bfd/
[deliverable/binutils-gdb.git] / bfd / elf32-sh.c
1 /* Renesas / SuperH SH specific support for 32-bit ELF
2 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
3 2006 Free Software Foundation, Inc.
4 Contributed by Ian Lance Taylor, Cygnus Support.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "elf-vxworks.h"
28 #include "elf/sh.h"
29 #include "libiberty.h"
30 #include "../opcodes/sh-opc.h"
31
32 static bfd_reloc_status_type sh_elf_reloc
33 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
34 static bfd_reloc_status_type sh_elf_ignore_reloc
35 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
36 static bfd_boolean sh_elf_relax_delete_bytes
37 (bfd *, asection *, bfd_vma, int);
38 static bfd_boolean sh_elf_align_loads
39 (bfd *, asection *, Elf_Internal_Rela *, bfd_byte *, bfd_boolean *);
40 #ifndef SH64_ELF
41 static bfd_boolean sh_elf_swap_insns
42 (bfd *, asection *, void *, bfd_byte *, bfd_vma);
43 #endif
44 static int sh_elf_optimized_tls_reloc
45 (struct bfd_link_info *, int, int);
46 static bfd_vma dtpoff_base
47 (struct bfd_link_info *);
48 static bfd_vma tpoff
49 (struct bfd_link_info *, bfd_vma);
50
51 /* The name of the dynamic interpreter. This is put in the .interp
52 section. */
53
54 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
55
56 #define MINUS_ONE ((bfd_vma) 0 - 1)
57 \f
58 #define SH_PARTIAL32 TRUE
59 #define SH_SRC_MASK32 0xffffffff
60 #define SH_ELF_RELOC sh_elf_reloc
61 static reloc_howto_type sh_elf_howto_table[] =
62 {
63 #include "elf32-sh-relocs.h"
64 };
65
66 #define SH_PARTIAL32 FALSE
67 #define SH_SRC_MASK32 0
68 #define SH_ELF_RELOC bfd_elf_generic_reloc
69 static reloc_howto_type sh_vxworks_howto_table[] =
70 {
71 #include "elf32-sh-relocs.h"
72 };
73 \f
74 /* Return true if OUTPUT_BFD is a VxWorks object. */
75
76 static bfd_boolean
77 vxworks_object_p (bfd *abfd ATTRIBUTE_UNUSED)
78 {
79 #if !defined INCLUDE_SHMEDIA && !defined SH_TARGET_ALREADY_DEFINED
80 extern const bfd_target bfd_elf32_shlvxworks_vec;
81 extern const bfd_target bfd_elf32_shvxworks_vec;
82
83 return (abfd->xvec == &bfd_elf32_shlvxworks_vec
84 || abfd->xvec == &bfd_elf32_shvxworks_vec);
85 #else
86 return FALSE;
87 #endif
88 }
89
90 /* Return the howto table for ABFD. */
91
92 static reloc_howto_type *
93 get_howto_table (bfd *abfd)
94 {
95 if (vxworks_object_p (abfd))
96 return sh_vxworks_howto_table;
97 return sh_elf_howto_table;
98 }
99
100 static bfd_reloc_status_type
101 sh_elf_reloc_loop (int r_type ATTRIBUTE_UNUSED, bfd *input_bfd,
102 asection *input_section, bfd_byte *contents,
103 bfd_vma addr, asection *symbol_section,
104 bfd_vma start, bfd_vma end)
105 {
106 static bfd_vma last_addr;
107 static asection *last_symbol_section;
108 bfd_byte *start_ptr, *ptr, *last_ptr;
109 int diff, cum_diff;
110 bfd_signed_vma x;
111 int insn;
112
113 /* Sanity check the address. */
114 if (addr > bfd_get_section_limit (input_bfd, input_section))
115 return bfd_reloc_outofrange;
116
117 /* We require the start and end relocations to be processed consecutively -
118 although we allow then to be processed forwards or backwards. */
119 if (! last_addr)
120 {
121 last_addr = addr;
122 last_symbol_section = symbol_section;
123 return bfd_reloc_ok;
124 }
125 if (last_addr != addr)
126 abort ();
127 last_addr = 0;
128
129 if (! symbol_section || last_symbol_section != symbol_section || end < start)
130 return bfd_reloc_outofrange;
131
132 /* Get the symbol_section contents. */
133 if (symbol_section != input_section)
134 {
135 if (elf_section_data (symbol_section)->this_hdr.contents != NULL)
136 contents = elf_section_data (symbol_section)->this_hdr.contents;
137 else
138 {
139 if (!bfd_malloc_and_get_section (input_bfd, symbol_section,
140 &contents))
141 {
142 if (contents != NULL)
143 free (contents);
144 return bfd_reloc_outofrange;
145 }
146 }
147 }
148 #define IS_PPI(PTR) ((bfd_get_16 (input_bfd, (PTR)) & 0xfc00) == 0xf800)
149 start_ptr = contents + start;
150 for (cum_diff = -6, ptr = contents + end; cum_diff < 0 && ptr > start_ptr;)
151 {
152 for (last_ptr = ptr, ptr -= 4; ptr >= start_ptr && IS_PPI (ptr);)
153 ptr -= 2;
154 ptr += 2;
155 diff = (last_ptr - ptr) >> 1;
156 cum_diff += diff & 1;
157 cum_diff += diff;
158 }
159 /* Calculate the start / end values to load into rs / re minus four -
160 so that will cancel out the four we would otherwise have to add to
161 addr to get the value to subtract in order to get relative addressing. */
162 if (cum_diff >= 0)
163 {
164 start -= 4;
165 end = (ptr + cum_diff * 2) - contents;
166 }
167 else
168 {
169 bfd_vma start0 = start - 4;
170
171 while (start0 && IS_PPI (contents + start0))
172 start0 -= 2;
173 start0 = start - 2 - ((start - start0) & 2);
174 start = start0 - cum_diff - 2;
175 end = start0;
176 }
177
178 if (contents != NULL
179 && elf_section_data (symbol_section)->this_hdr.contents != contents)
180 free (contents);
181
182 insn = bfd_get_16 (input_bfd, contents + addr);
183
184 x = (insn & 0x200 ? end : start) - addr;
185 if (input_section != symbol_section)
186 x += ((symbol_section->output_section->vma + symbol_section->output_offset)
187 - (input_section->output_section->vma
188 + input_section->output_offset));
189 x >>= 1;
190 if (x < -128 || x > 127)
191 return bfd_reloc_overflow;
192
193 x = (insn & ~0xff) | (x & 0xff);
194 bfd_put_16 (input_bfd, (bfd_vma) x, contents + addr);
195
196 return bfd_reloc_ok;
197 }
198
199 /* This function is used for normal relocs. This used to be like the COFF
200 function, and is almost certainly incorrect for other ELF targets. */
201
202 static bfd_reloc_status_type
203 sh_elf_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol_in,
204 void *data, asection *input_section, bfd *output_bfd,
205 char **error_message ATTRIBUTE_UNUSED)
206 {
207 unsigned long insn;
208 bfd_vma sym_value;
209 enum elf_sh_reloc_type r_type;
210 bfd_vma addr = reloc_entry->address;
211 bfd_byte *hit_data = addr + (bfd_byte *) data;
212
213 r_type = (enum elf_sh_reloc_type) reloc_entry->howto->type;
214
215 if (output_bfd != NULL)
216 {
217 /* Partial linking--do nothing. */
218 reloc_entry->address += input_section->output_offset;
219 return bfd_reloc_ok;
220 }
221
222 /* Almost all relocs have to do with relaxing. If any work must be
223 done for them, it has been done in sh_relax_section. */
224 if (r_type == R_SH_IND12W && (symbol_in->flags & BSF_LOCAL) != 0)
225 return bfd_reloc_ok;
226
227 if (symbol_in != NULL
228 && bfd_is_und_section (symbol_in->section))
229 return bfd_reloc_undefined;
230
231 if (bfd_is_com_section (symbol_in->section))
232 sym_value = 0;
233 else
234 sym_value = (symbol_in->value +
235 symbol_in->section->output_section->vma +
236 symbol_in->section->output_offset);
237
238 switch (r_type)
239 {
240 case R_SH_DIR32:
241 insn = bfd_get_32 (abfd, hit_data);
242 insn += sym_value + reloc_entry->addend;
243 bfd_put_32 (abfd, (bfd_vma) insn, hit_data);
244 break;
245 case R_SH_IND12W:
246 insn = bfd_get_16 (abfd, hit_data);
247 sym_value += reloc_entry->addend;
248 sym_value -= (input_section->output_section->vma
249 + input_section->output_offset
250 + addr
251 + 4);
252 sym_value += (insn & 0xfff) << 1;
253 if (insn & 0x800)
254 sym_value -= 0x1000;
255 insn = (insn & 0xf000) | (sym_value & 0xfff);
256 bfd_put_16 (abfd, (bfd_vma) insn, hit_data);
257 if (sym_value < (bfd_vma) -0x1000 || sym_value >= 0x1000)
258 return bfd_reloc_overflow;
259 break;
260 default:
261 abort ();
262 break;
263 }
264
265 return bfd_reloc_ok;
266 }
267
268 /* This function is used for relocs which are only used for relaxing,
269 which the linker should otherwise ignore. */
270
271 static bfd_reloc_status_type
272 sh_elf_ignore_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
273 asymbol *symbol ATTRIBUTE_UNUSED,
274 void *data ATTRIBUTE_UNUSED, asection *input_section,
275 bfd *output_bfd,
276 char **error_message ATTRIBUTE_UNUSED)
277 {
278 if (output_bfd != NULL)
279 reloc_entry->address += input_section->output_offset;
280 return bfd_reloc_ok;
281 }
282
283 /* This structure is used to map BFD reloc codes to SH ELF relocs. */
284
285 struct elf_reloc_map
286 {
287 bfd_reloc_code_real_type bfd_reloc_val;
288 unsigned char elf_reloc_val;
289 };
290
291 /* An array mapping BFD reloc codes to SH ELF relocs. */
292
293 static const struct elf_reloc_map sh_reloc_map[] =
294 {
295 { BFD_RELOC_NONE, R_SH_NONE },
296 { BFD_RELOC_32, R_SH_DIR32 },
297 { BFD_RELOC_16, R_SH_DIR16 },
298 { BFD_RELOC_8, R_SH_DIR8 },
299 { BFD_RELOC_CTOR, R_SH_DIR32 },
300 { BFD_RELOC_32_PCREL, R_SH_REL32 },
301 { BFD_RELOC_SH_PCDISP8BY2, R_SH_DIR8WPN },
302 { BFD_RELOC_SH_PCDISP12BY2, R_SH_IND12W },
303 { BFD_RELOC_SH_PCRELIMM8BY2, R_SH_DIR8WPZ },
304 { BFD_RELOC_SH_PCRELIMM8BY4, R_SH_DIR8WPL },
305 { BFD_RELOC_8_PCREL, R_SH_SWITCH8 },
306 { BFD_RELOC_SH_SWITCH16, R_SH_SWITCH16 },
307 { BFD_RELOC_SH_SWITCH32, R_SH_SWITCH32 },
308 { BFD_RELOC_SH_USES, R_SH_USES },
309 { BFD_RELOC_SH_COUNT, R_SH_COUNT },
310 { BFD_RELOC_SH_ALIGN, R_SH_ALIGN },
311 { BFD_RELOC_SH_CODE, R_SH_CODE },
312 { BFD_RELOC_SH_DATA, R_SH_DATA },
313 { BFD_RELOC_SH_LABEL, R_SH_LABEL },
314 { BFD_RELOC_VTABLE_INHERIT, R_SH_GNU_VTINHERIT },
315 { BFD_RELOC_VTABLE_ENTRY, R_SH_GNU_VTENTRY },
316 { BFD_RELOC_SH_LOOP_START, R_SH_LOOP_START },
317 { BFD_RELOC_SH_LOOP_END, R_SH_LOOP_END },
318 { BFD_RELOC_SH_TLS_GD_32, R_SH_TLS_GD_32 },
319 { BFD_RELOC_SH_TLS_LD_32, R_SH_TLS_LD_32 },
320 { BFD_RELOC_SH_TLS_LDO_32, R_SH_TLS_LDO_32 },
321 { BFD_RELOC_SH_TLS_IE_32, R_SH_TLS_IE_32 },
322 { BFD_RELOC_SH_TLS_LE_32, R_SH_TLS_LE_32 },
323 { BFD_RELOC_SH_TLS_DTPMOD32, R_SH_TLS_DTPMOD32 },
324 { BFD_RELOC_SH_TLS_DTPOFF32, R_SH_TLS_DTPOFF32 },
325 { BFD_RELOC_SH_TLS_TPOFF32, R_SH_TLS_TPOFF32 },
326 { BFD_RELOC_32_GOT_PCREL, R_SH_GOT32 },
327 { BFD_RELOC_32_PLT_PCREL, R_SH_PLT32 },
328 { BFD_RELOC_SH_COPY, R_SH_COPY },
329 { BFD_RELOC_SH_GLOB_DAT, R_SH_GLOB_DAT },
330 { BFD_RELOC_SH_JMP_SLOT, R_SH_JMP_SLOT },
331 { BFD_RELOC_SH_RELATIVE, R_SH_RELATIVE },
332 { BFD_RELOC_32_GOTOFF, R_SH_GOTOFF },
333 { BFD_RELOC_SH_GOTPC, R_SH_GOTPC },
334 { BFD_RELOC_SH_GOTPLT32, R_SH_GOTPLT32 },
335 #ifdef INCLUDE_SHMEDIA
336 { BFD_RELOC_SH_GOT_LOW16, R_SH_GOT_LOW16 },
337 { BFD_RELOC_SH_GOT_MEDLOW16, R_SH_GOT_MEDLOW16 },
338 { BFD_RELOC_SH_GOT_MEDHI16, R_SH_GOT_MEDHI16 },
339 { BFD_RELOC_SH_GOT_HI16, R_SH_GOT_HI16 },
340 { BFD_RELOC_SH_GOTPLT_LOW16, R_SH_GOTPLT_LOW16 },
341 { BFD_RELOC_SH_GOTPLT_MEDLOW16, R_SH_GOTPLT_MEDLOW16 },
342 { BFD_RELOC_SH_GOTPLT_MEDHI16, R_SH_GOTPLT_MEDHI16 },
343 { BFD_RELOC_SH_GOTPLT_HI16, R_SH_GOTPLT_HI16 },
344 { BFD_RELOC_SH_PLT_LOW16, R_SH_PLT_LOW16 },
345 { BFD_RELOC_SH_PLT_MEDLOW16, R_SH_PLT_MEDLOW16 },
346 { BFD_RELOC_SH_PLT_MEDHI16, R_SH_PLT_MEDHI16 },
347 { BFD_RELOC_SH_PLT_HI16, R_SH_PLT_HI16 },
348 { BFD_RELOC_SH_GOTOFF_LOW16, R_SH_GOTOFF_LOW16 },
349 { BFD_RELOC_SH_GOTOFF_MEDLOW16, R_SH_GOTOFF_MEDLOW16 },
350 { BFD_RELOC_SH_GOTOFF_MEDHI16, R_SH_GOTOFF_MEDHI16 },
351 { BFD_RELOC_SH_GOTOFF_HI16, R_SH_GOTOFF_HI16 },
352 { BFD_RELOC_SH_GOTPC_LOW16, R_SH_GOTPC_LOW16 },
353 { BFD_RELOC_SH_GOTPC_MEDLOW16, R_SH_GOTPC_MEDLOW16 },
354 { BFD_RELOC_SH_GOTPC_MEDHI16, R_SH_GOTPC_MEDHI16 },
355 { BFD_RELOC_SH_GOTPC_HI16, R_SH_GOTPC_HI16 },
356 { BFD_RELOC_SH_COPY64, R_SH_COPY64 },
357 { BFD_RELOC_SH_GLOB_DAT64, R_SH_GLOB_DAT64 },
358 { BFD_RELOC_SH_JMP_SLOT64, R_SH_JMP_SLOT64 },
359 { BFD_RELOC_SH_RELATIVE64, R_SH_RELATIVE64 },
360 { BFD_RELOC_SH_GOT10BY4, R_SH_GOT10BY4 },
361 { BFD_RELOC_SH_GOT10BY8, R_SH_GOT10BY8 },
362 { BFD_RELOC_SH_GOTPLT10BY4, R_SH_GOTPLT10BY4 },
363 { BFD_RELOC_SH_GOTPLT10BY8, R_SH_GOTPLT10BY8 },
364 { BFD_RELOC_SH_PT_16, R_SH_PT_16 },
365 { BFD_RELOC_SH_SHMEDIA_CODE, R_SH_SHMEDIA_CODE },
366 { BFD_RELOC_SH_IMMU5, R_SH_DIR5U },
367 { BFD_RELOC_SH_IMMS6, R_SH_DIR6S },
368 { BFD_RELOC_SH_IMMU6, R_SH_DIR6U },
369 { BFD_RELOC_SH_IMMS10, R_SH_DIR10S },
370 { BFD_RELOC_SH_IMMS10BY2, R_SH_DIR10SW },
371 { BFD_RELOC_SH_IMMS10BY4, R_SH_DIR10SL },
372 { BFD_RELOC_SH_IMMS10BY8, R_SH_DIR10SQ },
373 { BFD_RELOC_SH_IMMS16, R_SH_IMMS16 },
374 { BFD_RELOC_SH_IMMU16, R_SH_IMMU16 },
375 { BFD_RELOC_SH_IMM_LOW16, R_SH_IMM_LOW16 },
376 { BFD_RELOC_SH_IMM_LOW16_PCREL, R_SH_IMM_LOW16_PCREL },
377 { BFD_RELOC_SH_IMM_MEDLOW16, R_SH_IMM_MEDLOW16 },
378 { BFD_RELOC_SH_IMM_MEDLOW16_PCREL, R_SH_IMM_MEDLOW16_PCREL },
379 { BFD_RELOC_SH_IMM_MEDHI16, R_SH_IMM_MEDHI16 },
380 { BFD_RELOC_SH_IMM_MEDHI16_PCREL, R_SH_IMM_MEDHI16_PCREL },
381 { BFD_RELOC_SH_IMM_HI16, R_SH_IMM_HI16 },
382 { BFD_RELOC_SH_IMM_HI16_PCREL, R_SH_IMM_HI16_PCREL },
383 { BFD_RELOC_64, R_SH_64 },
384 { BFD_RELOC_64_PCREL, R_SH_64_PCREL },
385 #endif /* not INCLUDE_SHMEDIA */
386 };
387
388 /* Given a BFD reloc code, return the howto structure for the
389 corresponding SH ELF reloc. */
390
391 static reloc_howto_type *
392 sh_elf_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code)
393 {
394 unsigned int i;
395
396 for (i = 0; i < sizeof (sh_reloc_map) / sizeof (struct elf_reloc_map); i++)
397 {
398 if (sh_reloc_map[i].bfd_reloc_val == code)
399 return get_howto_table (abfd) + (int) sh_reloc_map[i].elf_reloc_val;
400 }
401
402 return NULL;
403 }
404
405 /* Given an ELF reloc, fill in the howto field of a relent. */
406
407 static void
408 sh_elf_info_to_howto (bfd *abfd, arelent *cache_ptr, Elf_Internal_Rela *dst)
409 {
410 unsigned int r;
411
412 r = ELF32_R_TYPE (dst->r_info);
413
414 BFD_ASSERT (r < (unsigned int) R_SH_max);
415 BFD_ASSERT (r < R_SH_FIRST_INVALID_RELOC || r > R_SH_LAST_INVALID_RELOC);
416 BFD_ASSERT (r < R_SH_FIRST_INVALID_RELOC_2 || r > R_SH_LAST_INVALID_RELOC_2);
417 BFD_ASSERT (r < R_SH_FIRST_INVALID_RELOC_3 || r > R_SH_LAST_INVALID_RELOC_3);
418 BFD_ASSERT (r < R_SH_FIRST_INVALID_RELOC_4 || r > R_SH_LAST_INVALID_RELOC_4);
419 BFD_ASSERT (r < R_SH_FIRST_INVALID_RELOC_5 || r > R_SH_LAST_INVALID_RELOC_5);
420
421 cache_ptr->howto = get_howto_table (abfd) + r;
422 }
423 \f
424 /* This function handles relaxing for SH ELF. See the corresponding
425 function in coff-sh.c for a description of what this does. FIXME:
426 There is a lot of duplication here between this code and the COFF
427 specific code. The format of relocs and symbols is wound deeply
428 into this code, but it would still be better if the duplication
429 could be eliminated somehow. Note in particular that although both
430 functions use symbols like R_SH_CODE, those symbols have different
431 values; in coff-sh.c they come from include/coff/sh.h, whereas here
432 they come from enum elf_sh_reloc_type in include/elf/sh.h. */
433
434 static bfd_boolean
435 sh_elf_relax_section (bfd *abfd, asection *sec,
436 struct bfd_link_info *link_info, bfd_boolean *again)
437 {
438 Elf_Internal_Shdr *symtab_hdr;
439 Elf_Internal_Rela *internal_relocs;
440 bfd_boolean have_code;
441 Elf_Internal_Rela *irel, *irelend;
442 bfd_byte *contents = NULL;
443 Elf_Internal_Sym *isymbuf = NULL;
444
445 *again = FALSE;
446
447 if (link_info->relocatable
448 || (sec->flags & SEC_RELOC) == 0
449 || sec->reloc_count == 0)
450 return TRUE;
451
452 #ifdef INCLUDE_SHMEDIA
453 if (elf_section_data (sec)->this_hdr.sh_flags
454 & (SHF_SH5_ISA32 | SHF_SH5_ISA32_MIXED))
455 {
456 return TRUE;
457 }
458 #endif
459
460 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
461
462 internal_relocs = (_bfd_elf_link_read_relocs
463 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
464 link_info->keep_memory));
465 if (internal_relocs == NULL)
466 goto error_return;
467
468 have_code = FALSE;
469
470 irelend = internal_relocs + sec->reloc_count;
471 for (irel = internal_relocs; irel < irelend; irel++)
472 {
473 bfd_vma laddr, paddr, symval;
474 unsigned short insn;
475 Elf_Internal_Rela *irelfn, *irelscan, *irelcount;
476 bfd_signed_vma foff;
477
478 if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_CODE)
479 have_code = TRUE;
480
481 if (ELF32_R_TYPE (irel->r_info) != (int) R_SH_USES)
482 continue;
483
484 /* Get the section contents. */
485 if (contents == NULL)
486 {
487 if (elf_section_data (sec)->this_hdr.contents != NULL)
488 contents = elf_section_data (sec)->this_hdr.contents;
489 else
490 {
491 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
492 goto error_return;
493 }
494 }
495
496 /* The r_addend field of the R_SH_USES reloc will point us to
497 the register load. The 4 is because the r_addend field is
498 computed as though it were a jump offset, which are based
499 from 4 bytes after the jump instruction. */
500 laddr = irel->r_offset + 4 + irel->r_addend;
501 if (laddr >= sec->size)
502 {
503 (*_bfd_error_handler) (_("%B: 0x%lx: warning: bad R_SH_USES offset"),
504 abfd,
505 (unsigned long) irel->r_offset);
506 continue;
507 }
508 insn = bfd_get_16 (abfd, contents + laddr);
509
510 /* If the instruction is not mov.l NN,rN, we don't know what to
511 do. */
512 if ((insn & 0xf000) != 0xd000)
513 {
514 ((*_bfd_error_handler)
515 (_("%B: 0x%lx: warning: R_SH_USES points to unrecognized insn 0x%x"),
516 abfd, (unsigned long) irel->r_offset, insn));
517 continue;
518 }
519
520 /* Get the address from which the register is being loaded. The
521 displacement in the mov.l instruction is quadrupled. It is a
522 displacement from four bytes after the movl instruction, but,
523 before adding in the PC address, two least significant bits
524 of the PC are cleared. We assume that the section is aligned
525 on a four byte boundary. */
526 paddr = insn & 0xff;
527 paddr *= 4;
528 paddr += (laddr + 4) &~ (bfd_vma) 3;
529 if (paddr >= sec->size)
530 {
531 ((*_bfd_error_handler)
532 (_("%B: 0x%lx: warning: bad R_SH_USES load offset"),
533 abfd, (unsigned long) irel->r_offset));
534 continue;
535 }
536
537 /* Get the reloc for the address from which the register is
538 being loaded. This reloc will tell us which function is
539 actually being called. */
540 for (irelfn = internal_relocs; irelfn < irelend; irelfn++)
541 if (irelfn->r_offset == paddr
542 && ELF32_R_TYPE (irelfn->r_info) == (int) R_SH_DIR32)
543 break;
544 if (irelfn >= irelend)
545 {
546 ((*_bfd_error_handler)
547 (_("%B: 0x%lx: warning: could not find expected reloc"),
548 abfd, (unsigned long) paddr));
549 continue;
550 }
551
552 /* Read this BFD's symbols if we haven't done so already. */
553 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
554 {
555 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
556 if (isymbuf == NULL)
557 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
558 symtab_hdr->sh_info, 0,
559 NULL, NULL, NULL);
560 if (isymbuf == NULL)
561 goto error_return;
562 }
563
564 /* Get the value of the symbol referred to by the reloc. */
565 if (ELF32_R_SYM (irelfn->r_info) < symtab_hdr->sh_info)
566 {
567 /* A local symbol. */
568 Elf_Internal_Sym *isym;
569
570 isym = isymbuf + ELF32_R_SYM (irelfn->r_info);
571 if (isym->st_shndx
572 != (unsigned int) _bfd_elf_section_from_bfd_section (abfd, sec))
573 {
574 ((*_bfd_error_handler)
575 (_("%B: 0x%lx: warning: symbol in unexpected section"),
576 abfd, (unsigned long) paddr));
577 continue;
578 }
579
580 symval = (isym->st_value
581 + sec->output_section->vma
582 + sec->output_offset);
583 }
584 else
585 {
586 unsigned long indx;
587 struct elf_link_hash_entry *h;
588
589 indx = ELF32_R_SYM (irelfn->r_info) - symtab_hdr->sh_info;
590 h = elf_sym_hashes (abfd)[indx];
591 BFD_ASSERT (h != NULL);
592 if (h->root.type != bfd_link_hash_defined
593 && h->root.type != bfd_link_hash_defweak)
594 {
595 /* This appears to be a reference to an undefined
596 symbol. Just ignore it--it will be caught by the
597 regular reloc processing. */
598 continue;
599 }
600
601 symval = (h->root.u.def.value
602 + h->root.u.def.section->output_section->vma
603 + h->root.u.def.section->output_offset);
604 }
605
606 if (get_howto_table (abfd)[R_SH_DIR32].partial_inplace)
607 symval += bfd_get_32 (abfd, contents + paddr);
608 else
609 symval += irelfn->r_addend;
610
611 /* See if this function call can be shortened. */
612 foff = (symval
613 - (irel->r_offset
614 + sec->output_section->vma
615 + sec->output_offset
616 + 4));
617 /* A branch to an address beyond ours might be increased by an
618 .align that doesn't move when bytes behind us are deleted.
619 So, we add some slop in this calculation to allow for
620 that. */
621 if (foff < -0x1000 || foff >= 0x1000 - 8)
622 {
623 /* After all that work, we can't shorten this function call. */
624 continue;
625 }
626
627 /* Shorten the function call. */
628
629 /* For simplicity of coding, we are going to modify the section
630 contents, the section relocs, and the BFD symbol table. We
631 must tell the rest of the code not to free up this
632 information. It would be possible to instead create a table
633 of changes which have to be made, as is done in coff-mips.c;
634 that would be more work, but would require less memory when
635 the linker is run. */
636
637 elf_section_data (sec)->relocs = internal_relocs;
638 elf_section_data (sec)->this_hdr.contents = contents;
639 symtab_hdr->contents = (unsigned char *) isymbuf;
640
641 /* Replace the jsr with a bsr. */
642
643 /* Change the R_SH_USES reloc into an R_SH_IND12W reloc, and
644 replace the jsr with a bsr. */
645 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irelfn->r_info), R_SH_IND12W);
646 /* We used to test (ELF32_R_SYM (irelfn->r_info) < symtab_hdr->sh_info)
647 here, but that only checks if the symbol is an external symbol,
648 not if the symbol is in a different section. Besides, we need
649 a consistent meaning for the relocation, so we just assume here that
650 the value of the symbol is not available. */
651
652 /* We can't fully resolve this yet, because the external
653 symbol value may be changed by future relaxing. We let
654 the final link phase handle it. */
655 bfd_put_16 (abfd, (bfd_vma) 0xb000, contents + irel->r_offset);
656
657 irel->r_addend = -4;
658
659 /* When we calculated the symbol "value" we had an offset in the
660 DIR32's word in memory (we read and add it above). However,
661 the jsr we create does NOT have this offset encoded, so we
662 have to add it to the addend to preserve it. */
663 irel->r_addend += bfd_get_32 (abfd, contents + paddr);
664
665 /* See if there is another R_SH_USES reloc referring to the same
666 register load. */
667 for (irelscan = internal_relocs; irelscan < irelend; irelscan++)
668 if (ELF32_R_TYPE (irelscan->r_info) == (int) R_SH_USES
669 && laddr == irelscan->r_offset + 4 + irelscan->r_addend)
670 break;
671 if (irelscan < irelend)
672 {
673 /* Some other function call depends upon this register load,
674 and we have not yet converted that function call.
