Put .dynbss and .rel.bss shortcuts in main elf hash table
[deliverable/binutils-gdb.git] / bfd / elf32-nios2.c
1 /* 32-bit ELF support for Nios II.
2 Copyright (C) 2012-2016 Free Software Foundation, Inc.
3 Contributed by Nigel Gray (ngray@altera.com).
4 Contributed by Mentor Graphics, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 /* This file handles Altera Nios II ELF targets. */
24
25 #include "sysdep.h"
26 #include "bfd.h"
27 #include "libbfd.h"
28 #include "bfdlink.h"
29 #include "genlink.h"
30 #include "elf-bfd.h"
31 #include "elf/nios2.h"
32 #include "opcode/nios2.h"
33 #include "elf32-nios2.h"
34
35 /* Use RELA relocations. */
36 #ifndef USE_RELA
37 #define USE_RELA
38 #endif
39
40 #ifdef USE_REL
41 #undef USE_REL
42 #endif
43
44 /* Forward declarations. */
45 static bfd_reloc_status_type nios2_elf32_ignore_reloc
46 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
47 static bfd_reloc_status_type nios2_elf32_hi16_relocate
48 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
49 static bfd_reloc_status_type nios2_elf32_lo16_relocate
50 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
51 static bfd_reloc_status_type nios2_elf32_hiadj16_relocate
52 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
53 static bfd_reloc_status_type nios2_elf32_pcrel_lo16_relocate
54 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
55 static bfd_reloc_status_type nios2_elf32_pcrel_hiadj16_relocate
56 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
57 static bfd_reloc_status_type nios2_elf32_pcrel16_relocate
58 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
59 static bfd_reloc_status_type nios2_elf32_call26_relocate
60 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
61 static bfd_reloc_status_type nios2_elf32_gprel_relocate
62 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
63 static bfd_reloc_status_type nios2_elf32_ujmp_relocate
64 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
65 static bfd_reloc_status_type nios2_elf32_cjmp_relocate
66 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
67 static bfd_reloc_status_type nios2_elf32_callr_relocate
68 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
69
70 /* Target vector. */
71 extern const bfd_target nios2_elf32_le_vec;
72 extern const bfd_target nios2_elf32_be_vec;
73
74 /* Offset of tp and dtp pointers from start of TLS block. */
75 #define TP_OFFSET 0x7000
76 #define DTP_OFFSET 0x8000
77
78 /* The relocation tables used for SHT_REL sections. There are separate
79 tables for R1 and R2 encodings. */
80 static reloc_howto_type elf_nios2_r1_howto_table_rel[] = {
81 /* No relocation. */
82 HOWTO (R_NIOS2_NONE, /* type */
83 0, /* rightshift */
84 3, /* size (0 = byte, 1 = short, 2 = long) */
85 0, /* bitsize */
86 FALSE, /* pc_relative */
87 0, /* bitpos */
88 complain_overflow_dont, /* complain_on_overflow */
89 bfd_elf_generic_reloc, /* special_function */
90 "R_NIOS2_NONE", /* name */
91 FALSE, /* partial_inplace */
92 0, /* src_mask */
93 0, /* dst_mask */
94 FALSE), /* pcrel_offset */
95
96 /* 16-bit signed immediate relocation. */
97 HOWTO (R_NIOS2_S16, /* type */
98 0, /* rightshift */
99 2, /* size (0 = byte, 1 = short, 2 = long) */
100 16, /* bitsize */
101 FALSE, /* pc_relative */
102 6, /* bitpos */
103 complain_overflow_signed, /* complain on overflow */
104 bfd_elf_generic_reloc, /* special function */
105 "R_NIOS2_S16", /* name */
106 FALSE, /* partial_inplace */
107 0x003fffc0, /* src_mask */
108 0x003fffc0, /* dest_mask */
109 FALSE), /* pcrel_offset */
110
111 /* 16-bit unsigned immediate relocation. */
112 HOWTO (R_NIOS2_U16, /* type */
113 0, /* rightshift */
114 2, /* size (0 = byte, 1 = short, 2 = long) */
115 16, /* bitsize */
116 FALSE, /* pc_relative */
117 6, /* bitpos */
118 complain_overflow_unsigned, /* complain on overflow */
119 bfd_elf_generic_reloc, /* special function */
120 "R_NIOS2_U16", /* name */
121 FALSE, /* partial_inplace */
122 0x003fffc0, /* src_mask */
123 0x003fffc0, /* dest_mask */
124 FALSE), /* pcrel_offset */
125
126 HOWTO (R_NIOS2_PCREL16, /* type */
127 0, /* rightshift */
128 2, /* size (0 = byte, 1 = short, 2 = long) */
129 16, /* bitsize */
130 TRUE, /* pc_relative */
131 6, /* bitpos */
132 complain_overflow_signed, /* complain on overflow */
133 nios2_elf32_pcrel16_relocate, /* special function */
134 "R_NIOS2_PCREL16", /* name */
135 FALSE, /* partial_inplace */
136 0x003fffc0, /* src_mask */
137 0x003fffc0, /* dest_mask */
138 TRUE), /* pcrel_offset */
139
140 HOWTO (R_NIOS2_CALL26, /* type */
141 2, /* rightshift */
142 2, /* size (0 = byte, 1 = short, 2 = long) */
143 26, /* bitsize */
144 FALSE, /* pc_relative */
145 6, /* bitpos */
146 complain_overflow_dont, /* complain on overflow */
147 nios2_elf32_call26_relocate, /* special function */
148 "R_NIOS2_CALL26", /* name */
149 FALSE, /* partial_inplace */
150 0xffffffc0, /* src_mask */
151 0xffffffc0, /* dst_mask */
152 FALSE), /* pcrel_offset */
153
154 HOWTO (R_NIOS2_IMM5,
155 0,
156 2,
157 5,
158 FALSE,
159 6,
160 complain_overflow_bitfield,
161 bfd_elf_generic_reloc,
162 "R_NIOS2_IMM5",
163 FALSE,
164 0x000007c0,
165 0x000007c0,
166 FALSE),
167
168 HOWTO (R_NIOS2_CACHE_OPX,
169 0,
170 2,
171 5,
172 FALSE,
173 22,
174 complain_overflow_bitfield,
175 bfd_elf_generic_reloc,
176 "R_NIOS2_CACHE_OPX",
177 FALSE,
178 0x07c00000,
179 0x07c00000,
180 FALSE),
181
182 HOWTO (R_NIOS2_IMM6,
183 0,
184 2,
185 6,
186 FALSE,
187 6,
188 complain_overflow_bitfield,
189 bfd_elf_generic_reloc,
190 "R_NIOS2_IMM6",
191 FALSE,
192 0x00000fc0,
193 0x00000fc0,
194 FALSE),
195
196 HOWTO (R_NIOS2_IMM8,
197 0,
198 2,
199 8,
200 FALSE,
201 6,
202 complain_overflow_bitfield,
203 bfd_elf_generic_reloc,
204 "R_NIOS2_IMM8",
205 FALSE,
206 0x00003fc0,
207 0x00003fc0,
208 FALSE),
209
210 HOWTO (R_NIOS2_HI16,
211 0,
212 2,
213 32,
214 FALSE,
215 6,
216 complain_overflow_dont,
217 nios2_elf32_hi16_relocate,
218 "R_NIOS2_HI16",
219 FALSE,
220 0x003fffc0,
221 0x003fffc0,
222 FALSE),
223
224 HOWTO (R_NIOS2_LO16,
225 0,
226 2,
227 32,
228 FALSE,
229 6,
230 complain_overflow_dont,
231 nios2_elf32_lo16_relocate,
232 "R_NIOS2_LO16",
233 FALSE,
234 0x003fffc0,
235 0x003fffc0,
236 FALSE),
237
238 HOWTO (R_NIOS2_HIADJ16,
239 0,
240 2,
241 32,
242 FALSE,
243 6,
244 complain_overflow_dont,
245 nios2_elf32_hiadj16_relocate,
246 "R_NIOS2_HIADJ16",
247 FALSE,
248 0x003fffc0,
249 0x003fffc0,
250 FALSE),
251
252 HOWTO (R_NIOS2_BFD_RELOC_32,
253 0,
254 2, /* long */
255 32,
256 FALSE,
257 0,
258 complain_overflow_dont,
259 bfd_elf_generic_reloc,
260 "R_NIOS2_BFD_RELOC32",
261 FALSE,
262 0xffffffff,
263 0xffffffff,
264 FALSE),
265
266 HOWTO (R_NIOS2_BFD_RELOC_16,
267 0,
268 1, /* short */
269 16,
270 FALSE,
271 0,
272 complain_overflow_bitfield,
273 bfd_elf_generic_reloc,
274 "R_NIOS2_BFD_RELOC16",
275 FALSE,
276 0x0000ffff,
277 0x0000ffff,
278 FALSE),
279
280 HOWTO (R_NIOS2_BFD_RELOC_8,
281 0,
282 0, /* byte */
283 8,
284 FALSE,
285 0,
286 complain_overflow_bitfield,
287 bfd_elf_generic_reloc,
288 "R_NIOS2_BFD_RELOC8",
289 FALSE,
290 0x000000ff,
291 0x000000ff,
292 FALSE),
293
294 HOWTO (R_NIOS2_GPREL,
295 0,
296 2,
297 32,
298 FALSE,
299 6,
300 complain_overflow_dont,
301 nios2_elf32_gprel_relocate,
302 "R_NIOS2_GPREL",
303 FALSE,
304 0x003fffc0,
305 0x003fffc0,
306 FALSE),
307
308 HOWTO (R_NIOS2_GNU_VTINHERIT,
309 0,
310 2, /* short */
311 0,
312 FALSE,
313 0,
314 complain_overflow_dont,
315 NULL,
316 "R_NIOS2_GNU_VTINHERIT",
317 FALSE,
318 0,
319 0,
320 FALSE),
321
322 HOWTO (R_NIOS2_GNU_VTENTRY,
323 0,
324 2, /* byte */
325 0,
326 FALSE,
327 0,
328 complain_overflow_dont,
329 _bfd_elf_rel_vtable_reloc_fn,
330 "R_NIOS2_GNU_VTENTRY",
331 FALSE,
332 0,
333 0,
334 FALSE),
335
336 HOWTO (R_NIOS2_UJMP,
337 0,
338 2,
339 32,
340 FALSE,
341 6,
342 complain_overflow_dont,
343 nios2_elf32_ujmp_relocate,
344 "R_NIOS2_UJMP",
345 FALSE,
346 0x003fffc0,
347 0x003fffc0,
348 FALSE),
349
350 HOWTO (R_NIOS2_CJMP,
351 0,
352 2,
353 32,
354 FALSE,
355 6,
356 complain_overflow_dont,
357 nios2_elf32_cjmp_relocate,
358 "R_NIOS2_CJMP",
359 FALSE,
360 0x003fffc0,
361 0x003fffc0,
362 FALSE),
363
364 HOWTO (R_NIOS2_CALLR,
365 0,
366 2,
367 32,
368 FALSE,
369 6,
370 complain_overflow_dont,
371 nios2_elf32_callr_relocate,
372 "R_NIOS2_CALLR",
373 FALSE,
374 0x003fffc0,
375 0x003fffc0,
376 FALSE),
377
378 HOWTO (R_NIOS2_ALIGN,
379 0,
380 2,
381 0,
382 FALSE,
383 0,
384 complain_overflow_dont,
385 nios2_elf32_ignore_reloc,
386 "R_NIOS2_ALIGN",
387 FALSE,
388 0,
389 0,
390 TRUE),
391
392
393 HOWTO (R_NIOS2_GOT16,
394 0,
395 2,
396 16,
397 FALSE,
398 6,
399 complain_overflow_bitfield,
400 bfd_elf_generic_reloc,
401 "R_NIOS2_GOT16",
402 FALSE,
403 0x003fffc0,
404 0x003fffc0,
405 FALSE),
406
407 HOWTO (R_NIOS2_CALL16,
408 0,
409 2,
410 16,
411 FALSE,
412 6,
413 complain_overflow_bitfield,
414 bfd_elf_generic_reloc,
415 "R_NIOS2_CALL16",
416 FALSE,
417 0x003fffc0,
418 0x003fffc0,
419 FALSE),
420
421 HOWTO (R_NIOS2_GOTOFF_LO,
422 0,
423 2,
424 16,
425 FALSE,
426 6,
427 complain_overflow_dont,
428 bfd_elf_generic_reloc,
429 "R_NIOS2_GOTOFF_LO",
430 FALSE,
431 0x003fffc0,
432 0x003fffc0,
433 FALSE),
434
435 HOWTO (R_NIOS2_GOTOFF_HA,
436 0,
437 2,
438 16,
439 FALSE,
440 6,
441 complain_overflow_dont,
442 bfd_elf_generic_reloc,
443 "R_NIOS2_GOTOFF_HA",
444 FALSE,
445 0x003fffc0,
446 0x003fffc0,
447 FALSE),
448
449 HOWTO (R_NIOS2_PCREL_LO,
450 0,
451 2,
452 16,
453 TRUE,
454 6,
455 complain_overflow_dont,
456 nios2_elf32_pcrel_lo16_relocate,
457 "R_NIOS2_PCREL_LO",
458 FALSE,
459 0x003fffc0,
460 0x003fffc0,
461 TRUE),
462
463 HOWTO (R_NIOS2_PCREL_HA,
464 0,
465 2,
466 16,
467 FALSE, /* This is a PC-relative relocation, but we need to subtract
468 PC ourselves before the HIADJ. */
469 6,
470 complain_overflow_dont,
471 nios2_elf32_pcrel_hiadj16_relocate,
472 "R_NIOS2_PCREL_HA",
473 FALSE,
474 0x003fffc0,
475 0x003fffc0,
476 TRUE),
477
478 HOWTO (R_NIOS2_TLS_GD16,
479 0,
480 2,
481 16,
482 FALSE,
483 6,
484 complain_overflow_bitfield,
485 bfd_elf_generic_reloc,
486 "R_NIOS2_TLS_GD16",
487 FALSE,
488 0x003fffc0,
489 0x003fffc0,
490 FALSE),
491
492 HOWTO (R_NIOS2_TLS_LDM16,
493 0,
494 2,
495 16,
496 FALSE,
497 6,
498 complain_overflow_bitfield,
499 bfd_elf_generic_reloc,
500 "R_NIOS2_TLS_LDM16",
501 FALSE,
502 0x003fffc0,
503 0x003fffc0,
504 FALSE),
505
506 HOWTO (R_NIOS2_TLS_LDO16,
507 0,
508 2,
509 16,
510 FALSE,
511 6,
512 complain_overflow_bitfield,
513 bfd_elf_generic_reloc,
514 "R_NIOS2_TLS_LDO16",
515 FALSE,
516 0x003fffc0,
517 0x003fffc0,
518 FALSE),
519
520 HOWTO (R_NIOS2_TLS_IE16,
521 0,
522 2,
523 16,
524 FALSE,
525 6,
526 complain_overflow_bitfield,
527 bfd_elf_generic_reloc,
528 "R_NIOS2_TLS_IE16",
529 FALSE,
530 0x003fffc0,
531 0x003fffc0,
532 FALSE),
533
534 HOWTO (R_NIOS2_TLS_LE16,
535 0,
536 2,
537 16,
538 FALSE,
539 6,
540 complain_overflow_bitfield,
541 bfd_elf_generic_reloc,
542 "R_NIOS2_TLS_LE16",
543 FALSE,
544 0x003fffc0,
545 0x003fffc0,
546 FALSE),
547
548 HOWTO (R_NIOS2_TLS_DTPMOD,
549 0,
550 2,
551 32,
552 FALSE,
553 0,
554 complain_overflow_dont,
555 bfd_elf_generic_reloc,
556 "R_NIOS2_TLS_DTPMOD",
557 FALSE,
558 0xffffffff,
559 0xffffffff,
560 FALSE),
561
562 HOWTO (R_NIOS2_TLS_DTPREL,
563 0,
564 2,
565 32,
566 FALSE,
567 0,
568 complain_overflow_dont,
569 bfd_elf_generic_reloc,
570 "R_NIOS2_TLS_DTPREL",
571 FALSE,
572 0xffffffff,
573 0xffffffff,
574 FALSE),
575
576 HOWTO (R_NIOS2_TLS_TPREL,
577 0,
578 2,
579 32,
580 FALSE,
581 0,
582 complain_overflow_dont,
583 bfd_elf_generic_reloc,
584 "R_NIOS2_TLS_TPREL",
585 FALSE,
586 0xffffffff,
587 0xffffffff,
588 FALSE),
589
590 HOWTO (R_NIOS2_COPY,
591 0,
592 2,
593 32,
594 FALSE,
595 0,
596 complain_overflow_dont,
597 bfd_elf_generic_reloc,
598 "R_NIOS2_COPY",
599 FALSE,
600 0,
601 0,
602 FALSE),
603
604 HOWTO (R_NIOS2_GLOB_DAT,
605 0,
606 2,
607 32,
608 FALSE,
609 0,
610 complain_overflow_dont,
611 bfd_elf_generic_reloc,
612 "R_NIOS2_GLOB_DAT",
613 FALSE,
614 0xffffffff,
615 0xffffffff,
616 FALSE),
617
618 HOWTO (R_NIOS2_JUMP_SLOT,
619 0,
620 2,
621 32,
622 FALSE,
623 0,
624 complain_overflow_dont,
625 bfd_elf_generic_reloc,
626 "R_NIOS2_JUMP_SLOT",
627 FALSE,
628 0xffffffff,
629 0xffffffff,
630 FALSE),
631
632 HOWTO (R_NIOS2_RELATIVE,
633 0,
634 2,
635 32,
636 FALSE,
637 0,
638 complain_overflow_dont,
639 bfd_elf_generic_reloc,
640 "R_NIOS2_RELATIVE",
641 FALSE,
642 0xffffffff,
643 0xffffffff,
644 FALSE),
645
646 HOWTO (R_NIOS2_GOTOFF,
647 0,
648 2,
649 32,
650 FALSE,
651 0,
652 complain_overflow_dont,
653 bfd_elf_generic_reloc,
654 "R_NIOS2_GOTOFF",
655 FALSE,
656 0xffffffff,
657 0xffffffff,
658 FALSE),
659
660 HOWTO (R_NIOS2_CALL26_NOAT, /* type */
661 2, /* rightshift */
662 2, /* size (0 = byte, 1 = short, 2 = long) */
663 26, /* bitsize */
664 FALSE, /* pc_relative */
665 6, /* bitpos */
666 complain_overflow_dont, /* complain on overflow */
667 nios2_elf32_call26_relocate, /* special function */
668 "R_NIOS2_CALL26_NOAT", /* name */
669 FALSE, /* partial_inplace */
670 0xffffffc0, /* src_mask */
671 0xffffffc0, /* dst_mask */
672 FALSE), /* pcrel_offset */
673
674 HOWTO (R_NIOS2_GOT_LO,
675 0,
676 2,
677 16,
678 FALSE,
679 6,
680 complain_overflow_dont,
681 bfd_elf_generic_reloc,
682 "R_NIOS2_GOT_LO",
683 FALSE,
684 0x003fffc0,
685 0x003fffc0,
686 FALSE),
687
688 HOWTO (R_NIOS2_GOT_HA,
689 0,
690 2,
691 16,
692 FALSE,
693 6,
694 complain_overflow_dont,
695 bfd_elf_generic_reloc,
696 "R_NIOS2_GOT_HA",
697 FALSE,
698 0x003fffc0,
699 0x003fffc0,
700 FALSE),
701
702 HOWTO (R_NIOS2_CALL_LO,
703 0,
704 2,
705 16,
706 FALSE,
707 6,
708 complain_overflow_dont,
709 bfd_elf_generic_reloc,
710 "R_NIOS2_CALL_LO",
711 FALSE,
712 0x003fffc0,
713 0x003fffc0,
714 FALSE),
715
716 HOWTO (R_NIOS2_CALL_HA,
717 0,
718 2,
719 16,
720 FALSE,
721 6,
722 complain_overflow_dont,
723 bfd_elf_generic_reloc,
724 "R_NIOS2_CALL_HA",
725 FALSE,
726 0x003fffc0,
727 0x003fffc0,
728 FALSE),
729
730 /* Add other relocations here. */
731 };
732
733 static reloc_howto_type elf_nios2_r2_howto_table_rel[] = {
734 /* No relocation. */
735 HOWTO (R_NIOS2_NONE, /* type */
736 0, /* rightshift */
737 0, /* size (0 = byte, 1 = short, 2 = long) */
738 0, /* bitsize */
739 FALSE, /* pc_relative */
740 0, /* bitpos */
741 complain_overflow_dont, /* complain_on_overflow */
742 bfd_elf_generic_reloc, /* special_function */
743 "R_NIOS2_NONE", /* name */
744 FALSE, /* partial_inplace */
745 0, /* src_mask */
746 0, /* dst_mask */
747 FALSE), /* pcrel_offset */
748
749 /* 16-bit signed immediate relocation. */
750 HOWTO (R_NIOS2_S16, /* type */
751 0, /* rightshift */
752 2, /* size (0 = byte, 1 = short, 2 = long) */
753 16, /* bitsize */
754 FALSE, /* pc_relative */
755 16, /* bitpos */
756 complain_overflow_signed, /* complain on overflow */
757 bfd_elf_generic_reloc, /* special function */
758 "R_NIOS2_S16", /* name */
759 FALSE, /* partial_inplace */
760 0xffff0000, /* src_mask */
761 0xffff0000, /* dest_mask */
762 FALSE), /* pcrel_offset */
763
764 /* 16-bit unsigned immediate relocation. */
765 HOWTO (R_NIOS2_U16, /* type */
766 0, /* rightshift */
767 2, /* size (0 = byte, 1 = short, 2 = long) */
768 16, /* bitsize */
769 FALSE, /* pc_relative */
770 16, /* bitpos */
771 complain_overflow_unsigned, /* complain on overflow */
772 bfd_elf_generic_reloc, /* special function */
773 "R_NIOS2_U16", /* name */
774 FALSE, /* partial_inplace */
775 0xffff0000, /* src_mask */
776 0xffff0000, /* dest_mask */
777 FALSE), /* pcrel_offset */
778
779 HOWTO (R_NIOS2_PCREL16, /* type */
780 0, /* rightshift */
781 2, /* size (0 = byte, 1 = short, 2 = long) */
782 16, /* bitsize */
783 TRUE, /* pc_relative */
784 16, /* bitpos */
785 complain_overflow_signed, /* complain on overflow */
786 nios2_elf32_pcrel16_relocate, /* special function */
787 "R_NIOS2_PCREL16", /* name */
788 FALSE, /* partial_inplace */
789 0xffff0000, /* src_mask */
790 0xffff0000, /* dest_mask */
791 TRUE), /* pcrel_offset */
792
793 HOWTO (R_NIOS2_CALL26, /* type */
794 2, /* rightshift */
795 2, /* size (0 = byte, 1 = short, 2 = long) */
796 26, /* bitsize */
797 FALSE, /* pc_relative */
798 6, /* bitpos */
799 complain_overflow_dont, /* complain on overflow */
800 nios2_elf32_call26_relocate, /* special function */
801 "R_NIOS2_CALL26", /* name */
802 FALSE, /* partial_inplace */
803 0xffffffc0, /* src_mask */
804 0xffffffc0, /* dst_mask */
805 FALSE), /* pcrel_offset */
806
807 HOWTO (R_NIOS2_IMM5,
808 0,
809 2,
810 5,
811 FALSE,
812 21,
813 complain_overflow_bitfield,
814 bfd_elf_generic_reloc,
815 "R_NIOS2_IMM5",
816 FALSE,
817 0x03e00000,
818 0x03e00000,
819 FALSE),
820
821 HOWTO (R_NIOS2_CACHE_OPX,
822 0,
823 2,
824 5,
825 FALSE,
826 11,
827 complain_overflow_bitfield,
828 bfd_elf_generic_reloc,
829 "R_NIOS2_CACHE_OPX",
830 FALSE,
831 0x0000f800,
832 0x0000f800,
833 FALSE),
834
835 HOWTO (R_NIOS2_IMM6,
836 0,
837 2,
838 6,
839 FALSE,
840 26,
841 complain_overflow_bitfield,
842 bfd_elf_generic_reloc,
843 "R_NIOS2_IMM6",
844 FALSE,
845 0xfc000000,
846 0xfc000000,
847 FALSE),
848
849 HOWTO (R_NIOS2_IMM8,
850 0,
851 2,
852 8,
853 FALSE,
854 24,
855 complain_overflow_bitfield,
856 bfd_elf_generic_reloc,
857 "R_NIOS2_IMM8",
858 FALSE,
859 0xff000000,
860 0xff000000,
861 FALSE),
862
863 HOWTO (R_NIOS2_HI16,
864 0,
865 2,
866 32,
867 FALSE,
868 16,
869 complain_overflow_dont,
870 nios2_elf32_hi16_relocate,
871 "R_NIOS2_HI16",
872 FALSE,
873 0xffff0000,
874 0xffff0000,
875 FALSE),
876
877 HOWTO (R_NIOS2_LO16,
878 0,
879 2,
880 32,
881 FALSE,
882 16,
883 complain_overflow_dont,
884 nios2_elf32_lo16_relocate,
885 "R_NIOS2_LO16",
886 FALSE,
887 0xffff0000,
888 0xffff0000,
889 FALSE),
890
891 HOWTO (R_NIOS2_HIADJ16,
892 0,
893 2,
894 32,
895 FALSE,
896 16,
897 complain_overflow_dont,
898 nios2_elf32_hiadj16_relocate,
899 "R_NIOS2_HIADJ16",
900 FALSE,
901 0xffff0000,
902 0xffff0000,
903 FALSE),
904
905 HOWTO (R_NIOS2_BFD_RELOC_32,
906 0,
907 2, /* long */
908 32,
909 FALSE,
910 0,
911 complain_overflow_dont,
912 bfd_elf_generic_reloc,
913 "R_NIOS2_BFD_RELOC32",
914 FALSE,
915 0xffffffff,
916 0xffffffff,
917 FALSE),
918
919 HOWTO (R_NIOS2_BFD_RELOC_16,
920 0,
