bfd: xtensa: fix shrink_dynamic_reloc_sections for export-dynamic
[deliverable/binutils-gdb.git] / bfd / elf32-xtensa.c
1 /* Xtensa-specific support for 32-bit ELF.
2 Copyright (C) 2003-2019 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 3 of the
9 License, or (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23
24 #include <stdarg.h>
25 #include <strings.h>
26
27 #include "bfdlink.h"
28 #include "libbfd.h"
29 #include "elf-bfd.h"
30 #include "elf/xtensa.h"
31 #include "splay-tree.h"
32 #include "xtensa-isa.h"
33 #include "xtensa-config.h"
34
35 #define XTENSA_NO_NOP_REMOVAL 0
36
37 /* Local helper functions. */
38
39 static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
40 static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
41 static bfd_reloc_status_type bfd_elf_xtensa_reloc
42 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43 static bfd_boolean do_fix_for_relocatable_link
44 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
45 static void do_fix_for_final_link
46 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
47
48 /* Local functions to handle Xtensa configurability. */
49
50 static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
51 static bfd_boolean is_direct_call_opcode (xtensa_opcode);
52 static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
53 static xtensa_opcode get_const16_opcode (void);
54 static xtensa_opcode get_l32r_opcode (void);
55 static bfd_vma l32r_offset (bfd_vma, bfd_vma);
56 static int get_relocation_opnd (xtensa_opcode, int);
57 static int get_relocation_slot (int);
58 static xtensa_opcode get_relocation_opcode
59 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
60 static bfd_boolean is_l32r_relocation
61 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
62 static bfd_boolean is_alt_relocation (int);
63 static bfd_boolean is_operand_relocation (int);
64 static bfd_size_type insn_decode_len
65 (bfd_byte *, bfd_size_type, bfd_size_type);
66 static xtensa_opcode insn_decode_opcode
67 (bfd_byte *, bfd_size_type, bfd_size_type, int);
68 static bfd_boolean check_branch_target_aligned
69 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
70 static bfd_boolean check_loop_aligned
71 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
72 static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
73 static bfd_size_type get_asm_simplify_size
74 (bfd_byte *, bfd_size_type, bfd_size_type);
75
76 /* Functions for link-time code simplifications. */
77
78 static bfd_reloc_status_type elf_xtensa_do_asm_simplify
79 (bfd_byte *, bfd_vma, bfd_vma, char **);
80 static bfd_reloc_status_type contract_asm_expansion
81 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
82 static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
83 static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
84
85 /* Access to internal relocations, section contents and symbols. */
86
87 static Elf_Internal_Rela *retrieve_internal_relocs
88 (bfd *, asection *, bfd_boolean);
89 static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
90 static void release_internal_relocs (asection *, Elf_Internal_Rela *);
91 static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
92 static void pin_contents (asection *, bfd_byte *);
93 static void release_contents (asection *, bfd_byte *);
94 static Elf_Internal_Sym *retrieve_local_syms (bfd *);
95
96 /* Miscellaneous utility functions. */
97
98 static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
99 static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
100 static asection *get_elf_r_symndx_section (bfd *, unsigned long);
101 static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
102 (bfd *, unsigned long);
103 static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
104 static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
105 static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
106 static bfd_boolean xtensa_is_property_section (asection *);
107 static bfd_boolean xtensa_is_insntable_section (asection *);
108 static bfd_boolean xtensa_is_littable_section (asection *);
109 static bfd_boolean xtensa_is_proptable_section (asection *);
110 static int internal_reloc_compare (const void *, const void *);
111 static int internal_reloc_matches (const void *, const void *);
112 static asection *xtensa_get_property_section (asection *, const char *);
113 static flagword xtensa_get_property_predef_flags (asection *);
114
115 /* Other functions called directly by the linker. */
116
117 typedef void (*deps_callback_t)
118 (asection *, bfd_vma, asection *, bfd_vma, void *);
119 extern bfd_boolean xtensa_callback_required_dependence
120 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
121
122
123 /* Globally visible flag for choosing size optimization of NOP removal
124 instead of branch-target-aware minimization for NOP removal.
125 When nonzero, narrow all instructions and remove all NOPs possible
126 around longcall expansions. */
127
128 int elf32xtensa_size_opt;
129
130
131 /* The "new_section_hook" is used to set up a per-section
132 "xtensa_relax_info" data structure with additional information used
133 during relaxation. */
134
135 typedef struct xtensa_relax_info_struct xtensa_relax_info;
136
137
138 /* The GNU tools do not easily allow extending interfaces to pass around
139 the pointer to the Xtensa ISA information, so instead we add a global
140 variable here (in BFD) that can be used by any of the tools that need
141 this information. */
142
143 xtensa_isa xtensa_default_isa;
144
145
146 /* When this is true, relocations may have been modified to refer to
147 symbols from other input files. The per-section list of "fix"
148 records needs to be checked when resolving relocations. */
149
150 static bfd_boolean relaxing_section = FALSE;
151
152 /* When this is true, during final links, literals that cannot be
153 coalesced and their relocations may be moved to other sections. */
154
155 int elf32xtensa_no_literal_movement = 1;
156
157 /* Place property records for a section into individual property section
158 with xt.prop. prefix. */
159
160 bfd_boolean elf32xtensa_separate_props = FALSE;
161
162 /* Rename one of the generic section flags to better document how it
163 is used here. */
164 /* Whether relocations have been processed. */
165 #define reloc_done sec_flg0
166 \f
167 static reloc_howto_type elf_howto_table[] =
168 {
169 HOWTO (R_XTENSA_NONE, 0, 3, 0, FALSE, 0, complain_overflow_dont,
170 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
171 FALSE, 0, 0, FALSE),
172 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
173 bfd_elf_xtensa_reloc, "R_XTENSA_32",
174 TRUE, 0xffffffff, 0xffffffff, FALSE),
175
176 /* Replace a 32-bit value with a value from the runtime linker (only
177 used by linker-generated stub functions). The r_addend value is
178 special: 1 means to substitute a pointer to the runtime linker's
179 dynamic resolver function; 2 means to substitute the link map for
180 the shared object. */
181 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
182 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
183
184 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
185 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
186 FALSE, 0, 0xffffffff, FALSE),
187 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
188 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
189 FALSE, 0, 0xffffffff, FALSE),
190 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
191 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
192 FALSE, 0, 0xffffffff, FALSE),
193 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
194 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
195 FALSE, 0, 0xffffffff, FALSE),
196
197 EMPTY_HOWTO (7),
198
199 /* Old relocations for backward compatibility. */
200 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
201 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
202 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
203 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
204 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
205 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
206
207 /* Assembly auto-expansion. */
208 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
209 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
210 /* Relax assembly auto-expansion. */
211 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
212 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
213
214 EMPTY_HOWTO (13),
215
216 HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
217 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
218 FALSE, 0, 0xffffffff, TRUE),
219
220 /* GNU extension to record C++ vtable hierarchy. */
221 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
222 NULL, "R_XTENSA_GNU_VTINHERIT",
223 FALSE, 0, 0, FALSE),
224 /* GNU extension to record C++ vtable member usage. */
225 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
226 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
227 FALSE, 0, 0, FALSE),
228
229 /* Relocations for supporting difference of symbols. */
230 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_signed,
231 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
232 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_signed,
233 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
234 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
235 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
236
237 /* General immediate operand relocations. */
238 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
239 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
240 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
241 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
242 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
243 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
244 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
245 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
246 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
247 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
248 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
249 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
250 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
251 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
252 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
253 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
254 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
255 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
256 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
257 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
258 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
259 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
260 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
261 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
262 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
263 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
264 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
265 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
266 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
267 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
268
269 /* "Alternate" relocations. The meaning of these is opcode-specific. */
270 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
271 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
272 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
273 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
274 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
275 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
276 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
277 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
278 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
279 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
280 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
281 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
282 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
283 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
284 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
285 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
286 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
287 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
288 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
289 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
290 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
291 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
292 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
293 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
294 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
295 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
296 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
297 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
298 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
299 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
300
301 /* TLS relocations. */
302 HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont,
303 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN",
304 FALSE, 0, 0xffffffff, FALSE),
305 HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont,
306 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG",
307 FALSE, 0, 0xffffffff, FALSE),
308 HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
309 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF",
310 FALSE, 0, 0xffffffff, FALSE),
311 HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
312 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF",
313 FALSE, 0, 0xffffffff, FALSE),
314 HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont,
315 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC",
316 FALSE, 0, 0, FALSE),
317 HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont,
318 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG",
319 FALSE, 0, 0, FALSE),
320 HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont,
321 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL",
322 FALSE, 0, 0, FALSE),
323 };
324
325 #if DEBUG_GEN_RELOC
326 #define TRACE(str) \
327 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
328 #else
329 #define TRACE(str)
330 #endif
331
332 static reloc_howto_type *
333 elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
334 bfd_reloc_code_real_type code)
335 {
336 switch (code)
337 {
338 case BFD_RELOC_NONE:
339 TRACE ("BFD_RELOC_NONE");
340 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
341
342 case BFD_RELOC_32:
343 TRACE ("BFD_RELOC_32");
344 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
345
346 case BFD_RELOC_32_PCREL:
347 TRACE ("BFD_RELOC_32_PCREL");
348 return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
349
350 case BFD_RELOC_XTENSA_DIFF8:
351 TRACE ("BFD_RELOC_XTENSA_DIFF8");
352 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
353
354 case BFD_RELOC_XTENSA_DIFF16:
355 TRACE ("BFD_RELOC_XTENSA_DIFF16");
356 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
357
358 case BFD_RELOC_XTENSA_DIFF32:
359 TRACE ("BFD_RELOC_XTENSA_DIFF32");
360 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
361
362 case BFD_RELOC_XTENSA_RTLD:
363 TRACE ("BFD_RELOC_XTENSA_RTLD");
364 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
365
366 case BFD_RELOC_XTENSA_GLOB_DAT:
367 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
368 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
369
370 case BFD_RELOC_XTENSA_JMP_SLOT:
371 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
372 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
373
374 case BFD_RELOC_XTENSA_RELATIVE:
375 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
376 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
377
378 case BFD_RELOC_XTENSA_PLT:
379 TRACE ("BFD_RELOC_XTENSA_PLT");
380 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
381
382 case BFD_RELOC_XTENSA_OP0:
383 TRACE ("BFD_RELOC_XTENSA_OP0");
384 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
385
386 case BFD_RELOC_XTENSA_OP1:
387 TRACE ("BFD_RELOC_XTENSA_OP1");
388 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
389
390 case BFD_RELOC_XTENSA_OP2:
391 TRACE ("BFD_RELOC_XTENSA_OP2");
392 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
393
394 case BFD_RELOC_XTENSA_ASM_EXPAND:
395 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
396 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
397
398 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
399 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
400 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
401
402 case BFD_RELOC_VTABLE_INHERIT:
403 TRACE ("BFD_RELOC_VTABLE_INHERIT");
404 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
405
406 case BFD_RELOC_VTABLE_ENTRY:
407 TRACE ("BFD_RELOC_VTABLE_ENTRY");
408 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
409
410 case BFD_RELOC_XTENSA_TLSDESC_FN:
411 TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN");
412 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ];
413
414 case BFD_RELOC_XTENSA_TLSDESC_ARG:
415 TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG");
416 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ];
417
418 case BFD_RELOC_XTENSA_TLS_DTPOFF:
419 TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF");
420 return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ];
421
422 case BFD_RELOC_XTENSA_TLS_TPOFF:
423 TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF");
424 return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ];
425
426 case BFD_RELOC_XTENSA_TLS_FUNC:
427 TRACE ("BFD_RELOC_XTENSA_TLS_FUNC");
428 return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ];
429
430 case BFD_RELOC_XTENSA_TLS_ARG:
431 TRACE ("BFD_RELOC_XTENSA_TLS_ARG");
432 return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ];
433
434 case BFD_RELOC_XTENSA_TLS_CALL:
435 TRACE ("BFD_RELOC_XTENSA_TLS_CALL");
436 return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ];
437
438 default:
439 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
440 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
441 {
442 unsigned n = (R_XTENSA_SLOT0_OP +
443 (code - BFD_RELOC_XTENSA_SLOT0_OP));
444 return &elf_howto_table[n];
445 }
446
447 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
448 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
449 {
450 unsigned n = (R_XTENSA_SLOT0_ALT +
451 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
452 return &elf_howto_table[n];
453 }
454
455 break;
456 }
457
458 /* xgettext:c-format */
459 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd, (int) code);
460 bfd_set_error (bfd_error_bad_value);
461 TRACE ("Unknown");
462 return NULL;
463 }
464
465 static reloc_howto_type *
466 elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
467 const char *r_name)
468 {
469 unsigned int i;
470
471 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
472 if (elf_howto_table[i].name != NULL
473 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
474 return &elf_howto_table[i];
475
476 return NULL;
477 }
478
479
480 /* Given an ELF "rela" relocation, find the corresponding howto and record
481 it in the BFD internal arelent representation of the relocation. */
482
483 static bfd_boolean
484 elf_xtensa_info_to_howto_rela (bfd *abfd,
485 arelent *cache_ptr,
486 Elf_Internal_Rela *dst)
487 {
488 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
489
490 if (r_type >= (unsigned int) R_XTENSA_max)
491 {
492 /* xgettext:c-format */
493 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
494 abfd, r_type);
495 bfd_set_error (bfd_error_bad_value);
496 return FALSE;
497 }
498 cache_ptr->howto = &elf_howto_table[r_type];
499 return TRUE;
500 }
501
502 \f
503 /* Functions for the Xtensa ELF linker. */
504
505 /* The name of the dynamic interpreter. This is put in the .interp
506 section. */
507
508 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
509
510 /* The size in bytes of an entry in the procedure linkage table.
511 (This does _not_ include the space for the literals associated with
512 the PLT entry.) */
513
514 #define PLT_ENTRY_SIZE 16
515
516 /* For _really_ large PLTs, we may need to alternate between literals
517 and code to keep the literals within the 256K range of the L32R
518 instructions in the code. It's unlikely that anyone would ever need
519 such a big PLT, but an arbitrary limit on the PLT size would be bad.
520 Thus, we split the PLT into chunks. Since there's very little
521 overhead (2 extra literals) for each chunk, the chunk size is kept
522 small so that the code for handling multiple chunks get used and
523 tested regularly. With 254 entries, there are 1K of literals for
524 each chunk, and that seems like a nice round number. */
525
526 #define PLT_ENTRIES_PER_CHUNK 254
527
528 /* PLT entries are actually used as stub functions for lazy symbol
529 resolution. Once the symbol is resolved, the stub function is never
530 invoked. Note: the 32-byte frame size used here cannot be changed
531 without a corresponding change in the runtime linker. */
532
533 static const bfd_byte elf_xtensa_be_plt_entry[][PLT_ENTRY_SIZE] =
534 {
535 {
536 0x6c, 0x10, 0x04, /* entry sp, 32 */
537 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
538 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
539 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
540 0x0a, 0x80, 0x00, /* jx a8 */
541 0 /* unused */
542 },
543 {
544 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
545 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
546 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
547 0x0a, 0x80, 0x00, /* jx a8 */
548 0 /* unused */
549 }
550 };
551
552 static const bfd_byte elf_xtensa_le_plt_entry[][PLT_ENTRY_SIZE] =
553 {
554 {
555 0x36, 0x41, 0x00, /* entry sp, 32 */
556 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
557 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
558 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
559 0xa0, 0x08, 0x00, /* jx a8 */
560 0 /* unused */
561 },
562 {
563 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
564 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
565 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
566 0xa0, 0x08, 0x00, /* jx a8 */
567 0 /* unused */
568 }
569 };
570
571 /* The size of the thread control block. */
572 #define TCB_SIZE 8
573
574 struct elf_xtensa_link_hash_entry
575 {
576 struct elf_link_hash_entry elf;
577
578 bfd_signed_vma tlsfunc_refcount;
579
580 #define GOT_UNKNOWN 0
581 #define GOT_NORMAL 1
582 #define GOT_TLS_GD 2 /* global or local dynamic */
583 #define GOT_TLS_IE 4 /* initial or local exec */
584 #define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE)
585 unsigned char tls_type;
586 };
587
588 #define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent))
589
590 struct elf_xtensa_obj_tdata
591 {
592 struct elf_obj_tdata root;
593
594 /* tls_type for each local got entry. */
595 char *local_got_tls_type;
596
597 bfd_signed_vma *local_tlsfunc_refcounts;
598 };
599
600 #define elf_xtensa_tdata(abfd) \
601 ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any)
602
603 #define elf_xtensa_local_got_tls_type(abfd) \
604 (elf_xtensa_tdata (abfd)->local_got_tls_type)
605
606 #define elf_xtensa_local_tlsfunc_refcounts(abfd) \
607 (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts)
608
609 #define is_xtensa_elf(bfd) \
610 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
611 && elf_tdata (bfd) != NULL \
612 && elf_object_id (bfd) == XTENSA_ELF_DATA)
613
614 static bfd_boolean
615 elf_xtensa_mkobject (bfd *abfd)
616 {
617 return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata),
618 XTENSA_ELF_DATA);
619 }
620
621 /* Xtensa ELF linker hash table. */
622
623 struct elf_xtensa_link_hash_table
624 {
625 struct elf_link_hash_table elf;
626
627 /* Short-cuts to get to dynamic linker sections. */
628 asection *sgotloc;
629 asection *spltlittbl;
630
631 /* Total count of PLT relocations seen during check_relocs.
632 The actual PLT code must be split into multiple sections and all
633 the sections have to be created before size_dynamic_sections,
634 where we figure out the exact number of PLT entries that will be
635 needed. It is OK if this count is an overestimate, e.g., some
636 relocations may be removed by GC. */
637 int plt_reloc_count;
638
639 struct elf_xtensa_link_hash_entry *tlsbase;
640 };
641
642 /* Get the Xtensa ELF linker hash table from a link_info structure. */
643
644 #define elf_xtensa_hash_table(p) \
645 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
646 == XTENSA_ELF_DATA ? ((struct elf_xtensa_link_hash_table *) ((p)->hash)) : NULL)
647
648 /* Create an entry in an Xtensa ELF linker hash table. */
649
650 static struct bfd_hash_entry *
651 elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry,
652 struct bfd_hash_table *table,
653 const char *string)
654 {
655 /* Allocate the structure if it has not already been allocated by a
656 subclass. */
657 if (entry == NULL)
658 {
659 entry = bfd_hash_allocate (table,
660 sizeof (struct elf_xtensa_link_hash_entry));
661 if (entry == NULL)
662 return entry;
663 }
664
665 /* Call the allocation method of the superclass. */
666 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
667 if (entry != NULL)
668 {
669 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry);
670 eh->tlsfunc_refcount = 0;
671 eh->tls_type = GOT_UNKNOWN;
672 }
673
674 return entry;
675 }
676
677 /* Create an Xtensa ELF linker hash table. */
678
679 static struct bfd_link_hash_table *
680 elf_xtensa_link_hash_table_create (bfd *abfd)
681 {
682 struct elf_link_hash_entry *tlsbase;
683 struct elf_xtensa_link_hash_table *ret;
684 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
685
686 ret = bfd_zmalloc (amt);
687 if (ret == NULL)
688 return NULL;
689
690 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
691 elf_xtensa_link_hash_newfunc,
692 sizeof (struct elf_xtensa_link_hash_entry),
693 XTENSA_ELF_DATA))
694 {
695 free (ret);
696 return NULL;
697 }
698
699 /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking
700 for it later. */
701 tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_",
702 TRUE, FALSE, FALSE);
703 tlsbase->root.type = bfd_link_hash_new;
704 tlsbase->root.u.undef.abfd = NULL;
705 tlsbase->non_elf = 0;
706 ret->tlsbase = elf_xtensa_hash_entry (tlsbase);
707 ret->tlsbase->tls_type = GOT_UNKNOWN;
708
709 return &ret->elf.root;
710 }
711
712 /* Copy the extra info we tack onto an elf_link_hash_entry. */
713
714 static void
715 elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info,
716 struct elf_link_hash_entry *dir,
717 struct elf_link_hash_entry *ind)
718 {
719 struct elf_xtensa_link_hash_entry *edir, *eind;
720
721 edir = elf_xtensa_hash_entry (dir);
722 eind = elf_xtensa_hash_entry (ind);
723
724 if (ind->root.type == bfd_link_hash_indirect)
725 {
726 edir->tlsfunc_refcount += eind->tlsfunc_refcount;
727 eind->tlsfunc_refcount = 0;
728
729 if (dir->got.refcount <= 0)
730 {
731 edir->tls_type = eind->tls_type;
732 eind->tls_type = GOT_UNKNOWN;
733 }
734 }
735
736 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
737 }
738
739 static inline bfd_boolean
740 elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
741 struct bfd_link_info *info)
742 {
743 /* Check if we should do dynamic things to this symbol. The
744 "ignore_protected" argument need not be set, because Xtensa code
745 does not require special handling of STV_PROTECTED to make function
746 pointer comparisons work properly. The PLT addresses are never
747 used for function pointers. */
748
749 return _bfd_elf_dynamic_symbol_p (h, info, 0);
750 }
751
752 \f
753 static int
754 property_table_compare (const void *ap, const void *bp)
755 {
756 const property_table_entry *a = (const property_table_entry *) ap;
757 const property_table_entry *b = (const property_table_entry *) bp;
758
759 if (a->address == b->address)
760 {
761 if (a->size != b->size)
762 return (a->size - b->size);
763
764 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
765 return ((b->flags & XTENSA_PROP_ALIGN)
766 - (a->flags & XTENSA_PROP_ALIGN));
767
768 if ((a->flags & XTENSA_PROP_ALIGN)
769 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
770 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
771 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
772 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
773
774 if ((a->flags & XTENSA_PROP_UNREACHABLE)
775 != (b->flags & XTENSA_PROP_UNREACHABLE))
776 return ((b->flags & XTENSA_PROP_UNREACHABLE)
777 - (a->flags & XTENSA_PROP_UNREACHABLE));
778
779 return (a->flags - b->flags);
780 }
781
782 return (a->address - b->address);
783 }
784
785
786 static int
787 property_table_matches (const void *ap, const void *bp)
788 {
789 const property_table_entry *a = (const property_table_entry *) ap;
790 const property_table_entry *b = (const property_table_entry *) bp;
791
792 /* Check if one entry overlaps with the other. */
793 if ((b->address >= a->address && b->address < (a->address + a->size))
794 || (a->address >= b->address && a->address < (b->address + b->size)))
795 return 0;
796
797 return (a->address - b->address);
798 }
799
800
801 /* Get the literal table or property table entries for the given
802 section. Sets TABLE_P and returns the number of entries. On
803 error, returns a negative value. */
804
805 int
806 xtensa_read_table_entries (bfd *abfd,
807 asection *section,
808 property_table_entry **table_p,
809 const char *sec_name,
810 bfd_boolean output_addr)
811 {
812 asection *table_section;
813 bfd_size_type table_size = 0;
814 bfd_byte *table_data;
815 property_table_entry *blocks;
816 int blk, block_count;
817 bfd_size_type num_records;
818 Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
819 bfd_vma section_addr, off;
820 flagword predef_flags;
821 bfd_size_type table_entry_size, section_limit;
822
823 if (!section
824 || !(section->flags & SEC_ALLOC)
825 || (section->flags & SEC_DEBUGGING))
826 {
827 *table_p = NULL;
828 return 0;
829 }
830
831 table_section = xtensa_get_property_section (section, sec_name);
832 if (table_section)
833 table_size = table_section->size;
834
835 if (table_size == 0)
836 {
837 *table_p = NULL;
838 return 0;
839 }
840
841 predef_flags = xtensa_get_property_predef_flags (table_section);
842 table_entry_size = 12;
843 if (predef_flags)
844 table_entry_size -= 4;
845
846 num_records = table_size / table_entry_size;
847 table_data = retrieve_contents (abfd, table_section, TRUE);
848 blocks = (property_table_entry *)
849 bfd_malloc (num_records * sizeof (property_table_entry));
850 block_count = 0;
851
852 if (output_addr)
853 section_addr = section->output_section->vma + section->output_offset;
854 else
855 section_addr = section->vma;
856
857 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
858 if (internal_relocs && !table_section->reloc_done)
859 {
860 qsort (internal_relocs, table_section->reloc_count,
861 sizeof (Elf_Internal_Rela), internal_reloc_compare);
862 irel = internal_relocs;
863 }
864 else
865 irel = NULL;
866
867 section_limit = bfd_get_section_limit (abfd, section);
868 rel_end = internal_relocs + table_section->reloc_count;
869
870 for (off = 0; off < table_size; off += table_entry_size)
871 {
872 bfd_vma address = bfd_get_32 (abfd, table_data + off);
873
874 /* Skip any relocations before the current offset. This should help
875 avoid confusion caused by unexpected relocations for the preceding
876 table entry. */
877 while (irel &&
878 (irel->r_offset < off
879 || (irel->r_offset == off
880 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
881 {
882 irel += 1;
883 if (irel >= rel_end)
884 irel = 0;
885 }
886
887 if (irel && irel->r_offset == off)
888 {
889 bfd_vma sym_off;
890 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
891 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
892
893 if (get_elf_r_symndx_section (abfd, r_symndx) != section)
894 continue;
895
896 sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
897 BFD_ASSERT (sym_off == 0);
898 address += (section_addr + sym_off + irel->r_addend);
899 }
900 else
901 {
902 if (address < section_addr
903 || address >= section_addr + section_limit)
904 continue;
905 }
906
907 blocks[block_count].address = address;
908 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
909 if (predef_flags)
910 blocks[block_count].flags = predef_flags;
911 else
912 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
913 block_count++;
914 }
915
916 release_contents (table_section, table_data);
917 release_internal_relocs (table_section, internal_relocs);
918
919 if (block_count > 0)
920 {
921 /* Now sort them into address order for easy reference. */
922 qsort (blocks, block_count, sizeof (property_table_entry),
923 property_table_compare);
924
925 /* Check that the table contents are valid. Problems may occur,
926 for example, if an unrelocated object file is stripped. */
927 for (blk = 1; blk < block_count; blk++)
928 {
929 /* The only circumstance where two entries may legitimately
930 have the same address is when one of them is a zero-size
931 placeholder to mark a place where fill can be inserted.
932 The zero-size entry should come first. */
933 if (blocks[blk - 1].address == blocks[blk].address &&
934 blocks[blk - 1].size != 0)
935 {
936 /* xgettext:c-format */
937 _bfd_error_handler (_("%pB(%pA): invalid property table"),
938 abfd, section);
939 bfd_set_error (bfd_error_bad_value);
940 free (blocks);
941 return -1;
942 }
943 }
944 }
945
946 *table_p = blocks;
947 return block_count;
948 }
949
950
951 static property_table_entry *
952 elf_xtensa_find_property_entry (property_table_entry *property_table,
953 int property_table_size,
954 bfd_vma addr)
955 {
956 property_table_entry entry;
957 property_table_entry *rv;
958
959 if (property_table_size == 0)
960 return NULL;
961
962 entry.address = addr;
963 entry.size = 1;
964 entry.flags = 0;
965
966 rv = bsearch (&entry, property_table, property_table_size,
967 sizeof (property_table_entry), property_table_matches);
968 return rv;
969 }
970
971
972 static bfd_boolean
973 elf_xtensa_in_literal_pool (property_table_entry *lit_table,
974 int lit_table_size,
975 bfd_vma addr)
976 {
977 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
978 return TRUE;
979
980 return FALSE;
981 }
982
983 \f
984 /* Look through the relocs for a section during the first phase, and
985 calculate needed space in the dynamic reloc sections. */
986
987 static bfd_boolean
988 elf_xtensa_check_relocs (bfd *abfd,
989 struct bfd_link_info *info,
990 asection *sec,
991 const Elf_Internal_Rela *relocs)
992 {
993 struct elf_xtensa_link_hash_table *htab;
994 Elf_Internal_Shdr *symtab_hdr;
995 struct elf_link_hash_entry **sym_hashes;
996 const Elf_Internal_Rela *rel;
997 const Elf_Internal_Rela *rel_end;
998
999 if (bfd_link_relocatable (info) || (sec->flags & SEC_ALLOC) == 0)
1000 return TRUE;
1001
1002 BFD_ASSERT (is_xtensa_elf (abfd));
1003
1004 htab = elf_xtensa_hash_table (info);
1005 if (htab == NULL)
1006 return FALSE;
1007
1008 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1009 sym_hashes = elf_sym_hashes (abfd);
1010
1011 rel_end = relocs + sec->reloc_count;
1012 for (rel = relocs; rel < rel_end; rel++)
1013 {
1014 unsigned int r_type;
1015 unsigned r_symndx;
1016 struct elf_link_hash_entry *h = NULL;
1017 struct elf_xtensa_link_hash_entry *eh;
1018 int tls_type, old_tls_type;
1019 bfd_boolean is_got = FALSE;
1020 bfd_boolean is_plt = FALSE;
1021 bfd_boolean is_tlsfunc = FALSE;
1022
1023 r_symndx = ELF32_R_SYM (rel->r_info);
1024 r_type = ELF32_R_TYPE (rel->r_info);
1025
1026 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1027 {
1028 /* xgettext:c-format */
1029 _bfd_error_handler (_("%pB: bad symbol index: %d"),
1030 abfd, r_symndx);
1031 return FALSE;
1032 }
1033
1034 if (r_symndx >= symtab_hdr->sh_info)
1035 {
1036 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1037 while (h->root.type == bfd_link_hash_indirect
1038 || h->root.type == bfd_link_hash_warning)
1039 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1040 }
1041 eh = elf_xtensa_hash_entry (h);
1042
1043 switch (r_type)
1044 {
1045 case R_XTENSA_TLSDESC_FN:
1046 if (bfd_link_pic (info))
1047 {
1048 tls_type = GOT_TLS_GD;
1049 is_got = TRUE;
1050 is_tlsfunc = TRUE;
1051 }
1052 else
1053 tls_type = GOT_TLS_IE;
1054 break;
1055
1056 case R_XTENSA_TLSDESC_ARG:
1057 if (bfd_link_pic (info))
1058 {
1059 tls_type = GOT_TLS_GD;
1060 is_got = TRUE;
1061 }
1062 else
1063 {
1064 tls_type = GOT_TLS_IE;
1065 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1066 is_got = TRUE;
1067 }
1068 break;
1069
1070 case R_XTENSA_TLS_DTPOFF:
1071 if (bfd_link_pic (info))
1072 tls_type = GOT_TLS_GD;
1073 else
1074 tls_type = GOT_TLS_IE;
1075 break;
1076
1077 case R_XTENSA_TLS_TPOFF:
1078 tls_type = GOT_TLS_IE;
1079 if (bfd_link_pic (info))
1080 info->flags |= DF_STATIC_TLS;
1081 if (bfd_link_pic (info) || h)
1082 is_got = TRUE;
1083 break;
1084
1085 case R_XTENSA_32:
1086 tls_type = GOT_NORMAL;
1087 is_got = TRUE;
1088 break;
1089
1090 case R_XTENSA_PLT:
1091 tls_type = GOT_NORMAL;
1092 is_plt = TRUE;
1093 break;
1094
1095 case R_XTENSA_GNU_VTINHERIT:
1096 /* This relocation describes the C++ object vtable hierarchy.
