* elf-bfd.h (struct core_elf_obj_tdata): New.
[deliverable/binutils-gdb.git] / bfd / elf32-xtensa.c
1 /* Xtensa-specific support for 32-bit ELF.
2 Copyright 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public License as
9 published by the Free Software Foundation; either version 3 of the
10 License, or (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful, but
13 WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24
25 #include <stdarg.h>
26 #include <strings.h>
27
28 #include "bfdlink.h"
29 #include "libbfd.h"
30 #include "elf-bfd.h"
31 #include "elf/xtensa.h"
32 #include "xtensa-isa.h"
33 #include "xtensa-config.h"
34
35 #define XTENSA_NO_NOP_REMOVAL 0
36
37 /* Local helper functions. */
38
39 static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
40 static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
41 static bfd_reloc_status_type bfd_elf_xtensa_reloc
42 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43 static bfd_boolean do_fix_for_relocatable_link
44 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
45 static void do_fix_for_final_link
46 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
47
48 /* Local functions to handle Xtensa configurability. */
49
50 static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
51 static bfd_boolean is_direct_call_opcode (xtensa_opcode);
52 static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
53 static xtensa_opcode get_const16_opcode (void);
54 static xtensa_opcode get_l32r_opcode (void);
55 static bfd_vma l32r_offset (bfd_vma, bfd_vma);
56 static int get_relocation_opnd (xtensa_opcode, int);
57 static int get_relocation_slot (int);
58 static xtensa_opcode get_relocation_opcode
59 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
60 static bfd_boolean is_l32r_relocation
61 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
62 static bfd_boolean is_alt_relocation (int);
63 static bfd_boolean is_operand_relocation (int);
64 static bfd_size_type insn_decode_len
65 (bfd_byte *, bfd_size_type, bfd_size_type);
66 static xtensa_opcode insn_decode_opcode
67 (bfd_byte *, bfd_size_type, bfd_size_type, int);
68 static bfd_boolean check_branch_target_aligned
69 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
70 static bfd_boolean check_loop_aligned
71 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
72 static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
73 static bfd_size_type get_asm_simplify_size
74 (bfd_byte *, bfd_size_type, bfd_size_type);
75
76 /* Functions for link-time code simplifications. */
77
78 static bfd_reloc_status_type elf_xtensa_do_asm_simplify
79 (bfd_byte *, bfd_vma, bfd_vma, char **);
80 static bfd_reloc_status_type contract_asm_expansion
81 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
82 static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
83 static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
84
85 /* Access to internal relocations, section contents and symbols. */
86
87 static Elf_Internal_Rela *retrieve_internal_relocs
88 (bfd *, asection *, bfd_boolean);
89 static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
90 static void release_internal_relocs (asection *, Elf_Internal_Rela *);
91 static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
92 static void pin_contents (asection *, bfd_byte *);
93 static void release_contents (asection *, bfd_byte *);
94 static Elf_Internal_Sym *retrieve_local_syms (bfd *);
95
96 /* Miscellaneous utility functions. */
97
98 static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
99 static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
100 static asection *get_elf_r_symndx_section (bfd *, unsigned long);
101 static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
102 (bfd *, unsigned long);
103 static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
104 static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
105 static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
106 static bfd_boolean xtensa_is_property_section (asection *);
107 static bfd_boolean xtensa_is_insntable_section (asection *);
108 static bfd_boolean xtensa_is_littable_section (asection *);
109 static bfd_boolean xtensa_is_proptable_section (asection *);
110 static int internal_reloc_compare (const void *, const void *);
111 static int internal_reloc_matches (const void *, const void *);
112 static asection *xtensa_get_property_section (asection *, const char *);
113 extern asection *xtensa_make_property_section (asection *, const char *);
114 static flagword xtensa_get_property_predef_flags (asection *);
115
116 /* Other functions called directly by the linker. */
117
118 typedef void (*deps_callback_t)
119 (asection *, bfd_vma, asection *, bfd_vma, void *);
120 extern bfd_boolean xtensa_callback_required_dependence
121 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
122
123
124 /* Globally visible flag for choosing size optimization of NOP removal
125 instead of branch-target-aware minimization for NOP removal.
126 When nonzero, narrow all instructions and remove all NOPs possible
127 around longcall expansions. */
128
129 int elf32xtensa_size_opt;
130
131
132 /* The "new_section_hook" is used to set up a per-section
133 "xtensa_relax_info" data structure with additional information used
134 during relaxation. */
135
136 typedef struct xtensa_relax_info_struct xtensa_relax_info;
137
138
139 /* The GNU tools do not easily allow extending interfaces to pass around
140 the pointer to the Xtensa ISA information, so instead we add a global
141 variable here (in BFD) that can be used by any of the tools that need
142 this information. */
143
144 xtensa_isa xtensa_default_isa;
145
146
147 /* When this is true, relocations may have been modified to refer to
148 symbols from other input files. The per-section list of "fix"
149 records needs to be checked when resolving relocations. */
150
151 static bfd_boolean relaxing_section = FALSE;
152
153 /* When this is true, during final links, literals that cannot be
154 coalesced and their relocations may be moved to other sections. */
155
156 int elf32xtensa_no_literal_movement = 1;
157
158 /* Rename one of the generic section flags to better document how it
159 is used here. */
160 /* Whether relocations have been processed. */
161 #define reloc_done sec_flg0
162 \f
163 static reloc_howto_type elf_howto_table[] =
164 {
165 HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
166 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
167 FALSE, 0, 0, FALSE),
168 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
169 bfd_elf_xtensa_reloc, "R_XTENSA_32",
170 TRUE, 0xffffffff, 0xffffffff, FALSE),
171
172 /* Replace a 32-bit value with a value from the runtime linker (only
173 used by linker-generated stub functions). The r_addend value is
174 special: 1 means to substitute a pointer to the runtime linker's
175 dynamic resolver function; 2 means to substitute the link map for
176 the shared object. */
177 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
178 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
179
180 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
181 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
182 FALSE, 0, 0xffffffff, FALSE),
183 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
184 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
185 FALSE, 0, 0xffffffff, FALSE),
186 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
187 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
188 FALSE, 0, 0xffffffff, FALSE),
189 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
190 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
191 FALSE, 0, 0xffffffff, FALSE),
192
193 EMPTY_HOWTO (7),
194
195 /* Old relocations for backward compatibility. */
196 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
197 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
198 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
199 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
200 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
201 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
202
203 /* Assembly auto-expansion. */
204 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
205 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
206 /* Relax assembly auto-expansion. */
207 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
208 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
209
210 EMPTY_HOWTO (13),
211
212 HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
213 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
214 FALSE, 0, 0xffffffff, TRUE),
215
216 /* GNU extension to record C++ vtable hierarchy. */
217 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
218 NULL, "R_XTENSA_GNU_VTINHERIT",
219 FALSE, 0, 0, FALSE),
220 /* GNU extension to record C++ vtable member usage. */
221 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
222 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
223 FALSE, 0, 0, FALSE),
224
225 /* Relocations for supporting difference of symbols. */
226 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
227 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
228 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
229 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
230 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
231 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
232
233 /* General immediate operand relocations. */
234 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
235 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
236 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
237 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
238 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
239 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
240 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
241 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
242 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
243 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
244 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
245 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
246 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
247 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
248 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
249 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
250 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
251 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
252 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
253 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
254 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
255 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
256 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
257 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
258 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
259 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
260 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
261 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
262 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
263 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
264
265 /* "Alternate" relocations. The meaning of these is opcode-specific. */
266 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
267 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
268 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
269 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
270 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
271 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
272 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
273 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
274 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
275 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
276 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
277 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
278 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
279 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
280 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
281 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
282 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
283 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
284 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
285 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
286 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
287 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
288 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
289 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
290 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
291 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
292 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
293 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
294 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
295 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
296
297 /* TLS relocations. */
298 HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont,
299 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN",
300 FALSE, 0, 0xffffffff, FALSE),
301 HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont,
302 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG",
303 FALSE, 0, 0xffffffff, FALSE),
304 HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
305 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF",
306 FALSE, 0, 0xffffffff, FALSE),
307 HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
308 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF",
309 FALSE, 0, 0xffffffff, FALSE),
310 HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont,
311 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC",
312 FALSE, 0, 0, FALSE),
313 HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont,
314 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG",
315 FALSE, 0, 0, FALSE),
316 HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont,
317 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL",
318 FALSE, 0, 0, FALSE),
319 };
320
321 #if DEBUG_GEN_RELOC
322 #define TRACE(str) \
323 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
324 #else
325 #define TRACE(str)
326 #endif
327
328 static reloc_howto_type *
329 elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
330 bfd_reloc_code_real_type code)
331 {
332 switch (code)
333 {
334 case BFD_RELOC_NONE:
335 TRACE ("BFD_RELOC_NONE");
336 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
337
338 case BFD_RELOC_32:
339 TRACE ("BFD_RELOC_32");
340 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
341
342 case BFD_RELOC_32_PCREL:
343 TRACE ("BFD_RELOC_32_PCREL");
344 return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
345
346 case BFD_RELOC_XTENSA_DIFF8:
347 TRACE ("BFD_RELOC_XTENSA_DIFF8");
348 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
349
350 case BFD_RELOC_XTENSA_DIFF16:
351 TRACE ("BFD_RELOC_XTENSA_DIFF16");
352 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
353
354 case BFD_RELOC_XTENSA_DIFF32:
355 TRACE ("BFD_RELOC_XTENSA_DIFF32");
356 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
357
358 case BFD_RELOC_XTENSA_RTLD:
359 TRACE ("BFD_RELOC_XTENSA_RTLD");
360 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
361
362 case BFD_RELOC_XTENSA_GLOB_DAT:
363 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
364 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
365
366 case BFD_RELOC_XTENSA_JMP_SLOT:
367 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
368 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
369
370 case BFD_RELOC_XTENSA_RELATIVE:
371 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
372 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
373
374 case BFD_RELOC_XTENSA_PLT:
375 TRACE ("BFD_RELOC_XTENSA_PLT");
376 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
377
378 case BFD_RELOC_XTENSA_OP0:
379 TRACE ("BFD_RELOC_XTENSA_OP0");
380 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
381
382 case BFD_RELOC_XTENSA_OP1:
383 TRACE ("BFD_RELOC_XTENSA_OP1");
384 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
385
386 case BFD_RELOC_XTENSA_OP2:
387 TRACE ("BFD_RELOC_XTENSA_OP2");
388 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
389
390 case BFD_RELOC_XTENSA_ASM_EXPAND:
391 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
392 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
393
394 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
395 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
396 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
397
398 case BFD_RELOC_VTABLE_INHERIT:
399 TRACE ("BFD_RELOC_VTABLE_INHERIT");
400 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
401
402 case BFD_RELOC_VTABLE_ENTRY:
403 TRACE ("BFD_RELOC_VTABLE_ENTRY");
404 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
405
406 case BFD_RELOC_XTENSA_TLSDESC_FN:
407 TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN");
408 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ];
409
410 case BFD_RELOC_XTENSA_TLSDESC_ARG:
411 TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG");
412 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ];
413
414 case BFD_RELOC_XTENSA_TLS_DTPOFF:
415 TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF");
416 return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ];
417
418 case BFD_RELOC_XTENSA_TLS_TPOFF:
419 TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF");
420 return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ];
421
422 case BFD_RELOC_XTENSA_TLS_FUNC:
423 TRACE ("BFD_RELOC_XTENSA_TLS_FUNC");
424 return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ];
425
426 case BFD_RELOC_XTENSA_TLS_ARG:
427 TRACE ("BFD_RELOC_XTENSA_TLS_ARG");
428 return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ];
429
430 case BFD_RELOC_XTENSA_TLS_CALL:
431 TRACE ("BFD_RELOC_XTENSA_TLS_CALL");
432 return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ];
433
434 default:
435 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
436 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
437 {
438 unsigned n = (R_XTENSA_SLOT0_OP +
439 (code - BFD_RELOC_XTENSA_SLOT0_OP));
440 return &elf_howto_table[n];
441 }
442
443 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
444 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
445 {
446 unsigned n = (R_XTENSA_SLOT0_ALT +
447 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
448 return &elf_howto_table[n];
449 }
450
451 break;
452 }
453
454 TRACE ("Unknown");
455 return NULL;
456 }
457
458 static reloc_howto_type *
459 elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
460 const char *r_name)
461 {
462 unsigned int i;
463
464 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
465 if (elf_howto_table[i].name != NULL
466 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
467 return &elf_howto_table[i];
468
469 return NULL;
470 }
471
472
473 /* Given an ELF "rela" relocation, find the corresponding howto and record
474 it in the BFD internal arelent representation of the relocation. */
475
476 static void
477 elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
478 arelent *cache_ptr,
479 Elf_Internal_Rela *dst)
480 {
481 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
482
483 BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max);
484 cache_ptr->howto = &elf_howto_table[r_type];
485 }
486
487 \f
488 /* Functions for the Xtensa ELF linker. */
489
490 /* The name of the dynamic interpreter. This is put in the .interp
491 section. */
492
493 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
494
495 /* The size in bytes of an entry in the procedure linkage table.
496 (This does _not_ include the space for the literals associated with
497 the PLT entry.) */
498
499 #define PLT_ENTRY_SIZE 16
500
501 /* For _really_ large PLTs, we may need to alternate between literals
502 and code to keep the literals within the 256K range of the L32R
503 instructions in the code. It's unlikely that anyone would ever need
504 such a big PLT, but an arbitrary limit on the PLT size would be bad.
505 Thus, we split the PLT into chunks. Since there's very little
506 overhead (2 extra literals) for each chunk, the chunk size is kept
507 small so that the code for handling multiple chunks get used and
508 tested regularly. With 254 entries, there are 1K of literals for
509 each chunk, and that seems like a nice round number. */
510
511 #define PLT_ENTRIES_PER_CHUNK 254
512
513 /* PLT entries are actually used as stub functions for lazy symbol
514 resolution. Once the symbol is resolved, the stub function is never
515 invoked. Note: the 32-byte frame size used here cannot be changed
516 without a corresponding change in the runtime linker. */
517
518 static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
519 {
520 0x6c, 0x10, 0x04, /* entry sp, 32 */
521 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
522 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
523 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
524 0x0a, 0x80, 0x00, /* jx a8 */
525 0 /* unused */
526 };
527
528 static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
529 {
530 0x36, 0x41, 0x00, /* entry sp, 32 */
531 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
532 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
533 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
534 0xa0, 0x08, 0x00, /* jx a8 */
535 0 /* unused */
536 };
537
538 /* The size of the thread control block. */
539 #define TCB_SIZE 8
540
541 struct elf_xtensa_link_hash_entry
542 {
543 struct elf_link_hash_entry elf;
544
545 bfd_signed_vma tlsfunc_refcount;
546
547 #define GOT_UNKNOWN 0
548 #define GOT_NORMAL 1
549 #define GOT_TLS_GD 2 /* global or local dynamic */
550 #define GOT_TLS_IE 4 /* initial or local exec */
551 #define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE)
552 unsigned char tls_type;
553 };
554
555 #define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent))
556
557 struct elf_xtensa_obj_tdata
558 {
559 struct elf_obj_tdata root;
560
561 /* tls_type for each local got entry. */
562 char *local_got_tls_type;
563
564 bfd_signed_vma *local_tlsfunc_refcounts;
565 };
566
567 #define elf_xtensa_tdata(abfd) \
568 ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any)
569
570 #define elf_xtensa_local_got_tls_type(abfd) \
571 (elf_xtensa_tdata (abfd)->local_got_tls_type)
572
573 #define elf_xtensa_local_tlsfunc_refcounts(abfd) \
574 (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts)
575
576 #define is_xtensa_elf(bfd) \
577 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
578 && elf_tdata (bfd) != NULL \
579 && elf_object_id (bfd) == XTENSA_ELF_DATA)
580
581 static bfd_boolean
582 elf_xtensa_mkobject (bfd *abfd)
583 {
584 return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata),
585 XTENSA_ELF_DATA);
586 }
587
588 /* Xtensa ELF linker hash table. */
589
590 struct elf_xtensa_link_hash_table
591 {
592 struct elf_link_hash_table elf;
593
594 /* Short-cuts to get to dynamic linker sections. */
595 asection *sgot;
596 asection *sgotplt;
597 asection *srelgot;
598 asection *splt;
599 asection *srelplt;
600 asection *sgotloc;
601 asection *spltlittbl;
602
603 /* Total count of PLT relocations seen during check_relocs.
604 The actual PLT code must be split into multiple sections and all
605 the sections have to be created before size_dynamic_sections,
606 where we figure out the exact number of PLT entries that will be
607 needed. It is OK if this count is an overestimate, e.g., some
608 relocations may be removed by GC. */
609 int plt_reloc_count;
610
611 struct elf_xtensa_link_hash_entry *tlsbase;
612 };
613
614 /* Get the Xtensa ELF linker hash table from a link_info structure. */
615
616 #define elf_xtensa_hash_table(p) \
617 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
618 == XTENSA_ELF_DATA ? ((struct elf_xtensa_link_hash_table *) ((p)->hash)) : NULL)
619
620 /* Create an entry in an Xtensa ELF linker hash table. */
621
622 static struct bfd_hash_entry *
623 elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry,
624 struct bfd_hash_table *table,
625 const char *string)
626 {
627 /* Allocate the structure if it has not already been allocated by a
628 subclass. */
629 if (entry == NULL)
630 {
631 entry = bfd_hash_allocate (table,
632 sizeof (struct elf_xtensa_link_hash_entry));
633 if (entry == NULL)
634 return entry;
635 }
636
637 /* Call the allocation method of the superclass. */
638 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
639 if (entry != NULL)
640 {
641 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry);
642 eh->tlsfunc_refcount = 0;
643 eh->tls_type = GOT_UNKNOWN;
644 }
645
646 return entry;
647 }
648
649 /* Create an Xtensa ELF linker hash table. */
650
651 static struct bfd_link_hash_table *
652 elf_xtensa_link_hash_table_create (bfd *abfd)
653 {
654 struct elf_link_hash_entry *tlsbase;
655 struct elf_xtensa_link_hash_table *ret;
656 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
657
658 ret = bfd_zmalloc (amt);
659 if (ret == NULL)
660 return NULL;
661
662 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
663 elf_xtensa_link_hash_newfunc,
664 sizeof (struct elf_xtensa_link_hash_entry),
665 XTENSA_ELF_DATA))
666 {
667 free (ret);
668 return NULL;
669 }
670
671 /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking
672 for it later. */
673 tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_",
674 TRUE, FALSE, FALSE);
675 tlsbase->root.type = bfd_link_hash_new;
676 tlsbase->root.u.undef.abfd = NULL;
677 tlsbase->non_elf = 0;
678 ret->tlsbase = elf_xtensa_hash_entry (tlsbase);
679 ret->tlsbase->tls_type = GOT_UNKNOWN;
680
681 return &ret->elf.root;
682 }
683
684 /* Copy the extra info we tack onto an elf_link_hash_entry. */
685
686 static void
687 elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info,
688 struct elf_link_hash_entry *dir,
689 struct elf_link_hash_entry *ind)
690 {
691 struct elf_xtensa_link_hash_entry *edir, *eind;
692
693 edir = elf_xtensa_hash_entry (dir);
694 eind = elf_xtensa_hash_entry (ind);
695
696 if (ind->root.type == bfd_link_hash_indirect)
697 {
698 edir->tlsfunc_refcount += eind->tlsfunc_refcount;
699 eind->tlsfunc_refcount = 0;
700
701 if (dir->got.refcount <= 0)
702 {
703 edir->tls_type = eind->tls_type;
704 eind->tls_type = GOT_UNKNOWN;
705 }
706 }
707
708 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
709 }
710
711 static inline bfd_boolean
712 elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
713 struct bfd_link_info *info)
714 {
715 /* Check if we should do dynamic things to this symbol. The
716 "ignore_protected" argument need not be set, because Xtensa code
717 does not require special handling of STV_PROTECTED to make function
718 pointer comparisons work properly. The PLT addresses are never
719 used for function pointers. */
720
721 return _bfd_elf_dynamic_symbol_p (h, info, 0);
722 }
723
724 \f
725 static int
726 property_table_compare (const void *ap, const void *bp)
727 {
728 const property_table_entry *a = (const property_table_entry *) ap;
729 const property_table_entry *b = (const property_table_entry *) bp;
730
731 if (a->address == b->address)
732 {
733 if (a->size != b->size)
734 return (a->size - b->size);
735
736 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
737 return ((b->flags & XTENSA_PROP_ALIGN)
738 - (a->flags & XTENSA_PROP_ALIGN));
739
740 if ((a->flags & XTENSA_PROP_ALIGN)
741 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
742 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
743 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
744 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
745
746 if ((a->flags & XTENSA_PROP_UNREACHABLE)
747 != (b->flags & XTENSA_PROP_UNREACHABLE))
748 return ((b->flags & XTENSA_PROP_UNREACHABLE)
749 - (a->flags & XTENSA_PROP_UNREACHABLE));
750
751 return (a->flags - b->flags);
752 }
753
754 return (a->address - b->address);
755 }
756
757
758 static int
759 property_table_matches (const void *ap, const void *bp)
760 {
761 const property_table_entry *a = (const property_table_entry *) ap;
762 const property_table_entry *b = (const property_table_entry *) bp;
763
764 /* Check if one entry overlaps with the other. */
765 if ((b->address >= a->address && b->address < (a->address + a->size))
766 || (a->address >= b->address && a->address < (b->address + b->size)))
767 return 0;
768
769 return (a->address - b->address);
770 }
771
772
773 /* Get the literal table or property table entries for the given
774 section. Sets TABLE_P and returns the number of entries. On
775 error, returns a negative value. */
776
777 static int
778 xtensa_read_table_entries (bfd *abfd,
779 asection *section,
780 property_table_entry **table_p,
781 const char *sec_name,
782 bfd_boolean output_addr)
783 {
784 asection *table_section;
785 bfd_size_type table_size = 0;
786 bfd_byte *table_data;
787 property_table_entry *blocks;
788 int blk, block_count;
789 bfd_size_type num_records;
790 Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
791 bfd_vma section_addr, off;
792 flagword predef_flags;
793 bfd_size_type table_entry_size, section_limit;
794
795 if (!section
796 || !(section->flags & SEC_ALLOC)
797 || (section->flags & SEC_DEBUGGING))
798 {
799 *table_p = NULL;
800 return 0;
801 }
802
803 table_section = xtensa_get_property_section (section, sec_name);
804 if (table_section)
805 table_size = table_section->size;
806
807 if (table_size == 0)
808 {
809 *table_p = NULL;
810 return 0;
811 }
812
813 predef_flags = xtensa_get_property_predef_flags (table_section);
814 table_entry_size = 12;
815 if (predef_flags)
816 table_entry_size -= 4;
817
818 num_records = table_size / table_entry_size;
819 table_data = retrieve_contents (abfd, table_section, TRUE);
820 blocks = (property_table_entry *)
821 bfd_malloc (num_records * sizeof (property_table_entry));
822 block_count = 0;
823
824 if (output_addr)
825 section_addr = section->output_section->vma + section->output_offset;
826 else
827 section_addr = section->vma;
828
829 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
830 if (internal_relocs && !table_section->reloc_done)
831 {
832 qsort (internal_relocs, table_section->reloc_count,
833 sizeof (Elf_Internal_Rela), internal_reloc_compare);
834 irel = internal_relocs;
835 }
836 else
837 irel = NULL;
838
839 section_limit = bfd_get_section_limit (abfd, section);
840 rel_end = internal_relocs + table_section->reloc_count;
841
842 for (off = 0; off < table_size; off += table_entry_size)
843 {
844 bfd_vma address = bfd_get_32 (abfd, table_data + off);
845
846 /* Skip any relocations before the current offset. This should help
847 avoid confusion caused by unexpected relocations for the preceding
848 table entry. */
849 while (irel &&
850 (irel->r_offset < off
851 || (irel->r_offset == off
852 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
853 {
854 irel += 1;
855 if (irel >= rel_end)
856 irel = 0;
857 }
858
859 if (irel && irel->r_offset == off)
860 {
861 bfd_vma sym_off;
862 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
863 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
864
865 if (get_elf_r_symndx_section (abfd, r_symndx) != section)
866 continue;
867
868 sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
869 BFD_ASSERT (sym_off == 0);
870 address += (section_addr + sym_off + irel->r_addend);
871 }
872 else
873 {
874 if (address < section_addr
875 || address >= section_addr + section_limit)
876 continue;
877 }
878
879 blocks[block_count].address = address;
880 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
881 if (predef_flags)
882 blocks[block_count].flags = predef_flags;
883 else
884 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
885 block_count++;
886 }
887
888 release_contents (table_section, table_data);
889 release_internal_relocs (table_section, internal_relocs);
890
891 if (block_count > 0)
892 {
893 /* Now sort them into address order for easy reference. */
894 qsort (blocks, block_count, sizeof (property_table_entry),
895 property_table_compare);
896
897 /* Check that the table contents are valid. Problems may occur,
898 for example, if an unrelocated object file is stripped. */
899 for (blk = 1; blk < block_count; blk++)
900 {
901 /* The only circumstance where two entries may legitimately
902 have the same address is when one of them is a zero-size
903 placeholder to mark a place where fill can be inserted.
904 The zero-size entry should come first. */
905 if (blocks[blk - 1].address == blocks[blk].address &&
906 blocks[blk - 1].size != 0)
907 {
908 (*_bfd_error_handler) (_("%B(%A): invalid property table"),
909 abfd, section);
910 bfd_set_error (bfd_error_bad_value);
911 free (blocks);
912 return -1;
913 }
914 }
915 }
916
917 *table_p = blocks;
918 return block_count;
919 }
920
921
922 static property_table_entry *
923 elf_xtensa_find_property_entry (property_table_entry *property_table,
924 int property_table_size,
925 bfd_vma addr)
926 {
927 property_table_entry entry;
928 property_table_entry *rv;
929
930 if (property_table_size == 0)
931 return NULL;
932
933 entry.address = addr;
934 entry.size = 1;
935 entry.flags = 0;
936
937 rv = bsearch (&entry, property_table, property_table_size,
938 sizeof (property_table_entry), property_table_matches);
939 return rv;
940 }
941
942
943 static bfd_boolean
944 elf_xtensa_in_literal_pool (property_table_entry *lit_table,
945 int lit_table_size,
946 bfd_vma addr)
947 {
948 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
949 return TRUE;
950
951 return FALSE;
952 }
953
954 \f
955 /* Look through the relocs for a section during the first phase, and
956 calculate needed space in the dynamic reloc sections. */
957
958 static bfd_boolean
959 elf_xtensa_check_relocs (bfd *abfd,
960 struct bfd_link_info *info,
961 asection *sec,
962 const Elf_Internal_Rela *relocs)
963 {
964 struct elf_xtensa_link_hash_table *htab;
965 Elf_Internal_Shdr *symtab_hdr;
966 struct elf_link_hash_entry **sym_hashes;
967 const Elf_Internal_Rela *rel;
968 const Elf_Internal_Rela *rel_end;
969
970 if (info->relocatable || (sec->flags & SEC_ALLOC) == 0)
971 return TRUE;
972
973 BFD_ASSERT (is_xtensa_elf (abfd));
974
975 htab = elf_xtensa_hash_table (info);
976 if (htab == NULL)
977 return FALSE;
978
979 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
980 sym_hashes = elf_sym_hashes (abfd);
981
982 rel_end = relocs + sec->reloc_count;
983 for (rel = relocs; rel < rel_end; rel++)
984 {
985 unsigned int r_type;
986 unsigned long r_symndx;
987 struct elf_link_hash_entry *h = NULL;
988 struct elf_xtensa_link_hash_entry *eh;
989 int tls_type, old_tls_type;
990 bfd_boolean is_got = FALSE;
991 bfd_boolean is_plt = FALSE;
992 bfd_boolean is_tlsfunc = FALSE;
993
994 r_symndx = ELF32_R_SYM (rel->r_info);
995 r_type = ELF32_R_TYPE (rel->r_info);
996
997 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
998 {
999 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1000 abfd, r_symndx);
1001 return FALSE;
1002 }
1003
1004 if (r_symndx >= symtab_hdr->sh_info)
1005 {
1006 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1007 while (h->root.type == bfd_link_hash_indirect
1008 || h->root.type == bfd_link_hash_warning)
1009 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1010 }
1011 eh = elf_xtensa_hash_entry (h);
1012
1013 switch (r_type)
1014 {
1015 case R_XTENSA_TLSDESC_FN:
1016 if (info->shared)
1017 {
1018 tls_type = GOT_TLS_GD;
1019 is_got = TRUE;
1020 is_tlsfunc = TRUE;
1021 }
1022 else
1023 tls_type = GOT_TLS_IE;
1024 break;
1025
1026 case R_XTENSA_TLSDESC_ARG:
1027 if (info->shared)
1028 {
1029 tls_type = GOT_TLS_GD;
1030 is_got = TRUE;
1031 }
1032 else
1033 {
1034 tls_type = GOT_TLS_IE;
1035 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1036 is_got = TRUE;
1037 }
1038 break;
1039
1040 case R_XTENSA_TLS_DTPOFF:
1041 if (info->shared)
1042 tls_type = GOT_TLS_GD;
1043 else
1044 tls_type = GOT_TLS_IE;
1045 break;
1046
1047 case R_XTENSA_TLS_TPOFF:
1048 tls_type = GOT_TLS_IE;
1049 if (info->shared)
1050 info->flags |= DF_STATIC_TLS;
1051 if (info->shared || h)
1052 is_got = TRUE;
1053 break;
1054
1055 case R_XTENSA_32:
1056 tls_type = GOT_NORMAL;
1057 is_got = TRUE;
1058 break;
1059
1060 case R_XTENSA_PLT:
1061 tls_type = GOT_NORMAL;
1062 is_plt = TRUE;
1063 break;
1064
1065 case R_XTENSA_GNU_VTINHERIT:
1066 /* This relocation describes the C++ object vtable hierarchy.
1067 Reconstruct it for later use during GC. */
1068 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1069 return FALSE;
1070 continue;
1071
1072 case R_XTENSA_GNU_VTENTRY:
1073 /* This relocation describes which C++ vtable entries are actually
1074 used. Record for later use during GC. */
1075 BFD_ASSERT (h != NULL);
1076 if (h != NULL
1077 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1078 return FALSE;
1079 continue;
1080
1081 default:
1082 /* Nothing to do for any other relocations. */
1083 continue;
1084 }
1085
1086 if (h)
1087 {
1088 if (is_plt)
1089 {
1090 if (h->plt.refcount <= 0)
1091 {
1092 h->needs_plt = 1;
1093 h->plt.refcount = 1;
1094 }
1095 else
1096 h->plt.refcount += 1;
1097
1098 /* Keep track of the total PLT relocation count even if we
1099 don't yet know whether the dynamic sections will be
1100 created. */
1101 htab->plt_reloc_count += 1;
1102
1103 if (elf_hash_table (info)->dynamic_sections_created)
1104 {
1105 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1106 return FALSE;
1107 }
1108 }
1109 else if (is_got)
1110 {
1111 if (h->got.refcount <= 0)
1112 h->got.refcount = 1;
1113 else
1114 h->got.refcount += 1;
1115 }
1116
1117 if (is_tlsfunc)
1118 eh->tlsfunc_refcount += 1;
1119
1120 old_tls_type = eh->tls_type;
1121 }
1122 else
1123 {
1124 /* Allocate storage the first time. */
1125 if (elf_local_got_refcounts (abfd) == NULL)
1126 {
1127 bfd_size_type size = symtab_hdr->sh_info;
1128 void *mem;
1129
1130 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1131 if (mem == NULL)
1132 return FALSE;
1133 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem;
1134
1135 mem = bfd_zalloc (abfd, size);
1136 if (mem == NULL)
1137 return FALSE;
1138 elf_xtensa_local_got_tls_type (abfd) = (char *) mem;
1139
1140 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1141 if (mem == NULL)
1142 return FALSE;
1143 elf_xtensa_local_tlsfunc_refcounts (abfd)
1144 = (bfd_signed_vma *) mem;
1145 }
1146
1147 /* This is a global offset table entry for a local symbol. */
1148 if (is_got || is_plt)
1149 elf_local_got_refcounts (abfd) [r_symndx] += 1;
1150
1151 if (is_tlsfunc)
1152 elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1;
1153
1154 old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx];
1155 }
1156
1157 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
1158 tls_type |= old_tls_type;
1159 /* If a TLS symbol is accessed using IE at least once,
1160 there is no point to use a dynamic model for it. */
1161 else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1162 && ((old_tls_type & GOT_TLS_GD) == 0
1163 || (tls_type & GOT_TLS_IE) == 0))
1164 {
1165 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD))
1166 tls_type = old_tls_type;
1167 else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD))
1168 tls_type |= old_tls_type;
1169 else
1170 {
1171 (*_bfd_error_handler)
1172 (_("%B: `%s' accessed both as normal and thread local symbol"),
1173 abfd,
1174 h ? h->root.root.string : "<local>");
1175 return FALSE;
1176 }
1177 }
1178
1179 if (old_tls_type != tls_type)
1180 {
1181 if (eh)
1182 eh->tls_type = tls_type;
1183 else
1184 elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type;
1185 }
1186 }
1187
1188 return TRUE;
1189 }
1190
1191
1192 static void
1193 elf_xtensa_make_sym_local (struct bfd_link_info *info,
1194 struct elf_link_hash_entry *h)
1195 {
1196 if (info->shared)
1197 {
1198 if (h->plt.refcount > 0)
1199 {
1200 /* For shared objects, there's no need for PLT entries for local
1201 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
1202 if (h->got.refcount < 0)
1203 h->got.refcount = 0;
1204 h->got.refcount += h->plt.refcount;
1205 h->plt.refcount = 0;
1206 }
1207 }
1208 else
1209 {
1210 /* Don't need any dynamic relocations at all. */
1211 h->plt.refcount = 0;
1212 h->got.refcount = 0;
1213 }
1214 }
1215
1216
1217 static void
1218 elf_xtensa_hide_symbol (struct bfd_link_info *info,
1219 struct elf_link_hash_entry *h,
1220 bfd_boolean force_local)
1221 {
1222 /* For a shared link, move the plt refcount to the got refcount to leave
1223 space for RELATIVE relocs. */
1224 elf_xtensa_make_sym_local (info, h);
1225
1226 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
1227 }
1228
1229
1230 /* Return the section that should be marked against GC for a given
1231 relocation. */
1232
1233 static asection *
1234 elf_xtensa_gc_mark_hook (asection *sec,
1235 struct bfd_link_info *info,
1236 Elf_Internal_Rela *rel,
1237 struct elf_link_hash_entry *h,
1238 Elf_Internal_Sym *sym)
1239 {
1240 /* Property sections are marked "KEEP" in the linker scripts, but they
1241 should not cause other sections to be marked. (This approach relies
1242 on elf_xtensa_discard_info to remove property table entries that
1243 describe discarded sections. Alternatively, it might be more
1244 efficient to avoid using "KEEP" in the linker scripts and instead use
1245 the gc_mark_extra_sections hook to mark only the property sections
1246 that describe marked sections. That alternative does not work well
1247 with the current property table sections, which do not correspond
1248 one-to-one with the sections they describe, but that should be fixed
1249 someday.) */
1250 if (xtensa_is_property_section (sec))
1251 return NULL;
1252
1253 if (h != NULL)
1254 switch (ELF32_R_TYPE (rel->r_info))
1255 {
1256 case R_XTENSA_GNU_VTINHERIT:
1257 case R_XTENSA_GNU_VTENTRY:
1258 return NULL;
1259 }
1260
1261 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1262 }
1263
1264
1265 /* Update the GOT & PLT entry reference counts
1266 for the section being removed. */
1267
1268 static bfd_boolean
1269 elf_xtensa_gc_sweep_hook (bfd *abfd,
1270 struct bfd_link_info *info,
1271 asection *sec,
1272 const Elf_Internal_Rela *relocs)
1273 {
1274 Elf_Internal_Shdr *symtab_hdr;
1275 struct elf_link_hash_entry **sym_hashes;
1276 const Elf_Internal_Rela *rel, *relend;
1277 struct elf_xtensa_link_hash_table *htab;
1278
1279 htab = elf_xtensa_hash_table (info);
1280 if (htab == NULL)
1281 return FALSE;
1282
1283 if (info->relocatable)
1284 return TRUE;
1285
1286 if ((sec->flags & SEC_ALLOC) == 0)
1287 return TRUE;
1288
1289 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1290 sym_hashes = elf_sym_hashes (abfd);
1291
1292 relend = relocs + sec->reloc_count;
1293 for (rel = relocs; rel < relend; rel++)
1294 {
1295 unsigned long r_symndx;
1296 unsigned int r_type;
1297 struct elf_link_hash_entry *h = NULL;
1298 struct elf_xtensa_link_hash_entry *eh;
1299 bfd_boolean is_got = FALSE;
1300 bfd_boolean is_plt = FALSE;
1301 bfd_boolean is_tlsfunc = FALSE;
1302
1303 r_symndx = ELF32_R_SYM (rel->r_info);
1304 if (r_symndx >= symtab_hdr->sh_info)
1305 {
1306 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1307 while (h->root.type == bfd_link_hash_indirect
1308 || h->root.type == bfd_link_hash_warning)
1309 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1310 }
1311 eh = elf_xtensa_hash_entry (h);
1312
1313 r_type = ELF32_R_TYPE (rel->r_info);
1314 switch (r_type)
1315 {
1316 case R_XTENSA_TLSDESC_FN:
1317 if (info->shared)
1318 {
1319 is_got = TRUE;
1320 is_tlsfunc = TRUE;
1321 }
1322 break;
1323
1324 case R_XTENSA_TLSDESC_ARG:
1325 if (info->shared)
1326 is_got = TRUE;
1327 else
1328 {
1329 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1330 is_got = TRUE;
1331 }
1332 break;
1333
1334 case R_XTENSA_TLS_TPOFF:
1335 if (info->shared || h)
1336 is_got = TRUE;
1337 break;
1338
1339 case R_XTENSA_32:
1340 is_got = TRUE;
1341 break;
1342
1343 case R_XTENSA_PLT:
1344 is_plt = TRUE;
1345 break;
1346
1347 default:
1348 continue;
1349 }
1350
1351 if (h)
1352 {
1353 if (is_plt)
1354 {
1355 if (h->plt.refcount > 0)
1356 h->plt.refcount--;
1357 }
1358 else if (is_got)
1359 {
1360 if (h->got.refcount > 0)
1361 h->got.refcount--;
1362 }
1363 if (is_tlsfunc)
1364 {
1365 if (eh->tlsfunc_refcount > 0)
1366 eh->tlsfunc_refcount--;
1367 }
1368 }
1369 else
1370 {
1371 if (is_got || is_plt)
1372 {
1373 bfd_signed_vma *got_refcount
1374 = &elf_local_got_refcounts (abfd) [r_symndx];
1375 if (*got_refcount > 0)
1376 *got_refcount -= 1;
1377 }
1378 if (is_tlsfunc)
1379 {
1380 bfd_signed_vma *tlsfunc_refcount
1381 = &elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx];
1382 if (*tlsfunc_refcount > 0)
1383 *tlsfunc_refcount -= 1;
1384 }
1385 }
1386 }
1387
1388 return TRUE;
1389 }
1390
1391
1392 /* Create all the dynamic sections. */
1393
1394 static bfd_boolean
1395 elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
1396 {
1397 struct elf_xtensa_link_hash_table *htab;
1398 flagword flags, noalloc_flags;
1399
1400 htab = elf_xtensa_hash_table (info);
1401 if (htab == NULL)
1402 return FALSE;
1403
1404 /* First do all the standard stuff. */
1405 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1406 return FALSE;
1407 htab->splt = bfd_get_linker_section (dynobj, ".plt");
1408 htab->srelplt = bfd_get_linker_section (dynobj, ".rela.plt");
1409 htab->sgot = bfd_get_linker_section (dynobj, ".got");
1410 htab->sgotplt = bfd_get_linker_section (dynobj, ".got.plt");
1411 htab->srelgot = bfd_get_linker_section (dynobj, ".rela.got");
1412
1413 /* Create any extra PLT sections in case check_relocs has already
1414 been called on all the non-dynamic input files. */
1415 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1416 return FALSE;
1417
1418 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1419 | SEC_LINKER_CREATED | SEC_READONLY);
1420 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
1421
1422 /* Mark the ".got.plt" section READONLY. */
1423 if (htab->sgotplt == NULL
1424 || ! bfd_set_section_flags (dynobj, htab->sgotplt, flags))
1425 return FALSE;
1426
1427 /* Create ".got.loc" (literal tables for use by dynamic linker). */
1428 htab->sgotloc = bfd_make_section_anyway_with_flags (dynobj, ".got.loc",
1429 flags);
1430 if (htab->sgotloc == NULL
1431 || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
1432 return FALSE;
1433
1434 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
1435 htab->spltlittbl = bfd_make_section_anyway_with_flags (dynobj, ".xt.lit.plt",
1436 noalloc_flags);
1437 if (htab->spltlittbl == NULL
1438 || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
1439 return FALSE;
1440
1441 return TRUE;
1442 }
1443
1444
1445 static bfd_boolean
1446 add_extra_plt_sections (struct bfd_link_info *info, int count)
1447 {
1448 bfd *dynobj = elf_hash_table (info)->dynobj;
1449 int chunk;
1450
1451 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1452 ".got.plt" sections. */
1453 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1454 {
1455 char *sname;
1456 flagword flags;
1457 asection *s;
1458
1459 /* Stop when we find a section has already been created. */
1460 if (elf_xtensa_get_plt_section (info, chunk))
1461 break;
1462
1463 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1464 | SEC_LINKER_CREATED | SEC_READONLY);
1465
1466 sname = (char *) bfd_malloc (10);
1467 sprintf (sname, ".plt.%u", chunk);
1468 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags | SEC_CODE);
1469 if (s == NULL
1470 || ! bfd_set_section_alignment (dynobj, s, 2))
1471 return FALSE;
1472
1473 sname = (char *) bfd_malloc (14);
1474 sprintf (sname, ".got.plt.%u", chunk);
1475 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags);
1476 if (s == NULL
1477 || ! bfd_set_section_alignment (dynobj, s, 2))
1478 return FALSE;
1479 }
1480
1481 return TRUE;
1482 }
1483
1484
1485 /* Adjust a symbol defined by a dynamic object and referenced by a
1486 regular object. The current definition is in some section of the
1487 dynamic object, but we're not including those sections. We have to
1488 change the definition to something the rest of the link can
1489 understand. */
1490
1491 static bfd_boolean
1492 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1493 struct elf_link_hash_entry *h)
1494 {
1495 /* If this is a weak symbol, and there is a real definition, the
1496 processor independent code will have arranged for us to see the
1497 real definition first, and we can just use the same value. */
1498 if (h->u.weakdef)
1499 {
1500 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1501 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1502 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1503 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1504 return TRUE;
1505 }
1506
1507 /* This is a reference to a symbol defined by a dynamic object. The
1508 reference must go through the GOT, so there's no need for COPY relocs,
1509 .dynbss, etc. */
1510
1511 return TRUE;
1512 }
1513
1514
1515 static bfd_boolean
1516 elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
1517 {
1518 struct bfd_link_info *info;
1519 struct elf_xtensa_link_hash_table *htab;
1520 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h);
1521
1522 if (h->root.type == bfd_link_hash_indirect)
1523 return TRUE;
1524
1525 info = (struct bfd_link_info *) arg;
1526 htab = elf_xtensa_hash_table (info);
1527 if (htab == NULL)
1528 return FALSE;
1529
1530 /* If we saw any use of an IE model for this symbol, we can then optimize
1531 away GOT entries for any TLSDESC_FN relocs. */
1532 if ((eh->tls_type & GOT_TLS_IE) != 0)
1533 {
1534 BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount);
1535 h->got.refcount -= eh->tlsfunc_refcount;
1536 }
1537
1538 if (! elf_xtensa_dynamic_symbol_p (h, info))
1539 elf_xtensa_make_sym_local (info, h);
1540
1541 if (h->plt.refcount > 0)
1542 htab->srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
1543
1544 if (h->got.refcount > 0)
1545 htab->srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
1546
1547 return TRUE;
1548 }
1549
1550
1551 static void
1552 elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
1553 {
1554 struct elf_xtensa_link_hash_table *htab;
1555 bfd *i;
1556
1557 htab = elf_xtensa_hash_table (info);
1558 if (htab == NULL)
1559 return;
1560
1561 for (i = info->input_bfds; i; i = i->link_next)
1562 {
1563 bfd_signed_vma *local_got_refcounts;
1564 bfd_size_type j, cnt;
1565 Elf_Internal_Shdr *symtab_hdr;
1566
1567 local_got_refcounts = elf_local_got_refcounts (i);
1568 if (!local_got_refcounts)
1569 continue;
1570
1571 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1572 cnt = symtab_hdr->sh_info;
1573
1574 for (j = 0; j < cnt; ++j)
1575 {
1576 /* If we saw any use of an IE model for this symbol, we can
1577 then optimize away GOT entries for any TLSDESC_FN relocs. */
1578 if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0)
1579 {
1580 bfd_signed_vma *tlsfunc_refcount
1581 = &elf_xtensa_local_tlsfunc_refcounts (i) [j];
1582 BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount);
1583 local_got_refcounts[j] -= *tlsfunc_refcount;
1584 }
1585
1586 if (local_got_refcounts[j] > 0)
1587 htab->srelgot->size += (local_got_refcounts[j]
1588 * sizeof (Elf32_External_Rela));
1589 }
1590 }
1591 }
1592
1593
1594 /* Set the sizes of the dynamic sections. */
1595
1596 static bfd_boolean
1597 elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1598 struct bfd_link_info *info)
1599 {
1600 struct elf_xtensa_link_hash_table *htab;
1601 bfd *dynobj, *abfd;
1602 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
1603 bfd_boolean relplt, relgot;
1604 int plt_entries, plt_chunks, chunk;
1605
1606 plt_entries = 0;
1607 plt_chunks = 0;
1608
1609 htab = elf_xtensa_hash_table (info);
1610 if (htab == NULL)
1611 return FALSE;
1612
1613 dynobj = elf_hash_table (info)->dynobj;
1614 if (dynobj == NULL)
1615 abort ();
1616 srelgot = htab->srelgot;
1617 srelplt = htab->srelplt;
1618
1619 if (elf_hash_table (info)->dynamic_sections_created)
1620 {
1621 BFD_ASSERT (htab->srelgot != NULL
1622 && htab->srelplt != NULL
1623 && htab->sgot != NULL
1624 && htab->spltlittbl != NULL
1625 && htab->sgotloc != NULL);
1626
1627 /* Set the contents of the .interp section to the interpreter. */
1628 if (info->executable)
1629 {
1630 s = bfd_get_linker_section (dynobj, ".interp");
1631 if (s == NULL)
1632 abort ();
1633 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1634 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1635 }
1636
1637 /* Allocate room for one word in ".got". */
1638 htab->sgot->size = 4;
1639
1640 /* Allocate space in ".rela.got" for literals that reference global
1641 symbols and space in ".rela.plt" for literals that have PLT
1642 entries. */
1643 elf_link_hash_traverse (elf_hash_table (info),
1644 elf_xtensa_allocate_dynrelocs,
1645 (void *) info);
1646
1647 /* If we are generating a shared object, we also need space in
1648 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1649 reference local symbols. */
1650 if (info->shared)
1651 elf_xtensa_allocate_local_got_size (info);
1652
1653 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1654 each PLT entry, we need the PLT code plus a 4-byte literal.
