* elf32-m68hc1x.c (elf32_m68hc11_size_stubs): Handle bfd_link_hash_new
[deliverable/binutils-gdb.git] / bfd / elf32-m68hc1x.c
1 /* Motorola 68HC11/HC12-specific support for 32-bit ELF
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4 Contributed by Stephane Carrez (stcarrez@nerim.fr)
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "elf32-m68hc1x.h"
28 #include "elf/m68hc11.h"
29 #include "opcode/m68hc11.h"
30
31
32 #define m68hc12_stub_hash_lookup(table, string, create, copy) \
33 ((struct elf32_m68hc11_stub_hash_entry *) \
34 bfd_hash_lookup ((table), (string), (create), (copy)))
35
36 static struct elf32_m68hc11_stub_hash_entry* m68hc12_add_stub
37 (const char *stub_name,
38 asection *section,
39 struct m68hc11_elf_link_hash_table *htab);
40
41 static struct bfd_hash_entry *stub_hash_newfunc
42 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
43
44 static void m68hc11_elf_set_symbol (bfd* abfd, struct bfd_link_info *info,
45 const char* name, bfd_vma value,
46 asection* sec);
47
48 static bfd_boolean m68hc11_elf_export_one_stub
49 (struct bfd_hash_entry *gen_entry, void *in_arg);
50
51 static void scan_sections_for_abi (bfd*, asection*, PTR);
52
53 struct m68hc11_scan_param
54 {
55 struct m68hc11_page_info* pinfo;
56 bfd_boolean use_memory_banks;
57 };
58
59
60 /* Create a 68HC11/68HC12 ELF linker hash table. */
61
62 struct m68hc11_elf_link_hash_table*
63 m68hc11_elf_hash_table_create (bfd *abfd)
64 {
65 struct m68hc11_elf_link_hash_table *ret;
66 bfd_size_type amt = sizeof (struct m68hc11_elf_link_hash_table);
67
68 ret = (struct m68hc11_elf_link_hash_table *) bfd_malloc (amt);
69 if (ret == (struct m68hc11_elf_link_hash_table *) NULL)
70 return NULL;
71
72 memset (ret, 0, amt);
73 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
74 _bfd_elf_link_hash_newfunc))
75 {
76 free (ret);
77 return NULL;
78 }
79
80 /* Init the stub hash table too. */
81 amt = sizeof (struct bfd_hash_table);
82 ret->stub_hash_table = (struct bfd_hash_table*) bfd_malloc (amt);
83 if (ret->stub_hash_table == NULL)
84 {
85 free (ret);
86 return NULL;
87 }
88 if (!bfd_hash_table_init (ret->stub_hash_table, stub_hash_newfunc))
89 return NULL;
90
91 ret->stub_bfd = NULL;
92 ret->stub_section = 0;
93 ret->add_stub_section = NULL;
94 ret->sym_sec.abfd = NULL;
95
96 return ret;
97 }
98
99 /* Free the derived linker hash table. */
100
101 void
102 m68hc11_elf_bfd_link_hash_table_free (struct bfd_link_hash_table *hash)
103 {
104 struct m68hc11_elf_link_hash_table *ret
105 = (struct m68hc11_elf_link_hash_table *) hash;
106
107 bfd_hash_table_free (ret->stub_hash_table);
108 free (ret->stub_hash_table);
109 _bfd_generic_link_hash_table_free (hash);
110 }
111
112 /* Assorted hash table functions. */
113
114 /* Initialize an entry in the stub hash table. */
115
116 static struct bfd_hash_entry *
117 stub_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table,
118 const char *string)
119 {
120 /* Allocate the structure if it has not already been allocated by a
121 subclass. */
122 if (entry == NULL)
123 {
124 entry = bfd_hash_allocate (table,
125 sizeof (struct elf32_m68hc11_stub_hash_entry));
126 if (entry == NULL)
127 return entry;
128 }
129
130 /* Call the allocation method of the superclass. */
131 entry = bfd_hash_newfunc (entry, table, string);
132 if (entry != NULL)
133 {
134 struct elf32_m68hc11_stub_hash_entry *eh;
135
136 /* Initialize the local fields. */
137 eh = (struct elf32_m68hc11_stub_hash_entry *) entry;
138 eh->stub_sec = NULL;
139 eh->stub_offset = 0;
140 eh->target_value = 0;
141 eh->target_section = NULL;
142 }
143
144 return entry;
145 }
146
147 /* Add a new stub entry to the stub hash. Not all fields of the new
148 stub entry are initialised. */
149
150 static struct elf32_m68hc11_stub_hash_entry *
151 m68hc12_add_stub (const char *stub_name, asection *section,
152 struct m68hc11_elf_link_hash_table *htab)
153 {
154 struct elf32_m68hc11_stub_hash_entry *stub_entry;
155
156 /* Enter this entry into the linker stub hash table. */
157 stub_entry = m68hc12_stub_hash_lookup (htab->stub_hash_table, stub_name,
158 TRUE, FALSE);
159 if (stub_entry == NULL)
160 {
161 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
162 bfd_archive_filename (section->owner),
163 stub_name);
164 return NULL;
165 }
166
167 if (htab->stub_section == 0)
168 {
169 htab->stub_section = (*htab->add_stub_section) (".tramp",
170 htab->tramp_section);
171 }
172
173 stub_entry->stub_sec = htab->stub_section;
174 stub_entry->stub_offset = 0;
175 return stub_entry;
176 }
177
178 /* Hook called by the linker routine which adds symbols from an object
179 file. We use it for identify far symbols and force a loading of
180 the trampoline handler. */
181
182 bfd_boolean
183 elf32_m68hc11_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
184 Elf_Internal_Sym *sym,
185 const char **namep ATTRIBUTE_UNUSED,
186 flagword *flagsp ATTRIBUTE_UNUSED,
187 asection **secp ATTRIBUTE_UNUSED,
188 bfd_vma *valp ATTRIBUTE_UNUSED)
189 {
190 if (sym->st_other & STO_M68HC12_FAR)
191 {
192 struct elf_link_hash_entry *h;
193
194 h = (struct elf_link_hash_entry *)
195 bfd_link_hash_lookup (info->hash, "__far_trampoline",
196 FALSE, FALSE, FALSE);
197 if (h == NULL)
198 {
199 struct bfd_link_hash_entry* entry = NULL;
200
201 _bfd_generic_link_add_one_symbol (info, abfd,
202 "__far_trampoline",
203 BSF_GLOBAL,
204 bfd_und_section_ptr,
205 (bfd_vma) 0, (const char*) NULL,
206 FALSE, FALSE, &entry);
207 }
208
209 }
210 return TRUE;
211 }
212
213 /* External entry points for sizing and building linker stubs. */
214
215 /* Set up various things so that we can make a list of input sections
216 for each output section included in the link. Returns -1 on error,
217 0 when no stubs will be needed, and 1 on success. */
218
219 int
220 elf32_m68hc11_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
221 {
222 bfd *input_bfd;
223 unsigned int bfd_count;
224 int top_id, top_index;
225 asection *section;
226 asection **input_list, **list;
227 bfd_size_type amt;
228 asection *text_section;
229 struct m68hc11_elf_link_hash_table *htab;
230
231 htab = m68hc11_elf_hash_table (info);
232
233 if (htab->root.root.creator->flavour != bfd_target_elf_flavour)
234 return 0;
235
236 /* Count the number of input BFDs and find the top input section id.