1097 Reconstruct it for later use during GC. */
1098 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1099 return FALSE;
1100 continue;
1101
1102 case R_XTENSA_GNU_VTENTRY:
1103 /* This relocation describes which C++ vtable entries are actually
1104 used. Record for later use during GC. */
1105 BFD_ASSERT (h != NULL);
1106 if (h != NULL
1107 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1108 return FALSE;
1109 continue;
1110
1111 default:
1112 /* Nothing to do for any other relocations. */
1113 continue;
1114 }
1115
1116 if (h)
1117 {
1118 if (is_plt)
1119 {
1120 if (h->plt.refcount <= 0)
1121 {
1122 h->needs_plt = 1;
1123 h->plt.refcount = 1;
1124 }
1125 else
1126 h->plt.refcount += 1;
1127
1128 /* Keep track of the total PLT relocation count even if we
1129 don't yet know whether the dynamic sections will be
1130 created. */
1131 htab->plt_reloc_count += 1;
1132
1133 if (elf_hash_table (info)->dynamic_sections_created)
1134 {
1135 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1136 return FALSE;
1137 }
1138 }
1139 else if (is_got)
1140 {
1141 if (h->got.refcount <= 0)
1142 h->got.refcount = 1;
1143 else
1144 h->got.refcount += 1;
1145 }
1146
1147 if (is_tlsfunc)
1148 eh->tlsfunc_refcount += 1;
1149
1150 old_tls_type = eh->tls_type;
1151 }
1152 else
1153 {
1154 /* Allocate storage the first time. */
1155 if (elf_local_got_refcounts (abfd) == NULL)
1156 {
1157 bfd_size_type size = symtab_hdr->sh_info;
1158 void *mem;
1159
1160 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1161 if (mem == NULL)
1162 return FALSE;
1163 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem;
1164
1165 mem = bfd_zalloc (abfd, size);
1166 if (mem == NULL)
1167 return FALSE;
1168 elf_xtensa_local_got_tls_type (abfd) = (char *) mem;
1169
1170 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1171 if (mem == NULL)
1172 return FALSE;
1173 elf_xtensa_local_tlsfunc_refcounts (abfd)
1174 = (bfd_signed_vma *) mem;
1175 }
1176
1177 /* This is a global offset table entry for a local symbol. */
1178 if (is_got || is_plt)
1179 elf_local_got_refcounts (abfd) [r_symndx] += 1;
1180
1181 if (is_tlsfunc)
1182 elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1;
1183
1184 old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx];
1185 }
1186
1187 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
1188 tls_type |= old_tls_type;
1189 /* If a TLS symbol is accessed using IE at least once,
1190 there is no point to use a dynamic model for it. */
1191 else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1192 && ((old_tls_type & GOT_TLS_GD) == 0
1193 || (tls_type & GOT_TLS_IE) == 0))
1194 {
1195 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD))
1196 tls_type = old_tls_type;
1197 else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD))
1198 tls_type |= old_tls_type;
1199 else
1200 {
1201 _bfd_error_handler
1202 /* xgettext:c-format */
1203 (_("%pB: `%s' accessed both as normal and thread local symbol"),
1204 abfd,
1205 h ? h->root.root.string : "<local>");
1206 return FALSE;
1207 }
1208 }
1209
1210 if (old_tls_type != tls_type)
1211 {
1212 if (eh)
1213 eh->tls_type = tls_type;
1214 else
1215 elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type;
1216 }
1217 }
1218
1219 return TRUE;
1220 }
1221
1222
1223 static void
1224 elf_xtensa_make_sym_local (struct bfd_link_info *info,
1225 struct elf_link_hash_entry *h)
1226 {
1227 if (bfd_link_pic (info))
1228 {
1229 if (h->plt.refcount > 0)
1230 {
1231 /* For shared objects, there's no need for PLT entries for local
1232 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
1233 if (h->got.refcount < 0)
1234 h->got.refcount = 0;
1235 h->got.refcount += h->plt.refcount;
1236 h->plt.refcount = 0;
1237 }
1238 }
1239 else
1240 {
1241 /* Don't need any dynamic relocations at all. */
1242 h->plt.refcount = 0;
1243 h->got.refcount = 0;
1244 }
1245 }
1246
1247
1248 static void
1249 elf_xtensa_hide_symbol (struct bfd_link_info *info,
1250 struct elf_link_hash_entry *h,
1251 bfd_boolean force_local)
1252 {
1253 /* For a shared link, move the plt refcount to the got refcount to leave
1254 space for RELATIVE relocs. */
1255 elf_xtensa_make_sym_local (info, h);
1256
1257 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
1258 }
1259
1260
1261 /* Return the section that should be marked against GC for a given
1262 relocation. */
1263
1264 static asection *
1265 elf_xtensa_gc_mark_hook (asection *sec,
1266 struct bfd_link_info *info,
1267 Elf_Internal_Rela *rel,
1268 struct elf_link_hash_entry *h,
1269 Elf_Internal_Sym *sym)
1270 {
1271 /* Property sections are marked "KEEP" in the linker scripts, but they
1272 should not cause other sections to be marked. (This approach relies
1273 on elf_xtensa_discard_info to remove property table entries that
1274 describe discarded sections. Alternatively, it might be more
1275 efficient to avoid using "KEEP" in the linker scripts and instead use
1276 the gc_mark_extra_sections hook to mark only the property sections
1277 that describe marked sections. That alternative does not work well
1278 with the current property table sections, which do not correspond
1279 one-to-one with the sections they describe, but that should be fixed
1280 someday.) */
1281 if (xtensa_is_property_section (sec))
1282 return NULL;
1283
1284 if (h != NULL)
1285 switch (ELF32_R_TYPE (rel->r_info))
1286 {
1287 case R_XTENSA_GNU_VTINHERIT:
1288 case R_XTENSA_GNU_VTENTRY:
1289 return NULL;
1290 }
1291
1292 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1293 }
1294
1295
1296 /* Create all the dynamic sections. */
1297
1298 static bfd_boolean
1299 elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
1300 {
1301 struct elf_xtensa_link_hash_table *htab;
1302 flagword flags, noalloc_flags;
1303
1304 htab = elf_xtensa_hash_table (info);
1305 if (htab == NULL)
1306 return FALSE;
1307
1308 /* First do all the standard stuff. */
1309 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1310 return FALSE;
1311
1312 /* Create any extra PLT sections in case check_relocs has already
1313 been called on all the non-dynamic input files. */
1314 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1315 return FALSE;
1316
1317 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1318 | SEC_LINKER_CREATED | SEC_READONLY);
1319 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
1320
1321 /* Mark the ".got.plt" section READONLY. */
1322 if (htab->elf.sgotplt == NULL
1323 || ! bfd_set_section_flags (dynobj, htab->elf.sgotplt, flags))
1324 return FALSE;
1325
1326 /* Create ".got.loc" (literal tables for use by dynamic linker). */
1327 htab->sgotloc = bfd_make_section_anyway_with_flags (dynobj, ".got.loc",
1328 flags);
1329 if (htab->sgotloc == NULL
1330 || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
1331 return FALSE;
1332
1333 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
1334 htab->spltlittbl = bfd_make_section_anyway_with_flags (dynobj, ".xt.lit.plt",
1335 noalloc_flags);
1336 if (htab->spltlittbl == NULL
1337 || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
1338 return FALSE;
1339
1340 return TRUE;
1341 }
1342
1343
1344 static bfd_boolean
1345 add_extra_plt_sections (struct bfd_link_info *info, int count)
1346 {
1347 bfd *dynobj = elf_hash_table (info)->dynobj;
1348 int chunk;
1349
1350 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1351 ".got.plt" sections. */
1352 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1353 {
1354 char *sname;
1355 flagword flags;
1356 asection *s;
1357
1358 /* Stop when we find a section has already been created. */
1359 if (elf_xtensa_get_plt_section (info, chunk))
1360 break;
1361
1362 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1363 | SEC_LINKER_CREATED | SEC_READONLY);
1364
1365 sname = (char *) bfd_malloc (10);
1366 sprintf (sname, ".plt.%u", chunk);
1367 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags | SEC_CODE);
1368 if (s == NULL
1369 || ! bfd_set_section_alignment (dynobj, s, 2))
1370 return FALSE;
1371
1372 sname = (char *) bfd_malloc (14);
1373 sprintf (sname, ".got.plt.%u", chunk);
1374 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags);
1375 if (s == NULL
1376 || ! bfd_set_section_alignment (dynobj, s, 2))
1377 return FALSE;
1378 }
1379
1380 return TRUE;
1381 }
1382
1383
1384 /* Adjust a symbol defined by a dynamic object and referenced by a
1385 regular object. The current definition is in some section of the
1386 dynamic object, but we're not including those sections. We have to
1387 change the definition to something the rest of the link can
1388 understand. */
1389
1390 static bfd_boolean
1391 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1392 struct elf_link_hash_entry *h)
1393 {
1394 /* If this is a weak symbol, and there is a real definition, the
1395 processor independent code will have arranged for us to see the
1396 real definition first, and we can just use the same value. */
1397 if (h->is_weakalias)
1398 {
1399 struct elf_link_hash_entry *def = weakdef (h);
1400 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
1401 h->root.u.def.section = def->root.u.def.section;
1402 h->root.u.def.value = def->root.u.def.value;
1403 return TRUE;
1404 }
1405
1406 /* This is a reference to a symbol defined by a dynamic object. The
1407 reference must go through the GOT, so there's no need for COPY relocs,
1408 .dynbss, etc. */
1409
1410 return TRUE;
1411 }
1412
1413
1414 static bfd_boolean
1415 elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
1416 {
1417 struct bfd_link_info *info;
1418 struct elf_xtensa_link_hash_table *htab;
1419 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h);
1420
1421 if (h->root.type == bfd_link_hash_indirect)
1422 return TRUE;
1423
1424 info = (struct bfd_link_info *) arg;
1425 htab = elf_xtensa_hash_table (info);
1426 if (htab == NULL)
1427 return FALSE;
1428
1429 /* If we saw any use of an IE model for this symbol, we can then optimize
1430 away GOT entries for any TLSDESC_FN relocs. */
1431 if ((eh->tls_type & GOT_TLS_IE) != 0)
1432 {
1433 BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount);
1434 h->got.refcount -= eh->tlsfunc_refcount;
1435 }
1436
1437 if (! elf_xtensa_dynamic_symbol_p (h, info))
1438 elf_xtensa_make_sym_local (info, h);
1439
1440 if (! elf_xtensa_dynamic_symbol_p (h, info)
1441 && h->root.type == bfd_link_hash_undefweak)
1442 return TRUE;
1443
1444 if (h->plt.refcount > 0)
1445 htab->elf.srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
1446
1447 if (h->got.refcount > 0)
1448 htab->elf.srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
1449
1450 return TRUE;
1451 }
1452
1453
1454 static void
1455 elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
1456 {
1457 struct elf_xtensa_link_hash_table *htab;
1458 bfd *i;
1459
1460 htab = elf_xtensa_hash_table (info);
1461 if (htab == NULL)
1462 return;
1463
1464 for (i = info->input_bfds; i; i = i->link.next)
1465 {
1466 bfd_signed_vma *local_got_refcounts;
1467 bfd_size_type j, cnt;
1468 Elf_Internal_Shdr *symtab_hdr;
1469
1470 local_got_refcounts = elf_local_got_refcounts (i);
1471 if (!local_got_refcounts)
1472 continue;
1473
1474 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1475 cnt = symtab_hdr->sh_info;
1476
1477 for (j = 0; j < cnt; ++j)
1478 {
1479 /* If we saw any use of an IE model for this symbol, we can
1480 then optimize away GOT entries for any TLSDESC_FN relocs. */
1481 if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0)
1482 {
1483 bfd_signed_vma *tlsfunc_refcount
1484 = &elf_xtensa_local_tlsfunc_refcounts (i) [j];
1485 BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount);
1486 local_got_refcounts[j] -= *tlsfunc_refcount;
1487 }
1488
1489 if (local_got_refcounts[j] > 0)
1490 htab->elf.srelgot->size += (local_got_refcounts[j]
1491 * sizeof (Elf32_External_Rela));
1492 }
1493 }
1494 }
1495
1496
1497 /* Set the sizes of the dynamic sections. */
1498
1499 static bfd_boolean
1500 elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1501 struct bfd_link_info *info)
1502 {
1503 struct elf_xtensa_link_hash_table *htab;
1504 bfd *dynobj, *abfd;
1505 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
1506 bfd_boolean relplt, relgot;
1507 int plt_entries, plt_chunks, chunk;
1508
1509 plt_entries = 0;
1510 plt_chunks = 0;
1511
1512 htab = elf_xtensa_hash_table (info);
1513 if (htab == NULL)
1514 return FALSE;
1515
1516 dynobj = elf_hash_table (info)->dynobj;
1517 if (dynobj == NULL)
1518 abort ();
1519 srelgot = htab->elf.srelgot;
1520 srelplt = htab->elf.srelplt;
1521
1522 if (elf_hash_table (info)->dynamic_sections_created)
1523 {
1524 BFD_ASSERT (htab->elf.srelgot != NULL
1525 && htab->elf.srelplt != NULL
1526 && htab->elf.sgot != NULL
1527 && htab->spltlittbl != NULL
1528 && htab->sgotloc != NULL);
1529
1530 /* Set the contents of the .interp section to the interpreter. */
1531 if (bfd_link_executable (info) && !info->nointerp)
1532 {
1533 s = bfd_get_linker_section (dynobj, ".interp");
1534 if (s == NULL)
1535 abort ();
1536 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1537 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1538 }
1539
1540 /* Allocate room for one word in ".got". */
1541 htab->elf.sgot->size = 4;
1542
1543 /* Allocate space in ".rela.got" for literals that reference global
1544 symbols and space in ".rela.plt" for literals that have PLT
1545 entries. */
1546 elf_link_hash_traverse (elf_hash_table (info),
1547 elf_xtensa_allocate_dynrelocs,
1548 (void *) info);
1549
1550 /* If we are generating a shared object, we also need space in
1551 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1552 reference local symbols. */
1553 if (bfd_link_pic (info))
1554 elf_xtensa_allocate_local_got_size (info);
1555
1556 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1557 each PLT entry, we need the PLT code plus a 4-byte literal.
1558 For each chunk of ".plt", we also need two more 4-byte
1559 literals, two corresponding entries in ".rela.got", and an
1560 8-byte entry in ".xt.lit.plt". */
1561 spltlittbl = htab->spltlittbl;
1562 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
1563 plt_chunks =
1564 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1565
1566 /* Iterate over all the PLT chunks, including any extra sections
1567 created earlier because the initial count of PLT relocations
1568 was an overestimate. */
1569 for (chunk = 0;
1570 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
1571 chunk++)
1572 {
1573 int chunk_entries;
1574
1575 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1576 BFD_ASSERT (sgotplt != NULL);
1577
1578 if (chunk < plt_chunks - 1)
1579 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1580 else if (chunk == plt_chunks - 1)
1581 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1582 else
1583 chunk_entries = 0;
1584
1585 if (chunk_entries != 0)
1586 {
1587 sgotplt->size = 4 * (chunk_entries + 2);
1588 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1589 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1590 spltlittbl->size += 8;
1591 }
1592 else
1593 {
1594 sgotplt->size = 0;
1595 splt->size = 0;
1596 }
1597 }
1598
1599 /* Allocate space in ".got.loc" to match the total size of all the
1600 literal tables. */
1601 sgotloc = htab->sgotloc;
1602 sgotloc->size = spltlittbl->size;
1603 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
1604 {
1605 if (abfd->flags & DYNAMIC)
1606 continue;
1607 for (s = abfd->sections; s != NULL; s = s->next)
1608 {
1609 if (! discarded_section (s)
1610 && xtensa_is_littable_section (s)
1611 && s != spltlittbl)
1612 sgotloc->size += s->size;
1613 }
1614 }
1615 }
1616
1617 /* Allocate memory for dynamic sections. */
1618 relplt = FALSE;
1619 relgot = FALSE;
1620 for (s = dynobj->sections; s != NULL; s = s->next)
1621 {
1622 const char *name;
1623
1624 if ((s->flags & SEC_LINKER_CREATED) == 0)
1625 continue;
1626
1627 /* It's OK to base decisions on the section name, because none
1628 of the dynobj section names depend upon the input files. */
1629 name = bfd_get_section_name (dynobj, s);
1630
1631 if (CONST_STRNEQ (name, ".rela"))
1632 {
1633 if (s->size != 0)
1634 {
1635 if (strcmp (name, ".rela.plt") == 0)
1636 relplt = TRUE;
1637 else if (strcmp (name, ".rela.got") == 0)
1638 relgot = TRUE;
1639
1640 /* We use the reloc_count field as a counter if we need
1641 to copy relocs into the output file. */
1642 s->reloc_count = 0;
1643 }
1644 }
1645 else if (! CONST_STRNEQ (name, ".plt.")
1646 && ! CONST_STRNEQ (name, ".got.plt.")
1647 && strcmp (name, ".got") != 0
1648 && strcmp (name, ".plt") != 0
1649 && strcmp (name, ".got.plt") != 0
1650 && strcmp (name, ".xt.lit.plt") != 0
1651 && strcmp (name, ".got.loc") != 0)
1652 {
1653 /* It's not one of our sections, so don't allocate space. */
1654 continue;
1655 }
1656
1657 if (s->size == 0)
1658 {
1659 /* If we don't need this section, strip it from the output
1660 file. We must create the ".plt*" and ".got.plt*"
1661 sections in create_dynamic_sections and/or check_relocs
1662 based on a conservative estimate of the PLT relocation
1663 count, because the sections must be created before the
1664 linker maps input sections to output sections. The
1665 linker does that before size_dynamic_sections, where we
1666 compute the exact size of the PLT, so there may be more
1667 of these sections than are actually needed. */
1668 s->flags |= SEC_EXCLUDE;
1669 }
1670 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
1671 {
1672 /* Allocate memory for the section contents. */
1673 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1674 if (s->contents == NULL)
1675 return FALSE;
1676 }
1677 }
1678
1679 if (elf_hash_table (info)->dynamic_sections_created)
1680 {
1681 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1682 known until finish_dynamic_sections, but we need to get the relocs
1683 in place before they are sorted. */
1684 for (chunk = 0; chunk < plt_chunks; chunk++)
1685 {
1686 Elf_Internal_Rela irela;
1687 bfd_byte *loc;
1688
1689 irela.r_offset = 0;
1690 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1691 irela.r_addend = 0;
1692
1693 loc = (srelgot->contents
1694 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1695 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1696 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1697 loc + sizeof (Elf32_External_Rela));
1698 srelgot->reloc_count += 2;
1699 }
1700
1701 /* Add some entries to the .dynamic section. We fill in the
1702 values later, in elf_xtensa_finish_dynamic_sections, but we
1703 must add the entries now so that we get the correct size for
1704 the .dynamic section. The DT_DEBUG entry is filled in by the
1705 dynamic linker and used by the debugger. */
1706 #define add_dynamic_entry(TAG, VAL) \
1707 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1708
1709 if (bfd_link_executable (info))
1710 {
1711 if (!add_dynamic_entry (DT_DEBUG, 0))
1712 return FALSE;
1713 }
1714
1715 if (relplt)
1716 {
1717 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1718 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1719 || !add_dynamic_entry (DT_JMPREL, 0))
1720 return FALSE;
1721 }
1722
1723 if (relgot)
1724 {
1725 if (!add_dynamic_entry (DT_RELA, 0)
1726 || !add_dynamic_entry (DT_RELASZ, 0)
1727 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1728 return FALSE;
1729 }
1730
1731 if (!add_dynamic_entry (DT_PLTGOT, 0)
1732 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1733 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1734 return FALSE;
1735 }
1736 #undef add_dynamic_entry
1737
1738 return TRUE;
1739 }
1740
1741 static bfd_boolean
1742 elf_xtensa_always_size_sections (bfd *output_bfd,
1743 struct bfd_link_info *info)
1744 {
1745 struct elf_xtensa_link_hash_table *htab;
1746 asection *tls_sec;
1747
1748 htab = elf_xtensa_hash_table (info);
1749 if (htab == NULL)
1750 return FALSE;
1751
1752 tls_sec = htab->elf.tls_sec;
1753
1754 if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0)
1755 {
1756 struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf;
1757 struct bfd_link_hash_entry *bh = &tlsbase->root;
1758 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
1759
1760 tlsbase->type = STT_TLS;
1761 if (!(_bfd_generic_link_add_one_symbol
1762 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
1763 tls_sec, 0, NULL, FALSE,
1764 bed->collect, &bh)))
1765 return FALSE;
1766 tlsbase->def_regular = 1;
1767 tlsbase->other = STV_HIDDEN;
1768 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
1769 }
1770
1771 return TRUE;
1772 }
1773
1774 \f
1775 /* Return the base VMA address which should be subtracted from real addresses
1776 when resolving @dtpoff relocation.
1777 This is PT_TLS segment p_vaddr. */
1778
1779 static bfd_vma
1780 dtpoff_base (struct bfd_link_info *info)
1781 {
1782 /* If tls_sec is NULL, we should have signalled an error already. */
1783 if (elf_hash_table (info)->tls_sec == NULL)
1784 return 0;
1785 return elf_hash_table (info)->tls_sec->vma;
1786 }
1787
1788 /* Return the relocation value for @tpoff relocation
1789 if STT_TLS virtual address is ADDRESS. */
1790
1791 static bfd_vma
1792 tpoff (struct bfd_link_info *info, bfd_vma address)
1793 {
1794 struct elf_link_hash_table *htab = elf_hash_table (info);
1795 bfd_vma base;
1796
1797 /* If tls_sec is NULL, we should have signalled an error already. */
1798 if (htab->tls_sec == NULL)
1799 return 0;
1800 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
1801 return address - htab->tls_sec->vma + base;
1802 }
1803
1804 /* Perform the specified relocation. The instruction at (contents + address)
1805 is modified to set one operand to represent the value in "relocation". The
1806 operand position is determined by the relocation type recorded in the
1807 howto. */
1808
1809 #define CALL_SEGMENT_BITS (30)
1810 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
1811
1812 static bfd_reloc_status_type
1813 elf_xtensa_do_reloc (reloc_howto_type *howto,
1814 bfd *abfd,
1815 asection *input_section,
1816 bfd_vma relocation,
1817 bfd_byte *contents,
1818 bfd_vma address,
1819 bfd_boolean is_weak_undef,
1820 char **error_message)
1821 {
1822 xtensa_format fmt;
1823 xtensa_opcode opcode;
1824 xtensa_isa isa = xtensa_default_isa;
1825 static xtensa_insnbuf ibuff = NULL;
1826 static xtensa_insnbuf sbuff = NULL;
1827 bfd_vma self_address;
1828 bfd_size_type input_size;
1829 int opnd, slot;
1830 uint32 newval;
1831
1832 if (!ibuff)
1833 {
1834 ibuff = xtensa_insnbuf_alloc (isa);
1835 sbuff = xtensa_insnbuf_alloc (isa);
1836 }
1837
1838 input_size = bfd_get_section_limit (abfd, input_section);
1839
1840 /* Calculate the PC address for this instruction. */
1841 self_address = (input_section->output_section->vma
1842 + input_section->output_offset
1843 + address);
1844
1845 switch (howto->type)
1846 {
1847 case R_XTENSA_NONE:
1848 case R_XTENSA_DIFF8:
1849 case R_XTENSA_DIFF16:
1850 case R_XTENSA_DIFF32:
1851 case R_XTENSA_TLS_FUNC:
1852 case R_XTENSA_TLS_ARG:
1853 case R_XTENSA_TLS_CALL:
1854 return bfd_reloc_ok;
1855
1856 case R_XTENSA_ASM_EXPAND:
1857 if (!is_weak_undef)
1858 {
1859 /* Check for windowed CALL across a 1GB boundary. */
1860 opcode = get_expanded_call_opcode (contents + address,
1861 input_size - address, 0);
1862 if (is_windowed_call_opcode (opcode))
1863 {
1864 if ((self_address >> CALL_SEGMENT_BITS)
1865 != (relocation >> CALL_SEGMENT_BITS))
1866 {
1867 *error_message = "windowed longcall crosses 1GB boundary; "
1868 "return may fail";
1869 return bfd_reloc_dangerous;
1870 }
1871 }
1872 }
1873 return bfd_reloc_ok;
1874
1875 case R_XTENSA_ASM_SIMPLIFY:
1876 {
1877 /* Convert the L32R/CALLX to CALL. */
1878 bfd_reloc_status_type retval =
1879 elf_xtensa_do_asm_simplify (contents, address, input_size,
1880 error_message);
1881 if (retval != bfd_reloc_ok)
1882 return bfd_reloc_dangerous;
1883
1884 /* The CALL needs to be relocated. Continue below for that part. */
1885 address += 3;
1886 self_address += 3;
1887 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
1888 }
1889 break;
1890
1891 case R_XTENSA_32:
1892 {
1893 bfd_vma x;
1894 x = bfd_get_32 (abfd, contents + address);
1895 x = x + relocation;
1896 bfd_put_32 (abfd, x, contents + address);
1897 }
1898 return bfd_reloc_ok;
1899
1900 case R_XTENSA_32_PCREL:
1901 bfd_put_32 (abfd, relocation - self_address, contents + address);
1902 return bfd_reloc_ok;
1903
1904 case R_XTENSA_PLT:
1905 case R_XTENSA_TLSDESC_FN:
1906 case R_XTENSA_TLSDESC_ARG:
1907 case R_XTENSA_TLS_DTPOFF:
1908 case R_XTENSA_TLS_TPOFF:
1909 bfd_put_32 (abfd, relocation, contents + address);
1910 return bfd_reloc_ok;
1911 }
1912
1913 /* Only instruction slot-specific relocations handled below.... */
1914 slot = get_relocation_slot (howto->type);
1915 if (slot == XTENSA_UNDEFINED)
1916 {
1917 *error_message = "unexpected relocation";
1918 return bfd_reloc_dangerous;
1919 }
1920
1921 /* Read the instruction into a buffer and decode the opcode. */
1922 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
1923 input_size - address);
1924 fmt = xtensa_format_decode (isa, ibuff);
1925 if (fmt == XTENSA_UNDEFINED)
1926 {
1927 *error_message = "cannot decode instruction format";
1928 return bfd_reloc_dangerous;
1929 }
1930
1931 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
1932
1933 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
1934 if (opcode == XTENSA_UNDEFINED)
1935 {
1936 *error_message = "cannot decode instruction opcode";
1937 return bfd_reloc_dangerous;
1938 }
1939
1940 /* Check for opcode-specific "alternate" relocations. */
1941 if (is_alt_relocation (howto->type))
1942 {
1943 if (opcode == get_l32r_opcode ())
1944 {
1945 /* Handle the special-case of non-PC-relative L32R instructions. */
1946 bfd *output_bfd = input_section->output_section->owner;
1947 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
1948 if (!lit4_sec)
1949 {
1950 *error_message = "relocation references missing .lit4 section";
1951 return bfd_reloc_dangerous;
1952 }
1953 self_address = ((lit4_sec->vma & ~0xfff)
1954 + 0x40000 - 3); /* -3 to compensate for do_reloc */
1955 newval = relocation;
1956 opnd = 1;
1957 }
1958 else if (opcode == get_const16_opcode ())
1959 {
1960 /* ALT used for high 16 bits.
1961 Ignore 32-bit overflow. */
1962 newval = (relocation >> 16) & 0xffff;
1963 opnd = 1;
1964 }
1965 else
1966 {
1967 /* No other "alternate" relocations currently defined. */
1968 *error_message = "unexpected relocation";
1969 return bfd_reloc_dangerous;
1970 }
1971 }
1972 else /* Not an "alternate" relocation.... */
1973 {
1974 if (opcode == get_const16_opcode ())
1975 {
1976 newval = relocation & 0xffff;
1977 opnd = 1;
1978 }
1979 else
1980 {
1981 /* ...normal PC-relative relocation.... */
1982
1983 /* Determine which operand is being relocated. */
1984 opnd = get_relocation_opnd (opcode, howto->type);
1985 if (opnd == XTENSA_UNDEFINED)
1986 {
1987 *error_message = "unexpected relocation";
1988 return bfd_reloc_dangerous;
1989 }
1990
1991 if (!howto->pc_relative)
1992 {
1993 *error_message = "expected PC-relative relocation";
1994 return bfd_reloc_dangerous;
1995 }
1996
1997 newval = relocation;
1998 }
1999 }
2000
2001 /* Apply the relocation. */
2002 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
2003 || xtensa_operand_encode (isa, opcode, opnd, &newval)
2004 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
2005 sbuff, newval))
2006 {
2007 const char *opname = xtensa_opcode_name (isa, opcode);
2008 const char *msg;
2009
2010 msg = "cannot encode";
2011 if (is_direct_call_opcode (opcode))
2012 {
2013 if ((relocation & 0x3) != 0)
2014 msg = "misaligned call target";
2015 else
2016 msg = "call target out of range";
2017 }
2018 else if (opcode == get_l32r_opcode ())
2019 {
2020 if ((relocation & 0x3) != 0)
2021 msg = "misaligned literal target";
2022 else if (is_alt_relocation (howto->type))
2023 msg = "literal target out of range (too many literals)";
2024 else if (self_address > relocation)
2025 msg = "literal target out of range (try using text-section-literals)";
2026 else
2027 msg = "literal placed after use";
2028 }
2029
2030 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
2031 return bfd_reloc_dangerous;
2032 }
2033
2034 /* Check for calls across 1GB boundaries. */
2035 if (is_direct_call_opcode (opcode)
2036 && is_windowed_call_opcode (opcode))
2037 {
2038 if ((self_address >> CALL_SEGMENT_BITS)
2039 != (relocation >> CALL_SEGMENT_BITS))
2040 {
2041 *error_message =
2042 "windowed call crosses 1GB boundary; return may fail";
2043 return bfd_reloc_dangerous;
2044 }
2045 }
2046
2047 /* Write the modified instruction back out of the buffer. */
2048 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
2049 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
2050 input_size - address);
2051 return bfd_reloc_ok;
2052 }
2053
2054
2055 static char *
2056 vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
2057 {
2058 /* To reduce the size of the memory leak,
2059 we only use a single message buffer. */
2060 static bfd_size_type alloc_size = 0;
2061 static char *message = NULL;
2062 bfd_size_type orig_len, len = 0;
2063 bfd_boolean is_append;
2064 va_list ap;
2065
2066 va_start (ap, arglen);
2067
2068 is_append = (origmsg == message);
2069
2070 orig_len = strlen (origmsg);
2071 len = orig_len + strlen (fmt) + arglen + 20;
2072 if (len > alloc_size)
2073 {
2074 message = (char *) bfd_realloc_or_free (message, len);
2075 alloc_size = len;
2076 }
2077 if (message != NULL)
2078 {
2079 if (!is_append)
2080 memcpy (message, origmsg, orig_len);
2081 vsprintf (message + orig_len, fmt, ap);
2082 }
2083 va_end (ap);
2084 return message;
2085 }
2086
2087
2088 /* This function is registered as the "special_function" in the
2089 Xtensa howto for handling simplify operations.
2090 bfd_perform_relocation / bfd_install_relocation use it to
2091 perform (install) the specified relocation. Since this replaces the code
2092 in bfd_perform_relocation, it is basically an Xtensa-specific,
2093 stripped-down version of bfd_perform_relocation. */
2094
2095 static bfd_reloc_status_type
2096 bfd_elf_xtensa_reloc (bfd *abfd,
2097 arelent *reloc_entry,
2098 asymbol *symbol,
2099 void *data,
2100 asection *input_section,
2101 bfd *output_bfd,
2102 char **error_message)
2103 {
2104 bfd_vma relocation;
2105 bfd_reloc_status_type flag;
2106 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2107 bfd_vma output_base = 0;
2108 reloc_howto_type *howto = reloc_entry->howto;
2109 asection *reloc_target_output_section;
2110 bfd_boolean is_weak_undef;
2111
2112 if (!xtensa_default_isa)
2113 xtensa_default_isa = xtensa_isa_init (0, 0);
2114
2115 /* ELF relocs are against symbols. If we are producing relocatable
2116 output, and the reloc is against an external symbol, the resulting
2117 reloc will also be against the same symbol. In such a case, we
2118 don't want to change anything about the way the reloc is handled,
2119 since it will all be done at final link time. This test is similar
2120 to what bfd_elf_generic_reloc does except that it lets relocs with
2121 howto->partial_inplace go through even if the addend is non-zero.