1655 For each chunk of ".plt", we also need two more 4-byte
1656 literals, two corresponding entries in ".rela.got", and an
1657 8-byte entry in ".xt.lit.plt". */
1658 spltlittbl = htab->spltlittbl;
1659 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
1660 plt_chunks =
1661 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1662
1663 /* Iterate over all the PLT chunks, including any extra sections
1664 created earlier because the initial count of PLT relocations
1665 was an overestimate. */
1666 for (chunk = 0;
1667 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
1668 chunk++)
1669 {
1670 int chunk_entries;
1671
1672 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1673 BFD_ASSERT (sgotplt != NULL);
1674
1675 if (chunk < plt_chunks - 1)
1676 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1677 else if (chunk == plt_chunks - 1)
1678 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1679 else
1680 chunk_entries = 0;
1681
1682 if (chunk_entries != 0)
1683 {
1684 sgotplt->size = 4 * (chunk_entries + 2);
1685 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1686 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1687 spltlittbl->size += 8;
1688 }
1689 else
1690 {
1691 sgotplt->size = 0;
1692 splt->size = 0;
1693 }
1694 }
1695
1696 /* Allocate space in ".got.loc" to match the total size of all the
1697 literal tables. */
1698 sgotloc = htab->sgotloc;
1699 sgotloc->size = spltlittbl->size;
1700 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1701 {
1702 if (abfd->flags & DYNAMIC)
1703 continue;
1704 for (s = abfd->sections; s != NULL; s = s->next)
1705 {
1706 if (! discarded_section (s)
1707 && xtensa_is_littable_section (s)
1708 && s != spltlittbl)
1709 sgotloc->size += s->size;
1710 }
1711 }
1712 }
1713
1714 /* Allocate memory for dynamic sections. */
1715 relplt = FALSE;
1716 relgot = FALSE;
1717 for (s = dynobj->sections; s != NULL; s = s->next)
1718 {
1719 const char *name;
1720
1721 if ((s->flags & SEC_LINKER_CREATED) == 0)
1722 continue;
1723
1724 /* It's OK to base decisions on the section name, because none
1725 of the dynobj section names depend upon the input files. */
1726 name = bfd_get_section_name (dynobj, s);
1727
1728 if (CONST_STRNEQ (name, ".rela"))
1729 {
1730 if (s->size != 0)
1731 {
1732 if (strcmp (name, ".rela.plt") == 0)
1733 relplt = TRUE;
1734 else if (strcmp (name, ".rela.got") == 0)
1735 relgot = TRUE;
1736
1737 /* We use the reloc_count field as a counter if we need
1738 to copy relocs into the output file. */
1739 s->reloc_count = 0;
1740 }
1741 }
1742 else if (! CONST_STRNEQ (name, ".plt.")
1743 && ! CONST_STRNEQ (name, ".got.plt.")
1744 && strcmp (name, ".got") != 0
1745 && strcmp (name, ".plt") != 0
1746 && strcmp (name, ".got.plt") != 0
1747 && strcmp (name, ".xt.lit.plt") != 0
1748 && strcmp (name, ".got.loc") != 0)
1749 {
1750 /* It's not one of our sections, so don't allocate space. */
1751 continue;
1752 }
1753
1754 if (s->size == 0)
1755 {
1756 /* If we don't need this section, strip it from the output
1757 file. We must create the ".plt*" and ".got.plt*"
1758 sections in create_dynamic_sections and/or check_relocs
1759 based on a conservative estimate of the PLT relocation
1760 count, because the sections must be created before the
1761 linker maps input sections to output sections. The
1762 linker does that before size_dynamic_sections, where we
1763 compute the exact size of the PLT, so there may be more
1764 of these sections than are actually needed. */
1765 s->flags |= SEC_EXCLUDE;
1766 }
1767 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
1768 {
1769 /* Allocate memory for the section contents. */
1770 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1771 if (s->contents == NULL)
1772 return FALSE;
1773 }
1774 }
1775
1776 if (elf_hash_table (info)->dynamic_sections_created)
1777 {
1778 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1779 known until finish_dynamic_sections, but we need to get the relocs
1780 in place before they are sorted. */
1781 for (chunk = 0; chunk < plt_chunks; chunk++)
1782 {
1783 Elf_Internal_Rela irela;
1784 bfd_byte *loc;
1785
1786 irela.r_offset = 0;
1787 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1788 irela.r_addend = 0;
1789
1790 loc = (srelgot->contents
1791 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1792 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1793 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1794 loc + sizeof (Elf32_External_Rela));
1795 srelgot->reloc_count += 2;
1796 }
1797
1798 /* Add some entries to the .dynamic section. We fill in the
1799 values later, in elf_xtensa_finish_dynamic_sections, but we
1800 must add the entries now so that we get the correct size for
1801 the .dynamic section. The DT_DEBUG entry is filled in by the
1802 dynamic linker and used by the debugger. */
1803 #define add_dynamic_entry(TAG, VAL) \
1804 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1805
1806 if (info->executable)
1807 {
1808 if (!add_dynamic_entry (DT_DEBUG, 0))
1809 return FALSE;
1810 }
1811
1812 if (relplt)
1813 {
1814 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1815 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1816 || !add_dynamic_entry (DT_JMPREL, 0))
1817 return FALSE;
1818 }
1819
1820 if (relgot)
1821 {
1822 if (!add_dynamic_entry (DT_RELA, 0)
1823 || !add_dynamic_entry (DT_RELASZ, 0)
1824 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1825 return FALSE;
1826 }
1827
1828 if (!add_dynamic_entry (DT_PLTGOT, 0)
1829 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1830 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1831 return FALSE;
1832 }
1833 #undef add_dynamic_entry
1834
1835 return TRUE;
1836 }
1837
1838 static bfd_boolean
1839 elf_xtensa_always_size_sections (bfd *output_bfd,
1840 struct bfd_link_info *info)
1841 {
1842 struct elf_xtensa_link_hash_table *htab;
1843 asection *tls_sec;
1844
1845 htab = elf_xtensa_hash_table (info);
1846 if (htab == NULL)
1847 return FALSE;
1848
1849 tls_sec = htab->elf.tls_sec;
1850
1851 if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0)
1852 {
1853 struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf;
1854 struct bfd_link_hash_entry *bh = &tlsbase->root;
1855 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
1856
1857 tlsbase->type = STT_TLS;
1858 if (!(_bfd_generic_link_add_one_symbol
1859 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
1860 tls_sec, 0, NULL, FALSE,
1861 bed->collect, &bh)))
1862 return FALSE;
1863 tlsbase->def_regular = 1;
1864 tlsbase->other = STV_HIDDEN;
1865 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
1866 }
1867
1868 return TRUE;
1869 }
1870
1871 \f
1872 /* Return the base VMA address which should be subtracted from real addresses
1873 when resolving @dtpoff relocation.
1874 This is PT_TLS segment p_vaddr. */
1875
1876 static bfd_vma
1877 dtpoff_base (struct bfd_link_info *info)
1878 {
1879 /* If tls_sec is NULL, we should have signalled an error already. */
1880 if (elf_hash_table (info)->tls_sec == NULL)
1881 return 0;
1882 return elf_hash_table (info)->tls_sec->vma;
1883 }
1884
1885 /* Return the relocation value for @tpoff relocation
1886 if STT_TLS virtual address is ADDRESS. */
1887
1888 static bfd_vma
1889 tpoff (struct bfd_link_info *info, bfd_vma address)
1890 {
1891 struct elf_link_hash_table *htab = elf_hash_table (info);
1892 bfd_vma base;
1893
1894 /* If tls_sec is NULL, we should have signalled an error already. */
1895 if (htab->tls_sec == NULL)
1896 return 0;
1897 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
1898 return address - htab->tls_sec->vma + base;
1899 }
1900
1901 /* Perform the specified relocation. The instruction at (contents + address)
1902 is modified to set one operand to represent the value in "relocation". The
1903 operand position is determined by the relocation type recorded in the
1904 howto. */
1905
1906 #define CALL_SEGMENT_BITS (30)
1907 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
1908
1909 static bfd_reloc_status_type
1910 elf_xtensa_do_reloc (reloc_howto_type *howto,
1911 bfd *abfd,
1912 asection *input_section,
1913 bfd_vma relocation,
1914 bfd_byte *contents,
1915 bfd_vma address,
1916 bfd_boolean is_weak_undef,
1917 char **error_message)
1918 {
1919 xtensa_format fmt;
1920 xtensa_opcode opcode;
1921 xtensa_isa isa = xtensa_default_isa;
1922 static xtensa_insnbuf ibuff = NULL;
1923 static xtensa_insnbuf sbuff = NULL;
1924 bfd_vma self_address;
1925 bfd_size_type input_size;
1926 int opnd, slot;
1927 uint32 newval;
1928
1929 if (!ibuff)
1930 {
1931 ibuff = xtensa_insnbuf_alloc (isa);
1932 sbuff = xtensa_insnbuf_alloc (isa);
1933 }
1934
1935 input_size = bfd_get_section_limit (abfd, input_section);
1936
1937 /* Calculate the PC address for this instruction. */
1938 self_address = (input_section->output_section->vma
1939 + input_section->output_offset
1940 + address);
1941
1942 switch (howto->type)
1943 {
1944 case R_XTENSA_NONE:
1945 case R_XTENSA_DIFF8:
1946 case R_XTENSA_DIFF16:
1947 case R_XTENSA_DIFF32:
1948 case R_XTENSA_TLS_FUNC:
1949 case R_XTENSA_TLS_ARG:
1950 case R_XTENSA_TLS_CALL:
1951 return bfd_reloc_ok;
1952
1953 case R_XTENSA_ASM_EXPAND:
1954 if (!is_weak_undef)
1955 {
1956 /* Check for windowed CALL across a 1GB boundary. */
1957 opcode = get_expanded_call_opcode (contents + address,
1958 input_size - address, 0);
1959 if (is_windowed_call_opcode (opcode))
1960 {
1961 if ((self_address >> CALL_SEGMENT_BITS)
1962 != (relocation >> CALL_SEGMENT_BITS))
1963 {
1964 *error_message = "windowed longcall crosses 1GB boundary; "
1965 "return may fail";
1966 return bfd_reloc_dangerous;
1967 }
1968 }
1969 }
1970 return bfd_reloc_ok;
1971
1972 case R_XTENSA_ASM_SIMPLIFY:
1973 {
1974 /* Convert the L32R/CALLX to CALL. */
1975 bfd_reloc_status_type retval =
1976 elf_xtensa_do_asm_simplify (contents, address, input_size,
1977 error_message);
1978 if (retval != bfd_reloc_ok)
1979 return bfd_reloc_dangerous;
1980
1981 /* The CALL needs to be relocated. Continue below for that part. */
1982 address += 3;
1983 self_address += 3;
1984 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
1985 }
1986 break;
1987
1988 case R_XTENSA_32:
1989 {
1990 bfd_vma x;
1991 x = bfd_get_32 (abfd, contents + address);
1992 x = x + relocation;
1993 bfd_put_32 (abfd, x, contents + address);
1994 }
1995 return bfd_reloc_ok;
1996
1997 case R_XTENSA_32_PCREL:
1998 bfd_put_32 (abfd, relocation - self_address, contents + address);
1999 return bfd_reloc_ok;
2000
2001 case R_XTENSA_PLT:
2002 case R_XTENSA_TLSDESC_FN:
2003 case R_XTENSA_TLSDESC_ARG:
2004 case R_XTENSA_TLS_DTPOFF:
2005 case R_XTENSA_TLS_TPOFF:
2006 bfd_put_32 (abfd, relocation, contents + address);
2007 return bfd_reloc_ok;
2008 }
2009
2010 /* Only instruction slot-specific relocations handled below.... */
2011 slot = get_relocation_slot (howto->type);
2012 if (slot == XTENSA_UNDEFINED)
2013 {
2014 *error_message = "unexpected relocation";
2015 return bfd_reloc_dangerous;
2016 }
2017
2018 /* Read the instruction into a buffer and decode the opcode. */
2019 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
2020 input_size - address);
2021 fmt = xtensa_format_decode (isa, ibuff);
2022 if (fmt == XTENSA_UNDEFINED)
2023 {
2024 *error_message = "cannot decode instruction format";
2025 return bfd_reloc_dangerous;
2026 }
2027
2028 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
2029
2030 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
2031 if (opcode == XTENSA_UNDEFINED)
2032 {
2033 *error_message = "cannot decode instruction opcode";
2034 return bfd_reloc_dangerous;
2035 }
2036
2037 /* Check for opcode-specific "alternate" relocations. */
2038 if (is_alt_relocation (howto->type))
2039 {
2040 if (opcode == get_l32r_opcode ())
2041 {
2042 /* Handle the special-case of non-PC-relative L32R instructions. */
2043 bfd *output_bfd = input_section->output_section->owner;
2044 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
2045 if (!lit4_sec)
2046 {
2047 *error_message = "relocation references missing .lit4 section";
2048 return bfd_reloc_dangerous;
2049 }
2050 self_address = ((lit4_sec->vma & ~0xfff)
2051 + 0x40000 - 3); /* -3 to compensate for do_reloc */
2052 newval = relocation;
2053 opnd = 1;
2054 }
2055 else if (opcode == get_const16_opcode ())
2056 {
2057 /* ALT used for high 16 bits. */
2058 newval = relocation >> 16;
2059 opnd = 1;
2060 }
2061 else
2062 {
2063 /* No other "alternate" relocations currently defined. */
2064 *error_message = "unexpected relocation";
2065 return bfd_reloc_dangerous;
2066 }
2067 }
2068 else /* Not an "alternate" relocation.... */
2069 {
2070 if (opcode == get_const16_opcode ())
2071 {
2072 newval = relocation & 0xffff;
2073 opnd = 1;
2074 }
2075 else
2076 {
2077 /* ...normal PC-relative relocation.... */
2078
2079 /* Determine which operand is being relocated. */
2080 opnd = get_relocation_opnd (opcode, howto->type);
2081 if (opnd == XTENSA_UNDEFINED)
2082 {
2083 *error_message = "unexpected relocation";
2084 return bfd_reloc_dangerous;
2085 }
2086
2087 if (!howto->pc_relative)
2088 {
2089 *error_message = "expected PC-relative relocation";
2090 return bfd_reloc_dangerous;
2091 }
2092
2093 newval = relocation;
2094 }
2095 }
2096
2097 /* Apply the relocation. */
2098 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
2099 || xtensa_operand_encode (isa, opcode, opnd, &newval)
2100 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
2101 sbuff, newval))
2102 {
2103 const char *opname = xtensa_opcode_name (isa, opcode);
2104 const char *msg;
2105
2106 msg = "cannot encode";
2107 if (is_direct_call_opcode (opcode))
2108 {
2109 if ((relocation & 0x3) != 0)
2110 msg = "misaligned call target";
2111 else
2112 msg = "call target out of range";
2113 }
2114 else if (opcode == get_l32r_opcode ())
2115 {
2116 if ((relocation & 0x3) != 0)
2117 msg = "misaligned literal target";
2118 else if (is_alt_relocation (howto->type))
2119 msg = "literal target out of range (too many literals)";
2120 else if (self_address > relocation)
2121 msg = "literal target out of range (try using text-section-literals)";
2122 else
2123 msg = "literal placed after use";
2124 }
2125
2126 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
2127 return bfd_reloc_dangerous;
2128 }
2129
2130 /* Check for calls across 1GB boundaries. */
2131 if (is_direct_call_opcode (opcode)
2132 && is_windowed_call_opcode (opcode))
2133 {
2134 if ((self_address >> CALL_SEGMENT_BITS)
2135 != (relocation >> CALL_SEGMENT_BITS))
2136 {
2137 *error_message =
2138 "windowed call crosses 1GB boundary; return may fail";
2139 return bfd_reloc_dangerous;
2140 }
2141 }
2142
2143 /* Write the modified instruction back out of the buffer. */
2144 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
2145 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
2146 input_size - address);
2147 return bfd_reloc_ok;
2148 }
2149
2150
2151 static char *
2152 vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
2153 {
2154 /* To reduce the size of the memory leak,
2155 we only use a single message buffer. */
2156 static bfd_size_type alloc_size = 0;
2157 static char *message = NULL;
2158 bfd_size_type orig_len, len = 0;
2159 bfd_boolean is_append;
2160
2161 VA_OPEN (ap, arglen);
2162 VA_FIXEDARG (ap, const char *, origmsg);
2163
2164 is_append = (origmsg == message);
2165
2166 orig_len = strlen (origmsg);
2167 len = orig_len + strlen (fmt) + arglen + 20;
2168 if (len > alloc_size)
2169 {
2170 message = (char *) bfd_realloc_or_free (message, len);
2171 alloc_size = len;
2172 }
2173 if (message != NULL)
2174 {
2175 if (!is_append)
2176 memcpy (message, origmsg, orig_len);
2177 vsprintf (message + orig_len, fmt, ap);
2178 }
2179 VA_CLOSE (ap);
2180 return message;
2181 }
2182
2183
2184 /* This function is registered as the "special_function" in the
2185 Xtensa howto for handling simplify operations.
2186 bfd_perform_relocation / bfd_install_relocation use it to
2187 perform (install) the specified relocation. Since this replaces the code
2188 in bfd_perform_relocation, it is basically an Xtensa-specific,
2189 stripped-down version of bfd_perform_relocation. */
2190
2191 static bfd_reloc_status_type
2192 bfd_elf_xtensa_reloc (bfd *abfd,
2193 arelent *reloc_entry,
2194 asymbol *symbol,
2195 void *data,
2196 asection *input_section,
2197 bfd *output_bfd,
2198 char **error_message)
2199 {
2200 bfd_vma relocation;
2201 bfd_reloc_status_type flag;
2202 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2203 bfd_vma output_base = 0;
2204 reloc_howto_type *howto = reloc_entry->howto;
2205 asection *reloc_target_output_section;
2206 bfd_boolean is_weak_undef;
2207
2208 if (!xtensa_default_isa)
2209 xtensa_default_isa = xtensa_isa_init (0, 0);
2210
2211 /* ELF relocs are against symbols. If we are producing relocatable
2212 output, and the reloc is against an external symbol, the resulting
2213 reloc will also be against the same symbol. In such a case, we
2214 don't want to change anything about the way the reloc is handled,
2215 since it will all be done at final link time. This test is similar
2216 to what bfd_elf_generic_reloc does except that it lets relocs with
2217 howto->partial_inplace go through even if the addend is non-zero.
2218 (The real problem is that partial_inplace is set for XTENSA_32
2219 relocs to begin with, but that's a long story and there's little we
2220 can do about it now....) */
2221
2222 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
2223 {
2224 reloc_entry->address += input_section->output_offset;
2225 return bfd_reloc_ok;
2226 }
2227
2228 /* Is the address of the relocation really within the section? */
2229 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2230 return bfd_reloc_outofrange;
2231
2232 /* Work out which section the relocation is targeted at and the
2233 initial relocation command value. */
2234
2235 /* Get symbol value. (Common symbols are special.) */
2236 if (bfd_is_com_section (symbol->section))
2237 relocation = 0;
2238 else
2239 relocation = symbol->value;
2240
2241 reloc_target_output_section = symbol->section->output_section;
2242
2243 /* Convert input-section-relative symbol value to absolute. */
2244 if ((output_bfd && !howto->partial_inplace)
2245 || reloc_target_output_section == NULL)
2246 output_base = 0;
2247 else
2248 output_base = reloc_target_output_section->vma;
2249
2250 relocation += output_base + symbol->section->output_offset;
2251
2252 /* Add in supplied addend. */
2253 relocation += reloc_entry->addend;
2254
2255 /* Here the variable relocation holds the final address of the
2256 symbol we are relocating against, plus any addend. */
2257 if (output_bfd)
2258 {
2259 if (!howto->partial_inplace)
2260 {
2261 /* This is a partial relocation, and we want to apply the relocation
2262 to the reloc entry rather than the raw data. Everything except
2263 relocations against section symbols has already been handled
2264 above. */
2265
2266 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
2267 reloc_entry->addend = relocation;
2268 reloc_entry->address += input_section->output_offset;
2269 return bfd_reloc_ok;
2270 }
2271 else
2272 {
2273 reloc_entry->address += input_section->output_offset;
2274 reloc_entry->addend = 0;
2275 }
2276 }
2277
2278 is_weak_undef = (bfd_is_und_section (symbol->section)
2279 && (symbol->flags & BSF_WEAK) != 0);
2280 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
2281 (bfd_byte *) data, (bfd_vma) octets,
2282 is_weak_undef, error_message);
2283
2284 if (flag == bfd_reloc_dangerous)
2285 {
2286 /* Add the symbol name to the error message. */
2287 if (! *error_message)
2288 *error_message = "";
2289 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
2290 strlen (symbol->name) + 17,
2291 symbol->name,
2292 (unsigned long) reloc_entry->addend);
2293 }
2294
2295 return flag;
2296 }
2297
2298
2299 /* Set up an entry in the procedure linkage table. */
2300
2301 static bfd_vma
2302 elf_xtensa_create_plt_entry (struct bfd_link_info *info,
2303 bfd *output_bfd,
2304 unsigned reloc_index)
2305 {
2306 asection *splt, *sgotplt;
2307 bfd_vma plt_base, got_base;
2308 bfd_vma code_offset, lit_offset;
2309 int chunk;
2310
2311 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
2312 splt = elf_xtensa_get_plt_section (info, chunk);
2313 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
2314 BFD_ASSERT (splt != NULL && sgotplt != NULL);
2315
2316 plt_base = splt->output_section->vma + splt->output_offset;
2317 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
2318
2319 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
2320 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
2321
2322 /* Fill in the literal entry. This is the offset of the dynamic
2323 relocation entry. */
2324 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
2325 sgotplt->contents + lit_offset);
2326
2327 /* Fill in the entry in the procedure linkage table. */
2328 memcpy (splt->contents + code_offset,
2329 (bfd_big_endian (output_bfd)
2330 ? elf_xtensa_be_plt_entry
2331 : elf_xtensa_le_plt_entry),
2332 PLT_ENTRY_SIZE);
2333 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
2334 plt_base + code_offset + 3),
2335 splt->contents + code_offset + 4);
2336 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
2337 plt_base + code_offset + 6),
2338 splt->contents + code_offset + 7);
2339 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
2340 plt_base + code_offset + 9),
2341 splt->contents + code_offset + 10);
2342
2343 return plt_base + code_offset;
2344 }
2345
2346
2347 static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *);
2348
2349 static bfd_boolean
2350 replace_tls_insn (Elf_Internal_Rela *rel,
2351 bfd *abfd,
2352 asection *input_section,
2353 bfd_byte *contents,
2354 bfd_boolean is_ld_model,
2355 char **error_message)
2356 {
2357 static xtensa_insnbuf ibuff = NULL;
2358 static xtensa_insnbuf sbuff = NULL;
2359 xtensa_isa isa = xtensa_default_isa;
2360 xtensa_format fmt;
2361 xtensa_opcode old_op, new_op;
2362 bfd_size_type input_size;
2363 int r_type;
2364 unsigned dest_reg, src_reg;
2365
2366 if (ibuff == NULL)
2367 {
2368 ibuff = xtensa_insnbuf_alloc (isa);
2369 sbuff = xtensa_insnbuf_alloc (isa);
2370 }
2371
2372 input_size = bfd_get_section_limit (abfd, input_section);
2373
2374 /* Read the instruction into a buffer and decode the opcode. */
2375 xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset,
2376 input_size - rel->r_offset);
2377 fmt = xtensa_format_decode (isa, ibuff);
2378 if (fmt == XTENSA_UNDEFINED)
2379 {
2380 *error_message = "cannot decode instruction format";
2381 return FALSE;
2382 }
2383
2384 BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1);
2385 xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff);
2386
2387 old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff);
2388 if (old_op == XTENSA_UNDEFINED)
2389 {
2390 *error_message = "cannot decode instruction opcode";
2391 return FALSE;
2392 }
2393
2394 r_type = ELF32_R_TYPE (rel->r_info);
2395 switch (r_type)
2396 {
2397 case R_XTENSA_TLS_FUNC:
2398 case R_XTENSA_TLS_ARG:
2399 if (old_op != get_l32r_opcode ()
2400 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2401 sbuff, &dest_reg) != 0)
2402 {
2403 *error_message = "cannot extract L32R destination for TLS access";
2404 return FALSE;
2405 }
2406 break;
2407
2408 case R_XTENSA_TLS_CALL:
2409 if (! get_indirect_call_dest_reg (old_op, &dest_reg)
2410 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2411 sbuff, &src_reg) != 0)
2412 {
2413 *error_message = "cannot extract CALLXn operands for TLS access";
2414 return FALSE;
2415 }
2416 break;
2417
2418 default:
2419 abort ();
2420 }
2421
2422 if (is_ld_model)
2423 {
2424 switch (r_type)
2425 {
2426 case R_XTENSA_TLS_FUNC:
2427 case R_XTENSA_TLS_ARG:
2428 /* Change the instruction to a NOP (or "OR a1, a1, a1" for older
2429 versions of Xtensa). */
2430 new_op = xtensa_opcode_lookup (isa, "nop");
2431 if (new_op == XTENSA_UNDEFINED)
2432 {
2433 new_op = xtensa_opcode_lookup (isa, "or");
2434 if (new_op == XTENSA_UNDEFINED
2435 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2436 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2437 sbuff, 1) != 0
2438 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2439 sbuff, 1) != 0
2440 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2441 sbuff, 1) != 0)
2442 {
2443 *error_message = "cannot encode OR for TLS access";
2444 return FALSE;
2445 }
2446 }
2447 else
2448 {
2449 if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0)
2450 {
2451 *error_message = "cannot encode NOP for TLS access";
2452 return FALSE;
2453 }
2454 }
2455 break;
2456
2457 case R_XTENSA_TLS_CALL:
2458 /* Read THREADPTR into the CALLX's return value register. */
2459 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2460 if (new_op == XTENSA_UNDEFINED
2461 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2462 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2463 sbuff, dest_reg + 2) != 0)
2464 {
2465 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2466 return FALSE;
2467 }
2468 break;
2469 }
2470 }
2471 else
2472 {
2473 switch (r_type)
2474 {
2475 case R_XTENSA_TLS_FUNC:
2476 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2477 if (new_op == XTENSA_UNDEFINED
2478 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2479 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2480 sbuff, dest_reg) != 0)
2481 {
2482 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2483 return FALSE;
2484 }
2485 break;
2486
2487 case R_XTENSA_TLS_ARG:
2488 /* Nothing to do. Keep the original L32R instruction. */
2489 return TRUE;
2490
2491 case R_XTENSA_TLS_CALL:
2492 /* Add the CALLX's src register (holding the THREADPTR value)
2493 to the first argument register (holding the offset) and put
2494 the result in the CALLX's return value register. */
2495 new_op = xtensa_opcode_lookup (isa, "add");
2496 if (new_op == XTENSA_UNDEFINED
2497 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2498 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2499 sbuff, dest_reg + 2) != 0
2500 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2501 sbuff, dest_reg + 2) != 0
2502 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2503 sbuff, src_reg) != 0)
2504 {
2505 *error_message = "cannot encode ADD for TLS access";
2506 return FALSE;
2507 }
2508 break;
2509 }
2510 }
2511
2512 xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff);
2513 xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset,
2514 input_size - rel->r_offset);
2515
2516 return TRUE;
2517 }
2518
2519
2520 #define IS_XTENSA_TLS_RELOC(R_TYPE) \
2521 ((R_TYPE) == R_XTENSA_TLSDESC_FN \
2522 || (R_TYPE) == R_XTENSA_TLSDESC_ARG \
2523 || (R_TYPE) == R_XTENSA_TLS_DTPOFF \
2524 || (R_TYPE) == R_XTENSA_TLS_TPOFF \
2525 || (R_TYPE) == R_XTENSA_TLS_FUNC \
2526 || (R_TYPE) == R_XTENSA_TLS_ARG \
2527 || (R_TYPE) == R_XTENSA_TLS_CALL)
2528
2529 /* Relocate an Xtensa ELF section. This is invoked by the linker for
2530 both relocatable and final links. */
2531
2532 static bfd_boolean
2533 elf_xtensa_relocate_section (bfd *output_bfd,
2534 struct bfd_link_info *info,
2535 bfd *input_bfd,
2536 asection *input_section,
2537 bfd_byte *contents,
2538 Elf_Internal_Rela *relocs,
2539 Elf_Internal_Sym *local_syms,
2540 asection **local_sections)
2541 {
2542 struct elf_xtensa_link_hash_table *htab;
2543 Elf_Internal_Shdr *symtab_hdr;
2544 Elf_Internal_Rela *rel;
2545 Elf_Internal_Rela *relend;
2546 struct elf_link_hash_entry **sym_hashes;
2547 property_table_entry *lit_table = 0;
2548 int ltblsize = 0;
2549 char *local_got_tls_types;
2550 char *error_message = NULL;
2551 bfd_size_type input_size;
2552 int tls_type;
2553
2554 if (!xtensa_default_isa)
2555 xtensa_default_isa = xtensa_isa_init (0, 0);
2556
2557 BFD_ASSERT (is_xtensa_elf (input_bfd));
2558
2559 htab = elf_xtensa_hash_table (info);
2560 if (htab == NULL)
2561 return FALSE;
2562
2563 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2564 sym_hashes = elf_sym_hashes (input_bfd);
2565 local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd);
2566
2567 if (elf_hash_table (info)->dynamic_sections_created)
2568 {
2569 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
2570 &lit_table, XTENSA_LIT_SEC_NAME,
2571 TRUE);
2572 if (ltblsize < 0)
2573 return FALSE;
2574 }
2575
2576 input_size = bfd_get_section_limit (input_bfd, input_section);
2577
2578 rel = relocs;
2579 relend = relocs + input_section->reloc_count;
2580 for (; rel < relend; rel++)
2581 {
2582 int r_type;
2583 reloc_howto_type *howto;
2584 unsigned long r_symndx;
2585 struct elf_link_hash_entry *h;
2586 Elf_Internal_Sym *sym;
2587 char sym_type;
2588 const char *name;
2589 asection *sec;
2590 bfd_vma relocation;
2591 bfd_reloc_status_type r;
2592 bfd_boolean is_weak_undef;
2593 bfd_boolean unresolved_reloc;
2594 bfd_boolean warned;
2595 bfd_boolean dynamic_symbol;
2596
2597 r_type = ELF32_R_TYPE (rel->r_info);
2598 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2599 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2600 continue;
2601
2602 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2603 {
2604 bfd_set_error (bfd_error_bad_value);
2605 return FALSE;
2606 }
2607 howto = &elf_howto_table[r_type];
2608
2609 r_symndx = ELF32_R_SYM (rel->r_info);
2610
2611 h = NULL;
2612 sym = NULL;
2613 sec = NULL;
2614 is_weak_undef = FALSE;
2615 unresolved_reloc = FALSE;
2616 warned = FALSE;
2617
2618 if (howto->partial_inplace && !info->relocatable)
2619 {
2620 /* Because R_XTENSA_32 was made partial_inplace to fix some
2621 problems with DWARF info in partial links, there may be
2622 an addend stored in the contents. Take it out of there
2623 and move it back into the addend field of the reloc. */
2624 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2625 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2626 }
2627
2628 if (r_symndx < symtab_hdr->sh_info)
2629 {
2630 sym = local_syms + r_symndx;
2631 sym_type = ELF32_ST_TYPE (sym->st_info);
2632 sec = local_sections[r_symndx];
2633 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2634 }
2635 else
2636 {
2637 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2638 r_symndx, symtab_hdr, sym_hashes,
2639 h, sec, relocation,
2640 unresolved_reloc, warned);
2641
2642 if (relocation == 0
2643 && !unresolved_reloc
2644 && h->root.type == bfd_link_hash_undefweak)
2645 is_weak_undef = TRUE;
2646
2647 sym_type = h->type;
2648 }
2649
2650 if (sec != NULL && discarded_section (sec))
2651 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
2652 rel, 1, relend, howto, 0, contents);
2653
2654 if (info->relocatable)
2655 {
2656 bfd_vma dest_addr;
2657 asection * sym_sec = get_elf_r_symndx_section (input_bfd, r_symndx);
2658
2659 /* This is a relocatable link.
2660 1) If the reloc is against a section symbol, adjust
2661 according to the output section.
2662 2) If there is a new target for this relocation,
2663 the new target will be in the same output section.