675 Indeed, we may never be able to convert it. There is
676 nothing else we can do at this point. */
677 continue;
678 }
679
680 /* Look for a R_SH_COUNT reloc on the location where the
681 function address is stored. Do this before deleting any
682 bytes, to avoid confusion about the address. */
683 for (irelcount = internal_relocs; irelcount < irelend; irelcount++)
684 if (irelcount->r_offset == paddr
685 && ELF32_R_TYPE (irelcount->r_info) == (int) R_SH_COUNT)
686 break;
687
688 /* Delete the register load. */
689 if (! sh_elf_relax_delete_bytes (abfd, sec, laddr, 2))
690 goto error_return;
691
692 /* That will change things, so, just in case it permits some
693 other function call to come within range, we should relax
694 again. Note that this is not required, and it may be slow. */
695 *again = TRUE;
696
697 /* Now check whether we got a COUNT reloc. */
698 if (irelcount >= irelend)
699 {
700 ((*_bfd_error_handler)
701 (_("%B: 0x%lx: warning: could not find expected COUNT reloc"),
702 abfd, (unsigned long) paddr));
703 continue;
704 }
705
706 /* The number of uses is stored in the r_addend field. We've
707 just deleted one. */
708 if (irelcount->r_addend == 0)
709 {
710 ((*_bfd_error_handler) (_("%B: 0x%lx: warning: bad count"),
711 abfd,
712 (unsigned long) paddr));
713 continue;
714 }
715
716 --irelcount->r_addend;
717
718 /* If there are no more uses, we can delete the address. Reload
719 the address from irelfn, in case it was changed by the
720 previous call to sh_elf_relax_delete_bytes. */
721 if (irelcount->r_addend == 0)
722 {
723 if (! sh_elf_relax_delete_bytes (abfd, sec, irelfn->r_offset, 4))
724 goto error_return;
725 }
726
727 /* We've done all we can with that function call. */
728 }
729
730 /* Look for load and store instructions that we can align on four
731 byte boundaries. */
732 if ((elf_elfheader (abfd)->e_flags & EF_SH_MACH_MASK) != EF_SH4
733 && have_code)
734 {
735 bfd_boolean swapped;
736
737 /* Get the section contents. */
738 if (contents == NULL)
739 {
740 if (elf_section_data (sec)->this_hdr.contents != NULL)
741 contents = elf_section_data (sec)->this_hdr.contents;
742 else
743 {
744 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
745 goto error_return;
746 }
747 }
748
749 if (! sh_elf_align_loads (abfd, sec, internal_relocs, contents,
750 &swapped))
751 goto error_return;
752
753 if (swapped)
754 {
755 elf_section_data (sec)->relocs = internal_relocs;
756 elf_section_data (sec)->this_hdr.contents = contents;
757 symtab_hdr->contents = (unsigned char *) isymbuf;
758 }
759 }
760
761 if (isymbuf != NULL
762 && symtab_hdr->contents != (unsigned char *) isymbuf)
763 {
764 if (! link_info->keep_memory)
765 free (isymbuf);
766 else
767 {
768 /* Cache the symbols for elf_link_input_bfd. */
769 symtab_hdr->contents = (unsigned char *) isymbuf;
770 }
771 }
772
773 if (contents != NULL
774 && elf_section_data (sec)->this_hdr.contents != contents)
775 {
776 if (! link_info->keep_memory)
777 free (contents);
778 else
779 {
780 /* Cache the section contents for elf_link_input_bfd. */
781 elf_section_data (sec)->this_hdr.contents = contents;
782 }
783 }
784
785 if (internal_relocs != NULL
786 && elf_section_data (sec)->relocs != internal_relocs)
787 free (internal_relocs);
788
789 return TRUE;
790
791 error_return:
792 if (isymbuf != NULL
793 && symtab_hdr->contents != (unsigned char *) isymbuf)
794 free (isymbuf);
795 if (contents != NULL
796 && elf_section_data (sec)->this_hdr.contents != contents)
797 free (contents);
798 if (internal_relocs != NULL
799 && elf_section_data (sec)->relocs != internal_relocs)
800 free (internal_relocs);
801
802 return FALSE;
803 }
804
805 /* Delete some bytes from a section while relaxing. FIXME: There is a
806 lot of duplication between this function and sh_relax_delete_bytes
807 in coff-sh.c. */
808
809 static bfd_boolean
810 sh_elf_relax_delete_bytes (bfd *abfd, asection *sec, bfd_vma addr,
811 int count)
812 {
813 Elf_Internal_Shdr *symtab_hdr;
814 unsigned int sec_shndx;
815 bfd_byte *contents;
816 Elf_Internal_Rela *irel, *irelend;
817 Elf_Internal_Rela *irelalign;
818 bfd_vma toaddr;
819 Elf_Internal_Sym *isymbuf, *isym, *isymend;
820 struct elf_link_hash_entry **sym_hashes;
821 struct elf_link_hash_entry **end_hashes;
822 unsigned int symcount;
823 asection *o;
824
825 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
826 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
827
828 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
829
830 contents = elf_section_data (sec)->this_hdr.contents;
831
832 /* The deletion must stop at the next ALIGN reloc for an aligment
833 power larger than the number of bytes we are deleting. */
834
835 irelalign = NULL;
836 toaddr = sec->size;
837
838 irel = elf_section_data (sec)->relocs;
839 irelend = irel + sec->reloc_count;
840 for (; irel < irelend; irel++)
841 {
842 if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_ALIGN
843 && irel->r_offset > addr
844 && count < (1 << irel->r_addend))
845 {
846 irelalign = irel;
847 toaddr = irel->r_offset;
848 break;
849 }
850 }
851
852 /* Actually delete the bytes. */
853 memmove (contents + addr, contents + addr + count,
854 (size_t) (toaddr - addr - count));
855 if (irelalign == NULL)
856 sec->size -= count;
857 else
858 {
859 int i;
860
861 #define NOP_OPCODE (0x0009)
862
863 BFD_ASSERT ((count & 1) == 0);
864 for (i = 0; i < count; i += 2)
865 bfd_put_16 (abfd, (bfd_vma) NOP_OPCODE, contents + toaddr - count + i);
866 }
867
868 /* Adjust all the relocs. */
869 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
870 {
871 bfd_vma nraddr, stop;
872 bfd_vma start = 0;
873 int insn = 0;
874 int off, adjust, oinsn;
875 bfd_signed_vma voff = 0;
876 bfd_boolean overflow;
877
878 /* Get the new reloc address. */
879 nraddr = irel->r_offset;
880 if ((irel->r_offset > addr
881 && irel->r_offset < toaddr)
882 || (ELF32_R_TYPE (irel->r_info) == (int) R_SH_ALIGN
883 && irel->r_offset == toaddr))
884 nraddr -= count;
885
886 /* See if this reloc was for the bytes we have deleted, in which
887 case we no longer care about it. Don't delete relocs which
888 represent addresses, though. */
889 if (irel->r_offset >= addr
890 && irel->r_offset < addr + count
891 && ELF32_R_TYPE (irel->r_info) != (int) R_SH_ALIGN
892 && ELF32_R_TYPE (irel->r_info) != (int) R_SH_CODE
893 && ELF32_R_TYPE (irel->r_info) != (int) R_SH_DATA
894 && ELF32_R_TYPE (irel->r_info) != (int) R_SH_LABEL)
895 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
896 (int) R_SH_NONE);
897
898 /* If this is a PC relative reloc, see if the range it covers
899 includes the bytes we have deleted. */
900 switch ((enum elf_sh_reloc_type) ELF32_R_TYPE (irel->r_info))
901 {
902 default:
903 break;
904
905 case R_SH_DIR8WPN:
906 case R_SH_IND12W:
907 case R_SH_DIR8WPZ:
908 case R_SH_DIR8WPL:
909 start = irel->r_offset;
910 insn = bfd_get_16 (abfd, contents + nraddr);
911 break;
912 }
913
914 switch ((enum elf_sh_reloc_type) ELF32_R_TYPE (irel->r_info))
915 {
916 default:
917 start = stop = addr;
918 break;
919
920 case R_SH_DIR32:
921 /* If this reloc is against a symbol defined in this
922 section, and the symbol will not be adjusted below, we
923 must check the addend to see it will put the value in
924 range to be adjusted, and hence must be changed. */
925 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
926 {
927 isym = isymbuf + ELF32_R_SYM (irel->r_info);
928 if (isym->st_shndx == sec_shndx
929 && (isym->st_value <= addr
930 || isym->st_value >= toaddr))
931 {
932 bfd_vma val;
933
934 if (get_howto_table (abfd)[R_SH_DIR32].partial_inplace)
935 {
936 val = bfd_get_32 (abfd, contents + nraddr);
937 val += isym->st_value;
938 if (val > addr && val < toaddr)
939 bfd_put_32 (abfd, val - count, contents + nraddr);
940 }
941 else
942 {
943 val = isym->st_value + irel->r_addend;
944 if (val > addr && val < toaddr)
945 irel->r_addend -= count;
946 }
947 }
948 }
949 start = stop = addr;
950 break;
951
952 case R_SH_DIR8WPN:
953 off = insn & 0xff;
954 if (off & 0x80)
955 off -= 0x100;
956 stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
957 break;
958
959 case R_SH_IND12W:
960 off = insn & 0xfff;
961 if (! off)
962 {
963 /* This has been made by previous relaxation. Since the
964 relocation will be against an external symbol, the
965 final relocation will just do the right thing. */
966 start = stop = addr;
967 }
968 else
969 {
970 if (off & 0x800)
971 off -= 0x1000;
972 stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
973
974 /* The addend will be against the section symbol, thus
975 for adjusting the addend, the relevant start is the
976 start of the section.
977 N.B. If we want to abandon in-place changes here and
978 test directly using symbol + addend, we have to take into
979 account that the addend has already been adjusted by -4. */
980 if (stop > addr && stop < toaddr)
981 irel->r_addend -= count;
982 }
983 break;
984
985 case R_SH_DIR8WPZ:
986 off = insn & 0xff;
987 stop = start + 4 + off * 2;
988 break;
989
990 case R_SH_DIR8WPL:
991 off = insn & 0xff;
992 stop = (start & ~(bfd_vma) 3) + 4 + off * 4;
993 break;
994
995 case R_SH_SWITCH8:
996 case R_SH_SWITCH16:
997 case R_SH_SWITCH32:
998 /* These relocs types represent
999 .word L2-L1
1000 The r_addend field holds the difference between the reloc
1001 address and L1. That is the start of the reloc, and
1002 adding in the contents gives us the top. We must adjust
1003 both the r_offset field and the section contents.
1004 N.B. in gas / coff bfd, the elf bfd r_addend is called r_offset,
1005 and the elf bfd r_offset is called r_vaddr. */
1006
1007 stop = irel->r_offset;
1008 start = (bfd_vma) ((bfd_signed_vma) stop - (long) irel->r_addend);
1009
1010 if (start > addr
1011 && start < toaddr
1012 && (stop <= addr || stop >= toaddr))
1013 irel->r_addend += count;
1014 else if (stop > addr
1015 && stop < toaddr
1016 && (start <= addr || start >= toaddr))
1017 irel->r_addend -= count;
1018
1019 if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_SWITCH16)
1020 voff = bfd_get_signed_16 (abfd, contents + nraddr);
1021 else if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_SWITCH8)
1022 voff = bfd_get_8 (abfd, contents + nraddr);
1023 else
1024 voff = bfd_get_signed_32 (abfd, contents + nraddr);
1025 stop = (bfd_vma) ((bfd_signed_vma) start + voff);
1026
1027 break;
1028
1029 case R_SH_USES:
1030 start = irel->r_offset;
1031 stop = (bfd_vma) ((bfd_signed_vma) start
1032 + (long) irel->r_addend
1033 + 4);
1034 break;
1035 }
1036
1037 if (start > addr
1038 && start < toaddr
1039 && (stop <= addr || stop >= toaddr))
1040 adjust = count;
1041 else if (stop > addr
1042 && stop < toaddr
1043 && (start <= addr || start >= toaddr))
1044 adjust = - count;
1045 else
1046 adjust = 0;
1047
1048 if (adjust != 0)
1049 {
1050 oinsn = insn;
1051 overflow = FALSE;
1052 switch ((enum elf_sh_reloc_type) ELF32_R_TYPE (irel->r_info))
1053 {
1054 default:
1055 abort ();
1056 break;
1057
1058 case R_SH_DIR8WPN:
1059 case R_SH_DIR8WPZ:
1060 insn += adjust / 2;
1061 if ((oinsn & 0xff00) != (insn & 0xff00))
1062 overflow = TRUE;
1063 bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
1064 break;
1065
1066 case R_SH_IND12W:
1067 insn += adjust / 2;
1068 if ((oinsn & 0xf000) != (insn & 0xf000))
1069 overflow = TRUE;
1070 bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
1071 break;
1072
1073 case R_SH_DIR8WPL:
1074 BFD_ASSERT (adjust == count || count >= 4);
1075 if (count >= 4)
1076 insn += adjust / 4;
1077 else
1078 {
1079 if ((irel->r_offset & 3) == 0)
1080 ++insn;
1081 }
1082 if ((oinsn & 0xff00) != (insn & 0xff00))
1083 overflow = TRUE;
1084 bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
1085 break;
1086
1087 case R_SH_SWITCH8:
1088 voff += adjust;
1089 if (voff < 0 || voff >= 0xff)
1090 overflow = TRUE;
1091 bfd_put_8 (abfd, voff, contents + nraddr);
1092 break;
1093
1094 case R_SH_SWITCH16:
1095 voff += adjust;
1096 if (voff < - 0x8000 || voff >= 0x8000)
1097 overflow = TRUE;
1098 bfd_put_signed_16 (abfd, (bfd_vma) voff, contents + nraddr);
1099 break;
1100
1101 case R_SH_SWITCH32:
1102 voff += adjust;
1103 bfd_put_signed_32 (abfd, (bfd_vma) voff, contents + nraddr);
1104 break;
1105
1106 case R_SH_USES:
1107 irel->r_addend += adjust;
1108 break;
1109 }
1110
1111 if (overflow)
1112 {
1113 ((*_bfd_error_handler)
1114 (_("%B: 0x%lx: fatal: reloc overflow while relaxing"),
1115 abfd, (unsigned long) irel->r_offset));
1116 bfd_set_error (bfd_error_bad_value);
1117 return FALSE;
1118 }
1119 }
1120
1121 irel->r_offset = nraddr;
1122 }
1123
1124 /* Look through all the other sections. If there contain any IMM32
1125 relocs against internal symbols which we are not going to adjust
1126 below, we may need to adjust the addends. */
1127 for (o = abfd->sections; o != NULL; o = o->next)
1128 {
1129 Elf_Internal_Rela *internal_relocs;
1130 Elf_Internal_Rela *irelscan, *irelscanend;
1131 bfd_byte *ocontents;
1132
1133 if (o == sec
1134 || (o->flags & SEC_RELOC) == 0
1135 || o->reloc_count == 0)
1136 continue;
1137
1138 /* We always cache the relocs. Perhaps, if info->keep_memory is
1139 FALSE, we should free them, if we are permitted to, when we
1140 leave sh_coff_relax_section. */
1141 internal_relocs = (_bfd_elf_link_read_relocs
1142 (abfd, o, NULL, (Elf_Internal_Rela *) NULL, TRUE));
1143 if (internal_relocs == NULL)
1144 return FALSE;
1145
1146 ocontents = NULL;
1147 irelscanend = internal_relocs + o->reloc_count;
1148 for (irelscan = internal_relocs; irelscan < irelscanend; irelscan++)
1149 {
1150 /* Dwarf line numbers use R_SH_SWITCH32 relocs. */
1151 if (ELF32_R_TYPE (irelscan->r_info) == (int) R_SH_SWITCH32)
1152 {
1153 bfd_vma start, stop;
1154 bfd_signed_vma voff;
1155
1156 if (ocontents == NULL)
1157 {
1158 if (elf_section_data (o)->this_hdr.contents != NULL)
1159 ocontents = elf_section_data (o)->this_hdr.contents;
1160 else
1161 {
1162 /* We always cache the section contents.
1163 Perhaps, if info->keep_memory is FALSE, we
1164 should free them, if we are permitted to,
1165 when we leave sh_coff_relax_section. */
1166 if (!bfd_malloc_and_get_section (abfd, o, &ocontents))
1167 {
1168 if (ocontents != NULL)
1169 free (ocontents);
1170 return FALSE;
1171 }
1172
1173 elf_section_data (o)->this_hdr.contents = ocontents;
1174 }
1175 }
1176
1177 stop = irelscan->r_offset;
1178 start
1179 = (bfd_vma) ((bfd_signed_vma) stop - (long) irelscan->r_addend);
1180
1181 /* STOP is in a different section, so it won't change. */
1182 if (start > addr && start < toaddr)
1183 irelscan->r_addend += count;
1184
1185 voff = bfd_get_signed_32 (abfd, ocontents + irelscan->r_offset);
1186 stop = (bfd_vma) ((bfd_signed_vma) start + voff);
1187
1188 if (start > addr
1189 && start < toaddr
1190 && (stop <= addr || stop >= toaddr))
1191 bfd_put_signed_32 (abfd, (bfd_vma) voff + count,
1192 ocontents + irelscan->r_offset);
1193 else if (stop > addr
1194 && stop < toaddr
1195 && (start <= addr || start >= toaddr))
1196 bfd_put_signed_32 (abfd, (bfd_vma) voff - count,
1197 ocontents + irelscan->r_offset);
1198 }
1199
1200 if (ELF32_R_TYPE (irelscan->r_info) != (int) R_SH_DIR32)
1201 continue;
1202
1203 if (ELF32_R_SYM (irelscan->r_info) >= symtab_hdr->sh_info)
1204 continue;
1205
1206
1207 isym = isymbuf + ELF32_R_SYM (irelscan->r_info);
1208 if (isym->st_shndx == sec_shndx
1209 && (isym->st_value <= addr
1210 || isym->st_value >= toaddr))
1211 {
1212 bfd_vma val;
1213
1214 if (ocontents == NULL)
1215 {
1216 if (elf_section_data (o)->this_hdr.contents != NULL)
1217 ocontents = elf_section_data (o)->this_hdr.contents;
1218 else
1219 {
1220 /* We always cache the section contents.
1221 Perhaps, if info->keep_memory is FALSE, we
1222 should free them, if we are permitted to,
1223 when we leave sh_coff_relax_section. */
1224 if (!bfd_malloc_and_get_section (abfd, o, &ocontents))
1225 {
1226 if (ocontents != NULL)
1227 free (ocontents);
1228 return FALSE;
1229 }
1230
1231 elf_section_data (o)->this_hdr.contents = ocontents;
1232 }
1233 }
1234
1235 val = bfd_get_32 (abfd, ocontents + irelscan->r_offset);
1236 val += isym->st_value;
1237 if (val > addr && val < toaddr)
1238 bfd_put_32 (abfd, val - count,
1239 ocontents + irelscan->r_offset);
1240 }
1241 }
1242 }
1243
1244 /* Adjust the local symbols defined in this section. */
1245 isymend = isymbuf + symtab_hdr->sh_info;
1246 for (isym = isymbuf; isym < isymend; isym++)
1247 {
1248 if (isym->st_shndx == sec_shndx
1249 && isym->st_value > addr
1250 && isym->st_value < toaddr)
1251 isym->st_value -= count;
1252 }
1253
1254 /* Now adjust the global symbols defined in this section. */
1255 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
1256 - symtab_hdr->sh_info);
1257 sym_hashes = elf_sym_hashes (abfd);
1258 end_hashes = sym_hashes + symcount;
1259 for (; sym_hashes < end_hashes; sym_hashes++)
1260 {
1261 struct elf_link_hash_entry *sym_hash = *sym_hashes;
1262 if ((sym_hash->root.type == bfd_link_hash_defined
1263 || sym_hash->root.type == bfd_link_hash_defweak)
1264 && sym_hash->root.u.def.section == sec
1265 && sym_hash->root.u.def.value > addr
1266 && sym_hash->root.u.def.value < toaddr)
1267 {
1268 sym_hash->root.u.def.value -= count;
1269 }
1270 }
1271
1272 /* See if we can move the ALIGN reloc forward. We have adjusted
1273 r_offset for it already. */
1274 if (irelalign != NULL)
1275 {
1276 bfd_vma alignto, alignaddr;
1277
1278 alignto = BFD_ALIGN (toaddr, 1 << irelalign->r_addend);
1279 alignaddr = BFD_ALIGN (irelalign->r_offset,
1280 1 << irelalign->r_addend);
1281 if (alignto != alignaddr)
1282 {
1283 /* Tail recursion. */
1284 return sh_elf_relax_delete_bytes (abfd, sec, alignaddr,
1285 (int) (alignto - alignaddr));
1286 }
1287 }
1288
1289 return TRUE;
1290 }
1291
1292 /* Look for loads and stores which we can align to four byte
1293 boundaries. This is like sh_align_loads in coff-sh.c. */
1294
1295 static bfd_boolean
1296 sh_elf_align_loads (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
1297 Elf_Internal_Rela *internal_relocs,
1298 bfd_byte *contents ATTRIBUTE_UNUSED,
1299 bfd_boolean *pswapped)
1300 {
1301 Elf_Internal_Rela *irel, *irelend;
1302 bfd_vma *labels = NULL;
1303 bfd_vma *label, *label_end;
1304 bfd_size_type amt;
1305
1306 *pswapped = FALSE;
1307
1308 irelend = internal_relocs + sec->reloc_count;
1309
1310 /* Get all the addresses with labels on them. */
1311 amt = sec->reloc_count;
1312 amt *= sizeof (bfd_vma);
1313 labels = (bfd_vma *) bfd_malloc (amt);
1314 if (labels == NULL)
1315 goto error_return;
1316 label_end = labels;
1317 for (irel = internal_relocs; irel < irelend; irel++)
1318 {
1319 if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_LABEL)
1320 {
1321 *label_end = irel->r_offset;
1322 ++label_end;
1323 }
1324 }
1325
1326 /* Note that the assembler currently always outputs relocs in
1327 address order. If that ever changes, this code will need to sort
1328 the label values and the relocs. */
1329
1330 label = labels;
1331
1332 for (irel = internal_relocs; irel < irelend; irel++)
1333 {
1334 bfd_vma start, stop;
1335
1336 if (ELF32_R_TYPE (irel->r_info) != (int) R_SH_CODE)
1337 continue;
1338
1339 start = irel->r_offset;
1340
1341 for (irel++; irel < irelend; irel++)
1342 if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_DATA)
1343 break;
1344 if (irel < irelend)
1345 stop = irel->r_offset;
1346 else
1347 stop = sec->size;
1348
1349 if (! _bfd_sh_align_load_span (abfd, sec, contents, sh_elf_swap_insns,
1350 internal_relocs, &label,
1351 label_end, start, stop, pswapped))
1352 goto error_return;
1353 }
1354
1355 free (labels);
1356
1357 return TRUE;
1358
1359 error_return:
1360 if (labels != NULL)
1361 free (labels);
1362 return FALSE;
1363 }
1364
1365 #ifndef SH64_ELF
1366 /* Swap two SH instructions. This is like sh_swap_insns in coff-sh.c. */
1367
1368 static bfd_boolean
1369 sh_elf_swap_insns (bfd *abfd, asection *sec, void *relocs,
1370 bfd_byte *contents, bfd_vma addr)
1371 {
1372 Elf_Internal_Rela *internal_relocs = (Elf_Internal_Rela *) relocs;
1373 unsigned short i1, i2;
1374 Elf_Internal_Rela *irel, *irelend;
1375
1376 /* Swap the instructions themselves. */
1377 i1 = bfd_get_16 (abfd, contents + addr);
1378 i2 = bfd_get_16 (abfd, contents + addr + 2);
1379 bfd_put_16 (abfd, (bfd_vma) i2, contents + addr);
1380 bfd_put_16 (abfd, (bfd_vma) i1, contents + addr + 2);
1381
1382 /* Adjust all reloc addresses. */
1383 irelend = internal_relocs + sec->reloc_count;
1384 for (irel = internal_relocs; irel < irelend; irel++)
1385 {
1386 enum elf_sh_reloc_type type;
1387 int add;
1388
1389 /* There are a few special types of relocs that we don't want to
1390 adjust. These relocs do not apply to the instruction itself,
1391 but are only associated with the address. */
1392 type = (enum elf_sh_reloc_type) ELF32_R_TYPE (irel->r_info);
1393 if (type == R_SH_ALIGN
1394 || type == R_SH_CODE
1395 || type == R_SH_DATA
1396 || type == R_SH_LABEL)
1397 continue;
1398
1399 /* If an R_SH_USES reloc points to one of the addresses being
1400 swapped, we must adjust it. It would be incorrect to do this
1401 for a jump, though, since we want to execute both
1402 instructions after the jump. (We have avoided swapping
1403 around a label, so the jump will not wind up executing an
1404 instruction it shouldn't). */
1405 if (type == R_SH_USES)
1406 {
1407 bfd_vma off;
1408
1409 off = irel->r_offset + 4 + irel->r_addend;
1410 if (off == addr)
1411 irel->r_offset += 2;
1412 else if (off == addr + 2)
1413 irel->r_offset -= 2;
1414 }
1415
1416 if (irel->r_offset == addr)
1417 {
1418 irel->r_offset += 2;
1419 add = -2;
1420 }
1421 else if (irel->r_offset == addr + 2)
1422 {
1423 irel->r_offset -= 2;
1424 add = 2;
1425 }
1426 else
1427 add = 0;
1428
1429 if (add != 0)
1430 {
1431 bfd_byte *loc;
1432 unsigned short insn, oinsn;
1433 bfd_boolean overflow;
1434
1435 loc = contents + irel->r_offset;
1436 overflow = FALSE;
1437 switch (type)
1438 {
1439 default:
1440 break;
1441
1442 case R_SH_DIR8WPN:
1443 case R_SH_DIR8WPZ:
1444 insn = bfd_get_16 (abfd, loc);
1445 oinsn = insn;
1446 insn += add / 2;
1447 if ((oinsn & 0xff00) != (insn & 0xff00))
1448 overflow = TRUE;
1449 bfd_put_16 (abfd, (bfd_vma) insn, loc);
1450 break;
1451
1452 case R_SH_IND12W:
1453 insn = bfd_get_16 (abfd, loc);
1454 oinsn = insn;
1455 insn += add / 2;
1456 if ((oinsn & 0xf000) != (insn & 0xf000))
1457 overflow = TRUE;
1458 bfd_put_16 (abfd, (bfd_vma) insn, loc);
1459 break;
1460
1461 case R_SH_DIR8WPL:
1462 /* This reloc ignores the least significant 3 bits of
1463 the program counter before adding in the offset.
