support)
107 One of these is created for each exported procedure in a shared
108 library (and stored in the shared lib). Shared lib routines are
109 called via the first instruction in the export stub so that we can
110 do an inter-space return. Not required for single sub-space.
111 : bl,n X,%rp ; trap the return
112 : nop
113 : ldw -24(%sp),%rp ; restore the original rp
114 : ldsid (%rp),%r1
115 : mtsp %r1,%sr0
116 : be,n 0(%sr0,%rp) ; inter-space return. */
117
118
119 /* Variable names follow a coding style.
120 Please follow this (Apps Hungarian) style:
121
122 Structure/Variable Prefix
123 elf_link_hash_table "etab"
124 elf_link_hash_entry "eh"
125
126 elf32_hppa_link_hash_table "htab"
127 elf32_hppa_link_hash_entry "hh"
128
129 bfd_hash_table "btab"
130 bfd_hash_entry "bh"
131
132 bfd_hash_table containing stubs "bstab"
133 elf32_hppa_stub_hash_entry "hsh"
134
135 Always remember to use GNU Coding Style. */
136
137 #define PLT_ENTRY_SIZE 8
138 #define GOT_ENTRY_SIZE 4
139 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
140
141 static const bfd_byte plt_stub[] =
142 {
143 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
144 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
145 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
146 #define PLT_STUB_ENTRY (3*4)
147 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
148 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
149 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
150 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
151 };
152
153 /* Section name for stubs is the associated section name plus this
154 string. */
155 #define STUB_SUFFIX ".stub"
156
157 /* We don't need to copy certain PC- or GP-relative dynamic relocs
158 into a shared object's dynamic section. All the relocs of the
159 limited class we are interested in, are absolute. */
160 #ifndef RELATIVE_DYNRELOCS
161 #define RELATIVE_DYNRELOCS 0
162 #define IS_ABSOLUTE_RELOC(r_type) 1
163 #define pc_dynrelocs(hh) 0
164 #endif
165
166 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
167 copying dynamic variables from a shared lib into an app's dynbss
168 section, and instead use a dynamic relocation to point into the
169 shared lib. */
170 #define ELIMINATE_COPY_RELOCS 1
171
172 enum elf32_hppa_stub_type
173 {
174 hppa_stub_long_branch,
175 hppa_stub_long_branch_shared,
176 hppa_stub_import,
177 hppa_stub_import_shared,
178 hppa_stub_export,
179 hppa_stub_none
180 };
181
182 struct elf32_hppa_stub_hash_entry
183 {
184 /* Base hash table entry structure. */
185 struct bfd_hash_entry bh_root;
186
187 /* The stub section. */
188 asection *stub_sec;
189
190 /* Offset within stub_sec of the beginning of this stub. */
191 bfd_vma stub_offset;
192
193 /* Given the symbol's value and its section we can determine its final
194 value when building the stubs (so the stub knows where to jump. */
195 bfd_vma target_value;
196 asection *target_section;
197
198 enum elf32_hppa_stub_type stub_type;
199
200 /* The symbol table entry, if any, that this was derived from. */
201 struct elf32_hppa_link_hash_entry *hh;
202
203 /* Where this stub is being called from, or, in the case of combined
204 stub sections, the first input section in the group. */
205 asection *id_sec;
206 };
207
208 enum _tls_type
209 {
210 GOT_UNKNOWN = 0,
211 GOT_NORMAL = 1,
212 GOT_TLS_GD = 2,
213 GOT_TLS_LDM = 4,
214 GOT_TLS_IE = 8
215 };
216
217 struct elf32_hppa_link_hash_entry
218 {
219 struct elf_link_hash_entry eh;
220
221 /* A pointer to the most recently used stub hash entry against this
222 symbol. */
223 struct elf32_hppa_stub_hash_entry *hsh_cache;
224
225 /* Used to count relocations for delayed sizing of relocation
226 sections. */
227 struct elf_dyn_relocs *dyn_relocs;
228
229 ENUM_BITFIELD (_tls_type) tls_type : 8;
230
231 /* Set if this symbol is used by a plabel reloc. */
232 unsigned int plabel:1;
233 };
234
235 struct elf32_hppa_link_hash_table
236 {
237 /* The main hash table. */
238 struct elf_link_hash_table etab;
239
240 /* The stub hash table. */
241 struct bfd_hash_table bstab;
242
243 /* Linker stub bfd. */
244 bfd *stub_bfd;
245
246 /* Linker call-backs. */
247 asection * (*add_stub_section) (const char *, asection *);
248 void (*layout_sections_again) (void);
249
250 /* Array to keep track of which stub sections have been created, and
251 information on stub grouping. */
252 struct map_stub
253 {
254 /* This is the section to which stubs in the group will be
255 attached. */
256 asection *link_sec;
257 /* The stub section. */
258 asection *stub_sec;
259 } *stub_group;
260
261 /* Assorted information used by elf32_hppa_size_stubs. */
262 unsigned int bfd_count;
263 unsigned int top_index;
264 asection **input_list;
265 Elf_Internal_Sym **all_local_syms;
266
267 /* Used during a final link to store the base of the text and data
268 segments so that we can perform SEGREL relocations. */
269 bfd_vma text_segment_base;
270 bfd_vma data_segment_base;
271
272 /* Whether we support multiple sub-spaces for shared libs. */
273 unsigned int multi_subspace:1;
274
275 /* Flags set when various size branches are detected. Used to
276 select suitable defaults for the stub group size. */
277 unsigned int has_12bit_branch:1;
278 unsigned int has_17bit_branch:1;
279 unsigned int has_22bit_branch:1;
280
281 /* Set if we need a .plt stub to support lazy dynamic linking. */
282 unsigned int need_plt_stub:1;
283
284 /* Small local sym cache. */
285 struct sym_cache sym_cache;
286
287 /* Data for LDM relocations. */
288 union
289 {
290 bfd_signed_vma refcount;
291 bfd_vma offset;
292 } tls_ldm_got;
293 };
294
295 /* Various hash macros and functions. */
296 #define hppa_link_hash_table(p) \
297 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
298 == HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL)
299
300 #define hppa_elf_hash_entry(ent) \
301 ((struct elf32_hppa_link_hash_entry *)(ent))
302
303 #define hppa_stub_hash_entry(ent) \
304 ((struct elf32_hppa_stub_hash_entry *)(ent))
305
306 #define hppa_stub_hash_lookup(table, string, create, copy) \
307 ((struct elf32_hppa_stub_hash_entry *) \
308 bfd_hash_lookup ((table), (string), (create), (copy)))
309
310 #define hppa_elf_local_got_tls_type(abfd) \
311 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
312
313 #define hh_name(hh) \
314 (hh ? hh->eh.root.root.string : "<undef>")
315
316 #define eh_name(eh) \
317 (eh ? eh->root.root.string : "<undef>")
318
319 /* Assorted hash table functions. */
320
321 /* Initialize an entry in the stub hash table. */
322
323 static struct bfd_hash_entry *
324 stub_hash_newfunc (struct bfd_hash_entry *entry,
325 struct bfd_hash_table *table,
326 const char *string)
327 {
328 /* Allocate the structure if it has not already been allocated by a
329 subclass. */
330 if (entry == NULL)
331 {
332 entry = bfd_hash_allocate (table,
333 sizeof (struct elf32_hppa_stub_hash_entry));
334 if (entry == NULL)
335 return entry;
336 }
337
338 /* Call the allocation method of the superclass. */
339 entry = bfd_hash_newfunc (entry, table, string);
340 if (entry != NULL)
341 {
342 struct elf32_hppa_stub_hash_entry *hsh;
343
344 /* Initialize the local fields. */
345 hsh = hppa_stub_hash_entry (entry);
346 hsh->stub_sec = NULL;
347 hsh->stub_offset = 0;
348 hsh->target_value = 0;
349 hsh->target_section = NULL;
350 hsh->stub_type = hppa_stub_long_branch;
351 hsh->hh = NULL;
352 hsh->id_sec = NULL;
353 }
354
355 return entry;
356 }
357
358 /* Initialize an entry in the link hash table. */
359
360 static struct bfd_hash_entry *
361 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
362 struct bfd_hash_table *table,
363 const char *string)
364 {
365 /* Allocate the structure if it has not already been allocated by a
366 subclass. */
367 if (entry == NULL)
368 {
369 entry = bfd_hash_allocate (table,
370 sizeof (struct elf32_hppa_link_hash_entry));
371 if (entry == NULL)
372 return entry;
373 }
374
375 /* Call the allocation method of the superclass. */
376 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
377 if (entry != NULL)
378 {
379 struct elf32_hppa_link_hash_entry *hh;
380
381 /* Initialize the local fields. */
382 hh = hppa_elf_hash_entry (entry);
383 hh->hsh_cache = NULL;
384 hh->dyn_relocs = NULL;
385 hh->plabel = 0;
386 hh->tls_type = GOT_UNKNOWN;
387 }
388
389 return entry;
390 }
391
392 /* Free the derived linker hash table. */
393
394 static void
395 elf32_hppa_link_hash_table_free (bfd *obfd)
396 {
397 struct elf32_hppa_link_hash_table *htab
398 = (struct elf32_hppa_link_hash_table *) obfd->link.hash;
399
400 bfd_hash_table_free (&htab->bstab);
401 _bfd_elf_link_hash_table_free (obfd);
402 }
403
404 /* Create the derived linker hash table. The PA ELF port uses the derived
405 hash table to keep information specific to the PA ELF linker (without
406 using static variables). */
407
408 static struct bfd_link_hash_table *
409 elf32_hppa_link_hash_table_create (bfd *abfd)
410 {
411 struct elf32_hppa_link_hash_table *htab;
412 bfd_size_type amt = sizeof (*htab);
413
414 htab = bfd_zmalloc (amt);
415 if (htab == NULL)
416 return NULL;
417
418 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
419 sizeof (struct elf32_hppa_link_hash_entry),
420 HPPA32_ELF_DATA))
421 {
422 free (htab);
423 return NULL;
424 }
425
426 /* Init the stub hash table too. */
427 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
428 sizeof (struct elf32_hppa_stub_hash_entry)))
429 {
430 _bfd_elf_link_hash_table_free (abfd);
431 return NULL;
432 }
433 htab->etab.root.hash_table_free = elf32_hppa_link_hash_table_free;
434
435 htab->text_segment_base = (bfd_vma) -1;
436 htab->data_segment_base = (bfd_vma) -1;
437 return &htab->etab.root;
438 }
439
440 /* Initialize the linker stubs BFD so that we can use it for linker
441 created dynamic sections. */
442
443 void
444 elf32_hppa_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
445 {
446 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
447
448 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS32;
449 htab->etab.dynobj = abfd;
450 }
451
452 /* Build a name for an entry in the stub hash table. */
453
454 static char *
455 hppa_stub_name (const asection *input_section,
456 const asection *sym_sec,
457 const struct elf32_hppa_link_hash_entry *hh,
458 const Elf_Internal_Rela *rela)
459 {
460 char *stub_name;
461 bfd_size_type len;
462
463 if (hh)
464 {
465 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
466 stub_name = bfd_malloc (len);
467 if (stub_name != NULL)
468 sprintf (stub_name, "%08x_%s+%x",
469 input_section->id & 0xffffffff,
470 hh_name (hh),
471 (int) rela->r_addend & 0xffffffff);
472 }
473 else
474 {
475 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
476 stub_name = bfd_malloc (len);
477 if (stub_name != NULL)
478 sprintf (stub_name, "%08x_%x:%x+%x",
479 input_section->id & 0xffffffff,
480 sym_sec->id & 0xffffffff,
481 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
482 (int) rela->r_addend & 0xffffffff);
483 }
484 return stub_name;
485 }
486
487 /* Look up an entry in the stub hash. Stub entries are cached because
488 creating the stub name takes a bit of time. */
489
490 static struct elf32_hppa_stub_hash_entry *
491 hppa_get_stub_entry (const asection *input_section,
492 const asection *sym_sec,
493 struct elf32_hppa_link_hash_entry *hh,
494 const Elf_Internal_Rela *rela,
495 struct elf32_hppa_link_hash_table *htab)
496 {
497 struct elf32_hppa_stub_hash_entry *hsh_entry;
498 const asection *id_sec;
499
500 /* If this input section is part of a group of sections sharing one
501 stub section, then use the id of the first section in the group.
502 Stub names need to include a section id, as there may well be
503 more than one stub used to reach say, printf, and we need to
504 distinguish between them. */
505 id_sec = htab->stub_group[input_section->id].link_sec;
506
507 if (hh != NULL && hh->hsh_cache != NULL
508 && hh->hsh_cache->hh == hh
509 && hh->hsh_cache->id_sec == id_sec)
510 {
511 hsh_entry = hh->hsh_cache;
512 }
513 else
514 {
515 char *stub_name;
516
517 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
518 if (stub_name == NULL)
519 return NULL;
520
521 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
522 stub_name, FALSE, FALSE);
523 if (hh != NULL)
524 hh->hsh_cache = hsh_entry;
525
526 free (stub_name);
527 }
528
529 return hsh_entry;
530 }
531
532 /* Add a new stub entry to the stub hash. Not all fields of the new
533 stub entry are initialised. */
534
535 static struct elf32_hppa_stub_hash_entry *
536 hppa_add_stub (const char *stub_name,
537 asection *section,
538 struct elf32_hppa_link_hash_table *htab)
539 {
540 asection *link_sec;
541 asection *stub_sec;
542 struct elf32_hppa_stub_hash_entry *hsh;
543
544 link_sec = htab->stub_group[section->id].link_sec;
545 stub_sec = htab->stub_group[section->id].stub_sec;
546 if (stub_sec == NULL)
547 {
548 stub_sec = htab->stub_group[link_sec->id].stub_sec;
549 if (stub_sec == NULL)
550 {
551 size_t namelen;
552 bfd_size_type len;
553 char *s_name;
554
555 namelen = strlen (link_sec->name);
556 len = namelen + sizeof (STUB_SUFFIX);
557 s_name = bfd_alloc (htab->stub_bfd, len);
558 if (s_name == NULL)
559 return NULL;
560
561 memcpy (s_name, link_sec->name, namelen);
562 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
563 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
564 if (stub_sec == NULL)
565 return NULL;
566 htab->stub_group[link_sec->id].stub_sec = stub_sec;
567 }
568 htab->stub_group[section->id].stub_sec = stub_sec;
569 }
570
571 /* Enter this entry into the linker stub hash table. */
572 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
573 TRUE, FALSE);
574 if (hsh == NULL)
575 {
576 /* xgettext:c-format */
577 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
578 section->owner, stub_name);
579 return NULL;
580 }
581
582 hsh->stub_sec = stub_sec;
583 hsh->stub_offset = 0;
584 hsh->id_sec = link_sec;
585 return hsh;
586 }
587
588 /* Determine the type of stub needed, if any, for a call. */
589
590 static enum elf32_hppa_stub_type
591 hppa_type_of_stub (asection *input_sec,
592 const Elf_Internal_Rela *rela,
593 struct elf32_hppa_link_hash_entry *hh,
594 bfd_vma destination,
595 struct bfd_link_info *info)
596 {
597 bfd_vma location;
598 bfd_vma branch_offset;
599 bfd_vma max_branch_offset;
600 unsigned int r_type;
601
602 if (hh != NULL
603 && hh->eh.plt.offset != (bfd_vma) -1
604 && hh->eh.dynindx != -1
605 && !hh->plabel
606 && (bfd_link_pic (info)
607 || !hh->eh.def_regular
608 || hh->eh.root.type == bfd_link_hash_defweak))
609 {
610 /* We need an import stub. Decide between hppa_stub_import
611 and hppa_stub_import_shared later. */
612 return hppa_stub_import;
613 }
614
615 /* Determine where the call point is. */
616 location = (input_sec->output_offset
617 + input_sec->output_section->vma
618 + rela->r_offset);
619
620 branch_offset = destination - location - 8;
621 r_type = ELF32_R_TYPE (rela->r_info);
622
623 /* Determine if a long branch stub is needed. parisc branch offsets
624 are relative to the second instruction past the branch, ie. +8
625 bytes on from the branch instruction location. The offset is
626 signed and counts in units of 4 bytes. */
627 if (r_type == (unsigned int) R_PARISC_PCREL17F)
628 max_branch_offset = (1 << (17 - 1)) << 2;
629
630 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
631 max_branch_offset = (1 << (12 - 1)) << 2;
632
633 else /* R_PARISC_PCREL22F. */
634 max_branch_offset = (1 << (22 - 1)) << 2;
635
636 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
637 return hppa_stub_long_branch;
638
639 return hppa_stub_none;
640 }
641
642 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
643 IN_ARG contains the link info pointer. */
644
645 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
646 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
647
648 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
649 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
650 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
651
652 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
653 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
654 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
655 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
656
657 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
658 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
659
660 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
661 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
662 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
663 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
664
665 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
666 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
667 #define NOP 0x08000240 /* nop */
668 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
669 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
670 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
671
672 #ifndef R19_STUBS
673 #define R19_STUBS 1
674 #endif
675
676 #if R19_STUBS
677 #define LDW_R1_DLT LDW_R1_R19
678 #else
679 #define LDW_R1_DLT LDW_R1_DP
680 #endif
681
682 static bfd_boolean
683 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
684 {
685 struct elf32_hppa_stub_hash_entry *hsh;
686 struct bfd_link_info *info;
687 struct elf32_hppa_link_hash_table *htab;
688 asection *stub_sec;
689 bfd *stub_bfd;
690 bfd_byte *loc;
691 bfd_vma sym_value;
692 bfd_vma insn;
693 bfd_vma off;
694 int val;
695 int size;
696
697 /* Massage our args to the form they really have. */
698 hsh = hppa_stub_hash_entry (bh);
699 info = (struct bfd_link_info *)in_arg;
700
701 htab = hppa_link_hash_table (info);
702 if (htab == NULL)
703 return FALSE;
704
705 stub_sec = hsh->stub_sec;
706
707 /* Make a note of the offset within the stubs for this entry. */
708 hsh->stub_offset = stub_sec->size;
709 loc = stub_sec->contents + hsh->stub_offset;
710
711 stub_bfd = stub_sec->owner;
712
713 switch (hsh->stub_type)
714 {
715 case hppa_stub_long_branch:
716 /* Create the long branch. A long branch is formed with "ldil"
717 loading the upper bits of the target address into a register,
718 then branching with "be" which adds in the lower bits.
