m68k: Check UNDEFWEAK_NO_DYNAMIC_RELOC
[deliverable/binutils-gdb.git] / bfd / elf32-m68k.c
1 /* Motorola 68k series support for 32-bit ELF
2 Copyright (C) 1993-2017 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf/m68k.h"
27 #include "opcode/m68k.h"
28
29 static bfd_boolean
30 elf_m68k_discard_copies (struct elf_link_hash_entry *, void *);
31
32 static reloc_howto_type howto_table[] =
33 {
34 HOWTO(R_68K_NONE, 0, 3, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_NONE", FALSE, 0, 0x00000000,FALSE),
35 HOWTO(R_68K_32, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_32", FALSE, 0, 0xffffffff,FALSE),
36 HOWTO(R_68K_16, 0, 1,16, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_16", FALSE, 0, 0x0000ffff,FALSE),
37 HOWTO(R_68K_8, 0, 0, 8, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_8", FALSE, 0, 0x000000ff,FALSE),
38 HOWTO(R_68K_PC32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PC32", FALSE, 0, 0xffffffff,TRUE),
39 HOWTO(R_68K_PC16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC16", FALSE, 0, 0x0000ffff,TRUE),
40 HOWTO(R_68K_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC8", FALSE, 0, 0x000000ff,TRUE),
41 HOWTO(R_68K_GOT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32", FALSE, 0, 0xffffffff,TRUE),
42 HOWTO(R_68K_GOT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16", FALSE, 0, 0x0000ffff,TRUE),
43 HOWTO(R_68K_GOT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8", FALSE, 0, 0x000000ff,TRUE),
44 HOWTO(R_68K_GOT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32O", FALSE, 0, 0xffffffff,FALSE),
45 HOWTO(R_68K_GOT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16O", FALSE, 0, 0x0000ffff,FALSE),
46 HOWTO(R_68K_GOT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8O", FALSE, 0, 0x000000ff,FALSE),
47 HOWTO(R_68K_PLT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32", FALSE, 0, 0xffffffff,TRUE),
48 HOWTO(R_68K_PLT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16", FALSE, 0, 0x0000ffff,TRUE),
49 HOWTO(R_68K_PLT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8", FALSE, 0, 0x000000ff,TRUE),
50 HOWTO(R_68K_PLT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32O", FALSE, 0, 0xffffffff,FALSE),
51 HOWTO(R_68K_PLT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16O", FALSE, 0, 0x0000ffff,FALSE),
52 HOWTO(R_68K_PLT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8O", FALSE, 0, 0x000000ff,FALSE),
53 HOWTO(R_68K_COPY, 0, 0, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_COPY", FALSE, 0, 0xffffffff,FALSE),
54 HOWTO(R_68K_GLOB_DAT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_GLOB_DAT", FALSE, 0, 0xffffffff,FALSE),
55 HOWTO(R_68K_JMP_SLOT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_JMP_SLOT", FALSE, 0, 0xffffffff,FALSE),
56 HOWTO(R_68K_RELATIVE, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_RELATIVE", FALSE, 0, 0xffffffff,FALSE),
57 /* GNU extension to record C++ vtable hierarchy. */
58 HOWTO (R_68K_GNU_VTINHERIT, /* type */
59 0, /* rightshift */
60 2, /* size (0 = byte, 1 = short, 2 = long) */
61 0, /* bitsize */
62 FALSE, /* pc_relative */
63 0, /* bitpos */
64 complain_overflow_dont, /* complain_on_overflow */
65 NULL, /* special_function */
66 "R_68K_GNU_VTINHERIT", /* name */
67 FALSE, /* partial_inplace */
68 0, /* src_mask */
69 0, /* dst_mask */
70 FALSE),
71 /* GNU extension to record C++ vtable member usage. */
72 HOWTO (R_68K_GNU_VTENTRY, /* type */
73 0, /* rightshift */
74 2, /* size (0 = byte, 1 = short, 2 = long) */
75 0, /* bitsize */
76 FALSE, /* pc_relative */
77 0, /* bitpos */
78 complain_overflow_dont, /* complain_on_overflow */
79 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
80 "R_68K_GNU_VTENTRY", /* name */
81 FALSE, /* partial_inplace */
82 0, /* src_mask */
83 0, /* dst_mask */
84 FALSE),
85
86 /* TLS general dynamic variable reference. */
87 HOWTO (R_68K_TLS_GD32, /* type */
88 0, /* rightshift */
89 2, /* size (0 = byte, 1 = short, 2 = long) */
90 32, /* bitsize */
91 FALSE, /* pc_relative */
92 0, /* bitpos */
93 complain_overflow_bitfield, /* complain_on_overflow */
94 bfd_elf_generic_reloc, /* special_function */
95 "R_68K_TLS_GD32", /* name */
96 FALSE, /* partial_inplace */
97 0, /* src_mask */
98 0xffffffff, /* dst_mask */
99 FALSE), /* pcrel_offset */
100
101 HOWTO (R_68K_TLS_GD16, /* type */
102 0, /* rightshift */
103 1, /* size (0 = byte, 1 = short, 2 = long) */
104 16, /* bitsize */
105 FALSE, /* pc_relative */
106 0, /* bitpos */
107 complain_overflow_signed, /* complain_on_overflow */
108 bfd_elf_generic_reloc, /* special_function */
109 "R_68K_TLS_GD16", /* name */
110 FALSE, /* partial_inplace */
111 0, /* src_mask */
112 0x0000ffff, /* dst_mask */
113 FALSE), /* pcrel_offset */
114
115 HOWTO (R_68K_TLS_GD8, /* type */
116 0, /* rightshift */
117 0, /* size (0 = byte, 1 = short, 2 = long) */
118 8, /* bitsize */
119 FALSE, /* pc_relative */
120 0, /* bitpos */
121 complain_overflow_signed, /* complain_on_overflow */
122 bfd_elf_generic_reloc, /* special_function */
123 "R_68K_TLS_GD8", /* name */
124 FALSE, /* partial_inplace */
125 0, /* src_mask */
126 0x000000ff, /* dst_mask */
127 FALSE), /* pcrel_offset */
128
129 /* TLS local dynamic variable reference. */
130 HOWTO (R_68K_TLS_LDM32, /* type */
131 0, /* rightshift */
132 2, /* size (0 = byte, 1 = short, 2 = long) */
133 32, /* bitsize */
134 FALSE, /* pc_relative */
135 0, /* bitpos */
136 complain_overflow_bitfield, /* complain_on_overflow */
137 bfd_elf_generic_reloc, /* special_function */
138 "R_68K_TLS_LDM32", /* name */
139 FALSE, /* partial_inplace */
140 0, /* src_mask */
141 0xffffffff, /* dst_mask */
142 FALSE), /* pcrel_offset */
143
144 HOWTO (R_68K_TLS_LDM16, /* type */
145 0, /* rightshift */
146 1, /* size (0 = byte, 1 = short, 2 = long) */
147 16, /* bitsize */
148 FALSE, /* pc_relative */
149 0, /* bitpos */
150 complain_overflow_signed, /* complain_on_overflow */
151 bfd_elf_generic_reloc, /* special_function */
152 "R_68K_TLS_LDM16", /* name */
153 FALSE, /* partial_inplace */
154 0, /* src_mask */
155 0x0000ffff, /* dst_mask */
156 FALSE), /* pcrel_offset */
157
158 HOWTO (R_68K_TLS_LDM8, /* type */
159 0, /* rightshift */
160 0, /* size (0 = byte, 1 = short, 2 = long) */
161 8, /* bitsize */
162 FALSE, /* pc_relative */
163 0, /* bitpos */
164 complain_overflow_signed, /* complain_on_overflow */
165 bfd_elf_generic_reloc, /* special_function */
166 "R_68K_TLS_LDM8", /* name */
167 FALSE, /* partial_inplace */
168 0, /* src_mask */
169 0x000000ff, /* dst_mask */
170 FALSE), /* pcrel_offset */
171
172 HOWTO (R_68K_TLS_LDO32, /* type */
173 0, /* rightshift */
174 2, /* size (0 = byte, 1 = short, 2 = long) */
175 32, /* bitsize */
176 FALSE, /* pc_relative */
177 0, /* bitpos */
178 complain_overflow_bitfield, /* complain_on_overflow */
179 bfd_elf_generic_reloc, /* special_function */
180 "R_68K_TLS_LDO32", /* name */
181 FALSE, /* partial_inplace */
182 0, /* src_mask */
183 0xffffffff, /* dst_mask */
184 FALSE), /* pcrel_offset */
185
186 HOWTO (R_68K_TLS_LDO16, /* type */
187 0, /* rightshift */
188 1, /* size (0 = byte, 1 = short, 2 = long) */
189 16, /* bitsize */
190 FALSE, /* pc_relative */
191 0, /* bitpos */
192 complain_overflow_signed, /* complain_on_overflow */
193 bfd_elf_generic_reloc, /* special_function */
194 "R_68K_TLS_LDO16", /* name */
195 FALSE, /* partial_inplace */
196 0, /* src_mask */
197 0x0000ffff, /* dst_mask */
198 FALSE), /* pcrel_offset */
199
200 HOWTO (R_68K_TLS_LDO8, /* type */
201 0, /* rightshift */
202 0, /* size (0 = byte, 1 = short, 2 = long) */
203 8, /* bitsize */
204 FALSE, /* pc_relative */
205 0, /* bitpos */
206 complain_overflow_signed, /* complain_on_overflow */
207 bfd_elf_generic_reloc, /* special_function */
208 "R_68K_TLS_LDO8", /* name */
209 FALSE, /* partial_inplace */
210 0, /* src_mask */
211 0x000000ff, /* dst_mask */
212 FALSE), /* pcrel_offset */
213
214 /* TLS initial execution variable reference. */
215 HOWTO (R_68K_TLS_IE32, /* type */
216 0, /* rightshift */
217 2, /* size (0 = byte, 1 = short, 2 = long) */
218 32, /* bitsize */
219 FALSE, /* pc_relative */
220 0, /* bitpos */
221 complain_overflow_bitfield, /* complain_on_overflow */
222 bfd_elf_generic_reloc, /* special_function */
223 "R_68K_TLS_IE32", /* name */
224 FALSE, /* partial_inplace */
225 0, /* src_mask */
226 0xffffffff, /* dst_mask */
227 FALSE), /* pcrel_offset */
228
229 HOWTO (R_68K_TLS_IE16, /* type */
230 0, /* rightshift */
231 1, /* size (0 = byte, 1 = short, 2 = long) */
232 16, /* bitsize */
233 FALSE, /* pc_relative */
234 0, /* bitpos */
235 complain_overflow_signed, /* complain_on_overflow */
236 bfd_elf_generic_reloc, /* special_function */
237 "R_68K_TLS_IE16", /* name */
238 FALSE, /* partial_inplace */
239 0, /* src_mask */
240 0x0000ffff, /* dst_mask */
241 FALSE), /* pcrel_offset */
242
243 HOWTO (R_68K_TLS_IE8, /* type */
244 0, /* rightshift */
245 0, /* size (0 = byte, 1 = short, 2 = long) */
246 8, /* bitsize */
247 FALSE, /* pc_relative */
248 0, /* bitpos */
249 complain_overflow_signed, /* complain_on_overflow */
250 bfd_elf_generic_reloc, /* special_function */
251 "R_68K_TLS_IE8", /* name */
252 FALSE, /* partial_inplace */
253 0, /* src_mask */
254 0x000000ff, /* dst_mask */
255 FALSE), /* pcrel_offset */
256
257 /* TLS local execution variable reference. */
258 HOWTO (R_68K_TLS_LE32, /* type */
259 0, /* rightshift */
260 2, /* size (0 = byte, 1 = short, 2 = long) */
261 32, /* bitsize */
262 FALSE, /* pc_relative */
263 0, /* bitpos */
264 complain_overflow_bitfield, /* complain_on_overflow */
265 bfd_elf_generic_reloc, /* special_function */
266 "R_68K_TLS_LE32", /* name */
267 FALSE, /* partial_inplace */
268 0, /* src_mask */
269 0xffffffff, /* dst_mask */
270 FALSE), /* pcrel_offset */
271
272 HOWTO (R_68K_TLS_LE16, /* type */
273 0, /* rightshift */
274 1, /* size (0 = byte, 1 = short, 2 = long) */
275 16, /* bitsize */
276 FALSE, /* pc_relative */
277 0, /* bitpos */
278 complain_overflow_signed, /* complain_on_overflow */
279 bfd_elf_generic_reloc, /* special_function */
280 "R_68K_TLS_LE16", /* name */
281 FALSE, /* partial_inplace */
282 0, /* src_mask */
283 0x0000ffff, /* dst_mask */
284 FALSE), /* pcrel_offset */
285
286 HOWTO (R_68K_TLS_LE8, /* type */
287 0, /* rightshift */
288 0, /* size (0 = byte, 1 = short, 2 = long) */
289 8, /* bitsize */
290 FALSE, /* pc_relative */
291 0, /* bitpos */
292 complain_overflow_signed, /* complain_on_overflow */
293 bfd_elf_generic_reloc, /* special_function */
294 "R_68K_TLS_LE8", /* name */
295 FALSE, /* partial_inplace */
296 0, /* src_mask */
297 0x000000ff, /* dst_mask */
298 FALSE), /* pcrel_offset */
299
300 /* TLS GD/LD dynamic relocations. */
301 HOWTO (R_68K_TLS_DTPMOD32, /* type */
302 0, /* rightshift */
303 2, /* size (0 = byte, 1 = short, 2 = long) */
304 32, /* bitsize */
305 FALSE, /* pc_relative */
306 0, /* bitpos */
307 complain_overflow_dont, /* complain_on_overflow */
308 bfd_elf_generic_reloc, /* special_function */
309 "R_68K_TLS_DTPMOD32", /* name */
310 FALSE, /* partial_inplace */
311 0, /* src_mask */
312 0xffffffff, /* dst_mask */
313 FALSE), /* pcrel_offset */
314
315 HOWTO (R_68K_TLS_DTPREL32, /* type */
316 0, /* rightshift */
317 2, /* size (0 = byte, 1 = short, 2 = long) */
318 32, /* bitsize */
319 FALSE, /* pc_relative */
320 0, /* bitpos */
321 complain_overflow_dont, /* complain_on_overflow */
322 bfd_elf_generic_reloc, /* special_function */
323 "R_68K_TLS_DTPREL32", /* name */
324 FALSE, /* partial_inplace */
325 0, /* src_mask */
326 0xffffffff, /* dst_mask */
327 FALSE), /* pcrel_offset */
328
329 HOWTO (R_68K_TLS_TPREL32, /* type */
330 0, /* rightshift */
331 2, /* size (0 = byte, 1 = short, 2 = long) */
332 32, /* bitsize */
333 FALSE, /* pc_relative */
334 0, /* bitpos */
335 complain_overflow_dont, /* complain_on_overflow */
336 bfd_elf_generic_reloc, /* special_function */
337 "R_68K_TLS_TPREL32", /* name */
338 FALSE, /* partial_inplace */
339 0, /* src_mask */
340 0xffffffff, /* dst_mask */
341 FALSE), /* pcrel_offset */
342 };
343
344 static void
345 rtype_to_howto (bfd *abfd, arelent *cache_ptr, Elf_Internal_Rela *dst)
346 {
347 unsigned int indx = ELF32_R_TYPE (dst->r_info);
348
349 if (indx >= (unsigned int) R_68K_max)
350 {
351 /* xgettext:c-format */
352 _bfd_error_handler (_("%B: invalid relocation type %d"),
353 abfd, (int) indx);
354 indx = R_68K_NONE;
355 }
356 cache_ptr->howto = &howto_table[indx];
357 }
358
359 #define elf_info_to_howto rtype_to_howto
360
361 static const struct
362 {
363 bfd_reloc_code_real_type bfd_val;
364 int elf_val;
365 }
366 reloc_map[] =
367 {
368 { BFD_RELOC_NONE, R_68K_NONE },
369 { BFD_RELOC_32, R_68K_32 },
370 { BFD_RELOC_16, R_68K_16 },
371 { BFD_RELOC_8, R_68K_8 },
372 { BFD_RELOC_32_PCREL, R_68K_PC32 },
373 { BFD_RELOC_16_PCREL, R_68K_PC16 },
374 { BFD_RELOC_8_PCREL, R_68K_PC8 },
375 { BFD_RELOC_32_GOT_PCREL, R_68K_GOT32 },
376 { BFD_RELOC_16_GOT_PCREL, R_68K_GOT16 },
377 { BFD_RELOC_8_GOT_PCREL, R_68K_GOT8 },
378 { BFD_RELOC_32_GOTOFF, R_68K_GOT32O },
379 { BFD_RELOC_16_GOTOFF, R_68K_GOT16O },
380 { BFD_RELOC_8_GOTOFF, R_68K_GOT8O },
381 { BFD_RELOC_32_PLT_PCREL, R_68K_PLT32 },
382 { BFD_RELOC_16_PLT_PCREL, R_68K_PLT16 },
383 { BFD_RELOC_8_PLT_PCREL, R_68K_PLT8 },
384 { BFD_RELOC_32_PLTOFF, R_68K_PLT32O },
385 { BFD_RELOC_16_PLTOFF, R_68K_PLT16O },
386 { BFD_RELOC_8_PLTOFF, R_68K_PLT8O },
387 { BFD_RELOC_NONE, R_68K_COPY },
388 { BFD_RELOC_68K_GLOB_DAT, R_68K_GLOB_DAT },
389 { BFD_RELOC_68K_JMP_SLOT, R_68K_JMP_SLOT },
390 { BFD_RELOC_68K_RELATIVE, R_68K_RELATIVE },
391 { BFD_RELOC_CTOR, R_68K_32 },
392 { BFD_RELOC_VTABLE_INHERIT, R_68K_GNU_VTINHERIT },
393 { BFD_RELOC_VTABLE_ENTRY, R_68K_GNU_VTENTRY },
394 { BFD_RELOC_68K_TLS_GD32, R_68K_TLS_GD32 },
395 { BFD_RELOC_68K_TLS_GD16, R_68K_TLS_GD16 },
396 { BFD_RELOC_68K_TLS_GD8, R_68K_TLS_GD8 },
397 { BFD_RELOC_68K_TLS_LDM32, R_68K_TLS_LDM32 },
398 { BFD_RELOC_68K_TLS_LDM16, R_68K_TLS_LDM16 },
399 { BFD_RELOC_68K_TLS_LDM8, R_68K_TLS_LDM8 },
400 { BFD_RELOC_68K_TLS_LDO32, R_68K_TLS_LDO32 },
401 { BFD_RELOC_68K_TLS_LDO16, R_68K_TLS_LDO16 },
402 { BFD_RELOC_68K_TLS_LDO8, R_68K_TLS_LDO8 },
403 { BFD_RELOC_68K_TLS_IE32, R_68K_TLS_IE32 },
404 { BFD_RELOC_68K_TLS_IE16, R_68K_TLS_IE16 },
405 { BFD_RELOC_68K_TLS_IE8, R_68K_TLS_IE8 },
406 { BFD_RELOC_68K_TLS_LE32, R_68K_TLS_LE32 },
407 { BFD_RELOC_68K_TLS_LE16, R_68K_TLS_LE16 },
408 { BFD_RELOC_68K_TLS_LE8, R_68K_TLS_LE8 },
409 };
410
411 static reloc_howto_type *
412 reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
413 bfd_reloc_code_real_type code)
414 {
415 unsigned int i;
416 for (i = 0; i < sizeof (reloc_map) / sizeof (reloc_map[0]); i++)
417 {
418 if (reloc_map[i].bfd_val == code)
419 return &howto_table[reloc_map[i].elf_val];
420 }
421 return 0;
422 }
423
424 static reloc_howto_type *
425 reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, const char *r_name)
426 {
427 unsigned int i;
428
429 for (i = 0; i < sizeof (howto_table) / sizeof (howto_table[0]); i++)
430 if (howto_table[i].name != NULL
431 && strcasecmp (howto_table[i].name, r_name) == 0)
432 return &howto_table[i];
433
434 return NULL;
435 }
436
437 #define bfd_elf32_bfd_reloc_type_lookup reloc_type_lookup
438 #define bfd_elf32_bfd_reloc_name_lookup reloc_name_lookup
439 #define ELF_ARCH bfd_arch_m68k
440 #define ELF_TARGET_ID M68K_ELF_DATA
441 \f
442 /* Functions for the m68k ELF linker. */
443
444 /* The name of the dynamic interpreter. This is put in the .interp
445 section. */
446
447 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
448
449 /* Describes one of the various PLT styles. */
450
451 struct elf_m68k_plt_info
452 {
453 /* The size of each PLT entry. */
454 bfd_vma size;
455
456 /* The template for the first PLT entry. */
457 const bfd_byte *plt0_entry;
458
459 /* Offsets of fields in PLT0_ENTRY that require R_68K_PC32 relocations.
460 The comments by each member indicate the value that the relocation
461 is against. */
462 struct {
463 unsigned int got4; /* .got + 4 */
464 unsigned int got8; /* .got + 8 */
465 } plt0_relocs;
466
467 /* The template for a symbol's PLT entry. */
468 const bfd_byte *symbol_entry;
469
470 /* Offsets of fields in SYMBOL_ENTRY that require R_68K_PC32 relocations.
471 The comments by each member indicate the value that the relocation
472 is against. */
473 struct {
474 unsigned int got; /* the symbol's .got.plt entry */
475 unsigned int plt; /* .plt */
476 } symbol_relocs;
477
478 /* The offset of the resolver stub from the start of SYMBOL_ENTRY.