2122 (The real problem is that partial_inplace is set for XTENSA_32
2123 relocs to begin with, but that's a long story and there's little we
2124 can do about it now....) */
2125
2126 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
2127 {
2128 reloc_entry->address += input_section->output_offset;
2129 return bfd_reloc_ok;
2130 }
2131
2132 /* Is the address of the relocation really within the section? */
2133 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2134 return bfd_reloc_outofrange;
2135
2136 /* Work out which section the relocation is targeted at and the
2137 initial relocation command value. */
2138
2139 /* Get symbol value. (Common symbols are special.) */
2140 if (bfd_is_com_section (symbol->section))
2141 relocation = 0;
2142 else
2143 relocation = symbol->value;
2144
2145 reloc_target_output_section = symbol->section->output_section;
2146
2147 /* Convert input-section-relative symbol value to absolute. */
2148 if ((output_bfd && !howto->partial_inplace)
2149 || reloc_target_output_section == NULL)
2150 output_base = 0;
2151 else
2152 output_base = reloc_target_output_section->vma;
2153
2154 relocation += output_base + symbol->section->output_offset;
2155
2156 /* Add in supplied addend. */
2157 relocation += reloc_entry->addend;
2158
2159 /* Here the variable relocation holds the final address of the
2160 symbol we are relocating against, plus any addend. */
2161 if (output_bfd)
2162 {
2163 if (!howto->partial_inplace)
2164 {
2165 /* This is a partial relocation, and we want to apply the relocation
2166 to the reloc entry rather than the raw data. Everything except
2167 relocations against section symbols has already been handled
2168 above. */
2169
2170 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
2171 reloc_entry->addend = relocation;
2172 reloc_entry->address += input_section->output_offset;
2173 return bfd_reloc_ok;
2174 }
2175 else
2176 {
2177 reloc_entry->address += input_section->output_offset;
2178 reloc_entry->addend = 0;
2179 }
2180 }
2181
2182 is_weak_undef = (bfd_is_und_section (symbol->section)
2183 && (symbol->flags & BSF_WEAK) != 0);
2184 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
2185 (bfd_byte *) data, (bfd_vma) octets,
2186 is_weak_undef, error_message);
2187
2188 if (flag == bfd_reloc_dangerous)
2189 {
2190 /* Add the symbol name to the error message. */
2191 if (! *error_message)
2192 *error_message = "";
2193 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
2194 strlen (symbol->name) + 17,
2195 symbol->name,
2196 (unsigned long) reloc_entry->addend);
2197 }
2198
2199 return flag;
2200 }
2201
2202
2203 /* Set up an entry in the procedure linkage table. */
2204
2205 static bfd_vma
2206 elf_xtensa_create_plt_entry (struct bfd_link_info *info,
2207 bfd *output_bfd,
2208 unsigned reloc_index)
2209 {
2210 asection *splt, *sgotplt;
2211 bfd_vma plt_base, got_base;
2212 bfd_vma code_offset, lit_offset, abi_offset;
2213 int chunk;
2214
2215 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
2216 splt = elf_xtensa_get_plt_section (info, chunk);
2217 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
2218 BFD_ASSERT (splt != NULL && sgotplt != NULL);
2219
2220 plt_base = splt->output_section->vma + splt->output_offset;
2221 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
2222
2223 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
2224 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
2225
2226 /* Fill in the literal entry. This is the offset of the dynamic
2227 relocation entry. */
2228 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
2229 sgotplt->contents + lit_offset);
2230
2231 /* Fill in the entry in the procedure linkage table. */
2232 memcpy (splt->contents + code_offset,
2233 (bfd_big_endian (output_bfd)
2234 ? elf_xtensa_be_plt_entry[XSHAL_ABI != XTHAL_ABI_WINDOWED]
2235 : elf_xtensa_le_plt_entry[XSHAL_ABI != XTHAL_ABI_WINDOWED]),
2236 PLT_ENTRY_SIZE);
2237 abi_offset = XSHAL_ABI == XTHAL_ABI_WINDOWED ? 3 : 0;
2238 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
2239 plt_base + code_offset + abi_offset),
2240 splt->contents + code_offset + abi_offset + 1);
2241 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
2242 plt_base + code_offset + abi_offset + 3),
2243 splt->contents + code_offset + abi_offset + 4);
2244 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
2245 plt_base + code_offset + abi_offset + 6),
2246 splt->contents + code_offset + abi_offset + 7);
2247
2248 return plt_base + code_offset;
2249 }
2250
2251
2252 static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *);
2253
2254 static bfd_boolean
2255 replace_tls_insn (Elf_Internal_Rela *rel,
2256 bfd *abfd,
2257 asection *input_section,
2258 bfd_byte *contents,
2259 bfd_boolean is_ld_model,
2260 char **error_message)
2261 {
2262 static xtensa_insnbuf ibuff = NULL;
2263 static xtensa_insnbuf sbuff = NULL;
2264 xtensa_isa isa = xtensa_default_isa;
2265 xtensa_format fmt;
2266 xtensa_opcode old_op, new_op;
2267 bfd_size_type input_size;
2268 int r_type;
2269 unsigned dest_reg, src_reg;
2270
2271 if (ibuff == NULL)
2272 {
2273 ibuff = xtensa_insnbuf_alloc (isa);
2274 sbuff = xtensa_insnbuf_alloc (isa);
2275 }
2276
2277 input_size = bfd_get_section_limit (abfd, input_section);
2278
2279 /* Read the instruction into a buffer and decode the opcode. */
2280 xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset,
2281 input_size - rel->r_offset);
2282 fmt = xtensa_format_decode (isa, ibuff);
2283 if (fmt == XTENSA_UNDEFINED)
2284 {
2285 *error_message = "cannot decode instruction format";
2286 return FALSE;
2287 }
2288
2289 BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1);
2290 xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff);
2291
2292 old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff);
2293 if (old_op == XTENSA_UNDEFINED)
2294 {
2295 *error_message = "cannot decode instruction opcode";
2296 return FALSE;
2297 }
2298
2299 r_type = ELF32_R_TYPE (rel->r_info);
2300 switch (r_type)
2301 {
2302 case R_XTENSA_TLS_FUNC:
2303 case R_XTENSA_TLS_ARG:
2304 if (old_op != get_l32r_opcode ()
2305 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2306 sbuff, &dest_reg) != 0)
2307 {
2308 *error_message = "cannot extract L32R destination for TLS access";
2309 return FALSE;
2310 }
2311 break;
2312
2313 case R_XTENSA_TLS_CALL:
2314 if (! get_indirect_call_dest_reg (old_op, &dest_reg)
2315 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2316 sbuff, &src_reg) != 0)
2317 {
2318 *error_message = "cannot extract CALLXn operands for TLS access";
2319 return FALSE;
2320 }
2321 break;
2322
2323 default:
2324 abort ();
2325 }
2326
2327 if (is_ld_model)
2328 {
2329 switch (r_type)
2330 {
2331 case R_XTENSA_TLS_FUNC:
2332 case R_XTENSA_TLS_ARG:
2333 /* Change the instruction to a NOP (or "OR a1, a1, a1" for older
2334 versions of Xtensa). */
2335 new_op = xtensa_opcode_lookup (isa, "nop");
2336 if (new_op == XTENSA_UNDEFINED)
2337 {
2338 new_op = xtensa_opcode_lookup (isa, "or");
2339 if (new_op == XTENSA_UNDEFINED
2340 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2341 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2342 sbuff, 1) != 0
2343 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2344 sbuff, 1) != 0
2345 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2346 sbuff, 1) != 0)
2347 {
2348 *error_message = "cannot encode OR for TLS access";
2349 return FALSE;
2350 }
2351 }
2352 else
2353 {
2354 if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0)
2355 {
2356 *error_message = "cannot encode NOP for TLS access";
2357 return FALSE;
2358 }
2359 }
2360 break;
2361
2362 case R_XTENSA_TLS_CALL:
2363 /* Read THREADPTR into the CALLX's return value register. */
2364 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2365 if (new_op == XTENSA_UNDEFINED
2366 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2367 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2368 sbuff, dest_reg + 2) != 0)
2369 {
2370 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2371 return FALSE;
2372 }
2373 break;
2374 }
2375 }
2376 else
2377 {
2378 switch (r_type)
2379 {
2380 case R_XTENSA_TLS_FUNC:
2381 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2382 if (new_op == XTENSA_UNDEFINED
2383 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2384 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2385 sbuff, dest_reg) != 0)
2386 {
2387 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2388 return FALSE;
2389 }
2390 break;
2391
2392 case R_XTENSA_TLS_ARG:
2393 /* Nothing to do. Keep the original L32R instruction. */
2394 return TRUE;
2395
2396 case R_XTENSA_TLS_CALL:
2397 /* Add the CALLX's src register (holding the THREADPTR value)
2398 to the first argument register (holding the offset) and put
2399 the result in the CALLX's return value register. */
2400 new_op = xtensa_opcode_lookup (isa, "add");
2401 if (new_op == XTENSA_UNDEFINED
2402 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2403 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2404 sbuff, dest_reg + 2) != 0
2405 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2406 sbuff, dest_reg + 2) != 0
2407 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2408 sbuff, src_reg) != 0)
2409 {
2410 *error_message = "cannot encode ADD for TLS access";
2411 return FALSE;
2412 }
2413 break;
2414 }
2415 }
2416
2417 xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff);
2418 xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset,
2419 input_size - rel->r_offset);
2420
2421 return TRUE;
2422 }
2423
2424
2425 #define IS_XTENSA_TLS_RELOC(R_TYPE) \
2426 ((R_TYPE) == R_XTENSA_TLSDESC_FN \
2427 || (R_TYPE) == R_XTENSA_TLSDESC_ARG \
2428 || (R_TYPE) == R_XTENSA_TLS_DTPOFF \
2429 || (R_TYPE) == R_XTENSA_TLS_TPOFF \
2430 || (R_TYPE) == R_XTENSA_TLS_FUNC \
2431 || (R_TYPE) == R_XTENSA_TLS_ARG \
2432 || (R_TYPE) == R_XTENSA_TLS_CALL)
2433
2434 /* Relocate an Xtensa ELF section. This is invoked by the linker for
2435 both relocatable and final links. */
2436
2437 static bfd_boolean
2438 elf_xtensa_relocate_section (bfd *output_bfd,
2439 struct bfd_link_info *info,
2440 bfd *input_bfd,
2441 asection *input_section,
2442 bfd_byte *contents,
2443 Elf_Internal_Rela *relocs,
2444 Elf_Internal_Sym *local_syms,
2445 asection **local_sections)
2446 {
2447 struct elf_xtensa_link_hash_table *htab;
2448 Elf_Internal_Shdr *symtab_hdr;
2449 Elf_Internal_Rela *rel;
2450 Elf_Internal_Rela *relend;
2451 struct elf_link_hash_entry **sym_hashes;
2452 property_table_entry *lit_table = 0;
2453 int ltblsize = 0;
2454 char *local_got_tls_types;
2455 char *error_message = NULL;
2456 bfd_size_type input_size;
2457 int tls_type;
2458
2459 if (!xtensa_default_isa)
2460 xtensa_default_isa = xtensa_isa_init (0, 0);
2461
2462 if (!is_xtensa_elf (input_bfd))
2463 {
2464 bfd_set_error (bfd_error_wrong_format);
2465 return FALSE;
2466 }
2467
2468 htab = elf_xtensa_hash_table (info);
2469 if (htab == NULL)
2470 return FALSE;
2471
2472 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2473 sym_hashes = elf_sym_hashes (input_bfd);
2474 local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd);
2475
2476 if (elf_hash_table (info)->dynamic_sections_created)
2477 {
2478 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
2479 &lit_table, XTENSA_LIT_SEC_NAME,
2480 TRUE);
2481 if (ltblsize < 0)
2482 return FALSE;
2483 }
2484
2485 input_size = bfd_get_section_limit (input_bfd, input_section);
2486
2487 rel = relocs;
2488 relend = relocs + input_section->reloc_count;
2489 for (; rel < relend; rel++)
2490 {
2491 int r_type;
2492 reloc_howto_type *howto;
2493 unsigned long r_symndx;
2494 struct elf_link_hash_entry *h;
2495 Elf_Internal_Sym *sym;
2496 char sym_type;
2497 const char *name;
2498 asection *sec;
2499 bfd_vma relocation;
2500 bfd_reloc_status_type r;
2501 bfd_boolean is_weak_undef;
2502 bfd_boolean unresolved_reloc;
2503 bfd_boolean warned;
2504 bfd_boolean dynamic_symbol;
2505
2506 r_type = ELF32_R_TYPE (rel->r_info);
2507 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2508 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2509 continue;
2510
2511 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2512 {
2513 bfd_set_error (bfd_error_bad_value);
2514 return FALSE;
2515 }
2516 howto = &elf_howto_table[r_type];
2517
2518 r_symndx = ELF32_R_SYM (rel->r_info);
2519
2520 h = NULL;
2521 sym = NULL;
2522 sec = NULL;
2523 is_weak_undef = FALSE;
2524 unresolved_reloc = FALSE;
2525 warned = FALSE;
2526
2527 if (howto->partial_inplace && !bfd_link_relocatable (info))
2528 {
2529 /* Because R_XTENSA_32 was made partial_inplace to fix some
2530 problems with DWARF info in partial links, there may be
2531 an addend stored in the contents. Take it out of there
2532 and move it back into the addend field of the reloc. */
2533 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2534 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2535 }
2536
2537 if (r_symndx < symtab_hdr->sh_info)
2538 {
2539 sym = local_syms + r_symndx;
2540 sym_type = ELF32_ST_TYPE (sym->st_info);
2541 sec = local_sections[r_symndx];
2542 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2543 }
2544 else
2545 {
2546 bfd_boolean ignored;
2547
2548 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2549 r_symndx, symtab_hdr, sym_hashes,
2550 h, sec, relocation,
2551 unresolved_reloc, warned, ignored);
2552
2553 if (relocation == 0
2554 && !unresolved_reloc
2555 && h->root.type == bfd_link_hash_undefweak)
2556 is_weak_undef = TRUE;
2557
2558 sym_type = h->type;
2559 }
2560
2561 if (sec != NULL && discarded_section (sec))
2562 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
2563 rel, 1, relend, howto, 0, contents);
2564
2565 if (bfd_link_relocatable (info))
2566 {
2567 bfd_vma dest_addr;
2568 asection * sym_sec = get_elf_r_symndx_section (input_bfd, r_symndx);
2569
2570 /* This is a relocatable link.
2571 1) If the reloc is against a section symbol, adjust
2572 according to the output section.
2573 2) If there is a new target for this relocation,
2574 the new target will be in the same output section.
2575 We adjust the relocation by the output section
2576 difference. */
2577
2578 if (relaxing_section)
2579 {
2580 /* Check if this references a section in another input file. */
2581 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2582 contents))
2583 return FALSE;
2584 }
2585
2586 dest_addr = sym_sec->output_section->vma + sym_sec->output_offset
2587 + get_elf_r_symndx_offset (input_bfd, r_symndx) + rel->r_addend;
2588
2589 if (r_type == R_XTENSA_ASM_SIMPLIFY)
2590 {
2591 error_message = NULL;
2592 /* Convert ASM_SIMPLIFY into the simpler relocation
2593 so that they never escape a relaxing link. */
2594 r = contract_asm_expansion (contents, input_size, rel,
2595 &error_message);
2596 if (r != bfd_reloc_ok)
2597 (*info->callbacks->reloc_dangerous)
2598 (info, error_message,
2599 input_bfd, input_section, rel->r_offset);
2600
2601 r_type = ELF32_R_TYPE (rel->r_info);
2602 }
2603
2604 /* This is a relocatable link, so we don't have to change
2605 anything unless the reloc is against a section symbol,
2606 in which case we have to adjust according to where the
2607 section symbol winds up in the output section. */
2608 if (r_symndx < symtab_hdr->sh_info)
2609 {
2610 sym = local_syms + r_symndx;
2611 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2612 {
2613 sec = local_sections[r_symndx];
2614 rel->r_addend += sec->output_offset + sym->st_value;
2615 }
2616 }
2617
2618 /* If there is an addend with a partial_inplace howto,
2619 then move the addend to the contents. This is a hack
2620 to work around problems with DWARF in relocatable links
2621 with some previous version of BFD. Now we can't easily get
2622 rid of the hack without breaking backward compatibility.... */
2623 r = bfd_reloc_ok;
2624 howto = &elf_howto_table[r_type];
2625 if (howto->partial_inplace && rel->r_addend)
2626 {
2627 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2628 rel->r_addend, contents,
2629 rel->r_offset, FALSE,
2630 &error_message);
2631 rel->r_addend = 0;
2632 }
2633 else
2634 {
2635 /* Put the correct bits in the target instruction, even
2636 though the relocation will still be present in the output
2637 file. This makes disassembly clearer, as well as
2638 allowing loadable kernel modules to work without needing
2639 relocations on anything other than calls and l32r's. */
2640
2641 /* If it is not in the same section, there is nothing we can do. */
2642 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP &&
2643 sym_sec->output_section == input_section->output_section)
2644 {
2645 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2646 dest_addr, contents,
2647 rel->r_offset, FALSE,
2648 &error_message);
2649 }
2650 }
2651 if (r != bfd_reloc_ok)
2652 (*info->callbacks->reloc_dangerous)
2653 (info, error_message,
2654 input_bfd, input_section, rel->r_offset);
2655
2656 /* Done with work for relocatable link; continue with next reloc. */
2657 continue;
2658 }
2659
2660 /* This is a final link. */
2661
2662 if (relaxing_section)
2663 {
2664 /* Check if this references a section in another input file. */
2665 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2666 &relocation);
2667 }
2668
2669 /* Sanity check the address. */
2670 if (rel->r_offset >= input_size
2671 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2672 {
2673 _bfd_error_handler
2674 /* xgettext:c-format */
2675 (_("%pB(%pA+%#" PRIx64 "): "
2676 "relocation offset out of range (size=%#" PRIx64 ")"),
2677 input_bfd, input_section, (uint64_t) rel->r_offset,
2678 (uint64_t) input_size);
2679 bfd_set_error (bfd_error_bad_value);
2680 return FALSE;
2681 }
2682
2683 if (h != NULL)
2684 name = h->root.root.string;
2685 else
2686 {
2687 name = (bfd_elf_string_from_elf_section
2688 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2689 if (name == NULL || *name == '\0')
2690 name = bfd_section_name (input_bfd, sec);
2691 }
2692
2693 if (r_symndx != STN_UNDEF
2694 && r_type != R_XTENSA_NONE
2695 && (h == NULL
2696 || h->root.type == bfd_link_hash_defined
2697 || h->root.type == bfd_link_hash_defweak)
2698 && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS))
2699 {
2700 _bfd_error_handler
2701 ((sym_type == STT_TLS
2702 /* xgettext:c-format */
2703 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
2704 /* xgettext:c-format */
2705 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
2706 input_bfd,
2707 input_section,
2708 (uint64_t) rel->r_offset,
2709 howto->name,
2710 name);
2711 }
2712
2713 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
2714
2715 tls_type = GOT_UNKNOWN;
2716 if (h)
2717 tls_type = elf_xtensa_hash_entry (h)->tls_type;
2718 else if (local_got_tls_types)
2719 tls_type = local_got_tls_types [r_symndx];
2720
2721 switch (r_type)
2722 {
2723 case R_XTENSA_32:
2724 case R_XTENSA_PLT:
2725 if (elf_hash_table (info)->dynamic_sections_created
2726 && (input_section->flags & SEC_ALLOC) != 0
2727 && (dynamic_symbol || bfd_link_pic (info)))
2728 {
2729 Elf_Internal_Rela outrel;
2730 bfd_byte *loc;
2731 asection *srel;
2732
2733 if (dynamic_symbol && r_type == R_XTENSA_PLT)
2734 srel = htab->elf.srelplt;
2735 else
2736 srel = htab->elf.srelgot;
2737
2738 BFD_ASSERT (srel != NULL);
2739
2740 outrel.r_offset =
2741 _bfd_elf_section_offset (output_bfd, info,
2742 input_section, rel->r_offset);
2743
2744 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2745 memset (&outrel, 0, sizeof outrel);
2746 else
2747 {
2748 outrel.r_offset += (input_section->output_section->vma
2749 + input_section->output_offset);
2750
2751 /* Complain if the relocation is in a read-only section
2752 and not in a literal pool. */
2753 if ((input_section->flags & SEC_READONLY) != 0
2754 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
2755 outrel.r_offset))
2756 {
2757 error_message =
2758 _("dynamic relocation in read-only section");
2759 (*info->callbacks->reloc_dangerous)
2760 (info, error_message,
2761 input_bfd, input_section, rel->r_offset);
2762 }
2763
2764 if (dynamic_symbol)
2765 {
2766 outrel.r_addend = rel->r_addend;
2767 rel->r_addend = 0;
2768
2769 if (r_type == R_XTENSA_32)
2770 {
2771 outrel.r_info =
2772 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2773 relocation = 0;
2774 }
2775 else /* r_type == R_XTENSA_PLT */
2776 {
2777 outrel.r_info =
2778 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2779
2780 /* Create the PLT entry and set the initial
2781 contents of the literal entry to the address of
2782 the PLT entry. */
2783 relocation =
2784 elf_xtensa_create_plt_entry (info, output_bfd,
2785 srel->reloc_count);
2786 }
2787 unresolved_reloc = FALSE;
2788 }
2789 else if (!is_weak_undef)
2790 {
2791 /* Generate a RELATIVE relocation. */
2792 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2793 outrel.r_addend = 0;
2794 }
2795 else
2796 {
2797 continue;
2798 }
2799 }
2800
2801 loc = (srel->contents
2802 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2803 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2804 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2805 <= srel->size);
2806 }
2807 else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
2808 {
2809 /* This should only happen for non-PIC code, which is not
2810 supposed to be used on systems with dynamic linking.
2811 Just ignore these relocations. */
2812 continue;
2813 }
2814 break;
2815
2816 case R_XTENSA_TLS_TPOFF:
2817 /* Switch to LE model for local symbols in an executable. */
2818 if (! bfd_link_pic (info) && ! dynamic_symbol)
2819 {
2820 relocation = tpoff (info, relocation);
2821 break;
2822 }
2823 /* fall through */
2824
2825 case R_XTENSA_TLSDESC_FN:
2826 case R_XTENSA_TLSDESC_ARG:
2827 {
2828 if (r_type == R_XTENSA_TLSDESC_FN)
2829 {
2830 if (! bfd_link_pic (info) || (tls_type & GOT_TLS_IE) != 0)
2831 r_type = R_XTENSA_NONE;
2832 }
2833 else if (r_type == R_XTENSA_TLSDESC_ARG)
2834 {
2835 if (bfd_link_pic (info))
2836 {
2837 if ((tls_type & GOT_TLS_IE) != 0)
2838 r_type = R_XTENSA_TLS_TPOFF;
2839 }
2840 else
2841 {
2842 r_type = R_XTENSA_TLS_TPOFF;
2843 if (! dynamic_symbol)
2844 {
2845 relocation = tpoff (info, relocation);
2846 break;
2847 }
2848 }
2849 }
2850
2851 if (r_type == R_XTENSA_NONE)
2852 /* Nothing to do here; skip to the next reloc. */
2853 continue;
2854
2855 if (! elf_hash_table (info)->dynamic_sections_created)
2856 {
2857 error_message =
2858 _("TLS relocation invalid without dynamic sections");
2859 (*info->callbacks->reloc_dangerous)
2860 (info, error_message,
2861 input_bfd, input_section, rel->r_offset);
2862 }
2863 else
2864 {
2865 Elf_Internal_Rela outrel;
2866 bfd_byte *loc;
2867 asection *srel = htab->elf.srelgot;
2868 int indx;
2869
2870 outrel.r_offset = (input_section->output_section->vma
2871 + input_section->output_offset
2872 + rel->r_offset);
2873
2874 /* Complain if the relocation is in a read-only section
2875 and not in a literal pool. */
2876 if ((input_section->flags & SEC_READONLY) != 0
2877 && ! elf_xtensa_in_literal_pool (lit_table, ltblsize,
2878 outrel.r_offset))
2879 {
2880 error_message =
2881 _("dynamic relocation in read-only section");
2882 (*info->callbacks->reloc_dangerous)
2883 (info, error_message,
2884 input_bfd, input_section, rel->r_offset);
2885 }
2886
2887 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2888 if (indx == 0)
2889 outrel.r_addend = relocation - dtpoff_base (info);
2890 else
2891 outrel.r_addend = 0;
2892 rel->r_addend = 0;
2893
2894 outrel.r_info = ELF32_R_INFO (indx, r_type);
2895 relocation = 0;
2896 unresolved_reloc = FALSE;
2897
2898 BFD_ASSERT (srel);
2899 loc = (srel->contents
2900 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2901 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2902 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2903 <= srel->size);
2904 }
2905 }
2906 break;
2907
2908 case R_XTENSA_TLS_DTPOFF:
2909 if (! bfd_link_pic (info))
2910 /* Switch from LD model to LE model. */
2911 relocation = tpoff (info, relocation);
2912 else
2913 relocation -= dtpoff_base (info);
2914 break;
2915
2916 case R_XTENSA_TLS_FUNC:
2917 case R_XTENSA_TLS_ARG:
2918 case R_XTENSA_TLS_CALL:
2919 /* Check if optimizing to IE or LE model. */
2920 if ((tls_type & GOT_TLS_IE) != 0)
2921 {
2922 bfd_boolean is_ld_model =
2923 (h && elf_xtensa_hash_entry (h) == htab->tlsbase);
2924 if (! replace_tls_insn (rel, input_bfd, input_section, contents,
2925 is_ld_model, &error_message))
2926 (*info->callbacks->reloc_dangerous)
2927 (info, error_message,
2928 input_bfd, input_section, rel->r_offset);
2929
2930 if (r_type != R_XTENSA_TLS_ARG || is_ld_model)
2931 {
2932 /* Skip subsequent relocations on the same instruction. */
2933 while (rel + 1 < relend && rel[1].r_offset == rel->r_offset)
2934 rel++;
2935 }
2936 }
2937 continue;
2938
2939 default:
2940 if (elf_hash_table (info)->dynamic_sections_created
2941 && dynamic_symbol && (is_operand_relocation (r_type)
2942 || r_type == R_XTENSA_32_PCREL))
2943 {
2944 error_message =
2945 vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
2946 strlen (name) + 2, name);
2947 (*info->callbacks->reloc_dangerous)
2948 (info, error_message, input_bfd, input_section, rel->r_offset);
2949 continue;
2950 }
2951 break;
2952 }
2953
2954 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2955 because such sections are not SEC_ALLOC and thus ld.so will
2956 not process them. */
2957 if (unresolved_reloc
2958 && !((input_section->flags & SEC_DEBUGGING) != 0
2959 && h->def_dynamic)
2960 && _bfd_elf_section_offset (output_bfd, info, input_section,
2961 rel->r_offset) != (bfd_vma) -1)
2962 {
2963 _bfd_error_handler
2964 /* xgettext:c-format */
2965 (_("%pB(%pA+%#" PRIx64 "): "
2966 "unresolvable %s relocation against symbol `%s'"),
2967 input_bfd,
2968 input_section,
2969 (uint64_t) rel->r_offset,
2970 howto->name,
2971 name);
2972 return FALSE;
2973 }
2974
2975 /* TLS optimizations may have changed r_type; update "howto". */
2976 howto = &elf_howto_table[r_type];
2977
2978 /* There's no point in calling bfd_perform_relocation here.
2979 Just go directly to our "special function". */
2980 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2981 relocation + rel->r_addend,
2982 contents, rel->r_offset, is_weak_undef,
2983 &error_message);
2984
2985 if (r != bfd_reloc_ok && !warned)
2986 {
2987 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
2988 BFD_ASSERT (error_message != NULL);
2989
2990 if (rel->r_addend == 0)
2991 error_message = vsprint_msg (error_message, ": %s",
2992 strlen (name) + 2, name);
2993 else
2994 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
2995 strlen (name) + 22,
2996 name, (int) rel->r_addend);
2997
2998 (*info->callbacks->reloc_dangerous)
2999 (info, error_message, input_bfd, input_section, rel->r_offset);
3000 }
3001 }
3002
3003 if (lit_table)
3004 free (lit_table);
3005
3006 input_section->reloc_done = TRUE;
3007
3008 return TRUE;
3009 }
3010
3011
3012 /* Finish up dynamic symbol handling. There's not much to do here since
3013 the PLT and GOT entries are all set up by relocate_section. */
3014
3015 static bfd_boolean
3016 elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
3017 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3018 struct elf_link_hash_entry *h,
3019 Elf_Internal_Sym *sym)
3020 {
3021 if (h->needs_plt && !h->def_regular)
3022 {
3023 /* Mark the symbol as undefined, rather than as defined in
3024 the .plt section. Leave the value alone. */
3025 sym->st_shndx = SHN_UNDEF;
3026 /* If the symbol is weak, we do need to clear the value.
3027 Otherwise, the PLT entry would provide a definition for
3028 the symbol even if the symbol wasn't defined anywhere,
3029 and so the symbol would never be NULL. */
3030 if (!h->ref_regular_nonweak)
3031 sym->st_value = 0;
3032 }
3033
3034 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3035 if (h == elf_hash_table (info)->hdynamic
3036 || h == elf_hash_table (info)->hgot)
3037 sym->st_shndx = SHN_ABS;
3038
3039 return TRUE;
3040 }
3041
3042
3043 /* Combine adjacent literal table entries in the output. Adjacent
3044 entries within each input section may have been removed during
3045 relaxation, but we repeat the process here, even though it's too late
3046 to shrink the output section, because it's important to minimize the
3047 number of literal table entries to reduce the start-up work for the
3048 runtime linker. Returns the number of remaining table entries or -1
3049 on error. */
3050
3051 static int
3052 elf_xtensa_combine_prop_entries (bfd *output_bfd,
3053 asection *sxtlit,
3054 asection *sgotloc)
3055 {
3056 bfd_byte *contents;
3057 property_table_entry *table;
3058 bfd_size_type section_size, sgotloc_size;
3059 bfd_vma offset;
3060 int n, m, num;
3061
3062 section_size = sxtlit->size;
3063 BFD_ASSERT (section_size % 8 == 0);
3064 num = section_size / 8;
3065
3066 sgotloc_size = sgotloc->size;
3067 if (sgotloc_size != section_size)
3068 {
3069 _bfd_error_handler
3070 (_("internal inconsistency in size of .got.loc section"));
3071 return -1;
3072 }
3073
3074 table = bfd_malloc (num * sizeof (property_table_entry));
3075 if (table == 0)
3076 return -1;
3077
3078 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
3079 propagates to the output section, where it doesn't really apply and
3080 where it breaks the following call to bfd_malloc_and_get_section. */
3081 sxtlit->flags &= ~SEC_IN_MEMORY;
3082
3083 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
3084 {
3085 if (contents != 0)
3086 free (contents);
3087 free (table);
3088 return -1;
3089 }
3090
3091 /* There should never be any relocations left at this point, so this
3092 is quite a bit easier than what is done during relaxation. */
3093
3094 /* Copy the raw contents into a property table array and sort it. */
3095 offset = 0;
3096 for (n = 0; n < num; n++)
3097 {
3098 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
3099 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
3100 offset += 8;
3101 }
3102 qsort (table, num, sizeof (property_table_entry), property_table_compare);
3103
3104 for (n = 0; n < num; n++)
3105 {
3106 bfd_boolean remove_entry = FALSE;
3107
3108 if (table[n].size == 0)
3109 remove_entry = TRUE;
3110 else if (n > 0
3111 && (table[n-1].address + table[n-1].size == table[n].address))
3112 {
3113 table[n-1].size += table[n].size;
3114 remove_entry = TRUE;
3115 }
3116
3117 if (remove_entry)
3118 {
3119 for (m = n; m < num - 1; m++)
3120 {
3121 table[m].address = table[m+1].address;
3122 table[m].size = table[m+1].size;
3123 }
3124
3125 n--;
3126 num--;
3127 }
3128 }
3129
3130 /* Copy the data back to the raw contents. */
3131 offset = 0;
3132 for (n = 0; n < num; n++)
3133 {
3134 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
3135 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
3136 offset += 8;
3137 }
3138
3139 /* Clear the removed bytes. */
3140 if ((bfd_size_type) (num * 8) < section_size)
3141 memset (&contents[num * 8], 0, section_size - num * 8);
3142
3143 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
3144 section_size))
3145 return -1;
3146
3147 /* Copy the contents to ".got.loc". */
3148 memcpy (sgotloc->contents, contents, section_size);
3149
3150 free (contents);
3151 free (table);
3152 return num;
3153 }
3154
3155
3156 /* Finish up the dynamic sections. */
3157
3158 static bfd_boolean
3159 elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
3160 struct bfd_link_info *info)
3161 {
3162 struct elf_xtensa_link_hash_table *htab;
3163 bfd *dynobj;
3164 asection *sdyn, *srelplt, *srelgot, *sgot, *sxtlit, *sgotloc;
3165 Elf32_External_Dyn *dyncon, *dynconend;
3166 int num_xtlit_entries = 0;
3167
3168 if (! elf_hash_table (info)->dynamic_sections_created)
3169 return TRUE;
3170
3171 htab = elf_xtensa_hash_table (info);
3172 if (htab == NULL)
3173 return FALSE;
3174
3175 dynobj = elf_hash_table (info)->dynobj;
3176 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3177 BFD_ASSERT (sdyn != NULL);
3178
3179 /* Set the first entry in the global offset table to the address of
3180 the dynamic section. */
3181 sgot = htab->elf.sgot;
3182 if (sgot)
3183 {
3184 BFD_ASSERT (sgot->size == 4);
3185 if (sdyn == NULL)
3186 bfd_put_32 (output_bfd, 0, sgot->contents);
3187 else
3188 bfd_put_32 (output_bfd,
3189 sdyn->output_section->vma + sdyn->output_offset,
3190 sgot->contents);
3191 }
3192
3193 srelplt = htab->elf.srelplt;
3194 srelgot = htab->elf.srelgot;
3195 if (srelplt && srelplt->size != 0)
3196 {
3197 asection *sgotplt, *spltlittbl;
3198 int chunk, plt_chunks, plt_entries;
3199 Elf_Internal_Rela irela;
3200 bfd_byte *loc;
3201 unsigned rtld_reloc;
3202
3203 spltlittbl = htab->spltlittbl;
3204 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
3205
3206 /* Find the first XTENSA_RTLD relocation. Presumably the rest
3207 of them follow immediately after.... */
3208 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
3209 {
3210 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3211 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3212 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
3213 break;
3214 }
3215 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
3216
3217 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
3218 plt_chunks =
3219 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
3220
3221 for (chunk = 0; chunk < plt_chunks; chunk++)
3222 {
3223 int chunk_entries = 0;
3224
3225 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
3226 BFD_ASSERT (sgotplt != NULL);
3227
3228 /* Emit special RTLD relocations for the first two entries in
3229 each chunk of the .got.plt section. */
3230
3231 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3232 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3233 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3234 irela.r_offset = (sgotplt->output_section->vma
3235 + sgotplt->output_offset);
3236 irela.r_addend = 1; /* tell rtld to set value to resolver function */
3237 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3238 rtld_reloc += 1;
3239 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3240
3241 /* Next literal immediately follows the first. */
3242 loc += sizeof (Elf32_External_Rela);
3243 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3244 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3245 irela.r_offset = (sgotplt->output_section->vma
3246 + sgotplt->output_offset + 4);
3247 /* Tell rtld to set value to object's link map. */
3248 irela.r_addend = 2;
3249 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3250 rtld_reloc += 1;
3251 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3252
3253 /* Fill in the literal table. */
3254 if (chunk < plt_chunks - 1)
3255 chunk_entries = PLT_ENTRIES_PER_CHUNK;
3256 else
3257 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
3258
3259 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
3260 bfd_put_32 (output_bfd,
3261 sgotplt->output_section->vma + sgotplt->output_offset,
3262 spltlittbl->contents + (chunk * 8) + 0);
3263 bfd_put_32 (output_bfd,
3264 8 + (chunk_entries * 4),
3265 spltlittbl->contents + (chunk * 8) + 4);
3266 }
3267
3268 /* The .xt.lit.plt section has just been modified. This must
3269 happen before the code below which combines adjacent literal
3270 table entries, and the .xt.lit.plt contents have to be forced to
3271 the output here. */
3272 if (! bfd_set_section_contents (output_bfd,
3273 spltlittbl->output_section,
3274 spltlittbl->contents,
3275 spltlittbl->output_offset,
3276 spltlittbl->size))
3277 return FALSE;
3278 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
3279 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
3280 }
3281
3282 /* All the dynamic relocations have been emitted at this point.