719 The "be" has its delay slot nullified. */
720 sym_value = (hsh->target_value
721 + hsh->target_section->output_offset
722 + hsh->target_section->output_section->vma);
723
724 val = hppa_field_adjust (sym_value, 0, e_lrsel);
725 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
726 bfd_put_32 (stub_bfd, insn, loc);
727
728 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
729 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
730 bfd_put_32 (stub_bfd, insn, loc + 4);
731
732 size = 8;
733 break;
734
735 case hppa_stub_long_branch_shared:
736 /* Branches are relative. This is where we are going to. */
737 sym_value = (hsh->target_value
738 + hsh->target_section->output_offset
739 + hsh->target_section->output_section->vma);
740
741 /* And this is where we are coming from, more or less. */
742 sym_value -= (hsh->stub_offset
743 + stub_sec->output_offset
744 + stub_sec->output_section->vma);
745
746 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
747 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
748 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
749 bfd_put_32 (stub_bfd, insn, loc + 4);
750
751 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
752 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
753 bfd_put_32 (stub_bfd, insn, loc + 8);
754 size = 12;
755 break;
756
757 case hppa_stub_import:
758 case hppa_stub_import_shared:
759 off = hsh->hh->eh.plt.offset;
760 if (off >= (bfd_vma) -2)
761 abort ();
762
763 off &= ~ (bfd_vma) 1;
764 sym_value = (off
765 + htab->etab.splt->output_offset
766 + htab->etab.splt->output_section->vma
767 - elf_gp (htab->etab.splt->output_section->owner));
768
769 insn = ADDIL_DP;
770 #if R19_STUBS
771 if (hsh->stub_type == hppa_stub_import_shared)
772 insn = ADDIL_R19;
773 #endif
774 val = hppa_field_adjust (sym_value, 0, e_lrsel),
775 insn = hppa_rebuild_insn ((int) insn, val, 21);
776 bfd_put_32 (stub_bfd, insn, loc);
777
778 /* It is critical to use lrsel/rrsel here because we are using
779 two different offsets (+0 and +4) from sym_value. If we use
780 lsel/rsel then with unfortunate sym_values we will round
781 sym_value+4 up to the next 2k block leading to a mis-match
782 between the lsel and rsel value. */
783 val = hppa_field_adjust (sym_value, 0, e_rrsel);
784 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
785 bfd_put_32 (stub_bfd, insn, loc + 4);
786
787 if (htab->multi_subspace)
788 {
789 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
790 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
791 bfd_put_32 (stub_bfd, insn, loc + 8);
792
793 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
794 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
795 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
796 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
797
798 size = 28;
799 }
800 else
801 {
802 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
803 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
804 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
805 bfd_put_32 (stub_bfd, insn, loc + 12);
806
807 size = 16;
808 }
809
810 break;
811
812 case hppa_stub_export:
813 /* Branches are relative. This is where we are going to. */
814 sym_value = (hsh->target_value
815 + hsh->target_section->output_offset
816 + hsh->target_section->output_section->vma);
817
818 /* And this is where we are coming from. */
819 sym_value -= (hsh->stub_offset
820 + stub_sec->output_offset
821 + stub_sec->output_section->vma);
822
823 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
824 && (!htab->has_22bit_branch
825 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
826 {
827 _bfd_error_handler
828 /* xgettext:c-format */
829 (_("%pB(%pA+%#Lx): cannot reach %s, recompile with -ffunction-sections"),
830 hsh->target_section->owner,
831 stub_sec,
832 hsh->stub_offset,
833 hsh->bh_root.string);
834 bfd_set_error (bfd_error_bad_value);
835 return FALSE;
836 }
837
838 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
839 if (!htab->has_22bit_branch)
840 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
841 else
842 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
843 bfd_put_32 (stub_bfd, insn, loc);
844
845 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
846 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
847 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
848 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
849 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
850
851 /* Point the function symbol at the stub. */
852 hsh->hh->eh.root.u.def.section = stub_sec;
853 hsh->hh->eh.root.u.def.value = stub_sec->size;
854
855 size = 24;
856 break;
857
858 default:
859 BFD_FAIL ();
860 return FALSE;
861 }
862
863 stub_sec->size += size;
864 return TRUE;
865 }
866
867 #undef LDIL_R1
868 #undef BE_SR4_R1
869 #undef BL_R1
870 #undef ADDIL_R1
871 #undef DEPI_R1
872 #undef LDW_R1_R21
873 #undef LDW_R1_DLT
874 #undef LDW_R1_R19
875 #undef ADDIL_R19
876 #undef LDW_R1_DP
877 #undef LDSID_R21_R1
878 #undef MTSP_R1
879 #undef BE_SR0_R21
880 #undef STW_RP
881 #undef BV_R0_R21
882 #undef BL_RP
883 #undef NOP
884 #undef LDW_RP
885 #undef LDSID_RP_R1
886 #undef BE_SR0_RP
887
888 /* As above, but don't actually build the stub. Just bump offset so
889 we know stub section sizes. */
890
891 static bfd_boolean
892 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
893 {
894 struct elf32_hppa_stub_hash_entry *hsh;
895 struct elf32_hppa_link_hash_table *htab;
896 int size;
897
898 /* Massage our args to the form they really have. */
899 hsh = hppa_stub_hash_entry (bh);
900 htab = in_arg;
901
902 if (hsh->stub_type == hppa_stub_long_branch)
903 size = 8;
904 else if (hsh->stub_type == hppa_stub_long_branch_shared)
905 size = 12;
906 else if (hsh->stub_type == hppa_stub_export)
907 size = 24;
908 else /* hppa_stub_import or hppa_stub_import_shared. */
909 {
910 if (htab->multi_subspace)
911 size = 28;
912 else
913 size = 16;
914 }
915
916 hsh->stub_sec->size += size;
917 return TRUE;
918 }
919
920 /* Return nonzero if ABFD represents an HPPA ELF32 file.
921 Additionally we set the default architecture and machine. */
922
923 static bfd_boolean
924 elf32_hppa_object_p (bfd *abfd)
925 {
926 Elf_Internal_Ehdr * i_ehdrp;
927 unsigned int flags;
928
929 i_ehdrp = elf_elfheader (abfd);
930 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
931 {
932 /* GCC on hppa-linux produces binaries with OSABI=GNU,
933 but the kernel produces corefiles with OSABI=SysV. */
934 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU &&
935 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
936 return FALSE;
937 }
938 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
939 {
940 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
941 but the kernel produces corefiles with OSABI=SysV. */
942 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
943 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
944 return FALSE;
945 }
946 else
947 {
948 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
949 return FALSE;
950 }
951
952 flags = i_ehdrp->e_flags;
953 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
954 {
955 case EFA_PARISC_1_0:
956 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
957 case EFA_PARISC_1_1:
958 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
959 case EFA_PARISC_2_0:
960 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
961 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
962 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
963 }
964 return TRUE;
965 }
966
967 /* Create the .plt and .got sections, and set up our hash table
968 short-cuts to various dynamic sections. */
969
970 static bfd_boolean
971 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
972 {
973 struct elf32_hppa_link_hash_table *htab;
974 struct elf_link_hash_entry *eh;
975
976 /* Don't try to create the .plt and .got twice. */
977 htab = hppa_link_hash_table (info);
978 if (htab == NULL)
979 return FALSE;
980 if (htab->etab.splt != NULL)
981 return TRUE;
982
983 /* Call the generic code to do most of the work. */
984 if (! _bfd_elf_create_dynamic_sections (abfd, info))
985 return FALSE;
986
987 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
988 application, because __canonicalize_funcptr_for_compare needs it. */
989 eh = elf_hash_table (info)->hgot;
990 eh->forced_local = 0;
991 eh->other = STV_DEFAULT;
992 return bfd_elf_link_record_dynamic_symbol (info, eh);
993 }
994
995 /* Copy the extra info we tack onto an elf_link_hash_entry. */
996
997 static void
998 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
999 struct elf_link_hash_entry *eh_dir,
1000 struct elf_link_hash_entry *eh_ind)
1001 {
1002 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1003
1004 hh_dir = hppa_elf_hash_entry (eh_dir);
1005 hh_ind = hppa_elf_hash_entry (eh_ind);
1006
1007 if (hh_ind->dyn_relocs != NULL
1008 && eh_ind->root.type == bfd_link_hash_indirect)
1009 {
1010 if (hh_dir->dyn_relocs != NULL)
1011 {
1012 struct elf_dyn_relocs **hdh_pp;
1013 struct elf_dyn_relocs *hdh_p;
1014
1015 /* Add reloc counts against the indirect sym to the direct sym
1016 list. Merge any entries against the same section. */
1017 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1018 {
1019 struct elf_dyn_relocs *hdh_q;
1020
1021 for (hdh_q = hh_dir->dyn_relocs;
1022 hdh_q != NULL;
1023 hdh_q = hdh_q->next)
1024 if (hdh_q->sec == hdh_p->sec)
1025 {
1026 #if RELATIVE_DYNRELOCS
1027 hdh_q->pc_count += hdh_p->pc_count;
1028 #endif
1029 hdh_q->count += hdh_p->count;
1030 *hdh_pp = hdh_p->next;
1031 break;
1032 }
1033 if (hdh_q == NULL)
1034 hdh_pp = &hdh_p->next;
1035 }
1036 *hdh_pp = hh_dir->dyn_relocs;
1037 }
1038
1039 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1040 hh_ind->dyn_relocs = NULL;
1041 }
1042
1043 if (eh_ind->root.type == bfd_link_hash_indirect)
1044 {
1045 hh_dir->plabel |= hh_ind->plabel;
1046 hh_dir->tls_type |= hh_ind->tls_type;
1047 hh_ind->tls_type = GOT_UNKNOWN;
1048 }
1049
1050 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1051 }
1052
1053 static int
1054 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1055 int r_type, int is_local ATTRIBUTE_UNUSED)
1056 {
1057 /* For now we don't support linker optimizations. */
1058 return r_type;
1059 }
1060
1061 /* Return a pointer to the local GOT, PLT and TLS reference counts
1062 for ABFD. Returns NULL if the storage allocation fails. */
1063
1064 static bfd_signed_vma *
1065 hppa32_elf_local_refcounts (bfd *abfd)
1066 {
1067 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1068 bfd_signed_vma *local_refcounts;
1069
1070 local_refcounts = elf_local_got_refcounts (abfd);
1071 if (local_refcounts == NULL)
1072 {
1073 bfd_size_type size;
1074
1075 /* Allocate space for local GOT and PLT reference
1076 counts. Done this way to save polluting elf_obj_tdata
1077 with another target specific pointer. */
1078 size = symtab_hdr->sh_info;
1079 size *= 2 * sizeof (bfd_signed_vma);
1080 /* Add in space to store the local GOT TLS types. */
1081 size += symtab_hdr->sh_info;
1082 local_refcounts = bfd_zalloc (abfd, size);
1083 if (local_refcounts == NULL)
1084 return NULL;
1085 elf_local_got_refcounts (abfd) = local_refcounts;
1086 memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
1087 symtab_hdr->sh_info);
1088 }
1089 return local_refcounts;
1090 }
1091
1092
1093 /* Look through the relocs for a section during the first phase, and
1094 calculate needed space in the global offset table, procedure linkage
1095 table, and dynamic reloc sections. At this point we haven't
1096 necessarily read all the input files. */
1097
1098 static bfd_boolean
1099 elf32_hppa_check_relocs (bfd *abfd,
1100 struct bfd_link_info *info,
1101 asection *sec,
1102 const Elf_Internal_Rela *relocs)
1103 {
1104 Elf_Internal_Shdr *symtab_hdr;
1105 struct elf_link_hash_entry **eh_syms;
1106 const Elf_Internal_Rela *rela;
1107 const Elf_Internal_Rela *rela_end;
1108 struct elf32_hppa_link_hash_table *htab;
1109 asection *sreloc;
1110
1111 if (bfd_link_relocatable (info))
1112 return TRUE;
1113
1114 htab = hppa_link_hash_table (info);
1115 if (htab == NULL)
1116 return FALSE;
1117 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1118 eh_syms = elf_sym_hashes (abfd);
1119 sreloc = NULL;
1120
1121 rela_end = relocs + sec->reloc_count;
1122 for (rela = relocs; rela < rela_end; rela++)
1123 {
1124 enum {
1125 NEED_GOT = 1,
1126 NEED_PLT = 2,
1127 NEED_DYNREL = 4,
1128 PLT_PLABEL = 8
1129 };
1130
1131 unsigned int r_symndx, r_type;
1132 struct elf32_hppa_link_hash_entry *hh;
1133 int need_entry = 0;
1134
1135 r_symndx = ELF32_R_SYM (rela->r_info);
1136
1137 if (r_symndx < symtab_hdr->sh_info)
1138 hh = NULL;
1139 else
1140 {
1141 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1142 while (hh->eh.root.type == bfd_link_hash_indirect
1143 || hh->eh.root.type == bfd_link_hash_warning)
1144 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1145 }
1146
1147 r_type = ELF32_R_TYPE (rela->r_info);
1148 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1149
1150 switch (r_type)
1151 {
1152 case R_PARISC_DLTIND14F:
1153 case R_PARISC_DLTIND14R:
1154 case R_PARISC_DLTIND21L:
1155 /* This symbol requires a global offset table entry. */
1156 need_entry = NEED_GOT;
1157 break;
1158
1159 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1160 case R_PARISC_PLABEL21L:
1161 case R_PARISC_PLABEL32:
1162 /* If the addend is non-zero, we break badly. */
1163 if (rela->r_addend != 0)
1164 abort ();
1165
1166 /* If we are creating a shared library, then we need to
1167 create a PLT entry for all PLABELs, because PLABELs with
1168 local symbols may be passed via a pointer to another
1169 object. Additionally, output a dynamic relocation
1170 pointing to the PLT entry.
1171
1172 For executables, the original 32-bit ABI allowed two
1173 different styles of PLABELs (function pointers): For
1174 global functions, the PLABEL word points into the .plt
1175 two bytes past a (function address, gp) pair, and for
1176 local functions the PLABEL points directly at the
1177 function. The magic +2 for the first type allows us to
1178 differentiate between the two. As you can imagine, this
1179 is a real pain when it comes to generating code to call
1180 functions indirectly or to compare function pointers.
1181 We avoid the mess by always pointing a PLABEL into the
1182 .plt, even for local functions. */
1183 need_entry = PLT_PLABEL | NEED_PLT;
1184 if (bfd_link_pic (info))
1185 need_entry |= NEED_DYNREL;
1186 break;
1187
1188 case R_PARISC_PCREL12F:
1189 htab->has_12bit_branch = 1;
1190 goto branch_common;
1191
1192 case R_PARISC_PCREL17C:
1193 case R_PARISC_PCREL17F:
1194 htab->has_17bit_branch = 1;
1195 goto branch_common;
1196
1197 case R_PARISC_PCREL22F:
1198 htab->has_22bit_branch = 1;
1199 branch_common:
1200 /* Function calls might need to go through the .plt, and
1201 might require long branch stubs. */
1202 if (hh == NULL)
1203 {
1204 /* We know local syms won't need a .plt entry, and if
1205 they need a long branch stub we can't guarantee that
1206 we can reach the stub. So just flag an error later
1207 if we're doing a shared link and find we need a long
1208 branch stub. */
1209 continue;
1210 }
1211 else
1212 {
1213 /* Global symbols will need a .plt entry if they remain
1214 global, and in most cases won't need a long branch
1215 stub. Unfortunately, we have to cater for the case
1216 where a symbol is forced local by versioning, or due
1217 to symbolic linking, and we lose the .plt entry. */
1218 need_entry = NEED_PLT;
1219 if (hh->eh.type == STT_PARISC_MILLI)
1220 need_entry = 0;
1221 }
1222 break;
1223
1224 case R_PARISC_SEGBASE: /* Used to set segment base. */
1225 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1226 case R_PARISC_PCREL14F: /* PC relative load/store. */
1227 case R_PARISC_PCREL14R:
1228 case R_PARISC_PCREL17R: /* External branches. */
1229 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1230 case R_PARISC_PCREL32:
1231 /* We don't need to propagate the relocation if linking a
1232 shared object since these are section relative. */
1233 continue;
1234
1235 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1236 case R_PARISC_DPREL14R:
1237 case R_PARISC_DPREL21L:
1238 if (bfd_link_pic (info))
1239 {
1240 _bfd_error_handler
1241 /* xgettext:c-format */
1242 (_("%pB: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1243 abfd,
1244 elf_hppa_howto_table[r_type].name);
1245 bfd_set_error (bfd_error_bad_value);
1246 return FALSE;
1247 }
1248 /* Fall through. */
1249
1250 case R_PARISC_DIR17F: /* Used for external branches. */
1251 case R_PARISC_DIR17R:
1252 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1253 case R_PARISC_DIR14R:
1254 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1255 case R_PARISC_DIR32: /* .word relocs. */
1256 /* We may want to output a dynamic relocation later. */
1257 need_entry = NEED_DYNREL;
1258 break;
1259
1260 /* This relocation describes the C++ object vtable hierarchy.