921 1, /* short */
922 16,
923 FALSE,
924 0,
925 complain_overflow_bitfield,
926 bfd_elf_generic_reloc,
927 "R_NIOS2_BFD_RELOC16",
928 FALSE,
929 0x0000ffff,
930 0x0000ffff,
931 FALSE),
932
933 HOWTO (R_NIOS2_BFD_RELOC_8,
934 0,
935 0, /* byte */
936 8,
937 FALSE,
938 0,
939 complain_overflow_bitfield,
940 bfd_elf_generic_reloc,
941 "R_NIOS2_BFD_RELOC8",
942 FALSE,
943 0x000000ff,
944 0x000000ff,
945 FALSE),
946
947 HOWTO (R_NIOS2_GPREL,
948 0,
949 2,
950 32,
951 FALSE,
952 16,
953 complain_overflow_dont,
954 nios2_elf32_gprel_relocate,
955 "R_NIOS2_GPREL",
956 FALSE,
957 0xffff0000,
958 0xffff0000,
959 FALSE),
960
961 HOWTO (R_NIOS2_GNU_VTINHERIT,
962 0,
963 2, /* short */
964 0,
965 FALSE,
966 0,
967 complain_overflow_dont,
968 NULL,
969 "R_NIOS2_GNU_VTINHERIT",
970 FALSE,
971 0,
972 0,
973 FALSE),
974
975 HOWTO (R_NIOS2_GNU_VTENTRY,
976 0,
977 2, /* byte */
978 0,
979 FALSE,
980 0,
981 complain_overflow_dont,
982 _bfd_elf_rel_vtable_reloc_fn,
983 "R_NIOS2_GNU_VTENTRY",
984 FALSE,
985 0,
986 0,
987 FALSE),
988
989 HOWTO (R_NIOS2_UJMP,
990 0,
991 2,
992 32,
993 FALSE,
994 16,
995 complain_overflow_dont,
996 nios2_elf32_ujmp_relocate,
997 "R_NIOS2_UJMP",
998 FALSE,
999 0xffff0000,
1000 0xffff0000,
1001 FALSE),
1002
1003 HOWTO (R_NIOS2_CJMP,
1004 0,
1005 2,
1006 32,
1007 FALSE,
1008 16,
1009 complain_overflow_dont,
1010 nios2_elf32_cjmp_relocate,
1011 "R_NIOS2_CJMP",
1012 FALSE,
1013 0xffff0000,
1014 0xffff0000,
1015 FALSE),
1016
1017 HOWTO (R_NIOS2_CALLR,
1018 0,
1019 2,
1020 32,
1021 FALSE,
1022 16,
1023 complain_overflow_dont,
1024 nios2_elf32_callr_relocate,
1025 "R_NIOS2_CALLR",
1026 FALSE,
1027 0xffff0000,
1028 0xffff0000,
1029 FALSE),
1030
1031 HOWTO (R_NIOS2_ALIGN,
1032 0,
1033 2,
1034 0,
1035 FALSE,
1036 0,
1037 complain_overflow_dont,
1038 nios2_elf32_ignore_reloc,
1039 "R_NIOS2_ALIGN",
1040 FALSE,
1041 0,
1042 0,
1043 TRUE),
1044
1045 HOWTO (R_NIOS2_GOT16,
1046 0,
1047 2,
1048 16,
1049 FALSE,
1050 16,
1051 complain_overflow_bitfield,
1052 bfd_elf_generic_reloc,
1053 "R_NIOS2_GOT16",
1054 FALSE,
1055 0xffff0000,
1056 0xffff0000,
1057 FALSE),
1058
1059 HOWTO (R_NIOS2_CALL16,
1060 0,
1061 2,
1062 16,
1063 FALSE,
1064 16,
1065 complain_overflow_bitfield,
1066 bfd_elf_generic_reloc,
1067 "R_NIOS2_CALL16",
1068 FALSE,
1069 0xffff0000,
1070 0xffff0000,
1071 FALSE),
1072
1073 HOWTO (R_NIOS2_GOTOFF_LO,
1074 0,
1075 2,
1076 16,
1077 FALSE,
1078 16,
1079 complain_overflow_dont,
1080 bfd_elf_generic_reloc,
1081 "R_NIOS2_GOTOFF_LO",
1082 FALSE,
1083 0xffff0000,
1084 0xffff0000,
1085 FALSE),
1086
1087 HOWTO (R_NIOS2_GOTOFF_HA,
1088 0,
1089 2,
1090 16,
1091 FALSE,
1092 16,
1093 complain_overflow_dont,
1094 bfd_elf_generic_reloc,
1095 "R_NIOS2_GOTOFF_HA",
1096 FALSE,
1097 0xffff0000,
1098 0xffff0000,
1099 FALSE),
1100
1101 HOWTO (R_NIOS2_PCREL_LO,
1102 0,
1103 2,
1104 16,
1105 TRUE,
1106 16,
1107 complain_overflow_dont,
1108 nios2_elf32_pcrel_lo16_relocate,
1109 "R_NIOS2_PCREL_LO",
1110 FALSE,
1111 0xffff0000,
1112 0xffff0000,
1113 TRUE),
1114
1115 HOWTO (R_NIOS2_PCREL_HA,
1116 0,
1117 2,
1118 16,
1119 FALSE, /* This is a PC-relative relocation, but we need to subtract
1120 PC ourselves before the HIADJ. */
1121 16,
1122 complain_overflow_dont,
1123 nios2_elf32_pcrel_hiadj16_relocate,
1124 "R_NIOS2_PCREL_HA",
1125 FALSE,
1126 0xffff0000,
1127 0xffff0000,
1128 TRUE),
1129
1130 HOWTO (R_NIOS2_TLS_GD16,
1131 0,
1132 2,
1133 16,
1134 FALSE,
1135 16,
1136 complain_overflow_bitfield,
1137 bfd_elf_generic_reloc,
1138 "R_NIOS2_TLS_GD16",
1139 FALSE,
1140 0xffff0000,
1141 0xffff0000,
1142 FALSE),
1143
1144 HOWTO (R_NIOS2_TLS_LDM16,
1145 0,
1146 2,
1147 16,
1148 FALSE,
1149 16,
1150 complain_overflow_bitfield,
1151 bfd_elf_generic_reloc,
1152 "R_NIOS2_TLS_LDM16",
1153 FALSE,
1154 0xffff0000,
1155 0xffff0000,
1156 FALSE),
1157
1158 HOWTO (R_NIOS2_TLS_LDO16,
1159 0,
1160 2,
1161 16,
1162 FALSE,
1163 16,
1164 complain_overflow_bitfield,
1165 bfd_elf_generic_reloc,
1166 "R_NIOS2_TLS_LDO16",
1167 FALSE,
1168 0xffff0000,
1169 0xffff0000,
1170 FALSE),
1171
1172 HOWTO (R_NIOS2_TLS_IE16,
1173 0,
1174 2,
1175 16,
1176 FALSE,
1177 16,
1178 complain_overflow_bitfield,
1179 bfd_elf_generic_reloc,
1180 "R_NIOS2_TLS_IE16",
1181 FALSE,
1182 0xffff0000,
1183 0xffff0000,
1184 FALSE),
1185
1186 HOWTO (R_NIOS2_TLS_LE16,
1187 0,
1188 2,
1189 16,
1190 FALSE,
1191 16,
1192 complain_overflow_bitfield,
1193 bfd_elf_generic_reloc,
1194 "R_NIOS2_TLS_LE16",
1195 FALSE,
1196 0xffff0000,
1197 0xffff0000,
1198 FALSE),
1199
1200 HOWTO (R_NIOS2_TLS_DTPMOD,
1201 0,
1202 2,
1203 32,
1204 FALSE,
1205 0,
1206 complain_overflow_dont,
1207 bfd_elf_generic_reloc,
1208 "R_NIOS2_TLS_DTPMOD",
1209 FALSE,
1210 0xffffffff,
1211 0xffffffff,
1212 FALSE),
1213
1214 HOWTO (R_NIOS2_TLS_DTPREL,
1215 0,
1216 2,
1217 32,
1218 FALSE,
1219 0,
1220 complain_overflow_dont,
1221 bfd_elf_generic_reloc,
1222 "R_NIOS2_TLS_DTPREL",
1223 FALSE,
1224 0xffffffff,
1225 0xffffffff,
1226 FALSE),
1227
1228 HOWTO (R_NIOS2_TLS_TPREL,
1229 0,
1230 2,
1231 32,
1232 FALSE,
1233 0,
1234 complain_overflow_dont,
1235 bfd_elf_generic_reloc,
1236 "R_NIOS2_TLS_TPREL",
1237 FALSE,
1238 0xffffffff,
1239 0xffffffff,
1240 FALSE),
1241
1242 HOWTO (R_NIOS2_COPY,
1243 0,
1244 2,
1245 32,
1246 FALSE,
1247 0,
1248 complain_overflow_dont,
1249 bfd_elf_generic_reloc,
1250 "R_NIOS2_COPY",
1251 FALSE,
1252 0,
1253 0,
1254 FALSE),
1255
1256 HOWTO (R_NIOS2_GLOB_DAT,
1257 0,
1258 2,
1259 32,
1260 FALSE,
1261 0,
1262 complain_overflow_dont,
1263 bfd_elf_generic_reloc,
1264 "R_NIOS2_GLOB_DAT",
1265 FALSE,
1266 0xffffffff,
1267 0xffffffff,
1268 FALSE),
1269
1270 HOWTO (R_NIOS2_JUMP_SLOT,
1271 0,
1272 2,
1273 32,
1274 FALSE,
1275 0,
1276 complain_overflow_dont,
1277 bfd_elf_generic_reloc,
1278 "R_NIOS2_JUMP_SLOT",
1279 FALSE,
1280 0xffffffff,
1281 0xffffffff,
1282 FALSE),
1283
1284 HOWTO (R_NIOS2_RELATIVE,
1285 0,
1286 2,
1287 32,
1288 FALSE,
1289 0,
1290 complain_overflow_dont,
1291 bfd_elf_generic_reloc,
1292 "R_NIOS2_RELATIVE",
1293 FALSE,
1294 0xffffffff,
1295 0xffffffff,
1296 FALSE),
1297
1298 HOWTO (R_NIOS2_GOTOFF,
1299 0,
1300 2,
1301 32,
1302 FALSE,
1303 0,
1304 complain_overflow_dont,
1305 bfd_elf_generic_reloc,
1306 "R_NIOS2_GOTOFF",
1307 FALSE,
1308 0xffffffff,
1309 0xffffffff,
1310 FALSE),
1311
1312 HOWTO (R_NIOS2_CALL26_NOAT, /* type */
1313 2, /* rightshift */
1314 2, /* size (0 = byte, 1 = short, 2 = long) */
1315 26, /* bitsize */
1316 FALSE, /* pc_relative */
1317 6, /* bitpos */
1318 complain_overflow_dont, /* complain on overflow */
1319 nios2_elf32_call26_relocate, /* special function */
1320 "R_NIOS2_CALL26_NOAT", /* name */
1321 FALSE, /* partial_inplace */
1322 0xffffffc0, /* src_mask */
1323 0xffffffc0, /* dst_mask */
1324 FALSE), /* pcrel_offset */
1325
1326 HOWTO (R_NIOS2_GOT_LO,
1327 0,
1328 2,
1329 16,
1330 FALSE,
1331 16,
1332 complain_overflow_dont,
1333 bfd_elf_generic_reloc,
1334 "R_NIOS2_GOT_LO",
1335 FALSE,
1336 0xffff0000,
1337 0xffff0000,
1338 FALSE),
1339
1340 HOWTO (R_NIOS2_GOT_HA,
1341 0,
1342 2,
1343 16,
1344 FALSE,
1345 16,
1346 complain_overflow_dont,
1347 bfd_elf_generic_reloc,
1348 "R_NIOS2_GOT_HA",
1349 FALSE,
1350 0xffff0000,
1351 0xffff0000,
1352 FALSE),
1353
1354 HOWTO (R_NIOS2_CALL_LO,
1355 0,
1356 2,
1357 16,
1358 FALSE,
1359 16,
1360 complain_overflow_dont,
1361 bfd_elf_generic_reloc,
1362 "R_NIOS2_CALL_LO",
1363 FALSE,
1364 0xffff0000,
1365 0xffff0000,
1366 FALSE),
1367
1368 HOWTO (R_NIOS2_CALL_HA,
1369 0,
1370 2,
1371 16,
1372 FALSE,
1373 16,
1374 complain_overflow_dont,
1375 bfd_elf_generic_reloc,
1376 "R_NIOS2_CALL_HA",
1377 FALSE,
1378 0xffff0000,
1379 0xffff0000,
1380 FALSE),
1381
1382 HOWTO (R_NIOS2_R2_S12,
1383 0,
1384 2,
1385 12,
1386 FALSE,
1387 16,
1388 complain_overflow_signed,
1389 bfd_elf_generic_reloc,
1390 "R_NIOS2_R2_S12",
1391 FALSE,
1392 0x0fff0000,
1393 0x0fff0000,
1394 FALSE),
1395
1396 HOWTO (R_NIOS2_R2_I10_1_PCREL,
1397 1,
1398 1,
1399 10,
1400 TRUE,
1401 6,
1402 complain_overflow_signed,
1403 bfd_elf_generic_reloc, /* FIXME? */
1404 "R_NIOS2_R2_I10_1_PCREL",
1405 FALSE,
1406 0xffc0,
1407 0xffc0,
1408 TRUE),
1409
1410 HOWTO (R_NIOS2_R2_T1I7_1_PCREL,
1411 1,
1412 1,
1413 7,
1414 TRUE,
1415 9,
1416 complain_overflow_signed,
1417 bfd_elf_generic_reloc, /* FIXME? */
1418 "R_NIOS2_R2_T1I7_1_PCREL",
1419 FALSE,
1420 0xfe00,
1421 0xfe00,
1422 TRUE),
1423
1424 HOWTO (R_NIOS2_R2_T1I7_2,
1425 2,
1426 1,
1427 7,
1428 FALSE,
1429 9,
1430 complain_overflow_unsigned,
1431 bfd_elf_generic_reloc,
1432 "R_NIOS2_R2_T1I7_2",
1433 FALSE,
1434 0xfe00,
1435 0xfe00,
1436 FALSE),
1437
1438 HOWTO (R_NIOS2_R2_T2I4,
1439 0,
1440 1,
1441 4,
1442 FALSE,
1443 12,
1444 complain_overflow_unsigned,
1445 bfd_elf_generic_reloc,
1446 "R_NIOS2_R2_T2I4",
1447 FALSE,
1448 0xf000,
1449 0xf000,
1450 FALSE),
1451
1452 HOWTO (R_NIOS2_R2_T2I4_1,
1453 1,
1454 1,
1455 4,
1456 FALSE,
1457 12,
1458 complain_overflow_unsigned,
1459 bfd_elf_generic_reloc,
1460 "R_NIOS2_R2_T2I4_1",
1461 FALSE,
1462 0xf000,
1463 0xf000,
1464 FALSE),
1465
1466 HOWTO (R_NIOS2_R2_T2I4_2,
1467 2,
1468 1,
1469 4,
1470 FALSE,
1471 12,
1472 complain_overflow_unsigned,
1473 bfd_elf_generic_reloc,
1474 "R_NIOS2_R2_T2I4_2",
1475 FALSE,
1476 0xf000,
1477 0xf000,
1478 FALSE),
1479
1480 HOWTO (R_NIOS2_R2_X1I7_2,
1481 2,
1482 1,
1483 7,
1484 FALSE,
1485 6,
1486 complain_overflow_unsigned,
1487 bfd_elf_generic_reloc,
1488 "R_NIOS2_R2_X1I7_2",
1489 FALSE,
1490 0x1fc0,
1491 0x1fc0,
1492 FALSE),
1493
1494 HOWTO (R_NIOS2_R2_X2L5,
1495 0,
1496 1,
1497 5,
1498 FALSE,
1499 6,
1500 complain_overflow_unsigned,
1501 bfd_elf_generic_reloc,
1502 "R_NIOS2_R2_X2L5",
1503 FALSE,
1504 0x07c0,
1505 0x07c0,
1506 FALSE),
1507
1508 HOWTO (R_NIOS2_R2_F1I5_2,
1509 2,
1510 1,
1511 5,
1512 FALSE,
1513 6,
1514 complain_overflow_unsigned,
1515 bfd_elf_generic_reloc,
1516 "R_NIOS2_R2_F1L5_2",
1517 FALSE,
1518 0x07c0,
1519 0x07c0,
1520 FALSE),
1521
1522 HOWTO (R_NIOS2_R2_L5I4X1,
1523 2,
1524 1,
1525 4,
1526 FALSE,
1527 6,
1528 complain_overflow_unsigned,
1529 bfd_elf_generic_reloc,
1530 "R_NIOS2_R2_L5I4X1",
1531 FALSE,
1532 0x03c0,
1533 0x03c0,
1534 FALSE),
1535
1536 HOWTO (R_NIOS2_R2_T1X1I6,
1537 0,
1538 1,
1539 6,
1540 FALSE,
1541 9,
1542 complain_overflow_unsigned,
1543 bfd_elf_generic_reloc,
1544 "R_NIOS2_R2_T1X1I6",
1545 FALSE,
1546 0x7e00,
1547 0x7e00,
1548 FALSE),
1549
1550 HOWTO (R_NIOS2_R2_T1X1I6_2,
1551 2,
1552 2,
1553 6,
1554 FALSE,
1555 9,
1556 complain_overflow_unsigned,
1557 bfd_elf_generic_reloc,
1558 "R_NIOS2_R2_T1I1X6_2",
1559 FALSE,
1560 0x7e00,
1561 0x7e00,
1562 FALSE),
1563
1564 /* Add other relocations here. */
1565 };
1566
1567 static unsigned char elf_code_to_howto_index[R_NIOS2_ILLEGAL + 1];
1568
1569
1570 /* Return true if producing output for a R2 BFD. */
1571 #define BFD_IS_R2(abfd) (bfd_get_mach (abfd) == bfd_mach_nios2r2)
1572
1573 /* Return the howto for relocation RTYPE. */
1574 static reloc_howto_type *
1575 lookup_howto (unsigned int rtype, bfd *abfd)
1576 {
1577 static int initialized = 0;
1578 int i;
1579 /* R2 relocations are a superset of R1, so use that for the lookup
1580 table. */
1581 int r1_howto_tbl_size = (int) (sizeof (elf_nios2_r1_howto_table_rel)
1582 / sizeof (elf_nios2_r1_howto_table_rel[0]));
1583 int r2_howto_tbl_size = (int) (sizeof (elf_nios2_r2_howto_table_rel)
1584 / sizeof (elf_nios2_r2_howto_table_rel[0]));
1585
1586 if (!initialized)
1587 {
1588 initialized = 1;
1589 memset (elf_code_to_howto_index, 0xff,
1590 sizeof (elf_code_to_howto_index));
1591 for (i = 0; i < r2_howto_tbl_size; i++)
1592 {
1593 elf_code_to_howto_index[elf_nios2_r2_howto_table_rel[i].type] = i;
1594 if (i < r1_howto_tbl_size)
1595 BFD_ASSERT (elf_nios2_r2_howto_table_rel[i].type
1596 == elf_nios2_r1_howto_table_rel[i].type);
1597 }
1598 }
1599
1600 BFD_ASSERT (rtype <= R_NIOS2_ILLEGAL);
1601 i = elf_code_to_howto_index[rtype];
1602 if (BFD_IS_R2 (abfd))
1603 {
1604 if (i >= r2_howto_tbl_size)
1605 return 0;
1606 return elf_nios2_r2_howto_table_rel + i;
1607 }
1608 else
1609 {
1610 if (i >= r1_howto_tbl_size)
1611 return 0;
1612 return elf_nios2_r1_howto_table_rel + i;
1613 }
1614 }
1615
1616 /* Map for converting BFD reloc types to Nios II reloc types. */
1617 struct elf_reloc_map
1618 {
1619 bfd_reloc_code_real_type bfd_val;
1620 enum elf_nios2_reloc_type elf_val;
1621 };
1622
1623 static const struct elf_reloc_map nios2_reloc_map[] = {
1624 {BFD_RELOC_NONE, R_NIOS2_NONE},
1625 {BFD_RELOC_NIOS2_S16, R_NIOS2_S16},
1626 {BFD_RELOC_NIOS2_U16, R_NIOS2_U16},
1627 {BFD_RELOC_16_PCREL, R_NIOS2_PCREL16},
1628 {BFD_RELOC_NIOS2_CALL26, R_NIOS2_CALL26},
1629 {BFD_RELOC_NIOS2_IMM5, R_NIOS2_IMM5},
1630 {BFD_RELOC_NIOS2_CACHE_OPX, R_NIOS2_CACHE_OPX},
1631 {BFD_RELOC_NIOS2_IMM6, R_NIOS2_IMM6},
1632 {BFD_RELOC_NIOS2_IMM8, R_NIOS2_IMM8},
1633 {BFD_RELOC_NIOS2_HI16, R_NIOS2_HI16},
1634 {BFD_RELOC_NIOS2_LO16, R_NIOS2_LO16},
1635 {BFD_RELOC_NIOS2_HIADJ16, R_NIOS2_HIADJ16},
1636 {BFD_RELOC_32, R_NIOS2_BFD_RELOC_32},
1637 {BFD_RELOC_16, R_NIOS2_BFD_RELOC_16},
1638 {BFD_RELOC_8, R_NIOS2_BFD_RELOC_8},
1639 {BFD_RELOC_NIOS2_GPREL, R_NIOS2_GPREL},
1640 {BFD_RELOC_VTABLE_INHERIT, R_NIOS2_GNU_VTINHERIT},
1641 {BFD_RELOC_VTABLE_ENTRY, R_NIOS2_GNU_VTENTRY},
1642 {BFD_RELOC_NIOS2_UJMP, R_NIOS2_UJMP},
1643 {BFD_RELOC_NIOS2_CJMP, R_NIOS2_CJMP},
1644 {BFD_RELOC_NIOS2_CALLR, R_NIOS2_CALLR},
1645 {BFD_RELOC_NIOS2_ALIGN, R_NIOS2_ALIGN},
1646 {BFD_RELOC_NIOS2_GOT16, R_NIOS2_GOT16},
1647 {BFD_RELOC_NIOS2_CALL16, R_NIOS2_CALL16},
1648 {BFD_RELOC_NIOS2_GOTOFF_LO, R_NIOS2_GOTOFF_LO},
1649 {BFD_RELOC_NIOS2_GOTOFF_HA, R_NIOS2_GOTOFF_HA},
1650 {BFD_RELOC_NIOS2_PCREL_LO, R_NIOS2_PCREL_LO},
1651 {BFD_RELOC_NIOS2_PCREL_HA, R_NIOS2_PCREL_HA},
1652 {BFD_RELOC_NIOS2_TLS_GD16, R_NIOS2_TLS_GD16},
1653 {BFD_RELOC_NIOS2_TLS_LDM16, R_NIOS2_TLS_LDM16},
1654 {BFD_RELOC_NIOS2_TLS_LDO16, R_NIOS2_TLS_LDO16},
1655 {BFD_RELOC_NIOS2_TLS_IE16, R_NIOS2_TLS_IE16},
1656 {BFD_RELOC_NIOS2_TLS_LE16, R_NIOS2_TLS_LE16},
1657 {BFD_RELOC_NIOS2_TLS_DTPMOD, R_NIOS2_TLS_DTPMOD},
1658 {BFD_RELOC_NIOS2_TLS_DTPREL, R_NIOS2_TLS_DTPREL},
1659 {BFD_RELOC_NIOS2_TLS_TPREL, R_NIOS2_TLS_TPREL},
1660 {BFD_RELOC_NIOS2_COPY, R_NIOS2_COPY},
1661 {BFD_RELOC_NIOS2_GLOB_DAT, R_NIOS2_GLOB_DAT},
1662 {BFD_RELOC_NIOS2_JUMP_SLOT, R_NIOS2_JUMP_SLOT},
1663 {BFD_RELOC_NIOS2_RELATIVE, R_NIOS2_RELATIVE},
1664 {BFD_RELOC_NIOS2_GOTOFF, R_NIOS2_GOTOFF},
1665 {BFD_RELOC_NIOS2_CALL26_NOAT, R_NIOS2_CALL26_NOAT},
1666 {BFD_RELOC_NIOS2_GOT_LO, R_NIOS2_GOT_LO},
1667 {BFD_RELOC_NIOS2_GOT_HA, R_NIOS2_GOT_HA},
1668 {BFD_RELOC_NIOS2_CALL_LO, R_NIOS2_CALL_LO},
1669 {BFD_RELOC_NIOS2_CALL_HA, R_NIOS2_CALL_HA},
1670 {BFD_RELOC_NIOS2_R2_S12, R_NIOS2_R2_S12},
1671 {BFD_RELOC_NIOS2_R2_I10_1_PCREL, R_NIOS2_R2_I10_1_PCREL},
1672 {BFD_RELOC_NIOS2_R2_T1I7_1_PCREL, R_NIOS2_R2_T1I7_1_PCREL},
1673 {BFD_RELOC_NIOS2_R2_T1I7_2, R_NIOS2_R2_T1I7_2},
1674 {BFD_RELOC_NIOS2_R2_T2I4, R_NIOS2_R2_T2I4},
1675 {BFD_RELOC_NIOS2_R2_T2I4_1, R_NIOS2_R2_T2I4_1},
1676 {BFD_RELOC_NIOS2_R2_T2I4_2, R_NIOS2_R2_T2I4_2},
1677 {BFD_RELOC_NIOS2_R2_X1I7_2, R_NIOS2_R2_X1I7_2},
1678 {BFD_RELOC_NIOS2_R2_X2L5, R_NIOS2_R2_X2L5},
1679 {BFD_RELOC_NIOS2_R2_F1I5_2, R_NIOS2_R2_F1I5_2},
1680 {BFD_RELOC_NIOS2_R2_L5I4X1, R_NIOS2_R2_L5I4X1},
1681 {BFD_RELOC_NIOS2_R2_T1X1I6, R_NIOS2_R2_T1X1I6},
1682 {BFD_RELOC_NIOS2_R2_T1X1I6_2, R_NIOS2_R2_T1X1I6_2},
1683 };
1684
1685 enum elf32_nios2_stub_type
1686 {
1687 nios2_stub_call26_before,
1688 nios2_stub_call26_after,
1689 nios2_stub_none
1690 };
1691
1692 struct elf32_nios2_stub_hash_entry
1693 {
1694 /* Base hash table entry structure. */
1695 struct bfd_hash_entry bh_root;
1696
1697 /* The stub section. */
1698 asection *stub_sec;
1699
1700 /* Offset within stub_sec of the beginning of this stub. */
1701 bfd_vma stub_offset;
1702
1703 /* Given the symbol's value and its section we can determine its final
1704 value when building the stubs (so the stub knows where to jump. */
1705 bfd_vma target_value;
1706 asection *target_section;
1707
1708 enum elf32_nios2_stub_type stub_type;
1709
1710 /* The symbol table entry, if any, that this was derived from. */
1711 struct elf32_nios2_link_hash_entry *hh;
1712
1713 /* And the reloc addend that this was derived from. */
1714 bfd_vma addend;
1715
1716 /* Where this stub is being called from, or, in the case of combined
1717 stub sections, the first input section in the group. */
1718 asection *id_sec;
1719 };
1720
1721 #define nios2_stub_hash_entry(ent) \
1722 ((struct elf32_nios2_stub_hash_entry *)(ent))
1723
1724 #define nios2_stub_hash_lookup(table, string, create, copy) \
1725 ((struct elf32_nios2_stub_hash_entry *) \
1726 bfd_hash_lookup ((table), (string), (create), (copy)))
1727
1728
1729 /* The Nios II linker needs to keep track of the number of relocs that it
1730 decides to copy as dynamic relocs in check_relocs for each symbol.
1731 This is so that it can later discard them if they are found to be
1732 unnecessary. We store the information in a field extending the
1733 regular ELF linker hash table. */
1734
1735 struct elf32_nios2_dyn_relocs
1736 {
1737 struct elf32_nios2_dyn_relocs *next;
1738
1739 /* The input section of the reloc. */
1740 asection *sec;
1741
1742 /* Total number of relocs copied for the input section. */
1743 bfd_size_type count;
1744
1745 /* Number of pc-relative relocs copied for the input section. */
1746 bfd_size_type pc_count;
1747 };
1748
1749 /* Nios II ELF linker hash entry. */
1750
1751 struct elf32_nios2_link_hash_entry
1752 {
1753 struct elf_link_hash_entry root;
1754
1755 /* A pointer to the most recently used stub hash entry against this
1756 symbol. */
1757 struct elf32_nios2_stub_hash_entry *hsh_cache;
1758
1759 /* Track dynamic relocs copied for this symbol. */
1760 struct elf32_nios2_dyn_relocs *dyn_relocs;
1761
1762 #define GOT_UNKNOWN 0
1763 #define GOT_NORMAL 1
1764 #define GOT_TLS_GD 2
1765 #define GOT_TLS_IE 4
1766 unsigned char tls_type;
1767
1768 /* We need to detect and take special action for symbols which are only
1769 referenced with %call() and not with %got(). Such symbols do not need
1770 a dynamic GOT reloc in shared objects, only a dynamic PLT reloc. Lazy
1771 linking will not work if the dynamic GOT reloc exists.
