Use %A and %B in more error messages
[deliverable/binutils-gdb.git] / bfd / elf32-rl78.c
1 /* Renesas RL78 specific support for 32-bit ELF.
2 Copyright (C) 2011-2017 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 #include "sysdep.h"
21 #include "bfd.h"
22 #include "bfd_stdint.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "elf/rl78.h"
26 #include "libiberty.h"
27
28 #define valid_16bit_address(v) ((v) <= 0x0ffff || (v) >= 0xf0000)
29
30 #define RL78REL(n,sz,bit,shift,complain,pcrel) \
31 HOWTO (R_RL78_##n, shift, sz, bit, pcrel, 0, complain_overflow_ ## complain, \
32 bfd_elf_generic_reloc, "R_RL78_" #n, FALSE, 0, ~0, FALSE)
33
34 static bfd_reloc_status_type rl78_special_reloc (bfd *, arelent *, asymbol *, void *,
35 asection *, bfd *, char **);
36
37 /* FIXME: We could omit the SHIFT parameter, it is always zero. */
38 #define RL78_OP_REL(n,sz,bit,shift,complain,pcrel) \
39 HOWTO (R_RL78_##n, shift, sz, bit, pcrel, 0, complain_overflow_ ## complain, \
40 rl78_special_reloc, "R_RL78_" #n, FALSE, 0, ~0, FALSE)
41
42 /* Note that the relocations around 0x7f are internal to this file;
43 feel free to move them as needed to avoid conflicts with published
44 relocation numbers. */
45
46 static reloc_howto_type rl78_elf_howto_table [] =
47 {
48 RL78REL (NONE, 3, 0, 0, dont, FALSE),
49 RL78REL (DIR32, 2, 32, 0, signed, FALSE),
50 RL78REL (DIR24S, 2, 24, 0, signed, FALSE),
51 RL78REL (DIR16, 1, 16, 0, dont, FALSE),
52 RL78REL (DIR16U, 1, 16, 0, unsigned, FALSE),
53 RL78REL (DIR16S, 1, 16, 0, signed, FALSE),
54 RL78REL (DIR8, 0, 8, 0, dont, FALSE),
55 RL78REL (DIR8U, 0, 8, 0, unsigned, FALSE),
56 RL78REL (DIR8S, 0, 8, 0, signed, FALSE),
57 RL78REL (DIR24S_PCREL, 2, 24, 0, signed, TRUE),
58 RL78REL (DIR16S_PCREL, 1, 16, 0, signed, TRUE),
59 RL78REL (DIR8S_PCREL, 0, 8, 0, signed, TRUE),
60 RL78REL (DIR16UL, 1, 16, 2, unsigned, FALSE),
61 RL78REL (DIR16UW, 1, 16, 1, unsigned, FALSE),
62 RL78REL (DIR8UL, 0, 8, 2, unsigned, FALSE),
63 RL78REL (DIR8UW, 0, 8, 1, unsigned, FALSE),
64 RL78REL (DIR32_REV, 1, 16, 0, dont, FALSE),
65 RL78REL (DIR16_REV, 1, 16, 0, dont, FALSE),
66 RL78REL (DIR3U_PCREL, 0, 3, 0, dont, TRUE),
67
68 EMPTY_HOWTO (0x13),
69 EMPTY_HOWTO (0x14),
70 EMPTY_HOWTO (0x15),
71 EMPTY_HOWTO (0x16),
72 EMPTY_HOWTO (0x17),
73 EMPTY_HOWTO (0x18),
74 EMPTY_HOWTO (0x19),
75 EMPTY_HOWTO (0x1a),
76 EMPTY_HOWTO (0x1b),
77 EMPTY_HOWTO (0x1c),
78 EMPTY_HOWTO (0x1d),
79 EMPTY_HOWTO (0x1e),
80 EMPTY_HOWTO (0x1f),
81
82 EMPTY_HOWTO (0x20),
83 EMPTY_HOWTO (0x21),
84 EMPTY_HOWTO (0x22),
85 EMPTY_HOWTO (0x23),
86 EMPTY_HOWTO (0x24),
87 EMPTY_HOWTO (0x25),
88 EMPTY_HOWTO (0x26),
89 EMPTY_HOWTO (0x27),
90 EMPTY_HOWTO (0x28),
91 EMPTY_HOWTO (0x29),
92 EMPTY_HOWTO (0x2a),
93 EMPTY_HOWTO (0x2b),
94 EMPTY_HOWTO (0x2c),
95 RL78REL (RH_RELAX, 0, 0, 0, dont, FALSE),
96
97 EMPTY_HOWTO (0x2e),
98 RL78REL (RH_SADDR, 0, 0, 0, dont, FALSE),
99 EMPTY_HOWTO (0x30),
100 EMPTY_HOWTO (0x31),
101 EMPTY_HOWTO (0x32),
102 EMPTY_HOWTO (0x33),
103 EMPTY_HOWTO (0x34),
104 EMPTY_HOWTO (0x35),
105 EMPTY_HOWTO (0x36),
106 EMPTY_HOWTO (0x37),
107 EMPTY_HOWTO (0x38),
108 EMPTY_HOWTO (0x39),
109 EMPTY_HOWTO (0x3a),
110 EMPTY_HOWTO (0x3b),
111 EMPTY_HOWTO (0x3c),
112 EMPTY_HOWTO (0x3d),
113 EMPTY_HOWTO (0x3e),
114 EMPTY_HOWTO (0x3f),
115 EMPTY_HOWTO (0x40),
116
117 RL78_OP_REL (ABS32, 2, 32, 0, dont, FALSE),
118 RL78_OP_REL (ABS24S, 2, 24, 0, signed, FALSE),
119 RL78_OP_REL (ABS16, 1, 16, 0, dont, FALSE),
120 RL78_OP_REL (ABS16U, 1, 16, 0, unsigned, FALSE),
121 RL78_OP_REL (ABS16S, 1, 16, 0, signed, FALSE),
122 RL78_OP_REL (ABS8, 0, 8, 0, dont, FALSE),
123 RL78_OP_REL (ABS8U, 0, 8, 0, unsigned, FALSE),
124 RL78_OP_REL (ABS8S, 0, 8, 0, signed, FALSE),
125 RL78_OP_REL (ABS24S_PCREL, 2, 24, 0, signed, TRUE),
126 RL78_OP_REL (ABS16S_PCREL, 1, 16, 0, signed, TRUE),
127 RL78_OP_REL (ABS8S_PCREL, 0, 8, 0, signed, TRUE),
128 RL78_OP_REL (ABS16UL, 1, 16, 0, unsigned, FALSE),
129 RL78_OP_REL (ABS16UW, 1, 16, 0, unsigned, FALSE),
130 RL78_OP_REL (ABS8UL, 0, 8, 0, unsigned, FALSE),
131 RL78_OP_REL (ABS8UW, 0, 8, 0, unsigned, FALSE),
132 RL78_OP_REL (ABS32_REV, 2, 32, 0, dont, FALSE),
133 RL78_OP_REL (ABS16_REV, 1, 16, 0, dont, FALSE),
134
135 #define STACK_REL_P(x) ((x) <= R_RL78_ABS16_REV && (x) >= R_RL78_ABS32)
136
137 EMPTY_HOWTO (0x52),
138 EMPTY_HOWTO (0x53),
139 EMPTY_HOWTO (0x54),
140 EMPTY_HOWTO (0x55),
141 EMPTY_HOWTO (0x56),
142 EMPTY_HOWTO (0x57),
143 EMPTY_HOWTO (0x58),
144 EMPTY_HOWTO (0x59),
145 EMPTY_HOWTO (0x5a),
146 EMPTY_HOWTO (0x5b),
147 EMPTY_HOWTO (0x5c),
148 EMPTY_HOWTO (0x5d),
149 EMPTY_HOWTO (0x5e),
150 EMPTY_HOWTO (0x5f),
151 EMPTY_HOWTO (0x60),
152 EMPTY_HOWTO (0x61),
153 EMPTY_HOWTO (0x62),
154 EMPTY_HOWTO (0x63),
155 EMPTY_HOWTO (0x64),
156 EMPTY_HOWTO (0x65),
157 EMPTY_HOWTO (0x66),
158 EMPTY_HOWTO (0x67),
159 EMPTY_HOWTO (0x68),
160 EMPTY_HOWTO (0x69),
161 EMPTY_HOWTO (0x6a),
162 EMPTY_HOWTO (0x6b),
163 EMPTY_HOWTO (0x6c),
164 EMPTY_HOWTO (0x6d),
165 EMPTY_HOWTO (0x6e),
166 EMPTY_HOWTO (0x6f),
167 EMPTY_HOWTO (0x70),
168 EMPTY_HOWTO (0x71),
169 EMPTY_HOWTO (0x72),
170 EMPTY_HOWTO (0x73),
171 EMPTY_HOWTO (0x74),
172 EMPTY_HOWTO (0x75),
173 EMPTY_HOWTO (0x76),
174 EMPTY_HOWTO (0x77),
175
176 EMPTY_HOWTO (0x78),
177 EMPTY_HOWTO (0x79),
178 EMPTY_HOWTO (0x7a),
179 EMPTY_HOWTO (0x7b),
180 EMPTY_HOWTO (0x7c),
181 EMPTY_HOWTO (0x7d),
182 EMPTY_HOWTO (0x7e),
183 EMPTY_HOWTO (0x7f),
184
185 RL78_OP_REL (SYM, 2, 32, 0, dont, FALSE),
186 RL78_OP_REL (OPneg, 2, 32, 0, dont, FALSE),
187 RL78_OP_REL (OPadd, 2, 32, 0, dont, FALSE),
188 RL78_OP_REL (OPsub, 2, 32, 0, dont, FALSE),
189 RL78_OP_REL (OPmul, 2, 32, 0, dont, FALSE),
190 RL78_OP_REL (OPdiv, 2, 32, 0, dont, FALSE),
191 RL78_OP_REL (OPshla, 2, 32, 0, dont, FALSE),
192 RL78_OP_REL (OPshra, 2, 32, 0, dont, FALSE),
193 RL78_OP_REL (OPsctsize, 2, 32, 0, dont, FALSE),
194 EMPTY_HOWTO (0x89),
195 EMPTY_HOWTO (0x8a),
196 EMPTY_HOWTO (0x8b),
197 EMPTY_HOWTO (0x8c),
198 RL78_OP_REL (OPscttop, 2, 32, 0, dont, FALSE),
199 EMPTY_HOWTO (0x8e),
200 EMPTY_HOWTO (0x8f),
201 RL78_OP_REL (OPand, 2, 32, 0, dont, FALSE),
202 RL78_OP_REL (OPor, 2, 32, 0, dont, FALSE),
203 RL78_OP_REL (OPxor, 2, 32, 0, dont, FALSE),
204 RL78_OP_REL (OPnot, 2, 32, 0, dont, FALSE),
205 RL78_OP_REL (OPmod, 2, 32, 0, dont, FALSE),
206 RL78_OP_REL (OPromtop, 2, 32, 0, dont, FALSE),
207 RL78_OP_REL (OPramtop, 2, 32, 0, dont, FALSE)
208 };
209 \f
210 /* Map BFD reloc types to RL78 ELF reloc types. */
211
212 struct rl78_reloc_map
213 {
214 bfd_reloc_code_real_type bfd_reloc_val;
215 unsigned int rl78_reloc_val;
216 };
217
218 static const struct rl78_reloc_map rl78_reloc_map [] =
219 {
220 { BFD_RELOC_NONE, R_RL78_NONE },
221 { BFD_RELOC_8, R_RL78_DIR8S },
222 { BFD_RELOC_16, R_RL78_DIR16S },
223 { BFD_RELOC_24, R_RL78_DIR24S },
224 { BFD_RELOC_32, R_RL78_DIR32 },
225 { BFD_RELOC_RL78_16_OP, R_RL78_DIR16 },
226 { BFD_RELOC_RL78_DIR3U_PCREL, R_RL78_DIR3U_PCREL },
227 { BFD_RELOC_8_PCREL, R_RL78_DIR8S_PCREL },
228 { BFD_RELOC_16_PCREL, R_RL78_DIR16S_PCREL },
229 { BFD_RELOC_24_PCREL, R_RL78_DIR24S_PCREL },
230 { BFD_RELOC_RL78_8U, R_RL78_DIR8U },
231 { BFD_RELOC_RL78_16U, R_RL78_DIR16U },
232 { BFD_RELOC_RL78_SYM, R_RL78_SYM },
233 { BFD_RELOC_RL78_OP_SUBTRACT, R_RL78_OPsub },
234 { BFD_RELOC_RL78_OP_NEG, R_RL78_OPneg },
235 { BFD_RELOC_RL78_OP_AND, R_RL78_OPand },
236 { BFD_RELOC_RL78_OP_SHRA, R_RL78_OPshra },
237 { BFD_RELOC_RL78_ABS8, R_RL78_ABS8 },
238 { BFD_RELOC_RL78_ABS16, R_RL78_ABS16 },
239 { BFD_RELOC_RL78_ABS16_REV, R_RL78_ABS16_REV },
240 { BFD_RELOC_RL78_ABS32, R_RL78_ABS32 },
241 { BFD_RELOC_RL78_ABS32_REV, R_RL78_ABS32_REV },
242 { BFD_RELOC_RL78_ABS16UL, R_RL78_ABS16UL },
243 { BFD_RELOC_RL78_ABS16UW, R_RL78_ABS16UW },
244 { BFD_RELOC_RL78_ABS16U, R_RL78_ABS16U },
245 { BFD_RELOC_RL78_SADDR, R_RL78_RH_SADDR },
246 { BFD_RELOC_RL78_RELAX, R_RL78_RH_RELAX }
247 };
248
249 static reloc_howto_type *
250 rl78_reloc_type_lookup (bfd * abfd ATTRIBUTE_UNUSED,
251 bfd_reloc_code_real_type code)