1464 This means that if ADDR is at an even address, the
1465 swap will not affect the offset. If ADDR is an at an
1466 odd address, then the instruction will be crossing a
1467 four byte boundary, and must be adjusted. */
1468 if ((addr & 3) != 0)
1469 {
1470 insn = bfd_get_16 (abfd, loc);
1471 oinsn = insn;
1472 insn += add / 2;
1473 if ((oinsn & 0xff00) != (insn & 0xff00))
1474 overflow = TRUE;
1475 bfd_put_16 (abfd, (bfd_vma) insn, loc);
1476 }
1477
1478 break;
1479 }
1480
1481 if (overflow)
1482 {
1483 ((*_bfd_error_handler)
1484 (_("%B: 0x%lx: fatal: reloc overflow while relaxing"),
1485 abfd, (unsigned long) irel->r_offset));
1486 bfd_set_error (bfd_error_bad_value);
1487 return FALSE;
1488 }
1489 }
1490 }
1491
1492 return TRUE;
1493 }
1494 #endif /* defined SH64_ELF */
1495 \f
1496 /* Describes one of the various PLT styles. */
1497
1498 struct elf_sh_plt_info
1499 {
1500 /* The template for the first PLT entry, or NULL if there is no special
1501 first entry. */
1502 const bfd_byte *plt0_entry;
1503
1504 /* The size of PLT0_ENTRY in bytes, or 0 if PLT0_ENTRY is NULL. */
1505 bfd_vma plt0_entry_size;
1506
1507 /* Index I is the offset into PLT0_ENTRY of a pointer to
1508 _GLOBAL_OFFSET_TABLE_ + I * 4. The value is MINUS_ONE
1509 if there is no such pointer. */
1510 bfd_vma plt0_got_fields[3];
1511
1512 /* The template for a symbol's PLT entry. */
1513 const bfd_byte *symbol_entry;
1514
1515 /* The size of SYMBOL_ENTRY in bytes. */
1516 bfd_vma symbol_entry_size;
1517
1518 /* Byte offsets of fields in SYMBOL_ENTRY. Not all fields are used
1519 on all targets. The comments by each member indicate the value
1520 that the field must hold. */
1521 struct {
1522 bfd_vma got_entry; /* the address of the symbol's .got.plt entry */
1523 bfd_vma plt; /* .plt (or a branch to .plt on VxWorks) */
1524 bfd_vma reloc_offset; /* the offset of the symbol's JMP_SLOT reloc */
1525 } symbol_fields;
1526
1527 /* The offset of the resolver stub from the start of SYMBOL_ENTRY. */
1528 bfd_vma symbol_resolve_offset;
1529 };
1530
1531 #ifdef INCLUDE_SHMEDIA
1532
1533 /* The size in bytes of an entry in the procedure linkage table. */
1534
1535 #define ELF_PLT_ENTRY_SIZE 64
1536
1537 /* First entry in an absolute procedure linkage table look like this. */
1538
1539 static const bfd_byte elf_sh_plt0_entry_be[ELF_PLT_ENTRY_SIZE] =
1540 {
1541 0xcc, 0x00, 0x01, 0x10, /* movi .got.plt >> 16, r17 */
1542 0xc8, 0x00, 0x01, 0x10, /* shori .got.plt & 65535, r17 */
1543 0x89, 0x10, 0x09, 0x90, /* ld.l r17, 8, r25 */
1544 0x6b, 0xf1, 0x66, 0x00, /* ptabs r25, tr0 */
1545 0x89, 0x10, 0x05, 0x10, /* ld.l r17, 4, r17 */
1546 0x44, 0x01, 0xff, 0xf0, /* blink tr0, r63 */
1547 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1548 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1549 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1550 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1551 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1552 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1553 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1554 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1555 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1556 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1557 };
1558
1559 static const bfd_byte elf_sh_plt0_entry_le[ELF_PLT_ENTRY_SIZE] =
1560 {
1561 0x10, 0x01, 0x00, 0xcc, /* movi .got.plt >> 16, r17 */
1562 0x10, 0x01, 0x00, 0xc8, /* shori .got.plt & 65535, r17 */
1563 0x90, 0x09, 0x10, 0x89, /* ld.l r17, 8, r25 */
1564 0x00, 0x66, 0xf1, 0x6b, /* ptabs r25, tr0 */
1565 0x10, 0x05, 0x10, 0x89, /* ld.l r17, 4, r17 */
1566 0xf0, 0xff, 0x01, 0x44, /* blink tr0, r63 */
1567 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1568 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1569 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1570 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1571 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1572 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1573 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1574 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1575 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1576 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1577 };
1578
1579 /* Sebsequent entries in an absolute procedure linkage table look like
1580 this. */
1581
1582 static const bfd_byte elf_sh_plt_entry_be[ELF_PLT_ENTRY_SIZE] =
1583 {
1584 0xcc, 0x00, 0x01, 0x90, /* movi nameN-in-GOT >> 16, r25 */
1585 0xc8, 0x00, 0x01, 0x90, /* shori nameN-in-GOT & 65535, r25 */
1586 0x89, 0x90, 0x01, 0x90, /* ld.l r25, 0, r25 */
1587 0x6b, 0xf1, 0x66, 0x00, /* ptabs r25, tr0 */
1588 0x44, 0x01, 0xff, 0xf0, /* blink tr0, r63 */
1589 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1590 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1591 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1592 0xcc, 0x00, 0x01, 0x90, /* movi .PLT0 >> 16, r25 */
1593 0xc8, 0x00, 0x01, 0x90, /* shori .PLT0 & 65535, r25 */
1594 0x6b, 0xf1, 0x66, 0x00, /* ptabs r25, tr0 */
1595 0xcc, 0x00, 0x01, 0x50, /* movi reloc-offset >> 16, r21 */
1596 0xc8, 0x00, 0x01, 0x50, /* shori reloc-offset & 65535, r21 */
1597 0x44, 0x01, 0xff, 0xf0, /* blink tr0, r63 */
1598 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1599 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1600 };
1601
1602 static const bfd_byte elf_sh_plt_entry_le[ELF_PLT_ENTRY_SIZE] =
1603 {
1604 0x90, 0x01, 0x00, 0xcc, /* movi nameN-in-GOT >> 16, r25 */
1605 0x90, 0x01, 0x00, 0xc8, /* shori nameN-in-GOT & 65535, r25 */
1606 0x90, 0x01, 0x90, 0x89, /* ld.l r25, 0, r25 */
1607 0x00, 0x66, 0xf1, 0x6b, /* ptabs r25, tr0 */
1608 0xf0, 0xff, 0x01, 0x44, /* blink tr0, r63 */
1609 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1610 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1611 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1612 0x90, 0x01, 0x00, 0xcc, /* movi .PLT0 >> 16, r25 */
1613 0x90, 0x01, 0x00, 0xc8, /* shori .PLT0 & 65535, r25 */
1614 0x00, 0x66, 0xf1, 0x6b, /* ptabs r25, tr0 */
1615 0x50, 0x01, 0x00, 0xcc, /* movi reloc-offset >> 16, r21 */
1616 0x50, 0x01, 0x00, 0xc8, /* shori reloc-offset & 65535, r21 */
1617 0xf0, 0xff, 0x01, 0x44, /* blink tr0, r63 */
1618 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1619 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1620 };
1621
1622 /* Entries in a PIC procedure linkage table look like this. */
1623
1624 static const bfd_byte elf_sh_pic_plt_entry_be[ELF_PLT_ENTRY_SIZE] =
1625 {
1626 0xcc, 0x00, 0x01, 0x90, /* movi nameN@GOT >> 16, r25 */
1627 0xc8, 0x00, 0x01, 0x90, /* shori nameN@GOT & 65535, r25 */
1628 0x40, 0xc2, 0x65, 0x90, /* ldx.l r12, r25, r25 */
1629 0x6b, 0xf1, 0x66, 0x00, /* ptabs r25, tr0 */
1630 0x44, 0x01, 0xff, 0xf0, /* blink tr0, r63 */
1631 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1632 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1633 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1634 0xce, 0x00, 0x01, 0x10, /* movi -GOT_BIAS, r17 */
1635 0x00, 0xc8, 0x45, 0x10, /* add.l r12, r17, r17 */
1636 0x89, 0x10, 0x09, 0x90, /* ld.l r17, 8, r25 */
1637 0x6b, 0xf1, 0x66, 0x00, /* ptabs r25, tr0 */
1638 0x89, 0x10, 0x05, 0x10, /* ld.l r17, 4, r17 */
1639 0xcc, 0x00, 0x01, 0x50, /* movi reloc-offset >> 16, r21 */
1640 0xc8, 0x00, 0x01, 0x50, /* shori reloc-offset & 65535, r21 */
1641 0x44, 0x01, 0xff, 0xf0, /* blink tr0, r63 */
1642 };
1643
1644 static const bfd_byte elf_sh_pic_plt_entry_le[ELF_PLT_ENTRY_SIZE] =
1645 {
1646 0x90, 0x01, 0x00, 0xcc, /* movi nameN@GOT >> 16, r25 */
1647 0x90, 0x01, 0x00, 0xc8, /* shori nameN@GOT & 65535, r25 */
1648 0x90, 0x65, 0xc2, 0x40, /* ldx.l r12, r25, r25 */
1649 0x00, 0x66, 0xf1, 0x6b, /* ptabs r25, tr0 */
1650 0xf0, 0xff, 0x01, 0x44, /* blink tr0, r63 */
1651 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1652 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1653 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1654 0x10, 0x01, 0x00, 0xce, /* movi -GOT_BIAS, r17 */
1655 0x10, 0x45, 0xc8, 0x00, /* add.l r12, r17, r17 */
1656 0x90, 0x09, 0x10, 0x89, /* ld.l r17, 8, r25 */
1657 0x00, 0x66, 0xf1, 0x6b, /* ptabs r25, tr0 */
1658 0x10, 0x05, 0x10, 0x89, /* ld.l r17, 4, r17 */
1659 0x50, 0x01, 0x00, 0xcc, /* movi reloc-offset >> 16, r21 */
1660 0x50, 0x01, 0x00, 0xc8, /* shori reloc-offset & 65535, r21 */
1661 0xf0, 0xff, 0x01, 0x44, /* blink tr0, r63 */
1662 };
1663
1664 static const struct elf_sh_plt_info elf_sh_plts[2][2] = {
1665 {
1666 {
1667 /* Big-endian non-PIC. */
1668 elf_sh_plt0_entry_be,
1669 ELF_PLT_ENTRY_SIZE,
1670 { 0, MINUS_ONE, MINUS_ONE },
1671 elf_sh_plt_entry_be,
1672 ELF_PLT_ENTRY_SIZE,
1673 { 0, 32, 48 },
1674 33 /* includes ISA encoding */
1675 },
1676 {
1677 /* Little-endian non-PIC. */
1678 elf_sh_plt0_entry_le,
1679 ELF_PLT_ENTRY_SIZE,
1680 { 0, MINUS_ONE, MINUS_ONE },
1681 elf_sh_plt_entry_le,
1682 ELF_PLT_ENTRY_SIZE,
1683 { 0, 32, 48 },
1684 33 /* includes ISA encoding */
1685 },
1686 },
1687 {
1688 {
1689 /* Big-endian PIC. */
1690 elf_sh_plt0_entry_be,
1691 ELF_PLT_ENTRY_SIZE,
1692 { MINUS_ONE, MINUS_ONE, MINUS_ONE },
1693 elf_sh_pic_plt_entry_be,
1694 ELF_PLT_ENTRY_SIZE,
1695 { 0, MINUS_ONE, 52 },
1696 33 /* includes ISA encoding */
1697 },
1698 {
1699 /* Little-endian PIC. */
1700 elf_sh_plt0_entry_le,
1701 ELF_PLT_ENTRY_SIZE,
1702 { MINUS_ONE, MINUS_ONE, MINUS_ONE },
1703 elf_sh_pic_plt_entry_le,
1704 ELF_PLT_ENTRY_SIZE,
1705 { 0, MINUS_ONE, 52 },
1706 33 /* includes ISA encoding */
1707 },
1708 }
1709 };
1710
1711 /* Return offset of the linker in PLT0 entry. */
1712 #define elf_sh_plt0_gotplt_offset(info) 0
1713
1714 /* Install a 32-bit PLT field starting at ADDR, which occurs in OUTPUT_BFD.
1715 VALUE is the field's value and CODE_P is true if VALUE refers to code,
1716 not data.
1717
1718 On SH64, each 32-bit field is loaded by a movi/shori pair. */
1719
1720 inline static void
1721 install_plt_field (bfd *output_bfd, bfd_boolean code_p,
1722 unsigned long value, bfd_byte *addr)
1723 {
1724 value |= code_p;
1725 bfd_put_32 (output_bfd,
1726 bfd_get_32 (output_bfd, addr)
1727 | ((value >> 6) & 0x3fffc00),
1728 addr);
1729 bfd_put_32 (output_bfd,
1730 bfd_get_32 (output_bfd, addr + 4)
1731 | ((value << 10) & 0x3fffc00),
1732 addr + 4);
1733 }
1734
1735 /* Return the type of PLT associated with ABFD. PIC_P is true if
1736 the object is position-independent. */
1737
1738 static const struct elf_sh_plt_info *
1739 get_plt_info (bfd *abfd ATTRIBUTE_UNUSED, bfd_boolean pic_p)
1740 {
1741 return &elf_sh_plts[pic_p][!bfd_big_endian (abfd)];
1742 }
1743 #else
1744 /* The size in bytes of an entry in the procedure linkage table. */
1745
1746 #define ELF_PLT_ENTRY_SIZE 28
1747
1748 /* First entry in an absolute procedure linkage table look like this. */
1749
1750 /* Note - this code has been "optimised" not to use r2. r2 is used by
1751 GCC to return the address of large structures, so it should not be
1752 corrupted here. This does mean however, that this PLT does not conform
1753 to the SH PIC ABI. That spec says that r0 contains the type of the PLT
1754 and r2 contains the GOT id. This version stores the GOT id in r0 and
1755 ignores the type. Loaders can easily detect this difference however,
1756 since the type will always be 0 or 8, and the GOT ids will always be
1757 greater than or equal to 12. */
1758 static const bfd_byte elf_sh_plt0_entry_be[ELF_PLT_ENTRY_SIZE] =
1759 {
1760 0xd0, 0x05, /* mov.l 2f,r0 */
1761 0x60, 0x02, /* mov.l @r0,r0 */
1762 0x2f, 0x06, /* mov.l r0,@-r15 */
1763 0xd0, 0x03, /* mov.l 1f,r0 */
1764 0x60, 0x02, /* mov.l @r0,r0 */
1765 0x40, 0x2b, /* jmp @r0 */
1766 0x60, 0xf6, /* mov.l @r15+,r0 */
1767 0x00, 0x09, /* nop */
1768 0x00, 0x09, /* nop */
1769 0x00, 0x09, /* nop */
1770 0, 0, 0, 0, /* 1: replaced with address of .got.plt + 8. */
1771 0, 0, 0, 0, /* 2: replaced with address of .got.plt + 4. */
1772 };
1773
1774 static const bfd_byte elf_sh_plt0_entry_le[ELF_PLT_ENTRY_SIZE] =
1775 {
1776 0x05, 0xd0, /* mov.l 2f,r0 */
1777 0x02, 0x60, /* mov.l @r0,r0 */
1778 0x06, 0x2f, /* mov.l r0,@-r15 */
1779 0x03, 0xd0, /* mov.l 1f,r0 */
1780 0x02, 0x60, /* mov.l @r0,r0 */
1781 0x2b, 0x40, /* jmp @r0 */
1782 0xf6, 0x60, /* mov.l @r15+,r0 */
1783 0x09, 0x00, /* nop */
1784 0x09, 0x00, /* nop */
1785 0x09, 0x00, /* nop */
1786 0, 0, 0, 0, /* 1: replaced with address of .got.plt + 8. */
1787 0, 0, 0, 0, /* 2: replaced with address of .got.plt + 4. */
1788 };
1789
1790 /* Sebsequent entries in an absolute procedure linkage table look like
1791 this. */
1792
1793 static const bfd_byte elf_sh_plt_entry_be[ELF_PLT_ENTRY_SIZE] =
1794 {
1795 0xd0, 0x04, /* mov.l 1f,r0 */
1796 0x60, 0x02, /* mov.l @(r0,r12),r0 */
1797 0xd1, 0x02, /* mov.l 0f,r1 */
1798 0x40, 0x2b, /* jmp @r0 */
1799 0x60, 0x13, /* mov r1,r0 */
1800 0xd1, 0x03, /* mov.l 2f,r1 */
1801 0x40, 0x2b, /* jmp @r0 */
1802 0x00, 0x09, /* nop */
1803 0, 0, 0, 0, /* 0: replaced with address of .PLT0. */
1804 0, 0, 0, 0, /* 1: replaced with address of this symbol in .got. */
1805 0, 0, 0, 0, /* 2: replaced with offset into relocation table. */
1806 };
1807
1808 static const bfd_byte elf_sh_plt_entry_le[ELF_PLT_ENTRY_SIZE] =
1809 {
1810 0x04, 0xd0, /* mov.l 1f,r0 */
1811 0x02, 0x60, /* mov.l @r0,r0 */
1812 0x02, 0xd1, /* mov.l 0f,r1 */
1813 0x2b, 0x40, /* jmp @r0 */
1814 0x13, 0x60, /* mov r1,r0 */
1815 0x03, 0xd1, /* mov.l 2f,r1 */
1816 0x2b, 0x40, /* jmp @r0 */
1817 0x09, 0x00, /* nop */
1818 0, 0, 0, 0, /* 0: replaced with address of .PLT0. */
1819 0, 0, 0, 0, /* 1: replaced with address of this symbol in .got. */
1820 0, 0, 0, 0, /* 2: replaced with offset into relocation table. */
1821 };
1822
1823 /* Entries in a PIC procedure linkage table look like this. */
1824
1825 static const bfd_byte elf_sh_pic_plt_entry_be[ELF_PLT_ENTRY_SIZE] =
1826 {
1827 0xd0, 0x04, /* mov.l 1f,r0 */
1828 0x00, 0xce, /* mov.l @(r0,r12),r0 */
1829 0x40, 0x2b, /* jmp @r0 */
1830 0x00, 0x09, /* nop */
1831 0x50, 0xc2, /* mov.l @(8,r12),r0 */
1832 0xd1, 0x03, /* mov.l 2f,r1 */
1833 0x40, 0x2b, /* jmp @r0 */
1834 0x50, 0xc1, /* mov.l @(4,r12),r0 */
1835 0x00, 0x09, /* nop */
1836 0x00, 0x09, /* nop */
1837 0, 0, 0, 0, /* 1: replaced with address of this symbol in .got. */
1838 0, 0, 0, 0 /* 2: replaced with offset into relocation table. */
1839 };
1840
1841 static const bfd_byte elf_sh_pic_plt_entry_le[ELF_PLT_ENTRY_SIZE] =
1842 {
1843 0x04, 0xd0, /* mov.l 1f,r0 */
1844 0xce, 0x00, /* mov.l @(r0,r12),r0 */
1845 0x2b, 0x40, /* jmp @r0 */
1846 0x09, 0x00, /* nop */
1847 0xc2, 0x50, /* mov.l @(8,r12),r0 */
1848 0x03, 0xd1, /* mov.l 2f,r1 */
1849 0x2b, 0x40, /* jmp @r0 */
1850 0xc1, 0x50, /* mov.l @(4,r12),r0 */
1851 0x09, 0x00, /* nop */
1852 0x09, 0x00, /* nop */
1853 0, 0, 0, 0, /* 1: replaced with address of this symbol in .got. */
1854 0, 0, 0, 0 /* 2: replaced with offset into relocation table. */
1855 };
1856
1857 static const struct elf_sh_plt_info elf_sh_plts[2][2] = {
1858 {
1859 {
1860 /* Big-endian non-PIC. */
1861 elf_sh_plt0_entry_be,
1862 ELF_PLT_ENTRY_SIZE,
1863 { MINUS_ONE, 24, 20 },
1864 elf_sh_plt_entry_be,
1865 ELF_PLT_ENTRY_SIZE,
1866 { 20, 16, 24 },
1867 8
1868 },
1869 {
1870 /* Little-endian non-PIC. */
1871 elf_sh_plt0_entry_le,
1872 ELF_PLT_ENTRY_SIZE,
1873 { MINUS_ONE, 24, 20 },
1874 elf_sh_plt_entry_le,
1875 ELF_PLT_ENTRY_SIZE,
1876 { 20, 16, 24 },
1877 8
1878 },
1879 },
1880 {
1881 {
1882 /* Big-endian PIC. */
1883 elf_sh_plt0_entry_be,
1884 ELF_PLT_ENTRY_SIZE,
1885 { MINUS_ONE, MINUS_ONE, MINUS_ONE },
1886 elf_sh_pic_plt_entry_be,
1887 ELF_PLT_ENTRY_SIZE,
1888 { 20, MINUS_ONE, 24 },
1889 8
1890 },
1891 {
1892 /* Little-endian PIC. */
1893 elf_sh_plt0_entry_le,
1894 ELF_PLT_ENTRY_SIZE,
1895 { MINUS_ONE, MINUS_ONE, MINUS_ONE },
1896 elf_sh_pic_plt_entry_le,
1897 ELF_PLT_ENTRY_SIZE,
1898 { 20, MINUS_ONE, 24 },
1899 8
1900 },
1901 }
1902 };
1903
1904 #define VXWORKS_PLT_HEADER_SIZE 12
1905 #define VXWORKS_PLT_ENTRY_SIZE 24
1906
1907 static const bfd_byte vxworks_sh_plt0_entry_be[VXWORKS_PLT_HEADER_SIZE] =
1908 {
1909 0xd1, 0x01, /* mov.l @(8,pc),r1 */
1910 0x61, 0x12, /* mov.l @r1,r1 */
1911 0x41, 0x2b, /* jmp @r1 */
1912 0x00, 0x09, /* nop */
1913 0, 0, 0, 0 /* 0: replaced with _GLOBAL_OFFSET_TABLE+8. */
1914 };
1915
1916 static const bfd_byte vxworks_sh_plt0_entry_le[VXWORKS_PLT_HEADER_SIZE] =
1917 {
1918 0x01, 0xd1, /* mov.l @(8,pc),r1 */
1919 0x12, 0x61, /* mov.l @r1,r1 */
1920 0x2b, 0x41, /* jmp @r1 */
1921 0x09, 0x00, /* nop */
1922 0, 0, 0, 0 /* 0: replaced with _GLOBAL_OFFSET_TABLE+8. */
1923 };
1924
1925 static const bfd_byte vxworks_sh_plt_entry_be[VXWORKS_PLT_ENTRY_SIZE] =
1926 {
1927 0xd0, 0x01, /* mov.l @(8,pc),r0 */
1928 0x60, 0x02, /* mov.l @r0,r0 */
1929 0x40, 0x2b, /* jmp @r0 */
1930 0x00, 0x09, /* nop */
1931 0, 0, 0, 0, /* 0: replaced with address of this symbol in .got. */
1932 0xd0, 0x01, /* mov.l @(8,pc),r0 */
1933 0xa0, 0x00, /* bra PLT (We need to fix the offset.) */
1934 0x00, 0x09, /* nop */
1935 0x00, 0x09, /* nop */
1936 0, 0, 0, 0, /* 1: replaced with offset into relocation table. */
1937 };
1938
1939 static const bfd_byte vxworks_sh_plt_entry_le[VXWORKS_PLT_ENTRY_SIZE] =
1940 {
1941 0x01, 0xd0, /* mov.l @(8,pc),r0 */
1942 0x02, 0x60, /* mov.l @r0,r0 */
1943 0x2b, 0x40, /* jmp @r0 */
1944 0x09, 0x00, /* nop */
1945 0, 0, 0, 0, /* 0: replaced with address of this symbol in .got. */
1946 0x01, 0xd0, /* mov.l @(8,pc),r0 */
1947 0x00, 0xa0, /* bra PLT (We need to fix the offset.) */
1948 0x09, 0x00, /* nop */
1949 0x09, 0x00, /* nop */
1950 0, 0, 0, 0, /* 1: replaced with offset into relocation table. */
1951 };
1952
1953 static const bfd_byte vxworks_sh_pic_plt_entry_be[VXWORKS_PLT_ENTRY_SIZE] =
1954 {
1955 0xd0, 0x01, /* mov.l @(8,pc),r0 */
1956 0x00, 0xce, /* mov.l @(r0,r12),r0 */
1957 0x40, 0x2b, /* jmp @r0 */
1958 0x00, 0x09, /* nop */
1959 0, 0, 0, 0, /* 0: replaced with offset of this symbol in .got. */
1960 0xd0, 0x01, /* mov.l @(8,pc),r0 */
1961 0x51, 0xc2, /* mov.l @(8,r12),r1 */
1962 0x41, 0x2b, /* jmp @r1 */
1963 0x00, 0x09, /* nop */
1964 0, 0, 0, 0, /* 1: replaced with offset into relocation table. */
1965 };
1966
1967 static const bfd_byte vxworks_sh_pic_plt_entry_le[VXWORKS_PLT_ENTRY_SIZE] =
1968 {
1969 0x01, 0xd0, /* mov.l @(8,pc),r0 */
1970 0xce, 0x00, /* mov.l @(r0,r12),r0 */
1971 0x2b, 0x40, /* jmp @r0 */
1972 0x09, 0x00, /* nop */
1973 0, 0, 0, 0, /* 0: replaced with offset of this symbol in .got. */
1974 0x01, 0xd0, /* mov.l @(8,pc),r0 */
1975 0xc2, 0x51, /* mov.l @(8,r12),r1 */
1976 0x2b, 0x41, /* jmp @r1 */
1977 0x09, 0x00, /* nop */
1978 0, 0, 0, 0, /* 1: replaced with offset into relocation table. */
1979 };
1980
1981 static const struct elf_sh_plt_info vxworks_sh_plts[2][2] = {
1982 {
1983 {
1984 /* Big-endian non-PIC. */
1985 vxworks_sh_plt0_entry_be,
1986 VXWORKS_PLT_HEADER_SIZE,
1987 { MINUS_ONE, MINUS_ONE, 8 },
1988 vxworks_sh_plt_entry_be,
1989 VXWORKS_PLT_ENTRY_SIZE,
1990 { 8, 14, 20 },
1991 12
1992 },
1993 {
1994 /* Little-endian non-PIC. */
1995 vxworks_sh_plt0_entry_le,
1996 VXWORKS_PLT_HEADER_SIZE,
1997 { MINUS_ONE, MINUS_ONE, 8 },
1998 vxworks_sh_plt_entry_le,
1999 VXWORKS_PLT_ENTRY_SIZE,
2000 { 8, 14, 20 },
2001 12
2002 },
2003 },
2004 {
2005 {
2006 /* Big-endian PIC. */
2007 NULL,
2008 0,
2009 { MINUS_ONE, MINUS_ONE, MINUS_ONE },
2010 vxworks_sh_pic_plt_entry_be,
2011 VXWORKS_PLT_ENTRY_SIZE,
2012 { 8, MINUS_ONE, 20 },
2013 12
2014 },
2015 {
2016 /* Little-endian PIC. */
2017 NULL,
2018 0,
2019 { MINUS_ONE, MINUS_ONE, MINUS_ONE },
2020 vxworks_sh_pic_plt_entry_le,
2021 VXWORKS_PLT_ENTRY_SIZE,
2022 { 8, MINUS_ONE, 20 },
2023 12
2024 },
2025 }
2026 };
2027
2028 /* Return the type of PLT associated with ABFD. PIC_P is true if
2029 the object is position-independent. */
2030
2031 static const struct elf_sh_plt_info *
2032 get_plt_info (bfd *abfd ATTRIBUTE_UNUSED, bfd_boolean pic_p)
2033 {
2034 if (vxworks_object_p (abfd))
2035 return &vxworks_sh_plts[pic_p][!bfd_big_endian (abfd)];
2036 return &elf_sh_plts[pic_p][!bfd_big_endian (abfd)];
2037 }
2038
2039 /* Install a 32-bit PLT field starting at ADDR, which occurs in OUTPUT_BFD.
2040 VALUE is the field's value and CODE_P is true if VALUE refers to code,
2041 not data. */
2042
2043 inline static void
2044 install_plt_field (bfd *output_bfd, bfd_boolean code_p ATTRIBUTE_UNUSED,
2045 unsigned long value, bfd_byte *addr)
2046 {
2047 bfd_put_32 (output_bfd, value, addr);
2048 }
2049 #endif
2050
2051 /* Return the index of the PLT entry at byte offset OFFSET. */
2052
2053 static bfd_vma
2054 get_plt_index (const struct elf_sh_plt_info *info, bfd_vma offset)
2055 {
2056 return (offset - info->plt0_entry_size) / info->symbol_entry_size;
2057 }
2058
2059 /* Do the inverse operation. */
2060
2061 static bfd_vma
2062 get_plt_offset (const struct elf_sh_plt_info *info, bfd_vma index)
2063 {
2064 return info->plt0_entry_size + (index * info->symbol_entry_size);
2065 }
2066
2067 /* The sh linker needs to keep track of the number of relocs that it
2068 decides to copy as dynamic relocs in check_relocs for each symbol.