1261 Reconstruct it for later use during GC. */
1262 case R_PARISC_GNU_VTINHERIT:
1263 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1264 return FALSE;
1265 continue;
1266
1267 /* This relocation describes which C++ vtable entries are actually
1268 used. Record for later use during GC. */
1269 case R_PARISC_GNU_VTENTRY:
1270 BFD_ASSERT (hh != NULL);
1271 if (hh != NULL
1272 && !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1273 return FALSE;
1274 continue;
1275
1276 case R_PARISC_TLS_GD21L:
1277 case R_PARISC_TLS_GD14R:
1278 case R_PARISC_TLS_LDM21L:
1279 case R_PARISC_TLS_LDM14R:
1280 need_entry = NEED_GOT;
1281 break;
1282
1283 case R_PARISC_TLS_IE21L:
1284 case R_PARISC_TLS_IE14R:
1285 if (bfd_link_dll (info))
1286 info->flags |= DF_STATIC_TLS;
1287 need_entry = NEED_GOT;
1288 break;
1289
1290 default:
1291 continue;
1292 }
1293
1294 /* Now carry out our orders. */
1295 if (need_entry & NEED_GOT)
1296 {
1297 int tls_type = GOT_NORMAL;
1298
1299 switch (r_type)
1300 {
1301 default:
1302 break;
1303 case R_PARISC_TLS_GD21L:
1304 case R_PARISC_TLS_GD14R:
1305 tls_type = GOT_TLS_GD;
1306 break;
1307 case R_PARISC_TLS_LDM21L:
1308 case R_PARISC_TLS_LDM14R:
1309 tls_type = GOT_TLS_LDM;
1310 break;
1311 case R_PARISC_TLS_IE21L:
1312 case R_PARISC_TLS_IE14R:
1313 tls_type = GOT_TLS_IE;
1314 break;
1315 }
1316
1317 /* Allocate space for a GOT entry, as well as a dynamic
1318 relocation for this entry. */
1319 if (htab->etab.sgot == NULL)
1320 {
1321 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1322 return FALSE;
1323 }
1324
1325 if (hh != NULL)
1326 {
1327 if (tls_type == GOT_TLS_LDM)
1328 htab->tls_ldm_got.refcount += 1;
1329 else
1330 hh->eh.got.refcount += 1;
1331 hh->tls_type |= tls_type;
1332 }
1333 else
1334 {
1335 bfd_signed_vma *local_got_refcounts;
1336
1337 /* This is a global offset table entry for a local symbol. */
1338 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1339 if (local_got_refcounts == NULL)
1340 return FALSE;
1341 if (tls_type == GOT_TLS_LDM)
1342 htab->tls_ldm_got.refcount += 1;
1343 else
1344 local_got_refcounts[r_symndx] += 1;
1345
1346 hppa_elf_local_got_tls_type (abfd) [r_symndx] |= tls_type;
1347 }
1348 }
1349
1350 if (need_entry & NEED_PLT)
1351 {
1352 /* If we are creating a shared library, and this is a reloc
1353 against a weak symbol or a global symbol in a dynamic
1354 object, then we will be creating an import stub and a
1355 .plt entry for the symbol. Similarly, on a normal link
1356 to symbols defined in a dynamic object we'll need the
1357 import stub and a .plt entry. We don't know yet whether
1358 the symbol is defined or not, so make an entry anyway and
1359 clean up later in adjust_dynamic_symbol. */
1360 if ((sec->flags & SEC_ALLOC) != 0)
1361 {
1362 if (hh != NULL)
1363 {
1364 hh->eh.needs_plt = 1;
1365 hh->eh.plt.refcount += 1;
1366
1367 /* If this .plt entry is for a plabel, mark it so
1368 that adjust_dynamic_symbol will keep the entry
1369 even if it appears to be local. */
1370 if (need_entry & PLT_PLABEL)
1371 hh->plabel = 1;
1372 }
1373 else if (need_entry & PLT_PLABEL)
1374 {
1375 bfd_signed_vma *local_got_refcounts;
1376 bfd_signed_vma *local_plt_refcounts;
1377
1378 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1379 if (local_got_refcounts == NULL)
1380 return FALSE;
1381 local_plt_refcounts = (local_got_refcounts
1382 + symtab_hdr->sh_info);
1383 local_plt_refcounts[r_symndx] += 1;
1384 }
1385 }
1386 }
1387
1388 if ((need_entry & NEED_DYNREL) != 0
1389 && (sec->flags & SEC_ALLOC) != 0)
1390 {
1391 /* Flag this symbol as having a non-got, non-plt reference
1392 so that we generate copy relocs if it turns out to be
1393 dynamic. */
1394 if (hh != NULL)
1395 hh->eh.non_got_ref = 1;
1396
1397 /* If we are creating a shared library then we need to copy
1398 the reloc into the shared library. However, if we are
1399 linking with -Bsymbolic, we need only copy absolute
1400 relocs or relocs against symbols that are not defined in
1401 an object we are including in the link. PC- or DP- or
1402 DLT-relative relocs against any local sym or global sym
1403 with DEF_REGULAR set, can be discarded. At this point we
1404 have not seen all the input files, so it is possible that
1405 DEF_REGULAR is not set now but will be set later (it is
1406 never cleared). We account for that possibility below by
1407 storing information in the dyn_relocs field of the
1408 hash table entry.
1409
1410 A similar situation to the -Bsymbolic case occurs when
1411 creating shared libraries and symbol visibility changes
1412 render the symbol local.
1413
1414 As it turns out, all the relocs we will be creating here
1415 are absolute, so we cannot remove them on -Bsymbolic
1416 links or visibility changes anyway. A STUB_REL reloc
1417 is absolute too, as in that case it is the reloc in the
1418 stub we will be creating, rather than copying the PCREL
1419 reloc in the branch.
1420
1421 If on the other hand, we are creating an executable, we
1422 may need to keep relocations for symbols satisfied by a
1423 dynamic library if we manage to avoid copy relocs for the
1424 symbol. */
1425 if ((bfd_link_pic (info)
1426 && (IS_ABSOLUTE_RELOC (r_type)
1427 || (hh != NULL
1428 && (!SYMBOLIC_BIND (info, &hh->eh)
1429 || hh->eh.root.type == bfd_link_hash_defweak
1430 || !hh->eh.def_regular))))
1431 || (ELIMINATE_COPY_RELOCS
1432 && !bfd_link_pic (info)
1433 && hh != NULL
1434 && (hh->eh.root.type == bfd_link_hash_defweak
1435 || !hh->eh.def_regular)))
1436 {
1437 struct elf_dyn_relocs *hdh_p;
1438 struct elf_dyn_relocs **hdh_head;
1439
1440 /* Create a reloc section in dynobj and make room for
1441 this reloc. */
1442 if (sreloc == NULL)
1443 {
1444 sreloc = _bfd_elf_make_dynamic_reloc_section
1445 (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
1446
1447 if (sreloc == NULL)
1448 {
1449 bfd_set_error (bfd_error_bad_value);
1450 return FALSE;
1451 }
1452 }
1453
1454 /* If this is a global symbol, we count the number of
1455 relocations we need for this symbol. */
1456 if (hh != NULL)
1457 {
1458 hdh_head = &hh->dyn_relocs;
1459 }
1460 else
1461 {
1462 /* Track dynamic relocs needed for local syms too.
1463 We really need local syms available to do this
1464 easily. Oh well. */
1465 asection *sr;
1466 void *vpp;
1467 Elf_Internal_Sym *isym;
1468
1469 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1470 abfd, r_symndx);
1471 if (isym == NULL)
1472 return FALSE;
1473
1474 sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
1475 if (sr == NULL)
1476 sr = sec;
1477
1478 vpp = &elf_section_data (sr)->local_dynrel;
1479 hdh_head = (struct elf_dyn_relocs **) vpp;
1480 }
1481
1482 hdh_p = *hdh_head;
1483 if (hdh_p == NULL || hdh_p->sec != sec)
1484 {
1485 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1486 if (hdh_p == NULL)
1487 return FALSE;
1488 hdh_p->next = *hdh_head;
1489 *hdh_head = hdh_p;
1490 hdh_p->sec = sec;
1491 hdh_p->count = 0;
1492 #if RELATIVE_DYNRELOCS
1493 hdh_p->pc_count = 0;
1494 #endif
1495 }
1496
1497 hdh_p->count += 1;
1498 #if RELATIVE_DYNRELOCS
1499 if (!IS_ABSOLUTE_RELOC (rtype))
1500 hdh_p->pc_count += 1;
1501 #endif
1502 }
1503 }
1504 }
1505
1506 return TRUE;
1507 }
1508
1509 /* Return the section that should be marked against garbage collection
1510 for a given relocation. */
1511
1512 static asection *
1513 elf32_hppa_gc_mark_hook (asection *sec,
1514 struct bfd_link_info *info,
1515 Elf_Internal_Rela *rela,
1516 struct elf_link_hash_entry *hh,
1517 Elf_Internal_Sym *sym)
1518 {
1519 if (hh != NULL)
1520 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1521 {
1522 case R_PARISC_GNU_VTINHERIT:
1523 case R_PARISC_GNU_VTENTRY:
1524 return NULL;
1525 }
1526
1527 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1528 }
1529
1530 /* Support for core dump NOTE sections. */
1531
1532 static bfd_boolean
1533 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1534 {
1535 int offset;
1536 size_t size;
1537
1538 switch (note->descsz)
1539 {
1540 default:
1541 return FALSE;
1542
1543 case 396: /* Linux/hppa */
1544 /* pr_cursig */
1545 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1546
1547 /* pr_pid */
1548 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
1549
1550 /* pr_reg */
1551 offset = 72;
1552 size = 320;
1553
1554 break;
1555 }
1556
1557 /* Make a ".reg/999" section. */
1558 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1559 size, note->descpos + offset);
1560 }
1561
1562 static bfd_boolean
1563 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1564 {
1565 switch (note->descsz)
1566 {
1567 default:
1568 return FALSE;
1569
1570 case 124: /* Linux/hppa elf_prpsinfo. */
1571 elf_tdata (abfd)->core->program
1572 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1573 elf_tdata (abfd)->core->command
1574 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1575 }
1576
1577 /* Note that for some reason, a spurious space is tacked
1578 onto the end of the args in some (at least one anyway)
1579 implementations, so strip it off if it exists. */
1580 {
1581 char *command = elf_tdata (abfd)->core->command;
1582 int n = strlen (command);
1583
1584 if (0 < n && command[n - 1] == ' ')
1585 command[n - 1] = '\0';
1586 }
1587
1588 return TRUE;
1589 }
1590
1591 /* Our own version of hide_symbol, so that we can keep plt entries for
1592 plabels. */
1593
1594 static void
1595 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1596 struct elf_link_hash_entry *eh,
1597 bfd_boolean force_local)
1598 {
1599 if (force_local)
1600 {
1601 eh->forced_local = 1;
1602 if (eh->dynindx != -1)
1603 {
1604 eh->dynindx = -1;
1605 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1606 eh->dynstr_index);
1607 }
1608
1609 /* PR 16082: Remove version information from hidden symbol. */
1610 eh->verinfo.verdef = NULL;
1611 eh->verinfo.vertree = NULL;
1612 }
1613
1614 /* STT_GNU_IFUNC symbol must go through PLT. */
1615 if (! hppa_elf_hash_entry (eh)->plabel
1616 && eh->type != STT_GNU_IFUNC)
1617 {
1618 eh->needs_plt = 0;
1619 eh->plt = elf_hash_table (info)->init_plt_offset;
1620 }
1621 }
1622
1623 /* Find any dynamic relocs that apply to read-only sections. */
1624
1625 static asection *
1626 readonly_dynrelocs (struct elf_link_hash_entry *eh)
1627 {
1628 struct elf32_hppa_link_hash_entry *hh;
1629 struct elf_dyn_relocs *hdh_p;
1630
1631 hh = hppa_elf_hash_entry (eh);
1632 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->next)
1633 {
1634 asection *sec = hdh_p->sec->output_section;
1635
1636 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1637 return hdh_p->sec;
1638 }
1639 return NULL;
1640 }
1641
1642 /* Return true if we have dynamic relocs against H or any of its weak
1643 aliases, that apply to read-only sections. Cannot be used after
1644 size_dynamic_sections. */
1645
1646 static bfd_boolean
1647 alias_readonly_dynrelocs (struct elf_link_hash_entry *eh)
1648 {
1649 struct elf32_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1650 do
1651 {
1652 if (readonly_dynrelocs (&hh->eh))
1653 return TRUE;
1654 hh = hppa_elf_hash_entry (hh->eh.u.alias);
1655 } while (hh != NULL && &hh->eh != eh);
1656
1657 return FALSE;
1658 }
1659
1660 /* Adjust a symbol defined by a dynamic object and referenced by a
1661 regular object. The current definition is in some section of the
1662 dynamic object, but we're not including those sections. We have to
1663 change the definition to something the rest of the link can
1664 understand. */
1665
1666 static bfd_boolean
1667 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1668 struct elf_link_hash_entry *eh)
1669 {
1670 struct elf32_hppa_link_hash_table *htab;
1671 asection *sec, *srel;
1672
1673 /* If this is a function, put it in the procedure linkage table. We
1674 will fill in the contents of the procedure linkage table later. */
1675 if (eh->type == STT_FUNC
1676 || eh->needs_plt)
1677 {
1678 bfd_boolean local = (SYMBOL_CALLS_LOCAL (info, eh)
1679 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh));
1680 /* Discard dyn_relocs when non-pic if we've decided that a
1681 function symbol is local. */
1682 if (!bfd_link_pic (info) && local)
1683 hppa_elf_hash_entry (eh)->dyn_relocs = NULL;
1684
1685 /* If the symbol is used by a plabel, we must allocate a PLT slot.
1686 The refcounts are not reliable when it has been hidden since
1687 hide_symbol can be called before the plabel flag is set. */
1688 if (hppa_elf_hash_entry (eh)->plabel)
1689 eh->plt.refcount = 1;
1690
1691 /* Note that unlike some other backends, the refcount is not
1692 incremented for a non-call (and non-plabel) function reference. */
1693 else if (eh->plt.refcount <= 0
1694 || local)
1695 {
1696 /* The .plt entry is not needed when:
1697 a) Garbage collection has removed all references to the
1698 symbol, or
1699 b) We know for certain the symbol is defined in this
1700 object, and it's not a weak definition, nor is the symbol
1701 used by a plabel relocation. Either this object is the
1702 application or we are doing a shared symbolic link. */
1703 eh->plt.offset = (bfd_vma) -1;
1704 eh->needs_plt = 0;
1705 }
1706
1707 /* Unlike other targets, elf32-hppa.c does not define a function
1708 symbol in a non-pic executable on PLT stub code, so we don't
1709 have a local definition in that case. ie. dyn_relocs can't
1710 be discarded. */
1711
1712 /* Function symbols can't have copy relocs. */
1713 return TRUE;
1714 }
1715 else
1716 eh->plt.offset = (bfd_vma) -1;
1717
1718 htab = hppa_link_hash_table (info);
1719 if (htab == NULL)
1720 return FALSE;
1721
1722 /* If this is a weak symbol, and there is a real definition, the
1723 processor independent code will have arranged for us to see the
1724 real definition first, and we can just use the same value. */
1725 if (eh->is_weakalias)
1726 {
1727 struct elf_link_hash_entry *def = weakdef (eh);
1728 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
1729 eh->root.u.def.section = def->root.u.def.section;
1730 eh->root.u.def.value = def->root.u.def.value;
1731 if (def->root.u.def.section == htab->etab.sdynbss
1732 || def->root.u.def.section == htab->etab.sdynrelro)
1733 hppa_elf_hash_entry (eh)->dyn_relocs = NULL;
1734 return TRUE;
1735 }
1736
1737 /* This is a reference to a symbol defined by a dynamic object which
1738 is not a function. */
1739
1740 /* If we are creating a shared library, we must presume that the
1741 only references to the symbol are via the global offset table.
1742 For such cases we need not do anything here; the relocations will
1743 be handled correctly by relocate_section. */
1744 if (bfd_link_pic (info))
1745 return TRUE;
1746
1747 /* If there are no references to this symbol that do not use the
1748 GOT, we don't need to generate a copy reloc. */
1749 if (!eh->non_got_ref)
1750 return TRUE;
1751
1752 /* If -z nocopyreloc was given, we won't generate them either. */
1753 if (info->nocopyreloc)
1754 return TRUE;
1755
1756 /* If we don't find any dynamic relocs in read-only sections, then
1757 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1758 if (ELIMINATE_COPY_RELOCS
1759 && !alias_readonly_dynrelocs (eh))
1760 return TRUE;
1761
1762 /* We must allocate the symbol in our .dynbss section, which will
1763 become part of the .bss section of the executable. There will be
1764 an entry for this symbol in the .dynsym section. The dynamic
1765 object will contain position independent code, so all references
1766 from the dynamic object to this symbol will go through the global
1767 offset table. The dynamic linker will use the .dynsym entry to
1768 determine the address it must put in the global offset table, so
1769 both the dynamic object and the regular object will refer to the
1770 same memory location for the variable. */
1771 if ((eh->root.u.def.section->flags & SEC_READONLY) != 0)
1772 {
1773 sec = htab->etab.sdynrelro;
1774 srel = htab->etab.sreldynrelro;
1775 }
1776 else
1777 {
1778 sec = htab->etab.sdynbss;
1779 srel = htab->etab.srelbss;
1780 }
1781 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0 && eh->size != 0)
1782 {
1783 /* We must generate a COPY reloc to tell the dynamic linker to
1784 copy the initial value out of the dynamic object and into the
1785 runtime process image. */
1786 srel->size += sizeof (Elf32_External_Rela);
1787 eh->needs_copy = 1;
1788 }
1789
1790 /* We no longer want dyn_relocs. */
1791 hppa_elf_hash_entry (eh)->dyn_relocs = NULL;
1792 return _bfd_elf_adjust_dynamic_copy (info, eh, sec);
1793 }
1794
1795 /* If EH is undefined, make it dynamic if that makes sense. */
1796
1797 static bfd_boolean
1798 ensure_undef_dynamic (struct bfd_link_info *info,
1799 struct elf_link_hash_entry *eh)
1800 {
1801 struct elf_link_hash_table *htab = elf_hash_table (info);
1802
1803 if (htab->dynamic_sections_created
1804 && (eh->root.type == bfd_link_hash_undefweak
1805 || eh->root.type == bfd_link_hash_undefined)
1806 && eh->dynindx == -1
1807 && !eh->forced_local
1808 && eh->type != STT_PARISC_MILLI
1809 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh)
1810 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
1811 return bfd_elf_link_record_dynamic_symbol (info, eh);
1812 return TRUE;
1813 }
1814
1815 /* Allocate space in the .plt for entries that won't have relocations.
