Touches most files in bfd/, so likely will be blamed for everything..
[deliverable/binutils-gdb.git] / bfd / elf32-i386.c
1 /* Intel 80386/80486-specific support for 32-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26
27 static reloc_howto_type *elf_i386_reloc_type_lookup
28 PARAMS ((bfd *, bfd_reloc_code_real_type));
29 static void elf_i386_info_to_howto
30 PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
31 static void elf_i386_info_to_howto_rel
32 PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *));
33 static boolean elf_i386_is_local_label_name PARAMS ((bfd *, const char *));
34 static struct bfd_hash_entry *elf_i386_link_hash_newfunc
35 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
36 static struct bfd_link_hash_table *elf_i386_link_hash_table_create
37 PARAMS ((bfd *));
38 static boolean create_got_section PARAMS((bfd *, struct bfd_link_info *));
39 static boolean elf_i386_create_dynamic_sections
40 PARAMS((bfd *, struct bfd_link_info *));
41 static boolean elf_i386_check_relocs
42 PARAMS ((bfd *, struct bfd_link_info *, asection *,
43 const Elf_Internal_Rela *));
44 static asection *elf_i386_gc_mark_hook
45 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
46 struct elf_link_hash_entry *, Elf_Internal_Sym *));
47 static boolean elf_i386_gc_sweep_hook
48 PARAMS ((bfd *, struct bfd_link_info *, asection *,
49 const Elf_Internal_Rela *));
50 static boolean elf_i386_adjust_dynamic_symbol
51 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
52 static boolean allocate_plt_and_got_and_discard_relocs
53 PARAMS ((struct elf_link_hash_entry *, PTR));
54 static boolean elf_i386_size_dynamic_sections
55 PARAMS ((bfd *, struct bfd_link_info *));
56 static boolean elf_i386_relocate_section
57 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
58 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
59 static boolean elf_i386_finish_dynamic_symbol
60 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
61 Elf_Internal_Sym *));
62 static boolean elf_i386_finish_dynamic_sections
63 PARAMS ((bfd *, struct bfd_link_info *));
64 static boolean elf_i386_fake_sections
65 PARAMS ((bfd *, Elf32_Internal_Shdr *, asection *));
66 static enum elf_reloc_type_class elf_i386_reloc_type_class PARAMS ((int));
67 static boolean elf_i386_grok_prstatus
68 PARAMS ((bfd *abfd, Elf_Internal_Note *note));
69 static boolean elf_i386_grok_psinfo
70 PARAMS ((bfd *abfd, Elf_Internal_Note *note));
71
72 #define USE_REL 1 /* 386 uses REL relocations instead of RELA */
73
74 #include "elf/i386.h"
75
76 static reloc_howto_type elf_howto_table[]=
77 {
78 HOWTO(R_386_NONE, 0, 0, 0, false, 0, complain_overflow_bitfield,
79 bfd_elf_generic_reloc, "R_386_NONE",
80 true, 0x00000000, 0x00000000, false),
81 HOWTO(R_386_32, 0, 2, 32, false, 0, complain_overflow_bitfield,
82 bfd_elf_generic_reloc, "R_386_32",
83 true, 0xffffffff, 0xffffffff, false),
84 HOWTO(R_386_PC32, 0, 2, 32, true, 0, complain_overflow_bitfield,
85 bfd_elf_generic_reloc, "R_386_PC32",
86 true, 0xffffffff, 0xffffffff, true),
87 HOWTO(R_386_GOT32, 0, 2, 32, false, 0, complain_overflow_bitfield,
88 bfd_elf_generic_reloc, "R_386_GOT32",
89 true, 0xffffffff, 0xffffffff, false),
90 HOWTO(R_386_PLT32, 0, 2, 32, true, 0, complain_overflow_bitfield,
91 bfd_elf_generic_reloc, "R_386_PLT32",
92 true, 0xffffffff, 0xffffffff, true),
93 HOWTO(R_386_COPY, 0, 2, 32, false, 0, complain_overflow_bitfield,
94 bfd_elf_generic_reloc, "R_386_COPY",
95 true, 0xffffffff, 0xffffffff, false),
96 HOWTO(R_386_GLOB_DAT, 0, 2, 32, false, 0, complain_overflow_bitfield,
97 bfd_elf_generic_reloc, "R_386_GLOB_DAT",
98 true, 0xffffffff, 0xffffffff, false),
99 HOWTO(R_386_JUMP_SLOT, 0, 2, 32, false, 0, complain_overflow_bitfield,
100 bfd_elf_generic_reloc, "R_386_JUMP_SLOT",
101 true, 0xffffffff, 0xffffffff, false),
102 HOWTO(R_386_RELATIVE, 0, 2, 32, false, 0, complain_overflow_bitfield,
103 bfd_elf_generic_reloc, "R_386_RELATIVE",
104 true, 0xffffffff, 0xffffffff, false),
105 HOWTO(R_386_GOTOFF, 0, 2, 32, false, 0, complain_overflow_bitfield,
106 bfd_elf_generic_reloc, "R_386_GOTOFF",
107 true, 0xffffffff, 0xffffffff, false),
108 HOWTO(R_386_GOTPC, 0, 2, 32, true, 0, complain_overflow_bitfield,
109 bfd_elf_generic_reloc, "R_386_GOTPC",
110 true, 0xffffffff, 0xffffffff, true),
111
112 /* We have a gap in the reloc numbers here.
113 R_386_standard counts the number up to this point, and
114 R_386_ext_offset is the value to subtract from a reloc type of
115 R_386_16 thru R_386_PC8 to form an index into this table. */
116 #define R_386_standard ((unsigned int) R_386_GOTPC + 1)
117 #define R_386_ext_offset ((unsigned int) R_386_16 - R_386_standard)
118
119 /* The remaining relocs are a GNU extension. */
120 HOWTO(R_386_16, 0, 1, 16, false, 0, complain_overflow_bitfield,
121 bfd_elf_generic_reloc, "R_386_16",
122 true, 0xffff, 0xffff, false),
123 HOWTO(R_386_PC16, 0, 1, 16, true, 0, complain_overflow_bitfield,
124 bfd_elf_generic_reloc, "R_386_PC16",
125 true, 0xffff, 0xffff, true),
126 HOWTO(R_386_8, 0, 0, 8, false, 0, complain_overflow_bitfield,
127 bfd_elf_generic_reloc, "R_386_8",
128 true, 0xff, 0xff, false),
129 HOWTO(R_386_PC8, 0, 0, 8, true, 0, complain_overflow_signed,
130 bfd_elf_generic_reloc, "R_386_PC8",
131 true, 0xff, 0xff, true),
132
133 /* Another gap. */
134 #define R_386_ext ((unsigned int) R_386_PC8 + 1 - R_386_ext_offset)
135 #define R_386_vt_offset ((unsigned int) R_386_GNU_VTINHERIT - R_386_ext)
136
137 /* GNU extension to record C++ vtable hierarchy. */
138 HOWTO (R_386_GNU_VTINHERIT, /* type */
139 0, /* rightshift */
140 2, /* size (0 = byte, 1 = short, 2 = long) */
141 0, /* bitsize */
142 false, /* pc_relative */
143 0, /* bitpos */
144 complain_overflow_dont, /* complain_on_overflow */
145 NULL, /* special_function */
146 "R_386_GNU_VTINHERIT", /* name */
147 false, /* partial_inplace */
148 0, /* src_mask */
149 0, /* dst_mask */
150 false),
151
152 /* GNU extension to record C++ vtable member usage. */
153 HOWTO (R_386_GNU_VTENTRY, /* type */
154 0, /* rightshift */
155 2, /* size (0 = byte, 1 = short, 2 = long) */
156 0, /* bitsize */
157 false, /* pc_relative */
158 0, /* bitpos */
159 complain_overflow_dont, /* complain_on_overflow */
160 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
161 "R_386_GNU_VTENTRY", /* name */
162 false, /* partial_inplace */
163 0, /* src_mask */
164 0, /* dst_mask */
165 false)
166
167 #define R_386_vt ((unsigned int) R_386_GNU_VTENTRY + 1 - R_386_vt_offset)
168
169 };
170
171 #ifdef DEBUG_GEN_RELOC
172 #define TRACE(str) fprintf (stderr, "i386 bfd reloc lookup %d (%s)\n", code, str)
173 #else
174 #define TRACE(str)
175 #endif
176
177 static reloc_howto_type *
178 elf_i386_reloc_type_lookup (abfd, code)
179 bfd *abfd ATTRIBUTE_UNUSED;
180 bfd_reloc_code_real_type code;
181 {
182 switch (code)
183 {
184 case BFD_RELOC_NONE:
185 TRACE ("BFD_RELOC_NONE");
186 return &elf_howto_table[(unsigned int) R_386_NONE ];
187
188 case BFD_RELOC_32:
189 TRACE ("BFD_RELOC_32");
190 return &elf_howto_table[(unsigned int) R_386_32 ];
191
192 case BFD_RELOC_CTOR:
193 TRACE ("BFD_RELOC_CTOR");
194 return &elf_howto_table[(unsigned int) R_386_32 ];
195
196 case BFD_RELOC_32_PCREL:
197 TRACE ("BFD_RELOC_PC32");
198 return &elf_howto_table[(unsigned int) R_386_PC32 ];
199
200 case BFD_RELOC_386_GOT32:
201 TRACE ("BFD_RELOC_386_GOT32");
202 return &elf_howto_table[(unsigned int) R_386_GOT32 ];
203
204 case BFD_RELOC_386_PLT32:
205 TRACE ("BFD_RELOC_386_PLT32");
206 return &elf_howto_table[(unsigned int) R_386_PLT32 ];
207
208 case BFD_RELOC_386_COPY:
209 TRACE ("BFD_RELOC_386_COPY");
210 return &elf_howto_table[(unsigned int) R_386_COPY ];
211
212 case BFD_RELOC_386_GLOB_DAT:
213 TRACE ("BFD_RELOC_386_GLOB_DAT");
214 return &elf_howto_table[(unsigned int) R_386_GLOB_DAT ];
215
216 case BFD_RELOC_386_JUMP_SLOT:
217 TRACE ("BFD_RELOC_386_JUMP_SLOT");
218 return &elf_howto_table[(unsigned int) R_386_JUMP_SLOT ];
219
220 case BFD_RELOC_386_RELATIVE:
221 TRACE ("BFD_RELOC_386_RELATIVE");
222 return &elf_howto_table[(unsigned int) R_386_RELATIVE ];
223
224 case BFD_RELOC_386_GOTOFF:
225 TRACE ("BFD_RELOC_386_GOTOFF");
226 return &elf_howto_table[(unsigned int) R_386_GOTOFF ];
227
228 case BFD_RELOC_386_GOTPC:
229 TRACE ("BFD_RELOC_386_GOTPC");
230 return &elf_howto_table[(unsigned int) R_386_GOTPC ];
231
232 /* The remaining relocs are a GNU extension. */
233 case BFD_RELOC_16:
234 TRACE ("BFD_RELOC_16");
235 return &elf_howto_table[(unsigned int) R_386_16 - R_386_ext_offset];
236
237 case BFD_RELOC_16_PCREL:
238 TRACE ("BFD_RELOC_16_PCREL");
239 return &elf_howto_table[(unsigned int) R_386_PC16 - R_386_ext_offset];
240
241 case BFD_RELOC_8:
