Complain about mbind, ifunc, and unique in final_write
[deliverable/binutils-gdb.git] / bfd / elf32-m68k.c
1 /* Motorola 68k series support for 32-bit ELF
2 Copyright (C) 1993-2019 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf/m68k.h"
27 #include "opcode/m68k.h"
28
29 static bfd_boolean
30 elf_m68k_discard_copies (struct elf_link_hash_entry *, void *);
31
32 static reloc_howto_type howto_table[] =
33 {
34 HOWTO(R_68K_NONE, 0, 3, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_NONE", FALSE, 0, 0x00000000,FALSE),
35 HOWTO(R_68K_32, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_32", FALSE, 0, 0xffffffff,FALSE),
36 HOWTO(R_68K_16, 0, 1,16, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_16", FALSE, 0, 0x0000ffff,FALSE),
37 HOWTO(R_68K_8, 0, 0, 8, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_8", FALSE, 0, 0x000000ff,FALSE),
38 HOWTO(R_68K_PC32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PC32", FALSE, 0, 0xffffffff,TRUE),
39 HOWTO(R_68K_PC16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC16", FALSE, 0, 0x0000ffff,TRUE),
40 HOWTO(R_68K_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC8", FALSE, 0, 0x000000ff,TRUE),
41 HOWTO(R_68K_GOT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32", FALSE, 0, 0xffffffff,TRUE),
42 HOWTO(R_68K_GOT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16", FALSE, 0, 0x0000ffff,TRUE),
43 HOWTO(R_68K_GOT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8", FALSE, 0, 0x000000ff,TRUE),
44 HOWTO(R_68K_GOT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32O", FALSE, 0, 0xffffffff,FALSE),
45 HOWTO(R_68K_GOT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16O", FALSE, 0, 0x0000ffff,FALSE),
46 HOWTO(R_68K_GOT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8O", FALSE, 0, 0x000000ff,FALSE),
47 HOWTO(R_68K_PLT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32", FALSE, 0, 0xffffffff,TRUE),
48 HOWTO(R_68K_PLT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16", FALSE, 0, 0x0000ffff,TRUE),
49 HOWTO(R_68K_PLT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8", FALSE, 0, 0x000000ff,TRUE),
50 HOWTO(R_68K_PLT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32O", FALSE, 0, 0xffffffff,FALSE),
51 HOWTO(R_68K_PLT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16O", FALSE, 0, 0x0000ffff,FALSE),
52 HOWTO(R_68K_PLT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8O", FALSE, 0, 0x000000ff,FALSE),
53 HOWTO(R_68K_COPY, 0, 0, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_COPY", FALSE, 0, 0xffffffff,FALSE),
54 HOWTO(R_68K_GLOB_DAT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_GLOB_DAT", FALSE, 0, 0xffffffff,FALSE),
55 HOWTO(R_68K_JMP_SLOT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_JMP_SLOT", FALSE, 0, 0xffffffff,FALSE),
56 HOWTO(R_68K_RELATIVE, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_RELATIVE", FALSE, 0, 0xffffffff,FALSE),
57 /* GNU extension to record C++ vtable hierarchy. */
58 HOWTO (R_68K_GNU_VTINHERIT, /* type */
59 0, /* rightshift */
60 2, /* size (0 = byte, 1 = short, 2 = long) */
61 0, /* bitsize */
62 FALSE, /* pc_relative */
63 0, /* bitpos */
64 complain_overflow_dont, /* complain_on_overflow */
65 NULL, /* special_function */
66 "R_68K_GNU_VTINHERIT", /* name */
67 FALSE, /* partial_inplace */
68 0, /* src_mask */
69 0, /* dst_mask */
70 FALSE),
71 /* GNU extension to record C++ vtable member usage. */
72 HOWTO (R_68K_GNU_VTENTRY, /* type */
73 0, /* rightshift */
74 2, /* size (0 = byte, 1 = short, 2 = long) */
75 0, /* bitsize */
76 FALSE, /* pc_relative */
77 0, /* bitpos */
78 complain_overflow_dont, /* complain_on_overflow */
79 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
80 "R_68K_GNU_VTENTRY", /* name */
81 FALSE, /* partial_inplace */
82 0, /* src_mask */
83 0, /* dst_mask */
84 FALSE),
85
86 /* TLS general dynamic variable reference. */
87 HOWTO (R_68K_TLS_GD32, /* type */
88 0, /* rightshift */
89 2, /* size (0 = byte, 1 = short, 2 = long) */
90 32, /* bitsize */
91 FALSE, /* pc_relative */
92 0, /* bitpos */
93 complain_overflow_bitfield, /* complain_on_overflow */
94 bfd_elf_generic_reloc, /* special_function */
95 "R_68K_TLS_GD32", /* name */
96 FALSE, /* partial_inplace */
97 0, /* src_mask */
98 0xffffffff, /* dst_mask */
99 FALSE), /* pcrel_offset */
100
101 HOWTO (R_68K_TLS_GD16, /* type */
102 0, /* rightshift */
103 1, /* size (0 = byte, 1 = short, 2 = long) */
104 16, /* bitsize */
105 FALSE, /* pc_relative */
106 0, /* bitpos */
107 complain_overflow_signed, /* complain_on_overflow */
108 bfd_elf_generic_reloc, /* special_function */
109 "R_68K_TLS_GD16", /* name */
110 FALSE, /* partial_inplace */
111 0, /* src_mask */
112 0x0000ffff, /* dst_mask */
113 FALSE), /* pcrel_offset */
114
115 HOWTO (R_68K_TLS_GD8, /* type */
116 0, /* rightshift */
117 0, /* size (0 = byte, 1 = short, 2 = long) */
118 8, /* bitsize */
119 FALSE, /* pc_relative */
120 0, /* bitpos */
121 complain_overflow_signed, /* complain_on_overflow */
122 bfd_elf_generic_reloc, /* special_function */
123 "R_68K_TLS_GD8", /* name */
124 FALSE, /* partial_inplace */
125 0, /* src_mask */
126 0x000000ff, /* dst_mask */
127 FALSE), /* pcrel_offset */
128
129 /* TLS local dynamic variable reference. */
130 HOWTO (R_68K_TLS_LDM32, /* type */
131 0, /* rightshift */
132 2, /* size (0 = byte, 1 = short, 2 = long) */
133 32, /* bitsize */
134 FALSE, /* pc_relative */
135 0, /* bitpos */
136 complain_overflow_bitfield, /* complain_on_overflow */
137 bfd_elf_generic_reloc, /* special_function */
138 "R_68K_TLS_LDM32", /* name */
139 FALSE, /* partial_inplace */
140 0, /* src_mask */
141 0xffffffff, /* dst_mask */
142 FALSE), /* pcrel_offset */
143
144 HOWTO (R_68K_TLS_LDM16, /* type */
145 0, /* rightshift */
146 1, /* size (0 = byte, 1 = short, 2 = long) */
147 16, /* bitsize */
148 FALSE, /* pc_relative */
149 0, /* bitpos */
150 complain_overflow_signed, /* complain_on_overflow */
151 bfd_elf_generic_reloc, /* special_function */
152 "R_68K_TLS_LDM16", /* name */
153 FALSE, /* partial_inplace */
154 0, /* src_mask */
155 0x0000ffff, /* dst_mask */
156 FALSE), /* pcrel_offset */
157
158 HOWTO (R_68K_TLS_LDM8, /* type */
159 0, /* rightshift */
160 0, /* size (0 = byte, 1 = short, 2 = long) */
161 8, /* bitsize */
162 FALSE, /* pc_relative */
163 0, /* bitpos */
164 complain_overflow_signed, /* complain_on_overflow */
165 bfd_elf_generic_reloc, /* special_function */
166 "R_68K_TLS_LDM8", /* name */
167 FALSE, /* partial_inplace */
168 0, /* src_mask */
169 0x000000ff, /* dst_mask */
170 FALSE), /* pcrel_offset */
171
172 HOWTO (R_68K_TLS_LDO32, /* type */
173 0, /* rightshift */
174 2, /* size (0 = byte, 1 = short, 2 = long) */
175 32, /* bitsize */
176 FALSE, /* pc_relative */
177 0, /* bitpos */
178 complain_overflow_bitfield, /* complain_on_overflow */
179 bfd_elf_generic_reloc, /* special_function */
180 "R_68K_TLS_LDO32", /* name */
181 FALSE, /* partial_inplace */
182 0, /* src_mask */
183 0xffffffff, /* dst_mask */
184 FALSE), /* pcrel_offset */
185
186 HOWTO (R_68K_TLS_LDO16, /* type */
187 0, /* rightshift */
188 1, /* size (0 = byte, 1 = short, 2 = long) */
189 16, /* bitsize */
190 FALSE, /* pc_relative */
191 0, /* bitpos */
192 complain_overflow_signed, /* complain_on_overflow */
193 bfd_elf_generic_reloc, /* special_function */
194 "R_68K_TLS_LDO16", /* name */
195 FALSE, /* partial_inplace */
196 0, /* src_mask */
197 0x0000ffff, /* dst_mask */
198 FALSE), /* pcrel_offset */
199
200 HOWTO (R_68K_TLS_LDO8, /* type */
201 0, /* rightshift */
202 0, /* size (0 = byte, 1 = short, 2 = long) */
203 8, /* bitsize */
204 FALSE, /* pc_relative */
205 0, /* bitpos */
206 complain_overflow_signed, /* complain_on_overflow */
207 bfd_elf_generic_reloc, /* special_function */
208 "R_68K_TLS_LDO8", /* name */
209 FALSE, /* partial_inplace */
210 0, /* src_mask */
211 0x000000ff, /* dst_mask */
212 FALSE), /* pcrel_offset */
213
214 /* TLS initial execution variable reference. */
215 HOWTO (R_68K_TLS_IE32, /* type */
216 0, /* rightshift */
217 2, /* size (0 = byte, 1 = short, 2 = long) */
218 32, /* bitsize */
219 FALSE, /* pc_relative */
220 0, /* bitpos */
221 complain_overflow_bitfield, /* complain_on_overflow */
222 bfd_elf_generic_reloc, /* special_function */
223 "R_68K_TLS_IE32", /* name */
224 FALSE, /* partial_inplace */
225 0, /* src_mask */
226 0xffffffff, /* dst_mask */
227 FALSE), /* pcrel_offset */
228
229 HOWTO (R_68K_TLS_IE16, /* type */
230 0, /* rightshift */
231 1, /* size (0 = byte, 1 = short, 2 = long) */
232 16, /* bitsize */
233 FALSE, /* pc_relative */
234 0, /* bitpos */
235 complain_overflow_signed, /* complain_on_overflow */
236 bfd_elf_generic_reloc, /* special_function */
237 "R_68K_TLS_IE16", /* name */
238 FALSE, /* partial_inplace */
239 0, /* src_mask */
240 0x0000ffff, /* dst_mask */
241 FALSE), /* pcrel_offset */
242
243 HOWTO (R_68K_TLS_IE8, /* type */
244 0, /* rightshift */
245 0, /* size (0 = byte, 1 = short, 2 = long) */
246 8, /* bitsize */
247 FALSE, /* pc_relative */
248 0, /* bitpos */
249 complain_overflow_signed, /* complain_on_overflow */
250 bfd_elf_generic_reloc, /* special_function */
251 "R_68K_TLS_IE8", /* name */
252 FALSE, /* partial_inplace */
253 0, /* src_mask */
254 0x000000ff, /* dst_mask */
255 FALSE), /* pcrel_offset */
256
257 /* TLS local execution variable reference. */
258 HOWTO (R_68K_TLS_LE32, /* type */
259 0, /* rightshift */
260 2, /* size (0 = byte, 1 = short, 2 = long) */
261 32, /* bitsize */
262 FALSE, /* pc_relative */
263 0, /* bitpos */
264 complain_overflow_bitfield, /* complain_on_overflow */
265 bfd_elf_generic_reloc, /* special_function */
266 "R_68K_TLS_LE32", /* name */
267 FALSE, /* partial_inplace */
268 0, /* src_mask */
269 0xffffffff, /* dst_mask */
270 FALSE), /* pcrel_offset */
271
272 HOWTO (R_68K_TLS_LE16, /* type */
273 0, /* rightshift */
274 1, /* size (0 = byte, 1 = short, 2 = long) */
275 16, /* bitsize */
276 FALSE, /* pc_relative */
277 0, /* bitpos */
278 complain_overflow_signed, /* complain_on_overflow */
279 bfd_elf_generic_reloc, /* special_function */
280 "R_68K_TLS_LE16", /* name */
281 FALSE, /* partial_inplace */
282 0, /* src_mask */
283 0x0000ffff, /* dst_mask */
284 FALSE), /* pcrel_offset */
285
286 HOWTO (R_68K_TLS_LE8, /* type */
287 0, /* rightshift */
288 0, /* size (0 = byte, 1 = short, 2 = long) */
289 8, /* bitsize */
290 FALSE, /* pc_relative */
291 0, /* bitpos */
292 complain_overflow_signed, /* complain_on_overflow */
293 bfd_elf_generic_reloc, /* special_function */
294 "R_68K_TLS_LE8", /* name */
295 FALSE, /* partial_inplace */
296 0, /* src_mask */
297 0x000000ff, /* dst_mask */
298 FALSE), /* pcrel_offset */
299
300 /* TLS GD/LD dynamic relocations. */
301 HOWTO (R_68K_TLS_DTPMOD32, /* type */
302 0, /* rightshift */
303 2, /* size (0 = byte, 1 = short, 2 = long) */
304 32, /* bitsize */
305 FALSE, /* pc_relative */
306 0, /* bitpos */
307 complain_overflow_dont, /* complain_on_overflow */
308 bfd_elf_generic_reloc, /* special_function */
309 "R_68K_TLS_DTPMOD32", /* name */
310 FALSE, /* partial_inplace */
311 0, /* src_mask */
312 0xffffffff, /* dst_mask */
313 FALSE), /* pcrel_offset */
314
315 HOWTO (R_68K_TLS_DTPREL32, /* type */
316 0, /* rightshift */
317 2, /* size (0 = byte, 1 = short, 2 = long) */
318 32, /* bitsize */
319 FALSE, /* pc_relative */
320 0, /* bitpos */
321 complain_overflow_dont, /* complain_on_overflow */
322 bfd_elf_generic_reloc, /* special_function */
323 "R_68K_TLS_DTPREL32", /* name */
324 FALSE, /* partial_inplace */
325 0, /* src_mask */
326 0xffffffff, /* dst_mask */
327 FALSE), /* pcrel_offset */
328
329 HOWTO (R_68K_TLS_TPREL32, /* type */
330 0, /* rightshift */
331 2, /* size (0 = byte, 1 = short, 2 = long) */
332 32, /* bitsize */
333 FALSE, /* pc_relative */
334 0, /* bitpos */
335 complain_overflow_dont, /* complain_on_overflow */
336 bfd_elf_generic_reloc, /* special_function */
337 "R_68K_TLS_TPREL32", /* name */
338 FALSE, /* partial_inplace */
339 0, /* src_mask */
340 0xffffffff, /* dst_mask */
341 FALSE), /* pcrel_offset */
342 };
343
344 static bfd_boolean
345 rtype_to_howto (bfd *abfd, arelent *cache_ptr, Elf_Internal_Rela *dst)
346 {
347 unsigned int indx = ELF32_R_TYPE (dst->r_info);
348
349 if (indx >= (unsigned int) R_68K_max)
350 {
351 /* xgettext:c-format */
352 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
353 abfd, indx);
354 bfd_set_error (bfd_error_bad_value);
355 return FALSE;
356 }
357 cache_ptr->howto = &howto_table[indx];
358 return TRUE;
359 }
360
361 #define elf_info_to_howto rtype_to_howto
362
363 static const struct
364 {
365 bfd_reloc_code_real_type bfd_val;
366 int elf_val;
367 }
368 reloc_map[] =
369 {
370 { BFD_RELOC_NONE, R_68K_NONE },
371 { BFD_RELOC_32, R_68K_32 },
372 { BFD_RELOC_16, R_68K_16 },
373 { BFD_RELOC_8, R_68K_8 },
374 { BFD_RELOC_32_PCREL, R_68K_PC32 },
375 { BFD_RELOC_16_PCREL, R_68K_PC16 },
376 { BFD_RELOC_8_PCREL, R_68K_PC8 },
377 { BFD_RELOC_32_GOT_PCREL, R_68K_GOT32 },
378 { BFD_RELOC_16_GOT_PCREL, R_68K_GOT16 },
379 { BFD_RELOC_8_GOT_PCREL, R_68K_GOT8 },
380 { BFD_RELOC_32_GOTOFF, R_68K_GOT32O },
381 { BFD_RELOC_16_GOTOFF, R_68K_GOT16O },
382 { BFD_RELOC_8_GOTOFF, R_68K_GOT8O },
383 { BFD_RELOC_32_PLT_PCREL, R_68K_PLT32 },
384 { BFD_RELOC_16_PLT_PCREL, R_68K_PLT16 },
385 { BFD_RELOC_8_PLT_PCREL, R_68K_PLT8 },
386 { BFD_RELOC_32_PLTOFF, R_68K_PLT32O },
387 { BFD_RELOC_16_PLTOFF, R_68K_PLT16O },
388 { BFD_RELOC_8_PLTOFF, R_68K_PLT8O },
389 { BFD_RELOC_NONE, R_68K_COPY },
390 { BFD_RELOC_68K_GLOB_DAT, R_68K_GLOB_DAT },
391 { BFD_RELOC_68K_JMP_SLOT, R_68K_JMP_SLOT },
392 { BFD_RELOC_68K_RELATIVE, R_68K_RELATIVE },
393 { BFD_RELOC_CTOR, R_68K_32 },
394 { BFD_RELOC_VTABLE_INHERIT, R_68K_GNU_VTINHERIT },
395 { BFD_RELOC_VTABLE_ENTRY, R_68K_GNU_VTENTRY },
396 { BFD_RELOC_68K_TLS_GD32, R_68K_TLS_GD32 },
397 { BFD_RELOC_68K_TLS_GD16, R_68K_TLS_GD16 },
398 { BFD_RELOC_68K_TLS_GD8, R_68K_TLS_GD8 },
399 { BFD_RELOC_68K_TLS_LDM32, R_68K_TLS_LDM32 },
400 { BFD_RELOC_68K_TLS_LDM16, R_68K_TLS_LDM16 },
401 { BFD_RELOC_68K_TLS_LDM8, R_68K_TLS_LDM8 },
402 { BFD_RELOC_68K_TLS_LDO32, R_68K_TLS_LDO32 },
403 { BFD_RELOC_68K_TLS_LDO16, R_68K_TLS_LDO16 },
404 { BFD_RELOC_68K_TLS_LDO8, R_68K_TLS_LDO8 },
405 { BFD_RELOC_68K_TLS_IE32, R_68K_TLS_IE32 },
406 { BFD_RELOC_68K_TLS_IE16, R_68K_TLS_IE16 },
407 { BFD_RELOC_68K_TLS_IE8, R_68K_TLS_IE8 },
408 { BFD_RELOC_68K_TLS_LE32, R_68K_TLS_LE32 },
409 { BFD_RELOC_68K_TLS_LE16, R_68K_TLS_LE16 },
410 { BFD_RELOC_68K_TLS_LE8, R_68K_TLS_LE8 },
411 };
412
413 static reloc_howto_type *
414 reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
415 bfd_reloc_code_real_type code)
416 {
417 unsigned int i;
418 for (i = 0; i < sizeof (reloc_map) / sizeof (reloc_map[0]); i++)
419 {
420 if (reloc_map[i].bfd_val == code)
421 return &howto_table[reloc_map[i].elf_val];
422 }
423 return 0;
424 }
425
426 static reloc_howto_type *
427 reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, const char *r_name)
428 {
429 unsigned int i;
430
431 for (i = 0; i < sizeof (howto_table) / sizeof (howto_table[0]); i++)
432 if (howto_table[i].name != NULL
433 && strcasecmp (howto_table[i].name, r_name) == 0)
434 return &howto_table[i];
435
436 return NULL;
437 }
438
439 #define bfd_elf32_bfd_reloc_type_lookup reloc_type_lookup
440 #define bfd_elf32_bfd_reloc_name_lookup reloc_name_lookup
441 #define ELF_ARCH bfd_arch_m68k
442 #define ELF_TARGET_ID M68K_ELF_DATA
443 \f
444 /* Functions for the m68k ELF linker. */
445
446 /* The name of the dynamic interpreter. This is put in the .interp
447 section. */
448
449 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
450
451 /* Describes one of the various PLT styles. */
452
453 struct elf_m68k_plt_info
454 {
455 /* The size of each PLT entry. */
456 bfd_vma size;
457
458 /* The template for the first PLT entry. */
459 const bfd_byte *plt0_entry;
460
461 /* Offsets of fields in PLT0_ENTRY that require R_68K_PC32 relocations.
