* elflink.c (is_reloc_section): New function. Returns true if the
[deliverable/binutils-gdb.git] / bfd / elf32-m68k.c
1 /* Motorola 68k series support for 32-bit ELF
2 Copyright 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "elf/m68k.h"
28 #include "opcode/m68k.h"
29
30 static reloc_howto_type *reloc_type_lookup
31 PARAMS ((bfd *, bfd_reloc_code_real_type));
32 static void rtype_to_howto
33 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
34 static struct bfd_hash_entry *elf_m68k_link_hash_newfunc
35 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
36 static struct bfd_link_hash_table *elf_m68k_link_hash_table_create
37 PARAMS ((bfd *));
38 static bfd_boolean elf_m68k_check_relocs
39 PARAMS ((bfd *, struct bfd_link_info *, asection *,
40 const Elf_Internal_Rela *));
41 static bfd_boolean elf_m68k_adjust_dynamic_symbol
42 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
43 static bfd_boolean elf_m68k_size_dynamic_sections
44 PARAMS ((bfd *, struct bfd_link_info *));
45 static bfd_boolean elf_m68k_discard_copies
46 PARAMS ((struct elf_link_hash_entry *, PTR));
47 static bfd_boolean elf_m68k_relocate_section
48 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
49 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
50 static bfd_boolean elf_m68k_finish_dynamic_symbol
51 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
52 Elf_Internal_Sym *));
53 static bfd_boolean elf_m68k_finish_dynamic_sections
54 PARAMS ((bfd *, struct bfd_link_info *));
55
56 static bfd_boolean elf32_m68k_set_private_flags
57 PARAMS ((bfd *, flagword));
58 static bfd_boolean elf32_m68k_merge_private_bfd_data
59 PARAMS ((bfd *, bfd *));
60 static bfd_boolean elf32_m68k_print_private_bfd_data
61 PARAMS ((bfd *, PTR));
62 static enum elf_reloc_type_class elf32_m68k_reloc_type_class
63 PARAMS ((const Elf_Internal_Rela *));
64
65 static reloc_howto_type howto_table[] = {
66 HOWTO(R_68K_NONE, 0, 0, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_NONE", FALSE, 0, 0x00000000,FALSE),
67 HOWTO(R_68K_32, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_32", FALSE, 0, 0xffffffff,FALSE),
68 HOWTO(R_68K_16, 0, 1,16, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_16", FALSE, 0, 0x0000ffff,FALSE),
69 HOWTO(R_68K_8, 0, 0, 8, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_8", FALSE, 0, 0x000000ff,FALSE),
70 HOWTO(R_68K_PC32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PC32", FALSE, 0, 0xffffffff,TRUE),
71 HOWTO(R_68K_PC16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC16", FALSE, 0, 0x0000ffff,TRUE),
72 HOWTO(R_68K_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC8", FALSE, 0, 0x000000ff,TRUE),
73 HOWTO(R_68K_GOT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32", FALSE, 0, 0xffffffff,TRUE),
74 HOWTO(R_68K_GOT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16", FALSE, 0, 0x0000ffff,TRUE),
75 HOWTO(R_68K_GOT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8", FALSE, 0, 0x000000ff,TRUE),
76 HOWTO(R_68K_GOT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32O", FALSE, 0, 0xffffffff,FALSE),
77 HOWTO(R_68K_GOT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16O", FALSE, 0, 0x0000ffff,FALSE),
78 HOWTO(R_68K_GOT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8O", FALSE, 0, 0x000000ff,FALSE),
79 HOWTO(R_68K_PLT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32", FALSE, 0, 0xffffffff,TRUE),
80 HOWTO(R_68K_PLT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16", FALSE, 0, 0x0000ffff,TRUE),
81 HOWTO(R_68K_PLT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8", FALSE, 0, 0x000000ff,TRUE),
82 HOWTO(R_68K_PLT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32O", FALSE, 0, 0xffffffff,FALSE),
83 HOWTO(R_68K_PLT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16O", FALSE, 0, 0x0000ffff,FALSE),
84 HOWTO(R_68K_PLT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8O", FALSE, 0, 0x000000ff,FALSE),
85 HOWTO(R_68K_COPY, 0, 0, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_COPY", FALSE, 0, 0xffffffff,FALSE),
86 HOWTO(R_68K_GLOB_DAT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_GLOB_DAT", FALSE, 0, 0xffffffff,FALSE),
87 HOWTO(R_68K_JMP_SLOT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_JMP_SLOT", FALSE, 0, 0xffffffff,FALSE),
88 HOWTO(R_68K_RELATIVE, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_RELATIVE", FALSE, 0, 0xffffffff,FALSE),
89 /* GNU extension to record C++ vtable hierarchy. */
90 HOWTO (R_68K_GNU_VTINHERIT, /* type */
91 0, /* rightshift */
92 2, /* size (0 = byte, 1 = short, 2 = long) */
93 0, /* bitsize */
94 FALSE, /* pc_relative */
95 0, /* bitpos */
96 complain_overflow_dont, /* complain_on_overflow */
97 NULL, /* special_function */
98 "R_68K_GNU_VTINHERIT", /* name */
99 FALSE, /* partial_inplace */
100 0, /* src_mask */
101 0, /* dst_mask */
102 FALSE),
103 /* GNU extension to record C++ vtable member usage. */
104 HOWTO (R_68K_GNU_VTENTRY, /* type */
105 0, /* rightshift */
106 2, /* size (0 = byte, 1 = short, 2 = long) */
107 0, /* bitsize */
108 FALSE, /* pc_relative */
109 0, /* bitpos */
110 complain_overflow_dont, /* complain_on_overflow */
111 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
112 "R_68K_GNU_VTENTRY", /* name */
113 FALSE, /* partial_inplace */
114 0, /* src_mask */
115 0, /* dst_mask */
116 FALSE),
117 };
118
119 static void
120 rtype_to_howto (abfd, cache_ptr, dst)
121 bfd *abfd ATTRIBUTE_UNUSED;
122 arelent *cache_ptr;
123 Elf_Internal_Rela *dst;
124 {
125 BFD_ASSERT (ELF32_R_TYPE(dst->r_info) < (unsigned int) R_68K_max);
126 cache_ptr->howto = &howto_table[ELF32_R_TYPE(dst->r_info)];
127 }
128
129 #define elf_info_to_howto rtype_to_howto
130
131 static const struct
132 {
133 bfd_reloc_code_real_type bfd_val;
134 int elf_val;
135 } reloc_map[] = {
136 { BFD_RELOC_NONE, R_68K_NONE },
137 { BFD_RELOC_32, R_68K_32 },
138 { BFD_RELOC_16, R_68K_16 },
139 { BFD_RELOC_8, R_68K_8 },
140 { BFD_RELOC_32_PCREL, R_68K_PC32 },
141 { BFD_RELOC_16_PCREL, R_68K_PC16 },
142 { BFD_RELOC_8_PCREL, R_68K_PC8 },
143 { BFD_RELOC_32_GOT_PCREL, R_68K_GOT32 },
144 { BFD_RELOC_16_GOT_PCREL, R_68K_GOT16 },
145 { BFD_RELOC_8_GOT_PCREL, R_68K_GOT8 },
146 { BFD_RELOC_32_GOTOFF, R_68K_GOT32O },
147 { BFD_RELOC_16_GOTOFF, R_68K_GOT16O },
148 { BFD_RELOC_8_GOTOFF, R_68K_GOT8O },
149 { BFD_RELOC_32_PLT_PCREL, R_68K_PLT32 },
150 { BFD_RELOC_16_PLT_PCREL, R_68K_PLT16 },
151 { BFD_RELOC_8_PLT_PCREL, R_68K_PLT8 },
152 { BFD_RELOC_32_PLTOFF, R_68K_PLT32O },
153 { BFD_RELOC_16_PLTOFF, R_68K_PLT16O },
154 { BFD_RELOC_8_PLTOFF, R_68K_PLT8O },
155 { BFD_RELOC_NONE, R_68K_COPY },
156 { BFD_RELOC_68K_GLOB_DAT, R_68K_GLOB_DAT },
157 { BFD_RELOC_68K_JMP_SLOT, R_68K_JMP_SLOT },
158 { BFD_RELOC_68K_RELATIVE, R_68K_RELATIVE },
159 { BFD_RELOC_CTOR, R_68K_32 },
160 { BFD_RELOC_VTABLE_INHERIT, R_68K_GNU_VTINHERIT },
161 { BFD_RELOC_VTABLE_ENTRY, R_68K_GNU_VTENTRY },
162 };
163
164 static reloc_howto_type *
165 reloc_type_lookup (abfd, code)
166 bfd *abfd ATTRIBUTE_UNUSED;
167 bfd_reloc_code_real_type code;
168 {
169 unsigned int i;
170 for (i = 0; i < sizeof (reloc_map) / sizeof (reloc_map[0]); i++)
171 {
172 if (reloc_map[i].bfd_val == code)
173 return &howto_table[reloc_map[i].elf_val];
174 }
175 return 0;
176 }
177
178 static reloc_howto_type *
179 reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, const char *r_name)
180 {
181 unsigned int i;
182
183 for (i = 0; i < sizeof (howto_table) / sizeof (howto_table[0]); i++)
184 if (howto_table[i].name != NULL
185 && strcasecmp (howto_table[i].name, r_name) == 0)
186 return &howto_table[i];
187
188 return NULL;
189 }
190
191 #define bfd_elf32_bfd_reloc_type_lookup reloc_type_lookup
192 #define bfd_elf32_bfd_reloc_name_lookup reloc_name_lookup
193 #define ELF_ARCH bfd_arch_m68k
194 \f
195 /* Functions for the m68k ELF linker. */
196
197 /* The name of the dynamic interpreter. This is put in the .interp
198 section. */
199
200 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
201
202 /* Describes one of the various PLT styles. */
203
204 struct elf_m68k_plt_info
205 {
206 /* The size of each PLT entry. */
207 bfd_vma size;
208
209 /* The template for the first PLT entry. */
210 const bfd_byte *plt0_entry;
211
212 /* Offsets of fields in PLT0_ENTRY that require R_68K_PC32 relocations.
213 The comments by each member indicate the value that the relocation
214 is against. */
215 struct {
216 unsigned int got4; /* .got + 4 */
217 unsigned int got8; /* .got + 8 */
218 } plt0_relocs;
219
220 /* The template for a symbol's PLT entry. */
221 const bfd_byte *symbol_entry;
222
223 /* Offsets of fields in SYMBOL_ENTRY that require R_68K_PC32 relocations.
224 The comments by each member indicate the value that the relocation
225 is against. */
226 struct {
227 unsigned int got; /* the symbol's .got.plt entry */
228 unsigned int plt; /* .plt */
229 } symbol_relocs;
230
231 /* The offset of the resolver stub from the start of SYMBOL_ENTRY.
232 The stub starts with "move.l #relocoffset,%d0". */
233 bfd_vma symbol_resolve_entry;
234 };
235
236 /* The size in bytes of an entry in the procedure linkage table. */
237
238 #define PLT_ENTRY_SIZE 20
239
240 /* The first entry in a procedure linkage table looks like this. See
241 the SVR4 ABI m68k supplement to see how this works. */
242
243 static const bfd_byte elf_m68k_plt0_entry[PLT_ENTRY_SIZE] =
244 {
245 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
246 0, 0, 0, 2, /* + (.got + 4) - . */
247 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,addr]) */
248 0, 0, 0, 2, /* + (.got + 8) - . */
249 0, 0, 0, 0 /* pad out to 20 bytes. */
250 };
251
252 /* Subsequent entries in a procedure linkage table look like this. */
253
254 static const bfd_byte elf_m68k_plt_entry[PLT_ENTRY_SIZE] =
255 {
256 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,symbol@GOTPC]) */
257 0, 0, 0, 2, /* + (.got.plt entry) - . */
258 0x2f, 0x3c, /* move.l #offset,-(%sp) */
259 0, 0, 0, 0, /* + reloc index */
260 0x60, 0xff, /* bra.l .plt */
261 0, 0, 0, 0 /* + .plt - . */
262 };
263
264 static const struct elf_m68k_plt_info elf_m68k_plt_info = {
265 PLT_ENTRY_SIZE,
266 elf_m68k_plt0_entry, { 4, 12 },
267 elf_m68k_plt_entry, { 4, 16 }, 8
268 };
269
270 #define ISAB_PLT_ENTRY_SIZE 24
271
272 static const bfd_byte elf_isab_plt0_entry[ISAB_PLT_ENTRY_SIZE] =
273 {
274 0x20, 0x3c, /* move.l #offset,%d0 */
275 0, 0, 0, 0, /* + (.got + 4) - . */
276 0x2f, 0x3b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),-(%sp) */
277 0x20, 0x3c, /* move.l #offset,%d0 */
278 0, 0, 0, 0, /* + (.got + 8) - . */
279 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
280 0x4e, 0xd0, /* jmp (%a0) */
281 0x4e, 0x71 /* nop */
282 };
283
284 /* Subsequent entries in a procedure linkage table look like this. */
285
286 static const bfd_byte elf_isab_plt_entry[ISAB_PLT_ENTRY_SIZE] =
287 {
288 0x20, 0x3c, /* move.l #offset,%d0 */
289 0, 0, 0, 0, /* + (.got.plt entry) - . */
290 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
291 0x4e, 0xd0, /* jmp (%a0) */
292 0x2f, 0x3c, /* move.l #offset,-(%sp) */
293 0, 0, 0, 0, /* + reloc index */
294 0x60, 0xff, /* bra.l .plt */
295 0, 0, 0, 0 /* + .plt - . */
296 };
297
298 static const struct elf_m68k_plt_info elf_isab_plt_info = {
299 ISAB_PLT_ENTRY_SIZE,
300 elf_isab_plt0_entry, { 2, 12 },
301 elf_isab_plt_entry, { 2, 20 }, 12
302 };
303
304 #define ISAC_PLT_ENTRY_SIZE 24
305
306 static const bfd_byte elf_isac_plt0_entry[ISAC_PLT_ENTRY_SIZE] =
307 {
308 0x20, 0x3c, /* move.l #offset,%d0 */
309 0, 0, 0, 0, /* replaced with .got + 4 - . */
310 0x2e, 0xbb, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),(%sp) */
311 0x20, 0x3c, /* move.l #offset,%d0 */
312 0, 0, 0, 0, /* replaced with .got + 8 - . */
313 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
314 0x4e, 0xd0, /* jmp (%a0) */
315 0x4e, 0x71 /* nop */
316 };
317
318 /* Subsequent entries in a procedure linkage table look like this. */
319
320 static const bfd_byte elf_isac_plt_entry[ISAC_PLT_ENTRY_SIZE] =
321 {
322 0x20, 0x3c, /* move.l #offset,%d0 */
323 0, 0, 0, 0, /* replaced with (.got entry) - . */
324 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
325 0x4e, 0xd0, /* jmp (%a0) */
326 0x2f, 0x3c, /* move.l #offset,-(%sp) */
327 0, 0, 0, 0, /* replaced with offset into relocation table */
328 0x61, 0xff, /* bsr.l .plt */
329 0, 0, 0, 0 /* replaced with .plt - . */
330 };
331
332 static const struct elf_m68k_plt_info elf_isac_plt_info = {
333 ISAC_PLT_ENTRY_SIZE,
334 elf_isac_plt0_entry, { 2, 12},
335 elf_isac_plt_entry, { 2, 20 }, 12
336 };
337
338 #define CPU32_PLT_ENTRY_SIZE 24
339 /* Procedure linkage table entries for the cpu32 */
340 static const bfd_byte elf_cpu32_plt0_entry[CPU32_PLT_ENTRY_SIZE] =
341 {
342 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
343 0, 0, 0, 2, /* + (.got + 4) - . */
344 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
345 0, 0, 0, 2, /* + (.got + 8) - . */
346 0x4e, 0xd1, /* jmp %a1@ */
347 0, 0, 0, 0, /* pad out to 24 bytes. */
348 0, 0
349 };
350
351 static const bfd_byte elf_cpu32_plt_entry[CPU32_PLT_ENTRY_SIZE] =
352 {
353 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
354 0, 0, 0, 2, /* + (.got.plt entry) - . */
355 0x4e, 0xd1, /* jmp %a1@ */
356 0x2f, 0x3c, /* move.l #offset,-(%sp) */
357 0, 0, 0, 0, /* + reloc index */
358 0x60, 0xff, /* bra.l .plt */
359 0, 0, 0, 0, /* + .plt - . */
360 0, 0
361 };
362
363 static const struct elf_m68k_plt_info elf_cpu32_plt_info = {
364 CPU32_PLT_ENTRY_SIZE,
365 elf_cpu32_plt0_entry, { 4, 12 },
366 elf_cpu32_plt_entry, { 4, 18 }, 10
367 };
368
369 /* The m68k linker needs to keep track of the number of relocs that it
370 decides to copy in check_relocs for each symbol. This is so that it
371 can discard PC relative relocs if it doesn't need them when linking
372 with -Bsymbolic. We store the information in a field extending the
373 regular ELF linker hash table. */
374
375 /* This structure keeps track of the number of PC relative relocs we have
376 copied for a given symbol. */
377
378 struct elf_m68k_pcrel_relocs_copied
379 {
380 /* Next section. */
381 struct elf_m68k_pcrel_relocs_copied *next;
382 /* A section in dynobj. */
383 asection *section;
384 /* Number of relocs copied in this section. */
385 bfd_size_type count;
386 };
387
388 /* Forward declaration. */
389 struct elf_m68k_got_entry;
390
391 /* m68k ELF linker hash entry. */
392
393 struct elf_m68k_link_hash_entry
394 {
395 struct elf_link_hash_entry root;
396
397 /* Number of PC relative relocs copied for this symbol. */
398 struct elf_m68k_pcrel_relocs_copied *pcrel_relocs_copied;
399
400 /* Key to got_entries. */
401 unsigned long got_entry_key;
402
403 /* List of GOT entries for this symbol. This list is build during
404 offset finalization and is used within elf_m68k_finish_dynamic_symbol
405 to traverse all GOT entries for a particular symbol.