479 The stub starts with "move.l #relocoffset,%d0". */
480 bfd_vma symbol_resolve_entry;
481 };
482
483 /* The size in bytes of an entry in the procedure linkage table. */
484
485 #define PLT_ENTRY_SIZE 20
486
487 /* The first entry in a procedure linkage table looks like this. See
488 the SVR4 ABI m68k supplement to see how this works. */
489
490 static const bfd_byte elf_m68k_plt0_entry[PLT_ENTRY_SIZE] =
491 {
492 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
493 0, 0, 0, 2, /* + (.got + 4) - . */
494 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,addr]) */
495 0, 0, 0, 2, /* + (.got + 8) - . */
496 0, 0, 0, 0 /* pad out to 20 bytes. */
497 };
498
499 /* Subsequent entries in a procedure linkage table look like this. */
500
501 static const bfd_byte elf_m68k_plt_entry[PLT_ENTRY_SIZE] =
502 {
503 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,symbol@GOTPC]) */
504 0, 0, 0, 2, /* + (.got.plt entry) - . */
505 0x2f, 0x3c, /* move.l #offset,-(%sp) */
506 0, 0, 0, 0, /* + reloc index */
507 0x60, 0xff, /* bra.l .plt */
508 0, 0, 0, 0 /* + .plt - . */
509 };
510
511 static const struct elf_m68k_plt_info elf_m68k_plt_info =
512 {
513 PLT_ENTRY_SIZE,
514 elf_m68k_plt0_entry, { 4, 12 },
515 elf_m68k_plt_entry, { 4, 16 }, 8
516 };
517
518 #define ISAB_PLT_ENTRY_SIZE 24
519
520 static const bfd_byte elf_isab_plt0_entry[ISAB_PLT_ENTRY_SIZE] =
521 {
522 0x20, 0x3c, /* move.l #offset,%d0 */
523 0, 0, 0, 0, /* + (.got + 4) - . */
524 0x2f, 0x3b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),-(%sp) */
525 0x20, 0x3c, /* move.l #offset,%d0 */
526 0, 0, 0, 0, /* + (.got + 8) - . */
527 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
528 0x4e, 0xd0, /* jmp (%a0) */
529 0x4e, 0x71 /* nop */
530 };
531
532 /* Subsequent entries in a procedure linkage table look like this. */
533
534 static const bfd_byte elf_isab_plt_entry[ISAB_PLT_ENTRY_SIZE] =
535 {
536 0x20, 0x3c, /* move.l #offset,%d0 */
537 0, 0, 0, 0, /* + (.got.plt entry) - . */
538 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
539 0x4e, 0xd0, /* jmp (%a0) */
540 0x2f, 0x3c, /* move.l #offset,-(%sp) */
541 0, 0, 0, 0, /* + reloc index */
542 0x60, 0xff, /* bra.l .plt */
543 0, 0, 0, 0 /* + .plt - . */
544 };
545
546 static const struct elf_m68k_plt_info elf_isab_plt_info =
547 {
548 ISAB_PLT_ENTRY_SIZE,
549 elf_isab_plt0_entry, { 2, 12 },
550 elf_isab_plt_entry, { 2, 20 }, 12
551 };
552
553 #define ISAC_PLT_ENTRY_SIZE 24
554
555 static const bfd_byte elf_isac_plt0_entry[ISAC_PLT_ENTRY_SIZE] =
556 {
557 0x20, 0x3c, /* move.l #offset,%d0 */
558 0, 0, 0, 0, /* replaced with .got + 4 - . */
559 0x2e, 0xbb, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),(%sp) */
560 0x20, 0x3c, /* move.l #offset,%d0 */
561 0, 0, 0, 0, /* replaced with .got + 8 - . */
562 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
563 0x4e, 0xd0, /* jmp (%a0) */
564 0x4e, 0x71 /* nop */
565 };
566
567 /* Subsequent entries in a procedure linkage table look like this. */
568
569 static const bfd_byte elf_isac_plt_entry[ISAC_PLT_ENTRY_SIZE] =
570 {
571 0x20, 0x3c, /* move.l #offset,%d0 */
572 0, 0, 0, 0, /* replaced with (.got entry) - . */
573 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
574 0x4e, 0xd0, /* jmp (%a0) */
575 0x2f, 0x3c, /* move.l #offset,-(%sp) */
576 0, 0, 0, 0, /* replaced with offset into relocation table */
577 0x61, 0xff, /* bsr.l .plt */
578 0, 0, 0, 0 /* replaced with .plt - . */
579 };
580
581 static const struct elf_m68k_plt_info elf_isac_plt_info =
582 {
583 ISAC_PLT_ENTRY_SIZE,
584 elf_isac_plt0_entry, { 2, 12},
585 elf_isac_plt_entry, { 2, 20 }, 12
586 };
587
588 #define CPU32_PLT_ENTRY_SIZE 24
589 /* Procedure linkage table entries for the cpu32 */
590 static const bfd_byte elf_cpu32_plt0_entry[CPU32_PLT_ENTRY_SIZE] =
591 {
592 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
593 0, 0, 0, 2, /* + (.got + 4) - . */
594 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
595 0, 0, 0, 2, /* + (.got + 8) - . */
596 0x4e, 0xd1, /* jmp %a1@ */
597 0, 0, 0, 0, /* pad out to 24 bytes. */
598 0, 0
599 };
600
601 static const bfd_byte elf_cpu32_plt_entry[CPU32_PLT_ENTRY_SIZE] =
602 {
603 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
604 0, 0, 0, 2, /* + (.got.plt entry) - . */
605 0x4e, 0xd1, /* jmp %a1@ */
606 0x2f, 0x3c, /* move.l #offset,-(%sp) */
607 0, 0, 0, 0, /* + reloc index */
608 0x60, 0xff, /* bra.l .plt */
609 0, 0, 0, 0, /* + .plt - . */
610 0, 0
611 };
612
613 static const struct elf_m68k_plt_info elf_cpu32_plt_info =
614 {
615 CPU32_PLT_ENTRY_SIZE,
616 elf_cpu32_plt0_entry, { 4, 12 },
617 elf_cpu32_plt_entry, { 4, 18 }, 10
618 };
619
620 /* The m68k linker needs to keep track of the number of relocs that it
621 decides to copy in check_relocs for each symbol. This is so that it
622 can discard PC relative relocs if it doesn't need them when linking
623 with -Bsymbolic. We store the information in a field extending the
624 regular ELF linker hash table. */
625
626 /* This structure keeps track of the number of PC relative relocs we have
627 copied for a given symbol. */
628
629 struct elf_m68k_pcrel_relocs_copied
630 {
631 /* Next section. */
632 struct elf_m68k_pcrel_relocs_copied *next;
633 /* A section in dynobj. */
634 asection *section;
635 /* Number of relocs copied in this section. */
636 bfd_size_type count;
637 };
638
639 /* Forward declaration. */
640 struct elf_m68k_got_entry;
641
642 /* m68k ELF linker hash entry. */
643
644 struct elf_m68k_link_hash_entry
645 {
646 struct elf_link_hash_entry root;
647
648 /* Number of PC relative relocs copied for this symbol. */
649 struct elf_m68k_pcrel_relocs_copied *pcrel_relocs_copied;
650
651 /* Key to got_entries. */
652 unsigned long got_entry_key;
653
654 /* List of GOT entries for this symbol. This list is build during
655 offset finalization and is used within elf_m68k_finish_dynamic_symbol
656 to traverse all GOT entries for a particular symbol.
657
658 ??? We could've used root.got.glist field instead, but having
659 a separate field is cleaner. */
660 struct elf_m68k_got_entry *glist;
661 };
662
663 #define elf_m68k_hash_entry(ent) ((struct elf_m68k_link_hash_entry *) (ent))
664
665 /* Key part of GOT entry in hashtable. */
666 struct elf_m68k_got_entry_key
667 {
668 /* BFD in which this symbol was defined. NULL for global symbols. */
669 const bfd *bfd;
670
671 /* Symbol index. Either local symbol index or h->got_entry_key. */
672 unsigned long symndx;
673
674 /* Type is one of R_68K_GOT{8, 16, 32}O, R_68K_TLS_GD{8, 16, 32},
675 R_68K_TLS_LDM{8, 16, 32} or R_68K_TLS_IE{8, 16, 32}.
676
677 From perspective of hashtable key, only elf_m68k_got_reloc_type (type)
678 matters. That is, we distinguish between, say, R_68K_GOT16O
679 and R_68K_GOT32O when allocating offsets, but they are considered to be
680 the same when searching got->entries. */
681 enum elf_m68k_reloc_type type;
682 };
683
684 /* Size of the GOT offset suitable for relocation. */
685 enum elf_m68k_got_offset_size { R_8, R_16, R_32, R_LAST };
686
687 /* Entry of the GOT. */
688 struct elf_m68k_got_entry
689 {
690 /* GOT entries are put into a got->entries hashtable. This is the key. */
691 struct elf_m68k_got_entry_key key_;
692
693 /* GOT entry data. We need s1 before offset finalization and s2 after. */
694 union
695 {
696 struct
697 {
698 /* Number of times this entry is referenced. It is used to
699 filter out unnecessary GOT slots in elf_m68k_gc_sweep_hook. */
700 bfd_vma refcount;
701 } s1;
702
703 struct
704 {
705 /* Offset from the start of .got section. To calculate offset relative
706 to GOT pointer one should subtract got->offset from this value. */
707 bfd_vma offset;
708
709 /* Pointer to the next GOT entry for this global symbol.
710 Symbols have at most one entry in one GOT, but might
711 have entries in more than one GOT.
712 Root of this list is h->glist.
713 NULL for local symbols. */
714 struct elf_m68k_got_entry *next;
715 } s2;
716 } u;
717 };
718
719 /* Return representative type for relocation R_TYPE.
720 This is used to avoid enumerating many relocations in comparisons,
721 switches etc. */
722
723 static enum elf_m68k_reloc_type
724 elf_m68k_reloc_got_type (enum elf_m68k_reloc_type r_type)
725 {
726 switch (r_type)
727 {
728 /* In most cases R_68K_GOTx relocations require the very same
729 handling as R_68K_GOT32O relocation. In cases when we need
730 to distinguish between the two, we use explicitly compare against
731 r_type. */
732 case R_68K_GOT32:
733 case R_68K_GOT16:
734 case R_68K_GOT8:
735 case R_68K_GOT32O:
736 case R_68K_GOT16O:
737 case R_68K_GOT8O:
738 return R_68K_GOT32O;
739
740 case R_68K_TLS_GD32:
741 case R_68K_TLS_GD16:
742 case R_68K_TLS_GD8:
743 return R_68K_TLS_GD32;
744
745 case R_68K_TLS_LDM32:
746 case R_68K_TLS_LDM16:
747 case R_68K_TLS_LDM8:
748 return R_68K_TLS_LDM32;
749
750 case R_68K_TLS_IE32:
751 case R_68K_TLS_IE16:
752 case R_68K_TLS_IE8:
753 return R_68K_TLS_IE32;
754
755 default:
756 BFD_ASSERT (FALSE);
757 return 0;
758 }
759 }
760
761 /* Return size of the GOT entry offset for relocation R_TYPE. */
762
763 static enum elf_m68k_got_offset_size
764 elf_m68k_reloc_got_offset_size (enum elf_m68k_reloc_type r_type)
765 {
766 switch (r_type)
767 {
768 case R_68K_GOT32: case R_68K_GOT16: case R_68K_GOT8:
769 case R_68K_GOT32O: case R_68K_TLS_GD32: case R_68K_TLS_LDM32:
770 case R_68K_TLS_IE32:
771 return R_32;
772
773 case R_68K_GOT16O: case R_68K_TLS_GD16: case R_68K_TLS_LDM16:
774 case R_68K_TLS_IE16:
775 return R_16;
776
777 case R_68K_GOT8O: case R_68K_TLS_GD8: case R_68K_TLS_LDM8:
778 case R_68K_TLS_IE8:
779 return R_8;
780
781 default:
782 BFD_ASSERT (FALSE);
783 return 0;
784 }
785 }
786
787 /* Return number of GOT entries we need to allocate in GOT for
788 relocation R_TYPE. */
789
790 static bfd_vma
791 elf_m68k_reloc_got_n_slots (enum elf_m68k_reloc_type r_type)
792 {
793 switch (elf_m68k_reloc_got_type (r_type))
794 {
795 case R_68K_GOT32O:
796 case R_68K_TLS_IE32:
797 return 1;
798
799 case R_68K_TLS_GD32:
800 case R_68K_TLS_LDM32:
801 return 2;
802
803 default:
804 BFD_ASSERT (FALSE);
805 return 0;
806 }
807 }
808
809 /* Return TRUE if relocation R_TYPE is a TLS one. */
810
811 static bfd_boolean
812 elf_m68k_reloc_tls_p (enum elf_m68k_reloc_type r_type)
813 {
814 switch (r_type)
815 {
816 case R_68K_TLS_GD32: case R_68K_TLS_GD16: case R_68K_TLS_GD8:
817 case R_68K_TLS_LDM32: case R_68K_TLS_LDM16: case R_68K_TLS_LDM8:
818 case R_68K_TLS_LDO32: case R_68K_TLS_LDO16: case R_68K_TLS_LDO8:
819 case R_68K_TLS_IE32: case R_68K_TLS_IE16: case R_68K_TLS_IE8:
820 case R_68K_TLS_LE32: case R_68K_TLS_LE16: case R_68K_TLS_LE8:
821 case R_68K_TLS_DTPMOD32: case R_68K_TLS_DTPREL32: case R_68K_TLS_TPREL32:
822 return TRUE;
823
824 default:
825 return FALSE;
826 }
827 }
828
829 /* Data structure representing a single GOT. */
830 struct elf_m68k_got
831 {
832 /* Hashtable of 'struct elf_m68k_got_entry's.
833 Starting size of this table is the maximum number of
834 R_68K_GOT8O entries. */
835 htab_t entries;
836
837 /* Number of R_x slots in this GOT. Some (e.g., TLS) entries require
838 several GOT slots.
839
840 n_slots[R_8] is the count of R_8 slots in this GOT.
841 n_slots[R_16] is the cumulative count of R_8 and R_16 slots
842 in this GOT.
843 n_slots[R_32] is the cumulative count of R_8, R_16 and R_32 slots
844 in this GOT. This is the total number of slots. */
845 bfd_vma n_slots[R_LAST];
846
847 /* Number of local (entry->key_.h == NULL) slots in this GOT.
848 This is only used to properly calculate size of .rela.got section;
849 see elf_m68k_partition_multi_got. */
850 bfd_vma local_n_slots;
851
852 /* Offset of this GOT relative to beginning of .got section. */
853 bfd_vma offset;
854 };
855
856 /* BFD and its GOT. This is an entry in multi_got->bfd2got hashtable. */
857 struct elf_m68k_bfd2got_entry
858 {
859 /* BFD. */
860 const bfd *bfd;
861
862 /* Assigned GOT. Before partitioning multi-GOT each BFD has its own
863 GOT structure. After partitioning several BFD's might [and often do]
864 share a single GOT. */
865 struct elf_m68k_got *got;
866 };
867
868 /* The main data structure holding all the pieces. */
869 struct elf_m68k_multi_got
870 {
871 /* Hashtable mapping each BFD to its GOT. If a BFD doesn't have an entry
872 here, then it doesn't need a GOT (this includes the case of a BFD
873 having an empty GOT).
874
875 ??? This hashtable can be replaced by an array indexed by bfd->id. */
876 htab_t bfd2got;
877
878 /* Next symndx to assign a global symbol.
879 h->got_entry_key is initialized from this counter. */
880 unsigned long global_symndx;
881 };
882
883 /* m68k ELF linker hash table. */
884
885 struct elf_m68k_link_hash_table
886 {
887 struct elf_link_hash_table root;
888
889 /* Small local sym cache. */
890 struct sym_cache sym_cache;
891
892 /* The PLT format used by this link, or NULL if the format has not
893 yet been chosen. */
894 const struct elf_m68k_plt_info *plt_info;
895
896 /* True, if GP is loaded within each function which uses it.
