Check corrupt VTENTRY entry in bfd_elf_gc_record_vtentry
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright (C) 1990-2019 Free Software Foundation, Inc.
3
4 Original code by
5 Center for Software Science
6 Department of Computer Science
7 University of Utah
8 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
9 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
10 TLS support written by Randolph Chung <tausq@debian.org>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
28
29 #include "sysdep.h"
30 #include "bfd.h"
31 #include "libbfd.h"
32 #include "elf-bfd.h"
33 #include "elf/hppa.h"
34 #include "libhppa.h"
35 #include "elf32-hppa.h"
36 #define ARCH_SIZE 32
37 #include "elf32-hppa.h"
38 #include "elf-hppa.h"
39
40 /* In order to gain some understanding of code in this file without
41 knowing all the intricate details of the linker, note the
42 following:
43
44 Functions named elf32_hppa_* are called by external routines, other
45 functions are only called locally. elf32_hppa_* functions appear
46 in this file more or less in the order in which they are called
47 from external routines. eg. elf32_hppa_check_relocs is called
48 early in the link process, elf32_hppa_finish_dynamic_sections is
49 one of the last functions. */
50
51 /* We use two hash tables to hold information for linking PA ELF objects.
52
53 The first is the elf32_hppa_link_hash_table which is derived
54 from the standard ELF linker hash table. We use this as a place to
55 attach other hash tables and static information.
56
57 The second is the stub hash table which is derived from the
58 base BFD hash table. The stub hash table holds the information
59 necessary to build the linker stubs during a link.
60
61 There are a number of different stubs generated by the linker.
62
63 Long branch stub:
64 : ldil LR'X,%r1
65 : be,n RR'X(%sr4,%r1)
66
67 PIC long branch stub:
68 : b,l .+8,%r1
69 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
70 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
71
72 Import stub to call shared library routine from normal object file
73 (single sub-space version)
74 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
75 : ldw RR'lt_ptr+ltoff(%r1),%r21
76 : bv %r0(%r21)
77 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
78
79 Import stub to call shared library routine from shared library
80 (single sub-space version)
81 : addil LR'ltoff,%r19 ; get procedure entry point
82 : ldw RR'ltoff(%r1),%r21
83 : bv %r0(%r21)
84 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
85
86 Import stub to call shared library routine from normal object file
87 (multiple sub-space support)
88 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
89 : ldw RR'lt_ptr+ltoff(%r1),%r21
90 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
91 : ldsid (%r21),%r1
92 : mtsp %r1,%sr0
93 : be 0(%sr0,%r21) ; branch to target
94 : stw %rp,-24(%sp) ; save rp
95
96 Import stub to call shared library routine from shared library
97 (multiple sub-space support)
98 : addil LR'ltoff,%r19 ; get procedure entry point
99 : ldw RR'ltoff(%r1),%r21
100 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
101 : ldsid (%r21),%r1
102 : mtsp %r1,%sr0
103 : be 0(%sr0,%r21) ; branch to target
104 : stw %rp,-24(%sp) ; save rp
105
106 Export stub to return from shared lib routine (multiple sub-space support)
107 One of these is created for each exported procedure in a shared
108 library (and stored in the shared lib). Shared lib routines are
109 called via the first instruction in the export stub so that we can
110 do an inter-space return. Not required for single sub-space.
111 : bl,n X,%rp ; trap the return
112 : nop
113 : ldw -24(%sp),%rp ; restore the original rp
114 : ldsid (%rp),%r1
115 : mtsp %r1,%sr0
116 : be,n 0(%sr0,%rp) ; inter-space return. */
117
118
119 /* Variable names follow a coding style.
120 Please follow this (Apps Hungarian) style:
121
122 Structure/Variable Prefix
123 elf_link_hash_table "etab"
124 elf_link_hash_entry "eh"
125
126 elf32_hppa_link_hash_table "htab"
127 elf32_hppa_link_hash_entry "hh"
128
129 bfd_hash_table "btab"
130 bfd_hash_entry "bh"
131
132 bfd_hash_table containing stubs "bstab"
133 elf32_hppa_stub_hash_entry "hsh"
134
135 Always remember to use GNU Coding Style. */
136
137 #define PLT_ENTRY_SIZE 8
138 #define GOT_ENTRY_SIZE 4
139 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
140
141 static const bfd_byte plt_stub[] =
142 {
143 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
144 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
145 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
146 #define PLT_STUB_ENTRY (3*4)
147 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
148 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
149 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
150 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
151 };
152
153 /* Section name for stubs is the associated section name plus this
154 string. */
155 #define STUB_SUFFIX ".stub"
156
157 /* We don't need to copy certain PC- or GP-relative dynamic relocs
158 into a shared object's dynamic section. All the relocs of the
159 limited class we are interested in, are absolute. */
160 #ifndef RELATIVE_DYNRELOCS
161 #define RELATIVE_DYNRELOCS 0
162 #define IS_ABSOLUTE_RELOC(r_type) 1
163 #define pc_dynrelocs(hh) 0
164 #endif
165
166 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
167 copying dynamic variables from a shared lib into an app's dynbss
168 section, and instead use a dynamic relocation to point into the
169 shared lib. */
170 #define ELIMINATE_COPY_RELOCS 1
171
172 enum elf32_hppa_stub_type
173 {
174 hppa_stub_long_branch,
175 hppa_stub_long_branch_shared,
176 hppa_stub_import,
177 hppa_stub_import_shared,
178 hppa_stub_export,
179 hppa_stub_none
180 };
181
182 struct elf32_hppa_stub_hash_entry
183 {
184 /* Base hash table entry structure. */
185 struct bfd_hash_entry bh_root;
186
187 /* The stub section. */
188 asection *stub_sec;
189
190 /* Offset within stub_sec of the beginning of this stub. */
191 bfd_vma stub_offset;
192
193 /* Given the symbol's value and its section we can determine its final
194 value when building the stubs (so the stub knows where to jump. */
195 bfd_vma target_value;
196 asection *target_section;
197
198 enum elf32_hppa_stub_type stub_type;
199
200 /* The symbol table entry, if any, that this was derived from. */
201 struct elf32_hppa_link_hash_entry *hh;
202
203 /* Where this stub is being called from, or, in the case of combined
204 stub sections, the first input section in the group. */
205 asection *id_sec;
206 };
207
208 enum _tls_type
209 {
210 GOT_UNKNOWN = 0,
211 GOT_NORMAL = 1,
212 GOT_TLS_GD = 2,
213 GOT_TLS_LDM = 4,
214 GOT_TLS_IE = 8
215 };
216
217 struct elf32_hppa_link_hash_entry
218 {
219 struct elf_link_hash_entry eh;
220
221 /* A pointer to the most recently used stub hash entry against this
222 symbol. */
223 struct elf32_hppa_stub_hash_entry *hsh_cache;
224
225 /* Used to count relocations for delayed sizing of relocation
226 sections. */
227 struct elf_dyn_relocs *dyn_relocs;
228
229 ENUM_BITFIELD (_tls_type) tls_type : 8;
230
231 /* Set if this symbol is used by a plabel reloc. */
232 unsigned int plabel:1;
233 };
234
235 struct elf32_hppa_link_hash_table
236 {
237 /* The main hash table. */
238 struct elf_link_hash_table etab;
239
240 /* The stub hash table. */
241 struct bfd_hash_table bstab;
242
243 /* Linker stub bfd. */
244 bfd *stub_bfd;
245
246 /* Linker call-backs. */
247 asection * (*add_stub_section) (const char *, asection *);
248 void (*layout_sections_again) (void);
249
250 /* Array to keep track of which stub sections have been created, and
251 information on stub grouping. */
252 struct map_stub
253 {
254 /* This is the section to which stubs in the group will be
255 attached. */
256 asection *link_sec;
257 /* The stub section. */
258 asection *stub_sec;
259 } *stub_group;
260
261 /* Assorted information used by elf32_hppa_size_stubs. */
262 unsigned int bfd_count;
263 unsigned int top_index;
264 asection **input_list;
265 Elf_Internal_Sym **all_local_syms;
266
267 /* Used during a final link to store the base of the text and data
268 segments so that we can perform SEGREL relocations. */
269 bfd_vma text_segment_base;
270 bfd_vma data_segment_base;
271
272 /* Whether we support multiple sub-spaces for shared libs. */
273 unsigned int multi_subspace:1;
274
275 /* Flags set when various size branches are detected. Used to
276 select suitable defaults for the stub group size. */
277 unsigned int has_12bit_branch:1;
278 unsigned int has_17bit_branch:1;
279 unsigned int has_22bit_branch:1;
280
281 /* Set if we need a .plt stub to support lazy dynamic linking. */
282 unsigned int need_plt_stub:1;
283
284 /* Small local sym cache. */
285 struct sym_cache sym_cache;
286
287 /* Data for LDM relocations. */
288 union
289 {
290 bfd_signed_vma refcount;
291 bfd_vma offset;
292 } tls_ldm_got;
293 };
294
295 /* Various hash macros and functions. */
296 #define hppa_link_hash_table(p) \
297 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
298 == HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL)
299
300 #define hppa_elf_hash_entry(ent) \
301 ((struct elf32_hppa_link_hash_entry *)(ent))
302
303 #define hppa_stub_hash_entry(ent) \
304 ((struct elf32_hppa_stub_hash_entry *)(ent))
305
306 #define hppa_stub_hash_lookup(table, string, create, copy) \
307 ((struct elf32_hppa_stub_hash_entry *) \
308 bfd_hash_lookup ((table), (string), (create), (copy)))
309
310 #define hppa_elf_local_got_tls_type(abfd) \
311 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
312
313 #define hh_name(hh) \
314 (hh ? hh->eh.root.root.string : "<undef>")
315
316 #define eh_name(eh) \
317 (eh ? eh->root.root.string : "<undef>")
318
319 /* Assorted hash table functions. */
320
321 /* Initialize an entry in the stub hash table. */
322
323 static struct bfd_hash_entry *
324 stub_hash_newfunc (struct bfd_hash_entry *entry,
325 struct bfd_hash_table *table,
326 const char *string)
327 {
328 /* Allocate the structure if it has not already been allocated by a
329 subclass. */
330 if (entry == NULL)
331 {
332 entry = bfd_hash_allocate (table,
333 sizeof (struct elf32_hppa_stub_hash_entry));
334 if (entry == NULL)
335 return entry;
336 }
337
338 /* Call the allocation method of the superclass. */
339 entry = bfd_hash_newfunc (entry, table, string);
340 if (entry != NULL)
341 {
342 struct elf32_hppa_stub_hash_entry *hsh;
343
344 /* Initialize the local fields. */
345 hsh = hppa_stub_hash_entry (entry);
346 hsh->stub_sec = NULL;
347 hsh->stub_offset = 0;
348 hsh->target_value = 0;
349 hsh->target_section = NULL;
350 hsh->stub_type = hppa_stub_long_branch;
351 hsh->hh = NULL;
352 hsh->id_sec = NULL;
353 }
354
355 return entry;
356 }
357
358 /* Initialize an entry in the link hash table. */
359
360 static struct bfd_hash_entry *
361 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
362 struct bfd_hash_table *table,
363 const char *string)
364 {
365 /* Allocate the structure if it has not already been allocated by a
366 subclass. */
367 if (entry == NULL)
368 {
369 entry = bfd_hash_allocate (table,
370 sizeof (struct elf32_hppa_link_hash_entry));
371 if (entry == NULL)
372 return entry;
373 }
374
375 /* Call the allocation method of the superclass. */
376 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
377 if (entry != NULL)
378 {
379 struct elf32_hppa_link_hash_entry *hh;
380
381 /* Initialize the local fields. */
382 hh = hppa_elf_hash_entry (entry);
383 hh->hsh_cache = NULL;
384 hh->dyn_relocs = NULL;
385 hh->plabel = 0;
386 hh->tls_type = GOT_UNKNOWN;
387 }
388
389 return entry;
390 }
391
392 /* Free the derived linker hash table. */
393
394 static void
395 elf32_hppa_link_hash_table_free (bfd *obfd)
396 {
397 struct elf32_hppa_link_hash_table *htab
398 = (struct elf32_hppa_link_hash_table *) obfd->link.hash;
399
400 bfd_hash_table_free (&htab->bstab);
401 _bfd_elf_link_hash_table_free (obfd);
402 }
403
404 /* Create the derived linker hash table. The PA ELF port uses the derived
405 hash table to keep information specific to the PA ELF linker (without
406 using static variables). */
407
408 static struct bfd_link_hash_table *
409 elf32_hppa_link_hash_table_create (bfd *abfd)
410 {
411 struct elf32_hppa_link_hash_table *htab;
412 bfd_size_type amt = sizeof (*htab);
413
414 htab = bfd_zmalloc (amt);
415 if (htab == NULL)
416 return NULL;
417
418 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
419 sizeof (struct elf32_hppa_link_hash_entry),
420 HPPA32_ELF_DATA))
421 {
422 free (htab);
423 return NULL;
424 }
425
426 /* Init the stub hash table too. */
427 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
428 sizeof (struct elf32_hppa_stub_hash_entry)))
429 {
430 _bfd_elf_link_hash_table_free (abfd);
431 return NULL;
432 }
433 htab->etab.root.hash_table_free = elf32_hppa_link_hash_table_free;
434
435 htab->text_segment_base = (bfd_vma) -1;
436 htab->data_segment_base = (bfd_vma) -1;
437 return &htab->etab.root;
438 }
439
440 /* Initialize the linker stubs BFD so that we can use it for linker
441 created dynamic sections. */
442
443 void
444 elf32_hppa_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
445 {
446 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
447
448 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS32;
449 htab->etab.dynobj = abfd;
450 }
451
452 /* Build a name for an entry in the stub hash table. */
453
454 static char *
455 hppa_stub_name (const asection *input_section,
456 const asection *sym_sec,
457 const struct elf32_hppa_link_hash_entry *hh,
458 const Elf_Internal_Rela *rela)
459 {
460 char *stub_name;
461 bfd_size_type len;
462
463 if (hh)
464 {
465 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
466 stub_name = bfd_malloc (len);
467 if (stub_name != NULL)
468 sprintf (stub_name, "%08x_%s+%x",
469 input_section->id & 0xffffffff,
470 hh_name (hh),
471 (int) rela->r_addend & 0xffffffff);
472 }
473 else
474 {
475 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
476 stub_name = bfd_malloc (len);
477 if (stub_name != NULL)
478 sprintf (stub_name, "%08x_%x:%x+%x",
479 input_section->id & 0xffffffff,
480 sym_sec->id & 0xffffffff,
481 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
482 (int) rela->r_addend & 0xffffffff);
483 }
484 return stub_name;
485 }
486
487 /* Look up an entry in the stub hash. Stub entries are cached because
488 creating the stub name takes a bit of time. */
489
490 static struct elf32_hppa_stub_hash_entry *
491 hppa_get_stub_entry (const asection *input_section,
492 const asection *sym_sec,
493 struct elf32_hppa_link_hash_entry *hh,
494 const Elf_Internal_Rela *rela,
495 struct elf32_hppa_link_hash_table *htab)
496 {
497 struct elf32_hppa_stub_hash_entry *hsh_entry;
498 const asection *id_sec;
499
500 /* If this input section is part of a group of sections sharing one
501 stub section, then use the id of the first section in the group.
502 Stub names need to include a section id, as there may well be
503 more than one stub used to reach say, printf, and we need to
504 distinguish between them. */
505 id_sec = htab->stub_group[input_section->id].link_sec;
506 if (id_sec == NULL)
507 return NULL;
508
509 if (hh != NULL && hh->hsh_cache != NULL
510 && hh->hsh_cache->hh == hh
511 && hh->hsh_cache->id_sec == id_sec)
512 {
513 hsh_entry = hh->hsh_cache;
514 }
515 else
516 {
517 char *stub_name;
518
519 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
520 if (stub_name == NULL)
521 return NULL;
522
523 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
524 stub_name, FALSE, FALSE);
525 if (hh != NULL)
526 hh->hsh_cache = hsh_entry;
527
528 free (stub_name);
529 }
530
531 return hsh_entry;
532 }
533
534 /* Add a new stub entry to the stub hash. Not all fields of the new
535 stub entry are initialised. */
536
537 static struct elf32_hppa_stub_hash_entry *
538 hppa_add_stub (const char *stub_name,
539 asection *section,
540 struct elf32_hppa_link_hash_table *htab)
541 {
542 asection *link_sec;
543 asection *stub_sec;
544 struct elf32_hppa_stub_hash_entry *hsh;
545
546 link_sec = htab->stub_group[section->id].link_sec;
547 stub_sec = htab->stub_group[section->id].stub_sec;
548 if (stub_sec == NULL)
549 {
550 stub_sec = htab->stub_group[link_sec->id].stub_sec;
551 if (stub_sec == NULL)
552 {
553 size_t namelen;
554 bfd_size_type len;
555 char *s_name;
556
557 namelen = strlen (link_sec->name);
558 len = namelen + sizeof (STUB_SUFFIX);
559 s_name = bfd_alloc (htab->stub_bfd, len);
560 if (s_name == NULL)
561 return NULL;
562
563 memcpy (s_name, link_sec->name, namelen);
564 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
565 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
566 if (stub_sec == NULL)
567 return NULL;
568 htab->stub_group[link_sec->id].stub_sec = stub_sec;
569 }
570 htab->stub_group[section->id].stub_sec = stub_sec;
571 }
572
573 /* Enter this entry into the linker stub hash table. */
574 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
575 TRUE, FALSE);
576 if (hsh == NULL)
577 {
578 /* xgettext:c-format */
579 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
580 section->owner, stub_name);
581 return NULL;
582 }
583
584 hsh->stub_sec = stub_sec;
585 hsh->stub_offset = 0;
586 hsh->id_sec = link_sec;
587 return hsh;
588 }
589
590 /* Determine the type of stub needed, if any, for a call. */
591
592 static enum elf32_hppa_stub_type
593 hppa_type_of_stub (asection *input_sec,
594 const Elf_Internal_Rela *rela,
595 struct elf32_hppa_link_hash_entry *hh,
596 bfd_vma destination,
597 struct bfd_link_info *info)
598 {
599 bfd_vma location;
600 bfd_vma branch_offset;
601 bfd_vma max_branch_offset;
602 unsigned int r_type;
603
604 if (hh != NULL
605 && hh->eh.plt.offset != (bfd_vma) -1
606 && hh->eh.dynindx != -1
607 && !hh->plabel
608 && (bfd_link_pic (info)
609 || !hh->eh.def_regular
610 || hh->eh.root.type == bfd_link_hash_defweak))
611 {
612 /* We need an import stub. Decide between hppa_stub_import
613 and hppa_stub_import_shared later. */
614 return hppa_stub_import;
615 }
616
617 if (destination == (bfd_vma) -1)
618 return hppa_stub_none;
619
620 /* Determine where the call point is. */
621 location = (input_sec->output_offset
622 + input_sec->output_section->vma
623 + rela->r_offset);
624
625 branch_offset = destination - location - 8;
626 r_type = ELF32_R_TYPE (rela->r_info);
627
628 /* Determine if a long branch stub is needed. parisc branch offsets
629 are relative to the second instruction past the branch, ie. +8
630 bytes on from the branch instruction location. The offset is
631 signed and counts in units of 4 bytes. */
632 if (r_type == (unsigned int) R_PARISC_PCREL17F)
633 max_branch_offset = (1 << (17 - 1)) << 2;
634
635 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
636 max_branch_offset = (1 << (12 - 1)) << 2;
637
638 else /* R_PARISC_PCREL22F. */
639 max_branch_offset = (1 << (22 - 1)) << 2;
640
641 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
642 return hppa_stub_long_branch;
643
644 return hppa_stub_none;
645 }
646
647 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
648 IN_ARG contains the link info pointer. */
649
650 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
651 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
652
653 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
654 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
655 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
656
657 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
658 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
659 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
660 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
661
662 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
663 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
664
665 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
666 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
667 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
668 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
669
670 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
671 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
672 #define NOP 0x08000240 /* nop */
673 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
674 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
675 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
676
677 #ifndef R19_STUBS
678 #define R19_STUBS 1
679 #endif
680
681 #if R19_STUBS
682 #define LDW_R1_DLT LDW_R1_R19
683 #else
684 #define LDW_R1_DLT LDW_R1_DP
685 #endif
686
687 static bfd_boolean
688 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
689 {
690 struct elf32_hppa_stub_hash_entry *hsh;
691 struct bfd_link_info *info;
692 struct elf32_hppa_link_hash_table *htab;
693 asection *stub_sec;
694 bfd *stub_bfd;
695 bfd_byte *loc;
696 bfd_vma sym_value;
697 bfd_vma insn;
698 bfd_vma off;
699 int val;
700 int size;
701
702 /* Massage our args to the form they really have. */
703 hsh = hppa_stub_hash_entry (bh);
704 info = (struct bfd_link_info *)in_arg;
705
706 htab = hppa_link_hash_table (info);
707 if (htab == NULL)
708 return FALSE;
709
710 stub_sec = hsh->stub_sec;
711
712 /* Make a note of the offset within the stubs for this entry. */
713 hsh->stub_offset = stub_sec->size;
714 loc = stub_sec->contents + hsh->stub_offset;
715
716 stub_bfd = stub_sec->owner;
717
718 switch (hsh->stub_type)
719 {
720 case hppa_stub_long_branch:
721 /* Create the long branch. A long branch is formed with "ldil"
722 loading the upper bits of the target address into a register,
723 then branching with "be" which adds in the lower bits.
