* bfd-in.h (bfd_get_section_limit): Define.
[deliverable/binutils-gdb.git] / bfd / elf32-m68hc1x.c
1 /* Motorola 68HC11/HC12-specific support for 32-bit ELF
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4 Contributed by Stephane Carrez (stcarrez@nerim.fr)
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "elf32-m68hc1x.h"
28 #include "elf/m68hc11.h"
29 #include "opcode/m68hc11.h"
30
31
32 #define m68hc12_stub_hash_lookup(table, string, create, copy) \
33 ((struct elf32_m68hc11_stub_hash_entry *) \
34 bfd_hash_lookup ((table), (string), (create), (copy)))
35
36 static struct elf32_m68hc11_stub_hash_entry* m68hc12_add_stub
37 (const char *stub_name,
38 asection *section,
39 struct m68hc11_elf_link_hash_table *htab);
40
41 static struct bfd_hash_entry *stub_hash_newfunc
42 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
43
44 static void m68hc11_elf_set_symbol (bfd* abfd, struct bfd_link_info *info,
45 const char* name, bfd_vma value,
46 asection* sec);
47
48 static bfd_boolean m68hc11_elf_export_one_stub
49 (struct bfd_hash_entry *gen_entry, void *in_arg);
50
51 static void scan_sections_for_abi (bfd*, asection*, PTR);
52
53 struct m68hc11_scan_param
54 {
55 struct m68hc11_page_info* pinfo;
56 bfd_boolean use_memory_banks;
57 };
58
59
60 /* Create a 68HC11/68HC12 ELF linker hash table. */
61
62 struct m68hc11_elf_link_hash_table*
63 m68hc11_elf_hash_table_create (bfd *abfd)
64 {
65 struct m68hc11_elf_link_hash_table *ret;
66 bfd_size_type amt = sizeof (struct m68hc11_elf_link_hash_table);
67
68 ret = (struct m68hc11_elf_link_hash_table *) bfd_malloc (amt);
69 if (ret == (struct m68hc11_elf_link_hash_table *) NULL)
70 return NULL;
71
72 memset (ret, 0, amt);
73 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
74 _bfd_elf_link_hash_newfunc))
75 {
76 free (ret);
77 return NULL;
78 }
79
80 /* Init the stub hash table too. */
81 amt = sizeof (struct bfd_hash_table);
82 ret->stub_hash_table = (struct bfd_hash_table*) bfd_malloc (amt);
83 if (ret->stub_hash_table == NULL)
84 {
85 free (ret);
86 return NULL;
87 }
88 if (!bfd_hash_table_init (ret->stub_hash_table, stub_hash_newfunc))
89 return NULL;
90
91 ret->stub_bfd = NULL;
92 ret->stub_section = 0;
93 ret->add_stub_section = NULL;
94 ret->sym_sec.abfd = NULL;
95
96 return ret;
97 }
98
99 /* Free the derived linker hash table. */
100
101 void
102 m68hc11_elf_bfd_link_hash_table_free (struct bfd_link_hash_table *hash)
103 {
104 struct m68hc11_elf_link_hash_table *ret
105 = (struct m68hc11_elf_link_hash_table *) hash;
106
107 bfd_hash_table_free (ret->stub_hash_table);
108 free (ret->stub_hash_table);
109 _bfd_generic_link_hash_table_free (hash);
110 }
111
112 /* Assorted hash table functions. */
113
114 /* Initialize an entry in the stub hash table. */
115
116 static struct bfd_hash_entry *
117 stub_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table,
118 const char *string)
119 {
120 /* Allocate the structure if it has not already been allocated by a
121 subclass. */
122 if (entry == NULL)
123 {
124 entry = bfd_hash_allocate (table,
125 sizeof (struct elf32_m68hc11_stub_hash_entry));
126 if (entry == NULL)
127 return entry;
128 }
129
130 /* Call the allocation method of the superclass. */
131 entry = bfd_hash_newfunc (entry, table, string);
132 if (entry != NULL)
133 {
134 struct elf32_m68hc11_stub_hash_entry *eh;
135
136 /* Initialize the local fields. */
137 eh = (struct elf32_m68hc11_stub_hash_entry *) entry;
138 eh->stub_sec = NULL;
139 eh->stub_offset = 0;
140 eh->target_value = 0;
141 eh->target_section = NULL;
142 }
143
144 return entry;
145 }
146
147 /* Add a new stub entry to the stub hash. Not all fields of the new
148 stub entry are initialised. */
149
150 static struct elf32_m68hc11_stub_hash_entry *
151 m68hc12_add_stub (const char *stub_name, asection *section,
152 struct m68hc11_elf_link_hash_table *htab)
153 {
154 struct elf32_m68hc11_stub_hash_entry *stub_entry;
155
156 /* Enter this entry into the linker stub hash table. */
157 stub_entry = m68hc12_stub_hash_lookup (htab->stub_hash_table, stub_name,
158 TRUE, FALSE);
159 if (stub_entry == NULL)
160 {
161 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
162 bfd_archive_filename (section->owner),
163 stub_name);
164 return NULL;
165 }
166
167 if (htab->stub_section == 0)
168 {
169 htab->stub_section = (*htab->add_stub_section) (".tramp",
170 htab->tramp_section);
171 }
172
173 stub_entry->stub_sec = htab->stub_section;
174 stub_entry->stub_offset = 0;
175 return stub_entry;
176 }
177
178 /* Hook called by the linker routine which adds symbols from an object
179 file. We use it for identify far symbols and force a loading of
180 the trampoline handler. */
181
182 bfd_boolean
183 elf32_m68hc11_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
184 Elf_Internal_Sym *sym,
185 const char **namep ATTRIBUTE_UNUSED,
186 flagword *flagsp ATTRIBUTE_UNUSED,
187 asection **secp ATTRIBUTE_UNUSED,
188 bfd_vma *valp ATTRIBUTE_UNUSED)
189 {
190 if (sym->st_other & STO_M68HC12_FAR)
191 {
192 struct elf_link_hash_entry *h;
193
194 h = (struct elf_link_hash_entry *)
195 bfd_link_hash_lookup (info->hash, "__far_trampoline",
196 FALSE, FALSE, FALSE);
197 if (h == NULL)
198 {
199 struct bfd_link_hash_entry* entry = NULL;
200
201 _bfd_generic_link_add_one_symbol (info, abfd,
202 "__far_trampoline",
203 BSF_GLOBAL,
204 bfd_und_section_ptr,
205 (bfd_vma) 0, (const char*) NULL,
206 FALSE, FALSE, &entry);
207 }
208
209 }
210 return TRUE;
211 }
212
213 /* External entry points for sizing and building linker stubs. */
214
215 /* Set up various things so that we can make a list of input sections
216 for each output section included in the link. Returns -1 on error,
217 0 when no stubs will be needed, and 1 on success. */
218
219 int
220 elf32_m68hc11_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
221 {
222 bfd *input_bfd;
223 unsigned int bfd_count;
224 int top_id, top_index;
225 asection *section;
226 asection **input_list, **list;
227 bfd_size_type amt;
228 asection *text_section;
229 struct m68hc11_elf_link_hash_table *htab;
230
231 htab = m68hc11_elf_hash_table (info);
232
233 if (htab->root.root.creator->flavour != bfd_target_elf_flavour)
234 return 0;
235
236 /* Count the number of input BFDs and find the top input section id.