406
407 ??? We could've used root.got.glist field instead, but having
408 a separate field is cleaner. */
409 struct elf_m68k_got_entry *glist;
410 };
411
412 #define elf_m68k_hash_entry(ent) ((struct elf_m68k_link_hash_entry *) (ent))
413
414 /* Key part of GOT entry in hashtable. */
415 struct elf_m68k_got_entry_key
416 {
417 /* BFD in which this symbol was defined. NULL for global symbols. */
418 const bfd *bfd;
419
420 /* Symbol index. Either local symbol index or h->got_entry_key. */
421 unsigned long symndx;
422 };
423
424 /* Entry of the GOT. */
425 struct elf_m68k_got_entry
426 {
427 /* GOT entries are put into a got->entries hashtable. This is the key. */
428 struct elf_m68k_got_entry_key key_;
429
430 /* GOT entry data. We need s1 before offset finalization and s2 after. */
431 union
432 {
433 struct
434 {
435 /* Number of times this entry is referenced. It is used to
436 filter out unnecessary GOT slots in elf_m68k_gc_sweep_hook. */
437 bfd_vma refcount;
438
439 /* Type is one of R_68K_GOT8O, R_68K_GOT16O or R_68K_GOT32O. */
440 int type;
441 } s1;
442
443 struct
444 {
445 /* Offset from the start of .got section. To calculate offset relative
446 to GOT pointer one should substract got->offset from this value. */
447 bfd_vma offset;
448
449 /* Pointer to the next GOT entry for this global symbol.
450 Symbols have at most one entry in one GOT, but might
451 have entries in more than one GOT.
452 Root of this list is h->glist.
453 NULL for local symbols. */
454 struct elf_m68k_got_entry *next;
455 } s2;
456 } u;
457 };
458
459 /* Data structure representing a single GOT. */
460 struct elf_m68k_got
461 {
462 /* Hashtable of 'struct elf_m68k_got_entry's.
463 Starting size of this table is the maximum number of
464 R_68K_GOT8O entries. */
465 htab_t entries;
466
467 /* Number of R_68K_GOT8O entries in this GOT.
468 This is used to detect the overflow of number of such entries. */
469 bfd_vma rel_8o_n_entries;
470
471 /* Cumulative count of R_68K_GOT8O and R_68K_GOT16O entries in this GOT.
472 This is used to detect the overflow of number of such entries. */
473 bfd_vma rel_8o_16o_n_entries;
474
475 /* Number of local (entry->key_.h == NULL) entries in this GOT.
476 This is only used to properly calculate size of .rela.got section;
477 see elf_m68k_partition_multi_got. */
478 bfd_vma local_n_entries;
479
480 /* Offset of this GOT relative to beginning of .got section. */
481 bfd_vma offset;
482 };
483
484 /* BFD and its GOT. This is an entry in multi_got->bfd2got hashtable. */
485 struct elf_m68k_bfd2got_entry
486 {
487 /* BFD. */
488 const bfd *bfd;
489
490 /* Assigned GOT. Before partitioning multi-GOT each BFD has its own
491 GOT structure. After partitioning several BFD's might [and often do]
492 share a single GOT. */
493 struct elf_m68k_got *got;
494 };
495
496 /* The main data structure holding all the pieces. */
497 struct elf_m68k_multi_got
498 {
499 /* Hashtable mapping each BFD to its GOT. If a BFD doesn't have an entry
500 here, then it doesn't need a GOT (this includes the case of a BFD
501 having an empty GOT).
502
503 ??? This hashtable can be replaced by an array indexed by bfd->id. */
504 htab_t bfd2got;
505
506 /* Next symndx to assign a global symbol.
507 h->got_entry_key is initialized from this counter. */
508 unsigned long global_symndx;
509 };
510
511 /* m68k ELF linker hash table. */
512
513 struct elf_m68k_link_hash_table
514 {
515 struct elf_link_hash_table root;
516
517 /* Small local sym to section mapping cache. */
518 struct sym_sec_cache sym_sec;
519
520 /* The PLT format used by this link, or NULL if the format has not
521 yet been chosen. */
522 const struct elf_m68k_plt_info *plt_info;
523
524 /* True, if GP is loaded within each function which uses it.
525 Set to TRUE when GOT negative offsets or multi-GOT is enabled. */
526 bfd_boolean local_gp_p;
527
528 /* Switch controlling use of negative offsets to double the size of GOTs. */
529 bfd_boolean use_neg_got_offsets_p;
530
531 /* Switch controlling generation of multiple GOTs. */
532 bfd_boolean allow_multigot_p;
533
534 /* Multi-GOT data structure. */
535 struct elf_m68k_multi_got multi_got_;
536 };
537
538 /* Get the m68k ELF linker hash table from a link_info structure. */
539
540 #define elf_m68k_hash_table(p) \
541 ((struct elf_m68k_link_hash_table *) (p)->hash)
542
543 /* Shortcut to multi-GOT data. */
544 #define elf_m68k_multi_got(INFO) (&elf_m68k_hash_table (INFO)->multi_got_)
545
546 /* Create an entry in an m68k ELF linker hash table. */
547
548 static struct bfd_hash_entry *
549 elf_m68k_link_hash_newfunc (entry, table, string)
550 struct bfd_hash_entry *entry;
551 struct bfd_hash_table *table;
552 const char *string;
553 {
554 struct bfd_hash_entry *ret = entry;
555
556 /* Allocate the structure if it has not already been allocated by a
557 subclass. */
558 if (ret == NULL)
559 ret = bfd_hash_allocate (table,
560 sizeof (struct elf_m68k_link_hash_entry));
561 if (ret == NULL)
562 return ret;
563
564 /* Call the allocation method of the superclass. */
565 ret = _bfd_elf_link_hash_newfunc (ret, table, string);
566 if (ret != NULL)
567 {
568 elf_m68k_hash_entry (ret)->pcrel_relocs_copied = NULL;
569 elf_m68k_hash_entry (ret)->got_entry_key = 0;
570 elf_m68k_hash_entry (ret)->glist = NULL;
571 }
572
573 return ret;
574 }
575
576 /* Create an m68k ELF linker hash table. */
577
578 static struct bfd_link_hash_table *
579 elf_m68k_link_hash_table_create (abfd)
580 bfd *abfd;
581 {
582 struct elf_m68k_link_hash_table *ret;
583 bfd_size_type amt = sizeof (struct elf_m68k_link_hash_table);
584
585 ret = (struct elf_m68k_link_hash_table *) bfd_malloc (amt);
586 if (ret == (struct elf_m68k_link_hash_table *) NULL)
587 return NULL;
588
589 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
590 elf_m68k_link_hash_newfunc,
591 sizeof (struct elf_m68k_link_hash_entry)))
592 {
593 free (ret);
594 return NULL;
595 }
596
597 ret->sym_sec.abfd = NULL;
598 ret->plt_info = NULL;
599 ret->local_gp_p = FALSE;
600 ret->use_neg_got_offsets_p = FALSE;
601 ret->allow_multigot_p = FALSE;
602 ret->multi_got_.bfd2got = NULL;
603 ret->multi_got_.global_symndx = 1;
604
605 return &ret->root.root;
606 }
607
608 /* Destruct local data. */
609
610 static void
611 elf_m68k_link_hash_table_free (struct bfd_link_hash_table *_htab)
612 {
613 struct elf_m68k_link_hash_table *htab;
614
615 htab = (struct elf_m68k_link_hash_table *) _htab;
616
617 if (htab->multi_got_.bfd2got != NULL)
618 {
619 htab_delete (htab->multi_got_.bfd2got);
620 htab->multi_got_.bfd2got = NULL;
621 }
622 }
623
624 /* Set the right machine number. */
625
626 static bfd_boolean
627 elf32_m68k_object_p (bfd *abfd)
628 {
629 unsigned int mach = 0;
630 unsigned features = 0;
631 flagword eflags = elf_elfheader (abfd)->e_flags;
632
633 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
634 features |= m68000;
635 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
636 features |= cpu32;
637 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
638 features |= fido_a;
639 else
640 {
641 switch (eflags & EF_M68K_CF_ISA_MASK)
642 {
643 case EF_M68K_CF_ISA_A_NODIV:
644 features |= mcfisa_a;
645 break;
646 case EF_M68K_CF_ISA_A:
647 features |= mcfisa_a|mcfhwdiv;
648 break;
649 case EF_M68K_CF_ISA_A_PLUS:
650 features |= mcfisa_a|mcfisa_aa|mcfhwdiv|mcfusp;
651 break;
652 case EF_M68K_CF_ISA_B_NOUSP:
653 features |= mcfisa_a|mcfisa_b|mcfhwdiv;
654 break;
655 case EF_M68K_CF_ISA_B:
656 features |= mcfisa_a|mcfisa_b|mcfhwdiv|mcfusp;
657 break;
658 case EF_M68K_CF_ISA_C:
659 features |= mcfisa_a|mcfisa_c|mcfhwdiv|mcfusp;
660 break;
661 case EF_M68K_CF_ISA_C_NODIV:
662 features |= mcfisa_a|mcfisa_c|mcfusp;
663 break;
664 }
665 switch (eflags & EF_M68K_CF_MAC_MASK)
666 {
667 case EF_M68K_CF_MAC:
668 features |= mcfmac;
669 break;
670 case EF_M68K_CF_EMAC:
671 features |= mcfemac;
672 break;
673 }
674 if (eflags & EF_M68K_CF_FLOAT)
675 features |= cfloat;
676 }
677
678 mach = bfd_m68k_features_to_mach (features);
679 bfd_default_set_arch_mach (abfd, bfd_arch_m68k, mach);
680
681 return TRUE;
682 }
683
684 /* Keep m68k-specific flags in the ELF header. */
685 static bfd_boolean
686 elf32_m68k_set_private_flags (abfd, flags)
687 bfd *abfd;
688 flagword flags;
689 {
690 elf_elfheader (abfd)->e_flags = flags;
691 elf_flags_init (abfd) = TRUE;
692 return TRUE;
693 }
694
695 /* Merge backend specific data from an object file to the output
696 object file when linking. */
697 static bfd_boolean
698 elf32_m68k_merge_private_bfd_data (ibfd, obfd)
699 bfd *ibfd;
700 bfd *obfd;
701 {
702 flagword out_flags;
703 flagword in_flags;
704 flagword out_isa;
705 flagword in_isa;
706 const bfd_arch_info_type *arch_info;
707
708 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
709 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
710 return FALSE;
711
712 /* Get the merged machine. This checks for incompatibility between
713 Coldfire & non-Coldfire flags, incompability between different
714 Coldfire ISAs, and incompability between different MAC types. */
715 arch_info = bfd_arch_get_compatible (ibfd, obfd, FALSE);
716 if (!arch_info)
717 return FALSE;
718
719 bfd_set_arch_mach (obfd, bfd_arch_m68k, arch_info->mach);
720
721 in_flags = elf_elfheader (ibfd)->e_flags;
722 if (!elf_flags_init (obfd))
723 {
724 elf_flags_init (obfd) = TRUE;
725 out_flags = in_flags;
726 }
727 else
728 {
729 out_flags = elf_elfheader (obfd)->e_flags;
730 unsigned int variant_mask;
731
732 if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
733 variant_mask = 0;
734 else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
735 variant_mask = 0;
736 else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
737 variant_mask = 0;
738 else
739 variant_mask = EF_M68K_CF_ISA_MASK;
740
741 in_isa = (in_flags & variant_mask);
742 out_isa = (out_flags & variant_mask);
743 if (in_isa > out_isa)
744 out_flags ^= in_isa ^ out_isa;
745 if (((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32
746 && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
747 || ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO
748 && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32))
749 out_flags = EF_M68K_FIDO;
750 else
751 out_flags |= in_flags ^ in_isa;
752 }
753 elf_elfheader (obfd)->e_flags = out_flags;
754
755 return TRUE;
756 }
757
758 /* Display the flags field. */
759
760 static bfd_boolean
761 elf32_m68k_print_private_bfd_data (bfd *abfd, void * ptr)
762 {
763 FILE *file = (FILE *) ptr;
764 flagword eflags = elf_elfheader (abfd)->e_flags;
765
766 BFD_ASSERT (abfd != NULL && ptr != NULL);
767
768 /* Print normal ELF private data. */
769 _bfd_elf_print_private_bfd_data (abfd, ptr);
770
771 /* Ignore init flag - it may not be set, despite the flags field containing valid data. */
772
773 /* xgettext:c-format */
774 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
775
776 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
777 fprintf (file, " [m68000]");
778 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
779 fprintf (file, " [cpu32]");
780 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
781 fprintf (file, " [fido]");
782 else
783 {
784 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CFV4E)
785 fprintf (file, " [cfv4e]");
786
787 if (eflags & EF_M68K_CF_ISA_MASK)
788 {
789 char const *isa = _("unknown");
790 char const *mac = _("unknown");
791 char const *additional = "";
792
793 switch (eflags & EF_M68K_CF_ISA_MASK)
794 {
795 case EF_M68K_CF_ISA_A_NODIV:
796 isa = "A";
797 additional = " [nodiv]";
798 break;
799 case EF_M68K_CF_ISA_A:
800 isa = "A";
801 break;
802 case EF_M68K_CF_ISA_A_PLUS:
803 isa = "A+";
804 break;
805 case EF_M68K_CF_ISA_B_NOUSP:
806 isa = "B";
807 additional = " [nousp]";
808 break;
809 case EF_M68K_CF_ISA_B:
810 isa = "B";
811 break;
812 case EF_M68K_CF_ISA_C:
813 isa = "C";
814 break;
815 case EF_M68K_CF_ISA_C_NODIV:
816 isa = "C";
817 additional = " [nodiv]";
818 break;
819 }
820 fprintf (file, " [isa %s]%s", isa, additional);
821
822 if (eflags & EF_M68K_CF_FLOAT)
823 fprintf (file, " [float]");
824
825 switch (eflags & EF_M68K_CF_MAC_MASK)
826 {
827 case 0:
828 mac = NULL;
829 break;
830 case EF_M68K_CF_MAC:
831 mac = "mac";
832 break;
833 case EF_M68K_CF_EMAC:
834 mac = "emac";
835 break;
836 }
837 if (mac)
838 fprintf (file, " [%s]", mac);
839 }
840 }
841
842 fputc ('\n', file);
843
844 return TRUE;
845 }
846
847 /* Multi-GOT support implementation design:
848
849 Multi-GOT starts in check_relocs hook. There we scan all
850 relocations of a BFD and build a local GOT (struct elf_m68k_got)
851 for it. If a single BFD appears to require too many GOT slots with
852 R_68K_GOT8O or R_68K_GOT16O relocations, we fail with notification
853 to user.
854 After check_relocs has been invoked for each input BFD, we have
855 constructed a GOT for each input BFD.
856
857 To minimize total number of GOTs required for a particular output BFD
858 (as some environments support only 1 GOT per output object) we try
859 to merge some of the GOTs to share an offset space. Ideally [and in most
860 cases] we end up with a single GOT. In cases when there are too many
861 restricted relocations (e.g., R_68K_GOT16O relocations) we end up with
862 several GOTs, assuming the environment can handle them.
863
864 Partitioning is done in elf_m68k_partition_multi_got. We start with
865 an empty GOT and traverse bfd2got hashtable putting got_entries from
866 local GOTs to the new 'big' one. We do that by constructing an
867 intermediate GOT holding all the entries the local GOT has and the big
868 GOT lacks. Then we check if there is room in the big GOT to accomodate
869 all the entries from diff. On success we add those entries to the big
870 GOT; on failure we start the new 'big' GOT and retry the adding of
871 entries from the local GOT. Note that this retry will always succeed as
872 each local GOT doesn't overflow the limits. After partitioning we
873 end up with each bfd assigned one of the big GOTs. GOT entries in the
874 big GOTs are initialized with GOT offsets. Note that big GOTs are
875 positioned consequently in program space and represent a single huge GOT
876 to the outside world.
877
878 After that we get to elf_m68k_relocate_section. There we
879 adjust relocations of GOT pointer (_GLOBAL_OFFSET_TABLE_) and symbol
880 relocations to refer to appropriate [assigned to current input_bfd]
881 big GOT.
882
883 Notes:
884
885 GOT entry type: We have 3 types of GOT entries.
886 * R_68K_GOT8O type is used in entries for symbols that have
887 at least one R_68K_GOT8O relocation. We can have at most 0x40
888 such entries in one GOT.
889 * R_68K_GOT16O type is used in entries for symbols that have
890 at least one R_68K_GOT16O relocation and no R_68K_GOT8O relocations.
891 We can have at most 0x4000 such entries in one GOT.
892 * R_68K_GOT32O type is used in all other cases. We can have as many
893 such entries in one GOT as we like.
894 When counting relocations we have to include the count of the smaller
895 ranged relocations in the counts of the larger ranged ones in order
896 to correctly detect overflow.
897
898 Sorting the GOT: In each GOT starting offsets are assigned to
899 R_68K_GOT8O entries, which are followed by R_68K_GOT16O entries, and
900 R_68K_GOT32O entries go at the end. See finalize_got_offsets for details.
901
902 Negative GOT offsets: To double usable offset range of GOTs we use
903 negative offsets. As we assign entries with GOT offsets relative to
904 start of .got section, the offset values are positive. They become
905 negative only in relocate_section where got->offset value is
906 subtracted from them.
907
908 3 special GOT entries: There are 3 special GOT entries used internally
909 by loader. These entries happen to be placed to .got.plt section,
910 so we don't do anything about them in multi-GOT support.