2664 We adjust the relocation by the output section
2665 difference. */
2666
2667 if (relaxing_section)
2668 {
2669 /* Check if this references a section in another input file. */
2670 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2671 contents))
2672 return FALSE;
2673 }
2674
2675 dest_addr = sym_sec->output_section->vma + sym_sec->output_offset
2676 + get_elf_r_symndx_offset (input_bfd, r_symndx) + rel->r_addend;
2677
2678 if (r_type == R_XTENSA_ASM_SIMPLIFY)
2679 {
2680 error_message = NULL;
2681 /* Convert ASM_SIMPLIFY into the simpler relocation
2682 so that they never escape a relaxing link. */
2683 r = contract_asm_expansion (contents, input_size, rel,
2684 &error_message);
2685 if (r != bfd_reloc_ok)
2686 {
2687 if (!((*info->callbacks->reloc_dangerous)
2688 (info, error_message, input_bfd, input_section,
2689 rel->r_offset)))
2690 return FALSE;
2691 }
2692 r_type = ELF32_R_TYPE (rel->r_info);
2693 }
2694
2695 /* This is a relocatable link, so we don't have to change
2696 anything unless the reloc is against a section symbol,
2697 in which case we have to adjust according to where the
2698 section symbol winds up in the output section. */
2699 if (r_symndx < symtab_hdr->sh_info)
2700 {
2701 sym = local_syms + r_symndx;
2702 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2703 {
2704 sec = local_sections[r_symndx];
2705 rel->r_addend += sec->output_offset + sym->st_value;
2706 }
2707 }
2708
2709 /* If there is an addend with a partial_inplace howto,
2710 then move the addend to the contents. This is a hack
2711 to work around problems with DWARF in relocatable links
2712 with some previous version of BFD. Now we can't easily get
2713 rid of the hack without breaking backward compatibility.... */
2714 r = bfd_reloc_ok;
2715 howto = &elf_howto_table[r_type];
2716 if (howto->partial_inplace && rel->r_addend)
2717 {
2718 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2719 rel->r_addend, contents,
2720 rel->r_offset, FALSE,
2721 &error_message);
2722 rel->r_addend = 0;
2723 }
2724 else
2725 {
2726 /* Put the correct bits in the target instruction, even
2727 though the relocation will still be present in the output
2728 file. This makes disassembly clearer, as well as
2729 allowing loadable kernel modules to work without needing
2730 relocations on anything other than calls and l32r's. */
2731
2732 /* If it is not in the same section, there is nothing we can do. */
2733 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP &&
2734 sym_sec->output_section == input_section->output_section)
2735 {
2736 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2737 dest_addr, contents,
2738 rel->r_offset, FALSE,
2739 &error_message);
2740 }
2741 }
2742 if (r != bfd_reloc_ok)
2743 {
2744 if (!((*info->callbacks->reloc_dangerous)
2745 (info, error_message, input_bfd, input_section,
2746 rel->r_offset)))
2747 return FALSE;
2748 }
2749
2750 /* Done with work for relocatable link; continue with next reloc. */
2751 continue;
2752 }
2753
2754 /* This is a final link. */
2755
2756 if (relaxing_section)
2757 {
2758 /* Check if this references a section in another input file. */
2759 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2760 &relocation);
2761 }
2762
2763 /* Sanity check the address. */
2764 if (rel->r_offset >= input_size
2765 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2766 {
2767 (*_bfd_error_handler)
2768 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2769 input_bfd, input_section, rel->r_offset, input_size);
2770 bfd_set_error (bfd_error_bad_value);
2771 return FALSE;
2772 }
2773
2774 if (h != NULL)
2775 name = h->root.root.string;
2776 else
2777 {
2778 name = (bfd_elf_string_from_elf_section
2779 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2780 if (name == NULL || *name == '\0')
2781 name = bfd_section_name (input_bfd, sec);
2782 }
2783
2784 if (r_symndx != STN_UNDEF
2785 && r_type != R_XTENSA_NONE
2786 && (h == NULL
2787 || h->root.type == bfd_link_hash_defined
2788 || h->root.type == bfd_link_hash_defweak)
2789 && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS))
2790 {
2791 (*_bfd_error_handler)
2792 ((sym_type == STT_TLS
2793 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
2794 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
2795 input_bfd,
2796 input_section,
2797 (long) rel->r_offset,
2798 howto->name,
2799 name);
2800 }
2801
2802 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
2803
2804 tls_type = GOT_UNKNOWN;
2805 if (h)
2806 tls_type = elf_xtensa_hash_entry (h)->tls_type;
2807 else if (local_got_tls_types)
2808 tls_type = local_got_tls_types [r_symndx];
2809
2810 switch (r_type)
2811 {
2812 case R_XTENSA_32:
2813 case R_XTENSA_PLT:
2814 if (elf_hash_table (info)->dynamic_sections_created
2815 && (input_section->flags & SEC_ALLOC) != 0
2816 && (dynamic_symbol || info->shared))
2817 {
2818 Elf_Internal_Rela outrel;
2819 bfd_byte *loc;
2820 asection *srel;
2821
2822 if (dynamic_symbol && r_type == R_XTENSA_PLT)
2823 srel = htab->srelplt;
2824 else
2825 srel = htab->srelgot;
2826
2827 BFD_ASSERT (srel != NULL);
2828
2829 outrel.r_offset =
2830 _bfd_elf_section_offset (output_bfd, info,
2831 input_section, rel->r_offset);
2832
2833 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2834 memset (&outrel, 0, sizeof outrel);
2835 else
2836 {
2837 outrel.r_offset += (input_section->output_section->vma
2838 + input_section->output_offset);
2839
2840 /* Complain if the relocation is in a read-only section
2841 and not in a literal pool. */
2842 if ((input_section->flags & SEC_READONLY) != 0
2843 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
2844 outrel.r_offset))
2845 {
2846 error_message =
2847 _("dynamic relocation in read-only section");
2848 if (!((*info->callbacks->reloc_dangerous)
2849 (info, error_message, input_bfd, input_section,
2850 rel->r_offset)))
2851 return FALSE;
2852 }
2853
2854 if (dynamic_symbol)
2855 {
2856 outrel.r_addend = rel->r_addend;
2857 rel->r_addend = 0;
2858
2859 if (r_type == R_XTENSA_32)
2860 {
2861 outrel.r_info =
2862 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2863 relocation = 0;
2864 }
2865 else /* r_type == R_XTENSA_PLT */
2866 {
2867 outrel.r_info =
2868 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2869
2870 /* Create the PLT entry and set the initial
2871 contents of the literal entry to the address of
2872 the PLT entry. */
2873 relocation =
2874 elf_xtensa_create_plt_entry (info, output_bfd,
2875 srel->reloc_count);
2876 }
2877 unresolved_reloc = FALSE;
2878 }
2879 else
2880 {
2881 /* Generate a RELATIVE relocation. */
2882 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2883 outrel.r_addend = 0;
2884 }
2885 }
2886
2887 loc = (srel->contents
2888 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2889 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2890 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2891 <= srel->size);
2892 }
2893 else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
2894 {
2895 /* This should only happen for non-PIC code, which is not
2896 supposed to be used on systems with dynamic linking.
2897 Just ignore these relocations. */
2898 continue;
2899 }
2900 break;
2901
2902 case R_XTENSA_TLS_TPOFF:
2903 /* Switch to LE model for local symbols in an executable. */
2904 if (! info->shared && ! dynamic_symbol)
2905 {
2906 relocation = tpoff (info, relocation);
2907 break;
2908 }
2909 /* fall through */
2910
2911 case R_XTENSA_TLSDESC_FN:
2912 case R_XTENSA_TLSDESC_ARG:
2913 {
2914 if (r_type == R_XTENSA_TLSDESC_FN)
2915 {
2916 if (! info->shared || (tls_type & GOT_TLS_IE) != 0)
2917 r_type = R_XTENSA_NONE;
2918 }
2919 else if (r_type == R_XTENSA_TLSDESC_ARG)
2920 {
2921 if (info->shared)
2922 {
2923 if ((tls_type & GOT_TLS_IE) != 0)
2924 r_type = R_XTENSA_TLS_TPOFF;
2925 }
2926 else
2927 {
2928 r_type = R_XTENSA_TLS_TPOFF;
2929 if (! dynamic_symbol)
2930 {
2931 relocation = tpoff (info, relocation);
2932 break;
2933 }
2934 }
2935 }
2936
2937 if (r_type == R_XTENSA_NONE)
2938 /* Nothing to do here; skip to the next reloc. */
2939 continue;
2940
2941 if (! elf_hash_table (info)->dynamic_sections_created)
2942 {
2943 error_message =
2944 _("TLS relocation invalid without dynamic sections");
2945 if (!((*info->callbacks->reloc_dangerous)
2946 (info, error_message, input_bfd, input_section,
2947 rel->r_offset)))
2948 return FALSE;
2949 }
2950 else
2951 {
2952 Elf_Internal_Rela outrel;
2953 bfd_byte *loc;
2954 asection *srel = htab->srelgot;
2955 int indx;
2956
2957 outrel.r_offset = (input_section->output_section->vma
2958 + input_section->output_offset
2959 + rel->r_offset);
2960
2961 /* Complain if the relocation is in a read-only section
2962 and not in a literal pool. */
2963 if ((input_section->flags & SEC_READONLY) != 0
2964 && ! elf_xtensa_in_literal_pool (lit_table, ltblsize,
2965 outrel.r_offset))
2966 {
2967 error_message =
2968 _("dynamic relocation in read-only section");
2969 if (!((*info->callbacks->reloc_dangerous)
2970 (info, error_message, input_bfd, input_section,
2971 rel->r_offset)))
2972 return FALSE;
2973 }
2974
2975 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2976 if (indx == 0)
2977 outrel.r_addend = relocation - dtpoff_base (info);
2978 else
2979 outrel.r_addend = 0;
2980 rel->r_addend = 0;
2981
2982 outrel.r_info = ELF32_R_INFO (indx, r_type);
2983 relocation = 0;
2984 unresolved_reloc = FALSE;
2985
2986 BFD_ASSERT (srel);
2987 loc = (srel->contents
2988 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2989 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2990 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2991 <= srel->size);
2992 }
2993 }
2994 break;
2995
2996 case R_XTENSA_TLS_DTPOFF:
2997 if (! info->shared)
2998 /* Switch from LD model to LE model. */
2999 relocation = tpoff (info, relocation);
3000 else
3001 relocation -= dtpoff_base (info);
3002 break;
3003
3004 case R_XTENSA_TLS_FUNC:
3005 case R_XTENSA_TLS_ARG:
3006 case R_XTENSA_TLS_CALL:
3007 /* Check if optimizing to IE or LE model. */
3008 if ((tls_type & GOT_TLS_IE) != 0)
3009 {
3010 bfd_boolean is_ld_model =
3011 (h && elf_xtensa_hash_entry (h) == htab->tlsbase);
3012 if (! replace_tls_insn (rel, input_bfd, input_section, contents,
3013 is_ld_model, &error_message))
3014 {
3015 if (!((*info->callbacks->reloc_dangerous)
3016 (info, error_message, input_bfd, input_section,
3017 rel->r_offset)))
3018 return FALSE;
3019 }
3020
3021 if (r_type != R_XTENSA_TLS_ARG || is_ld_model)
3022 {
3023 /* Skip subsequent relocations on the same instruction. */
3024 while (rel + 1 < relend && rel[1].r_offset == rel->r_offset)
3025 rel++;
3026 }
3027 }
3028 continue;
3029
3030 default:
3031 if (elf_hash_table (info)->dynamic_sections_created
3032 && dynamic_symbol && (is_operand_relocation (r_type)
3033 || r_type == R_XTENSA_32_PCREL))
3034 {
3035 error_message =
3036 vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
3037 strlen (name) + 2, name);
3038 if (!((*info->callbacks->reloc_dangerous)
3039 (info, error_message, input_bfd, input_section,
3040 rel->r_offset)))
3041 return FALSE;
3042 continue;
3043 }
3044 break;
3045 }
3046
3047 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3048 because such sections are not SEC_ALLOC and thus ld.so will
3049 not process them. */
3050 if (unresolved_reloc
3051 && !((input_section->flags & SEC_DEBUGGING) != 0
3052 && h->def_dynamic)
3053 && _bfd_elf_section_offset (output_bfd, info, input_section,
3054 rel->r_offset) != (bfd_vma) -1)
3055 {
3056 (*_bfd_error_handler)
3057 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3058 input_bfd,
3059 input_section,
3060 (long) rel->r_offset,
3061 howto->name,
3062 name);
3063 return FALSE;
3064 }
3065
3066 /* TLS optimizations may have changed r_type; update "howto". */
3067 howto = &elf_howto_table[r_type];
3068
3069 /* There's no point in calling bfd_perform_relocation here.
3070 Just go directly to our "special function". */
3071 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
3072 relocation + rel->r_addend,
3073 contents, rel->r_offset, is_weak_undef,
3074 &error_message);
3075
3076 if (r != bfd_reloc_ok && !warned)
3077 {
3078 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
3079 BFD_ASSERT (error_message != NULL);
3080
3081 if (rel->r_addend == 0)
3082 error_message = vsprint_msg (error_message, ": %s",
3083 strlen (name) + 2, name);
3084 else
3085 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
3086 strlen (name) + 22,
3087 name, (int) rel->r_addend);
3088
3089 if (!((*info->callbacks->reloc_dangerous)
3090 (info, error_message, input_bfd, input_section,
3091 rel->r_offset)))
3092 return FALSE;
3093 }
3094 }
3095
3096 if (lit_table)
3097 free (lit_table);
3098
3099 input_section->reloc_done = TRUE;
3100
3101 return TRUE;
3102 }
3103
3104
3105 /* Finish up dynamic symbol handling. There's not much to do here since
3106 the PLT and GOT entries are all set up by relocate_section. */
3107
3108 static bfd_boolean
3109 elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
3110 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3111 struct elf_link_hash_entry *h,
3112 Elf_Internal_Sym *sym)
3113 {
3114 if (h->needs_plt && !h->def_regular)
3115 {
3116 /* Mark the symbol as undefined, rather than as defined in
3117 the .plt section. Leave the value alone. */
3118 sym->st_shndx = SHN_UNDEF;
3119 /* If the symbol is weak, we do need to clear the value.
3120 Otherwise, the PLT entry would provide a definition for
3121 the symbol even if the symbol wasn't defined anywhere,
3122 and so the symbol would never be NULL. */
3123 if (!h->ref_regular_nonweak)
3124 sym->st_value = 0;
3125 }
3126
3127 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3128 if (h == elf_hash_table (info)->hdynamic
3129 || h == elf_hash_table (info)->hgot)
3130 sym->st_shndx = SHN_ABS;
3131
3132 return TRUE;
3133 }
3134
3135
3136 /* Combine adjacent literal table entries in the output. Adjacent
3137 entries within each input section may have been removed during
3138 relaxation, but we repeat the process here, even though it's too late
3139 to shrink the output section, because it's important to minimize the
3140 number of literal table entries to reduce the start-up work for the
3141 runtime linker. Returns the number of remaining table entries or -1
3142 on error. */
3143
3144 static int
3145 elf_xtensa_combine_prop_entries (bfd *output_bfd,
3146 asection *sxtlit,
3147 asection *sgotloc)
3148 {
3149 bfd_byte *contents;
3150 property_table_entry *table;
3151 bfd_size_type section_size, sgotloc_size;
3152 bfd_vma offset;
3153 int n, m, num;
3154
3155 section_size = sxtlit->size;
3156 BFD_ASSERT (section_size % 8 == 0);
3157 num = section_size / 8;
3158
3159 sgotloc_size = sgotloc->size;
3160 if (sgotloc_size != section_size)
3161 {
3162 (*_bfd_error_handler)
3163 (_("internal inconsistency in size of .got.loc section"));
3164 return -1;
3165 }
3166
3167 table = bfd_malloc (num * sizeof (property_table_entry));
3168 if (table == 0)
3169 return -1;
3170
3171 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
3172 propagates to the output section, where it doesn't really apply and
3173 where it breaks the following call to bfd_malloc_and_get_section. */
3174 sxtlit->flags &= ~SEC_IN_MEMORY;
3175
3176 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
3177 {
3178 if (contents != 0)
3179 free (contents);
3180 free (table);
3181 return -1;
3182 }
3183
3184 /* There should never be any relocations left at this point, so this
3185 is quite a bit easier than what is done during relaxation. */
3186
3187 /* Copy the raw contents into a property table array and sort it. */
3188 offset = 0;
3189 for (n = 0; n < num; n++)
3190 {
3191 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
3192 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
3193 offset += 8;
3194 }
3195 qsort (table, num, sizeof (property_table_entry), property_table_compare);
3196
3197 for (n = 0; n < num; n++)
3198 {
3199 bfd_boolean remove_entry = FALSE;
3200
3201 if (table[n].size == 0)
3202 remove_entry = TRUE;
3203 else if (n > 0
3204 && (table[n-1].address + table[n-1].size == table[n].address))
3205 {
3206 table[n-1].size += table[n].size;
3207 remove_entry = TRUE;
3208 }
3209
3210 if (remove_entry)
3211 {
3212 for (m = n; m < num - 1; m++)
3213 {
3214 table[m].address = table[m+1].address;
3215 table[m].size = table[m+1].size;
3216 }
3217
3218 n--;
3219 num--;
3220 }
3221 }
3222
3223 /* Copy the data back to the raw contents. */
3224 offset = 0;
3225 for (n = 0; n < num; n++)
3226 {
3227 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
3228 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
3229 offset += 8;
3230 }
3231
3232 /* Clear the removed bytes. */
3233 if ((bfd_size_type) (num * 8) < section_size)
3234 memset (&contents[num * 8], 0, section_size - num * 8);
3235
3236 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
3237 section_size))
3238 return -1;
3239
3240 /* Copy the contents to ".got.loc". */
3241 memcpy (sgotloc->contents, contents, section_size);
3242
3243 free (contents);
3244 free (table);
3245 return num;
3246 }
3247
3248
3249 /* Finish up the dynamic sections. */
3250
3251 static bfd_boolean
3252 elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
3253 struct bfd_link_info *info)
3254 {
3255 struct elf_xtensa_link_hash_table *htab;
3256 bfd *dynobj;
3257 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
3258 Elf32_External_Dyn *dyncon, *dynconend;
3259 int num_xtlit_entries = 0;
3260
3261 if (! elf_hash_table (info)->dynamic_sections_created)
3262 return TRUE;
3263
3264 htab = elf_xtensa_hash_table (info);
3265 if (htab == NULL)
3266 return FALSE;
3267
3268 dynobj = elf_hash_table (info)->dynobj;
3269 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3270 BFD_ASSERT (sdyn != NULL);
3271
3272 /* Set the first entry in the global offset table to the address of
3273 the dynamic section. */
3274 sgot = htab->sgot;
3275 if (sgot)
3276 {
3277 BFD_ASSERT (sgot->size == 4);
3278 if (sdyn == NULL)
3279 bfd_put_32 (output_bfd, 0, sgot->contents);
3280 else
3281 bfd_put_32 (output_bfd,
3282 sdyn->output_section->vma + sdyn->output_offset,
3283 sgot->contents);
3284 }
3285
3286 srelplt = htab->srelplt;
3287 if (srelplt && srelplt->size != 0)
3288 {
3289 asection *sgotplt, *srelgot, *spltlittbl;
3290 int chunk, plt_chunks, plt_entries;
3291 Elf_Internal_Rela irela;
3292 bfd_byte *loc;
3293 unsigned rtld_reloc;
3294
3295 srelgot = htab->srelgot;
3296 spltlittbl = htab->spltlittbl;
3297 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
3298
3299 /* Find the first XTENSA_RTLD relocation. Presumably the rest
3300 of them follow immediately after.... */
3301 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
3302 {
3303 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3304 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3305 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
3306 break;
3307 }
3308 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
3309
3310 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
3311 plt_chunks =
3312 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
3313
3314 for (chunk = 0; chunk < plt_chunks; chunk++)
3315 {
3316 int chunk_entries = 0;
3317
3318 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
3319 BFD_ASSERT (sgotplt != NULL);
3320
3321 /* Emit special RTLD relocations for the first two entries in
3322 each chunk of the .got.plt section. */
3323
3324 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3325 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3326 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3327 irela.r_offset = (sgotplt->output_section->vma
3328 + sgotplt->output_offset);
3329 irela.r_addend = 1; /* tell rtld to set value to resolver function */
3330 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3331 rtld_reloc += 1;
3332 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3333
3334 /* Next literal immediately follows the first. */
3335 loc += sizeof (Elf32_External_Rela);
3336 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3337 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3338 irela.r_offset = (sgotplt->output_section->vma
3339 + sgotplt->output_offset + 4);
3340 /* Tell rtld to set value to object's link map. */
3341 irela.r_addend = 2;
3342 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3343 rtld_reloc += 1;
3344 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3345
3346 /* Fill in the literal table. */
3347 if (chunk < plt_chunks - 1)
3348 chunk_entries = PLT_ENTRIES_PER_CHUNK;
3349 else
3350 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
3351
3352 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
3353 bfd_put_32 (output_bfd,
3354 sgotplt->output_section->vma + sgotplt->output_offset,
3355 spltlittbl->contents + (chunk * 8) + 0);
3356 bfd_put_32 (output_bfd,
3357 8 + (chunk_entries * 4),
3358 spltlittbl->contents + (chunk * 8) + 4);
3359 }
3360
3361 /* All the dynamic relocations have been emitted at this point.
3362 Make sure the relocation sections are the correct size. */
3363 if (srelgot->size != (sizeof (Elf32_External_Rela)
3364 * srelgot->reloc_count)
3365 || srelplt->size != (sizeof (Elf32_External_Rela)
3366 * srelplt->reloc_count))
3367 abort ();
3368
3369 /* The .xt.lit.plt section has just been modified. This must
3370 happen before the code below which combines adjacent literal
3371 table entries, and the .xt.lit.plt contents have to be forced to
3372 the output here. */
3373 if (! bfd_set_section_contents (output_bfd,
3374 spltlittbl->output_section,
3375 spltlittbl->contents,
3376 spltlittbl->output_offset,
3377 spltlittbl->size))
3378 return FALSE;
3379 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
3380 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
3381 }
3382
3383 /* Combine adjacent literal table entries. */
3384 BFD_ASSERT (! info->relocatable);
3385 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
3386 sgotloc = htab->sgotloc;
3387 BFD_ASSERT (sgotloc);
3388 if (sxtlit)
3389 {
3390 num_xtlit_entries =
3391 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
3392 if (num_xtlit_entries < 0)
3393 return FALSE;
3394 }
3395
3396 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3397 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
3398 for (; dyncon < dynconend; dyncon++)
3399 {
3400 Elf_Internal_Dyn dyn;
3401
3402 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3403
3404 switch (dyn.d_tag)
3405 {
3406 default:
3407 break;
3408
3409 case DT_XTENSA_GOT_LOC_SZ:
3410 dyn.d_un.d_val = num_xtlit_entries;
3411 break;
3412
3413 case DT_XTENSA_GOT_LOC_OFF:
3414 dyn.d_un.d_ptr = htab->sgotloc->output_section->vma;
3415 break;
3416
3417 case DT_PLTGOT:
3418 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
3419 break;
3420
3421 case DT_JMPREL:
3422 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
3423 break;
3424
3425 case DT_PLTRELSZ:
3426 dyn.d_un.d_val = htab->srelplt->output_section->size;
3427 break;
3428
3429 case DT_RELASZ:
3430 /* Adjust RELASZ to not include JMPREL. This matches what
3431 glibc expects and what is done for several other ELF
3432 targets (e.g., i386, alpha), but the "correct" behavior
3433 seems to be unresolved. Since the linker script arranges
3434 for .rela.plt to follow all other relocation sections, we
3435 don't have to worry about changing the DT_RELA entry. */
3436 if (htab->srelplt)
3437 dyn.d_un.d_val -= htab->srelplt->output_section->size;
3438 break;
3439 }
3440
3441 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3442 }
3443
3444 return TRUE;
3445 }
3446
3447 \f
3448 /* Functions for dealing with the e_flags field. */
3449
3450 /* Merge backend specific data from an object file to the output
3451 object file when linking. */
3452
3453 static bfd_boolean
3454 elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
3455 {
3456 unsigned out_mach, in_mach;
3457 flagword out_flag, in_flag;
3458
3459 /* Check if we have the same endianness. */
3460 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
3461 return FALSE;
3462
3463 /* Don't even pretend to support mixed-format linking. */
3464 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3465 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3466 return FALSE;
3467
3468 out_flag = elf_elfheader (obfd)->e_flags;
3469 in_flag = elf_elfheader (ibfd)->e_flags;
3470
3471 out_mach = out_flag & EF_XTENSA_MACH;
3472 in_mach = in_flag & EF_XTENSA_MACH;
3473 if (out_mach != in_mach)
3474 {
3475 (*_bfd_error_handler)
3476 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
3477 ibfd, out_mach, in_mach);
3478 bfd_set_error (bfd_error_wrong_format);
3479 return FALSE;
3480 }
3481
3482 if (! elf_flags_init (obfd))
3483 {
3484 elf_flags_init (obfd) = TRUE;
3485 elf_elfheader (obfd)->e_flags = in_flag;
3486
3487 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
3488 && bfd_get_arch_info (obfd)->the_default)
3489 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
3490 bfd_get_mach (ibfd));
3491
3492 return TRUE;
3493 }
3494
3495 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
3496 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
3497
3498 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
3499 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
3500
3501 return TRUE;
3502 }
3503
3504
3505 static bfd_boolean
3506 elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
3507 {
3508 BFD_ASSERT (!elf_flags_init (abfd)
3509 || elf_elfheader (abfd)->e_flags == flags);
3510
3511 elf_elfheader (abfd)->e_flags |= flags;
3512 elf_flags_init (abfd) = TRUE;
3513
3514 return TRUE;
3515 }
3516
3517
3518 static bfd_boolean
3519 elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
3520 {
3521 FILE *f = (FILE *) farg;
3522 flagword e_flags = elf_elfheader (abfd)->e_flags;
3523
3524 fprintf (f, "\nXtensa header:\n");
3525 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
3526 fprintf (f, "\nMachine = Base\n");
3527 else
3528 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
3529
3530 fprintf (f, "Insn tables = %s\n",
3531 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
3532
3533 fprintf (f, "Literal tables = %s\n",
3534 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
3535
3536 return _bfd_elf_print_private_bfd_data (abfd, farg);
3537 }
3538
3539
3540 /* Set the right machine number for an Xtensa ELF file. */
3541
3542 static bfd_boolean
3543 elf_xtensa_object_p (bfd *abfd)
3544 {
3545 int mach;
3546 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
3547
3548 switch (arch)
3549 {
3550 case E_XTENSA_MACH:
3551 mach = bfd_mach_xtensa;
3552 break;
3553 default:
3554 return FALSE;
3555 }
3556
3557 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
3558 return TRUE;
3559 }
3560
3561
3562 /* The final processing done just before writing out an Xtensa ELF object
3563 file. This gets the Xtensa architecture right based on the machine
3564 number. */
3565
3566 static void
3567 elf_xtensa_final_write_processing (bfd *abfd,
3568 bfd_boolean linker ATTRIBUTE_UNUSED)
3569 {
3570 int mach;
3571 unsigned long val;
3572
3573 switch (mach = bfd_get_mach (abfd))
3574 {
3575 case bfd_mach_xtensa:
3576 val = E_XTENSA_MACH;
3577 break;
3578 default:
3579 return;
3580 }
3581
3582 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
3583 elf_elfheader (abfd)->e_flags |= val;
3584 }
3585
3586
3587 static enum elf_reloc_type_class
3588 elf_xtensa_reloc_type_class (const Elf_Internal_Rela *rela)
3589 {
3590 switch ((int) ELF32_R_TYPE (rela->r_info))
3591 {
3592 case R_XTENSA_RELATIVE:
3593 return reloc_class_relative;
3594 case R_XTENSA_JMP_SLOT:
3595 return reloc_class_plt;
3596 default:
3597 return reloc_class_normal;
3598 }
3599 }
3600
3601 \f
3602 static bfd_boolean
3603 elf_xtensa_discard_info_for_section (bfd *abfd,
3604 struct elf_reloc_cookie *cookie,
3605 struct bfd_link_info *info,
3606 asection *sec)
3607 {
3608 bfd_byte *contents;
3609 bfd_vma offset, actual_offset;
3610 bfd_size_type removed_bytes = 0;
3611 bfd_size_type entry_size;
3612
3613 if (sec->output_section
3614 && bfd_is_abs_section (sec->output_section))
3615 return FALSE;
3616
3617 if (xtensa_is_proptable_section (sec))
3618 entry_size = 12;
3619 else
3620 entry_size = 8;
3621
3622 if (sec->size == 0 || sec->size % entry_size != 0)
3623 return FALSE;
3624
3625 contents = retrieve_contents (abfd, sec, info->keep_memory);
3626 if (!contents)
3627 return FALSE;
3628
3629 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
3630 if (!cookie->rels)
3631 {
3632 release_contents (sec, contents);
3633 return FALSE;
3634 }
3635
3636 /* Sort the relocations. They should already be in order when
3637 relaxation is enabled, but it might not be. */
3638 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
3639 internal_reloc_compare);
3640
3641 cookie->rel = cookie->rels;
3642 cookie->relend = cookie->rels + sec->reloc_count;
3643
3644 for (offset = 0; offset < sec->size; offset += entry_size)
3645 {
3646 actual_offset = offset - removed_bytes;
3647
3648 /* The ...symbol_deleted_p function will skip over relocs but it
3649 won't adjust their offsets, so do that here. */
3650 while (cookie->rel < cookie->relend
3651 && cookie->rel->r_offset < offset)
3652 {
3653 cookie->rel->r_offset -= removed_bytes;
3654 cookie->rel++;
3655 }
3656
3657 while (cookie->rel < cookie->relend
3658 && cookie->rel->r_offset == offset)
3659 {
3660 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
3661 {
3662 /* Remove the table entry. (If the reloc type is NONE, then
3663 the entry has already been merged with another and deleted
3664 during relaxation.) */
3665 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
3666 {
3667 /* Shift the contents up. */
3668 if (offset + entry_size < sec->size)
3669 memmove (&contents[actual_offset],
3670 &contents[actual_offset + entry_size],
3671 sec->size - offset - entry_size);
3672 removed_bytes += entry_size;
3673 }
3674
3675 /* Remove this relocation. */
3676 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3677 }
3678
3679 /* Adjust the relocation offset for previous removals. This
3680 should not be done before calling ...symbol_deleted_p
3681 because it might mess up the offset comparisons there.
3682 Make sure the offset doesn't underflow in the case where
3683 the first entry is removed. */
3684 if (cookie->rel->r_offset >= removed_bytes)
3685 cookie->rel->r_offset -= removed_bytes;
3686 else
3687 cookie->rel->r_offset = 0;
3688
3689 cookie->rel++;
3690 }
3691 }
3692
3693 if (removed_bytes != 0)
3694 {
3695 /* Adjust any remaining relocs (shouldn't be any). */
3696 for (; cookie->rel < cookie->relend; cookie->rel++)
3697 {
3698 if (cookie->rel->r_offset >= removed_bytes)
3699 cookie->rel->r_offset -= removed_bytes;
3700 else
3701 cookie->rel->r_offset = 0;
3702 }
3703
3704 /* Clear the removed bytes. */
3705 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
3706
3707 pin_contents (sec, contents);
3708 pin_internal_relocs (sec, cookie->rels);
3709
3710 /* Shrink size. */
3711 if (sec->rawsize == 0)
3712 sec->rawsize = sec->size;
3713 sec->size -= removed_bytes;
3714
3715 if (xtensa_is_littable_section (sec))
3716 {
3717 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
3718 if (sgotloc)
3719 sgotloc->size -= removed_bytes;
3720 }
3721 }
3722 else
3723 {
3724 release_contents (sec, contents);
3725 release_internal_relocs (sec, cookie->rels);
3726 }
3727
3728 return (removed_bytes != 0);
3729 }
3730
3731
3732 static bfd_boolean
3733 elf_xtensa_discard_info (bfd *abfd,
3734 struct elf_reloc_cookie *cookie,
3735 struct bfd_link_info *info)
3736 {
3737 asection *sec;
3738 bfd_boolean changed = FALSE;
3739
3740 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3741 {
3742 if (xtensa_is_property_section (sec))
3743 {
3744 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
3745 changed = TRUE;
3746 }
3747 }
3748
3749 return changed;
3750 }
3751
3752
3753 static bfd_boolean
3754 elf_xtensa_ignore_discarded_relocs (asection *sec)
3755 {
3756 return xtensa_is_property_section (sec);
3757 }
3758
3759
3760 static unsigned int
3761 elf_xtensa_action_discarded (asection *sec)
3762 {
3763 if (strcmp (".xt_except_table", sec->name) == 0)
3764 return 0;
3765
3766 if (strcmp (".xt_except_desc", sec->name) == 0)
3767 return 0;
3768
3769 return _bfd_elf_default_action_discarded (sec);
3770 }
3771
3772 \f
3773 /* Support for core dump NOTE sections. */
3774
3775 static bfd_boolean
3776 elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
3777 {
3778 int offset;
3779 unsigned int size;
3780
3781 /* The size for Xtensa is variable, so don't try to recognize the format
3782 based on the size. Just assume this is GNU/Linux. */
3783
3784 /* pr_cursig */
3785 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
3786
3787 /* pr_pid */
3788 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
3789
3790 /* pr_reg */
3791 offset = 72;
3792 size = note->descsz - offset - 4;
3793
3794 /* Make a ".reg/999" section. */
3795 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
3796 size, note->descpos + offset);
3797 }
3798
3799
3800 static bfd_boolean
3801 elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3802 {
3803 switch (note->descsz)
3804 {
3805 default:
3806 return FALSE;
3807
3808 case 128: /* GNU/Linux elf_prpsinfo */
3809 elf_tdata (abfd)->core->program
3810 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3811 elf_tdata (abfd)->core->command
3812 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3813 }
3814
3815 /* Note that for some reason, a spurious space is tacked
3816 onto the end of the args in some (at least one anyway)
3817 implementations, so strip it off if it exists. */
3818
3819 {
3820 char *command = elf_tdata (abfd)->core->command;
3821 int n = strlen (command);
3822
3823 if (0 < n && command[n - 1] == ' ')
3824 command[n - 1] = '\0';
3825 }
3826
3827 return TRUE;
3828 }
3829
3830 \f
3831 /* Generic Xtensa configurability stuff. */
3832
3833 static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3834 static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3835 static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3836 static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3837 static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3838 static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3839 static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3840 static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3841
3842 static void
3843 init_call_opcodes (void)
3844 {
3845 if (callx0_op == XTENSA_UNDEFINED)
3846 {
3847 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3848 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3849 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3850 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3851 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3852 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3853 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3854 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3855 }
3856 }
3857
3858
3859 static bfd_boolean
3860 is_indirect_call_opcode (xtensa_opcode opcode)
3861 {
3862 init_call_opcodes ();
3863 return (opcode == callx0_op
3864 || opcode == callx4_op
3865 || opcode == callx8_op
3866 || opcode == callx12_op);
3867 }
3868
3869
3870 static bfd_boolean
3871 is_direct_call_opcode (xtensa_opcode opcode)
3872 {
3873 init_call_opcodes ();
3874 return (opcode == call0_op
3875 || opcode == call4_op
3876 || opcode == call8_op
3877 || opcode == call12_op);
3878 }
3879
3880
3881 static bfd_boolean
3882 is_windowed_call_opcode (xtensa_opcode opcode)
3883 {
3884 init_call_opcodes ();
3885 return (opcode == call4_op
3886 || opcode == call8_op
3887 || opcode == call12_op
3888 || opcode == callx4_op
3889 || opcode == callx8_op
3890 || opcode == callx12_op);
3891 }
3892
3893
3894 static bfd_boolean
3895 get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst)
3896 {
3897 unsigned dst = (unsigned) -1;
3898
3899 init_call_opcodes ();
3900 if (opcode == callx0_op)
3901 dst = 0;
3902 else if (opcode == callx4_op)
3903 dst = 4;
3904 else if (opcode == callx8_op)
3905 dst = 8;
3906 else if (opcode == callx12_op)
3907 dst = 12;
3908
3909 if (dst == (unsigned) -1)
3910 return FALSE;
3911
3912 *pdst = dst;
3913 return TRUE;
3914 }
3915
3916
3917 static xtensa_opcode
3918 get_const16_opcode (void)
3919 {
3920 static bfd_boolean done_lookup = FALSE;
3921 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3922 if (!done_lookup)
3923 {
3924 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3925 done_lookup = TRUE;
3926 }
3927 return const16_opcode;
3928 }
3929
3930
3931 static xtensa_opcode
3932 get_l32r_opcode (void)
3933 {
3934 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
3935 static bfd_boolean done_lookup = FALSE;
3936
3937 if (!done_lookup)
3938 {
3939 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
3940 done_lookup = TRUE;
3941 }
3942 return l32r_opcode;
3943 }
3944
3945
3946 static bfd_vma
3947 l32r_offset (bfd_vma addr, bfd_vma pc)
3948 {
3949 bfd_vma offset;
3950
3951 offset = addr - ((pc+3) & -4);
3952 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3953 offset = (signed int) offset >> 2;
3954 BFD_ASSERT ((signed int) offset >> 16 == -1);
3955 return offset;
3956 }
3957
3958
3959 static int
3960 get_relocation_opnd (xtensa_opcode opcode, int r_type)
3961 {
3962 xtensa_isa isa = xtensa_default_isa;
3963 int last_immed, last_opnd, opi;
3964
3965 if (opcode == XTENSA_UNDEFINED)
3966 return XTENSA_UNDEFINED;
3967
3968 /* Find the last visible PC-relative immediate operand for the opcode.
3969 If there are no PC-relative immediates, then choose the last visible
3970 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3971 last_immed = XTENSA_UNDEFINED;
3972 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3973 for (opi = last_opnd - 1; opi >= 0; opi--)
3974 {
3975 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3976 continue;
3977 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3978 {
3979 last_immed = opi;
3980 break;
3981 }
3982 if (last_immed == XTENSA_UNDEFINED
3983 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3984 last_immed = opi;
3985 }
3986 if (last_immed < 0)
3987 return XTENSA_UNDEFINED;
3988
3989 /* If the operand number was specified in an old-style relocation,
3990 check for consistency with the operand computed above. */
3991 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3992 {
3993 int reloc_opnd = r_type - R_XTENSA_OP0;
3994 if (reloc_opnd != last_immed)
3995 return XTENSA_UNDEFINED;
3996 }
3997
3998 return last_immed;
3999 }
4000
4001
4002 int
4003 get_relocation_slot (int r_type)
4004 {
4005 switch (r_type)
4006 {
4007 case R_XTENSA_OP0:
4008 case R_XTENSA_OP1:
4009 case R_XTENSA_OP2:
4010 return 0;
4011
4012 default:
4013 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4014 return r_type - R_XTENSA_SLOT0_OP;
4015 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4016 return r_type - R_XTENSA_SLOT0_ALT;
4017 break;
4018 }
4019
4020 return XTENSA_UNDEFINED;
4021 }
4022
4023
4024 /* Get the opcode for a relocation. */
4025
4026 static xtensa_opcode
4027 get_relocation_opcode (bfd *abfd,
4028 asection *sec,
4029 bfd_byte *contents,
4030 Elf_Internal_Rela *irel)
4031 {
4032 static xtensa_insnbuf ibuff = NULL;
4033 static xtensa_insnbuf sbuff = NULL;
4034 xtensa_isa isa = xtensa_default_isa;
4035 xtensa_format fmt;
4036 int slot;
4037
4038 if (contents == NULL)
4039 return XTENSA_UNDEFINED;
4040
4041 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
4042 return XTENSA_UNDEFINED;
4043
4044 if (ibuff == NULL)
4045 {
4046 ibuff = xtensa_insnbuf_alloc (isa);
4047 sbuff = xtensa_insnbuf_alloc (isa);
4048 }
4049
4050 /* Decode the instruction. */
4051 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
4052 sec->size - irel->r_offset);
4053 fmt = xtensa_format_decode (isa, ibuff);
4054 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
4055 if (slot == XTENSA_UNDEFINED)
4056 return XTENSA_UNDEFINED;
4057 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
4058 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
4059 }
4060
4061
4062 bfd_boolean
4063 is_l32r_relocation (bfd *abfd,
4064 asection *sec,
4065 bfd_byte *contents,
4066 Elf_Internal_Rela *irel)
4067 {
4068 xtensa_opcode opcode;
4069 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
4070 return FALSE;
4071 opcode = get_relocation_opcode (abfd, sec, contents, irel);
4072 return (opcode == get_l32r_opcode ());
4073 }
4074
4075
4076 static bfd_size_type
4077 get_asm_simplify_size (bfd_byte *contents,
4078 bfd_size_type content_len,
4079 bfd_size_type offset)
4080 {
4081 bfd_size_type insnlen, size = 0;
4082
4083 /* Decode the size of the next two instructions. */
4084 insnlen = insn_decode_len (contents, content_len, offset);
4085 if (insnlen == 0)
4086 return 0;
4087
4088 size += insnlen;
4089
4090 insnlen = insn_decode_len (contents, content_len, offset + size);
4091 if (insnlen == 0)
4092 return 0;
4093
4094 size += insnlen;
4095 return size;
4096 }
4097
4098
4099 bfd_boolean
4100 is_alt_relocation (int r_type)
4101 {
4102 return (r_type >= R_XTENSA_SLOT0_ALT
4103 && r_type <= R_XTENSA_SLOT14_ALT);
4104 }
4105
4106
4107 bfd_boolean
4108 is_operand_relocation (int r_type)
4109 {
4110 switch (r_type)
4111 {
4112 case R_XTENSA_OP0:
4113 case R_XTENSA_OP1:
4114 case R_XTENSA_OP2:
4115 return TRUE;
4116
4117 default:
4118 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4119 return TRUE;
4120 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4121 return TRUE;
4122 break;
4123 }
4124
4125 return FALSE;
4126 }
4127
4128
4129 #define MIN_INSN_LENGTH 2
4130
4131 /* Return 0 if it fails to decode. */
4132
4133 bfd_size_type
4134 insn_decode_len (bfd_byte *contents,
4135 bfd_size_type content_len,
4136 bfd_size_type offset)
4137 {
4138 int insn_len;
4139 xtensa_isa isa = xtensa_default_isa;
4140 xtensa_format fmt;
4141 static xtensa_insnbuf ibuff = NULL;
4142
4143 if (offset + MIN_INSN_LENGTH > content_len)
4144 return 0;
4145
4146 if (ibuff == NULL)
4147 ibuff = xtensa_insnbuf_alloc (isa);
4148 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
4149 content_len - offset);
4150 fmt = xtensa_format_decode (isa, ibuff);
4151 if (fmt == XTENSA_UNDEFINED)
4152 return 0;
4153 insn_len = xtensa_format_length (isa, fmt);
4154 if (insn_len == XTENSA_UNDEFINED)
4155 return 0;
4156 return insn_len;
4157 }
4158
4159
4160 /* Decode the opcode for a single slot instruction.