1816 ie. plabel entries. */
1817
1818 static bfd_boolean
1819 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1820 {
1821 struct bfd_link_info *info;
1822 struct elf32_hppa_link_hash_table *htab;
1823 struct elf32_hppa_link_hash_entry *hh;
1824 asection *sec;
1825
1826 if (eh->root.type == bfd_link_hash_indirect)
1827 return TRUE;
1828
1829 info = (struct bfd_link_info *) inf;
1830 hh = hppa_elf_hash_entry (eh);
1831 htab = hppa_link_hash_table (info);
1832 if (htab == NULL)
1833 return FALSE;
1834
1835 if (htab->etab.dynamic_sections_created
1836 && eh->plt.refcount > 0)
1837 {
1838 if (!ensure_undef_dynamic (info, eh))
1839 return FALSE;
1840
1841 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), eh))
1842 {
1843 /* Allocate these later. From this point on, h->plabel
1844 means that the plt entry is only used by a plabel.
1845 We'll be using a normal plt entry for this symbol, so
1846 clear the plabel indicator. */
1847
1848 hh->plabel = 0;
1849 }
1850 else if (hh->plabel)
1851 {
1852 /* Make an entry in the .plt section for plabel references
1853 that won't have a .plt entry for other reasons. */
1854 sec = htab->etab.splt;
1855 eh->plt.offset = sec->size;
1856 sec->size += PLT_ENTRY_SIZE;
1857 if (bfd_link_pic (info))
1858 htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
1859 }
1860 else
1861 {
1862 /* No .plt entry needed. */
1863 eh->plt.offset = (bfd_vma) -1;
1864 eh->needs_plt = 0;
1865 }
1866 }
1867 else
1868 {
1869 eh->plt.offset = (bfd_vma) -1;
1870 eh->needs_plt = 0;
1871 }
1872
1873 return TRUE;
1874 }
1875
1876 /* Calculate size of GOT entries for symbol given its TLS_TYPE. */
1877
1878 static inline unsigned int
1879 got_entries_needed (int tls_type)
1880 {
1881 unsigned int need = 0;
1882
1883 if ((tls_type & GOT_NORMAL) != 0)
1884 need += GOT_ENTRY_SIZE;
1885 if ((tls_type & GOT_TLS_GD) != 0)
1886 need += GOT_ENTRY_SIZE * 2;
1887 if ((tls_type & GOT_TLS_IE) != 0)
1888 need += GOT_ENTRY_SIZE;
1889 return need;
1890 }
1891
1892 /* Calculate size of relocs needed for symbol given its TLS_TYPE and
1893 NEEDed GOT entries. KNOWN says a TPREL offset can be calculated
1894 at link time. */
1895
1896 static inline unsigned int
1897 got_relocs_needed (int tls_type, unsigned int need, bfd_boolean known)
1898 {
1899 /* All the entries we allocated need relocs.
1900 Except IE in executable with a local symbol. We could also omit
1901 the DTPOFF reloc on the second word of a GD entry under the same
1902 condition as that for IE, but ld.so might want to differentiate
1903 LD and GD entries at some stage. */
1904 if ((tls_type & GOT_TLS_IE) != 0 && known)
1905 need -= GOT_ENTRY_SIZE;
1906 return need * sizeof (Elf32_External_Rela) / GOT_ENTRY_SIZE;
1907 }
1908
1909 /* Allocate space in .plt, .got and associated reloc sections for
1910 global syms. */
1911
1912 static bfd_boolean
1913 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
1914 {
1915 struct bfd_link_info *info;
1916 struct elf32_hppa_link_hash_table *htab;
1917 asection *sec;
1918 struct elf32_hppa_link_hash_entry *hh;
1919 struct elf_dyn_relocs *hdh_p;
1920
1921 if (eh->root.type == bfd_link_hash_indirect)
1922 return TRUE;
1923
1924 info = inf;
1925 htab = hppa_link_hash_table (info);
1926 if (htab == NULL)
1927 return FALSE;
1928
1929 hh = hppa_elf_hash_entry (eh);
1930
1931 if (htab->etab.dynamic_sections_created
1932 && eh->plt.offset != (bfd_vma) -1
1933 && !hh->plabel
1934 && eh->plt.refcount > 0)
1935 {
1936 /* Make an entry in the .plt section. */
1937 sec = htab->etab.splt;
1938 eh->plt.offset = sec->size;
1939 sec->size += PLT_ENTRY_SIZE;
1940
1941 /* We also need to make an entry in the .rela.plt section. */
1942 htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
1943 htab->need_plt_stub = 1;
1944 }
1945
1946 if (eh->got.refcount > 0)
1947 {
1948 unsigned int need;
1949
1950 if (!ensure_undef_dynamic (info, eh))
1951 return FALSE;
1952
1953 sec = htab->etab.sgot;
1954 eh->got.offset = sec->size;
1955 need = got_entries_needed (hh->tls_type);
1956 sec->size += need;
1957 if (htab->etab.dynamic_sections_created
1958 && (bfd_link_pic (info)
1959 || (eh->dynindx != -1
1960 && !SYMBOL_REFERENCES_LOCAL (info, eh)))
1961 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
1962 {
1963 bfd_boolean tprel_known = (bfd_link_executable (info)
1964 && SYMBOL_REFERENCES_LOCAL (info, eh));
1965 htab->etab.srelgot->size
1966 += got_relocs_needed (hh->tls_type, need, tprel_known);
1967 }
1968 }
1969 else
1970 eh->got.offset = (bfd_vma) -1;
1971
1972 /* If no dynamic sections we can't have dynamic relocs. */
1973 if (!htab->etab.dynamic_sections_created)
1974 hh->dyn_relocs = NULL;
1975
1976 /* Discard relocs on undefined syms with non-default visibility. */
1977 else if ((eh->root.type == bfd_link_hash_undefined
1978 && ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
1979 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
1980 hh->dyn_relocs = NULL;
1981
1982 if (hh->dyn_relocs == NULL)
1983 return TRUE;
1984
1985 /* If this is a -Bsymbolic shared link, then we need to discard all
1986 space allocated for dynamic pc-relative relocs against symbols
1987 defined in a regular object. For the normal shared case, discard
1988 space for relocs that have become local due to symbol visibility
1989 changes. */
1990 if (bfd_link_pic (info))
1991 {
1992 #if RELATIVE_DYNRELOCS
1993 if (SYMBOL_CALLS_LOCAL (info, eh))
1994 {
1995 struct elf_dyn_relocs **hdh_pp;
1996
1997 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1998 {
1999 hdh_p->count -= hdh_p->pc_count;
2000 hdh_p->pc_count = 0;
2001 if (hdh_p->count == 0)
2002 *hdh_pp = hdh_p->next;
2003 else
2004 hdh_pp = &hdh_p->next;
2005 }
2006 }
2007 #endif
2008
2009 if (hh->dyn_relocs != NULL)
2010 {
2011 if (!ensure_undef_dynamic (info, eh))
2012 return FALSE;
2013 }
2014 }
2015 else if (ELIMINATE_COPY_RELOCS)
2016 {
2017 /* For the non-shared case, discard space for relocs against
2018 symbols which turn out to need copy relocs or are not
2019 dynamic. */
2020
2021 if (eh->dynamic_adjusted
2022 && !eh->def_regular
2023 && !ELF_COMMON_DEF_P (eh))
2024 {
2025 if (!ensure_undef_dynamic (info, eh))
2026 return FALSE;
2027
2028 if (eh->dynindx == -1)
2029 hh->dyn_relocs = NULL;
2030 }
2031 else
2032 hh->dyn_relocs = NULL;
2033 }
2034
2035 /* Finally, allocate space. */
2036 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->next)
2037 {
2038 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2039 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2040 }
2041
2042 return TRUE;
2043 }
2044
2045 /* This function is called via elf_link_hash_traverse to force
2046 millicode symbols local so they do not end up as globals in the
2047 dynamic symbol table. We ought to be able to do this in
2048 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2049 for all dynamic symbols. Arguably, this is a bug in
2050 elf_adjust_dynamic_symbol. */
2051
2052 static bfd_boolean
2053 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2054 struct bfd_link_info *info)
2055 {
2056 if (eh->type == STT_PARISC_MILLI
2057 && !eh->forced_local)
2058 {
2059 elf32_hppa_hide_symbol (info, eh, TRUE);
2060 }
2061 return TRUE;
2062 }
2063
2064 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
2065 read-only sections. */
2066
2067 static bfd_boolean
2068 maybe_set_textrel (struct elf_link_hash_entry *eh, void *inf)
2069 {
2070 asection *sec;
2071
2072 if (eh->root.type == bfd_link_hash_indirect)
2073 return TRUE;
2074
2075 sec = readonly_dynrelocs (eh);
2076 if (sec != NULL)
2077 {
2078 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2079
2080 info->flags |= DF_TEXTREL;
2081 info->callbacks->minfo
2082 (_("%pB: dynamic relocation against `%T' in read-only section `%pA'\n"),
2083 sec->owner, eh->root.root.string, sec);
2084
2085 /* Not an error, just cut short the traversal. */
2086 return FALSE;
2087 }
2088 return TRUE;
2089 }
2090
2091 /* Set the sizes of the dynamic sections. */
2092
2093 static bfd_boolean
2094 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2095 struct bfd_link_info *info)
2096 {
2097 struct elf32_hppa_link_hash_table *htab;
2098 bfd *dynobj;
2099 bfd *ibfd;
2100 asection *sec;
2101 bfd_boolean relocs;
2102
2103 htab = hppa_link_hash_table (info);
2104 if (htab == NULL)
2105 return FALSE;
2106
2107 dynobj = htab->etab.dynobj;
2108 if (dynobj == NULL)
2109 abort ();
2110
2111 if (htab->etab.dynamic_sections_created)
2112 {
2113 /* Set the contents of the .interp section to the interpreter. */
2114 if (bfd_link_executable (info) && !info->nointerp)
2115 {
2116 sec = bfd_get_linker_section (dynobj, ".interp");
2117 if (sec == NULL)
2118 abort ();
2119 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2120 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2121 }
2122
2123 /* Force millicode symbols local. */
2124 elf_link_hash_traverse (&htab->etab,
2125 clobber_millicode_symbols,
2126 info);
2127 }
2128
2129 /* Set up .got and .plt offsets for local syms, and space for local
2130 dynamic relocs. */
2131 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
2132 {
2133 bfd_signed_vma *local_got;
2134 bfd_signed_vma *end_local_got;
2135 bfd_signed_vma *local_plt;
2136 bfd_signed_vma *end_local_plt;
2137 bfd_size_type locsymcount;
2138 Elf_Internal_Shdr *symtab_hdr;
2139 asection *srel;
2140 char *local_tls_type;
2141
2142 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2143 continue;
2144
2145 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2146 {
2147 struct elf_dyn_relocs *hdh_p;
2148
2149 for (hdh_p = ((struct elf_dyn_relocs *)
2150 elf_section_data (sec)->local_dynrel);
2151 hdh_p != NULL;
2152 hdh_p = hdh_p->next)
2153 {
2154 if (!bfd_is_abs_section (hdh_p->sec)
2155 && bfd_is_abs_section (hdh_p->sec->output_section))
2156 {
2157 /* Input section has been discarded, either because
2158 it is a copy of a linkonce section or due to
2159 linker script /DISCARD/, so we'll be discarding
2160 the relocs too. */
2161 }
2162 else if (hdh_p->count != 0)
2163 {
2164 srel = elf_section_data (hdh_p->sec)->sreloc;
2165 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2166 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2167 info->flags |= DF_TEXTREL;
2168 }
2169 }
2170 }
2171
2172 local_got = elf_local_got_refcounts (ibfd);
2173 if (!local_got)
2174 continue;
2175
2176 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2177 locsymcount = symtab_hdr->sh_info;
2178 end_local_got = local_got + locsymcount;
2179 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2180 sec = htab->etab.sgot;
2181 srel = htab->etab.srelgot;
2182 for (; local_got < end_local_got; ++local_got)
2183 {
2184 if (*local_got > 0)
2185 {
2186 unsigned int need;
2187
2188 *local_got = sec->size;
2189 need = got_entries_needed (*local_tls_type);
2190 sec->size += need;
2191 if (bfd_link_pic (info))
2192 {
2193 bfd_boolean tprel_known = bfd_link_executable (info);
2194 htab->etab.srelgot->size
2195 += got_relocs_needed (*local_tls_type, need, tprel_known);
2196 }
2197 }
2198 else
2199 *local_got = (bfd_vma) -1;
2200
2201 ++local_tls_type;
2202 }
2203
2204 local_plt = end_local_got;
2205 end_local_plt = local_plt + locsymcount;
2206 if (! htab->etab.dynamic_sections_created)
2207 {
2208 /* Won't be used, but be safe. */
2209 for (; local_plt < end_local_plt; ++local_plt)
2210 *local_plt = (bfd_vma) -1;
2211 }
2212 else
2213 {
2214 sec = htab->etab.splt;
2215 srel = htab->etab.srelplt;
2216 for (; local_plt < end_local_plt; ++local_plt)
2217 {
2218 if (*local_plt > 0)
2219 {
2220 *local_plt = sec->size;
2221 sec->size += PLT_ENTRY_SIZE;
2222 if (bfd_link_pic (info))
2223 srel->size += sizeof (Elf32_External_Rela);
2224 }
2225 else
2226 *local_plt = (bfd_vma) -1;
2227 }
2228 }
2229 }
2230
2231 if (htab->tls_ldm_got.refcount > 0)
2232 {
2233 /* Allocate 2 got entries and 1 dynamic reloc for
2234 R_PARISC_TLS_DTPMOD32 relocs. */
2235 htab->tls_ldm_got.offset = htab->etab.sgot->size;
2236 htab->etab.sgot->size += (GOT_ENTRY_SIZE * 2);
2237 htab->etab.srelgot->size += sizeof (Elf32_External_Rela);
2238 }
2239 else
2240 htab->tls_ldm_got.offset = -1;
2241
2242 /* Do all the .plt entries without relocs first. The dynamic linker
2243 uses the last .plt reloc to find the end of the .plt (and hence
2244 the start of the .got) for lazy linking. */
2245 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2246
2247 /* Allocate global sym .plt and .got entries, and space for global
2248 sym dynamic relocs. */
2249 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2250
2251 /* The check_relocs and adjust_dynamic_symbol entry points have
2252 determined the sizes of the various dynamic sections. Allocate
2253 memory for them. */
2254 relocs = FALSE;
2255 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2256 {
2257 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2258 continue;
2259
2260 if (sec == htab->etab.splt)
2261 {
2262 if (htab->need_plt_stub)
2263 {
2264 /* Make space for the plt stub at the end of the .plt
2265 section. We want this stub right at the end, up
2266 against the .got section. */
2267 int gotalign = bfd_section_alignment (dynobj, htab->etab.sgot);
2268 int pltalign = bfd_section_alignment (dynobj, sec);
2269 bfd_size_type mask;
2270
2271 if (gotalign > pltalign)
2272 (void) bfd_set_section_alignment (dynobj, sec, gotalign);
2273 mask = ((bfd_size_type) 1 << gotalign) - 1;
2274 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2275 }
2276 }
2277 else if (sec == htab->etab.sgot
2278 || sec == htab->etab.sdynbss
2279 || sec == htab->etab.sdynrelro)
2280 ;
2281 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
2282 {
2283 if (sec->size != 0)
2284 {
2285 /* Remember whether there are any reloc sections other
2286 than .rela.plt. */
2287 if (sec != htab->etab.srelplt)
2288 relocs = TRUE;
2289
2290 /* We use the reloc_count field as a counter if we need
2291 to copy relocs into the output file. */
2292 sec->reloc_count = 0;
2293 }
2294 }
2295 else
2296 {
2297 /* It's not one of our sections, so don't allocate space. */
2298 continue;
2299 }
2300
2301 if (sec->size == 0)
2302 {
2303 /* If we don't need this section, strip it from the
2304 output file. This is mostly to handle .rela.bss and
2305 .rela.plt. We must create both sections in
2306 create_dynamic_sections, because they must be created
2307 before the linker maps input sections to output
2308 sections. The linker does that before
2309 adjust_dynamic_symbol is called, and it is that
2310 function which decides whether anything needs to go
2311 into these sections. */
2312 sec->flags |= SEC_EXCLUDE;
2313 continue;
2314 }
2315
2316 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2317 continue;
2318
2319 /* Allocate memory for the section contents. Zero it, because
2320 we may not fill in all the reloc sections. */
2321 sec->contents = bfd_zalloc (dynobj, sec->size);
2322 if (sec->contents == NULL)
2323 return FALSE;
2324 }
2325
2326 if (htab->etab.dynamic_sections_created)
2327 {
2328 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2329 actually has nothing to do with the PLT, it is how we
2330 communicate the LTP value of a load module to the dynamic
2331 linker. */
2332 #define add_dynamic_entry(TAG, VAL) \
2333 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2334
2335 if (!add_dynamic_entry (DT_PLTGOT, 0))
2336 return FALSE;
2337
2338 /* Add some entries to the .dynamic section. We fill in the
2339 values later, in elf32_hppa_finish_dynamic_sections, but we
2340 must add the entries now so that we get the correct size for
2341 the .dynamic section. The DT_DEBUG entry is filled in by the
2342 dynamic linker and used by the debugger. */
2343 if (bfd_link_executable (info))
2344 {
2345 if (!add_dynamic_entry (DT_DEBUG, 0))
2346 return FALSE;
2347 }
2348
2349 if (htab->etab.srelplt->size != 0)
2350 {
2351 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2352 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2353 || !add_dynamic_entry (DT_JMPREL, 0))
2354 return FALSE;
2355 }
2356
2357 if (relocs)
2358 {
2359 if (!add_dynamic_entry (DT_RELA, 0)
2360 || !add_dynamic_entry (DT_RELASZ, 0)
2361 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2362 return FALSE;
2363
2364 /* If any dynamic relocs apply to a read-only section,
2365 then we need a DT_TEXTREL entry. */
2366 if ((info->flags & DF_TEXTREL) == 0)
2367 elf_link_hash_traverse (&htab->etab, maybe_set_textrel, info);
2368
2369 if ((info->flags & DF_TEXTREL) != 0)
2370 {
2371 if (!add_dynamic_entry (DT_TEXTREL, 0))
2372 return FALSE;
2373 }
2374 }
2375 }
2376 #undef add_dynamic_entry
2377
2378 return TRUE;
2379 }
2380
2381 /* External entry points for sizing and building linker stubs. */
2382
2383 /* Set up various things so that we can make a list of input sections
2384 for each output section included in the link. Returns -1 on error,
2385 0 when no stubs will be needed, and 1 on success. */
2386
2387 int
2388 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2389 {
2390 bfd *input_bfd;
2391 unsigned int bfd_count;
2392 unsigned int top_id, top_index;
2393 asection *section;
2394 asection **input_list, **list;
2395 bfd_size_type amt;
2396 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2397
2398 if (htab == NULL)
2399 return -1;
2400
2401 /* Count the number of input BFDs and find the top input section id. */
2402 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2403 input_bfd != NULL;
2404 input_bfd = input_bfd->link.next)
2405 {
2406 bfd_count += 1;
2407 for (section = input_bfd->sections;
2408 section != NULL;
2409 section = section->next)
2410 {
2411 if (top_id < section->id)
2412 top_id = section->id;
2413 }
2414 }
2415 htab->bfd_count = bfd_count;
2416
2417 amt = sizeof (struct map_stub) * (top_id + 1);
2418 htab->stub_group = bfd_zmalloc (amt);
2419 if (htab->stub_group == NULL)
2420 return -1;
2421
2422 /* We can't use output_bfd->section_count here to find the top output
2423 section index as some sections may have been removed, and
2424 strip_excluded_output_sections doesn't renumber the indices. */
2425 for (section = output_bfd->sections, top_index = 0;
2426 section != NULL;
2427 section = section->next)
2428 {
2429 if (top_index < section->index)
2430 top_index = section->index;
2431 }
2432
2433 htab->top_index = top_index;
2434 amt = sizeof (asection *) * (top_index + 1);
2435 input_list = bfd_malloc (amt);
2436 htab->input_list = input_list;
2437 if (input_list == NULL)
2438 return -1;
2439
2440 /* For sections we aren't interested in, mark their entries with a
2441 value we can check later. */
2442 list = input_list + top_index;
2443 do
2444 *list = bfd_abs_section_ptr;
2445 while (list-- != input_list);
2446
2447 for (section = output_bfd->sections;
2448 section != NULL;
2449 section = section->next)
2450 {
2451 if ((section->flags & SEC_CODE) != 0)
2452 input_list[section->index] = NULL;
2453 }
2454
2455 return 1;
2456 }
2457
2458 /* The linker repeatedly calls this function for each input section,
2459 in the order that input sections are linked into output sections.