911
912 Memory management: All data except for hashtables
913 multi_got->bfd2got and got->entries are allocated on
914 elf_hash_table (info)->dynobj bfd (for this reason we pass 'info'
915 to most functions), so we don't need to care to free them. At the
916 moment of allocation hashtables are being linked into main data
917 structure (multi_got), all pieces of which are reachable from
918 elf_m68k_multi_got (info). We deallocate them in
919 elf_m68k_link_hash_table_free. */
920
921 /* Initialize GOT. */
922
923 static void
924 elf_m68k_init_got (struct elf_m68k_got *got,
925 htab_t entries,
926 bfd_vma rel_8o_n_entries,
927 bfd_vma rel_8o_16o_n_entries,
928 bfd_vma local_n_entries,
929 bfd_vma offset)
930 {
931 got->entries = entries;
932 got->rel_8o_n_entries = rel_8o_n_entries;
933 got->rel_8o_16o_n_entries = rel_8o_16o_n_entries;
934 got->local_n_entries = local_n_entries;
935 got->offset = offset;
936 }
937
938 /* Destruct GOT. */
939
940 static void
941 elf_m68k_clear_got (struct elf_m68k_got *got)
942 {
943 if (got->entries != NULL)
944 {
945 htab_delete (got->entries);
946 got->entries = NULL;
947 }
948 }
949
950 /* Create and empty GOT structure. INFO is the context where memory
951 should be allocated. */
952
953 static struct elf_m68k_got *
954 elf_m68k_create_empty_got (struct bfd_link_info *info)
955 {
956 struct elf_m68k_got *got;
957
958 got = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*got));
959 if (got == NULL)
960 return NULL;
961
962 elf_m68k_init_got (got, NULL, 0, 0, 0, (bfd_vma) -1);
963
964 return got;
965 }
966
967 /* Initialize KEY. */
968
969 static void
970 elf_m68k_init_got_entry_key (struct elf_m68k_got_entry_key *key,
971 struct elf_link_hash_entry *h,
972 const bfd *abfd, unsigned long symndx)
973 {
974 if (h != NULL)
975 {
976 key->bfd = NULL;
977 key->symndx = elf_m68k_hash_entry (h)->got_entry_key;
978 BFD_ASSERT (key->symndx != 0);
979 }
980 else
981 {
982 key->bfd = abfd;
983 key->symndx = symndx;
984 }
985 }
986
987 /* Calculate hash of got_entry.
988 ??? Is it good? */
989
990 static hashval_t
991 elf_m68k_got_entry_hash (const void *_entry)
992 {
993 const struct elf_m68k_got_entry_key *key;
994
995 key = &((const struct elf_m68k_got_entry *) _entry)->key_;
996
997 return key->symndx + (key->bfd != NULL
998 ? (int) key->bfd->id
999 : -1);
1000 }
1001
1002 /* Check if two got entries are equal. */
1003
1004 static int
1005 elf_m68k_got_entry_eq (const void *_entry1, const void *_entry2)
1006 {
1007 const struct elf_m68k_got_entry_key *key1;
1008 const struct elf_m68k_got_entry_key *key2;
1009
1010 key1 = &((const struct elf_m68k_got_entry *) _entry1)->key_;
1011 key2 = &((const struct elf_m68k_got_entry *) _entry2)->key_;
1012
1013 return (key1->bfd == key2->bfd
1014 && key1->symndx == key2->symndx);
1015 }
1016
1017 /* Maximal number of R_68K_GOT8O entries in a single GOT. */
1018 #define ELF_M68K_REL_8O_MAX_N_ENTRIES_IN_GOT(INFO) \
1019 (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p \
1020 ? 0x40 \
1021 : 0x20)
1022
1023 /* Maximal number of R_68K_GOT8O and R_68K_GOT16O entries in a single GOT. */
1024 #define ELF_M68K_REL_8O_16O_MAX_N_ENTRIES_IN_GOT(INFO) \
1025 (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p \
1026 ? 0x4000 \
1027 : 0x2000)
1028
1029 /* SEARCH - simply search the hashtable, don't insert new entries or fail when
1030 the entry cannot be found.
1031 FIND_OR_CREATE - search for an existing entry, but create new if there's
1032 no such.
1033 MUST_FIND - search for an existing entry and assert that it exist.
1034 MUST_CREATE - assert that there's no such entry and create new one. */
1035 enum elf_m68k_get_entry_howto
1036 {
1037 SEARCH,
1038 FIND_OR_CREATE,
1039 MUST_FIND,
1040 MUST_CREATE
1041 };
1042
1043 /* Get or create (depending on HOWTO) entry with KEY in GOT.
1044 INFO is context in which memory should be allocated (can be NULL if
1045 HOWTO is SEARCH or MUST_FIND). */
1046
1047 static struct elf_m68k_got_entry *
1048 elf_m68k_get_got_entry (struct elf_m68k_got *got,
1049 const struct elf_m68k_got_entry_key *key,
1050 enum elf_m68k_get_entry_howto howto,
1051 struct bfd_link_info *info)
1052 {
1053 struct elf_m68k_got_entry entry_;
1054 struct elf_m68k_got_entry *entry;
1055 void **ptr;
1056
1057 BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
1058
1059 if (got->entries == NULL)
1060 /* This is the first entry in ABFD. Initialize hashtable. */
1061 {
1062 if (howto == SEARCH)
1063 return NULL;
1064
1065 got->entries = htab_try_create (ELF_M68K_REL_8O_MAX_N_ENTRIES_IN_GOT
1066 (info),
1067 elf_m68k_got_entry_hash,
1068 elf_m68k_got_entry_eq, NULL);
1069 if (got->entries == NULL)
1070 {
1071 bfd_set_error (bfd_error_no_memory);
1072 return NULL;
1073 }
1074 }
1075
1076 entry_.key_ = *key;
1077 ptr = htab_find_slot (got->entries, &entry_, (howto != SEARCH
1078 ? INSERT : NO_INSERT));
1079 if (ptr == NULL)
1080 {
1081 if (howto == SEARCH)
1082 /* Entry not found. */
1083 return NULL;
1084
1085 /* We're out of memory. */
1086 bfd_set_error (bfd_error_no_memory);
1087 return NULL;
1088 }
1089
1090 if (*ptr == NULL)
1091 /* We didn't find the entry and we're asked to create a new one. */
1092 {
1093 BFD_ASSERT (howto != MUST_FIND && howto != SEARCH);
1094
1095 entry = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry));
1096 if (entry == NULL)
1097 return NULL;
1098
1099 /* Initialize new entry. */
1100 entry->key_ = *key;
1101
1102 entry->u.s1.refcount = 0;
1103 entry->u.s1.type = R_68K_GOT32O;
1104
1105 *ptr = entry;
1106 }
1107 else
1108 /* We found the entry. */
1109 {
1110 BFD_ASSERT (howto != MUST_CREATE);
1111
1112 entry = *ptr;
1113 }
1114
1115 return entry;
1116 }
1117
1118 /* Update GOT counters when merging entry of WAS type with entry of NEW type.
1119 Return the value to which ENTRY's type should be set. */
1120
1121 static int
1122 elf_m68k_update_got_entry_type (struct elf_m68k_got *got, int was, int new)
1123 {
1124 if (new == R_68K_GOT8O && was != R_68K_GOT8O)
1125 /* NEW overrides WAS. */
1126 {
1127 ++got->rel_8o_n_entries;
1128
1129 if (was != R_68K_GOT16O)
1130 /* Update this counter too. */
1131 ++got->rel_8o_16o_n_entries;
1132 }
1133 else if (new == R_68K_GOT16O && was != R_68K_GOT8O && was != R_68K_GOT16O)
1134 /* NEW overrides WAS. */
1135 ++got->rel_8o_16o_n_entries;
1136 else
1137 /* NEW doesn't override WAS. */
1138 new = was;
1139
1140 return new;
1141 }
1142
1143 /* Update GOT counters when removing an entry of type TYPE. */
1144
1145 static void
1146 elf_m68k_remove_got_entry_type (struct elf_m68k_got *got, int type)
1147 {
1148 switch (type)
1149 {
1150 case R_68K_GOT8O:
1151 BFD_ASSERT (got->rel_8o_n_entries > 0);
1152
1153 --got->rel_8o_n_entries;
1154 /* FALLTHRU */
1155
1156 case R_68K_GOT16O:
1157 BFD_ASSERT (got->rel_8o_16o_n_entries >= got->rel_8o_n_entries);
1158
1159 --got->rel_8o_16o_n_entries;
1160 /* FALLTHRU */
1161
1162 case R_68K_GOT32O:
1163 break;
1164
1165 default:
1166 BFD_ASSERT (FALSE);
1167 }
1168 }
1169
1170 /* Add new or update existing entry to GOT.
1171 H, ABFD, TYPE and SYMNDX is data for the entry.
1172 INFO is a context where memory should be allocated. */
1173
1174 static struct elf_m68k_got_entry *
1175 elf_m68k_add_entry_to_got (struct elf_m68k_got *got,
1176 struct elf_link_hash_entry *h,
1177 const bfd *abfd,
1178 int type, unsigned long symndx,
1179 struct bfd_link_info *info)
1180 {
1181 struct elf_m68k_got_entry_key key_;
1182 struct elf_m68k_got_entry *entry;
1183
1184 if (h != NULL && elf_m68k_hash_entry (h)->got_entry_key == 0)
1185 elf_m68k_hash_entry (h)->got_entry_key
1186 = elf_m68k_multi_got (info)->global_symndx++;
1187
1188 elf_m68k_init_got_entry_key (&key_, h, abfd, symndx);
1189
1190 entry = elf_m68k_get_got_entry (got, &key_, FIND_OR_CREATE, info);
1191 if (entry == NULL)
1192 return NULL;
1193
1194 /* Update refcount. */
1195 ++entry->u.s1.refcount;
1196
1197 if (entry->u.s1.refcount == 1)
1198 /* We see this entry for the first time. */
1199 {
1200 if (entry->key_.bfd != NULL)
1201 ++got->local_n_entries;
1202 }
1203
1204 /* Determine entry's type and update got->rel_*_n_entries counters. */
1205 entry->u.s1.type = elf_m68k_update_got_entry_type (got, entry->u.s1.type,
1206 type);
1207
1208 if ((got->rel_8o_n_entries
1209 > ELF_M68K_REL_8O_MAX_N_ENTRIES_IN_GOT (info))
1210 || (got->rel_8o_16o_n_entries
1211 > ELF_M68K_REL_8O_16O_MAX_N_ENTRIES_IN_GOT (info)))
1212 /* This BFD has too many relocation. */
1213 {
1214 if (got->rel_8o_n_entries
1215 > ELF_M68K_REL_8O_MAX_N_ENTRIES_IN_GOT (info))
1216 (*_bfd_error_handler) (_("%B: GOT overflow: "
1217 "Number of R_68K_GOT8O relocations > %d"),
1218 abfd,
1219 ELF_M68K_REL_8O_MAX_N_ENTRIES_IN_GOT (info));
1220 else
1221 (*_bfd_error_handler) (_("%B: GOT overflow: "
1222 "Number of R_68K_GOT8O and R_68K_GOT16O "
1223 "relocations > %d"),
1224 abfd,
1225 ELF_M68K_REL_8O_16O_MAX_N_ENTRIES_IN_GOT (info));
1226
1227 return NULL;
1228 }
1229
1230 return entry;
1231 }
1232
1233 /* Compute the hash value of the bfd in a bfd2got hash entry. */
1234
1235 static hashval_t
1236 elf_m68k_bfd2got_entry_hash (const void *entry)
1237 {
1238 const struct elf_m68k_bfd2got_entry *e;
1239
1240 e = (const struct elf_m68k_bfd2got_entry *) entry;
1241
1242 return e->bfd->id;
1243 }
1244
1245 /* Check whether two hash entries have the same bfd. */
1246
1247 static int
1248 elf_m68k_bfd2got_entry_eq (const void *entry1, const void *entry2)
1249 {
1250 const struct elf_m68k_bfd2got_entry *e1;
1251 const struct elf_m68k_bfd2got_entry *e2;
1252
1253 e1 = (const struct elf_m68k_bfd2got_entry *) entry1;
1254 e2 = (const struct elf_m68k_bfd2got_entry *) entry2;
1255
1256 return e1->bfd == e2->bfd;
1257 }
1258
1259 /* Destruct a bfd2got entry. */
1260
1261 static void
1262 elf_m68k_bfd2got_entry_del (void *_entry)
1263 {
1264 struct elf_m68k_bfd2got_entry *entry;
1265
1266 entry = (struct elf_m68k_bfd2got_entry *) _entry;
1267
1268 BFD_ASSERT (entry->got != NULL);
1269 elf_m68k_clear_got (entry->got);
1270 }
1271
1272 /* Find existing or create new (depending on HOWTO) bfd2got entry in
1273 MULTI_GOT. ABFD is the bfd we need a GOT for. INFO is a context where
1274 memory should be allocated. */
1275
1276 static struct elf_m68k_bfd2got_entry *
1277 elf_m68k_get_bfd2got_entry (struct elf_m68k_multi_got *multi_got,
1278 const bfd *abfd,
1279 enum elf_m68k_get_entry_howto howto,
1280 struct bfd_link_info *info)
1281 {
1282 struct elf_m68k_bfd2got_entry entry_;
1283 void **ptr;
1284 struct elf_m68k_bfd2got_entry *entry;
1285
1286 BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
1287
1288 if (multi_got->bfd2got == NULL)
1289 /* This is the first GOT. Initialize bfd2got. */
1290 {
1291 if (howto == SEARCH)
1292 return NULL;
1293
1294 multi_got->bfd2got = htab_try_create (1, elf_m68k_bfd2got_entry_hash,
1295 elf_m68k_bfd2got_entry_eq,
1296 elf_m68k_bfd2got_entry_del);
1297 if (multi_got->bfd2got == NULL)
1298 {
1299 bfd_set_error (bfd_error_no_memory);
1300 return NULL;
1301 }
1302 }
1303
1304 entry_.bfd = abfd;
1305 ptr = htab_find_slot (multi_got->bfd2got, &entry_, (howto != SEARCH
1306 ? INSERT : NO_INSERT));
1307 if (ptr == NULL)
1308 {
1309 if (howto == SEARCH)
1310 /* Entry not found. */
1311 return NULL;
1312
1313 /* We're out of memory. */
1314 bfd_set_error (bfd_error_no_memory);
1315 return NULL;
1316 }
1317
1318 if (*ptr == NULL)
1319 /* Entry was not found. Create new one. */
1320 {
1321 BFD_ASSERT (howto != MUST_FIND && howto != SEARCH);
1322
1323 entry = ((struct elf_m68k_bfd2got_entry *)
1324 bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry)));
1325 if (entry == NULL)
1326 return NULL;
1327
1328 entry->bfd = abfd;
1329
1330 entry->got = elf_m68k_create_empty_got (info);
1331 if (entry->got == NULL)
1332 return NULL;
1333
1334 *ptr = entry;
1335 }
1336 else
1337 {
1338 BFD_ASSERT (howto != MUST_CREATE);
1339
1340 /* Return existing entry. */
1341 entry = *ptr;
1342 }
1343
1344 return entry;
1345 }
1346
1347 struct elf_m68k_can_merge_gots_arg
1348 {
1349 /* A current_got that we constructing a DIFF against. */
1350 struct elf_m68k_got *big;
1351
1352 /* GOT holding entries not present or that should be changed in
1353 BIG. */
1354 struct elf_m68k_got *diff;
1355
1356 /* Context where to allocate memory. */
1357 struct bfd_link_info *info;
1358
1359 /* Error flag. */
1360 bfd_boolean error_p;
1361 };
1362
1363 /* Process a single entry from the small GOT to see if it should be added
1364 or updated in the big GOT. */
1365
1366 static int
1367 elf_m68k_can_merge_gots_1 (void **_entry_ptr, void *_arg)
1368 {
1369 const struct elf_m68k_got_entry *entry1;
1370 struct elf_m68k_can_merge_gots_arg *arg;
1371 const struct elf_m68k_got_entry *entry2;
1372 int type;
1373
1374 entry1 = (const struct elf_m68k_got_entry *) *_entry_ptr;
1375 arg = (struct elf_m68k_can_merge_gots_arg *) _arg;
1376
1377 entry2 = elf_m68k_get_got_entry (arg->big, &entry1->key_, SEARCH, NULL);
1378
1379 if (entry2 != NULL)
1380 {
1381 type = elf_m68k_update_got_entry_type (arg->diff, entry2->u.s1.type,
1382 entry1->u.s1.type);
1383
1384 if (type == entry2->u.s1.type)
1385 /* ENTRY1 doesn't update data in ENTRY2. Skip it.
1386 To skip creation of difference entry we use the type,
1387 which we won't see in GOT entries for sure. */
1388 type = R_68K_32;
1389 }
1390 else
1391 {
1392 BFD_ASSERT (entry1->u.s1.type != R_68K_32);
1393
1394 type = elf_m68k_update_got_entry_type (arg->diff, R_68K_GOT32O,
1395 entry1->u.s1.type);
1396
1397 /* Update local counter. */
1398 if (entry1->key_.bfd != NULL)
1399 ++arg->diff->local_n_entries;
1400 }
1401
1402 if (type != R_68K_32)
1403 /* Create an entry in DIFF. */
1404 {
1405 struct elf_m68k_got_entry *entry;
1406
1407 entry = elf_m68k_get_got_entry (arg->diff, &entry1->key_, MUST_CREATE,
1408 arg->info);
1409 if (entry == NULL)
1410 {
1411 arg->error_p = TRUE;
1412 return 0;
1413 }
1414
1415 entry->u.s1.type = type;
1416 }
1417
1418 return 1;
1419 }
1420
1421 /* Return TRUE if SMALL GOT can be added to BIG GOT without overflowing it.
1422 Construct DIFF GOT holding the entries which should be added or updated
1423 in BIG GOT to accumulate information from SMALL.
