%L conversions
[deliverable/binutils-gdb.git] / bfd / elf32-m68k.c
1 /* Motorola 68k series support for 32-bit ELF
2 Copyright (C) 1993-2018 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf/m68k.h"
27 #include "opcode/m68k.h"
28
29 static bfd_boolean
30 elf_m68k_discard_copies (struct elf_link_hash_entry *, void *);
31
32 static reloc_howto_type howto_table[] =
33 {
34 HOWTO(R_68K_NONE, 0, 3, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_NONE", FALSE, 0, 0x00000000,FALSE),
35 HOWTO(R_68K_32, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_32", FALSE, 0, 0xffffffff,FALSE),
36 HOWTO(R_68K_16, 0, 1,16, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_16", FALSE, 0, 0x0000ffff,FALSE),
37 HOWTO(R_68K_8, 0, 0, 8, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_8", FALSE, 0, 0x000000ff,FALSE),
38 HOWTO(R_68K_PC32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PC32", FALSE, 0, 0xffffffff,TRUE),
39 HOWTO(R_68K_PC16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC16", FALSE, 0, 0x0000ffff,TRUE),
40 HOWTO(R_68K_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC8", FALSE, 0, 0x000000ff,TRUE),
41 HOWTO(R_68K_GOT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32", FALSE, 0, 0xffffffff,TRUE),
42 HOWTO(R_68K_GOT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16", FALSE, 0, 0x0000ffff,TRUE),
43 HOWTO(R_68K_GOT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8", FALSE, 0, 0x000000ff,TRUE),
44 HOWTO(R_68K_GOT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32O", FALSE, 0, 0xffffffff,FALSE),
45 HOWTO(R_68K_GOT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16O", FALSE, 0, 0x0000ffff,FALSE),
46 HOWTO(R_68K_GOT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8O", FALSE, 0, 0x000000ff,FALSE),
47 HOWTO(R_68K_PLT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32", FALSE, 0, 0xffffffff,TRUE),
48 HOWTO(R_68K_PLT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16", FALSE, 0, 0x0000ffff,TRUE),
49 HOWTO(R_68K_PLT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8", FALSE, 0, 0x000000ff,TRUE),
50 HOWTO(R_68K_PLT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32O", FALSE, 0, 0xffffffff,FALSE),
51 HOWTO(R_68K_PLT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16O", FALSE, 0, 0x0000ffff,FALSE),
52 HOWTO(R_68K_PLT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8O", FALSE, 0, 0x000000ff,FALSE),
53 HOWTO(R_68K_COPY, 0, 0, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_COPY", FALSE, 0, 0xffffffff,FALSE),
54 HOWTO(R_68K_GLOB_DAT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_GLOB_DAT", FALSE, 0, 0xffffffff,FALSE),
55 HOWTO(R_68K_JMP_SLOT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_JMP_SLOT", FALSE, 0, 0xffffffff,FALSE),
56 HOWTO(R_68K_RELATIVE, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_RELATIVE", FALSE, 0, 0xffffffff,FALSE),
57 /* GNU extension to record C++ vtable hierarchy. */
58 HOWTO (R_68K_GNU_VTINHERIT, /* type */
59 0, /* rightshift */
60 2, /* size (0 = byte, 1 = short, 2 = long) */
61 0, /* bitsize */
62 FALSE, /* pc_relative */
63 0, /* bitpos */
64 complain_overflow_dont, /* complain_on_overflow */
65 NULL, /* special_function */
66 "R_68K_GNU_VTINHERIT", /* name */
67 FALSE, /* partial_inplace */
68 0, /* src_mask */
69 0, /* dst_mask */
70 FALSE),
71 /* GNU extension to record C++ vtable member usage. */
72 HOWTO (R_68K_GNU_VTENTRY, /* type */
73 0, /* rightshift */
74 2, /* size (0 = byte, 1 = short, 2 = long) */
75 0, /* bitsize */
76 FALSE, /* pc_relative */
77 0, /* bitpos */
78 complain_overflow_dont, /* complain_on_overflow */
79 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
80 "R_68K_GNU_VTENTRY", /* name */
81 FALSE, /* partial_inplace */
82 0, /* src_mask */
83 0, /* dst_mask */
84 FALSE),
85
86 /* TLS general dynamic variable reference. */
87 HOWTO (R_68K_TLS_GD32, /* type */
88 0, /* rightshift */
89 2, /* size (0 = byte, 1 = short, 2 = long) */
90 32, /* bitsize */
91 FALSE, /* pc_relative */
92 0, /* bitpos */
93 complain_overflow_bitfield, /* complain_on_overflow */
94 bfd_elf_generic_reloc, /* special_function */
95 "R_68K_TLS_GD32", /* name */
96 FALSE, /* partial_inplace */
97 0, /* src_mask */
98 0xffffffff, /* dst_mask */
99 FALSE), /* pcrel_offset */
100
101 HOWTO (R_68K_TLS_GD16, /* type */
102 0, /* rightshift */
103 1, /* size (0 = byte, 1 = short, 2 = long) */
104 16, /* bitsize */
105 FALSE, /* pc_relative */
106 0, /* bitpos */
107 complain_overflow_signed, /* complain_on_overflow */
108 bfd_elf_generic_reloc, /* special_function */
109 "R_68K_TLS_GD16", /* name */
110 FALSE, /* partial_inplace */
111 0, /* src_mask */
112 0x0000ffff, /* dst_mask */
113 FALSE), /* pcrel_offset */
114
115 HOWTO (R_68K_TLS_GD8, /* type */
116 0, /* rightshift */
117 0, /* size (0 = byte, 1 = short, 2 = long) */
118 8, /* bitsize */
119 FALSE, /* pc_relative */
120 0, /* bitpos */
121 complain_overflow_signed, /* complain_on_overflow */
122 bfd_elf_generic_reloc, /* special_function */
123 "R_68K_TLS_GD8", /* name */
124 FALSE, /* partial_inplace */
125 0, /* src_mask */
126 0x000000ff, /* dst_mask */
127 FALSE), /* pcrel_offset */
128
129 /* TLS local dynamic variable reference. */
130 HOWTO (R_68K_TLS_LDM32, /* type */
131 0, /* rightshift */
132 2, /* size (0 = byte, 1 = short, 2 = long) */
133 32, /* bitsize */
134 FALSE, /* pc_relative */
135 0, /* bitpos */
136 complain_overflow_bitfield, /* complain_on_overflow */
137 bfd_elf_generic_reloc, /* special_function */
138 "R_68K_TLS_LDM32", /* name */
139 FALSE, /* partial_inplace */
140 0, /* src_mask */
141 0xffffffff, /* dst_mask */
142 FALSE), /* pcrel_offset */
143
144 HOWTO (R_68K_TLS_LDM16, /* type */
145 0, /* rightshift */
146 1, /* size (0 = byte, 1 = short, 2 = long) */
147 16, /* bitsize */
148 FALSE, /* pc_relative */
149 0, /* bitpos */
150 complain_overflow_signed, /* complain_on_overflow */
151 bfd_elf_generic_reloc, /* special_function */
152 "R_68K_TLS_LDM16", /* name */
153 FALSE, /* partial_inplace */
154 0, /* src_mask */
155 0x0000ffff, /* dst_mask */
156 FALSE), /* pcrel_offset */
157
158 HOWTO (R_68K_TLS_LDM8, /* type */
159 0, /* rightshift */
160 0, /* size (0 = byte, 1 = short, 2 = long) */
161 8, /* bitsize */
162 FALSE, /* pc_relative */
163 0, /* bitpos */
164 complain_overflow_signed, /* complain_on_overflow */
165 bfd_elf_generic_reloc, /* special_function */
166 "R_68K_TLS_LDM8", /* name */
167 FALSE, /* partial_inplace */
168 0, /* src_mask */
169 0x000000ff, /* dst_mask */
170 FALSE), /* pcrel_offset */
171
172 HOWTO (R_68K_TLS_LDO32, /* type */
173 0, /* rightshift */
174 2, /* size (0 = byte, 1 = short, 2 = long) */
175 32, /* bitsize */
176 FALSE, /* pc_relative */
177 0, /* bitpos */
178 complain_overflow_bitfield, /* complain_on_overflow */
179 bfd_elf_generic_reloc, /* special_function */
180 "R_68K_TLS_LDO32", /* name */
181 FALSE, /* partial_inplace */
182 0, /* src_mask */
183 0xffffffff, /* dst_mask */
184 FALSE), /* pcrel_offset */
185
186 HOWTO (R_68K_TLS_LDO16, /* type */
187 0, /* rightshift */
188 1, /* size (0 = byte, 1 = short, 2 = long) */
189 16, /* bitsize */
190 FALSE, /* pc_relative */
191 0, /* bitpos */
192 complain_overflow_signed, /* complain_on_overflow */
193 bfd_elf_generic_reloc, /* special_function */
194 "R_68K_TLS_LDO16", /* name */
195 FALSE, /* partial_inplace */
196 0, /* src_mask */
197 0x0000ffff, /* dst_mask */
198 FALSE), /* pcrel_offset */
199
200 HOWTO (R_68K_TLS_LDO8, /* type */
201 0, /* rightshift */
202 0, /* size (0 = byte, 1 = short, 2 = long) */
203 8, /* bitsize */
204 FALSE, /* pc_relative */
205 0, /* bitpos */
206 complain_overflow_signed, /* complain_on_overflow */
207 bfd_elf_generic_reloc, /* special_function */
208 "R_68K_TLS_LDO8", /* name */
209 FALSE, /* partial_inplace */
210 0, /* src_mask */
211 0x000000ff, /* dst_mask */
212 FALSE), /* pcrel_offset */
213
214 /* TLS initial execution variable reference. */
215 HOWTO (R_68K_TLS_IE32, /* type */
216 0, /* rightshift */
217 2, /* size (0 = byte, 1 = short, 2 = long) */
218 32, /* bitsize */
219 FALSE, /* pc_relative */
220 0, /* bitpos */
221 complain_overflow_bitfield, /* complain_on_overflow */
222 bfd_elf_generic_reloc, /* special_function */
223 "R_68K_TLS_IE32", /* name */
224 FALSE, /* partial_inplace */
225 0, /* src_mask */
226 0xffffffff, /* dst_mask */
227 FALSE), /* pcrel_offset */
228
229 HOWTO (R_68K_TLS_IE16, /* type */
230 0, /* rightshift */
231 1, /* size (0 = byte, 1 = short, 2 = long) */
232 16, /* bitsize */
233 FALSE, /* pc_relative */
234 0, /* bitpos */
235 complain_overflow_signed, /* complain_on_overflow */
236 bfd_elf_generic_reloc, /* special_function */
237 "R_68K_TLS_IE16", /* name */
238 FALSE, /* partial_inplace */
239 0, /* src_mask */
240 0x0000ffff, /* dst_mask */
241 FALSE), /* pcrel_offset */
242
243 HOWTO (R_68K_TLS_IE8, /* type */
244 0, /* rightshift */
245 0, /* size (0 = byte, 1 = short, 2 = long) */
246 8, /* bitsize */
247 FALSE, /* pc_relative */
248 0, /* bitpos */
249 complain_overflow_signed, /* complain_on_overflow */
250 bfd_elf_generic_reloc, /* special_function */
251 "R_68K_TLS_IE8", /* name */
252 FALSE, /* partial_inplace */
253 0, /* src_mask */
254 0x000000ff, /* dst_mask */
255 FALSE), /* pcrel_offset */
256
257 /* TLS local execution variable reference. */
258 HOWTO (R_68K_TLS_LE32, /* type */
259 0, /* rightshift */
260 2, /* size (0 = byte, 1 = short, 2 = long) */
261 32, /* bitsize */
262 FALSE, /* pc_relative */
263 0, /* bitpos */
264 complain_overflow_bitfield, /* complain_on_overflow */
265 bfd_elf_generic_reloc, /* special_function */
266 "R_68K_TLS_LE32", /* name */
267 FALSE, /* partial_inplace */
268 0, /* src_mask */
269 0xffffffff, /* dst_mask */
270 FALSE), /* pcrel_offset */
271
272 HOWTO (R_68K_TLS_LE16, /* type */
273 0, /* rightshift */
274 1, /* size (0 = byte, 1 = short, 2 = long) */
275 16, /* bitsize */
276 FALSE, /* pc_relative */
277 0, /* bitpos */
278 complain_overflow_signed, /* complain_on_overflow */
279 bfd_elf_generic_reloc, /* special_function */
280 "R_68K_TLS_LE16", /* name */
281 FALSE, /* partial_inplace */
282 0, /* src_mask */
283 0x0000ffff, /* dst_mask */
284 FALSE), /* pcrel_offset */
285
286 HOWTO (R_68K_TLS_LE8, /* type */
287 0, /* rightshift */
288 0, /* size (0 = byte, 1 = short, 2 = long) */
289 8, /* bitsize */
290 FALSE, /* pc_relative */
291 0, /* bitpos */
292 complain_overflow_signed, /* complain_on_overflow */
293 bfd_elf_generic_reloc, /* special_function */
294 "R_68K_TLS_LE8", /* name */
295 FALSE, /* partial_inplace */
296 0, /* src_mask */
297 0x000000ff, /* dst_mask */
298 FALSE), /* pcrel_offset */
299
300 /* TLS GD/LD dynamic relocations. */
301 HOWTO (R_68K_TLS_DTPMOD32, /* type */
302 0, /* rightshift */
303 2, /* size (0 = byte, 1 = short, 2 = long) */
304 32, /* bitsize */
305 FALSE, /* pc_relative */
306 0, /* bitpos */
307 complain_overflow_dont, /* complain_on_overflow */
308 bfd_elf_generic_reloc, /* special_function */
309 "R_68K_TLS_DTPMOD32", /* name */
310 FALSE, /* partial_inplace */
311 0, /* src_mask */
312 0xffffffff, /* dst_mask */
313 FALSE), /* pcrel_offset */
314
315 HOWTO (R_68K_TLS_DTPREL32, /* type */
316 0, /* rightshift */
317 2, /* size (0 = byte, 1 = short, 2 = long) */
318 32, /* bitsize */
319 FALSE, /* pc_relative */
320 0, /* bitpos */
321 complain_overflow_dont, /* complain_on_overflow */
322 bfd_elf_generic_reloc, /* special_function */
323 "R_68K_TLS_DTPREL32", /* name */
324 FALSE, /* partial_inplace */
325 0, /* src_mask */
326 0xffffffff, /* dst_mask */
327 FALSE), /* pcrel_offset */
328
329 HOWTO (R_68K_TLS_TPREL32, /* type */
330 0, /* rightshift */
331 2, /* size (0 = byte, 1 = short, 2 = long) */
332 32, /* bitsize */
333 FALSE, /* pc_relative */
334 0, /* bitpos */
335 complain_overflow_dont, /* complain_on_overflow */
336 bfd_elf_generic_reloc, /* special_function */
337 "R_68K_TLS_TPREL32", /* name */
338 FALSE, /* partial_inplace */
339 0, /* src_mask */
340 0xffffffff, /* dst_mask */
341 FALSE), /* pcrel_offset */
342 };
343
344 static void
345 rtype_to_howto (bfd *abfd, arelent *cache_ptr, Elf_Internal_Rela *dst)
346 {
347 unsigned int indx = ELF32_R_TYPE (dst->r_info);
348
349 if (indx >= (unsigned int) R_68K_max)
350 {
351 /* xgettext:c-format */
352 _bfd_error_handler (_("%pB: invalid relocation type %d"),
353 abfd, (int) indx);
354 indx = R_68K_NONE;
355 }
356 cache_ptr->howto = &howto_table[indx];
357 }
358
359 #define elf_info_to_howto rtype_to_howto
360
361 static const struct
362 {
363 bfd_reloc_code_real_type bfd_val;
364 int elf_val;
365 }
366 reloc_map[] =
367 {
368 { BFD_RELOC_NONE, R_68K_NONE },
369 { BFD_RELOC_32, R_68K_32 },
370 { BFD_RELOC_16, R_68K_16 },
371 { BFD_RELOC_8, R_68K_8 },
372 { BFD_RELOC_32_PCREL, R_68K_PC32 },
373 { BFD_RELOC_16_PCREL, R_68K_PC16 },
374 { BFD_RELOC_8_PCREL, R_68K_PC8 },
375 { BFD_RELOC_32_GOT_PCREL, R_68K_GOT32 },
376 { BFD_RELOC_16_GOT_PCREL, R_68K_GOT16 },
377 { BFD_RELOC_8_GOT_PCREL, R_68K_GOT8 },
378 { BFD_RELOC_32_GOTOFF, R_68K_GOT32O },
379 { BFD_RELOC_16_GOTOFF, R_68K_GOT16O },
380 { BFD_RELOC_8_GOTOFF, R_68K_GOT8O },
381 { BFD_RELOC_32_PLT_PCREL, R_68K_PLT32 },
382 { BFD_RELOC_16_PLT_PCREL, R_68K_PLT16 },
383 { BFD_RELOC_8_PLT_PCREL, R_68K_PLT8 },
384 { BFD_RELOC_32_PLTOFF, R_68K_PLT32O },
385 { BFD_RELOC_16_PLTOFF, R_68K_PLT16O },
386 { BFD_RELOC_8_PLTOFF, R_68K_PLT8O },
387 { BFD_RELOC_NONE, R_68K_COPY },
388 { BFD_RELOC_68K_GLOB_DAT, R_68K_GLOB_DAT },
389 { BFD_RELOC_68K_JMP_SLOT, R_68K_JMP_SLOT },
390 { BFD_RELOC_68K_RELATIVE, R_68K_RELATIVE },
391 { BFD_RELOC_CTOR, R_68K_32 },
392 { BFD_RELOC_VTABLE_INHERIT, R_68K_GNU_VTINHERIT },
393 { BFD_RELOC_VTABLE_ENTRY, R_68K_GNU_VTENTRY },
394 { BFD_RELOC_68K_TLS_GD32, R_68K_TLS_GD32 },
395 { BFD_RELOC_68K_TLS_GD16, R_68K_TLS_GD16 },
396 { BFD_RELOC_68K_TLS_GD8, R_68K_TLS_GD8 },
397 { BFD_RELOC_68K_TLS_LDM32, R_68K_TLS_LDM32 },
398 { BFD_RELOC_68K_TLS_LDM16, R_68K_TLS_LDM16 },
399 { BFD_RELOC_68K_TLS_LDM8, R_68K_TLS_LDM8 },
400 { BFD_RELOC_68K_TLS_LDO32, R_68K_TLS_LDO32 },
401 { BFD_RELOC_68K_TLS_LDO16, R_68K_TLS_LDO16 },
402 { BFD_RELOC_68K_TLS_LDO8, R_68K_TLS_LDO8 },
403 { BFD_RELOC_68K_TLS_IE32, R_68K_TLS_IE32 },
404 { BFD_RELOC_68K_TLS_IE16, R_68K_TLS_IE16 },
405 { BFD_RELOC_68K_TLS_IE8, R_68K_TLS_IE8 },
406 { BFD_RELOC_68K_TLS_LE32, R_68K_TLS_LE32 },
407 { BFD_RELOC_68K_TLS_LE16, R_68K_TLS_LE16 },
408 { BFD_RELOC_68K_TLS_LE8, R_68K_TLS_LE8 },
409 };
410
411 static reloc_howto_type *
412 reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
413 bfd_reloc_code_real_type code)
414 {
415 unsigned int i;
416 for (i = 0; i < sizeof (reloc_map) / sizeof (reloc_map[0]); i++)
417 {
418 if (reloc_map[i].bfd_val == code)
419 return &howto_table[reloc_map[i].elf_val];
420 }
421 return 0;
422 }
423
424 static reloc_howto_type *
425 reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, const char *r_name)
426 {
427 unsigned int i;
428
429 for (i = 0; i < sizeof (howto_table) / sizeof (howto_table[0]); i++)
430 if (howto_table[i].name != NULL
431 && strcasecmp (howto_table[i].name, r_name) == 0)
432 return &howto_table[i];
433
434 return NULL;
435 }
436
437 #define bfd_elf32_bfd_reloc_type_lookup reloc_type_lookup
438 #define bfd_elf32_bfd_reloc_name_lookup reloc_name_lookup
439 #define ELF_ARCH bfd_arch_m68k
440 #define ELF_TARGET_ID M68K_ELF_DATA
441 \f
442 /* Functions for the m68k ELF linker. */
443
444 /* The name of the dynamic interpreter. This is put in the .interp
445 section. */
446
447 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
448
449 /* Describes one of the various PLT styles. */
450
451 struct elf_m68k_plt_info
452 {
453 /* The size of each PLT entry. */
454 bfd_vma size;
455
456 /* The template for the first PLT entry. */
457 const bfd_byte *plt0_entry;
458
459 /* Offsets of fields in PLT0_ENTRY that require R_68K_PC32 relocations.
