bfd/
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 Original code by
7 Center for Software Science
8 Department of Computer Science
9 University of Utah
10 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
11 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
12 TLS support written by Randolph Chung <tausq@debian.org>
13
14 This file is part of BFD, the Binary File Descriptor library.
15
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 3 of the License, or
19 (at your option) any later version.
20
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public License
27 along with this program; if not, write to the Free Software
28 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
29 MA 02110-1301, USA. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "elf-bfd.h"
35 #include "elf/hppa.h"
36 #include "libhppa.h"
37 #include "elf32-hppa.h"
38 #define ARCH_SIZE 32
39 #include "elf32-hppa.h"
40 #include "elf-hppa.h"
41
42 /* In order to gain some understanding of code in this file without
43 knowing all the intricate details of the linker, note the
44 following:
45
46 Functions named elf32_hppa_* are called by external routines, other
47 functions are only called locally. elf32_hppa_* functions appear
48 in this file more or less in the order in which they are called
49 from external routines. eg. elf32_hppa_check_relocs is called
50 early in the link process, elf32_hppa_finish_dynamic_sections is
51 one of the last functions. */
52
53 /* We use two hash tables to hold information for linking PA ELF objects.
54
55 The first is the elf32_hppa_link_hash_table which is derived
56 from the standard ELF linker hash table. We use this as a place to
57 attach other hash tables and static information.
58
59 The second is the stub hash table which is derived from the
60 base BFD hash table. The stub hash table holds the information
61 necessary to build the linker stubs during a link.
62
63 There are a number of different stubs generated by the linker.
64
65 Long branch stub:
66 : ldil LR'X,%r1
67 : be,n RR'X(%sr4,%r1)
68
69 PIC long branch stub:
70 : b,l .+8,%r1
71 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
72 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
73
74 Import stub to call shared library routine from normal object file
75 (single sub-space version)
76 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
77 : ldw RR'lt_ptr+ltoff(%r1),%r21
78 : bv %r0(%r21)
79 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
80
81 Import stub to call shared library routine from shared library
82 (single sub-space version)
83 : addil LR'ltoff,%r19 ; get procedure entry point
84 : ldw RR'ltoff(%r1),%r21
85 : bv %r0(%r21)
86 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
87
88 Import stub to call shared library routine from normal object file
89 (multiple sub-space support)
90 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
91 : ldw RR'lt_ptr+ltoff(%r1),%r21
92 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
93 : ldsid (%r21),%r1
94 : mtsp %r1,%sr0
95 : be 0(%sr0,%r21) ; branch to target
96 : stw %rp,-24(%sp) ; save rp
97
98 Import stub to call shared library routine from shared library
99 (multiple sub-space support)
100 : addil LR'ltoff,%r19 ; get procedure entry point
101 : ldw RR'ltoff(%r1),%r21
102 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
103 : ldsid (%r21),%r1
104 : mtsp %r1,%sr0
105 : be 0(%sr0,%r21) ; branch to target
106 : stw %rp,-24(%sp) ; save rp
107
108 Export stub to return from shared lib routine (multiple sub-space support)
109 One of these is created for each exported procedure in a shared
110 library (and stored in the shared lib). Shared lib routines are
111 called via the first instruction in the export stub so that we can
112 do an inter-space return. Not required for single sub-space.
113 : bl,n X,%rp ; trap the return
114 : nop
115 : ldw -24(%sp),%rp ; restore the original rp
116 : ldsid (%rp),%r1
117 : mtsp %r1,%sr0
118 : be,n 0(%sr0,%rp) ; inter-space return. */
119
120
121 /* Variable names follow a coding style.
122 Please follow this (Apps Hungarian) style:
123
124 Structure/Variable Prefix
125 elf_link_hash_table "etab"
126 elf_link_hash_entry "eh"
127
128 elf32_hppa_link_hash_table "htab"
129 elf32_hppa_link_hash_entry "hh"
130
131 bfd_hash_table "btab"
132 bfd_hash_entry "bh"
133
134 bfd_hash_table containing stubs "bstab"
135 elf32_hppa_stub_hash_entry "hsh"
136
137 elf32_hppa_dyn_reloc_entry "hdh"
138
139 Always remember to use GNU Coding Style. */
140
141 #define PLT_ENTRY_SIZE 8
142 #define GOT_ENTRY_SIZE 4
143 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
144
145 static const bfd_byte plt_stub[] =
146 {
147 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
148 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
149 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
150 #define PLT_STUB_ENTRY (3*4)
151 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
152 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
153 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
154 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
155 };
156
157 /* Section name for stubs is the associated section name plus this
158 string. */
159 #define STUB_SUFFIX ".stub"
160
161 /* We don't need to copy certain PC- or GP-relative dynamic relocs
162 into a shared object's dynamic section. All the relocs of the
163 limited class we are interested in, are absolute. */
164 #ifndef RELATIVE_DYNRELOCS
165 #define RELATIVE_DYNRELOCS 0
166 #define IS_ABSOLUTE_RELOC(r_type) 1
167 #endif
168
169 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
170 copying dynamic variables from a shared lib into an app's dynbss
171 section, and instead use a dynamic relocation to point into the
172 shared lib. */
173 #define ELIMINATE_COPY_RELOCS 1
174
175 enum elf32_hppa_stub_type
176 {
177 hppa_stub_long_branch,
178 hppa_stub_long_branch_shared,
179 hppa_stub_import,
180 hppa_stub_import_shared,
181 hppa_stub_export,
182 hppa_stub_none
183 };
184
185 struct elf32_hppa_stub_hash_entry
186 {
187 /* Base hash table entry structure. */
188 struct bfd_hash_entry bh_root;
189
190 /* The stub section. */
191 asection *stub_sec;
192
193 /* Offset within stub_sec of the beginning of this stub. */
194 bfd_vma stub_offset;
195
196 /* Given the symbol's value and its section we can determine its final
197 value when building the stubs (so the stub knows where to jump. */
198 bfd_vma target_value;
199 asection *target_section;
200
201 enum elf32_hppa_stub_type stub_type;
202
203 /* The symbol table entry, if any, that this was derived from. */
204 struct elf32_hppa_link_hash_entry *hh;
205
206 /* Where this stub is being called from, or, in the case of combined
207 stub sections, the first input section in the group. */
208 asection *id_sec;
209 };
210
211 struct elf32_hppa_link_hash_entry
212 {
213 struct elf_link_hash_entry eh;
214
215 /* A pointer to the most recently used stub hash entry against this
216 symbol. */
217 struct elf32_hppa_stub_hash_entry *hsh_cache;
218
219 /* Used to count relocations for delayed sizing of relocation
220 sections. */
221 struct elf32_hppa_dyn_reloc_entry
222 {
223 /* Next relocation in the chain. */
224 struct elf32_hppa_dyn_reloc_entry *hdh_next;
225
226 /* The input section of the reloc. */
227 asection *sec;
228
229 /* Number of relocs copied in this section. */
230 bfd_size_type count;
231
232 #if RELATIVE_DYNRELOCS
233 /* Number of relative relocs copied for the input section. */
234 bfd_size_type relative_count;
235 #endif
236 } *dyn_relocs;
237
238 enum
239 {
240 GOT_UNKNOWN = 0, GOT_NORMAL = 1, GOT_TLS_GD = 2, GOT_TLS_LDM = 4, GOT_TLS_IE = 8
241 } tls_type;
242
243 /* Set if this symbol is used by a plabel reloc. */
244 unsigned int plabel:1;
245 };
246
247 struct elf32_hppa_link_hash_table
248 {
249 /* The main hash table. */
250 struct elf_link_hash_table etab;
251
252 /* The stub hash table. */
253 struct bfd_hash_table bstab;
254
255 /* Linker stub bfd. */
256 bfd *stub_bfd;
257
258 /* Linker call-backs. */
259 asection * (*add_stub_section) (const char *, asection *);
260 void (*layout_sections_again) (void);
261
262 /* Array to keep track of which stub sections have been created, and
263 information on stub grouping. */
264 struct map_stub
265 {
266 /* This is the section to which stubs in the group will be
267 attached. */
268 asection *link_sec;
269 /* The stub section. */
270 asection *stub_sec;
271 } *stub_group;
272
273 /* Assorted information used by elf32_hppa_size_stubs. */
274 unsigned int bfd_count;
275 int top_index;
276 asection **input_list;
277 Elf_Internal_Sym **all_local_syms;
278
279 /* Short-cuts to get to dynamic linker sections. */
280 asection *sgot;
281 asection *srelgot;
282 asection *splt;
283 asection *srelplt;
284 asection *sdynbss;
285 asection *srelbss;
286
287 /* Used during a final link to store the base of the text and data
288 segments so that we can perform SEGREL relocations. */
289 bfd_vma text_segment_base;
290 bfd_vma data_segment_base;
291
292 /* Whether we support multiple sub-spaces for shared libs. */
293 unsigned int multi_subspace:1;
294
295 /* Flags set when various size branches are detected. Used to
296 select suitable defaults for the stub group size. */
297 unsigned int has_12bit_branch:1;
298 unsigned int has_17bit_branch:1;
299 unsigned int has_22bit_branch:1;
300
301 /* Set if we need a .plt stub to support lazy dynamic linking. */
302 unsigned int need_plt_stub:1;
303
304 /* Small local sym cache. */
305 struct sym_cache sym_cache;
306
307 /* Data for LDM relocations. */
308 union
309 {
310 bfd_signed_vma refcount;
311 bfd_vma offset;
312 } tls_ldm_got;
313 };
314
315 /* Various hash macros and functions. */
316 #define hppa_link_hash_table(p) \
317 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
318 == HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL)
319
320 #define hppa_elf_hash_entry(ent) \
321 ((struct elf32_hppa_link_hash_entry *)(ent))
322
323 #define hppa_stub_hash_entry(ent) \
324 ((struct elf32_hppa_stub_hash_entry *)(ent))
325
326 #define hppa_stub_hash_lookup(table, string, create, copy) \
327 ((struct elf32_hppa_stub_hash_entry *) \
328 bfd_hash_lookup ((table), (string), (create), (copy)))
329
330 #define hppa_elf_local_got_tls_type(abfd) \
331 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
332
333 #define hh_name(hh) \
334 (hh ? hh->eh.root.root.string : "<undef>")
335
336 #define eh_name(eh) \
337 (eh ? eh->root.root.string : "<undef>")
338
339 /* Assorted hash table functions. */
340
341 /* Initialize an entry in the stub hash table. */
342
343 static struct bfd_hash_entry *
344 stub_hash_newfunc (struct bfd_hash_entry *entry,
345 struct bfd_hash_table *table,
346 const char *string)
347 {
348 /* Allocate the structure if it has not already been allocated by a
349 subclass. */
350 if (entry == NULL)
351 {
352 entry = bfd_hash_allocate (table,
353 sizeof (struct elf32_hppa_stub_hash_entry));
354 if (entry == NULL)
355 return entry;
356 }
357
358 /* Call the allocation method of the superclass. */
359 entry = bfd_hash_newfunc (entry, table, string);
360 if (entry != NULL)
361 {
362 struct elf32_hppa_stub_hash_entry *hsh;
363
364 /* Initialize the local fields. */
365 hsh = hppa_stub_hash_entry (entry);
366 hsh->stub_sec = NULL;
367 hsh->stub_offset = 0;
368 hsh->target_value = 0;
369 hsh->target_section = NULL;
370 hsh->stub_type = hppa_stub_long_branch;
371 hsh->hh = NULL;
372 hsh->id_sec = NULL;
373 }
374
375 return entry;
376 }
377
378 /* Initialize an entry in the link hash table. */
379
380 static struct bfd_hash_entry *
381 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
382 struct bfd_hash_table *table,
383 const char *string)
384 {
385 /* Allocate the structure if it has not already been allocated by a
386 subclass. */
387 if (entry == NULL)
388 {
389 entry = bfd_hash_allocate (table,
390 sizeof (struct elf32_hppa_link_hash_entry));
391 if (entry == NULL)
392 return entry;
393 }
394
395 /* Call the allocation method of the superclass. */
396 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
397 if (entry != NULL)
398 {
399 struct elf32_hppa_link_hash_entry *hh;
400
401 /* Initialize the local fields. */
402 hh = hppa_elf_hash_entry (entry);
403 hh->hsh_cache = NULL;
404 hh->dyn_relocs = NULL;
405 hh->plabel = 0;
406 hh->tls_type = GOT_UNKNOWN;
407 }
408
409 return entry;
410 }
411
412 /* Create the derived linker hash table. The PA ELF port uses the derived
413 hash table to keep information specific to the PA ELF linker (without
414 using static variables). */
415
416 static struct bfd_link_hash_table *
417 elf32_hppa_link_hash_table_create (bfd *abfd)
418 {
419 struct elf32_hppa_link_hash_table *htab;
420 bfd_size_type amt = sizeof (*htab);
421
422 htab = bfd_malloc (amt);
423 if (htab == NULL)
424 return NULL;
425
426 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
427 sizeof (struct elf32_hppa_link_hash_entry),
428 HPPA32_ELF_DATA))
429 {
430 free (htab);
431 return NULL;
432 }
433
434 /* Init the stub hash table too. */
435 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
436 sizeof (struct elf32_hppa_stub_hash_entry)))
437 return NULL;
438
439 htab->stub_bfd = NULL;
440 htab->add_stub_section = NULL;
441 htab->layout_sections_again = NULL;
442 htab->stub_group = NULL;
443 htab->sgot = NULL;
444 htab->srelgot = NULL;
445 htab->splt = NULL;
446 htab->srelplt = NULL;
447 htab->sdynbss = NULL;
448 htab->srelbss = NULL;
449 htab->text_segment_base = (bfd_vma) -1;
450 htab->data_segment_base = (bfd_vma) -1;
451 htab->multi_subspace = 0;
452 htab->has_12bit_branch = 0;
453 htab->has_17bit_branch = 0;
454 htab->has_22bit_branch = 0;
455 htab->need_plt_stub = 0;
456 htab->sym_cache.abfd = NULL;
457 htab->tls_ldm_got.refcount = 0;
458
459 return &htab->etab.root;
460 }
461
462 /* Free the derived linker hash table. */
463
464 static void
465 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *btab)
466 {
467 struct elf32_hppa_link_hash_table *htab
468 = (struct elf32_hppa_link_hash_table *) btab;
469
470 bfd_hash_table_free (&htab->bstab);
471 _bfd_generic_link_hash_table_free (btab);
472 }
473
474 /* Build a name for an entry in the stub hash table. */
475
476 static char *
477 hppa_stub_name (const asection *input_section,
478 const asection *sym_sec,
479 const struct elf32_hppa_link_hash_entry *hh,
480 const Elf_Internal_Rela *rela)
481 {
482 char *stub_name;
483 bfd_size_type len;
484
485 if (hh)
486 {
487 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
488 stub_name = bfd_malloc (len);
489 if (stub_name != NULL)
490 sprintf (stub_name, "%08x_%s+%x",
491 input_section->id & 0xffffffff,
492 hh_name (hh),
493 (int) rela->r_addend & 0xffffffff);
494 }
495 else
496 {
497 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
498 stub_name = bfd_malloc (len);
499 if (stub_name != NULL)
500 sprintf (stub_name, "%08x_%x:%x+%x",
501 input_section->id & 0xffffffff,
502 sym_sec->id & 0xffffffff,
503 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
504 (int) rela->r_addend & 0xffffffff);
505 }
506 return stub_name;
507 }
508
509 /* Look up an entry in the stub hash. Stub entries are cached because
510 creating the stub name takes a bit of time. */
511
512 static struct elf32_hppa_stub_hash_entry *
513 hppa_get_stub_entry (const asection *input_section,
514 const asection *sym_sec,
515 struct elf32_hppa_link_hash_entry *hh,
516 const Elf_Internal_Rela *rela,
517 struct elf32_hppa_link_hash_table *htab)
518 {
519 struct elf32_hppa_stub_hash_entry *hsh_entry;
520 const asection *id_sec;
521
522 /* If this input section is part of a group of sections sharing one
523 stub section, then use the id of the first section in the group.
