Add -Wshadow to the gcc command line options used when compiling the binutils.
[deliverable/binutils-gdb.git] / bfd / elf32-m68hc1x.c
1 /* Motorola 68HC11/HC12-specific support for 32-bit ELF
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
3 2009 Free Software Foundation, Inc.
4 Contributed by Stephane Carrez (stcarrez@nerim.fr)
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "alloca-conf.h"
24 #include "sysdep.h"
25 #include "bfd.h"
26 #include "bfdlink.h"
27 #include "libbfd.h"
28 #include "elf-bfd.h"
29 #include "elf32-m68hc1x.h"
30 #include "elf/m68hc11.h"
31 #include "opcode/m68hc11.h"
32
33
34 #define m68hc12_stub_hash_lookup(table, string, create, copy) \
35 ((struct elf32_m68hc11_stub_hash_entry *) \
36 bfd_hash_lookup ((table), (string), (create), (copy)))
37
38 static struct elf32_m68hc11_stub_hash_entry* m68hc12_add_stub
39 (const char *stub_name,
40 asection *section,
41 struct m68hc11_elf_link_hash_table *htab);
42
43 static struct bfd_hash_entry *stub_hash_newfunc
44 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
45
46 static void m68hc11_elf_set_symbol (bfd* abfd, struct bfd_link_info *info,
47 const char* name, bfd_vma value,
48 asection* sec);
49
50 static bfd_boolean m68hc11_elf_export_one_stub
51 (struct bfd_hash_entry *gen_entry, void *in_arg);
52
53 static void scan_sections_for_abi (bfd*, asection*, PTR);
54
55 struct m68hc11_scan_param
56 {
57 struct m68hc11_page_info* pinfo;
58 bfd_boolean use_memory_banks;
59 };
60
61
62 /* Create a 68HC11/68HC12 ELF linker hash table. */
63
64 struct m68hc11_elf_link_hash_table*
65 m68hc11_elf_hash_table_create (bfd *abfd)
66 {
67 struct m68hc11_elf_link_hash_table *ret;
68 bfd_size_type amt = sizeof (struct m68hc11_elf_link_hash_table);
69
70 ret = (struct m68hc11_elf_link_hash_table *) bfd_malloc (amt);
71 if (ret == (struct m68hc11_elf_link_hash_table *) NULL)
72 return NULL;
73
74 memset (ret, 0, amt);
75 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
76 _bfd_elf_link_hash_newfunc,
77 sizeof (struct elf_link_hash_entry)))
78 {
79 free (ret);
80 return NULL;
81 }
82
83 /* Init the stub hash table too. */
84 amt = sizeof (struct bfd_hash_table);
85 ret->stub_hash_table = (struct bfd_hash_table*) bfd_malloc (amt);
86 if (ret->stub_hash_table == NULL)
87 {
88 free (ret);
89 return NULL;
90 }
91 if (!bfd_hash_table_init (ret->stub_hash_table, stub_hash_newfunc,
92 sizeof (struct elf32_m68hc11_stub_hash_entry)))
93 return NULL;
94
95 ret->stub_bfd = NULL;
96 ret->stub_section = 0;
97 ret->add_stub_section = NULL;
98 ret->sym_cache.abfd = NULL;
99
100 return ret;
101 }
102
103 /* Free the derived linker hash table. */
104
105 void
106 m68hc11_elf_bfd_link_hash_table_free (struct bfd_link_hash_table *hash)
107 {
108 struct m68hc11_elf_link_hash_table *ret
109 = (struct m68hc11_elf_link_hash_table *) hash;
110
111 bfd_hash_table_free (ret->stub_hash_table);
112 free (ret->stub_hash_table);
113 _bfd_generic_link_hash_table_free (hash);
114 }
115
116 /* Assorted hash table functions. */
117
118 /* Initialize an entry in the stub hash table. */
119
120 static struct bfd_hash_entry *
121 stub_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table,
122 const char *string)
123 {
124 /* Allocate the structure if it has not already been allocated by a
125 subclass. */
126 if (entry == NULL)
127 {
128 entry = bfd_hash_allocate (table,
129 sizeof (struct elf32_m68hc11_stub_hash_entry));
130 if (entry == NULL)
131 return entry;
132 }
133
134 /* Call the allocation method of the superclass. */
135 entry = bfd_hash_newfunc (entry, table, string);
136 if (entry != NULL)
137 {
138 struct elf32_m68hc11_stub_hash_entry *eh;
139
140 /* Initialize the local fields. */
141 eh = (struct elf32_m68hc11_stub_hash_entry *) entry;
142 eh->stub_sec = NULL;
143 eh->stub_offset = 0;
144 eh->target_value = 0;
145 eh->target_section = NULL;
146 }
147
148 return entry;
149 }
150
151 /* Add a new stub entry to the stub hash. Not all fields of the new
152 stub entry are initialised. */
153
154 static struct elf32_m68hc11_stub_hash_entry *
155 m68hc12_add_stub (const char *stub_name, asection *section,
156 struct m68hc11_elf_link_hash_table *htab)
157 {
158 struct elf32_m68hc11_stub_hash_entry *stub_entry;
159