237 Also search for an existing ".tramp" section so that we know
238 where generated trampolines must go. Default to ".text" if we
239 can't find it. */
240 htab->tramp_section = 0;
241 text_section = 0;
242 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
243 input_bfd != NULL;
244 input_bfd = input_bfd->link_next)
245 {
246 bfd_count += 1;
247 for (section = input_bfd->sections;
248 section != NULL;
249 section = section->next)
250 {
251 const char* name = bfd_get_section_name (input_bfd, section);
252
253 if (!strcmp (name, ".tramp"))
254 htab->tramp_section = section;
255
256 if (!strcmp (name, ".text"))
257 text_section = section;
258
259 if (top_id < section->id)
260 top_id = section->id;
261 }
262 }
263 htab->bfd_count = bfd_count;
264 if (htab->tramp_section == 0)
265 htab->tramp_section = text_section;
266
267 /* We can't use output_bfd->section_count here to find the top output
268 section index as some sections may have been removed, and
269 _bfd_strip_section_from_output doesn't renumber the indices. */
270 for (section = output_bfd->sections, top_index = 0;
271 section != NULL;
272 section = section->next)
273 {
274 if (top_index < section->index)
275 top_index = section->index;
276 }
277
278 htab->top_index = top_index;
279 amt = sizeof (asection *) * (top_index + 1);
280 input_list = (asection **) bfd_malloc (amt);
281 htab->input_list = input_list;
282 if (input_list == NULL)
283 return -1;
284
285 /* For sections we aren't interested in, mark their entries with a
286 value we can check later. */
287 list = input_list + top_index;
288 do
289 *list = bfd_abs_section_ptr;
290 while (list-- != input_list);
291
292 for (section = output_bfd->sections;
293 section != NULL;
294 section = section->next)
295 {
296 if ((section->flags & SEC_CODE) != 0)
297 input_list[section->index] = NULL;
298 }
299
300 return 1;
301 }
302
303 /* Determine and set the size of the stub section for a final link.
304
305 The basic idea here is to examine all the relocations looking for
306 PC-relative calls to a target that is unreachable with a "bl"
307 instruction. */
308
309 bfd_boolean
310 elf32_m68hc11_size_stubs (bfd *output_bfd, bfd *stub_bfd,
311 struct bfd_link_info *info,
312 asection * (*add_stub_section) (const char*, asection*))
313 {
314 bfd *input_bfd;
315 asection *section;
316 Elf_Internal_Sym *local_syms, **all_local_syms;
317 unsigned int bfd_indx, bfd_count;
318 bfd_size_type amt;
319 asection *stub_sec;
320
321 struct m68hc11_elf_link_hash_table *htab = m68hc11_elf_hash_table (info);
322
323 /* Stash our params away. */
324 htab->stub_bfd = stub_bfd;
325 htab->add_stub_section = add_stub_section;
326
327 /* Count the number of input BFDs and find the top input section id. */
328 for (input_bfd = info->input_bfds, bfd_count = 0;
329 input_bfd != NULL;
330 input_bfd = input_bfd->link_next)
331 {
332 bfd_count += 1;
333 }
334
335 /* We want to read in symbol extension records only once. To do this
336 we need to read in the local symbols in parallel and save them for
337 later use; so hold pointers to the local symbols in an array. */
338 amt = sizeof (Elf_Internal_Sym *) * bfd_count;
339 all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt);
340 if (all_local_syms == NULL)
341 return FALSE;
342
343 /* Walk over all the input BFDs, swapping in local symbols. */
344 for (input_bfd = info->input_bfds, bfd_indx = 0;
345 input_bfd != NULL;
346 input_bfd = input_bfd->link_next, bfd_indx++)
347 {
348 Elf_Internal_Shdr *symtab_hdr;
349
350 /* We'll need the symbol table in a second. */
351 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
352 if (symtab_hdr->sh_info == 0)
353 continue;
354
355 /* We need an array of the local symbols attached to the input bfd. */
356 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
357 if (local_syms == NULL)
358 {
359 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
360 symtab_hdr->sh_info, 0,
361 NULL, NULL, NULL);
362 /* Cache them for elf_link_input_bfd. */
363 symtab_hdr->contents = (unsigned char *) local_syms;
364 }
365 if (local_syms == NULL)
366 {
367 free (all_local_syms);
368 return FALSE;
369 }
370
371 all_local_syms[bfd_indx] = local_syms;
372 }
373
374 for (input_bfd = info->input_bfds, bfd_indx = 0;
375 input_bfd != NULL;
376 input_bfd = input_bfd->link_next, bfd_indx++)
377 {
378 Elf_Internal_Shdr *symtab_hdr;
379 Elf_Internal_Sym *local_syms;
380 struct elf_link_hash_entry ** sym_hashes;
381
382 sym_hashes = elf_sym_hashes (input_bfd);
383
384 /* We'll need the symbol table in a second. */
385 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
386 if (symtab_hdr->sh_info == 0)
387 continue;
388
389 local_syms = all_local_syms[bfd_indx];
390
391 /* Walk over each section attached to the input bfd. */
392 for (section = input_bfd->sections;
393 section != NULL;
394 section = section->next)
395 {
396 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
