Rename non_ir_ref to non_ir_ref_regular
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright (C) 1990-2017 Free Software Foundation, Inc.
3
4 Original code by
5 Center for Software Science
6 Department of Computer Science
7 University of Utah
8 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
9 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
10 TLS support written by Randolph Chung <tausq@debian.org>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
28
29 #include "sysdep.h"
30 #include "bfd.h"
31 #include "libbfd.h"
32 #include "elf-bfd.h"
33 #include "elf/hppa.h"
34 #include "libhppa.h"
35 #include "elf32-hppa.h"
36 #define ARCH_SIZE 32
37 #include "elf32-hppa.h"
38 #include "elf-hppa.h"
39
40 /* In order to gain some understanding of code in this file without
41 knowing all the intricate details of the linker, note the
42 following:
43
44 Functions named elf32_hppa_* are called by external routines, other
45 functions are only called locally. elf32_hppa_* functions appear
46 in this file more or less in the order in which they are called
47 from external routines. eg. elf32_hppa_check_relocs is called
48 early in the link process, elf32_hppa_finish_dynamic_sections is
49 one of the last functions. */
50
51 /* We use two hash tables to hold information for linking PA ELF objects.
52
53 The first is the elf32_hppa_link_hash_table which is derived
54 from the standard ELF linker hash table. We use this as a place to
55 attach other hash tables and static information.
56
57 The second is the stub hash table which is derived from the
58 base BFD hash table. The stub hash table holds the information
59 necessary to build the linker stubs during a link.
60
61 There are a number of different stubs generated by the linker.
62
63 Long branch stub:
64 : ldil LR'X,%r1
65 : be,n RR'X(%sr4,%r1)
66
67 PIC long branch stub:
68 : b,l .+8,%r1
69 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
70 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
71
72 Import stub to call shared library routine from normal object file
73 (single sub-space version)
74 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
75 : ldw RR'lt_ptr+ltoff(%r1),%r21
76 : bv %r0(%r21)
77 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
78
79 Import stub to call shared library routine from shared library
80 (single sub-space version)
81 : addil LR'ltoff,%r19 ; get procedure entry point
82 : ldw RR'ltoff(%r1),%r21
83 : bv %r0(%r21)
84 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
85
86 Import stub to call shared library routine from normal object file
87 (multiple sub-space support)
88 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
89 : ldw RR'lt_ptr+ltoff(%r1),%r21
90 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
91 : ldsid (%r21),%r1
92 : mtsp %r1,%sr0
93 : be 0(%sr0,%r21) ; branch to target
94 : stw %rp,-24(%sp) ; save rp
95
96 Import stub to call shared library routine from shared library
97 (multiple sub-space support)
98 : addil LR'ltoff,%r19 ; get procedure entry point
99 : ldw RR'ltoff(%r1),%r21
100 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
101 : ldsid (%r21),%r1
102 : mtsp %r1,%sr0
103 : be 0(%sr0,%r21) ; branch to target
104 : stw %rp,-24(%sp) ; save rp
105
106 Export stub to return from shared lib routine (multiple sub-space support)
107 One of these is created for each exported procedure in a shared
108 library (and stored in the shared lib). Shared lib routines are
109 called via the first instruction in the export stub so that we can
110 do an inter-space return. Not required for single sub-space.
111 : bl,n X,%rp ; trap the return
112 : nop
113 : ldw -24(%sp),%rp ; restore the original rp
114 : ldsid (%rp),%r1
115 : mtsp %r1,%sr0
116 : be,n 0(%sr0,%rp) ; inter-space return. */
117
118
119 /* Variable names follow a coding style.
120 Please follow this (Apps Hungarian) style:
121
122 Structure/Variable Prefix
123 elf_link_hash_table "etab"
124 elf_link_hash_entry "eh"
125
126 elf32_hppa_link_hash_table "htab"
127 elf32_hppa_link_hash_entry "hh"
128
129 bfd_hash_table "btab"
130 bfd_hash_entry "bh"
131
132 bfd_hash_table containing stubs "bstab"
133 elf32_hppa_stub_hash_entry "hsh"
134
135 elf32_hppa_dyn_reloc_entry "hdh"
136
137 Always remember to use GNU Coding Style. */
138
139 #define PLT_ENTRY_SIZE 8
140 #define GOT_ENTRY_SIZE 4
141 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
142
143 static const bfd_byte plt_stub[] =
144 {
145 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
146 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
147 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
148 #define PLT_STUB_ENTRY (3*4)
149 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
150 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
151 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
152 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
153 };
154
155 /* Section name for stubs is the associated section name plus this
156 string. */
157 #define STUB_SUFFIX ".stub"
158
159 /* We don't need to copy certain PC- or GP-relative dynamic relocs
160 into a shared object's dynamic section. All the relocs of the
161 limited class we are interested in, are absolute. */
162 #ifndef RELATIVE_DYNRELOCS
163 #define RELATIVE_DYNRELOCS 0
164 #define IS_ABSOLUTE_RELOC(r_type) 1
165 #endif
166
167 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
168 copying dynamic variables from a shared lib into an app's dynbss
169 section, and instead use a dynamic relocation to point into the
170 shared lib. */
171 #define ELIMINATE_COPY_RELOCS 1
172
173 enum elf32_hppa_stub_type
174 {
175 hppa_stub_long_branch,
176 hppa_stub_long_branch_shared,
177 hppa_stub_import,
178 hppa_stub_import_shared,
179 hppa_stub_export,
180 hppa_stub_none
181 };
182
183 struct elf32_hppa_stub_hash_entry
184 {
185 /* Base hash table entry structure. */
186 struct bfd_hash_entry bh_root;
187
188 /* The stub section. */
189 asection *stub_sec;
190
191 /* Offset within stub_sec of the beginning of this stub. */
192 bfd_vma stub_offset;
193
194 /* Given the symbol's value and its section we can determine its final
195 value when building the stubs (so the stub knows where to jump. */
196 bfd_vma target_value;
197 asection *target_section;
198
199 enum elf32_hppa_stub_type stub_type;
200
201 /* The symbol table entry, if any, that this was derived from. */
202 struct elf32_hppa_link_hash_entry *hh;
203
204 /* Where this stub is being called from, or, in the case of combined
205 stub sections, the first input section in the group. */
206 asection *id_sec;
207 };
208
209 struct elf32_hppa_link_hash_entry
210 {
211 struct elf_link_hash_entry eh;
212
213 /* A pointer to the most recently used stub hash entry against this
214 symbol. */
215 struct elf32_hppa_stub_hash_entry *hsh_cache;
216
217 /* Used to count relocations for delayed sizing of relocation
218 sections. */
219 struct elf32_hppa_dyn_reloc_entry
220 {
221 /* Next relocation in the chain. */
222 struct elf32_hppa_dyn_reloc_entry *hdh_next;
223
224 /* The input section of the reloc. */
225 asection *sec;
226
227 /* Number of relocs copied in this section. */
228 bfd_size_type count;
229
230 #if RELATIVE_DYNRELOCS
231 /* Number of relative relocs copied for the input section. */
232 bfd_size_type relative_count;
233 #endif
234 } *dyn_relocs;
235
236 enum
237 {
238 GOT_UNKNOWN = 0, GOT_NORMAL = 1, GOT_TLS_GD = 2, GOT_TLS_LDM = 4, GOT_TLS_IE = 8
239 } tls_type;
240
241 /* Set if this symbol is used by a plabel reloc. */
242 unsigned int plabel:1;
243 };
244
245 struct elf32_hppa_link_hash_table
246 {
247 /* The main hash table. */
248 struct elf_link_hash_table etab;
249
250 /* The stub hash table. */
251 struct bfd_hash_table bstab;
252
253 /* Linker stub bfd. */
254 bfd *stub_bfd;
255
256 /* Linker call-backs. */
257 asection * (*add_stub_section) (const char *, asection *);
258 void (*layout_sections_again) (void);
259
260 /* Array to keep track of which stub sections have been created, and
261 information on stub grouping. */
262 struct map_stub
263 {
264 /* This is the section to which stubs in the group will be
265 attached. */
266 asection *link_sec;
267 /* The stub section. */
268 asection *stub_sec;
269 } *stub_group;
270
271 /* Assorted information used by elf32_hppa_size_stubs. */
272 unsigned int bfd_count;
273 unsigned int top_index;
274 asection **input_list;
275 Elf_Internal_Sym **all_local_syms;
276
277 /* Used during a final link to store the base of the text and data
278 segments so that we can perform SEGREL relocations. */
279 bfd_vma text_segment_base;
280 bfd_vma data_segment_base;
281
282 /* Whether we support multiple sub-spaces for shared libs. */
283 unsigned int multi_subspace:1;
284
285 /* Flags set when various size branches are detected. Used to
286 select suitable defaults for the stub group size. */
287 unsigned int has_12bit_branch:1;
288 unsigned int has_17bit_branch:1;
289 unsigned int has_22bit_branch:1;
290
291 /* Set if we need a .plt stub to support lazy dynamic linking. */
292 unsigned int need_plt_stub:1;
293
294 /* Small local sym cache. */
295 struct sym_cache sym_cache;
296
297 /* Data for LDM relocations. */
298 union
299 {
300 bfd_signed_vma refcount;
301 bfd_vma offset;
302 } tls_ldm_got;
303 };
304
305 /* Various hash macros and functions. */
306 #define hppa_link_hash_table(p) \
307 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
308 == HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL)
309
310 #define hppa_elf_hash_entry(ent) \
311 ((struct elf32_hppa_link_hash_entry *)(ent))
312
313 #define hppa_stub_hash_entry(ent) \
314 ((struct elf32_hppa_stub_hash_entry *)(ent))
315
316 #define hppa_stub_hash_lookup(table, string, create, copy) \
317 ((struct elf32_hppa_stub_hash_entry *) \
318 bfd_hash_lookup ((table), (string), (create), (copy)))
319
320 #define hppa_elf_local_got_tls_type(abfd) \
321 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
322
323 #define hh_name(hh) \
324 (hh ? hh->eh.root.root.string : "<undef>")
325
326 #define eh_name(eh) \
327 (eh ? eh->root.root.string : "<undef>")
328
329 /* Assorted hash table functions. */
330
331 /* Initialize an entry in the stub hash table. */
332
333 static struct bfd_hash_entry *
334 stub_hash_newfunc (struct bfd_hash_entry *entry,
335 struct bfd_hash_table *table,
336 const char *string)
337 {
338 /* Allocate the structure if it has not already been allocated by a
339 subclass. */
340 if (entry == NULL)
341 {
342 entry = bfd_hash_allocate (table,
343 sizeof (struct elf32_hppa_stub_hash_entry));
344 if (entry == NULL)
345 return entry;
346 }
347
348 /* Call the allocation method of the superclass. */
349 entry = bfd_hash_newfunc (entry, table, string);
350 if (entry != NULL)
351 {
352 struct elf32_hppa_stub_hash_entry *hsh;
353
354 /* Initialize the local fields. */
355 hsh = hppa_stub_hash_entry (entry);
356 hsh->stub_sec = NULL;
357 hsh->stub_offset = 0;
358 hsh->target_value = 0;
359 hsh->target_section = NULL;
360 hsh->stub_type = hppa_stub_long_branch;
361 hsh->hh = NULL;
362 hsh->id_sec = NULL;
363 }
364
365 return entry;
366 }
367
368 /* Initialize an entry in the link hash table. */
369
370 static struct bfd_hash_entry *
371 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
372 struct bfd_hash_table *table,
373 const char *string)
374 {
375 /* Allocate the structure if it has not already been allocated by a
376 subclass. */
377 if (entry == NULL)
378 {
379 entry = bfd_hash_allocate (table,
380 sizeof (struct elf32_hppa_link_hash_entry));
381 if (entry == NULL)
382 return entry;
383 }
384
385 /* Call the allocation method of the superclass. */
386 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
387 if (entry != NULL)
388 {
389 struct elf32_hppa_link_hash_entry *hh;
390
391 /* Initialize the local fields. */
392 hh = hppa_elf_hash_entry (entry);
393 hh->hsh_cache = NULL;
394 hh->dyn_relocs = NULL;
395 hh->plabel = 0;
396 hh->tls_type = GOT_UNKNOWN;
397 }
398
399 return entry;
400 }
401
402 /* Free the derived linker hash table. */
403
404 static void
405 elf32_hppa_link_hash_table_free (bfd *obfd)
406 {
407 struct elf32_hppa_link_hash_table *htab
408 = (struct elf32_hppa_link_hash_table *) obfd->link.hash;
409
410 bfd_hash_table_free (&htab->bstab);
411 _bfd_elf_link_hash_table_free (obfd);
412 }
413
414 /* Create the derived linker hash table. The PA ELF port uses the derived
415 hash table to keep information specific to the PA ELF linker (without
416 using static variables). */
417
418 static struct bfd_link_hash_table *
419 elf32_hppa_link_hash_table_create (bfd *abfd)
420 {
421 struct elf32_hppa_link_hash_table *htab;
422 bfd_size_type amt = sizeof (*htab);
423
424 htab = bfd_zmalloc (amt);
425 if (htab == NULL)
426 return NULL;
427
428 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
429 sizeof (struct elf32_hppa_link_hash_entry),
430 HPPA32_ELF_DATA))
431 {
432 free (htab);
433 return NULL;
434 }
435
436 /* Init the stub hash table too. */
437 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
438 sizeof (struct elf32_hppa_stub_hash_entry)))
439 {
440 _bfd_elf_link_hash_table_free (abfd);
441 return NULL;
442 }
443 htab->etab.root.hash_table_free = elf32_hppa_link_hash_table_free;
444
445 htab->text_segment_base = (bfd_vma) -1;
446 htab->data_segment_base = (bfd_vma) -1;
447 return &htab->etab.root;
448 }
449
450 /* Initialize the linker stubs BFD so that we can use it for linker
451 created dynamic sections. */
452
453 void
454 elf32_hppa_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
455 {
456 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
457
458 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS32;
459 htab->etab.dynobj = abfd;
460 }
461
462 /* Build a name for an entry in the stub hash table. */
463
464 static char *
465 hppa_stub_name (const asection *input_section,
466 const asection *sym_sec,
467 const struct elf32_hppa_link_hash_entry *hh,
468 const Elf_Internal_Rela *rela)
469 {
470 char *stub_name;
471 bfd_size_type len;
472
473 if (hh)
474 {
475 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
476 stub_name = bfd_malloc (len);
477 if (stub_name != NULL)
478 sprintf (stub_name, "%08x_%s+%x",
479 input_section->id & 0xffffffff,
480 hh_name (hh),
481 (int) rela->r_addend & 0xffffffff);
482 }
483 else
484 {
485 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
486 stub_name = bfd_malloc (len);
487 if (stub_name != NULL)
488 sprintf (stub_name, "%08x_%x:%x+%x",
489 input_section->id & 0xffffffff,
490 sym_sec->id & 0xffffffff,
491 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
492 (int) rela->r_addend & 0xffffffff);
493 }
494 return stub_name;
495 }
496
497 /* Look up an entry in the stub hash. Stub entries are cached because
498 creating the stub name takes a bit of time. */
499
500 static struct elf32_hppa_stub_hash_entry *
501 hppa_get_stub_entry (const asection *input_section,
502 const asection *sym_sec,
503 struct elf32_hppa_link_hash_entry *hh,
504 const Elf_Internal_Rela *rela,
505 struct elf32_hppa_link_hash_table *htab)
506 {
507 struct elf32_hppa_stub_hash_entry *hsh_entry;
508 const asection *id_sec;
509
510 /* If this input section is part of a group of sections sharing one
511 stub section, then use the id of the first section in the group.