724 The "be" has its delay slot nullified. */
725 sym_value = (hsh->target_value
726 + hsh->target_section->output_offset
727 + hsh->target_section->output_section->vma);
728
729 val = hppa_field_adjust (sym_value, 0, e_lrsel);
730 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
731 bfd_put_32 (stub_bfd, insn, loc);
732
733 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
734 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
735 bfd_put_32 (stub_bfd, insn, loc + 4);
736
737 size = 8;
738 break;
739
740 case hppa_stub_long_branch_shared:
741 /* Branches are relative. This is where we are going to. */
742 sym_value = (hsh->target_value
743 + hsh->target_section->output_offset
744 + hsh->target_section->output_section->vma);
745
746 /* And this is where we are coming from, more or less. */
747 sym_value -= (hsh->stub_offset
748 + stub_sec->output_offset
749 + stub_sec->output_section->vma);
750
751 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
752 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
753 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
754 bfd_put_32 (stub_bfd, insn, loc + 4);
755
756 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
757 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
758 bfd_put_32 (stub_bfd, insn, loc + 8);
759 size = 12;
760 break;
761
762 case hppa_stub_import:
763 case hppa_stub_import_shared:
764 off = hsh->hh->eh.plt.offset;
765 if (off >= (bfd_vma) -2)
766 abort ();
767
768 off &= ~ (bfd_vma) 1;
769 sym_value = (off
770 + htab->etab.splt->output_offset
771 + htab->etab.splt->output_section->vma
772 - elf_gp (htab->etab.splt->output_section->owner));
773
774 insn = ADDIL_DP;
775 #if R19_STUBS
776 if (hsh->stub_type == hppa_stub_import_shared)
777 insn = ADDIL_R19;
778 #endif
779 val = hppa_field_adjust (sym_value, 0, e_lrsel),
780 insn = hppa_rebuild_insn ((int) insn, val, 21);
781 bfd_put_32 (stub_bfd, insn, loc);
782
783 /* It is critical to use lrsel/rrsel here because we are using
784 two different offsets (+0 and +4) from sym_value. If we use
785 lsel/rsel then with unfortunate sym_values we will round
786 sym_value+4 up to the next 2k block leading to a mis-match
787 between the lsel and rsel value. */
788 val = hppa_field_adjust (sym_value, 0, e_rrsel);
789 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
790 bfd_put_32 (stub_bfd, insn, loc + 4);
791
792 if (htab->multi_subspace)
793 {
794 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
795 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
796 bfd_put_32 (stub_bfd, insn, loc + 8);
797
798 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
799 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
800 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
801 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
802
803 size = 28;
804 }
805 else
806 {
807 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
808 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
809 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
810 bfd_put_32 (stub_bfd, insn, loc + 12);
811
812 size = 16;
813 }
814
815 break;
816
817 case hppa_stub_export:
818 /* Branches are relative. This is where we are going to. */
819 sym_value = (hsh->target_value
820 + hsh->target_section->output_offset
821 + hsh->target_section->output_section->vma);
822
823 /* And this is where we are coming from. */
824 sym_value -= (hsh->stub_offset
825 + stub_sec->output_offset
826 + stub_sec->output_section->vma);
827
828 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
829 && (!htab->has_22bit_branch
830 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
831 {
832 _bfd_error_handler
833 /* xgettext:c-format */
834 (_("%pB(%pA+%#" PRIx64 "): "
835 "cannot reach %s, recompile with -ffunction-sections"),
836 hsh->target_section->owner,
837 stub_sec,
838 (uint64_t) hsh->stub_offset,
839 hsh->bh_root.string);
840 bfd_set_error (bfd_error_bad_value);
841 return FALSE;
842 }
843
844 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
845 if (!htab->has_22bit_branch)
846 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
847 else
848 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
849 bfd_put_32 (stub_bfd, insn, loc);
850
851 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
852 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
853 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
854 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
855 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
856
857 /* Point the function symbol at the stub. */
858 hsh->hh->eh.root.u.def.section = stub_sec;
859 hsh->hh->eh.root.u.def.value = stub_sec->size;
860
861 size = 24;
862 break;
863
864 default:
865 BFD_FAIL ();
866 return FALSE;
867 }
868
869 stub_sec->size += size;
870 return TRUE;
871 }
872
873 #undef LDIL_R1
874 #undef BE_SR4_R1
875 #undef BL_R1
876 #undef ADDIL_R1
877 #undef DEPI_R1
878 #undef LDW_R1_R21
879 #undef LDW_R1_DLT
880 #undef LDW_R1_R19
881 #undef ADDIL_R19
882 #undef LDW_R1_DP
883 #undef LDSID_R21_R1
884 #undef MTSP_R1
885 #undef BE_SR0_R21
886 #undef STW_RP
887 #undef BV_R0_R21
888 #undef BL_RP
889 #undef NOP
890 #undef LDW_RP
891 #undef LDSID_RP_R1
892 #undef BE_SR0_RP
893
894 /* As above, but don't actually build the stub. Just bump offset so
895 we know stub section sizes. */
896
897 static bfd_boolean
898 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
899 {
900 struct elf32_hppa_stub_hash_entry *hsh;
901 struct elf32_hppa_link_hash_table *htab;
902 int size;
903
904 /* Massage our args to the form they really have. */
905 hsh = hppa_stub_hash_entry (bh);
906 htab = in_arg;
907
908 if (hsh->stub_type == hppa_stub_long_branch)
909 size = 8;
910 else if (hsh->stub_type == hppa_stub_long_branch_shared)
911 size = 12;
912 else if (hsh->stub_type == hppa_stub_export)
913 size = 24;
914 else /* hppa_stub_import or hppa_stub_import_shared. */
915 {
916 if (htab->multi_subspace)
917 size = 28;
918 else
919 size = 16;
920 }
921
922 hsh->stub_sec->size += size;
923 return TRUE;
924 }
925
926 /* Return nonzero if ABFD represents an HPPA ELF32 file.
927 Additionally we set the default architecture and machine. */
928
929 static bfd_boolean
930 elf32_hppa_object_p (bfd *abfd)
931 {
932 Elf_Internal_Ehdr * i_ehdrp;
933 unsigned int flags;
934
935 i_ehdrp = elf_elfheader (abfd);
936 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
937 {
938 /* GCC on hppa-linux produces binaries with OSABI=GNU,
939 but the kernel produces corefiles with OSABI=SysV. */
940 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU &&
941 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
942 return FALSE;
943 }
944 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
945 {
946 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
947 but the kernel produces corefiles with OSABI=SysV. */
948 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
949 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
950 return FALSE;
951 }
952 else
953 {
954 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
955 return FALSE;
956 }
957
958 flags = i_ehdrp->e_flags;
959 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
960 {
961 case EFA_PARISC_1_0:
962 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
963 case EFA_PARISC_1_1:
964 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
965 case EFA_PARISC_2_0:
966 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
967 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
968 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
969 }
970 return TRUE;
971 }
972
973 /* Create the .plt and .got sections, and set up our hash table
974 short-cuts to various dynamic sections. */
975
976 static bfd_boolean
977 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
978 {
979 struct elf32_hppa_link_hash_table *htab;
980 struct elf_link_hash_entry *eh;
981
982 /* Don't try to create the .plt and .got twice. */
983 htab = hppa_link_hash_table (info);
984 if (htab == NULL)
985 return FALSE;
986 if (htab->etab.splt != NULL)
987 return TRUE;
988
989 /* Call the generic code to do most of the work. */
990 if (! _bfd_elf_create_dynamic_sections (abfd, info))
991 return FALSE;
992
993 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
994 application, because __canonicalize_funcptr_for_compare needs it. */
995 eh = elf_hash_table (info)->hgot;
996 eh->forced_local = 0;
997 eh->other = STV_DEFAULT;
998 return bfd_elf_link_record_dynamic_symbol (info, eh);
999 }
1000
1001 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1002
1003 static void
1004 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1005 struct elf_link_hash_entry *eh_dir,
1006 struct elf_link_hash_entry *eh_ind)
1007 {
1008 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1009
1010 hh_dir = hppa_elf_hash_entry (eh_dir);
1011 hh_ind = hppa_elf_hash_entry (eh_ind);
1012
1013 if (hh_ind->dyn_relocs != NULL
1014 && eh_ind->root.type == bfd_link_hash_indirect)
1015 {
1016 if (hh_dir->dyn_relocs != NULL)
1017 {
1018 struct elf_dyn_relocs **hdh_pp;
1019 struct elf_dyn_relocs *hdh_p;
1020
1021 /* Add reloc counts against the indirect sym to the direct sym
1022 list. Merge any entries against the same section. */
1023 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1024 {
1025 struct elf_dyn_relocs *hdh_q;
1026
1027 for (hdh_q = hh_dir->dyn_relocs;
1028 hdh_q != NULL;
1029 hdh_q = hdh_q->next)
1030 if (hdh_q->sec == hdh_p->sec)
1031 {
1032 #if RELATIVE_DYNRELOCS
1033 hdh_q->pc_count += hdh_p->pc_count;
1034 #endif
1035 hdh_q->count += hdh_p->count;
1036 *hdh_pp = hdh_p->next;
1037 break;
1038 }
1039 if (hdh_q == NULL)
1040 hdh_pp = &hdh_p->next;
1041 }
1042 *hdh_pp = hh_dir->dyn_relocs;
1043 }
1044
1045 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1046 hh_ind->dyn_relocs = NULL;
1047 }
1048
1049 if (eh_ind->root.type == bfd_link_hash_indirect)
1050 {
1051 hh_dir->plabel |= hh_ind->plabel;
1052 hh_dir->tls_type |= hh_ind->tls_type;
1053 hh_ind->tls_type = GOT_UNKNOWN;
1054 }
1055
1056 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1057 }
1058
1059 static int
1060 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1061 int r_type, int is_local ATTRIBUTE_UNUSED)
1062 {
1063 /* For now we don't support linker optimizations. */
1064 return r_type;
1065 }
1066
1067 /* Return a pointer to the local GOT, PLT and TLS reference counts
1068 for ABFD. Returns NULL if the storage allocation fails. */
1069
1070 static bfd_signed_vma *
1071 hppa32_elf_local_refcounts (bfd *abfd)
1072 {
1073 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1074 bfd_signed_vma *local_refcounts;
1075
1076 local_refcounts = elf_local_got_refcounts (abfd);
1077 if (local_refcounts == NULL)
1078 {
1079 bfd_size_type size;
1080
1081 /* Allocate space for local GOT and PLT reference
1082 counts. Done this way to save polluting elf_obj_tdata
1083 with another target specific pointer. */
1084 size = symtab_hdr->sh_info;
1085 size *= 2 * sizeof (bfd_signed_vma);
1086 /* Add in space to store the local GOT TLS types. */
1087 size += symtab_hdr->sh_info;
1088 local_refcounts = bfd_zalloc (abfd, size);
1089 if (local_refcounts == NULL)
1090 return NULL;
1091 elf_local_got_refcounts (abfd) = local_refcounts;
1092 memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
1093 symtab_hdr->sh_info);
1094 }
1095 return local_refcounts;
1096 }
1097
1098
1099 /* Look through the relocs for a section during the first phase, and
1100 calculate needed space in the global offset table, procedure linkage
1101 table, and dynamic reloc sections. At this point we haven't
1102 necessarily read all the input files. */
1103
1104 static bfd_boolean
1105 elf32_hppa_check_relocs (bfd *abfd,
1106 struct bfd_link_info *info,
1107 asection *sec,
1108 const Elf_Internal_Rela *relocs)
1109 {
1110 Elf_Internal_Shdr *symtab_hdr;
1111 struct elf_link_hash_entry **eh_syms;
1112 const Elf_Internal_Rela *rela;
1113 const Elf_Internal_Rela *rela_end;
1114 struct elf32_hppa_link_hash_table *htab;
1115 asection *sreloc;
1116
1117 if (bfd_link_relocatable (info))
1118 return TRUE;
1119
1120 htab = hppa_link_hash_table (info);
1121 if (htab == NULL)
1122 return FALSE;
1123 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1124 eh_syms = elf_sym_hashes (abfd);
1125 sreloc = NULL;
1126
1127 rela_end = relocs + sec->reloc_count;
1128 for (rela = relocs; rela < rela_end; rela++)
1129 {
1130 enum {
1131 NEED_GOT = 1,
1132 NEED_PLT = 2,
1133 NEED_DYNREL = 4,
1134 PLT_PLABEL = 8
1135 };
1136
1137 unsigned int r_symndx, r_type;
1138 struct elf32_hppa_link_hash_entry *hh;
1139 int need_entry = 0;
1140
1141 r_symndx = ELF32_R_SYM (rela->r_info);
1142
1143 if (r_symndx < symtab_hdr->sh_info)
1144 hh = NULL;
1145 else
1146 {
1147 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1148 while (hh->eh.root.type == bfd_link_hash_indirect
1149 || hh->eh.root.type == bfd_link_hash_warning)
1150 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1151 }
1152
1153 r_type = ELF32_R_TYPE (rela->r_info);
1154 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1155
1156 switch (r_type)
1157 {
1158 case R_PARISC_DLTIND14F:
1159 case R_PARISC_DLTIND14R:
1160 case R_PARISC_DLTIND21L:
1161 /* This symbol requires a global offset table entry. */
1162 need_entry = NEED_GOT;
1163 break;
1164
1165 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1166 case R_PARISC_PLABEL21L:
1167 case R_PARISC_PLABEL32:
1168 /* If the addend is non-zero, we break badly. */
1169 if (rela->r_addend != 0)
1170 abort ();
1171
1172 /* If we are creating a shared library, then we need to
1173 create a PLT entry for all PLABELs, because PLABELs with
1174 local symbols may be passed via a pointer to another
1175 object. Additionally, output a dynamic relocation
1176 pointing to the PLT entry.
1177
1178 For executables, the original 32-bit ABI allowed two
1179 different styles of PLABELs (function pointers): For
1180 global functions, the PLABEL word points into the .plt
1181 two bytes past a (function address, gp) pair, and for
1182 local functions the PLABEL points directly at the
1183 function. The magic +2 for the first type allows us to
1184 differentiate between the two. As you can imagine, this
1185 is a real pain when it comes to generating code to call
1186 functions indirectly or to compare function pointers.