242 TRACE ("BFD_RELOC_8");
243 return &elf_howto_table[(unsigned int) R_386_8 - R_386_ext_offset];
244
245 case BFD_RELOC_8_PCREL:
246 TRACE ("BFD_RELOC_8_PCREL");
247 return &elf_howto_table[(unsigned int) R_386_PC8 - R_386_ext_offset];
248
249 case BFD_RELOC_VTABLE_INHERIT:
250 TRACE ("BFD_RELOC_VTABLE_INHERIT");
251 return &elf_howto_table[(unsigned int) R_386_GNU_VTINHERIT
252 - R_386_vt_offset];
253
254 case BFD_RELOC_VTABLE_ENTRY:
255 TRACE ("BFD_RELOC_VTABLE_ENTRY");
256 return &elf_howto_table[(unsigned int) R_386_GNU_VTENTRY
257 - R_386_vt_offset];
258
259 default:
260 break;
261 }
262
263 TRACE ("Unknown");
264 return 0;
265 }
266
267 static void
268 elf_i386_info_to_howto (abfd, cache_ptr, dst)
269 bfd *abfd ATTRIBUTE_UNUSED;
270 arelent *cache_ptr ATTRIBUTE_UNUSED;
271 Elf32_Internal_Rela *dst ATTRIBUTE_UNUSED;
272 {
273 abort ();
274 }
275
276 static void
277 elf_i386_info_to_howto_rel (abfd, cache_ptr, dst)
278 bfd *abfd ATTRIBUTE_UNUSED;
279 arelent *cache_ptr;
280 Elf32_Internal_Rel *dst;
281 {
282 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
283 unsigned int indx;
284
285 if ((indx = r_type) >= R_386_standard
286 && ((indx = r_type - R_386_ext_offset) - R_386_standard
287 >= R_386_ext - R_386_standard)
288 && ((indx = r_type - R_386_vt_offset) - R_386_ext
289 >= R_386_vt - R_386_ext))
290 {
291 (*_bfd_error_handler) (_("%s: invalid relocation type %d"),
292 bfd_get_filename (abfd), (int) r_type);
293 indx = (unsigned int) R_386_NONE;
294 }
295 cache_ptr->howto = &elf_howto_table[indx];
296 }
297
298 /* Return whether a symbol name implies a local label. The UnixWare
299 2.1 cc generates temporary symbols that start with .X, so we
300 recognize them here. FIXME: do other SVR4 compilers also use .X?.
301 If so, we should move the .X recognition into
302 _bfd_elf_is_local_label_name. */
303
304 static boolean
305 elf_i386_is_local_label_name (abfd, name)
306 bfd *abfd;
307 const char *name;
308 {
309 if (name[0] == '.' && name[1] == 'X')
310 return true;
311
312 return _bfd_elf_is_local_label_name (abfd, name);
313 }
314 \f
315 /* Functions for the i386 ELF linker. */
316
317 /* The name of the dynamic interpreter. This is put in the .interp
318 section. */
319
320 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
321
322 /* The size in bytes of an entry in the procedure linkage table. */
323
324 #define PLT_ENTRY_SIZE 16
325
326 /* The first entry in an absolute procedure linkage table looks like
327 this. See the SVR4 ABI i386 supplement to see how this works. */
328
329 static const bfd_byte elf_i386_plt0_entry[PLT_ENTRY_SIZE] =
330 {
331 0xff, 0x35, /* pushl contents of address */
332 0, 0, 0, 0, /* replaced with address of .got + 4. */
333 0xff, 0x25, /* jmp indirect */
334 0, 0, 0, 0, /* replaced with address of .got + 8. */
335 0, 0, 0, 0 /* pad out to 16 bytes. */
336 };
337
338 /* Subsequent entries in an absolute procedure linkage table look like
339 this. */
340
341 static const bfd_byte elf_i386_plt_entry[PLT_ENTRY_SIZE] =
342 {
343 0xff, 0x25, /* jmp indirect */
344 0, 0, 0, 0, /* replaced with address of this symbol in .got. */
345 0x68, /* pushl immediate */
346 0, 0, 0, 0, /* replaced with offset into relocation table. */
347 0xe9, /* jmp relative */
348 0, 0, 0, 0 /* replaced with offset to start of .plt. */
349 };
350
351 /* The first entry in a PIC procedure linkage table look like this. */
352
353 static const bfd_byte elf_i386_pic_plt0_entry[PLT_ENTRY_SIZE] =
354 {
355 0xff, 0xb3, 4, 0, 0, 0, /* pushl 4(%ebx) */
356 0xff, 0xa3, 8, 0, 0, 0, /* jmp *8(%ebx) */
357 0, 0, 0, 0 /* pad out to 16 bytes. */
358 };
359
360 /* Subsequent entries in a PIC procedure linkage table look like this. */
361
362 static const bfd_byte elf_i386_pic_plt_entry[PLT_ENTRY_SIZE] =
363 {
364 0xff, 0xa3, /* jmp *offset(%ebx) */
365 0, 0, 0, 0, /* replaced with offset of this symbol in .got. */
366 0x68, /* pushl immediate */
367 0, 0, 0, 0, /* replaced with offset into relocation table. */
368 0xe9, /* jmp relative */
369 0, 0, 0, 0 /* replaced with offset to start of .plt. */
370 };
371
372 /* The i386 linker needs to keep track of the number of relocs that it
373 decides to copy as dynamic relocs in check_relocs for each symbol.
374 This is so that it can later discard them if they are found to be
375 unnecessary. We store the information in a field extending the
376 regular ELF linker hash table. */
377
378 struct elf_i386_dyn_relocs
379 {
380 /* Next section. */
381 struct elf_i386_dyn_relocs *next;
382 /* A section in dynobj. */
383 asection *section;
384 /* Number of relocs copied in this section. */
385 bfd_size_type count;
386 };
387
388 /* i386 ELF linker hash entry. */
389
390 struct elf_i386_link_hash_entry
391 {
392 struct elf_link_hash_entry root;
393
394 /* Number of PC relative relocs copied for this symbol. */
395 struct elf_i386_dyn_relocs *dyn_relocs;
396 };
397
398 /* i386 ELF linker hash table. */
399
400 struct elf_i386_link_hash_table
401 {
402 struct elf_link_hash_table root;
403
404 /* Short-cuts to get to dynamic linker sections. */
405 asection *sgot;
406 asection *sgotplt;
407 asection *srelgot;
408 asection *splt;
409 asection *srelplt;
410 asection *sdynbss;
411 asection *srelbss;
412 };
413
414 /* Get the i386 ELF linker hash table from a link_info structure. */
415
416 #define elf_i386_hash_table(p) \
417 ((struct elf_i386_link_hash_table *) ((p)->hash))
418
419 /* Create an entry in an i386 ELF linker hash table. */
420
421 static struct bfd_hash_entry *
422 elf_i386_link_hash_newfunc (entry, table, string)
423 struct bfd_hash_entry *entry;
424 struct bfd_hash_table *table;
425 const char *string;
426 {
427 struct elf_i386_link_hash_entry *ret =
428 (struct elf_i386_link_hash_entry *) entry;
429
430 /* Allocate the structure if it has not already been allocated by a
431 subclass. */
432 if (ret == (struct elf_i386_link_hash_entry *) NULL)
433 ret = ((struct elf_i386_link_hash_entry *)
434 bfd_hash_allocate (table,
435 sizeof (struct elf_i386_link_hash_entry)));
436 if (ret == (struct elf_i386_link_hash_entry *) NULL)
437 return (struct bfd_hash_entry *) ret;
438
439 /* Call the allocation method of the superclass. */
440 ret = ((struct elf_i386_link_hash_entry *)
441 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
442 table, string));
443 if (ret != (struct elf_i386_link_hash_entry *) NULL)
444 {
445 ret->dyn_relocs = NULL;
446 }
447
448 return (struct bfd_hash_entry *) ret;
449 }
450
451 /* Create an i386 ELF linker hash table. */
452
453 static struct bfd_link_hash_table *
454 elf_i386_link_hash_table_create (abfd)
455 bfd *abfd;
456 {
457 struct elf_i386_link_hash_table *ret;
458 bfd_size_type amt = sizeof (struct elf_i386_link_hash_table);
459
460 ret = (struct elf_i386_link_hash_table *) bfd_alloc (abfd, amt);
461 if (ret == (struct elf_i386_link_hash_table *) NULL)
462 return NULL;
463
464 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
465 elf_i386_link_hash_newfunc))
466 {
467 bfd_release (abfd, ret);
468 return NULL;
469 }
470
471 ret->sgot = NULL;
472 ret->sgotplt = NULL;
473 ret->srelgot = NULL;
474 ret->splt = NULL;
475 ret->srelplt = NULL;
476 ret->sdynbss = NULL;
477 ret->srelbss = NULL;
478
479 return &ret->root.root;
480 }
481
482 /* Create .got, .gotplt, and .rel.got sections in DYNOBJ, and set up
483 shortcuts to them in our hash table. */
484
485 static boolean
486 create_got_section (dynobj, info)
487 bfd *dynobj;
488 struct bfd_link_info *info;
489 {
490 struct elf_i386_link_hash_table *htab;
491
492 if (! _bfd_elf_create_got_section (dynobj, info))
493 return false;
494
495 htab = elf_i386_hash_table (info);
496 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
497 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
498 if (!htab->sgot || !htab->sgotplt)
499 abort ();
500
501 htab->srelgot = bfd_make_section (dynobj, ".rel.got");
502 if (htab->srelgot == NULL
503 || ! bfd_set_section_flags (dynobj, htab->srelgot,
504 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
505 | SEC_IN_MEMORY | SEC_LINKER_CREATED
506 | SEC_READONLY))
507 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
508 return false;
509 return true;
510 }
511
512 /* Create .plt, .rel.plt, .got, .got.plt, .rel.got, .dynbss, and
513 .rel.bss sections in DYNOBJ, and set up shortcuts to them in our
514 hash table. */
515
516 static boolean
517 elf_i386_create_dynamic_sections (dynobj, info)
518 bfd *dynobj;
519 struct bfd_link_info *info;
520 {
521 struct elf_i386_link_hash_table *htab;
522
523 htab = elf_i386_hash_table (info);
524 if (!htab->sgot && !create_got_section (dynobj, info))
525 return false;
526
527 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
