bfd/
[deliverable/binutils-gdb.git] / bfd / elf32-m68k.c
1 /* Motorola 68k series support for 32-bit ELF
2 Copyright 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf/m68k.h"
27 #include "opcode/m68k.h"
28
29 static reloc_howto_type *reloc_type_lookup
30 PARAMS ((bfd *, bfd_reloc_code_real_type));
31 static void rtype_to_howto
32 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
33 static struct bfd_hash_entry *elf_m68k_link_hash_newfunc
34 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
35 static struct bfd_link_hash_table *elf_m68k_link_hash_table_create
36 PARAMS ((bfd *));
37 static bfd_boolean elf_m68k_check_relocs
38 PARAMS ((bfd *, struct bfd_link_info *, asection *,
39 const Elf_Internal_Rela *));
40 static bfd_boolean elf_m68k_adjust_dynamic_symbol
41 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
42 static bfd_boolean elf_m68k_size_dynamic_sections
43 PARAMS ((bfd *, struct bfd_link_info *));
44 static bfd_boolean elf_m68k_discard_copies
45 PARAMS ((struct elf_link_hash_entry *, PTR));
46 static bfd_boolean elf_m68k_relocate_section
47 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
48 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
49 static bfd_boolean elf_m68k_finish_dynamic_symbol
50 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
51 Elf_Internal_Sym *));
52 static bfd_boolean elf_m68k_finish_dynamic_sections
53 PARAMS ((bfd *, struct bfd_link_info *));
54
55 static bfd_boolean elf32_m68k_set_private_flags
56 PARAMS ((bfd *, flagword));
57 static bfd_boolean elf32_m68k_merge_private_bfd_data
58 PARAMS ((bfd *, bfd *));
59 static bfd_boolean elf32_m68k_print_private_bfd_data
60 PARAMS ((bfd *, PTR));
61 static enum elf_reloc_type_class elf32_m68k_reloc_type_class
62 PARAMS ((const Elf_Internal_Rela *));
63
64 static reloc_howto_type howto_table[] = {
65 HOWTO(R_68K_NONE, 0, 0, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_NONE", FALSE, 0, 0x00000000,FALSE),
66 HOWTO(R_68K_32, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_32", FALSE, 0, 0xffffffff,FALSE),
67 HOWTO(R_68K_16, 0, 1,16, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_16", FALSE, 0, 0x0000ffff,FALSE),
68 HOWTO(R_68K_8, 0, 0, 8, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_8", FALSE, 0, 0x000000ff,FALSE),
69 HOWTO(R_68K_PC32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PC32", FALSE, 0, 0xffffffff,TRUE),
70 HOWTO(R_68K_PC16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC16", FALSE, 0, 0x0000ffff,TRUE),
71 HOWTO(R_68K_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC8", FALSE, 0, 0x000000ff,TRUE),
72 HOWTO(R_68K_GOT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32", FALSE, 0, 0xffffffff,TRUE),
73 HOWTO(R_68K_GOT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16", FALSE, 0, 0x0000ffff,TRUE),
74 HOWTO(R_68K_GOT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8", FALSE, 0, 0x000000ff,TRUE),
75 HOWTO(R_68K_GOT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32O", FALSE, 0, 0xffffffff,FALSE),
76 HOWTO(R_68K_GOT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16O", FALSE, 0, 0x0000ffff,FALSE),
77 HOWTO(R_68K_GOT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8O", FALSE, 0, 0x000000ff,FALSE),
78 HOWTO(R_68K_PLT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32", FALSE, 0, 0xffffffff,TRUE),
79 HOWTO(R_68K_PLT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16", FALSE, 0, 0x0000ffff,TRUE),
80 HOWTO(R_68K_PLT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8", FALSE, 0, 0x000000ff,TRUE),
81 HOWTO(R_68K_PLT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32O", FALSE, 0, 0xffffffff,FALSE),
82 HOWTO(R_68K_PLT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16O", FALSE, 0, 0x0000ffff,FALSE),
83 HOWTO(R_68K_PLT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8O", FALSE, 0, 0x000000ff,FALSE),
84 HOWTO(R_68K_COPY, 0, 0, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_COPY", FALSE, 0, 0xffffffff,FALSE),
85 HOWTO(R_68K_GLOB_DAT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_GLOB_DAT", FALSE, 0, 0xffffffff,FALSE),
86 HOWTO(R_68K_JMP_SLOT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_JMP_SLOT", FALSE, 0, 0xffffffff,FALSE),
87 HOWTO(R_68K_RELATIVE, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_RELATIVE", FALSE, 0, 0xffffffff,FALSE),
88 /* GNU extension to record C++ vtable hierarchy. */
89 HOWTO (R_68K_GNU_VTINHERIT, /* type */
90 0, /* rightshift */
91 2, /* size (0 = byte, 1 = short, 2 = long) */
92 0, /* bitsize */
93 FALSE, /* pc_relative */
94 0, /* bitpos */
95 complain_overflow_dont, /* complain_on_overflow */
96 NULL, /* special_function */
97 "R_68K_GNU_VTINHERIT", /* name */
98 FALSE, /* partial_inplace */
99 0, /* src_mask */
100 0, /* dst_mask */
101 FALSE),
102 /* GNU extension to record C++ vtable member usage. */
103 HOWTO (R_68K_GNU_VTENTRY, /* type */
104 0, /* rightshift */
105 2, /* size (0 = byte, 1 = short, 2 = long) */
106 0, /* bitsize */
107 FALSE, /* pc_relative */
108 0, /* bitpos */
109 complain_overflow_dont, /* complain_on_overflow */
110 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
111 "R_68K_GNU_VTENTRY", /* name */
112 FALSE, /* partial_inplace */
113 0, /* src_mask */
114 0, /* dst_mask */
115 FALSE),
116 };
117
118 static void
119 rtype_to_howto (abfd, cache_ptr, dst)
120 bfd *abfd ATTRIBUTE_UNUSED;
121 arelent *cache_ptr;
122 Elf_Internal_Rela *dst;
123 {
124 BFD_ASSERT (ELF32_R_TYPE(dst->r_info) < (unsigned int) R_68K_max);
125 cache_ptr->howto = &howto_table[ELF32_R_TYPE(dst->r_info)];
126 }
127
128 #define elf_info_to_howto rtype_to_howto
129
130 static const struct
131 {
132 bfd_reloc_code_real_type bfd_val;
133 int elf_val;
134 } reloc_map[] = {
135 { BFD_RELOC_NONE, R_68K_NONE },
136 { BFD_RELOC_32, R_68K_32 },
137 { BFD_RELOC_16, R_68K_16 },
138 { BFD_RELOC_8, R_68K_8 },
139 { BFD_RELOC_32_PCREL, R_68K_PC32 },
140 { BFD_RELOC_16_PCREL, R_68K_PC16 },
141 { BFD_RELOC_8_PCREL, R_68K_PC8 },
142 { BFD_RELOC_32_GOT_PCREL, R_68K_GOT32 },
143 { BFD_RELOC_16_GOT_PCREL, R_68K_GOT16 },
144 { BFD_RELOC_8_GOT_PCREL, R_68K_GOT8 },
145 { BFD_RELOC_32_GOTOFF, R_68K_GOT32O },
146 { BFD_RELOC_16_GOTOFF, R_68K_GOT16O },
147 { BFD_RELOC_8_GOTOFF, R_68K_GOT8O },
148 { BFD_RELOC_32_PLT_PCREL, R_68K_PLT32 },
149 { BFD_RELOC_16_PLT_PCREL, R_68K_PLT16 },
150 { BFD_RELOC_8_PLT_PCREL, R_68K_PLT8 },
151 { BFD_RELOC_32_PLTOFF, R_68K_PLT32O },
152 { BFD_RELOC_16_PLTOFF, R_68K_PLT16O },
153 { BFD_RELOC_8_PLTOFF, R_68K_PLT8O },
154 { BFD_RELOC_NONE, R_68K_COPY },
155 { BFD_RELOC_68K_GLOB_DAT, R_68K_GLOB_DAT },
156 { BFD_RELOC_68K_JMP_SLOT, R_68K_JMP_SLOT },
157 { BFD_RELOC_68K_RELATIVE, R_68K_RELATIVE },
158 { BFD_RELOC_CTOR, R_68K_32 },
159 { BFD_RELOC_VTABLE_INHERIT, R_68K_GNU_VTINHERIT },
160 { BFD_RELOC_VTABLE_ENTRY, R_68K_GNU_VTENTRY },
161 };
162
163 static reloc_howto_type *
164 reloc_type_lookup (abfd, code)
165 bfd *abfd ATTRIBUTE_UNUSED;
166 bfd_reloc_code_real_type code;
167 {
168 unsigned int i;
169 for (i = 0; i < sizeof (reloc_map) / sizeof (reloc_map[0]); i++)
170 {
171 if (reloc_map[i].bfd_val == code)
172 return &howto_table[reloc_map[i].elf_val];
173 }
174 return 0;
175 }
176
177 static reloc_howto_type *
178 reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, const char *r_name)
179 {
180 unsigned int i;
181
182 for (i = 0; i < sizeof (howto_table) / sizeof (howto_table[0]); i++)
183 if (howto_table[i].name != NULL
184 && strcasecmp (howto_table[i].name, r_name) == 0)
185 return &howto_table[i];
186
187 return NULL;
188 }
189
190 #define bfd_elf32_bfd_reloc_type_lookup reloc_type_lookup
191 #define bfd_elf32_bfd_reloc_name_lookup reloc_name_lookup
192 #define ELF_ARCH bfd_arch_m68k
193 \f
194 /* Functions for the m68k ELF linker. */
195
196 /* The name of the dynamic interpreter. This is put in the .interp
197 section. */
198
199 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
200
201 /* Describes one of the various PLT styles. */
202
203 struct elf_m68k_plt_info
204 {
205 /* The size of each PLT entry. */
206 bfd_vma size;
207
208 /* The template for the first PLT entry. */
209 const bfd_byte *plt0_entry;
210
211 /* Offsets of fields in PLT0_ENTRY that require R_68K_PC32 relocations.
212 The comments by each member indicate the value that the relocation
213 is against. */
214 struct {
215 unsigned int got4; /* .got + 4 */
216 unsigned int got8; /* .got + 8 */
217 } plt0_relocs;
218
219 /* The template for a symbol's PLT entry. */
220 const bfd_byte *symbol_entry;
221
222 /* Offsets of fields in SYMBOL_ENTRY that require R_68K_PC32 relocations.
223 The comments by each member indicate the value that the relocation
224 is against. */
225 struct {
226 unsigned int got; /* the symbol's .got.plt entry */
227 unsigned int plt; /* .plt */
228 } symbol_relocs;
229
230 /* The offset of the resolver stub from the start of SYMBOL_ENTRY.