1187 We avoid the mess by always pointing a PLABEL into the
1188 .plt, even for local functions. */
1189 need_entry = PLT_PLABEL | NEED_PLT;
1190 if (bfd_link_pic (info))
1191 need_entry |= NEED_DYNREL;
1192 break;
1193
1194 case R_PARISC_PCREL12F:
1195 htab->has_12bit_branch = 1;
1196 goto branch_common;
1197
1198 case R_PARISC_PCREL17C:
1199 case R_PARISC_PCREL17F:
1200 htab->has_17bit_branch = 1;
1201 goto branch_common;
1202
1203 case R_PARISC_PCREL22F:
1204 htab->has_22bit_branch = 1;
1205 branch_common:
1206 /* Function calls might need to go through the .plt, and
1207 might require long branch stubs. */
1208 if (hh == NULL)
1209 {
1210 /* We know local syms won't need a .plt entry, and if
1211 they need a long branch stub we can't guarantee that
1212 we can reach the stub. So just flag an error later
1213 if we're doing a shared link and find we need a long
1214 branch stub. */
1215 continue;
1216 }
1217 else
1218 {
1219 /* Global symbols will need a .plt entry if they remain
1220 global, and in most cases won't need a long branch
1221 stub. Unfortunately, we have to cater for the case
1222 where a symbol is forced local by versioning, or due
1223 to symbolic linking, and we lose the .plt entry. */
1224 need_entry = NEED_PLT;
1225 if (hh->eh.type == STT_PARISC_MILLI)
1226 need_entry = 0;
1227 }
1228 break;
1229
1230 case R_PARISC_SEGBASE: /* Used to set segment base. */
1231 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1232 case R_PARISC_PCREL14F: /* PC relative load/store. */
1233 case R_PARISC_PCREL14R:
1234 case R_PARISC_PCREL17R: /* External branches. */
1235 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1236 case R_PARISC_PCREL32:
1237 /* We don't need to propagate the relocation if linking a
1238 shared object since these are section relative. */
1239 continue;
1240
1241 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1242 case R_PARISC_DPREL14R:
1243 case R_PARISC_DPREL21L:
1244 if (bfd_link_pic (info))
1245 {
1246 _bfd_error_handler
1247 /* xgettext:c-format */
1248 (_("%pB: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1249 abfd,
1250 elf_hppa_howto_table[r_type].name);
1251 bfd_set_error (bfd_error_bad_value);
1252 return FALSE;
1253 }
1254 /* Fall through. */
1255
1256 case R_PARISC_DIR17F: /* Used for external branches. */
1257 case R_PARISC_DIR17R:
1258 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1259 case R_PARISC_DIR14R:
1260 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1261 case R_PARISC_DIR32: /* .word relocs. */
1262 /* We may want to output a dynamic relocation later. */
1263 need_entry = NEED_DYNREL;
1264 break;
1265
1266 /* This relocation describes the C++ object vtable hierarchy.
1267 Reconstruct it for later use during GC. */
1268 case R_PARISC_GNU_VTINHERIT:
1269 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1270 return FALSE;
1271 continue;
1272
1273 /* This relocation describes which C++ vtable entries are actually
1274 used. Record for later use during GC. */
1275 case R_PARISC_GNU_VTENTRY:
1276 if (!bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1277 return FALSE;
1278 continue;
1279
1280 case R_PARISC_TLS_GD21L:
1281 case R_PARISC_TLS_GD14R:
1282 case R_PARISC_TLS_LDM21L:
1283 case R_PARISC_TLS_LDM14R:
1284 need_entry = NEED_GOT;
1285 break;
1286
1287 case R_PARISC_TLS_IE21L:
1288 case R_PARISC_TLS_IE14R:
1289 if (bfd_link_dll (info))
1290 info->flags |= DF_STATIC_TLS;
1291 need_entry = NEED_GOT;
1292 break;
1293
1294 default:
1295 continue;
1296 }
1297
1298 /* Now carry out our orders. */
1299 if (need_entry & NEED_GOT)
1300 {
1301 int tls_type = GOT_NORMAL;
1302
1303 switch (r_type)
1304 {
1305 default:
1306 break;
1307 case R_PARISC_TLS_GD21L:
1308 case R_PARISC_TLS_GD14R:
1309 tls_type = GOT_TLS_GD;
1310 break;
1311 case R_PARISC_TLS_LDM21L:
1312 case R_PARISC_TLS_LDM14R:
1313 tls_type = GOT_TLS_LDM;
1314 break;
1315 case R_PARISC_TLS_IE21L:
1316 case R_PARISC_TLS_IE14R:
1317 tls_type = GOT_TLS_IE;
1318 break;
1319 }
1320
1321 /* Allocate space for a GOT entry, as well as a dynamic
1322 relocation for this entry. */
1323 if (htab->etab.sgot == NULL)
1324 {
1325 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1326 return FALSE;
1327 }
1328
1329 if (hh != NULL)
1330 {
1331 if (tls_type == GOT_TLS_LDM)
1332 htab->tls_ldm_got.refcount += 1;
1333 else
1334 hh->eh.got.refcount += 1;
1335 hh->tls_type |= tls_type;
1336 }
1337 else
1338 {
1339 bfd_signed_vma *local_got_refcounts;
1340
1341 /* This is a global offset table entry for a local symbol. */
1342 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1343 if (local_got_refcounts == NULL)
1344 return FALSE;
1345 if (tls_type == GOT_TLS_LDM)
1346 htab->tls_ldm_got.refcount += 1;
1347 else
1348 local_got_refcounts[r_symndx] += 1;
1349
1350 hppa_elf_local_got_tls_type (abfd) [r_symndx] |= tls_type;
1351 }
1352 }
1353
1354 if (need_entry & NEED_PLT)
1355 {
1356 /* If we are creating a shared library, and this is a reloc
1357 against a weak symbol or a global symbol in a dynamic
1358 object, then we will be creating an import stub and a
1359 .plt entry for the symbol. Similarly, on a normal link
1360 to symbols defined in a dynamic object we'll need the
1361 import stub and a .plt entry. We don't know yet whether
1362 the symbol is defined or not, so make an entry anyway and
1363 clean up later in adjust_dynamic_symbol. */
1364 if ((sec->flags & SEC_ALLOC) != 0)
1365 {
1366 if (hh != NULL)
1367 {
1368 hh->eh.needs_plt = 1;
1369 hh->eh.plt.refcount += 1;
1370
1371 /* If this .plt entry is for a plabel, mark it so
1372 that adjust_dynamic_symbol will keep the entry
1373 even if it appears to be local. */
1374 if (need_entry & PLT_PLABEL)
1375 hh->plabel = 1;
1376 }
1377 else if (need_entry & PLT_PLABEL)
1378 {
1379 bfd_signed_vma *local_got_refcounts;
1380 bfd_signed_vma *local_plt_refcounts;
1381
1382 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1383 if (local_got_refcounts == NULL)
1384 return FALSE;
1385 local_plt_refcounts = (local_got_refcounts
1386 + symtab_hdr->sh_info);
1387 local_plt_refcounts[r_symndx] += 1;
1388 }
1389 }
1390 }
1391
1392 if ((need_entry & NEED_DYNREL) != 0
1393 && (sec->flags & SEC_ALLOC) != 0)
1394 {
1395 /* Flag this symbol as having a non-got, non-plt reference
1396 so that we generate copy relocs if it turns out to be
1397 dynamic. */
1398 if (hh != NULL)
1399 hh->eh.non_got_ref = 1;
1400
1401 /* If we are creating a shared library then we need to copy
1402 the reloc into the shared library. However, if we are
1403 linking with -Bsymbolic, we need only copy absolute
1404 relocs or relocs against symbols that are not defined in
1405 an object we are including in the link. PC- or DP- or
1406 DLT-relative relocs against any local sym or global sym
1407 with DEF_REGULAR set, can be discarded. At this point we
1408 have not seen all the input files, so it is possible that
1409 DEF_REGULAR is not set now but will be set later (it is
1410 never cleared). We account for that possibility below by
1411 storing information in the dyn_relocs field of the
1412 hash table entry.
1413
1414 A similar situation to the -Bsymbolic case occurs when
1415 creating shared libraries and symbol visibility changes
1416 render the symbol local.
1417
1418 As it turns out, all the relocs we will be creating here
1419 are absolute, so we cannot remove them on -Bsymbolic
1420 links or visibility changes anyway. A STUB_REL reloc
1421 is absolute too, as in that case it is the reloc in the
1422 stub we will be creating, rather than copying the PCREL
1423 reloc in the branch.
1424
1425 If on the other hand, we are creating an executable, we
1426 may need to keep relocations for symbols satisfied by a
1427 dynamic library if we manage to avoid copy relocs for the
1428 symbol. */
1429 if ((bfd_link_pic (info)
1430 && (IS_ABSOLUTE_RELOC (r_type)
1431 || (hh != NULL
1432 && (!SYMBOLIC_BIND (info, &hh->eh)
1433 || hh->eh.root.type == bfd_link_hash_defweak
1434 || !hh->eh.def_regular))))
1435 || (ELIMINATE_COPY_RELOCS
1436 && !bfd_link_pic (info)
1437 && hh != NULL
1438 && (hh->eh.root.type == bfd_link_hash_defweak
1439 || !hh->eh.def_regular)))
1440 {
1441 struct elf_dyn_relocs *hdh_p;
1442 struct elf_dyn_relocs **hdh_head;
1443
1444 /* Create a reloc section in dynobj and make room for
1445 this reloc. */
1446 if (sreloc == NULL)
1447 {
1448 sreloc = _bfd_elf_make_dynamic_reloc_section
1449 (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
1450
1451 if (sreloc == NULL)
1452 {
1453 bfd_set_error (bfd_error_bad_value);
1454 return FALSE;
1455 }
1456 }
1457
1458 /* If this is a global symbol, we count the number of
1459 relocations we need for this symbol. */
1460 if (hh != NULL)
1461 {
1462 hdh_head = &hh->dyn_relocs;
1463 }
1464 else
1465 {
1466 /* Track dynamic relocs needed for local syms too.
1467 We really need local syms available to do this
1468 easily. Oh well. */
1469 asection *sr;
1470 void *vpp;
1471 Elf_Internal_Sym *isym;
1472
1473 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1474 abfd, r_symndx);
1475 if (isym == NULL)
1476 return FALSE;
1477
1478 sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
1479 if (sr == NULL)
1480 sr = sec;
1481
1482 vpp = &elf_section_data (sr)->local_dynrel;
1483 hdh_head = (struct elf_dyn_relocs **) vpp;
1484 }
1485
1486 hdh_p = *hdh_head;
1487 if (hdh_p == NULL || hdh_p->sec != sec)
1488 {
1489 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1490 if (hdh_p == NULL)
1491 return FALSE;
1492 hdh_p->next = *hdh_head;
1493 *hdh_head = hdh_p;
1494 hdh_p->sec = sec;
1495 hdh_p->count = 0;
1496 #if RELATIVE_DYNRELOCS
1497 hdh_p->pc_count = 0;
1498 #endif
1499 }
1500
1501 hdh_p->count += 1;
1502 #if RELATIVE_DYNRELOCS
1503 if (!IS_ABSOLUTE_RELOC (rtype))
1504 hdh_p->pc_count += 1;
1505 #endif
1506 }
1507 }
1508 }
1509
1510 return TRUE;
1511 }
1512
1513 /* Return the section that should be marked against garbage collection
1514 for a given relocation. */
1515
1516 static asection *
1517 elf32_hppa_gc_mark_hook (asection *sec,
1518 struct bfd_link_info *info,
1519 Elf_Internal_Rela *rela,
1520 struct elf_link_hash_entry *hh,
1521 Elf_Internal_Sym *sym)
1522 {
1523 if (hh != NULL)
1524 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1525 {
1526 case R_PARISC_GNU_VTINHERIT:
1527 case R_PARISC_GNU_VTENTRY:
1528 return NULL;
1529 }
1530
1531 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1532 }
1533
1534 /* Support for core dump NOTE sections. */
1535
1536 static bfd_boolean
1537 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1538 {
1539 int offset;
1540 size_t size;
1541
1542 switch (note->descsz)
1543 {
1544 default:
1545 return FALSE;
1546
1547 case 396: /* Linux/hppa */
1548 /* pr_cursig */
1549 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1550
1551 /* pr_pid */
1552 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
1553
1554 /* pr_reg */
1555 offset = 72;
1556 size = 320;
1557
1558 break;
1559 }
1560
1561 /* Make a ".reg/999" section. */
1562 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1563 size, note->descpos + offset);
1564 }
1565
1566 static bfd_boolean
1567 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1568 {
1569 switch (note->descsz)
1570 {
1571 default:
1572 return FALSE;
1573
1574 case 124: /* Linux/hppa elf_prpsinfo. */
1575 elf_tdata (abfd)->core->program
1576 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1577 elf_tdata (abfd)->core->command
1578 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1579 }
1580
1581 /* Note that for some reason, a spurious space is tacked
1582 onto the end of the args in some (at least one anyway)
1583 implementations, so strip it off if it exists. */
1584 {
1585 char *command = elf_tdata (abfd)->core->command;
1586 int n = strlen (command);
1587
1588 if (0 < n && command[n - 1] == ' ')
1589 command[n - 1] = '\0';
1590 }
1591
1592 return TRUE;
1593 }
1594
1595 /* Our own version of hide_symbol, so that we can keep plt entries for
1596 plabels. */
1597
1598 static void
1599 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1600 struct elf_link_hash_entry *eh,
1601 bfd_boolean force_local)
1602 {
1603 if (force_local)
1604 {
1605 eh->forced_local = 1;
1606 if (eh->dynindx != -1)
1607 {
1608 eh->dynindx = -1;
1609 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1610 eh->dynstr_index);
1611 }
1612
1613 /* PR 16082: Remove version information from hidden symbol. */
1614 eh->verinfo.verdef = NULL;
1615 eh->verinfo.vertree = NULL;
1616 }
1617
1618 /* STT_GNU_IFUNC symbol must go through PLT. */
1619 if (! hppa_elf_hash_entry (eh)->plabel
1620 && eh->type != STT_GNU_IFUNC)
1621 {
1622 eh->needs_plt = 0;
1623 eh->plt = elf_hash_table (info)->init_plt_offset;
1624 }
1625 }
1626
1627 /* Find any dynamic relocs that apply to read-only sections. */
1628
1629 static asection *
1630 readonly_dynrelocs (struct elf_link_hash_entry *eh)
1631 {
1632 struct elf32_hppa_link_hash_entry *hh;
1633 struct elf_dyn_relocs *hdh_p;
1634
1635 hh = hppa_elf_hash_entry (eh);
1636 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->next)
1637 {
1638 asection *sec = hdh_p->sec->output_section;
1639
1640 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1641 return hdh_p->sec;
1642 }
1643 return NULL;
1644 }
1645
1646 /* Return true if we have dynamic relocs against H or any of its weak
1647 aliases, that apply to read-only sections. Cannot be used after
1648 size_dynamic_sections. */
1649
1650 static bfd_boolean
1651 alias_readonly_dynrelocs (struct elf_link_hash_entry *eh)
1652 {
1653 struct elf32_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1654 do
1655 {
1656 if (readonly_dynrelocs (&hh->eh))
1657 return TRUE;
1658 hh = hppa_elf_hash_entry (hh->eh.u.alias);
1659 } while (hh != NULL && &hh->eh != eh);
1660
1661 return FALSE;
1662 }
1663
1664 /* Adjust a symbol defined by a dynamic object and referenced by a
1665 regular object. The current definition is in some section of the
1666 dynamic object, but we're not including those sections. We have to
1667 change the definition to something the rest of the link can
1668 understand. */
1669
1670 static bfd_boolean
1671 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1672 struct elf_link_hash_entry *eh)
1673 {
1674 struct elf32_hppa_link_hash_table *htab;
1675 asection *sec, *srel;
1676
1677 /* If this is a function, put it in the procedure linkage table. We
1678 will fill in the contents of the procedure linkage table later. */
1679 if (eh->type == STT_FUNC
1680 || eh->needs_plt)
1681 {
1682 bfd_boolean local = (SYMBOL_CALLS_LOCAL (info, eh)
1683 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh));
1684 /* Discard dyn_relocs when non-pic if we've decided that a
1685 function symbol is local. */
1686 if (!bfd_link_pic (info) && local)
1687 hppa_elf_hash_entry (eh)->dyn_relocs = NULL;
1688
1689 /* If the symbol is used by a plabel, we must allocate a PLT slot.
1690 The refcounts are not reliable when it has been hidden since
1691 hide_symbol can be called before the plabel flag is set. */
1692 if (hppa_elf_hash_entry (eh)->plabel)
1693 eh->plt.refcount = 1;
1694
1695 /* Note that unlike some other backends, the refcount is not
1696 incremented for a non-call (and non-plabel) function reference. */
1697 else if (eh->plt.refcount <= 0
1698 || local)
1699 {
1700 /* The .plt entry is not needed when:
1701 a) Garbage collection has removed all references to the
1702 symbol, or
1703 b) We know for certain the symbol is defined in this
1704 object, and it's not a weak definition, nor is the symbol
1705 used by a plabel relocation. Either this object is the
1706 application or we are doing a shared symbolic link. */
1707 eh->plt.offset = (bfd_vma) -1;
1708 eh->needs_plt = 0;
1709 }
1710
1711 /* Unlike other targets, elf32-hppa.c does not define a function
1712 symbol in a non-pic executable on PLT stub code, so we don't
1713 have a local definition in that case. ie. dyn_relocs can't
1714 be discarded. */
1715
1716 /* Function symbols can't have copy relocs. */
1717 return TRUE;
1718 }
1719 else
1720 eh->plt.offset = (bfd_vma) -1;
1721
1722 htab = hppa_link_hash_table (info);
1723 if (htab == NULL)
1724 return FALSE;
1725
1726 /* If this is a weak symbol, and there is a real definition, the
1727 processor independent code will have arranged for us to see the
1728 real definition first, and we can just use the same value. */
1729 if (eh->is_weakalias)
1730 {
1731 struct elf_link_hash_entry *def = weakdef (eh);
1732 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
1733 eh->root.u.def.section = def->root.u.def.section;
1734 eh->root.u.def.value = def->root.u.def.value;
1735 if (def->root.u.def.section == htab->etab.sdynbss
1736 || def->root.u.def.section == htab->etab.sdynrelro)
1737 hppa_elf_hash_entry (eh)->dyn_relocs = NULL;
1738 return TRUE;
1739 }
1740
1741 /* This is a reference to a symbol defined by a dynamic object which
1742 is not a function. */
1743
1744 /* If we are creating a shared library, we must presume that the
1745 only references to the symbol are via the global offset table.