1772 To check for this condition efficiently, we compare got_types_used against
1773 CALL_USED, meaning
1774 (got_types_used & (GOT_USED | CALL_USED)) == CALL_USED.
1775 */
1776 #define GOT_USED 1
1777 #define CALL_USED 2
1778 unsigned char got_types_used;
1779 };
1780
1781 #define elf32_nios2_hash_entry(ent) \
1782 ((struct elf32_nios2_link_hash_entry *) (ent))
1783
1784 /* Get the Nios II elf linker hash table from a link_info structure. */
1785 #define elf32_nios2_hash_table(info) \
1786 ((struct elf32_nios2_link_hash_table *) ((info)->hash))
1787
1788 /* Nios II ELF linker hash table. */
1789 struct elf32_nios2_link_hash_table
1790 {
1791 /* The main hash table. */
1792 struct elf_link_hash_table root;
1793
1794 /* The stub hash table. */
1795 struct bfd_hash_table bstab;
1796
1797 /* Linker stub bfd. */
1798 bfd *stub_bfd;
1799
1800 /* Linker call-backs. */
1801 asection * (*add_stub_section) (const char *, asection *, bfd_boolean);
1802 void (*layout_sections_again) (void);
1803
1804 /* Array to keep track of which stub sections have been created, and
1805 information on stub grouping. */
1806 struct map_stub
1807 {
1808 /* These are the section to which stubs in the group will be
1809 attached. */
1810 asection *first_sec, *last_sec;
1811 /* The stub sections. There might be stubs inserted either before
1812 or after the real section.*/
1813 asection *first_stub_sec, *last_stub_sec;
1814 } *stub_group;
1815
1816 /* Assorted information used by nios2_elf32_size_stubs. */
1817 unsigned int bfd_count;
1818 unsigned int top_index;
1819 asection **input_list;
1820 Elf_Internal_Sym **all_local_syms;
1821
1822 /* Short-cuts to get to dynamic linker sections. */
1823 asection *sbss;
1824
1825 /* GOT pointer symbol _gp_got. */
1826 struct elf_link_hash_entry *h_gp_got;
1827
1828 union {
1829 bfd_signed_vma refcount;
1830 bfd_vma offset;
1831 } tls_ldm_got;
1832
1833 /* Small local sym cache. */
1834 struct sym_cache sym_cache;
1835
1836 bfd_vma res_n_size;
1837 };
1838
1839 struct nios2_elf32_obj_tdata
1840 {
1841 struct elf_obj_tdata root;
1842
1843 /* tls_type for each local got entry. */
1844 char *local_got_tls_type;
1845
1846 /* TRUE if TLS GD relocs have been seen for this object. */
1847 bfd_boolean has_tlsgd;
1848 };
1849
1850 #define elf32_nios2_tdata(abfd) \
1851 ((struct nios2_elf32_obj_tdata *) (abfd)->tdata.any)
1852
1853 #define elf32_nios2_local_got_tls_type(abfd) \
1854 (elf32_nios2_tdata (abfd)->local_got_tls_type)
1855
1856 /* The name of the dynamic interpreter. This is put in the .interp
1857 section. */
1858 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
1859
1860 /* PLT implementation for position-dependent code. */
1861 static const bfd_vma nios2_plt_entry[] = { /* .PLTn: */
1862 0x03c00034, /* movhi r15, %hiadj(plt_got_slot_address) */
1863 0x7bc00017, /* ldw r15, %lo(plt_got_slot_address)(r15) */
1864 0x7800683a /* jmp r15 */
1865 };
1866
1867 static const bfd_vma nios2_plt0_entry[] = { /* .PLTresolve */
1868 0x03800034, /* movhi r14, %hiadj(res_0) */
1869 0x73800004, /* addi r14, r14, %lo(res_0) */
1870 0x7b9fc83a, /* sub r15, r15, r14 */
1871 0x03400034, /* movhi r13, %hiadj(_GLOBAL_OFFSET_TABLE_) */
1872 0x6b800017, /* ldw r14, %lo(_GLOBAL_OFFSET_TABLE_+4)(r13) */
1873 0x6b400017, /* ldw r13, %lo(_GLOBAL_OFFSET_TABLE_+8)(r13) */
1874 0x6800683a /* jmp r13 */
1875 };
1876
1877 /* PLT implementation for position-independent code. */
1878 static const bfd_vma nios2_so_plt_entry[] = { /* .PLTn */
1879 0x03c00034, /* movhi r15, %hiadj(index * 4) */
1880 0x7bc00004, /* addi r15, r15, %lo(index * 4) */
1881 0x00000006 /* br .PLTresolve */
1882 };
1883
1884 static const bfd_vma nios2_so_plt0_entry[] = { /* .PLTresolve */
1885 0x001ce03a, /* nextpc r14 */
1886 0x03400034, /* movhi r13, %hiadj(_GLOBAL_OFFSET_TABLE_) */
1887 0x6b9b883a, /* add r13, r13, r14 */
1888 0x6b800017, /* ldw r14, %lo(_GLOBAL_OFFSET_TABLE_+4)(r13) */
1889 0x6b400017, /* ldw r13, %lo(_GLOBAL_OFFSET_TABLE_+8)(r13) */
1890 0x6800683a /* jmp r13 */
1891 };
1892
1893 /* CALL26 stub. */
1894 static const bfd_vma nios2_call26_stub_entry[] = {
1895 0x00400034, /* orhi at, r0, %hiadj(dest) */
1896 0x08400004, /* addi at, at, %lo(dest) */
1897 0x0800683a /* jmp at */
1898 };
1899
1900 /* Install 16-bit immediate value VALUE at offset OFFSET into section SEC. */
1901 static void
1902 nios2_elf32_install_imm16 (asection *sec, bfd_vma offset, bfd_vma value)
1903 {
1904 bfd_vma word = bfd_get_32 (sec->owner, sec->contents + offset);
1905
1906 BFD_ASSERT (value <= 0xffff || ((bfd_signed_vma) value) >= -0xffff);
1907
1908 bfd_put_32 (sec->owner, word | ((value & 0xffff) << 6),
1909 sec->contents + offset);
1910 }
1911
1912 /* Install COUNT 32-bit values DATA starting at offset OFFSET into
1913 section SEC. */
1914 static void
1915 nios2_elf32_install_data (asection *sec, const bfd_vma *data, bfd_vma offset,
1916 int count)
1917 {
1918 while (count--)
1919 {
1920 bfd_put_32 (sec->owner, *data, sec->contents + offset);
1921 offset += 4;
1922 ++data;
1923 }
1924 }
1925
1926 /* The usual way of loading a 32-bit constant into a Nios II register is to
1927 load the high 16 bits in one instruction and then add the low 16 bits with
1928 a signed add. This means that the high halfword needs to be adjusted to
1929 compensate for the sign bit of the low halfword. This function returns the
1930 adjusted high halfword for a given 32-bit constant. */
1931 static
1932 bfd_vma hiadj (bfd_vma symbol_value)
1933 {
1934 return ((symbol_value + 0x8000) >> 16) & 0xffff;
1935 }
1936
1937 /* Implement elf_backend_grok_prstatus:
1938 Support for core dump NOTE sections. */
1939 static bfd_boolean
1940 nios2_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1941 {
1942 int offset;
1943 size_t size;
1944
1945 switch (note->descsz)
1946 {
1947 default:
1948 return FALSE;
1949
1950 case 212: /* Linux/Nios II */
1951 /* pr_cursig */
1952 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1953
1954 /* pr_pid */
1955 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 24);
1956
1957 /* pr_reg */
1958 offset = 72;
1959 size = 136;
1960
1961 break;
1962 }
1963
1964 /* Make a ".reg/999" section. */
1965 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1966 size, note->descpos + offset);
1967 }
1968
1969 /* Implement elf_backend_grok_psinfo. */
1970 static bfd_boolean
1971 nios2_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1972 {
1973 switch (note->descsz)
1974 {
1975 default:
1976 return FALSE;
1977
1978 case 124: /* Linux/Nios II elf_prpsinfo */
1979 elf_tdata (abfd)->core->program
1980 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1981 elf_tdata (abfd)->core->command
1982 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1983 }
1984
1985 /* Note that for some reason, a spurious space is tacked
1986 onto the end of the args in some (at least one anyway)
1987 implementations, so strip it off if it exists. */
1988
1989 {
1990 char *command = elf_tdata (abfd)->core->command;
1991 int n = strlen (command);
1992
1993 if (0 < n && command[n - 1] == ' ')
1994 command[n - 1] = '\0';
1995 }
1996
1997 return TRUE;
1998 }
1999
2000 /* Assorted hash table functions. */
2001
2002 /* Initialize an entry in the stub hash table. */
2003 static struct bfd_hash_entry *
2004 stub_hash_newfunc (struct bfd_hash_entry *entry,
2005 struct bfd_hash_table *table,
2006 const char *string)
2007 {
2008 /* Allocate the structure if it has not already been allocated by a
2009 subclass. */
2010 if (entry == NULL)
2011 {
2012 entry = bfd_hash_allocate (table,
2013 sizeof (struct elf32_nios2_stub_hash_entry));
2014 if (entry == NULL)
2015 return entry;
2016 }
2017
2018 /* Call the allocation method of the superclass. */
2019 entry = bfd_hash_newfunc (entry, table, string);
2020 if (entry != NULL)
2021 {
2022 struct elf32_nios2_stub_hash_entry *hsh;
2023
2024 /* Initialize the local fields. */
2025 hsh = (struct elf32_nios2_stub_hash_entry *) entry;
2026 hsh->stub_sec = NULL;
2027 hsh->stub_offset = 0;
2028 hsh->target_value = 0;
2029 hsh->target_section = NULL;
2030 hsh->stub_type = nios2_stub_none;
2031 hsh->hh = NULL;
2032 hsh->id_sec = NULL;
2033 }
2034
2035 return entry;
2036 }
2037
2038 /* Create an entry in a Nios II ELF linker hash table. */
2039 static struct bfd_hash_entry *
2040 link_hash_newfunc (struct bfd_hash_entry *entry,
2041 struct bfd_hash_table *table, const char *string)
2042 {
2043 /* Allocate the structure if it has not already been allocated by a
2044 subclass. */
2045 if (entry == NULL)
2046 {
2047 entry = bfd_hash_allocate (table,
2048 sizeof (struct elf32_nios2_link_hash_entry));
2049 if (entry == NULL)
2050 return entry;
2051 }
2052
2053 /* Call the allocation method of the superclass. */
2054 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
2055 if (entry)
2056 {
2057 struct elf32_nios2_link_hash_entry *eh;
2058
2059 eh = (struct elf32_nios2_link_hash_entry *) entry;
2060 eh->hsh_cache = NULL;
2061 eh->dyn_relocs = NULL;
2062 eh->tls_type = GOT_UNKNOWN;
2063 eh->got_types_used = 0;
2064 }
2065
2066 return entry;
2067 }
2068
2069 /* Section name for stubs is the associated section name plus this
2070 string. */
2071 #define STUB_SUFFIX ".stub"
2072
2073 /* Build a name for an entry in the stub hash table. */
2074 static char *
2075 nios2_stub_name (const asection *input_section,
2076 const asection *sym_sec,
2077 const struct elf32_nios2_link_hash_entry *hh,
2078 const Elf_Internal_Rela *rel,
2079 enum elf32_nios2_stub_type stub_type)
2080 {
2081 char *stub_name;
2082 bfd_size_type len;
2083 char stubpos = (stub_type == nios2_stub_call26_before) ? 'b' : 'a';
2084
2085 if (hh)
2086 {
2087 len = 8 + 1 + 1 + 1+ strlen (hh->root.root.root.string) + 1 + 8 + 1;
2088 stub_name = bfd_malloc (len);
2089 if (stub_name != NULL)
2090 {
2091 sprintf (stub_name, "%08x_%c_%s+%x",
2092 input_section->id & 0xffffffff,
2093 stubpos,
2094 hh->root.root.root.string,
2095 (int) rel->r_addend & 0xffffffff);
2096 }
2097 }
2098 else
2099 {
2100 len = 8 + 1 + 1 + 1+ 8 + 1 + 8 + 1 + 8 + 1;
2101 stub_name = bfd_malloc (len);
2102 if (stub_name != NULL)
2103 {
2104 sprintf (stub_name, "%08x_%c_%x:%x+%x",
2105 input_section->id & 0xffffffff,
2106 stubpos,
2107 sym_sec->id & 0xffffffff,
2108 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
2109 (int) rel->r_addend & 0xffffffff);
2110 }
2111 }
2112 return stub_name;
2113 }
2114
2115 /* Look up an entry in the stub hash. Stub entries are cached because
2116 creating the stub name takes a bit of time. */
2117 static struct elf32_nios2_stub_hash_entry *
2118 nios2_get_stub_entry (const asection *input_section,
2119 const asection *sym_sec,
2120 struct elf32_nios2_link_hash_entry *hh,
2121 const Elf_Internal_Rela *rel,
2122 struct elf32_nios2_link_hash_table *htab,
2123 enum elf32_nios2_stub_type stub_type)
2124 {
2125 struct elf32_nios2_stub_hash_entry *hsh;
2126 const asection *id_sec;
2127
2128 /* If this input section is part of a group of sections sharing one
2129 stub section, then use the id of the first/last section in the group,
2130 depending on the stub section placement relative to the group.
2131 Stub names need to include a section id, as there may well be
2132 more than one stub used to reach say, printf, and we need to
2133 distinguish between them. */
2134 if (stub_type == nios2_stub_call26_before)
2135 id_sec = htab->stub_group[input_section->id].first_sec;
2136 else
2137 id_sec = htab->stub_group[input_section->id].last_sec;
2138
2139 if (hh != NULL && hh->hsh_cache != NULL
2140 && hh->hsh_cache->hh == hh
2141 && hh->hsh_cache->id_sec == id_sec
2142 && hh->hsh_cache->stub_type == stub_type)
2143 {
2144 hsh = hh->hsh_cache;
2145 }
2146 else
2147 {
2148 char *stub_name;
2149
2150 stub_name = nios2_stub_name (id_sec, sym_sec, hh, rel, stub_type);
2151 if (stub_name == NULL)
2152 return NULL;
2153
2154 hsh = nios2_stub_hash_lookup (&htab->bstab,
2155 stub_name, FALSE, FALSE);
2156
2157 if (hh != NULL)
2158 hh->hsh_cache = hsh;
2159
2160 free (stub_name);
2161 }
2162
2163 return hsh;
2164 }
2165
2166 /* Add a new stub entry to the stub hash. Not all fields of the new
2167 stub entry are initialised. */
2168 static struct elf32_nios2_stub_hash_entry *
2169 nios2_add_stub (const char *stub_name,
2170 asection *section,
2171 struct elf32_nios2_link_hash_table *htab,
2172 enum elf32_nios2_stub_type stub_type)
2173 {
2174 asection *link_sec;
2175 asection *stub_sec;
2176 asection **secptr, **linkptr;
2177 struct elf32_nios2_stub_hash_entry *hsh;
2178 bfd_boolean afterp;
2179
2180 if (stub_type == nios2_stub_call26_before)
2181 {
2182 link_sec = htab->stub_group[section->id].first_sec;
2183 secptr = &(htab->stub_group[section->id].first_stub_sec);
2184 linkptr = &(htab->stub_group[link_sec->id].first_stub_sec);
2185 afterp = FALSE;
2186 }
2187 else
2188 {
2189 link_sec = htab->stub_group[section->id].last_sec;
2190 secptr = &(htab->stub_group[section->id].last_stub_sec);
2191 linkptr = &(htab->stub_group[link_sec->id].last_stub_sec);
2192 afterp = TRUE;
2193 }
2194 stub_sec = *secptr;
2195 if (stub_sec == NULL)
2196 {
2197 stub_sec = *linkptr;
2198 if (stub_sec == NULL)
2199 {
2200 size_t namelen;
2201 bfd_size_type len;
2202 char *s_name;
2203
2204 namelen = strlen (link_sec->name);
2205 len = namelen + sizeof (STUB_SUFFIX);
2206 s_name = bfd_alloc (htab->stub_bfd, len);
2207 if (s_name == NULL)
2208 return NULL;
2209
2210 memcpy (s_name, link_sec->name, namelen);
2211 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
2212
2213 stub_sec = (*htab->add_stub_section) (s_name, link_sec, afterp);
2214 if (stub_sec == NULL)
2215 return NULL;
2216 *linkptr = stub_sec;
2217 }
2218 *secptr = stub_sec;
2219 }
2220
2221 /* Enter this entry into the linker stub hash table. */
2222 hsh = nios2_stub_hash_lookup (&htab->bstab, stub_name,
2223 TRUE, FALSE);
2224 if (hsh == NULL)
2225 {
2226 /* xgettext:c-format */
2227 _bfd_error_handler (_("%B: cannot create stub entry %s"),
2228 section->owner,
2229 stub_name);
2230 return NULL;
2231 }
2232
2233 hsh->stub_sec = stub_sec;
2234 hsh->stub_offset = 0;
2235 hsh->id_sec = link_sec;
2236 return hsh;
2237 }
2238
2239 /* Set up various things so that we can make a list of input sections
2240 for each output section included in the link. Returns -1 on error,
2241 0 when no stubs will be needed, and 1 on success. */
2242 int
2243 nios2_elf32_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2244 {
2245 bfd *input_bfd;
2246 unsigned int bfd_count;
2247 unsigned int top_id, top_index;
2248 asection *section;
2249 asection **input_list, **list;
2250 bfd_size_type amt;
2251 struct elf32_nios2_link_hash_table *htab = elf32_nios2_hash_table (info);
2252
2253 /* Count the number of input BFDs and find the top input section id. */
2254 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2255 input_bfd != NULL;
2256 input_bfd = input_bfd->link.next)
2257 {
2258 bfd_count += 1;
2259 for (section = input_bfd->sections;
2260 section != NULL;
2261 section = section->next)
2262 {
2263 if (top_id < section->id)
2264 top_id = section->id;
2265 }
2266 }
2267
2268 htab->bfd_count = bfd_count;
2269
2270 amt = sizeof (struct map_stub) * (top_id + 1);
2271 htab->stub_group = bfd_zmalloc (amt);
2272 if (htab->stub_group == NULL)
2273 return -1;
2274
2275 /* We can't use output_bfd->section_count here to find the top output
2276 section index as some sections may have been removed, and
2277 strip_excluded_output_sections doesn't renumber the indices. */
2278 for (section = output_bfd->sections, top_index = 0;
2279 section != NULL;
2280 section = section->next)
2281 {
2282 if (top_index < section->index)
2283 top_index = section->index;
2284 }
2285
2286 htab->top_index = top_index;
2287 amt = sizeof (asection *) * (top_index + 1);
2288 input_list = bfd_malloc (amt);
2289 htab->input_list = input_list;
2290 if (input_list == NULL)
2291 return -1;
2292
2293 /* For sections we aren't interested in, mark their entries with a
2294 value we can check later. */
2295 list = input_list + top_index;
2296 do
2297 *list = bfd_abs_section_ptr;
2298 while (list-- != input_list);
2299
2300 for (section = output_bfd->sections;
2301 section != NULL;
2302 section = section->next)
2303 {
2304 /* FIXME: This is a bit of hack. Currently our .ctors and .dtors
2305 * have PC relative relocs in them but no code flag set. */
2306 if (((section->flags & SEC_CODE) != 0) ||
2307 strcmp(".ctors", section->name) ||
2308 strcmp(".dtors", section->name))
2309 input_list[section->index] = NULL;
2310 }
2311
2312 return 1;
2313 }
2314
2315 /* The linker repeatedly calls this function for each input section,
2316 in the order that input sections are linked into output sections.
2317 Build lists of input sections to determine groupings between which
2318 we may insert linker stubs. */
2319 void
2320 nios2_elf32_next_input_section (struct bfd_link_info *info, asection *isec)
2321 {
2322 struct elf32_nios2_link_hash_table *htab = elf32_nios2_hash_table (info);
2323
2324 if (isec->output_section->index <= htab->top_index)
2325 {
2326 asection **list = htab->input_list + isec->output_section->index;
2327 if (*list != bfd_abs_section_ptr)
2328 {
2329 /* Steal the last_sec pointer for our list.
2330 This happens to make the list in reverse order,
2331 which is what we want. */
2332 htab->stub_group[isec->id].last_sec = *list;
2333 *list = isec;
2334 }
2335 }
2336 }
2337
2338 /* Segment mask for CALL26 relocation relaxation. */
2339 #define CALL26_SEGMENT(x) ((x) & 0xf0000000)
2340
2341 /* Fudge factor for approximate maximum size of all stubs that might
2342 be inserted by the linker. This does not actually limit the number
2343 of stubs that might be inserted, and only affects strategy for grouping
2344 and placement of stubs. Perhaps this should be computed based on number
2345 of relocations seen, or be specifiable on the command line. */
2346 #define MAX_STUB_SECTION_SIZE 0xffff
2347
2348 /* See whether we can group stub sections together. Grouping stub
2349 sections may result in fewer stubs. More importantly, we need to
2350 put all .init* and .fini* stubs at the end of the .init or
2351 .fini output sections respectively, because glibc splits the
2352 _init and _fini functions into multiple parts. Putting a stub in
2353 the middle of a function is not a good idea.
2354 Rather than computing groups of a maximum fixed size, for Nios II
2355 CALL26 relaxation it makes more sense to compute the groups based on
2356 sections that fit within a 256MB address segment. Also do not allow
2357 a group to span more than one output section, since different output
2358 sections might correspond to different memory banks on a bare-metal
2359 target, etc. */
2360 static void
2361 group_sections (struct elf32_nios2_link_hash_table *htab)
2362 {
2363 asection **list = htab->input_list + htab->top_index;
2364 do
2365 {
2366 /* The list is in reverse order so we'll search backwards looking
2367 for the first section that begins in the same memory segment,
2368 marking sections along the way to point at the tail for this
2369 group. */
2370 asection *tail = *list;
2371 if (tail == bfd_abs_section_ptr)
2372 continue;
2373 while (tail != NULL)
2374 {
2375 bfd_vma start = tail->output_section->vma + tail->output_offset;
2376 bfd_vma end = start + tail->size;
2377 bfd_vma segment = CALL26_SEGMENT (end);
2378 asection *prev;
2379
2380 if (segment != CALL26_SEGMENT (start)
2381 || segment != CALL26_SEGMENT (end + MAX_STUB_SECTION_SIZE))
2382 /* This section spans more than one memory segment, or is
2383 close enough to the end of the segment that adding stub
2384 sections before it might cause it to move so that it
2385 spans memory segments, or that stubs added at the end of
2386 this group might overflow into the next memory segment.
2387 Put it in a group by itself to localize the effects. */
2388 {
2389 prev = htab->stub_group[tail->id].last_sec;
2390 htab->stub_group[tail->id].last_sec = tail;
2391 htab->stub_group[tail->id].first_sec = tail;
2392 }
2393 else
2394 /* Collect more sections for this group. */
2395 {
2396 asection *curr, *first;
2397 for (curr = tail; ; curr = prev)
2398 {
2399 prev = htab->stub_group[curr->id].last_sec;
2400 if (!prev
2401 || tail->output_section != prev->output_section
2402 || (CALL26_SEGMENT (prev->output_section->vma
2403 + prev->output_offset)
2404 != segment))
2405 break;
2406 }
2407 first = curr;
2408 for (curr = tail; ; curr = prev)
2409 {
2410 prev = htab->stub_group[curr->id].last_sec;
2411 htab->stub_group[curr->id].last_sec = tail;
2412 htab->stub_group[curr->id].first_sec = first;
2413 if (curr == first)
2414 break;
2415 }
2416 }
2417
2418 /* Reset tail for the next group. */
2419 tail = prev;
2420 }
2421 }
2422 while (list-- != htab->input_list);
2423 free (htab->input_list);
2424 }
2425
2426 /* Determine the type of stub needed, if any, for a call. */
2427 static enum elf32_nios2_stub_type
2428 nios2_type_of_stub (asection *input_sec,
2429 const Elf_Internal_Rela *rel,
2430 struct elf32_nios2_link_hash_entry *hh,
2431 struct elf32_nios2_link_hash_table *htab,
2432 bfd_vma destination,
2433 struct bfd_link_info *info ATTRIBUTE_UNUSED)
2434 {
2435 bfd_vma location, segment, start, end;
2436 asection *s0, *s1, *s;
2437
2438 if (hh != NULL &&
2439 !(hh->root.root.type == bfd_link_hash_defined
2440 || hh->root.root.type == bfd_link_hash_defweak))
2441 return nios2_stub_none;
2442
2443 /* Determine where the call point is. */
2444 location = (input_sec->output_section->vma
2445 + input_sec->output_offset + rel->r_offset);
2446 segment = CALL26_SEGMENT (location);
2447
2448 /* Nios II CALL and JMPI instructions can transfer control to addresses
2449 within the same 256MB segment as the PC. */
2450 if (segment == CALL26_SEGMENT (destination))
2451 return nios2_stub_none;
2452
2453 /* Find the start and end addresses of the stub group. Also account for
2454 any already-created stub sections for this group. Note that for stubs
2455 in the end section, only the first instruction of the last stub
2456 (12 bytes long) needs to be within range. */
2457 s0 = htab->stub_group[input_sec->id].first_sec;
2458 s = htab->stub_group[s0->id].first_stub_sec;
2459 if (s != NULL && s->size > 0)
2460 start = s->output_section->vma + s->output_offset;
2461 else
2462 start = s0->output_section->vma + s0->output_offset;
2463
2464 s1 = htab->stub_group[input_sec->id].last_sec;
2465 s = htab->stub_group[s1->id].last_stub_sec;
2466 if (s != NULL && s->size > 0)
2467 end = s->output_section->vma + s->output_offset + s->size - 8;
2468 else
2469 end = s1->output_section->vma + s1->output_offset + s1->size;
2470
2471 BFD_ASSERT (start < end);
2472 BFD_ASSERT (start <= location);
2473 BFD_ASSERT (location < end);
2474
2475 /* Put stubs at the end of the group unless that is not a valid
2476 location and the beginning of the group is. It might be that
2477 neither the beginning nor end works if we have an input section
2478 so large that it spans multiple segment boundaries. In that
2479 case, punt; the end result will be a relocation overflow error no
2480 matter what we do here.