231 The stub starts with "move.l #relocoffset,%d0". */
232 bfd_vma symbol_resolve_entry;
233 };
234
235 /* The size in bytes of an entry in the procedure linkage table. */
236
237 #define PLT_ENTRY_SIZE 20
238
239 /* The first entry in a procedure linkage table looks like this. See
240 the SVR4 ABI m68k supplement to see how this works. */
241
242 static const bfd_byte elf_m68k_plt0_entry[PLT_ENTRY_SIZE] =
243 {
244 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
245 0, 0, 0, 2, /* + (.got + 4) - . */
246 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,addr]) */
247 0, 0, 0, 2, /* + (.got + 8) - . */
248 0, 0, 0, 0 /* pad out to 20 bytes. */
249 };
250
251 /* Subsequent entries in a procedure linkage table look like this. */
252
253 static const bfd_byte elf_m68k_plt_entry[PLT_ENTRY_SIZE] =
254 {
255 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,symbol@GOTPC]) */
256 0, 0, 0, 2, /* + (.got.plt entry) - . */
257 0x2f, 0x3c, /* move.l #offset,-(%sp) */
258 0, 0, 0, 0, /* + reloc index */
259 0x60, 0xff, /* bra.l .plt */
260 0, 0, 0, 0 /* + .plt - . */
261 };
262
263 static const struct elf_m68k_plt_info elf_m68k_plt_info = {
264 PLT_ENTRY_SIZE,
265 elf_m68k_plt0_entry, { 4, 12 },
266 elf_m68k_plt_entry, { 4, 16 }, 8
267 };
268
269 #define ISAB_PLT_ENTRY_SIZE 24
270
271 static const bfd_byte elf_isab_plt0_entry[ISAB_PLT_ENTRY_SIZE] =
272 {
273 0x20, 0x3c, /* move.l #offset,%d0 */
274 0, 0, 0, 0, /* + (.got + 4) - . */
275 0x2f, 0x3b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),-(%sp) */
276 0x20, 0x3c, /* move.l #offset,%d0 */
277 0, 0, 0, 0, /* + (.got + 8) - . */
278 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
279 0x4e, 0xd0, /* jmp (%a0) */
280 0x4e, 0x71 /* nop */
281 };
282
283 /* Subsequent entries in a procedure linkage table look like this. */
284
285 static const bfd_byte elf_isab_plt_entry[ISAB_PLT_ENTRY_SIZE] =
286 {
287 0x20, 0x3c, /* move.l #offset,%d0 */
288 0, 0, 0, 0, /* + (.got.plt entry) - . */
289 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
290 0x4e, 0xd0, /* jmp (%a0) */
291 0x2f, 0x3c, /* move.l #offset,-(%sp) */
292 0, 0, 0, 0, /* + reloc index */
293 0x60, 0xff, /* bra.l .plt */
294 0, 0, 0, 0 /* + .plt - . */
295 };
296
297 static const struct elf_m68k_plt_info elf_isab_plt_info = {
298 ISAB_PLT_ENTRY_SIZE,
299 elf_isab_plt0_entry, { 2, 12 },
300 elf_isab_plt_entry, { 2, 20 }, 12
301 };
302
303 #define ISAC_PLT_ENTRY_SIZE 24
304
305 static const bfd_byte elf_isac_plt0_entry[ISAC_PLT_ENTRY_SIZE] =
306 {
307 0x20, 0x3c, /* move.l #offset,%d0 */
308 0, 0, 0, 0, /* replaced with .got + 4 - . */
309 0x2e, 0xbb, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),(%sp) */
310 0x20, 0x3c, /* move.l #offset,%d0 */
311 0, 0, 0, 0, /* replaced with .got + 8 - . */
312 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
313 0x4e, 0xd0, /* jmp (%a0) */
314 0x4e, 0x71 /* nop */
315 };
316
317 /* Subsequent entries in a procedure linkage table look like this. */
318
319 static const bfd_byte elf_isac_plt_entry[ISAC_PLT_ENTRY_SIZE] =
320 {
321 0x20, 0x3c, /* move.l #offset,%d0 */
322 0, 0, 0, 0, /* replaced with (.got entry) - . */
323 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
324 0x4e, 0xd0, /* jmp (%a0) */
325 0x2f, 0x3c, /* move.l #offset,-(%sp) */
326 0, 0, 0, 0, /* replaced with offset into relocation table */
327 0x61, 0xff, /* bsr.l .plt */
328 0, 0, 0, 0 /* replaced with .plt - . */
329 };
330
331 static const struct elf_m68k_plt_info elf_isac_plt_info = {
332 ISAC_PLT_ENTRY_SIZE,
333 elf_isac_plt0_entry, { 2, 12},
334 elf_isac_plt_entry, { 2, 20 }, 12
335 };
336
337 #define CPU32_PLT_ENTRY_SIZE 24
338 /* Procedure linkage table entries for the cpu32 */
339 static const bfd_byte elf_cpu32_plt0_entry[CPU32_PLT_ENTRY_SIZE] =
340 {
341 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
342 0, 0, 0, 2, /* + (.got + 4) - . */
343 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
344 0, 0, 0, 2, /* + (.got + 8) - . */
345 0x4e, 0xd1, /* jmp %a1@ */
346 0, 0, 0, 0, /* pad out to 24 bytes. */
347 0, 0
348 };
349
350 static const bfd_byte elf_cpu32_plt_entry[CPU32_PLT_ENTRY_SIZE] =
351 {
352 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
353 0, 0, 0, 2, /* + (.got.plt entry) - . */
354 0x4e, 0xd1, /* jmp %a1@ */
355 0x2f, 0x3c, /* move.l #offset,-(%sp) */
356 0, 0, 0, 0, /* + reloc index */
357 0x60, 0xff, /* bra.l .plt */
358 0, 0, 0, 0, /* + .plt - . */
359 0, 0
360 };
361
362 static const struct elf_m68k_plt_info elf_cpu32_plt_info = {
363 CPU32_PLT_ENTRY_SIZE,
364 elf_cpu32_plt0_entry, { 4, 12 },
365 elf_cpu32_plt_entry, { 4, 18 }, 10
366 };
367
368 /* The m68k linker needs to keep track of the number of relocs that it
369 decides to copy in check_relocs for each symbol. This is so that it
370 can discard PC relative relocs if it doesn't need them when linking
371 with -Bsymbolic. We store the information in a field extending the
372 regular ELF linker hash table. */
373
374 /* This structure keeps track of the number of PC relative relocs we have
375 copied for a given symbol. */
376
377 struct elf_m68k_pcrel_relocs_copied
378 {
379 /* Next section. */
380 struct elf_m68k_pcrel_relocs_copied *next;
381 /* A section in dynobj. */
382 asection *section;
383 /* Number of relocs copied in this section. */
384 bfd_size_type count;
385 };
386
387 /* m68k ELF linker hash entry. */
388
389 struct elf_m68k_link_hash_entry
390 {
391 struct elf_link_hash_entry root;
392
393 /* Number of PC relative relocs copied for this symbol. */
394 struct elf_m68k_pcrel_relocs_copied *pcrel_relocs_copied;
395 };
396
397 #define elf_m68k_hash_entry(ent) ((struct elf_m68k_link_hash_entry *) (ent))
398
399 /* m68k ELF linker hash table. */
400
401 struct elf_m68k_link_hash_table
402 {
403 struct elf_link_hash_table root;
404
405 /* Small local sym to section mapping cache. */
406 struct sym_sec_cache sym_sec;
407
408 /* The PLT format used by this link, or NULL if the format has not
409 yet been chosen. */
410 const struct elf_m68k_plt_info *plt_info;
411 };
412
413 /* Get the m68k ELF linker hash table from a link_info structure. */
414
415 #define elf_m68k_hash_table(p) \
416 ((struct elf_m68k_link_hash_table *) (p)->hash)
417
418 /* Create an entry in an m68k ELF linker hash table. */
419
420 static struct bfd_hash_entry *
421 elf_m68k_link_hash_newfunc (entry, table, string)
422 struct bfd_hash_entry *entry;
423 struct bfd_hash_table *table;
424 const char *string;
425 {
426 struct bfd_hash_entry *ret = entry;
427
428 /* Allocate the structure if it has not already been allocated by a
429 subclass. */
430 if (ret == NULL)
431 ret = bfd_hash_allocate (table,
432 sizeof (struct elf_m68k_link_hash_entry));
433 if (ret == NULL)
434 return ret;
435
436 /* Call the allocation method of the superclass. */
437 ret = _bfd_elf_link_hash_newfunc (ret, table, string);
438 if (ret != NULL)
439 elf_m68k_hash_entry (ret)->pcrel_relocs_copied = NULL;
440
441 return ret;
442 }
443
444 /* Create an m68k ELF linker hash table. */
445
446 static struct bfd_link_hash_table *
447 elf_m68k_link_hash_table_create (abfd)
448 bfd *abfd;
449 {
450 struct elf_m68k_link_hash_table *ret;
451 bfd_size_type amt = sizeof (struct elf_m68k_link_hash_table);
452
453 ret = (struct elf_m68k_link_hash_table *) bfd_malloc (amt);
454 if (ret == (struct elf_m68k_link_hash_table *) NULL)
455 return NULL;
456
457 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
458 elf_m68k_link_hash_newfunc,
459 sizeof (struct elf_m68k_link_hash_entry)))
460 {
461 free (ret);
462 return NULL;
463 }
464
465 ret->sym_sec.abfd = NULL;
466 ret->plt_info = NULL;
467
468 return &ret->root.root;
469 }
470
471 /* Set the right machine number. */
472
473 static bfd_boolean
474 elf32_m68k_object_p (bfd *abfd)
475 {
476 unsigned int mach = 0;
477 unsigned features = 0;
478 flagword eflags = elf_elfheader (abfd)->e_flags;
479
480 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
481 features |= m68000;
482 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
483 features |= cpu32;
484 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
485 features |= fido_a;
486 else
487 {
488 switch (eflags & EF_M68K_CF_ISA_MASK)
489 {
490 case EF_M68K_CF_ISA_A_NODIV:
491 features |= mcfisa_a;
492 break;
493 case EF_M68K_CF_ISA_A:
494 features |= mcfisa_a|mcfhwdiv;
495 break;
496 case EF_M68K_CF_ISA_A_PLUS:
497 features |= mcfisa_a|mcfisa_aa|mcfhwdiv|mcfusp;
498 break;
499 case EF_M68K_CF_ISA_B_NOUSP:
500 features |= mcfisa_a|mcfisa_b|mcfhwdiv;
501 break;
502 case EF_M68K_CF_ISA_B:
503 features |= mcfisa_a|mcfisa_b|mcfhwdiv|mcfusp;
504 break;
505 case EF_M68K_CF_ISA_C:
506 features |= mcfisa_a|mcfisa_c|mcfhwdiv|mcfusp;
507 break;
508 }
509 switch (eflags & EF_M68K_CF_MAC_MASK)
510 {
511 case EF_M68K_CF_MAC:
512 features |= mcfmac;
513 break;
514 case EF_M68K_CF_EMAC:
515 features |= mcfemac;
516 break;
517 }
518 if (eflags & EF_M68K_CF_FLOAT)
519 features |= cfloat;
520 }
521
522 mach = bfd_m68k_features_to_mach (features);
523 bfd_default_set_arch_mach (abfd, bfd_arch_m68k, mach);
524
525 return TRUE;
526 }
527
528 /* Keep m68k-specific flags in the ELF header. */
529 static bfd_boolean
530 elf32_m68k_set_private_flags (abfd, flags)
531 bfd *abfd;
532 flagword flags;
533 {