160 /* Enter this entry into the linker stub hash table. */
161 stub_entry = m68hc12_stub_hash_lookup (htab->stub_hash_table, stub_name,
162 TRUE, FALSE);
163 if (stub_entry == NULL)
164 {
165 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
166 section->owner, stub_name);
167 return NULL;
168 }
169
170 if (htab->stub_section == 0)
171 {
172 htab->stub_section = (*htab->add_stub_section) (".tramp",
173 htab->tramp_section);
174 }
175
176 stub_entry->stub_sec = htab->stub_section;
177 stub_entry->stub_offset = 0;
178 return stub_entry;
179 }
180
181 /* Hook called by the linker routine which adds symbols from an object
182 file. We use it for identify far symbols and force a loading of
183 the trampoline handler. */
184
185 bfd_boolean
186 elf32_m68hc11_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
187 Elf_Internal_Sym *sym,
188 const char **namep ATTRIBUTE_UNUSED,
189 flagword *flagsp ATTRIBUTE_UNUSED,
190 asection **secp ATTRIBUTE_UNUSED,
191 bfd_vma *valp ATTRIBUTE_UNUSED)
192 {
193 if (sym->st_other & STO_M68HC12_FAR)
194 {
195 struct elf_link_hash_entry *h;
196
197 h = (struct elf_link_hash_entry *)
198 bfd_link_hash_lookup (info->hash, "__far_trampoline",
199 FALSE, FALSE, FALSE);
200 if (h == NULL)
201 {
202 struct bfd_link_hash_entry* entry = NULL;
203
204 _bfd_generic_link_add_one_symbol (info, abfd,
205 "__far_trampoline",
206 BSF_GLOBAL,
207 bfd_und_section_ptr,
208 (bfd_vma) 0, (const char*) NULL,
209 FALSE, FALSE, &entry);
210 }
211
212 }
213 return TRUE;
214 }
215
216 /* External entry points for sizing and building linker stubs. */
217
218 /* Set up various things so that we can make a list of input sections
219 for each output section included in the link. Returns -1 on error,
220 0 when no stubs will be needed, and 1 on success. */
221
222 int
223 elf32_m68hc11_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
224 {
225 bfd *input_bfd;
226 unsigned int bfd_count;
227 int top_id, top_index;
228 asection *section;
229 asection **input_list, **list;
230 bfd_size_type amt;
231 asection *text_section;
232 struct m68hc11_elf_link_hash_table *htab;
233
234 htab = m68hc11_elf_hash_table (info);
235
236 if (bfd_get_flavour (info->output_bfd) != bfd_target_elf_flavour)
237 return 0;
238
239 /* Count the number of input BFDs and find the top input section id.
240 Also search for an existing ".tramp" section so that we know
241 where generated trampolines must go. Default to ".text" if we
242 can't find it. */
243 htab->tramp_section = 0;
244 text_section = 0;
245 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
246 input_bfd != NULL;
247 input_bfd = input_bfd->link_next)
248 {
249 bfd_count += 1;
250 for (section = input_bfd->sections;
251 section != NULL;
252 section = section->next)
253 {
254 const char* name = bfd_get_section_name (input_bfd, section);
255
256 if (!strcmp (name, ".tramp"))
257 htab->tramp_section = section;
258
259 if (!strcmp (name, ".text"))
260 text_section = section;
261
262 if (top_id < section->id)
263 top_id = section->id;
264 }
265 }
266 htab->bfd_count = bfd_count;
267 if (htab->tramp_section == 0)
268 htab->tramp_section = text_section;
269
270 /* We can't use output_bfd->section_count here to find the top output
271 section index as some sections may have been removed, and
272 strip_excluded_output_sections doesn't renumber the indices. */
273 for (section = output_bfd->sections, top_index = 0;
274 section != NULL;
275 section = section->next)
276 {
277 if (top_index < section->index)
278 top_index = section->index;
279 }
280
281 htab->top_index = top_index;
282 amt = sizeof (asection *) * (top_index + 1);
283 input_list = (asection **) bfd_malloc (amt);
284 htab->input_list = input_list;
285 if (input_list == NULL)
286 return -1;
287
288 /* For sections we aren't interested in, mark their entries with a
289 value we can check later. */
290 list = input_list + top_index;
291 do
292 *list = bfd_abs_section_ptr;
293 while (list-- != input_list);
294
295 for (section = output_bfd->sections;
296 section != NULL;
297 section = section->next)
298 {
299 if ((section->flags & SEC_CODE) != 0)
300 input_list[section->index] = NULL;
301 }
302
303 return 1;
304 }
305
306 /* Determine and set the size of the stub section for a final link.