4161 Return 0 if it fails to decode or the instruction is multi-slot. */
4162
4163 xtensa_opcode
4164 insn_decode_opcode (bfd_byte *contents,
4165 bfd_size_type content_len,
4166 bfd_size_type offset,
4167 int slot)
4168 {
4169 xtensa_isa isa = xtensa_default_isa;
4170 xtensa_format fmt;
4171 static xtensa_insnbuf insnbuf = NULL;
4172 static xtensa_insnbuf slotbuf = NULL;
4173
4174 if (offset + MIN_INSN_LENGTH > content_len)
4175 return XTENSA_UNDEFINED;
4176
4177 if (insnbuf == NULL)
4178 {
4179 insnbuf = xtensa_insnbuf_alloc (isa);
4180 slotbuf = xtensa_insnbuf_alloc (isa);
4181 }
4182
4183 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4184 content_len - offset);
4185 fmt = xtensa_format_decode (isa, insnbuf);
4186 if (fmt == XTENSA_UNDEFINED)
4187 return XTENSA_UNDEFINED;
4188
4189 if (slot >= xtensa_format_num_slots (isa, fmt))
4190 return XTENSA_UNDEFINED;
4191
4192 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
4193 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
4194 }
4195
4196
4197 /* The offset is the offset in the contents.
4198 The address is the address of that offset. */
4199
4200 static bfd_boolean
4201 check_branch_target_aligned (bfd_byte *contents,
4202 bfd_size_type content_length,
4203 bfd_vma offset,
4204 bfd_vma address)
4205 {
4206 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
4207 if (insn_len == 0)
4208 return FALSE;
4209 return check_branch_target_aligned_address (address, insn_len);
4210 }
4211
4212
4213 static bfd_boolean
4214 check_loop_aligned (bfd_byte *contents,
4215 bfd_size_type content_length,
4216 bfd_vma offset,
4217 bfd_vma address)
4218 {
4219 bfd_size_type loop_len, insn_len;
4220 xtensa_opcode opcode;
4221
4222 opcode = insn_decode_opcode (contents, content_length, offset, 0);
4223 if (opcode == XTENSA_UNDEFINED
4224 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
4225 {
4226 BFD_ASSERT (FALSE);
4227 return FALSE;
4228 }
4229
4230 loop_len = insn_decode_len (contents, content_length, offset);
4231 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
4232 if (loop_len == 0 || insn_len == 0)
4233 {
4234 BFD_ASSERT (FALSE);
4235 return FALSE;
4236 }
4237
4238 return check_branch_target_aligned_address (address + loop_len, insn_len);
4239 }
4240
4241
4242 static bfd_boolean
4243 check_branch_target_aligned_address (bfd_vma addr, int len)
4244 {
4245 if (len == 8)
4246 return (addr % 8 == 0);
4247 return ((addr >> 2) == ((addr + len - 1) >> 2));
4248 }
4249
4250 \f
4251 /* Instruction widening and narrowing. */
4252
4253 /* When FLIX is available we need to access certain instructions only
4254 when they are 16-bit or 24-bit instructions. This table caches
4255 information about such instructions by walking through all the
4256 opcodes and finding the smallest single-slot format into which each
4257 can be encoded. */
4258
4259 static xtensa_format *op_single_fmt_table = NULL;
4260
4261
4262 static void
4263 init_op_single_format_table (void)
4264 {
4265 xtensa_isa isa = xtensa_default_isa;
4266 xtensa_insnbuf ibuf;
4267 xtensa_opcode opcode;
4268 xtensa_format fmt;
4269 int num_opcodes;
4270
4271 if (op_single_fmt_table)
4272 return;
4273
4274 ibuf = xtensa_insnbuf_alloc (isa);
4275 num_opcodes = xtensa_isa_num_opcodes (isa);
4276
4277 op_single_fmt_table = (xtensa_format *)
4278 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
4279 for (opcode = 0; opcode < num_opcodes; opcode++)
4280 {
4281 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
4282 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
4283 {
4284 if (xtensa_format_num_slots (isa, fmt) == 1
4285 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
4286 {
4287 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
4288 int fmt_length = xtensa_format_length (isa, fmt);
4289 if (old_fmt == XTENSA_UNDEFINED
4290 || fmt_length < xtensa_format_length (isa, old_fmt))
4291 op_single_fmt_table[opcode] = fmt;
4292 }
4293 }
4294 }
4295 xtensa_insnbuf_free (isa, ibuf);
4296 }
4297
4298
4299 static xtensa_format
4300 get_single_format (xtensa_opcode opcode)
4301 {
4302 init_op_single_format_table ();
4303 return op_single_fmt_table[opcode];
4304 }
4305
4306
4307 /* For the set of narrowable instructions we do NOT include the
4308 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
4309 involved during linker relaxation that may require these to
4310 re-expand in some conditions. Also, the narrowing "or" -> mov.n
4311 requires special case code to ensure it only works when op1 == op2. */
4312
4313 struct string_pair
4314 {
4315 const char *wide;
4316 const char *narrow;
4317 };
4318
4319 struct string_pair narrowable[] =
4320 {
4321 { "add", "add.n" },
4322 { "addi", "addi.n" },
4323 { "addmi", "addi.n" },
4324 { "l32i", "l32i.n" },
4325 { "movi", "movi.n" },
4326 { "ret", "ret.n" },
4327 { "retw", "retw.n" },
4328 { "s32i", "s32i.n" },
4329 { "or", "mov.n" } /* special case only when op1 == op2 */
4330 };
4331
4332 struct string_pair widenable[] =
4333 {
4334 { "add", "add.n" },
4335 { "addi", "addi.n" },
4336 { "addmi", "addi.n" },
4337 { "beqz", "beqz.n" },
4338 { "bnez", "bnez.n" },
4339 { "l32i", "l32i.n" },
4340 { "movi", "movi.n" },
4341 { "ret", "ret.n" },
4342 { "retw", "retw.n" },
4343 { "s32i", "s32i.n" },
4344 { "or", "mov.n" } /* special case only when op1 == op2 */
4345 };
4346
4347
4348 /* Check if an instruction can be "narrowed", i.e., changed from a standard
4349 3-byte instruction to a 2-byte "density" instruction. If it is valid,
4350 return the instruction buffer holding the narrow instruction. Otherwise,
4351 return 0. The set of valid narrowing are specified by a string table
4352 but require some special case operand checks in some cases. */
4353
4354 static xtensa_insnbuf
4355 can_narrow_instruction (xtensa_insnbuf slotbuf,
4356 xtensa_format fmt,
4357 xtensa_opcode opcode)
4358 {
4359 xtensa_isa isa = xtensa_default_isa;
4360 xtensa_format o_fmt;
4361 unsigned opi;
4362
4363 static xtensa_insnbuf o_insnbuf = NULL;
4364 static xtensa_insnbuf o_slotbuf = NULL;
4365
4366 if (o_insnbuf == NULL)
4367 {
4368 o_insnbuf = xtensa_insnbuf_alloc (isa);
4369 o_slotbuf = xtensa_insnbuf_alloc (isa);
4370 }
4371
4372 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
4373 {
4374 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
4375
4376 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
4377 {
4378 uint32 value, newval;
4379 int i, operand_count, o_operand_count;
4380 xtensa_opcode o_opcode;
4381
4382 /* Address does not matter in this case. We might need to
4383 fix it to handle branches/jumps. */
4384 bfd_vma self_address = 0;
4385
4386 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
4387 if (o_opcode == XTENSA_UNDEFINED)
4388 return 0;
4389 o_fmt = get_single_format (o_opcode);
4390 if (o_fmt == XTENSA_UNDEFINED)
4391 return 0;
4392
4393 if (xtensa_format_length (isa, fmt) != 3
4394 || xtensa_format_length (isa, o_fmt) != 2)
4395 return 0;
4396
4397 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4398 operand_count = xtensa_opcode_num_operands (isa, opcode);
4399 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4400
4401 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4402 return 0;
4403
4404 if (!is_or)
4405 {
4406 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4407 return 0;
4408 }
4409 else
4410 {
4411 uint32 rawval0, rawval1, rawval2;
4412
4413 if (o_operand_count + 1 != operand_count
4414 || xtensa_operand_get_field (isa, opcode, 0,
4415 fmt, 0, slotbuf, &rawval0) != 0
4416 || xtensa_operand_get_field (isa, opcode, 1,
4417 fmt, 0, slotbuf, &rawval1) != 0
4418 || xtensa_operand_get_field (isa, opcode, 2,
4419 fmt, 0, slotbuf, &rawval2) != 0
4420 || rawval1 != rawval2
4421 || rawval0 == rawval1 /* it is a nop */)
4422 return 0;
4423 }
4424
4425 for (i = 0; i < o_operand_count; ++i)
4426 {
4427 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
4428 slotbuf, &value)
4429 || xtensa_operand_decode (isa, opcode, i, &value))
4430 return 0;
4431
4432 /* PC-relative branches need adjustment, but
4433 the PC-rel operand will always have a relocation. */
4434 newval = value;
4435 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4436 self_address)
4437 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4438 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4439 o_slotbuf, newval))
4440 return 0;
4441 }
4442
4443 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4444 return 0;
4445
4446 return o_insnbuf;
4447 }
4448 }
4449 return 0;
4450 }
4451
4452
4453 /* Attempt to narrow an instruction. If the narrowing is valid, perform
4454 the action in-place directly into the contents and return TRUE. Otherwise,
4455 the return value is FALSE and the contents are not modified. */
4456
4457 static bfd_boolean
4458 narrow_instruction (bfd_byte *contents,
4459 bfd_size_type content_length,
4460 bfd_size_type offset)
4461 {
4462 xtensa_opcode opcode;
4463 bfd_size_type insn_len;
4464 xtensa_isa isa = xtensa_default_isa;
4465 xtensa_format fmt;
4466 xtensa_insnbuf o_insnbuf;
4467
4468 static xtensa_insnbuf insnbuf = NULL;
4469 static xtensa_insnbuf slotbuf = NULL;
4470
4471 if (insnbuf == NULL)
4472 {
4473 insnbuf = xtensa_insnbuf_alloc (isa);
4474 slotbuf = xtensa_insnbuf_alloc (isa);
4475 }
4476
4477 BFD_ASSERT (offset < content_length);
4478
4479 if (content_length < 2)
4480 return FALSE;
4481
4482 /* We will hand-code a few of these for a little while.
4483 These have all been specified in the assembler aleady. */
4484 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4485 content_length - offset);
4486 fmt = xtensa_format_decode (isa, insnbuf);
4487 if (xtensa_format_num_slots (isa, fmt) != 1)
4488 return FALSE;
4489
4490 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4491 return FALSE;
4492
4493 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4494 if (opcode == XTENSA_UNDEFINED)
4495 return FALSE;
4496 insn_len = xtensa_format_length (isa, fmt);
4497 if (insn_len > content_length)
4498 return FALSE;
4499
4500 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
4501 if (o_insnbuf)
4502 {
4503 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4504 content_length - offset);
4505 return TRUE;
4506 }
4507
4508 return FALSE;
4509 }
4510
4511
4512 /* Check if an instruction can be "widened", i.e., changed from a 2-byte
4513 "density" instruction to a standard 3-byte instruction. If it is valid,
4514 return the instruction buffer holding the wide instruction. Otherwise,
4515 return 0. The set of valid widenings are specified by a string table
4516 but require some special case operand checks in some cases. */
4517
4518 static xtensa_insnbuf
4519 can_widen_instruction (xtensa_insnbuf slotbuf,
4520 xtensa_format fmt,
4521 xtensa_opcode opcode)
4522 {
4523 xtensa_isa isa = xtensa_default_isa;
4524 xtensa_format o_fmt;
4525 unsigned opi;
4526
4527 static xtensa_insnbuf o_insnbuf = NULL;
4528 static xtensa_insnbuf o_slotbuf = NULL;
4529
4530 if (o_insnbuf == NULL)
4531 {
4532 o_insnbuf = xtensa_insnbuf_alloc (isa);
4533 o_slotbuf = xtensa_insnbuf_alloc (isa);
4534 }
4535
4536 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
4537 {
4538 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
4539 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
4540 || strcmp ("bnez", widenable[opi].wide) == 0);
4541
4542 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
4543 {
4544 uint32 value, newval;
4545 int i, operand_count, o_operand_count, check_operand_count;
4546 xtensa_opcode o_opcode;
4547
4548 /* Address does not matter in this case. We might need to fix it
4549 to handle branches/jumps. */
4550 bfd_vma self_address = 0;
4551
4552 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
4553 if (o_opcode == XTENSA_UNDEFINED)
4554 return 0;
4555 o_fmt = get_single_format (o_opcode);
4556 if (o_fmt == XTENSA_UNDEFINED)
4557 return 0;
4558
4559 if (xtensa_format_length (isa, fmt) != 2
4560 || xtensa_format_length (isa, o_fmt) != 3)
4561 return 0;
4562
4563 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4564 operand_count = xtensa_opcode_num_operands (isa, opcode);
4565 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4566 check_operand_count = o_operand_count;
4567
4568 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4569 return 0;
4570
4571 if (!is_or)
4572 {
4573 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4574 return 0;
4575 }
4576 else
4577 {
4578 uint32 rawval0, rawval1;
4579
4580 if (o_operand_count != operand_count + 1
4581 || xtensa_operand_get_field (isa, opcode, 0,
4582 fmt, 0, slotbuf, &rawval0) != 0
4583 || xtensa_operand_get_field (isa, opcode, 1,
4584 fmt, 0, slotbuf, &rawval1) != 0
4585 || rawval0 == rawval1 /* it is a nop */)
4586 return 0;
4587 }
4588 if (is_branch)
4589 check_operand_count--;
4590
4591 for (i = 0; i < check_operand_count; i++)
4592 {
4593 int new_i = i;
4594 if (is_or && i == o_operand_count - 1)
4595 new_i = i - 1;
4596 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
4597 slotbuf, &value)
4598 || xtensa_operand_decode (isa, opcode, new_i, &value))
4599 return 0;
4600
4601 /* PC-relative branches need adjustment, but
4602 the PC-rel operand will always have a relocation. */
4603 newval = value;
4604 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4605 self_address)
4606 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4607 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4608 o_slotbuf, newval))
4609 return 0;
4610 }
4611
4612 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4613 return 0;
4614
4615 return o_insnbuf;
4616 }
4617 }
4618 return 0;
4619 }
4620
4621
4622 /* Attempt to widen an instruction. If the widening is valid, perform
4623 the action in-place directly into the contents and return TRUE. Otherwise,
4624 the return value is FALSE and the contents are not modified. */
4625
4626 static bfd_boolean
4627 widen_instruction (bfd_byte *contents,
4628 bfd_size_type content_length,
4629 bfd_size_type offset)
4630 {
4631 xtensa_opcode opcode;
4632 bfd_size_type insn_len;
4633 xtensa_isa isa = xtensa_default_isa;
4634 xtensa_format fmt;
4635 xtensa_insnbuf o_insnbuf;
4636
4637 static xtensa_insnbuf insnbuf = NULL;
4638 static xtensa_insnbuf slotbuf = NULL;
4639
4640 if (insnbuf == NULL)
4641 {
4642 insnbuf = xtensa_insnbuf_alloc (isa);
4643 slotbuf = xtensa_insnbuf_alloc (isa);
4644 }
4645
4646 BFD_ASSERT (offset < content_length);
4647
4648 if (content_length < 2)
4649 return FALSE;
4650
4651 /* We will hand-code a few of these for a little while.
4652 These have all been specified in the assembler aleady. */
4653 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4654 content_length - offset);
4655 fmt = xtensa_format_decode (isa, insnbuf);
4656 if (xtensa_format_num_slots (isa, fmt) != 1)
4657 return FALSE;
4658
4659 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4660 return FALSE;
4661
4662 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4663 if (opcode == XTENSA_UNDEFINED)
4664 return FALSE;
4665 insn_len = xtensa_format_length (isa, fmt);
4666 if (insn_len > content_length)
4667 return FALSE;
4668
4669 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
4670 if (o_insnbuf)
4671 {
4672 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4673 content_length - offset);
4674 return TRUE;
4675 }
4676 return FALSE;
4677 }
4678
4679 \f
4680 /* Code for transforming CALLs at link-time. */
4681
4682 static bfd_reloc_status_type
4683 elf_xtensa_do_asm_simplify (bfd_byte *contents,
4684 bfd_vma address,
4685 bfd_vma content_length,
4686 char **error_message)
4687 {
4688 static xtensa_insnbuf insnbuf = NULL;
4689 static xtensa_insnbuf slotbuf = NULL;
4690 xtensa_format core_format = XTENSA_UNDEFINED;
4691 xtensa_opcode opcode;
4692 xtensa_opcode direct_call_opcode;
4693 xtensa_isa isa = xtensa_default_isa;
4694 bfd_byte *chbuf = contents + address;
4695 int opn;
4696
4697 if (insnbuf == NULL)
4698 {
4699 insnbuf = xtensa_insnbuf_alloc (isa);
4700 slotbuf = xtensa_insnbuf_alloc (isa);
4701 }
4702
4703 if (content_length < address)
4704 {
4705 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4706 return bfd_reloc_other;
4707 }
4708
4709 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
4710 direct_call_opcode = swap_callx_for_call_opcode (opcode);
4711 if (direct_call_opcode == XTENSA_UNDEFINED)
4712 {
4713 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4714 return bfd_reloc_other;
4715 }
4716
4717 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
4718 core_format = xtensa_format_lookup (isa, "x24");
4719 opcode = xtensa_opcode_lookup (isa, "or");
4720 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
4721 for (opn = 0; opn < 3; opn++)
4722 {
4723 uint32 regno = 1;
4724 xtensa_operand_encode (isa, opcode, opn, &regno);
4725 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
4726 slotbuf, regno);
4727 }
4728 xtensa_format_encode (isa, core_format, insnbuf);
4729 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4730 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
4731
4732 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
4733 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
4734 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
4735
4736 xtensa_format_encode (isa, core_format, insnbuf);
4737 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4738 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
4739 content_length - address - 3);
4740
4741 return bfd_reloc_ok;
4742 }
4743
4744
4745 static bfd_reloc_status_type
4746 contract_asm_expansion (bfd_byte *contents,
4747 bfd_vma content_length,
4748 Elf_Internal_Rela *irel,
4749 char **error_message)
4750 {
4751 bfd_reloc_status_type retval =
4752 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
4753 error_message);
4754
4755 if (retval != bfd_reloc_ok)
4756 return bfd_reloc_dangerous;
4757
4758 /* Update the irel->r_offset field so that the right immediate and
4759 the right instruction are modified during the relocation. */
4760 irel->r_offset += 3;
4761 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
4762 return bfd_reloc_ok;
4763 }
4764
4765
4766 static xtensa_opcode
4767 swap_callx_for_call_opcode (xtensa_opcode opcode)
4768 {
4769 init_call_opcodes ();
4770
4771 if (opcode == callx0_op) return call0_op;
4772 if (opcode == callx4_op) return call4_op;
4773 if (opcode == callx8_op) return call8_op;
4774 if (opcode == callx12_op) return call12_op;
4775
4776 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
4777 return XTENSA_UNDEFINED;
4778 }
4779
4780
4781 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
4782 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
4783 If not, return XTENSA_UNDEFINED. */
4784
4785 #define L32R_TARGET_REG_OPERAND 0
4786 #define CONST16_TARGET_REG_OPERAND 0
4787 #define CALLN_SOURCE_OPERAND 0
4788
4789 static xtensa_opcode
4790 get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
4791 {
4792 static xtensa_insnbuf insnbuf = NULL;
4793 static xtensa_insnbuf slotbuf = NULL;
4794 xtensa_format fmt;
4795 xtensa_opcode opcode;
4796 xtensa_isa isa = xtensa_default_isa;
4797 uint32 regno, const16_regno, call_regno;
4798 int offset = 0;
4799
4800 if (insnbuf == NULL)
4801 {
4802 insnbuf = xtensa_insnbuf_alloc (isa);
4803 slotbuf = xtensa_insnbuf_alloc (isa);
4804 }
4805
4806 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4807 fmt = xtensa_format_decode (isa, insnbuf);
4808 if (fmt == XTENSA_UNDEFINED
4809 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4810 return XTENSA_UNDEFINED;
4811
4812 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4813 if (opcode == XTENSA_UNDEFINED)
4814 return XTENSA_UNDEFINED;
4815
4816 if (opcode == get_l32r_opcode ())
4817 {
4818 if (p_uses_l32r)
4819 *p_uses_l32r = TRUE;
4820 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4821 fmt, 0, slotbuf, &regno)
4822 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4823 &regno))
4824 return XTENSA_UNDEFINED;
4825 }
4826 else if (opcode == get_const16_opcode ())
4827 {
4828 if (p_uses_l32r)
4829 *p_uses_l32r = FALSE;
4830 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4831 fmt, 0, slotbuf, &regno)
4832 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4833 &regno))
4834 return XTENSA_UNDEFINED;
4835
4836 /* Check that the next instruction is also CONST16. */
4837 offset += xtensa_format_length (isa, fmt);
4838 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4839 fmt = xtensa_format_decode (isa, insnbuf);
4840 if (fmt == XTENSA_UNDEFINED
4841 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4842 return XTENSA_UNDEFINED;
4843 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4844 if (opcode != get_const16_opcode ())
4845 return XTENSA_UNDEFINED;
4846
4847 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4848 fmt, 0, slotbuf, &const16_regno)
4849 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4850 &const16_regno)
4851 || const16_regno != regno)
4852 return XTENSA_UNDEFINED;
4853 }
4854 else
4855 return XTENSA_UNDEFINED;
4856
4857 /* Next instruction should be an CALLXn with operand 0 == regno. */
4858 offset += xtensa_format_length (isa, fmt);
4859 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4860 fmt = xtensa_format_decode (isa, insnbuf);
4861 if (fmt == XTENSA_UNDEFINED
4862 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4863 return XTENSA_UNDEFINED;
4864 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4865 if (opcode == XTENSA_UNDEFINED
4866 || !is_indirect_call_opcode (opcode))
4867 return XTENSA_UNDEFINED;
4868
4869 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4870 fmt, 0, slotbuf, &call_regno)
4871 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4872 &call_regno))
4873 return XTENSA_UNDEFINED;
4874
4875 if (call_regno != regno)
4876 return XTENSA_UNDEFINED;
4877
4878 return opcode;
4879 }
4880
4881 \f
4882 /* Data structures used during relaxation. */
4883
4884 /* r_reloc: relocation values. */
4885
4886 /* Through the relaxation process, we need to keep track of the values
4887 that will result from evaluating relocations. The standard ELF
4888 relocation structure is not sufficient for this purpose because we're
4889 operating on multiple input files at once, so we need to know which
4890 input file a relocation refers to. The r_reloc structure thus
4891 records both the input file (bfd) and ELF relocation.
4892
4893 For efficiency, an r_reloc also contains a "target_offset" field to
4894 cache the target-section-relative offset value that is represented by
4895 the relocation.
4896
4897 The r_reloc also contains a virtual offset that allows multiple
4898 inserted literals to be placed at the same "address" with
4899 different offsets. */
4900
4901 typedef struct r_reloc_struct r_reloc;
4902
4903 struct r_reloc_struct
4904 {
4905 bfd *abfd;
4906 Elf_Internal_Rela rela;
4907 bfd_vma target_offset;
4908 bfd_vma virtual_offset;
4909 };
4910
4911
4912 /* The r_reloc structure is included by value in literal_value, but not
4913 every literal_value has an associated relocation -- some are simple
4914 constants. In such cases, we set all the fields in the r_reloc
4915 struct to zero. The r_reloc_is_const function should be used to
4916 detect this case. */
4917
4918 static bfd_boolean
4919 r_reloc_is_const (const r_reloc *r_rel)
4920 {
4921 return (r_rel->abfd == NULL);
4922 }
4923
4924
4925 static bfd_vma
4926 r_reloc_get_target_offset (const r_reloc *r_rel)
4927 {
4928 bfd_vma target_offset;
4929 unsigned long r_symndx;
4930
4931 BFD_ASSERT (!r_reloc_is_const (r_rel));
4932 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4933 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4934 return (target_offset + r_rel->rela.r_addend);
4935 }
4936
4937
4938 static struct elf_link_hash_entry *
4939 r_reloc_get_hash_entry (const r_reloc *r_rel)
4940 {
4941 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4942 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4943 }
4944
4945
4946 static asection *
4947 r_reloc_get_section (const r_reloc *r_rel)
4948 {
4949 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4950 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4951 }
4952
4953
4954 static bfd_boolean
4955 r_reloc_is_defined (const r_reloc *r_rel)
4956 {
4957 asection *sec;
4958 if (r_rel == NULL)
4959 return FALSE;
4960
4961 sec = r_reloc_get_section (r_rel);
4962 if (sec == bfd_abs_section_ptr
4963 || sec == bfd_com_section_ptr
4964 || sec == bfd_und_section_ptr)
4965 return FALSE;
4966 return TRUE;
4967 }
4968
4969
4970 static void
4971 r_reloc_init (r_reloc *r_rel,
4972 bfd *abfd,
4973 Elf_Internal_Rela *irel,
4974 bfd_byte *contents,
4975 bfd_size_type content_length)
4976 {
4977 int r_type;
4978 reloc_howto_type *howto;
4979
4980 if (irel)
4981 {
4982 r_rel->rela = *irel;
4983 r_rel->abfd = abfd;
4984 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4985 r_rel->virtual_offset = 0;
4986 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4987 howto = &elf_howto_table[r_type];
4988 if (howto->partial_inplace)
4989 {
4990 bfd_vma inplace_val;
4991 BFD_ASSERT (r_rel->rela.r_offset < content_length);
4992
4993 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
4994 r_rel->target_offset += inplace_val;
4995 }
4996 }
4997 else
4998 memset (r_rel, 0, sizeof (r_reloc));
4999 }
5000
5001
5002 #if DEBUG
5003
5004 static void
5005 print_r_reloc (FILE *fp, const r_reloc *r_rel)
5006 {
5007 if (r_reloc_is_defined (r_rel))
5008 {
5009 asection *sec = r_reloc_get_section (r_rel);
5010 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
5011 }
5012 else if (r_reloc_get_hash_entry (r_rel))
5013 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
5014 else
5015 fprintf (fp, " ?? + ");
5016
5017 fprintf_vma (fp, r_rel->target_offset);
5018 if (r_rel->virtual_offset)
5019 {
5020 fprintf (fp, " + ");
5021 fprintf_vma (fp, r_rel->virtual_offset);
5022 }
5023
5024 fprintf (fp, ")");
5025 }
5026
5027 #endif /* DEBUG */
5028
5029 \f
5030 /* source_reloc: relocations that reference literals. */
5031
5032 /* To determine whether literals can be coalesced, we need to first
5033 record all the relocations that reference the literals. The
5034 source_reloc structure below is used for this purpose. The
5035 source_reloc entries are kept in a per-literal-section array, sorted
5036 by offset within the literal section (i.e., target offset).
5037
5038 The source_sec and r_rel.rela.r_offset fields identify the source of
5039 the relocation. The r_rel field records the relocation value, i.e.,
5040 the offset of the literal being referenced. The opnd field is needed
5041 to determine the range of the immediate field to which the relocation
5042 applies, so we can determine whether another literal with the same
5043 value is within range. The is_null field is true when the relocation
5044 is being removed (e.g., when an L32R is being removed due to a CALLX
5045 that is converted to a direct CALL). */
5046
5047 typedef struct source_reloc_struct source_reloc;
5048
5049 struct source_reloc_struct
5050 {
5051 asection *source_sec;
5052 r_reloc r_rel;
5053 xtensa_opcode opcode;
5054 int opnd;
5055 bfd_boolean is_null;
5056 bfd_boolean is_abs_literal;
5057 };
5058
5059
5060 static void
5061 init_source_reloc (source_reloc *reloc,
5062 asection *source_sec,
5063 const r_reloc *r_rel,
5064 xtensa_opcode opcode,
5065 int opnd,
5066 bfd_boolean is_abs_literal)
5067 {
5068 reloc->source_sec = source_sec;
5069 reloc->r_rel = *r_rel;
5070 reloc->opcode = opcode;
5071 reloc->opnd = opnd;
5072 reloc->is_null = FALSE;
5073 reloc->is_abs_literal = is_abs_literal;
5074 }
5075
5076
5077 /* Find the source_reloc for a particular source offset and relocation
5078 type. Note that the array is sorted by _target_ offset, so this is
5079 just a linear search. */
5080
5081 static source_reloc *
5082 find_source_reloc (source_reloc *src_relocs,
5083 int src_count,
5084 asection *sec,
5085 Elf_Internal_Rela *irel)
5086 {
5087 int i;
5088
5089 for (i = 0; i < src_count; i++)
5090 {
5091 if (src_relocs[i].source_sec == sec
5092 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
5093 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
5094 == ELF32_R_TYPE (irel->r_info)))
5095 return &src_relocs[i];
5096 }
5097
5098 return NULL;
5099 }
5100
5101
5102 static int
5103 source_reloc_compare (const void *ap, const void *bp)
5104 {
5105 const source_reloc *a = (const source_reloc *) ap;
5106 const source_reloc *b = (const source_reloc *) bp;
5107
5108 if (a->r_rel.target_offset != b->r_rel.target_offset)
5109 return (a->r_rel.target_offset - b->r_rel.target_offset);
5110
5111 /* We don't need to sort on these criteria for correctness,
5112 but enforcing a more strict ordering prevents unstable qsort
5113 from behaving differently with different implementations.
5114 Without the code below we get correct but different results
5115 on Solaris 2.7 and 2.8. We would like to always produce the
5116 same results no matter the host. */
5117
5118 if ((!a->is_null) - (!b->is_null))
5119 return ((!a->is_null) - (!b->is_null));
5120 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
5121 }
5122
5123 \f
5124 /* Literal values and value hash tables. */
5125
5126 /* Literals with the same value can be coalesced. The literal_value
5127 structure records the value of a literal: the "r_rel" field holds the
5128 information from the relocation on the literal (if there is one) and
5129 the "value" field holds the contents of the literal word itself.
5130
5131 The value_map structure records a literal value along with the
5132 location of a literal holding that value. The value_map hash table
5133 is indexed by the literal value, so that we can quickly check if a
5134 particular literal value has been seen before and is thus a candidate
5135 for coalescing. */
5136
5137 typedef struct literal_value_struct literal_value;
5138 typedef struct value_map_struct value_map;
5139 typedef struct value_map_hash_table_struct value_map_hash_table;
5140
5141 struct literal_value_struct
5142 {
5143 r_reloc r_rel;
5144 unsigned long value;
5145 bfd_boolean is_abs_literal;
5146 };
5147
5148 struct value_map_struct
5149 {
5150 literal_value val; /* The literal value. */
5151 r_reloc loc; /* Location of the literal. */
5152 value_map *next;
5153 };
5154
5155 struct value_map_hash_table_struct
5156 {
5157 unsigned bucket_count;
5158 value_map **buckets;
5159 unsigned count;
5160 bfd_boolean has_last_loc;
5161 r_reloc last_loc;
5162 };
5163
5164
5165 static void
5166 init_literal_value (literal_value *lit,
5167 const r_reloc *r_rel,
5168 unsigned long value,
5169 bfd_boolean is_abs_literal)
5170 {
5171 lit->r_rel = *r_rel;
5172 lit->value = value;
5173 lit->is_abs_literal = is_abs_literal;
5174 }
5175
5176
5177 static bfd_boolean
5178 literal_value_equal (const literal_value *src1,
5179 const literal_value *src2,
5180 bfd_boolean final_static_link)
5181 {
5182 struct elf_link_hash_entry *h1, *h2;
5183
5184 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
5185 return FALSE;
5186
5187 if (r_reloc_is_const (&src1->r_rel))
5188 return (src1->value == src2->value);
5189
5190 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
5191 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
5192 return FALSE;
5193
5194 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
5195 return FALSE;
5196
5197 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
5198 return FALSE;
5199
5200 if (src1->value != src2->value)
5201 return FALSE;
5202
5203 /* Now check for the same section (if defined) or the same elf_hash
5204 (if undefined or weak). */
5205 h1 = r_reloc_get_hash_entry (&src1->r_rel);
5206 h2 = r_reloc_get_hash_entry (&src2->r_rel);
5207 if (r_reloc_is_defined (&src1->r_rel)
5208 && (final_static_link
5209 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
5210 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
5211 {
5212 if (r_reloc_get_section (&src1->r_rel)
5213 != r_reloc_get_section (&src2->r_rel))
5214 return FALSE;
5215 }
5216 else
5217 {
5218 /* Require that the hash entries (i.e., symbols) be identical. */
5219 if (h1 != h2 || h1 == 0)
5220 return FALSE;
5221 }
5222
5223 if (src1->is_abs_literal != src2->is_abs_literal)
5224 return FALSE;
5225
5226 return TRUE;
5227 }
5228
5229
5230 /* Must be power of 2. */
5231 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
5232
5233 static value_map_hash_table *
5234 value_map_hash_table_init (void)
5235 {
5236 value_map_hash_table *values;
5237
5238 values = (value_map_hash_table *)
5239 bfd_zmalloc (sizeof (value_map_hash_table));
5240 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
5241 values->count = 0;
5242 values->buckets = (value_map **)
5243 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
5244 if (values->buckets == NULL)
5245 {
5246 free (values);
5247 return NULL;
5248 }
5249 values->has_last_loc = FALSE;
5250
5251 return values;
5252 }
5253
5254
5255 static void
5256 value_map_hash_table_delete (value_map_hash_table *table)
5257 {
5258 free (table->buckets);
5259 free (table);
5260 }
5261
5262
5263 static unsigned
5264 hash_bfd_vma (bfd_vma val)
5265 {
5266 return (val >> 2) + (val >> 10);
5267 }
5268
5269
5270 static unsigned
5271 literal_value_hash (const literal_value *src)
5272 {
5273 unsigned hash_val;
5274
5275 hash_val = hash_bfd_vma (src->value);
5276 if (!r_reloc_is_const (&src->r_rel))
5277 {
5278 void *sec_or_hash;
5279
5280 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
5281 hash_val += hash_bfd_vma (src->r_rel.target_offset);
5282 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
5283
5284 /* Now check for the same section and the same elf_hash. */
5285 if (r_reloc_is_defined (&src->r_rel))
5286 sec_or_hash = r_reloc_get_section (&src->r_rel);
5287 else
5288 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
5289 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
5290 }
5291 return hash_val;
5292 }
5293
5294
5295 /* Check if the specified literal_value has been seen before. */
5296
5297 static value_map *
5298 value_map_get_cached_value (value_map_hash_table *map,
5299 const literal_value *val,
5300 bfd_boolean final_static_link)
5301 {
5302 value_map *map_e;
5303 value_map *bucket;
5304 unsigned idx;
5305
5306 idx = literal_value_hash (val);
5307 idx = idx & (map->bucket_count - 1);
5308 bucket = map->buckets[idx];
5309 for (map_e = bucket; map_e; map_e = map_e->next)
5310 {
5311 if (literal_value_equal (&map_e->val, val, final_static_link))
5312 return map_e;
5313 }
5314 return NULL;
5315 }
5316
5317
5318 /* Record a new literal value. It is illegal to call this if VALUE
5319 already has an entry here. */
5320
5321 static value_map *
5322 add_value_map (value_map_hash_table *map,
5323 const literal_value *val,
5324 const r_reloc *loc,
5325 bfd_boolean final_static_link)
5326 {
5327 value_map **bucket_p;
5328 unsigned idx;
5329
5330 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
5331 if (val_e == NULL)
5332 {
5333 bfd_set_error (bfd_error_no_memory);
5334 return NULL;
5335 }
5336
5337 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
5338 val_e->val = *val;
5339 val_e->loc = *loc;
5340
5341 idx = literal_value_hash (val);
5342 idx = idx & (map->bucket_count - 1);
5343 bucket_p = &map->buckets[idx];
5344
5345 val_e->next = *bucket_p;
5346 *bucket_p = val_e;
5347 map->count++;
5348 /* FIXME: Consider resizing the hash table if we get too many entries. */
5349
5350 return val_e;
5351 }
5352
5353 \f
5354 /* Lists of text actions (ta_) for narrowing, widening, longcall
5355 conversion, space fill, code & literal removal, etc. */
5356
5357 /* The following text actions are generated:
5358
5359 "ta_remove_insn" remove an instruction or instructions
5360 "ta_remove_longcall" convert longcall to call
5361 "ta_convert_longcall" convert longcall to nop/call
5362 "ta_narrow_insn" narrow a wide instruction
5363 "ta_widen" widen a narrow instruction
5364 "ta_fill" add fill or remove fill
5365 removed < 0 is a fill; branches to the fill address will be
5366 changed to address + fill size (e.g., address - removed)
5367 removed >= 0 branches to the fill address will stay unchanged
5368 "ta_remove_literal" remove a literal; this action is
5369 indicated when a literal is removed
5370 or replaced.
5371 "ta_add_literal" insert a new literal; this action is
5372 indicated when a literal has been moved.
5373 It may use a virtual_offset because
5374 multiple literals can be placed at the
5375 same location.