1746 For such cases we need not do anything here; the relocations will
1747 be handled correctly by relocate_section. */
1748 if (bfd_link_pic (info))
1749 return TRUE;
1750
1751 /* If there are no references to this symbol that do not use the
1752 GOT, we don't need to generate a copy reloc. */
1753 if (!eh->non_got_ref)
1754 return TRUE;
1755
1756 /* If -z nocopyreloc was given, we won't generate them either. */
1757 if (info->nocopyreloc)
1758 return TRUE;
1759
1760 /* If we don't find any dynamic relocs in read-only sections, then
1761 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1762 if (ELIMINATE_COPY_RELOCS
1763 && !alias_readonly_dynrelocs (eh))
1764 return TRUE;
1765
1766 /* We must allocate the symbol in our .dynbss section, which will
1767 become part of the .bss section of the executable. There will be
1768 an entry for this symbol in the .dynsym section. The dynamic
1769 object will contain position independent code, so all references
1770 from the dynamic object to this symbol will go through the global
1771 offset table. The dynamic linker will use the .dynsym entry to
1772 determine the address it must put in the global offset table, so
1773 both the dynamic object and the regular object will refer to the
1774 same memory location for the variable. */
1775 if ((eh->root.u.def.section->flags & SEC_READONLY) != 0)
1776 {
1777 sec = htab->etab.sdynrelro;
1778 srel = htab->etab.sreldynrelro;
1779 }
1780 else
1781 {
1782 sec = htab->etab.sdynbss;
1783 srel = htab->etab.srelbss;
1784 }
1785 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0 && eh->size != 0)
1786 {
1787 /* We must generate a COPY reloc to tell the dynamic linker to
1788 copy the initial value out of the dynamic object and into the
1789 runtime process image. */
1790 srel->size += sizeof (Elf32_External_Rela);
1791 eh->needs_copy = 1;
1792 }
1793
1794 /* We no longer want dyn_relocs. */
1795 hppa_elf_hash_entry (eh)->dyn_relocs = NULL;
1796 return _bfd_elf_adjust_dynamic_copy (info, eh, sec);
1797 }
1798
1799 /* If EH is undefined, make it dynamic if that makes sense. */
1800
1801 static bfd_boolean
1802 ensure_undef_dynamic (struct bfd_link_info *info,
1803 struct elf_link_hash_entry *eh)
1804 {
1805 struct elf_link_hash_table *htab = elf_hash_table (info);
1806
1807 if (htab->dynamic_sections_created
1808 && (eh->root.type == bfd_link_hash_undefweak
1809 || eh->root.type == bfd_link_hash_undefined)
1810 && eh->dynindx == -1
1811 && !eh->forced_local
1812 && eh->type != STT_PARISC_MILLI
1813 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh)
1814 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
1815 return bfd_elf_link_record_dynamic_symbol (info, eh);
1816 return TRUE;
1817 }
1818
1819 /* Allocate space in the .plt for entries that won't have relocations.
1820 ie. plabel entries. */
1821
1822 static bfd_boolean
1823 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1824 {
1825 struct bfd_link_info *info;
1826 struct elf32_hppa_link_hash_table *htab;
1827 struct elf32_hppa_link_hash_entry *hh;
1828 asection *sec;
1829
1830 if (eh->root.type == bfd_link_hash_indirect)
1831 return TRUE;
1832
1833 info = (struct bfd_link_info *) inf;
1834 hh = hppa_elf_hash_entry (eh);
1835 htab = hppa_link_hash_table (info);
1836 if (htab == NULL)
1837 return FALSE;
1838
1839 if (htab->etab.dynamic_sections_created
1840 && eh->plt.refcount > 0)
1841 {
1842 if (!ensure_undef_dynamic (info, eh))
1843 return FALSE;
1844
1845 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), eh))
1846 {
1847 /* Allocate these later. From this point on, h->plabel
1848 means that the plt entry is only used by a plabel.
1849 We'll be using a normal plt entry for this symbol, so
1850 clear the plabel indicator. */
1851
1852 hh->plabel = 0;
1853 }
1854 else if (hh->plabel)
1855 {
1856 /* Make an entry in the .plt section for plabel references
1857 that won't have a .plt entry for other reasons. */
1858 sec = htab->etab.splt;
1859 eh->plt.offset = sec->size;
1860 sec->size += PLT_ENTRY_SIZE;
1861 if (bfd_link_pic (info))
1862 htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
1863 }
1864 else
1865 {
1866 /* No .plt entry needed. */
1867 eh->plt.offset = (bfd_vma) -1;
1868 eh->needs_plt = 0;
1869 }
1870 }
1871 else
1872 {
1873 eh->plt.offset = (bfd_vma) -1;
1874 eh->needs_plt = 0;
1875 }
1876
1877 return TRUE;
1878 }
1879
1880 /* Calculate size of GOT entries for symbol given its TLS_TYPE. */
1881
1882 static inline unsigned int
1883 got_entries_needed (int tls_type)
1884 {
1885 unsigned int need = 0;
1886
1887 if ((tls_type & GOT_NORMAL) != 0)
1888 need += GOT_ENTRY_SIZE;
1889 if ((tls_type & GOT_TLS_GD) != 0)
1890 need += GOT_ENTRY_SIZE * 2;
1891 if ((tls_type & GOT_TLS_IE) != 0)
1892 need += GOT_ENTRY_SIZE;
1893 return need;
1894 }
1895
1896 /* Calculate size of relocs needed for symbol given its TLS_TYPE and
1897 NEEDed GOT entries. TPREL_KNOWN says a TPREL offset can be
1898 calculated at link time. DTPREL_KNOWN says the same for a DTPREL
1899 offset. */
1900
1901 static inline unsigned int
1902 got_relocs_needed (int tls_type, unsigned int need,
1903 bfd_boolean dtprel_known, bfd_boolean tprel_known)
1904 {
1905 /* All the entries we allocated need relocs.
1906 Except for GD and IE with local symbols. */
1907 if ((tls_type & GOT_TLS_GD) != 0 && dtprel_known)
1908 need -= GOT_ENTRY_SIZE;
1909 if ((tls_type & GOT_TLS_IE) != 0 && tprel_known)
1910 need -= GOT_ENTRY_SIZE;
1911 return need * sizeof (Elf32_External_Rela) / GOT_ENTRY_SIZE;
1912 }
1913
1914 /* Allocate space in .plt, .got and associated reloc sections for
1915 global syms. */
1916
1917 static bfd_boolean
1918 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
1919 {
1920 struct bfd_link_info *info;
1921 struct elf32_hppa_link_hash_table *htab;
1922 asection *sec;
1923 struct elf32_hppa_link_hash_entry *hh;
1924 struct elf_dyn_relocs *hdh_p;
1925
1926 if (eh->root.type == bfd_link_hash_indirect)
1927 return TRUE;
1928
1929 info = inf;
1930 htab = hppa_link_hash_table (info);
1931 if (htab == NULL)
1932 return FALSE;
1933
1934 hh = hppa_elf_hash_entry (eh);
1935
1936 if (htab->etab.dynamic_sections_created
1937 && eh->plt.offset != (bfd_vma) -1
1938 && !hh->plabel
1939 && eh->plt.refcount > 0)
1940 {
1941 /* Make an entry in the .plt section. */
1942 sec = htab->etab.splt;
1943 eh->plt.offset = sec->size;
1944 sec->size += PLT_ENTRY_SIZE;
1945
1946 /* We also need to make an entry in the .rela.plt section. */
1947 htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
1948 htab->need_plt_stub = 1;
1949 }
1950
1951 if (eh->got.refcount > 0)
1952 {
1953 unsigned int need;
1954
1955 if (!ensure_undef_dynamic (info, eh))
1956 return FALSE;
1957
1958 sec = htab->etab.sgot;
1959 eh->got.offset = sec->size;
1960 need = got_entries_needed (hh->tls_type);
1961 sec->size += need;
1962 if (htab->etab.dynamic_sections_created
1963 && (bfd_link_dll (info)
1964 || (bfd_link_pic (info) && (hh->tls_type & GOT_NORMAL) != 0)
1965 || (eh->dynindx != -1
1966 && !SYMBOL_REFERENCES_LOCAL (info, eh)))
1967 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
1968 {
1969 bfd_boolean local = SYMBOL_REFERENCES_LOCAL (info, eh);
1970 htab->etab.srelgot->size
1971 += got_relocs_needed (hh->tls_type, need, local,
1972 local && bfd_link_executable (info));
1973 }
1974 }
1975 else
1976 eh->got.offset = (bfd_vma) -1;
1977
1978 /* If no dynamic sections we can't have dynamic relocs. */
1979 if (!htab->etab.dynamic_sections_created)
1980 hh->dyn_relocs = NULL;
1981
1982 /* Discard relocs on undefined syms with non-default visibility. */
1983 else if ((eh->root.type == bfd_link_hash_undefined
1984 && ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
1985 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
1986 hh->dyn_relocs = NULL;
1987
1988 if (hh->dyn_relocs == NULL)
1989 return TRUE;
1990
1991 /* If this is a -Bsymbolic shared link, then we need to discard all
1992 space allocated for dynamic pc-relative relocs against symbols
1993 defined in a regular object. For the normal shared case, discard
1994 space for relocs that have become local due to symbol visibility
1995 changes. */
1996 if (bfd_link_pic (info))
1997 {
1998 #if RELATIVE_DYNRELOCS
1999 if (SYMBOL_CALLS_LOCAL (info, eh))
2000 {
2001 struct elf_dyn_relocs **hdh_pp;
2002
2003 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2004 {
2005 hdh_p->count -= hdh_p->pc_count;
2006 hdh_p->pc_count = 0;
2007 if (hdh_p->count == 0)
2008 *hdh_pp = hdh_p->next;
2009 else
2010 hdh_pp = &hdh_p->next;
2011 }
2012 }
2013 #endif
2014
2015 if (hh->dyn_relocs != NULL)
2016 {
2017 if (!ensure_undef_dynamic (info, eh))
2018 return FALSE;
2019 }
2020 }
2021 else if (ELIMINATE_COPY_RELOCS)
2022 {
2023 /* For the non-shared case, discard space for relocs against
2024 symbols which turn out to need copy relocs or are not
2025 dynamic. */
2026
2027 if (eh->dynamic_adjusted
2028 && !eh->def_regular
2029 && !ELF_COMMON_DEF_P (eh))
2030 {
2031 if (!ensure_undef_dynamic (info, eh))
2032 return FALSE;
2033
2034 if (eh->dynindx == -1)
2035 hh->dyn_relocs = NULL;
2036 }
2037 else
2038 hh->dyn_relocs = NULL;
2039 }
2040
2041 /* Finally, allocate space. */
2042 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->next)
2043 {
2044 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2045 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2046 }
2047
2048 return TRUE;
2049 }
2050
2051 /* This function is called via elf_link_hash_traverse to force
2052 millicode symbols local so they do not end up as globals in the
2053 dynamic symbol table. We ought to be able to do this in
2054 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2055 for all dynamic symbols. Arguably, this is a bug in
2056 elf_adjust_dynamic_symbol. */
2057
2058 static bfd_boolean
2059 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2060 struct bfd_link_info *info)
2061 {
2062 if (eh->type == STT_PARISC_MILLI
2063 && !eh->forced_local)
2064 {
2065 elf32_hppa_hide_symbol (info, eh, TRUE);
2066 }
2067 return TRUE;
2068 }
2069
2070 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
2071 read-only sections. */
2072
2073 static bfd_boolean
2074 maybe_set_textrel (struct elf_link_hash_entry *eh, void *inf)
2075 {
2076 asection *sec;
2077
2078 if (eh->root.type == bfd_link_hash_indirect)
2079 return TRUE;
2080
2081 sec = readonly_dynrelocs (eh);
2082 if (sec != NULL)
2083 {
2084 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2085
2086 info->flags |= DF_TEXTREL;
2087 info->callbacks->minfo
2088 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
2089 sec->owner, eh->root.root.string, sec);
2090
2091 /* Not an error, just cut short the traversal. */
2092 return FALSE;
2093 }
2094 return TRUE;
2095 }
2096
2097 /* Set the sizes of the dynamic sections. */
2098
2099 static bfd_boolean
2100 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2101 struct bfd_link_info *info)
2102 {
2103 struct elf32_hppa_link_hash_table *htab;
2104 bfd *dynobj;
2105 bfd *ibfd;
2106 asection *sec;
2107 bfd_boolean relocs;
2108
2109 htab = hppa_link_hash_table (info);
2110 if (htab == NULL)
2111 return FALSE;
2112
2113 dynobj = htab->etab.dynobj;
2114 if (dynobj == NULL)
2115 abort ();
2116
2117 if (htab->etab.dynamic_sections_created)
2118 {
2119 /* Set the contents of the .interp section to the interpreter. */
2120 if (bfd_link_executable (info) && !info->nointerp)
2121 {
2122 sec = bfd_get_linker_section (dynobj, ".interp");
2123 if (sec == NULL)
2124 abort ();
2125 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2126 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2127 }
2128
2129 /* Force millicode symbols local. */
2130 elf_link_hash_traverse (&htab->etab,
2131 clobber_millicode_symbols,
2132 info);
2133 }
2134
2135 /* Set up .got and .plt offsets for local syms, and space for local
2136 dynamic relocs. */
2137 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
2138 {
2139 bfd_signed_vma *local_got;
2140 bfd_signed_vma *end_local_got;
2141 bfd_signed_vma *local_plt;
2142 bfd_signed_vma *end_local_plt;
2143 bfd_size_type locsymcount;
2144 Elf_Internal_Shdr *symtab_hdr;
2145 asection *srel;
2146 char *local_tls_type;
2147
2148 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2149 continue;
2150
2151 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2152 {
2153 struct elf_dyn_relocs *hdh_p;
2154
2155 for (hdh_p = ((struct elf_dyn_relocs *)
2156 elf_section_data (sec)->local_dynrel);
2157 hdh_p != NULL;
2158 hdh_p = hdh_p->next)
2159 {
2160 if (!bfd_is_abs_section (hdh_p->sec)
2161 && bfd_is_abs_section (hdh_p->sec->output_section))
2162 {
2163 /* Input section has been discarded, either because
2164 it is a copy of a linkonce section or due to
2165 linker script /DISCARD/, so we'll be discarding
2166 the relocs too. */
2167 }
2168 else if (hdh_p->count != 0)
2169 {
2170 srel = elf_section_data (hdh_p->sec)->sreloc;
2171 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2172 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2173 info->flags |= DF_TEXTREL;
2174 }
2175 }
2176 }
2177
2178 local_got = elf_local_got_refcounts (ibfd);
2179 if (!local_got)
2180 continue;
2181
2182 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2183 locsymcount = symtab_hdr->sh_info;
2184 end_local_got = local_got + locsymcount;
2185 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2186 sec = htab->etab.sgot;
2187 srel = htab->etab.srelgot;
2188 for (; local_got < end_local_got; ++local_got)
2189 {
2190 if (*local_got > 0)
2191 {
2192 unsigned int need;
2193
2194 *local_got = sec->size;
2195 need = got_entries_needed (*local_tls_type);
2196 sec->size += need;
2197 if (bfd_link_dll (info)
2198 || (bfd_link_pic (info)
2199 && (*local_tls_type & GOT_NORMAL) != 0))
2200 htab->etab.srelgot->size
2201 += got_relocs_needed (*local_tls_type, need, TRUE,
2202 bfd_link_executable (info));
2203 }
2204 else
2205 *local_got = (bfd_vma) -1;
2206
2207 ++local_tls_type;
2208 }
2209
2210 local_plt = end_local_got;
2211 end_local_plt = local_plt + locsymcount;
2212 if (! htab->etab.dynamic_sections_created)
2213 {
2214 /* Won't be used, but be safe. */
2215 for (; local_plt < end_local_plt; ++local_plt)
2216 *local_plt = (bfd_vma) -1;
2217 }
2218 else
2219 {
2220 sec = htab->etab.splt;
2221 srel = htab->etab.srelplt;
2222 for (; local_plt < end_local_plt; ++local_plt)
2223 {
2224 if (*local_plt > 0)
2225 {
2226 *local_plt = sec->size;
2227 sec->size += PLT_ENTRY_SIZE;
2228 if (bfd_link_pic (info))
2229 srel->size += sizeof (Elf32_External_Rela);
2230 }
2231 else
2232 *local_plt = (bfd_vma) -1;
2233 }
2234 }
2235 }
2236
2237 if (htab->tls_ldm_got.refcount > 0)
2238 {
2239 /* Allocate 2 got entries and 1 dynamic reloc for
2240 R_PARISC_TLS_DTPMOD32 relocs. */
2241 htab->tls_ldm_got.offset = htab->etab.sgot->size;
2242 htab->etab.sgot->size += (GOT_ENTRY_SIZE * 2);
2243 htab->etab.srelgot->size += sizeof (Elf32_External_Rela);
2244 }
2245 else
2246 htab->tls_ldm_got.offset = -1;
2247
2248 /* Do all the .plt entries without relocs first. The dynamic linker
2249 uses the last .plt reloc to find the end of the .plt (and hence
2250 the start of the .got) for lazy linking. */
2251 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2252
2253 /* Allocate global sym .plt and .got entries, and space for global
2254 sym dynamic relocs. */
2255 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2256
2257 /* The check_relocs and adjust_dynamic_symbol entry points have
2258 determined the sizes of the various dynamic sections. Allocate
2259 memory for them. */
2260 relocs = FALSE;
2261 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2262 {
2263 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2264 continue;
2265
2266 if (sec == htab->etab.splt)
2267 {
2268 if (htab->need_plt_stub)
2269 {
2270 /* Make space for the plt stub at the end of the .plt
2271 section. We want this stub right at the end, up
2272 against the .got section. */
2273 int gotalign = bfd_section_alignment (dynobj, htab->etab.sgot);
2274 int pltalign = bfd_section_alignment (dynobj, sec);
2275 bfd_size_type mask;
2276
2277 if (gotalign > pltalign)
2278 (void) bfd_set_section_alignment (dynobj, sec, gotalign);
2279 mask = ((bfd_size_type) 1 << gotalign) - 1;
2280 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2281 }
2282 }
2283 else if (sec == htab->etab.sgot
2284 || sec == htab->etab.sdynbss
2285 || sec == htab->etab.sdynrelro)
2286 ;
2287 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
2288 {
2289 if (sec->size != 0)
2290 {
2291 /* Remember whether there are any reloc sections other
2292 than .rela.plt. */
2293 if (sec != htab->etab.srelplt)
2294 relocs = TRUE;
2295
2296 /* We use the reloc_count field as a counter if we need
2297 to copy relocs into the output file. */
2298 sec->reloc_count = 0;
2299 }
2300 }
2301 else
2302 {
2303 /* It's not one of our sections, so don't allocate space. */
2304 continue;
2305 }
2306
2307 if (sec->size == 0)
2308 {
2309 /* If we don't need this section, strip it from the
2310 output file. This is mostly to handle .rela.bss and
2311 .rela.plt. We must create both sections in
2312 create_dynamic_sections, because they must be created
2313 before the linker maps input sections to output
2314 sections. The linker does that before
2315 adjust_dynamic_symbol is called, and it is that
2316 function which decides whether anything needs to go
2317 into these sections. */
2318 sec->flags |= SEC_EXCLUDE;
2319 continue;
2320 }
2321
2322 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2323 continue;
2324
2325 /* Allocate memory for the section contents. Zero it, because
2326 we may not fill in all the reloc sections. */
2327 sec->contents = bfd_zalloc (dynobj, sec->size);
2328 if (sec->contents == NULL)
2329 return FALSE;
2330 }
2331
2332 if (htab->etab.dynamic_sections_created)
2333 {
2334 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2335 actually has nothing to do with the PLT, it is how we
2336 communicate the LTP value of a load module to the dynamic
2337 linker. */
2338 #define add_dynamic_entry(TAG, VAL) \
2339 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2340
2341 if (!add_dynamic_entry (DT_PLTGOT, 0))
2342 return FALSE;
2343
2344 /* Add some entries to the .dynamic section. We fill in the
2345 values later, in elf32_hppa_finish_dynamic_sections, but we
2346 must add the entries now so that we get the correct size for
2347 the .dynamic section. The DT_DEBUG entry is filled in by the
2348 dynamic linker and used by the debugger. */
2349 if (bfd_link_executable (info))
2350 {
2351 if (!add_dynamic_entry (DT_DEBUG, 0))
2352 return FALSE;
2353 }
2354
2355 if (htab->etab.srelplt->size != 0)
2356 {
2357 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2358 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2359 || !add_dynamic_entry (DT_JMPREL, 0))
2360 return FALSE;
2361 }
2362
2363 if (relocs)
2364 {
2365 if (!add_dynamic_entry (DT_RELA, 0)
2366 || !add_dynamic_entry (DT_RELASZ, 0)
2367 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2368 return FALSE;
2369
2370 /* If any dynamic relocs apply to a read-only section,
2371 then we need a DT_TEXTREL entry. */
2372 if ((info->flags & DF_TEXTREL) == 0)
2373 elf_link_hash_traverse (&htab->etab, maybe_set_textrel, info);
2374
2375 if ((info->flags & DF_TEXTREL) != 0)
2376 {
2377 if (!add_dynamic_entry (DT_TEXTREL, 0))
2378 return FALSE;
2379 }
2380 }
2381 }
2382 #undef add_dynamic_entry
2383
2384 return TRUE;
2385 }
2386
2387 /* External entry points for sizing and building linker stubs. */
2388
2389 /* Set up various things so that we can make a list of input sections
2390 for each output section included in the link. Returns -1 on error,
2391 0 when no stubs will be needed, and 1 on success. */
2392
2393 int
2394 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2395 {
2396 bfd *input_bfd;
2397 unsigned int bfd_count;
2398 unsigned int top_id, top_index;
2399 asection *section;
2400 asection **input_list, **list;
2401 bfd_size_type amt;
2402 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2403
2404 if (htab == NULL)
2405 return -1;
2406
2407 /* Count the number of input BFDs and find the top input section id. */
2408 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2409 input_bfd != NULL;
2410 input_bfd = input_bfd->link.next)
2411 {
2412 bfd_count += 1;
2413 for (section = input_bfd->sections;
2414 section != NULL;
2415 section = section->next)
2416 {
2417 if (top_id < section->id)
2418 top_id = section->id;
2419 }
2420 }
2421 htab->bfd_count = bfd_count;
2422
2423 amt = sizeof (struct map_stub) * (top_id + 1);
2424 htab->stub_group = bfd_zmalloc (amt);
2425 if (htab->stub_group == NULL)
2426 return -1;
2427
2428 /* We can't use output_bfd->section_count here to find the top output
2429 section index as some sections may have been removed, and
2430 strip_excluded_output_sections doesn't renumber the indices. */
2431 for (section = output_bfd->sections, top_index = 0;
2432 section != NULL;
2433 section = section->next)
2434 {
2435 if (top_index < section->index)
2436 top_index = section->index;
2437 }
2438
2439 htab->top_index = top_index;
2440 amt = sizeof (asection *) * (top_index + 1);
2441 input_list = bfd_malloc (amt);
2442 htab->input_list = input_list;
2443 if (input_list == NULL)
2444 return -1;
2445
2446 /* For sections we aren't interested in, mark their entries with a
2447 value we can check later. */
2448 list = input_list + top_index;
2449 do
2450 *list = bfd_abs_section_ptr;
2451 while (list-- != input_list);
2452
2453 for (section = output_bfd->sections;
2454 section != NULL;
2455 section = section->next)
2456 {
2457 if ((section->flags & SEC_CODE) != 0)
2458 input_list[section->index] = NULL;
2459 }
2460
2461 return 1;
2462 }
2463
2464 /* The linker repeatedly calls this function for each input section,
2465 in the order that input sections are linked into output sections.