524 Stub names need to include a section id, as there may well be
525 more than one stub used to reach say, printf, and we need to
526 distinguish between them. */
527 id_sec = htab->stub_group[input_section->id].link_sec;
528
529 if (hh != NULL && hh->hsh_cache != NULL
530 && hh->hsh_cache->hh == hh
531 && hh->hsh_cache->id_sec == id_sec)
532 {
533 hsh_entry = hh->hsh_cache;
534 }
535 else
536 {
537 char *stub_name;
538
539 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
540 if (stub_name == NULL)
541 return NULL;
542
543 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
544 stub_name, FALSE, FALSE);
545 if (hh != NULL)
546 hh->hsh_cache = hsh_entry;
547
548 free (stub_name);
549 }
550
551 return hsh_entry;
552 }
553
554 /* Add a new stub entry to the stub hash. Not all fields of the new
555 stub entry are initialised. */
556
557 static struct elf32_hppa_stub_hash_entry *
558 hppa_add_stub (const char *stub_name,
559 asection *section,
560 struct elf32_hppa_link_hash_table *htab)
561 {
562 asection *link_sec;
563 asection *stub_sec;
564 struct elf32_hppa_stub_hash_entry *hsh;
565
566 link_sec = htab->stub_group[section->id].link_sec;
567 stub_sec = htab->stub_group[section->id].stub_sec;
568 if (stub_sec == NULL)
569 {
570 stub_sec = htab->stub_group[link_sec->id].stub_sec;
571 if (stub_sec == NULL)
572 {
573 size_t namelen;
574 bfd_size_type len;
575 char *s_name;
576
577 namelen = strlen (link_sec->name);
578 len = namelen + sizeof (STUB_SUFFIX);
579 s_name = bfd_alloc (htab->stub_bfd, len);
580 if (s_name == NULL)
581 return NULL;
582
583 memcpy (s_name, link_sec->name, namelen);
584 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
585 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
586 if (stub_sec == NULL)
587 return NULL;
588 htab->stub_group[link_sec->id].stub_sec = stub_sec;
589 }
590 htab->stub_group[section->id].stub_sec = stub_sec;
591 }
592
593 /* Enter this entry into the linker stub hash table. */
594 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
595 TRUE, FALSE);
596 if (hsh == NULL)
597 {
598 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
599 section->owner,
600 stub_name);
601 return NULL;
602 }
603
604 hsh->stub_sec = stub_sec;
605 hsh->stub_offset = 0;
606 hsh->id_sec = link_sec;
607 return hsh;
608 }
609
610 /* Determine the type of stub needed, if any, for a call. */
611
612 static enum elf32_hppa_stub_type
613 hppa_type_of_stub (asection *input_sec,
614 const Elf_Internal_Rela *rela,
615 struct elf32_hppa_link_hash_entry *hh,
616 bfd_vma destination,
617 struct bfd_link_info *info)
618 {
619 bfd_vma location;
620 bfd_vma branch_offset;
621 bfd_vma max_branch_offset;
622 unsigned int r_type;
623
624 if (hh != NULL
625 && hh->eh.plt.offset != (bfd_vma) -1
626 && hh->eh.dynindx != -1
627 && !hh->plabel
628 && (info->shared
629 || !hh->eh.def_regular
630 || hh->eh.root.type == bfd_link_hash_defweak))
631 {
632 /* We need an import stub. Decide between hppa_stub_import
633 and hppa_stub_import_shared later. */
634 return hppa_stub_import;
635 }
636
637 /* Determine where the call point is. */
638 location = (input_sec->output_offset
639 + input_sec->output_section->vma
640 + rela->r_offset);
641
642 branch_offset = destination - location - 8;
643 r_type = ELF32_R_TYPE (rela->r_info);
644
645 /* Determine if a long branch stub is needed. parisc branch offsets
646 are relative to the second instruction past the branch, ie. +8
647 bytes on from the branch instruction location. The offset is
648 signed and counts in units of 4 bytes. */
649 if (r_type == (unsigned int) R_PARISC_PCREL17F)
650 max_branch_offset = (1 << (17 - 1)) << 2;
651
652 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
653 max_branch_offset = (1 << (12 - 1)) << 2;
654
655 else /* R_PARISC_PCREL22F. */
656 max_branch_offset = (1 << (22 - 1)) << 2;
657
658 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
659 return hppa_stub_long_branch;
660
661 return hppa_stub_none;
662 }
663
664 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
665 IN_ARG contains the link info pointer. */
666
667 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
668 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
669
670 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
671 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
672 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
673
674 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
675 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
676 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
677 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
678
679 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
680 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
681
682 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
683 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
684 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
685 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
686
687 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
688 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
689 #define NOP 0x08000240 /* nop */
690 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
691 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
692 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
693
694 #ifndef R19_STUBS
695 #define R19_STUBS 1
696 #endif
697
698 #if R19_STUBS
699 #define LDW_R1_DLT LDW_R1_R19
700 #else
701 #define LDW_R1_DLT LDW_R1_DP
702 #endif
703
704 static bfd_boolean
705 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
706 {
707 struct elf32_hppa_stub_hash_entry *hsh;
708 struct bfd_link_info *info;
709 struct elf32_hppa_link_hash_table *htab;
710 asection *stub_sec;
711 bfd *stub_bfd;
712 bfd_byte *loc;
713 bfd_vma sym_value;
714 bfd_vma insn;
715 bfd_vma off;
716 int val;
717 int size;
718
719 /* Massage our args to the form they really have. */
720 hsh = hppa_stub_hash_entry (bh);
721 info = (struct bfd_link_info *)in_arg;
722
723 htab = hppa_link_hash_table (info);
724 if (htab == NULL)
725 return FALSE;
726
727 stub_sec = hsh->stub_sec;
728
729 /* Make a note of the offset within the stubs for this entry. */
730 hsh->stub_offset = stub_sec->size;
731 loc = stub_sec->contents + hsh->stub_offset;
732
733 stub_bfd = stub_sec->owner;
734
735 switch (hsh->stub_type)
736 {
737 case hppa_stub_long_branch:
738 /* Create the long branch. A long branch is formed with "ldil"
739 loading the upper bits of the target address into a register,
740 then branching with "be" which adds in the lower bits.
741 The "be" has its delay slot nullified. */
742 sym_value = (hsh->target_value
743 + hsh->target_section->output_offset
744 + hsh->target_section->output_section->vma);
745
746 val = hppa_field_adjust (sym_value, 0, e_lrsel);
747 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
748 bfd_put_32 (stub_bfd, insn, loc);
749
750 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
751 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
752 bfd_put_32 (stub_bfd, insn, loc + 4);
753
754 size = 8;
755 break;
756
757 case hppa_stub_long_branch_shared:
758 /* Branches are relative. This is where we are going to. */
759 sym_value = (hsh->target_value
760 + hsh->target_section->output_offset
761 + hsh->target_section->output_section->vma);
762
763 /* And this is where we are coming from, more or less. */
764 sym_value -= (hsh->stub_offset
765 + stub_sec->output_offset
766 + stub_sec->output_section->vma);
767
768 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
769 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
770 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
771 bfd_put_32 (stub_bfd, insn, loc + 4);
772
773 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
774 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
775 bfd_put_32 (stub_bfd, insn, loc + 8);
776 size = 12;
777 break;
778
779 case hppa_stub_import:
780 case hppa_stub_import_shared:
781 off = hsh->hh->eh.plt.offset;
782 if (off >= (bfd_vma) -2)
783 abort ();
784
785 off &= ~ (bfd_vma) 1;
786 sym_value = (off
787 + htab->splt->output_offset
788 + htab->splt->output_section->vma
789 - elf_gp (htab->splt->output_section->owner));
790
791 insn = ADDIL_DP;
792 #if R19_STUBS
793 if (hsh->stub_type == hppa_stub_import_shared)
794 insn = ADDIL_R19;
795 #endif
796 val = hppa_field_adjust (sym_value, 0, e_lrsel),
797 insn = hppa_rebuild_insn ((int) insn, val, 21);
798 bfd_put_32 (stub_bfd, insn, loc);
799
800 /* It is critical to use lrsel/rrsel here because we are using
801 two different offsets (+0 and +4) from sym_value. If we use
802 lsel/rsel then with unfortunate sym_values we will round
803 sym_value+4 up to the next 2k block leading to a mis-match
804 between the lsel and rsel value. */
805 val = hppa_field_adjust (sym_value, 0, e_rrsel);
806 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
807 bfd_put_32 (stub_bfd, insn, loc + 4);
808
809 if (htab->multi_subspace)
810 {
811 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
812 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
813 bfd_put_32 (stub_bfd, insn, loc + 8);
814
815 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
816 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
817 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
818 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
819
820 size = 28;
821 }
822 else
823 {
824 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
825 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
826 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
827 bfd_put_32 (stub_bfd, insn, loc + 12);
828
829 size = 16;
830 }
831
832 break;
833
834 case hppa_stub_export:
835 /* Branches are relative. This is where we are going to. */
836 sym_value = (hsh->target_value
837 + hsh->target_section->output_offset
838 + hsh->target_section->output_section->vma);
839
840 /* And this is where we are coming from. */
841 sym_value -= (hsh->stub_offset
842 + stub_sec->output_offset
843 + stub_sec->output_section->vma);
844
845 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
846 && (!htab->has_22bit_branch
847 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
848 {
849 (*_bfd_error_handler)
850 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
851 hsh->target_section->owner,
852 stub_sec,
853 (long) hsh->stub_offset,
854 hsh->bh_root.string);
855 bfd_set_error (bfd_error_bad_value);
856 return FALSE;
857 }
858
859 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
860 if (!htab->has_22bit_branch)
861 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
862 else
863 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
864 bfd_put_32 (stub_bfd, insn, loc);
865
866 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
867 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
868 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
869 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
870 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
871
872 /* Point the function symbol at the stub. */
873 hsh->hh->eh.root.u.def.section = stub_sec;
874 hsh->hh->eh.root.u.def.value = stub_sec->size;
875
876 size = 24;
877 break;
878
879 default:
880 BFD_FAIL ();
881 return FALSE;
882 }
883
884 stub_sec->size += size;
885 return TRUE;
886 }
887
888 #undef LDIL_R1
889 #undef BE_SR4_R1
890 #undef BL_R1
891 #undef ADDIL_R1
892 #undef DEPI_R1
893 #undef LDW_R1_R21
894 #undef LDW_R1_DLT
895 #undef LDW_R1_R19
896 #undef ADDIL_R19
897 #undef LDW_R1_DP
898 #undef LDSID_R21_R1
899 #undef MTSP_R1
900 #undef BE_SR0_R21
901 #undef STW_RP
902 #undef BV_R0_R21
903 #undef BL_RP
904 #undef NOP
905 #undef LDW_RP
906 #undef LDSID_RP_R1
907 #undef BE_SR0_RP
908
909 /* As above, but don't actually build the stub. Just bump offset so
910 we know stub section sizes. */
911
912 static bfd_boolean
913 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
914 {
915 struct elf32_hppa_stub_hash_entry *hsh;
916 struct elf32_hppa_link_hash_table *htab;
917 int size;
918
919 /* Massage our args to the form they really have. */
920 hsh = hppa_stub_hash_entry (bh);
921 htab = in_arg;
922
923 if (hsh->stub_type == hppa_stub_long_branch)
924 size = 8;
925 else if (hsh->stub_type == hppa_stub_long_branch_shared)
926 size = 12;
927 else if (hsh->stub_type == hppa_stub_export)
928 size = 24;
929 else /* hppa_stub_import or hppa_stub_import_shared. */
930 {
931 if (htab->multi_subspace)
932 size = 28;
933 else
934 size = 16;
935 }
936
937 hsh->stub_sec->size += size;
938 return TRUE;
939 }
940
941 /* Return nonzero if ABFD represents an HPPA ELF32 file.
942 Additionally we set the default architecture and machine. */
943
944 static bfd_boolean
945 elf32_hppa_object_p (bfd *abfd)
946 {
947 Elf_Internal_Ehdr * i_ehdrp;
948 unsigned int flags;
949
950 i_ehdrp = elf_elfheader (abfd);
951 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
952 {
953 /* GCC on hppa-linux produces binaries with OSABI=Linux,
954 but the kernel produces corefiles with OSABI=SysV. */
955 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX &&
956 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
957 return FALSE;
958 }
959 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
960 {
961 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
962 but the kernel produces corefiles with OSABI=SysV. */
963 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
964 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
965 return FALSE;
966 }
967 else
968 {
969 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
970 return FALSE;
971 }
972
973 flags = i_ehdrp->e_flags;
974 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
975 {
976 case EFA_PARISC_1_0:
977 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
978 case EFA_PARISC_1_1:
979 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
980 case EFA_PARISC_2_0:
981 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
982 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
983 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
984 }
985 return TRUE;
986 }
987
988 /* Create the .plt and .got sections, and set up our hash table
989 short-cuts to various dynamic sections. */
990
991 static bfd_boolean
992 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
993 {
994 struct elf32_hppa_link_hash_table *htab;
995 struct elf_link_hash_entry *eh;
996
997 /* Don't try to create the .plt and .got twice. */
998 htab = hppa_link_hash_table (info);
999 if (htab == NULL)
1000 return FALSE;
1001 if (htab->splt != NULL)
1002 return TRUE;
1003
1004 /* Call the generic code to do most of the work. */
1005 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1006 return FALSE;
1007
1008 htab->splt = bfd_get_section_by_name (abfd, ".plt");
1009 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
1010
1011 htab->sgot = bfd_get_section_by_name (abfd, ".got");
1012 htab->srelgot = bfd_get_section_by_name (abfd, ".rela.got");
1013
1014 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
1015 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
1016
1017 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
1018 application, because __canonicalize_funcptr_for_compare needs it. */
1019 eh = elf_hash_table (info)->hgot;
1020 eh->forced_local = 0;
1021 eh->other = STV_DEFAULT;
1022 return bfd_elf_link_record_dynamic_symbol (info, eh);
1023 }
1024
1025 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1026
1027 static void
1028 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1029 struct elf_link_hash_entry *eh_dir,
1030 struct elf_link_hash_entry *eh_ind)
1031 {
1032 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1033
1034 hh_dir = hppa_elf_hash_entry (eh_dir);
1035 hh_ind = hppa_elf_hash_entry (eh_ind);
1036
1037 if (hh_ind->dyn_relocs != NULL)
1038 {
1039 if (hh_dir->dyn_relocs != NULL)
1040 {
1041 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1042 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1043
1044 /* Add reloc counts against the indirect sym to the direct sym
1045 list. Merge any entries against the same section. */
1046 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1047 {
1048 struct elf32_hppa_dyn_reloc_entry *hdh_q;
1049
1050 for (hdh_q = hh_dir->dyn_relocs;
1051 hdh_q != NULL;
1052 hdh_q = hdh_q->hdh_next)
1053 if (hdh_q->sec == hdh_p->sec)
1054 {
1055 #if RELATIVE_DYNRELOCS
1056 hdh_q->relative_count += hdh_p->relative_count;
1057 #endif
1058 hdh_q->count += hdh_p->count;
1059 *hdh_pp = hdh_p->hdh_next;
1060 break;
1061 }
1062 if (hdh_q == NULL)
1063 hdh_pp = &hdh_p->hdh_next;
1064 }
1065 *hdh_pp = hh_dir->dyn_relocs;
1066 }
1067
1068 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1069 hh_ind->dyn_relocs = NULL;
1070 }
1071
1072 if (ELIMINATE_COPY_RELOCS
1073 && eh_ind->root.type != bfd_link_hash_indirect
1074 && eh_dir->dynamic_adjusted)
1075 {
1076 /* If called to transfer flags for a weakdef during processing
1077 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1078 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1079 eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1080 eh_dir->ref_regular |= eh_ind->ref_regular;
1081 eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1082 eh_dir->needs_plt |= eh_ind->needs_plt;
1083 }
1084 else
1085 {
1086 if (eh_ind->root.type == bfd_link_hash_indirect
1087 && eh_dir->got.refcount <= 0)
1088 {
1089 hh_dir->tls_type = hh_ind->tls_type;
1090 hh_ind->tls_type = GOT_UNKNOWN;
1091 }
1092
1093 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1094 }
1095 }
1096
1097 static int
1098 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1099 int r_type, int is_local ATTRIBUTE_UNUSED)
1100 {
1101 /* For now we don't support linker optimizations. */
1102 return r_type;
1103 }
1104
1105 /* Return a pointer to the local GOT, PLT and TLS reference counts
1106 for ABFD. Returns NULL if the storage allocation fails. */
1107
1108 static bfd_signed_vma *
1109 hppa32_elf_local_refcounts (bfd *abfd)
1110 {
1111 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1112 bfd_signed_vma *local_refcounts;
1113
1114 local_refcounts = elf_local_got_refcounts (abfd);
1115 if (local_refcounts == NULL)
1116 {
1117 bfd_size_type size;
1118
1119 /* Allocate space for local GOT and PLT reference
1120 counts. Done this way to save polluting elf_obj_tdata
1121 with another target specific pointer. */
1122 size = symtab_hdr->sh_info;
1123 size *= 2 * sizeof (bfd_signed_vma);
1124 /* Add in space to store the local GOT TLS types. */
1125 size += symtab_hdr->sh_info;
1126 local_refcounts = bfd_zalloc (abfd, size);
1127 if (local_refcounts == NULL)
1128 return NULL;
1129 elf_local_got_refcounts (abfd) = local_refcounts;
1130 memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
1131 symtab_hdr->sh_info);
1132 }
1133 return local_refcounts;
1134 }
1135
1136
1137 /* Look through the relocs for a section during the first phase, and
1138 calculate needed space in the global offset table, procedure linkage
1139 table, and dynamic reloc sections. At this point we haven't
1140 necessarily read all the input files. */
1141
1142 static bfd_boolean
1143 elf32_hppa_check_relocs (bfd *abfd,
1144 struct bfd_link_info *info,
1145 asection *sec,
1146 const Elf_Internal_Rela *relocs)
1147 {
1148 Elf_Internal_Shdr *symtab_hdr;
1149 struct elf_link_hash_entry **eh_syms;
1150 const Elf_Internal_Rela *rela;
1151 const Elf_Internal_Rela *rela_end;
1152 struct elf32_hppa_link_hash_table *htab;
1153 asection *sreloc;
1154 int tls_type = GOT_UNKNOWN, old_tls_type = GOT_UNKNOWN;
1155
1156 if (info->relocatable)
1157 return TRUE;
1158
1159 htab = hppa_link_hash_table (info);
1160 if (htab == NULL)
1161 return FALSE;
1162 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1163 eh_syms = elf_sym_hashes (abfd);
1164 sreloc = NULL;
1165
1166 rela_end = relocs + sec->reloc_count;
1167 for (rela = relocs; rela < rela_end; rela++)
1168 {
1169 enum {
1170 NEED_GOT = 1,
1171 NEED_PLT = 2,
1172 NEED_DYNREL = 4,
1173 PLT_PLABEL = 8
1174 };
1175
1176 unsigned int r_symndx, r_type;
1177 struct elf32_hppa_link_hash_entry *hh;
1178 int need_entry = 0;
1179
1180 r_symndx = ELF32_R_SYM (rela->r_info);
1181
1182 if (r_symndx < symtab_hdr->sh_info)
1183 hh = NULL;
1184 else
1185 {
1186 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1187 while (hh->eh.root.type == bfd_link_hash_indirect
1188 || hh->eh.root.type == bfd_link_hash_warning)
1189 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1190 }
1191
1192 r_type = ELF32_R_TYPE (rela->r_info);
1193 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1194
1195 switch (r_type)
1196 {
1197 case R_PARISC_DLTIND14F:
1198 case R_PARISC_DLTIND14R:
1199 case R_PARISC_DLTIND21L:
1200 /* This symbol requires a global offset table entry. */
1201 need_entry = NEED_GOT;
1202 break;
1203
1204 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1205 case R_PARISC_PLABEL21L:
1206 case R_PARISC_PLABEL32:
1207 /* If the addend is non-zero, we break badly. */
1208 if (rela->r_addend != 0)
1209 abort ();
1210
1211 /* If we are creating a shared library, then we need to
1212 create a PLT entry for all PLABELs, because PLABELs with
1213 local symbols may be passed via a pointer to another
1214 object. Additionally, output a dynamic relocation
1215 pointing to the PLT entry.
1216
1217 For executables, the original 32-bit ABI allowed two
1218 different styles of PLABELs (function pointers): For
1219 global functions, the PLABEL word points into the .plt
1220 two bytes past a (function address, gp) pair, and for
1221 local functions the PLABEL points directly at the
1222 function. The magic +2 for the first type allows us to
1223 differentiate between the two. As you can imagine, this
1224 is a real pain when it comes to generating code to call
1225 functions indirectly or to compare function pointers.