897 Set to TRUE when GOT negative offsets or multi-GOT is enabled. */
898 bfd_boolean local_gp_p;
899
900 /* Switch controlling use of negative offsets to double the size of GOTs. */
901 bfd_boolean use_neg_got_offsets_p;
902
903 /* Switch controlling generation of multiple GOTs. */
904 bfd_boolean allow_multigot_p;
905
906 /* Multi-GOT data structure. */
907 struct elf_m68k_multi_got multi_got_;
908 };
909
910 /* Get the m68k ELF linker hash table from a link_info structure. */
911
912 #define elf_m68k_hash_table(p) \
913 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
914 == M68K_ELF_DATA ? ((struct elf_m68k_link_hash_table *) ((p)->hash)) : NULL)
915
916 /* Shortcut to multi-GOT data. */
917 #define elf_m68k_multi_got(INFO) (&elf_m68k_hash_table (INFO)->multi_got_)
918
919 /* Create an entry in an m68k ELF linker hash table. */
920
921 static struct bfd_hash_entry *
922 elf_m68k_link_hash_newfunc (struct bfd_hash_entry *entry,
923 struct bfd_hash_table *table,
924 const char *string)
925 {
926 struct bfd_hash_entry *ret = entry;
927
928 /* Allocate the structure if it has not already been allocated by a
929 subclass. */
930 if (ret == NULL)
931 ret = bfd_hash_allocate (table,
932 sizeof (struct elf_m68k_link_hash_entry));
933 if (ret == NULL)
934 return ret;
935
936 /* Call the allocation method of the superclass. */
937 ret = _bfd_elf_link_hash_newfunc (ret, table, string);
938 if (ret != NULL)
939 {
940 elf_m68k_hash_entry (ret)->pcrel_relocs_copied = NULL;
941 elf_m68k_hash_entry (ret)->got_entry_key = 0;
942 elf_m68k_hash_entry (ret)->glist = NULL;
943 }
944
945 return ret;
946 }
947
948 /* Destroy an m68k ELF linker hash table. */
949
950 static void
951 elf_m68k_link_hash_table_free (bfd *obfd)
952 {
953 struct elf_m68k_link_hash_table *htab;
954
955 htab = (struct elf_m68k_link_hash_table *) obfd->link.hash;
956
957 if (htab->multi_got_.bfd2got != NULL)
958 {
959 htab_delete (htab->multi_got_.bfd2got);
960 htab->multi_got_.bfd2got = NULL;
961 }
962 _bfd_elf_link_hash_table_free (obfd);
963 }
964
965 /* Create an m68k ELF linker hash table. */
966
967 static struct bfd_link_hash_table *
968 elf_m68k_link_hash_table_create (bfd *abfd)
969 {
970 struct elf_m68k_link_hash_table *ret;
971 bfd_size_type amt = sizeof (struct elf_m68k_link_hash_table);
972
973 ret = (struct elf_m68k_link_hash_table *) bfd_zmalloc (amt);
974 if (ret == (struct elf_m68k_link_hash_table *) NULL)
975 return NULL;
976
977 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
978 elf_m68k_link_hash_newfunc,
979 sizeof (struct elf_m68k_link_hash_entry),
980 M68K_ELF_DATA))
981 {
982 free (ret);
983 return NULL;
984 }
985 ret->root.root.hash_table_free = elf_m68k_link_hash_table_free;
986
987 ret->multi_got_.global_symndx = 1;
988
989 return &ret->root.root;
990 }
991
992 /* Set the right machine number. */
993
994 static bfd_boolean
995 elf32_m68k_object_p (bfd *abfd)
996 {
997 unsigned int mach = 0;
998 unsigned features = 0;
999 flagword eflags = elf_elfheader (abfd)->e_flags;
1000
1001 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1002 features |= m68000;
1003 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1004 features |= cpu32;
1005 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1006 features |= fido_a;
1007 else
1008 {
1009 switch (eflags & EF_M68K_CF_ISA_MASK)
1010 {
1011 case EF_M68K_CF_ISA_A_NODIV:
1012 features |= mcfisa_a;
1013 break;
1014 case EF_M68K_CF_ISA_A:
1015 features |= mcfisa_a|mcfhwdiv;
1016 break;
1017 case EF_M68K_CF_ISA_A_PLUS:
1018 features |= mcfisa_a|mcfisa_aa|mcfhwdiv|mcfusp;
1019 break;
1020 case EF_M68K_CF_ISA_B_NOUSP:
1021 features |= mcfisa_a|mcfisa_b|mcfhwdiv;
1022 break;
1023 case EF_M68K_CF_ISA_B:
1024 features |= mcfisa_a|mcfisa_b|mcfhwdiv|mcfusp;
1025 break;
1026 case EF_M68K_CF_ISA_C:
1027 features |= mcfisa_a|mcfisa_c|mcfhwdiv|mcfusp;
1028 break;
1029 case EF_M68K_CF_ISA_C_NODIV:
1030 features |= mcfisa_a|mcfisa_c|mcfusp;
1031 break;
1032 }
1033 switch (eflags & EF_M68K_CF_MAC_MASK)
1034 {
1035 case EF_M68K_CF_MAC:
1036 features |= mcfmac;
1037 break;
1038 case EF_M68K_CF_EMAC:
1039 features |= mcfemac;
1040 break;
1041 }
1042 if (eflags & EF_M68K_CF_FLOAT)
1043 features |= cfloat;
1044 }
1045
1046 mach = bfd_m68k_features_to_mach (features);
1047 bfd_default_set_arch_mach (abfd, bfd_arch_m68k, mach);
1048
1049 return TRUE;
1050 }
1051
1052 /* Somewhat reverse of elf32_m68k_object_p, this sets the e_flag
1053 field based on the machine number. */
1054
1055 static void
1056 elf_m68k_final_write_processing (bfd *abfd,
1057 bfd_boolean linker ATTRIBUTE_UNUSED)
1058 {
1059 int mach = bfd_get_mach (abfd);
1060 unsigned long e_flags = elf_elfheader (abfd)->e_flags;
1061
1062 if (!e_flags)
1063 {
1064 unsigned int arch_mask;
1065
1066 arch_mask = bfd_m68k_mach_to_features (mach);
1067
1068 if (arch_mask & m68000)
1069 e_flags = EF_M68K_M68000;
1070 else if (arch_mask & cpu32)
1071 e_flags = EF_M68K_CPU32;
1072 else if (arch_mask & fido_a)
1073 e_flags = EF_M68K_FIDO;
1074 else
1075 {
1076 switch (arch_mask
1077 & (mcfisa_a | mcfisa_aa | mcfisa_b | mcfisa_c | mcfhwdiv | mcfusp))
1078 {
1079 case mcfisa_a:
1080 e_flags |= EF_M68K_CF_ISA_A_NODIV;
1081 break;
1082 case mcfisa_a | mcfhwdiv:
1083 e_flags |= EF_M68K_CF_ISA_A;
1084 break;
1085 case mcfisa_a | mcfisa_aa | mcfhwdiv | mcfusp:
1086 e_flags |= EF_M68K_CF_ISA_A_PLUS;
1087 break;
1088 case mcfisa_a | mcfisa_b | mcfhwdiv:
1089 e_flags |= EF_M68K_CF_ISA_B_NOUSP;
1090 break;
1091 case mcfisa_a | mcfisa_b | mcfhwdiv | mcfusp:
1092 e_flags |= EF_M68K_CF_ISA_B;
1093 break;
1094 case mcfisa_a | mcfisa_c | mcfhwdiv | mcfusp:
1095 e_flags |= EF_M68K_CF_ISA_C;
1096 break;
1097 case mcfisa_a | mcfisa_c | mcfusp:
1098 e_flags |= EF_M68K_CF_ISA_C_NODIV;
1099 break;
1100 }
1101 if (arch_mask & mcfmac)
1102 e_flags |= EF_M68K_CF_MAC;
1103 else if (arch_mask & mcfemac)
1104 e_flags |= EF_M68K_CF_EMAC;
1105 if (arch_mask & cfloat)
1106 e_flags |= EF_M68K_CF_FLOAT | EF_M68K_CFV4E;
1107 }
1108 elf_elfheader (abfd)->e_flags = e_flags;
1109 }
1110 }
1111
1112 /* Keep m68k-specific flags in the ELF header. */
1113
1114 static bfd_boolean
1115 elf32_m68k_set_private_flags (bfd *abfd, flagword flags)
1116 {
1117 elf_elfheader (abfd)->e_flags = flags;
1118 elf_flags_init (abfd) = TRUE;
1119 return TRUE;
1120 }
1121
1122 /* Merge backend specific data from an object file to the output
1123 object file when linking. */
1124 static bfd_boolean
1125 elf32_m68k_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
1126 {
1127 bfd *obfd = info->output_bfd;
1128 flagword out_flags;
1129 flagword in_flags;
1130 flagword out_isa;
1131 flagword in_isa;
1132 const bfd_arch_info_type *arch_info;
1133
1134 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1135 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1136 return FALSE;
1137
1138 /* Get the merged machine. This checks for incompatibility between
1139 Coldfire & non-Coldfire flags, incompability between different
1140 Coldfire ISAs, and incompability between different MAC types. */
1141 arch_info = bfd_arch_get_compatible (ibfd, obfd, FALSE);
1142 if (!arch_info)
1143 return FALSE;
1144
1145 bfd_set_arch_mach (obfd, bfd_arch_m68k, arch_info->mach);
1146
1147 in_flags = elf_elfheader (ibfd)->e_flags;
1148 if (!elf_flags_init (obfd))
1149 {
1150 elf_flags_init (obfd) = TRUE;
1151 out_flags = in_flags;
1152 }
1153 else
1154 {
1155 out_flags = elf_elfheader (obfd)->e_flags;
1156 unsigned int variant_mask;
1157
1158 if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1159 variant_mask = 0;
1160 else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1161 variant_mask = 0;
1162 else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1163 variant_mask = 0;
1164 else
1165 variant_mask = EF_M68K_CF_ISA_MASK;
1166
1167 in_isa = (in_flags & variant_mask);
1168 out_isa = (out_flags & variant_mask);
1169 if (in_isa > out_isa)
1170 out_flags ^= in_isa ^ out_isa;
1171 if (((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32
1172 && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1173 || ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO
1174 && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32))
1175 out_flags = EF_M68K_FIDO;
1176 else
1177 out_flags |= in_flags ^ in_isa;
1178 }
1179 elf_elfheader (obfd)->e_flags = out_flags;
1180
1181 return TRUE;
1182 }
1183
1184 /* Display the flags field. */
1185
1186 static bfd_boolean
1187 elf32_m68k_print_private_bfd_data (bfd *abfd, void * ptr)
1188 {
1189 FILE *file = (FILE *) ptr;
1190 flagword eflags = elf_elfheader (abfd)->e_flags;
1191
1192 BFD_ASSERT (abfd != NULL && ptr != NULL);
1193
1194 /* Print normal ELF private data. */
1195 _bfd_elf_print_private_bfd_data (abfd, ptr);
1196
1197 /* Ignore init flag - it may not be set, despite the flags field containing valid data. */
1198
1199 /* xgettext:c-format */
1200 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
1201
1202 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1203 fprintf (file, " [m68000]");
1204 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1205 fprintf (file, " [cpu32]");
1206 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1207 fprintf (file, " [fido]");
1208 else
1209 {
1210 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CFV4E)
1211 fprintf (file, " [cfv4e]");
1212
1213 if (eflags & EF_M68K_CF_ISA_MASK)
1214 {
1215 char const *isa = _("unknown");
1216 char const *mac = _("unknown");
1217 char const *additional = "";
1218
1219 switch (eflags & EF_M68K_CF_ISA_MASK)
1220 {
1221 case EF_M68K_CF_ISA_A_NODIV:
1222 isa = "A";
1223 additional = " [nodiv]";
1224 break;
1225 case EF_M68K_CF_ISA_A:
1226 isa = "A";
1227 break;
1228 case EF_M68K_CF_ISA_A_PLUS:
1229 isa = "A+";
1230 break;
1231 case EF_M68K_CF_ISA_B_NOUSP:
1232 isa = "B";
1233 additional = " [nousp]";
1234 break;
1235 case EF_M68K_CF_ISA_B:
1236 isa = "B";
1237 break;
1238 case EF_M68K_CF_ISA_C:
1239 isa = "C";
1240 break;
1241 case EF_M68K_CF_ISA_C_NODIV:
1242 isa = "C";
1243 additional = " [nodiv]";
1244 break;
1245 }
1246 fprintf (file, " [isa %s]%s", isa, additional);
1247
1248 if (eflags & EF_M68K_CF_FLOAT)
1249 fprintf (file, " [float]");
1250
1251 switch (eflags & EF_M68K_CF_MAC_MASK)
1252 {
1253 case 0:
1254 mac = NULL;
1255 break;
1256 case EF_M68K_CF_MAC:
1257 mac = "mac";
1258 break;
1259 case EF_M68K_CF_EMAC:
1260 mac = "emac";
1261 break;
1262 case EF_M68K_CF_EMAC_B:
1263 mac = "emac_b";
1264 break;
1265 }
1266 if (mac)
1267 fprintf (file, " [%s]", mac);
1268 }
1269 }
1270
1271 fputc ('\n', file);
1272
1273 return TRUE;
1274 }
1275
1276 /* Multi-GOT support implementation design:
1277
1278 Multi-GOT starts in check_relocs hook. There we scan all
1279 relocations of a BFD and build a local GOT (struct elf_m68k_got)
1280 for it. If a single BFD appears to require too many GOT slots with
1281 R_68K_GOT8O or R_68K_GOT16O relocations, we fail with notification
1282 to user.
1283 After check_relocs has been invoked for each input BFD, we have
1284 constructed a GOT for each input BFD.
1285
1286 To minimize total number of GOTs required for a particular output BFD
1287 (as some environments support only 1 GOT per output object) we try
1288 to merge some of the GOTs to share an offset space. Ideally [and in most
1289 cases] we end up with a single GOT. In cases when there are too many
1290 restricted relocations (e.g., R_68K_GOT16O relocations) we end up with
1291 several GOTs, assuming the environment can handle them.
1292
1293 Partitioning is done in elf_m68k_partition_multi_got. We start with
1294 an empty GOT and traverse bfd2got hashtable putting got_entries from
1295 local GOTs to the new 'big' one. We do that by constructing an
1296 intermediate GOT holding all the entries the local GOT has and the big
1297 GOT lacks. Then we check if there is room in the big GOT to accomodate
1298 all the entries from diff. On success we add those entries to the big
1299 GOT; on failure we start the new 'big' GOT and retry the adding of
1300 entries from the local GOT. Note that this retry will always succeed as
1301 each local GOT doesn't overflow the limits. After partitioning we
1302 end up with each bfd assigned one of the big GOTs. GOT entries in the
1303 big GOTs are initialized with GOT offsets. Note that big GOTs are
1304 positioned consequently in program space and represent a single huge GOT
1305 to the outside world.
1306
1307 After that we get to elf_m68k_relocate_section. There we
1308 adjust relocations of GOT pointer (_GLOBAL_OFFSET_TABLE_) and symbol
1309 relocations to refer to appropriate [assigned to current input_bfd]
1310 big GOT.
1311
1312 Notes:
1313
1314 GOT entry type: We have several types of GOT entries.
1315 * R_8 type is used in entries for symbols that have at least one
1316 R_68K_GOT8O or R_68K_TLS_*8 relocation. We can have at most 0x40
1317 such entries in one GOT.
1318 * R_16 type is used in entries for symbols that have at least one
1319 R_68K_GOT16O or R_68K_TLS_*16 relocation and no R_8 relocations.
1320 We can have at most 0x4000 such entries in one GOT.
1321 * R_32 type is used in all other cases. We can have as many
1322 such entries in one GOT as we'd like.
1323 When counting relocations we have to include the count of the smaller
1324 ranged relocations in the counts of the larger ranged ones in order
1325 to correctly detect overflow.
1326
1327 Sorting the GOT: In each GOT starting offsets are assigned to
1328 R_8 entries, which are followed by R_16 entries, and
1329 R_32 entries go at the end. See finalize_got_offsets for details.
1330
1331 Negative GOT offsets: To double usable offset range of GOTs we use
1332 negative offsets. As we assign entries with GOT offsets relative to
1333 start of .got section, the offset values are positive. They become
1334 negative only in relocate_section where got->offset value is
1335 subtracted from them.
1336
1337 3 special GOT entries: There are 3 special GOT entries used internally
1338 by loader. These entries happen to be placed to .got.plt section,
1339 so we don't do anything about them in multi-GOT support.
1340
1341 Memory management: All data except for hashtables
1342 multi_got->bfd2got and got->entries are allocated on
1343 elf_hash_table (info)->dynobj bfd (for this reason we pass 'info'
1344 to most functions), so we don't need to care to free them. At the
1345 moment of allocation hashtables are being linked into main data
1346 structure (multi_got), all pieces of which are reachable from
1347 elf_m68k_multi_got (info). We deallocate them in
1348 elf_m68k_link_hash_table_free. */
1349
1350 /* Initialize GOT. */
1351
1352 static void
1353 elf_m68k_init_got (struct elf_m68k_got *got)
1354 {
1355 got->entries = NULL;
1356 got->n_slots[R_8] = 0;
1357 got->n_slots[R_16] = 0;
1358 got->n_slots[R_32] = 0;
1359 got->local_n_slots = 0;
1360 got->offset = (bfd_vma) -1;
1361 }
1362
1363 /* Destruct GOT. */
1364
1365 static void
1366 elf_m68k_clear_got (struct elf_m68k_got *got)
1367 {
1368 if (got->entries != NULL)
1369 {
1370 htab_delete (got->entries);
1371 got->entries = NULL;
1372 }
1373 }
1374
1375 /* Create and empty GOT structure. INFO is the context where memory
1376 should be allocated. */
1377
1378 static struct elf_m68k_got *
1379 elf_m68k_create_empty_got (struct bfd_link_info *info)
1380 {
1381 struct elf_m68k_got *got;
1382
1383 got = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*got));
1384 if (got == NULL)
1385 return NULL;
1386
1387 elf_m68k_init_got (got);
1388
1389 return got;
1390 }
1391
1392 /* Initialize KEY. */
1393
1394 static void
1395 elf_m68k_init_got_entry_key (struct elf_m68k_got_entry_key *key,
1396 struct elf_link_hash_entry *h,
1397 const bfd *abfd, unsigned long symndx,
1398 enum elf_m68k_reloc_type reloc_type)
1399 {
1400 if (elf_m68k_reloc_got_type (reloc_type) == R_68K_TLS_LDM32)
1401 /* All TLS_LDM relocations share a single GOT entry. */
1402 {
1403 key->bfd = NULL;
1404 key->symndx = 0;
1405 }
1406 else if (h != NULL)
1407 /* Global symbols are identified with their got_entry_key. */
1408 {
1409 key->bfd = NULL;
1410 key->symndx = elf_m68k_hash_entry (h)->got_entry_key;
1411 BFD_ASSERT (key->symndx != 0);
1412 }
1413 else
1414 /* Local symbols are identified by BFD they appear in and symndx. */
1415 {
1416 key->bfd = abfd;
1417 key->symndx = symndx;
1418 }
1419
1420 key->type = reloc_type;
1421 }
1422
1423 /* Calculate hash of got_entry.
1424 ??? Is it good? */
1425
1426 static hashval_t
1427 elf_m68k_got_entry_hash (const void *_entry)
1428 {
1429 const struct elf_m68k_got_entry_key *key;
1430
1431 key = &((const struct elf_m68k_got_entry *) _entry)->key_;
1432
1433 return (key->symndx
1434 + (key->bfd != NULL ? (int) key->bfd->id : -1)
1435 + elf_m68k_reloc_got_type (key->type));
1436 }
1437
1438 /* Check if two got entries are equal. */
1439
1440 static int
1441 elf_m68k_got_entry_eq (const void *_entry1, const void *_entry2)
1442 {
1443 const struct elf_m68k_got_entry_key *key1;
1444 const struct elf_m68k_got_entry_key *key2;
1445
1446 key1 = &((const struct elf_m68k_got_entry *) _entry1)->key_;
1447 key2 = &((const struct elf_m68k_got_entry *) _entry2)->key_;
1448
1449 return (key1->bfd == key2->bfd
1450 && key1->symndx == key2->symndx
1451 && (elf_m68k_reloc_got_type (key1->type)
1452 == elf_m68k_reloc_got_type (key2->type)));
1453 }
1454
1455 /* When using negative offsets, we allocate one extra R_8, one extra R_16
1456 and one extra R_32 slots to simplify handling of 2-slot entries during
1457 offset allocation -- hence -1 for R_8 slots and -2 for R_16 slots. */
1458
1459 /* Maximal number of R_8 slots in a single GOT. */
1460 #define ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT(INFO) \
1461 (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p \
1462 ? (0x40 - 1) \
1463 : 0x20)
1464
1465 /* Maximal number of R_8 and R_16 slots in a single GOT. */
1466 #define ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT(INFO) \
1467 (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p \
1468 ? (0x4000 - 2) \
1469 : 0x2000)
1470
1471 /* SEARCH - simply search the hashtable, don't insert new entries or fail when
1472 the entry cannot be found.
1473 FIND_OR_CREATE - search for an existing entry, but create new if there's
1474 no such.
1475 MUST_FIND - search for an existing entry and assert that it exist.
1476 MUST_CREATE - assert that there's no such entry and create new one. */
1477 enum elf_m68k_get_entry_howto
1478 {
1479 SEARCH,
1480 FIND_OR_CREATE,
1481 MUST_FIND,
1482 MUST_CREATE
1483 };
1484
1485 /* Get or create (depending on HOWTO) entry with KEY in GOT.
1486 INFO is context in which memory should be allocated (can be NULL if
1487 HOWTO is SEARCH or MUST_FIND). */
1488
1489 static struct elf_m68k_got_entry *
1490 elf_m68k_get_got_entry (struct elf_m68k_got *got,
1491 const struct elf_m68k_got_entry_key *key,
1492 enum elf_m68k_get_entry_howto howto,
1493 struct bfd_link_info *info)
1494 {
1495 struct elf_m68k_got_entry entry_;
1496 struct elf_m68k_got_entry *entry;
1497 void **ptr;
1498
1499 BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
1500
1501 if (got->entries == NULL)
1502 /* This is the first entry in ABFD. Initialize hashtable. */
1503 {
1504 if (howto == SEARCH)
1505 return NULL;
1506
1507 got->entries = htab_try_create (ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT
1508 (info),
1509 elf_m68k_got_entry_hash,
1510 elf_m68k_got_entry_eq, NULL);
1511 if (got->entries == NULL)
1512 {
1513 bfd_set_error (bfd_error_no_memory);
1514 return NULL;
1515 }
1516 }
1517
1518 entry_.key_ = *key;
1519 ptr = htab_find_slot (got->entries, &entry_, (howto != SEARCH
1520 ? INSERT : NO_INSERT));
1521 if (ptr == NULL)
1522 {
1523 if (howto == SEARCH)
1524 /* Entry not found. */
1525 return NULL;
1526
1527 /* We're out of memory. */
1528 bfd_set_error (bfd_error_no_memory);
1529 return NULL;
1530 }
1531
1532 if (*ptr == NULL)
1533 /* We didn't find the entry and we're asked to create a new one. */
1534 {
1535 BFD_ASSERT (howto != MUST_FIND && howto != SEARCH);
1536
1537 entry = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry));
1538 if (entry == NULL)
1539 return NULL;
1540
1541 /* Initialize new entry. */
1542 entry->key_ = *key;
1543
1544 entry->u.s1.refcount = 0;
1545
1546 /* Mark the entry as not initialized. */
1547 entry->key_.type = R_68K_max;
1548
1549 *ptr = entry;
1550 }
1551 else
1552 /* We found the entry. */
1553 {
1554 BFD_ASSERT (howto != MUST_CREATE);
1555
1556 entry = *ptr;
1557 }
1558
1559 return entry;
1560 }
1561
1562 /* Update GOT counters when merging entry of WAS type with entry of NEW type.
1563 Return the value to which ENTRY's type should be set. */
1564
1565 static enum elf_m68k_reloc_type
1566 elf_m68k_update_got_entry_type (struct elf_m68k_got *got,
1567 enum elf_m68k_reloc_type was,
1568 enum elf_m68k_reloc_type new_reloc)
1569 {
1570 enum elf_m68k_got_offset_size was_size;
1571 enum elf_m68k_got_offset_size new_size;
1572 bfd_vma n_slots;
1573
1574 if (was == R_68K_max)
1575 /* The type of the entry is not initialized yet. */
1576 {
1577 /* Update all got->n_slots counters, including n_slots[R_32]. */
1578 was_size = R_LAST;
1579
1580 was = new_reloc;
1581 }
1582 else
1583 {
1584 /* !!! We, probably, should emit an error rather then fail on assert
1585 in such a case. */
1586 BFD_ASSERT (elf_m68k_reloc_got_type (was)
1587 == elf_m68k_reloc_got_type (new_reloc));
1588
1589 was_size = elf_m68k_reloc_got_offset_size (was);
1590 }
1591
1592 new_size = elf_m68k_reloc_got_offset_size (new_reloc);
1593 n_slots = elf_m68k_reloc_got_n_slots (new_reloc);
1594
1595 while (was_size > new_size)
1596 {
1597 --was_size;
1598 got->n_slots[was_size] += n_slots;
1599 }
1600
1601 if (new_reloc > was)
1602 /* Relocations are ordered from bigger got offset size to lesser,
1603 so choose the relocation type with lesser offset size. */
1604 was = new_reloc;
1605
1606 return was;
1607 }
1608
1609 /* Update GOT counters when removing an entry of type TYPE. */
1610
1611 static void
1612 elf_m68k_remove_got_entry_type (struct elf_m68k_got *got,
1613 enum elf_m68k_reloc_type type)
1614 {
1615 enum elf_m68k_got_offset_size os;
1616 bfd_vma n_slots;
1617
1618 n_slots = elf_m68k_reloc_got_n_slots (type);
1619
1620 /* Decrese counter of slots with offset size corresponding to TYPE
1621 and all greater offset sizes. */
1622 for (os = elf_m68k_reloc_got_offset_size (type); os <= R_32; ++os)
1623 {
1624 BFD_ASSERT (got->n_slots[os] >= n_slots);
1625
1626 got->n_slots[os] -= n_slots;
1627 }
1628 }
1629
1630 /* Add new or update existing entry to GOT.
