* bfd-in.h (STRING_AND_COMMA): New macro. Takes one constant string as its
[deliverable/binutils-gdb.git] / bfd / elf32-sh.c
1 /* Renesas / SuperH SH specific support for 32-bit ELF
2 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
3 2006 Free Software Foundation, Inc.
4 Contributed by Ian Lance Taylor, Cygnus Support.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "elf-vxworks.h"
28 #include "elf/sh.h"
29 #include "libiberty.h"
30 #include "../opcodes/sh-opc.h"
31
32 static bfd_reloc_status_type sh_elf_reloc
33 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
34 static bfd_reloc_status_type sh_elf_ignore_reloc
35 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
36 static bfd_boolean sh_elf_relax_delete_bytes
37 (bfd *, asection *, bfd_vma, int);
38 static bfd_boolean sh_elf_align_loads
39 (bfd *, asection *, Elf_Internal_Rela *, bfd_byte *, bfd_boolean *);
40 #ifndef SH64_ELF
41 static bfd_boolean sh_elf_swap_insns
42 (bfd *, asection *, void *, bfd_byte *, bfd_vma);
43 #endif
44 static int sh_elf_optimized_tls_reloc
45 (struct bfd_link_info *, int, int);
46 static bfd_vma dtpoff_base
47 (struct bfd_link_info *);
48 static bfd_vma tpoff
49 (struct bfd_link_info *, bfd_vma);
50
51 /* The name of the dynamic interpreter. This is put in the .interp
52 section. */
53
54 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
55
56 #define MINUS_ONE ((bfd_vma) 0 - 1)
57 \f
58 #define SH_PARTIAL32 TRUE
59 #define SH_SRC_MASK32 0xffffffff
60 #define SH_ELF_RELOC sh_elf_reloc
61 static reloc_howto_type sh_elf_howto_table[] =
62 {
63 #include "elf32-sh-relocs.h"
64 };
65
66 #define SH_PARTIAL32 FALSE
67 #define SH_SRC_MASK32 0
68 #define SH_ELF_RELOC bfd_elf_generic_reloc
69 static reloc_howto_type sh_vxworks_howto_table[] =
70 {
71 #include "elf32-sh-relocs.h"
72 };
73 \f
74 /* Return true if OUTPUT_BFD is a VxWorks object. */
75
76 static bfd_boolean
77 vxworks_object_p (bfd *abfd ATTRIBUTE_UNUSED)
78 {
79 #if !defined INCLUDE_SHMEDIA && !defined SH_TARGET_ALREADY_DEFINED
80 extern const bfd_target bfd_elf32_shlvxworks_vec;
81 extern const bfd_target bfd_elf32_shvxworks_vec;
82
83 return (abfd->xvec == &bfd_elf32_shlvxworks_vec
84 || abfd->xvec == &bfd_elf32_shvxworks_vec);
85 #else
86 return FALSE;
87 #endif
88 }
89
90 /* Return the howto table for ABFD. */
91
92 static reloc_howto_type *
93 get_howto_table (bfd *abfd)
94 {
95 if (vxworks_object_p (abfd))
96 return sh_vxworks_howto_table;
97 return sh_elf_howto_table;
98 }
99
100 static bfd_reloc_status_type
101 sh_elf_reloc_loop (int r_type ATTRIBUTE_UNUSED, bfd *input_bfd,
102 asection *input_section, bfd_byte *contents,
103 bfd_vma addr, asection *symbol_section,
104 bfd_vma start, bfd_vma end)
105 {
106 static bfd_vma last_addr;
107 static asection *last_symbol_section;
108 bfd_byte *start_ptr, *ptr, *last_ptr;
109 int diff, cum_diff;
110 bfd_signed_vma x;
111 int insn;
112
113 /* Sanity check the address. */
114 if (addr > bfd_get_section_limit (input_bfd, input_section))
115 return bfd_reloc_outofrange;
116
117 /* We require the start and end relocations to be processed consecutively -
118 although we allow then to be processed forwards or backwards. */
119 if (! last_addr)
120 {
121 last_addr = addr;
122 last_symbol_section = symbol_section;
123 return bfd_reloc_ok;
124 }
125 if (last_addr != addr)
126 abort ();
127 last_addr = 0;
128
129 if (! symbol_section || last_symbol_section != symbol_section || end < start)
130 return bfd_reloc_outofrange;
131
132 /* Get the symbol_section contents. */
133 if (symbol_section != input_section)
134 {
135 if (elf_section_data (symbol_section)->this_hdr.contents != NULL)
136 contents = elf_section_data (symbol_section)->this_hdr.contents;
137 else
138 {
139 if (!bfd_malloc_and_get_section (input_bfd, symbol_section,
140 &contents))
141 {
142 if (contents != NULL)
143 free (contents);
144 return bfd_reloc_outofrange;
145 }
146 }
147 }
148 #define IS_PPI(PTR) ((bfd_get_16 (input_bfd, (PTR)) & 0xfc00) == 0xf800)
149 start_ptr = contents + start;
150 for (cum_diff = -6, ptr = contents + end; cum_diff < 0 && ptr > start_ptr;)
151 {
152 for (last_ptr = ptr, ptr -= 4; ptr >= start_ptr && IS_PPI (ptr);)
153 ptr -= 2;
154 ptr += 2;
155 diff = (last_ptr - ptr) >> 1;
156 cum_diff += diff & 1;
157 cum_diff += diff;
158 }
159 /* Calculate the start / end values to load into rs / re minus four -
160 so that will cancel out the four we would otherwise have to add to
161 addr to get the value to subtract in order to get relative addressing. */
162 if (cum_diff >= 0)
163 {
164 start -= 4;
165 end = (ptr + cum_diff * 2) - contents;
166 }
167 else
168 {
169 bfd_vma start0 = start - 4;
170
171 while (start0 && IS_PPI (contents + start0))
172 start0 -= 2;
173 start0 = start - 2 - ((start - start0) & 2);
174 start = start0 - cum_diff - 2;
175 end = start0;
176 }
177
178 if (contents != NULL
179 && elf_section_data (symbol_section)->this_hdr.contents != contents)
180 free (contents);
181
182 insn = bfd_get_16 (input_bfd, contents + addr);
183
184 x = (insn & 0x200 ? end : start) - addr;
185 if (input_section != symbol_section)
186 x += ((symbol_section->output_section->vma + symbol_section->output_offset)
187 - (input_section->output_section->vma
188 + input_section->output_offset));
189 x >>= 1;
190 if (x < -128 || x > 127)
191 return bfd_reloc_overflow;
192
193 x = (insn & ~0xff) | (x & 0xff);
194 bfd_put_16 (input_bfd, (bfd_vma) x, contents + addr);
195
196 return bfd_reloc_ok;
197 }
198
199 /* This function is used for normal relocs. This used to be like the COFF
200 function, and is almost certainly incorrect for other ELF targets. */
201
202 static bfd_reloc_status_type
203 sh_elf_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol_in,
204 void *data, asection *input_section, bfd *output_bfd,
205 char **error_message ATTRIBUTE_UNUSED)
206 {
207 unsigned long insn;
208 bfd_vma sym_value;
209 enum elf_sh_reloc_type r_type;
210 bfd_vma addr = reloc_entry->address;
211 bfd_byte *hit_data = addr + (bfd_byte *) data;
212
213 r_type = (enum elf_sh_reloc_type) reloc_entry->howto->type;
214
215 if (output_bfd != NULL)
216 {
217 /* Partial linking--do nothing. */
218 reloc_entry->address += input_section->output_offset;
219 return bfd_reloc_ok;
220 }
221
222 /* Almost all relocs have to do with relaxing. If any work must be
223 done for them, it has been done in sh_relax_section. */
224 if (r_type == R_SH_IND12W && (symbol_in->flags & BSF_LOCAL) != 0)
225 return bfd_reloc_ok;
226
227 if (symbol_in != NULL
228 && bfd_is_und_section (symbol_in->section))
229 return bfd_reloc_undefined;
230
231 if (bfd_is_com_section (symbol_in->section))
232 sym_value = 0;
233 else
234 sym_value = (symbol_in->value +
235 symbol_in->section->output_section->vma +
236 symbol_in->section->output_offset);
237
238 switch (r_type)
239 {
240 case R_SH_DIR32:
241 insn = bfd_get_32 (abfd, hit_data);
242 insn += sym_value + reloc_entry->addend;
243 bfd_put_32 (abfd, (bfd_vma) insn, hit_data);
244 break;
245 case R_SH_IND12W:
246 insn = bfd_get_16 (abfd, hit_data);
247 sym_value += reloc_entry->addend;
248 sym_value -= (input_section->output_section->vma
249 + input_section->output_offset
250 + addr
251 + 4);
252 sym_value += (insn & 0xfff) << 1;
253 if (insn & 0x800)
254 sym_value -= 0x1000;
255 insn = (insn & 0xf000) | (sym_value & 0xfff);
256 bfd_put_16 (abfd, (bfd_vma) insn, hit_data);
257 if (sym_value < (bfd_vma) -0x1000 || sym_value >= 0x1000)
258 return bfd_reloc_overflow;
259 break;
260 default:
261 abort ();
262 break;
263 }
264
265 return bfd_reloc_ok;
266 }
267
268 /* This function is used for relocs which are only used for relaxing,
269 which the linker should otherwise ignore. */
270
271 static bfd_reloc_status_type
272 sh_elf_ignore_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
273 asymbol *symbol ATTRIBUTE_UNUSED,
274 void *data ATTRIBUTE_UNUSED, asection *input_section,
275 bfd *output_bfd,
276 char **error_message ATTRIBUTE_UNUSED)
277 {
278 if (output_bfd != NULL)
279 reloc_entry->address += input_section->output_offset;
280 return bfd_reloc_ok;
281 }
282
283 /* This structure is used to map BFD reloc codes to SH ELF relocs. */
284
285 struct elf_reloc_map
286 {
287 bfd_reloc_code_real_type bfd_reloc_val;
288 unsigned char elf_reloc_val;
289 };
290
291 /* An array mapping BFD reloc codes to SH ELF relocs. */
292
293 static const struct elf_reloc_map sh_reloc_map[] =
294 {
295 { BFD_RELOC_NONE, R_SH_NONE },
296 { BFD_RELOC_32, R_SH_DIR32 },
297 { BFD_RELOC_16, R_SH_DIR16 },
298 { BFD_RELOC_8, R_SH_DIR8 },
299 { BFD_RELOC_CTOR, R_SH_DIR32 },
300 { BFD_RELOC_32_PCREL, R_SH_REL32 },
301 { BFD_RELOC_SH_PCDISP8BY2, R_SH_DIR8WPN },
302 { BFD_RELOC_SH_PCDISP12BY2, R_SH_IND12W },
303 { BFD_RELOC_SH_PCRELIMM8BY2, R_SH_DIR8WPZ },
304 { BFD_RELOC_SH_PCRELIMM8BY4, R_SH_DIR8WPL },
305 { BFD_RELOC_8_PCREL, R_SH_SWITCH8 },
306 { BFD_RELOC_SH_SWITCH16, R_SH_SWITCH16 },
307 { BFD_RELOC_SH_SWITCH32, R_SH_SWITCH32 },
308 { BFD_RELOC_SH_USES, R_SH_USES },
309 { BFD_RELOC_SH_COUNT, R_SH_COUNT },
310 { BFD_RELOC_SH_ALIGN, R_SH_ALIGN },
311 { BFD_RELOC_SH_CODE, R_SH_CODE },
312 { BFD_RELOC_SH_DATA, R_SH_DATA },
313 { BFD_RELOC_SH_LABEL, R_SH_LABEL },
314 { BFD_RELOC_VTABLE_INHERIT, R_SH_GNU_VTINHERIT },
315 { BFD_RELOC_VTABLE_ENTRY, R_SH_GNU_VTENTRY },
316 { BFD_RELOC_SH_LOOP_START, R_SH_LOOP_START },
317 { BFD_RELOC_SH_LOOP_END, R_SH_LOOP_END },
318 { BFD_RELOC_SH_TLS_GD_32, R_SH_TLS_GD_32 },
319 { BFD_RELOC_SH_TLS_LD_32, R_SH_TLS_LD_32 },
320 { BFD_RELOC_SH_TLS_LDO_32, R_SH_TLS_LDO_32 },
321 { BFD_RELOC_SH_TLS_IE_32, R_SH_TLS_IE_32 },
322 { BFD_RELOC_SH_TLS_LE_32, R_SH_TLS_LE_32 },
323 { BFD_RELOC_SH_TLS_DTPMOD32, R_SH_TLS_DTPMOD32 },
324 { BFD_RELOC_SH_TLS_DTPOFF32, R_SH_TLS_DTPOFF32 },
325 { BFD_RELOC_SH_TLS_TPOFF32, R_SH_TLS_TPOFF32 },
326 { BFD_RELOC_32_GOT_PCREL, R_SH_GOT32 },
327 { BFD_RELOC_32_PLT_PCREL, R_SH_PLT32 },
328 { BFD_RELOC_SH_COPY, R_SH_COPY },
329 { BFD_RELOC_SH_GLOB_DAT, R_SH_GLOB_DAT },
330 { BFD_RELOC_SH_JMP_SLOT, R_SH_JMP_SLOT },
331 { BFD_RELOC_SH_RELATIVE, R_SH_RELATIVE },
332 { BFD_RELOC_32_GOTOFF, R_SH_GOTOFF },
333 { BFD_RELOC_SH_GOTPC, R_SH_GOTPC },
334 { BFD_RELOC_SH_GOTPLT32, R_SH_GOTPLT32 },
335 #ifdef INCLUDE_SHMEDIA
336 { BFD_RELOC_SH_GOT_LOW16, R_SH_GOT_LOW16 },
337 { BFD_RELOC_SH_GOT_MEDLOW16, R_SH_GOT_MEDLOW16 },
338 { BFD_RELOC_SH_GOT_MEDHI16, R_SH_GOT_MEDHI16 },
339 { BFD_RELOC_SH_GOT_HI16, R_SH_GOT_HI16 },
340 { BFD_RELOC_SH_GOTPLT_LOW16, R_SH_GOTPLT_LOW16 },
341 { BFD_RELOC_SH_GOTPLT_MEDLOW16, R_SH_GOTPLT_MEDLOW16 },
342 { BFD_RELOC_SH_GOTPLT_MEDHI16, R_SH_GOTPLT_MEDHI16 },
343 { BFD_RELOC_SH_GOTPLT_HI16, R_SH_GOTPLT_HI16 },
344 { BFD_RELOC_SH_PLT_LOW16, R_SH_PLT_LOW16 },
345 { BFD_RELOC_SH_PLT_MEDLOW16, R_SH_PLT_MEDLOW16 },
346 { BFD_RELOC_SH_PLT_MEDHI16, R_SH_PLT_MEDHI16 },
347 { BFD_RELOC_SH_PLT_HI16, R_SH_PLT_HI16 },
348 { BFD_RELOC_SH_GOTOFF_LOW16, R_SH_GOTOFF_LOW16 },
349 { BFD_RELOC_SH_GOTOFF_MEDLOW16, R_SH_GOTOFF_MEDLOW16 },
350 { BFD_RELOC_SH_GOTOFF_MEDHI16, R_SH_GOTOFF_MEDHI16 },
351 { BFD_RELOC_SH_GOTOFF_HI16, R_SH_GOTOFF_HI16 },
352 { BFD_RELOC_SH_GOTPC_LOW16, R_SH_GOTPC_LOW16 },
353 { BFD_RELOC_SH_GOTPC_MEDLOW16, R_SH_GOTPC_MEDLOW16 },
354 { BFD_RELOC_SH_GOTPC_MEDHI16, R_SH_GOTPC_MEDHI16 },
355 { BFD_RELOC_SH_GOTPC_HI16, R_SH_GOTPC_HI16 },
356 { BFD_RELOC_SH_COPY64, R_SH_COPY64 },
357 { BFD_RELOC_SH_GLOB_DAT64, R_SH_GLOB_DAT64 },
358 { BFD_RELOC_SH_JMP_SLOT64, R_SH_JMP_SLOT64 },
359 { BFD_RELOC_SH_RELATIVE64, R_SH_RELATIVE64 },
360 { BFD_RELOC_SH_GOT10BY4, R_SH_GOT10BY4 },
361 { BFD_RELOC_SH_GOT10BY8, R_SH_GOT10BY8 },
362 { BFD_RELOC_SH_GOTPLT10BY4, R_SH_GOTPLT10BY4 },
363 { BFD_RELOC_SH_GOTPLT10BY8, R_SH_GOTPLT10BY8 },
364 { BFD_RELOC_SH_PT_16, R_SH_PT_16 },
365 { BFD_RELOC_SH_SHMEDIA_CODE, R_SH_SHMEDIA_CODE },
366 { BFD_RELOC_SH_IMMU5, R_SH_DIR5U },
367 { BFD_RELOC_SH_IMMS6, R_SH_DIR6S },
368 { BFD_RELOC_SH_IMMU6, R_SH_DIR6U },
369 { BFD_RELOC_SH_IMMS10, R_SH_DIR10S },
370 { BFD_RELOC_SH_IMMS10BY2, R_SH_DIR10SW },
371 { BFD_RELOC_SH_IMMS10BY4, R_SH_DIR10SL },
372 { BFD_RELOC_SH_IMMS10BY8, R_SH_DIR10SQ },
373 { BFD_RELOC_SH_IMMS16, R_SH_IMMS16 },
374 { BFD_RELOC_SH_IMMU16, R_SH_IMMU16 },
375 { BFD_RELOC_SH_IMM_LOW16, R_SH_IMM_LOW16 },
376 { BFD_RELOC_SH_IMM_LOW16_PCREL, R_SH_IMM_LOW16_PCREL },
377 { BFD_RELOC_SH_IMM_MEDLOW16, R_SH_IMM_MEDLOW16 },
378 { BFD_RELOC_SH_IMM_MEDLOW16_PCREL, R_SH_IMM_MEDLOW16_PCREL },
379 { BFD_RELOC_SH_IMM_MEDHI16, R_SH_IMM_MEDHI16 },
380 { BFD_RELOC_SH_IMM_MEDHI16_PCREL, R_SH_IMM_MEDHI16_PCREL },
381 { BFD_RELOC_SH_IMM_HI16, R_SH_IMM_HI16 },
382 { BFD_RELOC_SH_IMM_HI16_PCREL, R_SH_IMM_HI16_PCREL },
383 { BFD_RELOC_64, R_SH_64 },
384 { BFD_RELOC_64_PCREL, R_SH_64_PCREL },
385 #endif /* not INCLUDE_SHMEDIA */
386 };
387
388 /* Given a BFD reloc code, return the howto structure for the
389 corresponding SH ELF reloc. */
390
391 static reloc_howto_type *
392 sh_elf_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code)
393 {
394 unsigned int i;
395
396 for (i = 0; i < sizeof (sh_reloc_map) / sizeof (struct elf_reloc_map); i++)
397 {
398 if (sh_reloc_map[i].bfd_reloc_val == code)
399 return get_howto_table (abfd) + (int) sh_reloc_map[i].elf_reloc_val;
400 }
401
402 return NULL;
403 }
404
405 /* Given an ELF reloc, fill in the howto field of a relent. */
406
407 static void
408 sh_elf_info_to_howto (bfd *abfd, arelent *cache_ptr, Elf_Internal_Rela *dst)
409 {
410 unsigned int r;
411
412 r = ELF32_R_TYPE (dst->r_info);
413
414 BFD_ASSERT (r < (unsigned int) R_SH_max);
415 BFD_ASSERT (r < R_SH_FIRST_INVALID_RELOC || r > R_SH_LAST_INVALID_RELOC);
416 BFD_ASSERT (r < R_SH_FIRST_INVALID_RELOC_2 || r > R_SH_LAST_INVALID_RELOC_2);
417 BFD_ASSERT (r < R_SH_FIRST_INVALID_RELOC_3 || r > R_SH_LAST_INVALID_RELOC_3);
418 BFD_ASSERT (r < R_SH_FIRST_INVALID_RELOC_4 || r > R_SH_LAST_INVALID_RELOC_4);
419 BFD_ASSERT (r < R_SH_FIRST_INVALID_RELOC_5 || r > R_SH_LAST_INVALID_RELOC_5);
420
421 cache_ptr->howto = get_howto_table (abfd) + r;
422 }
423 \f
424 /* This function handles relaxing for SH ELF. See the corresponding
425 function in coff-sh.c for a description of what this does. FIXME:
426 There is a lot of duplication here between this code and the COFF
427 specific code. The format of relocs and symbols is wound deeply
428 into this code, but it would still be better if the duplication
429 could be eliminated somehow. Note in particular that although both
430 functions use symbols like R_SH_CODE, those symbols have different
431 values; in coff-sh.c they come from include/coff/sh.h, whereas here
432 they come from enum elf_sh_reloc_type in include/elf/sh.h. */
433
434 static bfd_boolean
435 sh_elf_relax_section (bfd *abfd, asection *sec,
436 struct bfd_link_info *link_info, bfd_boolean *again)
437 {
438 Elf_Internal_Shdr *symtab_hdr;
439 Elf_Internal_Rela *internal_relocs;
440 bfd_boolean have_code;
441 Elf_Internal_Rela *irel, *irelend;
442 bfd_byte *contents = NULL;
443 Elf_Internal_Sym *isymbuf = NULL;
444
445 *again = FALSE;
446
447 if (link_info->relocatable
448 || (sec->flags & SEC_RELOC) == 0
449 || sec->reloc_count == 0)
450 return TRUE;
451
452 #ifdef INCLUDE_SHMEDIA
453 if (elf_section_data (sec)->this_hdr.sh_flags
454 & (SHF_SH5_ISA32 | SHF_SH5_ISA32_MIXED))
455 {
456 return TRUE;
457 }
458 #endif
459
460 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
461
462 internal_relocs = (_bfd_elf_link_read_relocs
463 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
464 link_info->keep_memory));
465 if (internal_relocs == NULL)
466 goto error_return;
467
468 have_code = FALSE;
469
470 irelend = internal_relocs + sec->reloc_count;
471 for (irel = internal_relocs; irel < irelend; irel++)
472 {
473 bfd_vma laddr, paddr, symval;
474 unsigned short insn;
475 Elf_Internal_Rela *irelfn, *irelscan, *irelcount;
476 bfd_signed_vma foff;
477
478 if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_CODE)
479 have_code = TRUE;
480
481 if (ELF32_R_TYPE (irel->r_info) != (int) R_SH_USES)
482 continue;
483
484 /* Get the section contents. */
485 if (contents == NULL)
486 {
487 if (elf_section_data (sec)->this_hdr.contents != NULL)
488 contents = elf_section_data (sec)->this_hdr.contents;
489 else
490 {
491 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
492 goto error_return;
493 }
494 }
495
496 /* The r_addend field of the R_SH_USES reloc will point us to
497 the register load. The 4 is because the r_addend field is
498 computed as though it were a jump offset, which are based
499 from 4 bytes after the jump instruction. */
500 laddr = irel->r_offset + 4 + irel->r_addend;
501 if (laddr >= sec->size)
502 {
503 (*_bfd_error_handler) (_("%B: 0x%lx: warning: bad R_SH_USES offset"),
504 abfd,
505 (unsigned long) irel->r_offset);
506 continue;
507 }
508 insn = bfd_get_16 (abfd, contents + laddr);
509
510 /* If the instruction is not mov.l NN,rN, we don't know what to
511 do. */
512 if ((insn & 0xf000) != 0xd000)
513 {
514 ((*_bfd_error_handler)
515 (_("%B: 0x%lx: warning: R_SH_USES points to unrecognized insn 0x%x"),
516 abfd, (unsigned long) irel->r_offset, insn));
517 continue;
518 }
519
520 /* Get the address from which the register is being loaded. The
521 displacement in the mov.l instruction is quadrupled. It is a
522 displacement from four bytes after the movl instruction, but,
523 before adding in the PC address, two least significant bits
524 of the PC are cleared. We assume that the section is aligned
525 on a four byte boundary. */
526 paddr = insn & 0xff;
527 paddr *= 4;
528 paddr += (laddr + 4) &~ (bfd_vma) 3;
529 if (paddr >= sec->size)
530 {
531 ((*_bfd_error_handler)
532 (_("%B: 0x%lx: warning: bad R_SH_USES load offset"),
533 abfd, (unsigned long) irel->r_offset));
534 continue;
535 }
536
537 /* Get the reloc for the address from which the register is
538 being loaded. This reloc will tell us which function is
539 actually being called. */
540 for (irelfn = internal_relocs; irelfn < irelend; irelfn++)
541 if (irelfn->r_offset == paddr
542 && ELF32_R_TYPE (irelfn->r_info) == (int) R_SH_DIR32)
543 break;
544 if (irelfn >= irelend)
545 {
546 ((*_bfd_error_handler)
547 (_("%B: 0x%lx: warning: could not find expected reloc"),
548 abfd, (unsigned long) paddr));
549 continue;
550 }
551
552 /* Read this BFD's symbols if we haven't done so already. */
553 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
554 {
555 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
556 if (isymbuf == NULL)
557 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
558 symtab_hdr->sh_info, 0,
559 NULL, NULL, NULL);
560 if (isymbuf == NULL)
561 goto error_return;
562 }
563
564 /* Get the value of the symbol referred to by the reloc. */
565 if (ELF32_R_SYM (irelfn->r_info) < symtab_hdr->sh_info)
566 {
567 /* A local symbol. */
568 Elf_Internal_Sym *isym;
569
570 isym = isymbuf + ELF32_R_SYM (irelfn->r_info);
571 if (isym->st_shndx
572 != (unsigned int) _bfd_elf_section_from_bfd_section (abfd, sec))
573 {
574 ((*_bfd_error_handler)
575 (_("%B: 0x%lx: warning: symbol in unexpected section"),
576 abfd, (unsigned long) paddr));
577 continue;
578 }
579
580 symval = (isym->st_value
581 + sec->output_section->vma
582 + sec->output_offset);
583 }
584 else
585 {
586 unsigned long indx;
587 struct elf_link_hash_entry *h;
588
589 indx = ELF32_R_SYM (irelfn->r_info) - symtab_hdr->sh_info;
590 h = elf_sym_hashes (abfd)[indx];
591 BFD_ASSERT (h != NULL);
592 if (h->root.type != bfd_link_hash_defined
593 && h->root.type != bfd_link_hash_defweak)
594 {
595 /* This appears to be a reference to an undefined
596 symbol. Just ignore it--it will be caught by the
597 regular reloc processing. */
598 continue;
599 }
600
601 symval = (h->root.u.def.value
602 + h->root.u.def.section->output_section->vma
603 + h->root.u.def.section->output_offset);
604 }
605
606 if (get_howto_table (abfd)[R_SH_DIR32].partial_inplace)
607 symval += bfd_get_32 (abfd, contents + paddr);
608 else
609 symval += irelfn->r_addend;
610
611 /* See if this function call can be shortened. */
612 foff = (symval
613 - (irel->r_offset
614 + sec->output_section->vma
615 + sec->output_offset
616 + 4));
617 /* A branch to an address beyond ours might be increased by an
618 .align that doesn't move when bytes behind us are deleted.
619 So, we add some slop in this calculation to allow for
620 that. */
621 if (foff < -0x1000 || foff >= 0x1000 - 8)
622 {
623 /* After all that work, we can't shorten this function call. */
624 continue;
625 }
626
627 /* Shorten the function call. */
628
629 /* For simplicity of coding, we are going to modify the section
630 contents, the section relocs, and the BFD symbol table. We
631 must tell the rest of the code not to free up this
632 information. It would be possible to instead create a table
633 of changes which have to be made, as is done in coff-mips.c;
634 that would be more work, but would require less memory when
635 the linker is run. */
636
637 elf_section_data (sec)->relocs = internal_relocs;
638 elf_section_data (sec)->this_hdr.contents = contents;
639 symtab_hdr->contents = (unsigned char *) isymbuf;
640
641 /* Replace the jsr with a bsr. */
642
643 /* Change the R_SH_USES reloc into an R_SH_IND12W reloc, and
644 replace the jsr with a bsr. */
645 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irelfn->r_info), R_SH_IND12W);
646 /* We used to test (ELF32_R_SYM (irelfn->r_info) < symtab_hdr->sh_info)
647 here, but that only checks if the symbol is an external symbol,
648 not if the symbol is in a different section. Besides, we need
649 a consistent meaning for the relocation, so we just assume here that
650 the value of the symbol is not available. */
651
652 /* We can't fully resolve this yet, because the external
653 symbol value may be changed by future relaxing. We let
654 the final link phase handle it. */
655 bfd_put_16 (abfd, (bfd_vma) 0xb000, contents + irel->r_offset);
656
657 irel->r_addend = -4;
658
659 /* When we calculated the symbol "value" we had an offset in the
660 DIR32's word in memory (we read and add it above). However,
661 the jsr we create does NOT have this offset encoded, so we
662 have to add it to the addend to preserve it. */
663 irel->r_addend += bfd_get_32 (abfd, contents + paddr);
664
665 /* See if there is another R_SH_USES reloc referring to the same
666 register load. */
667 for (irelscan = internal_relocs; irelscan < irelend; irelscan++)
668 if (ELF32_R_TYPE (irelscan->r_info) == (int) R_SH_USES
669 && laddr == irelscan->r_offset + 4 + irelscan->r_addend)
670 break;
671 if (irelscan < irelend)
672 {
673 /* Some other function call depends upon this register load,
674 and we have not yet converted that function call.