2481
2482 Note that adding stubs pushes up the addresses of all subsequent
2483 sections, so that stubs allocated on one pass through the
2484 relaxation loop may not be valid on the next pass. (E.g., we may
2485 allocate a stub at the beginning of the section on one pass and
2486 find that the call site has been bumped into the next memory
2487 segment on the next pass.) The important thing to note is that
2488 we never try to reclaim the space allocated to such unused stubs,
2489 so code size and section addresses can only increase with each
2490 iteration. Accounting for the start and end addresses of the
2491 already-created stub sections ensures that when the algorithm
2492 converges, it converges accurately, with the entire appropriate
2493 stub section accessible from the call site and not just the
2494 address at the start or end of the stub group proper. */
2495
2496 if (segment == CALL26_SEGMENT (end))
2497 return nios2_stub_call26_after;
2498 else if (segment == CALL26_SEGMENT (start))
2499 return nios2_stub_call26_before;
2500 else
2501 /* Perhaps this should be a dedicated error code. */
2502 return nios2_stub_none;
2503 }
2504
2505 static bfd_boolean
2506 nios2_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg ATTRIBUTE_UNUSED)
2507 {
2508 struct elf32_nios2_stub_hash_entry *hsh
2509 = (struct elf32_nios2_stub_hash_entry *) gen_entry;
2510 asection *stub_sec = hsh->stub_sec;
2511 bfd_vma sym_value;
2512
2513 /* Make a note of the offset within the stubs for this entry. */
2514 hsh->stub_offset = stub_sec->size;
2515
2516 switch (hsh->stub_type)
2517 {
2518 case nios2_stub_call26_before:
2519 case nios2_stub_call26_after:
2520 /* A call26 stub looks like:
2521 orhi at, %hiadj(dest)
2522 addi at, at, %lo(dest)
2523 jmp at
2524 Note that call/jmpi instructions can't be used in PIC code
2525 so there is no reason for the stub to be PIC, either. */
2526 sym_value = (hsh->target_value
2527 + hsh->target_section->output_offset
2528 + hsh->target_section->output_section->vma
2529 + hsh->addend);
2530
2531 nios2_elf32_install_data (stub_sec, nios2_call26_stub_entry,
2532 hsh->stub_offset, 3);
2533 nios2_elf32_install_imm16 (stub_sec, hsh->stub_offset,
2534 hiadj (sym_value));
2535 nios2_elf32_install_imm16 (stub_sec, hsh->stub_offset + 4,
2536 (sym_value & 0xffff));
2537 stub_sec->size += 12;
2538 break;
2539 default:
2540 BFD_FAIL ();
2541 return FALSE;
2542 }
2543
2544 return TRUE;
2545 }
2546
2547 /* As above, but don't actually build the stub. Just bump offset so
2548 we know stub section sizes. */
2549 static bfd_boolean
2550 nios2_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg ATTRIBUTE_UNUSED)
2551 {
2552 struct elf32_nios2_stub_hash_entry *hsh
2553 = (struct elf32_nios2_stub_hash_entry *) gen_entry;
2554
2555 switch (hsh->stub_type)
2556 {
2557 case nios2_stub_call26_before:
2558 case nios2_stub_call26_after:
2559 hsh->stub_sec->size += 12;
2560 break;
2561 default:
2562 BFD_FAIL ();
2563 return FALSE;
2564 }
2565 return TRUE;
2566 }
2567
2568 /* Read in all local syms for all input bfds.
2569 Returns -1 on error, 0 otherwise. */
2570
2571 static int
2572 get_local_syms (bfd *output_bfd ATTRIBUTE_UNUSED, bfd *input_bfd,
2573 struct bfd_link_info *info)
2574 {
2575 unsigned int bfd_indx;
2576 Elf_Internal_Sym *local_syms, **all_local_syms;
2577 struct elf32_nios2_link_hash_table *htab = elf32_nios2_hash_table (info);
2578
2579 /* We want to read in symbol extension records only once. To do this
2580 we need to read in the local symbols in parallel and save them for
2581 later use; so hold pointers to the local symbols in an array. */
2582 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2583 all_local_syms = bfd_zmalloc (amt);
2584 htab->all_local_syms = all_local_syms;
2585 if (all_local_syms == NULL)
2586 return -1;
2587
2588 /* Walk over all the input BFDs, swapping in local symbols. */
2589 for (bfd_indx = 0;
2590 input_bfd != NULL;
2591 input_bfd = input_bfd->link.next, bfd_indx++)
2592 {
2593 Elf_Internal_Shdr *symtab_hdr;
2594
2595 /* We'll need the symbol table in a second. */
2596 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2597 if (symtab_hdr->sh_info == 0)
2598 continue;
2599
2600 /* We need an array of the local symbols attached to the input bfd. */
2601 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2602 if (local_syms == NULL)
2603 {
2604 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2605 symtab_hdr->sh_info, 0,
2606 NULL, NULL, NULL);
2607 /* Cache them for elf_link_input_bfd. */
2608 symtab_hdr->contents = (unsigned char *) local_syms;
2609 }
2610 if (local_syms == NULL)
2611 return -1;
2612
2613 all_local_syms[bfd_indx] = local_syms;
2614 }
2615
2616 return 0;
2617 }
2618
2619 /* Determine and set the size of the stub section for a final link. */
2620 bfd_boolean
2621 nios2_elf32_size_stubs (bfd *output_bfd, bfd *stub_bfd,
2622 struct bfd_link_info *info,
2623 asection *(*add_stub_section) (const char *,
2624 asection *, bfd_boolean),
2625 void (*layout_sections_again) (void))
2626 {
2627 bfd_boolean stub_changed = FALSE;
2628 struct elf32_nios2_link_hash_table *htab = elf32_nios2_hash_table (info);
2629
2630 /* Stash our params away. */
2631 htab->stub_bfd = stub_bfd;
2632 htab->add_stub_section = add_stub_section;
2633 htab->layout_sections_again = layout_sections_again;
2634
2635 /* FIXME: We only compute the section groups once. This could cause
2636 problems if adding a large stub section causes following sections,
2637 or parts of them, to move into another segment. However, this seems
2638 to be consistent with the way other back ends handle this.... */
2639 group_sections (htab);
2640
2641 if (get_local_syms (output_bfd, info->input_bfds, info))
2642 {
2643 if (htab->all_local_syms)
2644 goto error_ret_free_local;
2645 return FALSE;
2646 }
2647
2648 while (1)
2649 {
2650 bfd *input_bfd;
2651 unsigned int bfd_indx;
2652 asection *stub_sec;
2653
2654 for (input_bfd = info->input_bfds, bfd_indx = 0;
2655 input_bfd != NULL;
2656 input_bfd = input_bfd->link.next, bfd_indx++)
2657 {
2658 Elf_Internal_Shdr *symtab_hdr;
2659 asection *section;
2660 Elf_Internal_Sym *local_syms;
2661
2662 /* We'll need the symbol table in a second. */
2663 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2664 if (symtab_hdr->sh_info == 0)
2665 continue;
2666
2667 local_syms = htab->all_local_syms[bfd_indx];
2668
2669 /* Walk over each section attached to the input bfd. */
2670 for (section = input_bfd->sections;
2671 section != NULL;
2672 section = section->next)
2673 {
2674 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2675
2676 /* If there aren't any relocs, then there's nothing more
2677 to do. */
2678 if ((section->flags & SEC_RELOC) == 0
2679 || section->reloc_count == 0)
2680 continue;
2681
2682 /* If this section is a link-once section that will be
2683 discarded, then don't create any stubs. */
2684 if (section->output_section == NULL
2685 || section->output_section->owner != output_bfd)
2686 continue;
2687
2688 /* Get the relocs. */
2689 internal_relocs
2690 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2691 info->keep_memory);
2692 if (internal_relocs == NULL)
2693 goto error_ret_free_local;
2694
2695 /* Now examine each relocation. */
2696 irela = internal_relocs;
2697 irelaend = irela + section->reloc_count;
2698 for (; irela < irelaend; irela++)
2699 {
2700 unsigned int r_type, r_indx;
2701 enum elf32_nios2_stub_type stub_type;
2702 struct elf32_nios2_stub_hash_entry *hsh;
2703 asection *sym_sec;
2704 bfd_vma sym_value;
2705 bfd_vma destination;
2706 struct elf32_nios2_link_hash_entry *hh;
2707 char *stub_name;
2708 const asection *id_sec;
2709
2710 r_type = ELF32_R_TYPE (irela->r_info);
2711 r_indx = ELF32_R_SYM (irela->r_info);
2712
2713 if (r_type >= (unsigned int) R_NIOS2_ILLEGAL)
2714 {
2715 bfd_set_error (bfd_error_bad_value);
2716 error_ret_free_internal:
2717 if (elf_section_data (section)->relocs == NULL)
2718 free (internal_relocs);
2719 goto error_ret_free_local;
2720 }
2721
2722 /* Only look for stubs on CALL and JMPI instructions. */
2723 if (r_type != (unsigned int) R_NIOS2_CALL26)
2724 continue;
2725
2726 /* Now determine the call target, its name, value,
2727 section. */
2728 sym_sec = NULL;
2729 sym_value = 0;
2730 destination = 0;
2731 hh = NULL;
2732 if (r_indx < symtab_hdr->sh_info)
2733 {
2734 /* It's a local symbol. */
2735 Elf_Internal_Sym *sym;
2736 Elf_Internal_Shdr *hdr;
2737 unsigned int shndx;
2738
2739 sym = local_syms + r_indx;
2740 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2741 sym_value = sym->st_value;
2742 shndx = sym->st_shndx;
2743 if (shndx < elf_numsections (input_bfd))
2744 {
2745 hdr = elf_elfsections (input_bfd)[shndx];
2746 sym_sec = hdr->bfd_section;
2747 destination = (sym_value + irela->r_addend
2748 + sym_sec->output_offset
2749 + sym_sec->output_section->vma);
2750 }
2751 }
2752 else
2753 {
2754 /* It's an external symbol. */
2755 int e_indx;
2756
2757 e_indx = r_indx - symtab_hdr->sh_info;
2758 hh = ((struct elf32_nios2_link_hash_entry *)
2759 elf_sym_hashes (input_bfd)[e_indx]);
2760
2761 while (hh->root.root.type == bfd_link_hash_indirect
2762 || hh->root.root.type == bfd_link_hash_warning)
2763 hh = ((struct elf32_nios2_link_hash_entry *)
2764 hh->root.root.u.i.link);
2765
2766 if (hh->root.root.type == bfd_link_hash_defined
2767 || hh->root.root.type == bfd_link_hash_defweak)
2768 {
2769 sym_sec = hh->root.root.u.def.section;
2770 sym_value = hh->root.root.u.def.value;
2771
2772 if (sym_sec->output_section != NULL)
2773 destination = (sym_value + irela->r_addend
2774 + sym_sec->output_offset
2775 + sym_sec->output_section->vma);
2776 else
2777 continue;
2778 }
2779 else if (hh->root.root.type == bfd_link_hash_undefweak)
2780 {
2781 if (! bfd_link_pic (info))
2782 continue;
2783 }
2784 else if (hh->root.root.type == bfd_link_hash_undefined)
2785 {
2786 if (! (info->unresolved_syms_in_objects == RM_IGNORE
2787 && (ELF_ST_VISIBILITY (hh->root.other)
2788 == STV_DEFAULT)))
2789 continue;
2790 }
2791 else
2792 {
2793 bfd_set_error (bfd_error_bad_value);
2794 goto error_ret_free_internal;
2795 }
2796 }
2797
2798 /* Determine what (if any) linker stub is needed. */
2799 stub_type = nios2_type_of_stub (section, irela, hh, htab,
2800 destination, info);
2801 if (stub_type == nios2_stub_none)
2802 continue;
2803
2804 /* Support for grouping stub sections. */
2805 if (stub_type == nios2_stub_call26_before)
2806 id_sec = htab->stub_group[section->id].first_sec;
2807 else
2808 id_sec = htab->stub_group[section->id].last_sec;
2809
2810 /* Get the name of this stub. */
2811 stub_name = nios2_stub_name (id_sec, sym_sec, hh, irela,
2812 stub_type);
2813 if (!stub_name)
2814 goto error_ret_free_internal;
2815
2816 hsh = nios2_stub_hash_lookup (&htab->bstab,
2817 stub_name,
2818 FALSE, FALSE);
2819 if (hsh != NULL)
2820 {
2821 /* The proper stub has already been created. */
2822 free (stub_name);
2823 continue;
2824 }
2825
2826 hsh = nios2_add_stub (stub_name, section, htab, stub_type);
2827 if (hsh == NULL)
2828 {
2829 free (stub_name);
2830 goto error_ret_free_internal;
2831 }
2832 hsh->target_value = sym_value;
2833 hsh->target_section = sym_sec;
2834 hsh->stub_type = stub_type;
2835 hsh->hh = hh;
2836 hsh->addend = irela->r_addend;
2837 stub_changed = TRUE;
2838 }
2839
2840 /* We're done with the internal relocs, free them. */
2841 if (elf_section_data (section)->relocs == NULL)
2842 free (internal_relocs);
2843 }
2844 }
2845
2846 if (!stub_changed)
2847 break;
2848
2849 /* OK, we've added some stubs. Find out the new size of the
2850 stub sections. */
2851 for (stub_sec = htab->stub_bfd->sections;
2852 stub_sec != NULL;
2853 stub_sec = stub_sec->next)
2854 stub_sec->size = 0;
2855
2856 bfd_hash_traverse (&htab->bstab, nios2_size_one_stub, htab);
2857
2858 /* Ask the linker to do its stuff. */
2859 (*htab->layout_sections_again) ();
2860 stub_changed = FALSE;
2861 }
2862
2863 free (htab->all_local_syms);
2864 return TRUE;
2865
2866 error_ret_free_local:
2867 free (htab->all_local_syms);
2868 return FALSE;
2869 }
2870
2871 /* Build all the stubs associated with the current output file. The
2872 stubs are kept in a hash table attached to the main linker hash
2873 table. This function is called via nios2elf_finish in the linker. */
2874 bfd_boolean
2875 nios2_elf32_build_stubs (struct bfd_link_info *info)
2876 {
2877 asection *stub_sec;
2878 struct bfd_hash_table *table;
2879 struct elf32_nios2_link_hash_table *htab;
2880
2881 htab = elf32_nios2_hash_table (info);
2882
2883 for (stub_sec = htab->stub_bfd->sections;
2884 stub_sec != NULL;
2885 stub_sec = stub_sec->next)
2886 /* The stub_bfd may contain non-stub sections if it is also the
2887 dynobj. Any such non-stub sections are created with the
2888 SEC_LINKER_CREATED flag set, while stub sections do not
2889 have that flag. Ignore any non-stub sections here. */
2890 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
2891 {
2892 bfd_size_type size;
2893
2894 /* Allocate memory to hold the linker stubs. */
2895 size = stub_sec->size;
2896 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
2897 if (stub_sec->contents == NULL && size != 0)
2898 return FALSE;
2899 stub_sec->size = 0;
2900 }
2901
2902 /* Build the stubs as directed by the stub hash table. */
2903 table = &htab->bstab;
2904 bfd_hash_traverse (table, nios2_build_one_stub, info);
2905
2906 return TRUE;
2907 }
2908
2909
2910 #define is_nios2_elf(bfd) \
2911 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2912 && elf_object_id (bfd) == NIOS2_ELF_DATA)
2913
2914 /* Merge backend specific data from an object file to the output
2915 object file when linking. */
2916
2917 static bfd_boolean
2918 nios2_elf32_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
2919 {
2920 bfd *obfd = info->output_bfd;
2921 flagword old_flags;
2922 flagword new_flags;
2923
2924 if (!is_nios2_elf (ibfd) || !is_nios2_elf (obfd))
2925 return TRUE;
2926
2927 /* Check if we have the same endianness. */
2928 if (! _bfd_generic_verify_endian_match (ibfd, info))
2929 return FALSE;
2930
2931 new_flags = elf_elfheader (ibfd)->e_flags;
2932 old_flags = elf_elfheader (obfd)->e_flags;
2933 if (!elf_flags_init (obfd))
2934 {
2935 /* First call, no flags set. */
2936 elf_flags_init (obfd) = TRUE;
2937 elf_elfheader (obfd)->e_flags = new_flags;
2938
2939 switch (new_flags)
2940 {
2941 default:
2942 case EF_NIOS2_ARCH_R1:
2943 bfd_default_set_arch_mach (obfd, bfd_arch_nios2, bfd_mach_nios2r1);
2944 break;
2945 case EF_NIOS2_ARCH_R2:
2946 if (bfd_big_endian (ibfd))
2947 {
2948 _bfd_error_handler
2949 (_("error: %B: Big-endian R2 is not supported."), ibfd);
2950 bfd_set_error (bfd_error_bad_value);
2951 return FALSE;
2952 }
2953 bfd_default_set_arch_mach (obfd, bfd_arch_nios2, bfd_mach_nios2r2);
2954 break;
2955 }
2956 }
2957
2958 /* Incompatible flags. */
2959 else if (new_flags != old_flags)
2960 {
2961 /* So far, the only incompatible flags denote incompatible
2962 architectures. */
2963 _bfd_error_handler
2964 /* xgettext:c-format */
2965 (_("error: %B: Conflicting CPU architectures %d/%d"),
2966 ibfd, new_flags, old_flags);
2967 bfd_set_error (bfd_error_bad_value);
2968 return FALSE;
2969 }
2970
2971 /* Merge Tag_compatibility attributes and any common GNU ones. */
2972 _bfd_elf_merge_object_attributes (ibfd, info);
2973
2974 return TRUE;
2975 }
2976
2977
2978 /* Implement bfd_elf32_bfd_reloc_type_lookup:
2979 Given a BFD reloc type, return a howto structure. */
2980 static reloc_howto_type *
2981 nios2_elf32_bfd_reloc_type_lookup (bfd *abfd,
2982 bfd_reloc_code_real_type code)
2983 {
2984 int i;
2985
2986 for (i = 0;
2987 i < (int) (sizeof (nios2_reloc_map) / sizeof (struct elf_reloc_map));
2988 ++i)
2989 if (nios2_reloc_map[i].bfd_val == code)
2990 return lookup_howto (nios2_reloc_map[i].elf_val, abfd);
2991 return NULL;
2992 }
2993
2994 /* Implement bfd_elf32_bfd_reloc_name_lookup:
2995 Given a reloc name, return a howto structure. */
2996 static reloc_howto_type *
2997 nios2_elf32_bfd_reloc_name_lookup (bfd *abfd,
2998 const char *r_name)
2999 {
3000 int i;
3001 reloc_howto_type *howto_tbl;
3002 int howto_tbl_size;
3003
3004 if (BFD_IS_R2 (abfd))
3005 {
3006 howto_tbl = elf_nios2_r2_howto_table_rel;
3007 howto_tbl_size = (int) (sizeof (elf_nios2_r2_howto_table_rel)
3008 / sizeof (elf_nios2_r2_howto_table_rel[0]));
3009 }
3010 else
3011 {
3012 howto_tbl = elf_nios2_r1_howto_table_rel;
3013 howto_tbl_size = (int) (sizeof (elf_nios2_r1_howto_table_rel)
3014 / sizeof (elf_nios2_r1_howto_table_rel[0]));
3015 }
3016
3017 for (i = 0; i < howto_tbl_size; i++)
3018 if (howto_tbl[i].name && strcasecmp (howto_tbl[i].name, r_name) == 0)
3019 return howto_tbl + i;
3020 return NULL;
3021 }
3022
3023 /* Implement elf_info_to_howto:
3024 Given a ELF32 relocation, fill in a arelent structure. */
3025 static void
3026 nios2_elf32_info_to_howto (bfd *abfd, arelent *cache_ptr,
3027 Elf_Internal_Rela *dst)
3028 {
3029 unsigned int r_type;
3030
3031 r_type = ELF32_R_TYPE (dst->r_info);
3032 cache_ptr->howto = lookup_howto (r_type, abfd);
3033 }
3034
3035 /* Return the base VMA address which should be subtracted from real addresses
3036 when resolving @dtpoff relocation.
3037 This is PT_TLS segment p_vaddr. */
3038 static bfd_vma
3039 dtpoff_base (struct bfd_link_info *info)
3040 {
3041 /* If tls_sec is NULL, we should have signalled an error already. */
3042 if (elf_hash_table (info)->tls_sec == NULL)
3043 return 0;
3044 return elf_hash_table (info)->tls_sec->vma;
3045 }
3046
3047 /* Return the relocation value for @tpoff relocation
3048 if STT_TLS virtual address is ADDRESS. */
3049 static bfd_vma
3050 tpoff (struct bfd_link_info *info, bfd_vma address)
3051 {
3052 struct elf_link_hash_table *htab = elf_hash_table (info);
3053
3054 /* If tls_sec is NULL, we should have signalled an error already. */
3055 if (htab->tls_sec == NULL)
3056 return 0;
3057 return address - htab->tls_sec->vma;
3058 }
3059
3060 /* Set the GP value for OUTPUT_BFD. Returns FALSE if this is a
3061 dangerous relocation. */
3062 static bfd_boolean
3063 nios2_elf_assign_gp (bfd *output_bfd, bfd_vma *pgp, struct bfd_link_info *info)
3064 {
3065
3066 bfd_boolean gp_found;
3067 struct bfd_hash_entry *h;
3068 struct bfd_link_hash_entry *lh;
3069
3070 /* If we've already figured out what GP will be, just return it. */
3071 *pgp = _bfd_get_gp_value (output_bfd);
3072 if (*pgp)
3073 return TRUE;
3074
3075 h = bfd_hash_lookup (&info->hash->table, "_gp", FALSE, FALSE);
3076 lh = (struct bfd_link_hash_entry *) h;
3077 lookup:
3078 if (lh)
3079 {
3080 switch (lh->type)
3081 {
3082 case bfd_link_hash_undefined:
3083 case bfd_link_hash_undefweak:
3084 case bfd_link_hash_common:
3085 gp_found = FALSE;
3086 break;
3087 case bfd_link_hash_defined:
3088 case bfd_link_hash_defweak:
3089 gp_found = TRUE;
3090 {
3091 asection *sym_sec = lh->u.def.section;
3092 bfd_vma sym_value = lh->u.def.value;
3093
3094 if (sym_sec->output_section)
3095 sym_value = (sym_value + sym_sec->output_offset
3096 + sym_sec->output_section->vma);
3097 *pgp = sym_value;
3098 }
3099 break;
3100 case bfd_link_hash_indirect:
3101 case bfd_link_hash_warning:
3102 lh = lh->u.i.link;
3103 /* @@FIXME ignoring warning for now */
3104 goto lookup;
3105 case bfd_link_hash_new:
3106 default:
3107 abort ();
3108 }
3109 }
3110 else
3111 gp_found = FALSE;
3112
3113 if (!gp_found)
3114 {
3115 /* Only get the error once. */
3116 *pgp = 4;
3117 _bfd_set_gp_value (output_bfd, *pgp);
3118 return FALSE;
3119 }
3120
3121 _bfd_set_gp_value (output_bfd, *pgp);
3122
3123 return TRUE;
3124 }
3125
3126 /* Retrieve the previously cached _gp pointer, returning bfd_reloc_dangerous
3127 if it's not available as we don't have a link_info pointer available here
3128 to look it up in the output symbol table. We don't need to adjust the
3129 symbol value for an external symbol if we are producing relocatable
3130 output. */
3131 static bfd_reloc_status_type
3132 nios2_elf_final_gp (bfd *output_bfd, asymbol *symbol, bfd_boolean relocatable,
3133 char **error_message, bfd_vma *pgp)
3134 {
3135 if (bfd_is_und_section (symbol->section) && !relocatable)
3136 {
3137 *pgp = 0;
3138 return bfd_reloc_undefined;
3139 }
3140
3141 *pgp = _bfd_get_gp_value (output_bfd);
3142 if (*pgp == 0 && (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0))
3143 {
3144 if (relocatable)
3145 {
3146 /* Make up a value. */
3147 *pgp = symbol->section->output_section->vma + 0x4000;
3148 _bfd_set_gp_value (output_bfd, *pgp);
3149 }
3150 else
3151 {
3152 *error_message
3153 = (char *) _("global pointer relative relocation when _gp not defined");
3154 return bfd_reloc_dangerous;
3155 }
3156 }
3157
3158 return bfd_reloc_ok;
3159 }
3160
3161 /* Do the relocations that require special handling. */
3162 static bfd_reloc_status_type
3163 nios2_elf32_do_hi16_relocate (bfd *abfd, reloc_howto_type *howto,
3164 asection *input_section,
3165 bfd_byte *data, bfd_vma offset,
3166 bfd_vma symbol_value, bfd_vma addend)
3167 {
3168 symbol_value = symbol_value + addend;
3169 addend = 0;
3170 symbol_value = (symbol_value >> 16) & 0xffff;
3171 return _bfd_final_link_relocate (howto, abfd, input_section,
3172 data, offset, symbol_value, addend);
3173 }
3174
3175 static bfd_reloc_status_type
3176 nios2_elf32_do_lo16_relocate (bfd *abfd, reloc_howto_type *howto,
3177 asection *input_section,
3178 bfd_byte *data, bfd_vma offset,
3179 bfd_vma symbol_value, bfd_vma addend)
3180 {
3181 symbol_value = symbol_value + addend;
3182 addend = 0;
3183 symbol_value = symbol_value & 0xffff;
3184 return _bfd_final_link_relocate (howto, abfd, input_section,
3185 data, offset, symbol_value, addend);
3186 }
3187
3188 static bfd_reloc_status_type
3189 nios2_elf32_do_hiadj16_relocate (bfd *abfd, reloc_howto_type *howto,
3190 asection *input_section,
3191 bfd_byte *data, bfd_vma offset,
3192 bfd_vma symbol_value, bfd_vma addend)
3193 {
3194 symbol_value = symbol_value + addend;
3195 addend = 0;
3196 symbol_value = hiadj(symbol_value);
3197 return _bfd_final_link_relocate (howto, abfd, input_section, data, offset,
3198 symbol_value, addend);
3199 }
3200
3201 static bfd_reloc_status_type
3202 nios2_elf32_do_pcrel_lo16_relocate (bfd *abfd, reloc_howto_type *howto,
3203 asection *input_section,
3204 bfd_byte *data, bfd_vma offset,
3205 bfd_vma symbol_value, bfd_vma addend)
3206 {
3207 symbol_value = symbol_value + addend;
3208 addend = 0;
3209 symbol_value = symbol_value & 0xffff;
3210 return _bfd_final_link_relocate (howto, abfd, input_section,
3211 data, offset, symbol_value, addend);
3212 }
3213
3214 static bfd_reloc_status_type
3215 nios2_elf32_do_pcrel_hiadj16_relocate (bfd *abfd, reloc_howto_type *howto,
3216 asection *input_section,
3217 bfd_byte *data, bfd_vma offset,
3218 bfd_vma symbol_value, bfd_vma addend)
3219 {
3220 symbol_value = symbol_value + addend;
3221 symbol_value -= (input_section->output_section->vma
3222 + input_section->output_offset);
3223 symbol_value -= offset;
3224 addend = 0;
3225 symbol_value = hiadj(symbol_value);
3226 return _bfd_final_link_relocate (howto, abfd, input_section, data, offset,
3227 symbol_value, addend);
3228 }
3229
3230 static bfd_reloc_status_type
3231 nios2_elf32_do_pcrel16_relocate (bfd *abfd, reloc_howto_type *howto,
3232 asection *input_section,
3233 bfd_byte *data, bfd_vma offset,
3234 bfd_vma symbol_value, bfd_vma addend)
3235 {
3236 /* NIOS2 pc relative relocations are relative to the next 32-bit instruction
3237 so we need to subtract 4 before doing a final_link_relocate. */
3238 symbol_value = symbol_value + addend - 4;
3239 addend = 0;
3240 return _bfd_final_link_relocate (howto, abfd, input_section,
3241 data, offset, symbol_value, addend);
3242 }
3243
3244 static bfd_reloc_status_type
3245 nios2_elf32_do_call26_relocate (bfd *abfd, reloc_howto_type *howto,
3246 asection *input_section,
3247 bfd_byte *data, bfd_vma offset,
3248 bfd_vma symbol_value, bfd_vma addend)
3249 {
3250 /* Check that the relocation is in the same page as the current address. */
3251 if (CALL26_SEGMENT (symbol_value + addend)
3252 != CALL26_SEGMENT (input_section->output_section->vma
3253 + input_section->output_offset
3254 + offset))