1226 We avoid the mess by always pointing a PLABEL into the
1227 .plt, even for local functions. */
1228 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1229 break;
1230
1231 case R_PARISC_PCREL12F:
1232 htab->has_12bit_branch = 1;
1233 goto branch_common;
1234
1235 case R_PARISC_PCREL17C:
1236 case R_PARISC_PCREL17F:
1237 htab->has_17bit_branch = 1;
1238 goto branch_common;
1239
1240 case R_PARISC_PCREL22F:
1241 htab->has_22bit_branch = 1;
1242 branch_common:
1243 /* Function calls might need to go through the .plt, and
1244 might require long branch stubs. */
1245 if (hh == NULL)
1246 {
1247 /* We know local syms won't need a .plt entry, and if
1248 they need a long branch stub we can't guarantee that
1249 we can reach the stub. So just flag an error later
1250 if we're doing a shared link and find we need a long
1251 branch stub. */
1252 continue;
1253 }
1254 else
1255 {
1256 /* Global symbols will need a .plt entry if they remain
1257 global, and in most cases won't need a long branch
1258 stub. Unfortunately, we have to cater for the case
1259 where a symbol is forced local by versioning, or due
1260 to symbolic linking, and we lose the .plt entry. */
1261 need_entry = NEED_PLT;
1262 if (hh->eh.type == STT_PARISC_MILLI)
1263 need_entry = 0;
1264 }
1265 break;
1266
1267 case R_PARISC_SEGBASE: /* Used to set segment base. */
1268 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1269 case R_PARISC_PCREL14F: /* PC relative load/store. */
1270 case R_PARISC_PCREL14R:
1271 case R_PARISC_PCREL17R: /* External branches. */
1272 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1273 case R_PARISC_PCREL32:
1274 /* We don't need to propagate the relocation if linking a
1275 shared object since these are section relative. */
1276 continue;
1277
1278 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1279 case R_PARISC_DPREL14R:
1280 case R_PARISC_DPREL21L:
1281 if (info->shared)
1282 {
1283 (*_bfd_error_handler)
1284 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1285 abfd,
1286 elf_hppa_howto_table[r_type].name);
1287 bfd_set_error (bfd_error_bad_value);
1288 return FALSE;
1289 }
1290 /* Fall through. */
1291
1292 case R_PARISC_DIR17F: /* Used for external branches. */
1293 case R_PARISC_DIR17R:
1294 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1295 case R_PARISC_DIR14R:
1296 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1297 case R_PARISC_DIR32: /* .word relocs. */
1298 /* We may want to output a dynamic relocation later. */
1299 need_entry = NEED_DYNREL;
1300 break;
1301
1302 /* This relocation describes the C++ object vtable hierarchy.
1303 Reconstruct it for later use during GC. */
1304 case R_PARISC_GNU_VTINHERIT:
1305 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1306 return FALSE;
1307 continue;
1308
1309 /* This relocation describes which C++ vtable entries are actually
1310 used. Record for later use during GC. */
1311 case R_PARISC_GNU_VTENTRY:
1312 BFD_ASSERT (hh != NULL);
1313 if (hh != NULL
1314 && !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1315 return FALSE;
1316 continue;
1317
1318 case R_PARISC_TLS_GD21L:
1319 case R_PARISC_TLS_GD14R:
1320 case R_PARISC_TLS_LDM21L:
1321 case R_PARISC_TLS_LDM14R:
1322 need_entry = NEED_GOT;
1323 break;
1324
1325 case R_PARISC_TLS_IE21L:
1326 case R_PARISC_TLS_IE14R:
1327 if (info->shared)
1328 info->flags |= DF_STATIC_TLS;
1329 need_entry = NEED_GOT;
1330 break;
1331
1332 default:
1333 continue;
1334 }
1335
1336 /* Now carry out our orders. */
1337 if (need_entry & NEED_GOT)
1338 {
1339 switch (r_type)
1340 {
1341 default:
1342 tls_type = GOT_NORMAL;
1343 break;
1344 case R_PARISC_TLS_GD21L:
1345 case R_PARISC_TLS_GD14R:
1346 tls_type |= GOT_TLS_GD;
1347 break;
1348 case R_PARISC_TLS_LDM21L:
1349 case R_PARISC_TLS_LDM14R:
1350 tls_type |= GOT_TLS_LDM;
1351 break;
1352 case R_PARISC_TLS_IE21L:
1353 case R_PARISC_TLS_IE14R:
1354 tls_type |= GOT_TLS_IE;
1355 break;
1356 }
1357
1358 /* Allocate space for a GOT entry, as well as a dynamic
1359 relocation for this entry. */
1360 if (htab->sgot == NULL)
1361 {
1362 if (htab->etab.dynobj == NULL)
1363 htab->etab.dynobj = abfd;
1364 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1365 return FALSE;
1366 }
1367
1368 if (r_type == R_PARISC_TLS_LDM21L
1369 || r_type == R_PARISC_TLS_LDM14R)
1370 htab->tls_ldm_got.refcount += 1;
1371 else
1372 {
1373 if (hh != NULL)
1374 {
1375 hh->eh.got.refcount += 1;
1376 old_tls_type = hh->tls_type;
1377 }
1378 else
1379 {
1380 bfd_signed_vma *local_got_refcounts;
1381
1382 /* This is a global offset table entry for a local symbol. */
1383 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1384 if (local_got_refcounts == NULL)
1385 return FALSE;
1386 local_got_refcounts[r_symndx] += 1;
1387
1388 old_tls_type = hppa_elf_local_got_tls_type (abfd) [r_symndx];
1389 }
1390
1391 tls_type |= old_tls_type;
1392
1393 if (old_tls_type != tls_type)
1394 {
1395 if (hh != NULL)
1396 hh->tls_type = tls_type;
1397 else
1398 hppa_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
1399 }
1400
1401 }
1402 }
1403
1404 if (need_entry & NEED_PLT)
1405 {
1406 /* If we are creating a shared library, and this is a reloc
1407 against a weak symbol or a global symbol in a dynamic
1408 object, then we will be creating an import stub and a
1409 .plt entry for the symbol. Similarly, on a normal link
1410 to symbols defined in a dynamic object we'll need the
1411 import stub and a .plt entry. We don't know yet whether
1412 the symbol is defined or not, so make an entry anyway and
1413 clean up later in adjust_dynamic_symbol. */
1414 if ((sec->flags & SEC_ALLOC) != 0)
1415 {
1416 if (hh != NULL)
1417 {
1418 hh->eh.needs_plt = 1;
1419 hh->eh.plt.refcount += 1;
1420
1421 /* If this .plt entry is for a plabel, mark it so
1422 that adjust_dynamic_symbol will keep the entry
1423 even if it appears to be local. */
1424 if (need_entry & PLT_PLABEL)
1425 hh->plabel = 1;
1426 }
1427 else if (need_entry & PLT_PLABEL)
1428 {
1429 bfd_signed_vma *local_got_refcounts;
1430 bfd_signed_vma *local_plt_refcounts;
1431
1432 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1433 if (local_got_refcounts == NULL)
1434 return FALSE;
1435 local_plt_refcounts = (local_got_refcounts
1436 + symtab_hdr->sh_info);
1437 local_plt_refcounts[r_symndx] += 1;
1438 }
1439 }
1440 }
1441
1442 if (need_entry & NEED_DYNREL)
1443 {
1444 /* Flag this symbol as having a non-got, non-plt reference
1445 so that we generate copy relocs if it turns out to be
1446 dynamic. */
1447 if (hh != NULL && !info->shared)
1448 hh->eh.non_got_ref = 1;
1449
1450 /* If we are creating a shared library then we need to copy
1451 the reloc into the shared library. However, if we are
1452 linking with -Bsymbolic, we need only copy absolute
1453 relocs or relocs against symbols that are not defined in
1454 an object we are including in the link. PC- or DP- or
1455 DLT-relative relocs against any local sym or global sym
1456 with DEF_REGULAR set, can be discarded. At this point we
1457 have not seen all the input files, so it is possible that
1458 DEF_REGULAR is not set now but will be set later (it is
1459 never cleared). We account for that possibility below by
1460 storing information in the dyn_relocs field of the
1461 hash table entry.
1462
1463 A similar situation to the -Bsymbolic case occurs when
1464 creating shared libraries and symbol visibility changes
1465 render the symbol local.
1466
1467 As it turns out, all the relocs we will be creating here
1468 are absolute, so we cannot remove them on -Bsymbolic
1469 links or visibility changes anyway. A STUB_REL reloc
1470 is absolute too, as in that case it is the reloc in the
1471 stub we will be creating, rather than copying the PCREL
1472 reloc in the branch.
1473
1474 If on the other hand, we are creating an executable, we
1475 may need to keep relocations for symbols satisfied by a
1476 dynamic library if we manage to avoid copy relocs for the
1477 symbol. */
1478 if ((info->shared
1479 && (sec->flags & SEC_ALLOC) != 0
1480 && (IS_ABSOLUTE_RELOC (r_type)
1481 || (hh != NULL
1482 && (!info->symbolic
1483 || hh->eh.root.type == bfd_link_hash_defweak
1484 || !hh->eh.def_regular))))
1485 || (ELIMINATE_COPY_RELOCS
1486 && !info->shared
1487 && (sec->flags & SEC_ALLOC) != 0
1488 && hh != NULL
1489 && (hh->eh.root.type == bfd_link_hash_defweak
1490 || !hh->eh.def_regular)))
1491 {
1492 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1493 struct elf32_hppa_dyn_reloc_entry **hdh_head;
1494
1495 /* Create a reloc section in dynobj and make room for
1496 this reloc. */
1497 if (sreloc == NULL)
1498 {
1499 if (htab->etab.dynobj == NULL)
1500 htab->etab.dynobj = abfd;
1501
1502 sreloc = _bfd_elf_make_dynamic_reloc_section
1503 (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
1504
1505 if (sreloc == NULL)
1506 {
1507 bfd_set_error (bfd_error_bad_value);
1508 return FALSE;
1509 }
1510 }
1511
1512 /* If this is a global symbol, we count the number of
1513 relocations we need for this symbol. */
1514 if (hh != NULL)
1515 {
1516 hdh_head = &hh->dyn_relocs;
1517 }
1518 else
1519 {
1520 /* Track dynamic relocs needed for local syms too.
1521 We really need local syms available to do this
1522 easily. Oh well. */
1523 asection *sr;
1524 void *vpp;
1525 Elf_Internal_Sym *isym;
1526
1527 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1528 abfd, r_symndx);
1529 if (isym == NULL)
1530 return FALSE;
1531
1532 sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
1533 if (sr == NULL)
1534 sr = sec;
1535
1536 vpp = &elf_section_data (sr)->local_dynrel;
1537 hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
1538 }
1539
1540 hdh_p = *hdh_head;
1541 if (hdh_p == NULL || hdh_p->sec != sec)
1542 {
1543 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1544 if (hdh_p == NULL)
1545 return FALSE;
1546 hdh_p->hdh_next = *hdh_head;
1547 *hdh_head = hdh_p;
1548 hdh_p->sec = sec;
1549 hdh_p->count = 0;
1550 #if RELATIVE_DYNRELOCS
1551 hdh_p->relative_count = 0;
1552 #endif
1553 }
1554
1555 hdh_p->count += 1;
1556 #if RELATIVE_DYNRELOCS
1557 if (!IS_ABSOLUTE_RELOC (rtype))
1558 hdh_p->relative_count += 1;
1559 #endif
1560 }
1561 }
1562 }
1563
1564 return TRUE;
1565 }
1566
1567 /* Return the section that should be marked against garbage collection
1568 for a given relocation. */
1569
1570 static asection *
1571 elf32_hppa_gc_mark_hook (asection *sec,
1572 struct bfd_link_info *info,
1573 Elf_Internal_Rela *rela,
1574 struct elf_link_hash_entry *hh,
1575 Elf_Internal_Sym *sym)
1576 {
1577 if (hh != NULL)
1578 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1579 {
1580 case R_PARISC_GNU_VTINHERIT:
1581 case R_PARISC_GNU_VTENTRY:
1582 return NULL;
1583 }
1584
1585 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1586 }
1587
1588 /* Update the got and plt entry reference counts for the section being
1589 removed. */
1590
1591 static bfd_boolean
1592 elf32_hppa_gc_sweep_hook (bfd *abfd,
1593 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1594 asection *sec,
1595 const Elf_Internal_Rela *relocs)
1596 {
1597 Elf_Internal_Shdr *symtab_hdr;
1598 struct elf_link_hash_entry **eh_syms;
1599 bfd_signed_vma *local_got_refcounts;
1600 bfd_signed_vma *local_plt_refcounts;
1601 const Elf_Internal_Rela *rela, *relend;
1602 struct elf32_hppa_link_hash_table *htab;
1603
1604 if (info->relocatable)
1605 return TRUE;
1606
1607 htab = hppa_link_hash_table (info);
1608 if (htab == NULL)
1609 return FALSE;
1610
1611 elf_section_data (sec)->local_dynrel = NULL;
1612
1613 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1614 eh_syms = elf_sym_hashes (abfd);
1615 local_got_refcounts = elf_local_got_refcounts (abfd);
1616 local_plt_refcounts = local_got_refcounts;
1617 if (local_plt_refcounts != NULL)
1618 local_plt_refcounts += symtab_hdr->sh_info;
1619
1620 relend = relocs + sec->reloc_count;
1621 for (rela = relocs; rela < relend; rela++)
1622 {
1623 unsigned long r_symndx;
1624 unsigned int r_type;
1625 struct elf_link_hash_entry *eh = NULL;
1626
1627 r_symndx = ELF32_R_SYM (rela->r_info);
1628 if (r_symndx >= symtab_hdr->sh_info)
1629 {
1630 struct elf32_hppa_link_hash_entry *hh;
1631 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1632 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1633
1634 eh = eh_syms[r_symndx - symtab_hdr->sh_info];
1635 while (eh->root.type == bfd_link_hash_indirect
1636 || eh->root.type == bfd_link_hash_warning)
1637 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1638 hh = hppa_elf_hash_entry (eh);
1639
1640 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
1641 if (hdh_p->sec == sec)
1642 {
1643 /* Everything must go for SEC. */
1644 *hdh_pp = hdh_p->hdh_next;
1645 break;
1646 }
1647 }
1648
1649 r_type = ELF32_R_TYPE (rela->r_info);
1650 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, eh != NULL);
1651
1652 switch (r_type)
1653 {
1654 case R_PARISC_DLTIND14F:
1655 case R_PARISC_DLTIND14R:
1656 case R_PARISC_DLTIND21L:
1657 case R_PARISC_TLS_GD21L:
1658 case R_PARISC_TLS_GD14R:
1659 case R_PARISC_TLS_IE21L:
1660 case R_PARISC_TLS_IE14R:
1661 if (eh != NULL)
1662 {
1663 if (eh->got.refcount > 0)
1664 eh->got.refcount -= 1;
1665 }
1666 else if (local_got_refcounts != NULL)
1667 {
1668 if (local_got_refcounts[r_symndx] > 0)
1669 local_got_refcounts[r_symndx] -= 1;
1670 }
1671 break;
1672
1673 case R_PARISC_TLS_LDM21L:
1674 case R_PARISC_TLS_LDM14R:
1675 htab->tls_ldm_got.refcount -= 1;
1676 break;
1677
1678 case R_PARISC_PCREL12F:
1679 case R_PARISC_PCREL17C:
1680 case R_PARISC_PCREL17F:
1681 case R_PARISC_PCREL22F:
1682 if (eh != NULL)
1683 {
1684 if (eh->plt.refcount > 0)
1685 eh->plt.refcount -= 1;
1686 }
1687 break;
1688
1689 case R_PARISC_PLABEL14R:
1690 case R_PARISC_PLABEL21L:
1691 case R_PARISC_PLABEL32:
1692 if (eh != NULL)
1693 {
1694 if (eh->plt.refcount > 0)
1695 eh->plt.refcount -= 1;
1696 }
1697 else if (local_plt_refcounts != NULL)
1698 {
1699 if (local_plt_refcounts[r_symndx] > 0)
1700 local_plt_refcounts[r_symndx] -= 1;
1701 }
1702 break;
1703
1704 default:
1705 break;
1706 }
1707 }
1708
1709 return TRUE;
1710 }
1711
1712 /* Support for core dump NOTE sections. */
1713
1714 static bfd_boolean
1715 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1716 {
1717 int offset;
1718 size_t size;
1719
1720 switch (note->descsz)
1721 {
1722 default:
1723 return FALSE;
1724
1725 case 396: /* Linux/hppa */
1726 /* pr_cursig */
1727 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1728
1729 /* pr_pid */
1730 elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 24);
1731
1732 /* pr_reg */
1733 offset = 72;
1734 size = 320;
1735
1736 break;
1737 }
1738
1739 /* Make a ".reg/999" section. */
1740 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1741 size, note->descpos + offset);
1742 }
1743
1744 static bfd_boolean
1745 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1746 {
1747 switch (note->descsz)
1748 {
1749 default:
1750 return FALSE;
1751
1752 case 124: /* Linux/hppa elf_prpsinfo. */
1753 elf_tdata (abfd)->core_program
1754 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1755 elf_tdata (abfd)->core_command
1756 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1757 }
1758
1759 /* Note that for some reason, a spurious space is tacked
1760 onto the end of the args in some (at least one anyway)
1761 implementations, so strip it off if it exists. */
1762 {
1763 char *command = elf_tdata (abfd)->core_command;
1764 int n = strlen (command);
1765
1766 if (0 < n && command[n - 1] == ' ')
1767 command[n - 1] = '\0';
1768 }
1769
1770 return TRUE;
1771 }
1772
1773 /* Our own version of hide_symbol, so that we can keep plt entries for
1774 plabels. */
1775
1776 static void
1777 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1778 struct elf_link_hash_entry *eh,
1779 bfd_boolean force_local)
1780 {
1781 if (force_local)
1782 {
1783 eh->forced_local = 1;
1784 if (eh->dynindx != -1)
1785 {
1786 eh->dynindx = -1;
1787 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1788 eh->dynstr_index);
1789 }
1790 }
1791
1792 if (! hppa_elf_hash_entry (eh)->plabel)
1793 {
1794 eh->needs_plt = 0;
1795 eh->plt = elf_hash_table (info)->init_plt_refcount;
1796 }
1797 }
1798
1799 /* Adjust a symbol defined by a dynamic object and referenced by a
1800 regular object. The current definition is in some section of the
1801 dynamic object, but we're not including those sections. We have to
1802 change the definition to something the rest of the link can
1803 understand. */
1804
1805 static bfd_boolean
1806 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1807 struct elf_link_hash_entry *eh)
1808 {
1809 struct elf32_hppa_link_hash_table *htab;
1810 asection *sec;
1811
1812 /* If this is a function, put it in the procedure linkage table. We
1813 will fill in the contents of the procedure linkage table later. */
1814 if (eh->type == STT_FUNC
1815 || eh->needs_plt)
1816 {
1817 if (eh->plt.refcount <= 0
1818 || (eh->def_regular
1819 && eh->root.type != bfd_link_hash_defweak
1820 && ! hppa_elf_hash_entry (eh)->plabel
1821 && (!info->shared || info->symbolic)))
1822 {
1823 /* The .plt entry is not needed when:
1824 a) Garbage collection has removed all references to the
1825 symbol, or
1826 b) We know for certain the symbol is defined in this
1827 object, and it's not a weak definition, nor is the symbol
1828 used by a plabel relocation. Either this object is the
1829 application or we are doing a shared symbolic link. */
1830
1831 eh->plt.offset = (bfd_vma) -1;
1832 eh->needs_plt = 0;
1833 }
1834
1835 return TRUE;
1836 }
1837 else
1838 eh->plt.offset = (bfd_vma) -1;
1839
1840 /* If this is a weak symbol, and there is a real definition, the
1841 processor independent code will have arranged for us to see the
1842 real definition first, and we can just use the same value. */
1843 if (eh->u.weakdef != NULL)
1844 {
1845 if (eh->u.weakdef->root.type != bfd_link_hash_defined
1846 && eh->u.weakdef->root.type != bfd_link_hash_defweak)
1847 abort ();
1848 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1849 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1850 if (ELIMINATE_COPY_RELOCS)
1851 eh->non_got_ref = eh->u.weakdef->non_got_ref;
1852 return TRUE;
1853 }
1854
1855 /* This is a reference to a symbol defined by a dynamic object which
1856 is not a function. */
1857
1858 /* If we are creating a shared library, we must presume that the
1859 only references to the symbol are via the global offset table.