675 Indeed, we may never be able to convert it. There is
676 nothing else we can do at this point. */
677 continue;
678 }
679
680 /* Look for a R_SH_COUNT reloc on the location where the
681 function address is stored. Do this before deleting any
682 bytes, to avoid confusion about the address. */
683 for (irelcount = internal_relocs; irelcount < irelend; irelcount++)
684 if (irelcount->r_offset == paddr
685 && ELF32_R_TYPE (irelcount->r_info) == (int) R_SH_COUNT)
686 break;
687
688 /* Delete the register load. */
689 if (! sh_elf_relax_delete_bytes (abfd, sec, laddr, 2))
690 goto error_return;
691
692 /* That will change things, so, just in case it permits some
693 other function call to come within range, we should relax
694 again. Note that this is not required, and it may be slow. */
695 *again = TRUE;
696
697 /* Now check whether we got a COUNT reloc. */
698 if (irelcount >= irelend)
699 {
700 ((*_bfd_error_handler)
701 (_("%B: 0x%lx: warning: could not find expected COUNT reloc"),
702 abfd, (unsigned long) paddr));
703 continue;
704 }
705
706 /* The number of uses is stored in the r_addend field. We've
707 just deleted one. */
708 if (irelcount->r_addend == 0)
709 {
710 ((*_bfd_error_handler) (_("%B: 0x%lx: warning: bad count"),
711 abfd,
712 (unsigned long) paddr));
713 continue;
714 }
715
716 --irelcount->r_addend;
717
718 /* If there are no more uses, we can delete the address. Reload
719 the address from irelfn, in case it was changed by the
720 previous call to sh_elf_relax_delete_bytes. */
721 if (irelcount->r_addend == 0)
722 {
723 if (! sh_elf_relax_delete_bytes (abfd, sec, irelfn->r_offset, 4))
724 goto error_return;
725 }
726
727 /* We've done all we can with that function call. */
728 }
729
730 /* Look for load and store instructions that we can align on four
731 byte boundaries. */
732 if ((elf_elfheader (abfd)->e_flags & EF_SH_MACH_MASK) != EF_SH4
733 && have_code)
734 {
735 bfd_boolean swapped;
736
737 /* Get the section contents. */
738 if (contents == NULL)
739 {
740 if (elf_section_data (sec)->this_hdr.contents != NULL)
741 contents = elf_section_data (sec)->this_hdr.contents;
742 else
743 {
744 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
745 goto error_return;
746 }
747 }
748
749 if (! sh_elf_align_loads (abfd, sec, internal_relocs, contents,
750 &swapped))
751 goto error_return;
752
753 if (swapped)
754 {
755 elf_section_data (sec)->relocs = internal_relocs;
756 elf_section_data (sec)->this_hdr.contents = contents;
757 symtab_hdr->contents = (unsigned char *) isymbuf;
758 }
759 }
760
761 if (isymbuf != NULL
762 && symtab_hdr->contents != (unsigned char *) isymbuf)
763 {
764 if (! link_info->keep_memory)
765 free (isymbuf);
766 else
767 {
768 /* Cache the symbols for elf_link_input_bfd. */
769 symtab_hdr->contents = (unsigned char *) isymbuf;
770 }
771 }
772
773 if (contents != NULL
774 && elf_section_data (sec)->this_hdr.contents != contents)
775 {
776 if (! link_info->keep_memory)
777 free (contents);
778 else
779 {
780 /* Cache the section contents for elf_link_input_bfd. */
781 elf_section_data (sec)->this_hdr.contents = contents;
782 }
783 }
784
785 if (internal_relocs != NULL
786 && elf_section_data (sec)->relocs != internal_relocs)
787 free (internal_relocs);
788
789 return TRUE;
790
791 error_return:
792 if (isymbuf != NULL
793 && symtab_hdr->contents != (unsigned char *) isymbuf)
794 free (isymbuf);
795 if (contents != NULL
796 && elf_section_data (sec)->this_hdr.contents != contents)
797 free (contents);
798 if (internal_relocs != NULL
799 && elf_section_data (sec)->relocs != internal_relocs)
800 free (internal_relocs);
801
802 return FALSE;
803 }
804
805 /* Delete some bytes from a section while relaxing. FIXME: There is a
806 lot of duplication between this function and sh_relax_delete_bytes
807 in coff-sh.c. */
808
809 static bfd_boolean
810 sh_elf_relax_delete_bytes (bfd *abfd, asection *sec, bfd_vma addr,
811 int count)
812 {
813 Elf_Internal_Shdr *symtab_hdr;
814 unsigned int sec_shndx;
815 bfd_byte *contents;
816 Elf_Internal_Rela *irel, *irelend;
817 Elf_Internal_Rela *irelalign;
818 bfd_vma toaddr;
819 Elf_Internal_Sym *isymbuf, *isym, *isymend;
820 struct elf_link_hash_entry **sym_hashes;
821 struct elf_link_hash_entry **end_hashes;
822 unsigned int symcount;
823 asection *o;
824
825 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
826 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
827
828 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
829
830 contents = elf_section_data (sec)->this_hdr.contents;
831
832 /* The deletion must stop at the next ALIGN reloc for an aligment
833 power larger than the number of bytes we are deleting. */
834
835 irelalign = NULL;
836 toaddr = sec->size;
837
838 irel = elf_section_data (sec)->relocs;
839 irelend = irel + sec->reloc_count;
840 for (; irel < irelend; irel++)
841 {
842 if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_ALIGN
843 && irel->r_offset > addr
844 && count < (1 << irel->r_addend))
845 {
846 irelalign = irel;
847 toaddr = irel->r_offset;
848 break;
849 }
850 }
851
852 /* Actually delete the bytes. */
853 memmove (contents + addr, contents + addr + count,
854 (size_t) (toaddr - addr - count));
855 if (irelalign == NULL)
856 sec->size -= count;
857 else
858 {
859 int i;
860
861 #define NOP_OPCODE (0x0009)
862
863 BFD_ASSERT ((count & 1) == 0);
864 for (i = 0; i < count; i += 2)
865 bfd_put_16 (abfd, (bfd_vma) NOP_OPCODE, contents + toaddr - count + i);
866 }
867
868 /* Adjust all the relocs. */
869 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
870 {
871 bfd_vma nraddr, stop;
872 bfd_vma start = 0;
873 int insn = 0;
874 int off, adjust, oinsn;
875 bfd_signed_vma voff = 0;
876 bfd_boolean overflow;
877
878 /* Get the new reloc address. */
879 nraddr = irel->r_offset;
880 if ((irel->r_offset > addr
881 && irel->r_offset < toaddr)
882 || (ELF32_R_TYPE (irel->r_info) == (int) R_SH_ALIGN
883 && irel->r_offset == toaddr))
884 nraddr -= count;
885
886 /* See if this reloc was for the bytes we have deleted, in which
887 case we no longer care about it. Don't delete relocs which
888 represent addresses, though. */
889 if (irel->r_offset >= addr
890 && irel->r_offset < addr + count
891 && ELF32_R_TYPE (irel->r_info) != (int) R_SH_ALIGN
892 && ELF32_R_TYPE (irel->r_info) != (int) R_SH_CODE
893 && ELF32_R_TYPE (irel->r_info) != (int) R_SH_DATA
894 && ELF32_R_TYPE (irel->r_info) != (int) R_SH_LABEL)
895 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
896 (int) R_SH_NONE);
897
898 /* If this is a PC relative reloc, see if the range it covers
899 includes the bytes we have deleted. */
900 switch ((enum elf_sh_reloc_type) ELF32_R_TYPE (irel->r_info))
901 {
902 default:
903 break;
904
905 case R_SH_DIR8WPN:
906 case R_SH_IND12W:
907 case R_SH_DIR8WPZ:
908 case R_SH_DIR8WPL:
909 start = irel->r_offset;
910 insn = bfd_get_16 (abfd, contents + nraddr);
911 break;
912 }
913
914 switch ((enum elf_sh_reloc_type) ELF32_R_TYPE (irel->r_info))
915 {
916 default:
917 start = stop = addr;
918 break;
919
920 case R_SH_DIR32:
921 /* If this reloc is against a symbol defined in this
922 section, and the symbol will not be adjusted below, we
923 must check the addend to see it will put the value in
924 range to be adjusted, and hence must be changed. */
925 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
926 {
927 isym = isymbuf + ELF32_R_SYM (irel->r_info);
928 if (isym->st_shndx == sec_shndx
929 && (isym->st_value <= addr
930 || isym->st_value >= toaddr))
931 {
932 bfd_vma val;
933
934 if (get_howto_table (abfd)[R_SH_DIR32].partial_inplace)
935 {
936 val = bfd_get_32 (abfd, contents + nraddr);
937 val += isym->st_value;
938 if (val > addr && val < toaddr)
939 bfd_put_32 (abfd, val - count, contents + nraddr);
940 }
941 else
942 {
943 val = isym->st_value + irel->r_addend;
944 if (val > addr && val < toaddr)
945 irel->r_addend -= count;
946 }
947 }
948 }
949 start = stop = addr;
950 break;
951
952 case R_SH_DIR8WPN:
953 off = insn & 0xff;
954 if (off & 0x80)
955 off -= 0x100;
956 stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
957 break;
958
959 case R_SH_IND12W:
960 off = insn & 0xfff;
961 if (! off)
962 {
963 /* This has been made by previous relaxation. Since the
964 relocation will be against an external symbol, the
965 final relocation will just do the right thing. */
966 start = stop = addr;
967 }
968 else
969 {
970 if (off & 0x800)
971 off -= 0x1000;
972 stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
973
974 /* The addend will be against the section symbol, thus
975 for adjusting the addend, the relevant start is the
976 start of the section.
977 N.B. If we want to abandon in-place changes here and
978 test directly using symbol + addend, we have to take into
979 account that the addend has already been adjusted by -4. */
980 if (stop > addr && stop < toaddr)
981 irel->r_addend -= count;
982 }
983 break;
984
985 case R_SH_DIR8WPZ:
986 off = insn & 0xff;
987 stop = start + 4 + off * 2;
988 break;
989
990 case R_SH_DIR8WPL:
991 off = insn & 0xff;
992 stop = (start & ~(bfd_vma) 3) + 4 + off * 4;
993 break;
994
995 case R_SH_SWITCH8:
996 case R_SH_SWITCH16:
997 case R_SH_SWITCH32:
998 /* These relocs types represent
999 .word L2-L1
1000 The r_addend field holds the difference between the reloc
1001 address and L1. That is the start of the reloc, and
1002 adding in the contents gives us the top. We must adjust
1003 both the r_offset field and the section contents.
1004 N.B. in gas / coff bfd, the elf bfd r_addend is called r_offset,
1005 and the elf bfd r_offset is called r_vaddr. */
1006
1007 stop = irel->r_offset;
1008 start = (bfd_vma) ((bfd_signed_vma) stop - (long) irel->r_addend);
1009
1010 if (start > addr
1011 && start < toaddr
1012 && (stop <= addr || stop >= toaddr))
1013 irel->r_addend += count;
1014 else if (stop > addr
1015 && stop < toaddr
1016 && (start <= addr || start >= toaddr))
1017 irel->r_addend -= count;
1018
1019 if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_SWITCH16)
1020 voff = bfd_get_signed_16 (abfd, contents + nraddr);
1021 else if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_SWITCH8)
1022 voff = bfd_get_8 (abfd, contents + nraddr);
1023 else
1024 voff = bfd_get_signed_32 (abfd, contents + nraddr);
1025 stop = (bfd_vma) ((bfd_signed_vma) start + voff);
1026
1027 break;
1028
1029 case R_SH_USES:
1030 start = irel->r_offset;
1031 stop = (bfd_vma) ((bfd_signed_vma) start
1032 + (long) irel->r_addend
1033 + 4);
1034 break;
1035 }
1036
1037 if (start > addr
1038 && start < toaddr
1039 && (stop <= addr || stop >= toaddr))
1040 adjust = count;
1041 else if (stop > addr
1042 && stop < toaddr
1043 && (start <= addr || start >= toaddr))
1044 adjust = - count;
1045 else
1046 adjust = 0;
1047
1048 if (adjust != 0)
1049 {
1050 oinsn = insn;
1051 overflow = FALSE;
1052 switch ((enum elf_sh_reloc_type) ELF32_R_TYPE (irel->r_info))
1053 {
1054 default:
1055 abort ();
1056 break;
1057
1058 case R_SH_DIR8WPN:
1059 case R_SH_DIR8WPZ:
1060 insn += adjust / 2;
1061 if ((oinsn & 0xff00) != (insn & 0xff00))
1062 overflow = TRUE;
1063 bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
1064 break;
1065
1066 case R_SH_IND12W:
1067 insn += adjust / 2;
1068 if ((oinsn & 0xf000) != (insn & 0xf000))
1069 overflow = TRUE;
1070 bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
1071 break;
1072
1073 case R_SH_DIR8WPL:
1074 BFD_ASSERT (adjust == count || count >= 4);
1075 if (count >= 4)
1076 insn += adjust / 4;
1077 else
1078 {
1079 if ((irel->r_offset & 3) == 0)
1080 ++insn;
1081 }
1082 if ((oinsn & 0xff00) != (insn & 0xff00))
1083 overflow = TRUE;
1084 bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
1085 break;
1086
1087 case R_SH_SWITCH8:
1088 voff += adjust;
1089 if (voff < 0 || voff >= 0xff)
1090 overflow = TRUE;
1091 bfd_put_8 (abfd, voff, contents + nraddr);
1092 break;
1093
1094 case R_SH_SWITCH16:
1095 voff += adjust;
1096 if (voff < - 0x8000 || voff >= 0x8000)
1097 overflow = TRUE;
1098 bfd_put_signed_16 (abfd, (bfd_vma) voff, contents + nraddr);
1099 break;
1100
1101 case R_SH_SWITCH32:
1102 voff += adjust;
1103 bfd_put_signed_32 (abfd, (bfd_vma) voff, contents + nraddr);
1104 break;
1105
1106 case R_SH_USES:
1107 irel->r_addend += adjust;
1108 break;
1109 }
1110
1111 if (overflow)
1112 {
1113 ((*_bfd_error_handler)
1114 (_("%B: 0x%lx: fatal: reloc overflow while relaxing"),
1115 abfd, (unsigned long) irel->r_offset));
1116 bfd_set_error (bfd_error_bad_value);
1117 return FALSE;
1118 }
1119 }
1120
1121 irel->r_offset = nraddr;
1122 }
1123
1124 /* Look through all the other sections. If there contain any IMM32
1125 relocs against internal symbols which we are not going to adjust
1126 below, we may need to adjust the addends. */
1127 for (o = abfd->sections; o != NULL; o = o->next)
1128 {
1129 Elf_Internal_Rela *internal_relocs;
1130 Elf_Internal_Rela *irelscan, *irelscanend;
1131 bfd_byte *ocontents;
1132
1133 if (o == sec
1134 || (o->flags & SEC_RELOC) == 0
1135 || o->reloc_count == 0)
1136 continue;
1137
1138 /* We always cache the relocs. Perhaps, if info->keep_memory is
1139 FALSE, we should free them, if we are permitted to, when we
1140 leave sh_coff_relax_section. */
1141 internal_relocs = (_bfd_elf_link_read_relocs
1142 (abfd, o, NULL, (Elf_Internal_Rela *) NULL, TRUE));
1143 if (internal_relocs == NULL)
1144 return FALSE;
1145
1146 ocontents = NULL;
1147 irelscanend = internal_relocs + o->reloc_count;
1148 for (irelscan = internal_relocs; irelscan < irelscanend; irelscan++)
1149 {
1150 /* Dwarf line numbers use R_SH_SWITCH32 relocs. */
1151 if (ELF32_R_TYPE (irelscan->r_info) == (int) R_SH_SWITCH32)
1152 {
1153 bfd_vma start, stop;
1154 bfd_signed_vma voff;
1155
1156 if (ocontents == NULL)
1157 {
1158 if (elf_section_data (o)->this_hdr.contents != NULL)
1159 ocontents = elf_section_data (o)->this_hdr.contents;
1160 else
1161 {
1162 /* We always cache the section contents.
1163 Perhaps, if info->keep_memory is FALSE, we
1164 should free them, if we are permitted to,
1165 when we leave sh_coff_relax_section. */
1166 if (!bfd_malloc_and_get_section (abfd, o, &ocontents))
1167 {
1168 if (ocontents != NULL)
1169 free (ocontents);
1170 return FALSE;
1171 }
1172
1173 elf_section_data (o)->this_hdr.contents = ocontents;
1174 }
1175 }
1176
1177 stop = irelscan->r_offset;
1178 start
1179 = (bfd_vma) ((bfd_signed_vma) stop - (long) irelscan->r_addend);
1180
1181 /* STOP is in a different section, so it won't change. */
1182 if (start > addr && start < toaddr)
1183 irelscan->r_addend += count;
1184
1185 voff = bfd_get_signed_32 (abfd, ocontents + irelscan->r_offset);
1186 stop = (bfd_vma) ((bfd_signed_vma) start + voff);
1187
1188 if (start > addr
1189 && start < toaddr
1190 && (stop <= addr || stop >= toaddr))
1191 bfd_put_signed_32 (abfd, (bfd_vma) voff + count,
1192 ocontents + irelscan->r_offset);
1193 else if (stop > addr
1194 && stop < toaddr
1195 && (start <= addr || start >= toaddr))
1196 bfd_put_signed_32 (abfd, (bfd_vma) voff - count,
1197 ocontents + irelscan->r_offset);
1198 }
1199
1200 if (ELF32_R_TYPE (irelscan->r_info) != (int) R_SH_DIR32)
1201 continue;
1202
1203 if (ELF32_R_SYM (irelscan->r_info) >= symtab_hdr->sh_info)
1204 continue;
1205
1206
1207 isym = isymbuf + ELF32_R_SYM (irelscan->r_info);
1208 if (isym->st_shndx == sec_shndx
1209 && (isym->st_value <= addr
1210 || isym->st_value >= toaddr))
1211 {
1212 bfd_vma val;
1213
1214 if (ocontents == NULL)
1215 {
1216 if (elf_section_data (o)->this_hdr.contents != NULL)
1217 ocontents = elf_section_data (o)->this_hdr.contents;
1218 else
1219 {
1220 /* We always cache the section contents.
1221 Perhaps, if info->keep_memory is FALSE, we
1222 should free them, if we are permitted to,
1223 when we leave sh_coff_relax_section. */
1224 if (!bfd_malloc_and_get_section (abfd, o, &ocontents))
1225 {
1226 if (ocontents != NULL)
1227 free (ocontents);
1228 return FALSE;
1229 }
1230
1231 elf_section_data (o)->this_hdr.contents = ocontents;
1232 }
1233 }
1234
1235 val = bfd_get_32 (abfd, ocontents + irelscan->r_offset);
1236 val += isym->st_value;
1237 if (val > addr && val < toaddr)
1238 bfd_put_32 (abfd, val - count,
1239 ocontents + irelscan->r_offset);
1240 }
1241 }
1242 }
1243
1244 /* Adjust the local symbols defined in this section. */
1245 isymend = isymbuf + symtab_hdr->sh_info;
1246 for (isym = isymbuf; isym < isymend; isym++)
1247 {
1248 if (isym->st_shndx == sec_shndx
1249 && isym->st_value > addr
1250 && isym->st_value < toaddr)
1251 isym->st_value -= count;
1252 }
1253
1254 /* Now adjust the global symbols defined in this section. */
1255 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
1256 - symtab_hdr->sh_info);
1257 sym_hashes = elf_sym_hashes (abfd);
1258 end_hashes = sym_hashes + symcount;
1259 for (; sym_hashes < end_hashes; sym_hashes++)
1260 {
1261 struct elf_link_hash_entry *sym_hash = *sym_hashes;
1262 if ((sym_hash->root.type == bfd_link_hash_defined
1263 || sym_hash->root.type == bfd_link_hash_defweak)
1264 && sym_hash->root.u.def.section == sec
1265 && sym_hash->root.u.def.value > addr
1266 && sym_hash->root.u.def.value < toaddr)
1267 {
1268 sym_hash->root.u.def.value -= count;
1269 }
1270 }
1271
1272 /* See if we can move the ALIGN reloc forward. We have adjusted
1273 r_offset for it already. */
1274 if (irelalign != NULL)
1275 {
1276 bfd_vma alignto, alignaddr;
1277
1278 alignto = BFD_ALIGN (toaddr, 1 << irelalign->r_addend);
1279 alignaddr = BFD_ALIGN (irelalign->r_offset,
1280 1 << irelalign->r_addend);
1281 if (alignto != alignaddr)
1282 {
1283 /* Tail recursion. */
1284 return sh_elf_relax_delete_bytes (abfd, sec, alignaddr,
1285 (int) (alignto - alignaddr));
1286 }
1287 }
1288
1289 return TRUE;
1290 }
1291
1292 /* Look for loads and stores which we can align to four byte
1293 boundaries. This is like sh_align_loads in coff-sh.c. */
1294
1295 static bfd_boolean
1296 sh_elf_align_loads (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
1297 Elf_Internal_Rela *internal_relocs,
1298 bfd_byte *contents ATTRIBUTE_UNUSED,
1299 bfd_boolean *pswapped)
1300 {
1301 Elf_Internal_Rela *irel, *irelend;
1302 bfd_vma *labels = NULL;
1303 bfd_vma *label, *label_end;
1304 bfd_size_type amt;
1305
1306 *pswapped = FALSE;
1307
1308 irelend = internal_relocs + sec->reloc_count;
1309
1310 /* Get all the addresses with labels on them. */
1311 amt = sec->reloc_count;
1312 amt *= sizeof (bfd_vma);
1313 labels = (bfd_vma *) bfd_malloc (amt);
1314 if (labels == NULL)
1315 goto error_return;
1316 label_end = labels;
1317 for (irel = internal_relocs; irel < irelend; irel++)
1318 {
1319 if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_LABEL)
1320 {
1321 *label_end = irel->r_offset;
1322 ++label_end;
1323 }
1324 }
1325
1326 /* Note that the assembler currently always outputs relocs in
1327 address order. If that ever changes, this code will need to sort
1328 the label values and the relocs. */
1329
1330 label = labels;
1331
1332 for (irel = internal_relocs; irel < irelend; irel++)
1333 {
1334 bfd_vma start, stop;
1335
1336 if (ELF32_R_TYPE (irel->r_info) != (int) R_SH_CODE)
1337 continue;
1338
1339 start = irel->r_offset;
1340
1341 for (irel++; irel < irelend; irel++)
1342 if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_DATA)
1343 break;
1344 if (irel < irelend)
1345 stop = irel->r_offset;
1346 else
1347 stop = sec->size;
1348
1349 if (! _bfd_sh_align_load_span (abfd, sec, contents, sh_elf_swap_insns,
1350 internal_relocs, &label,
1351 label_end, start, stop, pswapped))
1352 goto error_return;
1353 }
1354
1355 free (labels);
1356
1357 return TRUE;
1358
1359 error_return:
1360 if (labels != NULL)
1361 free (labels);
1362 return FALSE;
1363 }
1364
1365 #ifndef SH64_ELF
1366 /* Swap two SH instructions. This is like sh_swap_insns in coff-sh.c. */
1367
1368 static bfd_boolean
1369 sh_elf_swap_insns (bfd *abfd, asection *sec, void *relocs,
1370 bfd_byte *contents, bfd_vma addr)
1371 {
1372 Elf_Internal_Rela *internal_relocs = (Elf_Internal_Rela *) relocs;
1373 unsigned short i1, i2;
1374 Elf_Internal_Rela *irel, *irelend;
1375
1376 /* Swap the instructions themselves. */
1377 i1 = bfd_get_16 (abfd, contents + addr);
1378 i2 = bfd_get_16 (abfd, contents + addr + 2);
1379 bfd_put_16 (abfd, (bfd_vma) i2, contents + addr);
1380 bfd_put_16 (abfd, (bfd_vma) i1, contents + addr + 2);
1381
1382 /* Adjust all reloc addresses. */
1383 irelend = internal_relocs + sec->reloc_count;
1384 for (irel = internal_relocs; irel < irelend; irel++)
1385 {
1386 enum elf_sh_reloc_type type;
1387 int add;
1388
1389 /* There are a few special types of relocs that we don't want to
1390 adjust. These relocs do not apply to the instruction itself,
1391 but are only associated with the address. */
1392 type = (enum elf_sh_reloc_type) ELF32_R_TYPE (irel->r_info);
1393 if (type == R_SH_ALIGN
1394 || type == R_SH_CODE
1395 || type == R_SH_DATA
1396 || type == R_SH_LABEL)
1397 continue;
1398
1399 /* If an R_SH_USES reloc points to one of the addresses being
1400 swapped, we must adjust it. It would be incorrect to do this
1401 for a jump, though, since we want to execute both
1402 instructions after the jump. (We have avoided swapping
1403 around a label, so the jump will not wind up executing an
1404 instruction it shouldn't). */
1405 if (type == R_SH_USES)
1406 {
1407 bfd_vma off;
1408
1409 off = irel->r_offset + 4 + irel->r_addend;
1410 if (off == addr)
1411 irel->r_offset += 2;
1412 else if (off == addr + 2)
1413 irel->r_offset -= 2;
1414 }
1415
1416 if (irel->r_offset == addr)
1417 {
1418 irel->r_offset += 2;
1419 add = -2;
1420 }
1421 else if (irel->r_offset == addr + 2)
1422 {
1423 irel->r_offset -= 2;
1424 add = 2;
1425 }
1426 else
1427 add = 0;
1428
1429 if (add != 0)
1430 {
1431 bfd_byte *loc;
1432 unsigned short insn, oinsn;
1433 bfd_boolean overflow;
1434
1435 loc = contents + irel->r_offset;
1436 overflow = FALSE;
1437 switch (type)
1438 {
1439 default:
1440 break;
1441
1442 case R_SH_DIR8WPN:
1443 case R_SH_DIR8WPZ:
1444 insn = bfd_get_16 (abfd, loc);
1445 oinsn = insn;
1446 insn += add / 2;
1447 if ((oinsn & 0xff00) != (insn & 0xff00))
1448 overflow = TRUE;
1449 bfd_put_16 (abfd, (bfd_vma) insn, loc);
1450 break;
1451
1452 case R_SH_IND12W:
1453 insn = bfd_get_16 (abfd, loc);
1454 oinsn = insn;
1455 insn += add / 2;
1456 if ((oinsn & 0xf000) != (insn & 0xf000))
1457 overflow = TRUE;
1458 bfd_put_16 (abfd, (bfd_vma) insn, loc);
1459 break;
1460
1461 case R_SH_DIR8WPL:
1462 /* This reloc ignores the least significant 3 bits of
1463 the program counter before adding in the offset.
