bfd/
[deliverable/binutils-gdb.git] / bfd / elf32-m68hc1x.c
1 /* Motorola 68HC11/HC12-specific support for 32-bit ELF
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
4 Contributed by Stephane Carrez (stcarrez@nerim.fr)
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #include "elf-bfd.h"
28 #include "elf32-m68hc1x.h"
29 #include "elf/m68hc11.h"
30 #include "opcode/m68hc11.h"
31
32
33 #define m68hc12_stub_hash_lookup(table, string, create, copy) \
34 ((struct elf32_m68hc11_stub_hash_entry *) \
35 bfd_hash_lookup ((table), (string), (create), (copy)))
36
37 static struct elf32_m68hc11_stub_hash_entry* m68hc12_add_stub
38 (const char *stub_name,
39 asection *section,
40 struct m68hc11_elf_link_hash_table *htab);
41
42 static struct bfd_hash_entry *stub_hash_newfunc
43 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
44
45 static void m68hc11_elf_set_symbol (bfd* abfd, struct bfd_link_info *info,
46 const char* name, bfd_vma value,
47 asection* sec);
48
49 static bfd_boolean m68hc11_elf_export_one_stub
50 (struct bfd_hash_entry *gen_entry, void *in_arg);
51
52 static void scan_sections_for_abi (bfd*, asection*, PTR);
53
54 struct m68hc11_scan_param
55 {
56 struct m68hc11_page_info* pinfo;
57 bfd_boolean use_memory_banks;
58 };
59
60
61 /* Create a 68HC11/68HC12 ELF linker hash table. */
62
63 struct m68hc11_elf_link_hash_table*
64 m68hc11_elf_hash_table_create (bfd *abfd)
65 {
66 struct m68hc11_elf_link_hash_table *ret;
67 bfd_size_type amt = sizeof (struct m68hc11_elf_link_hash_table);
68
69 ret = (struct m68hc11_elf_link_hash_table *) bfd_malloc (amt);
70 if (ret == (struct m68hc11_elf_link_hash_table *) NULL)
71 return NULL;
72
73 memset (ret, 0, amt);
74 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
75 _bfd_elf_link_hash_newfunc,
76 sizeof (struct elf_link_hash_entry)))
77 {
78 free (ret);
79 return NULL;
80 }
81
82 /* Init the stub hash table too. */
83 amt = sizeof (struct bfd_hash_table);
84 ret->stub_hash_table = (struct bfd_hash_table*) bfd_malloc (amt);
85 if (ret->stub_hash_table == NULL)
86 {
87 free (ret);
88 return NULL;
89 }
90 if (!bfd_hash_table_init (ret->stub_hash_table, stub_hash_newfunc,
91 sizeof (struct elf32_m68hc11_stub_hash_entry)))
92 return NULL;
93
94 ret->stub_bfd = NULL;
95 ret->stub_section = 0;
96 ret->add_stub_section = NULL;
97 ret->sym_sec.abfd = NULL;
98
99 return ret;
100 }
101
102 /* Free the derived linker hash table. */
103
104 void
105 m68hc11_elf_bfd_link_hash_table_free (struct bfd_link_hash_table *hash)
106 {
107 struct m68hc11_elf_link_hash_table *ret
108 = (struct m68hc11_elf_link_hash_table *) hash;
109
110 bfd_hash_table_free (ret->stub_hash_table);
111 free (ret->stub_hash_table);
112 _bfd_generic_link_hash_table_free (hash);
113 }
114
115 /* Assorted hash table functions. */
116
117 /* Initialize an entry in the stub hash table. */
118
119 static struct bfd_hash_entry *
120 stub_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table,
121 const char *string)
122 {
123 /* Allocate the structure if it has not already been allocated by a
124 subclass. */
125 if (entry == NULL)
126 {
127 entry = bfd_hash_allocate (table,
128 sizeof (struct elf32_m68hc11_stub_hash_entry));
129 if (entry == NULL)
130 return entry;
131 }
132
133 /* Call the allocation method of the superclass. */
134 entry = bfd_hash_newfunc (entry, table, string);
135 if (entry != NULL)
136 {
137 struct elf32_m68hc11_stub_hash_entry *eh;
138
139 /* Initialize the local fields. */
140 eh = (struct elf32_m68hc11_stub_hash_entry *) entry;
141 eh->stub_sec = NULL;
142 eh->stub_offset = 0;
143 eh->target_value = 0;
144 eh->target_section = NULL;
145 }
146
147 return entry;
148 }
149
150 /* Add a new stub entry to the stub hash. Not all fields of the new
151 stub entry are initialised. */
152
153 static struct elf32_m68hc11_stub_hash_entry *
154 m68hc12_add_stub (const char *stub_name, asection *section,
155 struct m68hc11_elf_link_hash_table *htab)
156 {
157 struct elf32_m68hc11_stub_hash_entry *stub_entry;
158
159 /* Enter this entry into the linker stub hash table. */
160 stub_entry = m68hc12_stub_hash_lookup (htab->stub_hash_table, stub_name,
161 TRUE, FALSE);
162 if (stub_entry == NULL)
163 {
164 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
165 section->owner, stub_name);
166 return NULL;
167 }
168
169 if (htab->stub_section == 0)
170 {
171 htab->stub_section = (*htab->add_stub_section) (".tramp",
172 htab->tramp_section);
173 }
174
175 stub_entry->stub_sec = htab->stub_section;
176 stub_entry->stub_offset = 0;
177 return stub_entry;
178 }
179
180 /* Hook called by the linker routine which adds symbols from an object
181 file. We use it for identify far symbols and force a loading of
182 the trampoline handler. */
183
184 bfd_boolean
185 elf32_m68hc11_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
186 Elf_Internal_Sym *sym,
187 const char **namep ATTRIBUTE_UNUSED,
188 flagword *flagsp ATTRIBUTE_UNUSED,
189 asection **secp ATTRIBUTE_UNUSED,
190 bfd_vma *valp ATTRIBUTE_UNUSED)
191 {
192 if (sym->st_other & STO_M68HC12_FAR)
193 {
194 struct elf_link_hash_entry *h;
195
196 h = (struct elf_link_hash_entry *)
197 bfd_link_hash_lookup (info->hash, "__far_trampoline",
198 FALSE, FALSE, FALSE);
199 if (h == NULL)