462 The comments by each member indicate the value that the relocation
463 is against. */
464 struct {
465 unsigned int got4; /* .got + 4 */
466 unsigned int got8; /* .got + 8 */
467 } plt0_relocs;
468
469 /* The template for a symbol's PLT entry. */
470 const bfd_byte *symbol_entry;
471
472 /* Offsets of fields in SYMBOL_ENTRY that require R_68K_PC32 relocations.
473 The comments by each member indicate the value that the relocation
474 is against. */
475 struct {
476 unsigned int got; /* the symbol's .got.plt entry */
477 unsigned int plt; /* .plt */
478 } symbol_relocs;
479
480 /* The offset of the resolver stub from the start of SYMBOL_ENTRY.
481 The stub starts with "move.l #relocoffset,%d0". */
482 bfd_vma symbol_resolve_entry;
483 };
484
485 /* The size in bytes of an entry in the procedure linkage table. */
486
487 #define PLT_ENTRY_SIZE 20
488
489 /* The first entry in a procedure linkage table looks like this. See
490 the SVR4 ABI m68k supplement to see how this works. */
491
492 static const bfd_byte elf_m68k_plt0_entry[PLT_ENTRY_SIZE] =
493 {
494 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
495 0, 0, 0, 2, /* + (.got + 4) - . */
496 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,addr]) */
497 0, 0, 0, 2, /* + (.got + 8) - . */
498 0, 0, 0, 0 /* pad out to 20 bytes. */
499 };
500
501 /* Subsequent entries in a procedure linkage table look like this. */
502
503 static const bfd_byte elf_m68k_plt_entry[PLT_ENTRY_SIZE] =
504 {
505 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,symbol@GOTPC]) */
506 0, 0, 0, 2, /* + (.got.plt entry) - . */
507 0x2f, 0x3c, /* move.l #offset,-(%sp) */
508 0, 0, 0, 0, /* + reloc index */
509 0x60, 0xff, /* bra.l .plt */
510 0, 0, 0, 0 /* + .plt - . */
511 };
512
513 static const struct elf_m68k_plt_info elf_m68k_plt_info =
514 {
515 PLT_ENTRY_SIZE,
516 elf_m68k_plt0_entry, { 4, 12 },
517 elf_m68k_plt_entry, { 4, 16 }, 8
518 };
519
520 #define ISAB_PLT_ENTRY_SIZE 24
521
522 static const bfd_byte elf_isab_plt0_entry[ISAB_PLT_ENTRY_SIZE] =
523 {
524 0x20, 0x3c, /* move.l #offset,%d0 */
525 0, 0, 0, 0, /* + (.got + 4) - . */
526 0x2f, 0x3b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),-(%sp) */
527 0x20, 0x3c, /* move.l #offset,%d0 */
528 0, 0, 0, 0, /* + (.got + 8) - . */
529 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
530 0x4e, 0xd0, /* jmp (%a0) */
531 0x4e, 0x71 /* nop */
532 };
533
534 /* Subsequent entries in a procedure linkage table look like this. */
535
536 static const bfd_byte elf_isab_plt_entry[ISAB_PLT_ENTRY_SIZE] =
537 {
538 0x20, 0x3c, /* move.l #offset,%d0 */
539 0, 0, 0, 0, /* + (.got.plt entry) - . */
540 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
541 0x4e, 0xd0, /* jmp (%a0) */
542 0x2f, 0x3c, /* move.l #offset,-(%sp) */
543 0, 0, 0, 0, /* + reloc index */
544 0x60, 0xff, /* bra.l .plt */
545 0, 0, 0, 0 /* + .plt - . */
546 };
547
548 static const struct elf_m68k_plt_info elf_isab_plt_info =
549 {
550 ISAB_PLT_ENTRY_SIZE,
551 elf_isab_plt0_entry, { 2, 12 },
552 elf_isab_plt_entry, { 2, 20 }, 12
553 };
554
555 #define ISAC_PLT_ENTRY_SIZE 24
556
557 static const bfd_byte elf_isac_plt0_entry[ISAC_PLT_ENTRY_SIZE] =
558 {
559 0x20, 0x3c, /* move.l #offset,%d0 */
560 0, 0, 0, 0, /* replaced with .got + 4 - . */
561 0x2e, 0xbb, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),(%sp) */
562 0x20, 0x3c, /* move.l #offset,%d0 */
563 0, 0, 0, 0, /* replaced with .got + 8 - . */
564 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
565 0x4e, 0xd0, /* jmp (%a0) */
566 0x4e, 0x71 /* nop */
567 };
568
569 /* Subsequent entries in a procedure linkage table look like this. */
570
571 static const bfd_byte elf_isac_plt_entry[ISAC_PLT_ENTRY_SIZE] =
572 {
573 0x20, 0x3c, /* move.l #offset,%d0 */
574 0, 0, 0, 0, /* replaced with (.got entry) - . */
575 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
576 0x4e, 0xd0, /* jmp (%a0) */
577 0x2f, 0x3c, /* move.l #offset,-(%sp) */
578 0, 0, 0, 0, /* replaced with offset into relocation table */
579 0x61, 0xff, /* bsr.l .plt */
580 0, 0, 0, 0 /* replaced with .plt - . */
581 };
582
583 static const struct elf_m68k_plt_info elf_isac_plt_info =
584 {
585 ISAC_PLT_ENTRY_SIZE,
586 elf_isac_plt0_entry, { 2, 12},
587 elf_isac_plt_entry, { 2, 20 }, 12
588 };
589
590 #define CPU32_PLT_ENTRY_SIZE 24
591 /* Procedure linkage table entries for the cpu32 */
592 static const bfd_byte elf_cpu32_plt0_entry[CPU32_PLT_ENTRY_SIZE] =
593 {
594 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
595 0, 0, 0, 2, /* + (.got + 4) - . */
596 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
597 0, 0, 0, 2, /* + (.got + 8) - . */
598 0x4e, 0xd1, /* jmp %a1@ */
599 0, 0, 0, 0, /* pad out to 24 bytes. */
600 0, 0
601 };
602
603 static const bfd_byte elf_cpu32_plt_entry[CPU32_PLT_ENTRY_SIZE] =
604 {
605 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
606 0, 0, 0, 2, /* + (.got.plt entry) - . */
607 0x4e, 0xd1, /* jmp %a1@ */
608 0x2f, 0x3c, /* move.l #offset,-(%sp) */
609 0, 0, 0, 0, /* + reloc index */
610 0x60, 0xff, /* bra.l .plt */
611 0, 0, 0, 0, /* + .plt - . */
612 0, 0
613 };
614
615 static const struct elf_m68k_plt_info elf_cpu32_plt_info =
616 {
617 CPU32_PLT_ENTRY_SIZE,
618 elf_cpu32_plt0_entry, { 4, 12 },
619 elf_cpu32_plt_entry, { 4, 18 }, 10
620 };
621
622 /* The m68k linker needs to keep track of the number of relocs that it
623 decides to copy in check_relocs for each symbol. This is so that it
624 can discard PC relative relocs if it doesn't need them when linking
625 with -Bsymbolic. We store the information in a field extending the
626 regular ELF linker hash table. */
627
628 /* This structure keeps track of the number of PC relative relocs we have
629 copied for a given symbol. */
630
631 struct elf_m68k_pcrel_relocs_copied
632 {
633 /* Next section. */
634 struct elf_m68k_pcrel_relocs_copied *next;
635 /* A section in dynobj. */
636 asection *section;
637 /* Number of relocs copied in this section. */
638 bfd_size_type count;
639 };
640
641 /* Forward declaration. */
642 struct elf_m68k_got_entry;
643
644 /* m68k ELF linker hash entry. */
645
646 struct elf_m68k_link_hash_entry
647 {
648 struct elf_link_hash_entry root;
649
650 /* Number of PC relative relocs copied for this symbol. */
651 struct elf_m68k_pcrel_relocs_copied *pcrel_relocs_copied;
652
653 /* Key to got_entries. */
654 unsigned long got_entry_key;
655
656 /* List of GOT entries for this symbol. This list is build during
657 offset finalization and is used within elf_m68k_finish_dynamic_symbol
658 to traverse all GOT entries for a particular symbol.
659
660 ??? We could've used root.got.glist field instead, but having
661 a separate field is cleaner. */
662 struct elf_m68k_got_entry *glist;
663 };
664
665 #define elf_m68k_hash_entry(ent) ((struct elf_m68k_link_hash_entry *) (ent))
666
667 /* Key part of GOT entry in hashtable. */
668 struct elf_m68k_got_entry_key
669 {
670 /* BFD in which this symbol was defined. NULL for global symbols. */
671 const bfd *bfd;
672
673 /* Symbol index. Either local symbol index or h->got_entry_key. */
674 unsigned long symndx;
675
676 /* Type is one of R_68K_GOT{8, 16, 32}O, R_68K_TLS_GD{8, 16, 32},
677 R_68K_TLS_LDM{8, 16, 32} or R_68K_TLS_IE{8, 16, 32}.
678
679 From perspective of hashtable key, only elf_m68k_got_reloc_type (type)
680 matters. That is, we distinguish between, say, R_68K_GOT16O
681 and R_68K_GOT32O when allocating offsets, but they are considered to be
682 the same when searching got->entries. */
683 enum elf_m68k_reloc_type type;
684 };
685
686 /* Size of the GOT offset suitable for relocation. */
687 enum elf_m68k_got_offset_size { R_8, R_16, R_32, R_LAST };
688
689 /* Entry of the GOT. */
690 struct elf_m68k_got_entry
691 {
692 /* GOT entries are put into a got->entries hashtable. This is the key. */
693 struct elf_m68k_got_entry_key key_;
694
695 /* GOT entry data. We need s1 before offset finalization and s2 after. */
696 union
697 {
698 struct
699 {
700 /* Number of times this entry is referenced. */
701 bfd_vma refcount;
702 } s1;
703
704 struct
705 {
706 /* Offset from the start of .got section. To calculate offset relative
707 to GOT pointer one should subtract got->offset from this value. */
708 bfd_vma offset;
709
710 /* Pointer to the next GOT entry for this global symbol.
711 Symbols have at most one entry in one GOT, but might
712 have entries in more than one GOT.
713 Root of this list is h->glist.
714 NULL for local symbols. */
715 struct elf_m68k_got_entry *next;
716 } s2;
717 } u;
718 };
719
720 /* Return representative type for relocation R_TYPE.
721 This is used to avoid enumerating many relocations in comparisons,
722 switches etc. */
723
724 static enum elf_m68k_reloc_type
725 elf_m68k_reloc_got_type (enum elf_m68k_reloc_type r_type)
726 {
727 switch (r_type)
728 {
729 /* In most cases R_68K_GOTx relocations require the very same
730 handling as R_68K_GOT32O relocation. In cases when we need
731 to distinguish between the two, we use explicitly compare against
732 r_type. */
733 case R_68K_GOT32:
734 case R_68K_GOT16:
735 case R_68K_GOT8:
736 case R_68K_GOT32O:
737 case R_68K_GOT16O:
738 case R_68K_GOT8O:
739 return R_68K_GOT32O;
740
741 case R_68K_TLS_GD32:
742 case R_68K_TLS_GD16:
743 case R_68K_TLS_GD8:
744 return R_68K_TLS_GD32;
745
746 case R_68K_TLS_LDM32:
747 case R_68K_TLS_LDM16:
748 case R_68K_TLS_LDM8:
749 return R_68K_TLS_LDM32;
750
751 case R_68K_TLS_IE32:
752 case R_68K_TLS_IE16:
753 case R_68K_TLS_IE8:
754 return R_68K_TLS_IE32;
755
756 default:
757 BFD_ASSERT (FALSE);
758 return 0;
759 }
760 }
761
762 /* Return size of the GOT entry offset for relocation R_TYPE. */
763
764 static enum elf_m68k_got_offset_size
765 elf_m68k_reloc_got_offset_size (enum elf_m68k_reloc_type r_type)
766 {
767 switch (r_type)
768 {
769 case R_68K_GOT32: case R_68K_GOT16: case R_68K_GOT8:
770 case R_68K_GOT32O: case R_68K_TLS_GD32: case R_68K_TLS_LDM32:
771 case R_68K_TLS_IE32:
772 return R_32;
773
774 case R_68K_GOT16O: case R_68K_TLS_GD16: case R_68K_TLS_LDM16:
775 case R_68K_TLS_IE16:
776 return R_16;
777
778 case R_68K_GOT8O: case R_68K_TLS_GD8: case R_68K_TLS_LDM8:
779 case R_68K_TLS_IE8:
780 return R_8;
781
782 default:
783 BFD_ASSERT (FALSE);
784 return 0;
785 }
786 }
787
788 /* Return number of GOT entries we need to allocate in GOT for
789 relocation R_TYPE. */
790
791 static bfd_vma
792 elf_m68k_reloc_got_n_slots (enum elf_m68k_reloc_type r_type)
793 {
794 switch (elf_m68k_reloc_got_type (r_type))
795 {
796 case R_68K_GOT32O:
797 case R_68K_TLS_IE32:
798 return 1;
799
800 case R_68K_TLS_GD32:
801 case R_68K_TLS_LDM32:
802 return 2;
803
804 default:
805 BFD_ASSERT (FALSE);
806 return 0;
807 }
808 }
809
810 /* Return TRUE if relocation R_TYPE is a TLS one. */
811
812 static bfd_boolean
813 elf_m68k_reloc_tls_p (enum elf_m68k_reloc_type r_type)
814 {
815 switch (r_type)
816 {
817 case R_68K_TLS_GD32: case R_68K_TLS_GD16: case R_68K_TLS_GD8:
818 case R_68K_TLS_LDM32: case R_68K_TLS_LDM16: case R_68K_TLS_LDM8:
819 case R_68K_TLS_LDO32: case R_68K_TLS_LDO16: case R_68K_TLS_LDO8:
820 case R_68K_TLS_IE32: case R_68K_TLS_IE16: case R_68K_TLS_IE8:
821 case R_68K_TLS_LE32: case R_68K_TLS_LE16: case R_68K_TLS_LE8:
822 case R_68K_TLS_DTPMOD32: case R_68K_TLS_DTPREL32: case R_68K_TLS_TPREL32:
823 return TRUE;
824
825 default:
826 return FALSE;
827 }
828 }
829
830 /* Data structure representing a single GOT. */
831 struct elf_m68k_got
832 {
833 /* Hashtable of 'struct elf_m68k_got_entry's.
834 Starting size of this table is the maximum number of
835 R_68K_GOT8O entries. */
836 htab_t entries;
837
838 /* Number of R_x slots in this GOT. Some (e.g., TLS) entries require
839 several GOT slots.
840
841 n_slots[R_8] is the count of R_8 slots in this GOT.
842 n_slots[R_16] is the cumulative count of R_8 and R_16 slots
843 in this GOT.
844 n_slots[R_32] is the cumulative count of R_8, R_16 and R_32 slots
845 in this GOT. This is the total number of slots. */
846 bfd_vma n_slots[R_LAST];
847
848 /* Number of local (entry->key_.h == NULL) slots in this GOT.
849 This is only used to properly calculate size of .rela.got section;
850 see elf_m68k_partition_multi_got. */
851 bfd_vma local_n_slots;
852
853 /* Offset of this GOT relative to beginning of .got section. */
854 bfd_vma offset;
855 };
856
857 /* BFD and its GOT. This is an entry in multi_got->bfd2got hashtable. */
858 struct elf_m68k_bfd2got_entry
859 {
860 /* BFD. */
861 const bfd *bfd;
862
863 /* Assigned GOT. Before partitioning multi-GOT each BFD has its own
864 GOT structure. After partitioning several BFD's might [and often do]
865 share a single GOT. */
866 struct elf_m68k_got *got;
867 };
868
869 /* The main data structure holding all the pieces. */
870 struct elf_m68k_multi_got
871 {
872 /* Hashtable mapping each BFD to its GOT. If a BFD doesn't have an entry
873 here, then it doesn't need a GOT (this includes the case of a BFD
874 having an empty GOT).
875
876 ??? This hashtable can be replaced by an array indexed by bfd->id. */
877 htab_t bfd2got;
878
879 /* Next symndx to assign a global symbol.
880 h->got_entry_key is initialized from this counter. */
881 unsigned long global_symndx;
882 };
883
884 /* m68k ELF linker hash table. */
885
886 struct elf_m68k_link_hash_table
887 {
888 struct elf_link_hash_table root;
889
890 /* Small local sym cache. */
891 struct sym_cache sym_cache;
892
893 /* The PLT format used by this link, or NULL if the format has not
894 yet been chosen. */
895 const struct elf_m68k_plt_info *plt_info;
896
897 /* True, if GP is loaded within each function which uses it.