1464 This means that if ADDR is at an even address, the
1465 swap will not affect the offset. If ADDR is an at an
1466 odd address, then the instruction will be crossing a
1467 four byte boundary, and must be adjusted. */
1468 if ((addr & 3) != 0)
1469 {
1470 insn = bfd_get_16 (abfd, loc);
1471 oinsn = insn;
1472 insn += add / 2;
1473 if ((oinsn & 0xff00) != (insn & 0xff00))
1474 overflow = TRUE;
1475 bfd_put_16 (abfd, (bfd_vma) insn, loc);
1476 }
1477
1478 break;
1479 }
1480
1481 if (overflow)
1482 {
1483 ((*_bfd_error_handler)
1484 (_("%B: 0x%lx: fatal: reloc overflow while relaxing"),
1485 abfd, (unsigned long) irel->r_offset));
1486 bfd_set_error (bfd_error_bad_value);
1487 return FALSE;
1488 }
1489 }
1490 }
1491
1492 return TRUE;
1493 }
1494 #endif /* defined SH64_ELF */
1495 \f
1496 /* Describes one of the various PLT styles. */
1497
1498 struct elf_sh_plt_info
1499 {
1500 /* The template for the first PLT entry, or NULL if there is no special
1501 first entry. */
1502 const bfd_byte *plt0_entry;
1503
1504 /* The size of PLT0_ENTRY in bytes, or 0 if PLT0_ENTRY is NULL. */
1505 bfd_vma plt0_entry_size;
1506
1507 /* Index I is the offset into PLT0_ENTRY of a pointer to
1508 _GLOBAL_OFFSET_TABLE_ + I * 4. The value is MINUS_ONE
1509 if there is no such pointer. */
1510 bfd_vma plt0_got_fields[3];
1511
1512 /* The template for a symbol's PLT entry. */
1513 const bfd_byte *symbol_entry;
1514
1515 /* The size of SYMBOL_ENTRY in bytes. */
1516 bfd_vma symbol_entry_size;
1517
1518 /* Byte offsets of fields in SYMBOL_ENTRY. Not all fields are used
1519 on all targets. The comments by each member indicate the value
1520 that the field must hold. */
1521 struct {
1522 bfd_vma got_entry; /* the address of the symbol's .got.plt entry */
1523 bfd_vma plt; /* .plt (or a branch to .plt on VxWorks) */
1524 bfd_vma reloc_offset; /* the offset of the symbol's JMP_SLOT reloc */
1525 } symbol_fields;
1526
1527 /* The offset of the resolver stub from the start of SYMBOL_ENTRY. */
1528 bfd_vma symbol_resolve_offset;
1529 };
1530
1531 #ifdef INCLUDE_SHMEDIA
1532
1533 /* The size in bytes of an entry in the procedure linkage table. */
1534
1535 #define ELF_PLT_ENTRY_SIZE 64
1536
1537 /* First entry in an absolute procedure linkage table look like this. */
1538
1539 static const bfd_byte elf_sh_plt0_entry_be[ELF_PLT_ENTRY_SIZE] =
1540 {
1541 0xcc, 0x00, 0x01, 0x10, /* movi .got.plt >> 16, r17 */
1542 0xc8, 0x00, 0x01, 0x10, /* shori .got.plt & 65535, r17 */
1543 0x89, 0x10, 0x09, 0x90, /* ld.l r17, 8, r25 */
1544 0x6b, 0xf1, 0x66, 0x00, /* ptabs r25, tr0 */
1545 0x89, 0x10, 0x05, 0x10, /* ld.l r17, 4, r17 */
1546 0x44, 0x01, 0xff, 0xf0, /* blink tr0, r63 */
1547 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1548 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1549 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1550 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1551 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1552 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1553 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1554 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1555 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1556 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1557 };
1558
1559 static const bfd_byte elf_sh_plt0_entry_le[ELF_PLT_ENTRY_SIZE] =
1560 {
1561 0x10, 0x01, 0x00, 0xcc, /* movi .got.plt >> 16, r17 */
1562 0x10, 0x01, 0x00, 0xc8, /* shori .got.plt & 65535, r17 */
1563 0x90, 0x09, 0x10, 0x89, /* ld.l r17, 8, r25 */
1564 0x00, 0x66, 0xf1, 0x6b, /* ptabs r25, tr0 */
1565 0x10, 0x05, 0x10, 0x89, /* ld.l r17, 4, r17 */
1566 0xf0, 0xff, 0x01, 0x44, /* blink tr0, r63 */
1567 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1568 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1569 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1570 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1571 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1572 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1573 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1574 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1575 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1576 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1577 };
1578
1579 /* Sebsequent entries in an absolute procedure linkage table look like
1580 this. */
1581
1582 static const bfd_byte elf_sh_plt_entry_be[ELF_PLT_ENTRY_SIZE] =
1583 {
1584 0xcc, 0x00, 0x01, 0x90, /* movi nameN-in-GOT >> 16, r25 */
1585 0xc8, 0x00, 0x01, 0x90, /* shori nameN-in-GOT & 65535, r25 */
1586 0x89, 0x90, 0x01, 0x90, /* ld.l r25, 0, r25 */
1587 0x6b, 0xf1, 0x66, 0x00, /* ptabs r25, tr0 */
1588 0x44, 0x01, 0xff, 0xf0, /* blink tr0, r63 */
1589 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1590 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1591 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1592 0xcc, 0x00, 0x01, 0x90, /* movi .PLT0 >> 16, r25 */
1593 0xc8, 0x00, 0x01, 0x90, /* shori .PLT0 & 65535, r25 */
1594 0x6b, 0xf1, 0x66, 0x00, /* ptabs r25, tr0 */
1595 0xcc, 0x00, 0x01, 0x50, /* movi reloc-offset >> 16, r21 */
1596 0xc8, 0x00, 0x01, 0x50, /* shori reloc-offset & 65535, r21 */
1597 0x44, 0x01, 0xff, 0xf0, /* blink tr0, r63 */
1598 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1599 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1600 };
1601
1602 static const bfd_byte elf_sh_plt_entry_le[ELF_PLT_ENTRY_SIZE] =
1603 {
1604 0x90, 0x01, 0x00, 0xcc, /* movi nameN-in-GOT >> 16, r25 */
1605 0x90, 0x01, 0x00, 0xc8, /* shori nameN-in-GOT & 65535, r25 */
1606 0x90, 0x01, 0x90, 0x89, /* ld.l r25, 0, r25 */
1607 0x00, 0x66, 0xf1, 0x6b, /* ptabs r25, tr0 */
1608 0xf0, 0xff, 0x01, 0x44, /* blink tr0, r63 */
1609 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1610 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1611 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1612 0x90, 0x01, 0x00, 0xcc, /* movi .PLT0 >> 16, r25 */
1613 0x90, 0x01, 0x00, 0xc8, /* shori .PLT0 & 65535, r25 */
1614 0x00, 0x66, 0xf1, 0x6b, /* ptabs r25, tr0 */
1615 0x50, 0x01, 0x00, 0xcc, /* movi reloc-offset >> 16, r21 */
1616 0x50, 0x01, 0x00, 0xc8, /* shori reloc-offset & 65535, r21 */
1617 0xf0, 0xff, 0x01, 0x44, /* blink tr0, r63 */
1618 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1619 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1620 };
1621
1622 /* Entries in a PIC procedure linkage table look like this. */
1623
1624 static const bfd_byte elf_sh_pic_plt_entry_be[ELF_PLT_ENTRY_SIZE] =
1625 {
1626 0xcc, 0x00, 0x01, 0x90, /* movi nameN@GOT >> 16, r25 */
1627 0xc8, 0x00, 0x01, 0x90, /* shori nameN@GOT & 65535, r25 */
1628 0x40, 0xc2, 0x65, 0x90, /* ldx.l r12, r25, r25 */
1629 0x6b, 0xf1, 0x66, 0x00, /* ptabs r25, tr0 */
1630 0x44, 0x01, 0xff, 0xf0, /* blink tr0, r63 */
1631 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1632 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1633 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1634 0xce, 0x00, 0x01, 0x10, /* movi -GOT_BIAS, r17 */
1635 0x00, 0xc8, 0x45, 0x10, /* add.l r12, r17, r17 */
1636 0x89, 0x10, 0x09, 0x90, /* ld.l r17, 8, r25 */
1637 0x6b, 0xf1, 0x66, 0x00, /* ptabs r25, tr0 */
1638 0x89, 0x10, 0x05, 0x10, /* ld.l r17, 4, r17 */
1639 0xcc, 0x00, 0x01, 0x50, /* movi reloc-offset >> 16, r21 */
1640 0xc8, 0x00, 0x01, 0x50, /* shori reloc-offset & 65535, r21 */
1641 0x44, 0x01, 0xff, 0xf0, /* blink tr0, r63 */
1642 };
1643
1644 static const bfd_byte elf_sh_pic_plt_entry_le[ELF_PLT_ENTRY_SIZE] =
1645 {
1646 0x90, 0x01, 0x00, 0xcc, /* movi nameN@GOT >> 16, r25 */
1647 0x90, 0x01, 0x00, 0xc8, /* shori nameN@GOT & 65535, r25 */
1648 0x90, 0x65, 0xc2, 0x40, /* ldx.l r12, r25, r25 */
1649 0x00, 0x66, 0xf1, 0x6b, /* ptabs r25, tr0 */
1650 0xf0, 0xff, 0x01, 0x44, /* blink tr0, r63 */
1651 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1652 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1653 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1654 0x10, 0x01, 0x00, 0xce, /* movi -GOT_BIAS, r17 */
1655 0x10, 0x45, 0xc8, 0x00, /* add.l r12, r17, r17 */
1656 0x90, 0x09, 0x10, 0x89, /* ld.l r17, 8, r25 */
1657 0x00, 0x66, 0xf1, 0x6b, /* ptabs r25, tr0 */
1658 0x10, 0x05, 0x10, 0x89, /* ld.l r17, 4, r17 */
1659 0x50, 0x01, 0x00, 0xcc, /* movi reloc-offset >> 16, r21 */
1660 0x50, 0x01, 0x00, 0xc8, /* shori reloc-offset & 65535, r21 */
1661 0xf0, 0xff, 0x01, 0x44, /* blink tr0, r63 */
1662 };
1663
1664 static const struct elf_sh_plt_info elf_sh_plts[2][2] = {
1665 {
1666 {
1667 /* Big-endian non-PIC. */
1668 elf_sh_plt0_entry_be,
1669 ELF_PLT_ENTRY_SIZE,
1670 { 0, MINUS_ONE, MINUS_ONE },
1671 elf_sh_plt_entry_be,
1672 ELF_PLT_ENTRY_SIZE,
1673 { 0, 32, 48 },
1674 33 /* includes ISA encoding */
1675 },
1676 {
1677 /* Little-endian non-PIC. */
1678 elf_sh_plt0_entry_le,
1679 ELF_PLT_ENTRY_SIZE,
1680 { 0, MINUS_ONE, MINUS_ONE },
1681 elf_sh_plt_entry_le,
1682 ELF_PLT_ENTRY_SIZE,
1683 { 0, 32, 48 },
1684 33 /* includes ISA encoding */
1685 },
1686 },
1687 {
1688 {
1689 /* Big-endian PIC. */
1690 elf_sh_plt0_entry_be,
1691 ELF_PLT_ENTRY_SIZE,
1692 { MINUS_ONE, MINUS_ONE, MINUS_ONE },
1693 elf_sh_pic_plt_entry_be,
1694 ELF_PLT_ENTRY_SIZE,
1695 { 0, MINUS_ONE, 52 },
1696 33 /* includes ISA encoding */
1697 },
1698 {
1699 /* Little-endian PIC. */
1700 elf_sh_plt0_entry_le,
1701 ELF_PLT_ENTRY_SIZE,
1702 { MINUS_ONE, MINUS_ONE, MINUS_ONE },
1703 elf_sh_pic_plt_entry_le,
1704 ELF_PLT_ENTRY_SIZE,
1705 { 0, MINUS_ONE, 52 },
1706 33 /* includes ISA encoding */
1707 },
1708 }
1709 };
1710
1711 /* Return offset of the linker in PLT0 entry. */
1712 #define elf_sh_plt0_gotplt_offset(info) 0
1713
1714 /* Install a 32-bit PLT field starting at ADDR, which occurs in OUTPUT_BFD.
1715 VALUE is the field's value and CODE_P is true if VALUE refers to code,
1716 not data.
1717
1718 On SH64, each 32-bit field is loaded by a movi/shori pair. */
1719
1720 inline static void
1721 install_plt_field (bfd *output_bfd, bfd_boolean code_p,
1722 unsigned long value, bfd_byte *addr)
1723 {
1724 value |= code_p;
1725 bfd_put_32 (output_bfd,
1726 bfd_get_32 (output_bfd, addr)
1727 | ((value >> 6) & 0x3fffc00),
1728 addr);
1729 bfd_put_32 (output_bfd,
1730 bfd_get_32 (output_bfd, addr + 4)
1731 | ((value << 10) & 0x3fffc00),
1732 addr + 4);
1733 }
1734
1735 /* Return the type of PLT associated with ABFD. PIC_P is true if
1736 the object is position-independent. */
1737
1738 static const struct elf_sh_plt_info *
1739 get_plt_info (bfd *abfd ATTRIBUTE_UNUSED, bfd_boolean pic_p)
1740 {
1741 return &elf_sh_plts[pic_p][!bfd_big_endian (abfd)];
1742 }
1743 #else
1744 /* The size in bytes of an entry in the procedure linkage table. */
1745
1746 #define ELF_PLT_ENTRY_SIZE 28
1747
1748 /* First entry in an absolute procedure linkage table look like this. */
1749
1750 /* Note - this code has been "optimised" not to use r2. r2 is used by
1751 GCC to return the address of large structures, so it should not be
1752 corrupted here. This does mean however, that this PLT does not conform
1753 to the SH PIC ABI. That spec says that r0 contains the type of the PLT
1754 and r2 contains the GOT id. This version stores the GOT id in r0 and
1755 ignores the type. Loaders can easily detect this difference however,
1756 since the type will always be 0 or 8, and the GOT ids will always be
1757 greater than or equal to 12. */
1758 static const bfd_byte elf_sh_plt0_entry_be[ELF_PLT_ENTRY_SIZE] =
1759 {
1760 0xd0, 0x05, /* mov.l 2f,r0 */
1761 0x60, 0x02, /* mov.l @r0,r0 */
1762 0x2f, 0x06, /* mov.l r0,@-r15 */
1763 0xd0, 0x03, /* mov.l 1f,r0 */
1764 0x60, 0x02, /* mov.l @r0,r0 */
1765 0x40, 0x2b, /* jmp @r0 */
1766 0x60, 0xf6, /* mov.l @r15+,r0 */
1767 0x00, 0x09, /* nop */
1768 0x00, 0x09, /* nop */
1769 0x00, 0x09, /* nop */
1770 0, 0, 0, 0, /* 1: replaced with address of .got.plt + 8. */
1771 0, 0, 0, 0, /* 2: replaced with address of .got.plt + 4. */
1772 };
1773
1774 static const bfd_byte elf_sh_plt0_entry_le[ELF_PLT_ENTRY_SIZE] =
1775 {
1776 0x05, 0xd0, /* mov.l 2f,r0 */
1777 0x02, 0x60, /* mov.l @r0,r0 */
1778 0x06, 0x2f, /* mov.l r0,@-r15 */
1779 0x03, 0xd0, /* mov.l 1f,r0 */
1780 0x02, 0x60, /* mov.l @r0,r0 */
1781 0x2b, 0x40, /* jmp @r0 */
1782 0xf6, 0x60, /* mov.l @r15+,r0 */
1783 0x09, 0x00, /* nop */
1784 0x09, 0x00, /* nop */
1785 0x09, 0x00, /* nop */
1786 0, 0, 0, 0, /* 1: replaced with address of .got.plt + 8. */
1787 0, 0, 0, 0, /* 2: replaced with address of .got.plt + 4. */
1788 };
1789
1790 /* Sebsequent entries in an absolute procedure linkage table look like
1791 this. */
1792
1793 static const bfd_byte elf_sh_plt_entry_be[ELF_PLT_ENTRY_SIZE] =
1794 {
1795 0xd0, 0x04, /* mov.l 1f,r0 */
1796 0x60, 0x02, /* mov.l @(r0,r12),r0 */
1797 0xd1, 0x02, /* mov.l 0f,r1 */
1798 0x40, 0x2b, /* jmp @r0 */
1799 0x60, 0x13, /* mov r1,r0 */
1800 0xd1, 0x03, /* mov.l 2f,r1 */
1801 0x40, 0x2b, /* jmp @r0 */
1802 0x00, 0x09, /* nop */
1803 0, 0, 0, 0, /* 0: replaced with address of .PLT0. */
1804 0, 0, 0, 0, /* 1: replaced with address of this symbol in .got. */
1805 0, 0, 0, 0, /* 2: replaced with offset into relocation table. */
1806 };
1807
1808 static const bfd_byte elf_sh_plt_entry_le[ELF_PLT_ENTRY_SIZE] =
1809 {
1810 0x04, 0xd0, /* mov.l 1f,r0 */
1811 0x02, 0x60, /* mov.l @r0,r0 */
1812 0x02, 0xd1, /* mov.l 0f,r1 */
1813 0x2b, 0x40, /* jmp @r0 */
1814 0x13, 0x60, /* mov r1,r0 */
1815 0x03, 0xd1, /* mov.l 2f,r1 */
1816 0x2b, 0x40, /* jmp @r0 */
1817 0x09, 0x00, /* nop */
1818 0, 0, 0, 0, /* 0: replaced with address of .PLT0. */
1819 0, 0, 0, 0, /* 1: replaced with address of this symbol in .got. */
1820 0, 0, 0, 0, /* 2: replaced with offset into relocation table. */
1821 };
1822
1823 /* Entries in a PIC procedure linkage table look like this. */
1824
1825 static const bfd_byte elf_sh_pic_plt_entry_be[ELF_PLT_ENTRY_SIZE] =
1826 {
1827 0xd0, 0x04, /* mov.l 1f,r0 */
1828 0x00, 0xce, /* mov.l @(r0,r12),r0 */
1829 0x40, 0x2b, /* jmp @r0 */
1830 0x00, 0x09, /* nop */
1831 0x50, 0xc2, /* mov.l @(8,r12),r0 */
1832 0xd1, 0x03, /* mov.l 2f,r1 */
1833 0x40, 0x2b, /* jmp @r0 */
1834 0x50, 0xc1, /* mov.l @(4,r12),r0 */
1835 0x00, 0x09, /* nop */
1836 0x00, 0x09, /* nop */
1837 0, 0, 0, 0, /* 1: replaced with address of this symbol in .got. */
1838 0, 0, 0, 0 /* 2: replaced with offset into relocation table. */
1839 };
1840
1841 static const bfd_byte elf_sh_pic_plt_entry_le[ELF_PLT_ENTRY_SIZE] =
1842 {
1843 0x04, 0xd0, /* mov.l 1f,r0 */
1844 0xce, 0x00, /* mov.l @(r0,r12),r0 */
1845 0x2b, 0x40, /* jmp @r0 */
1846 0x09, 0x00, /* nop */
1847 0xc2, 0x50, /* mov.l @(8,r12),r0 */
1848 0x03, 0xd1, /* mov.l 2f,r1 */
1849 0x2b, 0x40, /* jmp @r0 */
1850 0xc1, 0x50, /* mov.l @(4,r12),r0 */
1851 0x09, 0x00, /* nop */
1852 0x09, 0x00, /* nop */
1853 0, 0, 0, 0, /* 1: replaced with address of this symbol in .got. */
1854 0, 0, 0, 0 /* 2: replaced with offset into relocation table. */
1855 };
1856
1857 static const struct elf_sh_plt_info elf_sh_plts[2][2] = {
1858 {
1859 {
1860 /* Big-endian non-PIC. */
1861 elf_sh_plt0_entry_be,
1862 ELF_PLT_ENTRY_SIZE,
1863 { MINUS_ONE, 24, 20 },
1864 elf_sh_plt_entry_be,
1865 ELF_PLT_ENTRY_SIZE,
1866 { 20, 16, 24 },
1867 8
1868 },
1869 {
1870 /* Little-endian non-PIC. */
1871 elf_sh_plt0_entry_le,
1872 ELF_PLT_ENTRY_SIZE,
1873 { MINUS_ONE, 24, 20 },
1874 elf_sh_plt_entry_le,
1875 ELF_PLT_ENTRY_SIZE,
1876 { 20, 16, 24 },
1877 8
1878 },
1879 },
1880 {
1881 {
1882 /* Big-endian PIC. */
1883 elf_sh_plt0_entry_be,
1884 ELF_PLT_ENTRY_SIZE,
1885 { MINUS_ONE, MINUS_ONE, MINUS_ONE },
1886 elf_sh_pic_plt_entry_be,
1887 ELF_PLT_ENTRY_SIZE,
1888 { 20, MINUS_ONE, 24 },
1889 8
1890 },
1891 {
1892 /* Little-endian PIC. */
1893 elf_sh_plt0_entry_le,
1894 ELF_PLT_ENTRY_SIZE,
1895 { MINUS_ONE, MINUS_ONE, MINUS_ONE },
1896 elf_sh_pic_plt_entry_le,
1897 ELF_PLT_ENTRY_SIZE,
1898 { 20, MINUS_ONE, 24 },
1899 8
1900 },
1901 }
1902 };
1903
1904 #define VXWORKS_PLT_HEADER_SIZE 12
1905 #define VXWORKS_PLT_ENTRY_SIZE 24
1906
1907 static const bfd_byte vxworks_sh_plt0_entry_be[VXWORKS_PLT_HEADER_SIZE] =
1908 {
1909 0xd1, 0x01, /* mov.l @(8,pc),r1 */
1910 0x61, 0x12, /* mov.l @r1,r1 */
1911 0x41, 0x2b, /* jmp @r1 */
1912 0x00, 0x09, /* nop */
1913 0, 0, 0, 0 /* 0: replaced with _GLOBAL_OFFSET_TABLE+8. */
1914 };
1915
1916 static const bfd_byte vxworks_sh_plt0_entry_le[VXWORKS_PLT_HEADER_SIZE] =
1917 {
1918 0x01, 0xd1, /* mov.l @(8,pc),r1 */
1919 0x12, 0x61, /* mov.l @r1,r1 */
1920 0x2b, 0x41, /* jmp @r1 */
1921 0x09, 0x00, /* nop */
1922 0, 0, 0, 0 /* 0: replaced with _GLOBAL_OFFSET_TABLE+8. */
1923 };
1924
1925 static const bfd_byte vxworks_sh_plt_entry_be[VXWORKS_PLT_ENTRY_SIZE] =
1926 {
1927 0xd0, 0x01, /* mov.l @(8,pc),r0 */
1928 0x60, 0x02, /* mov.l @r0,r0 */
1929 0x40, 0x2b, /* jmp @r0 */
1930 0x00, 0x09, /* nop */
1931 0, 0, 0, 0, /* 0: replaced with address of this symbol in .got. */
1932 0xd0, 0x01, /* mov.l @(8,pc),r0 */
1933 0xa0, 0x00, /* bra PLT (We need to fix the offset.) */
1934 0x00, 0x09, /* nop */
1935 0x00, 0x09, /* nop */
1936 0, 0, 0, 0, /* 1: replaced with offset into relocation table. */
1937 };
1938
1939 static const bfd_byte vxworks_sh_plt_entry_le[VXWORKS_PLT_ENTRY_SIZE] =
1940 {
1941 0x01, 0xd0, /* mov.l @(8,pc),r0 */
1942 0x02, 0x60, /* mov.l @r0,r0 */
1943 0x2b, 0x40, /* jmp @r0 */
1944 0x09, 0x00, /* nop */
1945 0, 0, 0, 0, /* 0: replaced with address of this symbol in .got. */
1946 0x01, 0xd0, /* mov.l @(8,pc),r0 */
1947 0x00, 0xa0, /* bra PLT (We need to fix the offset.) */
1948 0x09, 0x00, /* nop */
1949 0x09, 0x00, /* nop */
1950 0, 0, 0, 0, /* 1: replaced with offset into relocation table. */
1951 };
1952
1953 static const bfd_byte vxworks_sh_pic_plt_entry_be[VXWORKS_PLT_ENTRY_SIZE] =
1954 {
1955 0xd0, 0x01, /* mov.l @(8,pc),r0 */
1956 0x00, 0xce, /* mov.l @(r0,r12),r0 */
1957 0x40, 0x2b, /* jmp @r0 */
1958 0x00, 0x09, /* nop */
1959 0, 0, 0, 0, /* 0: replaced with offset of this symbol in .got. */
1960 0xd0, 0x01, /* mov.l @(8,pc),r0 */
1961 0x51, 0xc2, /* mov.l @(8,r12),r1 */
1962 0x41, 0x2b, /* jmp @r1 */
1963 0x00, 0x09, /* nop */
1964 0, 0, 0, 0, /* 1: replaced with offset into relocation table. */
1965 };
1966
1967 static const bfd_byte vxworks_sh_pic_plt_entry_le[VXWORKS_PLT_ENTRY_SIZE] =
1968 {
1969 0x01, 0xd0, /* mov.l @(8,pc),r0 */
1970 0xce, 0x00, /* mov.l @(r0,r12),r0 */
1971 0x2b, 0x40, /* jmp @r0 */
1972 0x09, 0x00, /* nop */
1973 0, 0, 0, 0, /* 0: replaced with offset of this symbol in .got. */
1974 0x01, 0xd0, /* mov.l @(8,pc),r0 */
1975 0xc2, 0x51, /* mov.l @(8,r12),r1 */
1976 0x2b, 0x41, /* jmp @r1 */
1977 0x09, 0x00, /* nop */
1978 0, 0, 0, 0, /* 1: replaced with offset into relocation table. */
1979 };
1980
1981 static const struct elf_sh_plt_info vxworks_sh_plts[2][2] = {
1982 {
1983 {
1984 /* Big-endian non-PIC. */
1985 vxworks_sh_plt0_entry_be,
1986 VXWORKS_PLT_HEADER_SIZE,
1987 { MINUS_ONE, MINUS_ONE, 8 },
1988 vxworks_sh_plt_entry_be,
1989 VXWORKS_PLT_ENTRY_SIZE,
1990 { 8, 14, 20 },
1991 12
1992 },
1993 {
1994 /* Little-endian non-PIC. */
1995 vxworks_sh_plt0_entry_le,
1996 VXWORKS_PLT_HEADER_SIZE,
1997 { MINUS_ONE, MINUS_ONE, 8 },
1998 vxworks_sh_plt_entry_le,
1999 VXWORKS_PLT_ENTRY_SIZE,
2000 { 8, 14, 20 },
2001 12
2002 },
2003 },
2004 {
2005 {
2006 /* Big-endian PIC. */
2007 NULL,
2008 0,
2009 { MINUS_ONE, MINUS_ONE, MINUS_ONE },
2010 vxworks_sh_pic_plt_entry_be,
2011 VXWORKS_PLT_ENTRY_SIZE,
2012 { 8, MINUS_ONE, 20 },
2013 12
2014 },
2015 {
2016 /* Little-endian PIC. */
2017 NULL,
2018 0,
2019 { MINUS_ONE, MINUS_ONE, MINUS_ONE },
2020 vxworks_sh_pic_plt_entry_le,
2021 VXWORKS_PLT_ENTRY_SIZE,
2022 { 8, MINUS_ONE, 20 },
2023 12
2024 },
2025 }
2026 };
2027
2028 /* Return the type of PLT associated with ABFD. PIC_P is true if
2029 the object is position-independent. */
2030
2031 static const struct elf_sh_plt_info *
2032 get_plt_info (bfd *abfd ATTRIBUTE_UNUSED, bfd_boolean pic_p)
2033 {
2034 if (vxworks_object_p (abfd))
2035 return &vxworks_sh_plts[pic_p][!bfd_big_endian (abfd)];
2036 return &elf_sh_plts[pic_p][!bfd_big_endian (abfd)];
2037 }
2038
2039 /* Install a 32-bit PLT field starting at ADDR, which occurs in OUTPUT_BFD.
2040 VALUE is the field's value and CODE_P is true if VALUE refers to code,
2041 not data. */
2042
2043 inline static void
2044 install_plt_field (bfd *output_bfd, bfd_boolean code_p ATTRIBUTE_UNUSED,
2045 unsigned long value, bfd_byte *addr)
2046 {
2047 bfd_put_32 (output_bfd, value, addr);
2048 }
2049 #endif
2050
2051 /* Return the index of the PLT entry at byte offset OFFSET. */
2052
2053 static bfd_vma
2054 get_plt_index (const struct elf_sh_plt_info *info, bfd_vma offset)
2055 {
2056 return (offset - info->plt0_entry_size) / info->symbol_entry_size;
2057 }
2058
2059 /* Do the inverse operation. */
2060
2061 static bfd_vma
2062 get_plt_offset (const struct elf_sh_plt_info *info, bfd_vma index)
2063 {
2064 return info->plt0_entry_size + (index * info->symbol_entry_size);
2065 }
2066
2067 /* The sh linker needs to keep track of the number of relocs that it
2068 decides to copy as dynamic relocs in check_relocs for each symbol.
