Re: Remove x86 NaCl target support
[deliverable/binutils-gdb.git] / bfd / elf32-m68k.c
1 /* Motorola 68k series support for 32-bit ELF
2 Copyright (C) 1993-2020 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf/m68k.h"
27 #include "opcode/m68k.h"
28 #include "cpu-m68k.h"
29 #include "elf32-m68k.h"
30
31 static bfd_boolean
32 elf_m68k_discard_copies (struct elf_link_hash_entry *, void *);
33
34 static reloc_howto_type howto_table[] =
35 {
36 HOWTO(R_68K_NONE, 0, 3, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_NONE", FALSE, 0, 0x00000000,FALSE),
37 HOWTO(R_68K_32, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_32", FALSE, 0, 0xffffffff,FALSE),
38 HOWTO(R_68K_16, 0, 1,16, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_16", FALSE, 0, 0x0000ffff,FALSE),
39 HOWTO(R_68K_8, 0, 0, 8, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_8", FALSE, 0, 0x000000ff,FALSE),
40 HOWTO(R_68K_PC32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PC32", FALSE, 0, 0xffffffff,TRUE),
41 HOWTO(R_68K_PC16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC16", FALSE, 0, 0x0000ffff,TRUE),
42 HOWTO(R_68K_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC8", FALSE, 0, 0x000000ff,TRUE),
43 HOWTO(R_68K_GOT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32", FALSE, 0, 0xffffffff,TRUE),
44 HOWTO(R_68K_GOT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16", FALSE, 0, 0x0000ffff,TRUE),
45 HOWTO(R_68K_GOT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8", FALSE, 0, 0x000000ff,TRUE),
46 HOWTO(R_68K_GOT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32O", FALSE, 0, 0xffffffff,FALSE),
47 HOWTO(R_68K_GOT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16O", FALSE, 0, 0x0000ffff,FALSE),
48 HOWTO(R_68K_GOT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8O", FALSE, 0, 0x000000ff,FALSE),
49 HOWTO(R_68K_PLT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32", FALSE, 0, 0xffffffff,TRUE),
50 HOWTO(R_68K_PLT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16", FALSE, 0, 0x0000ffff,TRUE),
51 HOWTO(R_68K_PLT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8", FALSE, 0, 0x000000ff,TRUE),
52 HOWTO(R_68K_PLT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32O", FALSE, 0, 0xffffffff,FALSE),
53 HOWTO(R_68K_PLT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16O", FALSE, 0, 0x0000ffff,FALSE),
54 HOWTO(R_68K_PLT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8O", FALSE, 0, 0x000000ff,FALSE),
55 HOWTO(R_68K_COPY, 0, 0, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_COPY", FALSE, 0, 0xffffffff,FALSE),
56 HOWTO(R_68K_GLOB_DAT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_GLOB_DAT", FALSE, 0, 0xffffffff,FALSE),
57 HOWTO(R_68K_JMP_SLOT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_JMP_SLOT", FALSE, 0, 0xffffffff,FALSE),
58 HOWTO(R_68K_RELATIVE, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_RELATIVE", FALSE, 0, 0xffffffff,FALSE),
59 /* GNU extension to record C++ vtable hierarchy. */
60 HOWTO (R_68K_GNU_VTINHERIT, /* type */
61 0, /* rightshift */
62 2, /* size (0 = byte, 1 = short, 2 = long) */
63 0, /* bitsize */
64 FALSE, /* pc_relative */
65 0, /* bitpos */
66 complain_overflow_dont, /* complain_on_overflow */
67 NULL, /* special_function */
68 "R_68K_GNU_VTINHERIT", /* name */
69 FALSE, /* partial_inplace */
70 0, /* src_mask */
71 0, /* dst_mask */
72 FALSE),
73 /* GNU extension to record C++ vtable member usage. */
74 HOWTO (R_68K_GNU_VTENTRY, /* type */
75 0, /* rightshift */
76 2, /* size (0 = byte, 1 = short, 2 = long) */
77 0, /* bitsize */
78 FALSE, /* pc_relative */
79 0, /* bitpos */
80 complain_overflow_dont, /* complain_on_overflow */
81 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
82 "R_68K_GNU_VTENTRY", /* name */
83 FALSE, /* partial_inplace */
84 0, /* src_mask */
85 0, /* dst_mask */
86 FALSE),
87
88 /* TLS general dynamic variable reference. */
89 HOWTO (R_68K_TLS_GD32, /* type */
90 0, /* rightshift */
91 2, /* size (0 = byte, 1 = short, 2 = long) */
92 32, /* bitsize */
93 FALSE, /* pc_relative */
94 0, /* bitpos */
95 complain_overflow_bitfield, /* complain_on_overflow */
96 bfd_elf_generic_reloc, /* special_function */
97 "R_68K_TLS_GD32", /* name */
98 FALSE, /* partial_inplace */
99 0, /* src_mask */
100 0xffffffff, /* dst_mask */
101 FALSE), /* pcrel_offset */
102
103 HOWTO (R_68K_TLS_GD16, /* type */
104 0, /* rightshift */
105 1, /* size (0 = byte, 1 = short, 2 = long) */
106 16, /* bitsize */
107 FALSE, /* pc_relative */
108 0, /* bitpos */
109 complain_overflow_signed, /* complain_on_overflow */
110 bfd_elf_generic_reloc, /* special_function */
111 "R_68K_TLS_GD16", /* name */
112 FALSE, /* partial_inplace */
113 0, /* src_mask */
114 0x0000ffff, /* dst_mask */
115 FALSE), /* pcrel_offset */
116
117 HOWTO (R_68K_TLS_GD8, /* type */
118 0, /* rightshift */
119 0, /* size (0 = byte, 1 = short, 2 = long) */
120 8, /* bitsize */
121 FALSE, /* pc_relative */
122 0, /* bitpos */
123 complain_overflow_signed, /* complain_on_overflow */
124 bfd_elf_generic_reloc, /* special_function */
125 "R_68K_TLS_GD8", /* name */
126 FALSE, /* partial_inplace */
127 0, /* src_mask */
128 0x000000ff, /* dst_mask */
129 FALSE), /* pcrel_offset */
130
131 /* TLS local dynamic variable reference. */
132 HOWTO (R_68K_TLS_LDM32, /* type */
133 0, /* rightshift */
134 2, /* size (0 = byte, 1 = short, 2 = long) */
135 32, /* bitsize */
136 FALSE, /* pc_relative */
137 0, /* bitpos */
138 complain_overflow_bitfield, /* complain_on_overflow */
139 bfd_elf_generic_reloc, /* special_function */
140 "R_68K_TLS_LDM32", /* name */
141 FALSE, /* partial_inplace */
142 0, /* src_mask */
143 0xffffffff, /* dst_mask */
144 FALSE), /* pcrel_offset */
145
146 HOWTO (R_68K_TLS_LDM16, /* type */
147 0, /* rightshift */
148 1, /* size (0 = byte, 1 = short, 2 = long) */
149 16, /* bitsize */
150 FALSE, /* pc_relative */
151 0, /* bitpos */
152 complain_overflow_signed, /* complain_on_overflow */
153 bfd_elf_generic_reloc, /* special_function */
154 "R_68K_TLS_LDM16", /* name */
155 FALSE, /* partial_inplace */
156 0, /* src_mask */
157 0x0000ffff, /* dst_mask */
158 FALSE), /* pcrel_offset */
159
160 HOWTO (R_68K_TLS_LDM8, /* type */
161 0, /* rightshift */
162 0, /* size (0 = byte, 1 = short, 2 = long) */
163 8, /* bitsize */
164 FALSE, /* pc_relative */
165 0, /* bitpos */
166 complain_overflow_signed, /* complain_on_overflow */
167 bfd_elf_generic_reloc, /* special_function */
168 "R_68K_TLS_LDM8", /* name */
169 FALSE, /* partial_inplace */
170 0, /* src_mask */
171 0x000000ff, /* dst_mask */
172 FALSE), /* pcrel_offset */
173
174 HOWTO (R_68K_TLS_LDO32, /* type */
175 0, /* rightshift */
176 2, /* size (0 = byte, 1 = short, 2 = long) */
177 32, /* bitsize */
178 FALSE, /* pc_relative */
179 0, /* bitpos */
180 complain_overflow_bitfield, /* complain_on_overflow */
181 bfd_elf_generic_reloc, /* special_function */
182 "R_68K_TLS_LDO32", /* name */
183 FALSE, /* partial_inplace */
184 0, /* src_mask */
185 0xffffffff, /* dst_mask */
186 FALSE), /* pcrel_offset */
187
188 HOWTO (R_68K_TLS_LDO16, /* type */
189 0, /* rightshift */
190 1, /* size (0 = byte, 1 = short, 2 = long) */
191 16, /* bitsize */
192 FALSE, /* pc_relative */
193 0, /* bitpos */
194 complain_overflow_signed, /* complain_on_overflow */
195 bfd_elf_generic_reloc, /* special_function */
196 "R_68K_TLS_LDO16", /* name */
197 FALSE, /* partial_inplace */
198 0, /* src_mask */
199 0x0000ffff, /* dst_mask */
200 FALSE), /* pcrel_offset */
201
202 HOWTO (R_68K_TLS_LDO8, /* type */
203 0, /* rightshift */
204 0, /* size (0 = byte, 1 = short, 2 = long) */
205 8, /* bitsize */
206 FALSE, /* pc_relative */
207 0, /* bitpos */
208 complain_overflow_signed, /* complain_on_overflow */
209 bfd_elf_generic_reloc, /* special_function */
210 "R_68K_TLS_LDO8", /* name */
211 FALSE, /* partial_inplace */
212 0, /* src_mask */
213 0x000000ff, /* dst_mask */
214 FALSE), /* pcrel_offset */
215
216 /* TLS initial execution variable reference. */
217 HOWTO (R_68K_TLS_IE32, /* type */
218 0, /* rightshift */
219 2, /* size (0 = byte, 1 = short, 2 = long) */
220 32, /* bitsize */
221 FALSE, /* pc_relative */
222 0, /* bitpos */
223 complain_overflow_bitfield, /* complain_on_overflow */
224 bfd_elf_generic_reloc, /* special_function */
225 "R_68K_TLS_IE32", /* name */
226 FALSE, /* partial_inplace */
227 0, /* src_mask */
228 0xffffffff, /* dst_mask */
229 FALSE), /* pcrel_offset */
230
231 HOWTO (R_68K_TLS_IE16, /* type */
232 0, /* rightshift */
233 1, /* size (0 = byte, 1 = short, 2 = long) */
234 16, /* bitsize */
235 FALSE, /* pc_relative */
236 0, /* bitpos */
237 complain_overflow_signed, /* complain_on_overflow */
238 bfd_elf_generic_reloc, /* special_function */
239 "R_68K_TLS_IE16", /* name */
240 FALSE, /* partial_inplace */
241 0, /* src_mask */
242 0x0000ffff, /* dst_mask */
243 FALSE), /* pcrel_offset */
244
245 HOWTO (R_68K_TLS_IE8, /* type */
246 0, /* rightshift */
247 0, /* size (0 = byte, 1 = short, 2 = long) */
248 8, /* bitsize */
249 FALSE, /* pc_relative */
250 0, /* bitpos */
251 complain_overflow_signed, /* complain_on_overflow */
252 bfd_elf_generic_reloc, /* special_function */
253 "R_68K_TLS_IE8", /* name */
254 FALSE, /* partial_inplace */
255 0, /* src_mask */
256 0x000000ff, /* dst_mask */
257 FALSE), /* pcrel_offset */
258
259 /* TLS local execution variable reference. */
260 HOWTO (R_68K_TLS_LE32, /* type */
261 0, /* rightshift */
262 2, /* size (0 = byte, 1 = short, 2 = long) */
263 32, /* bitsize */
264 FALSE, /* pc_relative */
265 0, /* bitpos */
266 complain_overflow_bitfield, /* complain_on_overflow */
267 bfd_elf_generic_reloc, /* special_function */
268 "R_68K_TLS_LE32", /* name */
269 FALSE, /* partial_inplace */
270 0, /* src_mask */
271 0xffffffff, /* dst_mask */
272 FALSE), /* pcrel_offset */
273
274 HOWTO (R_68K_TLS_LE16, /* type */
275 0, /* rightshift */
276 1, /* size (0 = byte, 1 = short, 2 = long) */
277 16, /* bitsize */
278 FALSE, /* pc_relative */
279 0, /* bitpos */
280 complain_overflow_signed, /* complain_on_overflow */
281 bfd_elf_generic_reloc, /* special_function */
282 "R_68K_TLS_LE16", /* name */
283 FALSE, /* partial_inplace */
284 0, /* src_mask */
285 0x0000ffff, /* dst_mask */
286 FALSE), /* pcrel_offset */
287
288 HOWTO (R_68K_TLS_LE8, /* type */
289 0, /* rightshift */
290 0, /* size (0 = byte, 1 = short, 2 = long) */
291 8, /* bitsize */
292 FALSE, /* pc_relative */
293 0, /* bitpos */
294 complain_overflow_signed, /* complain_on_overflow */
295 bfd_elf_generic_reloc, /* special_function */
296 "R_68K_TLS_LE8", /* name */
297 FALSE, /* partial_inplace */
298 0, /* src_mask */
299 0x000000ff, /* dst_mask */
300 FALSE), /* pcrel_offset */
301
302 /* TLS GD/LD dynamic relocations. */
303 HOWTO (R_68K_TLS_DTPMOD32, /* type */
304 0, /* rightshift */
305 2, /* size (0 = byte, 1 = short, 2 = long) */
306 32, /* bitsize */
307 FALSE, /* pc_relative */
308 0, /* bitpos */
309 complain_overflow_dont, /* complain_on_overflow */
310 bfd_elf_generic_reloc, /* special_function */
311 "R_68K_TLS_DTPMOD32", /* name */
312 FALSE, /* partial_inplace */
313 0, /* src_mask */
314 0xffffffff, /* dst_mask */
315 FALSE), /* pcrel_offset */
316
317 HOWTO (R_68K_TLS_DTPREL32, /* type */
318 0, /* rightshift */
319 2, /* size (0 = byte, 1 = short, 2 = long) */
320 32, /* bitsize */
321 FALSE, /* pc_relative */
322 0, /* bitpos */
323 complain_overflow_dont, /* complain_on_overflow */
324 bfd_elf_generic_reloc, /* special_function */
325 "R_68K_TLS_DTPREL32", /* name */
326 FALSE, /* partial_inplace */
327 0, /* src_mask */
328 0xffffffff, /* dst_mask */
329 FALSE), /* pcrel_offset */
330
331 HOWTO (R_68K_TLS_TPREL32, /* type */
332 0, /* rightshift */
333 2, /* size (0 = byte, 1 = short, 2 = long) */
334 32, /* bitsize */
335 FALSE, /* pc_relative */
336 0, /* bitpos */
337 complain_overflow_dont, /* complain_on_overflow */
338 bfd_elf_generic_reloc, /* special_function */
339 "R_68K_TLS_TPREL32", /* name */
340 FALSE, /* partial_inplace */
341 0, /* src_mask */
342 0xffffffff, /* dst_mask */
343 FALSE), /* pcrel_offset */
344 };
345
346 static bfd_boolean
347 rtype_to_howto (bfd *abfd, arelent *cache_ptr, Elf_Internal_Rela *dst)
348 {
349 unsigned int indx = ELF32_R_TYPE (dst->r_info);
350
351 if (indx >= (unsigned int) R_68K_max)
352 {
353 /* xgettext:c-format */
354 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
355 abfd, indx);
356 bfd_set_error (bfd_error_bad_value);
357 return FALSE;
358 }
359 cache_ptr->howto = &howto_table[indx];
360 return TRUE;
361 }
362
363 #define elf_info_to_howto rtype_to_howto
364
365 static const struct
366 {
367 bfd_reloc_code_real_type bfd_val;
368 int elf_val;
369 }
370 reloc_map[] =
371 {
372 { BFD_RELOC_NONE, R_68K_NONE },
373 { BFD_RELOC_32, R_68K_32 },
374 { BFD_RELOC_16, R_68K_16 },
375 { BFD_RELOC_8, R_68K_8 },
376 { BFD_RELOC_32_PCREL, R_68K_PC32 },
377 { BFD_RELOC_16_PCREL, R_68K_PC16 },
378 { BFD_RELOC_8_PCREL, R_68K_PC8 },
379 { BFD_RELOC_32_GOT_PCREL, R_68K_GOT32 },
380 { BFD_RELOC_16_GOT_PCREL, R_68K_GOT16 },
381 { BFD_RELOC_8_GOT_PCREL, R_68K_GOT8 },
382 { BFD_RELOC_32_GOTOFF, R_68K_GOT32O },
383 { BFD_RELOC_16_GOTOFF, R_68K_GOT16O },
384 { BFD_RELOC_8_GOTOFF, R_68K_GOT8O },
385 { BFD_RELOC_32_PLT_PCREL, R_68K_PLT32 },
386 { BFD_RELOC_16_PLT_PCREL, R_68K_PLT16 },
387 { BFD_RELOC_8_PLT_PCREL, R_68K_PLT8 },
388 { BFD_RELOC_32_PLTOFF, R_68K_PLT32O },
389 { BFD_RELOC_16_PLTOFF, R_68K_PLT16O },
390 { BFD_RELOC_8_PLTOFF, R_68K_PLT8O },
391 { BFD_RELOC_NONE, R_68K_COPY },
392 { BFD_RELOC_68K_GLOB_DAT, R_68K_GLOB_DAT },
393 { BFD_RELOC_68K_JMP_SLOT, R_68K_JMP_SLOT },
394 { BFD_RELOC_68K_RELATIVE, R_68K_RELATIVE },
395 { BFD_RELOC_CTOR, R_68K_32 },
396 { BFD_RELOC_VTABLE_INHERIT, R_68K_GNU_VTINHERIT },
397 { BFD_RELOC_VTABLE_ENTRY, R_68K_GNU_VTENTRY },
398 { BFD_RELOC_68K_TLS_GD32, R_68K_TLS_GD32 },
399 { BFD_RELOC_68K_TLS_GD16, R_68K_TLS_GD16 },
400 { BFD_RELOC_68K_TLS_GD8, R_68K_TLS_GD8 },
401 { BFD_RELOC_68K_TLS_LDM32, R_68K_TLS_LDM32 },
402 { BFD_RELOC_68K_TLS_LDM16, R_68K_TLS_LDM16 },
403 { BFD_RELOC_68K_TLS_LDM8, R_68K_TLS_LDM8 },
404 { BFD_RELOC_68K_TLS_LDO32, R_68K_TLS_LDO32 },
405 { BFD_RELOC_68K_TLS_LDO16, R_68K_TLS_LDO16 },
406 { BFD_RELOC_68K_TLS_LDO8, R_68K_TLS_LDO8 },
407 { BFD_RELOC_68K_TLS_IE32, R_68K_TLS_IE32 },
408 { BFD_RELOC_68K_TLS_IE16, R_68K_TLS_IE16 },
409 { BFD_RELOC_68K_TLS_IE8, R_68K_TLS_IE8 },
410 { BFD_RELOC_68K_TLS_LE32, R_68K_TLS_LE32 },
411 { BFD_RELOC_68K_TLS_LE16, R_68K_TLS_LE16 },
412 { BFD_RELOC_68K_TLS_LE8, R_68K_TLS_LE8 },
413 };
414
415 static reloc_howto_type *
416 reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
417 bfd_reloc_code_real_type code)
418 {
419 unsigned int i;
420 for (i = 0; i < sizeof (reloc_map) / sizeof (reloc_map[0]); i++)
421 {
422 if (reloc_map[i].bfd_val == code)
423 return &howto_table[reloc_map[i].elf_val];
424 }
425 return 0;
426 }
427
428 static reloc_howto_type *
429 reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, const char *r_name)
430 {
431 unsigned int i;
432
433 for (i = 0; i < sizeof (howto_table) / sizeof (howto_table[0]); i++)
434 if (howto_table[i].name != NULL
435 && strcasecmp (howto_table[i].name, r_name) == 0)
436 return &howto_table[i];
437
438 return NULL;
439 }
440
441 #define bfd_elf32_bfd_reloc_type_lookup reloc_type_lookup
442 #define bfd_elf32_bfd_reloc_name_lookup reloc_name_lookup
443 #define ELF_ARCH bfd_arch_m68k
444 #define ELF_TARGET_ID M68K_ELF_DATA
445 \f
446 /* Functions for the m68k ELF linker. */
447
448 /* The name of the dynamic interpreter. This is put in the .interp
449 section. */
450
451 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
452
453 /* Describes one of the various PLT styles. */
454
455 struct elf_m68k_plt_info
456 {
457 /* The size of each PLT entry. */
458 bfd_vma size;
459
460 /* The template for the first PLT entry. */
461 const bfd_byte *plt0_entry;
462
463 /* Offsets of fields in PLT0_ENTRY that require R_68K_PC32 relocations.