307
308 The basic idea here is to examine all the relocations looking for
309 PC-relative calls to a target that is unreachable with a "bl"
310 instruction. */
311
312 bfd_boolean
313 elf32_m68hc11_size_stubs (bfd *output_bfd, bfd *stub_bfd,
314 struct bfd_link_info *info,
315 asection * (*add_stub_section) (const char*, asection*))
316 {
317 bfd *input_bfd;
318 asection *section;
319 Elf_Internal_Sym *local_syms, **all_local_syms;
320 unsigned int bfd_indx, bfd_count;
321 bfd_size_type amt;
322 asection *stub_sec;
323
324 struct m68hc11_elf_link_hash_table *htab = m68hc11_elf_hash_table (info);
325
326 /* Stash our params away. */
327 htab->stub_bfd = stub_bfd;
328 htab->add_stub_section = add_stub_section;
329
330 /* Count the number of input BFDs and find the top input section id. */
331 for (input_bfd = info->input_bfds, bfd_count = 0;
332 input_bfd != NULL;
333 input_bfd = input_bfd->link_next)
334 {
335 bfd_count += 1;
336 }
337
338 /* We want to read in symbol extension records only once. To do this
339 we need to read in the local symbols in parallel and save them for
340 later use; so hold pointers to the local symbols in an array. */
341 amt = sizeof (Elf_Internal_Sym *) * bfd_count;
342 all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt);
343 if (all_local_syms == NULL)
344 return FALSE;
345
346 /* Walk over all the input BFDs, swapping in local symbols. */
347 for (input_bfd = info->input_bfds, bfd_indx = 0;
348 input_bfd != NULL;
349 input_bfd = input_bfd->link_next, bfd_indx++)
350 {
351 Elf_Internal_Shdr *symtab_hdr;
352
353 /* We'll need the symbol table in a second. */
354 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
355 if (symtab_hdr->sh_info == 0)
356 continue;
357
358 /* We need an array of the local symbols attached to the input bfd. */
359 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
360 if (local_syms == NULL)
361 {
362 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
363 symtab_hdr->sh_info, 0,
364 NULL, NULL, NULL);
365 /* Cache them for elf_link_input_bfd. */
366 symtab_hdr->contents = (unsigned char *) local_syms;
367 }
368 if (local_syms == NULL)
369 {
370 free (all_local_syms);
371 return FALSE;
372 }
373
374 all_local_syms[bfd_indx] = local_syms;
375 }
376
377 for (input_bfd = info->input_bfds, bfd_indx = 0;
378 input_bfd != NULL;
379 input_bfd = input_bfd->link_next, bfd_indx++)
380 {
381 Elf_Internal_Shdr *symtab_hdr;
382 struct elf_link_hash_entry ** sym_hashes;
383
384 sym_hashes = elf_sym_hashes (input_bfd);
385
386 /* We'll need the symbol table in a second. */
387 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
388 if (symtab_hdr->sh_info == 0)
389 continue;
390
391 local_syms = all_local_syms[bfd_indx];
392
393 /* Walk over each section attached to the input bfd. */
394 for (section = input_bfd->sections;
395 section != NULL;
396 section = section->next)
397 {
398 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
399
400 /* If there aren't any relocs, then there's nothing more
401 to do. */
402 if ((section->flags & SEC_RELOC) == 0
403 || section->reloc_count == 0)
404 continue;
405
406 /* If this section is a link-once section that will be
407 discarded, then don't create any stubs. */
408 if (section->output_section == NULL
409 || section->output_section->owner != output_bfd)
410 continue;
411
412 /* Get the relocs. */
413 internal_relocs
414 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
415 (Elf_Internal_Rela *) NULL,
416 info->keep_memory);
417 if (internal_relocs == NULL)
418 goto error_ret_free_local;
419
420 /* Now examine each relocation. */
421 irela = internal_relocs;
422 irelaend = irela + section->reloc_count;
423 for (; irela < irelaend; irela++)
424 {
425 unsigned int r_type, r_indx;
426 struct elf32_m68hc11_stub_hash_entry *stub_entry;
427 asection *sym_sec;
428 bfd_vma sym_value;
429 struct elf_link_hash_entry *hash;
430 const char *stub_name;
431 Elf_Internal_Sym *sym;
432
433 r_type = ELF32_R_TYPE (irela->r_info);
434
435 /* Only look at 16-bit relocs. */
436 if (r_type != (unsigned int) R_M68HC11_16)
437 continue;
438
439 /* Now determine the call target, its name, value,
440 section. */
441 r_indx = ELF32_R_SYM (irela->r_info);
442 if (r_indx < symtab_hdr->sh_info)
443 {
444 /* It's a local symbol. */
445 Elf_Internal_Shdr *hdr;
446 bfd_boolean is_far;
447
448 sym = local_syms + r_indx;
449 is_far = (sym && (sym->st_other & STO_M68HC12_FAR));
450 if (!is_far)
451 continue;
452
453 if (sym->st_shndx >= elf_numsections (input_bfd))
454 sym_sec = NULL;
455 else
456 {
457 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
458 sym_sec = hdr->bfd_section;
459 }
460 stub_name = (bfd_elf_string_from_elf_section
461 (input_bfd, symtab_hdr->sh_link,
462 sym->st_name));
463 sym_value = sym->st_value;
464 hash = NULL;
465 }
466 else
467 {
468 /* It's an external symbol. */
469 int e_indx;
470
471 e_indx = r_indx - symtab_hdr->sh_info;
472 hash = (struct elf_link_hash_entry *)
473 (sym_hashes[e_indx]);
474
475 while (hash->root.type == bfd_link_hash_indirect
476 || hash->root.type == bfd_link_hash_warning)
477 hash = ((struct elf_link_hash_entry *)
478 hash->root.u.i.link);
479
480 if (hash->root.type == bfd_link_hash_defined
481 || hash->root.type == bfd_link_hash_defweak
482 || hash->root.type == bfd_link_hash_new)
483 {
484 if (!(hash->other & STO_M68HC12_FAR))
485 continue;
486 }
487 else if (hash->root.type == bfd_link_hash_undefweak)
488 {
489 continue;
490 }
491 else if (hash->root.type == bfd_link_hash_undefined)
492 {
493 continue;
494 }
495 else
496 {
497 bfd_set_error (bfd_error_bad_value);
498 goto error_ret_free_internal;
499 }
500 sym_sec = hash->root.u.def.section;
501 sym_value = hash->root.u.def.value;
502 stub_name = hash->root.root.string;
503 }
504
505 if (!stub_name)
506 goto error_ret_free_internal;
507
508 stub_entry = m68hc12_stub_hash_lookup
509 (htab->stub_hash_table,
510 stub_name,
511 FALSE, FALSE);
512 if (stub_entry == NULL)
513 {
514 if (add_stub_section == 0)
515 continue;
516
517 stub_entry = m68hc12_add_stub (stub_name, section, htab);
518 if (stub_entry == NULL)
519 {
520 error_ret_free_internal:
521 if (elf_section_data (section)->relocs == NULL)
522 free (internal_relocs);
523 goto error_ret_free_local;
524 }
525 }
526
527 stub_entry->target_value = sym_value;
528 stub_entry->target_section = sym_sec;
529 }
530
531 /* We're done with the internal relocs, free them. */