528 return false;
529
530 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
531 htab->srelplt = bfd_get_section_by_name (dynobj, ".rel.plt");
532 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
533 if (!info->shared)
534 htab->srelbss = bfd_get_section_by_name (dynobj, ".rel.bss");
535
536 if (!htab->splt || !htab->srelplt || !htab->sdynbss
537 || (!info->shared && !htab->srelbss))
538 abort ();
539
540 return true;
541 }
542
543 /* Look through the relocs for a section during the first phase, and
544 allocate space in the global offset table or procedure linkage
545 table. */
546
547 static boolean
548 elf_i386_check_relocs (abfd, info, sec, relocs)
549 bfd *abfd;
550 struct bfd_link_info *info;
551 asection *sec;
552 const Elf_Internal_Rela *relocs;
553 {
554 struct elf_i386_link_hash_table *htab;
555 bfd *dynobj;
556 Elf_Internal_Shdr *symtab_hdr;
557 struct elf_link_hash_entry **sym_hashes;
558 bfd_signed_vma *local_got_refcounts;
559 const Elf_Internal_Rela *rel;
560 const Elf_Internal_Rela *rel_end;
561 asection *sreloc;
562
563 if (info->relocateable)
564 return true;
565
566 htab = elf_i386_hash_table (info);
567 dynobj = htab->root.dynobj;
568 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
569 sym_hashes = elf_sym_hashes (abfd);
570 local_got_refcounts = elf_local_got_refcounts (abfd);
571
572 sreloc = NULL;
573
574 rel_end = relocs + sec->reloc_count;
575 for (rel = relocs; rel < rel_end; rel++)
576 {
577 unsigned long r_symndx;
578 struct elf_link_hash_entry *h;
579
580 r_symndx = ELF32_R_SYM (rel->r_info);
581
582 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
583 {
584 if (abfd->my_archive)
585 (*_bfd_error_handler) (_("%s(%s): bad symbol index: %d"),
586 bfd_get_filename (abfd->my_archive),
587 bfd_get_filename (abfd),
588 r_symndx);
589 else
590 (*_bfd_error_handler) (_("%s: bad symbol index: %d"),
591 bfd_get_filename (abfd),
592 r_symndx);
593 return false;
594 }
595
596 if (r_symndx < symtab_hdr->sh_info)
597 h = NULL;
598 else
599 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
600
601 /* Some relocs require a global offset table. */
602 if (htab->sgot == NULL)
603 {
604 switch (ELF32_R_TYPE (rel->r_info))
605 {
606 case R_386_GOT32:
607 case R_386_GOTOFF:
608 case R_386_GOTPC:
609 if (dynobj == NULL)
610 htab->root.dynobj = dynobj = abfd;
611 if (!create_got_section (dynobj, info))
612 return false;
613 break;
614
615 default:
616 break;
617 }
618 }
619
620 switch (ELF32_R_TYPE (rel->r_info))
621 {
622 case R_386_GOT32:
623 /* This symbol requires a global offset table entry. */
624 if (h != NULL)
625 {
626 if (h->got.refcount == -1)
627 h->got.refcount = 1;
628 else
629 h->got.refcount += 1;
630 }
631 else
632 {
633 /* This is a global offset table entry for a local symbol. */
634 if (local_got_refcounts == NULL)
635 {
636 bfd_size_type size;
637
638 size = symtab_hdr->sh_info;
639 size *= sizeof (bfd_signed_vma);
640 local_got_refcounts = ((bfd_signed_vma *)
641 bfd_alloc (abfd, size));
642 if (local_got_refcounts == NULL)
643 return false;
644 elf_local_got_refcounts (abfd) = local_got_refcounts;
645 memset (local_got_refcounts, -1, (size_t) size);
646 }
647 if (local_got_refcounts[r_symndx] == -1)
648 local_got_refcounts[r_symndx] = 1;
649 else
650 local_got_refcounts[r_symndx] += 1;
651 }
652 break;
653
654 case R_386_PLT32:
655 /* This symbol requires a procedure linkage table entry. We
656 actually build the entry in adjust_dynamic_symbol,
657 because this might be a case of linking PIC code which is
658 never referenced by a dynamic object, in which case we
659 don't need to generate a procedure linkage table entry
660 after all. */
661
662 /* If this is a local symbol, we resolve it directly without
663 creating a procedure linkage table entry. */
664 if (h == NULL)
665 continue;
666
667 if (h->plt.refcount == -1)
668 {
669 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
670 h->plt.refcount = 1;
671 }
672 else
673 h->plt.refcount += 1;
674 break;
675
676 case R_386_32:
677 case R_386_PC32:
678 if (h != NULL && !info->shared)
679 {
680 /* If this reloc is in a read-only section, we might
681 need a copy reloc. */
682 if ((sec->flags & SEC_READONLY) != 0)
683 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
684
685 /* We may need a .plt entry if the function this reloc
686 refers to is in a shared lib. */
687 if (h->plt.refcount == -1)
688 h->plt.refcount = 1;
689 else
690 h->plt.refcount += 1;
691 }
692
693 /* If we are creating a shared library, and this is a reloc
694 against a global symbol, or a non PC relative reloc
695 against a local symbol, then we need to copy the reloc
696 into the shared library. However, if we are linking with
697 -Bsymbolic, we do not need to copy a reloc against a
698 global symbol which is defined in an object we are
699 including in the link (i.e., DEF_REGULAR is set). At
700 this point we have not seen all the input files, so it is
701 possible that DEF_REGULAR is not set now but will be set
702 later (it is never cleared). In case of a weak definition,
703 DEF_REGULAR may be cleared later by a strong definition in
704 a shared library. We account for that possibility below by
705 storing information in the relocs_copied field of the hash
706 table entry. A similar situation occurs when creating
707 shared libraries and symbol visibility changes render the
708 symbol local.
709
710 If on the other hand, we are creating an executable, we
711 may need to keep relocations for symbols satisfied by a
712 dynamic library if we manage to avoid copy relocs for the
713 symbol. */
714 if ((info->shared
715 && (sec->flags & SEC_ALLOC) != 0
716 && (ELF32_R_TYPE (rel->r_info) != R_386_PC32
717 || (h != NULL
718 && (! info->symbolic
719 || h->root.type == bfd_link_hash_defweak
720 || (h->elf_link_hash_flags
721 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
722 || (!info->shared
723 && (sec->flags & SEC_ALLOC) != 0
724 && h != NULL
725 && (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
726 && (h->root.type == bfd_link_hash_defweak
727 || (h->elf_link_hash_flags
728 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
729 {
730 /* We must copy these reloc types into the output file.
731 Create a reloc section in dynobj and make room for
732 this reloc. */
733 if (dynobj == NULL)
734 htab->root.dynobj = dynobj = abfd;
735
736 if (sreloc == NULL)
737 {
738 const char *name;
739
740 name = (bfd_elf_string_from_elf_section
741 (abfd,
742 elf_elfheader (abfd)->e_shstrndx,
743 elf_section_data (sec)->rel_hdr.sh_name));
744 if (name == NULL)
745 return false;
746
747 if (strncmp (name, ".rel", 4) != 0
748 || strcmp (bfd_get_section_name (abfd, sec),
749 name + 4) != 0)
750 {
751 if (abfd->my_archive)
752 (*_bfd_error_handler) (_("%s(%s): bad relocation section name `%s\'"),
753 bfd_get_filename (abfd->my_archive),
754 bfd_get_filename (abfd),
755 name);
756 else
757 (*_bfd_error_handler) (_("%s: bad relocation section name `%s\'"),
758 bfd_get_filename (abfd),
759 name);
760 }
761
762 sreloc = bfd_get_section_by_name (dynobj, name);
763 if (sreloc == NULL)
764 {
765 flagword flags;
766
767 sreloc = bfd_make_section (dynobj, name);
768 flags = (SEC_HAS_CONTENTS | SEC_READONLY
769 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
770 if ((sec->flags & SEC_ALLOC) != 0)
771 flags |= SEC_ALLOC | SEC_LOAD;
772 if (sreloc == NULL
773 || ! bfd_set_section_flags (dynobj, sreloc, flags)
774 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
775 return false;
776 }
777 if (sec->flags & SEC_READONLY)
778 info->flags |= DF_TEXTREL;
779 }
780
781 sreloc->_raw_size += sizeof (Elf32_External_Rel);
782
783 /* If this is a global symbol, we count the number of PC
784 relative relocations we have entered for this symbol,
785 so that we can discard them later as necessary. Note
786 that this function is only called if we are using an
787 elf_i386 linker hash table, which means that h is
788 really a pointer to an elf_i386_link_hash_entry. */
789 if (!info->shared
790 || (h != NULL
791 && ELF32_R_TYPE (rel->r_info) == R_386_PC32))
792 {
793 struct elf_i386_link_hash_entry *eh;
794 struct elf_i386_dyn_relocs *p;
795
796 eh = (struct elf_i386_link_hash_entry *) h;
797
798 for (p = eh->dyn_relocs; p != NULL; p = p->next)
799 if (p->section == sreloc)
800 break;
801
802 if (p == NULL)
803 {
804 p = ((struct elf_i386_dyn_relocs *)
805 bfd_alloc (dynobj, (bfd_size_type) sizeof *p));
806 if (p == NULL)
807 return false;
808 p->next = eh->dyn_relocs;
809 eh->dyn_relocs = p;
810 p->section = sreloc;
811 p->count = 0;
812 }
813
814 ++p->count;
815 }
816 }
817
818 break;
819
820 /* This relocation describes the C++ object vtable hierarchy.