3255 return bfd_reloc_overflow;
3256
3257 /* Check that the target address is correctly aligned on a 4-byte
3258 boundary. */
3259 if ((symbol_value + addend) & 0x3)
3260 return bfd_reloc_overflow;
3261
3262 return _bfd_final_link_relocate (howto, abfd, input_section,
3263 data, offset, symbol_value, addend);
3264 }
3265
3266 static bfd_reloc_status_type
3267 nios2_elf32_do_gprel_relocate (bfd *abfd, reloc_howto_type *howto,
3268 asection *input_section,
3269 bfd_byte *data, bfd_vma offset,
3270 bfd_vma symbol_value, bfd_vma addend)
3271 {
3272 /* Because we need the output_bfd, the special handling is done
3273 in nios2_elf32_relocate_section or in nios2_elf32_gprel_relocate. */
3274 return _bfd_final_link_relocate (howto, abfd, input_section,
3275 data, offset, symbol_value, addend);
3276 }
3277
3278 static bfd_reloc_status_type
3279 nios2_elf32_do_ujmp_relocate (bfd *abfd, reloc_howto_type *howto,
3280 asection *input_section,
3281 bfd_byte *data, bfd_vma offset,
3282 bfd_vma symbol_value, bfd_vma addend)
3283 {
3284 bfd_vma symbol_lo16, symbol_hi16;
3285 bfd_reloc_status_type r;
3286 symbol_value = symbol_value + addend;
3287 addend = 0;
3288 symbol_hi16 = (symbol_value >> 16) & 0xffff;
3289 symbol_lo16 = symbol_value & 0xffff;
3290
3291 r = _bfd_final_link_relocate (howto, abfd, input_section,
3292 data, offset, symbol_hi16, addend);
3293
3294 if (r == bfd_reloc_ok)
3295 return _bfd_final_link_relocate (howto, abfd, input_section,
3296 data, offset + 4, symbol_lo16, addend);
3297
3298 return r;
3299 }
3300
3301 static bfd_reloc_status_type
3302 nios2_elf32_do_cjmp_relocate (bfd *abfd, reloc_howto_type *howto,
3303 asection *input_section,
3304 bfd_byte *data, bfd_vma offset,
3305 bfd_vma symbol_value, bfd_vma addend)
3306 {
3307 bfd_vma symbol_lo16, symbol_hi16;
3308 bfd_reloc_status_type r;
3309 symbol_value = symbol_value + addend;
3310 addend = 0;
3311 symbol_hi16 = (symbol_value >> 16) & 0xffff;
3312 symbol_lo16 = symbol_value & 0xffff;
3313
3314 r = _bfd_final_link_relocate (howto, abfd, input_section,
3315 data, offset, symbol_hi16, addend);
3316
3317 if (r == bfd_reloc_ok)
3318 return _bfd_final_link_relocate (howto, abfd, input_section,
3319 data, offset + 4, symbol_lo16, addend);
3320
3321 return r;
3322 }
3323
3324 static bfd_reloc_status_type
3325 nios2_elf32_do_callr_relocate (bfd *abfd, reloc_howto_type *howto,
3326 asection *input_section,
3327 bfd_byte *data, bfd_vma offset,
3328 bfd_vma symbol_value, bfd_vma addend)
3329 {
3330 bfd_vma symbol_lo16, symbol_hi16;
3331 bfd_reloc_status_type r;
3332 symbol_value = symbol_value + addend;
3333 addend = 0;
3334 symbol_hi16 = (symbol_value >> 16) & 0xffff;
3335 symbol_lo16 = symbol_value & 0xffff;
3336
3337 r = _bfd_final_link_relocate (howto, abfd, input_section,
3338 data, offset, symbol_hi16, addend);
3339
3340 if (r == bfd_reloc_ok)
3341 return _bfd_final_link_relocate (howto, abfd, input_section,
3342 data, offset + 4, symbol_lo16, addend);
3343
3344 return r;
3345 }
3346
3347 /* HOWTO handlers for relocations that require special handling. */
3348
3349 /* This is for relocations used only when relaxing to ensure
3350 changes in size of section don't screw up .align. */
3351 static bfd_reloc_status_type
3352 nios2_elf32_ignore_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
3353 asymbol *symbol ATTRIBUTE_UNUSED,
3354 void *data ATTRIBUTE_UNUSED, asection *input_section,
3355 bfd *output_bfd,
3356 char **error_message ATTRIBUTE_UNUSED)
3357 {
3358 if (output_bfd != NULL)
3359 reloc_entry->address += input_section->output_offset;
3360 return bfd_reloc_ok;
3361 }
3362
3363 static bfd_reloc_status_type
3364 nios2_elf32_hi16_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
3365 void *data, asection *input_section,
3366 bfd *output_bfd,
3367 char **error_message ATTRIBUTE_UNUSED)
3368 {
3369 /* This part is from bfd_elf_generic_reloc. */
3370 if (output_bfd != NULL
3371 && (symbol->flags & BSF_SECTION_SYM) == 0
3372 && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0))
3373 {
3374 reloc_entry->address += input_section->output_offset;
3375 return bfd_reloc_ok;
3376 }
3377
3378 if (output_bfd != NULL)
3379 /* FIXME: See bfd_perform_relocation. Is this right? */
3380 return bfd_reloc_continue;
3381
3382 return nios2_elf32_do_hi16_relocate (abfd, reloc_entry->howto,
3383 input_section,
3384 data, reloc_entry->address,
3385 (symbol->value
3386 + symbol->section->output_section->vma
3387 + symbol->section->output_offset),
3388 reloc_entry->addend);
3389 }
3390
3391 static bfd_reloc_status_type
3392 nios2_elf32_lo16_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
3393 void *data, asection *input_section,
3394 bfd *output_bfd,
3395 char **error_message ATTRIBUTE_UNUSED)
3396 {
3397 /* This part is from bfd_elf_generic_reloc. */
3398 if (output_bfd != NULL
3399 && (symbol->flags & BSF_SECTION_SYM) == 0
3400 && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0))
3401 {
3402 reloc_entry->address += input_section->output_offset;
3403 return bfd_reloc_ok;
3404 }
3405
3406 if (output_bfd != NULL)
3407 /* FIXME: See bfd_perform_relocation. Is this right? */
3408 return bfd_reloc_continue;
3409
3410 return nios2_elf32_do_lo16_relocate (abfd, reloc_entry->howto,
3411 input_section,
3412 data, reloc_entry->address,
3413 (symbol->value
3414 + symbol->section->output_section->vma
3415 + symbol->section->output_offset),
3416 reloc_entry->addend);
3417 }
3418
3419 static bfd_reloc_status_type
3420 nios2_elf32_hiadj16_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
3421 void *data, asection *input_section,
3422 bfd *output_bfd,
3423 char **error_message ATTRIBUTE_UNUSED)
3424 {
3425 /* This part is from bfd_elf_generic_reloc. */
3426 if (output_bfd != NULL
3427 && (symbol->flags & BSF_SECTION_SYM) == 0
3428 && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0))
3429 {
3430 reloc_entry->address += input_section->output_offset;
3431 return bfd_reloc_ok;
3432 }
3433
3434 if (output_bfd != NULL)
3435 /* FIXME: See bfd_perform_relocation. Is this right? */
3436 return bfd_reloc_continue;
3437
3438 return nios2_elf32_do_hiadj16_relocate (abfd, reloc_entry->howto,
3439 input_section,
3440 data, reloc_entry->address,
3441 (symbol->value
3442 + symbol->section->output_section->vma
3443 + symbol->section->output_offset),
3444 reloc_entry->addend);
3445 }
3446
3447 static bfd_reloc_status_type
3448 nios2_elf32_pcrel_lo16_relocate (bfd *abfd, arelent *reloc_entry,
3449 asymbol *symbol, void *data,
3450 asection *input_section, bfd *output_bfd,
3451 char **error_message ATTRIBUTE_UNUSED)
3452 {
3453 /* This part is from bfd_elf_generic_reloc. */
3454 if (output_bfd != NULL
3455 && (symbol->flags & BSF_SECTION_SYM) == 0
3456 && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0))
3457 {
3458 reloc_entry->address += input_section->output_offset;
3459 return bfd_reloc_ok;
3460 }
3461
3462 if (output_bfd != NULL)
3463 /* FIXME: See bfd_perform_relocation. Is this right? */
3464 return bfd_reloc_continue;
3465
3466 return nios2_elf32_do_pcrel_lo16_relocate (
3467 abfd, reloc_entry->howto, input_section, data, reloc_entry->address,
3468 (symbol->value + symbol->section->output_section->vma
3469 + symbol->section->output_offset),
3470 reloc_entry->addend);
3471 }
3472
3473 static bfd_reloc_status_type
3474 nios2_elf32_pcrel_hiadj16_relocate (bfd *abfd, arelent *reloc_entry,
3475 asymbol *symbol, void *data,
3476 asection *input_section, bfd *output_bfd,
3477 char **error_message ATTRIBUTE_UNUSED)
3478 {
3479 /* This part is from bfd_elf_generic_reloc. */
3480 if (output_bfd != NULL
3481 && (symbol->flags & BSF_SECTION_SYM) == 0
3482 && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0))
3483 {
3484 reloc_entry->address += input_section->output_offset;
3485 return bfd_reloc_ok;
3486 }
3487
3488 if (output_bfd != NULL)
3489 /* FIXME: See bfd_perform_relocation. Is this right? */
3490 return bfd_reloc_continue;
3491
3492 return nios2_elf32_do_pcrel_hiadj16_relocate (
3493 abfd, reloc_entry->howto, input_section, data, reloc_entry->address,
3494 (symbol->value + symbol->section->output_section->vma
3495 + symbol->section->output_offset),
3496 reloc_entry->addend);
3497 }
3498
3499 static bfd_reloc_status_type
3500 nios2_elf32_pcrel16_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
3501 void *data, asection *input_section,
3502 bfd *output_bfd,
3503 char **error_message ATTRIBUTE_UNUSED)
3504 {
3505 /* This part is from bfd_elf_generic_reloc. */
3506 if (output_bfd != NULL
3507 && (symbol->flags & BSF_SECTION_SYM) == 0
3508 && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0))
3509 {
3510 reloc_entry->address += input_section->output_offset;
3511 return bfd_reloc_ok;
3512 }
3513
3514 if (output_bfd != NULL)
3515 /* FIXME: See bfd_perform_relocation. Is this right? */
3516 return bfd_reloc_continue;
3517
3518 return nios2_elf32_do_pcrel16_relocate (abfd, reloc_entry->howto,
3519 input_section,
3520 data, reloc_entry->address,
3521 (symbol->value
3522 + symbol->section->output_section->vma
3523 + symbol->section->output_offset),
3524 reloc_entry->addend);
3525 }
3526
3527 static bfd_reloc_status_type
3528 nios2_elf32_call26_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
3529 void *data, asection *input_section,
3530 bfd *output_bfd,
3531 char **error_message ATTRIBUTE_UNUSED)
3532 {
3533 /* This part is from bfd_elf_generic_reloc. */
3534 if (output_bfd != NULL
3535 && (symbol->flags & BSF_SECTION_SYM) == 0
3536 && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0))
3537 {
3538 reloc_entry->address += input_section->output_offset;
3539 return bfd_reloc_ok;
3540 }
3541
3542 if (output_bfd != NULL)
3543 /* FIXME: See bfd_perform_relocation. Is this right? */
3544 return bfd_reloc_continue;
3545
3546 return nios2_elf32_do_call26_relocate (abfd, reloc_entry->howto,
3547 input_section,
3548 data, reloc_entry->address,
3549 (symbol->value
3550 + symbol->section->output_section->vma
3551 + symbol->section->output_offset),
3552 reloc_entry->addend);
3553 }
3554
3555 static bfd_reloc_status_type
3556 nios2_elf32_gprel_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
3557 void *data, asection *input_section,
3558 bfd *output_bfd, char **msg)
3559 {
3560 bfd_vma relocation;
3561 bfd_vma gp;
3562 bfd_reloc_status_type r;
3563
3564
3565 /* This part is from bfd_elf_generic_reloc. */
3566 if (output_bfd != NULL
3567 && (symbol->flags & BSF_SECTION_SYM) == 0
3568 && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0))
3569 {
3570 reloc_entry->address += input_section->output_offset;
3571 return bfd_reloc_ok;
3572 }
3573
3574 if (output_bfd != NULL)
3575 /* FIXME: See bfd_perform_relocation. Is this right? */
3576 return bfd_reloc_continue;
3577
3578 relocation = (symbol->value
3579 + symbol->section->output_section->vma
3580 + symbol->section->output_offset);
3581
3582 /* This assumes we've already cached the _gp symbol. */
3583 r = nios2_elf_final_gp (abfd, symbol, FALSE, msg, &gp);
3584 if (r == bfd_reloc_ok)
3585 {
3586 relocation = relocation + reloc_entry->addend - gp;
3587 reloc_entry->addend = 0;
3588 if ((signed) relocation < -32768 || (signed) relocation > 32767)
3589 {
3590 *msg = _("global pointer relative address out of range");
3591 r = bfd_reloc_outofrange;
3592 }
3593 else
3594 r = nios2_elf32_do_gprel_relocate (abfd, reloc_entry->howto,
3595 input_section,
3596 data, reloc_entry->address,
3597 relocation, reloc_entry->addend);
3598 }
3599
3600 return r;
3601 }
3602
3603 static bfd_reloc_status_type
3604 nios2_elf32_ujmp_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
3605 void *data, asection *input_section,
3606 bfd *output_bfd, char **msg ATTRIBUTE_UNUSED)
3607 {
3608 /* This part is from bfd_elf_generic_reloc. */
3609 if (output_bfd != NULL
3610 && (symbol->flags & BSF_SECTION_SYM) == 0
3611 && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0))
3612 {
3613 reloc_entry->address += input_section->output_offset;
3614 return bfd_reloc_ok;
3615 }
3616
3617 if (output_bfd != NULL)
3618 /* FIXME: See bfd_perform_relocation. Is this right? */
3619 return bfd_reloc_continue;
3620
3621 return nios2_elf32_do_ujmp_relocate (abfd, reloc_entry->howto,
3622 input_section,
3623 data, reloc_entry->address,
3624 (symbol->value
3625 + symbol->section->output_section->vma
3626 + symbol->section->output_offset),
3627 reloc_entry->addend);
3628 }
3629
3630 static bfd_reloc_status_type
3631 nios2_elf32_cjmp_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
3632 void *data, asection *input_section,
3633 bfd *output_bfd, char **msg ATTRIBUTE_UNUSED)
3634 {
3635 /* This part is from bfd_elf_generic_reloc. */
3636 if (output_bfd != NULL
3637 && (symbol->flags & BSF_SECTION_SYM) == 0
3638 && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0))
3639 {
3640 reloc_entry->address += input_section->output_offset;
3641 return bfd_reloc_ok;
3642 }
3643
3644 if (output_bfd != NULL)
3645 /* FIXME: See bfd_perform_relocation. Is this right? */
3646 return bfd_reloc_continue;
3647
3648 return nios2_elf32_do_cjmp_relocate (abfd, reloc_entry->howto,
3649 input_section,
3650 data, reloc_entry->address,
3651 (symbol->value
3652 + symbol->section->output_section->vma
3653 + symbol->section->output_offset),
3654 reloc_entry->addend);
3655 }
3656
3657 static bfd_reloc_status_type
3658 nios2_elf32_callr_relocate (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
3659 void *data, asection *input_section,
3660 bfd *output_bfd, char **msg ATTRIBUTE_UNUSED)
3661 {
3662 /* This part is from bfd_elf_generic_reloc. */
3663 if (output_bfd != NULL
3664 && (symbol->flags & BSF_SECTION_SYM) == 0
3665 && (!reloc_entry->howto->partial_inplace || reloc_entry->addend == 0))
3666 {
3667 reloc_entry->address += input_section->output_offset;
3668 return bfd_reloc_ok;
3669 }
3670
3671 if (output_bfd != NULL)
3672 /* FIXME: See bfd_perform_relocation. Is this right? */
3673 return bfd_reloc_continue;
3674
3675 return nios2_elf32_do_callr_relocate (abfd, reloc_entry->howto,
3676 input_section,
3677 data, reloc_entry->address,
3678 (symbol->value
3679 + symbol->section->output_section->vma
3680 + symbol->section->output_offset),
3681 reloc_entry->addend);
3682 }
3683
3684
3685 /* Implement elf_backend_relocate_section. */
3686 static bfd_boolean
3687 nios2_elf32_relocate_section (bfd *output_bfd,
3688 struct bfd_link_info *info,
3689 bfd *input_bfd,
3690 asection *input_section,
3691 bfd_byte *contents,
3692 Elf_Internal_Rela *relocs,
3693 Elf_Internal_Sym *local_syms,
3694 asection **local_sections)
3695 {
3696 Elf_Internal_Shdr *symtab_hdr;
3697 struct elf_link_hash_entry **sym_hashes;
3698 Elf_Internal_Rela *rel;
3699 Elf_Internal_Rela *relend;
3700 struct elf32_nios2_link_hash_table *htab;
3701 asection *sgot;
3702 asection *splt;
3703 asection *sreloc = NULL;
3704 bfd_vma *local_got_offsets;
3705 bfd_vma got_base;
3706
3707 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3708 sym_hashes = elf_sym_hashes (input_bfd);
3709 relend = relocs + input_section->reloc_count;
3710
3711 htab = elf32_nios2_hash_table (info);
3712 sgot = htab->root.sgot;
3713 splt = htab->root.splt;
3714 local_got_offsets = elf_local_got_offsets (input_bfd);
3715
3716 if (elf32_nios2_hash_table (info)->h_gp_got == NULL)
3717 got_base = 0;
3718 else
3719 got_base = elf32_nios2_hash_table (info)->h_gp_got->root.u.def.value;
3720
3721 for (rel = relocs; rel < relend; rel++)
3722 {
3723 reloc_howto_type *howto;
3724 unsigned long r_symndx;
3725 Elf_Internal_Sym *sym;
3726 asection *sec;
3727 struct elf_link_hash_entry *h;
3728 struct elf32_nios2_link_hash_entry *eh;
3729 bfd_vma relocation;
3730 bfd_vma gp;
3731 bfd_reloc_status_type r = bfd_reloc_ok;
3732 const char *name = NULL;
3733 int r_type;
3734 const char *format;
3735 char msgbuf[256];
3736 const char* msg = (const char*) NULL;
3737 bfd_boolean unresolved_reloc;
3738 bfd_vma off;
3739 int use_plt;
3740
3741 r_type = ELF32_R_TYPE (rel->r_info);
3742 r_symndx = ELF32_R_SYM (rel->r_info);
3743
3744 howto = lookup_howto ((unsigned) ELF32_R_TYPE (rel->r_info), output_bfd);
3745 h = NULL;
3746 sym = NULL;
3747 sec = NULL;
3748
3749 if (r_symndx < symtab_hdr->sh_info)
3750 {
3751 sym = local_syms + r_symndx;
3752 sec = local_sections[r_symndx];
3753 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
3754 }
3755 else
3756 {
3757 bfd_boolean warned, ignored;
3758
3759 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3760 r_symndx, symtab_hdr, sym_hashes,
3761 h, sec, relocation,
3762 unresolved_reloc, warned, ignored);
3763 }
3764
3765 if (sec && discarded_section (sec))
3766 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3767 rel, 1, relend, howto, 0, contents);
3768
3769 /* Nothing more to do unless this is a final link. */
3770 if (bfd_link_relocatable (info))
3771 continue;
3772
3773 if (howto)
3774 {
3775 switch (howto->type)
3776 {
3777 case R_NIOS2_HI16:
3778 r = nios2_elf32_do_hi16_relocate (input_bfd, howto,
3779 input_section,
3780 contents, rel->r_offset,
3781 relocation, rel->r_addend);
3782 break;
3783 case R_NIOS2_LO16:
3784 r = nios2_elf32_do_lo16_relocate (input_bfd, howto,
3785 input_section,
3786 contents, rel->r_offset,
3787 relocation, rel->r_addend);
3788 break;
3789 case R_NIOS2_PCREL_LO:
3790 r = nios2_elf32_do_pcrel_lo16_relocate (input_bfd, howto,
3791 input_section,
3792 contents,
3793 rel->r_offset,
3794 relocation,
3795 rel->r_addend);
3796 break;
3797 case R_NIOS2_HIADJ16:
3798 r = nios2_elf32_do_hiadj16_relocate (input_bfd, howto,
3799 input_section, contents,
3800 rel->r_offset, relocation,
3801 rel->r_addend);
3802 break;
3803 case R_NIOS2_PCREL_HA:
3804 r = nios2_elf32_do_pcrel_hiadj16_relocate (input_bfd, howto,
3805 input_section,
3806 contents,
3807 rel->r_offset,
3808 relocation,
3809 rel->r_addend);
3810 break;
3811 case R_NIOS2_PCREL16:
3812 r = nios2_elf32_do_pcrel16_relocate (input_bfd, howto,
3813 input_section, contents,
3814 rel->r_offset, relocation,
3815 rel->r_addend);
3816 break;
3817 case R_NIOS2_GPREL:
3818 /* Turns an absolute address into a gp-relative address. */
3819 if (!nios2_elf_assign_gp (output_bfd, &gp, info))
3820 {
3821 bfd_vma reloc_address;
3822
3823 if (sec && sec->output_section)
3824 reloc_address = (sec->output_section->vma
3825 + sec->output_offset
3826 + rel->r_offset);
3827 else
3828 reloc_address = 0;
3829
3830 format = _("global pointer relative relocation at address "
3831 "0x%08x when _gp not defined\n");
3832 sprintf (msgbuf, format, reloc_address);
3833 msg = msgbuf;
3834 r = bfd_reloc_dangerous;
3835 }
3836 else
3837 {
3838 bfd_vma symbol_address = rel->r_addend + relocation;
3839 relocation = symbol_address - gp;
3840 rel->r_addend = 0;
3841 if (((signed) relocation < -32768
3842 || (signed) relocation > 32767)
3843 && (!h
3844 || h->root.type == bfd_link_hash_defined
3845 || h->root.type == bfd_link_hash_defweak))
3846 {
3847 if (h)
3848 name = h->root.root.string;
3849 /* xgettext:c-format */
3850 format = _("Unable to reach %s (at 0x%08x) from the "
3851 "global pointer (at 0x%08x) because the "
3852 "offset (%d) is out of the allowed range, "
3853 "-32678 to 32767.\n" );
3854 sprintf (msgbuf, format, name, symbol_address, gp,
3855 (signed)relocation);
3856 msg = msgbuf;
3857 r = bfd_reloc_outofrange;
3858 }
3859 else
3860 r = _bfd_final_link_relocate (howto, input_bfd,
3861 input_section, contents,
3862 rel->r_offset, relocation,
3863 rel->r_addend);
3864 }
3865 break;
3866 case R_NIOS2_UJMP:
3867 r = nios2_elf32_do_ujmp_relocate (input_bfd, howto,
3868 input_section,
3869 contents, rel->r_offset,
3870 relocation, rel->r_addend);
3871 break;
3872 case R_NIOS2_CJMP:
3873 r = nios2_elf32_do_cjmp_relocate (input_bfd, howto,
3874 input_section,
3875 contents, rel->r_offset,
3876 relocation, rel->r_addend);
3877 break;
3878 case R_NIOS2_CALLR:
3879 r = nios2_elf32_do_callr_relocate (input_bfd, howto,
3880 input_section, contents,
3881 rel->r_offset, relocation,
3882 rel->r_addend);
3883 break;
3884 case R_NIOS2_CALL26:
3885 case R_NIOS2_CALL26_NOAT:
3886 /* If we have a call to an undefined weak symbol, we just want
3887 to stuff a zero in the bits of the call instruction and
3888 bypass the normal call26 relocation handling, because it'll
3889 diagnose an overflow error if address 0 isn't in the same
3890 256MB segment as the call site. Presumably the call
3891 should be guarded by a null check anyway. */
3892 if (h != NULL && h->root.type == bfd_link_hash_undefweak)
3893 {
3894 BFD_ASSERT (relocation == 0 && rel->r_addend == 0);
3895 r = _bfd_final_link_relocate (howto, input_bfd,
3896 input_section, contents,
3897 rel->r_offset, relocation,
3898 rel->r_addend);
3899 break;
3900 }
3901 /* Handle relocations which should use the PLT entry.
3902 NIOS2_BFD_RELOC_32 relocations will use the symbol's value,
3903 which may point to a PLT entry, but we don't need to handle
3904 that here. If we created a PLT entry, all branches in this
3905 object should go to it. */
3906 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
3907 {
3908 /* If we've created a .plt section, and assigned a PLT entry
3909 to this function, it should not be known to bind locally.
3910 If it were, we would have cleared the PLT entry. */
3911 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info, h));
3912
3913 relocation = (splt->output_section->vma
3914 + splt->output_offset
3915 + h->plt.offset);
3916
3917 unresolved_reloc = FALSE;
3918 }
3919 /* Detect R_NIOS2_CALL26 relocations that would overflow the
3920 256MB segment. Replace the target with a reference to a
3921 trampoline instead.
3922 Note that htab->stub_group is null if relaxation has been
3923 disabled by the --no-relax linker command-line option, so
3924 we can use that to skip this processing entirely. */
3925 if (howto->type == R_NIOS2_CALL26 && htab->stub_group)
3926 {
3927 bfd_vma dest = relocation + rel->r_addend;
3928 enum elf32_nios2_stub_type stub_type;
3929
3930 eh = (struct elf32_nios2_link_hash_entry *)h;
3931 stub_type = nios2_type_of_stub (input_section, rel, eh,
3932 htab, dest, NULL);
3933
3934 if (stub_type != nios2_stub_none)
3935 {
3936 struct elf32_nios2_stub_hash_entry *hsh;
3937
3938 hsh = nios2_get_stub_entry (input_section, sec,
3939 eh, rel, htab, stub_type);
3940 if (hsh == NULL)
3941 {
3942 r = bfd_reloc_undefined;
3943 break;
3944 }
3945
3946 dest = (hsh->stub_offset
3947 + hsh->stub_sec->output_offset
3948 + hsh->stub_sec->output_section->vma);
3949 r = nios2_elf32_do_call26_relocate (input_bfd, howto,
3950 input_section,
3951 contents,
3952 rel->r_offset,
3953 dest, 0);
3954 break;
3955 }
3956 }
3957
3958 /* Normal case. */
3959 r = nios2_elf32_do_call26_relocate (input_bfd, howto,
3960 input_section, contents,
3961 rel->r_offset, relocation,
3962 rel->r_addend);
3963 break;
3964 case R_NIOS2_ALIGN:
3965 r = bfd_reloc_ok;
3966 /* For symmetry this would be
3967 r = nios2_elf32_do_ignore_reloc (input_bfd, howto,
3968 input_section, contents,
3969 rel->r_offset, relocation,
3970 rel->r_addend);
3971 but do_ignore_reloc would do no more than return
3972 bfd_reloc_ok. */
3973 break;
3974
3975 case R_NIOS2_GOT16:
3976 case R_NIOS2_CALL16:
3977 case R_NIOS2_GOT_LO:
3978 case R_NIOS2_GOT_HA:
3979 case R_NIOS2_CALL_LO:
3980 case R_NIOS2_CALL_HA:
3981 /* Relocation is to the entry for this symbol in the
3982 global offset table. */
3983 if (sgot == NULL)
3984 {
3985 r = bfd_reloc_notsupported;
3986 break;
3987 }
3988
3989 use_plt = 0;
3990
3991 if (h != NULL)
3992 {
3993 bfd_boolean dyn;
3994
3995 eh = (struct elf32_nios2_link_hash_entry *)h;
3996 use_plt = (eh->got_types_used == CALL_USED
3997 && h->plt.offset != (bfd_vma) -1);
3998
3999 off = h->got.offset;
4000 BFD_ASSERT (off != (bfd_vma) -1);
4001 dyn = elf_hash_table (info)->dynamic_sections_created;
4002 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
4003 bfd_link_pic (info),
4004 h)
4005 || (bfd_link_pic (info)
4006 && SYMBOL_REFERENCES_LOCAL (info, h))
4007 || (ELF_ST_VISIBILITY (h->other)
4008 && h->root.type == bfd_link_hash_undefweak))
4009 {
4010 /* This is actually a static link, or it is a -Bsymbolic
4011 link and the symbol is defined locally. We must
4012 initialize this entry in the global offset table.