1860 For such cases we need not do anything here; the relocations will
1861 be handled correctly by relocate_section. */
1862 if (info->shared)
1863 return TRUE;
1864
1865 /* If there are no references to this symbol that do not use the
1866 GOT, we don't need to generate a copy reloc. */
1867 if (!eh->non_got_ref)
1868 return TRUE;
1869
1870 if (ELIMINATE_COPY_RELOCS)
1871 {
1872 struct elf32_hppa_link_hash_entry *hh;
1873 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1874
1875 hh = hppa_elf_hash_entry (eh);
1876 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
1877 {
1878 sec = hdh_p->sec->output_section;
1879 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1880 break;
1881 }
1882
1883 /* If we didn't find any dynamic relocs in read-only sections, then
1884 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1885 if (hdh_p == NULL)
1886 {
1887 eh->non_got_ref = 0;
1888 return TRUE;
1889 }
1890 }
1891
1892 if (eh->size == 0)
1893 {
1894 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
1895 eh->root.root.string);
1896 return TRUE;
1897 }
1898
1899 /* We must allocate the symbol in our .dynbss section, which will
1900 become part of the .bss section of the executable. There will be
1901 an entry for this symbol in the .dynsym section. The dynamic
1902 object will contain position independent code, so all references
1903 from the dynamic object to this symbol will go through the global
1904 offset table. The dynamic linker will use the .dynsym entry to
1905 determine the address it must put in the global offset table, so
1906 both the dynamic object and the regular object will refer to the
1907 same memory location for the variable. */
1908
1909 htab = hppa_link_hash_table (info);
1910 if (htab == NULL)
1911 return FALSE;
1912
1913 /* We must generate a COPY reloc to tell the dynamic linker to
1914 copy the initial value out of the dynamic object and into the
1915 runtime process image. */
1916 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0)
1917 {
1918 htab->srelbss->size += sizeof (Elf32_External_Rela);
1919 eh->needs_copy = 1;
1920 }
1921
1922 sec = htab->sdynbss;
1923
1924 return _bfd_elf_adjust_dynamic_copy (eh, sec);
1925 }
1926
1927 /* Allocate space in the .plt for entries that won't have relocations.
1928 ie. plabel entries. */
1929
1930 static bfd_boolean
1931 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1932 {
1933 struct bfd_link_info *info;
1934 struct elf32_hppa_link_hash_table *htab;
1935 struct elf32_hppa_link_hash_entry *hh;
1936 asection *sec;
1937
1938 if (eh->root.type == bfd_link_hash_indirect)
1939 return TRUE;
1940
1941 if (eh->root.type == bfd_link_hash_warning)
1942 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1943
1944 info = (struct bfd_link_info *) inf;
1945 hh = hppa_elf_hash_entry (eh);
1946 htab = hppa_link_hash_table (info);
1947 if (htab == NULL)
1948 return FALSE;
1949
1950 if (htab->etab.dynamic_sections_created
1951 && eh->plt.refcount > 0)
1952 {
1953 /* Make sure this symbol is output as a dynamic symbol.
1954 Undefined weak syms won't yet be marked as dynamic. */
1955 if (eh->dynindx == -1
1956 && !eh->forced_local
1957 && eh->type != STT_PARISC_MILLI)
1958 {
1959 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
1960 return FALSE;
1961 }
1962
1963 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, eh))
1964 {
1965 /* Allocate these later. From this point on, h->plabel
1966 means that the plt entry is only used by a plabel.
1967 We'll be using a normal plt entry for this symbol, so
1968 clear the plabel indicator. */
1969
1970 hh->plabel = 0;
1971 }
1972 else if (hh->plabel)
1973 {
1974 /* Make an entry in the .plt section for plabel references
1975 that won't have a .plt entry for other reasons. */
1976 sec = htab->splt;
1977 eh->plt.offset = sec->size;
1978 sec->size += PLT_ENTRY_SIZE;
1979 }
1980 else
1981 {
1982 /* No .plt entry needed. */
1983 eh->plt.offset = (bfd_vma) -1;
1984 eh->needs_plt = 0;
1985 }
1986 }
1987 else
1988 {
1989 eh->plt.offset = (bfd_vma) -1;
1990 eh->needs_plt = 0;
1991 }
1992
1993 return TRUE;
1994 }
1995
1996 /* Allocate space in .plt, .got and associated reloc sections for
1997 global syms. */
1998
1999 static bfd_boolean
2000 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2001 {
2002 struct bfd_link_info *info;
2003 struct elf32_hppa_link_hash_table *htab;
2004 asection *sec;
2005 struct elf32_hppa_link_hash_entry *hh;
2006 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2007
2008 if (eh->root.type == bfd_link_hash_indirect)
2009 return TRUE;
2010
2011 if (eh->root.type == bfd_link_hash_warning)
2012 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2013
2014 info = inf;
2015 htab = hppa_link_hash_table (info);
2016 if (htab == NULL)
2017 return FALSE;
2018
2019 hh = hppa_elf_hash_entry (eh);
2020
2021 if (htab->etab.dynamic_sections_created
2022 && eh->plt.offset != (bfd_vma) -1
2023 && !hh->plabel
2024 && eh->plt.refcount > 0)
2025 {
2026 /* Make an entry in the .plt section. */
2027 sec = htab->splt;
2028 eh->plt.offset = sec->size;
2029 sec->size += PLT_ENTRY_SIZE;
2030
2031 /* We also need to make an entry in the .rela.plt section. */
2032 htab->srelplt->size += sizeof (Elf32_External_Rela);
2033 htab->need_plt_stub = 1;
2034 }
2035
2036 if (eh->got.refcount > 0)
2037 {
2038 /* Make sure this symbol is output as a dynamic symbol.
2039 Undefined weak syms won't yet be marked as dynamic. */
2040 if (eh->dynindx == -1
2041 && !eh->forced_local
2042 && eh->type != STT_PARISC_MILLI)
2043 {
2044 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2045 return FALSE;
2046 }
2047
2048 sec = htab->sgot;
2049 eh->got.offset = sec->size;
2050 sec->size += GOT_ENTRY_SIZE;
2051 /* R_PARISC_TLS_GD* needs two GOT entries */
2052 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2053 sec->size += GOT_ENTRY_SIZE * 2;
2054 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2055 sec->size += GOT_ENTRY_SIZE;
2056 if (htab->etab.dynamic_sections_created
2057 && (info->shared
2058 || (eh->dynindx != -1
2059 && !eh->forced_local)))
2060 {
2061 htab->srelgot->size += sizeof (Elf32_External_Rela);
2062 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2063 htab->srelgot->size += 2 * sizeof (Elf32_External_Rela);
2064 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2065 htab->srelgot->size += sizeof (Elf32_External_Rela);
2066 }
2067 }
2068 else
2069 eh->got.offset = (bfd_vma) -1;
2070
2071 if (hh->dyn_relocs == NULL)
2072 return TRUE;
2073
2074 /* If this is a -Bsymbolic shared link, then we need to discard all
2075 space allocated for dynamic pc-relative relocs against symbols
2076 defined in a regular object. For the normal shared case, discard
2077 space for relocs that have become local due to symbol visibility
2078 changes. */
2079 if (info->shared)
2080 {
2081 #if RELATIVE_DYNRELOCS
2082 if (SYMBOL_CALLS_LOCAL (info, eh))
2083 {
2084 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
2085
2086 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2087 {
2088 hdh_p->count -= hdh_p->relative_count;
2089 hdh_p->relative_count = 0;
2090 if (hdh_p->count == 0)
2091 *hdh_pp = hdh_p->hdh_next;
2092 else
2093 hdh_pp = &hdh_p->hdh_next;
2094 }
2095 }
2096 #endif
2097
2098 /* Also discard relocs on undefined weak syms with non-default
2099 visibility. */
2100 if (hh->dyn_relocs != NULL
2101 && eh->root.type == bfd_link_hash_undefweak)
2102 {
2103 if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
2104 hh->dyn_relocs = NULL;
2105
2106 /* Make sure undefined weak symbols are output as a dynamic
2107 symbol in PIEs. */
2108 else if (eh->dynindx == -1
2109 && !eh->forced_local)
2110 {
2111 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2112 return FALSE;
2113 }
2114 }
2115 }
2116 else
2117 {
2118 /* For the non-shared case, discard space for relocs against
2119 symbols which turn out to need copy relocs or are not
2120 dynamic. */
2121
2122 if (!eh->non_got_ref
2123 && ((ELIMINATE_COPY_RELOCS
2124 && eh->def_dynamic
2125 && !eh->def_regular)
2126 || (htab->etab.dynamic_sections_created
2127 && (eh->root.type == bfd_link_hash_undefweak
2128 || eh->root.type == bfd_link_hash_undefined))))
2129 {
2130 /* Make sure this symbol is output as a dynamic symbol.
2131 Undefined weak syms won't yet be marked as dynamic. */
2132 if (eh->dynindx == -1
2133 && !eh->forced_local
2134 && eh->type != STT_PARISC_MILLI)
2135 {
2136 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2137 return FALSE;
2138 }
2139
2140 /* If that succeeded, we know we'll be keeping all the
2141 relocs. */
2142 if (eh->dynindx != -1)
2143 goto keep;
2144 }
2145
2146 hh->dyn_relocs = NULL;
2147 return TRUE;
2148
2149 keep: ;
2150 }
2151
2152 /* Finally, allocate space. */
2153 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2154 {
2155 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2156 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2157 }
2158
2159 return TRUE;
2160 }
2161
2162 /* This function is called via elf_link_hash_traverse to force
2163 millicode symbols local so they do not end up as globals in the
2164 dynamic symbol table. We ought to be able to do this in
2165 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2166 for all dynamic symbols. Arguably, this is a bug in
2167 elf_adjust_dynamic_symbol. */
2168
2169 static bfd_boolean
2170 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2171 struct bfd_link_info *info)
2172 {
2173 if (eh->root.type == bfd_link_hash_warning)
2174 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2175
2176 if (eh->type == STT_PARISC_MILLI
2177 && !eh->forced_local)
2178 {
2179 elf32_hppa_hide_symbol (info, eh, TRUE);
2180 }
2181 return TRUE;
2182 }
2183
2184 /* Find any dynamic relocs that apply to read-only sections. */
2185
2186 static bfd_boolean
2187 readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2188 {
2189 struct elf32_hppa_link_hash_entry *hh;
2190 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2191
2192 if (eh->root.type == bfd_link_hash_warning)
2193 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2194
2195 hh = hppa_elf_hash_entry (eh);
2196 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2197 {
2198 asection *sec = hdh_p->sec->output_section;
2199
2200 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
2201 {
2202 struct bfd_link_info *info = inf;
2203
2204 info->flags |= DF_TEXTREL;
2205
2206 /* Not an error, just cut short the traversal. */
2207 return FALSE;
2208 }
2209 }
2210 return TRUE;
2211 }
2212
2213 /* Set the sizes of the dynamic sections. */
2214
2215 static bfd_boolean
2216 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2217 struct bfd_link_info *info)
2218 {
2219 struct elf32_hppa_link_hash_table *htab;
2220 bfd *dynobj;
2221 bfd *ibfd;
2222 asection *sec;
2223 bfd_boolean relocs;
2224
2225 htab = hppa_link_hash_table (info);
2226 if (htab == NULL)
2227 return FALSE;
2228
2229 dynobj = htab->etab.dynobj;
2230 if (dynobj == NULL)
2231 abort ();
2232
2233 if (htab->etab.dynamic_sections_created)
2234 {
2235 /* Set the contents of the .interp section to the interpreter. */
2236 if (info->executable)
2237 {
2238 sec = bfd_get_section_by_name (dynobj, ".interp");
2239 if (sec == NULL)
2240 abort ();
2241 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2242 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2243 }
2244
2245 /* Force millicode symbols local. */
2246 elf_link_hash_traverse (&htab->etab,
2247 clobber_millicode_symbols,
2248 info);
2249 }
2250
2251 /* Set up .got and .plt offsets for local syms, and space for local
2252 dynamic relocs. */
2253 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2254 {
2255 bfd_signed_vma *local_got;
2256 bfd_signed_vma *end_local_got;
2257 bfd_signed_vma *local_plt;
2258 bfd_signed_vma *end_local_plt;
2259 bfd_size_type locsymcount;
2260 Elf_Internal_Shdr *symtab_hdr;
2261 asection *srel;
2262 char *local_tls_type;
2263
2264 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2265 continue;
2266
2267 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2268 {
2269 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2270
2271 for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2272 elf_section_data (sec)->local_dynrel);
2273 hdh_p != NULL;
2274 hdh_p = hdh_p->hdh_next)
2275 {
2276 if (!bfd_is_abs_section (hdh_p->sec)
2277 && bfd_is_abs_section (hdh_p->sec->output_section))
2278 {
2279 /* Input section has been discarded, either because
2280 it is a copy of a linkonce section or due to
2281 linker script /DISCARD/, so we'll be discarding
2282 the relocs too. */
2283 }
2284 else if (hdh_p->count != 0)
2285 {
2286 srel = elf_section_data (hdh_p->sec)->sreloc;
2287 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2288 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2289 info->flags |= DF_TEXTREL;
2290 }
2291 }
2292 }
2293
2294 local_got = elf_local_got_refcounts (ibfd);
2295 if (!local_got)
2296 continue;
2297
2298 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2299 locsymcount = symtab_hdr->sh_info;
2300 end_local_got = local_got + locsymcount;
2301 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2302 sec = htab->sgot;
2303 srel = htab->srelgot;
2304 for (; local_got < end_local_got; ++local_got)
2305 {
2306 if (*local_got > 0)
2307 {
2308 *local_got = sec->size;
2309 sec->size += GOT_ENTRY_SIZE;
2310 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2311 sec->size += 2 * GOT_ENTRY_SIZE;
2312 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2313 sec->size += GOT_ENTRY_SIZE;
2314 if (info->shared)
2315 {
2316 srel->size += sizeof (Elf32_External_Rela);
2317 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2318 srel->size += 2 * sizeof (Elf32_External_Rela);
2319 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2320 srel->size += sizeof (Elf32_External_Rela);
2321 }
2322 }
2323 else
2324 *local_got = (bfd_vma) -1;
2325
2326 ++local_tls_type;
2327 }
2328
2329 local_plt = end_local_got;
2330 end_local_plt = local_plt + locsymcount;
2331 if (! htab->etab.dynamic_sections_created)
2332 {
2333 /* Won't be used, but be safe. */
2334 for (; local_plt < end_local_plt; ++local_plt)
2335 *local_plt = (bfd_vma) -1;
2336 }
2337 else
2338 {
2339 sec = htab->splt;
2340 srel = htab->srelplt;
2341 for (; local_plt < end_local_plt; ++local_plt)
2342 {
2343 if (*local_plt > 0)
2344 {
2345 *local_plt = sec->size;
2346 sec->size += PLT_ENTRY_SIZE;
2347 if (info->shared)
2348 srel->size += sizeof (Elf32_External_Rela);
2349 }
2350 else
2351 *local_plt = (bfd_vma) -1;
2352 }
2353 }
2354 }
2355
2356 if (htab->tls_ldm_got.refcount > 0)
2357 {
2358 /* Allocate 2 got entries and 1 dynamic reloc for
2359 R_PARISC_TLS_DTPMOD32 relocs. */