898 Set to TRUE when GOT negative offsets or multi-GOT is enabled. */
899 bfd_boolean local_gp_p;
900
901 /* Switch controlling use of negative offsets to double the size of GOTs. */
902 bfd_boolean use_neg_got_offsets_p;
903
904 /* Switch controlling generation of multiple GOTs. */
905 bfd_boolean allow_multigot_p;
906
907 /* Multi-GOT data structure. */
908 struct elf_m68k_multi_got multi_got_;
909 };
910
911 /* Get the m68k ELF linker hash table from a link_info structure. */
912
913 #define elf_m68k_hash_table(p) \
914 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
915 == M68K_ELF_DATA ? ((struct elf_m68k_link_hash_table *) ((p)->hash)) : NULL)
916
917 /* Shortcut to multi-GOT data. */
918 #define elf_m68k_multi_got(INFO) (&elf_m68k_hash_table (INFO)->multi_got_)
919
920 /* Create an entry in an m68k ELF linker hash table. */
921
922 static struct bfd_hash_entry *
923 elf_m68k_link_hash_newfunc (struct bfd_hash_entry *entry,
924 struct bfd_hash_table *table,
925 const char *string)
926 {
927 struct bfd_hash_entry *ret = entry;
928
929 /* Allocate the structure if it has not already been allocated by a
930 subclass. */
931 if (ret == NULL)
932 ret = bfd_hash_allocate (table,
933 sizeof (struct elf_m68k_link_hash_entry));
934 if (ret == NULL)
935 return ret;
936
937 /* Call the allocation method of the superclass. */
938 ret = _bfd_elf_link_hash_newfunc (ret, table, string);
939 if (ret != NULL)
940 {
941 elf_m68k_hash_entry (ret)->pcrel_relocs_copied = NULL;
942 elf_m68k_hash_entry (ret)->got_entry_key = 0;
943 elf_m68k_hash_entry (ret)->glist = NULL;
944 }
945
946 return ret;
947 }
948
949 /* Destroy an m68k ELF linker hash table. */
950
951 static void
952 elf_m68k_link_hash_table_free (bfd *obfd)
953 {
954 struct elf_m68k_link_hash_table *htab;
955
956 htab = (struct elf_m68k_link_hash_table *) obfd->link.hash;
957
958 if (htab->multi_got_.bfd2got != NULL)
959 {
960 htab_delete (htab->multi_got_.bfd2got);
961 htab->multi_got_.bfd2got = NULL;
962 }
963 _bfd_elf_link_hash_table_free (obfd);
964 }
965
966 /* Create an m68k ELF linker hash table. */
967
968 static struct bfd_link_hash_table *
969 elf_m68k_link_hash_table_create (bfd *abfd)
970 {
971 struct elf_m68k_link_hash_table *ret;
972 bfd_size_type amt = sizeof (struct elf_m68k_link_hash_table);
973
974 ret = (struct elf_m68k_link_hash_table *) bfd_zmalloc (amt);
975 if (ret == (struct elf_m68k_link_hash_table *) NULL)
976 return NULL;
977
978 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
979 elf_m68k_link_hash_newfunc,
980 sizeof (struct elf_m68k_link_hash_entry),
981 M68K_ELF_DATA))
982 {
983 free (ret);
984 return NULL;
985 }
986 ret->root.root.hash_table_free = elf_m68k_link_hash_table_free;
987
988 ret->multi_got_.global_symndx = 1;
989
990 return &ret->root.root;
991 }
992
993 /* Set the right machine number. */
994
995 static bfd_boolean
996 elf32_m68k_object_p (bfd *abfd)
997 {
998 unsigned int mach = 0;
999 unsigned features = 0;
1000 flagword eflags = elf_elfheader (abfd)->e_flags;
1001
1002 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1003 features |= m68000;
1004 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1005 features |= cpu32;
1006 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1007 features |= fido_a;
1008 else
1009 {
1010 switch (eflags & EF_M68K_CF_ISA_MASK)
1011 {
1012 case EF_M68K_CF_ISA_A_NODIV:
1013 features |= mcfisa_a;
1014 break;
1015 case EF_M68K_CF_ISA_A:
1016 features |= mcfisa_a|mcfhwdiv;
1017 break;
1018 case EF_M68K_CF_ISA_A_PLUS:
1019 features |= mcfisa_a|mcfisa_aa|mcfhwdiv|mcfusp;
1020 break;
1021 case EF_M68K_CF_ISA_B_NOUSP:
1022 features |= mcfisa_a|mcfisa_b|mcfhwdiv;
1023 break;
1024 case EF_M68K_CF_ISA_B:
1025 features |= mcfisa_a|mcfisa_b|mcfhwdiv|mcfusp;
1026 break;
1027 case EF_M68K_CF_ISA_C:
1028 features |= mcfisa_a|mcfisa_c|mcfhwdiv|mcfusp;
1029 break;
1030 case EF_M68K_CF_ISA_C_NODIV:
1031 features |= mcfisa_a|mcfisa_c|mcfusp;
1032 break;
1033 }
1034 switch (eflags & EF_M68K_CF_MAC_MASK)
1035 {
1036 case EF_M68K_CF_MAC:
1037 features |= mcfmac;
1038 break;
1039 case EF_M68K_CF_EMAC:
1040 features |= mcfemac;
1041 break;
1042 }
1043 if (eflags & EF_M68K_CF_FLOAT)
1044 features |= cfloat;
1045 }
1046
1047 mach = bfd_m68k_features_to_mach (features);
1048 bfd_default_set_arch_mach (abfd, bfd_arch_m68k, mach);
1049
1050 return TRUE;
1051 }
1052
1053 /* Somewhat reverse of elf32_m68k_object_p, this sets the e_flag
1054 field based on the machine number. */
1055
1056 static bfd_boolean
1057 elf_m68k_final_write_processing (bfd *abfd)
1058 {
1059 int mach = bfd_get_mach (abfd);
1060 unsigned long e_flags = elf_elfheader (abfd)->e_flags;
1061
1062 if (!e_flags)
1063 {
1064 unsigned int arch_mask;
1065
1066 arch_mask = bfd_m68k_mach_to_features (mach);
1067
1068 if (arch_mask & m68000)
1069 e_flags = EF_M68K_M68000;
1070 else if (arch_mask & cpu32)
1071 e_flags = EF_M68K_CPU32;
1072 else if (arch_mask & fido_a)
1073 e_flags = EF_M68K_FIDO;
1074 else
1075 {
1076 switch (arch_mask
1077 & (mcfisa_a | mcfisa_aa | mcfisa_b | mcfisa_c | mcfhwdiv | mcfusp))
1078 {
1079 case mcfisa_a:
1080 e_flags |= EF_M68K_CF_ISA_A_NODIV;
1081 break;
1082 case mcfisa_a | mcfhwdiv:
1083 e_flags |= EF_M68K_CF_ISA_A;
1084 break;
1085 case mcfisa_a | mcfisa_aa | mcfhwdiv | mcfusp:
1086 e_flags |= EF_M68K_CF_ISA_A_PLUS;
1087 break;
1088 case mcfisa_a | mcfisa_b | mcfhwdiv:
1089 e_flags |= EF_M68K_CF_ISA_B_NOUSP;
1090 break;
1091 case mcfisa_a | mcfisa_b | mcfhwdiv | mcfusp:
1092 e_flags |= EF_M68K_CF_ISA_B;
1093 break;
1094 case mcfisa_a | mcfisa_c | mcfhwdiv | mcfusp:
1095 e_flags |= EF_M68K_CF_ISA_C;
1096 break;
1097 case mcfisa_a | mcfisa_c | mcfusp:
1098 e_flags |= EF_M68K_CF_ISA_C_NODIV;
1099 break;
1100 }
1101 if (arch_mask & mcfmac)
1102 e_flags |= EF_M68K_CF_MAC;
1103 else if (arch_mask & mcfemac)
1104 e_flags |= EF_M68K_CF_EMAC;
1105 if (arch_mask & cfloat)
1106 e_flags |= EF_M68K_CF_FLOAT | EF_M68K_CFV4E;
1107 }
1108 elf_elfheader (abfd)->e_flags = e_flags;
1109 }
1110 return _bfd_elf_final_write_processing (abfd);
1111 }
1112
1113 /* Keep m68k-specific flags in the ELF header. */
1114
1115 static bfd_boolean
1116 elf32_m68k_set_private_flags (bfd *abfd, flagword flags)
1117 {
1118 elf_elfheader (abfd)->e_flags = flags;
1119 elf_flags_init (abfd) = TRUE;
1120 return TRUE;
1121 }
1122
1123 /* Merge backend specific data from an object file to the output
1124 object file when linking. */
1125 static bfd_boolean
1126 elf32_m68k_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
1127 {
1128 bfd *obfd = info->output_bfd;
1129 flagword out_flags;
1130 flagword in_flags;
1131 flagword out_isa;
1132 flagword in_isa;
1133 const bfd_arch_info_type *arch_info;
1134
1135 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1136 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1137 /* PR 24523: For non-ELF files do not try to merge any private
1138 data, but also do not prevent the link from succeeding. */
1139 return TRUE;
1140
1141 /* Get the merged machine. This checks for incompatibility between
1142 Coldfire & non-Coldfire flags, incompability between different
1143 Coldfire ISAs, and incompability between different MAC types. */
1144 arch_info = bfd_arch_get_compatible (ibfd, obfd, FALSE);
1145 if (!arch_info)
1146 return FALSE;
1147
1148 bfd_set_arch_mach (obfd, bfd_arch_m68k, arch_info->mach);
1149
1150 in_flags = elf_elfheader (ibfd)->e_flags;
1151 if (!elf_flags_init (obfd))
1152 {
1153 elf_flags_init (obfd) = TRUE;
1154 out_flags = in_flags;
1155 }
1156 else
1157 {
1158 out_flags = elf_elfheader (obfd)->e_flags;
1159 unsigned int variant_mask;
1160
1161 if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1162 variant_mask = 0;
1163 else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1164 variant_mask = 0;
1165 else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1166 variant_mask = 0;
1167 else
1168 variant_mask = EF_M68K_CF_ISA_MASK;
1169
1170 in_isa = (in_flags & variant_mask);
1171 out_isa = (out_flags & variant_mask);
1172 if (in_isa > out_isa)
1173 out_flags ^= in_isa ^ out_isa;
1174 if (((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32
1175 && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1176 || ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO
1177 && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32))
1178 out_flags = EF_M68K_FIDO;
1179 else
1180 out_flags |= in_flags ^ in_isa;
1181 }
1182 elf_elfheader (obfd)->e_flags = out_flags;
1183
1184 return TRUE;
1185 }
1186
1187 /* Display the flags field. */
1188
1189 static bfd_boolean
1190 elf32_m68k_print_private_bfd_data (bfd *abfd, void * ptr)
1191 {
1192 FILE *file = (FILE *) ptr;
1193 flagword eflags = elf_elfheader (abfd)->e_flags;
1194
1195 BFD_ASSERT (abfd != NULL && ptr != NULL);
1196
1197 /* Print normal ELF private data. */
1198 _bfd_elf_print_private_bfd_data (abfd, ptr);
1199
1200 /* Ignore init flag - it may not be set, despite the flags field containing valid data. */
1201
1202 /* xgettext:c-format */
1203 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
1204
1205 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1206 fprintf (file, " [m68000]");
1207 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1208 fprintf (file, " [cpu32]");
1209 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1210 fprintf (file, " [fido]");
1211 else
1212 {
1213 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CFV4E)
1214 fprintf (file, " [cfv4e]");
1215
1216 if (eflags & EF_M68K_CF_ISA_MASK)
1217 {
1218 char const *isa = _("unknown");
1219 char const *mac = _("unknown");
1220 char const *additional = "";
1221
1222 switch (eflags & EF_M68K_CF_ISA_MASK)
1223 {
1224 case EF_M68K_CF_ISA_A_NODIV:
1225 isa = "A";
1226 additional = " [nodiv]";
1227 break;
1228 case EF_M68K_CF_ISA_A:
1229 isa = "A";
1230 break;
1231 case EF_M68K_CF_ISA_A_PLUS:
1232 isa = "A+";
1233 break;
1234 case EF_M68K_CF_ISA_B_NOUSP:
1235 isa = "B";
1236 additional = " [nousp]";
1237 break;
1238 case EF_M68K_CF_ISA_B:
1239 isa = "B";
1240 break;
1241 case EF_M68K_CF_ISA_C:
1242 isa = "C";
1243 break;
1244 case EF_M68K_CF_ISA_C_NODIV:
1245 isa = "C";
1246 additional = " [nodiv]";
1247 break;
1248 }
1249 fprintf (file, " [isa %s]%s", isa, additional);
1250
1251 if (eflags & EF_M68K_CF_FLOAT)
1252 fprintf (file, " [float]");
1253
1254 switch (eflags & EF_M68K_CF_MAC_MASK)
1255 {
1256 case 0:
1257 mac = NULL;
1258 break;
1259 case EF_M68K_CF_MAC:
1260 mac = "mac";
1261 break;
1262 case EF_M68K_CF_EMAC:
1263 mac = "emac";
1264 break;
1265 case EF_M68K_CF_EMAC_B:
1266 mac = "emac_b";
1267 break;
1268 }
1269 if (mac)
1270 fprintf (file, " [%s]", mac);
1271 }
1272 }
1273
1274 fputc ('\n', file);
1275
1276 return TRUE;
1277 }
1278
1279 /* Multi-GOT support implementation design:
1280
1281 Multi-GOT starts in check_relocs hook. There we scan all
1282 relocations of a BFD and build a local GOT (struct elf_m68k_got)
1283 for it. If a single BFD appears to require too many GOT slots with
1284 R_68K_GOT8O or R_68K_GOT16O relocations, we fail with notification
1285 to user.
1286 After check_relocs has been invoked for each input BFD, we have
1287 constructed a GOT for each input BFD.
1288
1289 To minimize total number of GOTs required for a particular output BFD
1290 (as some environments support only 1 GOT per output object) we try
1291 to merge some of the GOTs to share an offset space. Ideally [and in most
1292 cases] we end up with a single GOT. In cases when there are too many
1293 restricted relocations (e.g., R_68K_GOT16O relocations) we end up with
1294 several GOTs, assuming the environment can handle them.
1295
1296 Partitioning is done in elf_m68k_partition_multi_got. We start with
1297 an empty GOT and traverse bfd2got hashtable putting got_entries from
1298 local GOTs to the new 'big' one. We do that by constructing an
1299 intermediate GOT holding all the entries the local GOT has and the big
1300 GOT lacks. Then we check if there is room in the big GOT to accomodate
1301 all the entries from diff. On success we add those entries to the big
1302 GOT; on failure we start the new 'big' GOT and retry the adding of
1303 entries from the local GOT. Note that this retry will always succeed as
1304 each local GOT doesn't overflow the limits. After partitioning we
1305 end up with each bfd assigned one of the big GOTs. GOT entries in the
1306 big GOTs are initialized with GOT offsets. Note that big GOTs are
1307 positioned consequently in program space and represent a single huge GOT
1308 to the outside world.
1309
1310 After that we get to elf_m68k_relocate_section. There we
1311 adjust relocations of GOT pointer (_GLOBAL_OFFSET_TABLE_) and symbol
1312 relocations to refer to appropriate [assigned to current input_bfd]
1313 big GOT.
1314
1315 Notes:
1316
1317 GOT entry type: We have several types of GOT entries.
1318 * R_8 type is used in entries for symbols that have at least one
1319 R_68K_GOT8O or R_68K_TLS_*8 relocation. We can have at most 0x40
1320 such entries in one GOT.
1321 * R_16 type is used in entries for symbols that have at least one
1322 R_68K_GOT16O or R_68K_TLS_*16 relocation and no R_8 relocations.
1323 We can have at most 0x4000 such entries in one GOT.
1324 * R_32 type is used in all other cases. We can have as many
1325 such entries in one GOT as we'd like.
1326 When counting relocations we have to include the count of the smaller
1327 ranged relocations in the counts of the larger ranged ones in order
1328 to correctly detect overflow.
1329
1330 Sorting the GOT: In each GOT starting offsets are assigned to
1331 R_8 entries, which are followed by R_16 entries, and
1332 R_32 entries go at the end. See finalize_got_offsets for details.
1333
1334 Negative GOT offsets: To double usable offset range of GOTs we use
1335 negative offsets. As we assign entries with GOT offsets relative to
1336 start of .got section, the offset values are positive. They become
1337 negative only in relocate_section where got->offset value is
1338 subtracted from them.
1339
1340 3 special GOT entries: There are 3 special GOT entries used internally
1341 by loader. These entries happen to be placed to .got.plt section,
1342 so we don't do anything about them in multi-GOT support.
1343
1344 Memory management: All data except for hashtables
1345 multi_got->bfd2got and got->entries are allocated on
1346 elf_hash_table (info)->dynobj bfd (for this reason we pass 'info'
1347 to most functions), so we don't need to care to free them. At the
1348 moment of allocation hashtables are being linked into main data
1349 structure (multi_got), all pieces of which are reachable from
1350 elf_m68k_multi_got (info). We deallocate them in
1351 elf_m68k_link_hash_table_free. */
1352
1353 /* Initialize GOT. */
1354
1355 static void
1356 elf_m68k_init_got (struct elf_m68k_got *got)
1357 {
1358 got->entries = NULL;
1359 got->n_slots[R_8] = 0;
1360 got->n_slots[R_16] = 0;
1361 got->n_slots[R_32] = 0;
1362 got->local_n_slots = 0;
1363 got->offset = (bfd_vma) -1;
1364 }
1365
1366 /* Destruct GOT. */
1367
1368 static void
1369 elf_m68k_clear_got (struct elf_m68k_got *got)
1370 {
1371 if (got->entries != NULL)
1372 {
1373 htab_delete (got->entries);
1374 got->entries = NULL;
1375 }
1376 }
1377
1378 /* Create and empty GOT structure. INFO is the context where memory
1379 should be allocated. */
1380
1381 static struct elf_m68k_got *
1382 elf_m68k_create_empty_got (struct bfd_link_info *info)
1383 {
1384 struct elf_m68k_got *got;
1385
1386 got = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*got));
1387 if (got == NULL)
1388 return NULL;
1389
1390 elf_m68k_init_got (got);
1391
1392 return got;
1393 }
1394
1395 /* Initialize KEY. */
1396
1397 static void
1398 elf_m68k_init_got_entry_key (struct elf_m68k_got_entry_key *key,
1399 struct elf_link_hash_entry *h,
1400 const bfd *abfd, unsigned long symndx,
1401 enum elf_m68k_reloc_type reloc_type)
1402 {
1403 if (elf_m68k_reloc_got_type (reloc_type) == R_68K_TLS_LDM32)
1404 /* All TLS_LDM relocations share a single GOT entry. */
1405 {
1406 key->bfd = NULL;
1407 key->symndx = 0;
1408 }
1409 else if (h != NULL)
1410 /* Global symbols are identified with their got_entry_key. */
1411 {
1412 key->bfd = NULL;
1413 key->symndx = elf_m68k_hash_entry (h)->got_entry_key;
1414 BFD_ASSERT (key->symndx != 0);
1415 }
1416 else
1417 /* Local symbols are identified by BFD they appear in and symndx. */
1418 {
1419 key->bfd = abfd;
1420 key->symndx = symndx;
1421 }
1422
1423 key->type = reloc_type;
1424 }
1425
1426 /* Calculate hash of got_entry.
1427 ??? Is it good? */
1428
1429 static hashval_t
1430 elf_m68k_got_entry_hash (const void *_entry)
1431 {
1432 const struct elf_m68k_got_entry_key *key;
1433
1434 key = &((const struct elf_m68k_got_entry *) _entry)->key_;
1435
1436 return (key->symndx
1437 + (key->bfd != NULL ? (int) key->bfd->id : -1)
1438 + elf_m68k_reloc_got_type (key->type));
1439 }
1440
1441 /* Check if two got entries are equal. */
1442
1443 static int
1444 elf_m68k_got_entry_eq (const void *_entry1, const void *_entry2)
1445 {
1446 const struct elf_m68k_got_entry_key *key1;
1447 const struct elf_m68k_got_entry_key *key2;
1448
1449 key1 = &((const struct elf_m68k_got_entry *) _entry1)->key_;
1450 key2 = &((const struct elf_m68k_got_entry *) _entry2)->key_;
1451
1452 return (key1->bfd == key2->bfd
1453 && key1->symndx == key2->symndx
1454 && (elf_m68k_reloc_got_type (key1->type)
1455 == elf_m68k_reloc_got_type (key2->type)));
1456 }
1457
1458 /* When using negative offsets, we allocate one extra R_8, one extra R_16
1459 and one extra R_32 slots to simplify handling of 2-slot entries during
1460 offset allocation -- hence -1 for R_8 slots and -2 for R_16 slots. */
1461
1462 /* Maximal number of R_8 slots in a single GOT. */
1463 #define ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT(INFO) \
1464 (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p \
1465 ? (0x40 - 1) \
1466 : 0x20)
1467
1468 /* Maximal number of R_8 and R_16 slots in a single GOT. */
1469 #define ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT(INFO) \
1470 (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p \
1471 ? (0x4000 - 2) \
1472 : 0x2000)
1473
1474 /* SEARCH - simply search the hashtable, don't insert new entries or fail when
1475 the entry cannot be found.
1476 FIND_OR_CREATE - search for an existing entry, but create new if there's
1477 no such.
1478 MUST_FIND - search for an existing entry and assert that it exist.
1479 MUST_CREATE - assert that there's no such entry and create new one. */
1480 enum elf_m68k_get_entry_howto
1481 {
1482 SEARCH,
1483 FIND_OR_CREATE,
1484 MUST_FIND,
1485 MUST_CREATE
1486 };
1487
1488 /* Get or create (depending on HOWTO) entry with KEY in GOT.
1489 INFO is context in which memory should be allocated (can be NULL if
1490 HOWTO is SEARCH or MUST_FIND). */
1491
1492 static struct elf_m68k_got_entry *
1493 elf_m68k_get_got_entry (struct elf_m68k_got *got,
1494 const struct elf_m68k_got_entry_key *key,
1495 enum elf_m68k_get_entry_howto howto,
1496 struct bfd_link_info *info)
1497 {
1498 struct elf_m68k_got_entry entry_;
1499 struct elf_m68k_got_entry *entry;
1500 void **ptr;
1501
1502 BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
1503
1504 if (got->entries == NULL)
1505 /* This is the first entry in ABFD. Initialize hashtable. */
1506 {
1507 if (howto == SEARCH)
1508 return NULL;
1509
1510 got->entries = htab_try_create (ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT
1511 (info),
1512 elf_m68k_got_entry_hash,
1513 elf_m68k_got_entry_eq, NULL);
1514 if (got->entries == NULL)
1515 {
1516 bfd_set_error (bfd_error_no_memory);
1517 return NULL;
1518 }
1519 }
1520
1521 entry_.key_ = *key;
1522 ptr = htab_find_slot (got->entries, &entry_,
1523 (howto == SEARCH || howto == MUST_FIND ? NO_INSERT
1524 : INSERT));
1525 if (ptr == NULL)
1526 {
1527 if (howto == SEARCH)
1528 /* Entry not found. */
1529 return NULL;
1530
1531 if (howto == MUST_FIND)
1532 abort ();
1533
1534 /* We're out of memory. */
1535 bfd_set_error (bfd_error_no_memory);
1536 return NULL;
1537 }
1538
1539 if (*ptr == NULL)
1540 /* We didn't find the entry and we're asked to create a new one. */
1541 {
1542 if (howto == MUST_FIND)
1543 abort ();
1544
1545 BFD_ASSERT (howto != SEARCH);
1546
1547 entry = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry));
1548 if (entry == NULL)
1549 return NULL;
1550
1551 /* Initialize new entry. */
1552 entry->key_ = *key;
1553
1554 entry->u.s1.refcount = 0;
1555
1556 /* Mark the entry as not initialized. */
1557 entry->key_.type = R_68K_max;
1558
1559 *ptr = entry;
1560 }
1561 else
1562 /* We found the entry. */
1563 {
1564 BFD_ASSERT (howto != MUST_CREATE);
1565
1566 entry = *ptr;
1567 }
1568
1569 return entry;
1570 }
1571
1572 /* Update GOT counters when merging entry of WAS type with entry of NEW type.