2069 This is so that it can later discard them if they are found to be
2070 unnecessary. We store the information in a field extending the
2071 regular ELF linker hash table. */
2072
2073 struct elf_sh_dyn_relocs
2074 {
2075 struct elf_sh_dyn_relocs *next;
2076
2077 /* The input section of the reloc. */
2078 asection *sec;
2079
2080 /* Total number of relocs copied for the input section. */
2081 bfd_size_type count;
2082
2083 /* Number of pc-relative relocs copied for the input section. */
2084 bfd_size_type pc_count;
2085 };
2086
2087 /* sh ELF linker hash entry. */
2088
2089 struct elf_sh_link_hash_entry
2090 {
2091 struct elf_link_hash_entry root;
2092
2093 #ifdef INCLUDE_SHMEDIA
2094 union
2095 {
2096 bfd_signed_vma refcount;
2097 bfd_vma offset;
2098 } datalabel_got;
2099 #endif
2100
2101 /* Track dynamic relocs copied for this symbol. */
2102 struct elf_sh_dyn_relocs *dyn_relocs;
2103
2104 bfd_signed_vma gotplt_refcount;
2105
2106 enum {
2107 GOT_UNKNOWN = 0, GOT_NORMAL, GOT_TLS_GD, GOT_TLS_IE
2108 } tls_type;
2109 };
2110
2111 #define sh_elf_hash_entry(ent) ((struct elf_sh_link_hash_entry *)(ent))
2112
2113 struct sh_elf_obj_tdata
2114 {
2115 struct elf_obj_tdata root;
2116
2117 /* tls_type for each local got entry. */
2118 char *local_got_tls_type;
2119 };
2120
2121 #define sh_elf_tdata(abfd) \
2122 ((struct sh_elf_obj_tdata *) (abfd)->tdata.any)
2123
2124 #define sh_elf_local_got_tls_type(abfd) \
2125 (sh_elf_tdata (abfd)->local_got_tls_type)
2126
2127 /* Override the generic function because we need to store sh_elf_obj_tdata
2128 as the specific tdata. */
2129
2130 static bfd_boolean
2131 sh_elf_mkobject (bfd *abfd)
2132 {
2133 if (abfd->tdata.any == NULL)
2134 {
2135 bfd_size_type amt = sizeof (struct sh_elf_obj_tdata);
2136 abfd->tdata.any = bfd_zalloc (abfd, amt);
2137 if (abfd->tdata.any == NULL)
2138 return FALSE;
2139 }
2140 return bfd_elf_mkobject (abfd);
2141 }
2142
2143 /* sh ELF linker hash table. */
2144
2145 struct elf_sh_link_hash_table
2146 {
2147 struct elf_link_hash_table root;
2148
2149 /* Short-cuts to get to dynamic linker sections. */
2150 asection *sgot;
2151 asection *sgotplt;
2152 asection *srelgot;
2153 asection *splt;
2154 asection *srelplt;
2155 asection *sdynbss;
2156 asection *srelbss;
2157
2158 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2159 asection *srelplt2;
2160
2161 /* Small local sym to section mapping cache. */
2162 struct sym_sec_cache sym_sec;
2163
2164 /* A counter or offset to track a TLS got entry. */
2165 union
2166 {
2167 bfd_signed_vma refcount;
2168 bfd_vma offset;
2169 } tls_ldm_got;
2170
2171 /* The type of PLT to use. */
2172 const struct elf_sh_plt_info *plt_info;
2173
2174 /* True if the target system is VxWorks. */
2175 bfd_boolean vxworks_p;
2176 };
2177
2178 /* Traverse an sh ELF linker hash table. */
2179
2180 #define sh_elf_link_hash_traverse(table, func, info) \
2181 (elf_link_hash_traverse \
2182 (&(table)->root, \
2183 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2184 (info)))
2185
2186 /* Get the sh ELF linker hash table from a link_info structure. */
2187
2188 #define sh_elf_hash_table(p) \
2189 ((struct elf_sh_link_hash_table *) ((p)->hash))
2190
2191 /* Create an entry in an sh ELF linker hash table. */
2192
2193 static struct bfd_hash_entry *
2194 sh_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
2195 struct bfd_hash_table *table,
2196 const char *string)
2197 {
2198 struct elf_sh_link_hash_entry *ret =
2199 (struct elf_sh_link_hash_entry *) entry;
2200
2201 /* Allocate the structure if it has not already been allocated by a
2202 subclass. */
2203 if (ret == (struct elf_sh_link_hash_entry *) NULL)
2204 ret = ((struct elf_sh_link_hash_entry *)
2205 bfd_hash_allocate (table,
2206 sizeof (struct elf_sh_link_hash_entry)));
2207 if (ret == (struct elf_sh_link_hash_entry *) NULL)
2208 return (struct bfd_hash_entry *) ret;
2209
2210 /* Call the allocation method of the superclass. */
2211 ret = ((struct elf_sh_link_hash_entry *)
2212 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2213 table, string));
2214 if (ret != (struct elf_sh_link_hash_entry *) NULL)
2215 {
2216 ret->dyn_relocs = NULL;
2217 ret->gotplt_refcount = 0;
2218 #ifdef INCLUDE_SHMEDIA
2219 ret->datalabel_got.refcount = ret->root.got.refcount;
2220 #endif
2221 ret->tls_type = GOT_UNKNOWN;
2222 }
2223
2224 return (struct bfd_hash_entry *) ret;
2225 }
2226
2227 /* Create an sh ELF linker hash table. */
2228
2229 static struct bfd_link_hash_table *
2230 sh_elf_link_hash_table_create (bfd *abfd)
2231 {
2232 struct elf_sh_link_hash_table *ret;
2233 bfd_size_type amt = sizeof (struct elf_sh_link_hash_table);
2234
2235 ret = (struct elf_sh_link_hash_table *) bfd_malloc (amt);
2236 if (ret == (struct elf_sh_link_hash_table *) NULL)
2237 return NULL;
2238
2239 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
2240 sh_elf_link_hash_newfunc,
2241 sizeof (struct elf_sh_link_hash_entry)))
2242 {
2243 free (ret);
2244 return NULL;
2245 }
2246
2247 ret->sgot = NULL;
2248 ret->sgotplt = NULL;
2249 ret->srelgot = NULL;
2250 ret->splt = NULL;
2251 ret->srelplt = NULL;
2252 ret->sdynbss = NULL;
2253 ret->srelbss = NULL;
2254 ret->srelplt2 = NULL;
2255 ret->sym_sec.abfd = NULL;
2256 ret->tls_ldm_got.refcount = 0;
2257 ret->plt_info = NULL;
2258 ret->vxworks_p = vxworks_object_p (abfd);
2259
2260 return &ret->root.root;
2261 }
2262
2263 /* Create .got, .gotplt, and .rela.got sections in DYNOBJ, and set up
2264 shortcuts to them in our hash table. */
2265
2266 static bfd_boolean
2267 create_got_section (bfd *dynobj, struct bfd_link_info *info)
2268 {
2269 struct elf_sh_link_hash_table *htab;
2270
2271 if (! _bfd_elf_create_got_section (dynobj, info))
2272 return FALSE;
2273
2274 htab = sh_elf_hash_table (info);
2275 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
2276 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
2277 if (! htab->sgot || ! htab->sgotplt)
2278 abort ();
2279
2280 htab->srelgot = bfd_make_section_with_flags (dynobj, ".rela.got",
2281 (SEC_ALLOC | SEC_LOAD
2282 | SEC_HAS_CONTENTS
2283 | SEC_IN_MEMORY
2284 | SEC_LINKER_CREATED
2285 | SEC_READONLY));
2286 if (htab->srelgot == NULL
2287 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
2288 return FALSE;
2289 return TRUE;
2290 }
2291
2292 /* Create dynamic sections when linking against a dynamic object. */
2293
2294 static bfd_boolean
2295 sh_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
2296 {
2297 struct elf_sh_link_hash_table *htab;
2298 flagword flags, pltflags;
2299 register asection *s;
2300 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2301 int ptralign = 0;
2302
2303 switch (bed->s->arch_size)
2304 {
2305 case 32:
2306 ptralign = 2;
2307 break;
2308
2309 case 64:
2310 ptralign = 3;
2311 break;
2312
2313 default:
2314 bfd_set_error (bfd_error_bad_value);
2315 return FALSE;
2316 }
2317
2318 htab = sh_elf_hash_table (info);
2319 if (htab->root.dynamic_sections_created)
2320 return TRUE;
2321
2322 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
2323 .rel[a].bss sections. */
2324
2325 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
2326 | SEC_LINKER_CREATED);
2327
2328 pltflags = flags;
2329 pltflags |= SEC_CODE;
2330 if (bed->plt_not_loaded)
2331 pltflags &= ~ (SEC_LOAD | SEC_HAS_CONTENTS);
2332 if (bed->plt_readonly)
2333 pltflags |= SEC_READONLY;
2334
2335 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
2336 htab->splt = s;
2337 if (s == NULL
2338 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
2339 return FALSE;
2340
2341 if (bed->want_plt_sym)
2342 {
2343 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
2344 .plt section. */
2345 struct elf_link_hash_entry *h;
2346 struct bfd_link_hash_entry *bh = NULL;
2347
2348 if (! (_bfd_generic_link_add_one_symbol
2349 (info, abfd, "_PROCEDURE_LINKAGE_TABLE_", BSF_GLOBAL, s,
2350 (bfd_vma) 0, (const char *) NULL, FALSE,
2351 get_elf_backend_data (abfd)->collect, &bh)))
2352 return FALSE;
2353
2354 h = (struct elf_link_hash_entry *) bh;
2355 h->def_regular = 1;
2356 h->type = STT_OBJECT;
2357 htab->root.hplt = h;
2358
2359 if (info->shared
2360 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2361 return FALSE;
2362 }
2363
2364 s = bfd_make_section_with_flags (abfd,
2365 bed->default_use_rela_p ? ".rela.plt" : ".rel.plt",
2366 flags | SEC_READONLY);
2367 htab->srelplt = s;
2368 if (s == NULL
2369 || ! bfd_set_section_alignment (abfd, s, ptralign))
2370 return FALSE;
2371
2372 if (htab->sgot == NULL
2373 && !create_got_section (abfd, info))
2374 return FALSE;
2375
2376 {
2377 const char *secname;
2378 char *relname;
2379 flagword secflags;
2380 asection *sec;
2381
2382 for (sec = abfd->sections; sec; sec = sec->next)
2383 {
2384 secflags = bfd_get_section_flags (abfd, sec);
2385 if ((secflags & (SEC_DATA | SEC_LINKER_CREATED))
2386 || ((secflags & SEC_HAS_CONTENTS) != SEC_HAS_CONTENTS))
2387 continue;
2388 secname = bfd_get_section_name (abfd, sec);
2389 relname = (char *) bfd_malloc ((bfd_size_type) strlen (secname) + 6);
2390 strcpy (relname, ".rela");
2391 strcat (relname, secname);
2392 if (bfd_get_section_by_name (abfd, secname))
2393 continue;
2394 s = bfd_make_section_with_flags (abfd, relname,
2395 flags | SEC_READONLY);
2396 if (s == NULL
2397 || ! bfd_set_section_alignment (abfd, s, ptralign))
2398 return FALSE;
2399 }
2400 }
2401
2402 if (bed->want_dynbss)
2403 {
2404 /* The .dynbss section is a place to put symbols which are defined
2405 by dynamic objects, are referenced by regular objects, and are
2406 not functions. We must allocate space for them in the process
2407 image and use a R_*_COPY reloc to tell the dynamic linker to
2408 initialize them at run time. The linker script puts the .dynbss
2409 section into the .bss section of the final image. */
2410 s = bfd_make_section_with_flags (abfd, ".dynbss",
2411 SEC_ALLOC | SEC_LINKER_CREATED);
2412 htab->sdynbss = s;
2413 if (s == NULL)
2414 return FALSE;
2415
2416 /* The .rel[a].bss section holds copy relocs. This section is not
2417 normally needed. We need to create it here, though, so that the
2418 linker will map it to an output section. We can't just create it
2419 only if we need it, because we will not know whether we need it
2420 until we have seen all the input files, and the first time the
2421 main linker code calls BFD after examining all the input files
2422 (size_dynamic_sections) the input sections have already been
2423 mapped to the output sections. If the section turns out not to
2424 be needed, we can discard it later. We will never need this
2425 section when generating a shared object, since they do not use
2426 copy relocs. */
2427 if (! info->shared)
2428 {
2429 s = bfd_make_section_with_flags (abfd,
2430 (bed->default_use_rela_p
2431 ? ".rela.bss" : ".rel.bss"),
2432 flags | SEC_READONLY);
2433 htab->srelbss = s;
2434 if (s == NULL
2435 || ! bfd_set_section_alignment (abfd, s, ptralign))
2436 return FALSE;
2437 }
2438 }
2439
2440 if (htab->vxworks_p)
2441 {
2442 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
2443 return FALSE;
2444 }
2445
2446 return TRUE;
2447 }
2448 \f
2449 /* Adjust a symbol defined by a dynamic object and referenced by a
2450 regular object. The current definition is in some section of the
2451 dynamic object, but we're not including those sections. We have to
2452 change the definition to something the rest of the link can
2453 understand. */
2454
2455 static bfd_boolean
2456 sh_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
2457 struct elf_link_hash_entry *h)
2458 {
2459 struct elf_sh_link_hash_table *htab;
2460 struct elf_sh_link_hash_entry *eh;
2461 struct elf_sh_dyn_relocs *p;
2462 asection *s;
2463 unsigned int power_of_two;
2464
2465 htab = sh_elf_hash_table (info);
2466
2467 /* Make sure we know what is going on here. */
2468 BFD_ASSERT (htab->root.dynobj != NULL
2469 && (h->needs_plt
2470 || h->u.weakdef != NULL
2471 || (h->def_dynamic
2472 && h->ref_regular
2473 && !h->def_regular)));
2474
2475 /* If this is a function, put it in the procedure linkage table. We
2476 will fill in the contents of the procedure linkage table later,
2477 when we know the address of the .got section. */
2478 if (h->type == STT_FUNC
2479 || h->needs_plt)
2480 {
2481 if (h->plt.refcount <= 0
2482 || SYMBOL_CALLS_LOCAL (info, h)
2483 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2484 && h->root.type == bfd_link_hash_undefweak))
2485 {
2486 /* This case can occur if we saw a PLT reloc in an input
2487 file, but the symbol was never referred to by a dynamic
2488 object. In such a case, we don't actually need to build
2489 a procedure linkage table, and we can just do a REL32
2490 reloc instead. */
2491 h->plt.offset = (bfd_vma) -1;
2492 h->needs_plt = 0;
2493 }
2494
2495 return TRUE;
2496 }
2497 else
2498 h->plt.offset = (bfd_vma) -1;
2499
2500 /* If this is a weak symbol, and there is a real definition, the
2501 processor independent code will have arranged for us to see the
2502 real definition first, and we can just use the same value. */
2503 if (h->u.weakdef != NULL)
2504 {
2505 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
2506 || h->u.weakdef->root.type == bfd_link_hash_defweak);
2507 h->root.u.def.section = h->u.weakdef->root.u.def.section;
2508 h->root.u.def.value = h->u.weakdef->root.u.def.value;
2509 if (info->nocopyreloc)
2510 h->non_got_ref = h->u.weakdef->non_got_ref;
2511 return TRUE;
2512 }
2513
2514 /* This is a reference to a symbol defined by a dynamic object which
2515 is not a function. */
2516
2517 /* If we are creating a shared library, we must presume that the
2518 only references to the symbol are via the global offset table.
2519 For such cases we need not do anything here; the relocations will
2520 be handled correctly by relocate_section. */
2521 if (info->shared)
2522 return TRUE;
2523
2524 /* If there are no references to this symbol that do not use the
2525 GOT, we don't need to generate a copy reloc. */
2526 if (!h->non_got_ref)
2527 return TRUE;
2528
2529 /* If -z nocopyreloc was given, we won't generate them either. */
2530 if (info->nocopyreloc)
2531 {
2532 h->non_got_ref = 0;
2533 return TRUE;
2534 }
2535
2536 eh = (struct elf_sh_link_hash_entry *) h;
2537 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2538 {
2539 s = p->sec->output_section;
2540 if (s != NULL && (s->flags & (SEC_READONLY | SEC_HAS_CONTENTS)) != 0)
2541 break;
2542 }
2543
2544 /* If we didn't find any dynamic relocs in sections which needs the
2545 copy reloc, then we'll be keeping the dynamic relocs and avoiding
2546 the copy reloc. */
2547 if (p == NULL)
2548 {
2549 h->non_got_ref = 0;
2550 return TRUE;
2551 }
2552
2553 if (h->size == 0)
2554 {
2555 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
2556 h->root.root.string);
2557 return TRUE;
2558 }
2559
2560 /* We must allocate the symbol in our .dynbss section, which will
2561 become part of the .bss section of the executable. There will be
2562 an entry for this symbol in the .dynsym section. The dynamic
2563 object will contain position independent code, so all references
2564 from the dynamic object to this symbol will go through the global
2565 offset table. The dynamic linker will use the .dynsym entry to
2566 determine the address it must put in the global offset table, so
2567 both the dynamic object and the regular object will refer to the
2568 same memory location for the variable. */
2569
2570 s = htab->sdynbss;
2571 BFD_ASSERT (s != NULL);
2572
2573 /* We must generate a R_SH_COPY reloc to tell the dynamic linker to
2574 copy the initial value out of the dynamic object and into the
2575 runtime process image. We need to remember the offset into the
2576 .rela.bss section we are going to use. */
2577 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
2578 {
2579 asection *srel;
2580
2581 srel = htab->srelbss;
2582 BFD_ASSERT (srel != NULL);
2583 srel->size += sizeof (Elf32_External_Rela);
2584 h->needs_copy = 1;
2585 }
2586
2587 /* We need to figure out the alignment required for this symbol. I
2588 have no idea how ELF linkers handle this. */
2589 power_of_two = bfd_log2 (h->size);
2590 if (power_of_two > 3)
2591 power_of_two = 3;
2592
2593 /* Apply the required alignment. */
2594 s->size = BFD_ALIGN (s->size, (bfd_size_type) (1 << power_of_two));
2595 if (power_of_two > bfd_get_section_alignment (htab->root.dynobj, s))
2596 {
2597 if (! bfd_set_section_alignment (htab->root.dynobj, s, power_of_two))
2598 return FALSE;
2599 }
2600
2601 /* Define the symbol as being at this point in the section. */
2602 h->root.u.def.section = s;
2603 h->root.u.def.value = s->size;
2604
2605 /* Increment the section size to make room for the symbol. */
2606 s->size += h->size;
2607
2608 return TRUE;
2609 }
2610
2611 /* Allocate space in .plt, .got and associated reloc sections for
2612 dynamic relocs. */
2613
2614 static bfd_boolean
2615 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
2616 {
2617 struct bfd_link_info *info;
2618 struct elf_sh_link_hash_table *htab;
2619 struct elf_sh_link_hash_entry *eh;
2620 struct elf_sh_dyn_relocs *p;
2621
2622 if (h->root.type == bfd_link_hash_indirect)
2623 return TRUE;
2624
2625 if (h->root.type == bfd_link_hash_warning)
2626 /* When warning symbols are created, they **replace** the "real"
2627 entry in the hash table, thus we never get to see the real
2628 symbol in a hash traversal. So look at it now. */
2629 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2630
2631 info = (struct bfd_link_info *) inf;
2632 htab = sh_elf_hash_table (info);
2633
2634 eh = (struct elf_sh_link_hash_entry *) h;
2635 if ((h->got.refcount > 0
2636 || h->forced_local)
2637 && eh->gotplt_refcount > 0)
2638 {
2639 /* The symbol has been forced local, or we have some direct got refs,
2640 so treat all the gotplt refs as got refs. */
2641 h->got.refcount += eh->gotplt_refcount;
2642 if (h->plt.refcount >= eh->gotplt_refcount)
2643 h->plt.refcount -= eh->gotplt_refcount;
2644 }
2645
2646 if (htab->root.dynamic_sections_created
2647 && h->plt.refcount > 0
2648 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2649 || h->root.type != bfd_link_hash_undefweak))
2650 {
2651 /* Make sure this symbol is output as a dynamic symbol.
2652 Undefined weak syms won't yet be marked as dynamic. */
2653 if (h->dynindx == -1
2654 && !h->forced_local)
2655 {
2656 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2657 return FALSE;
2658 }
2659
2660 if (info->shared
2661 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
2662 {
2663 asection *s = htab->splt;
2664
2665 /* If this is the first .plt entry, make room for the special
2666 first entry. */
2667 if (s->size == 0)
2668 s->size += htab->plt_info->plt0_entry_size;
2669
2670 h->plt.offset = s->size;
2671
2672 /* If this symbol is not defined in a regular file, and we are
2673 not generating a shared library, then set the symbol to this
2674 location in the .plt. This is required to make function
2675 pointers compare as equal between the normal executable and
2676 the shared library. */
2677 if (! info->shared
2678 && !h->def_regular)
2679 {
2680 h->root.u.def.section = s;
2681 h->root.u.def.value = h->plt.offset;
2682 }
2683
2684 /* Make room for this entry. */
2685 s->size += htab->plt_info->symbol_entry_size;
2686
2687 /* We also need to make an entry in the .got.plt section, which
2688 will be placed in the .got section by the linker script. */
2689 htab->sgotplt->size += 4;
2690
2691 /* We also need to make an entry in the .rel.plt section. */
2692 htab->srelplt->size += sizeof (Elf32_External_Rela);
2693
2694 if (htab->vxworks_p && !info->shared)
2695 {
2696 /* VxWorks executables have a second set of relocations
2697 for each PLT entry. They go in a separate relocation
2698 section, which is processed by the kernel loader. */
2699
2700 /* There is a relocation for the initial PLT entry:
2701 an R_SH_DIR32 relocation for _GLOBAL_OFFSET_TABLE_. */
2702 if (h->plt.offset == htab->plt_info->plt0_entry_size)
2703 htab->srelplt2->size += sizeof (Elf32_External_Rela);
2704
2705 /* There are two extra relocations for each subsequent
2706 PLT entry: an R_SH_DIR32 relocation for the GOT entry,
2707 and an R_SH_DIR32 relocation for the PLT entry. */
2708 htab->srelplt2->size += sizeof (Elf32_External_Rela) * 2;
2709 }
2710 }
2711 else
2712 {
2713 h->plt.offset = (bfd_vma) -1;
2714 h->needs_plt = 0;
2715 }
2716 }
2717 else
2718 {
2719 h->plt.offset = (bfd_vma) -1;
2720 h->needs_plt = 0;
2721 }
2722
2723 if (h->got.refcount > 0)
2724 {
2725 asection *s;
2726 bfd_boolean dyn;
2727 int tls_type = sh_elf_hash_entry (h)->tls_type;
2728
2729 /* Make sure this symbol is output as a dynamic symbol.
2730 Undefined weak syms won't yet be marked as dynamic. */
2731 if (h->dynindx == -1
2732 && !h->forced_local)
2733 {
2734 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2735 return FALSE;
2736 }
2737
2738 s = htab->sgot;
2739 h->got.offset = s->size;
2740 s->size += 4;
2741 /* R_SH_TLS_GD needs 2 consecutive GOT slots. */
2742 if (tls_type == GOT_TLS_GD)
2743 s->size += 4;
2744 dyn = htab->root.dynamic_sections_created;
2745 /* R_SH_TLS_IE_32 needs one dynamic relocation if dynamic,
2746 R_SH_TLS_GD needs one if local symbol and two if global. */
2747 if ((tls_type == GOT_TLS_GD && h->dynindx == -1)
2748 || (tls_type == GOT_TLS_IE && dyn))
2749 htab->srelgot->size += sizeof (Elf32_External_Rela);
2750 else if (tls_type == GOT_TLS_GD)
2751 htab->srelgot->size += 2 * sizeof (Elf32_External_Rela);
2752 else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2753 || h->root.type != bfd_link_hash_undefweak)
2754 && (info->shared
2755 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
2756 htab->srelgot->size += sizeof (Elf32_External_Rela);
2757 }
2758 else
2759 h->got.offset = (bfd_vma) -1;
2760
2761 #ifdef INCLUDE_SHMEDIA
2762 if (eh->datalabel_got.refcount > 0)
2763 {
2764 asection *s;
2765 bfd_boolean dyn;
2766
2767 /* Make sure this symbol is output as a dynamic symbol.
2768 Undefined weak syms won't yet be marked as dynamic. */
2769 if (h->dynindx == -1
2770 && !h->forced_local)
2771 {
2772 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2773 return FALSE;
2774 }
2775
2776 s = htab->sgot;
2777 eh->datalabel_got.offset = s->size;
2778 s->size += 4;
2779 dyn = htab->root.dynamic_sections_created;
2780 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h))
2781 htab->srelgot->size += sizeof (Elf32_External_Rela);
2782 }
2783 else
2784 eh->datalabel_got.offset = (bfd_vma) -1;
2785 #endif
2786
2787 if (eh->dyn_relocs == NULL)
2788 return TRUE;
2789
2790 /* In the shared -Bsymbolic case, discard space allocated for
2791 dynamic pc-relative relocs against symbols which turn out to be
2792 defined in regular objects. For the normal shared case, discard
2793 space for pc-relative relocs that have become local due to symbol
2794 visibility changes. */
2795
2796 if (info->shared)
2797 {
2798 if (SYMBOL_CALLS_LOCAL (info, h))
2799 {
2800 struct elf_sh_dyn_relocs **pp;
2801
2802 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2803 {
2804 p->count -= p->pc_count;
2805 p->pc_count = 0;
2806 if (p->count == 0)
2807 *pp = p->next;
2808 else
2809 pp = &p->next;
2810 }
2811 }
2812
2813 /* Also discard relocs on undefined weak syms with non-default
2814 visibility. */
2815 if (eh->dyn_relocs != NULL
2816 && h->root.type == bfd_link_hash_undefweak)
2817 {
2818 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2819 eh->dyn_relocs = NULL;
2820
2821 /* Make sure undefined weak symbols are output as a dynamic
2822 symbol in PIEs. */
2823 else if (h->dynindx == -1
2824 && !h->forced_local)
2825 {
2826 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2827 return FALSE;
2828 }
2829 }
2830 }
2831 else
2832 {
2833 /* For the non-shared case, discard space for relocs against
2834 symbols which turn out to need copy relocs or are not
2835 dynamic. */
2836
2837 if (!h->non_got_ref
2838 && ((h->def_dynamic
2839 && !h->def_regular)
2840 || (htab->root.dynamic_sections_created
2841 && (h->root.type == bfd_link_hash_undefweak
2842 || h->root.type == bfd_link_hash_undefined))))
2843 {
2844 /* Make sure this symbol is output as a dynamic symbol.
2845 Undefined weak syms won't yet be marked as dynamic. */
2846 if (h->dynindx == -1
2847 && !h->forced_local)
2848 {
2849 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2850 return FALSE;
2851 }
2852
2853 /* If that succeeded, we know we'll be keeping all the
2854 relocs. */
2855 if (h->dynindx != -1)
2856 goto keep;
2857 }
2858
2859 eh->dyn_relocs = NULL;
2860
2861 keep: ;
2862 }
2863
2864 /* Finally, allocate space. */
2865 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2866 {
2867 asection *sreloc = elf_section_data (p->sec)->sreloc;
2868 sreloc->size += p->count * sizeof (Elf32_External_Rela);
2869 }
2870
2871 return TRUE;
2872 }
2873
2874 /* Find any dynamic relocs that apply to read-only sections. */
2875
2876 static bfd_boolean
2877 readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
2878 {
2879 struct elf_sh_link_hash_entry *eh;
2880 struct elf_sh_dyn_relocs *p;
2881
2882 if (h->root.type == bfd_link_hash_warning)
2883 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2884
2885 eh = (struct elf_sh_link_hash_entry *) h;
2886 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2887 {
2888 asection *s = p->sec->output_section;
2889
2890 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2891 {
2892 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2893
2894 info->flags |= DF_TEXTREL;
2895
2896 /* Not an error, just cut short the traversal. */
2897 return FALSE;
2898 }
2899 }
2900 return TRUE;
2901 }
2902
2903 /* This function is called after all the input files have been read,
2904 and the input sections have been assigned to output sections.
2905 It's a convenient place to determine the PLT style. */
2906
2907 static bfd_boolean
2908 sh_elf_always_size_sections (bfd *output_bfd, struct bfd_link_info *info)
2909 {
2910 sh_elf_hash_table (info)->plt_info = get_plt_info (output_bfd, info->shared);
2911 return TRUE;
2912 }
2913
2914 /* Set the sizes of the dynamic sections. */
2915
2916 static bfd_boolean
2917 sh_elf_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2918 struct bfd_link_info *info)
2919 {
2920 struct elf_sh_link_hash_table *htab;
2921 bfd *dynobj;
2922 asection *s;
2923 bfd_boolean relocs;
2924 bfd *ibfd;
2925
2926 htab = sh_elf_hash_table (info);
2927 dynobj = htab->root.dynobj;
2928 BFD_ASSERT (dynobj != NULL);
2929
2930 if (htab->root.dynamic_sections_created)
2931 {
2932 /* Set the contents of the .interp section to the interpreter. */
2933 if (info->executable)
2934 {
2935 s = bfd_get_section_by_name (dynobj, ".interp");
2936 BFD_ASSERT (s != NULL);
2937 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
2938 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2939 }
2940 }
2941
2942 /* Set up .got offsets for local syms, and space for local dynamic
2943 relocs. */
2944 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2945 {
2946 bfd_signed_vma *local_got;
2947 bfd_signed_vma *end_local_got;
2948 char *local_tls_type;
2949 bfd_size_type locsymcount;
2950 Elf_Internal_Shdr *symtab_hdr;
2951 asection *srel;
2952
2953 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2954 continue;
2955
2956 for (s = ibfd->sections; s != NULL; s = s->next)
2957 {
2958 struct elf_sh_dyn_relocs *p;
2959
2960 for (p = ((struct elf_sh_dyn_relocs *)
2961 elf_section_data (s)->local_dynrel);
2962 p != NULL;
2963 p = p->next)
2964 {
2965 if (! bfd_is_abs_section (p->sec)
2966 && bfd_is_abs_section (p->sec->output_section))
2967 {
2968 /* Input section has been discarded, either because
2969 it is a copy of a linkonce section or due to
2970 linker script /DISCARD/, so we'll be discarding
2971 the relocs too. */
2972 }
2973 else if (p->count != 0)
2974 {
2975 srel = elf_section_data (p->sec)->sreloc;
2976 srel->size += p->count * sizeof (Elf32_External_Rela);
2977 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
2978 info->flags |= DF_TEXTREL;
2979 }
2980 }
2981 }
2982
2983 local_got = elf_local_got_refcounts (ibfd);
2984 if (!local_got)
2985 continue;
2986
2987 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2988 locsymcount = symtab_hdr->sh_info;
2989 #ifdef INCLUDE_SHMEDIA
2990 /* Count datalabel local GOT. */
2991 locsymcount *= 2;
2992 #endif
2993 end_local_got = local_got + locsymcount;
2994 local_tls_type = sh_elf_local_got_tls_type (ibfd);
2995 s = htab->sgot;
2996 srel = htab->srelgot;
2997 for (; local_got < end_local_got; ++local_got)
2998 {
2999 if (*local_got > 0)
3000 {
3001 *local_got = s->size;
3002 s->size += 4;
3003 if (*local_tls_type == GOT_TLS_GD)
3004 s->size += 4;
3005 if (info->shared)
3006 srel->size += sizeof (Elf32_External_Rela);
3007 }
3008 else
3009 *local_got = (bfd_vma) -1;
3010 ++local_tls_type;
3011 }
3012 }
3013
3014 if (htab->tls_ldm_got.refcount > 0)
3015 {
3016 /* Allocate 2 got entries and 1 dynamic reloc for R_SH_TLS_LD_32
3017 relocs. */
3018 htab->tls_ldm_got.offset = htab->sgot->size;
3019 htab->sgot->size += 8;
3020 htab->srelgot->size += sizeof (Elf32_External_Rela);
3021 }
3022 else
3023 htab->tls_ldm_got.offset = -1;
3024
3025 /* Allocate global sym .plt and .got entries, and space for global
3026 sym dynamic relocs. */
3027 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
3028
3029 /* We now have determined the sizes of the various dynamic sections.