2360 htab->tls_ldm_got.offset = htab->sgot->size;
2361 htab->sgot->size += (GOT_ENTRY_SIZE * 2);
2362 htab->srelgot->size += sizeof (Elf32_External_Rela);
2363 }
2364 else
2365 htab->tls_ldm_got.offset = -1;
2366
2367 /* Do all the .plt entries without relocs first. The dynamic linker
2368 uses the last .plt reloc to find the end of the .plt (and hence
2369 the start of the .got) for lazy linking. */
2370 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2371
2372 /* Allocate global sym .plt and .got entries, and space for global
2373 sym dynamic relocs. */
2374 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2375
2376 /* The check_relocs and adjust_dynamic_symbol entry points have
2377 determined the sizes of the various dynamic sections. Allocate
2378 memory for them. */
2379 relocs = FALSE;
2380 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2381 {
2382 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2383 continue;
2384
2385 if (sec == htab->splt)
2386 {
2387 if (htab->need_plt_stub)
2388 {
2389 /* Make space for the plt stub at the end of the .plt
2390 section. We want this stub right at the end, up
2391 against the .got section. */
2392 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2393 int pltalign = bfd_section_alignment (dynobj, sec);
2394 bfd_size_type mask;
2395
2396 if (gotalign > pltalign)
2397 bfd_set_section_alignment (dynobj, sec, gotalign);
2398 mask = ((bfd_size_type) 1 << gotalign) - 1;
2399 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2400 }
2401 }
2402 else if (sec == htab->sgot
2403 || sec == htab->sdynbss)
2404 ;
2405 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
2406 {
2407 if (sec->size != 0)
2408 {
2409 /* Remember whether there are any reloc sections other
2410 than .rela.plt. */
2411 if (sec != htab->srelplt)
2412 relocs = TRUE;
2413
2414 /* We use the reloc_count field as a counter if we need
2415 to copy relocs into the output file. */
2416 sec->reloc_count = 0;
2417 }
2418 }
2419 else
2420 {
2421 /* It's not one of our sections, so don't allocate space. */
2422 continue;
2423 }
2424
2425 if (sec->size == 0)
2426 {
2427 /* If we don't need this section, strip it from the
2428 output file. This is mostly to handle .rela.bss and
2429 .rela.plt. We must create both sections in
2430 create_dynamic_sections, because they must be created
2431 before the linker maps input sections to output
2432 sections. The linker does that before
2433 adjust_dynamic_symbol is called, and it is that
2434 function which decides whether anything needs to go
2435 into these sections. */
2436 sec->flags |= SEC_EXCLUDE;
2437 continue;
2438 }
2439
2440 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2441 continue;
2442
2443 /* Allocate memory for the section contents. Zero it, because
2444 we may not fill in all the reloc sections. */
2445 sec->contents = bfd_zalloc (dynobj, sec->size);
2446 if (sec->contents == NULL)
2447 return FALSE;
2448 }
2449
2450 if (htab->etab.dynamic_sections_created)
2451 {
2452 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2453 actually has nothing to do with the PLT, it is how we
2454 communicate the LTP value of a load module to the dynamic
2455 linker. */
2456 #define add_dynamic_entry(TAG, VAL) \
2457 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2458
2459 if (!add_dynamic_entry (DT_PLTGOT, 0))
2460 return FALSE;
2461
2462 /* Add some entries to the .dynamic section. We fill in the
2463 values later, in elf32_hppa_finish_dynamic_sections, but we
2464 must add the entries now so that we get the correct size for
2465 the .dynamic section. The DT_DEBUG entry is filled in by the
2466 dynamic linker and used by the debugger. */
2467 if (info->executable)
2468 {
2469 if (!add_dynamic_entry (DT_DEBUG, 0))
2470 return FALSE;
2471 }
2472
2473 if (htab->srelplt->size != 0)
2474 {
2475 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2476 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2477 || !add_dynamic_entry (DT_JMPREL, 0))
2478 return FALSE;
2479 }
2480
2481 if (relocs)
2482 {
2483 if (!add_dynamic_entry (DT_RELA, 0)
2484 || !add_dynamic_entry (DT_RELASZ, 0)
2485 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2486 return FALSE;
2487
2488 /* If any dynamic relocs apply to a read-only section,
2489 then we need a DT_TEXTREL entry. */
2490 if ((info->flags & DF_TEXTREL) == 0)
2491 elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
2492
2493 if ((info->flags & DF_TEXTREL) != 0)
2494 {
2495 if (!add_dynamic_entry (DT_TEXTREL, 0))
2496 return FALSE;
2497 }
2498 }
2499 }
2500 #undef add_dynamic_entry
2501
2502 return TRUE;
2503 }
2504
2505 /* External entry points for sizing and building linker stubs. */
2506
2507 /* Set up various things so that we can make a list of input sections
2508 for each output section included in the link. Returns -1 on error,
2509 0 when no stubs will be needed, and 1 on success. */
2510
2511 int
2512 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2513 {
2514 bfd *input_bfd;
2515 unsigned int bfd_count;
2516 int top_id, top_index;
2517 asection *section;
2518 asection **input_list, **list;
2519 bfd_size_type amt;
2520 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2521
2522 if (htab == NULL)
2523 return -1;
2524
2525 /* Count the number of input BFDs and find the top input section id. */
2526 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2527 input_bfd != NULL;
2528 input_bfd = input_bfd->link_next)
2529 {
2530 bfd_count += 1;
2531 for (section = input_bfd->sections;
2532 section != NULL;
2533 section = section->next)
2534 {
2535 if (top_id < section->id)
2536 top_id = section->id;
2537 }
2538 }
2539 htab->bfd_count = bfd_count;
2540
2541 amt = sizeof (struct map_stub) * (top_id + 1);
2542 htab->stub_group = bfd_zmalloc (amt);
2543 if (htab->stub_group == NULL)
2544 return -1;
2545
2546 /* We can't use output_bfd->section_count here to find the top output
2547 section index as some sections may have been removed, and
2548 strip_excluded_output_sections doesn't renumber the indices. */
2549 for (section = output_bfd->sections, top_index = 0;
2550 section != NULL;
2551 section = section->next)
2552 {
2553 if (top_index < section->index)
2554 top_index = section->index;
2555 }
2556
2557 htab->top_index = top_index;
2558 amt = sizeof (asection *) * (top_index + 1);
2559 input_list = bfd_malloc (amt);
2560 htab->input_list = input_list;
2561 if (input_list == NULL)
2562 return -1;
2563
2564 /* For sections we aren't interested in, mark their entries with a
2565 value we can check later. */
2566 list = input_list + top_index;
2567 do
2568 *list = bfd_abs_section_ptr;
2569 while (list-- != input_list);
2570
2571 for (section = output_bfd->sections;
2572 section != NULL;
2573 section = section->next)
2574 {
2575 if ((section->flags & SEC_CODE) != 0)
2576 input_list[section->index] = NULL;
2577 }
2578
2579 return 1;
2580 }
2581
2582 /* The linker repeatedly calls this function for each input section,
2583 in the order that input sections are linked into output sections.
2584 Build lists of input sections to determine groupings between which
2585 we may insert linker stubs. */
2586
2587 void
2588 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2589 {
2590 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2591
2592 if (htab == NULL)
2593 return;
2594
2595 if (isec->output_section->index <= htab->top_index)
2596 {
2597 asection **list = htab->input_list + isec->output_section->index;
2598 if (*list != bfd_abs_section_ptr)
2599 {
2600 /* Steal the link_sec pointer for our list. */
2601 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2602 /* This happens to make the list in reverse order,
2603 which is what we want. */
2604 PREV_SEC (isec) = *list;
2605 *list = isec;
2606 }
2607 }
2608 }
2609
2610 /* See whether we can group stub sections together. Grouping stub
2611 sections may result in fewer stubs. More importantly, we need to
2612 put all .init* and .fini* stubs at the beginning of the .init or
2613 .fini output sections respectively, because glibc splits the
2614 _init and _fini functions into multiple parts. Putting a stub in
2615 the middle of a function is not a good idea. */
2616
2617 static void
2618 group_sections (struct elf32_hppa_link_hash_table *htab,
2619 bfd_size_type stub_group_size,
2620 bfd_boolean stubs_always_before_branch)
2621 {
2622 asection **list = htab->input_list + htab->top_index;
2623 do
2624 {
2625 asection *tail = *list;
2626 if (tail == bfd_abs_section_ptr)
2627 continue;
2628 while (tail != NULL)
2629 {
2630 asection *curr;
2631 asection *prev;
2632 bfd_size_type total;
2633 bfd_boolean big_sec;
2634
2635 curr = tail;
2636 total = tail->size;
2637 big_sec = total >= stub_group_size;
2638
2639 while ((prev = PREV_SEC (curr)) != NULL
2640 && ((total += curr->output_offset - prev->output_offset)
2641 < stub_group_size))
2642 curr = prev;
2643
2644 /* OK, the size from the start of CURR to the end is less
2645 than 240000 bytes and thus can be handled by one stub
2646 section. (or the tail section is itself larger than
2647 240000 bytes, in which case we may be toast.)
2648 We should really be keeping track of the total size of
2649 stubs added here, as stubs contribute to the final output
2650 section size. That's a little tricky, and this way will
2651 only break if stubs added total more than 22144 bytes, or
2652 2768 long branch stubs. It seems unlikely for more than
2653 2768 different functions to be called, especially from
2654 code only 240000 bytes long. This limit used to be
2655 250000, but c++ code tends to generate lots of little
2656 functions, and sometimes violated the assumption. */
2657 do
2658 {
2659 prev = PREV_SEC (tail);
2660 /* Set up this stub group. */
2661 htab->stub_group[tail->id].link_sec = curr;
2662 }
2663 while (tail != curr && (tail = prev) != NULL);
2664
2665 /* But wait, there's more! Input sections up to 240000
2666 bytes before the stub section can be handled by it too.
2667 Don't do this if we have a really large section after the
2668 stubs, as adding more stubs increases the chance that
2669 branches may not reach into the stub section. */
2670 if (!stubs_always_before_branch && !big_sec)
2671 {
2672 total = 0;
2673 while (prev != NULL
2674 && ((total += tail->output_offset - prev->output_offset)
2675 < stub_group_size))
2676 {
2677 tail = prev;
2678 prev = PREV_SEC (tail);
2679 htab->stub_group[tail->id].link_sec = curr;
2680 }
2681 }
2682 tail = prev;
2683 }
2684 }
2685 while (list-- != htab->input_list);
2686 free (htab->input_list);
2687 #undef PREV_SEC
2688 }
2689
2690 /* Read in all local syms for all input bfds, and create hash entries
2691 for export stubs if we are building a multi-subspace shared lib.
2692 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2693
2694 static int
2695 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2696 {
2697 unsigned int bfd_indx;
2698 Elf_Internal_Sym *local_syms, **all_local_syms;
2699 int stub_changed = 0;
2700 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2701
2702 if (htab == NULL)
2703 return -1;
2704
2705 /* We want to read in symbol extension records only once. To do this
2706 we need to read in the local symbols in parallel and save them for
2707 later use; so hold pointers to the local symbols in an array. */
2708 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2709 all_local_syms = bfd_zmalloc (amt);
2710 htab->all_local_syms = all_local_syms;
2711 if (all_local_syms == NULL)
2712 return -1;
2713
2714 /* Walk over all the input BFDs, swapping in local symbols.
2715 If we are creating a shared library, create hash entries for the
2716 export stubs. */
2717 for (bfd_indx = 0;
2718 input_bfd != NULL;
2719 input_bfd = input_bfd->link_next, bfd_indx++)
2720 {
2721 Elf_Internal_Shdr *symtab_hdr;
2722
2723 /* We'll need the symbol table in a second. */
2724 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2725 if (symtab_hdr->sh_info == 0)
2726 continue;
2727
2728 /* We need an array of the local symbols attached to the input bfd. */
2729 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2730 if (local_syms == NULL)
2731 {
2732 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2733 symtab_hdr->sh_info, 0,
2734 NULL, NULL, NULL);
2735 /* Cache them for elf_link_input_bfd. */
2736 symtab_hdr->contents = (unsigned char *) local_syms;
2737 }
2738 if (local_syms == NULL)
2739 return -1;
2740
2741 all_local_syms[bfd_indx] = local_syms;
2742
2743 if (info->shared && htab->multi_subspace)
2744 {
2745 struct elf_link_hash_entry **eh_syms;
2746 struct elf_link_hash_entry **eh_symend;
2747 unsigned int symcount;
2748
2749 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2750 - symtab_hdr->sh_info);
2751 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2752 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2753
2754 /* Look through the global syms for functions; We need to
2755 build export stubs for all globally visible functions. */
2756 for (; eh_syms < eh_symend; eh_syms++)
2757 {
2758 struct elf32_hppa_link_hash_entry *hh;
2759
2760 hh = hppa_elf_hash_entry (*eh_syms);
2761
2762 while (hh->eh.root.type == bfd_link_hash_indirect
2763 || hh->eh.root.type == bfd_link_hash_warning)
2764 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2765
2766 /* At this point in the link, undefined syms have been
2767 resolved, so we need to check that the symbol was
2768 defined in this BFD. */
2769 if ((hh->eh.root.type == bfd_link_hash_defined
2770 || hh->eh.root.type == bfd_link_hash_defweak)
2771 && hh->eh.type == STT_FUNC
2772 && hh->eh.root.u.def.section->output_section != NULL
2773 && (hh->eh.root.u.def.section->output_section->owner
2774 == output_bfd)
2775 && hh->eh.root.u.def.section->owner == input_bfd
2776 && hh->eh.def_regular
2777 && !hh->eh.forced_local
2778 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2779 {
2780 asection *sec;
2781 const char *stub_name;
2782 struct elf32_hppa_stub_hash_entry *hsh;
2783
2784 sec = hh->eh.root.u.def.section;
2785 stub_name = hh_name (hh);
2786 hsh = hppa_stub_hash_lookup (&htab->bstab,
2787 stub_name,
2788 FALSE, FALSE);
2789 if (hsh == NULL)
2790 {
2791 hsh = hppa_add_stub (stub_name, sec, htab);
2792 if (!hsh)
2793 return -1;
2794
2795 hsh->target_value = hh->eh.root.u.def.value;
2796 hsh->target_section = hh->eh.root.u.def.section;
2797 hsh->stub_type = hppa_stub_export;
2798 hsh->hh = hh;
2799 stub_changed = 1;
2800 }
2801 else
2802 {
2803 (*_bfd_error_handler) (_("%B: duplicate export stub %s"),
2804 input_bfd,
2805 stub_name);
2806 }
2807 }
2808 }
2809 }
2810 }
2811
2812 return stub_changed;
2813 }
2814
2815 /* Determine and set the size of the stub section for a final link.