534 elf_elfheader (abfd)->e_flags = flags;
535 elf_flags_init (abfd) = TRUE;
536 return TRUE;
537 }
538
539 /* Merge backend specific data from an object file to the output
540 object file when linking. */
541 static bfd_boolean
542 elf32_m68k_merge_private_bfd_data (ibfd, obfd)
543 bfd *ibfd;
544 bfd *obfd;
545 {
546 flagword out_flags;
547 flagword in_flags;
548 flagword out_isa;
549 flagword in_isa;
550 const bfd_arch_info_type *arch_info;
551
552 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
553 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
554 return FALSE;
555
556 /* Get the merged machine. This checks for incompatibility between
557 Coldfire & non-Coldfire flags, incompability between different
558 Coldfire ISAs, and incompability between different MAC types. */
559 arch_info = bfd_arch_get_compatible (ibfd, obfd, FALSE);
560 if (!arch_info)
561 return FALSE;
562
563 bfd_set_arch_mach (obfd, bfd_arch_m68k, arch_info->mach);
564
565 in_flags = elf_elfheader (ibfd)->e_flags;
566 if (!elf_flags_init (obfd))
567 {
568 elf_flags_init (obfd) = TRUE;
569 out_flags = in_flags;
570 }
571 else
572 {
573 out_flags = elf_elfheader (obfd)->e_flags;
574 unsigned int variant_mask;
575
576 if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
577 variant_mask = 0;
578 else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
579 variant_mask = 0;
580 else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
581 variant_mask = 0;
582 else
583 variant_mask = EF_M68K_CF_ISA_MASK;
584
585 in_isa = (in_flags & variant_mask);
586 out_isa = (out_flags & variant_mask);
587 if (in_isa > out_isa)
588 out_flags ^= in_isa ^ out_isa;
589 if (((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32
590 && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
591 || ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO
592 && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32))
593 out_flags = EF_M68K_FIDO;
594 else
595 out_flags |= in_flags ^ in_isa;
596 }
597 elf_elfheader (obfd)->e_flags = out_flags;
598
599 return TRUE;
600 }
601
602 /* Display the flags field. */
603 static bfd_boolean
604 elf32_m68k_print_private_bfd_data (abfd, ptr)
605 bfd *abfd;
606 PTR ptr;
607 {
608 FILE *file = (FILE *) ptr;
609 flagword eflags = elf_elfheader (abfd)->e_flags;
610
611 BFD_ASSERT (abfd != NULL && ptr != NULL);
612
613 /* Print normal ELF private data. */
614 _bfd_elf_print_private_bfd_data (abfd, ptr);
615
616 /* Ignore init flag - it may not be set, despite the flags field containing valid data. */
617
618 /* xgettext:c-format */
619 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
620
621 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
622 fprintf (file, " [m68000]");
623 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
624 fprintf (file, " [cpu32]");
625 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
626 fprintf (file, " [fido]");
627 else
628 {
629 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CFV4E)
630 fprintf (file, " [cfv4e]");
631
632 if (eflags & EF_M68K_CF_ISA_MASK)
633 {
634 char const *isa = _("unknown");
635 char const *mac = _("unknown");
636 char const *additional = "";
637
638 switch (eflags & EF_M68K_CF_ISA_MASK)
639 {
640 case EF_M68K_CF_ISA_A_NODIV:
641 isa = "A";
642 additional = " [nodiv]";
643 break;
644 case EF_M68K_CF_ISA_A:
645 isa = "A";
646 break;
647 case EF_M68K_CF_ISA_A_PLUS:
648 isa = "A+";
649 break;
650 case EF_M68K_CF_ISA_B_NOUSP:
651 isa = "B";
652 additional = " [nousp]";
653 break;
654 case EF_M68K_CF_ISA_B:
655 isa = "B";
656 break;
657 case EF_M68K_CF_ISA_C:
658 isa = "C";
659 break;
660 }
661 fprintf (file, " [isa %s]%s", isa, additional);
662 if (eflags & EF_M68K_CF_FLOAT)
663 fprintf (file, " [float]");
664 switch (eflags & EF_M68K_CF_MAC_MASK)
665 {
666 case 0:
667 mac = NULL;
668 break;
669 case EF_M68K_CF_MAC:
670 mac = "mac";
671 break;
672 case EF_M68K_CF_EMAC:
673 mac = "emac";
674 break;
675 }
676 if (mac)
677 fprintf (file, " [%s]", mac);
678 }
679 }
680
681 fputc ('\n', file);
682
683 return TRUE;
684 }
685 /* Look through the relocs for a section during the first phase, and
686 allocate space in the global offset table or procedure linkage
687 table. */
688
689 static bfd_boolean
690 elf_m68k_check_relocs (abfd, info, sec, relocs)
691 bfd *abfd;
692 struct bfd_link_info *info;
693 asection *sec;
694 const Elf_Internal_Rela *relocs;
695 {
696 bfd *dynobj;
697 Elf_Internal_Shdr *symtab_hdr;
698 struct elf_link_hash_entry **sym_hashes;
699 bfd_signed_vma *local_got_refcounts;
700 const Elf_Internal_Rela *rel;
701 const Elf_Internal_Rela *rel_end;
702 asection *sgot;
703 asection *srelgot;
704 asection *sreloc;
705
706 if (info->relocatable)
707 return TRUE;
708
709 dynobj = elf_hash_table (info)->dynobj;
710 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
711 sym_hashes = elf_sym_hashes (abfd);
712 local_got_refcounts = elf_local_got_refcounts (abfd);
713
714 sgot = NULL;
715 srelgot = NULL;
716 sreloc = NULL;
717
718 rel_end = relocs + sec->reloc_count;
719 for (rel = relocs; rel < rel_end; rel++)
720 {
721 unsigned long r_symndx;
722 struct elf_link_hash_entry *h;
723
724 r_symndx = ELF32_R_SYM (rel->r_info);
725
726 if (r_symndx < symtab_hdr->sh_info)
727 h = NULL;
728 else
729 {
730 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
731 while (h->root.type == bfd_link_hash_indirect
732 || h->root.type == bfd_link_hash_warning)
733 h = (struct elf_link_hash_entry *) h->root.u.i.link;
734 }
735
736 switch (ELF32_R_TYPE (rel->r_info))
737 {
738 case R_68K_GOT8:
739 case R_68K_GOT16:
740 case R_68K_GOT32:
741 if (h != NULL
742 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
743 break;
744 /* Fall through. */
745 case R_68K_GOT8O:
746 case R_68K_GOT16O:
747 case R_68K_GOT32O:
748 /* This symbol requires a global offset table entry. */
749
750 if (dynobj == NULL)
751 {
752 /* Create the .got section. */
753 elf_hash_table (info)->dynobj = dynobj = abfd;
754 if (!_bfd_elf_create_got_section (dynobj, info))
755 return FALSE;
756 }
757
758 if (sgot == NULL)
759 {
760 sgot = bfd_get_section_by_name (dynobj, ".got");
761 BFD_ASSERT (sgot != NULL);
762 }
763
764 if (srelgot == NULL
765 && (h != NULL || info->shared))
766 {
767 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
768 if (srelgot == NULL)
769 {
770 srelgot = bfd_make_section_with_flags (dynobj,
771 ".rela.got",
772 (SEC_ALLOC
773 | SEC_LOAD
774 | SEC_HAS_CONTENTS
775 | SEC_IN_MEMORY
776 | SEC_LINKER_CREATED
777 | SEC_READONLY));
778 if (srelgot == NULL
779 || !bfd_set_section_alignment (dynobj, srelgot, 2))
780 return FALSE;
781 }
782 }
783
784 if (h != NULL)
785 {
786 if (h->got.refcount == 0)
787 {
788 /* Make sure this symbol is output as a dynamic symbol. */
789 if (h->dynindx == -1
790 && !h->forced_local)
791 {
792 if (!bfd_elf_link_record_dynamic_symbol (info, h))
793 return FALSE;
794 }
795
796 /* Allocate space in the .got section. */
797 sgot->size += 4;
798 /* Allocate relocation space. */
799 srelgot->size += sizeof (Elf32_External_Rela);
800 }
801 h->got.refcount++;
802 }
803 else
804 {
805 /* This is a global offset table entry for a local symbol. */
806 if (local_got_refcounts == NULL)
807 {
808 bfd_size_type size;
809
810 size = symtab_hdr->sh_info;
811 size *= sizeof (bfd_signed_vma);
812 local_got_refcounts = ((bfd_signed_vma *)
813 bfd_zalloc (abfd, size));
814 if (local_got_refcounts == NULL)
815 return FALSE;
816 elf_local_got_refcounts (abfd) = local_got_refcounts;
817 }
818 if (local_got_refcounts[r_symndx] == 0)
819 {
820 sgot->size += 4;
821 if (info->shared)
822 {
823 /* If we are generating a shared object, we need to
824 output a R_68K_RELATIVE reloc so that the dynamic
825 linker can adjust this GOT entry. */
826 srelgot->size += sizeof (Elf32_External_Rela);
827 }
828 }
829 local_got_refcounts[r_symndx]++;
830 }
831 break;
832
833 case R_68K_PLT8:
834 case R_68K_PLT16:
835 case R_68K_PLT32:
836 /* This symbol requires a procedure linkage table entry. We
837 actually build the entry in adjust_dynamic_symbol,
838 because this might be a case of linking PIC code which is
839 never referenced by a dynamic object, in which case we
840 don't need to generate a procedure linkage table entry
841 after all. */
842
843 /* If this is a local symbol, we resolve it directly without
844 creating a procedure linkage table entry. */
845 if (h == NULL)
846 continue;
847
848 h->needs_plt = 1;
849 h->plt.refcount++;
850 break;
851
852 case R_68K_PLT8O:
853 case R_68K_PLT16O:
854 case R_68K_PLT32O:
855 /* This symbol requires a procedure linkage table entry. */
856
857 if (h == NULL)
858 {
859 /* It does not make sense to have this relocation for a
860 local symbol. FIXME: does it? How to handle it if
861 it does make sense? */
862 bfd_set_error (bfd_error_bad_value);
863 return FALSE;
864 }
865
866 /* Make sure this symbol is output as a dynamic symbol. */
867 if (h->dynindx == -1
868 && !h->forced_local)
869 {
870 if (!bfd_elf_link_record_dynamic_symbol (info, h))
871 return FALSE;
872 }
873
874 h->needs_plt = 1;
875 h->plt.refcount++;
876 break;
877
878 case R_68K_PC8:
879 case R_68K_PC16:
880 case R_68K_PC32:
881 /* If we are creating a shared library and this is not a local
882 symbol, we need to copy the reloc into the shared library.