460 The comments by each member indicate the value that the relocation
461 is against. */
462 struct {
463 unsigned int got4; /* .got + 4 */
464 unsigned int got8; /* .got + 8 */
465 } plt0_relocs;
466
467 /* The template for a symbol's PLT entry. */
468 const bfd_byte *symbol_entry;
469
470 /* Offsets of fields in SYMBOL_ENTRY that require R_68K_PC32 relocations.
471 The comments by each member indicate the value that the relocation
472 is against. */
473 struct {
474 unsigned int got; /* the symbol's .got.plt entry */
475 unsigned int plt; /* .plt */
476 } symbol_relocs;
477
478 /* The offset of the resolver stub from the start of SYMBOL_ENTRY.
479 The stub starts with "move.l #relocoffset,%d0". */
480 bfd_vma symbol_resolve_entry;
481 };
482
483 /* The size in bytes of an entry in the procedure linkage table. */
484
485 #define PLT_ENTRY_SIZE 20
486
487 /* The first entry in a procedure linkage table looks like this. See
488 the SVR4 ABI m68k supplement to see how this works. */
489
490 static const bfd_byte elf_m68k_plt0_entry[PLT_ENTRY_SIZE] =
491 {
492 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
493 0, 0, 0, 2, /* + (.got + 4) - . */
494 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,addr]) */
495 0, 0, 0, 2, /* + (.got + 8) - . */
496 0, 0, 0, 0 /* pad out to 20 bytes. */
497 };
498
499 /* Subsequent entries in a procedure linkage table look like this. */
500
501 static const bfd_byte elf_m68k_plt_entry[PLT_ENTRY_SIZE] =
502 {
503 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,symbol@GOTPC]) */
504 0, 0, 0, 2, /* + (.got.plt entry) - . */
505 0x2f, 0x3c, /* move.l #offset,-(%sp) */
506 0, 0, 0, 0, /* + reloc index */
507 0x60, 0xff, /* bra.l .plt */
508 0, 0, 0, 0 /* + .plt - . */
509 };
510
511 static const struct elf_m68k_plt_info elf_m68k_plt_info =
512 {
513 PLT_ENTRY_SIZE,
514 elf_m68k_plt0_entry, { 4, 12 },
515 elf_m68k_plt_entry, { 4, 16 }, 8
516 };
517
518 #define ISAB_PLT_ENTRY_SIZE 24
519
520 static const bfd_byte elf_isab_plt0_entry[ISAB_PLT_ENTRY_SIZE] =
521 {
522 0x20, 0x3c, /* move.l #offset,%d0 */
523 0, 0, 0, 0, /* + (.got + 4) - . */
524 0x2f, 0x3b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),-(%sp) */
525 0x20, 0x3c, /* move.l #offset,%d0 */
526 0, 0, 0, 0, /* + (.got + 8) - . */
527 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
528 0x4e, 0xd0, /* jmp (%a0) */
529 0x4e, 0x71 /* nop */
530 };
531
532 /* Subsequent entries in a procedure linkage table look like this. */
533
534 static const bfd_byte elf_isab_plt_entry[ISAB_PLT_ENTRY_SIZE] =
535 {
536 0x20, 0x3c, /* move.l #offset,%d0 */
537 0, 0, 0, 0, /* + (.got.plt entry) - . */
538 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
539 0x4e, 0xd0, /* jmp (%a0) */
540 0x2f, 0x3c, /* move.l #offset,-(%sp) */
541 0, 0, 0, 0, /* + reloc index */
542 0x60, 0xff, /* bra.l .plt */
543 0, 0, 0, 0 /* + .plt - . */
544 };
545
546 static const struct elf_m68k_plt_info elf_isab_plt_info =
547 {
548 ISAB_PLT_ENTRY_SIZE,
549 elf_isab_plt0_entry, { 2, 12 },
550 elf_isab_plt_entry, { 2, 20 }, 12
551 };
552
553 #define ISAC_PLT_ENTRY_SIZE 24
554
555 static const bfd_byte elf_isac_plt0_entry[ISAC_PLT_ENTRY_SIZE] =
556 {
557 0x20, 0x3c, /* move.l #offset,%d0 */
558 0, 0, 0, 0, /* replaced with .got + 4 - . */
559 0x2e, 0xbb, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),(%sp) */
560 0x20, 0x3c, /* move.l #offset,%d0 */
561 0, 0, 0, 0, /* replaced with .got + 8 - . */
562 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
563 0x4e, 0xd0, /* jmp (%a0) */
564 0x4e, 0x71 /* nop */
565 };
566
567 /* Subsequent entries in a procedure linkage table look like this. */
568
569 static const bfd_byte elf_isac_plt_entry[ISAC_PLT_ENTRY_SIZE] =
570 {
571 0x20, 0x3c, /* move.l #offset,%d0 */
572 0, 0, 0, 0, /* replaced with (.got entry) - . */
573 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
574 0x4e, 0xd0, /* jmp (%a0) */
575 0x2f, 0x3c, /* move.l #offset,-(%sp) */
576 0, 0, 0, 0, /* replaced with offset into relocation table */
577 0x61, 0xff, /* bsr.l .plt */
578 0, 0, 0, 0 /* replaced with .plt - . */
579 };
580
581 static const struct elf_m68k_plt_info elf_isac_plt_info =
582 {
583 ISAC_PLT_ENTRY_SIZE,
584 elf_isac_plt0_entry, { 2, 12},
585 elf_isac_plt_entry, { 2, 20 }, 12
586 };
587
588 #define CPU32_PLT_ENTRY_SIZE 24
589 /* Procedure linkage table entries for the cpu32 */
590 static const bfd_byte elf_cpu32_plt0_entry[CPU32_PLT_ENTRY_SIZE] =
591 {
592 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
593 0, 0, 0, 2, /* + (.got + 4) - . */
594 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
595 0, 0, 0, 2, /* + (.got + 8) - . */
596 0x4e, 0xd1, /* jmp %a1@ */
597 0, 0, 0, 0, /* pad out to 24 bytes. */
598 0, 0
599 };
600
601 static const bfd_byte elf_cpu32_plt_entry[CPU32_PLT_ENTRY_SIZE] =
602 {
603 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
604 0, 0, 0, 2, /* + (.got.plt entry) - . */
605 0x4e, 0xd1, /* jmp %a1@ */
606 0x2f, 0x3c, /* move.l #offset,-(%sp) */
607 0, 0, 0, 0, /* + reloc index */
608 0x60, 0xff, /* bra.l .plt */
609 0, 0, 0, 0, /* + .plt - . */
610 0, 0
611 };
612
613 static const struct elf_m68k_plt_info elf_cpu32_plt_info =
614 {
615 CPU32_PLT_ENTRY_SIZE,
616 elf_cpu32_plt0_entry, { 4, 12 },
617 elf_cpu32_plt_entry, { 4, 18 }, 10
618 };
619
620 /* The m68k linker needs to keep track of the number of relocs that it
621 decides to copy in check_relocs for each symbol. This is so that it
622 can discard PC relative relocs if it doesn't need them when linking
623 with -Bsymbolic. We store the information in a field extending the
624 regular ELF linker hash table. */
625
626 /* This structure keeps track of the number of PC relative relocs we have
627 copied for a given symbol. */
628
629 struct elf_m68k_pcrel_relocs_copied
630 {
631 /* Next section. */
632 struct elf_m68k_pcrel_relocs_copied *next;
633 /* A section in dynobj. */
634 asection *section;
635 /* Number of relocs copied in this section. */
636 bfd_size_type count;
637 };
638
639 /* Forward declaration. */
640 struct elf_m68k_got_entry;
641
642 /* m68k ELF linker hash entry. */
643
644 struct elf_m68k_link_hash_entry
645 {
646 struct elf_link_hash_entry root;
647
648 /* Number of PC relative relocs copied for this symbol. */
649 struct elf_m68k_pcrel_relocs_copied *pcrel_relocs_copied;
650
651 /* Key to got_entries. */
652 unsigned long got_entry_key;
653
654 /* List of GOT entries for this symbol. This list is build during
655 offset finalization and is used within elf_m68k_finish_dynamic_symbol
656 to traverse all GOT entries for a particular symbol.
657
658 ??? We could've used root.got.glist field instead, but having
659 a separate field is cleaner. */
660 struct elf_m68k_got_entry *glist;
661 };
662
663 #define elf_m68k_hash_entry(ent) ((struct elf_m68k_link_hash_entry *) (ent))
664
665 /* Key part of GOT entry in hashtable. */
666 struct elf_m68k_got_entry_key
667 {
668 /* BFD in which this symbol was defined. NULL for global symbols. */
669 const bfd *bfd;
670
671 /* Symbol index. Either local symbol index or h->got_entry_key. */
672 unsigned long symndx;
673
674 /* Type is one of R_68K_GOT{8, 16, 32}O, R_68K_TLS_GD{8, 16, 32},
675 R_68K_TLS_LDM{8, 16, 32} or R_68K_TLS_IE{8, 16, 32}.
676
677 From perspective of hashtable key, only elf_m68k_got_reloc_type (type)
678 matters. That is, we distinguish between, say, R_68K_GOT16O
679 and R_68K_GOT32O when allocating offsets, but they are considered to be
680 the same when searching got->entries. */
681 enum elf_m68k_reloc_type type;
682 };
683
684 /* Size of the GOT offset suitable for relocation. */
685 enum elf_m68k_got_offset_size { R_8, R_16, R_32, R_LAST };
686
687 /* Entry of the GOT. */
688 struct elf_m68k_got_entry
689 {
690 /* GOT entries are put into a got->entries hashtable. This is the key. */
691 struct elf_m68k_got_entry_key key_;
692
693 /* GOT entry data. We need s1 before offset finalization and s2 after. */
694 union
695 {
696 struct
697 {
698 /* Number of times this entry is referenced. */
699 bfd_vma refcount;
700 } s1;
701
702 struct
703 {
704 /* Offset from the start of .got section. To calculate offset relative
705 to GOT pointer one should subtract got->offset from this value. */
706 bfd_vma offset;
707
708 /* Pointer to the next GOT entry for this global symbol.
709 Symbols have at most one entry in one GOT, but might
710 have entries in more than one GOT.
711 Root of this list is h->glist.
712 NULL for local symbols. */
713 struct elf_m68k_got_entry *next;
714 } s2;
715 } u;
716 };
717
718 /* Return representative type for relocation R_TYPE.
719 This is used to avoid enumerating many relocations in comparisons,
720 switches etc. */
721
722 static enum elf_m68k_reloc_type
723 elf_m68k_reloc_got_type (enum elf_m68k_reloc_type r_type)
724 {
725 switch (r_type)
726 {
727 /* In most cases R_68K_GOTx relocations require the very same
728 handling as R_68K_GOT32O relocation. In cases when we need
729 to distinguish between the two, we use explicitly compare against
730 r_type. */
731 case R_68K_GOT32:
732 case R_68K_GOT16:
733 case R_68K_GOT8:
734 case R_68K_GOT32O:
735 case R_68K_GOT16O:
736 case R_68K_GOT8O:
737 return R_68K_GOT32O;
738
739 case R_68K_TLS_GD32:
740 case R_68K_TLS_GD16:
741 case R_68K_TLS_GD8:
742 return R_68K_TLS_GD32;
743
744 case R_68K_TLS_LDM32:
745 case R_68K_TLS_LDM16:
746 case R_68K_TLS_LDM8:
747 return R_68K_TLS_LDM32;
748
749 case R_68K_TLS_IE32:
750 case R_68K_TLS_IE16:
751 case R_68K_TLS_IE8:
752 return R_68K_TLS_IE32;
753
754 default:
755 BFD_ASSERT (FALSE);
756 return 0;
757 }
758 }
759
760 /* Return size of the GOT entry offset for relocation R_TYPE. */
761
762 static enum elf_m68k_got_offset_size
763 elf_m68k_reloc_got_offset_size (enum elf_m68k_reloc_type r_type)
764 {
765 switch (r_type)
766 {
767 case R_68K_GOT32: case R_68K_GOT16: case R_68K_GOT8:
768 case R_68K_GOT32O: case R_68K_TLS_GD32: case R_68K_TLS_LDM32:
769 case R_68K_TLS_IE32:
770 return R_32;
771
772 case R_68K_GOT16O: case R_68K_TLS_GD16: case R_68K_TLS_LDM16:
773 case R_68K_TLS_IE16:
774 return R_16;
775
776 case R_68K_GOT8O: case R_68K_TLS_GD8: case R_68K_TLS_LDM8:
777 case R_68K_TLS_IE8:
778 return R_8;
779
780 default:
781 BFD_ASSERT (FALSE);
782 return 0;
783 }
784 }
785
786 /* Return number of GOT entries we need to allocate in GOT for
787 relocation R_TYPE. */
788
789 static bfd_vma
790 elf_m68k_reloc_got_n_slots (enum elf_m68k_reloc_type r_type)
791 {
792 switch (elf_m68k_reloc_got_type (r_type))
793 {
794 case R_68K_GOT32O:
795 case R_68K_TLS_IE32:
796 return 1;
797
798 case R_68K_TLS_GD32:
799 case R_68K_TLS_LDM32:
800 return 2;
801
802 default:
803 BFD_ASSERT (FALSE);
804 return 0;
805 }
806 }
807
808 /* Return TRUE if relocation R_TYPE is a TLS one. */
809
810 static bfd_boolean
811 elf_m68k_reloc_tls_p (enum elf_m68k_reloc_type r_type)
812 {
813 switch (r_type)
814 {
815 case R_68K_TLS_GD32: case R_68K_TLS_GD16: case R_68K_TLS_GD8:
816 case R_68K_TLS_LDM32: case R_68K_TLS_LDM16: case R_68K_TLS_LDM8:
817 case R_68K_TLS_LDO32: case R_68K_TLS_LDO16: case R_68K_TLS_LDO8:
818 case R_68K_TLS_IE32: case R_68K_TLS_IE16: case R_68K_TLS_IE8:
819 case R_68K_TLS_LE32: case R_68K_TLS_LE16: case R_68K_TLS_LE8:
820 case R_68K_TLS_DTPMOD32: case R_68K_TLS_DTPREL32: case R_68K_TLS_TPREL32:
821 return TRUE;
822
823 default:
824 return FALSE;
825 }
826 }
827
828 /* Data structure representing a single GOT. */
829 struct elf_m68k_got
830 {
831 /* Hashtable of 'struct elf_m68k_got_entry's.
832 Starting size of this table is the maximum number of
833 R_68K_GOT8O entries. */
834 htab_t entries;
835
836 /* Number of R_x slots in this GOT. Some (e.g., TLS) entries require
837 several GOT slots.
838
839 n_slots[R_8] is the count of R_8 slots in this GOT.
840 n_slots[R_16] is the cumulative count of R_8 and R_16 slots
841 in this GOT.
842 n_slots[R_32] is the cumulative count of R_8, R_16 and R_32 slots
843 in this GOT. This is the total number of slots. */
844 bfd_vma n_slots[R_LAST];
845
846 /* Number of local (entry->key_.h == NULL) slots in this GOT.
847 This is only used to properly calculate size of .rela.got section;
848 see elf_m68k_partition_multi_got. */
849 bfd_vma local_n_slots;
850
851 /* Offset of this GOT relative to beginning of .got section. */
852 bfd_vma offset;
853 };
854
855 /* BFD and its GOT. This is an entry in multi_got->bfd2got hashtable. */
856 struct elf_m68k_bfd2got_entry
857 {
858 /* BFD. */
859 const bfd *bfd;
860
861 /* Assigned GOT. Before partitioning multi-GOT each BFD has its own
862 GOT structure. After partitioning several BFD's might [and often do]
863 share a single GOT. */
864 struct elf_m68k_got *got;
865 };
866
867 /* The main data structure holding all the pieces. */
868 struct elf_m68k_multi_got
869 {
870 /* Hashtable mapping each BFD to its GOT. If a BFD doesn't have an entry
871 here, then it doesn't need a GOT (this includes the case of a BFD
872 having an empty GOT).
873
874 ??? This hashtable can be replaced by an array indexed by bfd->id. */
875 htab_t bfd2got;
876
877 /* Next symndx to assign a global symbol.
878 h->got_entry_key is initialized from this counter. */
879 unsigned long global_symndx;
880 };
881
882 /* m68k ELF linker hash table. */
883
884 struct elf_m68k_link_hash_table
885 {
886 struct elf_link_hash_table root;
887
888 /* Small local sym cache. */
889 struct sym_cache sym_cache;
890
891 /* The PLT format used by this link, or NULL if the format has not
892 yet been chosen. */
893 const struct elf_m68k_plt_info *plt_info;
894
895 /* True, if GP is loaded within each function which uses it.