2460 Build lists of input sections to determine groupings between which
2461 we may insert linker stubs. */
2462
2463 void
2464 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2465 {
2466 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2467
2468 if (htab == NULL)
2469 return;
2470
2471 if (isec->output_section->index <= htab->top_index)
2472 {
2473 asection **list = htab->input_list + isec->output_section->index;
2474 if (*list != bfd_abs_section_ptr)
2475 {
2476 /* Steal the link_sec pointer for our list. */
2477 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2478 /* This happens to make the list in reverse order,
2479 which is what we want. */
2480 PREV_SEC (isec) = *list;
2481 *list = isec;
2482 }
2483 }
2484 }
2485
2486 /* See whether we can group stub sections together. Grouping stub
2487 sections may result in fewer stubs. More importantly, we need to
2488 put all .init* and .fini* stubs at the beginning of the .init or
2489 .fini output sections respectively, because glibc splits the
2490 _init and _fini functions into multiple parts. Putting a stub in
2491 the middle of a function is not a good idea. */
2492
2493 static void
2494 group_sections (struct elf32_hppa_link_hash_table *htab,
2495 bfd_size_type stub_group_size,
2496 bfd_boolean stubs_always_before_branch)
2497 {
2498 asection **list = htab->input_list + htab->top_index;
2499 do
2500 {
2501 asection *tail = *list;
2502 if (tail == bfd_abs_section_ptr)
2503 continue;
2504 while (tail != NULL)
2505 {
2506 asection *curr;
2507 asection *prev;
2508 bfd_size_type total;
2509 bfd_boolean big_sec;
2510
2511 curr = tail;
2512 total = tail->size;
2513 big_sec = total >= stub_group_size;
2514
2515 while ((prev = PREV_SEC (curr)) != NULL
2516 && ((total += curr->output_offset - prev->output_offset)
2517 < stub_group_size))
2518 curr = prev;
2519
2520 /* OK, the size from the start of CURR to the end is less
2521 than 240000 bytes and thus can be handled by one stub
2522 section. (or the tail section is itself larger than
2523 240000 bytes, in which case we may be toast.)
2524 We should really be keeping track of the total size of
2525 stubs added here, as stubs contribute to the final output
2526 section size. That's a little tricky, and this way will
2527 only break if stubs added total more than 22144 bytes, or
2528 2768 long branch stubs. It seems unlikely for more than
2529 2768 different functions to be called, especially from
2530 code only 240000 bytes long. This limit used to be
2531 250000, but c++ code tends to generate lots of little
2532 functions, and sometimes violated the assumption. */
2533 do
2534 {
2535 prev = PREV_SEC (tail);
2536 /* Set up this stub group. */
2537 htab->stub_group[tail->id].link_sec = curr;
2538 }
2539 while (tail != curr && (tail = prev) != NULL);
2540
2541 /* But wait, there's more! Input sections up to 240000
2542 bytes before the stub section can be handled by it too.
2543 Don't do this if we have a really large section after the
2544 stubs, as adding more stubs increases the chance that
2545 branches may not reach into the stub section. */
2546 if (!stubs_always_before_branch && !big_sec)
2547 {
2548 total = 0;
2549 while (prev != NULL
2550 && ((total += tail->output_offset - prev->output_offset)
2551 < stub_group_size))
2552 {
2553 tail = prev;
2554 prev = PREV_SEC (tail);
2555 htab->stub_group[tail->id].link_sec = curr;
2556 }
2557 }
2558 tail = prev;
2559 }
2560 }
2561 while (list-- != htab->input_list);
2562 free (htab->input_list);
2563 #undef PREV_SEC
2564 }
2565
2566 /* Read in all local syms for all input bfds, and create hash entries
2567 for export stubs if we are building a multi-subspace shared lib.
2568 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2569
2570 static int
2571 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2572 {
2573 unsigned int bfd_indx;
2574 Elf_Internal_Sym *local_syms, **all_local_syms;
2575 int stub_changed = 0;
2576 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2577
2578 if (htab == NULL)
2579 return -1;
2580
2581 /* We want to read in symbol extension records only once. To do this
2582 we need to read in the local symbols in parallel and save them for
2583 later use; so hold pointers to the local symbols in an array. */
2584 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2585 all_local_syms = bfd_zmalloc (amt);
2586 htab->all_local_syms = all_local_syms;
2587 if (all_local_syms == NULL)
2588 return -1;
2589
2590 /* Walk over all the input BFDs, swapping in local symbols.
2591 If we are creating a shared library, create hash entries for the
2592 export stubs. */
2593 for (bfd_indx = 0;
2594 input_bfd != NULL;
2595 input_bfd = input_bfd->link.next, bfd_indx++)
2596 {
2597 Elf_Internal_Shdr *symtab_hdr;
2598
2599 /* We'll need the symbol table in a second. */
2600 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2601 if (symtab_hdr->sh_info == 0)
2602 continue;
2603
2604 /* We need an array of the local symbols attached to the input bfd. */
2605 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2606 if (local_syms == NULL)
2607 {
2608 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2609 symtab_hdr->sh_info, 0,
2610 NULL, NULL, NULL);
2611 /* Cache them for elf_link_input_bfd. */
2612 symtab_hdr->contents = (unsigned char *) local_syms;
2613 }
2614 if (local_syms == NULL)
2615 return -1;
2616
2617 all_local_syms[bfd_indx] = local_syms;
2618
2619 if (bfd_link_pic (info) && htab->multi_subspace)
2620 {
2621 struct elf_link_hash_entry **eh_syms;
2622 struct elf_link_hash_entry **eh_symend;
2623 unsigned int symcount;
2624
2625 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2626 - symtab_hdr->sh_info);
2627 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2628 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2629
2630 /* Look through the global syms for functions; We need to
2631 build export stubs for all globally visible functions. */
2632 for (; eh_syms < eh_symend; eh_syms++)
2633 {
2634 struct elf32_hppa_link_hash_entry *hh;
2635
2636 hh = hppa_elf_hash_entry (*eh_syms);
2637
2638 while (hh->eh.root.type == bfd_link_hash_indirect
2639 || hh->eh.root.type == bfd_link_hash_warning)
2640 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2641
2642 /* At this point in the link, undefined syms have been
2643 resolved, so we need to check that the symbol was
2644 defined in this BFD. */
2645 if ((hh->eh.root.type == bfd_link_hash_defined
2646 || hh->eh.root.type == bfd_link_hash_defweak)
2647 && hh->eh.type == STT_FUNC
2648 && hh->eh.root.u.def.section->output_section != NULL
2649 && (hh->eh.root.u.def.section->output_section->owner
2650 == output_bfd)
2651 && hh->eh.root.u.def.section->owner == input_bfd
2652 && hh->eh.def_regular
2653 && !hh->eh.forced_local
2654 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2655 {
2656 asection *sec;
2657 const char *stub_name;
2658 struct elf32_hppa_stub_hash_entry *hsh;
2659
2660 sec = hh->eh.root.u.def.section;
2661 stub_name = hh_name (hh);
2662 hsh = hppa_stub_hash_lookup (&htab->bstab,
2663 stub_name,
2664 FALSE, FALSE);
2665 if (hsh == NULL)
2666 {
2667 hsh = hppa_add_stub (stub_name, sec, htab);
2668 if (!hsh)
2669 return -1;
2670
2671 hsh->target_value = hh->eh.root.u.def.value;
2672 hsh->target_section = hh->eh.root.u.def.section;
2673 hsh->stub_type = hppa_stub_export;
2674 hsh->hh = hh;
2675 stub_changed = 1;
2676 }
2677 else
2678 {
2679 /* xgettext:c-format */
2680 _bfd_error_handler (_("%pB: duplicate export stub %s"),
2681 input_bfd, stub_name);
2682 }
2683 }
2684 }
2685 }
2686 }
2687
2688 return stub_changed;
2689 }
2690
2691 /* Determine and set the size of the stub section for a final link.
2692
2693 The basic idea here is to examine all the relocations looking for
2694 PC-relative calls to a target that is unreachable with a "bl"
2695 instruction. */
2696
2697 bfd_boolean
2698 elf32_hppa_size_stubs
2699 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2700 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2701 asection * (*add_stub_section) (const char *, asection *),
2702 void (*layout_sections_again) (void))
2703 {
2704 bfd_size_type stub_group_size;
2705 bfd_boolean stubs_always_before_branch;
2706 bfd_boolean stub_changed;
2707 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2708
2709 if (htab == NULL)
2710 return FALSE;
2711
2712 /* Stash our params away. */
2713 htab->stub_bfd = stub_bfd;
2714 htab->multi_subspace = multi_subspace;
2715 htab->add_stub_section = add_stub_section;
2716 htab->layout_sections_again = layout_sections_again;
2717 stubs_always_before_branch = group_size < 0;
2718 if (group_size < 0)
2719 stub_group_size = -group_size;
2720 else
2721 stub_group_size = group_size;
2722 if (stub_group_size == 1)
2723 {
2724 /* Default values. */
2725 if (stubs_always_before_branch)
2726 {
2727 stub_group_size = 7680000;
2728 if (htab->has_17bit_branch || htab->multi_subspace)
2729 stub_group_size = 240000;
2730 if (htab->has_12bit_branch)
2731 stub_group_size = 7500;
2732 }
2733 else
2734 {
2735 stub_group_size = 6971392;
2736 if (htab->has_17bit_branch || htab->multi_subspace)
2737 stub_group_size = 217856;
2738 if (htab->has_12bit_branch)
2739 stub_group_size = 6808;
2740 }
2741 }
2742
2743 group_sections (htab, stub_group_size, stubs_always_before_branch);
2744
2745 switch (get_local_syms (output_bfd, info->input_bfds, info))
2746 {
2747 default:
2748 if (htab->all_local_syms)
2749 goto error_ret_free_local;
2750 return FALSE;
2751
2752 case 0:
2753 stub_changed = FALSE;
2754 break;
2755
2756 case 1:
2757 stub_changed = TRUE;
2758 break;
2759 }
2760
2761 while (1)
2762 {
2763 bfd *input_bfd;
2764 unsigned int bfd_indx;
2765 asection *stub_sec;
2766
2767 for (input_bfd = info->input_bfds, bfd_indx = 0;
2768 input_bfd != NULL;
2769 input_bfd = input_bfd->link.next, bfd_indx++)
2770 {
2771 Elf_Internal_Shdr *symtab_hdr;
2772 asection *section;
2773 Elf_Internal_Sym *local_syms;
2774
2775 /* We'll need the symbol table in a second. */
2776 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2777 if (symtab_hdr->sh_info == 0)
2778 continue;
2779
2780 local_syms = htab->all_local_syms[bfd_indx];
2781
2782 /* Walk over each section attached to the input bfd. */
2783 for (section = input_bfd->sections;
2784 section != NULL;
2785 section = section->next)
2786 {
2787 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2788
2789 /* If there aren't any relocs, then there's nothing more
2790 to do. */
2791 if ((section->flags & SEC_RELOC) == 0
2792 || section->reloc_count == 0)
2793 continue;
2794
2795 /* If this section is a link-once section that will be
2796 discarded, then don't create any stubs. */
2797 if (section->output_section == NULL
2798 || section->output_section->owner != output_bfd)
2799 continue;
2800
2801 /* Get the relocs. */
2802 internal_relocs
2803 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2804 info->keep_memory);
2805 if (internal_relocs == NULL)
2806 goto error_ret_free_local;
2807
2808 /* Now examine each relocation. */
2809 irela = internal_relocs;
2810 irelaend = irela + section->reloc_count;
2811 for (; irela < irelaend; irela++)
2812 {
2813 unsigned int r_type, r_indx;
2814 enum elf32_hppa_stub_type stub_type;
2815 struct elf32_hppa_stub_hash_entry *hsh;
2816 asection *sym_sec;
2817 bfd_vma sym_value;
2818 bfd_vma destination;
2819 struct elf32_hppa_link_hash_entry *hh;
2820 char *stub_name;
2821 const asection *id_sec;
2822
2823 r_type = ELF32_R_TYPE (irela->r_info);
2824 r_indx = ELF32_R_SYM (irela->r_info);
2825
2826 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2827 {
2828 bfd_set_error (bfd_error_bad_value);
2829 error_ret_free_internal:
2830 if (elf_section_data (section)->relocs == NULL)
2831 free (internal_relocs);
2832 goto error_ret_free_local;
2833 }
2834
2835 /* Only look for stubs on call instructions. */
2836 if (r_type != (unsigned int) R_PARISC_PCREL12F
2837 && r_type != (unsigned int) R_PARISC_PCREL17F
2838 && r_type != (unsigned int) R_PARISC_PCREL22F)
2839 continue;
2840
2841 /* Now determine the call target, its name, value,
2842 section. */
2843 sym_sec = NULL;
2844 sym_value = 0;
2845 destination = 0;
2846 hh = NULL;
2847 if (r_indx < symtab_hdr->sh_info)
2848 {
2849 /* It's a local symbol. */
2850 Elf_Internal_Sym *sym;
2851 Elf_Internal_Shdr *hdr;
2852 unsigned int shndx;
2853
2854 sym = local_syms + r_indx;
2855 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2856 sym_value = sym->st_value;
2857 shndx = sym->st_shndx;
2858 if (shndx < elf_numsections (input_bfd))
2859 {
2860 hdr = elf_elfsections (input_bfd)[shndx];
2861 sym_sec = hdr->bfd_section;
2862 destination = (sym_value + irela->r_addend
2863 + sym_sec->output_offset
2864 + sym_sec->output_section->vma);
2865 }
2866 }
2867 else
2868 {
2869 /* It's an external symbol. */
2870 int e_indx;
2871
2872 e_indx = r_indx - symtab_hdr->sh_info;
2873 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2874
2875 while (hh->eh.root.type == bfd_link_hash_indirect
2876 || hh->eh.root.type == bfd_link_hash_warning)
2877 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2878
2879 if (hh->eh.root.type == bfd_link_hash_defined
2880 || hh->eh.root.type == bfd_link_hash_defweak)
2881 {
2882 sym_sec = hh->eh.root.u.def.section;
2883 sym_value = hh->eh.root.u.def.value;
2884 if (sym_sec->output_section != NULL)
2885 destination = (sym_value + irela->r_addend
2886 + sym_sec->output_offset
2887 + sym_sec->output_section->vma);
2888 }
2889 else if (hh->eh.root.type == bfd_link_hash_undefweak)
2890 {
2891 if (! bfd_link_pic (info))
2892 continue;
2893 }
2894 else if (hh->eh.root.type == bfd_link_hash_undefined)
2895 {
2896 if (! (info->unresolved_syms_in_objects == RM_IGNORE
2897 && (ELF_ST_VISIBILITY (hh->eh.other)
2898 == STV_DEFAULT)
2899 && hh->eh.type != STT_PARISC_MILLI))
2900 continue;
2901 }
2902 else
2903 {
2904 bfd_set_error (bfd_error_bad_value);
2905 goto error_ret_free_internal;
2906 }
2907 }
2908
2909 /* Determine what (if any) linker stub is needed. */
2910 stub_type = hppa_type_of_stub (section, irela, hh,
2911 destination, info);
2912 if (stub_type == hppa_stub_none)
2913 continue;
2914
2915 /* Support for grouping stub sections. */
2916 id_sec = htab->stub_group[section->id].link_sec;
2917
2918 /* Get the name of this stub. */
2919 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
2920 if (!stub_name)
2921 goto error_ret_free_internal;
2922
2923 hsh = hppa_stub_hash_lookup (&htab->bstab,
2924 stub_name,
2925 FALSE, FALSE);
2926 if (hsh != NULL)
2927 {
2928 /* The proper stub has already been created. */
2929 free (stub_name);
2930 continue;
2931 }
2932
2933 hsh = hppa_add_stub (stub_name, section, htab);
2934 if (hsh == NULL)
2935 {
2936 free (stub_name);
2937 goto error_ret_free_internal;
2938 }
2939
2940 hsh->target_value = sym_value;
2941 hsh->target_section = sym_sec;
2942 hsh->stub_type = stub_type;
2943 if (bfd_link_pic (info))
2944 {
2945 if (stub_type == hppa_stub_import)
2946 hsh->stub_type = hppa_stub_import_shared;
2947 else if (stub_type == hppa_stub_long_branch)
2948 hsh->stub_type = hppa_stub_long_branch_shared;
2949 }
2950 hsh->hh = hh;
2951 stub_changed = TRUE;
2952 }
2953
2954 /* We're done with the internal relocs, free them. */
2955 if (elf_section_data (section)->relocs == NULL)
2956 free (internal_relocs);
2957 }
2958 }
2959
2960 if (!stub_changed)
2961 break;
2962
2963 /* OK, we've added some stubs. Find out the new size of the
2964 stub sections. */
2965 for (stub_sec = htab->stub_bfd->sections;
2966 stub_sec != NULL;
2967 stub_sec = stub_sec->next)
2968 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
2969 stub_sec->size = 0;
2970
2971 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
2972
2973 /* Ask the linker to do its stuff. */