821 Reconstruct it for later use during GC. */
822 case R_386_GNU_VTINHERIT:
823 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
824 return false;
825 break;
826
827 /* This relocation describes which C++ vtable entries are actually
828 used. Record for later use during GC. */
829 case R_386_GNU_VTENTRY:
830 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
831 return false;
832 break;
833
834 default:
835 break;
836 }
837 }
838
839 return true;
840 }
841
842 /* Return the section that should be marked against GC for a given
843 relocation. */
844
845 static asection *
846 elf_i386_gc_mark_hook (abfd, info, rel, h, sym)
847 bfd *abfd;
848 struct bfd_link_info *info ATTRIBUTE_UNUSED;
849 Elf_Internal_Rela *rel;
850 struct elf_link_hash_entry *h;
851 Elf_Internal_Sym *sym;
852 {
853 if (h != NULL)
854 {
855 switch (ELF32_R_TYPE (rel->r_info))
856 {
857 case R_386_GNU_VTINHERIT:
858 case R_386_GNU_VTENTRY:
859 break;
860
861 default:
862 switch (h->root.type)
863 {
864 case bfd_link_hash_defined:
865 case bfd_link_hash_defweak:
866 return h->root.u.def.section;
867
868 case bfd_link_hash_common:
869 return h->root.u.c.p->section;
870
871 default:
872 break;
873 }
874 }
875 }
876 else
877 {
878 if (!(elf_bad_symtab (abfd)
879 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
880 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
881 && sym->st_shndx != SHN_COMMON))
882 {
883 return bfd_section_from_elf_index (abfd, sym->st_shndx);
884 }
885 }
886
887 return NULL;
888 }
889
890 /* Update the got entry reference counts for the section being removed. */
891
892 static boolean
893 elf_i386_gc_sweep_hook (abfd, info, sec, relocs)
894 bfd *abfd;
895 struct bfd_link_info *info;
896 asection *sec;
897 const Elf_Internal_Rela *relocs;
898 {
899 Elf_Internal_Shdr *symtab_hdr;
900 struct elf_link_hash_entry **sym_hashes;
901 bfd_signed_vma *local_got_refcounts;
902 const Elf_Internal_Rela *rel, *relend;
903 unsigned long r_symndx;
904 struct elf_link_hash_entry *h;
905 bfd *dynobj;
906
907 dynobj = elf_hash_table (info)->dynobj;
908 if (dynobj == NULL)
909 return true;
910
911 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
912 sym_hashes = elf_sym_hashes (abfd);
913 local_got_refcounts = elf_local_got_refcounts (abfd);
914
915 relend = relocs + sec->reloc_count;
916 for (rel = relocs; rel < relend; rel++)
917 switch (ELF32_R_TYPE (rel->r_info))
918 {
919 case R_386_GOT32:
920 case R_386_GOTOFF:
921 case R_386_GOTPC:
922 r_symndx = ELF32_R_SYM (rel->r_info);
923 if (r_symndx >= symtab_hdr->sh_info)
924 {
925 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
926 if (h->got.refcount > 0)
927 h->got.refcount -= 1;
928 }
929 else if (local_got_refcounts != NULL)
930 {
931 if (local_got_refcounts[r_symndx] > 0)
932 local_got_refcounts[r_symndx] -= 1;
933 }
934 break;
935
936 case R_386_32:
937 case R_386_PC32:
938 if (info->shared)
939 break;
940 /* Fall through. */
941
942 case R_386_PLT32:
943 r_symndx = ELF32_R_SYM (rel->r_info);
944 if (r_symndx >= symtab_hdr->sh_info)
945 {
946 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
947 if (h->plt.refcount > 0)
948 h->plt.refcount -= 1;
949 }
950 break;
951
952 default:
953 break;
954 }
955
956 return true;
957 }
958
959 /* Adjust a symbol defined by a dynamic object and referenced by a
960 regular object. The current definition is in some section of the
961 dynamic object, but we're not including those sections. We have to
962 change the definition to something the rest of the link can
963 understand. */
964
965 static boolean
966 elf_i386_adjust_dynamic_symbol (info, h)
967 struct bfd_link_info *info;
968 struct elf_link_hash_entry *h;
969 {
970 struct elf_i386_link_hash_table *htab;
971 bfd *dynobj;
972 asection *s;
973 unsigned int power_of_two;
974
975 htab = elf_i386_hash_table (info);
976 dynobj = htab->root.dynobj;
977
978 /* If this is a function, put it in the procedure linkage table. We
979 will fill in the contents of the procedure linkage table later,
980 when we know the address of the .got section. */
981 if (h->type == STT_FUNC
982 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
983 {
984 if (h->plt.refcount <= 0
985 || (! info->shared
986 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
987 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0))
988 {
989 /* This case can occur if we saw a PLT32 reloc in an input
990 file, but the symbol was never referred to by a dynamic
991 object, or if all references were garbage collected. In
992 such a case, we don't actually need to build a procedure
993 linkage table, and we can just do a PC32 reloc instead. */
994 h->plt.refcount = (bfd_vma) -1;
995 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
996 }
997
998 return true;
999 }
1000 else
1001 /* It's possible that we incorrectly decided a .plt reloc was
1002 needed for an R_386_PC32 reloc to a non-function sym in
1003 check_relocs. We can't decide accurately between function and
1004 non-function syms in check-relocs; Objects loaded later in
1005 the link may change h->type. So fix it now. */
1006 h->plt.refcount = (bfd_vma) -1;
1007
1008 /* If this is a weak symbol, and there is a real definition, the
1009 processor independent code will have arranged for us to see the
1010 real definition first, and we can just use the same value. */
1011 if (h->weakdef != NULL)
1012 {
1013 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1014 || h->weakdef->root.type == bfd_link_hash_defweak);
1015 h->root.u.def.section = h->weakdef->root.u.def.section;
1016 h->root.u.def.value = h->weakdef->root.u.def.value;
1017 return true;
1018 }
1019
1020 /* This is a reference to a symbol defined by a dynamic object which
1021 is not a function. */
1022
1023 /* If we are creating a shared library, we must presume that the
1024 only references to the symbol are via the global offset table.
1025 For such cases we need not do anything here; the relocations will
1026 be handled correctly by relocate_section. */
1027 if (info->shared)
1028 return true;
1029
1030 /* If there are no references to this symbol that do not use the
1031 GOT, we don't need to generate a copy reloc. */
1032 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1033 return true;
1034
1035 /* We must allocate the symbol in our .dynbss section, which will
1036 become part of the .bss section of the executable. There will be
1037 an entry for this symbol in the .dynsym section. The dynamic
1038 object will contain position independent code, so all references
1039 from the dynamic object to this symbol will go through the global
1040 offset table. The dynamic linker will use the .dynsym entry to
1041 determine the address it must put in the global offset table, so
1042 both the dynamic object and the regular object will refer to the
1043 same memory location for the variable. */
1044
1045 s = htab->sdynbss;
1046 if (s == NULL)
1047 abort ();
1048
1049 /* We must generate a R_386_COPY reloc to tell the dynamic linker to
1050 copy the initial value out of the dynamic object and into the
1051 runtime process image. We need to remember the offset into the
1052 .rel.bss section we are going to use. */
1053 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1054 {
1055 asection *srel;
1056
1057 srel = htab->srelbss;
1058 if (srel == NULL)
1059 abort ();
1060 srel->_raw_size += sizeof (Elf32_External_Rel);
1061 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1062 }
1063
1064 /* We need to figure out the alignment required for this symbol. I
1065 have no idea how ELF linkers handle this. */
1066 power_of_two = bfd_log2 (h->size);
1067 if (power_of_two > 3)
1068 power_of_two = 3;
1069
1070 /* Apply the required alignment. */
1071 s->_raw_size = BFD_ALIGN (s->_raw_size,
1072 (bfd_size_type) (1 << power_of_two));
1073 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1074 {
1075 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1076 return false;
1077 }
1078
1079 /* Define the symbol as being at this point in the section. */
1080 h->root.u.def.section = s;
1081 h->root.u.def.value = s->_raw_size;
1082
1083 /* Increment the section size to make room for the symbol. */
1084 s->_raw_size += h->size;
1085
1086 return true;
1087 }
1088
1089 /* This is the condition under which elf_i386_finish_dynamic_symbol
1090 will be called from elflink.h. If elflink.h doesn't call our
1091 finish_dynamic_symbol routine, we'll need to do something about
1092 initializing any .plt and .got entries in elf_i386_relocate_section. */
1093 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1094 ((DYN) \
1095 && ((INFO)->shared \
1096 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1097 && ((H)->dynindx != -1 \
1098 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1099
1100 /* Allocate space in .plt, .got and associated reloc sections for
1101 global syms. Also discards space allocated for relocs in the
1102 check_relocs function that we subsequently have found to be
1103 unneeded. */
1104
1105 static boolean
1106 allocate_plt_and_got_and_discard_relocs (h, inf)
1107 struct elf_link_hash_entry *h;
1108 PTR inf;
1109 {
1110 struct bfd_link_info *info;
1111 struct elf_i386_link_hash_table *htab;
1112 asection *s;
1113 struct elf_i386_link_hash_entry *eh;
1114
1115 if (h->root.type == bfd_link_hash_indirect
1116 || h->root.type == bfd_link_hash_warning)
1117 return true;
1118
1119 info = (struct bfd_link_info *) inf;
1120 htab = elf_i386_hash_table (info);
1121
1122 if (htab->root.dynamic_sections_created
1123 && h->plt.refcount > 0)
1124 {
1125 /* Make sure this symbol is output as a dynamic symbol.