237 Also search for an existing ".tramp" section so that we know
238 where generated trampolines must go. Default to ".text" if we
239 can't find it. */
240 htab->tramp_section = 0;
241 text_section = 0;
242 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
243 input_bfd != NULL;
244 input_bfd = input_bfd->link_next)
245 {
246 bfd_count += 1;
247 for (section = input_bfd->sections;
248 section != NULL;
249 section = section->next)
250 {
251 const char* name = bfd_get_section_name (input_bfd, section);
252
253 if (!strcmp (name, ".tramp"))
254 htab->tramp_section = section;
255
256 if (!strcmp (name, ".text"))
257 text_section = section;
258
259 if (top_id < section->id)
260 top_id = section->id;
261 }
262 }
263 htab->bfd_count = bfd_count;
264 if (htab->tramp_section == 0)
265 htab->tramp_section = text_section;
266
267 /* We can't use output_bfd->section_count here to find the top output
268 section index as some sections may have been removed, and
269 _bfd_strip_section_from_output doesn't renumber the indices. */
270 for (section = output_bfd->sections, top_index = 0;
271 section != NULL;
272 section = section->next)
273 {
274 if (top_index < section->index)
275 top_index = section->index;
276 }
277
278 htab->top_index = top_index;
279 amt = sizeof (asection *) * (top_index + 1);
280 input_list = (asection **) bfd_malloc (amt);
281 htab->input_list = input_list;
282 if (input_list == NULL)
283 return -1;
284
285 /* For sections we aren't interested in, mark their entries with a
286 value we can check later. */
287 list = input_list + top_index;
288 do
289 *list = bfd_abs_section_ptr;
290 while (list-- != input_list);
291
292 for (section = output_bfd->sections;
293 section != NULL;
294 section = section->next)
295 {
296 if ((section->flags & SEC_CODE) != 0)
297 input_list[section->index] = NULL;
298 }
299
300 return 1;
301 }
302
303 /* Determine and set the size of the stub section for a final link.
304
305 The basic idea here is to examine all the relocations looking for
306 PC-relative calls to a target that is unreachable with a "bl"
307 instruction. */
308
309 bfd_boolean
310 elf32_m68hc11_size_stubs (bfd *output_bfd, bfd *stub_bfd,
311 struct bfd_link_info *info,
312 asection * (*add_stub_section) (const char*, asection*))
313 {
314 bfd *input_bfd;
315 asection *section;
316 Elf_Internal_Sym *local_syms, **all_local_syms;
317 unsigned int bfd_indx, bfd_count;
318 bfd_size_type amt;
319 asection *stub_sec;
320
321 struct m68hc11_elf_link_hash_table *htab = m68hc11_elf_hash_table (info);
322
323 /* Stash our params away. */
324 htab->stub_bfd = stub_bfd;
325 htab->add_stub_section = add_stub_section;
326
327 /* Count the number of input BFDs and find the top input section id. */
328 for (input_bfd = info->input_bfds, bfd_count = 0;
329 input_bfd != NULL;
330 input_bfd = input_bfd->link_next)
331 {
332 bfd_count += 1;
333 }
334
335 /* We want to read in symbol extension records only once. To do this
336 we need to read in the local symbols in parallel and save them for
337 later use; so hold pointers to the local symbols in an array. */
338 amt = sizeof (Elf_Internal_Sym *) * bfd_count;
339 all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt);
340 if (all_local_syms == NULL)
341 return FALSE;
342
343 /* Walk over all the input BFDs, swapping in local symbols. */
344 for (input_bfd = info->input_bfds, bfd_indx = 0;
345 input_bfd != NULL;
346 input_bfd = input_bfd->link_next, bfd_indx++)
347 {
348 Elf_Internal_Shdr *symtab_hdr;
349
350 /* We'll need the symbol table in a second. */
351 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
352 if (symtab_hdr->sh_info == 0)
353 continue;
354
355 /* We need an array of the local symbols attached to the input bfd. */
356 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
357 if (local_syms == NULL)
358 {
359 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
360 symtab_hdr->sh_info, 0,
361 NULL, NULL, NULL);
362 /* Cache them for elf_link_input_bfd. */
363 symtab_hdr->contents = (unsigned char *) local_syms;
364 }
365 if (local_syms == NULL)
366 {
367 free (all_local_syms);
368 return FALSE;
369 }
370
371 all_local_syms[bfd_indx] = local_syms;
372 }
373
374 for (input_bfd = info->input_bfds, bfd_indx = 0;
375 input_bfd != NULL;
376 input_bfd = input_bfd->link_next, bfd_indx++)
377 {
378 Elf_Internal_Shdr *symtab_hdr;
379 Elf_Internal_Sym *local_syms;
380 struct elf_link_hash_entry ** sym_hashes;
381
382 sym_hashes = elf_sym_hashes (input_bfd);
383
384 /* We'll need the symbol table in a second. */
385 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
386 if (symtab_hdr->sh_info == 0)
387 continue;
388
389 local_syms = all_local_syms[bfd_indx];
390
391 /* Walk over each section attached to the input bfd. */
392 for (section = input_bfd->sections;
393 section != NULL;
394 section = section->next)
395 {