200 {
201 struct bfd_link_hash_entry* entry = NULL;
202
203 _bfd_generic_link_add_one_symbol (info, abfd,
204 "__far_trampoline",
205 BSF_GLOBAL,
206 bfd_und_section_ptr,
207 (bfd_vma) 0, (const char*) NULL,
208 FALSE, FALSE, &entry);
209 }
210
211 }
212 return TRUE;
213 }
214
215 /* External entry points for sizing and building linker stubs. */
216
217 /* Set up various things so that we can make a list of input sections
218 for each output section included in the link. Returns -1 on error,
219 0 when no stubs will be needed, and 1 on success. */
220
221 int
222 elf32_m68hc11_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
223 {
224 bfd *input_bfd;
225 unsigned int bfd_count;
226 int top_id, top_index;
227 asection *section;
228 asection **input_list, **list;
229 bfd_size_type amt;
230 asection *text_section;
231 struct m68hc11_elf_link_hash_table *htab;
232
233 htab = m68hc11_elf_hash_table (info);
234
235 if (htab->root.root.creator->flavour != bfd_target_elf_flavour)
236 return 0;
237
238 /* Count the number of input BFDs and find the top input section id.
239 Also search for an existing ".tramp" section so that we know
240 where generated trampolines must go. Default to ".text" if we
241 can't find it. */
242 htab->tramp_section = 0;
243 text_section = 0;
244 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
245 input_bfd != NULL;
246 input_bfd = input_bfd->link_next)
247 {
248 bfd_count += 1;
249 for (section = input_bfd->sections;
250 section != NULL;
251 section = section->next)
252 {
253 const char* name = bfd_get_section_name (input_bfd, section);
254
255 if (!strcmp (name, ".tramp"))
256 htab->tramp_section = section;
257
258 if (!strcmp (name, ".text"))
259 text_section = section;
260
261 if (top_id < section->id)
262 top_id = section->id;
263 }
264 }
265 htab->bfd_count = bfd_count;
266 if (htab->tramp_section == 0)
267 htab->tramp_section = text_section;
268
269 /* We can't use output_bfd->section_count here to find the top output
270 section index as some sections may have been removed, and
271 strip_excluded_output_sections doesn't renumber the indices. */
272 for (section = output_bfd->sections, top_index = 0;
273 section != NULL;
274 section = section->next)
275 {
276 if (top_index < section->index)
277 top_index = section->index;
278 }
279
280 htab->top_index = top_index;
281 amt = sizeof (asection *) * (top_index + 1);
282 input_list = (asection **) bfd_malloc (amt);
283 htab->input_list = input_list;
284 if (input_list == NULL)
285 return -1;
286
287 /* For sections we aren't interested in, mark their entries with a
288 value we can check later. */
289 list = input_list + top_index;
290 do
291 *list = bfd_abs_section_ptr;
292 while (list-- != input_list);
293
294 for (section = output_bfd->sections;
295 section != NULL;
296 section = section->next)
297 {
298 if ((section->flags & SEC_CODE) != 0)
299 input_list[section->index] = NULL;
300 }
301
302 return 1;
303 }
304
305 /* Determine and set the size of the stub section for a final link.
306
307 The basic idea here is to examine all the relocations looking for
308 PC-relative calls to a target that is unreachable with a "bl"
309 instruction. */
310
311 bfd_boolean
312 elf32_m68hc11_size_stubs (bfd *output_bfd, bfd *stub_bfd,
313 struct bfd_link_info *info,
314 asection * (*add_stub_section) (const char*, asection*))
315 {
316 bfd *input_bfd;
317 asection *section;
318 Elf_Internal_Sym *local_syms, **all_local_syms;
319 unsigned int bfd_indx, bfd_count;
320 bfd_size_type amt;
321 asection *stub_sec;
322
323 struct m68hc11_elf_link_hash_table *htab = m68hc11_elf_hash_table (info);
324
325 /* Stash our params away. */
326 htab->stub_bfd = stub_bfd;
327 htab->add_stub_section = add_stub_section;
328
329 /* Count the number of input BFDs and find the top input section id. */
330 for (input_bfd = info->input_bfds, bfd_count = 0;
331 input_bfd != NULL;
332 input_bfd = input_bfd->link_next)
333 {
334 bfd_count += 1;
335 }
336
337 /* We want to read in symbol extension records only once. To do this
338 we need to read in the local symbols in parallel and save them for
339 later use; so hold pointers to the local symbols in an array. */
340 amt = sizeof (Elf_Internal_Sym *) * bfd_count;
341 all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt);
342 if (all_local_syms == NULL)
343 return FALSE;
344
345 /* Walk over all the input BFDs, swapping in local symbols. */
346 for (input_bfd = info->input_bfds, bfd_indx = 0;
347 input_bfd != NULL;
348 input_bfd = input_bfd->link_next, bfd_indx++)
349 {
350 Elf_Internal_Shdr *symtab_hdr;
351
352 /* We'll need the symbol table in a second. */
353 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
354 if (symtab_hdr->sh_info == 0)
355 continue;
356
357 /* We need an array of the local symbols attached to the input bfd. */
358 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
359 if (local_syms == NULL)
360 {
361 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
362 symtab_hdr->sh_info, 0,
363 NULL, NULL, NULL);
364 /* Cache them for elf_link_input_bfd. */
365 symtab_hdr->contents = (unsigned char *) local_syms;
366 }
367 if (local_syms == NULL)
368 {
369 free (all_local_syms);
370 return FALSE;
371 }
372
373 all_local_syms[bfd_indx] = local_syms;