252 {
253 unsigned int i;
254
255 if (code == BFD_RELOC_RL78_32_OP)
256 return rl78_elf_howto_table + R_RL78_DIR32;
257
258 for (i = ARRAY_SIZE (rl78_reloc_map); i--;)
259 if (rl78_reloc_map [i].bfd_reloc_val == code)
260 return rl78_elf_howto_table + rl78_reloc_map[i].rl78_reloc_val;
261
262 return NULL;
263 }
264
265 static reloc_howto_type *
266 rl78_reloc_name_lookup (bfd * abfd ATTRIBUTE_UNUSED, const char * r_name)
267 {
268 unsigned int i;
269
270 for (i = 0; i < ARRAY_SIZE (rl78_elf_howto_table); i++)
271 if (rl78_elf_howto_table[i].name != NULL
272 && strcasecmp (rl78_elf_howto_table[i].name, r_name) == 0)
273 return rl78_elf_howto_table + i;
274
275 return NULL;
276 }
277
278 /* Set the howto pointer for an RL78 ELF reloc. */
279
280 static void
281 rl78_info_to_howto_rela (bfd * abfd ATTRIBUTE_UNUSED,
282 arelent * cache_ptr,
283 Elf_Internal_Rela * dst)
284 {
285 unsigned int r_type;
286
287 r_type = ELF32_R_TYPE (dst->r_info);
288 if (r_type >= (unsigned int) R_RL78_max)
289 {
290 /* xgettext:c-format */
291 _bfd_error_handler (_("%B: invalid RL78 reloc number: %d"), abfd, r_type);
292 r_type = 0;
293 }
294 cache_ptr->howto = rl78_elf_howto_table + r_type;
295 }
296 \f
297 static bfd_vma
298 get_symbol_value (const char * name,
299 struct bfd_link_info * info,
300 bfd * input_bfd,
301 asection * input_section,
302 int offset)
303 {
304 struct bfd_link_hash_entry * h;
305
306 if (info == NULL)
307 return 0;
308
309 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, TRUE);
310
311 if (h == NULL
312 || (h->type != bfd_link_hash_defined
313 && h->type != bfd_link_hash_defweak))
314 {
315 (*info->callbacks->undefined_symbol)
316 (info, name, input_bfd, input_section, offset, TRUE);
317 return 0;
318 }
319
320 return (h->u.def.value
321 + h->u.def.section->output_section->vma
322 + h->u.def.section->output_offset);
323 }
324
325 static bfd_vma
326 get_romstart (struct bfd_link_info * info,
327 bfd * abfd,
328 asection * sec,
329 int offset)
330 {
331 static bfd_boolean cached = FALSE;
332 static bfd_vma cached_value = 0;
333
334 if (!cached)
335 {
336 cached_value = get_symbol_value ("_start", info, abfd, sec, offset);
337 cached = TRUE;
338 }
339 return cached_value;
340 }
341
342 static bfd_vma
343 get_ramstart (struct bfd_link_info * info,
344 bfd * abfd,
345 asection * sec,
346 int offset)
347 {
348 static bfd_boolean cached = FALSE;
349 static bfd_vma cached_value = 0;
350
351 if (!cached)
352 {
353 cached_value = get_symbol_value ("__datastart", info, abfd, sec, offset);
354 cached = TRUE;
355 }
356 return cached_value;
357 }
358
359 #define NUM_STACK_ENTRIES 16
360 static int32_t rl78_stack [ NUM_STACK_ENTRIES ];
361 static unsigned int rl78_stack_top;
362
363 #define RL78_STACK_PUSH(val) \
364 do \
365 { \
366 if (rl78_stack_top < NUM_STACK_ENTRIES) \
367 rl78_stack [rl78_stack_top ++] = (val); \
368 else \
369 _bfd_error_handler (_("Internal Error: RL78 reloc stack overflow")); \
370 } \
371 while (0)
372
373 #define RL78_STACK_POP(dest) \
374 do \
375 { \
376 if (rl78_stack_top > 0) \
377 (dest) = rl78_stack [-- rl78_stack_top];\
378 else \
379 { \
380 _bfd_error_handler (_("Internal Error: RL78 reloc stack underflow")); \
381 (dest) = 0; \
382 } \
383 } \
384 while (0)
385
386 /* Special handling for RL78 complex relocs. Returns the
387 value of the reloc, or 0 for relocs which do not generate
388 a result. SYMVAL is the value of the symbol for relocs
389 which use a symbolic argument. */
390
391 static bfd_vma
392 rl78_compute_complex_reloc (unsigned long r_type,
393 bfd_vma symval,
394 asection * input_section)
395 {
396 int32_t tmp1, tmp2;
397 bfd_vma relocation;
398
399 switch (r_type)
400 {
401 default:
402 return 0;
403
404 case R_RL78_ABS24S_PCREL:
405 case R_RL78_ABS16S_PCREL:
406 case R_RL78_ABS8S_PCREL:
407 RL78_STACK_POP (relocation);
408 relocation -= input_section->output_section->vma + input_section->output_offset;
409 return relocation;
410
411 case R_RL78_ABS32:
412 case R_RL78_ABS32_REV:
413 case R_RL78_ABS16:
414 case R_RL78_ABS16_REV:
415 case R_RL78_ABS16S:
416 case R_RL78_ABS16U:
417 case R_RL78_ABS8:
418 case R_RL78_ABS8U:
419 case R_RL78_ABS8S:
420 RL78_STACK_POP (relocation);
421 return relocation;
422
423 case R_RL78_ABS16UL:
424 case R_RL78_ABS8UL:
425 RL78_STACK_POP (relocation);
426 return relocation >> 2;
427
428 case R_RL78_ABS16UW:
429 case R_RL78_ABS8UW:
430 RL78_STACK_POP (relocation);
431 return relocation >> 1;
432
433 /* The rest of the relocs compute values and then push them onto the stack. */
434 case R_RL78_OPramtop:
435 case R_RL78_OPromtop:
436 case R_RL78_SYM:
437 RL78_STACK_PUSH (symval);
438 return 0;
439
440 case R_RL78_OPneg:
441 RL78_STACK_POP (tmp1);
442 tmp1 = - tmp1;
443 RL78_STACK_PUSH (tmp1);
444 return 0;
445
446 case R_RL78_OPadd:
447 RL78_STACK_POP (tmp2);
448 RL78_STACK_POP (tmp1);
449 tmp1 += tmp2;
450 RL78_STACK_PUSH (tmp1);
451 return 0;
452
453 case R_RL78_OPsub:
454 /* For the expression "A - B", the assembler pushes A,
455 then B, then OPSUB. So the first op we pop is B, not A. */
456 RL78_STACK_POP (tmp2); /* B */
457 RL78_STACK_POP (tmp1); /* A */
458 tmp1 -= tmp2; /* A - B */
459 RL78_STACK_PUSH (tmp1);
460 return 0;
461
462 case R_RL78_OPmul:
463 RL78_STACK_POP (tmp2);
464 RL78_STACK_POP (tmp1);
465 tmp1 *= tmp2;
466 RL78_STACK_PUSH (tmp1);
467 return 0;
468
469 case R_RL78_OPdiv:
470 RL78_STACK_POP (tmp2);
471 RL78_STACK_POP (tmp1);
472 tmp1 /= tmp2;
473 RL78_STACK_PUSH (tmp1);
474 return 0;
475
476 case R_RL78_OPshla:
477 RL78_STACK_POP (tmp2);
478 RL78_STACK_POP (tmp1);
479 tmp1 <<= tmp2;
480 RL78_STACK_PUSH (tmp1);
481 return 0;
482
483 case R_RL78_OPshra:
484 RL78_STACK_POP (tmp2);
485 RL78_STACK_POP (tmp1);
486 tmp1 >>= tmp2;
487 RL78_STACK_PUSH (tmp1);
488 return 0;
489
490 case R_RL78_OPsctsize:
491 RL78_STACK_PUSH (input_section->size);
492 return 0;
493
494 case R_RL78_OPscttop:
495 RL78_STACK_PUSH (input_section->output_section->vma);
496 return 0;
497
498 case R_RL78_OPand:
499 RL78_STACK_POP (tmp2);
500 RL78_STACK_POP (tmp1);
501 tmp1 &= tmp2;
502 RL78_STACK_PUSH (tmp1);
503 return 0;
504
505 case R_RL78_OPor:
506 RL78_STACK_POP (tmp2);
507 RL78_STACK_POP (tmp1);
508 tmp1 |= tmp2;
509 RL78_STACK_PUSH (tmp1);
510 return 0;
511
512 case R_RL78_OPxor:
513 RL78_STACK_POP (tmp2);
514 RL78_STACK_POP (tmp1);
515 tmp1 ^= tmp2;
516 RL78_STACK_PUSH (tmp1);
517 return 0;
518
519 case R_RL78_OPnot:
520 RL78_STACK_POP (tmp1);
521 tmp1 = ~ tmp1;
522 RL78_STACK_PUSH (tmp1);
523 return 0;
524
525 case R_RL78_OPmod:
526 RL78_STACK_POP (tmp2);
527 RL78_STACK_POP (tmp1);
528 tmp1 %= tmp2;
529 RL78_STACK_PUSH (tmp1);
530 return 0;
531 }
532 }
533
534 #undef RL78_STACK_PUSH
535 #undef RL78_STACK_POP
536
537 #define OP(i) (contents[reloc->address + (i)])
538
539 static bfd_reloc_status_type
540 rl78_special_reloc (bfd * input_bfd,
541 arelent * reloc,
542 asymbol * symbol,
543 void * data,
544 asection * input_section,
545 bfd * output_bfd ATTRIBUTE_UNUSED,
546 char ** error_message ATTRIBUTE_UNUSED)
547 {
548 bfd_reloc_status_type r = bfd_reloc_ok;
549 bfd_vma relocation = 0;
550 unsigned long r_type = reloc->howto->type;
551 bfd_byte * contents = data;
552
553 /* If necessary, compute the symbolic value of the relocation. */
554 switch (r_type)
555 {
556 case R_RL78_SYM:
557 relocation = (symbol->value
558 + symbol->section->output_section->vma
559 + symbol->section->output_offset
560 + reloc->addend);
561 break;
562
563 case R_RL78_OPromtop:
564 relocation = get_romstart (NULL, input_bfd, input_section,
565 reloc->address);
566 break;
567
568 case R_RL78_OPramtop:
569 relocation = get_ramstart (NULL, input_bfd, input_section,
570 reloc->address);
571 break;
572 }
573
574 /* Get the value of the relocation. */
575 relocation = rl78_compute_complex_reloc (r_type, relocation, input_section);
576
577 /* If the relocation alters the contents of the section then apply it now.