1631 H, ABFD, TYPE and SYMNDX is data for the entry.
1632 INFO is a context where memory should be allocated. */
1633
1634 static struct elf_m68k_got_entry *
1635 elf_m68k_add_entry_to_got (struct elf_m68k_got *got,
1636 struct elf_link_hash_entry *h,
1637 const bfd *abfd,
1638 enum elf_m68k_reloc_type reloc_type,
1639 unsigned long symndx,
1640 struct bfd_link_info *info)
1641 {
1642 struct elf_m68k_got_entry_key key_;
1643 struct elf_m68k_got_entry *entry;
1644
1645 if (h != NULL && elf_m68k_hash_entry (h)->got_entry_key == 0)
1646 elf_m68k_hash_entry (h)->got_entry_key
1647 = elf_m68k_multi_got (info)->global_symndx++;
1648
1649 elf_m68k_init_got_entry_key (&key_, h, abfd, symndx, reloc_type);
1650
1651 entry = elf_m68k_get_got_entry (got, &key_, FIND_OR_CREATE, info);
1652 if (entry == NULL)
1653 return NULL;
1654
1655 /* Determine entry's type and update got->n_slots counters. */
1656 entry->key_.type = elf_m68k_update_got_entry_type (got,
1657 entry->key_.type,
1658 reloc_type);
1659
1660 /* Update refcount. */
1661 ++entry->u.s1.refcount;
1662
1663 if (entry->u.s1.refcount == 1)
1664 /* We see this entry for the first time. */
1665 {
1666 if (entry->key_.bfd != NULL)
1667 got->local_n_slots += elf_m68k_reloc_got_n_slots (entry->key_.type);
1668 }
1669
1670 BFD_ASSERT (got->n_slots[R_32] >= got->local_n_slots);
1671
1672 if ((got->n_slots[R_8]
1673 > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1674 || (got->n_slots[R_16]
1675 > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))
1676 /* This BFD has too many relocation. */
1677 {
1678 if (got->n_slots[R_8] > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1679 /* xgettext:c-format */
1680 _bfd_error_handler (_("%B: GOT overflow: "
1681 "Number of relocations with 8-bit "
1682 "offset > %d"),
1683 abfd,
1684 ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info));
1685 else
1686 /* xgettext:c-format */
1687 _bfd_error_handler (_("%B: GOT overflow: "
1688 "Number of relocations with 8- or 16-bit "
1689 "offset > %d"),
1690 abfd,
1691 ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info));
1692
1693 return NULL;
1694 }
1695
1696 return entry;
1697 }
1698
1699 /* Compute the hash value of the bfd in a bfd2got hash entry. */
1700
1701 static hashval_t
1702 elf_m68k_bfd2got_entry_hash (const void *entry)
1703 {
1704 const struct elf_m68k_bfd2got_entry *e;
1705
1706 e = (const struct elf_m68k_bfd2got_entry *) entry;
1707
1708 return e->bfd->id;
1709 }
1710
1711 /* Check whether two hash entries have the same bfd. */
1712
1713 static int
1714 elf_m68k_bfd2got_entry_eq (const void *entry1, const void *entry2)
1715 {
1716 const struct elf_m68k_bfd2got_entry *e1;
1717 const struct elf_m68k_bfd2got_entry *e2;
1718
1719 e1 = (const struct elf_m68k_bfd2got_entry *) entry1;
1720 e2 = (const struct elf_m68k_bfd2got_entry *) entry2;
1721
1722 return e1->bfd == e2->bfd;
1723 }
1724
1725 /* Destruct a bfd2got entry. */
1726
1727 static void
1728 elf_m68k_bfd2got_entry_del (void *_entry)
1729 {
1730 struct elf_m68k_bfd2got_entry *entry;
1731
1732 entry = (struct elf_m68k_bfd2got_entry *) _entry;
1733
1734 BFD_ASSERT (entry->got != NULL);
1735 elf_m68k_clear_got (entry->got);
1736 }
1737
1738 /* Find existing or create new (depending on HOWTO) bfd2got entry in
1739 MULTI_GOT. ABFD is the bfd we need a GOT for. INFO is a context where
1740 memory should be allocated. */
1741
1742 static struct elf_m68k_bfd2got_entry *
1743 elf_m68k_get_bfd2got_entry (struct elf_m68k_multi_got *multi_got,
1744 const bfd *abfd,
1745 enum elf_m68k_get_entry_howto howto,
1746 struct bfd_link_info *info)
1747 {
1748 struct elf_m68k_bfd2got_entry entry_;
1749 void **ptr;
1750 struct elf_m68k_bfd2got_entry *entry;
1751
1752 BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
1753
1754 if (multi_got->bfd2got == NULL)
1755 /* This is the first GOT. Initialize bfd2got. */
1756 {
1757 if (howto == SEARCH)
1758 return NULL;
1759
1760 multi_got->bfd2got = htab_try_create (1, elf_m68k_bfd2got_entry_hash,
1761 elf_m68k_bfd2got_entry_eq,
1762 elf_m68k_bfd2got_entry_del);
1763 if (multi_got->bfd2got == NULL)
1764 {
1765 bfd_set_error (bfd_error_no_memory);
1766 return NULL;
1767 }
1768 }
1769
1770 entry_.bfd = abfd;
1771 ptr = htab_find_slot (multi_got->bfd2got, &entry_, (howto != SEARCH
1772 ? INSERT : NO_INSERT));
1773 if (ptr == NULL)
1774 {
1775 if (howto == SEARCH)
1776 /* Entry not found. */
1777 return NULL;
1778
1779 /* We're out of memory. */
1780 bfd_set_error (bfd_error_no_memory);
1781 return NULL;
1782 }
1783
1784 if (*ptr == NULL)
1785 /* Entry was not found. Create new one. */
1786 {
1787 BFD_ASSERT (howto != MUST_FIND && howto != SEARCH);
1788
1789 entry = ((struct elf_m68k_bfd2got_entry *)
1790 bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry)));
1791 if (entry == NULL)
1792 return NULL;
1793
1794 entry->bfd = abfd;
1795
1796 entry->got = elf_m68k_create_empty_got (info);
1797 if (entry->got == NULL)
1798 return NULL;
1799
1800 *ptr = entry;
1801 }
1802 else
1803 {
1804 BFD_ASSERT (howto != MUST_CREATE);
1805
1806 /* Return existing entry. */
1807 entry = *ptr;
1808 }
1809
1810 return entry;
1811 }
1812
1813 struct elf_m68k_can_merge_gots_arg
1814 {
1815 /* A current_got that we constructing a DIFF against. */
1816 struct elf_m68k_got *big;
1817
1818 /* GOT holding entries not present or that should be changed in
1819 BIG. */
1820 struct elf_m68k_got *diff;
1821
1822 /* Context where to allocate memory. */
1823 struct bfd_link_info *info;
1824
1825 /* Error flag. */
1826 bfd_boolean error_p;
1827 };
1828
1829 /* Process a single entry from the small GOT to see if it should be added
1830 or updated in the big GOT. */
1831
1832 static int
1833 elf_m68k_can_merge_gots_1 (void **_entry_ptr, void *_arg)
1834 {
1835 const struct elf_m68k_got_entry *entry1;
1836 struct elf_m68k_can_merge_gots_arg *arg;
1837 const struct elf_m68k_got_entry *entry2;
1838 enum elf_m68k_reloc_type type;
1839
1840 entry1 = (const struct elf_m68k_got_entry *) *_entry_ptr;
1841 arg = (struct elf_m68k_can_merge_gots_arg *) _arg;
1842
1843 entry2 = elf_m68k_get_got_entry (arg->big, &entry1->key_, SEARCH, NULL);
1844
1845 if (entry2 != NULL)
1846 /* We found an existing entry. Check if we should update it. */
1847 {
1848 type = elf_m68k_update_got_entry_type (arg->diff,
1849 entry2->key_.type,
1850 entry1->key_.type);
1851
1852 if (type == entry2->key_.type)
1853 /* ENTRY1 doesn't update data in ENTRY2. Skip it.
1854 To skip creation of difference entry we use the type,
1855 which we won't see in GOT entries for sure. */
1856 type = R_68K_max;
1857 }
1858 else
1859 /* We didn't find the entry. Add entry1 to DIFF. */
1860 {
1861 BFD_ASSERT (entry1->key_.type != R_68K_max);
1862
1863 type = elf_m68k_update_got_entry_type (arg->diff,
1864 R_68K_max, entry1->key_.type);
1865
1866 if (entry1->key_.bfd != NULL)
1867 arg->diff->local_n_slots += elf_m68k_reloc_got_n_slots (type);
1868 }
1869
1870 if (type != R_68K_max)
1871 /* Create an entry in DIFF. */
1872 {
1873 struct elf_m68k_got_entry *entry;
1874
1875 entry = elf_m68k_get_got_entry (arg->diff, &entry1->key_, MUST_CREATE,
1876 arg->info);
1877 if (entry == NULL)
1878 {
1879 arg->error_p = TRUE;
1880 return 0;
1881 }
1882
1883 entry->key_.type = type;
1884 }
1885
1886 return 1;
1887 }
1888
1889 /* Return TRUE if SMALL GOT can be added to BIG GOT without overflowing it.
1890 Construct DIFF GOT holding the entries which should be added or updated
1891 in BIG GOT to accumulate information from SMALL.
1892 INFO is the context where memory should be allocated. */
1893
1894 static bfd_boolean
1895 elf_m68k_can_merge_gots (struct elf_m68k_got *big,
1896 const struct elf_m68k_got *small,
1897 struct bfd_link_info *info,
1898 struct elf_m68k_got *diff)
1899 {
1900 struct elf_m68k_can_merge_gots_arg arg_;
1901
1902 BFD_ASSERT (small->offset == (bfd_vma) -1);
1903
1904 arg_.big = big;
1905 arg_.diff = diff;
1906 arg_.info = info;
1907 arg_.error_p = FALSE;
1908 htab_traverse_noresize (small->entries, elf_m68k_can_merge_gots_1, &arg_);
1909 if (arg_.error_p)
1910 {
1911 diff->offset = 0;
1912 return FALSE;
1913 }
1914
1915 /* Check for overflow. */
1916 if ((big->n_slots[R_8] + arg_.diff->n_slots[R_8]
1917 > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1918 || (big->n_slots[R_16] + arg_.diff->n_slots[R_16]
1919 > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))
1920 return FALSE;
1921
1922 return TRUE;
1923 }
1924
1925 struct elf_m68k_merge_gots_arg
1926 {
1927 /* The BIG got. */
1928 struct elf_m68k_got *big;
1929
1930 /* Context where memory should be allocated. */
1931 struct bfd_link_info *info;
1932
1933 /* Error flag. */
1934 bfd_boolean error_p;
1935 };
1936
1937 /* Process a single entry from DIFF got. Add or update corresponding
1938 entry in the BIG got. */
1939
1940 static int
1941 elf_m68k_merge_gots_1 (void **entry_ptr, void *_arg)
1942 {
1943 const struct elf_m68k_got_entry *from;
1944 struct elf_m68k_merge_gots_arg *arg;
1945 struct elf_m68k_got_entry *to;
1946
1947 from = (const struct elf_m68k_got_entry *) *entry_ptr;
1948 arg = (struct elf_m68k_merge_gots_arg *) _arg;
1949
1950 to = elf_m68k_get_got_entry (arg->big, &from->key_, FIND_OR_CREATE,
1951 arg->info);
1952 if (to == NULL)
1953 {
1954 arg->error_p = TRUE;
1955 return 0;
1956 }
1957
1958 BFD_ASSERT (to->u.s1.refcount == 0);
1959 /* All we need to merge is TYPE. */
1960 to->key_.type = from->key_.type;
1961
1962 return 1;
1963 }
1964
1965 /* Merge data from DIFF to BIG. INFO is context where memory should be
1966 allocated. */
1967
1968 static bfd_boolean
1969 elf_m68k_merge_gots (struct elf_m68k_got *big,
1970 struct elf_m68k_got *diff,
1971 struct bfd_link_info *info)
1972 {
1973 if (diff->entries != NULL)
1974 /* DIFF is not empty. Merge it into BIG GOT. */
1975 {
1976 struct elf_m68k_merge_gots_arg arg_;
1977
1978 /* Merge entries. */
1979 arg_.big = big;
1980 arg_.info = info;
1981 arg_.error_p = FALSE;
1982 htab_traverse_noresize (diff->entries, elf_m68k_merge_gots_1, &arg_);
1983 if (arg_.error_p)
1984 return FALSE;
1985
1986 /* Merge counters. */
1987 big->n_slots[R_8] += diff->n_slots[R_8];
1988 big->n_slots[R_16] += diff->n_slots[R_16];
1989 big->n_slots[R_32] += diff->n_slots[R_32];
1990 big->local_n_slots += diff->local_n_slots;
1991 }
1992 else
1993 /* DIFF is empty. */
1994 {
1995 BFD_ASSERT (diff->n_slots[R_8] == 0);
1996 BFD_ASSERT (diff->n_slots[R_16] == 0);
1997 BFD_ASSERT (diff->n_slots[R_32] == 0);
1998 BFD_ASSERT (diff->local_n_slots == 0);
1999 }
2000
2001 BFD_ASSERT (!elf_m68k_hash_table (info)->allow_multigot_p
2002 || ((big->n_slots[R_8]
2003 <= ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
2004 && (big->n_slots[R_16]
2005 <= ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info))));
2006
2007 return TRUE;
2008 }
2009
2010 struct elf_m68k_finalize_got_offsets_arg
2011 {
2012 /* Ranges of the offsets for GOT entries.
2013 R_x entries receive offsets between offset1[R_x] and offset2[R_x].
2014 R_x is R_8, R_16 and R_32. */
2015 bfd_vma *offset1;
2016 bfd_vma *offset2;
2017
2018 /* Mapping from global symndx to global symbols.
2019 This is used to build lists of got entries for global symbols. */
2020 struct elf_m68k_link_hash_entry **symndx2h;
2021
2022 bfd_vma n_ldm_entries;
2023 };
2024
2025 /* Assign ENTRY an offset. Build list of GOT entries for global symbols
2026 along the way. */
2027
2028 static int
2029 elf_m68k_finalize_got_offsets_1 (void **entry_ptr, void *_arg)
2030 {
2031 struct elf_m68k_got_entry *entry;
2032 struct elf_m68k_finalize_got_offsets_arg *arg;
2033
2034 enum elf_m68k_got_offset_size got_offset_size;
2035 bfd_vma entry_size;
2036
2037 entry = (struct elf_m68k_got_entry *) *entry_ptr;
2038 arg = (struct elf_m68k_finalize_got_offsets_arg *) _arg;
2039
2040 /* This should be a fresh entry created in elf_m68k_can_merge_gots. */
2041 BFD_ASSERT (entry->u.s1.refcount == 0);
2042
2043 /* Get GOT offset size for the entry . */
2044 got_offset_size = elf_m68k_reloc_got_offset_size (entry->key_.type);
2045
2046 /* Calculate entry size in bytes. */
2047 entry_size = 4 * elf_m68k_reloc_got_n_slots (entry->key_.type);
2048
2049 /* Check if we should switch to negative range of the offsets. */
2050 if (arg->offset1[got_offset_size] + entry_size
2051 > arg->offset2[got_offset_size])
2052 {
2053 /* Verify that this is the only switch to negative range for
2054 got_offset_size. If this assertion fails, then we've miscalculated
2055 range for got_offset_size entries in
2056 elf_m68k_finalize_got_offsets. */
2057 BFD_ASSERT (arg->offset2[got_offset_size]
2058 != arg->offset2[-(int) got_offset_size - 1]);
2059
2060 /* Switch. */
2061 arg->offset1[got_offset_size] = arg->offset1[-(int) got_offset_size - 1];
2062 arg->offset2[got_offset_size] = arg->offset2[-(int) got_offset_size - 1];
2063
2064 /* Verify that now we have enough room for the entry. */
2065 BFD_ASSERT (arg->offset1[got_offset_size] + entry_size
2066 <= arg->offset2[got_offset_size]);
2067 }
2068
2069 /* Assign offset to entry. */
2070 entry->u.s2.offset = arg->offset1[got_offset_size];
2071 arg->offset1[got_offset_size] += entry_size;
2072
2073 if (entry->key_.bfd == NULL)
2074 /* Hook up this entry into the list of got_entries of H. */
2075 {
2076 struct elf_m68k_link_hash_entry *h;
2077
2078 h = arg->symndx2h[entry->key_.symndx];
2079 if (h != NULL)
2080 {
2081 entry->u.s2.next = h->glist;
2082 h->glist = entry;
2083 }
2084 else
2085 /* This should be the entry for TLS_LDM relocation then. */
2086 {
2087 BFD_ASSERT ((elf_m68k_reloc_got_type (entry->key_.type)
2088 == R_68K_TLS_LDM32)
2089 && entry->key_.symndx == 0);
2090
2091 ++arg->n_ldm_entries;
2092 }
2093 }
2094 else
2095 /* This entry is for local symbol. */
2096 entry->u.s2.next = NULL;
2097
2098 return 1;
2099 }
2100
2101 /* Assign offsets within GOT. USE_NEG_GOT_OFFSETS_P indicates if we
2102 should use negative offsets.
2103 Build list of GOT entries for global symbols along the way.
2104 SYMNDX2H is mapping from global symbol indices to actual
2105 global symbols.
2106 Return offset at which next GOT should start. */
2107
2108 static void
2109 elf_m68k_finalize_got_offsets (struct elf_m68k_got *got,
2110 bfd_boolean use_neg_got_offsets_p,
2111 struct elf_m68k_link_hash_entry **symndx2h,
2112 bfd_vma *final_offset, bfd_vma *n_ldm_entries)
2113 {
2114 struct elf_m68k_finalize_got_offsets_arg arg_;
2115 bfd_vma offset1_[2 * R_LAST];
2116 bfd_vma offset2_[2 * R_LAST];
2117 int i;
2118 bfd_vma start_offset;
2119
2120 BFD_ASSERT (got->offset != (bfd_vma) -1);
2121
2122 /* We set entry offsets relative to the .got section (and not the
2123 start of a particular GOT), so that we can use them in
2124 finish_dynamic_symbol without needing to know the GOT which they come
2125 from. */
2126
2127 /* Put offset1 in the middle of offset1_, same for offset2. */
2128 arg_.offset1 = offset1_ + R_LAST;
2129 arg_.offset2 = offset2_ + R_LAST;
2130
2131 start_offset = got->offset;
2132
2133 if (use_neg_got_offsets_p)
2134 /* Setup both negative and positive ranges for R_8, R_16 and R_32. */
2135 i = -(int) R_32 - 1;
2136 else
2137 /* Setup positives ranges for R_8, R_16 and R_32. */
2138 i = (int) R_8;
2139
2140 for (; i <= (int) R_32; ++i)
2141 {
2142 int j;
2143 size_t n;
2144
2145 /* Set beginning of the range of offsets I. */
2146 arg_.offset1[i] = start_offset;
2147
2148 /* Calculate number of slots that require I offsets. */
2149 j = (i >= 0) ? i : -i - 1;
2150 n = (j >= 1) ? got->n_slots[j - 1] : 0;
2151 n = got->n_slots[j] - n;
2152
2153 if (use_neg_got_offsets_p && n != 0)
2154 {
2155 if (i < 0)
2156 /* We first fill the positive side of the range, so we might
2157 end up with one empty slot at that side when we can't fit
2158 whole 2-slot entry. Account for that at negative side of
2159 the interval with one additional entry. */
2160 n = n / 2 + 1;
2161 else
2162 /* When the number of slots is odd, make positive side of the
2163 range one entry bigger. */
2164 n = (n + 1) / 2;
2165 }
2166
2167 /* N is the number of slots that require I offsets.
2168 Calculate length of the range for I offsets. */
2169 n = 4 * n;
2170
2171 /* Set end of the range. */
2172 arg_.offset2[i] = start_offset + n;
2173
2174 start_offset = arg_.offset2[i];
2175 }
2176
2177 if (!use_neg_got_offsets_p)
2178 /* Make sure that if we try to switch to negative offsets in
2179 elf_m68k_finalize_got_offsets_1, the assert therein will catch
2180 the bug. */
2181 for (i = R_8; i <= R_32; ++i)
2182 arg_.offset2[-i - 1] = arg_.offset2[i];
2183
2184 /* Setup got->offset. offset1[R_8] is either in the middle or at the
2185 beginning of GOT depending on use_neg_got_offsets_p. */
2186 got->offset = arg_.offset1[R_8];
2187
2188 arg_.symndx2h = symndx2h;
2189 arg_.n_ldm_entries = 0;
2190
2191 /* Assign offsets. */
2192 htab_traverse (got->entries, elf_m68k_finalize_got_offsets_1, &arg_);
2193
2194 /* Check offset ranges we have actually assigned. */
2195 for (i = (int) R_8; i <= (int) R_32; ++i)
2196 BFD_ASSERT (arg_.offset2[i] - arg_.offset1[i] <= 4);
2197
2198 *final_offset = start_offset;
2199 *n_ldm_entries = arg_.n_ldm_entries;
2200 }
2201
2202 struct elf_m68k_partition_multi_got_arg
2203 {
2204 /* The GOT we are adding entries to. Aka big got. */
2205 struct elf_m68k_got *current_got;
2206
2207 /* Offset to assign the next CURRENT_GOT. */
2208 bfd_vma offset;
2209
2210 /* Context where memory should be allocated. */
2211 struct bfd_link_info *info;
2212
2213 /* Total number of slots in the .got section.
2214 This is used to calculate size of the .got and .rela.got sections. */
2215 bfd_vma n_slots;
2216
2217 /* Difference in numbers of allocated slots in the .got section
2218 and necessary relocations in the .rela.got section.
2219 This is used to calculate size of the .rela.got section. */
2220 bfd_vma slots_relas_diff;
2221
2222 /* Error flag. */
2223 bfd_boolean error_p;
2224
2225 /* Mapping from global symndx to global symbols.