2069 This is so that it can later discard them if they are found to be
2070 unnecessary. We store the information in a field extending the
2071 regular ELF linker hash table. */
2072
2073 struct elf_sh_dyn_relocs
2074 {
2075 struct elf_sh_dyn_relocs *next;
2076
2077 /* The input section of the reloc. */
2078 asection *sec;
2079
2080 /* Total number of relocs copied for the input section. */
2081 bfd_size_type count;
2082
2083 /* Number of pc-relative relocs copied for the input section. */
2084 bfd_size_type pc_count;
2085 };
2086
2087 /* sh ELF linker hash entry. */
2088
2089 struct elf_sh_link_hash_entry
2090 {
2091 struct elf_link_hash_entry root;
2092
2093 #ifdef INCLUDE_SHMEDIA
2094 union
2095 {
2096 bfd_signed_vma refcount;
2097 bfd_vma offset;
2098 } datalabel_got;
2099 #endif
2100
2101 /* Track dynamic relocs copied for this symbol. */
2102 struct elf_sh_dyn_relocs *dyn_relocs;
2103
2104 bfd_signed_vma gotplt_refcount;
2105
2106 enum {
2107 GOT_UNKNOWN = 0, GOT_NORMAL, GOT_TLS_GD, GOT_TLS_IE
2108 } tls_type;
2109 };
2110
2111 #define sh_elf_hash_entry(ent) ((struct elf_sh_link_hash_entry *)(ent))
2112
2113 struct sh_elf_obj_tdata
2114 {
2115 struct elf_obj_tdata root;
2116
2117 /* tls_type for each local got entry. */
2118 char *local_got_tls_type;
2119 };
2120
2121 #define sh_elf_tdata(abfd) \
2122 ((struct sh_elf_obj_tdata *) (abfd)->tdata.any)
2123
2124 #define sh_elf_local_got_tls_type(abfd) \
2125 (sh_elf_tdata (abfd)->local_got_tls_type)
2126
2127 /* Override the generic function because we need to store sh_elf_obj_tdata
2128 as the specific tdata. */
2129
2130 static bfd_boolean
2131 sh_elf_mkobject (bfd *abfd)
2132 {
2133 if (abfd->tdata.any == NULL)
2134 {
2135 bfd_size_type amt = sizeof (struct sh_elf_obj_tdata);
2136 abfd->tdata.any = bfd_zalloc (abfd, amt);
2137 if (abfd->tdata.any == NULL)
2138 return FALSE;
2139 }
2140 return bfd_elf_mkobject (abfd);
2141 }
2142
2143 /* sh ELF linker hash table. */
2144
2145 struct elf_sh_link_hash_table
2146 {
2147 struct elf_link_hash_table root;
2148
2149 /* Short-cuts to get to dynamic linker sections. */
2150 asection *sgot;
2151 asection *sgotplt;
2152 asection *srelgot;
2153 asection *splt;
2154 asection *srelplt;
2155 asection *sdynbss;
2156 asection *srelbss;
2157
2158 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2159 asection *srelplt2;
2160
2161 /* Small local sym to section mapping cache. */
2162 struct sym_sec_cache sym_sec;
2163
2164 /* A counter or offset to track a TLS got entry. */
2165 union
2166 {
2167 bfd_signed_vma refcount;
2168 bfd_vma offset;
2169 } tls_ldm_got;
2170
2171 /* The type of PLT to use. */
2172 const struct elf_sh_plt_info *plt_info;
2173
2174 /* True if the target system is VxWorks. */
2175 bfd_boolean vxworks_p;
2176 };
2177
2178 /* Traverse an sh ELF linker hash table. */
2179
2180 #define sh_elf_link_hash_traverse(table, func, info) \
2181 (elf_link_hash_traverse \
2182 (&(table)->root, \
2183 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2184 (info)))
2185
2186 /* Get the sh ELF linker hash table from a link_info structure. */
2187
2188 #define sh_elf_hash_table(p) \
2189 ((struct elf_sh_link_hash_table *) ((p)->hash))
2190
2191 /* Create an entry in an sh ELF linker hash table. */
2192
2193 static struct bfd_hash_entry *
2194 sh_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
2195 struct bfd_hash_table *table,
2196 const char *string)
2197 {
2198 struct elf_sh_link_hash_entry *ret =
2199 (struct elf_sh_link_hash_entry *) entry;
2200
2201 /* Allocate the structure if it has not already been allocated by a
2202 subclass. */
2203 if (ret == (struct elf_sh_link_hash_entry *) NULL)
2204 ret = ((struct elf_sh_link_hash_entry *)
2205 bfd_hash_allocate (table,
2206 sizeof (struct elf_sh_link_hash_entry)));
2207 if (ret == (struct elf_sh_link_hash_entry *) NULL)
2208 return (struct bfd_hash_entry *) ret;
2209
2210 /* Call the allocation method of the superclass. */
2211 ret = ((struct elf_sh_link_hash_entry *)
2212 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2213 table, string));
2214 if (ret != (struct elf_sh_link_hash_entry *) NULL)
2215 {
2216 ret->dyn_relocs = NULL;
2217 ret->gotplt_refcount = 0;
2218 #ifdef INCLUDE_SHMEDIA
2219 ret->datalabel_got.refcount = ret->root.got.refcount;
2220 #endif
2221 ret->tls_type = GOT_UNKNOWN;
2222 }
2223
2224 return (struct bfd_hash_entry *) ret;
2225 }
2226
2227 /* Create an sh ELF linker hash table. */
2228
2229 static struct bfd_link_hash_table *
2230 sh_elf_link_hash_table_create (bfd *abfd)
2231 {
2232 struct elf_sh_link_hash_table *ret;
2233 bfd_size_type amt = sizeof (struct elf_sh_link_hash_table);
2234
2235 ret = (struct elf_sh_link_hash_table *) bfd_malloc (amt);
2236 if (ret == (struct elf_sh_link_hash_table *) NULL)
2237 return NULL;
2238
2239 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
2240 sh_elf_link_hash_newfunc,
2241 sizeof (struct elf_sh_link_hash_entry)))
2242 {
2243 free (ret);
2244 return NULL;
2245 }
2246
2247 ret->sgot = NULL;
2248 ret->sgotplt = NULL;
2249 ret->srelgot = NULL;
2250 ret->splt = NULL;
2251 ret->srelplt = NULL;
2252 ret->sdynbss = NULL;
2253 ret->srelbss = NULL;
2254 ret->srelplt2 = NULL;
2255 ret->sym_sec.abfd = NULL;
2256 ret->tls_ldm_got.refcount = 0;
2257 ret->plt_info = NULL;
2258 ret->vxworks_p = vxworks_object_p (abfd);
2259
2260 return &ret->root.root;
2261 }
2262
2263 /* Create .got, .gotplt, and .rela.got sections in DYNOBJ, and set up
2264 shortcuts to them in our hash table. */
2265
2266 static bfd_boolean
2267 create_got_section (bfd *dynobj, struct bfd_link_info *info)
2268 {
2269 struct elf_sh_link_hash_table *htab;
2270
2271 if (! _bfd_elf_create_got_section (dynobj, info))
2272 return FALSE;
2273
2274 htab = sh_elf_hash_table (info);
2275 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
2276 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
2277 if (! htab->sgot || ! htab->sgotplt)
2278 abort ();
2279
2280 htab->srelgot = bfd_make_section_with_flags (dynobj, ".rela.got",
2281 (SEC_ALLOC | SEC_LOAD
2282 | SEC_HAS_CONTENTS
2283 | SEC_IN_MEMORY
2284 | SEC_LINKER_CREATED
2285 | SEC_READONLY));
2286 if (htab->srelgot == NULL
2287 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
2288 return FALSE;
2289 return TRUE;
2290 }
2291
2292 /* Create dynamic sections when linking against a dynamic object. */
2293
2294 static bfd_boolean
2295 sh_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
2296 {
2297 struct elf_sh_link_hash_table *htab;
2298 flagword flags, pltflags;
2299 register asection *s;
2300 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2301 int ptralign = 0;
2302
2303 switch (bed->s->arch_size)
2304 {
2305 case 32:
2306 ptralign = 2;
2307 break;
2308
2309 case 64:
2310 ptralign = 3;
2311 break;
2312
2313 default:
2314 bfd_set_error (bfd_error_bad_value);
2315 return FALSE;
2316 }
2317
2318 htab = sh_elf_hash_table (info);
2319 if (htab->root.dynamic_sections_created)
2320 return TRUE;
2321
2322 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
2323 .rel[a].bss sections. */
2324
2325 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
2326 | SEC_LINKER_CREATED);
2327
2328 pltflags = flags;
2329 pltflags |= SEC_CODE;
2330 if (bed->plt_not_loaded)
2331 pltflags &= ~ (SEC_LOAD | SEC_HAS_CONTENTS);
2332 if (bed->plt_readonly)
2333 pltflags |= SEC_READONLY;
2334
2335 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
2336 htab->splt = s;
2337 if (s == NULL
2338 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
2339 return FALSE;
2340
2341 if (bed->want_plt_sym)
2342 {
2343 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
2344 .plt section. */
2345 struct elf_link_hash_entry *h;
2346 struct bfd_link_hash_entry *bh = NULL;
2347
2348 if (! (_bfd_generic_link_add_one_symbol
2349 (info, abfd, "_PROCEDURE_LINKAGE_TABLE_", BSF_GLOBAL, s,
2350 (bfd_vma) 0, (const char *) NULL, FALSE,
2351 get_elf_backend_data (abfd)->collect, &bh)))
2352 return FALSE;
2353
2354 h = (struct elf_link_hash_entry *) bh;
2355 h->def_regular = 1;
2356 h->type = STT_OBJECT;
2357 htab->root.hplt = h;
2358
2359 if (info->shared
2360 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2361 return FALSE;
2362 }
2363
2364 s = bfd_make_section_with_flags (abfd,
2365 bed->default_use_rela_p ? ".rela.plt" : ".rel.plt",
2366 flags | SEC_READONLY);
2367 htab->srelplt = s;
2368 if (s == NULL
2369 || ! bfd_set_section_alignment (abfd, s, ptralign))
2370 return FALSE;
2371
2372 if (htab->sgot == NULL
2373 && !create_got_section (abfd, info))
2374 return FALSE;
2375
2376 {
2377 const char *secname;
2378 char *relname;
2379 flagword secflags;
2380 asection *sec;
2381
2382 for (sec = abfd->sections; sec; sec = sec->next)
2383 {
2384 secflags = bfd_get_section_flags (abfd, sec);
2385 if ((secflags & (SEC_DATA | SEC_LINKER_CREATED))
2386 || ((secflags & SEC_HAS_CONTENTS) != SEC_HAS_CONTENTS))
2387 continue;
2388 secname = bfd_get_section_name (abfd, sec);
2389 relname = (char *) bfd_malloc ((bfd_size_type) strlen (secname) + 6);
2390 strcpy (relname, ".rela");
2391 strcat (relname, secname);
2392 if (bfd_get_section_by_name (abfd, secname))
2393 continue;
2394 s = bfd_make_section_with_flags (abfd, relname,
2395 flags | SEC_READONLY);
2396 if (s == NULL
2397 || ! bfd_set_section_alignment (abfd, s, ptralign))
2398 return FALSE;
2399 }
2400 }
2401
2402 if (bed->want_dynbss)
2403 {
2404 /* The .dynbss section is a place to put symbols which are defined
2405 by dynamic objects, are referenced by regular objects, and are
2406 not functions. We must allocate space for them in the process
2407 image and use a R_*_COPY reloc to tell the dynamic linker to
2408 initialize them at run time. The linker script puts the .dynbss
2409 section into the .bss section of the final image. */
2410 s = bfd_make_section_with_flags (abfd, ".dynbss",
2411 SEC_ALLOC | SEC_LINKER_CREATED);
2412 htab->sdynbss = s;
2413 if (s == NULL)
2414 return FALSE;
2415
2416 /* The .rel[a].bss section holds copy relocs. This section is not
2417 normally needed. We need to create it here, though, so that the
2418 linker will map it to an output section. We can't just create it
2419 only if we need it, because we will not know whether we need it
2420 until we have seen all the input files, and the first time the
2421 main linker code calls BFD after examining all the input files
2422 (size_dynamic_sections) the input sections have already been
2423 mapped to the output sections. If the section turns out not to
2424 be needed, we can discard it later. We will never need this
2425 section when generating a shared object, since they do not use
2426 copy relocs. */
2427 if (! info->shared)
2428 {
2429 s = bfd_make_section_with_flags (abfd,
2430 (bed->default_use_rela_p
2431 ? ".rela.bss" : ".rel.bss"),
2432 flags | SEC_READONLY);
2433 htab->srelbss = s;
2434 if (s == NULL
2435 || ! bfd_set_section_alignment (abfd, s, ptralign))
2436 return FALSE;
2437 }
2438 }
2439
2440 if (htab->vxworks_p)
2441 {
2442 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
2443 return FALSE;
2444 }
2445
2446 return TRUE;
2447 }
2448 \f
2449 /* Adjust a symbol defined by a dynamic object and referenced by a
2450 regular object. The current definition is in some section of the
2451 dynamic object, but we're not including those sections. We have to
2452 change the definition to something the rest of the link can
2453 understand. */
2454
2455 static bfd_boolean
2456 sh_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
2457 struct elf_link_hash_entry *h)
2458 {
2459 struct elf_sh_link_hash_table *htab;
2460 struct elf_sh_link_hash_entry *eh;
2461 struct elf_sh_dyn_relocs *p;
2462 asection *s;
2463 unsigned int power_of_two;
2464
2465 htab = sh_elf_hash_table (info);
2466
2467 /* Make sure we know what is going on here. */
2468 BFD_ASSERT (htab->root.dynobj != NULL
2469 && (h->needs_plt
2470 || h->u.weakdef != NULL
2471 || (h->def_dynamic
2472 && h->ref_regular
2473 && !h->def_regular)));
2474
2475 /* If this is a function, put it in the procedure linkage table. We
2476 will fill in the contents of the procedure linkage table later,
2477 when we know the address of the .got section. */
2478 if (h->type == STT_FUNC
2479 || h->needs_plt)
2480 {
2481 if (h->plt.refcount <= 0
2482 || SYMBOL_CALLS_LOCAL (info, h)
2483 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2484 && h->root.type == bfd_link_hash_undefweak))
2485 {
2486 /* This case can occur if we saw a PLT reloc in an input
2487 file, but the symbol was never referred to by a dynamic
2488 object. In such a case, we don't actually need to build
2489 a procedure linkage table, and we can just do a REL32
2490 reloc instead. */
2491 h->plt.offset = (bfd_vma) -1;
2492 h->needs_plt = 0;
2493 }
2494
2495 return TRUE;
2496 }
2497 else
2498 h->plt.offset = (bfd_vma) -1;
2499
2500 /* If this is a weak symbol, and there is a real definition, the
2501 processor independent code will have arranged for us to see the
2502 real definition first, and we can just use the same value. */
2503 if (h->u.weakdef != NULL)
2504 {
2505 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
2506 || h->u.weakdef->root.type == bfd_link_hash_defweak);
2507 h->root.u.def.section = h->u.weakdef->root.u.def.section;
2508 h->root.u.def.value = h->u.weakdef->root.u.def.value;
2509 if (info->nocopyreloc)
2510 h->non_got_ref = h->u.weakdef->non_got_ref;
2511 return TRUE;
2512 }
2513
2514 /* This is a reference to a symbol defined by a dynamic object which
2515 is not a function. */
2516
2517 /* If we are creating a shared library, we must presume that the
2518 only references to the symbol are via the global offset table.
2519 For such cases we need not do anything here; the relocations will
2520 be handled correctly by relocate_section. */
2521 if (info->shared)
2522 return TRUE;
2523
2524 /* If there are no references to this symbol that do not use the
2525 GOT, we don't need to generate a copy reloc. */
2526 if (!h->non_got_ref)
2527 return TRUE;
2528
2529 /* If -z nocopyreloc was given, we won't generate them either. */
2530 if (info->nocopyreloc)
2531 {
2532 h->non_got_ref = 0;
2533 return TRUE;
2534 }
2535
2536 eh = (struct elf_sh_link_hash_entry *) h;
2537 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2538 {
2539 s = p->sec->output_section;
2540 if (s != NULL && (s->flags & (SEC_READONLY | SEC_HAS_CONTENTS)) != 0)
2541 break;
2542 }
2543
2544 /* If we didn't find any dynamic relocs in sections which needs the
2545 copy reloc, then we'll be keeping the dynamic relocs and avoiding
2546 the copy reloc. */
2547 if (p == NULL)
2548 {
2549 h->non_got_ref = 0;
2550 return TRUE;
2551 }
2552
2553 if (h->size == 0)
2554 {
2555 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
2556 h->root.root.string);
2557 return TRUE;
2558 }
2559
2560 /* We must allocate the symbol in our .dynbss section, which will
2561 become part of the .bss section of the executable. There will be
2562 an entry for this symbol in the .dynsym section. The dynamic
2563 object will contain position independent code, so all references
2564 from the dynamic object to this symbol will go through the global
2565 offset table. The dynamic linker will use the .dynsym entry to
2566 determine the address it must put in the global offset table, so
2567 both the dynamic object and the regular object will refer to the
2568 same memory location for the variable. */
2569
2570 s = htab->sdynbss;
2571 BFD_ASSERT (s != NULL);
2572
2573 /* We must generate a R_SH_COPY reloc to tell the dynamic linker to
2574 copy the initial value out of the dynamic object and into the
2575 runtime process image. We need to remember the offset into the
2576 .rela.bss section we are going to use. */
2577 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
2578 {
2579 asection *srel;
2580
2581 srel = htab->srelbss;
2582 BFD_ASSERT (srel != NULL);
2583 srel->size += sizeof (Elf32_External_Rela);
2584 h->needs_copy = 1;
2585 }
2586
2587 /* We need to figure out the alignment required for this symbol. I
2588 have no idea how ELF linkers handle this. */
2589 power_of_two = bfd_log2 (h->size);
2590 if (power_of_two > 3)
2591 power_of_two = 3;
2592
2593 /* Apply the required alignment. */
2594 s->size = BFD_ALIGN (s->size, (bfd_size_type) (1 << power_of_two));
2595 if (power_of_two > bfd_get_section_alignment (htab->root.dynobj, s))
2596 {
2597 if (! bfd_set_section_alignment (htab->root.dynobj, s, power_of_two))
2598 return FALSE;
2599 }
2600
2601 /* Define the symbol as being at this point in the section. */
2602 h->root.u.def.section = s;
2603 h->root.u.def.value = s->size;
2604
2605 /* Increment the section size to make room for the symbol. */
2606 s->size += h->size;
2607
2608 return TRUE;
2609 }
2610
2611 /* Allocate space in .plt, .got and associated reloc sections for
2612 dynamic relocs. */
2613
2614 static bfd_boolean
2615 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
2616 {
2617 struct bfd_link_info *info;
2618 struct elf_sh_link_hash_table *htab;
2619 struct elf_sh_link_hash_entry *eh;
2620 struct elf_sh_dyn_relocs *p;
2621
2622 if (h->root.type == bfd_link_hash_indirect)
2623 return TRUE;
2624
2625 if (h->root.type == bfd_link_hash_warning)
2626 /* When warning symbols are created, they **replace** the "real"
2627 entry in the hash table, thus we never get to see the real
2628 symbol in a hash traversal. So look at it now. */
2629 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2630
2631 info = (struct bfd_link_info *) inf;
2632 htab = sh_elf_hash_table (info);
2633
2634 eh = (struct elf_sh_link_hash_entry *) h;
2635 if ((h->got.refcount > 0
2636 || h->forced_local)
2637 && eh->gotplt_refcount > 0)
2638 {
2639 /* The symbol has been forced local, or we have some direct got refs,
2640 so treat all the gotplt refs as got refs. */
2641 h->got.refcount += eh->gotplt_refcount;
2642 if (h->plt.refcount >= eh->gotplt_refcount)
2643 h->plt.refcount -= eh->gotplt_refcount;
2644 }
2645
2646 if (htab->root.dynamic_sections_created
2647 && h->plt.refcount > 0
2648 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2649 || h->root.type != bfd_link_hash_undefweak))
2650 {
2651 /* Make sure this symbol is output as a dynamic symbol.
2652 Undefined weak syms won't yet be marked as dynamic. */
2653 if (h->dynindx == -1
2654 && !h->forced_local)
2655 {
2656 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2657 return FALSE;
2658 }
2659
2660 if (info->shared
2661 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
2662 {
2663 asection *s = htab->splt;
2664
2665 /* If this is the first .plt entry, make room for the special
2666 first entry. */
2667 if (s->size == 0)
2668 s->size += htab->plt_info->plt0_entry_size;
2669
2670 h->plt.offset = s->size;
2671
2672 /* If this symbol is not defined in a regular file, and we are
2673 not generating a shared library, then set the symbol to this
2674 location in the .plt. This is required to make function
2675 pointers compare as equal between the normal executable and
2676 the shared library. */
2677 if (! info->shared
2678 && !h->def_regular)
2679 {
2680 h->root.u.def.section = s;
2681 h->root.u.def.value = h->plt.offset;
2682 }
2683
2684 /* Make room for this entry. */
2685 s->size += htab->plt_info->symbol_entry_size;
2686
2687 /* We also need to make an entry in the .got.plt section, which
2688 will be placed in the .got section by the linker script. */
2689 htab->sgotplt->size += 4;
2690
2691 /* We also need to make an entry in the .rel.plt section. */
2692 htab->srelplt->size += sizeof (Elf32_External_Rela);
2693
2694 if (htab->vxworks_p && !info->shared)
2695 {
2696 /* VxWorks executables have a second set of relocations
2697 for each PLT entry. They go in a separate relocation
2698 section, which is processed by the kernel loader. */
2699
2700 /* There is a relocation for the initial PLT entry:
2701 an R_SH_DIR32 relocation for _GLOBAL_OFFSET_TABLE_. */
2702 if (h->plt.offset == htab->plt_info->plt0_entry_size)
2703 htab->srelplt2->size += sizeof (Elf32_External_Rela);
2704
2705 /* There are two extra relocations for each subsequent
2706 PLT entry: an R_SH_DIR32 relocation for the GOT entry,
2707 and an R_SH_DIR32 relocation for the PLT entry. */
2708 htab->srelplt2->size += sizeof (Elf32_External_Rela) * 2;
2709 }
2710 }
2711 else
2712 {
2713 h->plt.offset = (bfd_vma) -1;
2714 h->needs_plt = 0;
2715 }
2716 }
2717 else
2718 {
2719 h->plt.offset = (bfd_vma) -1;
2720 h->needs_plt = 0;
2721 }
2722
2723 if (h->got.refcount > 0)
2724 {
2725 asection *s;
2726 bfd_boolean dyn;
2727 int tls_type = sh_elf_hash_entry (h)->tls_type;
2728
2729 /* Make sure this symbol is output as a dynamic symbol.
2730 Undefined weak syms won't yet be marked as dynamic. */
2731 if (h->dynindx == -1
2732 && !h->forced_local)
2733 {
2734 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2735 return FALSE;
2736 }
2737
2738 s = htab->sgot;
2739 h->got.offset = s->size;
2740 s->size += 4;
2741 /* R_SH_TLS_GD needs 2 consecutive GOT slots. */
2742 if (tls_type == GOT_TLS_GD)
2743 s->size += 4;
2744 dyn = htab->root.dynamic_sections_created;
2745 /* R_SH_TLS_IE_32 needs one dynamic relocation if dynamic,
2746 R_SH_TLS_GD needs one if local symbol and two if global. */
2747 if ((tls_type == GOT_TLS_GD && h->dynindx == -1)
2748 || (tls_type == GOT_TLS_IE && dyn))
2749 htab->srelgot->size += sizeof (Elf32_External_Rela);
2750 else if (tls_type == GOT_TLS_GD)
2751 htab->srelgot->size += 2 * sizeof (Elf32_External_Rela);
2752 else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2753 || h->root.type != bfd_link_hash_undefweak)
2754 && (info->shared
2755 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
2756 htab->srelgot->size += sizeof (Elf32_External_Rela);
2757 }
2758 else
2759 h->got.offset = (bfd_vma) -1;
2760
2761 #ifdef INCLUDE_SHMEDIA
2762 if (eh->datalabel_got.refcount > 0)
2763 {
2764 asection *s;
2765 bfd_boolean dyn;
2766
2767 /* Make sure this symbol is output as a dynamic symbol.
2768 Undefined weak syms won't yet be marked as dynamic. */
2769 if (h->dynindx == -1
2770 && !h->forced_local)
2771 {
2772 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2773 return FALSE;
2774 }
2775
2776 s = htab->sgot;
2777 eh->datalabel_got.offset = s->size;
2778 s->size += 4;
2779 dyn = htab->root.dynamic_sections_created;
2780 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h))
2781 htab->srelgot->size += sizeof (Elf32_External_Rela);
2782 }
2783 else
2784 eh->datalabel_got.offset = (bfd_vma) -1;
2785 #endif
2786
2787 if (eh->dyn_relocs == NULL)
2788 return TRUE;
2789
2790 /* In the shared -Bsymbolic case, discard space allocated for
2791 dynamic pc-relative relocs against symbols which turn out to be
2792 defined in regular objects. For the normal shared case, discard
2793 space for pc-relative relocs that have become local due to symbol
2794 visibility changes. */
2795
2796 if (info->shared)
2797 {
2798 if (SYMBOL_CALLS_LOCAL (info, h))
2799 {
2800 struct elf_sh_dyn_relocs **pp;
2801
2802 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2803 {
2804 p->count -= p->pc_count;
2805 p->pc_count = 0;
2806 if (p->count == 0)
2807 *pp = p->next;
2808 else
2809 pp = &p->next;
2810 }
2811 }
2812
2813 /* Also discard relocs on undefined weak syms with non-default
2814 visibility. */
2815 if (eh->dyn_relocs != NULL
2816 && h->root.type == bfd_link_hash_undefweak)
2817 {
2818 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2819 eh->dyn_relocs = NULL;
2820
2821 /* Make sure undefined weak symbols are output as a dynamic
2822 symbol in PIEs. */
2823 else if (h->dynindx == -1
2824 && !h->forced_local)
2825 {
2826 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2827 return FALSE;
2828 }
2829 }
2830 }
2831 else
2832 {
2833 /* For the non-shared case, discard space for relocs against
2834 symbols which turn out to need copy relocs or are not
2835 dynamic. */
2836
2837 if (!h->non_got_ref
2838 && ((h->def_dynamic
2839 && !h->def_regular)
2840 || (htab->root.dynamic_sections_created
2841 && (h->root.type == bfd_link_hash_undefweak
2842 || h->root.type == bfd_link_hash_undefined))))
2843 {
2844 /* Make sure this symbol is output as a dynamic symbol.
2845 Undefined weak syms won't yet be marked as dynamic. */
2846 if (h->dynindx == -1
2847 && !h->forced_local)
2848 {
2849 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2850 return FALSE;
2851 }
2852
2853 /* If that succeeded, we know we'll be keeping all the
2854 relocs. */
2855 if (h->dynindx != -1)
2856 goto keep;
2857 }
2858
2859 eh->dyn_relocs = NULL;
2860
2861 keep: ;
2862 }
2863
2864 /* Finally, allocate space. */
2865 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2866 {
2867 asection *sreloc = elf_section_data (p->sec)->sreloc;
2868 sreloc->size += p->count * sizeof (Elf32_External_Rela);
2869 }
2870
2871 return TRUE;
2872 }
2873
2874 /* Find any dynamic relocs that apply to read-only sections. */
2875
2876 static bfd_boolean
2877 readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
2878 {
2879 struct elf_sh_link_hash_entry *eh;
2880 struct elf_sh_dyn_relocs *p;
2881
2882 if (h->root.type == bfd_link_hash_warning)
2883 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2884
2885 eh = (struct elf_sh_link_hash_entry *) h;
2886 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2887 {
2888 asection *s = p->sec->output_section;
2889
2890 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2891 {
2892 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2893
2894 info->flags |= DF_TEXTREL;
2895
2896 /* Not an error, just cut short the traversal. */
2897 return FALSE;
2898 }
2899 }
2900 return TRUE;
2901 }
2902
2903 /* This function is called after all the input files have been read,
2904 and the input sections have been assigned to output sections.
2905 It's a convenient place to determine the PLT style. */
2906
2907 static bfd_boolean
2908 sh_elf_always_size_sections (bfd *output_bfd, struct bfd_link_info *info)
2909 {
2910 sh_elf_hash_table (info)->plt_info = get_plt_info (output_bfd, info->shared);
2911 return TRUE;
2912 }
2913
2914 /* Set the sizes of the dynamic sections. */
2915
2916 static bfd_boolean
2917 sh_elf_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2918 struct bfd_link_info *info)
2919 {
2920 struct elf_sh_link_hash_table *htab;
2921 bfd *dynobj;
2922 asection *s;
2923 bfd_boolean relocs;
2924 bfd *ibfd;
2925
2926 htab = sh_elf_hash_table (info);
2927 dynobj = htab->root.dynobj;
2928 BFD_ASSERT (dynobj != NULL);
2929
2930 if (htab->root.dynamic_sections_created)
2931 {
2932 /* Set the contents of the .interp section to the interpreter. */
2933 if (info->executable)
2934 {
2935 s = bfd_get_section_by_name (dynobj, ".interp");
2936 BFD_ASSERT (s != NULL);
2937 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
2938 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2939 }
2940 }
2941
2942 /* Set up .got offsets for local syms, and space for local dynamic
2943 relocs. */
2944 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2945 {
2946 bfd_signed_vma *local_got;
2947 bfd_signed_vma *end_local_got;
2948 char *local_tls_type;
2949 bfd_size_type locsymcount;
2950 Elf_Internal_Shdr *symtab_hdr;
2951 asection *srel;
2952
2953 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2954 continue;
2955
2956 for (s = ibfd->sections; s != NULL; s = s->next)
2957 {
2958 struct elf_sh_dyn_relocs *p;
2959
2960 for (p = ((struct elf_sh_dyn_relocs *)
2961 elf_section_data (s)->local_dynrel);
2962 p != NULL;
2963 p = p->next)
2964 {
2965 if (! bfd_is_abs_section (p->sec)
2966 && bfd_is_abs_section (p->sec->output_section))
2967 {
2968 /* Input section has been discarded, either because
2969 it is a copy of a linkonce section or due to
2970 linker script /DISCARD/, so we'll be discarding
2971 the relocs too. */
2972 }
2973 else if (p->count != 0)
2974 {
2975 srel = elf_section_data (p->sec)->sreloc;
2976 srel->size += p->count * sizeof (Elf32_External_Rela);
2977 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
2978 info->flags |= DF_TEXTREL;
2979 }
2980 }
2981 }
2982
2983 local_got = elf_local_got_refcounts (ibfd);
2984 if (!local_got)
2985 continue;
2986
2987 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2988 locsymcount = symtab_hdr->sh_info;
2989 #ifdef INCLUDE_SHMEDIA
2990 /* Count datalabel local GOT. */
2991 locsymcount *= 2;
2992 #endif
2993 end_local_got = local_got + locsymcount;
2994 local_tls_type = sh_elf_local_got_tls_type (ibfd);
2995 s = htab->sgot;
2996 srel = htab->srelgot;
2997 for (; local_got < end_local_got; ++local_got)
2998 {
2999 if (*local_got > 0)
3000 {
3001 *local_got = s->size;
3002 s->size += 4;
3003 if (*local_tls_type == GOT_TLS_GD)
3004 s->size += 4;
3005 if (info->shared)
3006 srel->size += sizeof (Elf32_External_Rela);
3007 }
3008 else
3009 *local_got = (bfd_vma) -1;
3010 ++local_tls_type;
3011 }
3012 }
3013
3014 if (htab->tls_ldm_got.refcount > 0)
3015 {
3016 /* Allocate 2 got entries and 1 dynamic reloc for R_SH_TLS_LD_32
3017 relocs. */
3018 htab->tls_ldm_got.offset = htab->sgot->size;
3019 htab->sgot->size += 8;
3020 htab->srelgot->size += sizeof (Elf32_External_Rela);
3021 }
3022 else
3023 htab->tls_ldm_got.offset = -1;
3024
3025 /* Allocate global sym .plt and .got entries, and space for global
3026 sym dynamic relocs. */
3027 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
3028
3029 /* We now have determined the sizes of the various dynamic sections.