1424 INFO is the context where memory should be allocated. */
1425
1426 static bfd_boolean
1427 elf_m68k_can_merge_gots (struct elf_m68k_got *big,
1428 const struct elf_m68k_got *small,
1429 struct bfd_link_info *info,
1430 struct elf_m68k_got *diff)
1431 {
1432 struct elf_m68k_can_merge_gots_arg arg_;
1433
1434 BFD_ASSERT (small->offset == (bfd_vma) -1);
1435
1436 arg_.big = big;
1437 arg_.diff = diff;
1438 arg_.info = info;
1439 arg_.error_p = FALSE;
1440 htab_traverse_noresize (small->entries, elf_m68k_can_merge_gots_1, &arg_);
1441 if (arg_.error_p)
1442 {
1443 diff->offset = 0;
1444 return FALSE;
1445 }
1446
1447 /* Check for overflow. */
1448 if ((big->rel_8o_n_entries + arg_.diff->rel_8o_n_entries
1449 > ELF_M68K_REL_8O_MAX_N_ENTRIES_IN_GOT (info))
1450 || (big->rel_8o_16o_n_entries + arg_.diff->rel_8o_16o_n_entries
1451 > ELF_M68K_REL_8O_16O_MAX_N_ENTRIES_IN_GOT (info)))
1452 return FALSE;
1453
1454 return TRUE;
1455 }
1456
1457 struct elf_m68k_merge_gots_arg
1458 {
1459 /* The BIG got. */
1460 struct elf_m68k_got *big;
1461
1462 /* Context where memory should be allocated. */
1463 struct bfd_link_info *info;
1464
1465 /* Error flag. */
1466 bfd_boolean error_p;
1467 };
1468
1469 /* Process a single entry from DIFF got. Add or update corresponding
1470 entry in the BIG got. */
1471
1472 static int
1473 elf_m68k_merge_gots_1 (void **entry_ptr, void *_arg)
1474 {
1475 const struct elf_m68k_got_entry *from;
1476 struct elf_m68k_merge_gots_arg *arg;
1477 struct elf_m68k_got_entry *to;
1478
1479 from = (const struct elf_m68k_got_entry *) *entry_ptr;
1480 arg = (struct elf_m68k_merge_gots_arg *) _arg;
1481
1482 to = elf_m68k_get_got_entry (arg->big, &from->key_, FIND_OR_CREATE,
1483 arg->info);
1484 if (to == NULL)
1485 {
1486 arg->error_p = TRUE;
1487 return 0;
1488 }
1489
1490 BFD_ASSERT (to->u.s1.refcount == 0);
1491 /* All we need to merge is TYPE. */
1492 to->u.s1.type = from->u.s1.type;
1493
1494 return 1;
1495 }
1496
1497 /* Merge data from DIFF to BIG. INFO is context where memory should be
1498 allocated. */
1499
1500 static bfd_boolean
1501 elf_m68k_merge_gots (struct elf_m68k_got *big,
1502 struct elf_m68k_got *diff,
1503 struct bfd_link_info *info)
1504 {
1505 if (diff->entries != NULL)
1506 /* DIFF is not empty. Merge it into BIG GOT. */
1507 {
1508 struct elf_m68k_merge_gots_arg arg_;
1509
1510 /* Merge entries. */
1511 arg_.big = big;
1512 arg_.info = info;
1513 arg_.error_p = FALSE;
1514 htab_traverse_noresize (diff->entries, elf_m68k_merge_gots_1, &arg_);
1515 if (arg_.error_p)
1516 return FALSE;
1517
1518 /* Merge counters. */
1519 big->rel_8o_n_entries += diff->rel_8o_n_entries;
1520 big->rel_8o_16o_n_entries += diff->rel_8o_16o_n_entries;
1521 big->local_n_entries += diff->local_n_entries;
1522 }
1523 else
1524 /* DIFF is empty. */
1525 {
1526 BFD_ASSERT (diff->rel_8o_n_entries == 0);
1527 BFD_ASSERT (diff->rel_8o_16o_n_entries == 0);
1528 BFD_ASSERT (diff->local_n_entries == 0);
1529 }
1530
1531 BFD_ASSERT (!elf_m68k_hash_table (info)->allow_multigot_p
1532 || ((big->rel_8o_n_entries
1533 <= ELF_M68K_REL_8O_MAX_N_ENTRIES_IN_GOT (info))
1534 && (big->rel_8o_16o_n_entries
1535 <= ELF_M68K_REL_8O_16O_MAX_N_ENTRIES_IN_GOT (info))));
1536
1537 return TRUE;
1538 }
1539
1540 struct elf_m68k_finalize_got_offsets_arg
1541 {
1542 /* Offset for the next R_68K_GOT8O entry. */
1543 bfd_vma rel_8o_offset;
1544
1545 /* Offset for the next R_68K_GOT16O entry. */
1546 bfd_vma rel_16o_offset;
1547
1548 /* Offset for the next R_68K_GOT32O entry. */
1549 bfd_vma rel_32o_offset;
1550
1551 /* Should we use negative (relative to GP) offsets for GOT entries. */
1552 bfd_boolean use_neg_got_offsets_p;
1553
1554 /* Offset of this GOT relative to .got section. */
1555 bfd_vma got_offset;
1556
1557 /* Mapping from global symndx to global symbols.
1558 This is used to build lists of got entries for global symbols. */
1559 struct elf_m68k_link_hash_entry **symndx2h;
1560 };
1561
1562 /* Assign ENTRY an offset. Build list of GOT entries for global symbols
1563 along the way. */
1564
1565 static int
1566 elf_m68k_finalize_got_offsets_1 (void **entry_ptr, void *_arg)
1567 {
1568 struct elf_m68k_got_entry *entry;
1569 struct elf_m68k_finalize_got_offsets_arg *arg;
1570
1571 entry = (struct elf_m68k_got_entry *) *entry_ptr;
1572 arg = (struct elf_m68k_finalize_got_offsets_arg *) _arg;
1573
1574 /* This should be a fresh entry created in elf_m68k_can_merge_gots. */
1575 BFD_ASSERT (entry->u.s1.refcount == 0);
1576
1577 switch (entry->u.s1.type)
1578 {
1579 case R_68K_GOT8O:
1580 entry->u.s2.offset = arg->rel_8o_offset;
1581
1582 if (arg->use_neg_got_offsets_p)
1583 {
1584 if (arg->rel_8o_offset >= arg->got_offset)
1585 /* We've assigned a positive offset to this entry,
1586 next entry should get (-abs(offset) - 4). */
1587 arg->rel_8o_offset = (arg->got_offset
1588 - (arg->rel_8o_offset - arg->got_offset)
1589 - 4);
1590 else
1591 /* We've assigned a negative offset to this entry,
1592 next entry should get (+abs(offset) + 0). */
1593 arg->rel_8o_offset = (arg->got_offset
1594 + (arg->got_offset - arg->rel_8o_offset));
1595 }
1596 else
1597 /* Next entry will simply get next offset. */
1598 arg->rel_8o_offset += 4;
1599
1600 break;
1601
1602 case R_68K_GOT16O:
1603 entry->u.s2.offset = arg->rel_16o_offset;
1604
1605 if (arg->use_neg_got_offsets_p)
1606 {
1607 if (arg->rel_16o_offset >= arg->got_offset)
1608 /* We've assigned a positive offset to this entry,
1609 next entry should get (-abs(offset) - 4). */
1610 arg->rel_16o_offset = (arg->got_offset
1611 - (arg->rel_16o_offset - arg->got_offset)
1612 - 4);
1613 else
1614 /* We've assigned a negative offset to this entry,
1615 next entry should get (+abs(offset) + 0). */
1616 arg->rel_16o_offset = (arg->got_offset
1617 + (arg->got_offset - arg->rel_16o_offset));
1618 }
1619 else
1620 /* Next entry will simply get next offset. */
1621 arg->rel_16o_offset += 4;
1622
1623 break;
1624
1625 case R_68K_GOT32O:
1626 entry->u.s2.offset = arg->rel_32o_offset;
1627
1628 if (arg->use_neg_got_offsets_p)
1629 {
1630 if (arg->rel_32o_offset >= arg->got_offset)
1631 /* We've assigned a positive offset to this entry,
1632 next entry should get (-abs(offset) - 4). */
1633 arg->rel_32o_offset = (arg->got_offset
1634 - (arg->rel_32o_offset - arg->got_offset)
1635 - 4);
1636 else
1637 /* We've assigned a negative offset to this entry,
1638 next entry should get (+abs(offset) + 0). */
1639 arg->rel_32o_offset = (arg->got_offset
1640 + (arg->got_offset - arg->rel_32o_offset));
1641 }
1642 else
1643 /* Next entry will simply get next offset. */
1644 arg->rel_32o_offset += 4;
1645
1646 break;
1647
1648 default:
1649 BFD_ASSERT (FALSE);
1650 break;
1651 }
1652
1653 if (entry->key_.bfd == NULL)
1654 /* Hook up this entry into the list of got_entries of H. */
1655 {
1656 struct elf_m68k_link_hash_entry *h;
1657
1658 BFD_ASSERT (entry->key_.symndx != 0);
1659 h = arg->symndx2h[entry->key_.symndx];
1660 BFD_ASSERT (h != NULL);
1661
1662 entry->u.s2.next = h->glist;
1663 h->glist = entry;
1664 }
1665 else
1666 /* This entry is for local symbol. */
1667 entry->u.s2.next = NULL;
1668
1669 return 1;
1670 }
1671
1672 /* Assign offsets within GOT. USE_NEG_GOT_OFFSETS_P indicates if we
1673 should use negative offsets.
1674 Build list of GOT entries for global symbols along the way.
1675 SYMNDX2H is mapping from global symbol indices to actual
1676 global symbols. */
1677
1678 static void
1679 elf_m68k_finalize_got_offsets (struct elf_m68k_got *got,
1680 bfd_boolean use_neg_got_offsets_p,
1681 struct elf_m68k_link_hash_entry **symndx2h)
1682 {
1683 struct elf_m68k_finalize_got_offsets_arg arg_;
1684
1685 BFD_ASSERT (got->offset != (bfd_vma) -1);
1686
1687 /* We set entry offsets relative to the .got section (and not the
1688 start of a particular GOT), so that we can use them in
1689 finish_dynamic_symbol without needing to know the GOT they come
1690 from. */
1691
1692 if (use_neg_got_offsets_p)
1693 {
1694 size_t n;
1695
1696 /* Put GOT pointer in the middle of GOT. */
1697 n = htab_elements (got->entries);
1698 if ((n & 1) == 0)
1699 /* Even number of GOT entries. */
1700 got->offset += 2 * n;
1701 else
1702 /* Odd number of GOT entries. */
1703 got->offset += 2 * (n - 1);
1704
1705 /* R_68K_GOT8O entries shall start at GOT offset. */
1706 arg_.rel_8o_offset = got->offset;
1707
1708 n = got->rel_8o_n_entries;
1709 if ((n & 1) == 0)
1710 /* Even number of R_68K_GOT8O entries.
1711 The last R_68K_GOT8O entry will be at
1712 (got->offset - 2 * n). Hence the first R_68K_GOT16O
1713 entry will be at offset ... */
1714 arg_.rel_16o_offset = got->offset + 2 * n;
1715 else
1716 /* Odd number of R_68K_GOT8O entries.
1717 The last R_68K_GOT8O entry will be at
1718 (got->offset + 2 * (n - 1)). Hence the first R_68K_GOT16O
1719 entry will be at offset ... */
1720 arg_.rel_16o_offset = got->offset - 2 * (n - 1) - 4;
1721
1722 n = got->rel_8o_16o_n_entries;
1723 if ((n & 1) == 0)
1724 /* Even number of R_68K_GOT8O and R_68K_GOT16O entries.
1725 The last R_68K_GOT8O entry will be at
1726 (got->offset - 2 * n). Hence the first R_68K_GOT32O
1727 entry will be at offset ... */
1728 arg_.rel_32o_offset = got->offset + 2 * n;
1729 else
1730 /* Odd number of R_68K_GOT8O and R_68K_GOT16O entries.
1731 The last R_68K_GOT16O entry will be at
1732 (got->offset + 2 * (n - 1)). Hence the first R_68K_GOT32O
1733 entry will be at offset ... */
1734 arg_.rel_32o_offset = got->offset - 2 * (n - 1) - 4;
1735
1736 arg_.use_neg_got_offsets_p = TRUE;
1737
1738 arg_.got_offset = got->offset;
1739 }
1740 else
1741 {
1742 arg_.rel_8o_offset = got->offset;
1743 arg_.rel_16o_offset = 4 * got->rel_8o_n_entries + got->offset;
1744 arg_.rel_32o_offset = 4 * got->rel_8o_16o_n_entries + got->offset;
1745
1746 arg_.use_neg_got_offsets_p = FALSE;
1747
1748 /* This shouldn't be used. */
1749 arg_.got_offset = (bfd_vma) -1;
1750 }
1751
1752 arg_.symndx2h = symndx2h;
1753
1754 htab_traverse (got->entries, elf_m68k_finalize_got_offsets_1, &arg_);
1755
1756 /* Calculate offset ranges we have actually assigned. */
1757 if (use_neg_got_offsets_p)
1758 {
1759 if (arg_.rel_8o_offset == (bfd_vma) -4
1760 || arg_.rel_8o_offset < got->offset)
1761 arg_.rel_8o_offset = 2 * (got->offset - arg_.rel_8o_offset) - 4;
1762 else
1763 arg_.rel_8o_offset = 2 * (arg_.rel_8o_offset - got->offset);
1764
1765 if (arg_.rel_16o_offset == (bfd_vma) -4
1766 || arg_.rel_16o_offset < got->offset)
1767 arg_.rel_16o_offset = 2 * (got->offset - arg_.rel_16o_offset) - 4;
1768 else
1769 arg_.rel_16o_offset = 2 * (arg_.rel_16o_offset - got->offset);
1770
1771 if (arg_.rel_32o_offset == (bfd_vma) -4
1772 || arg_.rel_32o_offset < got->offset)
1773 arg_.rel_32o_offset = 2 * (got->offset - arg_.rel_32o_offset) - 4;
1774 else
1775 arg_.rel_32o_offset = 2 * (arg_.rel_32o_offset - got->offset);
1776 }
1777 else
1778 {
1779 arg_.rel_8o_offset -= got->offset;
1780 arg_.rel_16o_offset -= got->offset;
1781 arg_.rel_32o_offset -= got->offset;
1782 }
1783
1784 /* These asserts check that we got counting of entries right. */
1785 BFD_ASSERT (arg_.rel_8o_offset == 4 * got->rel_8o_n_entries);
1786 BFD_ASSERT (arg_.rel_16o_offset == 4 * got->rel_8o_16o_n_entries);
1787 BFD_ASSERT (arg_.rel_32o_offset == 4 * htab_elements (got->entries));
1788 }
1789
1790 struct elf_m68k_partition_multi_got_arg
1791 {
1792 /* The GOT we are adding entries to. Aka big got. */
1793 struct elf_m68k_got *current_got;
1794
1795 /* Offset to assign the next CURRENT_GOT. */
1796 bfd_vma offset;
1797
1798 /* Context where memory should be allocated. */
1799 struct bfd_link_info *info;
1800
1801 /* Total number of entries in the .got section.
1802 This is used to calculate size of the .got and .rela.got sections. */
1803 bfd_vma n_entries;
1804
1805 /* Total number of local entries in the .got section.
1806 This is used to calculate size of the .rela.got section. */
1807 bfd_vma local_n_entries;
1808
1809 /* Error flag. */
1810 bfd_boolean error_p;
1811
1812 /* Mapping from global symndx to global symbols.
1813 This is used to build lists of got entries for global symbols. */
1814 struct elf_m68k_link_hash_entry **symndx2h;
1815 };
1816
1817 /* Process a single BFD2GOT entry and either merge GOT to CURRENT_GOT
1818 or start a new CURRENT_GOT. */
1819
1820 static int
1821 elf_m68k_partition_multi_got_1 (void **_entry, void *_arg)
1822 {
1823 struct elf_m68k_bfd2got_entry *entry;
1824 struct elf_m68k_partition_multi_got_arg *arg;
1825 struct elf_m68k_got *got;
1826 struct elf_m68k_got *current_got;
1827 struct elf_m68k_got diff_;
1828 struct elf_m68k_got *diff;
1829
1830 entry = (struct elf_m68k_bfd2got_entry *) *_entry;
1831 arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
1832
1833 got = entry->got;
1834 BFD_ASSERT (got != NULL);
1835 BFD_ASSERT (got->offset == (bfd_vma) -1);
1836
1837 diff = NULL;
1838
1839 if (arg->current_got != NULL)
1840 /* Construct diff. */
1841 {
1842 diff = &diff_;
1843 elf_m68k_init_got (diff, NULL, 0, 0, 0, (bfd_vma) -1);
1844
1845 if (!elf_m68k_can_merge_gots (arg->current_got, got, arg->info, diff))
1846 {
1847 if (diff->offset == 0)
1848 /* Offset set to 0 in the diff_ indicates an error. */
1849 {
1850 arg->error_p = TRUE;
1851 goto final_return;
1852 }
1853
1854 if (elf_m68k_hash_table (arg->info)->allow_multigot_p)
1855 {
1856 elf_m68k_clear_got (diff);
1857 /* Schedule to finish up CURRENT_GOT and start new one. */
1858 diff = NULL;
1859 }
1860 /* else
1861 Merge GOTs no matter what. If big GOT overflows,
1862 we'll fail in relocate_section due to truncated relocations.
1863
1864 ??? May be fail earlier? E.g., in can_merge_gots. */
1865 }
1866 }
1867 else
1868 /* Diff of got against empty current_got is got itself. */
1869 {
1870 /* Create empty CURRENT_GOT to subsequent GOTs to. */
1871 arg->current_got = elf_m68k_create_empty_got (arg->info);
1872 if (arg->current_got == NULL)
1873 {
1874 arg->error_p = TRUE;
1875 goto final_return;
1876 }
1877
1878 arg->current_got->offset = arg->offset;
1879
1880 diff = got;
1881 }
1882
1883 current_got = arg->current_got;
1884
1885 if (diff != NULL)
1886 {
1887 if (!elf_m68k_merge_gots (current_got, diff, arg->info))
1888 {
1889 arg->error_p = TRUE;
1890 goto final_return;
1891 }
1892
1893 /* Now we can free GOT. */
1894 elf_m68k_clear_got (got);
1895
1896 entry->got = current_got;
1897 }
1898 else
1899 {
1900 /* Schedule to start a new current_got. */
1901 arg->current_got = NULL;
1902 arg->offset = (current_got->offset
1903 + 4 * htab_elements (current_got->entries));
1904
1905 /* Finish up current_got. */
1906 {
1907 elf_m68k_finalize_got_offsets (current_got,
1908 elf_m68k_hash_table (arg->info)
1909 ->use_neg_got_offsets_p,
1910 arg->symndx2h);
1911
1912 arg->n_entries += htab_elements (current_got->entries);
1913 arg->local_n_entries += current_got->local_n_entries;
1914
1915 BFD_ASSERT (arg->local_n_entries <= arg->n_entries);
1916 }
1917
1918 /* Retry. */
1919 if (!elf_m68k_partition_multi_got_1 (_entry, _arg))
1920 {
1921 BFD_ASSERT (arg->error_p);
1922 goto final_return;
1923 }
1924 }
1925
1926 final_return:
1927 if (diff != NULL)
1928 elf_m68k_clear_got (diff);
1929
1930 return arg->error_p == FALSE ? 1 : 0;
1931 }
1932
1933 /* Helper function to build symndx2h mapping. */
1934
1935 static bfd_boolean
1936 elf_m68k_init_symndx2h_1 (struct elf_link_hash_entry *_h,
1937 void *_arg)
1938 {
1939 struct elf_m68k_link_hash_entry *h;
1940
1941 h = elf_m68k_hash_entry (_h);
1942
1943 if (h->got_entry_key != 0)
1944 /* H has at least one entry in the GOT. */
1945 {
1946 struct elf_m68k_partition_multi_got_arg *arg;
1947
1948 arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
1949
1950 BFD_ASSERT (arg->symndx2h[h->got_entry_key] == NULL);
1951 arg->symndx2h[h->got_entry_key] = h;
1952 }
1953
1954 return TRUE;
1955 }
1956
1957 /* Merge GOTs of some BFDs, assign offsets to GOT entries and build
1958 lists of GOT entries for global symbols.