4013 Since the offset must always be a multiple of 4, we
4014 use the least significant bit to record whether we
4015 have initialized it already.
4016
4017 When doing a dynamic link, we create a .rela.got
4018 relocation entry to initialize the value. This is
4019 done in the finish_dynamic_symbol routine. */
4020 if ((off & 1) != 0)
4021 off &= ~1;
4022 else
4023 {
4024 bfd_put_32 (output_bfd, relocation,
4025 sgot->contents + off);
4026 h->got.offset |= 1;
4027 }
4028 }
4029 else
4030 unresolved_reloc = FALSE;
4031 }
4032 else
4033 {
4034 BFD_ASSERT (local_got_offsets != NULL
4035 && local_got_offsets[r_symndx] != (bfd_vma) -1);
4036
4037 off = local_got_offsets[r_symndx];
4038
4039 /* The offset must always be a multiple of 4. We use the
4040 least significant bit to record whether we have already
4041 generated the necessary reloc. */
4042 if ((off & 1) != 0)
4043 off &= ~1;
4044 else
4045 {
4046 bfd_put_32 (output_bfd, relocation,
4047 sgot->contents + off);
4048
4049 if (bfd_link_pic (info))
4050 {
4051 asection *srelgot;
4052 Elf_Internal_Rela outrel;
4053 bfd_byte *loc;
4054
4055 srelgot = htab->root.srelgot;
4056 BFD_ASSERT (srelgot != NULL);
4057
4058 outrel.r_addend = relocation;
4059 outrel.r_offset = (sgot->output_section->vma
4060 + sgot->output_offset
4061 + off);
4062 outrel.r_info = ELF32_R_INFO (0, R_NIOS2_RELATIVE);
4063 loc = srelgot->contents;
4064 loc += (srelgot->reloc_count++ *
4065 sizeof (Elf32_External_Rela));
4066 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4067 }
4068
4069 local_got_offsets[r_symndx] |= 1;
4070 }
4071 }
4072
4073 if (use_plt && bfd_link_pic (info))
4074 {
4075 off = ((h->plt.offset - 24) / 12 + 3) * 4;
4076 relocation = (htab->root.sgotplt->output_offset + off
4077 - got_base);
4078 }
4079 else
4080 relocation = sgot->output_offset + off - got_base;
4081
4082 /* This relocation does not use the addend. */
4083 rel->r_addend = 0;
4084
4085 switch (howto->type)
4086 {
4087 case R_NIOS2_GOT_LO:
4088 case R_NIOS2_CALL_LO:
4089 r = nios2_elf32_do_lo16_relocate (input_bfd, howto,
4090 input_section, contents,
4091 rel->r_offset, relocation,
4092 rel->r_addend);
4093 break;
4094 case R_NIOS2_GOT_HA:
4095 case R_NIOS2_CALL_HA:
4096 r = nios2_elf32_do_hiadj16_relocate (input_bfd, howto,
4097 input_section, contents,
4098 rel->r_offset,
4099 relocation,
4100 rel->r_addend);
4101 break;
4102 default:
4103 r = _bfd_final_link_relocate (howto, input_bfd,
4104 input_section, contents,
4105 rel->r_offset, relocation,
4106 rel->r_addend);
4107 break;
4108 }
4109 break;
4110
4111 case R_NIOS2_GOTOFF_LO:
4112 case R_NIOS2_GOTOFF_HA:
4113 case R_NIOS2_GOTOFF:
4114 /* Relocation is relative to the global offset table pointer. */
4115
4116 BFD_ASSERT (sgot != NULL);
4117 if (sgot == NULL)
4118 {
4119 r = bfd_reloc_notsupported;
4120 break;
4121 }
4122
4123 /* Note that sgot->output_offset is not involved in this
4124 calculation. We always want the start of .got. */
4125 relocation -= sgot->output_section->vma;
4126
4127 /* Now we adjust the relocation to be relative to the GOT pointer
4128 (the _gp_got symbol), which possibly contains the 0x8000 bias. */
4129 relocation -= got_base;
4130
4131 switch (howto->type)
4132 {
4133 case R_NIOS2_GOTOFF_LO:
4134 r = nios2_elf32_do_lo16_relocate (input_bfd, howto,
4135 input_section, contents,
4136 rel->r_offset, relocation,
4137 rel->r_addend);
4138 break;
4139 case R_NIOS2_GOTOFF_HA:
4140 r = nios2_elf32_do_hiadj16_relocate (input_bfd, howto,
4141 input_section, contents,
4142 rel->r_offset,
4143 relocation,
4144 rel->r_addend);
4145 break;
4146 default:
4147 r = _bfd_final_link_relocate (howto, input_bfd,
4148 input_section, contents,
4149 rel->r_offset, relocation,
4150 rel->r_addend);
4151 break;
4152 }
4153 break;
4154
4155 case R_NIOS2_TLS_LDO16:
4156 relocation -= dtpoff_base (info) + DTP_OFFSET;
4157
4158 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
4159 contents, rel->r_offset,
4160 relocation, rel->r_addend);
4161 break;
4162 case R_NIOS2_TLS_LDM16:
4163 if (htab->root.sgot == NULL)
4164 abort ();
4165
4166 off = htab->tls_ldm_got.offset;
4167
4168 if ((off & 1) != 0)
4169 off &= ~1;
4170 else
4171 {
4172 /* If we don't know the module number, create a relocation
4173 for it. */
4174 if (bfd_link_pic (info))
4175 {
4176 Elf_Internal_Rela outrel;
4177 bfd_byte *loc;
4178
4179 if (htab->root.srelgot == NULL)
4180 abort ();
4181
4182 outrel.r_addend = 0;
4183 outrel.r_offset = (htab->root.sgot->output_section->vma
4184 + htab->root.sgot->output_offset
4185 + off);
4186 outrel.r_info = ELF32_R_INFO (0, R_NIOS2_TLS_DTPMOD);
4187
4188 loc = htab->root.srelgot->contents;
4189 loc += (htab->root.srelgot->reloc_count++
4190 * sizeof (Elf32_External_Rela));
4191 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4192 }
4193 else
4194 bfd_put_32 (output_bfd, 1,
4195 htab->root.sgot->contents + off);
4196
4197 htab->tls_ldm_got.offset |= 1;
4198 }
4199
4200 relocation = htab->root.sgot->output_offset + off - got_base;
4201
4202 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
4203 contents, rel->r_offset,
4204 relocation, rel->r_addend);
4205
4206 break;
4207 case R_NIOS2_TLS_GD16:
4208 case R_NIOS2_TLS_IE16:
4209 {
4210 int indx;
4211 char tls_type;
4212
4213 if (htab->root.sgot == NULL)
4214 abort ();
4215
4216 indx = 0;
4217 if (h != NULL)
4218 {
4219 bfd_boolean dyn;
4220 dyn = htab->root.dynamic_sections_created;
4221 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
4222 bfd_link_pic (info),
4223 h)
4224 && (!bfd_link_pic (info)
4225 || !SYMBOL_REFERENCES_LOCAL (info, h)))
4226 {
4227 unresolved_reloc = FALSE;
4228 indx = h->dynindx;
4229 }
4230 off = h->got.offset;
4231 tls_type = (((struct elf32_nios2_link_hash_entry *) h)
4232 ->tls_type);
4233 }
4234 else
4235 {
4236 if (local_got_offsets == NULL)
4237 abort ();
4238 off = local_got_offsets[r_symndx];
4239 tls_type = (elf32_nios2_local_got_tls_type (input_bfd)
4240 [r_symndx]);
4241 }
4242
4243 if (tls_type == GOT_UNKNOWN)
4244 abort ();
4245
4246 if ((off & 1) != 0)
4247 off &= ~1;
4248 else
4249 {
4250 bfd_boolean need_relocs = FALSE;
4251 Elf_Internal_Rela outrel;
4252 bfd_byte *loc = NULL;
4253 int cur_off = off;
4254
4255 /* The GOT entries have not been initialized yet. Do it
4256 now, and emit any relocations. If both an IE GOT and a
4257 GD GOT are necessary, we emit the GD first. */
4258
4259 if ((bfd_link_pic (info) || indx != 0)
4260 && (h == NULL
4261 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
4262 || h->root.type != bfd_link_hash_undefweak))
4263 {
4264 need_relocs = TRUE;
4265 if (htab->root.srelgot == NULL)
4266 abort ();
4267 loc = htab->root.srelgot->contents;
4268 loc += (htab->root.srelgot->reloc_count *
4269 sizeof (Elf32_External_Rela));
4270 }
4271
4272 if (tls_type & GOT_TLS_GD)
4273 {
4274 if (need_relocs)
4275 {
4276 outrel.r_addend = 0;
4277 outrel.r_offset = (htab->root.sgot->output_section->vma
4278 + htab->root.sgot->output_offset
4279 + cur_off);
4280 outrel.r_info = ELF32_R_INFO (indx,
4281 R_NIOS2_TLS_DTPMOD);
4282
4283 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
4284 loc);
4285 htab->root.srelgot->reloc_count++;
4286 loc += sizeof (Elf32_External_Rela);
4287
4288 if (indx == 0)
4289 bfd_put_32 (output_bfd,
4290 (relocation - dtpoff_base (info) -
4291 DTP_OFFSET),
4292 htab->root.sgot->contents + cur_off + 4);
4293 else
4294 {
4295 outrel.r_addend = 0;
4296 outrel.r_info = ELF32_R_INFO (indx,
4297 R_NIOS2_TLS_DTPREL);
4298 outrel.r_offset += 4;
4299
4300 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
4301 loc);
4302 htab->root.srelgot->reloc_count++;
4303 loc += sizeof (Elf32_External_Rela);
4304 }
4305 }
4306 else
4307 {
4308 /* If we are not emitting relocations for a
4309 general dynamic reference, then we must be in a
4310 static link or an executable link with the
4311 symbol binding locally. Mark it as belonging
4312 to module 1, the executable. */
4313 bfd_put_32 (output_bfd, 1,
4314 htab->root.sgot->contents + cur_off);
4315 bfd_put_32 (output_bfd, (relocation -
4316 dtpoff_base (info) -
4317 DTP_OFFSET),
4318 htab->root.sgot->contents + cur_off + 4);
4319 }
4320
4321 cur_off += 8;
4322 }
4323
4324 if (tls_type & GOT_TLS_IE)
4325 {
4326 if (need_relocs)
4327 {
4328 if (indx == 0)
4329 outrel.r_addend = (relocation -
4330 dtpoff_base (info));
4331 else
4332 outrel.r_addend = 0;
4333 outrel.r_offset = (htab->root.sgot->output_section->vma
4334 + htab->root.sgot->output_offset
4335 + cur_off);
4336 outrel.r_info = ELF32_R_INFO (indx,
4337 R_NIOS2_TLS_TPREL);
4338
4339 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
4340 loc);
4341 htab->root.srelgot->reloc_count++;
4342 loc += sizeof (Elf32_External_Rela);
4343 }
4344 else
4345 bfd_put_32 (output_bfd, (tpoff (info, relocation)
4346 - TP_OFFSET),
4347 htab->root.sgot->contents + cur_off);
4348 cur_off += 4;
4349 }
4350
4351 if (h != NULL)
4352 h->got.offset |= 1;
4353 else
4354 local_got_offsets[r_symndx] |= 1;
4355 }
4356
4357 if ((tls_type & GOT_TLS_GD) && r_type != R_NIOS2_TLS_GD16)
4358 off += 8;
4359 relocation = htab->root.sgot->output_offset + off - got_base;
4360
4361 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
4362 contents, rel->r_offset,
4363 relocation, rel->r_addend);
4364 }
4365
4366 break;
4367 case R_NIOS2_TLS_LE16:
4368 if (bfd_link_dll (info))
4369 {
4370 _bfd_error_handler
4371 /* xgettext:c-format */
4372 (_("%B(%A+0x%lx): R_NIOS2_TLS_LE16 relocation not "
4373 "permitted in shared object"),
4374 input_bfd, input_section,
4375 (long) rel->r_offset, howto->name);
4376 return FALSE;
4377 }
4378 else
4379 relocation = tpoff (info, relocation) - TP_OFFSET;
4380
4381 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
4382 contents, rel->r_offset,
4383 relocation, rel->r_addend);
4384 break;
4385
4386 case R_NIOS2_BFD_RELOC_32:
4387 if (bfd_link_pic (info)
4388 && (input_section->flags & SEC_ALLOC) != 0
4389 && (h == NULL
4390 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
4391 || h->root.type != bfd_link_hash_undefweak))
4392 {
4393 Elf_Internal_Rela outrel;
4394 bfd_byte *loc;
4395 bfd_boolean skip, relocate;
4396
4397 /* When generating a shared object, these relocations
4398 are copied into the output file to be resolved at run
4399 time. */
4400
4401 skip = FALSE;
4402 relocate = FALSE;
4403
4404 outrel.r_offset
4405 = _bfd_elf_section_offset (output_bfd, info,
4406 input_section, rel->r_offset);
4407 if (outrel.r_offset == (bfd_vma) -1)
4408 skip = TRUE;
4409 else if (outrel.r_offset == (bfd_vma) -2)
4410 skip = TRUE, relocate = TRUE;
4411 outrel.r_offset += (input_section->output_section->vma
4412 + input_section->output_offset);
4413
4414 if (skip)
4415 memset (&outrel, 0, sizeof outrel);
4416 else if (h != NULL
4417 && h->dynindx != -1
4418 && (!bfd_link_pic (info)
4419 || !SYMBOLIC_BIND (info, h)
4420 || !h->def_regular))
4421 {
4422 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
4423 outrel.r_addend = rel->r_addend;
4424 }
4425 else
4426 {
4427 /* This symbol is local, or marked to become local. */
4428 outrel.r_addend = relocation + rel->r_addend;
4429 relocate = TRUE;
4430 outrel.r_info = ELF32_R_INFO (0, R_NIOS2_RELATIVE);
4431 }
4432
4433 sreloc = elf_section_data (input_section)->sreloc;
4434 if (sreloc == NULL)
4435 abort ();
4436
4437 loc = sreloc->contents;
4438 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4439 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4440
4441 /* This reloc will be computed at runtime, so there's no
4442 need to do anything now, except for R_NIOS2_BFD_RELOC_32
4443 relocations that have been turned into
4444 R_NIOS2_RELATIVE. */
4445 if (!relocate)
4446 break;
4447 }
4448
4449 r = _bfd_final_link_relocate (howto, input_bfd,
4450 input_section, contents,
4451 rel->r_offset, relocation,
4452 rel->r_addend);
4453 break;
4454
4455 case R_NIOS2_TLS_DTPREL:
4456 relocation -= dtpoff_base (info);
4457 /* Fall through. */
4458
4459 default:
4460 r = _bfd_final_link_relocate (howto, input_bfd,
4461 input_section, contents,
4462 rel->r_offset, relocation,
4463 rel->r_addend);
4464 break;
4465 }
4466 }
4467 else
4468 r = bfd_reloc_notsupported;
4469
4470 if (r != bfd_reloc_ok)
4471 {
4472 if (h != NULL)
4473 name = h->root.root.string;
4474 else
4475 {
4476 name = bfd_elf_string_from_elf_section (input_bfd,
4477 symtab_hdr->sh_link,
4478 sym->st_name);
4479 if (name == NULL || *name == '\0')
4480 name = bfd_section_name (input_bfd, sec);
4481 }
4482
4483 switch (r)
4484 {
4485 case bfd_reloc_overflow:
4486 (*info->callbacks->reloc_overflow) (info, NULL, name,
4487 howto->name, (bfd_vma) 0,
4488 input_bfd, input_section,
4489 rel->r_offset);
4490 break;
4491
4492 case bfd_reloc_undefined:
4493 (*info->callbacks->undefined_symbol) (info, name, input_bfd,
4494 input_section,
4495 rel->r_offset, TRUE);
4496 break;
4497
4498 case bfd_reloc_outofrange:
4499 if (msg == NULL)
4500 msg = _("relocation out of range");
4501 break;
4502
4503 case bfd_reloc_notsupported:
4504 if (msg == NULL)
4505 msg = _("unsupported relocation");
4506 break;
4507
4508 case bfd_reloc_dangerous:
4509 if (msg == NULL)
4510 msg = _("dangerous relocation");
4511 break;
4512
4513 default:
4514 if (msg == NULL)
4515 msg = _("unknown error");
4516 break;
4517 }
4518
4519 if (msg)
4520 {
4521 (*info->callbacks->warning) (info, msg, name, input_bfd,
4522 input_section, rel->r_offset);
4523 return FALSE;
4524 }
4525 }
4526 }
4527 return TRUE;
4528 }
4529
4530 /* Implement elf-backend_section_flags:
4531 Convert NIOS2 specific section flags to bfd internal section flags. */
4532 static bfd_boolean
4533 nios2_elf32_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
4534 {
4535 if (hdr->sh_flags & SHF_NIOS2_GPREL)
4536 *flags |= SEC_SMALL_DATA;
4537
4538 return TRUE;
4539 }
4540
4541 /* Implement elf_backend_fake_sections:
4542 Set the correct type for an NIOS2 ELF section. We do this by the
4543 section name, which is a hack, but ought to work. */
4544 static bfd_boolean
4545 nios2_elf32_fake_sections (bfd *abfd ATTRIBUTE_UNUSED,
4546 Elf_Internal_Shdr *hdr, asection *sec)
4547 {
4548 register const char *name = bfd_get_section_name (abfd, sec);
4549
4550 if ((sec->flags & SEC_SMALL_DATA)
4551 || strcmp (name, ".sdata") == 0
4552 || strcmp (name, ".sbss") == 0
4553 || strcmp (name, ".lit4") == 0 || strcmp (name, ".lit8") == 0)
4554 hdr->sh_flags |= SHF_NIOS2_GPREL;
4555
4556 return TRUE;
4557 }
4558
4559 /* Create .got, .gotplt, and .rela.got sections in DYNOBJ, and set up
4560 shortcuts to them in our hash table. */
4561 static bfd_boolean
4562 create_got_section (bfd *dynobj, struct bfd_link_info *info)
4563 {
4564 struct elf32_nios2_link_hash_table *htab;
4565 struct elf_link_hash_entry *h;
4566
4567 htab = elf32_nios2_hash_table (info);
4568
4569 if (! _bfd_elf_create_got_section (dynobj, info))
4570 return FALSE;
4571
4572 /* In order for the two loads in .PLTresolve to share the same %hiadj,
4573 _GLOBAL_OFFSET_TABLE_ must be aligned to a 16-byte boundary. */
4574 if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt, 4))
4575 return FALSE;
4576
4577 /* The Nios II ABI specifies that GOT-relative relocations are relative
4578 to the linker-created symbol _gp_got, rather than using
4579 _GLOBAL_OFFSET_TABLE_ directly. In particular, the latter always
4580 points to the base of the GOT while _gp_got may include a bias. */
4581 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.sgotplt,
4582 "_gp_got");
4583 elf32_nios2_hash_table (info)->h_gp_got = h;
4584 if (h == NULL)
4585 return FALSE;
4586
4587 return TRUE;
4588 }
4589
4590 /* Implement elf_backend_create_dynamic_sections:
4591 Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
4592 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
4593 hash table. */
4594 static bfd_boolean
4595 nios2_elf32_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
4596 {
4597 struct elf32_nios2_link_hash_table *htab;
4598
4599 htab = elf32_nios2_hash_table (info);
4600 if (!htab->root.sgot && !create_got_section (dynobj, info))
4601 return FALSE;
4602
4603 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
4604 return FALSE;
4605
4606 /* In order for the two loads in a shared object .PLTresolve to share the
4607 same %hiadj, the start of the PLT (as well as the GOT) must be aligned
4608 to a 16-byte boundary. This is because the addresses for these loads
4609 include the -(.plt+4) PIC correction. */
4610 return bfd_set_section_alignment (dynobj, htab->root.splt, 4);
4611 }
4612
4613 /* Implement elf_backend_copy_indirect_symbol:
4614 Copy the extra info we tack onto an elf_link_hash_entry. */
4615 static void
4616 nios2_elf32_copy_indirect_symbol (struct bfd_link_info *info,
4617 struct elf_link_hash_entry *dir,
4618 struct elf_link_hash_entry *ind)
4619 {
4620 struct elf32_nios2_link_hash_entry *edir, *eind;
4621
4622 edir = (struct elf32_nios2_link_hash_entry *) dir;
4623 eind = (struct elf32_nios2_link_hash_entry *) ind;
4624
4625 if (eind->dyn_relocs != NULL)
4626 {
4627 if (edir->dyn_relocs != NULL)
4628 {
4629 struct elf32_nios2_dyn_relocs **pp;
4630 struct elf32_nios2_dyn_relocs *p;
4631
4632 /* Add reloc counts against the indirect sym to the direct sym
4633 list. Merge any entries against the same section. */
4634 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
4635 {
4636 struct elf32_nios2_dyn_relocs *q;
4637
4638 for (q = edir->dyn_relocs; q != NULL; q = q->next)
4639 if (q->sec == p->sec)
4640 {
4641 q->pc_count += p->pc_count;
4642 q->count += p->count;
4643 *pp = p->next;
4644 break;
4645 }
4646 if (q == NULL)
4647 pp = &p->next;
4648 }
4649 *pp = edir->dyn_relocs;
4650 }
4651
4652 edir->dyn_relocs = eind->dyn_relocs;
4653 eind->dyn_relocs = NULL;
4654 }
4655
4656 if (ind->root.type == bfd_link_hash_indirect
4657 && dir->got.refcount <= 0)
4658 {
4659 edir->tls_type = eind->tls_type;
4660 eind->tls_type = GOT_UNKNOWN;
4661 }
4662
4663 edir->got_types_used |= eind->got_types_used;
4664
4665 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
4666 }
4667
4668 /* Set the right machine number for a NIOS2 ELF file. */
4669
4670 static bfd_boolean
4671 nios2_elf32_object_p (bfd *abfd)
4672 {
4673 unsigned long mach;
4674
4675 mach = elf_elfheader (abfd)->e_flags;
4676
4677 switch (mach)
4678 {
4679 default:
4680 case EF_NIOS2_ARCH_R1:
4681 bfd_default_set_arch_mach (abfd, bfd_arch_nios2, bfd_mach_nios2r1);
4682 break;
4683 case EF_NIOS2_ARCH_R2:
4684 bfd_default_set_arch_mach (abfd, bfd_arch_nios2, bfd_mach_nios2r2);
4685 break;
4686 }
4687
4688 return TRUE;
4689 }
4690
4691 /* Implement elf_backend_check_relocs:
4692 Look through the relocs for a section during the first phase. */
4693 static bfd_boolean
4694 nios2_elf32_check_relocs (bfd *abfd, struct bfd_link_info *info,
4695 asection *sec, const Elf_Internal_Rela *relocs)
4696 {
4697 bfd *dynobj;
4698 Elf_Internal_Shdr *symtab_hdr;
4699 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
4700 const Elf_Internal_Rela *rel;
4701 const Elf_Internal_Rela *rel_end;
4702 struct elf32_nios2_link_hash_table *htab;
4703 asection *sgot;
4704 asection *srelgot;
4705 asection *sreloc = NULL;
4706 bfd_signed_vma *local_got_refcounts;
4707
4708 if (bfd_link_relocatable (info))
4709 return TRUE;
4710
4711 dynobj = elf_hash_table (info)->dynobj;
4712 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4713 sym_hashes = elf_sym_hashes (abfd);
4714 sym_hashes_end = (sym_hashes
4715 + symtab_hdr->sh_size / sizeof (Elf32_External_Sym));
4716 if (!elf_bad_symtab (abfd))
4717 sym_hashes_end -= symtab_hdr->sh_info;
4718 local_got_refcounts = elf_local_got_refcounts (abfd);
4719
4720 htab = elf32_nios2_hash_table (info);
4721 sgot = htab->root.sgot;
4722 srelgot = htab->root.srelgot;
4723
4724 rel_end = relocs + sec->reloc_count;
4725 for (rel = relocs; rel < rel_end; rel++)
4726 {
4727 unsigned int r_type;
4728 struct elf_link_hash_entry *h;
4729 unsigned long r_symndx;
4730
4731 r_symndx = ELF32_R_SYM (rel->r_info);
4732 if (r_symndx < symtab_hdr->sh_info)
4733 h = NULL;
4734 else
4735 {
4736 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4737 while (h->root.type == bfd_link_hash_indirect
4738 || h->root.type == bfd_link_hash_warning)
4739 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4740
4741 /* PR15323, ref flags aren't set for references in the same
4742 object. */
4743 h->root.non_ir_ref = 1;
4744 }
4745
4746 r_type = ELF32_R_TYPE (rel->r_info);
4747
4748 switch (r_type)
4749 {
4750 case R_NIOS2_GOT16:
4751 case R_NIOS2_GOT_LO:
4752 case R_NIOS2_GOT_HA:
4753 case R_NIOS2_CALL16:
4754 case R_NIOS2_CALL_LO:
4755 case R_NIOS2_CALL_HA:
4756 case R_NIOS2_TLS_GD16:
4757 case R_NIOS2_TLS_IE16:
4758 /* This symbol requires a global offset table entry. */
4759 {
4760 int tls_type, old_tls_type;
4761
4762 switch (r_type)
4763 {
4764 default:
4765 case R_NIOS2_GOT16:
4766 case R_NIOS2_GOT_LO:
4767 case R_NIOS2_GOT_HA:
4768 case R_NIOS2_CALL16:
4769 case R_NIOS2_CALL_LO:
4770 case R_NIOS2_CALL_HA:
4771 tls_type = GOT_NORMAL;
4772 break;
4773 case R_NIOS2_TLS_GD16:
4774 tls_type = GOT_TLS_GD;
4775 break;
4776 case R_NIOS2_TLS_IE16:
4777 tls_type = GOT_TLS_IE;
4778 break;
4779 }
4780
4781 if (dynobj == NULL)
4782 {
4783 /* Create the .got section. */
4784 elf_hash_table (info)->dynobj = dynobj = abfd;
4785 nios2_elf32_create_dynamic_sections (dynobj, info);
4786 }
4787
4788 if (sgot == NULL)
4789 {
4790 sgot = htab->root.sgot;
4791 BFD_ASSERT (sgot != NULL);
4792 }
4793
4794 if (srelgot == NULL
4795 && (h != NULL || bfd_link_pic (info)))
4796 {
4797 srelgot = htab->root.srelgot;
4798 BFD_ASSERT (srelgot != NULL);
4799 }
4800
4801 if (h != NULL)
4802 {
4803 struct elf32_nios2_link_hash_entry *eh
4804 = (struct elf32_nios2_link_hash_entry *)h;
4805 h->got.refcount++;
4806 old_tls_type = elf32_nios2_hash_entry(h)->tls_type;
4807 if (r_type == R_NIOS2_CALL16
4808 || r_type == R_NIOS2_CALL_LO
4809 || r_type == R_NIOS2_CALL_HA)
4810 {
4811 /* Make sure a plt entry is created for this symbol if
4812 it turns out to be a function defined by a dynamic
4813 object. */
4814 h->plt.refcount++;
4815 h->needs_plt = 1;
4816 h->type = STT_FUNC;
4817 eh->got_types_used |= CALL_USED;
4818 }
4819 else
4820 eh->got_types_used |= GOT_USED;
4821 }
4822 else
4823 {
4824 /* This is a global offset table entry for a local symbol. */
4825 if (local_got_refcounts == NULL)
4826 {
4827 bfd_size_type size;
4828
4829 size = symtab_hdr->sh_info;
4830 size *= (sizeof (bfd_signed_vma) + sizeof (char));
4831 local_got_refcounts
4832 = ((bfd_signed_vma *) bfd_zalloc (abfd, size));
4833 if (local_got_refcounts == NULL)
4834 return FALSE;
4835 elf_local_got_refcounts (abfd) = local_got_refcounts;
4836 elf32_nios2_local_got_tls_type (abfd)
4837 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
4838 }
4839 local_got_refcounts[r_symndx]++;
4840 old_tls_type = elf32_nios2_local_got_tls_type (abfd) [r_symndx];
4841 }
4842
4843 /* We will already have issued an error message if there is a
4844 TLS / non-TLS mismatch, based on the symbol type. We don't
4845 support any linker relaxations. So just combine any TLS
4846 types needed. */
4847 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
4848 && tls_type != GOT_NORMAL)
4849 tls_type |= old_tls_type;
4850
4851 if (old_tls_type != tls_type)
4852 {
4853 if (h != NULL)
4854 elf32_nios2_hash_entry (h)->tls_type = tls_type;
4855 else
4856 elf32_nios2_local_got_tls_type (abfd) [r_symndx] = tls_type;
4857 }
4858 }
4859 /* Fall through */
4860 case R_NIOS2_TLS_LDM16:
4861 if (r_type == R_NIOS2_TLS_LDM16)
4862 htab->tls_ldm_got.refcount++;
4863
4864 if (htab->root.sgot == NULL)
4865 {
4866 if (htab->root.dynobj == NULL)
4867 htab->root.dynobj = abfd;
4868 if (!create_got_section (htab->root.dynobj, info))
4869 return FALSE;
4870 }
4871 break;
4872
4873 /* This relocation describes the C++ object vtable hierarchy.