2974 (*htab->layout_sections_again) ();
2975 stub_changed = FALSE;
2976 }
2977
2978 free (htab->all_local_syms);
2979 return TRUE;
2980
2981 error_ret_free_local:
2982 free (htab->all_local_syms);
2983 return FALSE;
2984 }
2985
2986 /* For a final link, this function is called after we have sized the
2987 stubs to provide a value for __gp. */
2988
2989 bfd_boolean
2990 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
2991 {
2992 struct bfd_link_hash_entry *h;
2993 asection *sec = NULL;
2994 bfd_vma gp_val = 0;
2995
2996 h = bfd_link_hash_lookup (info->hash, "$global$", FALSE, FALSE, FALSE);
2997
2998 if (h != NULL
2999 && (h->type == bfd_link_hash_defined
3000 || h->type == bfd_link_hash_defweak))
3001 {
3002 gp_val = h->u.def.value;
3003 sec = h->u.def.section;
3004 }
3005 else
3006 {
3007 asection *splt = bfd_get_section_by_name (abfd, ".plt");
3008 asection *sgot = bfd_get_section_by_name (abfd, ".got");
3009
3010 /* Choose to point our LTP at, in this order, one of .plt, .got,
3011 or .data, if these sections exist. In the case of choosing
3012 .plt try to make the LTP ideal for addressing anywhere in the
3013 .plt or .got with a 14 bit signed offset. Typically, the end
3014 of the .plt is the start of the .got, so choose .plt + 0x2000
3015 if either the .plt or .got is larger than 0x2000. If both
3016 the .plt and .got are smaller than 0x2000, choose the end of
3017 the .plt section. */
3018 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3019 ? NULL : splt;
3020 if (sec != NULL)
3021 {
3022 gp_val = sec->size;
3023 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3024 {
3025 gp_val = 0x2000;
3026 }
3027 }
3028 else
3029 {
3030 sec = sgot;
3031 if (sec != NULL)
3032 {
3033 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3034 {
3035 /* We know we don't have a .plt. If .got is large,
3036 offset our LTP. */
3037 if (sec->size > 0x2000)
3038 gp_val = 0x2000;
3039 }
3040 }
3041 else
3042 {
3043 /* No .plt or .got. Who cares what the LTP is? */
3044 sec = bfd_get_section_by_name (abfd, ".data");
3045 }
3046 }
3047
3048 if (h != NULL)
3049 {
3050 h->type = bfd_link_hash_defined;
3051 h->u.def.value = gp_val;
3052 if (sec != NULL)
3053 h->u.def.section = sec;
3054 else
3055 h->u.def.section = bfd_abs_section_ptr;
3056 }
3057 }
3058
3059 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
3060 {
3061 if (sec != NULL && sec->output_section != NULL)
3062 gp_val += sec->output_section->vma + sec->output_offset;
3063
3064 elf_gp (abfd) = gp_val;
3065 }
3066 return TRUE;
3067 }
3068
3069 /* Build all the stubs associated with the current output file. The
3070 stubs are kept in a hash table attached to the main linker hash
3071 table. We also set up the .plt entries for statically linked PIC
3072 functions here. This function is called via hppaelf_finish in the
3073 linker. */
3074
3075 bfd_boolean
3076 elf32_hppa_build_stubs (struct bfd_link_info *info)
3077 {
3078 asection *stub_sec;
3079 struct bfd_hash_table *table;
3080 struct elf32_hppa_link_hash_table *htab;
3081
3082 htab = hppa_link_hash_table (info);
3083 if (htab == NULL)
3084 return FALSE;
3085
3086 for (stub_sec = htab->stub_bfd->sections;
3087 stub_sec != NULL;
3088 stub_sec = stub_sec->next)
3089 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
3090 && stub_sec->size != 0)
3091 {
3092 /* Allocate memory to hold the linker stubs. */
3093 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
3094 if (stub_sec->contents == NULL)
3095 return FALSE;
3096 stub_sec->size = 0;
3097 }
3098
3099 /* Build the stubs as directed by the stub hash table. */
3100 table = &htab->bstab;
3101 bfd_hash_traverse (table, hppa_build_one_stub, info);
3102
3103 return TRUE;
3104 }
3105
3106 /* Return the base vma address which should be subtracted from the real
3107 address when resolving a dtpoff relocation.
3108 This is PT_TLS segment p_vaddr. */
3109
3110 static bfd_vma
3111 dtpoff_base (struct bfd_link_info *info)
3112 {
3113 /* If tls_sec is NULL, we should have signalled an error already. */
3114 if (elf_hash_table (info)->tls_sec == NULL)
3115 return 0;
3116 return elf_hash_table (info)->tls_sec->vma;
3117 }
3118
3119 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3120
3121 static bfd_vma
3122 tpoff (struct bfd_link_info *info, bfd_vma address)
3123 {
3124 struct elf_link_hash_table *htab = elf_hash_table (info);
3125
3126 /* If tls_sec is NULL, we should have signalled an error already. */
3127 if (htab->tls_sec == NULL)
3128 return 0;
3129 /* hppa TLS ABI is variant I and static TLS block start just after
3130 tcbhead structure which has 2 pointer fields. */
3131 return (address - htab->tls_sec->vma
3132 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3133 }
3134
3135 /* Perform a final link. */
3136
3137 static bfd_boolean
3138 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3139 {
3140 struct stat buf;
3141
3142 /* Invoke the regular ELF linker to do all the work. */
3143 if (!bfd_elf_final_link (abfd, info))
3144 return FALSE;
3145
3146 /* If we're producing a final executable, sort the contents of the
3147 unwind section. */
3148 if (bfd_link_relocatable (info))
3149 return TRUE;
3150
3151 /* Do not attempt to sort non-regular files. This is here
3152 especially for configure scripts and kernel builds which run
3153 tests with "ld [...] -o /dev/null". */
3154 if (stat (abfd->filename, &buf) != 0
3155 || !S_ISREG(buf.st_mode))
3156 return TRUE;
3157
3158 return elf_hppa_sort_unwind (abfd);
3159 }
3160
3161 /* Record the lowest address for the data and text segments. */
3162
3163 static void
3164 hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3165 {
3166 struct elf32_hppa_link_hash_table *htab;
3167
3168 htab = (struct elf32_hppa_link_hash_table*) data;
3169 if (htab == NULL)
3170 return;
3171
3172 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3173 {
3174 bfd_vma value;
3175 Elf_Internal_Phdr *p;
3176
3177 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3178 BFD_ASSERT (p != NULL);
3179 value = p->p_vaddr;
3180
3181 if ((section->flags & SEC_READONLY) != 0)
3182 {
3183 if (value < htab->text_segment_base)
3184 htab->text_segment_base = value;
3185 }
3186 else
3187 {
3188 if (value < htab->data_segment_base)
3189 htab->data_segment_base = value;
3190 }
3191 }
3192 }
3193
3194 /* Perform a relocation as part of a final link. */
3195
3196 static bfd_reloc_status_type
3197 final_link_relocate (asection *input_section,
3198 bfd_byte *contents,
3199 const Elf_Internal_Rela *rela,
3200 bfd_vma value,
3201 struct elf32_hppa_link_hash_table *htab,
3202 asection *sym_sec,
3203 struct elf32_hppa_link_hash_entry *hh,
3204 struct bfd_link_info *info)
3205 {
3206 int insn;
3207 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3208 unsigned int orig_r_type = r_type;
3209 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3210 int r_format = howto->bitsize;
3211 enum hppa_reloc_field_selector_type_alt r_field;
3212 bfd *input_bfd = input_section->owner;
3213 bfd_vma offset = rela->r_offset;
3214 bfd_vma max_branch_offset = 0;
3215 bfd_byte *hit_data = contents + offset;
3216 bfd_signed_vma addend = rela->r_addend;
3217 bfd_vma location;
3218 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3219 int val;
3220
3221 if (r_type == R_PARISC_NONE)
3222 return bfd_reloc_ok;
3223
3224 insn = bfd_get_32 (input_bfd, hit_data);
3225
3226 /* Find out where we are and where we're going. */
3227 location = (offset +
3228 input_section->output_offset +
3229 input_section->output_section->vma);
3230
3231 /* If we are not building a shared library, convert DLTIND relocs to
3232 DPREL relocs. */
3233 if (!bfd_link_pic (info))
3234 {
3235 switch (r_type)
3236 {
3237 case R_PARISC_DLTIND21L:
3238 case R_PARISC_TLS_GD21L:
3239 case R_PARISC_TLS_LDM21L:
3240 case R_PARISC_TLS_IE21L:
3241 r_type = R_PARISC_DPREL21L;
3242 break;
3243
3244 case R_PARISC_DLTIND14R:
3245 case R_PARISC_TLS_GD14R:
3246 case R_PARISC_TLS_LDM14R:
3247 case R_PARISC_TLS_IE14R:
3248 r_type = R_PARISC_DPREL14R;
3249 break;
3250
3251 case R_PARISC_DLTIND14F:
3252 r_type = R_PARISC_DPREL14F;
3253 break;
3254 }
3255 }
3256
3257 switch (r_type)
3258 {
3259 case R_PARISC_PCREL12F:
3260 case R_PARISC_PCREL17F:
3261 case R_PARISC_PCREL22F:
3262 /* If this call should go via the plt, find the import stub in
3263 the stub hash. */
3264 if (sym_sec == NULL
3265 || sym_sec->output_section == NULL
3266 || (hh != NULL
3267 && hh->eh.plt.offset != (bfd_vma) -1
3268 && hh->eh.dynindx != -1
3269 && !hh->plabel
3270 && (bfd_link_pic (info)
3271 || !hh->eh.def_regular
3272 || hh->eh.root.type == bfd_link_hash_defweak)))
3273 {
3274 hsh = hppa_get_stub_entry (input_section, sym_sec,
3275 hh, rela, htab);
3276 if (hsh != NULL)
3277 {
3278 value = (hsh->stub_offset
3279 + hsh->stub_sec->output_offset
3280 + hsh->stub_sec->output_section->vma);
3281 addend = 0;
3282 }
3283 else if (sym_sec == NULL && hh != NULL
3284 && hh->eh.root.type == bfd_link_hash_undefweak)
3285 {
3286 /* It's OK if undefined weak. Calls to undefined weak
3287 symbols behave as if the "called" function
3288 immediately returns. We can thus call to a weak
3289 function without first checking whether the function
3290 is defined. */
3291 value = location;
3292 addend = 8;
3293 }
3294 else
3295 return bfd_reloc_undefined;
3296 }
3297 /* Fall thru. */
3298
3299 case R_PARISC_PCREL21L:
3300 case R_PARISC_PCREL17C:
3301 case R_PARISC_PCREL17R:
3302 case R_PARISC_PCREL14R:
3303 case R_PARISC_PCREL14F:
3304 case R_PARISC_PCREL32:
3305 /* Make it a pc relative offset. */
3306 value -= location;
3307 addend -= 8;
3308 break;
3309
3310 case R_PARISC_DPREL21L:
3311 case R_PARISC_DPREL14R:
3312 case R_PARISC_DPREL14F:
3313 /* Convert instructions that use the linkage table pointer (r19) to
3314 instructions that use the global data pointer (dp). This is the
3315 most efficient way of using PIC code in an incomplete executable,
3316 but the user must follow the standard runtime conventions for
3317 accessing data for this to work. */
3318 if (orig_r_type != r_type)
3319 {
3320 if (r_type == R_PARISC_DPREL21L)
3321 {
3322 /* GCC sometimes uses a register other than r19 for the
3323 operation, so we must convert any addil instruction
3324 that uses this relocation. */
3325 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3326 insn = ADDIL_DP;
3327 else
3328 /* We must have a ldil instruction. It's too hard to find
3329 and convert the associated add instruction, so issue an
3330 error. */
3331 _bfd_error_handler
3332 /* xgettext:c-format */
3333 (_("%pB(%pA+%#Lx): %s fixup for insn %#x is not supported in a non-shared link"),
3334 input_bfd,
3335 input_section,
3336 offset,
3337 howto->name,
3338 insn);
3339 }
3340 else if (r_type == R_PARISC_DPREL14F)
3341 {
3342 /* This must be a format 1 load/store. Change the base
3343 register to dp. */
3344 insn = (insn & 0xfc1ffff) | (27 << 21);
3345 }
3346 }
3347
3348 /* For all the DP relative relocations, we need to examine the symbol's
3349 section. If it has no section or if it's a code section, then
3350 "data pointer relative" makes no sense. In that case we don't
3351 adjust the "value", and for 21 bit addil instructions, we change the
3352 source addend register from %dp to %r0. This situation commonly
3353 arises for undefined weak symbols and when a variable's "constness"
3354 is declared differently from the way the variable is defined. For
3355 instance: "extern int foo" with foo defined as "const int foo". */
3356 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3357 {
3358 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3359 == (((int) OP_ADDIL << 26) | (27 << 21)))
3360 {
3361 insn &= ~ (0x1f << 21);
3362 }
3363 /* Now try to make things easy for the dynamic linker. */
3364
3365 break;
3366 }
3367 /* Fall thru. */
3368
3369 case R_PARISC_DLTIND21L:
3370 case R_PARISC_DLTIND14R:
3371 case R_PARISC_DLTIND14F:
3372 case R_PARISC_TLS_GD21L:
3373 case R_PARISC_TLS_LDM21L:
3374 case R_PARISC_TLS_IE21L:
3375 case R_PARISC_TLS_GD14R:
3376 case R_PARISC_TLS_LDM14R:
3377 case R_PARISC_TLS_IE14R:
3378 value -= elf_gp (input_section->output_section->owner);
3379 break;
3380
3381 case R_PARISC_SEGREL32:
3382 if ((sym_sec->flags & SEC_CODE) != 0)
3383 value -= htab->text_segment_base;
3384 else
3385 value -= htab->data_segment_base;
3386 break;
3387
3388 default:
3389 break;
3390 }
3391
3392 switch (r_type)
3393 {
3394 case R_PARISC_DIR32:
3395 case R_PARISC_DIR14F:
3396 case R_PARISC_DIR17F:
3397 case R_PARISC_PCREL17C:
3398 case R_PARISC_PCREL14F:
3399 case R_PARISC_PCREL32:
3400 case R_PARISC_DPREL14F:
3401 case R_PARISC_PLABEL32:
3402 case R_PARISC_DLTIND14F:
3403 case R_PARISC_SEGBASE:
3404 case R_PARISC_SEGREL32:
3405 case R_PARISC_TLS_DTPMOD32:
3406 case R_PARISC_TLS_DTPOFF32:
3407 case R_PARISC_TLS_TPREL32:
3408 r_field = e_fsel;
3409 break;
3410
3411 case R_PARISC_DLTIND21L:
3412 case R_PARISC_PCREL21L:
3413 case R_PARISC_PLABEL21L:
3414 r_field = e_lsel;
3415 break;
3416
3417 case R_PARISC_DIR21L:
3418 case R_PARISC_DPREL21L:
3419 case R_PARISC_TLS_GD21L:
3420 case R_PARISC_TLS_LDM21L:
3421 case R_PARISC_TLS_LDO21L:
3422 case R_PARISC_TLS_IE21L:
3423 case R_PARISC_TLS_LE21L:
3424 r_field = e_lrsel;
3425 break;
3426
3427 case R_PARISC_PCREL17R:
3428 case R_PARISC_PCREL14R:
3429 case R_PARISC_PLABEL14R:
3430 case R_PARISC_DLTIND14R:
3431 r_field = e_rsel;
3432 break;
3433
3434 case R_PARISC_DIR17R:
3435 case R_PARISC_DIR14R:
3436 case R_PARISC_DPREL14R:
3437 case R_PARISC_TLS_GD14R:
3438 case R_PARISC_TLS_LDM14R:
3439 case R_PARISC_TLS_LDO14R:
3440 case R_PARISC_TLS_IE14R:
3441 case R_PARISC_TLS_LE14R:
3442 r_field = e_rrsel;
3443 break;
3444
3445 case R_PARISC_PCREL12F:
3446 case R_PARISC_PCREL17F:
3447 case R_PARISC_PCREL22F:
3448 r_field = e_fsel;
3449
3450 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3451 {
3452 max_branch_offset = (1 << (17-1)) << 2;
3453 }
3454 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3455 {
3456 max_branch_offset = (1 << (12-1)) << 2;
3457 }
3458 else
3459 {
3460 max_branch_offset = (1 << (22-1)) << 2;
3461 }
3462
3463 /* sym_sec is NULL on undefined weak syms or when shared on
3464 undefined syms. We've already checked for a stub for the
3465 shared undefined case. */
3466 if (sym_sec == NULL)
3467 break;
3468
3469 /* If the branch is out of reach, then redirect the
3470 call to the local stub for this function. */
3471 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3472 {
3473 hsh = hppa_get_stub_entry (input_section, sym_sec,
3474 hh, rela, htab);
3475 if (hsh == NULL)
3476 return bfd_reloc_undefined;
3477
3478 /* Munge up the value and addend so that we call the stub
3479 rather than the procedure directly. */
3480 value = (hsh->stub_offset
3481 + hsh->stub_sec->output_offset
3482 + hsh->stub_sec->output_section->vma
3483 - location);
3484 addend = -8;
3485 }
3486 break;
3487
3488 /* Something we don't know how to handle. */
3489 default:
3490 return bfd_reloc_notsupported;
3491 }
3492
3493 /* Make sure we can reach the stub. */
3494 if (max_branch_offset != 0
3495 && value + addend + max_branch_offset >= 2*max_branch_offset)
3496 {
3497 _bfd_error_handler
3498 /* xgettext:c-format */
3499 (_("%pB(%pA+%#Lx): cannot reach %s, recompile with -ffunction-sections"),
3500 input_bfd,
3501 input_section,
3502 offset,
3503 hsh->bh_root.string);
3504 bfd_set_error (bfd_error_bad_value);
3505 return bfd_reloc_notsupported;
3506 }
3507
3508 val = hppa_field_adjust (value, addend, r_field);
3509
3510 switch (r_type)
3511 {
3512 case R_PARISC_PCREL12F:
3513 case R_PARISC_PCREL17C:
3514 case R_PARISC_PCREL17F:
3515 case R_PARISC_PCREL17R:
3516 case R_PARISC_PCREL22F:
3517 case R_PARISC_DIR17F:
3518 case R_PARISC_DIR17R:
3519 /* This is a branch. Divide the offset by four.