896 Set to TRUE when GOT negative offsets or multi-GOT is enabled. */
897 bfd_boolean local_gp_p;
898
899 /* Switch controlling use of negative offsets to double the size of GOTs. */
900 bfd_boolean use_neg_got_offsets_p;
901
902 /* Switch controlling generation of multiple GOTs. */
903 bfd_boolean allow_multigot_p;
904
905 /* Multi-GOT data structure. */
906 struct elf_m68k_multi_got multi_got_;
907 };
908
909 /* Get the m68k ELF linker hash table from a link_info structure. */
910
911 #define elf_m68k_hash_table(p) \
912 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
913 == M68K_ELF_DATA ? ((struct elf_m68k_link_hash_table *) ((p)->hash)) : NULL)
914
915 /* Shortcut to multi-GOT data. */
916 #define elf_m68k_multi_got(INFO) (&elf_m68k_hash_table (INFO)->multi_got_)
917
918 /* Create an entry in an m68k ELF linker hash table. */
919
920 static struct bfd_hash_entry *
921 elf_m68k_link_hash_newfunc (struct bfd_hash_entry *entry,
922 struct bfd_hash_table *table,
923 const char *string)
924 {
925 struct bfd_hash_entry *ret = entry;
926
927 /* Allocate the structure if it has not already been allocated by a
928 subclass. */
929 if (ret == NULL)
930 ret = bfd_hash_allocate (table,
931 sizeof (struct elf_m68k_link_hash_entry));
932 if (ret == NULL)
933 return ret;
934
935 /* Call the allocation method of the superclass. */
936 ret = _bfd_elf_link_hash_newfunc (ret, table, string);
937 if (ret != NULL)
938 {
939 elf_m68k_hash_entry (ret)->pcrel_relocs_copied = NULL;
940 elf_m68k_hash_entry (ret)->got_entry_key = 0;
941 elf_m68k_hash_entry (ret)->glist = NULL;
942 }
943
944 return ret;
945 }
946
947 /* Destroy an m68k ELF linker hash table. */
948
949 static void
950 elf_m68k_link_hash_table_free (bfd *obfd)
951 {
952 struct elf_m68k_link_hash_table *htab;
953
954 htab = (struct elf_m68k_link_hash_table *) obfd->link.hash;
955
956 if (htab->multi_got_.bfd2got != NULL)
957 {
958 htab_delete (htab->multi_got_.bfd2got);
959 htab->multi_got_.bfd2got = NULL;
960 }
961 _bfd_elf_link_hash_table_free (obfd);
962 }
963
964 /* Create an m68k ELF linker hash table. */
965
966 static struct bfd_link_hash_table *
967 elf_m68k_link_hash_table_create (bfd *abfd)
968 {
969 struct elf_m68k_link_hash_table *ret;
970 bfd_size_type amt = sizeof (struct elf_m68k_link_hash_table);
971
972 ret = (struct elf_m68k_link_hash_table *) bfd_zmalloc (amt);
973 if (ret == (struct elf_m68k_link_hash_table *) NULL)
974 return NULL;
975
976 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
977 elf_m68k_link_hash_newfunc,
978 sizeof (struct elf_m68k_link_hash_entry),
979 M68K_ELF_DATA))
980 {
981 free (ret);
982 return NULL;
983 }
984 ret->root.root.hash_table_free = elf_m68k_link_hash_table_free;
985
986 ret->multi_got_.global_symndx = 1;
987
988 return &ret->root.root;
989 }
990
991 /* Set the right machine number. */
992
993 static bfd_boolean
994 elf32_m68k_object_p (bfd *abfd)
995 {
996 unsigned int mach = 0;
997 unsigned features = 0;
998 flagword eflags = elf_elfheader (abfd)->e_flags;
999
1000 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1001 features |= m68000;
1002 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1003 features |= cpu32;
1004 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1005 features |= fido_a;
1006 else
1007 {
1008 switch (eflags & EF_M68K_CF_ISA_MASK)
1009 {
1010 case EF_M68K_CF_ISA_A_NODIV:
1011 features |= mcfisa_a;
1012 break;
1013 case EF_M68K_CF_ISA_A:
1014 features |= mcfisa_a|mcfhwdiv;
1015 break;
1016 case EF_M68K_CF_ISA_A_PLUS:
1017 features |= mcfisa_a|mcfisa_aa|mcfhwdiv|mcfusp;
1018 break;
1019 case EF_M68K_CF_ISA_B_NOUSP:
1020 features |= mcfisa_a|mcfisa_b|mcfhwdiv;
1021 break;
1022 case EF_M68K_CF_ISA_B:
1023 features |= mcfisa_a|mcfisa_b|mcfhwdiv|mcfusp;
1024 break;
1025 case EF_M68K_CF_ISA_C:
1026 features |= mcfisa_a|mcfisa_c|mcfhwdiv|mcfusp;
1027 break;
1028 case EF_M68K_CF_ISA_C_NODIV:
1029 features |= mcfisa_a|mcfisa_c|mcfusp;
1030 break;
1031 }
1032 switch (eflags & EF_M68K_CF_MAC_MASK)
1033 {
1034 case EF_M68K_CF_MAC:
1035 features |= mcfmac;
1036 break;
1037 case EF_M68K_CF_EMAC:
1038 features |= mcfemac;
1039 break;
1040 }
1041 if (eflags & EF_M68K_CF_FLOAT)
1042 features |= cfloat;
1043 }
1044
1045 mach = bfd_m68k_features_to_mach (features);
1046 bfd_default_set_arch_mach (abfd, bfd_arch_m68k, mach);
1047
1048 return TRUE;
1049 }
1050
1051 /* Somewhat reverse of elf32_m68k_object_p, this sets the e_flag
1052 field based on the machine number. */
1053
1054 static void
1055 elf_m68k_final_write_processing (bfd *abfd,
1056 bfd_boolean linker ATTRIBUTE_UNUSED)
1057 {
1058 int mach = bfd_get_mach (abfd);
1059 unsigned long e_flags = elf_elfheader (abfd)->e_flags;
1060
1061 if (!e_flags)
1062 {
1063 unsigned int arch_mask;
1064
1065 arch_mask = bfd_m68k_mach_to_features (mach);
1066
1067 if (arch_mask & m68000)
1068 e_flags = EF_M68K_M68000;
1069 else if (arch_mask & cpu32)
1070 e_flags = EF_M68K_CPU32;
1071 else if (arch_mask & fido_a)
1072 e_flags = EF_M68K_FIDO;
1073 else
1074 {
1075 switch (arch_mask
1076 & (mcfisa_a | mcfisa_aa | mcfisa_b | mcfisa_c | mcfhwdiv | mcfusp))
1077 {
1078 case mcfisa_a:
1079 e_flags |= EF_M68K_CF_ISA_A_NODIV;
1080 break;
1081 case mcfisa_a | mcfhwdiv:
1082 e_flags |= EF_M68K_CF_ISA_A;
1083 break;
1084 case mcfisa_a | mcfisa_aa | mcfhwdiv | mcfusp:
1085 e_flags |= EF_M68K_CF_ISA_A_PLUS;
1086 break;
1087 case mcfisa_a | mcfisa_b | mcfhwdiv:
1088 e_flags |= EF_M68K_CF_ISA_B_NOUSP;
1089 break;
1090 case mcfisa_a | mcfisa_b | mcfhwdiv | mcfusp:
1091 e_flags |= EF_M68K_CF_ISA_B;
1092 break;
1093 case mcfisa_a | mcfisa_c | mcfhwdiv | mcfusp:
1094 e_flags |= EF_M68K_CF_ISA_C;
1095 break;
1096 case mcfisa_a | mcfisa_c | mcfusp:
1097 e_flags |= EF_M68K_CF_ISA_C_NODIV;
1098 break;
1099 }
1100 if (arch_mask & mcfmac)
1101 e_flags |= EF_M68K_CF_MAC;
1102 else if (arch_mask & mcfemac)
1103 e_flags |= EF_M68K_CF_EMAC;
1104 if (arch_mask & cfloat)
1105 e_flags |= EF_M68K_CF_FLOAT | EF_M68K_CFV4E;
1106 }
1107 elf_elfheader (abfd)->e_flags = e_flags;
1108 }
1109 }
1110
1111 /* Keep m68k-specific flags in the ELF header. */
1112
1113 static bfd_boolean
1114 elf32_m68k_set_private_flags (bfd *abfd, flagword flags)
1115 {
1116 elf_elfheader (abfd)->e_flags = flags;
1117 elf_flags_init (abfd) = TRUE;
1118 return TRUE;
1119 }
1120
1121 /* Merge backend specific data from an object file to the output
1122 object file when linking. */
1123 static bfd_boolean
1124 elf32_m68k_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
1125 {
1126 bfd *obfd = info->output_bfd;
1127 flagword out_flags;
1128 flagword in_flags;
1129 flagword out_isa;
1130 flagword in_isa;
1131 const bfd_arch_info_type *arch_info;
1132
1133 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1134 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1135 return FALSE;
1136
1137 /* Get the merged machine. This checks for incompatibility between
1138 Coldfire & non-Coldfire flags, incompability between different
1139 Coldfire ISAs, and incompability between different MAC types. */
1140 arch_info = bfd_arch_get_compatible (ibfd, obfd, FALSE);
1141 if (!arch_info)
1142 return FALSE;
1143
1144 bfd_set_arch_mach (obfd, bfd_arch_m68k, arch_info->mach);
1145
1146 in_flags = elf_elfheader (ibfd)->e_flags;
1147 if (!elf_flags_init (obfd))
1148 {
1149 elf_flags_init (obfd) = TRUE;
1150 out_flags = in_flags;
1151 }
1152 else
1153 {
1154 out_flags = elf_elfheader (obfd)->e_flags;
1155 unsigned int variant_mask;
1156
1157 if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1158 variant_mask = 0;
1159 else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1160 variant_mask = 0;
1161 else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1162 variant_mask = 0;
1163 else
1164 variant_mask = EF_M68K_CF_ISA_MASK;
1165
1166 in_isa = (in_flags & variant_mask);
1167 out_isa = (out_flags & variant_mask);
1168 if (in_isa > out_isa)
1169 out_flags ^= in_isa ^ out_isa;
1170 if (((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32
1171 && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1172 || ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO
1173 && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32))
1174 out_flags = EF_M68K_FIDO;
1175 else
1176 out_flags |= in_flags ^ in_isa;
1177 }
1178 elf_elfheader (obfd)->e_flags = out_flags;
1179
1180 return TRUE;
1181 }
1182
1183 /* Display the flags field. */
1184
1185 static bfd_boolean
1186 elf32_m68k_print_private_bfd_data (bfd *abfd, void * ptr)
1187 {
1188 FILE *file = (FILE *) ptr;
1189 flagword eflags = elf_elfheader (abfd)->e_flags;
1190
1191 BFD_ASSERT (abfd != NULL && ptr != NULL);
1192
1193 /* Print normal ELF private data. */
1194 _bfd_elf_print_private_bfd_data (abfd, ptr);
1195
1196 /* Ignore init flag - it may not be set, despite the flags field containing valid data. */
1197
1198 /* xgettext:c-format */
1199 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
1200
1201 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1202 fprintf (file, " [m68000]");
1203 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1204 fprintf (file, " [cpu32]");
1205 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1206 fprintf (file, " [fido]");
1207 else
1208 {
1209 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CFV4E)
1210 fprintf (file, " [cfv4e]");
1211
1212 if (eflags & EF_M68K_CF_ISA_MASK)
1213 {
1214 char const *isa = _("unknown");
1215 char const *mac = _("unknown");
1216 char const *additional = "";
1217
1218 switch (eflags & EF_M68K_CF_ISA_MASK)
1219 {
1220 case EF_M68K_CF_ISA_A_NODIV:
1221 isa = "A";
1222 additional = " [nodiv]";
1223 break;
1224 case EF_M68K_CF_ISA_A:
1225 isa = "A";
1226 break;
1227 case EF_M68K_CF_ISA_A_PLUS:
1228 isa = "A+";
1229 break;
1230 case EF_M68K_CF_ISA_B_NOUSP:
1231 isa = "B";
1232 additional = " [nousp]";
1233 break;
1234 case EF_M68K_CF_ISA_B:
1235 isa = "B";
1236 break;
1237 case EF_M68K_CF_ISA_C:
1238 isa = "C";
1239 break;
1240 case EF_M68K_CF_ISA_C_NODIV:
1241 isa = "C";
1242 additional = " [nodiv]";
1243 break;
1244 }
1245 fprintf (file, " [isa %s]%s", isa, additional);
1246
1247 if (eflags & EF_M68K_CF_FLOAT)
1248 fprintf (file, " [float]");
1249
1250 switch (eflags & EF_M68K_CF_MAC_MASK)
1251 {
1252 case 0:
1253 mac = NULL;
1254 break;
1255 case EF_M68K_CF_MAC:
1256 mac = "mac";
1257 break;
1258 case EF_M68K_CF_EMAC:
1259 mac = "emac";
1260 break;
1261 case EF_M68K_CF_EMAC_B:
1262 mac = "emac_b";
1263 break;
1264 }
1265 if (mac)
1266 fprintf (file, " [%s]", mac);
1267 }
1268 }
1269
1270 fputc ('\n', file);
1271
1272 return TRUE;
1273 }
1274
1275 /* Multi-GOT support implementation design:
1276
1277 Multi-GOT starts in check_relocs hook. There we scan all
1278 relocations of a BFD and build a local GOT (struct elf_m68k_got)
1279 for it. If a single BFD appears to require too many GOT slots with
1280 R_68K_GOT8O or R_68K_GOT16O relocations, we fail with notification
1281 to user.
1282 After check_relocs has been invoked for each input BFD, we have
1283 constructed a GOT for each input BFD.
1284
1285 To minimize total number of GOTs required for a particular output BFD
1286 (as some environments support only 1 GOT per output object) we try
1287 to merge some of the GOTs to share an offset space. Ideally [and in most
1288 cases] we end up with a single GOT. In cases when there are too many
1289 restricted relocations (e.g., R_68K_GOT16O relocations) we end up with
1290 several GOTs, assuming the environment can handle them.
1291
1292 Partitioning is done in elf_m68k_partition_multi_got. We start with
1293 an empty GOT and traverse bfd2got hashtable putting got_entries from
1294 local GOTs to the new 'big' one. We do that by constructing an
1295 intermediate GOT holding all the entries the local GOT has and the big
1296 GOT lacks. Then we check if there is room in the big GOT to accomodate
1297 all the entries from diff. On success we add those entries to the big
1298 GOT; on failure we start the new 'big' GOT and retry the adding of
1299 entries from the local GOT. Note that this retry will always succeed as
1300 each local GOT doesn't overflow the limits. After partitioning we
1301 end up with each bfd assigned one of the big GOTs. GOT entries in the
1302 big GOTs are initialized with GOT offsets. Note that big GOTs are
1303 positioned consequently in program space and represent a single huge GOT
1304 to the outside world.
1305
1306 After that we get to elf_m68k_relocate_section. There we
1307 adjust relocations of GOT pointer (_GLOBAL_OFFSET_TABLE_) and symbol
1308 relocations to refer to appropriate [assigned to current input_bfd]
1309 big GOT.
1310
1311 Notes:
1312
1313 GOT entry type: We have several types of GOT entries.
1314 * R_8 type is used in entries for symbols that have at least one
1315 R_68K_GOT8O or R_68K_TLS_*8 relocation. We can have at most 0x40
1316 such entries in one GOT.
1317 * R_16 type is used in entries for symbols that have at least one
1318 R_68K_GOT16O or R_68K_TLS_*16 relocation and no R_8 relocations.
1319 We can have at most 0x4000 such entries in one GOT.
1320 * R_32 type is used in all other cases. We can have as many
1321 such entries in one GOT as we'd like.
1322 When counting relocations we have to include the count of the smaller
1323 ranged relocations in the counts of the larger ranged ones in order
1324 to correctly detect overflow.
1325
1326 Sorting the GOT: In each GOT starting offsets are assigned to
1327 R_8 entries, which are followed by R_16 entries, and
1328 R_32 entries go at the end. See finalize_got_offsets for details.
1329
1330 Negative GOT offsets: To double usable offset range of GOTs we use
1331 negative offsets. As we assign entries with GOT offsets relative to
1332 start of .got section, the offset values are positive. They become
1333 negative only in relocate_section where got->offset value is
1334 subtracted from them.
1335
1336 3 special GOT entries: There are 3 special GOT entries used internally
1337 by loader. These entries happen to be placed to .got.plt section,
1338 so we don't do anything about them in multi-GOT support.
1339
1340 Memory management: All data except for hashtables
1341 multi_got->bfd2got and got->entries are allocated on
1342 elf_hash_table (info)->dynobj bfd (for this reason we pass 'info'
1343 to most functions), so we don't need to care to free them. At the
1344 moment of allocation hashtables are being linked into main data
1345 structure (multi_got), all pieces of which are reachable from
1346 elf_m68k_multi_got (info). We deallocate them in
1347 elf_m68k_link_hash_table_free. */
1348
1349 /* Initialize GOT. */
1350
1351 static void
1352 elf_m68k_init_got (struct elf_m68k_got *got)
1353 {
1354 got->entries = NULL;
1355 got->n_slots[R_8] = 0;
1356 got->n_slots[R_16] = 0;
1357 got->n_slots[R_32] = 0;
1358 got->local_n_slots = 0;
1359 got->offset = (bfd_vma) -1;
1360 }
1361
1362 /* Destruct GOT. */
1363
1364 static void
1365 elf_m68k_clear_got (struct elf_m68k_got *got)
1366 {
1367 if (got->entries != NULL)
1368 {
1369 htab_delete (got->entries);
1370 got->entries = NULL;
1371 }
1372 }
1373
1374 /* Create and empty GOT structure. INFO is the context where memory
1375 should be allocated. */
1376
1377 static struct elf_m68k_got *
1378 elf_m68k_create_empty_got (struct bfd_link_info *info)
1379 {
1380 struct elf_m68k_got *got;
1381
1382 got = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*got));
1383 if (got == NULL)
1384 return NULL;
1385
1386 elf_m68k_init_got (got);
1387
1388 return got;
1389 }
1390
1391 /* Initialize KEY. */
1392
1393 static void
1394 elf_m68k_init_got_entry_key (struct elf_m68k_got_entry_key *key,
1395 struct elf_link_hash_entry *h,
1396 const bfd *abfd, unsigned long symndx,
1397 enum elf_m68k_reloc_type reloc_type)
1398 {
1399 if (elf_m68k_reloc_got_type (reloc_type) == R_68K_TLS_LDM32)
1400 /* All TLS_LDM relocations share a single GOT entry. */
1401 {
1402 key->bfd = NULL;
1403 key->symndx = 0;
1404 }
1405 else if (h != NULL)
1406 /* Global symbols are identified with their got_entry_key. */
1407 {
1408 key->bfd = NULL;
1409 key->symndx = elf_m68k_hash_entry (h)->got_entry_key;
1410 BFD_ASSERT (key->symndx != 0);
1411 }
1412 else
1413 /* Local symbols are identified by BFD they appear in and symndx. */
1414 {
1415 key->bfd = abfd;
1416 key->symndx = symndx;
1417 }
1418
1419 key->type = reloc_type;
1420 }
1421
1422 /* Calculate hash of got_entry.
1423 ??? Is it good? */
1424
1425 static hashval_t
1426 elf_m68k_got_entry_hash (const void *_entry)
1427 {
1428 const struct elf_m68k_got_entry_key *key;
1429
1430 key = &((const struct elf_m68k_got_entry *) _entry)->key_;
1431
1432 return (key->symndx
1433 + (key->bfd != NULL ? (int) key->bfd->id : -1)
1434 + elf_m68k_reloc_got_type (key->type));
1435 }
1436
1437 /* Check if two got entries are equal. */
1438
1439 static int
1440 elf_m68k_got_entry_eq (const void *_entry1, const void *_entry2)
1441 {
1442 const struct elf_m68k_got_entry_key *key1;
1443 const struct elf_m68k_got_entry_key *key2;
1444
1445 key1 = &((const struct elf_m68k_got_entry *) _entry1)->key_;
1446 key2 = &((const struct elf_m68k_got_entry *) _entry2)->key_;
1447
1448 return (key1->bfd == key2->bfd
1449 && key1->symndx == key2->symndx
1450 && (elf_m68k_reloc_got_type (key1->type)
1451 == elf_m68k_reloc_got_type (key2->type)));
1452 }
1453
1454 /* When using negative offsets, we allocate one extra R_8, one extra R_16
1455 and one extra R_32 slots to simplify handling of 2-slot entries during
1456 offset allocation -- hence -1 for R_8 slots and -2 for R_16 slots. */
1457
1458 /* Maximal number of R_8 slots in a single GOT. */
1459 #define ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT(INFO) \
1460 (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p \
1461 ? (0x40 - 1) \
1462 : 0x20)
1463
1464 /* Maximal number of R_8 and R_16 slots in a single GOT. */
1465 #define ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT(INFO) \
1466 (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p \
1467 ? (0x4000 - 2) \
1468 : 0x2000)
1469
1470 /* SEARCH - simply search the hashtable, don't insert new entries or fail when
1471 the entry cannot be found.
1472 FIND_OR_CREATE - search for an existing entry, but create new if there's
1473 no such.
1474 MUST_FIND - search for an existing entry and assert that it exist.
1475 MUST_CREATE - assert that there's no such entry and create new one. */
1476 enum elf_m68k_get_entry_howto
1477 {
1478 SEARCH,
1479 FIND_OR_CREATE,
1480 MUST_FIND,
1481 MUST_CREATE
1482 };
1483
1484 /* Get or create (depending on HOWTO) entry with KEY in GOT.
1485 INFO is context in which memory should be allocated (can be NULL if
1486 HOWTO is SEARCH or MUST_FIND). */
1487
1488 static struct elf_m68k_got_entry *
1489 elf_m68k_get_got_entry (struct elf_m68k_got *got,
1490 const struct elf_m68k_got_entry_key *key,
1491 enum elf_m68k_get_entry_howto howto,
1492 struct bfd_link_info *info)
1493 {
1494 struct elf_m68k_got_entry entry_;
1495 struct elf_m68k_got_entry *entry;
1496 void **ptr;
1497
1498 BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
1499
1500 if (got->entries == NULL)
1501 /* This is the first entry in ABFD. Initialize hashtable. */
1502 {
1503 if (howto == SEARCH)
1504 return NULL;
1505
1506 got->entries = htab_try_create (ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT
1507 (info),
1508 elf_m68k_got_entry_hash,
1509 elf_m68k_got_entry_eq, NULL);
1510 if (got->entries == NULL)
1511 {
1512 bfd_set_error (bfd_error_no_memory);
1513 return NULL;
1514 }
1515 }
1516
1517 entry_.key_ = *key;
1518 ptr = htab_find_slot (got->entries, &entry_, (howto != SEARCH
1519 ? INSERT : NO_INSERT));
1520 if (ptr == NULL)
1521 {
1522 if (howto == SEARCH)
1523 /* Entry not found. */
1524 return NULL;
1525
1526 /* We're out of memory. */
1527 bfd_set_error (bfd_error_no_memory);
1528 return NULL;
1529 }
1530
1531 if (*ptr == NULL)
1532 /* We didn't find the entry and we're asked to create a new one. */
1533 {
1534 BFD_ASSERT (howto != MUST_FIND && howto != SEARCH);
1535
1536 entry = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry));
1537 if (entry == NULL)
1538 return NULL;
1539
1540 /* Initialize new entry. */
1541 entry->key_ = *key;
1542
1543 entry->u.s1.refcount = 0;
1544
1545 /* Mark the entry as not initialized. */
1546 entry->key_.type = R_68K_max;
1547
1548 *ptr = entry;
1549 }
1550 else
1551 /* We found the entry. */
1552 {
1553 BFD_ASSERT (howto != MUST_CREATE);
1554
1555 entry = *ptr;
1556 }
1557
1558 return entry;
1559 }
1560
1561 /* Update GOT counters when merging entry of WAS type with entry of NEW type.
1562 Return the value to which ENTRY's type should be set. */
1563
1564 static enum elf_m68k_reloc_type
1565 elf_m68k_update_got_entry_type (struct elf_m68k_got *got,
1566 enum elf_m68k_reloc_type was,
1567 enum elf_m68k_reloc_type new_reloc)
1568 {
1569 enum elf_m68k_got_offset_size was_size;
1570 enum elf_m68k_got_offset_size new_size;
1571 bfd_vma n_slots;
1572
1573 if (was == R_68K_max)
1574 /* The type of the entry is not initialized yet. */
1575 {
1576 /* Update all got->n_slots counters, including n_slots[R_32]. */
1577 was_size = R_LAST;
1578
1579 was = new_reloc;
1580 }
1581 else
1582 {
1583 /* !!! We, probably, should emit an error rather then fail on assert
1584 in such a case. */
1585 BFD_ASSERT (elf_m68k_reloc_got_type (was)
1586 == elf_m68k_reloc_got_type (new_reloc));
1587
1588 was_size = elf_m68k_reloc_got_offset_size (was);
1589 }
1590
1591 new_size = elf_m68k_reloc_got_offset_size (new_reloc);
1592 n_slots = elf_m68k_reloc_got_n_slots (new_reloc);
1593
1594 while (was_size > new_size)
1595 {
1596 --was_size;
1597 got->n_slots[was_size] += n_slots;
1598 }
1599
1600 if (new_reloc > was)
1601 /* Relocations are ordered from bigger got offset size to lesser,
1602 so choose the relocation type with lesser offset size. */
1603 was = new_reloc;
1604
1605 return was;
1606 }
1607
1608 /* Add new or update existing entry to GOT.