512 Stub names need to include a section id, as there may well be
513 more than one stub used to reach say, printf, and we need to
514 distinguish between them. */
515 id_sec = htab->stub_group[input_section->id].link_sec;
516
517 if (hh != NULL && hh->hsh_cache != NULL
518 && hh->hsh_cache->hh == hh
519 && hh->hsh_cache->id_sec == id_sec)
520 {
521 hsh_entry = hh->hsh_cache;
522 }
523 else
524 {
525 char *stub_name;
526
527 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
528 if (stub_name == NULL)
529 return NULL;
530
531 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
532 stub_name, FALSE, FALSE);
533 if (hh != NULL)
534 hh->hsh_cache = hsh_entry;
535
536 free (stub_name);
537 }
538
539 return hsh_entry;
540 }
541
542 /* Add a new stub entry to the stub hash. Not all fields of the new
543 stub entry are initialised. */
544
545 static struct elf32_hppa_stub_hash_entry *
546 hppa_add_stub (const char *stub_name,
547 asection *section,
548 struct elf32_hppa_link_hash_table *htab)
549 {
550 asection *link_sec;
551 asection *stub_sec;
552 struct elf32_hppa_stub_hash_entry *hsh;
553
554 link_sec = htab->stub_group[section->id].link_sec;
555 stub_sec = htab->stub_group[section->id].stub_sec;
556 if (stub_sec == NULL)
557 {
558 stub_sec = htab->stub_group[link_sec->id].stub_sec;
559 if (stub_sec == NULL)
560 {
561 size_t namelen;
562 bfd_size_type len;
563 char *s_name;
564
565 namelen = strlen (link_sec->name);
566 len = namelen + sizeof (STUB_SUFFIX);
567 s_name = bfd_alloc (htab->stub_bfd, len);
568 if (s_name == NULL)
569 return NULL;
570
571 memcpy (s_name, link_sec->name, namelen);
572 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
573 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
574 if (stub_sec == NULL)
575 return NULL;
576 htab->stub_group[link_sec->id].stub_sec = stub_sec;
577 }
578 htab->stub_group[section->id].stub_sec = stub_sec;
579 }
580
581 /* Enter this entry into the linker stub hash table. */
582 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
583 TRUE, FALSE);
584 if (hsh == NULL)
585 {
586 /* xgettext:c-format */
587 _bfd_error_handler (_("%B: cannot create stub entry %s"),
588 section->owner, stub_name);
589 return NULL;
590 }
591
592 hsh->stub_sec = stub_sec;
593 hsh->stub_offset = 0;
594 hsh->id_sec = link_sec;
595 return hsh;
596 }
597
598 /* Determine the type of stub needed, if any, for a call. */
599
600 static enum elf32_hppa_stub_type
601 hppa_type_of_stub (asection *input_sec,
602 const Elf_Internal_Rela *rela,
603 struct elf32_hppa_link_hash_entry *hh,
604 bfd_vma destination,
605 struct bfd_link_info *info)
606 {
607 bfd_vma location;
608 bfd_vma branch_offset;
609 bfd_vma max_branch_offset;
610 unsigned int r_type;
611
612 if (hh != NULL
613 && hh->eh.plt.offset != (bfd_vma) -1
614 && hh->eh.dynindx != -1
615 && !hh->plabel
616 && (bfd_link_pic (info)
617 || !hh->eh.def_regular
618 || hh->eh.root.type == bfd_link_hash_defweak))
619 {
620 /* We need an import stub. Decide between hppa_stub_import
621 and hppa_stub_import_shared later. */
622 return hppa_stub_import;
623 }
624
625 /* Determine where the call point is. */
626 location = (input_sec->output_offset
627 + input_sec->output_section->vma
628 + rela->r_offset);
629
630 branch_offset = destination - location - 8;
631 r_type = ELF32_R_TYPE (rela->r_info);
632
633 /* Determine if a long branch stub is needed. parisc branch offsets
634 are relative to the second instruction past the branch, ie. +8
635 bytes on from the branch instruction location. The offset is
636 signed and counts in units of 4 bytes. */
637 if (r_type == (unsigned int) R_PARISC_PCREL17F)
638 max_branch_offset = (1 << (17 - 1)) << 2;
639
640 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
641 max_branch_offset = (1 << (12 - 1)) << 2;
642
643 else /* R_PARISC_PCREL22F. */
644 max_branch_offset = (1 << (22 - 1)) << 2;
645
646 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
647 return hppa_stub_long_branch;
648
649 return hppa_stub_none;
650 }
651
652 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
653 IN_ARG contains the link info pointer. */
654
655 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
656 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
657
658 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
659 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
660 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
661
662 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
663 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
664 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
665 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
666
667 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
668 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
669
670 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
671 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
672 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
673 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
674
675 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
676 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
677 #define NOP 0x08000240 /* nop */
678 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
679 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
680 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
681
682 #ifndef R19_STUBS
683 #define R19_STUBS 1
684 #endif
685
686 #if R19_STUBS
687 #define LDW_R1_DLT LDW_R1_R19
688 #else
689 #define LDW_R1_DLT LDW_R1_DP
690 #endif
691
692 static bfd_boolean
693 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
694 {
695 struct elf32_hppa_stub_hash_entry *hsh;
696 struct bfd_link_info *info;
697 struct elf32_hppa_link_hash_table *htab;
698 asection *stub_sec;
699 bfd *stub_bfd;
700 bfd_byte *loc;
701 bfd_vma sym_value;
702 bfd_vma insn;
703 bfd_vma off;
704 int val;
705 int size;
706
707 /* Massage our args to the form they really have. */
708 hsh = hppa_stub_hash_entry (bh);
709 info = (struct bfd_link_info *)in_arg;
710
711 htab = hppa_link_hash_table (info);
712 if (htab == NULL)
713 return FALSE;
714
715 stub_sec = hsh->stub_sec;
716
717 /* Make a note of the offset within the stubs for this entry. */
718 hsh->stub_offset = stub_sec->size;
719 loc = stub_sec->contents + hsh->stub_offset;
720
721 stub_bfd = stub_sec->owner;
722
723 switch (hsh->stub_type)
724 {
725 case hppa_stub_long_branch:
726 /* Create the long branch. A long branch is formed with "ldil"
727 loading the upper bits of the target address into a register,
728 then branching with "be" which adds in the lower bits.
729 The "be" has its delay slot nullified. */
730 sym_value = (hsh->target_value
731 + hsh->target_section->output_offset
732 + hsh->target_section->output_section->vma);
733
734 val = hppa_field_adjust (sym_value, 0, e_lrsel);
735 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
736 bfd_put_32 (stub_bfd, insn, loc);
737
738 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
739 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
740 bfd_put_32 (stub_bfd, insn, loc + 4);
741
742 size = 8;
743 break;
744
745 case hppa_stub_long_branch_shared:
746 /* Branches are relative. This is where we are going to. */
747 sym_value = (hsh->target_value
748 + hsh->target_section->output_offset
749 + hsh->target_section->output_section->vma);
750
751 /* And this is where we are coming from, more or less. */
752 sym_value -= (hsh->stub_offset
753 + stub_sec->output_offset
754 + stub_sec->output_section->vma);
755
756 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
757 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
758 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
759 bfd_put_32 (stub_bfd, insn, loc + 4);
760
761 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
762 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
763 bfd_put_32 (stub_bfd, insn, loc + 8);
764 size = 12;
765 break;
766
767 case hppa_stub_import:
768 case hppa_stub_import_shared:
769 off = hsh->hh->eh.plt.offset;
770 if (off >= (bfd_vma) -2)
771 abort ();
772
773 off &= ~ (bfd_vma) 1;
774 sym_value = (off
775 + htab->etab.splt->output_offset
776 + htab->etab.splt->output_section->vma
777 - elf_gp (htab->etab.splt->output_section->owner));
778
779 insn = ADDIL_DP;
780 #if R19_STUBS
781 if (hsh->stub_type == hppa_stub_import_shared)
782 insn = ADDIL_R19;
783 #endif
784 val = hppa_field_adjust (sym_value, 0, e_lrsel),
785 insn = hppa_rebuild_insn ((int) insn, val, 21);
786 bfd_put_32 (stub_bfd, insn, loc);
787
788 /* It is critical to use lrsel/rrsel here because we are using
789 two different offsets (+0 and +4) from sym_value. If we use
790 lsel/rsel then with unfortunate sym_values we will round
791 sym_value+4 up to the next 2k block leading to a mis-match
792 between the lsel and rsel value. */
793 val = hppa_field_adjust (sym_value, 0, e_rrsel);
794 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
795 bfd_put_32 (stub_bfd, insn, loc + 4);
796
797 if (htab->multi_subspace)
798 {
799 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
800 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
801 bfd_put_32 (stub_bfd, insn, loc + 8);
802
803 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
804 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
805 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
806 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
807
808 size = 28;
809 }
810 else
811 {
812 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
813 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
814 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
815 bfd_put_32 (stub_bfd, insn, loc + 12);
816
817 size = 16;
818 }
819
820 break;
821
822 case hppa_stub_export:
823 /* Branches are relative. This is where we are going to. */
824 sym_value = (hsh->target_value
825 + hsh->target_section->output_offset
826 + hsh->target_section->output_section->vma);
827
828 /* And this is where we are coming from. */
829 sym_value -= (hsh->stub_offset
830 + stub_sec->output_offset
831 + stub_sec->output_section->vma);
832
833 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
834 && (!htab->has_22bit_branch
835 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
836 {
837 _bfd_error_handler
838 /* xgettext:c-format */
839 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
840 hsh->target_section->owner,
841 stub_sec,
842 (long) hsh->stub_offset,
843 hsh->bh_root.string);
844 bfd_set_error (bfd_error_bad_value);
845 return FALSE;
846 }
847
848 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
849 if (!htab->has_22bit_branch)
850 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
851 else
852 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
853 bfd_put_32 (stub_bfd, insn, loc);
854
855 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
856 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
857 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
858 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
859 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
860
861 /* Point the function symbol at the stub. */
862 hsh->hh->eh.root.u.def.section = stub_sec;
863 hsh->hh->eh.root.u.def.value = stub_sec->size;
864
865 size = 24;
866 break;
867
868 default:
869 BFD_FAIL ();
870 return FALSE;
871 }
872
873 stub_sec->size += size;
874 return TRUE;
875 }
876
877 #undef LDIL_R1
878 #undef BE_SR4_R1
879 #undef BL_R1
880 #undef ADDIL_R1
881 #undef DEPI_R1
882 #undef LDW_R1_R21
883 #undef LDW_R1_DLT
884 #undef LDW_R1_R19
885 #undef ADDIL_R19
886 #undef LDW_R1_DP
887 #undef LDSID_R21_R1
888 #undef MTSP_R1
889 #undef BE_SR0_R21
890 #undef STW_RP
891 #undef BV_R0_R21
892 #undef BL_RP
893 #undef NOP
894 #undef LDW_RP
895 #undef LDSID_RP_R1
896 #undef BE_SR0_RP
897
898 /* As above, but don't actually build the stub. Just bump offset so
899 we know stub section sizes. */
900
901 static bfd_boolean
902 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
903 {
904 struct elf32_hppa_stub_hash_entry *hsh;
905 struct elf32_hppa_link_hash_table *htab;
906 int size;
907
908 /* Massage our args to the form they really have. */
909 hsh = hppa_stub_hash_entry (bh);
910 htab = in_arg;
911
912 if (hsh->stub_type == hppa_stub_long_branch)
913 size = 8;
914 else if (hsh->stub_type == hppa_stub_long_branch_shared)
915 size = 12;
916 else if (hsh->stub_type == hppa_stub_export)
917 size = 24;
918 else /* hppa_stub_import or hppa_stub_import_shared. */
919 {
920 if (htab->multi_subspace)
921 size = 28;
922 else
923 size = 16;
924 }
925
926 hsh->stub_sec->size += size;
927 return TRUE;
928 }
929
930 /* Return nonzero if ABFD represents an HPPA ELF32 file.
931 Additionally we set the default architecture and machine. */
932
933 static bfd_boolean
934 elf32_hppa_object_p (bfd *abfd)
935 {
936 Elf_Internal_Ehdr * i_ehdrp;
937 unsigned int flags;
938
939 i_ehdrp = elf_elfheader (abfd);
940 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
941 {
942 /* GCC on hppa-linux produces binaries with OSABI=GNU,
943 but the kernel produces corefiles with OSABI=SysV. */
944 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU &&
945 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
946 return FALSE;
947 }
948 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
949 {
950 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
951 but the kernel produces corefiles with OSABI=SysV. */
952 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
953 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
954 return FALSE;
955 }
956 else
957 {
958 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
959 return FALSE;
960 }
961
962 flags = i_ehdrp->e_flags;
963 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
964 {
965 case EFA_PARISC_1_0:
966 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
967 case EFA_PARISC_1_1:
968 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
969 case EFA_PARISC_2_0:
970 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
971 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
972 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
973 }
974 return TRUE;
975 }
976
977 /* Create the .plt and .got sections, and set up our hash table
978 short-cuts to various dynamic sections. */
979
980 static bfd_boolean
981 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
982 {
983 struct elf32_hppa_link_hash_table *htab;
984 struct elf_link_hash_entry *eh;
985
986 /* Don't try to create the .plt and .got twice. */
987 htab = hppa_link_hash_table (info);
988 if (htab == NULL)
989 return FALSE;
990 if (htab->etab.splt != NULL)
991 return TRUE;
992
993 /* Call the generic code to do most of the work. */
994 if (! _bfd_elf_create_dynamic_sections (abfd, info))
995 return FALSE;
996
997 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
998 application, because __canonicalize_funcptr_for_compare needs it. */
999 eh = elf_hash_table (info)->hgot;
1000 eh->forced_local = 0;
1001 eh->other = STV_DEFAULT;
1002 return bfd_elf_link_record_dynamic_symbol (info, eh);
1003 }
1004
1005 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1006
1007 static void
1008 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1009 struct elf_link_hash_entry *eh_dir,
1010 struct elf_link_hash_entry *eh_ind)
1011 {
1012 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1013
1014 hh_dir = hppa_elf_hash_entry (eh_dir);
1015 hh_ind = hppa_elf_hash_entry (eh_ind);
1016
1017 if (hh_ind->dyn_relocs != NULL)
1018 {
1019 if (hh_dir->dyn_relocs != NULL)
1020 {
1021 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1022 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1023
1024 /* Add reloc counts against the indirect sym to the direct sym
1025 list. Merge any entries against the same section. */
1026 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1027 {
1028 struct elf32_hppa_dyn_reloc_entry *hdh_q;
1029
1030 for (hdh_q = hh_dir->dyn_relocs;
1031 hdh_q != NULL;
1032 hdh_q = hdh_q->hdh_next)
1033 if (hdh_q->sec == hdh_p->sec)
1034 {
1035 #if RELATIVE_DYNRELOCS
1036 hdh_q->relative_count += hdh_p->relative_count;
1037 #endif
1038 hdh_q->count += hdh_p->count;
1039 *hdh_pp = hdh_p->hdh_next;
1040 break;
1041 }
1042 if (hdh_q == NULL)
1043 hdh_pp = &hdh_p->hdh_next;
1044 }
1045 *hdh_pp = hh_dir->dyn_relocs;
1046 }
1047
1048 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1049 hh_ind->dyn_relocs = NULL;
1050 }
1051
1052 if (ELIMINATE_COPY_RELOCS
1053 && eh_ind->root.type != bfd_link_hash_indirect
1054 && eh_dir->dynamic_adjusted)
1055 {
1056 /* If called to transfer flags for a weakdef during processing
1057 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1058 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1059 if (eh_dir->versioned != versioned_hidden)
1060 eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1061 eh_dir->ref_regular |= eh_ind->ref_regular;
1062 eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1063 eh_dir->needs_plt |= eh_ind->needs_plt;
1064 }
1065 else
1066 {
1067 if (eh_ind->root.type == bfd_link_hash_indirect)
1068 {
1069 hh_dir->plabel |= hh_ind->plabel;
1070 hh_dir->tls_type |= hh_ind->tls_type;
1071 hh_ind->tls_type = GOT_UNKNOWN;
1072 }
1073
1074 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1075 }
1076 }
1077
1078 static int
1079 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1080 int r_type, int is_local ATTRIBUTE_UNUSED)
1081 {
1082 /* For now we don't support linker optimizations. */
1083 return r_type;
1084 }
1085
1086 /* Return a pointer to the local GOT, PLT and TLS reference counts
1087 for ABFD. Returns NULL if the storage allocation fails. */
1088
1089 static bfd_signed_vma *
1090 hppa32_elf_local_refcounts (bfd *abfd)
1091 {
1092 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1093 bfd_signed_vma *local_refcounts;
1094
1095 local_refcounts = elf_local_got_refcounts (abfd);
1096 if (local_refcounts == NULL)
1097 {
1098 bfd_size_type size;
1099
1100 /* Allocate space for local GOT and PLT reference
1101 counts. Done this way to save polluting elf_obj_tdata
1102 with another target specific pointer. */
1103 size = symtab_hdr->sh_info;
1104 size *= 2 * sizeof (bfd_signed_vma);
1105 /* Add in space to store the local GOT TLS types. */
1106 size += symtab_hdr->sh_info;
1107 local_refcounts = bfd_zalloc (abfd, size);
1108 if (local_refcounts == NULL)
1109 return NULL;
1110 elf_local_got_refcounts (abfd) = local_refcounts;
1111 memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
1112 symtab_hdr->sh_info);
1113 }
1114 return local_refcounts;
1115 }
1116
1117
1118 /* Look through the relocs for a section during the first phase, and
1119 calculate needed space in the global offset table, procedure linkage
1120 table, and dynamic reloc sections. At this point we haven't
1121 necessarily read all the input files. */
1122
1123 static bfd_boolean
1124 elf32_hppa_check_relocs (bfd *abfd,
1125 struct bfd_link_info *info,
1126 asection *sec,
1127 const Elf_Internal_Rela *relocs)
1128 {
1129 Elf_Internal_Shdr *symtab_hdr;
1130 struct elf_link_hash_entry **eh_syms;
1131 const Elf_Internal_Rela *rela;
1132 const Elf_Internal_Rela *rela_end;
1133 struct elf32_hppa_link_hash_table *htab;
1134 asection *sreloc;
1135 int tls_type = GOT_UNKNOWN, old_tls_type = GOT_UNKNOWN;
1136
1137 if (bfd_link_relocatable (info))
1138 return TRUE;
1139
1140 htab = hppa_link_hash_table (info);
1141 if (htab == NULL)
1142 return FALSE;
1143 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1144 eh_syms = elf_sym_hashes (abfd);
1145 sreloc = NULL;
1146
1147 rela_end = relocs + sec->reloc_count;
1148 for (rela = relocs; rela < rela_end; rela++)
1149 {
1150 enum {
1151 NEED_GOT = 1,
1152 NEED_PLT = 2,
1153 NEED_DYNREL = 4,
1154 PLT_PLABEL = 8
1155 };
1156
1157 unsigned int r_symndx, r_type;
1158 struct elf32_hppa_link_hash_entry *hh;
1159 int need_entry = 0;
1160
1161 r_symndx = ELF32_R_SYM (rela->r_info);
1162
1163 if (r_symndx < symtab_hdr->sh_info)
1164 hh = NULL;
1165 else
1166 {
1167 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1168 while (hh->eh.root.type == bfd_link_hash_indirect
1169 || hh->eh.root.type == bfd_link_hash_warning)
1170 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1171
1172 /* PR15323, ref flags aren't set for references in the same
1173 object. */
1174 hh->eh.root.non_ir_ref_regular = 1;
1175 }
1176
1177 r_type = ELF32_R_TYPE (rela->r_info);
1178 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1179
1180 switch (r_type)
1181 {
1182 case R_PARISC_DLTIND14F:
1183 case R_PARISC_DLTIND14R:
1184 case R_PARISC_DLTIND21L:
1185 /* This symbol requires a global offset table entry. */
1186 need_entry = NEED_GOT;
1187 break;
1188
1189 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1190 case R_PARISC_PLABEL21L:
1191 case R_PARISC_PLABEL32:
1192 /* If the addend is non-zero, we break badly. */
1193 if (rela->r_addend != 0)
1194 abort ();
1195
1196 /* If we are creating a shared library, then we need to
1197 create a PLT entry for all PLABELs, because PLABELs with
1198 local symbols may be passed via a pointer to another
1199 object. Additionally, output a dynamic relocation
1200 pointing to the PLT entry.
1201
1202 For executables, the original 32-bit ABI allowed two
1203 different styles of PLABELs (function pointers): For
1204 global functions, the PLABEL word points into the .plt
1205 two bytes past a (function address, gp) pair, and for
1206 local functions the PLABEL points directly at the
1207 function. The magic +2 for the first type allows us to
1208 differentiate between the two. As you can imagine, this
1209 is a real pain when it comes to generating code to call
1210 functions indirectly or to compare function pointers.