1573 Return the value to which ENTRY's type should be set. */
1574
1575 static enum elf_m68k_reloc_type
1576 elf_m68k_update_got_entry_type (struct elf_m68k_got *got,
1577 enum elf_m68k_reloc_type was,
1578 enum elf_m68k_reloc_type new_reloc)
1579 {
1580 enum elf_m68k_got_offset_size was_size;
1581 enum elf_m68k_got_offset_size new_size;
1582 bfd_vma n_slots;
1583
1584 if (was == R_68K_max)
1585 /* The type of the entry is not initialized yet. */
1586 {
1587 /* Update all got->n_slots counters, including n_slots[R_32]. */
1588 was_size = R_LAST;
1589
1590 was = new_reloc;
1591 }
1592 else
1593 {
1594 /* !!! We, probably, should emit an error rather then fail on assert
1595 in such a case. */
1596 BFD_ASSERT (elf_m68k_reloc_got_type (was)
1597 == elf_m68k_reloc_got_type (new_reloc));
1598
1599 was_size = elf_m68k_reloc_got_offset_size (was);
1600 }
1601
1602 new_size = elf_m68k_reloc_got_offset_size (new_reloc);
1603 n_slots = elf_m68k_reloc_got_n_slots (new_reloc);
1604
1605 while (was_size > new_size)
1606 {
1607 --was_size;
1608 got->n_slots[was_size] += n_slots;
1609 }
1610
1611 if (new_reloc > was)
1612 /* Relocations are ordered from bigger got offset size to lesser,
1613 so choose the relocation type with lesser offset size. */
1614 was = new_reloc;
1615
1616 return was;
1617 }
1618
1619 /* Add new or update existing entry to GOT.
1620 H, ABFD, TYPE and SYMNDX is data for the entry.
1621 INFO is a context where memory should be allocated. */
1622
1623 static struct elf_m68k_got_entry *
1624 elf_m68k_add_entry_to_got (struct elf_m68k_got *got,
1625 struct elf_link_hash_entry *h,
1626 const bfd *abfd,
1627 enum elf_m68k_reloc_type reloc_type,
1628 unsigned long symndx,
1629 struct bfd_link_info *info)
1630 {
1631 struct elf_m68k_got_entry_key key_;
1632 struct elf_m68k_got_entry *entry;
1633
1634 if (h != NULL && elf_m68k_hash_entry (h)->got_entry_key == 0)
1635 elf_m68k_hash_entry (h)->got_entry_key
1636 = elf_m68k_multi_got (info)->global_symndx++;
1637
1638 elf_m68k_init_got_entry_key (&key_, h, abfd, symndx, reloc_type);
1639
1640 entry = elf_m68k_get_got_entry (got, &key_, FIND_OR_CREATE, info);
1641 if (entry == NULL)
1642 return NULL;
1643
1644 /* Determine entry's type and update got->n_slots counters. */
1645 entry->key_.type = elf_m68k_update_got_entry_type (got,
1646 entry->key_.type,
1647 reloc_type);
1648
1649 /* Update refcount. */
1650 ++entry->u.s1.refcount;
1651
1652 if (entry->u.s1.refcount == 1)
1653 /* We see this entry for the first time. */
1654 {
1655 if (entry->key_.bfd != NULL)
1656 got->local_n_slots += elf_m68k_reloc_got_n_slots (entry->key_.type);
1657 }
1658
1659 BFD_ASSERT (got->n_slots[R_32] >= got->local_n_slots);
1660
1661 if ((got->n_slots[R_8]
1662 > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1663 || (got->n_slots[R_16]
1664 > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))
1665 /* This BFD has too many relocation. */
1666 {
1667 if (got->n_slots[R_8] > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1668 /* xgettext:c-format */
1669 _bfd_error_handler (_("%pB: GOT overflow: "
1670 "number of relocations with 8-bit "
1671 "offset > %d"),
1672 abfd,
1673 ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info));
1674 else
1675 /* xgettext:c-format */
1676 _bfd_error_handler (_("%pB: GOT overflow: "
1677 "number of relocations with 8- or 16-bit "
1678 "offset > %d"),
1679 abfd,
1680 ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info));
1681
1682 return NULL;
1683 }
1684
1685 return entry;
1686 }
1687
1688 /* Compute the hash value of the bfd in a bfd2got hash entry. */
1689
1690 static hashval_t
1691 elf_m68k_bfd2got_entry_hash (const void *entry)
1692 {
1693 const struct elf_m68k_bfd2got_entry *e;
1694
1695 e = (const struct elf_m68k_bfd2got_entry *) entry;
1696
1697 return e->bfd->id;
1698 }
1699
1700 /* Check whether two hash entries have the same bfd. */
1701
1702 static int
1703 elf_m68k_bfd2got_entry_eq (const void *entry1, const void *entry2)
1704 {
1705 const struct elf_m68k_bfd2got_entry *e1;
1706 const struct elf_m68k_bfd2got_entry *e2;
1707
1708 e1 = (const struct elf_m68k_bfd2got_entry *) entry1;
1709 e2 = (const struct elf_m68k_bfd2got_entry *) entry2;
1710
1711 return e1->bfd == e2->bfd;
1712 }
1713
1714 /* Destruct a bfd2got entry. */
1715
1716 static void
1717 elf_m68k_bfd2got_entry_del (void *_entry)
1718 {
1719 struct elf_m68k_bfd2got_entry *entry;
1720
1721 entry = (struct elf_m68k_bfd2got_entry *) _entry;
1722
1723 BFD_ASSERT (entry->got != NULL);
1724 elf_m68k_clear_got (entry->got);
1725 }
1726
1727 /* Find existing or create new (depending on HOWTO) bfd2got entry in
1728 MULTI_GOT. ABFD is the bfd we need a GOT for. INFO is a context where
1729 memory should be allocated. */
1730
1731 static struct elf_m68k_bfd2got_entry *
1732 elf_m68k_get_bfd2got_entry (struct elf_m68k_multi_got *multi_got,
1733 const bfd *abfd,
1734 enum elf_m68k_get_entry_howto howto,
1735 struct bfd_link_info *info)
1736 {
1737 struct elf_m68k_bfd2got_entry entry_;
1738 void **ptr;
1739 struct elf_m68k_bfd2got_entry *entry;
1740
1741 BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
1742
1743 if (multi_got->bfd2got == NULL)
1744 /* This is the first GOT. Initialize bfd2got. */
1745 {
1746 if (howto == SEARCH)
1747 return NULL;
1748
1749 multi_got->bfd2got = htab_try_create (1, elf_m68k_bfd2got_entry_hash,
1750 elf_m68k_bfd2got_entry_eq,
1751 elf_m68k_bfd2got_entry_del);
1752 if (multi_got->bfd2got == NULL)
1753 {
1754 bfd_set_error (bfd_error_no_memory);
1755 return NULL;
1756 }
1757 }
1758
1759 entry_.bfd = abfd;
1760 ptr = htab_find_slot (multi_got->bfd2got, &entry_,
1761 (howto == SEARCH || howto == MUST_FIND ? NO_INSERT
1762 : INSERT));
1763 if (ptr == NULL)
1764 {
1765 if (howto == SEARCH)
1766 /* Entry not found. */
1767 return NULL;
1768
1769 if (howto == MUST_FIND)
1770 abort ();
1771
1772 /* We're out of memory. */
1773 bfd_set_error (bfd_error_no_memory);
1774 return NULL;
1775 }
1776
1777 if (*ptr == NULL)
1778 /* Entry was not found. Create new one. */
1779 {
1780 if (howto == MUST_FIND)
1781 abort ();
1782
1783 BFD_ASSERT (howto != SEARCH);
1784
1785 entry = ((struct elf_m68k_bfd2got_entry *)
1786 bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry)));
1787 if (entry == NULL)
1788 return NULL;
1789
1790 entry->bfd = abfd;
1791
1792 entry->got = elf_m68k_create_empty_got (info);
1793 if (entry->got == NULL)
1794 return NULL;
1795
1796 *ptr = entry;
1797 }
1798 else
1799 {
1800 BFD_ASSERT (howto != MUST_CREATE);
1801
1802 /* Return existing entry. */
1803 entry = *ptr;
1804 }
1805
1806 return entry;
1807 }
1808
1809 struct elf_m68k_can_merge_gots_arg
1810 {
1811 /* A current_got that we constructing a DIFF against. */
1812 struct elf_m68k_got *big;
1813
1814 /* GOT holding entries not present or that should be changed in
1815 BIG. */
1816 struct elf_m68k_got *diff;
1817
1818 /* Context where to allocate memory. */
1819 struct bfd_link_info *info;
1820
1821 /* Error flag. */
1822 bfd_boolean error_p;
1823 };
1824
1825 /* Process a single entry from the small GOT to see if it should be added
1826 or updated in the big GOT. */
1827
1828 static int
1829 elf_m68k_can_merge_gots_1 (void **_entry_ptr, void *_arg)
1830 {
1831 const struct elf_m68k_got_entry *entry1;
1832 struct elf_m68k_can_merge_gots_arg *arg;
1833 const struct elf_m68k_got_entry *entry2;
1834 enum elf_m68k_reloc_type type;
1835
1836 entry1 = (const struct elf_m68k_got_entry *) *_entry_ptr;
1837 arg = (struct elf_m68k_can_merge_gots_arg *) _arg;
1838
1839 entry2 = elf_m68k_get_got_entry (arg->big, &entry1->key_, SEARCH, NULL);
1840
1841 if (entry2 != NULL)
1842 /* We found an existing entry. Check if we should update it. */
1843 {
1844 type = elf_m68k_update_got_entry_type (arg->diff,
1845 entry2->key_.type,
1846 entry1->key_.type);
1847
1848 if (type == entry2->key_.type)
1849 /* ENTRY1 doesn't update data in ENTRY2. Skip it.
1850 To skip creation of difference entry we use the type,
1851 which we won't see in GOT entries for sure. */
1852 type = R_68K_max;
1853 }
1854 else
1855 /* We didn't find the entry. Add entry1 to DIFF. */
1856 {
1857 BFD_ASSERT (entry1->key_.type != R_68K_max);
1858
1859 type = elf_m68k_update_got_entry_type (arg->diff,
1860 R_68K_max, entry1->key_.type);
1861
1862 if (entry1->key_.bfd != NULL)
1863 arg->diff->local_n_slots += elf_m68k_reloc_got_n_slots (type);
1864 }
1865
1866 if (type != R_68K_max)
1867 /* Create an entry in DIFF. */
1868 {
1869 struct elf_m68k_got_entry *entry;
1870
1871 entry = elf_m68k_get_got_entry (arg->diff, &entry1->key_, MUST_CREATE,
1872 arg->info);
1873 if (entry == NULL)
1874 {
1875 arg->error_p = TRUE;
1876 return 0;
1877 }
1878
1879 entry->key_.type = type;
1880 }
1881
1882 return 1;
1883 }
1884
1885 /* Return TRUE if SMALL GOT can be added to BIG GOT without overflowing it.
1886 Construct DIFF GOT holding the entries which should be added or updated
1887 in BIG GOT to accumulate information from SMALL.
1888 INFO is the context where memory should be allocated. */
1889
1890 static bfd_boolean
1891 elf_m68k_can_merge_gots (struct elf_m68k_got *big,
1892 const struct elf_m68k_got *small,
1893 struct bfd_link_info *info,
1894 struct elf_m68k_got *diff)
1895 {
1896 struct elf_m68k_can_merge_gots_arg arg_;
1897
1898 BFD_ASSERT (small->offset == (bfd_vma) -1);
1899
1900 arg_.big = big;
1901 arg_.diff = diff;
1902 arg_.info = info;
1903 arg_.error_p = FALSE;
1904 htab_traverse_noresize (small->entries, elf_m68k_can_merge_gots_1, &arg_);
1905 if (arg_.error_p)
1906 {
1907 diff->offset = 0;
1908 return FALSE;
1909 }
1910
1911 /* Check for overflow. */
1912 if ((big->n_slots[R_8] + arg_.diff->n_slots[R_8]
1913 > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1914 || (big->n_slots[R_16] + arg_.diff->n_slots[R_16]
1915 > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))
1916 return FALSE;
1917
1918 return TRUE;
1919 }
1920
1921 struct elf_m68k_merge_gots_arg
1922 {
1923 /* The BIG got. */
1924 struct elf_m68k_got *big;
1925
1926 /* Context where memory should be allocated. */
1927 struct bfd_link_info *info;
1928
1929 /* Error flag. */
1930 bfd_boolean error_p;
1931 };
1932
1933 /* Process a single entry from DIFF got. Add or update corresponding
1934 entry in the BIG got. */
1935
1936 static int
1937 elf_m68k_merge_gots_1 (void **entry_ptr, void *_arg)
1938 {
1939 const struct elf_m68k_got_entry *from;
1940 struct elf_m68k_merge_gots_arg *arg;
1941 struct elf_m68k_got_entry *to;
1942
1943 from = (const struct elf_m68k_got_entry *) *entry_ptr;
1944 arg = (struct elf_m68k_merge_gots_arg *) _arg;
1945
1946 to = elf_m68k_get_got_entry (arg->big, &from->key_, FIND_OR_CREATE,
1947 arg->info);
1948 if (to == NULL)
1949 {
1950 arg->error_p = TRUE;
1951 return 0;
1952 }
1953
1954 BFD_ASSERT (to->u.s1.refcount == 0);
1955 /* All we need to merge is TYPE. */
1956 to->key_.type = from->key_.type;
1957
1958 return 1;
1959 }
1960
1961 /* Merge data from DIFF to BIG. INFO is context where memory should be
1962 allocated. */
1963
1964 static bfd_boolean
1965 elf_m68k_merge_gots (struct elf_m68k_got *big,
1966 struct elf_m68k_got *diff,
1967 struct bfd_link_info *info)
1968 {
1969 if (diff->entries != NULL)
1970 /* DIFF is not empty. Merge it into BIG GOT. */
1971 {
1972 struct elf_m68k_merge_gots_arg arg_;
1973
1974 /* Merge entries. */
1975 arg_.big = big;
1976 arg_.info = info;
1977 arg_.error_p = FALSE;
1978 htab_traverse_noresize (diff->entries, elf_m68k_merge_gots_1, &arg_);
1979 if (arg_.error_p)
1980 return FALSE;
1981
1982 /* Merge counters. */
1983 big->n_slots[R_8] += diff->n_slots[R_8];
1984 big->n_slots[R_16] += diff->n_slots[R_16];
1985 big->n_slots[R_32] += diff->n_slots[R_32];
1986 big->local_n_slots += diff->local_n_slots;
1987 }
1988 else
1989 /* DIFF is empty. */
1990 {
1991 BFD_ASSERT (diff->n_slots[R_8] == 0);
1992 BFD_ASSERT (diff->n_slots[R_16] == 0);
1993 BFD_ASSERT (diff->n_slots[R_32] == 0);
1994 BFD_ASSERT (diff->local_n_slots == 0);
1995 }
1996
1997 BFD_ASSERT (!elf_m68k_hash_table (info)->allow_multigot_p
1998 || ((big->n_slots[R_8]
1999 <= ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
2000 && (big->n_slots[R_16]
2001 <= ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info))));
2002
2003 return TRUE;
2004 }
2005
2006 struct elf_m68k_finalize_got_offsets_arg
2007 {
2008 /* Ranges of the offsets for GOT entries.
2009 R_x entries receive offsets between offset1[R_x] and offset2[R_x].
2010 R_x is R_8, R_16 and R_32. */
2011 bfd_vma *offset1;
2012 bfd_vma *offset2;
2013
2014 /* Mapping from global symndx to global symbols.
2015 This is used to build lists of got entries for global symbols. */
2016 struct elf_m68k_link_hash_entry **symndx2h;
2017
2018 bfd_vma n_ldm_entries;
2019 };
2020
2021 /* Assign ENTRY an offset. Build list of GOT entries for global symbols
2022 along the way. */
2023
2024 static int
2025 elf_m68k_finalize_got_offsets_1 (void **entry_ptr, void *_arg)
2026 {
2027 struct elf_m68k_got_entry *entry;
2028 struct elf_m68k_finalize_got_offsets_arg *arg;
2029
2030 enum elf_m68k_got_offset_size got_offset_size;
2031 bfd_vma entry_size;
2032
2033 entry = (struct elf_m68k_got_entry *) *entry_ptr;
2034 arg = (struct elf_m68k_finalize_got_offsets_arg *) _arg;
2035
2036 /* This should be a fresh entry created in elf_m68k_can_merge_gots. */
2037 BFD_ASSERT (entry->u.s1.refcount == 0);
2038
2039 /* Get GOT offset size for the entry . */
2040 got_offset_size = elf_m68k_reloc_got_offset_size (entry->key_.type);
2041
2042 /* Calculate entry size in bytes. */
2043 entry_size = 4 * elf_m68k_reloc_got_n_slots (entry->key_.type);
2044
2045 /* Check if we should switch to negative range of the offsets. */
2046 if (arg->offset1[got_offset_size] + entry_size
2047 > arg->offset2[got_offset_size])
2048 {
2049 /* Verify that this is the only switch to negative range for
2050 got_offset_size. If this assertion fails, then we've miscalculated
2051 range for got_offset_size entries in
2052 elf_m68k_finalize_got_offsets. */
2053 BFD_ASSERT (arg->offset2[got_offset_size]
2054 != arg->offset2[-(int) got_offset_size - 1]);
2055
2056 /* Switch. */
2057 arg->offset1[got_offset_size] = arg->offset1[-(int) got_offset_size - 1];
2058 arg->offset2[got_offset_size] = arg->offset2[-(int) got_offset_size - 1];
2059
2060 /* Verify that now we have enough room for the entry. */
2061 BFD_ASSERT (arg->offset1[got_offset_size] + entry_size
2062 <= arg->offset2[got_offset_size]);
2063 }
2064
2065 /* Assign offset to entry. */
2066 entry->u.s2.offset = arg->offset1[got_offset_size];
2067 arg->offset1[got_offset_size] += entry_size;
2068
2069 if (entry->key_.bfd == NULL)
2070 /* Hook up this entry into the list of got_entries of H. */
2071 {
2072 struct elf_m68k_link_hash_entry *h;
2073
2074 h = arg->symndx2h[entry->key_.symndx];
2075 if (h != NULL)
2076 {
2077 entry->u.s2.next = h->glist;
2078 h->glist = entry;
2079 }
2080 else
2081 /* This should be the entry for TLS_LDM relocation then. */
2082 {
2083 BFD_ASSERT ((elf_m68k_reloc_got_type (entry->key_.type)
2084 == R_68K_TLS_LDM32)
2085 && entry->key_.symndx == 0);
2086
2087 ++arg->n_ldm_entries;
2088 }
2089 }
2090 else
2091 /* This entry is for local symbol. */
2092 entry->u.s2.next = NULL;
2093
2094 return 1;
2095 }
2096
2097 /* Assign offsets within GOT. USE_NEG_GOT_OFFSETS_P indicates if we
2098 should use negative offsets.
2099 Build list of GOT entries for global symbols along the way.
2100 SYMNDX2H is mapping from global symbol indices to actual
2101 global symbols.
2102 Return offset at which next GOT should start. */
2103
2104 static void
2105 elf_m68k_finalize_got_offsets (struct elf_m68k_got *got,
2106 bfd_boolean use_neg_got_offsets_p,
2107 struct elf_m68k_link_hash_entry **symndx2h,
2108 bfd_vma *final_offset, bfd_vma *n_ldm_entries)
2109 {
2110 struct elf_m68k_finalize_got_offsets_arg arg_;
2111 bfd_vma offset1_[2 * R_LAST];
2112 bfd_vma offset2_[2 * R_LAST];
2113 int i;
2114 bfd_vma start_offset;
2115
2116 BFD_ASSERT (got->offset != (bfd_vma) -1);
2117
2118 /* We set entry offsets relative to the .got section (and not the
2119 start of a particular GOT), so that we can use them in
2120 finish_dynamic_symbol without needing to know the GOT which they come
2121 from. */
2122
2123 /* Put offset1 in the middle of offset1_, same for offset2. */
2124 arg_.offset1 = offset1_ + R_LAST;
2125 arg_.offset2 = offset2_ + R_LAST;
2126
2127 start_offset = got->offset;
2128
2129 if (use_neg_got_offsets_p)
2130 /* Setup both negative and positive ranges for R_8, R_16 and R_32. */
2131 i = -(int) R_32 - 1;
2132 else
2133 /* Setup positives ranges for R_8, R_16 and R_32. */
2134 i = (int) R_8;
2135
2136 for (; i <= (int) R_32; ++i)
2137 {
2138 int j;
2139 size_t n;
2140
2141 /* Set beginning of the range of offsets I. */
2142 arg_.offset1[i] = start_offset;
2143
2144 /* Calculate number of slots that require I offsets. */
2145 j = (i >= 0) ? i : -i - 1;
2146 n = (j >= 1) ? got->n_slots[j - 1] : 0;
2147 n = got->n_slots[j] - n;
2148
2149 if (use_neg_got_offsets_p && n != 0)
2150 {
2151 if (i < 0)
2152 /* We first fill the positive side of the range, so we might
2153 end up with one empty slot at that side when we can't fit
2154 whole 2-slot entry. Account for that at negative side of
2155 the interval with one additional entry. */
2156 n = n / 2 + 1;
2157 else
2158 /* When the number of slots is odd, make positive side of the
2159 range one entry bigger. */
2160 n = (n + 1) / 2;
2161 }
2162
2163 /* N is the number of slots that require I offsets.