883 However when linking with -Bsymbolic and this is a global
884 symbol which is defined in an object we are including in the
885 link (i.e., DEF_REGULAR is set), then we can resolve the
886 reloc directly. At this point we have not seen all the input
887 files, so it is possible that DEF_REGULAR is not set now but
888 will be set later (it is never cleared). We account for that
889 possibility below by storing information in the
890 pcrel_relocs_copied field of the hash table entry. */
891 if (!(info->shared
892 && (sec->flags & SEC_ALLOC) != 0
893 && h != NULL
894 && (!info->symbolic
895 || h->root.type == bfd_link_hash_defweak
896 || !h->def_regular)))
897 {
898 if (h != NULL)
899 {
900 /* Make sure a plt entry is created for this symbol if
901 it turns out to be a function defined by a dynamic
902 object. */
903 h->plt.refcount++;
904 }
905 break;
906 }
907 /* Fall through. */
908 case R_68K_8:
909 case R_68K_16:
910 case R_68K_32:
911 if (h != NULL)
912 {
913 /* Make sure a plt entry is created for this symbol if it
914 turns out to be a function defined by a dynamic object. */
915 h->plt.refcount++;
916 }
917
918 /* If we are creating a shared library, we need to copy the
919 reloc into the shared library. */
920 if (info->shared
921 && (sec->flags & SEC_ALLOC) != 0)
922 {
923 /* When creating a shared object, we must copy these
924 reloc types into the output file. We create a reloc
925 section in dynobj and make room for this reloc. */
926 if (sreloc == NULL)
927 {
928 const char *name;
929
930 name = (bfd_elf_string_from_elf_section
931 (abfd,
932 elf_elfheader (abfd)->e_shstrndx,
933 elf_section_data (sec)->rel_hdr.sh_name));
934 if (name == NULL)
935 return FALSE;
936
937 BFD_ASSERT (CONST_STRNEQ (name, ".rela")
938 && strcmp (bfd_get_section_name (abfd, sec),
939 name + 5) == 0);
940
941 sreloc = bfd_get_section_by_name (dynobj, name);
942 if (sreloc == NULL)
943 {
944 sreloc = bfd_make_section_with_flags (dynobj,
945 name,
946 (SEC_ALLOC
947 | SEC_LOAD
948 | SEC_HAS_CONTENTS
949 | SEC_IN_MEMORY
950 | SEC_LINKER_CREATED
951 | SEC_READONLY));
952 if (sreloc == NULL
953 || !bfd_set_section_alignment (dynobj, sreloc, 2))
954 return FALSE;
955 }
956 elf_section_data (sec)->sreloc = sreloc;
957 }
958
959 if (sec->flags & SEC_READONLY
960 /* Don't set DF_TEXTREL yet for PC relative
961 relocations, they might be discarded later. */
962 && !(ELF32_R_TYPE (rel->r_info) == R_68K_PC8
963 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
964 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32))
965 info->flags |= DF_TEXTREL;
966
967 sreloc->size += sizeof (Elf32_External_Rela);
968
969 /* We count the number of PC relative relocations we have
970 entered for this symbol, so that we can discard them
971 again if, in the -Bsymbolic case, the symbol is later
972 defined by a regular object, or, in the normal shared
973 case, the symbol is forced to be local. Note that this
974 function is only called if we are using an m68kelf linker
975 hash table, which means that h is really a pointer to an
976 elf_m68k_link_hash_entry. */
977 if (ELF32_R_TYPE (rel->r_info) == R_68K_PC8
978 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
979 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32)
980 {
981 struct elf_m68k_pcrel_relocs_copied *p;
982 struct elf_m68k_pcrel_relocs_copied **head;
983
984 if (h != NULL)
985 {
986 struct elf_m68k_link_hash_entry *eh
987 = elf_m68k_hash_entry (h);
988 head = &eh->pcrel_relocs_copied;
989 }
990 else
991 {
992 asection *s;
993 void *vpp;
994
995 s = (bfd_section_from_r_symndx
996 (abfd, &elf_m68k_hash_table (info)->sym_sec,
997 sec, r_symndx));
998 if (s == NULL)
999 return FALSE;
1000
1001 vpp = &elf_section_data (s)->local_dynrel;
1002 head = (struct elf_m68k_pcrel_relocs_copied **) vpp;
1003 }
1004
1005 for (p = *head; p != NULL; p = p->next)
1006 if (p->section == sreloc)
1007 break;
1008
1009 if (p == NULL)
1010 {
1011 p = ((struct elf_m68k_pcrel_relocs_copied *)
1012 bfd_alloc (dynobj, (bfd_size_type) sizeof *p));
1013 if (p == NULL)
1014 return FALSE;
1015 p->next = *head;
1016 *head = p;
1017 p->section = sreloc;
1018 p->count = 0;
1019 }
1020
1021 ++p->count;
1022 }
1023 }
1024
1025 break;
1026
1027 /* This relocation describes the C++ object vtable hierarchy.
1028 Reconstruct it for later use during GC. */
1029 case R_68K_GNU_VTINHERIT:
1030 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1031 return FALSE;
1032 break;
1033
1034 /* This relocation describes which C++ vtable entries are actually
1035 used. Record for later use during GC. */
1036 case R_68K_GNU_VTENTRY:
1037 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1038 return FALSE;
1039 break;
1040
1041 default:
1042 break;
1043 }
1044 }
1045
1046 return TRUE;
1047 }
1048
1049 /* Return the section that should be marked against GC for a given
1050 relocation. */
1051
1052 static asection *
1053 elf_m68k_gc_mark_hook (asection *sec,
1054 struct bfd_link_info *info,
1055 Elf_Internal_Rela *rel,
1056 struct elf_link_hash_entry *h,
1057 Elf_Internal_Sym *sym)
1058 {
1059 if (h != NULL)
1060 switch (ELF32_R_TYPE (rel->r_info))
1061 {
1062 case R_68K_GNU_VTINHERIT:
1063 case R_68K_GNU_VTENTRY:
1064 return NULL;
1065 }
1066
1067 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1068 }
1069
1070 /* Update the got entry reference counts for the section being removed. */
1071
1072 static bfd_boolean
1073 elf_m68k_gc_sweep_hook (bfd *abfd,
1074 struct bfd_link_info *info,
1075 asection *sec,
1076 const Elf_Internal_Rela *relocs)
1077 {
1078 Elf_Internal_Shdr *symtab_hdr;
1079 struct elf_link_hash_entry **sym_hashes;
1080 bfd_signed_vma *local_got_refcounts;
1081 const Elf_Internal_Rela *rel, *relend;
1082 bfd *dynobj;
1083 asection *sgot;
1084 asection *srelgot;
1085
1086 dynobj = elf_hash_table (info)->dynobj;
1087 if (dynobj == NULL)
1088 return TRUE;
1089
1090 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1091 sym_hashes = elf_sym_hashes (abfd);
1092 local_got_refcounts = elf_local_got_refcounts (abfd);
1093
1094 sgot = bfd_get_section_by_name (dynobj, ".got");
1095 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1096
1097 relend = relocs + sec->reloc_count;
1098 for (rel = relocs; rel < relend; rel++)
1099 {
1100 unsigned long r_symndx;
1101 struct elf_link_hash_entry *h = NULL;
1102
1103 r_symndx = ELF32_R_SYM (rel->r_info);
1104 if (r_symndx >= symtab_hdr->sh_info)
1105 {
1106 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1107 while (h->root.type == bfd_link_hash_indirect
1108 || h->root.type == bfd_link_hash_warning)
1109 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1110 }
1111
1112 switch (ELF32_R_TYPE (rel->r_info))
1113 {
1114 case R_68K_GOT8:
1115 case R_68K_GOT16:
1116 case R_68K_GOT32:
1117 case R_68K_GOT8O:
1118 case R_68K_GOT16O:
1119 case R_68K_GOT32O:
1120 if (h != NULL)
1121 {
1122 if (h->got.refcount > 0)
1123 {
1124 --h->got.refcount;
1125 if (h->got.refcount == 0)
1126 {
1127 /* We don't need the .got entry any more. */
1128 sgot->size -= 4;
1129 srelgot->size -= sizeof (Elf32_External_Rela);
1130 }
1131 }
1132 }
1133 else if (local_got_refcounts != NULL)
1134 {
1135 if (local_got_refcounts[r_symndx] > 0)
1136 {
1137 --local_got_refcounts[r_symndx];
1138 if (local_got_refcounts[r_symndx] == 0)
1139 {
1140 /* We don't need the .got entry any more. */
1141 sgot->size -= 4;
1142 if (info->shared)
1143 srelgot->size -= sizeof (Elf32_External_Rela);
1144 }
1145 }
1146 }
1147 break;
1148
1149 case R_68K_PLT8:
1150 case R_68K_PLT16:
1151 case R_68K_PLT32:
1152 case R_68K_PLT8O:
1153 case R_68K_PLT16O:
1154 case R_68K_PLT32O:
1155 case R_68K_PC8:
1156 case R_68K_PC16:
1157 case R_68K_PC32:
1158 case R_68K_8:
1159 case R_68K_16:
1160 case R_68K_32:
1161 if (h != NULL)
1162 {
1163 if (h->plt.refcount > 0)
1164 --h->plt.refcount;
1165 }
1166 break;
1167
1168 default:
1169 break;
1170 }
1171 }
1172
1173 return TRUE;
1174 }
1175 \f
1176 /* Return the type of PLT associated with OUTPUT_BFD. */
1177
1178 static const struct elf_m68k_plt_info *
1179 elf_m68k_get_plt_info (bfd *output_bfd)
1180 {
1181 unsigned int features;
1182
1183 features = bfd_m68k_mach_to_features (bfd_get_mach (output_bfd));
1184 if (features & cpu32)
1185 return &elf_cpu32_plt_info;
1186 if (features & mcfisa_b)
1187 return &elf_isab_plt_info;
1188 if (features & mcfisa_c)
1189 return &elf_isac_plt_info;
1190 return &elf_m68k_plt_info;
1191 }
1192
1193 /* This function is called after all the input files have been read,
1194 and the input sections have been assigned to output sections.