4874 Reconstruct it for later use during GC. */
4875 case R_NIOS2_GNU_VTINHERIT:
4876 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
4877 return FALSE;
4878 break;
4879
4880 /* This relocation describes which C++ vtable entries are actually
4881 used. Record for later use during GC. */
4882 case R_NIOS2_GNU_VTENTRY:
4883 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
4884 return FALSE;
4885 break;
4886
4887 case R_NIOS2_BFD_RELOC_32:
4888 case R_NIOS2_CALL26:
4889 case R_NIOS2_CALL26_NOAT:
4890 case R_NIOS2_HIADJ16:
4891 case R_NIOS2_LO16:
4892
4893 if (h != NULL)
4894 {
4895 /* If this reloc is in a read-only section, we might
4896 need a copy reloc. We can't check reliably at this
4897 stage whether the section is read-only, as input
4898 sections have not yet been mapped to output sections.
4899 Tentatively set the flag for now, and correct in
4900 adjust_dynamic_symbol. */
4901 if (!bfd_link_pic (info))
4902 h->non_got_ref = 1;
4903
4904 /* Make sure a plt entry is created for this symbol if it
4905 turns out to be a function defined by a dynamic object. */
4906 h->plt.refcount++;
4907
4908 if (r_type == R_NIOS2_CALL26 || r_type == R_NIOS2_CALL26_NOAT)
4909 h->needs_plt = 1;
4910 }
4911
4912 /* If we are creating a shared library, we need to copy the
4913 reloc into the shared library. */
4914 if (bfd_link_pic (info)
4915 && (sec->flags & SEC_ALLOC) != 0
4916 && (r_type == R_NIOS2_BFD_RELOC_32
4917 || (h != NULL && ! h->needs_plt
4918 && (! SYMBOLIC_BIND (info, h) || ! h->def_regular))))
4919 {
4920 struct elf32_nios2_dyn_relocs *p;
4921 struct elf32_nios2_dyn_relocs **head;
4922
4923 /* When creating a shared object, we must copy these
4924 reloc types into the output file. We create a reloc
4925 section in dynobj and make room for this reloc. */
4926 if (sreloc == NULL)
4927 {
4928 sreloc = _bfd_elf_make_dynamic_reloc_section
4929 (sec, dynobj, 2, abfd, TRUE);
4930 if (sreloc == NULL)
4931 return FALSE;
4932 }
4933
4934 /* If this is a global symbol, we count the number of
4935 relocations we need for this symbol. */
4936 if (h != NULL)
4937 head = &((struct elf32_nios2_link_hash_entry *) h)->dyn_relocs;
4938 else
4939 {
4940 /* Track dynamic relocs needed for local syms too.
4941 We really need local syms available to do this
4942 easily. Oh well. */
4943
4944 asection *s;
4945 void *vpp;
4946 Elf_Internal_Sym *isym;
4947
4948 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
4949 abfd, r_symndx);
4950 if (isym == NULL)
4951 return FALSE;
4952
4953 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
4954 if (s == NULL)
4955 s = sec;
4956
4957 vpp = &elf_section_data (s)->local_dynrel;
4958 head = (struct elf32_nios2_dyn_relocs **) vpp;
4959 }
4960
4961 p = *head;
4962 if (p == NULL || p->sec != sec)
4963 {
4964 bfd_size_type amt = sizeof *p;
4965 p = ((struct elf32_nios2_dyn_relocs *)
4966 bfd_alloc (htab->root.dynobj, amt));
4967 if (p == NULL)
4968 return FALSE;
4969 p->next = *head;
4970 *head = p;
4971 p->sec = sec;
4972 p->count = 0;
4973 p->pc_count = 0;
4974 }
4975
4976 p->count += 1;
4977
4978 }
4979 break;
4980 }
4981 }
4982
4983 return TRUE;
4984 }
4985
4986
4987 /* Implement elf_backend_gc_mark_hook:
4988 Return the section that should be marked against GC for a given
4989 relocation. */
4990 static asection *
4991 nios2_elf32_gc_mark_hook (asection *sec,
4992 struct bfd_link_info *info,
4993 Elf_Internal_Rela *rel,
4994 struct elf_link_hash_entry *h,
4995 Elf_Internal_Sym *sym)
4996 {
4997 if (h != NULL)
4998 switch (ELF32_R_TYPE (rel->r_info))
4999 {
5000 case R_NIOS2_GNU_VTINHERIT:
5001 case R_NIOS2_GNU_VTENTRY:
5002 return NULL;
5003 }
5004 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
5005 }
5006
5007 /* Implement elf_backend_gc_sweep_hook:
5008 Update the got entry reference counts for the section being removed. */
5009 static bfd_boolean
5010 nios2_elf32_gc_sweep_hook (bfd *abfd,
5011 struct bfd_link_info *info,
5012 asection *sec,
5013 const Elf_Internal_Rela *relocs)
5014 {
5015 Elf_Internal_Shdr *symtab_hdr;
5016 struct elf_link_hash_entry **sym_hashes;
5017 bfd_signed_vma *local_got_refcounts;
5018 const Elf_Internal_Rela *rel, *relend;
5019 bfd *dynobj;
5020
5021 if (bfd_link_relocatable (info))
5022 return TRUE;
5023
5024 elf_section_data (sec)->local_dynrel = NULL;
5025
5026 dynobj = elf_hash_table (info)->dynobj;
5027 if (dynobj == NULL)
5028 return TRUE;
5029
5030 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5031 sym_hashes = elf_sym_hashes (abfd);
5032 local_got_refcounts = elf_local_got_refcounts (abfd);
5033
5034 relend = relocs + sec->reloc_count;
5035 for (rel = relocs; rel < relend; rel++)
5036 {
5037 unsigned long r_symndx;
5038 struct elf_link_hash_entry *h = NULL;
5039 int r_type;
5040
5041 r_symndx = ELF32_R_SYM (rel->r_info);
5042 if (r_symndx >= symtab_hdr->sh_info)
5043 {
5044 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5045 while (h->root.type == bfd_link_hash_indirect
5046 || h->root.type == bfd_link_hash_warning)
5047 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5048 }
5049
5050 r_type = ELF32_R_TYPE (rel->r_info);
5051 switch (r_type)
5052 {
5053 case R_NIOS2_GOT16:
5054 case R_NIOS2_GOT_LO:
5055 case R_NIOS2_GOT_HA:
5056 case R_NIOS2_CALL16:
5057 case R_NIOS2_CALL_LO:
5058 case R_NIOS2_CALL_HA:
5059 if (h != NULL)
5060 {
5061 if (h->got.refcount > 0)
5062 --h->got.refcount;
5063 }
5064 else if (local_got_refcounts != NULL)
5065 {
5066 if (local_got_refcounts[r_symndx] > 0)
5067 --local_got_refcounts[r_symndx];
5068 }
5069 break;
5070
5071 case R_NIOS2_PCREL_LO:
5072 case R_NIOS2_PCREL_HA:
5073 case R_NIOS2_BFD_RELOC_32:
5074 case R_NIOS2_CALL26:
5075 case R_NIOS2_CALL26_NOAT:
5076 if (h != NULL)
5077 {
5078 struct elf32_nios2_link_hash_entry *eh;
5079 struct elf32_nios2_dyn_relocs **pp;
5080 struct elf32_nios2_dyn_relocs *p;
5081
5082 eh = (struct elf32_nios2_link_hash_entry *) h;
5083
5084 if (h->plt.refcount > 0)
5085 --h->plt.refcount;
5086
5087 if (r_type == R_NIOS2_PCREL_LO || r_type == R_NIOS2_PCREL_HA
5088 || r_type == R_NIOS2_BFD_RELOC_32)
5089 {
5090 for (pp = &eh->dyn_relocs; (p = *pp) != NULL;
5091 pp = &p->next)
5092 if (p->sec == sec)
5093 {
5094 p->count -= 1;
5095 if (p->count == 0)
5096 *pp = p->next;
5097 break;
5098 }
5099 }
5100 }
5101 break;
5102
5103 default:
5104 break;
5105 }
5106 }
5107
5108 return TRUE;
5109 }
5110
5111 /* Implement elf_backend_finish_dynamic_symbols:
5112 Finish up dynamic symbol handling. We set the contents of various
5113 dynamic sections here. */
5114 static bfd_boolean
5115 nios2_elf32_finish_dynamic_symbol (bfd *output_bfd,
5116 struct bfd_link_info *info,
5117 struct elf_link_hash_entry *h,
5118 Elf_Internal_Sym *sym)
5119 {
5120 struct elf32_nios2_link_hash_table *htab;
5121 struct elf32_nios2_link_hash_entry *eh
5122 = (struct elf32_nios2_link_hash_entry *)h;
5123 int use_plt;
5124
5125 htab = elf32_nios2_hash_table (info);
5126
5127 if (h->plt.offset != (bfd_vma) -1)
5128 {
5129 asection *splt;
5130 asection *sgotplt;
5131 asection *srela;
5132 bfd_vma plt_index;
5133 bfd_vma got_offset;
5134 Elf_Internal_Rela rela;
5135 bfd_byte *loc;
5136 bfd_vma got_address;
5137
5138 /* This symbol has an entry in the procedure linkage table. Set
5139 it up. */
5140 BFD_ASSERT (h->dynindx != -1);
5141 splt = htab->root.splt;
5142 sgotplt = htab->root.sgotplt;
5143 srela = htab->root.srelplt;
5144 BFD_ASSERT (splt != NULL && sgotplt != NULL && srela != NULL);
5145
5146 /* Emit the PLT entry. */
5147 if (bfd_link_pic (info))
5148 {
5149 nios2_elf32_install_data (splt, nios2_so_plt_entry, h->plt.offset,
5150 3);
5151 plt_index = (h->plt.offset - 24) / 12;
5152 got_offset = (plt_index + 3) * 4;
5153 nios2_elf32_install_imm16 (splt, h->plt.offset,
5154 hiadj(plt_index * 4));
5155 nios2_elf32_install_imm16 (splt, h->plt.offset + 4,
5156 (plt_index * 4) & 0xffff);
5157 nios2_elf32_install_imm16 (splt, h->plt.offset + 8,
5158 0xfff4 - h->plt.offset);
5159 got_address = (sgotplt->output_section->vma + sgotplt->output_offset
5160 + got_offset);
5161
5162 /* Fill in the entry in the global offset table. There are no
5163 res_n slots for a shared object PLT, instead the .got.plt entries
5164 point to the PLT entries. */
5165 bfd_put_32 (output_bfd,
5166 splt->output_section->vma + splt->output_offset
5167 + h->plt.offset, sgotplt->contents + got_offset);
5168 }
5169 else
5170 {
5171 plt_index = (h->plt.offset - 28 - htab->res_n_size) / 12;
5172 got_offset = (plt_index + 3) * 4;
5173
5174 nios2_elf32_install_data (splt, nios2_plt_entry, h->plt.offset, 3);
5175 got_address = (sgotplt->output_section->vma + sgotplt->output_offset
5176 + got_offset);
5177 nios2_elf32_install_imm16 (splt, h->plt.offset, hiadj(got_address));
5178 nios2_elf32_install_imm16 (splt, h->plt.offset + 4,
5179 got_address & 0xffff);
5180
5181 /* Fill in the entry in the global offset table. */
5182 bfd_put_32 (output_bfd,
5183 splt->output_section->vma + splt->output_offset
5184 + plt_index * 4, sgotplt->contents + got_offset);
5185 }
5186
5187 /* Fill in the entry in the .rela.plt section. */
5188 rela.r_offset = got_address;
5189 rela.r_info = ELF32_R_INFO (h->dynindx, R_NIOS2_JUMP_SLOT);
5190 rela.r_addend = 0;
5191 loc = srela->contents + plt_index * sizeof (Elf32_External_Rela);
5192 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
5193
5194 if (!h->def_regular)
5195 {
5196 /* Mark the symbol as undefined, rather than as defined in
5197 the .plt section. Leave the value alone. */
5198 sym->st_shndx = SHN_UNDEF;
5199 /* If the symbol is weak, we do need to clear the value.
5200 Otherwise, the PLT entry would provide a definition for
5201 the symbol even if the symbol wasn't defined anywhere,
5202 and so the symbol would never be NULL. */
5203 if (!h->ref_regular_nonweak)
5204 sym->st_value = 0;
5205 }
5206 }
5207
5208 use_plt = (eh->got_types_used == CALL_USED
5209 && h->plt.offset != (bfd_vma) -1);
5210
5211 if (!use_plt && h->got.offset != (bfd_vma) -1
5212 && (elf32_nios2_hash_entry (h)->tls_type & GOT_TLS_GD) == 0
5213 && (elf32_nios2_hash_entry (h)->tls_type & GOT_TLS_IE) == 0)
5214 {
5215 asection *sgot;
5216 asection *srela;
5217 Elf_Internal_Rela rela;
5218 bfd_byte *loc;
5219 bfd_vma offset;
5220
5221 /* This symbol has an entry in the global offset table. Set it
5222 up. */
5223 sgot = htab->root.sgot;
5224 srela = htab->root.srelgot;
5225 BFD_ASSERT (sgot != NULL && srela != NULL);
5226
5227 offset = (h->got.offset & ~(bfd_vma) 1);
5228 rela.r_offset = (sgot->output_section->vma
5229 + sgot->output_offset + offset);
5230
5231 /* If this is a -Bsymbolic link, and the symbol is defined
5232 locally, we just want to emit a RELATIVE reloc. Likewise if
5233 the symbol was forced to be local because of a version file.
5234 The entry in the global offset table will already have been
5235 initialized in the relocate_section function. */
5236
5237 if (bfd_link_pic (info) && SYMBOL_REFERENCES_LOCAL (info, h))
5238 {
5239 rela.r_info = ELF32_R_INFO (0, R_NIOS2_RELATIVE);
5240 rela.r_addend = bfd_get_signed_32 (output_bfd,
5241 (sgot->contents + offset));
5242 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
5243 }
5244 else
5245 {
5246 bfd_put_32 (output_bfd, (bfd_vma) 0,
5247 sgot->contents + offset);
5248 rela.r_info = ELF32_R_INFO (h->dynindx, R_NIOS2_GLOB_DAT);
5249 rela.r_addend = 0;
5250 }
5251
5252 loc = srela->contents;
5253 loc += srela->reloc_count++ * sizeof (Elf32_External_Rela);
5254 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
5255 }
5256
5257 if (use_plt && h->got.offset != (bfd_vma) -1)
5258 {
5259 bfd_vma offset = (h->got.offset & ~(bfd_vma) 1);
5260 asection *sgot = htab->root.sgot;
5261 asection *splt = htab->root.splt;
5262 bfd_put_32 (output_bfd, (splt->output_section->vma + splt->output_offset
5263 + h->plt.offset),
5264 sgot->contents + offset);
5265 }
5266
5267 if (h->needs_copy)
5268 {
5269 asection *s;
5270 Elf_Internal_Rela rela;
5271 bfd_byte *loc;
5272
5273 /* This symbol needs a copy reloc. Set it up. */
5274 BFD_ASSERT (h->dynindx != -1
5275 && (h->root.type == bfd_link_hash_defined
5276 || h->root.type == bfd_link_hash_defweak));
5277
5278 s = htab->root.srelbss;
5279 BFD_ASSERT (s != NULL);
5280
5281 rela.r_offset = (h->root.u.def.value
5282 + h->root.u.def.section->output_section->vma
5283 + h->root.u.def.section->output_offset);
5284 rela.r_info = ELF32_R_INFO (h->dynindx, R_NIOS2_COPY);
5285 rela.r_addend = 0;
5286 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5287 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
5288 }
5289
5290 /* Mark _DYNAMIC, _GLOBAL_OFFSET_TABLE_, and _gp_got as absolute. */
5291 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
5292 || h == elf_hash_table (info)->hgot
5293 || h == elf32_nios2_hash_table (info)->h_gp_got)
5294 sym->st_shndx = SHN_ABS;
5295
5296 return TRUE;
5297 }
5298
5299 /* Implement elf_backend_finish_dynamic_sections. */
5300 static bfd_boolean
5301 nios2_elf32_finish_dynamic_sections (bfd *output_bfd,
5302 struct bfd_link_info *info)
5303 {
5304 bfd *dynobj;
5305 asection *sgotplt;
5306 asection *sdyn;
5307 struct elf32_nios2_link_hash_table *htab;
5308
5309 htab = elf32_nios2_hash_table (info);
5310 dynobj = elf_hash_table (info)->dynobj;
5311 sgotplt = htab->root.sgotplt;
5312 BFD_ASSERT (sgotplt != NULL);
5313 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
5314
5315 if (elf_hash_table (info)->dynamic_sections_created)
5316 {
5317 asection *splt;
5318 Elf32_External_Dyn *dyncon, *dynconend;
5319
5320 splt = htab->root.splt;
5321 BFD_ASSERT (splt != NULL && sdyn != NULL);
5322
5323 dyncon = (Elf32_External_Dyn *) sdyn->contents;
5324 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
5325 for (; dyncon < dynconend; dyncon++)
5326 {
5327 Elf_Internal_Dyn dyn;
5328 asection *s;
5329
5330 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
5331
5332 switch (dyn.d_tag)
5333 {
5334 default:
5335 break;
5336
5337 case DT_PLTGOT:
5338 s = htab->root.sgotplt;
5339 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
5340 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
5341 break;
5342
5343 case DT_JMPREL:
5344 s = htab->root.srelplt;
5345 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
5346 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
5347 break;
5348
5349 case DT_PLTRELSZ:
5350 s = htab->root.srelplt;
5351 dyn.d_un.d_val = s->size;
5352 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
5353 break;
5354
5355 case DT_NIOS2_GP:
5356 s = htab->root.sgotplt;
5357 dyn.d_un.d_ptr
5358 = s->output_section->vma + s->output_offset + 0x7ff0;
5359 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
5360 break;
5361 }
5362 }
5363
5364 /* Fill in the first entry in the procedure linkage table. */
5365 if (splt->size > 0)
5366 {
5367 bfd_vma got_address = (sgotplt->output_section->vma
5368 + sgotplt->output_offset);
5369 if (bfd_link_pic (info))
5370 {
5371 bfd_vma got_pcrel = got_address - (splt->output_section->vma
5372 + splt->output_offset);
5373 /* Both GOT and PLT must be aligned to a 16-byte boundary
5374 for the two loads to share the %hiadj part. The 4-byte
5375 offset for nextpc is accounted for in the %lo offsets
5376 on the loads. */
5377 BFD_ASSERT ((got_pcrel & 0xf) == 0);
5378 nios2_elf32_install_data (splt, nios2_so_plt0_entry, 0, 6);
5379 nios2_elf32_install_imm16 (splt, 4, hiadj (got_pcrel));
5380 nios2_elf32_install_imm16 (splt, 12, got_pcrel & 0xffff);
5381 nios2_elf32_install_imm16 (splt, 16, (got_pcrel + 4) & 0xffff);
5382 }
5383 else
5384 {
5385 /* Divide by 4 here, not 3 because we already corrected for the
5386 res_N branches. */
5387 bfd_vma res_size = (splt->size - 28) / 4;
5388 bfd_vma res_start = (splt->output_section->vma
5389 + splt->output_offset);
5390 bfd_vma res_offset;
5391
5392 for (res_offset = 0; res_offset < res_size; res_offset += 4)
5393 bfd_put_32 (output_bfd,
5394 6 | ((res_size - (res_offset + 4)) << 6),
5395 splt->contents + res_offset);
5396
5397 /* The GOT must be aligned to a 16-byte boundary for the
5398 two loads to share the same %hiadj part. */
5399 BFD_ASSERT ((got_address & 0xf) == 0);
5400
5401 nios2_elf32_install_data (splt, nios2_plt0_entry, res_size, 7);
5402 nios2_elf32_install_imm16 (splt, res_size, hiadj (res_start));
5403 nios2_elf32_install_imm16 (splt, res_size + 4,
5404 res_start & 0xffff);
5405 nios2_elf32_install_imm16 (splt, res_size + 12,
5406 hiadj (got_address));
5407 nios2_elf32_install_imm16 (splt, res_size + 16,
5408 (got_address + 4) & 0xffff);
5409 nios2_elf32_install_imm16 (splt, res_size + 20,
5410 (got_address + 8) & 0xffff);
5411 }
5412 }
5413 }
5414 /* Fill in the first three entries in the global offset table. */
5415 if (sgotplt->size > 0)
5416 {
5417 if (sdyn == NULL)
5418 bfd_put_32 (output_bfd, (bfd_vma) 0, sgotplt->contents);
5419 else
5420 bfd_put_32 (output_bfd,
5421 sdyn->output_section->vma + sdyn->output_offset,
5422 sgotplt->contents);
5423 bfd_put_32 (output_bfd, (bfd_vma) 0, sgotplt->contents + 4);
5424 bfd_put_32 (output_bfd, (bfd_vma) 0, sgotplt->contents + 8);
5425 }
5426
5427 elf_section_data (sgotplt->output_section)->this_hdr.sh_entsize = 4;
5428
5429 return TRUE;
5430 }
5431
5432 /* Implement elf_backend_adjust_dynamic_symbol:
5433 Adjust a symbol defined by a dynamic object and referenced by a
5434 regular object. The current definition is in some section of the
5435 dynamic object, but we're not including those sections. We have to
5436 change the definition to something the rest of the link can
5437 understand. */
5438 static bfd_boolean
5439 nios2_elf32_adjust_dynamic_symbol (struct bfd_link_info *info,
5440 struct elf_link_hash_entry *h)
5441 {
5442 struct elf32_nios2_link_hash_table *htab;
5443 bfd *dynobj;
5444 asection *s;
5445 unsigned align2;
5446
5447 htab = elf32_nios2_hash_table (info);
5448 dynobj = elf_hash_table (info)->dynobj;
5449
5450 /* Make sure we know what is going on here. */
5451 BFD_ASSERT (dynobj != NULL
5452 && (h->needs_plt
5453 || h->u.weakdef != NULL
5454 || (h->def_dynamic
5455 && h->ref_regular
5456 && !h->def_regular)));
5457
5458 /* If this is a function, put it in the procedure linkage table. We
5459 will fill in the contents of the procedure linkage table later,
5460 when we know the address of the .got section. */
5461 if (h->type == STT_FUNC || h->needs_plt)
5462 {
5463 if (h->plt.refcount <= 0
5464 || SYMBOL_CALLS_LOCAL (info, h)
5465 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
5466 && h->root.type == bfd_link_hash_undefweak))
5467 {
5468 /* This case can occur if we saw a PLT reloc in an input
5469 file, but the symbol was never referred to by a dynamic
5470 object, or if all references were garbage collected. In
5471 such a case, we don't actually need to build a procedure
5472 linkage table, and we can just do a PCREL reloc instead. */
5473 h->plt.offset = (bfd_vma) -1;
5474 h->needs_plt = 0;
5475 }
5476
5477 return TRUE;
5478 }
5479
5480 /* Reinitialize the plt offset now that it is not used as a reference
5481 count any more. */
5482 h->plt.offset = (bfd_vma) -1;
5483
5484 /* If this is a weak symbol, and there is a real definition, the
5485 processor independent code will have arranged for us to see the
5486 real definition first, and we can just use the same value. */
5487 if (h->u.weakdef != NULL)
5488 {
5489 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
5490 || h->u.weakdef->root.type == bfd_link_hash_defweak);
5491 h->root.u.def.section = h->u.weakdef->root.u.def.section;
5492 h->root.u.def.value = h->u.weakdef->root.u.def.value;
5493 return TRUE;
5494 }
5495
5496 /* If there are no non-GOT references, we do not need a copy
5497 relocation. */
5498 if (!h->non_got_ref)
5499 return TRUE;
5500
5501 /* This is a reference to a symbol defined by a dynamic object which
5502 is not a function.
5503 If we are creating a shared library, we must presume that the
5504 only references to the symbol are via the global offset table.
5505 For such cases we need not do anything here; the relocations will
5506 be handled correctly by relocate_section. */
5507 if (bfd_link_pic (info))
5508 return TRUE;
5509
5510 if (h->size == 0)
5511 {
5512 _bfd_error_handler (_("dynamic variable `%s' is zero size"),
5513 h->root.root.string);
5514 return TRUE;
5515 }
5516
5517 /* We must allocate the symbol in our .dynbss section, which will
5518 become part of the .bss section of the executable. There will be
5519 an entry for this symbol in the .dynsym section. The dynamic
5520 object will contain position independent code, so all references
5521 from the dynamic object to this symbol will go through the global
5522 offset table. The dynamic linker will use the .dynsym entry to
5523 determine the address it must put in the global offset table, so
5524 both the dynamic object and the regular object will refer to the
5525 same memory location for the variable. */
5526 s = htab->root.sdynbss;
5527 BFD_ASSERT (s != NULL);
5528
5529 /* We must generate a R_NIOS2_COPY reloc to tell the dynamic linker to
5530 copy the initial value out of the dynamic object and into the
5531 runtime process image. We need to remember the offset into the
5532 .rela.bss section we are going to use. */
5533 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
5534 {
5535 asection *srel;
5536
5537 srel = htab->root.srelbss;
5538 BFD_ASSERT (srel != NULL);
5539 srel->size += sizeof (Elf32_External_Rela);
5540 h->needs_copy = 1;
5541 }
5542
5543 align2 = bfd_log2 (h->size);
5544 if (align2 > h->root.u.def.section->alignment_power)
5545 align2 = h->root.u.def.section->alignment_power;
5546
5547 /* Align dynbss. */
5548 s->size = BFD_ALIGN (s->size, (bfd_size_type)1 << align2);
5549 if (align2 > bfd_get_section_alignment (dynobj, s)
5550 && !bfd_set_section_alignment (dynobj, s, align2))
5551 return FALSE;
5552
5553 /* Define the symbol as being at this point in the section. */
5554 h->root.u.def.section = s;
5555 h->root.u.def.value = s->size;
5556
5557 /* Increment the section size to make room for the symbol. */
5558 s->size += h->size;
5559
5560 return TRUE;
5561 }
5562
5563 /* Worker function for nios2_elf32_size_dynamic_sections. */
5564 static bfd_boolean
5565 adjust_dynrelocs (struct elf_link_hash_entry *h, PTR inf)
5566 {
5567 struct bfd_link_info *info;
5568 struct elf32_nios2_link_hash_table *htab;
5569
5570 if (h->root.type == bfd_link_hash_indirect)
5571 return TRUE;
5572
5573 if (h->root.type == bfd_link_hash_warning)
5574 /* When warning symbols are created, they **replace** the "real"
5575 entry in the hash table, thus we never get to see the real
5576 symbol in a hash traversal. So look at it now. */
5577 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5578
5579 info = (struct bfd_link_info *) inf;
5580 htab = elf32_nios2_hash_table (info);
5581
5582 if (h->plt.offset != (bfd_vma)-1)
5583 h->plt.offset += htab->res_n_size;
5584 if (htab->root.splt == h->root.u.def.section)
5585 h->root.u.def.value += htab->res_n_size;
5586
5587 return TRUE;
5588 }
5589
5590 /* Another worker function for nios2_elf32_size_dynamic_sections.