1959 Calculate sizes of .got and .rela.got sections. */
1960
1961 static bfd_boolean
1962 elf_m68k_partition_multi_got (struct bfd_link_info *info)
1963 {
1964 struct elf_m68k_multi_got *multi_got;
1965 struct elf_m68k_partition_multi_got_arg arg_;
1966
1967 multi_got = elf_m68k_multi_got (info);
1968
1969 arg_.current_got = NULL;
1970 arg_.offset = 0;
1971 arg_.info = info;
1972 arg_.n_entries = 0;
1973 arg_.local_n_entries = 0;
1974 arg_.error_p = FALSE;
1975
1976 if (multi_got->bfd2got != NULL)
1977 {
1978 /* Initialize symndx2h mapping. */
1979 {
1980 arg_.symndx2h = bfd_zmalloc (multi_got->global_symndx
1981 * sizeof (*arg_.symndx2h));
1982 if (arg_.symndx2h == NULL)
1983 return FALSE;
1984
1985 elf_link_hash_traverse (elf_hash_table (info),
1986 elf_m68k_init_symndx2h_1, &arg_);
1987 }
1988
1989 /* Partition. */
1990 htab_traverse (multi_got->bfd2got, elf_m68k_partition_multi_got_1,
1991 &arg_);
1992 if (arg_.error_p)
1993 {
1994 free (arg_.symndx2h);
1995 arg_.symndx2h = NULL;
1996
1997 return FALSE;
1998 }
1999
2000 /* Finish up last current_got. */
2001 {
2002 elf_m68k_finalize_got_offsets (arg_.current_got,
2003 elf_m68k_hash_table (info)
2004 ->use_neg_got_offsets_p, arg_.symndx2h);
2005
2006 arg_.n_entries += htab_elements (arg_.current_got->entries);
2007 arg_.local_n_entries += arg_.current_got->local_n_entries;
2008
2009 BFD_ASSERT (arg_.local_n_entries <= arg_.n_entries);
2010 }
2011
2012 free (arg_.symndx2h);
2013 }
2014
2015 if (elf_hash_table (info)->dynobj != NULL)
2016 /* Set sizes of .got and .rela.got sections. */
2017 {
2018 asection *s;
2019
2020 s = bfd_get_section_by_name (elf_hash_table (info)->dynobj, ".got");
2021 if (s != NULL)
2022 s->size = arg_.n_entries * 4;
2023 else
2024 BFD_ASSERT (arg_.n_entries == 0);
2025
2026 /* If we are generating a shared object, we need to
2027 output a R_68K_RELATIVE reloc so that the dynamic
2028 linker can adjust this GOT entry. Overwise we
2029 don't need space in .rela.got for local symbols. */
2030 if (!info->shared)
2031 {
2032 BFD_ASSERT (arg_.local_n_entries <= arg_.n_entries);
2033 arg_.n_entries -= arg_.local_n_entries;
2034 }
2035
2036 s = bfd_get_section_by_name (elf_hash_table (info)->dynobj, ".rela.got");
2037 if (s != NULL)
2038 s->size = arg_.n_entries * sizeof (Elf32_External_Rela);
2039 else
2040 BFD_ASSERT (arg_.n_entries == 0);
2041 }
2042 else
2043 BFD_ASSERT (multi_got->bfd2got == NULL);
2044
2045 return TRUE;
2046 }
2047
2048 /* Specialized version of elf_m68k_get_got_entry that returns pointer
2049 to hashtable slot, thus allowing removal of entry via
2050 elf_m68k_remove_got_entry. */
2051
2052 static struct elf_m68k_got_entry **
2053 elf_m68k_find_got_entry_ptr (struct elf_m68k_got *got,
2054 struct elf_m68k_got_entry_key *key)
2055 {
2056 void **ptr;
2057 struct elf_m68k_got_entry entry_;
2058 struct elf_m68k_got_entry **entry_ptr;
2059
2060 entry_.key_ = *key;
2061 ptr = htab_find_slot (got->entries, &entry_, NO_INSERT);
2062 BFD_ASSERT (ptr != NULL);
2063
2064 entry_ptr = (struct elf_m68k_got_entry **) ptr;
2065
2066 return entry_ptr;
2067 }
2068
2069 /* Remove entry pointed to by ENTRY_PTR from GOT. */
2070
2071 static void
2072 elf_m68k_remove_got_entry (struct elf_m68k_got *got,
2073 struct elf_m68k_got_entry **entry_ptr)
2074 {
2075 struct elf_m68k_got_entry *entry;
2076
2077 entry = *entry_ptr;
2078
2079 /* Check that offsets have not been finalized yet. */
2080 BFD_ASSERT (got->offset == (bfd_vma) -1);
2081 /* Check that this entry is indeed unused. */
2082 BFD_ASSERT (entry->u.s1.refcount == 0);
2083
2084 elf_m68k_remove_got_entry_type (got, entry->u.s1.type);
2085
2086 if (entry->key_.bfd != NULL)
2087 --got->local_n_entries;
2088
2089 htab_clear_slot (got->entries, (void **) entry_ptr);
2090 }
2091
2092 /* Copy any information related to dynamic linking from a pre-existing
2093 symbol to a newly created symbol. Also called to copy flags and
2094 other back-end info to a weakdef, in which case the symbol is not
2095 newly created and plt/got refcounts and dynamic indices should not
2096 be copied. */
2097
2098 static void
2099 elf_m68k_copy_indirect_symbol (struct bfd_link_info *info,
2100 struct elf_link_hash_entry *_dir,
2101 struct elf_link_hash_entry *_ind)
2102 {
2103 struct elf_m68k_link_hash_entry *dir;
2104 struct elf_m68k_link_hash_entry *ind;
2105
2106 _bfd_elf_link_hash_copy_indirect (info, _dir, _ind);
2107
2108 if (_ind->root.type != bfd_link_hash_indirect)
2109 return;
2110
2111 dir = elf_m68k_hash_entry (_dir);
2112 ind = elf_m68k_hash_entry (_ind);
2113
2114 /* We might have a direct symbol already having entries in the GOTs.
2115 Update its key only in case indirect symbol has GOT entries and
2116 assert that both indirect and direct symbols don't have GOT entries
2117 at the same time. */
2118 if (ind->got_entry_key != 0)
2119 {
2120 BFD_ASSERT (dir->got_entry_key == 0);
2121 /* Assert that GOTs aren't partioned yet. */
2122 BFD_ASSERT (ind->glist == NULL);
2123
2124 dir->got_entry_key = ind->got_entry_key;
2125 ind->got_entry_key = 0;
2126 }
2127 }
2128
2129 /* Look through the relocs for a section during the first phase, and
2130 allocate space in the global offset table or procedure linkage
2131 table. */
2132
2133 static bfd_boolean
2134 elf_m68k_check_relocs (abfd, info, sec, relocs)
2135 bfd *abfd;
2136 struct bfd_link_info *info;
2137 asection *sec;
2138 const Elf_Internal_Rela *relocs;
2139 {
2140 bfd *dynobj;
2141 Elf_Internal_Shdr *symtab_hdr;
2142 struct elf_link_hash_entry **sym_hashes;
2143 const Elf_Internal_Rela *rel;
2144 const Elf_Internal_Rela *rel_end;
2145 asection *sgot;
2146 asection *srelgot;
2147 asection *sreloc;
2148 struct elf_m68k_got *got;
2149
2150 if (info->relocatable)
2151 return TRUE;
2152
2153 dynobj = elf_hash_table (info)->dynobj;
2154 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2155 sym_hashes = elf_sym_hashes (abfd);
2156
2157 sgot = NULL;
2158 srelgot = NULL;
2159 sreloc = NULL;
2160
2161 got = NULL;
2162
2163 rel_end = relocs + sec->reloc_count;
2164 for (rel = relocs; rel < rel_end; rel++)
2165 {
2166 unsigned long r_symndx;
2167 struct elf_link_hash_entry *h;
2168
2169 r_symndx = ELF32_R_SYM (rel->r_info);
2170
2171 if (r_symndx < symtab_hdr->sh_info)
2172 h = NULL;
2173 else
2174 {
2175 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2176 while (h->root.type == bfd_link_hash_indirect
2177 || h->root.type == bfd_link_hash_warning)
2178 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2179 }
2180
2181 switch (ELF32_R_TYPE (rel->r_info))
2182 {
2183 case R_68K_GOT8:
2184 case R_68K_GOT16:
2185 case R_68K_GOT32:
2186 if (h != NULL
2187 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2188 break;
2189 /* Fall through. */
2190 case R_68K_GOT8O:
2191 case R_68K_GOT16O:
2192 case R_68K_GOT32O:
2193 /* This symbol requires a global offset table entry. */
2194
2195 if (dynobj == NULL)
2196 {
2197 /* Create the .got section. */
2198 elf_hash_table (info)->dynobj = dynobj = abfd;
2199 if (!_bfd_elf_create_got_section (dynobj, info))
2200 return FALSE;
2201 }
2202
2203 if (sgot == NULL)
2204 {
2205 sgot = bfd_get_section_by_name (dynobj, ".got");
2206 BFD_ASSERT (sgot != NULL);
2207 }
2208
2209 if (srelgot == NULL
2210 && (h != NULL || info->shared))
2211 {
2212 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
2213 if (srelgot == NULL)
2214 {
2215 srelgot = bfd_make_section_with_flags (dynobj,
2216 ".rela.got",
2217 (SEC_ALLOC
2218 | SEC_LOAD
2219 | SEC_HAS_CONTENTS
2220 | SEC_IN_MEMORY
2221 | SEC_LINKER_CREATED
2222 | SEC_READONLY));
2223 if (srelgot == NULL
2224 || !bfd_set_section_alignment (dynobj, srelgot, 2))
2225 return FALSE;
2226 }
2227 }
2228
2229 if (got == NULL)
2230 {
2231 struct elf_m68k_bfd2got_entry *bfd2got_entry;
2232
2233 bfd2got_entry
2234 = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
2235 abfd, FIND_OR_CREATE, info);
2236 if (bfd2got_entry == NULL)
2237 return FALSE;
2238
2239 got = bfd2got_entry->got;
2240 BFD_ASSERT (got != NULL);
2241 }
2242
2243 {
2244 struct elf_m68k_got_entry *got_entry;
2245
2246 /* Add entry to got. */
2247 got_entry = elf_m68k_add_entry_to_got (got, h, abfd,
2248 ELF32_R_TYPE (rel->r_info),
2249 r_symndx, info);
2250 if (got_entry == NULL)
2251 return FALSE;
2252
2253 if (got_entry->u.s1.refcount == 1)
2254 {
2255 /* Make sure this symbol is output as a dynamic symbol. */
2256 if (h != NULL
2257 && h->dynindx == -1
2258 && !h->forced_local)
2259 {
2260 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2261 return FALSE;
2262 }
2263
2264 /* Allocate space in the .got section. */
2265 sgot->size += 4;
2266
2267 /* Allocate relocation space. */
2268 if (h != NULL
2269 || info->shared)
2270 srelgot->size += sizeof (Elf32_External_Rela);
2271 }
2272 }
2273
2274 break;
2275
2276 case R_68K_PLT8:
2277 case R_68K_PLT16:
2278 case R_68K_PLT32:
2279 /* This symbol requires a procedure linkage table entry. We
2280 actually build the entry in adjust_dynamic_symbol,
2281 because this might be a case of linking PIC code which is
2282 never referenced by a dynamic object, in which case we
2283 don't need to generate a procedure linkage table entry
2284 after all. */
2285
2286 /* If this is a local symbol, we resolve it directly without
2287 creating a procedure linkage table entry. */
2288 if (h == NULL)
2289 continue;
2290
2291 h->needs_plt = 1;
2292 h->plt.refcount++;
2293 break;
2294
2295 case R_68K_PLT8O:
2296 case R_68K_PLT16O:
2297 case R_68K_PLT32O:
2298 /* This symbol requires a procedure linkage table entry. */
2299
2300 if (h == NULL)
2301 {
2302 /* It does not make sense to have this relocation for a
2303 local symbol. FIXME: does it? How to handle it if
2304 it does make sense? */
2305 bfd_set_error (bfd_error_bad_value);
2306 return FALSE;
2307 }
2308
2309 /* Make sure this symbol is output as a dynamic symbol. */
2310 if (h->dynindx == -1
2311 && !h->forced_local)
2312 {
2313 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2314 return FALSE;
2315 }
2316
2317 h->needs_plt = 1;
2318 h->plt.refcount++;
2319 break;
2320
2321 case R_68K_PC8:
2322 case R_68K_PC16:
2323 case R_68K_PC32:
2324 /* If we are creating a shared library and this is not a local
2325 symbol, we need to copy the reloc into the shared library.
2326 However when linking with -Bsymbolic and this is a global
2327 symbol which is defined in an object we are including in the
2328 link (i.e., DEF_REGULAR is set), then we can resolve the
2329 reloc directly. At this point we have not seen all the input
2330 files, so it is possible that DEF_REGULAR is not set now but
2331 will be set later (it is never cleared). We account for that
2332 possibility below by storing information in the
2333 pcrel_relocs_copied field of the hash table entry. */
2334 if (!(info->shared
2335 && (sec->flags & SEC_ALLOC) != 0
2336 && h != NULL
2337 && (!info->symbolic
2338 || h->root.type == bfd_link_hash_defweak
2339 || !h->def_regular)))
2340 {
2341 if (h != NULL)
2342 {
2343 /* Make sure a plt entry is created for this symbol if
2344 it turns out to be a function defined by a dynamic
2345 object. */
2346 h->plt.refcount++;
2347 }
2348 break;
2349 }
2350 /* Fall through. */
2351 case R_68K_8:
2352 case R_68K_16:
2353 case R_68K_32:
2354 if (h != NULL)
2355 {
2356 /* Make sure a plt entry is created for this symbol if it
2357 turns out to be a function defined by a dynamic object. */
2358 h->plt.refcount++;
2359 }
2360
2361 /* If we are creating a shared library, we need to copy the
2362 reloc into the shared library. */
2363 if (info->shared
2364 && (sec->flags & SEC_ALLOC) != 0)
2365 {
2366 /* When creating a shared object, we must copy these
2367 reloc types into the output file. We create a reloc
2368 section in dynobj and make room for this reloc. */
2369 if (sreloc == NULL)
2370 {
2371 sreloc = _bfd_elf_make_dynamic_reloc_section
2372 (sec, dynobj, 2, abfd, /*rela?*/ TRUE);
2373
2374 if (sreloc == NULL)
2375 return FALSE;
2376 }
2377
2378 if (sec->flags & SEC_READONLY
2379 /* Don't set DF_TEXTREL yet for PC relative
2380 relocations, they might be discarded later. */
2381 && !(ELF32_R_TYPE (rel->r_info) == R_68K_PC8
2382 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
2383 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32))
2384 info->flags |= DF_TEXTREL;
2385
2386 sreloc->size += sizeof (Elf32_External_Rela);
2387
2388 /* We count the number of PC relative relocations we have
2389 entered for this symbol, so that we can discard them
2390 again if, in the -Bsymbolic case, the symbol is later
2391 defined by a regular object, or, in the normal shared
2392 case, the symbol is forced to be local. Note that this
2393 function is only called if we are using an m68kelf linker
2394 hash table, which means that h is really a pointer to an
2395 elf_m68k_link_hash_entry. */
2396 if (ELF32_R_TYPE (rel->r_info) == R_68K_PC8
2397 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
2398 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32)
2399 {
2400 struct elf_m68k_pcrel_relocs_copied *p;
2401 struct elf_m68k_pcrel_relocs_copied **head;
2402
2403 if (h != NULL)
2404 {
2405 struct elf_m68k_link_hash_entry *eh
2406 = elf_m68k_hash_entry (h);
2407 head = &eh->pcrel_relocs_copied;
2408 }
2409 else
2410 {
2411 asection *s;
2412 void *vpp;
2413
2414 s = (bfd_section_from_r_symndx
2415 (abfd, &elf_m68k_hash_table (info)->sym_sec,
2416 sec, r_symndx));
2417 if (s == NULL)
2418 return FALSE;
2419
2420 vpp = &elf_section_data (s)->local_dynrel;
2421 head = (struct elf_m68k_pcrel_relocs_copied **) vpp;
2422 }
2423
2424 for (p = *head; p != NULL; p = p->next)
2425 if (p->section == sreloc)
2426 break;
2427
2428 if (p == NULL)
2429 {
2430 p = ((struct elf_m68k_pcrel_relocs_copied *)
2431 bfd_alloc (dynobj, (bfd_size_type) sizeof *p));
2432 if (p == NULL)
2433 return FALSE;
2434 p->next = *head;
2435 *head = p;
2436 p->section = sreloc;
2437 p->count = 0;
2438 }
2439
2440 ++p->count;
2441 }
2442 }
2443
2444 break;
2445
2446 /* This relocation describes the C++ object vtable hierarchy.