2816
2817 The basic idea here is to examine all the relocations looking for
2818 PC-relative calls to a target that is unreachable with a "bl"
2819 instruction. */
2820
2821 bfd_boolean
2822 elf32_hppa_size_stubs
2823 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2824 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2825 asection * (*add_stub_section) (const char *, asection *),
2826 void (*layout_sections_again) (void))
2827 {
2828 bfd_size_type stub_group_size;
2829 bfd_boolean stubs_always_before_branch;
2830 bfd_boolean stub_changed;
2831 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2832
2833 if (htab == NULL)
2834 return FALSE;
2835
2836 /* Stash our params away. */
2837 htab->stub_bfd = stub_bfd;
2838 htab->multi_subspace = multi_subspace;
2839 htab->add_stub_section = add_stub_section;
2840 htab->layout_sections_again = layout_sections_again;
2841 stubs_always_before_branch = group_size < 0;
2842 if (group_size < 0)
2843 stub_group_size = -group_size;
2844 else
2845 stub_group_size = group_size;
2846 if (stub_group_size == 1)
2847 {
2848 /* Default values. */
2849 if (stubs_always_before_branch)
2850 {
2851 stub_group_size = 7680000;
2852 if (htab->has_17bit_branch || htab->multi_subspace)
2853 stub_group_size = 240000;
2854 if (htab->has_12bit_branch)
2855 stub_group_size = 7500;
2856 }
2857 else
2858 {
2859 stub_group_size = 6971392;
2860 if (htab->has_17bit_branch || htab->multi_subspace)
2861 stub_group_size = 217856;
2862 if (htab->has_12bit_branch)
2863 stub_group_size = 6808;
2864 }
2865 }
2866
2867 group_sections (htab, stub_group_size, stubs_always_before_branch);
2868
2869 switch (get_local_syms (output_bfd, info->input_bfds, info))
2870 {
2871 default:
2872 if (htab->all_local_syms)
2873 goto error_ret_free_local;
2874 return FALSE;
2875
2876 case 0:
2877 stub_changed = FALSE;
2878 break;
2879
2880 case 1:
2881 stub_changed = TRUE;
2882 break;
2883 }
2884
2885 while (1)
2886 {
2887 bfd *input_bfd;
2888 unsigned int bfd_indx;
2889 asection *stub_sec;
2890
2891 for (input_bfd = info->input_bfds, bfd_indx = 0;
2892 input_bfd != NULL;
2893 input_bfd = input_bfd->link_next, bfd_indx++)
2894 {
2895 Elf_Internal_Shdr *symtab_hdr;
2896 asection *section;
2897 Elf_Internal_Sym *local_syms;
2898
2899 /* We'll need the symbol table in a second. */
2900 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2901 if (symtab_hdr->sh_info == 0)
2902 continue;
2903
2904 local_syms = htab->all_local_syms[bfd_indx];
2905
2906 /* Walk over each section attached to the input bfd. */
2907 for (section = input_bfd->sections;
2908 section != NULL;
2909 section = section->next)
2910 {
2911 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2912
2913 /* If there aren't any relocs, then there's nothing more
2914 to do. */
2915 if ((section->flags & SEC_RELOC) == 0
2916 || section->reloc_count == 0)
2917 continue;
2918
2919 /* If this section is a link-once section that will be
2920 discarded, then don't create any stubs. */
2921 if (section->output_section == NULL
2922 || section->output_section->owner != output_bfd)
2923 continue;
2924
2925 /* Get the relocs. */
2926 internal_relocs
2927 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2928 info->keep_memory);
2929 if (internal_relocs == NULL)
2930 goto error_ret_free_local;
2931
2932 /* Now examine each relocation. */
2933 irela = internal_relocs;
2934 irelaend = irela + section->reloc_count;
2935 for (; irela < irelaend; irela++)
2936 {
2937 unsigned int r_type, r_indx;
2938 enum elf32_hppa_stub_type stub_type;
2939 struct elf32_hppa_stub_hash_entry *hsh;
2940 asection *sym_sec;
2941 bfd_vma sym_value;
2942 bfd_vma destination;
2943 struct elf32_hppa_link_hash_entry *hh;
2944 char *stub_name;
2945 const asection *id_sec;
2946
2947 r_type = ELF32_R_TYPE (irela->r_info);
2948 r_indx = ELF32_R_SYM (irela->r_info);
2949
2950 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2951 {
2952 bfd_set_error (bfd_error_bad_value);
2953 error_ret_free_internal:
2954 if (elf_section_data (section)->relocs == NULL)
2955 free (internal_relocs);
2956 goto error_ret_free_local;
2957 }
2958
2959 /* Only look for stubs on call instructions. */
2960 if (r_type != (unsigned int) R_PARISC_PCREL12F
2961 && r_type != (unsigned int) R_PARISC_PCREL17F
2962 && r_type != (unsigned int) R_PARISC_PCREL22F)
2963 continue;
2964
2965 /* Now determine the call target, its name, value,
2966 section. */
2967 sym_sec = NULL;
2968 sym_value = 0;
2969 destination = 0;
2970 hh = NULL;
2971 if (r_indx < symtab_hdr->sh_info)
2972 {
2973 /* It's a local symbol. */
2974 Elf_Internal_Sym *sym;
2975 Elf_Internal_Shdr *hdr;
2976 unsigned int shndx;
2977
2978 sym = local_syms + r_indx;
2979 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2980 sym_value = sym->st_value;
2981 shndx = sym->st_shndx;
2982 if (shndx < elf_numsections (input_bfd))
2983 {
2984 hdr = elf_elfsections (input_bfd)[shndx];
2985 sym_sec = hdr->bfd_section;
2986 destination = (sym_value + irela->r_addend
2987 + sym_sec->output_offset
2988 + sym_sec->output_section->vma);
2989 }
2990 }
2991 else
2992 {
2993 /* It's an external symbol. */
2994 int e_indx;
2995
2996 e_indx = r_indx - symtab_hdr->sh_info;
2997 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2998
2999 while (hh->eh.root.type == bfd_link_hash_indirect
3000 || hh->eh.root.type == bfd_link_hash_warning)
3001 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
3002
3003 if (hh->eh.root.type == bfd_link_hash_defined
3004 || hh->eh.root.type == bfd_link_hash_defweak)
3005 {
3006 sym_sec = hh->eh.root.u.def.section;
3007 sym_value = hh->eh.root.u.def.value;
3008 if (sym_sec->output_section != NULL)
3009 destination = (sym_value + irela->r_addend
3010 + sym_sec->output_offset
3011 + sym_sec->output_section->vma);
3012 }
3013 else if (hh->eh.root.type == bfd_link_hash_undefweak)
3014 {
3015 if (! info->shared)
3016 continue;
3017 }
3018 else if (hh->eh.root.type == bfd_link_hash_undefined)
3019 {
3020 if (! (info->unresolved_syms_in_objects == RM_IGNORE
3021 && (ELF_ST_VISIBILITY (hh->eh.other)
3022 == STV_DEFAULT)
3023 && hh->eh.type != STT_PARISC_MILLI))
3024 continue;
3025 }
3026 else
3027 {
3028 bfd_set_error (bfd_error_bad_value);
3029 goto error_ret_free_internal;
3030 }
3031 }
3032
3033 /* Determine what (if any) linker stub is needed. */
3034 stub_type = hppa_type_of_stub (section, irela, hh,
3035 destination, info);
3036 if (stub_type == hppa_stub_none)
3037 continue;
3038
3039 /* Support for grouping stub sections. */
3040 id_sec = htab->stub_group[section->id].link_sec;
3041
3042 /* Get the name of this stub. */
3043 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
3044 if (!stub_name)
3045 goto error_ret_free_internal;
3046
3047 hsh = hppa_stub_hash_lookup (&htab->bstab,
3048 stub_name,
3049 FALSE, FALSE);
3050 if (hsh != NULL)
3051 {
3052 /* The proper stub has already been created. */
3053 free (stub_name);
3054 continue;
3055 }
3056
3057 hsh = hppa_add_stub (stub_name, section, htab);
3058 if (hsh == NULL)
3059 {
3060 free (stub_name);
3061 goto error_ret_free_internal;
3062 }
3063
3064 hsh->target_value = sym_value;
3065 hsh->target_section = sym_sec;
3066 hsh->stub_type = stub_type;
3067 if (info->shared)
3068 {
3069 if (stub_type == hppa_stub_import)
3070 hsh->stub_type = hppa_stub_import_shared;
3071 else if (stub_type == hppa_stub_long_branch)
3072 hsh->stub_type = hppa_stub_long_branch_shared;
3073 }
3074 hsh->hh = hh;
3075 stub_changed = TRUE;
3076 }
3077
3078 /* We're done with the internal relocs, free them. */
3079 if (elf_section_data (section)->relocs == NULL)
3080 free (internal_relocs);
3081 }
3082 }
3083
3084 if (!stub_changed)
3085 break;
3086
3087 /* OK, we've added some stubs. Find out the new size of the
3088 stub sections. */
3089 for (stub_sec = htab->stub_bfd->sections;
3090 stub_sec != NULL;
3091 stub_sec = stub_sec->next)
3092 stub_sec->size = 0;
3093
3094 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
3095
3096 /* Ask the linker to do its stuff. */
3097 (*htab->layout_sections_again) ();
3098 stub_changed = FALSE;
3099 }
3100
3101 free (htab->all_local_syms);
3102 return TRUE;
3103
3104 error_ret_free_local:
3105 free (htab->all_local_syms);
3106 return FALSE;
3107 }
3108
3109 /* For a final link, this function is called after we have sized the
3110 stubs to provide a value for __gp. */
3111
3112 bfd_boolean
3113 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3114 {
3115 struct bfd_link_hash_entry *h;
3116 asection *sec = NULL;
3117 bfd_vma gp_val = 0;
3118 struct elf32_hppa_link_hash_table *htab;
3119
3120 htab = hppa_link_hash_table (info);
3121 if (htab == NULL)
3122 return FALSE;
3123
3124 h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE);
3125
3126 if (h != NULL
3127 && (h->type == bfd_link_hash_defined
3128 || h->type == bfd_link_hash_defweak))
3129 {
3130 gp_val = h->u.def.value;
3131 sec = h->u.def.section;
3132 }
3133 else
3134 {
3135 asection *splt = bfd_get_section_by_name (abfd, ".plt");
3136 asection *sgot = bfd_get_section_by_name (abfd, ".got");
3137
3138 /* Choose to point our LTP at, in this order, one of .plt, .got,
3139 or .data, if these sections exist. In the case of choosing
3140 .plt try to make the LTP ideal for addressing anywhere in the
3141 .plt or .got with a 14 bit signed offset. Typically, the end
3142 of the .plt is the start of the .got, so choose .plt + 0x2000
3143 if either the .plt or .got is larger than 0x2000. If both
3144 the .plt and .got are smaller than 0x2000, choose the end of
3145 the .plt section. */
3146 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3147 ? NULL : splt;
3148 if (sec != NULL)
3149 {
3150 gp_val = sec->size;
3151 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3152 {
3153 gp_val = 0x2000;
3154 }
3155 }
3156 else
3157 {
3158 sec = sgot;
3159 if (sec != NULL)
3160 {
3161 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3162 {
3163 /* We know we don't have a .plt. If .got is large,
3164 offset our LTP. */
3165 if (sec->size > 0x2000)
3166 gp_val = 0x2000;
3167 }
3168 }
3169 else
3170 {
3171 /* No .plt or .got. Who cares what the LTP is? */
3172 sec = bfd_get_section_by_name (abfd, ".data");
3173 }
3174 }
3175
3176 if (h != NULL)
3177 {
3178 h->type = bfd_link_hash_defined;
3179 h->u.def.value = gp_val;
3180 if (sec != NULL)
3181 h->u.def.section = sec;
3182 else
3183 h->u.def.section = bfd_abs_section_ptr;
3184 }
3185 }
3186
3187 if (sec != NULL && sec->output_section != NULL)
3188 gp_val += sec->output_section->vma + sec->output_offset;
3189
3190 elf_gp (abfd) = gp_val;
3191 return TRUE;
3192 }
3193
3194 /* Build all the stubs associated with the current output file. The
3195 stubs are kept in a hash table attached to the main linker hash
3196 table. We also set up the .plt entries for statically linked PIC
3197 functions here. This function is called via hppaelf_finish in the
3198 linker. */
3199
3200 bfd_boolean
3201 elf32_hppa_build_stubs (struct bfd_link_info *info)
3202 {
3203 asection *stub_sec;
3204 struct bfd_hash_table *table;
3205 struct elf32_hppa_link_hash_table *htab;
3206
3207 htab = hppa_link_hash_table (info);
3208 if (htab == NULL)
3209 return FALSE;
3210
3211 for (stub_sec = htab->stub_bfd->sections;
3212 stub_sec != NULL;
3213 stub_sec = stub_sec->next)
3214 {
3215 bfd_size_type size;
3216
3217 /* Allocate memory to hold the linker stubs. */
3218 size = stub_sec->size;
3219 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3220 if (stub_sec->contents == NULL && size != 0)
3221 return FALSE;
3222 stub_sec->size = 0;
3223 }
3224
3225 /* Build the stubs as directed by the stub hash table. */
3226 table = &htab->bstab;
3227 bfd_hash_traverse (table, hppa_build_one_stub, info);
3228
3229 return TRUE;
3230 }
3231
3232 /* Return the base vma address which should be subtracted from the real
3233 address when resolving a dtpoff relocation.
3234 This is PT_TLS segment p_vaddr. */
3235
3236 static bfd_vma
3237 dtpoff_base (struct bfd_link_info *info)
3238 {
3239 /* If tls_sec is NULL, we should have signalled an error already. */
3240 if (elf_hash_table (info)->tls_sec == NULL)
3241 return 0;
3242 return elf_hash_table (info)->tls_sec->vma;
3243 }
3244
3245 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3246
3247 static bfd_vma
3248 tpoff (struct bfd_link_info *info, bfd_vma address)
3249 {
3250 struct elf_link_hash_table *htab = elf_hash_table (info);
3251
3252 /* If tls_sec is NULL, we should have signalled an error already. */
3253 if (htab->tls_sec == NULL)
3254 return 0;
3255 /* hppa TLS ABI is variant I and static TLS block start just after
3256 tcbhead structure which has 2 pointer fields. */
3257 return (address - htab->tls_sec->vma
3258 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3259 }
3260
3261 /* Perform a final link. */
3262
3263 static bfd_boolean
3264 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3265 {
3266 /* Invoke the regular ELF linker to do all the work. */
3267 if (!bfd_elf_final_link (abfd, info))
3268 return FALSE;
3269
3270 /* If we're producing a final executable, sort the contents of the
3271 unwind section. */
3272 if (info->relocatable)
3273 return TRUE;
3274
3275 return elf_hppa_sort_unwind (abfd);
3276 }
3277
3278 /* Record the lowest address for the data and text segments. */
3279
3280 static void
3281 hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3282 {
3283 struct elf32_hppa_link_hash_table *htab;
3284
3285 htab = (struct elf32_hppa_link_hash_table*) data;
3286 if (htab == NULL)
3287 return;
3288
3289 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3290 {
3291 bfd_vma value;
3292 Elf_Internal_Phdr *p;
3293
3294 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3295 BFD_ASSERT (p != NULL);
3296 value = p->p_vaddr;
3297
3298 if ((section->flags & SEC_READONLY) != 0)
3299 {
3300 if (value < htab->text_segment_base)
3301 htab->text_segment_base = value;
3302 }
3303 else
3304 {
3305 if (value < htab->data_segment_base)
3306 htab->data_segment_base = value;
3307 }
3308 }
3309 }
3310
3311 /* Perform a relocation as part of a final link. */
3312
3313 static bfd_reloc_status_type
3314 final_link_relocate (asection *input_section,
3315 bfd_byte *contents,
3316 const Elf_Internal_Rela *rela,
3317 bfd_vma value,
3318 struct elf32_hppa_link_hash_table *htab,
3319 asection *sym_sec,
3320 struct elf32_hppa_link_hash_entry *hh,
3321 struct bfd_link_info *info)
3322 {
3323 int insn;
3324 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3325 unsigned int orig_r_type = r_type;
3326 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3327 int r_format = howto->bitsize;
3328 enum hppa_reloc_field_selector_type_alt r_field;
3329 bfd *input_bfd = input_section->owner;
3330 bfd_vma offset = rela->r_offset;
3331 bfd_vma max_branch_offset = 0;
3332 bfd_byte *hit_data = contents + offset;
3333 bfd_signed_vma addend = rela->r_addend;
3334 bfd_vma location;
3335 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3336 int val;
3337
3338 if (r_type == R_PARISC_NONE)
3339 return bfd_reloc_ok;
3340
3341 insn = bfd_get_32 (input_bfd, hit_data);
3342
3343 /* Find out where we are and where we're going. */
3344 location = (offset +
3345 input_section->output_offset +
3346 input_section->output_section->vma);
3347
3348 /* If we are not building a shared library, convert DLTIND relocs to
3349 DPREL relocs. */
3350 if (!info->shared)
3351 {
3352 switch (r_type)
3353 {
3354 case R_PARISC_DLTIND21L:
3355 r_type = R_PARISC_DPREL21L;
3356 break;
3357
3358 case R_PARISC_DLTIND14R:
3359 r_type = R_PARISC_DPREL14R;
3360 break;
3361
3362 case R_PARISC_DLTIND14F:
3363 r_type = R_PARISC_DPREL14F;
3364 break;
3365 }
3366 }
3367
3368 switch (r_type)
3369 {
3370 case R_PARISC_PCREL12F:
3371 case R_PARISC_PCREL17F:
3372 case R_PARISC_PCREL22F:
3373 /* If this call should go via the plt, find the import stub in
3374 the stub hash. */
3375 if (sym_sec == NULL
3376 || sym_sec->output_section == NULL
3377 || (hh != NULL
3378 && hh->eh.plt.offset != (bfd_vma) -1
3379 && hh->eh.dynindx != -1
3380 && !hh->plabel
3381 && (info->shared
3382 || !hh->eh.def_regular
3383 || hh->eh.root.type == bfd_link_hash_defweak)))
3384 {
3385 hsh = hppa_get_stub_entry (input_section, sym_sec,
3386 hh, rela, htab);
3387 if (hsh != NULL)
3388 {
3389 value = (hsh->stub_offset
3390 + hsh->stub_sec->output_offset
3391 + hsh->stub_sec->output_section->vma);
3392 addend = 0;
3393 }
3394 else if (sym_sec == NULL && hh != NULL
3395 && hh->eh.root.type == bfd_link_hash_undefweak)
3396 {
3397 /* It's OK if undefined weak. Calls to undefined weak
3398 symbols behave as if the "called" function
3399 immediately returns. We can thus call to a weak
3400 function without first checking whether the function
3401 is defined. */
3402 value = location;
3403 addend = 8;
3404 }
3405 else
3406 return bfd_reloc_undefined;
3407 }
3408 /* Fall thru. */
3409
3410 case R_PARISC_PCREL21L:
3411 case R_PARISC_PCREL17C:
3412 case R_PARISC_PCREL17R:
3413 case R_PARISC_PCREL14R:
3414 case R_PARISC_PCREL14F:
3415 case R_PARISC_PCREL32:
3416 /* Make it a pc relative offset. */
3417 value -= location;
3418 addend -= 8;
3419 break;
3420
3421 case R_PARISC_DPREL21L:
3422 case R_PARISC_DPREL14R:
3423 case R_PARISC_DPREL14F:
3424 case R_PARISC_TLS_GD21L:
3425 case R_PARISC_TLS_LDM21L:
3426 case R_PARISC_TLS_IE21L:
3427 /* Convert instructions that use the linkage table pointer (r19) to
3428 instructions that use the global data pointer (dp). This is the
3429 most efficient way of using PIC code in an incomplete executable,
3430 but the user must follow the standard runtime conventions for
3431 accessing data for this to work. */
3432 if (orig_r_type == R_PARISC_DLTIND21L
3433 || (!info->shared
3434 && (r_type == R_PARISC_TLS_GD21L
3435 || r_type == R_PARISC_TLS_LDM21L
3436 || r_type == R_PARISC_TLS_IE21L)))
3437 {
3438 /* Convert addil instructions if the original reloc was a
3439 DLTIND21L. GCC sometimes uses a register other than r19 for
3440 the operation, so we must convert any addil instruction
3441 that uses this relocation. */
3442 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3443 insn = ADDIL_DP;
3444 else
3445 /* We must have a ldil instruction. It's too hard to find
3446 and convert the associated add instruction, so issue an
3447 error. */
3448 (*_bfd_error_handler)
3449 (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3450 input_bfd,
3451 input_section,
3452 (long) offset,
3453 howto->name,
3454 insn);
3455 }
3456 else if (orig_r_type == R_PARISC_DLTIND14F)
3457 {
3458 /* This must be a format 1 load/store. Change the base
3459 register to dp. */
3460 insn = (insn & 0xfc1ffff) | (27 << 21);
3461 }
3462
3463 /* For all the DP relative relocations, we need to examine the symbol's
3464 section. If it has no section or if it's a code section, then
3465 "data pointer relative" makes no sense. In that case we don't
3466 adjust the "value", and for 21 bit addil instructions, we change the
3467 source addend register from %dp to %r0. This situation commonly
3468 arises for undefined weak symbols and when a variable's "constness"
3469 is declared differently from the way the variable is defined. For
3470 instance: "extern int foo" with foo defined as "const int foo". */
3471 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3472 {
3473 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3474 == (((int) OP_ADDIL << 26) | (27 << 21)))
3475 {
3476 insn &= ~ (0x1f << 21);
3477 }
3478 /* Now try to make things easy for the dynamic linker. */
3479
3480 break;
3481 }
3482 /* Fall thru. */
3483
3484 case R_PARISC_DLTIND21L:
3485 case R_PARISC_DLTIND14R:
3486 case R_PARISC_DLTIND14F:
3487 case R_PARISC_TLS_GD14R:
3488 case R_PARISC_TLS_LDM14R:
3489 case R_PARISC_TLS_IE14R:
3490 value -= elf_gp (input_section->output_section->owner);
3491 break;
3492
3493 case R_PARISC_SEGREL32:
3494 if ((sym_sec->flags & SEC_CODE) != 0)
3495 value -= htab->text_segment_base;
3496 else
3497 value -= htab->data_segment_base;
3498 break;
3499
3500 default:
3501 break;
3502 }
3503
3504 switch (r_type)
3505 {
3506 case R_PARISC_DIR32:
3507 case R_PARISC_DIR14F:
3508 case R_PARISC_DIR17F:
3509 case R_PARISC_PCREL17C:
3510 case R_PARISC_PCREL14F:
3511 case R_PARISC_PCREL32:
3512 case R_PARISC_DPREL14F:
3513 case R_PARISC_PLABEL32:
3514 case R_PARISC_DLTIND14F:
3515 case R_PARISC_SEGBASE:
3516 case R_PARISC_SEGREL32:
3517 case R_PARISC_TLS_DTPMOD32:
3518 case R_PARISC_TLS_DTPOFF32:
3519 case R_PARISC_TLS_TPREL32:
3520 r_field = e_fsel;
3521 break;
3522
3523 case R_PARISC_DLTIND21L:
3524 case R_PARISC_PCREL21L:
3525 case R_PARISC_PLABEL21L:
3526 r_field = e_lsel;
3527 break;
3528
3529 case R_PARISC_DIR21L:
3530 case R_PARISC_DPREL21L:
3531 case R_PARISC_TLS_GD21L:
3532 case R_PARISC_TLS_LDM21L:
3533 case R_PARISC_TLS_LDO21L:
3534 case R_PARISC_TLS_IE21L:
3535 case R_PARISC_TLS_LE21L:
3536 r_field = e_lrsel;
3537 break;
3538
3539 case R_PARISC_PCREL17R:
3540 case R_PARISC_PCREL14R:
3541 case R_PARISC_PLABEL14R:
3542 case R_PARISC_DLTIND14R:
3543 r_field = e_rsel;
3544 break;
3545
3546 case R_PARISC_DIR17R:
3547 case R_PARISC_DIR14R:
3548 case R_PARISC_DPREL14R:
3549 case R_PARISC_TLS_GD14R:
3550 case R_PARISC_TLS_LDM14R:
3551 case R_PARISC_TLS_LDO14R:
3552 case R_PARISC_TLS_IE14R:
3553 case R_PARISC_TLS_LE14R:
3554 r_field = e_rrsel;
3555 break;
3556
3557 case R_PARISC_PCREL12F:
3558 case R_PARISC_PCREL17F:
3559 case R_PARISC_PCREL22F:
3560 r_field = e_fsel;
3561
3562 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3563 {
3564 max_branch_offset = (1 << (17-1)) << 2;
3565 }
3566 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3567 {
3568 max_branch_offset = (1 << (12-1)) << 2;
3569 }
3570 else
3571 {
3572 max_branch_offset = (1 << (22-1)) << 2;
3573 }
3574
3575 /* sym_sec is NULL on undefined weak syms or when shared on
3576 undefined syms. We've already checked for a stub for the
3577 shared undefined case. */
3578 if (sym_sec == NULL)
3579 break;
3580
3581 /* If the branch is out of reach, then redirect the
3582 call to the local stub for this function. */
3583 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3584 {
3585 hsh = hppa_get_stub_entry (input_section, sym_sec,
3586 hh, rela, htab);
3587 if (hsh == NULL)
3588 return bfd_reloc_undefined;
3589
3590 /* Munge up the value and addend so that we call the stub
3591 rather than the procedure directly. */
3592 value = (hsh->stub_offset
3593 + hsh->stub_sec->output_offset
3594 + hsh->stub_sec->output_section->vma
3595 - location);
3596 addend = -8;
3597 }
3598 break;
3599
3600 /* Something we don't know how to handle. */
3601 default:
3602 return bfd_reloc_notsupported;
3603 }
3604
3605 /* Make sure we can reach the stub. */
3606 if (max_branch_offset != 0
3607 && value + addend + max_branch_offset >= 2*max_branch_offset)
3608 {
3609 (*_bfd_error_handler)
3610 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3611 input_bfd,
3612 input_section,
3613 (long) offset,
3614 hsh->bh_root.string);
3615 bfd_set_error (bfd_error_bad_value);
3616 return bfd_reloc_notsupported;
3617 }
3618
3619 val = hppa_field_adjust (value, addend, r_field);
3620
3621 switch (r_type)
3622 {
3623 case R_PARISC_PCREL12F:
3624 case R_PARISC_PCREL17C:
3625 case R_PARISC_PCREL17F:
3626 case R_PARISC_PCREL17R:
3627 case R_PARISC_PCREL22F:
3628 case R_PARISC_DIR17F:
3629 case R_PARISC_DIR17R:
3630 /* This is a branch. Divide the offset by four.