397
398 /* If there aren't any relocs, then there's nothing more
399 to do. */
400 if ((section->flags & SEC_RELOC) == 0
401 || section->reloc_count == 0)
402 continue;
403
404 /* If this section is a link-once section that will be
405 discarded, then don't create any stubs. */
406 if (section->output_section == NULL
407 || section->output_section->owner != output_bfd)
408 continue;
409
410 /* Get the relocs. */
411 internal_relocs
412 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
413 (Elf_Internal_Rela *) NULL,
414 info->keep_memory);
415 if (internal_relocs == NULL)
416 goto error_ret_free_local;
417
418 /* Now examine each relocation. */
419 irela = internal_relocs;
420 irelaend = irela + section->reloc_count;
421 for (; irela < irelaend; irela++)
422 {
423 unsigned int r_type, r_indx;
424 struct elf32_m68hc11_stub_hash_entry *stub_entry;
425 asection *sym_sec;
426 bfd_vma sym_value;
427 struct elf_link_hash_entry *hash;
428 const char *stub_name;
429 Elf_Internal_Sym *sym;
430
431 r_type = ELF32_R_TYPE (irela->r_info);
432
433 /* Only look at 16-bit relocs. */
434 if (r_type != (unsigned int) R_M68HC11_16)
435 continue;
436
437 /* Now determine the call target, its name, value,
438 section. */
439 r_indx = ELF32_R_SYM (irela->r_info);
440 if (r_indx < symtab_hdr->sh_info)
441 {
442 /* It's a local symbol. */
443 Elf_Internal_Shdr *hdr;
444 bfd_boolean is_far;
445
446 sym = local_syms + r_indx;
447 is_far = (sym && (sym->st_other & STO_M68HC12_FAR));
448 if (!is_far)
449 continue;
450
451 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
452 sym_sec = hdr->bfd_section;
453 stub_name = (bfd_elf_string_from_elf_section
454 (input_bfd, symtab_hdr->sh_link,
455 sym->st_name));
456 sym_value = sym->st_value;
457 hash = NULL;
458 }
459 else
460 {
461 /* It's an external symbol. */
462 int e_indx;
463
464 e_indx = r_indx - symtab_hdr->sh_info;
465 hash = (struct elf_link_hash_entry *)
466 (sym_hashes[e_indx]);
467
468 while (hash->root.type == bfd_link_hash_indirect
469 || hash->root.type == bfd_link_hash_warning)
470 hash = ((struct elf_link_hash_entry *)
471 hash->root.u.i.link);
472
473 if (hash->root.type == bfd_link_hash_defined
474 || hash->root.type == bfd_link_hash_defweak
475 || hash->root.type == bfd_link_hash_new)
476 {
477 if (!(hash->other & STO_M68HC12_FAR))
478 continue;
479 }
480 else if (hash->root.type == bfd_link_hash_undefweak)
481 {
482 continue;
483 }
484 else if (hash->root.type == bfd_link_hash_undefined)
485 {
486 continue;
487 }
488 else
489 {
490 bfd_set_error (bfd_error_bad_value);
491 goto error_ret_free_internal;
492 }
493 sym_sec = hash->root.u.def.section;
494 sym_value = hash->root.u.def.value;
495 stub_name = hash->root.root.string;
496 }
497
498 if (!stub_name)
499 goto error_ret_free_internal;
500
501 stub_entry = m68hc12_stub_hash_lookup
502 (htab->stub_hash_table,
503 stub_name,
504 FALSE, FALSE);
505 if (stub_entry == NULL)
506 {
507 if (add_stub_section == 0)
508 continue;
509
510 stub_entry = m68hc12_add_stub (stub_name, section, htab);
511 if (stub_entry == NULL)
512 {
513 error_ret_free_internal:
514 if (elf_section_data (section)->relocs == NULL)
515 free (internal_relocs);
516 goto error_ret_free_local;
517 }
518 }
519
520 stub_entry->target_value = sym_value;
521 stub_entry->target_section = sym_sec;
522 }
523
524 /* We're done with the internal relocs, free them. */
525 if (elf_section_data (section)->relocs == NULL)
526 free (internal_relocs);
527 }
528 }
529
530 if (add_stub_section)
531 {
532 /* OK, we've added some stubs. Find out the new size of the
533 stub sections. */
534 for (stub_sec = htab->stub_bfd->sections;
535 stub_sec != NULL;
536 stub_sec = stub_sec->next)
537 {
538 stub_sec->size = 0;
539 }
540
541 bfd_hash_traverse (htab->stub_hash_table, htab->size_one_stub, htab);
542 }
543 free (all_local_syms);
544 return TRUE;
545
546 error_ret_free_local:
547 free (all_local_syms);
548 return FALSE;
549 }
550
551 /* Export the trampoline addresses in the symbol table. */
552 static bfd_boolean
553 m68hc11_elf_export_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
554 {
555 struct bfd_link_info *info;
556 struct m68hc11_elf_link_hash_table *htab;
557 struct elf32_m68hc11_stub_hash_entry *stub_entry;
558 char* name;
559 bfd_boolean result;
560
561 info = (struct bfd_link_info *) in_arg;
562 htab = m68hc11_elf_hash_table (info);
563
564 /* Massage our args to the form they really have. */
565 stub_entry = (struct elf32_m68hc11_stub_hash_entry *) gen_entry;
566
567 /* Generate the trampoline according to HC11 or HC12. */
568 result = (* htab->build_one_stub) (gen_entry, in_arg);
569
570 /* Make a printable name that does not conflict with the real function. */
571 name = alloca (strlen (stub_entry->root.string) + 16);
572 sprintf (name, "tramp.%s", stub_entry->root.string);
573
574 /* Export the symbol for debugging/disassembling. */