2164 Calculate length of the range for I offsets. */
2165 n = 4 * n;
2166
2167 /* Set end of the range. */
2168 arg_.offset2[i] = start_offset + n;
2169
2170 start_offset = arg_.offset2[i];
2171 }
2172
2173 if (!use_neg_got_offsets_p)
2174 /* Make sure that if we try to switch to negative offsets in
2175 elf_m68k_finalize_got_offsets_1, the assert therein will catch
2176 the bug. */
2177 for (i = R_8; i <= R_32; ++i)
2178 arg_.offset2[-i - 1] = arg_.offset2[i];
2179
2180 /* Setup got->offset. offset1[R_8] is either in the middle or at the
2181 beginning of GOT depending on use_neg_got_offsets_p. */
2182 got->offset = arg_.offset1[R_8];
2183
2184 arg_.symndx2h = symndx2h;
2185 arg_.n_ldm_entries = 0;
2186
2187 /* Assign offsets. */
2188 htab_traverse (got->entries, elf_m68k_finalize_got_offsets_1, &arg_);
2189
2190 /* Check offset ranges we have actually assigned. */
2191 for (i = (int) R_8; i <= (int) R_32; ++i)
2192 BFD_ASSERT (arg_.offset2[i] - arg_.offset1[i] <= 4);
2193
2194 *final_offset = start_offset;
2195 *n_ldm_entries = arg_.n_ldm_entries;
2196 }
2197
2198 struct elf_m68k_partition_multi_got_arg
2199 {
2200 /* The GOT we are adding entries to. Aka big got. */
2201 struct elf_m68k_got *current_got;
2202
2203 /* Offset to assign the next CURRENT_GOT. */
2204 bfd_vma offset;
2205
2206 /* Context where memory should be allocated. */
2207 struct bfd_link_info *info;
2208
2209 /* Total number of slots in the .got section.
2210 This is used to calculate size of the .got and .rela.got sections. */
2211 bfd_vma n_slots;
2212
2213 /* Difference in numbers of allocated slots in the .got section
2214 and necessary relocations in the .rela.got section.
2215 This is used to calculate size of the .rela.got section. */
2216 bfd_vma slots_relas_diff;
2217
2218 /* Error flag. */
2219 bfd_boolean error_p;
2220
2221 /* Mapping from global symndx to global symbols.
2222 This is used to build lists of got entries for global symbols. */
2223 struct elf_m68k_link_hash_entry **symndx2h;
2224 };
2225
2226 static void
2227 elf_m68k_partition_multi_got_2 (struct elf_m68k_partition_multi_got_arg *arg)
2228 {
2229 bfd_vma n_ldm_entries;
2230
2231 elf_m68k_finalize_got_offsets (arg->current_got,
2232 (elf_m68k_hash_table (arg->info)
2233 ->use_neg_got_offsets_p),
2234 arg->symndx2h,
2235 &arg->offset, &n_ldm_entries);
2236
2237 arg->n_slots += arg->current_got->n_slots[R_32];
2238
2239 if (!bfd_link_pic (arg->info))
2240 /* If we are generating a shared object, we need to
2241 output a R_68K_RELATIVE reloc so that the dynamic
2242 linker can adjust this GOT entry. Overwise we
2243 don't need space in .rela.got for local symbols. */
2244 arg->slots_relas_diff += arg->current_got->local_n_slots;
2245
2246 /* @LDM relocations require a 2-slot GOT entry, but only
2247 one relocation. Account for that. */
2248 arg->slots_relas_diff += n_ldm_entries;
2249
2250 BFD_ASSERT (arg->slots_relas_diff <= arg->n_slots);
2251 }
2252
2253
2254 /* Process a single BFD2GOT entry and either merge GOT to CURRENT_GOT
2255 or start a new CURRENT_GOT. */
2256
2257 static int
2258 elf_m68k_partition_multi_got_1 (void **_entry, void *_arg)
2259 {
2260 struct elf_m68k_bfd2got_entry *entry;
2261 struct elf_m68k_partition_multi_got_arg *arg;
2262 struct elf_m68k_got *got;
2263 struct elf_m68k_got diff_;
2264 struct elf_m68k_got *diff;
2265
2266 entry = (struct elf_m68k_bfd2got_entry *) *_entry;
2267 arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
2268
2269 got = entry->got;
2270 BFD_ASSERT (got != NULL);
2271 BFD_ASSERT (got->offset == (bfd_vma) -1);
2272
2273 diff = NULL;
2274
2275 if (arg->current_got != NULL)
2276 /* Construct diff. */
2277 {
2278 diff = &diff_;
2279 elf_m68k_init_got (diff);
2280
2281 if (!elf_m68k_can_merge_gots (arg->current_got, got, arg->info, diff))
2282 {
2283 if (diff->offset == 0)
2284 /* Offset set to 0 in the diff_ indicates an error. */
2285 {
2286 arg->error_p = TRUE;
2287 goto final_return;
2288 }
2289
2290 if (elf_m68k_hash_table (arg->info)->allow_multigot_p)
2291 {
2292 elf_m68k_clear_got (diff);
2293 /* Schedule to finish up current_got and start new one. */
2294 diff = NULL;
2295 }
2296 /* else
2297 Merge GOTs no matter what. If big GOT overflows,
2298 we'll fail in relocate_section due to truncated relocations.
2299
2300 ??? May be fail earlier? E.g., in can_merge_gots. */
2301 }
2302 }
2303 else
2304 /* Diff of got against empty current_got is got itself. */
2305 {
2306 /* Create empty current_got to put subsequent GOTs to. */
2307 arg->current_got = elf_m68k_create_empty_got (arg->info);
2308 if (arg->current_got == NULL)
2309 {
2310 arg->error_p = TRUE;
2311 goto final_return;
2312 }
2313
2314 arg->current_got->offset = arg->offset;
2315
2316 diff = got;
2317 }
2318
2319 if (diff != NULL)
2320 {
2321 if (!elf_m68k_merge_gots (arg->current_got, diff, arg->info))
2322 {
2323 arg->error_p = TRUE;
2324 goto final_return;
2325 }
2326
2327 /* Now we can free GOT. */
2328 elf_m68k_clear_got (got);
2329
2330 entry->got = arg->current_got;
2331 }
2332 else
2333 {
2334 /* Finish up current_got. */
2335 elf_m68k_partition_multi_got_2 (arg);
2336
2337 /* Schedule to start a new current_got. */
2338 arg->current_got = NULL;
2339
2340 /* Retry. */
2341 if (!elf_m68k_partition_multi_got_1 (_entry, _arg))
2342 {
2343 BFD_ASSERT (arg->error_p);
2344 goto final_return;
2345 }
2346 }
2347
2348 final_return:
2349 if (diff != NULL)
2350 elf_m68k_clear_got (diff);
2351
2352 return !arg->error_p;
2353 }
2354
2355 /* Helper function to build symndx2h mapping. */
2356
2357 static bfd_boolean
2358 elf_m68k_init_symndx2h_1 (struct elf_link_hash_entry *_h,
2359 void *_arg)
2360 {
2361 struct elf_m68k_link_hash_entry *h;
2362
2363 h = elf_m68k_hash_entry (_h);
2364
2365 if (h->got_entry_key != 0)
2366 /* H has at least one entry in the GOT. */
2367 {
2368 struct elf_m68k_partition_multi_got_arg *arg;
2369
2370 arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
2371
2372 BFD_ASSERT (arg->symndx2h[h->got_entry_key] == NULL);
2373 arg->symndx2h[h->got_entry_key] = h;
2374 }
2375
2376 return TRUE;
2377 }
2378
2379 /* Merge GOTs of some BFDs, assign offsets to GOT entries and build
2380 lists of GOT entries for global symbols.
2381 Calculate sizes of .got and .rela.got sections. */
2382
2383 static bfd_boolean
2384 elf_m68k_partition_multi_got (struct bfd_link_info *info)
2385 {
2386 struct elf_m68k_multi_got *multi_got;
2387 struct elf_m68k_partition_multi_got_arg arg_;
2388
2389 multi_got = elf_m68k_multi_got (info);
2390
2391 arg_.current_got = NULL;
2392 arg_.offset = 0;
2393 arg_.info = info;
2394 arg_.n_slots = 0;
2395 arg_.slots_relas_diff = 0;
2396 arg_.error_p = FALSE;
2397
2398 if (multi_got->bfd2got != NULL)
2399 {
2400 /* Initialize symndx2h mapping. */
2401 {
2402 arg_.symndx2h = bfd_zmalloc (multi_got->global_symndx
2403 * sizeof (*arg_.symndx2h));
2404 if (arg_.symndx2h == NULL)
2405 return FALSE;
2406
2407 elf_link_hash_traverse (elf_hash_table (info),
2408 elf_m68k_init_symndx2h_1, &arg_);
2409 }
2410
2411 /* Partition. */
2412 htab_traverse (multi_got->bfd2got, elf_m68k_partition_multi_got_1,
2413 &arg_);
2414 if (arg_.error_p)
2415 {
2416 free (arg_.symndx2h);
2417 arg_.symndx2h = NULL;
2418
2419 return FALSE;
2420 }
2421
2422 /* Finish up last current_got. */
2423 elf_m68k_partition_multi_got_2 (&arg_);
2424
2425 free (arg_.symndx2h);
2426 }
2427
2428 if (elf_hash_table (info)->dynobj != NULL)
2429 /* Set sizes of .got and .rela.got sections. */
2430 {
2431 asection *s;
2432
2433 s = elf_hash_table (info)->sgot;
2434 if (s != NULL)
2435 s->size = arg_.offset;
2436 else
2437 BFD_ASSERT (arg_.offset == 0);
2438
2439 BFD_ASSERT (arg_.slots_relas_diff <= arg_.n_slots);
2440 arg_.n_slots -= arg_.slots_relas_diff;
2441
2442 s = elf_hash_table (info)->srelgot;
2443 if (s != NULL)
2444 s->size = arg_.n_slots * sizeof (Elf32_External_Rela);
2445 else
2446 BFD_ASSERT (arg_.n_slots == 0);
2447 }
2448 else
2449 BFD_ASSERT (multi_got->bfd2got == NULL);
2450
2451 return TRUE;
2452 }
2453
2454 /* Copy any information related to dynamic linking from a pre-existing
2455 symbol to a newly created symbol. Also called to copy flags and
2456 other back-end info to a weakdef, in which case the symbol is not
2457 newly created and plt/got refcounts and dynamic indices should not
2458 be copied. */
2459
2460 static void
2461 elf_m68k_copy_indirect_symbol (struct bfd_link_info *info,
2462 struct elf_link_hash_entry *_dir,
2463 struct elf_link_hash_entry *_ind)
2464 {
2465 struct elf_m68k_link_hash_entry *dir;
2466 struct elf_m68k_link_hash_entry *ind;
2467
2468 _bfd_elf_link_hash_copy_indirect (info, _dir, _ind);
2469
2470 if (_ind->root.type != bfd_link_hash_indirect)
2471 return;
2472
2473 dir = elf_m68k_hash_entry (_dir);
2474 ind = elf_m68k_hash_entry (_ind);
2475
2476 /* Any absolute non-dynamic relocations against an indirect or weak
2477 definition will be against the target symbol. */
2478 _dir->non_got_ref |= _ind->non_got_ref;
2479
2480 /* We might have a direct symbol already having entries in the GOTs.
2481 Update its key only in case indirect symbol has GOT entries and
2482 assert that both indirect and direct symbols don't have GOT entries
2483 at the same time. */
2484 if (ind->got_entry_key != 0)
2485 {
2486 BFD_ASSERT (dir->got_entry_key == 0);
2487 /* Assert that GOTs aren't partioned yet. */
2488 BFD_ASSERT (ind->glist == NULL);
2489
2490 dir->got_entry_key = ind->got_entry_key;
2491 ind->got_entry_key = 0;
2492 }
2493 }
2494
2495 /* Look through the relocs for a section during the first phase, and
2496 allocate space in the global offset table or procedure linkage
2497 table. */
2498
2499 static bfd_boolean
2500 elf_m68k_check_relocs (bfd *abfd,
2501 struct bfd_link_info *info,
2502 asection *sec,
2503 const Elf_Internal_Rela *relocs)
2504 {
2505 bfd *dynobj;
2506 Elf_Internal_Shdr *symtab_hdr;
2507 struct elf_link_hash_entry **sym_hashes;
2508 const Elf_Internal_Rela *rel;
2509 const Elf_Internal_Rela *rel_end;
2510 asection *sreloc;
2511 struct elf_m68k_got *got;
2512
2513 if (bfd_link_relocatable (info))
2514 return TRUE;
2515
2516 dynobj = elf_hash_table (info)->dynobj;
2517 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2518 sym_hashes = elf_sym_hashes (abfd);
2519
2520 sreloc = NULL;
2521
2522 got = NULL;
2523
2524 rel_end = relocs + sec->reloc_count;
2525 for (rel = relocs; rel < rel_end; rel++)
2526 {
2527 unsigned long r_symndx;
2528 struct elf_link_hash_entry *h;
2529
2530 r_symndx = ELF32_R_SYM (rel->r_info);
2531
2532 if (r_symndx < symtab_hdr->sh_info)
2533 h = NULL;
2534 else
2535 {
2536 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2537 while (h->root.type == bfd_link_hash_indirect
2538 || h->root.type == bfd_link_hash_warning)
2539 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2540 }
2541
2542 switch (ELF32_R_TYPE (rel->r_info))
2543 {
2544 case R_68K_GOT8:
2545 case R_68K_GOT16:
2546 case R_68K_GOT32:
2547 if (h != NULL
2548 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2549 break;
2550 /* Fall through. */
2551
2552 /* Relative GOT relocations. */
2553 case R_68K_GOT8O:
2554 case R_68K_GOT16O:
2555 case R_68K_GOT32O:
2556 /* Fall through. */
2557
2558 /* TLS relocations. */
2559 case R_68K_TLS_GD8:
2560 case R_68K_TLS_GD16:
2561 case R_68K_TLS_GD32:
2562 case R_68K_TLS_LDM8:
2563 case R_68K_TLS_LDM16:
2564 case R_68K_TLS_LDM32:
2565 case R_68K_TLS_IE8:
2566 case R_68K_TLS_IE16:
2567 case R_68K_TLS_IE32:
2568
2569 case R_68K_TLS_TPREL32:
2570 case R_68K_TLS_DTPREL32:
2571
2572 if (ELF32_R_TYPE (rel->r_info) == R_68K_TLS_TPREL32
2573 && bfd_link_pic (info))
2574 /* Do the special chorus for libraries with static TLS. */
2575 info->flags |= DF_STATIC_TLS;
2576
2577 /* This symbol requires a global offset table entry. */
2578
2579 if (dynobj == NULL)
2580 {
2581 /* Create the .got section. */
2582 elf_hash_table (info)->dynobj = dynobj = abfd;
2583 if (!_bfd_elf_create_got_section (dynobj, info))
2584 return FALSE;
2585 }
2586
2587 if (got == NULL)
2588 {
2589 struct elf_m68k_bfd2got_entry *bfd2got_entry;
2590
2591 bfd2got_entry
2592 = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
2593 abfd, FIND_OR_CREATE, info);
2594 if (bfd2got_entry == NULL)
2595 return FALSE;
2596
2597 got = bfd2got_entry->got;
2598 BFD_ASSERT (got != NULL);
2599 }
2600
2601 {
2602 struct elf_m68k_got_entry *got_entry;
2603
2604 /* Add entry to got. */
2605 got_entry = elf_m68k_add_entry_to_got (got, h, abfd,
2606 ELF32_R_TYPE (rel->r_info),
2607 r_symndx, info);
2608 if (got_entry == NULL)
2609 return FALSE;
2610
2611 if (got_entry->u.s1.refcount == 1)
2612 {
2613 /* Make sure this symbol is output as a dynamic symbol. */
2614 if (h != NULL
2615 && h->dynindx == -1
2616 && !h->forced_local)
2617 {
2618 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2619 return FALSE;
2620 }
2621 }
2622 }
2623
2624 break;
2625
2626 case R_68K_PLT8:
2627 case R_68K_PLT16:
2628 case R_68K_PLT32:
2629 /* This symbol requires a procedure linkage table entry. We
2630 actually build the entry in adjust_dynamic_symbol,
2631 because this might be a case of linking PIC code which is
2632 never referenced by a dynamic object, in which case we
2633 don't need to generate a procedure linkage table entry
2634 after all. */
2635
2636 /* If this is a local symbol, we resolve it directly without
2637 creating a procedure linkage table entry. */
2638 if (h == NULL)
2639 continue;
2640
2641 h->needs_plt = 1;
2642 h->plt.refcount++;
2643 break;
2644
2645 case R_68K_PLT8O:
2646 case R_68K_PLT16O:
2647 case R_68K_PLT32O:
2648 /* This symbol requires a procedure linkage table entry. */
2649
2650 if (h == NULL)
2651 {
2652 /* It does not make sense to have this relocation for a
2653 local symbol. FIXME: does it? How to handle it if
2654 it does make sense? */
2655 bfd_set_error (bfd_error_bad_value);
2656 return FALSE;
2657 }
2658
2659 /* Make sure this symbol is output as a dynamic symbol. */
2660 if (h->dynindx == -1
2661 && !h->forced_local)
2662 {
2663 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2664 return FALSE;
2665 }
2666
2667 h->needs_plt = 1;
2668 h->plt.refcount++;
2669 break;
2670
2671 case R_68K_PC8:
2672 case R_68K_PC16:
2673 case R_68K_PC32:
2674 /* If we are creating a shared library and this is not a local
2675 symbol, we need to copy the reloc into the shared library.
2676 However when linking with -Bsymbolic and this is a global
2677 symbol which is defined in an object we are including in the
2678 link (i.e., DEF_REGULAR is set), then we can resolve the
2679 reloc directly. At this point we have not seen all the input
2680 files, so it is possible that DEF_REGULAR is not set now but
2681 will be set later (it is never cleared). We account for that
2682 possibility below by storing information in the
2683 pcrel_relocs_copied field of the hash table entry. */
2684 if (!(bfd_link_pic (info)
2685 && (sec->flags & SEC_ALLOC) != 0
2686 && h != NULL
2687 && (!SYMBOLIC_BIND (info, h)
2688 || h->root.type == bfd_link_hash_defweak
2689 || !h->def_regular)))
2690 {
2691 if (h != NULL)
2692 {
2693 /* Make sure a plt entry is created for this symbol if
2694 it turns out to be a function defined by a dynamic
2695 object. */
2696 h->plt.refcount++;
2697 }
2698 break;
2699 }
2700 /* Fall through. */
2701 case R_68K_8:
2702 case R_68K_16:
2703 case R_68K_32:
2704 /* We don't need to handle relocs into sections not going into
2705 the "real" output. */
2706 if ((sec->flags & SEC_ALLOC) == 0)
2707 break;
2708
2709 if (h != NULL)
2710 {
2711 /* Make sure a plt entry is created for this symbol if it
2712 turns out to be a function defined by a dynamic object. */
2713 h->plt.refcount++;
2714
2715 if (bfd_link_executable (info))
2716 /* This symbol needs a non-GOT reference. */
2717 h->non_got_ref = 1;
2718 }
2719
2720 /* If we are creating a shared library, we need to copy the
2721 reloc into the shared library. */
2722 if (bfd_link_pic (info)
2723 && (h == NULL
2724 || !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)))
2725 {
2726 /* When creating a shared object, we must copy these
2727 reloc types into the output file. We create a reloc
2728 section in dynobj and make room for this reloc. */
2729 if (sreloc == NULL)
2730 {
2731 sreloc = _bfd_elf_make_dynamic_reloc_section
2732 (sec, dynobj, 2, abfd, /*rela?*/ TRUE);
2733
2734 if (sreloc == NULL)
2735 return FALSE;
2736 }
2737
2738 if (sec->flags & SEC_READONLY
2739 /* Don't set DF_TEXTREL yet for PC relative
2740 relocations, they might be discarded later. */
2741 && !(ELF32_R_TYPE (rel->r_info) == R_68K_PC8
2742 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
2743 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32))
2744 info->flags |= DF_TEXTREL;
2745
2746 sreloc->size += sizeof (Elf32_External_Rela);
2747
2748 /* We count the number of PC relative relocations we have
2749 entered for this symbol, so that we can discard them
2750 again if, in the -Bsymbolic case, the symbol is later
2751 defined by a regular object, or, in the normal shared
2752 case, the symbol is forced to be local. Note that this
2753 function is only called if we are using an m68kelf linker
2754 hash table, which means that h is really a pointer to an
2755 elf_m68k_link_hash_entry. */
2756 if (ELF32_R_TYPE (rel->r_info) == R_68K_PC8
2757 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
2758 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32)
2759 {
2760 struct elf_m68k_pcrel_relocs_copied *p;
2761 struct elf_m68k_pcrel_relocs_copied **head;
2762
2763 if (h != NULL)
2764 {
2765 struct elf_m68k_link_hash_entry *eh
2766 = elf_m68k_hash_entry (h);
2767 head = &eh->pcrel_relocs_copied;
2768 }
2769 else
2770 {
2771 asection *s;
2772 void *vpp;
2773 Elf_Internal_Sym *isym;
2774
2775 isym = bfd_sym_from_r_symndx (&elf_m68k_hash_table (info)->sym_cache,
2776 abfd, r_symndx);
2777 if (isym == NULL)
2778 return FALSE;
2779
2780 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
2781 if (s == NULL)
2782 s = sec;
2783
2784 vpp = &elf_section_data (s)->local_dynrel;
2785 head = (struct elf_m68k_pcrel_relocs_copied **) vpp;
2786 }
2787
2788 for (p = *head; p != NULL; p = p->next)
2789 if (p->section == sreloc)
2790 break;
2791
2792 if (p == NULL)
2793 {
2794 p = ((struct elf_m68k_pcrel_relocs_copied *)
2795 bfd_alloc (dynobj, (bfd_size_type) sizeof *p));
2796 if (p == NULL)
2797 return FALSE;
2798 p->next = *head;
2799 *head = p;
2800 p->section = sreloc;
2801 p->count = 0;
2802 }
2803
2804 ++p->count;
2805 }
2806 }
2807
2808 break;
2809
2810 /* This relocation describes the C++ object vtable hierarchy.