464 The comments by each member indicate the value that the relocation
465 is against. */
466 struct {
467 unsigned int got4; /* .got + 4 */
468 unsigned int got8; /* .got + 8 */
469 } plt0_relocs;
470
471 /* The template for a symbol's PLT entry. */
472 const bfd_byte *symbol_entry;
473
474 /* Offsets of fields in SYMBOL_ENTRY that require R_68K_PC32 relocations.
475 The comments by each member indicate the value that the relocation
476 is against. */
477 struct {
478 unsigned int got; /* the symbol's .got.plt entry */
479 unsigned int plt; /* .plt */
480 } symbol_relocs;
481
482 /* The offset of the resolver stub from the start of SYMBOL_ENTRY.
483 The stub starts with "move.l #relocoffset,%d0". */
484 bfd_vma symbol_resolve_entry;
485 };
486
487 /* The size in bytes of an entry in the procedure linkage table. */
488
489 #define PLT_ENTRY_SIZE 20
490
491 /* The first entry in a procedure linkage table looks like this. See
492 the SVR4 ABI m68k supplement to see how this works. */
493
494 static const bfd_byte elf_m68k_plt0_entry[PLT_ENTRY_SIZE] =
495 {
496 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
497 0, 0, 0, 2, /* + (.got + 4) - . */
498 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,addr]) */
499 0, 0, 0, 2, /* + (.got + 8) - . */
500 0, 0, 0, 0 /* pad out to 20 bytes. */
501 };
502
503 /* Subsequent entries in a procedure linkage table look like this. */
504
505 static const bfd_byte elf_m68k_plt_entry[PLT_ENTRY_SIZE] =
506 {
507 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,symbol@GOTPC]) */
508 0, 0, 0, 2, /* + (.got.plt entry) - . */
509 0x2f, 0x3c, /* move.l #offset,-(%sp) */
510 0, 0, 0, 0, /* + reloc index */
511 0x60, 0xff, /* bra.l .plt */
512 0, 0, 0, 0 /* + .plt - . */
513 };
514
515 static const struct elf_m68k_plt_info elf_m68k_plt_info =
516 {
517 PLT_ENTRY_SIZE,
518 elf_m68k_plt0_entry, { 4, 12 },
519 elf_m68k_plt_entry, { 4, 16 }, 8
520 };
521
522 #define ISAB_PLT_ENTRY_SIZE 24
523
524 static const bfd_byte elf_isab_plt0_entry[ISAB_PLT_ENTRY_SIZE] =
525 {
526 0x20, 0x3c, /* move.l #offset,%d0 */
527 0, 0, 0, 0, /* + (.got + 4) - . */
528 0x2f, 0x3b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),-(%sp) */
529 0x20, 0x3c, /* move.l #offset,%d0 */
530 0, 0, 0, 0, /* + (.got + 8) - . */
531 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
532 0x4e, 0xd0, /* jmp (%a0) */
533 0x4e, 0x71 /* nop */
534 };
535
536 /* Subsequent entries in a procedure linkage table look like this. */
537
538 static const bfd_byte elf_isab_plt_entry[ISAB_PLT_ENTRY_SIZE] =
539 {
540 0x20, 0x3c, /* move.l #offset,%d0 */
541 0, 0, 0, 0, /* + (.got.plt entry) - . */
542 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
543 0x4e, 0xd0, /* jmp (%a0) */
544 0x2f, 0x3c, /* move.l #offset,-(%sp) */
545 0, 0, 0, 0, /* + reloc index */
546 0x60, 0xff, /* bra.l .plt */
547 0, 0, 0, 0 /* + .plt - . */
548 };
549
550 static const struct elf_m68k_plt_info elf_isab_plt_info =
551 {
552 ISAB_PLT_ENTRY_SIZE,
553 elf_isab_plt0_entry, { 2, 12 },
554 elf_isab_plt_entry, { 2, 20 }, 12
555 };
556
557 #define ISAC_PLT_ENTRY_SIZE 24
558
559 static const bfd_byte elf_isac_plt0_entry[ISAC_PLT_ENTRY_SIZE] =
560 {
561 0x20, 0x3c, /* move.l #offset,%d0 */
562 0, 0, 0, 0, /* replaced with .got + 4 - . */
563 0x2e, 0xbb, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),(%sp) */
564 0x20, 0x3c, /* move.l #offset,%d0 */
565 0, 0, 0, 0, /* replaced with .got + 8 - . */
566 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
567 0x4e, 0xd0, /* jmp (%a0) */
568 0x4e, 0x71 /* nop */
569 };
570
571 /* Subsequent entries in a procedure linkage table look like this. */
572
573 static const bfd_byte elf_isac_plt_entry[ISAC_PLT_ENTRY_SIZE] =
574 {
575 0x20, 0x3c, /* move.l #offset,%d0 */
576 0, 0, 0, 0, /* replaced with (.got entry) - . */
577 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
578 0x4e, 0xd0, /* jmp (%a0) */
579 0x2f, 0x3c, /* move.l #offset,-(%sp) */
580 0, 0, 0, 0, /* replaced with offset into relocation table */
581 0x61, 0xff, /* bsr.l .plt */
582 0, 0, 0, 0 /* replaced with .plt - . */
583 };
584
585 static const struct elf_m68k_plt_info elf_isac_plt_info =
586 {
587 ISAC_PLT_ENTRY_SIZE,
588 elf_isac_plt0_entry, { 2, 12},
589 elf_isac_plt_entry, { 2, 20 }, 12
590 };
591
592 #define CPU32_PLT_ENTRY_SIZE 24
593 /* Procedure linkage table entries for the cpu32 */
594 static const bfd_byte elf_cpu32_plt0_entry[CPU32_PLT_ENTRY_SIZE] =
595 {
596 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
597 0, 0, 0, 2, /* + (.got + 4) - . */
598 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
599 0, 0, 0, 2, /* + (.got + 8) - . */
600 0x4e, 0xd1, /* jmp %a1@ */
601 0, 0, 0, 0, /* pad out to 24 bytes. */
602 0, 0
603 };
604
605 static const bfd_byte elf_cpu32_plt_entry[CPU32_PLT_ENTRY_SIZE] =
606 {
607 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
608 0, 0, 0, 2, /* + (.got.plt entry) - . */
609 0x4e, 0xd1, /* jmp %a1@ */
610 0x2f, 0x3c, /* move.l #offset,-(%sp) */
611 0, 0, 0, 0, /* + reloc index */
612 0x60, 0xff, /* bra.l .plt */
613 0, 0, 0, 0, /* + .plt - . */
614 0, 0
615 };
616
617 static const struct elf_m68k_plt_info elf_cpu32_plt_info =
618 {
619 CPU32_PLT_ENTRY_SIZE,
620 elf_cpu32_plt0_entry, { 4, 12 },
621 elf_cpu32_plt_entry, { 4, 18 }, 10
622 };
623
624 /* The m68k linker needs to keep track of the number of relocs that it
625 decides to copy in check_relocs for each symbol. This is so that it
626 can discard PC relative relocs if it doesn't need them when linking
627 with -Bsymbolic. We store the information in a field extending the
628 regular ELF linker hash table. */
629
630 /* This structure keeps track of the number of PC relative relocs we have
631 copied for a given symbol. */
632
633 struct elf_m68k_pcrel_relocs_copied
634 {
635 /* Next section. */
636 struct elf_m68k_pcrel_relocs_copied *next;
637 /* A section in dynobj. */
638 asection *section;
639 /* Number of relocs copied in this section. */
640 bfd_size_type count;
641 };
642
643 /* Forward declaration. */
644 struct elf_m68k_got_entry;
645
646 /* m68k ELF linker hash entry. */
647
648 struct elf_m68k_link_hash_entry
649 {
650 struct elf_link_hash_entry root;
651
652 /* Number of PC relative relocs copied for this symbol. */
653 struct elf_m68k_pcrel_relocs_copied *pcrel_relocs_copied;
654
655 /* Key to got_entries. */
656 unsigned long got_entry_key;
657
658 /* List of GOT entries for this symbol. This list is build during
659 offset finalization and is used within elf_m68k_finish_dynamic_symbol
660 to traverse all GOT entries for a particular symbol.
661
662 ??? We could've used root.got.glist field instead, but having
663 a separate field is cleaner. */
664 struct elf_m68k_got_entry *glist;
665 };
666
667 #define elf_m68k_hash_entry(ent) ((struct elf_m68k_link_hash_entry *) (ent))
668
669 /* Key part of GOT entry in hashtable. */
670 struct elf_m68k_got_entry_key
671 {
672 /* BFD in which this symbol was defined. NULL for global symbols. */
673 const bfd *bfd;
674
675 /* Symbol index. Either local symbol index or h->got_entry_key. */
676 unsigned long symndx;
677
678 /* Type is one of R_68K_GOT{8, 16, 32}O, R_68K_TLS_GD{8, 16, 32},
679 R_68K_TLS_LDM{8, 16, 32} or R_68K_TLS_IE{8, 16, 32}.
680
681 From perspective of hashtable key, only elf_m68k_got_reloc_type (type)
682 matters. That is, we distinguish between, say, R_68K_GOT16O
683 and R_68K_GOT32O when allocating offsets, but they are considered to be
684 the same when searching got->entries. */
685 enum elf_m68k_reloc_type type;
686 };
687
688 /* Size of the GOT offset suitable for relocation. */
689 enum elf_m68k_got_offset_size { R_8, R_16, R_32, R_LAST };
690
691 /* Entry of the GOT. */
692 struct elf_m68k_got_entry
693 {
694 /* GOT entries are put into a got->entries hashtable. This is the key. */
695 struct elf_m68k_got_entry_key key_;
696
697 /* GOT entry data. We need s1 before offset finalization and s2 after. */
698 union
699 {
700 struct
701 {
702 /* Number of times this entry is referenced. */
703 bfd_vma refcount;
704 } s1;
705
706 struct
707 {
708 /* Offset from the start of .got section. To calculate offset relative
709 to GOT pointer one should subtract got->offset from this value. */
710 bfd_vma offset;
711
712 /* Pointer to the next GOT entry for this global symbol.
713 Symbols have at most one entry in one GOT, but might
714 have entries in more than one GOT.
715 Root of this list is h->glist.
716 NULL for local symbols. */
717 struct elf_m68k_got_entry *next;
718 } s2;
719 } u;
720 };
721
722 /* Return representative type for relocation R_TYPE.
723 This is used to avoid enumerating many relocations in comparisons,
724 switches etc. */
725
726 static enum elf_m68k_reloc_type
727 elf_m68k_reloc_got_type (enum elf_m68k_reloc_type r_type)
728 {
729 switch (r_type)
730 {
731 /* In most cases R_68K_GOTx relocations require the very same
732 handling as R_68K_GOT32O relocation. In cases when we need
733 to distinguish between the two, we use explicitly compare against
734 r_type. */
735 case R_68K_GOT32:
736 case R_68K_GOT16:
737 case R_68K_GOT8:
738 case R_68K_GOT32O:
739 case R_68K_GOT16O:
740 case R_68K_GOT8O:
741 return R_68K_GOT32O;
742
743 case R_68K_TLS_GD32:
744 case R_68K_TLS_GD16:
745 case R_68K_TLS_GD8:
746 return R_68K_TLS_GD32;
747
748 case R_68K_TLS_LDM32:
749 case R_68K_TLS_LDM16:
750 case R_68K_TLS_LDM8:
751 return R_68K_TLS_LDM32;
752
753 case R_68K_TLS_IE32:
754 case R_68K_TLS_IE16:
755 case R_68K_TLS_IE8:
756 return R_68K_TLS_IE32;
757
758 default:
759 BFD_ASSERT (FALSE);
760 return 0;
761 }
762 }
763
764 /* Return size of the GOT entry offset for relocation R_TYPE. */
765
766 static enum elf_m68k_got_offset_size
767 elf_m68k_reloc_got_offset_size (enum elf_m68k_reloc_type r_type)
768 {
769 switch (r_type)
770 {
771 case R_68K_GOT32: case R_68K_GOT16: case R_68K_GOT8:
772 case R_68K_GOT32O: case R_68K_TLS_GD32: case R_68K_TLS_LDM32:
773 case R_68K_TLS_IE32:
774 return R_32;
775
776 case R_68K_GOT16O: case R_68K_TLS_GD16: case R_68K_TLS_LDM16:
777 case R_68K_TLS_IE16:
778 return R_16;
779
780 case R_68K_GOT8O: case R_68K_TLS_GD8: case R_68K_TLS_LDM8:
781 case R_68K_TLS_IE8:
782 return R_8;
783
784 default:
785 BFD_ASSERT (FALSE);
786 return 0;
787 }
788 }
789
790 /* Return number of GOT entries we need to allocate in GOT for
791 relocation R_TYPE. */
792
793 static bfd_vma
794 elf_m68k_reloc_got_n_slots (enum elf_m68k_reloc_type r_type)
795 {
796 switch (elf_m68k_reloc_got_type (r_type))
797 {
798 case R_68K_GOT32O:
799 case R_68K_TLS_IE32:
800 return 1;
801
802 case R_68K_TLS_GD32:
803 case R_68K_TLS_LDM32:
804 return 2;
805
806 default:
807 BFD_ASSERT (FALSE);
808 return 0;
809 }
810 }
811
812 /* Return TRUE if relocation R_TYPE is a TLS one. */
813
814 static bfd_boolean
815 elf_m68k_reloc_tls_p (enum elf_m68k_reloc_type r_type)
816 {
817 switch (r_type)
818 {
819 case R_68K_TLS_GD32: case R_68K_TLS_GD16: case R_68K_TLS_GD8:
820 case R_68K_TLS_LDM32: case R_68K_TLS_LDM16: case R_68K_TLS_LDM8:
821 case R_68K_TLS_LDO32: case R_68K_TLS_LDO16: case R_68K_TLS_LDO8:
822 case R_68K_TLS_IE32: case R_68K_TLS_IE16: case R_68K_TLS_IE8:
823 case R_68K_TLS_LE32: case R_68K_TLS_LE16: case R_68K_TLS_LE8:
824 case R_68K_TLS_DTPMOD32: case R_68K_TLS_DTPREL32: case R_68K_TLS_TPREL32:
825 return TRUE;
826
827 default:
828 return FALSE;
829 }
830 }
831
832 /* Data structure representing a single GOT. */
833 struct elf_m68k_got
834 {
835 /* Hashtable of 'struct elf_m68k_got_entry's.
836 Starting size of this table is the maximum number of
837 R_68K_GOT8O entries. */
838 htab_t entries;
839
840 /* Number of R_x slots in this GOT. Some (e.g., TLS) entries require
841 several GOT slots.
842
843 n_slots[R_8] is the count of R_8 slots in this GOT.
844 n_slots[R_16] is the cumulative count of R_8 and R_16 slots
845 in this GOT.
846 n_slots[R_32] is the cumulative count of R_8, R_16 and R_32 slots
847 in this GOT. This is the total number of slots. */
848 bfd_vma n_slots[R_LAST];
849
850 /* Number of local (entry->key_.h == NULL) slots in this GOT.
851 This is only used to properly calculate size of .rela.got section;
852 see elf_m68k_partition_multi_got. */
853 bfd_vma local_n_slots;
854
855 /* Offset of this GOT relative to beginning of .got section. */
856 bfd_vma offset;
857 };
858
859 /* BFD and its GOT. This is an entry in multi_got->bfd2got hashtable. */
860 struct elf_m68k_bfd2got_entry
861 {
862 /* BFD. */
863 const bfd *bfd;
864
865 /* Assigned GOT. Before partitioning multi-GOT each BFD has its own
866 GOT structure. After partitioning several BFD's might [and often do]
867 share a single GOT. */
868 struct elf_m68k_got *got;
869 };
870
871 /* The main data structure holding all the pieces. */
872 struct elf_m68k_multi_got
873 {
874 /* Hashtable mapping each BFD to its GOT. If a BFD doesn't have an entry
875 here, then it doesn't need a GOT (this includes the case of a BFD
876 having an empty GOT).
877
878 ??? This hashtable can be replaced by an array indexed by bfd->id. */
879 htab_t bfd2got;
880
881 /* Next symndx to assign a global symbol.
882 h->got_entry_key is initialized from this counter. */
883 unsigned long global_symndx;
884 };
885
886 /* m68k ELF linker hash table. */
887
888 struct elf_m68k_link_hash_table
889 {
890 struct elf_link_hash_table root;
891
892 /* Small local sym cache. */
893 struct sym_cache sym_cache;
894
895 /* The PLT format used by this link, or NULL if the format has not
896 yet been chosen. */
897 const struct elf_m68k_plt_info *plt_info;
898
899 /* True, if GP is loaded within each function which uses it.