1609 H, ABFD, TYPE and SYMNDX is data for the entry.
1610 INFO is a context where memory should be allocated. */
1611
1612 static struct elf_m68k_got_entry *
1613 elf_m68k_add_entry_to_got (struct elf_m68k_got *got,
1614 struct elf_link_hash_entry *h,
1615 const bfd *abfd,
1616 enum elf_m68k_reloc_type reloc_type,
1617 unsigned long symndx,
1618 struct bfd_link_info *info)
1619 {
1620 struct elf_m68k_got_entry_key key_;
1621 struct elf_m68k_got_entry *entry;
1622
1623 if (h != NULL && elf_m68k_hash_entry (h)->got_entry_key == 0)
1624 elf_m68k_hash_entry (h)->got_entry_key
1625 = elf_m68k_multi_got (info)->global_symndx++;
1626
1627 elf_m68k_init_got_entry_key (&key_, h, abfd, symndx, reloc_type);
1628
1629 entry = elf_m68k_get_got_entry (got, &key_, FIND_OR_CREATE, info);
1630 if (entry == NULL)
1631 return NULL;
1632
1633 /* Determine entry's type and update got->n_slots counters. */
1634 entry->key_.type = elf_m68k_update_got_entry_type (got,
1635 entry->key_.type,
1636 reloc_type);
1637
1638 /* Update refcount. */
1639 ++entry->u.s1.refcount;
1640
1641 if (entry->u.s1.refcount == 1)
1642 /* We see this entry for the first time. */
1643 {
1644 if (entry->key_.bfd != NULL)
1645 got->local_n_slots += elf_m68k_reloc_got_n_slots (entry->key_.type);
1646 }
1647
1648 BFD_ASSERT (got->n_slots[R_32] >= got->local_n_slots);
1649
1650 if ((got->n_slots[R_8]
1651 > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1652 || (got->n_slots[R_16]
1653 > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))
1654 /* This BFD has too many relocation. */
1655 {
1656 if (got->n_slots[R_8] > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1657 /* xgettext:c-format */
1658 _bfd_error_handler (_("%pB: GOT overflow: "
1659 "Number of relocations with 8-bit "
1660 "offset > %d"),
1661 abfd,
1662 ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info));
1663 else
1664 /* xgettext:c-format */
1665 _bfd_error_handler (_("%pB: GOT overflow: "
1666 "Number of relocations with 8- or 16-bit "
1667 "offset > %d"),
1668 abfd,
1669 ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info));
1670
1671 return NULL;
1672 }
1673
1674 return entry;
1675 }
1676
1677 /* Compute the hash value of the bfd in a bfd2got hash entry. */
1678
1679 static hashval_t
1680 elf_m68k_bfd2got_entry_hash (const void *entry)
1681 {
1682 const struct elf_m68k_bfd2got_entry *e;
1683
1684 e = (const struct elf_m68k_bfd2got_entry *) entry;
1685
1686 return e->bfd->id;
1687 }
1688
1689 /* Check whether two hash entries have the same bfd. */
1690
1691 static int
1692 elf_m68k_bfd2got_entry_eq (const void *entry1, const void *entry2)
1693 {
1694 const struct elf_m68k_bfd2got_entry *e1;
1695 const struct elf_m68k_bfd2got_entry *e2;
1696
1697 e1 = (const struct elf_m68k_bfd2got_entry *) entry1;
1698 e2 = (const struct elf_m68k_bfd2got_entry *) entry2;
1699
1700 return e1->bfd == e2->bfd;
1701 }
1702
1703 /* Destruct a bfd2got entry. */
1704
1705 static void
1706 elf_m68k_bfd2got_entry_del (void *_entry)
1707 {
1708 struct elf_m68k_bfd2got_entry *entry;
1709
1710 entry = (struct elf_m68k_bfd2got_entry *) _entry;
1711
1712 BFD_ASSERT (entry->got != NULL);
1713 elf_m68k_clear_got (entry->got);
1714 }
1715
1716 /* Find existing or create new (depending on HOWTO) bfd2got entry in
1717 MULTI_GOT. ABFD is the bfd we need a GOT for. INFO is a context where
1718 memory should be allocated. */
1719
1720 static struct elf_m68k_bfd2got_entry *
1721 elf_m68k_get_bfd2got_entry (struct elf_m68k_multi_got *multi_got,
1722 const bfd *abfd,
1723 enum elf_m68k_get_entry_howto howto,
1724 struct bfd_link_info *info)
1725 {
1726 struct elf_m68k_bfd2got_entry entry_;
1727 void **ptr;
1728 struct elf_m68k_bfd2got_entry *entry;
1729
1730 BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
1731
1732 if (multi_got->bfd2got == NULL)
1733 /* This is the first GOT. Initialize bfd2got. */
1734 {
1735 if (howto == SEARCH)
1736 return NULL;
1737
1738 multi_got->bfd2got = htab_try_create (1, elf_m68k_bfd2got_entry_hash,
1739 elf_m68k_bfd2got_entry_eq,
1740 elf_m68k_bfd2got_entry_del);
1741 if (multi_got->bfd2got == NULL)
1742 {
1743 bfd_set_error (bfd_error_no_memory);
1744 return NULL;
1745 }
1746 }
1747
1748 entry_.bfd = abfd;
1749 ptr = htab_find_slot (multi_got->bfd2got, &entry_, (howto != SEARCH
1750 ? INSERT : NO_INSERT));
1751 if (ptr == NULL)
1752 {
1753 if (howto == SEARCH)
1754 /* Entry not found. */
1755 return NULL;
1756
1757 /* We're out of memory. */
1758 bfd_set_error (bfd_error_no_memory);
1759 return NULL;
1760 }
1761
1762 if (*ptr == NULL)
1763 /* Entry was not found. Create new one. */
1764 {
1765 BFD_ASSERT (howto != MUST_FIND && howto != SEARCH);
1766
1767 entry = ((struct elf_m68k_bfd2got_entry *)
1768 bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry)));
1769 if (entry == NULL)
1770 return NULL;
1771
1772 entry->bfd = abfd;
1773
1774 entry->got = elf_m68k_create_empty_got (info);
1775 if (entry->got == NULL)
1776 return NULL;
1777
1778 *ptr = entry;
1779 }
1780 else
1781 {
1782 BFD_ASSERT (howto != MUST_CREATE);
1783
1784 /* Return existing entry. */
1785 entry = *ptr;
1786 }
1787
1788 return entry;
1789 }
1790
1791 struct elf_m68k_can_merge_gots_arg
1792 {
1793 /* A current_got that we constructing a DIFF against. */
1794 struct elf_m68k_got *big;
1795
1796 /* GOT holding entries not present or that should be changed in
1797 BIG. */
1798 struct elf_m68k_got *diff;
1799
1800 /* Context where to allocate memory. */
1801 struct bfd_link_info *info;
1802
1803 /* Error flag. */
1804 bfd_boolean error_p;
1805 };
1806
1807 /* Process a single entry from the small GOT to see if it should be added
1808 or updated in the big GOT. */
1809
1810 static int
1811 elf_m68k_can_merge_gots_1 (void **_entry_ptr, void *_arg)
1812 {
1813 const struct elf_m68k_got_entry *entry1;
1814 struct elf_m68k_can_merge_gots_arg *arg;
1815 const struct elf_m68k_got_entry *entry2;
1816 enum elf_m68k_reloc_type type;
1817
1818 entry1 = (const struct elf_m68k_got_entry *) *_entry_ptr;
1819 arg = (struct elf_m68k_can_merge_gots_arg *) _arg;
1820
1821 entry2 = elf_m68k_get_got_entry (arg->big, &entry1->key_, SEARCH, NULL);
1822
1823 if (entry2 != NULL)
1824 /* We found an existing entry. Check if we should update it. */
1825 {
1826 type = elf_m68k_update_got_entry_type (arg->diff,
1827 entry2->key_.type,
1828 entry1->key_.type);
1829
1830 if (type == entry2->key_.type)
1831 /* ENTRY1 doesn't update data in ENTRY2. Skip it.
1832 To skip creation of difference entry we use the type,
1833 which we won't see in GOT entries for sure. */
1834 type = R_68K_max;
1835 }
1836 else
1837 /* We didn't find the entry. Add entry1 to DIFF. */
1838 {
1839 BFD_ASSERT (entry1->key_.type != R_68K_max);
1840
1841 type = elf_m68k_update_got_entry_type (arg->diff,
1842 R_68K_max, entry1->key_.type);
1843
1844 if (entry1->key_.bfd != NULL)
1845 arg->diff->local_n_slots += elf_m68k_reloc_got_n_slots (type);
1846 }
1847
1848 if (type != R_68K_max)
1849 /* Create an entry in DIFF. */
1850 {
1851 struct elf_m68k_got_entry *entry;
1852
1853 entry = elf_m68k_get_got_entry (arg->diff, &entry1->key_, MUST_CREATE,
1854 arg->info);
1855 if (entry == NULL)
1856 {
1857 arg->error_p = TRUE;
1858 return 0;
1859 }
1860
1861 entry->key_.type = type;
1862 }
1863
1864 return 1;
1865 }
1866
1867 /* Return TRUE if SMALL GOT can be added to BIG GOT without overflowing it.
1868 Construct DIFF GOT holding the entries which should be added or updated
1869 in BIG GOT to accumulate information from SMALL.
1870 INFO is the context where memory should be allocated. */
1871
1872 static bfd_boolean
1873 elf_m68k_can_merge_gots (struct elf_m68k_got *big,
1874 const struct elf_m68k_got *small,
1875 struct bfd_link_info *info,
1876 struct elf_m68k_got *diff)
1877 {
1878 struct elf_m68k_can_merge_gots_arg arg_;
1879
1880 BFD_ASSERT (small->offset == (bfd_vma) -1);
1881
1882 arg_.big = big;
1883 arg_.diff = diff;
1884 arg_.info = info;
1885 arg_.error_p = FALSE;
1886 htab_traverse_noresize (small->entries, elf_m68k_can_merge_gots_1, &arg_);
1887 if (arg_.error_p)
1888 {
1889 diff->offset = 0;
1890 return FALSE;
1891 }
1892
1893 /* Check for overflow. */
1894 if ((big->n_slots[R_8] + arg_.diff->n_slots[R_8]
1895 > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1896 || (big->n_slots[R_16] + arg_.diff->n_slots[R_16]
1897 > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))
1898 return FALSE;
1899
1900 return TRUE;
1901 }
1902
1903 struct elf_m68k_merge_gots_arg
1904 {
1905 /* The BIG got. */
1906 struct elf_m68k_got *big;
1907
1908 /* Context where memory should be allocated. */
1909 struct bfd_link_info *info;
1910
1911 /* Error flag. */
1912 bfd_boolean error_p;
1913 };
1914
1915 /* Process a single entry from DIFF got. Add or update corresponding
1916 entry in the BIG got. */
1917
1918 static int
1919 elf_m68k_merge_gots_1 (void **entry_ptr, void *_arg)
1920 {
1921 const struct elf_m68k_got_entry *from;
1922 struct elf_m68k_merge_gots_arg *arg;
1923 struct elf_m68k_got_entry *to;
1924
1925 from = (const struct elf_m68k_got_entry *) *entry_ptr;
1926 arg = (struct elf_m68k_merge_gots_arg *) _arg;
1927
1928 to = elf_m68k_get_got_entry (arg->big, &from->key_, FIND_OR_CREATE,
1929 arg->info);
1930 if (to == NULL)
1931 {
1932 arg->error_p = TRUE;
1933 return 0;
1934 }
1935
1936 BFD_ASSERT (to->u.s1.refcount == 0);
1937 /* All we need to merge is TYPE. */
1938 to->key_.type = from->key_.type;
1939
1940 return 1;
1941 }
1942
1943 /* Merge data from DIFF to BIG. INFO is context where memory should be
1944 allocated. */
1945
1946 static bfd_boolean
1947 elf_m68k_merge_gots (struct elf_m68k_got *big,
1948 struct elf_m68k_got *diff,
1949 struct bfd_link_info *info)
1950 {
1951 if (diff->entries != NULL)
1952 /* DIFF is not empty. Merge it into BIG GOT. */
1953 {
1954 struct elf_m68k_merge_gots_arg arg_;
1955
1956 /* Merge entries. */
1957 arg_.big = big;
1958 arg_.info = info;
1959 arg_.error_p = FALSE;
1960 htab_traverse_noresize (diff->entries, elf_m68k_merge_gots_1, &arg_);
1961 if (arg_.error_p)
1962 return FALSE;
1963
1964 /* Merge counters. */
1965 big->n_slots[R_8] += diff->n_slots[R_8];
1966 big->n_slots[R_16] += diff->n_slots[R_16];
1967 big->n_slots[R_32] += diff->n_slots[R_32];
1968 big->local_n_slots += diff->local_n_slots;
1969 }
1970 else
1971 /* DIFF is empty. */
1972 {
1973 BFD_ASSERT (diff->n_slots[R_8] == 0);
1974 BFD_ASSERT (diff->n_slots[R_16] == 0);
1975 BFD_ASSERT (diff->n_slots[R_32] == 0);
1976 BFD_ASSERT (diff->local_n_slots == 0);
1977 }
1978
1979 BFD_ASSERT (!elf_m68k_hash_table (info)->allow_multigot_p
1980 || ((big->n_slots[R_8]
1981 <= ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1982 && (big->n_slots[R_16]
1983 <= ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info))));
1984
1985 return TRUE;
1986 }
1987
1988 struct elf_m68k_finalize_got_offsets_arg
1989 {
1990 /* Ranges of the offsets for GOT entries.
1991 R_x entries receive offsets between offset1[R_x] and offset2[R_x].
1992 R_x is R_8, R_16 and R_32. */
1993 bfd_vma *offset1;
1994 bfd_vma *offset2;
1995
1996 /* Mapping from global symndx to global symbols.
1997 This is used to build lists of got entries for global symbols. */
1998 struct elf_m68k_link_hash_entry **symndx2h;
1999
2000 bfd_vma n_ldm_entries;
2001 };
2002
2003 /* Assign ENTRY an offset. Build list of GOT entries for global symbols
2004 along the way. */
2005
2006 static int
2007 elf_m68k_finalize_got_offsets_1 (void **entry_ptr, void *_arg)
2008 {
2009 struct elf_m68k_got_entry *entry;
2010 struct elf_m68k_finalize_got_offsets_arg *arg;
2011
2012 enum elf_m68k_got_offset_size got_offset_size;
2013 bfd_vma entry_size;
2014
2015 entry = (struct elf_m68k_got_entry *) *entry_ptr;
2016 arg = (struct elf_m68k_finalize_got_offsets_arg *) _arg;
2017
2018 /* This should be a fresh entry created in elf_m68k_can_merge_gots. */
2019 BFD_ASSERT (entry->u.s1.refcount == 0);
2020
2021 /* Get GOT offset size for the entry . */
2022 got_offset_size = elf_m68k_reloc_got_offset_size (entry->key_.type);
2023
2024 /* Calculate entry size in bytes. */
2025 entry_size = 4 * elf_m68k_reloc_got_n_slots (entry->key_.type);
2026
2027 /* Check if we should switch to negative range of the offsets. */
2028 if (arg->offset1[got_offset_size] + entry_size
2029 > arg->offset2[got_offset_size])
2030 {
2031 /* Verify that this is the only switch to negative range for
2032 got_offset_size. If this assertion fails, then we've miscalculated
2033 range for got_offset_size entries in
2034 elf_m68k_finalize_got_offsets. */
2035 BFD_ASSERT (arg->offset2[got_offset_size]
2036 != arg->offset2[-(int) got_offset_size - 1]);
2037
2038 /* Switch. */
2039 arg->offset1[got_offset_size] = arg->offset1[-(int) got_offset_size - 1];
2040 arg->offset2[got_offset_size] = arg->offset2[-(int) got_offset_size - 1];
2041
2042 /* Verify that now we have enough room for the entry. */
2043 BFD_ASSERT (arg->offset1[got_offset_size] + entry_size
2044 <= arg->offset2[got_offset_size]);
2045 }
2046
2047 /* Assign offset to entry. */
2048 entry->u.s2.offset = arg->offset1[got_offset_size];
2049 arg->offset1[got_offset_size] += entry_size;
2050
2051 if (entry->key_.bfd == NULL)
2052 /* Hook up this entry into the list of got_entries of H. */
2053 {
2054 struct elf_m68k_link_hash_entry *h;
2055
2056 h = arg->symndx2h[entry->key_.symndx];
2057 if (h != NULL)
2058 {
2059 entry->u.s2.next = h->glist;
2060 h->glist = entry;
2061 }
2062 else
2063 /* This should be the entry for TLS_LDM relocation then. */
2064 {
2065 BFD_ASSERT ((elf_m68k_reloc_got_type (entry->key_.type)
2066 == R_68K_TLS_LDM32)
2067 && entry->key_.symndx == 0);
2068
2069 ++arg->n_ldm_entries;
2070 }
2071 }
2072 else
2073 /* This entry is for local symbol. */
2074 entry->u.s2.next = NULL;
2075
2076 return 1;
2077 }
2078
2079 /* Assign offsets within GOT. USE_NEG_GOT_OFFSETS_P indicates if we
2080 should use negative offsets.
2081 Build list of GOT entries for global symbols along the way.
2082 SYMNDX2H is mapping from global symbol indices to actual
2083 global symbols.
2084 Return offset at which next GOT should start. */
2085
2086 static void
2087 elf_m68k_finalize_got_offsets (struct elf_m68k_got *got,
2088 bfd_boolean use_neg_got_offsets_p,
2089 struct elf_m68k_link_hash_entry **symndx2h,
2090 bfd_vma *final_offset, bfd_vma *n_ldm_entries)
2091 {
2092 struct elf_m68k_finalize_got_offsets_arg arg_;
2093 bfd_vma offset1_[2 * R_LAST];
2094 bfd_vma offset2_[2 * R_LAST];
2095 int i;
2096 bfd_vma start_offset;
2097
2098 BFD_ASSERT (got->offset != (bfd_vma) -1);
2099
2100 /* We set entry offsets relative to the .got section (and not the
2101 start of a particular GOT), so that we can use them in
2102 finish_dynamic_symbol without needing to know the GOT which they come
2103 from. */
2104
2105 /* Put offset1 in the middle of offset1_, same for offset2. */
2106 arg_.offset1 = offset1_ + R_LAST;
2107 arg_.offset2 = offset2_ + R_LAST;
2108
2109 start_offset = got->offset;
2110
2111 if (use_neg_got_offsets_p)
2112 /* Setup both negative and positive ranges for R_8, R_16 and R_32. */
2113 i = -(int) R_32 - 1;
2114 else
2115 /* Setup positives ranges for R_8, R_16 and R_32. */
2116 i = (int) R_8;
2117
2118 for (; i <= (int) R_32; ++i)
2119 {
2120 int j;
2121 size_t n;
2122
2123 /* Set beginning of the range of offsets I. */
2124 arg_.offset1[i] = start_offset;
2125
2126 /* Calculate number of slots that require I offsets. */
2127 j = (i >= 0) ? i : -i - 1;
2128 n = (j >= 1) ? got->n_slots[j - 1] : 0;
2129 n = got->n_slots[j] - n;
2130
2131 if (use_neg_got_offsets_p && n != 0)
2132 {
2133 if (i < 0)
2134 /* We first fill the positive side of the range, so we might
2135 end up with one empty slot at that side when we can't fit
2136 whole 2-slot entry. Account for that at negative side of
2137 the interval with one additional entry. */
2138 n = n / 2 + 1;
2139 else
2140 /* When the number of slots is odd, make positive side of the
2141 range one entry bigger. */
2142 n = (n + 1) / 2;
2143 }
2144
2145 /* N is the number of slots that require I offsets.