3030 Allocate memory for them. */
3031 relocs = FALSE;
3032 for (s = dynobj->sections; s != NULL; s = s->next)
3033 {
3034 if ((s->flags & SEC_LINKER_CREATED) == 0)
3035 continue;
3036
3037 if (s == htab->splt
3038 || s == htab->sgot
3039 || s == htab->sgotplt
3040 || s == htab->sdynbss)
3041 {
3042 /* Strip this section if we don't need it; see the
3043 comment below. */
3044 }
3045 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
3046 {
3047 if (s->size != 0 && s != htab->srelplt && s != htab->srelplt2)
3048 relocs = TRUE;
3049
3050 /* We use the reloc_count field as a counter if we need
3051 to copy relocs into the output file. */
3052 s->reloc_count = 0;
3053 }
3054 else
3055 {
3056 /* It's not one of our sections, so don't allocate space. */
3057 continue;
3058 }
3059
3060 if (s->size == 0)
3061 {
3062 /* If we don't need this section, strip it from the
3063 output file. This is mostly to handle .rela.bss and
3064 .rela.plt. We must create both sections in
3065 create_dynamic_sections, because they must be created
3066 before the linker maps input sections to output
3067 sections. The linker does that before
3068 adjust_dynamic_symbol is called, and it is that
3069 function which decides whether anything needs to go
3070 into these sections. */
3071
3072 s->flags |= SEC_EXCLUDE;
3073 continue;
3074 }
3075
3076 if ((s->flags & SEC_HAS_CONTENTS) == 0)
3077 continue;
3078
3079 /* Allocate memory for the section contents. We use bfd_zalloc
3080 here in case unused entries are not reclaimed before the
3081 section's contents are written out. This should not happen,
3082 but this way if it does, we get a R_SH_NONE reloc instead
3083 of garbage. */
3084 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
3085 if (s->contents == NULL)
3086 return FALSE;
3087 }
3088
3089 if (htab->root.dynamic_sections_created)
3090 {
3091 /* Add some entries to the .dynamic section. We fill in the
3092 values later, in sh_elf_finish_dynamic_sections, but we
3093 must add the entries now so that we get the correct size for
3094 the .dynamic section. The DT_DEBUG entry is filled in by the
3095 dynamic linker and used by the debugger. */
3096 #define add_dynamic_entry(TAG, VAL) \
3097 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3098
3099 if (info->executable)
3100 {
3101 if (! add_dynamic_entry (DT_DEBUG, 0))
3102 return FALSE;
3103 }
3104
3105 if (htab->splt->size != 0)
3106 {
3107 if (! add_dynamic_entry (DT_PLTGOT, 0)
3108 || ! add_dynamic_entry (DT_PLTRELSZ, 0)
3109 || ! add_dynamic_entry (DT_PLTREL, DT_RELA)
3110 || ! add_dynamic_entry (DT_JMPREL, 0))
3111 return FALSE;
3112 }
3113
3114 if (relocs)
3115 {
3116 if (! add_dynamic_entry (DT_RELA, 0)
3117 || ! add_dynamic_entry (DT_RELASZ, 0)
3118 || ! add_dynamic_entry (DT_RELAENT,
3119 sizeof (Elf32_External_Rela)))
3120 return FALSE;
3121
3122 /* If any dynamic relocs apply to a read-only section,
3123 then we need a DT_TEXTREL entry. */
3124 if ((info->flags & DF_TEXTREL) == 0)
3125 elf_link_hash_traverse (&htab->root, readonly_dynrelocs, info);
3126
3127 if ((info->flags & DF_TEXTREL) != 0)
3128 {
3129 if (! add_dynamic_entry (DT_TEXTREL, 0))
3130 return FALSE;
3131 }
3132 }
3133 }
3134 #undef add_dynamic_entry
3135
3136 return TRUE;
3137 }
3138 \f
3139 /* Relocate an SH ELF section. */
3140
3141 static bfd_boolean
3142 sh_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
3143 bfd *input_bfd, asection *input_section,
3144 bfd_byte *contents, Elf_Internal_Rela *relocs,
3145 Elf_Internal_Sym *local_syms,
3146 asection **local_sections)
3147 {
3148 struct elf_sh_link_hash_table *htab;
3149 Elf_Internal_Shdr *symtab_hdr;
3150 struct elf_link_hash_entry **sym_hashes;
3151 Elf_Internal_Rela *rel, *relend;
3152 bfd *dynobj;
3153 bfd_vma *local_got_offsets;
3154 asection *sgot;
3155 asection *sgotplt;
3156 asection *splt;
3157 asection *sreloc;
3158 asection *srelgot;
3159
3160 htab = sh_elf_hash_table (info);
3161 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3162 sym_hashes = elf_sym_hashes (input_bfd);
3163 dynobj = htab->root.dynobj;
3164 local_got_offsets = elf_local_got_offsets (input_bfd);
3165
3166 sgot = htab->sgot;
3167 sgotplt = htab->sgotplt;
3168 splt = htab->splt;
3169 sreloc = NULL;
3170 srelgot = NULL;
3171
3172 rel = relocs;
3173 relend = relocs + input_section->reloc_count;
3174 for (; rel < relend; rel++)
3175 {
3176 int r_type;
3177 reloc_howto_type *howto;
3178 unsigned long r_symndx;
3179 Elf_Internal_Sym *sym;
3180 asection *sec;
3181 struct elf_link_hash_entry *h;
3182 bfd_vma relocation;
3183 bfd_vma addend = (bfd_vma) 0;
3184 bfd_reloc_status_type r;
3185 int seen_stt_datalabel = 0;
3186 bfd_vma off;
3187 int tls_type;
3188
3189 r_symndx = ELF32_R_SYM (rel->r_info);
3190
3191 r_type = ELF32_R_TYPE (rel->r_info);
3192
3193 /* Many of the relocs are only used for relaxing, and are
3194 handled entirely by the relaxation code. */
3195 if (r_type >= (int) R_SH_GNU_VTINHERIT
3196 && r_type <= (int) R_SH_LABEL)
3197 continue;
3198 if (r_type == (int) R_SH_NONE)
3199 continue;
3200
3201 if (r_type < 0
3202 || r_type >= R_SH_max
3203 || (r_type >= (int) R_SH_FIRST_INVALID_RELOC
3204 && r_type <= (int) R_SH_LAST_INVALID_RELOC)
3205 || ( r_type >= (int) R_SH_FIRST_INVALID_RELOC_3
3206 && r_type <= (int) R_SH_LAST_INVALID_RELOC_3)
3207 || ( r_type >= (int) R_SH_FIRST_INVALID_RELOC_4
3208 && r_type <= (int) R_SH_LAST_INVALID_RELOC_4)
3209 || ( r_type >= (int) R_SH_FIRST_INVALID_RELOC_5
3210 && r_type <= (int) R_SH_LAST_INVALID_RELOC_5)
3211 || (r_type >= (int) R_SH_FIRST_INVALID_RELOC_2
3212 && r_type <= (int) R_SH_LAST_INVALID_RELOC_2))
3213 {
3214 bfd_set_error (bfd_error_bad_value);
3215 return FALSE;
3216 }
3217
3218 howto = get_howto_table (output_bfd) + r_type;
3219
3220 /* For relocs that aren't partial_inplace, we get the addend from
3221 the relocation. */
3222 if (! howto->partial_inplace)
3223 addend = rel->r_addend;
3224
3225 h = NULL;
3226 sym = NULL;
3227 sec = NULL;
3228 if (r_symndx < symtab_hdr->sh_info)
3229 {
3230 sym = local_syms + r_symndx;
3231 sec = local_sections[r_symndx];
3232 relocation = (sec->output_section->vma
3233 + sec->output_offset
3234 + sym->st_value);
3235 /* A local symbol never has STO_SH5_ISA32, so we don't need
3236 datalabel processing here. Make sure this does not change
3237 without notice. */
3238 if ((sym->st_other & STO_SH5_ISA32) != 0)
3239 ((*info->callbacks->reloc_dangerous)
3240 (info,
3241 _("Unexpected STO_SH5_ISA32 on local symbol is not handled"),
3242 input_bfd, input_section, rel->r_offset));
3243 if (info->relocatable)
3244 {
3245 /* This is a relocatable link. We don't have to change
3246 anything, unless the reloc is against a section symbol,
3247 in which case we have to adjust according to where the
3248 section symbol winds up in the output section. */
3249 sym = local_syms + r_symndx;
3250 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3251 {
3252 if (! howto->partial_inplace)
3253 {
3254 /* For relocations with the addend in the
3255 relocation, we need just to update the addend.
3256 All real relocs are of type partial_inplace; this
3257 code is mostly for completeness. */
3258 rel->r_addend += sec->output_offset + sym->st_value;
3259
3260 continue;
3261 }
3262
3263 /* Relocs of type partial_inplace need to pick up the
3264 contents in the contents and add the offset resulting
3265 from the changed location of the section symbol.
3266 Using _bfd_final_link_relocate (e.g. goto
3267 final_link_relocate) here would be wrong, because
3268 relocations marked pc_relative would get the current
3269 location subtracted, and we must only do that at the
3270 final link. */
3271 r = _bfd_relocate_contents (howto, input_bfd,
3272 sec->output_offset
3273 + sym->st_value,
3274 contents + rel->r_offset);
3275 goto relocation_done;
3276 }
3277
3278 continue;
3279 }
3280 else if (! howto->partial_inplace)
3281 {
3282 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
3283 addend = rel->r_addend;
3284 }
3285 else if ((sec->flags & SEC_MERGE)
3286 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3287 {
3288 asection *msec;
3289
3290 if (howto->rightshift || howto->src_mask != 0xffffffff)
3291 {
3292 (*_bfd_error_handler)
3293 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
3294 input_bfd, input_section,
3295 (long) rel->r_offset, howto->name);
3296 return FALSE;
3297 }
3298
3299 addend = bfd_get_32 (input_bfd, contents + rel->r_offset);
3300 msec = sec;
3301 addend =
3302 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
3303 - relocation;
3304 addend += msec->output_section->vma + msec->output_offset;
3305 bfd_put_32 (input_bfd, addend, contents + rel->r_offset);
3306 addend = 0;
3307 }
3308 }
3309 else
3310 {
3311 /* FIXME: Ought to make use of the RELOC_FOR_GLOBAL_SYMBOL macro. */
3312
3313 /* Section symbol are never (?) placed in the hash table, so
3314 we can just ignore hash relocations when creating a
3315 relocatable object file. */
3316 if (info->relocatable)
3317 continue;
3318
3319 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
3320 while (h->root.type == bfd_link_hash_indirect
3321 || h->root.type == bfd_link_hash_warning)
3322 {
3323 #ifdef INCLUDE_SHMEDIA
3324 /* If the reference passes a symbol marked with
3325 STT_DATALABEL, then any STO_SH5_ISA32 on the final value
3326 doesn't count. */
3327 seen_stt_datalabel |= h->type == STT_DATALABEL;
3328 #endif
3329 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3330 }
3331 if (h->root.type == bfd_link_hash_defined
3332 || h->root.type == bfd_link_hash_defweak)
3333 {
3334 bfd_boolean dyn;
3335
3336 dyn = htab->root.dynamic_sections_created;
3337 sec = h->root.u.def.section;
3338 /* In these cases, we don't need the relocation value.
3339 We check specially because in some obscure cases
3340 sec->output_section will be NULL. */
3341 if (r_type == R_SH_GOTPC
3342 || r_type == R_SH_GOTPC_LOW16
3343 || r_type == R_SH_GOTPC_MEDLOW16
3344 || r_type == R_SH_GOTPC_MEDHI16
3345 || r_type == R_SH_GOTPC_HI16
3346 || ((r_type == R_SH_PLT32
3347 || r_type == R_SH_PLT_LOW16
3348 || r_type == R_SH_PLT_MEDLOW16
3349 || r_type == R_SH_PLT_MEDHI16
3350 || r_type == R_SH_PLT_HI16)
3351 && h->plt.offset != (bfd_vma) -1)
3352 || ((r_type == R_SH_GOT32
3353 || r_type == R_SH_GOT_LOW16
3354 || r_type == R_SH_GOT_MEDLOW16
3355 || r_type == R_SH_GOT_MEDHI16
3356 || r_type == R_SH_GOT_HI16)
3357 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3358 && (! info->shared
3359 || (! info->symbolic && h->dynindx != -1)
3360 || !h->def_regular))
3361 /* The cases above are those in which relocation is
3362 overwritten in the switch block below. The cases
3363 below are those in which we must defer relocation
3364 to run-time, because we can't resolve absolute
3365 addresses when creating a shared library. */
3366 || (info->shared
3367 && ((! info->symbolic && h->dynindx != -1)
3368 || !h->def_regular)
3369 && ((r_type == R_SH_DIR32
3370 && !h->forced_local)
3371 || (r_type == R_SH_REL32
3372 && !SYMBOL_CALLS_LOCAL (info, h)))
3373 && ((input_section->flags & SEC_ALLOC) != 0
3374 /* DWARF will emit R_SH_DIR32 relocations in its
3375 sections against symbols defined externally
3376 in shared libraries. We can't do anything
3377 with them here. */
3378 || ((input_section->flags & SEC_DEBUGGING) != 0
3379 && h->def_dynamic)))
3380 /* Dynamic relocs are not propagated for SEC_DEBUGGING
3381 sections because such sections are not SEC_ALLOC and
3382 thus ld.so will not process them. */
3383 || (sec->output_section == NULL
3384 && ((input_section->flags & SEC_DEBUGGING) != 0
3385 && h->def_dynamic))
3386 || (sec->output_section == NULL
3387 && (sh_elf_hash_entry (h)->tls_type == GOT_TLS_IE
3388 || sh_elf_hash_entry (h)->tls_type == GOT_TLS_GD)))
3389 relocation = 0;
3390 else if (sec->output_section == NULL)
3391 {
3392 (*_bfd_error_handler)
3393 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3394 input_bfd,
3395 input_section,
3396 (long) rel->r_offset,
3397 howto->name,
3398 h->root.root.string);
3399 return FALSE;
3400 }
3401 else
3402 relocation = ((h->root.u.def.value
3403 + sec->output_section->vma
3404 + sec->output_offset)
3405 /* A STO_SH5_ISA32 causes a "bitor 1" to the
3406 symbol value, unless we've seen
3407 STT_DATALABEL on the way to it. */
3408 | ((h->other & STO_SH5_ISA32) != 0
3409 && ! seen_stt_datalabel));
3410 }
3411 else if (h->root.type == bfd_link_hash_undefweak)
3412 relocation = 0;
3413 else if (info->unresolved_syms_in_objects == RM_IGNORE
3414 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3415 relocation = 0;
3416 else
3417 {
3418 if (! info->callbacks->undefined_symbol
3419 (info, h->root.root.string, input_bfd,
3420 input_section, rel->r_offset,
3421 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
3422 || ELF_ST_VISIBILITY (h->other))))
3423 return FALSE;
3424 relocation = 0;
3425 }
3426 }
3427
3428 switch ((int) r_type)
3429 {
3430 final_link_relocate:
3431 /* COFF relocs don't use the addend. The addend is used for
3432 R_SH_DIR32 to be compatible with other compilers. */
3433 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
3434 contents, rel->r_offset,
3435 relocation, addend);
3436 break;
3437
3438 case R_SH_IND12W:
3439 goto final_link_relocate;
3440
3441 case R_SH_DIR8WPN:
3442 case R_SH_DIR8WPZ:
3443 case R_SH_DIR8WPL:
3444 /* If the reloc is against the start of this section, then
3445 the assembler has already taken care of it and the reloc
3446 is here only to assist in relaxing. If the reloc is not
3447 against the start of this section, then it's against an
3448 external symbol and we must deal with it ourselves. */
3449 if (input_section->output_section->vma + input_section->output_offset
3450 != relocation)
3451 {
3452 int disp = (relocation
3453 - input_section->output_section->vma
3454 - input_section->output_offset
3455 - rel->r_offset);
3456 int mask = 0;
3457 switch (r_type)
3458 {
3459 case R_SH_DIR8WPN:
3460 case R_SH_DIR8WPZ: mask = 1; break;
3461 case R_SH_DIR8WPL: mask = 3; break;
3462 default: mask = 0; break;
3463 }
3464 if (disp & mask)
3465 {
3466 ((*_bfd_error_handler)
3467 (_("%B: 0x%lx: fatal: unaligned branch target for relax-support relocation"),
3468 input_section->owner,
3469 (unsigned long) rel->r_offset));
3470 bfd_set_error (bfd_error_bad_value);
3471 return FALSE;
3472 }
3473 relocation -= 4;
3474 goto final_link_relocate;
3475 }
3476 r = bfd_reloc_ok;
3477 break;
3478
3479 default:
3480 #ifdef INCLUDE_SHMEDIA
3481 if (shmedia_prepare_reloc (info, input_bfd, input_section,
3482 contents, rel, &relocation))
3483 goto final_link_relocate;
3484 #endif
3485 bfd_set_error (bfd_error_bad_value);
3486 return FALSE;
3487
3488 case R_SH_DIR16:
3489 case R_SH_DIR8:
3490 case R_SH_DIR8U:
3491 case R_SH_DIR8S:
3492 case R_SH_DIR4U:
3493 goto final_link_relocate;
3494
3495 case R_SH_DIR8UL:
3496 case R_SH_DIR4UL:
3497 if (relocation & 3)
3498 {
3499 ((*_bfd_error_handler)
3500 (_("%B: 0x%lx: fatal: unaligned %s relocation 0x%lx"),
3501 input_section->owner,
3502 (unsigned long) rel->r_offset, howto->name,
3503 (unsigned long) relocation));
3504 bfd_set_error (bfd_error_bad_value);
3505 return FALSE;
3506 }
3507 goto final_link_relocate;
3508
3509 case R_SH_DIR8UW:
3510 case R_SH_DIR8SW:
3511 case R_SH_DIR4UW:
3512 if (relocation & 1)
3513 {
3514 ((*_bfd_error_handler)
3515 (_("%B: 0x%lx: fatal: unaligned %s relocation 0x%lx"),
3516 input_section->owner,
3517 (unsigned long) rel->r_offset, howto->name,
3518 (unsigned long) relocation));
3519 bfd_set_error (bfd_error_bad_value);
3520 return FALSE;
3521 }
3522 goto final_link_relocate;
3523
3524 case R_SH_PSHA:
3525 if ((signed int)relocation < -32
3526 || (signed int)relocation > 32)
3527 {
3528 ((*_bfd_error_handler)
3529 (_("%B: 0x%lx: fatal: R_SH_PSHA relocation %d not in range -32..32"),
3530 input_section->owner,
3531 (unsigned long) rel->r_offset,
3532 (unsigned long) relocation));
3533 bfd_set_error (bfd_error_bad_value);
3534 return FALSE;
3535 }
3536 goto final_link_relocate;
3537
3538 case R_SH_PSHL:
3539 if ((signed int)relocation < -16
3540 || (signed int)relocation > 16)
3541 {
3542 ((*_bfd_error_handler)
3543 (_("%B: 0x%lx: fatal: R_SH_PSHL relocation %d not in range -32..32"),
3544 input_section->owner,
3545 (unsigned long) rel->r_offset,
3546 (unsigned long) relocation));
3547 bfd_set_error (bfd_error_bad_value);
3548 return FALSE;
3549 }
3550 goto final_link_relocate;
3551
3552 case R_SH_DIR32:
3553 case R_SH_REL32:
3554 #ifdef INCLUDE_SHMEDIA
3555 case R_SH_IMM_LOW16_PCREL:
3556 case R_SH_IMM_MEDLOW16_PCREL:
3557 case R_SH_IMM_MEDHI16_PCREL:
3558 case R_SH_IMM_HI16_PCREL:
3559 #endif
3560 if (info->shared
3561 && (h == NULL
3562 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3563 || h->root.type != bfd_link_hash_undefweak)
3564 && r_symndx != 0
3565 && (input_section->flags & SEC_ALLOC) != 0
3566 && (r_type == R_SH_DIR32
3567 || !SYMBOL_CALLS_LOCAL (info, h)))
3568 {
3569 Elf_Internal_Rela outrel;
3570 bfd_byte *loc;
3571 bfd_boolean skip, relocate;
3572
3573 /* When generating a shared object, these relocations
3574 are copied into the output file to be resolved at run
3575 time. */
3576
3577 if (sreloc == NULL)
3578 {
3579 const char *name;
3580
3581 name = (bfd_elf_string_from_elf_section
3582 (input_bfd,
3583 elf_elfheader (input_bfd)->e_shstrndx,
3584 elf_section_data (input_section)->rel_hdr.sh_name));
3585 if (name == NULL)
3586 return FALSE;
3587
3588 BFD_ASSERT (CONST_STRNEQ (name, ".rela")
3589 && strcmp (bfd_get_section_name (input_bfd,
3590 input_section),
3591 name + 5) == 0);
3592
3593 sreloc = bfd_get_section_by_name (dynobj, name);
3594 BFD_ASSERT (sreloc != NULL);
3595 }
3596
3597 skip = FALSE;
3598 relocate = FALSE;
3599
3600 outrel.r_offset =
3601 _bfd_elf_section_offset (output_bfd, info, input_section,
3602 rel->r_offset);
3603 if (outrel.r_offset == (bfd_vma) -1)
3604 skip = TRUE;
3605 else if (outrel.r_offset == (bfd_vma) -2)
3606 skip = TRUE, relocate = TRUE;
3607 outrel.r_offset += (input_section->output_section->vma
3608 + input_section->output_offset);
3609
3610 if (skip)
3611 memset (&outrel, 0, sizeof outrel);
3612 else if (r_type == R_SH_REL32)
3613 {
3614 BFD_ASSERT (h != NULL && h->dynindx != -1);
3615 outrel.r_info = ELF32_R_INFO (h->dynindx, R_SH_REL32);
3616 outrel.r_addend
3617 = (howto->partial_inplace
3618 ? bfd_get_32 (input_bfd, contents + rel->r_offset)
3619 : addend);
3620 }
3621 #ifdef INCLUDE_SHMEDIA
3622 else if (r_type == R_SH_IMM_LOW16_PCREL
3623 || r_type == R_SH_IMM_MEDLOW16_PCREL
3624 || r_type == R_SH_IMM_MEDHI16_PCREL
3625 || r_type == R_SH_IMM_HI16_PCREL)
3626 {
3627 BFD_ASSERT (h != NULL && h->dynindx != -1);
3628 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
3629 outrel.r_addend = addend;
3630 }
3631 #endif
3632 else
3633 {
3634 /* h->dynindx may be -1 if this symbol was marked to
3635 become local. */
3636 if (h == NULL
3637 || ((info->symbolic || h->dynindx == -1)
3638 && h->def_regular))
3639 {
3640 relocate = howto->partial_inplace;
3641 outrel.r_info = ELF32_R_INFO (0, R_SH_RELATIVE);
3642 }
3643 else
3644 {
3645 BFD_ASSERT (h->dynindx != -1);
3646 outrel.r_info = ELF32_R_INFO (h->dynindx, R_SH_DIR32);
3647 }
3648 outrel.r_addend = relocation;
3649 outrel.r_addend
3650 += (howto->partial_inplace
3651 ? bfd_get_32 (input_bfd, contents + rel->r_offset)
3652 : addend);
3653 }
3654
3655 loc = sreloc->contents;
3656 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3657 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3658
3659 /* If this reloc is against an external symbol, we do
3660 not want to fiddle with the addend. Otherwise, we
3661 need to include the symbol value so that it becomes
3662 an addend for the dynamic reloc. */
3663 if (! relocate)
3664 continue;
3665 }
3666 goto final_link_relocate;
3667
3668 case R_SH_GOTPLT32:
3669 #ifdef INCLUDE_SHMEDIA
3670 case R_SH_GOTPLT_LOW16:
3671 case R_SH_GOTPLT_MEDLOW16:
3672 case R_SH_GOTPLT_MEDHI16:
3673 case R_SH_GOTPLT_HI16:
3674 case R_SH_GOTPLT10BY4:
3675 case R_SH_GOTPLT10BY8:
3676 #endif
3677 /* Relocation is to the entry for this symbol in the
3678 procedure linkage table. */
3679
3680 if (h == NULL
3681 || h->forced_local
3682 || ! info->shared
3683 || info->symbolic
3684 || h->dynindx == -1
3685 || h->plt.offset == (bfd_vma) -1
3686 || h->got.offset != (bfd_vma) -1)
3687 goto force_got;
3688
3689 /* Relocation is to the entry for this symbol in the global
3690 offset table extension for the procedure linkage table. */
3691
3692 BFD_ASSERT (sgotplt != NULL);
3693 relocation = (sgotplt->output_offset
3694 + (get_plt_index (htab->plt_info, h->plt.offset)
3695 + 3) * 4);
3696
3697 #ifdef GOT_BIAS
3698 relocation -= GOT_BIAS;
3699 #endif
3700
3701 goto final_link_relocate;
3702
3703 force_got:
3704 case R_SH_GOT32:
3705 #ifdef INCLUDE_SHMEDIA
3706 case R_SH_GOT_LOW16:
3707 case R_SH_GOT_MEDLOW16:
3708 case R_SH_GOT_MEDHI16:
3709 case R_SH_GOT_HI16:
3710 case R_SH_GOT10BY4:
3711 case R_SH_GOT10BY8:
3712 #endif
3713 /* Relocation is to the entry for this symbol in the global
3714 offset table. */
3715
3716 BFD_ASSERT (sgot != NULL);
3717
3718 if (h != NULL)
3719 {
3720 bfd_boolean dyn;
3721
3722 off = h->got.offset;
3723 #ifdef INCLUDE_SHMEDIA
3724 if (seen_stt_datalabel)
3725 {
3726 struct elf_sh_link_hash_entry *hsh;
3727
3728 hsh = (struct elf_sh_link_hash_entry *)h;
3729 off = hsh->datalabel_got.offset;
3730 }
3731 #endif
3732 BFD_ASSERT (off != (bfd_vma) -1);
3733
3734 dyn = htab->root.dynamic_sections_created;
3735 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3736 || (info->shared
3737 && SYMBOL_REFERENCES_LOCAL (info, h))
3738 || (ELF_ST_VISIBILITY (h->other)
3739 && h->root.type == bfd_link_hash_undefweak))
3740 {
3741 /* This is actually a static link, or it is a
3742 -Bsymbolic link and the symbol is defined
3743 locally, or the symbol was forced to be local
3744 because of a version file. We must initialize
3745 this entry in the global offset table. Since the
3746 offset must always be a multiple of 4, we use the
3747 least significant bit to record whether we have
3748 initialized it already.