578 Note - since this function is called from
579 bfd_generic_get_relocated_section_contents via bfd_perform_relocation,
580 and not from the linker, we do not perform any range checking. The
581 clients who are calling us are only interested in some relocated section
582 contents, and not any linkage problems that might occur later. */
583 switch (r_type)
584 {
585 case R_RL78_ABS32:
586 OP (0) = relocation;
587 OP (1) = relocation >> 8;
588 OP (2) = relocation >> 16;
589 OP (3) = relocation >> 24;
590 break;
591
592 case R_RL78_ABS32_REV:
593 OP (3) = relocation;
594 OP (2) = relocation >> 8;
595 OP (1) = relocation >> 16;
596 OP (0) = relocation >> 24;
597 break;
598
599 case R_RL78_ABS24S_PCREL:
600 case R_RL78_ABS24S:
601 OP (0) = relocation;
602 OP (1) = relocation >> 8;
603 OP (2) = relocation >> 16;
604 break;
605
606 case R_RL78_ABS16_REV:
607 OP (1) = relocation;
608 OP (0) = relocation >> 8;
609 break;
610
611 case R_RL78_ABS16S_PCREL:
612 case R_RL78_ABS16:
613 case R_RL78_ABS16S:
614 case R_RL78_ABS16U:
615 case R_RL78_ABS16UL:
616 case R_RL78_ABS16UW:
617 OP (0) = relocation;
618 OP (1) = relocation >> 8;
619 break;
620
621 case R_RL78_ABS8S_PCREL:
622 case R_RL78_ABS8:
623 case R_RL78_ABS8U:
624 case R_RL78_ABS8UL:
625 case R_RL78_ABS8UW:
626 case R_RL78_ABS8S:
627 OP (0) = relocation;
628 break;
629
630 default:
631 break;
632 }
633
634 return r;
635 }
636
637 #undef OP
638 #define OP(i) (contents[rel->r_offset + (i)])
639
640 /* Relocate an RL78 ELF section.
641 There is some attempt to make this function usable for many architectures,
642 both USE_REL and USE_RELA ['twould be nice if such a critter existed],
643 if only to serve as a learning tool.
644
645 The RELOCATE_SECTION function is called by the new ELF backend linker
646 to handle the relocations for a section.
647
648 The relocs are always passed as Rela structures; if the section
649 actually uses Rel structures, the r_addend field will always be
650 zero.
651
652 This function is responsible for adjusting the section contents as
653 necessary, and (if using Rela relocs and generating a relocatable
654 output file) adjusting the reloc addend as necessary.
655
656 This function does not have to worry about setting the reloc
657 address or the reloc symbol index.
658
659 LOCAL_SYMS is a pointer to the swapped in local symbols.
660
661 LOCAL_SECTIONS is an array giving the section in the input file
662 corresponding to the st_shndx field of each local symbol.
663
664 The global hash table entry for the global symbols can be found
665 via elf_sym_hashes (input_bfd).
666
667 When generating relocatable output, this function must handle
668 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
669 going to be the section symbol corresponding to the output
670 section, which means that the addend must be adjusted
671 accordingly. */
672
673 static bfd_boolean
674 rl78_elf_relocate_section
675 (bfd * output_bfd,
676 struct bfd_link_info * info,
677 bfd * input_bfd,
678 asection * input_section,
679 bfd_byte * contents,
680 Elf_Internal_Rela * relocs,
681 Elf_Internal_Sym * local_syms,
682 asection ** local_sections)
683 {
684 Elf_Internal_Shdr * symtab_hdr;
685 struct elf_link_hash_entry ** sym_hashes;
686 Elf_Internal_Rela * rel;
687 Elf_Internal_Rela * relend;
688 asection *splt;
689
690 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
691 sym_hashes = elf_sym_hashes (input_bfd);
692 relend = relocs + input_section->reloc_count;
693
694 splt = elf_hash_table (info)->splt;
695
696 for (rel = relocs; rel < relend; rel ++)
697 {
698 reloc_howto_type * howto;
699 unsigned long r_symndx;
700 Elf_Internal_Sym * sym;
701 asection * sec;
702 struct elf_link_hash_entry * h;
703 bfd_vma relocation;
704 bfd_reloc_status_type r;
705 const char * name = NULL;
706 bfd_boolean unresolved_reloc = TRUE;
707 int r_type;
708
709 r_type = ELF32_R_TYPE (rel->r_info);
710 r_symndx = ELF32_R_SYM (rel->r_info);
711
712 howto = rl78_elf_howto_table + ELF32_R_TYPE (rel->r_info);
713 h = NULL;
714 sym = NULL;
715 sec = NULL;
716 relocation = 0;
717
718 if (r_symndx < symtab_hdr->sh_info)
719 {
720 sym = local_syms + r_symndx;
721 sec = local_sections [r_symndx];
722 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, & sec, rel);
723
724 name = bfd_elf_string_from_elf_section
725 (input_bfd, symtab_hdr->sh_link, sym->st_name);
726 name = (sym->st_name == 0) ? bfd_section_name (input_bfd, sec) : name;
727 }
728 else
729 {
730 bfd_boolean warned ATTRIBUTE_UNUSED;
731 bfd_boolean ignored ATTRIBUTE_UNUSED;
732
733 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
734 r_symndx, symtab_hdr, sym_hashes, h,
735 sec, relocation, unresolved_reloc,
736 warned, ignored);
737
738 name = h->root.root.string;
739 }
740
741 if (sec != NULL && discarded_section (sec))
742 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
743 rel, 1, relend, howto, 0, contents);
744
745 if (bfd_link_relocatable (info))
746 {
747 /* This is a relocatable link. We don't have to change
748 anything, unless the reloc is against a section symbol,
749 in which case we have to adjust according to where the
750 section symbol winds up in the output section. */
751 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
752 rel->r_addend += sec->output_offset;
753 continue;
754 }
755
756 switch (ELF32_R_TYPE (rel->r_info))
757 {
758 case R_RL78_DIR16S:
759 {
760 bfd_vma *plt_offset;
761
762 if (h != NULL)
763 plt_offset = &h->plt.offset;
764 else
765 plt_offset = elf_local_got_offsets (input_bfd) + r_symndx;
766
767 if (! valid_16bit_address (relocation))
768 {
769 /* If this is the first time we've processed this symbol,
770 fill in the plt entry with the correct symbol address. */
771 if ((*plt_offset & 1) == 0)
772 {
773 unsigned int x;
774
775 x = 0x000000ec; /* br !!abs24 */
776 x |= (relocation << 8) & 0xffffff00;
777 bfd_put_32 (input_bfd, x, splt->contents + *plt_offset);
778 *plt_offset |= 1;
779 }
780
781 relocation = (splt->output_section->vma
782 + splt->output_offset
783 + (*plt_offset & -2));
784 if (name)
785 {
786 char *newname = bfd_malloc (strlen(name)+5);
787 strcpy (newname, name);
788 strcat(newname, ".plt");
789 _bfd_generic_link_add_one_symbol (info,
790 input_bfd,
791 newname,
792 BSF_FUNCTION | BSF_WEAK,
793 splt,
794 (*plt_offset & -2),
795 0,
796 1,
797 0,
798 0);
799 }
800 }
801 }
802 break;
803 }
804
805 if (h != NULL && h->root.type == bfd_link_hash_undefweak)
806 /* If the symbol is undefined and weak
807 then the relocation resolves to zero. */
808 relocation = 0;
809 else
810 {
811 if (howto->pc_relative)
812 {
813 relocation -= (input_section->output_section->vma
814 + input_section->output_offset
815 + rel->r_offset);
816 relocation -= bfd_get_reloc_size (howto);
817 }
818
819 relocation += rel->r_addend;
820 }
821
822 r = bfd_reloc_ok;
823
824 #define RANGE(a,b) if (a > (long) relocation || (long) relocation > b) r = bfd_reloc_overflow
825
826 /* Opcode relocs are always big endian. Data relocs are bi-endian. */
827 switch (r_type)
828 {
829 case R_RL78_NONE:
830 break;
831
832 case R_RL78_RH_RELAX:
833 break;
834
835 case R_RL78_DIR8S_PCREL:
836 RANGE (-128, 127);
837 OP (0) = relocation;
838 break;
839
840 case R_RL78_DIR8S:
841 RANGE (-128, 255);
842 OP (0) = relocation;
843 break;
844
845 case R_RL78_DIR8U:
846 RANGE (0, 255);
847 OP (0) = relocation;
848 break;
849
850 case R_RL78_DIR16S_PCREL:
851 RANGE (-32768, 32767);
852 OP (0) = relocation;
853 OP (1) = relocation >> 8;
854 break;
855
856 case R_RL78_DIR16S:
857 if ((relocation & 0xf0000) == 0xf0000)
858 relocation &= 0xffff;
859 RANGE (-32768, 65535);
860 OP (0) = relocation;
861 OP (1) = relocation >> 8;
862 break;
863
864 case R_RL78_DIR16U:
865 RANGE (0, 65536);
866 OP (0) = relocation;
867 OP (1) = relocation >> 8;
868 break;
869
870 case R_RL78_DIR16:
871 RANGE (-32768, 65536);
872 OP (0) = relocation;
873 OP (1) = relocation >> 8;
874 break;
875
876 case R_RL78_DIR16_REV:
877 RANGE (-32768, 65536);
878 OP (1) = relocation;
879 OP (0) = relocation >> 8;
880 break;
881
882 case R_RL78_DIR3U_PCREL:
883 RANGE (3, 10);
884 OP (0) &= 0xf8;
885 OP (0) |= relocation & 0x07;
886 break;
887
888 case R_RL78_DIR24S_PCREL:
889 RANGE (-0x800000, 0x7fffff);
890 OP (0) = relocation;
891 OP (1) = relocation >> 8;
892 OP (2) = relocation >> 16;
893 break;
894
895 case R_RL78_DIR24S:
896 RANGE (-0x800000, 0x7fffff);
897 OP (0) = relocation;
898 OP (1) = relocation >> 8;
899 OP (2) = relocation >> 16;
900 break;
901
902 case R_RL78_DIR32:
903 OP (0) = relocation;
904 OP (1) = relocation >> 8;
905 OP (2) = relocation >> 16;
906 OP (3) = relocation >> 24;
907 break;
908
909 case R_RL78_DIR32_REV:
910 OP (3) = relocation;
911 OP (2) = relocation >> 8;
912 OP (1) = relocation >> 16;
913 OP (0) = relocation >> 24;
914 break;
915
916 case R_RL78_RH_SFR:
917 RANGE (0xfff00, 0xfffff);
918 OP (0) = relocation & 0xff;
919 break;
920
921 case R_RL78_RH_SADDR:
922 RANGE (0xffe20, 0xfff1f);
923 OP (0) = relocation & 0xff;
924 break;
925
926 /* Complex reloc handling: */
927 case R_RL78_ABS32:
928 case R_RL78_ABS32_REV:
929 case R_RL78_ABS24S_PCREL:
930 case R_RL78_ABS24S:
931 case R_RL78_ABS16:
932 case R_RL78_ABS16_REV:
933 case R_RL78_ABS16S_PCREL:
934 case R_RL78_ABS16S:
935 case R_RL78_ABS16U:
936 case R_RL78_ABS16UL:
937 case R_RL78_ABS16UW:
938 case R_RL78_ABS8:
939 case R_RL78_ABS8U:
940 case R_RL78_ABS8UL:
941 case R_RL78_ABS8UW:
942 case R_RL78_ABS8S_PCREL:
943 case R_RL78_ABS8S:
944 case R_RL78_OPneg:
945 case R_RL78_OPadd:
946 case R_RL78_OPsub:
947 case R_RL78_OPmul:
948 case R_RL78_OPdiv:
949 case R_RL78_OPshla:
950 case R_RL78_OPshra:
951 case R_RL78_OPsctsize:
952 case R_RL78_OPscttop:
953 case R_RL78_OPand:
954 case R_RL78_OPor:
955 case R_RL78_OPxor:
956 case R_RL78_OPnot:
957 case R_RL78_OPmod:
958 relocation = rl78_compute_complex_reloc (r_type, 0, input_section);
959
960 switch (r_type)
961 {
962 case R_RL78_ABS32:
963 OP (0) = relocation;
964 OP (1) = relocation >> 8;