3283 Make sure the relocation sections are the correct size. */
3284 if ((srelgot && srelgot->size != (sizeof (Elf32_External_Rela)
3285 * srelgot->reloc_count))
3286 || (srelplt && srelplt->size != (sizeof (Elf32_External_Rela)
3287 * srelplt->reloc_count)))
3288 abort ();
3289
3290 /* Combine adjacent literal table entries. */
3291 BFD_ASSERT (! bfd_link_relocatable (info));
3292 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
3293 sgotloc = htab->sgotloc;
3294 BFD_ASSERT (sgotloc);
3295 if (sxtlit)
3296 {
3297 num_xtlit_entries =
3298 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
3299 if (num_xtlit_entries < 0)
3300 return FALSE;
3301 }
3302
3303 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3304 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
3305 for (; dyncon < dynconend; dyncon++)
3306 {
3307 Elf_Internal_Dyn dyn;
3308
3309 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3310
3311 switch (dyn.d_tag)
3312 {
3313 default:
3314 break;
3315
3316 case DT_XTENSA_GOT_LOC_SZ:
3317 dyn.d_un.d_val = num_xtlit_entries;
3318 break;
3319
3320 case DT_XTENSA_GOT_LOC_OFF:
3321 dyn.d_un.d_ptr = (htab->sgotloc->output_section->vma
3322 + htab->sgotloc->output_offset);
3323 break;
3324
3325 case DT_PLTGOT:
3326 dyn.d_un.d_ptr = (htab->elf.sgot->output_section->vma
3327 + htab->elf.sgot->output_offset);
3328 break;
3329
3330 case DT_JMPREL:
3331 dyn.d_un.d_ptr = (htab->elf.srelplt->output_section->vma
3332 + htab->elf.srelplt->output_offset);
3333 break;
3334
3335 case DT_PLTRELSZ:
3336 dyn.d_un.d_val = htab->elf.srelplt->size;
3337 break;
3338 }
3339
3340 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3341 }
3342
3343 return TRUE;
3344 }
3345
3346 \f
3347 /* Functions for dealing with the e_flags field. */
3348
3349 /* Merge backend specific data from an object file to the output
3350 object file when linking. */
3351
3352 static bfd_boolean
3353 elf_xtensa_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
3354 {
3355 bfd *obfd = info->output_bfd;
3356 unsigned out_mach, in_mach;
3357 flagword out_flag, in_flag;
3358
3359 /* Check if we have the same endianness. */
3360 if (!_bfd_generic_verify_endian_match (ibfd, info))
3361 return FALSE;
3362
3363 /* Don't even pretend to support mixed-format linking. */
3364 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3365 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3366 return FALSE;
3367
3368 out_flag = elf_elfheader (obfd)->e_flags;
3369 in_flag = elf_elfheader (ibfd)->e_flags;
3370
3371 out_mach = out_flag & EF_XTENSA_MACH;
3372 in_mach = in_flag & EF_XTENSA_MACH;
3373 if (out_mach != in_mach)
3374 {
3375 _bfd_error_handler
3376 /* xgettext:c-format */
3377 (_("%pB: incompatible machine type; output is 0x%x; input is 0x%x"),
3378 ibfd, out_mach, in_mach);
3379 bfd_set_error (bfd_error_wrong_format);
3380 return FALSE;
3381 }
3382
3383 if (! elf_flags_init (obfd))
3384 {
3385 elf_flags_init (obfd) = TRUE;
3386 elf_elfheader (obfd)->e_flags = in_flag;
3387
3388 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
3389 && bfd_get_arch_info (obfd)->the_default)
3390 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
3391 bfd_get_mach (ibfd));
3392
3393 return TRUE;
3394 }
3395
3396 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
3397 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
3398
3399 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
3400 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
3401
3402 return TRUE;
3403 }
3404
3405
3406 static bfd_boolean
3407 elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
3408 {
3409 BFD_ASSERT (!elf_flags_init (abfd)
3410 || elf_elfheader (abfd)->e_flags == flags);
3411
3412 elf_elfheader (abfd)->e_flags |= flags;
3413 elf_flags_init (abfd) = TRUE;
3414
3415 return TRUE;
3416 }
3417
3418
3419 static bfd_boolean
3420 elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
3421 {
3422 FILE *f = (FILE *) farg;
3423 flagword e_flags = elf_elfheader (abfd)->e_flags;
3424
3425 fprintf (f, "\nXtensa header:\n");
3426 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
3427 fprintf (f, "\nMachine = Base\n");
3428 else
3429 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
3430
3431 fprintf (f, "Insn tables = %s\n",
3432 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
3433
3434 fprintf (f, "Literal tables = %s\n",
3435 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
3436
3437 return _bfd_elf_print_private_bfd_data (abfd, farg);
3438 }
3439
3440
3441 /* Set the right machine number for an Xtensa ELF file. */
3442
3443 static bfd_boolean
3444 elf_xtensa_object_p (bfd *abfd)
3445 {
3446 int mach;
3447 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
3448
3449 switch (arch)
3450 {
3451 case E_XTENSA_MACH:
3452 mach = bfd_mach_xtensa;
3453 break;
3454 default:
3455 return FALSE;
3456 }
3457
3458 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
3459 return TRUE;
3460 }
3461
3462
3463 /* The final processing done just before writing out an Xtensa ELF object
3464 file. This gets the Xtensa architecture right based on the machine
3465 number. */
3466
3467 static void
3468 elf_xtensa_final_write_processing (bfd *abfd,
3469 bfd_boolean linker ATTRIBUTE_UNUSED)
3470 {
3471 int mach;
3472 unsigned long val;
3473
3474 switch (mach = bfd_get_mach (abfd))
3475 {
3476 case bfd_mach_xtensa:
3477 val = E_XTENSA_MACH;
3478 break;
3479 default:
3480 return;
3481 }
3482
3483 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
3484 elf_elfheader (abfd)->e_flags |= val;
3485 }
3486
3487
3488 static enum elf_reloc_type_class
3489 elf_xtensa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
3490 const asection *rel_sec ATTRIBUTE_UNUSED,
3491 const Elf_Internal_Rela *rela)
3492 {
3493 switch ((int) ELF32_R_TYPE (rela->r_info))
3494 {
3495 case R_XTENSA_RELATIVE:
3496 return reloc_class_relative;
3497 case R_XTENSA_JMP_SLOT:
3498 return reloc_class_plt;
3499 default:
3500 return reloc_class_normal;
3501 }
3502 }
3503
3504 \f
3505 static bfd_boolean
3506 elf_xtensa_discard_info_for_section (bfd *abfd,
3507 struct elf_reloc_cookie *cookie,
3508 struct bfd_link_info *info,
3509 asection *sec)
3510 {
3511 bfd_byte *contents;
3512 bfd_vma offset, actual_offset;
3513 bfd_size_type removed_bytes = 0;
3514 bfd_size_type entry_size;
3515
3516 if (sec->output_section
3517 && bfd_is_abs_section (sec->output_section))
3518 return FALSE;
3519
3520 if (xtensa_is_proptable_section (sec))
3521 entry_size = 12;
3522 else
3523 entry_size = 8;
3524
3525 if (sec->size == 0 || sec->size % entry_size != 0)
3526 return FALSE;
3527
3528 contents = retrieve_contents (abfd, sec, info->keep_memory);
3529 if (!contents)
3530 return FALSE;
3531
3532 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
3533 if (!cookie->rels)
3534 {
3535 release_contents (sec, contents);
3536 return FALSE;
3537 }
3538
3539 /* Sort the relocations. They should already be in order when
3540 relaxation is enabled, but it might not be. */
3541 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
3542 internal_reloc_compare);
3543
3544 cookie->rel = cookie->rels;
3545 cookie->relend = cookie->rels + sec->reloc_count;
3546
3547 for (offset = 0; offset < sec->size; offset += entry_size)
3548 {
3549 actual_offset = offset - removed_bytes;
3550
3551 /* The ...symbol_deleted_p function will skip over relocs but it
3552 won't adjust their offsets, so do that here. */
3553 while (cookie->rel < cookie->relend
3554 && cookie->rel->r_offset < offset)
3555 {
3556 cookie->rel->r_offset -= removed_bytes;
3557 cookie->rel++;
3558 }
3559
3560 while (cookie->rel < cookie->relend
3561 && cookie->rel->r_offset == offset)
3562 {
3563 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
3564 {
3565 /* Remove the table entry. (If the reloc type is NONE, then
3566 the entry has already been merged with another and deleted
3567 during relaxation.) */
3568 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
3569 {
3570 /* Shift the contents up. */
3571 if (offset + entry_size < sec->size)
3572 memmove (&contents[actual_offset],
3573 &contents[actual_offset + entry_size],
3574 sec->size - offset - entry_size);
3575 removed_bytes += entry_size;
3576 }
3577
3578 /* Remove this relocation. */
3579 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3580 }
3581
3582 /* Adjust the relocation offset for previous removals. This
3583 should not be done before calling ...symbol_deleted_p
3584 because it might mess up the offset comparisons there.
3585 Make sure the offset doesn't underflow in the case where
3586 the first entry is removed. */
3587 if (cookie->rel->r_offset >= removed_bytes)
3588 cookie->rel->r_offset -= removed_bytes;
3589 else
3590 cookie->rel->r_offset = 0;
3591
3592 cookie->rel++;
3593 }
3594 }
3595
3596 if (removed_bytes != 0)
3597 {
3598 /* Adjust any remaining relocs (shouldn't be any). */
3599 for (; cookie->rel < cookie->relend; cookie->rel++)
3600 {
3601 if (cookie->rel->r_offset >= removed_bytes)
3602 cookie->rel->r_offset -= removed_bytes;
3603 else
3604 cookie->rel->r_offset = 0;
3605 }
3606
3607 /* Clear the removed bytes. */
3608 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
3609
3610 pin_contents (sec, contents);
3611 pin_internal_relocs (sec, cookie->rels);
3612
3613 /* Shrink size. */
3614 if (sec->rawsize == 0)
3615 sec->rawsize = sec->size;
3616 sec->size -= removed_bytes;
3617
3618 if (xtensa_is_littable_section (sec))
3619 {
3620 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
3621 if (sgotloc)
3622 sgotloc->size -= removed_bytes;
3623 }
3624 }
3625 else
3626 {
3627 release_contents (sec, contents);
3628 release_internal_relocs (sec, cookie->rels);
3629 }
3630
3631 return (removed_bytes != 0);
3632 }
3633
3634
3635 static bfd_boolean
3636 elf_xtensa_discard_info (bfd *abfd,
3637 struct elf_reloc_cookie *cookie,
3638 struct bfd_link_info *info)
3639 {
3640 asection *sec;
3641 bfd_boolean changed = FALSE;
3642
3643 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3644 {
3645 if (xtensa_is_property_section (sec))
3646 {
3647 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
3648 changed = TRUE;
3649 }
3650 }
3651
3652 return changed;
3653 }
3654
3655
3656 static bfd_boolean
3657 elf_xtensa_ignore_discarded_relocs (asection *sec)
3658 {
3659 return xtensa_is_property_section (sec);
3660 }
3661
3662
3663 static unsigned int
3664 elf_xtensa_action_discarded (asection *sec)
3665 {
3666 if (strcmp (".xt_except_table", sec->name) == 0)
3667 return 0;
3668
3669 if (strcmp (".xt_except_desc", sec->name) == 0)
3670 return 0;
3671
3672 return _bfd_elf_default_action_discarded (sec);
3673 }
3674
3675 \f
3676 /* Support for core dump NOTE sections. */
3677
3678 static bfd_boolean
3679 elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
3680 {
3681 int offset;
3682 unsigned int size;
3683
3684 /* The size for Xtensa is variable, so don't try to recognize the format
3685 based on the size. Just assume this is GNU/Linux. */
3686
3687 /* pr_cursig */
3688 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
3689
3690 /* pr_pid */
3691 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
3692
3693 /* pr_reg */
3694 offset = 72;
3695 size = note->descsz - offset - 4;
3696
3697 /* Make a ".reg/999" section. */
3698 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
3699 size, note->descpos + offset);
3700 }
3701
3702
3703 static bfd_boolean
3704 elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3705 {
3706 switch (note->descsz)
3707 {
3708 default:
3709 return FALSE;
3710
3711 case 128: /* GNU/Linux elf_prpsinfo */
3712 elf_tdata (abfd)->core->program
3713 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3714 elf_tdata (abfd)->core->command
3715 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3716 }
3717
3718 /* Note that for some reason, a spurious space is tacked
3719 onto the end of the args in some (at least one anyway)
3720 implementations, so strip it off if it exists. */
3721
3722 {
3723 char *command = elf_tdata (abfd)->core->command;
3724 int n = strlen (command);
3725
3726 if (0 < n && command[n - 1] == ' ')
3727 command[n - 1] = '\0';
3728 }
3729
3730 return TRUE;
3731 }
3732
3733 \f
3734 /* Generic Xtensa configurability stuff. */
3735
3736 static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3737 static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3738 static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3739 static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3740 static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3741 static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3742 static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3743 static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3744
3745 static void
3746 init_call_opcodes (void)
3747 {
3748 if (callx0_op == XTENSA_UNDEFINED)
3749 {
3750 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3751 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3752 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3753 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3754 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3755 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3756 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3757 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3758 }
3759 }
3760
3761
3762 static bfd_boolean
3763 is_indirect_call_opcode (xtensa_opcode opcode)
3764 {
3765 init_call_opcodes ();
3766 return (opcode == callx0_op
3767 || opcode == callx4_op
3768 || opcode == callx8_op
3769 || opcode == callx12_op);
3770 }
3771
3772
3773 static bfd_boolean
3774 is_direct_call_opcode (xtensa_opcode opcode)
3775 {
3776 init_call_opcodes ();
3777 return (opcode == call0_op
3778 || opcode == call4_op
3779 || opcode == call8_op
3780 || opcode == call12_op);
3781 }
3782
3783
3784 static bfd_boolean
3785 is_windowed_call_opcode (xtensa_opcode opcode)
3786 {
3787 init_call_opcodes ();
3788 return (opcode == call4_op
3789 || opcode == call8_op
3790 || opcode == call12_op
3791 || opcode == callx4_op
3792 || opcode == callx8_op
3793 || opcode == callx12_op);
3794 }
3795
3796
3797 static bfd_boolean
3798 get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst)
3799 {
3800 unsigned dst = (unsigned) -1;
3801
3802 init_call_opcodes ();
3803 if (opcode == callx0_op)
3804 dst = 0;
3805 else if (opcode == callx4_op)
3806 dst = 4;
3807 else if (opcode == callx8_op)
3808 dst = 8;
3809 else if (opcode == callx12_op)
3810 dst = 12;
3811
3812 if (dst == (unsigned) -1)
3813 return FALSE;
3814
3815 *pdst = dst;
3816 return TRUE;
3817 }
3818
3819
3820 static xtensa_opcode
3821 get_const16_opcode (void)
3822 {
3823 static bfd_boolean done_lookup = FALSE;
3824 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3825 if (!done_lookup)
3826 {
3827 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3828 done_lookup = TRUE;
3829 }
3830 return const16_opcode;
3831 }
3832
3833
3834 static xtensa_opcode
3835 get_l32r_opcode (void)
3836 {
3837 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
3838 static bfd_boolean done_lookup = FALSE;
3839
3840 if (!done_lookup)
3841 {
3842 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
3843 done_lookup = TRUE;
3844 }
3845 return l32r_opcode;
3846 }
3847
3848
3849 static bfd_vma
3850 l32r_offset (bfd_vma addr, bfd_vma pc)
3851 {
3852 bfd_vma offset;
3853
3854 offset = addr - ((pc+3) & -4);
3855 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3856 offset = (signed int) offset >> 2;
3857 BFD_ASSERT ((signed int) offset >> 16 == -1);
3858 return offset;
3859 }
3860
3861
3862 static int
3863 get_relocation_opnd (xtensa_opcode opcode, int r_type)
3864 {
3865 xtensa_isa isa = xtensa_default_isa;
3866 int last_immed, last_opnd, opi;
3867
3868 if (opcode == XTENSA_UNDEFINED)
3869 return XTENSA_UNDEFINED;
3870
3871 /* Find the last visible PC-relative immediate operand for the opcode.
3872 If there are no PC-relative immediates, then choose the last visible
3873 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3874 last_immed = XTENSA_UNDEFINED;
3875 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3876 for (opi = last_opnd - 1; opi >= 0; opi--)
3877 {
3878 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3879 continue;
3880 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3881 {
3882 last_immed = opi;
3883 break;
3884 }
3885 if (last_immed == XTENSA_UNDEFINED
3886 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3887 last_immed = opi;
3888 }
3889 if (last_immed < 0)
3890 return XTENSA_UNDEFINED;
3891
3892 /* If the operand number was specified in an old-style relocation,
3893 check for consistency with the operand computed above. */
3894 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3895 {
3896 int reloc_opnd = r_type - R_XTENSA_OP0;
3897 if (reloc_opnd != last_immed)
3898 return XTENSA_UNDEFINED;
3899 }
3900
3901 return last_immed;
3902 }
3903
3904
3905 int
3906 get_relocation_slot (int r_type)
3907 {
3908 switch (r_type)
3909 {
3910 case R_XTENSA_OP0:
3911 case R_XTENSA_OP1:
3912 case R_XTENSA_OP2:
3913 return 0;
3914
3915 default:
3916 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3917 return r_type - R_XTENSA_SLOT0_OP;
3918 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3919 return r_type - R_XTENSA_SLOT0_ALT;
3920 break;
3921 }
3922
3923 return XTENSA_UNDEFINED;
3924 }
3925
3926
3927 /* Get the opcode for a relocation. */
3928
3929 static xtensa_opcode
3930 get_relocation_opcode (bfd *abfd,
3931 asection *sec,
3932 bfd_byte *contents,
3933 Elf_Internal_Rela *irel)
3934 {
3935 static xtensa_insnbuf ibuff = NULL;
3936 static xtensa_insnbuf sbuff = NULL;
3937 xtensa_isa isa = xtensa_default_isa;
3938 xtensa_format fmt;
3939 int slot;
3940
3941 if (contents == NULL)
3942 return XTENSA_UNDEFINED;
3943
3944 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
3945 return XTENSA_UNDEFINED;
3946
3947 if (ibuff == NULL)
3948 {
3949 ibuff = xtensa_insnbuf_alloc (isa);
3950 sbuff = xtensa_insnbuf_alloc (isa);
3951 }
3952
3953 /* Decode the instruction. */
3954 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
3955 sec->size - irel->r_offset);
3956 fmt = xtensa_format_decode (isa, ibuff);
3957 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
3958 if (slot == XTENSA_UNDEFINED)
3959 return XTENSA_UNDEFINED;
3960 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
3961 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
3962 }
3963
3964
3965 bfd_boolean
3966 is_l32r_relocation (bfd *abfd,
3967 asection *sec,
3968 bfd_byte *contents,
3969 Elf_Internal_Rela *irel)
3970 {
3971 xtensa_opcode opcode;
3972 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
3973 return FALSE;
3974 opcode = get_relocation_opcode (abfd, sec, contents, irel);
3975 return (opcode == get_l32r_opcode ());
3976 }
3977
3978
3979 static bfd_size_type
3980 get_asm_simplify_size (bfd_byte *contents,
3981 bfd_size_type content_len,
3982 bfd_size_type offset)
3983 {
3984 bfd_size_type insnlen, size = 0;
3985
3986 /* Decode the size of the next two instructions. */
3987 insnlen = insn_decode_len (contents, content_len, offset);
3988 if (insnlen == 0)
3989 return 0;
3990
3991 size += insnlen;
3992
3993 insnlen = insn_decode_len (contents, content_len, offset + size);
3994 if (insnlen == 0)
3995 return 0;
3996
3997 size += insnlen;
3998 return size;
3999 }
4000
4001
4002 bfd_boolean
4003 is_alt_relocation (int r_type)
4004 {
4005 return (r_type >= R_XTENSA_SLOT0_ALT
4006 && r_type <= R_XTENSA_SLOT14_ALT);
4007 }
4008
4009
4010 bfd_boolean
4011 is_operand_relocation (int r_type)
4012 {
4013 switch (r_type)
4014 {
4015 case R_XTENSA_OP0:
4016 case R_XTENSA_OP1:
4017 case R_XTENSA_OP2:
4018 return TRUE;
4019
4020 default:
4021 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4022 return TRUE;
4023 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4024 return TRUE;
4025 break;
4026 }
4027
4028 return FALSE;
4029 }
4030
4031
4032 #define MIN_INSN_LENGTH 2
4033
4034 /* Return 0 if it fails to decode. */
4035
4036 bfd_size_type
4037 insn_decode_len (bfd_byte *contents,
4038 bfd_size_type content_len,
4039 bfd_size_type offset)
4040 {
4041 int insn_len;
4042 xtensa_isa isa = xtensa_default_isa;
4043 xtensa_format fmt;
4044 static xtensa_insnbuf ibuff = NULL;
4045
4046 if (offset + MIN_INSN_LENGTH > content_len)
4047 return 0;
4048
4049 if (ibuff == NULL)
4050 ibuff = xtensa_insnbuf_alloc (isa);
4051 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
4052 content_len - offset);
4053 fmt = xtensa_format_decode (isa, ibuff);
4054 if (fmt == XTENSA_UNDEFINED)
4055 return 0;
4056 insn_len = xtensa_format_length (isa, fmt);
4057 if (insn_len == XTENSA_UNDEFINED)
4058 return 0;
4059 return insn_len;
4060 }
4061
4062
4063 /* Decode the opcode for a single slot instruction.
4064 Return 0 if it fails to decode or the instruction is multi-slot. */
4065
4066 xtensa_opcode
4067 insn_decode_opcode (bfd_byte *contents,
4068 bfd_size_type content_len,
4069 bfd_size_type offset,
4070 int slot)
4071 {
4072 xtensa_isa isa = xtensa_default_isa;
4073 xtensa_format fmt;
4074 static xtensa_insnbuf insnbuf = NULL;
4075 static xtensa_insnbuf slotbuf = NULL;
4076
4077 if (offset + MIN_INSN_LENGTH > content_len)
4078 return XTENSA_UNDEFINED;
4079
4080 if (insnbuf == NULL)
4081 {
4082 insnbuf = xtensa_insnbuf_alloc (isa);
4083 slotbuf = xtensa_insnbuf_alloc (isa);
4084 }
4085
4086 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4087 content_len - offset);
4088 fmt = xtensa_format_decode (isa, insnbuf);
4089 if (fmt == XTENSA_UNDEFINED)
4090 return XTENSA_UNDEFINED;
4091
4092 if (slot >= xtensa_format_num_slots (isa, fmt))
4093 return XTENSA_UNDEFINED;
4094
4095 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
4096 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
4097 }
4098
4099
4100 /* The offset is the offset in the contents.
4101 The address is the address of that offset. */
4102
4103 static bfd_boolean
4104 check_branch_target_aligned (bfd_byte *contents,
4105 bfd_size_type content_length,
4106 bfd_vma offset,
4107 bfd_vma address)
4108 {
4109 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
4110 if (insn_len == 0)
4111 return FALSE;
4112 return check_branch_target_aligned_address (address, insn_len);
4113 }
4114
4115
4116 static bfd_boolean
4117 check_loop_aligned (bfd_byte *contents,
4118 bfd_size_type content_length,
4119 bfd_vma offset,
4120 bfd_vma address)
4121 {
4122 bfd_size_type loop_len, insn_len;
4123 xtensa_opcode opcode;
4124
4125 opcode = insn_decode_opcode (contents, content_length, offset, 0);
4126 if (opcode == XTENSA_UNDEFINED
4127 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
4128 {
4129 BFD_ASSERT (FALSE);
4130 return FALSE;
4131 }
4132
4133 loop_len = insn_decode_len (contents, content_length, offset);
4134 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
4135 if (loop_len == 0 || insn_len == 0)
4136 {
4137 BFD_ASSERT (FALSE);
4138 return FALSE;
4139 }
4140
4141 return check_branch_target_aligned_address (address + loop_len, insn_len);
4142 }
4143
4144
4145 static bfd_boolean
4146 check_branch_target_aligned_address (bfd_vma addr, int len)
4147 {
4148 if (len == 8)
4149 return (addr % 8 == 0);
4150 return ((addr >> 2) == ((addr + len - 1) >> 2));
4151 }
4152
4153 \f
4154 /* Instruction widening and narrowing. */
4155
4156 /* When FLIX is available we need to access certain instructions only
4157 when they are 16-bit or 24-bit instructions. This table caches
4158 information about such instructions by walking through all the
4159 opcodes and finding the smallest single-slot format into which each
4160 can be encoded. */
4161
4162 static xtensa_format *op_single_fmt_table = NULL;
4163
4164
4165 static void
4166 init_op_single_format_table (void)
4167 {
4168 xtensa_isa isa = xtensa_default_isa;
4169 xtensa_insnbuf ibuf;
4170 xtensa_opcode opcode;
4171 xtensa_format fmt;
4172 int num_opcodes;
4173
4174 if (op_single_fmt_table)
4175 return;
4176
4177 ibuf = xtensa_insnbuf_alloc (isa);
4178 num_opcodes = xtensa_isa_num_opcodes (isa);
4179
4180 op_single_fmt_table = (xtensa_format *)
4181 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
4182 for (opcode = 0; opcode < num_opcodes; opcode++)
4183 {
4184 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
4185 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
4186 {
4187 if (xtensa_format_num_slots (isa, fmt) == 1
4188 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
4189 {
4190 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
4191 int fmt_length = xtensa_format_length (isa, fmt);
4192 if (old_fmt == XTENSA_UNDEFINED
4193 || fmt_length < xtensa_format_length (isa, old_fmt))
4194 op_single_fmt_table[opcode] = fmt;
4195 }
4196 }
4197 }
4198 xtensa_insnbuf_free (isa, ibuf);
4199 }
4200
4201
4202 static xtensa_format
4203 get_single_format (xtensa_opcode opcode)
4204 {
4205 init_op_single_format_table ();
4206 return op_single_fmt_table[opcode];
4207 }
4208
4209
4210 /* For the set of narrowable instructions we do NOT include the
4211 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
4212 involved during linker relaxation that may require these to
4213 re-expand in some conditions. Also, the narrowing "or" -> mov.n
4214 requires special case code to ensure it only works when op1 == op2. */
4215
4216 struct string_pair
4217 {
4218 const char *wide;
4219 const char *narrow;
4220 };
4221
4222 struct string_pair narrowable[] =
4223 {
4224 { "add", "add.n" },
4225 { "addi", "addi.n" },
4226 { "addmi", "addi.n" },
4227 { "l32i", "l32i.n" },
4228 { "movi", "movi.n" },
4229 { "ret", "ret.n" },
4230 { "retw", "retw.n" },
4231 { "s32i", "s32i.n" },
4232 { "or", "mov.n" } /* special case only when op1 == op2 */
4233 };
4234
4235 struct string_pair widenable[] =
4236 {
4237 { "add", "add.n" },
4238 { "addi", "addi.n" },
4239 { "addmi", "addi.n" },
4240 { "beqz", "beqz.n" },
4241 { "bnez", "bnez.n" },
4242 { "l32i", "l32i.n" },
4243 { "movi", "movi.n" },
4244 { "ret", "ret.n" },
4245 { "retw", "retw.n" },
4246 { "s32i", "s32i.n" },
4247 { "or", "mov.n" } /* special case only when op1 == op2 */
4248 };
4249
4250
4251 /* Check if an instruction can be "narrowed", i.e., changed from a standard
4252 3-byte instruction to a 2-byte "density" instruction. If it is valid,
4253 return the instruction buffer holding the narrow instruction. Otherwise,
4254 return 0. The set of valid narrowing are specified by a string table
4255 but require some special case operand checks in some cases. */
4256
4257 static xtensa_insnbuf
4258 can_narrow_instruction (xtensa_insnbuf slotbuf,
4259 xtensa_format fmt,
4260 xtensa_opcode opcode)
4261 {
4262 xtensa_isa isa = xtensa_default_isa;
4263 xtensa_format o_fmt;
4264 unsigned opi;
4265
4266 static xtensa_insnbuf o_insnbuf = NULL;
4267 static xtensa_insnbuf o_slotbuf = NULL;
4268
4269 if (o_insnbuf == NULL)
4270 {
4271 o_insnbuf = xtensa_insnbuf_alloc (isa);
4272 o_slotbuf = xtensa_insnbuf_alloc (isa);
4273 }
4274
4275 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
4276 {
4277 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
4278
4279 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
4280 {
4281 uint32 value, newval;
4282 int i, operand_count, o_operand_count;
4283 xtensa_opcode o_opcode;
4284
4285 /* Address does not matter in this case. We might need to
4286 fix it to handle branches/jumps. */
4287 bfd_vma self_address = 0;
4288
4289 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
4290 if (o_opcode == XTENSA_UNDEFINED)
4291 return 0;
4292 o_fmt = get_single_format (o_opcode);
4293 if (o_fmt == XTENSA_UNDEFINED)
4294 return 0;
4295
4296 if (xtensa_format_length (isa, fmt) != 3
4297 || xtensa_format_length (isa, o_fmt) != 2)
4298 return 0;
4299
4300 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4301 operand_count = xtensa_opcode_num_operands (isa, opcode);
4302 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4303
4304 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4305 return 0;
4306
4307 if (!is_or)
4308 {
4309 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4310 return 0;
4311 }
4312 else
4313 {
4314 uint32 rawval0, rawval1, rawval2;
4315
4316 if (o_operand_count + 1 != operand_count
4317 || xtensa_operand_get_field (isa, opcode, 0,
4318 fmt, 0, slotbuf, &rawval0) != 0
4319 || xtensa_operand_get_field (isa, opcode, 1,
4320 fmt, 0, slotbuf, &rawval1) != 0
4321 || xtensa_operand_get_field (isa, opcode, 2,
4322 fmt, 0, slotbuf, &rawval2) != 0
4323 || rawval1 != rawval2
4324 || rawval0 == rawval1 /* it is a nop */)
4325 return 0;
4326 }
4327
4328 for (i = 0; i < o_operand_count; ++i)
4329 {
4330 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
4331 slotbuf, &value)
4332 || xtensa_operand_decode (isa, opcode, i, &value))
4333 return 0;
4334
4335 /* PC-relative branches need adjustment, but
4336 the PC-rel operand will always have a relocation. */
4337 newval = value;
4338 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4339 self_address)
4340 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4341 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4342 o_slotbuf, newval))
4343 return 0;
4344 }
4345
4346 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4347 return 0;
4348
4349 return o_insnbuf;
4350 }
4351 }
4352 return 0;
4353 }
4354
4355
4356 /* Attempt to narrow an instruction. If the narrowing is valid, perform
4357 the action in-place directly into the contents and return TRUE. Otherwise,
4358 the return value is FALSE and the contents are not modified. */
4359
4360 static bfd_boolean
4361 narrow_instruction (bfd_byte *contents,
4362 bfd_size_type content_length,
4363 bfd_size_type offset)
4364 {
4365 xtensa_opcode opcode;
4366 bfd_size_type insn_len;
4367 xtensa_isa isa = xtensa_default_isa;
4368 xtensa_format fmt;
4369 xtensa_insnbuf o_insnbuf;
4370
4371 static xtensa_insnbuf insnbuf = NULL;
4372 static xtensa_insnbuf slotbuf = NULL;
4373
4374 if (insnbuf == NULL)
4375 {
4376 insnbuf = xtensa_insnbuf_alloc (isa);
4377 slotbuf = xtensa_insnbuf_alloc (isa);
4378 }
4379
4380 BFD_ASSERT (offset < content_length);
4381
4382 if (content_length < 2)
4383 return FALSE;
4384
4385 /* We will hand-code a few of these for a little while.
4386 These have all been specified in the assembler aleady. */
4387 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4388 content_length - offset);
4389 fmt = xtensa_format_decode (isa, insnbuf);
4390 if (xtensa_format_num_slots (isa, fmt) != 1)
4391 return FALSE;
4392
4393 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4394 return FALSE;
4395
4396 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4397 if (opcode == XTENSA_UNDEFINED)
4398 return FALSE;
4399 insn_len = xtensa_format_length (isa, fmt);
4400 if (insn_len > content_length)
4401 return FALSE;
4402
4403 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
4404 if (o_insnbuf)
4405 {
4406 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4407 content_length - offset);
4408 return TRUE;
4409 }
4410
4411 return FALSE;
4412 }
4413
4414
4415 /* Check if an instruction can be "widened", i.e., changed from a 2-byte
4416 "density" instruction to a standard 3-byte instruction. If it is valid,
4417 return the instruction buffer holding the wide instruction. Otherwise,
4418 return 0. The set of valid widenings are specified by a string table
4419 but require some special case operand checks in some cases. */
4420
4421 static xtensa_insnbuf
4422 can_widen_instruction (xtensa_insnbuf slotbuf,
4423 xtensa_format fmt,
4424 xtensa_opcode opcode)
4425 {
4426 xtensa_isa isa = xtensa_default_isa;
4427 xtensa_format o_fmt;
4428 unsigned opi;
4429
4430 static xtensa_insnbuf o_insnbuf = NULL;
4431 static xtensa_insnbuf o_slotbuf = NULL;
4432
4433 if (o_insnbuf == NULL)
4434 {
4435 o_insnbuf = xtensa_insnbuf_alloc (isa);
4436 o_slotbuf = xtensa_insnbuf_alloc (isa);
4437 }
4438
4439 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
4440 {
4441 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
4442 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
4443 || strcmp ("bnez", widenable[opi].wide) == 0);
4444
4445 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
4446 {
4447 uint32 value, newval;
4448 int i, operand_count, o_operand_count, check_operand_count;
4449 xtensa_opcode o_opcode;
4450
4451 /* Address does not matter in this case. We might need to fix it
4452 to handle branches/jumps. */
4453 bfd_vma self_address = 0;
4454
4455 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
4456 if (o_opcode == XTENSA_UNDEFINED)
4457 return 0;
4458 o_fmt = get_single_format (o_opcode);
4459 if (o_fmt == XTENSA_UNDEFINED)
4460 return 0;
4461
4462 if (xtensa_format_length (isa, fmt) != 2
4463 || xtensa_format_length (isa, o_fmt) != 3)
4464 return 0;
4465
4466 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4467 operand_count = xtensa_opcode_num_operands (isa, opcode);
4468 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4469 check_operand_count = o_operand_count;
4470
4471 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4472 return 0;
4473
4474 if (!is_or)
4475 {
4476 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4477 return 0;
4478 }
4479 else
4480 {
4481 uint32 rawval0, rawval1;
4482
4483 if (o_operand_count != operand_count + 1
4484 || xtensa_operand_get_field (isa, opcode, 0,
4485 fmt, 0, slotbuf, &rawval0) != 0
4486 || xtensa_operand_get_field (isa, opcode, 1,
4487 fmt, 0, slotbuf, &rawval1) != 0
4488 || rawval0 == rawval1 /* it is a nop */)
4489 return 0;
4490 }
4491 if (is_branch)
4492 check_operand_count--;
4493
4494 for (i = 0; i < check_operand_count; i++)
4495 {
4496 int new_i = i;
4497 if (is_or && i == o_operand_count - 1)
4498 new_i = i - 1;
4499 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
4500 slotbuf, &value)
4501 || xtensa_operand_decode (isa, opcode, new_i, &value))
4502 return 0;
4503
4504 /* PC-relative branches need adjustment, but
4505 the PC-rel operand will always have a relocation. */
4506 newval = value;
4507 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4508 self_address)
4509 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4510 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4511 o_slotbuf, newval))
4512 return 0;
4513 }
4514
4515 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4516 return 0;
4517
4518 return o_insnbuf;
4519 }
4520 }
4521 return 0;
4522 }
4523
4524
4525 /* Attempt to widen an instruction. If the widening is valid, perform
4526 the action in-place directly into the contents and return TRUE. Otherwise,
4527 the return value is FALSE and the contents are not modified. */
4528
4529 static bfd_boolean
4530 widen_instruction (bfd_byte *contents,
4531 bfd_size_type content_length,
4532 bfd_size_type offset)
4533 {
4534 xtensa_opcode opcode;
4535 bfd_size_type insn_len;
4536 xtensa_isa isa = xtensa_default_isa;
4537 xtensa_format fmt;
4538 xtensa_insnbuf o_insnbuf;
4539
4540 static xtensa_insnbuf insnbuf = NULL;
4541 static xtensa_insnbuf slotbuf = NULL;
4542
4543 if (insnbuf == NULL)
4544 {
4545 insnbuf = xtensa_insnbuf_alloc (isa);
4546 slotbuf = xtensa_insnbuf_alloc (isa);
4547 }
4548
4549 BFD_ASSERT (offset < content_length);
4550
4551 if (content_length < 2)
4552 return FALSE;
4553
4554 /* We will hand-code a few of these for a little while.
