* elf32-spu.c (spu_elf_auto_overlay): Use the maximum possible
[deliverable/binutils-gdb.git] / bfd / elf32-spu.c
1 /* SPU specific support for 32-bit ELF
2
3 Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License along
18 with this program; if not, write to the Free Software Foundation, Inc.,
19 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "libiberty.h"
23 #include "bfd.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "elf/spu.h"
28 #include "elf32-spu.h"
29
30 /* We use RELA style relocs. Don't define USE_REL. */
31
32 static bfd_reloc_status_type spu_elf_rel9 (bfd *, arelent *, asymbol *,
33 void *, asection *,
34 bfd *, char **);
35
36 /* Values of type 'enum elf_spu_reloc_type' are used to index this
37 array, so it must be declared in the order of that type. */
38
39 static reloc_howto_type elf_howto_table[] = {
40 HOWTO (R_SPU_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
41 bfd_elf_generic_reloc, "SPU_NONE",
42 FALSE, 0, 0x00000000, FALSE),
43 HOWTO (R_SPU_ADDR10, 4, 2, 10, FALSE, 14, complain_overflow_bitfield,
44 bfd_elf_generic_reloc, "SPU_ADDR10",
45 FALSE, 0, 0x00ffc000, FALSE),
46 HOWTO (R_SPU_ADDR16, 2, 2, 16, FALSE, 7, complain_overflow_bitfield,
47 bfd_elf_generic_reloc, "SPU_ADDR16",
48 FALSE, 0, 0x007fff80, FALSE),
49 HOWTO (R_SPU_ADDR16_HI, 16, 2, 16, FALSE, 7, complain_overflow_bitfield,
50 bfd_elf_generic_reloc, "SPU_ADDR16_HI",
51 FALSE, 0, 0x007fff80, FALSE),
52 HOWTO (R_SPU_ADDR16_LO, 0, 2, 16, FALSE, 7, complain_overflow_dont,
53 bfd_elf_generic_reloc, "SPU_ADDR16_LO",
54 FALSE, 0, 0x007fff80, FALSE),
55 HOWTO (R_SPU_ADDR18, 0, 2, 18, FALSE, 7, complain_overflow_bitfield,
56 bfd_elf_generic_reloc, "SPU_ADDR18",
57 FALSE, 0, 0x01ffff80, FALSE),
58 HOWTO (R_SPU_ADDR32, 0, 2, 32, FALSE, 0, complain_overflow_dont,
59 bfd_elf_generic_reloc, "SPU_ADDR32",
60 FALSE, 0, 0xffffffff, FALSE),
61 HOWTO (R_SPU_REL16, 2, 2, 16, TRUE, 7, complain_overflow_bitfield,
62 bfd_elf_generic_reloc, "SPU_REL16",
63 FALSE, 0, 0x007fff80, TRUE),
64 HOWTO (R_SPU_ADDR7, 0, 2, 7, FALSE, 14, complain_overflow_dont,
65 bfd_elf_generic_reloc, "SPU_ADDR7",
66 FALSE, 0, 0x001fc000, FALSE),
67 HOWTO (R_SPU_REL9, 2, 2, 9, TRUE, 0, complain_overflow_signed,
68 spu_elf_rel9, "SPU_REL9",
69 FALSE, 0, 0x0180007f, TRUE),
70 HOWTO (R_SPU_REL9I, 2, 2, 9, TRUE, 0, complain_overflow_signed,
71 spu_elf_rel9, "SPU_REL9I",
72 FALSE, 0, 0x0000c07f, TRUE),
73 HOWTO (R_SPU_ADDR10I, 0, 2, 10, FALSE, 14, complain_overflow_signed,
74 bfd_elf_generic_reloc, "SPU_ADDR10I",
75 FALSE, 0, 0x00ffc000, FALSE),
76 HOWTO (R_SPU_ADDR16I, 0, 2, 16, FALSE, 7, complain_overflow_signed,
77 bfd_elf_generic_reloc, "SPU_ADDR16I",
78 FALSE, 0, 0x007fff80, FALSE),
79 HOWTO (R_SPU_REL32, 0, 2, 32, TRUE, 0, complain_overflow_dont,
80 bfd_elf_generic_reloc, "SPU_REL32",
81 FALSE, 0, 0xffffffff, TRUE),
82 HOWTO (R_SPU_ADDR16X, 0, 2, 16, FALSE, 7, complain_overflow_bitfield,
83 bfd_elf_generic_reloc, "SPU_ADDR16X",
84 FALSE, 0, 0x007fff80, FALSE),
85 HOWTO (R_SPU_PPU32, 0, 2, 32, FALSE, 0, complain_overflow_dont,
86 bfd_elf_generic_reloc, "SPU_PPU32",
87 FALSE, 0, 0xffffffff, FALSE),
88 HOWTO (R_SPU_PPU64, 0, 4, 64, FALSE, 0, complain_overflow_dont,
89 bfd_elf_generic_reloc, "SPU_PPU64",
90 FALSE, 0, -1, FALSE),
91 };
92
93 static struct bfd_elf_special_section const spu_elf_special_sections[] = {
94 { "._ea", 4, 0, SHT_PROGBITS, SHF_WRITE },
95 { ".toe", 4, 0, SHT_NOBITS, SHF_ALLOC },
96 { NULL, 0, 0, 0, 0 }
97 };
98
99 static enum elf_spu_reloc_type
100 spu_elf_bfd_to_reloc_type (bfd_reloc_code_real_type code)
101 {
102 switch (code)
103 {
104 default:
105 return R_SPU_NONE;
106 case BFD_RELOC_SPU_IMM10W:
107 return R_SPU_ADDR10;
108 case BFD_RELOC_SPU_IMM16W:
109 return R_SPU_ADDR16;
110 case BFD_RELOC_SPU_LO16:
111 return R_SPU_ADDR16_LO;
112 case BFD_RELOC_SPU_HI16:
113 return R_SPU_ADDR16_HI;
114 case BFD_RELOC_SPU_IMM18:
115 return R_SPU_ADDR18;
116 case BFD_RELOC_SPU_PCREL16:
117 return R_SPU_REL16;
118 case BFD_RELOC_SPU_IMM7:
119 return R_SPU_ADDR7;
120 case BFD_RELOC_SPU_IMM8:
121 return R_SPU_NONE;
122 case BFD_RELOC_SPU_PCREL9a:
123 return R_SPU_REL9;
124 case BFD_RELOC_SPU_PCREL9b:
125 return R_SPU_REL9I;
126 case BFD_RELOC_SPU_IMM10:
127 return R_SPU_ADDR10I;
128 case BFD_RELOC_SPU_IMM16:
129 return R_SPU_ADDR16I;
130 case BFD_RELOC_32:
131 return R_SPU_ADDR32;
132 case BFD_RELOC_32_PCREL:
133 return R_SPU_REL32;
134 case BFD_RELOC_SPU_PPU32:
135 return R_SPU_PPU32;
136 case BFD_RELOC_SPU_PPU64:
137 return R_SPU_PPU64;
138 }
139 }
140
141 static void
142 spu_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
143 arelent *cache_ptr,
144 Elf_Internal_Rela *dst)
145 {
146 enum elf_spu_reloc_type r_type;
147
148 r_type = (enum elf_spu_reloc_type) ELF32_R_TYPE (dst->r_info);
149 BFD_ASSERT (r_type < R_SPU_max);
150 cache_ptr->howto = &elf_howto_table[(int) r_type];
151 }
152
153 static reloc_howto_type *
154 spu_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
155 bfd_reloc_code_real_type code)
156 {
157 enum elf_spu_reloc_type r_type = spu_elf_bfd_to_reloc_type (code);
158
159 if (r_type == R_SPU_NONE)
160 return NULL;
161
162 return elf_howto_table + r_type;
163 }
164
165 static reloc_howto_type *
166 spu_elf_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
167 const char *r_name)
168 {
169 unsigned int i;
170
171 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
172 if (elf_howto_table[i].name != NULL
173 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
174 return &elf_howto_table[i];
175
176 return NULL;
177 }
178
179 /* Apply R_SPU_REL9 and R_SPU_REL9I relocs. */
180
181 static bfd_reloc_status_type
182 spu_elf_rel9 (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
183 void *data, asection *input_section,
184 bfd *output_bfd, char **error_message)
185 {
186 bfd_size_type octets;
187 bfd_vma val;
188 long insn;
189
190 /* If this is a relocatable link (output_bfd test tells us), just
191 call the generic function. Any adjustment will be done at final
192 link time. */
193 if (output_bfd != NULL)
194 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
195 input_section, output_bfd, error_message);
196
197 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
198 return bfd_reloc_outofrange;
199 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
200
201 /* Get symbol value. */
202 val = 0;
203 if (!bfd_is_com_section (symbol->section))
204 val = symbol->value;
205 if (symbol->section->output_section)
206 val += symbol->section->output_section->vma;
207
208 val += reloc_entry->addend;
209
210 /* Make it pc-relative. */
211 val -= input_section->output_section->vma + input_section->output_offset;
212
213 val >>= 2;
214 if (val + 256 >= 512)
215 return bfd_reloc_overflow;
216
217 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
218
219 /* Move two high bits of value to REL9I and REL9 position.
220 The mask will take care of selecting the right field. */
221 val = (val & 0x7f) | ((val & 0x180) << 7) | ((val & 0x180) << 16);
222 insn &= ~reloc_entry->howto->dst_mask;
223 insn |= val & reloc_entry->howto->dst_mask;
224 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
225 return bfd_reloc_ok;
226 }
227
228 static bfd_boolean
229 spu_elf_new_section_hook (bfd *abfd, asection *sec)
230 {
231 if (!sec->used_by_bfd)
232 {
233 struct _spu_elf_section_data *sdata;
234
235 sdata = bfd_zalloc (abfd, sizeof (*sdata));
236 if (sdata == NULL)
237 return FALSE;
238 sec->used_by_bfd = sdata;
239 }
240
241 return _bfd_elf_new_section_hook (abfd, sec);
242 }
243
244 /* Set up overlay info for executables. */
245
246 static bfd_boolean
247 spu_elf_object_p (bfd *abfd)
248 {
249 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
250 {
251 unsigned int i, num_ovl, num_buf;
252 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
253 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
254 Elf_Internal_Phdr *last_phdr = NULL;
255
256 for (num_buf = 0, num_ovl = 0, i = 0; i < ehdr->e_phnum; i++, phdr++)
257 if (phdr->p_type == PT_LOAD && (phdr->p_flags & PF_OVERLAY) != 0)
258 {
259 unsigned int j;
260
261 ++num_ovl;
262 if (last_phdr == NULL
263 || ((last_phdr->p_vaddr ^ phdr->p_vaddr) & 0x3ffff) != 0)
264 ++num_buf;
265 last_phdr = phdr;
266 for (j = 1; j < elf_numsections (abfd); j++)
267 {
268 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[j];
269
270 if (ELF_IS_SECTION_IN_SEGMENT_MEMORY (shdr, phdr))
271 {
272 asection *sec = shdr->bfd_section;
273 spu_elf_section_data (sec)->u.o.ovl_index = num_ovl;
274 spu_elf_section_data (sec)->u.o.ovl_buf = num_buf;
275 }
276 }
277 }
278 }
279 return TRUE;
280 }
281
282 /* Specially mark defined symbols named _EAR_* with BSF_KEEP so that
283 strip --strip-unneeded will not remove them. */
284
285 static void
286 spu_elf_backend_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *sym)
287 {
288 if (sym->name != NULL
289 && sym->section != bfd_abs_section_ptr
290 && strncmp (sym->name, "_EAR_", 5) == 0)
291 sym->flags |= BSF_KEEP;
292 }
293
294 /* SPU ELF linker hash table. */
295
296 struct spu_link_hash_table
297 {
298 struct elf_link_hash_table elf;
299
300 /* Shortcuts to overlay sections. */
301 asection *ovtab;
302 asection *toe;
303 asection **ovl_sec;
304
305 /* Count of stubs in each overlay section. */
306 unsigned int *stub_count;
307
308 /* The stub section for each overlay section. */
309 asection **stub_sec;
310
311 struct elf_link_hash_entry *ovly_load;
312 struct elf_link_hash_entry *ovly_return;
313 unsigned long ovly_load_r_symndx;
314
315 /* Number of overlay buffers. */
316 unsigned int num_buf;
317
318 /* Total number of overlays. */
319 unsigned int num_overlays;
320
321 /* How much memory we have. */
322 unsigned int local_store;
323 /* Local store --auto-overlay should reserve for non-overlay
324 functions and data. */
325 unsigned int overlay_fixed;
326 /* Local store --auto-overlay should reserve for stack and heap. */
327 unsigned int reserved;
328 /* If reserved is not specified, stack analysis will calculate a value
329 for the stack. This parameter adjusts that value to allow for
330 negative sp access (the ABI says 2000 bytes below sp are valid,
331 and the overlay manager uses some of this area). */
332 int extra_stack_space;
333 /* Count of overlay stubs needed in non-overlay area. */
334 unsigned int non_ovly_stub;
335
336 /* Stash various callbacks for --auto-overlay. */
337 void (*spu_elf_load_ovl_mgr) (void);
338 FILE *(*spu_elf_open_overlay_script) (void);
339 void (*spu_elf_relink) (void);
340
341 /* Bit 0 set if --auto-overlay.
342 Bit 1 set if --auto-relink.
343 Bit 2 set if --overlay-rodata. */
344 unsigned int auto_overlay : 3;
345 #define AUTO_OVERLAY 1
346 #define AUTO_RELINK 2
347 #define OVERLAY_RODATA 4
348
349 /* Set if we should emit symbols for stubs. */
350 unsigned int emit_stub_syms:1;
351
352 /* Set if we want stubs on calls out of overlay regions to
353 non-overlay regions. */
354 unsigned int non_overlay_stubs : 1;
355
356 /* Set on error. */
357 unsigned int stub_err : 1;
358
359 /* Set if stack size analysis should be done. */
360 unsigned int stack_analysis : 1;
361
362 /* Set if __stack_* syms will be emitted. */
363 unsigned int emit_stack_syms : 1;
364 };
365
366 /* Hijack the generic got fields for overlay stub accounting. */
367
368 struct got_entry
369 {
370 struct got_entry *next;
371 unsigned int ovl;
372 bfd_vma addend;
373 bfd_vma stub_addr;
374 };
375
376 #define spu_hash_table(p) \
377 ((struct spu_link_hash_table *) ((p)->hash))
378
379 /* Create a spu ELF linker hash table. */
380
381 static struct bfd_link_hash_table *
382 spu_elf_link_hash_table_create (bfd *abfd)
383 {
384 struct spu_link_hash_table *htab;
385
386 htab = bfd_malloc (sizeof (*htab));
387 if (htab == NULL)
388 return NULL;
389
390 if (!_bfd_elf_link_hash_table_init (&htab->elf, abfd,
391 _bfd_elf_link_hash_newfunc,
392 sizeof (struct elf_link_hash_entry)))
393 {
394 free (htab);
395 return NULL;
396 }
397
398 memset (&htab->ovtab, 0,
399 sizeof (*htab) - offsetof (struct spu_link_hash_table, ovtab));
400
401 htab->elf.init_got_refcount.refcount = 0;
402 htab->elf.init_got_refcount.glist = NULL;
403 htab->elf.init_got_offset.offset = 0;
404 htab->elf.init_got_offset.glist = NULL;
405 return &htab->elf.root;
406 }
407
408 /* Find the symbol for the given R_SYMNDX in IBFD and set *HP and *SYMP
409 to (hash, NULL) for global symbols, and (NULL, sym) for locals. Set
410 *SYMSECP to the symbol's section. *LOCSYMSP caches local syms. */
411
412 static bfd_boolean
413 get_sym_h (struct elf_link_hash_entry **hp,
414 Elf_Internal_Sym **symp,
415 asection **symsecp,
416 Elf_Internal_Sym **locsymsp,
417 unsigned long r_symndx,
418 bfd *ibfd)
419 {
420 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
421
422 if (r_symndx >= symtab_hdr->sh_info)
423 {
424 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
425 struct elf_link_hash_entry *h;
426
427 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
428 while (h->root.type == bfd_link_hash_indirect
429 || h->root.type == bfd_link_hash_warning)
430 h = (struct elf_link_hash_entry *) h->root.u.i.link;
431
432 if (hp != NULL)
433 *hp = h;
434
435 if (symp != NULL)
436 *symp = NULL;
437
438 if (symsecp != NULL)
439 {
440 asection *symsec = NULL;
441 if (h->root.type == bfd_link_hash_defined
442 || h->root.type == bfd_link_hash_defweak)
443 symsec = h->root.u.def.section;
444 *symsecp = symsec;
445 }
446 }
447 else
448 {
449 Elf_Internal_Sym *sym;
450 Elf_Internal_Sym *locsyms = *locsymsp;
451
452 if (locsyms == NULL)
453 {
454 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
455 if (locsyms == NULL)
456 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
457 symtab_hdr->sh_info,
458 0, NULL, NULL, NULL);
459 if (locsyms == NULL)
460 return FALSE;
461 *locsymsp = locsyms;
462 }
463 sym = locsyms + r_symndx;
464
465 if (hp != NULL)
466 *hp = NULL;
467
468 if (symp != NULL)
469 *symp = sym;
470
471 if (symsecp != NULL)
472 *symsecp = bfd_section_from_elf_index (ibfd, sym->st_shndx);
473 }
474
475 return TRUE;
476 }
477
478 /* Create the note section if not already present. This is done early so
479 that the linker maps the sections to the right place in the output. */
480
481 bfd_boolean
482 spu_elf_create_sections (struct bfd_link_info *info,
483 int stack_analysis,
484 int emit_stack_syms)
485 {
486 bfd *ibfd;
487 struct spu_link_hash_table *htab = spu_hash_table (info);
488
489 /* Stash some options away where we can get at them later. */
490 htab->stack_analysis = stack_analysis;
491 htab->emit_stack_syms = emit_stack_syms;
492
493 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
494 if (bfd_get_section_by_name (ibfd, SPU_PTNOTE_SPUNAME) != NULL)
495 break;
496
497 if (ibfd == NULL)
498 {
499 /* Make SPU_PTNOTE_SPUNAME section. */
500 asection *s;
501 size_t name_len;
502 size_t size;
503 bfd_byte *data;
504 flagword flags;
505
506 ibfd = info->input_bfds;
507 flags = SEC_LOAD | SEC_READONLY | SEC_HAS_CONTENTS | SEC_IN_MEMORY;
508 s = bfd_make_section_anyway_with_flags (ibfd, SPU_PTNOTE_SPUNAME, flags);
509 if (s == NULL
510 || !bfd_set_section_alignment (ibfd, s, 4))
511 return FALSE;
512
513 name_len = strlen (bfd_get_filename (info->output_bfd)) + 1;
514 size = 12 + ((sizeof (SPU_PLUGIN_NAME) + 3) & -4);
515 size += (name_len + 3) & -4;
516
517 if (!bfd_set_section_size (ibfd, s, size))
518 return FALSE;
519
520 data = bfd_zalloc (ibfd, size);
521 if (data == NULL)
522 return FALSE;
523
524 bfd_put_32 (ibfd, sizeof (SPU_PLUGIN_NAME), data + 0);
525 bfd_put_32 (ibfd, name_len, data + 4);
526 bfd_put_32 (ibfd, 1, data + 8);
527 memcpy (data + 12, SPU_PLUGIN_NAME, sizeof (SPU_PLUGIN_NAME));
528 memcpy (data + 12 + ((sizeof (SPU_PLUGIN_NAME) + 3) & -4),
529 bfd_get_filename (info->output_bfd), name_len);
530 s->contents = data;
531 }
532
533 return TRUE;
534 }
535
536 /* qsort predicate to sort sections by vma. */
537
538 static int
539 sort_sections (const void *a, const void *b)
540 {
541 const asection *const *s1 = a;
542 const asection *const *s2 = b;
543 bfd_signed_vma delta = (*s1)->vma - (*s2)->vma;
544
545 if (delta != 0)
546 return delta < 0 ? -1 : 1;
547
548 return (*s1)->index - (*s2)->index;
549 }
550
551 /* Identify overlays in the output bfd, and number them. */
552
553 bfd_boolean
554 spu_elf_find_overlays (struct bfd_link_info *info)
555 {
556 struct spu_link_hash_table *htab = spu_hash_table (info);
557 asection **alloc_sec;
558 unsigned int i, n, ovl_index, num_buf;
559 asection *s;
560 bfd_vma ovl_end;
561
562 if (info->output_bfd->section_count < 2)
563 return FALSE;
564
565 alloc_sec
566 = bfd_malloc (info->output_bfd->section_count * sizeof (*alloc_sec));
567 if (alloc_sec == NULL)
568 return FALSE;
569
570 /* Pick out all the alloced sections. */
571 for (n = 0, s = info->output_bfd->sections; s != NULL; s = s->next)
572 if ((s->flags & SEC_ALLOC) != 0
573 && (s->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != SEC_THREAD_LOCAL
574 && s->size != 0)
575 alloc_sec[n++] = s;
576
577 if (n == 0)
578 {
579 free (alloc_sec);
580 return FALSE;
581 }
582
583 /* Sort them by vma. */
584 qsort (alloc_sec, n, sizeof (*alloc_sec), sort_sections);
585
586 /* Look for overlapping vmas. Any with overlap must be overlays.