3030 Allocate memory for them. */
3031 relocs = FALSE;
3032 for (s = dynobj->sections; s != NULL; s = s->next)
3033 {
3034 if ((s->flags & SEC_LINKER_CREATED) == 0)
3035 continue;
3036
3037 if (s == htab->splt
3038 || s == htab->sgot
3039 || s == htab->sgotplt
3040 || s == htab->sdynbss)
3041 {
3042 /* Strip this section if we don't need it; see the
3043 comment below. */
3044 }
3045 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
3046 {
3047 if (s->size != 0 && s != htab->srelplt && s != htab->srelplt2)
3048 relocs = TRUE;
3049
3050 /* We use the reloc_count field as a counter if we need
3051 to copy relocs into the output file. */
3052 s->reloc_count = 0;
3053 }
3054 else
3055 {
3056 /* It's not one of our sections, so don't allocate space. */
3057 continue;
3058 }
3059
3060 if (s->size == 0)
3061 {
3062 /* If we don't need this section, strip it from the
3063 output file. This is mostly to handle .rela.bss and
3064 .rela.plt. We must create both sections in
3065 create_dynamic_sections, because they must be created
3066 before the linker maps input sections to output
3067 sections. The linker does that before
3068 adjust_dynamic_symbol is called, and it is that
3069 function which decides whether anything needs to go
3070 into these sections. */
3071
3072 s->flags |= SEC_EXCLUDE;
3073 continue;
3074 }
3075
3076 if ((s->flags & SEC_HAS_CONTENTS) == 0)
3077 continue;
3078
3079 /* Allocate memory for the section contents. We use bfd_zalloc
3080 here in case unused entries are not reclaimed before the
3081 section's contents are written out. This should not happen,
3082 but this way if it does, we get a R_SH_NONE reloc instead
3083 of garbage. */
3084 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
3085 if (s->contents == NULL)
3086 return FALSE;
3087 }
3088
3089 if (htab->root.dynamic_sections_created)
3090 {
3091 /* Add some entries to the .dynamic section. We fill in the
3092 values later, in sh_elf_finish_dynamic_sections, but we
3093 must add the entries now so that we get the correct size for
3094 the .dynamic section. The DT_DEBUG entry is filled in by the
3095 dynamic linker and used by the debugger. */
3096 #define add_dynamic_entry(TAG, VAL) \
3097 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3098
3099 if (info->executable)
3100 {
3101 if (! add_dynamic_entry (DT_DEBUG, 0))
3102 return FALSE;
3103 }
3104
3105 if (htab->splt->size != 0)
3106 {
3107 if (! add_dynamic_entry (DT_PLTGOT, 0)
3108 || ! add_dynamic_entry (DT_PLTRELSZ, 0)
3109 || ! add_dynamic_entry (DT_PLTREL, DT_RELA)
3110 || ! add_dynamic_entry (DT_JMPREL, 0))
3111 return FALSE;
3112 }
3113
3114 if (relocs)
3115 {
3116 if (! add_dynamic_entry (DT_RELA, 0)
3117 || ! add_dynamic_entry (DT_RELASZ, 0)
3118 || ! add_dynamic_entry (DT_RELAENT,
3119 sizeof (Elf32_External_Rela)))
3120 return FALSE;
3121
3122 /* If any dynamic relocs apply to a read-only section,
3123 then we need a DT_TEXTREL entry. */
3124 if ((info->flags & DF_TEXTREL) == 0)
3125 elf_link_hash_traverse (&htab->root, readonly_dynrelocs, info);
3126
3127 if ((info->flags & DF_TEXTREL) != 0)
3128 {
3129 if (! add_dynamic_entry (DT_TEXTREL, 0))
3130 return FALSE;
3131 }
3132 }
3133 }
3134 #undef add_dynamic_entry
3135
3136 return TRUE;
3137 }
3138 \f
3139 /* Relocate an SH ELF section. */
3140
3141 static bfd_boolean
3142 sh_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
3143 bfd *input_bfd, asection *input_section,
3144 bfd_byte *contents, Elf_Internal_Rela *relocs,
3145 Elf_Internal_Sym *local_syms,
3146 asection **local_sections)
3147 {
3148 struct elf_sh_link_hash_table *htab;
3149 Elf_Internal_Shdr *symtab_hdr;
3150 struct elf_link_hash_entry **sym_hashes;
3151 Elf_Internal_Rela *rel, *relend;
3152 bfd *dynobj;
3153 bfd_vma *local_got_offsets;
3154 asection *sgot;
3155 asection *sgotplt;
3156 asection *splt;
3157 asection *sreloc;
3158 asection *srelgot;
3159
3160 htab = sh_elf_hash_table (info);
3161 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3162 sym_hashes = elf_sym_hashes (input_bfd);
3163 dynobj = htab->root.dynobj;
3164 local_got_offsets = elf_local_got_offsets (input_bfd);
3165
3166 sgot = htab->sgot;
3167 sgotplt = htab->sgotplt;
3168 splt = htab->splt;
3169 sreloc = NULL;
3170 srelgot = NULL;
3171
3172 rel = relocs;
3173 relend = relocs + input_section->reloc_count;
3174 for (; rel < relend; rel++)
3175 {
3176 int r_type;
3177 reloc_howto_type *howto;
3178 unsigned long r_symndx;
3179 Elf_Internal_Sym *sym;
3180 asection *sec;
3181 struct elf_link_hash_entry *h;
3182 bfd_vma relocation;
3183 bfd_vma addend = (bfd_vma) 0;
3184 bfd_reloc_status_type r;
3185 int seen_stt_datalabel = 0;
3186 bfd_vma off;
3187 int tls_type;
3188
3189 r_symndx = ELF32_R_SYM (rel->r_info);
3190
3191 r_type = ELF32_R_TYPE (rel->r_info);
3192
3193 /* Many of the relocs are only used for relaxing, and are
3194 handled entirely by the relaxation code. */
3195 if (r_type >= (int) R_SH_GNU_VTINHERIT
3196 && r_type <= (int) R_SH_LABEL)
3197 continue;
3198 if (r_type == (int) R_SH_NONE)
3199 continue;
3200
3201 if (r_type < 0
3202 || r_type >= R_SH_max
3203 || (r_type >= (int) R_SH_FIRST_INVALID_RELOC
3204 && r_type <= (int) R_SH_LAST_INVALID_RELOC)
3205 || ( r_type >= (int) R_SH_FIRST_INVALID_RELOC_3
3206 && r_type <= (int) R_SH_LAST_INVALID_RELOC_3)
3207 || ( r_type >= (int) R_SH_FIRST_INVALID_RELOC_4
3208 && r_type <= (int) R_SH_LAST_INVALID_RELOC_4)
3209 || ( r_type >= (int) R_SH_FIRST_INVALID_RELOC_5
3210 && r_type <= (int) R_SH_LAST_INVALID_RELOC_5)
3211 || (r_type >= (int) R_SH_FIRST_INVALID_RELOC_2
3212 && r_type <= (int) R_SH_LAST_INVALID_RELOC_2))
3213 {
3214 bfd_set_error (bfd_error_bad_value);
3215 return FALSE;
3216 }
3217
3218 howto = get_howto_table (output_bfd) + r_type;
3219
3220 /* For relocs that aren't partial_inplace, we get the addend from
3221 the relocation. */
3222 if (! howto->partial_inplace)
3223 addend = rel->r_addend;
3224
3225 h = NULL;
3226 sym = NULL;
3227 sec = NULL;
3228 if (r_symndx < symtab_hdr->sh_info)
3229 {
3230 sym = local_syms + r_symndx;
3231 sec = local_sections[r_symndx];
3232 relocation = (sec->output_section->vma
3233 + sec->output_offset
3234 + sym->st_value);
3235 /* A local symbol never has STO_SH5_ISA32, so we don't need
3236 datalabel processing here. Make sure this does not change
3237 without notice. */
3238 if ((sym->st_other & STO_SH5_ISA32) != 0)
3239 ((*info->callbacks->reloc_dangerous)
3240 (info,
3241 _("Unexpected STO_SH5_ISA32 on local symbol is not handled"),
3242 input_bfd, input_section, rel->r_offset));
3243 if (info->relocatable)
3244 {
3245 /* This is a relocatable link. We don't have to change
3246 anything, unless the reloc is against a section symbol,
3247 in which case we have to adjust according to where the
3248 section symbol winds up in the output section. */
3249 sym = local_syms + r_symndx;
3250 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3251 {
3252 if (! howto->partial_inplace)
3253 {
3254 /* For relocations with the addend in the
3255 relocation, we need just to update the addend.
3256 All real relocs are of type partial_inplace; this
3257 code is mostly for completeness. */
3258 rel->r_addend += sec->output_offset + sym->st_value;
3259
3260 continue;
3261 }
3262
3263 /* Relocs of type partial_inplace need to pick up the
3264 contents in the contents and add the offset resulting
3265 from the changed location of the section symbol.
3266 Using _bfd_final_link_relocate (e.g. goto
3267 final_link_relocate) here would be wrong, because
3268 relocations marked pc_relative would get the current
3269 location subtracted, and we must only do that at the
3270 final link. */
3271 r = _bfd_relocate_contents (howto, input_bfd,
3272 sec->output_offset
3273 + sym->st_value,
3274 contents + rel->r_offset);
3275 goto relocation_done;
3276 }
3277
3278 continue;
3279 }
3280 else if (! howto->partial_inplace)
3281 {
3282 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
3283 addend = rel->r_addend;
3284 }
3285 else if ((sec->flags & SEC_MERGE)
3286 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3287 {
3288 asection *msec;
3289
3290 if (howto->rightshift || howto->src_mask != 0xffffffff)
3291 {
3292 (*_bfd_error_handler)
3293 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
3294 input_bfd, input_section,
3295 (long) rel->r_offset, howto->name);
3296 return FALSE;
3297 }
3298
3299 addend = bfd_get_32 (input_bfd, contents + rel->r_offset);
3300 msec = sec;
3301 addend =
3302 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
3303 - relocation;
3304 addend += msec->output_section->vma + msec->output_offset;
3305 bfd_put_32 (input_bfd, addend, contents + rel->r_offset);
3306 addend = 0;
3307 }
3308 }
3309 else
3310 {
3311 /* FIXME: Ought to make use of the RELOC_FOR_GLOBAL_SYMBOL macro. */
3312
3313 /* Section symbol are never (?) placed in the hash table, so
3314 we can just ignore hash relocations when creating a
3315 relocatable object file. */
3316 if (info->relocatable)
3317 continue;
3318
3319 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
3320 while (h->root.type == bfd_link_hash_indirect
3321 || h->root.type == bfd_link_hash_warning)
3322 {
3323 #ifdef INCLUDE_SHMEDIA
3324 /* If the reference passes a symbol marked with
3325 STT_DATALABEL, then any STO_SH5_ISA32 on the final value
3326 doesn't count. */
3327 seen_stt_datalabel |= h->type == STT_DATALABEL;
3328 #endif
3329 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3330 }
3331 if (h->root.type == bfd_link_hash_defined
3332 || h->root.type == bfd_link_hash_defweak)
3333 {
3334 bfd_boolean dyn;
3335
3336 dyn = htab->root.dynamic_sections_created;
3337 sec = h->root.u.def.section;
3338 /* In these cases, we don't need the relocation value.
3339 We check specially because in some obscure cases
3340 sec->output_section will be NULL. */
3341 if (r_type == R_SH_GOTPC
3342 || r_type == R_SH_GOTPC_LOW16
3343 || r_type == R_SH_GOTPC_MEDLOW16
3344 || r_type == R_SH_GOTPC_MEDHI16
3345 || r_type == R_SH_GOTPC_HI16
3346 || ((r_type == R_SH_PLT32
3347 || r_type == R_SH_PLT_LOW16
3348 || r_type == R_SH_PLT_MEDLOW16
3349 || r_type == R_SH_PLT_MEDHI16
3350 || r_type == R_SH_PLT_HI16)
3351 && h->plt.offset != (bfd_vma) -1)
3352 || ((r_type == R_SH_GOT32
3353 || r_type == R_SH_GOT_LOW16
3354 || r_type == R_SH_GOT_MEDLOW16
3355 || r_type == R_SH_GOT_MEDHI16
3356 || r_type == R_SH_GOT_HI16)
3357 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3358 && (! info->shared
3359 || (! info->symbolic && h->dynindx != -1)
3360 || !h->def_regular))
3361 /* The cases above are those in which relocation is
3362 overwritten in the switch block below. The cases
3363 below are those in which we must defer relocation
3364 to run-time, because we can't resolve absolute
3365 addresses when creating a shared library. */
3366 || (info->shared
3367 && ((! info->symbolic && h->dynindx != -1)
3368 || !h->def_regular)
3369 && ((r_type == R_SH_DIR32
3370 && !h->forced_local)
3371 || (r_type == R_SH_REL32
3372 && !SYMBOL_CALLS_LOCAL (info, h)))
3373 && ((input_section->flags & SEC_ALLOC) != 0
3374 /* DWARF will emit R_SH_DIR32 relocations in its
3375 sections against symbols defined externally
3376 in shared libraries. We can't do anything
3377 with them here. */
3378 || ((input_section->flags & SEC_DEBUGGING) != 0
3379 && h->def_dynamic)))
3380 /* Dynamic relocs are not propagated for SEC_DEBUGGING
3381 sections because such sections are not SEC_ALLOC and
3382 thus ld.so will not process them. */
3383 || (sec->output_section == NULL
3384 && ((input_section->flags & SEC_DEBUGGING) != 0
3385 && h->def_dynamic))
3386 || (sec->output_section == NULL
3387 && (sh_elf_hash_entry (h)->tls_type == GOT_TLS_IE
3388 || sh_elf_hash_entry (h)->tls_type == GOT_TLS_GD)))
3389 relocation = 0;
3390 else if (sec->output_section == NULL)
3391 {
3392 (*_bfd_error_handler)
3393 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3394 input_bfd,
3395 input_section,
3396 (long) rel->r_offset,
3397 howto->name,
3398 h->root.root.string);
3399 return FALSE;
3400 }
3401 else
3402 relocation = ((h->root.u.def.value
3403 + sec->output_section->vma
3404 + sec->output_offset)
3405 /* A STO_SH5_ISA32 causes a "bitor 1" to the
3406 symbol value, unless we've seen
3407 STT_DATALABEL on the way to it. */
3408 | ((h->other & STO_SH5_ISA32) != 0
3409 && ! seen_stt_datalabel));
3410 }
3411 else if (h->root.type == bfd_link_hash_undefweak)
3412 relocation = 0;
3413 else if (info->unresolved_syms_in_objects == RM_IGNORE
3414 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3415 relocation = 0;
3416 else
3417 {
3418 if (! info->callbacks->undefined_symbol
3419 (info, h->root.root.string, input_bfd,
3420 input_section, rel->r_offset,
3421 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
3422 || ELF_ST_VISIBILITY (h->other))))
3423 return FALSE;
3424 relocation = 0;
3425 }
3426 }
3427
3428 switch ((int) r_type)
3429 {
3430 final_link_relocate:
3431 /* COFF relocs don't use the addend. The addend is used for
3432 R_SH_DIR32 to be compatible with other compilers. */
3433 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
3434 contents, rel->r_offset,
3435 relocation, addend);
3436 break;
3437
3438 case R_SH_IND12W:
3439 goto final_link_relocate;
3440
3441 case R_SH_DIR8WPN:
3442 case R_SH_DIR8WPZ:
3443 case R_SH_DIR8WPL:
3444 /* If the reloc is against the start of this section, then
3445 the assembler has already taken care of it and the reloc
3446 is here only to assist in relaxing. If the reloc is not
3447 against the start of this section, then it's against an
3448 external symbol and we must deal with it ourselves. */
3449 if (input_section->output_section->vma + input_section->output_offset
3450 != relocation)
3451 {
3452 int disp = (relocation
3453 - input_section->output_section->vma
3454 - input_section->output_offset
3455 - rel->r_offset);
3456 int mask = 0;
3457 switch (r_type)
3458 {
3459 case R_SH_DIR8WPN:
3460 case R_SH_DIR8WPZ: mask = 1; break;
3461 case R_SH_DIR8WPL: mask = 3; break;
3462 default: mask = 0; break;
3463 }
3464 if (disp & mask)
3465 {
3466 ((*_bfd_error_handler)
3467 (_("%B: 0x%lx: fatal: unaligned branch target for relax-support relocation"),
3468 input_section->owner,
3469 (unsigned long) rel->r_offset));
3470 bfd_set_error (bfd_error_bad_value);
3471 return FALSE;
3472 }
3473 relocation -= 4;
3474 goto final_link_relocate;
3475 }
3476 r = bfd_reloc_ok;
3477 break;
3478
3479 default:
3480 #ifdef INCLUDE_SHMEDIA
3481 if (shmedia_prepare_reloc (info, input_bfd, input_section,
3482 contents, rel, &relocation))
3483 goto final_link_relocate;
3484 #endif
3485 bfd_set_error (bfd_error_bad_value);
3486 return FALSE;
3487
3488 case R_SH_DIR16:
3489 case R_SH_DIR8:
3490 case R_SH_DIR8U:
3491 case R_SH_DIR8S:
3492 case R_SH_DIR4U:
3493 goto final_link_relocate;
3494
3495 case R_SH_DIR8UL:
3496 case R_SH_DIR4UL:
3497 if (relocation & 3)
3498 {
3499 ((*_bfd_error_handler)
3500 (_("%B: 0x%lx: fatal: unaligned %s relocation 0x%lx"),
3501 input_section->owner,
3502 (unsigned long) rel->r_offset, howto->name,
3503 (unsigned long) relocation));
3504 bfd_set_error (bfd_error_bad_value);
3505 return FALSE;
3506 }
3507 goto final_link_relocate;
3508
3509 case R_SH_DIR8UW:
3510 case R_SH_DIR8SW:
3511 case R_SH_DIR4UW:
3512 if (relocation & 1)
3513 {
3514 ((*_bfd_error_handler)
3515 (_("%B: 0x%lx: fatal: unaligned %s relocation 0x%lx"),
3516 input_section->owner,
3517 (unsigned long) rel->r_offset, howto->name,
3518 (unsigned long) relocation));
3519 bfd_set_error (bfd_error_bad_value);
3520 return FALSE;
3521 }
3522 goto final_link_relocate;
3523
3524 case R_SH_PSHA:
3525 if ((signed int)relocation < -32
3526 || (signed int)relocation > 32)
3527 {
3528 ((*_bfd_error_handler)
3529 (_("%B: 0x%lx: fatal: R_SH_PSHA relocation %d not in range -32..32"),
3530 input_section->owner,
3531 (unsigned long) rel->r_offset,
3532 (unsigned long) relocation));
3533 bfd_set_error (bfd_error_bad_value);
3534 return FALSE;
3535 }
3536 goto final_link_relocate;
3537
3538 case R_SH_PSHL:
3539 if ((signed int)relocation < -16
3540 || (signed int)relocation > 16)
3541 {
3542 ((*_bfd_error_handler)
3543 (_("%B: 0x%lx: fatal: R_SH_PSHL relocation %d not in range -32..32"),
3544 input_section->owner,
3545 (unsigned long) rel->r_offset,
3546 (unsigned long) relocation));
3547 bfd_set_error (bfd_error_bad_value);
3548 return FALSE;
3549 }
3550 goto final_link_relocate;
3551
3552 case R_SH_DIR32:
3553 case R_SH_REL32:
3554 #ifdef INCLUDE_SHMEDIA
3555 case R_SH_IMM_LOW16_PCREL:
3556 case R_SH_IMM_MEDLOW16_PCREL:
3557 case R_SH_IMM_MEDHI16_PCREL:
3558 case R_SH_IMM_HI16_PCREL:
3559 #endif
3560 /* r_symndx will be zero only for relocs against symbols
3561 from removed linkonce sections, or sections discarded by
3562 a linker script. */
3563 if (r_symndx == 0)
3564 {
3565 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
3566 continue;
3567 }
3568
3569 if (info->shared
3570 && (h == NULL
3571 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3572 || h->root.type != bfd_link_hash_undefweak)
3573 && r_symndx != 0
3574 && (input_section->flags & SEC_ALLOC) != 0
3575 && (r_type == R_SH_DIR32
3576 || !SYMBOL_CALLS_LOCAL (info, h)))
3577 {
3578 Elf_Internal_Rela outrel;
3579 bfd_byte *loc;
3580 bfd_boolean skip, relocate;
3581
3582 /* When generating a shared object, these relocations
3583 are copied into the output file to be resolved at run
3584 time. */
3585
3586 if (sreloc == NULL)
3587 {
3588 const char *name;
3589
3590 name = (bfd_elf_string_from_elf_section
3591 (input_bfd,
3592 elf_elfheader (input_bfd)->e_shstrndx,
3593 elf_section_data (input_section)->rel_hdr.sh_name));
3594 if (name == NULL)
3595 return FALSE;
3596
3597 BFD_ASSERT (CONST_STRNEQ (name, ".rela")
3598 && strcmp (bfd_get_section_name (input_bfd,
3599 input_section),
3600 name + 5) == 0);
3601
3602 sreloc = bfd_get_section_by_name (dynobj, name);
3603 BFD_ASSERT (sreloc != NULL);
3604 }
3605
3606 skip = FALSE;
3607 relocate = FALSE;
3608
3609 outrel.r_offset =
3610 _bfd_elf_section_offset (output_bfd, info, input_section,
3611 rel->r_offset);
3612 if (outrel.r_offset == (bfd_vma) -1)
3613 skip = TRUE;
3614 else if (outrel.r_offset == (bfd_vma) -2)
3615 skip = TRUE, relocate = TRUE;
3616 outrel.r_offset += (input_section->output_section->vma
3617 + input_section->output_offset);
3618
3619 if (skip)
3620 memset (&outrel, 0, sizeof outrel);
3621 else if (r_type == R_SH_REL32)
3622 {
3623 BFD_ASSERT (h != NULL && h->dynindx != -1);
3624 outrel.r_info = ELF32_R_INFO (h->dynindx, R_SH_REL32);
3625 outrel.r_addend
3626 = (howto->partial_inplace
3627 ? bfd_get_32 (input_bfd, contents + rel->r_offset)
3628 : addend);
3629 }
3630 #ifdef INCLUDE_SHMEDIA
3631 else if (r_type == R_SH_IMM_LOW16_PCREL
3632 || r_type == R_SH_IMM_MEDLOW16_PCREL
3633 || r_type == R_SH_IMM_MEDHI16_PCREL
3634 || r_type == R_SH_IMM_HI16_PCREL)
3635 {
3636 BFD_ASSERT (h != NULL && h->dynindx != -1);
3637 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
3638 outrel.r_addend = addend;
3639 }
3640 #endif
3641 else
3642 {
3643 /* h->dynindx may be -1 if this symbol was marked to
3644 become local. */
3645 if (h == NULL
3646 || ((info->symbolic || h->dynindx == -1)
3647 && h->def_regular))
3648 {
3649 relocate = howto->partial_inplace;
3650 outrel.r_info = ELF32_R_INFO (0, R_SH_RELATIVE);
3651 }
3652 else
3653 {
3654 BFD_ASSERT (h->dynindx != -1);
3655 outrel.r_info = ELF32_R_INFO (h->dynindx, R_SH_DIR32);
3656 }
3657 outrel.r_addend = relocation;
3658 outrel.r_addend
3659 += (howto->partial_inplace
3660 ? bfd_get_32 (input_bfd, contents + rel->r_offset)
3661 : addend);
3662 }
3663
3664 loc = sreloc->contents;
3665 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3666 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3667
3668 /* If this reloc is against an external symbol, we do
3669 not want to fiddle with the addend. Otherwise, we
3670 need to include the symbol value so that it becomes
3671 an addend for the dynamic reloc. */
3672 if (! relocate)
3673 continue;
3674 }
3675 goto final_link_relocate;
3676
3677 case R_SH_GOTPLT32:
3678 #ifdef INCLUDE_SHMEDIA
3679 case R_SH_GOTPLT_LOW16:
3680 case R_SH_GOTPLT_MEDLOW16:
3681 case R_SH_GOTPLT_MEDHI16:
3682 case R_SH_GOTPLT_HI16:
3683 case R_SH_GOTPLT10BY4:
3684 case R_SH_GOTPLT10BY8:
3685 #endif
3686 /* Relocation is to the entry for this symbol in the
3687 procedure linkage table. */
3688
3689 if (h == NULL
3690 || h->forced_local
3691 || ! info->shared
3692 || info->symbolic
3693 || h->dynindx == -1
3694 || h->plt.offset == (bfd_vma) -1
3695 || h->got.offset != (bfd_vma) -1)
3696 goto force_got;
3697
3698 /* Relocation is to the entry for this symbol in the global
3699 offset table extension for the procedure linkage table. */
3700
3701 BFD_ASSERT (sgotplt != NULL);
3702 relocation = (sgotplt->output_offset
3703 + (get_plt_index (htab->plt_info, h->plt.offset)
3704 + 3) * 4);
3705
3706 #ifdef GOT_BIAS
3707 relocation -= GOT_BIAS;
3708 #endif
3709
3710 goto final_link_relocate;
3711
3712 force_got:
3713 case R_SH_GOT32:
3714 #ifdef INCLUDE_SHMEDIA
3715 case R_SH_GOT_LOW16:
3716 case R_SH_GOT_MEDLOW16:
3717 case R_SH_GOT_MEDHI16:
3718 case R_SH_GOT_HI16:
3719 case R_SH_GOT10BY4:
3720 case R_SH_GOT10BY8:
3721 #endif
3722 /* Relocation is to the entry for this symbol in the global
3723 offset table. */
3724
3725 BFD_ASSERT (sgot != NULL);
3726
3727 if (h != NULL)
3728 {
3729 bfd_boolean dyn;
3730
3731 off = h->got.offset;
3732 #ifdef INCLUDE_SHMEDIA
3733 if (seen_stt_datalabel)
3734 {
3735 struct elf_sh_link_hash_entry *hsh;
3736
3737 hsh = (struct elf_sh_link_hash_entry *)h;
3738 off = hsh->datalabel_got.offset;
3739 }
3740 #endif
3741 BFD_ASSERT (off != (bfd_vma) -1);
3742
3743 dyn = htab->root.dynamic_sections_created;
3744 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3745 || (info->shared
3746 && SYMBOL_REFERENCES_LOCAL (info, h))
3747 || (ELF_ST_VISIBILITY (h->other)
3748 && h->root.type == bfd_link_hash_undefweak))
3749 {
3750 /* This is actually a static link, or it is a
3751 -Bsymbolic link and the symbol is defined
3752 locally, or the symbol was forced to be local
3753 because of a version file. We must initialize
3754 this entry in the global offset table. Since the
3755 offset must always be a multiple of 4, we use the
3756 least significant bit to record whether we have
3757 initialized it already.