1126 Undefined weak syms won't yet be marked as dynamic. */
1127 if (h->dynindx == -1
1128 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1129 {
1130 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1131 return false;
1132 }
1133
1134 s = htab->splt;
1135 if (s == NULL)
1136 abort ();
1137
1138 /* If this is the first .plt entry, make room for the special
1139 first entry. */
1140 if (s->_raw_size == 0)
1141 s->_raw_size += PLT_ENTRY_SIZE;
1142
1143 h->plt.offset = s->_raw_size;
1144
1145 /* If this symbol is not defined in a regular file, and we are
1146 not generating a shared library, then set the symbol to this
1147 location in the .plt. This is required to make function
1148 pointers compare as equal between the normal executable and
1149 the shared library. */
1150 if (! info->shared
1151 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1152 {
1153 h->root.u.def.section = s;
1154 h->root.u.def.value = h->plt.offset;
1155 }
1156
1157 /* Make room for this entry. */
1158 s->_raw_size += PLT_ENTRY_SIZE;
1159
1160 /* We also need to make an entry in the .got.plt section, which
1161 will be placed in the .got section by the linker script. */
1162 s = htab->sgotplt;
1163 if (s == NULL)
1164 abort ();
1165 s->_raw_size += 4;
1166
1167 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
1168 {
1169 /* We also need to make an entry in the .rel.plt section. */
1170 s = htab->srelplt;
1171 if (s == NULL)
1172 abort ();
1173 s->_raw_size += sizeof (Elf32_External_Rel);
1174 }
1175 }
1176 else
1177 {
1178 h->plt.offset = (bfd_vma) -1;
1179 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1180 }
1181
1182 if (h->got.refcount > 0)
1183 {
1184 boolean dyn;
1185
1186 /* Make sure this symbol is output as a dynamic symbol.
1187 Undefined weak syms won't yet be marked as dynamic. */
1188 if (h->dynindx == -1
1189 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1190 {
1191 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1192 return false;
1193 }
1194
1195 s = htab->sgot;
1196 h->got.offset = s->_raw_size;
1197 s->_raw_size += 4;
1198 dyn = htab->root.dynamic_sections_created;
1199 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h))
1200 htab->srelgot->_raw_size += sizeof (Elf32_External_Rel);
1201 }
1202 else
1203 h->got.offset = (bfd_vma) -1;
1204
1205 /* In the shared -Bsymbolic case, discard space allocated for
1206 dynamic relocs against symbols which turn out to be defined
1207 in regular objects. For the normal shared case, discard space
1208 for relocs that have become local due to symbol visibility
1209 changes. For the non-shared case, discard space for symbols
1210 which turn out to need copy relocs or are not dynamic. */
1211
1212 eh = (struct elf_i386_link_hash_entry *) h;
1213 if (eh->dyn_relocs == NULL)
1214 return true;
1215
1216 if (!info->shared
1217 && (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1218 && (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1219 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1220 || (htab->root.dynamic_sections_created
1221 && (h->root.type == bfd_link_hash_undefweak
1222 || h->root.type == bfd_link_hash_undefined))))
1223 {
1224 /* Make sure this symbol is output as a dynamic symbol.
1225 Undefined weak syms won't yet be marked as dynamic. */
1226 if (h->dynindx == -1
1227 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1228 {
1229 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1230 return false;
1231 }
1232
1233 /* If that succeeded, we know we'll be keeping all the relocs. */
1234 if (h->dynindx != -1)
1235 return true;
1236 }
1237
1238 if (!info->shared
1239 || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1240 && ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
1241 || info->symbolic)))
1242 {
1243 struct elf_i386_dyn_relocs *c;
1244
1245 for (c = eh->dyn_relocs; c != NULL; c = c->next)
1246 c->section->_raw_size -= c->count * sizeof (Elf32_External_Rel);
1247 }
1248
1249 return true;
1250 }
1251
1252 /* Set the sizes of the dynamic sections. */
1253
1254 static boolean
1255 elf_i386_size_dynamic_sections (output_bfd, info)
1256 bfd *output_bfd ATTRIBUTE_UNUSED;
1257 struct bfd_link_info *info;
1258 {
1259 struct elf_i386_link_hash_table *htab;
1260 bfd *dynobj;
1261 asection *s;
1262 boolean relocs;
1263 bfd *i;
1264
1265 htab = elf_i386_hash_table (info);
1266 dynobj = htab->root.dynobj;
1267 if (dynobj == NULL)
1268 abort ();
1269
1270 if (htab->root.dynamic_sections_created)
1271 {
1272 /* Set the contents of the .interp section to the interpreter. */
1273 if (! info->shared)
1274 {
1275 s = bfd_get_section_by_name (dynobj, ".interp");
1276 if (s == NULL)
1277 abort ();
1278 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1279 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1280 }
1281 }
1282
1283 /* Set up .got offsets for local syms. */
1284 for (i = info->input_bfds; i; i = i->link_next)
1285 {
1286 bfd_signed_vma *local_got;
1287 bfd_signed_vma *end_local_got;
1288 bfd_size_type locsymcount;
1289 Elf_Internal_Shdr *symtab_hdr;
1290 asection *srel;
1291
1292 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
1293 continue;
1294
1295 local_got = elf_local_got_refcounts (i);
1296 if (!local_got)
1297 continue;
1298
1299 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1300 locsymcount = symtab_hdr->sh_info;
1301 end_local_got = local_got + locsymcount;
1302 s = htab->sgot;
1303 srel = htab->srelgot;
1304 for (; local_got < end_local_got; ++local_got)
1305 {
1306 if (*local_got > 0)
1307 {
1308 *local_got = s->_raw_size;
1309 s->_raw_size += 4;
1310 if (info->shared)
1311 srel->_raw_size += sizeof (Elf32_External_Rel);
1312 }
1313 else
1314 *local_got = (bfd_vma) -1;
1315 }
1316 }
1317
1318 /* Allocate global sym .plt and .got entries. Also discard all
1319 unneeded relocs. */
1320 elf_link_hash_traverse (&htab->root,
1321 allocate_plt_and_got_and_discard_relocs,
1322 (PTR) info);
1323
1324 /* We now have determined the sizes of the various dynamic sections.
1325 Allocate memory for them. */
1326 relocs = false;
1327 for (s = dynobj->sections; s != NULL; s = s->next)
1328 {
1329 if ((s->flags & SEC_LINKER_CREATED) == 0)
1330 continue;
1331
1332 if (s == htab->splt
1333 || s == htab->sgot
1334 || s == htab->sgotplt)
1335 {
1336 /* Strip this section if we don't need it; see the
1337 comment below. */
1338 }
1339 else if (strncmp (bfd_get_section_name (dynobj, s), ".rel", 4) == 0)
1340 {
1341 if (s->_raw_size == 0)
1342 {
1343 /* If we don't need this section, strip it from the
1344 output file. This is mostly to handle .rel.bss and
1345 .rel.plt. We must create both sections in
1346 create_dynamic_sections, because they must be created
1347 before the linker maps input sections to output
1348 sections. The linker does that before
1349 adjust_dynamic_symbol is called, and it is that
1350 function which decides whether anything needs to go
1351 into these sections. */
1352 }
1353 else
1354 {
1355 if (s != htab->srelplt)
1356 relocs = true;
1357
1358 /* We use the reloc_count field as a counter if we need
1359 to copy relocs into the output file. */
1360 s->reloc_count = 0;
1361 }
1362 }
1363 else
1364 {
1365 /* It's not one of our sections, so don't allocate space. */
1366 continue;
1367 }
1368
1369 if (s->_raw_size == 0)
1370 {
1371 _bfd_strip_section_from_output (info, s);
1372 continue;
1373 }
1374
1375 /* Allocate memory for the section contents. We use bfd_zalloc
1376 here in case unused entries are not reclaimed before the
1377 section's contents are written out. This should not happen,
1378 but this way if it does, we get a R_386_NONE reloc instead
1379 of garbage. */
1380 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1381 if (s->contents == NULL)
1382 return false;
1383 }
1384
1385 if (htab->root.dynamic_sections_created)
1386 {
1387 /* Add some entries to the .dynamic section. We fill in the
1388 values later, in elf_i386_finish_dynamic_sections, but we
1389 must add the entries now so that we get the correct size for
1390 the .dynamic section. The DT_DEBUG entry is filled in by the
1391 dynamic linker and used by the debugger. */
1392 #define add_dynamic_entry(TAG, VAL) \
1393 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1394
1395 if (! info->shared)
1396 {
1397 if (!add_dynamic_entry (DT_DEBUG, 0))
1398 return false;
1399 }
1400
1401 if (htab->splt->_raw_size != 0)
1402 {
1403 if (!add_dynamic_entry (DT_PLTGOT, 0)
1404 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1405 || !add_dynamic_entry (DT_PLTREL, DT_REL)
1406 || !add_dynamic_entry (DT_JMPREL, 0))
1407 return false;
1408 }
1409
1410 if (relocs)
1411 {
1412 if (!add_dynamic_entry (DT_REL, 0)
1413 || !add_dynamic_entry (DT_RELSZ, 0)
1414 || !add_dynamic_entry (DT_RELENT, sizeof (Elf32_External_Rel)))
1415 return false;
1416 }
1417
1418 if ((info->flags & DF_TEXTREL) != 0)
1419 {
1420 if (!add_dynamic_entry (DT_TEXTREL, 0))
1421 return false;
1422 }
1423 }
1424 #undef add_dynamic_entry
1425
1426 return true;
1427 }
1428
1429 /* Relocate an i386 ELF section. */
1430
1431 static boolean
1432 elf_i386_relocate_section (output_bfd, info, input_bfd, input_section,
1433 contents, relocs, local_syms, local_sections)
1434 bfd *output_bfd;
1435 struct bfd_link_info *info;
1436 bfd *input_bfd;
1437 asection *input_section;
1438 bfd_byte *contents;
1439 Elf_Internal_Rela *relocs;
1440 Elf_Internal_Sym *local_syms;
1441 asection **local_sections;
1442 {
1443 struct elf_i386_link_hash_table *htab;
1444 bfd *dynobj;
1445 Elf_Internal_Shdr *symtab_hdr;
1446 struct elf_link_hash_entry **sym_hashes;
1447 bfd_vma *local_got_offsets;
1448 asection *sreloc;
1449 Elf_Internal_Rela *rel;
1450 Elf_Internal_Rela *relend;
1451
1452 htab = elf_i386_hash_table (info);
1453 dynobj = htab->root.dynobj;
1454 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1455 sym_hashes = elf_sym_hashes (input_bfd);
1456 local_got_offsets = elf_local_got_offsets (input_bfd);
1457
1458 sreloc = NULL;
1459 rel = relocs;
1460 relend = relocs + input_section->reloc_count;
1461 for (; rel < relend; rel++)
1462 {
1463 int r_type;
1464 reloc_howto_type *howto;
1465 unsigned long r_symndx;