2466 Build lists of input sections to determine groupings between which
2467 we may insert linker stubs. */
2468
2469 void
2470 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2471 {
2472 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2473
2474 if (htab == NULL)
2475 return;
2476
2477 if (isec->output_section->index <= htab->top_index)
2478 {
2479 asection **list = htab->input_list + isec->output_section->index;
2480 if (*list != bfd_abs_section_ptr)
2481 {
2482 /* Steal the link_sec pointer for our list. */
2483 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2484 /* This happens to make the list in reverse order,
2485 which is what we want. */
2486 PREV_SEC (isec) = *list;
2487 *list = isec;
2488 }
2489 }
2490 }
2491
2492 /* See whether we can group stub sections together. Grouping stub
2493 sections may result in fewer stubs. More importantly, we need to
2494 put all .init* and .fini* stubs at the beginning of the .init or
2495 .fini output sections respectively, because glibc splits the
2496 _init and _fini functions into multiple parts. Putting a stub in
2497 the middle of a function is not a good idea. */
2498
2499 static void
2500 group_sections (struct elf32_hppa_link_hash_table *htab,
2501 bfd_size_type stub_group_size,
2502 bfd_boolean stubs_always_before_branch)
2503 {
2504 asection **list = htab->input_list + htab->top_index;
2505 do
2506 {
2507 asection *tail = *list;
2508 if (tail == bfd_abs_section_ptr)
2509 continue;
2510 while (tail != NULL)
2511 {
2512 asection *curr;
2513 asection *prev;
2514 bfd_size_type total;
2515 bfd_boolean big_sec;
2516
2517 curr = tail;
2518 total = tail->size;
2519 big_sec = total >= stub_group_size;
2520
2521 while ((prev = PREV_SEC (curr)) != NULL
2522 && ((total += curr->output_offset - prev->output_offset)
2523 < stub_group_size))
2524 curr = prev;
2525
2526 /* OK, the size from the start of CURR to the end is less
2527 than 240000 bytes and thus can be handled by one stub
2528 section. (or the tail section is itself larger than
2529 240000 bytes, in which case we may be toast.)
2530 We should really be keeping track of the total size of
2531 stubs added here, as stubs contribute to the final output
2532 section size. That's a little tricky, and this way will
2533 only break if stubs added total more than 22144 bytes, or
2534 2768 long branch stubs. It seems unlikely for more than
2535 2768 different functions to be called, especially from
2536 code only 240000 bytes long. This limit used to be
2537 250000, but c++ code tends to generate lots of little
2538 functions, and sometimes violated the assumption. */
2539 do
2540 {
2541 prev = PREV_SEC (tail);
2542 /* Set up this stub group. */
2543 htab->stub_group[tail->id].link_sec = curr;
2544 }
2545 while (tail != curr && (tail = prev) != NULL);
2546
2547 /* But wait, there's more! Input sections up to 240000
2548 bytes before the stub section can be handled by it too.
2549 Don't do this if we have a really large section after the
2550 stubs, as adding more stubs increases the chance that
2551 branches may not reach into the stub section. */
2552 if (!stubs_always_before_branch && !big_sec)
2553 {
2554 total = 0;
2555 while (prev != NULL
2556 && ((total += tail->output_offset - prev->output_offset)
2557 < stub_group_size))
2558 {
2559 tail = prev;
2560 prev = PREV_SEC (tail);
2561 htab->stub_group[tail->id].link_sec = curr;
2562 }
2563 }
2564 tail = prev;
2565 }
2566 }
2567 while (list-- != htab->input_list);
2568 free (htab->input_list);
2569 #undef PREV_SEC
2570 }
2571
2572 /* Read in all local syms for all input bfds, and create hash entries
2573 for export stubs if we are building a multi-subspace shared lib.
2574 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2575
2576 static int
2577 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2578 {
2579 unsigned int bfd_indx;
2580 Elf_Internal_Sym *local_syms, **all_local_syms;
2581 int stub_changed = 0;
2582 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2583
2584 if (htab == NULL)
2585 return -1;
2586
2587 /* We want to read in symbol extension records only once. To do this
2588 we need to read in the local symbols in parallel and save them for
2589 later use; so hold pointers to the local symbols in an array. */
2590 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2591 all_local_syms = bfd_zmalloc (amt);
2592 htab->all_local_syms = all_local_syms;
2593 if (all_local_syms == NULL)
2594 return -1;
2595
2596 /* Walk over all the input BFDs, swapping in local symbols.
2597 If we are creating a shared library, create hash entries for the
2598 export stubs. */
2599 for (bfd_indx = 0;
2600 input_bfd != NULL;
2601 input_bfd = input_bfd->link.next, bfd_indx++)
2602 {
2603 Elf_Internal_Shdr *symtab_hdr;
2604
2605 /* We'll need the symbol table in a second. */
2606 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2607 if (symtab_hdr->sh_info == 0)
2608 continue;
2609
2610 /* We need an array of the local symbols attached to the input bfd. */
2611 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2612 if (local_syms == NULL)
2613 {
2614 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2615 symtab_hdr->sh_info, 0,
2616 NULL, NULL, NULL);
2617 /* Cache them for elf_link_input_bfd. */
2618 symtab_hdr->contents = (unsigned char *) local_syms;
2619 }
2620 if (local_syms == NULL)
2621 return -1;
2622
2623 all_local_syms[bfd_indx] = local_syms;
2624
2625 if (bfd_link_pic (info) && htab->multi_subspace)
2626 {
2627 struct elf_link_hash_entry **eh_syms;
2628 struct elf_link_hash_entry **eh_symend;
2629 unsigned int symcount;
2630
2631 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2632 - symtab_hdr->sh_info);
2633 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2634 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2635
2636 /* Look through the global syms for functions; We need to
2637 build export stubs for all globally visible functions. */
2638 for (; eh_syms < eh_symend; eh_syms++)
2639 {
2640 struct elf32_hppa_link_hash_entry *hh;
2641
2642 hh = hppa_elf_hash_entry (*eh_syms);
2643
2644 while (hh->eh.root.type == bfd_link_hash_indirect
2645 || hh->eh.root.type == bfd_link_hash_warning)
2646 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2647
2648 /* At this point in the link, undefined syms have been
2649 resolved, so we need to check that the symbol was
2650 defined in this BFD. */
2651 if ((hh->eh.root.type == bfd_link_hash_defined
2652 || hh->eh.root.type == bfd_link_hash_defweak)
2653 && hh->eh.type == STT_FUNC
2654 && hh->eh.root.u.def.section->output_section != NULL
2655 && (hh->eh.root.u.def.section->output_section->owner
2656 == output_bfd)
2657 && hh->eh.root.u.def.section->owner == input_bfd
2658 && hh->eh.def_regular
2659 && !hh->eh.forced_local
2660 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2661 {
2662 asection *sec;
2663 const char *stub_name;
2664 struct elf32_hppa_stub_hash_entry *hsh;
2665
2666 sec = hh->eh.root.u.def.section;
2667 stub_name = hh_name (hh);
2668 hsh = hppa_stub_hash_lookup (&htab->bstab,
2669 stub_name,
2670 FALSE, FALSE);
2671 if (hsh == NULL)
2672 {
2673 hsh = hppa_add_stub (stub_name, sec, htab);
2674 if (!hsh)
2675 return -1;
2676
2677 hsh->target_value = hh->eh.root.u.def.value;
2678 hsh->target_section = hh->eh.root.u.def.section;
2679 hsh->stub_type = hppa_stub_export;
2680 hsh->hh = hh;
2681 stub_changed = 1;
2682 }
2683 else
2684 {
2685 /* xgettext:c-format */
2686 _bfd_error_handler (_("%pB: duplicate export stub %s"),
2687 input_bfd, stub_name);
2688 }
2689 }
2690 }
2691 }
2692 }
2693
2694 return stub_changed;
2695 }
2696
2697 /* Determine and set the size of the stub section for a final link.
2698
2699 The basic idea here is to examine all the relocations looking for
2700 PC-relative calls to a target that is unreachable with a "bl"
2701 instruction. */
2702
2703 bfd_boolean
2704 elf32_hppa_size_stubs
2705 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2706 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2707 asection * (*add_stub_section) (const char *, asection *),
2708 void (*layout_sections_again) (void))
2709 {
2710 bfd_size_type stub_group_size;
2711 bfd_boolean stubs_always_before_branch;
2712 bfd_boolean stub_changed;
2713 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2714
2715 if (htab == NULL)
2716 return FALSE;
2717
2718 /* Stash our params away. */
2719 htab->stub_bfd = stub_bfd;
2720 htab->multi_subspace = multi_subspace;
2721 htab->add_stub_section = add_stub_section;
2722 htab->layout_sections_again = layout_sections_again;
2723 stubs_always_before_branch = group_size < 0;
2724 if (group_size < 0)
2725 stub_group_size = -group_size;
2726 else
2727 stub_group_size = group_size;
2728 if (stub_group_size == 1)
2729 {
2730 /* Default values. */
2731 if (stubs_always_before_branch)
2732 {
2733 stub_group_size = 7680000;
2734 if (htab->has_17bit_branch || htab->multi_subspace)
2735 stub_group_size = 240000;
2736 if (htab->has_12bit_branch)
2737 stub_group_size = 7500;
2738 }
2739 else
2740 {
2741 stub_group_size = 6971392;
2742 if (htab->has_17bit_branch || htab->multi_subspace)
2743 stub_group_size = 217856;
2744 if (htab->has_12bit_branch)
2745 stub_group_size = 6808;
2746 }
2747 }
2748
2749 group_sections (htab, stub_group_size, stubs_always_before_branch);
2750
2751 switch (get_local_syms (output_bfd, info->input_bfds, info))
2752 {
2753 default:
2754 if (htab->all_local_syms)
2755 goto error_ret_free_local;
2756 return FALSE;
2757
2758 case 0:
2759 stub_changed = FALSE;
2760 break;
2761
2762 case 1:
2763 stub_changed = TRUE;
2764 break;
2765 }
2766
2767 while (1)
2768 {
2769 bfd *input_bfd;
2770 unsigned int bfd_indx;
2771 asection *stub_sec;
2772
2773 for (input_bfd = info->input_bfds, bfd_indx = 0;
2774 input_bfd != NULL;
2775 input_bfd = input_bfd->link.next, bfd_indx++)
2776 {
2777 Elf_Internal_Shdr *symtab_hdr;
2778 asection *section;
2779 Elf_Internal_Sym *local_syms;
2780
2781 /* We'll need the symbol table in a second. */
2782 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2783 if (symtab_hdr->sh_info == 0)
2784 continue;
2785
2786 local_syms = htab->all_local_syms[bfd_indx];
2787
2788 /* Walk over each section attached to the input bfd. */
2789 for (section = input_bfd->sections;
2790 section != NULL;
2791 section = section->next)
2792 {
2793 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2794
2795 /* If there aren't any relocs, then there's nothing more
2796 to do. */
2797 if ((section->flags & SEC_RELOC) == 0
2798 || (section->flags & SEC_ALLOC) == 0
2799 || (section->flags & SEC_LOAD) == 0
2800 || (section->flags & SEC_CODE) == 0
2801 || section->reloc_count == 0)
2802 continue;
2803
2804 /* If this section is a link-once section that will be
2805 discarded, then don't create any stubs. */
2806 if (section->output_section == NULL
2807 || section->output_section->owner != output_bfd)
2808 continue;
2809
2810 /* Get the relocs. */
2811 internal_relocs
2812 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2813 info->keep_memory);
2814 if (internal_relocs == NULL)
2815 goto error_ret_free_local;
2816
2817 /* Now examine each relocation. */
2818 irela = internal_relocs;
2819 irelaend = irela + section->reloc_count;
2820 for (; irela < irelaend; irela++)
2821 {
2822 unsigned int r_type, r_indx;
2823 enum elf32_hppa_stub_type stub_type;
2824 struct elf32_hppa_stub_hash_entry *hsh;
2825 asection *sym_sec;
2826 bfd_vma sym_value;
2827 bfd_vma destination;
2828 struct elf32_hppa_link_hash_entry *hh;
2829 char *stub_name;
2830 const asection *id_sec;
2831
2832 r_type = ELF32_R_TYPE (irela->r_info);
2833 r_indx = ELF32_R_SYM (irela->r_info);
2834
2835 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2836 {
2837 bfd_set_error (bfd_error_bad_value);
2838 error_ret_free_internal:
2839 if (elf_section_data (section)->relocs == NULL)
2840 free (internal_relocs);
2841 goto error_ret_free_local;
2842 }
2843
2844 /* Only look for stubs on call instructions. */
2845 if (r_type != (unsigned int) R_PARISC_PCREL12F
2846 && r_type != (unsigned int) R_PARISC_PCREL17F
2847 && r_type != (unsigned int) R_PARISC_PCREL22F)
2848 continue;
2849
2850 /* Now determine the call target, its name, value,
2851 section. */
2852 sym_sec = NULL;
2853 sym_value = 0;
2854 destination = -1;
2855 hh = NULL;
2856 if (r_indx < symtab_hdr->sh_info)
2857 {
2858 /* It's a local symbol. */
2859 Elf_Internal_Sym *sym;
2860 Elf_Internal_Shdr *hdr;
2861 unsigned int shndx;
2862
2863 sym = local_syms + r_indx;
2864 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2865 sym_value = sym->st_value;
2866 shndx = sym->st_shndx;
2867 if (shndx < elf_numsections (input_bfd))
2868 {
2869 hdr = elf_elfsections (input_bfd)[shndx];
2870 sym_sec = hdr->bfd_section;
2871 destination = (sym_value + irela->r_addend
2872 + sym_sec->output_offset
2873 + sym_sec->output_section->vma);
2874 }
2875 }
2876 else
2877 {
2878 /* It's an external symbol. */
2879 int e_indx;
2880
2881 e_indx = r_indx - symtab_hdr->sh_info;
2882 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2883
2884 while (hh->eh.root.type == bfd_link_hash_indirect
2885 || hh->eh.root.type == bfd_link_hash_warning)
2886 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2887
2888 if (hh->eh.root.type == bfd_link_hash_defined
2889 || hh->eh.root.type == bfd_link_hash_defweak)
2890 {
2891 sym_sec = hh->eh.root.u.def.section;
2892 sym_value = hh->eh.root.u.def.value;
2893 if (sym_sec->output_section != NULL)
2894 destination = (sym_value + irela->r_addend
2895 + sym_sec->output_offset
2896 + sym_sec->output_section->vma);
2897 }
2898 else if (hh->eh.root.type == bfd_link_hash_undefweak)
2899 {
2900 if (! bfd_link_pic (info))
2901 continue;
2902 }
2903 else if (hh->eh.root.type == bfd_link_hash_undefined)
2904 {
2905 if (! (info->unresolved_syms_in_objects == RM_IGNORE
2906 && (ELF_ST_VISIBILITY (hh->eh.other)
2907 == STV_DEFAULT)
2908 && hh->eh.type != STT_PARISC_MILLI))
2909 continue;
2910 }
2911 else
2912 {
2913 bfd_set_error (bfd_error_bad_value);
2914 goto error_ret_free_internal;
2915 }
2916 }
2917
2918 /* Determine what (if any) linker stub is needed. */
2919 stub_type = hppa_type_of_stub (section, irela, hh,
2920 destination, info);
2921 if (stub_type == hppa_stub_none)
2922 continue;
2923
2924 /* Support for grouping stub sections. */
2925 id_sec = htab->stub_group[section->id].link_sec;
2926
2927 /* Get the name of this stub. */
2928 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
2929 if (!stub_name)
2930 goto error_ret_free_internal;
2931
2932 hsh = hppa_stub_hash_lookup (&htab->bstab,
2933 stub_name,
2934 FALSE, FALSE);
2935 if (hsh != NULL)
2936 {
2937 /* The proper stub has already been created. */
2938 free (stub_name);
2939 continue;
2940 }
2941
2942 hsh = hppa_add_stub (stub_name, section, htab);
2943 if (hsh == NULL)
2944 {
2945 free (stub_name);
2946 goto error_ret_free_internal;
2947 }
2948
2949 hsh->target_value = sym_value;
2950 hsh->target_section = sym_sec;
2951 hsh->stub_type = stub_type;
2952 if (bfd_link_pic (info))
2953 {
2954 if (stub_type == hppa_stub_import)
2955 hsh->stub_type = hppa_stub_import_shared;
2956 else if (stub_type == hppa_stub_long_branch)
2957 hsh->stub_type = hppa_stub_long_branch_shared;
2958 }
2959 hsh->hh = hh;
2960 stub_changed = TRUE;
2961 }
2962
2963 /* We're done with the internal relocs, free them. */
2964 if (elf_section_data (section)->relocs == NULL)
2965 free (internal_relocs);
2966 }
2967 }
2968
2969 if (!stub_changed)
2970 break;
2971
2972 /* OK, we've added some stubs. Find out the new size of the
2973 stub sections. */
2974 for (stub_sec = htab->stub_bfd->sections;
2975 stub_sec != NULL;
2976 stub_sec = stub_sec->next)
2977 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
2978 stub_sec->size = 0;
2979
2980 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
2981