2146 Calculate length of the range for I offsets. */
2147 n = 4 * n;
2148
2149 /* Set end of the range. */
2150 arg_.offset2[i] = start_offset + n;
2151
2152 start_offset = arg_.offset2[i];
2153 }
2154
2155 if (!use_neg_got_offsets_p)
2156 /* Make sure that if we try to switch to negative offsets in
2157 elf_m68k_finalize_got_offsets_1, the assert therein will catch
2158 the bug. */
2159 for (i = R_8; i <= R_32; ++i)
2160 arg_.offset2[-i - 1] = arg_.offset2[i];
2161
2162 /* Setup got->offset. offset1[R_8] is either in the middle or at the
2163 beginning of GOT depending on use_neg_got_offsets_p. */
2164 got->offset = arg_.offset1[R_8];
2165
2166 arg_.symndx2h = symndx2h;
2167 arg_.n_ldm_entries = 0;
2168
2169 /* Assign offsets. */
2170 htab_traverse (got->entries, elf_m68k_finalize_got_offsets_1, &arg_);
2171
2172 /* Check offset ranges we have actually assigned. */
2173 for (i = (int) R_8; i <= (int) R_32; ++i)
2174 BFD_ASSERT (arg_.offset2[i] - arg_.offset1[i] <= 4);
2175
2176 *final_offset = start_offset;
2177 *n_ldm_entries = arg_.n_ldm_entries;
2178 }
2179
2180 struct elf_m68k_partition_multi_got_arg
2181 {
2182 /* The GOT we are adding entries to. Aka big got. */
2183 struct elf_m68k_got *current_got;
2184
2185 /* Offset to assign the next CURRENT_GOT. */
2186 bfd_vma offset;
2187
2188 /* Context where memory should be allocated. */
2189 struct bfd_link_info *info;
2190
2191 /* Total number of slots in the .got section.
2192 This is used to calculate size of the .got and .rela.got sections. */
2193 bfd_vma n_slots;
2194
2195 /* Difference in numbers of allocated slots in the .got section
2196 and necessary relocations in the .rela.got section.
2197 This is used to calculate size of the .rela.got section. */
2198 bfd_vma slots_relas_diff;
2199
2200 /* Error flag. */
2201 bfd_boolean error_p;
2202
2203 /* Mapping from global symndx to global symbols.
2204 This is used to build lists of got entries for global symbols. */
2205 struct elf_m68k_link_hash_entry **symndx2h;
2206 };
2207
2208 static void
2209 elf_m68k_partition_multi_got_2 (struct elf_m68k_partition_multi_got_arg *arg)
2210 {
2211 bfd_vma n_ldm_entries;
2212
2213 elf_m68k_finalize_got_offsets (arg->current_got,
2214 (elf_m68k_hash_table (arg->info)
2215 ->use_neg_got_offsets_p),
2216 arg->symndx2h,
2217 &arg->offset, &n_ldm_entries);
2218
2219 arg->n_slots += arg->current_got->n_slots[R_32];
2220
2221 if (!bfd_link_pic (arg->info))
2222 /* If we are generating a shared object, we need to
2223 output a R_68K_RELATIVE reloc so that the dynamic
2224 linker can adjust this GOT entry. Overwise we
2225 don't need space in .rela.got for local symbols. */
2226 arg->slots_relas_diff += arg->current_got->local_n_slots;
2227
2228 /* @LDM relocations require a 2-slot GOT entry, but only
2229 one relocation. Account for that. */
2230 arg->slots_relas_diff += n_ldm_entries;
2231
2232 BFD_ASSERT (arg->slots_relas_diff <= arg->n_slots);
2233 }
2234
2235
2236 /* Process a single BFD2GOT entry and either merge GOT to CURRENT_GOT
2237 or start a new CURRENT_GOT. */
2238
2239 static int
2240 elf_m68k_partition_multi_got_1 (void **_entry, void *_arg)
2241 {
2242 struct elf_m68k_bfd2got_entry *entry;
2243 struct elf_m68k_partition_multi_got_arg *arg;
2244 struct elf_m68k_got *got;
2245 struct elf_m68k_got diff_;
2246 struct elf_m68k_got *diff;
2247
2248 entry = (struct elf_m68k_bfd2got_entry *) *_entry;
2249 arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
2250
2251 got = entry->got;
2252 BFD_ASSERT (got != NULL);
2253 BFD_ASSERT (got->offset == (bfd_vma) -1);
2254
2255 diff = NULL;
2256
2257 if (arg->current_got != NULL)
2258 /* Construct diff. */
2259 {
2260 diff = &diff_;
2261 elf_m68k_init_got (diff);
2262
2263 if (!elf_m68k_can_merge_gots (arg->current_got, got, arg->info, diff))
2264 {
2265 if (diff->offset == 0)
2266 /* Offset set to 0 in the diff_ indicates an error. */
2267 {
2268 arg->error_p = TRUE;
2269 goto final_return;
2270 }
2271
2272 if (elf_m68k_hash_table (arg->info)->allow_multigot_p)
2273 {
2274 elf_m68k_clear_got (diff);
2275 /* Schedule to finish up current_got and start new one. */
2276 diff = NULL;
2277 }
2278 /* else
2279 Merge GOTs no matter what. If big GOT overflows,
2280 we'll fail in relocate_section due to truncated relocations.
2281
2282 ??? May be fail earlier? E.g., in can_merge_gots. */
2283 }
2284 }
2285 else
2286 /* Diff of got against empty current_got is got itself. */
2287 {
2288 /* Create empty current_got to put subsequent GOTs to. */
2289 arg->current_got = elf_m68k_create_empty_got (arg->info);
2290 if (arg->current_got == NULL)
2291 {
2292 arg->error_p = TRUE;
2293 goto final_return;
2294 }
2295
2296 arg->current_got->offset = arg->offset;
2297
2298 diff = got;
2299 }
2300
2301 if (diff != NULL)
2302 {
2303 if (!elf_m68k_merge_gots (arg->current_got, diff, arg->info))
2304 {
2305 arg->error_p = TRUE;
2306 goto final_return;
2307 }
2308
2309 /* Now we can free GOT. */
2310 elf_m68k_clear_got (got);
2311
2312 entry->got = arg->current_got;
2313 }
2314 else
2315 {
2316 /* Finish up current_got. */
2317 elf_m68k_partition_multi_got_2 (arg);
2318
2319 /* Schedule to start a new current_got. */
2320 arg->current_got = NULL;
2321
2322 /* Retry. */
2323 if (!elf_m68k_partition_multi_got_1 (_entry, _arg))
2324 {
2325 BFD_ASSERT (arg->error_p);
2326 goto final_return;
2327 }
2328 }
2329
2330 final_return:
2331 if (diff != NULL)
2332 elf_m68k_clear_got (diff);
2333
2334 return !arg->error_p;
2335 }
2336
2337 /* Helper function to build symndx2h mapping. */
2338
2339 static bfd_boolean
2340 elf_m68k_init_symndx2h_1 (struct elf_link_hash_entry *_h,
2341 void *_arg)
2342 {
2343 struct elf_m68k_link_hash_entry *h;
2344
2345 h = elf_m68k_hash_entry (_h);
2346
2347 if (h->got_entry_key != 0)
2348 /* H has at least one entry in the GOT. */
2349 {
2350 struct elf_m68k_partition_multi_got_arg *arg;
2351
2352 arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
2353
2354 BFD_ASSERT (arg->symndx2h[h->got_entry_key] == NULL);
2355 arg->symndx2h[h->got_entry_key] = h;
2356 }
2357
2358 return TRUE;
2359 }
2360
2361 /* Merge GOTs of some BFDs, assign offsets to GOT entries and build
2362 lists of GOT entries for global symbols.
2363 Calculate sizes of .got and .rela.got sections. */
2364
2365 static bfd_boolean
2366 elf_m68k_partition_multi_got (struct bfd_link_info *info)
2367 {
2368 struct elf_m68k_multi_got *multi_got;
2369 struct elf_m68k_partition_multi_got_arg arg_;
2370
2371 multi_got = elf_m68k_multi_got (info);
2372
2373 arg_.current_got = NULL;
2374 arg_.offset = 0;
2375 arg_.info = info;
2376 arg_.n_slots = 0;
2377 arg_.slots_relas_diff = 0;
2378 arg_.error_p = FALSE;
2379
2380 if (multi_got->bfd2got != NULL)
2381 {
2382 /* Initialize symndx2h mapping. */
2383 {
2384 arg_.symndx2h = bfd_zmalloc (multi_got->global_symndx
2385 * sizeof (*arg_.symndx2h));
2386 if (arg_.symndx2h == NULL)
2387 return FALSE;
2388
2389 elf_link_hash_traverse (elf_hash_table (info),
2390 elf_m68k_init_symndx2h_1, &arg_);
2391 }
2392
2393 /* Partition. */
2394 htab_traverse (multi_got->bfd2got, elf_m68k_partition_multi_got_1,
2395 &arg_);
2396 if (arg_.error_p)
2397 {
2398 free (arg_.symndx2h);
2399 arg_.symndx2h = NULL;
2400
2401 return FALSE;
2402 }
2403
2404 /* Finish up last current_got. */
2405 elf_m68k_partition_multi_got_2 (&arg_);
2406
2407 free (arg_.symndx2h);
2408 }
2409
2410 if (elf_hash_table (info)->dynobj != NULL)
2411 /* Set sizes of .got and .rela.got sections. */
2412 {
2413 asection *s;
2414
2415 s = elf_hash_table (info)->sgot;
2416 if (s != NULL)
2417 s->size = arg_.offset;
2418 else
2419 BFD_ASSERT (arg_.offset == 0);
2420
2421 BFD_ASSERT (arg_.slots_relas_diff <= arg_.n_slots);
2422 arg_.n_slots -= arg_.slots_relas_diff;
2423
2424 s = elf_hash_table (info)->srelgot;
2425 if (s != NULL)
2426 s->size = arg_.n_slots * sizeof (Elf32_External_Rela);
2427 else
2428 BFD_ASSERT (arg_.n_slots == 0);
2429 }
2430 else
2431 BFD_ASSERT (multi_got->bfd2got == NULL);
2432
2433 return TRUE;
2434 }
2435
2436 /* Copy any information related to dynamic linking from a pre-existing
2437 symbol to a newly created symbol. Also called to copy flags and
2438 other back-end info to a weakdef, in which case the symbol is not
2439 newly created and plt/got refcounts and dynamic indices should not
2440 be copied. */
2441
2442 static void
2443 elf_m68k_copy_indirect_symbol (struct bfd_link_info *info,
2444 struct elf_link_hash_entry *_dir,
2445 struct elf_link_hash_entry *_ind)
2446 {
2447 struct elf_m68k_link_hash_entry *dir;
2448 struct elf_m68k_link_hash_entry *ind;
2449
2450 _bfd_elf_link_hash_copy_indirect (info, _dir, _ind);
2451
2452 if (_ind->root.type != bfd_link_hash_indirect)
2453 return;
2454
2455 dir = elf_m68k_hash_entry (_dir);
2456 ind = elf_m68k_hash_entry (_ind);
2457
2458 /* Any absolute non-dynamic relocations against an indirect or weak
2459 definition will be against the target symbol. */
2460 _dir->non_got_ref |= _ind->non_got_ref;
2461
2462 /* We might have a direct symbol already having entries in the GOTs.
2463 Update its key only in case indirect symbol has GOT entries and
2464 assert that both indirect and direct symbols don't have GOT entries
2465 at the same time. */
2466 if (ind->got_entry_key != 0)
2467 {
2468 BFD_ASSERT (dir->got_entry_key == 0);
2469 /* Assert that GOTs aren't partioned yet. */
2470 BFD_ASSERT (ind->glist == NULL);
2471
2472 dir->got_entry_key = ind->got_entry_key;
2473 ind->got_entry_key = 0;
2474 }
2475 }
2476
2477 /* Look through the relocs for a section during the first phase, and
2478 allocate space in the global offset table or procedure linkage
2479 table. */
2480
2481 static bfd_boolean
2482 elf_m68k_check_relocs (bfd *abfd,
2483 struct bfd_link_info *info,
2484 asection *sec,
2485 const Elf_Internal_Rela *relocs)
2486 {
2487 bfd *dynobj;
2488 Elf_Internal_Shdr *symtab_hdr;
2489 struct elf_link_hash_entry **sym_hashes;
2490 const Elf_Internal_Rela *rel;
2491 const Elf_Internal_Rela *rel_end;
2492 asection *sreloc;
2493 struct elf_m68k_got *got;
2494
2495 if (bfd_link_relocatable (info))
2496 return TRUE;
2497
2498 dynobj = elf_hash_table (info)->dynobj;
2499 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2500 sym_hashes = elf_sym_hashes (abfd);
2501
2502 sreloc = NULL;
2503
2504 got = NULL;
2505
2506 rel_end = relocs + sec->reloc_count;
2507 for (rel = relocs; rel < rel_end; rel++)
2508 {
2509 unsigned long r_symndx;
2510 struct elf_link_hash_entry *h;
2511
2512 r_symndx = ELF32_R_SYM (rel->r_info);
2513
2514 if (r_symndx < symtab_hdr->sh_info)
2515 h = NULL;
2516 else
2517 {
2518 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2519 while (h->root.type == bfd_link_hash_indirect
2520 || h->root.type == bfd_link_hash_warning)
2521 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2522 }
2523
2524 switch (ELF32_R_TYPE (rel->r_info))
2525 {
2526 case R_68K_GOT8:
2527 case R_68K_GOT16:
2528 case R_68K_GOT32:
2529 if (h != NULL
2530 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2531 break;
2532 /* Fall through. */
2533
2534 /* Relative GOT relocations. */
2535 case R_68K_GOT8O:
2536 case R_68K_GOT16O:
2537 case R_68K_GOT32O:
2538 /* Fall through. */
2539
2540 /* TLS relocations. */
2541 case R_68K_TLS_GD8:
2542 case R_68K_TLS_GD16:
2543 case R_68K_TLS_GD32:
2544 case R_68K_TLS_LDM8:
2545 case R_68K_TLS_LDM16:
2546 case R_68K_TLS_LDM32:
2547 case R_68K_TLS_IE8:
2548 case R_68K_TLS_IE16:
2549 case R_68K_TLS_IE32:
2550
2551 case R_68K_TLS_TPREL32:
2552 case R_68K_TLS_DTPREL32:
2553
2554 if (ELF32_R_TYPE (rel->r_info) == R_68K_TLS_TPREL32
2555 && bfd_link_pic (info))
2556 /* Do the special chorus for libraries with static TLS. */
2557 info->flags |= DF_STATIC_TLS;
2558
2559 /* This symbol requires a global offset table entry. */
2560
2561 if (dynobj == NULL)
2562 {
2563 /* Create the .got section. */
2564 elf_hash_table (info)->dynobj = dynobj = abfd;
2565 if (!_bfd_elf_create_got_section (dynobj, info))
2566 return FALSE;
2567 }
2568
2569 if (got == NULL)
2570 {
2571 struct elf_m68k_bfd2got_entry *bfd2got_entry;
2572
2573 bfd2got_entry
2574 = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
2575 abfd, FIND_OR_CREATE, info);
2576 if (bfd2got_entry == NULL)
2577 return FALSE;
2578
2579 got = bfd2got_entry->got;
2580 BFD_ASSERT (got != NULL);
2581 }
2582
2583 {
2584 struct elf_m68k_got_entry *got_entry;
2585
2586 /* Add entry to got. */
2587 got_entry = elf_m68k_add_entry_to_got (got, h, abfd,
2588 ELF32_R_TYPE (rel->r_info),
2589 r_symndx, info);
2590 if (got_entry == NULL)
2591 return FALSE;
2592
2593 if (got_entry->u.s1.refcount == 1)
2594 {
2595 /* Make sure this symbol is output as a dynamic symbol. */
2596 if (h != NULL
2597 && h->dynindx == -1
2598 && !h->forced_local)
2599 {
2600 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2601 return FALSE;
2602 }
2603 }
2604 }
2605
2606 break;
2607
2608 case R_68K_PLT8:
2609 case R_68K_PLT16:
2610 case R_68K_PLT32:
2611 /* This symbol requires a procedure linkage table entry. We
2612 actually build the entry in adjust_dynamic_symbol,
2613 because this might be a case of linking PIC code which is
2614 never referenced by a dynamic object, in which case we
2615 don't need to generate a procedure linkage table entry
2616 after all. */
2617
2618 /* If this is a local symbol, we resolve it directly without
2619 creating a procedure linkage table entry. */
2620 if (h == NULL)
2621 continue;
2622
2623 h->needs_plt = 1;
2624 h->plt.refcount++;
2625 break;
2626
2627 case R_68K_PLT8O:
2628 case R_68K_PLT16O:
2629 case R_68K_PLT32O:
2630 /* This symbol requires a procedure linkage table entry. */
2631
2632 if (h == NULL)
2633 {
2634 /* It does not make sense to have this relocation for a
2635 local symbol. FIXME: does it? How to handle it if
2636 it does make sense? */
2637 bfd_set_error (bfd_error_bad_value);
2638 return FALSE;
2639 }
2640
2641 /* Make sure this symbol is output as a dynamic symbol. */
2642 if (h->dynindx == -1
2643 && !h->forced_local)
2644 {
2645 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2646 return FALSE;
2647 }
2648
2649 h->needs_plt = 1;
2650 h->plt.refcount++;
2651 break;
2652
2653 case R_68K_PC8:
2654 case R_68K_PC16:
2655 case R_68K_PC32:
2656 /* If we are creating a shared library and this is not a local
2657 symbol, we need to copy the reloc into the shared library.
2658 However when linking with -Bsymbolic and this is a global
2659 symbol which is defined in an object we are including in the
2660 link (i.e., DEF_REGULAR is set), then we can resolve the
2661 reloc directly. At this point we have not seen all the input
2662 files, so it is possible that DEF_REGULAR is not set now but
2663 will be set later (it is never cleared). We account for that
2664 possibility below by storing information in the
2665 pcrel_relocs_copied field of the hash table entry. */
2666 if (!(bfd_link_pic (info)
2667 && (sec->flags & SEC_ALLOC) != 0
2668 && h != NULL
2669 && (!SYMBOLIC_BIND (info, h)
2670 || h->root.type == bfd_link_hash_defweak
2671 || !h->def_regular)))
2672 {
2673 if (h != NULL)
2674 {
2675 /* Make sure a plt entry is created for this symbol if
2676 it turns out to be a function defined by a dynamic
2677 object. */
2678 h->plt.refcount++;
2679 }
2680 break;
2681 }
2682 /* Fall through. */
2683 case R_68K_8:
2684 case R_68K_16:
2685 case R_68K_32:
2686 /* We don't need to handle relocs into sections not going into
2687 the "real" output. */
2688 if ((sec->flags & SEC_ALLOC) == 0)
2689 break;
2690
2691 if (h != NULL)
2692 {
2693 /* Make sure a plt entry is created for this symbol if it
2694 turns out to be a function defined by a dynamic object. */
2695 h->plt.refcount++;
2696
2697 if (bfd_link_executable (info))
2698 /* This symbol needs a non-GOT reference. */
2699 h->non_got_ref = 1;
2700 }
2701
2702 /* If we are creating a shared library, we need to copy the
2703 reloc into the shared library. */
2704 if (bfd_link_pic (info)
2705 && (h == NULL
2706 || !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)))
2707 {
2708 /* When creating a shared object, we must copy these
2709 reloc types into the output file. We create a reloc
2710 section in dynobj and make room for this reloc. */
2711 if (sreloc == NULL)
2712 {
2713 sreloc = _bfd_elf_make_dynamic_reloc_section
2714 (sec, dynobj, 2, abfd, /*rela?*/ TRUE);
2715
2716 if (sreloc == NULL)
2717 return FALSE;
2718 }
2719
2720 if (sec->flags & SEC_READONLY
2721 /* Don't set DF_TEXTREL yet for PC relative
2722 relocations, they might be discarded later. */
2723 && !(ELF32_R_TYPE (rel->r_info) == R_68K_PC8
2724 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
2725 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32))
2726 info->flags |= DF_TEXTREL;
2727
2728 sreloc->size += sizeof (Elf32_External_Rela);
2729
2730 /* We count the number of PC relative relocations we have
2731 entered for this symbol, so that we can discard them
2732 again if, in the -Bsymbolic case, the symbol is later
2733 defined by a regular object, or, in the normal shared
2734 case, the symbol is forced to be local. Note that this
2735 function is only called if we are using an m68kelf linker
2736 hash table, which means that h is really a pointer to an
2737 elf_m68k_link_hash_entry. */
2738 if (ELF32_R_TYPE (rel->r_info) == R_68K_PC8
2739 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
2740 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32)
2741 {
2742 struct elf_m68k_pcrel_relocs_copied *p;
2743 struct elf_m68k_pcrel_relocs_copied **head;
2744
2745 if (h != NULL)
2746 {
2747 struct elf_m68k_link_hash_entry *eh
2748 = elf_m68k_hash_entry (h);
2749 head = &eh->pcrel_relocs_copied;
2750 }
2751 else
2752 {
2753 asection *s;
2754 void *vpp;
2755 Elf_Internal_Sym *isym;
2756
2757 isym = bfd_sym_from_r_symndx (&elf_m68k_hash_table (info)->sym_cache,
2758 abfd, r_symndx);
2759 if (isym == NULL)
2760 return FALSE;
2761
2762 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
2763 if (s == NULL)
2764 s = sec;
2765
2766 vpp = &elf_section_data (s)->local_dynrel;
2767 head = (struct elf_m68k_pcrel_relocs_copied **) vpp;
2768 }
2769
2770 for (p = *head; p != NULL; p = p->next)
2771 if (p->section == sreloc)
2772 break;
2773
2774 if (p == NULL)
2775 {
2776 p = ((struct elf_m68k_pcrel_relocs_copied *)
2777 bfd_alloc (dynobj, (bfd_size_type) sizeof *p));
2778 if (p == NULL)
2779 return FALSE;
2780 p->next = *head;
2781 *head = p;
2782 p->section = sreloc;
2783 p->count = 0;
2784 }
2785
2786 ++p->count;
2787 }
2788 }
2789
2790 break;
2791
2792 /* This relocation describes the C++ object vtable hierarchy.