396 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
397
398 /* If there aren't any relocs, then there's nothing more
399 to do. */
400 if ((section->flags & SEC_RELOC) == 0
401 || section->reloc_count == 0)
402 continue;
403
404 /* If this section is a link-once section that will be
405 discarded, then don't create any stubs. */
406 if (section->output_section == NULL
407 || section->output_section->owner != output_bfd)
408 continue;
409
410 /* Get the relocs. */
411 internal_relocs
412 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
413 (Elf_Internal_Rela *) NULL,
414 info->keep_memory);
415 if (internal_relocs == NULL)
416 goto error_ret_free_local;
417
418 /* Now examine each relocation. */
419 irela = internal_relocs;
420 irelaend = irela + section->reloc_count;
421 for (; irela < irelaend; irela++)
422 {
423 unsigned int r_type, r_indx;
424 struct elf32_m68hc11_stub_hash_entry *stub_entry;
425 asection *sym_sec;
426 bfd_vma sym_value;
427 struct elf_link_hash_entry *hash;
428 const char *stub_name;
429 Elf_Internal_Sym *sym;
430
431 r_type = ELF32_R_TYPE (irela->r_info);
432
433 /* Only look at 16-bit relocs. */
434 if (r_type != (unsigned int) R_M68HC11_16)
435 continue;
436
437 /* Now determine the call target, its name, value,
438 section. */
439 r_indx = ELF32_R_SYM (irela->r_info);
440 if (r_indx < symtab_hdr->sh_info)
441 {
442 /* It's a local symbol. */
443 Elf_Internal_Shdr *hdr;
444 bfd_boolean is_far;
445
446 sym = local_syms + r_indx;
447 is_far = (sym && (sym->st_other & STO_M68HC12_FAR));
448 if (!is_far)
449 continue;
450
451 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
452 sym_sec = hdr->bfd_section;
453 stub_name = (bfd_elf_string_from_elf_section
454 (input_bfd, symtab_hdr->sh_link,
455 sym->st_name));
456 sym_value = sym->st_value;
457 hash = NULL;
458 }
459 else
460 {
461 /* It's an external symbol. */
462 int e_indx;
463
464 e_indx = r_indx - symtab_hdr->sh_info;
465 hash = (struct elf_link_hash_entry *)
466 (sym_hashes[e_indx]);
467
468 while (hash->root.type == bfd_link_hash_indirect
469 || hash->root.type == bfd_link_hash_warning)
470 hash = ((struct elf_link_hash_entry *)
471 hash->root.u.i.link);
472
473 if (hash->root.type == bfd_link_hash_defined
474 || hash->root.type == bfd_link_hash_defweak)
475 {
476 if (!(hash->other & STO_M68HC12_FAR))
477 continue;
478 }
479 else if (hash->root.type == bfd_link_hash_undefweak)
480 {
481 continue;
482 }
483 else if (hash->root.type == bfd_link_hash_undefined)
484 {
485 continue;
486 }
487 else
488 {
489 bfd_set_error (bfd_error_bad_value);
490 goto error_ret_free_internal;
491 }
492 sym_sec = hash->root.u.def.section;
493 sym_value = hash->root.u.def.value;
494 stub_name = hash->root.root.string;
495 }
496
497 if (!stub_name)
498 goto error_ret_free_internal;
499
500 stub_entry = m68hc12_stub_hash_lookup
501 (htab->stub_hash_table,
502 stub_name,
503 FALSE, FALSE);
504 if (stub_entry == NULL)
505 {
506 if (add_stub_section == 0)
507 continue;
508
509 stub_entry = m68hc12_add_stub (stub_name, section, htab);
510 if (stub_entry == NULL)
511 {
512 error_ret_free_internal:
513 if (elf_section_data (section)->relocs == NULL)
514 free (internal_relocs);
515 goto error_ret_free_local;
516 }
517 }
518
519 stub_entry->target_value = sym_value;
520 stub_entry->target_section = sym_sec;
521 }
522
523 /* We're done with the internal relocs, free them. */
524 if (elf_section_data (section)->relocs == NULL)
525 free (internal_relocs);
526 }
527 }
528
529 if (add_stub_section)
530 {
531 /* OK, we've added some stubs. Find out the new size of the
532 stub sections. */
533 for (stub_sec = htab->stub_bfd->sections;
534 stub_sec != NULL;
535 stub_sec = stub_sec->next)
536 {
537 stub_sec->size = 0;
538 }
539
540 bfd_hash_traverse (htab->stub_hash_table, htab->size_one_stub, htab);
541 }
542 free (all_local_syms);
543 return TRUE;
544
545 error_ret_free_local:
546 free (all_local_syms);
547 return FALSE;
548 }
549
550 /* Export the trampoline addresses in the symbol table. */
551 static bfd_boolean
552 m68hc11_elf_export_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
553 {
554 struct bfd_link_info *info;
555 struct m68hc11_elf_link_hash_table *htab;
556 struct elf32_m68hc11_stub_hash_entry *stub_entry;
557 char* name;
558 bfd_boolean result;
559
560 info = (struct bfd_link_info *) in_arg;
561 htab = m68hc11_elf_hash_table (info);
562
563 /* Massage our args to the form they really have. */
564 stub_entry = (struct elf32_m68hc11_stub_hash_entry *) gen_entry;
565
566 /* Generate the trampoline according to HC11 or HC12. */
567 result = (* htab->build_one_stub) (gen_entry, in_arg);
568
569 /* Make a printable name that does not conflict with the real function. */
570 name = alloca (strlen (stub_entry->root.string) + 16);
571 sprintf (name, "tramp.%s", stub_entry->root.string);
572
573 /* Export the symbol for debugging/disassembling. */