5591 Allocate space in .plt, .got and associated reloc sections for
5592 dynamic relocs. */
5593 static bfd_boolean
5594 allocate_dynrelocs (struct elf_link_hash_entry *h, PTR inf)
5595 {
5596 struct bfd_link_info *info;
5597 struct elf32_nios2_link_hash_table *htab;
5598 struct elf32_nios2_link_hash_entry *eh;
5599 struct elf32_nios2_dyn_relocs *p;
5600 int use_plt;
5601
5602 if (h->root.type == bfd_link_hash_indirect)
5603 return TRUE;
5604
5605 if (h->root.type == bfd_link_hash_warning)
5606 /* When warning symbols are created, they **replace** the "real"
5607 entry in the hash table, thus we never get to see the real
5608 symbol in a hash traversal. So look at it now. */
5609 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5610
5611 info = (struct bfd_link_info *) inf;
5612 htab = elf32_nios2_hash_table (info);
5613
5614 if (htab->root.dynamic_sections_created
5615 && h->plt.refcount > 0)
5616 {
5617 /* Make sure this symbol is output as a dynamic symbol.
5618 Undefined weak syms won't yet be marked as dynamic. */
5619 if (h->dynindx == -1
5620 && !h->forced_local
5621 && !bfd_elf_link_record_dynamic_symbol (info, h))
5622 return FALSE;
5623
5624 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), h))
5625 {
5626 asection *s = htab->root.splt;
5627
5628 /* Allocate room for the header. */
5629 if (s->size == 0)
5630 {
5631 if (bfd_link_pic (info))
5632 s->size = 24;
5633 else
5634 s->size = 28;
5635 }
5636
5637 h->plt.offset = s->size;
5638
5639 /* If this symbol is not defined in a regular file, and we are
5640 not generating a shared library, then set the symbol to this
5641 location in the .plt. This is required to make function
5642 pointers compare as equal between the normal executable and
5643 the shared library. */
5644 if (! bfd_link_pic (info)
5645 && !h->def_regular)
5646 {
5647 h->root.u.def.section = s;
5648 h->root.u.def.value = h->plt.offset;
5649 }
5650
5651 /* Make room for this entry. */
5652 s->size += 12;
5653
5654 /* We also need to make an entry in the .rela.plt section. */
5655 htab->root.srelplt->size += sizeof (Elf32_External_Rela);
5656
5657 /* And the .got.plt section. */
5658 htab->root.sgotplt->size += 4;
5659 }
5660 else
5661 {
5662 h->plt.offset = (bfd_vma) -1;
5663 h->needs_plt = 0;
5664 }
5665 }
5666 else
5667 {
5668 h->plt.offset = (bfd_vma) -1;
5669 h->needs_plt = 0;
5670 }
5671
5672 eh = (struct elf32_nios2_link_hash_entry *) h;
5673 use_plt = (eh->got_types_used == CALL_USED
5674 && h->plt.offset != (bfd_vma) -1);
5675
5676 if (h->got.refcount > 0)
5677 {
5678 asection *s;
5679 bfd_boolean dyn;
5680 int tls_type = eh->tls_type;
5681 int indx;
5682
5683 /* Make sure this symbol is output as a dynamic symbol.
5684 Undefined weak syms won't yet be marked as dynamic. */
5685 if (h->dynindx == -1
5686 && !h->forced_local
5687 && !bfd_elf_link_record_dynamic_symbol (info, h))
5688 return FALSE;
5689
5690 s = htab->root.sgot;
5691 h->got.offset = s->size;
5692
5693 if (tls_type == GOT_UNKNOWN)
5694 abort ();
5695
5696 if (tls_type == GOT_NORMAL)
5697 /* Non-TLS symbols need one GOT slot. */
5698 s->size += 4;
5699 else
5700 {
5701 if (tls_type & GOT_TLS_GD)
5702 /* R_NIOS2_TLS_GD16 needs 2 consecutive GOT slots. */
5703 s->size += 8;
5704 if (tls_type & GOT_TLS_IE)
5705 /* R_NIOS2_TLS_IE16 needs one GOT slot. */
5706 s->size += 4;
5707 }
5708
5709 dyn = htab->root.dynamic_sections_created;
5710
5711 indx = 0;
5712 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
5713 && (!bfd_link_pic (info)
5714 || !SYMBOL_REFERENCES_LOCAL (info, h)))
5715 indx = h->dynindx;
5716
5717 if (tls_type != GOT_NORMAL
5718 && (bfd_link_pic (info) || indx != 0)
5719 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5720 || h->root.type != bfd_link_hash_undefweak))
5721 {
5722 if (tls_type & GOT_TLS_IE)
5723 htab->root.srelgot->size += sizeof (Elf32_External_Rela);
5724
5725 if (tls_type & GOT_TLS_GD)
5726 htab->root.srelgot->size += sizeof (Elf32_External_Rela);
5727
5728 if ((tls_type & GOT_TLS_GD) && indx != 0)
5729 htab->root.srelgot->size += sizeof (Elf32_External_Rela);
5730 }
5731 else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5732 || h->root.type != bfd_link_hash_undefweak)
5733 && !use_plt
5734 && (bfd_link_pic (info)
5735 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
5736 htab->root.srelgot->size += sizeof (Elf32_External_Rela);
5737 }
5738 else
5739 h->got.offset = (bfd_vma) -1;
5740
5741 if (eh->dyn_relocs == NULL)
5742 return TRUE;
5743
5744 /* In the shared -Bsymbolic case, discard space allocated for
5745 dynamic pc-relative relocs against symbols which turn out to be
5746 defined in regular objects. For the normal shared case, discard
5747 space for pc-relative relocs that have become local due to symbol
5748 visibility changes. */
5749
5750 if (bfd_link_pic (info))
5751 {
5752 if (h->def_regular
5753 && (h->forced_local || SYMBOLIC_BIND (info, h)))
5754 {
5755 struct elf32_nios2_dyn_relocs **pp;
5756
5757 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
5758 {
5759 p->count -= p->pc_count;
5760 p->pc_count = 0;
5761 if (p->count == 0)
5762 *pp = p->next;
5763 else
5764 pp = &p->next;
5765 }
5766 }
5767
5768 /* Also discard relocs on undefined weak syms with non-default
5769 visibility. */
5770 if (eh->dyn_relocs != NULL
5771 && h->root.type == bfd_link_hash_undefweak)
5772 {
5773 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
5774 eh->dyn_relocs = NULL;
5775
5776 /* Make sure undefined weak symbols are output as a dynamic
5777 symbol in PIEs. */
5778 else if (h->dynindx == -1
5779 && !h->forced_local
5780 && !bfd_elf_link_record_dynamic_symbol (info, h))
5781 return FALSE;
5782 }
5783 }
5784 else
5785 {
5786 /* For the non-shared case, discard space for relocs against
5787 symbols which turn out to need copy relocs or are not
5788 dynamic. */
5789
5790 if (!h->non_got_ref
5791 && ((h->def_dynamic && !h->def_regular)
5792 || (htab->root.dynamic_sections_created
5793 && (h->root.type == bfd_link_hash_undefweak
5794 || h->root.type == bfd_link_hash_undefined))))
5795 {
5796 /* Make sure this symbol is output as a dynamic symbol.
5797 Undefined weak syms won't yet be marked as dynamic. */
5798 if (h->dynindx == -1
5799 && !h->forced_local
5800 && !bfd_elf_link_record_dynamic_symbol (info, h))
5801 return FALSE;
5802
5803 /* If that succeeded, we know we'll be keeping all the
5804 relocs. */
5805 if (h->dynindx != -1)
5806 goto keep;
5807 }
5808
5809 eh->dyn_relocs = NULL;
5810
5811 keep: ;
5812 }
5813
5814 /* Finally, allocate space. */
5815 for (p = eh->dyn_relocs; p != NULL; p = p->next)
5816 {
5817 asection *sreloc = elf_section_data (p->sec)->sreloc;
5818 sreloc->size += p->count * sizeof (Elf32_External_Rela);
5819 }
5820
5821 return TRUE;
5822 }
5823
5824 /* Implement elf_backend_size_dynamic_sections:
5825 Set the sizes of the dynamic sections. */
5826 static bfd_boolean
5827 nios2_elf32_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
5828 struct bfd_link_info *info)
5829 {
5830 bfd *dynobj;
5831 asection *s;
5832 bfd_boolean plt;
5833 bfd_boolean got;
5834 bfd_boolean relocs;
5835 bfd *ibfd;
5836 struct elf32_nios2_link_hash_table *htab;
5837
5838 htab = elf32_nios2_hash_table (info);
5839 dynobj = elf_hash_table (info)->dynobj;
5840 BFD_ASSERT (dynobj != NULL);
5841
5842 htab->res_n_size = 0;
5843 if (elf_hash_table (info)->dynamic_sections_created)
5844 {
5845 /* Set the contents of the .interp section to the interpreter. */
5846 if (bfd_link_executable (info) && !info->nointerp)
5847 {
5848 s = bfd_get_linker_section (dynobj, ".interp");
5849 BFD_ASSERT (s != NULL);
5850 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
5851 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
5852 }
5853 }
5854 else
5855 {
5856 /* We may have created entries in the .rela.got section.
5857 However, if we are not creating the dynamic sections, we will
5858 not actually use these entries. Reset the size of .rela.got,
5859 which will cause it to get stripped from the output file
5860 below. */
5861 s = htab->root.srelgot;
5862 if (s != NULL)
5863 s->size = 0;
5864 }
5865
5866 /* Set up .got offsets for local syms, and space for local dynamic
5867 relocs. */
5868 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5869 {
5870 bfd_signed_vma *local_got;
5871 bfd_signed_vma *end_local_got;
5872 char *local_tls_type;
5873 bfd_size_type locsymcount;
5874 Elf_Internal_Shdr *symtab_hdr;
5875 asection *srel;
5876
5877 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
5878 continue;
5879
5880 for (s = ibfd->sections; s != NULL; s = s->next)
5881 {
5882 struct elf32_nios2_dyn_relocs *p;
5883
5884 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
5885 {
5886 if (!bfd_is_abs_section (p->sec)
5887 && bfd_is_abs_section (p->sec->output_section))
5888 {
5889 /* Input section has been discarded, either because
5890 it is a copy of a linkonce section or due to
5891 linker script /DISCARD/, so we'll be discarding
5892 the relocs too. */
5893 }
5894 else if (p->count != 0)
5895 {
5896 srel = elf_section_data (p->sec)->sreloc;
5897 srel->size += p->count * sizeof (Elf32_External_Rela);
5898 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
5899 info->flags |= DF_TEXTREL;
5900 }
5901 }
5902 }
5903
5904 local_got = elf_local_got_refcounts (ibfd);
5905 if (!local_got)
5906 continue;
5907
5908 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
5909 locsymcount = symtab_hdr->sh_info;
5910 end_local_got = local_got + locsymcount;
5911 local_tls_type = elf32_nios2_local_got_tls_type (ibfd);
5912 s = htab->root.sgot;
5913 srel = htab->root.srelgot;
5914 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
5915 {
5916 if (*local_got > 0)
5917 {
5918 *local_got = s->size;
5919 if (*local_tls_type & GOT_TLS_GD)
5920 /* TLS_GD relocs need an 8-byte structure in the GOT. */
5921 s->size += 8;
5922 if (*local_tls_type & GOT_TLS_IE)
5923 s->size += 4;
5924 if (*local_tls_type == GOT_NORMAL)
5925 s->size += 4;
5926
5927 if (bfd_link_pic (info) || *local_tls_type == GOT_TLS_GD)
5928 srel->size += sizeof (Elf32_External_Rela);
5929 }
5930 else
5931 *local_got = (bfd_vma) -1;
5932 }
5933 }
5934
5935 if (htab->tls_ldm_got.refcount > 0)
5936 {
5937 /* Allocate two GOT entries and one dynamic relocation (if necessary)
5938 for R_NIOS2_TLS_LDM16 relocations. */
5939 htab->tls_ldm_got.offset = htab->root.sgot->size;
5940 htab->root.sgot->size += 8;
5941 if (bfd_link_pic (info))
5942 htab->root.srelgot->size += sizeof (Elf32_External_Rela);
5943 }
5944 else
5945 htab->tls_ldm_got.offset = -1;
5946
5947 /* Allocate global sym .plt and .got entries, and space for global
5948 sym dynamic relocs. */
5949 elf_link_hash_traverse (& htab->root, allocate_dynrelocs, info);
5950
5951 if (elf_hash_table (info)->dynamic_sections_created)
5952 {
5953 /* If the .got section is more than 0x8000 bytes, we add
5954 0x8000 to the value of _gp_got, so that 16-bit relocations
5955 have a greater chance of working. */
5956 if (htab->root.sgot->size >= 0x8000
5957 && elf32_nios2_hash_table (info)->h_gp_got->root.u.def.value == 0)
5958 elf32_nios2_hash_table (info)->h_gp_got->root.u.def.value = 0x8000;
5959 }
5960
5961 /* The check_relocs and adjust_dynamic_symbol entry points have
5962 determined the sizes of the various dynamic sections. Allocate
5963 memory for them. */
5964 plt = FALSE;
5965 got = FALSE;
5966 relocs = FALSE;
5967 for (s = dynobj->sections; s != NULL; s = s->next)
5968 {
5969 const char *name;
5970
5971 if ((s->flags & SEC_LINKER_CREATED) == 0)
5972 continue;
5973
5974 /* It's OK to base decisions on the section name, because none
5975 of the dynobj section names depend upon the input files. */
5976 name = bfd_get_section_name (dynobj, s);
5977
5978 if (strcmp (name, ".plt") == 0)
5979 {
5980 /* Remember whether there is a PLT. */
5981 plt = s->size != 0;
5982
5983 /* Correct for the number of res_N branches. */
5984 if (plt && !bfd_link_pic (info))
5985 {
5986 htab->res_n_size = (s->size-28) / 3;
5987 s->size += htab->res_n_size;
5988 }
5989 }
5990 else if (CONST_STRNEQ (name, ".rela"))
5991 {
5992 if (s->size != 0)
5993 {
5994 relocs = TRUE;
5995
5996 /* We use the reloc_count field as a counter if we need
5997 to copy relocs into the output file. */
5998 s->reloc_count = 0;
5999 }
6000 }
6001 else if (CONST_STRNEQ (name, ".got"))
6002 got = s->size != 0;
6003 else if (strcmp (name, ".dynbss") != 0)
6004 /* It's not one of our sections, so don't allocate space. */
6005 continue;
6006
6007 if (s->size == 0)
6008 {
6009 /* If we don't need this section, strip it from the
6010 output file. This is mostly to handle .rela.bss and
6011 .rela.plt. We must create both sections in
6012 create_dynamic_sections, because they must be created
6013 before the linker maps input sections to output
6014 sections. The linker does that before
6015 adjust_dynamic_symbol is called, and it is that
6016 function which decides whether anything needs to go
6017 into these sections. */
6018 s->flags |= SEC_EXCLUDE;
6019 continue;
6020 }
6021
6022 if ((s->flags & SEC_HAS_CONTENTS) == 0)
6023 continue;
6024
6025 /* Allocate memory for the section contents. */
6026 /* FIXME: This should be a call to bfd_alloc not bfd_zalloc.
6027 Unused entries should be reclaimed before the section's contents
6028 are written out, but at the moment this does not happen. Thus in
6029 order to prevent writing out garbage, we initialize the section's
6030 contents to zero. */
6031 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
6032 if (s->contents == NULL)
6033 return FALSE;
6034 }
6035
6036 /* Adjust dynamic symbols that point to the plt to account for the
6037 now-known number of resN slots. */
6038 if (htab->res_n_size)
6039 elf_link_hash_traverse (& htab->root, adjust_dynrelocs, info);
6040
6041 if (elf_hash_table (info)->dynamic_sections_created)
6042 {
6043 /* Add some entries to the .dynamic section. We fill in the
6044 values later, in elf_nios2_finish_dynamic_sections, but we
6045 must add the entries now so that we get the correct size for
6046 the .dynamic section. The DT_DEBUG entry is filled in by the
6047 dynamic linker and used by the debugger. */
6048 #define add_dynamic_entry(TAG, VAL) \
6049 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
6050
6051 if (!bfd_link_pic (info) && !add_dynamic_entry (DT_DEBUG, 0))
6052 return FALSE;
6053
6054 if (got && !add_dynamic_entry (DT_PLTGOT, 0))
6055 return FALSE;
6056
6057 if (plt
6058 && (!add_dynamic_entry (DT_PLTRELSZ, 0)
6059 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
6060 || !add_dynamic_entry (DT_JMPREL, 0)))
6061 return FALSE;
6062
6063 if (relocs
6064 && (!add_dynamic_entry (DT_RELA, 0)
6065 || !add_dynamic_entry (DT_RELASZ, 0)
6066 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela))))
6067 return FALSE;
6068
6069 if (!bfd_link_pic (info) && !add_dynamic_entry (DT_NIOS2_GP, 0))
6070 return FALSE;
6071
6072 if ((info->flags & DF_TEXTREL) != 0
6073 && !add_dynamic_entry (DT_TEXTREL, 0))
6074 return FALSE;
6075 }
6076 #undef add_dynamic_entry
6077
6078 return TRUE;
6079 }
6080
6081 /* Free the derived linker hash table. */
6082 static void
6083 nios2_elf32_link_hash_table_free (bfd *obfd)
6084 {
6085 struct elf32_nios2_link_hash_table *htab
6086 = (struct elf32_nios2_link_hash_table *) obfd->link.hash;
6087
6088 bfd_hash_table_free (&htab->bstab);
6089 _bfd_elf_link_hash_table_free (obfd);
6090 }
6091
6092 /* Implement bfd_elf32_bfd_link_hash_table_create. */
6093 static struct bfd_link_hash_table *
6094 nios2_elf32_link_hash_table_create (bfd *abfd)
6095 {
6096 struct elf32_nios2_link_hash_table *ret;
6097 bfd_size_type amt = sizeof (struct elf32_nios2_link_hash_table);
6098
6099 ret = bfd_zmalloc (amt);
6100 if (ret == NULL)
6101 return NULL;
6102
6103 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
6104 link_hash_newfunc,
6105 sizeof (struct
6106 elf32_nios2_link_hash_entry),
6107 NIOS2_ELF_DATA))
6108 {
6109 free (ret);
6110 return NULL;
6111 }
6112
6113 /* Init the stub hash table too. */
6114 if (!bfd_hash_table_init (&ret->bstab, stub_hash_newfunc,
6115 sizeof (struct elf32_nios2_stub_hash_entry)))
6116 {
6117 _bfd_elf_link_hash_table_free (abfd);
6118 return NULL;
6119 }
6120 ret->root.root.hash_table_free = nios2_elf32_link_hash_table_free;
6121
6122 return &ret->root.root;
6123 }
6124
6125 /* Implement elf_backend_reloc_type_class. */
6126 static enum elf_reloc_type_class
6127 nios2_elf32_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
6128 const asection *rel_sec ATTRIBUTE_UNUSED,
6129 const Elf_Internal_Rela *rela)
6130 {
6131 switch ((int) ELF32_R_TYPE (rela->r_info))
6132 {
6133 case R_NIOS2_RELATIVE:
6134 return reloc_class_relative;
6135 case R_NIOS2_JUMP_SLOT:
6136 return reloc_class_plt;
6137 case R_NIOS2_COPY:
6138 return reloc_class_copy;
6139 default:
6140 return reloc_class_normal;
6141 }
6142 }
6143
6144 /* Return 1 if target is one of ours. */
6145 static bfd_boolean
6146 is_nios2_elf_target (const struct bfd_target *targ)
6147 {
6148 return (targ == &nios2_elf32_le_vec
6149 || targ == &nios2_elf32_be_vec);
6150 }
6151
6152 /* Implement elf_backend_add_symbol_hook.
6153 This hook is called by the linker when adding symbols from an object
6154 file. We use it to put .comm items in .sbss, and not .bss. */
6155 static bfd_boolean
6156 nios2_elf_add_symbol_hook (bfd *abfd,
6157 struct bfd_link_info *info,
6158 Elf_Internal_Sym *sym,
6159 const char **namep ATTRIBUTE_UNUSED,
6160 flagword *flagsp ATTRIBUTE_UNUSED,
6161 asection **secp,
6162 bfd_vma *valp)
6163 {
6164 bfd *dynobj;
6165
6166 if (sym->st_shndx == SHN_COMMON
6167 && !bfd_link_relocatable (info)
6168 && sym->st_size <= elf_gp_size (abfd)
6169 && is_nios2_elf_target (info->output_bfd->xvec))
6170 {
6171 /* Common symbols less than or equal to -G nn bytes are automatically
6172 put into .sbss. */
6173 struct elf32_nios2_link_hash_table *htab;
6174
6175 htab = elf32_nios2_hash_table (info);
6176 if (htab->sbss == NULL)
6177 {
6178 flagword flags = SEC_IS_COMMON | SEC_LINKER_CREATED;
6179
6180 dynobj = elf_hash_table (info)->dynobj;
6181 if (!dynobj)
6182 dynobj = abfd;
6183
6184 htab->sbss = bfd_make_section_anyway_with_flags (dynobj, ".sbss",
6185 flags);
6186 if (htab->sbss == NULL)
6187 return FALSE;
6188 }
6189
6190 *secp = htab->sbss;
6191 *valp = sym->st_size;
6192 }
6193
6194 return TRUE;
6195 }
6196
6197 /* Implement elf_backend_can_make_relative_eh_frame:
6198 Decide whether to attempt to turn absptr or lsda encodings in
6199 shared libraries into pcrel within the given input section. */
6200 static bfd_boolean
6201 nios2_elf32_can_make_relative_eh_frame (bfd *input_bfd ATTRIBUTE_UNUSED,
6202 struct bfd_link_info *info
6203 ATTRIBUTE_UNUSED,
6204 asection *eh_frame_section
6205 ATTRIBUTE_UNUSED)
6206 {
6207 /* We can't use PC-relative encodings in the .eh_frame section. */
6208 return FALSE;
6209 }
6210
6211 /* Implement elf_backend_special_sections. */
6212 const struct bfd_elf_special_section elf32_nios2_special_sections[] =
6213 {
6214 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS,
6215 SHF_ALLOC + SHF_WRITE + SHF_NIOS2_GPREL },
6216 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS,
6217 SHF_ALLOC + SHF_WRITE + SHF_NIOS2_GPREL },
6218 { NULL, 0, 0, 0, 0 }
6219 };
6220
6221 #define ELF_ARCH bfd_arch_nios2
6222 #define ELF_TARGET_ID NIOS2_ELF_DATA
6223 #define ELF_MACHINE_CODE EM_ALTERA_NIOS2
6224
6225 /* The Nios II MMU uses a 4K page size. */
6226
6227 #define ELF_MAXPAGESIZE 0x1000
6228
6229 #define bfd_elf32_bfd_link_hash_table_create \
6230 nios2_elf32_link_hash_table_create
6231
6232 #define bfd_elf32_bfd_merge_private_bfd_data \
6233 nios2_elf32_merge_private_bfd_data
6234
6235 /* Relocation table lookup macros. */
6236
6237 #define bfd_elf32_bfd_reloc_type_lookup nios2_elf32_bfd_reloc_type_lookup
6238 #define bfd_elf32_bfd_reloc_name_lookup nios2_elf32_bfd_reloc_name_lookup
6239
6240 /* JUMP_TABLE_LINK macros. */
6241
6242 /* elf_info_to_howto (using RELA relocations). */
6243
6244 #define elf_info_to_howto nios2_elf32_info_to_howto
6245
6246 /* elf backend functions. */
6247
6248 #define elf_backend_can_gc_sections 1
6249 #define elf_backend_can_refcount 1
6250 #define elf_backend_plt_readonly 1
6251 #define elf_backend_want_got_plt 1
6252 #define elf_backend_rela_normal 1
6253 #define elf_backend_dtrel_excludes_plt 1
6254
6255 #define elf_backend_relocate_section nios2_elf32_relocate_section
6256 #define elf_backend_section_flags nios2_elf32_section_flags
6257 #define elf_backend_fake_sections nios2_elf32_fake_sections
6258 #define elf_backend_check_relocs nios2_elf32_check_relocs
6259
6260 #define elf_backend_gc_mark_hook nios2_elf32_gc_mark_hook
6261 #define elf_backend_gc_sweep_hook nios2_elf32_gc_sweep_hook
6262 #define elf_backend_create_dynamic_sections \
6263 nios2_elf32_create_dynamic_sections
6264 #define elf_backend_finish_dynamic_symbol nios2_elf32_finish_dynamic_symbol
6265 #define elf_backend_finish_dynamic_sections \
6266 nios2_elf32_finish_dynamic_sections
6267 #define elf_backend_adjust_dynamic_symbol nios2_elf32_adjust_dynamic_symbol
6268 #define elf_backend_reloc_type_class nios2_elf32_reloc_type_class
6269 #define elf_backend_size_dynamic_sections nios2_elf32_size_dynamic_sections
6270 #define elf_backend_add_symbol_hook nios2_elf_add_symbol_hook
6271 #define elf_backend_copy_indirect_symbol nios2_elf32_copy_indirect_symbol
6272 #define elf_backend_object_p nios2_elf32_object_p
6273
6274 #define elf_backend_grok_prstatus nios2_grok_prstatus
6275 #define elf_backend_grok_psinfo nios2_grok_psinfo
6276
6277 #undef elf_backend_can_make_relative_eh_frame
6278 #define elf_backend_can_make_relative_eh_frame \
6279 nios2_elf32_can_make_relative_eh_frame
6280
6281 #define elf_backend_special_sections elf32_nios2_special_sections
6282
6283 #define TARGET_LITTLE_SYM nios2_elf32_le_vec
6284 #define TARGET_LITTLE_NAME "elf32-littlenios2"
6285 #define TARGET_BIG_SYM nios2_elf32_be_vec
6286 #define TARGET_BIG_NAME "elf32-bignios2"
6287
6288 #define elf_backend_got_header_size 12
6289 #define elf_backend_default_execstack 0
6290
6291 #include "elf32-target.h"
This page took 0.161005 seconds and 5 git commands to generate.