2226 This is used to build lists of got entries for global symbols. */
2227 struct elf_m68k_link_hash_entry **symndx2h;
2228 };
2229
2230 static void
2231 elf_m68k_partition_multi_got_2 (struct elf_m68k_partition_multi_got_arg *arg)
2232 {
2233 bfd_vma n_ldm_entries;
2234
2235 elf_m68k_finalize_got_offsets (arg->current_got,
2236 (elf_m68k_hash_table (arg->info)
2237 ->use_neg_got_offsets_p),
2238 arg->symndx2h,
2239 &arg->offset, &n_ldm_entries);
2240
2241 arg->n_slots += arg->current_got->n_slots[R_32];
2242
2243 if (!bfd_link_pic (arg->info))
2244 /* If we are generating a shared object, we need to
2245 output a R_68K_RELATIVE reloc so that the dynamic
2246 linker can adjust this GOT entry. Overwise we
2247 don't need space in .rela.got for local symbols. */
2248 arg->slots_relas_diff += arg->current_got->local_n_slots;
2249
2250 /* @LDM relocations require a 2-slot GOT entry, but only
2251 one relocation. Account for that. */
2252 arg->slots_relas_diff += n_ldm_entries;
2253
2254 BFD_ASSERT (arg->slots_relas_diff <= arg->n_slots);
2255 }
2256
2257
2258 /* Process a single BFD2GOT entry and either merge GOT to CURRENT_GOT
2259 or start a new CURRENT_GOT. */
2260
2261 static int
2262 elf_m68k_partition_multi_got_1 (void **_entry, void *_arg)
2263 {
2264 struct elf_m68k_bfd2got_entry *entry;
2265 struct elf_m68k_partition_multi_got_arg *arg;
2266 struct elf_m68k_got *got;
2267 struct elf_m68k_got diff_;
2268 struct elf_m68k_got *diff;
2269
2270 entry = (struct elf_m68k_bfd2got_entry *) *_entry;
2271 arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
2272
2273 got = entry->got;
2274 BFD_ASSERT (got != NULL);
2275 BFD_ASSERT (got->offset == (bfd_vma) -1);
2276
2277 diff = NULL;
2278
2279 if (arg->current_got != NULL)
2280 /* Construct diff. */
2281 {
2282 diff = &diff_;
2283 elf_m68k_init_got (diff);
2284
2285 if (!elf_m68k_can_merge_gots (arg->current_got, got, arg->info, diff))
2286 {
2287 if (diff->offset == 0)
2288 /* Offset set to 0 in the diff_ indicates an error. */
2289 {
2290 arg->error_p = TRUE;
2291 goto final_return;
2292 }
2293
2294 if (elf_m68k_hash_table (arg->info)->allow_multigot_p)
2295 {
2296 elf_m68k_clear_got (diff);
2297 /* Schedule to finish up current_got and start new one. */
2298 diff = NULL;
2299 }
2300 /* else
2301 Merge GOTs no matter what. If big GOT overflows,
2302 we'll fail in relocate_section due to truncated relocations.
2303
2304 ??? May be fail earlier? E.g., in can_merge_gots. */
2305 }
2306 }
2307 else
2308 /* Diff of got against empty current_got is got itself. */
2309 {
2310 /* Create empty current_got to put subsequent GOTs to. */
2311 arg->current_got = elf_m68k_create_empty_got (arg->info);
2312 if (arg->current_got == NULL)
2313 {
2314 arg->error_p = TRUE;
2315 goto final_return;
2316 }
2317
2318 arg->current_got->offset = arg->offset;
2319
2320 diff = got;
2321 }
2322
2323 if (diff != NULL)
2324 {
2325 if (!elf_m68k_merge_gots (arg->current_got, diff, arg->info))
2326 {
2327 arg->error_p = TRUE;
2328 goto final_return;
2329 }
2330
2331 /* Now we can free GOT. */
2332 elf_m68k_clear_got (got);
2333
2334 entry->got = arg->current_got;
2335 }
2336 else
2337 {
2338 /* Finish up current_got. */
2339 elf_m68k_partition_multi_got_2 (arg);
2340
2341 /* Schedule to start a new current_got. */
2342 arg->current_got = NULL;
2343
2344 /* Retry. */
2345 if (!elf_m68k_partition_multi_got_1 (_entry, _arg))
2346 {
2347 BFD_ASSERT (arg->error_p);
2348 goto final_return;
2349 }
2350 }
2351
2352 final_return:
2353 if (diff != NULL)
2354 elf_m68k_clear_got (diff);
2355
2356 return !arg->error_p;
2357 }
2358
2359 /* Helper function to build symndx2h mapping. */
2360
2361 static bfd_boolean
2362 elf_m68k_init_symndx2h_1 (struct elf_link_hash_entry *_h,
2363 void *_arg)
2364 {
2365 struct elf_m68k_link_hash_entry *h;
2366
2367 h = elf_m68k_hash_entry (_h);
2368
2369 if (h->got_entry_key != 0)
2370 /* H has at least one entry in the GOT. */
2371 {
2372 struct elf_m68k_partition_multi_got_arg *arg;
2373
2374 arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
2375
2376 BFD_ASSERT (arg->symndx2h[h->got_entry_key] == NULL);
2377 arg->symndx2h[h->got_entry_key] = h;
2378 }
2379
2380 return TRUE;
2381 }
2382
2383 /* Merge GOTs of some BFDs, assign offsets to GOT entries and build
2384 lists of GOT entries for global symbols.
2385 Calculate sizes of .got and .rela.got sections. */
2386
2387 static bfd_boolean
2388 elf_m68k_partition_multi_got (struct bfd_link_info *info)
2389 {
2390 struct elf_m68k_multi_got *multi_got;
2391 struct elf_m68k_partition_multi_got_arg arg_;
2392
2393 multi_got = elf_m68k_multi_got (info);
2394
2395 arg_.current_got = NULL;
2396 arg_.offset = 0;
2397 arg_.info = info;
2398 arg_.n_slots = 0;
2399 arg_.slots_relas_diff = 0;
2400 arg_.error_p = FALSE;
2401
2402 if (multi_got->bfd2got != NULL)
2403 {
2404 /* Initialize symndx2h mapping. */
2405 {
2406 arg_.symndx2h = bfd_zmalloc (multi_got->global_symndx
2407 * sizeof (*arg_.symndx2h));
2408 if (arg_.symndx2h == NULL)
2409 return FALSE;
2410
2411 elf_link_hash_traverse (elf_hash_table (info),
2412 elf_m68k_init_symndx2h_1, &arg_);
2413 }
2414
2415 /* Partition. */
2416 htab_traverse (multi_got->bfd2got, elf_m68k_partition_multi_got_1,
2417 &arg_);
2418 if (arg_.error_p)
2419 {
2420 free (arg_.symndx2h);
2421 arg_.symndx2h = NULL;
2422
2423 return FALSE;
2424 }
2425
2426 /* Finish up last current_got. */
2427 elf_m68k_partition_multi_got_2 (&arg_);
2428
2429 free (arg_.symndx2h);
2430 }
2431
2432 if (elf_hash_table (info)->dynobj != NULL)
2433 /* Set sizes of .got and .rela.got sections. */
2434 {
2435 asection *s;
2436
2437 s = elf_hash_table (info)->sgot;
2438 if (s != NULL)
2439 s->size = arg_.offset;
2440 else
2441 BFD_ASSERT (arg_.offset == 0);
2442
2443 BFD_ASSERT (arg_.slots_relas_diff <= arg_.n_slots);
2444 arg_.n_slots -= arg_.slots_relas_diff;
2445
2446 s = elf_hash_table (info)->srelgot;
2447 if (s != NULL)
2448 s->size = arg_.n_slots * sizeof (Elf32_External_Rela);
2449 else
2450 BFD_ASSERT (arg_.n_slots == 0);
2451 }
2452 else
2453 BFD_ASSERT (multi_got->bfd2got == NULL);
2454
2455 return TRUE;
2456 }
2457
2458 /* Specialized version of elf_m68k_get_got_entry that returns pointer
2459 to hashtable slot, thus allowing removal of entry via
2460 elf_m68k_remove_got_entry. */
2461
2462 static struct elf_m68k_got_entry **
2463 elf_m68k_find_got_entry_ptr (struct elf_m68k_got *got,
2464 struct elf_m68k_got_entry_key *key)
2465 {
2466 void **ptr;
2467 struct elf_m68k_got_entry entry_;
2468 struct elf_m68k_got_entry **entry_ptr;
2469
2470 entry_.key_ = *key;
2471 ptr = htab_find_slot (got->entries, &entry_, NO_INSERT);
2472 BFD_ASSERT (ptr != NULL);
2473
2474 entry_ptr = (struct elf_m68k_got_entry **) ptr;
2475
2476 return entry_ptr;
2477 }
2478
2479 /* Remove entry pointed to by ENTRY_PTR from GOT. */
2480
2481 static void
2482 elf_m68k_remove_got_entry (struct elf_m68k_got *got,
2483 struct elf_m68k_got_entry **entry_ptr)
2484 {
2485 struct elf_m68k_got_entry *entry;
2486
2487 entry = *entry_ptr;
2488
2489 /* Check that offsets have not been finalized yet. */
2490 BFD_ASSERT (got->offset == (bfd_vma) -1);
2491 /* Check that this entry is indeed unused. */
2492 BFD_ASSERT (entry->u.s1.refcount == 0);
2493
2494 elf_m68k_remove_got_entry_type (got, entry->key_.type);
2495
2496 if (entry->key_.bfd != NULL)
2497 got->local_n_slots -= elf_m68k_reloc_got_n_slots (entry->key_.type);
2498
2499 BFD_ASSERT (got->n_slots[R_32] >= got->local_n_slots);
2500
2501 htab_clear_slot (got->entries, (void **) entry_ptr);
2502 }
2503
2504 /* Copy any information related to dynamic linking from a pre-existing
2505 symbol to a newly created symbol. Also called to copy flags and
2506 other back-end info to a weakdef, in which case the symbol is not
2507 newly created and plt/got refcounts and dynamic indices should not
2508 be copied. */
2509
2510 static void
2511 elf_m68k_copy_indirect_symbol (struct bfd_link_info *info,
2512 struct elf_link_hash_entry *_dir,
2513 struct elf_link_hash_entry *_ind)
2514 {
2515 struct elf_m68k_link_hash_entry *dir;
2516 struct elf_m68k_link_hash_entry *ind;
2517
2518 _bfd_elf_link_hash_copy_indirect (info, _dir, _ind);
2519
2520 if (_ind->root.type != bfd_link_hash_indirect)
2521 return;
2522
2523 dir = elf_m68k_hash_entry (_dir);
2524 ind = elf_m68k_hash_entry (_ind);
2525
2526 /* Any absolute non-dynamic relocations against an indirect or weak
2527 definition will be against the target symbol. */
2528 _dir->non_got_ref |= _ind->non_got_ref;
2529
2530 /* We might have a direct symbol already having entries in the GOTs.
2531 Update its key only in case indirect symbol has GOT entries and
2532 assert that both indirect and direct symbols don't have GOT entries
2533 at the same time. */
2534 if (ind->got_entry_key != 0)
2535 {
2536 BFD_ASSERT (dir->got_entry_key == 0);
2537 /* Assert that GOTs aren't partioned yet. */
2538 BFD_ASSERT (ind->glist == NULL);
2539
2540 dir->got_entry_key = ind->got_entry_key;
2541 ind->got_entry_key = 0;
2542 }
2543 }
2544
2545 /* Look through the relocs for a section during the first phase, and
2546 allocate space in the global offset table or procedure linkage
2547 table. */
2548
2549 static bfd_boolean
2550 elf_m68k_check_relocs (bfd *abfd,
2551 struct bfd_link_info *info,
2552 asection *sec,
2553 const Elf_Internal_Rela *relocs)
2554 {
2555 bfd *dynobj;
2556 Elf_Internal_Shdr *symtab_hdr;
2557 struct elf_link_hash_entry **sym_hashes;
2558 const Elf_Internal_Rela *rel;
2559 const Elf_Internal_Rela *rel_end;
2560 asection *sreloc;
2561 struct elf_m68k_got *got;
2562
2563 if (bfd_link_relocatable (info))
2564 return TRUE;
2565
2566 dynobj = elf_hash_table (info)->dynobj;
2567 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2568 sym_hashes = elf_sym_hashes (abfd);
2569
2570 sreloc = NULL;
2571
2572 got = NULL;
2573
2574 rel_end = relocs + sec->reloc_count;
2575 for (rel = relocs; rel < rel_end; rel++)
2576 {
2577 unsigned long r_symndx;
2578 struct elf_link_hash_entry *h;
2579
2580 r_symndx = ELF32_R_SYM (rel->r_info);
2581
2582 if (r_symndx < symtab_hdr->sh_info)
2583 h = NULL;
2584 else
2585 {
2586 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2587 while (h->root.type == bfd_link_hash_indirect
2588 || h->root.type == bfd_link_hash_warning)
2589 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2590
2591 /* PR15323, ref flags aren't set for references in the same
2592 object. */
2593 h->root.non_ir_ref_regular = 1;
2594 }
2595
2596 switch (ELF32_R_TYPE (rel->r_info))
2597 {
2598 case R_68K_GOT8:
2599 case R_68K_GOT16:
2600 case R_68K_GOT32:
2601 if (h != NULL
2602 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2603 break;
2604 /* Fall through. */
2605
2606 /* Relative GOT relocations. */
2607 case R_68K_GOT8O:
2608 case R_68K_GOT16O:
2609 case R_68K_GOT32O:
2610 /* Fall through. */
2611
2612 /* TLS relocations. */
2613 case R_68K_TLS_GD8:
2614 case R_68K_TLS_GD16:
2615 case R_68K_TLS_GD32:
2616 case R_68K_TLS_LDM8:
2617 case R_68K_TLS_LDM16:
2618 case R_68K_TLS_LDM32:
2619 case R_68K_TLS_IE8:
2620 case R_68K_TLS_IE16:
2621 case R_68K_TLS_IE32:
2622
2623 case R_68K_TLS_TPREL32:
2624 case R_68K_TLS_DTPREL32:
2625
2626 if (ELF32_R_TYPE (rel->r_info) == R_68K_TLS_TPREL32
2627 && bfd_link_pic (info))
2628 /* Do the special chorus for libraries with static TLS. */
2629 info->flags |= DF_STATIC_TLS;
2630
2631 /* This symbol requires a global offset table entry. */
2632
2633 if (dynobj == NULL)
2634 {
2635 /* Create the .got section. */
2636 elf_hash_table (info)->dynobj = dynobj = abfd;
2637 if (!_bfd_elf_create_got_section (dynobj, info))
2638 return FALSE;
2639 }
2640
2641 if (got == NULL)
2642 {
2643 struct elf_m68k_bfd2got_entry *bfd2got_entry;
2644
2645 bfd2got_entry
2646 = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
2647 abfd, FIND_OR_CREATE, info);
2648 if (bfd2got_entry == NULL)
2649 return FALSE;
2650
2651 got = bfd2got_entry->got;
2652 BFD_ASSERT (got != NULL);
2653 }
2654
2655 {
2656 struct elf_m68k_got_entry *got_entry;
2657
2658 /* Add entry to got. */
2659 got_entry = elf_m68k_add_entry_to_got (got, h, abfd,
2660 ELF32_R_TYPE (rel->r_info),
2661 r_symndx, info);
2662 if (got_entry == NULL)
2663 return FALSE;
2664
2665 if (got_entry->u.s1.refcount == 1)
2666 {
2667 /* Make sure this symbol is output as a dynamic symbol. */
2668 if (h != NULL
2669 && h->dynindx == -1
2670 && !h->forced_local)
2671 {
2672 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2673 return FALSE;
2674 }
2675 }
2676 }
2677
2678 break;
2679
2680 case R_68K_PLT8:
2681 case R_68K_PLT16:
2682 case R_68K_PLT32:
2683 /* This symbol requires a procedure linkage table entry. We
2684 actually build the entry in adjust_dynamic_symbol,
2685 because this might be a case of linking PIC code which is
2686 never referenced by a dynamic object, in which case we
2687 don't need to generate a procedure linkage table entry
2688 after all. */
2689
2690 /* If this is a local symbol, we resolve it directly without
2691 creating a procedure linkage table entry. */
2692 if (h == NULL)
2693 continue;
2694
2695 h->needs_plt = 1;
2696 h->plt.refcount++;
2697 break;
2698
2699 case R_68K_PLT8O:
2700 case R_68K_PLT16O:
2701 case R_68K_PLT32O:
2702 /* This symbol requires a procedure linkage table entry. */
2703
2704 if (h == NULL)
2705 {
2706 /* It does not make sense to have this relocation for a
2707 local symbol. FIXME: does it? How to handle it if
2708 it does make sense? */
2709 bfd_set_error (bfd_error_bad_value);
2710 return FALSE;
2711 }
2712
2713 /* Make sure this symbol is output as a dynamic symbol. */
2714 if (h->dynindx == -1
2715 && !h->forced_local)
2716 {
2717 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2718 return FALSE;
2719 }
2720
2721 h->needs_plt = 1;
2722 h->plt.refcount++;
2723 break;
2724
2725 case R_68K_PC8:
2726 case R_68K_PC16:
2727 case R_68K_PC32:
2728 /* If we are creating a shared library and this is not a local
2729 symbol, we need to copy the reloc into the shared library.
2730 However when linking with -Bsymbolic and this is a global
2731 symbol which is defined in an object we are including in the
2732 link (i.e., DEF_REGULAR is set), then we can resolve the
2733 reloc directly. At this point we have not seen all the input
2734 files, so it is possible that DEF_REGULAR is not set now but
2735 will be set later (it is never cleared). We account for that
2736 possibility below by storing information in the
2737 pcrel_relocs_copied field of the hash table entry. */
2738 if (!(bfd_link_pic (info)
2739 && (sec->flags & SEC_ALLOC) != 0
2740 && h != NULL
2741 && (!SYMBOLIC_BIND (info, h)
2742 || h->root.type == bfd_link_hash_defweak
2743 || !h->def_regular)))
2744 {
2745 if (h != NULL)
2746 {
2747 /* Make sure a plt entry is created for this symbol if
2748 it turns out to be a function defined by a dynamic
2749 object. */
2750 h->plt.refcount++;
2751 }
2752 break;
2753 }
2754 /* Fall through. */
2755 case R_68K_8:
2756 case R_68K_16:
2757 case R_68K_32:
2758 /* We don't need to handle relocs into sections not going into
2759 the "real" output. */
2760 if ((sec->flags & SEC_ALLOC) == 0)
2761 break;
2762
2763 if (h != NULL)
2764 {
2765 /* Make sure a plt entry is created for this symbol if it
2766 turns out to be a function defined by a dynamic object. */
2767 h->plt.refcount++;
2768
2769 if (bfd_link_executable (info))
2770 /* This symbol needs a non-GOT reference. */
2771 h->non_got_ref = 1;
2772 }
2773
2774 /* If we are creating a shared library, we need to copy the
2775 reloc into the shared library. */
2776 if (bfd_link_pic (info)
2777 && (h == NULL
2778 || !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)))
2779 {
2780 /* When creating a shared object, we must copy these
2781 reloc types into the output file. We create a reloc
2782 section in dynobj and make room for this reloc. */
2783 if (sreloc == NULL)
2784 {
2785 sreloc = _bfd_elf_make_dynamic_reloc_section
2786 (sec, dynobj, 2, abfd, /*rela?*/ TRUE);
2787
2788 if (sreloc == NULL)
2789 return FALSE;
2790 }
2791
2792 if (sec->flags & SEC_READONLY
2793 /* Don't set DF_TEXTREL yet for PC relative
2794 relocations, they might be discarded later. */
2795 && !(ELF32_R_TYPE (rel->r_info) == R_68K_PC8
2796 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
2797 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32))
2798 info->flags |= DF_TEXTREL;
2799
2800 sreloc->size += sizeof (Elf32_External_Rela);
2801
2802 /* We count the number of PC relative relocations we have
2803 entered for this symbol, so that we can discard them
2804 again if, in the -Bsymbolic case, the symbol is later
2805 defined by a regular object, or, in the normal shared
2806 case, the symbol is forced to be local. Note that this
2807 function is only called if we are using an m68kelf linker
2808 hash table, which means that h is really a pointer to an
2809 elf_m68k_link_hash_entry. */
2810 if (ELF32_R_TYPE (rel->r_info) == R_68K_PC8
2811 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
2812 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32)
2813 {
2814 struct elf_m68k_pcrel_relocs_copied *p;
2815 struct elf_m68k_pcrel_relocs_copied **head;
2816
2817 if (h != NULL)
2818 {
2819 struct elf_m68k_link_hash_entry *eh
2820 = elf_m68k_hash_entry (h);
2821 head = &eh->pcrel_relocs_copied;
2822 }
2823 else
2824 {
2825 asection *s;
2826 void *vpp;
2827 Elf_Internal_Sym *isym;
2828
2829 isym = bfd_sym_from_r_symndx (&elf_m68k_hash_table (info)->sym_cache,
2830 abfd, r_symndx);
2831 if (isym == NULL)
2832 return FALSE;
2833
2834 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
2835 if (s == NULL)
2836 s = sec;
2837
2838 vpp = &elf_section_data (s)->local_dynrel;
2839 head = (struct elf_m68k_pcrel_relocs_copied **) vpp;
2840 }
2841
2842 for (p = *head; p != NULL; p = p->next)
2843 if (p->section == sreloc)
2844 break;
2845
2846 if (p == NULL)
2847 {
2848 p = ((struct elf_m68k_pcrel_relocs_copied *)
2849 bfd_alloc (dynobj, (bfd_size_type) sizeof *p));
2850 if (p == NULL)
2851 return FALSE;
2852 p->next = *head;
2853 *head = p;
2854 p->section = sreloc;
2855 p->count = 0;
2856 }
2857
2858 ++p->count;
2859 }
2860 }
2861
2862 break;
2863
2864 /* This relocation describes the C++ object vtable hierarchy.