4555 These have all been specified in the assembler aleady. */
4556 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4557 content_length - offset);
4558 fmt = xtensa_format_decode (isa, insnbuf);
4559 if (xtensa_format_num_slots (isa, fmt) != 1)
4560 return FALSE;
4561
4562 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4563 return FALSE;
4564
4565 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4566 if (opcode == XTENSA_UNDEFINED)
4567 return FALSE;
4568 insn_len = xtensa_format_length (isa, fmt);
4569 if (insn_len > content_length)
4570 return FALSE;
4571
4572 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
4573 if (o_insnbuf)
4574 {
4575 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4576 content_length - offset);
4577 return TRUE;
4578 }
4579 return FALSE;
4580 }
4581
4582 \f
4583 /* Code for transforming CALLs at link-time. */
4584
4585 static bfd_reloc_status_type
4586 elf_xtensa_do_asm_simplify (bfd_byte *contents,
4587 bfd_vma address,
4588 bfd_vma content_length,
4589 char **error_message)
4590 {
4591 static xtensa_insnbuf insnbuf = NULL;
4592 static xtensa_insnbuf slotbuf = NULL;
4593 xtensa_format core_format = XTENSA_UNDEFINED;
4594 xtensa_opcode opcode;
4595 xtensa_opcode direct_call_opcode;
4596 xtensa_isa isa = xtensa_default_isa;
4597 bfd_byte *chbuf = contents + address;
4598 int opn;
4599
4600 if (insnbuf == NULL)
4601 {
4602 insnbuf = xtensa_insnbuf_alloc (isa);
4603 slotbuf = xtensa_insnbuf_alloc (isa);
4604 }
4605
4606 if (content_length < address)
4607 {
4608 *error_message = _("attempt to convert L32R/CALLX to CALL failed");
4609 return bfd_reloc_other;
4610 }
4611
4612 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
4613 direct_call_opcode = swap_callx_for_call_opcode (opcode);
4614 if (direct_call_opcode == XTENSA_UNDEFINED)
4615 {
4616 *error_message = _("attempt to convert L32R/CALLX to CALL failed");
4617 return bfd_reloc_other;
4618 }
4619
4620 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
4621 core_format = xtensa_format_lookup (isa, "x24");
4622 opcode = xtensa_opcode_lookup (isa, "or");
4623 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
4624 for (opn = 0; opn < 3; opn++)
4625 {
4626 uint32 regno = 1;
4627 xtensa_operand_encode (isa, opcode, opn, &regno);
4628 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
4629 slotbuf, regno);
4630 }
4631 xtensa_format_encode (isa, core_format, insnbuf);
4632 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4633 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
4634
4635 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
4636 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
4637 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
4638
4639 xtensa_format_encode (isa, core_format, insnbuf);
4640 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4641 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
4642 content_length - address - 3);
4643
4644 return bfd_reloc_ok;
4645 }
4646
4647
4648 static bfd_reloc_status_type
4649 contract_asm_expansion (bfd_byte *contents,
4650 bfd_vma content_length,
4651 Elf_Internal_Rela *irel,
4652 char **error_message)
4653 {
4654 bfd_reloc_status_type retval =
4655 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
4656 error_message);
4657
4658 if (retval != bfd_reloc_ok)
4659 return bfd_reloc_dangerous;
4660
4661 /* Update the irel->r_offset field so that the right immediate and
4662 the right instruction are modified during the relocation. */
4663 irel->r_offset += 3;
4664 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
4665 return bfd_reloc_ok;
4666 }
4667
4668
4669 static xtensa_opcode
4670 swap_callx_for_call_opcode (xtensa_opcode opcode)
4671 {
4672 init_call_opcodes ();
4673
4674 if (opcode == callx0_op) return call0_op;
4675 if (opcode == callx4_op) return call4_op;
4676 if (opcode == callx8_op) return call8_op;
4677 if (opcode == callx12_op) return call12_op;
4678
4679 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
4680 return XTENSA_UNDEFINED;
4681 }
4682
4683
4684 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
4685 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
4686 If not, return XTENSA_UNDEFINED. */
4687
4688 #define L32R_TARGET_REG_OPERAND 0
4689 #define CONST16_TARGET_REG_OPERAND 0
4690 #define CALLN_SOURCE_OPERAND 0
4691
4692 static xtensa_opcode
4693 get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
4694 {
4695 static xtensa_insnbuf insnbuf = NULL;
4696 static xtensa_insnbuf slotbuf = NULL;
4697 xtensa_format fmt;
4698 xtensa_opcode opcode;
4699 xtensa_isa isa = xtensa_default_isa;
4700 uint32 regno, const16_regno, call_regno;
4701 int offset = 0;
4702
4703 if (insnbuf == NULL)
4704 {
4705 insnbuf = xtensa_insnbuf_alloc (isa);
4706 slotbuf = xtensa_insnbuf_alloc (isa);
4707 }
4708
4709 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4710 fmt = xtensa_format_decode (isa, insnbuf);
4711 if (fmt == XTENSA_UNDEFINED
4712 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4713 return XTENSA_UNDEFINED;
4714
4715 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4716 if (opcode == XTENSA_UNDEFINED)
4717 return XTENSA_UNDEFINED;
4718
4719 if (opcode == get_l32r_opcode ())
4720 {
4721 if (p_uses_l32r)
4722 *p_uses_l32r = TRUE;
4723 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4724 fmt, 0, slotbuf, &regno)
4725 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4726 &regno))
4727 return XTENSA_UNDEFINED;
4728 }
4729 else if (opcode == get_const16_opcode ())
4730 {
4731 if (p_uses_l32r)
4732 *p_uses_l32r = FALSE;
4733 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4734 fmt, 0, slotbuf, &regno)
4735 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4736 &regno))
4737 return XTENSA_UNDEFINED;
4738
4739 /* Check that the next instruction is also CONST16. */
4740 offset += xtensa_format_length (isa, fmt);
4741 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4742 fmt = xtensa_format_decode (isa, insnbuf);
4743 if (fmt == XTENSA_UNDEFINED
4744 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4745 return XTENSA_UNDEFINED;
4746 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4747 if (opcode != get_const16_opcode ())
4748 return XTENSA_UNDEFINED;
4749
4750 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4751 fmt, 0, slotbuf, &const16_regno)
4752 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4753 &const16_regno)
4754 || const16_regno != regno)
4755 return XTENSA_UNDEFINED;
4756 }
4757 else
4758 return XTENSA_UNDEFINED;
4759
4760 /* Next instruction should be an CALLXn with operand 0 == regno. */
4761 offset += xtensa_format_length (isa, fmt);
4762 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4763 fmt = xtensa_format_decode (isa, insnbuf);
4764 if (fmt == XTENSA_UNDEFINED
4765 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4766 return XTENSA_UNDEFINED;
4767 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4768 if (opcode == XTENSA_UNDEFINED
4769 || !is_indirect_call_opcode (opcode))
4770 return XTENSA_UNDEFINED;
4771
4772 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4773 fmt, 0, slotbuf, &call_regno)
4774 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4775 &call_regno))
4776 return XTENSA_UNDEFINED;
4777
4778 if (call_regno != regno)
4779 return XTENSA_UNDEFINED;
4780
4781 return opcode;
4782 }
4783
4784 \f
4785 /* Data structures used during relaxation. */
4786
4787 /* r_reloc: relocation values. */
4788
4789 /* Through the relaxation process, we need to keep track of the values
4790 that will result from evaluating relocations. The standard ELF
4791 relocation structure is not sufficient for this purpose because we're
4792 operating on multiple input files at once, so we need to know which
4793 input file a relocation refers to. The r_reloc structure thus
4794 records both the input file (bfd) and ELF relocation.
4795
4796 For efficiency, an r_reloc also contains a "target_offset" field to
4797 cache the target-section-relative offset value that is represented by
4798 the relocation.
4799
4800 The r_reloc also contains a virtual offset that allows multiple
4801 inserted literals to be placed at the same "address" with
4802 different offsets. */
4803
4804 typedef struct r_reloc_struct r_reloc;
4805
4806 struct r_reloc_struct
4807 {
4808 bfd *abfd;
4809 Elf_Internal_Rela rela;
4810 bfd_vma target_offset;
4811 bfd_vma virtual_offset;
4812 };
4813
4814
4815 /* The r_reloc structure is included by value in literal_value, but not
4816 every literal_value has an associated relocation -- some are simple
4817 constants. In such cases, we set all the fields in the r_reloc
4818 struct to zero. The r_reloc_is_const function should be used to
4819 detect this case. */
4820
4821 static bfd_boolean
4822 r_reloc_is_const (const r_reloc *r_rel)
4823 {
4824 return (r_rel->abfd == NULL);
4825 }
4826
4827
4828 static bfd_vma
4829 r_reloc_get_target_offset (const r_reloc *r_rel)
4830 {
4831 bfd_vma target_offset;
4832 unsigned long r_symndx;
4833
4834 BFD_ASSERT (!r_reloc_is_const (r_rel));
4835 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4836 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4837 return (target_offset + r_rel->rela.r_addend);
4838 }
4839
4840
4841 static struct elf_link_hash_entry *
4842 r_reloc_get_hash_entry (const r_reloc *r_rel)
4843 {
4844 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4845 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4846 }
4847
4848
4849 static asection *
4850 r_reloc_get_section (const r_reloc *r_rel)
4851 {
4852 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4853 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4854 }
4855
4856
4857 static bfd_boolean
4858 r_reloc_is_defined (const r_reloc *r_rel)
4859 {
4860 asection *sec;
4861 if (r_rel == NULL)
4862 return FALSE;
4863
4864 sec = r_reloc_get_section (r_rel);
4865 if (sec == bfd_abs_section_ptr
4866 || sec == bfd_com_section_ptr
4867 || sec == bfd_und_section_ptr)
4868 return FALSE;
4869 return TRUE;
4870 }
4871
4872
4873 static void
4874 r_reloc_init (r_reloc *r_rel,
4875 bfd *abfd,
4876 Elf_Internal_Rela *irel,
4877 bfd_byte *contents,
4878 bfd_size_type content_length)
4879 {
4880 int r_type;
4881 reloc_howto_type *howto;
4882
4883 if (irel)
4884 {
4885 r_rel->rela = *irel;
4886 r_rel->abfd = abfd;
4887 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4888 r_rel->virtual_offset = 0;
4889 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4890 howto = &elf_howto_table[r_type];
4891 if (howto->partial_inplace)
4892 {
4893 bfd_vma inplace_val;
4894 BFD_ASSERT (r_rel->rela.r_offset < content_length);
4895
4896 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
4897 r_rel->target_offset += inplace_val;
4898 }
4899 }
4900 else
4901 memset (r_rel, 0, sizeof (r_reloc));
4902 }
4903
4904
4905 #if DEBUG
4906
4907 static void
4908 print_r_reloc (FILE *fp, const r_reloc *r_rel)
4909 {
4910 if (r_reloc_is_defined (r_rel))
4911 {
4912 asection *sec = r_reloc_get_section (r_rel);
4913 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
4914 }
4915 else if (r_reloc_get_hash_entry (r_rel))
4916 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
4917 else
4918 fprintf (fp, " ?? + ");
4919
4920 fprintf_vma (fp, r_rel->target_offset);
4921 if (r_rel->virtual_offset)
4922 {
4923 fprintf (fp, " + ");
4924 fprintf_vma (fp, r_rel->virtual_offset);
4925 }
4926
4927 fprintf (fp, ")");
4928 }
4929
4930 #endif /* DEBUG */
4931
4932 \f
4933 /* source_reloc: relocations that reference literals. */
4934
4935 /* To determine whether literals can be coalesced, we need to first
4936 record all the relocations that reference the literals. The
4937 source_reloc structure below is used for this purpose. The
4938 source_reloc entries are kept in a per-literal-section array, sorted
4939 by offset within the literal section (i.e., target offset).
4940
4941 The source_sec and r_rel.rela.r_offset fields identify the source of
4942 the relocation. The r_rel field records the relocation value, i.e.,
4943 the offset of the literal being referenced. The opnd field is needed
4944 to determine the range of the immediate field to which the relocation
4945 applies, so we can determine whether another literal with the same
4946 value is within range. The is_null field is true when the relocation
4947 is being removed (e.g., when an L32R is being removed due to a CALLX
4948 that is converted to a direct CALL). */
4949
4950 typedef struct source_reloc_struct source_reloc;
4951
4952 struct source_reloc_struct
4953 {
4954 asection *source_sec;
4955 r_reloc r_rel;
4956 xtensa_opcode opcode;
4957 int opnd;
4958 bfd_boolean is_null;
4959 bfd_boolean is_abs_literal;
4960 };
4961
4962
4963 static void
4964 init_source_reloc (source_reloc *reloc,
4965 asection *source_sec,
4966 const r_reloc *r_rel,
4967 xtensa_opcode opcode,
4968 int opnd,
4969 bfd_boolean is_abs_literal)
4970 {
4971 reloc->source_sec = source_sec;
4972 reloc->r_rel = *r_rel;
4973 reloc->opcode = opcode;
4974 reloc->opnd = opnd;
4975 reloc->is_null = FALSE;
4976 reloc->is_abs_literal = is_abs_literal;
4977 }
4978
4979
4980 /* Find the source_reloc for a particular source offset and relocation
4981 type. Note that the array is sorted by _target_ offset, so this is
4982 just a linear search. */
4983
4984 static source_reloc *
4985 find_source_reloc (source_reloc *src_relocs,
4986 int src_count,
4987 asection *sec,
4988 Elf_Internal_Rela *irel)
4989 {
4990 int i;
4991
4992 for (i = 0; i < src_count; i++)
4993 {
4994 if (src_relocs[i].source_sec == sec
4995 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
4996 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
4997 == ELF32_R_TYPE (irel->r_info)))
4998 return &src_relocs[i];
4999 }
5000
5001 return NULL;
5002 }
5003
5004
5005 static int
5006 source_reloc_compare (const void *ap, const void *bp)
5007 {
5008 const source_reloc *a = (const source_reloc *) ap;
5009 const source_reloc *b = (const source_reloc *) bp;
5010
5011 if (a->r_rel.target_offset != b->r_rel.target_offset)
5012 return (a->r_rel.target_offset - b->r_rel.target_offset);
5013
5014 /* We don't need to sort on these criteria for correctness,
5015 but enforcing a more strict ordering prevents unstable qsort
5016 from behaving differently with different implementations.
5017 Without the code below we get correct but different results
5018 on Solaris 2.7 and 2.8. We would like to always produce the
5019 same results no matter the host. */
5020
5021 if ((!a->is_null) - (!b->is_null))
5022 return ((!a->is_null) - (!b->is_null));
5023 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
5024 }
5025
5026 \f
5027 /* Literal values and value hash tables. */
5028
5029 /* Literals with the same value can be coalesced. The literal_value
5030 structure records the value of a literal: the "r_rel" field holds the
5031 information from the relocation on the literal (if there is one) and
5032 the "value" field holds the contents of the literal word itself.
5033
5034 The value_map structure records a literal value along with the
5035 location of a literal holding that value. The value_map hash table
5036 is indexed by the literal value, so that we can quickly check if a
5037 particular literal value has been seen before and is thus a candidate
5038 for coalescing. */
5039
5040 typedef struct literal_value_struct literal_value;
5041 typedef struct value_map_struct value_map;
5042 typedef struct value_map_hash_table_struct value_map_hash_table;
5043
5044 struct literal_value_struct
5045 {
5046 r_reloc r_rel;
5047 unsigned long value;
5048 bfd_boolean is_abs_literal;
5049 };
5050
5051 struct value_map_struct
5052 {
5053 literal_value val; /* The literal value. */
5054 r_reloc loc; /* Location of the literal. */
5055 value_map *next;
5056 };
5057
5058 struct value_map_hash_table_struct
5059 {
5060 unsigned bucket_count;
5061 value_map **buckets;
5062 unsigned count;
5063 bfd_boolean has_last_loc;
5064 r_reloc last_loc;
5065 };
5066
5067
5068 static void
5069 init_literal_value (literal_value *lit,
5070 const r_reloc *r_rel,
5071 unsigned long value,
5072 bfd_boolean is_abs_literal)
5073 {
5074 lit->r_rel = *r_rel;
5075 lit->value = value;
5076 lit->is_abs_literal = is_abs_literal;
5077 }
5078
5079
5080 static bfd_boolean
5081 literal_value_equal (const literal_value *src1,
5082 const literal_value *src2,
5083 bfd_boolean final_static_link)
5084 {
5085 struct elf_link_hash_entry *h1, *h2;
5086
5087 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
5088 return FALSE;
5089
5090 if (r_reloc_is_const (&src1->r_rel))
5091 return (src1->value == src2->value);
5092
5093 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
5094 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
5095 return FALSE;
5096
5097 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
5098 return FALSE;
5099
5100 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
5101 return FALSE;
5102
5103 if (src1->value != src2->value)
5104 return FALSE;
5105
5106 /* Now check for the same section (if defined) or the same elf_hash
5107 (if undefined or weak). */
5108 h1 = r_reloc_get_hash_entry (&src1->r_rel);
5109 h2 = r_reloc_get_hash_entry (&src2->r_rel);
5110 if (r_reloc_is_defined (&src1->r_rel)
5111 && (final_static_link
5112 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
5113 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
5114 {
5115 if (r_reloc_get_section (&src1->r_rel)
5116 != r_reloc_get_section (&src2->r_rel))
5117 return FALSE;
5118 }
5119 else
5120 {
5121 /* Require that the hash entries (i.e., symbols) be identical. */
5122 if (h1 != h2 || h1 == 0)
5123 return FALSE;
5124 }
5125
5126 if (src1->is_abs_literal != src2->is_abs_literal)
5127 return FALSE;
5128
5129 return TRUE;
5130 }
5131
5132
5133 /* Must be power of 2. */
5134 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
5135
5136 static value_map_hash_table *
5137 value_map_hash_table_init (void)
5138 {
5139 value_map_hash_table *values;
5140
5141 values = (value_map_hash_table *)
5142 bfd_zmalloc (sizeof (value_map_hash_table));
5143 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
5144 values->count = 0;
5145 values->buckets = (value_map **)
5146 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
5147 if (values->buckets == NULL)
5148 {
5149 free (values);
5150 return NULL;
5151 }
5152 values->has_last_loc = FALSE;
5153
5154 return values;
5155 }
5156
5157
5158 static void
5159 value_map_hash_table_delete (value_map_hash_table *table)
5160 {
5161 free (table->buckets);
5162 free (table);
5163 }
5164
5165
5166 static unsigned
5167 hash_bfd_vma (bfd_vma val)
5168 {
5169 return (val >> 2) + (val >> 10);
5170 }
5171
5172
5173 static unsigned
5174 literal_value_hash (const literal_value *src)
5175 {
5176 unsigned hash_val;
5177
5178 hash_val = hash_bfd_vma (src->value);
5179 if (!r_reloc_is_const (&src->r_rel))
5180 {
5181 void *sec_or_hash;
5182
5183 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
5184 hash_val += hash_bfd_vma (src->r_rel.target_offset);
5185 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
5186
5187 /* Now check for the same section and the same elf_hash. */
5188 if (r_reloc_is_defined (&src->r_rel))
5189 sec_or_hash = r_reloc_get_section (&src->r_rel);
5190 else
5191 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
5192 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
5193 }
5194 return hash_val;
5195 }
5196
5197
5198 /* Check if the specified literal_value has been seen before. */
5199
5200 static value_map *
5201 value_map_get_cached_value (value_map_hash_table *map,
5202 const literal_value *val,
5203 bfd_boolean final_static_link)
5204 {
5205 value_map *map_e;
5206 value_map *bucket;
5207 unsigned idx;
5208
5209 idx = literal_value_hash (val);
5210 idx = idx & (map->bucket_count - 1);
5211 bucket = map->buckets[idx];
5212 for (map_e = bucket; map_e; map_e = map_e->next)
5213 {
5214 if (literal_value_equal (&map_e->val, val, final_static_link))
5215 return map_e;
5216 }
5217 return NULL;
5218 }
5219
5220
5221 /* Record a new literal value. It is illegal to call this if VALUE
5222 already has an entry here. */
5223
5224 static value_map *
5225 add_value_map (value_map_hash_table *map,
5226 const literal_value *val,
5227 const r_reloc *loc,
5228 bfd_boolean final_static_link)
5229 {
5230 value_map **bucket_p;
5231 unsigned idx;
5232
5233 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
5234 if (val_e == NULL)
5235 {
5236 bfd_set_error (bfd_error_no_memory);
5237 return NULL;
5238 }
5239
5240 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
5241 val_e->val = *val;
5242 val_e->loc = *loc;
5243
5244 idx = literal_value_hash (val);
5245 idx = idx & (map->bucket_count - 1);
5246 bucket_p = &map->buckets[idx];
5247
5248 val_e->next = *bucket_p;
5249 *bucket_p = val_e;
5250 map->count++;
5251 /* FIXME: Consider resizing the hash table if we get too many entries. */
5252
5253 return val_e;
5254 }
5255
5256 \f
5257 /* Lists of text actions (ta_) for narrowing, widening, longcall
5258 conversion, space fill, code & literal removal, etc. */
5259
5260 /* The following text actions are generated:
5261
5262 "ta_remove_insn" remove an instruction or instructions
5263 "ta_remove_longcall" convert longcall to call
5264 "ta_convert_longcall" convert longcall to nop/call
5265 "ta_narrow_insn" narrow a wide instruction
5266 "ta_widen" widen a narrow instruction
5267 "ta_fill" add fill or remove fill
5268 removed < 0 is a fill; branches to the fill address will be
5269 changed to address + fill size (e.g., address - removed)
5270 removed >= 0 branches to the fill address will stay unchanged
5271 "ta_remove_literal" remove a literal; this action is
5272 indicated when a literal is removed
5273 or replaced.
5274 "ta_add_literal" insert a new literal; this action is
5275 indicated when a literal has been moved.
5276 It may use a virtual_offset because
5277 multiple literals can be placed at the
5278 same location.
5279
5280 For each of these text actions, we also record the number of bytes
5281 removed by performing the text action. In the case of a "ta_widen"
5282 or a "ta_fill" that adds space, the removed_bytes will be negative. */
5283
5284 typedef struct text_action_struct text_action;
5285 typedef struct text_action_list_struct text_action_list;
5286 typedef enum text_action_enum_t text_action_t;
5287
5288 enum text_action_enum_t
5289 {
5290 ta_none,
5291 ta_remove_insn, /* removed = -size */
5292 ta_remove_longcall, /* removed = -size */
5293 ta_convert_longcall, /* removed = 0 */
5294 ta_narrow_insn, /* removed = -1 */
5295 ta_widen_insn, /* removed = +1 */
5296 ta_fill, /* removed = +size */
5297 ta_remove_literal,
5298 ta_add_literal
5299 };
5300
5301
5302 /* Structure for a text action record. */
5303 struct text_action_struct
5304 {
5305 text_action_t action;
5306 asection *sec; /* Optional */
5307 bfd_vma offset;
5308 bfd_vma virtual_offset; /* Zero except for adding literals. */
5309 int removed_bytes;
5310 literal_value value; /* Only valid when adding literals. */
5311 };
5312
5313 struct removal_by_action_entry_struct
5314 {
5315 bfd_vma offset;
5316 int removed;
5317 int eq_removed;
5318 int eq_removed_before_fill;
5319 };
5320 typedef struct removal_by_action_entry_struct removal_by_action_entry;
5321
5322 struct removal_by_action_map_struct
5323 {
5324 unsigned n_entries;
5325 removal_by_action_entry *entry;
5326 };
5327 typedef struct removal_by_action_map_struct removal_by_action_map;
5328
5329
5330 /* List of all of the actions taken on a text section. */
5331 struct text_action_list_struct
5332 {
5333 unsigned count;
5334 splay_tree tree;
5335 removal_by_action_map map;
5336 };
5337
5338
5339 static text_action *
5340 find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
5341 {
5342 text_action a;
5343
5344 /* It is not necessary to fill at the end of a section. */
5345 if (sec->size == offset)
5346 return NULL;
5347
5348 a.offset = offset;
5349 a.action = ta_fill;
5350
5351 splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a);
5352 if (node)
5353 return (text_action *)node->value;
5354 return NULL;
5355 }
5356
5357
5358 static int
5359 compute_removed_action_diff (const text_action *ta,
5360 asection *sec,
5361 bfd_vma offset,
5362 int removed,
5363 int removable_space)
5364 {
5365 int new_removed;
5366 int current_removed = 0;
5367
5368 if (ta)
5369 current_removed = ta->removed_bytes;
5370
5371 BFD_ASSERT (ta == NULL || ta->offset == offset);
5372 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
5373
5374 /* It is not necessary to fill at the end of a section. Clean this up. */
5375 if (sec->size == offset)
5376 new_removed = removable_space - 0;
5377 else
5378 {
5379 int space;
5380 int added = -removed - current_removed;
5381 /* Ignore multiples of the section alignment. */
5382 added = ((1 << sec->alignment_power) - 1) & added;
5383 new_removed = (-added);
5384
5385 /* Modify for removable. */
5386 space = removable_space - new_removed;
5387 new_removed = (removable_space
5388 - (((1 << sec->alignment_power) - 1) & space));
5389 }
5390 return (new_removed - current_removed);
5391 }
5392
5393
5394 static void
5395 adjust_fill_action (text_action *ta, int fill_diff)
5396 {
5397 ta->removed_bytes += fill_diff;
5398 }
5399
5400
5401 static int
5402 text_action_compare (splay_tree_key a, splay_tree_key b)
5403 {
5404 text_action *pa = (text_action *)a;
5405 text_action *pb = (text_action *)b;
5406 static const int action_priority[] =
5407 {
5408 [ta_fill] = 0,
5409 [ta_none] = 1,
5410 [ta_convert_longcall] = 2,
5411 [ta_narrow_insn] = 3,
5412 [ta_remove_insn] = 4,
5413 [ta_remove_longcall] = 5,
5414 [ta_remove_literal] = 6,
5415 [ta_widen_insn] = 7,
5416 [ta_add_literal] = 8,
5417 };
5418
5419 if (pa->offset == pb->offset)
5420 {
5421 if (pa->action == pb->action)
5422 return 0;
5423 return action_priority[pa->action] - action_priority[pb->action];
5424 }
5425 else
5426 return pa->offset < pb->offset ? -1 : 1;
5427 }
5428
5429 static text_action *
5430 action_first (text_action_list *action_list)
5431 {
5432 splay_tree_node node = splay_tree_min (action_list->tree);
5433 return node ? (text_action *)node->value : NULL;
5434 }
5435
5436 static text_action *
5437 action_next (text_action_list *action_list, text_action *action)
5438 {
5439 splay_tree_node node = splay_tree_successor (action_list->tree,
5440 (splay_tree_key)action);
5441 return node ? (text_action *)node->value : NULL;
5442 }
5443
5444 /* Add a modification action to the text. For the case of adding or
5445 removing space, modify any current fill and assume that
5446 "unreachable_space" bytes can be freely contracted. Note that a
5447 negative removed value is a fill. */
5448
5449 static void
5450 text_action_add (text_action_list *l,
5451 text_action_t action,
5452 asection *sec,
5453 bfd_vma offset,
5454 int removed)
5455 {
5456 text_action *ta;
5457 text_action a;
5458
5459 /* It is not necessary to fill at the end of a section. */
5460 if (action == ta_fill && sec->size == offset)
5461 return;
5462
5463 /* It is not necessary to fill 0 bytes. */
5464 if (action == ta_fill && removed == 0)
5465 return;
5466
5467 a.action = action;
5468 a.offset = offset;
5469
5470 if (action == ta_fill)
5471 {
5472 splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a);
5473
5474 if (node)
5475 {
5476 ta = (text_action *)node->value;
5477 ta->removed_bytes += removed;
5478 return;
5479 }
5480 }
5481 else
5482 BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)&a) == NULL);
5483
5484 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5485 ta->action = action;
5486 ta->sec = sec;
5487 ta->offset = offset;
5488 ta->removed_bytes = removed;
5489 splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta);
5490 ++l->count;
5491 }
5492
5493
5494 static void
5495 text_action_add_literal (text_action_list *l,
5496 text_action_t action,
5497 const r_reloc *loc,
5498 const literal_value *value,
5499 int removed)
5500 {
5501 text_action *ta;
5502 asection *sec = r_reloc_get_section (loc);
5503 bfd_vma offset = loc->target_offset;
5504 bfd_vma virtual_offset = loc->virtual_offset;
5505
5506 BFD_ASSERT (action == ta_add_literal);
5507
5508 /* Create a new record and fill it up. */
5509 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5510 ta->action = action;
5511 ta->sec = sec;
5512 ta->offset = offset;
5513 ta->virtual_offset = virtual_offset;
5514 ta->value = *value;
5515 ta->removed_bytes = removed;
5516
5517 BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)ta) == NULL);
5518 splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta);
5519 ++l->count;
5520 }
5521
5522
5523 /* Find the total offset adjustment for the relaxations specified by
5524 text_actions, beginning from a particular starting action. This is
5525 typically used from offset_with_removed_text to search an entire list of
5526 actions, but it may also be called directly when adjusting adjacent offsets
5527 so that each search may begin where the previous one left off. */
5528
5529 static int
5530 removed_by_actions (text_action_list *action_list,
5531 text_action **p_start_action,
5532 bfd_vma offset,
5533 bfd_boolean before_fill)
5534 {
5535 text_action *r;
5536 int removed = 0;
5537
5538 r = *p_start_action;
5539 if (r)
5540 {
5541 splay_tree_node node = splay_tree_lookup (action_list->tree,
5542 (splay_tree_key)r);
5543 BFD_ASSERT (node != NULL && r == (text_action *)node->value);
5544 }
5545
5546 while (r)
5547 {
5548 if (r->offset > offset)
5549 break;
5550
5551 if (r->offset == offset
5552 && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
5553 break;
5554
5555 removed += r->removed_bytes;
5556
5557 r = action_next (action_list, r);
5558 }
5559
5560 *p_start_action = r;
5561 return removed;
5562 }
5563
5564
5565 static bfd_vma
5566 offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
5567 {
5568 text_action *r = action_first (action_list);
5569
5570 return offset - removed_by_actions (action_list, &r, offset, FALSE);
5571 }
5572
5573
5574 static unsigned
5575 action_list_count (text_action_list *action_list)
5576 {
5577 return action_list->count;
5578 }
5579
5580 typedef struct map_action_fn_context_struct map_action_fn_context;
5581 struct map_action_fn_context_struct
5582 {
5583 int removed;
5584 removal_by_action_map map;
5585 bfd_boolean eq_complete;
5586 };
5587
5588 static int
5589 map_action_fn (splay_tree_node node, void *p)
5590 {
5591 map_action_fn_context *ctx = p;
5592 text_action *r = (text_action *)node->value;
5593 removal_by_action_entry *ientry = ctx->map.entry + ctx->map.n_entries;
5594
5595 if (ctx->map.n_entries && (ientry - 1)->offset == r->offset)
5596 {
5597 --ientry;
5598 }
5599 else
5600 {
5601 ++ctx->map.n_entries;
5602 ctx->eq_complete = FALSE;
5603 ientry->offset = r->offset;
5604 ientry->eq_removed_before_fill = ctx->removed;
5605 }
5606
5607 if (!ctx->eq_complete)
5608 {
5609 if (r->action != ta_fill || r->removed_bytes >= 0)
5610 {
5611 ientry->eq_removed = ctx->removed;
5612 ctx->eq_complete = TRUE;
5613 }
5614 else
5615 ientry->eq_removed = ctx->removed + r->removed_bytes;
5616 }
5617
5618 ctx->removed += r->removed_bytes;
5619 ientry->removed = ctx->removed;
5620 return 0;
5621 }
5622
5623 static void
5624 map_removal_by_action (text_action_list *action_list)
5625 {
5626 map_action_fn_context ctx;
5627
5628 ctx.removed = 0;
5629 ctx.map.n_entries = 0;
5630 ctx.map.entry = bfd_malloc (action_list_count (action_list) *
5631 sizeof (removal_by_action_entry));
5632 ctx.eq_complete = FALSE;
5633
5634 splay_tree_foreach (action_list->tree, map_action_fn, &ctx);
5635 action_list->map = ctx.map;
5636 }
5637
5638 static int
5639 removed_by_actions_map (text_action_list *action_list, bfd_vma offset,
5640 bfd_boolean before_fill)
5641 {
5642 unsigned a, b;
5643
5644 if (!action_list->map.entry)
5645 map_removal_by_action (action_list);
5646
5647 if (!action_list->map.n_entries)
5648 return 0;
5649
5650 a = 0;
5651 b = action_list->map.n_entries;
5652
5653 while (b - a > 1)
5654 {
5655 unsigned c = (a + b) / 2;
5656
5657 if (action_list->map.entry[c].offset <= offset)
5658 a = c;
5659 else
5660 b = c;
5661 }
5662
5663 if (action_list->map.entry[a].offset < offset)
5664 {
5665 return action_list->map.entry[a].removed;
5666 }
5667 else if (action_list->map.entry[a].offset == offset)
5668 {
5669 return before_fill ?