2982 /* Ask the linker to do its stuff. */
2983 (*htab->layout_sections_again) ();
2984 stub_changed = FALSE;
2985 }
2986
2987 free (htab->all_local_syms);
2988 return TRUE;
2989
2990 error_ret_free_local:
2991 free (htab->all_local_syms);
2992 return FALSE;
2993 }
2994
2995 /* For a final link, this function is called after we have sized the
2996 stubs to provide a value for __gp. */
2997
2998 bfd_boolean
2999 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3000 {
3001 struct bfd_link_hash_entry *h;
3002 asection *sec = NULL;
3003 bfd_vma gp_val = 0;
3004
3005 h = bfd_link_hash_lookup (info->hash, "$global$", FALSE, FALSE, FALSE);
3006
3007 if (h != NULL
3008 && (h->type == bfd_link_hash_defined
3009 || h->type == bfd_link_hash_defweak))
3010 {
3011 gp_val = h->u.def.value;
3012 sec = h->u.def.section;
3013 }
3014 else
3015 {
3016 asection *splt = bfd_get_section_by_name (abfd, ".plt");
3017 asection *sgot = bfd_get_section_by_name (abfd, ".got");
3018
3019 /* Choose to point our LTP at, in this order, one of .plt, .got,
3020 or .data, if these sections exist. In the case of choosing
3021 .plt try to make the LTP ideal for addressing anywhere in the
3022 .plt or .got with a 14 bit signed offset. Typically, the end
3023 of the .plt is the start of the .got, so choose .plt + 0x2000
3024 if either the .plt or .got is larger than 0x2000. If both
3025 the .plt and .got are smaller than 0x2000, choose the end of
3026 the .plt section. */
3027 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3028 ? NULL : splt;
3029 if (sec != NULL)
3030 {
3031 gp_val = sec->size;
3032 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3033 {
3034 gp_val = 0x2000;
3035 }
3036 }
3037 else
3038 {
3039 sec = sgot;
3040 if (sec != NULL)
3041 {
3042 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3043 {
3044 /* We know we don't have a .plt. If .got is large,
3045 offset our LTP. */
3046 if (sec->size > 0x2000)
3047 gp_val = 0x2000;
3048 }
3049 }
3050 else
3051 {
3052 /* No .plt or .got. Who cares what the LTP is? */
3053 sec = bfd_get_section_by_name (abfd, ".data");
3054 }
3055 }
3056
3057 if (h != NULL)
3058 {
3059 h->type = bfd_link_hash_defined;
3060 h->u.def.value = gp_val;
3061 if (sec != NULL)
3062 h->u.def.section = sec;
3063 else
3064 h->u.def.section = bfd_abs_section_ptr;
3065 }
3066 }
3067
3068 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
3069 {
3070 if (sec != NULL && sec->output_section != NULL)
3071 gp_val += sec->output_section->vma + sec->output_offset;
3072
3073 elf_gp (abfd) = gp_val;
3074 }
3075 return TRUE;
3076 }
3077
3078 /* Build all the stubs associated with the current output file. The
3079 stubs are kept in a hash table attached to the main linker hash
3080 table. We also set up the .plt entries for statically linked PIC
3081 functions here. This function is called via hppaelf_finish in the
3082 linker. */
3083
3084 bfd_boolean
3085 elf32_hppa_build_stubs (struct bfd_link_info *info)
3086 {
3087 asection *stub_sec;
3088 struct bfd_hash_table *table;
3089 struct elf32_hppa_link_hash_table *htab;
3090
3091 htab = hppa_link_hash_table (info);
3092 if (htab == NULL)
3093 return FALSE;
3094
3095 for (stub_sec = htab->stub_bfd->sections;
3096 stub_sec != NULL;
3097 stub_sec = stub_sec->next)
3098 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
3099 && stub_sec->size != 0)
3100 {
3101 /* Allocate memory to hold the linker stubs. */
3102 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
3103 if (stub_sec->contents == NULL)
3104 return FALSE;
3105 stub_sec->size = 0;
3106 }
3107
3108 /* Build the stubs as directed by the stub hash table. */
3109 table = &htab->bstab;
3110 bfd_hash_traverse (table, hppa_build_one_stub, info);
3111
3112 return TRUE;
3113 }
3114
3115 /* Return the base vma address which should be subtracted from the real
3116 address when resolving a dtpoff relocation.
3117 This is PT_TLS segment p_vaddr. */
3118
3119 static bfd_vma
3120 dtpoff_base (struct bfd_link_info *info)
3121 {
3122 /* If tls_sec is NULL, we should have signalled an error already. */
3123 if (elf_hash_table (info)->tls_sec == NULL)
3124 return 0;
3125 return elf_hash_table (info)->tls_sec->vma;
3126 }
3127
3128 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3129
3130 static bfd_vma
3131 tpoff (struct bfd_link_info *info, bfd_vma address)
3132 {
3133 struct elf_link_hash_table *htab = elf_hash_table (info);
3134
3135 /* If tls_sec is NULL, we should have signalled an error already. */
3136 if (htab->tls_sec == NULL)
3137 return 0;
3138 /* hppa TLS ABI is variant I and static TLS block start just after
3139 tcbhead structure which has 2 pointer fields. */
3140 return (address - htab->tls_sec->vma
3141 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3142 }
3143
3144 /* Perform a final link. */
3145
3146 static bfd_boolean
3147 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3148 {
3149 struct stat buf;
3150
3151 /* Invoke the regular ELF linker to do all the work. */
3152 if (!bfd_elf_final_link (abfd, info))
3153 return FALSE;
3154
3155 /* If we're producing a final executable, sort the contents of the
3156 unwind section. */
3157 if (bfd_link_relocatable (info))
3158 return TRUE;
3159
3160 /* Do not attempt to sort non-regular files. This is here
3161 especially for configure scripts and kernel builds which run
3162 tests with "ld [...] -o /dev/null". */
3163 if (stat (abfd->filename, &buf) != 0
3164 || !S_ISREG(buf.st_mode))
3165 return TRUE;
3166
3167 return elf_hppa_sort_unwind (abfd);
3168 }
3169
3170 /* Record the lowest address for the data and text segments. */
3171
3172 static void
3173 hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3174 {
3175 struct elf32_hppa_link_hash_table *htab;
3176
3177 htab = (struct elf32_hppa_link_hash_table*) data;
3178 if (htab == NULL)
3179 return;
3180
3181 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3182 {
3183 bfd_vma value;
3184 Elf_Internal_Phdr *p;
3185
3186 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3187 BFD_ASSERT (p != NULL);
3188 value = p->p_vaddr;
3189
3190 if ((section->flags & SEC_READONLY) != 0)
3191 {
3192 if (value < htab->text_segment_base)
3193 htab->text_segment_base = value;
3194 }
3195 else
3196 {
3197 if (value < htab->data_segment_base)
3198 htab->data_segment_base = value;
3199 }
3200 }
3201 }
3202
3203 /* Perform a relocation as part of a final link. */
3204
3205 static bfd_reloc_status_type
3206 final_link_relocate (asection *input_section,
3207 bfd_byte *contents,
3208 const Elf_Internal_Rela *rela,
3209 bfd_vma value,
3210 struct elf32_hppa_link_hash_table *htab,
3211 asection *sym_sec,
3212 struct elf32_hppa_link_hash_entry *hh,
3213 struct bfd_link_info *info)
3214 {
3215 int insn;
3216 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3217 unsigned int orig_r_type = r_type;
3218 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3219 int r_format = howto->bitsize;
3220 enum hppa_reloc_field_selector_type_alt r_field;
3221 bfd *input_bfd = input_section->owner;
3222 bfd_vma offset = rela->r_offset;
3223 bfd_vma max_branch_offset = 0;
3224 bfd_byte *hit_data = contents + offset;
3225 bfd_signed_vma addend = rela->r_addend;
3226 bfd_vma location;
3227 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3228 int val;
3229
3230 if (r_type == R_PARISC_NONE)
3231 return bfd_reloc_ok;
3232
3233 insn = bfd_get_32 (input_bfd, hit_data);
3234
3235 /* Find out where we are and where we're going. */
3236 location = (offset +
3237 input_section->output_offset +
3238 input_section->output_section->vma);
3239
3240 /* If we are not building a shared library, convert DLTIND relocs to
3241 DPREL relocs. */
3242 if (!bfd_link_pic (info))
3243 {
3244 switch (r_type)
3245 {
3246 case R_PARISC_DLTIND21L:
3247 case R_PARISC_TLS_GD21L:
3248 case R_PARISC_TLS_LDM21L:
3249 case R_PARISC_TLS_IE21L:
3250 r_type = R_PARISC_DPREL21L;
3251 break;
3252
3253 case R_PARISC_DLTIND14R:
3254 case R_PARISC_TLS_GD14R:
3255 case R_PARISC_TLS_LDM14R:
3256 case R_PARISC_TLS_IE14R:
3257 r_type = R_PARISC_DPREL14R;
3258 break;
3259
3260 case R_PARISC_DLTIND14F:
3261 r_type = R_PARISC_DPREL14F;
3262 break;
3263 }
3264 }
3265
3266 switch (r_type)
3267 {
3268 case R_PARISC_PCREL12F:
3269 case R_PARISC_PCREL17F:
3270 case R_PARISC_PCREL22F:
3271 /* If this call should go via the plt, find the import stub in
3272 the stub hash. */
3273 if (sym_sec == NULL
3274 || sym_sec->output_section == NULL
3275 || (hh != NULL
3276 && hh->eh.plt.offset != (bfd_vma) -1
3277 && hh->eh.dynindx != -1
3278 && !hh->plabel
3279 && (bfd_link_pic (info)
3280 || !hh->eh.def_regular
3281 || hh->eh.root.type == bfd_link_hash_defweak)))
3282 {
3283 hsh = hppa_get_stub_entry (input_section, sym_sec,
3284 hh, rela, htab);
3285 if (hsh != NULL)
3286 {
3287 value = (hsh->stub_offset
3288 + hsh->stub_sec->output_offset
3289 + hsh->stub_sec->output_section->vma);
3290 addend = 0;
3291 }
3292 else if (sym_sec == NULL && hh != NULL
3293 && hh->eh.root.type == bfd_link_hash_undefweak)
3294 {
3295 /* It's OK if undefined weak. Calls to undefined weak
3296 symbols behave as if the "called" function
3297 immediately returns. We can thus call to a weak
3298 function without first checking whether the function
3299 is defined. */
3300 value = location;
3301 addend = 8;
3302 }
3303 else
3304 return bfd_reloc_undefined;
3305 }
3306 /* Fall thru. */
3307
3308 case R_PARISC_PCREL21L:
3309 case R_PARISC_PCREL17C:
3310 case R_PARISC_PCREL17R:
3311 case R_PARISC_PCREL14R:
3312 case R_PARISC_PCREL14F:
3313 case R_PARISC_PCREL32:
3314 /* Make it a pc relative offset. */
3315 value -= location;
3316 addend -= 8;
3317 break;
3318
3319 case R_PARISC_DPREL21L:
3320 case R_PARISC_DPREL14R:
3321 case R_PARISC_DPREL14F:
3322 /* Convert instructions that use the linkage table pointer (r19) to
3323 instructions that use the global data pointer (dp). This is the
3324 most efficient way of using PIC code in an incomplete executable,
3325 but the user must follow the standard runtime conventions for
3326 accessing data for this to work. */
3327 if (orig_r_type != r_type)
3328 {
3329 if (r_type == R_PARISC_DPREL21L)
3330 {
3331 /* GCC sometimes uses a register other than r19 for the
3332 operation, so we must convert any addil instruction
3333 that uses this relocation. */
3334 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3335 insn = ADDIL_DP;
3336 else
3337 /* We must have a ldil instruction. It's too hard to find
3338 and convert the associated add instruction, so issue an
3339 error. */
3340 _bfd_error_handler
3341 /* xgettext:c-format */
3342 (_("%pB(%pA+%#" PRIx64 "): %s fixup for insn %#x "
3343 "is not supported in a non-shared link"),
3344 input_bfd,
3345 input_section,
3346 (uint64_t) offset,
3347 howto->name,
3348 insn);
3349 }
3350 else if (r_type == R_PARISC_DPREL14F)
3351 {
3352 /* This must be a format 1 load/store. Change the base
3353 register to dp. */
3354 insn = (insn & 0xfc1ffff) | (27 << 21);
3355 }
3356 }
3357
3358 /* For all the DP relative relocations, we need to examine the symbol's
3359 section. If it has no section or if it's a code section, then
3360 "data pointer relative" makes no sense. In that case we don't
3361 adjust the "value", and for 21 bit addil instructions, we change the
3362 source addend register from %dp to %r0. This situation commonly
3363 arises for undefined weak symbols and when a variable's "constness"
3364 is declared differently from the way the variable is defined. For
3365 instance: "extern int foo" with foo defined as "const int foo". */
3366 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3367 {
3368 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3369 == (((int) OP_ADDIL << 26) | (27 << 21)))
3370 {
3371 insn &= ~ (0x1f << 21);
3372 }
3373 /* Now try to make things easy for the dynamic linker. */
3374
3375 break;
3376 }
3377 /* Fall thru. */
3378
3379 case R_PARISC_DLTIND21L:
3380 case R_PARISC_DLTIND14R:
3381 case R_PARISC_DLTIND14F:
3382 case R_PARISC_TLS_GD21L:
3383 case R_PARISC_TLS_LDM21L:
3384 case R_PARISC_TLS_IE21L:
3385 case R_PARISC_TLS_GD14R:
3386 case R_PARISC_TLS_LDM14R:
3387 case R_PARISC_TLS_IE14R:
3388 value -= elf_gp (input_section->output_section->owner);
3389 break;
3390
3391 case R_PARISC_SEGREL32:
3392 if ((sym_sec->flags & SEC_CODE) != 0)
3393 value -= htab->text_segment_base;
3394 else
3395 value -= htab->data_segment_base;
3396 break;
3397
3398 default:
3399 break;
3400 }
3401
3402 switch (r_type)
3403 {
3404 case R_PARISC_DIR32:
3405 case R_PARISC_DIR14F:
3406 case R_PARISC_DIR17F:
3407 case R_PARISC_PCREL17C:
3408 case R_PARISC_PCREL14F:
3409 case R_PARISC_PCREL32:
3410 case R_PARISC_DPREL14F:
3411 case R_PARISC_PLABEL32:
3412 case R_PARISC_DLTIND14F:
3413 case R_PARISC_SEGBASE:
3414 case R_PARISC_SEGREL32:
3415 case R_PARISC_TLS_DTPMOD32:
3416 case R_PARISC_TLS_DTPOFF32:
3417 case R_PARISC_TLS_TPREL32:
3418 r_field = e_fsel;
3419 break;
3420
3421 case R_PARISC_DLTIND21L:
3422 case R_PARISC_PCREL21L:
3423 case R_PARISC_PLABEL21L:
3424 r_field = e_lsel;
3425 break;
3426
3427 case R_PARISC_DIR21L:
3428 case R_PARISC_DPREL21L:
3429 case R_PARISC_TLS_GD21L:
3430 case R_PARISC_TLS_LDM21L:
3431 case R_PARISC_TLS_LDO21L:
3432 case R_PARISC_TLS_IE21L:
3433 case R_PARISC_TLS_LE21L:
3434 r_field = e_lrsel;
3435 break;
3436
3437 case R_PARISC_PCREL17R:
3438 case R_PARISC_PCREL14R:
3439 case R_PARISC_PLABEL14R:
3440 case R_PARISC_DLTIND14R:
3441 r_field = e_rsel;
3442 break;
3443
3444 case R_PARISC_DIR17R:
3445 case R_PARISC_DIR14R:
3446 case R_PARISC_DPREL14R:
3447 case R_PARISC_TLS_GD14R:
3448 case R_PARISC_TLS_LDM14R:
3449 case R_PARISC_TLS_LDO14R:
3450 case R_PARISC_TLS_IE14R:
3451 case R_PARISC_TLS_LE14R:
3452 r_field = e_rrsel;
3453 break;
3454
3455 case R_PARISC_PCREL12F:
3456 case R_PARISC_PCREL17F:
3457 case R_PARISC_PCREL22F:
3458 r_field = e_fsel;
3459
3460 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3461 {
3462 max_branch_offset = (1 << (17-1)) << 2;
3463 }
3464 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3465 {
3466 max_branch_offset = (1 << (12-1)) << 2;
3467 }
3468 else
3469 {
3470 max_branch_offset = (1 << (22-1)) << 2;
3471 }
3472
3473 /* sym_sec is NULL on undefined weak syms or when shared on
3474 undefined syms. We've already checked for a stub for the
3475 shared undefined case. */
3476 if (sym_sec == NULL)
3477 break;
3478
3479 /* If the branch is out of reach, then redirect the
3480 call to the local stub for this function. */
3481 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3482 {
3483 hsh = hppa_get_stub_entry (input_section, sym_sec,
3484 hh, rela, htab);
3485 if (hsh == NULL)
3486 return bfd_reloc_undefined;
3487
3488 /* Munge up the value and addend so that we call the stub
3489 rather than the procedure directly. */
3490 value = (hsh->stub_offset
3491 + hsh->stub_sec->output_offset
3492 + hsh->stub_sec->output_section->vma
3493 - location);
3494 addend = -8;
3495 }
3496 break;
3497
3498 /* Something we don't know how to handle. */
3499 default:
3500 return bfd_reloc_notsupported;
3501 }
3502
3503 /* Make sure we can reach the stub. */
3504 if (max_branch_offset != 0
3505 && value + addend + max_branch_offset >= 2*max_branch_offset)
3506 {
3507 _bfd_error_handler
3508 /* xgettext:c-format */
3509 (_("%pB(%pA+%#" PRIx64 "): cannot reach %s, "
3510 "recompile with -ffunction-sections"),
3511 input_bfd,
3512 input_section,
3513 (uint64_t) offset,
3514 hsh->bh_root.string);
3515 bfd_set_error (bfd_error_bad_value);
3516 return bfd_reloc_notsupported;
3517 }
3518
3519 val = hppa_field_adjust (value, addend, r_field);
3520
3521 switch (r_type)
3522 {
3523 case R_PARISC_PCREL12F:
3524 case R_PARISC_PCREL17C:
3525 case R_PARISC_PCREL17F:
3526 case R_PARISC_PCREL17R:
3527 case R_PARISC_PCREL22F:
3528 case R_PARISC_DIR17F:
3529 case R_PARISC_DIR17R:
3530 /* This is a branch. Divide the offset by four.