587 Count them. Also count the number of overlay regions. */
588 ovl_end = alloc_sec[0]->vma + alloc_sec[0]->size;
589 for (ovl_index = 0, num_buf = 0, i = 1; i < n; i++)
590 {
591 s = alloc_sec[i];
592 if (s->vma < ovl_end)
593 {
594 asection *s0 = alloc_sec[i - 1];
595
596 if (spu_elf_section_data (s0)->u.o.ovl_index == 0)
597 {
598 alloc_sec[ovl_index] = s0;
599 spu_elf_section_data (s0)->u.o.ovl_index = ++ovl_index;
600 spu_elf_section_data (s0)->u.o.ovl_buf = ++num_buf;
601 }
602 alloc_sec[ovl_index] = s;
603 spu_elf_section_data (s)->u.o.ovl_index = ++ovl_index;
604 spu_elf_section_data (s)->u.o.ovl_buf = num_buf;
605 if (s0->vma != s->vma)
606 {
607 info->callbacks->einfo (_("%X%P: overlay sections %A and %A "
608 "do not start at the same address.\n"),
609 s0, s);
610 return FALSE;
611 }
612 if (ovl_end < s->vma + s->size)
613 ovl_end = s->vma + s->size;
614 }
615 else
616 ovl_end = s->vma + s->size;
617 }
618
619 htab->num_overlays = ovl_index;
620 htab->num_buf = num_buf;
621 htab->ovl_sec = alloc_sec;
622 htab->ovly_load = elf_link_hash_lookup (&htab->elf, "__ovly_load",
623 FALSE, FALSE, FALSE);
624 htab->ovly_return = elf_link_hash_lookup (&htab->elf, "__ovly_return",
625 FALSE, FALSE, FALSE);
626 return ovl_index != 0;
627 }
628
629 /* Support two sizes of overlay stubs, a slower more compact stub of two
630 intructions, and a faster stub of four instructions. */
631 #ifndef OVL_STUB_SIZE
632 /* Default to faster. */
633 #define OVL_STUB_SIZE 16
634 /* #define OVL_STUB_SIZE 8 */
635 #endif
636 #define BRSL 0x33000000
637 #define BR 0x32000000
638 #define NOP 0x40200000
639 #define LNOP 0x00200000
640 #define ILA 0x42000000
641
642 /* Return true for all relative and absolute branch instructions.
643 bra 00110000 0..
644 brasl 00110001 0..
645 br 00110010 0..
646 brsl 00110011 0..
647 brz 00100000 0..
648 brnz 00100001 0..
649 brhz 00100010 0..
650 brhnz 00100011 0.. */
651
652 static bfd_boolean
653 is_branch (const unsigned char *insn)
654 {
655 return (insn[0] & 0xec) == 0x20 && (insn[1] & 0x80) == 0;
656 }
657
658 /* Return true for all indirect branch instructions.
659 bi 00110101 000
660 bisl 00110101 001
661 iret 00110101 010
662 bisled 00110101 011
663 biz 00100101 000
664 binz 00100101 001
665 bihz 00100101 010
666 bihnz 00100101 011 */
667
668 static bfd_boolean
669 is_indirect_branch (const unsigned char *insn)
670 {
671 return (insn[0] & 0xef) == 0x25 && (insn[1] & 0x80) == 0;
672 }
673
674 /* Return true for branch hint instructions.
675 hbra 0001000..
676 hbrr 0001001.. */
677
678 static bfd_boolean
679 is_hint (const unsigned char *insn)
680 {
681 return (insn[0] & 0xfc) == 0x10;
682 }
683
684 /* True if INPUT_SECTION might need overlay stubs. */
685
686 static bfd_boolean
687 maybe_needs_stubs (asection *input_section, bfd *output_bfd)
688 {
689 /* No stubs for debug sections and suchlike. */
690 if ((input_section->flags & SEC_ALLOC) == 0)
691 return FALSE;
692
693 /* No stubs for link-once sections that will be discarded. */
694 if (input_section->output_section == NULL
695 || input_section->output_section->owner != output_bfd)
696 return FALSE;
697
698 /* Don't create stubs for .eh_frame references. */
699 if (strcmp (input_section->name, ".eh_frame") == 0)
700 return FALSE;
701
702 return TRUE;
703 }
704
705 enum _stub_type
706 {
707 no_stub,
708 ovl_stub,
709 nonovl_stub,
710 stub_error
711 };
712
713 /* Return non-zero if this reloc symbol should go via an overlay stub.
714 Return 2 if the stub must be in non-overlay area. */
715
716 static enum _stub_type
717 needs_ovl_stub (struct elf_link_hash_entry *h,
718 Elf_Internal_Sym *sym,
719 asection *sym_sec,
720 asection *input_section,
721 Elf_Internal_Rela *irela,
722 bfd_byte *contents,
723 struct bfd_link_info *info)
724 {
725 struct spu_link_hash_table *htab = spu_hash_table (info);
726 enum elf_spu_reloc_type r_type;
727 unsigned int sym_type;
728 bfd_boolean branch;
729 enum _stub_type ret = no_stub;
730
731 if (sym_sec == NULL
732 || sym_sec->output_section == NULL
733 || sym_sec->output_section->owner != info->output_bfd
734 || spu_elf_section_data (sym_sec->output_section) == NULL)
735 return ret;
736
737 if (h != NULL)
738 {
739 /* Ensure no stubs for user supplied overlay manager syms. */
740 if (h == htab->ovly_load || h == htab->ovly_return)
741 return ret;
742
743 /* setjmp always goes via an overlay stub, because then the return
744 and hence the longjmp goes via __ovly_return. That magically
745 makes setjmp/longjmp between overlays work. */
746 if (strncmp (h->root.root.string, "setjmp", 6) == 0
747 && (h->root.root.string[6] == '\0' || h->root.root.string[6] == '@'))
748 ret = ovl_stub;
749 }
750
751 /* Usually, symbols in non-overlay sections don't need stubs. */
752 if (spu_elf_section_data (sym_sec->output_section)->u.o.ovl_index == 0
753 && !htab->non_overlay_stubs)
754 return ret;
755
756 if (h != NULL)
757 sym_type = h->type;
758 else
759 sym_type = ELF_ST_TYPE (sym->st_info);
760
761 r_type = ELF32_R_TYPE (irela->r_info);
762 branch = FALSE;
763 if (r_type == R_SPU_REL16 || r_type == R_SPU_ADDR16)
764 {
765 bfd_byte insn[4];
766
767 if (contents == NULL)
768 {
769 contents = insn;
770 if (!bfd_get_section_contents (input_section->owner,
771 input_section,
772 contents,
773 irela->r_offset, 4))
774 return stub_error;
775 }
776 else
777 contents += irela->r_offset;
778
779 if (is_branch (contents) || is_hint (contents))
780 {
781 branch = TRUE;
782 if ((contents[0] & 0xfd) == 0x31
783 && sym_type != STT_FUNC
784 && contents != insn)
785 {
786 /* It's common for people to write assembly and forget
787 to give function symbols the right type. Handle
788 calls to such symbols, but warn so that (hopefully)
789 people will fix their code. We need the symbol
790 type to be correct to distinguish function pointer
791 initialisation from other pointer initialisations. */
792 const char *sym_name;
793
794 if (h != NULL)
795 sym_name = h->root.root.string;
796 else
797 {
798 Elf_Internal_Shdr *symtab_hdr;
799 symtab_hdr = &elf_tdata (input_section->owner)->symtab_hdr;
800 sym_name = bfd_elf_sym_name (input_section->owner,
801 symtab_hdr,
802 sym,
803 sym_sec);
804 }
805 (*_bfd_error_handler) (_("warning: call to non-function"
806 " symbol %s defined in %B"),
807 sym_sec->owner, sym_name);
808
809 }
810 }
811 }
812
813 if (sym_type != STT_FUNC
814 && !branch
815 && (sym_sec->flags & SEC_CODE) == 0)
816 return ret;
817
818 /* A reference from some other section to a symbol in an overlay
819 section needs a stub. */
820 if (spu_elf_section_data (sym_sec->output_section)->u.o.ovl_index
821 != spu_elf_section_data (input_section->output_section)->u.o.ovl_index)
822 ret = ovl_stub;
823
824 /* If this insn isn't a branch then we are possibly taking the
825 address of a function and passing it out somehow. */
826 return !branch && sym_type == STT_FUNC ? nonovl_stub : ret;
827 }
828
829 static bfd_boolean
830 count_stub (struct spu_link_hash_table *htab,
831 bfd *ibfd,
832 asection *isec,
833 enum _stub_type stub_type,
834 struct elf_link_hash_entry *h,
835 const Elf_Internal_Rela *irela)
836 {
837 unsigned int ovl = 0;
838 struct got_entry *g, **head;
839 bfd_vma addend;
840
841 /* If this instruction is a branch or call, we need a stub
842 for it. One stub per function per overlay.
843 If it isn't a branch, then we are taking the address of
844 this function so need a stub in the non-overlay area
845 for it. One stub per function. */
846 if (stub_type != nonovl_stub)
847 ovl = spu_elf_section_data (isec->output_section)->u.o.ovl_index;
848
849 if (h != NULL)
850 head = &h->got.glist;
851 else
852 {
853 if (elf_local_got_ents (ibfd) == NULL)
854 {
855 bfd_size_type amt = (elf_tdata (ibfd)->symtab_hdr.sh_info
856 * sizeof (*elf_local_got_ents (ibfd)));
857 elf_local_got_ents (ibfd) = bfd_zmalloc (amt);
858 if (elf_local_got_ents (ibfd) == NULL)
859 return FALSE;
860 }
861 head = elf_local_got_ents (ibfd) + ELF32_R_SYM (irela->r_info);
862 }
863
864 addend = 0;
865 if (irela != NULL)
866 addend = irela->r_addend;
867
868 if (ovl == 0)
869 {
870 struct got_entry *gnext;
871
872 for (g = *head; g != NULL; g = g->next)
873 if (g->addend == addend && g->ovl == 0)
874 break;
875
876 if (g == NULL)
877 {
878 /* Need a new non-overlay area stub. Zap other stubs. */
879 for (g = *head; g != NULL; g = gnext)
880 {
881 gnext = g->next;
882 if (g->addend == addend)
883 {
884 htab->stub_count[g->ovl] -= 1;
885 free (g);
886 }
887 }
888 }
889 }
890 else
891 {
892 for (g = *head; g != NULL; g = g->next)
893 if (g->addend == addend && (g->ovl == ovl || g->ovl == 0))
894 break;
895 }
896
897 if (g == NULL)
898 {
899 g = bfd_malloc (sizeof *g);
900 if (g == NULL)
901 return FALSE;
902 g->ovl = ovl;
903 g->addend = addend;
904 g->stub_addr = (bfd_vma) -1;
905 g->next = *head;
906 *head = g;
907
908 htab->stub_count[ovl] += 1;
909 }
910
911 return TRUE;
912 }
913
914 /* Two instruction overlay stubs look like:
915
916 brsl $75,__ovly_load
917 .word target_ovl_and_address
918
919 ovl_and_address is a word with the overlay number in the top 14 bits
920 and local store address in the bottom 18 bits.
921
922 Four instruction overlay stubs look like:
923
924 ila $78,ovl_number
925 lnop
926 ila $79,target_address
927 br __ovly_load */
928
929 static bfd_boolean
930 build_stub (struct spu_link_hash_table *htab,
931 bfd *ibfd,
932 asection *isec,
933 enum _stub_type stub_type,
934 struct elf_link_hash_entry *h,
935 const Elf_Internal_Rela *irela,
936 bfd_vma dest,
937 asection *dest_sec)
938 {
939 unsigned int ovl;
940 struct got_entry *g, **head;
941 asection *sec;
942 bfd_vma addend, val, from, to;
943
944 ovl = 0;
945 if (stub_type != nonovl_stub)
946 ovl = spu_elf_section_data (isec->output_section)->u.o.ovl_index;
947
948 if (h != NULL)
949 head = &h->got.glist;
950 else
951 head = elf_local_got_ents (ibfd) + ELF32_R_SYM (irela->r_info);
952
953 addend = 0;
954 if (irela != NULL)
955 addend = irela->r_addend;
956
957 for (g = *head; g != NULL; g = g->next)
958 if (g->addend == addend && (g->ovl == ovl || g->ovl == 0))
959 break;
960 if (g == NULL)
961 abort ();
962
963 if (g->ovl == 0 && ovl != 0)
964 return TRUE;
965
966 if (g->stub_addr != (bfd_vma) -1)
967 return TRUE;
968
969 sec = htab->stub_sec[ovl];
970 dest += dest_sec->output_offset + dest_sec->output_section->vma;
971 from = sec->size + sec->output_offset + sec->output_section->vma;
972 g->stub_addr = from;
973 to = (htab->ovly_load->root.u.def.value
974 + htab->ovly_load->root.u.def.section->output_offset
975 + htab->ovly_load->root.u.def.section->output_section->vma);
976 val = to - from;
977 if (OVL_STUB_SIZE == 16)
978 val -= 12;
979 if (((dest | to | from) & 3) != 0
980 || val + 0x40000 >= 0x80000)
981 {
982 htab->stub_err = 1;
983 return FALSE;
984 }
985 ovl = spu_elf_section_data (dest_sec->output_section)->u.o.ovl_index;
986
987 if (OVL_STUB_SIZE == 16)
988 {
989 bfd_put_32 (sec->owner, ILA + ((ovl << 7) & 0x01ffff80) + 78,
990 sec->contents + sec->size);
991 bfd_put_32 (sec->owner, LNOP,
992 sec->contents + sec->size + 4);
993 bfd_put_32 (sec->owner, ILA + ((dest << 7) & 0x01ffff80) + 79,
994 sec->contents + sec->size + 8);
995 bfd_put_32 (sec->owner, BR + ((val << 5) & 0x007fff80),
996 sec->contents + sec->size + 12);
997 }
998 else if (OVL_STUB_SIZE == 8)
999 {
1000 bfd_put_32 (sec->owner, BRSL + ((val << 5) & 0x007fff80) + 75,
1001 sec->contents + sec->size);
1002
1003 val = (dest & 0x3ffff) | (ovl << 18);
1004 bfd_put_32 (sec->owner, val,
1005 sec->contents + sec->size + 4);
1006 }
1007 else
1008 abort ();
1009 sec->size += OVL_STUB_SIZE;
1010
1011 if (htab->emit_stub_syms)
1012 {
1013 size_t len;
1014 char *name;
1015 int add;
1016
1017 len = 8 + sizeof (".ovl_call.") - 1;
1018 if (h != NULL)
1019 len += strlen (h->root.root.string);
1020 else
1021 len += 8 + 1 + 8;
1022 add = 0;
1023 if (irela != NULL)
1024 add = (int) irela->r_addend & 0xffffffff;
1025 if (add != 0)
1026 len += 1 + 8;
1027 name = bfd_malloc (len);
1028 if (name == NULL)
1029 return FALSE;
1030
1031 sprintf (name, "%08x.ovl_call.", g->ovl);
1032 if (h != NULL)
1033 strcpy (name + 8 + sizeof (".ovl_call.") - 1, h->root.root.string);
1034 else
1035 sprintf (name + 8 + sizeof (".ovl_call.") - 1, "%x:%x",
1036 dest_sec->id & 0xffffffff,
1037 (int) ELF32_R_SYM (irela->r_info) & 0xffffffff);
1038 if (add != 0)
1039 sprintf (name + len - 9, "+%x", add);
1040
1041 h = elf_link_hash_lookup (&htab->elf, name, TRUE, TRUE, FALSE);
1042 free (name);
1043 if (h == NULL)
1044 return FALSE;
1045 if (h->root.type == bfd_link_hash_new)
1046 {
1047 h->root.type = bfd_link_hash_defined;
1048 h->root.u.def.section = sec;
1049 h->root.u.def.value = sec->size - OVL_STUB_SIZE;
1050 h->size = OVL_STUB_SIZE;
1051 h->type = STT_FUNC;
1052 h->ref_regular = 1;
1053 h->def_regular = 1;
1054 h->ref_regular_nonweak = 1;
1055 h->forced_local = 1;
1056 h->non_elf = 0;
1057 }
1058 }
1059
1060 return TRUE;
1061 }
1062
1063 /* Called via elf_link_hash_traverse to allocate stubs for any _SPUEAR_
1064 symbols. */
1065
1066 static bfd_boolean
1067 allocate_spuear_stubs (struct elf_link_hash_entry *h, void *inf)
1068 {
1069 /* Symbols starting with _SPUEAR_ need a stub because they may be
1070 invoked by the PPU. */
1071 struct bfd_link_info *info = inf;
1072 struct spu_link_hash_table *htab = spu_hash_table (info);
1073 asection *sym_sec;
1074
1075 if ((h->root.type == bfd_link_hash_defined
1076 || h->root.type == bfd_link_hash_defweak)
1077 && h->def_regular
1078 && strncmp (h->root.root.string, "_SPUEAR_", 8) == 0
1079 && (sym_sec = h->root.u.def.section) != NULL
1080 && sym_sec->output_section != NULL
1081 && sym_sec->output_section->owner == info->output_bfd
1082 && spu_elf_section_data (sym_sec->output_section) != NULL
1083 && (spu_elf_section_data (sym_sec->output_section)->u.o.ovl_index != 0
1084 || htab->non_overlay_stubs))
1085 {
1086 return count_stub (htab, NULL, NULL, nonovl_stub, h, NULL);
1087 }
1088
1089 return TRUE;
1090 }
1091
1092 static bfd_boolean
1093 build_spuear_stubs (struct elf_link_hash_entry *h, void *inf)
1094 {
1095 /* Symbols starting with _SPUEAR_ need a stub because they may be
1096 invoked by the PPU. */
1097 struct bfd_link_info *info = inf;
1098 struct spu_link_hash_table *htab = spu_hash_table (info);
1099 asection *sym_sec;
1100
1101 if ((h->root.type == bfd_link_hash_defined