575 m68hc11_elf_set_symbol (htab->stub_bfd, info, name,
576 stub_entry->stub_offset,
577 stub_entry->stub_sec);
578 return result;
579 }
580
581 /* Export a symbol or set its value and section. */
582 static void
583 m68hc11_elf_set_symbol (bfd *abfd, struct bfd_link_info *info,
584 const char *name, bfd_vma value, asection *sec)
585 {
586 struct elf_link_hash_entry *h;
587
588 h = (struct elf_link_hash_entry *)
589 bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
590 if (h == NULL)
591 {
592 _bfd_generic_link_add_one_symbol (info, abfd,
593 name,
594 BSF_GLOBAL,
595 sec,
596 value,
597 (const char*) NULL,
598 TRUE, FALSE, NULL);
599 }
600 else
601 {
602 h->root.type = bfd_link_hash_defined;
603 h->root.u.def.value = value;
604 h->root.u.def.section = sec;
605 }
606 }
607
608
609 /* Build all the stubs associated with the current output file. The
610 stubs are kept in a hash table attached to the main linker hash
611 table. This function is called via m68hc12elf_finish in the
612 linker. */
613
614 bfd_boolean
615 elf32_m68hc11_build_stubs (bfd *abfd, struct bfd_link_info *info)
616 {
617 asection *stub_sec;
618 struct bfd_hash_table *table;
619 struct m68hc11_elf_link_hash_table *htab;
620 struct m68hc11_scan_param param;
621
622 m68hc11_elf_get_bank_parameters (info);
623 htab = m68hc11_elf_hash_table (info);
624
625 for (stub_sec = htab->stub_bfd->sections;
626 stub_sec != NULL;
627 stub_sec = stub_sec->next)
628 {
629 bfd_size_type size;
630
631 /* Allocate memory to hold the linker stubs. */
632 size = stub_sec->size;
633 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
634 if (stub_sec->contents == NULL && size != 0)
635 return FALSE;
636 stub_sec->size = 0;
637 }
638
639 /* Build the stubs as directed by the stub hash table. */
640 table = htab->stub_hash_table;
641 bfd_hash_traverse (table, m68hc11_elf_export_one_stub, info);
642
643 /* Scan the output sections to see if we use the memory banks.
644 If so, export the symbols that define how the memory banks
645 are mapped. This is used by gdb and the simulator to obtain
646 the information. It can be used by programs to burn the eprom
647 at the good addresses. */
648 param.use_memory_banks = FALSE;
649 param.pinfo = &htab->pinfo;
650 bfd_map_over_sections (abfd, scan_sections_for_abi, &param);
651 if (param.use_memory_banks)
652 {
653 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_START_NAME,
654 htab->pinfo.bank_physical,
655 bfd_abs_section_ptr);
656 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_VIRTUAL_NAME,
657 htab->pinfo.bank_virtual,
658 bfd_abs_section_ptr);
659 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_SIZE_NAME,
660 htab->pinfo.bank_size,
661 bfd_abs_section_ptr);
662 }
663
664 return TRUE;
665 }
666
667 void
668 m68hc11_elf_get_bank_parameters (struct bfd_link_info *info)
669 {
670 unsigned i;
671 struct m68hc11_page_info *pinfo;
672 struct bfd_link_hash_entry *h;
673
674 pinfo = &m68hc11_elf_hash_table (info)->pinfo;
675 if (pinfo->bank_param_initialized)
676 return;
677
678 pinfo->bank_virtual = M68HC12_BANK_VIRT;
679 pinfo->bank_mask = M68HC12_BANK_MASK;
680 pinfo->bank_physical = M68HC12_BANK_BASE;
681 pinfo->bank_shift = M68HC12_BANK_SHIFT;
682 pinfo->bank_size = 1 << M68HC12_BANK_SHIFT;
683
684 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_START_NAME,
685 FALSE, FALSE, TRUE);
686 if (h != (struct bfd_link_hash_entry*) NULL
687 && h->type == bfd_link_hash_defined)
688 pinfo->bank_physical = (h->u.def.value
689 + h->u.def.section->output_section->vma
690 + h->u.def.section->output_offset);
691
692 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_VIRTUAL_NAME,
693 FALSE, FALSE, TRUE);
694 if (h != (struct bfd_link_hash_entry*) NULL
695 && h->type == bfd_link_hash_defined)
696 pinfo->bank_virtual = (h->u.def.value
697 + h->u.def.section->output_section->vma
698 + h->u.def.section->output_offset);
699
700 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_SIZE_NAME,
701 FALSE, FALSE, TRUE);
702 if (h != (struct bfd_link_hash_entry*) NULL
703 && h->type == bfd_link_hash_defined)
704 pinfo->bank_size = (h->u.def.value
705 + h->u.def.section->output_section->vma
706 + h->u.def.section->output_offset);
707
708 pinfo->bank_shift = 0;
709 for (i = pinfo->bank_size; i != 0; i >>= 1)
710 pinfo->bank_shift++;
711 pinfo->bank_shift--;
712 pinfo->bank_mask = (1 << pinfo->bank_shift) - 1;
713 pinfo->bank_physical_end = pinfo->bank_physical + pinfo->bank_size;
714 pinfo->bank_param_initialized = 1;
715
716 h = bfd_link_hash_lookup (info->hash, "__far_trampoline", FALSE,
717 FALSE, TRUE);
718 if (h != (struct bfd_link_hash_entry*) NULL
719 && h->type == bfd_link_hash_defined)
720 pinfo->trampoline_addr = (h->u.def.value
721 + h->u.def.section->output_section->vma
722 + h->u.def.section->output_offset);
723 }
724
725 /* Return 1 if the address is in banked memory.