574 m68hc11_elf_set_symbol (htab->stub_bfd, info, name,
575 stub_entry->stub_offset,
576 stub_entry->stub_sec);
577 return result;
578 }
579
580 /* Export a symbol or set its value and section. */
581 static void
582 m68hc11_elf_set_symbol (bfd *abfd, struct bfd_link_info *info,
583 const char *name, bfd_vma value, asection *sec)
584 {
585 struct elf_link_hash_entry *h;
586
587 h = (struct elf_link_hash_entry *)
588 bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
589 if (h == NULL)
590 {
591 _bfd_generic_link_add_one_symbol (info, abfd,
592 name,
593 BSF_GLOBAL,
594 sec,
595 value,
596 (const char*) NULL,
597 TRUE, FALSE, NULL);
598 }
599 else
600 {
601 h->root.type = bfd_link_hash_defined;
602 h->root.u.def.value = value;
603 h->root.u.def.section = sec;
604 }
605 }
606
607
608 /* Build all the stubs associated with the current output file. The
609 stubs are kept in a hash table attached to the main linker hash
610 table. This function is called via m68hc12elf_finish in the
611 linker. */
612
613 bfd_boolean
614 elf32_m68hc11_build_stubs (bfd *abfd, struct bfd_link_info *info)
615 {
616 asection *stub_sec;
617 struct bfd_hash_table *table;
618 struct m68hc11_elf_link_hash_table *htab;
619 struct m68hc11_scan_param param;
620
621 m68hc11_elf_get_bank_parameters (info);
622 htab = m68hc11_elf_hash_table (info);
623
624 for (stub_sec = htab->stub_bfd->sections;
625 stub_sec != NULL;
626 stub_sec = stub_sec->next)
627 {
628 bfd_size_type size;
629
630 /* Allocate memory to hold the linker stubs. */
631 size = stub_sec->size;
632 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
633 if (stub_sec->contents == NULL && size != 0)
634 return FALSE;
635 stub_sec->size = 0;
636 }
637
638 /* Build the stubs as directed by the stub hash table. */
639 table = htab->stub_hash_table;
640 bfd_hash_traverse (table, m68hc11_elf_export_one_stub, info);
641
642 /* Scan the output sections to see if we use the memory banks.
643 If so, export the symbols that define how the memory banks
644 are mapped. This is used by gdb and the simulator to obtain
645 the information. It can be used by programs to burn the eprom
646 at the good addresses. */
647 param.use_memory_banks = FALSE;
648 param.pinfo = &htab->pinfo;
649 bfd_map_over_sections (abfd, scan_sections_for_abi, &param);
650 if (param.use_memory_banks)
651 {
652 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_START_NAME,
653 htab->pinfo.bank_physical,
654 bfd_abs_section_ptr);
655 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_VIRTUAL_NAME,
656 htab->pinfo.bank_virtual,
657 bfd_abs_section_ptr);
658 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_SIZE_NAME,
659 htab->pinfo.bank_size,
660 bfd_abs_section_ptr);
661 }
662
663 return TRUE;
664 }
665
666 void
667 m68hc11_elf_get_bank_parameters (struct bfd_link_info *info)
668 {
669 unsigned i;
670 struct m68hc11_page_info *pinfo;
671 struct bfd_link_hash_entry *h;
672
673 pinfo = &m68hc11_elf_hash_table (info)->pinfo;
674 if (pinfo->bank_param_initialized)
675 return;
676
677 pinfo->bank_virtual = M68HC12_BANK_VIRT;
678 pinfo->bank_mask = M68HC12_BANK_MASK;
679 pinfo->bank_physical = M68HC12_BANK_BASE;
680 pinfo->bank_shift = M68HC12_BANK_SHIFT;
681 pinfo->bank_size = 1 << M68HC12_BANK_SHIFT;
682
683 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_START_NAME,
684 FALSE, FALSE, TRUE);
685 if (h != (struct bfd_link_hash_entry*) NULL
686 && h->type == bfd_link_hash_defined)
687 pinfo->bank_physical = (h->u.def.value
688 + h->u.def.section->output_section->vma
689 + h->u.def.section->output_offset);
690
691 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_VIRTUAL_NAME,
692 FALSE, FALSE, TRUE);
693 if (h != (struct bfd_link_hash_entry*) NULL
694 && h->type == bfd_link_hash_defined)
695 pinfo->bank_virtual = (h->u.def.value
696 + h->u.def.section->output_section->vma
697 + h->u.def.section->output_offset);
698
699 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_SIZE_NAME,
700 FALSE, FALSE, TRUE);
701 if (h != (struct bfd_link_hash_entry*) NULL
702 && h->type == bfd_link_hash_defined)
703 pinfo->bank_size = (h->u.def.value
704 + h->u.def.section->output_section->vma
705 + h->u.def.section->output_offset);
706
707 pinfo->bank_shift = 0;
708 for (i = pinfo->bank_size; i != 0; i >>= 1)
709 pinfo->bank_shift++;
710 pinfo->bank_shift--;
711 pinfo->bank_mask = (1 << pinfo->bank_shift) - 1;
712 pinfo->bank_physical_end = pinfo->bank_physical + pinfo->bank_size;
713 pinfo->bank_param_initialized = 1;
714
715 h = bfd_link_hash_lookup (info->hash, "__far_trampoline", FALSE,
716 FALSE, TRUE);
717 if (h != (struct bfd_link_hash_entry*) NULL
718 && h->type == bfd_link_hash_defined)
719 pinfo->trampoline_addr = (h->u.def.value
720 + h->u.def.section->output_section->vma
721 + h->u.def.section->output_offset);
722 }
723
724 /* Return 1 if the address is in banked memory.