5670 action_list->map.entry[a].eq_removed_before_fill :
5671 action_list->map.entry[a].eq_removed;
5672 }
5673 else
5674 {
5675 return 0;
5676 }
5677 }
5678
5679 static bfd_vma
5680 offset_with_removed_text_map (text_action_list *action_list, bfd_vma offset)
5681 {
5682 int removed = removed_by_actions_map (action_list, offset, FALSE);
5683 return offset - removed;
5684 }
5685
5686
5687 /* The find_insn_action routine will only find non-fill actions. */
5688
5689 static text_action *
5690 find_insn_action (text_action_list *action_list, bfd_vma offset)
5691 {
5692 static const text_action_t action[] =
5693 {
5694 ta_convert_longcall,
5695 ta_remove_longcall,
5696 ta_widen_insn,
5697 ta_narrow_insn,
5698 ta_remove_insn,
5699 };
5700 text_action a;
5701 unsigned i;
5702
5703 a.offset = offset;
5704 for (i = 0; i < sizeof (action) / sizeof (*action); ++i)
5705 {
5706 splay_tree_node node;
5707
5708 a.action = action[i];
5709 node = splay_tree_lookup (action_list->tree, (splay_tree_key)&a);
5710 if (node)
5711 return (text_action *)node->value;
5712 }
5713 return NULL;
5714 }
5715
5716
5717 #if DEBUG
5718
5719 static void
5720 print_action (FILE *fp, text_action *r)
5721 {
5722 const char *t = "unknown";
5723 switch (r->action)
5724 {
5725 case ta_remove_insn:
5726 t = "remove_insn"; break;
5727 case ta_remove_longcall:
5728 t = "remove_longcall"; break;
5729 case ta_convert_longcall:
5730 t = "convert_longcall"; break;
5731 case ta_narrow_insn:
5732 t = "narrow_insn"; break;
5733 case ta_widen_insn:
5734 t = "widen_insn"; break;
5735 case ta_fill:
5736 t = "fill"; break;
5737 case ta_none:
5738 t = "none"; break;
5739 case ta_remove_literal:
5740 t = "remove_literal"; break;
5741 case ta_add_literal:
5742 t = "add_literal"; break;
5743 }
5744
5745 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
5746 r->sec->owner->filename,
5747 r->sec->name, (unsigned long) r->offset, t, r->removed_bytes);
5748 }
5749
5750 static int
5751 print_action_list_fn (splay_tree_node node, void *p)
5752 {
5753 text_action *r = (text_action *)node->value;
5754
5755 print_action (p, r);
5756 return 0;
5757 }
5758
5759 static void
5760 print_action_list (FILE *fp, text_action_list *action_list)
5761 {
5762 fprintf (fp, "Text Action\n");
5763 splay_tree_foreach (action_list->tree, print_action_list_fn, fp);
5764 }
5765
5766 #endif /* DEBUG */
5767
5768 \f
5769 /* Lists of literals being coalesced or removed. */
5770
5771 /* In the usual case, the literal identified by "from" is being
5772 coalesced with another literal identified by "to". If the literal is
5773 unused and is being removed altogether, "to.abfd" will be NULL.
5774 The removed_literal entries are kept on a per-section list, sorted
5775 by the "from" offset field. */
5776
5777 typedef struct removed_literal_struct removed_literal;
5778 typedef struct removed_literal_map_entry_struct removed_literal_map_entry;
5779 typedef struct removed_literal_list_struct removed_literal_list;
5780
5781 struct removed_literal_struct
5782 {
5783 r_reloc from;
5784 r_reloc to;
5785 removed_literal *next;
5786 };
5787
5788 struct removed_literal_map_entry_struct
5789 {
5790 bfd_vma addr;
5791 removed_literal *literal;
5792 };
5793
5794 struct removed_literal_list_struct
5795 {
5796 removed_literal *head;
5797 removed_literal *tail;
5798
5799 unsigned n_map;
5800 removed_literal_map_entry *map;
5801 };
5802
5803
5804 /* Record that the literal at "from" is being removed. If "to" is not
5805 NULL, the "from" literal is being coalesced with the "to" literal. */
5806
5807 static void
5808 add_removed_literal (removed_literal_list *removed_list,
5809 const r_reloc *from,
5810 const r_reloc *to)
5811 {
5812 removed_literal *r, *new_r, *next_r;
5813
5814 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
5815
5816 new_r->from = *from;
5817 if (to)
5818 new_r->to = *to;
5819 else
5820 new_r->to.abfd = NULL;
5821 new_r->next = NULL;
5822
5823 r = removed_list->head;
5824 if (r == NULL)
5825 {
5826 removed_list->head = new_r;
5827 removed_list->tail = new_r;
5828 }
5829 /* Special check for common case of append. */
5830 else if (removed_list->tail->from.target_offset < from->target_offset)
5831 {
5832 removed_list->tail->next = new_r;
5833 removed_list->tail = new_r;
5834 }
5835 else
5836 {
5837 while (r->from.target_offset < from->target_offset && r->next)
5838 {
5839 r = r->next;
5840 }
5841 next_r = r->next;
5842 r->next = new_r;
5843 new_r->next = next_r;
5844 if (next_r == NULL)
5845 removed_list->tail = new_r;
5846 }
5847 }
5848
5849 static void
5850 map_removed_literal (removed_literal_list *removed_list)
5851 {
5852 unsigned n_map = 0;
5853 unsigned i;
5854 removed_literal_map_entry *map = NULL;
5855 removed_literal *r = removed_list->head;
5856
5857 for (i = 0; r; ++i, r = r->next)
5858 {
5859 if (i == n_map)
5860 {
5861 n_map = (n_map * 2) + 2;
5862 map = bfd_realloc (map, n_map * sizeof (*map));
5863 }
5864 map[i].addr = r->from.target_offset;
5865 map[i].literal = r;
5866 }
5867 removed_list->map = map;
5868 removed_list->n_map = i;
5869 }
5870
5871 static int
5872 removed_literal_compare (const void *a, const void *b)
5873 {
5874 const removed_literal_map_entry *pa = a;
5875 const removed_literal_map_entry *pb = b;
5876
5877 if (pa->addr == pb->addr)
5878 return 0;
5879 else
5880 return pa->addr < pb->addr ? -1 : 1;
5881 }
5882
5883 /* Check if the list of removed literals contains an entry for the
5884 given address. Return the entry if found. */
5885
5886 static removed_literal *
5887 find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
5888 {
5889 removed_literal_map_entry *p;
5890 removed_literal *r = NULL;
5891
5892 if (removed_list->map == NULL)
5893 map_removed_literal (removed_list);
5894
5895 p = bsearch (&addr, removed_list->map, removed_list->n_map,
5896 sizeof (*removed_list->map), removed_literal_compare);
5897 if (p)
5898 {
5899 while (p != removed_list->map && (p - 1)->addr == addr)
5900 --p;
5901 r = p->literal;
5902 }
5903 return r;
5904 }
5905
5906
5907 #if DEBUG
5908
5909 static void
5910 print_removed_literals (FILE *fp, removed_literal_list *removed_list)
5911 {
5912 removed_literal *r;
5913 r = removed_list->head;
5914 if (r)
5915 fprintf (fp, "Removed Literals\n");
5916 for (; r != NULL; r = r->next)
5917 {
5918 print_r_reloc (fp, &r->from);
5919 fprintf (fp, " => ");
5920 if (r->to.abfd == NULL)
5921 fprintf (fp, "REMOVED");
5922 else
5923 print_r_reloc (fp, &r->to);
5924 fprintf (fp, "\n");
5925 }
5926 }
5927
5928 #endif /* DEBUG */
5929
5930 \f
5931 /* Per-section data for relaxation. */
5932
5933 typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
5934
5935 struct xtensa_relax_info_struct
5936 {
5937 bfd_boolean is_relaxable_literal_section;
5938 bfd_boolean is_relaxable_asm_section;
5939 int visited; /* Number of times visited. */
5940
5941 source_reloc *src_relocs; /* Array[src_count]. */
5942 int src_count;
5943 int src_next; /* Next src_relocs entry to assign. */
5944
5945 removed_literal_list removed_list;
5946 text_action_list action_list;
5947
5948 reloc_bfd_fix *fix_list;
5949 reloc_bfd_fix *fix_array;
5950 unsigned fix_array_count;
5951
5952 /* Support for expanding the reloc array that is stored
5953 in the section structure. If the relocations have been
5954 reallocated, the newly allocated relocations will be referenced
5955 here along with the actual size allocated. The relocation
5956 count will always be found in the section structure. */
5957 Elf_Internal_Rela *allocated_relocs;
5958 unsigned relocs_count;
5959 unsigned allocated_relocs_count;
5960 };
5961
5962 struct elf_xtensa_section_data
5963 {
5964 struct bfd_elf_section_data elf;
5965 xtensa_relax_info relax_info;
5966 };
5967
5968
5969 static bfd_boolean
5970 elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
5971 {
5972 if (!sec->used_by_bfd)
5973 {
5974 struct elf_xtensa_section_data *sdata;
5975 bfd_size_type amt = sizeof (*sdata);
5976
5977 sdata = bfd_zalloc (abfd, amt);
5978 if (sdata == NULL)
5979 return FALSE;
5980 sec->used_by_bfd = sdata;
5981 }
5982
5983 return _bfd_elf_new_section_hook (abfd, sec);
5984 }
5985
5986
5987 static xtensa_relax_info *
5988 get_xtensa_relax_info (asection *sec)
5989 {
5990 struct elf_xtensa_section_data *section_data;
5991
5992 /* No info available if no section or if it is an output section. */
5993 if (!sec || sec == sec->output_section)
5994 return NULL;
5995
5996 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5997 return &section_data->relax_info;
5998 }
5999
6000
6001 static void
6002 init_xtensa_relax_info (asection *sec)
6003 {
6004 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6005
6006 relax_info->is_relaxable_literal_section = FALSE;
6007 relax_info->is_relaxable_asm_section = FALSE;
6008 relax_info->visited = 0;
6009
6010 relax_info->src_relocs = NULL;
6011 relax_info->src_count = 0;
6012 relax_info->src_next = 0;
6013
6014 relax_info->removed_list.head = NULL;
6015 relax_info->removed_list.tail = NULL;
6016
6017 relax_info->action_list.tree = splay_tree_new (text_action_compare,
6018 NULL, NULL);
6019 relax_info->action_list.map.n_entries = 0;
6020 relax_info->action_list.map.entry = NULL;
6021
6022 relax_info->fix_list = NULL;
6023 relax_info->fix_array = NULL;
6024 relax_info->fix_array_count = 0;
6025
6026 relax_info->allocated_relocs = NULL;
6027 relax_info->relocs_count = 0;
6028 relax_info->allocated_relocs_count = 0;
6029 }
6030
6031 \f
6032 /* Coalescing literals may require a relocation to refer to a section in
6033 a different input file, but the standard relocation information
6034 cannot express that. Instead, the reloc_bfd_fix structures are used
6035 to "fix" the relocations that refer to sections in other input files.
6036 These structures are kept on per-section lists. The "src_type" field
6037 records the relocation type in case there are multiple relocations on
6038 the same location. FIXME: This is ugly; an alternative might be to
6039 add new symbols with the "owner" field to some other input file. */
6040
6041 struct reloc_bfd_fix_struct
6042 {
6043 asection *src_sec;
6044 bfd_vma src_offset;
6045 unsigned src_type; /* Relocation type. */
6046
6047 asection *target_sec;
6048 bfd_vma target_offset;
6049 bfd_boolean translated;
6050
6051 reloc_bfd_fix *next;
6052 };
6053
6054
6055 static reloc_bfd_fix *
6056 reloc_bfd_fix_init (asection *src_sec,
6057 bfd_vma src_offset,
6058 unsigned src_type,
6059 asection *target_sec,
6060 bfd_vma target_offset,
6061 bfd_boolean translated)
6062 {
6063 reloc_bfd_fix *fix;
6064
6065 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
6066 fix->src_sec = src_sec;
6067 fix->src_offset = src_offset;
6068 fix->src_type = src_type;
6069 fix->target_sec = target_sec;
6070 fix->target_offset = target_offset;
6071 fix->translated = translated;
6072
6073 return fix;
6074 }
6075
6076
6077 static void
6078 add_fix (asection *src_sec, reloc_bfd_fix *fix)
6079 {
6080 xtensa_relax_info *relax_info;
6081
6082 relax_info = get_xtensa_relax_info (src_sec);
6083 fix->next = relax_info->fix_list;
6084 relax_info->fix_list = fix;
6085 }
6086
6087
6088 static int
6089 fix_compare (const void *ap, const void *bp)
6090 {
6091 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
6092 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
6093
6094 if (a->src_offset != b->src_offset)
6095 return (a->src_offset - b->src_offset);
6096 return (a->src_type - b->src_type);
6097 }
6098
6099
6100 static void
6101 cache_fix_array (asection *sec)
6102 {
6103 unsigned i, count = 0;
6104 reloc_bfd_fix *r;
6105 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6106
6107 if (relax_info == NULL)
6108 return;
6109 if (relax_info->fix_list == NULL)
6110 return;
6111
6112 for (r = relax_info->fix_list; r != NULL; r = r->next)
6113 count++;
6114
6115 relax_info->fix_array =
6116 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
6117 relax_info->fix_array_count = count;
6118
6119 r = relax_info->fix_list;
6120 for (i = 0; i < count; i++, r = r->next)
6121 {
6122 relax_info->fix_array[count - 1 - i] = *r;
6123 relax_info->fix_array[count - 1 - i].next = NULL;
6124 }
6125
6126 qsort (relax_info->fix_array, relax_info->fix_array_count,
6127 sizeof (reloc_bfd_fix), fix_compare);
6128 }
6129
6130
6131 static reloc_bfd_fix *
6132 get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
6133 {
6134 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6135 reloc_bfd_fix *rv;
6136 reloc_bfd_fix key;
6137
6138 if (relax_info == NULL)
6139 return NULL;
6140 if (relax_info->fix_list == NULL)
6141 return NULL;
6142
6143 if (relax_info->fix_array == NULL)
6144 cache_fix_array (sec);
6145
6146 key.src_offset = offset;
6147 key.src_type = type;
6148 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
6149 sizeof (reloc_bfd_fix), fix_compare);
6150 return rv;
6151 }
6152
6153 \f
6154 /* Section caching. */
6155
6156 typedef struct section_cache_struct section_cache_t;
6157
6158 struct section_cache_struct
6159 {
6160 asection *sec;
6161
6162 bfd_byte *contents; /* Cache of the section contents. */
6163 bfd_size_type content_length;
6164
6165 property_table_entry *ptbl; /* Cache of the section property table. */
6166 unsigned pte_count;
6167
6168 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6169 unsigned reloc_count;
6170 };
6171
6172
6173 static void
6174 init_section_cache (section_cache_t *sec_cache)
6175 {
6176 memset (sec_cache, 0, sizeof (*sec_cache));
6177 }
6178
6179
6180 static void
6181 free_section_cache (section_cache_t *sec_cache)
6182 {
6183 if (sec_cache->sec)
6184 {
6185 release_contents (sec_cache->sec, sec_cache->contents);
6186 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
6187 if (sec_cache->ptbl)
6188 free (sec_cache->ptbl);
6189 }
6190 }
6191
6192
6193 static bfd_boolean
6194 section_cache_section (section_cache_t *sec_cache,
6195 asection *sec,
6196 struct bfd_link_info *link_info)
6197 {
6198 bfd *abfd;
6199 property_table_entry *prop_table = NULL;
6200 int ptblsize = 0;
6201 bfd_byte *contents = NULL;
6202 Elf_Internal_Rela *internal_relocs = NULL;
6203 bfd_size_type sec_size;
6204
6205 if (sec == NULL)
6206 return FALSE;
6207 if (sec == sec_cache->sec)
6208 return TRUE;
6209
6210 abfd = sec->owner;
6211 sec_size = bfd_get_section_limit (abfd, sec);
6212
6213 /* Get the contents. */
6214 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6215 if (contents == NULL && sec_size != 0)
6216 goto err;
6217
6218 /* Get the relocations. */
6219 internal_relocs = retrieve_internal_relocs (abfd, sec,
6220 link_info->keep_memory);
6221
6222 /* Get the entry table. */
6223 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6224 XTENSA_PROP_SEC_NAME, FALSE);
6225 if (ptblsize < 0)
6226 goto err;
6227
6228 /* Fill in the new section cache. */
6229 free_section_cache (sec_cache);
6230 init_section_cache (sec_cache);
6231
6232 sec_cache->sec = sec;
6233 sec_cache->contents = contents;
6234 sec_cache->content_length = sec_size;
6235 sec_cache->relocs = internal_relocs;
6236 sec_cache->reloc_count = sec->reloc_count;
6237 sec_cache->pte_count = ptblsize;
6238 sec_cache->ptbl = prop_table;
6239
6240 return TRUE;
6241
6242 err:
6243 release_contents (sec, contents);
6244 release_internal_relocs (sec, internal_relocs);
6245 if (prop_table)
6246 free (prop_table);
6247 return FALSE;
6248 }
6249
6250 \f
6251 /* Extended basic blocks. */
6252
6253 /* An ebb_struct represents an Extended Basic Block. Within this
6254 range, we guarantee that all instructions are decodable, the
6255 property table entries are contiguous, and no property table
6256 specifies a segment that cannot have instructions moved. This
6257 structure contains caches of the contents, property table and
6258 relocations for the specified section for easy use. The range is
6259 specified by ranges of indices for the byte offset, property table
6260 offsets and relocation offsets. These must be consistent. */
6261
6262 typedef struct ebb_struct ebb_t;
6263
6264 struct ebb_struct
6265 {
6266 asection *sec;
6267
6268 bfd_byte *contents; /* Cache of the section contents. */
6269 bfd_size_type content_length;
6270
6271 property_table_entry *ptbl; /* Cache of the section property table. */
6272 unsigned pte_count;
6273
6274 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6275 unsigned reloc_count;
6276
6277 bfd_vma start_offset; /* Offset in section. */
6278 unsigned start_ptbl_idx; /* Offset in the property table. */
6279 unsigned start_reloc_idx; /* Offset in the relocations. */
6280
6281 bfd_vma end_offset;
6282 unsigned end_ptbl_idx;
6283 unsigned end_reloc_idx;
6284
6285 bfd_boolean ends_section; /* Is this the last ebb in a section? */
6286
6287 /* The unreachable property table at the end of this set of blocks;
6288 NULL if the end is not an unreachable block. */
6289 property_table_entry *ends_unreachable;
6290 };
6291
6292
6293 enum ebb_target_enum
6294 {
6295 EBB_NO_ALIGN = 0,
6296 EBB_DESIRE_TGT_ALIGN,
6297 EBB_REQUIRE_TGT_ALIGN,
6298 EBB_REQUIRE_LOOP_ALIGN,
6299 EBB_REQUIRE_ALIGN
6300 };
6301
6302
6303 /* proposed_action_struct is similar to the text_action_struct except
6304 that is represents a potential transformation, not one that will
6305 occur. We build a list of these for an extended basic block
6306 and use them to compute the actual actions desired. We must be
6307 careful that the entire set of actual actions we perform do not
6308 break any relocations that would fit if the actions were not
6309 performed. */
6310
6311 typedef struct proposed_action_struct proposed_action;
6312
6313 struct proposed_action_struct
6314 {
6315 enum ebb_target_enum align_type; /* for the target alignment */
6316 bfd_vma alignment_pow;
6317 text_action_t action;
6318 bfd_vma offset;
6319 int removed_bytes;
6320 bfd_boolean do_action; /* If false, then we will not perform the action. */
6321 };
6322
6323
6324 /* The ebb_constraint_struct keeps a set of proposed actions for an
6325 extended basic block. */
6326
6327 typedef struct ebb_constraint_struct ebb_constraint;
6328
6329 struct ebb_constraint_struct
6330 {
6331 ebb_t ebb;
6332 bfd_boolean start_movable;
6333
6334 /* Bytes of extra space at the beginning if movable. */
6335 int start_extra_space;
6336
6337 enum ebb_target_enum start_align;
6338
6339 bfd_boolean end_movable;
6340
6341 /* Bytes of extra space at the end if movable. */
6342 int end_extra_space;
6343
6344 unsigned action_count;
6345 unsigned action_allocated;
6346
6347 /* Array of proposed actions. */
6348 proposed_action *actions;
6349
6350 /* Action alignments -- one for each proposed action. */
6351 enum ebb_target_enum *action_aligns;
6352 };
6353
6354
6355 static void
6356 init_ebb_constraint (ebb_constraint *c)
6357 {
6358 memset (c, 0, sizeof (ebb_constraint));
6359 }
6360
6361
6362 static void
6363 free_ebb_constraint (ebb_constraint *c)
6364 {
6365 if (c->actions)
6366 free (c->actions);
6367 }
6368
6369
6370 static void
6371 init_ebb (ebb_t *ebb,
6372 asection *sec,
6373 bfd_byte *contents,
6374 bfd_size_type content_length,
6375 property_table_entry *prop_table,
6376 unsigned ptblsize,
6377 Elf_Internal_Rela *internal_relocs,
6378 unsigned reloc_count)
6379 {
6380 memset (ebb, 0, sizeof (ebb_t));
6381 ebb->sec = sec;
6382 ebb->contents = contents;
6383 ebb->content_length = content_length;
6384 ebb->ptbl = prop_table;
6385 ebb->pte_count = ptblsize;
6386 ebb->relocs = internal_relocs;
6387 ebb->reloc_count = reloc_count;
6388 ebb->start_offset = 0;
6389 ebb->end_offset = ebb->content_length - 1;
6390 ebb->start_ptbl_idx = 0;
6391 ebb->end_ptbl_idx = ptblsize;
6392 ebb->start_reloc_idx = 0;
6393 ebb->end_reloc_idx = reloc_count;
6394 }
6395
6396
6397 /* Extend the ebb to all decodable contiguous sections. The algorithm
6398 for building a basic block around an instruction is to push it
6399 forward until we hit the end of a section, an unreachable block or
6400 a block that cannot be transformed. Then we push it backwards
6401 searching for similar conditions. */
6402
6403 static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
6404 static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
6405 static bfd_size_type insn_block_decodable_len
6406 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
6407
6408 static bfd_boolean
6409 extend_ebb_bounds (ebb_t *ebb)
6410 {
6411 if (!extend_ebb_bounds_forward (ebb))
6412 return FALSE;
6413 if (!extend_ebb_bounds_backward (ebb))
6414 return FALSE;
6415 return TRUE;
6416 }
6417
6418
6419 static bfd_boolean
6420 extend_ebb_bounds_forward (ebb_t *ebb)
6421 {
6422 property_table_entry *the_entry, *new_entry;
6423
6424 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6425
6426 /* Stop when (1) we cannot decode an instruction, (2) we are at
6427 the end of the property tables, (3) we hit a non-contiguous property
6428 table entry, (4) we hit a NO_TRANSFORM region. */
6429
6430 while (1)
6431 {
6432 bfd_vma entry_end;
6433 bfd_size_type insn_block_len;
6434
6435 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
6436 insn_block_len =
6437 insn_block_decodable_len (ebb->contents, ebb->content_length,
6438 ebb->end_offset,
6439 entry_end - ebb->end_offset);
6440 if (insn_block_len != (entry_end - ebb->end_offset))
6441 {
6442 _bfd_error_handler
6443 /* xgettext:c-format */
6444 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; "
6445 "possible configuration mismatch"),
6446 ebb->sec->owner, ebb->sec,
6447 (uint64_t) (ebb->end_offset + insn_block_len));
6448 return FALSE;
6449 }
6450 ebb->end_offset += insn_block_len;
6451
6452 if (ebb->end_offset == ebb->sec->size)
6453 ebb->ends_section = TRUE;
6454
6455 /* Update the reloc counter. */
6456 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
6457 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
6458 < ebb->end_offset))
6459 {
6460 ebb->end_reloc_idx++;
6461 }
6462
6463 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6464 return TRUE;
6465
6466 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6467 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
6468 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6469 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
6470 break;
6471
6472 if (the_entry->address + the_entry->size != new_entry->address)
6473 break;
6474
6475 the_entry = new_entry;
6476 ebb->end_ptbl_idx++;
6477 }
6478
6479 /* Quick check for an unreachable or end of file just at the end. */
6480 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6481 {
6482 if (ebb->end_offset == ebb->content_length)
6483 ebb->ends_section = TRUE;
6484 }
6485 else
6486 {
6487 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6488 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
6489 && the_entry->address + the_entry->size == new_entry->address)
6490 ebb->ends_unreachable = new_entry;
6491 }
6492
6493 /* Any other ending requires exact alignment. */
6494 return TRUE;
6495 }
6496
6497
6498 static bfd_boolean
6499 extend_ebb_bounds_backward (ebb_t *ebb)
6500 {
6501 property_table_entry *the_entry, *new_entry;
6502
6503 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6504
6505 /* Stop when (1) we cannot decode the instructions in the current entry.