374 }
375
376 for (input_bfd = info->input_bfds, bfd_indx = 0;
377 input_bfd != NULL;
378 input_bfd = input_bfd->link_next, bfd_indx++)
379 {
380 Elf_Internal_Shdr *symtab_hdr;
381 Elf_Internal_Sym *local_syms;
382 struct elf_link_hash_entry ** sym_hashes;
383
384 sym_hashes = elf_sym_hashes (input_bfd);
385
386 /* We'll need the symbol table in a second. */
387 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
388 if (symtab_hdr->sh_info == 0)
389 continue;
390
391 local_syms = all_local_syms[bfd_indx];
392
393 /* Walk over each section attached to the input bfd. */
394 for (section = input_bfd->sections;
395 section != NULL;
396 section = section->next)
397 {
398 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
399
400 /* If there aren't any relocs, then there's nothing more
401 to do. */
402 if ((section->flags & SEC_RELOC) == 0
403 || section->reloc_count == 0)
404 continue;
405
406 /* If this section is a link-once section that will be
407 discarded, then don't create any stubs. */
408 if (section->output_section == NULL
409 || section->output_section->owner != output_bfd)
410 continue;
411
412 /* Get the relocs. */
413 internal_relocs
414 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
415 (Elf_Internal_Rela *) NULL,
416 info->keep_memory);
417 if (internal_relocs == NULL)
418 goto error_ret_free_local;
419
420 /* Now examine each relocation. */
421 irela = internal_relocs;
422 irelaend = irela + section->reloc_count;
423 for (; irela < irelaend; irela++)
424 {
425 unsigned int r_type, r_indx;
426 struct elf32_m68hc11_stub_hash_entry *stub_entry;
427 asection *sym_sec;
428 bfd_vma sym_value;
429 struct elf_link_hash_entry *hash;
430 const char *stub_name;
431 Elf_Internal_Sym *sym;
432
433 r_type = ELF32_R_TYPE (irela->r_info);
434
435 /* Only look at 16-bit relocs. */
436 if (r_type != (unsigned int) R_M68HC11_16)
437 continue;
438
439 /* Now determine the call target, its name, value,
440 section. */
441 r_indx = ELF32_R_SYM (irela->r_info);
442 if (r_indx < symtab_hdr->sh_info)
443 {
444 /* It's a local symbol. */
445 Elf_Internal_Shdr *hdr;
446 bfd_boolean is_far;
447
448 sym = local_syms + r_indx;
449 is_far = (sym && (sym->st_other & STO_M68HC12_FAR));
450 if (!is_far)
451 continue;
452
453 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
454 sym_sec = hdr->bfd_section;
455 stub_name = (bfd_elf_string_from_elf_section
456 (input_bfd, symtab_hdr->sh_link,
457 sym->st_name));
458 sym_value = sym->st_value;
459 hash = NULL;
460 }
461 else
462 {
463 /* It's an external symbol. */
464 int e_indx;
465
466 e_indx = r_indx - symtab_hdr->sh_info;
467 hash = (struct elf_link_hash_entry *)
468 (sym_hashes[e_indx]);
469
470 while (hash->root.type == bfd_link_hash_indirect
471 || hash->root.type == bfd_link_hash_warning)
472 hash = ((struct elf_link_hash_entry *)
473 hash->root.u.i.link);
474
475 if (hash->root.type == bfd_link_hash_defined
476 || hash->root.type == bfd_link_hash_defweak
477 || hash->root.type == bfd_link_hash_new)
478 {
479 if (!(hash->other & STO_M68HC12_FAR))
480 continue;
481 }
482 else if (hash->root.type == bfd_link_hash_undefweak)
483 {
484 continue;
485 }
486 else if (hash->root.type == bfd_link_hash_undefined)
487 {
488 continue;
489 }
490 else
491 {
492 bfd_set_error (bfd_error_bad_value);
493 goto error_ret_free_internal;
494 }
495 sym_sec = hash->root.u.def.section;
496 sym_value = hash->root.u.def.value;
497 stub_name = hash->root.root.string;
498 }
499
500 if (!stub_name)
501 goto error_ret_free_internal;
502
503 stub_entry = m68hc12_stub_hash_lookup
504 (htab->stub_hash_table,
505 stub_name,
506 FALSE, FALSE);
507 if (stub_entry == NULL)
508 {
509 if (add_stub_section == 0)
510 continue;
511
512 stub_entry = m68hc12_add_stub (stub_name, section, htab);
513 if (stub_entry == NULL)
514 {
515 error_ret_free_internal:
516 if (elf_section_data (section)->relocs == NULL)
517 free (internal_relocs);
518 goto error_ret_free_local;
519 }
520 }
521
522 stub_entry->target_value = sym_value;
523 stub_entry->target_section = sym_sec;
524 }
525
526 /* We're done with the internal relocs, free them. */
527 if (elf_section_data (section)->relocs == NULL)
528 free (internal_relocs);
529 }
530 }
531
532 if (add_stub_section)
533 {
534 /* OK, we've added some stubs. Find out the new size of the
535 stub sections. */
536 for (stub_sec = htab->stub_bfd->sections;
537 stub_sec != NULL;
538 stub_sec = stub_sec->next)
539 {
540 stub_sec->size = 0;
541 }
542
543 bfd_hash_traverse (htab->stub_hash_table, htab->size_one_stub, htab);
544 }
545 free (all_local_syms);
546 return TRUE;
547
548 error_ret_free_local:
549 free (all_local_syms);
550 return FALSE;
551 }
552
553 /* Export the trampoline addresses in the symbol table. */
554 static bfd_boolean
555 m68hc11_elf_export_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
556 {
557 struct bfd_link_info *info;
558 struct m68hc11_elf_link_hash_table *htab;
559 struct elf32_m68hc11_stub_hash_entry *stub_entry;
560 char* name;
561 bfd_boolean result;
562
563 info = (struct bfd_link_info *) in_arg;
564 htab = m68hc11_elf_hash_table (info);
565
566 /* Massage our args to the form they really have. */
567 stub_entry = (struct elf32_m68hc11_stub_hash_entry *) gen_entry;