3520 Note that we need to decide whether it's a branch or
3521 otherwise by inspecting the reloc. Inspecting insn won't
3522 work as insn might be from a .word directive. */
3523 val >>= 2;
3524 break;
3525
3526 default:
3527 break;
3528 }
3529
3530 insn = hppa_rebuild_insn (insn, val, r_format);
3531
3532 /* Update the instruction word. */
3533 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3534 return bfd_reloc_ok;
3535 }
3536
3537 /* Relocate an HPPA ELF section. */
3538
3539 static bfd_boolean
3540 elf32_hppa_relocate_section (bfd *output_bfd,
3541 struct bfd_link_info *info,
3542 bfd *input_bfd,
3543 asection *input_section,
3544 bfd_byte *contents,
3545 Elf_Internal_Rela *relocs,
3546 Elf_Internal_Sym *local_syms,
3547 asection **local_sections)
3548 {
3549 bfd_vma *local_got_offsets;
3550 struct elf32_hppa_link_hash_table *htab;
3551 Elf_Internal_Shdr *symtab_hdr;
3552 Elf_Internal_Rela *rela;
3553 Elf_Internal_Rela *relend;
3554
3555 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3556
3557 htab = hppa_link_hash_table (info);
3558 if (htab == NULL)
3559 return FALSE;
3560
3561 local_got_offsets = elf_local_got_offsets (input_bfd);
3562
3563 rela = relocs;
3564 relend = relocs + input_section->reloc_count;
3565 for (; rela < relend; rela++)
3566 {
3567 unsigned int r_type;
3568 reloc_howto_type *howto;
3569 unsigned int r_symndx;
3570 struct elf32_hppa_link_hash_entry *hh;
3571 Elf_Internal_Sym *sym;
3572 asection *sym_sec;
3573 bfd_vma relocation;
3574 bfd_reloc_status_type rstatus;
3575 const char *sym_name;
3576 bfd_boolean plabel;
3577 bfd_boolean warned_undef;
3578
3579 r_type = ELF32_R_TYPE (rela->r_info);
3580 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3581 {
3582 bfd_set_error (bfd_error_bad_value);
3583 return FALSE;
3584 }
3585 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3586 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3587 continue;
3588
3589 r_symndx = ELF32_R_SYM (rela->r_info);
3590 hh = NULL;
3591 sym = NULL;
3592 sym_sec = NULL;
3593 warned_undef = FALSE;
3594 if (r_symndx < symtab_hdr->sh_info)
3595 {
3596 /* This is a local symbol, h defaults to NULL. */
3597 sym = local_syms + r_symndx;
3598 sym_sec = local_sections[r_symndx];
3599 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3600 }
3601 else
3602 {
3603 struct elf_link_hash_entry *eh;
3604 bfd_boolean unresolved_reloc, ignored;
3605 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3606
3607 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3608 r_symndx, symtab_hdr, sym_hashes,
3609 eh, sym_sec, relocation,
3610 unresolved_reloc, warned_undef,
3611 ignored);
3612
3613 if (!bfd_link_relocatable (info)
3614 && relocation == 0
3615 && eh->root.type != bfd_link_hash_defined
3616 && eh->root.type != bfd_link_hash_defweak
3617 && eh->root.type != bfd_link_hash_undefweak)
3618 {
3619 if (info->unresolved_syms_in_objects == RM_IGNORE
3620 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3621 && eh->type == STT_PARISC_MILLI)
3622 {
3623 (*info->callbacks->undefined_symbol)
3624 (info, eh_name (eh), input_bfd,
3625 input_section, rela->r_offset, FALSE);
3626 warned_undef = TRUE;
3627 }
3628 }
3629 hh = hppa_elf_hash_entry (eh);
3630 }
3631
3632 if (sym_sec != NULL && discarded_section (sym_sec))
3633 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3634 rela, 1, relend,
3635 elf_hppa_howto_table + r_type, 0,
3636 contents);
3637
3638 if (bfd_link_relocatable (info))
3639 continue;
3640
3641 /* Do any required modifications to the relocation value, and
3642 determine what types of dynamic info we need to output, if
3643 any. */
3644 plabel = 0;
3645 switch (r_type)
3646 {
3647 case R_PARISC_DLTIND14F:
3648 case R_PARISC_DLTIND14R:
3649 case R_PARISC_DLTIND21L:
3650 {
3651 bfd_vma off;
3652 bfd_boolean do_got = FALSE;
3653 bfd_boolean reloc = bfd_link_pic (info);
3654
3655 /* Relocation is to the entry for this symbol in the
3656 global offset table. */
3657 if (hh != NULL)
3658 {
3659 bfd_boolean dyn;
3660
3661 off = hh->eh.got.offset;
3662 dyn = htab->etab.dynamic_sections_created;
3663 reloc = (!UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh)
3664 && (reloc
3665 || (hh->eh.dynindx != -1
3666 && !SYMBOL_REFERENCES_LOCAL (info, &hh->eh))));
3667 if (!reloc
3668 || !WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
3669 bfd_link_pic (info),
3670 &hh->eh))
3671 {
3672 /* If we aren't going to call finish_dynamic_symbol,
3673 then we need to handle initialisation of the .got
3674 entry and create needed relocs here. Since the
3675 offset must always be a multiple of 4, we use the
3676 least significant bit to record whether we have
3677 initialised it already. */
3678 if ((off & 1) != 0)
3679 off &= ~1;
3680 else
3681 {
3682 hh->eh.got.offset |= 1;
3683 do_got = TRUE;
3684 }
3685 }
3686 }
3687 else
3688 {
3689 /* Local symbol case. */
3690 if (local_got_offsets == NULL)
3691 abort ();
3692
3693 off = local_got_offsets[r_symndx];
3694
3695 /* The offset must always be a multiple of 4. We use
3696 the least significant bit to record whether we have
3697 already generated the necessary reloc. */
3698 if ((off & 1) != 0)
3699 off &= ~1;
3700 else
3701 {
3702 local_got_offsets[r_symndx] |= 1;
3703 do_got = TRUE;
3704 }
3705 }
3706
3707 if (do_got)
3708 {
3709 if (reloc)
3710 {
3711 /* Output a dynamic relocation for this GOT entry.
3712 In this case it is relative to the base of the
3713 object because the symbol index is zero. */
3714 Elf_Internal_Rela outrel;
3715 bfd_byte *loc;
3716 asection *sec = htab->etab.srelgot;
3717
3718 outrel.r_offset = (off
3719 + htab->etab.sgot->output_offset
3720 + htab->etab.sgot->output_section->vma);
3721 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3722 outrel.r_addend = relocation;
3723 loc = sec->contents;
3724 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3725 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3726 }
3727 else
3728 bfd_put_32 (output_bfd, relocation,
3729 htab->etab.sgot->contents + off);
3730 }
3731
3732 if (off >= (bfd_vma) -2)
3733 abort ();
3734
3735 /* Add the base of the GOT to the relocation value. */
3736 relocation = (off
3737 + htab->etab.sgot->output_offset
3738 + htab->etab.sgot->output_section->vma);
3739 }
3740 break;
3741
3742 case R_PARISC_SEGREL32:
3743 /* If this is the first SEGREL relocation, then initialize
3744 the segment base values. */
3745 if (htab->text_segment_base == (bfd_vma) -1)
3746 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3747 break;
3748
3749 case R_PARISC_PLABEL14R:
3750 case R_PARISC_PLABEL21L:
3751 case R_PARISC_PLABEL32:
3752 if (htab->etab.dynamic_sections_created)
3753 {
3754 bfd_vma off;
3755 bfd_boolean do_plt = 0;
3756 /* If we have a global symbol with a PLT slot, then
3757 redirect this relocation to it. */
3758 if (hh != NULL)
3759 {
3760 off = hh->eh.plt.offset;
3761 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1,
3762 bfd_link_pic (info),
3763 &hh->eh))
3764 {
3765 /* In a non-shared link, adjust_dynamic_symbol
3766 isn't called for symbols forced local. We
3767 need to write out the plt entry here. */
3768 if ((off & 1) != 0)
3769 off &= ~1;
3770 else
3771 {
3772 hh->eh.plt.offset |= 1;
3773 do_plt = 1;
3774 }
3775 }
3776 }
3777 else
3778 {
3779 bfd_vma *local_plt_offsets;
3780
3781 if (local_got_offsets == NULL)
3782 abort ();
3783
3784 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3785 off = local_plt_offsets[r_symndx];
3786
3787 /* As for the local .got entry case, we use the last
3788 bit to record whether we've already initialised
3789 this local .plt entry. */
3790 if ((off & 1) != 0)
3791 off &= ~1;
3792 else
3793 {
3794 local_plt_offsets[r_symndx] |= 1;
3795 do_plt = 1;
3796 }
3797 }
3798
3799 if (do_plt)
3800 {
3801 if (bfd_link_pic (info))
3802 {
3803 /* Output a dynamic IPLT relocation for this
3804 PLT entry. */
3805 Elf_Internal_Rela outrel;
3806 bfd_byte *loc;
3807 asection *s = htab->etab.srelplt;
3808
3809 outrel.r_offset = (off
3810 + htab->etab.splt->output_offset
3811 + htab->etab.splt->output_section->vma);
3812 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3813 outrel.r_addend = relocation;
3814 loc = s->contents;
3815 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3816 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3817 }
3818 else
3819 {
3820 bfd_put_32 (output_bfd,
3821 relocation,
3822 htab->etab.splt->contents + off);
3823 bfd_put_32 (output_bfd,
3824 elf_gp (htab->etab.splt->output_section->owner),
3825 htab->etab.splt->contents + off + 4);
3826 }
3827 }
3828
3829 if (off >= (bfd_vma) -2)
3830 abort ();
3831
3832 /* PLABELs contain function pointers. Relocation is to
3833 the entry for the function in the .plt. The magic +2
3834 offset signals to $$dyncall that the function pointer
3835 is in the .plt and thus has a gp pointer too.
3836 Exception: Undefined PLABELs should have a value of
3837 zero. */
3838 if (hh == NULL
3839 || (hh->eh.root.type != bfd_link_hash_undefweak
3840 && hh->eh.root.type != bfd_link_hash_undefined))
3841 {
3842 relocation = (off
3843 + htab->etab.splt->output_offset
3844 + htab->etab.splt->output_section->vma
3845 + 2);
3846 }
3847 plabel = 1;
3848 }
3849 /* Fall through. */
3850
3851 case R_PARISC_DIR17F:
3852 case R_PARISC_DIR17R:
3853 case R_PARISC_DIR14F:
3854 case R_PARISC_DIR14R:
3855 case R_PARISC_DIR21L:
3856 case R_PARISC_DPREL14F:
3857 case R_PARISC_DPREL14R:
3858 case R_PARISC_DPREL21L:
3859 case R_PARISC_DIR32:
3860 if ((input_section->flags & SEC_ALLOC) == 0)
3861 break;
3862
3863 if (bfd_link_pic (info)
3864 ? ((hh == NULL
3865 || hh->dyn_relocs != NULL)
3866 && ((hh != NULL && pc_dynrelocs (hh))
3867 || IS_ABSOLUTE_RELOC (r_type)))
3868 : (hh != NULL
3869 && hh->dyn_relocs != NULL))
3870 {
3871 Elf_Internal_Rela outrel;
3872 bfd_boolean skip;
3873 asection *sreloc;
3874 bfd_byte *loc;
3875
3876 /* When generating a shared object, these relocations
3877 are copied into the output file to be resolved at run
3878 time. */
3879
3880 outrel.r_addend = rela->r_addend;
3881 outrel.r_offset =
3882 _bfd_elf_section_offset (output_bfd, info, input_section,
3883 rela->r_offset);
3884 skip = (outrel.r_offset == (bfd_vma) -1
3885 || outrel.r_offset == (bfd_vma) -2);
3886 outrel.r_offset += (input_section->output_offset
3887 + input_section->output_section->vma);
3888
3889 if (skip)
3890 {
3891 memset (&outrel, 0, sizeof (outrel));
3892 }
3893 else if (hh != NULL
3894 && hh->eh.dynindx != -1
3895 && (plabel
3896 || !IS_ABSOLUTE_RELOC (r_type)
3897 || !bfd_link_pic (info)
3898 || !SYMBOLIC_BIND (info, &hh->eh)
3899 || !hh->eh.def_regular))
3900 {
3901 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
3902 }
3903 else /* It's a local symbol, or one marked to become local. */
3904 {
3905 int indx = 0;
3906
3907 /* Add the absolute offset of the symbol. */
3908 outrel.r_addend += relocation;
3909
3910 /* Global plabels need to be processed by the
3911 dynamic linker so that functions have at most one
3912 fptr. For this reason, we need to differentiate
3913 between global and local plabels, which we do by
3914 providing the function symbol for a global plabel
3915 reloc, and no symbol for local plabels. */
3916 if (! plabel
3917 && sym_sec != NULL
3918 && sym_sec->output_section != NULL
3919 && ! bfd_is_abs_section (sym_sec))
3920 {
3921 asection *osec;
3922
3923 osec = sym_sec->output_section;
3924 indx = elf_section_data (osec)->dynindx;
3925 if (indx == 0)
3926 {
3927 osec = htab->etab.text_index_section;
3928 indx = elf_section_data (osec)->dynindx;
3929 }
3930 BFD_ASSERT (indx != 0);
3931
3932 /* We are turning this relocation into one
3933 against a section symbol, so subtract out the
3934 output section's address but not the offset
3935 of the input section in the output section. */
3936 outrel.r_addend -= osec->vma;
3937 }
3938
3939 outrel.r_info = ELF32_R_INFO (indx, r_type);
3940 }
3941 sreloc = elf_section_data (input_section)->sreloc;
3942 if (sreloc == NULL)
3943 abort ();
3944
3945 loc = sreloc->contents;
3946 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3947 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3948 }
3949 break;
3950
3951 case R_PARISC_TLS_LDM21L:
3952 case R_PARISC_TLS_LDM14R:
3953 {
3954 bfd_vma off;
3955
3956 off = htab->tls_ldm_got.offset;
3957 if (off & 1)
3958 off &= ~1;
3959 else
3960 {
3961 Elf_Internal_Rela outrel;
3962 bfd_byte *loc;
3963
3964 outrel.r_offset = (off
3965 + htab->etab.sgot->output_section->vma
3966 + htab->etab.sgot->output_offset);
3967 outrel.r_addend = 0;
3968 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
3969 loc = htab->etab.srelgot->contents;
3970 loc += htab->etab.srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
3971
3972 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3973 htab->tls_ldm_got.offset |= 1;
3974 }
3975
3976 /* Add the base of the GOT to the relocation value. */
3977 relocation = (off
3978 + htab->etab.sgot->output_offset
3979 + htab->etab.sgot->output_section->vma);
3980
3981 break;
3982 }
3983
3984 case R_PARISC_TLS_LDO21L:
3985 case R_PARISC_TLS_LDO14R:
3986 relocation -= dtpoff_base (info);
3987 break;
3988
3989 case R_PARISC_TLS_GD21L:
3990 case R_PARISC_TLS_GD14R:
3991 case R_PARISC_TLS_IE21L:
3992 case R_PARISC_TLS_IE14R:
3993 {
3994 bfd_vma off;
3995 int indx;
3996 char tls_type;
3997
3998 indx = 0;
3999 if (hh != NULL)
4000 {
4001 if (!htab->etab.dynamic_sections_created
4002 || hh->eh.dynindx == -1
4003 || SYMBOL_REFERENCES_LOCAL (info, &hh->eh)
4004 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh))
4005 /* This is actually a static link, or it is a
4006 -Bsymbolic link and the symbol is defined
4007 locally, or the symbol was forced to be local
4008 because of a version file. */
4009 ;
4010 else
4011 indx = hh->eh.dynindx;
4012 off = hh->eh.got.offset;
4013 tls_type = hh->tls_type;
4014 }
4015 else
4016 {
4017 off = local_got_offsets[r_symndx];
4018 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4019 }
4020
4021 if (tls_type == GOT_UNKNOWN)
4022 abort ();
4023
4024 if ((off & 1) != 0)
4025 off &= ~1;
4026 else
4027 {
4028 bfd_boolean need_relocs = FALSE;
4029 Elf_Internal_Rela outrel;
4030 bfd_byte *loc = NULL;
4031 int cur_off = off;
4032
4033 /* The GOT entries have not been initialized yet. Do it
4034 now, and emit any relocations. If both an IE GOT and a
4035 GD GOT are necessary, we emit the GD first. */
4036
4037 if (indx != 0
4038 || (bfd_link_pic (info)
4039 && (hh == NULL
4040 || !UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh))))
4041 {
4042 need_relocs = TRUE;
4043 loc = htab->etab.srelgot->contents;
4044 loc += (htab->etab.srelgot->reloc_count
4045 * sizeof (Elf32_External_Rela));
4046 }
4047
4048 if (tls_type & GOT_TLS_GD)
4049 {
4050 if (need_relocs)
4051 {
4052 outrel.r_offset
4053 = (cur_off
4054 + htab->etab.sgot->output_section->vma
4055 + htab->etab.sgot->output_offset);
4056 outrel.r_info
4057 = ELF32_R_INFO (indx, R_PARISC_TLS_DTPMOD32);
4058 outrel.r_addend = 0;
4059 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4060 htab->etab.srelgot->reloc_count++;
4061 loc += sizeof (Elf32_External_Rela);
4062 outrel.r_info
4063 = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4064 outrel.r_offset += 4;
4065 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4066 htab->etab.srelgot->reloc_count++;
4067 loc += sizeof (Elf32_External_Rela);
4068 bfd_put_32 (output_bfd, 0,
4069 htab->etab.sgot->contents + cur_off);
4070 bfd_put_32 (output_bfd, 0,
4071 htab->etab.sgot->contents + cur_off + 4);
4072 }
4073 else
4074 {
4075 /* If we are not emitting relocations for a
4076 general dynamic reference, then we must be in a
4077 static link or an executable link with the