965 OP (2) = relocation >> 16;
966 OP (3) = relocation >> 24;
967 break;
968
969 case R_RL78_ABS32_REV:
970 OP (3) = relocation;
971 OP (2) = relocation >> 8;
972 OP (1) = relocation >> 16;
973 OP (0) = relocation >> 24;
974 break;
975
976 case R_RL78_ABS24S_PCREL:
977 case R_RL78_ABS24S:
978 RANGE (-0x800000, 0x7fffff);
979 OP (0) = relocation;
980 OP (1) = relocation >> 8;
981 OP (2) = relocation >> 16;
982 break;
983
984 case R_RL78_ABS16:
985 RANGE (-32768, 65535);
986 OP (0) = relocation;
987 OP (1) = relocation >> 8;
988 break;
989
990 case R_RL78_ABS16_REV:
991 RANGE (-32768, 65535);
992 OP (1) = relocation;
993 OP (0) = relocation >> 8;
994 break;
995
996 case R_RL78_ABS16S_PCREL:
997 case R_RL78_ABS16S:
998 RANGE (-32768, 32767);
999 OP (0) = relocation;
1000 OP (1) = relocation >> 8;
1001 break;
1002
1003 case R_RL78_ABS16U:
1004 case R_RL78_ABS16UL:
1005 case R_RL78_ABS16UW:
1006 RANGE (0, 65536);
1007 OP (0) = relocation;
1008 OP (1) = relocation >> 8;
1009 break;
1010
1011 case R_RL78_ABS8:
1012 RANGE (-128, 255);
1013 OP (0) = relocation;
1014 break;
1015
1016 case R_RL78_ABS8U:
1017 case R_RL78_ABS8UL:
1018 case R_RL78_ABS8UW:
1019 RANGE (0, 255);
1020 OP (0) = relocation;
1021 break;
1022
1023 case R_RL78_ABS8S_PCREL:
1024 case R_RL78_ABS8S:
1025 RANGE (-128, 127);
1026 OP (0) = relocation;
1027 break;
1028
1029 default:
1030 break;
1031 }
1032 break;
1033
1034 case R_RL78_SYM:
1035 if (r_symndx < symtab_hdr->sh_info)
1036 relocation = sec->output_section->vma + sec->output_offset
1037 + sym->st_value + rel->r_addend;
1038 else if (h != NULL
1039 && (h->root.type == bfd_link_hash_defined
1040 || h->root.type == bfd_link_hash_defweak))
1041 relocation = h->root.u.def.value
1042 + sec->output_section->vma
1043 + sec->output_offset
1044 + rel->r_addend;
1045 else
1046 {
1047 relocation = 0;
1048 if (h->root.type != bfd_link_hash_undefweak)
1049 _bfd_error_handler (_("Warning: RL78_SYM reloc with an unknown symbol"));
1050 }
1051 (void) rl78_compute_complex_reloc (r_type, relocation, input_section);
1052 break;
1053
1054 case R_RL78_OPromtop:
1055 relocation = get_romstart (info, input_bfd, input_section, rel->r_offset);
1056 (void) rl78_compute_complex_reloc (r_type, relocation, input_section);
1057 break;
1058
1059 case R_RL78_OPramtop:
1060 relocation = get_ramstart (info, input_bfd, input_section, rel->r_offset);
1061 (void) rl78_compute_complex_reloc (r_type, relocation, input_section);
1062 break;
1063
1064 default:
1065 r = bfd_reloc_notsupported;
1066 break;
1067 }
1068
1069 if (r != bfd_reloc_ok)
1070 {
1071 const char * msg = NULL;
1072
1073 switch (r)
1074 {
1075 case bfd_reloc_overflow:
1076 /* Catch the case of a missing function declaration
1077 and emit a more helpful error message. */
1078 if (r_type == R_RL78_DIR24S_PCREL)
1079 /* xgettext:c-format */
1080 msg = _("%B(%A): error: call to undefined function '%s'");
1081 else
1082 (*info->callbacks->reloc_overflow)
1083 (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0,
1084 input_bfd, input_section, rel->r_offset);
1085 break;
1086
1087 case bfd_reloc_undefined:
1088 (*info->callbacks->undefined_symbol)
1089 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
1090 break;
1091
1092 case bfd_reloc_other:
1093 /* xgettext:c-format */
1094 msg = _("%B(%A): warning: unaligned access to symbol '%s' in the small data area");
1095 break;
1096
1097 case bfd_reloc_outofrange:
1098 /* xgettext:c-format */
1099 msg = _("%B(%A): internal error: out of range error");
1100 break;
1101
1102 case bfd_reloc_notsupported:
1103 /* xgettext:c-format */
1104 msg = _("%B(%A): internal error: unsupported relocation error");
1105 break;
1106
1107 case bfd_reloc_dangerous:
1108 /* xgettext:c-format */
1109 msg = _("%B(%A): internal error: dangerous relocation");
1110 break;
1111
1112 default:
1113 /* xgettext:c-format */
1114 msg = _("%B(%A): internal error: unknown error");
1115 break;
1116 }
1117
1118 if (msg)
1119 _bfd_error_handler (msg, input_bfd, input_section, name);
1120 }
1121 }
1122
1123 return TRUE;
1124 }
1125 \f
1126 /* Function to set the ELF flag bits. */
1127
1128 static bfd_boolean
1129 rl78_elf_set_private_flags (bfd * abfd, flagword flags)
1130 {
1131 elf_elfheader (abfd)->e_flags = flags;
1132 elf_flags_init (abfd) = TRUE;
1133 return TRUE;
1134 }
1135
1136 static bfd_boolean no_warn_mismatch = FALSE;
1137
1138 void bfd_elf32_rl78_set_target_flags (bfd_boolean);
1139
1140 void
1141 bfd_elf32_rl78_set_target_flags (bfd_boolean user_no_warn_mismatch)
1142 {
1143 no_warn_mismatch = user_no_warn_mismatch;
1144 }
1145
1146 static const char *
1147 rl78_cpu_name (flagword flags)
1148 {
1149 switch (flags & E_FLAG_RL78_CPU_MASK)
1150 {
1151 default: return "";
1152 case E_FLAG_RL78_G10: return "G10";
1153 case E_FLAG_RL78_G13: return "G13";
1154 case E_FLAG_RL78_G14: return "G14";
1155 }
1156 }
1157
1158 /* Merge backend specific data from an object file to the output
1159 object file when linking. */
1160
1161 static bfd_boolean
1162 rl78_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
1163 {
1164 bfd *obfd = info->output_bfd;
1165 flagword new_flags;
1166 flagword old_flags;
1167 bfd_boolean error = FALSE;
1168
1169 new_flags = elf_elfheader (ibfd)->e_flags;
1170 old_flags = elf_elfheader (obfd)->e_flags;
1171
1172 if (!elf_flags_init (obfd))
1173 {
1174 /* First call, no flags set. */
1175 elf_flags_init (obfd) = TRUE;
1176 elf_elfheader (obfd)->e_flags = new_flags;
1177 }
1178 else if (old_flags != new_flags)
1179 {
1180 flagword changed_flags = old_flags ^ new_flags;
1181
1182 if (changed_flags & E_FLAG_RL78_CPU_MASK)
1183 {
1184 flagword out_cpu = old_flags & E_FLAG_RL78_CPU_MASK;
1185 flagword in_cpu = new_flags & E_FLAG_RL78_CPU_MASK;
1186
1187 if (in_cpu == E_FLAG_RL78_ANY_CPU || in_cpu == out_cpu)
1188 /* It does not matter what new_cpu may have. */;
1189 else if (out_cpu == E_FLAG_RL78_ANY_CPU)
1190 {
1191 if (in_cpu == E_FLAG_RL78_G10)
1192 {
1193 /* G10 files can only be linked with other G10 files.
1194 If the output is set to "any" this means that it is
1195 a G14 file that does not use hardware multiply/divide,
1196 but that is still incompatible with the G10 ABI. */
1197 error = TRUE;
1198
1199 _bfd_error_handler
1200 /* xgettext:c-format */
1201 (_("RL78 ABI conflict: G10 file %B cannot be linked"
1202 " with %s file %B"),
1203 ibfd, rl78_cpu_name (out_cpu), obfd);
1204 }
1205 else
1206 {
1207 old_flags &= ~ E_FLAG_RL78_CPU_MASK;
1208 old_flags |= in_cpu;
1209 elf_elfheader (obfd)->e_flags = old_flags;
1210 }
1211 }
1212 else
1213 {
1214 error = TRUE;
1215
1216 _bfd_error_handler
1217 /* xgettext:c-format */
1218 (_("RL78 ABI conflict: cannot link %s file %B with %s file %B"),
1219 rl78_cpu_name (in_cpu), ibfd,
1220 rl78_cpu_name (out_cpu), obfd);
1221 }
1222 }
1223
1224 if (changed_flags & E_FLAG_RL78_64BIT_DOUBLES)
1225 {
1226 _bfd_error_handler
1227 (_("RL78 merge conflict: cannot link 32-bit and 64-bit objects together"));
1228
1229 if (old_flags & E_FLAG_RL78_64BIT_DOUBLES)
1230 /* xgettext:c-format */
1231 _bfd_error_handler (_("- %B is 64-bit, %B is not"),
1232 obfd, ibfd);
1233 else
1234 /* xgettext:c-format */
1235 _bfd_error_handler (_("- %B is 64-bit, %B is not"),
1236 ibfd, obfd);
1237 error = TRUE;
1238 }
1239 }
1240
1241 return !error;
1242 }
1243 \f
1244 static bfd_boolean
1245 rl78_elf_print_private_bfd_data (bfd * abfd, void * ptr)
1246 {
1247 FILE * file = (FILE *) ptr;
1248 flagword flags;
1249
1250 BFD_ASSERT (abfd != NULL && ptr != NULL);
1251
1252 /* Print normal ELF private data. */
1253 _bfd_elf_print_private_bfd_data (abfd, ptr);
1254
1255 flags = elf_elfheader (abfd)->e_flags;
1256 fprintf (file, _("private flags = 0x%lx:"), (long) flags);
1257
1258 if (flags & E_FLAG_RL78_CPU_MASK)
1259 fprintf (file, " [%s]", rl78_cpu_name (flags));
1260
1261 if (flags & E_FLAG_RL78_64BIT_DOUBLES)
1262 fprintf (file, _(" [64-bit doubles]"));
1263
1264 fputc ('\n', file);
1265 return TRUE;
1266 }
1267
1268 /* Return the MACH for an e_flags value. */
1269
1270 static int
1271 elf32_rl78_machine (bfd * abfd ATTRIBUTE_UNUSED)
1272 {
1273 return bfd_mach_rl78;
1274 }
1275
1276 static bfd_boolean
1277 rl78_elf_object_p (bfd * abfd)
1278 {
1279 bfd_default_set_arch_mach (abfd, bfd_arch_rl78,
1280 elf32_rl78_machine (abfd));
1281 return TRUE;
1282 }
1283 \f
1284 /* support PLT for 16-bit references to 24-bit functions. */
1285
1286 /* We support 16-bit pointers to code above 64k by generating a thunk
1287 below 64k containing a JMP instruction to the final address. */
1288
1289 static bfd_boolean
1290 rl78_elf_check_relocs
1291 (bfd * abfd,
1292 struct bfd_link_info * info,
1293 asection * sec,
1294 const Elf_Internal_Rela * relocs)
1295 {
1296 Elf_Internal_Shdr * symtab_hdr;
1297 struct elf_link_hash_entry ** sym_hashes;
1298 const Elf_Internal_Rela * rel;
1299 const Elf_Internal_Rela * rel_end;
1300 bfd_vma *local_plt_offsets;
1301 asection *splt;
1302 bfd *dynobj;
1303
1304 if (bfd_link_relocatable (info))
1305 return TRUE;
1306
1307 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1308 sym_hashes = elf_sym_hashes (abfd);
1309 local_plt_offsets = elf_local_got_offsets (abfd);
1310 dynobj = elf_hash_table(info)->dynobj;
1311
1312 rel_end = relocs + sec->reloc_count;
1313 for (rel = relocs; rel < rel_end; rel++)
1314 {
1315 struct elf_link_hash_entry *h;
1316 unsigned long r_symndx;
1317 bfd_vma *offset;
1318
1319 r_symndx = ELF32_R_SYM (rel->r_info);
1320 if (r_symndx < symtab_hdr->sh_info)
1321 h = NULL;
1322 else
1323 {
1324 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1325 while (h->root.type == bfd_link_hash_indirect
1326 || h->root.type == bfd_link_hash_warning)
1327 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1328
1329 /* PR15323, ref flags aren't set for references in the same
1330 object. */
1331 h->root.non_ir_ref = 1;
1332 }
1333
1334 switch (ELF32_R_TYPE (rel->r_info))
1335 {
1336 /* This relocation describes a 16-bit pointer to a function.