568
569 /* Generate the trampoline according to HC11 or HC12. */
570 result = (* htab->build_one_stub) (gen_entry, in_arg);
571
572 /* Make a printable name that does not conflict with the real function. */
573 name = alloca (strlen (stub_entry->root.string) + 16);
574 sprintf (name, "tramp.%s", stub_entry->root.string);
575
576 /* Export the symbol for debugging/disassembling. */
577 m68hc11_elf_set_symbol (htab->stub_bfd, info, name,
578 stub_entry->stub_offset,
579 stub_entry->stub_sec);
580 return result;
581 }
582
583 /* Export a symbol or set its value and section. */
584 static void
585 m68hc11_elf_set_symbol (bfd *abfd, struct bfd_link_info *info,
586 const char *name, bfd_vma value, asection *sec)
587 {
588 struct elf_link_hash_entry *h;
589
590 h = (struct elf_link_hash_entry *)
591 bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
592 if (h == NULL)
593 {
594 _bfd_generic_link_add_one_symbol (info, abfd,
595 name,
596 BSF_GLOBAL,
597 sec,
598 value,
599 (const char*) NULL,
600 TRUE, FALSE, NULL);
601 }
602 else
603 {
604 h->root.type = bfd_link_hash_defined;
605 h->root.u.def.value = value;
606 h->root.u.def.section = sec;
607 }
608 }
609
610
611 /* Build all the stubs associated with the current output file. The
612 stubs are kept in a hash table attached to the main linker hash
613 table. This function is called via m68hc12elf_finish in the
614 linker. */
615
616 bfd_boolean
617 elf32_m68hc11_build_stubs (bfd *abfd, struct bfd_link_info *info)
618 {
619 asection *stub_sec;
620 struct bfd_hash_table *table;
621 struct m68hc11_elf_link_hash_table *htab;
622 struct m68hc11_scan_param param;
623
624 m68hc11_elf_get_bank_parameters (info);
625 htab = m68hc11_elf_hash_table (info);
626
627 for (stub_sec = htab->stub_bfd->sections;
628 stub_sec != NULL;
629 stub_sec = stub_sec->next)
630 {
631 bfd_size_type size;
632
633 /* Allocate memory to hold the linker stubs. */
634 size = stub_sec->size;
635 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
636 if (stub_sec->contents == NULL && size != 0)
637 return FALSE;
638 stub_sec->size = 0;
639 }
640
641 /* Build the stubs as directed by the stub hash table. */
642 table = htab->stub_hash_table;
643 bfd_hash_traverse (table, m68hc11_elf_export_one_stub, info);
644
645 /* Scan the output sections to see if we use the memory banks.
646 If so, export the symbols that define how the memory banks
647 are mapped. This is used by gdb and the simulator to obtain
648 the information. It can be used by programs to burn the eprom
649 at the good addresses. */
650 param.use_memory_banks = FALSE;
651 param.pinfo = &htab->pinfo;
652 bfd_map_over_sections (abfd, scan_sections_for_abi, &param);
653 if (param.use_memory_banks)
654 {
655 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_START_NAME,
656 htab->pinfo.bank_physical,
657 bfd_abs_section_ptr);
658 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_VIRTUAL_NAME,
659 htab->pinfo.bank_virtual,
660 bfd_abs_section_ptr);
661 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_SIZE_NAME,
662 htab->pinfo.bank_size,
663 bfd_abs_section_ptr);
664 }
665
666 return TRUE;
667 }
668
669 void
670 m68hc11_elf_get_bank_parameters (struct bfd_link_info *info)
671 {
672 unsigned i;
673 struct m68hc11_page_info *pinfo;
674 struct bfd_link_hash_entry *h;
675
676 pinfo = &m68hc11_elf_hash_table (info)->pinfo;
677 if (pinfo->bank_param_initialized)
678 return;
679
680 pinfo->bank_virtual = M68HC12_BANK_VIRT;
681 pinfo->bank_mask = M68HC12_BANK_MASK;
682 pinfo->bank_physical = M68HC12_BANK_BASE;
683 pinfo->bank_shift = M68HC12_BANK_SHIFT;
684 pinfo->bank_size = 1 << M68HC12_BANK_SHIFT;
685
686 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_START_NAME,
687 FALSE, FALSE, TRUE);
688 if (h != (struct bfd_link_hash_entry*) NULL
689 && h->type == bfd_link_hash_defined)
690 pinfo->bank_physical = (h->u.def.value
691 + h->u.def.section->output_section->vma
692 + h->u.def.section->output_offset);
693
694 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_VIRTUAL_NAME,
695 FALSE, FALSE, TRUE);
696 if (h != (struct bfd_link_hash_entry*) NULL
697 && h->type == bfd_link_hash_defined)
698 pinfo->bank_virtual = (h->u.def.value
699 + h->u.def.section->output_section->vma
700 + h->u.def.section->output_offset);
701
702 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_SIZE_NAME,
703 FALSE, FALSE, TRUE);
704 if (h != (struct bfd_link_hash_entry*) NULL
705 && h->type == bfd_link_hash_defined)
706 pinfo->bank_size = (h->u.def.value
707 + h->u.def.section->output_section->vma
708 + h->u.def.section->output_offset);
709
710 pinfo->bank_shift = 0;
711 for (i = pinfo->bank_size; i != 0; i >>= 1)
712 pinfo->bank_shift++;
713 pinfo->bank_shift--;
714 pinfo->bank_mask = (1 << pinfo->bank_shift) - 1;
715 pinfo->bank_physical_end = pinfo->bank_physical + pinfo->bank_size;
716 pinfo->bank_param_initialized = 1;
717
718 h = bfd_link_hash_lookup (info->hash, "__far_trampoline", FALSE,
719 FALSE, TRUE);
720 if (h != (struct bfd_link_hash_entry*) NULL
721 && h->type == bfd_link_hash_defined)
722 pinfo->trampoline_addr = (h->u.def.value
723 + h->u.def.section->output_section->vma
724 + h->u.def.section->output_offset);
725 }
726
727 /* Return 1 if the address is in banked memory.