2793 Reconstruct it for later use during GC. */
2794 case R_68K_GNU_VTINHERIT:
2795 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2796 return FALSE;
2797 break;
2798
2799 /* This relocation describes which C++ vtable entries are actually
2800 used. Record for later use during GC. */
2801 case R_68K_GNU_VTENTRY:
2802 BFD_ASSERT (h != NULL);
2803 if (h != NULL
2804 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2805 return FALSE;
2806 break;
2807
2808 default:
2809 break;
2810 }
2811 }
2812
2813 return TRUE;
2814 }
2815
2816 /* Return the section that should be marked against GC for a given
2817 relocation. */
2818
2819 static asection *
2820 elf_m68k_gc_mark_hook (asection *sec,
2821 struct bfd_link_info *info,
2822 Elf_Internal_Rela *rel,
2823 struct elf_link_hash_entry *h,
2824 Elf_Internal_Sym *sym)
2825 {
2826 if (h != NULL)
2827 switch (ELF32_R_TYPE (rel->r_info))
2828 {
2829 case R_68K_GNU_VTINHERIT:
2830 case R_68K_GNU_VTENTRY:
2831 return NULL;
2832 }
2833
2834 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
2835 }
2836 \f
2837 /* Return the type of PLT associated with OUTPUT_BFD. */
2838
2839 static const struct elf_m68k_plt_info *
2840 elf_m68k_get_plt_info (bfd *output_bfd)
2841 {
2842 unsigned int features;
2843
2844 features = bfd_m68k_mach_to_features (bfd_get_mach (output_bfd));
2845 if (features & cpu32)
2846 return &elf_cpu32_plt_info;
2847 if (features & mcfisa_b)
2848 return &elf_isab_plt_info;
2849 if (features & mcfisa_c)
2850 return &elf_isac_plt_info;
2851 return &elf_m68k_plt_info;
2852 }
2853
2854 /* This function is called after all the input files have been read,
2855 and the input sections have been assigned to output sections.
2856 It's a convenient place to determine the PLT style. */
2857
2858 static bfd_boolean
2859 elf_m68k_always_size_sections (bfd *output_bfd, struct bfd_link_info *info)
2860 {
2861 /* Bind input BFDs to GOTs and calculate sizes of .got and .rela.got
2862 sections. */
2863 if (!elf_m68k_partition_multi_got (info))
2864 return FALSE;
2865
2866 elf_m68k_hash_table (info)->plt_info = elf_m68k_get_plt_info (output_bfd);
2867 return TRUE;
2868 }
2869
2870 /* Adjust a symbol defined by a dynamic object and referenced by a
2871 regular object. The current definition is in some section of the
2872 dynamic object, but we're not including those sections. We have to
2873 change the definition to something the rest of the link can
2874 understand. */
2875
2876 static bfd_boolean
2877 elf_m68k_adjust_dynamic_symbol (struct bfd_link_info *info,
2878 struct elf_link_hash_entry *h)
2879 {
2880 struct elf_m68k_link_hash_table *htab;
2881 bfd *dynobj;
2882 asection *s;
2883
2884 htab = elf_m68k_hash_table (info);
2885 dynobj = htab->root.dynobj;
2886
2887 /* Make sure we know what is going on here. */
2888 BFD_ASSERT (dynobj != NULL
2889 && (h->needs_plt
2890 || h->is_weakalias
2891 || (h->def_dynamic
2892 && h->ref_regular
2893 && !h->def_regular)));
2894
2895 /* If this is a function, put it in the procedure linkage table. We
2896 will fill in the contents of the procedure linkage table later,
2897 when we know the address of the .got section. */
2898 if (h->type == STT_FUNC
2899 || h->needs_plt)
2900 {
2901 if ((h->plt.refcount <= 0
2902 || SYMBOL_CALLS_LOCAL (info, h)
2903 || ((ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2904 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
2905 && h->root.type == bfd_link_hash_undefweak))
2906 /* We must always create the plt entry if it was referenced
2907 by a PLTxxO relocation. In this case we already recorded
2908 it as a dynamic symbol. */
2909 && h->dynindx == -1)
2910 {
2911 /* This case can occur if we saw a PLTxx reloc in an input
2912 file, but the symbol was never referred to by a dynamic
2913 object, or if all references were garbage collected. In
2914 such a case, we don't actually need to build a procedure
2915 linkage table, and we can just do a PCxx reloc instead. */
2916 h->plt.offset = (bfd_vma) -1;
2917 h->needs_plt = 0;
2918 return TRUE;
2919 }
2920
2921 /* Make sure this symbol is output as a dynamic symbol. */
2922 if (h->dynindx == -1
2923 && !h->forced_local)
2924 {
2925 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2926 return FALSE;
2927 }
2928
2929 s = htab->root.splt;
2930 BFD_ASSERT (s != NULL);
2931
2932 /* If this is the first .plt entry, make room for the special
2933 first entry. */
2934 if (s->size == 0)
2935 s->size = htab->plt_info->size;
2936
2937 /* If this symbol is not defined in a regular file, and we are
2938 not generating a shared library, then set the symbol to this
2939 location in the .plt. This is required to make function
2940 pointers compare as equal between the normal executable and
2941 the shared library. */
2942 if (!bfd_link_pic (info)
2943 && !h->def_regular)
2944 {
2945 h->root.u.def.section = s;
2946 h->root.u.def.value = s->size;
2947 }
2948
2949 h->plt.offset = s->size;
2950
2951 /* Make room for this entry. */
2952 s->size += htab->plt_info->size;
2953
2954 /* We also need to make an entry in the .got.plt section, which
2955 will be placed in the .got section by the linker script. */
2956 s = htab->root.sgotplt;
2957 BFD_ASSERT (s != NULL);
2958 s->size += 4;
2959
2960 /* We also need to make an entry in the .rela.plt section. */
2961 s = htab->root.srelplt;
2962 BFD_ASSERT (s != NULL);
2963 s->size += sizeof (Elf32_External_Rela);
2964
2965 return TRUE;
2966 }
2967
2968 /* Reinitialize the plt offset now that it is not used as a reference
2969 count any more. */
2970 h->plt.offset = (bfd_vma) -1;
2971
2972 /* If this is a weak symbol, and there is a real definition, the
2973 processor independent code will have arranged for us to see the
2974 real definition first, and we can just use the same value. */
2975 if (h->is_weakalias)
2976 {
2977 struct elf_link_hash_entry *def = weakdef (h);
2978 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
2979 h->root.u.def.section = def->root.u.def.section;
2980 h->root.u.def.value = def->root.u.def.value;
2981 return TRUE;
2982 }
2983
2984 /* This is a reference to a symbol defined by a dynamic object which
2985 is not a function. */
2986
2987 /* If we are creating a shared library, we must presume that the
2988 only references to the symbol are via the global offset table.
2989 For such cases we need not do anything here; the relocations will
2990 be handled correctly by relocate_section. */
2991 if (bfd_link_pic (info))
2992 return TRUE;
2993
2994 /* If there are no references to this symbol that do not use the
2995 GOT, we don't need to generate a copy reloc. */
2996 if (!h->non_got_ref)
2997 return TRUE;
2998
2999 /* We must allocate the symbol in our .dynbss section, which will
3000 become part of the .bss section of the executable. There will be
3001 an entry for this symbol in the .dynsym section. The dynamic
3002 object will contain position independent code, so all references
3003 from the dynamic object to this symbol will go through the global
3004 offset table. The dynamic linker will use the .dynsym entry to
3005 determine the address it must put in the global offset table, so
3006 both the dynamic object and the regular object will refer to the
3007 same memory location for the variable. */
3008
3009 s = bfd_get_linker_section (dynobj, ".dynbss");
3010 BFD_ASSERT (s != NULL);
3011
3012 /* We must generate a R_68K_COPY reloc to tell the dynamic linker to
3013 copy the initial value out of the dynamic object and into the
3014 runtime process image. We need to remember the offset into the
3015 .rela.bss section we are going to use. */
3016 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
3017 {
3018 asection *srel;
3019
3020 srel = bfd_get_linker_section (dynobj, ".rela.bss");
3021 BFD_ASSERT (srel != NULL);
3022 srel->size += sizeof (Elf32_External_Rela);
3023 h->needs_copy = 1;
3024 }
3025
3026 return _bfd_elf_adjust_dynamic_copy (info, h, s);
3027 }
3028
3029 /* Set the sizes of the dynamic sections. */
3030
3031 static bfd_boolean
3032 elf_m68k_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
3033 struct bfd_link_info *info)
3034 {
3035 bfd *dynobj;
3036 asection *s;
3037 bfd_boolean plt;
3038 bfd_boolean relocs;
3039
3040 dynobj = elf_hash_table (info)->dynobj;
3041 BFD_ASSERT (dynobj != NULL);
3042
3043 if (elf_hash_table (info)->dynamic_sections_created)
3044 {
3045 /* Set the contents of the .interp section to the interpreter. */
3046 if (bfd_link_executable (info) && !info->nointerp)
3047 {
3048 s = bfd_get_linker_section (dynobj, ".interp");
3049 BFD_ASSERT (s != NULL);
3050 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
3051 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
3052 }
3053 }
3054 else
3055 {
3056 /* We may have created entries in the .rela.got section.
3057 However, if we are not creating the dynamic sections, we will
3058 not actually use these entries. Reset the size of .rela.got,
3059 which will cause it to get stripped from the output file
3060 below. */
3061 s = elf_hash_table (info)->srelgot;
3062 if (s != NULL)
3063 s->size = 0;
3064 }
3065
3066 /* If this is a -Bsymbolic shared link, then we need to discard all
3067 PC relative relocs against symbols defined in a regular object.
3068 For the normal shared case we discard the PC relative relocs
3069 against symbols that have become local due to visibility changes.
3070 We allocated space for them in the check_relocs routine, but we
3071 will not fill them in in the relocate_section routine. */
3072 if (bfd_link_pic (info))
3073 elf_link_hash_traverse (elf_hash_table (info),
3074 elf_m68k_discard_copies,
3075 info);
3076
3077 /* The check_relocs and adjust_dynamic_symbol entry points have
3078 determined the sizes of the various dynamic sections. Allocate
3079 memory for them. */
3080 plt = FALSE;
3081 relocs = FALSE;
3082 for (s = dynobj->sections; s != NULL; s = s->next)
3083 {
3084 const char *name;
3085
3086 if ((s->flags & SEC_LINKER_CREATED) == 0)
3087 continue;
3088
3089 /* It's OK to base decisions on the section name, because none
3090 of the dynobj section names depend upon the input files. */
3091 name = bfd_get_section_name (dynobj, s);
3092
3093 if (strcmp (name, ".plt") == 0)
3094 {
3095 /* Remember whether there is a PLT. */
3096 plt = s->size != 0;
3097 }
3098 else if (CONST_STRNEQ (name, ".rela"))
3099 {
3100 if (s->size != 0)
3101 {
3102 relocs = TRUE;
3103
3104 /* We use the reloc_count field as a counter if we need
3105 to copy relocs into the output file. */
3106 s->reloc_count = 0;
3107 }
3108 }
3109 else if (! CONST_STRNEQ (name, ".got")
3110 && strcmp (name, ".dynbss") != 0)
3111 {
3112 /* It's not one of our sections, so don't allocate space. */
3113 continue;
3114 }
3115
3116 if (s->size == 0)
3117 {
3118 /* If we don't need this section, strip it from the
3119 output file. This is mostly to handle .rela.bss and
3120 .rela.plt. We must create both sections in
3121 create_dynamic_sections, because they must be created
3122 before the linker maps input sections to output
3123 sections. The linker does that before
3124 adjust_dynamic_symbol is called, and it is that
3125 function which decides whether anything needs to go
3126 into these sections. */
3127 s->flags |= SEC_EXCLUDE;
3128 continue;
3129 }
3130
3131 if ((s->flags & SEC_HAS_CONTENTS) == 0)
3132 continue;
3133
3134 /* Allocate memory for the section contents. */
3135 /* FIXME: This should be a call to bfd_alloc not bfd_zalloc.
3136 Unused entries should be reclaimed before the section's contents
3137 are written out, but at the moment this does not happen. Thus in
3138 order to prevent writing out garbage, we initialise the section's
3139 contents to zero. */
3140 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
3141 if (s->contents == NULL)
3142 return FALSE;
3143 }
3144
3145 if (elf_hash_table (info)->dynamic_sections_created)
3146 {
3147 /* Add some entries to the .dynamic section. We fill in the
3148 values later, in elf_m68k_finish_dynamic_sections, but we
3149 must add the entries now so that we get the correct size for
3150 the .dynamic section. The DT_DEBUG entry is filled in by the
3151 dynamic linker and used by the debugger. */
3152 #define add_dynamic_entry(TAG, VAL) \
3153 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3154
3155 if (bfd_link_executable (info))
3156 {
3157 if (!add_dynamic_entry (DT_DEBUG, 0))
3158 return FALSE;
3159 }
3160
3161 if (plt)
3162 {
3163 if (!add_dynamic_entry (DT_PLTGOT, 0)
3164 || !add_dynamic_entry (DT_PLTRELSZ, 0)
3165 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
3166 || !add_dynamic_entry (DT_JMPREL, 0))
3167 return FALSE;
3168 }
3169
3170 if (relocs)
3171 {
3172 if (!add_dynamic_entry (DT_RELA, 0)
3173 || !add_dynamic_entry (DT_RELASZ, 0)
3174 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
3175 return FALSE;
3176 }
3177
3178 if ((info->flags & DF_TEXTREL) != 0)
3179 {
3180 if (!add_dynamic_entry (DT_TEXTREL, 0))
3181 return FALSE;
3182 }
3183 }
3184 #undef add_dynamic_entry
3185
3186 return TRUE;
3187 }
3188
3189 /* This function is called via elf_link_hash_traverse if we are
3190 creating a shared object. In the -Bsymbolic case it discards the
3191 space allocated to copy PC relative relocs against symbols which
3192 are defined in regular objects. For the normal shared case, it
3193 discards space for pc-relative relocs that have become local due to
3194 symbol visibility changes. We allocated space for them in the
3195 check_relocs routine, but we won't fill them in in the
3196 relocate_section routine.
3197
3198 We also check whether any of the remaining relocations apply
3199 against a readonly section, and set the DF_TEXTREL flag in this
3200 case. */
3201
3202 static bfd_boolean
3203 elf_m68k_discard_copies (struct elf_link_hash_entry *h,
3204 void * inf)
3205 {
3206 struct bfd_link_info *info = (struct bfd_link_info *) inf;
3207 struct elf_m68k_pcrel_relocs_copied *s;
3208
3209 if (!SYMBOL_CALLS_LOCAL (info, h))
3210 {
3211 if ((info->flags & DF_TEXTREL) == 0)
3212 {
3213 /* Look for relocations against read-only sections. */
3214 for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
3215 s != NULL;
3216 s = s->next)
3217 if ((s->section->flags & SEC_READONLY) != 0)
3218 {
3219 info->flags |= DF_TEXTREL;
3220 break;
3221 }
3222 }
3223
3224 /* Make sure undefined weak symbols are output as a dynamic symbol
3225 in PIEs. */
3226 if (h->non_got_ref
3227 && h->root.type == bfd_link_hash_undefweak
3228 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3229 && h->dynindx == -1
3230 && !h->forced_local)
3231 {
3232 if (! bfd_elf_link_record_dynamic_symbol (info, h))
3233 return FALSE;
3234 }
3235
3236 return TRUE;
3237 }
3238
3239 for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
3240 s != NULL;
3241 s = s->next)
3242 s->section->size -= s->count * sizeof (Elf32_External_Rela);
3243
3244 return TRUE;
3245 }
3246
3247
3248 /* Install relocation RELA. */
3249
3250 static void
3251 elf_m68k_install_rela (bfd *output_bfd,
3252 asection *srela,
3253 Elf_Internal_Rela *rela)
3254 {
3255 bfd_byte *loc;
3256
3257 loc = srela->contents;
3258 loc += srela->reloc_count++ * sizeof (Elf32_External_Rela);
3259 bfd_elf32_swap_reloca_out (output_bfd, rela, loc);
3260 }
3261
3262 /* Find the base offsets for thread-local storage in this object,
3263 for GD/LD and IE/LE respectively. */
3264
3265 #define DTP_OFFSET 0x8000
3266 #define TP_OFFSET 0x7000
3267
3268 static bfd_vma
3269 dtpoff_base (struct bfd_link_info *info)
3270 {
3271 /* If tls_sec is NULL, we should have signalled an error already. */
3272 if (elf_hash_table (info)->tls_sec == NULL)
3273 return 0;
3274 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
3275 }
3276
3277 static bfd_vma
3278 tpoff_base (struct bfd_link_info *info)
3279 {
3280 /* If tls_sec is NULL, we should have signalled an error already. */
3281 if (elf_hash_table (info)->tls_sec == NULL)
3282 return 0;
3283 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
3284 }
3285
3286 /* Output necessary relocation to handle a symbol during static link.
3287 This function is called from elf_m68k_relocate_section. */
3288
3289 static void
3290 elf_m68k_init_got_entry_static (struct bfd_link_info *info,
3291 bfd *output_bfd,
3292 enum elf_m68k_reloc_type r_type,
3293 asection *sgot,
3294 bfd_vma got_entry_offset,
3295 bfd_vma relocation)
3296 {
3297 switch (elf_m68k_reloc_got_type (r_type))
3298 {
3299 case R_68K_GOT32O:
3300 bfd_put_32 (output_bfd, relocation, sgot->contents + got_entry_offset);
3301 break;
3302
3303 case R_68K_TLS_GD32:
3304 /* We know the offset within the module,
3305 put it into the second GOT slot. */
3306 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
3307 sgot->contents + got_entry_offset + 4);
3308 /* FALLTHRU */
3309
3310 case R_68K_TLS_LDM32:
3311 /* Mark it as belonging to module 1, the executable. */
3312 bfd_put_32 (output_bfd, 1, sgot->contents + got_entry_offset);
3313 break;
3314
3315 case R_68K_TLS_IE32:
3316 bfd_put_32 (output_bfd, relocation - tpoff_base (info),
3317 sgot->contents + got_entry_offset);
3318 break;
3319
3320 default:
3321 BFD_ASSERT (FALSE);
3322 }
3323 }
3324
3325 /* Output necessary relocation to handle a local symbol
3326 during dynamic link.