1195 It's a convenient place to determine the PLT style. */
1196
1197 static bfd_boolean
1198 elf_m68k_always_size_sections (bfd *output_bfd, struct bfd_link_info *info)
1199 {
1200 elf_m68k_hash_table (info)->plt_info = elf_m68k_get_plt_info (output_bfd);
1201 return TRUE;
1202 }
1203
1204 /* Adjust a symbol defined by a dynamic object and referenced by a
1205 regular object. The current definition is in some section of the
1206 dynamic object, but we're not including those sections. We have to
1207 change the definition to something the rest of the link can
1208 understand. */
1209
1210 static bfd_boolean
1211 elf_m68k_adjust_dynamic_symbol (info, h)
1212 struct bfd_link_info *info;
1213 struct elf_link_hash_entry *h;
1214 {
1215 struct elf_m68k_link_hash_table *htab;
1216 bfd *dynobj;
1217 asection *s;
1218 unsigned int power_of_two;
1219
1220 htab = elf_m68k_hash_table (info);
1221 dynobj = elf_hash_table (info)->dynobj;
1222
1223 /* Make sure we know what is going on here. */
1224 BFD_ASSERT (dynobj != NULL
1225 && (h->needs_plt
1226 || h->u.weakdef != NULL
1227 || (h->def_dynamic
1228 && h->ref_regular
1229 && !h->def_regular)));
1230
1231 /* If this is a function, put it in the procedure linkage table. We
1232 will fill in the contents of the procedure linkage table later,
1233 when we know the address of the .got section. */
1234 if (h->type == STT_FUNC
1235 || h->needs_plt)
1236 {
1237 if ((h->plt.refcount <= 0
1238 || SYMBOL_CALLS_LOCAL (info, h)
1239 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1240 && h->root.type == bfd_link_hash_undefweak))
1241 /* We must always create the plt entry if it was referenced
1242 by a PLTxxO relocation. In this case we already recorded
1243 it as a dynamic symbol. */
1244 && h->dynindx == -1)
1245 {
1246 /* This case can occur if we saw a PLTxx reloc in an input
1247 file, but the symbol was never referred to by a dynamic
1248 object, or if all references were garbage collected. In
1249 such a case, we don't actually need to build a procedure
1250 linkage table, and we can just do a PCxx reloc instead. */
1251 h->plt.offset = (bfd_vma) -1;
1252 h->needs_plt = 0;
1253 return TRUE;
1254 }
1255
1256 /* Make sure this symbol is output as a dynamic symbol. */
1257 if (h->dynindx == -1
1258 && !h->forced_local)
1259 {
1260 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1261 return FALSE;
1262 }
1263
1264 s = bfd_get_section_by_name (dynobj, ".plt");
1265 BFD_ASSERT (s != NULL);
1266
1267 /* If this is the first .plt entry, make room for the special
1268 first entry. */
1269 if (s->size == 0)
1270 s->size = htab->plt_info->size;
1271
1272 /* If this symbol is not defined in a regular file, and we are
1273 not generating a shared library, then set the symbol to this
1274 location in the .plt. This is required to make function
1275 pointers compare as equal between the normal executable and
1276 the shared library. */
1277 if (!info->shared
1278 && !h->def_regular)
1279 {
1280 h->root.u.def.section = s;
1281 h->root.u.def.value = s->size;
1282 }
1283
1284 h->plt.offset = s->size;
1285
1286 /* Make room for this entry. */
1287 s->size += htab->plt_info->size;
1288
1289 /* We also need to make an entry in the .got.plt section, which
1290 will be placed in the .got section by the linker script. */
1291 s = bfd_get_section_by_name (dynobj, ".got.plt");
1292 BFD_ASSERT (s != NULL);
1293 s->size += 4;
1294
1295 /* We also need to make an entry in the .rela.plt section. */
1296 s = bfd_get_section_by_name (dynobj, ".rela.plt");
1297 BFD_ASSERT (s != NULL);
1298 s->size += sizeof (Elf32_External_Rela);
1299
1300 return TRUE;
1301 }
1302
1303 /* Reinitialize the plt offset now that it is not used as a reference
1304 count any more. */
1305 h->plt.offset = (bfd_vma) -1;
1306
1307 /* If this is a weak symbol, and there is a real definition, the
1308 processor independent code will have arranged for us to see the
1309 real definition first, and we can just use the same value. */
1310 if (h->u.weakdef != NULL)
1311 {
1312 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1313 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1314 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1315 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1316 return TRUE;
1317 }
1318
1319 /* This is a reference to a symbol defined by a dynamic object which
1320 is not a function. */
1321
1322 /* If we are creating a shared library, we must presume that the
1323 only references to the symbol are via the global offset table.
1324 For such cases we need not do anything here; the relocations will
1325 be handled correctly by relocate_section. */
1326 if (info->shared)
1327 return TRUE;
1328
1329 if (h->size == 0)
1330 {
1331 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
1332 h->root.root.string);
1333 return TRUE;
1334 }
1335
1336 /* We must allocate the symbol in our .dynbss section, which will
1337 become part of the .bss section of the executable. There will be
1338 an entry for this symbol in the .dynsym section. The dynamic
1339 object will contain position independent code, so all references
1340 from the dynamic object to this symbol will go through the global
1341 offset table. The dynamic linker will use the .dynsym entry to
1342 determine the address it must put in the global offset table, so
1343 both the dynamic object and the regular object will refer to the
1344 same memory location for the variable. */
1345
1346 s = bfd_get_section_by_name (dynobj, ".dynbss");
1347 BFD_ASSERT (s != NULL);
1348
1349 /* We must generate a R_68K_COPY reloc to tell the dynamic linker to
1350 copy the initial value out of the dynamic object and into the
1351 runtime process image. We need to remember the offset into the
1352 .rela.bss section we are going to use. */
1353 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1354 {
1355 asection *srel;
1356
1357 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1358 BFD_ASSERT (srel != NULL);
1359 srel->size += sizeof (Elf32_External_Rela);
1360 h->needs_copy = 1;
1361 }
1362
1363 /* We need to figure out the alignment required for this symbol. I
1364 have no idea how ELF linkers handle this. */
1365 power_of_two = bfd_log2 (h->size);
1366 if (power_of_two > 3)
1367 power_of_two = 3;
1368
1369 /* Apply the required alignment. */
1370 s->size = BFD_ALIGN (s->size, (bfd_size_type) (1 << power_of_two));
1371 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1372 {
1373 if (!bfd_set_section_alignment (dynobj, s, power_of_two))
1374 return FALSE;
1375 }
1376
1377 /* Define the symbol as being at this point in the section. */
1378 h->root.u.def.section = s;
1379 h->root.u.def.value = s->size;
1380
1381 /* Increment the section size to make room for the symbol. */
1382 s->size += h->size;
1383
1384 return TRUE;
1385 }
1386
1387 /* Set the sizes of the dynamic sections. */
1388
1389 static bfd_boolean
1390 elf_m68k_size_dynamic_sections (output_bfd, info)
1391 bfd *output_bfd ATTRIBUTE_UNUSED;
1392 struct bfd_link_info *info;
1393 {
1394 bfd *dynobj;
1395 asection *s;
1396 bfd_boolean plt;
1397 bfd_boolean relocs;
1398
1399 dynobj = elf_hash_table (info)->dynobj;
1400 BFD_ASSERT (dynobj != NULL);
1401
1402 if (elf_hash_table (info)->dynamic_sections_created)
1403 {
1404 /* Set the contents of the .interp section to the interpreter. */
1405 if (info->executable)
1406 {
1407 s = bfd_get_section_by_name (dynobj, ".interp");
1408 BFD_ASSERT (s != NULL);
1409 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1410 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1411 }
1412 }
1413 else
1414 {
1415 /* We may have created entries in the .rela.got section.
1416 However, if we are not creating the dynamic sections, we will
1417 not actually use these entries. Reset the size of .rela.got,
1418 which will cause it to get stripped from the output file
1419 below. */
1420 s = bfd_get_section_by_name (dynobj, ".rela.got");
1421 if (s != NULL)
1422 s->size = 0;
1423 }
1424
1425 /* If this is a -Bsymbolic shared link, then we need to discard all
1426 PC relative relocs against symbols defined in a regular object.
1427 For the normal shared case we discard the PC relative relocs
1428 against symbols that have become local due to visibility changes.
1429 We allocated space for them in the check_relocs routine, but we
1430 will not fill them in in the relocate_section routine. */
1431 if (info->shared)
1432 elf_link_hash_traverse (elf_hash_table (info),
1433 elf_m68k_discard_copies,
1434 (PTR) info);
1435
1436 /* The check_relocs and adjust_dynamic_symbol entry points have
1437 determined the sizes of the various dynamic sections. Allocate
1438 memory for them. */
1439 plt = FALSE;
1440 relocs = FALSE;
1441 for (s = dynobj->sections; s != NULL; s = s->next)
1442 {
1443 const char *name;
1444
1445 if ((s->flags & SEC_LINKER_CREATED) == 0)
1446 continue;
1447
1448 /* It's OK to base decisions on the section name, because none
1449 of the dynobj section names depend upon the input files. */
1450 name = bfd_get_section_name (dynobj, s);
1451
1452 if (strcmp (name, ".plt") == 0)
1453 {
1454 /* Remember whether there is a PLT. */
1455 plt = s->size != 0;
1456 }
1457 else if (CONST_STRNEQ (name, ".rela"))
1458 {
1459 if (s->size != 0)
1460 {
1461 relocs = TRUE;
1462
1463 /* We use the reloc_count field as a counter if we need
1464 to copy relocs into the output file. */
1465 s->reloc_count = 0;
1466 }
1467 }
1468 else if (! CONST_STRNEQ (name, ".got")
1469 && strcmp (name, ".dynbss") != 0)
1470 {
1471 /* It's not one of our sections, so don't allocate space. */
1472 continue;
1473 }
1474
1475 if (s->size == 0)
1476 {
1477 /* If we don't need this section, strip it from the
1478 output file. This is mostly to handle .rela.bss and
1479 .rela.plt. We must create both sections in
1480 create_dynamic_sections, because they must be created
1481 before the linker maps input sections to output
1482 sections. The linker does that before
1483 adjust_dynamic_symbol is called, and it is that
1484 function which decides whether anything needs to go
1485 into these sections. */
1486 s->flags |= SEC_EXCLUDE;
1487 continue;
1488 }
1489
1490 if ((s->flags & SEC_HAS_CONTENTS) == 0)
1491 continue;
1492
1493 /* Allocate memory for the section contents. */
1494 /* FIXME: This should be a call to bfd_alloc not bfd_zalloc.
1495 Unused entries should be reclaimed before the section's contents
1496 are written out, but at the moment this does not happen. Thus in
1497 order to prevent writing out garbage, we initialise the section's
1498 contents to zero. */
1499 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1500 if (s->contents == NULL)
1501 return FALSE;
1502 }
1503
1504 if (elf_hash_table (info)->dynamic_sections_created)
1505 {
1506 /* Add some entries to the .dynamic section. We fill in the
1507 values later, in elf_m68k_finish_dynamic_sections, but we
1508 must add the entries now so that we get the correct size for
1509 the .dynamic section. The DT_DEBUG entry is filled in by the
1510 dynamic linker and used by the debugger. */
1511 #define add_dynamic_entry(TAG, VAL) \
1512 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1513
1514 if (!info->shared)
1515 {
1516 if (!add_dynamic_entry (DT_DEBUG, 0))
1517 return FALSE;
1518 }
1519
1520 if (plt)
1521 {
1522 if (!add_dynamic_entry (DT_PLTGOT, 0)
1523 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1524 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1525 || !add_dynamic_entry (DT_JMPREL, 0))
1526 return FALSE;
1527 }
1528
1529 if (relocs)
1530 {
1531 if (!add_dynamic_entry (DT_RELA, 0)
1532 || !add_dynamic_entry (DT_RELASZ, 0)
1533 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1534 return FALSE;
1535 }
1536
1537 if ((info->flags & DF_TEXTREL) != 0)
1538 {
1539 if (!add_dynamic_entry (DT_TEXTREL, 0))
1540 return FALSE;
1541 }
1542 }
1543 #undef add_dynamic_entry
1544
1545 return TRUE;
1546 }
1547
1548 /* This function is called via elf_link_hash_traverse if we are
1549 creating a shared object. In the -Bsymbolic case it discards the
1550 space allocated to copy PC relative relocs against symbols which
1551 are defined in regular objects. For the normal shared case, it
1552 discards space for pc-relative relocs that have become local due to
1553 symbol visibility changes. We allocated space for them in the
1554 check_relocs routine, but we won't fill them in in the
1555 relocate_section routine.