1211 We avoid the mess by always pointing a PLABEL into the
1212 .plt, even for local functions. */
1213 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1214 break;
1215
1216 case R_PARISC_PCREL12F:
1217 htab->has_12bit_branch = 1;
1218 goto branch_common;
1219
1220 case R_PARISC_PCREL17C:
1221 case R_PARISC_PCREL17F:
1222 htab->has_17bit_branch = 1;
1223 goto branch_common;
1224
1225 case R_PARISC_PCREL22F:
1226 htab->has_22bit_branch = 1;
1227 branch_common:
1228 /* Function calls might need to go through the .plt, and
1229 might require long branch stubs. */
1230 if (hh == NULL)
1231 {
1232 /* We know local syms won't need a .plt entry, and if
1233 they need a long branch stub we can't guarantee that
1234 we can reach the stub. So just flag an error later
1235 if we're doing a shared link and find we need a long
1236 branch stub. */
1237 continue;
1238 }
1239 else
1240 {
1241 /* Global symbols will need a .plt entry if they remain
1242 global, and in most cases won't need a long branch
1243 stub. Unfortunately, we have to cater for the case
1244 where a symbol is forced local by versioning, or due
1245 to symbolic linking, and we lose the .plt entry. */
1246 need_entry = NEED_PLT;
1247 if (hh->eh.type == STT_PARISC_MILLI)
1248 need_entry = 0;
1249 }
1250 break;
1251
1252 case R_PARISC_SEGBASE: /* Used to set segment base. */
1253 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1254 case R_PARISC_PCREL14F: /* PC relative load/store. */
1255 case R_PARISC_PCREL14R:
1256 case R_PARISC_PCREL17R: /* External branches. */
1257 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1258 case R_PARISC_PCREL32:
1259 /* We don't need to propagate the relocation if linking a
1260 shared object since these are section relative. */
1261 continue;
1262
1263 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1264 case R_PARISC_DPREL14R:
1265 case R_PARISC_DPREL21L:
1266 if (bfd_link_pic (info))
1267 {
1268 _bfd_error_handler
1269 /* xgettext:c-format */
1270 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1271 abfd,
1272 elf_hppa_howto_table[r_type].name);
1273 bfd_set_error (bfd_error_bad_value);
1274 return FALSE;
1275 }
1276 /* Fall through. */
1277
1278 case R_PARISC_DIR17F: /* Used for external branches. */
1279 case R_PARISC_DIR17R:
1280 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1281 case R_PARISC_DIR14R:
1282 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1283 case R_PARISC_DIR32: /* .word relocs. */
1284 /* We may want to output a dynamic relocation later. */
1285 need_entry = NEED_DYNREL;
1286 break;
1287
1288 /* This relocation describes the C++ object vtable hierarchy.
1289 Reconstruct it for later use during GC. */
1290 case R_PARISC_GNU_VTINHERIT:
1291 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1292 return FALSE;
1293 continue;
1294
1295 /* This relocation describes which C++ vtable entries are actually
1296 used. Record for later use during GC. */
1297 case R_PARISC_GNU_VTENTRY:
1298 BFD_ASSERT (hh != NULL);
1299 if (hh != NULL
1300 && !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1301 return FALSE;
1302 continue;
1303
1304 case R_PARISC_TLS_GD21L:
1305 case R_PARISC_TLS_GD14R:
1306 case R_PARISC_TLS_LDM21L:
1307 case R_PARISC_TLS_LDM14R:
1308 need_entry = NEED_GOT;
1309 break;
1310
1311 case R_PARISC_TLS_IE21L:
1312 case R_PARISC_TLS_IE14R:
1313 if (bfd_link_pic (info))
1314 info->flags |= DF_STATIC_TLS;
1315 need_entry = NEED_GOT;
1316 break;
1317
1318 default:
1319 continue;
1320 }
1321
1322 /* Now carry out our orders. */
1323 if (need_entry & NEED_GOT)
1324 {
1325 switch (r_type)
1326 {
1327 default:
1328 tls_type = GOT_NORMAL;
1329 break;
1330 case R_PARISC_TLS_GD21L:
1331 case R_PARISC_TLS_GD14R:
1332 tls_type |= GOT_TLS_GD;
1333 break;
1334 case R_PARISC_TLS_LDM21L:
1335 case R_PARISC_TLS_LDM14R:
1336 tls_type |= GOT_TLS_LDM;
1337 break;
1338 case R_PARISC_TLS_IE21L:
1339 case R_PARISC_TLS_IE14R:
1340 tls_type |= GOT_TLS_IE;
1341 break;
1342 }
1343
1344 /* Allocate space for a GOT entry, as well as a dynamic
1345 relocation for this entry. */
1346 if (htab->etab.sgot == NULL)
1347 {
1348 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1349 return FALSE;
1350 }
1351
1352 if (r_type == R_PARISC_TLS_LDM21L
1353 || r_type == R_PARISC_TLS_LDM14R)
1354 htab->tls_ldm_got.refcount += 1;
1355 else
1356 {
1357 if (hh != NULL)
1358 {
1359 hh->eh.got.refcount += 1;
1360 old_tls_type = hh->tls_type;
1361 }
1362 else
1363 {
1364 bfd_signed_vma *local_got_refcounts;
1365
1366 /* This is a global offset table entry for a local symbol. */
1367 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1368 if (local_got_refcounts == NULL)
1369 return FALSE;
1370 local_got_refcounts[r_symndx] += 1;
1371
1372 old_tls_type = hppa_elf_local_got_tls_type (abfd) [r_symndx];
1373 }
1374
1375 tls_type |= old_tls_type;
1376
1377 if (old_tls_type != tls_type)
1378 {
1379 if (hh != NULL)
1380 hh->tls_type = tls_type;
1381 else
1382 hppa_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
1383 }
1384
1385 }
1386 }
1387
1388 if (need_entry & NEED_PLT)
1389 {
1390 /* If we are creating a shared library, and this is a reloc
1391 against a weak symbol or a global symbol in a dynamic
1392 object, then we will be creating an import stub and a
1393 .plt entry for the symbol. Similarly, on a normal link
1394 to symbols defined in a dynamic object we'll need the
1395 import stub and a .plt entry. We don't know yet whether
1396 the symbol is defined or not, so make an entry anyway and
1397 clean up later in adjust_dynamic_symbol. */
1398 if ((sec->flags & SEC_ALLOC) != 0)
1399 {
1400 if (hh != NULL)
1401 {
1402 hh->eh.needs_plt = 1;
1403 hh->eh.plt.refcount += 1;
1404
1405 /* If this .plt entry is for a plabel, mark it so
1406 that adjust_dynamic_symbol will keep the entry
1407 even if it appears to be local. */
1408 if (need_entry & PLT_PLABEL)
1409 hh->plabel = 1;
1410 }
1411 else if (need_entry & PLT_PLABEL)
1412 {
1413 bfd_signed_vma *local_got_refcounts;
1414 bfd_signed_vma *local_plt_refcounts;
1415
1416 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1417 if (local_got_refcounts == NULL)
1418 return FALSE;
1419 local_plt_refcounts = (local_got_refcounts
1420 + symtab_hdr->sh_info);
1421 local_plt_refcounts[r_symndx] += 1;
1422 }
1423 }
1424 }
1425
1426 if (need_entry & NEED_DYNREL)
1427 {
1428 /* Flag this symbol as having a non-got, non-plt reference
1429 so that we generate copy relocs if it turns out to be
1430 dynamic. */
1431 if (hh != NULL && !bfd_link_pic (info))
1432 hh->eh.non_got_ref = 1;
1433
1434 /* If we are creating a shared library then we need to copy
1435 the reloc into the shared library. However, if we are
1436 linking with -Bsymbolic, we need only copy absolute
1437 relocs or relocs against symbols that are not defined in
1438 an object we are including in the link. PC- or DP- or
1439 DLT-relative relocs against any local sym or global sym
1440 with DEF_REGULAR set, can be discarded. At this point we
1441 have not seen all the input files, so it is possible that
1442 DEF_REGULAR is not set now but will be set later (it is
1443 never cleared). We account for that possibility below by
1444 storing information in the dyn_relocs field of the
1445 hash table entry.
1446
1447 A similar situation to the -Bsymbolic case occurs when
1448 creating shared libraries and symbol visibility changes
1449 render the symbol local.
1450
1451 As it turns out, all the relocs we will be creating here
1452 are absolute, so we cannot remove them on -Bsymbolic
1453 links or visibility changes anyway. A STUB_REL reloc
1454 is absolute too, as in that case it is the reloc in the
1455 stub we will be creating, rather than copying the PCREL
1456 reloc in the branch.
1457
1458 If on the other hand, we are creating an executable, we
1459 may need to keep relocations for symbols satisfied by a
1460 dynamic library if we manage to avoid copy relocs for the
1461 symbol. */
1462 if ((bfd_link_pic (info)
1463 && (sec->flags & SEC_ALLOC) != 0
1464 && (IS_ABSOLUTE_RELOC (r_type)
1465 || (hh != NULL
1466 && (!SYMBOLIC_BIND (info, &hh->eh)
1467 || hh->eh.root.type == bfd_link_hash_defweak
1468 || !hh->eh.def_regular))))
1469 || (ELIMINATE_COPY_RELOCS
1470 && !bfd_link_pic (info)
1471 && (sec->flags & SEC_ALLOC) != 0
1472 && hh != NULL
1473 && (hh->eh.root.type == bfd_link_hash_defweak
1474 || !hh->eh.def_regular)))
1475 {
1476 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1477 struct elf32_hppa_dyn_reloc_entry **hdh_head;
1478
1479 /* Create a reloc section in dynobj and make room for
1480 this reloc. */
1481 if (sreloc == NULL)
1482 {
1483 sreloc = _bfd_elf_make_dynamic_reloc_section
1484 (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
1485
1486 if (sreloc == NULL)
1487 {
1488 bfd_set_error (bfd_error_bad_value);
1489 return FALSE;
1490 }
1491 }
1492
1493 /* If this is a global symbol, we count the number of
1494 relocations we need for this symbol. */
1495 if (hh != NULL)
1496 {
1497 hdh_head = &hh->dyn_relocs;
1498 }
1499 else
1500 {
1501 /* Track dynamic relocs needed for local syms too.
1502 We really need local syms available to do this
1503 easily. Oh well. */
1504 asection *sr;
1505 void *vpp;
1506 Elf_Internal_Sym *isym;
1507
1508 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1509 abfd, r_symndx);
1510 if (isym == NULL)
1511 return FALSE;
1512
1513 sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
1514 if (sr == NULL)
1515 sr = sec;
1516
1517 vpp = &elf_section_data (sr)->local_dynrel;
1518 hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
1519 }
1520
1521 hdh_p = *hdh_head;
1522 if (hdh_p == NULL || hdh_p->sec != sec)
1523 {
1524 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1525 if (hdh_p == NULL)
1526 return FALSE;
1527 hdh_p->hdh_next = *hdh_head;
1528 *hdh_head = hdh_p;
1529 hdh_p->sec = sec;
1530 hdh_p->count = 0;
1531 #if RELATIVE_DYNRELOCS
1532 hdh_p->relative_count = 0;
1533 #endif
1534 }
1535
1536 hdh_p->count += 1;
1537 #if RELATIVE_DYNRELOCS
1538 if (!IS_ABSOLUTE_RELOC (rtype))
1539 hdh_p->relative_count += 1;
1540 #endif
1541 }
1542 }
1543 }
1544
1545 return TRUE;
1546 }
1547
1548 /* Return the section that should be marked against garbage collection
1549 for a given relocation. */
1550
1551 static asection *
1552 elf32_hppa_gc_mark_hook (asection *sec,
1553 struct bfd_link_info *info,
1554 Elf_Internal_Rela *rela,
1555 struct elf_link_hash_entry *hh,
1556 Elf_Internal_Sym *sym)
1557 {
1558 if (hh != NULL)
1559 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1560 {
1561 case R_PARISC_GNU_VTINHERIT:
1562 case R_PARISC_GNU_VTENTRY:
1563 return NULL;
1564 }
1565
1566 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1567 }
1568
1569 /* Update the got and plt entry reference counts for the section being
1570 removed. */
1571
1572 static bfd_boolean
1573 elf32_hppa_gc_sweep_hook (bfd *abfd,
1574 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1575 asection *sec,
1576 const Elf_Internal_Rela *relocs)
1577 {
1578 Elf_Internal_Shdr *symtab_hdr;
1579 struct elf_link_hash_entry **eh_syms;
1580 bfd_signed_vma *local_got_refcounts;
1581 bfd_signed_vma *local_plt_refcounts;
1582 const Elf_Internal_Rela *rela, *relend;
1583 struct elf32_hppa_link_hash_table *htab;
1584
1585 if (bfd_link_relocatable (info))
1586 return TRUE;
1587
1588 htab = hppa_link_hash_table (info);
1589 if (htab == NULL)
1590 return FALSE;
1591
1592 elf_section_data (sec)->local_dynrel = NULL;
1593
1594 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1595 eh_syms = elf_sym_hashes (abfd);
1596 local_got_refcounts = elf_local_got_refcounts (abfd);
1597 local_plt_refcounts = local_got_refcounts;
1598 if (local_plt_refcounts != NULL)
1599 local_plt_refcounts += symtab_hdr->sh_info;
1600
1601 relend = relocs + sec->reloc_count;
1602 for (rela = relocs; rela < relend; rela++)
1603 {
1604 unsigned long r_symndx;
1605 unsigned int r_type;
1606 struct elf_link_hash_entry *eh = NULL;
1607
1608 r_symndx = ELF32_R_SYM (rela->r_info);
1609 if (r_symndx >= symtab_hdr->sh_info)
1610 {
1611 struct elf32_hppa_link_hash_entry *hh;
1612 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1613 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1614
1615 eh = eh_syms[r_symndx - symtab_hdr->sh_info];
1616 while (eh->root.type == bfd_link_hash_indirect
1617 || eh->root.type == bfd_link_hash_warning)
1618 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1619 hh = hppa_elf_hash_entry (eh);
1620
1621 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
1622 if (hdh_p->sec == sec)
1623 {
1624 /* Everything must go for SEC. */
1625 *hdh_pp = hdh_p->hdh_next;
1626 break;
1627 }
1628 }
1629
1630 r_type = ELF32_R_TYPE (rela->r_info);
1631 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, eh != NULL);
1632
1633 switch (r_type)
1634 {
1635 case R_PARISC_DLTIND14F:
1636 case R_PARISC_DLTIND14R:
1637 case R_PARISC_DLTIND21L:
1638 case R_PARISC_TLS_GD21L:
1639 case R_PARISC_TLS_GD14R:
1640 case R_PARISC_TLS_IE21L:
1641 case R_PARISC_TLS_IE14R:
1642 if (eh != NULL)
1643 {
1644 if (eh->got.refcount > 0)
1645 eh->got.refcount -= 1;
1646 }
1647 else if (local_got_refcounts != NULL)
1648 {
1649 if (local_got_refcounts[r_symndx] > 0)
1650 local_got_refcounts[r_symndx] -= 1;
1651 }
1652 break;
1653
1654 case R_PARISC_TLS_LDM21L:
1655 case R_PARISC_TLS_LDM14R:
1656 htab->tls_ldm_got.refcount -= 1;
1657 break;
1658
1659 case R_PARISC_PCREL12F:
1660 case R_PARISC_PCREL17C:
1661 case R_PARISC_PCREL17F:
1662 case R_PARISC_PCREL22F:
1663 if (eh != NULL)
1664 {
1665 if (eh->plt.refcount > 0)
1666 eh->plt.refcount -= 1;
1667 }
1668 break;
1669
1670 case R_PARISC_PLABEL14R:
1671 case R_PARISC_PLABEL21L:
1672 case R_PARISC_PLABEL32:
1673 if (eh != NULL)
1674 {
1675 if (eh->plt.refcount > 0)
1676 eh->plt.refcount -= 1;
1677 }
1678 else if (local_plt_refcounts != NULL)
1679 {
1680 if (local_plt_refcounts[r_symndx] > 0)
1681 local_plt_refcounts[r_symndx] -= 1;
1682 }
1683 break;
1684
1685 default:
1686 break;
1687 }
1688 }
1689
1690 return TRUE;
1691 }
1692
1693 /* Support for core dump NOTE sections. */
1694
1695 static bfd_boolean
1696 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1697 {
1698 int offset;
1699 size_t size;
1700
1701 switch (note->descsz)
1702 {
1703 default:
1704 return FALSE;
1705
1706 case 396: /* Linux/hppa */
1707 /* pr_cursig */
1708 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1709
1710 /* pr_pid */
1711 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
1712
1713 /* pr_reg */
1714 offset = 72;
1715 size = 320;
1716
1717 break;
1718 }
1719
1720 /* Make a ".reg/999" section. */
1721 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1722 size, note->descpos + offset);
1723 }
1724
1725 static bfd_boolean
1726 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1727 {
1728 switch (note->descsz)
1729 {
1730 default:
1731 return FALSE;
1732
1733 case 124: /* Linux/hppa elf_prpsinfo. */
1734 elf_tdata (abfd)->core->program
1735 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1736 elf_tdata (abfd)->core->command
1737 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1738 }
1739
1740 /* Note that for some reason, a spurious space is tacked
1741 onto the end of the args in some (at least one anyway)
1742 implementations, so strip it off if it exists. */
1743 {
1744 char *command = elf_tdata (abfd)->core->command;
1745 int n = strlen (command);
1746
1747 if (0 < n && command[n - 1] == ' ')
1748 command[n - 1] = '\0';
1749 }
1750
1751 return TRUE;
1752 }
1753
1754 /* Our own version of hide_symbol, so that we can keep plt entries for
1755 plabels. */
1756
1757 static void
1758 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1759 struct elf_link_hash_entry *eh,
1760 bfd_boolean force_local)
1761 {
1762 if (force_local)
1763 {
1764 eh->forced_local = 1;
1765 if (eh->dynindx != -1)
1766 {
1767 eh->dynindx = -1;
1768 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1769 eh->dynstr_index);
1770 }
1771
1772 /* PR 16082: Remove version information from hidden symbol. */
1773 eh->verinfo.verdef = NULL;
1774 eh->verinfo.vertree = NULL;
1775 }
1776
1777 /* STT_GNU_IFUNC symbol must go through PLT. */
1778 if (! hppa_elf_hash_entry (eh)->plabel
1779 && eh->type != STT_GNU_IFUNC)
1780 {
1781 eh->needs_plt = 0;
1782 eh->plt = elf_hash_table (info)->init_plt_offset;
1783 }
1784 }
1785
1786 /* Adjust a symbol defined by a dynamic object and referenced by a
1787 regular object. The current definition is in some section of the
1788 dynamic object, but we're not including those sections. We have to
1789 change the definition to something the rest of the link can
1790 understand. */
1791
1792 static bfd_boolean
1793 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1794 struct elf_link_hash_entry *eh)
1795 {
1796 struct elf32_hppa_link_hash_table *htab;
1797 asection *sec, *srel;
1798
1799 /* If this is a function, put it in the procedure linkage table. We
1800 will fill in the contents of the procedure linkage table later. */
1801 if (eh->type == STT_FUNC
1802 || eh->needs_plt)
1803 {
1804 /* If the symbol is used by a plabel, we must allocate a PLT slot.