1102 || h->root.type == bfd_link_hash_defweak)
1103 && h->def_regular
1104 && strncmp (h->root.root.string, "_SPUEAR_", 8) == 0
1105 && (sym_sec = h->root.u.def.section) != NULL
1106 && sym_sec->output_section != NULL
1107 && sym_sec->output_section->owner == info->output_bfd
1108 && spu_elf_section_data (sym_sec->output_section) != NULL
1109 && (spu_elf_section_data (sym_sec->output_section)->u.o.ovl_index != 0
1110 || htab->non_overlay_stubs))
1111 {
1112 return build_stub (htab, NULL, NULL, nonovl_stub, h, NULL,
1113 h->root.u.def.value, sym_sec);
1114 }
1115
1116 return TRUE;
1117 }
1118
1119 /* Size or build stubs. */
1120
1121 static bfd_boolean
1122 process_stubs (struct bfd_link_info *info, bfd_boolean build)
1123 {
1124 struct spu_link_hash_table *htab = spu_hash_table (info);
1125 bfd *ibfd;
1126
1127 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1128 {
1129 extern const bfd_target bfd_elf32_spu_vec;
1130 Elf_Internal_Shdr *symtab_hdr;
1131 asection *isec;
1132 Elf_Internal_Sym *local_syms = NULL;
1133
1134 if (ibfd->xvec != &bfd_elf32_spu_vec)
1135 continue;
1136
1137 /* We'll need the symbol table in a second. */
1138 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1139 if (symtab_hdr->sh_info == 0)
1140 continue;
1141
1142 /* Walk over each section attached to the input bfd. */
1143 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
1144 {
1145 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
1146
1147 /* If there aren't any relocs, then there's nothing more to do. */
1148 if ((isec->flags & SEC_RELOC) == 0
1149 || isec->reloc_count == 0)
1150 continue;
1151
1152 if (!maybe_needs_stubs (isec, info->output_bfd))
1153 continue;
1154
1155 /* Get the relocs. */
1156 internal_relocs = _bfd_elf_link_read_relocs (ibfd, isec, NULL, NULL,
1157 info->keep_memory);
1158 if (internal_relocs == NULL)
1159 goto error_ret_free_local;
1160
1161 /* Now examine each relocation. */
1162 irela = internal_relocs;
1163 irelaend = irela + isec->reloc_count;
1164 for (; irela < irelaend; irela++)
1165 {
1166 enum elf_spu_reloc_type r_type;
1167 unsigned int r_indx;
1168 asection *sym_sec;
1169 Elf_Internal_Sym *sym;
1170 struct elf_link_hash_entry *h;
1171 enum _stub_type stub_type;
1172
1173 r_type = ELF32_R_TYPE (irela->r_info);
1174 r_indx = ELF32_R_SYM (irela->r_info);
1175
1176 if (r_type >= R_SPU_max)
1177 {
1178 bfd_set_error (bfd_error_bad_value);
1179 error_ret_free_internal:
1180 if (elf_section_data (isec)->relocs != internal_relocs)
1181 free (internal_relocs);
1182 error_ret_free_local:
1183 if (local_syms != NULL
1184 && (symtab_hdr->contents
1185 != (unsigned char *) local_syms))
1186 free (local_syms);
1187 return FALSE;
1188 }
1189
1190 /* Determine the reloc target section. */
1191 if (!get_sym_h (&h, &sym, &sym_sec, &local_syms, r_indx, ibfd))
1192 goto error_ret_free_internal;
1193
1194 stub_type = needs_ovl_stub (h, sym, sym_sec, isec, irela,
1195 NULL, info);
1196 if (stub_type == no_stub)
1197 continue;
1198 else if (stub_type == stub_error)
1199 goto error_ret_free_internal;
1200
1201 if (htab->stub_count == NULL)
1202 {
1203 bfd_size_type amt;
1204 amt = (htab->num_overlays + 1) * sizeof (*htab->stub_count);
1205 htab->stub_count = bfd_zmalloc (amt);
1206 if (htab->stub_count == NULL)
1207 goto error_ret_free_internal;
1208 }
1209
1210 if (!build)
1211 {
1212 if (!count_stub (htab, ibfd, isec, stub_type, h, irela))
1213 goto error_ret_free_internal;
1214 }
1215 else
1216 {
1217 bfd_vma dest;
1218
1219 if (h != NULL)
1220 dest = h->root.u.def.value;
1221 else
1222 dest = sym->st_value;
1223 dest += irela->r_addend;
1224 if (!build_stub (htab, ibfd, isec, stub_type, h, irela,
1225 dest, sym_sec))
1226 goto error_ret_free_internal;
1227 }
1228 }
1229
1230 /* We're done with the internal relocs, free them. */
1231 if (elf_section_data (isec)->relocs != internal_relocs)
1232 free (internal_relocs);
1233 }
1234
1235 if (local_syms != NULL
1236 && symtab_hdr->contents != (unsigned char *) local_syms)
1237 {
1238 if (!info->keep_memory)
1239 free (local_syms);
1240 else
1241 symtab_hdr->contents = (unsigned char *) local_syms;
1242 }
1243 }
1244
1245 return TRUE;
1246 }
1247
1248 /* Allocate space for overlay call and return stubs. */
1249
1250 int
1251 spu_elf_size_stubs (struct bfd_link_info *info,
1252 void (*place_spu_section) (asection *, asection *,
1253 const char *),
1254 int non_overlay_stubs)
1255 {
1256 struct spu_link_hash_table *htab = spu_hash_table (info);
1257 bfd *ibfd;
1258 bfd_size_type amt;
1259 flagword flags;
1260 unsigned int i;
1261 asection *stub;
1262
1263 htab->non_overlay_stubs = non_overlay_stubs;
1264 if (!process_stubs (info, FALSE))
1265 return 0;
1266
1267 elf_link_hash_traverse (&htab->elf, allocate_spuear_stubs, info);
1268 if (htab->stub_err)
1269 return 0;
1270
1271 if (htab->stub_count == NULL)
1272 return 1;
1273
1274 ibfd = info->input_bfds;
1275 amt = (htab->num_overlays + 1) * sizeof (*htab->stub_sec);
1276 htab->stub_sec = bfd_zmalloc (amt);
1277 if (htab->stub_sec == NULL)
1278 return 0;
1279
1280 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
1281 | SEC_HAS_CONTENTS | SEC_IN_MEMORY);
1282 stub = bfd_make_section_anyway_with_flags (ibfd, ".stub", flags);
1283 htab->stub_sec[0] = stub;
1284 if (stub == NULL
1285 || !bfd_set_section_alignment (ibfd, stub, 3 + (OVL_STUB_SIZE > 8)))
1286 return 0;
1287 stub->size = htab->stub_count[0] * OVL_STUB_SIZE;
1288 (*place_spu_section) (stub, NULL, ".text");
1289
1290 for (i = 0; i < htab->num_overlays; ++i)
1291 {
1292 asection *osec = htab->ovl_sec[i];
1293 unsigned int ovl = spu_elf_section_data (osec)->u.o.ovl_index;
1294 stub = bfd_make_section_anyway_with_flags (ibfd, ".stub", flags);
1295 htab->stub_sec[ovl] = stub;
1296 if (stub == NULL
1297 || !bfd_set_section_alignment (ibfd, stub, 3 + (OVL_STUB_SIZE > 8)))
1298 return 0;
1299 stub->size = htab->stub_count[ovl] * OVL_STUB_SIZE;
1300 (*place_spu_section) (stub, osec, NULL);
1301 }
1302
1303 /* htab->ovtab consists of two arrays.
1304 . struct {
1305 . u32 vma;
1306 . u32 size;
1307 . u32 file_off;
1308 . u32 buf;
1309 . } _ovly_table[];
1310 .
1311 . struct {
1312 . u32 mapped;
1313 . } _ovly_buf_table[];
1314 . */
1315
1316 flags = (SEC_ALLOC | SEC_LOAD
1317 | SEC_HAS_CONTENTS | SEC_IN_MEMORY);
1318 htab->ovtab = bfd_make_section_anyway_with_flags (ibfd, ".ovtab", flags);
1319 if (htab->ovtab == NULL
1320 || !bfd_set_section_alignment (ibfd, htab->ovtab, 4))
1321 return 0;
1322
1323 htab->ovtab->size = htab->num_overlays * 16 + 16 + htab->num_buf * 4;
1324 (*place_spu_section) (htab->ovtab, NULL, ".data");
1325
1326 htab->toe = bfd_make_section_anyway_with_flags (ibfd, ".toe", SEC_ALLOC);
1327 if (htab->toe == NULL
1328 || !bfd_set_section_alignment (ibfd, htab->toe, 4))
1329 return 0;
1330 htab->toe->size = 16;
1331 (*place_spu_section) (htab->toe, NULL, ".toe");
1332
1333 return 2;
1334 }
1335
1336 /* Functions to handle embedded spu_ovl.o object. */
1337
1338 static void *
1339 ovl_mgr_open (struct bfd *nbfd ATTRIBUTE_UNUSED, void *stream)
1340 {
1341 return stream;
1342 }
1343
1344 static file_ptr
1345 ovl_mgr_pread (struct bfd *abfd ATTRIBUTE_UNUSED,
1346 void *stream,
1347 void *buf,
1348 file_ptr nbytes,
1349 file_ptr offset)
1350 {
1351 struct _ovl_stream *os;
1352 size_t count;
1353 size_t max;
1354
1355 os = (struct _ovl_stream *) stream;
1356 max = (const char *) os->end - (const char *) os->start;
1357
1358 if ((ufile_ptr) offset >= max)
1359 return 0;
1360
1361 count = nbytes;
1362 if (count > max - offset)
1363 count = max - offset;
1364
1365 memcpy (buf, (const char *) os->start + offset, count);
1366 return count;
1367 }
1368
1369 bfd_boolean
1370 spu_elf_open_builtin_lib (bfd **ovl_bfd, const struct _ovl_stream *stream)
1371 {
1372 *ovl_bfd = bfd_openr_iovec ("builtin ovl_mgr",
1373 "elf32-spu",
1374 ovl_mgr_open,
1375 (void *) stream,
1376 ovl_mgr_pread,
1377 NULL,
1378 NULL);
1379 return *ovl_bfd != NULL;
1380 }
1381
1382 /* Define an STT_OBJECT symbol. */
1383
1384 static struct elf_link_hash_entry *
1385 define_ovtab_symbol (struct spu_link_hash_table *htab, const char *name)
1386 {
1387 struct elf_link_hash_entry *h;
1388
1389 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
1390 if (h == NULL)
1391 return NULL;
1392
1393 if (h->root.type != bfd_link_hash_defined
1394 || !h->def_regular)
1395 {
1396 h->root.type = bfd_link_hash_defined;
1397 h->root.u.def.section = htab->ovtab;
1398 h->type = STT_OBJECT;
1399 h->ref_regular = 1;
1400 h->def_regular = 1;
1401 h->ref_regular_nonweak = 1;
1402 h->non_elf = 0;
1403 }
1404 else
1405 {
1406 (*_bfd_error_handler) (_("%B is not allowed to define %s"),
1407 h->root.u.def.section->owner,
1408 h->root.root.string);
1409 bfd_set_error (bfd_error_bad_value);
1410 return NULL;
1411 }
1412
1413 return h;
1414 }
1415
1416 /* Fill in all stubs and the overlay tables. */
1417
1418 bfd_boolean
1419 spu_elf_build_stubs (struct bfd_link_info *info, int emit_syms)
1420 {
1421 struct spu_link_hash_table *htab = spu_hash_table (info);
1422 struct elf_link_hash_entry *h;
1423 bfd_byte *p;
1424 asection *s;
1425 bfd *obfd;
1426 unsigned int i;
1427
1428 htab->emit_stub_syms = emit_syms;
1429 if (htab->stub_count == NULL)
1430 return TRUE;
1431
1432 for (i = 0; i <= htab->num_overlays; i++)
1433 if (htab->stub_sec[i]->size != 0)
1434 {
1435 htab->stub_sec[i]->contents = bfd_zalloc (htab->stub_sec[i]->owner,
1436 htab->stub_sec[i]->size);
1437 if (htab->stub_sec[i]->contents == NULL)
1438 return FALSE;
1439 htab->stub_sec[i]->rawsize = htab->stub_sec[i]->size;
1440 htab->stub_sec[i]->size = 0;
1441 }
1442
1443 h = elf_link_hash_lookup (&htab->elf, "__ovly_load", FALSE, FALSE, FALSE);
1444 htab->ovly_load = h;
1445 BFD_ASSERT (h != NULL
1446 && (h->root.type == bfd_link_hash_defined
1447 || h->root.type == bfd_link_hash_defweak)
1448 && h->def_regular);
1449
1450 s = h->root.u.def.section->output_section;
1451 if (spu_elf_section_data (s)->u.o.ovl_index)
1452 {
1453 (*_bfd_error_handler) (_("%s in overlay section"),
1454 h->root.root.string);
1455 bfd_set_error (bfd_error_bad_value);
1456 return FALSE;
1457 }
1458
1459 h = elf_link_hash_lookup (&htab->elf, "__ovly_return", FALSE, FALSE, FALSE);
1460 htab->ovly_return = h;
1461
1462 /* Fill in all the stubs. */
1463 process_stubs (info, TRUE);
1464 if (!htab->stub_err)
1465 elf_link_hash_traverse (&htab->elf, build_spuear_stubs, info);
1466
1467 if (htab->stub_err)
1468 {
1469 (*_bfd_error_handler) (_("overlay stub relocation overflow"));
1470 bfd_set_error (bfd_error_bad_value);
1471 return FALSE;
1472 }
1473
1474 for (i = 0; i <= htab->num_overlays; i++)
1475 {
1476 if (htab->stub_sec[i]->size != htab->stub_sec[i]->rawsize)
1477 {
1478 (*_bfd_error_handler) (_("stubs don't match calculated size"));
1479 bfd_set_error (bfd_error_bad_value);
1480 return FALSE;
1481 }
1482 htab->stub_sec[i]->rawsize = 0;
1483 }
1484
1485 htab->ovtab->contents = bfd_zalloc (htab->ovtab->owner, htab->ovtab->size);
1486 if (htab->ovtab->contents == NULL)
1487 return FALSE;
1488
1489 /* Write out _ovly_table. */
1490 p = htab->ovtab->contents;
1491 /* set low bit of .size to mark non-overlay area as present. */
1492 p[7] = 1;
1493 obfd = htab->ovtab->output_section->owner;
1494 for (s = obfd->sections; s != NULL; s = s->next)
1495 {
1496 unsigned int ovl_index = spu_elf_section_data (s)->u.o.ovl_index;
1497
1498 if (ovl_index != 0)
1499 {
1500 unsigned long off = ovl_index * 16;
1501 unsigned int ovl_buf = spu_elf_section_data (s)->u.o.ovl_buf;
1502
1503 bfd_put_32 (htab->ovtab->owner, s->vma, p + off);
1504 bfd_put_32 (htab->ovtab->owner, (s->size + 15) & -16, p + off + 4);
1505 /* file_off written later in spu_elf_modify_program_headers. */
1506 bfd_put_32 (htab->ovtab->owner, ovl_buf, p + off + 12);
1507 }
1508 }
1509
1510 h = define_ovtab_symbol (htab, "_ovly_table");
1511 if (h == NULL)
1512 return FALSE;
1513 h->root.u.def.value = 16;
1514 h->size = htab->num_overlays * 16;
1515
1516 h = define_ovtab_symbol (htab, "_ovly_table_end");
1517 if (h == NULL)
1518 return FALSE;
1519 h->root.u.def.value = htab->num_overlays * 16 + 16;
1520 h->size = 0;
1521
1522 h = define_ovtab_symbol (htab, "_ovly_buf_table");
1523 if (h == NULL)
1524 return FALSE;
1525 h->root.u.def.value = htab->num_overlays * 16 + 16;
1526 h->size = htab->num_buf * 4;
1527
1528 h = define_ovtab_symbol (htab, "_ovly_buf_table_end");
1529 if (h == NULL)
1530 return FALSE;
1531 h->root.u.def.value = htab->num_overlays * 16 + 16 + htab->num_buf * 4;
1532 h->size = 0;
1533
1534 h = define_ovtab_symbol (htab, "_EAR_");
1535 if (h == NULL)
1536 return FALSE;
1537 h->root.u.def.section = htab->toe;
1538 h->root.u.def.value = 0;
1539 h->size = 16;
1540
1541 return TRUE;
1542 }
1543
1544 /* Check that all loadable section VMAs lie in the range
1545 LO .. HI inclusive, and stash some parameters for --auto-overlay. */
1546
1547 asection *
1548 spu_elf_check_vma (struct bfd_link_info *info,
1549 int auto_overlay,
1550 unsigned int lo,
1551 unsigned int hi,
1552 unsigned int overlay_fixed,
1553 unsigned int reserved,
1554 int extra_stack_space,
1555 void (*spu_elf_load_ovl_mgr) (void),
1556 FILE *(*spu_elf_open_overlay_script) (void),
1557 void (*spu_elf_relink) (void))
1558 {
1559 struct elf_segment_map *m;
1560 unsigned int i;
1561 struct spu_link_hash_table *htab = spu_hash_table (info);
1562 bfd *abfd = info->output_bfd;
1563
1564 if (auto_overlay & AUTO_OVERLAY)
1565 htab->auto_overlay = auto_overlay;
1566 htab->local_store = hi + 1 - lo;
1567 htab->overlay_fixed = overlay_fixed;
1568 htab->reserved = reserved;
1569 htab->extra_stack_space = extra_stack_space;
1570 htab->spu_elf_load_ovl_mgr = spu_elf_load_ovl_mgr;
1571 htab->spu_elf_open_overlay_script = spu_elf_open_overlay_script;
1572 htab->spu_elf_relink = spu_elf_relink;
1573
1574 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
1575 if (m->p_type == PT_LOAD)
1576 for (i = 0; i < m->count; i++)
1577 if (m->sections[i]->size != 0
1578 && (m->sections[i]->vma < lo
1579 || m->sections[i]->vma > hi
1580 || m->sections[i]->vma + m->sections[i]->size - 1 > hi))
1581 return m->sections[i];
1582
1583 /* No need for overlays if it all fits. */
1584 htab->auto_overlay = 0;
1585 return NULL;
1586 }
1587
1588 /* OFFSET in SEC (presumably) is the beginning of a function prologue.