900 Set to TRUE when GOT negative offsets or multi-GOT is enabled. */
901 bfd_boolean local_gp_p;
902
903 /* Switch controlling use of negative offsets to double the size of GOTs. */
904 bfd_boolean use_neg_got_offsets_p;
905
906 /* Switch controlling generation of multiple GOTs. */
907 bfd_boolean allow_multigot_p;
908
909 /* Multi-GOT data structure. */
910 struct elf_m68k_multi_got multi_got_;
911 };
912
913 /* Get the m68k ELF linker hash table from a link_info structure. */
914
915 #define elf_m68k_hash_table(p) \
916 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
917 == M68K_ELF_DATA ? ((struct elf_m68k_link_hash_table *) ((p)->hash)) : NULL)
918
919 /* Shortcut to multi-GOT data. */
920 #define elf_m68k_multi_got(INFO) (&elf_m68k_hash_table (INFO)->multi_got_)
921
922 /* Create an entry in an m68k ELF linker hash table. */
923
924 static struct bfd_hash_entry *
925 elf_m68k_link_hash_newfunc (struct bfd_hash_entry *entry,
926 struct bfd_hash_table *table,
927 const char *string)
928 {
929 struct bfd_hash_entry *ret = entry;
930
931 /* Allocate the structure if it has not already been allocated by a
932 subclass. */
933 if (ret == NULL)
934 ret = bfd_hash_allocate (table,
935 sizeof (struct elf_m68k_link_hash_entry));
936 if (ret == NULL)
937 return ret;
938
939 /* Call the allocation method of the superclass. */
940 ret = _bfd_elf_link_hash_newfunc (ret, table, string);
941 if (ret != NULL)
942 {
943 elf_m68k_hash_entry (ret)->pcrel_relocs_copied = NULL;
944 elf_m68k_hash_entry (ret)->got_entry_key = 0;
945 elf_m68k_hash_entry (ret)->glist = NULL;
946 }
947
948 return ret;
949 }
950
951 /* Destroy an m68k ELF linker hash table. */
952
953 static void
954 elf_m68k_link_hash_table_free (bfd *obfd)
955 {
956 struct elf_m68k_link_hash_table *htab;
957
958 htab = (struct elf_m68k_link_hash_table *) obfd->link.hash;
959
960 if (htab->multi_got_.bfd2got != NULL)
961 {
962 htab_delete (htab->multi_got_.bfd2got);
963 htab->multi_got_.bfd2got = NULL;
964 }
965 _bfd_elf_link_hash_table_free (obfd);
966 }
967
968 /* Create an m68k ELF linker hash table. */
969
970 static struct bfd_link_hash_table *
971 elf_m68k_link_hash_table_create (bfd *abfd)
972 {
973 struct elf_m68k_link_hash_table *ret;
974 size_t amt = sizeof (struct elf_m68k_link_hash_table);
975
976 ret = (struct elf_m68k_link_hash_table *) bfd_zmalloc (amt);
977 if (ret == (struct elf_m68k_link_hash_table *) NULL)
978 return NULL;
979
980 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
981 elf_m68k_link_hash_newfunc,
982 sizeof (struct elf_m68k_link_hash_entry),
983 M68K_ELF_DATA))
984 {
985 free (ret);
986 return NULL;
987 }
988 ret->root.root.hash_table_free = elf_m68k_link_hash_table_free;
989
990 ret->multi_got_.global_symndx = 1;
991
992 return &ret->root.root;
993 }
994
995 /* Set the right machine number. */
996
997 static bfd_boolean
998 elf32_m68k_object_p (bfd *abfd)
999 {
1000 unsigned int mach = 0;
1001 unsigned features = 0;
1002 flagword eflags = elf_elfheader (abfd)->e_flags;
1003
1004 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1005 features |= m68000;
1006 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1007 features |= cpu32;
1008 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1009 features |= fido_a;
1010 else
1011 {
1012 switch (eflags & EF_M68K_CF_ISA_MASK)
1013 {
1014 case EF_M68K_CF_ISA_A_NODIV:
1015 features |= mcfisa_a;
1016 break;
1017 case EF_M68K_CF_ISA_A:
1018 features |= mcfisa_a|mcfhwdiv;
1019 break;
1020 case EF_M68K_CF_ISA_A_PLUS:
1021 features |= mcfisa_a|mcfisa_aa|mcfhwdiv|mcfusp;
1022 break;
1023 case EF_M68K_CF_ISA_B_NOUSP:
1024 features |= mcfisa_a|mcfisa_b|mcfhwdiv;
1025 break;
1026 case EF_M68K_CF_ISA_B:
1027 features |= mcfisa_a|mcfisa_b|mcfhwdiv|mcfusp;
1028 break;
1029 case EF_M68K_CF_ISA_C:
1030 features |= mcfisa_a|mcfisa_c|mcfhwdiv|mcfusp;
1031 break;
1032 case EF_M68K_CF_ISA_C_NODIV:
1033 features |= mcfisa_a|mcfisa_c|mcfusp;
1034 break;
1035 }
1036 switch (eflags & EF_M68K_CF_MAC_MASK)
1037 {
1038 case EF_M68K_CF_MAC:
1039 features |= mcfmac;
1040 break;
1041 case EF_M68K_CF_EMAC:
1042 features |= mcfemac;
1043 break;
1044 }
1045 if (eflags & EF_M68K_CF_FLOAT)
1046 features |= cfloat;
1047 }
1048
1049 mach = bfd_m68k_features_to_mach (features);
1050 bfd_default_set_arch_mach (abfd, bfd_arch_m68k, mach);
1051
1052 return TRUE;
1053 }
1054
1055 /* Somewhat reverse of elf32_m68k_object_p, this sets the e_flag
1056 field based on the machine number. */
1057
1058 static bfd_boolean
1059 elf_m68k_final_write_processing (bfd *abfd)
1060 {
1061 int mach = bfd_get_mach (abfd);
1062 unsigned long e_flags = elf_elfheader (abfd)->e_flags;
1063
1064 if (!e_flags)
1065 {
1066 unsigned int arch_mask;
1067
1068 arch_mask = bfd_m68k_mach_to_features (mach);
1069
1070 if (arch_mask & m68000)
1071 e_flags = EF_M68K_M68000;
1072 else if (arch_mask & cpu32)
1073 e_flags = EF_M68K_CPU32;
1074 else if (arch_mask & fido_a)
1075 e_flags = EF_M68K_FIDO;
1076 else
1077 {
1078 switch (arch_mask
1079 & (mcfisa_a | mcfisa_aa | mcfisa_b | mcfisa_c | mcfhwdiv | mcfusp))
1080 {
1081 case mcfisa_a:
1082 e_flags |= EF_M68K_CF_ISA_A_NODIV;
1083 break;
1084 case mcfisa_a | mcfhwdiv:
1085 e_flags |= EF_M68K_CF_ISA_A;
1086 break;
1087 case mcfisa_a | mcfisa_aa | mcfhwdiv | mcfusp:
1088 e_flags |= EF_M68K_CF_ISA_A_PLUS;
1089 break;
1090 case mcfisa_a | mcfisa_b | mcfhwdiv:
1091 e_flags |= EF_M68K_CF_ISA_B_NOUSP;
1092 break;
1093 case mcfisa_a | mcfisa_b | mcfhwdiv | mcfusp:
1094 e_flags |= EF_M68K_CF_ISA_B;
1095 break;
1096 case mcfisa_a | mcfisa_c | mcfhwdiv | mcfusp:
1097 e_flags |= EF_M68K_CF_ISA_C;
1098 break;
1099 case mcfisa_a | mcfisa_c | mcfusp:
1100 e_flags |= EF_M68K_CF_ISA_C_NODIV;
1101 break;
1102 }
1103 if (arch_mask & mcfmac)
1104 e_flags |= EF_M68K_CF_MAC;
1105 else if (arch_mask & mcfemac)
1106 e_flags |= EF_M68K_CF_EMAC;
1107 if (arch_mask & cfloat)
1108 e_flags |= EF_M68K_CF_FLOAT | EF_M68K_CFV4E;
1109 }
1110 elf_elfheader (abfd)->e_flags = e_flags;
1111 }
1112 return _bfd_elf_final_write_processing (abfd);
1113 }
1114
1115 /* Keep m68k-specific flags in the ELF header. */
1116
1117 static bfd_boolean
1118 elf32_m68k_set_private_flags (bfd *abfd, flagword flags)
1119 {
1120 elf_elfheader (abfd)->e_flags = flags;
1121 elf_flags_init (abfd) = TRUE;
1122 return TRUE;
1123 }
1124
1125 /* Merge object attributes from IBFD into OBFD. Warn if
1126 there are conflicting attributes. */
1127 static bfd_boolean
1128 m68k_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
1129 {
1130 bfd *obfd = info->output_bfd;
1131 obj_attribute *in_attr, *in_attrs;
1132 obj_attribute *out_attr, *out_attrs;
1133 bfd_boolean ret = TRUE;
1134
1135 in_attrs = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
1136 out_attrs = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
1137
1138 in_attr = &in_attrs[Tag_GNU_M68K_ABI_FP];
1139 out_attr = &out_attrs[Tag_GNU_M68K_ABI_FP];
1140
1141 if (in_attr->i != out_attr->i)
1142 {
1143 int in_fp = in_attr->i & 3;
1144 int out_fp = out_attr->i & 3;
1145 static bfd *last_fp;
1146
1147 if (in_fp == 0)
1148 ;
1149 else if (out_fp == 0)
1150 {
1151 out_attr->type = ATTR_TYPE_FLAG_INT_VAL;
1152 out_attr->i ^= in_fp;
1153 last_fp = ibfd;
1154 }
1155 else if (out_fp == 1 && in_fp == 2)
1156 {
1157 _bfd_error_handler
1158 /* xgettext:c-format */
1159 (_("%pB uses hard float, %pB uses soft float"),
1160 last_fp, ibfd);
1161 ret = FALSE;
1162 }
1163 else if (out_fp == 2 && in_fp == 1)
1164 {
1165 _bfd_error_handler
1166 /* xgettext:c-format */
1167 (_("%pB uses hard float, %pB uses soft float"),
1168 ibfd, last_fp);
1169 ret = FALSE;
1170 }
1171 }
1172
1173 if (!ret)
1174 {
1175 out_attr->type = ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_ERROR;
1176 bfd_set_error (bfd_error_bad_value);
1177 return FALSE;
1178 }
1179
1180 /* Merge Tag_compatibility attributes and any common GNU ones. */
1181 return _bfd_elf_merge_object_attributes (ibfd, info);
1182 }
1183
1184 /* Merge backend specific data from an object file to the output
1185 object file when linking. */
1186 static bfd_boolean
1187 elf32_m68k_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
1188 {
1189 bfd *obfd = info->output_bfd;
1190 flagword out_flags;
1191 flagword in_flags;
1192 flagword out_isa;
1193 flagword in_isa;
1194 const bfd_arch_info_type *arch_info;
1195
1196 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1197 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1198 /* PR 24523: For non-ELF files do not try to merge any private
1199 data, but also do not prevent the link from succeeding. */
1200 return TRUE;
1201
1202 /* Get the merged machine. This checks for incompatibility between
1203 Coldfire & non-Coldfire flags, incompability between different
1204 Coldfire ISAs, and incompability between different MAC types. */
1205 arch_info = bfd_arch_get_compatible (ibfd, obfd, FALSE);
1206 if (!arch_info)
1207 return FALSE;
1208
1209 bfd_set_arch_mach (obfd, bfd_arch_m68k, arch_info->mach);
1210
1211 if (!m68k_elf_merge_obj_attributes (ibfd, info))
1212 return FALSE;
1213
1214 in_flags = elf_elfheader (ibfd)->e_flags;
1215 if (!elf_flags_init (obfd))
1216 {
1217 elf_flags_init (obfd) = TRUE;
1218 out_flags = in_flags;
1219 }
1220 else
1221 {
1222 out_flags = elf_elfheader (obfd)->e_flags;
1223 unsigned int variant_mask;
1224
1225 if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1226 variant_mask = 0;
1227 else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1228 variant_mask = 0;
1229 else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1230 variant_mask = 0;
1231 else
1232 variant_mask = EF_M68K_CF_ISA_MASK;
1233
1234 in_isa = (in_flags & variant_mask);
1235 out_isa = (out_flags & variant_mask);
1236 if (in_isa > out_isa)
1237 out_flags ^= in_isa ^ out_isa;
1238 if (((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32
1239 && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1240 || ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO
1241 && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32))
1242 out_flags = EF_M68K_FIDO;
1243 else
1244 out_flags |= in_flags ^ in_isa;
1245 }
1246 elf_elfheader (obfd)->e_flags = out_flags;
1247
1248 return TRUE;
1249 }
1250
1251 /* Display the flags field. */
1252
1253 static bfd_boolean
1254 elf32_m68k_print_private_bfd_data (bfd *abfd, void * ptr)
1255 {
1256 FILE *file = (FILE *) ptr;
1257 flagword eflags = elf_elfheader (abfd)->e_flags;
1258
1259 BFD_ASSERT (abfd != NULL && ptr != NULL);
1260
1261 /* Print normal ELF private data. */
1262 _bfd_elf_print_private_bfd_data (abfd, ptr);
1263
1264 /* Ignore init flag - it may not be set, despite the flags field containing valid data. */
1265
1266 /* xgettext:c-format */
1267 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
1268
1269 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1270 fprintf (file, " [m68000]");
1271 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1272 fprintf (file, " [cpu32]");
1273 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1274 fprintf (file, " [fido]");
1275 else
1276 {
1277 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CFV4E)
1278 fprintf (file, " [cfv4e]");
1279
1280 if (eflags & EF_M68K_CF_ISA_MASK)
1281 {
1282 char const *isa = _("unknown");
1283 char const *mac = _("unknown");
1284 char const *additional = "";
1285
1286 switch (eflags & EF_M68K_CF_ISA_MASK)
1287 {
1288 case EF_M68K_CF_ISA_A_NODIV:
1289 isa = "A";
1290 additional = " [nodiv]";
1291 break;
1292 case EF_M68K_CF_ISA_A:
1293 isa = "A";
1294 break;
1295 case EF_M68K_CF_ISA_A_PLUS:
1296 isa = "A+";
1297 break;
1298 case EF_M68K_CF_ISA_B_NOUSP:
1299 isa = "B";
1300 additional = " [nousp]";
1301 break;
1302 case EF_M68K_CF_ISA_B:
1303 isa = "B";
1304 break;
1305 case EF_M68K_CF_ISA_C:
1306 isa = "C";
1307 break;
1308 case EF_M68K_CF_ISA_C_NODIV:
1309 isa = "C";
1310 additional = " [nodiv]";
1311 break;
1312 }
1313 fprintf (file, " [isa %s]%s", isa, additional);
1314
1315 if (eflags & EF_M68K_CF_FLOAT)
1316 fprintf (file, " [float]");
1317
1318 switch (eflags & EF_M68K_CF_MAC_MASK)
1319 {
1320 case 0:
1321 mac = NULL;
1322 break;
1323 case EF_M68K_CF_MAC:
1324 mac = "mac";
1325 break;
1326 case EF_M68K_CF_EMAC:
1327 mac = "emac";
1328 break;
1329 case EF_M68K_CF_EMAC_B:
1330 mac = "emac_b";
1331 break;
1332 }
1333 if (mac)
1334 fprintf (file, " [%s]", mac);
1335 }
1336 }
1337
1338 fputc ('\n', file);
1339
1340 return TRUE;
1341 }
1342
1343 /* Multi-GOT support implementation design:
1344
1345 Multi-GOT starts in check_relocs hook. There we scan all
1346 relocations of a BFD and build a local GOT (struct elf_m68k_got)
1347 for it. If a single BFD appears to require too many GOT slots with
1348 R_68K_GOT8O or R_68K_GOT16O relocations, we fail with notification
1349 to user.
1350 After check_relocs has been invoked for each input BFD, we have
1351 constructed a GOT for each input BFD.
1352
1353 To minimize total number of GOTs required for a particular output BFD
1354 (as some environments support only 1 GOT per output object) we try
1355 to merge some of the GOTs to share an offset space. Ideally [and in most
1356 cases] we end up with a single GOT. In cases when there are too many
1357 restricted relocations (e.g., R_68K_GOT16O relocations) we end up with
1358 several GOTs, assuming the environment can handle them.
1359
1360 Partitioning is done in elf_m68k_partition_multi_got. We start with
1361 an empty GOT and traverse bfd2got hashtable putting got_entries from
1362 local GOTs to the new 'big' one. We do that by constructing an
1363 intermediate GOT holding all the entries the local GOT has and the big
1364 GOT lacks. Then we check if there is room in the big GOT to accomodate
1365 all the entries from diff. On success we add those entries to the big
1366 GOT; on failure we start the new 'big' GOT and retry the adding of
1367 entries from the local GOT. Note that this retry will always succeed as
1368 each local GOT doesn't overflow the limits. After partitioning we
1369 end up with each bfd assigned one of the big GOTs. GOT entries in the
1370 big GOTs are initialized with GOT offsets. Note that big GOTs are
1371 positioned consequently in program space and represent a single huge GOT
1372 to the outside world.
1373
1374 After that we get to elf_m68k_relocate_section. There we
1375 adjust relocations of GOT pointer (_GLOBAL_OFFSET_TABLE_) and symbol
1376 relocations to refer to appropriate [assigned to current input_bfd]
1377 big GOT.
1378
1379 Notes:
1380
1381 GOT entry type: We have several types of GOT entries.
1382 * R_8 type is used in entries for symbols that have at least one
1383 R_68K_GOT8O or R_68K_TLS_*8 relocation. We can have at most 0x40
1384 such entries in one GOT.
1385 * R_16 type is used in entries for symbols that have at least one
1386 R_68K_GOT16O or R_68K_TLS_*16 relocation and no R_8 relocations.
1387 We can have at most 0x4000 such entries in one GOT.
1388 * R_32 type is used in all other cases. We can have as many
1389 such entries in one GOT as we'd like.
1390 When counting relocations we have to include the count of the smaller
1391 ranged relocations in the counts of the larger ranged ones in order
1392 to correctly detect overflow.
1393
1394 Sorting the GOT: In each GOT starting offsets are assigned to
1395 R_8 entries, which are followed by R_16 entries, and
1396 R_32 entries go at the end. See finalize_got_offsets for details.
1397
1398 Negative GOT offsets: To double usable offset range of GOTs we use
1399 negative offsets. As we assign entries with GOT offsets relative to
1400 start of .got section, the offset values are positive. They become
1401 negative only in relocate_section where got->offset value is
1402 subtracted from them.
1403
1404 3 special GOT entries: There are 3 special GOT entries used internally
1405 by loader. These entries happen to be placed to .got.plt section,
1406 so we don't do anything about them in multi-GOT support.
1407
1408 Memory management: All data except for hashtables
1409 multi_got->bfd2got and got->entries are allocated on
1410 elf_hash_table (info)->dynobj bfd (for this reason we pass 'info'
1411 to most functions), so we don't need to care to free them. At the
1412 moment of allocation hashtables are being linked into main data
1413 structure (multi_got), all pieces of which are reachable from
1414 elf_m68k_multi_got (info). We deallocate them in
1415 elf_m68k_link_hash_table_free. */
1416
1417 /* Initialize GOT. */
1418
1419 static void
1420 elf_m68k_init_got (struct elf_m68k_got *got)
1421 {
1422 got->entries = NULL;
1423 got->n_slots[R_8] = 0;
1424 got->n_slots[R_16] = 0;
1425 got->n_slots[R_32] = 0;
1426 got->local_n_slots = 0;
1427 got->offset = (bfd_vma) -1;
1428 }
1429
1430 /* Destruct GOT. */
1431
1432 static void
1433 elf_m68k_clear_got (struct elf_m68k_got *got)
1434 {
1435 if (got->entries != NULL)
1436 {
1437 htab_delete (got->entries);
1438 got->entries = NULL;
1439 }
1440 }
1441
1442 /* Create and empty GOT structure. INFO is the context where memory
1443 should be allocated. */
1444
1445 static struct elf_m68k_got *
1446 elf_m68k_create_empty_got (struct bfd_link_info *info)
1447 {
1448 struct elf_m68k_got *got;
1449
1450 got = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*got));
1451 if (got == NULL)
1452 return NULL;
1453
1454 elf_m68k_init_got (got);
1455
1456 return got;
1457 }
1458
1459 /* Initialize KEY. */
1460
1461 static void
1462 elf_m68k_init_got_entry_key (struct elf_m68k_got_entry_key *key,
1463 struct elf_link_hash_entry *h,
1464 const bfd *abfd, unsigned long symndx,
1465 enum elf_m68k_reloc_type reloc_type)
1466 {
1467 if (elf_m68k_reloc_got_type (reloc_type) == R_68K_TLS_LDM32)
1468 /* All TLS_LDM relocations share a single GOT entry. */
1469 {
1470 key->bfd = NULL;
1471 key->symndx = 0;
1472 }
1473 else if (h != NULL)
1474 /* Global symbols are identified with their got_entry_key. */
1475 {
1476 key->bfd = NULL;
1477 key->symndx = elf_m68k_hash_entry (h)->got_entry_key;
1478 BFD_ASSERT (key->symndx != 0);
1479 }
1480 else
1481 /* Local symbols are identified by BFD they appear in and symndx. */
1482 {
1483 key->bfd = abfd;
1484 key->symndx = symndx;
1485 }
1486
1487 key->type = reloc_type;
1488 }
1489
1490 /* Calculate hash of got_entry.
1491 ??? Is it good? */
1492
1493 static hashval_t
1494 elf_m68k_got_entry_hash (const void *_entry)
1495 {
1496 const struct elf_m68k_got_entry_key *key;
1497
1498 key = &((const struct elf_m68k_got_entry *) _entry)->key_;
1499
1500 return (key->symndx
1501 + (key->bfd != NULL ? (int) key->bfd->id : -1)
1502 + elf_m68k_reloc_got_type (key->type));
1503 }
1504
1505 /* Check if two got entries are equal. */
1506
1507 static int
1508 elf_m68k_got_entry_eq (const void *_entry1, const void *_entry2)
1509 {
1510 const struct elf_m68k_got_entry_key *key1;
1511 const struct elf_m68k_got_entry_key *key2;
1512
1513 key1 = &((const struct elf_m68k_got_entry *) _entry1)->key_;
1514 key2 = &((const struct elf_m68k_got_entry *) _entry2)->key_;
1515
1516 return (key1->bfd == key2->bfd
1517 && key1->symndx == key2->symndx
1518 && (elf_m68k_reloc_got_type (key1->type)
1519 == elf_m68k_reloc_got_type (key2->type)));
1520 }
1521
1522 /* When using negative offsets, we allocate one extra R_8, one extra R_16
1523 and one extra R_32 slots to simplify handling of 2-slot entries during
1524 offset allocation -- hence -1 for R_8 slots and -2 for R_16 slots. */
1525
1526 /* Maximal number of R_8 slots in a single GOT. */
1527 #define ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT(INFO) \
1528 (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p \
1529 ? (0x40 - 1) \
1530 : 0x20)
1531
1532 /* Maximal number of R_8 and R_16 slots in a single GOT. */
1533 #define ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT(INFO) \
1534 (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p \
1535 ? (0x4000 - 2) \
1536 : 0x2000)
1537
1538 /* SEARCH - simply search the hashtable, don't insert new entries or fail when
1539 the entry cannot be found.
1540 FIND_OR_CREATE - search for an existing entry, but create new if there's
1541 no such.
1542 MUST_FIND - search for an existing entry and assert that it exist.
1543 MUST_CREATE - assert that there's no such entry and create new one. */
1544 enum elf_m68k_get_entry_howto
1545 {
1546 SEARCH,
1547 FIND_OR_CREATE,
1548 MUST_FIND,
1549 MUST_CREATE
1550 };
1551
1552 /* Get or create (depending on HOWTO) entry with KEY in GOT.
1553 INFO is context in which memory should be allocated (can be NULL if
1554 HOWTO is SEARCH or MUST_FIND). */
1555
1556 static struct elf_m68k_got_entry *
1557 elf_m68k_get_got_entry (struct elf_m68k_got *got,
1558 const struct elf_m68k_got_entry_key *key,
1559 enum elf_m68k_get_entry_howto howto,
1560 struct bfd_link_info *info)
1561 {
1562 struct elf_m68k_got_entry entry_;
1563 struct elf_m68k_got_entry *entry;
1564 void **ptr;
1565
1566 BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
1567
1568 if (got->entries == NULL)
1569 /* This is the first entry in ABFD. Initialize hashtable. */
1570 {
1571 if (howto == SEARCH)
1572 return NULL;
1573
1574 got->entries = htab_try_create (ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT
1575 (info),
1576 elf_m68k_got_entry_hash,
1577 elf_m68k_got_entry_eq, NULL);
1578 if (got->entries == NULL)
1579 {
1580 bfd_set_error (bfd_error_no_memory);
1581 return NULL;
1582 }
1583 }
1584
1585 entry_.key_ = *key;
1586 ptr = htab_find_slot (got->entries, &entry_,
1587 (howto == SEARCH || howto == MUST_FIND ? NO_INSERT
1588 : INSERT));
1589 if (ptr == NULL)
1590 {
1591 if (howto == SEARCH)
1592 /* Entry not found. */
1593 return NULL;
1594
1595 if (howto == MUST_FIND)
1596 abort ();
1597
1598 /* We're out of memory. */
1599 bfd_set_error (bfd_error_no_memory);
1600 return NULL;
1601 }
1602
1603 if (*ptr == NULL)
1604 /* We didn't find the entry and we're asked to create a new one. */
1605 {
1606 if (howto == MUST_FIND)
1607 abort ();
1608
1609 BFD_ASSERT (howto != SEARCH);
1610
1611 entry = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry));
1612 if (entry == NULL)
1613 return NULL;
1614
1615 /* Initialize new entry. */
1616 entry->key_ = *key;
1617
1618 entry->u.s1.refcount = 0;
1619
1620 /* Mark the entry as not initialized. */
1621 entry->key_.type = R_68K_max;
1622
1623 *ptr = entry;
1624 }
1625 else
1626 /* We found the entry. */
1627 {
1628 BFD_ASSERT (howto != MUST_CREATE);
1629
1630 entry = *ptr;
1631 }
1632
1633 return entry;
1634 }
1635
1636 /* Update GOT counters when merging entry of WAS type with entry of NEW type.