532 if (elf_section_data (section)->relocs == NULL)
533 free (internal_relocs);
534 }
535 }
536
537 if (add_stub_section)
538 {
539 /* OK, we've added some stubs. Find out the new size of the
540 stub sections. */
541 for (stub_sec = htab->stub_bfd->sections;
542 stub_sec != NULL;
543 stub_sec = stub_sec->next)
544 {
545 stub_sec->size = 0;
546 }
547
548 bfd_hash_traverse (htab->stub_hash_table, htab->size_one_stub, htab);
549 }
550 free (all_local_syms);
551 return TRUE;
552
553 error_ret_free_local:
554 free (all_local_syms);
555 return FALSE;
556 }
557
558 /* Export the trampoline addresses in the symbol table. */
559 static bfd_boolean
560 m68hc11_elf_export_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
561 {
562 struct bfd_link_info *info;
563 struct m68hc11_elf_link_hash_table *htab;
564 struct elf32_m68hc11_stub_hash_entry *stub_entry;
565 char* name;
566 bfd_boolean result;
567
568 info = (struct bfd_link_info *) in_arg;
569 htab = m68hc11_elf_hash_table (info);
570
571 /* Massage our args to the form they really have. */
572 stub_entry = (struct elf32_m68hc11_stub_hash_entry *) gen_entry;
573
574 /* Generate the trampoline according to HC11 or HC12. */
575 result = (* htab->build_one_stub) (gen_entry, in_arg);
576
577 /* Make a printable name that does not conflict with the real function. */
578 name = alloca (strlen (stub_entry->root.string) + 16);
579 sprintf (name, "tramp.%s", stub_entry->root.string);
580
581 /* Export the symbol for debugging/disassembling. */
582 m68hc11_elf_set_symbol (htab->stub_bfd, info, name,
583 stub_entry->stub_offset,
584 stub_entry->stub_sec);
585 return result;
586 }
587
588 /* Export a symbol or set its value and section. */
589 static void
590 m68hc11_elf_set_symbol (bfd *abfd, struct bfd_link_info *info,
591 const char *name, bfd_vma value, asection *sec)
592 {
593 struct elf_link_hash_entry *h;
594
595 h = (struct elf_link_hash_entry *)
596 bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
597 if (h == NULL)
598 {
599 _bfd_generic_link_add_one_symbol (info, abfd,
600 name,
601 BSF_GLOBAL,
602 sec,
603 value,
604 (const char*) NULL,
605 TRUE, FALSE, NULL);
606 }
607 else
608 {
609 h->root.type = bfd_link_hash_defined;
610 h->root.u.def.value = value;
611 h->root.u.def.section = sec;
612 }
613 }
614
615
616 /* Build all the stubs associated with the current output file. The
617 stubs are kept in a hash table attached to the main linker hash
618 table. This function is called via m68hc12elf_finish in the
619 linker. */
620
621 bfd_boolean
622 elf32_m68hc11_build_stubs (bfd *abfd, struct bfd_link_info *info)
623 {
624 asection *stub_sec;
625 struct bfd_hash_table *table;
626 struct m68hc11_elf_link_hash_table *htab;
627 struct m68hc11_scan_param param;
628
629 m68hc11_elf_get_bank_parameters (info);
630 htab = m68hc11_elf_hash_table (info);
631
632 for (stub_sec = htab->stub_bfd->sections;
633 stub_sec != NULL;
634 stub_sec = stub_sec->next)
635 {
636 bfd_size_type size;
637
638 /* Allocate memory to hold the linker stubs. */
639 size = stub_sec->size;
640 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
641 if (stub_sec->contents == NULL && size != 0)
642 return FALSE;
643 stub_sec->size = 0;
644 }
645
646 /* Build the stubs as directed by the stub hash table. */
647 table = htab->stub_hash_table;
648 bfd_hash_traverse (table, m68hc11_elf_export_one_stub, info);
649
650 /* Scan the output sections to see if we use the memory banks.
651 If so, export the symbols that define how the memory banks
652 are mapped. This is used by gdb and the simulator to obtain
653 the information. It can be used by programs to burn the eprom
654 at the good addresses. */
655 param.use_memory_banks = FALSE;
656 param.pinfo = &htab->pinfo;
657 bfd_map_over_sections (abfd, scan_sections_for_abi, &param);
658 if (param.use_memory_banks)
659 {
660 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_START_NAME,
661 htab->pinfo.bank_physical,
662 bfd_abs_section_ptr);
663 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_VIRTUAL_NAME,
664 htab->pinfo.bank_virtual,
665 bfd_abs_section_ptr);
666 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_SIZE_NAME,
667 htab->pinfo.bank_size,
668 bfd_abs_section_ptr);
669 }
670
671 return TRUE;
672 }
673
674 void
675 m68hc11_elf_get_bank_parameters (struct bfd_link_info *info)
676 {
677 unsigned i;
678 struct m68hc11_page_info *pinfo;
679 struct bfd_link_hash_entry *h;
680
681 pinfo = &m68hc11_elf_hash_table (info)->pinfo;
682 if (pinfo->bank_param_initialized)
683 return;
684
685 pinfo->bank_virtual = M68HC12_BANK_VIRT;
686 pinfo->bank_mask = M68HC12_BANK_MASK;
687 pinfo->bank_physical = M68HC12_BANK_BASE;
688 pinfo->bank_shift = M68HC12_BANK_SHIFT;
689 pinfo->bank_size = 1 << M68HC12_BANK_SHIFT;
690
691 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_START_NAME,
692 FALSE, FALSE, TRUE);
693 if (h != (struct bfd_link_hash_entry*) NULL
694 && h->type == bfd_link_hash_defined)
695 pinfo->bank_physical = (h->u.def.value
696 + h->u.def.section->output_section->vma
697 + h->u.def.section->output_offset);
698
699 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_VIRTUAL_NAME,
700 FALSE, FALSE, TRUE);
701 if (h != (struct bfd_link_hash_entry*) NULL
702 && h->type == bfd_link_hash_defined)
703 pinfo->bank_virtual = (h->u.def.value
704 + h->u.def.section->output_section->vma
705 + h->u.def.section->output_offset);
706
707 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_SIZE_NAME,
708 FALSE, FALSE, TRUE);
709 if (h != (struct bfd_link_hash_entry*) NULL
710 && h->type == bfd_link_hash_defined)
711 pinfo->bank_size = (h->u.def.value
712 + h->u.def.section->output_section->vma
713 + h->u.def.section->output_offset);
714
715 pinfo->bank_shift = 0;
716 for (i = pinfo->bank_size; i != 0; i >>= 1)
717 pinfo->bank_shift++;
718 pinfo->bank_shift--;
719 pinfo->bank_mask = (1 << pinfo->bank_shift) - 1;
720 pinfo->bank_physical_end = pinfo->bank_physical + pinfo->bank_size;
721 pinfo->bank_param_initialized = 1;
722
723 h = bfd_link_hash_lookup (info->hash, "__far_trampoline", FALSE,
724 FALSE, TRUE);
725 if (h != (struct bfd_link_hash_entry*) NULL
726 && h->type == bfd_link_hash_defined)
727 pinfo->trampoline_addr = (h->u.def.value
728 + h->u.def.section->output_section->vma
729 + h->u.def.section->output_offset);
730 }
731
732 /* Return 1 if the address is in banked memory.