1589 Search for stack adjusting insns, and return the sp delta. */
1590
1591 static int
1592 find_function_stack_adjust (asection *sec, bfd_vma offset)
1593 {
1594 int unrecog;
1595 int reg[128];
1596
1597 memset (reg, 0, sizeof (reg));
1598 for (unrecog = 0; offset + 4 <= sec->size && unrecog < 32; offset += 4)
1599 {
1600 unsigned char buf[4];
1601 int rt, ra;
1602 int imm;
1603
1604 /* Assume no relocs on stack adjusing insns. */
1605 if (!bfd_get_section_contents (sec->owner, sec, buf, offset, 4))
1606 break;
1607
1608 if (buf[0] == 0x24 /* stqd */)
1609 continue;
1610
1611 rt = buf[3] & 0x7f;
1612 ra = ((buf[2] & 0x3f) << 1) | (buf[3] >> 7);
1613 /* Partly decoded immediate field. */
1614 imm = (buf[1] << 9) | (buf[2] << 1) | (buf[3] >> 7);
1615
1616 if (buf[0] == 0x1c /* ai */)
1617 {
1618 imm >>= 7;
1619 imm = (imm ^ 0x200) - 0x200;
1620 reg[rt] = reg[ra] + imm;
1621
1622 if (rt == 1 /* sp */)
1623 {
1624 if (imm > 0)
1625 break;
1626 return reg[rt];
1627 }
1628 }
1629 else if (buf[0] == 0x18 && (buf[1] & 0xe0) == 0 /* a */)
1630 {
1631 int rb = ((buf[1] & 0x1f) << 2) | ((buf[2] & 0xc0) >> 6);
1632
1633 reg[rt] = reg[ra] + reg[rb];
1634 if (rt == 1)
1635 return reg[rt];
1636 }
1637 else if ((buf[0] & 0xfc) == 0x40 /* il, ilh, ilhu, ila */)
1638 {
1639 if (buf[0] >= 0x42 /* ila */)
1640 imm |= (buf[0] & 1) << 17;
1641 else
1642 {
1643 imm &= 0xffff;
1644
1645 if (buf[0] == 0x40 /* il */)
1646 {
1647 if ((buf[1] & 0x80) == 0)
1648 goto unknown_insn;
1649 imm = (imm ^ 0x8000) - 0x8000;
1650 }
1651 else if ((buf[1] & 0x80) == 0 /* ilhu */)
1652 imm <<= 16;
1653 }
1654 reg[rt] = imm;
1655 continue;
1656 }
1657 else if (buf[0] == 0x60 && (buf[1] & 0x80) != 0 /* iohl */)
1658 {
1659 reg[rt] |= imm & 0xffff;
1660 continue;
1661 }
1662 else if (buf[0] == 0x04 /* ori */)
1663 {
1664 imm >>= 7;
1665 imm = (imm ^ 0x200) - 0x200;
1666 reg[rt] = reg[ra] | imm;
1667 continue;
1668 }
1669 else if ((buf[0] == 0x33 && imm == 1 /* brsl .+4 */)
1670 || (buf[0] == 0x08 && (buf[1] & 0xe0) == 0 /* sf */))
1671 {
1672 /* Used in pic reg load. Say rt is trashed. */
1673 reg[rt] = 0;
1674 continue;
1675 }
1676 else if (is_branch (buf) || is_indirect_branch (buf))
1677 /* If we hit a branch then we must be out of the prologue. */
1678 break;
1679 unknown_insn:
1680 ++unrecog;
1681 }
1682
1683 return 0;
1684 }
1685
1686 /* qsort predicate to sort symbols by section and value. */
1687
1688 static Elf_Internal_Sym *sort_syms_syms;
1689 static asection **sort_syms_psecs;
1690
1691 static int
1692 sort_syms (const void *a, const void *b)
1693 {
1694 Elf_Internal_Sym *const *s1 = a;
1695 Elf_Internal_Sym *const *s2 = b;
1696 asection *sec1,*sec2;
1697 bfd_signed_vma delta;
1698
1699 sec1 = sort_syms_psecs[*s1 - sort_syms_syms];
1700 sec2 = sort_syms_psecs[*s2 - sort_syms_syms];
1701
1702 if (sec1 != sec2)
1703 return sec1->index - sec2->index;
1704
1705 delta = (*s1)->st_value - (*s2)->st_value;
1706 if (delta != 0)
1707 return delta < 0 ? -1 : 1;
1708
1709 delta = (*s2)->st_size - (*s1)->st_size;
1710 if (delta != 0)
1711 return delta < 0 ? -1 : 1;
1712
1713 return *s1 < *s2 ? -1 : 1;
1714 }
1715
1716 struct call_info
1717 {
1718 struct function_info *fun;
1719 struct call_info *next;
1720 unsigned int count;
1721 unsigned int max_depth;
1722 unsigned int is_tail : 1;
1723 unsigned int is_pasted : 1;
1724 };
1725
1726 struct function_info
1727 {
1728 /* List of functions called. Also branches to hot/cold part of
1729 function. */
1730 struct call_info *call_list;
1731 /* For hot/cold part of function, point to owner. */
1732 struct function_info *start;
1733 /* Symbol at start of function. */
1734 union {
1735 Elf_Internal_Sym *sym;
1736 struct elf_link_hash_entry *h;
1737 } u;
1738 /* Function section. */
1739 asection *sec;
1740 asection *rodata;
1741 /* Where last called from, and number of sections called from. */
1742 asection *last_caller;
1743 unsigned int call_count;
1744 /* Address range of (this part of) function. */
1745 bfd_vma lo, hi;
1746 /* Stack usage. */
1747 int stack;
1748 /* Distance from root of call tree. Tail and hot/cold branches
1749 count as one deeper. We aren't counting stack frames here. */
1750 unsigned int depth;
1751 /* Set if global symbol. */
1752 unsigned int global : 1;
1753 /* Set if known to be start of function (as distinct from a hunk
1754 in hot/cold section. */
1755 unsigned int is_func : 1;
1756 /* Set if not a root node. */
1757 unsigned int non_root : 1;
1758 /* Flags used during call tree traversal. It's cheaper to replicate
1759 the visit flags than have one which needs clearing after a traversal. */
1760 unsigned int visit1 : 1;
1761 unsigned int visit2 : 1;
1762 unsigned int marking : 1;
1763 unsigned int visit3 : 1;
1764 unsigned int visit4 : 1;
1765 unsigned int visit5 : 1;
1766 unsigned int visit6 : 1;
1767 unsigned int visit7 : 1;
1768 };
1769
1770 struct spu_elf_stack_info
1771 {
1772 int num_fun;
1773 int max_fun;
1774 /* Variable size array describing functions, one per contiguous
1775 address range belonging to a function. */
1776 struct function_info fun[1];
1777 };
1778
1779 /* Allocate a struct spu_elf_stack_info with MAX_FUN struct function_info
1780 entries for section SEC. */
1781
1782 static struct spu_elf_stack_info *
1783 alloc_stack_info (asection *sec, int max_fun)
1784 {
1785 struct _spu_elf_section_data *sec_data = spu_elf_section_data (sec);
1786 bfd_size_type amt;
1787
1788 amt = sizeof (struct spu_elf_stack_info);
1789 amt += (max_fun - 1) * sizeof (struct function_info);
1790 sec_data->u.i.stack_info = bfd_zmalloc (amt);
1791 if (sec_data->u.i.stack_info != NULL)
1792 sec_data->u.i.stack_info->max_fun = max_fun;
1793 return sec_data->u.i.stack_info;
1794 }
1795
1796 /* Add a new struct function_info describing a (part of a) function
1797 starting at SYM_H. Keep the array sorted by address. */
1798
1799 static struct function_info *
1800 maybe_insert_function (asection *sec,
1801 void *sym_h,
1802 bfd_boolean global,
1803 bfd_boolean is_func)
1804 {
1805 struct _spu_elf_section_data *sec_data = spu_elf_section_data (sec);
1806 struct spu_elf_stack_info *sinfo = sec_data->u.i.stack_info;
1807 int i;
1808 bfd_vma off, size;
1809
1810 if (sinfo == NULL)
1811 {
1812 sinfo = alloc_stack_info (sec, 20);
1813 if (sinfo == NULL)
1814 return NULL;
1815 }
1816
1817 if (!global)
1818 {
1819 Elf_Internal_Sym *sym = sym_h;
1820 off = sym->st_value;
1821 size = sym->st_size;
1822 }
1823 else
1824 {
1825 struct elf_link_hash_entry *h = sym_h;
1826 off = h->root.u.def.value;
1827 size = h->size;
1828 }
1829
1830 for (i = sinfo->num_fun; --i >= 0; )
1831 if (sinfo->fun[i].lo <= off)
1832 break;
1833
1834 if (i >= 0)
1835 {
1836 /* Don't add another entry for an alias, but do update some
1837 info. */
1838 if (sinfo->fun[i].lo == off)
1839 {
1840 /* Prefer globals over local syms. */
1841 if (global && !sinfo->fun[i].global)
1842 {
1843 sinfo->fun[i].global = TRUE;
1844 sinfo->fun[i].u.h = sym_h;
1845 }
1846 if (is_func)
1847 sinfo->fun[i].is_func = TRUE;
1848 return &sinfo->fun[i];
1849 }
1850 /* Ignore a zero-size symbol inside an existing function. */
1851 else if (sinfo->fun[i].hi > off && size == 0)
1852 return &sinfo->fun[i];
1853 }
1854
1855 if (sinfo->num_fun >= sinfo->max_fun)
1856 {
1857 bfd_size_type amt = sizeof (struct spu_elf_stack_info);
1858 bfd_size_type old = amt;
1859
1860 old += (sinfo->max_fun - 1) * sizeof (struct function_info);
1861 sinfo->max_fun += 20 + (sinfo->max_fun >> 1);
1862 amt += (sinfo->max_fun - 1) * sizeof (struct function_info);
1863 sinfo = bfd_realloc (sinfo, amt);
1864 if (sinfo == NULL)
1865 return NULL;
1866 memset ((char *) sinfo + old, 0, amt - old);
1867 sec_data->u.i.stack_info = sinfo;
1868 }
1869
1870 if (++i < sinfo->num_fun)
1871 memmove (&sinfo->fun[i + 1], &sinfo->fun[i],
1872 (sinfo->num_fun - i) * sizeof (sinfo->fun[i]));
1873 sinfo->fun[i].is_func = is_func;
1874 sinfo->fun[i].global = global;
1875 sinfo->fun[i].sec = sec;
1876 if (global)
1877 sinfo->fun[i].u.h = sym_h;
1878 else
1879 sinfo->fun[i].u.sym = sym_h;
1880 sinfo->fun[i].lo = off;
1881 sinfo->fun[i].hi = off + size;
1882 sinfo->fun[i].stack = -find_function_stack_adjust (sec, off);
1883 sinfo->num_fun += 1;
1884 return &sinfo->fun[i];
1885 }
1886
1887 /* Return the name of FUN. */
1888
1889 static const char *
1890 func_name (struct function_info *fun)
1891 {
1892 asection *sec;
1893 bfd *ibfd;
1894 Elf_Internal_Shdr *symtab_hdr;
1895
1896 while (fun->start != NULL)
1897 fun = fun->start;
1898
1899 if (fun->global)
1900 return fun->u.h->root.root.string;
1901
1902 sec = fun->sec;
1903 if (fun->u.sym->st_name == 0)
1904 {
1905 size_t len = strlen (sec->name);
1906 char *name = bfd_malloc (len + 10);
1907 if (name == NULL)
1908 return "(null)";
1909 sprintf (name, "%s+%lx", sec->name,
1910 (unsigned long) fun->u.sym->st_value & 0xffffffff);
1911 return name;
1912 }
1913 ibfd = sec->owner;
1914 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1915 return bfd_elf_sym_name (ibfd, symtab_hdr, fun->u.sym, sec);
1916 }
1917
1918 /* Read the instruction at OFF in SEC. Return true iff the instruction
1919 is a nop, lnop, or stop 0 (all zero insn). */
1920
1921 static bfd_boolean
1922 is_nop (asection *sec, bfd_vma off)
1923 {
1924 unsigned char insn[4];
1925
1926 if (off + 4 > sec->size
1927 || !bfd_get_section_contents (sec->owner, sec, insn, off, 4))
1928 return FALSE;
1929 if ((insn[0] & 0xbf) == 0 && (insn[1] & 0xe0) == 0x20)
1930 return TRUE;
1931 if (insn[0] == 0 && insn[1] == 0 && insn[2] == 0 && insn[3] == 0)
1932 return TRUE;
1933 return FALSE;
1934 }
1935
1936 /* Extend the range of FUN to cover nop padding up to LIMIT.
1937 Return TRUE iff some instruction other than a NOP was found. */
1938
1939 static bfd_boolean
1940 insns_at_end (struct function_info *fun, bfd_vma limit)
1941 {
1942 bfd_vma off = (fun->hi + 3) & -4;
1943
1944 while (off < limit && is_nop (fun->sec, off))
1945 off += 4;
1946 if (off < limit)
1947 {
1948 fun->hi = off;
1949 return TRUE;
1950 }
1951 fun->hi = limit;
1952 return FALSE;
1953 }
1954
1955 /* Check and fix overlapping function ranges. Return TRUE iff there
1956 are gaps in the current info we have about functions in SEC. */
1957
1958 static bfd_boolean
1959 check_function_ranges (asection *sec, struct bfd_link_info *info)
1960 {
1961 struct _spu_elf_section_data *sec_data = spu_elf_section_data (sec);
1962 struct spu_elf_stack_info *sinfo = sec_data->u.i.stack_info;
1963 int i;
1964 bfd_boolean gaps = FALSE;
1965
1966 if (sinfo == NULL)
1967 return FALSE;
1968
1969 for (i = 1; i < sinfo->num_fun; i++)
1970 if (sinfo->fun[i - 1].hi > sinfo->fun[i].lo)
1971 {
1972 /* Fix overlapping symbols. */
1973 const char *f1 = func_name (&sinfo->fun[i - 1]);
1974 const char *f2 = func_name (&sinfo->fun[i]);
1975
1976 info->callbacks->einfo (_("warning: %s overlaps %s\n"), f1, f2);
1977 sinfo->fun[i - 1].hi = sinfo->fun[i].lo;
1978 }
1979 else if (insns_at_end (&sinfo->fun[i - 1], sinfo->fun[i].lo))
1980 gaps = TRUE;
1981
1982 if (sinfo->num_fun == 0)
1983 gaps = TRUE;
1984 else
1985 {
1986 if (sinfo->fun[0].lo != 0)
1987 gaps = TRUE;
1988 if (sinfo->fun[sinfo->num_fun - 1].hi > sec->size)
1989 {
1990 const char *f1 = func_name (&sinfo->fun[sinfo->num_fun - 1]);
1991
1992 info->callbacks->einfo (_("warning: %s exceeds section size\n"), f1);
1993 sinfo->fun[sinfo->num_fun - 1].hi = sec->size;
1994 }
1995 else if (insns_at_end (&sinfo->fun[sinfo->num_fun - 1], sec->size))
1996 gaps = TRUE;
1997 }
1998 return gaps;
1999 }
2000
2001 /* Search current function info for a function that contains address
2002 OFFSET in section SEC. */
2003
2004 static struct function_info *
2005 find_function (asection *sec, bfd_vma offset, struct bfd_link_info *info)
2006 {
2007 struct _spu_elf_section_data *sec_data = spu_elf_section_data (sec);
2008 struct spu_elf_stack_info *sinfo = sec_data->u.i.stack_info;
2009 int lo, hi, mid;
2010
2011 lo = 0;
2012 hi = sinfo->num_fun;
2013 while (lo < hi)
2014 {
2015 mid = (lo + hi) / 2;
2016 if (offset < sinfo->fun[mid].lo)
2017 hi = mid;
2018 else if (offset >= sinfo->fun[mid].hi)
2019 lo = mid + 1;
2020 else
2021 return &sinfo->fun[mid];
2022 }
2023 info->callbacks->einfo (_("%A:0x%v not found in function table\n"),
2024 sec, offset);
2025 return NULL;
2026 }
2027
2028 /* Add CALLEE to CALLER call list if not already present. Return TRUE
2029 if CALLEE was new. If this function return FALSE, CALLEE should
2030 be freed. */
2031
2032 static bfd_boolean
2033 insert_callee (struct function_info *caller, struct call_info *callee)
2034 {
2035 struct call_info **pp, *p;
2036
2037 for (pp = &caller->call_list; (p = *pp) != NULL; pp = &p->next)
2038 if (p->fun == callee->fun)
2039 {
2040 /* Tail calls use less stack than normal calls. Retain entry
2041 for normal call over one for tail call. */
2042 p->is_tail &= callee->is_tail;
2043 if (!p->is_tail)
2044 {
2045 p->fun->start = NULL;
2046 p->fun->is_func = TRUE;
2047 }
2048 p->count += 1;
2049 /* Reorder list so most recent call is first. */
2050 *pp = p->next;
2051 p->next = caller->call_list;
2052 caller->call_list = p;
2053 return FALSE;
2054 }
2055 callee->next = caller->call_list;
2056 callee->count += 1;
2057 caller->call_list = callee;
2058 return TRUE;
2059 }
2060
2061 /* Copy CALL and insert the copy into CALLER. */
2062
2063 static bfd_boolean
2064 copy_callee (struct function_info *caller, const struct call_info *call)
2065 {
2066 struct call_info *callee;
2067 callee = bfd_malloc (sizeof (*callee));
2068 if (callee == NULL)
2069 return FALSE;
2070 *callee = *call;
2071 if (!insert_callee (caller, callee))
2072 free (callee);
2073 return TRUE;
2074 }
2075
2076 /* We're only interested in code sections. Testing SEC_IN_MEMORY excludes
2077 overlay stub sections. */
2078
2079 static bfd_boolean
2080 interesting_section (asection *s, bfd *obfd)
2081 {
2082 return (s->output_section != NULL
2083 && s->output_section->owner == obfd
2084 && ((s->flags & (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_IN_MEMORY))
2085 == (SEC_ALLOC | SEC_LOAD | SEC_CODE))
2086 && s->size != 0);
2087 }
2088
2089 /* Rummage through the relocs for SEC, looking for function calls.
2090 If CALL_TREE is true, fill in call graph. If CALL_TREE is false,
2091 mark destination symbols on calls as being functions. Also
2092 look at branches, which may be tail calls or go to hot/cold
2093 section part of same function. */
2094
2095 static bfd_boolean
2096 mark_functions_via_relocs (asection *sec,
2097 struct bfd_link_info *info,
2098 int call_tree)
2099 {
2100 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2101 Elf_Internal_Shdr *symtab_hdr;
2102 void *psyms;
2103 static bfd_boolean warned;
2104
2105 if (!interesting_section (sec, info->output_bfd)
2106 || sec->reloc_count == 0)
2107 return TRUE;
2108
2109 internal_relocs = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL,
2110 info->keep_memory);
2111 if (internal_relocs == NULL)
2112 return FALSE;
2113
2114 symtab_hdr = &elf_tdata (sec->owner)->symtab_hdr;
2115 psyms = &symtab_hdr->contents;
2116 irela = internal_relocs;
2117 irelaend = irela + sec->reloc_count;
2118 for (; irela < irelaend; irela++)
2119 {
2120 enum elf_spu_reloc_type r_type;
2121 unsigned int r_indx;
2122 asection *sym_sec;
2123 Elf_Internal_Sym *sym;
2124 struct elf_link_hash_entry *h;
2125 bfd_vma val;
2126 bfd_boolean reject, is_call;
2127 struct function_info *caller;
2128 struct call_info *callee;
2129
2130 reject = FALSE;
2131 r_type = ELF32_R_TYPE (irela->r_info);
2132 if (r_type != R_SPU_REL16
2133 && r_type != R_SPU_ADDR16)
2134 {
2135 reject = TRUE;
2136 if (!(call_tree && spu_hash_table (info)->auto_overlay))
2137 continue;
2138 }
2139
2140 r_indx = ELF32_R_SYM (irela->r_info);
2141 if (!get_sym_h (&h, &sym, &sym_sec, psyms, r_indx, sec->owner))
2142 return FALSE;
2143
2144 if (sym_sec == NULL
2145 || sym_sec->output_section == NULL
2146 || sym_sec->output_section->owner != info->output_bfd)
2147 continue;
2148
2149 is_call = FALSE;
2150 if (!reject)
2151 {
2152 unsigned char insn[4];
2153
2154 if (!bfd_get_section_contents (sec->owner, sec, insn,
2155 irela->r_offset, 4))
2156 return FALSE;
2157 if (is_branch (insn))
2158 {
2159 is_call = (insn[0] & 0xfd) == 0x31;
2160 if ((sym_sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_CODE))
2161 != (SEC_ALLOC | SEC_LOAD | SEC_CODE))
2162 {
2163 if (!warned)
2164 info->callbacks->einfo
2165 (_("%B(%A+0x%v): call to non-code section"
2166 " %B(%A), analysis incomplete\n"),
2167 sec->owner, sec, irela->r_offset,
2168 sym_sec->owner, sym_sec);
2169 warned = TRUE;
2170 continue;
2171 }
2172 }
2173 else
2174 {
2175 reject = TRUE;
2176 if (!(call_tree && spu_hash_table (info)->auto_overlay)
2177 || is_hint (insn))
2178 continue;
2179 }
2180 }
2181
2182 if (reject)
2183 {
2184 /* For --auto-overlay, count possible stubs we need for
2185 function pointer references. */
2186 unsigned int sym_type;
2187 if (h)
2188 sym_type = h->type;
2189 else
2190 sym_type = ELF_ST_TYPE (sym->st_info);
2191 if (sym_type == STT_FUNC)
2192 spu_hash_table (info)->non_ovly_stub += 1;
2193 continue;
2194 }
2195
2196 if (h)
2197 val = h->root.u.def.value;
2198 else
2199 val = sym->st_value;
2200 val += irela->r_addend;
2201
2202 if (!call_tree)
2203 {
2204 struct function_info *fun;
2205
2206 if (irela->r_addend != 0)
2207 {
2208 Elf_Internal_Sym *fake = bfd_zmalloc (sizeof (*fake));
2209 if (fake == NULL)
2210 return FALSE;
2211 fake->st_value = val;
2212 fake->st_shndx
2213 = _bfd_elf_section_from_bfd_section (sym_sec->owner, sym_sec);
2214 sym = fake;
2215 }
2216 if (sym)
2217 fun = maybe_insert_function (sym_sec, sym, FALSE, is_call);
2218 else
2219 fun = maybe_insert_function (sym_sec, h, TRUE, is_call);
2220 if (fun == NULL)
2221 return FALSE;
2222 if (irela->r_addend != 0
2223 && fun->u.sym != sym)
2224 free (sym);
2225 continue;
2226 }
2227
2228 caller = find_function (sec, irela->r_offset, info);
2229 if (caller == NULL)
2230 return FALSE;
2231 callee = bfd_malloc (sizeof *callee);
2232 if (callee == NULL)
2233 return FALSE;
2234
2235 callee->fun = find_function (sym_sec, val, info);
2236 if (callee->fun == NULL)
2237 return FALSE;
2238 callee->is_tail = !is_call;
2239 callee->is_pasted = FALSE;
2240 callee->count = 0;
2241 if (callee->fun->last_caller != sec)
2242 {
2243 callee->fun->last_caller = sec;
2244 callee->fun->call_count += 1;
2245 }
2246 if (!insert_callee (caller, callee))
2247 free (callee);
2248 else if (!is_call
2249 && !callee->fun->is_func
2250 && callee->fun->stack == 0)
2251 {
2252 /* This is either a tail call or a branch from one part of
2253 the function to another, ie. hot/cold section. If the
2254 destination has been called by some other function then
2255 it is a separate function. We also assume that functions
2256 are not split across input files. */
2257 if (sec->owner != sym_sec->owner)
2258 {
2259 callee->fun->start = NULL;
2260 callee->fun->is_func = TRUE;
2261 }
2262 else if (callee->fun->start == NULL)
2263 callee->fun->start = caller;
2264 else
2265 {
2266 struct function_info *callee_start;
2267 struct function_info *caller_start;
2268 callee_start = callee->fun;
2269 while (callee_start->start)
2270 callee_start = callee_start->start;
2271 caller_start = caller;
2272 while (caller_start->start)
2273 caller_start = caller_start->start;
2274 if (caller_start != callee_start)
2275 {
2276 callee->fun->start = NULL;
2277 callee->fun->is_func = TRUE;
2278 }
2279 }
2280 }
2281 }
2282
2283 return TRUE;
2284 }
2285
2286 /* Handle something like .init or .fini, which has a piece of a function.