728 This can be applied to a virtual address and to a physical address. */
729 int
730 m68hc11_addr_is_banked (struct m68hc11_page_info *pinfo, bfd_vma addr)
731 {
732 if (addr >= pinfo->bank_virtual)
733 return 1;
734
735 if (addr >= pinfo->bank_physical && addr <= pinfo->bank_physical_end)
736 return 1;
737
738 return 0;
739 }
740
741 /* Return the physical address seen by the processor, taking
742 into account banked memory. */
743 bfd_vma
744 m68hc11_phys_addr (struct m68hc11_page_info *pinfo, bfd_vma addr)
745 {
746 if (addr < pinfo->bank_virtual)
747 return addr;
748
749 /* Map the address to the memory bank. */
750 addr -= pinfo->bank_virtual;
751 addr &= pinfo->bank_mask;
752 addr += pinfo->bank_physical;
753 return addr;
754 }
755
756 /* Return the page number corresponding to an address in banked memory. */
757 bfd_vma
758 m68hc11_phys_page (struct m68hc11_page_info *pinfo, bfd_vma addr)
759 {
760 if (addr < pinfo->bank_virtual)
761 return 0;
762
763 /* Map the address to the memory bank. */
764 addr -= pinfo->bank_virtual;
765 addr >>= pinfo->bank_shift;
766 addr &= 0x0ff;
767 return addr;
768 }
769
770 /* This function is used for relocs which are only used for relaxing,
771 which the linker should otherwise ignore. */
772
773 bfd_reloc_status_type
774 m68hc11_elf_ignore_reloc (bfd *abfd ATTRIBUTE_UNUSED,
775 arelent *reloc_entry,
776 asymbol *symbol ATTRIBUTE_UNUSED,
777 void *data ATTRIBUTE_UNUSED,
778 asection *input_section,
779 bfd *output_bfd,
780 char **error_message ATTRIBUTE_UNUSED)
781 {
782 if (output_bfd != NULL)
783 reloc_entry->address += input_section->output_offset;
784 return bfd_reloc_ok;
785 }
786
787 bfd_reloc_status_type
788 m68hc11_elf_special_reloc (bfd *abfd ATTRIBUTE_UNUSED,
789 arelent *reloc_entry,
790 asymbol *symbol,
791 void *data ATTRIBUTE_UNUSED,
792 asection *input_section,
793 bfd *output_bfd,
794 char **error_message ATTRIBUTE_UNUSED)
795 {
796 if (output_bfd != (bfd *) NULL
797 && (symbol->flags & BSF_SECTION_SYM) == 0
798 && (! reloc_entry->howto->partial_inplace
799 || reloc_entry->addend == 0))
800 {
801 reloc_entry->address += input_section->output_offset;
802 return bfd_reloc_ok;
803 }
804
805 if (output_bfd != NULL)
806 return bfd_reloc_continue;
807
808 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
809 return bfd_reloc_outofrange;
810
811 abort();
812 }
813
814 /* Look through the relocs for a section during the first phase.
815 Since we don't do .gots or .plts, we just need to consider the
816 virtual table relocs for gc. */
817
818 bfd_boolean
819 elf32_m68hc11_check_relocs (bfd *abfd, struct bfd_link_info *info,
820 asection *sec, const Elf_Internal_Rela *relocs)
821 {
822 Elf_Internal_Shdr * symtab_hdr;
823 struct elf_link_hash_entry ** sym_hashes;
824 struct elf_link_hash_entry ** sym_hashes_end;
825 const Elf_Internal_Rela * rel;
826 const Elf_Internal_Rela * rel_end;
827
828 if (info->relocatable)
829 return TRUE;
830
831 symtab_hdr = & elf_tdata (abfd)->symtab_hdr;
832 sym_hashes = elf_sym_hashes (abfd);
833 sym_hashes_end = sym_hashes + symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
834 if (!elf_bad_symtab (abfd))
835 sym_hashes_end -= symtab_hdr->sh_info;
836
837 rel_end = relocs + sec->reloc_count;
838
839 for (rel = relocs; rel < rel_end; rel++)
840 {
841 struct elf_link_hash_entry * h;
842 unsigned long r_symndx;
843
844 r_symndx = ELF32_R_SYM (rel->r_info);
845
846 if (r_symndx < symtab_hdr->sh_info)
847 h = NULL;
848 else
849 {
850 h = sym_hashes [r_symndx - symtab_hdr->sh_info];
851 while (h->root.type == bfd_link_hash_indirect
852 || h->root.type == bfd_link_hash_warning)
853 h = (struct elf_link_hash_entry *) h->root.u.i.link;
854 }
855
856 switch (ELF32_R_TYPE (rel->r_info))
857 {
858 /* This relocation describes the C++ object vtable hierarchy.