1337 We may need to allocate a thunk in low memory; reserve memory
1338 for it now. */
1339 case R_RL78_DIR16S:
1340 if (dynobj == NULL)
1341 elf_hash_table (info)->dynobj = dynobj = abfd;
1342 splt = elf_hash_table (info)->splt;
1343 if (splt == NULL)
1344 {
1345 flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
1346 | SEC_IN_MEMORY | SEC_LINKER_CREATED
1347 | SEC_READONLY | SEC_CODE);
1348 splt = bfd_make_section_anyway_with_flags (dynobj, ".plt",
1349 flags);
1350 elf_hash_table (info)->splt = splt;
1351 if (splt == NULL
1352 || ! bfd_set_section_alignment (dynobj, splt, 1))
1353 return FALSE;
1354 }
1355
1356 if (h != NULL)
1357 offset = &h->plt.offset;
1358 else
1359 {
1360 if (local_plt_offsets == NULL)
1361 {
1362 size_t size;
1363 unsigned int i;
1364
1365 size = symtab_hdr->sh_info * sizeof (bfd_vma);
1366 local_plt_offsets = (bfd_vma *) bfd_alloc (abfd, size);
1367 if (local_plt_offsets == NULL)
1368 return FALSE;
1369 elf_local_got_offsets (abfd) = local_plt_offsets;
1370
1371 for (i = 0; i < symtab_hdr->sh_info; i++)
1372 local_plt_offsets[i] = (bfd_vma) -1;
1373 }
1374 offset = &local_plt_offsets[r_symndx];
1375 }
1376
1377 if (*offset == (bfd_vma) -1)
1378 {
1379 *offset = splt->size;
1380 splt->size += 4;
1381 }
1382 break;
1383 }
1384 }
1385
1386 return TRUE;
1387 }
1388
1389 /* This must exist if dynobj is ever set. */
1390
1391 static bfd_boolean
1392 rl78_elf_finish_dynamic_sections (bfd *abfd ATTRIBUTE_UNUSED,
1393 struct bfd_link_info *info)
1394 {
1395 bfd *dynobj;
1396 asection *splt;
1397
1398 if (!elf_hash_table (info)->dynamic_sections_created)
1399 return TRUE;
1400
1401 /* As an extra sanity check, verify that all plt entries have been
1402 filled in. However, relaxing might have changed the relocs so
1403 that some plt entries don't get filled in, so we have to skip
1404 this check if we're relaxing. Unfortunately, check_relocs is
1405 called before relaxation. */
1406
1407 if (info->relax_trip > 0)
1408 return TRUE;
1409
1410 dynobj = elf_hash_table (info)->dynobj;
1411 splt = elf_hash_table (info)->splt;
1412 if (dynobj != NULL && splt != NULL)
1413 {
1414 bfd_byte *contents = splt->contents;
1415 unsigned int i, size = splt->size;
1416
1417 for (i = 0; i < size; i += 4)
1418 {
1419 unsigned int x = bfd_get_32 (dynobj, contents + i);
1420 BFD_ASSERT (x != 0);
1421 }
1422 }
1423
1424 return TRUE;
1425 }
1426
1427 static bfd_boolean
1428 rl78_elf_always_size_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1429 struct bfd_link_info *info)
1430 {
1431 bfd *dynobj;
1432 asection *splt;
1433
1434 if (bfd_link_relocatable (info))
1435 return TRUE;
1436
1437 dynobj = elf_hash_table (info)->dynobj;
1438 if (dynobj == NULL)
1439 return TRUE;
1440
1441 splt = elf_hash_table (info)->splt;
1442 BFD_ASSERT (splt != NULL);
1443
1444 splt->contents = (bfd_byte *) bfd_zalloc (dynobj, splt->size);
1445 if (splt->contents == NULL)
1446 return FALSE;
1447
1448 return TRUE;
1449 }
1450
1451 \f
1452
1453 /* Handle relaxing. */
1454
1455 /* A subroutine of rl78_elf_relax_section. If the global symbol H
1456 is within the low 64k, remove any entry for it in the plt. */
1457
1458 struct relax_plt_data
1459 {
1460 asection *splt;
1461 bfd_boolean *again;
1462 };
1463
1464 static bfd_boolean
1465 rl78_relax_plt_check (struct elf_link_hash_entry *h, void * xdata)
1466 {
1467 struct relax_plt_data *data = (struct relax_plt_data *) xdata;
1468
1469 if (h->plt.offset != (bfd_vma) -1)
1470 {
1471 bfd_vma address;
1472
1473 if (h->root.type == bfd_link_hash_undefined
1474 || h->root.type == bfd_link_hash_undefweak)
1475 address = 0;
1476 else
1477 address = (h->root.u.def.section->output_section->vma
1478 + h->root.u.def.section->output_offset
1479 + h->root.u.def.value);
1480
1481 if (valid_16bit_address (address))
1482 {
1483 h->plt.offset = -1;
1484 data->splt->size -= 4;
1485 *data->again = TRUE;
1486 }
1487 }
1488
1489 return TRUE;
1490 }
1491
1492 /* A subroutine of rl78_elf_relax_section. If the global symbol H
1493 previously had a plt entry, give it a new entry offset. */
1494
1495 static bfd_boolean
1496 rl78_relax_plt_realloc (struct elf_link_hash_entry *h, void * xdata)
1497 {
1498 bfd_vma *entry = (bfd_vma *) xdata;
1499
1500 if (h->plt.offset != (bfd_vma) -1)
1501 {
1502 h->plt.offset = *entry;
1503 *entry += 4;
1504 }
1505
1506 return TRUE;
1507 }
1508
1509 static bfd_boolean
1510 rl78_elf_relax_plt_section (bfd *dynobj,
1511 asection *splt,
1512 struct bfd_link_info *info,
1513 bfd_boolean *again)
1514 {
1515 struct relax_plt_data relax_plt_data;
1516 bfd *ibfd;
1517
1518 /* Assume nothing changes. */
1519 *again = FALSE;
1520
1521 if (bfd_link_relocatable (info))
1522 return TRUE;
1523
1524 /* We only relax the .plt section at the moment. */
1525 if (dynobj != elf_hash_table (info)->dynobj
1526 || strcmp (splt->name, ".plt") != 0)
1527 return TRUE;
1528
1529 /* Quick check for an empty plt. */
1530 if (splt->size == 0)
1531 return TRUE;
1532
1533 /* Map across all global symbols; see which ones happen to
1534 fall in the low 64k. */
1535 relax_plt_data.splt = splt;
1536 relax_plt_data.again = again;
1537 elf_link_hash_traverse (elf_hash_table (info), rl78_relax_plt_check,
1538 &relax_plt_data);
1539
1540 /* Likewise for local symbols, though that's somewhat less convenient
1541 as we have to walk the list of input bfds and swap in symbol data. */
1542 for (ibfd = info->input_bfds; ibfd ; ibfd = ibfd->link.next)
1543 {
1544 bfd_vma *local_plt_offsets = elf_local_got_offsets (ibfd);
1545 Elf_Internal_Shdr *symtab_hdr;
1546 Elf_Internal_Sym *isymbuf = NULL;
1547 unsigned int idx;
1548
1549 if (! local_plt_offsets)
1550 continue;
1551
1552 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1553 if (symtab_hdr->sh_info != 0)
1554 {
1555 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
1556 if (isymbuf == NULL)
1557 isymbuf = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
1558 symtab_hdr->sh_info, 0,
1559 NULL, NULL, NULL);
1560 if (isymbuf == NULL)
1561 return FALSE;
1562 }
1563
1564 for (idx = 0; idx < symtab_hdr->sh_info; ++idx)
1565 {
1566 Elf_Internal_Sym *isym;
1567 asection *tsec;
1568 bfd_vma address;
1569
1570 if (local_plt_offsets[idx] == (bfd_vma) -1)
1571 continue;
1572
1573 isym = &isymbuf[idx];
1574 if (isym->st_shndx == SHN_UNDEF)
1575 continue;
1576 else if (isym->st_shndx == SHN_ABS)
1577 tsec = bfd_abs_section_ptr;
1578 else if (isym->st_shndx == SHN_COMMON)
1579 tsec = bfd_com_section_ptr;
1580 else
1581 tsec = bfd_section_from_elf_index (ibfd, isym->st_shndx);
1582
1583 address = (tsec->output_section->vma
1584 + tsec->output_offset
1585 + isym->st_value);
1586 if (valid_16bit_address (address))
1587 {
1588 local_plt_offsets[idx] = -1;
1589 splt->size -= 4;
1590 *again = TRUE;
1591 }
1592 }
1593
1594 if (isymbuf != NULL
1595 && symtab_hdr->contents != (unsigned char *) isymbuf)
1596 {
1597 if (! info->keep_memory)
1598 free (isymbuf);
1599 else
1600 {
1601 /* Cache the symbols for elf_link_input_bfd. */
1602 symtab_hdr->contents = (unsigned char *) isymbuf;
1603 }
1604 }
1605 }
1606
1607 /* If we changed anything, walk the symbols again to reallocate
1608 .plt entry addresses. */
1609 if (*again && splt->size > 0)
1610 {
1611 bfd_vma entry = 0;
1612
1613 elf_link_hash_traverse (elf_hash_table (info),
1614 rl78_relax_plt_realloc, &entry);
1615
1616 for (ibfd = info->input_bfds; ibfd ; ibfd = ibfd->link.next)
1617 {
1618 bfd_vma *local_plt_offsets = elf_local_got_offsets (ibfd);
1619 unsigned int nlocals = elf_tdata (ibfd)->symtab_hdr.sh_info;
1620 unsigned int idx;
1621
1622 if (! local_plt_offsets)
1623 continue;
1624
1625 for (idx = 0; idx < nlocals; ++idx)
1626 if (local_plt_offsets[idx] != (bfd_vma) -1)
1627 {
1628 local_plt_offsets[idx] = entry;
1629 entry += 4;
1630 }
1631 }
1632 }
1633
1634 return TRUE;
1635 }
1636
1637 /* Delete some bytes from a section while relaxing. */
1638
1639 static bfd_boolean
1640 elf32_rl78_relax_delete_bytes (bfd *abfd, asection *sec, bfd_vma addr, int count,
1641 Elf_Internal_Rela *alignment_rel, int force_snip)
1642 {
1643 Elf_Internal_Shdr * symtab_hdr;
1644 unsigned int sec_shndx;
1645 bfd_byte * contents;
1646 Elf_Internal_Rela * irel;
1647 Elf_Internal_Rela * irelend;
1648 Elf_Internal_Sym * isym;
1649 Elf_Internal_Sym * isymend;
1650 bfd_vma toaddr;
1651 unsigned int symcount;
1652 struct elf_link_hash_entry ** sym_hashes;
1653 struct elf_link_hash_entry ** end_hashes;
1654
1655 if (!alignment_rel)
1656 force_snip = 1;
1657
1658 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
1659
1660 contents = elf_section_data (sec)->this_hdr.contents;
1661
1662 /* The deletion must stop at the next alignment boundary, if
1663 ALIGNMENT_REL is non-NULL. */