1466 struct elf_link_hash_entry *h;
1467 Elf_Internal_Sym *sym;
1468 asection *sec;
1469 bfd_vma off;
1470 bfd_vma relocation;
1471 boolean unresolved_reloc;
1472 bfd_reloc_status_type r;
1473 unsigned int indx;
1474
1475 r_type = ELF32_R_TYPE (rel->r_info);
1476 if (r_type == (int) R_386_GNU_VTINHERIT
1477 || r_type == (int) R_386_GNU_VTENTRY)
1478 continue;
1479
1480 if ((indx = (unsigned) r_type) >= R_386_standard
1481 && ((indx = (unsigned) r_type - R_386_ext_offset) - R_386_standard
1482 >= R_386_ext - R_386_standard))
1483 {
1484 bfd_set_error (bfd_error_bad_value);
1485 return false;
1486 }
1487 howto = elf_howto_table + indx;
1488
1489 r_symndx = ELF32_R_SYM (rel->r_info);
1490
1491 if (info->relocateable)
1492 {
1493 /* This is a relocateable link. We don't have to change
1494 anything, unless the reloc is against a section symbol,
1495 in which case we have to adjust according to where the
1496 section symbol winds up in the output section. */
1497 if (r_symndx < symtab_hdr->sh_info)
1498 {
1499 sym = local_syms + r_symndx;
1500 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1501 {
1502 bfd_vma val;
1503
1504 sec = local_sections[r_symndx];
1505 val = bfd_get_32 (input_bfd, contents + rel->r_offset);
1506 val += sec->output_offset + sym->st_value;
1507 bfd_put_32 (input_bfd, val, contents + rel->r_offset);
1508 }
1509 }
1510
1511 continue;
1512 }
1513
1514 /* This is a final link. */
1515 h = NULL;
1516 sym = NULL;
1517 sec = NULL;
1518 unresolved_reloc = false;
1519 if (r_symndx < symtab_hdr->sh_info)
1520 {
1521 sym = local_syms + r_symndx;
1522 sec = local_sections[r_symndx];
1523 relocation = (sec->output_section->vma
1524 + sec->output_offset
1525 + sym->st_value);
1526 }
1527 else
1528 {
1529 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1530 while (h->root.type == bfd_link_hash_indirect
1531 || h->root.type == bfd_link_hash_warning)
1532 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1533
1534 relocation = 0;
1535 if (h->root.type == bfd_link_hash_defined
1536 || h->root.type == bfd_link_hash_defweak)
1537 {
1538 sec = h->root.u.def.section;
1539 if (sec->output_section == NULL)
1540 /* Set a flag that will be cleared later if we find a
1541 relocation value for this symbol. output_section
1542 is typically NULL for symbols satisfied by a shared
1543 library. */
1544 unresolved_reloc = true;
1545 else
1546 relocation = (h->root.u.def.value
1547 + sec->output_section->vma
1548 + sec->output_offset);
1549 }
1550 else if (h->root.type == bfd_link_hash_undefweak)
1551 ;
1552 else if (info->shared && !info->symbolic
1553 && !info->no_undefined
1554 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1555 ;
1556 else
1557 {
1558 if (! ((*info->callbacks->undefined_symbol)
1559 (info, h->root.root.string, input_bfd,
1560 input_section, rel->r_offset,
1561 (!info->shared || info->no_undefined
1562 || ELF_ST_VISIBILITY (h->other)))))
1563 return false;
1564 }
1565 }
1566
1567 switch (r_type)
1568 {
1569 case R_386_GOT32:
1570 /* Relocation is to the entry for this symbol in the global
1571 offset table. */
1572 if (htab->sgot == NULL)
1573 abort ();
1574
1575 if (h != NULL)
1576 {
1577 boolean dyn;
1578
1579 off = h->got.offset;
1580 dyn = htab->root.dynamic_sections_created;
1581 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h)
1582 || (info->shared
1583 && (info->symbolic
1584 || h->dynindx == -1
1585 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
1586 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1587 {
1588 /* This is actually a static link, or it is a
1589 -Bsymbolic link and the symbol is defined
1590 locally, or the symbol was forced to be local
1591 because of a version file. We must initialize
1592 this entry in the global offset table. Since the
1593 offset must always be a multiple of 4, we use the
1594 least significant bit to record whether we have
1595 initialized it already.
1596
1597 When doing a dynamic link, we create a .rel.got
1598 relocation entry to initialize the value. This
1599 is done in the finish_dynamic_symbol routine. */
1600 if ((off & 1) != 0)
1601 off &= ~1;
1602 else
1603 {
1604 bfd_put_32 (output_bfd, relocation,
1605 htab->sgot->contents + off);
1606 h->got.offset |= 1;
1607 }
1608 }
1609 else
1610 unresolved_reloc = false;
1611 }
1612 else
1613 {
1614 if (local_got_offsets == NULL)
1615 abort ();
1616
1617 off = local_got_offsets[r_symndx];
1618
1619 /* The offset must always be a multiple of 4. We use
1620 the least significant bit to record whether we have
1621 already generated the necessary reloc. */
1622 if ((off & 1) != 0)
1623 off &= ~1;
1624 else
1625 {
1626 bfd_put_32 (output_bfd, relocation,
1627 htab->sgot->contents + off);
1628
1629 if (info->shared)
1630 {
1631 asection *srelgot;
1632 Elf_Internal_Rel outrel;
1633
1634 srelgot = htab->srelgot;
1635 if (srelgot == NULL)
1636 abort ();
1637
1638 outrel.r_offset = (htab->sgot->output_section->vma
1639 + htab->sgot->output_offset
1640 + off);
1641 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
1642 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1643 (((Elf32_External_Rel *)
1644 srelgot->contents)
1645 + srelgot->reloc_count));
1646 ++srelgot->reloc_count;
1647 }
1648
1649 local_got_offsets[r_symndx] |= 1;
1650 }
1651 }
1652
1653 if (off >= (bfd_vma) -2)
1654 abort ();
1655
1656 relocation = htab->sgot->output_offset + off;
1657 break;
1658
1659 case R_386_GOTOFF:
1660 /* Relocation is relative to the start of the global offset
1661 table. */
1662
1663 /* Note that sgot->output_offset is not involved in this
1664 calculation. We always want the start of .got. If we
1665 defined _GLOBAL_OFFSET_TABLE in a different way, as is
1666 permitted by the ABI, we might have to change this
1667 calculation. */
1668 relocation -= htab->sgot->output_section->vma;
1669 break;
1670
1671 case R_386_GOTPC:
1672 /* Use global offset table as symbol value. */
1673 relocation = htab->sgot->output_section->vma;
1674 unresolved_reloc = false;
1675 break;
1676
1677 case R_386_PLT32:
1678 /* Relocation is to the entry for this symbol in the
1679 procedure linkage table. */
1680
1681 /* Resolve a PLT32 reloc against a local symbol directly,
1682 without using the procedure linkage table. */
1683 if (h == NULL)
1684 break;
1685
1686 if (h->plt.offset == (bfd_vma) -1
1687 || htab->splt == NULL)
1688 {
1689 /* We didn't make a PLT entry for this symbol. This
1690 happens when statically linking PIC code, or when
1691 using -Bsymbolic. */
1692 break;
1693 }
1694
1695 relocation = (htab->splt->output_section->vma
1696 + htab->splt->output_offset
1697 + h->plt.offset);
1698 unresolved_reloc = false;
1699 break;
1700
1701 case R_386_32:
1702 case R_386_PC32:
1703 if ((info->shared
1704 && (input_section->flags & SEC_ALLOC) != 0
1705 && (r_type != R_386_PC32
1706 || (h != NULL
1707 && h->dynindx != -1
1708 && (! info->symbolic
1709 || (h->elf_link_hash_flags
1710 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1711 || (!info->shared
1712 && (input_section->flags & SEC_ALLOC) != 0
1713 && h != NULL
1714 && h->dynindx != -1
1715 && (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1716 && (((h->elf_link_hash_flags
1717 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1718 && (h->elf_link_hash_flags
1719 & ELF_LINK_HASH_DEF_REGULAR) == 0)
1720 || h->root.type == bfd_link_hash_undefweak
1721 || h->root.type == bfd_link_hash_undefined)))
1722 {
1723 Elf_Internal_Rel outrel;
1724 boolean skip, relocate;
1725
1726 /* When generating a shared object, these relocations
1727 are copied into the output file to be resolved at run
1728 time. */
1729
1730 if (sreloc == NULL)
1731 {
1732 const char *name;
1733
1734 name = (bfd_elf_string_from_elf_section
1735 (input_bfd,
1736 elf_elfheader (input_bfd)->e_shstrndx,
1737 elf_section_data (input_section)->rel_hdr.sh_name));
1738 if (name == NULL)
1739 return false;
1740
1741 if (strncmp (name, ".rel", 4) != 0
1742 || strcmp (bfd_get_section_name (input_bfd,
1743 input_section),
1744 name + 4) != 0)
1745 {
1746 if (input_bfd->my_archive)
1747 (*_bfd_error_handler)\
1748 (_("%s(%s): bad relocation section name `%s\'"),
1749 bfd_get_filename (input_bfd->my_archive),
1750 bfd_get_filename (input_bfd),
1751 name);
1752 else
1753 (*_bfd_error_handler)
1754 (_("%s: bad relocation section name `%s\'"),
1755 bfd_get_filename (input_bfd),
1756 name);
1757 return false;
1758 }
1759
1760 sreloc = bfd_get_section_by_name (dynobj, name);
1761 if (sreloc == NULL)
1762 abort ();
1763 }
1764
1765 skip = false;
1766
1767 if (elf_section_data (input_section)->stab_info == NULL)
1768 outrel.r_offset = rel->r_offset;
1769 else
1770 {
1771 off = (_bfd_stab_section_offset
1772 (output_bfd, htab->root.stab_info, input_section,
1773 &elf_section_data (input_section)->stab_info,
1774 rel->r_offset));
1775 if (off == (bfd_vma) -1)
1776 skip = true;
1777 outrel.r_offset = off;
1778 }
1779
1780 outrel.r_offset += (input_section->output_section->vma
1781 + input_section->output_offset);
1782
1783 if (skip)
1784 {
1785 memset (&outrel, 0, sizeof outrel);
1786 relocate = false;
1787 }
1788 else if (h != NULL
1789 && h->dynindx != -1
1790 && (r_type == R_386_PC32
1791 || !info->shared
1792 || !info->symbolic
1793 || (h->elf_link_hash_flags
1794 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1795
1796 {
1797 relocate = false;
1798 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
1799 }
1800 else
1801 {
1802 /* This symbol is local, or marked to become local. */
1803 relocate = true;
1804 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
1805 }
1806
1807 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1808 (((Elf32_External_Rel *)
1809 sreloc->contents)
1810 + sreloc->reloc_count));
1811 ++sreloc->reloc_count;
1812
1813 /* If this reloc is against an external symbol, we do
1814 not want to fiddle with the addend. Otherwise, we
1815 need to include the symbol value so that it becomes
1816 an addend for the dynamic reloc. */
1817 if (! relocate)
1818 continue;
1819 }
1820
1821 break;
1822
1823 default:
1824 break;
1825 }
1826
1827 /* FIXME: Why do we allow debugging sections to escape this error?