4078 symbol binding locally. Mark it as belonging
4079 to module 1, the executable. */
4080 bfd_put_32 (output_bfd, 1,
4081 htab->etab.sgot->contents + cur_off);
4082 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4083 htab->etab.sgot->contents + cur_off + 4);
4084 }
4085 cur_off += 8;
4086 }
4087
4088 if (tls_type & GOT_TLS_IE)
4089 {
4090 if (need_relocs
4091 && !(bfd_link_executable (info)
4092 && SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4093 {
4094 outrel.r_offset
4095 = (cur_off
4096 + htab->etab.sgot->output_section->vma
4097 + htab->etab.sgot->output_offset);
4098 outrel.r_info = ELF32_R_INFO (indx,
4099 R_PARISC_TLS_TPREL32);
4100 if (indx == 0)
4101 outrel.r_addend = relocation - dtpoff_base (info);
4102 else
4103 outrel.r_addend = 0;
4104 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4105 htab->etab.srelgot->reloc_count++;
4106 loc += sizeof (Elf32_External_Rela);
4107 }
4108 else
4109 bfd_put_32 (output_bfd, tpoff (info, relocation),
4110 htab->etab.sgot->contents + cur_off);
4111 cur_off += 4;
4112 }
4113
4114 if (hh != NULL)
4115 hh->eh.got.offset |= 1;
4116 else
4117 local_got_offsets[r_symndx] |= 1;
4118 }
4119
4120 if ((tls_type & GOT_NORMAL) != 0
4121 && (tls_type & (GOT_TLS_GD | GOT_TLS_LDM | GOT_TLS_IE)) != 0)
4122 {
4123 if (hh != NULL)
4124 _bfd_error_handler (_("%s has both normal and TLS relocs"),
4125 hh_name (hh));
4126 else
4127 {
4128 Elf_Internal_Sym *isym
4129 = bfd_sym_from_r_symndx (&htab->sym_cache,
4130 input_bfd, r_symndx);
4131 if (isym == NULL)
4132 return FALSE;
4133 sym_name
4134 = bfd_elf_string_from_elf_section (input_bfd,
4135 symtab_hdr->sh_link,
4136 isym->st_name);
4137 if (sym_name == NULL)
4138 return FALSE;
4139 if (*sym_name == '\0')
4140 sym_name = bfd_section_name (input_bfd, sym_sec);
4141 _bfd_error_handler
4142 (_("%pB:%s has both normal and TLS relocs"),
4143 input_bfd, sym_name);
4144 }
4145 bfd_set_error (bfd_error_bad_value);
4146 return FALSE;
4147 }
4148
4149 if ((tls_type & GOT_TLS_GD)
4150 && r_type != R_PARISC_TLS_GD21L
4151 && r_type != R_PARISC_TLS_GD14R)
4152 off += 2 * GOT_ENTRY_SIZE;
4153
4154 /* Add the base of the GOT to the relocation value. */
4155 relocation = (off
4156 + htab->etab.sgot->output_offset
4157 + htab->etab.sgot->output_section->vma);
4158
4159 break;
4160 }
4161
4162 case R_PARISC_TLS_LE21L:
4163 case R_PARISC_TLS_LE14R:
4164 {
4165 relocation = tpoff (info, relocation);
4166 break;
4167 }
4168 break;
4169
4170 default:
4171 break;
4172 }
4173
4174 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4175 htab, sym_sec, hh, info);
4176
4177 if (rstatus == bfd_reloc_ok)
4178 continue;
4179
4180 if (hh != NULL)
4181 sym_name = hh_name (hh);
4182 else
4183 {
4184 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4185 symtab_hdr->sh_link,
4186 sym->st_name);
4187 if (sym_name == NULL)
4188 return FALSE;
4189 if (*sym_name == '\0')
4190 sym_name = bfd_section_name (input_bfd, sym_sec);
4191 }
4192
4193 howto = elf_hppa_howto_table + r_type;
4194
4195 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4196 {
4197 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4198 {
4199 _bfd_error_handler
4200 /* xgettext:c-format */
4201 (_("%pB(%pA+%#Lx): cannot handle %s for %s"),
4202 input_bfd,
4203 input_section,
4204 rela->r_offset,
4205 howto->name,
4206 sym_name);
4207 bfd_set_error (bfd_error_bad_value);
4208 return FALSE;
4209 }
4210 }
4211 else
4212 (*info->callbacks->reloc_overflow)
4213 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4214 (bfd_vma) 0, input_bfd, input_section, rela->r_offset);
4215 }
4216
4217 return TRUE;
4218 }
4219
4220 /* Finish up dynamic symbol handling. We set the contents of various
4221 dynamic sections here. */
4222
4223 static bfd_boolean
4224 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4225 struct bfd_link_info *info,
4226 struct elf_link_hash_entry *eh,
4227 Elf_Internal_Sym *sym)
4228 {
4229 struct elf32_hppa_link_hash_table *htab;
4230 Elf_Internal_Rela rela;
4231 bfd_byte *loc;
4232
4233 htab = hppa_link_hash_table (info);
4234 if (htab == NULL)
4235 return FALSE;
4236
4237 if (eh->plt.offset != (bfd_vma) -1)
4238 {
4239 bfd_vma value;
4240
4241 if (eh->plt.offset & 1)
4242 abort ();
4243
4244 /* This symbol has an entry in the procedure linkage table. Set
4245 it up.
4246
4247 The format of a plt entry is
4248 <funcaddr>
4249 <__gp>
4250 */
4251 value = 0;
4252 if (eh->root.type == bfd_link_hash_defined
4253 || eh->root.type == bfd_link_hash_defweak)
4254 {
4255 value = eh->root.u.def.value;
4256 if (eh->root.u.def.section->output_section != NULL)
4257 value += (eh->root.u.def.section->output_offset
4258 + eh->root.u.def.section->output_section->vma);
4259 }
4260
4261 /* Create a dynamic IPLT relocation for this entry. */
4262 rela.r_offset = (eh->plt.offset
4263 + htab->etab.splt->output_offset
4264 + htab->etab.splt->output_section->vma);
4265 if (eh->dynindx != -1)
4266 {
4267 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4268 rela.r_addend = 0;
4269 }
4270 else
4271 {
4272 /* This symbol has been marked to become local, and is
4273 used by a plabel so must be kept in the .plt. */
4274 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4275 rela.r_addend = value;
4276 }
4277
4278 loc = htab->etab.srelplt->contents;
4279 loc += htab->etab.srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4280 bfd_elf32_swap_reloca_out (htab->etab.splt->output_section->owner, &rela, loc);
4281
4282 if (!eh->def_regular)
4283 {
4284 /* Mark the symbol as undefined, rather than as defined in
4285 the .plt section. Leave the value alone. */
4286 sym->st_shndx = SHN_UNDEF;
4287 }
4288 }
4289
4290 if (eh->got.offset != (bfd_vma) -1
4291 && (hppa_elf_hash_entry (eh)->tls_type & GOT_NORMAL) != 0
4292 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
4293 {
4294 bfd_boolean is_dyn = (eh->dynindx != -1
4295 && !SYMBOL_REFERENCES_LOCAL (info, eh));
4296
4297 if (is_dyn || bfd_link_pic (info))
4298 {
4299 /* This symbol has an entry in the global offset table. Set
4300 it up. */
4301
4302 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4303 + htab->etab.sgot->output_offset
4304 + htab->etab.sgot->output_section->vma);
4305
4306 /* If this is a -Bsymbolic link and the symbol is defined
4307 locally or was forced to be local because of a version
4308 file, we just want to emit a RELATIVE reloc. The entry
4309 in the global offset table will already have been
4310 initialized in the relocate_section function. */
4311 if (!is_dyn)
4312 {
4313 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4314 rela.r_addend = (eh->root.u.def.value
4315 + eh->root.u.def.section->output_offset
4316 + eh->root.u.def.section->output_section->vma);
4317 }
4318 else
4319 {
4320 if ((eh->got.offset & 1) != 0)
4321 abort ();
4322
4323 bfd_put_32 (output_bfd, 0,
4324 htab->etab.sgot->contents + (eh->got.offset & ~1));
4325 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4326 rela.r_addend = 0;
4327 }
4328
4329 loc = htab->etab.srelgot->contents;
4330 loc += (htab->etab.srelgot->reloc_count++
4331 * sizeof (Elf32_External_Rela));
4332 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4333 }
4334 }
4335
4336 if (eh->needs_copy)
4337 {
4338 asection *sec;
4339
4340 /* This symbol needs a copy reloc. Set it up. */
4341
4342 if (! (eh->dynindx != -1
4343 && (eh->root.type == bfd_link_hash_defined
4344 || eh->root.type == bfd_link_hash_defweak)))
4345 abort ();
4346
4347 rela.r_offset = (eh->root.u.def.value
4348 + eh->root.u.def.section->output_offset
4349 + eh->root.u.def.section->output_section->vma);
4350 rela.r_addend = 0;
4351 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4352 if (eh->root.u.def.section == htab->etab.sdynrelro)
4353 sec = htab->etab.sreldynrelro;
4354 else
4355 sec = htab->etab.srelbss;
4356 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4357 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4358 }
4359
4360 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4361 if (eh == htab->etab.hdynamic || eh == htab->etab.hgot)
4362 {
4363 sym->st_shndx = SHN_ABS;
4364 }
4365
4366 return TRUE;
4367 }
4368
4369 /* Used to decide how to sort relocs in an optimal manner for the
4370 dynamic linker, before writing them out. */
4371
4372 static enum elf_reloc_type_class
4373 elf32_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4374 const asection *rel_sec ATTRIBUTE_UNUSED,
4375 const Elf_Internal_Rela *rela)
4376 {
4377 /* Handle TLS relocs first; we don't want them to be marked
4378 relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)"
4379 check below. */
4380 switch ((int) ELF32_R_TYPE (rela->r_info))
4381 {
4382 case R_PARISC_TLS_DTPMOD32:
4383 case R_PARISC_TLS_DTPOFF32:
4384 case R_PARISC_TLS_TPREL32:
4385 return reloc_class_normal;
4386 }
4387
4388 if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)
4389 return reloc_class_relative;
4390
4391 switch ((int) ELF32_R_TYPE (rela->r_info))
4392 {
4393 case R_PARISC_IPLT:
4394 return reloc_class_plt;
4395 case R_PARISC_COPY:
4396 return reloc_class_copy;
4397 default:
4398 return reloc_class_normal;
4399 }
4400 }
4401
4402 /* Finish up the dynamic sections. */
4403
4404 static bfd_boolean
4405 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4406 struct bfd_link_info *info)
4407 {
4408 bfd *dynobj;
4409 struct elf32_hppa_link_hash_table *htab;
4410 asection *sdyn;
4411 asection * sgot;
4412
4413 htab = hppa_link_hash_table (info);
4414 if (htab == NULL)
4415 return FALSE;
4416
4417 dynobj = htab->etab.dynobj;
4418
4419 sgot = htab->etab.sgot;
4420 /* A broken linker script might have discarded the dynamic sections.
4421 Catch this here so that we do not seg-fault later on. */
4422 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
4423 return FALSE;
4424
4425 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4426
4427 if (htab->etab.dynamic_sections_created)
4428 {
4429 Elf32_External_Dyn *dyncon, *dynconend;
4430
4431 if (sdyn == NULL)
4432 abort ();
4433
4434 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4435 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4436 for (; dyncon < dynconend; dyncon++)
4437 {
4438 Elf_Internal_Dyn dyn;
4439 asection *s;
4440
4441 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4442
4443 switch (dyn.d_tag)
4444 {
4445 default:
4446 continue;
4447
4448 case DT_PLTGOT:
4449 /* Use PLTGOT to set the GOT register. */
4450 dyn.d_un.d_ptr = elf_gp (output_bfd);
4451 break;
4452
4453 case DT_JMPREL:
4454 s = htab->etab.srelplt;
4455 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4456 break;
4457
4458 case DT_PLTRELSZ:
4459 s = htab->etab.srelplt;
4460 dyn.d_un.d_val = s->size;
4461 break;
4462 }
4463
4464 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4465 }
4466 }
4467
4468 if (sgot != NULL && sgot->size != 0)
4469 {
4470 /* Fill in the first entry in the global offset table.
4471 We use it to point to our dynamic section, if we have one. */
4472 bfd_put_32 (output_bfd,
4473 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4474 sgot->contents);
4475
4476 /* The second entry is reserved for use by the dynamic linker. */
4477 memset (sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4478
4479 /* Set .got entry size. */
4480 elf_section_data (sgot->output_section)
4481 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4482 }
4483
4484 if (htab->etab.splt != NULL && htab->etab.splt->size != 0)
4485 {
4486 /* Set plt entry size to 0 instead of PLT_ENTRY_SIZE, since we add the
4487 plt stubs and as such the section does not hold a table of fixed-size
4488 entries. */
4489 elf_section_data (htab->etab.splt->output_section)->this_hdr.sh_entsize = 0;
4490
4491 if (htab->need_plt_stub)
4492 {
4493 /* Set up the .plt stub. */
4494 memcpy (htab->etab.splt->contents
4495 + htab->etab.splt->size - sizeof (plt_stub),
4496 plt_stub, sizeof (plt_stub));
4497
4498 if ((htab->etab.splt->output_offset
4499 + htab->etab.splt->output_section->vma
4500 + htab->etab.splt->size)
4501 != (sgot->output_offset
4502 + sgot->output_section->vma))
4503 {
4504 _bfd_error_handler
4505 (_(".got section not immediately after .plt section"));
4506 return FALSE;
4507 }
4508 }
4509 }
4510
4511 return TRUE;
4512 }
4513
4514 /* Called when writing out an object file to decide the type of a
4515 symbol. */
4516 static int
4517 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4518 {
4519 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4520 return STT_PARISC_MILLI;
4521 else
4522 return type;
4523 }
4524
4525 /* Misc BFD support code. */
4526 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4527 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4528 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4529 #define elf_info_to_howto elf_hppa_info_to_howto
4530 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4531
4532 /* Stuff for the BFD linker. */
4533 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4534 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4535 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4536 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4537 #define elf_backend_check_relocs elf32_hppa_check_relocs
4538 #define elf_backend_relocs_compatible _bfd_elf_relocs_compatible
4539 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4540 #define elf_backend_fake_sections elf_hppa_fake_sections
4541 #define elf_backend_relocate_section elf32_hppa_relocate_section
4542 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4543 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4544 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4545 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4546 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4547 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4548 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4549 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4550 #define elf_backend_object_p elf32_hppa_object_p
4551 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4552 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4553 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4554 #define elf_backend_action_discarded elf_hppa_action_discarded
4555
4556 #define elf_backend_can_gc_sections 1
4557 #define elf_backend_can_refcount 1
4558 #define elf_backend_plt_alignment 2
4559 #define elf_backend_want_got_plt 0
4560 #define elf_backend_plt_readonly 0
4561 #define elf_backend_want_plt_sym 0
4562 #define elf_backend_got_header_size 8
4563 #define elf_backend_want_dynrelro 1
4564 #define elf_backend_rela_normal 1
4565 #define elf_backend_dtrel_excludes_plt 1
4566 #define elf_backend_no_page_alias 1
4567
4568 #define TARGET_BIG_SYM hppa_elf32_vec
4569 #define TARGET_BIG_NAME "elf32-hppa"
4570 #define ELF_ARCH bfd_arch_hppa
4571 #define ELF_TARGET_ID HPPA32_ELF_DATA
4572 #define ELF_MACHINE_CODE EM_PARISC
4573 #define ELF_MAXPAGESIZE 0x1000
4574 #define ELF_OSABI ELFOSABI_HPUX
4575 #define elf32_bed elf32_hppa_hpux_bed
4576
4577 #include "elf32-target.h"
4578
4579 #undef TARGET_BIG_SYM
4580 #define TARGET_BIG_SYM hppa_elf32_linux_vec
4581 #undef TARGET_BIG_NAME
4582 #define TARGET_BIG_NAME "elf32-hppa-linux"
4583 #undef ELF_OSABI
4584 #define ELF_OSABI ELFOSABI_GNU
4585 #undef elf32_bed
4586 #define elf32_bed elf32_hppa_linux_bed
4587
4588 #include "elf32-target.h"
4589
4590 #undef TARGET_BIG_SYM
4591 #define TARGET_BIG_SYM hppa_elf32_nbsd_vec
4592 #undef TARGET_BIG_NAME
4593 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4594 #undef ELF_OSABI
4595 #define ELF_OSABI ELFOSABI_NETBSD
4596 #undef elf32_bed
4597 #define elf32_bed elf32_hppa_netbsd_bed
4598
4599 #include "elf32-target.h"
This page took 0.121685 seconds and 5 git commands to generate.