1637 Return the value to which ENTRY's type should be set. */
1638
1639 static enum elf_m68k_reloc_type
1640 elf_m68k_update_got_entry_type (struct elf_m68k_got *got,
1641 enum elf_m68k_reloc_type was,
1642 enum elf_m68k_reloc_type new_reloc)
1643 {
1644 enum elf_m68k_got_offset_size was_size;
1645 enum elf_m68k_got_offset_size new_size;
1646 bfd_vma n_slots;
1647
1648 if (was == R_68K_max)
1649 /* The type of the entry is not initialized yet. */
1650 {
1651 /* Update all got->n_slots counters, including n_slots[R_32]. */
1652 was_size = R_LAST;
1653
1654 was = new_reloc;
1655 }
1656 else
1657 {
1658 /* !!! We, probably, should emit an error rather then fail on assert
1659 in such a case. */
1660 BFD_ASSERT (elf_m68k_reloc_got_type (was)
1661 == elf_m68k_reloc_got_type (new_reloc));
1662
1663 was_size = elf_m68k_reloc_got_offset_size (was);
1664 }
1665
1666 new_size = elf_m68k_reloc_got_offset_size (new_reloc);
1667 n_slots = elf_m68k_reloc_got_n_slots (new_reloc);
1668
1669 while (was_size > new_size)
1670 {
1671 --was_size;
1672 got->n_slots[was_size] += n_slots;
1673 }
1674
1675 if (new_reloc > was)
1676 /* Relocations are ordered from bigger got offset size to lesser,
1677 so choose the relocation type with lesser offset size. */
1678 was = new_reloc;
1679
1680 return was;
1681 }
1682
1683 /* Add new or update existing entry to GOT.
1684 H, ABFD, TYPE and SYMNDX is data for the entry.
1685 INFO is a context where memory should be allocated. */
1686
1687 static struct elf_m68k_got_entry *
1688 elf_m68k_add_entry_to_got (struct elf_m68k_got *got,
1689 struct elf_link_hash_entry *h,
1690 const bfd *abfd,
1691 enum elf_m68k_reloc_type reloc_type,
1692 unsigned long symndx,
1693 struct bfd_link_info *info)
1694 {
1695 struct elf_m68k_got_entry_key key_;
1696 struct elf_m68k_got_entry *entry;
1697
1698 if (h != NULL && elf_m68k_hash_entry (h)->got_entry_key == 0)
1699 elf_m68k_hash_entry (h)->got_entry_key
1700 = elf_m68k_multi_got (info)->global_symndx++;
1701
1702 elf_m68k_init_got_entry_key (&key_, h, abfd, symndx, reloc_type);
1703
1704 entry = elf_m68k_get_got_entry (got, &key_, FIND_OR_CREATE, info);
1705 if (entry == NULL)
1706 return NULL;
1707
1708 /* Determine entry's type and update got->n_slots counters. */
1709 entry->key_.type = elf_m68k_update_got_entry_type (got,
1710 entry->key_.type,
1711 reloc_type);
1712
1713 /* Update refcount. */
1714 ++entry->u.s1.refcount;
1715
1716 if (entry->u.s1.refcount == 1)
1717 /* We see this entry for the first time. */
1718 {
1719 if (entry->key_.bfd != NULL)
1720 got->local_n_slots += elf_m68k_reloc_got_n_slots (entry->key_.type);
1721 }
1722
1723 BFD_ASSERT (got->n_slots[R_32] >= got->local_n_slots);
1724
1725 if ((got->n_slots[R_8]
1726 > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1727 || (got->n_slots[R_16]
1728 > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))
1729 /* This BFD has too many relocation. */
1730 {
1731 if (got->n_slots[R_8] > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1732 /* xgettext:c-format */
1733 _bfd_error_handler (_("%pB: GOT overflow: "
1734 "number of relocations with 8-bit "
1735 "offset > %d"),
1736 abfd,
1737 ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info));
1738 else
1739 /* xgettext:c-format */
1740 _bfd_error_handler (_("%pB: GOT overflow: "
1741 "number of relocations with 8- or 16-bit "
1742 "offset > %d"),
1743 abfd,
1744 ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info));
1745
1746 return NULL;
1747 }
1748
1749 return entry;
1750 }
1751
1752 /* Compute the hash value of the bfd in a bfd2got hash entry. */
1753
1754 static hashval_t
1755 elf_m68k_bfd2got_entry_hash (const void *entry)
1756 {
1757 const struct elf_m68k_bfd2got_entry *e;
1758
1759 e = (const struct elf_m68k_bfd2got_entry *) entry;
1760
1761 return e->bfd->id;
1762 }
1763
1764 /* Check whether two hash entries have the same bfd. */
1765
1766 static int
1767 elf_m68k_bfd2got_entry_eq (const void *entry1, const void *entry2)
1768 {
1769 const struct elf_m68k_bfd2got_entry *e1;
1770 const struct elf_m68k_bfd2got_entry *e2;
1771
1772 e1 = (const struct elf_m68k_bfd2got_entry *) entry1;
1773 e2 = (const struct elf_m68k_bfd2got_entry *) entry2;
1774
1775 return e1->bfd == e2->bfd;
1776 }
1777
1778 /* Destruct a bfd2got entry. */
1779
1780 static void
1781 elf_m68k_bfd2got_entry_del (void *_entry)
1782 {
1783 struct elf_m68k_bfd2got_entry *entry;
1784
1785 entry = (struct elf_m68k_bfd2got_entry *) _entry;
1786
1787 BFD_ASSERT (entry->got != NULL);
1788 elf_m68k_clear_got (entry->got);
1789 }
1790
1791 /* Find existing or create new (depending on HOWTO) bfd2got entry in
1792 MULTI_GOT. ABFD is the bfd we need a GOT for. INFO is a context where
1793 memory should be allocated. */
1794
1795 static struct elf_m68k_bfd2got_entry *
1796 elf_m68k_get_bfd2got_entry (struct elf_m68k_multi_got *multi_got,
1797 const bfd *abfd,
1798 enum elf_m68k_get_entry_howto howto,
1799 struct bfd_link_info *info)
1800 {
1801 struct elf_m68k_bfd2got_entry entry_;
1802 void **ptr;
1803 struct elf_m68k_bfd2got_entry *entry;
1804
1805 BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
1806
1807 if (multi_got->bfd2got == NULL)
1808 /* This is the first GOT. Initialize bfd2got. */
1809 {
1810 if (howto == SEARCH)
1811 return NULL;
1812
1813 multi_got->bfd2got = htab_try_create (1, elf_m68k_bfd2got_entry_hash,
1814 elf_m68k_bfd2got_entry_eq,
1815 elf_m68k_bfd2got_entry_del);
1816 if (multi_got->bfd2got == NULL)
1817 {
1818 bfd_set_error (bfd_error_no_memory);
1819 return NULL;
1820 }
1821 }
1822
1823 entry_.bfd = abfd;
1824 ptr = htab_find_slot (multi_got->bfd2got, &entry_,
1825 (howto == SEARCH || howto == MUST_FIND ? NO_INSERT
1826 : INSERT));
1827 if (ptr == NULL)
1828 {
1829 if (howto == SEARCH)
1830 /* Entry not found. */
1831 return NULL;
1832
1833 if (howto == MUST_FIND)
1834 abort ();
1835
1836 /* We're out of memory. */
1837 bfd_set_error (bfd_error_no_memory);
1838 return NULL;
1839 }
1840
1841 if (*ptr == NULL)
1842 /* Entry was not found. Create new one. */
1843 {
1844 if (howto == MUST_FIND)
1845 abort ();
1846
1847 BFD_ASSERT (howto != SEARCH);
1848
1849 entry = ((struct elf_m68k_bfd2got_entry *)
1850 bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry)));
1851 if (entry == NULL)
1852 return NULL;
1853
1854 entry->bfd = abfd;
1855
1856 entry->got = elf_m68k_create_empty_got (info);
1857 if (entry->got == NULL)
1858 return NULL;
1859
1860 *ptr = entry;
1861 }
1862 else
1863 {
1864 BFD_ASSERT (howto != MUST_CREATE);
1865
1866 /* Return existing entry. */
1867 entry = *ptr;
1868 }
1869
1870 return entry;
1871 }
1872
1873 struct elf_m68k_can_merge_gots_arg
1874 {
1875 /* A current_got that we constructing a DIFF against. */
1876 struct elf_m68k_got *big;
1877
1878 /* GOT holding entries not present or that should be changed in
1879 BIG. */
1880 struct elf_m68k_got *diff;
1881
1882 /* Context where to allocate memory. */
1883 struct bfd_link_info *info;
1884
1885 /* Error flag. */
1886 bfd_boolean error_p;
1887 };
1888
1889 /* Process a single entry from the small GOT to see if it should be added
1890 or updated in the big GOT. */
1891
1892 static int
1893 elf_m68k_can_merge_gots_1 (void **_entry_ptr, void *_arg)
1894 {
1895 const struct elf_m68k_got_entry *entry1;
1896 struct elf_m68k_can_merge_gots_arg *arg;
1897 const struct elf_m68k_got_entry *entry2;
1898 enum elf_m68k_reloc_type type;
1899
1900 entry1 = (const struct elf_m68k_got_entry *) *_entry_ptr;
1901 arg = (struct elf_m68k_can_merge_gots_arg *) _arg;
1902
1903 entry2 = elf_m68k_get_got_entry (arg->big, &entry1->key_, SEARCH, NULL);
1904
1905 if (entry2 != NULL)
1906 /* We found an existing entry. Check if we should update it. */
1907 {
1908 type = elf_m68k_update_got_entry_type (arg->diff,
1909 entry2->key_.type,
1910 entry1->key_.type);
1911
1912 if (type == entry2->key_.type)
1913 /* ENTRY1 doesn't update data in ENTRY2. Skip it.
1914 To skip creation of difference entry we use the type,
1915 which we won't see in GOT entries for sure. */
1916 type = R_68K_max;
1917 }
1918 else
1919 /* We didn't find the entry. Add entry1 to DIFF. */
1920 {
1921 BFD_ASSERT (entry1->key_.type != R_68K_max);
1922
1923 type = elf_m68k_update_got_entry_type (arg->diff,
1924 R_68K_max, entry1->key_.type);
1925
1926 if (entry1->key_.bfd != NULL)
1927 arg->diff->local_n_slots += elf_m68k_reloc_got_n_slots (type);
1928 }
1929
1930 if (type != R_68K_max)
1931 /* Create an entry in DIFF. */
1932 {
1933 struct elf_m68k_got_entry *entry;
1934
1935 entry = elf_m68k_get_got_entry (arg->diff, &entry1->key_, MUST_CREATE,
1936 arg->info);
1937 if (entry == NULL)
1938 {
1939 arg->error_p = TRUE;
1940 return 0;
1941 }
1942
1943 entry->key_.type = type;
1944 }
1945
1946 return 1;
1947 }
1948
1949 /* Return TRUE if SMALL GOT can be added to BIG GOT without overflowing it.
1950 Construct DIFF GOT holding the entries which should be added or updated
1951 in BIG GOT to accumulate information from SMALL.
1952 INFO is the context where memory should be allocated. */
1953
1954 static bfd_boolean
1955 elf_m68k_can_merge_gots (struct elf_m68k_got *big,
1956 const struct elf_m68k_got *small,
1957 struct bfd_link_info *info,
1958 struct elf_m68k_got *diff)
1959 {
1960 struct elf_m68k_can_merge_gots_arg arg_;
1961
1962 BFD_ASSERT (small->offset == (bfd_vma) -1);
1963
1964 arg_.big = big;
1965 arg_.diff = diff;
1966 arg_.info = info;
1967 arg_.error_p = FALSE;
1968 htab_traverse_noresize (small->entries, elf_m68k_can_merge_gots_1, &arg_);
1969 if (arg_.error_p)
1970 {
1971 diff->offset = 0;
1972 return FALSE;
1973 }
1974
1975 /* Check for overflow. */
1976 if ((big->n_slots[R_8] + arg_.diff->n_slots[R_8]
1977 > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1978 || (big->n_slots[R_16] + arg_.diff->n_slots[R_16]
1979 > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))
1980 return FALSE;
1981
1982 return TRUE;
1983 }
1984
1985 struct elf_m68k_merge_gots_arg
1986 {
1987 /* The BIG got. */
1988 struct elf_m68k_got *big;
1989
1990 /* Context where memory should be allocated. */
1991 struct bfd_link_info *info;
1992
1993 /* Error flag. */
1994 bfd_boolean error_p;
1995 };
1996
1997 /* Process a single entry from DIFF got. Add or update corresponding
1998 entry in the BIG got. */
1999
2000 static int
2001 elf_m68k_merge_gots_1 (void **entry_ptr, void *_arg)
2002 {
2003 const struct elf_m68k_got_entry *from;
2004 struct elf_m68k_merge_gots_arg *arg;
2005 struct elf_m68k_got_entry *to;
2006
2007 from = (const struct elf_m68k_got_entry *) *entry_ptr;
2008 arg = (struct elf_m68k_merge_gots_arg *) _arg;
2009
2010 to = elf_m68k_get_got_entry (arg->big, &from->key_, FIND_OR_CREATE,
2011 arg->info);
2012 if (to == NULL)
2013 {
2014 arg->error_p = TRUE;
2015 return 0;
2016 }
2017
2018 BFD_ASSERT (to->u.s1.refcount == 0);
2019 /* All we need to merge is TYPE. */
2020 to->key_.type = from->key_.type;
2021
2022 return 1;
2023 }
2024
2025 /* Merge data from DIFF to BIG. INFO is context where memory should be
2026 allocated. */
2027
2028 static bfd_boolean
2029 elf_m68k_merge_gots (struct elf_m68k_got *big,
2030 struct elf_m68k_got *diff,
2031 struct bfd_link_info *info)
2032 {
2033 if (diff->entries != NULL)
2034 /* DIFF is not empty. Merge it into BIG GOT. */
2035 {
2036 struct elf_m68k_merge_gots_arg arg_;
2037
2038 /* Merge entries. */
2039 arg_.big = big;
2040 arg_.info = info;
2041 arg_.error_p = FALSE;
2042 htab_traverse_noresize (diff->entries, elf_m68k_merge_gots_1, &arg_);
2043 if (arg_.error_p)
2044 return FALSE;
2045
2046 /* Merge counters. */
2047 big->n_slots[R_8] += diff->n_slots[R_8];
2048 big->n_slots[R_16] += diff->n_slots[R_16];
2049 big->n_slots[R_32] += diff->n_slots[R_32];
2050 big->local_n_slots += diff->local_n_slots;
2051 }
2052 else
2053 /* DIFF is empty. */
2054 {
2055 BFD_ASSERT (diff->n_slots[R_8] == 0);
2056 BFD_ASSERT (diff->n_slots[R_16] == 0);
2057 BFD_ASSERT (diff->n_slots[R_32] == 0);
2058 BFD_ASSERT (diff->local_n_slots == 0);
2059 }
2060
2061 BFD_ASSERT (!elf_m68k_hash_table (info)->allow_multigot_p
2062 || ((big->n_slots[R_8]
2063 <= ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
2064 && (big->n_slots[R_16]
2065 <= ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info))));
2066
2067 return TRUE;
2068 }
2069
2070 struct elf_m68k_finalize_got_offsets_arg
2071 {
2072 /* Ranges of the offsets for GOT entries.
2073 R_x entries receive offsets between offset1[R_x] and offset2[R_x].
2074 R_x is R_8, R_16 and R_32. */
2075 bfd_vma *offset1;
2076 bfd_vma *offset2;
2077
2078 /* Mapping from global symndx to global symbols.
2079 This is used to build lists of got entries for global symbols. */
2080 struct elf_m68k_link_hash_entry **symndx2h;
2081
2082 bfd_vma n_ldm_entries;
2083 };
2084
2085 /* Assign ENTRY an offset. Build list of GOT entries for global symbols
2086 along the way. */
2087
2088 static int
2089 elf_m68k_finalize_got_offsets_1 (void **entry_ptr, void *_arg)
2090 {
2091 struct elf_m68k_got_entry *entry;
2092 struct elf_m68k_finalize_got_offsets_arg *arg;
2093
2094 enum elf_m68k_got_offset_size got_offset_size;
2095 bfd_vma entry_size;
2096
2097 entry = (struct elf_m68k_got_entry *) *entry_ptr;
2098 arg = (struct elf_m68k_finalize_got_offsets_arg *) _arg;
2099
2100 /* This should be a fresh entry created in elf_m68k_can_merge_gots. */
2101 BFD_ASSERT (entry->u.s1.refcount == 0);
2102
2103 /* Get GOT offset size for the entry . */
2104 got_offset_size = elf_m68k_reloc_got_offset_size (entry->key_.type);
2105
2106 /* Calculate entry size in bytes. */
2107 entry_size = 4 * elf_m68k_reloc_got_n_slots (entry->key_.type);
2108
2109 /* Check if we should switch to negative range of the offsets. */
2110 if (arg->offset1[got_offset_size] + entry_size
2111 > arg->offset2[got_offset_size])
2112 {
2113 /* Verify that this is the only switch to negative range for
2114 got_offset_size. If this assertion fails, then we've miscalculated
2115 range for got_offset_size entries in
2116 elf_m68k_finalize_got_offsets. */
2117 BFD_ASSERT (arg->offset2[got_offset_size]
2118 != arg->offset2[-(int) got_offset_size - 1]);
2119
2120 /* Switch. */
2121 arg->offset1[got_offset_size] = arg->offset1[-(int) got_offset_size - 1];
2122 arg->offset2[got_offset_size] = arg->offset2[-(int) got_offset_size - 1];
2123
2124 /* Verify that now we have enough room for the entry. */
2125 BFD_ASSERT (arg->offset1[got_offset_size] + entry_size
2126 <= arg->offset2[got_offset_size]);
2127 }
2128
2129 /* Assign offset to entry. */
2130 entry->u.s2.offset = arg->offset1[got_offset_size];
2131 arg->offset1[got_offset_size] += entry_size;
2132
2133 if (entry->key_.bfd == NULL)
2134 /* Hook up this entry into the list of got_entries of H. */
2135 {
2136 struct elf_m68k_link_hash_entry *h;
2137
2138 h = arg->symndx2h[entry->key_.symndx];
2139 if (h != NULL)
2140 {
2141 entry->u.s2.next = h->glist;
2142 h->glist = entry;
2143 }
2144 else
2145 /* This should be the entry for TLS_LDM relocation then. */
2146 {
2147 BFD_ASSERT ((elf_m68k_reloc_got_type (entry->key_.type)
2148 == R_68K_TLS_LDM32)
2149 && entry->key_.symndx == 0);
2150
2151 ++arg->n_ldm_entries;
2152 }
2153 }
2154 else
2155 /* This entry is for local symbol. */
2156 entry->u.s2.next = NULL;
2157
2158 return 1;
2159 }
2160
2161 /* Assign offsets within GOT. USE_NEG_GOT_OFFSETS_P indicates if we
2162 should use negative offsets.
2163 Build list of GOT entries for global symbols along the way.
2164 SYMNDX2H is mapping from global symbol indices to actual
2165 global symbols.