3749
3750 When doing a dynamic link, we create a .rela.got
3751 relocation entry to initialize the value. This
3752 is done in the finish_dynamic_symbol routine. */
3753 if ((off & 1) != 0)
3754 off &= ~1;
3755 else
3756 {
3757 bfd_put_32 (output_bfd, relocation,
3758 sgot->contents + off);
3759 #ifdef INCLUDE_SHMEDIA
3760 if (seen_stt_datalabel)
3761 {
3762 struct elf_sh_link_hash_entry *hsh;
3763
3764 hsh = (struct elf_sh_link_hash_entry *)h;
3765 hsh->datalabel_got.offset |= 1;
3766 }
3767 else
3768 #endif
3769 h->got.offset |= 1;
3770 }
3771 }
3772
3773 relocation = sgot->output_offset + off;
3774 }
3775 else
3776 {
3777 #ifdef INCLUDE_SHMEDIA
3778 if (rel->r_addend)
3779 {
3780 BFD_ASSERT (local_got_offsets != NULL
3781 && (local_got_offsets[symtab_hdr->sh_info
3782 + r_symndx]
3783 != (bfd_vma) -1));
3784
3785 off = local_got_offsets[symtab_hdr->sh_info
3786 + r_symndx];
3787 }
3788 else
3789 {
3790 #endif
3791 BFD_ASSERT (local_got_offsets != NULL
3792 && local_got_offsets[r_symndx] != (bfd_vma) -1);
3793
3794 off = local_got_offsets[r_symndx];
3795 #ifdef INCLUDE_SHMEDIA
3796 }
3797 #endif
3798
3799 /* The offset must always be a multiple of 4. We use
3800 the least significant bit to record whether we have
3801 already generated the necessary reloc. */
3802 if ((off & 1) != 0)
3803 off &= ~1;
3804 else
3805 {
3806 bfd_put_32 (output_bfd, relocation, sgot->contents + off);
3807
3808 if (info->shared)
3809 {
3810 Elf_Internal_Rela outrel;
3811 bfd_byte *loc;
3812
3813 if (srelgot == NULL)
3814 {
3815 srelgot = bfd_get_section_by_name (dynobj,
3816 ".rela.got");
3817 BFD_ASSERT (srelgot != NULL);
3818 }
3819
3820 outrel.r_offset = (sgot->output_section->vma
3821 + sgot->output_offset
3822 + off);
3823 outrel.r_info = ELF32_R_INFO (0, R_SH_RELATIVE);
3824 outrel.r_addend = relocation;
3825 loc = srelgot->contents;
3826 loc += srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
3827 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3828 }
3829
3830 #ifdef INCLUDE_SHMEDIA
3831 if (rel->r_addend)
3832 local_got_offsets[symtab_hdr->sh_info + r_symndx] |= 1;
3833 else
3834 #endif
3835 local_got_offsets[r_symndx] |= 1;
3836 }
3837
3838 relocation = sgot->output_offset + off;
3839 }
3840
3841 #ifdef GOT_BIAS
3842 relocation -= GOT_BIAS;
3843 #endif
3844
3845 goto final_link_relocate;
3846
3847 case R_SH_GOTOFF:
3848 #ifdef INCLUDE_SHMEDIA
3849 case R_SH_GOTOFF_LOW16:
3850 case R_SH_GOTOFF_MEDLOW16:
3851 case R_SH_GOTOFF_MEDHI16:
3852 case R_SH_GOTOFF_HI16:
3853 #endif
3854 /* Relocation is relative to the start of the global offset
3855 table. */
3856
3857 BFD_ASSERT (sgot != NULL);
3858
3859 /* Note that sgot->output_offset is not involved in this
3860 calculation. We always want the start of .got. If we
3861 defined _GLOBAL_OFFSET_TABLE in a different way, as is
3862 permitted by the ABI, we might have to change this
3863 calculation. */
3864 relocation -= sgot->output_section->vma;
3865
3866 #ifdef GOT_BIAS
3867 relocation -= GOT_BIAS;
3868 #endif
3869
3870 addend = rel->r_addend;
3871
3872 goto final_link_relocate;
3873
3874 case R_SH_GOTPC:
3875 #ifdef INCLUDE_SHMEDIA
3876 case R_SH_GOTPC_LOW16:
3877 case R_SH_GOTPC_MEDLOW16:
3878 case R_SH_GOTPC_MEDHI16:
3879 case R_SH_GOTPC_HI16:
3880 #endif
3881 /* Use global offset table as symbol value. */
3882
3883 BFD_ASSERT (sgot != NULL);
3884 relocation = sgot->output_section->vma;
3885
3886 #ifdef GOT_BIAS
3887 relocation += GOT_BIAS;
3888 #endif
3889
3890 addend = rel->r_addend;
3891
3892 goto final_link_relocate;
3893
3894 case R_SH_PLT32:
3895 #ifdef INCLUDE_SHMEDIA
3896 case R_SH_PLT_LOW16:
3897 case R_SH_PLT_MEDLOW16:
3898 case R_SH_PLT_MEDHI16:
3899 case R_SH_PLT_HI16:
3900 #endif
3901 /* Relocation is to the entry for this symbol in the
3902 procedure linkage table. */
3903
3904 /* Resolve a PLT reloc against a local symbol directly,
3905 without using the procedure linkage table. */
3906 if (h == NULL)
3907 goto final_link_relocate;
3908
3909 if (h->forced_local)
3910 goto final_link_relocate;
3911
3912 if (h->plt.offset == (bfd_vma) -1)
3913 {
3914 /* We didn't make a PLT entry for this symbol. This
3915 happens when statically linking PIC code, or when
3916 using -Bsymbolic. */
3917 goto final_link_relocate;
3918 }
3919
3920 BFD_ASSERT (splt != NULL);
3921 relocation = (splt->output_section->vma
3922 + splt->output_offset
3923 + h->plt.offset);
3924
3925 #ifdef INCLUDE_SHMEDIA
3926 relocation++;
3927 #endif
3928
3929 addend = rel->r_addend;
3930
3931 goto final_link_relocate;
3932
3933 case R_SH_LOOP_START:
3934 {
3935 static bfd_vma start, end;
3936
3937 start = (relocation + rel->r_addend
3938 - (sec->output_section->vma + sec->output_offset));
3939 r = sh_elf_reloc_loop (r_type, input_bfd, input_section, contents,
3940 rel->r_offset, sec, start, end);
3941 break;
3942
3943 case R_SH_LOOP_END:
3944 end = (relocation + rel->r_addend
3945 - (sec->output_section->vma + sec->output_offset));
3946 r = sh_elf_reloc_loop (r_type, input_bfd, input_section, contents,
3947 rel->r_offset, sec, start, end);
3948 break;
3949 }
3950
3951 case R_SH_TLS_GD_32:
3952 case R_SH_TLS_IE_32:
3953 r_type = sh_elf_optimized_tls_reloc (info, r_type, h == NULL);
3954 tls_type = GOT_UNKNOWN;
3955 if (h == NULL && local_got_offsets)
3956 tls_type = sh_elf_local_got_tls_type (input_bfd) [r_symndx];
3957 else if (h != NULL)
3958 {
3959 tls_type = sh_elf_hash_entry (h)->tls_type;
3960 if (! info->shared
3961 && (h->dynindx == -1
3962 || h->def_regular))
3963 r_type = R_SH_TLS_LE_32;
3964 }
3965
3966 if (r_type == R_SH_TLS_GD_32 && tls_type == GOT_TLS_IE)
3967 r_type = R_SH_TLS_IE_32;
3968
3969 if (r_type == R_SH_TLS_LE_32)
3970 {
3971 bfd_vma offset;
3972 unsigned short insn;
3973
3974 if (ELF32_R_TYPE (rel->r_info) == R_SH_TLS_GD_32)
3975 {
3976 /* GD->LE transition:
3977 mov.l 1f,r4; mova 2f,r0; mov.l 2f,r1; add r0,r1;
3978 jsr @r1; add r12,r4; bra 3f; nop; .align 2;
3979 1: .long x$TLSGD; 2: .long __tls_get_addr@PLT; 3:
3980 We change it into:
3981 mov.l 1f,r4; stc gbr,r0; add r4,r0; nop;
3982 nop; nop; ...
3983 1: .long x@TPOFF; 2: .long __tls_get_addr@PLT; 3:. */
3984
3985 offset = rel->r_offset;
3986 BFD_ASSERT (offset >= 16);
3987 /* Size of GD instructions is 16 or 18. */
3988 offset -= 16;
3989 insn = bfd_get_16 (input_bfd, contents + offset + 0);
3990 if ((insn & 0xff00) == 0xc700)
3991 {
3992 BFD_ASSERT (offset >= 2);
3993 offset -= 2;
3994 insn = bfd_get_16 (input_bfd, contents + offset + 0);
3995 }
3996
3997 BFD_ASSERT ((insn & 0xff00) == 0xd400);
3998 insn = bfd_get_16 (input_bfd, contents + offset + 2);
3999 BFD_ASSERT ((insn & 0xff00) == 0xc700);
4000 insn = bfd_get_16 (input_bfd, contents + offset + 4);
4001 BFD_ASSERT ((insn & 0xff00) == 0xd100);
4002 insn = bfd_get_16 (input_bfd, contents + offset + 6);
4003 BFD_ASSERT (insn == 0x310c);
4004 insn = bfd_get_16 (input_bfd, contents + offset + 8);
4005 BFD_ASSERT (insn == 0x410b);
4006 insn = bfd_get_16 (input_bfd, contents + offset + 10);
4007 BFD_ASSERT (insn == 0x34cc);
4008
4009 bfd_put_16 (output_bfd, 0x0012, contents + offset + 2);
4010 bfd_put_16 (output_bfd, 0x304c, contents + offset + 4);
4011 bfd_put_16 (output_bfd, 0x0009, contents + offset + 6);
4012 bfd_put_16 (output_bfd, 0x0009, contents + offset + 8);
4013 bfd_put_16 (output_bfd, 0x0009, contents + offset + 10);
4014 }
4015 else
4016 {
4017 int index;
4018
4019 /* IE->LE transition:
4020 mov.l 1f,r0; stc gbr,rN; mov.l @(r0,r12),rM;
4021 bra 2f; add ...; .align 2; 1: x@GOTTPOFF; 2:
4022 We change it into:
4023 mov.l .Ln,rM; stc gbr,rN; nop; ...;
4024 1: x@TPOFF; 2:. */
4025
4026 offset = rel->r_offset;
4027 BFD_ASSERT (offset >= 16);
4028 /* Size of IE instructions is 10 or 12. */
4029 offset -= 10;
4030 insn = bfd_get_16 (input_bfd, contents + offset + 0);
4031 if ((insn & 0xf0ff) == 0x0012)
4032 {
4033 BFD_ASSERT (offset >= 2);
4034 offset -= 2;
4035 insn = bfd_get_16 (input_bfd, contents + offset + 0);
4036 }
4037
4038 BFD_ASSERT ((insn & 0xff00) == 0xd000);
4039 index = insn & 0x00ff;
4040 insn = bfd_get_16 (input_bfd, contents + offset + 2);
4041 BFD_ASSERT ((insn & 0xf0ff) == 0x0012);
4042 insn = bfd_get_16 (input_bfd, contents + offset + 4);
4043 BFD_ASSERT ((insn & 0xf0ff) == 0x00ce);
4044 insn = 0xd000 | (insn & 0x0f00) | index;
4045 bfd_put_16 (output_bfd, insn, contents + offset + 0);
4046 bfd_put_16 (output_bfd, 0x0009, contents + offset + 4);
4047 }
4048
4049 bfd_put_32 (output_bfd, tpoff (info, relocation),
4050 contents + rel->r_offset);
4051 continue;
4052 }
4053
4054 sgot = htab->sgot;
4055 if (sgot == NULL)
4056 abort ();
4057
4058 if (h != NULL)
4059 off = h->got.offset;
4060 else
4061 {
4062 if (local_got_offsets == NULL)
4063 abort ();
4064
4065 off = local_got_offsets[r_symndx];
4066 }
4067
4068 /* Relocate R_SH_TLS_IE_32 directly when statically linking. */
4069 if (r_type == R_SH_TLS_IE_32
4070 && ! htab->root.dynamic_sections_created)
4071 {
4072 off &= ~1;
4073 bfd_put_32 (output_bfd, tpoff (info, relocation),
4074 sgot->contents + off);
4075 bfd_put_32 (output_bfd, sgot->output_offset + off,
4076 contents + rel->r_offset);
4077 continue;
4078 }
4079
4080 if ((off & 1) != 0)
4081 off &= ~1;
4082 else
4083 {
4084 Elf_Internal_Rela outrel;
4085 bfd_byte *loc;
4086 int dr_type, indx;
4087
4088 if (srelgot == NULL)
4089 {
4090 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
4091 BFD_ASSERT (srelgot != NULL);
4092 }
4093
4094 outrel.r_offset = (sgot->output_section->vma
4095 + sgot->output_offset + off);
4096
4097 if (h == NULL || h->dynindx == -1)
4098 indx = 0;
4099 else
4100 indx = h->dynindx;
4101
4102 dr_type = (r_type == R_SH_TLS_GD_32 ? R_SH_TLS_DTPMOD32 :
4103 R_SH_TLS_TPOFF32);
4104 if (dr_type == R_SH_TLS_TPOFF32 && indx == 0)
4105 outrel.r_addend = relocation - dtpoff_base (info);
4106 else
4107 outrel.r_addend = 0;
4108 outrel.r_info = ELF32_R_INFO (indx, dr_type);
4109 loc = srelgot->contents;
4110 loc += srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4111 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4112
4113 if (r_type == R_SH_TLS_GD_32)
4114 {
4115 if (indx == 0)
4116 {
4117 bfd_put_32 (output_bfd,
4118 relocation - dtpoff_base (info),
4119 sgot->contents + off + 4);
4120 }
4121 else
4122 {
4123 outrel.r_info = ELF32_R_INFO (indx,
4124 R_SH_TLS_DTPOFF32);
4125 outrel.r_offset += 4;
4126 outrel.r_addend = 0;
4127 srelgot->reloc_count++;
4128 loc += sizeof (Elf32_External_Rela);
4129 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4130 }
4131 }
4132
4133 if (h != NULL)
4134 h->got.offset |= 1;
4135 else
4136 local_got_offsets[r_symndx] |= 1;
4137 }
4138
4139 if (off >= (bfd_vma) -2)
4140 abort ();
4141
4142 if (r_type == (int) ELF32_R_TYPE (rel->r_info))
4143 relocation = sgot->output_offset + off;
4144 else
4145 {
4146 bfd_vma offset;
4147 unsigned short insn;
4148
4149 /* GD->IE transition:
4150 mov.l 1f,r4; mova 2f,r0; mov.l 2f,r1; add r0,r1;
4151 jsr @r1; add r12,r4; bra 3f; nop; .align 2;
4152 1: .long x$TLSGD; 2: .long __tls_get_addr@PLT; 3:
4153 We change it into:
4154 mov.l 1f,r0; stc gbr,r4; mov.l @(r0,r12),r0; add r4,r0;
4155 nop; nop; bra 3f; nop; .align 2;
4156 1: .long x@TPOFF; 2:...; 3:. */
4157
4158 offset = rel->r_offset;
4159 BFD_ASSERT (offset >= 16);
4160 /* Size of GD instructions is 16 or 18. */
4161 offset -= 16;
4162 insn = bfd_get_16 (input_bfd, contents + offset + 0);
4163 if ((insn & 0xff00) == 0xc700)
4164 {
4165 BFD_ASSERT (offset >= 2);
4166 offset -= 2;
4167 insn = bfd_get_16 (input_bfd, contents + offset + 0);
4168 }
4169
4170 BFD_ASSERT ((insn & 0xff00) == 0xd400);
4171
4172 /* Replace mov.l 1f,R4 with mov.l 1f,r0. */
4173 bfd_put_16 (output_bfd, insn & 0xf0ff, contents + offset);
4174
4175 insn = bfd_get_16 (input_bfd, contents + offset + 2);
4176 BFD_ASSERT ((insn & 0xff00) == 0xc700);
4177 insn = bfd_get_16 (input_bfd, contents + offset + 4);
4178 BFD_ASSERT ((insn & 0xff00) == 0xd100);
4179 insn = bfd_get_16 (input_bfd, contents + offset + 6);
4180 BFD_ASSERT (insn == 0x310c);
4181 insn = bfd_get_16 (input_bfd, contents + offset + 8);
4182 BFD_ASSERT (insn == 0x410b);
4183 insn = bfd_get_16 (input_bfd, contents + offset + 10);
4184 BFD_ASSERT (insn == 0x34cc);
4185
4186 bfd_put_16 (output_bfd, 0x0412, contents + offset + 2);
4187 bfd_put_16 (output_bfd, 0x00ce, contents + offset + 4);
4188 bfd_put_16 (output_bfd, 0x304c, contents + offset + 6);
4189 bfd_put_16 (output_bfd, 0x0009, contents + offset + 8);
4190 bfd_put_16 (output_bfd, 0x0009, contents + offset + 10);
4191
4192 bfd_put_32 (output_bfd, sgot->output_offset + off,
4193 contents + rel->r_offset);
4194
4195 continue;
4196 }
4197
4198 addend = rel->r_addend;
4199
4200 goto final_link_relocate;
4201
4202 case R_SH_TLS_LD_32:
4203 if (! info->shared)
4204 {
4205 bfd_vma offset;
4206 unsigned short insn;
4207
4208 /* LD->LE transition:
4209 mov.l 1f,r4; mova 2f,r0; mov.l 2f,r1; add r0,r1;
4210 jsr @r1; add r12,r4; bra 3f; nop; .align 2;
4211 1: .long x$TLSLD; 2: .long __tls_get_addr@PLT; 3:
4212 We change it into:
4213 stc gbr,r0; nop; nop; nop;
4214 nop; nop; bra 3f; ...; 3:. */
4215
4216 offset = rel->r_offset;
4217 BFD_ASSERT (offset >= 16);
4218 /* Size of LD instructions is 16 or 18. */
4219 offset -= 16;
4220 insn = bfd_get_16 (input_bfd, contents + offset + 0);
4221 if ((insn & 0xff00) == 0xc700)
4222 {
4223 BFD_ASSERT (offset >= 2);
4224 offset -= 2;
4225 insn = bfd_get_16 (input_bfd, contents + offset + 0);
4226 }
4227
4228 BFD_ASSERT ((insn & 0xff00) == 0xd400);
4229 insn = bfd_get_16 (input_bfd, contents + offset + 2);
4230 BFD_ASSERT ((insn & 0xff00) == 0xc700);
4231 insn = bfd_get_16 (input_bfd, contents + offset + 4);
4232 BFD_ASSERT ((insn & 0xff00) == 0xd100);
4233 insn = bfd_get_16 (input_bfd, contents + offset + 6);
4234 BFD_ASSERT (insn == 0x310c);
4235 insn = bfd_get_16 (input_bfd, contents + offset + 8);
4236 BFD_ASSERT (insn == 0x410b);
4237 insn = bfd_get_16 (input_bfd, contents + offset + 10);
4238 BFD_ASSERT (insn == 0x34cc);
4239
4240 bfd_put_16 (output_bfd, 0x0012, contents + offset + 0);
4241 bfd_put_16 (output_bfd, 0x0009, contents + offset + 2);
4242 bfd_put_16 (output_bfd, 0x0009, contents + offset + 4);
4243 bfd_put_16 (output_bfd, 0x0009, contents + offset + 6);
4244 bfd_put_16 (output_bfd, 0x0009, contents + offset + 8);
4245 bfd_put_16 (output_bfd, 0x0009, contents + offset + 10);
4246
4247 continue;
4248 }
4249
4250 sgot = htab->sgot;
4251 if (sgot == NULL)
4252 abort ();
4253
4254 off = htab->tls_ldm_got.offset;
4255 if (off & 1)
4256 off &= ~1;
4257 else
4258 {
4259 Elf_Internal_Rela outrel;
4260 bfd_byte *loc;
4261
4262 srelgot = htab->srelgot;
4263 if (srelgot == NULL)
4264 abort ();
4265
4266 outrel.r_offset = (sgot->output_section->vma
4267 + sgot->output_offset + off);
4268 outrel.r_addend = 0;
4269 outrel.r_info = ELF32_R_INFO (0, R_SH_TLS_DTPMOD32);
4270 loc = srelgot->contents;
4271 loc += srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4272 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4273 htab->tls_ldm_got.offset |= 1;
4274 }
4275
4276 relocation = sgot->output_offset + off;
4277 addend = rel->r_addend;
4278
4279 goto final_link_relocate;
4280
4281 case R_SH_TLS_LDO_32:
4282 if (! info->shared)
4283 relocation = tpoff (info, relocation);
4284 else
4285 relocation -= dtpoff_base (info);
4286
4287 addend = rel->r_addend;
4288 goto final_link_relocate;
4289
4290 case R_SH_TLS_LE_32:
4291 {
4292 int indx;
4293 Elf_Internal_Rela outrel;
4294 bfd_byte *loc;
4295
4296 if (! info->shared)
4297 {
4298 relocation = tpoff (info, relocation);
4299 addend = rel->r_addend;
4300 goto final_link_relocate;
4301 }
4302
4303 if (sreloc == NULL)
4304 {
4305 const char *name;
4306
4307 name = (bfd_elf_string_from_elf_section
4308 (input_bfd,
4309 elf_elfheader (input_bfd)->e_shstrndx,
4310 elf_section_data (input_section)->rel_hdr.sh_name));
4311 if (name == NULL)
4312 return FALSE;
4313
4314 BFD_ASSERT (CONST_STRNEQ (name, ".rela")
4315 && strcmp (bfd_get_section_name (input_bfd,
4316 input_section),
4317 name + 5) == 0);
4318
4319 sreloc = bfd_get_section_by_name (dynobj, name);
4320 BFD_ASSERT (sreloc != NULL);
4321 }
4322
4323 if (h == NULL || h->dynindx == -1)
4324 indx = 0;
4325 else
4326 indx = h->dynindx;
4327
4328 outrel.r_offset = (input_section->output_section->vma
4329 + input_section->output_offset
4330 + rel->r_offset);
4331 outrel.r_info = ELF32_R_INFO (indx, R_SH_TLS_TPOFF32);
4332 if (indx == 0)
4333 outrel.r_addend = relocation - dtpoff_base (info);
4334 else
4335 outrel.r_addend = 0;
4336
4337 loc = sreloc->contents;
4338 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4339 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4340 continue;
4341 }
4342 }
4343
4344 relocation_done:
4345 if (r != bfd_reloc_ok)
4346 {
4347 switch (r)
4348 {
4349 default:
4350 case bfd_reloc_outofrange:
4351 abort ();
4352 case bfd_reloc_overflow:
4353 {
4354 const char *name;
4355
4356 if (h != NULL)
4357 name = NULL;
4358 else
4359 {
4360 name = (bfd_elf_string_from_elf_section
4361 (input_bfd, symtab_hdr->sh_link, sym->st_name));
4362 if (name == NULL)
4363 return FALSE;
4364 if (*name == '\0')
4365 name = bfd_section_name (input_bfd, sec);
4366 }
4367 if (! ((*info->callbacks->reloc_overflow)
4368 (info, (h ? &h->root : NULL), name, howto->name,
4369 (bfd_vma) 0, input_bfd, input_section,
4370 rel->r_offset)))
4371 return FALSE;
4372 }
4373 break;
4374 }
4375 }
4376 }
4377
4378 return TRUE;
4379 }
4380
4381 /* This is a version of bfd_generic_get_relocated_section_contents
4382 which uses sh_elf_relocate_section. */
4383
4384 static bfd_byte *
4385 sh_elf_get_relocated_section_contents (bfd *output_bfd,
4386 struct bfd_link_info *link_info,
4387 struct bfd_link_order *link_order,
4388 bfd_byte *data,
4389 bfd_boolean relocatable,
4390 asymbol **symbols)
4391 {
4392 Elf_Internal_Shdr *symtab_hdr;
4393 asection *input_section = link_order->u.indirect.section;
4394 bfd *input_bfd = input_section->owner;
4395 asection **sections = NULL;
4396 Elf_Internal_Rela *internal_relocs = NULL;
4397 Elf_Internal_Sym *isymbuf = NULL;
4398
4399 /* We only need to handle the case of relaxing, or of having a
4400 particular set of section contents, specially. */
4401 if (relocatable
4402 || elf_section_data (input_section)->this_hdr.contents == NULL)
4403 return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
4404 link_order, data,
4405 relocatable,
4406 symbols);
4407
4408 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4409
4410 memcpy (data, elf_section_data (input_section)->this_hdr.contents,
4411 (size_t) input_section->size);
4412
4413 if ((input_section->flags & SEC_RELOC) != 0
4414 && input_section->reloc_count > 0)
4415 {
4416 asection **secpp;
4417 Elf_Internal_Sym *isym, *isymend;
4418 bfd_size_type amt;
4419
4420 internal_relocs = (_bfd_elf_link_read_relocs
4421 (input_bfd, input_section, NULL,
4422 (Elf_Internal_Rela *) NULL, FALSE));
4423 if (internal_relocs == NULL)
4424 goto error_return;
4425
4426 if (symtab_hdr->sh_info != 0)
4427 {
4428 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
4429 if (isymbuf == NULL)
4430 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4431 symtab_hdr->sh_info, 0,
4432 NULL, NULL, NULL);
4433 if (isymbuf == NULL)
4434 goto error_return;
4435 }
4436
4437 amt = symtab_hdr->sh_info;
4438 amt *= sizeof (asection *);
4439 sections = (asection **) bfd_malloc (amt);
4440 if (sections == NULL && amt != 0)
4441 goto error_return;
4442
4443 isymend = isymbuf + symtab_hdr->sh_info;
4444 for (isym = isymbuf, secpp = sections; isym < isymend; ++isym, ++secpp)
4445 {
4446 asection *isec;
4447
4448 if (isym->st_shndx == SHN_UNDEF)
4449 isec = bfd_und_section_ptr;
4450 else if (isym->st_shndx == SHN_ABS)
4451 isec = bfd_abs_section_ptr;
4452 else if (isym->st_shndx == SHN_COMMON)
4453 isec = bfd_com_section_ptr;
4454 else
4455 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
4456
4457 *secpp = isec;
4458 }
4459
4460 if (! sh_elf_relocate_section (output_bfd, link_info, input_bfd,
4461 input_section, data, internal_relocs,
4462 isymbuf, sections))
4463 goto error_return;
4464
4465 if (sections != NULL)
4466 free (sections);
4467 if (isymbuf != NULL
4468 && symtab_hdr->contents != (unsigned char *) isymbuf)
4469 free (isymbuf);
4470 if (elf_section_data (input_section)->relocs != internal_relocs)
4471 free (internal_relocs);
4472 }
4473
4474 return data;
4475
4476 error_return:
4477 if (sections != NULL)
4478 free (sections);
4479 if (isymbuf != NULL
4480 && symtab_hdr->contents != (unsigned char *) isymbuf)
4481 free (isymbuf);
4482 if (internal_relocs != NULL
4483 && elf_section_data (input_section)->relocs != internal_relocs)
4484 free (internal_relocs);
4485 return NULL;
4486 }
4487
4488 /* Return the base VMA address which should be subtracted from real addresses
4489 when resolving @dtpoff relocation.