3531 Note that we need to decide whether it's a branch or
3532 otherwise by inspecting the reloc. Inspecting insn won't
3533 work as insn might be from a .word directive. */
3534 val >>= 2;
3535 break;
3536
3537 default:
3538 break;
3539 }
3540
3541 insn = hppa_rebuild_insn (insn, val, r_format);
3542
3543 /* Update the instruction word. */
3544 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3545 return bfd_reloc_ok;
3546 }
3547
3548 /* Relocate an HPPA ELF section. */
3549
3550 static bfd_boolean
3551 elf32_hppa_relocate_section (bfd *output_bfd,
3552 struct bfd_link_info *info,
3553 bfd *input_bfd,
3554 asection *input_section,
3555 bfd_byte *contents,
3556 Elf_Internal_Rela *relocs,
3557 Elf_Internal_Sym *local_syms,
3558 asection **local_sections)
3559 {
3560 bfd_vma *local_got_offsets;
3561 struct elf32_hppa_link_hash_table *htab;
3562 Elf_Internal_Shdr *symtab_hdr;
3563 Elf_Internal_Rela *rela;
3564 Elf_Internal_Rela *relend;
3565
3566 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3567
3568 htab = hppa_link_hash_table (info);
3569 if (htab == NULL)
3570 return FALSE;
3571
3572 local_got_offsets = elf_local_got_offsets (input_bfd);
3573
3574 rela = relocs;
3575 relend = relocs + input_section->reloc_count;
3576 for (; rela < relend; rela++)
3577 {
3578 unsigned int r_type;
3579 reloc_howto_type *howto;
3580 unsigned int r_symndx;
3581 struct elf32_hppa_link_hash_entry *hh;
3582 Elf_Internal_Sym *sym;
3583 asection *sym_sec;
3584 bfd_vma relocation;
3585 bfd_reloc_status_type rstatus;
3586 const char *sym_name;
3587 bfd_boolean plabel;
3588 bfd_boolean warned_undef;
3589
3590 r_type = ELF32_R_TYPE (rela->r_info);
3591 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3592 {
3593 bfd_set_error (bfd_error_bad_value);
3594 return FALSE;
3595 }
3596 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3597 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3598 continue;
3599
3600 r_symndx = ELF32_R_SYM (rela->r_info);
3601 hh = NULL;
3602 sym = NULL;
3603 sym_sec = NULL;
3604 warned_undef = FALSE;
3605 if (r_symndx < symtab_hdr->sh_info)
3606 {
3607 /* This is a local symbol, h defaults to NULL. */
3608 sym = local_syms + r_symndx;
3609 sym_sec = local_sections[r_symndx];
3610 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3611 }
3612 else
3613 {
3614 struct elf_link_hash_entry *eh;
3615 bfd_boolean unresolved_reloc, ignored;
3616 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3617
3618 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3619 r_symndx, symtab_hdr, sym_hashes,
3620 eh, sym_sec, relocation,
3621 unresolved_reloc, warned_undef,
3622 ignored);
3623
3624 if (!bfd_link_relocatable (info)
3625 && relocation == 0
3626 && eh->root.type != bfd_link_hash_defined
3627 && eh->root.type != bfd_link_hash_defweak
3628 && eh->root.type != bfd_link_hash_undefweak)
3629 {
3630 if (info->unresolved_syms_in_objects == RM_IGNORE
3631 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3632 && eh->type == STT_PARISC_MILLI)
3633 {
3634 (*info->callbacks->undefined_symbol)
3635 (info, eh_name (eh), input_bfd,
3636 input_section, rela->r_offset, FALSE);
3637 warned_undef = TRUE;
3638 }
3639 }
3640 hh = hppa_elf_hash_entry (eh);
3641 }
3642
3643 if (sym_sec != NULL && discarded_section (sym_sec))
3644 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3645 rela, 1, relend,
3646 elf_hppa_howto_table + r_type, 0,
3647 contents);
3648
3649 if (bfd_link_relocatable (info))
3650 continue;
3651
3652 /* Do any required modifications to the relocation value, and
3653 determine what types of dynamic info we need to output, if
3654 any. */
3655 plabel = 0;
3656 switch (r_type)
3657 {
3658 case R_PARISC_DLTIND14F:
3659 case R_PARISC_DLTIND14R:
3660 case R_PARISC_DLTIND21L:
3661 {
3662 bfd_vma off;
3663 bfd_boolean do_got = FALSE;
3664 bfd_boolean reloc = bfd_link_pic (info);
3665
3666 /* Relocation is to the entry for this symbol in the
3667 global offset table. */
3668 if (hh != NULL)
3669 {
3670 bfd_boolean dyn;
3671
3672 off = hh->eh.got.offset;
3673 dyn = htab->etab.dynamic_sections_created;
3674 reloc = (!UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh)
3675 && (reloc
3676 || (hh->eh.dynindx != -1
3677 && !SYMBOL_REFERENCES_LOCAL (info, &hh->eh))));
3678 if (!reloc
3679 || !WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
3680 bfd_link_pic (info),
3681 &hh->eh))
3682 {
3683 /* If we aren't going to call finish_dynamic_symbol,
3684 then we need to handle initialisation of the .got
3685 entry and create needed relocs here. Since the
3686 offset must always be a multiple of 4, we use the
3687 least significant bit to record whether we have
3688 initialised it already. */
3689 if ((off & 1) != 0)
3690 off &= ~1;
3691 else
3692 {
3693 hh->eh.got.offset |= 1;
3694 do_got = TRUE;
3695 }
3696 }
3697 }
3698 else
3699 {
3700 /* Local symbol case. */
3701 if (local_got_offsets == NULL)
3702 abort ();
3703
3704 off = local_got_offsets[r_symndx];
3705
3706 /* The offset must always be a multiple of 4. We use
3707 the least significant bit to record whether we have
3708 already generated the necessary reloc. */
3709 if ((off & 1) != 0)
3710 off &= ~1;
3711 else
3712 {
3713 local_got_offsets[r_symndx] |= 1;
3714 do_got = TRUE;
3715 }
3716 }
3717
3718 if (do_got)
3719 {
3720 if (reloc)
3721 {
3722 /* Output a dynamic relocation for this GOT entry.
3723 In this case it is relative to the base of the
3724 object because the symbol index is zero. */
3725 Elf_Internal_Rela outrel;
3726 bfd_byte *loc;
3727 asection *sec = htab->etab.srelgot;
3728
3729 outrel.r_offset = (off
3730 + htab->etab.sgot->output_offset
3731 + htab->etab.sgot->output_section->vma);
3732 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3733 outrel.r_addend = relocation;
3734 loc = sec->contents;
3735 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3736 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3737 }
3738 else
3739 bfd_put_32 (output_bfd, relocation,
3740 htab->etab.sgot->contents + off);
3741 }
3742
3743 if (off >= (bfd_vma) -2)
3744 abort ();
3745
3746 /* Add the base of the GOT to the relocation value. */
3747 relocation = (off
3748 + htab->etab.sgot->output_offset
3749 + htab->etab.sgot->output_section->vma);
3750 }
3751 break;
3752
3753 case R_PARISC_SEGREL32:
3754 /* If this is the first SEGREL relocation, then initialize
3755 the segment base values. */
3756 if (htab->text_segment_base == (bfd_vma) -1)
3757 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3758 break;
3759
3760 case R_PARISC_PLABEL14R:
3761 case R_PARISC_PLABEL21L:
3762 case R_PARISC_PLABEL32:
3763 if (htab->etab.dynamic_sections_created)
3764 {
3765 bfd_vma off;
3766 bfd_boolean do_plt = 0;
3767 /* If we have a global symbol with a PLT slot, then
3768 redirect this relocation to it. */
3769 if (hh != NULL)
3770 {
3771 off = hh->eh.plt.offset;
3772 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1,
3773 bfd_link_pic (info),
3774 &hh->eh))
3775 {
3776 /* In a non-shared link, adjust_dynamic_symbol
3777 isn't called for symbols forced local. We
3778 need to write out the plt entry here. */
3779 if ((off & 1) != 0)
3780 off &= ~1;
3781 else
3782 {
3783 hh->eh.plt.offset |= 1;
3784 do_plt = 1;
3785 }
3786 }
3787 }
3788 else
3789 {
3790 bfd_vma *local_plt_offsets;
3791
3792 if (local_got_offsets == NULL)
3793 abort ();
3794
3795 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3796 off = local_plt_offsets[r_symndx];
3797
3798 /* As for the local .got entry case, we use the last
3799 bit to record whether we've already initialised
3800 this local .plt entry. */
3801 if ((off & 1) != 0)
3802 off &= ~1;
3803 else
3804 {
3805 local_plt_offsets[r_symndx] |= 1;
3806 do_plt = 1;
3807 }
3808 }
3809
3810 if (do_plt)
3811 {
3812 if (bfd_link_pic (info))
3813 {
3814 /* Output a dynamic IPLT relocation for this
3815 PLT entry. */
3816 Elf_Internal_Rela outrel;
3817 bfd_byte *loc;
3818 asection *s = htab->etab.srelplt;
3819
3820 outrel.r_offset = (off
3821 + htab->etab.splt->output_offset
3822 + htab->etab.splt->output_section->vma);
3823 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3824 outrel.r_addend = relocation;
3825 loc = s->contents;
3826 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3827 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3828 }
3829 else
3830 {
3831 bfd_put_32 (output_bfd,
3832 relocation,
3833 htab->etab.splt->contents + off);
3834 bfd_put_32 (output_bfd,
3835 elf_gp (htab->etab.splt->output_section->owner),
3836 htab->etab.splt->contents + off + 4);
3837 }
3838 }
3839
3840 if (off >= (bfd_vma) -2)
3841 abort ();
3842
3843 /* PLABELs contain function pointers. Relocation is to
3844 the entry for the function in the .plt. The magic +2
3845 offset signals to $$dyncall that the function pointer
3846 is in the .plt and thus has a gp pointer too.
3847 Exception: Undefined PLABELs should have a value of
3848 zero. */
3849 if (hh == NULL
3850 || (hh->eh.root.type != bfd_link_hash_undefweak
3851 && hh->eh.root.type != bfd_link_hash_undefined))
3852 {
3853 relocation = (off
3854 + htab->etab.splt->output_offset
3855 + htab->etab.splt->output_section->vma
3856 + 2);
3857 }
3858 plabel = 1;
3859 }
3860 /* Fall through. */
3861
3862 case R_PARISC_DIR17F:
3863 case R_PARISC_DIR17R:
3864 case R_PARISC_DIR14F:
3865 case R_PARISC_DIR14R:
3866 case R_PARISC_DIR21L:
3867 case R_PARISC_DPREL14F:
3868 case R_PARISC_DPREL14R:
3869 case R_PARISC_DPREL21L:
3870 case R_PARISC_DIR32:
3871 if ((input_section->flags & SEC_ALLOC) == 0)
3872 break;
3873
3874 if (bfd_link_pic (info)
3875 ? ((hh == NULL
3876 || hh->dyn_relocs != NULL)
3877 && ((hh != NULL && pc_dynrelocs (hh))
3878 || IS_ABSOLUTE_RELOC (r_type)))
3879 : (hh != NULL
3880 && hh->dyn_relocs != NULL))
3881 {
3882 Elf_Internal_Rela outrel;
3883 bfd_boolean skip;
3884 asection *sreloc;
3885 bfd_byte *loc;
3886
3887 /* When generating a shared object, these relocations
3888 are copied into the output file to be resolved at run
3889 time. */
3890
3891 outrel.r_addend = rela->r_addend;
3892 outrel.r_offset =
3893 _bfd_elf_section_offset (output_bfd, info, input_section,
3894 rela->r_offset);
3895 skip = (outrel.r_offset == (bfd_vma) -1
3896 || outrel.r_offset == (bfd_vma) -2);
3897 outrel.r_offset += (input_section->output_offset
3898 + input_section->output_section->vma);
3899
3900 if (skip)
3901 {
3902 memset (&outrel, 0, sizeof (outrel));
3903 }
3904 else if (hh != NULL
3905 && hh->eh.dynindx != -1
3906 && (plabel
3907 || !IS_ABSOLUTE_RELOC (r_type)
3908 || !bfd_link_pic (info)
3909 || !SYMBOLIC_BIND (info, &hh->eh)
3910 || !hh->eh.def_regular))
3911 {
3912 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
3913 }
3914 else /* It's a local symbol, or one marked to become local. */
3915 {
3916 int indx = 0;
3917
3918 /* Add the absolute offset of the symbol. */
3919 outrel.r_addend += relocation;
3920
3921 /* Global plabels need to be processed by the
3922 dynamic linker so that functions have at most one
3923 fptr. For this reason, we need to differentiate
3924 between global and local plabels, which we do by
3925 providing the function symbol for a global plabel
3926 reloc, and no symbol for local plabels. */
3927 if (! plabel
3928 && sym_sec != NULL
3929 && sym_sec->output_section != NULL
3930 && ! bfd_is_abs_section (sym_sec))
3931 {
3932 asection *osec;
3933
3934 osec = sym_sec->output_section;
3935 indx = elf_section_data (osec)->dynindx;
3936 if (indx == 0)
3937 {
3938 osec = htab->etab.text_index_section;
3939 indx = elf_section_data (osec)->dynindx;
3940 }
3941 BFD_ASSERT (indx != 0);
3942
3943 /* We are turning this relocation into one
3944 against a section symbol, so subtract out the
3945 output section's address but not the offset
3946 of the input section in the output section. */
3947 outrel.r_addend -= osec->vma;
3948 }
3949
3950 outrel.r_info = ELF32_R_INFO (indx, r_type);
3951 }
3952 sreloc = elf_section_data (input_section)->sreloc;
3953 if (sreloc == NULL)
3954 abort ();
3955
3956 loc = sreloc->contents;
3957 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3958 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3959 }
3960 break;
3961
3962 case R_PARISC_TLS_LDM21L:
3963 case R_PARISC_TLS_LDM14R:
3964 {
3965 bfd_vma off;
3966
3967 off = htab->tls_ldm_got.offset;
3968 if (off & 1)
3969 off &= ~1;
3970 else
3971 {
3972 Elf_Internal_Rela outrel;
3973 bfd_byte *loc;
3974
3975 outrel.r_offset = (off
3976 + htab->etab.sgot->output_section->vma
3977 + htab->etab.sgot->output_offset);
3978 outrel.r_addend = 0;
3979 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
3980 loc = htab->etab.srelgot->contents;
3981 loc += htab->etab.srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
3982
3983 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3984 htab->tls_ldm_got.offset |= 1;
3985 }
3986
3987 /* Add the base of the GOT to the relocation value. */
3988 relocation = (off
3989 + htab->etab.sgot->output_offset
3990 + htab->etab.sgot->output_section->vma);
3991
3992 break;
3993 }
3994
3995 case R_PARISC_TLS_LDO21L:
3996 case R_PARISC_TLS_LDO14R:
3997 relocation -= dtpoff_base (info);
3998 break;
3999
4000 case R_PARISC_TLS_GD21L:
4001 case R_PARISC_TLS_GD14R:
4002 case R_PARISC_TLS_IE21L:
4003 case R_PARISC_TLS_IE14R:
4004 {
4005 bfd_vma off;
4006 int indx;
4007 char tls_type;
4008
4009 indx = 0;
4010 if (hh != NULL)
4011 {
4012 if (!htab->etab.dynamic_sections_created
4013 || hh->eh.dynindx == -1
4014 || SYMBOL_REFERENCES_LOCAL (info, &hh->eh)
4015 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh))
4016 /* This is actually a static link, or it is a
4017 -Bsymbolic link and the symbol is defined
4018 locally, or the symbol was forced to be local
4019 because of a version file. */
4020 ;
4021 else
4022 indx = hh->eh.dynindx;
4023 off = hh->eh.got.offset;
4024 tls_type = hh->tls_type;
4025 }
4026 else
4027 {
4028 off = local_got_offsets[r_symndx];
4029 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4030 }
4031
4032 if (tls_type == GOT_UNKNOWN)
4033 abort ();
4034
4035 if ((off & 1) != 0)
4036 off &= ~1;
4037 else
4038 {
4039 bfd_boolean need_relocs = FALSE;
4040 Elf_Internal_Rela outrel;
4041 bfd_byte *loc = NULL;
4042 int cur_off = off;
4043
4044 /* The GOT entries have not been initialized yet. Do it
4045 now, and emit any relocations. If both an IE GOT and a
4046 GD GOT are necessary, we emit the GD first. */
4047
4048 if (indx != 0
4049 || (bfd_link_dll (info)
4050 && (hh == NULL
4051 || !UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh))))
4052 {
4053 need_relocs = TRUE;
4054 loc = htab->etab.srelgot->contents;
4055 loc += (htab->etab.srelgot->reloc_count
4056 * sizeof (Elf32_External_Rela));
4057 }
4058
4059 if (tls_type & GOT_TLS_GD)
4060 {
4061 if (need_relocs)
4062 {
4063 outrel.r_offset
4064 = (cur_off
4065 + htab->etab.sgot->output_section->vma
4066 + htab->etab.sgot->output_offset);
4067 outrel.r_info
4068 = ELF32_R_INFO (indx, R_PARISC_TLS_DTPMOD32);
4069 outrel.r_addend = 0;
4070 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4071 htab->etab.srelgot->reloc_count++;
4072 loc += sizeof (Elf32_External_Rela);
4073 bfd_put_32 (output_bfd, 0,
4074 htab->etab.sgot->contents + cur_off);
4075 }
4076 else
4077 /* If we are not emitting relocations for a
4078 general dynamic reference, then we must be in a
4079 static link or an executable link with the
4080 symbol binding locally. Mark it as belonging
4081 to module 1, the executable. */
4082 bfd_put_32 (output_bfd, 1,
4083 htab->etab.sgot->contents + cur_off);
4084
4085 if (indx != 0)
4086 {
4087 outrel.r_info
4088 = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4089 outrel.r_offset += 4;
4090 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4091 htab->etab.srelgot->reloc_count++;