1556
1557 We also check whether any of the remaining relocations apply
1558 against a readonly section, and set the DF_TEXTREL flag in this
1559 case. */
1560
1561 static bfd_boolean
1562 elf_m68k_discard_copies (h, inf)
1563 struct elf_link_hash_entry *h;
1564 PTR inf;
1565 {
1566 struct bfd_link_info *info = (struct bfd_link_info *) inf;
1567 struct elf_m68k_pcrel_relocs_copied *s;
1568
1569 if (h->root.type == bfd_link_hash_warning)
1570 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1571
1572 if (!h->def_regular
1573 || (!info->symbolic
1574 && !h->forced_local))
1575 {
1576 if ((info->flags & DF_TEXTREL) == 0)
1577 {
1578 /* Look for relocations against read-only sections. */
1579 for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
1580 s != NULL;
1581 s = s->next)
1582 if ((s->section->flags & SEC_READONLY) != 0)
1583 {
1584 info->flags |= DF_TEXTREL;
1585 break;
1586 }
1587 }
1588
1589 return TRUE;
1590 }
1591
1592 for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
1593 s != NULL;
1594 s = s->next)
1595 s->section->size -= s->count * sizeof (Elf32_External_Rela);
1596
1597 return TRUE;
1598 }
1599
1600 /* Relocate an M68K ELF section. */
1601
1602 static bfd_boolean
1603 elf_m68k_relocate_section (output_bfd, info, input_bfd, input_section,
1604 contents, relocs, local_syms, local_sections)
1605 bfd *output_bfd;
1606 struct bfd_link_info *info;
1607 bfd *input_bfd;
1608 asection *input_section;
1609 bfd_byte *contents;
1610 Elf_Internal_Rela *relocs;
1611 Elf_Internal_Sym *local_syms;
1612 asection **local_sections;
1613 {
1614 bfd *dynobj;
1615 Elf_Internal_Shdr *symtab_hdr;
1616 struct elf_link_hash_entry **sym_hashes;
1617 bfd_vma *local_got_offsets;
1618 asection *sgot;
1619 asection *splt;
1620 asection *sreloc;
1621 Elf_Internal_Rela *rel;
1622 Elf_Internal_Rela *relend;
1623
1624 dynobj = elf_hash_table (info)->dynobj;
1625 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1626 sym_hashes = elf_sym_hashes (input_bfd);
1627 local_got_offsets = elf_local_got_offsets (input_bfd);
1628
1629 sgot = NULL;
1630 splt = NULL;
1631 sreloc = NULL;
1632
1633 rel = relocs;
1634 relend = relocs + input_section->reloc_count;
1635 for (; rel < relend; rel++)
1636 {
1637 int r_type;
1638 reloc_howto_type *howto;
1639 unsigned long r_symndx;
1640 struct elf_link_hash_entry *h;
1641 Elf_Internal_Sym *sym;
1642 asection *sec;
1643 bfd_vma relocation;
1644 bfd_boolean unresolved_reloc;
1645 bfd_reloc_status_type r;
1646
1647 r_type = ELF32_R_TYPE (rel->r_info);
1648 if (r_type < 0 || r_type >= (int) R_68K_max)
1649 {
1650 bfd_set_error (bfd_error_bad_value);
1651 return FALSE;
1652 }
1653 howto = howto_table + r_type;
1654
1655 r_symndx = ELF32_R_SYM (rel->r_info);
1656
1657 h = NULL;
1658 sym = NULL;
1659 sec = NULL;
1660 unresolved_reloc = FALSE;
1661
1662 if (r_symndx < symtab_hdr->sh_info)
1663 {
1664 sym = local_syms + r_symndx;
1665 sec = local_sections[r_symndx];
1666 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1667 }
1668 else
1669 {
1670 bfd_boolean warned;
1671
1672 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1673 r_symndx, symtab_hdr, sym_hashes,
1674 h, sec, relocation,
1675 unresolved_reloc, warned);
1676 }
1677
1678 if (sec != NULL && elf_discarded_section (sec))
1679 {
1680 /* For relocs against symbols from removed linkonce sections,
1681 or sections discarded by a linker script, we just want the
1682 section contents zeroed. Avoid any special processing. */
1683 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
1684 rel->r_info = 0;
1685 rel->r_addend = 0;
1686 continue;
1687 }
1688
1689 if (info->relocatable)
1690 continue;
1691
1692 switch (r_type)
1693 {
1694 case R_68K_GOT8:
1695 case R_68K_GOT16:
1696 case R_68K_GOT32:
1697 /* Relocation is to the address of the entry for this symbol
1698 in the global offset table. */
1699 if (h != NULL
1700 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1701 break;
1702 /* Fall through. */
1703 case R_68K_GOT8O:
1704 case R_68K_GOT16O:
1705 case R_68K_GOT32O:
1706 /* Relocation is the offset of the entry for this symbol in
1707 the global offset table. */
1708
1709 {
1710 bfd_vma off;
1711
1712 if (sgot == NULL)
1713 {
1714 sgot = bfd_get_section_by_name (dynobj, ".got");
1715 BFD_ASSERT (sgot != NULL);
1716 }
1717
1718 if (h != NULL)
1719 {
1720 bfd_boolean dyn;
1721
1722 off = h->got.offset;
1723 BFD_ASSERT (off != (bfd_vma) -1);
1724
1725 dyn = elf_hash_table (info)->dynamic_sections_created;
1726 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
1727 || (info->shared
1728 && (info->symbolic
1729 || h->dynindx == -1
1730 || h->forced_local)
1731 && h->def_regular))
1732 {
1733 /* This is actually a static link, or it is a
1734 -Bsymbolic link and the symbol is defined
1735 locally, or the symbol was forced to be local
1736 because of a version file.. We must initialize
1737 this entry in the global offset table. Since
1738 the offset must always be a multiple of 4, we
1739 use the least significant bit to record whether
1740 we have initialized it already.
1741
1742 When doing a dynamic link, we create a .rela.got
1743 relocation entry to initialize the value. This
1744 is done in the finish_dynamic_symbol routine. */
1745 if ((off & 1) != 0)
1746 off &= ~1;
1747 else
1748 {
1749 bfd_put_32 (output_bfd, relocation,
1750 sgot->contents + off);
1751 h->got.offset |= 1;
1752 }
1753 }
1754 else
1755 unresolved_reloc = FALSE;
1756 }
1757 else
1758 {
1759 BFD_ASSERT (local_got_offsets != NULL
1760 && local_got_offsets[r_symndx] != (bfd_vma) -1);
1761
1762 off = local_got_offsets[r_symndx];
1763
1764 /* The offset must always be a multiple of 4. We use
1765 the least significant bit to record whether we have
1766 already generated the necessary reloc. */
1767 if ((off & 1) != 0)
1768 off &= ~1;
1769 else
1770 {
1771 bfd_put_32 (output_bfd, relocation, sgot->contents + off);
1772
1773 if (info->shared)
1774 {
1775 asection *s;
1776 Elf_Internal_Rela outrel;
1777 bfd_byte *loc;
1778
1779 s = bfd_get_section_by_name (dynobj, ".rela.got");
1780 BFD_ASSERT (s != NULL);
1781
1782 outrel.r_offset = (sgot->output_section->vma
1783 + sgot->output_offset
1784 + off);
1785 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
1786 outrel.r_addend = relocation;
1787 loc = s->contents;
1788 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
1789 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
1790 }
1791
1792 local_got_offsets[r_symndx] |= 1;
1793 }
1794 }
1795
1796 relocation = sgot->output_offset + off;
1797 if (r_type == R_68K_GOT8O
1798 || r_type == R_68K_GOT16O
1799 || r_type == R_68K_GOT32O)
1800 {
1801 /* This relocation does not use the addend. */
1802 rel->r_addend = 0;
1803 }
1804 else
1805 relocation += sgot->output_section->vma;
1806 }
1807 break;
1808
1809 case R_68K_PLT8:
1810 case R_68K_PLT16:
1811 case R_68K_PLT32:
1812 /* Relocation is to the entry for this symbol in the
1813 procedure linkage table. */
1814
1815 /* Resolve a PLTxx reloc against a local symbol directly,
1816 without using the procedure linkage table. */
1817 if (h == NULL)
1818 break;
1819
1820 if (h->plt.offset == (bfd_vma) -1
1821 || !elf_hash_table (info)->dynamic_sections_created)
1822 {
1823 /* We didn't make a PLT entry for this symbol. This
1824 happens when statically linking PIC code, or when
1825 using -Bsymbolic. */
1826 break;
1827 }
1828
1829 if (splt == NULL)
1830 {
1831 splt = bfd_get_section_by_name (dynobj, ".plt");
1832 BFD_ASSERT (splt != NULL);
1833 }
1834
1835 relocation = (splt->output_section->vma
1836 + splt->output_offset
1837 + h->plt.offset);
1838 unresolved_reloc = FALSE;
1839 break;
1840
1841 case R_68K_PLT8O:
1842 case R_68K_PLT16O:
1843 case R_68K_PLT32O:
1844 /* Relocation is the offset of the entry for this symbol in
1845 the procedure linkage table. */
1846 BFD_ASSERT (h != NULL && h->plt.offset != (bfd_vma) -1);
1847
1848 if (splt == NULL)
1849 {
1850 splt = bfd_get_section_by_name (dynobj, ".plt");
1851 BFD_ASSERT (splt != NULL);
1852 }
1853
1854 relocation = h->plt.offset;
1855 unresolved_reloc = FALSE;
1856
1857 /* This relocation does not use the addend. */
1858 rel->r_addend = 0;
1859
1860 break;
1861
1862 case R_68K_PC8:
1863 case R_68K_PC16:
1864 case R_68K_PC32:
1865 if (h == NULL
1866 || (info->shared
1867 && h->forced_local))
1868 break;
1869 /* Fall through. */
1870 case R_68K_8:
1871 case R_68K_16:
1872 case R_68K_32:
1873 if (info->shared
1874 && r_symndx != 0
1875 && (input_section->flags & SEC_ALLOC) != 0
1876 && (h == NULL
1877 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
1878 || h->root.type != bfd_link_hash_undefweak)
1879 && ((r_type != R_68K_PC8
1880 && r_type != R_68K_PC16
1881 && r_type != R_68K_PC32)
1882 || (h != NULL
1883 && h->dynindx != -1
1884 && (!info->symbolic
1885 || !h->def_regular))))
1886 {
1887 Elf_Internal_Rela outrel;
1888 bfd_byte *loc;
1889 bfd_boolean skip, relocate;
1890
1891 /* When generating a shared object, these relocations
1892 are copied into the output file to be resolved at run
1893 time. */
1894
1895 skip = FALSE;
1896 relocate = FALSE;
1897
1898 outrel.r_offset =
1899 _bfd_elf_section_offset (output_bfd, info, input_section,
1900 rel->r_offset);
1901 if (outrel.r_offset == (bfd_vma) -1)
1902 skip = TRUE;
1903 else if (outrel.r_offset == (bfd_vma) -2)
1904 skip = TRUE, relocate = TRUE;
1905 outrel.r_offset += (input_section->output_section->vma
1906 + input_section->output_offset);
1907
1908 if (skip)
1909 memset (&outrel, 0, sizeof outrel);
1910 else if (h != NULL
1911 && h->dynindx != -1
1912 && (r_type == R_68K_PC8
1913 || r_type == R_68K_PC16
1914 || r_type == R_68K_PC32
1915 || !info->shared
1916 || !info->symbolic
1917 || !h->def_regular))
1918 {
1919 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
1920 outrel.r_addend = rel->r_addend;
1921 }
1922 else
1923 {
1924 /* This symbol is local, or marked to become local. */
1925 outrel.r_addend = relocation + rel->r_addend;
1926
1927 if (r_type == R_68K_32)
1928 {
1929 relocate = TRUE;
1930 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
1931 }
1932 else
1933 {
1934 long indx;
1935
1936 if (bfd_is_abs_section (sec))
1937 indx = 0;
1938 else if (sec == NULL || sec->owner == NULL)
1939 {
1940 bfd_set_error (bfd_error_bad_value);
1941 return FALSE;
1942 }
1943 else
1944 {
1945 asection *osec;
1946