3758
3759 When doing a dynamic link, we create a .rela.got
3760 relocation entry to initialize the value. This
3761 is done in the finish_dynamic_symbol routine. */
3762 if ((off & 1) != 0)
3763 off &= ~1;
3764 else
3765 {
3766 bfd_put_32 (output_bfd, relocation,
3767 sgot->contents + off);
3768 #ifdef INCLUDE_SHMEDIA
3769 if (seen_stt_datalabel)
3770 {
3771 struct elf_sh_link_hash_entry *hsh;
3772
3773 hsh = (struct elf_sh_link_hash_entry *)h;
3774 hsh->datalabel_got.offset |= 1;
3775 }
3776 else
3777 #endif
3778 h->got.offset |= 1;
3779 }
3780 }
3781
3782 relocation = sgot->output_offset + off;
3783 }
3784 else
3785 {
3786 #ifdef INCLUDE_SHMEDIA
3787 if (rel->r_addend)
3788 {
3789 BFD_ASSERT (local_got_offsets != NULL
3790 && (local_got_offsets[symtab_hdr->sh_info
3791 + r_symndx]
3792 != (bfd_vma) -1));
3793
3794 off = local_got_offsets[symtab_hdr->sh_info
3795 + r_symndx];
3796 }
3797 else
3798 {
3799 #endif
3800 BFD_ASSERT (local_got_offsets != NULL
3801 && local_got_offsets[r_symndx] != (bfd_vma) -1);
3802
3803 off = local_got_offsets[r_symndx];
3804 #ifdef INCLUDE_SHMEDIA
3805 }
3806 #endif
3807
3808 /* The offset must always be a multiple of 4. We use
3809 the least significant bit to record whether we have
3810 already generated the necessary reloc. */
3811 if ((off & 1) != 0)
3812 off &= ~1;
3813 else
3814 {
3815 bfd_put_32 (output_bfd, relocation, sgot->contents + off);
3816
3817 if (info->shared)
3818 {
3819 Elf_Internal_Rela outrel;
3820 bfd_byte *loc;
3821
3822 if (srelgot == NULL)
3823 {
3824 srelgot = bfd_get_section_by_name (dynobj,
3825 ".rela.got");
3826 BFD_ASSERT (srelgot != NULL);
3827 }
3828
3829 outrel.r_offset = (sgot->output_section->vma
3830 + sgot->output_offset
3831 + off);
3832 outrel.r_info = ELF32_R_INFO (0, R_SH_RELATIVE);
3833 outrel.r_addend = relocation;
3834 loc = srelgot->contents;
3835 loc += srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
3836 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3837 }
3838
3839 #ifdef INCLUDE_SHMEDIA
3840 if (rel->r_addend)
3841 local_got_offsets[symtab_hdr->sh_info + r_symndx] |= 1;
3842 else
3843 #endif
3844 local_got_offsets[r_symndx] |= 1;
3845 }
3846
3847 relocation = sgot->output_offset + off;
3848 }
3849
3850 #ifdef GOT_BIAS
3851 relocation -= GOT_BIAS;
3852 #endif
3853
3854 goto final_link_relocate;
3855
3856 case R_SH_GOTOFF:
3857 #ifdef INCLUDE_SHMEDIA
3858 case R_SH_GOTOFF_LOW16:
3859 case R_SH_GOTOFF_MEDLOW16:
3860 case R_SH_GOTOFF_MEDHI16:
3861 case R_SH_GOTOFF_HI16:
3862 #endif
3863 /* Relocation is relative to the start of the global offset
3864 table. */
3865
3866 BFD_ASSERT (sgot != NULL);
3867
3868 /* Note that sgot->output_offset is not involved in this
3869 calculation. We always want the start of .got. If we
3870 defined _GLOBAL_OFFSET_TABLE in a different way, as is
3871 permitted by the ABI, we might have to change this
3872 calculation. */
3873 relocation -= sgot->output_section->vma;
3874
3875 #ifdef GOT_BIAS
3876 relocation -= GOT_BIAS;
3877 #endif
3878
3879 addend = rel->r_addend;
3880
3881 goto final_link_relocate;
3882
3883 case R_SH_GOTPC:
3884 #ifdef INCLUDE_SHMEDIA
3885 case R_SH_GOTPC_LOW16:
3886 case R_SH_GOTPC_MEDLOW16:
3887 case R_SH_GOTPC_MEDHI16:
3888 case R_SH_GOTPC_HI16:
3889 #endif
3890 /* Use global offset table as symbol value. */
3891
3892 BFD_ASSERT (sgot != NULL);
3893 relocation = sgot->output_section->vma;
3894
3895 #ifdef GOT_BIAS
3896 relocation += GOT_BIAS;
3897 #endif
3898
3899 addend = rel->r_addend;
3900
3901 goto final_link_relocate;
3902
3903 case R_SH_PLT32:
3904 #ifdef INCLUDE_SHMEDIA
3905 case R_SH_PLT_LOW16:
3906 case R_SH_PLT_MEDLOW16:
3907 case R_SH_PLT_MEDHI16:
3908 case R_SH_PLT_HI16:
3909 #endif
3910 /* Relocation is to the entry for this symbol in the
3911 procedure linkage table. */
3912
3913 /* Resolve a PLT reloc against a local symbol directly,
3914 without using the procedure linkage table. */
3915 if (h == NULL)
3916 goto final_link_relocate;
3917
3918 if (h->forced_local)
3919 goto final_link_relocate;
3920
3921 if (h->plt.offset == (bfd_vma) -1)
3922 {
3923 /* We didn't make a PLT entry for this symbol. This
3924 happens when statically linking PIC code, or when
3925 using -Bsymbolic. */
3926 goto final_link_relocate;
3927 }
3928
3929 BFD_ASSERT (splt != NULL);
3930 relocation = (splt->output_section->vma
3931 + splt->output_offset
3932 + h->plt.offset);
3933
3934 #ifdef INCLUDE_SHMEDIA
3935 relocation++;
3936 #endif
3937
3938 addend = rel->r_addend;
3939
3940 goto final_link_relocate;
3941
3942 case R_SH_LOOP_START:
3943 {
3944 static bfd_vma start, end;
3945
3946 start = (relocation + rel->r_addend
3947 - (sec->output_section->vma + sec->output_offset));
3948 r = sh_elf_reloc_loop (r_type, input_bfd, input_section, contents,
3949 rel->r_offset, sec, start, end);
3950 break;
3951
3952 case R_SH_LOOP_END:
3953 end = (relocation + rel->r_addend
3954 - (sec->output_section->vma + sec->output_offset));
3955 r = sh_elf_reloc_loop (r_type, input_bfd, input_section, contents,
3956 rel->r_offset, sec, start, end);
3957 break;
3958 }
3959
3960 case R_SH_TLS_GD_32:
3961 case R_SH_TLS_IE_32:
3962 r_type = sh_elf_optimized_tls_reloc (info, r_type, h == NULL);
3963 tls_type = GOT_UNKNOWN;
3964 if (h == NULL && local_got_offsets)
3965 tls_type = sh_elf_local_got_tls_type (input_bfd) [r_symndx];
3966 else if (h != NULL)
3967 {
3968 tls_type = sh_elf_hash_entry (h)->tls_type;
3969 if (! info->shared
3970 && (h->dynindx == -1
3971 || h->def_regular))
3972 r_type = R_SH_TLS_LE_32;
3973 }
3974
3975 if (r_type == R_SH_TLS_GD_32 && tls_type == GOT_TLS_IE)
3976 r_type = R_SH_TLS_IE_32;
3977
3978 if (r_type == R_SH_TLS_LE_32)
3979 {
3980 bfd_vma offset;
3981 unsigned short insn;
3982
3983 if (ELF32_R_TYPE (rel->r_info) == R_SH_TLS_GD_32)
3984 {
3985 /* GD->LE transition:
3986 mov.l 1f,r4; mova 2f,r0; mov.l 2f,r1; add r0,r1;
3987 jsr @r1; add r12,r4; bra 3f; nop; .align 2;
3988 1: .long x$TLSGD; 2: .long __tls_get_addr@PLT; 3:
3989 We change it into:
3990 mov.l 1f,r4; stc gbr,r0; add r4,r0; nop;
3991 nop; nop; ...
3992 1: .long x@TPOFF; 2: .long __tls_get_addr@PLT; 3:. */
3993
3994 offset = rel->r_offset;
3995 BFD_ASSERT (offset >= 16);
3996 /* Size of GD instructions is 16 or 18. */
3997 offset -= 16;
3998 insn = bfd_get_16 (input_bfd, contents + offset + 0);
3999 if ((insn & 0xff00) == 0xc700)
4000 {
4001 BFD_ASSERT (offset >= 2);
4002 offset -= 2;
4003 insn = bfd_get_16 (input_bfd, contents + offset + 0);
4004 }
4005
4006 BFD_ASSERT ((insn & 0xff00) == 0xd400);
4007 insn = bfd_get_16 (input_bfd, contents + offset + 2);
4008 BFD_ASSERT ((insn & 0xff00) == 0xc700);
4009 insn = bfd_get_16 (input_bfd, contents + offset + 4);
4010 BFD_ASSERT ((insn & 0xff00) == 0xd100);
4011 insn = bfd_get_16 (input_bfd, contents + offset + 6);
4012 BFD_ASSERT (insn == 0x310c);
4013 insn = bfd_get_16 (input_bfd, contents + offset + 8);
4014 BFD_ASSERT (insn == 0x410b);
4015 insn = bfd_get_16 (input_bfd, contents + offset + 10);
4016 BFD_ASSERT (insn == 0x34cc);
4017
4018 bfd_put_16 (output_bfd, 0x0012, contents + offset + 2);
4019 bfd_put_16 (output_bfd, 0x304c, contents + offset + 4);
4020 bfd_put_16 (output_bfd, 0x0009, contents + offset + 6);
4021 bfd_put_16 (output_bfd, 0x0009, contents + offset + 8);
4022 bfd_put_16 (output_bfd, 0x0009, contents + offset + 10);
4023 }
4024 else
4025 {
4026 int index;
4027
4028 /* IE->LE transition:
4029 mov.l 1f,r0; stc gbr,rN; mov.l @(r0,r12),rM;
4030 bra 2f; add ...; .align 2; 1: x@GOTTPOFF; 2:
4031 We change it into:
4032 mov.l .Ln,rM; stc gbr,rN; nop; ...;
4033 1: x@TPOFF; 2:. */
4034
4035 offset = rel->r_offset;
4036 BFD_ASSERT (offset >= 16);
4037 /* Size of IE instructions is 10 or 12. */
4038 offset -= 10;
4039 insn = bfd_get_16 (input_bfd, contents + offset + 0);
4040 if ((insn & 0xf0ff) == 0x0012)
4041 {
4042 BFD_ASSERT (offset >= 2);
4043 offset -= 2;
4044 insn = bfd_get_16 (input_bfd, contents + offset + 0);
4045 }
4046
4047 BFD_ASSERT ((insn & 0xff00) == 0xd000);
4048 index = insn & 0x00ff;
4049 insn = bfd_get_16 (input_bfd, contents + offset + 2);
4050 BFD_ASSERT ((insn & 0xf0ff) == 0x0012);
4051 insn = bfd_get_16 (input_bfd, contents + offset + 4);
4052 BFD_ASSERT ((insn & 0xf0ff) == 0x00ce);
4053 insn = 0xd000 | (insn & 0x0f00) | index;
4054 bfd_put_16 (output_bfd, insn, contents + offset + 0);
4055 bfd_put_16 (output_bfd, 0x0009, contents + offset + 4);
4056 }
4057
4058 bfd_put_32 (output_bfd, tpoff (info, relocation),
4059 contents + rel->r_offset);
4060 continue;
4061 }
4062
4063 sgot = htab->sgot;
4064 if (sgot == NULL)
4065 abort ();
4066
4067 if (h != NULL)
4068 off = h->got.offset;
4069 else
4070 {
4071 if (local_got_offsets == NULL)
4072 abort ();
4073
4074 off = local_got_offsets[r_symndx];
4075 }
4076
4077 /* Relocate R_SH_TLS_IE_32 directly when statically linking. */
4078 if (r_type == R_SH_TLS_IE_32
4079 && ! htab->root.dynamic_sections_created)
4080 {
4081 off &= ~1;
4082 bfd_put_32 (output_bfd, tpoff (info, relocation),
4083 sgot->contents + off);
4084 bfd_put_32 (output_bfd, sgot->output_offset + off,
4085 contents + rel->r_offset);
4086 continue;
4087 }
4088
4089 if ((off & 1) != 0)
4090 off &= ~1;
4091 else
4092 {
4093 Elf_Internal_Rela outrel;
4094 bfd_byte *loc;
4095 int dr_type, indx;
4096
4097 if (srelgot == NULL)
4098 {
4099 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
4100 BFD_ASSERT (srelgot != NULL);
4101 }
4102
4103 outrel.r_offset = (sgot->output_section->vma
4104 + sgot->output_offset + off);
4105
4106 if (h == NULL || h->dynindx == -1)
4107 indx = 0;
4108 else
4109 indx = h->dynindx;
4110
4111 dr_type = (r_type == R_SH_TLS_GD_32 ? R_SH_TLS_DTPMOD32 :
4112 R_SH_TLS_TPOFF32);
4113 if (dr_type == R_SH_TLS_TPOFF32 && indx == 0)
4114 outrel.r_addend = relocation - dtpoff_base (info);
4115 else
4116 outrel.r_addend = 0;
4117 outrel.r_info = ELF32_R_INFO (indx, dr_type);
4118 loc = srelgot->contents;
4119 loc += srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4120 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4121
4122 if (r_type == R_SH_TLS_GD_32)
4123 {
4124 if (indx == 0)
4125 {
4126 bfd_put_32 (output_bfd,
4127 relocation - dtpoff_base (info),
4128 sgot->contents + off + 4);
4129 }
4130 else
4131 {
4132 outrel.r_info = ELF32_R_INFO (indx,
4133 R_SH_TLS_DTPOFF32);
4134 outrel.r_offset += 4;
4135 outrel.r_addend = 0;
4136 srelgot->reloc_count++;
4137 loc += sizeof (Elf32_External_Rela);
4138 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4139 }
4140 }
4141
4142 if (h != NULL)
4143 h->got.offset |= 1;
4144 else
4145 local_got_offsets[r_symndx] |= 1;
4146 }
4147
4148 if (off >= (bfd_vma) -2)
4149 abort ();
4150
4151 if (r_type == (int) ELF32_R_TYPE (rel->r_info))
4152 relocation = sgot->output_offset + off;
4153 else
4154 {
4155 bfd_vma offset;
4156 unsigned short insn;
4157
4158 /* GD->IE transition:
4159 mov.l 1f,r4; mova 2f,r0; mov.l 2f,r1; add r0,r1;
4160 jsr @r1; add r12,r4; bra 3f; nop; .align 2;
4161 1: .long x$TLSGD; 2: .long __tls_get_addr@PLT; 3:
4162 We change it into:
4163 mov.l 1f,r0; stc gbr,r4; mov.l @(r0,r12),r0; add r4,r0;
4164 nop; nop; bra 3f; nop; .align 2;
4165 1: .long x@TPOFF; 2:...; 3:. */
4166
4167 offset = rel->r_offset;
4168 BFD_ASSERT (offset >= 16);
4169 /* Size of GD instructions is 16 or 18. */
4170 offset -= 16;
4171 insn = bfd_get_16 (input_bfd, contents + offset + 0);
4172 if ((insn & 0xff00) == 0xc700)
4173 {
4174 BFD_ASSERT (offset >= 2);
4175 offset -= 2;
4176 insn = bfd_get_16 (input_bfd, contents + offset + 0);
4177 }
4178
4179 BFD_ASSERT ((insn & 0xff00) == 0xd400);
4180
4181 /* Replace mov.l 1f,R4 with mov.l 1f,r0. */
4182 bfd_put_16 (output_bfd, insn & 0xf0ff, contents + offset);
4183
4184 insn = bfd_get_16 (input_bfd, contents + offset + 2);
4185 BFD_ASSERT ((insn & 0xff00) == 0xc700);
4186 insn = bfd_get_16 (input_bfd, contents + offset + 4);
4187 BFD_ASSERT ((insn & 0xff00) == 0xd100);
4188 insn = bfd_get_16 (input_bfd, contents + offset + 6);
4189 BFD_ASSERT (insn == 0x310c);
4190 insn = bfd_get_16 (input_bfd, contents + offset + 8);
4191 BFD_ASSERT (insn == 0x410b);
4192 insn = bfd_get_16 (input_bfd, contents + offset + 10);
4193 BFD_ASSERT (insn == 0x34cc);
4194
4195 bfd_put_16 (output_bfd, 0x0412, contents + offset + 2);
4196 bfd_put_16 (output_bfd, 0x00ce, contents + offset + 4);
4197 bfd_put_16 (output_bfd, 0x304c, contents + offset + 6);
4198 bfd_put_16 (output_bfd, 0x0009, contents + offset + 8);
4199 bfd_put_16 (output_bfd, 0x0009, contents + offset + 10);
4200
4201 bfd_put_32 (output_bfd, sgot->output_offset + off,
4202 contents + rel->r_offset);
4203
4204 continue;
4205 }
4206
4207 addend = rel->r_addend;
4208
4209 goto final_link_relocate;
4210
4211 case R_SH_TLS_LD_32:
4212 if (! info->shared)
4213 {
4214 bfd_vma offset;
4215 unsigned short insn;
4216
4217 /* LD->LE transition:
4218 mov.l 1f,r4; mova 2f,r0; mov.l 2f,r1; add r0,r1;
4219 jsr @r1; add r12,r4; bra 3f; nop; .align 2;
4220 1: .long x$TLSLD; 2: .long __tls_get_addr@PLT; 3:
4221 We change it into:
4222 stc gbr,r0; nop; nop; nop;
4223 nop; nop; bra 3f; ...; 3:. */
4224
4225 offset = rel->r_offset;
4226 BFD_ASSERT (offset >= 16);
4227 /* Size of LD instructions is 16 or 18. */
4228 offset -= 16;
4229 insn = bfd_get_16 (input_bfd, contents + offset + 0);
4230 if ((insn & 0xff00) == 0xc700)
4231 {
4232 BFD_ASSERT (offset >= 2);
4233 offset -= 2;
4234 insn = bfd_get_16 (input_bfd, contents + offset + 0);
4235 }
4236
4237 BFD_ASSERT ((insn & 0xff00) == 0xd400);
4238 insn = bfd_get_16 (input_bfd, contents + offset + 2);
4239 BFD_ASSERT ((insn & 0xff00) == 0xc700);
4240 insn = bfd_get_16 (input_bfd, contents + offset + 4);
4241 BFD_ASSERT ((insn & 0xff00) == 0xd100);
4242 insn = bfd_get_16 (input_bfd, contents + offset + 6);
4243 BFD_ASSERT (insn == 0x310c);
4244 insn = bfd_get_16 (input_bfd, contents + offset + 8);
4245 BFD_ASSERT (insn == 0x410b);
4246 insn = bfd_get_16 (input_bfd, contents + offset + 10);
4247 BFD_ASSERT (insn == 0x34cc);
4248
4249 bfd_put_16 (output_bfd, 0x0012, contents + offset + 0);
4250 bfd_put_16 (output_bfd, 0x0009, contents + offset + 2);
4251 bfd_put_16 (output_bfd, 0x0009, contents + offset + 4);
4252 bfd_put_16 (output_bfd, 0x0009, contents + offset + 6);
4253 bfd_put_16 (output_bfd, 0x0009, contents + offset + 8);
4254 bfd_put_16 (output_bfd, 0x0009, contents + offset + 10);
4255
4256 continue;
4257 }
4258
4259 sgot = htab->sgot;
4260 if (sgot == NULL)
4261 abort ();
4262
4263 off = htab->tls_ldm_got.offset;
4264 if (off & 1)
4265 off &= ~1;
4266 else
4267 {
4268 Elf_Internal_Rela outrel;
4269 bfd_byte *loc;
4270
4271 srelgot = htab->srelgot;
4272 if (srelgot == NULL)
4273 abort ();
4274
4275 outrel.r_offset = (sgot->output_section->vma
4276 + sgot->output_offset + off);
4277 outrel.r_addend = 0;
4278 outrel.r_info = ELF32_R_INFO (0, R_SH_TLS_DTPMOD32);
4279 loc = srelgot->contents;
4280 loc += srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4281 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4282 htab->tls_ldm_got.offset |= 1;
4283 }
4284
4285 relocation = sgot->output_offset + off;
4286 addend = rel->r_addend;
4287
4288 goto final_link_relocate;
4289
4290 case R_SH_TLS_LDO_32:
4291 if (! info->shared)
4292 relocation = tpoff (info, relocation);
4293 else
4294 relocation -= dtpoff_base (info);
4295
4296 addend = rel->r_addend;
4297 goto final_link_relocate;
4298
4299 case R_SH_TLS_LE_32:
4300 {
4301 int indx;
4302 Elf_Internal_Rela outrel;
4303 bfd_byte *loc;
4304
4305 if (! info->shared)
4306 {
4307 relocation = tpoff (info, relocation);
4308 addend = rel->r_addend;
4309 goto final_link_relocate;
4310 }
4311
4312 if (sreloc == NULL)
4313 {
4314 const char *name;
4315
4316 name = (bfd_elf_string_from_elf_section
4317 (input_bfd,
4318 elf_elfheader (input_bfd)->e_shstrndx,
4319 elf_section_data (input_section)->rel_hdr.sh_name));
4320 if (name == NULL)
4321 return FALSE;
4322
4323 BFD_ASSERT (CONST_STRNEQ (name, ".rela")
4324 && strcmp (bfd_get_section_name (input_bfd,
4325 input_section),
4326 name + 5) == 0);
4327
4328 sreloc = bfd_get_section_by_name (dynobj, name);
4329 BFD_ASSERT (sreloc != NULL);
4330 }
4331
4332 if (h == NULL || h->dynindx == -1)
4333 indx = 0;
4334 else
4335 indx = h->dynindx;
4336
4337 outrel.r_offset = (input_section->output_section->vma
4338 + input_section->output_offset
4339 + rel->r_offset);
4340 outrel.r_info = ELF32_R_INFO (indx, R_SH_TLS_TPOFF32);
4341 if (indx == 0)
4342 outrel.r_addend = relocation - dtpoff_base (info);
4343 else
4344 outrel.r_addend = 0;
4345
4346 loc = sreloc->contents;
4347 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4348 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4349 continue;
4350 }
4351 }
4352
4353 relocation_done:
4354 if (r != bfd_reloc_ok)
4355 {
4356 switch (r)
4357 {
4358 default:
4359 case bfd_reloc_outofrange:
4360 abort ();
4361 case bfd_reloc_overflow:
4362 {
4363 const char *name;
4364
4365 if (h != NULL)
4366 name = NULL;
4367 else
4368 {
4369 name = (bfd_elf_string_from_elf_section
4370 (input_bfd, symtab_hdr->sh_link, sym->st_name));
4371 if (name == NULL)
4372 return FALSE;
4373 if (*name == '\0')
4374 name = bfd_section_name (input_bfd, sec);
4375 }
4376 if (! ((*info->callbacks->reloc_overflow)
4377 (info, (h ? &h->root : NULL), name, howto->name,
4378 (bfd_vma) 0, input_bfd, input_section,
4379 rel->r_offset)))
4380 return FALSE;
4381 }
4382 break;
4383 }
4384 }
4385 }
4386
4387 return TRUE;
4388 }
4389
4390 /* This is a version of bfd_generic_get_relocated_section_contents
4391 which uses sh_elf_relocate_section. */
4392
4393 static bfd_byte *
4394 sh_elf_get_relocated_section_contents (bfd *output_bfd,
4395 struct bfd_link_info *link_info,
4396 struct bfd_link_order *link_order,
4397 bfd_byte *data,
4398 bfd_boolean relocatable,
4399 asymbol **symbols)
4400 {
4401 Elf_Internal_Shdr *symtab_hdr;
4402 asection *input_section = link_order->u.indirect.section;
4403 bfd *input_bfd = input_section->owner;
4404 asection **sections = NULL;
4405 Elf_Internal_Rela *internal_relocs = NULL;
4406 Elf_Internal_Sym *isymbuf = NULL;
4407
4408 /* We only need to handle the case of relaxing, or of having a
4409 particular set of section contents, specially. */
4410 if (relocatable
4411 || elf_section_data (input_section)->this_hdr.contents == NULL)
4412 return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
4413 link_order, data,
4414 relocatable,
4415 symbols);
4416
4417 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4418
4419 memcpy (data, elf_section_data (input_section)->this_hdr.contents,
4420 (size_t) input_section->size);
4421
4422 if ((input_section->flags & SEC_RELOC) != 0
4423 && input_section->reloc_count > 0)
4424 {
4425 asection **secpp;
4426 Elf_Internal_Sym *isym, *isymend;
4427 bfd_size_type amt;
4428
4429 internal_relocs = (_bfd_elf_link_read_relocs
4430 (input_bfd, input_section, NULL,
4431 (Elf_Internal_Rela *) NULL, FALSE));
4432 if (internal_relocs == NULL)
4433 goto error_return;
4434
4435 if (symtab_hdr->sh_info != 0)
4436 {
4437 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
4438 if (isymbuf == NULL)
4439 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4440 symtab_hdr->sh_info, 0,
4441 NULL, NULL, NULL);
4442 if (isymbuf == NULL)
4443 goto error_return;
4444 }
4445
4446 amt = symtab_hdr->sh_info;
4447 amt *= sizeof (asection *);
4448 sections = (asection **) bfd_malloc (amt);
4449 if (sections == NULL && amt != 0)
4450 goto error_return;
4451
4452 isymend = isymbuf + symtab_hdr->sh_info;
4453 for (isym = isymbuf, secpp = sections; isym < isymend; ++isym, ++secpp)
4454 {
4455 asection *isec;
4456
4457 if (isym->st_shndx == SHN_UNDEF)
4458 isec = bfd_und_section_ptr;
4459 else if (isym->st_shndx == SHN_ABS)
4460 isec = bfd_abs_section_ptr;
4461 else if (isym->st_shndx == SHN_COMMON)
4462 isec = bfd_com_section_ptr;
4463 else
4464 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
4465
4466 *secpp = isec;
4467 }
4468
4469 if (! sh_elf_relocate_section (output_bfd, link_info, input_bfd,
4470 input_section, data, internal_relocs,
4471 isymbuf, sections))
4472 goto error_return;
4473
4474 if (sections != NULL)
4475 free (sections);
4476 if (isymbuf != NULL
4477 && symtab_hdr->contents != (unsigned char *) isymbuf)
4478 free (isymbuf);
4479 if (elf_section_data (input_section)->relocs != internal_relocs)
4480 free (internal_relocs);
4481 }
4482
4483 return data;
4484
4485 error_return:
4486 if (sections != NULL)
4487 free (sections);
4488 if (isymbuf != NULL
4489 && symtab_hdr->contents != (unsigned char *) isymbuf)
4490 free (isymbuf);
4491 if (internal_relocs != NULL
4492 && elf_section_data (input_section)->relocs != internal_relocs)
4493 free (internal_relocs);
4494 return NULL;
4495 }
4496
4497 /* Return the base VMA address which should be subtracted from real addresses
4498 when resolving @dtpoff relocation.