1805 The refcounts are not reliable when it has been hidden since
1806 hide_symbol can be called before the plabel flag is set. */
1807 if (hppa_elf_hash_entry (eh)->plabel
1808 && eh->plt.refcount <= 0)
1809 eh->plt.refcount = 1;
1810
1811 if (eh->plt.refcount <= 0
1812 || (eh->def_regular
1813 && eh->root.type != bfd_link_hash_defweak
1814 && ! hppa_elf_hash_entry (eh)->plabel
1815 && (!bfd_link_pic (info) || SYMBOLIC_BIND (info, eh))))
1816 {
1817 /* The .plt entry is not needed when:
1818 a) Garbage collection has removed all references to the
1819 symbol, or
1820 b) We know for certain the symbol is defined in this
1821 object, and it's not a weak definition, nor is the symbol
1822 used by a plabel relocation. Either this object is the
1823 application or we are doing a shared symbolic link. */
1824
1825 eh->plt.offset = (bfd_vma) -1;
1826 eh->needs_plt = 0;
1827 }
1828
1829 return TRUE;
1830 }
1831 else
1832 eh->plt.offset = (bfd_vma) -1;
1833
1834 /* If this is a weak symbol, and there is a real definition, the
1835 processor independent code will have arranged for us to see the
1836 real definition first, and we can just use the same value. */
1837 if (eh->u.weakdef != NULL)
1838 {
1839 if (eh->u.weakdef->root.type != bfd_link_hash_defined
1840 && eh->u.weakdef->root.type != bfd_link_hash_defweak)
1841 abort ();
1842 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1843 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1844 if (ELIMINATE_COPY_RELOCS)
1845 eh->non_got_ref = eh->u.weakdef->non_got_ref;
1846 return TRUE;
1847 }
1848
1849 /* This is a reference to a symbol defined by a dynamic object which
1850 is not a function. */
1851
1852 /* If we are creating a shared library, we must presume that the
1853 only references to the symbol are via the global offset table.
1854 For such cases we need not do anything here; the relocations will
1855 be handled correctly by relocate_section. */
1856 if (bfd_link_pic (info))
1857 return TRUE;
1858
1859 /* If there are no references to this symbol that do not use the
1860 GOT, we don't need to generate a copy reloc. */
1861 if (!eh->non_got_ref)
1862 return TRUE;
1863
1864 if (ELIMINATE_COPY_RELOCS)
1865 {
1866 struct elf32_hppa_link_hash_entry *hh;
1867 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1868
1869 hh = hppa_elf_hash_entry (eh);
1870 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
1871 {
1872 sec = hdh_p->sec->output_section;
1873 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1874 break;
1875 }
1876
1877 /* If we didn't find any dynamic relocs in read-only sections, then
1878 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1879 if (hdh_p == NULL)
1880 {
1881 eh->non_got_ref = 0;
1882 return TRUE;
1883 }
1884 }
1885
1886 /* We must allocate the symbol in our .dynbss section, which will
1887 become part of the .bss section of the executable. There will be
1888 an entry for this symbol in the .dynsym section. The dynamic
1889 object will contain position independent code, so all references
1890 from the dynamic object to this symbol will go through the global
1891 offset table. The dynamic linker will use the .dynsym entry to
1892 determine the address it must put in the global offset table, so
1893 both the dynamic object and the regular object will refer to the
1894 same memory location for the variable. */
1895
1896 htab = hppa_link_hash_table (info);
1897 if (htab == NULL)
1898 return FALSE;
1899
1900 /* We must generate a COPY reloc to tell the dynamic linker to
1901 copy the initial value out of the dynamic object and into the
1902 runtime process image. */
1903 if ((eh->root.u.def.section->flags & SEC_READONLY) != 0)
1904 {
1905 sec = htab->etab.sdynrelro;
1906 srel = htab->etab.sreldynrelro;
1907 }
1908 else
1909 {
1910 sec = htab->etab.sdynbss;
1911 srel = htab->etab.srelbss;
1912 }
1913 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0 && eh->size != 0)
1914 {
1915 srel->size += sizeof (Elf32_External_Rela);
1916 eh->needs_copy = 1;
1917 }
1918
1919 return _bfd_elf_adjust_dynamic_copy (info, eh, sec);
1920 }
1921
1922 /* Make an undefined weak symbol dynamic. */
1923
1924 static bfd_boolean
1925 ensure_undef_weak_dynamic (struct bfd_link_info *info,
1926 struct elf_link_hash_entry *eh)
1927 {
1928 if (eh->dynindx == -1
1929 && !eh->forced_local
1930 && eh->type != STT_PARISC_MILLI
1931 && eh->root.type == bfd_link_hash_undefweak
1932 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
1933 return bfd_elf_link_record_dynamic_symbol (info, eh);
1934 return TRUE;
1935 }
1936
1937 /* Allocate space in the .plt for entries that won't have relocations.
1938 ie. plabel entries. */
1939
1940 static bfd_boolean
1941 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1942 {
1943 struct bfd_link_info *info;
1944 struct elf32_hppa_link_hash_table *htab;
1945 struct elf32_hppa_link_hash_entry *hh;
1946 asection *sec;
1947
1948 if (eh->root.type == bfd_link_hash_indirect)
1949 return TRUE;
1950
1951 info = (struct bfd_link_info *) inf;
1952 hh = hppa_elf_hash_entry (eh);
1953 htab = hppa_link_hash_table (info);
1954 if (htab == NULL)
1955 return FALSE;
1956
1957 if (htab->etab.dynamic_sections_created
1958 && eh->plt.refcount > 0)
1959 {
1960 if (!ensure_undef_weak_dynamic (info, eh))
1961 return FALSE;
1962
1963 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), eh))
1964 {
1965 /* Allocate these later. From this point on, h->plabel
1966 means that the plt entry is only used by a plabel.
1967 We'll be using a normal plt entry for this symbol, so
1968 clear the plabel indicator. */
1969
1970 hh->plabel = 0;
1971 }
1972 else if (hh->plabel)
1973 {
1974 /* Make an entry in the .plt section for plabel references
1975 that won't have a .plt entry for other reasons. */
1976 sec = htab->etab.splt;
1977 eh->plt.offset = sec->size;
1978 sec->size += PLT_ENTRY_SIZE;
1979 if (bfd_link_pic (info))
1980 htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
1981 }
1982 else
1983 {
1984 /* No .plt entry needed. */
1985 eh->plt.offset = (bfd_vma) -1;
1986 eh->needs_plt = 0;
1987 }
1988 }
1989 else
1990 {
1991 eh->plt.offset = (bfd_vma) -1;
1992 eh->needs_plt = 0;
1993 }
1994
1995 return TRUE;
1996 }
1997
1998 /* Allocate space in .plt, .got and associated reloc sections for
1999 global syms. */
2000
2001 static bfd_boolean
2002 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2003 {
2004 struct bfd_link_info *info;
2005 struct elf32_hppa_link_hash_table *htab;
2006 asection *sec;
2007 struct elf32_hppa_link_hash_entry *hh;
2008 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2009
2010 if (eh->root.type == bfd_link_hash_indirect)
2011 return TRUE;
2012
2013 info = inf;
2014 htab = hppa_link_hash_table (info);
2015 if (htab == NULL)
2016 return FALSE;
2017
2018 hh = hppa_elf_hash_entry (eh);
2019
2020 if (htab->etab.dynamic_sections_created
2021 && eh->plt.offset != (bfd_vma) -1
2022 && !hh->plabel
2023 && eh->plt.refcount > 0)
2024 {
2025 /* Make an entry in the .plt section. */
2026 sec = htab->etab.splt;
2027 eh->plt.offset = sec->size;
2028 sec->size += PLT_ENTRY_SIZE;
2029
2030 /* We also need to make an entry in the .rela.plt section. */
2031 htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
2032 htab->need_plt_stub = 1;
2033 }
2034
2035 if (eh->got.refcount > 0)
2036 {
2037 if (!ensure_undef_weak_dynamic (info, eh))
2038 return FALSE;
2039
2040 sec = htab->etab.sgot;
2041 eh->got.offset = sec->size;
2042 sec->size += GOT_ENTRY_SIZE;
2043 /* R_PARISC_TLS_GD* needs two GOT entries */
2044 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2045 sec->size += GOT_ENTRY_SIZE * 2;
2046 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2047 sec->size += GOT_ENTRY_SIZE;
2048 if (htab->etab.dynamic_sections_created
2049 && (bfd_link_pic (info)
2050 || (eh->dynindx != -1
2051 && !eh->forced_local)))
2052 {
2053 htab->etab.srelgot->size += sizeof (Elf32_External_Rela);
2054 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2055 htab->etab.srelgot->size += 2 * sizeof (Elf32_External_Rela);
2056 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2057 htab->etab.srelgot->size += sizeof (Elf32_External_Rela);
2058 }
2059 }
2060 else
2061 eh->got.offset = (bfd_vma) -1;
2062
2063 if (hh->dyn_relocs == NULL)
2064 return TRUE;
2065
2066 /* If this is a -Bsymbolic shared link, then we need to discard all
2067 space allocated for dynamic pc-relative relocs against symbols
2068 defined in a regular object. For the normal shared case, discard
2069 space for relocs that have become local due to symbol visibility
2070 changes. */
2071 if (bfd_link_pic (info))
2072 {
2073 #if RELATIVE_DYNRELOCS
2074 if (SYMBOL_CALLS_LOCAL (info, eh))
2075 {
2076 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
2077
2078 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2079 {
2080 hdh_p->count -= hdh_p->relative_count;
2081 hdh_p->relative_count = 0;
2082 if (hdh_p->count == 0)
2083 *hdh_pp = hdh_p->hdh_next;
2084 else
2085 hdh_pp = &hdh_p->hdh_next;
2086 }
2087 }
2088 #endif
2089
2090 /* Also discard relocs on undefined weak syms with non-default
2091 visibility. */
2092 if (hh->dyn_relocs != NULL
2093 && eh->root.type == bfd_link_hash_undefweak)
2094 {
2095 if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
2096 hh->dyn_relocs = NULL;
2097
2098 else if (!ensure_undef_weak_dynamic (info, eh))
2099 return FALSE;
2100 }
2101 }
2102 else
2103 {
2104 /* For the non-shared case, discard space for relocs against
2105 symbols which turn out to need copy relocs or are not
2106 dynamic. */
2107
2108 if (!eh->non_got_ref
2109 && ((ELIMINATE_COPY_RELOCS
2110 && eh->def_dynamic
2111 && !eh->def_regular)
2112 || (htab->etab.dynamic_sections_created
2113 && (eh->root.type == bfd_link_hash_undefweak
2114 || eh->root.type == bfd_link_hash_undefined))))
2115 {
2116 if (!ensure_undef_weak_dynamic (info, eh))
2117 return FALSE;
2118
2119 /* If that succeeded, we know we'll be keeping all the
2120 relocs. */
2121 if (eh->dynindx != -1)
2122 goto keep;
2123 }
2124
2125 hh->dyn_relocs = NULL;
2126 return TRUE;
2127
2128 keep: ;
2129 }
2130
2131 /* Finally, allocate space. */
2132 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2133 {
2134 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2135 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2136 }
2137
2138 return TRUE;
2139 }
2140
2141 /* This function is called via elf_link_hash_traverse to force
2142 millicode symbols local so they do not end up as globals in the
2143 dynamic symbol table. We ought to be able to do this in
2144 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2145 for all dynamic symbols. Arguably, this is a bug in
2146 elf_adjust_dynamic_symbol. */
2147
2148 static bfd_boolean
2149 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2150 struct bfd_link_info *info)
2151 {
2152 if (eh->type == STT_PARISC_MILLI
2153 && !eh->forced_local)
2154 {
2155 elf32_hppa_hide_symbol (info, eh, TRUE);
2156 }
2157 return TRUE;
2158 }
2159
2160 /* Find any dynamic relocs that apply to read-only sections. */
2161
2162 static bfd_boolean
2163 readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2164 {
2165 struct elf32_hppa_link_hash_entry *hh;
2166 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2167
2168 hh = hppa_elf_hash_entry (eh);
2169 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2170 {
2171 asection *sec = hdh_p->sec->output_section;
2172
2173 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
2174 {
2175 struct bfd_link_info *info = inf;
2176
2177 info->flags |= DF_TEXTREL;
2178
2179 /* Not an error, just cut short the traversal. */
2180 return FALSE;
2181 }
2182 }
2183 return TRUE;
2184 }
2185
2186 /* Set the sizes of the dynamic sections. */
2187
2188 static bfd_boolean
2189 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2190 struct bfd_link_info *info)
2191 {
2192 struct elf32_hppa_link_hash_table *htab;
2193 bfd *dynobj;
2194 bfd *ibfd;
2195 asection *sec;
2196 bfd_boolean relocs;
2197
2198 htab = hppa_link_hash_table (info);
2199 if (htab == NULL)
2200 return FALSE;
2201
2202 dynobj = htab->etab.dynobj;
2203 if (dynobj == NULL)
2204 abort ();
2205
2206 if (htab->etab.dynamic_sections_created)
2207 {
2208 /* Set the contents of the .interp section to the interpreter. */
2209 if (bfd_link_executable (info) && !info->nointerp)
2210 {
2211 sec = bfd_get_linker_section (dynobj, ".interp");
2212 if (sec == NULL)
2213 abort ();
2214 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2215 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2216 }
2217
2218 /* Force millicode symbols local. */
2219 elf_link_hash_traverse (&htab->etab,
2220 clobber_millicode_symbols,
2221 info);
2222 }
2223
2224 /* Set up .got and .plt offsets for local syms, and space for local
2225 dynamic relocs. */
2226 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
2227 {
2228 bfd_signed_vma *local_got;
2229 bfd_signed_vma *end_local_got;
2230 bfd_signed_vma *local_plt;
2231 bfd_signed_vma *end_local_plt;
2232 bfd_size_type locsymcount;
2233 Elf_Internal_Shdr *symtab_hdr;
2234 asection *srel;
2235 char *local_tls_type;
2236
2237 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2238 continue;
2239
2240 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2241 {
2242 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2243
2244 for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2245 elf_section_data (sec)->local_dynrel);
2246 hdh_p != NULL;
2247 hdh_p = hdh_p->hdh_next)
2248 {
2249 if (!bfd_is_abs_section (hdh_p->sec)
2250 && bfd_is_abs_section (hdh_p->sec->output_section))
2251 {
2252 /* Input section has been discarded, either because
2253 it is a copy of a linkonce section or due to
2254 linker script /DISCARD/, so we'll be discarding
2255 the relocs too. */
2256 }
2257 else if (hdh_p->count != 0)
2258 {
2259 srel = elf_section_data (hdh_p->sec)->sreloc;
2260 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2261 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2262 info->flags |= DF_TEXTREL;
2263 }
2264 }
2265 }
2266
2267 local_got = elf_local_got_refcounts (ibfd);
2268 if (!local_got)
2269 continue;
2270
2271 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2272 locsymcount = symtab_hdr->sh_info;
2273 end_local_got = local_got + locsymcount;
2274 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2275 sec = htab->etab.sgot;
2276 srel = htab->etab.srelgot;
2277 for (; local_got < end_local_got; ++local_got)
2278 {
2279 if (*local_got > 0)
2280 {
2281 *local_got = sec->size;
2282 sec->size += GOT_ENTRY_SIZE;
2283 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2284 sec->size += 2 * GOT_ENTRY_SIZE;
2285 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2286 sec->size += GOT_ENTRY_SIZE;
2287 if (bfd_link_pic (info))
2288 {
2289 srel->size += sizeof (Elf32_External_Rela);
2290 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2291 srel->size += 2 * sizeof (Elf32_External_Rela);
2292 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2293 srel->size += sizeof (Elf32_External_Rela);
2294 }
2295 }
2296 else
2297 *local_got = (bfd_vma) -1;
2298
2299 ++local_tls_type;
2300 }
2301
2302 local_plt = end_local_got;
2303 end_local_plt = local_plt + locsymcount;
2304 if (! htab->etab.dynamic_sections_created)
2305 {
2306 /* Won't be used, but be safe. */
2307 for (; local_plt < end_local_plt; ++local_plt)
2308 *local_plt = (bfd_vma) -1;
2309 }
2310 else
2311 {
2312 sec = htab->etab.splt;
2313 srel = htab->etab.srelplt;
2314 for (; local_plt < end_local_plt; ++local_plt)
2315 {
2316 if (*local_plt > 0)
2317 {
2318 *local_plt = sec->size;
2319 sec->size += PLT_ENTRY_SIZE;
2320 if (bfd_link_pic (info))
2321 srel->size += sizeof (Elf32_External_Rela);
2322 }
2323 else
2324 *local_plt = (bfd_vma) -1;
2325 }
2326 }
2327 }
2328
2329 if (htab->tls_ldm_got.refcount > 0)
2330 {
2331 /* Allocate 2 got entries and 1 dynamic reloc for
2332 R_PARISC_TLS_DTPMOD32 relocs. */
2333 htab->tls_ldm_got.offset = htab->etab.sgot->size;
2334 htab->etab.sgot->size += (GOT_ENTRY_SIZE * 2);
2335 htab->etab.srelgot->size += sizeof (Elf32_External_Rela);
2336 }
2337 else
2338 htab->tls_ldm_got.offset = -1;
2339
2340 /* Do all the .plt entries without relocs first. The dynamic linker
2341 uses the last .plt reloc to find the end of the .plt (and hence
2342 the start of the .got) for lazy linking. */
2343 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2344
2345 /* Allocate global sym .plt and .got entries, and space for global
2346 sym dynamic relocs. */
2347 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2348
2349 /* The check_relocs and adjust_dynamic_symbol entry points have
2350 determined the sizes of the various dynamic sections. Allocate
2351 memory for them. */
2352 relocs = FALSE;
2353 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2354 {
2355 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2356 continue;
2357
2358 if (sec == htab->etab.splt)
2359 {
2360 if (htab->need_plt_stub)
2361 {
2362 /* Make space for the plt stub at the end of the .plt
2363 section. We want this stub right at the end, up
2364 against the .got section. */
2365 int gotalign = bfd_section_alignment (dynobj, htab->etab.sgot);
2366 int pltalign = bfd_section_alignment (dynobj, sec);
2367 bfd_size_type mask;
2368
2369 if (gotalign > pltalign)
2370 (void) bfd_set_section_alignment (dynobj, sec, gotalign);
2371 mask = ((bfd_size_type) 1 << gotalign) - 1;
2372 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2373 }
2374 }
2375 else if (sec == htab->etab.sgot
2376 || sec == htab->etab.sdynbss
2377 || sec == htab->etab.sdynrelro)
2378 ;
2379 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
2380 {
2381 if (sec->size != 0)
2382 {
2383 /* Remember whether there are any reloc sections other
2384 than .rela.plt. */
2385 if (sec != htab->etab.srelplt)
2386 relocs = TRUE;
2387
2388 /* We use the reloc_count field as a counter if we need
2389 to copy relocs into the output file. */
2390 sec->reloc_count = 0;
2391 }
2392 }
2393 else
2394 {
2395 /* It's not one of our sections, so don't allocate space. */
2396 continue;
2397 }
2398
2399 if (sec->size == 0)
2400 {
2401 /* If we don't need this section, strip it from the
2402 output file. This is mostly to handle .rela.bss and
2403 .rela.plt. We must create both sections in
2404 create_dynamic_sections, because they must be created
2405 before the linker maps input sections to output
2406 sections. The linker does that before
2407 adjust_dynamic_symbol is called, and it is that
2408 function which decides whether anything needs to go
2409 into these sections. */
2410 sec->flags |= SEC_EXCLUDE;
2411 continue;
2412 }
2413
2414 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2415 continue;
2416
2417 /* Allocate memory for the section contents. Zero it, because
2418 we may not fill in all the reloc sections. */
2419 sec->contents = bfd_zalloc (dynobj, sec->size);
2420 if (sec->contents == NULL)
2421 return FALSE;
2422 }
2423
2424 if (htab->etab.dynamic_sections_created)
2425 {
2426 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2427 actually has nothing to do with the PLT, it is how we
2428 communicate the LTP value of a load module to the dynamic
2429 linker. */
2430 #define add_dynamic_entry(TAG, VAL) \
2431 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2432
2433 if (!add_dynamic_entry (DT_PLTGOT, 0))
2434 return FALSE;
2435
2436 /* Add some entries to the .dynamic section. We fill in the
2437 values later, in elf32_hppa_finish_dynamic_sections, but we
2438 must add the entries now so that we get the correct size for
2439 the .dynamic section. The DT_DEBUG entry is filled in by the
2440 dynamic linker and used by the debugger. */
2441 if (bfd_link_executable (info))
2442 {
2443 if (!add_dynamic_entry (DT_DEBUG, 0))
2444 return FALSE;
2445 }
2446
2447 if (htab->etab.srelplt->size != 0)
2448 {
2449 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2450 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2451 || !add_dynamic_entry (DT_JMPREL, 0))
2452 return FALSE;
2453 }
2454
2455 if (relocs)
2456 {
2457 if (!add_dynamic_entry (DT_RELA, 0)
2458 || !add_dynamic_entry (DT_RELASZ, 0)
2459 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2460 return FALSE;
2461
2462 /* If any dynamic relocs apply to a read-only section,
2463 then we need a DT_TEXTREL entry. */
2464 if ((info->flags & DF_TEXTREL) == 0)
2465 elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
2466
2467 if ((info->flags & DF_TEXTREL) != 0)
2468 {
2469 if (!add_dynamic_entry (DT_TEXTREL, 0))
2470 return FALSE;
2471 }
2472 }
2473 }
2474 #undef add_dynamic_entry
2475
2476 return TRUE;
2477 }
2478
2479 /* External entry points for sizing and building linker stubs. */
2480
2481 /* Set up various things so that we can make a list of input sections
2482 for each output section included in the link. Returns -1 on error,
2483 0 when no stubs will be needed, and 1 on success. */
2484
2485 int
2486 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2487 {
2488 bfd *input_bfd;
2489 unsigned int bfd_count;
2490 unsigned int top_id, top_index;
2491 asection *section;
2492 asection **input_list, **list;
2493 bfd_size_type amt;
2494 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2495
2496 if (htab == NULL)
2497 return -1;
2498
2499 /* Count the number of input BFDs and find the top input section id. */
2500 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2501 input_bfd != NULL;
2502 input_bfd = input_bfd->link.next)
2503 {
2504 bfd_count += 1;
2505 for (section = input_bfd->sections;
2506 section != NULL;
2507 section = section->next)
2508 {
2509 if (top_id < section->id)
2510 top_id = section->id;
2511 }
2512 }
2513 htab->bfd_count = bfd_count;
2514
2515 amt = sizeof (struct map_stub) * (top_id + 1);
2516 htab->stub_group = bfd_zmalloc (amt);
2517 if (htab->stub_group == NULL)
2518 return -1;
2519
2520 /* We can't use output_bfd->section_count here to find the top output
2521 section index as some sections may have been removed, and
2522 strip_excluded_output_sections doesn't renumber the indices. */
2523 for (section = output_bfd->sections, top_index = 0;
2524 section != NULL;
2525 section = section->next)
2526 {
2527 if (top_index < section->index)
2528 top_index = section->index;
2529 }
2530
2531 htab->top_index = top_index;
2532 amt = sizeof (asection *) * (top_index + 1);
2533 input_list = bfd_malloc (amt);
2534 htab->input_list = input_list;
2535 if (input_list == NULL)
2536 return -1;
2537
2538 /* For sections we aren't interested in, mark their entries with a
2539 value we can check later. */
2540 list = input_list + top_index;
2541 do
2542 *list = bfd_abs_section_ptr;
2543 while (list-- != input_list);
2544
2545 for (section = output_bfd->sections;
2546 section != NULL;
2547 section = section->next)
2548 {
2549 if ((section->flags & SEC_CODE) != 0)
2550 input_list[section->index] = NULL;
2551 }
2552
2553 return 1;
2554 }
2555
2556 /* The linker repeatedly calls this function for each input section,
2557 in the order that input sections are linked into output sections.