1947 /* We are turning this relocation into one
1948 against a section symbol. It would be
1949 proper to subtract the symbol's value,
1950 osec->vma, from the emitted reloc addend,
1951 but ld.so expects buggy relocs. */
1952 osec = sec->output_section;
1953 indx = elf_section_data (osec)->dynindx;
1954 if (indx == 0)
1955 {
1956 struct elf_link_hash_table *htab;
1957 htab = elf_hash_table (info);
1958 osec = htab->text_index_section;
1959 indx = elf_section_data (osec)->dynindx;
1960 }
1961 BFD_ASSERT (indx != 0);
1962 }
1963
1964 outrel.r_info = ELF32_R_INFO (indx, r_type);
1965 }
1966 }
1967
1968 sreloc = elf_section_data (input_section)->sreloc;
1969 if (sreloc == NULL)
1970 abort ();
1971
1972 loc = sreloc->contents;
1973 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
1974 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
1975
1976 /* This reloc will be computed at runtime, so there's no
1977 need to do anything now, except for R_68K_32
1978 relocations that have been turned into
1979 R_68K_RELATIVE. */
1980 if (!relocate)
1981 continue;
1982 }
1983
1984 break;
1985
1986 case R_68K_GNU_VTINHERIT:
1987 case R_68K_GNU_VTENTRY:
1988 /* These are no-ops in the end. */
1989 continue;
1990
1991 default:
1992 break;
1993 }
1994
1995 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
1996 because such sections are not SEC_ALLOC and thus ld.so will
1997 not process them. */
1998 if (unresolved_reloc
1999 && !((input_section->flags & SEC_DEBUGGING) != 0
2000 && h->def_dynamic))
2001 {
2002 (*_bfd_error_handler)
2003 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
2004 input_bfd,
2005 input_section,
2006 (long) rel->r_offset,
2007 howto->name,
2008 h->root.root.string);
2009 return FALSE;
2010 }
2011
2012 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2013 contents, rel->r_offset,
2014 relocation, rel->r_addend);
2015
2016 if (r != bfd_reloc_ok)
2017 {
2018 const char *name;
2019
2020 if (h != NULL)
2021 name = h->root.root.string;
2022 else
2023 {
2024 name = bfd_elf_string_from_elf_section (input_bfd,
2025 symtab_hdr->sh_link,
2026 sym->st_name);
2027 if (name == NULL)
2028 return FALSE;
2029 if (*name == '\0')
2030 name = bfd_section_name (input_bfd, sec);
2031 }
2032
2033 if (r == bfd_reloc_overflow)
2034 {
2035 if (!(info->callbacks->reloc_overflow
2036 (info, (h ? &h->root : NULL), name, howto->name,
2037 (bfd_vma) 0, input_bfd, input_section,
2038 rel->r_offset)))
2039 return FALSE;
2040 }
2041 else
2042 {
2043 (*_bfd_error_handler)
2044 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
2045 input_bfd, input_section,
2046 (long) rel->r_offset, name, (int) r);
2047 return FALSE;
2048 }
2049 }
2050 }
2051
2052 return TRUE;
2053 }
2054
2055 /* Install an M_68K_PC32 relocation against VALUE at offset OFFSET
2056 into section SEC. */
2057
2058 static void
2059 elf_m68k_install_pc32 (asection *sec, bfd_vma offset, bfd_vma value)
2060 {
2061 /* Make VALUE PC-relative. */
2062 value -= sec->output_section->vma + offset;
2063
2064 /* Apply any in-place addend. */
2065 value += bfd_get_32 (sec->owner, sec->contents + offset);
2066
2067 bfd_put_32 (sec->owner, value, sec->contents + offset);
2068 }
2069
2070 /* Finish up dynamic symbol handling. We set the contents of various
2071 dynamic sections here. */
2072
2073 static bfd_boolean
2074 elf_m68k_finish_dynamic_symbol (output_bfd, info, h, sym)
2075 bfd *output_bfd;
2076 struct bfd_link_info *info;
2077 struct elf_link_hash_entry *h;
2078 Elf_Internal_Sym *sym;
2079 {
2080 bfd *dynobj;
2081
2082 dynobj = elf_hash_table (info)->dynobj;
2083
2084 if (h->plt.offset != (bfd_vma) -1)
2085 {
2086 const struct elf_m68k_plt_info *plt_info;
2087 asection *splt;
2088 asection *sgot;
2089 asection *srela;
2090 bfd_vma plt_index;
2091 bfd_vma got_offset;
2092 Elf_Internal_Rela rela;
2093 bfd_byte *loc;
2094
2095 /* This symbol has an entry in the procedure linkage table. Set
2096 it up. */
2097
2098 BFD_ASSERT (h->dynindx != -1);
2099
2100 plt_info = elf_m68k_hash_table (info)->plt_info;
2101 splt = bfd_get_section_by_name (dynobj, ".plt");
2102 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
2103 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
2104 BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL);
2105
2106 /* Get the index in the procedure linkage table which
2107 corresponds to this symbol. This is the index of this symbol
2108 in all the symbols for which we are making plt entries. The
2109 first entry in the procedure linkage table is reserved. */
2110 plt_index = (h->plt.offset / plt_info->size) - 1;
2111
2112 /* Get the offset into the .got table of the entry that
2113 corresponds to this function. Each .got entry is 4 bytes.
2114 The first three are reserved. */
2115 got_offset = (plt_index + 3) * 4;
2116
2117 memcpy (splt->contents + h->plt.offset,
2118 plt_info->symbol_entry,
2119 plt_info->size);
2120
2121 elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.got,
2122 (sgot->output_section->vma
2123 + sgot->output_offset
2124 + got_offset));
2125
2126 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela),
2127 splt->contents
2128 + h->plt.offset
2129 + plt_info->symbol_resolve_entry + 2);
2130
2131 elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.plt,
2132 splt->output_section->vma);
2133
2134 /* Fill in the entry in the global offset table. */
2135 bfd_put_32 (output_bfd,
2136 (splt->output_section->vma
2137 + splt->output_offset
2138 + h->plt.offset
2139 + plt_info->symbol_resolve_entry),
2140 sgot->contents + got_offset);
2141
2142 /* Fill in the entry in the .rela.plt section. */
2143 rela.r_offset = (sgot->output_section->vma
2144 + sgot->output_offset
2145 + got_offset);
2146 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_JMP_SLOT);
2147 rela.r_addend = 0;
2148 loc = srela->contents + plt_index * sizeof (Elf32_External_Rela);
2149 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
2150
2151 if (!h->def_regular)
2152 {
2153 /* Mark the symbol as undefined, rather than as defined in
2154 the .plt section. Leave the value alone. */
2155 sym->st_shndx = SHN_UNDEF;
2156 }
2157 }
2158
2159 if (h->got.offset != (bfd_vma) -1)
2160 {
2161 asection *sgot;
2162 asection *srela;
2163 Elf_Internal_Rela rela;
2164 bfd_byte *loc;
2165
2166 /* This symbol has an entry in the global offset table. Set it
2167 up. */
2168
2169 sgot = bfd_get_section_by_name (dynobj, ".got");
2170 srela = bfd_get_section_by_name (dynobj, ".rela.got");
2171 BFD_ASSERT (sgot != NULL && srela != NULL);
2172
2173 rela.r_offset = (sgot->output_section->vma
2174 + sgot->output_offset
2175 + (h->got.offset &~ (bfd_vma) 1));
2176
2177 /* If this is a -Bsymbolic link, and the symbol is defined
2178 locally, we just want to emit a RELATIVE reloc. Likewise if
2179 the symbol was forced to be local because of a version file.
2180 The entry in the global offset table will already have been
2181 initialized in the relocate_section function. */
2182 if (info->shared
2183 && (info->symbolic
2184 || h->dynindx == -1
2185 || h->forced_local)
2186 && h->def_regular)
2187 {
2188 rela.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
2189 rela.r_addend = bfd_get_signed_32 (output_bfd,
2190 (sgot->contents
2191 + (h->got.offset &~ (bfd_vma) 1)));
2192 }
2193 else
2194 {
2195 bfd_put_32 (output_bfd, (bfd_vma) 0,
2196 sgot->contents + (h->got.offset &~ (bfd_vma) 1));
2197 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_GLOB_DAT);
2198 rela.r_addend = 0;
2199 }
2200
2201 loc = srela->contents;
2202 loc += srela->reloc_count++ * sizeof (Elf32_External_Rela);
2203 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
2204 }
2205
2206 if (h->needs_copy)
2207 {
2208 asection *s;
2209 Elf_Internal_Rela rela;
2210 bfd_byte *loc;
2211
2212 /* This symbol needs a copy reloc. Set it up. */
2213
2214 BFD_ASSERT (h->dynindx != -1
2215 && (h->root.type == bfd_link_hash_defined
2216 || h->root.type == bfd_link_hash_defweak));
2217
2218 s = bfd_get_section_by_name (h->root.u.def.section->owner,
2219 ".rela.bss");
2220 BFD_ASSERT (s != NULL);
2221
2222 rela.r_offset = (h->root.u.def.value
2223 + h->root.u.def.section->output_section->vma
2224 + h->root.u.def.section->output_offset);
2225 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_COPY);
2226 rela.r_addend = 0;
2227 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
2228 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
2229 }
2230
2231 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2232 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2233 || h == elf_hash_table (info)->hgot)
2234 sym->st_shndx = SHN_ABS;
2235
2236 return TRUE;
2237 }
2238
2239 /* Finish up the dynamic sections. */
2240
2241 static bfd_boolean
2242 elf_m68k_finish_dynamic_sections (output_bfd, info)
2243 bfd *output_bfd;
2244 struct bfd_link_info *info;
2245 {
2246 bfd *dynobj;
2247 asection *sgot;
2248 asection *sdyn;
2249
2250 dynobj = elf_hash_table (info)->dynobj;
2251
2252 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
2253 BFD_ASSERT (sgot != NULL);
2254 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2255
2256 if (elf_hash_table (info)->dynamic_sections_created)
2257 {
2258 asection *splt;
2259 Elf32_External_Dyn *dyncon, *dynconend;
2260
2261 splt = bfd_get_section_by_name (dynobj, ".plt");
2262 BFD_ASSERT (splt != NULL && sdyn != NULL);
2263
2264 dyncon = (Elf32_External_Dyn *) sdyn->contents;
2265 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
2266 for (; dyncon < dynconend; dyncon++)
2267 {
2268 Elf_Internal_Dyn dyn;
2269 const char *name;
2270 asection *s;
2271
2272 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2273
2274 switch (dyn.d_tag)
2275 {
2276 default:
2277 break;
2278
2279 case DT_PLTGOT:
2280 name = ".got";
2281 goto get_vma;
2282 case DT_JMPREL:
2283 name = ".rela.plt";
2284 get_vma:
2285 s = bfd_get_section_by_name (output_bfd, name);
2286 BFD_ASSERT (s != NULL);
2287 dyn.d_un.d_ptr = s->vma;
2288 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2289 break;
2290
2291 case DT_PLTRELSZ:
2292 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
2293 BFD_ASSERT (s != NULL);
2294 dyn.d_un.d_val = s->size;
2295 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2296 break;
2297
2298 case DT_RELASZ:
2299 /* The procedure linkage table relocs (DT_JMPREL) should
2300 not be included in the overall relocs (DT_RELA).