5376
5377 For each of these text actions, we also record the number of bytes
5378 removed by performing the text action. In the case of a "ta_widen"
5379 or a "ta_fill" that adds space, the removed_bytes will be negative. */
5380
5381 typedef struct text_action_struct text_action;
5382 typedef struct text_action_list_struct text_action_list;
5383 typedef enum text_action_enum_t text_action_t;
5384
5385 enum text_action_enum_t
5386 {
5387 ta_none,
5388 ta_remove_insn, /* removed = -size */
5389 ta_remove_longcall, /* removed = -size */
5390 ta_convert_longcall, /* removed = 0 */
5391 ta_narrow_insn, /* removed = -1 */
5392 ta_widen_insn, /* removed = +1 */
5393 ta_fill, /* removed = +size */
5394 ta_remove_literal,
5395 ta_add_literal
5396 };
5397
5398
5399 /* Structure for a text action record. */
5400 struct text_action_struct
5401 {
5402 text_action_t action;
5403 asection *sec; /* Optional */
5404 bfd_vma offset;
5405 bfd_vma virtual_offset; /* Zero except for adding literals. */
5406 int removed_bytes;
5407 literal_value value; /* Only valid when adding literals. */
5408
5409 text_action *next;
5410 };
5411
5412
5413 /* List of all of the actions taken on a text section. */
5414 struct text_action_list_struct
5415 {
5416 text_action *head;
5417 };
5418
5419
5420 static text_action *
5421 find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
5422 {
5423 text_action **m_p;
5424
5425 /* It is not necessary to fill at the end of a section. */
5426 if (sec->size == offset)
5427 return NULL;
5428
5429 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
5430 {
5431 text_action *t = *m_p;
5432 /* When the action is another fill at the same address,
5433 just increase the size. */
5434 if (t->offset == offset && t->action == ta_fill)
5435 return t;
5436 }
5437 return NULL;
5438 }
5439
5440
5441 static int
5442 compute_removed_action_diff (const text_action *ta,
5443 asection *sec,
5444 bfd_vma offset,
5445 int removed,
5446 int removable_space)
5447 {
5448 int new_removed;
5449 int current_removed = 0;
5450
5451 if (ta)
5452 current_removed = ta->removed_bytes;
5453
5454 BFD_ASSERT (ta == NULL || ta->offset == offset);
5455 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
5456
5457 /* It is not necessary to fill at the end of a section. Clean this up. */
5458 if (sec->size == offset)
5459 new_removed = removable_space - 0;
5460 else
5461 {
5462 int space;
5463 int added = -removed - current_removed;
5464 /* Ignore multiples of the section alignment. */
5465 added = ((1 << sec->alignment_power) - 1) & added;
5466 new_removed = (-added);
5467
5468 /* Modify for removable. */
5469 space = removable_space - new_removed;
5470 new_removed = (removable_space
5471 - (((1 << sec->alignment_power) - 1) & space));
5472 }
5473 return (new_removed - current_removed);
5474 }
5475
5476
5477 static void
5478 adjust_fill_action (text_action *ta, int fill_diff)
5479 {
5480 ta->removed_bytes += fill_diff;
5481 }
5482
5483
5484 /* Add a modification action to the text. For the case of adding or
5485 removing space, modify any current fill and assume that
5486 "unreachable_space" bytes can be freely contracted. Note that a
5487 negative removed value is a fill. */
5488
5489 static void
5490 text_action_add (text_action_list *l,
5491 text_action_t action,
5492 asection *sec,
5493 bfd_vma offset,
5494 int removed)
5495 {
5496 text_action **m_p;
5497 text_action *ta;
5498
5499 /* It is not necessary to fill at the end of a section. */
5500 if (action == ta_fill && sec->size == offset)
5501 return;
5502
5503 /* It is not necessary to fill 0 bytes. */
5504 if (action == ta_fill && removed == 0)
5505 return;
5506
5507 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
5508 {
5509 text_action *t = *m_p;
5510
5511 if (action == ta_fill)
5512 {
5513 /* When the action is another fill at the same address,
5514 just increase the size. */
5515 if (t->offset == offset && t->action == ta_fill)
5516 {
5517 t->removed_bytes += removed;
5518 return;
5519 }
5520 /* Fills need to happen before widens so that we don't
5521 insert fill bytes into the instruction stream. */
5522 if (t->offset == offset && t->action == ta_widen_insn)
5523 break;
5524 }
5525 }
5526
5527 /* Create a new record and fill it up. */
5528 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5529 ta->action = action;
5530 ta->sec = sec;
5531 ta->offset = offset;
5532 ta->removed_bytes = removed;
5533 ta->next = (*m_p);
5534 *m_p = ta;
5535 }
5536
5537
5538 static void
5539 text_action_add_literal (text_action_list *l,
5540 text_action_t action,
5541 const r_reloc *loc,
5542 const literal_value *value,
5543 int removed)
5544 {
5545 text_action **m_p;
5546 text_action *ta;
5547 asection *sec = r_reloc_get_section (loc);
5548 bfd_vma offset = loc->target_offset;
5549 bfd_vma virtual_offset = loc->virtual_offset;
5550
5551 BFD_ASSERT (action == ta_add_literal);
5552
5553 for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next)
5554 {
5555 if ((*m_p)->offset > offset
5556 && ((*m_p)->offset != offset
5557 || (*m_p)->virtual_offset > virtual_offset))
5558 break;
5559 }
5560
5561 /* Create a new record and fill it up. */
5562 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5563 ta->action = action;
5564 ta->sec = sec;
5565 ta->offset = offset;
5566 ta->virtual_offset = virtual_offset;
5567 ta->value = *value;
5568 ta->removed_bytes = removed;
5569 ta->next = (*m_p);
5570 *m_p = ta;
5571 }
5572
5573
5574 /* Find the total offset adjustment for the relaxations specified by
5575 text_actions, beginning from a particular starting action. This is
5576 typically used from offset_with_removed_text to search an entire list of
5577 actions, but it may also be called directly when adjusting adjacent offsets
5578 so that each search may begin where the previous one left off. */
5579
5580 static int
5581 removed_by_actions (text_action **p_start_action,
5582 bfd_vma offset,
5583 bfd_boolean before_fill)
5584 {
5585 text_action *r;
5586 int removed = 0;
5587
5588 r = *p_start_action;
5589 while (r)
5590 {
5591 if (r->offset > offset)
5592 break;
5593
5594 if (r->offset == offset
5595 && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
5596 break;
5597
5598 removed += r->removed_bytes;
5599
5600 r = r->next;
5601 }
5602
5603 *p_start_action = r;
5604 return removed;
5605 }
5606
5607
5608 static bfd_vma
5609 offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
5610 {
5611 text_action *r = action_list->head;
5612 return offset - removed_by_actions (&r, offset, FALSE);
5613 }
5614
5615
5616 static unsigned
5617 action_list_count (text_action_list *action_list)
5618 {
5619 text_action *r = action_list->head;
5620 unsigned count = 0;
5621 for (r = action_list->head; r != NULL; r = r->next)
5622 {
5623 count++;
5624 }
5625 return count;
5626 }
5627
5628
5629 /* The find_insn_action routine will only find non-fill actions. */
5630
5631 static text_action *
5632 find_insn_action (text_action_list *action_list, bfd_vma offset)
5633 {
5634 text_action *t;
5635 for (t = action_list->head; t; t = t->next)
5636 {
5637 if (t->offset == offset)
5638 {
5639 switch (t->action)
5640 {
5641 case ta_none:
5642 case ta_fill:
5643 break;
5644 case ta_remove_insn:
5645 case ta_remove_longcall:
5646 case ta_convert_longcall:
5647 case ta_narrow_insn:
5648 case ta_widen_insn:
5649 return t;
5650 case ta_remove_literal:
5651 case ta_add_literal:
5652 BFD_ASSERT (0);
5653 break;
5654 }
5655 }
5656 }
5657 return NULL;
5658 }
5659
5660
5661 #if DEBUG
5662
5663 static void
5664 print_action_list (FILE *fp, text_action_list *action_list)
5665 {
5666 text_action *r;
5667
5668 fprintf (fp, "Text Action\n");
5669 for (r = action_list->head; r != NULL; r = r->next)
5670 {
5671 const char *t = "unknown";
5672 switch (r->action)
5673 {
5674 case ta_remove_insn:
5675 t = "remove_insn"; break;
5676 case ta_remove_longcall:
5677 t = "remove_longcall"; break;
5678 case ta_convert_longcall:
5679 t = "convert_longcall"; break;
5680 case ta_narrow_insn:
5681 t = "narrow_insn"; break;
5682 case ta_widen_insn:
5683 t = "widen_insn"; break;
5684 case ta_fill:
5685 t = "fill"; break;
5686 case ta_none:
5687 t = "none"; break;
5688 case ta_remove_literal:
5689 t = "remove_literal"; break;
5690 case ta_add_literal:
5691 t = "add_literal"; break;
5692 }
5693
5694 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
5695 r->sec->owner->filename,
5696 r->sec->name, (unsigned long) r->offset, t, r->removed_bytes);
5697 }
5698 }
5699
5700 #endif /* DEBUG */
5701
5702 \f
5703 /* Lists of literals being coalesced or removed. */
5704
5705 /* In the usual case, the literal identified by "from" is being
5706 coalesced with another literal identified by "to". If the literal is
5707 unused and is being removed altogether, "to.abfd" will be NULL.
5708 The removed_literal entries are kept on a per-section list, sorted
5709 by the "from" offset field. */
5710
5711 typedef struct removed_literal_struct removed_literal;
5712 typedef struct removed_literal_list_struct removed_literal_list;
5713
5714 struct removed_literal_struct
5715 {
5716 r_reloc from;
5717 r_reloc to;
5718 removed_literal *next;
5719 };
5720
5721 struct removed_literal_list_struct
5722 {
5723 removed_literal *head;
5724 removed_literal *tail;
5725 };
5726
5727
5728 /* Record that the literal at "from" is being removed. If "to" is not
5729 NULL, the "from" literal is being coalesced with the "to" literal. */
5730
5731 static void
5732 add_removed_literal (removed_literal_list *removed_list,
5733 const r_reloc *from,
5734 const r_reloc *to)
5735 {
5736 removed_literal *r, *new_r, *next_r;
5737
5738 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
5739
5740 new_r->from = *from;
5741 if (to)
5742 new_r->to = *to;
5743 else
5744 new_r->to.abfd = NULL;
5745 new_r->next = NULL;
5746
5747 r = removed_list->head;
5748 if (r == NULL)
5749 {
5750 removed_list->head = new_r;
5751 removed_list->tail = new_r;
5752 }
5753 /* Special check for common case of append. */
5754 else if (removed_list->tail->from.target_offset < from->target_offset)
5755 {
5756 removed_list->tail->next = new_r;
5757 removed_list->tail = new_r;
5758 }
5759 else
5760 {
5761 while (r->from.target_offset < from->target_offset && r->next)
5762 {
5763 r = r->next;
5764 }
5765 next_r = r->next;
5766 r->next = new_r;
5767 new_r->next = next_r;
5768 if (next_r == NULL)
5769 removed_list->tail = new_r;
5770 }
5771 }
5772
5773
5774 /* Check if the list of removed literals contains an entry for the
5775 given address. Return the entry if found. */
5776
5777 static removed_literal *
5778 find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
5779 {
5780 removed_literal *r = removed_list->head;
5781 while (r && r->from.target_offset < addr)
5782 r = r->next;
5783 if (r && r->from.target_offset == addr)
5784 return r;
5785 return NULL;
5786 }
5787
5788
5789 #if DEBUG
5790
5791 static void
5792 print_removed_literals (FILE *fp, removed_literal_list *removed_list)
5793 {
5794 removed_literal *r;
5795 r = removed_list->head;
5796 if (r)
5797 fprintf (fp, "Removed Literals\n");
5798 for (; r != NULL; r = r->next)
5799 {
5800 print_r_reloc (fp, &r->from);
5801 fprintf (fp, " => ");
5802 if (r->to.abfd == NULL)
5803 fprintf (fp, "REMOVED");
5804 else
5805 print_r_reloc (fp, &r->to);
5806 fprintf (fp, "\n");
5807 }
5808 }
5809
5810 #endif /* DEBUG */
5811
5812 \f
5813 /* Per-section data for relaxation. */
5814
5815 typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
5816
5817 struct xtensa_relax_info_struct
5818 {
5819 bfd_boolean is_relaxable_literal_section;
5820 bfd_boolean is_relaxable_asm_section;
5821 int visited; /* Number of times visited. */
5822
5823 source_reloc *src_relocs; /* Array[src_count]. */
5824 int src_count;
5825 int src_next; /* Next src_relocs entry to assign. */
5826
5827 removed_literal_list removed_list;
5828 text_action_list action_list;
5829
5830 reloc_bfd_fix *fix_list;
5831 reloc_bfd_fix *fix_array;
5832 unsigned fix_array_count;
5833
5834 /* Support for expanding the reloc array that is stored
5835 in the section structure. If the relocations have been
5836 reallocated, the newly allocated relocations will be referenced
5837 here along with the actual size allocated. The relocation
5838 count will always be found in the section structure. */
5839 Elf_Internal_Rela *allocated_relocs;
5840 unsigned relocs_count;
5841 unsigned allocated_relocs_count;
5842 };
5843
5844 struct elf_xtensa_section_data
5845 {
5846 struct bfd_elf_section_data elf;
5847 xtensa_relax_info relax_info;
5848 };
5849
5850
5851 static bfd_boolean
5852 elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
5853 {
5854 if (!sec->used_by_bfd)
5855 {
5856 struct elf_xtensa_section_data *sdata;
5857 bfd_size_type amt = sizeof (*sdata);
5858
5859 sdata = bfd_zalloc (abfd, amt);
5860 if (sdata == NULL)
5861 return FALSE;
5862 sec->used_by_bfd = sdata;
5863 }
5864
5865 return _bfd_elf_new_section_hook (abfd, sec);
5866 }
5867
5868
5869 static xtensa_relax_info *
5870 get_xtensa_relax_info (asection *sec)
5871 {
5872 struct elf_xtensa_section_data *section_data;
5873
5874 /* No info available if no section or if it is an output section. */
5875 if (!sec || sec == sec->output_section)
5876 return NULL;
5877
5878 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5879 return &section_data->relax_info;
5880 }
5881
5882
5883 static void
5884 init_xtensa_relax_info (asection *sec)
5885 {
5886 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5887
5888 relax_info->is_relaxable_literal_section = FALSE;
5889 relax_info->is_relaxable_asm_section = FALSE;
5890 relax_info->visited = 0;
5891
5892 relax_info->src_relocs = NULL;
5893 relax_info->src_count = 0;
5894 relax_info->src_next = 0;
5895
5896 relax_info->removed_list.head = NULL;
5897 relax_info->removed_list.tail = NULL;
5898
5899 relax_info->action_list.head = NULL;
5900
5901 relax_info->fix_list = NULL;
5902 relax_info->fix_array = NULL;
5903 relax_info->fix_array_count = 0;
5904
5905 relax_info->allocated_relocs = NULL;
5906 relax_info->relocs_count = 0;
5907 relax_info->allocated_relocs_count = 0;
5908 }
5909
5910 \f
5911 /* Coalescing literals may require a relocation to refer to a section in
5912 a different input file, but the standard relocation information
5913 cannot express that. Instead, the reloc_bfd_fix structures are used
5914 to "fix" the relocations that refer to sections in other input files.
5915 These structures are kept on per-section lists. The "src_type" field
5916 records the relocation type in case there are multiple relocations on
5917 the same location. FIXME: This is ugly; an alternative might be to
5918 add new symbols with the "owner" field to some other input file. */
5919
5920 struct reloc_bfd_fix_struct
5921 {
5922 asection *src_sec;
5923 bfd_vma src_offset;
5924 unsigned src_type; /* Relocation type. */
5925
5926 asection *target_sec;
5927 bfd_vma target_offset;
5928 bfd_boolean translated;
5929
5930 reloc_bfd_fix *next;
5931 };
5932
5933
5934 static reloc_bfd_fix *
5935 reloc_bfd_fix_init (asection *src_sec,
5936 bfd_vma src_offset,
5937 unsigned src_type,
5938 asection *target_sec,
5939 bfd_vma target_offset,
5940 bfd_boolean translated)
5941 {
5942 reloc_bfd_fix *fix;
5943
5944 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
5945 fix->src_sec = src_sec;
5946 fix->src_offset = src_offset;
5947 fix->src_type = src_type;
5948 fix->target_sec = target_sec;
5949 fix->target_offset = target_offset;
5950 fix->translated = translated;
5951
5952 return fix;
5953 }
5954
5955
5956 static void
5957 add_fix (asection *src_sec, reloc_bfd_fix *fix)
5958 {
5959 xtensa_relax_info *relax_info;
5960
5961 relax_info = get_xtensa_relax_info (src_sec);
5962 fix->next = relax_info->fix_list;
5963 relax_info->fix_list = fix;
5964 }
5965
5966
5967 static int
5968 fix_compare (const void *ap, const void *bp)
5969 {
5970 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
5971 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
5972
5973 if (a->src_offset != b->src_offset)
5974 return (a->src_offset - b->src_offset);
5975 return (a->src_type - b->src_type);
5976 }
5977
5978
5979 static void
5980 cache_fix_array (asection *sec)
5981 {
5982 unsigned i, count = 0;
5983 reloc_bfd_fix *r;
5984 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5985
5986 if (relax_info == NULL)
5987 return;
5988 if (relax_info->fix_list == NULL)
5989 return;
5990
5991 for (r = relax_info->fix_list; r != NULL; r = r->next)
5992 count++;
5993
5994 relax_info->fix_array =
5995 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
5996 relax_info->fix_array_count = count;
5997
5998 r = relax_info->fix_list;
5999 for (i = 0; i < count; i++, r = r->next)
6000 {
6001 relax_info->fix_array[count - 1 - i] = *r;
6002 relax_info->fix_array[count - 1 - i].next = NULL;
6003 }
6004
6005 qsort (relax_info->fix_array, relax_info->fix_array_count,
6006 sizeof (reloc_bfd_fix), fix_compare);
6007 }
6008
6009
6010 static reloc_bfd_fix *
6011 get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
6012 {
6013 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6014 reloc_bfd_fix *rv;
6015 reloc_bfd_fix key;
6016
6017 if (relax_info == NULL)
6018 return NULL;
6019 if (relax_info->fix_list == NULL)
6020 return NULL;
6021
6022 if (relax_info->fix_array == NULL)
6023 cache_fix_array (sec);
6024
6025 key.src_offset = offset;
6026 key.src_type = type;
6027 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
6028 sizeof (reloc_bfd_fix), fix_compare);
6029 return rv;
6030 }
6031
6032 \f
6033 /* Section caching. */
6034
6035 typedef struct section_cache_struct section_cache_t;
6036
6037 struct section_cache_struct
6038 {
6039 asection *sec;
6040
6041 bfd_byte *contents; /* Cache of the section contents. */
6042 bfd_size_type content_length;
6043
6044 property_table_entry *ptbl; /* Cache of the section property table. */
6045 unsigned pte_count;
6046
6047 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6048 unsigned reloc_count;
6049 };
6050
6051
6052 static void
6053 init_section_cache (section_cache_t *sec_cache)
6054 {
6055 memset (sec_cache, 0, sizeof (*sec_cache));
6056 }
6057
6058
6059 static void
6060 free_section_cache (section_cache_t *sec_cache)
6061 {
6062 if (sec_cache->sec)
6063 {
6064 release_contents (sec_cache->sec, sec_cache->contents);
6065 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
6066 if (sec_cache->ptbl)
6067 free (sec_cache->ptbl);
6068 }
6069 }
6070
6071
6072 static bfd_boolean
6073 section_cache_section (section_cache_t *sec_cache,
6074 asection *sec,
6075 struct bfd_link_info *link_info)
6076 {
6077 bfd *abfd;
6078 property_table_entry *prop_table = NULL;
6079 int ptblsize = 0;
6080 bfd_byte *contents = NULL;
6081 Elf_Internal_Rela *internal_relocs = NULL;
6082 bfd_size_type sec_size;
6083
6084 if (sec == NULL)
6085 return FALSE;
6086 if (sec == sec_cache->sec)
6087 return TRUE;
6088
6089 abfd = sec->owner;
6090 sec_size = bfd_get_section_limit (abfd, sec);
6091
6092 /* Get the contents. */
6093 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6094 if (contents == NULL && sec_size != 0)
6095 goto err;
6096
6097 /* Get the relocations. */
6098 internal_relocs = retrieve_internal_relocs (abfd, sec,
6099 link_info->keep_memory);
6100
6101 /* Get the entry table. */
6102 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6103 XTENSA_PROP_SEC_NAME, FALSE);
6104 if (ptblsize < 0)
6105 goto err;
6106
6107 /* Fill in the new section cache. */
6108 free_section_cache (sec_cache);
6109 init_section_cache (sec_cache);
6110
6111 sec_cache->sec = sec;
6112 sec_cache->contents = contents;
6113 sec_cache->content_length = sec_size;
6114 sec_cache->relocs = internal_relocs;
6115 sec_cache->reloc_count = sec->reloc_count;
6116 sec_cache->pte_count = ptblsize;
6117 sec_cache->ptbl = prop_table;
6118
6119 return TRUE;
6120
6121 err:
6122 release_contents (sec, contents);
6123 release_internal_relocs (sec, internal_relocs);
6124 if (prop_table)
6125 free (prop_table);
6126 return FALSE;
6127 }
6128
6129 \f
6130 /* Extended basic blocks. */
6131
6132 /* An ebb_struct represents an Extended Basic Block. Within this
6133 range, we guarantee that all instructions are decodable, the
6134 property table entries are contiguous, and no property table
6135 specifies a segment that cannot have instructions moved. This
6136 structure contains caches of the contents, property table and
6137 relocations for the specified section for easy use. The range is
6138 specified by ranges of indices for the byte offset, property table
6139 offsets and relocation offsets. These must be consistent. */
6140
6141 typedef struct ebb_struct ebb_t;
6142
6143 struct ebb_struct
6144 {
6145 asection *sec;
6146
6147 bfd_byte *contents; /* Cache of the section contents. */
6148 bfd_size_type content_length;
6149
6150 property_table_entry *ptbl; /* Cache of the section property table. */
6151 unsigned pte_count;
6152
6153 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6154 unsigned reloc_count;
6155
6156 bfd_vma start_offset; /* Offset in section. */
6157 unsigned start_ptbl_idx; /* Offset in the property table. */
6158 unsigned start_reloc_idx; /* Offset in the relocations. */
6159
6160 bfd_vma end_offset;
6161 unsigned end_ptbl_idx;
6162 unsigned end_reloc_idx;
6163
6164 bfd_boolean ends_section; /* Is this the last ebb in a section? */
6165
6166 /* The unreachable property table at the end of this set of blocks;
6167 NULL if the end is not an unreachable block. */
6168 property_table_entry *ends_unreachable;
6169 };
6170
6171
6172 enum ebb_target_enum
6173 {
6174 EBB_NO_ALIGN = 0,
6175 EBB_DESIRE_TGT_ALIGN,
6176 EBB_REQUIRE_TGT_ALIGN,
6177 EBB_REQUIRE_LOOP_ALIGN,
6178 EBB_REQUIRE_ALIGN
6179 };
6180
6181
6182 /* proposed_action_struct is similar to the text_action_struct except
6183 that is represents a potential transformation, not one that will
6184 occur. We build a list of these for an extended basic block
6185 and use them to compute the actual actions desired. We must be
6186 careful that the entire set of actual actions we perform do not
6187 break any relocations that would fit if the actions were not
6188 performed. */
6189
6190 typedef struct proposed_action_struct proposed_action;
6191
6192 struct proposed_action_struct
6193 {
6194 enum ebb_target_enum align_type; /* for the target alignment */
6195 bfd_vma alignment_pow;
6196 text_action_t action;
6197 bfd_vma offset;
6198 int removed_bytes;
6199 bfd_boolean do_action; /* If false, then we will not perform the action. */
6200 };
6201
6202
6203 /* The ebb_constraint_struct keeps a set of proposed actions for an
6204 extended basic block. */
6205
6206 typedef struct ebb_constraint_struct ebb_constraint;
6207
6208 struct ebb_constraint_struct
6209 {
6210 ebb_t ebb;
6211 bfd_boolean start_movable;
6212
6213 /* Bytes of extra space at the beginning if movable. */
6214 int start_extra_space;
6215
6216 enum ebb_target_enum start_align;
6217
6218 bfd_boolean end_movable;
6219
6220 /* Bytes of extra space at the end if movable. */
6221 int end_extra_space;
6222
6223 unsigned action_count;
6224 unsigned action_allocated;
6225
6226 /* Array of proposed actions. */
6227 proposed_action *actions;
6228
6229 /* Action alignments -- one for each proposed action. */
6230 enum ebb_target_enum *action_aligns;
6231 };
6232
6233
6234 static void
6235 init_ebb_constraint (ebb_constraint *c)
6236 {
6237 memset (c, 0, sizeof (ebb_constraint));
6238 }
6239
6240
6241 static void
6242 free_ebb_constraint (ebb_constraint *c)
6243 {
6244 if (c->actions)
6245 free (c->actions);
6246 }
6247
6248
6249 static void
6250 init_ebb (ebb_t *ebb,
6251 asection *sec,
6252 bfd_byte *contents,
6253 bfd_size_type content_length,
6254 property_table_entry *prop_table,
6255 unsigned ptblsize,
6256 Elf_Internal_Rela *internal_relocs,
6257 unsigned reloc_count)
6258 {
6259 memset (ebb, 0, sizeof (ebb_t));
6260 ebb->sec = sec;
6261 ebb->contents = contents;
6262 ebb->content_length = content_length;
6263 ebb->ptbl = prop_table;
6264 ebb->pte_count = ptblsize;
6265 ebb->relocs = internal_relocs;
6266 ebb->reloc_count = reloc_count;
6267 ebb->start_offset = 0;
6268 ebb->end_offset = ebb->content_length - 1;
6269 ebb->start_ptbl_idx = 0;
6270 ebb->end_ptbl_idx = ptblsize;
6271 ebb->start_reloc_idx = 0;
6272 ebb->end_reloc_idx = reloc_count;
6273 }
6274
6275
6276 /* Extend the ebb to all decodable contiguous sections. The algorithm
6277 for building a basic block around an instruction is to push it
6278 forward until we hit the end of a section, an unreachable block or
6279 a block that cannot be transformed. Then we push it backwards
6280 searching for similar conditions. */
6281
6282 static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
6283 static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
6284 static bfd_size_type insn_block_decodable_len
6285 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
6286
6287 static bfd_boolean
6288 extend_ebb_bounds (ebb_t *ebb)
6289 {
6290 if (!extend_ebb_bounds_forward (ebb))
6291 return FALSE;
6292 if (!extend_ebb_bounds_backward (ebb))
6293 return FALSE;
6294 return TRUE;
6295 }
6296
6297
6298 static bfd_boolean
6299 extend_ebb_bounds_forward (ebb_t *ebb)
6300 {
6301 property_table_entry *the_entry, *new_entry;
6302
6303 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6304
6305 /* Stop when (1) we cannot decode an instruction, (2) we are at
6306 the end of the property tables, (3) we hit a non-contiguous property
6307 table entry, (4) we hit a NO_TRANSFORM region. */
6308
6309 while (1)
6310 {
6311 bfd_vma entry_end;
6312 bfd_size_type insn_block_len;
6313
6314 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
6315 insn_block_len =
6316 insn_block_decodable_len (ebb->contents, ebb->content_length,
6317 ebb->end_offset,
6318 entry_end - ebb->end_offset);
6319 if (insn_block_len != (entry_end - ebb->end_offset))
6320 {
6321 (*_bfd_error_handler)
6322 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6323 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6324 return FALSE;
6325 }
6326 ebb->end_offset += insn_block_len;
6327
6328 if (ebb->end_offset == ebb->sec->size)
6329 ebb->ends_section = TRUE;
6330
6331 /* Update the reloc counter. */
6332 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
6333 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
6334 < ebb->end_offset))
6335 {
6336 ebb->end_reloc_idx++;
6337 }
6338
6339 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6340 return TRUE;
6341
6342 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6343 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
6344 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6345 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
6346 break;
6347
6348 if (the_entry->address + the_entry->size != new_entry->address)
6349 break;
6350
6351 the_entry = new_entry;
6352 ebb->end_ptbl_idx++;
6353 }
6354
6355 /* Quick check for an unreachable or end of file just at the end. */
6356 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6357 {
6358 if (ebb->end_offset == ebb->content_length)
6359 ebb->ends_section = TRUE;
6360 }
6361 else
6362 {
6363 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6364 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
6365 && the_entry->address + the_entry->size == new_entry->address)
6366 ebb->ends_unreachable = new_entry;
6367 }
6368
6369 /* Any other ending requires exact alignment. */
6370 return TRUE;
6371 }
6372
6373
6374 static bfd_boolean
6375 extend_ebb_bounds_backward (ebb_t *ebb)
6376 {
6377 property_table_entry *the_entry, *new_entry;
6378
6379 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6380
6381 /* Stop when (1) we cannot decode the instructions in the current entry.
6382 (2) we are at the beginning of the property tables, (3) we hit a
6383 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
6384
6385 while (1)
6386 {
6387 bfd_vma block_begin;
6388 bfd_size_type insn_block_len;
6389
6390 block_begin = the_entry->address - ebb->sec->vma;
6391 insn_block_len =
6392 insn_block_decodable_len (ebb->contents, ebb->content_length,
6393 block_begin,
6394 ebb->start_offset - block_begin);
6395 if (insn_block_len != ebb->start_offset - block_begin)
6396 {
6397 (*_bfd_error_handler)
6398 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6399 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6400 return FALSE;
6401 }
6402 ebb->start_offset -= insn_block_len;
6403
6404 /* Update the reloc counter. */
6405 while (ebb->start_reloc_idx > 0
6406 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
6407 >= ebb->start_offset))
6408 {
6409 ebb->start_reloc_idx--;
6410 }
6411
6412 if (ebb->start_ptbl_idx == 0)
6413 return TRUE;
6414
6415 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
6416 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
6417 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6418 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
6419 return TRUE;
6420 if (new_entry->address + new_entry->size != the_entry->address)
6421 return TRUE;
6422
6423 the_entry = new_entry;
6424 ebb->start_ptbl_idx--;
6425 }
6426 return TRUE;
6427 }
6428
6429
6430 static bfd_size_type
6431 insn_block_decodable_len (bfd_byte *contents,
6432 bfd_size_type content_len,
6433 bfd_vma block_offset,
6434 bfd_size_type block_len)
6435 {
6436 bfd_vma offset = block_offset;
6437
6438 while (offset < block_offset + block_len)
6439 {
6440 bfd_size_type insn_len = 0;
6441
6442 insn_len = insn_decode_len (contents, content_len, offset);
6443 if (insn_len == 0)
6444 return (offset - block_offset);
6445 offset += insn_len;
6446 }
6447 return (offset - block_offset);
6448 }
6449
6450
6451 static void
6452 ebb_propose_action (ebb_constraint *c,
6453 enum ebb_target_enum align_type,
6454 bfd_vma alignment_pow,
6455 text_action_t action,
6456 bfd_vma offset,
6457 int removed_bytes,
6458 bfd_boolean do_action)
6459 {
6460 proposed_action *act;
6461
6462 if (c->action_allocated <= c->action_count)
6463 {
6464 unsigned new_allocated, i;
6465 proposed_action *new_actions;
6466
6467 new_allocated = (c->action_count + 2) * 2;
6468 new_actions = (proposed_action *)
6469 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
6470
6471 for (i = 0; i < c->action_count; i++)
6472 new_actions[i] = c->actions[i];
6473 if (c->actions)
6474 free (c->actions);
6475 c->actions = new_actions;
6476 c->action_allocated = new_allocated;
6477 }
6478
6479 act = &c->actions[c->action_count];
6480 act->align_type = align_type;
6481 act->alignment_pow = alignment_pow;
6482 act->action = action;
6483 act->offset = offset;
6484 act->removed_bytes = removed_bytes;
6485 act->do_action = do_action;
6486
6487 c->action_count++;
6488 }
6489
6490 \f
6491 /* Access to internal relocations, section contents and symbols. */
6492
6493 /* During relaxation, we need to modify relocations, section contents,
6494 and symbol definitions, and we need to keep the original values from
6495 being reloaded from the input files, i.e., we need to "pin" the
6496 modified values in memory. We also want to continue to observe the
6497 setting of the "keep-memory" flag. The following functions wrap the
6498 standard BFD functions to take care of this for us. */
6499
6500 static Elf_Internal_Rela *
6501 retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6502 {
6503 Elf_Internal_Rela *internal_relocs;
6504
6505 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6506 return NULL;
6507
6508 internal_relocs = elf_section_data (sec)->relocs;
6509 if (internal_relocs == NULL)
6510 internal_relocs = (_bfd_elf_link_read_relocs
6511 (abfd, sec, NULL, NULL, keep_memory));
6512 return internal_relocs;
6513 }
6514
6515
6516 static void
6517 pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6518 {
6519 elf_section_data (sec)->relocs = internal_relocs;
6520 }
6521
6522
6523 static void
6524 release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6525 {
6526 if (internal_relocs
6527 && elf_section_data (sec)->relocs != internal_relocs)
6528 free (internal_relocs);
6529 }
6530
6531
6532 static bfd_byte *
6533 retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6534 {
6535 bfd_byte *contents;
6536 bfd_size_type sec_size;
6537
6538 sec_size = bfd_get_section_limit (abfd, sec);
6539 contents = elf_section_data (sec)->this_hdr.contents;
6540
6541 if (contents == NULL && sec_size != 0)
6542 {
6543 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6544 {
6545 if (contents)
6546 free (contents);
6547 return NULL;
6548 }
6549 if (keep_memory)
6550 elf_section_data (sec)->this_hdr.contents = contents;
6551 }
6552 return contents;
6553 }
6554
6555
6556 static void
6557 pin_contents (asection *sec, bfd_byte *contents)
6558 {
6559 elf_section_data (sec)->this_hdr.contents = contents;
6560 }
6561
6562
6563 static void
6564 release_contents (asection *sec, bfd_byte *contents)
6565 {
6566 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
6567 free (contents);
6568 }
6569
6570
6571 static Elf_Internal_Sym *
6572 retrieve_local_syms (bfd *input_bfd)
6573 {
6574 Elf_Internal_Shdr *symtab_hdr;
6575 Elf_Internal_Sym *isymbuf;
6576 size_t locsymcount;
6577
6578 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6579 locsymcount = symtab_hdr->sh_info;
6580
6581 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6582 if (isymbuf == NULL && locsymcount != 0)
6583 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6584 NULL, NULL, NULL);
6585
6586 /* Save the symbols for this input file so they won't be read again. */
6587 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
6588 symtab_hdr->contents = (unsigned char *) isymbuf;
6589
6590 return isymbuf;
6591 }
6592
6593 \f
6594 /* Code for link-time relaxation. */
6595
6596 /* Initialization for relaxation: */
6597 static bfd_boolean analyze_relocations (struct bfd_link_info *);
6598 static bfd_boolean find_relaxable_sections
6599 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
6600 static bfd_boolean collect_source_relocs
6601 (bfd *, asection *, struct bfd_link_info *);
6602 static bfd_boolean is_resolvable_asm_expansion
6603 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
6604 bfd_boolean *);
6605 static Elf_Internal_Rela *find_associated_l32r_irel
6606 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
6607 static bfd_boolean compute_text_actions
6608 (bfd *, asection *, struct bfd_link_info *);
6609 static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
6610 static bfd_boolean compute_ebb_actions (ebb_constraint *);
6611 static bfd_boolean check_section_ebb_pcrels_fit
6612 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *,
6613 const xtensa_opcode *);
6614 static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
6615 static void text_action_add_proposed
6616 (text_action_list *, const ebb_constraint *, asection *);
6617 static int compute_fill_extra_space (property_table_entry *);
6618
6619 /* First pass: */
6620 static bfd_boolean compute_removed_literals
6621 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
6622 static Elf_Internal_Rela *get_irel_at_offset
6623 (asection *, Elf_Internal_Rela *, bfd_vma);
6624 static bfd_boolean is_removable_literal
6625 (const source_reloc *, int, const source_reloc *, int, asection *,
6626 property_table_entry *, int);
6627 static bfd_boolean remove_dead_literal
6628 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
6629 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
6630 static bfd_boolean identify_literal_placement
6631 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
6632 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
6633 source_reloc *, property_table_entry *, int, section_cache_t *,
6634 bfd_boolean);
6635 static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
6636 static bfd_boolean coalesce_shared_literal
6637 (asection *, source_reloc *, property_table_entry *, int, value_map *);
6638 static bfd_boolean move_shared_literal
6639 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
6640 int, const r_reloc *, const literal_value *, section_cache_t *);
6641
6642 /* Second pass: */
6643 static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
6644 static bfd_boolean translate_section_fixes (asection *);
6645 static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
6646 static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
6647 static void shrink_dynamic_reloc_sections
6648 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
6649 static bfd_boolean move_literal
6650 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
6651 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
6652 static bfd_boolean relax_property_section
6653 (bfd *, asection *, struct bfd_link_info *);
6654
6655 /* Third pass: */
6656 static bfd_boolean relax_section_symbols (bfd *, asection *);
6657
6658
6659 static bfd_boolean
6660 elf_xtensa_relax_section (bfd *abfd,
6661 asection *sec,
6662 struct bfd_link_info *link_info,
6663 bfd_boolean *again)
6664 {
6665 static value_map_hash_table *values = NULL;
6666 static bfd_boolean relocations_analyzed = FALSE;
6667 xtensa_relax_info *relax_info;
6668
6669 if (!relocations_analyzed)
6670 {
6671 /* Do some overall initialization for relaxation. */
6672 values = value_map_hash_table_init ();
6673 if (values == NULL)
6674 return FALSE;
6675 relaxing_section = TRUE;
6676 if (!analyze_relocations (link_info))
6677 return FALSE;
6678 relocations_analyzed = TRUE;
6679 }
6680 *again = FALSE;
6681
6682 /* Don't mess with linker-created sections. */
6683 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6684 return TRUE;
6685
6686 relax_info = get_xtensa_relax_info (sec);
6687 BFD_ASSERT (relax_info != NULL);
6688
6689 switch (relax_info->visited)
6690 {
6691 case 0:
6692 /* Note: It would be nice to fold this pass into
6693 analyze_relocations, but it is important for this step that the
6694 sections be examined in link order. */
6695 if (!compute_removed_literals (abfd, sec, link_info, values))
6696 return FALSE;
6697 *again = TRUE;
6698 break;
6699
6700 case 1:
6701 if (values)
6702 value_map_hash_table_delete (values);
6703 values = NULL;
6704 if (!relax_section (abfd, sec, link_info))
6705 return FALSE;
6706 *again = TRUE;
6707 break;
6708
6709 case 2:
6710 if (!relax_section_symbols (abfd, sec))
6711 return FALSE;
6712 break;
6713 }
6714
6715 relax_info->visited++;
6716 return TRUE;
6717 }
6718
6719 \f
6720 /* Initialization for relaxation. */
6721
6722 /* This function is called once at the start of relaxation. It scans
6723 all the input sections and marks the ones that are relaxable (i.e.,
6724 literal sections with L32R relocations against them), and then
6725 collects source_reloc information for all the relocations against
6726 those relaxable sections. During this process, it also detects
6727 longcalls, i.e., calls relaxed by the assembler into indirect
6728 calls, that can be optimized back into direct calls. Within each
6729 extended basic block (ebb) containing an optimized longcall, it
6730 computes a set of "text actions" that can be performed to remove
6731 the L32R associated with the longcall while optionally preserving
6732 branch target alignments. */
6733
6734 static bfd_boolean
6735 analyze_relocations (struct bfd_link_info *link_info)
6736 {
6737 bfd *abfd;
6738 asection *sec;
6739 bfd_boolean is_relaxable = FALSE;
6740
6741 /* Initialize the per-section relaxation info. */
6742 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6743 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6744 {
6745 init_xtensa_relax_info (sec);
6746 }
6747
6748 /* Mark relaxable sections (and count relocations against each one). */
6749 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6750 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6751 {
6752 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
6753 return FALSE;
6754 }
6755
6756 /* Bail out if there are no relaxable sections. */
6757 if (!is_relaxable)
6758 return TRUE;
6759
6760 /* Allocate space for source_relocs. */
6761 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6762 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6763 {
6764 xtensa_relax_info *relax_info;
6765
6766 relax_info = get_xtensa_relax_info (sec);
6767 if (relax_info->is_relaxable_literal_section
6768 || relax_info->is_relaxable_asm_section)
6769 {
6770 relax_info->src_relocs = (source_reloc *)
6771 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
6772 }
6773 else
6774 relax_info->src_count = 0;
6775 }
6776
6777 /* Collect info on relocations against each relaxable section. */
6778 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6779 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6780 {
6781 if (!collect_source_relocs (abfd, sec, link_info))
6782 return FALSE;
6783 }
6784
6785 /* Compute the text actions. */
6786 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6787 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6788 {
6789 if (!compute_text_actions (abfd, sec, link_info))
6790 return FALSE;
6791 }
6792
6793 return TRUE;
6794 }
6795
6796
6797 /* Find all the sections that might be relaxed. The motivation for
6798 this pass is that collect_source_relocs() needs to record _all_ the
6799 relocations that target each relaxable section. That is expensive
6800 and unnecessary unless the target section is actually going to be
6801 relaxed. This pass identifies all such sections by checking if
6802 they have L32Rs pointing to them. In the process, the total number
6803 of relocations targeting each section is also counted so that we
6804 know how much space to allocate for source_relocs against each
6805 relaxable literal section. */
6806
6807 static bfd_boolean
6808 find_relaxable_sections (bfd *abfd,
6809 asection *sec,
6810 struct bfd_link_info *link_info,
6811 bfd_boolean *is_relaxable_p)
6812 {
6813 Elf_Internal_Rela *internal_relocs;
6814 bfd_byte *contents;
6815 bfd_boolean ok = TRUE;
6816 unsigned i;
6817 xtensa_relax_info *source_relax_info;
6818 bfd_boolean is_l32r_reloc;
6819
6820 internal_relocs = retrieve_internal_relocs (abfd, sec,
6821 link_info->keep_memory);
6822 if (internal_relocs == NULL)
6823 return ok;
6824
6825 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6826 if (contents == NULL && sec->size != 0)
6827 {
6828 ok = FALSE;
6829 goto error_return;
6830 }
6831
6832 source_relax_info = get_xtensa_relax_info (sec);
6833 for (i = 0; i < sec->reloc_count; i++)
6834 {
6835 Elf_Internal_Rela *irel = &internal_relocs[i];
6836 r_reloc r_rel;
6837 asection *target_sec;
6838 xtensa_relax_info *target_relax_info;
6839
6840 /* If this section has not already been marked as "relaxable", and
6841 if it contains any ASM_EXPAND relocations (marking expanded
6842 longcalls) that can be optimized into direct calls, then mark
6843 the section as "relaxable". */
6844 if (source_relax_info
6845 && !source_relax_info->is_relaxable_asm_section
6846 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
6847 {
6848 bfd_boolean is_reachable = FALSE;
6849 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
6850 link_info, &is_reachable)
6851 && is_reachable)
6852 {
6853 source_relax_info->is_relaxable_asm_section = TRUE;
6854 *is_relaxable_p = TRUE;
6855 }
6856 }
6857
6858 r_reloc_init (&r_rel, abfd, irel, contents,
6859 bfd_get_section_limit (abfd, sec));
6860
6861 target_sec = r_reloc_get_section (&r_rel);
6862 target_relax_info = get_xtensa_relax_info (target_sec);
6863 if (!target_relax_info)
6864 continue;
6865
6866 /* Count PC-relative operand relocations against the target section.