4092 loc += sizeof (Elf32_External_Rela);
4093 bfd_put_32 (output_bfd, 0,
4094 htab->etab.sgot->contents + cur_off + 4);
4095 }
4096 else
4097 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4098 htab->etab.sgot->contents + cur_off + 4);
4099 cur_off += 8;
4100 }
4101
4102 if (tls_type & GOT_TLS_IE)
4103 {
4104 if (need_relocs
4105 && !(bfd_link_executable (info)
4106 && SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4107 {
4108 outrel.r_offset
4109 = (cur_off
4110 + htab->etab.sgot->output_section->vma
4111 + htab->etab.sgot->output_offset);
4112 outrel.r_info = ELF32_R_INFO (indx,
4113 R_PARISC_TLS_TPREL32);
4114 if (indx == 0)
4115 outrel.r_addend = relocation - dtpoff_base (info);
4116 else
4117 outrel.r_addend = 0;
4118 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4119 htab->etab.srelgot->reloc_count++;
4120 loc += sizeof (Elf32_External_Rela);
4121 }
4122 else
4123 bfd_put_32 (output_bfd, tpoff (info, relocation),
4124 htab->etab.sgot->contents + cur_off);
4125 cur_off += 4;
4126 }
4127
4128 if (hh != NULL)
4129 hh->eh.got.offset |= 1;
4130 else
4131 local_got_offsets[r_symndx] |= 1;
4132 }
4133
4134 if ((tls_type & GOT_NORMAL) != 0
4135 && (tls_type & (GOT_TLS_GD | GOT_TLS_LDM | GOT_TLS_IE)) != 0)
4136 {
4137 if (hh != NULL)
4138 _bfd_error_handler (_("%s has both normal and TLS relocs"),
4139 hh_name (hh));
4140 else
4141 {
4142 Elf_Internal_Sym *isym
4143 = bfd_sym_from_r_symndx (&htab->sym_cache,
4144 input_bfd, r_symndx);
4145 if (isym == NULL)
4146 return FALSE;
4147 sym_name
4148 = bfd_elf_string_from_elf_section (input_bfd,
4149 symtab_hdr->sh_link,
4150 isym->st_name);
4151 if (sym_name == NULL)
4152 return FALSE;
4153 if (*sym_name == '\0')
4154 sym_name = bfd_section_name (input_bfd, sym_sec);
4155 _bfd_error_handler
4156 (_("%pB:%s has both normal and TLS relocs"),
4157 input_bfd, sym_name);
4158 }
4159 bfd_set_error (bfd_error_bad_value);
4160 return FALSE;
4161 }
4162
4163 if ((tls_type & GOT_TLS_GD)
4164 && r_type != R_PARISC_TLS_GD21L
4165 && r_type != R_PARISC_TLS_GD14R)
4166 off += 2 * GOT_ENTRY_SIZE;
4167
4168 /* Add the base of the GOT to the relocation value. */
4169 relocation = (off
4170 + htab->etab.sgot->output_offset
4171 + htab->etab.sgot->output_section->vma);
4172
4173 break;
4174 }
4175
4176 case R_PARISC_TLS_LE21L:
4177 case R_PARISC_TLS_LE14R:
4178 {
4179 relocation = tpoff (info, relocation);
4180 break;
4181 }
4182 break;
4183
4184 default:
4185 break;
4186 }
4187
4188 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4189 htab, sym_sec, hh, info);
4190
4191 if (rstatus == bfd_reloc_ok)
4192 continue;
4193
4194 if (hh != NULL)
4195 sym_name = hh_name (hh);
4196 else
4197 {
4198 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4199 symtab_hdr->sh_link,
4200 sym->st_name);
4201 if (sym_name == NULL)
4202 return FALSE;
4203 if (*sym_name == '\0')
4204 sym_name = bfd_section_name (input_bfd, sym_sec);
4205 }
4206
4207 howto = elf_hppa_howto_table + r_type;
4208
4209 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4210 {
4211 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4212 {
4213 _bfd_error_handler
4214 /* xgettext:c-format */
4215 (_("%pB(%pA+%#" PRIx64 "): cannot handle %s for %s"),
4216 input_bfd,
4217 input_section,
4218 (uint64_t) rela->r_offset,
4219 howto->name,
4220 sym_name);
4221 bfd_set_error (bfd_error_bad_value);
4222 return FALSE;
4223 }
4224 }
4225 else
4226 (*info->callbacks->reloc_overflow)
4227 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4228 (bfd_vma) 0, input_bfd, input_section, rela->r_offset);
4229 }
4230
4231 return TRUE;
4232 }
4233
4234 /* Finish up dynamic symbol handling. We set the contents of various
4235 dynamic sections here. */
4236
4237 static bfd_boolean
4238 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4239 struct bfd_link_info *info,
4240 struct elf_link_hash_entry *eh,
4241 Elf_Internal_Sym *sym)
4242 {
4243 struct elf32_hppa_link_hash_table *htab;
4244 Elf_Internal_Rela rela;
4245 bfd_byte *loc;
4246
4247 htab = hppa_link_hash_table (info);
4248 if (htab == NULL)
4249 return FALSE;
4250
4251 if (eh->plt.offset != (bfd_vma) -1)
4252 {
4253 bfd_vma value;
4254
4255 if (eh->plt.offset & 1)
4256 abort ();
4257
4258 /* This symbol has an entry in the procedure linkage table. Set
4259 it up.
4260
4261 The format of a plt entry is
4262 <funcaddr>
4263 <__gp>
4264 */
4265 value = 0;
4266 if (eh->root.type == bfd_link_hash_defined
4267 || eh->root.type == bfd_link_hash_defweak)
4268 {
4269 value = eh->root.u.def.value;
4270 if (eh->root.u.def.section->output_section != NULL)
4271 value += (eh->root.u.def.section->output_offset
4272 + eh->root.u.def.section->output_section->vma);
4273 }
4274
4275 /* Create a dynamic IPLT relocation for this entry. */
4276 rela.r_offset = (eh->plt.offset
4277 + htab->etab.splt->output_offset
4278 + htab->etab.splt->output_section->vma);
4279 if (eh->dynindx != -1)
4280 {
4281 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4282 rela.r_addend = 0;
4283 }
4284 else
4285 {
4286 /* This symbol has been marked to become local, and is
4287 used by a plabel so must be kept in the .plt. */
4288 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4289 rela.r_addend = value;
4290 }
4291
4292 loc = htab->etab.srelplt->contents;
4293 loc += htab->etab.srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4294 bfd_elf32_swap_reloca_out (htab->etab.splt->output_section->owner, &rela, loc);
4295
4296 if (!eh->def_regular)
4297 {
4298 /* Mark the symbol as undefined, rather than as defined in
4299 the .plt section. Leave the value alone. */
4300 sym->st_shndx = SHN_UNDEF;
4301 }
4302 }
4303
4304 if (eh->got.offset != (bfd_vma) -1
4305 && (hppa_elf_hash_entry (eh)->tls_type & GOT_NORMAL) != 0
4306 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
4307 {
4308 bfd_boolean is_dyn = (eh->dynindx != -1
4309 && !SYMBOL_REFERENCES_LOCAL (info, eh));
4310
4311 if (is_dyn || bfd_link_pic (info))
4312 {
4313 /* This symbol has an entry in the global offset table. Set
4314 it up. */
4315
4316 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4317 + htab->etab.sgot->output_offset
4318 + htab->etab.sgot->output_section->vma);
4319
4320 /* If this is a -Bsymbolic link and the symbol is defined
4321 locally or was forced to be local because of a version
4322 file, we just want to emit a RELATIVE reloc. The entry
4323 in the global offset table will already have been
4324 initialized in the relocate_section function. */
4325 if (!is_dyn)
4326 {
4327 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4328 rela.r_addend = (eh->root.u.def.value
4329 + eh->root.u.def.section->output_offset
4330 + eh->root.u.def.section->output_section->vma);
4331 }
4332 else
4333 {
4334 if ((eh->got.offset & 1) != 0)
4335 abort ();
4336
4337 bfd_put_32 (output_bfd, 0,
4338 htab->etab.sgot->contents + (eh->got.offset & ~1));
4339 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4340 rela.r_addend = 0;
4341 }
4342
4343 loc = htab->etab.srelgot->contents;
4344 loc += (htab->etab.srelgot->reloc_count++
4345 * sizeof (Elf32_External_Rela));
4346 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4347 }
4348 }
4349
4350 if (eh->needs_copy)
4351 {
4352 asection *sec;
4353
4354 /* This symbol needs a copy reloc. Set it up. */
4355
4356 if (! (eh->dynindx != -1
4357 && (eh->root.type == bfd_link_hash_defined
4358 || eh->root.type == bfd_link_hash_defweak)))
4359 abort ();
4360
4361 rela.r_offset = (eh->root.u.def.value
4362 + eh->root.u.def.section->output_offset
4363 + eh->root.u.def.section->output_section->vma);
4364 rela.r_addend = 0;
4365 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4366 if (eh->root.u.def.section == htab->etab.sdynrelro)
4367 sec = htab->etab.sreldynrelro;
4368 else
4369 sec = htab->etab.srelbss;
4370 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4371 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4372 }
4373
4374 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4375 if (eh == htab->etab.hdynamic || eh == htab->etab.hgot)
4376 {
4377 sym->st_shndx = SHN_ABS;
4378 }
4379
4380 return TRUE;
4381 }
4382
4383 /* Used to decide how to sort relocs in an optimal manner for the
4384 dynamic linker, before writing them out. */
4385
4386 static enum elf_reloc_type_class
4387 elf32_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4388 const asection *rel_sec ATTRIBUTE_UNUSED,
4389 const Elf_Internal_Rela *rela)
4390 {
4391 /* Handle TLS relocs first; we don't want them to be marked
4392 relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)"
4393 check below. */
4394 switch ((int) ELF32_R_TYPE (rela->r_info))
4395 {
4396 case R_PARISC_TLS_DTPMOD32:
4397 case R_PARISC_TLS_DTPOFF32:
4398 case R_PARISC_TLS_TPREL32:
4399 return reloc_class_normal;
4400 }
4401
4402 if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)
4403 return reloc_class_relative;
4404
4405 switch ((int) ELF32_R_TYPE (rela->r_info))
4406 {
4407 case R_PARISC_IPLT:
4408 return reloc_class_plt;
4409 case R_PARISC_COPY:
4410 return reloc_class_copy;
4411 default:
4412 return reloc_class_normal;
4413 }
4414 }
4415
4416 /* Finish up the dynamic sections. */
4417
4418 static bfd_boolean
4419 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4420 struct bfd_link_info *info)
4421 {
4422 bfd *dynobj;
4423 struct elf32_hppa_link_hash_table *htab;
4424 asection *sdyn;
4425 asection * sgot;
4426
4427 htab = hppa_link_hash_table (info);
4428 if (htab == NULL)
4429 return FALSE;
4430
4431 dynobj = htab->etab.dynobj;
4432
4433 sgot = htab->etab.sgot;
4434 /* A broken linker script might have discarded the dynamic sections.
4435 Catch this here so that we do not seg-fault later on. */
4436 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
4437 return FALSE;
4438
4439 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4440
4441 if (htab->etab.dynamic_sections_created)
4442 {
4443 Elf32_External_Dyn *dyncon, *dynconend;
4444
4445 if (sdyn == NULL)
4446 abort ();
4447
4448 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4449 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4450 for (; dyncon < dynconend; dyncon++)
4451 {
4452 Elf_Internal_Dyn dyn;
4453 asection *s;
4454
4455 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4456
4457 switch (dyn.d_tag)
4458 {
4459 default:
4460 continue;
4461
4462 case DT_PLTGOT:
4463 /* Use PLTGOT to set the GOT register. */
4464 dyn.d_un.d_ptr = elf_gp (output_bfd);
4465 break;
4466
4467 case DT_JMPREL:
4468 s = htab->etab.srelplt;
4469 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4470 break;
4471
4472 case DT_PLTRELSZ:
4473 s = htab->etab.srelplt;
4474 dyn.d_un.d_val = s->size;
4475 break;
4476 }
4477
4478 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4479 }
4480 }
4481
4482 if (sgot != NULL && sgot->size != 0)
4483 {
4484 /* Fill in the first entry in the global offset table.
4485 We use it to point to our dynamic section, if we have one. */
4486 bfd_put_32 (output_bfd,
4487 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4488 sgot->contents);
4489
4490 /* The second entry is reserved for use by the dynamic linker. */
4491 memset (sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4492
4493 /* Set .got entry size. */
4494 elf_section_data (sgot->output_section)
4495 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4496 }
4497
4498 if (htab->etab.splt != NULL && htab->etab.splt->size != 0)
4499 {
4500 /* Set plt entry size to 0 instead of PLT_ENTRY_SIZE, since we add the
4501 plt stubs and as such the section does not hold a table of fixed-size
4502 entries. */
4503 elf_section_data (htab->etab.splt->output_section)->this_hdr.sh_entsize = 0;
4504
4505 if (htab->need_plt_stub)
4506 {
4507 /* Set up the .plt stub. */
4508 memcpy (htab->etab.splt->contents
4509 + htab->etab.splt->size - sizeof (plt_stub),
4510 plt_stub, sizeof (plt_stub));
4511
4512 if ((htab->etab.splt->output_offset
4513 + htab->etab.splt->output_section->vma
4514 + htab->etab.splt->size)
4515 != (sgot->output_offset
4516 + sgot->output_section->vma))
4517 {
4518 _bfd_error_handler
4519 (_(".got section not immediately after .plt section"));
4520 return FALSE;
4521 }
4522 }
4523 }
4524
4525 return TRUE;
4526 }
4527
4528 /* Called when writing out an object file to decide the type of a
4529 symbol. */
4530 static int
4531 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4532 {
4533 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4534 return STT_PARISC_MILLI;
4535 else
4536 return type;
4537 }
4538
4539 /* Misc BFD support code. */
4540 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4541 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4542 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4543 #define elf_info_to_howto elf_hppa_info_to_howto
4544 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4545
4546 /* Stuff for the BFD linker. */
4547 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4548 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4549 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4550 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4551 #define elf_backend_check_relocs elf32_hppa_check_relocs
4552 #define elf_backend_relocs_compatible _bfd_elf_relocs_compatible
4553 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4554 #define elf_backend_fake_sections elf_hppa_fake_sections
4555 #define elf_backend_relocate_section elf32_hppa_relocate_section
4556 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4557 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4558 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4559 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4560 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4561 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4562 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4563 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4564 #define elf_backend_object_p elf32_hppa_object_p
4565 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4566 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4567 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4568 #define elf_backend_action_discarded elf_hppa_action_discarded
4569
4570 #define elf_backend_can_gc_sections 1
4571 #define elf_backend_can_refcount 1
4572 #define elf_backend_plt_alignment 2
4573 #define elf_backend_want_got_plt 0
4574 #define elf_backend_plt_readonly 0
4575 #define elf_backend_want_plt_sym 0
4576 #define elf_backend_got_header_size 8
4577 #define elf_backend_want_dynrelro 1
4578 #define elf_backend_rela_normal 1
4579 #define elf_backend_dtrel_excludes_plt 1
4580 #define elf_backend_no_page_alias 1
4581
4582 #define TARGET_BIG_SYM hppa_elf32_vec
4583 #define TARGET_BIG_NAME "elf32-hppa"
4584 #define ELF_ARCH bfd_arch_hppa
4585 #define ELF_TARGET_ID HPPA32_ELF_DATA
4586 #define ELF_MACHINE_CODE EM_PARISC
4587 #define ELF_MAXPAGESIZE 0x1000
4588 #define ELF_OSABI ELFOSABI_HPUX
4589 #define elf32_bed elf32_hppa_hpux_bed
4590
4591 #include "elf32-target.h"
4592
4593 #undef TARGET_BIG_SYM
4594 #define TARGET_BIG_SYM hppa_elf32_linux_vec
4595 #undef TARGET_BIG_NAME
4596 #define TARGET_BIG_NAME "elf32-hppa-linux"
4597 #undef ELF_OSABI
4598 #define ELF_OSABI ELFOSABI_GNU
4599 #undef elf32_bed
4600 #define elf32_bed elf32_hppa_linux_bed
4601
4602 #include "elf32-target.h"
4603
4604 #undef TARGET_BIG_SYM
4605 #define TARGET_BIG_SYM hppa_elf32_nbsd_vec
4606 #undef TARGET_BIG_NAME
4607 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4608 #undef ELF_OSABI
4609 #define ELF_OSABI ELFOSABI_NETBSD
4610 #undef elf32_bed
4611 #define elf32_bed elf32_hppa_netbsd_bed
4612
4613 #include "elf32-target.h"
This page took 0.115548 seconds and 5 git commands to generate.