2447 Reconstruct it for later use during GC. */
2448 case R_68K_GNU_VTINHERIT:
2449 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2450 return FALSE;
2451 break;
2452
2453 /* This relocation describes which C++ vtable entries are actually
2454 used. Record for later use during GC. */
2455 case R_68K_GNU_VTENTRY:
2456 BFD_ASSERT (h != NULL);
2457 if (h != NULL
2458 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2459 return FALSE;
2460 break;
2461
2462 default:
2463 break;
2464 }
2465 }
2466
2467 return TRUE;
2468 }
2469
2470 /* Return the section that should be marked against GC for a given
2471 relocation. */
2472
2473 static asection *
2474 elf_m68k_gc_mark_hook (asection *sec,
2475 struct bfd_link_info *info,
2476 Elf_Internal_Rela *rel,
2477 struct elf_link_hash_entry *h,
2478 Elf_Internal_Sym *sym)
2479 {
2480 if (h != NULL)
2481 switch (ELF32_R_TYPE (rel->r_info))
2482 {
2483 case R_68K_GNU_VTINHERIT:
2484 case R_68K_GNU_VTENTRY:
2485 return NULL;
2486 }
2487
2488 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
2489 }
2490
2491 /* Update the got entry reference counts for the section being removed. */
2492
2493 static bfd_boolean
2494 elf_m68k_gc_sweep_hook (bfd *abfd,
2495 struct bfd_link_info *info,
2496 asection *sec,
2497 const Elf_Internal_Rela *relocs)
2498 {
2499 Elf_Internal_Shdr *symtab_hdr;
2500 struct elf_link_hash_entry **sym_hashes;
2501 const Elf_Internal_Rela *rel, *relend;
2502 bfd *dynobj;
2503 asection *sgot;
2504 asection *srelgot;
2505 struct elf_m68k_got *got;
2506
2507 if (info->relocatable)
2508 return TRUE;
2509
2510 dynobj = elf_hash_table (info)->dynobj;
2511 if (dynobj == NULL)
2512 return TRUE;
2513
2514 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2515 sym_hashes = elf_sym_hashes (abfd);
2516
2517 sgot = bfd_get_section_by_name (dynobj, ".got");
2518 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
2519 got = NULL;
2520
2521 relend = relocs + sec->reloc_count;
2522 for (rel = relocs; rel < relend; rel++)
2523 {
2524 unsigned long r_symndx;
2525 struct elf_link_hash_entry *h = NULL;
2526
2527 r_symndx = ELF32_R_SYM (rel->r_info);
2528 if (r_symndx >= symtab_hdr->sh_info)
2529 {
2530 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2531 while (h->root.type == bfd_link_hash_indirect
2532 || h->root.type == bfd_link_hash_warning)
2533 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2534 }
2535
2536 switch (ELF32_R_TYPE (rel->r_info))
2537 {
2538 case R_68K_GOT8:
2539 case R_68K_GOT16:
2540 case R_68K_GOT32:
2541 if (h != NULL
2542 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2543 break;
2544
2545 /* FALLTHRU */
2546 case R_68K_GOT8O:
2547 case R_68K_GOT16O:
2548 case R_68K_GOT32O:
2549 if (got == NULL)
2550 {
2551 got = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
2552 abfd, MUST_FIND, NULL)->got;
2553 BFD_ASSERT (got != NULL);
2554 }
2555
2556 {
2557 struct elf_m68k_got_entry_key key_;
2558 struct elf_m68k_got_entry **got_entry_ptr;
2559 struct elf_m68k_got_entry *got_entry;
2560
2561 elf_m68k_init_got_entry_key (&key_, h, abfd, r_symndx);
2562 got_entry_ptr = elf_m68k_find_got_entry_ptr (got, &key_);
2563
2564 got_entry = *got_entry_ptr;
2565
2566 if (got_entry->u.s1.refcount > 0)
2567 {
2568 --got_entry->u.s1.refcount;
2569
2570 if (got_entry->u.s1.refcount == 0)
2571 /* We don't need the .got entry any more. */
2572 elf_m68k_remove_got_entry (got, got_entry_ptr);
2573 }
2574 }
2575 break;
2576
2577 case R_68K_PLT8:
2578 case R_68K_PLT16:
2579 case R_68K_PLT32:
2580 case R_68K_PLT8O:
2581 case R_68K_PLT16O:
2582 case R_68K_PLT32O:
2583 case R_68K_PC8:
2584 case R_68K_PC16:
2585 case R_68K_PC32:
2586 case R_68K_8:
2587 case R_68K_16:
2588 case R_68K_32:
2589 if (h != NULL)
2590 {
2591 if (h->plt.refcount > 0)
2592 --h->plt.refcount;
2593 }
2594 break;
2595
2596 default:
2597 break;
2598 }
2599 }
2600
2601 return TRUE;
2602 }
2603 \f
2604 /* Return the type of PLT associated with OUTPUT_BFD. */
2605
2606 static const struct elf_m68k_plt_info *
2607 elf_m68k_get_plt_info (bfd *output_bfd)
2608 {
2609 unsigned int features;
2610
2611 features = bfd_m68k_mach_to_features (bfd_get_mach (output_bfd));
2612 if (features & cpu32)
2613 return &elf_cpu32_plt_info;
2614 if (features & mcfisa_b)
2615 return &elf_isab_plt_info;
2616 if (features & mcfisa_c)
2617 return &elf_isac_plt_info;
2618 return &elf_m68k_plt_info;
2619 }
2620
2621 /* This function is called after all the input files have been read,
2622 and the input sections have been assigned to output sections.
2623 It's a convenient place to determine the PLT style. */
2624
2625 static bfd_boolean
2626 elf_m68k_always_size_sections (bfd *output_bfd, struct bfd_link_info *info)
2627 {
2628 /* Bind input BFDs to GOTs and calculate sizes of .got and .rela.got
2629 sections. */
2630 if (!elf_m68k_partition_multi_got (info))
2631 return FALSE;
2632
2633 elf_m68k_hash_table (info)->plt_info = elf_m68k_get_plt_info (output_bfd);
2634 return TRUE;
2635 }
2636
2637 /* Adjust a symbol defined by a dynamic object and referenced by a
2638 regular object. The current definition is in some section of the
2639 dynamic object, but we're not including those sections. We have to
2640 change the definition to something the rest of the link can
2641 understand. */
2642
2643 static bfd_boolean
2644 elf_m68k_adjust_dynamic_symbol (info, h)
2645 struct bfd_link_info *info;
2646 struct elf_link_hash_entry *h;
2647 {
2648 struct elf_m68k_link_hash_table *htab;
2649 bfd *dynobj;
2650 asection *s;
2651
2652 htab = elf_m68k_hash_table (info);
2653 dynobj = elf_hash_table (info)->dynobj;
2654
2655 /* Make sure we know what is going on here. */
2656 BFD_ASSERT (dynobj != NULL
2657 && (h->needs_plt
2658 || h->u.weakdef != NULL
2659 || (h->def_dynamic
2660 && h->ref_regular
2661 && !h->def_regular)));
2662
2663 /* If this is a function, put it in the procedure linkage table. We
2664 will fill in the contents of the procedure linkage table later,
2665 when we know the address of the .got section. */
2666 if (h->type == STT_FUNC
2667 || h->needs_plt)
2668 {
2669 if ((h->plt.refcount <= 0
2670 || SYMBOL_CALLS_LOCAL (info, h)
2671 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2672 && h->root.type == bfd_link_hash_undefweak))
2673 /* We must always create the plt entry if it was referenced
2674 by a PLTxxO relocation. In this case we already recorded
2675 it as a dynamic symbol. */
2676 && h->dynindx == -1)
2677 {
2678 /* This case can occur if we saw a PLTxx reloc in an input
2679 file, but the symbol was never referred to by a dynamic
2680 object, or if all references were garbage collected. In
2681 such a case, we don't actually need to build a procedure
2682 linkage table, and we can just do a PCxx reloc instead. */
2683 h->plt.offset = (bfd_vma) -1;
2684 h->needs_plt = 0;
2685 return TRUE;
2686 }
2687
2688 /* Make sure this symbol is output as a dynamic symbol. */
2689 if (h->dynindx == -1
2690 && !h->forced_local)
2691 {
2692 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2693 return FALSE;
2694 }
2695
2696 s = bfd_get_section_by_name (dynobj, ".plt");
2697 BFD_ASSERT (s != NULL);
2698
2699 /* If this is the first .plt entry, make room for the special
2700 first entry. */
2701 if (s->size == 0)
2702 s->size = htab->plt_info->size;
2703
2704 /* If this symbol is not defined in a regular file, and we are
2705 not generating a shared library, then set the symbol to this
2706 location in the .plt. This is required to make function
2707 pointers compare as equal between the normal executable and
2708 the shared library. */
2709 if (!info->shared
2710 && !h->def_regular)
2711 {
2712 h->root.u.def.section = s;
2713 h->root.u.def.value = s->size;
2714 }
2715
2716 h->plt.offset = s->size;
2717
2718 /* Make room for this entry. */
2719 s->size += htab->plt_info->size;
2720
2721 /* We also need to make an entry in the .got.plt section, which
2722 will be placed in the .got section by the linker script. */
2723 s = bfd_get_section_by_name (dynobj, ".got.plt");
2724 BFD_ASSERT (s != NULL);
2725 s->size += 4;
2726
2727 /* We also need to make an entry in the .rela.plt section. */
2728 s = bfd_get_section_by_name (dynobj, ".rela.plt");
2729 BFD_ASSERT (s != NULL);
2730 s->size += sizeof (Elf32_External_Rela);
2731
2732 return TRUE;
2733 }
2734
2735 /* Reinitialize the plt offset now that it is not used as a reference
2736 count any more. */
2737 h->plt.offset = (bfd_vma) -1;
2738
2739 /* If this is a weak symbol, and there is a real definition, the
2740 processor independent code will have arranged for us to see the
2741 real definition first, and we can just use the same value. */
2742 if (h->u.weakdef != NULL)
2743 {
2744 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
2745 || h->u.weakdef->root.type == bfd_link_hash_defweak);
2746 h->root.u.def.section = h->u.weakdef->root.u.def.section;
2747 h->root.u.def.value = h->u.weakdef->root.u.def.value;
2748 return TRUE;
2749 }
2750
2751 /* This is a reference to a symbol defined by a dynamic object which
2752 is not a function. */
2753
2754 /* If we are creating a shared library, we must presume that the
2755 only references to the symbol are via the global offset table.
2756 For such cases we need not do anything here; the relocations will
2757 be handled correctly by relocate_section. */
2758 if (info->shared)
2759 return TRUE;
2760
2761 if (h->size == 0)
2762 {
2763 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
2764 h->root.root.string);
2765 return TRUE;
2766 }
2767
2768 /* We must allocate the symbol in our .dynbss section, which will
2769 become part of the .bss section of the executable. There will be
2770 an entry for this symbol in the .dynsym section. The dynamic
2771 object will contain position independent code, so all references
2772 from the dynamic object to this symbol will go through the global
2773 offset table. The dynamic linker will use the .dynsym entry to
2774 determine the address it must put in the global offset table, so
2775 both the dynamic object and the regular object will refer to the
2776 same memory location for the variable. */
2777
2778 s = bfd_get_section_by_name (dynobj, ".dynbss");
2779 BFD_ASSERT (s != NULL);
2780
2781 /* We must generate a R_68K_COPY reloc to tell the dynamic linker to
2782 copy the initial value out of the dynamic object and into the
2783 runtime process image. We need to remember the offset into the
2784 .rela.bss section we are going to use. */
2785 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
2786 {
2787 asection *srel;
2788
2789 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
2790 BFD_ASSERT (srel != NULL);
2791 srel->size += sizeof (Elf32_External_Rela);
2792 h->needs_copy = 1;
2793 }
2794
2795 return _bfd_elf_adjust_dynamic_copy (h, s);
2796 }
2797
2798 /* Set the sizes of the dynamic sections. */
2799
2800 static bfd_boolean
2801 elf_m68k_size_dynamic_sections (output_bfd, info)
2802 bfd *output_bfd ATTRIBUTE_UNUSED;
2803 struct bfd_link_info *info;
2804 {
2805 bfd *dynobj;
2806 asection *s;
2807 bfd_boolean plt;
2808 bfd_boolean relocs;
2809
2810 dynobj = elf_hash_table (info)->dynobj;
2811 BFD_ASSERT (dynobj != NULL);
2812
2813 if (elf_hash_table (info)->dynamic_sections_created)
2814 {
2815 /* Set the contents of the .interp section to the interpreter. */
2816 if (info->executable)
2817 {
2818 s = bfd_get_section_by_name (dynobj, ".interp");
2819 BFD_ASSERT (s != NULL);
2820 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
2821 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2822 }
2823 }
2824 else
2825 {
2826 /* We may have created entries in the .rela.got section.
2827 However, if we are not creating the dynamic sections, we will
2828 not actually use these entries. Reset the size of .rela.got,
2829 which will cause it to get stripped from the output file
2830 below. */
2831 s = bfd_get_section_by_name (dynobj, ".rela.got");
2832 if (s != NULL)
2833 s->size = 0;
2834 }
2835
2836 /* If this is a -Bsymbolic shared link, then we need to discard all
2837 PC relative relocs against symbols defined in a regular object.
2838 For the normal shared case we discard the PC relative relocs
2839 against symbols that have become local due to visibility changes.
2840 We allocated space for them in the check_relocs routine, but we
2841 will not fill them in in the relocate_section routine. */
2842 if (info->shared)
2843 elf_link_hash_traverse (elf_hash_table (info),
2844 elf_m68k_discard_copies,
2845 (PTR) info);
2846
2847 /* The check_relocs and adjust_dynamic_symbol entry points have
2848 determined the sizes of the various dynamic sections. Allocate
2849 memory for them. */
2850 plt = FALSE;
2851 relocs = FALSE;
2852 for (s = dynobj->sections; s != NULL; s = s->next)
2853 {
2854 const char *name;
2855
2856 if ((s->flags & SEC_LINKER_CREATED) == 0)
2857 continue;
2858
2859 /* It's OK to base decisions on the section name, because none
2860 of the dynobj section names depend upon the input files. */
2861 name = bfd_get_section_name (dynobj, s);
2862
2863 if (strcmp (name, ".plt") == 0)
2864 {
2865 /* Remember whether there is a PLT. */
2866 plt = s->size != 0;
2867 }
2868 else if (CONST_STRNEQ (name, ".rela"))
2869 {
2870 if (s->size != 0)
2871 {
2872 relocs = TRUE;
2873
2874 /* We use the reloc_count field as a counter if we need
2875 to copy relocs into the output file. */
2876 s->reloc_count = 0;
2877 }
2878 }
2879 else if (! CONST_STRNEQ (name, ".got")
2880 && strcmp (name, ".dynbss") != 0)
2881 {
2882 /* It's not one of our sections, so don't allocate space. */
2883 continue;
2884 }
2885
2886 if (s->size == 0)
2887 {
2888 /* If we don't need this section, strip it from the
2889 output file. This is mostly to handle .rela.bss and
2890 .rela.plt. We must create both sections in
2891 create_dynamic_sections, because they must be created
2892 before the linker maps input sections to output
2893 sections. The linker does that before
2894 adjust_dynamic_symbol is called, and it is that
2895 function which decides whether anything needs to go
2896 into these sections. */
2897 s->flags |= SEC_EXCLUDE;
2898 continue;
2899 }
2900
2901 if ((s->flags & SEC_HAS_CONTENTS) == 0)
2902 continue;
2903
2904 /* Allocate memory for the section contents. */
2905 /* FIXME: This should be a call to bfd_alloc not bfd_zalloc.
2906 Unused entries should be reclaimed before the section's contents
2907 are written out, but at the moment this does not happen. Thus in
2908 order to prevent writing out garbage, we initialise the section's
2909 contents to zero. */
2910 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
2911 if (s->contents == NULL)
2912 return FALSE;
2913 }
2914
2915 if (elf_hash_table (info)->dynamic_sections_created)
2916 {
2917 /* Add some entries to the .dynamic section. We fill in the
2918 values later, in elf_m68k_finish_dynamic_sections, but we
2919 must add the entries now so that we get the correct size for
2920 the .dynamic section. The DT_DEBUG entry is filled in by the
2921 dynamic linker and used by the debugger. */
2922 #define add_dynamic_entry(TAG, VAL) \
2923 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2924
2925 if (!info->shared)
2926 {
2927 if (!add_dynamic_entry (DT_DEBUG, 0))
2928 return FALSE;
2929 }
2930
2931 if (plt)
2932 {
2933 if (!add_dynamic_entry (DT_PLTGOT, 0)
2934 || !add_dynamic_entry (DT_PLTRELSZ, 0)
2935 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2936 || !add_dynamic_entry (DT_JMPREL, 0))
2937 return FALSE;
2938 }
2939
2940 if (relocs)
2941 {
2942 if (!add_dynamic_entry (DT_RELA, 0)
2943 || !add_dynamic_entry (DT_RELASZ, 0)
2944 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2945 return FALSE;
2946 }
2947
2948 if ((info->flags & DF_TEXTREL) != 0)
2949 {
2950 if (!add_dynamic_entry (DT_TEXTREL, 0))
2951 return FALSE;
2952 }
2953 }
2954 #undef add_dynamic_entry
2955
2956 return TRUE;
2957 }
2958
2959 /* This function is called via elf_link_hash_traverse if we are
2960 creating a shared object. In the -Bsymbolic case it discards the
2961 space allocated to copy PC relative relocs against symbols which
2962 are defined in regular objects. For the normal shared case, it
2963 discards space for pc-relative relocs that have become local due to
2964 symbol visibility changes. We allocated space for them in the
2965 check_relocs routine, but we won't fill them in in the
2966 relocate_section routine.