726 This can be applied to a virtual address and to a physical address. */
727 int
728 m68hc11_addr_is_banked (struct m68hc11_page_info *pinfo, bfd_vma addr)
729 {
730 if (addr >= pinfo->bank_virtual)
731 return 1;
732
733 if (addr >= pinfo->bank_physical && addr <= pinfo->bank_physical_end)
734 return 1;
735
736 return 0;
737 }
738
739 /* Return the physical address seen by the processor, taking
740 into account banked memory. */
741 bfd_vma
742 m68hc11_phys_addr (struct m68hc11_page_info *pinfo, bfd_vma addr)
743 {
744 if (addr < pinfo->bank_virtual)
745 return addr;
746
747 /* Map the address to the memory bank. */
748 addr -= pinfo->bank_virtual;
749 addr &= pinfo->bank_mask;
750 addr += pinfo->bank_physical;
751 return addr;
752 }
753
754 /* Return the page number corresponding to an address in banked memory. */
755 bfd_vma
756 m68hc11_phys_page (struct m68hc11_page_info *pinfo, bfd_vma addr)
757 {
758 if (addr < pinfo->bank_virtual)
759 return 0;
760
761 /* Map the address to the memory bank. */
762 addr -= pinfo->bank_virtual;
763 addr >>= pinfo->bank_shift;
764 addr &= 0x0ff;
765 return addr;
766 }
767
768 /* This function is used for relocs which are only used for relaxing,
769 which the linker should otherwise ignore. */
770
771 bfd_reloc_status_type
772 m68hc11_elf_ignore_reloc (bfd *abfd ATTRIBUTE_UNUSED,
773 arelent *reloc_entry,
774 asymbol *symbol ATTRIBUTE_UNUSED,
775 void *data ATTRIBUTE_UNUSED,
776 asection *input_section,
777 bfd *output_bfd,
778 char **error_message ATTRIBUTE_UNUSED)
779 {
780 if (output_bfd != NULL)
781 reloc_entry->address += input_section->output_offset;
782 return bfd_reloc_ok;
783 }
784
785 bfd_reloc_status_type
786 m68hc11_elf_special_reloc (bfd *abfd ATTRIBUTE_UNUSED,
787 arelent *reloc_entry,
788 asymbol *symbol,
789 void *data ATTRIBUTE_UNUSED,
790 asection *input_section,
791 bfd *output_bfd,
792 char **error_message ATTRIBUTE_UNUSED)
793 {
794 if (output_bfd != (bfd *) NULL
795 && (symbol->flags & BSF_SECTION_SYM) == 0
796 && (! reloc_entry->howto->partial_inplace
797 || reloc_entry->addend == 0))
798 {
799 reloc_entry->address += input_section->output_offset;
800 return bfd_reloc_ok;
801 }
802
803 if (output_bfd != NULL)
804 return bfd_reloc_continue;
805
806 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
807 return bfd_reloc_outofrange;
808
809 abort();
810 }
811
812 asection *
813 elf32_m68hc11_gc_mark_hook (asection *sec,
814 struct bfd_link_info *info ATTRIBUTE_UNUSED,
815 Elf_Internal_Rela *rel,
816 struct elf_link_hash_entry *h,
817 Elf_Internal_Sym *sym)
818 {
819 if (h != NULL)
820 {
821 switch (ELF32_R_TYPE (rel->r_info))
822 {
823 default:
824 switch (h->root.type)
825 {
826 case bfd_link_hash_defined:
827 case bfd_link_hash_defweak:
828 return h->root.u.def.section;
829
830 case bfd_link_hash_common:
831 return h->root.u.c.p->section;
832
833 default:
834 break;
835 }
836 }
837 }
838 else
839 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
840
841 return NULL;
842 }
843
844 bfd_boolean
845 elf32_m68hc11_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
846 struct bfd_link_info *info ATTRIBUTE_UNUSED,
847 asection *sec ATTRIBUTE_UNUSED,
848 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
849 {
850 /* We don't use got and plt entries for 68hc11/68hc12. */
851 return TRUE;
852 }
853
854 /* Look through the relocs for a section during the first phase.
855 Since we don't do .gots or .plts, we just need to consider the
856 virtual table relocs for gc. */
857
858 bfd_boolean
859 elf32_m68hc11_check_relocs (bfd *abfd, struct bfd_link_info *info,
860 asection *sec, const Elf_Internal_Rela *relocs)
861 {
862 Elf_Internal_Shdr * symtab_hdr;
863 struct elf_link_hash_entry ** sym_hashes;
864 struct elf_link_hash_entry ** sym_hashes_end;
865 const Elf_Internal_Rela * rel;
866 const Elf_Internal_Rela * rel_end;
867
868 if (info->relocatable)
869 return TRUE;
870
871 symtab_hdr = & elf_tdata (abfd)->symtab_hdr;
872 sym_hashes = elf_sym_hashes (abfd);
873 sym_hashes_end = sym_hashes + symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
874 if (!elf_bad_symtab (abfd))
875 sym_hashes_end -= symtab_hdr->sh_info;
876
877 rel_end = relocs + sec->reloc_count;
878
879 for (rel = relocs; rel < rel_end; rel++)
880 {
881 struct elf_link_hash_entry * h;
882 unsigned long r_symndx;
883
884 r_symndx = ELF32_R_SYM (rel->r_info);
885
886 if (r_symndx < symtab_hdr->sh_info)
887 h = NULL;
888 else
889 h = sym_hashes [r_symndx - symtab_hdr->sh_info];
890
891 switch (ELF32_R_TYPE (rel->r_info))
892 {
893 /* This relocation describes the C++ object vtable hierarchy.