725 This can be applied to a virtual address and to a physical address. */
726 int
727 m68hc11_addr_is_banked (struct m68hc11_page_info *pinfo, bfd_vma addr)
728 {
729 if (addr >= pinfo->bank_virtual)
730 return 1;
731
732 if (addr >= pinfo->bank_physical && addr <= pinfo->bank_physical_end)
733 return 1;
734
735 return 0;
736 }
737
738 /* Return the physical address seen by the processor, taking
739 into account banked memory. */
740 bfd_vma
741 m68hc11_phys_addr (struct m68hc11_page_info *pinfo, bfd_vma addr)
742 {
743 if (addr < pinfo->bank_virtual)
744 return addr;
745
746 /* Map the address to the memory bank. */
747 addr -= pinfo->bank_virtual;
748 addr &= pinfo->bank_mask;
749 addr += pinfo->bank_physical;
750 return addr;
751 }
752
753 /* Return the page number corresponding to an address in banked memory. */
754 bfd_vma
755 m68hc11_phys_page (struct m68hc11_page_info *pinfo, bfd_vma addr)
756 {
757 if (addr < pinfo->bank_virtual)
758 return 0;
759
760 /* Map the address to the memory bank. */
761 addr -= pinfo->bank_virtual;
762 addr >>= pinfo->bank_shift;
763 addr &= 0x0ff;
764 return addr;
765 }
766
767 /* This function is used for relocs which are only used for relaxing,
768 which the linker should otherwise ignore. */
769
770 bfd_reloc_status_type
771 m68hc11_elf_ignore_reloc (bfd *abfd ATTRIBUTE_UNUSED,
772 arelent *reloc_entry,
773 asymbol *symbol ATTRIBUTE_UNUSED,
774 void *data ATTRIBUTE_UNUSED,
775 asection *input_section,
776 bfd *output_bfd,
777 char **error_message ATTRIBUTE_UNUSED)
778 {
779 if (output_bfd != NULL)
780 reloc_entry->address += input_section->output_offset;
781 return bfd_reloc_ok;
782 }
783
784 bfd_reloc_status_type
785 m68hc11_elf_special_reloc (bfd *abfd ATTRIBUTE_UNUSED,
786 arelent *reloc_entry,
787 asymbol *symbol,
788 void *data ATTRIBUTE_UNUSED,
789 asection *input_section,
790 bfd *output_bfd,
791 char **error_message ATTRIBUTE_UNUSED)
792 {
793 if (output_bfd != (bfd *) NULL
794 && (symbol->flags & BSF_SECTION_SYM) == 0
795 && (! reloc_entry->howto->partial_inplace
796 || reloc_entry->addend == 0))
797 {
798 reloc_entry->address += input_section->output_offset;
799 return bfd_reloc_ok;
800 }
801
802 if (output_bfd != NULL)
803 return bfd_reloc_continue;
804
805 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
806 return bfd_reloc_outofrange;
807
808 abort();
809 }
810
811 asection *
812 elf32_m68hc11_gc_mark_hook (asection *sec,
813 struct bfd_link_info *info ATTRIBUTE_UNUSED,
814 Elf_Internal_Rela *rel,
815 struct elf_link_hash_entry *h,
816 Elf_Internal_Sym *sym)
817 {
818 if (h != NULL)
819 {
820 switch (ELF32_R_TYPE (rel->r_info))
821 {
822 default:
823 switch (h->root.type)
824 {
825 case bfd_link_hash_defined:
826 case bfd_link_hash_defweak:
827 return h->root.u.def.section;
828
829 case bfd_link_hash_common:
830 return h->root.u.c.p->section;
831
832 default:
833 break;
834 }
835 }
836 }
837 else
838 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
839
840 return NULL;
841 }
842
843 bfd_boolean
844 elf32_m68hc11_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
845 struct bfd_link_info *info ATTRIBUTE_UNUSED,
846 asection *sec ATTRIBUTE_UNUSED,
847 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
848 {
849 /* We don't use got and plt entries for 68hc11/68hc12. */
850 return TRUE;
851 }
852
853 /* Look through the relocs for a section during the first phase.
854 Since we don't do .gots or .plts, we just need to consider the
855 virtual table relocs for gc. */
856
857 bfd_boolean
858 elf32_m68hc11_check_relocs (bfd *abfd, struct bfd_link_info *info,
859 asection *sec, const Elf_Internal_Rela *relocs)
860 {
861 Elf_Internal_Shdr * symtab_hdr;
862 struct elf_link_hash_entry ** sym_hashes;
863 struct elf_link_hash_entry ** sym_hashes_end;
864 const Elf_Internal_Rela * rel;
865 const Elf_Internal_Rela * rel_end;
866
867 if (info->relocatable)
868 return TRUE;
869
870 symtab_hdr = & elf_tdata (abfd)->symtab_hdr;
871 sym_hashes = elf_sym_hashes (abfd);
872 sym_hashes_end = sym_hashes + symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
873 if (!elf_bad_symtab (abfd))
874 sym_hashes_end -= symtab_hdr->sh_info;
875
876 rel_end = relocs + sec->reloc_count;
877
878 for (rel = relocs; rel < rel_end; rel++)
879 {
880 struct elf_link_hash_entry * h;
881 unsigned long r_symndx;
882
883 r_symndx = ELF32_R_SYM (rel->r_info);
884
885 if (r_symndx < symtab_hdr->sh_info)
886 h = NULL;
887 else
888 h = sym_hashes [r_symndx - symtab_hdr->sh_info];
889
890 switch (ELF32_R_TYPE (rel->r_info))
891 {
892 /* This relocation describes the C++ object vtable hierarchy.