733 This can be applied to a virtual address and to a physical address. */
734 int
735 m68hc11_addr_is_banked (struct m68hc11_page_info *pinfo, bfd_vma addr)
736 {
737 if (addr >= pinfo->bank_virtual)
738 return 1;
739
740 if (addr >= pinfo->bank_physical && addr <= pinfo->bank_physical_end)
741 return 1;
742
743 return 0;
744 }
745
746 /* Return the physical address seen by the processor, taking
747 into account banked memory. */
748 bfd_vma
749 m68hc11_phys_addr (struct m68hc11_page_info *pinfo, bfd_vma addr)
750 {
751 if (addr < pinfo->bank_virtual)
752 return addr;
753
754 /* Map the address to the memory bank. */
755 addr -= pinfo->bank_virtual;
756 addr &= pinfo->bank_mask;
757 addr += pinfo->bank_physical;
758 return addr;
759 }
760
761 /* Return the page number corresponding to an address in banked memory. */
762 bfd_vma
763 m68hc11_phys_page (struct m68hc11_page_info *pinfo, bfd_vma addr)
764 {
765 if (addr < pinfo->bank_virtual)
766 return 0;
767
768 /* Map the address to the memory bank. */
769 addr -= pinfo->bank_virtual;
770 addr >>= pinfo->bank_shift;
771 addr &= 0x0ff;
772 return addr;
773 }
774
775 /* This function is used for relocs which are only used for relaxing,
776 which the linker should otherwise ignore. */
777
778 bfd_reloc_status_type
779 m68hc11_elf_ignore_reloc (bfd *abfd ATTRIBUTE_UNUSED,
780 arelent *reloc_entry,
781 asymbol *symbol ATTRIBUTE_UNUSED,
782 void *data ATTRIBUTE_UNUSED,
783 asection *input_section,
784 bfd *output_bfd,
785 char **error_message ATTRIBUTE_UNUSED)
786 {
787 if (output_bfd != NULL)
788 reloc_entry->address += input_section->output_offset;
789 return bfd_reloc_ok;
790 }
791
792 bfd_reloc_status_type
793 m68hc11_elf_special_reloc (bfd *abfd ATTRIBUTE_UNUSED,
794 arelent *reloc_entry,
795 asymbol *symbol,
796 void *data ATTRIBUTE_UNUSED,
797 asection *input_section,
798 bfd *output_bfd,
799 char **error_message ATTRIBUTE_UNUSED)
800 {
801 if (output_bfd != (bfd *) NULL
802 && (symbol->flags & BSF_SECTION_SYM) == 0
803 && (! reloc_entry->howto->partial_inplace
804 || reloc_entry->addend == 0))
805 {
806 reloc_entry->address += input_section->output_offset;
807 return bfd_reloc_ok;
808 }
809
810 if (output_bfd != NULL)
811 return bfd_reloc_continue;
812
813 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
814 return bfd_reloc_outofrange;
815
816 abort();
817 }
818
819 /* Look through the relocs for a section during the first phase.
820 Since we don't do .gots or .plts, we just need to consider the
821 virtual table relocs for gc. */
822
823 bfd_boolean
824 elf32_m68hc11_check_relocs (bfd *abfd, struct bfd_link_info *info,
825 asection *sec, const Elf_Internal_Rela *relocs)
826 {
827 Elf_Internal_Shdr * symtab_hdr;
828 struct elf_link_hash_entry ** sym_hashes;
829 const Elf_Internal_Rela * rel;
830 const Elf_Internal_Rela * rel_end;
831
832 if (info->relocatable)
833 return TRUE;
834
835 symtab_hdr = & elf_tdata (abfd)->symtab_hdr;
836 sym_hashes = elf_sym_hashes (abfd);
837 rel_end = relocs + sec->reloc_count;
838
839 for (rel = relocs; rel < rel_end; rel++)
840 {
841 struct elf_link_hash_entry * h;
842 unsigned long r_symndx;
843
844 r_symndx = ELF32_R_SYM (rel->r_info);
845
846 if (r_symndx < symtab_hdr->sh_info)
847 h = NULL;
848 else
849 {
850 h = sym_hashes [r_symndx - symtab_hdr->sh_info];
851 while (h->root.type == bfd_link_hash_indirect
852 || h->root.type == bfd_link_hash_warning)
853 h = (struct elf_link_hash_entry *) h->root.u.i.link;
854 }
855
856 switch (ELF32_R_TYPE (rel->r_info))
857 {
858 /* This relocation describes the C++ object vtable hierarchy.