4490 This is PT_TLS segment p_vaddr. */
4491
4492 static bfd_vma
4493 dtpoff_base (struct bfd_link_info *info)
4494 {
4495 /* If tls_sec is NULL, we should have signalled an error already. */
4496 if (elf_hash_table (info)->tls_sec == NULL)
4497 return 0;
4498 return elf_hash_table (info)->tls_sec->vma;
4499 }
4500
4501 /* Return the relocation value for R_SH_TLS_TPOFF32.. */
4502
4503 static bfd_vma
4504 tpoff (struct bfd_link_info *info, bfd_vma address)
4505 {
4506 /* If tls_sec is NULL, we should have signalled an error already. */
4507 if (elf_hash_table (info)->tls_sec == NULL)
4508 return 0;
4509 /* SH TLS ABI is variant I and static TLS block start just after tcbhead
4510 structure which has 2 pointer fields. */
4511 return (address - elf_hash_table (info)->tls_sec->vma
4512 + align_power ((bfd_vma) 8,
4513 elf_hash_table (info)->tls_sec->alignment_power));
4514 }
4515
4516 static asection *
4517 sh_elf_gc_mark_hook (asection *sec,
4518 struct bfd_link_info *info ATTRIBUTE_UNUSED,
4519 Elf_Internal_Rela *rel, struct elf_link_hash_entry *h,
4520 Elf_Internal_Sym *sym)
4521 {
4522 if (h != NULL)
4523 {
4524 switch (ELF32_R_TYPE (rel->r_info))
4525 {
4526 case R_SH_GNU_VTINHERIT:
4527 case R_SH_GNU_VTENTRY:
4528 break;
4529
4530 default:
4531 #ifdef INCLUDE_SHMEDIA
4532 while (h->root.type == bfd_link_hash_indirect
4533 && h->root.u.i.link)
4534 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4535 #endif
4536 switch (h->root.type)
4537 {
4538 case bfd_link_hash_defined:
4539 case bfd_link_hash_defweak:
4540 return h->root.u.def.section;
4541
4542 case bfd_link_hash_common:
4543 return h->root.u.c.p->section;
4544
4545 default:
4546 break;
4547 }
4548 }
4549 }
4550 else
4551 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
4552
4553 return NULL;
4554 }
4555
4556 /* Update the got entry reference counts for the section being removed. */
4557
4558 static bfd_boolean
4559 sh_elf_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
4560 asection *sec, const Elf_Internal_Rela *relocs)
4561 {
4562 Elf_Internal_Shdr *symtab_hdr;
4563 struct elf_link_hash_entry **sym_hashes;
4564 bfd_signed_vma *local_got_refcounts;
4565 const Elf_Internal_Rela *rel, *relend;
4566
4567 elf_section_data (sec)->local_dynrel = NULL;
4568
4569 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4570 sym_hashes = elf_sym_hashes (abfd);
4571 local_got_refcounts = elf_local_got_refcounts (abfd);
4572
4573 relend = relocs + sec->reloc_count;
4574 for (rel = relocs; rel < relend; rel++)
4575 {
4576 unsigned long r_symndx;
4577 unsigned int r_type;
4578 struct elf_link_hash_entry *h = NULL;
4579 #ifdef INCLUDE_SHMEDIA
4580 int seen_stt_datalabel = 0;
4581 #endif
4582
4583 r_symndx = ELF32_R_SYM (rel->r_info);
4584 if (r_symndx >= symtab_hdr->sh_info)
4585 {
4586 struct elf_sh_link_hash_entry *eh;
4587 struct elf_sh_dyn_relocs **pp;
4588 struct elf_sh_dyn_relocs *p;
4589
4590 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4591 while (h->root.type == bfd_link_hash_indirect
4592 || h->root.type == bfd_link_hash_warning)
4593 {
4594 #ifdef INCLUDE_SHMEDIA
4595 seen_stt_datalabel |= h->type == STT_DATALABEL;
4596 #endif
4597 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4598 }
4599 eh = (struct elf_sh_link_hash_entry *) h;
4600 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
4601 if (p->sec == sec)
4602 {
4603 /* Everything must go for SEC. */
4604 *pp = p->next;
4605 break;
4606 }
4607 }
4608
4609 r_type = ELF32_R_TYPE (rel->r_info);
4610 switch (sh_elf_optimized_tls_reloc (info, r_type, h != NULL))
4611 {
4612 case R_SH_TLS_LD_32:
4613 if (sh_elf_hash_table (info)->tls_ldm_got.refcount > 0)
4614 sh_elf_hash_table (info)->tls_ldm_got.refcount -= 1;
4615 break;
4616
4617 case R_SH_GOT32:
4618 case R_SH_GOTOFF:
4619 case R_SH_GOTPC:
4620 #ifdef INCLUDE_SHMEDIA
4621 case R_SH_GOT_LOW16:
4622 case R_SH_GOT_MEDLOW16:
4623 case R_SH_GOT_MEDHI16:
4624 case R_SH_GOT_HI16:
4625 case R_SH_GOT10BY4:
4626 case R_SH_GOT10BY8:
4627 case R_SH_GOTOFF_LOW16:
4628 case R_SH_GOTOFF_MEDLOW16:
4629 case R_SH_GOTOFF_MEDHI16:
4630 case R_SH_GOTOFF_HI16:
4631 case R_SH_GOTPC_LOW16:
4632 case R_SH_GOTPC_MEDLOW16:
4633 case R_SH_GOTPC_MEDHI16:
4634 case R_SH_GOTPC_HI16:
4635 #endif
4636 case R_SH_TLS_GD_32:
4637 case R_SH_TLS_IE_32:
4638 if (h != NULL)
4639 {
4640 #ifdef INCLUDE_SHMEDIA
4641 if (seen_stt_datalabel)
4642 {
4643 struct elf_sh_link_hash_entry *eh;
4644 eh = (struct elf_sh_link_hash_entry *) h;
4645 if (eh->datalabel_got.refcount > 0)
4646 eh->datalabel_got.refcount -= 1;
4647 }
4648 else
4649 #endif
4650 if (h->got.refcount > 0)
4651 h->got.refcount -= 1;
4652 }
4653 else if (local_got_refcounts != NULL)
4654 {
4655 #ifdef INCLUDE_SHMEDIA
4656 if (rel->r_addend & 1)
4657 {
4658 if (local_got_refcounts[symtab_hdr->sh_info + r_symndx] > 0)
4659 local_got_refcounts[symtab_hdr->sh_info + r_symndx] -= 1;
4660 }
4661 else
4662 #endif
4663 if (local_got_refcounts[r_symndx] > 0)
4664 local_got_refcounts[r_symndx] -= 1;
4665 }
4666 break;
4667
4668 case R_SH_DIR32:
4669 case R_SH_REL32:
4670 if (info->shared)
4671 break;
4672 /* Fall thru */
4673
4674 case R_SH_PLT32:
4675 #ifdef INCLUDE_SHMEDIA
4676 case R_SH_PLT_LOW16:
4677 case R_SH_PLT_MEDLOW16:
4678 case R_SH_PLT_MEDHI16:
4679 case R_SH_PLT_HI16:
4680 #endif
4681 if (h != NULL)
4682 {
4683 if (h->plt.refcount > 0)
4684 h->plt.refcount -= 1;
4685 }
4686 break;
4687
4688 case R_SH_GOTPLT32:
4689 #ifdef INCLUDE_SHMEDIA
4690 case R_SH_GOTPLT_LOW16:
4691 case R_SH_GOTPLT_MEDLOW16:
4692 case R_SH_GOTPLT_MEDHI16:
4693 case R_SH_GOTPLT_HI16:
4694 case R_SH_GOTPLT10BY4:
4695 case R_SH_GOTPLT10BY8:
4696 #endif
4697 if (h != NULL)
4698 {
4699 struct elf_sh_link_hash_entry *eh;
4700 eh = (struct elf_sh_link_hash_entry *) h;
4701 if (eh->gotplt_refcount > 0)
4702 {
4703 eh->gotplt_refcount -= 1;
4704 if (h->plt.refcount > 0)
4705 h->plt.refcount -= 1;
4706 }
4707 #ifdef INCLUDE_SHMEDIA
4708 else if (seen_stt_datalabel)
4709 {
4710 if (eh->datalabel_got.refcount > 0)
4711 eh->datalabel_got.refcount -= 1;
4712 }
4713 #endif
4714 else if (h->got.refcount > 0)
4715 h->got.refcount -= 1;
4716 }
4717 else if (local_got_refcounts != NULL)
4718 {
4719 #ifdef INCLUDE_SHMEDIA
4720 if (rel->r_addend & 1)
4721 {
4722 if (local_got_refcounts[symtab_hdr->sh_info + r_symndx] > 0)
4723 local_got_refcounts[symtab_hdr->sh_info + r_symndx] -= 1;
4724 }
4725 else
4726 #endif
4727 if (local_got_refcounts[r_symndx] > 0)
4728 local_got_refcounts[r_symndx] -= 1;
4729 }
4730 break;
4731
4732 default:
4733 break;
4734 }
4735 }
4736
4737 return TRUE;
4738 }
4739
4740 /* Copy the extra info we tack onto an elf_link_hash_entry. */
4741
4742 static void
4743 sh_elf_copy_indirect_symbol (struct bfd_link_info *info,
4744 struct elf_link_hash_entry *dir,
4745 struct elf_link_hash_entry *ind)
4746 {
4747 struct elf_sh_link_hash_entry *edir, *eind;
4748
4749 edir = (struct elf_sh_link_hash_entry *) dir;
4750 eind = (struct elf_sh_link_hash_entry *) ind;
4751
4752 if (eind->dyn_relocs != NULL)
4753 {
4754 if (edir->dyn_relocs != NULL)
4755 {
4756 struct elf_sh_dyn_relocs **pp;
4757 struct elf_sh_dyn_relocs *p;
4758
4759 /* Add reloc counts against the indirect sym to the direct sym
4760 list. Merge any entries against the same section. */
4761 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
4762 {
4763 struct elf_sh_dyn_relocs *q;
4764
4765 for (q = edir->dyn_relocs; q != NULL; q = q->next)
4766 if (q->sec == p->sec)
4767 {
4768 q->pc_count += p->pc_count;
4769 q->count += p->count;
4770 *pp = p->next;
4771 break;
4772 }
4773 if (q == NULL)
4774 pp = &p->next;
4775 }
4776 *pp = edir->dyn_relocs;
4777 }
4778
4779 edir->dyn_relocs = eind->dyn_relocs;
4780 eind->dyn_relocs = NULL;
4781 }
4782 edir->gotplt_refcount = eind->gotplt_refcount;
4783 eind->gotplt_refcount = 0;
4784 #ifdef INCLUDE_SHMEDIA
4785 edir->datalabel_got.refcount += eind->datalabel_got.refcount;
4786 eind->datalabel_got.refcount = 0;
4787 #endif
4788
4789 if (ind->root.type == bfd_link_hash_indirect
4790 && dir->got.refcount <= 0)
4791 {
4792 edir->tls_type = eind->tls_type;
4793 eind->tls_type = GOT_UNKNOWN;
4794 }
4795
4796 if (ind->root.type != bfd_link_hash_indirect
4797 && dir->dynamic_adjusted)
4798 {
4799 /* If called to transfer flags for a weakdef during processing
4800 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
4801 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
4802 dir->ref_dynamic |= ind->ref_dynamic;
4803 dir->ref_regular |= ind->ref_regular;
4804 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
4805 dir->needs_plt |= ind->needs_plt;
4806 }
4807 else
4808 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
4809 }
4810
4811 static int
4812 sh_elf_optimized_tls_reloc (struct bfd_link_info *info, int r_type,
4813 int is_local)
4814 {
4815 if (info->shared)
4816 return r_type;
4817
4818 switch (r_type)
4819 {
4820 case R_SH_TLS_GD_32:
4821 case R_SH_TLS_IE_32:
4822 if (is_local)
4823 return R_SH_TLS_LE_32;
4824 return R_SH_TLS_IE_32;
4825 case R_SH_TLS_LD_32:
4826 return R_SH_TLS_LE_32;
4827 }
4828
4829 return r_type;
4830 }
4831
4832 /* Look through the relocs for a section during the first phase.
4833 Since we don't do .gots or .plts, we just need to consider the
4834 virtual table relocs for gc. */
4835
4836 static bfd_boolean
4837 sh_elf_check_relocs (bfd *abfd, struct bfd_link_info *info, asection *sec,
4838 const Elf_Internal_Rela *relocs)
4839 {
4840 Elf_Internal_Shdr *symtab_hdr;
4841 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
4842 struct elf_sh_link_hash_table *htab;
4843 const Elf_Internal_Rela *rel;
4844 const Elf_Internal_Rela *rel_end;
4845 bfd_vma *local_got_offsets;
4846 asection *sgot;
4847 asection *srelgot;
4848 asection *sreloc;
4849 unsigned int r_type;
4850 int tls_type, old_tls_type;
4851
4852 sgot = NULL;
4853 srelgot = NULL;
4854 sreloc = NULL;
4855
4856 if (info->relocatable)
4857 return TRUE;
4858
4859 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4860 sym_hashes = elf_sym_hashes (abfd);
4861 sym_hashes_end = sym_hashes + symtab_hdr->sh_size/sizeof (Elf32_External_Sym);
4862 if (!elf_bad_symtab (abfd))
4863 sym_hashes_end -= symtab_hdr->sh_info;
4864
4865 htab = sh_elf_hash_table (info);
4866 local_got_offsets = elf_local_got_offsets (abfd);
4867
4868 rel_end = relocs + sec->reloc_count;
4869 for (rel = relocs; rel < rel_end; rel++)
4870 {
4871 struct elf_link_hash_entry *h;
4872 unsigned long r_symndx;
4873 #ifdef INCLUDE_SHMEDIA
4874 int seen_stt_datalabel = 0;
4875 #endif
4876
4877 r_symndx = ELF32_R_SYM (rel->r_info);
4878 r_type = ELF32_R_TYPE (rel->r_info);
4879
4880 if (r_symndx < symtab_hdr->sh_info)
4881 h = NULL;
4882 else
4883 {
4884 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4885 while (h->root.type == bfd_link_hash_indirect
4886 || h->root.type == bfd_link_hash_warning)
4887 {
4888 #ifdef INCLUDE_SHMEDIA
4889 seen_stt_datalabel |= h->type == STT_DATALABEL;
4890 #endif
4891 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4892 }
4893 }
4894
4895 r_type = sh_elf_optimized_tls_reloc (info, r_type, h == NULL);
4896 if (! info->shared
4897 && r_type == R_SH_TLS_IE_32
4898 && h != NULL
4899 && h->root.type != bfd_link_hash_undefined
4900 && h->root.type != bfd_link_hash_undefweak
4901 && (h->dynindx == -1
4902 || h->def_regular))
4903 r_type = R_SH_TLS_LE_32;
4904
4905 /* Some relocs require a global offset table. */
4906 if (htab->sgot == NULL)
4907 {
4908 switch (r_type)
4909 {
4910 case R_SH_GOTPLT32:
4911 case R_SH_GOT32:
4912 case R_SH_GOTOFF:
4913 case R_SH_GOTPC:
4914 #ifdef INCLUDE_SHMEDIA
4915 case R_SH_GOTPLT_LOW16:
4916 case R_SH_GOTPLT_MEDLOW16:
4917 case R_SH_GOTPLT_MEDHI16:
4918 case R_SH_GOTPLT_HI16:
4919 case R_SH_GOTPLT10BY4:
4920 case R_SH_GOTPLT10BY8:
4921 case R_SH_GOT_LOW16:
4922 case R_SH_GOT_MEDLOW16:
4923 case R_SH_GOT_MEDHI16:
4924 case R_SH_GOT_HI16:
4925 case R_SH_GOT10BY4:
4926 case R_SH_GOT10BY8:
4927 case R_SH_GOTOFF_LOW16:
4928 case R_SH_GOTOFF_MEDLOW16:
4929 case R_SH_GOTOFF_MEDHI16:
4930 case R_SH_GOTOFF_HI16:
4931 case R_SH_GOTPC_LOW16:
4932 case R_SH_GOTPC_MEDLOW16:
4933 case R_SH_GOTPC_MEDHI16:
4934 case R_SH_GOTPC_HI16:
4935 #endif
4936 case R_SH_TLS_GD_32:
4937 case R_SH_TLS_LD_32:
4938 case R_SH_TLS_IE_32:
4939 if (htab->sgot == NULL)
4940 {
4941 if (htab->root.dynobj == NULL)
4942 htab->root.dynobj = abfd;
4943 if (!create_got_section (htab->root.dynobj, info))
4944 return FALSE;
4945 }
4946 break;
4947
4948 default:
4949 break;
4950 }
4951 }
4952
4953 switch (r_type)
4954 {
4955 /* This relocation describes the C++ object vtable hierarchy.
4956 Reconstruct it for later use during GC. */
4957 case R_SH_GNU_VTINHERIT:
4958 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
4959 return FALSE;
4960 break;
4961
4962 /* This relocation describes which C++ vtable entries are actually
4963 used. Record for later use during GC. */
4964 case R_SH_GNU_VTENTRY:
4965 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
4966 return FALSE;
4967 break;
4968
4969 case R_SH_TLS_IE_32:
4970 if (info->shared)
4971 info->flags |= DF_STATIC_TLS;
4972
4973 /* FALLTHROUGH */
4974 force_got:
4975 case R_SH_TLS_GD_32:
4976 case R_SH_GOT32:
4977 #ifdef INCLUDE_SHMEDIA
4978 case R_SH_GOT_LOW16:
4979 case R_SH_GOT_MEDLOW16:
4980 case R_SH_GOT_MEDHI16:
4981 case R_SH_GOT_HI16:
4982 case R_SH_GOT10BY4:
4983 case R_SH_GOT10BY8:
4984 #endif
4985 switch (r_type)
4986 {
4987 default:
4988 tls_type = GOT_NORMAL;
4989 break;
4990 case R_SH_TLS_GD_32:
4991 tls_type = GOT_TLS_GD;
4992 break;
4993 case R_SH_TLS_IE_32:
4994 tls_type = GOT_TLS_IE;
4995 break;
4996 }
4997
4998 if (h != NULL)
4999 {
5000 #ifdef INCLUDE_SHMEDIA
5001 if (seen_stt_datalabel)
5002 {
5003 struct elf_sh_link_hash_entry *eh
5004 = (struct elf_sh_link_hash_entry *) h;
5005
5006 eh->datalabel_got.refcount += 1;
5007 }
5008 else
5009 #endif
5010 h->got.refcount += 1;
5011 old_tls_type = sh_elf_hash_entry (h)->tls_type;
5012 }
5013 else
5014 {
5015 bfd_signed_vma *local_got_refcounts;
5016
5017 /* This is a global offset table entry for a local
5018 symbol. */
5019 local_got_refcounts = elf_local_got_refcounts (abfd);
5020 if (local_got_refcounts == NULL)
5021 {
5022 bfd_size_type size;
5023
5024 size = symtab_hdr->sh_info;
5025 size *= sizeof (bfd_signed_vma);
5026 #ifdef INCLUDE_SHMEDIA
5027 /* Reserve space for both the datalabel and
5028 codelabel local GOT offsets. */
5029 size *= 2;
5030 #endif
5031 size += symtab_hdr->sh_info;
5032 local_got_refcounts = ((bfd_signed_vma *)
5033 bfd_zalloc (abfd, size));
5034 if (local_got_refcounts == NULL)
5035 return FALSE;
5036 elf_local_got_refcounts (abfd) = local_got_refcounts;
5037 #ifdef INCLUDE_SHMEDIA
5038 /* Take care of both the datalabel and codelabel local
5039 GOT offsets. */
5040 sh_elf_local_got_tls_type (abfd)
5041 = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
5042 #else
5043 sh_elf_local_got_tls_type (abfd)
5044 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
5045 #endif
5046 }
5047 #ifdef INCLUDE_SHMEDIA
5048 if (rel->r_addend & 1)
5049 local_got_refcounts[symtab_hdr->sh_info + r_symndx] += 1;
5050 else
5051 #endif
5052 local_got_refcounts[r_symndx] += 1;
5053 old_tls_type = sh_elf_local_got_tls_type (abfd) [r_symndx];
5054 }
5055
5056 /* If a TLS symbol is accessed using IE at least once,
5057 there is no point to use dynamic model for it. */
5058 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
5059 && (old_tls_type != GOT_TLS_GD || tls_type != GOT_TLS_IE))
5060 {
5061 if (old_tls_type == GOT_TLS_IE && tls_type == GOT_TLS_GD)
5062 tls_type = GOT_TLS_IE;
5063 else
5064 {
5065 (*_bfd_error_handler)
5066 (_("%B: `%s' accessed both as normal and thread local symbol"),
5067 abfd, h->root.root.string);
5068 return FALSE;
5069 }
5070 }
5071
5072 if (old_tls_type != tls_type)
5073 {
5074 if (h != NULL)
5075 sh_elf_hash_entry (h)->tls_type = tls_type;
5076 else
5077 sh_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
5078 }
5079
5080 break;
5081
5082 case R_SH_TLS_LD_32:
5083 sh_elf_hash_table(info)->tls_ldm_got.refcount += 1;
5084 break;
5085
5086 case R_SH_GOTPLT32:
5087 #ifdef INCLUDE_SHMEDIA
5088 case R_SH_GOTPLT_LOW16:
5089 case R_SH_GOTPLT_MEDLOW16:
5090 case R_SH_GOTPLT_MEDHI16:
5091 case R_SH_GOTPLT_HI16:
5092 case R_SH_GOTPLT10BY4:
5093 case R_SH_GOTPLT10BY8:
5094 #endif
5095 /* If this is a local symbol, we resolve it directly without
5096 creating a procedure linkage table entry. */
5097
5098 if (h == NULL
5099 || h->forced_local
5100 || ! info->shared
5101 || info->symbolic
5102 || h->dynindx == -1)
5103 goto force_got;
5104
5105 h->needs_plt = 1;
5106 h->plt.refcount += 1;
5107 ((struct elf_sh_link_hash_entry *) h)->gotplt_refcount += 1;
5108
5109 break;
5110
5111 case R_SH_PLT32:
5112 #ifdef INCLUDE_SHMEDIA
5113 case R_SH_PLT_LOW16:
5114 case R_SH_PLT_MEDLOW16:
5115 case R_SH_PLT_MEDHI16:
5116 case R_SH_PLT_HI16:
5117 #endif
5118 /* This symbol requires a procedure linkage table entry. We
5119 actually build the entry in adjust_dynamic_symbol,
5120 because this might be a case of linking PIC code which is
5121 never referenced by a dynamic object, in which case we
5122 don't need to generate a procedure linkage table entry
5123 after all. */
5124
5125 /* If this is a local symbol, we resolve it directly without
5126 creating a procedure linkage table entry. */
5127 if (h == NULL)
5128 continue;
5129
5130 if (h->forced_local)
5131 break;
5132
5133 h->needs_plt = 1;
5134 h->plt.refcount += 1;
5135 break;
5136
5137 case R_SH_DIR32:
5138 case R_SH_REL32:
5139 #ifdef INCLUDE_SHMEDIA
5140 case R_SH_IMM_LOW16_PCREL:
5141 case R_SH_IMM_MEDLOW16_PCREL:
5142 case R_SH_IMM_MEDHI16_PCREL:
5143 case R_SH_IMM_HI16_PCREL:
5144 #endif
5145 if (h != NULL && ! info->shared)
5146 {
5147 h->non_got_ref = 1;
5148 h->plt.refcount += 1;
5149 }
5150
5151 /* If we are creating a shared library, and this is a reloc
5152 against a global symbol, or a non PC relative reloc
5153 against a local symbol, then we need to copy the reloc
5154 into the shared library. However, if we are linking with
5155 -Bsymbolic, we do not need to copy a reloc against a
5156 global symbol which is defined in an object we are
5157 including in the link (i.e., DEF_REGULAR is set). At
5158 this point we have not seen all the input files, so it is
5159 possible that DEF_REGULAR is not set now but will be set
5160 later (it is never cleared). We account for that
5161 possibility below by storing information in the
5162 dyn_relocs field of the hash table entry. A similar
5163 situation occurs when creating shared libraries and symbol
5164 visibility changes render the symbol local.
5165
5166 If on the other hand, we are creating an executable, we
5167 may need to keep relocations for symbols satisfied by a
5168 dynamic library if we manage to avoid copy relocs for the
5169 symbol. */
5170 if ((info->shared
5171 && (sec->flags & SEC_ALLOC) != 0
5172 && (r_type != R_SH_REL32
5173 || (h != NULL
5174 && (! info->symbolic
5175 || h->root.type == bfd_link_hash_defweak
5176 || !h->def_regular))))
5177 || (! info->shared
5178 && (sec->flags & SEC_ALLOC) != 0
5179 && h != NULL
5180 && (h->root.type == bfd_link_hash_defweak
5181 || !h->def_regular)))
5182 {
5183 struct elf_sh_dyn_relocs *p;
5184 struct elf_sh_dyn_relocs **head;
5185
5186 if (htab->root.dynobj == NULL)
5187 htab->root.dynobj = abfd;
5188
5189 /* When creating a shared object, we must copy these
5190 reloc types into the output file. We create a reloc
5191 section in dynobj and make room for this reloc. */
5192 if (sreloc == NULL)
5193 {
5194 const char *name;
5195
5196 name = (bfd_elf_string_from_elf_section
5197 (abfd,
5198 elf_elfheader (abfd)->e_shstrndx,
5199 elf_section_data (sec)->rel_hdr.sh_name));
5200 if (name == NULL)
5201 return FALSE;
5202
5203 BFD_ASSERT (CONST_STRNEQ (name, ".rela")
5204 && strcmp (bfd_get_section_name (abfd, sec),
5205 name + 5) == 0);
5206
5207 sreloc = bfd_get_section_by_name (htab->root.dynobj, name);
5208 if (sreloc == NULL)
5209 {
5210 flagword flags;
5211
5212 flags = (SEC_HAS_CONTENTS | SEC_READONLY
5213 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
5214 if ((sec->flags & SEC_ALLOC) != 0)
5215 flags |= SEC_ALLOC | SEC_LOAD;
5216 sreloc = bfd_make_section_with_flags (htab->root.dynobj,
5217 name,
5218 flags);
5219 if (sreloc == NULL
5220 || ! bfd_set_section_alignment (htab->root.dynobj,
5221 sreloc, 2))
5222 return FALSE;
5223 }
5224 elf_section_data (sec)->sreloc = sreloc;
5225 }
5226
5227 /* If this is a global symbol, we count the number of
5228 relocations we need for this symbol. */
5229 if (h != NULL)
5230 head = &((struct elf_sh_link_hash_entry *) h)->dyn_relocs;
5231 else
5232 {
5233 asection *s;
5234 void *vpp;
5235
5236 /* Track dynamic relocs needed for local syms too. */
5237 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
5238 sec, r_symndx);
5239 if (s == NULL)
5240 return FALSE;
5241
5242 vpp = &elf_section_data (s)->local_dynrel;
5243 head = (struct elf_sh_dyn_relocs **) vpp;
5244 }
5245
5246 p = *head;
5247 if (p == NULL || p->sec != sec)
5248 {
5249 bfd_size_type amt = sizeof (*p);
5250 p = bfd_alloc (htab->root.dynobj, amt);
5251 if (p == NULL)
5252 return FALSE;
5253 p->next = *head;
5254 *head = p;
5255 p->sec = sec;
5256 p->count = 0;
5257 p->pc_count = 0;
5258 }
5259
5260 p->count += 1;
5261 if (r_type == R_SH_REL32
5262 #ifdef INCLUDE_SHMEDIA
5263 || r_type == R_SH_IMM_LOW16_PCREL
5264 || r_type == R_SH_IMM_MEDLOW16_PCREL
5265 || r_type == R_SH_IMM_MEDHI16_PCREL
5266 || r_type == R_SH_IMM_HI16_PCREL
5267 #endif
5268 )
5269 p->pc_count += 1;
5270 }
5271
5272 break;
5273
5274 case R_SH_TLS_LE_32:
5275 if (info->shared)
5276 {
5277 (*_bfd_error_handler)
5278 (_("%B: TLS local exec code cannot be linked into shared objects"),
5279 abfd);
5280 return FALSE;
5281 }
5282
5283 break;
5284
5285 case R_SH_TLS_LDO_32:
5286 /* Nothing to do. */
5287 break;
5288
5289 default:
5290 break;
5291 }
5292 }
5293
5294 return TRUE;
5295 }
5296
5297 #ifndef sh_elf_set_mach_from_flags
5298 static unsigned int sh_ef_bfd_table[] = { EF_SH_BFD_TABLE };
5299
5300 static bfd_boolean
5301 sh_elf_set_mach_from_flags (bfd *abfd)
5302 {
5303 flagword flags = elf_elfheader (abfd)->e_flags & EF_SH_MACH_MASK;
5304
5305 if (flags >= sizeof(sh_ef_bfd_table))
5306 return FALSE;
5307
5308 if (sh_ef_bfd_table[flags] == 0)
5309 return FALSE;
5310
5311 bfd_default_set_arch_mach (abfd, bfd_arch_sh, sh_ef_bfd_table[flags]);
5312
5313 return TRUE;
5314 }
5315
5316
5317 /* Reverse table lookup for sh_ef_bfd_table[].
5318 Given a bfd MACH value from archures.c
5319 return the equivalent ELF flags from the table.