2301 Therefore, we override the DT_RELASZ entry here to
2302 make it not include the JMPREL relocs. Since the
2303 linker script arranges for .rela.plt to follow all
2304 other relocation sections, we don't have to worry
2305 about changing the DT_RELA entry. */
2306 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
2307 if (s != NULL)
2308 dyn.d_un.d_val -= s->size;
2309 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2310 break;
2311 }
2312 }
2313
2314 /* Fill in the first entry in the procedure linkage table. */
2315 if (splt->size > 0)
2316 {
2317 const struct elf_m68k_plt_info *plt_info;
2318
2319 plt_info = elf_m68k_hash_table (info)->plt_info;
2320 memcpy (splt->contents, plt_info->plt0_entry, plt_info->size);
2321
2322 elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got4,
2323 (sgot->output_section->vma
2324 + sgot->output_offset
2325 + 4));
2326
2327 elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got8,
2328 (sgot->output_section->vma
2329 + sgot->output_offset
2330 + 8));
2331
2332 elf_section_data (splt->output_section)->this_hdr.sh_entsize
2333 = plt_info->size;
2334 }
2335 }
2336
2337 /* Fill in the first three entries in the global offset table. */
2338 if (sgot->size > 0)
2339 {
2340 if (sdyn == NULL)
2341 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
2342 else
2343 bfd_put_32 (output_bfd,
2344 sdyn->output_section->vma + sdyn->output_offset,
2345 sgot->contents);
2346 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
2347 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
2348 }
2349
2350 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
2351
2352 return TRUE;
2353 }
2354
2355 /* Given a .data section and a .emreloc in-memory section, store
2356 relocation information into the .emreloc section which can be
2357 used at runtime to relocate the section. This is called by the
2358 linker when the --embedded-relocs switch is used. This is called
2359 after the add_symbols entry point has been called for all the
2360 objects, and before the final_link entry point is called. */
2361
2362 bfd_boolean
2363 bfd_m68k_elf32_create_embedded_relocs (abfd, info, datasec, relsec, errmsg)
2364 bfd *abfd;
2365 struct bfd_link_info *info;
2366 asection *datasec;
2367 asection *relsec;
2368 char **errmsg;
2369 {
2370 Elf_Internal_Shdr *symtab_hdr;
2371 Elf_Internal_Sym *isymbuf = NULL;
2372 Elf_Internal_Rela *internal_relocs = NULL;
2373 Elf_Internal_Rela *irel, *irelend;
2374 bfd_byte *p;
2375 bfd_size_type amt;
2376
2377 BFD_ASSERT (! info->relocatable);
2378
2379 *errmsg = NULL;
2380
2381 if (datasec->reloc_count == 0)
2382 return TRUE;
2383
2384 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2385
2386 /* Get a copy of the native relocations. */
2387 internal_relocs = (_bfd_elf_link_read_relocs
2388 (abfd, datasec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
2389 info->keep_memory));
2390 if (internal_relocs == NULL)
2391 goto error_return;
2392
2393 amt = (bfd_size_type) datasec->reloc_count * 12;
2394 relsec->contents = (bfd_byte *) bfd_alloc (abfd, amt);
2395 if (relsec->contents == NULL)
2396 goto error_return;
2397
2398 p = relsec->contents;
2399
2400 irelend = internal_relocs + datasec->reloc_count;
2401 for (irel = internal_relocs; irel < irelend; irel++, p += 12)
2402 {
2403 asection *targetsec;
2404
2405 /* We are going to write a four byte longword into the runtime
2406 reloc section. The longword will be the address in the data
2407 section which must be relocated. It is followed by the name
2408 of the target section NUL-padded or truncated to 8
2409 characters. */
2410
2411 /* We can only relocate absolute longword relocs at run time. */
2412 if (ELF32_R_TYPE (irel->r_info) != (int) R_68K_32)
2413 {
2414 *errmsg = _("unsupported reloc type");
2415 bfd_set_error (bfd_error_bad_value);
2416 goto error_return;
2417 }
2418
2419 /* Get the target section referred to by the reloc. */
2420 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
2421 {
2422 /* A local symbol. */
2423 Elf_Internal_Sym *isym;
2424
2425 /* Read this BFD's local symbols if we haven't done so already. */
2426 if (isymbuf == NULL)
2427 {
2428 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2429 if (isymbuf == NULL)
2430 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
2431 symtab_hdr->sh_info, 0,
2432 NULL, NULL, NULL);
2433 if (isymbuf == NULL)
2434 goto error_return;
2435 }
2436
2437 isym = isymbuf + ELF32_R_SYM (irel->r_info);
2438 targetsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
2439 }
2440 else
2441 {
2442 unsigned long indx;
2443 struct elf_link_hash_entry *h;
2444
2445 /* An external symbol. */
2446 indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
2447 h = elf_sym_hashes (abfd)[indx];
2448 BFD_ASSERT (h != NULL);
2449 if (h->root.type == bfd_link_hash_defined
2450 || h->root.type == bfd_link_hash_defweak)
2451 targetsec = h->root.u.def.section;
2452 else
2453 targetsec = NULL;
2454 }
2455
2456 bfd_put_32 (abfd, irel->r_offset + datasec->output_offset, p);
2457 memset (p + 4, 0, 8);
2458 if (targetsec != NULL)
2459 strncpy ((char *) p + 4, targetsec->output_section->name, 8);
2460 }
2461
2462 if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf)
2463 free (isymbuf);
2464 if (internal_relocs != NULL
2465 && elf_section_data (datasec)->relocs != internal_relocs)
2466 free (internal_relocs);
2467 return TRUE;
2468
2469 error_return:
2470 if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf)
2471 free (isymbuf);
2472 if (internal_relocs != NULL
2473 && elf_section_data (datasec)->relocs != internal_relocs)
2474 free (internal_relocs);
2475 return FALSE;
2476 }
2477
2478 static enum elf_reloc_type_class
2479 elf32_m68k_reloc_type_class (rela)
2480 const Elf_Internal_Rela *rela;
2481 {
2482 switch ((int) ELF32_R_TYPE (rela->r_info))
2483 {
2484 case R_68K_RELATIVE:
2485 return reloc_class_relative;
2486 case R_68K_JMP_SLOT:
2487 return reloc_class_plt;
2488 case R_68K_COPY:
2489 return reloc_class_copy;
2490 default:
2491 return reloc_class_normal;
2492 }
2493 }
2494
2495 /* Return address for Ith PLT stub in section PLT, for relocation REL
2496 or (bfd_vma) -1 if it should not be included. */
2497
2498 static bfd_vma
2499 elf_m68k_plt_sym_val (bfd_vma i, const asection *plt,
2500 const arelent *rel ATTRIBUTE_UNUSED)
2501 {
2502 return plt->vma + (i + 1) * elf_m68k_get_plt_info (plt->owner)->size;
2503 }
2504
2505 #define TARGET_BIG_SYM bfd_elf32_m68k_vec
2506 #define TARGET_BIG_NAME "elf32-m68k"
2507 #define ELF_MACHINE_CODE EM_68K
2508 #define ELF_MAXPAGESIZE 0x2000
2509 #define elf_backend_create_dynamic_sections \
2510 _bfd_elf_create_dynamic_sections
2511 #define bfd_elf32_bfd_link_hash_table_create \
2512 elf_m68k_link_hash_table_create
2513 #define bfd_elf32_bfd_final_link bfd_elf_gc_common_final_link
2514
2515 #define elf_backend_check_relocs elf_m68k_check_relocs
2516 #define elf_backend_always_size_sections \
2517 elf_m68k_always_size_sections
2518 #define elf_backend_adjust_dynamic_symbol \
2519 elf_m68k_adjust_dynamic_symbol
2520 #define elf_backend_size_dynamic_sections \
2521 elf_m68k_size_dynamic_sections
2522 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
2523 #define elf_backend_relocate_section elf_m68k_relocate_section
2524 #define elf_backend_finish_dynamic_symbol \
2525 elf_m68k_finish_dynamic_symbol
2526 #define elf_backend_finish_dynamic_sections \
2527 elf_m68k_finish_dynamic_sections
2528 #define elf_backend_gc_mark_hook elf_m68k_gc_mark_hook
2529 #define elf_backend_gc_sweep_hook elf_m68k_gc_sweep_hook
2530 #define bfd_elf32_bfd_merge_private_bfd_data \
2531 elf32_m68k_merge_private_bfd_data
2532 #define bfd_elf32_bfd_set_private_flags \
2533 elf32_m68k_set_private_flags
2534 #define bfd_elf32_bfd_print_private_bfd_data \
2535 elf32_m68k_print_private_bfd_data
2536 #define elf_backend_reloc_type_class elf32_m68k_reloc_type_class
2537 #define elf_backend_plt_sym_val elf_m68k_plt_sym_val
2538 #define elf_backend_object_p elf32_m68k_object_p
2539
2540 #define elf_backend_can_gc_sections 1
2541 #define elf_backend_can_refcount 1
2542 #define elf_backend_want_got_plt 1
2543 #define elf_backend_plt_readonly 1
2544 #define elf_backend_want_plt_sym 0
2545 #define elf_backend_got_header_size 12
2546 #define elf_backend_rela_normal 1
2547
2548 #include "elf32-target.h"
This page took 0.145105 seconds and 5 git commands to generate.