859 Reconstruct it for later use during GC. */
860 case R_M68HC11_GNU_VTINHERIT:
861 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
862 return FALSE;
863 break;
864
865 /* This relocation describes which C++ vtable entries are actually
866 used. Record for later use during GC. */
867 case R_M68HC11_GNU_VTENTRY:
868 BFD_ASSERT (h != NULL);
869 if (h != NULL
870 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
871 return FALSE;
872 break;
873 }
874 }
875
876 return TRUE;
877 }
878
879 /* Relocate a 68hc11/68hc12 ELF section. */
880 bfd_boolean
881 elf32_m68hc11_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
882 struct bfd_link_info *info,
883 bfd *input_bfd, asection *input_section,
884 bfd_byte *contents, Elf_Internal_Rela *relocs,
885 Elf_Internal_Sym *local_syms,
886 asection **local_sections)
887 {
888 Elf_Internal_Shdr *symtab_hdr;
889 struct elf_link_hash_entry **sym_hashes;
890 Elf_Internal_Rela *rel, *relend;
891 const char *name = NULL;
892 struct m68hc11_page_info *pinfo;
893 const struct elf_backend_data * const ebd = get_elf_backend_data (input_bfd);
894
895 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
896 sym_hashes = elf_sym_hashes (input_bfd);
897
898 /* Get memory bank parameters. */
899 m68hc11_elf_get_bank_parameters (info);
900 pinfo = &m68hc11_elf_hash_table (info)->pinfo;
901
902 rel = relocs;
903 relend = relocs + input_section->reloc_count;
904 for (; rel < relend; rel++)
905 {
906 int r_type;
907 arelent arel;
908 reloc_howto_type *howto;
909 unsigned long r_symndx;
910 Elf_Internal_Sym *sym;
911 asection *sec;
912 bfd_vma relocation = 0;
913 bfd_reloc_status_type r = bfd_reloc_undefined;
914 bfd_vma phys_page;
915 bfd_vma phys_addr;
916 bfd_vma insn_addr;
917 bfd_vma insn_page;
918 bfd_boolean is_far = FALSE;
919 struct elf_link_hash_entry *h;
920 const char* stub_name = 0;
921
922 r_symndx = ELF32_R_SYM (rel->r_info);
923 r_type = ELF32_R_TYPE (rel->r_info);
924
925 if (r_type == R_M68HC11_GNU_VTENTRY
926 || r_type == R_M68HC11_GNU_VTINHERIT )
927 continue;
928
929 (*ebd->elf_info_to_howto_rel) (input_bfd, &arel, rel);
930 howto = arel.howto;
931
932 h = NULL;
933 sym = NULL;
934 sec = NULL;
935 if (r_symndx < symtab_hdr->sh_info)
936 {
937 sym = local_syms + r_symndx;
938 sec = local_sections[r_symndx];
939 relocation = (sec->output_section->vma
940 + sec->output_offset
941 + sym->st_value);
942 is_far = (sym && (sym->st_other & STO_M68HC12_FAR));
943 if (is_far)
944 stub_name = (bfd_elf_string_from_elf_section
945 (input_bfd, symtab_hdr->sh_link,
946 sym->st_name));
947 }
948 else
949 {
950 bfd_boolean unresolved_reloc, warned;
951
952 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
953 r_symndx, symtab_hdr, sym_hashes,
954 h, sec, relocation, unresolved_reloc,
955 warned);
956
957 is_far = (h && (h->other & STO_M68HC12_FAR));
958 stub_name = h->root.root.string;
959 }
960
961 if (sec != NULL && elf_discarded_section (sec))
962 {
963 /* For relocs against symbols from removed linkonce sections,
964 or sections discarded by a linker script, we just want the
965 section contents zeroed. Avoid any special processing. */
966 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
967 rel->r_info = 0;
968 rel->r_addend = 0;
969 continue;
970 }
971
972 if (info->relocatable)
973 {
974 /* This is a relocatable link. We don't have to change
975 anything, unless the reloc is against a section symbol,
976 in which case we have to adjust according to where the
977 section symbol winds up in the output section. */
978 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
979 rel->r_addend += sec->output_offset;
980 continue;
981 }
982
983 if (h != NULL)
984 name = h->root.root.string;
985 else
986 {
987 name = (bfd_elf_string_from_elf_section
988 (input_bfd, symtab_hdr->sh_link, sym->st_name));
989 if (name == NULL || *name == '\0')
990 name = bfd_section_name (input_bfd, sec);
991 }
992
993 if (is_far && ELF32_R_TYPE (rel->r_info) == R_M68HC11_16)
994 {
995 struct elf32_m68hc11_stub_hash_entry* stub;
996 struct m68hc11_elf_link_hash_table *htab;
997
998 htab = m68hc11_elf_hash_table (info);
999 stub = m68hc12_stub_hash_lookup (htab->stub_hash_table,
1000 name, FALSE, FALSE);
1001 if (stub)
1002 {
1003 relocation = stub->stub_offset
1004 + stub->stub_sec->output_section->vma
1005 + stub->stub_sec->output_offset;
1006 is_far = FALSE;
1007 }
1008 }
1009
1010 /* Do the memory bank mapping. */
1011 phys_addr = m68hc11_phys_addr (pinfo, relocation + rel->r_addend);
1012 phys_page = m68hc11_phys_page (pinfo, relocation + rel->r_addend);
1013 switch (r_type)
1014 {
1015 case R_M68HC11_24:
1016 /* Reloc used by 68HC12 call instruction. */