2287 These sections are pasted together to form a single function. */
2288
2289 static bfd_boolean
2290 pasted_function (asection *sec, struct bfd_link_info *info)
2291 {
2292 struct bfd_link_order *l;
2293 struct _spu_elf_section_data *sec_data;
2294 struct spu_elf_stack_info *sinfo;
2295 Elf_Internal_Sym *fake;
2296 struct function_info *fun, *fun_start;
2297
2298 fake = bfd_zmalloc (sizeof (*fake));
2299 if (fake == NULL)
2300 return FALSE;
2301 fake->st_value = 0;
2302 fake->st_size = sec->size;
2303 fake->st_shndx
2304 = _bfd_elf_section_from_bfd_section (sec->owner, sec);
2305 fun = maybe_insert_function (sec, fake, FALSE, FALSE);
2306 if (!fun)
2307 return FALSE;
2308
2309 /* Find a function immediately preceding this section. */
2310 fun_start = NULL;
2311 for (l = sec->output_section->map_head.link_order; l != NULL; l = l->next)
2312 {
2313 if (l->u.indirect.section == sec)
2314 {
2315 if (fun_start != NULL)
2316 {
2317 struct call_info *callee = bfd_malloc (sizeof *callee);
2318 if (callee == NULL)
2319 return FALSE;
2320
2321 fun->start = fun_start;
2322 callee->fun = fun;
2323 callee->is_tail = TRUE;
2324 callee->is_pasted = TRUE;
2325 callee->count = 0;
2326 if (!insert_callee (fun_start, callee))
2327 free (callee);
2328 return TRUE;
2329 }
2330 break;
2331 }
2332 if (l->type == bfd_indirect_link_order
2333 && (sec_data = spu_elf_section_data (l->u.indirect.section)) != NULL
2334 && (sinfo = sec_data->u.i.stack_info) != NULL
2335 && sinfo->num_fun != 0)
2336 fun_start = &sinfo->fun[sinfo->num_fun - 1];
2337 }
2338
2339 info->callbacks->einfo (_("%A link_order not found\n"), sec);
2340 return FALSE;
2341 }
2342
2343 /* Map address ranges in code sections to functions. */
2344
2345 static bfd_boolean
2346 discover_functions (struct bfd_link_info *info)
2347 {
2348 bfd *ibfd;
2349 int bfd_idx;
2350 Elf_Internal_Sym ***psym_arr;
2351 asection ***sec_arr;
2352 bfd_boolean gaps = FALSE;
2353
2354 bfd_idx = 0;
2355 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2356 bfd_idx++;
2357
2358 psym_arr = bfd_zmalloc (bfd_idx * sizeof (*psym_arr));
2359 if (psym_arr == NULL)
2360 return FALSE;
2361 sec_arr = bfd_zmalloc (bfd_idx * sizeof (*sec_arr));
2362 if (sec_arr == NULL)
2363 return FALSE;
2364
2365
2366 for (ibfd = info->input_bfds, bfd_idx = 0;
2367 ibfd != NULL;
2368 ibfd = ibfd->link_next, bfd_idx++)
2369 {
2370 extern const bfd_target bfd_elf32_spu_vec;
2371 Elf_Internal_Shdr *symtab_hdr;
2372 asection *sec;
2373 size_t symcount;
2374 Elf_Internal_Sym *syms, *sy, **psyms, **psy;
2375 asection **psecs, **p;
2376
2377 if (ibfd->xvec != &bfd_elf32_spu_vec)
2378 continue;
2379
2380 /* Read all the symbols. */
2381 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2382 symcount = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
2383 if (symcount == 0)
2384 {
2385 if (!gaps)
2386 for (sec = ibfd->sections; sec != NULL && !gaps; sec = sec->next)
2387 if (interesting_section (sec, info->output_bfd))
2388 {
2389 gaps = TRUE;
2390 break;
2391 }
2392 continue;
2393 }
2394
2395 if (symtab_hdr->contents != NULL)
2396 {
2397 /* Don't use cached symbols since the generic ELF linker
2398 code only reads local symbols, and we need globals too. */
2399 free (symtab_hdr->contents);
2400 symtab_hdr->contents = NULL;
2401 }
2402 syms = bfd_elf_get_elf_syms (ibfd, symtab_hdr, symcount, 0,
2403 NULL, NULL, NULL);
2404 symtab_hdr->contents = (void *) syms;
2405 if (syms == NULL)
2406 return FALSE;
2407
2408 /* Select defined function symbols that are going to be output. */
2409 psyms = bfd_malloc ((symcount + 1) * sizeof (*psyms));
2410 if (psyms == NULL)
2411 return FALSE;
2412 psym_arr[bfd_idx] = psyms;
2413 psecs = bfd_malloc (symcount * sizeof (*psecs));
2414 if (psecs == NULL)
2415 return FALSE;
2416 sec_arr[bfd_idx] = psecs;
2417 for (psy = psyms, p = psecs, sy = syms; sy < syms + symcount; ++p, ++sy)
2418 if (ELF_ST_TYPE (sy->st_info) == STT_NOTYPE
2419 || ELF_ST_TYPE (sy->st_info) == STT_FUNC)
2420 {
2421 asection *s;
2422
2423 *p = s = bfd_section_from_elf_index (ibfd, sy->st_shndx);
2424 if (s != NULL && interesting_section (s, info->output_bfd))
2425 *psy++ = sy;
2426 }
2427 symcount = psy - psyms;
2428 *psy = NULL;
2429
2430 /* Sort them by section and offset within section. */
2431 sort_syms_syms = syms;
2432 sort_syms_psecs = psecs;
2433 qsort (psyms, symcount, sizeof (*psyms), sort_syms);
2434
2435 /* Now inspect the function symbols. */
2436 for (psy = psyms; psy < psyms + symcount; )
2437 {
2438 asection *s = psecs[*psy - syms];
2439 Elf_Internal_Sym **psy2;
2440
2441 for (psy2 = psy; ++psy2 < psyms + symcount; )
2442 if (psecs[*psy2 - syms] != s)
2443 break;
2444
2445 if (!alloc_stack_info (s, psy2 - psy))
2446 return FALSE;
2447 psy = psy2;
2448 }
2449
2450 /* First install info about properly typed and sized functions.
2451 In an ideal world this will cover all code sections, except
2452 when partitioning functions into hot and cold sections,
2453 and the horrible pasted together .init and .fini functions. */
2454 for (psy = psyms; psy < psyms + symcount; ++psy)
2455 {
2456 sy = *psy;
2457 if (ELF_ST_TYPE (sy->st_info) == STT_FUNC)
2458 {
2459 asection *s = psecs[sy - syms];
2460 if (!maybe_insert_function (s, sy, FALSE, TRUE))
2461 return FALSE;
2462 }
2463 }
2464
2465 for (sec = ibfd->sections; sec != NULL && !gaps; sec = sec->next)
2466 if (interesting_section (sec, info->output_bfd))
2467 gaps |= check_function_ranges (sec, info);
2468 }
2469
2470 if (gaps)
2471 {
2472 /* See if we can discover more function symbols by looking at
2473 relocations. */
2474 for (ibfd = info->input_bfds, bfd_idx = 0;
2475 ibfd != NULL;
2476 ibfd = ibfd->link_next, bfd_idx++)
2477 {
2478 asection *sec;
2479
2480 if (psym_arr[bfd_idx] == NULL)
2481 continue;
2482
2483 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2484 if (!mark_functions_via_relocs (sec, info, FALSE))
2485 return FALSE;
2486 }
2487
2488 for (ibfd = info->input_bfds, bfd_idx = 0;
2489 ibfd != NULL;
2490 ibfd = ibfd->link_next, bfd_idx++)
2491 {
2492 Elf_Internal_Shdr *symtab_hdr;
2493 asection *sec;
2494 Elf_Internal_Sym *syms, *sy, **psyms, **psy;
2495 asection **psecs;
2496
2497 if ((psyms = psym_arr[bfd_idx]) == NULL)
2498 continue;
2499
2500 psecs = sec_arr[bfd_idx];
2501
2502 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2503 syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2504
2505 gaps = FALSE;
2506 for (sec = ibfd->sections; sec != NULL && !gaps; sec = sec->next)
2507 if (interesting_section (sec, info->output_bfd))
2508 gaps |= check_function_ranges (sec, info);
2509 if (!gaps)
2510 continue;
2511
2512 /* Finally, install all globals. */
2513 for (psy = psyms; (sy = *psy) != NULL; ++psy)
2514 {
2515 asection *s;
2516
2517 s = psecs[sy - syms];
2518
2519 /* Global syms might be improperly typed functions. */
2520 if (ELF_ST_TYPE (sy->st_info) != STT_FUNC
2521 && ELF_ST_BIND (sy->st_info) == STB_GLOBAL)
2522 {
2523 if (!maybe_insert_function (s, sy, FALSE, FALSE))
2524 return FALSE;
2525 }
2526 }
2527 }
2528
2529 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2530 {
2531 extern const bfd_target bfd_elf32_spu_vec;
2532 asection *sec;
2533
2534 if (ibfd->xvec != &bfd_elf32_spu_vec)
2535 continue;
2536
2537 /* Some of the symbols we've installed as marking the
2538 beginning of functions may have a size of zero. Extend
2539 the range of such functions to the beginning of the
2540 next symbol of interest. */
2541 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2542 if (interesting_section (sec, info->output_bfd))
2543 {
2544 struct _spu_elf_section_data *sec_data;
2545 struct spu_elf_stack_info *sinfo;
2546
2547 sec_data = spu_elf_section_data (sec);
2548 sinfo = sec_data->u.i.stack_info;
2549 if (sinfo != NULL)
2550 {
2551 int fun_idx;
2552 bfd_vma hi = sec->size;
2553
2554 for (fun_idx = sinfo->num_fun; --fun_idx >= 0; )
2555 {
2556 sinfo->fun[fun_idx].hi = hi;
2557 hi = sinfo->fun[fun_idx].lo;
2558 }
2559 }
2560 /* No symbols in this section. Must be .init or .fini
2561 or something similar. */
2562 else if (!pasted_function (sec, info))
2563 return FALSE;
2564 }
2565 }
2566 }
2567
2568 for (ibfd = info->input_bfds, bfd_idx = 0;
2569 ibfd != NULL;
2570 ibfd = ibfd->link_next, bfd_idx++)
2571 {
2572 if (psym_arr[bfd_idx] == NULL)
2573 continue;
2574
2575 free (psym_arr[bfd_idx]);
2576 free (sec_arr[bfd_idx]);
2577 }
2578
2579 free (psym_arr);
2580 free (sec_arr);
2581
2582 return TRUE;
2583 }
2584
2585 /* Iterate over all function_info we have collected, calling DOIT on
2586 each node if ROOT_ONLY is false. Only call DOIT on root nodes
2587 if ROOT_ONLY. */
2588
2589 static bfd_boolean
2590 for_each_node (bfd_boolean (*doit) (struct function_info *,
2591 struct bfd_link_info *,
2592 void *),
2593 struct bfd_link_info *info,
2594 void *param,
2595 int root_only)
2596 {
2597 bfd *ibfd;
2598
2599 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2600 {
2601 extern const bfd_target bfd_elf32_spu_vec;
2602 asection *sec;
2603
2604 if (ibfd->xvec != &bfd_elf32_spu_vec)
2605 continue;
2606
2607 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2608 {
2609 struct _spu_elf_section_data *sec_data;
2610 struct spu_elf_stack_info *sinfo;
2611
2612 if ((sec_data = spu_elf_section_data (sec)) != NULL
2613 && (sinfo = sec_data->u.i.stack_info) != NULL)
2614 {
2615 int i;
2616 for (i = 0; i < sinfo->num_fun; ++i)
2617 if (!root_only || !sinfo->fun[i].non_root)
2618 if (!doit (&sinfo->fun[i], info, param))
2619 return FALSE;
2620 }
2621 }
2622 }
2623 return TRUE;
2624 }
2625
2626 /* Transfer call info attached to struct function_info entries for
2627 all of a given function's sections to the first entry. */
2628
2629 static bfd_boolean
2630 transfer_calls (struct function_info *fun,
2631 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2632 void *param ATTRIBUTE_UNUSED)
2633 {
2634 struct function_info *start = fun->start;
2635
2636 if (start != NULL)
2637 {
2638 struct call_info *call, *call_next;
2639
2640 while (start->start != NULL)
2641 start = start->start;
2642 for (call = fun->call_list; call != NULL; call = call_next)
2643 {
2644 call_next = call->next;
2645 if (!insert_callee (start, call))
2646 free (call);
2647 }
2648 fun->call_list = NULL;
2649 }
2650 return TRUE;
2651 }
2652
2653 /* Mark nodes in the call graph that are called by some other node. */
2654
2655 static bfd_boolean
2656 mark_non_root (struct function_info *fun,
2657 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2658 void *param ATTRIBUTE_UNUSED)
2659 {
2660 struct call_info *call;
2661
2662 if (fun->visit1)
2663 return TRUE;
2664 fun->visit1 = TRUE;
2665 for (call = fun->call_list; call; call = call->next)
2666 {
2667 call->fun->non_root = TRUE;
2668 mark_non_root (call->fun, 0, 0);
2669 }
2670 return TRUE;
2671 }
2672
2673 /* Remove cycles from the call graph. Set depth of nodes. */
2674
2675 static bfd_boolean
2676 remove_cycles (struct function_info *fun,
2677 struct bfd_link_info *info,
2678 void *param)
2679 {
2680 struct call_info **callp, *call;
2681 unsigned int depth = *(unsigned int *) param;
2682 unsigned int max_depth = depth;
2683
2684 fun->depth = depth;
2685 fun->visit2 = TRUE;
2686 fun->marking = TRUE;
2687
2688 callp = &fun->call_list;
2689 while ((call = *callp) != NULL)
2690 {
2691 if (!call->fun->visit2)
2692 {
2693 call->max_depth = depth + !call->is_pasted;
2694 if (!remove_cycles (call->fun, info, &call->max_depth))
2695 return FALSE;
2696 if (max_depth < call->max_depth)
2697 max_depth = call->max_depth;
2698 }
2699 else if (call->fun->marking)
2700 {
2701 if (!spu_hash_table (info)->auto_overlay)
2702 {
2703 const char *f1 = func_name (fun);
2704 const char *f2 = func_name (call->fun);
2705
2706 info->callbacks->info (_("Stack analysis will ignore the call "
2707 "from %s to %s\n"),
2708 f1, f2);
2709 }
2710 *callp = call->next;
2711 free (call);
2712 continue;
2713 }
2714 callp = &call->next;
2715 }
2716 fun->marking = FALSE;
2717 *(unsigned int *) param = max_depth;
2718 return TRUE;
2719 }
2720
2721 /* Populate call_list for each function. */
2722
2723 static bfd_boolean
2724 build_call_tree (struct bfd_link_info *info)
2725 {
2726 bfd *ibfd;
2727 unsigned int depth;
2728
2729 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2730 {
2731 extern const bfd_target bfd_elf32_spu_vec;
2732 asection *sec;
2733
2734 if (ibfd->xvec != &bfd_elf32_spu_vec)
2735 continue;
2736
2737 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2738 if (!mark_functions_via_relocs (sec, info, TRUE))
2739 return FALSE;
2740 }
2741
2742 /* Transfer call info from hot/cold section part of function
2743 to main entry. */
2744 if (!spu_hash_table (info)->auto_overlay
2745 && !for_each_node (transfer_calls, info, 0, FALSE))
2746 return FALSE;
2747
2748 /* Find the call graph root(s). */
2749 if (!for_each_node (mark_non_root, info, 0, FALSE))
2750 return FALSE;
2751
2752 /* Remove cycles from the call graph. We start from the root node(s)
2753 so that we break cycles in a reasonable place. */
2754 depth = 0;
2755 return for_each_node (remove_cycles, info, &depth, TRUE);
2756 }
2757
2758 /* qsort predicate to sort calls by max_depth then count. */
2759
2760 static int
2761 sort_calls (const void *a, const void *b)
2762 {
2763 struct call_info *const *c1 = a;
2764 struct call_info *const *c2 = b;
2765 int delta;
2766
2767 delta = (*c2)->max_depth - (*c1)->max_depth;
2768 if (delta != 0)
2769 return delta;
2770
2771 delta = (*c2)->count - (*c1)->count;
2772 if (delta != 0)
2773 return delta;
2774
2775 return c1 - c2;
2776 }
2777
2778 struct _mos_param {
2779 unsigned int max_overlay_size;
2780 };
2781
2782 /* Set linker_mark and gc_mark on any sections that we will put in
2783 overlays. These flags are used by the generic ELF linker, but we
2784 won't be continuing on to bfd_elf_final_link so it is OK to use
2785 them. linker_mark is clear before we get here. Set segment_mark
2786 on sections that are part of a pasted function (excluding the last
2787 section).