2166 Return offset at which next GOT should start. */
2167
2168 static void
2169 elf_m68k_finalize_got_offsets (struct elf_m68k_got *got,
2170 bfd_boolean use_neg_got_offsets_p,
2171 struct elf_m68k_link_hash_entry **symndx2h,
2172 bfd_vma *final_offset, bfd_vma *n_ldm_entries)
2173 {
2174 struct elf_m68k_finalize_got_offsets_arg arg_;
2175 bfd_vma offset1_[2 * R_LAST];
2176 bfd_vma offset2_[2 * R_LAST];
2177 int i;
2178 bfd_vma start_offset;
2179
2180 BFD_ASSERT (got->offset != (bfd_vma) -1);
2181
2182 /* We set entry offsets relative to the .got section (and not the
2183 start of a particular GOT), so that we can use them in
2184 finish_dynamic_symbol without needing to know the GOT which they come
2185 from. */
2186
2187 /* Put offset1 in the middle of offset1_, same for offset2. */
2188 arg_.offset1 = offset1_ + R_LAST;
2189 arg_.offset2 = offset2_ + R_LAST;
2190
2191 start_offset = got->offset;
2192
2193 if (use_neg_got_offsets_p)
2194 /* Setup both negative and positive ranges for R_8, R_16 and R_32. */
2195 i = -(int) R_32 - 1;
2196 else
2197 /* Setup positives ranges for R_8, R_16 and R_32. */
2198 i = (int) R_8;
2199
2200 for (; i <= (int) R_32; ++i)
2201 {
2202 int j;
2203 size_t n;
2204
2205 /* Set beginning of the range of offsets I. */
2206 arg_.offset1[i] = start_offset;
2207
2208 /* Calculate number of slots that require I offsets. */
2209 j = (i >= 0) ? i : -i - 1;
2210 n = (j >= 1) ? got->n_slots[j - 1] : 0;
2211 n = got->n_slots[j] - n;
2212
2213 if (use_neg_got_offsets_p && n != 0)
2214 {
2215 if (i < 0)
2216 /* We first fill the positive side of the range, so we might
2217 end up with one empty slot at that side when we can't fit
2218 whole 2-slot entry. Account for that at negative side of
2219 the interval with one additional entry. */
2220 n = n / 2 + 1;
2221 else
2222 /* When the number of slots is odd, make positive side of the
2223 range one entry bigger. */
2224 n = (n + 1) / 2;
2225 }
2226
2227 /* N is the number of slots that require I offsets.
2228 Calculate length of the range for I offsets. */
2229 n = 4 * n;
2230
2231 /* Set end of the range. */
2232 arg_.offset2[i] = start_offset + n;
2233
2234 start_offset = arg_.offset2[i];
2235 }
2236
2237 if (!use_neg_got_offsets_p)
2238 /* Make sure that if we try to switch to negative offsets in
2239 elf_m68k_finalize_got_offsets_1, the assert therein will catch
2240 the bug. */
2241 for (i = R_8; i <= R_32; ++i)
2242 arg_.offset2[-i - 1] = arg_.offset2[i];
2243
2244 /* Setup got->offset. offset1[R_8] is either in the middle or at the
2245 beginning of GOT depending on use_neg_got_offsets_p. */
2246 got->offset = arg_.offset1[R_8];
2247
2248 arg_.symndx2h = symndx2h;
2249 arg_.n_ldm_entries = 0;
2250
2251 /* Assign offsets. */
2252 htab_traverse (got->entries, elf_m68k_finalize_got_offsets_1, &arg_);
2253
2254 /* Check offset ranges we have actually assigned. */
2255 for (i = (int) R_8; i <= (int) R_32; ++i)
2256 BFD_ASSERT (arg_.offset2[i] - arg_.offset1[i] <= 4);
2257
2258 *final_offset = start_offset;
2259 *n_ldm_entries = arg_.n_ldm_entries;
2260 }
2261
2262 struct elf_m68k_partition_multi_got_arg
2263 {
2264 /* The GOT we are adding entries to. Aka big got. */
2265 struct elf_m68k_got *current_got;
2266
2267 /* Offset to assign the next CURRENT_GOT. */
2268 bfd_vma offset;
2269
2270 /* Context where memory should be allocated. */
2271 struct bfd_link_info *info;
2272
2273 /* Total number of slots in the .got section.
2274 This is used to calculate size of the .got and .rela.got sections. */
2275 bfd_vma n_slots;
2276
2277 /* Difference in numbers of allocated slots in the .got section
2278 and necessary relocations in the .rela.got section.
2279 This is used to calculate size of the .rela.got section. */
2280 bfd_vma slots_relas_diff;
2281
2282 /* Error flag. */
2283 bfd_boolean error_p;
2284
2285 /* Mapping from global symndx to global symbols.
2286 This is used to build lists of got entries for global symbols. */
2287 struct elf_m68k_link_hash_entry **symndx2h;
2288 };
2289
2290 static void
2291 elf_m68k_partition_multi_got_2 (struct elf_m68k_partition_multi_got_arg *arg)
2292 {
2293 bfd_vma n_ldm_entries;
2294
2295 elf_m68k_finalize_got_offsets (arg->current_got,
2296 (elf_m68k_hash_table (arg->info)
2297 ->use_neg_got_offsets_p),
2298 arg->symndx2h,
2299 &arg->offset, &n_ldm_entries);
2300
2301 arg->n_slots += arg->current_got->n_slots[R_32];
2302
2303 if (!bfd_link_pic (arg->info))
2304 /* If we are generating a shared object, we need to
2305 output a R_68K_RELATIVE reloc so that the dynamic
2306 linker can adjust this GOT entry. Overwise we
2307 don't need space in .rela.got for local symbols. */
2308 arg->slots_relas_diff += arg->current_got->local_n_slots;
2309
2310 /* @LDM relocations require a 2-slot GOT entry, but only
2311 one relocation. Account for that. */
2312 arg->slots_relas_diff += n_ldm_entries;
2313
2314 BFD_ASSERT (arg->slots_relas_diff <= arg->n_slots);
2315 }
2316
2317
2318 /* Process a single BFD2GOT entry and either merge GOT to CURRENT_GOT
2319 or start a new CURRENT_GOT. */
2320
2321 static int
2322 elf_m68k_partition_multi_got_1 (void **_entry, void *_arg)
2323 {
2324 struct elf_m68k_bfd2got_entry *entry;
2325 struct elf_m68k_partition_multi_got_arg *arg;
2326 struct elf_m68k_got *got;
2327 struct elf_m68k_got diff_;
2328 struct elf_m68k_got *diff;
2329
2330 entry = (struct elf_m68k_bfd2got_entry *) *_entry;
2331 arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
2332
2333 got = entry->got;
2334 BFD_ASSERT (got != NULL);
2335 BFD_ASSERT (got->offset == (bfd_vma) -1);
2336
2337 diff = NULL;
2338
2339 if (arg->current_got != NULL)
2340 /* Construct diff. */
2341 {
2342 diff = &diff_;
2343 elf_m68k_init_got (diff);
2344
2345 if (!elf_m68k_can_merge_gots (arg->current_got, got, arg->info, diff))
2346 {
2347 if (diff->offset == 0)
2348 /* Offset set to 0 in the diff_ indicates an error. */
2349 {
2350 arg->error_p = TRUE;
2351 goto final_return;
2352 }
2353
2354 if (elf_m68k_hash_table (arg->info)->allow_multigot_p)
2355 {
2356 elf_m68k_clear_got (diff);
2357 /* Schedule to finish up current_got and start new one. */
2358 diff = NULL;
2359 }
2360 /* else
2361 Merge GOTs no matter what. If big GOT overflows,
2362 we'll fail in relocate_section due to truncated relocations.
2363
2364 ??? May be fail earlier? E.g., in can_merge_gots. */
2365 }
2366 }
2367 else
2368 /* Diff of got against empty current_got is got itself. */
2369 {
2370 /* Create empty current_got to put subsequent GOTs to. */
2371 arg->current_got = elf_m68k_create_empty_got (arg->info);
2372 if (arg->current_got == NULL)
2373 {
2374 arg->error_p = TRUE;
2375 goto final_return;
2376 }
2377
2378 arg->current_got->offset = arg->offset;
2379
2380 diff = got;
2381 }
2382
2383 if (diff != NULL)
2384 {
2385 if (!elf_m68k_merge_gots (arg->current_got, diff, arg->info))
2386 {
2387 arg->error_p = TRUE;
2388 goto final_return;
2389 }
2390
2391 /* Now we can free GOT. */
2392 elf_m68k_clear_got (got);
2393
2394 entry->got = arg->current_got;
2395 }
2396 else
2397 {
2398 /* Finish up current_got. */
2399 elf_m68k_partition_multi_got_2 (arg);
2400
2401 /* Schedule to start a new current_got. */
2402 arg->current_got = NULL;
2403
2404 /* Retry. */
2405 if (!elf_m68k_partition_multi_got_1 (_entry, _arg))
2406 {
2407 BFD_ASSERT (arg->error_p);
2408 goto final_return;
2409 }
2410 }
2411
2412 final_return:
2413 if (diff != NULL)
2414 elf_m68k_clear_got (diff);
2415
2416 return !arg->error_p;
2417 }
2418
2419 /* Helper function to build symndx2h mapping. */
2420
2421 static bfd_boolean
2422 elf_m68k_init_symndx2h_1 (struct elf_link_hash_entry *_h,
2423 void *_arg)
2424 {
2425 struct elf_m68k_link_hash_entry *h;
2426
2427 h = elf_m68k_hash_entry (_h);
2428
2429 if (h->got_entry_key != 0)
2430 /* H has at least one entry in the GOT. */
2431 {
2432 struct elf_m68k_partition_multi_got_arg *arg;
2433
2434 arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
2435
2436 BFD_ASSERT (arg->symndx2h[h->got_entry_key] == NULL);
2437 arg->symndx2h[h->got_entry_key] = h;
2438 }
2439
2440 return TRUE;
2441 }
2442
2443 /* Merge GOTs of some BFDs, assign offsets to GOT entries and build
2444 lists of GOT entries for global symbols.
2445 Calculate sizes of .got and .rela.got sections. */
2446
2447 static bfd_boolean
2448 elf_m68k_partition_multi_got (struct bfd_link_info *info)
2449 {
2450 struct elf_m68k_multi_got *multi_got;
2451 struct elf_m68k_partition_multi_got_arg arg_;
2452
2453 multi_got = elf_m68k_multi_got (info);
2454
2455 arg_.current_got = NULL;
2456 arg_.offset = 0;
2457 arg_.info = info;
2458 arg_.n_slots = 0;
2459 arg_.slots_relas_diff = 0;
2460 arg_.error_p = FALSE;
2461
2462 if (multi_got->bfd2got != NULL)
2463 {
2464 /* Initialize symndx2h mapping. */
2465 {
2466 arg_.symndx2h = bfd_zmalloc (multi_got->global_symndx
2467 * sizeof (*arg_.symndx2h));
2468 if (arg_.symndx2h == NULL)
2469 return FALSE;
2470
2471 elf_link_hash_traverse (elf_hash_table (info),
2472 elf_m68k_init_symndx2h_1, &arg_);
2473 }
2474
2475 /* Partition. */
2476 htab_traverse (multi_got->bfd2got, elf_m68k_partition_multi_got_1,
2477 &arg_);
2478 if (arg_.error_p)
2479 {
2480 free (arg_.symndx2h);
2481 arg_.symndx2h = NULL;
2482
2483 return FALSE;
2484 }
2485
2486 /* Finish up last current_got. */
2487 elf_m68k_partition_multi_got_2 (&arg_);
2488
2489 free (arg_.symndx2h);
2490 }
2491
2492 if (elf_hash_table (info)->dynobj != NULL)
2493 /* Set sizes of .got and .rela.got sections. */
2494 {
2495 asection *s;
2496
2497 s = elf_hash_table (info)->sgot;
2498 if (s != NULL)
2499 s->size = arg_.offset;
2500 else
2501 BFD_ASSERT (arg_.offset == 0);
2502
2503 BFD_ASSERT (arg_.slots_relas_diff <= arg_.n_slots);
2504 arg_.n_slots -= arg_.slots_relas_diff;
2505
2506 s = elf_hash_table (info)->srelgot;
2507 if (s != NULL)
2508 s->size = arg_.n_slots * sizeof (Elf32_External_Rela);
2509 else
2510 BFD_ASSERT (arg_.n_slots == 0);
2511 }
2512 else
2513 BFD_ASSERT (multi_got->bfd2got == NULL);
2514
2515 return TRUE;
2516 }
2517
2518 /* Copy any information related to dynamic linking from a pre-existing
2519 symbol to a newly created symbol. Also called to copy flags and
2520 other back-end info to a weakdef, in which case the symbol is not
2521 newly created and plt/got refcounts and dynamic indices should not
2522 be copied. */
2523
2524 static void
2525 elf_m68k_copy_indirect_symbol (struct bfd_link_info *info,
2526 struct elf_link_hash_entry *_dir,
2527 struct elf_link_hash_entry *_ind)
2528 {
2529 struct elf_m68k_link_hash_entry *dir;
2530 struct elf_m68k_link_hash_entry *ind;
2531
2532 _bfd_elf_link_hash_copy_indirect (info, _dir, _ind);
2533
2534 if (_ind->root.type != bfd_link_hash_indirect)
2535 return;
2536
2537 dir = elf_m68k_hash_entry (_dir);
2538 ind = elf_m68k_hash_entry (_ind);
2539
2540 /* Any absolute non-dynamic relocations against an indirect or weak
2541 definition will be against the target symbol. */
2542 _dir->non_got_ref |= _ind->non_got_ref;
2543
2544 /* We might have a direct symbol already having entries in the GOTs.
2545 Update its key only in case indirect symbol has GOT entries and
2546 assert that both indirect and direct symbols don't have GOT entries
2547 at the same time. */
2548 if (ind->got_entry_key != 0)
2549 {
2550 BFD_ASSERT (dir->got_entry_key == 0);
2551 /* Assert that GOTs aren't partioned yet. */
2552 BFD_ASSERT (ind->glist == NULL);
2553
2554 dir->got_entry_key = ind->got_entry_key;
2555 ind->got_entry_key = 0;
2556 }
2557 }
2558
2559 /* Look through the relocs for a section during the first phase, and
2560 allocate space in the global offset table or procedure linkage
2561 table. */
2562
2563 static bfd_boolean
2564 elf_m68k_check_relocs (bfd *abfd,
2565 struct bfd_link_info *info,
2566 asection *sec,
2567 const Elf_Internal_Rela *relocs)
2568 {
2569 bfd *dynobj;
2570 Elf_Internal_Shdr *symtab_hdr;
2571 struct elf_link_hash_entry **sym_hashes;
2572 const Elf_Internal_Rela *rel;
2573 const Elf_Internal_Rela *rel_end;
2574 asection *sreloc;
2575 struct elf_m68k_got *got;
2576
2577 if (bfd_link_relocatable (info))
2578 return TRUE;
2579
2580 dynobj = elf_hash_table (info)->dynobj;
2581 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2582 sym_hashes = elf_sym_hashes (abfd);
2583
2584 sreloc = NULL;
2585
2586 got = NULL;
2587
2588 rel_end = relocs + sec->reloc_count;
2589 for (rel = relocs; rel < rel_end; rel++)
2590 {
2591 unsigned long r_symndx;
2592 struct elf_link_hash_entry *h;
2593
2594 r_symndx = ELF32_R_SYM (rel->r_info);
2595
2596 if (r_symndx < symtab_hdr->sh_info)
2597 h = NULL;
2598 else
2599 {
2600 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2601 while (h->root.type == bfd_link_hash_indirect
2602 || h->root.type == bfd_link_hash_warning)
2603 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2604 }
2605
2606 switch (ELF32_R_TYPE (rel->r_info))
2607 {
2608 case R_68K_GOT8:
2609 case R_68K_GOT16:
2610 case R_68K_GOT32:
2611 if (h != NULL
2612 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2613 break;
2614 /* Fall through. */
2615
2616 /* Relative GOT relocations. */
2617 case R_68K_GOT8O:
2618 case R_68K_GOT16O:
2619 case R_68K_GOT32O:
2620 /* Fall through. */
2621
2622 /* TLS relocations. */
2623 case R_68K_TLS_GD8:
2624 case R_68K_TLS_GD16:
2625 case R_68K_TLS_GD32:
2626 case R_68K_TLS_LDM8:
2627 case R_68K_TLS_LDM16:
2628 case R_68K_TLS_LDM32:
2629 case R_68K_TLS_IE8:
2630 case R_68K_TLS_IE16:
2631 case R_68K_TLS_IE32:
2632
2633 case R_68K_TLS_TPREL32:
2634 case R_68K_TLS_DTPREL32:
2635
2636 if (ELF32_R_TYPE (rel->r_info) == R_68K_TLS_TPREL32
2637 && bfd_link_pic (info))
2638 /* Do the special chorus for libraries with static TLS. */
2639 info->flags |= DF_STATIC_TLS;
2640
2641 /* This symbol requires a global offset table entry. */
2642
2643 if (dynobj == NULL)
2644 {
2645 /* Create the .got section. */
2646 elf_hash_table (info)->dynobj = dynobj = abfd;
2647 if (!_bfd_elf_create_got_section (dynobj, info))
2648 return FALSE;
2649 }
2650
2651 if (got == NULL)
2652 {
2653 struct elf_m68k_bfd2got_entry *bfd2got_entry;
2654
2655 bfd2got_entry
2656 = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
2657 abfd, FIND_OR_CREATE, info);
2658 if (bfd2got_entry == NULL)
2659 return FALSE;
2660
2661 got = bfd2got_entry->got;
2662 BFD_ASSERT (got != NULL);
2663 }
2664
2665 {
2666 struct elf_m68k_got_entry *got_entry;
2667
2668 /* Add entry to got. */
2669 got_entry = elf_m68k_add_entry_to_got (got, h, abfd,
2670 ELF32_R_TYPE (rel->r_info),
2671 r_symndx, info);
2672 if (got_entry == NULL)
2673 return FALSE;
2674
2675 if (got_entry->u.s1.refcount == 1)
2676 {
2677 /* Make sure this symbol is output as a dynamic symbol. */
2678 if (h != NULL
2679 && h->dynindx == -1
2680 && !h->forced_local)
2681 {
2682 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2683 return FALSE;
2684 }
2685 }
2686 }
2687
2688 break;
2689
2690 case R_68K_PLT8:
2691 case R_68K_PLT16:
2692 case R_68K_PLT32:
2693 /* This symbol requires a procedure linkage table entry. We
2694 actually build the entry in adjust_dynamic_symbol,
2695 because this might be a case of linking PIC code which is
2696 never referenced by a dynamic object, in which case we
2697 don't need to generate a procedure linkage table entry
2698 after all. */
2699
2700 /* If this is a local symbol, we resolve it directly without
2701 creating a procedure linkage table entry. */
2702 if (h == NULL)
2703 continue;
2704
2705 h->needs_plt = 1;
2706 h->plt.refcount++;
2707 break;
2708
2709 case R_68K_PLT8O:
2710 case R_68K_PLT16O:
2711 case R_68K_PLT32O:
2712 /* This symbol requires a procedure linkage table entry. */
2713
2714 if (h == NULL)
2715 {
2716 /* It does not make sense to have this relocation for a
2717 local symbol. FIXME: does it? How to handle it if
2718 it does make sense? */
2719 bfd_set_error (bfd_error_bad_value);
2720 return FALSE;
2721 }
2722
2723 /* Make sure this symbol is output as a dynamic symbol. */
2724 if (h->dynindx == -1
2725 && !h->forced_local)
2726 {
2727 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2728 return FALSE;
2729 }
2730
2731 h->needs_plt = 1;
2732 h->plt.refcount++;
2733 break;
2734
2735 case R_68K_PC8:
2736 case R_68K_PC16:
2737 case R_68K_PC32:
2738 /* If we are creating a shared library and this is not a local
2739 symbol, we need to copy the reloc into the shared library.