2558 Build lists of input sections to determine groupings between which
2559 we may insert linker stubs. */
2560
2561 void
2562 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2563 {
2564 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2565
2566 if (htab == NULL)
2567 return;
2568
2569 if (isec->output_section->index <= htab->top_index)
2570 {
2571 asection **list = htab->input_list + isec->output_section->index;
2572 if (*list != bfd_abs_section_ptr)
2573 {
2574 /* Steal the link_sec pointer for our list. */
2575 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2576 /* This happens to make the list in reverse order,
2577 which is what we want. */
2578 PREV_SEC (isec) = *list;
2579 *list = isec;
2580 }
2581 }
2582 }
2583
2584 /* See whether we can group stub sections together. Grouping stub
2585 sections may result in fewer stubs. More importantly, we need to
2586 put all .init* and .fini* stubs at the beginning of the .init or
2587 .fini output sections respectively, because glibc splits the
2588 _init and _fini functions into multiple parts. Putting a stub in
2589 the middle of a function is not a good idea. */
2590
2591 static void
2592 group_sections (struct elf32_hppa_link_hash_table *htab,
2593 bfd_size_type stub_group_size,
2594 bfd_boolean stubs_always_before_branch)
2595 {
2596 asection **list = htab->input_list + htab->top_index;
2597 do
2598 {
2599 asection *tail = *list;
2600 if (tail == bfd_abs_section_ptr)
2601 continue;
2602 while (tail != NULL)
2603 {
2604 asection *curr;
2605 asection *prev;
2606 bfd_size_type total;
2607 bfd_boolean big_sec;
2608
2609 curr = tail;
2610 total = tail->size;
2611 big_sec = total >= stub_group_size;
2612
2613 while ((prev = PREV_SEC (curr)) != NULL
2614 && ((total += curr->output_offset - prev->output_offset)
2615 < stub_group_size))
2616 curr = prev;
2617
2618 /* OK, the size from the start of CURR to the end is less
2619 than 240000 bytes and thus can be handled by one stub
2620 section. (or the tail section is itself larger than
2621 240000 bytes, in which case we may be toast.)
2622 We should really be keeping track of the total size of
2623 stubs added here, as stubs contribute to the final output
2624 section size. That's a little tricky, and this way will
2625 only break if stubs added total more than 22144 bytes, or
2626 2768 long branch stubs. It seems unlikely for more than
2627 2768 different functions to be called, especially from
2628 code only 240000 bytes long. This limit used to be
2629 250000, but c++ code tends to generate lots of little
2630 functions, and sometimes violated the assumption. */
2631 do
2632 {
2633 prev = PREV_SEC (tail);
2634 /* Set up this stub group. */
2635 htab->stub_group[tail->id].link_sec = curr;
2636 }
2637 while (tail != curr && (tail = prev) != NULL);
2638
2639 /* But wait, there's more! Input sections up to 240000
2640 bytes before the stub section can be handled by it too.
2641 Don't do this if we have a really large section after the
2642 stubs, as adding more stubs increases the chance that
2643 branches may not reach into the stub section. */
2644 if (!stubs_always_before_branch && !big_sec)
2645 {
2646 total = 0;
2647 while (prev != NULL
2648 && ((total += tail->output_offset - prev->output_offset)
2649 < stub_group_size))
2650 {
2651 tail = prev;
2652 prev = PREV_SEC (tail);
2653 htab->stub_group[tail->id].link_sec = curr;
2654 }
2655 }
2656 tail = prev;
2657 }
2658 }
2659 while (list-- != htab->input_list);
2660 free (htab->input_list);
2661 #undef PREV_SEC
2662 }
2663
2664 /* Read in all local syms for all input bfds, and create hash entries
2665 for export stubs if we are building a multi-subspace shared lib.
2666 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2667
2668 static int
2669 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2670 {
2671 unsigned int bfd_indx;
2672 Elf_Internal_Sym *local_syms, **all_local_syms;
2673 int stub_changed = 0;
2674 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2675
2676 if (htab == NULL)
2677 return -1;
2678
2679 /* We want to read in symbol extension records only once. To do this
2680 we need to read in the local symbols in parallel and save them for
2681 later use; so hold pointers to the local symbols in an array. */
2682 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2683 all_local_syms = bfd_zmalloc (amt);
2684 htab->all_local_syms = all_local_syms;
2685 if (all_local_syms == NULL)
2686 return -1;
2687
2688 /* Walk over all the input BFDs, swapping in local symbols.
2689 If we are creating a shared library, create hash entries for the
2690 export stubs. */
2691 for (bfd_indx = 0;
2692 input_bfd != NULL;
2693 input_bfd = input_bfd->link.next, bfd_indx++)
2694 {
2695 Elf_Internal_Shdr *symtab_hdr;
2696
2697 /* We'll need the symbol table in a second. */
2698 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2699 if (symtab_hdr->sh_info == 0)
2700 continue;
2701
2702 /* We need an array of the local symbols attached to the input bfd. */
2703 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2704 if (local_syms == NULL)
2705 {
2706 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2707 symtab_hdr->sh_info, 0,
2708 NULL, NULL, NULL);
2709 /* Cache them for elf_link_input_bfd. */
2710 symtab_hdr->contents = (unsigned char *) local_syms;
2711 }
2712 if (local_syms == NULL)
2713 return -1;
2714
2715 all_local_syms[bfd_indx] = local_syms;
2716
2717 if (bfd_link_pic (info) && htab->multi_subspace)
2718 {
2719 struct elf_link_hash_entry **eh_syms;
2720 struct elf_link_hash_entry **eh_symend;
2721 unsigned int symcount;
2722
2723 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2724 - symtab_hdr->sh_info);
2725 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2726 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2727
2728 /* Look through the global syms for functions; We need to
2729 build export stubs for all globally visible functions. */
2730 for (; eh_syms < eh_symend; eh_syms++)
2731 {
2732 struct elf32_hppa_link_hash_entry *hh;
2733
2734 hh = hppa_elf_hash_entry (*eh_syms);
2735
2736 while (hh->eh.root.type == bfd_link_hash_indirect
2737 || hh->eh.root.type == bfd_link_hash_warning)
2738 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2739
2740 /* At this point in the link, undefined syms have been
2741 resolved, so we need to check that the symbol was
2742 defined in this BFD. */
2743 if ((hh->eh.root.type == bfd_link_hash_defined
2744 || hh->eh.root.type == bfd_link_hash_defweak)
2745 && hh->eh.type == STT_FUNC
2746 && hh->eh.root.u.def.section->output_section != NULL
2747 && (hh->eh.root.u.def.section->output_section->owner
2748 == output_bfd)
2749 && hh->eh.root.u.def.section->owner == input_bfd
2750 && hh->eh.def_regular
2751 && !hh->eh.forced_local
2752 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2753 {
2754 asection *sec;
2755 const char *stub_name;
2756 struct elf32_hppa_stub_hash_entry *hsh;
2757
2758 sec = hh->eh.root.u.def.section;
2759 stub_name = hh_name (hh);
2760 hsh = hppa_stub_hash_lookup (&htab->bstab,
2761 stub_name,
2762 FALSE, FALSE);
2763 if (hsh == NULL)
2764 {
2765 hsh = hppa_add_stub (stub_name, sec, htab);
2766 if (!hsh)
2767 return -1;
2768
2769 hsh->target_value = hh->eh.root.u.def.value;
2770 hsh->target_section = hh->eh.root.u.def.section;
2771 hsh->stub_type = hppa_stub_export;
2772 hsh->hh = hh;
2773 stub_changed = 1;
2774 }
2775 else
2776 {
2777 /* xgettext:c-format */
2778 _bfd_error_handler (_("%B: duplicate export stub %s"),
2779 input_bfd, stub_name);
2780 }
2781 }
2782 }
2783 }
2784 }
2785
2786 return stub_changed;
2787 }
2788
2789 /* Determine and set the size of the stub section for a final link.