859 Reconstruct it for later use during GC. */
860 case R_M68HC11_GNU_VTINHERIT:
861 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
862 return FALSE;
863 break;
864
865 /* This relocation describes which C++ vtable entries are actually
866 used. Record for later use during GC. */
867 case R_M68HC11_GNU_VTENTRY:
868 BFD_ASSERT (h != NULL);
869 if (h != NULL
870 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
871 return FALSE;
872 break;
873 }
874 }
875
876 return TRUE;
877 }
878
879 /* Relocate a 68hc11/68hc12 ELF section. */
880 bfd_boolean
881 elf32_m68hc11_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
882 struct bfd_link_info *info,
883 bfd *input_bfd, asection *input_section,
884 bfd_byte *contents, Elf_Internal_Rela *relocs,
885 Elf_Internal_Sym *local_syms,
886 asection **local_sections)
887 {
888 Elf_Internal_Shdr *symtab_hdr;
889 struct elf_link_hash_entry **sym_hashes;
890 Elf_Internal_Rela *rel, *relend;
891 const char *name = NULL;
892 struct m68hc11_page_info *pinfo;
893 const struct elf_backend_data * const ebd = get_elf_backend_data (input_bfd);
894
895 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
896 sym_hashes = elf_sym_hashes (input_bfd);
897
898 /* Get memory bank parameters. */
899 m68hc11_elf_get_bank_parameters (info);
900 pinfo = &m68hc11_elf_hash_table (info)->pinfo;
901
902 rel = relocs;
903 relend = relocs + input_section->reloc_count;
904 for (; rel < relend; rel++)
905 {
906 int r_type;
907 arelent arel;
908 reloc_howto_type *howto;
909 unsigned long r_symndx;
910 Elf_Internal_Sym *sym;
911 asection *sec;
912 bfd_vma relocation = 0;
913 bfd_reloc_status_type r = bfd_reloc_undefined;
914 bfd_vma phys_page;
915 bfd_vma phys_addr;
916 bfd_vma insn_addr;
917 bfd_vma insn_page;
918 bfd_boolean is_far = FALSE;
919 struct elf_link_hash_entry *h;
920 const char* stub_name = 0;
921
922 r_symndx = ELF32_R_SYM (rel->r_info);
923 r_type = ELF32_R_TYPE (rel->r_info);
924
925 if (r_type == R_M68HC11_GNU_VTENTRY
926 || r_type == R_M68HC11_GNU_VTINHERIT )
927 continue;
928
929 (*ebd->elf_info_to_howto_rel) (input_bfd, &arel, rel);
930 howto = arel.howto;
931
932 h = NULL;
933 sym = NULL;
934 sec = NULL;
935 if (r_symndx < symtab_hdr->sh_info)
936 {
937 sym = local_syms + r_symndx;
938 sec = local_sections[r_symndx];
939 relocation = (sec->output_section->vma
940 + sec->output_offset
941 + sym->st_value);
942 is_far = (sym && (sym->st_other & STO_M68HC12_FAR));
943 if (is_far)
944 stub_name = (bfd_elf_string_from_elf_section
945 (input_bfd, symtab_hdr->sh_link,
946 sym->st_name));
947 }
948 else
949 {
950 bfd_boolean unresolved_reloc, warned;
951
952 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
953 r_symndx, symtab_hdr, sym_hashes,
954 h, sec, relocation, unresolved_reloc,
955 warned);
956
957 is_far = (h && (h->other & STO_M68HC12_FAR));
958 stub_name = h->root.root.string;
959 }
960
961 if (sec != NULL && elf_discarded_section (sec))
962 {
963 /* For relocs against symbols from removed linkonce sections,
964 or sections discarded by a linker script, we just want the
965 section contents zeroed. Avoid any special processing. */
966 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
967 rel->r_info = 0;
968 rel->r_addend = 0;
969 continue;
970 }
971
972 if (info->relocatable)
973 {
974 /* This is a relocatable link. We don't have to change
975 anything, unless the reloc is against a section symbol,
976 in which case we have to adjust according to where the
977 section symbol winds up in the output section. */
978 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
979 rel->r_addend += sec->output_offset;
980 continue;
981 }
982
983 if (h != NULL)
984 name = h->root.root.string;
985 else
986 {
987 name = (bfd_elf_string_from_elf_section
988 (input_bfd, symtab_hdr->sh_link, sym->st_name));
989 if (name == NULL || *name == '\0')
990 name = bfd_section_name (input_bfd, sec);
991 }
992
993 if (is_far && ELF32_R_TYPE (rel->r_info) == R_M68HC11_16)
994 {
995 struct elf32_m68hc11_stub_hash_entry* stub;
996 struct m68hc11_elf_link_hash_table *htab;
997
998 htab = m68hc11_elf_hash_table (info);
999 stub = m68hc12_stub_hash_lookup (htab->stub_hash_table,
1000 name, FALSE, FALSE);
1001 if (stub)
1002 {
1003 relocation = stub->stub_offset
1004 + stub->stub_sec->output_section->vma
1005 + stub->stub_sec->output_offset;
1006 is_far = FALSE;
1007 }
1008 }
1009
1010 /* Do the memory bank mapping. */
1011 phys_addr = m68hc11_phys_addr (pinfo, relocation + rel->r_addend);
1012 phys_page = m68hc11_phys_page (pinfo, relocation + rel->r_addend);
1013 switch (r_type)
1014 {
1015 case R_M68HC11_24:
1016 /* Reloc used by 68HC12 call instruction. */