6506 (2) we are at the beginning of the property tables, (3) we hit a
6507 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
6508
6509 while (1)
6510 {
6511 bfd_vma block_begin;
6512 bfd_size_type insn_block_len;
6513
6514 block_begin = the_entry->address - ebb->sec->vma;
6515 insn_block_len =
6516 insn_block_decodable_len (ebb->contents, ebb->content_length,
6517 block_begin,
6518 ebb->start_offset - block_begin);
6519 if (insn_block_len != ebb->start_offset - block_begin)
6520 {
6521 _bfd_error_handler
6522 /* xgettext:c-format */
6523 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; "
6524 "possible configuration mismatch"),
6525 ebb->sec->owner, ebb->sec,
6526 (uint64_t) (ebb->end_offset + insn_block_len));
6527 return FALSE;
6528 }
6529 ebb->start_offset -= insn_block_len;
6530
6531 /* Update the reloc counter. */
6532 while (ebb->start_reloc_idx > 0
6533 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
6534 >= ebb->start_offset))
6535 {
6536 ebb->start_reloc_idx--;
6537 }
6538
6539 if (ebb->start_ptbl_idx == 0)
6540 return TRUE;
6541
6542 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
6543 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
6544 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6545 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
6546 return TRUE;
6547 if (new_entry->address + new_entry->size != the_entry->address)
6548 return TRUE;
6549
6550 the_entry = new_entry;
6551 ebb->start_ptbl_idx--;
6552 }
6553 return TRUE;
6554 }
6555
6556
6557 static bfd_size_type
6558 insn_block_decodable_len (bfd_byte *contents,
6559 bfd_size_type content_len,
6560 bfd_vma block_offset,
6561 bfd_size_type block_len)
6562 {
6563 bfd_vma offset = block_offset;
6564
6565 while (offset < block_offset + block_len)
6566 {
6567 bfd_size_type insn_len = 0;
6568
6569 insn_len = insn_decode_len (contents, content_len, offset);
6570 if (insn_len == 0)
6571 return (offset - block_offset);
6572 offset += insn_len;
6573 }
6574 return (offset - block_offset);
6575 }
6576
6577
6578 static void
6579 ebb_propose_action (ebb_constraint *c,
6580 enum ebb_target_enum align_type,
6581 bfd_vma alignment_pow,
6582 text_action_t action,
6583 bfd_vma offset,
6584 int removed_bytes,
6585 bfd_boolean do_action)
6586 {
6587 proposed_action *act;
6588
6589 if (c->action_allocated <= c->action_count)
6590 {
6591 unsigned new_allocated, i;
6592 proposed_action *new_actions;
6593
6594 new_allocated = (c->action_count + 2) * 2;
6595 new_actions = (proposed_action *)
6596 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
6597
6598 for (i = 0; i < c->action_count; i++)
6599 new_actions[i] = c->actions[i];
6600 if (c->actions)
6601 free (c->actions);
6602 c->actions = new_actions;
6603 c->action_allocated = new_allocated;
6604 }
6605
6606 act = &c->actions[c->action_count];
6607 act->align_type = align_type;
6608 act->alignment_pow = alignment_pow;
6609 act->action = action;
6610 act->offset = offset;
6611 act->removed_bytes = removed_bytes;
6612 act->do_action = do_action;
6613
6614 c->action_count++;
6615 }
6616
6617 \f
6618 /* Access to internal relocations, section contents and symbols. */
6619
6620 /* During relaxation, we need to modify relocations, section contents,
6621 and symbol definitions, and we need to keep the original values from
6622 being reloaded from the input files, i.e., we need to "pin" the
6623 modified values in memory. We also want to continue to observe the
6624 setting of the "keep-memory" flag. The following functions wrap the
6625 standard BFD functions to take care of this for us. */
6626
6627 static Elf_Internal_Rela *
6628 retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6629 {
6630 Elf_Internal_Rela *internal_relocs;
6631
6632 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6633 return NULL;
6634
6635 internal_relocs = elf_section_data (sec)->relocs;
6636 if (internal_relocs == NULL)
6637 internal_relocs = (_bfd_elf_link_read_relocs
6638 (abfd, sec, NULL, NULL, keep_memory));
6639 return internal_relocs;
6640 }
6641
6642
6643 static void
6644 pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6645 {
6646 elf_section_data (sec)->relocs = internal_relocs;
6647 }
6648
6649
6650 static void
6651 release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6652 {
6653 if (internal_relocs
6654 && elf_section_data (sec)->relocs != internal_relocs)
6655 free (internal_relocs);
6656 }
6657
6658
6659 static bfd_byte *
6660 retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6661 {
6662 bfd_byte *contents;
6663 bfd_size_type sec_size;
6664
6665 sec_size = bfd_get_section_limit (abfd, sec);
6666 contents = elf_section_data (sec)->this_hdr.contents;
6667
6668 if (contents == NULL && sec_size != 0)
6669 {
6670 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6671 {
6672 if (contents)
6673 free (contents);
6674 return NULL;
6675 }
6676 if (keep_memory)
6677 elf_section_data (sec)->this_hdr.contents = contents;
6678 }
6679 return contents;
6680 }
6681
6682
6683 static void
6684 pin_contents (asection *sec, bfd_byte *contents)
6685 {
6686 elf_section_data (sec)->this_hdr.contents = contents;
6687 }
6688
6689
6690 static void
6691 release_contents (asection *sec, bfd_byte *contents)
6692 {
6693 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
6694 free (contents);
6695 }
6696
6697
6698 static Elf_Internal_Sym *
6699 retrieve_local_syms (bfd *input_bfd)
6700 {
6701 Elf_Internal_Shdr *symtab_hdr;
6702 Elf_Internal_Sym *isymbuf;
6703 size_t locsymcount;
6704
6705 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6706 locsymcount = symtab_hdr->sh_info;
6707
6708 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6709 if (isymbuf == NULL && locsymcount != 0)
6710 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6711 NULL, NULL, NULL);
6712
6713 /* Save the symbols for this input file so they won't be read again. */
6714 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
6715 symtab_hdr->contents = (unsigned char *) isymbuf;
6716
6717 return isymbuf;
6718 }
6719
6720 \f
6721 /* Code for link-time relaxation. */
6722
6723 /* Initialization for relaxation: */
6724 static bfd_boolean analyze_relocations (struct bfd_link_info *);
6725 static bfd_boolean find_relaxable_sections
6726 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
6727 static bfd_boolean collect_source_relocs
6728 (bfd *, asection *, struct bfd_link_info *);
6729 static bfd_boolean is_resolvable_asm_expansion
6730 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
6731 bfd_boolean *);
6732 static Elf_Internal_Rela *find_associated_l32r_irel
6733 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
6734 static bfd_boolean compute_text_actions
6735 (bfd *, asection *, struct bfd_link_info *);
6736 static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
6737 static bfd_boolean compute_ebb_actions (ebb_constraint *);
6738 typedef struct reloc_range_list_struct reloc_range_list;
6739 static bfd_boolean check_section_ebb_pcrels_fit
6740 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *,
6741 reloc_range_list *, const ebb_constraint *,
6742 const xtensa_opcode *);
6743 static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
6744 static void text_action_add_proposed
6745 (text_action_list *, const ebb_constraint *, asection *);
6746
6747 /* First pass: */
6748 static bfd_boolean compute_removed_literals
6749 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
6750 static Elf_Internal_Rela *get_irel_at_offset
6751 (asection *, Elf_Internal_Rela *, bfd_vma);
6752 static bfd_boolean is_removable_literal
6753 (const source_reloc *, int, const source_reloc *, int, asection *,
6754 property_table_entry *, int);
6755 static bfd_boolean remove_dead_literal
6756 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
6757 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
6758 static bfd_boolean identify_literal_placement
6759 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
6760 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
6761 source_reloc *, property_table_entry *, int, section_cache_t *,
6762 bfd_boolean);
6763 static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
6764 static bfd_boolean coalesce_shared_literal
6765 (asection *, source_reloc *, property_table_entry *, int, value_map *);
6766 static bfd_boolean move_shared_literal
6767 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
6768 int, const r_reloc *, const literal_value *, section_cache_t *);
6769
6770 /* Second pass: */
6771 static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
6772 static bfd_boolean translate_section_fixes (asection *);
6773 static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
6774 static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
6775 static void shrink_dynamic_reloc_sections
6776 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
6777 static bfd_boolean move_literal
6778 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
6779 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
6780 static bfd_boolean relax_property_section
6781 (bfd *, asection *, struct bfd_link_info *);
6782
6783 /* Third pass: */
6784 static bfd_boolean relax_section_symbols (bfd *, asection *);
6785
6786
6787 static bfd_boolean
6788 elf_xtensa_relax_section (bfd *abfd,
6789 asection *sec,
6790 struct bfd_link_info *link_info,
6791 bfd_boolean *again)
6792 {
6793 static value_map_hash_table *values = NULL;
6794 static bfd_boolean relocations_analyzed = FALSE;
6795 xtensa_relax_info *relax_info;
6796
6797 if (!relocations_analyzed)
6798 {
6799 /* Do some overall initialization for relaxation. */
6800 values = value_map_hash_table_init ();
6801 if (values == NULL)
6802 return FALSE;
6803 relaxing_section = TRUE;
6804 if (!analyze_relocations (link_info))
6805 return FALSE;
6806 relocations_analyzed = TRUE;
6807 }
6808 *again = FALSE;
6809
6810 /* Don't mess with linker-created sections. */
6811 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6812 return TRUE;
6813
6814 relax_info = get_xtensa_relax_info (sec);
6815 BFD_ASSERT (relax_info != NULL);
6816
6817 switch (relax_info->visited)
6818 {
6819 case 0:
6820 /* Note: It would be nice to fold this pass into
6821 analyze_relocations, but it is important for this step that the
6822 sections be examined in link order. */
6823 if (!compute_removed_literals (abfd, sec, link_info, values))
6824 return FALSE;
6825 *again = TRUE;
6826 break;
6827
6828 case 1:
6829 if (values)
6830 value_map_hash_table_delete (values);
6831 values = NULL;
6832 if (!relax_section (abfd, sec, link_info))
6833 return FALSE;
6834 *again = TRUE;
6835 break;
6836
6837 case 2:
6838 if (!relax_section_symbols (abfd, sec))
6839 return FALSE;
6840 break;
6841 }
6842
6843 relax_info->visited++;
6844 return TRUE;
6845 }
6846
6847 \f
6848 /* Initialization for relaxation. */
6849
6850 /* This function is called once at the start of relaxation. It scans
6851 all the input sections and marks the ones that are relaxable (i.e.,
6852 literal sections with L32R relocations against them), and then
6853 collects source_reloc information for all the relocations against
6854 those relaxable sections. During this process, it also detects
6855 longcalls, i.e., calls relaxed by the assembler into indirect
6856 calls, that can be optimized back into direct calls. Within each
6857 extended basic block (ebb) containing an optimized longcall, it
6858 computes a set of "text actions" that can be performed to remove
6859 the L32R associated with the longcall while optionally preserving
6860 branch target alignments. */
6861
6862 static bfd_boolean
6863 analyze_relocations (struct bfd_link_info *link_info)
6864 {
6865 bfd *abfd;
6866 asection *sec;
6867 bfd_boolean is_relaxable = FALSE;
6868
6869 /* Initialize the per-section relaxation info. */
6870 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6871 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6872 {
6873 init_xtensa_relax_info (sec);
6874 }
6875
6876 /* Mark relaxable sections (and count relocations against each one). */
6877 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6878 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6879 {
6880 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
6881 return FALSE;
6882 }
6883
6884 /* Bail out if there are no relaxable sections. */
6885 if (!is_relaxable)
6886 return TRUE;
6887
6888 /* Allocate space for source_relocs. */
6889 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6890 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6891 {
6892 xtensa_relax_info *relax_info;
6893
6894 relax_info = get_xtensa_relax_info (sec);
6895 if (relax_info->is_relaxable_literal_section
6896 || relax_info->is_relaxable_asm_section)
6897 {
6898 relax_info->src_relocs = (source_reloc *)
6899 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
6900 }
6901 else
6902 relax_info->src_count = 0;
6903 }
6904
6905 /* Collect info on relocations against each relaxable section. */
6906 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6907 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6908 {
6909 if (!collect_source_relocs (abfd, sec, link_info))
6910 return FALSE;
6911 }
6912
6913 /* Compute the text actions. */
6914 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6915 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6916 {
6917 if (!compute_text_actions (abfd, sec, link_info))
6918 return FALSE;
6919 }
6920
6921 return TRUE;
6922 }
6923
6924
6925 /* Find all the sections that might be relaxed. The motivation for
6926 this pass is that collect_source_relocs() needs to record _all_ the
6927 relocations that target each relaxable section. That is expensive
6928 and unnecessary unless the target section is actually going to be
6929 relaxed. This pass identifies all such sections by checking if
6930 they have L32Rs pointing to them. In the process, the total number
6931 of relocations targeting each section is also counted so that we
6932 know how much space to allocate for source_relocs against each
6933 relaxable literal section. */
6934
6935 static bfd_boolean
6936 find_relaxable_sections (bfd *abfd,
6937 asection *sec,
6938 struct bfd_link_info *link_info,
6939 bfd_boolean *is_relaxable_p)
6940 {
6941 Elf_Internal_Rela *internal_relocs;
6942 bfd_byte *contents;
6943 bfd_boolean ok = TRUE;
6944 unsigned i;
6945 xtensa_relax_info *source_relax_info;
6946 bfd_boolean is_l32r_reloc;
6947
6948 internal_relocs = retrieve_internal_relocs (abfd, sec,
6949 link_info->keep_memory);
6950 if (internal_relocs == NULL)
6951 return ok;
6952
6953 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6954 if (contents == NULL && sec->size != 0)
6955 {
6956 ok = FALSE;
6957 goto error_return;
6958 }
6959
6960 source_relax_info = get_xtensa_relax_info (sec);
6961 for (i = 0; i < sec->reloc_count; i++)
6962 {
6963 Elf_Internal_Rela *irel = &internal_relocs[i];
6964 r_reloc r_rel;
6965 asection *target_sec;
6966 xtensa_relax_info *target_relax_info;
6967
6968 /* If this section has not already been marked as "relaxable", and
6969 if it contains any ASM_EXPAND relocations (marking expanded
6970 longcalls) that can be optimized into direct calls, then mark
6971 the section as "relaxable". */
6972 if (source_relax_info
6973 && !source_relax_info->is_relaxable_asm_section
6974 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
6975 {
6976 bfd_boolean is_reachable = FALSE;
6977 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
6978 link_info, &is_reachable)
6979 && is_reachable)
6980 {
6981 source_relax_info->is_relaxable_asm_section = TRUE;
6982 *is_relaxable_p = TRUE;
6983 }
6984 }
6985
6986 r_reloc_init (&r_rel, abfd, irel, contents,
6987 bfd_get_section_limit (abfd, sec));
6988
6989 target_sec = r_reloc_get_section (&r_rel);
6990 target_relax_info = get_xtensa_relax_info (target_sec);
6991 if (!target_relax_info)
6992 continue;
6993
6994 /* Count PC-relative operand relocations against the target section.
6995 Note: The conditions tested here must match the conditions under
6996 which init_source_reloc is called in collect_source_relocs(). */
6997 is_l32r_reloc = FALSE;
6998 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6999 {
7000 xtensa_opcode opcode =
7001 get_relocation_opcode (abfd, sec, contents, irel);
7002 if (opcode != XTENSA_UNDEFINED)
7003 {
7004 is_l32r_reloc = (opcode == get_l32r_opcode ());
7005 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
7006 || is_l32r_reloc)
7007 target_relax_info->src_count++;
7008 }
7009 }
7010
7011 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
7012 {
7013 /* Mark the target section as relaxable. */
7014 target_relax_info->is_relaxable_literal_section = TRUE;
7015 *is_relaxable_p = TRUE;
7016 }
7017 }
7018
7019 error_return:
7020 release_contents (sec, contents);
7021 release_internal_relocs (sec, internal_relocs);
7022 return ok;
7023 }
7024
7025
7026 /* Record _all_ the relocations that point to relaxable sections, and
7027 get rid of ASM_EXPAND relocs by either converting them to
7028 ASM_SIMPLIFY or by removing them. */
7029
7030 static bfd_boolean
7031 collect_source_relocs (bfd *abfd,
7032 asection *sec,
7033 struct bfd_link_info *link_info)
7034 {
7035 Elf_Internal_Rela *internal_relocs;
7036 bfd_byte *contents;
7037 bfd_boolean ok = TRUE;
7038 unsigned i;
7039 bfd_size_type sec_size;
7040
7041 internal_relocs = retrieve_internal_relocs (abfd, sec,
7042 link_info->keep_memory);
7043 if (internal_relocs == NULL)
7044 return ok;
7045
7046 sec_size = bfd_get_section_limit (abfd, sec);
7047 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7048 if (contents == NULL && sec_size != 0)
7049 {
7050 ok = FALSE;
7051 goto error_return;
7052 }
7053
7054 /* Record relocations against relaxable literal sections. */
7055 for (i = 0; i < sec->reloc_count; i++)
7056 {
7057 Elf_Internal_Rela *irel = &internal_relocs[i];
7058 r_reloc r_rel;
7059 asection *target_sec;
7060 xtensa_relax_info *target_relax_info;
7061
7062 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7063
7064 target_sec = r_reloc_get_section (&r_rel);
7065 target_relax_info = get_xtensa_relax_info (target_sec);
7066
7067 if (target_relax_info
7068 && (target_relax_info->is_relaxable_literal_section
7069 || target_relax_info->is_relaxable_asm_section))
7070 {
7071 xtensa_opcode opcode = XTENSA_UNDEFINED;
7072 int opnd = -1;
7073 bfd_boolean is_abs_literal = FALSE;
7074
7075 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7076 {
7077 /* None of the current alternate relocs are PC-relative,
7078 and only PC-relative relocs matter here. However, we
7079 still need to record the opcode for literal
7080 coalescing. */
7081 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7082 if (opcode == get_l32r_opcode ())
7083 {
7084 is_abs_literal = TRUE;
7085 opnd = 1;
7086 }
7087 else
7088 opcode = XTENSA_UNDEFINED;
7089 }
7090 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
7091 {
7092 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7093 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7094 }
7095
7096 if (opcode != XTENSA_UNDEFINED)
7097 {
7098 int src_next = target_relax_info->src_next++;
7099 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
7100
7101 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
7102 is_abs_literal);
7103 }
7104 }
7105 }
7106
7107 /* Now get rid of ASM_EXPAND relocations. At this point, the
7108 src_relocs array for the target literal section may still be
7109 incomplete, but it must at least contain the entries for the L32R
7110 relocations associated with ASM_EXPANDs because they were just
7111 added in the preceding loop over the relocations. */
7112
7113 for (i = 0; i < sec->reloc_count; i++)
7114 {
7115 Elf_Internal_Rela *irel = &internal_relocs[i];
7116 bfd_boolean is_reachable;
7117
7118 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
7119 &is_reachable))
7120 continue;
7121
7122 if (is_reachable)
7123 {
7124 Elf_Internal_Rela *l32r_irel;
7125 r_reloc r_rel;
7126 asection *target_sec;
7127 xtensa_relax_info *target_relax_info;
7128
7129 /* Mark the source_reloc for the L32R so that it will be
7130 removed in compute_removed_literals(), along with the
7131 associated literal. */
7132 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
7133 irel, internal_relocs);
7134 if (l32r_irel == NULL)
7135 continue;
7136
7137 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
7138
7139 target_sec = r_reloc_get_section (&r_rel);
7140 target_relax_info = get_xtensa_relax_info (target_sec);
7141
7142 if (target_relax_info
7143 && (target_relax_info->is_relaxable_literal_section
7144 || target_relax_info->is_relaxable_asm_section))
7145 {
7146 source_reloc *s_reloc;
7147
7148 /* Search the source_relocs for the entry corresponding to
7149 the l32r_irel. Note: The src_relocs array is not yet
7150 sorted, but it wouldn't matter anyway because we're
7151 searching by source offset instead of target offset. */
7152 s_reloc = find_source_reloc (target_relax_info->src_relocs,
7153 target_relax_info->src_next,
7154 sec, l32r_irel);
7155 BFD_ASSERT (s_reloc);
7156 s_reloc->is_null = TRUE;
7157 }
7158
7159 /* Convert this reloc to ASM_SIMPLIFY. */
7160 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
7161 R_XTENSA_ASM_SIMPLIFY);
7162 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7163
7164 pin_internal_relocs (sec, internal_relocs);
7165 }
7166 else
7167 {
7168 /* It is resolvable but doesn't reach. We resolve now
7169 by eliminating the relocation -- the call will remain
7170 expanded into L32R/CALLX. */
7171 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7172 pin_internal_relocs (sec, internal_relocs);
7173 }
7174 }
7175
7176 error_return:
7177 release_contents (sec, contents);
7178 release_internal_relocs (sec, internal_relocs);
7179 return ok;
7180 }
7181
7182
7183 /* Return TRUE if the asm expansion can be resolved. Generally it can
7184 be resolved on a final link or when a partial link locates it in the
7185 same section as the target. Set "is_reachable" flag if the target of
7186 the call is within the range of a direct call, given the current VMA
7187 for this section and the target section. */
7188
7189 bfd_boolean
7190 is_resolvable_asm_expansion (bfd *abfd,
7191 asection *sec,
7192 bfd_byte *contents,
7193 Elf_Internal_Rela *irel,
7194 struct bfd_link_info *link_info,
7195 bfd_boolean *is_reachable_p)
7196 {
7197 asection *target_sec;
7198 asection *s;
7199 bfd_vma first_vma;
7200 bfd_vma last_vma;
7201 unsigned int first_align;
7202 unsigned int adjust;
7203 bfd_vma target_offset;
7204 r_reloc r_rel;
7205 xtensa_opcode opcode, direct_call_opcode;
7206 bfd_vma self_address;
7207 bfd_vma dest_address;
7208 bfd_boolean uses_l32r;
7209 bfd_size_type sec_size;
7210
7211 *is_reachable_p = FALSE;
7212
7213 if (contents == NULL)
7214 return FALSE;
7215
7216 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
7217 return FALSE;
7218
7219 sec_size = bfd_get_section_limit (abfd, sec);
7220 opcode = get_expanded_call_opcode (contents + irel->r_offset,
7221 sec_size - irel->r_offset, &uses_l32r);
7222 /* Optimization of longcalls that use CONST16 is not yet implemented. */
7223 if (!uses_l32r)
7224 return FALSE;
7225
7226 direct_call_opcode = swap_callx_for_call_opcode (opcode);
7227 if (direct_call_opcode == XTENSA_UNDEFINED)
7228 return FALSE;
7229
7230 /* Check and see that the target resolves. */
7231 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7232 if (!r_reloc_is_defined (&r_rel))
7233 return FALSE;
7234
7235 target_sec = r_reloc_get_section (&r_rel);
7236 target_offset = r_rel.target_offset;
7237
7238 /* If the target is in a shared library, then it doesn't reach. This
7239 isn't supposed to come up because the compiler should never generate
7240 non-PIC calls on systems that use shared libraries, but the linker
7241 shouldn't crash regardless. */
7242 if (!target_sec->output_section)
7243 return FALSE;
7244
7245 /* For relocatable sections, we can only simplify when the output
7246 section of the target is the same as the output section of the
7247 source. */
7248 if (bfd_link_relocatable (link_info)
7249 && (target_sec->output_section != sec->output_section
7250 || is_reloc_sym_weak (abfd, irel)))
7251 return FALSE;
7252
7253 if (target_sec->output_section != sec->output_section)
7254 {
7255 /* If the two sections are sufficiently far away that relaxation
7256 might take the call out of range, we can't simplify. For
7257 example, a positive displacement call into another memory
7258 could get moved to a lower address due to literal removal,
7259 but the destination won't move, and so the displacment might
7260 get larger.
7261
7262 If the displacement is negative, assume the destination could
7263 move as far back as the start of the output section. The
7264 self_address will be at least as far into the output section
7265 as it is prior to relaxation.
7266
7267 If the displacement is postive, assume the destination will be in
7268 it's pre-relaxed location (because relaxation only makes sections
7269 smaller). The self_address could go all the way to the beginning
7270 of the output section. */
7271
7272 dest_address = target_sec->output_section->vma;
7273 self_address = sec->output_section->vma;
7274
7275 if (sec->output_section->vma > target_sec->output_section->vma)
7276 self_address += sec->output_offset + irel->r_offset + 3;
7277 else
7278 dest_address += bfd_get_section_limit (abfd, target_sec->output_section);
7279 /* Call targets should be four-byte aligned. */
7280 dest_address = (dest_address + 3) & ~3;
7281 }
7282 else
7283 {
7284
7285 self_address = (sec->output_section->vma
7286 + sec->output_offset + irel->r_offset + 3);
7287 dest_address = (target_sec->output_section->vma
7288 + target_sec->output_offset + target_offset);
7289 }
7290
7291 /* Adjust addresses with alignments for the worst case to see if call insn
7292 can fit. Don't relax l32r + callx to call if the target can be out of
7293 range due to alignment.
7294 Caller and target addresses are highest and lowest address.
7295 Search all sections between caller and target, looking for max alignment.
7296 The adjustment is max alignment bytes. If the alignment at the lowest
7297 address is less than the adjustment, apply the adjustment to highest
7298 address. */
7299
7300 /* Start from lowest address.
7301 Lowest address aligmnet is from input section.
7302 Initial alignment (adjust) is from input section. */
7303 if (dest_address > self_address)
7304 {
7305 s = sec->output_section;
7306 last_vma = dest_address;
7307 first_align = sec->alignment_power;
7308 adjust = target_sec->alignment_power;
7309 }
7310 else
7311 {
7312 s = target_sec->output_section;
7313 last_vma = self_address;
7314 first_align = target_sec->alignment_power;
7315 adjust = sec->alignment_power;
7316 }
7317
7318 first_vma = s->vma;
7319
7320 /* Find the largest alignment in output section list. */
7321 for (; s && s->vma >= first_vma && s->vma <= last_vma ; s = s->next)
7322 {
7323 if (s->alignment_power > adjust)
7324 adjust = s->alignment_power;
7325 }
7326
7327 if (adjust > first_align)
7328 {
7329 /* Alignment may enlarge the range, adjust highest address. */
7330 adjust = 1 << adjust;
7331 if (dest_address > self_address)
7332 {
7333 dest_address += adjust;
7334 }
7335 else
7336 {
7337 self_address += adjust;
7338 }
7339 }
7340
7341 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
7342 self_address, dest_address);
7343
7344 if ((self_address >> CALL_SEGMENT_BITS) !=
7345 (dest_address >> CALL_SEGMENT_BITS))
7346 return FALSE;
7347
7348 return TRUE;
7349 }
7350
7351
7352 static Elf_Internal_Rela *
7353 find_associated_l32r_irel (bfd *abfd,
7354 asection *sec,
7355 bfd_byte *contents,
7356 Elf_Internal_Rela *other_irel,
7357 Elf_Internal_Rela *internal_relocs)
7358 {
7359 unsigned i;
7360
7361 for (i = 0; i < sec->reloc_count; i++)
7362 {
7363 Elf_Internal_Rela *irel = &internal_relocs[i];
7364
7365 if (irel == other_irel)
7366 continue;
7367 if (irel->r_offset != other_irel->r_offset)
7368 continue;
7369 if (is_l32r_relocation (abfd, sec, contents, irel))
7370 return irel;
7371 }
7372
7373 return NULL;
7374 }
7375
7376
7377 static xtensa_opcode *
7378 build_reloc_opcodes (bfd *abfd,
7379 asection *sec,
7380 bfd_byte *contents,
7381 Elf_Internal_Rela *internal_relocs)
7382 {
7383 unsigned i;
7384 xtensa_opcode *reloc_opcodes =
7385 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
7386 for (i = 0; i < sec->reloc_count; i++)
7387 {
7388 Elf_Internal_Rela *irel = &internal_relocs[i];
7389 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
7390 }
7391 return reloc_opcodes;
7392 }
7393
7394 struct reloc_range_struct
7395 {
7396 bfd_vma addr;
7397 bfd_boolean add; /* TRUE if start of a range, FALSE otherwise. */
7398 /* Original irel index in the array of relocations for a section. */
7399 unsigned irel_index;
7400 };
7401 typedef struct reloc_range_struct reloc_range;
7402
7403 typedef struct reloc_range_list_entry_struct reloc_range_list_entry;
7404 struct reloc_range_list_entry_struct
7405 {
7406 reloc_range_list_entry *next;
7407 reloc_range_list_entry *prev;
7408 Elf_Internal_Rela *irel;
7409 xtensa_opcode opcode;
7410 int opnum;
7411 };
7412
7413 struct reloc_range_list_struct
7414 {
7415 /* The rest of the structure is only meaningful when ok is TRUE. */
7416 bfd_boolean ok;
7417
7418 unsigned n_range; /* Number of range markers. */
7419 reloc_range *range; /* Sorted range markers. */
7420
7421 unsigned first; /* Index of a first range element in the list. */
7422 unsigned last; /* One past index of a last range element in the list. */
7423
7424 unsigned n_list; /* Number of list elements. */
7425 reloc_range_list_entry *reloc; /* */
7426 reloc_range_list_entry list_root;
7427 };
7428
7429 static int
7430 reloc_range_compare (const void *a, const void *b)
7431 {
7432 const reloc_range *ra = a;
7433 const reloc_range *rb = b;
7434
7435 if (ra->addr != rb->addr)
7436 return ra->addr < rb->addr ? -1 : 1;
7437 if (ra->add != rb->add)
7438 return ra->add ? -1 : 1;
7439 return 0;
7440 }
7441
7442 static void
7443 build_reloc_ranges (bfd *abfd, asection *sec,
7444 bfd_byte *contents,
7445 Elf_Internal_Rela *internal_relocs,
7446 xtensa_opcode *reloc_opcodes,
7447 reloc_range_list *list)
7448 {
7449 unsigned i;
7450 size_t n = 0;
7451 size_t max_n = 0;
7452 reloc_range *ranges = NULL;
7453 reloc_range_list_entry *reloc =
7454 bfd_malloc (sec->reloc_count * sizeof (*reloc));
7455
7456 memset (list, 0, sizeof (*list));
7457 list->ok = TRUE;
7458
7459 for (i = 0; i < sec->reloc_count; i++)
7460 {
7461 Elf_Internal_Rela *irel = &internal_relocs[i];
7462 int r_type = ELF32_R_TYPE (irel->r_info);
7463 reloc_howto_type *howto = &elf_howto_table[r_type];
7464 r_reloc r_rel;
7465
7466 if (r_type == R_XTENSA_ASM_SIMPLIFY
7467 || r_type == R_XTENSA_32_PCREL
7468 || !howto->pc_relative)
7469 continue;
7470
7471 r_reloc_init (&r_rel, abfd, irel, contents,
7472 bfd_get_section_limit (abfd, sec));
7473
7474 if (r_reloc_get_section (&r_rel) != sec)
7475 continue;
7476
7477 if (n + 2 > max_n)
7478 {
7479 max_n = (max_n + 2) * 2;
7480 ranges = bfd_realloc (ranges, max_n * sizeof (*ranges));
7481 }
7482
7483 ranges[n].addr = irel->r_offset;
7484 ranges[n + 1].addr = r_rel.target_offset;
7485
7486 ranges[n].add = ranges[n].addr < ranges[n + 1].addr;
7487 ranges[n + 1].add = !ranges[n].add;
7488
7489 ranges[n].irel_index = i;
7490 ranges[n + 1].irel_index = i;
7491
7492 n += 2;
7493
7494 reloc[i].irel = irel;
7495
7496 /* Every relocation won't possibly be checked in the optimized version of
7497 check_section_ebb_pcrels_fit, so this needs to be done here. */
7498 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7499 {
7500 /* None of the current alternate relocs are PC-relative,
7501 and only PC-relative relocs matter here. */
7502 }
7503 else
7504 {
7505 xtensa_opcode opcode;
7506 int opnum;
7507
7508 if (reloc_opcodes)
7509 opcode = reloc_opcodes[i];
7510 else
7511 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7512
7513 if (opcode == XTENSA_UNDEFINED)
7514 {
7515 list->ok = FALSE;
7516 break;
7517 }
7518
7519 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7520 if (opnum == XTENSA_UNDEFINED)
7521 {
7522 list->ok = FALSE;
7523 break;
7524 }
7525
7526 /* Record relocation opcode and opnum as we've calculated them
7527 anyway and they won't change. */
7528 reloc[i].opcode = opcode;
7529 reloc[i].opnum = opnum;
7530 }
7531 }
7532
7533 if (list->ok)
7534 {
7535 ranges = bfd_realloc (ranges, n * sizeof (*ranges));
7536 qsort (ranges, n, sizeof (*ranges), reloc_range_compare);
7537
7538 list->n_range = n;
7539 list->range = ranges;
7540 list->reloc = reloc;
7541 list->list_root.prev = &list->list_root;
7542 list->list_root.next = &list->list_root;
7543 }
7544 else
7545 {
7546 free (ranges);
7547 free (reloc);
7548 }
7549 }
7550
7551 static void reloc_range_list_append (reloc_range_list *list,
7552 unsigned irel_index)
7553 {
7554 reloc_range_list_entry *entry = list->reloc + irel_index;
7555
7556 entry->prev = list->list_root.prev;
7557 entry->next = &list->list_root;
7558 entry->prev->next = entry;
7559 entry->next->prev = entry;
7560 ++list->n_list;
7561 }
7562
7563 static void reloc_range_list_remove (reloc_range_list *list,
7564 unsigned irel_index)
7565 {
7566 reloc_range_list_entry *entry = list->reloc + irel_index;
7567
7568 entry->next->prev = entry->prev;
7569 entry->prev->next = entry->next;
7570 --list->n_list;
7571 }
7572
7573 /* Update relocation list object so that it lists all relocations that cross
7574 [first; last] range. Range bounds should not decrease with successive
7575 invocations. */
7576 static void reloc_range_list_update_range (reloc_range_list *list,
7577 bfd_vma first, bfd_vma last)
7578 {
7579 /* This should not happen: EBBs are iterated from lower addresses to higher.
7580 But even if that happens there's no need to break: just flush current list
7581 and start from scratch. */
7582 if ((list->last > 0 && list->range[list->last - 1].addr > last) ||
7583 (list->first > 0 && list->range[list->first - 1].addr >= first))
7584 {
7585 list->first = 0;
7586 list->last = 0;
7587 list->n_list = 0;
7588 list->list_root.next = &list->list_root;
7589 list->list_root.prev = &list->list_root;
7590 fprintf (stderr, "%s: move backwards requested\n", __func__);
7591 }
7592
7593 for (; list->last < list->n_range &&
7594 list->range[list->last].addr <= last; ++list->last)
7595 if (list->range[list->last].add)
7596 reloc_range_list_append (list, list->range[list->last].irel_index);
7597
7598 for (; list->first < list->n_range &&
7599 list->range[list->first].addr < first; ++list->first)
7600 if (!list->range[list->first].add)
7601 reloc_range_list_remove (list, list->range[list->first].irel_index);
7602 }
7603
7604 static void free_reloc_range_list (reloc_range_list *list)
7605 {
7606 free (list->range);
7607 free (list->reloc);
7608 }
7609
7610 /* The compute_text_actions function will build a list of potential
7611 transformation actions for code in the extended basic block of each
7612 longcall that is optimized to a direct call. From this list we
7613 generate a set of actions to actually perform that optimizes for
7614 space and, if not using size_opt, maintains branch target
7615 alignments.