2740 However when linking with -Bsymbolic and this is a global
2741 symbol which is defined in an object we are including in the
2742 link (i.e., DEF_REGULAR is set), then we can resolve the
2743 reloc directly. At this point we have not seen all the input
2744 files, so it is possible that DEF_REGULAR is not set now but
2745 will be set later (it is never cleared). We account for that
2746 possibility below by storing information in the
2747 pcrel_relocs_copied field of the hash table entry. */
2748 if (!(bfd_link_pic (info)
2749 && (sec->flags & SEC_ALLOC) != 0
2750 && h != NULL
2751 && (!SYMBOLIC_BIND (info, h)
2752 || h->root.type == bfd_link_hash_defweak
2753 || !h->def_regular)))
2754 {
2755 if (h != NULL)
2756 {
2757 /* Make sure a plt entry is created for this symbol if
2758 it turns out to be a function defined by a dynamic
2759 object. */
2760 h->plt.refcount++;
2761 }
2762 break;
2763 }
2764 /* Fall through. */
2765 case R_68K_8:
2766 case R_68K_16:
2767 case R_68K_32:
2768 /* We don't need to handle relocs into sections not going into
2769 the "real" output. */
2770 if ((sec->flags & SEC_ALLOC) == 0)
2771 break;
2772
2773 if (h != NULL)
2774 {
2775 /* Make sure a plt entry is created for this symbol if it
2776 turns out to be a function defined by a dynamic object. */
2777 h->plt.refcount++;
2778
2779 if (bfd_link_executable (info))
2780 /* This symbol needs a non-GOT reference. */
2781 h->non_got_ref = 1;
2782 }
2783
2784 /* If we are creating a shared library, we need to copy the
2785 reloc into the shared library. */
2786 if (bfd_link_pic (info)
2787 && (h == NULL
2788 || !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)))
2789 {
2790 /* When creating a shared object, we must copy these
2791 reloc types into the output file. We create a reloc
2792 section in dynobj and make room for this reloc. */
2793 if (sreloc == NULL)
2794 {
2795 sreloc = _bfd_elf_make_dynamic_reloc_section
2796 (sec, dynobj, 2, abfd, /*rela?*/ TRUE);
2797
2798 if (sreloc == NULL)
2799 return FALSE;
2800 }
2801
2802 if (sec->flags & SEC_READONLY
2803 /* Don't set DF_TEXTREL yet for PC relative
2804 relocations, they might be discarded later. */
2805 && !(ELF32_R_TYPE (rel->r_info) == R_68K_PC8
2806 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
2807 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32))
2808 info->flags |= DF_TEXTREL;
2809
2810 sreloc->size += sizeof (Elf32_External_Rela);
2811
2812 /* We count the number of PC relative relocations we have
2813 entered for this symbol, so that we can discard them
2814 again if, in the -Bsymbolic case, the symbol is later
2815 defined by a regular object, or, in the normal shared
2816 case, the symbol is forced to be local. Note that this
2817 function is only called if we are using an m68kelf linker
2818 hash table, which means that h is really a pointer to an
2819 elf_m68k_link_hash_entry. */
2820 if (ELF32_R_TYPE (rel->r_info) == R_68K_PC8
2821 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
2822 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32)
2823 {
2824 struct elf_m68k_pcrel_relocs_copied *p;
2825 struct elf_m68k_pcrel_relocs_copied **head;
2826
2827 if (h != NULL)
2828 {
2829 struct elf_m68k_link_hash_entry *eh
2830 = elf_m68k_hash_entry (h);
2831 head = &eh->pcrel_relocs_copied;
2832 }
2833 else
2834 {
2835 asection *s;
2836 void *vpp;
2837 Elf_Internal_Sym *isym;
2838
2839 isym = bfd_sym_from_r_symndx (&elf_m68k_hash_table (info)->sym_cache,
2840 abfd, r_symndx);
2841 if (isym == NULL)
2842 return FALSE;
2843
2844 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
2845 if (s == NULL)
2846 s = sec;
2847
2848 vpp = &elf_section_data (s)->local_dynrel;
2849 head = (struct elf_m68k_pcrel_relocs_copied **) vpp;
2850 }
2851
2852 for (p = *head; p != NULL; p = p->next)
2853 if (p->section == sreloc)
2854 break;
2855
2856 if (p == NULL)
2857 {
2858 p = ((struct elf_m68k_pcrel_relocs_copied *)
2859 bfd_alloc (dynobj, (bfd_size_type) sizeof *p));
2860 if (p == NULL)
2861 return FALSE;
2862 p->next = *head;
2863 *head = p;
2864 p->section = sreloc;
2865 p->count = 0;
2866 }
2867
2868 ++p->count;
2869 }
2870 }
2871
2872 break;
2873
2874 /* This relocation describes the C++ object vtable hierarchy.
2875 Reconstruct it for later use during GC. */
2876 case R_68K_GNU_VTINHERIT:
2877 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2878 return FALSE;
2879 break;
2880
2881 /* This relocation describes which C++ vtable entries are actually
2882 used. Record for later use during GC. */
2883 case R_68K_GNU_VTENTRY:
2884 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2885 return FALSE;
2886 break;
2887
2888 default:
2889 break;
2890 }
2891 }
2892
2893 return TRUE;
2894 }
2895
2896 /* Return the section that should be marked against GC for a given
2897 relocation. */
2898
2899 static asection *
2900 elf_m68k_gc_mark_hook (asection *sec,
2901 struct bfd_link_info *info,
2902 Elf_Internal_Rela *rel,
2903 struct elf_link_hash_entry *h,
2904 Elf_Internal_Sym *sym)
2905 {
2906 if (h != NULL)
2907 switch (ELF32_R_TYPE (rel->r_info))
2908 {
2909 case R_68K_GNU_VTINHERIT:
2910 case R_68K_GNU_VTENTRY:
2911 return NULL;
2912 }
2913
2914 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
2915 }
2916 \f
2917 /* Return the type of PLT associated with OUTPUT_BFD. */
2918
2919 static const struct elf_m68k_plt_info *
2920 elf_m68k_get_plt_info (bfd *output_bfd)
2921 {
2922 unsigned int features;
2923
2924 features = bfd_m68k_mach_to_features (bfd_get_mach (output_bfd));
2925 if (features & cpu32)
2926 return &elf_cpu32_plt_info;
2927 if (features & mcfisa_b)
2928 return &elf_isab_plt_info;
2929 if (features & mcfisa_c)
2930 return &elf_isac_plt_info;
2931 return &elf_m68k_plt_info;
2932 }
2933
2934 /* This function is called after all the input files have been read,
2935 and the input sections have been assigned to output sections.
2936 It's a convenient place to determine the PLT style. */
2937
2938 static bfd_boolean
2939 elf_m68k_always_size_sections (bfd *output_bfd, struct bfd_link_info *info)
2940 {
2941 /* Bind input BFDs to GOTs and calculate sizes of .got and .rela.got
2942 sections. */
2943 if (!elf_m68k_partition_multi_got (info))
2944 return FALSE;
2945
2946 elf_m68k_hash_table (info)->plt_info = elf_m68k_get_plt_info (output_bfd);
2947 return TRUE;
2948 }
2949
2950 /* Adjust a symbol defined by a dynamic object and referenced by a
2951 regular object. The current definition is in some section of the
2952 dynamic object, but we're not including those sections. We have to
2953 change the definition to something the rest of the link can
2954 understand. */
2955
2956 static bfd_boolean
2957 elf_m68k_adjust_dynamic_symbol (struct bfd_link_info *info,
2958 struct elf_link_hash_entry *h)
2959 {
2960 struct elf_m68k_link_hash_table *htab;
2961 bfd *dynobj;
2962 asection *s;
2963
2964 htab = elf_m68k_hash_table (info);
2965 dynobj = htab->root.dynobj;
2966
2967 /* Make sure we know what is going on here. */
2968 BFD_ASSERT (dynobj != NULL
2969 && (h->needs_plt
2970 || h->is_weakalias
2971 || (h->def_dynamic
2972 && h->ref_regular
2973 && !h->def_regular)));
2974
2975 /* If this is a function, put it in the procedure linkage table. We
2976 will fill in the contents of the procedure linkage table later,
2977 when we know the address of the .got section. */
2978 if (h->type == STT_FUNC
2979 || h->needs_plt)
2980 {
2981 if ((h->plt.refcount <= 0
2982 || SYMBOL_CALLS_LOCAL (info, h)
2983 || ((ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2984 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
2985 && h->root.type == bfd_link_hash_undefweak))
2986 /* We must always create the plt entry if it was referenced
2987 by a PLTxxO relocation. In this case we already recorded
2988 it as a dynamic symbol. */
2989 && h->dynindx == -1)
2990 {
2991 /* This case can occur if we saw a PLTxx reloc in an input
2992 file, but the symbol was never referred to by a dynamic
2993 object, or if all references were garbage collected. In
2994 such a case, we don't actually need to build a procedure
2995 linkage table, and we can just do a PCxx reloc instead. */
2996 h->plt.offset = (bfd_vma) -1;
2997 h->needs_plt = 0;
2998 return TRUE;
2999 }
3000
3001 /* Make sure this symbol is output as a dynamic symbol. */
3002 if (h->dynindx == -1
3003 && !h->forced_local)
3004 {
3005 if (! bfd_elf_link_record_dynamic_symbol (info, h))
3006 return FALSE;
3007 }
3008
3009 s = htab->root.splt;
3010 BFD_ASSERT (s != NULL);
3011
3012 /* If this is the first .plt entry, make room for the special
3013 first entry. */
3014 if (s->size == 0)
3015 s->size = htab->plt_info->size;
3016
3017 /* If this symbol is not defined in a regular file, and we are
3018 not generating a shared library, then set the symbol to this
3019 location in the .plt. This is required to make function
3020 pointers compare as equal between the normal executable and
3021 the shared library. */
3022 if (!bfd_link_pic (info)
3023 && !h->def_regular)
3024 {
3025 h->root.u.def.section = s;
3026 h->root.u.def.value = s->size;
3027 }
3028
3029 h->plt.offset = s->size;
3030
3031 /* Make room for this entry. */
3032 s->size += htab->plt_info->size;
3033
3034 /* We also need to make an entry in the .got.plt section, which
3035 will be placed in the .got section by the linker script. */
3036 s = htab->root.sgotplt;
3037 BFD_ASSERT (s != NULL);
3038 s->size += 4;
3039
3040 /* We also need to make an entry in the .rela.plt section. */
3041 s = htab->root.srelplt;
3042 BFD_ASSERT (s != NULL);
3043 s->size += sizeof (Elf32_External_Rela);
3044
3045 return TRUE;
3046 }
3047
3048 /* Reinitialize the plt offset now that it is not used as a reference
3049 count any more. */
3050 h->plt.offset = (bfd_vma) -1;
3051
3052 /* If this is a weak symbol, and there is a real definition, the
3053 processor independent code will have arranged for us to see the
3054 real definition first, and we can just use the same value. */
3055 if (h->is_weakalias)
3056 {
3057 struct elf_link_hash_entry *def = weakdef (h);
3058 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
3059 h->root.u.def.section = def->root.u.def.section;
3060 h->root.u.def.value = def->root.u.def.value;
3061 return TRUE;
3062 }
3063
3064 /* This is a reference to a symbol defined by a dynamic object which
3065 is not a function. */
3066
3067 /* If we are creating a shared library, we must presume that the
3068 only references to the symbol are via the global offset table.
3069 For such cases we need not do anything here; the relocations will
3070 be handled correctly by relocate_section. */
3071 if (bfd_link_pic (info))
3072 return TRUE;
3073
3074 /* If there are no references to this symbol that do not use the
3075 GOT, we don't need to generate a copy reloc. */
3076 if (!h->non_got_ref)
3077 return TRUE;
3078
3079 /* We must allocate the symbol in our .dynbss section, which will
3080 become part of the .bss section of the executable. There will be
3081 an entry for this symbol in the .dynsym section. The dynamic
3082 object will contain position independent code, so all references
3083 from the dynamic object to this symbol will go through the global
3084 offset table. The dynamic linker will use the .dynsym entry to
3085 determine the address it must put in the global offset table, so
3086 both the dynamic object and the regular object will refer to the
3087 same memory location for the variable. */
3088
3089 s = bfd_get_linker_section (dynobj, ".dynbss");
3090 BFD_ASSERT (s != NULL);
3091
3092 /* We must generate a R_68K_COPY reloc to tell the dynamic linker to
3093 copy the initial value out of the dynamic object and into the
3094 runtime process image. We need to remember the offset into the
3095 .rela.bss section we are going to use. */
3096 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
3097 {
3098 asection *srel;
3099
3100 srel = bfd_get_linker_section (dynobj, ".rela.bss");
3101 BFD_ASSERT (srel != NULL);
3102 srel->size += sizeof (Elf32_External_Rela);
3103 h->needs_copy = 1;
3104 }
3105
3106 return _bfd_elf_adjust_dynamic_copy (info, h, s);
3107 }
3108
3109 /* Set the sizes of the dynamic sections. */
3110
3111 static bfd_boolean
3112 elf_m68k_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
3113 struct bfd_link_info *info)
3114 {
3115 bfd *dynobj;
3116 asection *s;
3117 bfd_boolean relocs;
3118
3119 dynobj = elf_hash_table (info)->dynobj;
3120 BFD_ASSERT (dynobj != NULL);
3121
3122 if (elf_hash_table (info)->dynamic_sections_created)
3123 {
3124 /* Set the contents of the .interp section to the interpreter. */
3125 if (bfd_link_executable (info) && !info->nointerp)
3126 {
3127 s = bfd_get_linker_section (dynobj, ".interp");
3128 BFD_ASSERT (s != NULL);
3129 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
3130 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
3131 }
3132 }
3133 else
3134 {
3135 /* We may have created entries in the .rela.got section.
3136 However, if we are not creating the dynamic sections, we will
3137 not actually use these entries. Reset the size of .rela.got,
3138 which will cause it to get stripped from the output file
3139 below. */
3140 s = elf_hash_table (info)->srelgot;
3141 if (s != NULL)
3142 s->size = 0;
3143 }
3144
3145 /* If this is a -Bsymbolic shared link, then we need to discard all
3146 PC relative relocs against symbols defined in a regular object.
3147 For the normal shared case we discard the PC relative relocs
3148 against symbols that have become local due to visibility changes.
3149 We allocated space for them in the check_relocs routine, but we
3150 will not fill them in in the relocate_section routine. */
3151 if (bfd_link_pic (info))
3152 elf_link_hash_traverse (elf_hash_table (info),
3153 elf_m68k_discard_copies,
3154 info);
3155
3156 /* The check_relocs and adjust_dynamic_symbol entry points have
3157 determined the sizes of the various dynamic sections. Allocate
3158 memory for them. */
3159 relocs = FALSE;
3160 for (s = dynobj->sections; s != NULL; s = s->next)
3161 {
3162 const char *name;
3163
3164 if ((s->flags & SEC_LINKER_CREATED) == 0)
3165 continue;
3166
3167 /* It's OK to base decisions on the section name, because none
3168 of the dynobj section names depend upon the input files. */
3169 name = bfd_section_name (s);
3170
3171 if (strcmp (name, ".plt") == 0)
3172 {
3173 /* Remember whether there is a PLT. */
3174 ;
3175 }
3176 else if (CONST_STRNEQ (name, ".rela"))
3177 {
3178 if (s->size != 0)
3179 {
3180 relocs = TRUE;
3181
3182 /* We use the reloc_count field as a counter if we need
3183 to copy relocs into the output file. */
3184 s->reloc_count = 0;
3185 }
3186 }
3187 else if (! CONST_STRNEQ (name, ".got")
3188 && strcmp (name, ".dynbss") != 0)
3189 {
3190 /* It's not one of our sections, so don't allocate space. */
3191 continue;
3192 }
3193
3194 if (s->size == 0)
3195 {
3196 /* If we don't need this section, strip it from the
3197 output file. This is mostly to handle .rela.bss and
3198 .rela.plt. We must create both sections in
3199 create_dynamic_sections, because they must be created
3200 before the linker maps input sections to output
3201 sections. The linker does that before
3202 adjust_dynamic_symbol is called, and it is that
3203 function which decides whether anything needs to go
3204 into these sections. */
3205 s->flags |= SEC_EXCLUDE;
3206 continue;
3207 }
3208
3209 if ((s->flags & SEC_HAS_CONTENTS) == 0)
3210 continue;
3211
3212 /* Allocate memory for the section contents. */
3213 /* FIXME: This should be a call to bfd_alloc not bfd_zalloc.
3214 Unused entries should be reclaimed before the section's contents
3215 are written out, but at the moment this does not happen. Thus in
3216 order to prevent writing out garbage, we initialise the section's
3217 contents to zero. */
3218 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
3219 if (s->contents == NULL)
3220 return FALSE;
3221 }
3222
3223 return _bfd_elf_add_dynamic_tags (output_bfd, info, relocs);
3224 }
3225
3226 /* This function is called via elf_link_hash_traverse if we are
3227 creating a shared object. In the -Bsymbolic case it discards the
3228 space allocated to copy PC relative relocs against symbols which
3229 are defined in regular objects. For the normal shared case, it
3230 discards space for pc-relative relocs that have become local due to
3231 symbol visibility changes. We allocated space for them in the
3232 check_relocs routine, but we won't fill them in in the
3233 relocate_section routine.
3234
3235 We also check whether any of the remaining relocations apply
3236 against a readonly section, and set the DF_TEXTREL flag in this
3237 case. */
3238
3239 static bfd_boolean
3240 elf_m68k_discard_copies (struct elf_link_hash_entry *h,
3241 void * inf)
3242 {
3243 struct bfd_link_info *info = (struct bfd_link_info *) inf;
3244 struct elf_m68k_pcrel_relocs_copied *s;
3245
3246 if (!SYMBOL_CALLS_LOCAL (info, h))
3247 {
3248 if ((info->flags & DF_TEXTREL) == 0)
3249 {
3250 /* Look for relocations against read-only sections. */
3251 for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
3252 s != NULL;
3253 s = s->next)
3254 if ((s->section->flags & SEC_READONLY) != 0)
3255 {
3256 info->flags |= DF_TEXTREL;
3257 break;
3258 }
3259 }
3260
3261 /* Make sure undefined weak symbols are output as a dynamic symbol
3262 in PIEs. */
3263 if (h->non_got_ref
3264 && h->root.type == bfd_link_hash_undefweak
3265 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3266 && h->dynindx == -1
3267 && !h->forced_local)
3268 {
3269 if (! bfd_elf_link_record_dynamic_symbol (info, h))
3270 return FALSE;
3271 }
3272
3273 return TRUE;
3274 }
3275
3276 for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
3277 s != NULL;
3278 s = s->next)
3279 s->section->size -= s->count * sizeof (Elf32_External_Rela);
3280
3281 return TRUE;
3282 }
3283
3284
3285 /* Install relocation RELA. */
3286
3287 static void
3288 elf_m68k_install_rela (bfd *output_bfd,
3289 asection *srela,
3290 Elf_Internal_Rela *rela)
3291 {
3292 bfd_byte *loc;
3293
3294 loc = srela->contents;
3295 loc += srela->reloc_count++ * sizeof (Elf32_External_Rela);
3296 bfd_elf32_swap_reloca_out (output_bfd, rela, loc);
3297 }
3298
3299 /* Find the base offsets for thread-local storage in this object,
3300 for GD/LD and IE/LE respectively. */
3301
3302 #define DTP_OFFSET 0x8000
3303 #define TP_OFFSET 0x7000
3304
3305 static bfd_vma
3306 dtpoff_base (struct bfd_link_info *info)
3307 {
3308 /* If tls_sec is NULL, we should have signalled an error already. */
3309 if (elf_hash_table (info)->tls_sec == NULL)
3310 return 0;
3311 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
3312 }
3313
3314 static bfd_vma
3315 tpoff_base (struct bfd_link_info *info)
3316 {
3317 /* If tls_sec is NULL, we should have signalled an error already. */
3318 if (elf_hash_table (info)->tls_sec == NULL)
3319 return 0;
3320 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
3321 }
3322
3323 /* Output necessary relocation to handle a symbol during static link.
3324 This function is called from elf_m68k_relocate_section. */
3325
3326 static void
3327 elf_m68k_init_got_entry_static (struct bfd_link_info *info,
3328 bfd *output_bfd,
3329 enum elf_m68k_reloc_type r_type,
3330 asection *sgot,
3331 bfd_vma got_entry_offset,
3332 bfd_vma relocation)
3333 {
3334 switch (elf_m68k_reloc_got_type (r_type))
3335 {
3336 case R_68K_GOT32O:
3337 bfd_put_32 (output_bfd, relocation, sgot->contents + got_entry_offset);
3338 break;
3339
3340 case R_68K_TLS_GD32:
3341 /* We know the offset within the module,
3342 put it into the second GOT slot. */
3343 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
3344 sgot->contents + got_entry_offset + 4);
3345 /* FALLTHRU */
3346
3347 case R_68K_TLS_LDM32:
3348 /* Mark it as belonging to module 1, the executable. */
3349 bfd_put_32 (output_bfd, 1, sgot->contents + got_entry_offset);
3350 break;
3351
3352 case R_68K_TLS_IE32:
3353 bfd_put_32 (output_bfd, relocation - tpoff_base (info),
3354 sgot->contents + got_entry_offset);
3355 break;
3356
3357 default:
3358 BFD_ASSERT (FALSE);
3359 }
3360 }
3361
3362 /* Output necessary relocation to handle a local symbol
3363 during dynamic link.