1017 bfd_put_16 (input_bfd, phys_addr,
1018 (bfd_byte*) contents + rel->r_offset);
1019 bfd_put_8 (input_bfd, phys_page,
1020 (bfd_byte*) contents + rel->r_offset + 2);
1021 r = bfd_reloc_ok;
1022 r_type = R_M68HC11_NONE;
1023 break;
1024
1025 case R_M68HC11_NONE:
1026 r = bfd_reloc_ok;
1027 break;
1028
1029 case R_M68HC11_LO16:
1030 /* Reloc generated by %addr(expr) gas to obtain the
1031 address as mapped in the memory bank window. */
1032 relocation = phys_addr;
1033 break;
1034
1035 case R_M68HC11_PAGE:
1036 /* Reloc generated by %page(expr) gas to obtain the
1037 page number associated with the address. */
1038 relocation = phys_page;
1039 break;
1040
1041 case R_M68HC11_16:
1042 /* Get virtual address of instruction having the relocation. */
1043 if (is_far)
1044 {
1045 const char* msg;
1046 char* buf;
1047 msg = _("Reference to the far symbol `%s' using a wrong "
1048 "relocation may result in incorrect execution");
1049 buf = alloca (strlen (msg) + strlen (name) + 10);
1050 sprintf (buf, msg, name);
1051
1052 (* info->callbacks->warning)
1053 (info, buf, name, input_bfd, NULL, rel->r_offset);
1054 }
1055
1056 /* Get virtual address of instruction having the relocation. */
1057 insn_addr = input_section->output_section->vma
1058 + input_section->output_offset
1059 + rel->r_offset;
1060
1061 insn_page = m68hc11_phys_page (pinfo, insn_addr);
1062
1063 if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend)
1064 && m68hc11_addr_is_banked (pinfo, insn_addr)
1065 && phys_page != insn_page)
1066 {
1067 const char* msg;
1068 char* buf;
1069
1070 msg = _("banked address [%lx:%04lx] (%lx) is not in the same bank "
1071 "as current banked address [%lx:%04lx] (%lx)");
1072
1073 buf = alloca (strlen (msg) + 128);
1074 sprintf (buf, msg, phys_page, phys_addr,
1075 (long) (relocation + rel->r_addend),
1076 insn_page, m68hc11_phys_addr (pinfo, insn_addr),
1077 (long) (insn_addr));
1078 if (!((*info->callbacks->warning)
1079 (info, buf, name, input_bfd, input_section,
1080 rel->r_offset)))
1081 return FALSE;
1082 break;
1083 }
1084 if (phys_page != 0 && insn_page == 0)
1085 {
1086 const char* msg;
1087 char* buf;
1088
1089 msg = _("reference to a banked address [%lx:%04lx] in the "
1090 "normal address space at %04lx");
1091
1092 buf = alloca (strlen (msg) + 128);
1093 sprintf (buf, msg, phys_page, phys_addr, insn_addr);
1094 if (!((*info->callbacks->warning)
1095 (info, buf, name, input_bfd, input_section,
1096 insn_addr)))
1097 return FALSE;
1098
1099 relocation = phys_addr;
1100 break;
1101 }
1102
1103 /* If this is a banked address use the phys_addr so that
1104 we stay in the banked window. */
1105 if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend))
1106 relocation = phys_addr;
1107 break;
1108 }
1109 if (r_type != R_M68HC11_NONE)
1110 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1111 contents, rel->r_offset,
1112 relocation, rel->r_addend);
1113
1114 if (r != bfd_reloc_ok)
1115 {
1116 const char * msg = (const char *) 0;
1117
1118 switch (r)
1119 {
1120 case bfd_reloc_overflow:
1121 if (!((*info->callbacks->reloc_overflow)
1122 (info, NULL, name, howto->name, (bfd_vma) 0,
1123 input_bfd, input_section, rel->r_offset)))
1124 return FALSE;
1125 break;
1126
1127 case bfd_reloc_undefined:
1128 if (!((*info->callbacks->undefined_symbol)
1129 (info, name, input_bfd, input_section,
1130 rel->r_offset, TRUE)))
1131 return FALSE;
1132 break;
1133
1134 case bfd_reloc_outofrange:
1135 msg = _ ("internal error: out of range error");
1136 goto common_error;
1137
1138 case bfd_reloc_notsupported:
1139 msg = _ ("internal error: unsupported relocation error");
1140 goto common_error;
1141
1142 case bfd_reloc_dangerous:
1143 msg = _ ("internal error: dangerous error");
1144 goto common_error;
1145
1146 default:
1147 msg = _ ("internal error: unknown error");
1148 /* fall through */
1149
1150 common_error:
1151 if (!((*info->callbacks->warning)
1152 (info, msg, name, input_bfd, input_section,
1153 rel->r_offset)))
1154 return FALSE;
1155 break;
1156 }
1157 }
1158 }
1159
1160 return TRUE;
1161 }
1162
1163
1164 \f
1165 /* Set and control ELF flags in ELF header. */
1166
1167 bfd_boolean
1168 _bfd_m68hc11_elf_set_private_flags (bfd *abfd, flagword flags)
1169 {
1170 BFD_ASSERT (!elf_flags_init (abfd)
1171 || elf_elfheader (abfd)->e_flags == flags);
1172
1173 elf_elfheader (abfd)->e_flags = flags;
1174 elf_flags_init (abfd) = TRUE;
1175 return TRUE;
1176 }
1177
1178 /* Merge backend specific data from an object file to the output
1179 object file when linking. */
1180
1181 bfd_boolean
1182 _bfd_m68hc11_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