2967
2968 We also check whether any of the remaining relocations apply
2969 against a readonly section, and set the DF_TEXTREL flag in this
2970 case. */
2971
2972 static bfd_boolean
2973 elf_m68k_discard_copies (h, inf)
2974 struct elf_link_hash_entry *h;
2975 PTR inf;
2976 {
2977 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2978 struct elf_m68k_pcrel_relocs_copied *s;
2979
2980 if (h->root.type == bfd_link_hash_warning)
2981 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2982
2983 if (!h->def_regular
2984 || (!info->symbolic
2985 && !h->forced_local))
2986 {
2987 if ((info->flags & DF_TEXTREL) == 0)
2988 {
2989 /* Look for relocations against read-only sections. */
2990 for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
2991 s != NULL;
2992 s = s->next)
2993 if ((s->section->flags & SEC_READONLY) != 0)
2994 {
2995 info->flags |= DF_TEXTREL;
2996 break;
2997 }
2998 }
2999
3000 return TRUE;
3001 }
3002
3003 for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
3004 s != NULL;
3005 s = s->next)
3006 s->section->size -= s->count * sizeof (Elf32_External_Rela);
3007
3008 return TRUE;
3009 }
3010
3011 /* Relocate an M68K ELF section. */
3012
3013 static bfd_boolean
3014 elf_m68k_relocate_section (output_bfd, info, input_bfd, input_section,
3015 contents, relocs, local_syms, local_sections)
3016 bfd *output_bfd;
3017 struct bfd_link_info *info;
3018 bfd *input_bfd;
3019 asection *input_section;
3020 bfd_byte *contents;
3021 Elf_Internal_Rela *relocs;
3022 Elf_Internal_Sym *local_syms;
3023 asection **local_sections;
3024 {
3025 bfd *dynobj;
3026 Elf_Internal_Shdr *symtab_hdr;
3027 struct elf_link_hash_entry **sym_hashes;
3028 asection *sgot;
3029 asection *splt;
3030 asection *sreloc;
3031 struct elf_m68k_got *got;
3032 Elf_Internal_Rela *rel;
3033 Elf_Internal_Rela *relend;
3034
3035 dynobj = elf_hash_table (info)->dynobj;
3036 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3037 sym_hashes = elf_sym_hashes (input_bfd);
3038
3039 sgot = NULL;
3040 splt = NULL;
3041 sreloc = NULL;
3042
3043 got = NULL;
3044
3045 rel = relocs;
3046 relend = relocs + input_section->reloc_count;
3047 for (; rel < relend; rel++)
3048 {
3049 int r_type;
3050 reloc_howto_type *howto;
3051 unsigned long r_symndx;
3052 struct elf_link_hash_entry *h;
3053 Elf_Internal_Sym *sym;
3054 asection *sec;
3055 bfd_vma relocation;
3056 bfd_boolean unresolved_reloc;
3057 bfd_reloc_status_type r;
3058
3059 r_type = ELF32_R_TYPE (rel->r_info);
3060 if (r_type < 0 || r_type >= (int) R_68K_max)
3061 {
3062 bfd_set_error (bfd_error_bad_value);
3063 return FALSE;
3064 }
3065 howto = howto_table + r_type;
3066
3067 r_symndx = ELF32_R_SYM (rel->r_info);
3068
3069 h = NULL;
3070 sym = NULL;
3071 sec = NULL;
3072 unresolved_reloc = FALSE;
3073
3074 if (r_symndx < symtab_hdr->sh_info)
3075 {
3076 sym = local_syms + r_symndx;
3077 sec = local_sections[r_symndx];
3078 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
3079 }
3080 else
3081 {
3082 bfd_boolean warned;
3083
3084 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3085 r_symndx, symtab_hdr, sym_hashes,
3086 h, sec, relocation,
3087 unresolved_reloc, warned);
3088 }
3089
3090 if (sec != NULL && elf_discarded_section (sec))
3091 {
3092 /* For relocs against symbols from removed linkonce sections,
3093 or sections discarded by a linker script, we just want the
3094 section contents zeroed. Avoid any special processing. */
3095 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
3096 rel->r_info = 0;
3097 rel->r_addend = 0;
3098 continue;
3099 }
3100
3101 if (info->relocatable)
3102 continue;
3103
3104 switch (r_type)
3105 {
3106 case R_68K_GOT8:
3107 case R_68K_GOT16:
3108 case R_68K_GOT32:
3109 /* Relocation is to the address of the entry for this symbol
3110 in the global offset table. */
3111 if (h != NULL
3112 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3113 {
3114 if (elf_m68k_hash_table (info)->local_gp_p)
3115 {
3116 bfd_vma sgot_output_offset;
3117 bfd_vma got_offset;
3118
3119 if (sgot == NULL)
3120 {
3121 sgot = bfd_get_section_by_name (dynobj, ".got");
3122
3123 if (sgot != NULL)
3124 sgot_output_offset = sgot->output_offset;
3125 else
3126 /* In this case we have a reference to
3127 _GLOBAL_OFFSET_TABLE_, but the GOT itself is
3128 empty.
3129 ??? Issue a warning? */
3130 sgot_output_offset = 0;
3131 }
3132 else
3133 sgot_output_offset = sgot->output_offset;
3134
3135 if (got == NULL)
3136 {
3137 struct elf_m68k_bfd2got_entry *bfd2got_entry;
3138
3139 bfd2got_entry
3140 = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
3141 input_bfd, SEARCH, NULL);
3142
3143 if (bfd2got_entry != NULL)
3144 {
3145 got = bfd2got_entry->got;
3146 BFD_ASSERT (got != NULL);
3147
3148 got_offset = got->offset;
3149 }
3150 else
3151 /* In this case we have a reference to
3152 _GLOBAL_OFFSET_TABLE_, but no other references
3153 accessing any GOT entries.
3154 ??? Issue a warning? */
3155 got_offset = 0;
3156 }
3157 else
3158 got_offset = got->offset;
3159
3160 /* Adjust GOT pointer to point to the GOT
3161 assigned to input_bfd. */
3162 rel->r_addend += sgot_output_offset + got_offset;
3163 }
3164 else
3165 BFD_ASSERT (got == NULL || got->offset == 0);
3166
3167 break;
3168 }
3169 /* Fall through. */
3170 case R_68K_GOT8O:
3171 case R_68K_GOT16O:
3172 case R_68K_GOT32O:
3173 /* Relocation is the offset of the entry for this symbol in
3174 the global offset table. */
3175
3176 {
3177 struct elf_m68k_got_entry_key key_;
3178 bfd_vma *off_ptr;
3179 bfd_vma off;
3180
3181 if (sgot == NULL)
3182 {
3183 sgot = bfd_get_section_by_name (dynobj, ".got");
3184 BFD_ASSERT (sgot != NULL);
3185 }
3186
3187 if (got == NULL)
3188 {
3189 got = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
3190 input_bfd, MUST_FIND,
3191 NULL)->got;
3192 BFD_ASSERT (got != NULL);
3193 }
3194
3195 /* Get GOT offset for this symbol. */
3196 elf_m68k_init_got_entry_key (&key_, h, input_bfd, r_symndx);
3197 off_ptr = &elf_m68k_get_got_entry (got, &key_, MUST_FIND,
3198 NULL)->u.s2.offset;
3199 off = *off_ptr;
3200
3201 if (h != NULL)
3202 {
3203 bfd_boolean dyn;
3204
3205 dyn = elf_hash_table (info)->dynamic_sections_created;
3206 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3207 || (info->shared
3208 && (info->symbolic
3209 || h->dynindx == -1
3210 || h->forced_local)
3211 && h->def_regular))
3212 {
3213 /* This is actually a static link, or it is a
3214 -Bsymbolic link and the symbol is defined
3215 locally, or the symbol was forced to be local
3216 because of a version file.. We must initialize
3217 this entry in the global offset table. Since
3218 the offset must always be a multiple of 4, we
3219 use the least significant bit to record whether
3220 we have initialized it already.
3221
3222 When doing a dynamic link, we create a .rela.got
3223 relocation entry to initialize the value. This
3224 is done in the finish_dynamic_symbol routine. */
3225 if ((off & 1) != 0)
3226 off &= ~1;
3227 else
3228 {
3229 bfd_put_32 (output_bfd, relocation,
3230 sgot->contents + off);
3231 *off_ptr |= 1;
3232 }
3233 }
3234 else
3235 unresolved_reloc = FALSE;
3236 }
3237 else
3238 {
3239 /* The offset must always be a multiple of 4. We use
3240 the least significant bit to record whether we have
3241 already generated the necessary reloc. */
3242 if ((off & 1) != 0)
3243 off &= ~1;
3244 else
3245 {
3246 bfd_put_32 (output_bfd, relocation, sgot->contents + off);
3247
3248 if (info->shared)
3249 {
3250 asection *s;
3251 Elf_Internal_Rela outrel;
3252 bfd_byte *loc;
3253
3254 s = bfd_get_section_by_name (dynobj, ".rela.got");
3255 BFD_ASSERT (s != NULL);
3256
3257 outrel.r_offset = (sgot->output_section->vma
3258 + sgot->output_offset
3259 + off);
3260 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
3261 outrel.r_addend = relocation;
3262 loc = s->contents;
3263 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3264 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3265 }
3266
3267 *off_ptr |= 1;
3268 }
3269 }
3270
3271 if (r_type == R_68K_GOT8O
3272 || r_type == R_68K_GOT16O
3273 || r_type == R_68K_GOT32O)
3274 {
3275 /* GOT pointer is adjusted to point to the start/middle
3276 of local GOT. Adjust the offset accordingly. */
3277 BFD_ASSERT (elf_m68k_hash_table (info)->use_neg_got_offsets_p
3278 || off >= got->offset);
3279
3280 if (elf_m68k_hash_table (info)->local_gp_p)
3281 relocation = off - got->offset;
3282 else
3283 {
3284 BFD_ASSERT (got->offset == 0);
3285 relocation = sgot->output_offset + off;
3286 }
3287
3288 /* This relocation does not use the addend. */
3289 BFD_ASSERT (rel->r_addend == 0);
3290 rel->r_addend = 0;
3291 }
3292 else
3293 relocation = (sgot->output_section->vma + sgot->output_offset
3294 + off);
3295 }
3296 break;
3297
3298 case R_68K_PLT8:
3299 case R_68K_PLT16:
3300 case R_68K_PLT32:
3301 /* Relocation is to the entry for this symbol in the
3302 procedure linkage table. */
3303
3304 /* Resolve a PLTxx reloc against a local symbol directly,
3305 without using the procedure linkage table. */
3306 if (h == NULL)
3307 break;
3308
3309 if (h->plt.offset == (bfd_vma) -1
3310 || !elf_hash_table (info)->dynamic_sections_created)
3311 {
3312 /* We didn't make a PLT entry for this symbol. This
3313 happens when statically linking PIC code, or when
3314 using -Bsymbolic. */
3315 break;
3316 }
3317
3318 if (splt == NULL)
3319 {
3320 splt = bfd_get_section_by_name (dynobj, ".plt");
3321 BFD_ASSERT (splt != NULL);
3322 }
3323
3324 relocation = (splt->output_section->vma
3325 + splt->output_offset
3326 + h->plt.offset);
3327 unresolved_reloc = FALSE;
3328 break;
3329
3330 case R_68K_PLT8O:
3331 case R_68K_PLT16O:
3332 case R_68K_PLT32O:
3333 /* Relocation is the offset of the entry for this symbol in
3334 the procedure linkage table. */
3335 BFD_ASSERT (h != NULL && h->plt.offset != (bfd_vma) -1);
3336
3337 if (splt == NULL)
3338 {
3339 splt = bfd_get_section_by_name (dynobj, ".plt");
3340 BFD_ASSERT (splt != NULL);
3341 }
3342
3343 relocation = h->plt.offset;
3344 unresolved_reloc = FALSE;
3345
3346 /* This relocation does not use the addend. */
3347 rel->r_addend = 0;
3348
3349 break;
3350
3351 case R_68K_PC8:
3352 case R_68K_PC16:
3353 case R_68K_PC32:
3354 if (h == NULL
3355 || (info->shared
3356 && h->forced_local))
3357 break;
3358 /* Fall through. */
3359 case R_68K_8:
3360 case R_68K_16:
3361 case R_68K_32:
3362 if (info->shared
3363 && r_symndx != 0
3364 && (input_section->flags & SEC_ALLOC) != 0
3365 && (h == NULL
3366 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3367 || h->root.type != bfd_link_hash_undefweak)
3368 && ((r_type != R_68K_PC8
3369 && r_type != R_68K_PC16
3370 && r_type != R_68K_PC32)
3371 || (h != NULL
3372 && h->dynindx != -1
3373 && (!info->symbolic
3374 || !h->def_regular))))
3375 {
3376 Elf_Internal_Rela outrel;
3377 bfd_byte *loc;
3378 bfd_boolean skip, relocate;
3379
3380 /* When generating a shared object, these relocations
3381 are copied into the output file to be resolved at run
3382 time. */
3383
3384 skip = FALSE;
3385 relocate = FALSE;
3386
3387 outrel.r_offset =
3388 _bfd_elf_section_offset (output_bfd, info, input_section,
3389 rel->r_offset);
3390 if (outrel.r_offset == (bfd_vma) -1)
3391 skip = TRUE;
3392 else if (outrel.r_offset == (bfd_vma) -2)
3393 skip = TRUE, relocate = TRUE;
3394 outrel.r_offset += (input_section->output_section->vma
3395 + input_section->output_offset);
3396
3397 if (skip)
3398 memset (&outrel, 0, sizeof outrel);
3399 else if (h != NULL
3400 && h->dynindx != -1
3401 && (r_type == R_68K_PC8
3402 || r_type == R_68K_PC16
3403 || r_type == R_68K_PC32
3404 || !info->shared
3405 || !info->symbolic
3406 || !h->def_regular))
3407 {
3408 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
3409 outrel.r_addend = rel->r_addend;
3410 }
3411 else
3412 {
3413 /* This symbol is local, or marked to become local. */
3414 outrel.r_addend = relocation + rel->r_addend;
3415
3416 if (r_type == R_68K_32)
3417 {
3418 relocate = TRUE;
3419 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
3420 }
3421 else
3422 {
3423 long indx;
3424
3425 if (bfd_is_abs_section (sec))
3426 indx = 0;
3427 else if (sec == NULL || sec->owner == NULL)
3428 {
3429 bfd_set_error (bfd_error_bad_value);
3430 return FALSE;
3431 }
3432 else
3433 {
3434 asection *osec;
3435
3436 /* We are turning this relocation into one
3437 against a section symbol. It would be
3438 proper to subtract the symbol's value,
3439 osec->vma, from the emitted reloc addend,
3440 but ld.so expects buggy relocs. */
3441 osec = sec->output_section;
3442 indx = elf_section_data (osec)->dynindx;
3443 if (indx == 0)
3444 {
3445 struct elf_link_hash_table *htab;
3446 htab = elf_hash_table (info);
3447 osec = htab->text_index_section;
3448 indx = elf_section_data (osec)->dynindx;
3449 }
3450 BFD_ASSERT (indx != 0);
3451 }
3452
3453 outrel.r_info = ELF32_R_INFO (indx, r_type);
3454 }
3455 }
3456
3457 sreloc = elf_section_data (input_section)->sreloc;
3458 if (sreloc == NULL)
3459 abort ();
3460
3461 loc = sreloc->contents;
3462 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3463 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3464
3465 /* This reloc will be computed at runtime, so there's no
3466 need to do anything now, except for R_68K_32
3467 relocations that have been turned into
3468 R_68K_RELATIVE. */
3469 if (!relocate)
3470 continue;
3471 }
3472
3473 break;
3474
3475 case R_68K_GNU_VTINHERIT:
3476 case R_68K_GNU_VTENTRY:
3477 /* These are no-ops in the end. */
3478 continue;
3479
3480 default:
3481 break;
3482 }
3483
3484 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3485 because such sections are not SEC_ALLOC and thus ld.so will
3486 not process them. */
3487 if (unresolved_reloc
3488 && !((input_section->flags & SEC_DEBUGGING) != 0
3489 && h->def_dynamic))
3490 {
3491 (*_bfd_error_handler)
3492 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3493 input_bfd,
3494 input_section,
3495 (long) rel->r_offset,
3496 howto->name,
3497 h->root.root.string);
3498 return FALSE;
3499 }
3500
3501 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
3502 contents, rel->r_offset,
3503 relocation, rel->r_addend);
3504
3505 if (r != bfd_reloc_ok)
3506 {
3507 const char *name;
3508
3509 if (h != NULL)
3510 name = h->root.root.string;
3511 else
3512 {
3513 name = bfd_elf_string_from_elf_section (input_bfd,
3514 symtab_hdr->sh_link,
3515 sym->st_name);
3516 if (name == NULL)
3517 return FALSE;
3518 if (*name == '\0')
3519 name = bfd_section_name (input_bfd, sec);
3520 }
3521
3522 if (r == bfd_reloc_overflow)
3523 {
3524 if (!(info->callbacks->reloc_overflow
3525 (info, (h ? &h->root : NULL), name, howto->name,
3526 (bfd_vma) 0, input_bfd, input_section,
3527 rel->r_offset)))
3528 return FALSE;
3529 }
3530 else
3531 {
3532 (*_bfd_error_handler)
3533 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
3534 input_bfd, input_section,
3535 (long) rel->r_offset, name, (int) r);
3536 return FALSE;
3537 }
3538 }
3539 }
3540
3541 return TRUE;
3542 }
3543
3544 /* Install an M_68K_PC32 relocation against VALUE at offset OFFSET
3545 into section SEC. */
3546
3547 static void
3548 elf_m68k_install_pc32 (asection *sec, bfd_vma offset, bfd_vma value)
3549 {
3550 /* Make VALUE PC-relative. */
3551 value -= sec->output_section->vma + offset;
3552
3553 /* Apply any in-place addend. */
3554 value += bfd_get_32 (sec->owner, sec->contents + offset);
3555
3556 bfd_put_32 (sec->owner, value, sec->contents + offset);
3557 }
3558
3559 /* Finish up dynamic symbol handling. We set the contents of various
3560 dynamic sections here. */
3561
3562 static bfd_boolean
3563 elf_m68k_finish_dynamic_symbol (output_bfd, info, h, sym)
3564 bfd *output_bfd;
3565 struct bfd_link_info *info;
3566 struct elf_link_hash_entry *h;
3567 Elf_Internal_Sym *sym;
3568 {
3569 bfd *dynobj;
3570
3571 dynobj = elf_hash_table (info)->dynobj;
3572
3573 if (h->plt.offset != (bfd_vma) -1)
3574 {
3575 const struct elf_m68k_plt_info *plt_info;
3576 asection *splt;
3577 asection *sgot;
3578 asection *srela;
3579 bfd_vma plt_index;
3580 bfd_vma got_offset;
3581 Elf_Internal_Rela rela;
3582 bfd_byte *loc;
3583
3584 /* This symbol has an entry in the procedure linkage table. Set
3585 it up. */
3586
3587 BFD_ASSERT (h->dynindx != -1);
3588
3589 plt_info = elf_m68k_hash_table (info)->plt_info;
3590 splt = bfd_get_section_by_name (dynobj, ".plt");
3591 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3592 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
3593 BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL);
3594
3595 /* Get the index in the procedure linkage table which
3596 corresponds to this symbol. This is the index of this symbol
3597 in all the symbols for which we are making plt entries. The
3598 first entry in the procedure linkage table is reserved. */
3599 plt_index = (h->plt.offset / plt_info->size) - 1;
3600
3601 /* Get the offset into the .got table of the entry that
3602 corresponds to this function. Each .got entry is 4 bytes.