2790
2791 The basic idea here is to examine all the relocations looking for
2792 PC-relative calls to a target that is unreachable with a "bl"
2793 instruction. */
2794
2795 bfd_boolean
2796 elf32_hppa_size_stubs
2797 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2798 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2799 asection * (*add_stub_section) (const char *, asection *),
2800 void (*layout_sections_again) (void))
2801 {
2802 bfd_size_type stub_group_size;
2803 bfd_boolean stubs_always_before_branch;
2804 bfd_boolean stub_changed;
2805 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2806
2807 if (htab == NULL)
2808 return FALSE;
2809
2810 /* Stash our params away. */
2811 htab->stub_bfd = stub_bfd;
2812 htab->multi_subspace = multi_subspace;
2813 htab->add_stub_section = add_stub_section;
2814 htab->layout_sections_again = layout_sections_again;
2815 stubs_always_before_branch = group_size < 0;
2816 if (group_size < 0)
2817 stub_group_size = -group_size;
2818 else
2819 stub_group_size = group_size;
2820 if (stub_group_size == 1)
2821 {
2822 /* Default values. */
2823 if (stubs_always_before_branch)
2824 {
2825 stub_group_size = 7680000;
2826 if (htab->has_17bit_branch || htab->multi_subspace)
2827 stub_group_size = 240000;
2828 if (htab->has_12bit_branch)
2829 stub_group_size = 7500;
2830 }
2831 else
2832 {
2833 stub_group_size = 6971392;
2834 if (htab->has_17bit_branch || htab->multi_subspace)
2835 stub_group_size = 217856;
2836 if (htab->has_12bit_branch)
2837 stub_group_size = 6808;
2838 }
2839 }
2840
2841 group_sections (htab, stub_group_size, stubs_always_before_branch);
2842
2843 switch (get_local_syms (output_bfd, info->input_bfds, info))
2844 {
2845 default:
2846 if (htab->all_local_syms)
2847 goto error_ret_free_local;
2848 return FALSE;
2849
2850 case 0:
2851 stub_changed = FALSE;
2852 break;
2853
2854 case 1:
2855 stub_changed = TRUE;
2856 break;
2857 }
2858
2859 while (1)
2860 {
2861 bfd *input_bfd;
2862 unsigned int bfd_indx;
2863 asection *stub_sec;
2864
2865 for (input_bfd = info->input_bfds, bfd_indx = 0;
2866 input_bfd != NULL;
2867 input_bfd = input_bfd->link.next, bfd_indx++)
2868 {
2869 Elf_Internal_Shdr *symtab_hdr;
2870 asection *section;
2871 Elf_Internal_Sym *local_syms;
2872
2873 /* We'll need the symbol table in a second. */
2874 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2875 if (symtab_hdr->sh_info == 0)
2876 continue;
2877
2878 local_syms = htab->all_local_syms[bfd_indx];
2879
2880 /* Walk over each section attached to the input bfd. */
2881 for (section = input_bfd->sections;
2882 section != NULL;
2883 section = section->next)
2884 {
2885 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2886
2887 /* If there aren't any relocs, then there's nothing more
2888 to do. */
2889 if ((section->flags & SEC_RELOC) == 0
2890 || section->reloc_count == 0)
2891 continue;
2892
2893 /* If this section is a link-once section that will be
2894 discarded, then don't create any stubs. */
2895 if (section->output_section == NULL
2896 || section->output_section->owner != output_bfd)
2897 continue;
2898
2899 /* Get the relocs. */
2900 internal_relocs
2901 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2902 info->keep_memory);
2903 if (internal_relocs == NULL)
2904 goto error_ret_free_local;
2905
2906 /* Now examine each relocation. */
2907 irela = internal_relocs;
2908 irelaend = irela + section->reloc_count;
2909 for (; irela < irelaend; irela++)
2910 {
2911 unsigned int r_type, r_indx;
2912 enum elf32_hppa_stub_type stub_type;
2913 struct elf32_hppa_stub_hash_entry *hsh;
2914 asection *sym_sec;
2915 bfd_vma sym_value;
2916 bfd_vma destination;
2917 struct elf32_hppa_link_hash_entry *hh;
2918 char *stub_name;
2919 const asection *id_sec;
2920
2921 r_type = ELF32_R_TYPE (irela->r_info);
2922 r_indx = ELF32_R_SYM (irela->r_info);
2923
2924 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2925 {
2926 bfd_set_error (bfd_error_bad_value);
2927 error_ret_free_internal:
2928 if (elf_section_data (section)->relocs == NULL)
2929 free (internal_relocs);
2930 goto error_ret_free_local;
2931 }
2932
2933 /* Only look for stubs on call instructions. */
2934 if (r_type != (unsigned int) R_PARISC_PCREL12F
2935 && r_type != (unsigned int) R_PARISC_PCREL17F
2936 && r_type != (unsigned int) R_PARISC_PCREL22F)
2937 continue;
2938
2939 /* Now determine the call target, its name, value,
2940 section. */
2941 sym_sec = NULL;
2942 sym_value = 0;
2943 destination = 0;
2944 hh = NULL;
2945 if (r_indx < symtab_hdr->sh_info)
2946 {
2947 /* It's a local symbol. */
2948 Elf_Internal_Sym *sym;
2949 Elf_Internal_Shdr *hdr;
2950 unsigned int shndx;
2951
2952 sym = local_syms + r_indx;
2953 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2954 sym_value = sym->st_value;
2955 shndx = sym->st_shndx;
2956 if (shndx < elf_numsections (input_bfd))
2957 {
2958 hdr = elf_elfsections (input_bfd)[shndx];
2959 sym_sec = hdr->bfd_section;
2960 destination = (sym_value + irela->r_addend
2961 + sym_sec->output_offset
2962 + sym_sec->output_section->vma);
2963 }
2964 }
2965 else
2966 {
2967 /* It's an external symbol. */
2968 int e_indx;
2969
2970 e_indx = r_indx - symtab_hdr->sh_info;
2971 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2972
2973 while (hh->eh.root.type == bfd_link_hash_indirect
2974 || hh->eh.root.type == bfd_link_hash_warning)
2975 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2976
2977 if (hh->eh.root.type == bfd_link_hash_defined
2978 || hh->eh.root.type == bfd_link_hash_defweak)
2979 {
2980 sym_sec = hh->eh.root.u.def.section;
2981 sym_value = hh->eh.root.u.def.value;
2982 if (sym_sec->output_section != NULL)
2983 destination = (sym_value + irela->r_addend
2984 + sym_sec->output_offset
2985 + sym_sec->output_section->vma);
2986 }
2987 else if (hh->eh.root.type == bfd_link_hash_undefweak)
2988 {
2989 if (! bfd_link_pic (info))
2990 continue;
2991 }
2992 else if (hh->eh.root.type == bfd_link_hash_undefined)
2993 {
2994 if (! (info->unresolved_syms_in_objects == RM_IGNORE
2995 && (ELF_ST_VISIBILITY (hh->eh.other)
2996 == STV_DEFAULT)
2997 && hh->eh.type != STT_PARISC_MILLI))
2998 continue;
2999 }
3000 else
3001 {
3002 bfd_set_error (bfd_error_bad_value);
3003 goto error_ret_free_internal;
3004 }
3005 }
3006
3007 /* Determine what (if any) linker stub is needed. */
3008 stub_type = hppa_type_of_stub (section, irela, hh,
3009 destination, info);
3010 if (stub_type == hppa_stub_none)
3011 continue;
3012
3013 /* Support for grouping stub sections. */
3014 id_sec = htab->stub_group[section->id].link_sec;
3015
3016 /* Get the name of this stub. */
3017 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
3018 if (!stub_name)
3019 goto error_ret_free_internal;
3020
3021 hsh = hppa_stub_hash_lookup (&htab->bstab,
3022 stub_name,
3023 FALSE, FALSE);
3024 if (hsh != NULL)
3025 {
3026 /* The proper stub has already been created. */
3027 free (stub_name);
3028 continue;
3029 }
3030
3031 hsh = hppa_add_stub (stub_name, section, htab);
3032 if (hsh == NULL)
3033 {
3034 free (stub_name);
3035 goto error_ret_free_internal;
3036 }
3037
3038 hsh->target_value = sym_value;
3039 hsh->target_section = sym_sec;
3040 hsh->stub_type = stub_type;
3041 if (bfd_link_pic (info))
3042 {
3043 if (stub_type == hppa_stub_import)
3044 hsh->stub_type = hppa_stub_import_shared;
3045 else if (stub_type == hppa_stub_long_branch)
3046 hsh->stub_type = hppa_stub_long_branch_shared;
3047 }
3048 hsh->hh = hh;
3049 stub_changed = TRUE;
3050 }
3051
3052 /* We're done with the internal relocs, free them. */
3053 if (elf_section_data (section)->relocs == NULL)
3054 free (internal_relocs);
3055 }
3056 }
3057
3058 if (!stub_changed)
3059 break;
3060
3061 /* OK, we've added some stubs. Find out the new size of the
3062 stub sections. */
3063 for (stub_sec = htab->stub_bfd->sections;
3064 stub_sec != NULL;
3065 stub_sec = stub_sec->next)
3066 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
3067 stub_sec->size = 0;
3068
3069 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
3070
3071 /* Ask the linker to do its stuff. */
3072 (*htab->layout_sections_again) ();
3073 stub_changed = FALSE;
3074 }
3075
3076 free (htab->all_local_syms);
3077 return TRUE;
3078
3079 error_ret_free_local:
3080 free (htab->all_local_syms);
3081 return FALSE;
3082 }
3083
3084 /* For a final link, this function is called after we have sized the
3085 stubs to provide a value for __gp. */
3086
3087 bfd_boolean
3088 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3089 {
3090 struct bfd_link_hash_entry *h;
3091 asection *sec = NULL;
3092 bfd_vma gp_val = 0;
3093 struct elf32_hppa_link_hash_table *htab;
3094
3095 htab = hppa_link_hash_table (info);
3096 if (htab == NULL)
3097 return FALSE;
3098
3099 h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE);
3100
3101 if (h != NULL
3102 && (h->type == bfd_link_hash_defined
3103 || h->type == bfd_link_hash_defweak))
3104 {
3105 gp_val = h->u.def.value;
3106 sec = h->u.def.section;
3107 }
3108 else
3109 {
3110 asection *splt = bfd_get_section_by_name (abfd, ".plt");
3111 asection *sgot = bfd_get_section_by_name (abfd, ".got");
3112
3113 /* Choose to point our LTP at, in this order, one of .plt, .got,
3114 or .data, if these sections exist. In the case of choosing
3115 .plt try to make the LTP ideal for addressing anywhere in the
3116 .plt or .got with a 14 bit signed offset. Typically, the end
3117 of the .plt is the start of the .got, so choose .plt + 0x2000
3118 if either the .plt or .got is larger than 0x2000. If both
3119 the .plt and .got are smaller than 0x2000, choose the end of
3120 the .plt section. */
3121 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3122 ? NULL : splt;
3123 if (sec != NULL)
3124 {
3125 gp_val = sec->size;
3126 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3127 {
3128 gp_val = 0x2000;
3129 }
3130 }
3131 else
3132 {
3133 sec = sgot;
3134 if (sec != NULL)
3135 {
3136 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3137 {
3138 /* We know we don't have a .plt. If .got is large,
3139 offset our LTP. */
3140 if (sec->size > 0x2000)
3141 gp_val = 0x2000;
3142 }
3143 }
3144 else
3145 {
3146 /* No .plt or .got. Who cares what the LTP is? */
3147 sec = bfd_get_section_by_name (abfd, ".data");
3148 }
3149 }
3150
3151 if (h != NULL)
3152 {
3153 h->type = bfd_link_hash_defined;
3154 h->u.def.value = gp_val;
3155 if (sec != NULL)
3156 h->u.def.section = sec;
3157 else
3158 h->u.def.section = bfd_abs_section_ptr;
3159 }
3160 }
3161
3162 if (sec != NULL && sec->output_section != NULL)
3163 gp_val += sec->output_section->vma + sec->output_offset;
3164
3165 elf_gp (abfd) = gp_val;
3166 return TRUE;
3167 }
3168
3169 /* Build all the stubs associated with the current output file. The
3170 stubs are kept in a hash table attached to the main linker hash
3171 table. We also set up the .plt entries for statically linked PIC
3172 functions here. This function is called via hppaelf_finish in the
3173 linker. */
3174
3175 bfd_boolean
3176 elf32_hppa_build_stubs (struct bfd_link_info *info)
3177 {
3178 asection *stub_sec;
3179 struct bfd_hash_table *table;
3180 struct elf32_hppa_link_hash_table *htab;
3181
3182 htab = hppa_link_hash_table (info);
3183 if (htab == NULL)
3184 return FALSE;
3185
3186 for (stub_sec = htab->stub_bfd->sections;
3187 stub_sec != NULL;
3188 stub_sec = stub_sec->next)
3189 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
3190 && stub_sec->size != 0)
3191 {
3192 /* Allocate memory to hold the linker stubs. */
3193 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
3194 if (stub_sec->contents == NULL)
3195 return FALSE;
3196 stub_sec->size = 0;
3197 }
3198
3199 /* Build the stubs as directed by the stub hash table. */
3200 table = &htab->bstab;
3201 bfd_hash_traverse (table, hppa_build_one_stub, info);
3202
3203 return TRUE;
3204 }
3205
3206 /* Return the base vma address which should be subtracted from the real
3207 address when resolving a dtpoff relocation.
3208 This is PT_TLS segment p_vaddr. */
3209
3210 static bfd_vma
3211 dtpoff_base (struct bfd_link_info *info)
3212 {
3213 /* If tls_sec is NULL, we should have signalled an error already. */
3214 if (elf_hash_table (info)->tls_sec == NULL)
3215 return 0;
3216 return elf_hash_table (info)->tls_sec->vma;
3217 }
3218
3219 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3220
3221 static bfd_vma
3222 tpoff (struct bfd_link_info *info, bfd_vma address)
3223 {
3224 struct elf_link_hash_table *htab = elf_hash_table (info);
3225
3226 /* If tls_sec is NULL, we should have signalled an error already. */
3227 if (htab->tls_sec == NULL)
3228 return 0;
3229 /* hppa TLS ABI is variant I and static TLS block start just after
3230 tcbhead structure which has 2 pointer fields. */
3231 return (address - htab->tls_sec->vma
3232 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3233 }
3234
3235 /* Perform a final link. */
3236
3237 static bfd_boolean
3238 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3239 {
3240 struct stat buf;
3241
3242 /* Invoke the regular ELF linker to do all the work. */
3243 if (!bfd_elf_final_link (abfd, info))
3244 return FALSE;
3245
3246 /* If we're producing a final executable, sort the contents of the
3247 unwind section. */
3248 if (bfd_link_relocatable (info))
3249 return TRUE;
3250
3251 /* Do not attempt to sort non-regular files. This is here
3252 especially for configure scripts and kernel builds which run
3253 tests with "ld [...] -o /dev/null". */
3254 if (stat (abfd->filename, &buf) != 0
3255 || !S_ISREG(buf.st_mode))
3256 return TRUE;
3257
3258 return elf_hppa_sort_unwind (abfd);
3259 }
3260
3261 /* Record the lowest address for the data and text segments. */
3262
3263 static void
3264 hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3265 {
3266 struct elf32_hppa_link_hash_table *htab;
3267
3268 htab = (struct elf32_hppa_link_hash_table*) data;
3269 if (htab == NULL)
3270 return;
3271
3272 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3273 {
3274 bfd_vma value;
3275 Elf_Internal_Phdr *p;
3276
3277 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3278 BFD_ASSERT (p != NULL);
3279 value = p->p_vaddr;
3280
3281 if ((section->flags & SEC_READONLY) != 0)
3282 {
3283 if (value < htab->text_segment_base)
3284 htab->text_segment_base = value;
3285 }
3286 else
3287 {
3288 if (value < htab->data_segment_base)
3289 htab->data_segment_base = value;
3290 }
3291 }
3292 }
3293
3294 /* Perform a relocation as part of a final link. */
3295
3296 static bfd_reloc_status_type
3297 final_link_relocate (asection *input_section,
3298 bfd_byte *contents,
3299 const Elf_Internal_Rela *rela,
3300 bfd_vma value,
3301 struct elf32_hppa_link_hash_table *htab,
3302 asection *sym_sec,
3303 struct elf32_hppa_link_hash_entry *hh,
3304 struct bfd_link_info *info)
3305 {
3306 int insn;
3307 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3308 unsigned int orig_r_type = r_type;
3309 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3310 int r_format = howto->bitsize;
3311 enum hppa_reloc_field_selector_type_alt r_field;
3312 bfd *input_bfd = input_section->owner;
3313 bfd_vma offset = rela->r_offset;
3314 bfd_vma max_branch_offset = 0;
3315 bfd_byte *hit_data = contents + offset;
3316 bfd_signed_vma addend = rela->r_addend;
3317 bfd_vma location;
3318 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3319 int val;
3320
3321 if (r_type == R_PARISC_NONE)
3322 return bfd_reloc_ok;
3323
3324 insn = bfd_get_32 (input_bfd, hit_data);
3325
3326 /* Find out where we are and where we're going. */
3327 location = (offset +
3328 input_section->output_offset +
3329 input_section->output_section->vma);
3330
3331 /* If we are not building a shared library, convert DLTIND relocs to
3332 DPREL relocs. */
3333 if (!bfd_link_pic (info))
3334 {
3335 switch (r_type)
3336 {
3337 case R_PARISC_DLTIND21L:
3338 case R_PARISC_TLS_GD21L:
3339 case R_PARISC_TLS_LDM21L:
3340 case R_PARISC_TLS_IE21L:
3341 r_type = R_PARISC_DPREL21L;
3342 break;
3343
3344 case R_PARISC_DLTIND14R:
3345 case R_PARISC_TLS_GD14R:
3346 case R_PARISC_TLS_LDM14R:
3347 case R_PARISC_TLS_IE14R:
3348 r_type = R_PARISC_DPREL14R;
3349 break;
3350
3351 case R_PARISC_DLTIND14F:
3352 r_type = R_PARISC_DPREL14F;
3353 break;
3354 }
3355 }
3356
3357 switch (r_type)
3358 {
3359 case R_PARISC_PCREL12F:
3360 case R_PARISC_PCREL17F:
3361 case R_PARISC_PCREL22F:
3362 /* If this call should go via the plt, find the import stub in
3363 the stub hash. */
3364 if (sym_sec == NULL
3365 || sym_sec->output_section == NULL
3366 || (hh != NULL
3367 && hh->eh.plt.offset != (bfd_vma) -1
3368 && hh->eh.dynindx != -1
3369 && !hh->plabel
3370 && (bfd_link_pic (info)
3371 || !hh->eh.def_regular
3372 || hh->eh.root.type == bfd_link_hash_defweak)))
3373 {
3374 hsh = hppa_get_stub_entry (input_section, sym_sec,
3375 hh, rela, htab);
3376 if (hsh != NULL)
3377 {
3378 value = (hsh->stub_offset
3379 + hsh->stub_sec->output_offset
3380 + hsh->stub_sec->output_section->vma);
3381 addend = 0;
3382 }
3383 else if (sym_sec == NULL && hh != NULL
3384 && hh->eh.root.type == bfd_link_hash_undefweak)
3385 {
3386 /* It's OK if undefined weak. Calls to undefined weak
3387 symbols behave as if the "called" function
3388 immediately returns. We can thus call to a weak
3389 function without first checking whether the function
3390 is defined. */
3391 value = location;
3392 addend = 8;
3393 }
3394 else
3395 return bfd_reloc_undefined;
3396 }
3397 /* Fall thru. */
3398
3399 case R_PARISC_PCREL21L:
3400 case R_PARISC_PCREL17C:
3401 case R_PARISC_PCREL17R:
3402 case R_PARISC_PCREL14R:
3403 case R_PARISC_PCREL14F:
3404 case R_PARISC_PCREL32:
3405 /* Make it a pc relative offset. */
3406 value -= location;
3407 addend -= 8;
3408 break;
3409
3410 case R_PARISC_DPREL21L:
3411 case R_PARISC_DPREL14R:
3412 case R_PARISC_DPREL14F:
3413 /* Convert instructions that use the linkage table pointer (r19) to
3414 instructions that use the global data pointer (dp). This is the
3415 most efficient way of using PIC code in an incomplete executable,
3416 but the user must follow the standard runtime conventions for
3417 accessing data for this to work. */
3418 if (orig_r_type != r_type)
3419 {
3420 if (r_type == R_PARISC_DPREL21L)
3421 {
3422 /* GCC sometimes uses a register other than r19 for the
3423 operation, so we must convert any addil instruction
3424 that uses this relocation. */
3425 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3426 insn = ADDIL_DP;
3427 else
3428 /* We must have a ldil instruction. It's too hard to find
3429 and convert the associated add instruction, so issue an
3430 error. */
3431 _bfd_error_handler
3432 /* xgettext:c-format */
3433 (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3434 input_bfd,
3435 input_section,
3436 (long) offset,
3437 howto->name,
3438 insn);
3439 }
3440 else if (r_type == R_PARISC_DPREL14F)
3441 {
3442 /* This must be a format 1 load/store. Change the base
3443 register to dp. */
3444 insn = (insn & 0xfc1ffff) | (27 << 21);
3445 }
3446 }
3447
3448 /* For all the DP relative relocations, we need to examine the symbol's
3449 section. If it has no section or if it's a code section, then
3450 "data pointer relative" makes no sense. In that case we don't
3451 adjust the "value", and for 21 bit addil instructions, we change the
3452 source addend register from %dp to %r0. This situation commonly
3453 arises for undefined weak symbols and when a variable's "constness"
3454 is declared differently from the way the variable is defined. For
3455 instance: "extern int foo" with foo defined as "const int foo". */
3456 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3457 {
3458 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3459 == (((int) OP_ADDIL << 26) | (27 << 21)))
3460 {
3461 insn &= ~ (0x1f << 21);
3462 }
3463 /* Now try to make things easy for the dynamic linker. */
3464
3465 break;
3466 }
3467 /* Fall thru. */
3468
3469 case R_PARISC_DLTIND21L:
3470 case R_PARISC_DLTIND14R:
3471 case R_PARISC_DLTIND14F:
3472 case R_PARISC_TLS_GD21L:
3473 case R_PARISC_TLS_LDM21L:
3474 case R_PARISC_TLS_IE21L:
3475 case R_PARISC_TLS_GD14R:
3476 case R_PARISC_TLS_LDM14R:
3477 case R_PARISC_TLS_IE14R:
3478 value -= elf_gp (input_section->output_section->owner);
3479 break;
3480
3481 case R_PARISC_SEGREL32:
3482 if ((sym_sec->flags & SEC_CODE) != 0)
3483 value -= htab->text_segment_base;
3484 else
3485 value -= htab->data_segment_base;
3486 break;
3487
3488 default:
3489 break;
3490 }
3491
3492 switch (r_type)
3493 {
3494 case R_PARISC_DIR32:
3495 case R_PARISC_DIR14F:
3496 case R_PARISC_DIR17F:
3497 case R_PARISC_PCREL17C:
3498 case R_PARISC_PCREL14F:
3499 case R_PARISC_PCREL32:
3500 case R_PARISC_DPREL14F:
3501 case R_PARISC_PLABEL32:
3502 case R_PARISC_DLTIND14F:
3503 case R_PARISC_SEGBASE:
3504 case R_PARISC_SEGREL32:
3505 case R_PARISC_TLS_DTPMOD32:
3506 case R_PARISC_TLS_DTPOFF32:
3507 case R_PARISC_TLS_TPREL32:
3508 r_field = e_fsel;
3509 break;
3510
3511 case R_PARISC_DLTIND21L:
3512 case R_PARISC_PCREL21L:
3513 case R_PARISC_PLABEL21L:
3514 r_field = e_lsel;
3515 break;
3516
3517 case R_PARISC_DIR21L:
3518 case R_PARISC_DPREL21L:
3519 case R_PARISC_TLS_GD21L:
3520 case R_PARISC_TLS_LDM21L:
3521 case R_PARISC_TLS_LDO21L:
3522 case R_PARISC_TLS_IE21L:
3523 case R_PARISC_TLS_LE21L:
3524 r_field = e_lrsel;
3525 break;
3526
3527 case R_PARISC_PCREL17R:
3528 case R_PARISC_PCREL14R:
3529 case R_PARISC_PLABEL14R:
3530 case R_PARISC_DLTIND14R:
3531 r_field = e_rsel;
3532 break;
3533
3534 case R_PARISC_DIR17R:
3535 case R_PARISC_DIR14R:
3536 case R_PARISC_DPREL14R:
3537 case R_PARISC_TLS_GD14R:
3538 case R_PARISC_TLS_LDM14R:
3539 case R_PARISC_TLS_LDO14R:
3540 case R_PARISC_TLS_IE14R:
3541 case R_PARISC_TLS_LE14R:
3542 r_field = e_rrsel;
3543 break;
3544
3545 case R_PARISC_PCREL12F:
3546 case R_PARISC_PCREL17F:
3547 case R_PARISC_PCREL22F:
3548 r_field = e_fsel;
3549
3550 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3551 {
3552 max_branch_offset = (1 << (17-1)) << 2;
3553 }
3554 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3555 {
3556 max_branch_offset = (1 << (12-1)) << 2;
3557 }
3558 else
3559 {
3560 max_branch_offset = (1 << (22-1)) << 2;
3561 }
3562
3563 /* sym_sec is NULL on undefined weak syms or when shared on
3564 undefined syms. We've already checked for a stub for the
3565 shared undefined case. */
3566 if (sym_sec == NULL)
3567 break;
3568
3569 /* If the branch is out of reach, then redirect the
3570 call to the local stub for this function. */
3571 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3572 {
3573 hsh = hppa_get_stub_entry (input_section, sym_sec,
3574 hh, rela, htab);
3575 if (hsh == NULL)
3576 return bfd_reloc_undefined;
3577
3578 /* Munge up the value and addend so that we call the stub
3579 rather than the procedure directly. */
3580 value = (hsh->stub_offset
3581 + hsh->stub_sec->output_offset
3582 + hsh->stub_sec->output_section->vma
3583 - location);
3584 addend = -8;
3585 }
3586 break;
3587
3588 /* Something we don't know how to handle. */
3589 default:
3590 return bfd_reloc_notsupported;
3591 }
3592
3593 /* Make sure we can reach the stub. */
3594 if (max_branch_offset != 0
3595 && value + addend + max_branch_offset >= 2*max_branch_offset)
3596 {
3597 _bfd_error_handler
3598 /* xgettext:c-format */
3599 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3600 input_bfd,
3601 input_section,
3602 (long) offset,
3603 hsh->bh_root.string);
3604 bfd_set_error (bfd_error_bad_value);
3605 return bfd_reloc_notsupported;
3606 }
3607
3608 val = hppa_field_adjust (value, addend, r_field);
3609
3610 switch (r_type)
3611 {
3612 case R_PARISC_PCREL12F:
3613 case R_PARISC_PCREL17C:
3614 case R_PARISC_PCREL17F:
3615 case R_PARISC_PCREL17R:
3616 case R_PARISC_PCREL22F:
3617 case R_PARISC_DIR17F:
3618 case R_PARISC_DIR17R:
3619 /* This is a branch. Divide the offset by four.