1183 {
1184 flagword old_flags;
1185 flagword new_flags;
1186 bfd_boolean ok = TRUE;
1187
1188 /* Check if we have the same endianess */
1189 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
1190 return FALSE;
1191
1192 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1193 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1194 return TRUE;
1195
1196 new_flags = elf_elfheader (ibfd)->e_flags;
1197 elf_elfheader (obfd)->e_flags |= new_flags & EF_M68HC11_ABI;
1198 old_flags = elf_elfheader (obfd)->e_flags;
1199
1200 if (! elf_flags_init (obfd))
1201 {
1202 elf_flags_init (obfd) = TRUE;
1203 elf_elfheader (obfd)->e_flags = new_flags;
1204 elf_elfheader (obfd)->e_ident[EI_CLASS]
1205 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
1206
1207 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
1208 && bfd_get_arch_info (obfd)->the_default)
1209 {
1210 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
1211 bfd_get_mach (ibfd)))
1212 return FALSE;
1213 }
1214
1215 return TRUE;
1216 }
1217
1218 /* Check ABI compatibility. */
1219 if ((new_flags & E_M68HC11_I32) != (old_flags & E_M68HC11_I32))
1220 {
1221 (*_bfd_error_handler)
1222 (_("%B: linking files compiled for 16-bit integers (-mshort) "
1223 "and others for 32-bit integers"), ibfd);
1224 ok = FALSE;
1225 }
1226 if ((new_flags & E_M68HC11_F64) != (old_flags & E_M68HC11_F64))
1227 {
1228 (*_bfd_error_handler)
1229 (_("%B: linking files compiled for 32-bit double (-fshort-double) "
1230 "and others for 64-bit double"), ibfd);
1231 ok = FALSE;
1232 }
1233
1234 /* Processor compatibility. */
1235 if (!EF_M68HC11_CAN_MERGE_MACH (new_flags, old_flags))
1236 {
1237 (*_bfd_error_handler)
1238 (_("%B: linking files compiled for HCS12 with "
1239 "others compiled for HC12"), ibfd);
1240 ok = FALSE;
1241 }
1242 new_flags = ((new_flags & ~EF_M68HC11_MACH_MASK)
1243 | (EF_M68HC11_MERGE_MACH (new_flags, old_flags)));
1244
1245 elf_elfheader (obfd)->e_flags = new_flags;
1246
1247 new_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK);
1248 old_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK);
1249
1250 /* Warn about any other mismatches */
1251 if (new_flags != old_flags)
1252 {
1253 (*_bfd_error_handler)
1254 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
1255 ibfd, (unsigned long) new_flags, (unsigned long) old_flags);
1256 ok = FALSE;
1257 }
1258
1259 if (! ok)
1260 {
1261 bfd_set_error (bfd_error_bad_value);
1262 return FALSE;
1263 }
1264
1265 return TRUE;
1266 }
1267
1268 bfd_boolean
1269 _bfd_m68hc11_elf_print_private_bfd_data (bfd *abfd, void *ptr)
1270 {
1271 FILE *file = (FILE *) ptr;
1272
1273 BFD_ASSERT (abfd != NULL && ptr != NULL);
1274
1275 /* Print normal ELF private data. */
1276 _bfd_elf_print_private_bfd_data (abfd, ptr);
1277
1278 /* xgettext:c-format */
1279 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
1280
1281 if (elf_elfheader (abfd)->e_flags & E_M68HC11_I32)
1282 fprintf (file, _("[abi=32-bit int, "));
1283 else
1284 fprintf (file, _("[abi=16-bit int, "));
1285
1286 if (elf_elfheader (abfd)->e_flags & E_M68HC11_F64)
1287 fprintf (file, _("64-bit double, "));
1288 else
1289 fprintf (file, _("32-bit double, "));
1290
1291 if (strcmp (bfd_get_target (abfd), "elf32-m68hc11") == 0)
1292 fprintf (file, _("cpu=HC11]"));
1293 else if (elf_elfheader (abfd)->e_flags & EF_M68HCS12_MACH)
1294 fprintf (file, _("cpu=HCS12]"));
1295 else
1296 fprintf (file, _("cpu=HC12]"));
1297
1298 if (elf_elfheader (abfd)->e_flags & E_M68HC12_BANKS)
1299 fprintf (file, _(" [memory=bank-model]"));
1300 else
1301 fprintf (file, _(" [memory=flat]"));
1302
1303 fputc ('\n', file);
1304
1305 return TRUE;
1306 }
1307
1308 static void scan_sections_for_abi (bfd *abfd ATTRIBUTE_UNUSED,
1309 asection *asect, void *arg)
1310 {
1311 struct m68hc11_scan_param* p = (struct m68hc11_scan_param*) arg;
1312
1313 if (asect->vma >= p->pinfo->bank_virtual)
1314 p->use_memory_banks = TRUE;
1315 }
1316
1317 /* Tweak the OSABI field of the elf header. */
1318
1319 void
1320 elf32_m68hc11_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
1321 {
1322 struct m68hc11_scan_param param;
1323
1324 if (link_info == 0)
1325 return;
1326
1327 m68hc11_elf_get_bank_parameters (link_info);
1328
1329 param.use_memory_banks = FALSE;
1330 param.pinfo = &m68hc11_elf_hash_table (link_info)->pinfo;
1331 bfd_map_over_sections (abfd, scan_sections_for_abi, &param);
1332 if (param.use_memory_banks)
1333 {
1334 Elf_Internal_Ehdr * i_ehdrp;
1335
1336 i_ehdrp = elf_elfheader (abfd);
1337 i_ehdrp->e_flags |= E_M68HC12_BANKS;
1338 }
1339 }
1340
This page took 0.068657 seconds and 5 git commands to generate.