2865 Reconstruct it for later use during GC. */
2866 case R_68K_GNU_VTINHERIT:
2867 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2868 return FALSE;
2869 break;
2870
2871 /* This relocation describes which C++ vtable entries are actually
2872 used. Record for later use during GC. */
2873 case R_68K_GNU_VTENTRY:
2874 BFD_ASSERT (h != NULL);
2875 if (h != NULL
2876 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2877 return FALSE;
2878 break;
2879
2880 default:
2881 break;
2882 }
2883 }
2884
2885 return TRUE;
2886 }
2887
2888 /* Return the section that should be marked against GC for a given
2889 relocation. */
2890
2891 static asection *
2892 elf_m68k_gc_mark_hook (asection *sec,
2893 struct bfd_link_info *info,
2894 Elf_Internal_Rela *rel,
2895 struct elf_link_hash_entry *h,
2896 Elf_Internal_Sym *sym)
2897 {
2898 if (h != NULL)
2899 switch (ELF32_R_TYPE (rel->r_info))
2900 {
2901 case R_68K_GNU_VTINHERIT:
2902 case R_68K_GNU_VTENTRY:
2903 return NULL;
2904 }
2905
2906 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
2907 }
2908
2909 /* Update the got entry reference counts for the section being removed. */
2910
2911 static bfd_boolean
2912 elf_m68k_gc_sweep_hook (bfd *abfd,
2913 struct bfd_link_info *info,
2914 asection *sec,
2915 const Elf_Internal_Rela *relocs)
2916 {
2917 Elf_Internal_Shdr *symtab_hdr;
2918 struct elf_link_hash_entry **sym_hashes;
2919 const Elf_Internal_Rela *rel, *relend;
2920 bfd *dynobj;
2921 struct elf_m68k_got *got;
2922
2923 if (bfd_link_relocatable (info))
2924 return TRUE;
2925
2926 dynobj = elf_hash_table (info)->dynobj;
2927 if (dynobj == NULL)
2928 return TRUE;
2929
2930 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2931 sym_hashes = elf_sym_hashes (abfd);
2932 got = NULL;
2933
2934 relend = relocs + sec->reloc_count;
2935 for (rel = relocs; rel < relend; rel++)
2936 {
2937 unsigned long r_symndx;
2938 struct elf_link_hash_entry *h = NULL;
2939
2940 r_symndx = ELF32_R_SYM (rel->r_info);
2941 if (r_symndx >= symtab_hdr->sh_info)
2942 {
2943 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2944 while (h->root.type == bfd_link_hash_indirect
2945 || h->root.type == bfd_link_hash_warning)
2946 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2947 }
2948
2949 switch (ELF32_R_TYPE (rel->r_info))
2950 {
2951 case R_68K_GOT8:
2952 case R_68K_GOT16:
2953 case R_68K_GOT32:
2954 if (h != NULL
2955 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2956 break;
2957
2958 /* FALLTHRU */
2959 case R_68K_GOT8O:
2960 case R_68K_GOT16O:
2961 case R_68K_GOT32O:
2962 /* Fall through. */
2963
2964 /* TLS relocations. */
2965 case R_68K_TLS_GD8:
2966 case R_68K_TLS_GD16:
2967 case R_68K_TLS_GD32:
2968 case R_68K_TLS_LDM8:
2969 case R_68K_TLS_LDM16:
2970 case R_68K_TLS_LDM32:
2971 case R_68K_TLS_IE8:
2972 case R_68K_TLS_IE16:
2973 case R_68K_TLS_IE32:
2974
2975 case R_68K_TLS_TPREL32:
2976 case R_68K_TLS_DTPREL32:
2977
2978 if (got == NULL)
2979 {
2980 got = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
2981 abfd, MUST_FIND, NULL)->got;
2982 BFD_ASSERT (got != NULL);
2983 }
2984
2985 {
2986 struct elf_m68k_got_entry_key key_;
2987 struct elf_m68k_got_entry **got_entry_ptr;
2988 struct elf_m68k_got_entry *got_entry;
2989
2990 elf_m68k_init_got_entry_key (&key_, h, abfd, r_symndx,
2991 ELF32_R_TYPE (rel->r_info));
2992 got_entry_ptr = elf_m68k_find_got_entry_ptr (got, &key_);
2993
2994 got_entry = *got_entry_ptr;
2995
2996 if (got_entry->u.s1.refcount > 0)
2997 {
2998 --got_entry->u.s1.refcount;
2999
3000 if (got_entry->u.s1.refcount == 0)
3001 /* We don't need the .got entry any more. */
3002 elf_m68k_remove_got_entry (got, got_entry_ptr);
3003 }
3004 }
3005 break;
3006
3007 case R_68K_PLT8:
3008 case R_68K_PLT16:
3009 case R_68K_PLT32:
3010 case R_68K_PLT8O:
3011 case R_68K_PLT16O:
3012 case R_68K_PLT32O:
3013 case R_68K_PC8:
3014 case R_68K_PC16:
3015 case R_68K_PC32:
3016 case R_68K_8:
3017 case R_68K_16:
3018 case R_68K_32:
3019 if (h != NULL)
3020 {
3021 if (h->plt.refcount > 0)
3022 --h->plt.refcount;
3023 }
3024 break;
3025
3026 default:
3027 break;
3028 }
3029 }
3030
3031 return TRUE;
3032 }
3033 \f
3034 /* Return the type of PLT associated with OUTPUT_BFD. */
3035
3036 static const struct elf_m68k_plt_info *
3037 elf_m68k_get_plt_info (bfd *output_bfd)
3038 {
3039 unsigned int features;
3040
3041 features = bfd_m68k_mach_to_features (bfd_get_mach (output_bfd));
3042 if (features & cpu32)
3043 return &elf_cpu32_plt_info;
3044 if (features & mcfisa_b)
3045 return &elf_isab_plt_info;
3046 if (features & mcfisa_c)
3047 return &elf_isac_plt_info;
3048 return &elf_m68k_plt_info;
3049 }
3050
3051 /* This function is called after all the input files have been read,
3052 and the input sections have been assigned to output sections.
3053 It's a convenient place to determine the PLT style. */
3054
3055 static bfd_boolean
3056 elf_m68k_always_size_sections (bfd *output_bfd, struct bfd_link_info *info)
3057 {
3058 /* Bind input BFDs to GOTs and calculate sizes of .got and .rela.got
3059 sections. */
3060 if (!elf_m68k_partition_multi_got (info))
3061 return FALSE;
3062
3063 elf_m68k_hash_table (info)->plt_info = elf_m68k_get_plt_info (output_bfd);
3064 return TRUE;
3065 }
3066
3067 /* Adjust a symbol defined by a dynamic object and referenced by a
3068 regular object. The current definition is in some section of the
3069 dynamic object, but we're not including those sections. We have to
3070 change the definition to something the rest of the link can
3071 understand. */
3072
3073 static bfd_boolean
3074 elf_m68k_adjust_dynamic_symbol (struct bfd_link_info *info,
3075 struct elf_link_hash_entry *h)
3076 {
3077 struct elf_m68k_link_hash_table *htab;
3078 bfd *dynobj;
3079 asection *s;
3080
3081 htab = elf_m68k_hash_table (info);
3082 dynobj = htab->root.dynobj;
3083
3084 /* Make sure we know what is going on here. */
3085 BFD_ASSERT (dynobj != NULL
3086 && (h->needs_plt
3087 || h->u.weakdef != NULL
3088 || (h->def_dynamic
3089 && h->ref_regular
3090 && !h->def_regular)));
3091
3092 /* If this is a function, put it in the procedure linkage table. We
3093 will fill in the contents of the procedure linkage table later,
3094 when we know the address of the .got section. */
3095 if (h->type == STT_FUNC
3096 || h->needs_plt)
3097 {
3098 if ((h->plt.refcount <= 0
3099 || SYMBOL_CALLS_LOCAL (info, h)
3100 || ((ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
3101 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
3102 && h->root.type == bfd_link_hash_undefweak))
3103 /* We must always create the plt entry if it was referenced
3104 by a PLTxxO relocation. In this case we already recorded
3105 it as a dynamic symbol. */
3106 && h->dynindx == -1)
3107 {
3108 /* This case can occur if we saw a PLTxx reloc in an input
3109 file, but the symbol was never referred to by a dynamic
3110 object, or if all references were garbage collected. In
3111 such a case, we don't actually need to build a procedure
3112 linkage table, and we can just do a PCxx reloc instead. */
3113 h->plt.offset = (bfd_vma) -1;
3114 h->needs_plt = 0;
3115 return TRUE;
3116 }
3117
3118 /* Make sure this symbol is output as a dynamic symbol. */
3119 if (h->dynindx == -1
3120 && !h->forced_local)
3121 {
3122 if (! bfd_elf_link_record_dynamic_symbol (info, h))
3123 return FALSE;
3124 }
3125
3126 s = htab->root.splt;
3127 BFD_ASSERT (s != NULL);
3128
3129 /* If this is the first .plt entry, make room for the special
3130 first entry. */
3131 if (s->size == 0)
3132 s->size = htab->plt_info->size;
3133
3134 /* If this symbol is not defined in a regular file, and we are
3135 not generating a shared library, then set the symbol to this
3136 location in the .plt. This is required to make function
3137 pointers compare as equal between the normal executable and
3138 the shared library. */
3139 if (!bfd_link_pic (info)
3140 && !h->def_regular)
3141 {
3142 h->root.u.def.section = s;
3143 h->root.u.def.value = s->size;
3144 }
3145
3146 h->plt.offset = s->size;
3147
3148 /* Make room for this entry. */
3149 s->size += htab->plt_info->size;
3150
3151 /* We also need to make an entry in the .got.plt section, which
3152 will be placed in the .got section by the linker script. */
3153 s = htab->root.sgotplt;
3154 BFD_ASSERT (s != NULL);
3155 s->size += 4;
3156
3157 /* We also need to make an entry in the .rela.plt section. */
3158 s = htab->root.srelplt;
3159 BFD_ASSERT (s != NULL);
3160 s->size += sizeof (Elf32_External_Rela);
3161
3162 return TRUE;
3163 }
3164
3165 /* Reinitialize the plt offset now that it is not used as a reference
3166 count any more. */
3167 h->plt.offset = (bfd_vma) -1;
3168
3169 /* If this is a weak symbol, and there is a real definition, the
3170 processor independent code will have arranged for us to see the
3171 real definition first, and we can just use the same value. */
3172 if (h->u.weakdef != NULL)
3173 {
3174 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
3175 || h->u.weakdef->root.type == bfd_link_hash_defweak);
3176 h->root.u.def.section = h->u.weakdef->root.u.def.section;
3177 h->root.u.def.value = h->u.weakdef->root.u.def.value;
3178 return TRUE;
3179 }
3180
3181 /* This is a reference to a symbol defined by a dynamic object which
3182 is not a function. */
3183
3184 /* If we are creating a shared library, we must presume that the
3185 only references to the symbol are via the global offset table.
3186 For such cases we need not do anything here; the relocations will
3187 be handled correctly by relocate_section. */
3188 if (bfd_link_pic (info))
3189 return TRUE;
3190
3191 /* If there are no references to this symbol that do not use the
3192 GOT, we don't need to generate a copy reloc. */
3193 if (!h->non_got_ref)
3194 return TRUE;
3195
3196 /* We must allocate the symbol in our .dynbss section, which will
3197 become part of the .bss section of the executable. There will be
3198 an entry for this symbol in the .dynsym section. The dynamic
3199 object will contain position independent code, so all references
3200 from the dynamic object to this symbol will go through the global
3201 offset table. The dynamic linker will use the .dynsym entry to
3202 determine the address it must put in the global offset table, so
3203 both the dynamic object and the regular object will refer to the
3204 same memory location for the variable. */
3205
3206 s = bfd_get_linker_section (dynobj, ".dynbss");
3207 BFD_ASSERT (s != NULL);
3208
3209 /* We must generate a R_68K_COPY reloc to tell the dynamic linker to
3210 copy the initial value out of the dynamic object and into the
3211 runtime process image. We need to remember the offset into the
3212 .rela.bss section we are going to use. */
3213 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
3214 {
3215 asection *srel;
3216
3217 srel = bfd_get_linker_section (dynobj, ".rela.bss");
3218 BFD_ASSERT (srel != NULL);
3219 srel->size += sizeof (Elf32_External_Rela);
3220 h->needs_copy = 1;
3221 }
3222
3223 return _bfd_elf_adjust_dynamic_copy (info, h, s);
3224 }
3225
3226 /* Set the sizes of the dynamic sections. */
3227
3228 static bfd_boolean
3229 elf_m68k_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
3230 struct bfd_link_info *info)
3231 {
3232 bfd *dynobj;
3233 asection *s;
3234 bfd_boolean plt;
3235 bfd_boolean relocs;
3236
3237 dynobj = elf_hash_table (info)->dynobj;
3238 BFD_ASSERT (dynobj != NULL);
3239
3240 if (elf_hash_table (info)->dynamic_sections_created)
3241 {
3242 /* Set the contents of the .interp section to the interpreter. */
3243 if (bfd_link_executable (info) && !info->nointerp)
3244 {
3245 s = bfd_get_linker_section (dynobj, ".interp");
3246 BFD_ASSERT (s != NULL);
3247 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
3248 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
3249 }
3250 }
3251 else
3252 {
3253 /* We may have created entries in the .rela.got section.
3254 However, if we are not creating the dynamic sections, we will
3255 not actually use these entries. Reset the size of .rela.got,
3256 which will cause it to get stripped from the output file
3257 below. */
3258 s = elf_hash_table (info)->srelgot;
3259 if (s != NULL)
3260 s->size = 0;
3261 }
3262
3263 /* If this is a -Bsymbolic shared link, then we need to discard all
3264 PC relative relocs against symbols defined in a regular object.
3265 For the normal shared case we discard the PC relative relocs
3266 against symbols that have become local due to visibility changes.
3267 We allocated space for them in the check_relocs routine, but we
3268 will not fill them in in the relocate_section routine. */
3269 if (bfd_link_pic (info))
3270 elf_link_hash_traverse (elf_hash_table (info),
3271 elf_m68k_discard_copies,
3272 info);
3273
3274 /* The check_relocs and adjust_dynamic_symbol entry points have
3275 determined the sizes of the various dynamic sections. Allocate
3276 memory for them. */
3277 plt = FALSE;
3278 relocs = FALSE;
3279 for (s = dynobj->sections; s != NULL; s = s->next)
3280 {
3281 const char *name;
3282
3283 if ((s->flags & SEC_LINKER_CREATED) == 0)
3284 continue;
3285
3286 /* It's OK to base decisions on the section name, because none
3287 of the dynobj section names depend upon the input files. */
3288 name = bfd_get_section_name (dynobj, s);
3289
3290 if (strcmp (name, ".plt") == 0)
3291 {
3292 /* Remember whether there is a PLT. */
3293 plt = s->size != 0;
3294 }
3295 else if (CONST_STRNEQ (name, ".rela"))
3296 {
3297 if (s->size != 0)
3298 {
3299 relocs = TRUE;
3300
3301 /* We use the reloc_count field as a counter if we need
3302 to copy relocs into the output file. */
3303 s->reloc_count = 0;
3304 }
3305 }
3306 else if (! CONST_STRNEQ (name, ".got")
3307 && strcmp (name, ".dynbss") != 0)
3308 {
3309 /* It's not one of our sections, so don't allocate space. */
3310 continue;
3311 }
3312
3313 if (s->size == 0)
3314 {
3315 /* If we don't need this section, strip it from the
3316 output file. This is mostly to handle .rela.bss and
3317 .rela.plt. We must create both sections in
3318 create_dynamic_sections, because they must be created
3319 before the linker maps input sections to output
3320 sections. The linker does that before
3321 adjust_dynamic_symbol is called, and it is that
3322 function which decides whether anything needs to go
3323 into these sections. */
3324 s->flags |= SEC_EXCLUDE;
3325 continue;
3326 }
3327
3328 if ((s->flags & SEC_HAS_CONTENTS) == 0)
3329 continue;
3330
3331 /* Allocate memory for the section contents. */
3332 /* FIXME: This should be a call to bfd_alloc not bfd_zalloc.
3333 Unused entries should be reclaimed before the section's contents
3334 are written out, but at the moment this does not happen. Thus in
3335 order to prevent writing out garbage, we initialise the section's
3336 contents to zero. */
3337 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
3338 if (s->contents == NULL)
3339 return FALSE;
3340 }
3341
3342 if (elf_hash_table (info)->dynamic_sections_created)
3343 {
3344 /* Add some entries to the .dynamic section. We fill in the
3345 values later, in elf_m68k_finish_dynamic_sections, but we
3346 must add the entries now so that we get the correct size for
3347 the .dynamic section. The DT_DEBUG entry is filled in by the
3348 dynamic linker and used by the debugger. */
3349 #define add_dynamic_entry(TAG, VAL) \
3350 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3351
3352 if (bfd_link_executable (info))
3353 {
3354 if (!add_dynamic_entry (DT_DEBUG, 0))
3355 return FALSE;
3356 }
3357
3358 if (plt)
3359 {
3360 if (!add_dynamic_entry (DT_PLTGOT, 0)
3361 || !add_dynamic_entry (DT_PLTRELSZ, 0)
3362 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
3363 || !add_dynamic_entry (DT_JMPREL, 0))
3364 return FALSE;
3365 }
3366
3367 if (relocs)
3368 {
3369 if (!add_dynamic_entry (DT_RELA, 0)
3370 || !add_dynamic_entry (DT_RELASZ, 0)
3371 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
3372 return FALSE;
3373 }
3374
3375 if ((info->flags & DF_TEXTREL) != 0)
3376 {
3377 if (!add_dynamic_entry (DT_TEXTREL, 0))
3378 return FALSE;
3379 }
3380 }
3381 #undef add_dynamic_entry
3382
3383 return TRUE;
3384 }
3385
3386 /* This function is called via elf_link_hash_traverse if we are
3387 creating a shared object. In the -Bsymbolic case it discards the
3388 space allocated to copy PC relative relocs against symbols which
3389 are defined in regular objects. For the normal shared case, it
3390 discards space for pc-relative relocs that have become local due to
3391 symbol visibility changes. We allocated space for them in the
3392 check_relocs routine, but we won't fill them in in the
3393 relocate_section routine.
3394
3395 We also check whether any of the remaining relocations apply
3396 against a readonly section, and set the DF_TEXTREL flag in this
3397 case. */
3398
3399 static bfd_boolean
3400 elf_m68k_discard_copies (struct elf_link_hash_entry *h,
3401 void * inf)
3402 {
3403 struct bfd_link_info *info = (struct bfd_link_info *) inf;
3404 struct elf_m68k_pcrel_relocs_copied *s;
3405
3406 if (!SYMBOL_CALLS_LOCAL (info, h))
3407 {
3408 if ((info->flags & DF_TEXTREL) == 0)
3409 {
3410 /* Look for relocations against read-only sections. */
3411 for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
3412 s != NULL;
3413 s = s->next)
3414 if ((s->section->flags & SEC_READONLY) != 0)
3415 {
3416 info->flags |= DF_TEXTREL;
3417 break;
3418 }
3419 }
3420
3421 /* Make sure undefined weak symbols are output as a dynamic symbol
3422 in PIEs. */
3423 if (h->non_got_ref
3424 && h->root.type == bfd_link_hash_undefweak
3425 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3426 && h->dynindx == -1
3427 && !h->forced_local)
3428 {
3429 if (! bfd_elf_link_record_dynamic_symbol (info, h))
3430 return FALSE;
3431 }
3432
3433 return TRUE;
3434 }
3435
3436 for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
3437 s != NULL;
3438 s = s->next)
3439 s->section->size -= s->count * sizeof (Elf32_External_Rela);
3440
3441 return TRUE;
3442 }
3443
3444
3445 /* Install relocation RELA. */
3446
3447 static void
3448 elf_m68k_install_rela (bfd *output_bfd,
3449 asection *srela,
3450 Elf_Internal_Rela *rela)
3451 {
3452 bfd_byte *loc;
3453
3454 loc = srela->contents;
3455 loc += srela->reloc_count++ * sizeof (Elf32_External_Rela);
3456 bfd_elf32_swap_reloca_out (output_bfd, rela, loc);
3457 }
3458
3459 /* Find the base offsets for thread-local storage in this object,
3460 for GD/LD and IE/LE respectively. */
3461
3462 #define DTP_OFFSET 0x8000
3463 #define TP_OFFSET 0x7000
3464
3465 static bfd_vma
3466 dtpoff_base (struct bfd_link_info *info)
3467 {
3468 /* If tls_sec is NULL, we should have signalled an error already. */
3469 if (elf_hash_table (info)->tls_sec == NULL)
3470 return 0;
3471 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
3472 }
3473
3474 static bfd_vma
3475 tpoff_base (struct bfd_link_info *info)
3476 {
3477 /* If tls_sec is NULL, we should have signalled an error already. */
3478 if (elf_hash_table (info)->tls_sec == NULL)
3479 return 0;
3480 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
3481 }
3482
3483 /* Output necessary relocation to handle a symbol during static link.
3484 This function is called from elf_m68k_relocate_section. */
3485
3486 static void
3487 elf_m68k_init_got_entry_static (struct bfd_link_info *info,
3488 bfd *output_bfd,
3489 enum elf_m68k_reloc_type r_type,
3490 asection *sgot,
3491 bfd_vma got_entry_offset,
3492 bfd_vma relocation)
3493 {
3494 switch (elf_m68k_reloc_got_type (r_type))
3495 {
3496 case R_68K_GOT32O:
3497 bfd_put_32 (output_bfd, relocation, sgot->contents + got_entry_offset);
3498 break;
3499
3500 case R_68K_TLS_GD32:
3501 /* We know the offset within the module,
3502 put it into the second GOT slot. */
3503 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
3504 sgot->contents + got_entry_offset + 4);
3505 /* FALLTHRU */
3506
3507 case R_68K_TLS_LDM32:
3508 /* Mark it as belonging to module 1, the executable. */
3509 bfd_put_32 (output_bfd, 1, sgot->contents + got_entry_offset);
3510 break;
3511
3512 case R_68K_TLS_IE32:
3513 bfd_put_32 (output_bfd, relocation - tpoff_base (info),
3514 sgot->contents + got_entry_offset);
3515 break;
3516
3517 default:
3518 BFD_ASSERT (FALSE);
3519 }
3520 }
3521
3522 /* Output necessary relocation to handle a local symbol
3523 during dynamic link.