3603 The first three are reserved. */
3604 got_offset = (plt_index + 3) * 4;
3605
3606 memcpy (splt->contents + h->plt.offset,
3607 plt_info->symbol_entry,
3608 plt_info->size);
3609
3610 elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.got,
3611 (sgot->output_section->vma
3612 + sgot->output_offset
3613 + got_offset));
3614
3615 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela),
3616 splt->contents
3617 + h->plt.offset
3618 + plt_info->symbol_resolve_entry + 2);
3619
3620 elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.plt,
3621 splt->output_section->vma);
3622
3623 /* Fill in the entry in the global offset table. */
3624 bfd_put_32 (output_bfd,
3625 (splt->output_section->vma
3626 + splt->output_offset
3627 + h->plt.offset
3628 + plt_info->symbol_resolve_entry),
3629 sgot->contents + got_offset);
3630
3631 /* Fill in the entry in the .rela.plt section. */
3632 rela.r_offset = (sgot->output_section->vma
3633 + sgot->output_offset
3634 + got_offset);
3635 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_JMP_SLOT);
3636 rela.r_addend = 0;
3637 loc = srela->contents + plt_index * sizeof (Elf32_External_Rela);
3638 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
3639
3640 if (!h->def_regular)
3641 {
3642 /* Mark the symbol as undefined, rather than as defined in
3643 the .plt section. Leave the value alone. */
3644 sym->st_shndx = SHN_UNDEF;
3645 }
3646 }
3647
3648 if (elf_m68k_hash_entry (h)->glist != NULL)
3649 {
3650 asection *sgot;
3651 asection *srela;
3652 struct elf_m68k_got_entry *got_entry;
3653
3654 /* This symbol has an entry in the global offset table. Set it
3655 up. */
3656
3657 sgot = bfd_get_section_by_name (dynobj, ".got");
3658 srela = bfd_get_section_by_name (dynobj, ".rela.got");
3659 BFD_ASSERT (sgot != NULL && srela != NULL);
3660
3661 got_entry = elf_m68k_hash_entry (h)->glist;
3662
3663 while (got_entry != NULL)
3664 {
3665 Elf_Internal_Rela rela;
3666 bfd_byte *loc;
3667
3668 rela.r_offset = (sgot->output_section->vma
3669 + sgot->output_offset
3670 + (got_entry->u.s2.offset &~ (bfd_vma) 1));
3671
3672 /* If this is a -Bsymbolic link, and the symbol is defined
3673 locally, we just want to emit a RELATIVE reloc. Likewise if
3674 the symbol was forced to be local because of a version file.
3675 The entry in the global offset table will already have been
3676 initialized in the relocate_section function. */
3677 if (info->shared
3678 && (info->symbolic
3679 || h->dynindx == -1
3680 || h->forced_local)
3681 && h->def_regular)
3682 {
3683 rela.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
3684 rela.r_addend = bfd_get_signed_32 (output_bfd,
3685 (sgot->contents
3686 + (got_entry->u.s2.offset
3687 &~ (bfd_vma) 1)));
3688 }
3689 else
3690 {
3691 bfd_put_32 (output_bfd, (bfd_vma) 0,
3692 sgot->contents + (got_entry->u.s2.offset
3693 &~ (bfd_vma) 1));
3694 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_GLOB_DAT);
3695 rela.r_addend = 0;
3696 }
3697
3698 loc = srela->contents;
3699 loc += srela->reloc_count++ * sizeof (Elf32_External_Rela);
3700 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
3701
3702 got_entry = got_entry->u.s2.next;
3703 }
3704 }
3705
3706 if (h->needs_copy)
3707 {
3708 asection *s;
3709 Elf_Internal_Rela rela;
3710 bfd_byte *loc;
3711
3712 /* This symbol needs a copy reloc. Set it up. */
3713
3714 BFD_ASSERT (h->dynindx != -1
3715 && (h->root.type == bfd_link_hash_defined
3716 || h->root.type == bfd_link_hash_defweak));
3717
3718 s = bfd_get_section_by_name (h->root.u.def.section->owner,
3719 ".rela.bss");
3720 BFD_ASSERT (s != NULL);
3721
3722 rela.r_offset = (h->root.u.def.value
3723 + h->root.u.def.section->output_section->vma
3724 + h->root.u.def.section->output_offset);
3725 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_COPY);
3726 rela.r_addend = 0;
3727 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
3728 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
3729 }
3730
3731 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3732 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
3733 || h == elf_hash_table (info)->hgot)
3734 sym->st_shndx = SHN_ABS;
3735
3736 return TRUE;
3737 }
3738
3739 /* Finish up the dynamic sections. */
3740
3741 static bfd_boolean
3742 elf_m68k_finish_dynamic_sections (output_bfd, info)
3743 bfd *output_bfd;
3744 struct bfd_link_info *info;
3745 {
3746 bfd *dynobj;
3747 asection *sgot;
3748 asection *sdyn;
3749
3750 dynobj = elf_hash_table (info)->dynobj;
3751
3752 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3753 BFD_ASSERT (sgot != NULL);
3754 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3755
3756 if (elf_hash_table (info)->dynamic_sections_created)
3757 {
3758 asection *splt;
3759 Elf32_External_Dyn *dyncon, *dynconend;
3760
3761 splt = bfd_get_section_by_name (dynobj, ".plt");
3762 BFD_ASSERT (splt != NULL && sdyn != NULL);
3763
3764 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3765 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
3766 for (; dyncon < dynconend; dyncon++)
3767 {
3768 Elf_Internal_Dyn dyn;
3769 const char *name;
3770 asection *s;
3771
3772 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3773
3774 switch (dyn.d_tag)
3775 {
3776 default:
3777 break;
3778
3779 case DT_PLTGOT:
3780 name = ".got";
3781 goto get_vma;
3782 case DT_JMPREL:
3783 name = ".rela.plt";
3784 get_vma:
3785 s = bfd_get_section_by_name (output_bfd, name);
3786 BFD_ASSERT (s != NULL);
3787 dyn.d_un.d_ptr = s->vma;
3788 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3789 break;
3790
3791 case DT_PLTRELSZ:
3792 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
3793 BFD_ASSERT (s != NULL);
3794 dyn.d_un.d_val = s->size;
3795 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3796 break;
3797
3798 case DT_RELASZ:
3799 /* The procedure linkage table relocs (DT_JMPREL) should
3800 not be included in the overall relocs (DT_RELA).
3801 Therefore, we override the DT_RELASZ entry here to
3802 make it not include the JMPREL relocs. Since the
3803 linker script arranges for .rela.plt to follow all
3804 other relocation sections, we don't have to worry
3805 about changing the DT_RELA entry. */
3806 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
3807 if (s != NULL)
3808 dyn.d_un.d_val -= s->size;
3809 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3810 break;
3811 }
3812 }
3813
3814 /* Fill in the first entry in the procedure linkage table. */
3815 if (splt->size > 0)
3816 {
3817 const struct elf_m68k_plt_info *plt_info;
3818
3819 plt_info = elf_m68k_hash_table (info)->plt_info;
3820 memcpy (splt->contents, plt_info->plt0_entry, plt_info->size);
3821
3822 elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got4,
3823 (sgot->output_section->vma
3824 + sgot->output_offset
3825 + 4));
3826
3827 elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got8,
3828 (sgot->output_section->vma
3829 + sgot->output_offset
3830 + 8));
3831
3832 elf_section_data (splt->output_section)->this_hdr.sh_entsize
3833 = plt_info->size;
3834 }
3835 }
3836
3837 /* Fill in the first three entries in the global offset table. */
3838 if (sgot->size > 0)
3839 {
3840 if (sdyn == NULL)
3841 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
3842 else
3843 bfd_put_32 (output_bfd,
3844 sdyn->output_section->vma + sdyn->output_offset,
3845 sgot->contents);
3846 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
3847 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
3848 }
3849
3850 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
3851
3852 return TRUE;
3853 }
3854
3855 /* Given a .data section and a .emreloc in-memory section, store
3856 relocation information into the .emreloc section which can be
3857 used at runtime to relocate the section. This is called by the
3858 linker when the --embedded-relocs switch is used. This is called
3859 after the add_symbols entry point has been called for all the
3860 objects, and before the final_link entry point is called. */
3861
3862 bfd_boolean
3863 bfd_m68k_elf32_create_embedded_relocs (abfd, info, datasec, relsec, errmsg)
3864 bfd *abfd;
3865 struct bfd_link_info *info;
3866 asection *datasec;
3867 asection *relsec;
3868 char **errmsg;
3869 {
3870 Elf_Internal_Shdr *symtab_hdr;
3871 Elf_Internal_Sym *isymbuf = NULL;
3872 Elf_Internal_Rela *internal_relocs = NULL;
3873 Elf_Internal_Rela *irel, *irelend;
3874 bfd_byte *p;
3875 bfd_size_type amt;
3876
3877 BFD_ASSERT (! info->relocatable);
3878
3879 *errmsg = NULL;
3880
3881 if (datasec->reloc_count == 0)
3882 return TRUE;
3883
3884 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
3885
3886 /* Get a copy of the native relocations. */
3887 internal_relocs = (_bfd_elf_link_read_relocs
3888 (abfd, datasec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
3889 info->keep_memory));
3890 if (internal_relocs == NULL)
3891 goto error_return;
3892
3893 amt = (bfd_size_type) datasec->reloc_count * 12;
3894 relsec->contents = (bfd_byte *) bfd_alloc (abfd, amt);
3895 if (relsec->contents == NULL)
3896 goto error_return;
3897
3898 p = relsec->contents;
3899
3900 irelend = internal_relocs + datasec->reloc_count;
3901 for (irel = internal_relocs; irel < irelend; irel++, p += 12)
3902 {
3903 asection *targetsec;
3904
3905 /* We are going to write a four byte longword into the runtime
3906 reloc section. The longword will be the address in the data
3907 section which must be relocated. It is followed by the name
3908 of the target section NUL-padded or truncated to 8
3909 characters. */
3910
3911 /* We can only relocate absolute longword relocs at run time. */
3912 if (ELF32_R_TYPE (irel->r_info) != (int) R_68K_32)
3913 {
3914 *errmsg = _("unsupported reloc type");
3915 bfd_set_error (bfd_error_bad_value);
3916 goto error_return;
3917 }
3918
3919 /* Get the target section referred to by the reloc. */
3920 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
3921 {
3922 /* A local symbol. */
3923 Elf_Internal_Sym *isym;
3924
3925 /* Read this BFD's local symbols if we haven't done so already. */
3926 if (isymbuf == NULL)
3927 {
3928 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
3929 if (isymbuf == NULL)
3930 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
3931 symtab_hdr->sh_info, 0,
3932 NULL, NULL, NULL);
3933 if (isymbuf == NULL)
3934 goto error_return;
3935 }
3936
3937 isym = isymbuf + ELF32_R_SYM (irel->r_info);
3938 targetsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3939 }
3940 else
3941 {
3942 unsigned long indx;
3943 struct elf_link_hash_entry *h;
3944
3945 /* An external symbol. */
3946 indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
3947 h = elf_sym_hashes (abfd)[indx];
3948 BFD_ASSERT (h != NULL);
3949 if (h->root.type == bfd_link_hash_defined
3950 || h->root.type == bfd_link_hash_defweak)
3951 targetsec = h->root.u.def.section;
3952 else
3953 targetsec = NULL;
3954 }
3955
3956 bfd_put_32 (abfd, irel->r_offset + datasec->output_offset, p);
3957 memset (p + 4, 0, 8);
3958 if (targetsec != NULL)
3959 strncpy ((char *) p + 4, targetsec->output_section->name, 8);
3960 }
3961
3962 if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf)
3963 free (isymbuf);
3964 if (internal_relocs != NULL
3965 && elf_section_data (datasec)->relocs != internal_relocs)
3966 free (internal_relocs);
3967 return TRUE;
3968
3969 error_return:
3970 if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf)
3971 free (isymbuf);
3972 if (internal_relocs != NULL
3973 && elf_section_data (datasec)->relocs != internal_relocs)
3974 free (internal_relocs);
3975 return FALSE;
3976 }
3977
3978 /* Set target options. */
3979
3980 void
3981 bfd_elf_m68k_set_target_options (struct bfd_link_info *info, int got_handling)
3982 {
3983 struct elf_m68k_link_hash_table *htab;
3984
3985 htab = elf_m68k_hash_table (info);
3986
3987 switch (got_handling)
3988 {
3989 case 0:
3990 /* --got=single. */
3991 htab->local_gp_p = FALSE;
3992 htab->use_neg_got_offsets_p = FALSE;
3993 htab->allow_multigot_p = FALSE;
3994 break;
3995
3996 case 1:
3997 /* --got=negative. */
3998 htab->local_gp_p = TRUE;
3999 htab->use_neg_got_offsets_p = TRUE;
4000 htab->allow_multigot_p = FALSE;
4001 break;
4002
4003 case 2:
4004 /* --got=multigot. */
4005 htab->local_gp_p = TRUE;
4006 htab->use_neg_got_offsets_p = TRUE;
4007 htab->allow_multigot_p = TRUE;
4008 break;
4009
4010 default:
4011 BFD_ASSERT (FALSE);
4012 }
4013 }
4014
4015 static enum elf_reloc_type_class
4016 elf32_m68k_reloc_type_class (rela)
4017 const Elf_Internal_Rela *rela;
4018 {
4019 switch ((int) ELF32_R_TYPE (rela->r_info))
4020 {
4021 case R_68K_RELATIVE:
4022 return reloc_class_relative;
4023 case R_68K_JMP_SLOT:
4024 return reloc_class_plt;
4025 case R_68K_COPY:
4026 return reloc_class_copy;
4027 default:
4028 return reloc_class_normal;
4029 }
4030 }
4031
4032 /* Return address for Ith PLT stub in section PLT, for relocation REL
4033 or (bfd_vma) -1 if it should not be included. */
4034
4035 static bfd_vma
4036 elf_m68k_plt_sym_val (bfd_vma i, const asection *plt,
4037 const arelent *rel ATTRIBUTE_UNUSED)
4038 {
4039 return plt->vma + (i + 1) * elf_m68k_get_plt_info (plt->owner)->size;
4040 }
4041
4042 #define TARGET_BIG_SYM bfd_elf32_m68k_vec
4043 #define TARGET_BIG_NAME "elf32-m68k"
4044 #define ELF_MACHINE_CODE EM_68K
4045 #define ELF_MAXPAGESIZE 0x2000
4046 #define elf_backend_create_dynamic_sections \
4047 _bfd_elf_create_dynamic_sections
4048 #define bfd_elf32_bfd_link_hash_table_create \
4049 elf_m68k_link_hash_table_create
4050 /* ??? Should it be this macro or bfd_elfNN_bfd_link_hash_table_create? */
4051 #define bfd_elf32_bfd_link_hash_table_free \
4052 elf_m68k_link_hash_table_free
4053 #define bfd_elf32_bfd_final_link bfd_elf_final_link
4054
4055 #define elf_backend_check_relocs elf_m68k_check_relocs
4056 #define elf_backend_always_size_sections \
4057 elf_m68k_always_size_sections
4058 #define elf_backend_adjust_dynamic_symbol \
4059 elf_m68k_adjust_dynamic_symbol
4060 #define elf_backend_size_dynamic_sections \
4061 elf_m68k_size_dynamic_sections
4062 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4063 #define elf_backend_relocate_section elf_m68k_relocate_section
4064 #define elf_backend_finish_dynamic_symbol \
4065 elf_m68k_finish_dynamic_symbol
4066 #define elf_backend_finish_dynamic_sections \
4067 elf_m68k_finish_dynamic_sections
4068 #define elf_backend_gc_mark_hook elf_m68k_gc_mark_hook
4069 #define elf_backend_gc_sweep_hook elf_m68k_gc_sweep_hook
4070 #define elf_backend_copy_indirect_symbol elf_m68k_copy_indirect_symbol
4071 #define bfd_elf32_bfd_merge_private_bfd_data \
4072 elf32_m68k_merge_private_bfd_data
4073 #define bfd_elf32_bfd_set_private_flags \
4074 elf32_m68k_set_private_flags
4075 #define bfd_elf32_bfd_print_private_bfd_data \
4076 elf32_m68k_print_private_bfd_data
4077 #define elf_backend_reloc_type_class elf32_m68k_reloc_type_class
4078 #define elf_backend_plt_sym_val elf_m68k_plt_sym_val
4079 #define elf_backend_object_p elf32_m68k_object_p
4080
4081 #define elf_backend_can_gc_sections 1
4082 #define elf_backend_can_refcount 1
4083 #define elf_backend_want_got_plt 1
4084 #define elf_backend_plt_readonly 1
4085 #define elf_backend_want_plt_sym 0
4086 #define elf_backend_got_header_size 12
4087 #define elf_backend_rela_normal 1
4088
4089 #include "elf32-target.h"
This page took 0.142757 seconds and 5 git commands to generate.