1828 More importantly, why do we not emit dynamic relocs for
1829 R_386_32 above in debugging sections (which are ! SEC_ALLOC)?
1830 If we had emitted the dynamic reloc, we could remove the
1831 fudge here. */
1832 if (unresolved_reloc
1833 && !(info->shared
1834 && (input_section->flags & SEC_DEBUGGING) != 0
1835 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
1836 (*_bfd_error_handler)
1837 (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
1838 bfd_get_filename (input_bfd),
1839 bfd_get_section_name (input_bfd, input_section),
1840 (long) rel->r_offset,
1841 h->root.root.string);
1842
1843 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1844 contents, rel->r_offset,
1845 relocation, (bfd_vma) 0);
1846
1847 switch (r)
1848 {
1849 case bfd_reloc_ok:
1850 break;
1851
1852 case bfd_reloc_overflow:
1853 {
1854 const char *name;
1855
1856 if (h != NULL)
1857 name = h->root.root.string;
1858 else
1859 {
1860 name = bfd_elf_string_from_elf_section (input_bfd,
1861 symtab_hdr->sh_link,
1862 sym->st_name);
1863 if (name == NULL)
1864 return false;
1865 if (*name == '\0')
1866 name = bfd_section_name (input_bfd, sec);
1867 }
1868 if (! ((*info->callbacks->reloc_overflow)
1869 (info, name, howto->name, (bfd_vma) 0,
1870 input_bfd, input_section, rel->r_offset)))
1871 return false;
1872 }
1873 break;
1874
1875 default:
1876 case bfd_reloc_outofrange:
1877 abort ();
1878 break;
1879 }
1880 }
1881
1882 return true;
1883 }
1884
1885 /* Finish up dynamic symbol handling. We set the contents of various
1886 dynamic sections here. */
1887
1888 static boolean
1889 elf_i386_finish_dynamic_symbol (output_bfd, info, h, sym)
1890 bfd *output_bfd;
1891 struct bfd_link_info *info;
1892 struct elf_link_hash_entry *h;
1893 Elf_Internal_Sym *sym;
1894 {
1895 struct elf_i386_link_hash_table *htab;
1896 bfd *dynobj;
1897
1898 htab = elf_i386_hash_table (info);
1899 dynobj = htab->root.dynobj;
1900
1901 if (h->plt.offset != (bfd_vma) -1)
1902 {
1903 bfd_vma plt_index;
1904 bfd_vma got_offset;
1905 Elf_Internal_Rel rel;
1906
1907 /* This symbol has an entry in the procedure linkage table. Set
1908 it up. */
1909
1910 if (h->dynindx == -1
1911 || htab->splt == NULL
1912 || htab->sgotplt == NULL
1913 || htab->srelplt == NULL)
1914 abort ();
1915
1916 /* Get the index in the procedure linkage table which
1917 corresponds to this symbol. This is the index of this symbol
1918 in all the symbols for which we are making plt entries. The
1919 first entry in the procedure linkage table is reserved. */
1920 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
1921
1922 /* Get the offset into the .got table of the entry that
1923 corresponds to this function. Each .got entry is 4 bytes.
1924 The first three are reserved. */
1925 got_offset = (plt_index + 3) * 4;
1926
1927 /* Fill in the entry in the procedure linkage table. */
1928 if (! info->shared)
1929 {
1930 memcpy (htab->splt->contents + h->plt.offset, elf_i386_plt_entry,
1931 PLT_ENTRY_SIZE);
1932 bfd_put_32 (output_bfd,
1933 (htab->sgotplt->output_section->vma
1934 + htab->sgotplt->output_offset
1935 + got_offset),
1936 htab->splt->contents + h->plt.offset + 2);
1937 }
1938 else
1939 {
1940 memcpy (htab->splt->contents + h->plt.offset, elf_i386_pic_plt_entry,
1941 PLT_ENTRY_SIZE);
1942 bfd_put_32 (output_bfd, got_offset,
1943 htab->splt->contents + h->plt.offset + 2);
1944 }
1945
1946 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rel),
1947 htab->splt->contents + h->plt.offset + 7);
1948 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
1949 htab->splt->contents + h->plt.offset + 12);
1950
1951 /* Fill in the entry in the global offset table. */
1952 bfd_put_32 (output_bfd,
1953 (htab->splt->output_section->vma
1954 + htab->splt->output_offset
1955 + h->plt.offset
1956 + 6),
1957 htab->sgotplt->contents + got_offset);
1958
1959 /* Fill in the entry in the .rel.plt section. */
1960 rel.r_offset = (htab->sgotplt->output_section->vma
1961 + htab->sgotplt->output_offset
1962 + got_offset);
1963 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_JUMP_SLOT);
1964 bfd_elf32_swap_reloc_out (output_bfd, &rel,
1965 ((Elf32_External_Rel *) htab->srelplt->contents
1966 + plt_index));
1967
1968 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1969 {
1970 /* Mark the symbol as undefined, rather than as defined in
1971 the .plt section. Leave the value alone. */
1972 sym->st_shndx = SHN_UNDEF;
1973 }
1974 }
1975
1976 if (h->got.offset != (bfd_vma) -1)
1977 {
1978 Elf_Internal_Rel rel;
1979
1980 /* This symbol has an entry in the global offset table. Set it
1981 up. */
1982
1983 if (htab->sgot == NULL || htab->srelgot == NULL)
1984 abort ();
1985
1986 rel.r_offset = (htab->sgot->output_section->vma
1987 + htab->sgot->output_offset
1988 + (h->got.offset & ~(bfd_vma) 1));
1989
1990 /* If this is a static link, or it is a -Bsymbolic link and the
1991 symbol is defined locally or was forced to be local because
1992 of a version file, we just want to emit a RELATIVE reloc.