894 Reconstruct it for later use during GC. */
895 case R_M68HC11_GNU_VTINHERIT:
896 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
897 return FALSE;
898 break;
899
900 /* This relocation describes which C++ vtable entries are actually
901 used. Record for later use during GC. */
902 case R_M68HC11_GNU_VTENTRY:
903 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
904 return FALSE;
905 break;
906 }
907 }
908
909 return TRUE;
910 }
911
912 static bfd_boolean
913 m68hc11_get_relocation_value (bfd *input_bfd, struct bfd_link_info *info,
914 asection *input_section,
915 asection **local_sections,
916 Elf_Internal_Sym *local_syms,
917 Elf_Internal_Rela *rel,
918 const char **name,
919 bfd_vma *relocation, bfd_boolean *is_far)
920 {
921 Elf_Internal_Shdr *symtab_hdr;
922 struct elf_link_hash_entry **sym_hashes;
923 unsigned long r_symndx;
924 asection *sec;
925 struct elf_link_hash_entry *h;
926 Elf_Internal_Sym *sym;
927 const char* stub_name = 0;
928
929 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
930 sym_hashes = elf_sym_hashes (input_bfd);
931
932 r_symndx = ELF32_R_SYM (rel->r_info);
933
934 /* This is a final link. */
935 h = NULL;
936 sym = NULL;
937 sec = NULL;
938 if (r_symndx < symtab_hdr->sh_info)
939 {
940 sym = local_syms + r_symndx;
941 sec = local_sections[r_symndx];
942 *relocation = (sec->output_section->vma
943 + sec->output_offset
944 + sym->st_value);
945 *is_far = (sym && (sym->st_other & STO_M68HC12_FAR));
946 if (*is_far)
947 stub_name = (bfd_elf_string_from_elf_section
948 (input_bfd, symtab_hdr->sh_link,
949 sym->st_name));
950 }
951 else
952 {
953 bfd_boolean unresolved_reloc, warned;
954
955 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
956 r_symndx, symtab_hdr, sym_hashes,
957 h, sec, *relocation, unresolved_reloc, warned);
958
959 *is_far = (h && (h->other & STO_M68HC12_FAR));
960 stub_name = h->root.root.string;
961 }
962
963 if (h != NULL)
964 *name = h->root.root.string;
965 else
966 {
967 *name = (bfd_elf_string_from_elf_section
968 (input_bfd, symtab_hdr->sh_link, sym->st_name));
969 if (*name == NULL || **name == '\0')
970 *name = bfd_section_name (input_bfd, sec);
971 }
972
973 if (*is_far && ELF32_R_TYPE (rel->r_info) == R_M68HC11_16)
974 {
975 struct elf32_m68hc11_stub_hash_entry* stub;
976 struct m68hc11_elf_link_hash_table *htab;
977
978 htab = m68hc11_elf_hash_table (info);
979 stub = m68hc12_stub_hash_lookup (htab->stub_hash_table,
980 *name, FALSE, FALSE);
981 if (stub)
982 {
983 *relocation = stub->stub_offset
984 + stub->stub_sec->output_section->vma
985 + stub->stub_sec->output_offset;
986 *is_far = FALSE;
987 }
988 }
989 return TRUE;
990 }
991
992 /* Relocate a 68hc11/68hc12 ELF section. */
993 bfd_boolean
994 elf32_m68hc11_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
995 struct bfd_link_info *info,
996 bfd *input_bfd, asection *input_section,
997 bfd_byte *contents, Elf_Internal_Rela *relocs,
998 Elf_Internal_Sym *local_syms,
999 asection **local_sections)
1000 {
1001 Elf_Internal_Shdr *symtab_hdr;
1002 struct elf_link_hash_entry **sym_hashes;
1003 Elf_Internal_Rela *rel, *relend;
1004 const char *name;
1005 struct m68hc11_page_info *pinfo;
1006 const struct elf_backend_data * const ebd = get_elf_backend_data (input_bfd);
1007
1008 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1009 sym_hashes = elf_sym_hashes (input_bfd);
1010
1011 /* Get memory bank parameters. */
1012 m68hc11_elf_get_bank_parameters (info);
1013 pinfo = &m68hc11_elf_hash_table (info)->pinfo;
1014
1015 rel = relocs;
1016 relend = relocs + input_section->reloc_count;
1017 for (; rel < relend; rel++)
1018 {
1019 int r_type;
1020 arelent arel;
1021 reloc_howto_type *howto;
1022 unsigned long r_symndx;
1023 Elf_Internal_Sym *sym;
1024 asection *sec;
1025 bfd_vma relocation;
1026 bfd_reloc_status_type r = bfd_reloc_undefined;
1027 bfd_vma phys_page;
1028 bfd_vma phys_addr;
1029 bfd_vma insn_addr;
1030 bfd_vma insn_page;
1031 bfd_boolean is_far;
1032
1033 r_symndx = ELF32_R_SYM (rel->r_info);
1034 r_type = ELF32_R_TYPE (rel->r_info);
1035
1036 if (r_type == R_M68HC11_GNU_VTENTRY
1037 || r_type == R_M68HC11_GNU_VTINHERIT )
1038 continue;
1039
1040 if (info->relocatable)
1041 {
1042 /* This is a relocatable link. We don't have to change
1043 anything, unless the reloc is against a section symbol,
1044 in which case we have to adjust according to where the
1045 section symbol winds up in the output section. */
1046 if (r_symndx < symtab_hdr->sh_info)
1047 {
1048 sym = local_syms + r_symndx;
1049 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1050 {
1051 sec = local_sections[r_symndx];
1052 rel->r_addend += sec->output_offset + sym->st_value;
1053 }
1054 }
1055
1056 continue;
1057 }
1058 (*ebd->elf_info_to_howto_rel) (input_bfd, &arel, rel);
1059 howto = arel.howto;
1060
1061 m68hc11_get_relocation_value (input_bfd, info, input_section,