1664 toaddr = sec->size;
1665 if (alignment_rel)
1666 toaddr = alignment_rel->r_offset;
1667
1668 irel = elf_section_data (sec)->relocs;
1669 if (irel == NULL)
1670 {
1671 _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
1672 irel = elf_section_data (sec)->relocs;
1673 }
1674
1675 irelend = irel + sec->reloc_count;
1676
1677 /* Actually delete the bytes. */
1678 memmove (contents + addr, contents + addr + count,
1679 (size_t) (toaddr - addr - count));
1680
1681 /* If we don't have an alignment marker to worry about, we can just
1682 shrink the section. Otherwise, we have to fill in the newly
1683 created gap with NOP insns (0x03). */
1684 if (force_snip)
1685 sec->size -= count;
1686 else
1687 memset (contents + toaddr - count, 0x03, count);
1688
1689 /* Adjust all the relocs. */
1690 for (; irel && irel < irelend; irel++)
1691 {
1692 /* Get the new reloc address. */
1693 if (irel->r_offset > addr
1694 && (irel->r_offset < toaddr
1695 || (force_snip && irel->r_offset == toaddr)))
1696 irel->r_offset -= count;
1697
1698 /* If we see an ALIGN marker at the end of the gap, we move it
1699 to the beginning of the gap, since marking these gaps is what
1700 they're for. */
1701 if (irel->r_offset == toaddr
1702 && ELF32_R_TYPE (irel->r_info) == R_RL78_RH_RELAX
1703 && irel->r_addend & RL78_RELAXA_ALIGN)
1704 irel->r_offset -= count;
1705 }
1706
1707 /* Adjust the local symbols defined in this section. */
1708 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1709 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
1710 isymend = isym + symtab_hdr->sh_info;
1711
1712 for (; isym < isymend; isym++)
1713 {
1714 /* If the symbol is in the range of memory we just moved, we
1715 have to adjust its value. */
1716 if (isym->st_shndx == sec_shndx
1717 && isym->st_value > addr
1718 && isym->st_value < toaddr)
1719 isym->st_value -= count;
1720
1721 /* If the symbol *spans* the bytes we just deleted (i.e. it's
1722 *end* is in the moved bytes but it's *start* isn't), then we
1723 must adjust its size. */
1724 if (isym->st_shndx == sec_shndx
1725 && isym->st_value < addr
1726 && isym->st_value + isym->st_size > addr
1727 && isym->st_value + isym->st_size < toaddr)
1728 isym->st_size -= count;
1729 }
1730
1731 /* Now adjust the global symbols defined in this section. */
1732 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
1733 - symtab_hdr->sh_info);
1734 sym_hashes = elf_sym_hashes (abfd);
1735 end_hashes = sym_hashes + symcount;
1736
1737 for (; sym_hashes < end_hashes; sym_hashes++)
1738 {
1739 struct elf_link_hash_entry *sym_hash = *sym_hashes;
1740
1741 if ((sym_hash->root.type == bfd_link_hash_defined
1742 || sym_hash->root.type == bfd_link_hash_defweak)
1743 && sym_hash->root.u.def.section == sec)
1744 {
1745 /* As above, adjust the value if needed. */
1746 if (sym_hash->root.u.def.value > addr
1747 && sym_hash->root.u.def.value < toaddr)
1748 sym_hash->root.u.def.value -= count;
1749
1750 /* As above, adjust the size if needed. */
1751 if (sym_hash->root.u.def.value < addr
1752 && sym_hash->root.u.def.value + sym_hash->size > addr
1753 && sym_hash->root.u.def.value + sym_hash->size < toaddr)
1754 sym_hash->size -= count;
1755 }
1756 }
1757
1758 return TRUE;
1759 }
1760
1761 /* Used to sort relocs by address. If relocs have the same address,
1762 we maintain their relative order, except that R_RL78_RH_RELAX
1763 alignment relocs must be the first reloc for any given address. */
1764
1765 static void
1766 reloc_bubblesort (Elf_Internal_Rela * r, int count)
1767 {
1768 int i;
1769 bfd_boolean again;
1770 bfd_boolean swappit;
1771
1772 /* This is almost a classic bubblesort. It's the slowest sort, but
1773 we're taking advantage of the fact that the relocations are
1774 mostly in order already (the assembler emits them that way) and
1775 we need relocs with the same address to remain in the same
1776 relative order. */
1777 again = TRUE;
1778 while (again)
1779 {
1780 again = FALSE;
1781 for (i = 0; i < count - 1; i ++)
1782 {
1783 if (r[i].r_offset > r[i + 1].r_offset)
1784 swappit = TRUE;
1785 else if (r[i].r_offset < r[i + 1].r_offset)
1786 swappit = FALSE;
1787 else if (ELF32_R_TYPE (r[i + 1].r_info) == R_RL78_RH_RELAX
1788 && (r[i + 1].r_addend & RL78_RELAXA_ALIGN))
1789 swappit = TRUE;
1790 else if (ELF32_R_TYPE (r[i + 1].r_info) == R_RL78_RH_RELAX
1791 && (r[i + 1].r_addend & RL78_RELAXA_ELIGN)
1792 && !(ELF32_R_TYPE (r[i].r_info) == R_RL78_RH_RELAX
1793 && (r[i].r_addend & RL78_RELAXA_ALIGN)))
1794 swappit = TRUE;
1795 else
1796 swappit = FALSE;
1797
1798 if (swappit)
1799 {
1800 Elf_Internal_Rela tmp;
1801
1802 tmp = r[i];
1803 r[i] = r[i + 1];
1804 r[i + 1] = tmp;
1805 /* If we do move a reloc back, re-scan to see if it
1806 needs to be moved even further back. This avoids
1807 most of the O(n^2) behavior for our cases. */
1808 if (i > 0)
1809 i -= 2;
1810 again = TRUE;
1811 }
1812 }
1813 }
1814 }
1815
1816
1817 #define OFFSET_FOR_RELOC(rel, lrel, scale) \
1818 rl78_offset_for_reloc (abfd, rel + 1, symtab_hdr, shndx_buf, intsyms, \
1819 lrel, abfd, sec, link_info, scale)
1820
1821 static bfd_vma
1822 rl78_offset_for_reloc (bfd * abfd,
1823 Elf_Internal_Rela * rel,
1824 Elf_Internal_Shdr * symtab_hdr,
1825 Elf_External_Sym_Shndx * shndx_buf ATTRIBUTE_UNUSED,
1826 Elf_Internal_Sym * intsyms,
1827 Elf_Internal_Rela ** lrel,
1828 bfd * input_bfd,
1829 asection * input_section,
1830 struct bfd_link_info * info,
1831 int * scale)
1832 {
1833 bfd_vma symval;
1834
1835 *scale = 1;
1836
1837 /* REL is the first of 1..N relocations. We compute the symbol
1838 value for each relocation, then combine them if needed. LREL
1839 gets a pointer to the last relocation used. */
1840 while (1)
1841 {
1842 unsigned long r_type;
1843
1844 /* Get the value of the symbol referred to by the reloc. */
1845 if (ELF32_R_SYM (rel->r_info) < symtab_hdr->sh_info)
1846 {
1847 /* A local symbol. */
1848 Elf_Internal_Sym *isym;
1849 asection *ssec;
1850
1851 isym = intsyms + ELF32_R_SYM (rel->r_info);
1852
1853 if (isym->st_shndx == SHN_UNDEF)
1854 ssec = bfd_und_section_ptr;
1855 else if (isym->st_shndx == SHN_ABS)
1856 ssec = bfd_abs_section_ptr;
1857 else if (isym->st_shndx == SHN_COMMON)
1858 ssec = bfd_com_section_ptr;
1859 else
1860 ssec = bfd_section_from_elf_index (abfd,
1861 isym->st_shndx);
1862
1863 /* Initial symbol value. */
1864 symval = isym->st_value;
1865
1866 /* GAS may have made this symbol relative to a section, in
1867 which case, we have to add the addend to find the
1868 symbol. */
1869 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
1870 symval += rel->r_addend;
1871
1872 if (ssec)
1873 {
1874 if ((ssec->flags & SEC_MERGE)
1875 && ssec->sec_info_type == SEC_INFO_TYPE_MERGE)
1876 symval = _bfd_merged_section_offset (abfd, & ssec,
1877 elf_section_data (ssec)->sec_info,
1878 symval);
1879 }
1880
1881 /* Now make the offset relative to where the linker is putting it. */
1882 if (ssec)
1883 symval +=
1884 ssec->output_section->vma + ssec->output_offset;
1885
1886 symval += rel->r_addend;
1887 }
1888 else
1889 {
1890 unsigned long indx;
1891 struct elf_link_hash_entry * h;
1892
1893 /* An external symbol. */
1894 indx = ELF32_R_SYM (rel->r_info) - symtab_hdr->sh_info;
1895 h = elf_sym_hashes (abfd)[indx];
1896 BFD_ASSERT (h != NULL);
1897
1898 if (h->root.type != bfd_link_hash_defined
1899 && h->root.type != bfd_link_hash_defweak)
1900 {
1901 /* This appears to be a reference to an undefined
1902 symbol. Just ignore it--it will be caught by the
1903 regular reloc processing. */
1904 if (lrel)
1905 *lrel = rel;
1906 return 0;
1907 }
1908
1909 symval = (h->root.u.def.value
1910 + h->root.u.def.section->output_section->vma
1911 + h->root.u.def.section->output_offset);
1912
1913 symval += rel->r_addend;
1914 }
1915
1916 r_type = ELF32_R_TYPE (rel->r_info);
1917 switch (r_type)
1918 {
1919 case R_RL78_SYM:
1920 (void) rl78_compute_complex_reloc (r_type, symval, input_section);
1921 break;
1922
1923 case R_RL78_OPromtop:
1924 symval = get_romstart (info, input_bfd, input_section, rel->r_offset);
1925 (void) rl78_compute_complex_reloc (r_type, symval, input_section);
1926 break;
1927
1928 case R_RL78_OPramtop:
1929 symval = get_ramstart (info, input_bfd, input_section, rel->r_offset);
1930 (void) rl78_compute_complex_reloc (r_type, symval, input_section);
1931 break;
1932
1933 case R_RL78_OPneg:
1934 case R_RL78_OPadd:
1935 case R_RL78_OPsub:
1936 case R_RL78_OPmul:
1937 case R_RL78_OPdiv:
1938 case R_RL78_OPshla:
1939 case R_RL78_OPshra:
1940 case R_RL78_OPsctsize:
1941 case R_RL78_OPscttop:
1942 case R_RL78_OPand:
1943 case R_RL78_OPor:
1944 case R_RL78_OPxor:
1945 case R_RL78_OPnot:
1946 case R_RL78_OPmod:
1947 (void) rl78_compute_complex_reloc (r_type, 0, input_section);
1948 break;
1949
1950 case R_RL78_DIR16UL:
1951 case R_RL78_DIR8UL:
1952 case R_RL78_ABS16UL:
1953 case R_RL78_ABS8UL:
1954 *scale = 4;
1955 goto reloc_computes_value;
1956
1957 case R_RL78_DIR16UW:
1958 case R_RL78_DIR8UW:
1959 case R_RL78_ABS16UW:
1960 case R_RL78_ABS8UW:
1961 *scale = 2;
1962 goto reloc_computes_value;
1963
1964 default:
1965 reloc_computes_value:
1966 symval = rl78_compute_complex_reloc (r_type, symval, input_section);
1967 /* Fall through. */
1968 case R_RL78_DIR32:
1969 case R_RL78_DIR24S:
1970 case R_RL78_DIR16:
1971 case R_RL78_DIR16U:
1972 case R_RL78_DIR16S:
1973 case R_RL78_DIR24S_PCREL:
1974 case R_RL78_DIR16S_PCREL:
1975 case R_RL78_DIR8S_PCREL:
1976 if (lrel)
1977 *lrel = rel;
1978 return symval;
1979 }
1980
1981 rel ++;
1982 }
1983 }
1984
1985 struct {
1986 int prefix; /* or -1 for "no prefix" */
1987 int insn; /* or -1 for "end of list" */
1988 int insn_for_saddr; /* or -1 for "no alternative" */
1989 int insn_for_sfr; /* or -1 for "no alternative" */
1990 } relax_addr16[] = {
1991 { -1, 0x02, 0x06, -1 }, /* ADDW AX, !addr16 */
1992 { -1, 0x22, 0x26, -1 }, /* SUBW AX, !addr16 */
1993 { -1, 0x42, 0x46, -1 }, /* CMPW AX, !addr16 */
1994 { -1, 0x40, 0x4a, -1 }, /* CMP !addr16, #byte */
1995
1996 { -1, 0x0f, 0x0b, -1 }, /* ADD A, !addr16 */
1997 { -1, 0x1f, 0x1b, -1 }, /* ADDC A, !addr16 */
1998 { -1, 0x2f, 0x2b, -1 }, /* SUB A, !addr16 */
1999 { -1, 0x3f, 0x3b, -1 }, /* SUBC A, !addr16 */
2000 { -1, 0x4f, 0x4b, -1 }, /* CMP A, !addr16 */
2001 { -1, 0x5f, 0x5b, -1 }, /* AND A, !addr16 */
2002 { -1, 0x6f, 0x6b, -1 }, /* OR A, !addr16 */
2003 { -1, 0x7f, 0x7b, -1 }, /* XOR A, !addr16 */
2004
2005 { -1, 0x8f, 0x8d, 0x8e }, /* MOV A, !addr16 */
2006 { -1, 0x9f, 0x9d, 0x9e }, /* MOV !addr16, A */
2007 { -1, 0xaf, 0xad, 0xae }, /* MOVW AX, !addr16 */
2008 { -1, 0xbf, 0xbd, 0xbe }, /* MOVW !addr16, AX */
2009 { -1, 0xcf, 0xcd, 0xce }, /* MOVW !addr16, #word */
2010
2011 { -1, 0xa0, 0xa4, -1 }, /* INC !addr16 */
2012 { -1, 0xa2, 0xa6, -1 }, /* INCW !addr16 */
2013 { -1, 0xb0, 0xb4, -1 }, /* DEC !addr16 */
2014 { -1, 0xb2, 0xb6, -1 }, /* DECW !addr16 */
2015
2016 { -1, 0xd5, 0xd4, -1 }, /* CMP0 !addr16 */
2017 { -1, 0xe5, 0xe4, -1 }, /* ONEB !addr16 */
2018 { -1, 0xf5, 0xf4, -1 }, /* CLRB !addr16 */
2019
2020 { -1, 0xd9, 0xd8, -1 }, /* MOV X, !addr16 */
2021 { -1, 0xe9, 0xe8, -1 }, /* MOV B, !addr16 */
2022 { -1, 0xf9, 0xf8, -1 }, /* MOV C, !addr16 */
2023 { -1, 0xdb, 0xda, -1 }, /* MOVW BC, !addr16 */
2024 { -1, 0xeb, 0xea, -1 }, /* MOVW DE, !addr16 */
2025 { -1, 0xfb, 0xfa, -1 }, /* MOVW HL, !addr16 */
2026
2027 { 0x61, 0xaa, 0xa8, -1 }, /* XCH A, !addr16 */
2028
2029 { 0x71, 0x00, 0x02, 0x0a }, /* SET1 !addr16.0 */
2030 { 0x71, 0x10, 0x12, 0x1a }, /* SET1 !addr16.0 */
2031 { 0x71, 0x20, 0x22, 0x2a }, /* SET1 !addr16.0 */
2032 { 0x71, 0x30, 0x32, 0x3a }, /* SET1 !addr16.0 */
2033 { 0x71, 0x40, 0x42, 0x4a }, /* SET1 !addr16.0 */
2034 { 0x71, 0x50, 0x52, 0x5a }, /* SET1 !addr16.0 */
2035 { 0x71, 0x60, 0x62, 0x6a }, /* SET1 !addr16.0 */
2036 { 0x71, 0x70, 0x72, 0x7a }, /* SET1 !addr16.0 */
2037
2038 { 0x71, 0x08, 0x03, 0x0b }, /* CLR1 !addr16.0 */
2039 { 0x71, 0x18, 0x13, 0x1b }, /* CLR1 !addr16.0 */
2040 { 0x71, 0x28, 0x23, 0x2b }, /* CLR1 !addr16.0 */
2041 { 0x71, 0x38, 0x33, 0x3b }, /* CLR1 !addr16.0 */
2042 { 0x71, 0x48, 0x43, 0x4b }, /* CLR1 !addr16.0 */
2043 { 0x71, 0x58, 0x53, 0x5b }, /* CLR1 !addr16.0 */
2044 { 0x71, 0x68, 0x63, 0x6b }, /* CLR1 !addr16.0 */
2045 { 0x71, 0x78, 0x73, 0x7b }, /* CLR1 !addr16.0 */
2046
2047 { -1, -1, -1, -1 }
2048 };
2049
2050 /* Relax one section. */
2051
2052 static bfd_boolean
2053 rl78_elf_relax_section
2054 (bfd * abfd,
2055 asection * sec,
2056 struct bfd_link_info * link_info,
2057 bfd_boolean * again)
2058 {
2059 Elf_Internal_Shdr * symtab_hdr;
2060 Elf_Internal_Shdr * shndx_hdr;
2061 Elf_Internal_Rela * internal_relocs;
2062 Elf_Internal_Rela * free_relocs = NULL;
2063 Elf_Internal_Rela * irel;
2064 Elf_Internal_Rela * srel;
2065 Elf_Internal_Rela * irelend;
2066 Elf_Internal_Rela * next_alignment;
2067 bfd_byte * contents = NULL;
2068 bfd_byte * free_contents = NULL;
2069 Elf_Internal_Sym * intsyms = NULL;
2070 Elf_Internal_Sym * free_intsyms = NULL;
2071 Elf_External_Sym_Shndx * shndx_buf = NULL;
2072 bfd_vma pc;
2073 bfd_vma symval ATTRIBUTE_UNUSED = 0;
2074 int pcrel ATTRIBUTE_UNUSED = 0;
2075 int code ATTRIBUTE_UNUSED = 0;
2076 int section_alignment_glue;
2077 int scale;
2078
2079 if (abfd == elf_hash_table (link_info)->dynobj
2080 && strcmp (sec->name, ".plt") == 0)
2081 return rl78_elf_relax_plt_section (abfd, sec, link_info, again);
2082
2083 /* Assume nothing changes. */
2084 *again = FALSE;
2085
2086 /* We don't have to do anything for a relocatable link, if
2087 this section does not have relocs, or if this is not a
2088 code section. */
2089 if (bfd_link_relocatable (link_info)
2090 || (sec->flags & SEC_RELOC) == 0
2091 || sec->reloc_count == 0
2092 || (sec->flags & SEC_CODE) == 0)
2093 return TRUE;
2094
2095 symtab_hdr = & elf_symtab_hdr (abfd);
2096 if (elf_symtab_shndx_list (abfd))
2097 shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
2098 else
2099 shndx_hdr = NULL;
2100
2101 /* Get the section contents. */
2102 if (elf_section_data (sec)->this_hdr.contents != NULL)
2103 contents = elf_section_data (sec)->this_hdr.contents;
2104 /* Go get them off disk. */
2105 else
2106 {
2107 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
2108 goto error_return;
2109 elf_section_data (sec)->this_hdr.contents = contents;
2110 }
2111
2112 /* Read this BFD's symbols. */
2113 /* Get cached copy if it exists. */
2114 if (symtab_hdr->contents != NULL)
2115 intsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
2116 else
2117 {
2118 intsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr, symtab_hdr->sh_info, 0, NULL, NULL, NULL);
2119 symtab_hdr->contents = (bfd_byte *) intsyms;
2120 }
2121
2122 if (shndx_hdr && shndx_hdr->sh_size != 0)
2123 {
2124 bfd_size_type amt;
2125
2126 amt = symtab_hdr->sh_info;
2127 amt *= sizeof (Elf_External_Sym_Shndx);
2128 shndx_buf = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
2129 if (shndx_buf == NULL)
2130 goto error_return;
2131 if (bfd_seek (abfd, shndx_hdr->sh_offset, SEEK_SET) != 0
2132 || bfd_bread (shndx_buf, amt, abfd) != amt)
2133 goto error_return;
2134 shndx_hdr->contents = (bfd_byte *) shndx_buf;
2135 }
2136
2137 /* Get a copy of the native relocations. */
2138 internal_relocs = (_bfd_elf_link_read_relocs
2139 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
2140 link_info->keep_memory));
2141 if (internal_relocs == NULL)
2142 goto error_return;
2143 if (! link_info->keep_memory)
2144 free_relocs = internal_relocs;
2145
2146 /* The RL_ relocs must be just before the operand relocs they go
2147 with, so we must sort them to guarantee this. We use bubblesort
2148 instead of qsort so we can guarantee that relocs with the same
2149 address remain in the same relative order. */
2150 reloc_bubblesort (internal_relocs, sec->reloc_count);
2151
2152 /* Walk through them looking for relaxing opportunities. */
2153 irelend = internal_relocs + sec->reloc_count;
2154
2155
2156 /* This will either be NULL or a pointer to the next alignment
2157 relocation. */
2158 next_alignment = internal_relocs;
2159
2160 /* We calculate worst case shrinkage caused by alignment directives.
2161 No fool-proof, but better than either ignoring the problem or
2162 doing heavy duty analysis of all the alignment markers in all
2163 input sections. */
2164 section_alignment_glue = 0;
2165 for (irel = internal_relocs; irel < irelend; irel++)
2166 if (ELF32_R_TYPE (irel->r_info) == R_RL78_RH_RELAX
2167 && irel->r_addend & RL78_RELAXA_ALIGN)
2168 {
2169 int this_glue = 1 << (irel->r_addend & RL78_RELAXA_ANUM);
2170
2171 if (section_alignment_glue < this_glue)
2172 section_alignment_glue = this_glue;
2173 }
2174 /* Worst case is all 0..N alignments, in order, causing 2*N-1 byte
2175 shrinkage. */
2176 section_alignment_glue *= 2;
2177
2178 for (irel = internal_relocs; irel < irelend; irel++)
2179 {
2180 unsigned char *insn;
2181 int nrelocs;
2182
2183 /* The insns we care about are all marked with one of these. */
2184 if (ELF32_R_TYPE (irel->r_info) != R_RL78_RH_RELAX)
2185 continue;
2186
2187 if (irel->r_addend & RL78_RELAXA_ALIGN
2188 || next_alignment == internal_relocs)
2189 {
2190 /* When we delete bytes, we need to maintain all the alignments
2191 indicated. In addition, we need to be careful about relaxing
2192 jumps across alignment boundaries - these displacements
2193 *grow* when we delete bytes. For now, don't shrink
2194 displacements across an alignment boundary, just in case.