3620 Note that we need to decide whether it's a branch or
3621 otherwise by inspecting the reloc. Inspecting insn won't
3622 work as insn might be from a .word directive. */
3623 val >>= 2;
3624 break;
3625
3626 default:
3627 break;
3628 }
3629
3630 insn = hppa_rebuild_insn (insn, val, r_format);
3631
3632 /* Update the instruction word. */
3633 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3634 return bfd_reloc_ok;
3635 }
3636
3637 /* Relocate an HPPA ELF section. */
3638
3639 static bfd_boolean
3640 elf32_hppa_relocate_section (bfd *output_bfd,
3641 struct bfd_link_info *info,
3642 bfd *input_bfd,
3643 asection *input_section,
3644 bfd_byte *contents,
3645 Elf_Internal_Rela *relocs,
3646 Elf_Internal_Sym *local_syms,
3647 asection **local_sections)
3648 {
3649 bfd_vma *local_got_offsets;
3650 struct elf32_hppa_link_hash_table *htab;
3651 Elf_Internal_Shdr *symtab_hdr;
3652 Elf_Internal_Rela *rela;
3653 Elf_Internal_Rela *relend;
3654
3655 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3656
3657 htab = hppa_link_hash_table (info);
3658 if (htab == NULL)
3659 return FALSE;
3660
3661 local_got_offsets = elf_local_got_offsets (input_bfd);
3662
3663 rela = relocs;
3664 relend = relocs + input_section->reloc_count;
3665 for (; rela < relend; rela++)
3666 {
3667 unsigned int r_type;
3668 reloc_howto_type *howto;
3669 unsigned int r_symndx;
3670 struct elf32_hppa_link_hash_entry *hh;
3671 Elf_Internal_Sym *sym;
3672 asection *sym_sec;
3673 bfd_vma relocation;
3674 bfd_reloc_status_type rstatus;
3675 const char *sym_name;
3676 bfd_boolean plabel;
3677 bfd_boolean warned_undef;
3678
3679 r_type = ELF32_R_TYPE (rela->r_info);
3680 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3681 {
3682 bfd_set_error (bfd_error_bad_value);
3683 return FALSE;
3684 }
3685 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3686 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3687 continue;
3688
3689 r_symndx = ELF32_R_SYM (rela->r_info);
3690 hh = NULL;
3691 sym = NULL;
3692 sym_sec = NULL;
3693 warned_undef = FALSE;
3694 if (r_symndx < symtab_hdr->sh_info)
3695 {
3696 /* This is a local symbol, h defaults to NULL. */
3697 sym = local_syms + r_symndx;
3698 sym_sec = local_sections[r_symndx];
3699 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3700 }
3701 else
3702 {
3703 struct elf_link_hash_entry *eh;
3704 bfd_boolean unresolved_reloc, ignored;
3705 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3706
3707 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3708 r_symndx, symtab_hdr, sym_hashes,
3709 eh, sym_sec, relocation,
3710 unresolved_reloc, warned_undef,
3711 ignored);
3712
3713 if (!bfd_link_relocatable (info)
3714 && relocation == 0
3715 && eh->root.type != bfd_link_hash_defined
3716 && eh->root.type != bfd_link_hash_defweak
3717 && eh->root.type != bfd_link_hash_undefweak)
3718 {
3719 if (info->unresolved_syms_in_objects == RM_IGNORE
3720 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3721 && eh->type == STT_PARISC_MILLI)
3722 {
3723 (*info->callbacks->undefined_symbol)
3724 (info, eh_name (eh), input_bfd,
3725 input_section, rela->r_offset, FALSE);
3726 warned_undef = TRUE;
3727 }
3728 }
3729 hh = hppa_elf_hash_entry (eh);
3730 }
3731
3732 if (sym_sec != NULL && discarded_section (sym_sec))
3733 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3734 rela, 1, relend,
3735 elf_hppa_howto_table + r_type, 0,
3736 contents);
3737
3738 if (bfd_link_relocatable (info))
3739 continue;
3740
3741 /* Do any required modifications to the relocation value, and
3742 determine what types of dynamic info we need to output, if
3743 any. */
3744 plabel = 0;
3745 switch (r_type)
3746 {
3747 case R_PARISC_DLTIND14F:
3748 case R_PARISC_DLTIND14R:
3749 case R_PARISC_DLTIND21L:
3750 {
3751 bfd_vma off;
3752 bfd_boolean do_got = 0;
3753
3754 /* Relocation is to the entry for this symbol in the
3755 global offset table. */
3756 if (hh != NULL)
3757 {
3758 bfd_boolean dyn;
3759
3760 off = hh->eh.got.offset;
3761 dyn = htab->etab.dynamic_sections_created;
3762 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
3763 bfd_link_pic (info),
3764 &hh->eh))
3765 {
3766 /* If we aren't going to call finish_dynamic_symbol,
3767 then we need to handle initialisation of the .got
3768 entry and create needed relocs here. Since the
3769 offset must always be a multiple of 4, we use the
3770 least significant bit to record whether we have
3771 initialised it already. */
3772 if ((off & 1) != 0)
3773 off &= ~1;
3774 else
3775 {
3776 hh->eh.got.offset |= 1;
3777 do_got = 1;
3778 }
3779 }
3780 }
3781 else
3782 {
3783 /* Local symbol case. */
3784 if (local_got_offsets == NULL)
3785 abort ();
3786
3787 off = local_got_offsets[r_symndx];
3788
3789 /* The offset must always be a multiple of 4. We use
3790 the least significant bit to record whether we have
3791 already generated the necessary reloc. */
3792 if ((off & 1) != 0)
3793 off &= ~1;
3794 else
3795 {
3796 local_got_offsets[r_symndx] |= 1;
3797 do_got = 1;
3798 }
3799 }
3800
3801 if (do_got)
3802 {
3803 if (bfd_link_pic (info))
3804 {
3805 /* Output a dynamic relocation for this GOT entry.
3806 In this case it is relative to the base of the
3807 object because the symbol index is zero. */
3808 Elf_Internal_Rela outrel;
3809 bfd_byte *loc;
3810 asection *sec = htab->etab.srelgot;
3811
3812 outrel.r_offset = (off
3813 + htab->etab.sgot->output_offset
3814 + htab->etab.sgot->output_section->vma);
3815 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3816 outrel.r_addend = relocation;
3817 loc = sec->contents;
3818 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3819 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3820 }
3821 else
3822 bfd_put_32 (output_bfd, relocation,
3823 htab->etab.sgot->contents + off);
3824 }
3825
3826 if (off >= (bfd_vma) -2)
3827 abort ();
3828
3829 /* Add the base of the GOT to the relocation value. */
3830 relocation = (off
3831 + htab->etab.sgot->output_offset
3832 + htab->etab.sgot->output_section->vma);
3833 }
3834 break;
3835
3836 case R_PARISC_SEGREL32:
3837 /* If this is the first SEGREL relocation, then initialize
3838 the segment base values. */
3839 if (htab->text_segment_base == (bfd_vma) -1)
3840 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3841 break;
3842
3843 case R_PARISC_PLABEL14R:
3844 case R_PARISC_PLABEL21L:
3845 case R_PARISC_PLABEL32:
3846 if (htab->etab.dynamic_sections_created)
3847 {
3848 bfd_vma off;
3849 bfd_boolean do_plt = 0;
3850 /* If we have a global symbol with a PLT slot, then
3851 redirect this relocation to it. */
3852 if (hh != NULL)
3853 {
3854 off = hh->eh.plt.offset;
3855 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1,
3856 bfd_link_pic (info),
3857 &hh->eh))
3858 {
3859 /* In a non-shared link, adjust_dynamic_symbols
3860 isn't called for symbols forced local. We
3861 need to write out the plt entry here. */
3862 if ((off & 1) != 0)
3863 off &= ~1;
3864 else
3865 {
3866 hh->eh.plt.offset |= 1;
3867 do_plt = 1;
3868 }
3869 }
3870 }
3871 else
3872 {
3873 bfd_vma *local_plt_offsets;
3874
3875 if (local_got_offsets == NULL)
3876 abort ();
3877
3878 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3879 off = local_plt_offsets[r_symndx];
3880
3881 /* As for the local .got entry case, we use the last
3882 bit to record whether we've already initialised
3883 this local .plt entry. */
3884 if ((off & 1) != 0)
3885 off &= ~1;
3886 else
3887 {
3888 local_plt_offsets[r_symndx] |= 1;
3889 do_plt = 1;
3890 }
3891 }
3892
3893 if (do_plt)
3894 {
3895 if (bfd_link_pic (info))
3896 {
3897 /* Output a dynamic IPLT relocation for this
3898 PLT entry. */
3899 Elf_Internal_Rela outrel;
3900 bfd_byte *loc;
3901 asection *s = htab->etab.srelplt;
3902
3903 outrel.r_offset = (off
3904 + htab->etab.splt->output_offset
3905 + htab->etab.splt->output_section->vma);
3906 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3907 outrel.r_addend = relocation;
3908 loc = s->contents;
3909 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3910 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3911 }
3912 else
3913 {
3914 bfd_put_32 (output_bfd,
3915 relocation,
3916 htab->etab.splt->contents + off);
3917 bfd_put_32 (output_bfd,
3918 elf_gp (htab->etab.splt->output_section->owner),
3919 htab->etab.splt->contents + off + 4);
3920 }
3921 }
3922
3923 if (off >= (bfd_vma) -2)
3924 abort ();
3925
3926 /* PLABELs contain function pointers. Relocation is to
3927 the entry for the function in the .plt. The magic +2
3928 offset signals to $$dyncall that the function pointer
3929 is in the .plt and thus has a gp pointer too.
3930 Exception: Undefined PLABELs should have a value of
3931 zero. */
3932 if (hh == NULL
3933 || (hh->eh.root.type != bfd_link_hash_undefweak
3934 && hh->eh.root.type != bfd_link_hash_undefined))
3935 {
3936 relocation = (off
3937 + htab->etab.splt->output_offset
3938 + htab->etab.splt->output_section->vma
3939 + 2);
3940 }
3941 plabel = 1;
3942 }
3943 /* Fall through. */
3944
3945 case R_PARISC_DIR17F:
3946 case R_PARISC_DIR17R:
3947 case R_PARISC_DIR14F:
3948 case R_PARISC_DIR14R:
3949 case R_PARISC_DIR21L:
3950 case R_PARISC_DPREL14F:
3951 case R_PARISC_DPREL14R:
3952 case R_PARISC_DPREL21L:
3953 case R_PARISC_DIR32:
3954 if ((input_section->flags & SEC_ALLOC) == 0)
3955 break;
3956
3957 /* The reloc types handled here and this conditional
3958 expression must match the code in ..check_relocs and
3959 allocate_dynrelocs. ie. We need exactly the same condition
3960 as in ..check_relocs, with some extra conditions (dynindx
3961 test in this case) to cater for relocs removed by
3962 allocate_dynrelocs. If you squint, the non-shared test
3963 here does indeed match the one in ..check_relocs, the
3964 difference being that here we test DEF_DYNAMIC as well as
3965 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3966 which is why we can't use just that test here.