1017 bfd_put_16 (input_bfd, phys_addr,
1018 (bfd_byte*) contents + rel->r_offset);
1019 bfd_put_8 (input_bfd, phys_page,
1020 (bfd_byte*) contents + rel->r_offset + 2);
1021 r = bfd_reloc_ok;
1022 r_type = R_M68HC11_NONE;
1023 break;
1024
1025 case R_M68HC11_NONE:
1026 r = bfd_reloc_ok;
1027 break;
1028
1029 case R_M68HC11_LO16:
1030 /* Reloc generated by %addr(expr) gas to obtain the
1031 address as mapped in the memory bank window. */
1032 relocation = phys_addr;
1033 break;
1034
1035 case R_M68HC11_PAGE:
1036 /* Reloc generated by %page(expr) gas to obtain the
1037 page number associated with the address. */
1038 relocation = phys_page;
1039 break;
1040
1041 case R_M68HC11_16:
1042 /* Get virtual address of instruction having the relocation. */
1043 if (is_far)
1044 {
1045 const char* msg;
1046 char* buf;
1047 msg = _("Reference to the far symbol `%s' using a wrong "
1048 "relocation may result in incorrect execution");
1049 buf = alloca (strlen (msg) + strlen (name) + 10);
1050 sprintf (buf, msg, name);
1051
1052 (* info->callbacks->warning)
1053 (info, buf, name, input_bfd, NULL, rel->r_offset);
1054 }
1055
1056 /* Get virtual address of instruction having the relocation. */
1057 insn_addr = input_section->output_section->vma
1058 + input_section->output_offset
1059 + rel->r_offset;
1060
1061 insn_page = m68hc11_phys_page (pinfo, insn_addr);
1062
1063 if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend)
1064 && m68hc11_addr_is_banked (pinfo, insn_addr)
1065 && phys_page != insn_page)
1066 {
1067 const char* msg;
1068 char* buf;
1069
1070 msg = _("banked address [%lx:%04lx] (%lx) is not in the same bank "
1071 "as current banked address [%lx:%04lx] (%lx)");
1072
1073 buf = alloca (strlen (msg) + 128);
1074 sprintf (buf, msg, phys_page, phys_addr,
1075 (long) (relocation + rel->r_addend),
1076 insn_page, m68hc11_phys_addr (pinfo, insn_addr),
1077 (long) (insn_addr));
1078 if (!((*info->callbacks->warning)
1079 (info, buf, name, input_bfd, input_section,
1080 rel->r_offset)))
1081 return FALSE;
1082 break;
1083 }
1084 if (phys_page != 0 && insn_page == 0)
1085 {
1086 const char* msg;
1087 char* buf;
1088
1089 msg = _("reference to a banked address [%lx:%04lx] in the "
1090 "normal address space at %04lx");
1091
1092 buf = alloca (strlen (msg) + 128);
1093 sprintf (buf, msg, phys_page, phys_addr, insn_addr);
1094 if (!((*info->callbacks->warning)
1095 (info, buf, name, input_bfd, input_section,
1096 insn_addr)))
1097 return FALSE;
1098
1099 relocation = phys_addr;
1100 break;
1101 }
1102
1103 /* If this is a banked address use the phys_addr so that
1104 we stay in the banked window. */
1105 if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend))
1106 relocation = phys_addr;
1107 break;
1108 }
1109 if (r_type != R_M68HC11_NONE)
1110 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1111 contents, rel->r_offset,
1112 relocation, rel->r_addend);
1113
1114 if (r != bfd_reloc_ok)
1115 {
1116 const char * msg = (const char *) 0;
1117
1118 switch (r)
1119 {
1120 case bfd_reloc_overflow:
1121 if (!((*info->callbacks->reloc_overflow)
1122 (info, NULL, name, howto->name, (bfd_vma) 0,
1123 input_bfd, input_section, rel->r_offset)))
1124 return FALSE;
1125 break;
1126
1127 case bfd_reloc_undefined:
1128 if (!((*info->callbacks->undefined_symbol)
1129 (info, name, input_bfd, input_section,
1130 rel->r_offset, TRUE)))
1131 return FALSE;
1132 break;
1133
1134 case bfd_reloc_outofrange:
1135 msg = _ ("internal error: out of range error");
1136 goto common_error;
1137
1138 case bfd_reloc_notsupported:
1139 msg = _ ("internal error: unsupported relocation error");
1140 goto common_error;
1141
1142 case bfd_reloc_dangerous:
1143 msg = _ ("internal error: dangerous error");
1144 goto common_error;
1145
1146 default:
1147 msg = _ ("internal error: unknown error");
1148 /* fall through */
1149
1150 common_error:
1151 if (!((*info->callbacks->warning)
1152 (info, msg, name, input_bfd, input_section,
1153 rel->r_offset)))
1154 return FALSE;
1155 break;
1156 }
1157 }
1158 }
1159
1160 return TRUE;
1161 }
1162
1163
1164 \f
1165 /* Set and control ELF flags in ELF header. */
1166
1167 bfd_boolean
1168 _bfd_m68hc11_elf_set_private_flags (bfd *abfd, flagword flags)
1169 {
1170 BFD_ASSERT (!elf_flags_init (abfd)
1171 || elf_elfheader (abfd)->e_flags == flags);
1172
1173 elf_elfheader (abfd)->e_flags = flags;
1174 elf_flags_init (abfd) = TRUE;
1175 return TRUE;
1176 }
1177
1178 /* Merge backend specific data from an object file to the output
1179 object file when linking. */
1180
1181 bfd_boolean
1182 _bfd_m68hc11_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