6867 Note: The conditions tested here must match the conditions under
6868 which init_source_reloc is called in collect_source_relocs(). */
6869 is_l32r_reloc = FALSE;
6870 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6871 {
6872 xtensa_opcode opcode =
6873 get_relocation_opcode (abfd, sec, contents, irel);
6874 if (opcode != XTENSA_UNDEFINED)
6875 {
6876 is_l32r_reloc = (opcode == get_l32r_opcode ());
6877 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
6878 || is_l32r_reloc)
6879 target_relax_info->src_count++;
6880 }
6881 }
6882
6883 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
6884 {
6885 /* Mark the target section as relaxable. */
6886 target_relax_info->is_relaxable_literal_section = TRUE;
6887 *is_relaxable_p = TRUE;
6888 }
6889 }
6890
6891 error_return:
6892 release_contents (sec, contents);
6893 release_internal_relocs (sec, internal_relocs);
6894 return ok;
6895 }
6896
6897
6898 /* Record _all_ the relocations that point to relaxable sections, and
6899 get rid of ASM_EXPAND relocs by either converting them to
6900 ASM_SIMPLIFY or by removing them. */
6901
6902 static bfd_boolean
6903 collect_source_relocs (bfd *abfd,
6904 asection *sec,
6905 struct bfd_link_info *link_info)
6906 {
6907 Elf_Internal_Rela *internal_relocs;
6908 bfd_byte *contents;
6909 bfd_boolean ok = TRUE;
6910 unsigned i;
6911 bfd_size_type sec_size;
6912
6913 internal_relocs = retrieve_internal_relocs (abfd, sec,
6914 link_info->keep_memory);
6915 if (internal_relocs == NULL)
6916 return ok;
6917
6918 sec_size = bfd_get_section_limit (abfd, sec);
6919 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6920 if (contents == NULL && sec_size != 0)
6921 {
6922 ok = FALSE;
6923 goto error_return;
6924 }
6925
6926 /* Record relocations against relaxable literal sections. */
6927 for (i = 0; i < sec->reloc_count; i++)
6928 {
6929 Elf_Internal_Rela *irel = &internal_relocs[i];
6930 r_reloc r_rel;
6931 asection *target_sec;
6932 xtensa_relax_info *target_relax_info;
6933
6934 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6935
6936 target_sec = r_reloc_get_section (&r_rel);
6937 target_relax_info = get_xtensa_relax_info (target_sec);
6938
6939 if (target_relax_info
6940 && (target_relax_info->is_relaxable_literal_section
6941 || target_relax_info->is_relaxable_asm_section))
6942 {
6943 xtensa_opcode opcode = XTENSA_UNDEFINED;
6944 int opnd = -1;
6945 bfd_boolean is_abs_literal = FALSE;
6946
6947 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
6948 {
6949 /* None of the current alternate relocs are PC-relative,
6950 and only PC-relative relocs matter here. However, we
6951 still need to record the opcode for literal
6952 coalescing. */
6953 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6954 if (opcode == get_l32r_opcode ())
6955 {
6956 is_abs_literal = TRUE;
6957 opnd = 1;
6958 }
6959 else
6960 opcode = XTENSA_UNDEFINED;
6961 }
6962 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6963 {
6964 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6965 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
6966 }
6967
6968 if (opcode != XTENSA_UNDEFINED)
6969 {
6970 int src_next = target_relax_info->src_next++;
6971 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
6972
6973 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
6974 is_abs_literal);
6975 }
6976 }
6977 }
6978
6979 /* Now get rid of ASM_EXPAND relocations. At this point, the
6980 src_relocs array for the target literal section may still be
6981 incomplete, but it must at least contain the entries for the L32R
6982 relocations associated with ASM_EXPANDs because they were just
6983 added in the preceding loop over the relocations. */
6984
6985 for (i = 0; i < sec->reloc_count; i++)
6986 {
6987 Elf_Internal_Rela *irel = &internal_relocs[i];
6988 bfd_boolean is_reachable;
6989
6990 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
6991 &is_reachable))
6992 continue;
6993
6994 if (is_reachable)
6995 {
6996 Elf_Internal_Rela *l32r_irel;
6997 r_reloc r_rel;
6998 asection *target_sec;
6999 xtensa_relax_info *target_relax_info;
7000
7001 /* Mark the source_reloc for the L32R so that it will be
7002 removed in compute_removed_literals(), along with the
7003 associated literal. */
7004 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
7005 irel, internal_relocs);
7006 if (l32r_irel == NULL)
7007 continue;
7008
7009 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
7010
7011 target_sec = r_reloc_get_section (&r_rel);
7012 target_relax_info = get_xtensa_relax_info (target_sec);
7013
7014 if (target_relax_info
7015 && (target_relax_info->is_relaxable_literal_section
7016 || target_relax_info->is_relaxable_asm_section))
7017 {
7018 source_reloc *s_reloc;
7019
7020 /* Search the source_relocs for the entry corresponding to
7021 the l32r_irel. Note: The src_relocs array is not yet
7022 sorted, but it wouldn't matter anyway because we're
7023 searching by source offset instead of target offset. */
7024 s_reloc = find_source_reloc (target_relax_info->src_relocs,
7025 target_relax_info->src_next,
7026 sec, l32r_irel);
7027 BFD_ASSERT (s_reloc);
7028 s_reloc->is_null = TRUE;
7029 }
7030
7031 /* Convert this reloc to ASM_SIMPLIFY. */
7032 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
7033 R_XTENSA_ASM_SIMPLIFY);
7034 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7035
7036 pin_internal_relocs (sec, internal_relocs);
7037 }
7038 else
7039 {
7040 /* It is resolvable but doesn't reach. We resolve now
7041 by eliminating the relocation -- the call will remain
7042 expanded into L32R/CALLX. */
7043 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7044 pin_internal_relocs (sec, internal_relocs);
7045 }
7046 }
7047
7048 error_return:
7049 release_contents (sec, contents);
7050 release_internal_relocs (sec, internal_relocs);
7051 return ok;
7052 }
7053
7054
7055 /* Return TRUE if the asm expansion can be resolved. Generally it can
7056 be resolved on a final link or when a partial link locates it in the
7057 same section as the target. Set "is_reachable" flag if the target of
7058 the call is within the range of a direct call, given the current VMA
7059 for this section and the target section. */
7060
7061 bfd_boolean
7062 is_resolvable_asm_expansion (bfd *abfd,
7063 asection *sec,
7064 bfd_byte *contents,
7065 Elf_Internal_Rela *irel,
7066 struct bfd_link_info *link_info,
7067 bfd_boolean *is_reachable_p)
7068 {
7069 asection *target_sec;
7070 bfd_vma target_offset;
7071 r_reloc r_rel;
7072 xtensa_opcode opcode, direct_call_opcode;
7073 bfd_vma self_address;
7074 bfd_vma dest_address;
7075 bfd_boolean uses_l32r;
7076 bfd_size_type sec_size;
7077
7078 *is_reachable_p = FALSE;
7079
7080 if (contents == NULL)
7081 return FALSE;
7082
7083 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
7084 return FALSE;
7085
7086 sec_size = bfd_get_section_limit (abfd, sec);
7087 opcode = get_expanded_call_opcode (contents + irel->r_offset,
7088 sec_size - irel->r_offset, &uses_l32r);
7089 /* Optimization of longcalls that use CONST16 is not yet implemented. */
7090 if (!uses_l32r)
7091 return FALSE;
7092
7093 direct_call_opcode = swap_callx_for_call_opcode (opcode);
7094 if (direct_call_opcode == XTENSA_UNDEFINED)
7095 return FALSE;
7096
7097 /* Check and see that the target resolves. */
7098 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7099 if (!r_reloc_is_defined (&r_rel))
7100 return FALSE;
7101
7102 target_sec = r_reloc_get_section (&r_rel);
7103 target_offset = r_rel.target_offset;
7104
7105 /* If the target is in a shared library, then it doesn't reach. This
7106 isn't supposed to come up because the compiler should never generate
7107 non-PIC calls on systems that use shared libraries, but the linker
7108 shouldn't crash regardless. */
7109 if (!target_sec->output_section)
7110 return FALSE;
7111
7112 /* For relocatable sections, we can only simplify when the output
7113 section of the target is the same as the output section of the
7114 source. */
7115 if (link_info->relocatable
7116 && (target_sec->output_section != sec->output_section
7117 || is_reloc_sym_weak (abfd, irel)))
7118 return FALSE;
7119
7120 self_address = (sec->output_section->vma
7121 + sec->output_offset + irel->r_offset + 3);
7122 dest_address = (target_sec->output_section->vma
7123 + target_sec->output_offset + target_offset);
7124
7125 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
7126 self_address, dest_address);
7127
7128 if ((self_address >> CALL_SEGMENT_BITS) !=
7129 (dest_address >> CALL_SEGMENT_BITS))
7130 return FALSE;
7131
7132 return TRUE;
7133 }
7134
7135
7136 static Elf_Internal_Rela *
7137 find_associated_l32r_irel (bfd *abfd,
7138 asection *sec,
7139 bfd_byte *contents,
7140 Elf_Internal_Rela *other_irel,
7141 Elf_Internal_Rela *internal_relocs)
7142 {
7143 unsigned i;
7144
7145 for (i = 0; i < sec->reloc_count; i++)
7146 {
7147 Elf_Internal_Rela *irel = &internal_relocs[i];
7148
7149 if (irel == other_irel)
7150 continue;
7151 if (irel->r_offset != other_irel->r_offset)
7152 continue;
7153 if (is_l32r_relocation (abfd, sec, contents, irel))
7154 return irel;
7155 }
7156
7157 return NULL;
7158 }
7159
7160
7161 static xtensa_opcode *
7162 build_reloc_opcodes (bfd *abfd,
7163 asection *sec,
7164 bfd_byte *contents,
7165 Elf_Internal_Rela *internal_relocs)
7166 {
7167 unsigned i;
7168 xtensa_opcode *reloc_opcodes =
7169 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
7170 for (i = 0; i < sec->reloc_count; i++)
7171 {
7172 Elf_Internal_Rela *irel = &internal_relocs[i];
7173 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
7174 }
7175 return reloc_opcodes;
7176 }
7177
7178
7179 /* The compute_text_actions function will build a list of potential
7180 transformation actions for code in the extended basic block of each
7181 longcall that is optimized to a direct call. From this list we
7182 generate a set of actions to actually perform that optimizes for
7183 space and, if not using size_opt, maintains branch target
7184 alignments.
7185
7186 These actions to be performed are placed on a per-section list.
7187 The actual changes are performed by relax_section() in the second
7188 pass. */
7189
7190 bfd_boolean
7191 compute_text_actions (bfd *abfd,
7192 asection *sec,
7193 struct bfd_link_info *link_info)
7194 {
7195 xtensa_opcode *reloc_opcodes = NULL;
7196 xtensa_relax_info *relax_info;
7197 bfd_byte *contents;
7198 Elf_Internal_Rela *internal_relocs;
7199 bfd_boolean ok = TRUE;
7200 unsigned i;
7201 property_table_entry *prop_table = 0;
7202 int ptblsize = 0;
7203 bfd_size_type sec_size;
7204
7205 relax_info = get_xtensa_relax_info (sec);
7206 BFD_ASSERT (relax_info);
7207 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
7208
7209 /* Do nothing if the section contains no optimized longcalls. */
7210 if (!relax_info->is_relaxable_asm_section)
7211 return ok;
7212
7213 internal_relocs = retrieve_internal_relocs (abfd, sec,
7214 link_info->keep_memory);
7215
7216 if (internal_relocs)
7217 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7218 internal_reloc_compare);
7219
7220 sec_size = bfd_get_section_limit (abfd, sec);
7221 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7222 if (contents == NULL && sec_size != 0)
7223 {
7224 ok = FALSE;
7225 goto error_return;
7226 }
7227
7228 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7229 XTENSA_PROP_SEC_NAME, FALSE);
7230 if (ptblsize < 0)
7231 {
7232 ok = FALSE;
7233 goto error_return;
7234 }
7235
7236 for (i = 0; i < sec->reloc_count; i++)
7237 {
7238 Elf_Internal_Rela *irel = &internal_relocs[i];
7239 bfd_vma r_offset;
7240 property_table_entry *the_entry;
7241 int ptbl_idx;
7242 ebb_t *ebb;
7243 ebb_constraint ebb_table;
7244 bfd_size_type simplify_size;
7245
7246 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
7247 continue;
7248 r_offset = irel->r_offset;
7249
7250 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
7251 if (simplify_size == 0)
7252 {
7253 (*_bfd_error_handler)
7254 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
7255 sec->owner, sec, r_offset);
7256 continue;
7257 }
7258
7259 /* If the instruction table is not around, then don't do this
7260 relaxation. */
7261 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7262 sec->vma + irel->r_offset);
7263 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
7264 {
7265 text_action_add (&relax_info->action_list,
7266 ta_convert_longcall, sec, r_offset,
7267 0);
7268 continue;
7269 }
7270
7271 /* If the next longcall happens to be at the same address as an
7272 unreachable section of size 0, then skip forward. */
7273 ptbl_idx = the_entry - prop_table;
7274 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
7275 && the_entry->size == 0
7276 && ptbl_idx + 1 < ptblsize
7277 && (prop_table[ptbl_idx + 1].address
7278 == prop_table[ptbl_idx].address))
7279 {
7280 ptbl_idx++;
7281 the_entry++;
7282 }
7283
7284 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
7285 /* NO_REORDER is OK */
7286 continue;
7287
7288 init_ebb_constraint (&ebb_table);
7289 ebb = &ebb_table.ebb;
7290 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
7291 internal_relocs, sec->reloc_count);
7292 ebb->start_offset = r_offset + simplify_size;
7293 ebb->end_offset = r_offset + simplify_size;
7294 ebb->start_ptbl_idx = ptbl_idx;
7295 ebb->end_ptbl_idx = ptbl_idx;
7296 ebb->start_reloc_idx = i;
7297 ebb->end_reloc_idx = i;
7298
7299 /* Precompute the opcode for each relocation. */
7300 if (reloc_opcodes == NULL)
7301 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents,
7302 internal_relocs);
7303
7304 if (!extend_ebb_bounds (ebb)
7305 || !compute_ebb_proposed_actions (&ebb_table)
7306 || !compute_ebb_actions (&ebb_table)
7307 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
7308 internal_relocs, &ebb_table,
7309 reloc_opcodes)
7310 || !check_section_ebb_reduces (&ebb_table))
7311 {
7312 /* If anything goes wrong or we get unlucky and something does
7313 not fit, with our plan because of expansion between
7314 critical branches, just convert to a NOP. */
7315
7316 text_action_add (&relax_info->action_list,
7317 ta_convert_longcall, sec, r_offset, 0);
7318 i = ebb_table.ebb.end_reloc_idx;
7319 free_ebb_constraint (&ebb_table);
7320 continue;
7321 }
7322
7323 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
7324
7325 /* Update the index so we do not go looking at the relocations
7326 we have already processed. */
7327 i = ebb_table.ebb.end_reloc_idx;
7328 free_ebb_constraint (&ebb_table);
7329 }
7330
7331 #if DEBUG
7332 if (relax_info->action_list.head)
7333 print_action_list (stderr, &relax_info->action_list);
7334 #endif
7335
7336 error_return:
7337 release_contents (sec, contents);
7338 release_internal_relocs (sec, internal_relocs);
7339 if (prop_table)
7340 free (prop_table);
7341 if (reloc_opcodes)
7342 free (reloc_opcodes);
7343
7344 return ok;
7345 }
7346
7347
7348 /* Do not widen an instruction if it is preceeded by a
7349 loop opcode. It might cause misalignment. */
7350
7351 static bfd_boolean
7352 prev_instr_is_a_loop (bfd_byte *contents,
7353 bfd_size_type content_length,
7354 bfd_size_type offset)
7355 {
7356 xtensa_opcode prev_opcode;
7357
7358 if (offset < 3)
7359 return FALSE;
7360 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
7361 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
7362 }
7363
7364
7365 /* Find all of the possible actions for an extended basic block. */
7366
7367 bfd_boolean
7368 compute_ebb_proposed_actions (ebb_constraint *ebb_table)
7369 {
7370 const ebb_t *ebb = &ebb_table->ebb;
7371 unsigned rel_idx = ebb->start_reloc_idx;
7372 property_table_entry *entry, *start_entry, *end_entry;
7373 bfd_vma offset = 0;
7374 xtensa_isa isa = xtensa_default_isa;
7375 xtensa_format fmt;
7376 static xtensa_insnbuf insnbuf = NULL;
7377 static xtensa_insnbuf slotbuf = NULL;
7378
7379 if (insnbuf == NULL)
7380 {
7381 insnbuf = xtensa_insnbuf_alloc (isa);
7382 slotbuf = xtensa_insnbuf_alloc (isa);
7383 }
7384
7385 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
7386 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
7387
7388 for (entry = start_entry; entry <= end_entry; entry++)
7389 {
7390 bfd_vma start_offset, end_offset;
7391 bfd_size_type insn_len;
7392
7393 start_offset = entry->address - ebb->sec->vma;
7394 end_offset = entry->address + entry->size - ebb->sec->vma;
7395
7396 if (entry == start_entry)
7397 start_offset = ebb->start_offset;
7398 if (entry == end_entry)
7399 end_offset = ebb->end_offset;
7400 offset = start_offset;
7401
7402 if (offset == entry->address - ebb->sec->vma
7403 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
7404 {
7405 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
7406 BFD_ASSERT (offset != end_offset);
7407 if (offset == end_offset)
7408 return FALSE;
7409
7410 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
7411 offset);
7412 if (insn_len == 0)
7413 goto decode_error;
7414
7415 if (check_branch_target_aligned_address (offset, insn_len))
7416 align_type = EBB_REQUIRE_TGT_ALIGN;
7417
7418 ebb_propose_action (ebb_table, align_type, 0,
7419 ta_none, offset, 0, TRUE);
7420 }
7421
7422 while (offset != end_offset)
7423 {
7424 Elf_Internal_Rela *irel;
7425 xtensa_opcode opcode;
7426
7427 while (rel_idx < ebb->end_reloc_idx
7428 && (ebb->relocs[rel_idx].r_offset < offset
7429 || (ebb->relocs[rel_idx].r_offset == offset
7430 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
7431 != R_XTENSA_ASM_SIMPLIFY))))
7432 rel_idx++;
7433
7434 /* Check for longcall. */
7435 irel = &ebb->relocs[rel_idx];
7436 if (irel->r_offset == offset
7437 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
7438 {
7439 bfd_size_type simplify_size;
7440
7441 simplify_size = get_asm_simplify_size (ebb->contents,
7442 ebb->content_length,
7443 irel->r_offset);
7444 if (simplify_size == 0)
7445 goto decode_error;
7446
7447 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7448 ta_convert_longcall, offset, 0, TRUE);
7449
7450 offset += simplify_size;
7451 continue;
7452 }
7453
7454 if (offset + MIN_INSN_LENGTH > ebb->content_length)
7455 goto decode_error;
7456 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
7457 ebb->content_length - offset);
7458 fmt = xtensa_format_decode (isa, insnbuf);
7459 if (fmt == XTENSA_UNDEFINED)
7460 goto decode_error;
7461 insn_len = xtensa_format_length (isa, fmt);
7462 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
7463 goto decode_error;
7464
7465 if (xtensa_format_num_slots (isa, fmt) != 1)
7466 {
7467 offset += insn_len;
7468 continue;
7469 }
7470
7471 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
7472 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
7473 if (opcode == XTENSA_UNDEFINED)
7474 goto decode_error;
7475
7476 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
7477 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
7478 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
7479 {
7480 /* Add an instruction narrow action. */
7481 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7482 ta_narrow_insn, offset, 0, FALSE);
7483 }
7484 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
7485 && can_widen_instruction (slotbuf, fmt, opcode) != 0
7486 && ! prev_instr_is_a_loop (ebb->contents,
7487 ebb->content_length, offset))
7488 {
7489 /* Add an instruction widen action. */
7490 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7491 ta_widen_insn, offset, 0, FALSE);
7492 }
7493 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
7494 {
7495 /* Check for branch targets. */
7496 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
7497 ta_none, offset, 0, TRUE);
7498 }
7499
7500 offset += insn_len;
7501 }
7502 }
7503
7504 if (ebb->ends_unreachable)
7505 {
7506 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7507 ta_fill, ebb->end_offset, 0, TRUE);
7508 }
7509
7510 return TRUE;
7511
7512 decode_error:
7513 (*_bfd_error_handler)
7514 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
7515 ebb->sec->owner, ebb->sec, offset);
7516 return FALSE;
7517 }
7518
7519
7520 /* After all of the information has collected about the
7521 transformations possible in an EBB, compute the appropriate actions
7522 here in compute_ebb_actions. We still must check later to make
7523 sure that the actions do not break any relocations. The algorithm
7524 used here is pretty greedy. Basically, it removes as many no-ops
7525 as possible so that the end of the EBB has the same alignment
7526 characteristics as the original. First, it uses narrowing, then
7527 fill space at the end of the EBB, and finally widenings. If that
7528 does not work, it tries again with one fewer no-op removed. The
7529 optimization will only be performed if all of the branch targets
7530 that were aligned before transformation are also aligned after the
7531 transformation.
7532
7533 When the size_opt flag is set, ignore the branch target alignments,
7534 narrow all wide instructions, and remove all no-ops unless the end
7535 of the EBB prevents it. */
7536
7537 bfd_boolean
7538 compute_ebb_actions (ebb_constraint *ebb_table)
7539 {
7540 unsigned i = 0;
7541 unsigned j;
7542 int removed_bytes = 0;
7543 ebb_t *ebb = &ebb_table->ebb;
7544 unsigned seg_idx_start = 0;
7545 unsigned seg_idx_end = 0;
7546
7547 /* We perform this like the assembler relaxation algorithm: Start by
7548 assuming all instructions are narrow and all no-ops removed; then
7549 walk through.... */
7550
7551 /* For each segment of this that has a solid constraint, check to
7552 see if there are any combinations that will keep the constraint.
7553 If so, use it. */
7554 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
7555 {
7556 bfd_boolean requires_text_end_align = FALSE;
7557 unsigned longcall_count = 0;
7558 unsigned longcall_convert_count = 0;
7559 unsigned narrowable_count = 0;
7560 unsigned narrowable_convert_count = 0;
7561 unsigned widenable_count = 0;
7562 unsigned widenable_convert_count = 0;
7563
7564 proposed_action *action = NULL;
7565 int align = (1 << ebb_table->ebb.sec->alignment_power);
7566
7567 seg_idx_start = seg_idx_end;
7568
7569 for (i = seg_idx_start; i < ebb_table->action_count; i++)
7570 {
7571 action = &ebb_table->actions[i];
7572 if (action->action == ta_convert_longcall)
7573 longcall_count++;
7574 if (action->action == ta_narrow_insn)
7575 narrowable_count++;
7576 if (action->action == ta_widen_insn)
7577 widenable_count++;
7578 if (action->action == ta_fill)
7579 break;
7580 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
7581 break;
7582 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
7583 && !elf32xtensa_size_opt)
7584 break;
7585 }
7586 seg_idx_end = i;
7587
7588 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
7589 requires_text_end_align = TRUE;
7590
7591 if (elf32xtensa_size_opt && !requires_text_end_align
7592 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
7593 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
7594 {
7595 longcall_convert_count = longcall_count;
7596 narrowable_convert_count = narrowable_count;
7597 widenable_convert_count = 0;
7598 }
7599 else
7600 {
7601 /* There is a constraint. Convert the max number of longcalls. */
7602 narrowable_convert_count = 0;
7603 longcall_convert_count = 0;
7604 widenable_convert_count = 0;
7605
7606 for (j = 0; j < longcall_count; j++)
7607 {
7608 int removed = (longcall_count - j) * 3 & (align - 1);
7609 unsigned desire_narrow = (align - removed) & (align - 1);
7610 unsigned desire_widen = removed;
7611 if (desire_narrow <= narrowable_count)
7612 {
7613 narrowable_convert_count = desire_narrow;
7614 narrowable_convert_count +=
7615 (align * ((narrowable_count - narrowable_convert_count)
7616 / align));
7617 longcall_convert_count = (longcall_count - j);
7618 widenable_convert_count = 0;
7619 break;
7620 }
7621 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
7622 {
7623 narrowable_convert_count = 0;
7624 longcall_convert_count = longcall_count - j;
7625 widenable_convert_count = desire_widen;
7626 break;
7627 }
7628 }
7629 }
7630
7631 /* Now the number of conversions are saved. Do them. */
7632 for (i = seg_idx_start; i < seg_idx_end; i++)
7633 {
7634 action = &ebb_table->actions[i];
7635 switch (action->action)
7636 {
7637 case ta_convert_longcall:
7638 if (longcall_convert_count != 0)
7639 {
7640 action->action = ta_remove_longcall;
7641 action->do_action = TRUE;
7642 action->removed_bytes += 3;
7643 longcall_convert_count--;
7644 }
7645 break;
7646 case ta_narrow_insn:
7647 if (narrowable_convert_count != 0)
7648 {
7649 action->do_action = TRUE;
7650 action->removed_bytes += 1;
7651 narrowable_convert_count--;
7652 }
7653 break;
7654 case ta_widen_insn:
7655 if (widenable_convert_count != 0)
7656 {
7657 action->do_action = TRUE;
7658 action->removed_bytes -= 1;
7659 widenable_convert_count--;
7660 }
7661 break;
7662 default:
7663 break;
7664 }
7665 }
7666 }
7667
7668 /* Now we move on to some local opts. Try to remove each of the
7669 remaining longcalls. */
7670
7671 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
7672 {
7673 removed_bytes = 0;
7674 for (i = 0; i < ebb_table->action_count; i++)
7675 {
7676 int old_removed_bytes = removed_bytes;
7677 proposed_action *action = &ebb_table->actions[i];
7678
7679 if (action->do_action && action->action == ta_convert_longcall)
7680 {
7681 bfd_boolean bad_alignment = FALSE;
7682 removed_bytes += 3;
7683 for (j = i + 1; j < ebb_table->action_count; j++)
7684 {
7685 proposed_action *new_action = &ebb_table->actions[j];
7686 bfd_vma offset = new_action->offset;
7687 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
7688 {
7689 if (!check_branch_target_aligned
7690 (ebb_table->ebb.contents,
7691 ebb_table->ebb.content_length,
7692 offset, offset - removed_bytes))
7693 {
7694 bad_alignment = TRUE;
7695 break;
7696 }
7697 }
7698 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
7699 {
7700 if (!check_loop_aligned (ebb_table->ebb.contents,
7701 ebb_table->ebb.content_length,
7702 offset,
7703 offset - removed_bytes))
7704 {
7705 bad_alignment = TRUE;
7706 break;
7707 }
7708 }
7709 if (new_action->action == ta_narrow_insn
7710 && !new_action->do_action
7711 && ebb_table->ebb.sec->alignment_power == 2)
7712 {
7713 /* Narrow an instruction and we are done. */
7714 new_action->do_action = TRUE;
7715 new_action->removed_bytes += 1;
7716 bad_alignment = FALSE;
7717 break;
7718 }
7719 if (new_action->action == ta_widen_insn
7720 && new_action->do_action
7721 && ebb_table->ebb.sec->alignment_power == 2)
7722 {
7723 /* Narrow an instruction and we are done. */
7724 new_action->do_action = FALSE;
7725 new_action->removed_bytes += 1;
7726 bad_alignment = FALSE;
7727 break;
7728 }
7729 if (new_action->do_action)
7730 removed_bytes += new_action->removed_bytes;
7731 }
7732 if (!bad_alignment)
7733 {
7734 action->removed_bytes += 3;
7735 action->action = ta_remove_longcall;
7736 action->do_action = TRUE;
7737 }
7738 }
7739 removed_bytes = old_removed_bytes;
7740 if (action->do_action)
7741 removed_bytes += action->removed_bytes;
7742 }
7743 }
7744
7745 removed_bytes = 0;
7746 for (i = 0; i < ebb_table->action_count; ++i)
7747 {
7748 proposed_action *action = &ebb_table->actions[i];
7749 if (action->do_action)
7750 removed_bytes += action->removed_bytes;
7751 }
7752
7753 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
7754 && ebb->ends_unreachable)
7755 {
7756 proposed_action *action;
7757 int br;
7758 int extra_space;
7759
7760 BFD_ASSERT (ebb_table->action_count != 0);
7761 action = &ebb_table->actions[ebb_table->action_count - 1];
7762 BFD_ASSERT (action->action == ta_fill);
7763 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
7764
7765 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
7766 br = action->removed_bytes + removed_bytes + extra_space;
7767 br = br & ((1 << ebb->sec->alignment_power ) - 1);
7768
7769 action->removed_bytes = extra_space - br;
7770 }
7771 return TRUE;
7772 }
7773
7774
7775 /* The xlate_map is a sorted array of address mappings designed to
7776 answer the offset_with_removed_text() query with a binary search instead
7777 of a linear search through the section's action_list. */
7778
7779 typedef struct xlate_map_entry xlate_map_entry_t;
7780 typedef struct xlate_map xlate_map_t;
7781
7782 struct xlate_map_entry
7783 {
7784 unsigned orig_address;
7785 unsigned new_address;
7786 unsigned size;
7787 };
7788
7789 struct xlate_map
7790 {
7791 unsigned entry_count;
7792 xlate_map_entry_t *entry;
7793 };
7794
7795
7796 static int
7797 xlate_compare (const void *a_v, const void *b_v)
7798 {
7799 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
7800 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
7801 if (a->orig_address < b->orig_address)
7802 return -1;
7803 if (a->orig_address > (b->orig_address + b->size - 1))
7804 return 1;
7805 return 0;
7806 }
7807
7808
7809 static bfd_vma
7810 xlate_offset_with_removed_text (const xlate_map_t *map,
7811 text_action_list *action_list,
7812 bfd_vma offset)
7813 {
7814 void *r;
7815 xlate_map_entry_t *e;
7816
7817 if (map == NULL)
7818 return offset_with_removed_text (action_list, offset);
7819
7820 if (map->entry_count == 0)
7821 return offset;
7822
7823 r = bsearch (&offset, map->entry, map->entry_count,
7824 sizeof (xlate_map_entry_t), &xlate_compare);
7825 e = (xlate_map_entry_t *) r;
7826
7827 BFD_ASSERT (e != NULL);
7828 if (e == NULL)
7829 return offset;
7830 return e->new_address - e->orig_address + offset;
7831 }
7832
7833
7834 /* Build a binary searchable offset translation map from a section's
7835 action list. */
7836
7837 static xlate_map_t *
7838 build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
7839 {
7840 xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
7841 text_action_list *action_list = &relax_info->action_list;
7842 unsigned num_actions = 0;
7843 text_action *r;
7844 int removed;
7845 xlate_map_entry_t *current_entry;
7846
7847 if (map == NULL)
7848 return NULL;
7849
7850 num_actions = action_list_count (action_list);
7851 map->entry = (xlate_map_entry_t *)
7852 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
7853 if (map->entry == NULL)
7854 {
7855 free (map);
7856 return NULL;
7857 }
7858 map->entry_count = 0;
7859
7860 removed = 0;
7861 current_entry = &map->entry[0];
7862
7863 current_entry->orig_address = 0;
7864 current_entry->new_address = 0;
7865 current_entry->size = 0;
7866
7867 for (r = action_list->head; r != NULL; r = r->next)
7868 {
7869 unsigned orig_size = 0;
7870 switch (r->action)
7871 {
7872 case ta_none:
7873 case ta_remove_insn:
7874 case ta_convert_longcall:
7875 case ta_remove_literal:
7876 case ta_add_literal:
7877 break;
7878 case ta_remove_longcall:
7879 orig_size = 6;
7880 break;
7881 case ta_narrow_insn:
7882 orig_size = 3;
7883 break;
7884 case ta_widen_insn:
7885 orig_size = 2;
7886 break;
7887 case ta_fill:
7888 break;
7889 }
7890 current_entry->size =
7891 r->offset + orig_size - current_entry->orig_address;
7892 if (current_entry->size != 0)
7893 {
7894 current_entry++;
7895 map->entry_count++;
7896 }
7897 current_entry->orig_address = r->offset + orig_size;
7898 removed += r->removed_bytes;
7899 current_entry->new_address = r->offset + orig_size - removed;
7900 current_entry->size = 0;
7901 }
7902
7903 current_entry->size = (bfd_get_section_limit (sec->owner, sec)
7904 - current_entry->orig_address);
7905 if (current_entry->size != 0)
7906 map->entry_count++;
7907
7908 return map;
7909 }
7910
7911
7912 /* Free an offset translation map. */
7913
7914 static void
7915 free_xlate_map (xlate_map_t *map)
7916 {
7917 if (map && map->entry)
7918 free (map->entry);
7919 if (map)
7920 free (map);
7921 }
7922
7923
7924 /* Use check_section_ebb_pcrels_fit to make sure that all of the
7925 relocations in a section will fit if a proposed set of actions
7926 are performed. */
7927
7928 static bfd_boolean
7929 check_section_ebb_pcrels_fit (bfd *abfd,
7930 asection *sec,
7931 bfd_byte *contents,
7932 Elf_Internal_Rela *internal_relocs,
7933 const ebb_constraint *constraint,
7934 const xtensa_opcode *reloc_opcodes)
7935 {
7936 unsigned i, j;
7937 Elf_Internal_Rela *irel;
7938 xlate_map_t *xmap = NULL;
7939 bfd_boolean ok = TRUE;
7940 xtensa_relax_info *relax_info;
7941
7942 relax_info = get_xtensa_relax_info (sec);
7943
7944 if (relax_info && sec->reloc_count > 100)
7945 {
7946 xmap = build_xlate_map (sec, relax_info);
7947 /* NULL indicates out of memory, but the slow version
7948 can still be used. */
7949 }
7950
7951 for (i = 0; i < sec->reloc_count; i++)
7952 {
7953 r_reloc r_rel;
7954 bfd_vma orig_self_offset, orig_target_offset;
7955 bfd_vma self_offset, target_offset;
7956 int r_type;
7957 reloc_howto_type *howto;
7958 int self_removed_bytes, target_removed_bytes;
7959
7960 irel = &internal_relocs[i];
7961 r_type = ELF32_R_TYPE (irel->r_info);
7962
7963 howto = &elf_howto_table[r_type];
7964 /* We maintain the required invariant: PC-relative relocations
7965 that fit before linking must fit after linking. Thus we only
7966 need to deal with relocations to the same section that are
7967 PC-relative. */
7968 if (r_type == R_XTENSA_ASM_SIMPLIFY
7969 || r_type == R_XTENSA_32_PCREL
7970 || !howto->pc_relative)
7971 continue;
7972
7973 r_reloc_init (&r_rel, abfd, irel, contents,
7974 bfd_get_section_limit (abfd, sec));
7975
7976 if (r_reloc_get_section (&r_rel) != sec)
7977 continue;
7978
7979 orig_self_offset = irel->r_offset;
7980 orig_target_offset = r_rel.target_offset;
7981
7982 self_offset = orig_self_offset;
7983 target_offset = orig_target_offset;
7984
7985 if (relax_info)
7986 {
7987 self_offset =
7988 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7989 orig_self_offset);
7990 target_offset =
7991 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7992 orig_target_offset);
7993 }
7994
7995 self_removed_bytes = 0;
7996 target_removed_bytes = 0;
7997
7998 for (j = 0; j < constraint->action_count; ++j)
7999 {
8000 proposed_action *action = &constraint->actions[j];
8001 bfd_vma offset = action->offset;
8002 int removed_bytes = action->removed_bytes;
8003 if (offset < orig_self_offset
8004 || (offset == orig_self_offset && action->action == ta_fill
8005 && action->removed_bytes < 0))
8006 self_removed_bytes += removed_bytes;
8007 if (offset < orig_target_offset
8008 || (offset == orig_target_offset && action->action == ta_fill
8009 && action->removed_bytes < 0))
8010 target_removed_bytes += removed_bytes;
8011 }
8012 self_offset -= self_removed_bytes;
8013 target_offset -= target_removed_bytes;
8014
8015 /* Try to encode it. Get the operand and check. */
8016 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
8017 {
8018 /* None of the current alternate relocs are PC-relative,
8019 and only PC-relative relocs matter here. */
8020 }
8021 else
8022 {
8023 xtensa_opcode opcode;
8024 int opnum;
8025
8026 if (reloc_opcodes)
8027 opcode = reloc_opcodes[i];
8028 else
8029 opcode = get_relocation_opcode (abfd, sec, contents, irel);
8030 if (opcode == XTENSA_UNDEFINED)
8031 {
8032 ok = FALSE;
8033 break;
8034 }
8035
8036 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
8037 if (opnum == XTENSA_UNDEFINED)
8038 {
8039 ok = FALSE;
8040 break;
8041 }
8042
8043 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
8044 {
8045 ok = FALSE;
8046 break;
8047 }
8048 }
8049 }
8050
8051 if (xmap)
8052 free_xlate_map (xmap);
8053
8054 return ok;
8055 }
8056
8057
8058 static bfd_boolean
8059 check_section_ebb_reduces (const ebb_constraint *constraint)
8060 {
8061 int removed = 0;
8062 unsigned i;
8063
8064 for (i = 0; i < constraint->action_count; i++)
8065 {
8066 const proposed_action *action = &constraint->actions[i];
8067 if (action->do_action)
8068 removed += action->removed_bytes;
8069 }
8070 if (removed < 0)
8071 return FALSE;
8072
8073 return TRUE;
8074 }
8075
8076
8077 void
8078 text_action_add_proposed (text_action_list *l,
8079 const ebb_constraint *ebb_table,
8080 asection *sec)
8081 {
8082 unsigned i;
8083
8084 for (i = 0; i < ebb_table->action_count; i++)
8085 {
8086 proposed_action *action = &ebb_table->actions[i];
8087
8088 if (!action->do_action)
8089 continue;
8090 switch (action->action)
8091 {
8092 case ta_remove_insn:
8093 case ta_remove_longcall:
8094 case ta_convert_longcall:
8095 case ta_narrow_insn:
8096 case ta_widen_insn:
8097 case ta_fill:
8098 case ta_remove_literal:
8099 text_action_add (l, action->action, sec, action->offset,
8100 action->removed_bytes);
8101 break;
8102 case ta_none:
8103 break;
8104 default:
8105 BFD_ASSERT (0);
8106 break;
8107 }
8108 }
8109 }
8110
8111
8112 int
8113 compute_fill_extra_space (property_table_entry *entry)
8114 {
8115 int fill_extra_space;
8116
8117 if (!entry)
8118 return 0;
8119
8120 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
8121 return 0;
8122
8123 fill_extra_space = entry->size;
8124 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
8125 {
8126 /* Fill bytes for alignment:
8127 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
8128 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
8129 int nsm = (1 << pow) - 1;
8130 bfd_vma addr = entry->address + entry->size;
8131 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
8132 fill_extra_space += align_fill;
8133 }
8134 return fill_extra_space;
8135 }
8136
8137 \f
8138 /* First relaxation pass. */
8139
8140 /* If the section contains relaxable literals, check each literal to
8141 see if it has the same value as another literal that has already
8142 been seen, either in the current section or a previous one. If so,
8143 add an entry to the per-section list of removed literals. The
8144 actual changes are deferred until the next pass. */
8145
8146 static bfd_boolean
8147 compute_removed_literals (bfd *abfd,
8148 asection *sec,
8149 struct bfd_link_info *link_info,
8150 value_map_hash_table *values)
8151 {
8152 xtensa_relax_info *relax_info;
8153 bfd_byte *contents;
8154 Elf_Internal_Rela *internal_relocs;
8155 source_reloc *src_relocs, *rel;
8156 bfd_boolean ok = TRUE;
8157 property_table_entry *prop_table = NULL;
8158 int ptblsize;
8159 int i, prev_i;
8160 bfd_boolean last_loc_is_prev = FALSE;
8161 bfd_vma last_target_offset = 0;
8162 section_cache_t target_sec_cache;
8163 bfd_size_type sec_size;
8164
8165 init_section_cache (&target_sec_cache);
8166
8167 /* Do nothing if it is not a relaxable literal section. */
8168 relax_info = get_xtensa_relax_info (sec);
8169 BFD_ASSERT (relax_info);
8170 if (!relax_info->is_relaxable_literal_section)
8171 return ok;
8172
8173 internal_relocs = retrieve_internal_relocs (abfd, sec,
8174 link_info->keep_memory);
8175
8176 sec_size = bfd_get_section_limit (abfd, sec);
8177 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8178 if (contents == NULL && sec_size != 0)
8179 {
8180 ok = FALSE;
8181 goto error_return;
8182 }
8183
8184 /* Sort the source_relocs by target offset. */
8185 src_relocs = relax_info->src_relocs;
8186 qsort (src_relocs, relax_info->src_count,
8187 sizeof (source_reloc), source_reloc_compare);
8188 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8189 internal_reloc_compare);
8190
8191 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
8192 XTENSA_PROP_SEC_NAME, FALSE);
8193 if (ptblsize < 0)
8194 {
8195 ok = FALSE;
8196 goto error_return;
8197 }
8198
8199 prev_i = -1;
8200 for (i = 0; i < relax_info->src_count; i++)
8201 {
8202 Elf_Internal_Rela *irel = NULL;
8203
8204 rel = &src_relocs[i];
8205 if (get_l32r_opcode () != rel->opcode)
8206 continue;
8207 irel = get_irel_at_offset (sec, internal_relocs,
8208 rel->r_rel.target_offset);
8209
8210 /* If the relocation on this is not a simple R_XTENSA_32 or
8211 R_XTENSA_PLT then do not consider it. This may happen when
8212 the difference of two symbols is used in a literal. */
8213 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
8214 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
8215 continue;
8216
8217 /* If the target_offset for this relocation is the same as the
8218 previous relocation, then we've already considered whether the
8219 literal can be coalesced. Skip to the next one.... */
8220 if (i != 0 && prev_i != -1
8221 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
8222 continue;
8223 prev_i = i;
8224
8225 if (last_loc_is_prev &&
8226 last_target_offset + 4 != rel->r_rel.target_offset)
8227 last_loc_is_prev = FALSE;
8228
8229 /* Check if the relocation was from an L32R that is being removed
8230 because a CALLX was converted to a direct CALL, and check if
8231 there are no other relocations to the literal. */
8232 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
8233 sec, prop_table, ptblsize))
8234 {
8235 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
8236 irel, rel, prop_table, ptblsize))
8237 {
8238 ok = FALSE;
8239 goto error_return;
8240 }
8241 last_target_offset = rel->r_rel.target_offset;
8242 continue;
8243 }
8244
8245 if (!identify_literal_placement (abfd, sec, contents, link_info,
8246 values,
8247 &last_loc_is_prev, irel,
8248 relax_info->src_count - i, rel,
8249 prop_table, ptblsize,
8250 &target_sec_cache, rel->is_abs_literal))
8251 {
8252 ok = FALSE;
8253 goto error_return;
8254 }
8255 last_target_offset = rel->r_rel.target_offset;
8256 }
8257
8258 #if DEBUG
8259 print_removed_literals (stderr, &relax_info->removed_list);
8260 print_action_list (stderr, &relax_info->action_list);
8261 #endif /* DEBUG */
8262
8263 error_return:
8264 if (prop_table)
8265 free (prop_table);
8266 free_section_cache (&target_sec_cache);
8267
8268 release_contents (sec, contents);
8269 release_internal_relocs (sec, internal_relocs);
8270 return ok;
8271 }
8272
8273
8274 static Elf_Internal_Rela *
8275 get_irel_at_offset (asection *sec,
8276 Elf_Internal_Rela *internal_relocs,
8277 bfd_vma offset)
8278 {
8279 unsigned i;
8280 Elf_Internal_Rela *irel;
8281 unsigned r_type;
8282 Elf_Internal_Rela key;
8283
8284 if (!internal_relocs)
8285 return NULL;
8286
8287 key.r_offset = offset;
8288 irel = bsearch (&key, internal_relocs, sec->reloc_count,
8289 sizeof (Elf_Internal_Rela), internal_reloc_matches);
8290 if (!irel)
8291 return NULL;
8292
8293 /* bsearch does not guarantee which will be returned if there are
8294 multiple matches. We need the first that is not an alignment. */
8295 i = irel - internal_relocs;
8296 while (i > 0)
8297 {
8298 if (internal_relocs[i-1].r_offset != offset)
8299 break;
8300 i--;
8301 }
8302 for ( ; i < sec->reloc_count; i++)
8303 {
8304 irel = &internal_relocs[i];
8305 r_type = ELF32_R_TYPE (irel->r_info);
8306 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
8307 return irel;
8308 }
8309
8310 return NULL;
8311 }
8312
8313
8314 bfd_boolean
8315 is_removable_literal (const source_reloc *rel,
8316 int i,
8317 const source_reloc *src_relocs,
8318 int src_count,
8319 asection *sec,
8320 property_table_entry *prop_table,
8321 int ptblsize)
8322 {
8323 const source_reloc *curr_rel;
8324 property_table_entry *entry;
8325
8326 if (!rel->is_null)
8327 return FALSE;
8328
8329 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8330 sec->vma + rel->r_rel.target_offset);
8331 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8332 return FALSE;
8333
8334 for (++i; i < src_count; ++i)
8335 {
8336 curr_rel = &src_relocs[i];
8337 /* If all others have the same target offset.... */
8338 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
8339 return TRUE;
8340
8341 if (!curr_rel->is_null
8342 && !xtensa_is_property_section (curr_rel->source_sec)
8343 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
8344 return FALSE;
8345 }
8346 return TRUE;
8347 }
8348
8349
8350 bfd_boolean
8351 remove_dead_literal (bfd *abfd,
8352 asection *sec,
8353 struct bfd_link_info *link_info,
8354 Elf_Internal_Rela *internal_relocs,
8355 Elf_Internal_Rela *irel,
8356 source_reloc *rel,
8357 property_table_entry *prop_table,
8358 int ptblsize)
8359 {
8360 property_table_entry *entry;
8361 xtensa_relax_info *relax_info;
8362
8363 relax_info = get_xtensa_relax_info (sec);
8364 if (!relax_info)
8365 return FALSE;
8366
8367 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8368 sec->vma + rel->r_rel.target_offset);
8369
8370 /* Mark the unused literal so that it will be removed. */
8371 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
8372
8373 text_action_add (&relax_info->action_list,
8374 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8375
8376 /* If the section is 4-byte aligned, do not add fill. */
8377 if (sec->alignment_power > 2)
8378 {
8379 int fill_extra_space;
8380 bfd_vma entry_sec_offset;
8381 text_action *fa;
8382 property_table_entry *the_add_entry;
8383 int removed_diff;
8384
8385 if (entry)
8386 entry_sec_offset = entry->address - sec->vma + entry->size;
8387 else
8388 entry_sec_offset = rel->r_rel.target_offset + 4;
8389
8390 /* If the literal range is at the end of the section,
8391 do not add fill. */
8392 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8393 entry_sec_offset);
8394 fill_extra_space = compute_fill_extra_space (the_add_entry);
8395
8396 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8397 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8398 -4, fill_extra_space);
8399 if (fa)
8400 adjust_fill_action (fa, removed_diff);
8401 else
8402 text_action_add (&relax_info->action_list,
8403 ta_fill, sec, entry_sec_offset, removed_diff);
8404 }
8405
8406 /* Zero out the relocation on this literal location. */
8407 if (irel)
8408 {
8409 if (elf_hash_table (link_info)->dynamic_sections_created)
8410 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8411
8412 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8413 pin_internal_relocs (sec, internal_relocs);
8414 }
8415
8416 /* Do not modify "last_loc_is_prev". */
8417 return TRUE;
8418 }
8419
8420
8421 bfd_boolean
8422 identify_literal_placement (bfd *abfd,
8423 asection *sec,
8424 bfd_byte *contents,
8425 struct bfd_link_info *link_info,
8426 value_map_hash_table *values,
8427 bfd_boolean *last_loc_is_prev_p,
8428 Elf_Internal_Rela *irel,
8429 int remaining_src_rels,
8430 source_reloc *rel,
8431 property_table_entry *prop_table,
8432 int ptblsize,
8433 section_cache_t *target_sec_cache,
8434 bfd_boolean is_abs_literal)
8435 {
8436 literal_value val;
8437 value_map *val_map;
8438 xtensa_relax_info *relax_info;
8439 bfd_boolean literal_placed = FALSE;
8440 r_reloc r_rel;
8441 unsigned long value;
8442 bfd_boolean final_static_link;
8443 bfd_size_type sec_size;
8444
8445 relax_info = get_xtensa_relax_info (sec);
8446 if (!relax_info)
8447 return FALSE;
8448
8449 sec_size = bfd_get_section_limit (abfd, sec);
8450
8451 final_static_link =
8452 (!link_info->relocatable
8453 && !elf_hash_table (link_info)->dynamic_sections_created);
8454
8455 /* The placement algorithm first checks to see if the literal is
8456 already in the value map. If so and the value map is reachable
8457 from all uses, then the literal is moved to that location. If
8458 not, then we identify the last location where a fresh literal was
8459 placed. If the literal can be safely moved there, then we do so.