2811 Reconstruct it for later use during GC. */
2812 case R_68K_GNU_VTINHERIT:
2813 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2814 return FALSE;
2815 break;
2816
2817 /* This relocation describes which C++ vtable entries are actually
2818 used. Record for later use during GC. */
2819 case R_68K_GNU_VTENTRY:
2820 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2821 return FALSE;
2822 break;
2823
2824 default:
2825 break;
2826 }
2827 }
2828
2829 return TRUE;
2830 }
2831
2832 /* Return the section that should be marked against GC for a given
2833 relocation. */
2834
2835 static asection *
2836 elf_m68k_gc_mark_hook (asection *sec,
2837 struct bfd_link_info *info,
2838 Elf_Internal_Rela *rel,
2839 struct elf_link_hash_entry *h,
2840 Elf_Internal_Sym *sym)
2841 {
2842 if (h != NULL)
2843 switch (ELF32_R_TYPE (rel->r_info))
2844 {
2845 case R_68K_GNU_VTINHERIT:
2846 case R_68K_GNU_VTENTRY:
2847 return NULL;
2848 }
2849
2850 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
2851 }
2852 \f
2853 /* Return the type of PLT associated with OUTPUT_BFD. */
2854
2855 static const struct elf_m68k_plt_info *
2856 elf_m68k_get_plt_info (bfd *output_bfd)
2857 {
2858 unsigned int features;
2859
2860 features = bfd_m68k_mach_to_features (bfd_get_mach (output_bfd));
2861 if (features & cpu32)
2862 return &elf_cpu32_plt_info;
2863 if (features & mcfisa_b)
2864 return &elf_isab_plt_info;
2865 if (features & mcfisa_c)
2866 return &elf_isac_plt_info;
2867 return &elf_m68k_plt_info;
2868 }
2869
2870 /* This function is called after all the input files have been read,
2871 and the input sections have been assigned to output sections.
2872 It's a convenient place to determine the PLT style. */
2873
2874 static bfd_boolean
2875 elf_m68k_always_size_sections (bfd *output_bfd, struct bfd_link_info *info)
2876 {
2877 /* Bind input BFDs to GOTs and calculate sizes of .got and .rela.got
2878 sections. */
2879 if (!elf_m68k_partition_multi_got (info))
2880 return FALSE;
2881
2882 elf_m68k_hash_table (info)->plt_info = elf_m68k_get_plt_info (output_bfd);
2883 return TRUE;
2884 }
2885
2886 /* Adjust a symbol defined by a dynamic object and referenced by a
2887 regular object. The current definition is in some section of the
2888 dynamic object, but we're not including those sections. We have to
2889 change the definition to something the rest of the link can
2890 understand. */
2891
2892 static bfd_boolean
2893 elf_m68k_adjust_dynamic_symbol (struct bfd_link_info *info,
2894 struct elf_link_hash_entry *h)
2895 {
2896 struct elf_m68k_link_hash_table *htab;
2897 bfd *dynobj;
2898 asection *s;
2899
2900 htab = elf_m68k_hash_table (info);
2901 dynobj = htab->root.dynobj;
2902
2903 /* Make sure we know what is going on here. */
2904 BFD_ASSERT (dynobj != NULL
2905 && (h->needs_plt
2906 || h->is_weakalias
2907 || (h->def_dynamic
2908 && h->ref_regular
2909 && !h->def_regular)));
2910
2911 /* If this is a function, put it in the procedure linkage table. We
2912 will fill in the contents of the procedure linkage table later,
2913 when we know the address of the .got section. */
2914 if (h->type == STT_FUNC
2915 || h->needs_plt)
2916 {
2917 if ((h->plt.refcount <= 0
2918 || SYMBOL_CALLS_LOCAL (info, h)
2919 || ((ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2920 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
2921 && h->root.type == bfd_link_hash_undefweak))
2922 /* We must always create the plt entry if it was referenced
2923 by a PLTxxO relocation. In this case we already recorded
2924 it as a dynamic symbol. */
2925 && h->dynindx == -1)
2926 {
2927 /* This case can occur if we saw a PLTxx reloc in an input
2928 file, but the symbol was never referred to by a dynamic
2929 object, or if all references were garbage collected. In
2930 such a case, we don't actually need to build a procedure
2931 linkage table, and we can just do a PCxx reloc instead. */
2932 h->plt.offset = (bfd_vma) -1;
2933 h->needs_plt = 0;
2934 return TRUE;
2935 }
2936
2937 /* Make sure this symbol is output as a dynamic symbol. */
2938 if (h->dynindx == -1
2939 && !h->forced_local)
2940 {
2941 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2942 return FALSE;
2943 }
2944
2945 s = htab->root.splt;
2946 BFD_ASSERT (s != NULL);
2947
2948 /* If this is the first .plt entry, make room for the special
2949 first entry. */
2950 if (s->size == 0)
2951 s->size = htab->plt_info->size;
2952
2953 /* If this symbol is not defined in a regular file, and we are
2954 not generating a shared library, then set the symbol to this
2955 location in the .plt. This is required to make function
2956 pointers compare as equal between the normal executable and
2957 the shared library. */
2958 if (!bfd_link_pic (info)
2959 && !h->def_regular)
2960 {
2961 h->root.u.def.section = s;
2962 h->root.u.def.value = s->size;
2963 }
2964
2965 h->plt.offset = s->size;
2966
2967 /* Make room for this entry. */
2968 s->size += htab->plt_info->size;
2969
2970 /* We also need to make an entry in the .got.plt section, which
2971 will be placed in the .got section by the linker script. */
2972 s = htab->root.sgotplt;
2973 BFD_ASSERT (s != NULL);
2974 s->size += 4;
2975
2976 /* We also need to make an entry in the .rela.plt section. */
2977 s = htab->root.srelplt;
2978 BFD_ASSERT (s != NULL);
2979 s->size += sizeof (Elf32_External_Rela);
2980
2981 return TRUE;
2982 }
2983
2984 /* Reinitialize the plt offset now that it is not used as a reference
2985 count any more. */
2986 h->plt.offset = (bfd_vma) -1;
2987
2988 /* If this is a weak symbol, and there is a real definition, the
2989 processor independent code will have arranged for us to see the
2990 real definition first, and we can just use the same value. */
2991 if (h->is_weakalias)
2992 {
2993 struct elf_link_hash_entry *def = weakdef (h);
2994 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
2995 h->root.u.def.section = def->root.u.def.section;
2996 h->root.u.def.value = def->root.u.def.value;
2997 return TRUE;
2998 }
2999
3000 /* This is a reference to a symbol defined by a dynamic object which
3001 is not a function. */
3002
3003 /* If we are creating a shared library, we must presume that the
3004 only references to the symbol are via the global offset table.
3005 For such cases we need not do anything here; the relocations will
3006 be handled correctly by relocate_section. */
3007 if (bfd_link_pic (info))
3008 return TRUE;
3009
3010 /* If there are no references to this symbol that do not use the
3011 GOT, we don't need to generate a copy reloc. */
3012 if (!h->non_got_ref)
3013 return TRUE;
3014
3015 /* We must allocate the symbol in our .dynbss section, which will
3016 become part of the .bss section of the executable. There will be
3017 an entry for this symbol in the .dynsym section. The dynamic
3018 object will contain position independent code, so all references
3019 from the dynamic object to this symbol will go through the global
3020 offset table. The dynamic linker will use the .dynsym entry to
3021 determine the address it must put in the global offset table, so
3022 both the dynamic object and the regular object will refer to the
3023 same memory location for the variable. */
3024
3025 s = bfd_get_linker_section (dynobj, ".dynbss");
3026 BFD_ASSERT (s != NULL);
3027
3028 /* We must generate a R_68K_COPY reloc to tell the dynamic linker to
3029 copy the initial value out of the dynamic object and into the
3030 runtime process image. We need to remember the offset into the
3031 .rela.bss section we are going to use. */
3032 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
3033 {
3034 asection *srel;
3035
3036 srel = bfd_get_linker_section (dynobj, ".rela.bss");
3037 BFD_ASSERT (srel != NULL);
3038 srel->size += sizeof (Elf32_External_Rela);
3039 h->needs_copy = 1;
3040 }
3041
3042 return _bfd_elf_adjust_dynamic_copy (info, h, s);
3043 }
3044
3045 /* Set the sizes of the dynamic sections. */
3046
3047 static bfd_boolean
3048 elf_m68k_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
3049 struct bfd_link_info *info)
3050 {
3051 bfd *dynobj;
3052 asection *s;
3053 bfd_boolean plt;
3054 bfd_boolean relocs;
3055
3056 dynobj = elf_hash_table (info)->dynobj;
3057 BFD_ASSERT (dynobj != NULL);
3058
3059 if (elf_hash_table (info)->dynamic_sections_created)
3060 {
3061 /* Set the contents of the .interp section to the interpreter. */
3062 if (bfd_link_executable (info) && !info->nointerp)
3063 {
3064 s = bfd_get_linker_section (dynobj, ".interp");
3065 BFD_ASSERT (s != NULL);
3066 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
3067 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
3068 }
3069 }
3070 else
3071 {
3072 /* We may have created entries in the .rela.got section.
3073 However, if we are not creating the dynamic sections, we will
3074 not actually use these entries. Reset the size of .rela.got,
3075 which will cause it to get stripped from the output file
3076 below. */
3077 s = elf_hash_table (info)->srelgot;
3078 if (s != NULL)
3079 s->size = 0;
3080 }
3081
3082 /* If this is a -Bsymbolic shared link, then we need to discard all
3083 PC relative relocs against symbols defined in a regular object.
3084 For the normal shared case we discard the PC relative relocs
3085 against symbols that have become local due to visibility changes.
3086 We allocated space for them in the check_relocs routine, but we
3087 will not fill them in in the relocate_section routine. */
3088 if (bfd_link_pic (info))
3089 elf_link_hash_traverse (elf_hash_table (info),
3090 elf_m68k_discard_copies,
3091 info);
3092
3093 /* The check_relocs and adjust_dynamic_symbol entry points have
3094 determined the sizes of the various dynamic sections. Allocate
3095 memory for them. */
3096 plt = FALSE;
3097 relocs = FALSE;
3098 for (s = dynobj->sections; s != NULL; s = s->next)
3099 {
3100 const char *name;
3101
3102 if ((s->flags & SEC_LINKER_CREATED) == 0)
3103 continue;
3104
3105 /* It's OK to base decisions on the section name, because none
3106 of the dynobj section names depend upon the input files. */
3107 name = bfd_get_section_name (dynobj, s);
3108
3109 if (strcmp (name, ".plt") == 0)
3110 {
3111 /* Remember whether there is a PLT. */
3112 plt = s->size != 0;
3113 }
3114 else if (CONST_STRNEQ (name, ".rela"))
3115 {
3116 if (s->size != 0)
3117 {
3118 relocs = TRUE;
3119
3120 /* We use the reloc_count field as a counter if we need
3121 to copy relocs into the output file. */
3122 s->reloc_count = 0;
3123 }
3124 }
3125 else if (! CONST_STRNEQ (name, ".got")
3126 && strcmp (name, ".dynbss") != 0)
3127 {
3128 /* It's not one of our sections, so don't allocate space. */
3129 continue;
3130 }
3131
3132 if (s->size == 0)
3133 {
3134 /* If we don't need this section, strip it from the
3135 output file. This is mostly to handle .rela.bss and
3136 .rela.plt. We must create both sections in
3137 create_dynamic_sections, because they must be created
3138 before the linker maps input sections to output
3139 sections. The linker does that before
3140 adjust_dynamic_symbol is called, and it is that
3141 function which decides whether anything needs to go
3142 into these sections. */
3143 s->flags |= SEC_EXCLUDE;
3144 continue;
3145 }
3146
3147 if ((s->flags & SEC_HAS_CONTENTS) == 0)
3148 continue;
3149
3150 /* Allocate memory for the section contents. */
3151 /* FIXME: This should be a call to bfd_alloc not bfd_zalloc.
3152 Unused entries should be reclaimed before the section's contents
3153 are written out, but at the moment this does not happen. Thus in
3154 order to prevent writing out garbage, we initialise the section's
3155 contents to zero. */
3156 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
3157 if (s->contents == NULL)
3158 return FALSE;
3159 }
3160
3161 if (elf_hash_table (info)->dynamic_sections_created)
3162 {
3163 /* Add some entries to the .dynamic section. We fill in the
3164 values later, in elf_m68k_finish_dynamic_sections, but we
3165 must add the entries now so that we get the correct size for
3166 the .dynamic section. The DT_DEBUG entry is filled in by the
3167 dynamic linker and used by the debugger. */
3168 #define add_dynamic_entry(TAG, VAL) \
3169 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3170
3171 if (bfd_link_executable (info))
3172 {
3173 if (!add_dynamic_entry (DT_DEBUG, 0))
3174 return FALSE;
3175 }
3176
3177 if (plt)
3178 {
3179 if (!add_dynamic_entry (DT_PLTGOT, 0)
3180 || !add_dynamic_entry (DT_PLTRELSZ, 0)
3181 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
3182 || !add_dynamic_entry (DT_JMPREL, 0))
3183 return FALSE;
3184 }
3185
3186 if (relocs)
3187 {
3188 if (!add_dynamic_entry (DT_RELA, 0)
3189 || !add_dynamic_entry (DT_RELASZ, 0)
3190 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
3191 return FALSE;
3192 }
3193
3194 if ((info->flags & DF_TEXTREL) != 0)
3195 {
3196 if (!add_dynamic_entry (DT_TEXTREL, 0))
3197 return FALSE;
3198 }
3199 }
3200 #undef add_dynamic_entry
3201
3202 return TRUE;
3203 }
3204
3205 /* This function is called via elf_link_hash_traverse if we are
3206 creating a shared object. In the -Bsymbolic case it discards the
3207 space allocated to copy PC relative relocs against symbols which
3208 are defined in regular objects. For the normal shared case, it
3209 discards space for pc-relative relocs that have become local due to
3210 symbol visibility changes. We allocated space for them in the
3211 check_relocs routine, but we won't fill them in in the
3212 relocate_section routine.
3213
3214 We also check whether any of the remaining relocations apply
3215 against a readonly section, and set the DF_TEXTREL flag in this
3216 case. */
3217
3218 static bfd_boolean
3219 elf_m68k_discard_copies (struct elf_link_hash_entry *h,
3220 void * inf)
3221 {
3222 struct bfd_link_info *info = (struct bfd_link_info *) inf;
3223 struct elf_m68k_pcrel_relocs_copied *s;
3224
3225 if (!SYMBOL_CALLS_LOCAL (info, h))
3226 {
3227 if ((info->flags & DF_TEXTREL) == 0)
3228 {
3229 /* Look for relocations against read-only sections. */
3230 for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
3231 s != NULL;
3232 s = s->next)
3233 if ((s->section->flags & SEC_READONLY) != 0)
3234 {
3235 info->flags |= DF_TEXTREL;
3236 break;
3237 }
3238 }
3239
3240 /* Make sure undefined weak symbols are output as a dynamic symbol
3241 in PIEs. */
3242 if (h->non_got_ref
3243 && h->root.type == bfd_link_hash_undefweak
3244 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3245 && h->dynindx == -1
3246 && !h->forced_local)
3247 {
3248 if (! bfd_elf_link_record_dynamic_symbol (info, h))
3249 return FALSE;
3250 }
3251
3252 return TRUE;
3253 }
3254
3255 for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
3256 s != NULL;
3257 s = s->next)
3258 s->section->size -= s->count * sizeof (Elf32_External_Rela);
3259
3260 return TRUE;
3261 }
3262
3263
3264 /* Install relocation RELA. */
3265
3266 static void
3267 elf_m68k_install_rela (bfd *output_bfd,
3268 asection *srela,
3269 Elf_Internal_Rela *rela)
3270 {
3271 bfd_byte *loc;
3272
3273 loc = srela->contents;
3274 loc += srela->reloc_count++ * sizeof (Elf32_External_Rela);
3275 bfd_elf32_swap_reloca_out (output_bfd, rela, loc);
3276 }
3277
3278 /* Find the base offsets for thread-local storage in this object,
3279 for GD/LD and IE/LE respectively. */
3280
3281 #define DTP_OFFSET 0x8000
3282 #define TP_OFFSET 0x7000
3283
3284 static bfd_vma
3285 dtpoff_base (struct bfd_link_info *info)
3286 {
3287 /* If tls_sec is NULL, we should have signalled an error already. */
3288 if (elf_hash_table (info)->tls_sec == NULL)
3289 return 0;
3290 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
3291 }
3292
3293 static bfd_vma
3294 tpoff_base (struct bfd_link_info *info)
3295 {
3296 /* If tls_sec is NULL, we should have signalled an error already. */
3297 if (elf_hash_table (info)->tls_sec == NULL)
3298 return 0;
3299 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
3300 }
3301
3302 /* Output necessary relocation to handle a symbol during static link.
3303 This function is called from elf_m68k_relocate_section. */
3304
3305 static void
3306 elf_m68k_init_got_entry_static (struct bfd_link_info *info,
3307 bfd *output_bfd,
3308 enum elf_m68k_reloc_type r_type,
3309 asection *sgot,
3310 bfd_vma got_entry_offset,
3311 bfd_vma relocation)
3312 {
3313 switch (elf_m68k_reloc_got_type (r_type))
3314 {
3315 case R_68K_GOT32O:
3316 bfd_put_32 (output_bfd, relocation, sgot->contents + got_entry_offset);
3317 break;
3318
3319 case R_68K_TLS_GD32:
3320 /* We know the offset within the module,
3321 put it into the second GOT slot. */
3322 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
3323 sgot->contents + got_entry_offset + 4);
3324 /* FALLTHRU */
3325
3326 case R_68K_TLS_LDM32:
3327 /* Mark it as belonging to module 1, the executable. */
3328 bfd_put_32 (output_bfd, 1, sgot->contents + got_entry_offset);
3329 break;
3330
3331 case R_68K_TLS_IE32:
3332 bfd_put_32 (output_bfd, relocation - tpoff_base (info),
3333 sgot->contents + got_entry_offset);
3334 break;
3335
3336 default:
3337 BFD_ASSERT (FALSE);
3338 }
3339 }
3340
3341 /* Output necessary relocation to handle a local symbol
3342 during dynamic link.