5320 Return -1 if no match is found. */
5321
5322 int
5323 sh_elf_get_flags_from_mach (unsigned long mach)
5324 {
5325 int i = ARRAY_SIZE (sh_ef_bfd_table) - 1;
5326
5327 for (; i>0; i--)
5328 if (sh_ef_bfd_table[i] == mach)
5329 return i;
5330
5331 /* shouldn't get here */
5332 BFD_FAIL();
5333
5334 return -1;
5335 }
5336 #endif /* not sh_elf_set_mach_from_flags */
5337
5338 #ifndef sh_elf_set_private_flags
5339 /* Function to keep SH specific file flags. */
5340
5341 static bfd_boolean
5342 sh_elf_set_private_flags (bfd *abfd, flagword flags)
5343 {
5344 BFD_ASSERT (! elf_flags_init (abfd)
5345 || elf_elfheader (abfd)->e_flags == flags);
5346
5347 elf_elfheader (abfd)->e_flags = flags;
5348 elf_flags_init (abfd) = TRUE;
5349 return sh_elf_set_mach_from_flags (abfd);
5350 }
5351 #endif /* not sh_elf_set_private_flags */
5352
5353 #ifndef sh_elf_copy_private_data
5354 /* Copy backend specific data from one object module to another */
5355
5356 static bfd_boolean
5357 sh_elf_copy_private_data (bfd * ibfd, bfd * obfd)
5358 {
5359 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5360 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5361 return TRUE;
5362
5363 return sh_elf_set_private_flags (obfd, elf_elfheader (ibfd)->e_flags);
5364 }
5365 #endif /* not sh_elf_copy_private_data */
5366
5367 #ifndef sh_elf_merge_private_data
5368
5369 /* This function returns the ELF architecture number that
5370 corresponds to the given arch_sh* flags. */
5371
5372 int
5373 sh_find_elf_flags (unsigned int arch_set)
5374 {
5375 extern unsigned long sh_get_bfd_mach_from_arch_set (unsigned int);
5376 unsigned long bfd_mach = sh_get_bfd_mach_from_arch_set (arch_set);
5377
5378 return sh_elf_get_flags_from_mach (bfd_mach);
5379 }
5380
5381 /* This routine initialises the elf flags when required and
5382 calls sh_merge_bfd_arch() to check dsp/fpu compatibility. */
5383
5384 static bfd_boolean
5385 sh_elf_merge_private_data (bfd *ibfd, bfd *obfd)
5386 {
5387 extern bfd_boolean sh_merge_bfd_arch (bfd *, bfd *);
5388
5389 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5390 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5391 return TRUE;
5392
5393 if (! elf_flags_init (obfd))
5394 {
5395 /* This happens when ld starts out with a 'blank' output file. */
5396 elf_flags_init (obfd) = TRUE;
5397 elf_elfheader (obfd)->e_flags = EF_SH1;
5398 sh_elf_set_mach_from_flags (obfd);
5399 }
5400
5401 if (! sh_merge_bfd_arch (ibfd, obfd))
5402 {
5403 _bfd_error_handler ("%B: uses instructions which are incompatible "
5404 "with instructions used in previous modules",
5405 ibfd);
5406 bfd_set_error (bfd_error_bad_value);
5407 return FALSE;
5408 }
5409
5410 elf_elfheader (obfd)->e_flags =
5411 sh_elf_get_flags_from_mach (bfd_get_mach (obfd));
5412
5413 return TRUE;
5414 }
5415 #endif /* not sh_elf_merge_private_data */
5416
5417 /* Override the generic function because we need to store sh_elf_obj_tdata
5418 as the specific tdata. We set also the machine architecture from flags
5419 here. */
5420
5421 static bfd_boolean
5422 sh_elf_object_p (bfd *abfd)
5423 {
5424 return sh_elf_set_mach_from_flags (abfd);
5425 }
5426
5427 /* Finish up dynamic symbol handling. We set the contents of various
5428 dynamic sections here. */
5429
5430 static bfd_boolean
5431 sh_elf_finish_dynamic_symbol (bfd *output_bfd, struct bfd_link_info *info,
5432 struct elf_link_hash_entry *h,
5433 Elf_Internal_Sym *sym)
5434 {
5435 struct elf_sh_link_hash_table *htab;
5436
5437 htab = sh_elf_hash_table (info);
5438
5439 if (h->plt.offset != (bfd_vma) -1)
5440 {
5441 asection *splt;
5442 asection *sgot;
5443 asection *srel;
5444
5445 bfd_vma plt_index;
5446 bfd_vma got_offset;
5447 Elf_Internal_Rela rel;
5448 bfd_byte *loc;
5449
5450 /* This symbol has an entry in the procedure linkage table. Set
5451 it up. */
5452
5453 BFD_ASSERT (h->dynindx != -1);
5454
5455 splt = htab->splt;
5456 sgot = htab->sgotplt;
5457 srel = htab->srelplt;
5458 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
5459
5460 /* Get the index in the procedure linkage table which
5461 corresponds to this symbol. This is the index of this symbol
5462 in all the symbols for which we are making plt entries. The
5463 first entry in the procedure linkage table is reserved. */
5464 plt_index = get_plt_index (htab->plt_info, h->plt.offset);
5465
5466 /* Get the offset into the .got table of the entry that
5467 corresponds to this function. Each .got entry is 4 bytes.
5468 The first three are reserved. */
5469 got_offset = (plt_index + 3) * 4;
5470
5471 #ifdef GOT_BIAS
5472 if (info->shared)
5473 got_offset -= GOT_BIAS;
5474 #endif
5475
5476 /* Fill in the entry in the procedure linkage table. */
5477 memcpy (splt->contents + h->plt.offset,
5478 htab->plt_info->symbol_entry,
5479 htab->plt_info->symbol_entry_size);
5480
5481 if (info->shared)
5482 install_plt_field (output_bfd, FALSE, got_offset,
5483 (splt->contents
5484 + h->plt.offset
5485 + htab->plt_info->symbol_fields.got_entry));
5486 else
5487 {
5488 install_plt_field (output_bfd, FALSE,
5489 (sgot->output_section->vma
5490 + sgot->output_offset
5491 + got_offset),
5492 (splt->contents
5493 + h->plt.offset
5494 + htab->plt_info->symbol_fields.got_entry));
5495 if (htab->vxworks_p)
5496 {
5497 unsigned int reachable_plts, plts_per_4k;
5498 int distance;
5499
5500 /* Divide the PLT into groups. The first group contains
5501 REACHABLE_PLTS entries and the other groups contain
5502 PLTS_PER_4K entries. Entries in the first group can
5503 branch directly to .plt; those in later groups branch
5504 to the last element of the previous group. */
5505 /* ??? It would be better to create multiple copies of
5506 the common resolver stub. */
5507 reachable_plts = ((4096
5508 - htab->plt_info->plt0_entry_size
5509 - (htab->plt_info->symbol_fields.plt + 4))
5510 / htab->plt_info->symbol_entry_size) + 1;
5511 plts_per_4k = (4096 / htab->plt_info->symbol_entry_size);
5512 if (plt_index < reachable_plts)
5513 distance = -(h->plt.offset
5514 + htab->plt_info->symbol_fields.plt);
5515 else
5516 distance = -(((plt_index - reachable_plts) % plts_per_4k + 1)
5517 * htab->plt_info->symbol_entry_size);
5518
5519 /* Install the 'bra' with this offset. */
5520 bfd_put_16 (output_bfd,
5521 0xa000 | (0x0fff & ((distance - 4) / 2)),
5522 (splt->contents
5523 + h->plt.offset
5524 + htab->plt_info->symbol_fields.plt));
5525 }
5526 else
5527 install_plt_field (output_bfd, TRUE,
5528 splt->output_section->vma + splt->output_offset,
5529 (splt->contents
5530 + h->plt.offset
5531 + htab->plt_info->symbol_fields.plt));
5532 }
5533
5534 #ifdef GOT_BIAS
5535 if (info->shared)
5536 got_offset += GOT_BIAS;
5537 #endif
5538
5539 install_plt_field (output_bfd, FALSE,
5540 plt_index * sizeof (Elf32_External_Rela),
5541 (splt->contents
5542 + h->plt.offset
5543 + htab->plt_info->symbol_fields.reloc_offset));
5544
5545 /* Fill in the entry in the global offset table. */
5546 bfd_put_32 (output_bfd,
5547 (splt->output_section->vma
5548 + splt->output_offset
5549 + h->plt.offset
5550 + htab->plt_info->symbol_resolve_offset),
5551 sgot->contents + got_offset);
5552
5553 /* Fill in the entry in the .rela.plt section. */
5554 rel.r_offset = (sgot->output_section->vma
5555 + sgot->output_offset
5556 + got_offset);
5557 rel.r_info = ELF32_R_INFO (h->dynindx, R_SH_JMP_SLOT);
5558 rel.r_addend = 0;
5559 #ifdef GOT_BIAS
5560 rel.r_addend = GOT_BIAS;
5561 #endif
5562 loc = srel->contents + plt_index * sizeof (Elf32_External_Rela);
5563 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
5564
5565 if (htab->vxworks_p && !info->shared)
5566 {
5567 /* Create the .rela.plt.unloaded relocations for this PLT entry.
5568 Begin by pointing LOC to the first such relocation. */
5569 loc = (htab->srelplt2->contents
5570 + (plt_index * 2 + 1) * sizeof (Elf32_External_Rela));
5571
5572 /* Create a .rela.plt.unloaded R_SH_DIR32 relocation
5573 for the PLT entry's pointer to the .got.plt entry. */
5574 rel.r_offset = (htab->splt->output_section->vma
5575 + htab->splt->output_offset
5576 + h->plt.offset
5577 + htab->plt_info->symbol_fields.got_entry);
5578 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_SH_DIR32);
5579 rel.r_addend = got_offset;
5580 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
5581 loc += sizeof (Elf32_External_Rela);
5582
5583 /* Create a .rela.plt.unloaded R_SH_DIR32 relocation for
5584 the .got.plt entry, which initially points to .plt. */
5585 rel.r_offset = (htab->sgotplt->output_section->vma
5586 + htab->sgotplt->output_offset
5587 + got_offset);
5588 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_SH_DIR32);
5589 rel.r_addend = 0;
5590 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
5591 }
5592
5593 if (!h->def_regular)
5594 {
5595 /* Mark the symbol as undefined, rather than as defined in
5596 the .plt section. Leave the value alone. */
5597 sym->st_shndx = SHN_UNDEF;
5598 }
5599 }
5600
5601 if (h->got.offset != (bfd_vma) -1
5602 && sh_elf_hash_entry (h)->tls_type != GOT_TLS_GD
5603 && sh_elf_hash_entry (h)->tls_type != GOT_TLS_IE)
5604 {
5605 asection *sgot;
5606 asection *srel;
5607 Elf_Internal_Rela rel;
5608 bfd_byte *loc;
5609
5610 /* This symbol has an entry in the global offset table. Set it
5611 up. */
5612
5613 sgot = htab->sgot;
5614 srel = htab->srelgot;
5615 BFD_ASSERT (sgot != NULL && srel != NULL);
5616
5617 rel.r_offset = (sgot->output_section->vma
5618 + sgot->output_offset
5619 + (h->got.offset &~ (bfd_vma) 1));
5620
5621 /* If this is a static link, or it is a -Bsymbolic link and the
5622 symbol is defined locally or was forced to be local because
5623 of a version file, we just want to emit a RELATIVE reloc.
5624 The entry in the global offset table will already have been
5625 initialized in the relocate_section function. */
5626 if (info->shared
5627 && SYMBOL_REFERENCES_LOCAL (info, h))
5628 {
5629 rel.r_info = ELF32_R_INFO (0, R_SH_RELATIVE);
5630 rel.r_addend = (h->root.u.def.value
5631 + h->root.u.def.section->output_section->vma
5632 + h->root.u.def.section->output_offset);
5633 }
5634 else
5635 {
5636 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
5637 rel.r_info = ELF32_R_INFO (h->dynindx, R_SH_GLOB_DAT);
5638 rel.r_addend = 0;
5639 }
5640
5641 loc = srel->contents;
5642 loc += srel->reloc_count++ * sizeof (Elf32_External_Rela);
5643 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
5644 }
5645
5646 #ifdef INCLUDE_SHMEDIA
5647 {
5648 struct elf_sh_link_hash_entry *eh;
5649
5650 eh = (struct elf_sh_link_hash_entry *) h;
5651 if (eh->datalabel_got.offset != (bfd_vma) -1)
5652 {
5653 asection *sgot;
5654 asection *srel;
5655 Elf_Internal_Rela rel;
5656 bfd_byte *loc;
5657
5658 /* This symbol has a datalabel entry in the global offset table.
5659 Set it up. */
5660
5661 sgot = htab->sgot;
5662 srel = htab->srelgot;
5663 BFD_ASSERT (sgot != NULL && srel != NULL);
5664
5665 rel.r_offset = (sgot->output_section->vma
5666 + sgot->output_offset
5667 + (eh->datalabel_got.offset &~ (bfd_vma) 1));
5668
5669 /* If this is a static link, or it is a -Bsymbolic link and the
5670 symbol is defined locally or was forced to be local because
5671 of a version file, we just want to emit a RELATIVE reloc.
5672 The entry in the global offset table will already have been
5673 initialized in the relocate_section function. */
5674 if (info->shared
5675 && SYMBOL_REFERENCES_LOCAL (info, h))
5676 {
5677 rel.r_info = ELF32_R_INFO (0, R_SH_RELATIVE);
5678 rel.r_addend = (h->root.u.def.value
5679 + h->root.u.def.section->output_section->vma
5680 + h->root.u.def.section->output_offset);
5681 }
5682 else
5683 {
5684 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents
5685 + eh->datalabel_got.offset);
5686 rel.r_info = ELF32_R_INFO (h->dynindx, R_SH_GLOB_DAT);
5687 rel.r_addend = 0;
5688 }
5689
5690 loc = srel->contents;
5691 loc += srel->reloc_count++ * sizeof (Elf32_External_Rela);
5692 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
5693 }
5694 }
5695 #endif
5696
5697 if (h->needs_copy)
5698 {
5699 asection *s;
5700 Elf_Internal_Rela rel;
5701 bfd_byte *loc;
5702
5703 /* This symbol needs a copy reloc. Set it up. */
5704
5705 BFD_ASSERT (h->dynindx != -1
5706 && (h->root.type == bfd_link_hash_defined
5707 || h->root.type == bfd_link_hash_defweak));
5708
5709 s = bfd_get_section_by_name (h->root.u.def.section->owner,
5710 ".rela.bss");
5711 BFD_ASSERT (s != NULL);
5712
5713 rel.r_offset = (h->root.u.def.value
5714 + h->root.u.def.section->output_section->vma
5715 + h->root.u.def.section->output_offset);
5716 rel.r_info = ELF32_R_INFO (h->dynindx, R_SH_COPY);
5717 rel.r_addend = 0;
5718 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5719 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
5720 }
5721
5722 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
5723 _GLOBAL_OFFSET_TABLE_ is not absolute: it is relative to the
5724 ".got" section. */
5725 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
5726 || (!htab->vxworks_p && h == htab->root.hgot))
5727 sym->st_shndx = SHN_ABS;
5728
5729 return TRUE;
5730 }
5731
5732 /* Finish up the dynamic sections. */
5733
5734 static bfd_boolean
5735 sh_elf_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
5736 {
5737 struct elf_sh_link_hash_table *htab;
5738 asection *sgot;
5739 asection *sdyn;
5740
5741 htab = sh_elf_hash_table (info);
5742 sgot = htab->sgotplt;
5743 sdyn = bfd_get_section_by_name (htab->root.dynobj, ".dynamic");
5744
5745 if (htab->root.dynamic_sections_created)
5746 {
5747 asection *splt;
5748 Elf32_External_Dyn *dyncon, *dynconend;
5749
5750 BFD_ASSERT (sgot != NULL && sdyn != NULL);
5751
5752 dyncon = (Elf32_External_Dyn *) sdyn->contents;
5753 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
5754 for (; dyncon < dynconend; dyncon++)
5755 {
5756 Elf_Internal_Dyn dyn;
5757 asection *s;
5758 #ifdef INCLUDE_SHMEDIA
5759 const char *name;
5760 #endif
5761
5762 bfd_elf32_swap_dyn_in (htab->root.dynobj, dyncon, &dyn);
5763
5764 switch (dyn.d_tag)
5765 {
5766 default:
5767 break;
5768
5769 #ifdef INCLUDE_SHMEDIA
5770 case DT_INIT:
5771 name = info->init_function;
5772 goto get_sym;
5773
5774 case DT_FINI:
5775 name = info->fini_function;
5776 get_sym:
5777 if (dyn.d_un.d_val != 0)
5778 {
5779 struct elf_link_hash_entry *h;
5780
5781 h = elf_link_hash_lookup (&htab->root, name,
5782 FALSE, FALSE, TRUE);
5783 if (h != NULL && (h->other & STO_SH5_ISA32))
5784 {
5785 dyn.d_un.d_val |= 1;
5786 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
5787 }
5788 }
5789 break;
5790 #endif
5791
5792 case DT_PLTGOT:
5793 s = htab->sgot->output_section;
5794 goto get_vma;
5795
5796 case DT_JMPREL:
5797 s = htab->srelplt->output_section;
5798 get_vma:
5799 BFD_ASSERT (s != NULL);
5800 dyn.d_un.d_ptr = s->vma;
5801 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
5802 break;
5803
5804 case DT_PLTRELSZ:
5805 s = htab->srelplt->output_section;
5806 BFD_ASSERT (s != NULL);
5807 dyn.d_un.d_val = s->size;
5808 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
5809 break;
5810
5811 case DT_RELASZ:
5812 /* My reading of the SVR4 ABI indicates that the
5813 procedure linkage table relocs (DT_JMPREL) should be
5814 included in the overall relocs (DT_RELA). This is
5815 what Solaris does. However, UnixWare can not handle
5816 that case. Therefore, we override the DT_RELASZ entry
5817 here to make it not include the JMPREL relocs. Since
5818 the linker script arranges for .rela.plt to follow all
5819 other relocation sections, we don't have to worry
5820 about changing the DT_RELA entry. */
5821 if (htab->srelplt != NULL)
5822 {
5823 s = htab->srelplt->output_section;
5824 dyn.d_un.d_val -= s->size;
5825 }
5826 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
5827 break;
5828 }
5829 }
5830
5831 /* Fill in the first entry in the procedure linkage table. */
5832 splt = htab->splt;
5833 if (splt && splt->size > 0 && htab->plt_info->plt0_entry)
5834 {
5835 unsigned int i;
5836
5837 memcpy (splt->contents,
5838 htab->plt_info->plt0_entry,
5839 htab->plt_info->plt0_entry_size);
5840 for (i = 0; i < ARRAY_SIZE (htab->plt_info->plt0_got_fields); i++)
5841 if (htab->plt_info->plt0_got_fields[i] != MINUS_ONE)
5842 install_plt_field (output_bfd, FALSE,
5843 (sgot->output_section->vma
5844 + sgot->output_offset
5845 + (i * 4)),
5846 (splt->contents
5847 + htab->plt_info->plt0_got_fields[i]));
5848
5849 if (htab->vxworks_p)
5850 {
5851 /* Finalize the .rela.plt.unloaded contents. */
5852 Elf_Internal_Rela rel;
5853 bfd_byte *loc;
5854
5855 /* Create a .rela.plt.unloaded R_SH_DIR32 relocation for the
5856 first PLT entry's pointer to _GLOBAL_OFFSET_TABLE_ + 8. */
5857 loc = htab->srelplt2->contents;
5858 rel.r_offset = (splt->output_section->vma
5859 + splt->output_offset
5860 + htab->plt_info->plt0_got_fields[2]);
5861 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_SH_DIR32);
5862 rel.r_addend = 8;
5863 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
5864 loc += sizeof (Elf32_External_Rela);
5865
5866 /* Fix up the remaining .rela.plt.unloaded relocations.
5867 They may have the wrong symbol index for _G_O_T_ or
5868 _P_L_T_ depending on the order in which symbols were
5869 output. */
5870 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
5871 {
5872 /* The PLT entry's pointer to the .got.plt slot. */
5873 bfd_elf32_swap_reloc_in (output_bfd, loc, &rel);
5874 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx,
5875 R_SH_DIR32);
5876 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
5877 loc += sizeof (Elf32_External_Rela);
5878
5879 /* The .got.plt slot's pointer to .plt. */
5880 bfd_elf32_swap_reloc_in (output_bfd, loc, &rel);
5881 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx,
5882 R_SH_DIR32);
5883 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
5884 loc += sizeof (Elf32_External_Rela);
5885 }
5886 }
5887
5888 /* UnixWare sets the entsize of .plt to 4, although that doesn't
5889 really seem like the right value. */
5890 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
5891 }
5892 }
5893
5894 /* Fill in the first three entries in the global offset table. */
5895 if (sgot && sgot->size > 0)
5896 {
5897 if (sdyn == NULL)
5898 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
5899 else
5900 bfd_put_32 (output_bfd,
5901 sdyn->output_section->vma + sdyn->output_offset,
5902 sgot->contents);
5903 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
5904 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
5905
5906 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
5907 }
5908
5909 return TRUE;
5910 }
5911
5912 static enum elf_reloc_type_class
5913 sh_elf_reloc_type_class (const Elf_Internal_Rela *rela)
5914 {
5915 switch ((int) ELF32_R_TYPE (rela->r_info))
5916 {
5917 case R_SH_RELATIVE:
5918 return reloc_class_relative;
5919 case R_SH_JMP_SLOT:
5920 return reloc_class_plt;
5921 case R_SH_COPY:
5922 return reloc_class_copy;
5923 default:
5924 return reloc_class_normal;
5925 }
5926 }
5927
5928 #if !defined SH_TARGET_ALREADY_DEFINED
5929 /* Support for Linux core dump NOTE sections. */
5930
5931 static bfd_boolean
5932 elf32_shlin_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
5933 {
5934 int offset;
5935 unsigned int size;
5936
5937 switch (note->descsz)
5938 {
5939 default:
5940 return FALSE;
5941
5942 case 168: /* Linux/SH */
5943 /* pr_cursig */
5944 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
5945
5946 /* pr_pid */
5947 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
5948
5949 /* pr_reg */
5950 offset = 72;
5951 size = 92;
5952
5953 break;
5954 }
5955
5956 /* Make a ".reg/999" section. */
5957 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
5958 size, note->descpos + offset);
5959 }
5960
5961 static bfd_boolean
5962 elf32_shlin_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
5963 {
5964 switch (note->descsz)
5965 {
5966 default:
5967 return FALSE;
5968
5969 case 124: /* Linux/SH elf_prpsinfo */
5970 elf_tdata (abfd)->core_program
5971 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
5972 elf_tdata (abfd)->core_command
5973 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
5974 }
5975
5976 /* Note that for some reason, a spurious space is tacked
5977 onto the end of the args in some (at least one anyway)
5978 implementations, so strip it off if it exists. */
5979
5980 {
5981 char *command = elf_tdata (abfd)->core_command;
5982 int n = strlen (command);
5983
5984 if (0 < n && command[n - 1] == ' ')
5985 command[n - 1] = '\0';
5986 }
5987
5988 return TRUE;
5989 }
5990 #endif /* not SH_TARGET_ALREADY_DEFINED */
5991
5992
5993 /* Return address for Ith PLT stub in section PLT, for relocation REL
5994 or (bfd_vma) -1 if it should not be included. */
5995
5996 static bfd_vma
5997 sh_elf_plt_sym_val (bfd_vma i, const asection *plt,
5998 const arelent *rel ATTRIBUTE_UNUSED)
5999 {
6000 const struct elf_sh_plt_info *plt_info;
6001
6002 plt_info = get_plt_info (plt->owner, (plt->owner->flags & DYNAMIC) != 0);
6003 return plt->vma + get_plt_offset (plt_info, i);
6004 }
6005
6006 #if !defined SH_TARGET_ALREADY_DEFINED
6007 #define TARGET_BIG_SYM bfd_elf32_sh_vec
6008 #define TARGET_BIG_NAME "elf32-sh"
6009 #define TARGET_LITTLE_SYM bfd_elf32_shl_vec
6010 #define TARGET_LITTLE_NAME "elf32-shl"
6011 #endif
6012
6013 #define ELF_ARCH bfd_arch_sh
6014 #define ELF_MACHINE_CODE EM_SH
6015 #ifdef __QNXTARGET__
6016 #define ELF_MAXPAGESIZE 0x1000
6017 #else
6018 #define ELF_MAXPAGESIZE 0x80
6019 #endif
6020
6021 #define elf_symbol_leading_char '_'
6022
6023 #define bfd_elf32_bfd_reloc_type_lookup sh_elf_reloc_type_lookup
6024 #define elf_info_to_howto sh_elf_info_to_howto
6025 #define bfd_elf32_bfd_relax_section sh_elf_relax_section
6026 #define elf_backend_relocate_section sh_elf_relocate_section
6027 #define bfd_elf32_bfd_get_relocated_section_contents \
6028 sh_elf_get_relocated_section_contents
6029 #define bfd_elf32_mkobject sh_elf_mkobject
6030 #define elf_backend_object_p sh_elf_object_p
6031 #define bfd_elf32_bfd_set_private_bfd_flags \
6032 sh_elf_set_private_flags
6033 #define bfd_elf32_bfd_copy_private_bfd_data \
6034 sh_elf_copy_private_data
6035 #define bfd_elf32_bfd_merge_private_bfd_data \
6036 sh_elf_merge_private_data
6037
6038 #define elf_backend_gc_mark_hook sh_elf_gc_mark_hook
6039 #define elf_backend_gc_sweep_hook sh_elf_gc_sweep_hook
6040 #define elf_backend_check_relocs sh_elf_check_relocs
6041 #define elf_backend_copy_indirect_symbol \
6042 sh_elf_copy_indirect_symbol
6043 #define elf_backend_create_dynamic_sections \
6044 sh_elf_create_dynamic_sections
6045 #define bfd_elf32_bfd_link_hash_table_create \
6046 sh_elf_link_hash_table_create
6047 #define elf_backend_adjust_dynamic_symbol \
6048 sh_elf_adjust_dynamic_symbol
6049 #define elf_backend_always_size_sections \
6050 sh_elf_always_size_sections
6051 #define elf_backend_size_dynamic_sections \
6052 sh_elf_size_dynamic_sections
6053 #define elf_backend_finish_dynamic_symbol \
6054 sh_elf_finish_dynamic_symbol
6055 #define elf_backend_finish_dynamic_sections \
6056 sh_elf_finish_dynamic_sections
6057 #define elf_backend_reloc_type_class sh_elf_reloc_type_class
6058 #define elf_backend_plt_sym_val sh_elf_plt_sym_val
6059
6060 #define elf_backend_can_gc_sections 1
6061 #define elf_backend_can_refcount 1
6062 #define elf_backend_want_got_plt 1
6063 #define elf_backend_plt_readonly 1
6064 #define elf_backend_want_plt_sym 0
6065 #define elf_backend_got_header_size 12
6066
6067 #if !defined INCLUDE_SHMEDIA && !defined SH_TARGET_ALREADY_DEFINED
6068
6069 #include "elf32-target.h"
6070
6071 /* NetBSD support. */
6072 #undef TARGET_BIG_SYM
6073 #define TARGET_BIG_SYM bfd_elf32_shnbsd_vec
6074 #undef TARGET_BIG_NAME
6075 #define TARGET_BIG_NAME "elf32-sh-nbsd"
6076 #undef TARGET_LITTLE_SYM
6077 #define TARGET_LITTLE_SYM bfd_elf32_shlnbsd_vec
6078 #undef TARGET_LITTLE_NAME
6079 #define TARGET_LITTLE_NAME "elf32-shl-nbsd"
6080 #undef ELF_MAXPAGESIZE
6081 #define ELF_MAXPAGESIZE 0x10000
6082 #undef ELF_COMMONPAGESIZE
6083 #undef elf_symbol_leading_char
6084 #define elf_symbol_leading_char 0
6085 #undef elf32_bed
6086 #define elf32_bed elf32_sh_nbsd_bed
6087
6088 #include "elf32-target.h"
6089
6090
6091 /* Linux support. */
6092 #undef TARGET_BIG_SYM
6093 #define TARGET_BIG_SYM bfd_elf32_shblin_vec
6094 #undef TARGET_BIG_NAME
6095 #define TARGET_BIG_NAME "elf32-shbig-linux"
6096 #undef TARGET_LITTLE_SYM
6097 #define TARGET_LITTLE_SYM bfd_elf32_shlin_vec
6098 #undef TARGET_LITTLE_NAME
6099 #define TARGET_LITTLE_NAME "elf32-sh-linux"
6100 #undef ELF_COMMONPAGESIZE
6101 #define ELF_COMMONPAGESIZE 0x1000
6102
6103 #undef elf_backend_grok_prstatus
6104 #define elf_backend_grok_prstatus elf32_shlin_grok_prstatus
6105 #undef elf_backend_grok_psinfo
6106 #define elf_backend_grok_psinfo elf32_shlin_grok_psinfo
6107 #undef elf32_bed
6108 #define elf32_bed elf32_sh_lin_bed
6109
6110 #include "elf32-target.h"
6111
6112 #undef TARGET_BIG_SYM
6113 #define TARGET_BIG_SYM bfd_elf32_shvxworks_vec
6114 #undef TARGET_BIG_NAME
6115 #define TARGET_BIG_NAME "elf32-sh-vxworks"
6116 #undef TARGET_LITTLE_SYM
6117 #define TARGET_LITTLE_SYM bfd_elf32_shlvxworks_vec
6118 #undef TARGET_LITTLE_NAME
6119 #define TARGET_LITTLE_NAME "elf32-shl-vxworks"
6120 #undef elf32_bed
6121 #define elf32_bed elf32_sh_vxworks_bed
6122
6123 #undef elf_backend_want_plt_sym
6124 #define elf_backend_want_plt_sym 1
6125 #undef elf_symbol_leading_char
6126 #define elf_symbol_leading_char '_'
6127 #define elf_backend_want_got_underscore 1
6128 #undef elf_backend_grok_prstatus
6129 #undef elf_backend_grok_psinfo
6130 #undef elf_backend_add_symbol_hook
6131 #define elf_backend_add_symbol_hook elf_vxworks_add_symbol_hook
6132 #undef elf_backend_link_output_symbol_hook
6133 #define elf_backend_link_output_symbol_hook \
6134 elf_vxworks_link_output_symbol_hook
6135 #undef elf_backend_emit_relocs
6136 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
6137 #undef elf_backend_final_write_processing
6138 #define elf_backend_final_write_processing \
6139 elf_vxworks_final_write_processing
6140 #undef ELF_MAXPAGESIZE
6141 #define ELF_MAXPAGESIZE 0x1000
6142 #undef ELF_COMMONPAGESIZE
6143
6144 #include "elf32-target.h"
6145
6146 #endif /* neither INCLUDE_SHMEDIA nor SH_TARGET_ALREADY_DEFINED */
This page took 0.204633 seconds and 5 git commands to generate.