2195 Note that this only affects relocations to the same
2196 section. */
2197 next_alignment += 2;
2198 while (next_alignment < irelend
2199 && (ELF32_R_TYPE (next_alignment->r_info) != R_RL78_RH_RELAX
2200 || !(next_alignment->r_addend & RL78_RELAXA_ELIGN)))
2201 next_alignment ++;
2202 if (next_alignment >= irelend || next_alignment->r_offset == 0)
2203 next_alignment = NULL;
2204 }
2205
2206 /* When we hit alignment markers, see if we've shrunk enough
2207 before them to reduce the gap without violating the alignment
2208 requirements. */
2209 if (irel->r_addend & RL78_RELAXA_ALIGN)
2210 {
2211 /* At this point, the next relocation *should* be the ELIGN
2212 end marker. */
2213 Elf_Internal_Rela *erel = irel + 1;
2214 unsigned int alignment, nbytes;
2215
2216 if (ELF32_R_TYPE (erel->r_info) != R_RL78_RH_RELAX)
2217 continue;
2218 if (!(erel->r_addend & RL78_RELAXA_ELIGN))
2219 continue;
2220
2221 alignment = 1 << (irel->r_addend & RL78_RELAXA_ANUM);
2222
2223 if (erel->r_offset - irel->r_offset < alignment)
2224 continue;
2225
2226 nbytes = erel->r_offset - irel->r_offset;
2227 nbytes /= alignment;
2228 nbytes *= alignment;
2229
2230 elf32_rl78_relax_delete_bytes (abfd, sec, erel->r_offset - nbytes, nbytes,
2231 next_alignment, erel->r_offset == sec->size);
2232 *again = TRUE;
2233
2234 continue;
2235 }
2236
2237 if (irel->r_addend & RL78_RELAXA_ELIGN)
2238 continue;
2239
2240 insn = contents + irel->r_offset;
2241
2242 nrelocs = irel->r_addend & RL78_RELAXA_RNUM;
2243
2244 /* At this point, we have an insn that is a candidate for linker
2245 relaxation. There are NRELOCS relocs following that may be
2246 relaxed, although each reloc may be made of more than one
2247 reloc entry (such as gp-rel symbols). */
2248
2249 /* Get the value of the symbol referred to by the reloc. Just
2250 in case this is the last reloc in the list, use the RL's
2251 addend to choose between this reloc (no addend) or the next
2252 (yes addend, which means at least one following reloc). */
2253
2254 /* srel points to the "current" reloction for this insn -
2255 actually the last reloc for a given operand, which is the one
2256 we need to update. We check the relaxations in the same
2257 order that the relocations happen, so we'll just push it
2258 along as we go. */
2259 srel = irel;
2260
2261 pc = sec->output_section->vma + sec->output_offset
2262 + srel->r_offset;
2263
2264 #define GET_RELOC \
2265 BFD_ASSERT (nrelocs > 0); \
2266 symval = OFFSET_FOR_RELOC (srel, &srel, &scale); \
2267 pcrel = symval - pc + srel->r_addend; \
2268 nrelocs --;
2269
2270 #define SNIPNR(offset, nbytes) \
2271 elf32_rl78_relax_delete_bytes (abfd, sec, (insn - contents) + offset, nbytes, next_alignment, 0);
2272
2273 #define SNIP(offset, nbytes, newtype) \
2274 SNIPNR (offset, nbytes); \
2275 srel->r_info = ELF32_R_INFO (ELF32_R_SYM (srel->r_info), newtype)
2276
2277 /* The order of these bit tests must match the order that the
2278 relocs appear in. Since we sorted those by offset, we can
2279 predict them. */
2280
2281 /*----------------------------------------------------------------------*/
2282 /* EF ad BR $rel8 pcrel
2283 ED al ah BR !abs16 abs
2284 EE al ah BR $!rel16 pcrel
2285 EC al ah as BR !!abs20 abs
2286
2287 FD al ah CALL !abs16 abs
2288 FE al ah CALL $!rel16 pcrel
2289 FC al ah as CALL !!abs20 abs
2290
2291 DC ad BC $rel8
2292 DE ad BNC $rel8
2293 DD ad BZ $rel8
2294 DF ad BNZ $rel8
2295 61 C3 ad BH $rel8
2296 61 D3 ad BNH $rel8
2297 61 C8 EF ad SKC ; BR $rel8
2298 61 D8 EF ad SKNC ; BR $rel8
2299 61 E8 EF ad SKZ ; BR $rel8
2300 61 F8 EF ad SKNZ ; BR $rel8
2301 61 E3 EF ad SKH ; BR $rel8
2302 61 F3 EF ad SKNH ; BR $rel8
2303 */
2304
2305 if ((irel->r_addend & RL78_RELAXA_MASK) == RL78_RELAXA_BRA)
2306 {
2307 /* SKIP opcodes that skip non-branches will have a relax tag
2308 but no corresponding symbol to relax against; we just
2309 skip those. */
2310 if (irel->r_addend & RL78_RELAXA_RNUM)
2311 {
2312 GET_RELOC;
2313 }
2314
2315 switch (insn[0])
2316 {
2317 case 0xdc: /* BC */
2318 case 0xdd: /* BZ */
2319 case 0xde: /* BNC */
2320 case 0xdf: /* BNZ */
2321 if (insn[1] == 0x03 && insn[2] == 0xee /* BR */
2322 && (srel->r_offset - irel->r_offset) > 1) /* a B<c> without its own reloc */
2323 {
2324 /* This is a "long" conditional as generated by gas:
2325 DC 03 EE ad.dr */
2326 if (pcrel < 127
2327 && pcrel > -127)
2328 {
2329 insn[0] ^= 0x02; /* invert conditional */
2330 SNIPNR (4, 1);
2331 SNIP (1, 2, R_RL78_DIR8S_PCREL);
2332 insn[1] = pcrel;
2333 *again = TRUE;
2334 }
2335 }
2336 break;
2337
2338 case 0xec: /* BR !!abs20 */
2339
2340 if (pcrel < 127
2341 && pcrel > -127)
2342 {
2343 insn[0] = 0xef;
2344 insn[1] = pcrel;
2345 SNIP (2, 2, R_RL78_DIR8S_PCREL);
2346 *again = TRUE;
2347 }
2348 else if (symval < 65536)
2349 {
2350 insn[0] = 0xed;
2351 insn[1] = symval & 0xff;
2352 insn[2] = symval >> 8;
2353 SNIP (2, 1, R_RL78_DIR16U);
2354 *again = TRUE;
2355 }
2356 else if (pcrel < 32767
2357 && pcrel > -32767)
2358 {
2359 insn[0] = 0xee;
2360 insn[1] = pcrel & 0xff;
2361 insn[2] = pcrel >> 8;
2362 SNIP (2, 1, R_RL78_DIR16S_PCREL);
2363 *again = TRUE;
2364 }
2365 break;
2366
2367 case 0xee: /* BR $!pcrel16 */
2368 case 0xed: /* BR $!abs16 */
2369 if (pcrel < 127
2370 && pcrel > -127)
2371 {
2372 insn[0] = 0xef;
2373 insn[1] = pcrel;
2374 SNIP (2, 1, R_RL78_DIR8S_PCREL);
2375 *again = TRUE;
2376 }
2377 break;
2378
2379 case 0xfc: /* CALL !!abs20 */
2380 if (symval < 65536)
2381 {
2382 insn[0] = 0xfd;
2383 insn[1] = symval & 0xff;
2384 insn[2] = symval >> 8;
2385 SNIP (2, 1, R_RL78_DIR16U);
2386 *again = TRUE;
2387 }
2388 else if (pcrel < 32767
2389 && pcrel > -32767)
2390 {
2391 insn[0] = 0xfe;
2392 insn[1] = pcrel & 0xff;
2393 insn[2] = pcrel >> 8;
2394 SNIP (2, 1, R_RL78_DIR16S_PCREL);
2395 *again = TRUE;
2396 }
2397 break;
2398
2399 case 0x61: /* PREFIX */
2400 /* For SKIP/BR, we change the BR opcode and delete the
2401 SKIP. That way, we don't have to find and change the
2402 relocation for the BR. */
2403 /* Note that, for the case where we're skipping some
2404 other insn, we have no "other" reloc but that's safe
2405 here anyway. */
2406 switch (insn[1])
2407 {
2408 case 0xd3: /* BNH */
2409 case 0xc3: /* BH */
2410 if (insn[2] == 0x03 && insn[3] == 0xee
2411 && (srel->r_offset - irel->r_offset) > 2) /* a B<c> without its own reloc */
2412 {
2413 /* Another long branch by gas:
2414 61 D3 03 EE ad.dr */
2415 if (pcrel < 127
2416 && pcrel > -127)
2417 {
2418 insn[1] ^= 0x10; /* invert conditional */
2419 SNIPNR (5, 1);
2420 SNIP (2, 2, R_RL78_DIR8S_PCREL);
2421 insn[2] = pcrel;
2422 *again = TRUE;
2423 }
2424 }
2425 break;
2426
2427 case 0xc8: /* SKC */
2428 if (insn[2] == 0xef)
2429 {
2430 insn[2] = 0xde; /* BNC */
2431 SNIPNR (0, 2);
2432 }
2433 break;
2434
2435 case 0xd8: /* SKNC */
2436 if (insn[2] == 0xef)
2437 {
2438 insn[2] = 0xdc; /* BC */
2439 SNIPNR (0, 2);
2440 }
2441 break;
2442
2443 case 0xe8: /* SKZ */
2444 if (insn[2] == 0xef)
2445 {
2446 insn[2] = 0xdf; /* BNZ */
2447 SNIPNR (0, 2);
2448 }
2449 break;
2450
2451 case 0xf8: /* SKNZ */
2452 if (insn[2] == 0xef)
2453 {
2454 insn[2] = 0xdd; /* BZ */
2455 SNIPNR (0, 2);
2456 }
2457 break;
2458
2459 case 0xe3: /* SKH */
2460 if (insn[2] == 0xef)
2461 {
2462 insn[2] = 0xd3; /* BNH */
2463 SNIPNR (1, 1); /* we reuse the 0x61 prefix from the SKH */
2464 }
2465 break;
2466
2467 case 0xf3: /* SKNH */
2468 if (insn[2] == 0xef)
2469 {
2470 insn[2] = 0xc3; /* BH */
2471 SNIPNR (1, 1); /* we reuse the 0x61 prefix from the SKH */
2472 }
2473 break;
2474 }
2475 break;
2476 }
2477 }
2478
2479 if ((irel->r_addend & RL78_RELAXA_MASK) == RL78_RELAXA_ADDR16
2480 && nrelocs > 0)
2481 {
2482 /*----------------------------------------------------------------------*/
2483 /* Some insns have both a 16-bit address operand and an 8-bit
2484 variant if the address is within a special range:
2485
2486 Address 16-bit operand SADDR range SFR range
2487 FFF00-FFFFF 0xff00-0xffff 0x00-0xff
2488 FFE20-FFF1F 0xfe20-0xff1f 0x00-0xff
2489
2490 The RELAX_ADDR16[] array has the insn encodings for the
2491 16-bit operand version, as well as the SFR and SADDR
2492 variants. We only need to replace the encodings and
2493 adjust the operand.
2494
2495 Note: we intentionally do not attempt to decode and skip
2496 any ES: prefix, as adding ES: means the addr16 (likely)
2497 no longer points to saddr/sfr space.
2498 */
2499
2500 int is_sfr;
2501 int is_saddr;
2502 int idx;
2503 int poff;
2504
2505 GET_RELOC;
2506
2507 if (0xffe20 <= symval && symval <= 0xfffff)
2508 {
2509
2510 is_saddr = (0xffe20 <= symval && symval <= 0xfff1f);
2511 is_sfr = (0xfff00 <= symval && symval <= 0xfffff);
2512
2513 for (idx = 0; relax_addr16[idx].insn != -1; idx ++)
2514 {
2515 if (relax_addr16[idx].prefix != -1
2516 && insn[0] == relax_addr16[idx].prefix
2517 && insn[1] == relax_addr16[idx].insn)
2518 {
2519 poff = 1;
2520 }
2521 else if (relax_addr16[idx].prefix == -1
2522 && insn[0] == relax_addr16[idx].insn)
2523 {
2524 poff = 0;
2525 }
2526 else
2527 continue;
2528
2529 /* We have a matched insn, and poff is 0 or 1 depending
2530 on the base pattern size. */
2531
2532 if (is_sfr && relax_addr16[idx].insn_for_sfr != -1)
2533 {
2534 insn[poff] = relax_addr16[idx].insn_for_sfr;
2535 SNIP (poff+2, 1, R_RL78_RH_SFR);
2536 }
2537
2538 else if (is_saddr && relax_addr16[idx].insn_for_saddr != -1)
2539 {
2540 insn[poff] = relax_addr16[idx].insn_for_saddr;
2541 SNIP (poff+2, 1, R_RL78_RH_SADDR);
2542 }
2543 }
2544 }
2545 }
2546 /*----------------------------------------------------------------------*/
2547 }
2548
2549 return TRUE;
2550
2551 error_return:
2552 if (free_relocs != NULL)
2553 free (free_relocs);
2554
2555 if (free_contents != NULL)
2556 free (free_contents);
2557
2558 if (shndx_buf != NULL)
2559 {
2560 shndx_hdr->contents = NULL;
2561 free (shndx_buf);
2562 }
2563
2564 if (free_intsyms != NULL)
2565 free (free_intsyms);
2566
2567 return TRUE;
2568 }
2569
2570 \f
2571
2572 #define ELF_ARCH bfd_arch_rl78
2573 #define ELF_MACHINE_CODE EM_RL78
2574 #define ELF_MAXPAGESIZE 0x1000
2575
2576 #define TARGET_LITTLE_SYM rl78_elf32_vec
2577 #define TARGET_LITTLE_NAME "elf32-rl78"
2578
2579 #define elf_info_to_howto_rel NULL
2580 #define elf_info_to_howto rl78_info_to_howto_rela
2581 #define elf_backend_object_p rl78_elf_object_p
2582 #define elf_backend_relocate_section rl78_elf_relocate_section
2583 #define elf_symbol_leading_char ('_')
2584 #define elf_backend_can_gc_sections 1
2585
2586 #define bfd_elf32_bfd_reloc_type_lookup rl78_reloc_type_lookup
2587 #define bfd_elf32_bfd_reloc_name_lookup rl78_reloc_name_lookup
2588 #define bfd_elf32_bfd_set_private_flags rl78_elf_set_private_flags
2589 #define bfd_elf32_bfd_merge_private_bfd_data rl78_elf_merge_private_bfd_data
2590 #define bfd_elf32_bfd_print_private_bfd_data rl78_elf_print_private_bfd_data
2591
2592 #define bfd_elf32_bfd_relax_section rl78_elf_relax_section
2593 #define elf_backend_check_relocs rl78_elf_check_relocs
2594 #define elf_backend_always_size_sections \
2595 rl78_elf_always_size_sections
2596 #define elf_backend_finish_dynamic_sections \
2597 rl78_elf_finish_dynamic_sections
2598
2599 #include "elf32-target.h"
This page took 0.114466 seconds and 5 git commands to generate.