3343 This function is called either from elf_m68k_relocate_section
3344 or from elf_m68k_finish_dynamic_symbol. */
3345
3346 static void
3347 elf_m68k_init_got_entry_local_shared (struct bfd_link_info *info,
3348 bfd *output_bfd,
3349 enum elf_m68k_reloc_type r_type,
3350 asection *sgot,
3351 bfd_vma got_entry_offset,
3352 bfd_vma relocation,
3353 asection *srela)
3354 {
3355 Elf_Internal_Rela outrel;
3356
3357 switch (elf_m68k_reloc_got_type (r_type))
3358 {
3359 case R_68K_GOT32O:
3360 /* Emit RELATIVE relocation to initialize GOT slot
3361 at run-time. */
3362 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
3363 outrel.r_addend = relocation;
3364 break;
3365
3366 case R_68K_TLS_GD32:
3367 /* We know the offset within the module,
3368 put it into the second GOT slot. */
3369 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
3370 sgot->contents + got_entry_offset + 4);
3371 /* FALLTHRU */
3372
3373 case R_68K_TLS_LDM32:
3374 /* We don't know the module number,
3375 create a relocation for it. */
3376 outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_DTPMOD32);
3377 outrel.r_addend = 0;
3378 break;
3379
3380 case R_68K_TLS_IE32:
3381 /* Emit TPREL relocation to initialize GOT slot
3382 at run-time. */
3383 outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_TPREL32);
3384 outrel.r_addend = relocation - elf_hash_table (info)->tls_sec->vma;
3385 break;
3386
3387 default:
3388 BFD_ASSERT (FALSE);
3389 }
3390
3391 /* Offset of the GOT entry. */
3392 outrel.r_offset = (sgot->output_section->vma
3393 + sgot->output_offset
3394 + got_entry_offset);
3395
3396 /* Install one of the above relocations. */
3397 elf_m68k_install_rela (output_bfd, srela, &outrel);
3398
3399 bfd_put_32 (output_bfd, outrel.r_addend, sgot->contents + got_entry_offset);
3400 }
3401
3402 /* Relocate an M68K ELF section. */
3403
3404 static bfd_boolean
3405 elf_m68k_relocate_section (bfd *output_bfd,
3406 struct bfd_link_info *info,
3407 bfd *input_bfd,
3408 asection *input_section,
3409 bfd_byte *contents,
3410 Elf_Internal_Rela *relocs,
3411 Elf_Internal_Sym *local_syms,
3412 asection **local_sections)
3413 {
3414 Elf_Internal_Shdr *symtab_hdr;
3415 struct elf_link_hash_entry **sym_hashes;
3416 asection *sgot;
3417 asection *splt;
3418 asection *sreloc;
3419 asection *srela;
3420 struct elf_m68k_got *got;
3421 Elf_Internal_Rela *rel;
3422 Elf_Internal_Rela *relend;
3423
3424 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3425 sym_hashes = elf_sym_hashes (input_bfd);
3426
3427 sgot = NULL;
3428 splt = NULL;
3429 sreloc = NULL;
3430 srela = NULL;
3431
3432 got = NULL;
3433
3434 rel = relocs;
3435 relend = relocs + input_section->reloc_count;
3436 for (; rel < relend; rel++)
3437 {
3438 int r_type;
3439 reloc_howto_type *howto;
3440 unsigned long r_symndx;
3441 struct elf_link_hash_entry *h;
3442 Elf_Internal_Sym *sym;
3443 asection *sec;
3444 bfd_vma relocation;
3445 bfd_boolean unresolved_reloc;
3446 bfd_reloc_status_type r;
3447 bfd_boolean resolved_to_zero;
3448
3449 r_type = ELF32_R_TYPE (rel->r_info);
3450 if (r_type < 0 || r_type >= (int) R_68K_max)
3451 {
3452 bfd_set_error (bfd_error_bad_value);
3453 return FALSE;
3454 }
3455 howto = howto_table + r_type;
3456
3457 r_symndx = ELF32_R_SYM (rel->r_info);
3458
3459 h = NULL;
3460 sym = NULL;
3461 sec = NULL;
3462 unresolved_reloc = FALSE;
3463
3464 if (r_symndx < symtab_hdr->sh_info)
3465 {
3466 sym = local_syms + r_symndx;
3467 sec = local_sections[r_symndx];
3468 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
3469 }
3470 else
3471 {
3472 bfd_boolean warned, ignored;
3473
3474 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3475 r_symndx, symtab_hdr, sym_hashes,
3476 h, sec, relocation,
3477 unresolved_reloc, warned, ignored);
3478 }
3479
3480 if (sec != NULL && discarded_section (sec))
3481 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3482 rel, 1, relend, howto, 0, contents);
3483
3484 if (bfd_link_relocatable (info))
3485 continue;
3486
3487 resolved_to_zero = (h != NULL
3488 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
3489
3490 switch (r_type)
3491 {
3492 case R_68K_GOT8:
3493 case R_68K_GOT16:
3494 case R_68K_GOT32:
3495 /* Relocation is to the address of the entry for this symbol
3496 in the global offset table. */
3497 if (h != NULL
3498 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3499 {
3500 if (elf_m68k_hash_table (info)->local_gp_p)
3501 {
3502 bfd_vma sgot_output_offset;
3503 bfd_vma got_offset;
3504
3505 sgot = elf_hash_table (info)->sgot;
3506
3507 if (sgot != NULL)
3508 sgot_output_offset = sgot->output_offset;
3509 else
3510 /* In this case we have a reference to
3511 _GLOBAL_OFFSET_TABLE_, but the GOT itself is
3512 empty.
3513 ??? Issue a warning? */
3514 sgot_output_offset = 0;
3515
3516 if (got == NULL)
3517 {
3518 struct elf_m68k_bfd2got_entry *bfd2got_entry;
3519
3520 bfd2got_entry
3521 = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
3522 input_bfd, SEARCH, NULL);
3523
3524 if (bfd2got_entry != NULL)
3525 {
3526 got = bfd2got_entry->got;
3527 BFD_ASSERT (got != NULL);
3528
3529 got_offset = got->offset;
3530 }
3531 else
3532 /* In this case we have a reference to
3533 _GLOBAL_OFFSET_TABLE_, but no other references
3534 accessing any GOT entries.
3535 ??? Issue a warning? */
3536 got_offset = 0;
3537 }
3538 else
3539 got_offset = got->offset;
3540
3541 /* Adjust GOT pointer to point to the GOT
3542 assigned to input_bfd. */
3543 rel->r_addend += sgot_output_offset + got_offset;
3544 }
3545 else
3546 BFD_ASSERT (got == NULL || got->offset == 0);
3547
3548 break;
3549 }
3550 /* Fall through. */
3551 case R_68K_GOT8O:
3552 case R_68K_GOT16O:
3553 case R_68K_GOT32O:
3554
3555 case R_68K_TLS_LDM32:
3556 case R_68K_TLS_LDM16:
3557 case R_68K_TLS_LDM8:
3558
3559 case R_68K_TLS_GD8:
3560 case R_68K_TLS_GD16:
3561 case R_68K_TLS_GD32:
3562
3563 case R_68K_TLS_IE8:
3564 case R_68K_TLS_IE16:
3565 case R_68K_TLS_IE32:
3566
3567 /* Relocation is the offset of the entry for this symbol in
3568 the global offset table. */
3569
3570 {
3571 struct elf_m68k_got_entry_key key_;
3572 bfd_vma *off_ptr;
3573 bfd_vma off;
3574
3575 sgot = elf_hash_table (info)->sgot;
3576 BFD_ASSERT (sgot != NULL);
3577
3578 if (got == NULL)
3579 got = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
3580 input_bfd, MUST_FIND,
3581 NULL)->got;
3582
3583 /* Get GOT offset for this symbol. */
3584 elf_m68k_init_got_entry_key (&key_, h, input_bfd, r_symndx,
3585 r_type);
3586 off_ptr = &elf_m68k_get_got_entry (got, &key_, MUST_FIND,
3587 NULL)->u.s2.offset;
3588 off = *off_ptr;
3589
3590 /* The offset must always be a multiple of 4. We use
3591 the least significant bit to record whether we have
3592 already generated the necessary reloc. */
3593 if ((off & 1) != 0)
3594 off &= ~1;
3595 else
3596 {
3597 if (h != NULL
3598 /* @TLSLDM relocations are bounded to the module, in
3599 which the symbol is defined -- not to the symbol
3600 itself. */
3601 && elf_m68k_reloc_got_type (r_type) != R_68K_TLS_LDM32)
3602 {
3603 bfd_boolean dyn;
3604
3605 dyn = elf_hash_table (info)->dynamic_sections_created;
3606 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
3607 bfd_link_pic (info),
3608 h)
3609 || (bfd_link_pic (info)
3610 && SYMBOL_REFERENCES_LOCAL (info, h))
3611 || ((ELF_ST_VISIBILITY (h->other)
3612 || resolved_to_zero)
3613 && h->root.type == bfd_link_hash_undefweak))
3614 {
3615 /* This is actually a static link, or it is a
3616 -Bsymbolic link and the symbol is defined
3617 locally, or the symbol was forced to be local
3618 because of a version file. We must initialize
3619 this entry in the global offset table. Since
3620 the offset must always be a multiple of 4, we
3621 use the least significant bit to record whether
3622 we have initialized it already.
3623
3624 When doing a dynamic link, we create a .rela.got
3625 relocation entry to initialize the value. This
3626 is done in the finish_dynamic_symbol routine. */
3627
3628 elf_m68k_init_got_entry_static (info,
3629 output_bfd,
3630 r_type,
3631 sgot,
3632 off,
3633 relocation);
3634
3635 *off_ptr |= 1;
3636 }
3637 else
3638 unresolved_reloc = FALSE;
3639 }
3640 else if (bfd_link_pic (info)) /* && h == NULL */
3641 /* Process local symbol during dynamic link. */
3642 {
3643 srela = elf_hash_table (info)->srelgot;
3644 BFD_ASSERT (srela != NULL);
3645
3646 elf_m68k_init_got_entry_local_shared (info,
3647 output_bfd,
3648 r_type,
3649 sgot,
3650 off,
3651 relocation,
3652 srela);
3653
3654 *off_ptr |= 1;
3655 }
3656 else /* h == NULL && !bfd_link_pic (info) */
3657 {
3658 elf_m68k_init_got_entry_static (info,
3659 output_bfd,
3660 r_type,
3661 sgot,
3662 off,
3663 relocation);
3664
3665 *off_ptr |= 1;
3666 }
3667 }
3668
3669 /* We don't use elf_m68k_reloc_got_type in the condition below
3670 because this is the only place where difference between
3671 R_68K_GOTx and R_68K_GOTxO relocations matters. */
3672 if (r_type == R_68K_GOT32O
3673 || r_type == R_68K_GOT16O
3674 || r_type == R_68K_GOT8O
3675 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_GD32
3676 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_LDM32
3677 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_IE32)
3678 {
3679 /* GOT pointer is adjusted to point to the start/middle
3680 of local GOT. Adjust the offset accordingly. */
3681 BFD_ASSERT (elf_m68k_hash_table (info)->use_neg_got_offsets_p
3682 || off >= got->offset);
3683
3684 if (elf_m68k_hash_table (info)->local_gp_p)
3685 relocation = off - got->offset;
3686 else
3687 {
3688 BFD_ASSERT (got->offset == 0);
3689 relocation = sgot->output_offset + off;
3690 }
3691
3692 /* This relocation does not use the addend. */
3693 rel->r_addend = 0;
3694 }
3695 else
3696 relocation = (sgot->output_section->vma + sgot->output_offset
3697 + off);
3698 }
3699 break;
3700
3701 case R_68K_TLS_LDO32:
3702 case R_68K_TLS_LDO16:
3703 case R_68K_TLS_LDO8:
3704 relocation -= dtpoff_base (info);
3705 break;
3706
3707 case R_68K_TLS_LE32:
3708 case R_68K_TLS_LE16:
3709 case R_68K_TLS_LE8:
3710 if (bfd_link_dll (info))
3711 {
3712 _bfd_error_handler
3713 /* xgettext:c-format */
3714 (_("%pB(%pA+%#" PRIx64 "): "
3715 "%s relocation not permitted in shared object"),
3716 input_bfd, input_section, (uint64_t) rel->r_offset,
3717 howto->name);
3718
3719 return FALSE;
3720 }
3721 else
3722 relocation -= tpoff_base (info);
3723
3724 break;
3725
3726 case R_68K_PLT8:
3727 case R_68K_PLT16:
3728 case R_68K_PLT32:
3729 /* Relocation is to the entry for this symbol in the
3730 procedure linkage table. */
3731
3732 /* Resolve a PLTxx reloc against a local symbol directly,
3733 without using the procedure linkage table. */
3734 if (h == NULL)
3735 break;
3736
3737 if (h->plt.offset == (bfd_vma) -1
3738 || !elf_hash_table (info)->dynamic_sections_created)
3739 {
3740 /* We didn't make a PLT entry for this symbol. This
3741 happens when statically linking PIC code, or when
3742 using -Bsymbolic. */
3743 break;
3744 }
3745
3746 splt = elf_hash_table (info)->splt;
3747 BFD_ASSERT (splt != NULL);
3748
3749 relocation = (splt->output_section->vma
3750 + splt->output_offset
3751 + h->plt.offset);
3752 unresolved_reloc = FALSE;
3753 break;
3754
3755 case R_68K_PLT8O:
3756 case R_68K_PLT16O:
3757 case R_68K_PLT32O:
3758 /* Relocation is the offset of the entry for this symbol in
3759 the procedure linkage table. */
3760 BFD_ASSERT (h != NULL && h->plt.offset != (bfd_vma) -1);
3761
3762 splt = elf_hash_table (info)->splt;
3763 BFD_ASSERT (splt != NULL);
3764
3765 relocation = h->plt.offset;
3766 unresolved_reloc = FALSE;
3767
3768 /* This relocation does not use the addend. */
3769 rel->r_addend = 0;
3770
3771 break;
3772
3773 case R_68K_8:
3774 case R_68K_16:
3775 case R_68K_32:
3776 case R_68K_PC8:
3777 case R_68K_PC16:
3778 case R_68K_PC32:
3779 if (bfd_link_pic (info)
3780 && r_symndx != STN_UNDEF
3781 && (input_section->flags & SEC_ALLOC) != 0
3782 && (h == NULL
3783 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3784 && !resolved_to_zero)
3785 || h->root.type != bfd_link_hash_undefweak)
3786 && ((r_type != R_68K_PC8
3787 && r_type != R_68K_PC16
3788 && r_type != R_68K_PC32)
3789 || !SYMBOL_CALLS_LOCAL (info, h)))
3790 {
3791 Elf_Internal_Rela outrel;
3792 bfd_byte *loc;
3793 bfd_boolean skip, relocate;
3794
3795 /* When generating a shared object, these relocations
3796 are copied into the output file to be resolved at run
3797 time. */
3798
3799 skip = FALSE;
3800 relocate = FALSE;
3801
3802 outrel.r_offset =
3803 _bfd_elf_section_offset (output_bfd, info, input_section,
3804 rel->r_offset);
3805 if (outrel.r_offset == (bfd_vma) -1)
3806 skip = TRUE;
3807 else if (outrel.r_offset == (bfd_vma) -2)
3808 skip = TRUE, relocate = TRUE;
3809 outrel.r_offset += (input_section->output_section->vma
3810 + input_section->output_offset);
3811
3812 if (skip)
3813 memset (&outrel, 0, sizeof outrel);
3814 else if (h != NULL
3815 && h->dynindx != -1
3816 && (r_type == R_68K_PC8
3817 || r_type == R_68K_PC16
3818 || r_type == R_68K_PC32
3819 || !bfd_link_pic (info)
3820 || !SYMBOLIC_BIND (info, h)
3821 || !h->def_regular))
3822 {
3823 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
3824 outrel.r_addend = rel->r_addend;
3825 }
3826 else
3827 {
3828 /* This symbol is local, or marked to become local. */
3829 outrel.r_addend = relocation + rel->r_addend;
3830
3831 if (r_type == R_68K_32)
3832 {
3833 relocate = TRUE;
3834 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
3835 }
3836 else
3837 {
3838 long indx;
3839
3840 if (bfd_is_abs_section (sec))
3841 indx = 0;
3842 else if (sec == NULL || sec->owner == NULL)
3843 {
3844 bfd_set_error (bfd_error_bad_value);
3845 return FALSE;
3846 }
3847 else
3848 {
3849 asection *osec;
3850
3851 /* We are turning this relocation into one
3852 against a section symbol. It would be
3853 proper to subtract the symbol's value,
3854 osec->vma, from the emitted reloc addend,
3855 but ld.so expects buggy relocs. */
3856 osec = sec->output_section;
3857 indx = elf_section_data (osec)->dynindx;
3858 if (indx == 0)
3859 {
3860 struct elf_link_hash_table *htab;
3861 htab = elf_hash_table (info);
3862 osec = htab->text_index_section;
3863 indx = elf_section_data (osec)->dynindx;
3864 }
3865 BFD_ASSERT (indx != 0);
3866 }
3867
3868 outrel.r_info = ELF32_R_INFO (indx, r_type);
3869 }
3870 }
3871
3872 sreloc = elf_section_data (input_section)->sreloc;
3873 if (sreloc == NULL)
3874 abort ();
3875
3876 loc = sreloc->contents;
3877 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3878 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3879
3880 /* This reloc will be computed at runtime, so there's no
3881 need to do anything now, except for R_68K_32
3882 relocations that have been turned into
3883 R_68K_RELATIVE. */
3884 if (!relocate)
3885 continue;
3886 }
3887
3888 break;
3889
3890 case R_68K_GNU_VTINHERIT:
3891 case R_68K_GNU_VTENTRY:
3892 /* These are no-ops in the end. */
3893 continue;
3894
3895 default:
3896 break;
3897 }
3898
3899 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3900 because such sections are not SEC_ALLOC and thus ld.so will
3901 not process them. */
3902 if (unresolved_reloc
3903 && !((input_section->flags & SEC_DEBUGGING) != 0
3904 && h->def_dynamic)
3905 && _bfd_elf_section_offset (output_bfd, info, input_section,
3906 rel->r_offset) != (bfd_vma) -1)
3907 {
3908 _bfd_error_handler
3909 /* xgettext:c-format */
3910 (_("%pB(%pA+%#" PRIx64 "): "
3911 "unresolvable %s relocation against symbol `%s'"),
3912 input_bfd,
3913 input_section,
3914 (uint64_t) rel->r_offset,
3915 howto->name,
3916 h->root.root.string);
3917 return FALSE;
3918 }
3919
3920 if (r_symndx != STN_UNDEF
3921 && r_type != R_68K_NONE
3922 && (h == NULL
3923 || h->root.type == bfd_link_hash_defined
3924 || h->root.type == bfd_link_hash_defweak))
3925 {
3926 char sym_type;
3927
3928 sym_type = (sym != NULL) ? ELF32_ST_TYPE (sym->st_info) : h->type;
3929
3930 if (elf_m68k_reloc_tls_p (r_type) != (sym_type == STT_TLS))
3931 {
3932 const char *name;
3933
3934 if (h != NULL)
3935 name = h->root.root.string;
3936 else
3937 {
3938 name = (bfd_elf_string_from_elf_section
3939 (input_bfd, symtab_hdr->sh_link, sym->st_name));
3940 if (name == NULL || *name == '\0')
3941 name = bfd_section_name (input_bfd, sec);
3942 }
3943
3944 _bfd_error_handler
3945 ((sym_type == STT_TLS
3946 /* xgettext:c-format */
3947 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
3948 /* xgettext:c-format */
3949 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
3950 input_bfd,
3951 input_section,
3952 (uint64_t) rel->r_offset,
3953 howto->name,
3954 name);
3955 }
3956 }
3957
3958 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
3959 contents, rel->r_offset,
3960 relocation, rel->r_addend);
3961
3962 if (r != bfd_reloc_ok)
3963 {
3964 const char *name;
3965
3966 if (h != NULL)
3967 name = h->root.root.string;
3968 else
3969 {
3970 name = bfd_elf_string_from_elf_section (input_bfd,
3971 symtab_hdr->sh_link,
3972 sym->st_name);
3973 if (name == NULL)
3974 return FALSE;
3975 if (*name == '\0')
3976 name = bfd_section_name (input_bfd, sec);
3977 }
3978
3979 if (r == bfd_reloc_overflow)
3980 (*info->callbacks->reloc_overflow)
3981 (info, (h ? &h->root : NULL), name, howto->name,
3982 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
3983 else
3984 {
3985 _bfd_error_handler
3986 /* xgettext:c-format */
3987 (_("%pB(%pA+%#" PRIx64 "): reloc against `%s': error %d"),
3988 input_bfd, input_section,
3989 (uint64_t) rel->r_offset, name, (int) r);
3990 return FALSE;
3991 }
3992 }
3993 }
3994
3995 return TRUE;
3996 }
3997
3998 /* Install an M_68K_PC32 relocation against VALUE at offset OFFSET
3999 into section SEC. */
4000
4001 static void
4002 elf_m68k_install_pc32 (asection *sec, bfd_vma offset, bfd_vma value)
4003 {
4004 /* Make VALUE PC-relative. */
4005 value -= sec->output_section->vma + offset;
4006
4007 /* Apply any in-place addend. */
4008 value += bfd_get_32 (sec->owner, sec->contents + offset);
4009
4010 bfd_put_32 (sec->owner, value, sec->contents + offset);
4011 }
4012
4013 /* Finish up dynamic symbol handling. We set the contents of various
4014 dynamic sections here. */
4015
4016 static bfd_boolean
4017 elf_m68k_finish_dynamic_symbol (bfd *output_bfd,
4018 struct bfd_link_info *info,
4019 struct elf_link_hash_entry *h,
4020 Elf_Internal_Sym *sym)
4021 {
4022 bfd *dynobj;
4023
4024 dynobj = elf_hash_table (info)->dynobj;
4025
4026 if (h->plt.offset != (bfd_vma) -1)
4027 {
4028 const struct elf_m68k_plt_info *plt_info;
4029 asection *splt;
4030 asection *sgot;
4031 asection *srela;
4032 bfd_vma plt_index;
4033 bfd_vma got_offset;
4034 Elf_Internal_Rela rela;
4035 bfd_byte *loc;
4036
4037 /* This symbol has an entry in the procedure linkage table. Set
4038 it up. */
4039
4040 BFD_ASSERT (h->dynindx != -1);
4041
4042 plt_info = elf_m68k_hash_table (info)->plt_info;
4043 splt = elf_hash_table (info)->splt;
4044 sgot = elf_hash_table (info)->sgotplt;
4045 srela = elf_hash_table (info)->srelplt;
4046 BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL);
4047
4048 /* Get the index in the procedure linkage table which
4049 corresponds to this symbol. This is the index of this symbol
4050 in all the symbols for which we are making plt entries. The
4051 first entry in the procedure linkage table is reserved. */
4052 plt_index = (h->plt.offset / plt_info->size) - 1;
4053
4054 /* Get the offset into the .got table of the entry that
4055 corresponds to this function. Each .got entry is 4 bytes.