8460 If not, then we assume that the literal is not to move and leave
8461 the literal where it is, marking it as the last literal
8462 location. */
8463
8464 /* Find the literal value. */
8465 value = 0;
8466 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8467 if (!irel)
8468 {
8469 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
8470 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
8471 }
8472 init_literal_value (&val, &r_rel, value, is_abs_literal);
8473
8474 /* Check if we've seen another literal with the same value that
8475 is in the same output section. */
8476 val_map = value_map_get_cached_value (values, &val, final_static_link);
8477
8478 if (val_map
8479 && (r_reloc_get_section (&val_map->loc)->output_section
8480 == sec->output_section)
8481 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
8482 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
8483 {
8484 /* No change to last_loc_is_prev. */
8485 literal_placed = TRUE;
8486 }
8487
8488 /* For relocatable links, do not try to move literals. To do it
8489 correctly might increase the number of relocations in an input
8490 section making the default relocatable linking fail. */
8491 if (!link_info->relocatable && !literal_placed
8492 && values->has_last_loc && !(*last_loc_is_prev_p))
8493 {
8494 asection *target_sec = r_reloc_get_section (&values->last_loc);
8495 if (target_sec && target_sec->output_section == sec->output_section)
8496 {
8497 /* Increment the virtual offset. */
8498 r_reloc try_loc = values->last_loc;
8499 try_loc.virtual_offset += 4;
8500
8501 /* There is a last loc that was in the same output section. */
8502 if (relocations_reach (rel, remaining_src_rels, &try_loc)
8503 && move_shared_literal (sec, link_info, rel,
8504 prop_table, ptblsize,
8505 &try_loc, &val, target_sec_cache))
8506 {
8507 values->last_loc.virtual_offset += 4;
8508 literal_placed = TRUE;
8509 if (!val_map)
8510 val_map = add_value_map (values, &val, &try_loc,
8511 final_static_link);
8512 else
8513 val_map->loc = try_loc;
8514 }
8515 }
8516 }
8517
8518 if (!literal_placed)
8519 {
8520 /* Nothing worked, leave the literal alone but update the last loc. */
8521 values->has_last_loc = TRUE;
8522 values->last_loc = rel->r_rel;
8523 if (!val_map)
8524 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
8525 else
8526 val_map->loc = rel->r_rel;
8527 *last_loc_is_prev_p = TRUE;
8528 }
8529
8530 return TRUE;
8531 }
8532
8533
8534 /* Check if the original relocations (presumably on L32R instructions)
8535 identified by reloc[0..N] can be changed to reference the literal
8536 identified by r_rel. If r_rel is out of range for any of the
8537 original relocations, then we don't want to coalesce the original
8538 literal with the one at r_rel. We only check reloc[0..N], where the
8539 offsets are all the same as for reloc[0] (i.e., they're all
8540 referencing the same literal) and where N is also bounded by the
8541 number of remaining entries in the "reloc" array. The "reloc" array
8542 is sorted by target offset so we know all the entries for the same
8543 literal will be contiguous. */
8544
8545 static bfd_boolean
8546 relocations_reach (source_reloc *reloc,
8547 int remaining_relocs,
8548 const r_reloc *r_rel)
8549 {
8550 bfd_vma from_offset, source_address, dest_address;
8551 asection *sec;
8552 int i;
8553
8554 if (!r_reloc_is_defined (r_rel))
8555 return FALSE;
8556
8557 sec = r_reloc_get_section (r_rel);
8558 from_offset = reloc[0].r_rel.target_offset;
8559
8560 for (i = 0; i < remaining_relocs; i++)
8561 {
8562 if (reloc[i].r_rel.target_offset != from_offset)
8563 break;
8564
8565 /* Ignore relocations that have been removed. */
8566 if (reloc[i].is_null)
8567 continue;
8568
8569 /* The original and new output section for these must be the same
8570 in order to coalesce. */
8571 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
8572 != sec->output_section)
8573 return FALSE;
8574
8575 /* Absolute literals in the same output section can always be
8576 combined. */
8577 if (reloc[i].is_abs_literal)
8578 continue;
8579
8580 /* A literal with no PC-relative relocations can be moved anywhere. */
8581 if (reloc[i].opnd != -1)
8582 {
8583 /* Otherwise, check to see that it fits. */
8584 source_address = (reloc[i].source_sec->output_section->vma
8585 + reloc[i].source_sec->output_offset
8586 + reloc[i].r_rel.rela.r_offset);
8587 dest_address = (sec->output_section->vma
8588 + sec->output_offset
8589 + r_rel->target_offset);
8590
8591 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
8592 source_address, dest_address))
8593 return FALSE;
8594 }
8595 }
8596
8597 return TRUE;
8598 }
8599
8600
8601 /* Move a literal to another literal location because it is
8602 the same as the other literal value. */
8603
8604 static bfd_boolean
8605 coalesce_shared_literal (asection *sec,
8606 source_reloc *rel,
8607 property_table_entry *prop_table,
8608 int ptblsize,
8609 value_map *val_map)
8610 {
8611 property_table_entry *entry;
8612 text_action *fa;
8613 property_table_entry *the_add_entry;
8614 int removed_diff;
8615 xtensa_relax_info *relax_info;
8616
8617 relax_info = get_xtensa_relax_info (sec);
8618 if (!relax_info)
8619 return FALSE;
8620
8621 entry = elf_xtensa_find_property_entry
8622 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
8623 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8624 return TRUE;
8625
8626 /* Mark that the literal will be coalesced. */
8627 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
8628
8629 text_action_add (&relax_info->action_list,
8630 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8631
8632 /* If the section is 4-byte aligned, do not add fill. */
8633 if (sec->alignment_power > 2)
8634 {
8635 int fill_extra_space;
8636 bfd_vma entry_sec_offset;
8637
8638 if (entry)
8639 entry_sec_offset = entry->address - sec->vma + entry->size;
8640 else
8641 entry_sec_offset = rel->r_rel.target_offset + 4;
8642
8643 /* If the literal range is at the end of the section,
8644 do not add fill. */
8645 fill_extra_space = 0;
8646 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8647 entry_sec_offset);
8648 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8649 fill_extra_space = the_add_entry->size;
8650
8651 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8652 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8653 -4, fill_extra_space);
8654 if (fa)
8655 adjust_fill_action (fa, removed_diff);
8656 else
8657 text_action_add (&relax_info->action_list,
8658 ta_fill, sec, entry_sec_offset, removed_diff);
8659 }
8660
8661 return TRUE;
8662 }
8663
8664
8665 /* Move a literal to another location. This may actually increase the
8666 total amount of space used because of alignments so we need to do
8667 this carefully. Also, it may make a branch go out of range. */
8668
8669 static bfd_boolean
8670 move_shared_literal (asection *sec,
8671 struct bfd_link_info *link_info,
8672 source_reloc *rel,
8673 property_table_entry *prop_table,
8674 int ptblsize,
8675 const r_reloc *target_loc,
8676 const literal_value *lit_value,
8677 section_cache_t *target_sec_cache)
8678 {
8679 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
8680 text_action *fa, *target_fa;
8681 int removed_diff;
8682 xtensa_relax_info *relax_info, *target_relax_info;
8683 asection *target_sec;
8684 ebb_t *ebb;
8685 ebb_constraint ebb_table;
8686 bfd_boolean relocs_fit;
8687
8688 /* If this routine always returns FALSE, the literals that cannot be
8689 coalesced will not be moved. */
8690 if (elf32xtensa_no_literal_movement)
8691 return FALSE;
8692
8693 relax_info = get_xtensa_relax_info (sec);
8694 if (!relax_info)
8695 return FALSE;
8696
8697 target_sec = r_reloc_get_section (target_loc);
8698 target_relax_info = get_xtensa_relax_info (target_sec);
8699
8700 /* Literals to undefined sections may not be moved because they
8701 must report an error. */
8702 if (bfd_is_und_section (target_sec))
8703 return FALSE;
8704
8705 src_entry = elf_xtensa_find_property_entry
8706 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
8707
8708 if (!section_cache_section (target_sec_cache, target_sec, link_info))
8709 return FALSE;
8710
8711 target_entry = elf_xtensa_find_property_entry
8712 (target_sec_cache->ptbl, target_sec_cache->pte_count,
8713 target_sec->vma + target_loc->target_offset);
8714
8715 if (!target_entry)
8716 return FALSE;
8717
8718 /* Make sure that we have not broken any branches. */
8719 relocs_fit = FALSE;
8720
8721 init_ebb_constraint (&ebb_table);
8722 ebb = &ebb_table.ebb;
8723 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
8724 target_sec_cache->content_length,
8725 target_sec_cache->ptbl, target_sec_cache->pte_count,
8726 target_sec_cache->relocs, target_sec_cache->reloc_count);
8727
8728 /* Propose to add 4 bytes + worst-case alignment size increase to
8729 destination. */
8730 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
8731 ta_fill, target_loc->target_offset,
8732 -4 - (1 << target_sec->alignment_power), TRUE);
8733
8734 /* Check all of the PC-relative relocations to make sure they still fit. */
8735 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
8736 target_sec_cache->contents,
8737 target_sec_cache->relocs,
8738 &ebb_table, NULL);
8739
8740 if (!relocs_fit)
8741 return FALSE;
8742
8743 text_action_add_literal (&target_relax_info->action_list,
8744 ta_add_literal, target_loc, lit_value, -4);
8745
8746 if (target_sec->alignment_power > 2 && target_entry != src_entry)
8747 {
8748 /* May need to add or remove some fill to maintain alignment. */
8749 int fill_extra_space;
8750 bfd_vma entry_sec_offset;
8751
8752 entry_sec_offset =
8753 target_entry->address - target_sec->vma + target_entry->size;
8754
8755 /* If the literal range is at the end of the section,
8756 do not add fill. */
8757 fill_extra_space = 0;
8758 the_add_entry =
8759 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
8760 target_sec_cache->pte_count,
8761 entry_sec_offset);
8762 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8763 fill_extra_space = the_add_entry->size;
8764
8765 target_fa = find_fill_action (&target_relax_info->action_list,
8766 target_sec, entry_sec_offset);
8767 removed_diff = compute_removed_action_diff (target_fa, target_sec,
8768 entry_sec_offset, 4,
8769 fill_extra_space);
8770 if (target_fa)
8771 adjust_fill_action (target_fa, removed_diff);
8772 else
8773 text_action_add (&target_relax_info->action_list,
8774 ta_fill, target_sec, entry_sec_offset, removed_diff);
8775 }
8776
8777 /* Mark that the literal will be moved to the new location. */
8778 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
8779
8780 /* Remove the literal. */
8781 text_action_add (&relax_info->action_list,
8782 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8783
8784 /* If the section is 4-byte aligned, do not add fill. */
8785 if (sec->alignment_power > 2 && target_entry != src_entry)
8786 {
8787 int fill_extra_space;
8788 bfd_vma entry_sec_offset;
8789
8790 if (src_entry)
8791 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
8792 else
8793 entry_sec_offset = rel->r_rel.target_offset+4;
8794
8795 /* If the literal range is at the end of the section,
8796 do not add fill. */
8797 fill_extra_space = 0;
8798 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8799 entry_sec_offset);
8800 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8801 fill_extra_space = the_add_entry->size;
8802
8803 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8804 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8805 -4, fill_extra_space);
8806 if (fa)
8807 adjust_fill_action (fa, removed_diff);
8808 else
8809 text_action_add (&relax_info->action_list,
8810 ta_fill, sec, entry_sec_offset, removed_diff);
8811 }
8812
8813 return TRUE;
8814 }
8815
8816 \f
8817 /* Second relaxation pass. */
8818
8819 /* Modify all of the relocations to point to the right spot, and if this
8820 is a relaxable section, delete the unwanted literals and fix the
8821 section size. */
8822
8823 bfd_boolean
8824 relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
8825 {
8826 Elf_Internal_Rela *internal_relocs;
8827 xtensa_relax_info *relax_info;
8828 bfd_byte *contents;
8829 bfd_boolean ok = TRUE;
8830 unsigned i;
8831 bfd_boolean rv = FALSE;
8832 bfd_boolean virtual_action;
8833 bfd_size_type sec_size;
8834
8835 sec_size = bfd_get_section_limit (abfd, sec);
8836 relax_info = get_xtensa_relax_info (sec);
8837 BFD_ASSERT (relax_info);
8838
8839 /* First translate any of the fixes that have been added already. */
8840 translate_section_fixes (sec);
8841
8842 /* Handle property sections (e.g., literal tables) specially. */
8843 if (xtensa_is_property_section (sec))
8844 {
8845 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
8846 return relax_property_section (abfd, sec, link_info);
8847 }
8848
8849 internal_relocs = retrieve_internal_relocs (abfd, sec,
8850 link_info->keep_memory);
8851 if (!internal_relocs && !relax_info->action_list.head)
8852 return TRUE;
8853
8854 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8855 if (contents == NULL && sec_size != 0)
8856 {
8857 ok = FALSE;
8858 goto error_return;
8859 }
8860
8861 if (internal_relocs)
8862 {
8863 for (i = 0; i < sec->reloc_count; i++)
8864 {
8865 Elf_Internal_Rela *irel;
8866 xtensa_relax_info *target_relax_info;
8867 bfd_vma source_offset, old_source_offset;
8868 r_reloc r_rel;
8869 unsigned r_type;
8870 asection *target_sec;
8871
8872 /* Locally change the source address.
8873 Translate the target to the new target address.
8874 If it points to this section and has been removed,
8875 NULLify it.
8876 Write it back. */
8877
8878 irel = &internal_relocs[i];
8879 source_offset = irel->r_offset;
8880 old_source_offset = source_offset;
8881
8882 r_type = ELF32_R_TYPE (irel->r_info);
8883 r_reloc_init (&r_rel, abfd, irel, contents,
8884 bfd_get_section_limit (abfd, sec));
8885
8886 /* If this section could have changed then we may need to
8887 change the relocation's offset. */
8888
8889 if (relax_info->is_relaxable_literal_section
8890 || relax_info->is_relaxable_asm_section)
8891 {
8892 pin_internal_relocs (sec, internal_relocs);
8893
8894 if (r_type != R_XTENSA_NONE
8895 && find_removed_literal (&relax_info->removed_list,
8896 irel->r_offset))
8897 {
8898 /* Remove this relocation. */
8899 if (elf_hash_table (link_info)->dynamic_sections_created)
8900 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8901 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8902 irel->r_offset = offset_with_removed_text
8903 (&relax_info->action_list, irel->r_offset);
8904 continue;
8905 }
8906
8907 if (r_type == R_XTENSA_ASM_SIMPLIFY)
8908 {
8909 text_action *action =
8910 find_insn_action (&relax_info->action_list,
8911 irel->r_offset);
8912 if (action && (action->action == ta_convert_longcall
8913 || action->action == ta_remove_longcall))
8914 {
8915 bfd_reloc_status_type retval;
8916 char *error_message = NULL;
8917
8918 retval = contract_asm_expansion (contents, sec_size,
8919 irel, &error_message);
8920 if (retval != bfd_reloc_ok)
8921 {
8922 (*link_info->callbacks->reloc_dangerous)
8923 (link_info, error_message, abfd, sec,
8924 irel->r_offset);
8925 goto error_return;
8926 }
8927 /* Update the action so that the code that moves
8928 the contents will do the right thing. */
8929 if (action->action == ta_remove_longcall)
8930 action->action = ta_remove_insn;
8931 else
8932 action->action = ta_none;
8933 /* Refresh the info in the r_rel. */
8934 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8935 r_type = ELF32_R_TYPE (irel->r_info);
8936 }
8937 }
8938
8939 source_offset = offset_with_removed_text
8940 (&relax_info->action_list, irel->r_offset);
8941 irel->r_offset = source_offset;
8942 }
8943
8944 /* If the target section could have changed then
8945 we may need to change the relocation's target offset. */
8946
8947 target_sec = r_reloc_get_section (&r_rel);
8948
8949 /* For a reference to a discarded section from a DWARF section,
8950 i.e., where action_discarded is PRETEND, the symbol will
8951 eventually be modified to refer to the kept section (at least if
8952 the kept and discarded sections are the same size). Anticipate
8953 that here and adjust things accordingly. */
8954 if (! elf_xtensa_ignore_discarded_relocs (sec)
8955 && elf_xtensa_action_discarded (sec) == PRETEND
8956 && sec->sec_info_type != SEC_INFO_TYPE_STABS
8957 && target_sec != NULL
8958 && discarded_section (target_sec))
8959 {
8960 /* It would be natural to call _bfd_elf_check_kept_section
8961 here, but it's not exported from elflink.c. It's also a
8962 fairly expensive check. Adjusting the relocations to the
8963 discarded section is fairly harmless; it will only adjust
8964 some addends and difference values. If it turns out that
8965 _bfd_elf_check_kept_section fails later, it won't matter,
8966 so just compare the section names to find the right group
8967 member. */
8968 asection *kept = target_sec->kept_section;
8969 if (kept != NULL)
8970 {
8971 if ((kept->flags & SEC_GROUP) != 0)
8972 {
8973 asection *first = elf_next_in_group (kept);
8974 asection *s = first;
8975
8976 kept = NULL;
8977 while (s != NULL)
8978 {
8979 if (strcmp (s->name, target_sec->name) == 0)
8980 {
8981 kept = s;
8982 break;
8983 }
8984 s = elf_next_in_group (s);
8985 if (s == first)
8986 break;
8987 }
8988 }
8989 }
8990 if (kept != NULL
8991 && ((target_sec->rawsize != 0
8992 ? target_sec->rawsize : target_sec->size)
8993 == (kept->rawsize != 0 ? kept->rawsize : kept->size)))
8994 target_sec = kept;
8995 }
8996
8997 target_relax_info = get_xtensa_relax_info (target_sec);
8998 if (target_relax_info
8999 && (target_relax_info->is_relaxable_literal_section
9000 || target_relax_info->is_relaxable_asm_section))
9001 {
9002 r_reloc new_reloc;
9003 target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
9004
9005 if (r_type == R_XTENSA_DIFF8
9006 || r_type == R_XTENSA_DIFF16
9007 || r_type == R_XTENSA_DIFF32)
9008 {
9009 bfd_vma diff_value = 0, new_end_offset, diff_mask = 0;
9010
9011 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
9012 {
9013 (*link_info->callbacks->reloc_dangerous)
9014 (link_info, _("invalid relocation address"),
9015 abfd, sec, old_source_offset);
9016 goto error_return;
9017 }
9018
9019 switch (r_type)
9020 {
9021 case R_XTENSA_DIFF8:
9022 diff_value =
9023 bfd_get_8 (abfd, &contents[old_source_offset]);
9024 break;
9025 case R_XTENSA_DIFF16:
9026 diff_value =
9027 bfd_get_16 (abfd, &contents[old_source_offset]);
9028 break;
9029 case R_XTENSA_DIFF32:
9030 diff_value =
9031 bfd_get_32 (abfd, &contents[old_source_offset]);
9032 break;
9033 }
9034
9035 new_end_offset = offset_with_removed_text
9036 (&target_relax_info->action_list,
9037 r_rel.target_offset + diff_value);
9038 diff_value = new_end_offset - new_reloc.target_offset;
9039
9040 switch (r_type)
9041 {
9042 case R_XTENSA_DIFF8:
9043 diff_mask = 0xff;
9044 bfd_put_8 (abfd, diff_value,
9045 &contents[old_source_offset]);
9046 break;
9047 case R_XTENSA_DIFF16:
9048 diff_mask = 0xffff;
9049 bfd_put_16 (abfd, diff_value,
9050 &contents[old_source_offset]);
9051 break;
9052 case R_XTENSA_DIFF32:
9053 diff_mask = 0xffffffff;
9054 bfd_put_32 (abfd, diff_value,
9055 &contents[old_source_offset]);
9056 break;
9057 }
9058
9059 /* Check for overflow. */
9060 if ((diff_value & ~diff_mask) != 0)
9061 {
9062 (*link_info->callbacks->reloc_dangerous)
9063 (link_info, _("overflow after relaxation"),
9064 abfd, sec, old_source_offset);
9065 goto error_return;
9066 }
9067
9068 pin_contents (sec, contents);
9069 }
9070
9071 /* If the relocation still references a section in the same
9072 input file, modify the relocation directly instead of
9073 adding a "fix" record. */
9074 if (target_sec->owner == abfd)
9075 {
9076 unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
9077 irel->r_info = ELF32_R_INFO (r_symndx, r_type);
9078 irel->r_addend = new_reloc.rela.r_addend;
9079 pin_internal_relocs (sec, internal_relocs);
9080 }
9081 else
9082 {
9083 bfd_vma addend_displacement;
9084 reloc_bfd_fix *fix;
9085
9086 addend_displacement =
9087 new_reloc.target_offset + new_reloc.virtual_offset;
9088 fix = reloc_bfd_fix_init (sec, source_offset, r_type,
9089 target_sec,
9090 addend_displacement, TRUE);
9091 add_fix (sec, fix);
9092 }
9093 }
9094 }
9095 }
9096
9097 if ((relax_info->is_relaxable_literal_section
9098 || relax_info->is_relaxable_asm_section)
9099 && relax_info->action_list.head)
9100 {
9101 /* Walk through the planned actions and build up a table
9102 of move, copy and fill records. Use the move, copy and
9103 fill records to perform the actions once. */
9104
9105 int removed = 0;
9106 bfd_size_type final_size, copy_size, orig_insn_size;
9107 bfd_byte *scratch = NULL;
9108 bfd_byte *dup_contents = NULL;
9109 bfd_size_type orig_size = sec->size;
9110 bfd_vma orig_dot = 0;
9111 bfd_vma orig_dot_copied = 0; /* Byte copied already from
9112 orig dot in physical memory. */
9113 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
9114 bfd_vma dup_dot = 0;
9115
9116 text_action *action = relax_info->action_list.head;
9117
9118 final_size = sec->size;
9119 for (action = relax_info->action_list.head; action;
9120 action = action->next)
9121 {
9122 final_size -= action->removed_bytes;
9123 }
9124
9125 scratch = (bfd_byte *) bfd_zmalloc (final_size);
9126 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
9127
9128 /* The dot is the current fill location. */
9129 #if DEBUG
9130 print_action_list (stderr, &relax_info->action_list);
9131 #endif
9132
9133 for (action = relax_info->action_list.head; action;
9134 action = action->next)
9135 {
9136 virtual_action = FALSE;
9137 if (action->offset > orig_dot)
9138 {
9139 orig_dot += orig_dot_copied;
9140 orig_dot_copied = 0;
9141 orig_dot_vo = 0;
9142 /* Out of the virtual world. */
9143 }
9144
9145 if (action->offset > orig_dot)
9146 {
9147 copy_size = action->offset - orig_dot;
9148 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9149 orig_dot += copy_size;
9150 dup_dot += copy_size;
9151 BFD_ASSERT (action->offset == orig_dot);
9152 }
9153 else if (action->offset < orig_dot)
9154 {
9155 if (action->action == ta_fill
9156 && action->offset - action->removed_bytes == orig_dot)
9157 {
9158 /* This is OK because the fill only effects the dup_dot. */
9159 }
9160 else if (action->action == ta_add_literal)
9161 {
9162 /* TBD. Might need to handle this. */
9163 }
9164 }
9165 if (action->offset == orig_dot)
9166 {
9167 if (action->virtual_offset > orig_dot_vo)
9168 {
9169 if (orig_dot_vo == 0)
9170 {
9171 /* Need to copy virtual_offset bytes. Probably four. */
9172 copy_size = action->virtual_offset - orig_dot_vo;
9173 memmove (&dup_contents[dup_dot],
9174 &contents[orig_dot], copy_size);
9175 orig_dot_copied = copy_size;
9176 dup_dot += copy_size;
9177 }
9178 virtual_action = TRUE;
9179 }
9180 else
9181 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
9182 }
9183 switch (action->action)
9184 {
9185 case ta_remove_literal:
9186 case ta_remove_insn:
9187 BFD_ASSERT (action->removed_bytes >= 0);
9188 orig_dot += action->removed_bytes;
9189 break;
9190
9191 case ta_narrow_insn:
9192 orig_insn_size = 3;
9193 copy_size = 2;
9194 memmove (scratch, &contents[orig_dot], orig_insn_size);
9195 BFD_ASSERT (action->removed_bytes == 1);
9196 rv = narrow_instruction (scratch, final_size, 0);
9197 BFD_ASSERT (rv);
9198 memmove (&dup_contents[dup_dot], scratch, copy_size);
9199 orig_dot += orig_insn_size;
9200 dup_dot += copy_size;
9201 break;
9202
9203 case ta_fill:
9204 if (action->removed_bytes >= 0)
9205 orig_dot += action->removed_bytes;
9206 else
9207 {
9208 /* Already zeroed in dup_contents. Just bump the
9209 counters. */
9210 dup_dot += (-action->removed_bytes);
9211 }
9212 break;
9213
9214 case ta_none:
9215 BFD_ASSERT (action->removed_bytes == 0);
9216 break;
9217
9218 case ta_convert_longcall:
9219 case ta_remove_longcall:
9220 /* These will be removed or converted before we get here. */
9221 BFD_ASSERT (0);
9222 break;
9223
9224 case ta_widen_insn:
9225 orig_insn_size = 2;
9226 copy_size = 3;
9227 memmove (scratch, &contents[orig_dot], orig_insn_size);
9228 BFD_ASSERT (action->removed_bytes == -1);
9229 rv = widen_instruction (scratch, final_size, 0);
9230 BFD_ASSERT (rv);
9231 memmove (&dup_contents[dup_dot], scratch, copy_size);
9232 orig_dot += orig_insn_size;
9233 dup_dot += copy_size;
9234 break;
9235
9236 case ta_add_literal:
9237 orig_insn_size = 0;
9238 copy_size = 4;
9239 BFD_ASSERT (action->removed_bytes == -4);
9240 /* TBD -- place the literal value here and insert
9241 into the table. */
9242 memset (&dup_contents[dup_dot], 0, 4);
9243 pin_internal_relocs (sec, internal_relocs);
9244 pin_contents (sec, contents);
9245
9246 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
9247 relax_info, &internal_relocs, &action->value))
9248 goto error_return;
9249
9250 if (virtual_action)
9251 orig_dot_vo += copy_size;
9252
9253 orig_dot += orig_insn_size;
9254 dup_dot += copy_size;
9255 break;
9256
9257 default:
9258 /* Not implemented yet. */
9259 BFD_ASSERT (0);
9260 break;
9261 }
9262
9263 removed += action->removed_bytes;
9264 BFD_ASSERT (dup_dot <= final_size);
9265 BFD_ASSERT (orig_dot <= orig_size);
9266 }
9267
9268 orig_dot += orig_dot_copied;
9269 orig_dot_copied = 0;
9270
9271 if (orig_dot != orig_size)
9272 {
9273 copy_size = orig_size - orig_dot;
9274 BFD_ASSERT (orig_size > orig_dot);
9275 BFD_ASSERT (dup_dot + copy_size == final_size);
9276 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9277 orig_dot += copy_size;
9278 dup_dot += copy_size;
9279 }
9280 BFD_ASSERT (orig_size == orig_dot);
9281 BFD_ASSERT (final_size == dup_dot);
9282
9283 /* Move the dup_contents back. */
9284 if (final_size > orig_size)
9285 {
9286 /* Contents need to be reallocated. Swap the dup_contents into
9287 contents. */
9288 sec->contents = dup_contents;
9289 free (contents);
9290 contents = dup_contents;
9291 pin_contents (sec, contents);
9292 }
9293 else
9294 {
9295 BFD_ASSERT (final_size <= orig_size);
9296 memset (contents, 0, orig_size);
9297 memcpy (contents, dup_contents, final_size);
9298 free (dup_contents);
9299 }
9300 free (scratch);
9301 pin_contents (sec, contents);
9302
9303 if (sec->rawsize == 0)
9304 sec->rawsize = sec->size;
9305 sec->size = final_size;
9306 }
9307
9308 error_return:
9309 release_internal_relocs (sec, internal_relocs);
9310 release_contents (sec, contents);
9311 return ok;
9312 }
9313
9314
9315 static bfd_boolean
9316 translate_section_fixes (asection *sec)
9317 {
9318 xtensa_relax_info *relax_info;
9319 reloc_bfd_fix *r;
9320
9321 relax_info = get_xtensa_relax_info (sec);
9322 if (!relax_info)
9323 return TRUE;
9324
9325 for (r = relax_info->fix_list; r != NULL; r = r->next)
9326 if (!translate_reloc_bfd_fix (r))
9327 return FALSE;
9328
9329 return TRUE;
9330 }
9331
9332
9333 /* Translate a fix given the mapping in the relax info for the target
9334 section. If it has already been translated, no work is required. */
9335
9336 static bfd_boolean
9337 translate_reloc_bfd_fix (reloc_bfd_fix *fix)
9338 {
9339 reloc_bfd_fix new_fix;
9340 asection *sec;
9341 xtensa_relax_info *relax_info;
9342 removed_literal *removed;
9343 bfd_vma new_offset, target_offset;
9344
9345 if (fix->translated)
9346 return TRUE;
9347
9348 sec = fix->target_sec;
9349 target_offset = fix->target_offset;
9350
9351 relax_info = get_xtensa_relax_info (sec);
9352 if (!relax_info)
9353 {
9354 fix->translated = TRUE;
9355 return TRUE;
9356 }
9357
9358 new_fix = *fix;
9359
9360 /* The fix does not need to be translated if the section cannot change. */
9361 if (!relax_info->is_relaxable_literal_section
9362 && !relax_info->is_relaxable_asm_section)
9363 {
9364 fix->translated = TRUE;
9365 return TRUE;
9366 }
9367
9368 /* If the literal has been moved and this relocation was on an
9369 opcode, then the relocation should move to the new literal
9370 location. Otherwise, the relocation should move within the
9371 section. */
9372
9373 removed = FALSE;
9374 if (is_operand_relocation (fix->src_type))
9375 {
9376 /* Check if the original relocation is against a literal being
9377 removed. */
9378 removed = find_removed_literal (&relax_info->removed_list,
9379 target_offset);
9380 }
9381
9382 if (removed)
9383 {
9384 asection *new_sec;
9385
9386 /* The fact that there is still a relocation to this literal indicates
9387 that the literal is being coalesced, not simply removed. */
9388 BFD_ASSERT (removed->to.abfd != NULL);
9389
9390 /* This was moved to some other address (possibly another section). */
9391 new_sec = r_reloc_get_section (&removed->to);
9392 if (new_sec != sec)
9393 {
9394 sec = new_sec;
9395 relax_info = get_xtensa_relax_info (sec);
9396 if (!relax_info ||
9397 (!relax_info->is_relaxable_literal_section
9398 && !relax_info->is_relaxable_asm_section))
9399 {
9400 target_offset = removed->to.target_offset;
9401 new_fix.target_sec = new_sec;
9402 new_fix.target_offset = target_offset;
9403 new_fix.translated = TRUE;
9404 *fix = new_fix;
9405 return TRUE;
9406 }
9407 }
9408 target_offset = removed->to.target_offset;
9409 new_fix.target_sec = new_sec;
9410 }
9411
9412 /* The target address may have been moved within its section. */
9413 new_offset = offset_with_removed_text (&relax_info->action_list,
9414 target_offset);
9415
9416 new_fix.target_offset = new_offset;
9417 new_fix.target_offset = new_offset;
9418 new_fix.translated = TRUE;
9419 *fix = new_fix;
9420 return TRUE;
9421 }
9422
9423
9424 /* Fix up a relocation to take account of removed literals. */
9425
9426 static asection *
9427 translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
9428 {
9429 xtensa_relax_info *relax_info;
9430 removed_literal *removed;
9431 bfd_vma target_offset, base_offset;
9432 text_action *act;
9433
9434 *new_rel = *orig_rel;
9435
9436 if (!r_reloc_is_defined (orig_rel))
9437 return sec ;
9438
9439 relax_info = get_xtensa_relax_info (sec);
9440 BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
9441 || relax_info->is_relaxable_asm_section));
9442
9443 target_offset = orig_rel->target_offset;
9444
9445 removed = FALSE;
9446 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
9447 {
9448 /* Check if the original relocation is against a literal being
9449 removed. */
9450 removed = find_removed_literal (&relax_info->removed_list,
9451 target_offset);
9452 }
9453 if (removed && removed->to.abfd)
9454 {
9455 asection *new_sec;
9456
9457 /* The fact that there is still a relocation to this literal indicates
9458 that the literal is being coalesced, not simply removed. */
9459 BFD_ASSERT (removed->to.abfd != NULL);
9460
9461 /* This was moved to some other address
9462 (possibly in another section). */
9463 *new_rel = removed->to;
9464 new_sec = r_reloc_get_section (new_rel);
9465 if (new_sec != sec)
9466 {
9467 sec = new_sec;
9468 relax_info = get_xtensa_relax_info (sec);
9469 if (!relax_info
9470 || (!relax_info->is_relaxable_literal_section
9471 && !relax_info->is_relaxable_asm_section))
9472 return sec;
9473 }
9474 target_offset = new_rel->target_offset;
9475 }
9476
9477 /* Find the base offset of the reloc symbol, excluding any addend from the
9478 reloc or from the section contents (for a partial_inplace reloc). Then
9479 find the adjusted values of the offsets due to relaxation. The base
9480 offset is needed to determine the change to the reloc's addend; the reloc
9481 addend should not be adjusted due to relaxations located before the base
9482 offset. */
9483
9484 base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
9485 act = relax_info->action_list.head;
9486 if (base_offset <= target_offset)
9487 {
9488 int base_removed = removed_by_actions (&act, base_offset, FALSE);
9489 int addend_removed = removed_by_actions (&act, target_offset, FALSE);
9490 new_rel->target_offset = target_offset - base_removed - addend_removed;
9491 new_rel->rela.r_addend -= addend_removed;
9492 }
9493 else
9494 {
9495 /* Handle a negative addend. The base offset comes first. */
9496 int tgt_removed = removed_by_actions (&act, target_offset, FALSE);
9497 int addend_removed = removed_by_actions (&act, base_offset, FALSE);
9498 new_rel->target_offset = target_offset - tgt_removed;
9499 new_rel->rela.r_addend += addend_removed;
9500 }
9501
9502 return sec;
9503 }
9504
9505
9506 /* For dynamic links, there may be a dynamic relocation for each
9507 literal. The number of dynamic relocations must be computed in
9508 size_dynamic_sections, which occurs before relaxation. When a
9509 literal is removed, this function checks if there is a corresponding
9510 dynamic relocation and shrinks the size of the appropriate dynamic
9511 relocation section accordingly. At this point, the contents of the
9512 dynamic relocation sections have not yet been filled in, so there's
9513 nothing else that needs to be done. */
9514
9515 static void
9516 shrink_dynamic_reloc_sections (struct bfd_link_info *info,
9517 bfd *abfd,
9518 asection *input_section,
9519 Elf_Internal_Rela *rel)
9520 {
9521 struct elf_xtensa_link_hash_table *htab;
9522 Elf_Internal_Shdr *symtab_hdr;
9523 struct elf_link_hash_entry **sym_hashes;
9524 unsigned long r_symndx;
9525 int r_type;
9526 struct elf_link_hash_entry *h;
9527 bfd_boolean dynamic_symbol;
9528
9529 htab = elf_xtensa_hash_table (info);
9530 if (htab == NULL)
9531 return;
9532
9533 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9534 sym_hashes = elf_sym_hashes (abfd);
9535
9536 r_type = ELF32_R_TYPE (rel->r_info);
9537 r_symndx = ELF32_R_SYM (rel->r_info);
9538
9539 if (r_symndx < symtab_hdr->sh_info)
9540 h = NULL;
9541 else
9542 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
9543
9544 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
9545
9546 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
9547 && (input_section->flags & SEC_ALLOC) != 0
9548 && (dynamic_symbol || info->shared))
9549 {
9550 asection *srel;
9551 bfd_boolean is_plt = FALSE;
9552
9553 if (dynamic_symbol && r_type == R_XTENSA_PLT)
9554 {
9555 srel = htab->srelplt;
9556 is_plt = TRUE;
9557 }
9558 else
9559 srel = htab->srelgot;
9560
9561 /* Reduce size of the .rela.* section by one reloc. */
9562 BFD_ASSERT (srel != NULL);
9563 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
9564 srel->size -= sizeof (Elf32_External_Rela);
9565
9566 if (is_plt)
9567 {
9568 asection *splt, *sgotplt, *srelgot;
9569 int reloc_index, chunk;
9570
9571 /* Find the PLT reloc index of the entry being removed. This
9572 is computed from the size of ".rela.plt". It is needed to
9573 figure out which PLT chunk to resize. Usually "last index
9574 = size - 1" since the index starts at zero, but in this
9575 context, the size has just been decremented so there's no
9576 need to subtract one. */
9577 reloc_index = srel->size / sizeof (Elf32_External_Rela);
9578
9579 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
9580 splt = elf_xtensa_get_plt_section (info, chunk);
9581 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
9582 BFD_ASSERT (splt != NULL && sgotplt != NULL);
9583
9584 /* Check if an entire PLT chunk has just been eliminated. */
9585 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
9586 {
9587 /* The two magic GOT entries for that chunk can go away. */
9588 srelgot = htab->srelgot;
9589 BFD_ASSERT (srelgot != NULL);
9590 srelgot->reloc_count -= 2;
9591 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
9592 sgotplt->size -= 8;
9593
9594 /* There should be only one entry left (and it will be
9595 removed below). */
9596 BFD_ASSERT (sgotplt->size == 4);
9597 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
9598 }
9599
9600 BFD_ASSERT (sgotplt->size >= 4);
9601 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
9602
9603 sgotplt->size -= 4;
9604 splt->size -= PLT_ENTRY_SIZE;
9605 }
9606 }
9607 }
9608
9609
9610 /* Take an r_rel and move it to another section. This usually
9611 requires extending the interal_relocation array and pinning it. If
9612 the original r_rel is from the same BFD, we can complete this here.