4499 This is PT_TLS segment p_vaddr. */
4500
4501 static bfd_vma
4502 dtpoff_base (struct bfd_link_info *info)
4503 {
4504 /* If tls_sec is NULL, we should have signalled an error already. */
4505 if (elf_hash_table (info)->tls_sec == NULL)
4506 return 0;
4507 return elf_hash_table (info)->tls_sec->vma;
4508 }
4509
4510 /* Return the relocation value for R_SH_TLS_TPOFF32.. */
4511
4512 static bfd_vma
4513 tpoff (struct bfd_link_info *info, bfd_vma address)
4514 {
4515 /* If tls_sec is NULL, we should have signalled an error already. */
4516 if (elf_hash_table (info)->tls_sec == NULL)
4517 return 0;
4518 /* SH TLS ABI is variant I and static TLS block start just after tcbhead
4519 structure which has 2 pointer fields. */
4520 return (address - elf_hash_table (info)->tls_sec->vma
4521 + align_power ((bfd_vma) 8,
4522 elf_hash_table (info)->tls_sec->alignment_power));
4523 }
4524
4525 static asection *
4526 sh_elf_gc_mark_hook (asection *sec,
4527 struct bfd_link_info *info,
4528 Elf_Internal_Rela *rel,
4529 struct elf_link_hash_entry *h,
4530 Elf_Internal_Sym *sym)
4531 {
4532 if (h != NULL)
4533 switch (ELF32_R_TYPE (rel->r_info))
4534 {
4535 case R_SH_GNU_VTINHERIT:
4536 case R_SH_GNU_VTENTRY:
4537 return NULL;
4538 }
4539
4540 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
4541 }
4542
4543 /* Update the got entry reference counts for the section being removed. */
4544
4545 static bfd_boolean
4546 sh_elf_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
4547 asection *sec, const Elf_Internal_Rela *relocs)
4548 {
4549 Elf_Internal_Shdr *symtab_hdr;
4550 struct elf_link_hash_entry **sym_hashes;
4551 bfd_signed_vma *local_got_refcounts;
4552 const Elf_Internal_Rela *rel, *relend;
4553
4554 elf_section_data (sec)->local_dynrel = NULL;
4555
4556 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4557 sym_hashes = elf_sym_hashes (abfd);
4558 local_got_refcounts = elf_local_got_refcounts (abfd);
4559
4560 relend = relocs + sec->reloc_count;
4561 for (rel = relocs; rel < relend; rel++)
4562 {
4563 unsigned long r_symndx;
4564 unsigned int r_type;
4565 struct elf_link_hash_entry *h = NULL;
4566 #ifdef INCLUDE_SHMEDIA
4567 int seen_stt_datalabel = 0;
4568 #endif
4569
4570 r_symndx = ELF32_R_SYM (rel->r_info);
4571 if (r_symndx >= symtab_hdr->sh_info)
4572 {
4573 struct elf_sh_link_hash_entry *eh;
4574 struct elf_sh_dyn_relocs **pp;
4575 struct elf_sh_dyn_relocs *p;
4576
4577 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4578 while (h->root.type == bfd_link_hash_indirect
4579 || h->root.type == bfd_link_hash_warning)
4580 {
4581 #ifdef INCLUDE_SHMEDIA
4582 seen_stt_datalabel |= h->type == STT_DATALABEL;
4583 #endif
4584 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4585 }
4586 eh = (struct elf_sh_link_hash_entry *) h;
4587 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
4588 if (p->sec == sec)
4589 {
4590 /* Everything must go for SEC. */
4591 *pp = p->next;
4592 break;
4593 }
4594 }
4595
4596 r_type = ELF32_R_TYPE (rel->r_info);
4597 switch (sh_elf_optimized_tls_reloc (info, r_type, h != NULL))
4598 {
4599 case R_SH_TLS_LD_32:
4600 if (sh_elf_hash_table (info)->tls_ldm_got.refcount > 0)
4601 sh_elf_hash_table (info)->tls_ldm_got.refcount -= 1;
4602 break;
4603
4604 case R_SH_GOT32:
4605 case R_SH_GOTOFF:
4606 case R_SH_GOTPC:
4607 #ifdef INCLUDE_SHMEDIA
4608 case R_SH_GOT_LOW16:
4609 case R_SH_GOT_MEDLOW16:
4610 case R_SH_GOT_MEDHI16:
4611 case R_SH_GOT_HI16:
4612 case R_SH_GOT10BY4:
4613 case R_SH_GOT10BY8:
4614 case R_SH_GOTOFF_LOW16:
4615 case R_SH_GOTOFF_MEDLOW16:
4616 case R_SH_GOTOFF_MEDHI16:
4617 case R_SH_GOTOFF_HI16:
4618 case R_SH_GOTPC_LOW16:
4619 case R_SH_GOTPC_MEDLOW16:
4620 case R_SH_GOTPC_MEDHI16:
4621 case R_SH_GOTPC_HI16:
4622 #endif
4623 case R_SH_TLS_GD_32:
4624 case R_SH_TLS_IE_32:
4625 if (h != NULL)
4626 {
4627 #ifdef INCLUDE_SHMEDIA
4628 if (seen_stt_datalabel)
4629 {
4630 struct elf_sh_link_hash_entry *eh;
4631 eh = (struct elf_sh_link_hash_entry *) h;
4632 if (eh->datalabel_got.refcount > 0)
4633 eh->datalabel_got.refcount -= 1;
4634 }
4635 else
4636 #endif
4637 if (h->got.refcount > 0)
4638 h->got.refcount -= 1;
4639 }
4640 else if (local_got_refcounts != NULL)
4641 {
4642 #ifdef INCLUDE_SHMEDIA
4643 if (rel->r_addend & 1)
4644 {
4645 if (local_got_refcounts[symtab_hdr->sh_info + r_symndx] > 0)
4646 local_got_refcounts[symtab_hdr->sh_info + r_symndx] -= 1;
4647 }
4648 else
4649 #endif
4650 if (local_got_refcounts[r_symndx] > 0)
4651 local_got_refcounts[r_symndx] -= 1;
4652 }
4653 break;
4654
4655 case R_SH_DIR32:
4656 case R_SH_REL32:
4657 if (info->shared)
4658 break;
4659 /* Fall thru */
4660
4661 case R_SH_PLT32:
4662 #ifdef INCLUDE_SHMEDIA
4663 case R_SH_PLT_LOW16:
4664 case R_SH_PLT_MEDLOW16:
4665 case R_SH_PLT_MEDHI16:
4666 case R_SH_PLT_HI16:
4667 #endif
4668 if (h != NULL)
4669 {
4670 if (h->plt.refcount > 0)
4671 h->plt.refcount -= 1;
4672 }
4673 break;
4674
4675 case R_SH_GOTPLT32:
4676 #ifdef INCLUDE_SHMEDIA
4677 case R_SH_GOTPLT_LOW16:
4678 case R_SH_GOTPLT_MEDLOW16:
4679 case R_SH_GOTPLT_MEDHI16:
4680 case R_SH_GOTPLT_HI16:
4681 case R_SH_GOTPLT10BY4:
4682 case R_SH_GOTPLT10BY8:
4683 #endif
4684 if (h != NULL)
4685 {
4686 struct elf_sh_link_hash_entry *eh;
4687 eh = (struct elf_sh_link_hash_entry *) h;
4688 if (eh->gotplt_refcount > 0)
4689 {
4690 eh->gotplt_refcount -= 1;
4691 if (h->plt.refcount > 0)
4692 h->plt.refcount -= 1;
4693 }
4694 #ifdef INCLUDE_SHMEDIA
4695 else if (seen_stt_datalabel)
4696 {
4697 if (eh->datalabel_got.refcount > 0)
4698 eh->datalabel_got.refcount -= 1;
4699 }
4700 #endif
4701 else if (h->got.refcount > 0)
4702 h->got.refcount -= 1;
4703 }
4704 else if (local_got_refcounts != NULL)
4705 {
4706 #ifdef INCLUDE_SHMEDIA
4707 if (rel->r_addend & 1)
4708 {
4709 if (local_got_refcounts[symtab_hdr->sh_info + r_symndx] > 0)
4710 local_got_refcounts[symtab_hdr->sh_info + r_symndx] -= 1;
4711 }
4712 else
4713 #endif
4714 if (local_got_refcounts[r_symndx] > 0)
4715 local_got_refcounts[r_symndx] -= 1;
4716 }
4717 break;
4718
4719 default:
4720 break;
4721 }
4722 }
4723
4724 return TRUE;
4725 }
4726
4727 /* Copy the extra info we tack onto an elf_link_hash_entry. */
4728
4729 static void
4730 sh_elf_copy_indirect_symbol (struct bfd_link_info *info,
4731 struct elf_link_hash_entry *dir,
4732 struct elf_link_hash_entry *ind)
4733 {
4734 struct elf_sh_link_hash_entry *edir, *eind;
4735
4736 edir = (struct elf_sh_link_hash_entry *) dir;
4737 eind = (struct elf_sh_link_hash_entry *) ind;
4738
4739 if (eind->dyn_relocs != NULL)
4740 {
4741 if (edir->dyn_relocs != NULL)
4742 {
4743 struct elf_sh_dyn_relocs **pp;
4744 struct elf_sh_dyn_relocs *p;
4745
4746 /* Add reloc counts against the indirect sym to the direct sym
4747 list. Merge any entries against the same section. */
4748 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
4749 {
4750 struct elf_sh_dyn_relocs *q;
4751
4752 for (q = edir->dyn_relocs; q != NULL; q = q->next)
4753 if (q->sec == p->sec)
4754 {
4755 q->pc_count += p->pc_count;
4756 q->count += p->count;
4757 *pp = p->next;
4758 break;
4759 }
4760 if (q == NULL)
4761 pp = &p->next;
4762 }
4763 *pp = edir->dyn_relocs;
4764 }
4765
4766 edir->dyn_relocs = eind->dyn_relocs;
4767 eind->dyn_relocs = NULL;
4768 }
4769 edir->gotplt_refcount = eind->gotplt_refcount;
4770 eind->gotplt_refcount = 0;
4771 #ifdef INCLUDE_SHMEDIA
4772 edir->datalabel_got.refcount += eind->datalabel_got.refcount;
4773 eind->datalabel_got.refcount = 0;
4774 #endif
4775
4776 if (ind->root.type == bfd_link_hash_indirect
4777 && dir->got.refcount <= 0)
4778 {
4779 edir->tls_type = eind->tls_type;
4780 eind->tls_type = GOT_UNKNOWN;
4781 }
4782
4783 if (ind->root.type != bfd_link_hash_indirect
4784 && dir->dynamic_adjusted)
4785 {
4786 /* If called to transfer flags for a weakdef during processing
4787 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
4788 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
4789 dir->ref_dynamic |= ind->ref_dynamic;
4790 dir->ref_regular |= ind->ref_regular;
4791 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
4792 dir->needs_plt |= ind->needs_plt;
4793 }
4794 else
4795 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
4796 }
4797
4798 static int
4799 sh_elf_optimized_tls_reloc (struct bfd_link_info *info, int r_type,
4800 int is_local)
4801 {
4802 if (info->shared)
4803 return r_type;
4804
4805 switch (r_type)
4806 {
4807 case R_SH_TLS_GD_32:
4808 case R_SH_TLS_IE_32:
4809 if (is_local)
4810 return R_SH_TLS_LE_32;
4811 return R_SH_TLS_IE_32;
4812 case R_SH_TLS_LD_32:
4813 return R_SH_TLS_LE_32;
4814 }
4815
4816 return r_type;
4817 }
4818
4819 /* Look through the relocs for a section during the first phase.
4820 Since we don't do .gots or .plts, we just need to consider the
4821 virtual table relocs for gc. */
4822
4823 static bfd_boolean
4824 sh_elf_check_relocs (bfd *abfd, struct bfd_link_info *info, asection *sec,
4825 const Elf_Internal_Rela *relocs)
4826 {
4827 Elf_Internal_Shdr *symtab_hdr;
4828 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
4829 struct elf_sh_link_hash_table *htab;
4830 const Elf_Internal_Rela *rel;
4831 const Elf_Internal_Rela *rel_end;
4832 bfd_vma *local_got_offsets;
4833 asection *sgot;
4834 asection *srelgot;
4835 asection *sreloc;
4836 unsigned int r_type;
4837 int tls_type, old_tls_type;
4838
4839 sgot = NULL;
4840 srelgot = NULL;
4841 sreloc = NULL;
4842
4843 if (info->relocatable)
4844 return TRUE;
4845
4846 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4847 sym_hashes = elf_sym_hashes (abfd);
4848 sym_hashes_end = sym_hashes + symtab_hdr->sh_size/sizeof (Elf32_External_Sym);
4849 if (!elf_bad_symtab (abfd))
4850 sym_hashes_end -= symtab_hdr->sh_info;
4851
4852 htab = sh_elf_hash_table (info);
4853 local_got_offsets = elf_local_got_offsets (abfd);
4854
4855 rel_end = relocs + sec->reloc_count;
4856 for (rel = relocs; rel < rel_end; rel++)
4857 {
4858 struct elf_link_hash_entry *h;
4859 unsigned long r_symndx;
4860 #ifdef INCLUDE_SHMEDIA
4861 int seen_stt_datalabel = 0;
4862 #endif
4863
4864 r_symndx = ELF32_R_SYM (rel->r_info);
4865 r_type = ELF32_R_TYPE (rel->r_info);
4866
4867 if (r_symndx < symtab_hdr->sh_info)
4868 h = NULL;
4869 else
4870 {
4871 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4872 while (h->root.type == bfd_link_hash_indirect
4873 || h->root.type == bfd_link_hash_warning)
4874 {
4875 #ifdef INCLUDE_SHMEDIA
4876 seen_stt_datalabel |= h->type == STT_DATALABEL;
4877 #endif
4878 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4879 }
4880 }
4881
4882 r_type = sh_elf_optimized_tls_reloc (info, r_type, h == NULL);
4883 if (! info->shared
4884 && r_type == R_SH_TLS_IE_32
4885 && h != NULL
4886 && h->root.type != bfd_link_hash_undefined
4887 && h->root.type != bfd_link_hash_undefweak
4888 && (h->dynindx == -1
4889 || h->def_regular))
4890 r_type = R_SH_TLS_LE_32;
4891
4892 /* Some relocs require a global offset table. */
4893 if (htab->sgot == NULL)
4894 {
4895 switch (r_type)
4896 {
4897 case R_SH_GOTPLT32:
4898 case R_SH_GOT32:
4899 case R_SH_GOTOFF:
4900 case R_SH_GOTPC:
4901 #ifdef INCLUDE_SHMEDIA
4902 case R_SH_GOTPLT_LOW16:
4903 case R_SH_GOTPLT_MEDLOW16:
4904 case R_SH_GOTPLT_MEDHI16:
4905 case R_SH_GOTPLT_HI16:
4906 case R_SH_GOTPLT10BY4:
4907 case R_SH_GOTPLT10BY8:
4908 case R_SH_GOT_LOW16:
4909 case R_SH_GOT_MEDLOW16:
4910 case R_SH_GOT_MEDHI16:
4911 case R_SH_GOT_HI16:
4912 case R_SH_GOT10BY4:
4913 case R_SH_GOT10BY8:
4914 case R_SH_GOTOFF_LOW16:
4915 case R_SH_GOTOFF_MEDLOW16:
4916 case R_SH_GOTOFF_MEDHI16:
4917 case R_SH_GOTOFF_HI16:
4918 case R_SH_GOTPC_LOW16:
4919 case R_SH_GOTPC_MEDLOW16:
4920 case R_SH_GOTPC_MEDHI16:
4921 case R_SH_GOTPC_HI16:
4922 #endif
4923 case R_SH_TLS_GD_32:
4924 case R_SH_TLS_LD_32:
4925 case R_SH_TLS_IE_32:
4926 if (htab->sgot == NULL)
4927 {
4928 if (htab->root.dynobj == NULL)
4929 htab->root.dynobj = abfd;
4930 if (!create_got_section (htab->root.dynobj, info))
4931 return FALSE;
4932 }
4933 break;
4934
4935 default:
4936 break;
4937 }
4938 }
4939
4940 switch (r_type)
4941 {
4942 /* This relocation describes the C++ object vtable hierarchy.
4943 Reconstruct it for later use during GC. */
4944 case R_SH_GNU_VTINHERIT:
4945 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
4946 return FALSE;
4947 break;
4948
4949 /* This relocation describes which C++ vtable entries are actually
4950 used. Record for later use during GC. */
4951 case R_SH_GNU_VTENTRY:
4952 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
4953 return FALSE;
4954 break;
4955
4956 case R_SH_TLS_IE_32:
4957 if (info->shared)
4958 info->flags |= DF_STATIC_TLS;
4959
4960 /* FALLTHROUGH */
4961 force_got:
4962 case R_SH_TLS_GD_32:
4963 case R_SH_GOT32:
4964 #ifdef INCLUDE_SHMEDIA
4965 case R_SH_GOT_LOW16:
4966 case R_SH_GOT_MEDLOW16:
4967 case R_SH_GOT_MEDHI16:
4968 case R_SH_GOT_HI16:
4969 case R_SH_GOT10BY4:
4970 case R_SH_GOT10BY8:
4971 #endif
4972 switch (r_type)
4973 {
4974 default:
4975 tls_type = GOT_NORMAL;
4976 break;
4977 case R_SH_TLS_GD_32:
4978 tls_type = GOT_TLS_GD;
4979 break;
4980 case R_SH_TLS_IE_32:
4981 tls_type = GOT_TLS_IE;
4982 break;
4983 }
4984
4985 if (h != NULL)
4986 {
4987 #ifdef INCLUDE_SHMEDIA
4988 if (seen_stt_datalabel)
4989 {
4990 struct elf_sh_link_hash_entry *eh
4991 = (struct elf_sh_link_hash_entry *) h;
4992
4993 eh->datalabel_got.refcount += 1;
4994 }
4995 else
4996 #endif
4997 h->got.refcount += 1;
4998 old_tls_type = sh_elf_hash_entry (h)->tls_type;
4999 }
5000 else
5001 {
5002 bfd_signed_vma *local_got_refcounts;
5003
5004 /* This is a global offset table entry for a local
5005 symbol. */
5006 local_got_refcounts = elf_local_got_refcounts (abfd);
5007 if (local_got_refcounts == NULL)
5008 {
5009 bfd_size_type size;
5010
5011 size = symtab_hdr->sh_info;
5012 size *= sizeof (bfd_signed_vma);
5013 #ifdef INCLUDE_SHMEDIA
5014 /* Reserve space for both the datalabel and
5015 codelabel local GOT offsets. */
5016 size *= 2;
5017 #endif
5018 size += symtab_hdr->sh_info;
5019 local_got_refcounts = ((bfd_signed_vma *)
5020 bfd_zalloc (abfd, size));
5021 if (local_got_refcounts == NULL)
5022 return FALSE;
5023 elf_local_got_refcounts (abfd) = local_got_refcounts;
5024 #ifdef INCLUDE_SHMEDIA
5025 /* Take care of both the datalabel and codelabel local
5026 GOT offsets. */
5027 sh_elf_local_got_tls_type (abfd)
5028 = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
5029 #else
5030 sh_elf_local_got_tls_type (abfd)
5031 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
5032 #endif
5033 }
5034 #ifdef INCLUDE_SHMEDIA
5035 if (rel->r_addend & 1)
5036 local_got_refcounts[symtab_hdr->sh_info + r_symndx] += 1;
5037 else
5038 #endif
5039 local_got_refcounts[r_symndx] += 1;
5040 old_tls_type = sh_elf_local_got_tls_type (abfd) [r_symndx];
5041 }
5042
5043 /* If a TLS symbol is accessed using IE at least once,
5044 there is no point to use dynamic model for it. */
5045 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
5046 && (old_tls_type != GOT_TLS_GD || tls_type != GOT_TLS_IE))
5047 {
5048 if (old_tls_type == GOT_TLS_IE && tls_type == GOT_TLS_GD)
5049 tls_type = GOT_TLS_IE;
5050 else
5051 {
5052 (*_bfd_error_handler)
5053 (_("%B: `%s' accessed both as normal and thread local symbol"),
5054 abfd, h->root.root.string);
5055 return FALSE;
5056 }
5057 }
5058
5059 if (old_tls_type != tls_type)
5060 {
5061 if (h != NULL)
5062 sh_elf_hash_entry (h)->tls_type = tls_type;
5063 else
5064 sh_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
5065 }
5066
5067 break;
5068
5069 case R_SH_TLS_LD_32:
5070 sh_elf_hash_table(info)->tls_ldm_got.refcount += 1;
5071 break;
5072
5073 case R_SH_GOTPLT32:
5074 #ifdef INCLUDE_SHMEDIA
5075 case R_SH_GOTPLT_LOW16:
5076 case R_SH_GOTPLT_MEDLOW16:
5077 case R_SH_GOTPLT_MEDHI16:
5078 case R_SH_GOTPLT_HI16:
5079 case R_SH_GOTPLT10BY4:
5080 case R_SH_GOTPLT10BY8:
5081 #endif
5082 /* If this is a local symbol, we resolve it directly without
5083 creating a procedure linkage table entry. */
5084
5085 if (h == NULL
5086 || h->forced_local
5087 || ! info->shared
5088 || info->symbolic
5089 || h->dynindx == -1)
5090 goto force_got;
5091
5092 h->needs_plt = 1;
5093 h->plt.refcount += 1;
5094 ((struct elf_sh_link_hash_entry *) h)->gotplt_refcount += 1;
5095
5096 break;
5097
5098 case R_SH_PLT32:
5099 #ifdef INCLUDE_SHMEDIA
5100 case R_SH_PLT_LOW16:
5101 case R_SH_PLT_MEDLOW16:
5102 case R_SH_PLT_MEDHI16:
5103 case R_SH_PLT_HI16:
5104 #endif
5105 /* This symbol requires a procedure linkage table entry. We
5106 actually build the entry in adjust_dynamic_symbol,
5107 because this might be a case of linking PIC code which is
5108 never referenced by a dynamic object, in which case we
5109 don't need to generate a procedure linkage table entry
5110 after all. */
5111
5112 /* If this is a local symbol, we resolve it directly without
5113 creating a procedure linkage table entry. */
5114 if (h == NULL)
5115 continue;
5116
5117 if (h->forced_local)
5118 break;
5119
5120 h->needs_plt = 1;
5121 h->plt.refcount += 1;
5122 break;
5123
5124 case R_SH_DIR32:
5125 case R_SH_REL32:
5126 #ifdef INCLUDE_SHMEDIA
5127 case R_SH_IMM_LOW16_PCREL:
5128 case R_SH_IMM_MEDLOW16_PCREL:
5129 case R_SH_IMM_MEDHI16_PCREL:
5130 case R_SH_IMM_HI16_PCREL:
5131 #endif
5132 if (h != NULL && ! info->shared)
5133 {
5134 h->non_got_ref = 1;
5135 h->plt.refcount += 1;
5136 }
5137
5138 /* If we are creating a shared library, and this is a reloc
5139 against a global symbol, or a non PC relative reloc
5140 against a local symbol, then we need to copy the reloc
5141 into the shared library. However, if we are linking with
5142 -Bsymbolic, we do not need to copy a reloc against a
5143 global symbol which is defined in an object we are
5144 including in the link (i.e., DEF_REGULAR is set). At
5145 this point we have not seen all the input files, so it is
5146 possible that DEF_REGULAR is not set now but will be set
5147 later (it is never cleared). We account for that
5148 possibility below by storing information in the
5149 dyn_relocs field of the hash table entry. A similar
5150 situation occurs when creating shared libraries and symbol
5151 visibility changes render the symbol local.
5152
5153 If on the other hand, we are creating an executable, we
5154 may need to keep relocations for symbols satisfied by a
5155 dynamic library if we manage to avoid copy relocs for the
5156 symbol. */
5157 if ((info->shared
5158 && (sec->flags & SEC_ALLOC) != 0
5159 && (r_type != R_SH_REL32
5160 || (h != NULL
5161 && (! info->symbolic
5162 || h->root.type == bfd_link_hash_defweak
5163 || !h->def_regular))))
5164 || (! info->shared
5165 && (sec->flags & SEC_ALLOC) != 0
5166 && h != NULL
5167 && (h->root.type == bfd_link_hash_defweak
5168 || !h->def_regular)))
5169 {
5170 struct elf_sh_dyn_relocs *p;
5171 struct elf_sh_dyn_relocs **head;
5172
5173 if (htab->root.dynobj == NULL)
5174 htab->root.dynobj = abfd;
5175
5176 /* When creating a shared object, we must copy these
5177 reloc types into the output file. We create a reloc
5178 section in dynobj and make room for this reloc. */
5179 if (sreloc == NULL)
5180 {
5181 const char *name;
5182
5183 name = (bfd_elf_string_from_elf_section
5184 (abfd,
5185 elf_elfheader (abfd)->e_shstrndx,
5186 elf_section_data (sec)->rel_hdr.sh_name));
5187 if (name == NULL)
5188 return FALSE;
5189
5190 BFD_ASSERT (CONST_STRNEQ (name, ".rela")
5191 && strcmp (bfd_get_section_name (abfd, sec),
5192 name + 5) == 0);
5193
5194 sreloc = bfd_get_section_by_name (htab->root.dynobj, name);
5195 if (sreloc == NULL)
5196 {
5197 flagword flags;
5198
5199 flags = (SEC_HAS_CONTENTS | SEC_READONLY
5200 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
5201 if ((sec->flags & SEC_ALLOC) != 0)
5202 flags |= SEC_ALLOC | SEC_LOAD;
5203 sreloc = bfd_make_section_with_flags (htab->root.dynobj,
5204 name,
5205 flags);
5206 if (sreloc == NULL
5207 || ! bfd_set_section_alignment (htab->root.dynobj,
5208 sreloc, 2))
5209 return FALSE;
5210 }
5211 elf_section_data (sec)->sreloc = sreloc;
5212 }
5213
5214 /* If this is a global symbol, we count the number of
5215 relocations we need for this symbol. */
5216 if (h != NULL)
5217 head = &((struct elf_sh_link_hash_entry *) h)->dyn_relocs;
5218 else
5219 {
5220 asection *s;
5221 void *vpp;
5222
5223 /* Track dynamic relocs needed for local syms too. */
5224 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
5225 sec, r_symndx);
5226 if (s == NULL)
5227 return FALSE;
5228
5229 vpp = &elf_section_data (s)->local_dynrel;
5230 head = (struct elf_sh_dyn_relocs **) vpp;
5231 }
5232
5233 p = *head;
5234 if (p == NULL || p->sec != sec)
5235 {
5236 bfd_size_type amt = sizeof (*p);
5237 p = bfd_alloc (htab->root.dynobj, amt);
5238 if (p == NULL)
5239 return FALSE;
5240 p->next = *head;
5241 *head = p;
5242 p->sec = sec;
5243 p->count = 0;
5244 p->pc_count = 0;
5245 }
5246
5247 p->count += 1;
5248 if (r_type == R_SH_REL32
5249 #ifdef INCLUDE_SHMEDIA
5250 || r_type == R_SH_IMM_LOW16_PCREL
5251 || r_type == R_SH_IMM_MEDLOW16_PCREL
5252 || r_type == R_SH_IMM_MEDHI16_PCREL
5253 || r_type == R_SH_IMM_HI16_PCREL
5254 #endif
5255 )
5256 p->pc_count += 1;
5257 }
5258
5259 break;
5260
5261 case R_SH_TLS_LE_32:
5262 if (info->shared)
5263 {
5264 (*_bfd_error_handler)
5265 (_("%B: TLS local exec code cannot be linked into shared objects"),
5266 abfd);
5267 return FALSE;
5268 }
5269
5270 break;
5271
5272 case R_SH_TLS_LDO_32:
5273 /* Nothing to do. */
5274 break;
5275
5276 default:
5277 break;
5278 }
5279 }
5280
5281 return TRUE;
5282 }
5283
5284 #ifndef sh_elf_set_mach_from_flags
5285 static unsigned int sh_ef_bfd_table[] = { EF_SH_BFD_TABLE };
5286
5287 static bfd_boolean
5288 sh_elf_set_mach_from_flags (bfd *abfd)
5289 {
5290 flagword flags = elf_elfheader (abfd)->e_flags & EF_SH_MACH_MASK;
5291
5292 if (flags >= sizeof(sh_ef_bfd_table))
5293 return FALSE;
5294
5295 if (sh_ef_bfd_table[flags] == 0)
5296 return FALSE;
5297
5298 bfd_default_set_arch_mach (abfd, bfd_arch_sh, sh_ef_bfd_table[flags]);
5299
5300 return TRUE;
5301 }
5302
5303
5304 /* Reverse table lookup for sh_ef_bfd_table[].
5305 Given a bfd MACH value from archures.c
5306 return the equivalent ELF flags from the table.