3967 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3968 there all files have not been loaded. */
3969 if ((bfd_link_pic (info)
3970 && (hh == NULL
3971 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
3972 || hh->eh.root.type != bfd_link_hash_undefweak)
3973 && (IS_ABSOLUTE_RELOC (r_type)
3974 || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
3975 || (!bfd_link_pic (info)
3976 && hh != NULL
3977 && hh->eh.dynindx != -1
3978 && !hh->eh.non_got_ref
3979 && ((ELIMINATE_COPY_RELOCS
3980 && hh->eh.def_dynamic
3981 && !hh->eh.def_regular)
3982 || hh->eh.root.type == bfd_link_hash_undefweak
3983 || hh->eh.root.type == bfd_link_hash_undefined)))
3984 {
3985 Elf_Internal_Rela outrel;
3986 bfd_boolean skip;
3987 asection *sreloc;
3988 bfd_byte *loc;
3989
3990 /* When generating a shared object, these relocations
3991 are copied into the output file to be resolved at run
3992 time. */
3993
3994 outrel.r_addend = rela->r_addend;
3995 outrel.r_offset =
3996 _bfd_elf_section_offset (output_bfd, info, input_section,
3997 rela->r_offset);
3998 skip = (outrel.r_offset == (bfd_vma) -1
3999 || outrel.r_offset == (bfd_vma) -2);
4000 outrel.r_offset += (input_section->output_offset
4001 + input_section->output_section->vma);
4002
4003 if (skip)
4004 {
4005 memset (&outrel, 0, sizeof (outrel));
4006 }
4007 else if (hh != NULL
4008 && hh->eh.dynindx != -1
4009 && (plabel
4010 || !IS_ABSOLUTE_RELOC (r_type)
4011 || !bfd_link_pic (info)
4012 || !SYMBOLIC_BIND (info, &hh->eh)
4013 || !hh->eh.def_regular))
4014 {
4015 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
4016 }
4017 else /* It's a local symbol, or one marked to become local. */
4018 {
4019 int indx = 0;
4020
4021 /* Add the absolute offset of the symbol. */
4022 outrel.r_addend += relocation;
4023
4024 /* Global plabels need to be processed by the
4025 dynamic linker so that functions have at most one
4026 fptr. For this reason, we need to differentiate
4027 between global and local plabels, which we do by
4028 providing the function symbol for a global plabel
4029 reloc, and no symbol for local plabels. */
4030 if (! plabel
4031 && sym_sec != NULL
4032 && sym_sec->output_section != NULL
4033 && ! bfd_is_abs_section (sym_sec))
4034 {
4035 asection *osec;
4036
4037 osec = sym_sec->output_section;
4038 indx = elf_section_data (osec)->dynindx;
4039 if (indx == 0)
4040 {
4041 osec = htab->etab.text_index_section;
4042 indx = elf_section_data (osec)->dynindx;
4043 }
4044 BFD_ASSERT (indx != 0);
4045
4046 /* We are turning this relocation into one
4047 against a section symbol, so subtract out the
4048 output section's address but not the offset
4049 of the input section in the output section. */
4050 outrel.r_addend -= osec->vma;
4051 }
4052
4053 outrel.r_info = ELF32_R_INFO (indx, r_type);
4054 }
4055 sreloc = elf_section_data (input_section)->sreloc;
4056 if (sreloc == NULL)
4057 abort ();
4058
4059 loc = sreloc->contents;
4060 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4061 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4062 }
4063 break;
4064
4065 case R_PARISC_TLS_LDM21L:
4066 case R_PARISC_TLS_LDM14R:
4067 {
4068 bfd_vma off;
4069
4070 off = htab->tls_ldm_got.offset;
4071 if (off & 1)
4072 off &= ~1;
4073 else
4074 {
4075 Elf_Internal_Rela outrel;
4076 bfd_byte *loc;
4077
4078 outrel.r_offset = (off
4079 + htab->etab.sgot->output_section->vma
4080 + htab->etab.sgot->output_offset);
4081 outrel.r_addend = 0;
4082 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
4083 loc = htab->etab.srelgot->contents;
4084 loc += htab->etab.srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4085
4086 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4087 htab->tls_ldm_got.offset |= 1;
4088 }
4089
4090 /* Add the base of the GOT to the relocation value. */
4091 relocation = (off
4092 + htab->etab.sgot->output_offset
4093 + htab->etab.sgot->output_section->vma);
4094
4095 break;
4096 }
4097
4098 case R_PARISC_TLS_LDO21L:
4099 case R_PARISC_TLS_LDO14R:
4100 relocation -= dtpoff_base (info);
4101 break;
4102
4103 case R_PARISC_TLS_GD21L:
4104 case R_PARISC_TLS_GD14R:
4105 case R_PARISC_TLS_IE21L:
4106 case R_PARISC_TLS_IE14R:
4107 {
4108 bfd_vma off;
4109 int indx;
4110 char tls_type;
4111
4112 indx = 0;
4113 if (hh != NULL)
4114 {
4115 bfd_boolean dyn;
4116 dyn = htab->etab.dynamic_sections_created;
4117
4118 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
4119 bfd_link_pic (info),
4120 &hh->eh)
4121 && (!bfd_link_pic (info)
4122 || !SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4123 {
4124 indx = hh->eh.dynindx;
4125 }
4126 off = hh->eh.got.offset;
4127 tls_type = hh->tls_type;
4128 }
4129 else
4130 {
4131 off = local_got_offsets[r_symndx];
4132 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4133 }
4134
4135 if (tls_type == GOT_UNKNOWN)
4136 abort ();
4137
4138 if ((off & 1) != 0)
4139 off &= ~1;
4140 else
4141 {
4142 bfd_boolean need_relocs = FALSE;
4143 Elf_Internal_Rela outrel;
4144 bfd_byte *loc = NULL;
4145 int cur_off = off;
4146
4147 /* The GOT entries have not been initialized yet. Do it
4148 now, and emit any relocations. If both an IE GOT and a
4149 GD GOT are necessary, we emit the GD first. */
4150
4151 if ((bfd_link_pic (info) || indx != 0)
4152 && (hh == NULL
4153 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
4154 || hh->eh.root.type != bfd_link_hash_undefweak))
4155 {
4156 need_relocs = TRUE;
4157 loc = htab->etab.srelgot->contents;
4158 /* FIXME (CAO): Should this be reloc_count++ ? */
4159 loc += htab->etab.srelgot->reloc_count * sizeof (Elf32_External_Rela);
4160 }
4161
4162 if (tls_type & GOT_TLS_GD)
4163 {
4164 if (need_relocs)
4165 {
4166 outrel.r_offset = (cur_off
4167 + htab->etab.sgot->output_section->vma
4168 + htab->etab.sgot->output_offset);
4169 outrel.r_info = ELF32_R_INFO (indx,R_PARISC_TLS_DTPMOD32);
4170 outrel.r_addend = 0;
4171 bfd_put_32 (output_bfd, 0, htab->etab.sgot->contents + cur_off);
4172 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4173 htab->etab.srelgot->reloc_count++;
4174 loc += sizeof (Elf32_External_Rela);
4175
4176 if (indx == 0)
4177 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4178 htab->etab.sgot->contents + cur_off + 4);
4179 else
4180 {
4181 bfd_put_32 (output_bfd, 0,
4182 htab->etab.sgot->contents + cur_off + 4);
4183 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4184 outrel.r_offset += 4;
4185 bfd_elf32_swap_reloca_out (output_bfd, &outrel,loc);
4186 htab->etab.srelgot->reloc_count++;
4187 loc += sizeof (Elf32_External_Rela);
4188 }
4189 }
4190 else
4191 {
4192 /* If we are not emitting relocations for a
4193 general dynamic reference, then we must be in a
4194 static link or an executable link with the
4195 symbol binding locally. Mark it as belonging
4196 to module 1, the executable. */
4197 bfd_put_32 (output_bfd, 1,
4198 htab->etab.sgot->contents + cur_off);
4199 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4200 htab->etab.sgot->contents + cur_off + 4);
4201 }
4202
4203
4204 cur_off += 8;
4205 }
4206
4207 if (tls_type & GOT_TLS_IE)
4208 {
4209 if (need_relocs)
4210 {
4211 outrel.r_offset = (cur_off
4212 + htab->etab.sgot->output_section->vma
4213 + htab->etab.sgot->output_offset);
4214 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_TPREL32);
4215
4216 if (indx == 0)
4217 outrel.r_addend = relocation - dtpoff_base (info);
4218 else
4219 outrel.r_addend = 0;
4220
4221 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4222 htab->etab.srelgot->reloc_count++;
4223 loc += sizeof (Elf32_External_Rela);
4224 }
4225 else
4226 bfd_put_32 (output_bfd, tpoff (info, relocation),
4227 htab->etab.sgot->contents + cur_off);
4228
4229 cur_off += 4;
4230 }
4231
4232 if (hh != NULL)
4233 hh->eh.got.offset |= 1;
4234 else
4235 local_got_offsets[r_symndx] |= 1;
4236 }
4237
4238 if ((tls_type & GOT_TLS_GD)
4239 && r_type != R_PARISC_TLS_GD21L
4240 && r_type != R_PARISC_TLS_GD14R)
4241 off += 2 * GOT_ENTRY_SIZE;
4242
4243 /* Add the base of the GOT to the relocation value. */
4244 relocation = (off
4245 + htab->etab.sgot->output_offset
4246 + htab->etab.sgot->output_section->vma);
4247
4248 break;
4249 }
4250
4251 case R_PARISC_TLS_LE21L:
4252 case R_PARISC_TLS_LE14R:
4253 {
4254 relocation = tpoff (info, relocation);
4255 break;
4256 }
4257 break;
4258
4259 default:
4260 break;
4261 }
4262
4263 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4264 htab, sym_sec, hh, info);
4265
4266 if (rstatus == bfd_reloc_ok)
4267 continue;
4268
4269 if (hh != NULL)
4270 sym_name = hh_name (hh);
4271 else
4272 {
4273 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4274 symtab_hdr->sh_link,
4275 sym->st_name);
4276 if (sym_name == NULL)
4277 return FALSE;
4278 if (*sym_name == '\0')
4279 sym_name = bfd_section_name (input_bfd, sym_sec);
4280 }
4281
4282 howto = elf_hppa_howto_table + r_type;
4283
4284 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4285 {
4286 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4287 {
4288 _bfd_error_handler
4289 /* xgettext:c-format */
4290 (_("%B(%A+0x%lx): cannot handle %s for %s"),
4291 input_bfd,
4292 input_section,
4293 (long) rela->r_offset,
4294 howto->name,
4295 sym_name);
4296 bfd_set_error (bfd_error_bad_value);
4297 return FALSE;
4298 }
4299 }
4300 else
4301 (*info->callbacks->reloc_overflow)
4302 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4303 (bfd_vma) 0, input_bfd, input_section, rela->r_offset);
4304 }
4305
4306 return TRUE;
4307 }
4308
4309 /* Finish up dynamic symbol handling. We set the contents of various
4310 dynamic sections here. */
4311
4312 static bfd_boolean
4313 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4314 struct bfd_link_info *info,
4315 struct elf_link_hash_entry *eh,
4316 Elf_Internal_Sym *sym)
4317 {
4318 struct elf32_hppa_link_hash_table *htab;
4319 Elf_Internal_Rela rela;
4320 bfd_byte *loc;
4321
4322 htab = hppa_link_hash_table (info);
4323 if (htab == NULL)
4324 return FALSE;
4325
4326 if (eh->plt.offset != (bfd_vma) -1)
4327 {
4328 bfd_vma value;
4329
4330 if (eh->plt.offset & 1)
4331 abort ();
4332
4333 /* This symbol has an entry in the procedure linkage table. Set
4334 it up.
4335
4336 The format of a plt entry is
4337 <funcaddr>
4338 <__gp>
4339 */
4340 value = 0;
4341 if (eh->root.type == bfd_link_hash_defined
4342 || eh->root.type == bfd_link_hash_defweak)
4343 {
4344 value = eh->root.u.def.value;
4345 if (eh->root.u.def.section->output_section != NULL)
4346 value += (eh->root.u.def.section->output_offset
4347 + eh->root.u.def.section->output_section->vma);
4348 }
4349
4350 /* Create a dynamic IPLT relocation for this entry. */
4351 rela.r_offset = (eh->plt.offset
4352 + htab->etab.splt->output_offset
4353 + htab->etab.splt->output_section->vma);
4354 if (eh->dynindx != -1)
4355 {
4356 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4357 rela.r_addend = 0;
4358 }
4359 else
4360 {
4361 /* This symbol has been marked to become local, and is
4362 used by a plabel so must be kept in the .plt. */
4363 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4364 rela.r_addend = value;
4365 }
4366
4367 loc = htab->etab.srelplt->contents;
4368 loc += htab->etab.srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4369 bfd_elf32_swap_reloca_out (htab->etab.splt->output_section->owner, &rela, loc);
4370
4371 if (!eh->def_regular)
4372 {
4373 /* Mark the symbol as undefined, rather than as defined in
4374 the .plt section. Leave the value alone. */
4375 sym->st_shndx = SHN_UNDEF;
4376 }
4377 }
4378
4379 if (eh->got.offset != (bfd_vma) -1
4380 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_GD) == 0
4381 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_IE) == 0)
4382 {
4383 /* This symbol has an entry in the global offset table. Set it
4384 up. */
4385
4386 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4387 + htab->etab.sgot->output_offset
4388 + htab->etab.sgot->output_section->vma);
4389
4390 /* If this is a -Bsymbolic link and the symbol is defined
4391 locally or was forced to be local because of a version file,
4392 we just want to emit a RELATIVE reloc. The entry in the
4393 global offset table will already have been initialized in the
4394 relocate_section function. */
4395 if (bfd_link_pic (info)
4396 && (SYMBOLIC_BIND (info, eh) || eh->dynindx == -1)
4397 && eh->def_regular)
4398 {
4399 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4400 rela.r_addend = (eh->root.u.def.value
4401 + eh->root.u.def.section->output_offset
4402 + eh->root.u.def.section->output_section->vma);
4403 }
4404 else
4405 {
4406 if ((eh->got.offset & 1) != 0)
4407 abort ();
4408
4409 bfd_put_32 (output_bfd, 0, htab->etab.sgot->contents + (eh->got.offset & ~1));
4410 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4411 rela.r_addend = 0;
4412 }
4413
4414 loc = htab->etab.srelgot->contents;
4415 loc += htab->etab.srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4416 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4417 }
4418
4419 if (eh->needs_copy)
4420 {
4421 asection *sec;
4422
4423 /* This symbol needs a copy reloc. Set it up. */
4424
4425 if (! (eh->dynindx != -1
4426 && (eh->root.type == bfd_link_hash_defined
4427 || eh->root.type == bfd_link_hash_defweak)))
4428 abort ();
4429
4430 rela.r_offset = (eh->root.u.def.value
4431 + eh->root.u.def.section->output_offset
4432 + eh->root.u.def.section->output_section->vma);
4433 rela.r_addend = 0;
4434 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4435 if (eh->root.u.def.section == htab->etab.sdynrelro)
4436 sec = htab->etab.sreldynrelro;
4437 else
4438 sec = htab->etab.srelbss;
4439 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4440 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4441 }
4442
4443 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4444 if (eh == htab->etab.hdynamic || eh == htab->etab.hgot)
4445 {
4446 sym->st_shndx = SHN_ABS;
4447 }
4448
4449 return TRUE;
4450 }
4451
4452 /* Used to decide how to sort relocs in an optimal manner for the
4453 dynamic linker, before writing them out. */
4454
4455 static enum elf_reloc_type_class
4456 elf32_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4457 const asection *rel_sec ATTRIBUTE_UNUSED,
4458 const Elf_Internal_Rela *rela)
4459 {
4460 /* Handle TLS relocs first; we don't want them to be marked
4461 relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)"
4462 check below. */
4463 switch ((int) ELF32_R_TYPE (rela->r_info))
4464 {
4465 case R_PARISC_TLS_DTPMOD32:
4466 case R_PARISC_TLS_DTPOFF32:
4467 case R_PARISC_TLS_TPREL32:
4468 return reloc_class_normal;
4469 }
4470
4471 if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)
4472 return reloc_class_relative;
4473
4474 switch ((int) ELF32_R_TYPE (rela->r_info))
4475 {
4476 case R_PARISC_IPLT:
4477 return reloc_class_plt;
4478 case R_PARISC_COPY:
4479 return reloc_class_copy;
4480 default:
4481 return reloc_class_normal;
4482 }
4483 }
4484
4485 /* Finish up the dynamic sections. */
4486
4487 static bfd_boolean
4488 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4489 struct bfd_link_info *info)
4490 {
4491 bfd *dynobj;
4492 struct elf32_hppa_link_hash_table *htab;
4493 asection *sdyn;
4494 asection * sgot;
4495
4496 htab = hppa_link_hash_table (info);
4497 if (htab == NULL)
4498 return FALSE;
4499
4500 dynobj = htab->etab.dynobj;
4501
4502 sgot = htab->etab.sgot;
4503 /* A broken linker script might have discarded the dynamic sections.
4504 Catch this here so that we do not seg-fault later on. */
4505 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
4506 return FALSE;
4507
4508 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4509
4510 if (htab->etab.dynamic_sections_created)
4511 {
4512 Elf32_External_Dyn *dyncon, *dynconend;
4513
4514 if (sdyn == NULL)
4515 abort ();
4516
4517 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4518 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4519 for (; dyncon < dynconend; dyncon++)
4520 {
4521 Elf_Internal_Dyn dyn;
4522 asection *s;
4523
4524 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4525
4526 switch (dyn.d_tag)
4527 {
4528 default:
4529 continue;
4530
4531 case DT_PLTGOT:
4532 /* Use PLTGOT to set the GOT register. */
4533 dyn.d_un.d_ptr = elf_gp (output_bfd);
4534 break;
4535
4536 case DT_JMPREL:
4537 s = htab->etab.srelplt;
4538 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4539 break;
4540
4541 case DT_PLTRELSZ:
4542 s = htab->etab.srelplt;
4543 dyn.d_un.d_val = s->size;
4544 break;
4545 }
4546
4547 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4548 }
4549 }
4550
4551 if (sgot != NULL && sgot->size != 0)
4552 {
4553 /* Fill in the first entry in the global offset table.
4554 We use it to point to our dynamic section, if we have one. */
4555 bfd_put_32 (output_bfd,
4556 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4557 sgot->contents);
4558
4559 /* The second entry is reserved for use by the dynamic linker. */
4560 memset (sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4561
4562 /* Set .got entry size. */
4563 elf_section_data (sgot->output_section)
4564 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4565 }
4566
4567 if (htab->etab.splt != NULL && htab->etab.splt->size != 0)
4568 {
4569 /* Set plt entry size to 0 instead of PLT_ENTRY_SIZE, since we add the
4570 plt stubs and as such the section does not hold a table of fixed-size
4571 entries. */
4572 elf_section_data (htab->etab.splt->output_section)->this_hdr.sh_entsize = 0;
4573
4574 if (htab->need_plt_stub)
4575 {
4576 /* Set up the .plt stub. */
4577 memcpy (htab->etab.splt->contents
4578 + htab->etab.splt->size - sizeof (plt_stub),
4579 plt_stub, sizeof (plt_stub));
4580
4581 if ((htab->etab.splt->output_offset
4582 + htab->etab.splt->output_section->vma
4583 + htab->etab.splt->size)
4584 != (sgot->output_offset
4585 + sgot->output_section->vma))
4586 {
4587 _bfd_error_handler
4588 (_(".got section not immediately after .plt section"));
4589 return FALSE;
4590 }
4591 }
4592 }
4593
4594 return TRUE;
4595 }
4596
4597 /* Called when writing out an object file to decide the type of a
4598 symbol. */
4599 static int
4600 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4601 {
4602 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4603 return STT_PARISC_MILLI;
4604 else
4605 return type;
4606 }
4607
4608 /* Misc BFD support code. */
4609 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4610 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4611 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4612 #define elf_info_to_howto elf_hppa_info_to_howto
4613 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4614
4615 /* Stuff for the BFD linker. */
4616 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4617 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4618 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4619 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4620 #define elf_backend_check_relocs elf32_hppa_check_relocs
4621 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4622 #define elf_backend_fake_sections elf_hppa_fake_sections
4623 #define elf_backend_relocate_section elf32_hppa_relocate_section
4624 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4625 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4626 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4627 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4628 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4629 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4630 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4631 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4632 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4633 #define elf_backend_object_p elf32_hppa_object_p
4634 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4635 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4636 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4637 #define elf_backend_action_discarded elf_hppa_action_discarded
4638
4639 #define elf_backend_can_gc_sections 1
4640 #define elf_backend_can_refcount 1
4641 #define elf_backend_plt_alignment 2
4642 #define elf_backend_want_got_plt 0
4643 #define elf_backend_plt_readonly 0
4644 #define elf_backend_want_plt_sym 0
4645 #define elf_backend_got_header_size 8
4646 #define elf_backend_want_dynrelro 1
4647 #define elf_backend_rela_normal 1
4648 #define elf_backend_dtrel_excludes_plt 1
4649 #define elf_backend_no_page_alias 1
4650
4651 #define TARGET_BIG_SYM hppa_elf32_vec
4652 #define TARGET_BIG_NAME "elf32-hppa"
4653 #define ELF_ARCH bfd_arch_hppa
4654 #define ELF_TARGET_ID HPPA32_ELF_DATA
4655 #define ELF_MACHINE_CODE EM_PARISC
4656 #define ELF_MAXPAGESIZE 0x1000
4657 #define ELF_OSABI ELFOSABI_HPUX
4658 #define elf32_bed elf32_hppa_hpux_bed
4659
4660 #include "elf32-target.h"
4661
4662 #undef TARGET_BIG_SYM
4663 #define TARGET_BIG_SYM hppa_elf32_linux_vec
4664 #undef TARGET_BIG_NAME
4665 #define TARGET_BIG_NAME "elf32-hppa-linux"
4666 #undef ELF_OSABI
4667 #define ELF_OSABI ELFOSABI_GNU
4668 #undef elf32_bed
4669 #define elf32_bed elf32_hppa_linux_bed
4670
4671 #include "elf32-target.h"
4672
4673 #undef TARGET_BIG_SYM
4674 #define TARGET_BIG_SYM hppa_elf32_nbsd_vec
4675 #undef TARGET_BIG_NAME
4676 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4677 #undef ELF_OSABI
4678 #define ELF_OSABI ELFOSABI_NETBSD
4679 #undef elf32_bed
4680 #define elf32_bed elf32_hppa_netbsd_bed
4681
4682 #include "elf32-target.h"
This page took 0.118297 seconds and 5 git commands to generate.