3364 This function is called either from elf_m68k_relocate_section
3365 or from elf_m68k_finish_dynamic_symbol. */
3366
3367 static void
3368 elf_m68k_init_got_entry_local_shared (struct bfd_link_info *info,
3369 bfd *output_bfd,
3370 enum elf_m68k_reloc_type r_type,
3371 asection *sgot,
3372 bfd_vma got_entry_offset,
3373 bfd_vma relocation,
3374 asection *srela)
3375 {
3376 Elf_Internal_Rela outrel;
3377
3378 switch (elf_m68k_reloc_got_type (r_type))
3379 {
3380 case R_68K_GOT32O:
3381 /* Emit RELATIVE relocation to initialize GOT slot
3382 at run-time. */
3383 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
3384 outrel.r_addend = relocation;
3385 break;
3386
3387 case R_68K_TLS_GD32:
3388 /* We know the offset within the module,
3389 put it into the second GOT slot. */
3390 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
3391 sgot->contents + got_entry_offset + 4);
3392 /* FALLTHRU */
3393
3394 case R_68K_TLS_LDM32:
3395 /* We don't know the module number,
3396 create a relocation for it. */
3397 outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_DTPMOD32);
3398 outrel.r_addend = 0;
3399 break;
3400
3401 case R_68K_TLS_IE32:
3402 /* Emit TPREL relocation to initialize GOT slot
3403 at run-time. */
3404 outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_TPREL32);
3405 outrel.r_addend = relocation - elf_hash_table (info)->tls_sec->vma;
3406 break;
3407
3408 default:
3409 BFD_ASSERT (FALSE);
3410 }
3411
3412 /* Offset of the GOT entry. */
3413 outrel.r_offset = (sgot->output_section->vma
3414 + sgot->output_offset
3415 + got_entry_offset);
3416
3417 /* Install one of the above relocations. */
3418 elf_m68k_install_rela (output_bfd, srela, &outrel);
3419
3420 bfd_put_32 (output_bfd, outrel.r_addend, sgot->contents + got_entry_offset);
3421 }
3422
3423 /* Relocate an M68K ELF section. */
3424
3425 static bfd_boolean
3426 elf_m68k_relocate_section (bfd *output_bfd,
3427 struct bfd_link_info *info,
3428 bfd *input_bfd,
3429 asection *input_section,
3430 bfd_byte *contents,
3431 Elf_Internal_Rela *relocs,
3432 Elf_Internal_Sym *local_syms,
3433 asection **local_sections)
3434 {
3435 Elf_Internal_Shdr *symtab_hdr;
3436 struct elf_link_hash_entry **sym_hashes;
3437 asection *sgot;
3438 asection *splt;
3439 asection *sreloc;
3440 asection *srela;
3441 struct elf_m68k_got *got;
3442 Elf_Internal_Rela *rel;
3443 Elf_Internal_Rela *relend;
3444
3445 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3446 sym_hashes = elf_sym_hashes (input_bfd);
3447
3448 sgot = NULL;
3449 splt = NULL;
3450 sreloc = NULL;
3451 srela = NULL;
3452
3453 got = NULL;
3454
3455 rel = relocs;
3456 relend = relocs + input_section->reloc_count;
3457 for (; rel < relend; rel++)
3458 {
3459 int r_type;
3460 reloc_howto_type *howto;
3461 unsigned long r_symndx;
3462 struct elf_link_hash_entry *h;
3463 Elf_Internal_Sym *sym;
3464 asection *sec;
3465 bfd_vma relocation;
3466 bfd_boolean unresolved_reloc;
3467 bfd_reloc_status_type r;
3468 bfd_boolean resolved_to_zero;
3469
3470 r_type = ELF32_R_TYPE (rel->r_info);
3471 if (r_type < 0 || r_type >= (int) R_68K_max)
3472 {
3473 bfd_set_error (bfd_error_bad_value);
3474 return FALSE;
3475 }
3476 howto = howto_table + r_type;
3477
3478 r_symndx = ELF32_R_SYM (rel->r_info);
3479
3480 h = NULL;
3481 sym = NULL;
3482 sec = NULL;
3483 unresolved_reloc = FALSE;
3484
3485 if (r_symndx < symtab_hdr->sh_info)
3486 {
3487 sym = local_syms + r_symndx;
3488 sec = local_sections[r_symndx];
3489 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
3490 }
3491 else
3492 {
3493 bfd_boolean warned, ignored;
3494
3495 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3496 r_symndx, symtab_hdr, sym_hashes,
3497 h, sec, relocation,
3498 unresolved_reloc, warned, ignored);
3499 }
3500
3501 if (sec != NULL && discarded_section (sec))
3502 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3503 rel, 1, relend, howto, 0, contents);
3504
3505 if (bfd_link_relocatable (info))
3506 continue;
3507
3508 resolved_to_zero = (h != NULL
3509 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
3510
3511 switch (r_type)
3512 {
3513 case R_68K_GOT8:
3514 case R_68K_GOT16:
3515 case R_68K_GOT32:
3516 /* Relocation is to the address of the entry for this symbol
3517 in the global offset table. */
3518 if (h != NULL
3519 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3520 {
3521 if (elf_m68k_hash_table (info)->local_gp_p)
3522 {
3523 bfd_vma sgot_output_offset;
3524 bfd_vma got_offset;
3525
3526 sgot = elf_hash_table (info)->sgot;
3527
3528 if (sgot != NULL)
3529 sgot_output_offset = sgot->output_offset;
3530 else
3531 /* In this case we have a reference to
3532 _GLOBAL_OFFSET_TABLE_, but the GOT itself is
3533 empty.
3534 ??? Issue a warning? */
3535 sgot_output_offset = 0;
3536
3537 if (got == NULL)
3538 {
3539 struct elf_m68k_bfd2got_entry *bfd2got_entry;
3540
3541 bfd2got_entry
3542 = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
3543 input_bfd, SEARCH, NULL);
3544
3545 if (bfd2got_entry != NULL)
3546 {
3547 got = bfd2got_entry->got;
3548 BFD_ASSERT (got != NULL);
3549
3550 got_offset = got->offset;
3551 }
3552 else
3553 /* In this case we have a reference to
3554 _GLOBAL_OFFSET_TABLE_, but no other references
3555 accessing any GOT entries.
3556 ??? Issue a warning? */
3557 got_offset = 0;
3558 }
3559 else
3560 got_offset = got->offset;
3561
3562 /* Adjust GOT pointer to point to the GOT
3563 assigned to input_bfd. */
3564 rel->r_addend += sgot_output_offset + got_offset;
3565 }
3566 else
3567 BFD_ASSERT (got == NULL || got->offset == 0);
3568
3569 break;
3570 }
3571 /* Fall through. */
3572 case R_68K_GOT8O:
3573 case R_68K_GOT16O:
3574 case R_68K_GOT32O:
3575
3576 case R_68K_TLS_LDM32:
3577 case R_68K_TLS_LDM16:
3578 case R_68K_TLS_LDM8:
3579
3580 case R_68K_TLS_GD8:
3581 case R_68K_TLS_GD16:
3582 case R_68K_TLS_GD32:
3583
3584 case R_68K_TLS_IE8:
3585 case R_68K_TLS_IE16:
3586 case R_68K_TLS_IE32:
3587
3588 /* Relocation is the offset of the entry for this symbol in
3589 the global offset table. */
3590
3591 {
3592 struct elf_m68k_got_entry_key key_;
3593 bfd_vma *off_ptr;
3594 bfd_vma off;
3595
3596 sgot = elf_hash_table (info)->sgot;
3597 BFD_ASSERT (sgot != NULL);
3598
3599 if (got == NULL)
3600 got = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
3601 input_bfd, MUST_FIND,
3602 NULL)->got;
3603
3604 /* Get GOT offset for this symbol. */
3605 elf_m68k_init_got_entry_key (&key_, h, input_bfd, r_symndx,
3606 r_type);
3607 off_ptr = &elf_m68k_get_got_entry (got, &key_, MUST_FIND,
3608 NULL)->u.s2.offset;
3609 off = *off_ptr;
3610
3611 /* The offset must always be a multiple of 4. We use
3612 the least significant bit to record whether we have
3613 already generated the necessary reloc. */
3614 if ((off & 1) != 0)
3615 off &= ~1;
3616 else
3617 {
3618 if (h != NULL
3619 /* @TLSLDM relocations are bounded to the module, in
3620 which the symbol is defined -- not to the symbol
3621 itself. */
3622 && elf_m68k_reloc_got_type (r_type) != R_68K_TLS_LDM32)
3623 {
3624 bfd_boolean dyn;
3625
3626 dyn = elf_hash_table (info)->dynamic_sections_created;
3627 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
3628 bfd_link_pic (info),
3629 h)
3630 || (bfd_link_pic (info)
3631 && SYMBOL_REFERENCES_LOCAL (info, h))
3632 || ((ELF_ST_VISIBILITY (h->other)
3633 || resolved_to_zero)
3634 && h->root.type == bfd_link_hash_undefweak))
3635 {
3636 /* This is actually a static link, or it is a
3637 -Bsymbolic link and the symbol is defined
3638 locally, or the symbol was forced to be local
3639 because of a version file. We must initialize
3640 this entry in the global offset table. Since
3641 the offset must always be a multiple of 4, we
3642 use the least significant bit to record whether
3643 we have initialized it already.
3644
3645 When doing a dynamic link, we create a .rela.got
3646 relocation entry to initialize the value. This
3647 is done in the finish_dynamic_symbol routine. */
3648
3649 elf_m68k_init_got_entry_static (info,
3650 output_bfd,
3651 r_type,
3652 sgot,
3653 off,
3654 relocation);
3655
3656 *off_ptr |= 1;
3657 }
3658 else
3659 unresolved_reloc = FALSE;
3660 }
3661 else if (bfd_link_pic (info)) /* && h == NULL */
3662 /* Process local symbol during dynamic link. */
3663 {
3664 srela = elf_hash_table (info)->srelgot;
3665 BFD_ASSERT (srela != NULL);
3666
3667 elf_m68k_init_got_entry_local_shared (info,
3668 output_bfd,
3669 r_type,
3670 sgot,
3671 off,
3672 relocation,
3673 srela);
3674
3675 *off_ptr |= 1;
3676 }
3677 else /* h == NULL && !bfd_link_pic (info) */
3678 {
3679 elf_m68k_init_got_entry_static (info,
3680 output_bfd,
3681 r_type,
3682 sgot,
3683 off,
3684 relocation);
3685
3686 *off_ptr |= 1;
3687 }
3688 }
3689
3690 /* We don't use elf_m68k_reloc_got_type in the condition below
3691 because this is the only place where difference between
3692 R_68K_GOTx and R_68K_GOTxO relocations matters. */
3693 if (r_type == R_68K_GOT32O
3694 || r_type == R_68K_GOT16O
3695 || r_type == R_68K_GOT8O
3696 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_GD32
3697 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_LDM32
3698 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_IE32)
3699 {
3700 /* GOT pointer is adjusted to point to the start/middle
3701 of local GOT. Adjust the offset accordingly. */
3702 BFD_ASSERT (elf_m68k_hash_table (info)->use_neg_got_offsets_p
3703 || off >= got->offset);
3704
3705 if (elf_m68k_hash_table (info)->local_gp_p)
3706 relocation = off - got->offset;
3707 else
3708 {
3709 BFD_ASSERT (got->offset == 0);
3710 relocation = sgot->output_offset + off;
3711 }
3712
3713 /* This relocation does not use the addend. */
3714 rel->r_addend = 0;
3715 }
3716 else
3717 relocation = (sgot->output_section->vma + sgot->output_offset
3718 + off);
3719 }
3720 break;
3721
3722 case R_68K_TLS_LDO32:
3723 case R_68K_TLS_LDO16:
3724 case R_68K_TLS_LDO8:
3725 relocation -= dtpoff_base (info);
3726 break;
3727
3728 case R_68K_TLS_LE32:
3729 case R_68K_TLS_LE16:
3730 case R_68K_TLS_LE8:
3731 if (bfd_link_dll (info))
3732 {
3733 _bfd_error_handler
3734 /* xgettext:c-format */
3735 (_("%pB(%pA+%#" PRIx64 "): "
3736 "%s relocation not permitted in shared object"),
3737 input_bfd, input_section, (uint64_t) rel->r_offset,
3738 howto->name);
3739
3740 return FALSE;
3741 }
3742 else
3743 relocation -= tpoff_base (info);
3744
3745 break;
3746
3747 case R_68K_PLT8:
3748 case R_68K_PLT16:
3749 case R_68K_PLT32:
3750 /* Relocation is to the entry for this symbol in the
3751 procedure linkage table. */
3752
3753 /* Resolve a PLTxx reloc against a local symbol directly,
3754 without using the procedure linkage table. */
3755 if (h == NULL)
3756 break;
3757
3758 if (h->plt.offset == (bfd_vma) -1
3759 || !elf_hash_table (info)->dynamic_sections_created)
3760 {
3761 /* We didn't make a PLT entry for this symbol. This
3762 happens when statically linking PIC code, or when
3763 using -Bsymbolic. */
3764 break;
3765 }
3766
3767 splt = elf_hash_table (info)->splt;
3768 BFD_ASSERT (splt != NULL);
3769
3770 relocation = (splt->output_section->vma
3771 + splt->output_offset
3772 + h->plt.offset);
3773 unresolved_reloc = FALSE;
3774 break;
3775
3776 case R_68K_PLT8O:
3777 case R_68K_PLT16O:
3778 case R_68K_PLT32O:
3779 /* Relocation is the offset of the entry for this symbol in
3780 the procedure linkage table. */
3781 BFD_ASSERT (h != NULL && h->plt.offset != (bfd_vma) -1);
3782
3783 splt = elf_hash_table (info)->splt;
3784 BFD_ASSERT (splt != NULL);
3785
3786 relocation = h->plt.offset;
3787 unresolved_reloc = FALSE;
3788
3789 /* This relocation does not use the addend. */
3790 rel->r_addend = 0;
3791
3792 break;
3793
3794 case R_68K_8:
3795 case R_68K_16:
3796 case R_68K_32:
3797 case R_68K_PC8:
3798 case R_68K_PC16:
3799 case R_68K_PC32:
3800 if (bfd_link_pic (info)
3801 && r_symndx != STN_UNDEF
3802 && (input_section->flags & SEC_ALLOC) != 0
3803 && (h == NULL
3804 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3805 && !resolved_to_zero)
3806 || h->root.type != bfd_link_hash_undefweak)
3807 && ((r_type != R_68K_PC8
3808 && r_type != R_68K_PC16
3809 && r_type != R_68K_PC32)
3810 || !SYMBOL_CALLS_LOCAL (info, h)))
3811 {
3812 Elf_Internal_Rela outrel;
3813 bfd_byte *loc;
3814 bfd_boolean skip, relocate;
3815
3816 /* When generating a shared object, these relocations
3817 are copied into the output file to be resolved at run
3818 time. */
3819
3820 skip = FALSE;
3821 relocate = FALSE;
3822
3823 outrel.r_offset =
3824 _bfd_elf_section_offset (output_bfd, info, input_section,
3825 rel->r_offset);
3826 if (outrel.r_offset == (bfd_vma) -1)
3827 skip = TRUE;
3828 else if (outrel.r_offset == (bfd_vma) -2)
3829 skip = TRUE, relocate = TRUE;
3830 outrel.r_offset += (input_section->output_section->vma
3831 + input_section->output_offset);
3832
3833 if (skip)
3834 memset (&outrel, 0, sizeof outrel);
3835 else if (h != NULL
3836 && h->dynindx != -1
3837 && (r_type == R_68K_PC8
3838 || r_type == R_68K_PC16
3839 || r_type == R_68K_PC32
3840 || !bfd_link_pic (info)
3841 || !SYMBOLIC_BIND (info, h)
3842 || !h->def_regular))
3843 {
3844 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
3845 outrel.r_addend = rel->r_addend;
3846 }
3847 else
3848 {
3849 /* This symbol is local, or marked to become local. */
3850 outrel.r_addend = relocation + rel->r_addend;
3851
3852 if (r_type == R_68K_32)
3853 {
3854 relocate = TRUE;
3855 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
3856 }
3857 else
3858 {
3859 long indx;
3860
3861 if (bfd_is_abs_section (sec))
3862 indx = 0;
3863 else if (sec == NULL || sec->owner == NULL)
3864 {
3865 bfd_set_error (bfd_error_bad_value);
3866 return FALSE;
3867 }
3868 else
3869 {
3870 asection *osec;
3871
3872 /* We are turning this relocation into one
3873 against a section symbol. It would be
3874 proper to subtract the symbol's value,
3875 osec->vma, from the emitted reloc addend,
3876 but ld.so expects buggy relocs. */
3877 osec = sec->output_section;
3878 indx = elf_section_data (osec)->dynindx;
3879 if (indx == 0)
3880 {
3881 struct elf_link_hash_table *htab;
3882 htab = elf_hash_table (info);
3883 osec = htab->text_index_section;
3884 indx = elf_section_data (osec)->dynindx;
3885 }
3886 BFD_ASSERT (indx != 0);
3887 }
3888
3889 outrel.r_info = ELF32_R_INFO (indx, r_type);
3890 }
3891 }
3892
3893 sreloc = elf_section_data (input_section)->sreloc;
3894 if (sreloc == NULL)
3895 abort ();
3896
3897 loc = sreloc->contents;
3898 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3899 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3900
3901 /* This reloc will be computed at runtime, so there's no
3902 need to do anything now, except for R_68K_32
3903 relocations that have been turned into
3904 R_68K_RELATIVE. */
3905 if (!relocate)
3906 continue;
3907 }
3908
3909 break;
3910
3911 case R_68K_GNU_VTINHERIT:
3912 case R_68K_GNU_VTENTRY:
3913 /* These are no-ops in the end. */
3914 continue;
3915
3916 default:
3917 break;
3918 }
3919
3920 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3921 because such sections are not SEC_ALLOC and thus ld.so will
3922 not process them. */
3923 if (unresolved_reloc
3924 && !((input_section->flags & SEC_DEBUGGING) != 0
3925 && h->def_dynamic)
3926 && _bfd_elf_section_offset (output_bfd, info, input_section,
3927 rel->r_offset) != (bfd_vma) -1)
3928 {
3929 _bfd_error_handler
3930 /* xgettext:c-format */
3931 (_("%pB(%pA+%#" PRIx64 "): "
3932 "unresolvable %s relocation against symbol `%s'"),
3933 input_bfd,
3934 input_section,
3935 (uint64_t) rel->r_offset,
3936 howto->name,
3937 h->root.root.string);
3938 return FALSE;
3939 }
3940
3941 if (r_symndx != STN_UNDEF
3942 && r_type != R_68K_NONE
3943 && (h == NULL
3944 || h->root.type == bfd_link_hash_defined
3945 || h->root.type == bfd_link_hash_defweak))
3946 {
3947 char sym_type;
3948
3949 sym_type = (sym != NULL) ? ELF32_ST_TYPE (sym->st_info) : h->type;
3950
3951 if (elf_m68k_reloc_tls_p (r_type) != (sym_type == STT_TLS))
3952 {
3953 const char *name;
3954
3955 if (h != NULL)
3956 name = h->root.root.string;
3957 else
3958 {
3959 name = (bfd_elf_string_from_elf_section
3960 (input_bfd, symtab_hdr->sh_link, sym->st_name));
3961 if (name == NULL || *name == '\0')
3962 name = bfd_section_name (sec);
3963 }
3964
3965 _bfd_error_handler
3966 ((sym_type == STT_TLS
3967 /* xgettext:c-format */
3968 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
3969 /* xgettext:c-format */
3970 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
3971 input_bfd,
3972 input_section,
3973 (uint64_t) rel->r_offset,
3974 howto->name,
3975 name);
3976 }
3977 }
3978
3979 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
3980 contents, rel->r_offset,
3981 relocation, rel->r_addend);
3982
3983 if (r != bfd_reloc_ok)
3984 {
3985 const char *name;
3986
3987 if (h != NULL)
3988 name = h->root.root.string;
3989 else
3990 {
3991 name = bfd_elf_string_from_elf_section (input_bfd,
3992 symtab_hdr->sh_link,
3993 sym->st_name);
3994 if (name == NULL)
3995 return FALSE;
3996 if (*name == '\0')
3997 name = bfd_section_name (sec);
3998 }
3999
4000 if (r == bfd_reloc_overflow)
4001 (*info->callbacks->reloc_overflow)
4002 (info, (h ? &h->root : NULL), name, howto->name,
4003 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
4004 else
4005 {
4006 _bfd_error_handler
4007 /* xgettext:c-format */
4008 (_("%pB(%pA+%#" PRIx64 "): reloc against `%s': error %d"),
4009 input_bfd, input_section,
4010 (uint64_t) rel->r_offset, name, (int) r);
4011 return FALSE;
4012 }
4013 }
4014 }
4015
4016 return TRUE;
4017 }
4018
4019 /* Install an M_68K_PC32 relocation against VALUE at offset OFFSET
4020 into section SEC. */
4021
4022 static void
4023 elf_m68k_install_pc32 (asection *sec, bfd_vma offset, bfd_vma value)
4024 {
4025 /* Make VALUE PC-relative. */
4026 value -= sec->output_section->vma + offset;
4027
4028 /* Apply any in-place addend. */
4029 value += bfd_get_32 (sec->owner, sec->contents + offset);
4030
4031 bfd_put_32 (sec->owner, value, sec->contents + offset);
4032 }
4033
4034 /* Finish up dynamic symbol handling. We set the contents of various
4035 dynamic sections here. */
4036
4037 static bfd_boolean
4038 elf_m68k_finish_dynamic_symbol (bfd *output_bfd,
4039 struct bfd_link_info *info,
4040 struct elf_link_hash_entry *h,
4041 Elf_Internal_Sym *sym)
4042 {
4043 bfd *dynobj;
4044
4045 dynobj = elf_hash_table (info)->dynobj;
4046
4047 if (h->plt.offset != (bfd_vma) -1)
4048 {
4049 const struct elf_m68k_plt_info *plt_info;
4050 asection *splt;
4051 asection *sgot;
4052 asection *srela;
4053 bfd_vma plt_index;
4054 bfd_vma got_offset;
4055 Elf_Internal_Rela rela;
4056 bfd_byte *loc;
4057
4058 /* This symbol has an entry in the procedure linkage table. Set
4059 it up. */
4060
4061 BFD_ASSERT (h->dynindx != -1);
4062
4063 plt_info = elf_m68k_hash_table (info)->plt_info;
4064 splt = elf_hash_table (info)->splt;
4065 sgot = elf_hash_table (info)->sgotplt;
4066 srela = elf_hash_table (info)->srelplt;
4067 BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL);
4068
4069 /* Get the index in the procedure linkage table which
4070 corresponds to this symbol. This is the index of this symbol
4071 in all the symbols for which we are making plt entries. The
4072 first entry in the procedure linkage table is reserved. */
4073 plt_index = (h->plt.offset / plt_info->size) - 1;
4074
4075 /* Get the offset into the .got table of the entry that
4076 corresponds to this function. Each .got entry is 4 bytes.