2788
2789 Set up function rodata section if --overlay-rodata. We don't
2790 currently include merged string constant rodata sections since
2791
2792 Sort the call graph so that the deepest nodes will be visited
2793 first. */
2794
2795 static bfd_boolean
2796 mark_overlay_section (struct function_info *fun,
2797 struct bfd_link_info *info,
2798 void *param)
2799 {
2800 struct call_info *call;
2801 unsigned int count;
2802 struct _mos_param *mos_param = param;
2803
2804 if (fun->visit4)
2805 return TRUE;
2806
2807 fun->visit4 = TRUE;
2808 if (!fun->sec->linker_mark)
2809 {
2810 unsigned int size;
2811
2812 fun->sec->linker_mark = 1;
2813 fun->sec->gc_mark = 1;
2814 fun->sec->segment_mark = 0;
2815 /* Ensure SEC_CODE is set on this text section (it ought to
2816 be!), and SEC_CODE is clear on rodata sections. We use
2817 this flag to differentiate the two overlay section types. */
2818 fun->sec->flags |= SEC_CODE;
2819
2820 if (spu_hash_table (info)->auto_overlay & OVERLAY_RODATA)
2821 {
2822 char *name = NULL;
2823
2824 /* Find the rodata section corresponding to this function's
2825 text section. */
2826 if (strcmp (fun->sec->name, ".text") == 0)
2827 {
2828 name = bfd_malloc (sizeof (".rodata"));
2829 if (name == NULL)
2830 return FALSE;
2831 memcpy (name, ".rodata", sizeof (".rodata"));
2832 }
2833 else if (strncmp (fun->sec->name, ".text.", 6) == 0)
2834 {
2835 size_t len = strlen (fun->sec->name);
2836 name = bfd_malloc (len + 3);
2837 if (name == NULL)
2838 return FALSE;
2839 memcpy (name, ".rodata", sizeof (".rodata"));
2840 memcpy (name + 7, fun->sec->name + 5, len - 4);
2841 }
2842 else if (strncmp (fun->sec->name, ".gnu.linkonce.t.", 16) == 0)
2843 {
2844 size_t len = strlen (fun->sec->name) + 1;
2845 name = bfd_malloc (len);
2846 if (name == NULL)
2847 return FALSE;
2848 memcpy (name, fun->sec->name, len);
2849 name[14] = 'r';
2850 }
2851
2852 if (name != NULL)
2853 {
2854 asection *rodata = NULL;
2855 asection *group_sec = elf_section_data (fun->sec)->next_in_group;
2856 if (group_sec == NULL)
2857 rodata = bfd_get_section_by_name (fun->sec->owner, name);
2858 else
2859 while (group_sec != NULL && group_sec != fun->sec)
2860 {
2861 if (strcmp (group_sec->name, name) == 0)
2862 {
2863 rodata = group_sec;
2864 break;
2865 }
2866 group_sec = elf_section_data (group_sec)->next_in_group;
2867 }
2868 fun->rodata = rodata;
2869 if (fun->rodata)
2870 {
2871 fun->rodata->linker_mark = 1;
2872 fun->rodata->gc_mark = 1;
2873 fun->rodata->flags &= ~SEC_CODE;
2874 }
2875 free (name);
2876 }
2877 }
2878 size = fun->sec->size;
2879 if (fun->rodata)
2880 size += fun->rodata->size;
2881 if (mos_param->max_overlay_size < size)
2882 mos_param->max_overlay_size = size;
2883 }
2884
2885 for (count = 0, call = fun->call_list; call != NULL; call = call->next)
2886 count += 1;
2887
2888 if (count > 1)
2889 {
2890 struct call_info **calls = bfd_malloc (count * sizeof (*calls));
2891 if (calls == NULL)
2892 return FALSE;
2893
2894 for (count = 0, call = fun->call_list; call != NULL; call = call->next)
2895 calls[count++] = call;
2896
2897 qsort (calls, count, sizeof (*calls), sort_calls);
2898
2899 fun->call_list = NULL;
2900 while (count != 0)
2901 {
2902 --count;
2903 calls[count]->next = fun->call_list;
2904 fun->call_list = calls[count];
2905 }
2906 free (calls);
2907 }
2908
2909 for (call = fun->call_list; call != NULL; call = call->next)
2910 {
2911 if (call->is_pasted)
2912 {
2913 /* There can only be one is_pasted call per function_info. */
2914 BFD_ASSERT (!fun->sec->segment_mark);
2915 fun->sec->segment_mark = 1;
2916 }
2917 if (!mark_overlay_section (call->fun, info, param))
2918 return FALSE;
2919 }
2920
2921 /* Don't put entry code into an overlay. The overlay manager needs
2922 a stack! */
2923 if (fun->lo + fun->sec->output_offset + fun->sec->output_section->vma
2924 == info->output_bfd->start_address)
2925 {
2926 fun->sec->linker_mark = 0;
2927 if (fun->rodata != NULL)
2928 fun->rodata->linker_mark = 0;
2929 }
2930 return TRUE;
2931 }
2932
2933 /* If non-zero then unmark functions called from those within sections
2934 that we need to unmark. Unfortunately this isn't reliable since the
2935 call graph cannot know the destination of function pointer calls. */
2936 #define RECURSE_UNMARK 0
2937
2938 struct _uos_param {
2939 asection *exclude_input_section;
2940 asection *exclude_output_section;
2941 unsigned long clearing;
2942 };
2943
2944 /* Undo some of mark_overlay_section's work. */
2945
2946 static bfd_boolean
2947 unmark_overlay_section (struct function_info *fun,
2948 struct bfd_link_info *info,
2949 void *param)
2950 {
2951 struct call_info *call;
2952 struct _uos_param *uos_param = param;
2953 unsigned int excluded = 0;
2954
2955 if (fun->visit5)
2956 return TRUE;
2957
2958 fun->visit5 = TRUE;
2959
2960 excluded = 0;
2961 if (fun->sec == uos_param->exclude_input_section
2962 || fun->sec->output_section == uos_param->exclude_output_section)
2963 excluded = 1;
2964
2965 if (RECURSE_UNMARK)
2966 uos_param->clearing += excluded;
2967
2968 if (RECURSE_UNMARK ? uos_param->clearing : excluded)
2969 {
2970 fun->sec->linker_mark = 0;
2971 if (fun->rodata)
2972 fun->rodata->linker_mark = 0;
2973 }
2974
2975 for (call = fun->call_list; call != NULL; call = call->next)
2976 if (!unmark_overlay_section (call->fun, info, param))
2977 return FALSE;
2978
2979 if (RECURSE_UNMARK)
2980 uos_param->clearing -= excluded;
2981 return TRUE;
2982 }
2983
2984 struct _cl_param {
2985 unsigned int lib_size;
2986 asection **lib_sections;
2987 };
2988
2989 /* Add sections we have marked as belonging to overlays to an array
2990 for consideration as non-overlay sections. The array consist of
2991 pairs of sections, (text,rodata), for functions in the call graph. */
2992
2993 static bfd_boolean
2994 collect_lib_sections (struct function_info *fun,
2995 struct bfd_link_info *info,
2996 void *param)
2997 {
2998 struct _cl_param *lib_param = param;
2999 struct call_info *call;
3000 unsigned int size;
3001
3002 if (fun->visit6)
3003 return TRUE;
3004
3005 fun->visit6 = TRUE;
3006 if (!fun->sec->linker_mark || !fun->sec->gc_mark || fun->sec->segment_mark)
3007 return TRUE;
3008
3009 size = fun->sec->size;
3010 if (fun->rodata)
3011 size += fun->rodata->size;
3012 if (size > lib_param->lib_size)
3013 return TRUE;
3014
3015 *lib_param->lib_sections++ = fun->sec;
3016 fun->sec->gc_mark = 0;
3017 if (fun->rodata && fun->rodata->linker_mark && fun->rodata->gc_mark)
3018 {
3019 *lib_param->lib_sections++ = fun->rodata;
3020 fun->rodata->gc_mark = 0;
3021 }
3022 else
3023 *lib_param->lib_sections++ = NULL;
3024
3025 for (call = fun->call_list; call != NULL; call = call->next)
3026 collect_lib_sections (call->fun, info, param);
3027
3028 return TRUE;
3029 }
3030
3031 /* qsort predicate to sort sections by call count. */
3032
3033 static int
3034 sort_lib (const void *a, const void *b)
3035 {
3036 asection *const *s1 = a;
3037 asection *const *s2 = b;
3038 struct _spu_elf_section_data *sec_data;
3039 struct spu_elf_stack_info *sinfo;
3040 int delta;
3041
3042 delta = 0;
3043 if ((sec_data = spu_elf_section_data (*s1)) != NULL
3044 && (sinfo = sec_data->u.i.stack_info) != NULL)
3045 {
3046 int i;
3047 for (i = 0; i < sinfo->num_fun; ++i)
3048 delta -= sinfo->fun[i].call_count;
3049 }
3050
3051 if ((sec_data = spu_elf_section_data (*s2)) != NULL
3052 && (sinfo = sec_data->u.i.stack_info) != NULL)
3053 {
3054 int i;
3055 for (i = 0; i < sinfo->num_fun; ++i)
3056 delta += sinfo->fun[i].call_count;
3057 }
3058
3059 if (delta != 0)
3060 return delta;
3061
3062 return s1 - s2;
3063 }
3064
3065 /* Remove some sections from those marked to be in overlays. Choose
3066 those that are called from many places, likely library functions. */
3067
3068 static unsigned int
3069 auto_ovl_lib_functions (struct bfd_link_info *info, unsigned int lib_size)
3070 {
3071 bfd *ibfd;
3072 asection **lib_sections;
3073 unsigned int i, lib_count;
3074 struct _cl_param collect_lib_param;
3075 struct function_info dummy_caller;
3076
3077 memset (&dummy_caller, 0, sizeof (dummy_caller));
3078 lib_count = 0;
3079 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
3080 {
3081 extern const bfd_target bfd_elf32_spu_vec;
3082 asection *sec;
3083
3084 if (ibfd->xvec != &bfd_elf32_spu_vec)
3085 continue;
3086
3087 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
3088 if (sec->linker_mark
3089 && sec->size < lib_size
3090 && (sec->flags & SEC_CODE) != 0)
3091 lib_count += 1;
3092 }
3093 lib_sections = bfd_malloc (lib_count * 2 * sizeof (*lib_sections));
3094 if (lib_sections == NULL)
3095 return (unsigned int) -1;
3096 collect_lib_param.lib_size = lib_size;
3097 collect_lib_param.lib_sections = lib_sections;
3098 if (!for_each_node (collect_lib_sections, info, &collect_lib_param,
3099 TRUE))
3100 return (unsigned int) -1;
3101 lib_count = (collect_lib_param.lib_sections - lib_sections) / 2;
3102
3103 /* Sort sections so that those with the most calls are first. */
3104 if (lib_count > 1)
3105 qsort (lib_sections, lib_count, 2 * sizeof (*lib_sections), sort_lib);
3106
3107 for (i = 0; i < lib_count; i++)
3108 {
3109 unsigned int tmp, stub_size;
3110 asection *sec;
3111 struct _spu_elf_section_data *sec_data;
3112 struct spu_elf_stack_info *sinfo;
3113
3114 sec = lib_sections[2 * i];
3115 /* If this section is OK, its size must be less than lib_size. */
3116 tmp = sec->size;
3117 /* If it has a rodata section, then add that too. */
3118 if (lib_sections[2 * i + 1])
3119 tmp += lib_sections[2 * i + 1]->size;
3120 /* Add any new overlay call stubs needed by the section. */
3121 stub_size = 0;
3122 if (tmp < lib_size
3123 && (sec_data = spu_elf_section_data (sec)) != NULL
3124 && (sinfo = sec_data->u.i.stack_info) != NULL)
3125 {
3126 int k;
3127 struct call_info *call;
3128
3129 for (k = 0; k < sinfo->num_fun; ++k)
3130 for (call = sinfo->fun[k].call_list; call; call = call->next)
3131 if (call->fun->sec->linker_mark)
3132 {
3133 struct call_info *p;
3134 for (p = dummy_caller.call_list; p; p = p->next)
3135 if (p->fun == call->fun)
3136 break;
3137 if (!p)
3138 stub_size += OVL_STUB_SIZE;
3139 }
3140 }
3141 if (tmp + stub_size < lib_size)
3142 {
3143 struct call_info **pp, *p;
3144
3145 /* This section fits. Mark it as non-overlay. */
3146 lib_sections[2 * i]->linker_mark = 0;
3147 if (lib_sections[2 * i + 1])
3148 lib_sections[2 * i + 1]->linker_mark = 0;
3149 lib_size -= tmp + stub_size;
3150 /* Call stubs to the section we just added are no longer
3151 needed. */
3152 pp = &dummy_caller.call_list;
3153 while ((p = *pp) != NULL)
3154 if (!p->fun->sec->linker_mark)
3155 {
3156 lib_size += OVL_STUB_SIZE;
3157 *pp = p->next;
3158 free (p);
3159 }
3160 else
3161 pp = &p->next;
3162 /* Add new call stubs to dummy_caller. */
3163 if ((sec_data = spu_elf_section_data (sec)) != NULL
3164 && (sinfo = sec_data->u.i.stack_info) != NULL)
3165 {
3166 int k;
3167 struct call_info *call;
3168
3169 for (k = 0; k < sinfo->num_fun; ++k)
3170 for (call = sinfo->fun[k].call_list;
3171 call;
3172 call = call->next)
3173 if (call->fun->sec->linker_mark)
3174 {
3175 struct call_info *callee;
3176 callee = bfd_malloc (sizeof (*callee));
3177 if (callee == NULL)
3178 return (unsigned int) -1;
3179 *callee = *call;
3180 if (!insert_callee (&dummy_caller, callee))
3181 free (callee);
3182 }
3183 }
3184 }
3185 }
3186 while (dummy_caller.call_list != NULL)
3187 {
3188 struct call_info *call = dummy_caller.call_list;
3189 dummy_caller.call_list = call->next;
3190 free (call);
3191 }
3192 for (i = 0; i < 2 * lib_count; i++)
3193 if (lib_sections[i])
3194 lib_sections[i]->gc_mark = 1;
3195 free (lib_sections);
3196 return lib_size;
3197 }
3198
3199 /* Build an array of overlay sections. The deepest node's section is
3200 added first, then its parent node's section, then everything called
3201 from the parent section. The idea being to group sections to
3202 minimise calls between different overlays. */
3203
3204 static bfd_boolean
3205 collect_overlays (struct function_info *fun,
3206 struct bfd_link_info *info,
3207 void *param)
3208 {
3209 struct call_info *call;
3210 bfd_boolean added_fun;
3211 asection ***ovly_sections = param;
3212
3213 if (fun->visit7)
3214 return TRUE;
3215
3216 fun->visit7 = TRUE;
3217 for (call = fun->call_list; call != NULL; call = call->next)
3218 if (!call->is_pasted)
3219 {
3220 if (!collect_overlays (call->fun, info, ovly_sections))
3221 return FALSE;
3222 break;
3223 }
3224
3225 added_fun = FALSE;
3226 if (fun->sec->linker_mark && fun->sec->gc_mark)
3227 {
3228 fun->sec->gc_mark = 0;
3229 *(*ovly_sections)++ = fun->sec;
3230 if (fun->rodata && fun->rodata->linker_mark && fun->rodata->gc_mark)
3231 {
3232 fun->rodata->gc_mark = 0;
3233 *(*ovly_sections)++ = fun->rodata;
3234 }
3235 else
3236 *(*ovly_sections)++ = NULL;
3237 added_fun = TRUE;
3238
3239 /* Pasted sections must stay with the first section. We don't
3240 put pasted sections in the array, just the first section.