1062 local_sections, local_syms,
1063 rel, &name, &relocation, &is_far);
1064
1065 /* Do the memory bank mapping. */
1066 phys_addr = m68hc11_phys_addr (pinfo, relocation + rel->r_addend);
1067 phys_page = m68hc11_phys_page (pinfo, relocation + rel->r_addend);
1068 switch (r_type)
1069 {
1070 case R_M68HC11_24:
1071 /* Reloc used by 68HC12 call instruction. */
1072 bfd_put_16 (input_bfd, phys_addr,
1073 (bfd_byte*) contents + rel->r_offset);
1074 bfd_put_8 (input_bfd, phys_page,
1075 (bfd_byte*) contents + rel->r_offset + 2);
1076 r = bfd_reloc_ok;
1077 r_type = R_M68HC11_NONE;
1078 break;
1079
1080 case R_M68HC11_NONE:
1081 r = bfd_reloc_ok;
1082 break;
1083
1084 case R_M68HC11_LO16:
1085 /* Reloc generated by %addr(expr) gas to obtain the
1086 address as mapped in the memory bank window. */
1087 relocation = phys_addr;
1088 break;
1089
1090 case R_M68HC11_PAGE:
1091 /* Reloc generated by %page(expr) gas to obtain the
1092 page number associated with the address. */
1093 relocation = phys_page;
1094 break;
1095
1096 case R_M68HC11_16:
1097 /* Get virtual address of instruction having the relocation. */
1098 if (is_far)
1099 {
1100 const char* msg;
1101 char* buf;
1102 msg = _("Reference to the far symbol `%s' using a wrong "
1103 "relocation may result in incorrect execution");
1104 buf = alloca (strlen (msg) + strlen (name) + 10);
1105 sprintf (buf, msg, name);
1106
1107 (* info->callbacks->warning)
1108 (info, buf, name, input_bfd, NULL, rel->r_offset);
1109 }
1110
1111 /* Get virtual address of instruction having the relocation. */
1112 insn_addr = input_section->output_section->vma
1113 + input_section->output_offset
1114 + rel->r_offset;
1115
1116 insn_page = m68hc11_phys_page (pinfo, insn_addr);
1117
1118 if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend)
1119 && m68hc11_addr_is_banked (pinfo, insn_addr)
1120 && phys_page != insn_page)
1121 {
1122 const char* msg;
1123 char* buf;
1124
1125 msg = _("banked address [%lx:%04lx] (%lx) is not in the same bank "
1126 "as current banked address [%lx:%04lx] (%lx)");
1127
1128 buf = alloca (strlen (msg) + 128);
1129 sprintf (buf, msg, phys_page, phys_addr,
1130 (long) (relocation + rel->r_addend),
1131 insn_page, m68hc11_phys_addr (pinfo, insn_addr),
1132 (long) (insn_addr));
1133 if (!((*info->callbacks->warning)
1134 (info, buf, name, input_bfd, input_section,
1135 rel->r_offset)))
1136 return FALSE;
1137 break;
1138 }
1139 if (phys_page != 0 && insn_page == 0)
1140 {
1141 const char* msg;
1142 char* buf;
1143
1144 msg = _("reference to a banked address [%lx:%04lx] in the "
1145 "normal address space at %04lx");
1146
1147 buf = alloca (strlen (msg) + 128);
1148 sprintf (buf, msg, phys_page, phys_addr, insn_addr);
1149 if (!((*info->callbacks->warning)
1150 (info, buf, name, input_bfd, input_section,
1151 insn_addr)))
1152 return FALSE;
1153
1154 relocation = phys_addr;
1155 break;
1156 }
1157
1158 /* If this is a banked address use the phys_addr so that
1159 we stay in the banked window. */
1160 if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend))
1161 relocation = phys_addr;
1162 break;
1163 }
1164 if (r_type != R_M68HC11_NONE)
1165 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1166 contents, rel->r_offset,
1167 relocation, rel->r_addend);
1168
1169 if (r != bfd_reloc_ok)
1170 {
1171 const char * msg = (const char *) 0;
1172
1173 switch (r)
1174 {
1175 case bfd_reloc_overflow:
1176 if (!((*info->callbacks->reloc_overflow)
1177 (info, name, howto->name, (bfd_vma) 0,
1178 input_bfd, input_section, rel->r_offset)))
1179 return FALSE;
1180 break;
1181
1182 case bfd_reloc_undefined:
1183 if (!((*info->callbacks->undefined_symbol)
1184 (info, name, input_bfd, input_section,
1185 rel->r_offset, TRUE)))
1186 return FALSE;
1187 break;
1188
1189 case bfd_reloc_outofrange:
1190 msg = _ ("internal error: out of range error");
1191 goto common_error;
1192
1193 case bfd_reloc_notsupported:
1194 msg = _ ("internal error: unsupported relocation error");
1195 goto common_error;
1196
1197 case bfd_reloc_dangerous:
1198 msg = _ ("internal error: dangerous error");
1199 goto common_error;
1200
1201 default:
1202 msg = _ ("internal error: unknown error");
1203 /* fall through */
1204
1205 common_error:
1206 if (!((*info->callbacks->warning)
1207 (info, msg, name, input_bfd, input_section,
1208 rel->r_offset)))
1209 return FALSE;
1210 break;
1211 }
1212 }
1213 }
1214
1215 return TRUE;
1216 }
1217
1218
1219 \f
1220 /* Set and control ELF flags in ELF header. */
1221
1222 bfd_boolean
1223 _bfd_m68hc11_elf_set_private_flags (bfd *abfd, flagword flags)
1224 {
1225 BFD_ASSERT (!elf_flags_init (abfd)
1226 || elf_elfheader (abfd)->e_flags == flags);
1227
1228 elf_elfheader (abfd)->e_flags = flags;
1229 elf_flags_init (abfd) = TRUE;
1230 return TRUE;
1231 }
1232
1233 /* Merge backend specific data from an object file to the output