9613 Otherwise, we add a fix record to let the final link fix the
9614 appropriate address. Contents and internal relocations for the
9615 section must be pinned after calling this routine. */
9616
9617 static bfd_boolean
9618 move_literal (bfd *abfd,
9619 struct bfd_link_info *link_info,
9620 asection *sec,
9621 bfd_vma offset,
9622 bfd_byte *contents,
9623 xtensa_relax_info *relax_info,
9624 Elf_Internal_Rela **internal_relocs_p,
9625 const literal_value *lit)
9626 {
9627 Elf_Internal_Rela *new_relocs = NULL;
9628 size_t new_relocs_count = 0;
9629 Elf_Internal_Rela this_rela;
9630 const r_reloc *r_rel;
9631
9632 r_rel = &lit->r_rel;
9633 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
9634
9635 if (r_reloc_is_const (r_rel))
9636 bfd_put_32 (abfd, lit->value, contents + offset);
9637 else
9638 {
9639 int r_type;
9640 unsigned i;
9641 reloc_bfd_fix *fix;
9642 unsigned insert_at;
9643
9644 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
9645
9646 /* This is the difficult case. We have to create a fix up. */
9647 this_rela.r_offset = offset;
9648 this_rela.r_info = ELF32_R_INFO (0, r_type);
9649 this_rela.r_addend =
9650 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
9651 bfd_put_32 (abfd, lit->value, contents + offset);
9652
9653 /* Currently, we cannot move relocations during a relocatable link. */
9654 BFD_ASSERT (!link_info->relocatable);
9655 fix = reloc_bfd_fix_init (sec, offset, r_type,
9656 r_reloc_get_section (r_rel),
9657 r_rel->target_offset + r_rel->virtual_offset,
9658 FALSE);
9659 /* We also need to mark that relocations are needed here. */
9660 sec->flags |= SEC_RELOC;
9661
9662 translate_reloc_bfd_fix (fix);
9663 /* This fix has not yet been translated. */
9664 add_fix (sec, fix);
9665
9666 /* Add the relocation. If we have already allocated our own
9667 space for the relocations and we have room for more, then use
9668 it. Otherwise, allocate new space and move the literals. */
9669 insert_at = sec->reloc_count;
9670 for (i = 0; i < sec->reloc_count; ++i)
9671 {
9672 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
9673 {
9674 insert_at = i;
9675 break;
9676 }
9677 }
9678
9679 if (*internal_relocs_p != relax_info->allocated_relocs
9680 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
9681 {
9682 BFD_ASSERT (relax_info->allocated_relocs == NULL
9683 || sec->reloc_count == relax_info->relocs_count);
9684
9685 if (relax_info->allocated_relocs_count == 0)
9686 new_relocs_count = (sec->reloc_count + 2) * 2;
9687 else
9688 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
9689
9690 new_relocs = (Elf_Internal_Rela *)
9691 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
9692 if (!new_relocs)
9693 return FALSE;
9694
9695 /* We could handle this more quickly by finding the split point. */
9696 if (insert_at != 0)
9697 memcpy (new_relocs, *internal_relocs_p,
9698 insert_at * sizeof (Elf_Internal_Rela));
9699
9700 new_relocs[insert_at] = this_rela;
9701
9702 if (insert_at != sec->reloc_count)
9703 memcpy (new_relocs + insert_at + 1,
9704 (*internal_relocs_p) + insert_at,
9705 (sec->reloc_count - insert_at)
9706 * sizeof (Elf_Internal_Rela));
9707
9708 if (*internal_relocs_p != relax_info->allocated_relocs)
9709 {
9710 /* The first time we re-allocate, we can only free the
9711 old relocs if they were allocated with bfd_malloc.
9712 This is not true when keep_memory is in effect. */
9713 if (!link_info->keep_memory)
9714 free (*internal_relocs_p);
9715 }
9716 else
9717 free (*internal_relocs_p);
9718 relax_info->allocated_relocs = new_relocs;
9719 relax_info->allocated_relocs_count = new_relocs_count;
9720 elf_section_data (sec)->relocs = new_relocs;
9721 sec->reloc_count++;
9722 relax_info->relocs_count = sec->reloc_count;
9723 *internal_relocs_p = new_relocs;
9724 }
9725 else
9726 {
9727 if (insert_at != sec->reloc_count)
9728 {
9729 unsigned idx;
9730 for (idx = sec->reloc_count; idx > insert_at; idx--)
9731 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
9732 }
9733 (*internal_relocs_p)[insert_at] = this_rela;
9734 sec->reloc_count++;
9735 if (relax_info->allocated_relocs)
9736 relax_info->relocs_count = sec->reloc_count;
9737 }
9738 }
9739 return TRUE;
9740 }
9741
9742
9743 /* This is similar to relax_section except that when a target is moved,
9744 we shift addresses up. We also need to modify the size. This
9745 algorithm does NOT allow for relocations into the middle of the
9746 property sections. */
9747
9748 static bfd_boolean
9749 relax_property_section (bfd *abfd,
9750 asection *sec,
9751 struct bfd_link_info *link_info)
9752 {
9753 Elf_Internal_Rela *internal_relocs;
9754 bfd_byte *contents;
9755 unsigned i;
9756 bfd_boolean ok = TRUE;
9757 bfd_boolean is_full_prop_section;
9758 size_t last_zfill_target_offset = 0;
9759 asection *last_zfill_target_sec = NULL;
9760 bfd_size_type sec_size;
9761 bfd_size_type entry_size;
9762
9763 sec_size = bfd_get_section_limit (abfd, sec);
9764 internal_relocs = retrieve_internal_relocs (abfd, sec,
9765 link_info->keep_memory);
9766 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
9767 if (contents == NULL && sec_size != 0)
9768 {
9769 ok = FALSE;
9770 goto error_return;
9771 }
9772
9773 is_full_prop_section = xtensa_is_proptable_section (sec);
9774 if (is_full_prop_section)
9775 entry_size = 12;
9776 else
9777 entry_size = 8;
9778
9779 if (internal_relocs)
9780 {
9781 for (i = 0; i < sec->reloc_count; i++)
9782 {
9783 Elf_Internal_Rela *irel;
9784 xtensa_relax_info *target_relax_info;
9785 unsigned r_type;
9786 asection *target_sec;
9787 literal_value val;
9788 bfd_byte *size_p, *flags_p;
9789
9790 /* Locally change the source address.
9791 Translate the target to the new target address.
9792 If it points to this section and has been removed, MOVE IT.
9793 Also, don't forget to modify the associated SIZE at
9794 (offset + 4). */
9795
9796 irel = &internal_relocs[i];
9797 r_type = ELF32_R_TYPE (irel->r_info);
9798 if (r_type == R_XTENSA_NONE)
9799 continue;
9800
9801 /* Find the literal value. */
9802 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
9803 size_p = &contents[irel->r_offset + 4];
9804 flags_p = NULL;
9805 if (is_full_prop_section)
9806 flags_p = &contents[irel->r_offset + 8];
9807 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
9808
9809 target_sec = r_reloc_get_section (&val.r_rel);
9810 target_relax_info = get_xtensa_relax_info (target_sec);
9811
9812 if (target_relax_info
9813 && (target_relax_info->is_relaxable_literal_section
9814 || target_relax_info->is_relaxable_asm_section ))
9815 {
9816 /* Translate the relocation's destination. */
9817 bfd_vma old_offset = val.r_rel.target_offset;
9818 bfd_vma new_offset;
9819 long old_size, new_size;
9820 text_action *act = target_relax_info->action_list.head;
9821 new_offset = old_offset -
9822 removed_by_actions (&act, old_offset, FALSE);
9823
9824 /* Assert that we are not out of bounds. */
9825 old_size = bfd_get_32 (abfd, size_p);
9826 new_size = old_size;
9827
9828 if (old_size == 0)
9829 {
9830 /* Only the first zero-sized unreachable entry is
9831 allowed to expand. In this case the new offset
9832 should be the offset before the fill and the new
9833 size is the expansion size. For other zero-sized
9834 entries the resulting size should be zero with an
9835 offset before or after the fill address depending
9836 on whether the expanding unreachable entry
9837 preceeds it. */
9838 if (last_zfill_target_sec == 0
9839 || last_zfill_target_sec != target_sec
9840 || last_zfill_target_offset != old_offset)
9841 {
9842 bfd_vma new_end_offset = new_offset;
9843
9844 /* Recompute the new_offset, but this time don't
9845 include any fill inserted by relaxation. */
9846 act = target_relax_info->action_list.head;
9847 new_offset = old_offset -
9848 removed_by_actions (&act, old_offset, TRUE);
9849
9850 /* If it is not unreachable and we have not yet
9851 seen an unreachable at this address, place it
9852 before the fill address. */
9853 if (flags_p && (bfd_get_32 (abfd, flags_p)
9854 & XTENSA_PROP_UNREACHABLE) != 0)
9855 {
9856 new_size = new_end_offset - new_offset;
9857
9858 last_zfill_target_sec = target_sec;
9859 last_zfill_target_offset = old_offset;
9860 }
9861 }
9862 }
9863 else
9864 new_size -=
9865 removed_by_actions (&act, old_offset + old_size, TRUE);
9866
9867 if (new_size != old_size)
9868 {
9869 bfd_put_32 (abfd, new_size, size_p);
9870 pin_contents (sec, contents);
9871 }
9872
9873 if (new_offset != old_offset)
9874 {
9875 bfd_vma diff = new_offset - old_offset;
9876 irel->r_addend += diff;
9877 pin_internal_relocs (sec, internal_relocs);
9878 }
9879 }
9880 }
9881 }
9882
9883 /* Combine adjacent property table entries. This is also done in
9884 finish_dynamic_sections() but at that point it's too late to
9885 reclaim the space in the output section, so we do this twice. */
9886
9887 if (internal_relocs && (!link_info->relocatable
9888 || xtensa_is_littable_section (sec)))
9889 {
9890 Elf_Internal_Rela *last_irel = NULL;
9891 Elf_Internal_Rela *irel, *next_rel, *rel_end;
9892 int removed_bytes = 0;
9893 bfd_vma offset;
9894 flagword predef_flags;
9895
9896 predef_flags = xtensa_get_property_predef_flags (sec);
9897
9898 /* Walk over memory and relocations at the same time.
9899 This REQUIRES that the internal_relocs be sorted by offset. */
9900 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
9901 internal_reloc_compare);
9902
9903 pin_internal_relocs (sec, internal_relocs);
9904 pin_contents (sec, contents);
9905
9906 next_rel = internal_relocs;
9907 rel_end = internal_relocs + sec->reloc_count;
9908
9909 BFD_ASSERT (sec->size % entry_size == 0);
9910
9911 for (offset = 0; offset < sec->size; offset += entry_size)
9912 {
9913 Elf_Internal_Rela *offset_rel, *extra_rel;
9914 bfd_vma bytes_to_remove, size, actual_offset;
9915 bfd_boolean remove_this_rel;
9916 flagword flags;
9917
9918 /* Find the first relocation for the entry at the current offset.
9919 Adjust the offsets of any extra relocations for the previous
9920 entry. */
9921 offset_rel = NULL;
9922 if (next_rel)
9923 {
9924 for (irel = next_rel; irel < rel_end; irel++)
9925 {
9926 if ((irel->r_offset == offset
9927 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9928 || irel->r_offset > offset)
9929 {
9930 offset_rel = irel;
9931 break;
9932 }
9933 irel->r_offset -= removed_bytes;
9934 }
9935 }
9936
9937 /* Find the next relocation (if there are any left). */
9938 extra_rel = NULL;
9939 if (offset_rel)
9940 {
9941 for (irel = offset_rel + 1; irel < rel_end; irel++)
9942 {
9943 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9944 {
9945 extra_rel = irel;
9946 break;
9947 }
9948 }
9949 }
9950
9951 /* Check if there are relocations on the current entry. There
9952 should usually be a relocation on the offset field. If there
9953 are relocations on the size or flags, then we can't optimize
9954 this entry. Also, find the next relocation to examine on the
9955 next iteration. */
9956 if (offset_rel)
9957 {
9958 if (offset_rel->r_offset >= offset + entry_size)
9959 {
9960 next_rel = offset_rel;
9961 /* There are no relocations on the current entry, but we
9962 might still be able to remove it if the size is zero. */
9963 offset_rel = NULL;
9964 }
9965 else if (offset_rel->r_offset > offset
9966 || (extra_rel
9967 && extra_rel->r_offset < offset + entry_size))
9968 {
9969 /* There is a relocation on the size or flags, so we can't
9970 do anything with this entry. Continue with the next. */
9971 next_rel = offset_rel;
9972 continue;
9973 }
9974 else
9975 {
9976 BFD_ASSERT (offset_rel->r_offset == offset);
9977 offset_rel->r_offset -= removed_bytes;
9978 next_rel = offset_rel + 1;
9979 }
9980 }
9981 else
9982 next_rel = NULL;
9983
9984 remove_this_rel = FALSE;
9985 bytes_to_remove = 0;
9986 actual_offset = offset - removed_bytes;
9987 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
9988
9989 if (is_full_prop_section)
9990 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
9991 else
9992 flags = predef_flags;
9993
9994 if (size == 0
9995 && (flags & XTENSA_PROP_ALIGN) == 0
9996 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
9997 {
9998 /* Always remove entries with zero size and no alignment. */
9999 bytes_to_remove = entry_size;
10000 if (offset_rel)
10001 remove_this_rel = TRUE;
10002 }
10003 else if (offset_rel
10004 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
10005 {
10006 if (last_irel)
10007 {
10008 flagword old_flags;
10009 bfd_vma old_size =
10010 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
10011 bfd_vma old_address =
10012 (last_irel->r_addend
10013 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
10014 bfd_vma new_address =
10015 (offset_rel->r_addend
10016 + bfd_get_32 (abfd, &contents[actual_offset]));
10017 if (is_full_prop_section)
10018 old_flags = bfd_get_32
10019 (abfd, &contents[last_irel->r_offset + 8]);
10020 else
10021 old_flags = predef_flags;
10022
10023 if ((ELF32_R_SYM (offset_rel->r_info)
10024 == ELF32_R_SYM (last_irel->r_info))
10025 && old_address + old_size == new_address
10026 && old_flags == flags
10027 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
10028 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
10029 {
10030 /* Fix the old size. */
10031 bfd_put_32 (abfd, old_size + size,
10032 &contents[last_irel->r_offset + 4]);
10033 bytes_to_remove = entry_size;
10034 remove_this_rel = TRUE;
10035 }
10036 else
10037 last_irel = offset_rel;
10038 }
10039 else
10040 last_irel = offset_rel;
10041 }
10042
10043 if (remove_this_rel)
10044 {
10045 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
10046 offset_rel->r_offset = 0;
10047 }
10048
10049 if (bytes_to_remove != 0)
10050 {
10051 removed_bytes += bytes_to_remove;
10052 if (offset + bytes_to_remove < sec->size)
10053 memmove (&contents[actual_offset],
10054 &contents[actual_offset + bytes_to_remove],
10055 sec->size - offset - bytes_to_remove);
10056 }
10057 }
10058
10059 if (removed_bytes)
10060 {
10061 /* Fix up any extra relocations on the last entry. */
10062 for (irel = next_rel; irel < rel_end; irel++)
10063 irel->r_offset -= removed_bytes;
10064
10065 /* Clear the removed bytes. */
10066 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
10067
10068 if (sec->rawsize == 0)
10069 sec->rawsize = sec->size;
10070 sec->size -= removed_bytes;
10071
10072 if (xtensa_is_littable_section (sec))
10073 {
10074 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
10075 if (sgotloc)
10076 sgotloc->size -= removed_bytes;
10077 }
10078 }
10079 }
10080
10081 error_return:
10082 release_internal_relocs (sec, internal_relocs);
10083 release_contents (sec, contents);
10084 return ok;
10085 }
10086
10087 \f
10088 /* Third relaxation pass. */
10089
10090 /* Change symbol values to account for removed literals. */
10091
10092 bfd_boolean
10093 relax_section_symbols (bfd *abfd, asection *sec)
10094 {
10095 xtensa_relax_info *relax_info;
10096 unsigned int sec_shndx;
10097 Elf_Internal_Shdr *symtab_hdr;
10098 Elf_Internal_Sym *isymbuf;
10099 unsigned i, num_syms, num_locals;
10100
10101 relax_info = get_xtensa_relax_info (sec);
10102 BFD_ASSERT (relax_info);
10103
10104 if (!relax_info->is_relaxable_literal_section
10105 && !relax_info->is_relaxable_asm_section)
10106 return TRUE;
10107
10108 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
10109
10110 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10111 isymbuf = retrieve_local_syms (abfd);
10112
10113 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
10114 num_locals = symtab_hdr->sh_info;
10115
10116 /* Adjust the local symbols defined in this section. */
10117 for (i = 0; i < num_locals; i++)
10118 {
10119 Elf_Internal_Sym *isym = &isymbuf[i];
10120
10121 if (isym->st_shndx == sec_shndx)
10122 {
10123 text_action *act = relax_info->action_list.head;
10124 bfd_vma orig_addr = isym->st_value;
10125
10126 isym->st_value -= removed_by_actions (&act, orig_addr, FALSE);
10127
10128 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
10129 isym->st_size -=
10130 removed_by_actions (&act, orig_addr + isym->st_size, FALSE);
10131 }
10132 }
10133
10134 /* Now adjust the global symbols defined in this section. */
10135 for (i = 0; i < (num_syms - num_locals); i++)
10136 {
10137 struct elf_link_hash_entry *sym_hash;
10138
10139 sym_hash = elf_sym_hashes (abfd)[i];
10140
10141 if (sym_hash->root.type == bfd_link_hash_warning)
10142 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
10143
10144 if ((sym_hash->root.type == bfd_link_hash_defined
10145 || sym_hash->root.type == bfd_link_hash_defweak)
10146 && sym_hash->root.u.def.section == sec)
10147 {
10148 text_action *act = relax_info->action_list.head;
10149 bfd_vma orig_addr = sym_hash->root.u.def.value;
10150
10151 sym_hash->root.u.def.value -=
10152 removed_by_actions (&act, orig_addr, FALSE);
10153
10154 if (sym_hash->type == STT_FUNC)
10155 sym_hash->size -=
10156 removed_by_actions (&act, orig_addr + sym_hash->size, FALSE);
10157 }
10158 }
10159
10160 return TRUE;
10161 }
10162
10163 \f
10164 /* "Fix" handling functions, called while performing relocations. */
10165
10166 static bfd_boolean
10167 do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
10168 bfd *input_bfd,
10169 asection *input_section,
10170 bfd_byte *contents)
10171 {
10172 r_reloc r_rel;
10173 asection *sec, *old_sec;
10174 bfd_vma old_offset;
10175 int r_type = ELF32_R_TYPE (rel->r_info);
10176 reloc_bfd_fix *fix;
10177
10178 if (r_type == R_XTENSA_NONE)
10179 return TRUE;
10180
10181 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10182 if (!fix)
10183 return TRUE;
10184
10185 r_reloc_init (&r_rel, input_bfd, rel, contents,
10186 bfd_get_section_limit (input_bfd, input_section));
10187 old_sec = r_reloc_get_section (&r_rel);
10188 old_offset = r_rel.target_offset;
10189
10190 if (!old_sec || !r_reloc_is_defined (&r_rel))
10191 {
10192 if (r_type != R_XTENSA_ASM_EXPAND)
10193 {
10194 (*_bfd_error_handler)
10195 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
10196 input_bfd, input_section, rel->r_offset,
10197 elf_howto_table[r_type].name);
10198 return FALSE;
10199 }
10200 /* Leave it be. Resolution will happen in a later stage. */
10201 }
10202 else
10203 {
10204 sec = fix->target_sec;
10205 rel->r_addend += ((sec->output_offset + fix->target_offset)
10206 - (old_sec->output_offset + old_offset));
10207 }
10208 return TRUE;
10209 }
10210
10211
10212 static void
10213 do_fix_for_final_link (Elf_Internal_Rela *rel,
10214 bfd *input_bfd,
10215 asection *input_section,
10216 bfd_byte *contents,
10217 bfd_vma *relocationp)
10218 {
10219 asection *sec;
10220 int r_type = ELF32_R_TYPE (rel->r_info);
10221 reloc_bfd_fix *fix;
10222 bfd_vma fixup_diff;
10223
10224 if (r_type == R_XTENSA_NONE)
10225 return;
10226
10227 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10228 if (!fix)
10229 return;
10230
10231 sec = fix->target_sec;
10232
10233 fixup_diff = rel->r_addend;
10234 if (elf_howto_table[fix->src_type].partial_inplace)
10235 {
10236 bfd_vma inplace_val;
10237 BFD_ASSERT (fix->src_offset
10238 < bfd_get_section_limit (input_bfd, input_section));
10239 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
10240 fixup_diff += inplace_val;
10241 }
10242
10243 *relocationp = (sec->output_section->vma
10244 + sec->output_offset
10245 + fix->target_offset - fixup_diff);
10246 }
10247
10248 \f
10249 /* Miscellaneous utility functions.... */
10250
10251 static asection *
10252 elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
10253 {
10254 struct elf_xtensa_link_hash_table *htab;
10255 bfd *dynobj;
10256 char plt_name[10];
10257
10258 if (chunk == 0)
10259 {
10260 htab = elf_xtensa_hash_table (info);
10261 if (htab == NULL)
10262 return NULL;
10263
10264 return htab->splt;
10265 }
10266
10267 dynobj = elf_hash_table (info)->dynobj;
10268 sprintf (plt_name, ".plt.%u", chunk);
10269 return bfd_get_linker_section (dynobj, plt_name);
10270 }
10271
10272
10273 static asection *
10274 elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
10275 {
10276 struct elf_xtensa_link_hash_table *htab;
10277 bfd *dynobj;
10278 char got_name[14];
10279
10280 if (chunk == 0)
10281 {
10282 htab = elf_xtensa_hash_table (info);
10283 if (htab == NULL)
10284 return NULL;
10285 return htab->sgotplt;
10286 }
10287
10288 dynobj = elf_hash_table (info)->dynobj;
10289 sprintf (got_name, ".got.plt.%u", chunk);
10290 return bfd_get_linker_section (dynobj, got_name);
10291 }
10292
10293
10294 /* Get the input section for a given symbol index.
10295 If the symbol is:
10296 . a section symbol, return the section;
10297 . a common symbol, return the common section;
10298 . an undefined symbol, return the undefined section;
10299 . an indirect symbol, follow the links;
10300 . an absolute value, return the absolute section. */
10301
10302 static asection *
10303 get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
10304 {
10305 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10306 asection *target_sec = NULL;
10307 if (r_symndx < symtab_hdr->sh_info)
10308 {
10309 Elf_Internal_Sym *isymbuf;
10310 unsigned int section_index;
10311
10312 isymbuf = retrieve_local_syms (abfd);
10313 section_index = isymbuf[r_symndx].st_shndx;
10314
10315 if (section_index == SHN_UNDEF)
10316 target_sec = bfd_und_section_ptr;
10317 else if (section_index == SHN_ABS)
10318 target_sec = bfd_abs_section_ptr;
10319 else if (section_index == SHN_COMMON)
10320 target_sec = bfd_com_section_ptr;
10321 else
10322 target_sec = bfd_section_from_elf_index (abfd, section_index);
10323 }
10324 else
10325 {
10326 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10327 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
10328
10329 while (h->root.type == bfd_link_hash_indirect
10330 || h->root.type == bfd_link_hash_warning)
10331 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10332
10333 switch (h->root.type)
10334 {
10335 case bfd_link_hash_defined:
10336 case bfd_link_hash_defweak:
10337 target_sec = h->root.u.def.section;
10338 break;
10339 case bfd_link_hash_common:
10340 target_sec = bfd_com_section_ptr;
10341 break;
10342 case bfd_link_hash_undefined:
10343 case bfd_link_hash_undefweak:
10344 target_sec = bfd_und_section_ptr;
10345 break;
10346 default: /* New indirect warning. */
10347 target_sec = bfd_und_section_ptr;
10348 break;
10349 }
10350 }
10351 return target_sec;
10352 }
10353
10354
10355 static struct elf_link_hash_entry *
10356 get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
10357 {
10358 unsigned long indx;
10359 struct elf_link_hash_entry *h;
10360 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10361
10362 if (r_symndx < symtab_hdr->sh_info)
10363 return NULL;
10364
10365 indx = r_symndx - symtab_hdr->sh_info;
10366 h = elf_sym_hashes (abfd)[indx];
10367 while (h->root.type == bfd_link_hash_indirect
10368 || h->root.type == bfd_link_hash_warning)
10369 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10370 return h;
10371 }
10372
10373
10374 /* Get the section-relative offset for a symbol number. */
10375
10376 static bfd_vma
10377 get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
10378 {
10379 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10380 bfd_vma offset = 0;
10381
10382 if (r_symndx < symtab_hdr->sh_info)
10383 {
10384 Elf_Internal_Sym *isymbuf;
10385 isymbuf = retrieve_local_syms (abfd);
10386 offset = isymbuf[r_symndx].st_value;
10387 }
10388 else
10389 {
10390 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10391 struct elf_link_hash_entry *h =
10392 elf_sym_hashes (abfd)[indx];
10393
10394 while (h->root.type == bfd_link_hash_indirect
10395 || h->root.type == bfd_link_hash_warning)
10396 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10397 if (h->root.type == bfd_link_hash_defined
10398 || h->root.type == bfd_link_hash_defweak)
10399 offset = h->root.u.def.value;
10400 }
10401 return offset;
10402 }
10403
10404
10405 static bfd_boolean
10406 is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
10407 {
10408 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
10409 struct elf_link_hash_entry *h;
10410
10411 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
10412 if (h && h->root.type == bfd_link_hash_defweak)
10413 return TRUE;
10414 return FALSE;
10415 }
10416
10417
10418 static bfd_boolean
10419 pcrel_reloc_fits (xtensa_opcode opc,
10420 int opnd,
10421 bfd_vma self_address,
10422 bfd_vma dest_address)
10423 {
10424 xtensa_isa isa = xtensa_default_isa;
10425 uint32 valp = dest_address;
10426 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
10427 || xtensa_operand_encode (isa, opc, opnd, &valp))
10428 return FALSE;
10429 return TRUE;
10430 }
10431
10432
10433 static bfd_boolean
10434 xtensa_is_property_section (asection *sec)
10435 {
10436 if (xtensa_is_insntable_section (sec)
10437 || xtensa_is_littable_section (sec)
10438 || xtensa_is_proptable_section (sec))
10439 return TRUE;
10440
10441 return FALSE;
10442 }
10443
10444
10445 static bfd_boolean
10446 xtensa_is_insntable_section (asection *sec)
10447 {
10448 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
10449 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
10450 return TRUE;
10451
10452 return FALSE;
10453 }
10454
10455
10456 static bfd_boolean
10457 xtensa_is_littable_section (asection *sec)
10458 {
10459 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
10460 || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
10461 return TRUE;
10462
10463 return FALSE;
10464 }
10465
10466
10467 static bfd_boolean
10468 xtensa_is_proptable_section (asection *sec)
10469 {
10470 if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
10471 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
10472 return TRUE;
10473
10474 return FALSE;
10475 }
10476
10477
10478 static int
10479 internal_reloc_compare (const void *ap, const void *bp)
10480 {
10481 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
10482 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
10483
10484 if (a->r_offset != b->r_offset)
10485 return (a->r_offset - b->r_offset);
10486
10487 /* We don't need to sort on these criteria for correctness,
10488 but enforcing a more strict ordering prevents unstable qsort
10489 from behaving differently with different implementations.
10490 Without the code below we get correct but different results
10491 on Solaris 2.7 and 2.8. We would like to always produce the
10492 same results no matter the host. */
10493
10494 if (a->r_info != b->r_info)
10495 return (a->r_info - b->r_info);
10496
10497 return (a->r_addend - b->r_addend);
10498 }
10499
10500
10501 static int
10502 internal_reloc_matches (const void *ap, const void *bp)
10503 {
10504 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
10505 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
10506
10507 /* Check if one entry overlaps with the other; this shouldn't happen
10508 except when searching for a match. */
10509 return (a->r_offset - b->r_offset);
10510 }
10511
10512
10513 /* Predicate function used to look up a section in a particular group. */
10514
10515 static bfd_boolean
10516 match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
10517 {
10518 const char *gname = inf;
10519 const char *group_name = elf_group_name (sec);
10520
10521 return (group_name == gname
10522 || (group_name != NULL
10523 && gname != NULL
10524 && strcmp (group_name, gname) == 0));
10525 }
10526
10527
10528 static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
10529
10530 static char *
10531 xtensa_property_section_name (asection *sec, const char *base_name)
10532 {
10533 const char *suffix, *group_name;
10534 char *prop_sec_name;
10535
10536 group_name = elf_group_name (sec);
10537 if (group_name)
10538 {
10539 suffix = strrchr (sec->name, '.');
10540 if (suffix == sec->name)
10541 suffix = 0;
10542 prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1
10543 + (suffix ? strlen (suffix) : 0));
10544 strcpy (prop_sec_name, base_name);
10545 if (suffix)
10546 strcat (prop_sec_name, suffix);
10547 }
10548 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
10549 {
10550 char *linkonce_kind = 0;
10551
10552 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
10553 linkonce_kind = "x.";
10554 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
10555 linkonce_kind = "p.";
10556 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
10557 linkonce_kind = "prop.";
10558 else
10559 abort ();
10560
10561 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
10562 + strlen (linkonce_kind) + 1);
10563 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
10564 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
10565
10566 suffix = sec->name + linkonce_len;
10567 /* For backward compatibility, replace "t." instead of inserting
10568 the new linkonce_kind (but not for "prop" sections). */
10569 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
10570 suffix += 2;
10571 strcat (prop_sec_name + linkonce_len, suffix);
10572 }
10573 else
10574 prop_sec_name = strdup (base_name);
10575
10576 return prop_sec_name;
10577 }
10578
10579
10580 static asection *
10581 xtensa_get_property_section (asection *sec, const char *base_name)
10582 {
10583 char *prop_sec_name;
10584 asection *prop_sec;
10585
10586 prop_sec_name = xtensa_property_section_name (sec, base_name);
10587 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
10588 match_section_group,
10589 (void *) elf_group_name (sec));
10590 free (prop_sec_name);
10591 return prop_sec;
10592 }
10593
10594
10595 asection *
10596 xtensa_make_property_section (asection *sec, const char *base_name)
10597 {
10598 char *prop_sec_name;
10599 asection *prop_sec;
10600
10601 /* Check if the section already exists. */
10602 prop_sec_name = xtensa_property_section_name (sec, base_name);
10603 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
10604 match_section_group,
10605 (void *) elf_group_name (sec));
10606 /* If not, create it. */
10607 if (! prop_sec)
10608 {
10609 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
10610 flags |= (bfd_get_section_flags (sec->owner, sec)
10611 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
10612
10613 prop_sec = bfd_make_section_anyway_with_flags
10614 (sec->owner, strdup (prop_sec_name), flags);
10615 if (! prop_sec)
10616 return 0;
10617
10618 elf_group_name (prop_sec) = elf_group_name (sec);
10619 }
10620
10621 free (prop_sec_name);
10622 return prop_sec;
10623 }
10624
10625
10626 flagword
10627 xtensa_get_property_predef_flags (asection *sec)
10628 {
10629 if (xtensa_is_insntable_section (sec))
10630 return (XTENSA_PROP_INSN
10631 | XTENSA_PROP_NO_TRANSFORM
10632 | XTENSA_PROP_INSN_NO_REORDER);
10633
10634 if (xtensa_is_littable_section (sec))
10635 return (XTENSA_PROP_LITERAL
10636 | XTENSA_PROP_NO_TRANSFORM
10637 | XTENSA_PROP_INSN_NO_REORDER);
10638
10639 return 0;
10640 }
10641
10642 \f
10643 /* Other functions called directly by the linker. */
10644
10645 bfd_boolean
10646 xtensa_callback_required_dependence (bfd *abfd,
10647 asection *sec,
10648 struct bfd_link_info *link_info,
10649 deps_callback_t callback,
10650 void *closure)
10651 {
10652 Elf_Internal_Rela *internal_relocs;
10653 bfd_byte *contents;
10654 unsigned i;
10655 bfd_boolean ok = TRUE;
10656 bfd_size_type sec_size;
10657
10658 sec_size = bfd_get_section_limit (abfd, sec);
10659
10660 /* ".plt*" sections have no explicit relocations but they contain L32R
10661 instructions that reference the corresponding ".got.plt*" sections. */
10662 if ((sec->flags & SEC_LINKER_CREATED) != 0
10663 && CONST_STRNEQ (sec->name, ".plt"))
10664 {
10665 asection *sgotplt;
10666
10667 /* Find the corresponding ".got.plt*" section. */
10668 if (sec->name[4] == '\0')
10669 sgotplt = bfd_get_linker_section (sec->owner, ".got.plt");
10670 else
10671 {
10672 char got_name[14];
10673 int chunk = 0;
10674
10675 BFD_ASSERT (sec->name[4] == '.');
10676 chunk = strtol (&sec->name[5], NULL, 10);
10677
10678 sprintf (got_name, ".got.plt.%u", chunk);
10679 sgotplt = bfd_get_linker_section (sec->owner, got_name);
10680 }
10681 BFD_ASSERT (sgotplt);
10682
10683 /* Assume worst-case offsets: L32R at the very end of the ".plt"
10684 section referencing a literal at the very beginning of
10685 ".got.plt". This is very close to the real dependence, anyway. */
10686 (*callback) (sec, sec_size, sgotplt, 0, closure);
10687 }
10688
10689 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
10690 when building uclibc, which runs "ld -b binary /dev/null". */
10691 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
10692 return ok;
10693
10694 internal_relocs = retrieve_internal_relocs (abfd, sec,
10695 link_info->keep_memory);
10696 if (internal_relocs == NULL
10697 || sec->reloc_count == 0)
10698 return ok;
10699
10700 /* Cache the contents for the duration of this scan. */
10701 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
10702 if (contents == NULL && sec_size != 0)
10703 {
10704 ok = FALSE;
10705 goto error_return;
10706 }
10707
10708 if (!xtensa_default_isa)
10709 xtensa_default_isa = xtensa_isa_init (0, 0);
10710
10711 for (i = 0; i < sec->reloc_count; i++)
10712 {
10713 Elf_Internal_Rela *irel = &internal_relocs[i];
10714 if (is_l32r_relocation (abfd, sec, contents, irel))
10715 {
10716 r_reloc l32r_rel;
10717 asection *target_sec;
10718 bfd_vma target_offset;
10719
10720 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
10721 target_sec = NULL;
10722 target_offset = 0;
10723 /* L32Rs must be local to the input file. */
10724 if (r_reloc_is_defined (&l32r_rel))
10725 {
10726 target_sec = r_reloc_get_section (&l32r_rel);
10727 target_offset = l32r_rel.target_offset;
10728 }
10729 (*callback) (sec, irel->r_offset, target_sec, target_offset,
10730 closure);
10731 }
10732 }
10733
10734 error_return:
10735 release_internal_relocs (sec, internal_relocs);
10736 release_contents (sec, contents);
10737 return ok;
10738 }
10739
10740 /* The default literal sections should always be marked as "code" (i.e.,
10741 SHF_EXECINSTR). This is particularly important for the Linux kernel
10742 module loader so that the literals are not placed after the text. */
10743 static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
10744 {
10745 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
10746 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
10747 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
10748 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
10749 { NULL, 0, 0, 0, 0 }
10750 };
10751 \f
10752 #define ELF_TARGET_ID XTENSA_ELF_DATA
10753 #ifndef ELF_ARCH
10754 #define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec
10755 #define TARGET_LITTLE_NAME "elf32-xtensa-le"
10756 #define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec
10757 #define TARGET_BIG_NAME "elf32-xtensa-be"
10758 #define ELF_ARCH bfd_arch_xtensa
10759
10760 #define ELF_MACHINE_CODE EM_XTENSA
10761 #define ELF_MACHINE_ALT1 EM_XTENSA_OLD
10762
10763 #if XCHAL_HAVE_MMU
10764 #define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
10765 #else /* !XCHAL_HAVE_MMU */
10766 #define ELF_MAXPAGESIZE 1
10767 #endif /* !XCHAL_HAVE_MMU */
10768 #endif /* ELF_ARCH */
10769
10770 #define elf_backend_can_gc_sections 1
10771 #define elf_backend_can_refcount 1
10772 #define elf_backend_plt_readonly 1
10773 #define elf_backend_got_header_size 4
10774 #define elf_backend_want_dynbss 0
10775 #define elf_backend_want_got_plt 1
10776
10777 #define elf_info_to_howto elf_xtensa_info_to_howto_rela
10778
10779 #define bfd_elf32_mkobject elf_xtensa_mkobject
10780
10781 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
10782 #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
10783 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
10784 #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
10785 #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
10786 #define bfd_elf32_bfd_reloc_name_lookup \
10787 elf_xtensa_reloc_name_lookup
10788 #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
10789 #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
10790
10791 #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
10792 #define elf_backend_check_relocs elf_xtensa_check_relocs
10793 #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
10794 #define elf_backend_discard_info elf_xtensa_discard_info
10795 #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
10796 #define elf_backend_final_write_processing elf_xtensa_final_write_processing
10797 #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
10798 #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
10799 #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
10800 #define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
10801 #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
10802 #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
10803 #define elf_backend_hide_symbol elf_xtensa_hide_symbol
10804 #define elf_backend_object_p elf_xtensa_object_p
10805 #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
10806 #define elf_backend_relocate_section elf_xtensa_relocate_section
10807 #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
10808 #define elf_backend_always_size_sections elf_xtensa_always_size_sections
10809 #define elf_backend_omit_section_dynsym \
10810 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
10811 #define elf_backend_special_sections elf_xtensa_special_sections
10812 #define elf_backend_action_discarded elf_xtensa_action_discarded
10813 #define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol
10814
10815 #include "elf32-target.h"
This page took 0.314819 seconds and 4 git commands to generate.