3327 This function is called either from elf_m68k_relocate_section
3328 or from elf_m68k_finish_dynamic_symbol. */
3329
3330 static void
3331 elf_m68k_init_got_entry_local_shared (struct bfd_link_info *info,
3332 bfd *output_bfd,
3333 enum elf_m68k_reloc_type r_type,
3334 asection *sgot,
3335 bfd_vma got_entry_offset,
3336 bfd_vma relocation,
3337 asection *srela)
3338 {
3339 Elf_Internal_Rela outrel;
3340
3341 switch (elf_m68k_reloc_got_type (r_type))
3342 {
3343 case R_68K_GOT32O:
3344 /* Emit RELATIVE relocation to initialize GOT slot
3345 at run-time. */
3346 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
3347 outrel.r_addend = relocation;
3348 break;
3349
3350 case R_68K_TLS_GD32:
3351 /* We know the offset within the module,
3352 put it into the second GOT slot. */
3353 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
3354 sgot->contents + got_entry_offset + 4);
3355 /* FALLTHRU */
3356
3357 case R_68K_TLS_LDM32:
3358 /* We don't know the module number,
3359 create a relocation for it. */
3360 outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_DTPMOD32);
3361 outrel.r_addend = 0;
3362 break;
3363
3364 case R_68K_TLS_IE32:
3365 /* Emit TPREL relocation to initialize GOT slot
3366 at run-time. */
3367 outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_TPREL32);
3368 outrel.r_addend = relocation - elf_hash_table (info)->tls_sec->vma;
3369 break;
3370
3371 default:
3372 BFD_ASSERT (FALSE);
3373 }
3374
3375 /* Offset of the GOT entry. */
3376 outrel.r_offset = (sgot->output_section->vma
3377 + sgot->output_offset
3378 + got_entry_offset);
3379
3380 /* Install one of the above relocations. */
3381 elf_m68k_install_rela (output_bfd, srela, &outrel);
3382
3383 bfd_put_32 (output_bfd, outrel.r_addend, sgot->contents + got_entry_offset);
3384 }
3385
3386 /* Relocate an M68K ELF section. */
3387
3388 static bfd_boolean
3389 elf_m68k_relocate_section (bfd *output_bfd,
3390 struct bfd_link_info *info,
3391 bfd *input_bfd,
3392 asection *input_section,
3393 bfd_byte *contents,
3394 Elf_Internal_Rela *relocs,
3395 Elf_Internal_Sym *local_syms,
3396 asection **local_sections)
3397 {
3398 Elf_Internal_Shdr *symtab_hdr;
3399 struct elf_link_hash_entry **sym_hashes;
3400 asection *sgot;
3401 asection *splt;
3402 asection *sreloc;
3403 asection *srela;
3404 struct elf_m68k_got *got;
3405 Elf_Internal_Rela *rel;
3406 Elf_Internal_Rela *relend;
3407
3408 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3409 sym_hashes = elf_sym_hashes (input_bfd);
3410
3411 sgot = NULL;
3412 splt = NULL;
3413 sreloc = NULL;
3414 srela = NULL;
3415
3416 got = NULL;
3417
3418 rel = relocs;
3419 relend = relocs + input_section->reloc_count;
3420 for (; rel < relend; rel++)
3421 {
3422 int r_type;
3423 reloc_howto_type *howto;
3424 unsigned long r_symndx;
3425 struct elf_link_hash_entry *h;
3426 Elf_Internal_Sym *sym;
3427 asection *sec;
3428 bfd_vma relocation;
3429 bfd_boolean unresolved_reloc;
3430 bfd_reloc_status_type r;
3431 bfd_boolean resolved_to_zero;
3432
3433 r_type = ELF32_R_TYPE (rel->r_info);
3434 if (r_type < 0 || r_type >= (int) R_68K_max)
3435 {
3436 bfd_set_error (bfd_error_bad_value);
3437 return FALSE;
3438 }
3439 howto = howto_table + r_type;
3440
3441 r_symndx = ELF32_R_SYM (rel->r_info);
3442
3443 h = NULL;
3444 sym = NULL;
3445 sec = NULL;
3446 unresolved_reloc = FALSE;
3447
3448 if (r_symndx < symtab_hdr->sh_info)
3449 {
3450 sym = local_syms + r_symndx;
3451 sec = local_sections[r_symndx];
3452 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
3453 }
3454 else
3455 {
3456 bfd_boolean warned, ignored;
3457
3458 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3459 r_symndx, symtab_hdr, sym_hashes,
3460 h, sec, relocation,
3461 unresolved_reloc, warned, ignored);
3462 }
3463
3464 if (sec != NULL && discarded_section (sec))
3465 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3466 rel, 1, relend, howto, 0, contents);
3467
3468 if (bfd_link_relocatable (info))
3469 continue;
3470
3471 resolved_to_zero = (h != NULL
3472 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
3473
3474 switch (r_type)
3475 {
3476 case R_68K_GOT8:
3477 case R_68K_GOT16:
3478 case R_68K_GOT32:
3479 /* Relocation is to the address of the entry for this symbol
3480 in the global offset table. */
3481 if (h != NULL
3482 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3483 {
3484 if (elf_m68k_hash_table (info)->local_gp_p)
3485 {
3486 bfd_vma sgot_output_offset;
3487 bfd_vma got_offset;
3488
3489 sgot = elf_hash_table (info)->sgot;
3490
3491 if (sgot != NULL)
3492 sgot_output_offset = sgot->output_offset;
3493 else
3494 /* In this case we have a reference to
3495 _GLOBAL_OFFSET_TABLE_, but the GOT itself is
3496 empty.
3497 ??? Issue a warning? */
3498 sgot_output_offset = 0;
3499
3500 if (got == NULL)
3501 {
3502 struct elf_m68k_bfd2got_entry *bfd2got_entry;
3503
3504 bfd2got_entry
3505 = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
3506 input_bfd, SEARCH, NULL);
3507
3508 if (bfd2got_entry != NULL)
3509 {
3510 got = bfd2got_entry->got;
3511 BFD_ASSERT (got != NULL);
3512
3513 got_offset = got->offset;
3514 }
3515 else
3516 /* In this case we have a reference to
3517 _GLOBAL_OFFSET_TABLE_, but no other references
3518 accessing any GOT entries.
3519 ??? Issue a warning? */
3520 got_offset = 0;
3521 }
3522 else
3523 got_offset = got->offset;
3524
3525 /* Adjust GOT pointer to point to the GOT
3526 assigned to input_bfd. */
3527 rel->r_addend += sgot_output_offset + got_offset;
3528 }
3529 else
3530 BFD_ASSERT (got == NULL || got->offset == 0);
3531
3532 break;
3533 }
3534 /* Fall through. */
3535 case R_68K_GOT8O:
3536 case R_68K_GOT16O:
3537 case R_68K_GOT32O:
3538
3539 case R_68K_TLS_LDM32:
3540 case R_68K_TLS_LDM16:
3541 case R_68K_TLS_LDM8:
3542
3543 case R_68K_TLS_GD8:
3544 case R_68K_TLS_GD16:
3545 case R_68K_TLS_GD32:
3546
3547 case R_68K_TLS_IE8:
3548 case R_68K_TLS_IE16:
3549 case R_68K_TLS_IE32:
3550
3551 /* Relocation is the offset of the entry for this symbol in
3552 the global offset table. */
3553
3554 {
3555 struct elf_m68k_got_entry_key key_;
3556 bfd_vma *off_ptr;
3557 bfd_vma off;
3558
3559 sgot = elf_hash_table (info)->sgot;
3560 BFD_ASSERT (sgot != NULL);
3561
3562 if (got == NULL)
3563 {
3564 got = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
3565 input_bfd, MUST_FIND,
3566 NULL)->got;
3567 BFD_ASSERT (got != NULL);
3568 }
3569
3570 /* Get GOT offset for this symbol. */
3571 elf_m68k_init_got_entry_key (&key_, h, input_bfd, r_symndx,
3572 r_type);
3573 off_ptr = &elf_m68k_get_got_entry (got, &key_, MUST_FIND,
3574 NULL)->u.s2.offset;
3575 off = *off_ptr;
3576
3577 /* The offset must always be a multiple of 4. We use
3578 the least significant bit to record whether we have
3579 already generated the necessary reloc. */
3580 if ((off & 1) != 0)
3581 off &= ~1;
3582 else
3583 {
3584 if (h != NULL
3585 /* @TLSLDM relocations are bounded to the module, in
3586 which the symbol is defined -- not to the symbol
3587 itself. */
3588 && elf_m68k_reloc_got_type (r_type) != R_68K_TLS_LDM32)
3589 {
3590 bfd_boolean dyn;
3591
3592 dyn = elf_hash_table (info)->dynamic_sections_created;
3593 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
3594 bfd_link_pic (info),
3595 h)
3596 || (bfd_link_pic (info)
3597 && SYMBOL_REFERENCES_LOCAL (info, h))
3598 || ((ELF_ST_VISIBILITY (h->other)
3599 || resolved_to_zero)
3600 && h->root.type == bfd_link_hash_undefweak))
3601 {
3602 /* This is actually a static link, or it is a
3603 -Bsymbolic link and the symbol is defined
3604 locally, or the symbol was forced to be local
3605 because of a version file. We must initialize
3606 this entry in the global offset table. Since
3607 the offset must always be a multiple of 4, we
3608 use the least significant bit to record whether
3609 we have initialized it already.
3610
3611 When doing a dynamic link, we create a .rela.got
3612 relocation entry to initialize the value. This
3613 is done in the finish_dynamic_symbol routine. */
3614
3615 elf_m68k_init_got_entry_static (info,
3616 output_bfd,
3617 r_type,
3618 sgot,
3619 off,
3620 relocation);
3621
3622 *off_ptr |= 1;
3623 }
3624 else
3625 unresolved_reloc = FALSE;
3626 }
3627 else if (bfd_link_pic (info)) /* && h == NULL */
3628 /* Process local symbol during dynamic link. */
3629 {
3630 srela = elf_hash_table (info)->srelgot;
3631 BFD_ASSERT (srela != NULL);
3632
3633 elf_m68k_init_got_entry_local_shared (info,
3634 output_bfd,
3635 r_type,
3636 sgot,
3637 off,
3638 relocation,
3639 srela);
3640
3641 *off_ptr |= 1;
3642 }
3643 else /* h == NULL && !bfd_link_pic (info) */
3644 {
3645 elf_m68k_init_got_entry_static (info,
3646 output_bfd,
3647 r_type,
3648 sgot,
3649 off,
3650 relocation);
3651
3652 *off_ptr |= 1;
3653 }
3654 }
3655
3656 /* We don't use elf_m68k_reloc_got_type in the condition below
3657 because this is the only place where difference between
3658 R_68K_GOTx and R_68K_GOTxO relocations matters. */
3659 if (r_type == R_68K_GOT32O
3660 || r_type == R_68K_GOT16O
3661 || r_type == R_68K_GOT8O
3662 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_GD32
3663 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_LDM32
3664 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_IE32)
3665 {
3666 /* GOT pointer is adjusted to point to the start/middle
3667 of local GOT. Adjust the offset accordingly. */
3668 BFD_ASSERT (elf_m68k_hash_table (info)->use_neg_got_offsets_p
3669 || off >= got->offset);
3670
3671 if (elf_m68k_hash_table (info)->local_gp_p)
3672 relocation = off - got->offset;
3673 else
3674 {
3675 BFD_ASSERT (got->offset == 0);
3676 relocation = sgot->output_offset + off;
3677 }
3678
3679 /* This relocation does not use the addend. */
3680 rel->r_addend = 0;
3681 }
3682 else
3683 relocation = (sgot->output_section->vma + sgot->output_offset
3684 + off);
3685 }
3686 break;
3687
3688 case R_68K_TLS_LDO32:
3689 case R_68K_TLS_LDO16:
3690 case R_68K_TLS_LDO8:
3691 relocation -= dtpoff_base (info);
3692 break;
3693
3694 case R_68K_TLS_LE32:
3695 case R_68K_TLS_LE16:
3696 case R_68K_TLS_LE8:
3697 if (bfd_link_dll (info))
3698 {
3699 _bfd_error_handler
3700 /* xgettext:c-format */
3701 (_("%pB(%pA+%#" PRIx64 "): "
3702 "%s relocation not permitted in shared object"),
3703 input_bfd, input_section, (uint64_t) rel->r_offset,
3704 howto->name);
3705
3706 return FALSE;
3707 }
3708 else
3709 relocation -= tpoff_base (info);
3710
3711 break;
3712
3713 case R_68K_PLT8:
3714 case R_68K_PLT16:
3715 case R_68K_PLT32:
3716 /* Relocation is to the entry for this symbol in the
3717 procedure linkage table. */
3718
3719 /* Resolve a PLTxx reloc against a local symbol directly,
3720 without using the procedure linkage table. */
3721 if (h == NULL)
3722 break;
3723
3724 if (h->plt.offset == (bfd_vma) -1
3725 || !elf_hash_table (info)->dynamic_sections_created)
3726 {
3727 /* We didn't make a PLT entry for this symbol. This
3728 happens when statically linking PIC code, or when
3729 using -Bsymbolic. */
3730 break;
3731 }
3732
3733 splt = elf_hash_table (info)->splt;
3734 BFD_ASSERT (splt != NULL);
3735
3736 relocation = (splt->output_section->vma
3737 + splt->output_offset
3738 + h->plt.offset);
3739 unresolved_reloc = FALSE;
3740 break;
3741
3742 case R_68K_PLT8O:
3743 case R_68K_PLT16O:
3744 case R_68K_PLT32O:
3745 /* Relocation is the offset of the entry for this symbol in
3746 the procedure linkage table. */
3747 BFD_ASSERT (h != NULL && h->plt.offset != (bfd_vma) -1);
3748
3749 splt = elf_hash_table (info)->splt;
3750 BFD_ASSERT (splt != NULL);
3751
3752 relocation = h->plt.offset;
3753 unresolved_reloc = FALSE;
3754
3755 /* This relocation does not use the addend. */
3756 rel->r_addend = 0;
3757
3758 break;
3759
3760 case R_68K_8:
3761 case R_68K_16:
3762 case R_68K_32:
3763 case R_68K_PC8:
3764 case R_68K_PC16:
3765 case R_68K_PC32:
3766 if (bfd_link_pic (info)
3767 && r_symndx != STN_UNDEF
3768 && (input_section->flags & SEC_ALLOC) != 0
3769 && (h == NULL
3770 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3771 && !resolved_to_zero)
3772 || h->root.type != bfd_link_hash_undefweak)
3773 && ((r_type != R_68K_PC8
3774 && r_type != R_68K_PC16
3775 && r_type != R_68K_PC32)
3776 || !SYMBOL_CALLS_LOCAL (info, h)))
3777 {
3778 Elf_Internal_Rela outrel;
3779 bfd_byte *loc;
3780 bfd_boolean skip, relocate;
3781
3782 /* When generating a shared object, these relocations
3783 are copied into the output file to be resolved at run
3784 time. */
3785
3786 skip = FALSE;
3787 relocate = FALSE;
3788
3789 outrel.r_offset =
3790 _bfd_elf_section_offset (output_bfd, info, input_section,
3791 rel->r_offset);
3792 if (outrel.r_offset == (bfd_vma) -1)
3793 skip = TRUE;
3794 else if (outrel.r_offset == (bfd_vma) -2)
3795 skip = TRUE, relocate = TRUE;
3796 outrel.r_offset += (input_section->output_section->vma
3797 + input_section->output_offset);
3798
3799 if (skip)
3800 memset (&outrel, 0, sizeof outrel);
3801 else if (h != NULL
3802 && h->dynindx != -1
3803 && (r_type == R_68K_PC8
3804 || r_type == R_68K_PC16
3805 || r_type == R_68K_PC32
3806 || !bfd_link_pic (info)
3807 || !SYMBOLIC_BIND (info, h)
3808 || !h->def_regular))
3809 {
3810 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
3811 outrel.r_addend = rel->r_addend;
3812 }
3813 else
3814 {
3815 /* This symbol is local, or marked to become local. */
3816 outrel.r_addend = relocation + rel->r_addend;
3817
3818 if (r_type == R_68K_32)
3819 {
3820 relocate = TRUE;
3821 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
3822 }
3823 else
3824 {
3825 long indx;
3826
3827 if (bfd_is_abs_section (sec))
3828 indx = 0;
3829 else if (sec == NULL || sec->owner == NULL)
3830 {
3831 bfd_set_error (bfd_error_bad_value);
3832 return FALSE;
3833 }
3834 else
3835 {
3836 asection *osec;
3837
3838 /* We are turning this relocation into one
3839 against a section symbol. It would be
3840 proper to subtract the symbol's value,
3841 osec->vma, from the emitted reloc addend,
3842 but ld.so expects buggy relocs. */
3843 osec = sec->output_section;
3844 indx = elf_section_data (osec)->dynindx;
3845 if (indx == 0)
3846 {
3847 struct elf_link_hash_table *htab;
3848 htab = elf_hash_table (info);
3849 osec = htab->text_index_section;
3850 indx = elf_section_data (osec)->dynindx;
3851 }
3852 BFD_ASSERT (indx != 0);
3853 }
3854
3855 outrel.r_info = ELF32_R_INFO (indx, r_type);
3856 }
3857 }
3858
3859 sreloc = elf_section_data (input_section)->sreloc;
3860 if (sreloc == NULL)
3861 abort ();
3862
3863 loc = sreloc->contents;
3864 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3865 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3866
3867 /* This reloc will be computed at runtime, so there's no
3868 need to do anything now, except for R_68K_32
3869 relocations that have been turned into
3870 R_68K_RELATIVE. */
3871 if (!relocate)
3872 continue;
3873 }
3874
3875 break;
3876
3877 case R_68K_GNU_VTINHERIT:
3878 case R_68K_GNU_VTENTRY:
3879 /* These are no-ops in the end. */
3880 continue;
3881
3882 default:
3883 break;
3884 }
3885
3886 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3887 because such sections are not SEC_ALLOC and thus ld.so will
3888 not process them. */
3889 if (unresolved_reloc
3890 && !((input_section->flags & SEC_DEBUGGING) != 0
3891 && h->def_dynamic)
3892 && _bfd_elf_section_offset (output_bfd, info, input_section,
3893 rel->r_offset) != (bfd_vma) -1)
3894 {
3895 _bfd_error_handler
3896 /* xgettext:c-format */
3897 (_("%pB(%pA+%#" PRIx64 "): "
3898 "unresolvable %s relocation against symbol `%s'"),
3899 input_bfd,
3900 input_section,
3901 (uint64_t) rel->r_offset,
3902 howto->name,
3903 h->root.root.string);
3904 return FALSE;
3905 }
3906
3907 if (r_symndx != STN_UNDEF
3908 && r_type != R_68K_NONE
3909 && (h == NULL
3910 || h->root.type == bfd_link_hash_defined
3911 || h->root.type == bfd_link_hash_defweak))
3912 {
3913 char sym_type;
3914
3915 sym_type = (sym != NULL) ? ELF32_ST_TYPE (sym->st_info) : h->type;
3916
3917 if (elf_m68k_reloc_tls_p (r_type) != (sym_type == STT_TLS))
3918 {
3919 const char *name;
3920
3921 if (h != NULL)
3922 name = h->root.root.string;
3923 else
3924 {
3925 name = (bfd_elf_string_from_elf_section
3926 (input_bfd, symtab_hdr->sh_link, sym->st_name));
3927 if (name == NULL || *name == '\0')
3928 name = bfd_section_name (input_bfd, sec);
3929 }
3930
3931 _bfd_error_handler
3932 ((sym_type == STT_TLS
3933 /* xgettext:c-format */
3934 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
3935 /* xgettext:c-format */
3936 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
3937 input_bfd,
3938 input_section,
3939 (uint64_t) rel->r_offset,
3940 howto->name,
3941 name);
3942 }
3943 }
3944
3945 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
3946 contents, rel->r_offset,
3947 relocation, rel->r_addend);
3948
3949 if (r != bfd_reloc_ok)
3950 {
3951 const char *name;
3952
3953 if (h != NULL)
3954 name = h->root.root.string;
3955 else
3956 {
3957 name = bfd_elf_string_from_elf_section (input_bfd,
3958 symtab_hdr->sh_link,
3959 sym->st_name);
3960 if (name == NULL)
3961 return FALSE;
3962 if (*name == '\0')
3963 name = bfd_section_name (input_bfd, sec);
3964 }
3965
3966 if (r == bfd_reloc_overflow)
3967 (*info->callbacks->reloc_overflow)
3968 (info, (h ? &h->root : NULL), name, howto->name,
3969 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
3970 else
3971 {
3972 _bfd_error_handler
3973 /* xgettext:c-format */
3974 (_("%pB(%pA+%#" PRIx64 "): reloc against `%s': error %d"),
3975 input_bfd, input_section,
3976 (uint64_t) rel->r_offset, name, (int) r);
3977 return FALSE;
3978 }
3979 }
3980 }
3981
3982 return TRUE;
3983 }
3984
3985 /* Install an M_68K_PC32 relocation against VALUE at offset OFFSET
3986 into section SEC. */
3987
3988 static void
3989 elf_m68k_install_pc32 (asection *sec, bfd_vma offset, bfd_vma value)
3990 {
3991 /* Make VALUE PC-relative. */
3992 value -= sec->output_section->vma + offset;
3993
3994 /* Apply any in-place addend. */
3995 value += bfd_get_32 (sec->owner, sec->contents + offset);
3996
3997 bfd_put_32 (sec->owner, value, sec->contents + offset);
3998 }
3999
4000 /* Finish up dynamic symbol handling. We set the contents of various
4001 dynamic sections here. */
4002
4003 static bfd_boolean
4004 elf_m68k_finish_dynamic_symbol (bfd *output_bfd,
4005 struct bfd_link_info *info,
4006 struct elf_link_hash_entry *h,
4007 Elf_Internal_Sym *sym)
4008 {
4009 bfd *dynobj;
4010
4011 dynobj = elf_hash_table (info)->dynobj;
4012
4013 if (h->plt.offset != (bfd_vma) -1)
4014 {
4015 const struct elf_m68k_plt_info *plt_info;
4016 asection *splt;
4017 asection *sgot;
4018 asection *srela;
4019 bfd_vma plt_index;
4020 bfd_vma got_offset;
4021 Elf_Internal_Rela rela;
4022 bfd_byte *loc;
4023
4024 /* This symbol has an entry in the procedure linkage table. Set
4025 it up. */
4026
4027 BFD_ASSERT (h->dynindx != -1);
4028
4029 plt_info = elf_m68k_hash_table (info)->plt_info;
4030 splt = elf_hash_table (info)->splt;
4031 sgot = elf_hash_table (info)->sgotplt;
4032 srela = elf_hash_table (info)->srelplt;
4033 BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL);
4034
4035 /* Get the index in the procedure linkage table which
4036 corresponds to this symbol. This is the index of this symbol
4037 in all the symbols for which we are making plt entries. The
4038 first entry in the procedure linkage table is reserved. */
4039 plt_index = (h->plt.offset / plt_info->size) - 1;
4040
4041 /* Get the offset into the .got table of the entry that
4042 corresponds to this function. Each .got entry is 4 bytes.