5307 Return -1 if no match is found. */
5308
5309 int
5310 sh_elf_get_flags_from_mach (unsigned long mach)
5311 {
5312 int i = ARRAY_SIZE (sh_ef_bfd_table) - 1;
5313
5314 for (; i>0; i--)
5315 if (sh_ef_bfd_table[i] == mach)
5316 return i;
5317
5318 /* shouldn't get here */
5319 BFD_FAIL();
5320
5321 return -1;
5322 }
5323 #endif /* not sh_elf_set_mach_from_flags */
5324
5325 #ifndef sh_elf_set_private_flags
5326 /* Function to keep SH specific file flags. */
5327
5328 static bfd_boolean
5329 sh_elf_set_private_flags (bfd *abfd, flagword flags)
5330 {
5331 BFD_ASSERT (! elf_flags_init (abfd)
5332 || elf_elfheader (abfd)->e_flags == flags);
5333
5334 elf_elfheader (abfd)->e_flags = flags;
5335 elf_flags_init (abfd) = TRUE;
5336 return sh_elf_set_mach_from_flags (abfd);
5337 }
5338 #endif /* not sh_elf_set_private_flags */
5339
5340 #ifndef sh_elf_copy_private_data
5341 /* Copy backend specific data from one object module to another */
5342
5343 static bfd_boolean
5344 sh_elf_copy_private_data (bfd * ibfd, bfd * obfd)
5345 {
5346 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5347 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5348 return TRUE;
5349
5350 return sh_elf_set_private_flags (obfd, elf_elfheader (ibfd)->e_flags);
5351 }
5352 #endif /* not sh_elf_copy_private_data */
5353
5354 #ifndef sh_elf_merge_private_data
5355
5356 /* This function returns the ELF architecture number that
5357 corresponds to the given arch_sh* flags. */
5358
5359 int
5360 sh_find_elf_flags (unsigned int arch_set)
5361 {
5362 extern unsigned long sh_get_bfd_mach_from_arch_set (unsigned int);
5363 unsigned long bfd_mach = sh_get_bfd_mach_from_arch_set (arch_set);
5364
5365 return sh_elf_get_flags_from_mach (bfd_mach);
5366 }
5367
5368 /* This routine initialises the elf flags when required and
5369 calls sh_merge_bfd_arch() to check dsp/fpu compatibility. */
5370
5371 static bfd_boolean
5372 sh_elf_merge_private_data (bfd *ibfd, bfd *obfd)
5373 {
5374 extern bfd_boolean sh_merge_bfd_arch (bfd *, bfd *);
5375
5376 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5377 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5378 return TRUE;
5379
5380 if (! elf_flags_init (obfd))
5381 {
5382 /* This happens when ld starts out with a 'blank' output file. */
5383 elf_flags_init (obfd) = TRUE;
5384 elf_elfheader (obfd)->e_flags = EF_SH1;
5385 sh_elf_set_mach_from_flags (obfd);
5386 }
5387
5388 if (! sh_merge_bfd_arch (ibfd, obfd))
5389 {
5390 _bfd_error_handler ("%B: uses instructions which are incompatible "
5391 "with instructions used in previous modules",
5392 ibfd);
5393 bfd_set_error (bfd_error_bad_value);
5394 return FALSE;
5395 }
5396
5397 elf_elfheader (obfd)->e_flags =
5398 sh_elf_get_flags_from_mach (bfd_get_mach (obfd));
5399
5400 return TRUE;
5401 }
5402 #endif /* not sh_elf_merge_private_data */
5403
5404 /* Override the generic function because we need to store sh_elf_obj_tdata
5405 as the specific tdata. We set also the machine architecture from flags
5406 here. */
5407
5408 static bfd_boolean
5409 sh_elf_object_p (bfd *abfd)
5410 {
5411 return sh_elf_set_mach_from_flags (abfd);
5412 }
5413
5414 /* Finish up dynamic symbol handling. We set the contents of various
5415 dynamic sections here. */
5416
5417 static bfd_boolean
5418 sh_elf_finish_dynamic_symbol (bfd *output_bfd, struct bfd_link_info *info,
5419 struct elf_link_hash_entry *h,
5420 Elf_Internal_Sym *sym)
5421 {
5422 struct elf_sh_link_hash_table *htab;
5423
5424 htab = sh_elf_hash_table (info);
5425
5426 if (h->plt.offset != (bfd_vma) -1)
5427 {
5428 asection *splt;
5429 asection *sgot;
5430 asection *srel;
5431
5432 bfd_vma plt_index;
5433 bfd_vma got_offset;
5434 Elf_Internal_Rela rel;
5435 bfd_byte *loc;
5436
5437 /* This symbol has an entry in the procedure linkage table. Set
5438 it up. */
5439
5440 BFD_ASSERT (h->dynindx != -1);
5441
5442 splt = htab->splt;
5443 sgot = htab->sgotplt;
5444 srel = htab->srelplt;
5445 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
5446
5447 /* Get the index in the procedure linkage table which
5448 corresponds to this symbol. This is the index of this symbol
5449 in all the symbols for which we are making plt entries. The
5450 first entry in the procedure linkage table is reserved. */
5451 plt_index = get_plt_index (htab->plt_info, h->plt.offset);
5452
5453 /* Get the offset into the .got table of the entry that
5454 corresponds to this function. Each .got entry is 4 bytes.
5455 The first three are reserved. */
5456 got_offset = (plt_index + 3) * 4;
5457
5458 #ifdef GOT_BIAS
5459 if (info->shared)
5460 got_offset -= GOT_BIAS;
5461 #endif
5462
5463 /* Fill in the entry in the procedure linkage table. */
5464 memcpy (splt->contents + h->plt.offset,
5465 htab->plt_info->symbol_entry,
5466 htab->plt_info->symbol_entry_size);
5467
5468 if (info->shared)
5469 install_plt_field (output_bfd, FALSE, got_offset,
5470 (splt->contents
5471 + h->plt.offset
5472 + htab->plt_info->symbol_fields.got_entry));
5473 else
5474 {
5475 install_plt_field (output_bfd, FALSE,
5476 (sgot->output_section->vma
5477 + sgot->output_offset
5478 + got_offset),
5479 (splt->contents
5480 + h->plt.offset
5481 + htab->plt_info->symbol_fields.got_entry));
5482 if (htab->vxworks_p)
5483 {
5484 unsigned int reachable_plts, plts_per_4k;
5485 int distance;
5486
5487 /* Divide the PLT into groups. The first group contains
5488 REACHABLE_PLTS entries and the other groups contain
5489 PLTS_PER_4K entries. Entries in the first group can
5490 branch directly to .plt; those in later groups branch
5491 to the last element of the previous group. */
5492 /* ??? It would be better to create multiple copies of
5493 the common resolver stub. */
5494 reachable_plts = ((4096
5495 - htab->plt_info->plt0_entry_size
5496 - (htab->plt_info->symbol_fields.plt + 4))
5497 / htab->plt_info->symbol_entry_size) + 1;
5498 plts_per_4k = (4096 / htab->plt_info->symbol_entry_size);
5499 if (plt_index < reachable_plts)
5500 distance = -(h->plt.offset
5501 + htab->plt_info->symbol_fields.plt);
5502 else
5503 distance = -(((plt_index - reachable_plts) % plts_per_4k + 1)
5504 * htab->plt_info->symbol_entry_size);
5505
5506 /* Install the 'bra' with this offset. */
5507 bfd_put_16 (output_bfd,
5508 0xa000 | (0x0fff & ((distance - 4) / 2)),
5509 (splt->contents
5510 + h->plt.offset
5511 + htab->plt_info->symbol_fields.plt));
5512 }
5513 else
5514 install_plt_field (output_bfd, TRUE,
5515 splt->output_section->vma + splt->output_offset,
5516 (splt->contents
5517 + h->plt.offset
5518 + htab->plt_info->symbol_fields.plt));
5519 }
5520
5521 #ifdef GOT_BIAS
5522 if (info->shared)
5523 got_offset += GOT_BIAS;
5524 #endif
5525
5526 install_plt_field (output_bfd, FALSE,
5527 plt_index * sizeof (Elf32_External_Rela),
5528 (splt->contents
5529 + h->plt.offset
5530 + htab->plt_info->symbol_fields.reloc_offset));
5531
5532 /* Fill in the entry in the global offset table. */
5533 bfd_put_32 (output_bfd,
5534 (splt->output_section->vma
5535 + splt->output_offset
5536 + h->plt.offset
5537 + htab->plt_info->symbol_resolve_offset),
5538 sgot->contents + got_offset);
5539
5540 /* Fill in the entry in the .rela.plt section. */
5541 rel.r_offset = (sgot->output_section->vma
5542 + sgot->output_offset
5543 + got_offset);
5544 rel.r_info = ELF32_R_INFO (h->dynindx, R_SH_JMP_SLOT);
5545 rel.r_addend = 0;
5546 #ifdef GOT_BIAS
5547 rel.r_addend = GOT_BIAS;
5548 #endif
5549 loc = srel->contents + plt_index * sizeof (Elf32_External_Rela);
5550 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
5551
5552 if (htab->vxworks_p && !info->shared)
5553 {
5554 /* Create the .rela.plt.unloaded relocations for this PLT entry.
5555 Begin by pointing LOC to the first such relocation. */
5556 loc = (htab->srelplt2->contents
5557 + (plt_index * 2 + 1) * sizeof (Elf32_External_Rela));
5558
5559 /* Create a .rela.plt.unloaded R_SH_DIR32 relocation
5560 for the PLT entry's pointer to the .got.plt entry. */
5561 rel.r_offset = (htab->splt->output_section->vma
5562 + htab->splt->output_offset
5563 + h->plt.offset
5564 + htab->plt_info->symbol_fields.got_entry);
5565 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_SH_DIR32);
5566 rel.r_addend = got_offset;
5567 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
5568 loc += sizeof (Elf32_External_Rela);
5569
5570 /* Create a .rela.plt.unloaded R_SH_DIR32 relocation for
5571 the .got.plt entry, which initially points to .plt. */
5572 rel.r_offset = (htab->sgotplt->output_section->vma
5573 + htab->sgotplt->output_offset
5574 + got_offset);
5575 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_SH_DIR32);
5576 rel.r_addend = 0;
5577 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
5578 }
5579
5580 if (!h->def_regular)
5581 {
5582 /* Mark the symbol as undefined, rather than as defined in
5583 the .plt section. Leave the value alone. */
5584 sym->st_shndx = SHN_UNDEF;
5585 }
5586 }
5587
5588 if (h->got.offset != (bfd_vma) -1
5589 && sh_elf_hash_entry (h)->tls_type != GOT_TLS_GD
5590 && sh_elf_hash_entry (h)->tls_type != GOT_TLS_IE)
5591 {
5592 asection *sgot;
5593 asection *srel;
5594 Elf_Internal_Rela rel;
5595 bfd_byte *loc;
5596
5597 /* This symbol has an entry in the global offset table. Set it
5598 up. */
5599
5600 sgot = htab->sgot;
5601 srel = htab->srelgot;
5602 BFD_ASSERT (sgot != NULL && srel != NULL);
5603
5604 rel.r_offset = (sgot->output_section->vma
5605 + sgot->output_offset
5606 + (h->got.offset &~ (bfd_vma) 1));
5607
5608 /* If this is a static link, or it is a -Bsymbolic link and the
5609 symbol is defined locally or was forced to be local because
5610 of a version file, we just want to emit a RELATIVE reloc.
5611 The entry in the global offset table will already have been
5612 initialized in the relocate_section function. */
5613 if (info->shared
5614 && SYMBOL_REFERENCES_LOCAL (info, h))
5615 {
5616 rel.r_info = ELF32_R_INFO (0, R_SH_RELATIVE);
5617 rel.r_addend = (h->root.u.def.value
5618 + h->root.u.def.section->output_section->vma
5619 + h->root.u.def.section->output_offset);
5620 }
5621 else
5622 {
5623 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
5624 rel.r_info = ELF32_R_INFO (h->dynindx, R_SH_GLOB_DAT);
5625 rel.r_addend = 0;
5626 }
5627
5628 loc = srel->contents;
5629 loc += srel->reloc_count++ * sizeof (Elf32_External_Rela);
5630 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
5631 }
5632
5633 #ifdef INCLUDE_SHMEDIA
5634 {
5635 struct elf_sh_link_hash_entry *eh;
5636
5637 eh = (struct elf_sh_link_hash_entry *) h;
5638 if (eh->datalabel_got.offset != (bfd_vma) -1)
5639 {
5640 asection *sgot;
5641 asection *srel;
5642 Elf_Internal_Rela rel;
5643 bfd_byte *loc;
5644
5645 /* This symbol has a datalabel entry in the global offset table.
5646 Set it up. */
5647
5648 sgot = htab->sgot;
5649 srel = htab->srelgot;
5650 BFD_ASSERT (sgot != NULL && srel != NULL);
5651
5652 rel.r_offset = (sgot->output_section->vma
5653 + sgot->output_offset
5654 + (eh->datalabel_got.offset &~ (bfd_vma) 1));
5655
5656 /* If this is a static link, or it is a -Bsymbolic link and the
5657 symbol is defined locally or was forced to be local because
5658 of a version file, we just want to emit a RELATIVE reloc.
5659 The entry in the global offset table will already have been
5660 initialized in the relocate_section function. */
5661 if (info->shared
5662 && SYMBOL_REFERENCES_LOCAL (info, h))
5663 {
5664 rel.r_info = ELF32_R_INFO (0, R_SH_RELATIVE);
5665 rel.r_addend = (h->root.u.def.value
5666 + h->root.u.def.section->output_section->vma
5667 + h->root.u.def.section->output_offset);
5668 }
5669 else
5670 {
5671 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents
5672 + eh->datalabel_got.offset);
5673 rel.r_info = ELF32_R_INFO (h->dynindx, R_SH_GLOB_DAT);
5674 rel.r_addend = 0;
5675 }
5676
5677 loc = srel->contents;
5678 loc += srel->reloc_count++ * sizeof (Elf32_External_Rela);
5679 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
5680 }
5681 }
5682 #endif
5683
5684 if (h->needs_copy)
5685 {
5686 asection *s;
5687 Elf_Internal_Rela rel;
5688 bfd_byte *loc;
5689
5690 /* This symbol needs a copy reloc. Set it up. */
5691
5692 BFD_ASSERT (h->dynindx != -1
5693 && (h->root.type == bfd_link_hash_defined
5694 || h->root.type == bfd_link_hash_defweak));
5695
5696 s = bfd_get_section_by_name (h->root.u.def.section->owner,
5697 ".rela.bss");
5698 BFD_ASSERT (s != NULL);
5699
5700 rel.r_offset = (h->root.u.def.value
5701 + h->root.u.def.section->output_section->vma
5702 + h->root.u.def.section->output_offset);
5703 rel.r_info = ELF32_R_INFO (h->dynindx, R_SH_COPY);
5704 rel.r_addend = 0;
5705 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5706 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
5707 }
5708
5709 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
5710 _GLOBAL_OFFSET_TABLE_ is not absolute: it is relative to the
5711 ".got" section. */
5712 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
5713 || (!htab->vxworks_p && h == htab->root.hgot))
5714 sym->st_shndx = SHN_ABS;
5715
5716 return TRUE;
5717 }
5718
5719 /* Finish up the dynamic sections. */
5720
5721 static bfd_boolean
5722 sh_elf_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
5723 {
5724 struct elf_sh_link_hash_table *htab;
5725 asection *sgot;
5726 asection *sdyn;
5727
5728 htab = sh_elf_hash_table (info);
5729 sgot = htab->sgotplt;
5730 sdyn = bfd_get_section_by_name (htab->root.dynobj, ".dynamic");
5731
5732 if (htab->root.dynamic_sections_created)
5733 {
5734 asection *splt;
5735 Elf32_External_Dyn *dyncon, *dynconend;
5736
5737 BFD_ASSERT (sgot != NULL && sdyn != NULL);
5738
5739 dyncon = (Elf32_External_Dyn *) sdyn->contents;
5740 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
5741 for (; dyncon < dynconend; dyncon++)
5742 {
5743 Elf_Internal_Dyn dyn;
5744 asection *s;
5745 #ifdef INCLUDE_SHMEDIA
5746 const char *name;
5747 #endif
5748
5749 bfd_elf32_swap_dyn_in (htab->root.dynobj, dyncon, &dyn);
5750
5751 switch (dyn.d_tag)
5752 {
5753 default:
5754 break;
5755
5756 #ifdef INCLUDE_SHMEDIA
5757 case DT_INIT:
5758 name = info->init_function;
5759 goto get_sym;
5760
5761 case DT_FINI:
5762 name = info->fini_function;
5763 get_sym:
5764 if (dyn.d_un.d_val != 0)
5765 {
5766 struct elf_link_hash_entry *h;
5767
5768 h = elf_link_hash_lookup (&htab->root, name,
5769 FALSE, FALSE, TRUE);
5770 if (h != NULL && (h->other & STO_SH5_ISA32))
5771 {
5772 dyn.d_un.d_val |= 1;
5773 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
5774 }
5775 }
5776 break;
5777 #endif
5778
5779 case DT_PLTGOT:
5780 s = htab->sgot->output_section;
5781 goto get_vma;
5782
5783 case DT_JMPREL:
5784 s = htab->srelplt->output_section;
5785 get_vma:
5786 BFD_ASSERT (s != NULL);
5787 dyn.d_un.d_ptr = s->vma;
5788 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
5789 break;
5790
5791 case DT_PLTRELSZ:
5792 s = htab->srelplt->output_section;
5793 BFD_ASSERT (s != NULL);
5794 dyn.d_un.d_val = s->size;
5795 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
5796 break;
5797
5798 case DT_RELASZ:
5799 /* My reading of the SVR4 ABI indicates that the
5800 procedure linkage table relocs (DT_JMPREL) should be
5801 included in the overall relocs (DT_RELA). This is
5802 what Solaris does. However, UnixWare can not handle
5803 that case. Therefore, we override the DT_RELASZ entry
5804 here to make it not include the JMPREL relocs. Since
5805 the linker script arranges for .rela.plt to follow all
5806 other relocation sections, we don't have to worry
5807 about changing the DT_RELA entry. */
5808 if (htab->srelplt != NULL)
5809 {
5810 s = htab->srelplt->output_section;
5811 dyn.d_un.d_val -= s->size;
5812 }
5813 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
5814 break;
5815 }
5816 }
5817
5818 /* Fill in the first entry in the procedure linkage table. */
5819 splt = htab->splt;
5820 if (splt && splt->size > 0 && htab->plt_info->plt0_entry)
5821 {
5822 unsigned int i;
5823
5824 memcpy (splt->contents,
5825 htab->plt_info->plt0_entry,
5826 htab->plt_info->plt0_entry_size);
5827 for (i = 0; i < ARRAY_SIZE (htab->plt_info->plt0_got_fields); i++)
5828 if (htab->plt_info->plt0_got_fields[i] != MINUS_ONE)
5829 install_plt_field (output_bfd, FALSE,
5830 (sgot->output_section->vma
5831 + sgot->output_offset
5832 + (i * 4)),
5833 (splt->contents
5834 + htab->plt_info->plt0_got_fields[i]));
5835
5836 if (htab->vxworks_p)
5837 {
5838 /* Finalize the .rela.plt.unloaded contents. */
5839 Elf_Internal_Rela rel;
5840 bfd_byte *loc;
5841
5842 /* Create a .rela.plt.unloaded R_SH_DIR32 relocation for the
5843 first PLT entry's pointer to _GLOBAL_OFFSET_TABLE_ + 8. */
5844 loc = htab->srelplt2->contents;
5845 rel.r_offset = (splt->output_section->vma
5846 + splt->output_offset
5847 + htab->plt_info->plt0_got_fields[2]);
5848 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_SH_DIR32);
5849 rel.r_addend = 8;
5850 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
5851 loc += sizeof (Elf32_External_Rela);
5852
5853 /* Fix up the remaining .rela.plt.unloaded relocations.
5854 They may have the wrong symbol index for _G_O_T_ or
5855 _P_L_T_ depending on the order in which symbols were
5856 output. */
5857 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
5858 {
5859 /* The PLT entry's pointer to the .got.plt slot. */
5860 bfd_elf32_swap_reloc_in (output_bfd, loc, &rel);
5861 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx,
5862 R_SH_DIR32);
5863 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
5864 loc += sizeof (Elf32_External_Rela);
5865
5866 /* The .got.plt slot's pointer to .plt. */
5867 bfd_elf32_swap_reloc_in (output_bfd, loc, &rel);
5868 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx,
5869 R_SH_DIR32);
5870 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
5871 loc += sizeof (Elf32_External_Rela);
5872 }
5873 }
5874
5875 /* UnixWare sets the entsize of .plt to 4, although that doesn't
5876 really seem like the right value. */
5877 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
5878 }
5879 }
5880
5881 /* Fill in the first three entries in the global offset table. */
5882 if (sgot && sgot->size > 0)
5883 {
5884 if (sdyn == NULL)
5885 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
5886 else
5887 bfd_put_32 (output_bfd,
5888 sdyn->output_section->vma + sdyn->output_offset,
5889 sgot->contents);
5890 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
5891 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
5892
5893 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
5894 }
5895
5896 return TRUE;
5897 }
5898
5899 static enum elf_reloc_type_class
5900 sh_elf_reloc_type_class (const Elf_Internal_Rela *rela)
5901 {
5902 switch ((int) ELF32_R_TYPE (rela->r_info))
5903 {
5904 case R_SH_RELATIVE:
5905 return reloc_class_relative;
5906 case R_SH_JMP_SLOT:
5907 return reloc_class_plt;
5908 case R_SH_COPY:
5909 return reloc_class_copy;
5910 default:
5911 return reloc_class_normal;
5912 }
5913 }
5914
5915 #if !defined SH_TARGET_ALREADY_DEFINED
5916 /* Support for Linux core dump NOTE sections. */
5917
5918 static bfd_boolean
5919 elf32_shlin_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
5920 {
5921 int offset;
5922 unsigned int size;
5923
5924 switch (note->descsz)
5925 {
5926 default:
5927 return FALSE;
5928
5929 case 168: /* Linux/SH */
5930 /* pr_cursig */
5931 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
5932
5933 /* pr_pid */
5934 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
5935
5936 /* pr_reg */
5937 offset = 72;
5938 size = 92;
5939
5940 break;
5941 }
5942
5943 /* Make a ".reg/999" section. */
5944 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
5945 size, note->descpos + offset);
5946 }
5947
5948 static bfd_boolean
5949 elf32_shlin_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
5950 {
5951 switch (note->descsz)
5952 {
5953 default:
5954 return FALSE;
5955
5956 case 124: /* Linux/SH elf_prpsinfo */
5957 elf_tdata (abfd)->core_program
5958 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
5959 elf_tdata (abfd)->core_command
5960 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
5961 }
5962
5963 /* Note that for some reason, a spurious space is tacked
5964 onto the end of the args in some (at least one anyway)
5965 implementations, so strip it off if it exists. */
5966
5967 {
5968 char *command = elf_tdata (abfd)->core_command;
5969 int n = strlen (command);
5970
5971 if (0 < n && command[n - 1] == ' ')
5972 command[n - 1] = '\0';
5973 }
5974
5975 return TRUE;
5976 }
5977 #endif /* not SH_TARGET_ALREADY_DEFINED */
5978
5979
5980 /* Return address for Ith PLT stub in section PLT, for relocation REL
5981 or (bfd_vma) -1 if it should not be included. */
5982
5983 static bfd_vma
5984 sh_elf_plt_sym_val (bfd_vma i, const asection *plt,
5985 const arelent *rel ATTRIBUTE_UNUSED)
5986 {
5987 const struct elf_sh_plt_info *plt_info;
5988
5989 plt_info = get_plt_info (plt->owner, (plt->owner->flags & DYNAMIC) != 0);
5990 return plt->vma + get_plt_offset (plt_info, i);
5991 }
5992
5993 #if !defined SH_TARGET_ALREADY_DEFINED
5994 #define TARGET_BIG_SYM bfd_elf32_sh_vec
5995 #define TARGET_BIG_NAME "elf32-sh"
5996 #define TARGET_LITTLE_SYM bfd_elf32_shl_vec
5997 #define TARGET_LITTLE_NAME "elf32-shl"
5998 #endif
5999
6000 #define ELF_ARCH bfd_arch_sh
6001 #define ELF_MACHINE_CODE EM_SH
6002 #ifdef __QNXTARGET__
6003 #define ELF_MAXPAGESIZE 0x1000
6004 #else
6005 #define ELF_MAXPAGESIZE 0x80
6006 #endif
6007
6008 #define elf_symbol_leading_char '_'
6009
6010 #define bfd_elf32_bfd_reloc_type_lookup sh_elf_reloc_type_lookup
6011 #define elf_info_to_howto sh_elf_info_to_howto
6012 #define bfd_elf32_bfd_relax_section sh_elf_relax_section
6013 #define elf_backend_relocate_section sh_elf_relocate_section
6014 #define bfd_elf32_bfd_get_relocated_section_contents \
6015 sh_elf_get_relocated_section_contents
6016 #define bfd_elf32_mkobject sh_elf_mkobject
6017 #define elf_backend_object_p sh_elf_object_p
6018 #define bfd_elf32_bfd_set_private_bfd_flags \
6019 sh_elf_set_private_flags
6020 #define bfd_elf32_bfd_copy_private_bfd_data \
6021 sh_elf_copy_private_data
6022 #define bfd_elf32_bfd_merge_private_bfd_data \
6023 sh_elf_merge_private_data
6024
6025 #define elf_backend_gc_mark_hook sh_elf_gc_mark_hook
6026 #define elf_backend_gc_sweep_hook sh_elf_gc_sweep_hook
6027 #define elf_backend_check_relocs sh_elf_check_relocs
6028 #define elf_backend_copy_indirect_symbol \
6029 sh_elf_copy_indirect_symbol
6030 #define elf_backend_create_dynamic_sections \
6031 sh_elf_create_dynamic_sections
6032 #define bfd_elf32_bfd_link_hash_table_create \
6033 sh_elf_link_hash_table_create
6034 #define elf_backend_adjust_dynamic_symbol \
6035 sh_elf_adjust_dynamic_symbol
6036 #define elf_backend_always_size_sections \
6037 sh_elf_always_size_sections
6038 #define elf_backend_size_dynamic_sections \
6039 sh_elf_size_dynamic_sections
6040 #define elf_backend_omit_section_dynsym \
6041 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
6042 #define elf_backend_finish_dynamic_symbol \
6043 sh_elf_finish_dynamic_symbol
6044 #define elf_backend_finish_dynamic_sections \
6045 sh_elf_finish_dynamic_sections
6046 #define elf_backend_reloc_type_class sh_elf_reloc_type_class
6047 #define elf_backend_plt_sym_val sh_elf_plt_sym_val
6048
6049 #define elf_backend_can_gc_sections 1
6050 #define elf_backend_can_refcount 1
6051 #define elf_backend_want_got_plt 1
6052 #define elf_backend_plt_readonly 1
6053 #define elf_backend_want_plt_sym 0
6054 #define elf_backend_got_header_size 12
6055
6056 #if !defined INCLUDE_SHMEDIA && !defined SH_TARGET_ALREADY_DEFINED
6057
6058 #include "elf32-target.h"
6059
6060 /* NetBSD support. */
6061 #undef TARGET_BIG_SYM
6062 #define TARGET_BIG_SYM bfd_elf32_shnbsd_vec
6063 #undef TARGET_BIG_NAME
6064 #define TARGET_BIG_NAME "elf32-sh-nbsd"
6065 #undef TARGET_LITTLE_SYM
6066 #define TARGET_LITTLE_SYM bfd_elf32_shlnbsd_vec
6067 #undef TARGET_LITTLE_NAME
6068 #define TARGET_LITTLE_NAME "elf32-shl-nbsd"
6069 #undef ELF_MAXPAGESIZE
6070 #define ELF_MAXPAGESIZE 0x10000
6071 #undef ELF_COMMONPAGESIZE
6072 #undef elf_symbol_leading_char
6073 #define elf_symbol_leading_char 0
6074 #undef elf32_bed
6075 #define elf32_bed elf32_sh_nbsd_bed
6076
6077 #include "elf32-target.h"
6078
6079
6080 /* Linux support. */
6081 #undef TARGET_BIG_SYM
6082 #define TARGET_BIG_SYM bfd_elf32_shblin_vec
6083 #undef TARGET_BIG_NAME
6084 #define TARGET_BIG_NAME "elf32-shbig-linux"
6085 #undef TARGET_LITTLE_SYM
6086 #define TARGET_LITTLE_SYM bfd_elf32_shlin_vec
6087 #undef TARGET_LITTLE_NAME
6088 #define TARGET_LITTLE_NAME "elf32-sh-linux"
6089 #undef ELF_COMMONPAGESIZE
6090 #define ELF_COMMONPAGESIZE 0x1000
6091
6092 #undef elf_backend_grok_prstatus
6093 #define elf_backend_grok_prstatus elf32_shlin_grok_prstatus
6094 #undef elf_backend_grok_psinfo
6095 #define elf_backend_grok_psinfo elf32_shlin_grok_psinfo
6096 #undef elf32_bed
6097 #define elf32_bed elf32_sh_lin_bed
6098
6099 #include "elf32-target.h"
6100
6101 #undef TARGET_BIG_SYM
6102 #define TARGET_BIG_SYM bfd_elf32_shvxworks_vec
6103 #undef TARGET_BIG_NAME
6104 #define TARGET_BIG_NAME "elf32-sh-vxworks"
6105 #undef TARGET_LITTLE_SYM
6106 #define TARGET_LITTLE_SYM bfd_elf32_shlvxworks_vec
6107 #undef TARGET_LITTLE_NAME
6108 #define TARGET_LITTLE_NAME "elf32-shl-vxworks"
6109 #undef elf32_bed
6110 #define elf32_bed elf32_sh_vxworks_bed
6111
6112 #undef elf_backend_want_plt_sym
6113 #define elf_backend_want_plt_sym 1
6114 #undef elf_symbol_leading_char
6115 #define elf_symbol_leading_char '_'
6116 #define elf_backend_want_got_underscore 1
6117 #undef elf_backend_grok_prstatus
6118 #undef elf_backend_grok_psinfo
6119 #undef elf_backend_add_symbol_hook
6120 #define elf_backend_add_symbol_hook elf_vxworks_add_symbol_hook
6121 #undef elf_backend_link_output_symbol_hook
6122 #define elf_backend_link_output_symbol_hook \
6123 elf_vxworks_link_output_symbol_hook
6124 #undef elf_backend_emit_relocs
6125 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
6126 #undef elf_backend_final_write_processing
6127 #define elf_backend_final_write_processing \
6128 elf_vxworks_final_write_processing
6129 #undef ELF_MAXPAGESIZE
6130 #define ELF_MAXPAGESIZE 0x1000
6131 #undef ELF_COMMONPAGESIZE
6132
6133 #include "elf32-target.h"
6134
6135 #endif /* neither INCLUDE_SHMEDIA nor SH_TARGET_ALREADY_DEFINED */
This page took 0.179437 seconds and 5 git commands to generate.