4056 The first three are reserved. */
4057 got_offset = (plt_index + 3) * 4;
4058
4059 memcpy (splt->contents + h->plt.offset,
4060 plt_info->symbol_entry,
4061 plt_info->size);
4062
4063 elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.got,
4064 (sgot->output_section->vma
4065 + sgot->output_offset
4066 + got_offset));
4067
4068 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela),
4069 splt->contents
4070 + h->plt.offset
4071 + plt_info->symbol_resolve_entry + 2);
4072
4073 elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.plt,
4074 splt->output_section->vma);
4075
4076 /* Fill in the entry in the global offset table. */
4077 bfd_put_32 (output_bfd,
4078 (splt->output_section->vma
4079 + splt->output_offset
4080 + h->plt.offset
4081 + plt_info->symbol_resolve_entry),
4082 sgot->contents + got_offset);
4083
4084 /* Fill in the entry in the .rela.plt section. */
4085 rela.r_offset = (sgot->output_section->vma
4086 + sgot->output_offset
4087 + got_offset);
4088 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_JMP_SLOT);
4089 rela.r_addend = 0;
4090 loc = srela->contents + plt_index * sizeof (Elf32_External_Rela);
4091 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4092
4093 if (!h->def_regular)
4094 {
4095 /* Mark the symbol as undefined, rather than as defined in
4096 the .plt section. Leave the value alone. */
4097 sym->st_shndx = SHN_UNDEF;
4098 }
4099 }
4100
4101 if (elf_m68k_hash_entry (h)->glist != NULL)
4102 {
4103 asection *sgot;
4104 asection *srela;
4105 struct elf_m68k_got_entry *got_entry;
4106
4107 /* This symbol has an entry in the global offset table. Set it
4108 up. */
4109
4110 sgot = elf_hash_table (info)->sgot;
4111 srela = elf_hash_table (info)->srelgot;
4112 BFD_ASSERT (sgot != NULL && srela != NULL);
4113
4114 got_entry = elf_m68k_hash_entry (h)->glist;
4115
4116 while (got_entry != NULL)
4117 {
4118 enum elf_m68k_reloc_type r_type;
4119 bfd_vma got_entry_offset;
4120
4121 r_type = got_entry->key_.type;
4122 got_entry_offset = got_entry->u.s2.offset &~ (bfd_vma) 1;
4123
4124 /* If this is a -Bsymbolic link, and the symbol is defined
4125 locally, we just want to emit a RELATIVE reloc. Likewise if
4126 the symbol was forced to be local because of a version file.
4127 The entry in the global offset table already have been
4128 initialized in the relocate_section function. */
4129 if (bfd_link_pic (info)
4130 && SYMBOL_REFERENCES_LOCAL (info, h))
4131 {
4132 bfd_vma relocation;
4133
4134 relocation = bfd_get_signed_32 (output_bfd,
4135 (sgot->contents
4136 + got_entry_offset));
4137
4138 /* Undo TP bias. */
4139 switch (elf_m68k_reloc_got_type (r_type))
4140 {
4141 case R_68K_GOT32O:
4142 case R_68K_TLS_LDM32:
4143 break;
4144
4145 case R_68K_TLS_GD32:
4146 /* The value for this relocation is actually put in
4147 the second GOT slot. */
4148 relocation = bfd_get_signed_32 (output_bfd,
4149 (sgot->contents
4150 + got_entry_offset + 4));
4151 relocation += dtpoff_base (info);
4152 break;
4153
4154 case R_68K_TLS_IE32:
4155 relocation += tpoff_base (info);
4156 break;
4157
4158 default:
4159 BFD_ASSERT (FALSE);
4160 }
4161
4162 elf_m68k_init_got_entry_local_shared (info,
4163 output_bfd,
4164 r_type,
4165 sgot,
4166 got_entry_offset,
4167 relocation,
4168 srela);
4169 }
4170 else
4171 {
4172 Elf_Internal_Rela rela;
4173
4174 /* Put zeros to GOT slots that will be initialized
4175 at run-time. */
4176 {
4177 bfd_vma n_slots;
4178
4179 n_slots = elf_m68k_reloc_got_n_slots (got_entry->key_.type);
4180 while (n_slots--)
4181 bfd_put_32 (output_bfd, (bfd_vma) 0,
4182 (sgot->contents + got_entry_offset
4183 + 4 * n_slots));
4184 }
4185
4186 rela.r_addend = 0;
4187 rela.r_offset = (sgot->output_section->vma
4188 + sgot->output_offset
4189 + got_entry_offset);
4190
4191 switch (elf_m68k_reloc_got_type (r_type))
4192 {
4193 case R_68K_GOT32O:
4194 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_GLOB_DAT);
4195 elf_m68k_install_rela (output_bfd, srela, &rela);
4196 break;
4197
4198 case R_68K_TLS_GD32:
4199 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPMOD32);
4200 elf_m68k_install_rela (output_bfd, srela, &rela);
4201
4202 rela.r_offset += 4;
4203 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPREL32);
4204 elf_m68k_install_rela (output_bfd, srela, &rela);
4205 break;
4206
4207 case R_68K_TLS_IE32:
4208 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_TPREL32);
4209 elf_m68k_install_rela (output_bfd, srela, &rela);
4210 break;
4211
4212 default:
4213 BFD_ASSERT (FALSE);
4214 break;
4215 }
4216 }
4217
4218 got_entry = got_entry->u.s2.next;
4219 }
4220 }
4221
4222 if (h->needs_copy)
4223 {
4224 asection *s;
4225 Elf_Internal_Rela rela;
4226 bfd_byte *loc;
4227
4228 /* This symbol needs a copy reloc. Set it up. */
4229
4230 BFD_ASSERT (h->dynindx != -1
4231 && (h->root.type == bfd_link_hash_defined
4232 || h->root.type == bfd_link_hash_defweak));
4233
4234 s = bfd_get_linker_section (dynobj, ".rela.bss");
4235 BFD_ASSERT (s != NULL);
4236
4237 rela.r_offset = (h->root.u.def.value
4238 + h->root.u.def.section->output_section->vma
4239 + h->root.u.def.section->output_offset);
4240 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_COPY);
4241 rela.r_addend = 0;
4242 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4243 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4244 }
4245
4246 return TRUE;
4247 }
4248
4249 /* Finish up the dynamic sections. */
4250
4251 static bfd_boolean
4252 elf_m68k_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
4253 {
4254 bfd *dynobj;
4255 asection *sgot;
4256 asection *sdyn;
4257
4258 dynobj = elf_hash_table (info)->dynobj;
4259
4260 sgot = elf_hash_table (info)->sgotplt;
4261 BFD_ASSERT (sgot != NULL);
4262 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4263
4264 if (elf_hash_table (info)->dynamic_sections_created)
4265 {
4266 asection *splt;
4267 Elf32_External_Dyn *dyncon, *dynconend;
4268
4269 splt = elf_hash_table (info)->splt;
4270 BFD_ASSERT (splt != NULL && sdyn != NULL);
4271
4272 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4273 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4274 for (; dyncon < dynconend; dyncon++)
4275 {
4276 Elf_Internal_Dyn dyn;
4277 asection *s;
4278
4279 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4280
4281 switch (dyn.d_tag)
4282 {
4283 default:
4284 break;
4285
4286 case DT_PLTGOT:
4287 s = elf_hash_table (info)->sgotplt;
4288 goto get_vma;
4289 case DT_JMPREL:
4290 s = elf_hash_table (info)->srelplt;
4291 get_vma:
4292 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4293 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4294 break;
4295
4296 case DT_PLTRELSZ:
4297 s = elf_hash_table (info)->srelplt;
4298 dyn.d_un.d_val = s->size;
4299 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4300 break;
4301 }
4302 }
4303
4304 /* Fill in the first entry in the procedure linkage table. */
4305 if (splt->size > 0)
4306 {
4307 const struct elf_m68k_plt_info *plt_info;
4308
4309 plt_info = elf_m68k_hash_table (info)->plt_info;
4310 memcpy (splt->contents, plt_info->plt0_entry, plt_info->size);
4311
4312 elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got4,
4313 (sgot->output_section->vma
4314 + sgot->output_offset
4315 + 4));
4316
4317 elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got8,
4318 (sgot->output_section->vma
4319 + sgot->output_offset
4320 + 8));
4321
4322 elf_section_data (splt->output_section)->this_hdr.sh_entsize
4323 = plt_info->size;
4324 }
4325 }
4326
4327 /* Fill in the first three entries in the global offset table. */
4328 if (sgot->size > 0)
4329 {
4330 if (sdyn == NULL)
4331 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
4332 else
4333 bfd_put_32 (output_bfd,
4334 sdyn->output_section->vma + sdyn->output_offset,
4335 sgot->contents);
4336 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
4337 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
4338 }
4339
4340 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
4341
4342 return TRUE;
4343 }
4344
4345 /* Given a .data section and a .emreloc in-memory section, store
4346 relocation information into the .emreloc section which can be
4347 used at runtime to relocate the section. This is called by the
4348 linker when the --embedded-relocs switch is used. This is called
4349 after the add_symbols entry point has been called for all the
4350 objects, and before the final_link entry point is called. */
4351
4352 bfd_boolean
4353 bfd_m68k_elf32_create_embedded_relocs (bfd *abfd, struct bfd_link_info *info,
4354 asection *datasec, asection *relsec,
4355 char **errmsg)
4356 {
4357 Elf_Internal_Shdr *symtab_hdr;
4358 Elf_Internal_Sym *isymbuf = NULL;
4359 Elf_Internal_Rela *internal_relocs = NULL;
4360 Elf_Internal_Rela *irel, *irelend;
4361 bfd_byte *p;
4362 bfd_size_type amt;
4363
4364 BFD_ASSERT (! bfd_link_relocatable (info));
4365
4366 *errmsg = NULL;
4367
4368 if (datasec->reloc_count == 0)
4369 return TRUE;
4370
4371 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4372
4373 /* Get a copy of the native relocations. */
4374 internal_relocs = (_bfd_elf_link_read_relocs
4375 (abfd, datasec, NULL, (Elf_Internal_Rela *) NULL,
4376 info->keep_memory));
4377 if (internal_relocs == NULL)
4378 goto error_return;
4379
4380 amt = (bfd_size_type) datasec->reloc_count * 12;
4381 relsec->contents = (bfd_byte *) bfd_alloc (abfd, amt);
4382 if (relsec->contents == NULL)
4383 goto error_return;
4384
4385 p = relsec->contents;
4386
4387 irelend = internal_relocs + datasec->reloc_count;
4388 for (irel = internal_relocs; irel < irelend; irel++, p += 12)
4389 {
4390 asection *targetsec;
4391
4392 /* We are going to write a four byte longword into the runtime
4393 reloc section. The longword will be the address in the data
4394 section which must be relocated. It is followed by the name
4395 of the target section NUL-padded or truncated to 8
4396 characters. */
4397
4398 /* We can only relocate absolute longword relocs at run time. */
4399 if (ELF32_R_TYPE (irel->r_info) != (int) R_68K_32)
4400 {
4401 *errmsg = _("unsupported relocation type");
4402 bfd_set_error (bfd_error_bad_value);
4403 goto error_return;
4404 }
4405
4406 /* Get the target section referred to by the reloc. */
4407 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
4408 {
4409 /* A local symbol. */
4410 Elf_Internal_Sym *isym;
4411
4412 /* Read this BFD's local symbols if we haven't done so already. */
4413 if (isymbuf == NULL)
4414 {
4415 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
4416 if (isymbuf == NULL)
4417 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
4418 symtab_hdr->sh_info, 0,
4419 NULL, NULL, NULL);
4420 if (isymbuf == NULL)
4421 goto error_return;
4422 }
4423
4424 isym = isymbuf + ELF32_R_SYM (irel->r_info);
4425 targetsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4426 }
4427 else
4428 {
4429 unsigned long indx;
4430 struct elf_link_hash_entry *h;
4431
4432 /* An external symbol. */
4433 indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
4434 h = elf_sym_hashes (abfd)[indx];
4435 BFD_ASSERT (h != NULL);
4436 if (h->root.type == bfd_link_hash_defined
4437 || h->root.type == bfd_link_hash_defweak)
4438 targetsec = h->root.u.def.section;
4439 else
4440 targetsec = NULL;
4441 }
4442
4443 bfd_put_32 (abfd, irel->r_offset + datasec->output_offset, p);
4444 memset (p + 4, 0, 8);
4445 if (targetsec != NULL)
4446 strncpy ((char *) p + 4, targetsec->output_section->name, 8);
4447 }
4448
4449 if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf)
4450 free (isymbuf);
4451 if (internal_relocs != NULL
4452 && elf_section_data (datasec)->relocs != internal_relocs)
4453 free (internal_relocs);
4454 return TRUE;
4455
4456 error_return:
4457 if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf)
4458 free (isymbuf);
4459 if (internal_relocs != NULL
4460 && elf_section_data (datasec)->relocs != internal_relocs)
4461 free (internal_relocs);
4462 return FALSE;
4463 }
4464
4465 /* Set target options. */
4466
4467 void
4468 bfd_elf_m68k_set_target_options (struct bfd_link_info *info, int got_handling)
4469 {
4470 struct elf_m68k_link_hash_table *htab;
4471 bfd_boolean use_neg_got_offsets_p;
4472 bfd_boolean allow_multigot_p;
4473 bfd_boolean local_gp_p;
4474
4475 switch (got_handling)
4476 {
4477 case 0:
4478 /* --got=single. */
4479 local_gp_p = FALSE;
4480 use_neg_got_offsets_p = FALSE;
4481 allow_multigot_p = FALSE;
4482 break;
4483
4484 case 1:
4485 /* --got=negative. */
4486 local_gp_p = TRUE;
4487 use_neg_got_offsets_p = TRUE;
4488 allow_multigot_p = FALSE;
4489 break;
4490
4491 case 2:
4492 /* --got=multigot. */
4493 local_gp_p = TRUE;
4494 use_neg_got_offsets_p = TRUE;
4495 allow_multigot_p = TRUE;
4496 break;
4497
4498 default:
4499 BFD_ASSERT (FALSE);
4500 return;
4501 }
4502
4503 htab = elf_m68k_hash_table (info);
4504 if (htab != NULL)
4505 {
4506 htab->local_gp_p = local_gp_p;
4507 htab->use_neg_got_offsets_p = use_neg_got_offsets_p;
4508 htab->allow_multigot_p = allow_multigot_p;
4509 }
4510 }
4511
4512 static enum elf_reloc_type_class
4513 elf32_m68k_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4514 const asection *rel_sec ATTRIBUTE_UNUSED,
4515 const Elf_Internal_Rela *rela)
4516 {
4517 switch ((int) ELF32_R_TYPE (rela->r_info))
4518 {
4519 case R_68K_RELATIVE:
4520 return reloc_class_relative;
4521 case R_68K_JMP_SLOT:
4522 return reloc_class_plt;
4523 case R_68K_COPY:
4524 return reloc_class_copy;
4525 default:
4526 return reloc_class_normal;
4527 }
4528 }
4529
4530 /* Return address for Ith PLT stub in section PLT, for relocation REL
4531 or (bfd_vma) -1 if it should not be included. */
4532
4533 static bfd_vma
4534 elf_m68k_plt_sym_val (bfd_vma i, const asection *plt,
4535 const arelent *rel ATTRIBUTE_UNUSED)
4536 {
4537 return plt->vma + (i + 1) * elf_m68k_get_plt_info (plt->owner)->size;
4538 }
4539
4540 /* Support for core dump NOTE sections. */
4541
4542 static bfd_boolean
4543 elf_m68k_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
4544 {
4545 int offset;
4546 size_t size;
4547
4548 switch (note->descsz)
4549 {
4550 default:
4551 return FALSE;
4552
4553 case 154: /* Linux/m68k */
4554 /* pr_cursig */
4555 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
4556
4557 /* pr_pid */
4558 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 22);
4559
4560 /* pr_reg */
4561 offset = 70;
4562 size = 80;
4563
4564 break;
4565 }
4566
4567 /* Make a ".reg/999" section. */
4568 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
4569 size, note->descpos + offset);
4570 }
4571
4572 static bfd_boolean
4573 elf_m68k_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
4574 {
4575 switch (note->descsz)
4576 {
4577 default:
4578 return FALSE;
4579
4580 case 124: /* Linux/m68k elf_prpsinfo. */
4581 elf_tdata (abfd)->core->pid
4582 = bfd_get_32 (abfd, note->descdata + 12);
4583 elf_tdata (abfd)->core->program
4584 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
4585 elf_tdata (abfd)->core->command
4586 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
4587 }
4588
4589 /* Note that for some reason, a spurious space is tacked
4590 onto the end of the args in some (at least one anyway)
4591 implementations, so strip it off if it exists. */
4592 {
4593 char *command = elf_tdata (abfd)->core->command;
4594 int n = strlen (command);
4595
4596 if (n > 0 && command[n - 1] == ' ')
4597 command[n - 1] = '\0';
4598 }
4599
4600 return TRUE;
4601 }
4602
4603 #define TARGET_BIG_SYM m68k_elf32_vec
4604 #define TARGET_BIG_NAME "elf32-m68k"
4605 #define ELF_MACHINE_CODE EM_68K
4606 #define ELF_MAXPAGESIZE 0x2000
4607 #define elf_backend_create_dynamic_sections \
4608 _bfd_elf_create_dynamic_sections
4609 #define bfd_elf32_bfd_link_hash_table_create \
4610 elf_m68k_link_hash_table_create
4611 #define bfd_elf32_bfd_final_link bfd_elf_final_link
4612
4613 #define elf_backend_check_relocs elf_m68k_check_relocs
4614 #define elf_backend_always_size_sections \
4615 elf_m68k_always_size_sections
4616 #define elf_backend_adjust_dynamic_symbol \
4617 elf_m68k_adjust_dynamic_symbol
4618 #define elf_backend_size_dynamic_sections \
4619 elf_m68k_size_dynamic_sections
4620 #define elf_backend_final_write_processing elf_m68k_final_write_processing
4621 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4622 #define elf_backend_relocate_section elf_m68k_relocate_section
4623 #define elf_backend_finish_dynamic_symbol \
4624 elf_m68k_finish_dynamic_symbol
4625 #define elf_backend_finish_dynamic_sections \
4626 elf_m68k_finish_dynamic_sections
4627 #define elf_backend_gc_mark_hook elf_m68k_gc_mark_hook
4628 #define elf_backend_copy_indirect_symbol elf_m68k_copy_indirect_symbol
4629 #define bfd_elf32_bfd_merge_private_bfd_data \
4630 elf32_m68k_merge_private_bfd_data
4631 #define bfd_elf32_bfd_set_private_flags \
4632 elf32_m68k_set_private_flags
4633 #define bfd_elf32_bfd_print_private_bfd_data \
4634 elf32_m68k_print_private_bfd_data
4635 #define elf_backend_reloc_type_class elf32_m68k_reloc_type_class
4636 #define elf_backend_plt_sym_val elf_m68k_plt_sym_val
4637 #define elf_backend_object_p elf32_m68k_object_p
4638 #define elf_backend_grok_prstatus elf_m68k_grok_prstatus
4639 #define elf_backend_grok_psinfo elf_m68k_grok_psinfo
4640
4641 #define elf_backend_can_gc_sections 1
4642 #define elf_backend_can_refcount 1
4643 #define elf_backend_want_got_plt 1
4644 #define elf_backend_plt_readonly 1
4645 #define elf_backend_want_plt_sym 0
4646 #define elf_backend_got_header_size 12
4647 #define elf_backend_rela_normal 1
4648 #define elf_backend_dtrel_excludes_plt 1
4649
4650 #define elf_backend_linux_prpsinfo32_ugid16 TRUE
4651
4652 #include "elf32-target.h"
This page took 0.200096 seconds and 4 git commands to generate.