3524 This function is called either from elf_m68k_relocate_section
3525 or from elf_m68k_finish_dynamic_symbol. */
3526
3527 static void
3528 elf_m68k_init_got_entry_local_shared (struct bfd_link_info *info,
3529 bfd *output_bfd,
3530 enum elf_m68k_reloc_type r_type,
3531 asection *sgot,
3532 bfd_vma got_entry_offset,
3533 bfd_vma relocation,
3534 asection *srela)
3535 {
3536 Elf_Internal_Rela outrel;
3537
3538 switch (elf_m68k_reloc_got_type (r_type))
3539 {
3540 case R_68K_GOT32O:
3541 /* Emit RELATIVE relocation to initialize GOT slot
3542 at run-time. */
3543 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
3544 outrel.r_addend = relocation;
3545 break;
3546
3547 case R_68K_TLS_GD32:
3548 /* We know the offset within the module,
3549 put it into the second GOT slot. */
3550 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
3551 sgot->contents + got_entry_offset + 4);
3552 /* FALLTHRU */
3553
3554 case R_68K_TLS_LDM32:
3555 /* We don't know the module number,
3556 create a relocation for it. */
3557 outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_DTPMOD32);
3558 outrel.r_addend = 0;
3559 break;
3560
3561 case R_68K_TLS_IE32:
3562 /* Emit TPREL relocation to initialize GOT slot
3563 at run-time. */
3564 outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_TPREL32);
3565 outrel.r_addend = relocation - elf_hash_table (info)->tls_sec->vma;
3566 break;
3567
3568 default:
3569 BFD_ASSERT (FALSE);
3570 }
3571
3572 /* Offset of the GOT entry. */
3573 outrel.r_offset = (sgot->output_section->vma
3574 + sgot->output_offset
3575 + got_entry_offset);
3576
3577 /* Install one of the above relocations. */
3578 elf_m68k_install_rela (output_bfd, srela, &outrel);
3579
3580 bfd_put_32 (output_bfd, outrel.r_addend, sgot->contents + got_entry_offset);
3581 }
3582
3583 /* Relocate an M68K ELF section. */
3584
3585 static bfd_boolean
3586 elf_m68k_relocate_section (bfd *output_bfd,
3587 struct bfd_link_info *info,
3588 bfd *input_bfd,
3589 asection *input_section,
3590 bfd_byte *contents,
3591 Elf_Internal_Rela *relocs,
3592 Elf_Internal_Sym *local_syms,
3593 asection **local_sections)
3594 {
3595 Elf_Internal_Shdr *symtab_hdr;
3596 struct elf_link_hash_entry **sym_hashes;
3597 asection *sgot;
3598 asection *splt;
3599 asection *sreloc;
3600 asection *srela;
3601 struct elf_m68k_got *got;
3602 Elf_Internal_Rela *rel;
3603 Elf_Internal_Rela *relend;
3604
3605 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3606 sym_hashes = elf_sym_hashes (input_bfd);
3607
3608 sgot = NULL;
3609 splt = NULL;
3610 sreloc = NULL;
3611 srela = NULL;
3612
3613 got = NULL;
3614
3615 rel = relocs;
3616 relend = relocs + input_section->reloc_count;
3617 for (; rel < relend; rel++)
3618 {
3619 int r_type;
3620 reloc_howto_type *howto;
3621 unsigned long r_symndx;
3622 struct elf_link_hash_entry *h;
3623 Elf_Internal_Sym *sym;
3624 asection *sec;
3625 bfd_vma relocation;
3626 bfd_boolean unresolved_reloc;
3627 bfd_reloc_status_type r;
3628 bfd_boolean resolved_to_zero;
3629
3630 r_type = ELF32_R_TYPE (rel->r_info);
3631 if (r_type < 0 || r_type >= (int) R_68K_max)
3632 {
3633 bfd_set_error (bfd_error_bad_value);
3634 return FALSE;
3635 }
3636 howto = howto_table + r_type;
3637
3638 r_symndx = ELF32_R_SYM (rel->r_info);
3639
3640 h = NULL;
3641 sym = NULL;
3642 sec = NULL;
3643 unresolved_reloc = FALSE;
3644
3645 if (r_symndx < symtab_hdr->sh_info)
3646 {
3647 sym = local_syms + r_symndx;
3648 sec = local_sections[r_symndx];
3649 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
3650 }
3651 else
3652 {
3653 bfd_boolean warned, ignored;
3654
3655 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3656 r_symndx, symtab_hdr, sym_hashes,
3657 h, sec, relocation,
3658 unresolved_reloc, warned, ignored);
3659 }
3660
3661 if (sec != NULL && discarded_section (sec))
3662 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3663 rel, 1, relend, howto, 0, contents);
3664
3665 if (bfd_link_relocatable (info))
3666 continue;
3667
3668 resolved_to_zero = (h != NULL
3669 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
3670
3671 switch (r_type)
3672 {
3673 case R_68K_GOT8:
3674 case R_68K_GOT16:
3675 case R_68K_GOT32:
3676 /* Relocation is to the address of the entry for this symbol
3677 in the global offset table. */
3678 if (h != NULL
3679 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3680 {
3681 if (elf_m68k_hash_table (info)->local_gp_p)
3682 {
3683 bfd_vma sgot_output_offset;
3684 bfd_vma got_offset;
3685
3686 sgot = elf_hash_table (info)->sgot;
3687
3688 if (sgot != NULL)
3689 sgot_output_offset = sgot->output_offset;
3690 else
3691 /* In this case we have a reference to
3692 _GLOBAL_OFFSET_TABLE_, but the GOT itself is
3693 empty.
3694 ??? Issue a warning? */
3695 sgot_output_offset = 0;
3696
3697 if (got == NULL)
3698 {
3699 struct elf_m68k_bfd2got_entry *bfd2got_entry;
3700
3701 bfd2got_entry
3702 = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
3703 input_bfd, SEARCH, NULL);
3704
3705 if (bfd2got_entry != NULL)
3706 {
3707 got = bfd2got_entry->got;
3708 BFD_ASSERT (got != NULL);
3709
3710 got_offset = got->offset;
3711 }
3712 else
3713 /* In this case we have a reference to
3714 _GLOBAL_OFFSET_TABLE_, but no other references
3715 accessing any GOT entries.
3716 ??? Issue a warning? */
3717 got_offset = 0;
3718 }
3719 else
3720 got_offset = got->offset;
3721
3722 /* Adjust GOT pointer to point to the GOT
3723 assigned to input_bfd. */
3724 rel->r_addend += sgot_output_offset + got_offset;
3725 }
3726 else
3727 BFD_ASSERT (got == NULL || got->offset == 0);
3728
3729 break;
3730 }
3731 /* Fall through. */
3732 case R_68K_GOT8O:
3733 case R_68K_GOT16O:
3734 case R_68K_GOT32O:
3735
3736 case R_68K_TLS_LDM32:
3737 case R_68K_TLS_LDM16:
3738 case R_68K_TLS_LDM8:
3739
3740 case R_68K_TLS_GD8:
3741 case R_68K_TLS_GD16:
3742 case R_68K_TLS_GD32:
3743
3744 case R_68K_TLS_IE8:
3745 case R_68K_TLS_IE16:
3746 case R_68K_TLS_IE32:
3747
3748 /* Relocation is the offset of the entry for this symbol in
3749 the global offset table. */
3750
3751 {
3752 struct elf_m68k_got_entry_key key_;
3753 bfd_vma *off_ptr;
3754 bfd_vma off;
3755
3756 sgot = elf_hash_table (info)->sgot;
3757 BFD_ASSERT (sgot != NULL);
3758
3759 if (got == NULL)
3760 {
3761 got = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
3762 input_bfd, MUST_FIND,
3763 NULL)->got;
3764 BFD_ASSERT (got != NULL);
3765 }
3766
3767 /* Get GOT offset for this symbol. */
3768 elf_m68k_init_got_entry_key (&key_, h, input_bfd, r_symndx,
3769 r_type);
3770 off_ptr = &elf_m68k_get_got_entry (got, &key_, MUST_FIND,
3771 NULL)->u.s2.offset;
3772 off = *off_ptr;
3773
3774 /* The offset must always be a multiple of 4. We use
3775 the least significant bit to record whether we have
3776 already generated the necessary reloc. */
3777 if ((off & 1) != 0)
3778 off &= ~1;
3779 else
3780 {
3781 if (h != NULL
3782 /* @TLSLDM relocations are bounded to the module, in
3783 which the symbol is defined -- not to the symbol
3784 itself. */
3785 && elf_m68k_reloc_got_type (r_type) != R_68K_TLS_LDM32)
3786 {
3787 bfd_boolean dyn;
3788
3789 dyn = elf_hash_table (info)->dynamic_sections_created;
3790 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
3791 bfd_link_pic (info),
3792 h)
3793 || (bfd_link_pic (info)
3794 && SYMBOL_REFERENCES_LOCAL (info, h))
3795 || ((ELF_ST_VISIBILITY (h->other)
3796 || resolved_to_zero)
3797 && h->root.type == bfd_link_hash_undefweak))
3798 {
3799 /* This is actually a static link, or it is a
3800 -Bsymbolic link and the symbol is defined
3801 locally, or the symbol was forced to be local
3802 because of a version file. We must initialize
3803 this entry in the global offset table. Since
3804 the offset must always be a multiple of 4, we
3805 use the least significant bit to record whether
3806 we have initialized it already.
3807
3808 When doing a dynamic link, we create a .rela.got
3809 relocation entry to initialize the value. This
3810 is done in the finish_dynamic_symbol routine. */
3811
3812 elf_m68k_init_got_entry_static (info,
3813 output_bfd,
3814 r_type,
3815 sgot,
3816 off,
3817 relocation);
3818
3819 *off_ptr |= 1;
3820 }
3821 else
3822 unresolved_reloc = FALSE;
3823 }
3824 else if (bfd_link_pic (info)) /* && h == NULL */
3825 /* Process local symbol during dynamic link. */
3826 {
3827 srela = elf_hash_table (info)->srelgot;
3828 BFD_ASSERT (srela != NULL);
3829
3830 elf_m68k_init_got_entry_local_shared (info,
3831 output_bfd,
3832 r_type,
3833 sgot,
3834 off,
3835 relocation,
3836 srela);
3837
3838 *off_ptr |= 1;
3839 }
3840 else /* h == NULL && !bfd_link_pic (info) */
3841 {
3842 elf_m68k_init_got_entry_static (info,
3843 output_bfd,
3844 r_type,
3845 sgot,
3846 off,
3847 relocation);
3848
3849 *off_ptr |= 1;
3850 }
3851 }
3852
3853 /* We don't use elf_m68k_reloc_got_type in the condition below
3854 because this is the only place where difference between
3855 R_68K_GOTx and R_68K_GOTxO relocations matters. */
3856 if (r_type == R_68K_GOT32O
3857 || r_type == R_68K_GOT16O
3858 || r_type == R_68K_GOT8O
3859 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_GD32
3860 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_LDM32
3861 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_IE32)
3862 {
3863 /* GOT pointer is adjusted to point to the start/middle
3864 of local GOT. Adjust the offset accordingly. */
3865 BFD_ASSERT (elf_m68k_hash_table (info)->use_neg_got_offsets_p
3866 || off >= got->offset);
3867
3868 if (elf_m68k_hash_table (info)->local_gp_p)
3869 relocation = off - got->offset;
3870 else
3871 {
3872 BFD_ASSERT (got->offset == 0);
3873 relocation = sgot->output_offset + off;
3874 }
3875
3876 /* This relocation does not use the addend. */
3877 rel->r_addend = 0;
3878 }
3879 else
3880 relocation = (sgot->output_section->vma + sgot->output_offset
3881 + off);
3882 }
3883 break;
3884
3885 case R_68K_TLS_LDO32:
3886 case R_68K_TLS_LDO16:
3887 case R_68K_TLS_LDO8:
3888 relocation -= dtpoff_base (info);
3889 break;
3890
3891 case R_68K_TLS_LE32:
3892 case R_68K_TLS_LE16:
3893 case R_68K_TLS_LE8:
3894 if (bfd_link_dll (info))
3895 {
3896 _bfd_error_handler
3897 /* xgettext:c-format */
3898 (_("%B(%A+%#Lx): %s relocation not permitted in shared object"),
3899 input_bfd, input_section, rel->r_offset, howto->name);
3900
3901 return FALSE;
3902 }
3903 else
3904 relocation -= tpoff_base (info);
3905
3906 break;
3907
3908 case R_68K_PLT8:
3909 case R_68K_PLT16:
3910 case R_68K_PLT32:
3911 /* Relocation is to the entry for this symbol in the
3912 procedure linkage table. */
3913
3914 /* Resolve a PLTxx reloc against a local symbol directly,
3915 without using the procedure linkage table. */
3916 if (h == NULL)
3917 break;
3918
3919 if (h->plt.offset == (bfd_vma) -1
3920 || !elf_hash_table (info)->dynamic_sections_created)
3921 {
3922 /* We didn't make a PLT entry for this symbol. This
3923 happens when statically linking PIC code, or when
3924 using -Bsymbolic. */
3925 break;
3926 }
3927
3928 splt = elf_hash_table (info)->splt;
3929 BFD_ASSERT (splt != NULL);
3930
3931 relocation = (splt->output_section->vma
3932 + splt->output_offset
3933 + h->plt.offset);
3934 unresolved_reloc = FALSE;
3935 break;
3936
3937 case R_68K_PLT8O:
3938 case R_68K_PLT16O:
3939 case R_68K_PLT32O:
3940 /* Relocation is the offset of the entry for this symbol in
3941 the procedure linkage table. */
3942 BFD_ASSERT (h != NULL && h->plt.offset != (bfd_vma) -1);
3943
3944 splt = elf_hash_table (info)->splt;
3945 BFD_ASSERT (splt != NULL);
3946
3947 relocation = h->plt.offset;
3948 unresolved_reloc = FALSE;
3949
3950 /* This relocation does not use the addend. */
3951 rel->r_addend = 0;
3952
3953 break;
3954
3955 case R_68K_8:
3956 case R_68K_16:
3957 case R_68K_32:
3958 case R_68K_PC8:
3959 case R_68K_PC16:
3960 case R_68K_PC32:
3961 if (bfd_link_pic (info)
3962 && r_symndx != STN_UNDEF
3963 && (input_section->flags & SEC_ALLOC) != 0
3964 && (h == NULL
3965 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3966 && !resolved_to_zero)
3967 || h->root.type != bfd_link_hash_undefweak)
3968 && ((r_type != R_68K_PC8
3969 && r_type != R_68K_PC16
3970 && r_type != R_68K_PC32)
3971 || !SYMBOL_CALLS_LOCAL (info, h)))
3972 {
3973 Elf_Internal_Rela outrel;
3974 bfd_byte *loc;
3975 bfd_boolean skip, relocate;
3976
3977 /* When generating a shared object, these relocations
3978 are copied into the output file to be resolved at run
3979 time. */
3980
3981 skip = FALSE;
3982 relocate = FALSE;
3983
3984 outrel.r_offset =
3985 _bfd_elf_section_offset (output_bfd, info, input_section,
3986 rel->r_offset);
3987 if (outrel.r_offset == (bfd_vma) -1)
3988 skip = TRUE;
3989 else if (outrel.r_offset == (bfd_vma) -2)
3990 skip = TRUE, relocate = TRUE;
3991 outrel.r_offset += (input_section->output_section->vma
3992 + input_section->output_offset);
3993
3994 if (skip)
3995 memset (&outrel, 0, sizeof outrel);
3996 else if (h != NULL
3997 && h->dynindx != -1
3998 && (r_type == R_68K_PC8
3999 || r_type == R_68K_PC16
4000 || r_type == R_68K_PC32
4001 || !bfd_link_pic (info)
4002 || !SYMBOLIC_BIND (info, h)
4003 || !h->def_regular))
4004 {
4005 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
4006 outrel.r_addend = rel->r_addend;
4007 }
4008 else
4009 {
4010 /* This symbol is local, or marked to become local. */
4011 outrel.r_addend = relocation + rel->r_addend;
4012
4013 if (r_type == R_68K_32)
4014 {
4015 relocate = TRUE;
4016 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
4017 }
4018 else
4019 {
4020 long indx;
4021
4022 if (bfd_is_abs_section (sec))
4023 indx = 0;
4024 else if (sec == NULL || sec->owner == NULL)
4025 {
4026 bfd_set_error (bfd_error_bad_value);
4027 return FALSE;
4028 }
4029 else
4030 {
4031 asection *osec;
4032
4033 /* We are turning this relocation into one
4034 against a section symbol. It would be
4035 proper to subtract the symbol's value,
4036 osec->vma, from the emitted reloc addend,
4037 but ld.so expects buggy relocs. */
4038 osec = sec->output_section;
4039 indx = elf_section_data (osec)->dynindx;
4040 if (indx == 0)
4041 {
4042 struct elf_link_hash_table *htab;
4043 htab = elf_hash_table (info);
4044 osec = htab->text_index_section;
4045 indx = elf_section_data (osec)->dynindx;
4046 }
4047 BFD_ASSERT (indx != 0);
4048 }
4049
4050 outrel.r_info = ELF32_R_INFO (indx, r_type);
4051 }
4052 }
4053
4054 sreloc = elf_section_data (input_section)->sreloc;
4055 if (sreloc == NULL)
4056 abort ();
4057
4058 loc = sreloc->contents;
4059 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4060 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4061
4062 /* This reloc will be computed at runtime, so there's no
4063 need to do anything now, except for R_68K_32
4064 relocations that have been turned into
4065 R_68K_RELATIVE. */
4066 if (!relocate)
4067 continue;
4068 }
4069
4070 break;
4071
4072 case R_68K_GNU_VTINHERIT:
4073 case R_68K_GNU_VTENTRY:
4074 /* These are no-ops in the end. */
4075 continue;
4076
4077 default:
4078 break;
4079 }
4080
4081 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
4082 because such sections are not SEC_ALLOC and thus ld.so will
4083 not process them. */
4084 if (unresolved_reloc
4085 && !((input_section->flags & SEC_DEBUGGING) != 0
4086 && h->def_dynamic)
4087 && _bfd_elf_section_offset (output_bfd, info, input_section,
4088 rel->r_offset) != (bfd_vma) -1)
4089 {
4090 _bfd_error_handler
4091 /* xgettext:c-format */
4092 (_("%B(%A+%#Lx): unresolvable %s relocation against symbol `%s'"),
4093 input_bfd,
4094 input_section,
4095 rel->r_offset,
4096 howto->name,
4097 h->root.root.string);
4098 return FALSE;
4099 }
4100
4101 if (r_symndx != STN_UNDEF
4102 && r_type != R_68K_NONE
4103 && (h == NULL
4104 || h->root.type == bfd_link_hash_defined
4105 || h->root.type == bfd_link_hash_defweak))
4106 {
4107 char sym_type;
4108
4109 sym_type = (sym != NULL) ? ELF32_ST_TYPE (sym->st_info) : h->type;
4110
4111 if (elf_m68k_reloc_tls_p (r_type) != (sym_type == STT_TLS))
4112 {
4113 const char *name;
4114
4115 if (h != NULL)
4116 name = h->root.root.string;
4117 else
4118 {
4119 name = (bfd_elf_string_from_elf_section
4120 (input_bfd, symtab_hdr->sh_link, sym->st_name));
4121 if (name == NULL || *name == '\0')
4122 name = bfd_section_name (input_bfd, sec);
4123 }
4124
4125 _bfd_error_handler
4126 ((sym_type == STT_TLS
4127 /* xgettext:c-format */
4128 ? _("%B(%A+%#Lx): %s used with TLS symbol %s")
4129 /* xgettext:c-format */
4130 : _("%B(%A+%#Lx): %s used with non-TLS symbol %s")),
4131 input_bfd,
4132 input_section,
4133 rel->r_offset,
4134 howto->name,
4135 name);
4136 }
4137 }
4138
4139 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
4140 contents, rel->r_offset,
4141 relocation, rel->r_addend);
4142
4143 if (r != bfd_reloc_ok)
4144 {
4145 const char *name;
4146
4147 if (h != NULL)
4148 name = h->root.root.string;
4149 else
4150 {
4151 name = bfd_elf_string_from_elf_section (input_bfd,
4152 symtab_hdr->sh_link,
4153 sym->st_name);
4154 if (name == NULL)
4155 return FALSE;
4156 if (*name == '\0')
4157 name = bfd_section_name (input_bfd, sec);
4158 }
4159
4160 if (r == bfd_reloc_overflow)
4161 (*info->callbacks->reloc_overflow)
4162 (info, (h ? &h->root : NULL), name, howto->name,
4163 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
4164 else
4165 {
4166 _bfd_error_handler
4167 /* xgettext:c-format */
4168 (_("%B(%A+%#Lx): reloc against `%s': error %d"),
4169 input_bfd, input_section,
4170 rel->r_offset, name, (int) r);
4171 return FALSE;
4172 }
4173 }
4174 }
4175
4176 return TRUE;
4177 }
4178
4179 /* Install an M_68K_PC32 relocation against VALUE at offset OFFSET
4180 into section SEC. */
4181
4182 static void
4183 elf_m68k_install_pc32 (asection *sec, bfd_vma offset, bfd_vma value)
4184 {
4185 /* Make VALUE PC-relative. */
4186 value -= sec->output_section->vma + offset;
4187
4188 /* Apply any in-place addend. */
4189 value += bfd_get_32 (sec->owner, sec->contents + offset);
4190
4191 bfd_put_32 (sec->owner, value, sec->contents + offset);
4192 }
4193
4194 /* Finish up dynamic symbol handling. We set the contents of various
4195 dynamic sections here. */
4196
4197 static bfd_boolean
4198 elf_m68k_finish_dynamic_symbol (bfd *output_bfd,
4199 struct bfd_link_info *info,
4200 struct elf_link_hash_entry *h,
4201 Elf_Internal_Sym *sym)
4202 {
4203 bfd *dynobj;
4204
4205 dynobj = elf_hash_table (info)->dynobj;
4206
4207 if (h->plt.offset != (bfd_vma) -1)
4208 {
4209 const struct elf_m68k_plt_info *plt_info;
4210 asection *splt;
4211 asection *sgot;
4212 asection *srela;
4213 bfd_vma plt_index;
4214 bfd_vma got_offset;
4215 Elf_Internal_Rela rela;
4216 bfd_byte *loc;
4217
4218 /* This symbol has an entry in the procedure linkage table. Set
4219 it up. */
4220
4221 BFD_ASSERT (h->dynindx != -1);
4222
4223 plt_info = elf_m68k_hash_table (info)->plt_info;
4224 splt = elf_hash_table (info)->splt;
4225 sgot = elf_hash_table (info)->sgotplt;
4226 srela = elf_hash_table (info)->srelplt;
4227 BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL);
4228
4229 /* Get the index in the procedure linkage table which
4230 corresponds to this symbol. This is the index of this symbol
4231 in all the symbols for which we are making plt entries. The
4232 first entry in the procedure linkage table is reserved. */
4233 plt_index = (h->plt.offset / plt_info->size) - 1;
4234
4235 /* Get the offset into the .got table of the entry that
4236 corresponds to this function. Each .got entry is 4 bytes.