4043 The first three are reserved. */
4044 got_offset = (plt_index + 3) * 4;
4045
4046 memcpy (splt->contents + h->plt.offset,
4047 plt_info->symbol_entry,
4048 plt_info->size);
4049
4050 elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.got,
4051 (sgot->output_section->vma
4052 + sgot->output_offset
4053 + got_offset));
4054
4055 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela),
4056 splt->contents
4057 + h->plt.offset
4058 + plt_info->symbol_resolve_entry + 2);
4059
4060 elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.plt,
4061 splt->output_section->vma);
4062
4063 /* Fill in the entry in the global offset table. */
4064 bfd_put_32 (output_bfd,
4065 (splt->output_section->vma
4066 + splt->output_offset
4067 + h->plt.offset
4068 + plt_info->symbol_resolve_entry),
4069 sgot->contents + got_offset);
4070
4071 /* Fill in the entry in the .rela.plt section. */
4072 rela.r_offset = (sgot->output_section->vma
4073 + sgot->output_offset
4074 + got_offset);
4075 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_JMP_SLOT);
4076 rela.r_addend = 0;
4077 loc = srela->contents + plt_index * sizeof (Elf32_External_Rela);
4078 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4079
4080 if (!h->def_regular)
4081 {
4082 /* Mark the symbol as undefined, rather than as defined in
4083 the .plt section. Leave the value alone. */
4084 sym->st_shndx = SHN_UNDEF;
4085 }
4086 }
4087
4088 if (elf_m68k_hash_entry (h)->glist != NULL)
4089 {
4090 asection *sgot;
4091 asection *srela;
4092 struct elf_m68k_got_entry *got_entry;
4093
4094 /* This symbol has an entry in the global offset table. Set it
4095 up. */
4096
4097 sgot = elf_hash_table (info)->sgot;
4098 srela = elf_hash_table (info)->srelgot;
4099 BFD_ASSERT (sgot != NULL && srela != NULL);
4100
4101 got_entry = elf_m68k_hash_entry (h)->glist;
4102
4103 while (got_entry != NULL)
4104 {
4105 enum elf_m68k_reloc_type r_type;
4106 bfd_vma got_entry_offset;
4107
4108 r_type = got_entry->key_.type;
4109 got_entry_offset = got_entry->u.s2.offset &~ (bfd_vma) 1;
4110
4111 /* If this is a -Bsymbolic link, and the symbol is defined
4112 locally, we just want to emit a RELATIVE reloc. Likewise if
4113 the symbol was forced to be local because of a version file.
4114 The entry in the global offset table already have been
4115 initialized in the relocate_section function. */
4116 if (bfd_link_pic (info)
4117 && SYMBOL_REFERENCES_LOCAL (info, h))
4118 {
4119 bfd_vma relocation;
4120
4121 relocation = bfd_get_signed_32 (output_bfd,
4122 (sgot->contents
4123 + got_entry_offset));
4124
4125 /* Undo TP bias. */
4126 switch (elf_m68k_reloc_got_type (r_type))
4127 {
4128 case R_68K_GOT32O:
4129 case R_68K_TLS_LDM32:
4130 break;
4131
4132 case R_68K_TLS_GD32:
4133 /* The value for this relocation is actually put in
4134 the second GOT slot. */
4135 relocation = bfd_get_signed_32 (output_bfd,
4136 (sgot->contents
4137 + got_entry_offset + 4));
4138 relocation += dtpoff_base (info);
4139 break;
4140
4141 case R_68K_TLS_IE32:
4142 relocation += tpoff_base (info);
4143 break;
4144
4145 default:
4146 BFD_ASSERT (FALSE);
4147 }
4148
4149 elf_m68k_init_got_entry_local_shared (info,
4150 output_bfd,
4151 r_type,
4152 sgot,
4153 got_entry_offset,
4154 relocation,
4155 srela);
4156 }
4157 else
4158 {
4159 Elf_Internal_Rela rela;
4160
4161 /* Put zeros to GOT slots that will be initialized
4162 at run-time. */
4163 {
4164 bfd_vma n_slots;
4165
4166 n_slots = elf_m68k_reloc_got_n_slots (got_entry->key_.type);
4167 while (n_slots--)
4168 bfd_put_32 (output_bfd, (bfd_vma) 0,
4169 (sgot->contents + got_entry_offset
4170 + 4 * n_slots));
4171 }
4172
4173 rela.r_addend = 0;
4174 rela.r_offset = (sgot->output_section->vma
4175 + sgot->output_offset
4176 + got_entry_offset);
4177
4178 switch (elf_m68k_reloc_got_type (r_type))
4179 {
4180 case R_68K_GOT32O:
4181 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_GLOB_DAT);
4182 elf_m68k_install_rela (output_bfd, srela, &rela);
4183 break;
4184
4185 case R_68K_TLS_GD32:
4186 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPMOD32);
4187 elf_m68k_install_rela (output_bfd, srela, &rela);
4188
4189 rela.r_offset += 4;
4190 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPREL32);
4191 elf_m68k_install_rela (output_bfd, srela, &rela);
4192 break;
4193
4194 case R_68K_TLS_IE32:
4195 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_TPREL32);
4196 elf_m68k_install_rela (output_bfd, srela, &rela);
4197 break;
4198
4199 default:
4200 BFD_ASSERT (FALSE);
4201 break;
4202 }
4203 }
4204
4205 got_entry = got_entry->u.s2.next;
4206 }
4207 }
4208
4209 if (h->needs_copy)
4210 {
4211 asection *s;
4212 Elf_Internal_Rela rela;
4213 bfd_byte *loc;
4214
4215 /* This symbol needs a copy reloc. Set it up. */
4216
4217 BFD_ASSERT (h->dynindx != -1
4218 && (h->root.type == bfd_link_hash_defined
4219 || h->root.type == bfd_link_hash_defweak));
4220
4221 s = bfd_get_linker_section (dynobj, ".rela.bss");
4222 BFD_ASSERT (s != NULL);
4223
4224 rela.r_offset = (h->root.u.def.value
4225 + h->root.u.def.section->output_section->vma
4226 + h->root.u.def.section->output_offset);
4227 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_COPY);
4228 rela.r_addend = 0;
4229 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4230 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4231 }
4232
4233 return TRUE;
4234 }
4235
4236 /* Finish up the dynamic sections. */
4237
4238 static bfd_boolean
4239 elf_m68k_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
4240 {
4241 bfd *dynobj;
4242 asection *sgot;
4243 asection *sdyn;
4244
4245 dynobj = elf_hash_table (info)->dynobj;
4246
4247 sgot = elf_hash_table (info)->sgotplt;
4248 BFD_ASSERT (sgot != NULL);
4249 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4250
4251 if (elf_hash_table (info)->dynamic_sections_created)
4252 {
4253 asection *splt;
4254 Elf32_External_Dyn *dyncon, *dynconend;
4255
4256 splt = elf_hash_table (info)->splt;
4257 BFD_ASSERT (splt != NULL && sdyn != NULL);
4258
4259 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4260 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4261 for (; dyncon < dynconend; dyncon++)
4262 {
4263 Elf_Internal_Dyn dyn;
4264 asection *s;
4265
4266 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4267
4268 switch (dyn.d_tag)
4269 {
4270 default:
4271 break;
4272
4273 case DT_PLTGOT:
4274 s = elf_hash_table (info)->sgotplt;
4275 goto get_vma;
4276 case DT_JMPREL:
4277 s = elf_hash_table (info)->srelplt;
4278 get_vma:
4279 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4280 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4281 break;
4282
4283 case DT_PLTRELSZ:
4284 s = elf_hash_table (info)->srelplt;
4285 dyn.d_un.d_val = s->size;
4286 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4287 break;
4288 }
4289 }
4290
4291 /* Fill in the first entry in the procedure linkage table. */
4292 if (splt->size > 0)
4293 {
4294 const struct elf_m68k_plt_info *plt_info;
4295
4296 plt_info = elf_m68k_hash_table (info)->plt_info;
4297 memcpy (splt->contents, plt_info->plt0_entry, plt_info->size);
4298
4299 elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got4,
4300 (sgot->output_section->vma
4301 + sgot->output_offset
4302 + 4));
4303
4304 elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got8,
4305 (sgot->output_section->vma
4306 + sgot->output_offset
4307 + 8));
4308
4309 elf_section_data (splt->output_section)->this_hdr.sh_entsize
4310 = plt_info->size;
4311 }
4312 }
4313
4314 /* Fill in the first three entries in the global offset table. */
4315 if (sgot->size > 0)
4316 {
4317 if (sdyn == NULL)
4318 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
4319 else
4320 bfd_put_32 (output_bfd,
4321 sdyn->output_section->vma + sdyn->output_offset,
4322 sgot->contents);
4323 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
4324 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
4325 }
4326
4327 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
4328
4329 return TRUE;
4330 }
4331
4332 /* Given a .data section and a .emreloc in-memory section, store
4333 relocation information into the .emreloc section which can be
4334 used at runtime to relocate the section. This is called by the
4335 linker when the --embedded-relocs switch is used. This is called
4336 after the add_symbols entry point has been called for all the
4337 objects, and before the final_link entry point is called. */
4338
4339 bfd_boolean
4340 bfd_m68k_elf32_create_embedded_relocs (bfd *abfd, struct bfd_link_info *info,
4341 asection *datasec, asection *relsec,
4342 char **errmsg)
4343 {
4344 Elf_Internal_Shdr *symtab_hdr;
4345 Elf_Internal_Sym *isymbuf = NULL;
4346 Elf_Internal_Rela *internal_relocs = NULL;
4347 Elf_Internal_Rela *irel, *irelend;
4348 bfd_byte *p;
4349 bfd_size_type amt;
4350
4351 BFD_ASSERT (! bfd_link_relocatable (info));
4352
4353 *errmsg = NULL;
4354
4355 if (datasec->reloc_count == 0)
4356 return TRUE;
4357
4358 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4359
4360 /* Get a copy of the native relocations. */
4361 internal_relocs = (_bfd_elf_link_read_relocs
4362 (abfd, datasec, NULL, (Elf_Internal_Rela *) NULL,
4363 info->keep_memory));
4364 if (internal_relocs == NULL)
4365 goto error_return;
4366
4367 amt = (bfd_size_type) datasec->reloc_count * 12;
4368 relsec->contents = (bfd_byte *) bfd_alloc (abfd, amt);
4369 if (relsec->contents == NULL)
4370 goto error_return;
4371
4372 p = relsec->contents;
4373
4374 irelend = internal_relocs + datasec->reloc_count;
4375 for (irel = internal_relocs; irel < irelend; irel++, p += 12)
4376 {
4377 asection *targetsec;
4378
4379 /* We are going to write a four byte longword into the runtime
4380 reloc section. The longword will be the address in the data
4381 section which must be relocated. It is followed by the name
4382 of the target section NUL-padded or truncated to 8
4383 characters. */
4384
4385 /* We can only relocate absolute longword relocs at run time. */
4386 if (ELF32_R_TYPE (irel->r_info) != (int) R_68K_32)
4387 {
4388 *errmsg = _("unsupported reloc type");
4389 bfd_set_error (bfd_error_bad_value);
4390 goto error_return;
4391 }
4392
4393 /* Get the target section referred to by the reloc. */
4394 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
4395 {
4396 /* A local symbol. */
4397 Elf_Internal_Sym *isym;
4398
4399 /* Read this BFD's local symbols if we haven't done so already. */
4400 if (isymbuf == NULL)
4401 {
4402 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
4403 if (isymbuf == NULL)
4404 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
4405 symtab_hdr->sh_info, 0,
4406 NULL, NULL, NULL);
4407 if (isymbuf == NULL)
4408 goto error_return;
4409 }
4410
4411 isym = isymbuf + ELF32_R_SYM (irel->r_info);
4412 targetsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4413 }
4414 else
4415 {
4416 unsigned long indx;
4417 struct elf_link_hash_entry *h;
4418
4419 /* An external symbol. */
4420 indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
4421 h = elf_sym_hashes (abfd)[indx];
4422 BFD_ASSERT (h != NULL);
4423 if (h->root.type == bfd_link_hash_defined
4424 || h->root.type == bfd_link_hash_defweak)
4425 targetsec = h->root.u.def.section;
4426 else
4427 targetsec = NULL;
4428 }
4429
4430 bfd_put_32 (abfd, irel->r_offset + datasec->output_offset, p);
4431 memset (p + 4, 0, 8);
4432 if (targetsec != NULL)
4433 strncpy ((char *) p + 4, targetsec->output_section->name, 8);
4434 }
4435
4436 if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf)
4437 free (isymbuf);
4438 if (internal_relocs != NULL
4439 && elf_section_data (datasec)->relocs != internal_relocs)
4440 free (internal_relocs);
4441 return TRUE;
4442
4443 error_return:
4444 if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf)
4445 free (isymbuf);
4446 if (internal_relocs != NULL
4447 && elf_section_data (datasec)->relocs != internal_relocs)
4448 free (internal_relocs);
4449 return FALSE;
4450 }
4451
4452 /* Set target options. */
4453
4454 void
4455 bfd_elf_m68k_set_target_options (struct bfd_link_info *info, int got_handling)
4456 {
4457 struct elf_m68k_link_hash_table *htab;
4458 bfd_boolean use_neg_got_offsets_p;
4459 bfd_boolean allow_multigot_p;
4460 bfd_boolean local_gp_p;
4461
4462 switch (got_handling)
4463 {
4464 case 0:
4465 /* --got=single. */
4466 local_gp_p = FALSE;
4467 use_neg_got_offsets_p = FALSE;
4468 allow_multigot_p = FALSE;
4469 break;
4470
4471 case 1:
4472 /* --got=negative. */
4473 local_gp_p = TRUE;
4474 use_neg_got_offsets_p = TRUE;
4475 allow_multigot_p = FALSE;
4476 break;
4477
4478 case 2:
4479 /* --got=multigot. */
4480 local_gp_p = TRUE;
4481 use_neg_got_offsets_p = TRUE;
4482 allow_multigot_p = TRUE;
4483 break;
4484
4485 default:
4486 BFD_ASSERT (FALSE);
4487 return;
4488 }
4489
4490 htab = elf_m68k_hash_table (info);
4491 if (htab != NULL)
4492 {
4493 htab->local_gp_p = local_gp_p;
4494 htab->use_neg_got_offsets_p = use_neg_got_offsets_p;
4495 htab->allow_multigot_p = allow_multigot_p;
4496 }
4497 }
4498
4499 static enum elf_reloc_type_class
4500 elf32_m68k_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4501 const asection *rel_sec ATTRIBUTE_UNUSED,
4502 const Elf_Internal_Rela *rela)
4503 {
4504 switch ((int) ELF32_R_TYPE (rela->r_info))
4505 {
4506 case R_68K_RELATIVE:
4507 return reloc_class_relative;
4508 case R_68K_JMP_SLOT:
4509 return reloc_class_plt;
4510 case R_68K_COPY:
4511 return reloc_class_copy;
4512 default:
4513 return reloc_class_normal;
4514 }
4515 }
4516
4517 /* Return address for Ith PLT stub in section PLT, for relocation REL
4518 or (bfd_vma) -1 if it should not be included. */
4519
4520 static bfd_vma
4521 elf_m68k_plt_sym_val (bfd_vma i, const asection *plt,
4522 const arelent *rel ATTRIBUTE_UNUSED)
4523 {
4524 return plt->vma + (i + 1) * elf_m68k_get_plt_info (plt->owner)->size;
4525 }
4526
4527 /* Support for core dump NOTE sections. */
4528
4529 static bfd_boolean
4530 elf_m68k_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
4531 {
4532 int offset;
4533 size_t size;
4534
4535 switch (note->descsz)
4536 {
4537 default:
4538 return FALSE;
4539
4540 case 154: /* Linux/m68k */
4541 /* pr_cursig */
4542 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
4543
4544 /* pr_pid */
4545 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 22);
4546
4547 /* pr_reg */
4548 offset = 70;
4549 size = 80;
4550
4551 break;
4552 }
4553
4554 /* Make a ".reg/999" section. */
4555 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
4556 size, note->descpos + offset);
4557 }
4558
4559 static bfd_boolean
4560 elf_m68k_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
4561 {
4562 switch (note->descsz)
4563 {
4564 default:
4565 return FALSE;
4566
4567 case 124: /* Linux/m68k elf_prpsinfo. */
4568 elf_tdata (abfd)->core->pid
4569 = bfd_get_32 (abfd, note->descdata + 12);
4570 elf_tdata (abfd)->core->program
4571 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
4572 elf_tdata (abfd)->core->command
4573 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
4574 }
4575
4576 /* Note that for some reason, a spurious space is tacked
4577 onto the end of the args in some (at least one anyway)
4578 implementations, so strip it off if it exists. */
4579 {
4580 char *command = elf_tdata (abfd)->core->command;
4581 int n = strlen (command);
4582
4583 if (n > 0 && command[n - 1] == ' ')
4584 command[n - 1] = '\0';
4585 }
4586
4587 return TRUE;
4588 }
4589
4590 /* Hook called by the linker routine which adds symbols from an object
4591 file. */
4592
4593 static bfd_boolean
4594 elf_m68k_add_symbol_hook (bfd *abfd,
4595 struct bfd_link_info *info,
4596 Elf_Internal_Sym *sym,
4597 const char **namep ATTRIBUTE_UNUSED,
4598 flagword *flagsp ATTRIBUTE_UNUSED,
4599 asection **secp ATTRIBUTE_UNUSED,
4600 bfd_vma *valp ATTRIBUTE_UNUSED)
4601 {
4602 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
4603 && (abfd->flags & DYNAMIC) == 0
4604 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
4605 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_ifunc;
4606
4607 return TRUE;
4608 }
4609
4610 #define TARGET_BIG_SYM m68k_elf32_vec
4611 #define TARGET_BIG_NAME "elf32-m68k"
4612 #define ELF_MACHINE_CODE EM_68K
4613 #define ELF_MAXPAGESIZE 0x2000
4614 #define elf_backend_create_dynamic_sections \
4615 _bfd_elf_create_dynamic_sections
4616 #define bfd_elf32_bfd_link_hash_table_create \
4617 elf_m68k_link_hash_table_create
4618 #define bfd_elf32_bfd_final_link bfd_elf_final_link
4619
4620 #define elf_backend_check_relocs elf_m68k_check_relocs
4621 #define elf_backend_always_size_sections \
4622 elf_m68k_always_size_sections
4623 #define elf_backend_adjust_dynamic_symbol \
4624 elf_m68k_adjust_dynamic_symbol
4625 #define elf_backend_size_dynamic_sections \
4626 elf_m68k_size_dynamic_sections
4627 #define elf_backend_final_write_processing elf_m68k_final_write_processing
4628 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4629 #define elf_backend_relocate_section elf_m68k_relocate_section
4630 #define elf_backend_finish_dynamic_symbol \
4631 elf_m68k_finish_dynamic_symbol
4632 #define elf_backend_finish_dynamic_sections \
4633 elf_m68k_finish_dynamic_sections
4634 #define elf_backend_gc_mark_hook elf_m68k_gc_mark_hook
4635 #define elf_backend_copy_indirect_symbol elf_m68k_copy_indirect_symbol
4636 #define bfd_elf32_bfd_merge_private_bfd_data \
4637 elf32_m68k_merge_private_bfd_data
4638 #define bfd_elf32_bfd_set_private_flags \
4639 elf32_m68k_set_private_flags
4640 #define bfd_elf32_bfd_print_private_bfd_data \
4641 elf32_m68k_print_private_bfd_data
4642 #define elf_backend_reloc_type_class elf32_m68k_reloc_type_class
4643 #define elf_backend_plt_sym_val elf_m68k_plt_sym_val
4644 #define elf_backend_object_p elf32_m68k_object_p
4645 #define elf_backend_grok_prstatus elf_m68k_grok_prstatus
4646 #define elf_backend_grok_psinfo elf_m68k_grok_psinfo
4647 #define elf_backend_add_symbol_hook elf_m68k_add_symbol_hook
4648
4649 #define elf_backend_can_gc_sections 1
4650 #define elf_backend_can_refcount 1
4651 #define elf_backend_want_got_plt 1
4652 #define elf_backend_plt_readonly 1
4653 #define elf_backend_want_plt_sym 0
4654 #define elf_backend_got_header_size 12
4655 #define elf_backend_rela_normal 1
4656 #define elf_backend_dtrel_excludes_plt 1
4657
4658 #define elf_backend_linux_prpsinfo32_ugid16 TRUE
4659
4660 #include "elf32-target.h"
This page took 0.123404 seconds and 5 git commands to generate.