3631 Note that we need to decide whether it's a branch or
3632 otherwise by inspecting the reloc. Inspecting insn won't
3633 work as insn might be from a .word directive. */
3634 val >>= 2;
3635 break;
3636
3637 default:
3638 break;
3639 }
3640
3641 insn = hppa_rebuild_insn (insn, val, r_format);
3642
3643 /* Update the instruction word. */
3644 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3645 return bfd_reloc_ok;
3646 }
3647
3648 /* Relocate an HPPA ELF section. */
3649
3650 static bfd_boolean
3651 elf32_hppa_relocate_section (bfd *output_bfd,
3652 struct bfd_link_info *info,
3653 bfd *input_bfd,
3654 asection *input_section,
3655 bfd_byte *contents,
3656 Elf_Internal_Rela *relocs,
3657 Elf_Internal_Sym *local_syms,
3658 asection **local_sections)
3659 {
3660 bfd_vma *local_got_offsets;
3661 struct elf32_hppa_link_hash_table *htab;
3662 Elf_Internal_Shdr *symtab_hdr;
3663 Elf_Internal_Rela *rela;
3664 Elf_Internal_Rela *relend;
3665
3666 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3667
3668 htab = hppa_link_hash_table (info);
3669 if (htab == NULL)
3670 return FALSE;
3671
3672 local_got_offsets = elf_local_got_offsets (input_bfd);
3673
3674 rela = relocs;
3675 relend = relocs + input_section->reloc_count;
3676 for (; rela < relend; rela++)
3677 {
3678 unsigned int r_type;
3679 reloc_howto_type *howto;
3680 unsigned int r_symndx;
3681 struct elf32_hppa_link_hash_entry *hh;
3682 Elf_Internal_Sym *sym;
3683 asection *sym_sec;
3684 bfd_vma relocation;
3685 bfd_reloc_status_type rstatus;
3686 const char *sym_name;
3687 bfd_boolean plabel;
3688 bfd_boolean warned_undef;
3689
3690 r_type = ELF32_R_TYPE (rela->r_info);
3691 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3692 {
3693 bfd_set_error (bfd_error_bad_value);
3694 return FALSE;
3695 }
3696 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3697 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3698 continue;
3699
3700 r_symndx = ELF32_R_SYM (rela->r_info);
3701 hh = NULL;
3702 sym = NULL;
3703 sym_sec = NULL;
3704 warned_undef = FALSE;
3705 if (r_symndx < symtab_hdr->sh_info)
3706 {
3707 /* This is a local symbol, h defaults to NULL. */
3708 sym = local_syms + r_symndx;
3709 sym_sec = local_sections[r_symndx];
3710 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3711 }
3712 else
3713 {
3714 struct elf_link_hash_entry *eh;
3715 bfd_boolean unresolved_reloc;
3716 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3717
3718 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3719 r_symndx, symtab_hdr, sym_hashes,
3720 eh, sym_sec, relocation,
3721 unresolved_reloc, warned_undef);
3722
3723 if (!info->relocatable
3724 && relocation == 0
3725 && eh->root.type != bfd_link_hash_defined
3726 && eh->root.type != bfd_link_hash_defweak
3727 && eh->root.type != bfd_link_hash_undefweak)
3728 {
3729 if (info->unresolved_syms_in_objects == RM_IGNORE
3730 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3731 && eh->type == STT_PARISC_MILLI)
3732 {
3733 if (! info->callbacks->undefined_symbol
3734 (info, eh_name (eh), input_bfd,
3735 input_section, rela->r_offset, FALSE))
3736 return FALSE;
3737 warned_undef = TRUE;
3738 }
3739 }
3740 hh = hppa_elf_hash_entry (eh);
3741 }
3742
3743 if (sym_sec != NULL && elf_discarded_section (sym_sec))
3744 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3745 rela, relend,
3746 elf_hppa_howto_table + r_type,
3747 contents);
3748
3749 if (info->relocatable)
3750 continue;
3751
3752 /* Do any required modifications to the relocation value, and
3753 determine what types of dynamic info we need to output, if
3754 any. */
3755 plabel = 0;
3756 switch (r_type)
3757 {
3758 case R_PARISC_DLTIND14F:
3759 case R_PARISC_DLTIND14R:
3760 case R_PARISC_DLTIND21L:
3761 {
3762 bfd_vma off;
3763 bfd_boolean do_got = 0;
3764
3765 /* Relocation is to the entry for this symbol in the
3766 global offset table. */
3767 if (hh != NULL)
3768 {
3769 bfd_boolean dyn;
3770
3771 off = hh->eh.got.offset;
3772 dyn = htab->etab.dynamic_sections_created;
3773 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
3774 &hh->eh))
3775 {
3776 /* If we aren't going to call finish_dynamic_symbol,
3777 then we need to handle initialisation of the .got
3778 entry and create needed relocs here. Since the
3779 offset must always be a multiple of 4, we use the
3780 least significant bit to record whether we have
3781 initialised it already. */
3782 if ((off & 1) != 0)
3783 off &= ~1;
3784 else
3785 {
3786 hh->eh.got.offset |= 1;
3787 do_got = 1;
3788 }
3789 }
3790 }
3791 else
3792 {
3793 /* Local symbol case. */
3794 if (local_got_offsets == NULL)
3795 abort ();
3796
3797 off = local_got_offsets[r_symndx];
3798
3799 /* The offset must always be a multiple of 4. We use
3800 the least significant bit to record whether we have
3801 already generated the necessary reloc. */
3802 if ((off & 1) != 0)
3803 off &= ~1;
3804 else
3805 {
3806 local_got_offsets[r_symndx] |= 1;
3807 do_got = 1;
3808 }
3809 }
3810
3811 if (do_got)
3812 {
3813 if (info->shared)
3814 {
3815 /* Output a dynamic relocation for this GOT entry.
3816 In this case it is relative to the base of the
3817 object because the symbol index is zero. */
3818 Elf_Internal_Rela outrel;
3819 bfd_byte *loc;
3820 asection *sec = htab->srelgot;
3821
3822 outrel.r_offset = (off
3823 + htab->sgot->output_offset
3824 + htab->sgot->output_section->vma);
3825 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3826 outrel.r_addend = relocation;
3827 loc = sec->contents;
3828 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3829 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3830 }
3831 else
3832 bfd_put_32 (output_bfd, relocation,
3833 htab->sgot->contents + off);
3834 }
3835
3836 if (off >= (bfd_vma) -2)
3837 abort ();
3838
3839 /* Add the base of the GOT to the relocation value. */
3840 relocation = (off
3841 + htab->sgot->output_offset
3842 + htab->sgot->output_section->vma);
3843 }
3844 break;
3845
3846 case R_PARISC_SEGREL32:
3847 /* If this is the first SEGREL relocation, then initialize
3848 the segment base values. */
3849 if (htab->text_segment_base == (bfd_vma) -1)
3850 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3851 break;
3852
3853 case R_PARISC_PLABEL14R:
3854 case R_PARISC_PLABEL21L:
3855 case R_PARISC_PLABEL32:
3856 if (htab->etab.dynamic_sections_created)
3857 {
3858 bfd_vma off;
3859 bfd_boolean do_plt = 0;
3860 /* If we have a global symbol with a PLT slot, then
3861 redirect this relocation to it. */
3862 if (hh != NULL)
3863 {
3864 off = hh->eh.plt.offset;
3865 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared,
3866 &hh->eh))
3867 {
3868 /* In a non-shared link, adjust_dynamic_symbols
3869 isn't called for symbols forced local. We
3870 need to write out the plt entry here. */
3871 if ((off & 1) != 0)
3872 off &= ~1;
3873 else
3874 {
3875 hh->eh.plt.offset |= 1;
3876 do_plt = 1;
3877 }
3878 }
3879 }
3880 else
3881 {
3882 bfd_vma *local_plt_offsets;
3883
3884 if (local_got_offsets == NULL)
3885 abort ();
3886
3887 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3888 off = local_plt_offsets[r_symndx];
3889
3890 /* As for the local .got entry case, we use the last
3891 bit to record whether we've already initialised
3892 this local .plt entry. */
3893 if ((off & 1) != 0)
3894 off &= ~1;
3895 else
3896 {
3897 local_plt_offsets[r_symndx] |= 1;
3898 do_plt = 1;
3899 }
3900 }
3901
3902 if (do_plt)
3903 {
3904 if (info->shared)
3905 {
3906 /* Output a dynamic IPLT relocation for this
3907 PLT entry. */
3908 Elf_Internal_Rela outrel;
3909 bfd_byte *loc;
3910 asection *s = htab->srelplt;
3911
3912 outrel.r_offset = (off
3913 + htab->splt->output_offset
3914 + htab->splt->output_section->vma);
3915 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3916 outrel.r_addend = relocation;
3917 loc = s->contents;
3918 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3919 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3920 }
3921 else
3922 {
3923 bfd_put_32 (output_bfd,
3924 relocation,
3925 htab->splt->contents + off);
3926 bfd_put_32 (output_bfd,
3927 elf_gp (htab->splt->output_section->owner),
3928 htab->splt->contents + off + 4);
3929 }
3930 }
3931
3932 if (off >= (bfd_vma) -2)
3933 abort ();
3934
3935 /* PLABELs contain function pointers. Relocation is to
3936 the entry for the function in the .plt. The magic +2
3937 offset signals to $$dyncall that the function pointer
3938 is in the .plt and thus has a gp pointer too.
3939 Exception: Undefined PLABELs should have a value of
3940 zero. */
3941 if (hh == NULL
3942 || (hh->eh.root.type != bfd_link_hash_undefweak
3943 && hh->eh.root.type != bfd_link_hash_undefined))
3944 {
3945 relocation = (off
3946 + htab->splt->output_offset
3947 + htab->splt->output_section->vma
3948 + 2);
3949 }
3950 plabel = 1;
3951 }
3952 /* Fall through and possibly emit a dynamic relocation. */
3953
3954 case R_PARISC_DIR17F:
3955 case R_PARISC_DIR17R:
3956 case R_PARISC_DIR14F:
3957 case R_PARISC_DIR14R:
3958 case R_PARISC_DIR21L:
3959 case R_PARISC_DPREL14F:
3960 case R_PARISC_DPREL14R:
3961 case R_PARISC_DPREL21L:
3962 case R_PARISC_DIR32:
3963 if ((input_section->flags & SEC_ALLOC) == 0)
3964 break;
3965
3966 /* The reloc types handled here and this conditional
3967 expression must match the code in ..check_relocs and
3968 allocate_dynrelocs. ie. We need exactly the same condition
3969 as in ..check_relocs, with some extra conditions (dynindx
3970 test in this case) to cater for relocs removed by
3971 allocate_dynrelocs. If you squint, the non-shared test
3972 here does indeed match the one in ..check_relocs, the
3973 difference being that here we test DEF_DYNAMIC as well as
3974 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3975 which is why we can't use just that test here.