1234 object file when linking. */
1235
1236 bfd_boolean
1237 _bfd_m68hc11_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
1238 {
1239 flagword old_flags;
1240 flagword new_flags;
1241 bfd_boolean ok = TRUE;
1242
1243 /* Check if we have the same endianess */
1244 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
1245 return FALSE;
1246
1247 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1248 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1249 return TRUE;
1250
1251 new_flags = elf_elfheader (ibfd)->e_flags;
1252 elf_elfheader (obfd)->e_flags |= new_flags & EF_M68HC11_ABI;
1253 old_flags = elf_elfheader (obfd)->e_flags;
1254
1255 if (! elf_flags_init (obfd))
1256 {
1257 elf_flags_init (obfd) = TRUE;
1258 elf_elfheader (obfd)->e_flags = new_flags;
1259 elf_elfheader (obfd)->e_ident[EI_CLASS]
1260 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
1261
1262 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
1263 && bfd_get_arch_info (obfd)->the_default)
1264 {
1265 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
1266 bfd_get_mach (ibfd)))
1267 return FALSE;
1268 }
1269
1270 return TRUE;
1271 }
1272
1273 /* Check ABI compatibility. */
1274 if ((new_flags & E_M68HC11_I32) != (old_flags & E_M68HC11_I32))
1275 {
1276 (*_bfd_error_handler)
1277 (_("%s: linking files compiled for 16-bit integers (-mshort) "
1278 "and others for 32-bit integers"),
1279 bfd_archive_filename (ibfd));
1280 ok = FALSE;
1281 }
1282 if ((new_flags & E_M68HC11_F64) != (old_flags & E_M68HC11_F64))
1283 {
1284 (*_bfd_error_handler)
1285 (_("%s: linking files compiled for 32-bit double (-fshort-double) "
1286 "and others for 64-bit double"),
1287 bfd_archive_filename (ibfd));
1288 ok = FALSE;
1289 }
1290
1291 /* Processor compatibility. */
1292 if (!EF_M68HC11_CAN_MERGE_MACH (new_flags, old_flags))
1293 {
1294 (*_bfd_error_handler)
1295 (_("%s: linking files compiled for HCS12 with "
1296 "others compiled for HC12"),
1297 bfd_archive_filename (ibfd));
1298 ok = FALSE;
1299 }
1300 new_flags = ((new_flags & ~EF_M68HC11_MACH_MASK)
1301 | (EF_M68HC11_MERGE_MACH (new_flags, old_flags)));
1302
1303 elf_elfheader (obfd)->e_flags = new_flags;
1304
1305 new_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK);
1306 old_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK);
1307
1308 /* Warn about any other mismatches */
1309 if (new_flags != old_flags)
1310 {
1311 (*_bfd_error_handler)
1312 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
1313 bfd_archive_filename (ibfd), (unsigned long) new_flags,
1314 (unsigned long) old_flags);
1315 ok = FALSE;
1316 }
1317
1318 if (! ok)
1319 {
1320 bfd_set_error (bfd_error_bad_value);
1321 return FALSE;
1322 }
1323
1324 return TRUE;
1325 }
1326
1327 bfd_boolean
1328 _bfd_m68hc11_elf_print_private_bfd_data (bfd *abfd, void *ptr)
1329 {
1330 FILE *file = (FILE *) ptr;
1331
1332 BFD_ASSERT (abfd != NULL && ptr != NULL);
1333
1334 /* Print normal ELF private data. */
1335 _bfd_elf_print_private_bfd_data (abfd, ptr);
1336
1337 /* xgettext:c-format */
1338 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
1339
1340 if (elf_elfheader (abfd)->e_flags & E_M68HC11_I32)
1341 fprintf (file, _("[abi=32-bit int, "));
1342 else
1343 fprintf (file, _("[abi=16-bit int, "));
1344
1345 if (elf_elfheader (abfd)->e_flags & E_M68HC11_F64)
1346 fprintf (file, _("64-bit double, "));
1347 else
1348 fprintf (file, _("32-bit double, "));
1349
1350 if (strcmp (bfd_get_target (abfd), "elf32-m68hc11") == 0)
1351 fprintf (file, _("cpu=HC11]"));
1352 else if (elf_elfheader (abfd)->e_flags & EF_M68HCS12_MACH)
1353 fprintf (file, _("cpu=HCS12]"));
1354 else
1355 fprintf (file, _("cpu=HC12]"));
1356
1357 if (elf_elfheader (abfd)->e_flags & E_M68HC12_BANKS)
1358 fprintf (file, _(" [memory=bank-model]"));
1359 else
1360 fprintf (file, _(" [memory=flat]"));
1361
1362 fputc ('\n', file);
1363
1364 return TRUE;
1365 }
1366
1367 static void scan_sections_for_abi (bfd *abfd ATTRIBUTE_UNUSED,
1368 asection *asect, void *arg)
1369 {
1370 struct m68hc11_scan_param* p = (struct m68hc11_scan_param*) arg;
1371
1372 if (asect->vma >= p->pinfo->bank_virtual)
1373 p->use_memory_banks = TRUE;
1374 }
1375
1376 /* Tweak the OSABI field of the elf header. */
1377
1378 void
1379 elf32_m68hc11_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
1380 {
1381 struct m68hc11_scan_param param;
1382
1383 if (link_info == 0)
1384 return;
1385
1386 m68hc11_elf_get_bank_parameters (link_info);
1387
1388 param.use_memory_banks = FALSE;
1389 param.pinfo = &m68hc11_elf_hash_table (link_info)->pinfo;
1390 bfd_map_over_sections (abfd, scan_sections_for_abi, &param);
1391 if (param.use_memory_banks)
1392 {
1393 Elf_Internal_Ehdr * i_ehdrp;
1394
1395 i_ehdrp = elf_elfheader (abfd);
1396 i_ehdrp->e_flags |= E_M68HC12_BANKS;
1397 }
1398 }
1399
This page took 0.067649 seconds and 5 git commands to generate.