3241 Mark subsequent sections as already considered. */
3242 if (fun->sec->segment_mark)
3243 {
3244 struct function_info *call_fun = fun;
3245 do
3246 {
3247 for (call = call_fun->call_list; call != NULL; call = call->next)
3248 if (call->is_pasted)
3249 {
3250 call_fun = call->fun;
3251 call_fun->sec->gc_mark = 0;
3252 if (call_fun->rodata)
3253 call_fun->rodata->gc_mark = 0;
3254 break;
3255 }
3256 if (call == NULL)
3257 abort ();
3258 }
3259 while (call_fun->sec->segment_mark);
3260 }
3261 }
3262
3263 for (call = fun->call_list; call != NULL; call = call->next)
3264 if (!collect_overlays (call->fun, info, ovly_sections))
3265 return FALSE;
3266
3267 if (added_fun)
3268 {
3269 struct _spu_elf_section_data *sec_data;
3270 struct spu_elf_stack_info *sinfo;
3271
3272 if ((sec_data = spu_elf_section_data (fun->sec)) != NULL
3273 && (sinfo = sec_data->u.i.stack_info) != NULL)
3274 {
3275 int i;
3276 for (i = 0; i < sinfo->num_fun; ++i)
3277 if (!collect_overlays (&sinfo->fun[i], info, ovly_sections))
3278 return FALSE;
3279 }
3280 }
3281
3282 return TRUE;
3283 }
3284
3285 struct _sum_stack_param {
3286 size_t cum_stack;
3287 size_t overall_stack;
3288 bfd_boolean emit_stack_syms;
3289 };
3290
3291 /* Descend the call graph for FUN, accumulating total stack required. */
3292
3293 static bfd_boolean
3294 sum_stack (struct function_info *fun,
3295 struct bfd_link_info *info,
3296 void *param)
3297 {
3298 struct call_info *call;
3299 struct function_info *max;
3300 size_t stack, cum_stack;
3301 const char *f1;
3302 bfd_boolean has_call;
3303 struct _sum_stack_param *sum_stack_param = param;
3304 struct spu_link_hash_table *htab;
3305
3306 cum_stack = fun->stack;
3307 sum_stack_param->cum_stack = cum_stack;
3308 if (fun->visit3)
3309 return TRUE;
3310
3311 has_call = FALSE;
3312 max = NULL;
3313 for (call = fun->call_list; call; call = call->next)
3314 {
3315 if (!call->is_pasted)
3316 has_call = TRUE;
3317 if (!sum_stack (call->fun, info, sum_stack_param))
3318 return FALSE;
3319 stack = sum_stack_param->cum_stack;
3320 /* Include caller stack for normal calls, don't do so for
3321 tail calls. fun->stack here is local stack usage for
3322 this function. */
3323 if (!call->is_tail || call->is_pasted || call->fun->start != NULL)
3324 stack += fun->stack;
3325 if (cum_stack < stack)
3326 {
3327 cum_stack = stack;
3328 max = call->fun;
3329 }
3330 }
3331
3332 sum_stack_param->cum_stack = cum_stack;
3333 stack = fun->stack;
3334 /* Now fun->stack holds cumulative stack. */
3335 fun->stack = cum_stack;
3336 fun->visit3 = TRUE;
3337
3338 if (!fun->non_root
3339 && sum_stack_param->overall_stack < cum_stack)
3340 sum_stack_param->overall_stack = cum_stack;
3341
3342 htab = spu_hash_table (info);
3343 if (htab->auto_overlay)
3344 return TRUE;
3345
3346 f1 = func_name (fun);
3347 if (!fun->non_root)
3348 info->callbacks->info (_(" %s: 0x%v\n"), f1, (bfd_vma) cum_stack);
3349 info->callbacks->minfo (_("%s: 0x%v 0x%v\n"),
3350 f1, (bfd_vma) stack, (bfd_vma) cum_stack);
3351
3352 if (has_call)
3353 {
3354 info->callbacks->minfo (_(" calls:\n"));
3355 for (call = fun->call_list; call; call = call->next)
3356 if (!call->is_pasted)
3357 {
3358 const char *f2 = func_name (call->fun);
3359 const char *ann1 = call->fun == max ? "*" : " ";
3360 const char *ann2 = call->is_tail ? "t" : " ";
3361
3362 info->callbacks->minfo (_(" %s%s %s\n"), ann1, ann2, f2);
3363 }
3364 }
3365
3366 if (sum_stack_param->emit_stack_syms)
3367 {
3368 char *name = bfd_malloc (18 + strlen (f1));
3369 struct elf_link_hash_entry *h;
3370
3371 if (name == NULL)
3372 return FALSE;
3373
3374 if (fun->global || ELF_ST_BIND (fun->u.sym->st_info) == STB_GLOBAL)
3375 sprintf (name, "__stack_%s", f1);
3376 else
3377 sprintf (name, "__stack_%x_%s", fun->sec->id & 0xffffffff, f1);
3378
3379 h = elf_link_hash_lookup (&htab->elf, name, TRUE, TRUE, FALSE);
3380 free (name);
3381 if (h != NULL
3382 && (h->root.type == bfd_link_hash_new
3383 || h->root.type == bfd_link_hash_undefined
3384 || h->root.type == bfd_link_hash_undefweak))
3385 {
3386 h->root.type = bfd_link_hash_defined;
3387 h->root.u.def.section = bfd_abs_section_ptr;
3388 h->root.u.def.value = cum_stack;
3389 h->size = 0;
3390 h->type = 0;
3391 h->ref_regular = 1;
3392 h->def_regular = 1;
3393 h->ref_regular_nonweak = 1;
3394 h->forced_local = 1;
3395 h->non_elf = 0;
3396 }
3397 }
3398
3399 return TRUE;
3400 }
3401
3402 /* SEC is part of a pasted function. Return the call_info for the
3403 next section of this function. */
3404
3405 static struct call_info *
3406 find_pasted_call (asection *sec)
3407 {
3408 struct _spu_elf_section_data *sec_data = spu_elf_section_data (sec);
3409 struct spu_elf_stack_info *sinfo = sec_data->u.i.stack_info;
3410 struct call_info *call;
3411 int k;
3412
3413 for (k = 0; k < sinfo->num_fun; ++k)
3414 for (call = sinfo->fun[k].call_list; call != NULL; call = call->next)
3415 if (call->is_pasted)
3416 return call;
3417 abort ();
3418 return 0;
3419 }
3420
3421 /* qsort predicate to sort bfds by file name. */
3422
3423 static int
3424 sort_bfds (const void *a, const void *b)
3425 {
3426 bfd *const *abfd1 = a;
3427 bfd *const *abfd2 = b;
3428
3429 return strcmp ((*abfd1)->filename, (*abfd2)->filename);
3430 }
3431
3432 /* Handle --auto-overlay. */
3433
3434 static void spu_elf_auto_overlay (struct bfd_link_info *, void (*) (void))
3435 ATTRIBUTE_NORETURN;
3436
3437 static void
3438 spu_elf_auto_overlay (struct bfd_link_info *info,
3439 void (*spu_elf_load_ovl_mgr) (void))
3440 {
3441 bfd *ibfd;
3442 bfd **bfd_arr;
3443 struct elf_segment_map *m;
3444 unsigned int fixed_size, lo, hi;
3445 struct spu_link_hash_table *htab;
3446 unsigned int base, i, count, bfd_count;
3447 int ovlynum;
3448 asection **ovly_sections, **ovly_p;
3449 FILE *script;
3450 unsigned int total_overlay_size, overlay_size;
3451 struct elf_link_hash_entry *h;
3452 struct _mos_param mos_param;
3453 struct _uos_param uos_param;
3454 struct function_info dummy_caller;
3455
3456 /* Find the extents of our loadable image. */
3457 lo = (unsigned int) -1;
3458 hi = 0;
3459 for (m = elf_tdata (info->output_bfd)->segment_map; m != NULL; m = m->next)
3460 if (m->p_type == PT_LOAD)
3461 for (i = 0; i < m->count; i++)
3462 if (m->sections[i]->size != 0)
3463 {
3464 if (m->sections[i]->vma < lo)
3465 lo = m->sections[i]->vma;
3466 if (m->sections[i]->vma + m->sections[i]->size - 1 > hi)
3467 hi = m->sections[i]->vma + m->sections[i]->size - 1;
3468 }
3469 fixed_size = hi + 1 - lo;
3470
3471 if (!discover_functions (info))
3472 goto err_exit;
3473
3474 if (!build_call_tree (info))
3475 goto err_exit;
3476
3477 uos_param.exclude_input_section = 0;
3478 uos_param.exclude_output_section
3479 = bfd_get_section_by_name (info->output_bfd, ".interrupt");
3480
3481 htab = spu_hash_table (info);
3482 h = elf_link_hash_lookup (&htab->elf, "__ovly_load",
3483 FALSE, FALSE, FALSE);
3484 if (h != NULL
3485 && (h->root.type == bfd_link_hash_defined
3486 || h->root.type == bfd_link_hash_defweak)
3487 && h->def_regular)
3488 {
3489 /* We have a user supplied overlay manager. */
3490 uos_param.exclude_input_section = h->root.u.def.section;
3491 }
3492 else
3493 {
3494 /* If no user overlay manager, spu_elf_load_ovl_mgr will add our
3495 builtin version to .text, and will adjust .text size. */
3496 asection *text = bfd_get_section_by_name (info->output_bfd, ".text");
3497 if (text != NULL)
3498 fixed_size -= text->size;
3499 spu_elf_load_ovl_mgr ();
3500 text = bfd_get_section_by_name (info->output_bfd, ".text");
3501 if (text != NULL)
3502 fixed_size += text->size;
3503 }
3504
3505 /* Mark overlay sections, and find max overlay section size. */
3506 mos_param.max_overlay_size = 0;
3507 if (!for_each_node (mark_overlay_section, info, &mos_param, TRUE))
3508 goto err_exit;
3509
3510 /* We can't put the overlay manager or interrupt routines in
3511 overlays. */
3512 uos_param.clearing = 0;
3513 if ((uos_param.exclude_input_section
3514 || uos_param.exclude_output_section)
3515 && !for_each_node (unmark_overlay_section, info, &uos_param, TRUE))
3516 goto err_exit;
3517
3518 bfd_count = 0;
3519 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
3520 ++bfd_count;
3521 bfd_arr = bfd_malloc (bfd_count * sizeof (*bfd_arr));
3522 if (bfd_arr == NULL)
3523 goto err_exit;
3524
3525 /* Count overlay sections, and subtract their sizes from "fixed_size". */
3526 count = 0;
3527 bfd_count = 0;
3528 total_overlay_size = 0;
3529 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
3530 {
3531 extern const bfd_target bfd_elf32_spu_vec;
3532 asection *sec;
3533 unsigned int old_count;
3534
3535 if (ibfd->xvec != &bfd_elf32_spu_vec)
3536 continue;
3537
3538 old_count = count;
3539 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
3540 if (sec->linker_mark)
3541 {
3542 if ((sec->flags & SEC_CODE) != 0)
3543 count += 1;
3544 fixed_size -= sec->size;
3545 total_overlay_size += sec->size;
3546 }
3547 if (count != old_count)
3548 bfd_arr[bfd_count++] = ibfd;
3549 }
3550
3551 /* Since the overlay link script selects sections by file name and
3552 section name, ensure that file names are unique. */
3553 if (bfd_count > 1)
3554 {
3555 bfd_boolean ok = TRUE;
3556
3557 qsort (bfd_arr, bfd_count, sizeof (*bfd_arr), sort_bfds);
3558 for (i = 1; i < bfd_count; ++i)
3559 if (strcmp (bfd_arr[i - 1]->filename, bfd_arr[i]->filename) == 0)
3560 {
3561 if (bfd_arr[i - 1]->my_archive == bfd_arr[i]->my_archive)
3562 {
3563 if (bfd_arr[i - 1]->my_archive && bfd_arr[i]->my_archive)
3564 info->callbacks->einfo (_("%s duplicated in %s\n"),
3565 bfd_arr[i]->filename,
3566 bfd_arr[i]->my_archive->filename);
3567 else
3568 info->callbacks->einfo (_("%s duplicated\n"),
3569 bfd_arr[i]->filename);
3570 ok = FALSE;
3571 }
3572 }
3573 if (!ok)
3574 {
3575 info->callbacks->einfo (_("sorry, no support for duplicate "
3576 "object files in auto-overlay script\n"));
3577 bfd_set_error (bfd_error_bad_value);
3578 goto err_exit;
3579 }
3580 }
3581 free (bfd_arr);
3582
3583 if (htab->reserved == 0)
3584 {
3585 struct _sum_stack_param sum_stack_param;
3586
3587 sum_stack_param.emit_stack_syms = 0;
3588 sum_stack_param.overall_stack = 0;
3589 if (!for_each_node (sum_stack, info, &sum_stack_param, TRUE))
3590 goto err_exit;
3591 htab->reserved = sum_stack_param.overall_stack + htab->extra_stack_space;
3592 }
3593 fixed_size += htab->reserved;
3594 fixed_size += htab->non_ovly_stub * OVL_STUB_SIZE;
3595 if (fixed_size + mos_param.max_overlay_size <= htab->local_store)
3596 {
3597 /* Guess number of overlays. Assuming overlay buffer is on
3598 average only half full should be conservative. */
3599 ovlynum = total_overlay_size * 2 / (htab->local_store - fixed_size);
3600 /* Space for _ovly_table[], _ovly_buf_table[] and toe. */
3601 fixed_size += ovlynum * 16 + 16 + 4 + 16;
3602 }
3603
3604 if (fixed_size + mos_param.max_overlay_size > htab->local_store)
3605 info->callbacks->einfo (_("non-overlay size of 0x%v plus maximum overlay "
3606 "size of 0x%v exceeds local store\n"),
3607 (bfd_vma) fixed_size,
3608 (bfd_vma) mos_param.max_overlay_size);
3609
3610 /* Now see if we should put some functions in the non-overlay area. */
3611 else if (fixed_size < htab->overlay_fixed)
3612 {
3613 unsigned int max_fixed, lib_size;
3614
3615 max_fixed = htab->local_store - mos_param.max_overlay_size;
3616 if (max_fixed > htab->overlay_fixed)
3617 max_fixed = htab->overlay_fixed;
3618 lib_size = max_fixed - fixed_size;
3619 lib_size = auto_ovl_lib_functions (info, lib_size);
3620 if (lib_size == (unsigned int) -1)
3621 goto err_exit;
3622 fixed_size = max_fixed - lib_size;
3623 }
3624
3625 /* Build an array of sections, suitably sorted to place into
3626 overlays. */
3627 ovly_sections = bfd_malloc (2 * count * sizeof (*ovly_sections));
3628 if (ovly_sections == NULL)
3629 goto err_exit;
3630 ovly_p = ovly_sections;
3631 if (!for_each_node (collect_overlays, info, &ovly_p, TRUE))
3632 goto err_exit;
3633 count = (size_t) (ovly_p - ovly_sections) / 2;
3634
3635 script = htab->spu_elf_open_overlay_script ();
3636
3637 if (fprintf (script, "SECTIONS\n{\n OVERLAY :\n {\n") <= 0)
3638 goto file_err;
3639
3640 memset (&dummy_caller, 0, sizeof (dummy_caller));
3641 overlay_size = htab->local_store - fixed_size;
3642 base = 0;
3643 ovlynum = 0;
3644 while (base < count)
3645 {
3646 unsigned int size = 0;
3647 unsigned int j;
3648
3649 for (i = base; i < count; i++)
3650 {
3651 asection *sec;
3652 unsigned int tmp;
3653 unsigned int stub_size;
3654 struct call_info *call, *pasty;
3655 struct _spu_elf_section_data *sec_data;
3656 struct spu_elf_stack_info *sinfo;
3657 int k;
3658
3659 /* See whether we can add this section to the current
3660 overlay without overflowing our overlay buffer. */
3661 sec = ovly_sections[2 * i];
3662 tmp = size + sec->size;
3663 if (ovly_sections[2 * i + 1])
3664 tmp += ovly_sections[2 * i + 1]->size;
3665 if (tmp > overlay_size)
3666 break;
3667 if (sec->segment_mark)
3668 {
3669 /* Pasted sections must stay together, so add their
3670 sizes too. */
3671 struct call_info *pasty = find_pasted_call (sec);
3672 while (pasty != NULL)
3673 {
3674 struct function_info *call_fun = pasty->fun;
3675 tmp += call_fun->sec->size;
3676 if (call_fun->rodata)
3677 tmp += call_fun->rodata->size;
3678 for (pasty = call_fun->call_list; pasty; pasty = pasty->next)
3679 if (pasty->is_pasted)
3680 break;
3681 }
3682 }
3683 if (tmp > overlay_size)
3684 break;
3685
3686 /* If we add this section, we might need new overlay call
3687 stubs. Add any overlay section calls to dummy_call. */
3688 pasty = NULL;
3689 sec_data = spu_elf_section_data (sec);
3690 sinfo = sec_data->u.i.stack_info;
3691 for (k = 0; k < sinfo->num_fun; ++k)
3692 for (call = sinfo->fun[k].call_list; call; call = call->next)
3693 if (call->is_pasted)
3694 {
3695 BFD_ASSERT (pasty == NULL);
3696 pasty = call;
3697 }
3698 else if (call->fun->sec->linker_mark)
3699 {
3700 if (!copy_callee (&dummy_caller, call))
3701 goto err_exit;
3702 }
3703 while (pasty != NULL)
3704 {
3705 struct function_info *call_fun = pasty->fun;
3706 pasty = NULL;
3707 for (call = call_fun->call_list; call; call = call->next)
3708 if (call->is_pasted)
3709 {
3710 BFD_ASSERT (pasty == NULL);
3711 pasty = call;
3712 }
3713 else if (!copy_callee (&dummy_caller, call))
3714 goto err_exit;
3715 }
3716
3717 /* Calculate call stub size. */
3718 stub_size = 0;
3719 for (call = dummy_caller.call_list; call; call = call->next)
3720 {
3721 unsigned int k;
3722
3723 stub_size += OVL_STUB_SIZE;
3724 /* If the call is within this overlay, we won't need a
3725 stub. */
3726 for (k = base; k < i + 1; k++)
3727 if (call->fun->sec == ovly_sections[2 * k])
3728 {
3729 stub_size -= OVL_STUB_SIZE;
3730 break;
3731 }
3732 }
3733 if (tmp + stub_size > overlay_size)
3734 break;
3735
3736 size = tmp;
3737 }
3738
3739 if (i == base)
3740 {
3741 info->callbacks->einfo (_("%B:%A%s exceeds overlay size\n"),
3742 ovly_sections[2 * i]->owner,
3743 ovly_sections[2 * i],
3744 ovly_sections[2 * i + 1] ? " + rodata" : "");
3745 bfd_set_error (bfd_error_bad_value);
3746 goto err_exit;
3747 }
3748
3749 if (fprintf (script, " .ovly%d {\n", ++ovlynum) <= 0)
3750 goto file_err;
3751 for (j = base; j < i; j++)
3752 {
3753 asection *sec = ovly_sections[2 * j];
3754
3755 if (fprintf (script, " %s%c%s (%s)\n",
3756 (sec->owner->my_archive != NULL
3757 ? sec->owner->my_archive->filename : ""),
3758 info->path_separator,
3759 sec->owner->filename,
3760 sec->name) <= 0)
3761 goto file_err;
3762 if (sec->segment_mark)
3763 {
3764 struct call_info *call = find_pasted_call (sec);
3765 while (call != NULL)
3766 {
3767 struct function_info *call_fun = call->fun;
3768 sec = call_fun->sec;
3769 if (fprintf (script, " %s%c%s (%s)\n",
3770 (sec->owner->my_archive != NULL
3771 ? sec->owner->my_archive->filename : ""),
3772 info->path_separator,
3773 sec->owner->filename,
3774 sec->name) <= 0)
3775 goto file_err;
3776 for (call = call_fun->call_list; call; call = call->next)
3777 if (call->is_pasted)
3778 break;
3779 }
3780 }
3781 }
3782
3783 for (j = base; j < i; j++)
3784 {
3785 asection *sec = ovly_sections[2 * j + 1];
3786 if (sec != NULL
3787 && fprintf (script, " %s%c%s (%s)\n",
3788 (sec->owner->my_archive != NULL
3789 ? sec->owner->my_archive->filename : ""),
3790 info->path_separator,
3791 sec->owner->filename,
3792 sec->name) <= 0)
3793 goto file_err;
3794
3795 sec = ovly_sections[2 * j];
3796 if (sec->segment_mark)
3797 {
3798 struct call_info *call = find_pasted_call (sec);
3799 while (call != NULL)
3800 {
3801 struct function_info *call_fun = call->fun;
3802 sec = call_fun->rodata;
3803 if (sec != NULL
3804 && fprintf (script, " %s%c%s (%s)\n",
3805 (sec->owner->my_archive != NULL
3806 ? sec->owner->my_archive->filename : ""),
3807 info->path_separator,
3808 sec->owner->filename,
3809 sec->name) <= 0)
3810 goto file_err;
3811 for (call = call_fun->call_list; call; call = call->next)
3812 if (call->is_pasted)
3813 break;
3814 }
3815 }
3816 }
3817
3818 if (fprintf (script, " }\n") <= 0)
3819 goto file_err;
3820
3821 while (dummy_caller.call_list != NULL)
3822 {
3823 struct call_info *call = dummy_caller.call_list;
3824 dummy_caller.call_list = call->next;
3825 free (call);
3826 }
3827
3828 base = i;
3829 }
3830 free (ovly_sections);
3831
3832 if (fprintf (script, " }\n}\nINSERT AFTER .text;\n") <= 0)
3833 goto file_err;
3834 if (fclose (script) != 0)
3835 goto file_err;
3836
3837 if (htab->auto_overlay & AUTO_RELINK)
3838 htab->spu_elf_relink ();
3839
3840 xexit (0);
3841
3842 file_err:
3843 bfd_set_error (bfd_error_system_call);
3844 err_exit:
3845 info->callbacks->einfo ("%F%P: auto overlay error: %E\n");
3846 xexit (1);
3847 }
3848
3849 /* Provide an estimate of total stack required. */
3850
3851 static bfd_boolean
3852 spu_elf_stack_analysis (struct bfd_link_info *info, int emit_stack_syms)
3853 {
3854 struct _sum_stack_param sum_stack_param;
3855
3856 if (!discover_functions (info))
3857 return FALSE;
3858
3859 if (!build_call_tree (info))
3860 return FALSE;
3861
3862 info->callbacks->info (_("Stack size for call graph root nodes.\n"));
3863 info->callbacks->minfo (_("\nStack size for functions. "
3864 "Annotations: '*' max stack, 't' tail call\n"));
3865
3866 sum_stack_param.emit_stack_syms = emit_stack_syms;
3867 sum_stack_param.overall_stack = 0;
3868 if (!for_each_node (sum_stack, info, &sum_stack_param, TRUE))
3869 return FALSE;
3870
3871 info->callbacks->info (_("Maximum stack required is 0x%v\n"),
3872 (bfd_vma) sum_stack_param.overall_stack);
3873 return TRUE;
3874 }
3875
3876 /* Perform a final link. */
3877
3878 static bfd_boolean
3879 spu_elf_final_link (bfd *output_bfd, struct bfd_link_info *info)
3880 {
3881 struct spu_link_hash_table *htab = spu_hash_table (info);
3882
3883 if (htab->auto_overlay)
3884 spu_elf_auto_overlay (info, htab->spu_elf_load_ovl_mgr);
3885
3886 if (htab->stack_analysis
3887 && !spu_elf_stack_analysis (info, htab->emit_stack_syms))
3888 info->callbacks->einfo ("%X%P: stack analysis error: %E\n");
3889
3890 return bfd_elf_final_link (output_bfd, info);
3891 }
3892
3893 /* Called when not normally emitting relocs, ie. !info->relocatable
3894 and !info->emitrelocations. Returns a count of special relocs
3895 that need to be emitted. */
3896
3897 static unsigned int
3898 spu_elf_count_relocs (asection *sec, Elf_Internal_Rela *relocs)
3899 {
3900 unsigned int count = 0;
3901 Elf_Internal_Rela *relend = relocs + sec->reloc_count;
3902
3903 for (; relocs < relend; relocs++)
3904 {
3905 int r_type = ELF32_R_TYPE (relocs->r_info);
3906 if (r_type == R_SPU_PPU32 || r_type == R_SPU_PPU64)
3907 ++count;
3908 }
3909
3910 return count;
3911 }
3912
3913 /* Apply RELOCS to CONTENTS of INPUT_SECTION from INPUT_BFD. */
3914
3915 static int
3916 spu_elf_relocate_section (bfd *output_bfd,
3917 struct bfd_link_info *info,
3918 bfd *input_bfd,
3919 asection *input_section,
3920 bfd_byte *contents,
3921 Elf_Internal_Rela *relocs,
3922 Elf_Internal_Sym *local_syms,
3923 asection **local_sections)
3924 {
3925 Elf_Internal_Shdr *symtab_hdr;
3926 struct elf_link_hash_entry **sym_hashes;
3927 Elf_Internal_Rela *rel, *relend;
3928 struct spu_link_hash_table *htab;
3929 asection *ea = bfd_get_section_by_name (output_bfd, "._ea");
3930 int ret = TRUE;
3931 bfd_boolean emit_these_relocs = FALSE;
3932 bfd_boolean is_ea_sym;
3933 bfd_boolean stubs;
3934
3935 htab = spu_hash_table (info);
3936 stubs = (htab->stub_sec != NULL
3937 && maybe_needs_stubs (input_section, output_bfd));
3938 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3939 sym_hashes = (struct elf_link_hash_entry **) (elf_sym_hashes (input_bfd));
3940
3941 rel = relocs;
3942 relend = relocs + input_section->reloc_count;
3943 for (; rel < relend; rel++)
3944 {
3945 int r_type;
3946 reloc_howto_type *howto;
3947 unsigned int r_symndx;
3948 Elf_Internal_Sym *sym;
3949 asection *sec;
3950 struct elf_link_hash_entry *h;
3951 const char *sym_name;
3952 bfd_vma relocation;
3953 bfd_vma addend;
3954 bfd_reloc_status_type r;
3955 bfd_boolean unresolved_reloc;
3956 bfd_boolean warned;
3957 enum _stub_type stub_type;
3958
3959 r_symndx = ELF32_R_SYM (rel->r_info);
3960 r_type = ELF32_R_TYPE (rel->r_info);
3961 howto = elf_howto_table + r_type;
3962 unresolved_reloc = FALSE;
3963 warned = FALSE;
3964 h = NULL;
3965 sym = NULL;
3966 sec = NULL;
3967 if (r_symndx < symtab_hdr->sh_info)
3968 {
3969 sym = local_syms + r_symndx;
3970 sec = local_sections[r_symndx];
3971 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec);
3972 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
3973 }
3974 else
3975 {
3976 if (sym_hashes == NULL)
3977 return FALSE;
3978
3979 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
3980
3981 while (h->root.type == bfd_link_hash_indirect
3982 || h->root.type == bfd_link_hash_warning)
3983 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3984
3985 relocation = 0;
3986 if (h->root.type == bfd_link_hash_defined
3987 || h->root.type == bfd_link_hash_defweak)
3988 {
3989 sec = h->root.u.def.section;
3990 if (sec == NULL
3991 || sec->output_section == NULL)
3992 /* Set a flag that will be cleared later if we find a
3993 relocation value for this symbol. output_section
3994 is typically NULL for symbols satisfied by a shared
3995 library. */
3996 unresolved_reloc = TRUE;
3997 else
3998 relocation = (h->root.u.def.value
3999 + sec->output_section->vma
4000 + sec->output_offset);
4001 }
4002 else if (h->root.type == bfd_link_hash_undefweak)
4003 ;
4004 else if (info->unresolved_syms_in_objects == RM_IGNORE
4005 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
4006 ;
4007 else if (!info->relocatable
4008 && !(r_type == R_SPU_PPU32 || r_type == R_SPU_PPU64))
4009 {
4010 bfd_boolean err;
4011 err = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
4012 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT);
4013 if (!info->callbacks->undefined_symbol (info,
4014 h->root.root.string,
4015 input_bfd,
4016 input_section,
4017 rel->r_offset, err))
4018 return FALSE;
4019 warned = TRUE;
4020 }
4021 sym_name = h->root.root.string;
4022 }
4023
4024 if (sec != NULL && elf_discarded_section (sec))
4025 {
4026 /* For relocs against symbols from removed linkonce sections,
4027 or sections discarded by a linker script, we just want the
4028 section contents zeroed. Avoid any special processing. */
4029 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
4030 rel->r_info = 0;
4031 rel->r_addend = 0;
4032 continue;
4033 }
4034
4035 if (info->relocatable)
4036 continue;
4037
4038 is_ea_sym = (ea != NULL
4039 && sec != NULL
4040 && sec->output_section == ea);
4041
4042 if (r_type == R_SPU_PPU32 || r_type == R_SPU_PPU64)
4043 {
4044 if (is_ea_sym)
4045 {
4046 /* ._ea is a special section that isn't allocated in SPU
4047 memory, but rather occupies space in PPU memory as
4048 part of an embedded ELF image. If this reloc is
4049 against a symbol defined in ._ea, then transform the
4050 reloc into an equivalent one without a symbol
4051 relative to the start of the ELF image. */
4052 rel->r_addend += (relocation
4053 - ea->vma
4054 + elf_section_data (ea)->this_hdr.sh_offset);
4055 rel->r_info = ELF32_R_INFO (0, r_type);
4056 }
4057 emit_these_relocs = TRUE;
4058 continue;
4059 }
4060
4061 if (is_ea_sym)
4062 unresolved_reloc = TRUE;
4063
4064 if (unresolved_reloc)
4065 {
4066 (*_bfd_error_handler)
4067 (_("%B(%s+0x%lx): unresolvable %s relocation against symbol `%s'"),
4068 input_bfd,
4069 bfd_get_section_name (input_bfd, input_section),
4070 (long) rel->r_offset,
4071 howto->name,
4072 sym_name);
4073 ret = FALSE;
4074 }
4075
4076 /* If this symbol is in an overlay area, we may need to relocate
4077 to the overlay stub. */
4078 addend = rel->r_addend;
4079 if (stubs
4080 && (stub_type = needs_ovl_stub (h, sym, sec, input_section, rel,
4081 contents, info)) != no_stub)
4082 {
4083 unsigned int ovl = 0;
4084 struct got_entry *g, **head;
4085
4086 if (stub_type != nonovl_stub)
4087 ovl = (spu_elf_section_data (input_section->output_section)
4088 ->u.o.ovl_index);
4089
4090 if (h != NULL)
4091 head = &h->got.glist;
4092 else
4093 head = elf_local_got_ents (input_bfd) + r_symndx;
4094
4095 for (g = *head; g != NULL; g = g->next)
4096 if (g->addend == addend && (g->ovl == ovl || g->ovl == 0))
4097 break;
4098 if (g == NULL)
4099 abort ();
4100
4101 relocation = g->stub_addr;
4102 addend = 0;
4103 }
4104
4105 r = _bfd_final_link_relocate (howto,
4106 input_bfd,
4107 input_section,
4108 contents,
4109 rel->r_offset, relocation, addend);
4110
4111 if (r != bfd_reloc_ok)
4112 {
4113 const char *msg = (const char *) 0;
4114
4115 switch (r)
4116 {
4117 case bfd_reloc_overflow:
4118 if (!((*info->callbacks->reloc_overflow)
4119 (info, (h ? &h->root : NULL), sym_name, howto->name,
4120 (bfd_vma) 0, input_bfd, input_section, rel->r_offset)))
4121 return FALSE;
4122 break;
4123
4124 case bfd_reloc_undefined:
4125 if (!((*info->callbacks->undefined_symbol)
4126 (info, sym_name, input_bfd, input_section,
4127 rel->r_offset, TRUE)))
4128 return FALSE;
4129 break;
4130
4131 case bfd_reloc_outofrange:
4132 msg = _("internal error: out of range error");
4133 goto common_error;
4134
4135 case bfd_reloc_notsupported:
4136 msg = _("internal error: unsupported relocation error");
4137 goto common_error;
4138
4139 case bfd_reloc_dangerous:
4140 msg = _("internal error: dangerous error");
4141 goto common_error;
4142
4143 default:
4144 msg = _("internal error: unknown error");
4145 /* fall through */
4146
4147 common_error:
4148 ret = FALSE;
4149 if (!((*info->callbacks->warning)
4150 (info, msg, sym_name, input_bfd, input_section,
4151 rel->r_offset)))
4152 return FALSE;
4153 break;
4154 }
4155 }
4156 }
4157
4158 if (ret
4159 && emit_these_relocs
4160 && !info->emitrelocations)
4161 {
4162 Elf_Internal_Rela *wrel;
4163 Elf_Internal_Shdr *rel_hdr;
4164
4165 wrel = rel = relocs;
4166 relend = relocs + input_section->reloc_count;
4167 for (; rel < relend; rel++)
4168 {
4169 int r_type;
4170
4171 r_type = ELF32_R_TYPE (rel->r_info);
4172 if (r_type == R_SPU_PPU32 || r_type == R_SPU_PPU64)
4173 *wrel++ = *rel;
4174 }
4175 input_section->reloc_count = wrel - relocs;
4176 /* Backflips for _bfd_elf_link_output_relocs. */
4177 rel_hdr = &elf_section_data (input_section)->rel_hdr;
4178 rel_hdr->sh_size = input_section->reloc_count * rel_hdr->sh_entsize;
4179 ret = 2;
4180 }
4181
4182 return ret;
4183 }
4184
4185 /* Adjust _SPUEAR_ syms to point at their overlay stubs. */
4186
4187 static bfd_boolean
4188 spu_elf_output_symbol_hook (struct bfd_link_info *info,
4189 const char *sym_name ATTRIBUTE_UNUSED,
4190 Elf_Internal_Sym *sym,
4191 asection *sym_sec ATTRIBUTE_UNUSED,
4192 struct elf_link_hash_entry *h)
4193 {
4194 struct spu_link_hash_table *htab = spu_hash_table (info);
4195
4196 if (!info->relocatable
4197 && htab->stub_sec != NULL
4198 && h != NULL
4199 && (h->root.type == bfd_link_hash_defined
4200 || h->root.type == bfd_link_hash_defweak)
4201 && h->def_regular
4202 && strncmp (h->root.root.string, "_SPUEAR_", 8) == 0)
4203 {
4204 struct got_entry *g;
4205
4206 for (g = h->got.glist; g != NULL; g = g->next)
4207 if (g->addend == 0 && g->ovl == 0)
4208 {
4209 sym->st_shndx = (_bfd_elf_section_from_bfd_section
4210 (htab->stub_sec[0]->output_section->owner,
4211 htab->stub_sec[0]->output_section));
4212 sym->st_value = g->stub_addr;
4213 break;
4214 }
4215 }
4216
4217 return TRUE;
4218 }
4219
4220 static int spu_plugin = 0;
4221
4222 void
4223 spu_elf_plugin (int val)
4224 {
4225 spu_plugin = val;
4226 }
4227
4228 /* Set ELF header e_type for plugins. */
4229
4230 static void
4231 spu_elf_post_process_headers (bfd *abfd,
4232 struct bfd_link_info *info ATTRIBUTE_UNUSED)
4233 {
4234 if (spu_plugin)
4235 {
4236 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
4237
4238 i_ehdrp->e_type = ET_DYN;
4239 }
4240 }
4241
4242 /* We may add an extra PT_LOAD segment for .toe. We also need extra
4243 segments for overlays. */
4244
4245 static int
4246 spu_elf_additional_program_headers (bfd *abfd, struct bfd_link_info *info)
4247 {
4248 struct spu_link_hash_table *htab = spu_hash_table (info);
4249 int extra = htab->num_overlays;
4250 asection *sec;
4251
4252 if (extra)
4253 ++extra;
4254
4255 sec = bfd_get_section_by_name (abfd, ".toe");
4256 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
4257 ++extra;
4258
4259 return extra;
4260 }
4261
4262 /* Remove .toe section from other PT_LOAD segments and put it in
4263 a segment of its own. Put overlays in separate segments too. */
4264
4265 static bfd_boolean
4266 spu_elf_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
4267 {
4268 asection *toe, *s;
4269 struct elf_segment_map *m;
4270 unsigned int i;
4271
4272 if (info == NULL)
4273 return TRUE;
4274
4275 toe = bfd_get_section_by_name (abfd, ".toe");
4276 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4277 if (m->p_type == PT_LOAD && m->count > 1)
4278 for (i = 0; i < m->count; i++)
4279 if ((s = m->sections[i]) == toe
4280 || spu_elf_section_data (s)->u.o.ovl_index != 0)
4281 {
4282 struct elf_segment_map *m2;
4283 bfd_vma amt;
4284
4285 if (i + 1 < m->count)
4286 {
4287 amt = sizeof (struct elf_segment_map);
4288 amt += (m->count - (i + 2)) * sizeof (m->sections[0]);
4289 m2 = bfd_zalloc (abfd, amt);
4290 if (m2 == NULL)
4291 return FALSE;
4292 m2->count = m->count - (i + 1);
4293 memcpy (m2->sections, m->sections + i + 1,
4294 m2->count * sizeof (m->sections[0]));
4295 m2->p_type = PT_LOAD;
4296 m2->next = m->next;
4297 m->next = m2;
4298 }
4299 m->count = 1;
4300 if (i != 0)
4301 {
4302 m->count = i;
4303 amt = sizeof (struct elf_segment_map);
4304 m2 = bfd_zalloc (abfd, amt);
4305 if (m2 == NULL)
4306 return FALSE;
4307 m2->p_type = PT_LOAD;
4308 m2->count = 1;
4309 m2->sections[0] = s;
4310 m2->next = m->next;
4311 m->next = m2;
4312 }
4313 break;
4314 }
4315
4316 return TRUE;
4317 }
4318
4319 /* Tweak the section type of .note.spu_name. */
4320
4321 static bfd_boolean
4322 spu_elf_fake_sections (bfd *obfd ATTRIBUTE_UNUSED,
4323 Elf_Internal_Shdr *hdr,
4324 asection *sec)
4325 {
4326 if (strcmp (sec->name, SPU_PTNOTE_SPUNAME) == 0)
4327 hdr->sh_type = SHT_NOTE;
4328 return TRUE;
4329 }
4330
4331 /* Tweak phdrs before writing them out. */
4332
4333 static int
4334 spu_elf_modify_program_headers (bfd *abfd, struct bfd_link_info *info)
4335 {
4336 const struct elf_backend_data *bed;
4337 struct elf_obj_tdata *tdata;
4338 Elf_Internal_Phdr *phdr, *last;
4339 struct spu_link_hash_table *htab;
4340 unsigned int count;
4341 unsigned int i;
4342
4343 if (info == NULL)
4344 return TRUE;
4345
4346 bed = get_elf_backend_data (abfd);
4347 tdata = elf_tdata (abfd);
4348 phdr = tdata->phdr;
4349 count = tdata->program_header_size / bed->s->sizeof_phdr;
4350 htab = spu_hash_table (info);
4351 if (htab->num_overlays != 0)
4352 {
4353 struct elf_segment_map *m;
4354 unsigned int o;
4355
4356 for (i = 0, m = elf_tdata (abfd)->segment_map; m; ++i, m = m->next)
4357 if (m->count != 0
4358 && (o = spu_elf_section_data (m->sections[0])->u.o.ovl_index) != 0)
4359 {
4360 /* Mark this as an overlay header. */
4361 phdr[i].p_flags |= PF_OVERLAY;
4362
4363 if (htab->ovtab != NULL && htab->ovtab->size != 0)
4364 {
4365 bfd_byte *p = htab->ovtab->contents;
4366 unsigned int off = o * 16 + 8;
4367
4368 /* Write file_off into _ovly_table. */
4369 bfd_put_32 (htab->ovtab->owner, phdr[i].p_offset, p + off);
4370 }
4371 }
4372 }
4373
4374 /* Round up p_filesz and p_memsz of PT_LOAD segments to multiples
4375 of 16. This should always be possible when using the standard
4376 linker scripts, but don't create overlapping segments if
4377 someone is playing games with linker scripts. */
4378 last = NULL;
4379 for (i = count; i-- != 0; )
4380 if (phdr[i].p_type == PT_LOAD)
4381 {
4382 unsigned adjust;
4383
4384 adjust = -phdr[i].p_filesz & 15;
4385 if (adjust != 0
4386 && last != NULL
4387 && phdr[i].p_offset + phdr[i].p_filesz > last->p_offset - adjust)
4388 break;
4389
4390 adjust = -phdr[i].p_memsz & 15;
4391 if (adjust != 0
4392 && last != NULL
4393 && phdr[i].p_filesz != 0
4394 && phdr[i].p_vaddr + phdr[i].p_memsz > last->p_vaddr - adjust
4395 && phdr[i].p_vaddr + phdr[i].p_memsz <= last->p_vaddr)
4396 break;
4397
4398 if (phdr[i].p_filesz != 0)
4399 last = &phdr[i];
4400 }
4401
4402 if (i == (unsigned int) -1)
4403 for (i = count; i-- != 0; )
4404 if (phdr[i].p_type == PT_LOAD)
4405 {
4406 unsigned adjust;
4407
4408 adjust = -phdr[i].p_filesz & 15;
4409 phdr[i].p_filesz += adjust;
4410
4411 adjust = -phdr[i].p_memsz & 15;
4412 phdr[i].p_memsz += adjust;
4413 }
4414
4415 return TRUE;
4416 }
4417
4418 #define TARGET_BIG_SYM bfd_elf32_spu_vec
4419 #define TARGET_BIG_NAME "elf32-spu"
4420 #define ELF_ARCH bfd_arch_spu
4421 #define ELF_MACHINE_CODE EM_SPU
4422 /* This matches the alignment need for DMA. */
4423 #define ELF_MAXPAGESIZE 0x80
4424 #define elf_backend_rela_normal 1
4425 #define elf_backend_can_gc_sections 1
4426
4427 #define bfd_elf32_bfd_reloc_type_lookup spu_elf_reloc_type_lookup
4428 #define bfd_elf32_bfd_reloc_name_lookup spu_elf_reloc_name_lookup
4429 #define elf_info_to_howto spu_elf_info_to_howto
4430 #define elf_backend_count_relocs spu_elf_count_relocs
4431 #define elf_backend_relocate_section spu_elf_relocate_section
4432 #define elf_backend_symbol_processing spu_elf_backend_symbol_processing
4433 #define elf_backend_link_output_symbol_hook spu_elf_output_symbol_hook
4434 #define elf_backend_object_p spu_elf_object_p
4435 #define bfd_elf32_new_section_hook spu_elf_new_section_hook
4436 #define bfd_elf32_bfd_link_hash_table_create spu_elf_link_hash_table_create
4437
4438 #define elf_backend_additional_program_headers spu_elf_additional_program_headers
4439 #define elf_backend_modify_segment_map spu_elf_modify_segment_map
4440 #define elf_backend_modify_program_headers spu_elf_modify_program_headers
4441 #define elf_backend_post_process_headers spu_elf_post_process_headers
4442 #define elf_backend_fake_sections spu_elf_fake_sections
4443 #define elf_backend_special_sections spu_elf_special_sections
4444 #define bfd_elf32_bfd_final_link spu_elf_final_link
4445
4446 #include "elf32-target.h"
This page took 0.134791 seconds and 5 git commands to generate.