4077 The first three are reserved. */
4078 got_offset = (plt_index + 3) * 4;
4079
4080 memcpy (splt->contents + h->plt.offset,
4081 plt_info->symbol_entry,
4082 plt_info->size);
4083
4084 elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.got,
4085 (sgot->output_section->vma
4086 + sgot->output_offset
4087 + got_offset));
4088
4089 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela),
4090 splt->contents
4091 + h->plt.offset
4092 + plt_info->symbol_resolve_entry + 2);
4093
4094 elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.plt,
4095 splt->output_section->vma);
4096
4097 /* Fill in the entry in the global offset table. */
4098 bfd_put_32 (output_bfd,
4099 (splt->output_section->vma
4100 + splt->output_offset
4101 + h->plt.offset
4102 + plt_info->symbol_resolve_entry),
4103 sgot->contents + got_offset);
4104
4105 /* Fill in the entry in the .rela.plt section. */
4106 rela.r_offset = (sgot->output_section->vma
4107 + sgot->output_offset
4108 + got_offset);
4109 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_JMP_SLOT);
4110 rela.r_addend = 0;
4111 loc = srela->contents + plt_index * sizeof (Elf32_External_Rela);
4112 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4113
4114 if (!h->def_regular)
4115 {
4116 /* Mark the symbol as undefined, rather than as defined in
4117 the .plt section. Leave the value alone. */
4118 sym->st_shndx = SHN_UNDEF;
4119 }
4120 }
4121
4122 if (elf_m68k_hash_entry (h)->glist != NULL)
4123 {
4124 asection *sgot;
4125 asection *srela;
4126 struct elf_m68k_got_entry *got_entry;
4127
4128 /* This symbol has an entry in the global offset table. Set it
4129 up. */
4130
4131 sgot = elf_hash_table (info)->sgot;
4132 srela = elf_hash_table (info)->srelgot;
4133 BFD_ASSERT (sgot != NULL && srela != NULL);
4134
4135 got_entry = elf_m68k_hash_entry (h)->glist;
4136
4137 while (got_entry != NULL)
4138 {
4139 enum elf_m68k_reloc_type r_type;
4140 bfd_vma got_entry_offset;
4141
4142 r_type = got_entry->key_.type;
4143 got_entry_offset = got_entry->u.s2.offset &~ (bfd_vma) 1;
4144
4145 /* If this is a -Bsymbolic link, and the symbol is defined
4146 locally, we just want to emit a RELATIVE reloc. Likewise if
4147 the symbol was forced to be local because of a version file.
4148 The entry in the global offset table already have been
4149 initialized in the relocate_section function. */
4150 if (bfd_link_pic (info)
4151 && SYMBOL_REFERENCES_LOCAL (info, h))
4152 {
4153 bfd_vma relocation;
4154
4155 relocation = bfd_get_signed_32 (output_bfd,
4156 (sgot->contents
4157 + got_entry_offset));
4158
4159 /* Undo TP bias. */
4160 switch (elf_m68k_reloc_got_type (r_type))
4161 {
4162 case R_68K_GOT32O:
4163 case R_68K_TLS_LDM32:
4164 break;
4165
4166 case R_68K_TLS_GD32:
4167 /* The value for this relocation is actually put in
4168 the second GOT slot. */
4169 relocation = bfd_get_signed_32 (output_bfd,
4170 (sgot->contents
4171 + got_entry_offset + 4));
4172 relocation += dtpoff_base (info);
4173 break;
4174
4175 case R_68K_TLS_IE32:
4176 relocation += tpoff_base (info);
4177 break;
4178
4179 default:
4180 BFD_ASSERT (FALSE);
4181 }
4182
4183 elf_m68k_init_got_entry_local_shared (info,
4184 output_bfd,
4185 r_type,
4186 sgot,
4187 got_entry_offset,
4188 relocation,
4189 srela);
4190 }
4191 else
4192 {
4193 Elf_Internal_Rela rela;
4194
4195 /* Put zeros to GOT slots that will be initialized
4196 at run-time. */
4197 {
4198 bfd_vma n_slots;
4199
4200 n_slots = elf_m68k_reloc_got_n_slots (got_entry->key_.type);
4201 while (n_slots--)
4202 bfd_put_32 (output_bfd, (bfd_vma) 0,
4203 (sgot->contents + got_entry_offset
4204 + 4 * n_slots));
4205 }
4206
4207 rela.r_addend = 0;
4208 rela.r_offset = (sgot->output_section->vma
4209 + sgot->output_offset
4210 + got_entry_offset);
4211
4212 switch (elf_m68k_reloc_got_type (r_type))
4213 {
4214 case R_68K_GOT32O:
4215 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_GLOB_DAT);
4216 elf_m68k_install_rela (output_bfd, srela, &rela);
4217 break;
4218
4219 case R_68K_TLS_GD32:
4220 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPMOD32);
4221 elf_m68k_install_rela (output_bfd, srela, &rela);
4222
4223 rela.r_offset += 4;
4224 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPREL32);
4225 elf_m68k_install_rela (output_bfd, srela, &rela);
4226 break;
4227
4228 case R_68K_TLS_IE32:
4229 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_TPREL32);
4230 elf_m68k_install_rela (output_bfd, srela, &rela);
4231 break;
4232
4233 default:
4234 BFD_ASSERT (FALSE);
4235 break;
4236 }
4237 }
4238
4239 got_entry = got_entry->u.s2.next;
4240 }
4241 }
4242
4243 if (h->needs_copy)
4244 {
4245 asection *s;
4246 Elf_Internal_Rela rela;
4247 bfd_byte *loc;
4248
4249 /* This symbol needs a copy reloc. Set it up. */
4250
4251 BFD_ASSERT (h->dynindx != -1
4252 && (h->root.type == bfd_link_hash_defined
4253 || h->root.type == bfd_link_hash_defweak));
4254
4255 s = bfd_get_linker_section (dynobj, ".rela.bss");
4256 BFD_ASSERT (s != NULL);
4257
4258 rela.r_offset = (h->root.u.def.value
4259 + h->root.u.def.section->output_section->vma
4260 + h->root.u.def.section->output_offset);
4261 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_COPY);
4262 rela.r_addend = 0;
4263 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4264 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4265 }
4266
4267 return TRUE;
4268 }
4269
4270 /* Finish up the dynamic sections. */
4271
4272 static bfd_boolean
4273 elf_m68k_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
4274 {
4275 bfd *dynobj;
4276 asection *sgot;
4277 asection *sdyn;
4278
4279 dynobj = elf_hash_table (info)->dynobj;
4280
4281 sgot = elf_hash_table (info)->sgotplt;
4282 BFD_ASSERT (sgot != NULL);
4283 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4284
4285 if (elf_hash_table (info)->dynamic_sections_created)
4286 {
4287 asection *splt;
4288 Elf32_External_Dyn *dyncon, *dynconend;
4289
4290 splt = elf_hash_table (info)->splt;
4291 BFD_ASSERT (splt != NULL && sdyn != NULL);
4292
4293 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4294 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4295 for (; dyncon < dynconend; dyncon++)
4296 {
4297 Elf_Internal_Dyn dyn;
4298 asection *s;
4299
4300 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4301
4302 switch (dyn.d_tag)
4303 {
4304 default:
4305 break;
4306
4307 case DT_PLTGOT:
4308 s = elf_hash_table (info)->sgotplt;
4309 goto get_vma;
4310 case DT_JMPREL:
4311 s = elf_hash_table (info)->srelplt;
4312 get_vma:
4313 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4314 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4315 break;
4316
4317 case DT_PLTRELSZ:
4318 s = elf_hash_table (info)->srelplt;
4319 dyn.d_un.d_val = s->size;
4320 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4321 break;
4322 }
4323 }
4324
4325 /* Fill in the first entry in the procedure linkage table. */
4326 if (splt->size > 0)
4327 {
4328 const struct elf_m68k_plt_info *plt_info;
4329
4330 plt_info = elf_m68k_hash_table (info)->plt_info;
4331 memcpy (splt->contents, plt_info->plt0_entry, plt_info->size);
4332
4333 elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got4,
4334 (sgot->output_section->vma
4335 + sgot->output_offset
4336 + 4));
4337
4338 elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got8,
4339 (sgot->output_section->vma
4340 + sgot->output_offset
4341 + 8));
4342
4343 elf_section_data (splt->output_section)->this_hdr.sh_entsize
4344 = plt_info->size;
4345 }
4346 }
4347
4348 /* Fill in the first three entries in the global offset table. */
4349 if (sgot->size > 0)
4350 {
4351 if (sdyn == NULL)
4352 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
4353 else
4354 bfd_put_32 (output_bfd,
4355 sdyn->output_section->vma + sdyn->output_offset,
4356 sgot->contents);
4357 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
4358 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
4359 }
4360
4361 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
4362
4363 return TRUE;
4364 }
4365
4366 /* Given a .data section and a .emreloc in-memory section, store
4367 relocation information into the .emreloc section which can be
4368 used at runtime to relocate the section. This is called by the
4369 linker when the --embedded-relocs switch is used. This is called
4370 after the add_symbols entry point has been called for all the
4371 objects, and before the final_link entry point is called. */
4372
4373 bfd_boolean
4374 bfd_m68k_elf32_create_embedded_relocs (bfd *abfd, struct bfd_link_info *info,
4375 asection *datasec, asection *relsec,
4376 char **errmsg)
4377 {
4378 Elf_Internal_Shdr *symtab_hdr;
4379 Elf_Internal_Sym *isymbuf = NULL;
4380 Elf_Internal_Rela *internal_relocs = NULL;
4381 Elf_Internal_Rela *irel, *irelend;
4382 bfd_byte *p;
4383 bfd_size_type amt;
4384
4385 BFD_ASSERT (! bfd_link_relocatable (info));
4386
4387 *errmsg = NULL;
4388
4389 if (datasec->reloc_count == 0)
4390 return TRUE;
4391
4392 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4393
4394 /* Get a copy of the native relocations. */
4395 internal_relocs = (_bfd_elf_link_read_relocs
4396 (abfd, datasec, NULL, (Elf_Internal_Rela *) NULL,
4397 info->keep_memory));
4398 if (internal_relocs == NULL)
4399 goto error_return;
4400
4401 amt = (bfd_size_type) datasec->reloc_count * 12;
4402 relsec->contents = (bfd_byte *) bfd_alloc (abfd, amt);
4403 if (relsec->contents == NULL)
4404 goto error_return;
4405
4406 p = relsec->contents;
4407
4408 irelend = internal_relocs + datasec->reloc_count;
4409 for (irel = internal_relocs; irel < irelend; irel++, p += 12)
4410 {
4411 asection *targetsec;
4412
4413 /* We are going to write a four byte longword into the runtime
4414 reloc section. The longword will be the address in the data
4415 section which must be relocated. It is followed by the name
4416 of the target section NUL-padded or truncated to 8
4417 characters. */
4418
4419 /* We can only relocate absolute longword relocs at run time. */
4420 if (ELF32_R_TYPE (irel->r_info) != (int) R_68K_32)
4421 {
4422 *errmsg = _("unsupported relocation type");
4423 bfd_set_error (bfd_error_bad_value);
4424 goto error_return;
4425 }
4426
4427 /* Get the target section referred to by the reloc. */
4428 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
4429 {
4430 /* A local symbol. */
4431 Elf_Internal_Sym *isym;
4432
4433 /* Read this BFD's local symbols if we haven't done so already. */
4434 if (isymbuf == NULL)
4435 {
4436 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
4437 if (isymbuf == NULL)
4438 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
4439 symtab_hdr->sh_info, 0,
4440 NULL, NULL, NULL);
4441 if (isymbuf == NULL)
4442 goto error_return;
4443 }
4444
4445 isym = isymbuf + ELF32_R_SYM (irel->r_info);
4446 targetsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4447 }
4448 else
4449 {
4450 unsigned long indx;
4451 struct elf_link_hash_entry *h;
4452
4453 /* An external symbol. */
4454 indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
4455 h = elf_sym_hashes (abfd)[indx];
4456 BFD_ASSERT (h != NULL);
4457 if (h->root.type == bfd_link_hash_defined
4458 || h->root.type == bfd_link_hash_defweak)
4459 targetsec = h->root.u.def.section;
4460 else
4461 targetsec = NULL;
4462 }
4463
4464 bfd_put_32 (abfd, irel->r_offset + datasec->output_offset, p);
4465 memset (p + 4, 0, 8);
4466 if (targetsec != NULL)
4467 strncpy ((char *) p + 4, targetsec->output_section->name, 8);
4468 }
4469
4470 if (symtab_hdr->contents != (unsigned char *) isymbuf)
4471 free (isymbuf);
4472 if (elf_section_data (datasec)->relocs != internal_relocs)
4473 free (internal_relocs);
4474 return TRUE;
4475
4476 error_return:
4477 if (symtab_hdr->contents != (unsigned char *) isymbuf)
4478 free (isymbuf);
4479 if (elf_section_data (datasec)->relocs != internal_relocs)
4480 free (internal_relocs);
4481 return FALSE;
4482 }
4483
4484 /* Set target options. */
4485
4486 void
4487 bfd_elf_m68k_set_target_options (struct bfd_link_info *info, int got_handling)
4488 {
4489 struct elf_m68k_link_hash_table *htab;
4490 bfd_boolean use_neg_got_offsets_p;
4491 bfd_boolean allow_multigot_p;
4492 bfd_boolean local_gp_p;
4493
4494 switch (got_handling)
4495 {
4496 case 0:
4497 /* --got=single. */
4498 local_gp_p = FALSE;
4499 use_neg_got_offsets_p = FALSE;
4500 allow_multigot_p = FALSE;
4501 break;
4502
4503 case 1:
4504 /* --got=negative. */
4505 local_gp_p = TRUE;
4506 use_neg_got_offsets_p = TRUE;
4507 allow_multigot_p = FALSE;
4508 break;
4509
4510 case 2:
4511 /* --got=multigot. */
4512 local_gp_p = TRUE;
4513 use_neg_got_offsets_p = TRUE;
4514 allow_multigot_p = TRUE;
4515 break;
4516
4517 default:
4518 BFD_ASSERT (FALSE);
4519 return;
4520 }
4521
4522 htab = elf_m68k_hash_table (info);
4523 if (htab != NULL)
4524 {
4525 htab->local_gp_p = local_gp_p;
4526 htab->use_neg_got_offsets_p = use_neg_got_offsets_p;
4527 htab->allow_multigot_p = allow_multigot_p;
4528 }
4529 }
4530
4531 static enum elf_reloc_type_class
4532 elf32_m68k_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4533 const asection *rel_sec ATTRIBUTE_UNUSED,
4534 const Elf_Internal_Rela *rela)
4535 {
4536 switch ((int) ELF32_R_TYPE (rela->r_info))
4537 {
4538 case R_68K_RELATIVE:
4539 return reloc_class_relative;
4540 case R_68K_JMP_SLOT:
4541 return reloc_class_plt;
4542 case R_68K_COPY:
4543 return reloc_class_copy;
4544 default:
4545 return reloc_class_normal;
4546 }
4547 }
4548
4549 /* Return address for Ith PLT stub in section PLT, for relocation REL
4550 or (bfd_vma) -1 if it should not be included. */
4551
4552 static bfd_vma
4553 elf_m68k_plt_sym_val (bfd_vma i, const asection *plt,
4554 const arelent *rel ATTRIBUTE_UNUSED)
4555 {
4556 return plt->vma + (i + 1) * elf_m68k_get_plt_info (plt->owner)->size;
4557 }
4558
4559 /* Support for core dump NOTE sections. */
4560
4561 static bfd_boolean
4562 elf_m68k_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
4563 {
4564 int offset;
4565 size_t size;
4566
4567 switch (note->descsz)
4568 {
4569 default:
4570 return FALSE;
4571
4572 case 154: /* Linux/m68k */
4573 /* pr_cursig */
4574 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
4575
4576 /* pr_pid */
4577 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 22);
4578
4579 /* pr_reg */
4580 offset = 70;
4581 size = 80;
4582
4583 break;
4584 }
4585
4586 /* Make a ".reg/999" section. */
4587 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
4588 size, note->descpos + offset);
4589 }
4590
4591 static bfd_boolean
4592 elf_m68k_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
4593 {
4594 switch (note->descsz)
4595 {
4596 default:
4597 return FALSE;
4598
4599 case 124: /* Linux/m68k elf_prpsinfo. */
4600 elf_tdata (abfd)->core->pid
4601 = bfd_get_32 (abfd, note->descdata + 12);
4602 elf_tdata (abfd)->core->program
4603 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
4604 elf_tdata (abfd)->core->command
4605 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
4606 }
4607
4608 /* Note that for some reason, a spurious space is tacked
4609 onto the end of the args in some (at least one anyway)
4610 implementations, so strip it off if it exists. */
4611 {
4612 char *command = elf_tdata (abfd)->core->command;
4613 int n = strlen (command);
4614
4615 if (n > 0 && command[n - 1] == ' ')
4616 command[n - 1] = '\0';
4617 }
4618
4619 return TRUE;
4620 }
4621
4622 #define TARGET_BIG_SYM m68k_elf32_vec
4623 #define TARGET_BIG_NAME "elf32-m68k"
4624 #define ELF_MACHINE_CODE EM_68K
4625 #define ELF_MAXPAGESIZE 0x2000
4626 #define elf_backend_create_dynamic_sections \
4627 _bfd_elf_create_dynamic_sections
4628 #define bfd_elf32_bfd_link_hash_table_create \
4629 elf_m68k_link_hash_table_create
4630 #define bfd_elf32_bfd_final_link bfd_elf_final_link
4631
4632 #define elf_backend_check_relocs elf_m68k_check_relocs
4633 #define elf_backend_always_size_sections \
4634 elf_m68k_always_size_sections
4635 #define elf_backend_adjust_dynamic_symbol \
4636 elf_m68k_adjust_dynamic_symbol
4637 #define elf_backend_size_dynamic_sections \
4638 elf_m68k_size_dynamic_sections
4639 #define elf_backend_final_write_processing elf_m68k_final_write_processing
4640 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4641 #define elf_backend_relocate_section elf_m68k_relocate_section
4642 #define elf_backend_finish_dynamic_symbol \
4643 elf_m68k_finish_dynamic_symbol
4644 #define elf_backend_finish_dynamic_sections \
4645 elf_m68k_finish_dynamic_sections
4646 #define elf_backend_gc_mark_hook elf_m68k_gc_mark_hook
4647 #define elf_backend_copy_indirect_symbol elf_m68k_copy_indirect_symbol
4648 #define bfd_elf32_bfd_merge_private_bfd_data \
4649 elf32_m68k_merge_private_bfd_data
4650 #define bfd_elf32_bfd_set_private_flags \
4651 elf32_m68k_set_private_flags
4652 #define bfd_elf32_bfd_print_private_bfd_data \
4653 elf32_m68k_print_private_bfd_data
4654 #define elf_backend_reloc_type_class elf32_m68k_reloc_type_class
4655 #define elf_backend_plt_sym_val elf_m68k_plt_sym_val
4656 #define elf_backend_object_p elf32_m68k_object_p
4657 #define elf_backend_grok_prstatus elf_m68k_grok_prstatus
4658 #define elf_backend_grok_psinfo elf_m68k_grok_psinfo
4659
4660 #define elf_backend_can_gc_sections 1
4661 #define elf_backend_can_refcount 1
4662 #define elf_backend_want_got_plt 1
4663 #define elf_backend_plt_readonly 1
4664 #define elf_backend_want_plt_sym 0
4665 #define elf_backend_got_header_size 12
4666 #define elf_backend_rela_normal 1
4667 #define elf_backend_dtrel_excludes_plt 1
4668
4669 #define elf_backend_linux_prpsinfo32_ugid16 TRUE
4670
4671 #include "elf32-target.h"
This page took 0.184334 seconds and 4 git commands to generate.