893 Reconstruct it for later use during GC. */
894 case R_M68HC11_GNU_VTINHERIT:
895 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
896 return FALSE;
897 break;
898
899 /* This relocation describes which C++ vtable entries are actually
900 used. Record for later use during GC. */
901 case R_M68HC11_GNU_VTENTRY:
902 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
903 return FALSE;
904 break;
905 }
906 }
907
908 return TRUE;
909 }
910
911 static bfd_boolean
912 m68hc11_get_relocation_value (bfd *input_bfd, struct bfd_link_info *info,
913 asection *input_section,
914 asection **local_sections,
915 Elf_Internal_Sym *local_syms,
916 Elf_Internal_Rela *rel,
917 const char **name,
918 bfd_vma *relocation, bfd_boolean *is_far)
919 {
920 Elf_Internal_Shdr *symtab_hdr;
921 struct elf_link_hash_entry **sym_hashes;
922 unsigned long r_symndx;
923 asection *sec;
924 struct elf_link_hash_entry *h;
925 Elf_Internal_Sym *sym;
926 const char* stub_name = 0;
927
928 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
929 sym_hashes = elf_sym_hashes (input_bfd);
930
931 r_symndx = ELF32_R_SYM (rel->r_info);
932
933 /* This is a final link. */
934 h = NULL;
935 sym = NULL;
936 sec = NULL;
937 if (r_symndx < symtab_hdr->sh_info)
938 {
939 sym = local_syms + r_symndx;
940 sec = local_sections[r_symndx];
941 *relocation = (sec->output_section->vma
942 + sec->output_offset
943 + sym->st_value);
944 *is_far = (sym && (sym->st_other & STO_M68HC12_FAR));
945 if (*is_far)
946 stub_name = (bfd_elf_string_from_elf_section
947 (input_bfd, symtab_hdr->sh_link,
948 sym->st_name));
949 }
950 else
951 {
952 bfd_boolean unresolved_reloc, warned;
953
954 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
955 r_symndx, symtab_hdr, sym_hashes,
956 h, sec, *relocation, unresolved_reloc, warned);
957
958 *is_far = (h && (h->other & STO_M68HC12_FAR));
959 stub_name = h->root.root.string;
960 }
961
962 if (h != NULL)
963 *name = h->root.root.string;
964 else
965 {
966 *name = (bfd_elf_string_from_elf_section
967 (input_bfd, symtab_hdr->sh_link, sym->st_name));
968 if (*name == NULL || **name == '\0')
969 *name = bfd_section_name (input_bfd, sec);
970 }
971
972 if (*is_far && ELF32_R_TYPE (rel->r_info) == R_M68HC11_16)
973 {
974 struct elf32_m68hc11_stub_hash_entry* stub;
975 struct m68hc11_elf_link_hash_table *htab;
976
977 htab = m68hc11_elf_hash_table (info);
978 stub = m68hc12_stub_hash_lookup (htab->stub_hash_table,
979 *name, FALSE, FALSE);
980 if (stub)
981 {
982 *relocation = stub->stub_offset
983 + stub->stub_sec->output_section->vma
984 + stub->stub_sec->output_offset;
985 *is_far = FALSE;
986 }
987 }
988 return TRUE;
989 }
990
991 /* Relocate a 68hc11/68hc12 ELF section. */
992 bfd_boolean
993 elf32_m68hc11_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
994 struct bfd_link_info *info,
995 bfd *input_bfd, asection *input_section,
996 bfd_byte *contents, Elf_Internal_Rela *relocs,
997 Elf_Internal_Sym *local_syms,
998 asection **local_sections)
999 {
1000 Elf_Internal_Shdr *symtab_hdr;
1001 struct elf_link_hash_entry **sym_hashes;
1002 Elf_Internal_Rela *rel, *relend;
1003 const char *name;
1004 struct m68hc11_page_info *pinfo;
1005 const struct elf_backend_data * const ebd = get_elf_backend_data (input_bfd);
1006
1007 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1008 sym_hashes = elf_sym_hashes (input_bfd);
1009
1010 /* Get memory bank parameters. */
1011 m68hc11_elf_get_bank_parameters (info);
1012 pinfo = &m68hc11_elf_hash_table (info)->pinfo;
1013
1014 rel = relocs;
1015 relend = relocs + input_section->reloc_count;
1016 for (; rel < relend; rel++)
1017 {
1018 int r_type;
1019 arelent arel;
1020 reloc_howto_type *howto;
1021 unsigned long r_symndx;
1022 Elf_Internal_Sym *sym;
1023 asection *sec;
1024 bfd_vma relocation;
1025 bfd_reloc_status_type r = bfd_reloc_undefined;
1026 bfd_vma phys_page;
1027 bfd_vma phys_addr;
1028 bfd_vma insn_addr;
1029 bfd_vma insn_page;
1030 bfd_boolean is_far;
1031
1032 r_symndx = ELF32_R_SYM (rel->r_info);
1033 r_type = ELF32_R_TYPE (rel->r_info);
1034
1035 if (r_type == R_M68HC11_GNU_VTENTRY
1036 || r_type == R_M68HC11_GNU_VTINHERIT )
1037 continue;
1038
1039 if (info->relocatable)
1040 {
1041 /* This is a relocatable link. We don't have to change
1042 anything, unless the reloc is against a section symbol,
1043 in which case we have to adjust according to where the
1044 section symbol winds up in the output section. */
1045 if (r_symndx < symtab_hdr->sh_info)
1046 {
1047 sym = local_syms + r_symndx;
1048 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1049 {
1050 sec = local_sections[r_symndx];
1051 rel->r_addend += sec->output_offset + sym->st_value;
1052 }
1053 }
1054
1055 continue;
1056 }
1057 (*ebd->elf_info_to_howto_rel) (input_bfd, &arel, rel);
1058 howto = arel.howto;
1059
1060 m68hc11_get_relocation_value (input_bfd, info, input_section,