1993 The entry in the global offset table will already have been
1994 initialized in the relocate_section function. */
1995 if (info->shared
1996 && (info->symbolic
1997 || h->dynindx == -1
1998 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
1999 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2000 {
2001 BFD_ASSERT((h->got.offset & 1) != 0);
2002 rel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
2003 }
2004 else
2005 {
2006 BFD_ASSERT((h->got.offset & 1) == 0);
2007 bfd_put_32 (output_bfd, (bfd_vma) 0,
2008 htab->sgot->contents + h->got.offset);
2009 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_GLOB_DAT);
2010 }
2011
2012 bfd_elf32_swap_reloc_out (output_bfd, &rel,
2013 ((Elf32_External_Rel *) htab->srelgot->contents
2014 + htab->srelgot->reloc_count));
2015 ++htab->srelgot->reloc_count;
2016 }
2017
2018 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2019 {
2020 Elf_Internal_Rel rel;
2021
2022 /* This symbol needs a copy reloc. Set it up. */
2023
2024 if (h->dynindx == -1
2025 || (h->root.type != bfd_link_hash_defined
2026 && h->root.type != bfd_link_hash_defweak)
2027 || htab->srelbss == NULL)
2028 abort ();
2029
2030 rel.r_offset = (h->root.u.def.value
2031 + h->root.u.def.section->output_section->vma
2032 + h->root.u.def.section->output_offset);
2033 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_COPY);
2034 bfd_elf32_swap_reloc_out (output_bfd, &rel,
2035 ((Elf32_External_Rel *) htab->srelbss->contents
2036 + htab->srelbss->reloc_count));
2037 ++htab->srelbss->reloc_count;
2038 }
2039
2040 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2041 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2042 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2043 sym->st_shndx = SHN_ABS;
2044
2045 return true;
2046 }
2047
2048 /* Finish up the dynamic sections. */
2049
2050 static boolean
2051 elf_i386_finish_dynamic_sections (output_bfd, info)
2052 bfd *output_bfd;
2053 struct bfd_link_info *info;
2054 {
2055 struct elf_i386_link_hash_table *htab;
2056 bfd *dynobj;
2057 asection *sdyn;
2058
2059 htab = elf_i386_hash_table (info);
2060 dynobj = htab->root.dynobj;
2061 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2062
2063 if (htab->root.dynamic_sections_created)
2064 {
2065 Elf32_External_Dyn *dyncon, *dynconend;
2066
2067 if (sdyn == NULL || htab->sgot == NULL)
2068 abort ();
2069
2070 dyncon = (Elf32_External_Dyn *) sdyn->contents;
2071 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2072 for (; dyncon < dynconend; dyncon++)
2073 {
2074 Elf_Internal_Dyn dyn;
2075
2076 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2077
2078 switch (dyn.d_tag)
2079 {
2080 default:
2081 break;
2082
2083 case DT_PLTGOT:
2084 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
2085 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2086 break;
2087
2088 case DT_JMPREL:
2089 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
2090 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2091 break;
2092
2093 case DT_PLTRELSZ:
2094 if (htab->srelplt->output_section->_cooked_size != 0)
2095 dyn.d_un.d_val = htab->srelplt->output_section->_cooked_size;
2096 else
2097 dyn.d_un.d_val = htab->srelplt->output_section->_raw_size;
2098 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2099 break;
2100
2101 case DT_RELSZ:
2102 /* My reading of the SVR4 ABI indicates that the
2103 procedure linkage table relocs (DT_JMPREL) should be
2104 included in the overall relocs (DT_REL). This is
2105 what Solaris does. However, UnixWare can not handle
2106 that case. Therefore, we override the DT_RELSZ entry
2107 here to make it not include the JMPREL relocs. Since
2108 the linker script arranges for .rel.plt to follow all
2109 other relocation sections, we don't have to worry
2110 about changing the DT_REL entry. */
2111 if (htab->srelplt != NULL)
2112 {
2113 if (htab->srelplt->output_section->_cooked_size != 0)
2114 dyn.d_un.d_val -= htab->srelplt->output_section->_cooked_size;
2115 else
2116 dyn.d_un.d_val -= htab->srelplt->output_section->_raw_size;
2117 }
2118 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2119 break;
2120 }
2121 }
2122
2123 /* Fill in the first entry in the procedure linkage table. */
2124 if (htab->splt && htab->splt->_raw_size > 0)
2125 {
2126 if (info->shared)
2127 memcpy (htab->splt->contents,
2128 elf_i386_pic_plt0_entry, PLT_ENTRY_SIZE);
2129 else
2130 {
2131 memcpy (htab->splt->contents,
2132 elf_i386_plt0_entry, PLT_ENTRY_SIZE);
2133 bfd_put_32 (output_bfd,
2134 (htab->sgotplt->output_section->vma
2135 + htab->sgotplt->output_offset
2136 + 4),
2137 htab->splt->contents + 2);
2138 bfd_put_32 (output_bfd,
2139 (htab->sgotplt->output_section->vma
2140 + htab->sgotplt->output_offset
2141 + 8),
2142 htab->splt->contents + 8);
2143 }
2144
2145 /* UnixWare sets the entsize of .plt to 4, although that doesn't
2146 really seem like the right value. */
2147 elf_section_data (htab->splt->output_section)
2148 ->this_hdr.sh_entsize = 4;
2149 }
2150 }
2151
2152 if (htab->sgotplt)
2153 {
2154 /* Fill in the first three entries in the global offset table. */
2155 if (htab->sgotplt->_raw_size > 0)
2156 {
2157 bfd_put_32 (output_bfd,
2158 (sdyn == NULL ? (bfd_vma) 0
2159 : sdyn->output_section->vma + sdyn->output_offset),
2160 htab->sgotplt->contents);
2161 bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 4);
2162 bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 8);
2163 }
2164
2165 elf_section_data (htab->sgotplt->output_section)->this_hdr.sh_entsize = 4;
2166 }
2167 return true;
2168 }
2169
2170 /* Set the correct type for an x86 ELF section. We do this by the
2171 section name, which is a hack, but ought to work. */
2172
2173 static boolean
2174 elf_i386_fake_sections (abfd, hdr, sec)
2175 bfd *abfd ATTRIBUTE_UNUSED;
2176 Elf32_Internal_Shdr *hdr;
2177 asection *sec;
2178 {
2179 register const char *name;
2180
2181 name = bfd_get_section_name (abfd, sec);
2182
2183 if (strcmp (name, ".reloc") == 0)
2184 /*
2185 * This is an ugly, but unfortunately necessary hack that is
2186 * needed when producing EFI binaries on x86. It tells
2187 * elf.c:elf_fake_sections() not to consider ".reloc" as a section
2188 * containing ELF relocation info. We need this hack in order to
2189 * be able to generate ELF binaries that can be translated into
2190 * EFI applications (which are essentially COFF objects). Those
2191 * files contain a COFF ".reloc" section inside an ELFNN object,
2192 * which would normally cause BFD to segfault because it would
2193 * attempt to interpret this section as containing relocation
2194 * entries for section "oc". With this hack enabled, ".reloc"
2195 * will be treated as a normal data section, which will avoid the
2196 * segfault. However, you won't be able to create an ELFNN binary
2197 * with a section named "oc" that needs relocations, but that's
2198 * the kind of ugly side-effects you get when detecting section
2199 * types based on their names... In practice, this limitation is
2200 * unlikely to bite.
2201 */
2202 hdr->sh_type = SHT_PROGBITS;
2203
2204 return true;
2205 }
2206
2207 static enum elf_reloc_type_class
2208 elf_i386_reloc_type_class (type)
2209 int type;
2210 {
2211 switch (type)
2212 {
2213 case R_386_RELATIVE:
2214 return reloc_class_relative;
2215 case R_386_JUMP_SLOT:
2216 return reloc_class_plt;
2217 case R_386_COPY:
2218 return reloc_class_copy;
2219 default:
2220 return reloc_class_normal;
2221 }
2222 }
2223
2224 /* Support for core dump NOTE sections */
2225 static boolean
2226 elf_i386_grok_prstatus (abfd, note)
2227 bfd *abfd;
2228 Elf_Internal_Note *note;
2229 {
2230 int offset;
2231 size_t raw_size;
2232
2233 switch (note->descsz)
2234 {
2235 default:
2236 return false;
2237
2238 case 144: /* Linux/i386 */
2239 /* pr_cursig */
2240 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2241
2242 /* pr_pid */
2243 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
2244
2245 /* pr_reg */
2246 offset = 72;
2247 raw_size = 68;
2248
2249 break;
2250 }
2251
2252 /* Make a ".reg/999" section. */
2253 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2254 raw_size, note->descpos + offset);
2255 }
2256
2257 static boolean
2258 elf_i386_grok_psinfo (abfd, note)
2259 bfd *abfd;
2260 Elf_Internal_Note *note;
2261 {
2262 switch (note->descsz)
2263 {
2264 default:
2265 return false;
2266
2267 case 128: /* Linux/MIPS elf_prpsinfo */
2268 elf_tdata (abfd)->core_program
2269 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
2270 elf_tdata (abfd)->core_command
2271 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
2272 }
2273
2274 /* Note that for some reason, a spurious space is tacked
2275 onto the end of the args in some (at least one anyway)
2276 implementations, so strip it off if it exists. */
2277
2278 {
2279 char *command = elf_tdata (abfd)->core_command;
2280 int n = strlen (command);
2281
2282 if (0 < n && command[n - 1] == ' ')
2283 command[n - 1] = '\0';
2284 }
2285
2286 return true;
2287 }
2288
2289 #define TARGET_LITTLE_SYM bfd_elf32_i386_vec
2290 #define TARGET_LITTLE_NAME "elf32-i386"
2291 #define ELF_ARCH bfd_arch_i386
2292 #define ELF_MACHINE_CODE EM_386
2293 #define ELF_MAXPAGESIZE 0x1000
2294
2295 #define elf_backend_can_gc_sections 1
2296 #define elf_backend_want_got_plt 1
2297 #define elf_backend_plt_readonly 1
2298 #define elf_backend_want_plt_sym 0
2299 #define elf_backend_got_header_size 12
2300 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
2301
2302 #define elf_info_to_howto elf_i386_info_to_howto
2303 #define elf_info_to_howto_rel elf_i386_info_to_howto_rel
2304
2305 #define bfd_elf32_bfd_is_local_label_name elf_i386_is_local_label_name
2306 #define bfd_elf32_bfd_link_hash_table_create elf_i386_link_hash_table_create
2307 #define bfd_elf32_bfd_reloc_type_lookup elf_i386_reloc_type_lookup
2308
2309 #define elf_backend_adjust_dynamic_symbol elf_i386_adjust_dynamic_symbol
2310 #define elf_backend_check_relocs elf_i386_check_relocs
2311 #define elf_backend_create_dynamic_sections elf_i386_create_dynamic_sections
2312 #define elf_backend_finish_dynamic_sections elf_i386_finish_dynamic_sections
2313 #define elf_backend_finish_dynamic_symbol elf_i386_finish_dynamic_symbol
2314 #define elf_backend_gc_mark_hook elf_i386_gc_mark_hook
2315 #define elf_backend_gc_sweep_hook elf_i386_gc_sweep_hook
2316 #define elf_backend_relocate_section elf_i386_relocate_section
2317 #define elf_backend_size_dynamic_sections elf_i386_size_dynamic_sections
2318 #define elf_backend_fake_sections elf_i386_fake_sections
2319 #define elf_backend_grok_prstatus elf_i386_grok_prstatus
2320 #define elf_backend_grok_psinfo elf_i386_grok_psinfo
2321 #define elf_backend_reloc_type_class elf_i386_reloc_type_class
2322
2323 #include "elf32-target.h"
This page took 0.109066 seconds and 4 git commands to generate.