3976 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3977 there all files have not been loaded. */
3978 if ((info->shared
3979 && (hh == NULL
3980 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
3981 || hh->eh.root.type != bfd_link_hash_undefweak)
3982 && (IS_ABSOLUTE_RELOC (r_type)
3983 || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
3984 || (!info->shared
3985 && hh != NULL
3986 && hh->eh.dynindx != -1
3987 && !hh->eh.non_got_ref
3988 && ((ELIMINATE_COPY_RELOCS
3989 && hh->eh.def_dynamic
3990 && !hh->eh.def_regular)
3991 || hh->eh.root.type == bfd_link_hash_undefweak
3992 || hh->eh.root.type == bfd_link_hash_undefined)))
3993 {
3994 Elf_Internal_Rela outrel;
3995 bfd_boolean skip;
3996 asection *sreloc;
3997 bfd_byte *loc;
3998
3999 /* When generating a shared object, these relocations
4000 are copied into the output file to be resolved at run
4001 time. */
4002
4003 outrel.r_addend = rela->r_addend;
4004 outrel.r_offset =
4005 _bfd_elf_section_offset (output_bfd, info, input_section,
4006 rela->r_offset);
4007 skip = (outrel.r_offset == (bfd_vma) -1
4008 || outrel.r_offset == (bfd_vma) -2);
4009 outrel.r_offset += (input_section->output_offset
4010 + input_section->output_section->vma);
4011
4012 if (skip)
4013 {
4014 memset (&outrel, 0, sizeof (outrel));
4015 }
4016 else if (hh != NULL
4017 && hh->eh.dynindx != -1
4018 && (plabel
4019 || !IS_ABSOLUTE_RELOC (r_type)
4020 || !info->shared
4021 || !info->symbolic
4022 || !hh->eh.def_regular))
4023 {
4024 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
4025 }
4026 else /* It's a local symbol, or one marked to become local. */
4027 {
4028 int indx = 0;
4029
4030 /* Add the absolute offset of the symbol. */
4031 outrel.r_addend += relocation;
4032
4033 /* Global plabels need to be processed by the
4034 dynamic linker so that functions have at most one
4035 fptr. For this reason, we need to differentiate
4036 between global and local plabels, which we do by
4037 providing the function symbol for a global plabel
4038 reloc, and no symbol for local plabels. */
4039 if (! plabel
4040 && sym_sec != NULL
4041 && sym_sec->output_section != NULL
4042 && ! bfd_is_abs_section (sym_sec))
4043 {
4044 asection *osec;
4045
4046 osec = sym_sec->output_section;
4047 indx = elf_section_data (osec)->dynindx;
4048 if (indx == 0)
4049 {
4050 osec = htab->etab.text_index_section;
4051 indx = elf_section_data (osec)->dynindx;
4052 }
4053 BFD_ASSERT (indx != 0);
4054
4055 /* We are turning this relocation into one
4056 against a section symbol, so subtract out the
4057 output section's address but not the offset
4058 of the input section in the output section. */
4059 outrel.r_addend -= osec->vma;
4060 }
4061
4062 outrel.r_info = ELF32_R_INFO (indx, r_type);
4063 }
4064 sreloc = elf_section_data (input_section)->sreloc;
4065 if (sreloc == NULL)
4066 abort ();
4067
4068 loc = sreloc->contents;
4069 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4070 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4071 }
4072 break;
4073
4074 case R_PARISC_TLS_LDM21L:
4075 case R_PARISC_TLS_LDM14R:
4076 {
4077 bfd_vma off;
4078
4079 off = htab->tls_ldm_got.offset;
4080 if (off & 1)
4081 off &= ~1;
4082 else
4083 {
4084 Elf_Internal_Rela outrel;
4085 bfd_byte *loc;
4086
4087 outrel.r_offset = (off
4088 + htab->sgot->output_section->vma
4089 + htab->sgot->output_offset);
4090 outrel.r_addend = 0;
4091 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
4092 loc = htab->srelgot->contents;
4093 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4094
4095 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4096 htab->tls_ldm_got.offset |= 1;
4097 }
4098
4099 /* Add the base of the GOT to the relocation value. */
4100 relocation = (off
4101 + htab->sgot->output_offset
4102 + htab->sgot->output_section->vma);
4103
4104 break;
4105 }
4106
4107 case R_PARISC_TLS_LDO21L:
4108 case R_PARISC_TLS_LDO14R:
4109 relocation -= dtpoff_base (info);
4110 break;
4111
4112 case R_PARISC_TLS_GD21L:
4113 case R_PARISC_TLS_GD14R:
4114 case R_PARISC_TLS_IE21L:
4115 case R_PARISC_TLS_IE14R:
4116 {
4117 bfd_vma off;
4118 int indx;
4119 char tls_type;
4120
4121 indx = 0;
4122 if (hh != NULL)
4123 {
4124 bfd_boolean dyn;
4125 dyn = htab->etab.dynamic_sections_created;
4126
4127 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &hh->eh)
4128 && (!info->shared
4129 || !SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4130 {
4131 indx = hh->eh.dynindx;
4132 }
4133 off = hh->eh.got.offset;
4134 tls_type = hh->tls_type;
4135 }
4136 else
4137 {
4138 off = local_got_offsets[r_symndx];
4139 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4140 }
4141
4142 if (tls_type == GOT_UNKNOWN)
4143 abort ();
4144
4145 if ((off & 1) != 0)
4146 off &= ~1;
4147 else
4148 {
4149 bfd_boolean need_relocs = FALSE;
4150 Elf_Internal_Rela outrel;
4151 bfd_byte *loc = NULL;
4152 int cur_off = off;
4153
4154 /* The GOT entries have not been initialized yet. Do it
4155 now, and emit any relocations. If both an IE GOT and a
4156 GD GOT are necessary, we emit the GD first. */
4157
4158 if ((info->shared || indx != 0)
4159 && (hh == NULL
4160 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
4161 || hh->eh.root.type != bfd_link_hash_undefweak))
4162 {
4163 need_relocs = TRUE;
4164 loc = htab->srelgot->contents;
4165 /* FIXME (CAO): Should this be reloc_count++ ? */
4166 loc += htab->srelgot->reloc_count * sizeof (Elf32_External_Rela);
4167 }
4168
4169 if (tls_type & GOT_TLS_GD)
4170 {
4171 if (need_relocs)
4172 {
4173 outrel.r_offset = (cur_off
4174 + htab->sgot->output_section->vma
4175 + htab->sgot->output_offset);
4176 outrel.r_info = ELF32_R_INFO (indx,R_PARISC_TLS_DTPMOD32);
4177 outrel.r_addend = 0;
4178 bfd_put_32 (output_bfd, 0, htab->sgot->contents + cur_off);
4179 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4180 htab->srelgot->reloc_count++;
4181 loc += sizeof (Elf32_External_Rela);
4182
4183 if (indx == 0)
4184 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4185 htab->sgot->contents + cur_off + 4);
4186 else
4187 {
4188 bfd_put_32 (output_bfd, 0,
4189 htab->sgot->contents + cur_off + 4);
4190 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4191 outrel.r_offset += 4;
4192 bfd_elf32_swap_reloca_out (output_bfd, &outrel,loc);
4193 htab->srelgot->reloc_count++;
4194 loc += sizeof (Elf32_External_Rela);
4195 }
4196 }
4197 else
4198 {
4199 /* If we are not emitting relocations for a
4200 general dynamic reference, then we must be in a
4201 static link or an executable link with the
4202 symbol binding locally. Mark it as belonging
4203 to module 1, the executable. */
4204 bfd_put_32 (output_bfd, 1,
4205 htab->sgot->contents + cur_off);
4206 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4207 htab->sgot->contents + cur_off + 4);
4208 }
4209
4210
4211 cur_off += 8;
4212 }
4213
4214 if (tls_type & GOT_TLS_IE)
4215 {
4216 if (need_relocs)
4217 {
4218 outrel.r_offset = (cur_off
4219 + htab->sgot->output_section->vma
4220 + htab->sgot->output_offset);
4221 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_TPREL32);
4222
4223 if (indx == 0)
4224 outrel.r_addend = relocation - dtpoff_base (info);
4225 else
4226 outrel.r_addend = 0;
4227
4228 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4229 htab->srelgot->reloc_count++;
4230 loc += sizeof (Elf32_External_Rela);
4231 }
4232 else
4233 bfd_put_32 (output_bfd, tpoff (info, relocation),
4234 htab->sgot->contents + cur_off);
4235
4236 cur_off += 4;
4237 }
4238
4239 if (hh != NULL)
4240 hh->eh.got.offset |= 1;
4241 else
4242 local_got_offsets[r_symndx] |= 1;
4243 }
4244
4245 if ((tls_type & GOT_TLS_GD)
4246 && r_type != R_PARISC_TLS_GD21L
4247 && r_type != R_PARISC_TLS_GD14R)
4248 off += 2 * GOT_ENTRY_SIZE;
4249
4250 /* Add the base of the GOT to the relocation value. */
4251 relocation = (off
4252 + htab->sgot->output_offset
4253 + htab->sgot->output_section->vma);
4254
4255 break;
4256 }
4257
4258 case R_PARISC_TLS_LE21L:
4259 case R_PARISC_TLS_LE14R:
4260 {
4261 relocation = tpoff (info, relocation);
4262 break;
4263 }
4264 break;
4265
4266 default:
4267 break;
4268 }
4269
4270 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4271 htab, sym_sec, hh, info);
4272
4273 if (rstatus == bfd_reloc_ok)
4274 continue;
4275
4276 if (hh != NULL)
4277 sym_name = hh_name (hh);
4278 else
4279 {
4280 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4281 symtab_hdr->sh_link,
4282 sym->st_name);
4283 if (sym_name == NULL)
4284 return FALSE;
4285 if (*sym_name == '\0')
4286 sym_name = bfd_section_name (input_bfd, sym_sec);
4287 }
4288
4289 howto = elf_hppa_howto_table + r_type;
4290
4291 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4292 {
4293 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4294 {
4295 (*_bfd_error_handler)
4296 (_("%B(%A+0x%lx): cannot handle %s for %s"),
4297 input_bfd,
4298 input_section,
4299 (long) rela->r_offset,
4300 howto->name,
4301 sym_name);
4302 bfd_set_error (bfd_error_bad_value);
4303 return FALSE;
4304 }
4305 }
4306 else
4307 {
4308 if (!((*info->callbacks->reloc_overflow)
4309 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4310 (bfd_vma) 0, input_bfd, input_section, rela->r_offset)))
4311 return FALSE;
4312 }
4313 }
4314
4315 return TRUE;
4316 }
4317
4318 /* Finish up dynamic symbol handling. We set the contents of various
4319 dynamic sections here. */
4320
4321 static bfd_boolean
4322 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4323 struct bfd_link_info *info,
4324 struct elf_link_hash_entry *eh,
4325 Elf_Internal_Sym *sym)
4326 {
4327 struct elf32_hppa_link_hash_table *htab;
4328 Elf_Internal_Rela rela;
4329 bfd_byte *loc;
4330
4331 htab = hppa_link_hash_table (info);
4332 if (htab == NULL)
4333 return FALSE;
4334
4335 if (eh->plt.offset != (bfd_vma) -1)
4336 {
4337 bfd_vma value;
4338
4339 if (eh->plt.offset & 1)
4340 abort ();
4341
4342 /* This symbol has an entry in the procedure linkage table. Set
4343 it up.
4344
4345 The format of a plt entry is
4346 <funcaddr>
4347 <__gp>
4348 */
4349 value = 0;
4350 if (eh->root.type == bfd_link_hash_defined
4351 || eh->root.type == bfd_link_hash_defweak)
4352 {
4353 value = eh->root.u.def.value;
4354 if (eh->root.u.def.section->output_section != NULL)
4355 value += (eh->root.u.def.section->output_offset
4356 + eh->root.u.def.section->output_section->vma);
4357 }
4358
4359 /* Create a dynamic IPLT relocation for this entry. */
4360 rela.r_offset = (eh->plt.offset
4361 + htab->splt->output_offset
4362 + htab->splt->output_section->vma);
4363 if (eh->dynindx != -1)
4364 {
4365 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4366 rela.r_addend = 0;
4367 }
4368 else
4369 {
4370 /* This symbol has been marked to become local, and is
4371 used by a plabel so must be kept in the .plt. */
4372 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4373 rela.r_addend = value;
4374 }
4375
4376 loc = htab->srelplt->contents;
4377 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4378 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rela, loc);
4379
4380 if (!eh->def_regular)
4381 {
4382 /* Mark the symbol as undefined, rather than as defined in
4383 the .plt section. Leave the value alone. */
4384 sym->st_shndx = SHN_UNDEF;
4385 }
4386 }
4387
4388 if (eh->got.offset != (bfd_vma) -1
4389 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_GD) == 0
4390 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_IE) == 0)
4391 {
4392 /* This symbol has an entry in the global offset table. Set it
4393 up. */
4394
4395 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4396 + htab->sgot->output_offset
4397 + htab->sgot->output_section->vma);
4398
4399 /* If this is a -Bsymbolic link and the symbol is defined
4400 locally or was forced to be local because of a version file,
4401 we just want to emit a RELATIVE reloc. The entry in the
4402 global offset table will already have been initialized in the
4403 relocate_section function. */
4404 if (info->shared
4405 && (info->symbolic || eh->dynindx == -1)
4406 && eh->def_regular)
4407 {
4408 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4409 rela.r_addend = (eh->root.u.def.value
4410 + eh->root.u.def.section->output_offset
4411 + eh->root.u.def.section->output_section->vma);
4412 }
4413 else
4414 {
4415 if ((eh->got.offset & 1) != 0)
4416 abort ();
4417
4418 bfd_put_32 (output_bfd, 0, htab->sgot->contents + (eh->got.offset & ~1));
4419 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4420 rela.r_addend = 0;
4421 }
4422
4423 loc = htab->srelgot->contents;
4424 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4425 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4426 }
4427
4428 if (eh->needs_copy)
4429 {
4430 asection *sec;
4431
4432 /* This symbol needs a copy reloc. Set it up. */
4433
4434 if (! (eh->dynindx != -1
4435 && (eh->root.type == bfd_link_hash_defined
4436 || eh->root.type == bfd_link_hash_defweak)))
4437 abort ();
4438
4439 sec = htab->srelbss;
4440
4441 rela.r_offset = (eh->root.u.def.value
4442 + eh->root.u.def.section->output_offset
4443 + eh->root.u.def.section->output_section->vma);
4444 rela.r_addend = 0;
4445 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4446 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4447 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4448 }
4449
4450 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4451 if (eh_name (eh)[0] == '_'
4452 && (strcmp (eh_name (eh), "_DYNAMIC") == 0
4453 || eh == htab->etab.hgot))
4454 {
4455 sym->st_shndx = SHN_ABS;
4456 }
4457
4458 return TRUE;
4459 }
4460
4461 /* Used to decide how to sort relocs in an optimal manner for the
4462 dynamic linker, before writing them out. */
4463
4464 static enum elf_reloc_type_class
4465 elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
4466 {
4467 /* Handle TLS relocs first; we don't want them to be marked
4468 relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)"
4469 check below. */
4470 switch ((int) ELF32_R_TYPE (rela->r_info))
4471 {
4472 case R_PARISC_TLS_DTPMOD32:
4473 case R_PARISC_TLS_DTPOFF32:
4474 case R_PARISC_TLS_TPREL32:
4475 return reloc_class_normal;
4476 }
4477
4478 if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)
4479 return reloc_class_relative;
4480
4481 switch ((int) ELF32_R_TYPE (rela->r_info))
4482 {
4483 case R_PARISC_IPLT:
4484 return reloc_class_plt;
4485 case R_PARISC_COPY:
4486 return reloc_class_copy;
4487 default:
4488 return reloc_class_normal;
4489 }
4490 }
4491
4492 /* Finish up the dynamic sections. */
4493
4494 static bfd_boolean
4495 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4496 struct bfd_link_info *info)
4497 {
4498 bfd *dynobj;
4499 struct elf32_hppa_link_hash_table *htab;
4500 asection *sdyn;
4501
4502 htab = hppa_link_hash_table (info);
4503 if (htab == NULL)
4504 return FALSE;
4505
4506 dynobj = htab->etab.dynobj;
4507
4508 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4509
4510 if (htab->etab.dynamic_sections_created)
4511 {
4512 Elf32_External_Dyn *dyncon, *dynconend;
4513
4514 if (sdyn == NULL)
4515 abort ();
4516
4517 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4518 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4519 for (; dyncon < dynconend; dyncon++)
4520 {
4521 Elf_Internal_Dyn dyn;
4522 asection *s;
4523
4524 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4525
4526 switch (dyn.d_tag)
4527 {
4528 default:
4529 continue;
4530
4531 case DT_PLTGOT:
4532 /* Use PLTGOT to set the GOT register. */
4533 dyn.d_un.d_ptr = elf_gp (output_bfd);
4534 break;
4535
4536 case DT_JMPREL:
4537 s = htab->srelplt;
4538 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4539 break;
4540
4541 case DT_PLTRELSZ:
4542 s = htab->srelplt;
4543 dyn.d_un.d_val = s->size;
4544 break;
4545
4546 case DT_RELASZ:
4547 /* Don't count procedure linkage table relocs in the
4548 overall reloc count. */
4549 s = htab->srelplt;
4550 if (s == NULL)
4551 continue;
4552 dyn.d_un.d_val -= s->size;
4553 break;
4554
4555 case DT_RELA:
4556 /* We may not be using the standard ELF linker script.
4557 If .rela.plt is the first .rela section, we adjust
4558 DT_RELA to not include it. */
4559 s = htab->srelplt;
4560 if (s == NULL)
4561 continue;
4562 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4563 continue;
4564 dyn.d_un.d_ptr += s->size;
4565 break;
4566 }
4567
4568 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4569 }
4570 }
4571
4572 if (htab->sgot != NULL && htab->sgot->size != 0)
4573 {
4574 /* Fill in the first entry in the global offset table.
4575 We use it to point to our dynamic section, if we have one. */
4576 bfd_put_32 (output_bfd,
4577 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4578 htab->sgot->contents);
4579
4580 /* The second entry is reserved for use by the dynamic linker. */
4581 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4582
4583 /* Set .got entry size. */
4584 elf_section_data (htab->sgot->output_section)
4585 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4586 }
4587
4588 if (htab->splt != NULL && htab->splt->size != 0)
4589 {
4590 /* Set plt entry size. */
4591 elf_section_data (htab->splt->output_section)
4592 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4593
4594 if (htab->need_plt_stub)
4595 {
4596 /* Set up the .plt stub. */
4597 memcpy (htab->splt->contents
4598 + htab->splt->size - sizeof (plt_stub),
4599 plt_stub, sizeof (plt_stub));
4600
4601 if ((htab->splt->output_offset
4602 + htab->splt->output_section->vma
4603 + htab->splt->size)
4604 != (htab->sgot->output_offset
4605 + htab->sgot->output_section->vma))
4606 {
4607 (*_bfd_error_handler)
4608 (_(".got section not immediately after .plt section"));
4609 return FALSE;
4610 }
4611 }
4612 }
4613
4614 return TRUE;
4615 }
4616
4617 /* Called when writing out an object file to decide the type of a
4618 symbol. */
4619 static int
4620 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4621 {
4622 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4623 return STT_PARISC_MILLI;
4624 else
4625 return type;
4626 }
4627
4628 /* Misc BFD support code. */
4629 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4630 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4631 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4632 #define elf_info_to_howto elf_hppa_info_to_howto
4633 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4634
4635 /* Stuff for the BFD linker. */
4636 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4637 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4638 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4639 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4640 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4641 #define elf_backend_check_relocs elf32_hppa_check_relocs
4642 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4643 #define elf_backend_fake_sections elf_hppa_fake_sections
4644 #define elf_backend_relocate_section elf32_hppa_relocate_section
4645 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4646 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4647 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4648 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4649 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4650 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4651 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4652 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4653 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4654 #define elf_backend_object_p elf32_hppa_object_p
4655 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4656 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4657 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4658 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4659 #define elf_backend_action_discarded elf_hppa_action_discarded
4660
4661 #define elf_backend_can_gc_sections 1
4662 #define elf_backend_can_refcount 1
4663 #define elf_backend_plt_alignment 2
4664 #define elf_backend_want_got_plt 0
4665 #define elf_backend_plt_readonly 0
4666 #define elf_backend_want_plt_sym 0
4667 #define elf_backend_got_header_size 8
4668 #define elf_backend_rela_normal 1
4669
4670 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4671 #define TARGET_BIG_NAME "elf32-hppa"
4672 #define ELF_ARCH bfd_arch_hppa
4673 #define ELF_TARGET_ID HPPA32_ELF_DATA
4674 #define ELF_MACHINE_CODE EM_PARISC
4675 #define ELF_MAXPAGESIZE 0x1000
4676 #define ELF_OSABI ELFOSABI_HPUX
4677 #define elf32_bed elf32_hppa_hpux_bed
4678
4679 #include "elf32-target.h"
4680
4681 #undef TARGET_BIG_SYM
4682 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4683 #undef TARGET_BIG_NAME
4684 #define TARGET_BIG_NAME "elf32-hppa-linux"
4685 #undef ELF_OSABI
4686 #define ELF_OSABI ELFOSABI_LINUX
4687 #undef elf32_bed
4688 #define elf32_bed elf32_hppa_linux_bed
4689
4690 #include "elf32-target.h"
4691
4692 #undef TARGET_BIG_SYM
4693 #define TARGET_BIG_SYM bfd_elf32_hppa_nbsd_vec
4694 #undef TARGET_BIG_NAME
4695 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4696 #undef ELF_OSABI
4697 #define ELF_OSABI ELFOSABI_NETBSD
4698 #undef elf32_bed
4699 #define elf32_bed elf32_hppa_netbsd_bed
4700
4701 #include "elf32-target.h"
This page took 0.119028 seconds and 5 git commands to generate.