1061 local_sections, local_syms,
1062 rel, &name, &relocation, &is_far);
1063
1064 /* Do the memory bank mapping. */
1065 phys_addr = m68hc11_phys_addr (pinfo, relocation + rel->r_addend);
1066 phys_page = m68hc11_phys_page (pinfo, relocation + rel->r_addend);
1067 switch (r_type)
1068 {
1069 case R_M68HC11_24:
1070 /* Reloc used by 68HC12 call instruction. */
1071 bfd_put_16 (input_bfd, phys_addr,
1072 (bfd_byte*) contents + rel->r_offset);
1073 bfd_put_8 (input_bfd, phys_page,
1074 (bfd_byte*) contents + rel->r_offset + 2);
1075 r = bfd_reloc_ok;
1076 r_type = R_M68HC11_NONE;
1077 break;
1078
1079 case R_M68HC11_NONE:
1080 r = bfd_reloc_ok;
1081 break;
1082
1083 case R_M68HC11_LO16:
1084 /* Reloc generated by %addr(expr) gas to obtain the
1085 address as mapped in the memory bank window. */
1086 relocation = phys_addr;
1087 break;
1088
1089 case R_M68HC11_PAGE:
1090 /* Reloc generated by %page(expr) gas to obtain the
1091 page number associated with the address. */
1092 relocation = phys_page;
1093 break;
1094
1095 case R_M68HC11_16:
1096 /* Get virtual address of instruction having the relocation. */
1097 if (is_far)
1098 {
1099 const char* msg;
1100 char* buf;
1101 msg = _("Reference to the far symbol `%s' using a wrong "
1102 "relocation may result in incorrect execution");
1103 buf = alloca (strlen (msg) + strlen (name) + 10);
1104 sprintf (buf, msg, name);
1105
1106 (* info->callbacks->warning)
1107 (info, buf, name, input_bfd, NULL, rel->r_offset);
1108 }
1109
1110 /* Get virtual address of instruction having the relocation. */
1111 insn_addr = input_section->output_section->vma
1112 + input_section->output_offset
1113 + rel->r_offset;
1114
1115 insn_page = m68hc11_phys_page (pinfo, insn_addr);
1116
1117 if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend)
1118 && m68hc11_addr_is_banked (pinfo, insn_addr)
1119 && phys_page != insn_page)
1120 {
1121 const char* msg;
1122 char* buf;
1123
1124 msg = _("banked address [%lx:%04lx] (%lx) is not in the same bank "
1125 "as current banked address [%lx:%04lx] (%lx)");
1126
1127 buf = alloca (strlen (msg) + 128);
1128 sprintf (buf, msg, phys_page, phys_addr,
1129 (long) (relocation + rel->r_addend),
1130 insn_page, m68hc11_phys_addr (pinfo, insn_addr),
1131 (long) (insn_addr));
1132 if (!((*info->callbacks->warning)
1133 (info, buf, name, input_bfd, input_section,
1134 rel->r_offset)))
1135 return FALSE;
1136 break;
1137 }
1138 if (phys_page != 0 && insn_page == 0)
1139 {
1140 const char* msg;
1141 char* buf;
1142
1143 msg = _("reference to a banked address [%lx:%04lx] in the "
1144 "normal address space at %04lx");
1145
1146 buf = alloca (strlen (msg) + 128);
1147 sprintf (buf, msg, phys_page, phys_addr, insn_addr);
1148 if (!((*info->callbacks->warning)
1149 (info, buf, name, input_bfd, input_section,
1150 insn_addr)))
1151 return FALSE;
1152
1153 relocation = phys_addr;
1154 break;
1155 }
1156
1157 /* If this is a banked address use the phys_addr so that
1158 we stay in the banked window. */
1159 if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend))
1160 relocation = phys_addr;
1161 break;
1162 }
1163 if (r_type != R_M68HC11_NONE)
1164 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1165 contents, rel->r_offset,
1166 relocation, rel->r_addend);
1167
1168 if (r != bfd_reloc_ok)
1169 {
1170 const char * msg = (const char *) 0;
1171
1172 switch (r)
1173 {
1174 case bfd_reloc_overflow:
1175 if (!((*info->callbacks->reloc_overflow)
1176 (info, name, howto->name, (bfd_vma) 0,
1177 input_bfd, input_section, rel->r_offset)))
1178 return FALSE;
1179 break;
1180
1181 case bfd_reloc_undefined:
1182 if (!((*info->callbacks->undefined_symbol)
1183 (info, name, input_bfd, input_section,
1184 rel->r_offset, TRUE)))
1185 return FALSE;
1186 break;
1187
1188 case bfd_reloc_outofrange:
1189 msg = _ ("internal error: out of range error");
1190 goto common_error;
1191
1192 case bfd_reloc_notsupported:
1193 msg = _ ("internal error: unsupported relocation error");
1194 goto common_error;
1195
1196 case bfd_reloc_dangerous:
1197 msg = _ ("internal error: dangerous error");
1198 goto common_error;
1199
1200 default:
1201 msg = _ ("internal error: unknown error");
1202 /* fall through */
1203
1204 common_error:
1205 if (!((*info->callbacks->warning)
1206 (info, msg, name, input_bfd, input_section,
1207 rel->r_offset)))
1208 return FALSE;
1209 break;
1210 }
1211 }
1212 }
1213
1214 return TRUE;
1215 }
1216
1217
1218 \f
1219 /* Set and control ELF flags in ELF header. */
1220
1221 bfd_boolean
1222 _bfd_m68hc11_elf_set_private_flags (bfd *abfd, flagword flags)
1223 {
1224 BFD_ASSERT (!elf_flags_init (abfd)
1225 || elf_elfheader (abfd)->e_flags == flags);
1226
1227 elf_elfheader (abfd)->e_flags = flags;
1228 elf_flags_init (abfd) = TRUE;
1229 return TRUE;
1230 }
1231
1232 /* Merge backend specific data from an object file to the output