4237 The first three are reserved. */
4238 got_offset = (plt_index + 3) * 4;
4239
4240 memcpy (splt->contents + h->plt.offset,
4241 plt_info->symbol_entry,
4242 plt_info->size);
4243
4244 elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.got,
4245 (sgot->output_section->vma
4246 + sgot->output_offset
4247 + got_offset));
4248
4249 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela),
4250 splt->contents
4251 + h->plt.offset
4252 + plt_info->symbol_resolve_entry + 2);
4253
4254 elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.plt,
4255 splt->output_section->vma);
4256
4257 /* Fill in the entry in the global offset table. */
4258 bfd_put_32 (output_bfd,
4259 (splt->output_section->vma
4260 + splt->output_offset
4261 + h->plt.offset
4262 + plt_info->symbol_resolve_entry),
4263 sgot->contents + got_offset);
4264
4265 /* Fill in the entry in the .rela.plt section. */
4266 rela.r_offset = (sgot->output_section->vma
4267 + sgot->output_offset
4268 + got_offset);
4269 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_JMP_SLOT);
4270 rela.r_addend = 0;
4271 loc = srela->contents + plt_index * sizeof (Elf32_External_Rela);
4272 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4273
4274 if (!h->def_regular)
4275 {
4276 /* Mark the symbol as undefined, rather than as defined in
4277 the .plt section. Leave the value alone. */
4278 sym->st_shndx = SHN_UNDEF;
4279 }
4280 }
4281
4282 if (elf_m68k_hash_entry (h)->glist != NULL)
4283 {
4284 asection *sgot;
4285 asection *srela;
4286 struct elf_m68k_got_entry *got_entry;
4287
4288 /* This symbol has an entry in the global offset table. Set it
4289 up. */
4290
4291 sgot = elf_hash_table (info)->sgot;
4292 srela = elf_hash_table (info)->srelgot;
4293 BFD_ASSERT (sgot != NULL && srela != NULL);
4294
4295 got_entry = elf_m68k_hash_entry (h)->glist;
4296
4297 while (got_entry != NULL)
4298 {
4299 enum elf_m68k_reloc_type r_type;
4300 bfd_vma got_entry_offset;
4301
4302 r_type = got_entry->key_.type;
4303 got_entry_offset = got_entry->u.s2.offset &~ (bfd_vma) 1;
4304
4305 /* If this is a -Bsymbolic link, and the symbol is defined
4306 locally, we just want to emit a RELATIVE reloc. Likewise if
4307 the symbol was forced to be local because of a version file.
4308 The entry in the global offset table already have been
4309 initialized in the relocate_section function. */
4310 if (bfd_link_pic (info)
4311 && SYMBOL_REFERENCES_LOCAL (info, h))
4312 {
4313 bfd_vma relocation;
4314
4315 relocation = bfd_get_signed_32 (output_bfd,
4316 (sgot->contents
4317 + got_entry_offset));
4318
4319 /* Undo TP bias. */
4320 switch (elf_m68k_reloc_got_type (r_type))
4321 {
4322 case R_68K_GOT32O:
4323 case R_68K_TLS_LDM32:
4324 break;
4325
4326 case R_68K_TLS_GD32:
4327 /* The value for this relocation is actually put in
4328 the second GOT slot. */
4329 relocation = bfd_get_signed_32 (output_bfd,
4330 (sgot->contents
4331 + got_entry_offset + 4));
4332 relocation += dtpoff_base (info);
4333 break;
4334
4335 case R_68K_TLS_IE32:
4336 relocation += tpoff_base (info);
4337 break;
4338
4339 default:
4340 BFD_ASSERT (FALSE);
4341 }
4342
4343 elf_m68k_init_got_entry_local_shared (info,
4344 output_bfd,
4345 r_type,
4346 sgot,
4347 got_entry_offset,
4348 relocation,
4349 srela);
4350 }
4351 else
4352 {
4353 Elf_Internal_Rela rela;
4354
4355 /* Put zeros to GOT slots that will be initialized
4356 at run-time. */
4357 {
4358 bfd_vma n_slots;
4359
4360 n_slots = elf_m68k_reloc_got_n_slots (got_entry->key_.type);
4361 while (n_slots--)
4362 bfd_put_32 (output_bfd, (bfd_vma) 0,
4363 (sgot->contents + got_entry_offset
4364 + 4 * n_slots));
4365 }
4366
4367 rela.r_addend = 0;
4368 rela.r_offset = (sgot->output_section->vma
4369 + sgot->output_offset
4370 + got_entry_offset);
4371
4372 switch (elf_m68k_reloc_got_type (r_type))
4373 {
4374 case R_68K_GOT32O:
4375 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_GLOB_DAT);
4376 elf_m68k_install_rela (output_bfd, srela, &rela);
4377 break;
4378
4379 case R_68K_TLS_GD32:
4380 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPMOD32);
4381 elf_m68k_install_rela (output_bfd, srela, &rela);
4382
4383 rela.r_offset += 4;
4384 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPREL32);
4385 elf_m68k_install_rela (output_bfd, srela, &rela);
4386 break;
4387
4388 case R_68K_TLS_IE32:
4389 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_TPREL32);
4390 elf_m68k_install_rela (output_bfd, srela, &rela);
4391 break;
4392
4393 default:
4394 BFD_ASSERT (FALSE);
4395 break;
4396 }
4397 }
4398
4399 got_entry = got_entry->u.s2.next;
4400 }
4401 }
4402
4403 if (h->needs_copy)
4404 {
4405 asection *s;
4406 Elf_Internal_Rela rela;
4407 bfd_byte *loc;
4408
4409 /* This symbol needs a copy reloc. Set it up. */
4410
4411 BFD_ASSERT (h->dynindx != -1
4412 && (h->root.type == bfd_link_hash_defined
4413 || h->root.type == bfd_link_hash_defweak));
4414
4415 s = bfd_get_linker_section (dynobj, ".rela.bss");
4416 BFD_ASSERT (s != NULL);
4417
4418 rela.r_offset = (h->root.u.def.value
4419 + h->root.u.def.section->output_section->vma
4420 + h->root.u.def.section->output_offset);
4421 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_COPY);
4422 rela.r_addend = 0;
4423 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4424 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4425 }
4426
4427 return TRUE;
4428 }
4429
4430 /* Finish up the dynamic sections. */
4431
4432 static bfd_boolean
4433 elf_m68k_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
4434 {
4435 bfd *dynobj;
4436 asection *sgot;
4437 asection *sdyn;
4438
4439 dynobj = elf_hash_table (info)->dynobj;
4440
4441 sgot = elf_hash_table (info)->sgotplt;
4442 BFD_ASSERT (sgot != NULL);
4443 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4444
4445 if (elf_hash_table (info)->dynamic_sections_created)
4446 {
4447 asection *splt;
4448 Elf32_External_Dyn *dyncon, *dynconend;
4449
4450 splt = elf_hash_table (info)->splt;
4451 BFD_ASSERT (splt != NULL && sdyn != NULL);
4452
4453 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4454 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4455 for (; dyncon < dynconend; dyncon++)
4456 {
4457 Elf_Internal_Dyn dyn;
4458 asection *s;
4459
4460 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4461
4462 switch (dyn.d_tag)
4463 {
4464 default:
4465 break;
4466
4467 case DT_PLTGOT:
4468 s = elf_hash_table (info)->sgotplt;
4469 goto get_vma;
4470 case DT_JMPREL:
4471 s = elf_hash_table (info)->srelplt;
4472 get_vma:
4473 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4474 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4475 break;
4476
4477 case DT_PLTRELSZ:
4478 s = elf_hash_table (info)->srelplt;
4479 dyn.d_un.d_val = s->size;
4480 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4481 break;
4482 }
4483 }
4484
4485 /* Fill in the first entry in the procedure linkage table. */
4486 if (splt->size > 0)
4487 {
4488 const struct elf_m68k_plt_info *plt_info;
4489
4490 plt_info = elf_m68k_hash_table (info)->plt_info;
4491 memcpy (splt->contents, plt_info->plt0_entry, plt_info->size);
4492
4493 elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got4,
4494 (sgot->output_section->vma
4495 + sgot->output_offset
4496 + 4));
4497
4498 elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got8,
4499 (sgot->output_section->vma
4500 + sgot->output_offset
4501 + 8));
4502
4503 elf_section_data (splt->output_section)->this_hdr.sh_entsize
4504 = plt_info->size;
4505 }
4506 }
4507
4508 /* Fill in the first three entries in the global offset table. */
4509 if (sgot->size > 0)
4510 {
4511 if (sdyn == NULL)
4512 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
4513 else
4514 bfd_put_32 (output_bfd,
4515 sdyn->output_section->vma + sdyn->output_offset,
4516 sgot->contents);
4517 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
4518 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
4519 }
4520
4521 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
4522
4523 return TRUE;
4524 }
4525
4526 /* Given a .data section and a .emreloc in-memory section, store
4527 relocation information into the .emreloc section which can be
4528 used at runtime to relocate the section. This is called by the
4529 linker when the --embedded-relocs switch is used. This is called
4530 after the add_symbols entry point has been called for all the
4531 objects, and before the final_link entry point is called. */
4532
4533 bfd_boolean
4534 bfd_m68k_elf32_create_embedded_relocs (bfd *abfd, struct bfd_link_info *info,
4535 asection *datasec, asection *relsec,
4536 char **errmsg)
4537 {
4538 Elf_Internal_Shdr *symtab_hdr;
4539 Elf_Internal_Sym *isymbuf = NULL;
4540 Elf_Internal_Rela *internal_relocs = NULL;
4541 Elf_Internal_Rela *irel, *irelend;
4542 bfd_byte *p;
4543 bfd_size_type amt;
4544
4545 BFD_ASSERT (! bfd_link_relocatable (info));
4546
4547 *errmsg = NULL;
4548
4549 if (datasec->reloc_count == 0)
4550 return TRUE;
4551
4552 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4553
4554 /* Get a copy of the native relocations. */
4555 internal_relocs = (_bfd_elf_link_read_relocs
4556 (abfd, datasec, NULL, (Elf_Internal_Rela *) NULL,
4557 info->keep_memory));
4558 if (internal_relocs == NULL)
4559 goto error_return;
4560
4561 amt = (bfd_size_type) datasec->reloc_count * 12;
4562 relsec->contents = (bfd_byte *) bfd_alloc (abfd, amt);
4563 if (relsec->contents == NULL)
4564 goto error_return;
4565
4566 p = relsec->contents;
4567
4568 irelend = internal_relocs + datasec->reloc_count;
4569 for (irel = internal_relocs; irel < irelend; irel++, p += 12)
4570 {
4571 asection *targetsec;
4572
4573 /* We are going to write a four byte longword into the runtime
4574 reloc section. The longword will be the address in the data
4575 section which must be relocated. It is followed by the name
4576 of the target section NUL-padded or truncated to 8
4577 characters. */
4578
4579 /* We can only relocate absolute longword relocs at run time. */
4580 if (ELF32_R_TYPE (irel->r_info) != (int) R_68K_32)
4581 {
4582 *errmsg = _("unsupported reloc type");
4583 bfd_set_error (bfd_error_bad_value);
4584 goto error_return;
4585 }
4586
4587 /* Get the target section referred to by the reloc. */
4588 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
4589 {
4590 /* A local symbol. */
4591 Elf_Internal_Sym *isym;
4592
4593 /* Read this BFD's local symbols if we haven't done so already. */
4594 if (isymbuf == NULL)
4595 {
4596 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
4597 if (isymbuf == NULL)
4598 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
4599 symtab_hdr->sh_info, 0,
4600 NULL, NULL, NULL);
4601 if (isymbuf == NULL)
4602 goto error_return;
4603 }
4604
4605 isym = isymbuf + ELF32_R_SYM (irel->r_info);
4606 targetsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4607 }
4608 else
4609 {
4610 unsigned long indx;
4611 struct elf_link_hash_entry *h;
4612
4613 /* An external symbol. */
4614 indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
4615 h = elf_sym_hashes (abfd)[indx];
4616 BFD_ASSERT (h != NULL);
4617 if (h->root.type == bfd_link_hash_defined
4618 || h->root.type == bfd_link_hash_defweak)
4619 targetsec = h->root.u.def.section;
4620 else
4621 targetsec = NULL;
4622 }
4623
4624 bfd_put_32 (abfd, irel->r_offset + datasec->output_offset, p);
4625 memset (p + 4, 0, 8);
4626 if (targetsec != NULL)
4627 strncpy ((char *) p + 4, targetsec->output_section->name, 8);
4628 }
4629
4630 if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf)
4631 free (isymbuf);
4632 if (internal_relocs != NULL
4633 && elf_section_data (datasec)->relocs != internal_relocs)
4634 free (internal_relocs);
4635 return TRUE;
4636
4637 error_return:
4638 if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf)
4639 free (isymbuf);
4640 if (internal_relocs != NULL
4641 && elf_section_data (datasec)->relocs != internal_relocs)
4642 free (internal_relocs);
4643 return FALSE;
4644 }
4645
4646 /* Set target options. */
4647
4648 void
4649 bfd_elf_m68k_set_target_options (struct bfd_link_info *info, int got_handling)
4650 {
4651 struct elf_m68k_link_hash_table *htab;
4652 bfd_boolean use_neg_got_offsets_p;
4653 bfd_boolean allow_multigot_p;
4654 bfd_boolean local_gp_p;
4655
4656 switch (got_handling)
4657 {
4658 case 0:
4659 /* --got=single. */
4660 local_gp_p = FALSE;
4661 use_neg_got_offsets_p = FALSE;
4662 allow_multigot_p = FALSE;
4663 break;
4664
4665 case 1:
4666 /* --got=negative. */
4667 local_gp_p = TRUE;
4668 use_neg_got_offsets_p = TRUE;
4669 allow_multigot_p = FALSE;
4670 break;
4671
4672 case 2:
4673 /* --got=multigot. */
4674 local_gp_p = TRUE;
4675 use_neg_got_offsets_p = TRUE;
4676 allow_multigot_p = TRUE;
4677 break;
4678
4679 default:
4680 BFD_ASSERT (FALSE);
4681 return;
4682 }
4683
4684 htab = elf_m68k_hash_table (info);
4685 if (htab != NULL)
4686 {
4687 htab->local_gp_p = local_gp_p;
4688 htab->use_neg_got_offsets_p = use_neg_got_offsets_p;
4689 htab->allow_multigot_p = allow_multigot_p;
4690 }
4691 }
4692
4693 static enum elf_reloc_type_class
4694 elf32_m68k_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4695 const asection *rel_sec ATTRIBUTE_UNUSED,
4696 const Elf_Internal_Rela *rela)
4697 {
4698 switch ((int) ELF32_R_TYPE (rela->r_info))
4699 {
4700 case R_68K_RELATIVE:
4701 return reloc_class_relative;
4702 case R_68K_JMP_SLOT:
4703 return reloc_class_plt;
4704 case R_68K_COPY:
4705 return reloc_class_copy;
4706 default:
4707 return reloc_class_normal;
4708 }
4709 }
4710
4711 /* Return address for Ith PLT stub in section PLT, for relocation REL
4712 or (bfd_vma) -1 if it should not be included. */
4713
4714 static bfd_vma
4715 elf_m68k_plt_sym_val (bfd_vma i, const asection *plt,
4716 const arelent *rel ATTRIBUTE_UNUSED)
4717 {
4718 return plt->vma + (i + 1) * elf_m68k_get_plt_info (plt->owner)->size;
4719 }
4720
4721 /* Support for core dump NOTE sections. */
4722
4723 static bfd_boolean
4724 elf_m68k_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
4725 {
4726 int offset;
4727 size_t size;
4728
4729 switch (note->descsz)
4730 {
4731 default:
4732 return FALSE;
4733
4734 case 154: /* Linux/m68k */
4735 /* pr_cursig */
4736 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
4737
4738 /* pr_pid */
4739 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 22);
4740
4741 /* pr_reg */
4742 offset = 70;
4743 size = 80;
4744
4745 break;
4746 }
4747
4748 /* Make a ".reg/999" section. */
4749 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
4750 size, note->descpos + offset);
4751 }
4752
4753 static bfd_boolean
4754 elf_m68k_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
4755 {
4756 switch (note->descsz)
4757 {
4758 default:
4759 return FALSE;
4760
4761 case 124: /* Linux/m68k elf_prpsinfo. */
4762 elf_tdata (abfd)->core->pid
4763 = bfd_get_32 (abfd, note->descdata + 12);
4764 elf_tdata (abfd)->core->program
4765 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
4766 elf_tdata (abfd)->core->command
4767 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
4768 }
4769
4770 /* Note that for some reason, a spurious space is tacked
4771 onto the end of the args in some (at least one anyway)
4772 implementations, so strip it off if it exists. */
4773 {
4774 char *command = elf_tdata (abfd)->core->command;
4775 int n = strlen (command);
4776
4777 if (n > 0 && command[n - 1] == ' ')
4778 command[n - 1] = '\0';
4779 }
4780
4781 return TRUE;
4782 }
4783
4784 /* Hook called by the linker routine which adds symbols from an object
4785 file. */
4786
4787 static bfd_boolean
4788 elf_m68k_add_symbol_hook (bfd *abfd,
4789 struct bfd_link_info *info,
4790 Elf_Internal_Sym *sym,
4791 const char **namep ATTRIBUTE_UNUSED,
4792 flagword *flagsp ATTRIBUTE_UNUSED,
4793 asection **secp ATTRIBUTE_UNUSED,
4794 bfd_vma *valp ATTRIBUTE_UNUSED)
4795 {
4796 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
4797 && (abfd->flags & DYNAMIC) == 0
4798 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
4799 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_ifunc;
4800
4801 return TRUE;
4802 }
4803
4804 #define TARGET_BIG_SYM m68k_elf32_vec
4805 #define TARGET_BIG_NAME "elf32-m68k"
4806 #define ELF_MACHINE_CODE EM_68K
4807 #define ELF_MAXPAGESIZE 0x2000
4808 #define elf_backend_create_dynamic_sections \
4809 _bfd_elf_create_dynamic_sections
4810 #define bfd_elf32_bfd_link_hash_table_create \
4811 elf_m68k_link_hash_table_create
4812 #define bfd_elf32_bfd_final_link bfd_elf_final_link
4813
4814 #define elf_backend_check_relocs elf_m68k_check_relocs
4815 #define elf_backend_always_size_sections \
4816 elf_m68k_always_size_sections
4817 #define elf_backend_adjust_dynamic_symbol \
4818 elf_m68k_adjust_dynamic_symbol
4819 #define elf_backend_size_dynamic_sections \
4820 elf_m68k_size_dynamic_sections
4821 #define elf_backend_final_write_processing elf_m68k_final_write_processing
4822 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4823 #define elf_backend_relocate_section elf_m68k_relocate_section
4824 #define elf_backend_finish_dynamic_symbol \
4825 elf_m68k_finish_dynamic_symbol
4826 #define elf_backend_finish_dynamic_sections \
4827 elf_m68k_finish_dynamic_sections
4828 #define elf_backend_gc_mark_hook elf_m68k_gc_mark_hook
4829 #define elf_backend_gc_sweep_hook elf_m68k_gc_sweep_hook
4830 #define elf_backend_copy_indirect_symbol elf_m68k_copy_indirect_symbol
4831 #define bfd_elf32_bfd_merge_private_bfd_data \
4832 elf32_m68k_merge_private_bfd_data
4833 #define bfd_elf32_bfd_set_private_flags \
4834 elf32_m68k_set_private_flags
4835 #define bfd_elf32_bfd_print_private_bfd_data \
4836 elf32_m68k_print_private_bfd_data
4837 #define elf_backend_reloc_type_class elf32_m68k_reloc_type_class
4838 #define elf_backend_plt_sym_val elf_m68k_plt_sym_val
4839 #define elf_backend_object_p elf32_m68k_object_p
4840 #define elf_backend_grok_prstatus elf_m68k_grok_prstatus
4841 #define elf_backend_grok_psinfo elf_m68k_grok_psinfo
4842 #define elf_backend_add_symbol_hook elf_m68k_add_symbol_hook
4843
4844 #define elf_backend_can_gc_sections 1
4845 #define elf_backend_can_refcount 1
4846 #define elf_backend_want_got_plt 1
4847 #define elf_backend_plt_readonly 1
4848 #define elf_backend_want_plt_sym 0
4849 #define elf_backend_got_header_size 12
4850 #define elf_backend_rela_normal 1
4851 #define elf_backend_dtrel_excludes_plt 1
4852
4853 #define elf_backend_linux_prpsinfo32_ugid16 TRUE
4854
4855 #include "elf32-target.h"
This page took 0.207818 seconds and 5 git commands to generate.