1183 {
1184 flagword old_flags;
1185 flagword new_flags;
1186 bfd_boolean ok = TRUE;
1187
1188 /* Check if we have the same endianess */
1189 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
1190 return FALSE;
1191
1192 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1193 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1194 return TRUE;
1195
1196 new_flags = elf_elfheader (ibfd)->e_flags;
1197 elf_elfheader (obfd)->e_flags |= new_flags & EF_M68HC11_ABI;
1198 old_flags = elf_elfheader (obfd)->e_flags;
1199
1200 if (! elf_flags_init (obfd))
1201 {
1202 elf_flags_init (obfd) = TRUE;
1203 elf_elfheader (obfd)->e_flags = new_flags;
1204 elf_elfheader (obfd)->e_ident[EI_CLASS]
1205 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
1206
1207 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
1208 && bfd_get_arch_info (obfd)->the_default)
1209 {
1210 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
1211 bfd_get_mach (ibfd)))
1212 return FALSE;
1213 }
1214
1215 return TRUE;
1216 }
1217
1218 /* Check ABI compatibility. */
1219 if ((new_flags & E_M68HC11_I32) != (old_flags & E_M68HC11_I32))
1220 {
1221 (*_bfd_error_handler)
1222 (_("%B: linking files compiled for 16-bit integers (-mshort) "
1223 "and others for 32-bit integers"), ibfd);
1224 ok = FALSE;
1225 }
1226 if ((new_flags & E_M68HC11_F64) != (old_flags & E_M68HC11_F64))
1227 {
1228 (*_bfd_error_handler)
1229 (_("%B: linking files compiled for 32-bit double (-fshort-double) "
1230 "and others for 64-bit double"), ibfd);
1231 ok = FALSE;
1232 }
1233
1234 /* Processor compatibility. */
1235 if (!EF_M68HC11_CAN_MERGE_MACH (new_flags, old_flags))
1236 {
1237 (*_bfd_error_handler)
1238 (_("%B: linking files compiled for HCS12 with "
1239 "others compiled for HC12"), ibfd);
1240 ok = FALSE;
1241 }
1242 new_flags = ((new_flags & ~EF_M68HC11_MACH_MASK)
1243 | (EF_M68HC11_MERGE_MACH (new_flags, old_flags)));
1244
1245 elf_elfheader (obfd)->e_flags = new_flags;
1246
1247 new_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK);
1248 old_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK);
1249
1250 /* Warn about any other mismatches */
1251 if (new_flags != old_flags)
1252 {
1253 (*_bfd_error_handler)
1254 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
1255 ibfd, (unsigned long) new_flags, (unsigned long) old_flags);
1256 ok = FALSE;
1257 }
1258
1259 if (! ok)
1260 {
1261 bfd_set_error (bfd_error_bad_value);
1262 return FALSE;
1263 }
1264
1265 return TRUE;
1266 }
1267
1268 bfd_boolean
1269 _bfd_m68hc11_elf_print_private_bfd_data (bfd *abfd, void *ptr)
1270 {
1271 FILE *file = (FILE *) ptr;
1272
1273 BFD_ASSERT (abfd != NULL && ptr != NULL);
1274
1275 /* Print normal ELF private data. */
1276 _bfd_elf_print_private_bfd_data (abfd, ptr);
1277
1278 /* xgettext:c-format */
1279 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
1280
1281 if (elf_elfheader (abfd)->e_flags & E_M68HC11_I32)
1282 fprintf (file, _("[abi=32-bit int, "));
1283 else
1284 fprintf (file, _("[abi=16-bit int, "));
1285
1286 if (elf_elfheader (abfd)->e_flags & E_M68HC11_F64)
1287 fprintf (file, _("64-bit double, "));
1288 else
1289 fprintf (file, _("32-bit double, "));
1290
1291 if (strcmp (bfd_get_target (abfd), "elf32-m68hc11") == 0)
1292 fprintf (file, _("cpu=HC11]"));
1293 else if (elf_elfheader (abfd)->e_flags & EF_M68HCS12_MACH)
1294 fprintf (file, _("cpu=HCS12]"));
1295 else
1296 fprintf (file, _("cpu=HC12]"));
1297
1298 if (elf_elfheader (abfd)->e_flags & E_M68HC12_BANKS)
1299 fprintf (file, _(" [memory=bank-model]"));
1300 else
1301 fprintf (file, _(" [memory=flat]"));
1302
1303 fputc ('\n', file);
1304
1305 return TRUE;
1306 }
1307
1308 static void scan_sections_for_abi (bfd *abfd ATTRIBUTE_UNUSED,
1309 asection *asect, void *arg)
1310 {
1311 struct m68hc11_scan_param* p = (struct m68hc11_scan_param*) arg;
1312
1313 if (asect->vma >= p->pinfo->bank_virtual)
1314 p->use_memory_banks = TRUE;
1315 }
1316
1317 /* Tweak the OSABI field of the elf header. */
1318
1319 void
1320 elf32_m68hc11_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
1321 {
1322 struct m68hc11_scan_param param;
1323
1324 if (link_info == 0)
1325 return;
1326
1327 m68hc11_elf_get_bank_parameters (link_info);
1328
1329 param.use_memory_banks = FALSE;
1330 param.pinfo = &m68hc11_elf_hash_table (link_info)->pinfo;
1331 bfd_map_over_sections (abfd, scan_sections_for_abi, &param);
1332 if (param.use_memory_banks)
1333 {
1334 Elf_Internal_Ehdr * i_ehdrp;
1335
1336 i_ehdrp = elf_elfheader (abfd);
1337 i_ehdrp->e_flags |= E_M68HC12_BANKS;
1338 }
1339 }
1340
This page took 0.060273 seconds and 5 git commands to generate.