1233 object file when linking. */
1234
1235 bfd_boolean
1236 _bfd_m68hc11_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
1237 {
1238 flagword old_flags;
1239 flagword new_flags;
1240 bfd_boolean ok = TRUE;
1241
1242 /* Check if we have the same endianess */
1243 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
1244 return FALSE;
1245
1246 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1247 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1248 return TRUE;
1249
1250 new_flags = elf_elfheader (ibfd)->e_flags;
1251 elf_elfheader (obfd)->e_flags |= new_flags & EF_M68HC11_ABI;
1252 old_flags = elf_elfheader (obfd)->e_flags;
1253
1254 if (! elf_flags_init (obfd))
1255 {
1256 elf_flags_init (obfd) = TRUE;
1257 elf_elfheader (obfd)->e_flags = new_flags;
1258 elf_elfheader (obfd)->e_ident[EI_CLASS]
1259 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
1260
1261 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
1262 && bfd_get_arch_info (obfd)->the_default)
1263 {
1264 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
1265 bfd_get_mach (ibfd)))
1266 return FALSE;
1267 }
1268
1269 return TRUE;
1270 }
1271
1272 /* Check ABI compatibility. */
1273 if ((new_flags & E_M68HC11_I32) != (old_flags & E_M68HC11_I32))
1274 {
1275 (*_bfd_error_handler)
1276 (_("%s: linking files compiled for 16-bit integers (-mshort) "
1277 "and others for 32-bit integers"),
1278 bfd_archive_filename (ibfd));
1279 ok = FALSE;
1280 }
1281 if ((new_flags & E_M68HC11_F64) != (old_flags & E_M68HC11_F64))
1282 {
1283 (*_bfd_error_handler)
1284 (_("%s: linking files compiled for 32-bit double (-fshort-double) "
1285 "and others for 64-bit double"),
1286 bfd_archive_filename (ibfd));
1287 ok = FALSE;
1288 }
1289
1290 /* Processor compatibility. */
1291 if (!EF_M68HC11_CAN_MERGE_MACH (new_flags, old_flags))
1292 {
1293 (*_bfd_error_handler)
1294 (_("%s: linking files compiled for HCS12 with "
1295 "others compiled for HC12"),
1296 bfd_archive_filename (ibfd));
1297 ok = FALSE;
1298 }
1299 new_flags = ((new_flags & ~EF_M68HC11_MACH_MASK)
1300 | (EF_M68HC11_MERGE_MACH (new_flags, old_flags)));
1301
1302 elf_elfheader (obfd)->e_flags = new_flags;
1303
1304 new_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK);
1305 old_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK);
1306
1307 /* Warn about any other mismatches */
1308 if (new_flags != old_flags)
1309 {
1310 (*_bfd_error_handler)
1311 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
1312 bfd_archive_filename (ibfd), (unsigned long) new_flags,
1313 (unsigned long) old_flags);
1314 ok = FALSE;
1315 }
1316
1317 if (! ok)
1318 {
1319 bfd_set_error (bfd_error_bad_value);
1320 return FALSE;
1321 }
1322
1323 return TRUE;
1324 }
1325
1326 bfd_boolean
1327 _bfd_m68hc11_elf_print_private_bfd_data (bfd *abfd, void *ptr)
1328 {
1329 FILE *file = (FILE *) ptr;
1330
1331 BFD_ASSERT (abfd != NULL && ptr != NULL);
1332
1333 /* Print normal ELF private data. */
1334 _bfd_elf_print_private_bfd_data (abfd, ptr);
1335
1336 /* xgettext:c-format */
1337 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
1338
1339 if (elf_elfheader (abfd)->e_flags & E_M68HC11_I32)
1340 fprintf (file, _("[abi=32-bit int, "));
1341 else
1342 fprintf (file, _("[abi=16-bit int, "));
1343
1344 if (elf_elfheader (abfd)->e_flags & E_M68HC11_F64)
1345 fprintf (file, _("64-bit double, "));
1346 else
1347 fprintf (file, _("32-bit double, "));
1348
1349 if (strcmp (bfd_get_target (abfd), "elf32-m68hc11") == 0)
1350 fprintf (file, _("cpu=HC11]"));
1351 else if (elf_elfheader (abfd)->e_flags & EF_M68HCS12_MACH)
1352 fprintf (file, _("cpu=HCS12]"));
1353 else
1354 fprintf (file, _("cpu=HC12]"));
1355
1356 if (elf_elfheader (abfd)->e_flags & E_M68HC12_BANKS)
1357 fprintf (file, _(" [memory=bank-model]"));
1358 else
1359 fprintf (file, _(" [memory=flat]"));
1360
1361 fputc ('\n', file);
1362
1363 return TRUE;
1364 }
1365
1366 static void scan_sections_for_abi (bfd *abfd ATTRIBUTE_UNUSED,
1367 asection *asect, void *arg)
1368 {
1369 struct m68hc11_scan_param* p = (struct m68hc11_scan_param*) arg;
1370
1371 if (asect->vma >= p->pinfo->bank_virtual)
1372 p->use_memory_banks = TRUE;
1373 }
1374
1375 /* Tweak the OSABI field of the elf header. */
1376
1377 void
1378 elf32_m68hc11_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
1379 {
1380 struct m68hc11_scan_param param;
1381
1382 if (link_info == 0)
1383 return;
1384
1385 m68hc11_elf_get_bank_parameters (link_info);
1386
1387 param.use_memory_banks = FALSE;
1388 param.pinfo = &m68hc11_elf_hash_table (link_info)->pinfo;
1389 bfd_map_over_sections (abfd, scan_sections_for_abi, &param);
1390 if (param.use_memory_banks)
1391 {
1392 Elf_Internal_Ehdr * i_ehdrp;
1393
1394 i_ehdrp = elf_elfheader (abfd);
1395 i_ehdrp->e_flags |= E_M68HC12_BANKS;
1396 }
1397 }
1398
This page took 0.115874 seconds and 5 git commands to generate.