7616
7617 These actions to be performed are placed on a per-section list.
7618 The actual changes are performed by relax_section() in the second
7619 pass. */
7620
7621 bfd_boolean
7622 compute_text_actions (bfd *abfd,
7623 asection *sec,
7624 struct bfd_link_info *link_info)
7625 {
7626 xtensa_opcode *reloc_opcodes = NULL;
7627 xtensa_relax_info *relax_info;
7628 bfd_byte *contents;
7629 Elf_Internal_Rela *internal_relocs;
7630 bfd_boolean ok = TRUE;
7631 unsigned i;
7632 property_table_entry *prop_table = 0;
7633 int ptblsize = 0;
7634 bfd_size_type sec_size;
7635 reloc_range_list relevant_relocs;
7636
7637 relax_info = get_xtensa_relax_info (sec);
7638 BFD_ASSERT (relax_info);
7639 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
7640
7641 /* Do nothing if the section contains no optimized longcalls. */
7642 if (!relax_info->is_relaxable_asm_section)
7643 return ok;
7644
7645 internal_relocs = retrieve_internal_relocs (abfd, sec,
7646 link_info->keep_memory);
7647
7648 if (internal_relocs)
7649 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7650 internal_reloc_compare);
7651
7652 sec_size = bfd_get_section_limit (abfd, sec);
7653 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7654 if (contents == NULL && sec_size != 0)
7655 {
7656 ok = FALSE;
7657 goto error_return;
7658 }
7659
7660 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7661 XTENSA_PROP_SEC_NAME, FALSE);
7662 if (ptblsize < 0)
7663 {
7664 ok = FALSE;
7665 goto error_return;
7666 }
7667
7668 /* Precompute the opcode for each relocation. */
7669 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents, internal_relocs);
7670
7671 build_reloc_ranges (abfd, sec, contents, internal_relocs, reloc_opcodes,
7672 &relevant_relocs);
7673
7674 for (i = 0; i < sec->reloc_count; i++)
7675 {
7676 Elf_Internal_Rela *irel = &internal_relocs[i];
7677 bfd_vma r_offset;
7678 property_table_entry *the_entry;
7679 int ptbl_idx;
7680 ebb_t *ebb;
7681 ebb_constraint ebb_table;
7682 bfd_size_type simplify_size;
7683
7684 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
7685 continue;
7686 r_offset = irel->r_offset;
7687
7688 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
7689 if (simplify_size == 0)
7690 {
7691 _bfd_error_handler
7692 /* xgettext:c-format */
7693 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction for "
7694 "XTENSA_ASM_SIMPLIFY relocation; "
7695 "possible configuration mismatch"),
7696 sec->owner, sec, (uint64_t) r_offset);
7697 continue;
7698 }
7699
7700 /* If the instruction table is not around, then don't do this
7701 relaxation. */
7702 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7703 sec->vma + irel->r_offset);
7704 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
7705 {
7706 text_action_add (&relax_info->action_list,
7707 ta_convert_longcall, sec, r_offset,
7708 0);
7709 continue;
7710 }
7711
7712 /* If the next longcall happens to be at the same address as an
7713 unreachable section of size 0, then skip forward. */
7714 ptbl_idx = the_entry - prop_table;
7715 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
7716 && the_entry->size == 0
7717 && ptbl_idx + 1 < ptblsize
7718 && (prop_table[ptbl_idx + 1].address
7719 == prop_table[ptbl_idx].address))
7720 {
7721 ptbl_idx++;
7722 the_entry++;
7723 }
7724
7725 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
7726 /* NO_REORDER is OK */
7727 continue;
7728
7729 init_ebb_constraint (&ebb_table);
7730 ebb = &ebb_table.ebb;
7731 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
7732 internal_relocs, sec->reloc_count);
7733 ebb->start_offset = r_offset + simplify_size;
7734 ebb->end_offset = r_offset + simplify_size;
7735 ebb->start_ptbl_idx = ptbl_idx;
7736 ebb->end_ptbl_idx = ptbl_idx;
7737 ebb->start_reloc_idx = i;
7738 ebb->end_reloc_idx = i;
7739
7740 if (!extend_ebb_bounds (ebb)
7741 || !compute_ebb_proposed_actions (&ebb_table)
7742 || !compute_ebb_actions (&ebb_table)
7743 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
7744 internal_relocs,
7745 &relevant_relocs,
7746 &ebb_table, reloc_opcodes)
7747 || !check_section_ebb_reduces (&ebb_table))
7748 {
7749 /* If anything goes wrong or we get unlucky and something does
7750 not fit, with our plan because of expansion between
7751 critical branches, just convert to a NOP. */
7752
7753 text_action_add (&relax_info->action_list,
7754 ta_convert_longcall, sec, r_offset, 0);
7755 i = ebb_table.ebb.end_reloc_idx;
7756 free_ebb_constraint (&ebb_table);
7757 continue;
7758 }
7759
7760 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
7761
7762 /* Update the index so we do not go looking at the relocations
7763 we have already processed. */
7764 i = ebb_table.ebb.end_reloc_idx;
7765 free_ebb_constraint (&ebb_table);
7766 }
7767
7768 free_reloc_range_list (&relevant_relocs);
7769
7770 #if DEBUG
7771 if (action_list_count (&relax_info->action_list))
7772 print_action_list (stderr, &relax_info->action_list);
7773 #endif
7774
7775 error_return:
7776 release_contents (sec, contents);
7777 release_internal_relocs (sec, internal_relocs);
7778 if (prop_table)
7779 free (prop_table);
7780 if (reloc_opcodes)
7781 free (reloc_opcodes);
7782
7783 return ok;
7784 }
7785
7786
7787 /* Do not widen an instruction if it is preceeded by a
7788 loop opcode. It might cause misalignment. */
7789
7790 static bfd_boolean
7791 prev_instr_is_a_loop (bfd_byte *contents,
7792 bfd_size_type content_length,
7793 bfd_size_type offset)
7794 {
7795 xtensa_opcode prev_opcode;
7796
7797 if (offset < 3)
7798 return FALSE;
7799 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
7800 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
7801 }
7802
7803
7804 /* Find all of the possible actions for an extended basic block. */
7805
7806 bfd_boolean
7807 compute_ebb_proposed_actions (ebb_constraint *ebb_table)
7808 {
7809 const ebb_t *ebb = &ebb_table->ebb;
7810 unsigned rel_idx = ebb->start_reloc_idx;
7811 property_table_entry *entry, *start_entry, *end_entry;
7812 bfd_vma offset = 0;
7813 xtensa_isa isa = xtensa_default_isa;
7814 xtensa_format fmt;
7815 static xtensa_insnbuf insnbuf = NULL;
7816 static xtensa_insnbuf slotbuf = NULL;
7817
7818 if (insnbuf == NULL)
7819 {
7820 insnbuf = xtensa_insnbuf_alloc (isa);
7821 slotbuf = xtensa_insnbuf_alloc (isa);
7822 }
7823
7824 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
7825 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
7826
7827 for (entry = start_entry; entry <= end_entry; entry++)
7828 {
7829 bfd_vma start_offset, end_offset;
7830 bfd_size_type insn_len;
7831
7832 start_offset = entry->address - ebb->sec->vma;
7833 end_offset = entry->address + entry->size - ebb->sec->vma;
7834
7835 if (entry == start_entry)
7836 start_offset = ebb->start_offset;
7837 if (entry == end_entry)
7838 end_offset = ebb->end_offset;
7839 offset = start_offset;
7840
7841 if (offset == entry->address - ebb->sec->vma
7842 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
7843 {
7844 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
7845 BFD_ASSERT (offset != end_offset);
7846 if (offset == end_offset)
7847 return FALSE;
7848
7849 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
7850 offset);
7851 if (insn_len == 0)
7852 goto decode_error;
7853
7854 if (check_branch_target_aligned_address (offset, insn_len))
7855 align_type = EBB_REQUIRE_TGT_ALIGN;
7856
7857 ebb_propose_action (ebb_table, align_type, 0,
7858 ta_none, offset, 0, TRUE);
7859 }
7860
7861 while (offset != end_offset)
7862 {
7863 Elf_Internal_Rela *irel;
7864 xtensa_opcode opcode;
7865
7866 while (rel_idx < ebb->end_reloc_idx
7867 && (ebb->relocs[rel_idx].r_offset < offset
7868 || (ebb->relocs[rel_idx].r_offset == offset
7869 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
7870 != R_XTENSA_ASM_SIMPLIFY))))
7871 rel_idx++;
7872
7873 /* Check for longcall. */
7874 irel = &ebb->relocs[rel_idx];
7875 if (irel->r_offset == offset
7876 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
7877 {
7878 bfd_size_type simplify_size;
7879
7880 simplify_size = get_asm_simplify_size (ebb->contents,
7881 ebb->content_length,
7882 irel->r_offset);
7883 if (simplify_size == 0)
7884 goto decode_error;
7885
7886 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7887 ta_convert_longcall, offset, 0, TRUE);
7888
7889 offset += simplify_size;
7890 continue;
7891 }
7892
7893 if (offset + MIN_INSN_LENGTH > ebb->content_length)
7894 goto decode_error;
7895 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
7896 ebb->content_length - offset);
7897 fmt = xtensa_format_decode (isa, insnbuf);
7898 if (fmt == XTENSA_UNDEFINED)
7899 goto decode_error;
7900 insn_len = xtensa_format_length (isa, fmt);
7901 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
7902 goto decode_error;
7903
7904 if (xtensa_format_num_slots (isa, fmt) != 1)
7905 {
7906 offset += insn_len;
7907 continue;
7908 }
7909
7910 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
7911 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
7912 if (opcode == XTENSA_UNDEFINED)
7913 goto decode_error;
7914
7915 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
7916 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
7917 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
7918 {
7919 /* Add an instruction narrow action. */
7920 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7921 ta_narrow_insn, offset, 0, FALSE);
7922 }
7923 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
7924 && can_widen_instruction (slotbuf, fmt, opcode) != 0
7925 && ! prev_instr_is_a_loop (ebb->contents,
7926 ebb->content_length, offset))
7927 {
7928 /* Add an instruction widen action. */
7929 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7930 ta_widen_insn, offset, 0, FALSE);
7931 }
7932 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
7933 {
7934 /* Check for branch targets. */
7935 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
7936 ta_none, offset, 0, TRUE);
7937 }
7938
7939 offset += insn_len;
7940 }
7941 }
7942
7943 if (ebb->ends_unreachable)
7944 {
7945 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7946 ta_fill, ebb->end_offset, 0, TRUE);
7947 }
7948
7949 return TRUE;
7950
7951 decode_error:
7952 _bfd_error_handler
7953 /* xgettext:c-format */
7954 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; "
7955 "possible configuration mismatch"),
7956 ebb->sec->owner, ebb->sec, (uint64_t) offset);
7957 return FALSE;
7958 }
7959
7960
7961 /* After all of the information has collected about the
7962 transformations possible in an EBB, compute the appropriate actions
7963 here in compute_ebb_actions. We still must check later to make
7964 sure that the actions do not break any relocations. The algorithm
7965 used here is pretty greedy. Basically, it removes as many no-ops
7966 as possible so that the end of the EBB has the same alignment
7967 characteristics as the original. First, it uses narrowing, then
7968 fill space at the end of the EBB, and finally widenings. If that
7969 does not work, it tries again with one fewer no-op removed. The
7970 optimization will only be performed if all of the branch targets
7971 that were aligned before transformation are also aligned after the
7972 transformation.
7973
7974 When the size_opt flag is set, ignore the branch target alignments,
7975 narrow all wide instructions, and remove all no-ops unless the end
7976 of the EBB prevents it. */
7977
7978 bfd_boolean
7979 compute_ebb_actions (ebb_constraint *ebb_table)
7980 {
7981 unsigned i = 0;
7982 unsigned j;
7983 int removed_bytes = 0;
7984 ebb_t *ebb = &ebb_table->ebb;
7985 unsigned seg_idx_start = 0;
7986 unsigned seg_idx_end = 0;
7987
7988 /* We perform this like the assembler relaxation algorithm: Start by
7989 assuming all instructions are narrow and all no-ops removed; then
7990 walk through.... */
7991
7992 /* For each segment of this that has a solid constraint, check to
7993 see if there are any combinations that will keep the constraint.
7994 If so, use it. */
7995 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
7996 {
7997 bfd_boolean requires_text_end_align = FALSE;
7998 unsigned longcall_count = 0;
7999 unsigned longcall_convert_count = 0;
8000 unsigned narrowable_count = 0;
8001 unsigned narrowable_convert_count = 0;
8002 unsigned widenable_count = 0;
8003 unsigned widenable_convert_count = 0;
8004
8005 proposed_action *action = NULL;
8006 int align = (1 << ebb_table->ebb.sec->alignment_power);
8007
8008 seg_idx_start = seg_idx_end;
8009
8010 for (i = seg_idx_start; i < ebb_table->action_count; i++)
8011 {
8012 action = &ebb_table->actions[i];
8013 if (action->action == ta_convert_longcall)
8014 longcall_count++;
8015 if (action->action == ta_narrow_insn)
8016 narrowable_count++;
8017 if (action->action == ta_widen_insn)
8018 widenable_count++;
8019 if (action->action == ta_fill)
8020 break;
8021 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
8022 break;
8023 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
8024 && !elf32xtensa_size_opt)
8025 break;
8026 }
8027 seg_idx_end = i;
8028
8029 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
8030 requires_text_end_align = TRUE;
8031
8032 if (elf32xtensa_size_opt && !requires_text_end_align
8033 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
8034 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
8035 {
8036 longcall_convert_count = longcall_count;
8037 narrowable_convert_count = narrowable_count;
8038 widenable_convert_count = 0;
8039 }
8040 else
8041 {
8042 /* There is a constraint. Convert the max number of longcalls. */
8043 narrowable_convert_count = 0;
8044 longcall_convert_count = 0;
8045 widenable_convert_count = 0;
8046
8047 for (j = 0; j < longcall_count; j++)
8048 {
8049 int removed = (longcall_count - j) * 3 & (align - 1);
8050 unsigned desire_narrow = (align - removed) & (align - 1);
8051 unsigned desire_widen = removed;
8052 if (desire_narrow <= narrowable_count)
8053 {
8054 narrowable_convert_count = desire_narrow;
8055 narrowable_convert_count +=
8056 (align * ((narrowable_count - narrowable_convert_count)
8057 / align));
8058 longcall_convert_count = (longcall_count - j);
8059 widenable_convert_count = 0;
8060 break;
8061 }
8062 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
8063 {
8064 narrowable_convert_count = 0;
8065 longcall_convert_count = longcall_count - j;
8066 widenable_convert_count = desire_widen;
8067 break;
8068 }
8069 }
8070 }
8071
8072 /* Now the number of conversions are saved. Do them. */
8073 for (i = seg_idx_start; i < seg_idx_end; i++)
8074 {
8075 action = &ebb_table->actions[i];
8076 switch (action->action)
8077 {
8078 case ta_convert_longcall:
8079 if (longcall_convert_count != 0)
8080 {
8081 action->action = ta_remove_longcall;
8082 action->do_action = TRUE;
8083 action->removed_bytes += 3;
8084 longcall_convert_count--;
8085 }
8086 break;
8087 case ta_narrow_insn:
8088 if (narrowable_convert_count != 0)
8089 {
8090 action->do_action = TRUE;
8091 action->removed_bytes += 1;
8092 narrowable_convert_count--;
8093 }
8094 break;
8095 case ta_widen_insn:
8096 if (widenable_convert_count != 0)
8097 {
8098 action->do_action = TRUE;
8099 action->removed_bytes -= 1;
8100 widenable_convert_count--;
8101 }
8102 break;
8103 default:
8104 break;
8105 }
8106 }
8107 }
8108
8109 /* Now we move on to some local opts. Try to remove each of the
8110 remaining longcalls. */
8111
8112 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
8113 {
8114 removed_bytes = 0;
8115 for (i = 0; i < ebb_table->action_count; i++)
8116 {
8117 int old_removed_bytes = removed_bytes;
8118 proposed_action *action = &ebb_table->actions[i];
8119
8120 if (action->do_action && action->action == ta_convert_longcall)
8121 {
8122 bfd_boolean bad_alignment = FALSE;
8123 removed_bytes += 3;
8124 for (j = i + 1; j < ebb_table->action_count; j++)
8125 {
8126 proposed_action *new_action = &ebb_table->actions[j];
8127 bfd_vma offset = new_action->offset;
8128 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
8129 {
8130 if (!check_branch_target_aligned
8131 (ebb_table->ebb.contents,
8132 ebb_table->ebb.content_length,
8133 offset, offset - removed_bytes))
8134 {
8135 bad_alignment = TRUE;
8136 break;
8137 }
8138 }
8139 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
8140 {
8141 if (!check_loop_aligned (ebb_table->ebb.contents,
8142 ebb_table->ebb.content_length,
8143 offset,
8144 offset - removed_bytes))
8145 {
8146 bad_alignment = TRUE;
8147 break;
8148 }
8149 }
8150 if (new_action->action == ta_narrow_insn
8151 && !new_action->do_action
8152 && ebb_table->ebb.sec->alignment_power == 2)
8153 {
8154 /* Narrow an instruction and we are done. */
8155 new_action->do_action = TRUE;
8156 new_action->removed_bytes += 1;
8157 bad_alignment = FALSE;
8158 break;
8159 }
8160 if (new_action->action == ta_widen_insn
8161 && new_action->do_action
8162 && ebb_table->ebb.sec->alignment_power == 2)
8163 {
8164 /* Narrow an instruction and we are done. */
8165 new_action->do_action = FALSE;
8166 new_action->removed_bytes += 1;
8167 bad_alignment = FALSE;
8168 break;
8169 }
8170 if (new_action->do_action)
8171 removed_bytes += new_action->removed_bytes;
8172 }
8173 if (!bad_alignment)
8174 {
8175 action->removed_bytes += 3;
8176 action->action = ta_remove_longcall;
8177 action->do_action = TRUE;
8178 }
8179 }
8180 removed_bytes = old_removed_bytes;
8181 if (action->do_action)
8182 removed_bytes += action->removed_bytes;
8183 }
8184 }
8185
8186 removed_bytes = 0;
8187 for (i = 0; i < ebb_table->action_count; ++i)
8188 {
8189 proposed_action *action = &ebb_table->actions[i];
8190 if (action->do_action)
8191 removed_bytes += action->removed_bytes;
8192 }
8193
8194 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
8195 && ebb->ends_unreachable)
8196 {
8197 proposed_action *action;
8198 int br;
8199 int extra_space;
8200
8201 BFD_ASSERT (ebb_table->action_count != 0);
8202 action = &ebb_table->actions[ebb_table->action_count - 1];
8203 BFD_ASSERT (action->action == ta_fill);
8204 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
8205
8206 extra_space = xtensa_compute_fill_extra_space (ebb->ends_unreachable);
8207 br = action->removed_bytes + removed_bytes + extra_space;
8208 br = br & ((1 << ebb->sec->alignment_power ) - 1);
8209
8210 action->removed_bytes = extra_space - br;
8211 }
8212 return TRUE;
8213 }
8214
8215
8216 /* The xlate_map is a sorted array of address mappings designed to
8217 answer the offset_with_removed_text() query with a binary search instead
8218 of a linear search through the section's action_list. */
8219
8220 typedef struct xlate_map_entry xlate_map_entry_t;
8221 typedef struct xlate_map xlate_map_t;
8222
8223 struct xlate_map_entry
8224 {
8225 bfd_vma orig_address;
8226 bfd_vma new_address;
8227 unsigned size;
8228 };
8229
8230 struct xlate_map
8231 {
8232 unsigned entry_count;
8233 xlate_map_entry_t *entry;
8234 };
8235
8236
8237 static int
8238 xlate_compare (const void *a_v, const void *b_v)
8239 {
8240 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
8241 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
8242 if (a->orig_address < b->orig_address)
8243 return -1;
8244 if (a->orig_address > (b->orig_address + b->size - 1))
8245 return 1;
8246 return 0;
8247 }
8248
8249
8250 static bfd_vma
8251 xlate_offset_with_removed_text (const xlate_map_t *map,
8252 text_action_list *action_list,
8253 bfd_vma offset)
8254 {
8255 void *r;
8256 xlate_map_entry_t *e;
8257 struct xlate_map_entry se;
8258
8259 if (map == NULL)
8260 return offset_with_removed_text (action_list, offset);
8261
8262 if (map->entry_count == 0)
8263 return offset;
8264
8265 se.orig_address = offset;
8266 r = bsearch (&se, map->entry, map->entry_count,
8267 sizeof (xlate_map_entry_t), &xlate_compare);
8268 e = (xlate_map_entry_t *) r;
8269
8270 /* There could be a jump past the end of the section,
8271 allow it using the last xlate map entry to translate its address. */
8272 if (e == NULL)
8273 {
8274 e = map->entry + map->entry_count - 1;
8275 if (xlate_compare (&se, e) <= 0)
8276 e = NULL;
8277 }
8278 BFD_ASSERT (e != NULL);
8279 if (e == NULL)
8280 return offset;
8281 return e->new_address - e->orig_address + offset;
8282 }
8283
8284 typedef struct xlate_map_context_struct xlate_map_context;
8285 struct xlate_map_context_struct
8286 {
8287 xlate_map_t *map;
8288 xlate_map_entry_t *current_entry;
8289 int removed;
8290 };
8291
8292 static int
8293 xlate_map_fn (splay_tree_node node, void *p)
8294 {
8295 text_action *r = (text_action *)node->value;
8296 xlate_map_context *ctx = p;
8297 unsigned orig_size = 0;
8298
8299 switch (r->action)
8300 {
8301 case ta_none:
8302 case ta_remove_insn:
8303 case ta_convert_longcall:
8304 case ta_remove_literal:
8305 case ta_add_literal:
8306 break;
8307 case ta_remove_longcall:
8308 orig_size = 6;
8309 break;
8310 case ta_narrow_insn:
8311 orig_size = 3;
8312 break;
8313 case ta_widen_insn:
8314 orig_size = 2;
8315 break;
8316 case ta_fill:
8317 break;
8318 }
8319 ctx->current_entry->size =
8320 r->offset + orig_size - ctx->current_entry->orig_address;
8321 if (ctx->current_entry->size != 0)
8322 {
8323 ctx->current_entry++;
8324 ctx->map->entry_count++;
8325 }
8326 ctx->current_entry->orig_address = r->offset + orig_size;
8327 ctx->removed += r->removed_bytes;
8328 ctx->current_entry->new_address = r->offset + orig_size - ctx->removed;
8329 ctx->current_entry->size = 0;
8330 return 0;
8331 }
8332
8333 /* Build a binary searchable offset translation map from a section's
8334 action list. */
8335
8336 static xlate_map_t *
8337 build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
8338 {
8339 text_action_list *action_list = &relax_info->action_list;
8340 unsigned num_actions = 0;
8341 xlate_map_context ctx;
8342
8343 ctx.map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
8344
8345 if (ctx.map == NULL)
8346 return NULL;
8347
8348 num_actions = action_list_count (action_list);
8349 ctx.map->entry = (xlate_map_entry_t *)
8350 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
8351 if (ctx.map->entry == NULL)
8352 {
8353 free (ctx.map);
8354 return NULL;
8355 }
8356 ctx.map->entry_count = 0;
8357
8358 ctx.removed = 0;
8359 ctx.current_entry = &ctx.map->entry[0];
8360
8361 ctx.current_entry->orig_address = 0;
8362 ctx.current_entry->new_address = 0;
8363 ctx.current_entry->size = 0;
8364
8365 splay_tree_foreach (action_list->tree, xlate_map_fn, &ctx);
8366
8367 ctx.current_entry->size = (bfd_get_section_limit (sec->owner, sec)
8368 - ctx.current_entry->orig_address);
8369 if (ctx.current_entry->size != 0)
8370 ctx.map->entry_count++;
8371
8372 return ctx.map;
8373 }
8374
8375
8376 /* Free an offset translation map. */
8377
8378 static void
8379 free_xlate_map (xlate_map_t *map)
8380 {
8381 if (map && map->entry)
8382 free (map->entry);
8383 if (map)
8384 free (map);
8385 }
8386
8387
8388 /* Use check_section_ebb_pcrels_fit to make sure that all of the
8389 relocations in a section will fit if a proposed set of actions
8390 are performed. */
8391
8392 static bfd_boolean
8393 check_section_ebb_pcrels_fit (bfd *abfd,
8394 asection *sec,
8395 bfd_byte *contents,
8396 Elf_Internal_Rela *internal_relocs,
8397 reloc_range_list *relevant_relocs,
8398 const ebb_constraint *constraint,
8399 const xtensa_opcode *reloc_opcodes)
8400 {
8401 unsigned i, j;
8402 unsigned n = sec->reloc_count;
8403 Elf_Internal_Rela *irel;
8404 xlate_map_t *xmap = NULL;
8405 bfd_boolean ok = TRUE;
8406 xtensa_relax_info *relax_info;
8407 reloc_range_list_entry *entry = NULL;
8408
8409 relax_info = get_xtensa_relax_info (sec);
8410
8411 if (relax_info && sec->reloc_count > 100)
8412 {
8413 xmap = build_xlate_map (sec, relax_info);
8414 /* NULL indicates out of memory, but the slow version
8415 can still be used. */
8416 }
8417
8418 if (relevant_relocs && constraint->action_count)
8419 {
8420 if (!relevant_relocs->ok)
8421 {
8422 ok = FALSE;
8423 n = 0;
8424 }
8425 else
8426 {
8427 bfd_vma min_offset, max_offset;
8428 min_offset = max_offset = constraint->actions[0].offset;
8429
8430 for (i = 1; i < constraint->action_count; ++i)
8431 {
8432 proposed_action *action = &constraint->actions[i];
8433 bfd_vma offset = action->offset;
8434
8435 if (offset < min_offset)
8436 min_offset = offset;
8437 if (offset > max_offset)
8438 max_offset = offset;
8439 }
8440 reloc_range_list_update_range (relevant_relocs, min_offset,
8441 max_offset);
8442 n = relevant_relocs->n_list;
8443 entry = &relevant_relocs->list_root;
8444 }
8445 }
8446 else
8447 {
8448 relevant_relocs = NULL;
8449 }
8450
8451 for (i = 0; i < n; i++)
8452 {
8453 r_reloc r_rel;
8454 bfd_vma orig_self_offset, orig_target_offset;
8455 bfd_vma self_offset, target_offset;
8456 int r_type;
8457 reloc_howto_type *howto;
8458 int self_removed_bytes, target_removed_bytes;
8459
8460 if (relevant_relocs)
8461 {
8462 entry = entry->next;
8463 irel = entry->irel;
8464 }
8465 else
8466 {
8467 irel = internal_relocs + i;
8468 }
8469 r_type = ELF32_R_TYPE (irel->r_info);
8470
8471 howto = &elf_howto_table[r_type];
8472 /* We maintain the required invariant: PC-relative relocations
8473 that fit before linking must fit after linking. Thus we only
8474 need to deal with relocations to the same section that are
8475 PC-relative. */
8476 if (r_type == R_XTENSA_ASM_SIMPLIFY
8477 || r_type == R_XTENSA_32_PCREL
8478 || !howto->pc_relative)
8479 continue;
8480
8481 r_reloc_init (&r_rel, abfd, irel, contents,
8482 bfd_get_section_limit (abfd, sec));
8483
8484 if (r_reloc_get_section (&r_rel) != sec)
8485 continue;
8486
8487 orig_self_offset = irel->r_offset;
8488 orig_target_offset = r_rel.target_offset;
8489
8490 self_offset = orig_self_offset;
8491 target_offset = orig_target_offset;
8492
8493 if (relax_info)
8494 {
8495 self_offset =
8496 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8497 orig_self_offset);
8498 target_offset =
8499 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8500 orig_target_offset);
8501 }
8502
8503 self_removed_bytes = 0;
8504 target_removed_bytes = 0;
8505
8506 for (j = 0; j < constraint->action_count; ++j)
8507 {
8508 proposed_action *action = &constraint->actions[j];
8509 bfd_vma offset = action->offset;
8510 int removed_bytes = action->removed_bytes;
8511 if (offset < orig_self_offset
8512 || (offset == orig_self_offset && action->action == ta_fill
8513 && action->removed_bytes < 0))
8514 self_removed_bytes += removed_bytes;
8515 if (offset < orig_target_offset
8516 || (offset == orig_target_offset && action->action == ta_fill
8517 && action->removed_bytes < 0))
8518 target_removed_bytes += removed_bytes;
8519 }
8520 self_offset -= self_removed_bytes;
8521 target_offset -= target_removed_bytes;
8522
8523 /* Try to encode it. Get the operand and check. */
8524 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
8525 {
8526 /* None of the current alternate relocs are PC-relative,
8527 and only PC-relative relocs matter here. */
8528 }
8529 else
8530 {
8531 xtensa_opcode opcode;
8532 int opnum;
8533
8534 if (relevant_relocs)
8535 {
8536 opcode = entry->opcode;
8537 opnum = entry->opnum;
8538 }
8539 else
8540 {
8541 if (reloc_opcodes)
8542 opcode = reloc_opcodes[relevant_relocs ?
8543 (unsigned)(entry - relevant_relocs->reloc) : i];
8544 else
8545 opcode = get_relocation_opcode (abfd, sec, contents, irel);
8546 if (opcode == XTENSA_UNDEFINED)
8547 {
8548 ok = FALSE;
8549 break;
8550 }
8551
8552 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
8553 if (opnum == XTENSA_UNDEFINED)
8554 {
8555 ok = FALSE;
8556 break;
8557 }
8558 }
8559
8560 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
8561 {
8562 ok = FALSE;
8563 break;
8564 }
8565 }
8566 }
8567
8568 if (xmap)
8569 free_xlate_map (xmap);
8570
8571 return ok;
8572 }
8573
8574
8575 static bfd_boolean
8576 check_section_ebb_reduces (const ebb_constraint *constraint)
8577 {
8578 int removed = 0;
8579 unsigned i;
8580
8581 for (i = 0; i < constraint->action_count; i++)
8582 {
8583 const proposed_action *action = &constraint->actions[i];
8584 if (action->do_action)
8585 removed += action->removed_bytes;
8586 }
8587 if (removed < 0)
8588 return FALSE;
8589
8590 return TRUE;
8591 }
8592
8593
8594 void
8595 text_action_add_proposed (text_action_list *l,
8596 const ebb_constraint *ebb_table,
8597 asection *sec)
8598 {
8599 unsigned i;
8600
8601 for (i = 0; i < ebb_table->action_count; i++)
8602 {
8603 proposed_action *action = &ebb_table->actions[i];
8604
8605 if (!action->do_action)
8606 continue;
8607 switch (action->action)
8608 {
8609 case ta_remove_insn:
8610 case ta_remove_longcall:
8611 case ta_convert_longcall:
8612 case ta_narrow_insn:
8613 case ta_widen_insn:
8614 case ta_fill:
8615 case ta_remove_literal:
8616 text_action_add (l, action->action, sec, action->offset,
8617 action->removed_bytes);
8618 break;
8619 case ta_none:
8620 break;
8621 default:
8622 BFD_ASSERT (0);
8623 break;
8624 }
8625 }
8626 }
8627
8628
8629 int
8630 xtensa_compute_fill_extra_space (property_table_entry *entry)
8631 {
8632 int fill_extra_space;
8633
8634 if (!entry)
8635 return 0;
8636
8637 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
8638 return 0;
8639
8640 fill_extra_space = entry->size;
8641 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
8642 {
8643 /* Fill bytes for alignment:
8644 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
8645 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
8646 int nsm = (1 << pow) - 1;
8647 bfd_vma addr = entry->address + entry->size;
8648 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
8649 fill_extra_space += align_fill;
8650 }
8651 return fill_extra_space;
8652 }
8653
8654 \f
8655 /* First relaxation pass. */
8656
8657 /* If the section contains relaxable literals, check each literal to
8658 see if it has the same value as another literal that has already
8659 been seen, either in the current section or a previous one. If so,
8660 add an entry to the per-section list of removed literals. The
8661 actual changes are deferred until the next pass. */
8662
8663 static bfd_boolean
8664 compute_removed_literals (bfd *abfd,
8665 asection *sec,
8666 struct bfd_link_info *link_info,
8667 value_map_hash_table *values)
8668 {
8669 xtensa_relax_info *relax_info;
8670 bfd_byte *contents;
8671 Elf_Internal_Rela *internal_relocs;
8672 source_reloc *src_relocs, *rel;
8673 bfd_boolean ok = TRUE;
8674 property_table_entry *prop_table = NULL;
8675 int ptblsize;
8676 int i, prev_i;
8677 bfd_boolean last_loc_is_prev = FALSE;
8678 bfd_vma last_target_offset = 0;
8679 section_cache_t target_sec_cache;
8680 bfd_size_type sec_size;
8681
8682 init_section_cache (&target_sec_cache);
8683
8684 /* Do nothing if it is not a relaxable literal section. */
8685 relax_info = get_xtensa_relax_info (sec);
8686 BFD_ASSERT (relax_info);
8687 if (!relax_info->is_relaxable_literal_section)
8688 return ok;
8689
8690 internal_relocs = retrieve_internal_relocs (abfd, sec,
8691 link_info->keep_memory);
8692
8693 sec_size = bfd_get_section_limit (abfd, sec);
8694 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8695 if (contents == NULL && sec_size != 0)
8696 {
8697 ok = FALSE;
8698 goto error_return;
8699 }
8700
8701 /* Sort the source_relocs by target offset. */
8702 src_relocs = relax_info->src_relocs;
8703 qsort (src_relocs, relax_info->src_count,
8704 sizeof (source_reloc), source_reloc_compare);
8705 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8706 internal_reloc_compare);
8707
8708 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
8709 XTENSA_PROP_SEC_NAME, FALSE);
8710 if (ptblsize < 0)
8711 {
8712 ok = FALSE;
8713 goto error_return;
8714 }
8715
8716 prev_i = -1;
8717 for (i = 0; i < relax_info->src_count; i++)
8718 {
8719 Elf_Internal_Rela *irel = NULL;
8720
8721 rel = &src_relocs[i];
8722 if (get_l32r_opcode () != rel->opcode)
8723 continue;
8724 irel = get_irel_at_offset (sec, internal_relocs,
8725 rel->r_rel.target_offset);
8726
8727 /* If the relocation on this is not a simple R_XTENSA_32 or
8728 R_XTENSA_PLT then do not consider it. This may happen when
8729 the difference of two symbols is used in a literal. */
8730 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
8731 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
8732 continue;
8733
8734 /* If the target_offset for this relocation is the same as the
8735 previous relocation, then we've already considered whether the
8736 literal can be coalesced. Skip to the next one.... */
8737 if (i != 0 && prev_i != -1
8738 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
8739 continue;
8740 prev_i = i;
8741
8742 if (last_loc_is_prev &&
8743 last_target_offset + 4 != rel->r_rel.target_offset)
8744 last_loc_is_prev = FALSE;
8745
8746 /* Check if the relocation was from an L32R that is being removed
8747 because a CALLX was converted to a direct CALL, and check if
8748 there are no other relocations to the literal. */
8749 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
8750 sec, prop_table, ptblsize))
8751 {
8752 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
8753 irel, rel, prop_table, ptblsize))
8754 {
8755 ok = FALSE;
8756 goto error_return;
8757 }
8758 last_target_offset = rel->r_rel.target_offset;
8759 continue;
8760 }
8761
8762 if (!identify_literal_placement (abfd, sec, contents, link_info,
8763 values,
8764 &last_loc_is_prev, irel,
8765 relax_info->src_count - i, rel,
8766 prop_table, ptblsize,
8767 &target_sec_cache, rel->is_abs_literal))
8768 {
8769 ok = FALSE;
8770 goto error_return;
8771 }
8772 last_target_offset = rel->r_rel.target_offset;
8773 }
8774
8775 #if DEBUG
8776 print_removed_literals (stderr, &relax_info->removed_list);
8777 print_action_list (stderr, &relax_info->action_list);
8778 #endif /* DEBUG */
8779
8780 error_return:
8781 if (prop_table)
8782 free (prop_table);
8783 free_section_cache (&target_sec_cache);
8784
8785 release_contents (sec, contents);
8786 release_internal_relocs (sec, internal_relocs);
8787 return ok;
8788 }
8789
8790
8791 static Elf_Internal_Rela *
8792 get_irel_at_offset (asection *sec,
8793 Elf_Internal_Rela *internal_relocs,
8794 bfd_vma offset)
8795 {
8796 unsigned i;
8797 Elf_Internal_Rela *irel;
8798 unsigned r_type;
8799 Elf_Internal_Rela key;
8800
8801 if (!internal_relocs)
8802 return NULL;
8803
8804 key.r_offset = offset;
8805 irel = bsearch (&key, internal_relocs, sec->reloc_count,
8806 sizeof (Elf_Internal_Rela), internal_reloc_matches);
8807 if (!irel)
8808 return NULL;
8809
8810 /* bsearch does not guarantee which will be returned if there are
8811 multiple matches. We need the first that is not an alignment. */
8812 i = irel - internal_relocs;
8813 while (i > 0)
8814 {
8815 if (internal_relocs[i-1].r_offset != offset)
8816 break;
8817 i--;
8818 }
8819 for ( ; i < sec->reloc_count; i++)
8820 {
8821 irel = &internal_relocs[i];
8822 r_type = ELF32_R_TYPE (irel->r_info);
8823 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
8824 return irel;
8825 }
8826
8827 return NULL;
8828 }
8829
8830
8831 bfd_boolean
8832 is_removable_literal (const source_reloc *rel,
8833 int i,
8834 const source_reloc *src_relocs,
8835 int src_count,
8836 asection *sec,
8837 property_table_entry *prop_table,
8838 int ptblsize)
8839 {
8840 const source_reloc *curr_rel;
8841 property_table_entry *entry;
8842
8843 if (!rel->is_null)
8844 return FALSE;
8845
8846 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8847 sec->vma + rel->r_rel.target_offset);
8848 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8849 return FALSE;
8850
8851 for (++i; i < src_count; ++i)
8852 {
8853 curr_rel = &src_relocs[i];
8854 /* If all others have the same target offset.... */
8855 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
8856 return TRUE;
8857
8858 if (!curr_rel->is_null
8859 && !xtensa_is_property_section (curr_rel->source_sec)
8860 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
8861 return FALSE;
8862 }
8863 return TRUE;
8864 }
8865
8866
8867 bfd_boolean
8868 remove_dead_literal (bfd *abfd,
8869 asection *sec,
8870 struct bfd_link_info *link_info,
8871 Elf_Internal_Rela *internal_relocs,
8872 Elf_Internal_Rela *irel,
8873 source_reloc *rel,
8874 property_table_entry *prop_table,
8875 int ptblsize)
8876 {
8877 property_table_entry *entry;
8878 xtensa_relax_info *relax_info;
8879
8880 relax_info = get_xtensa_relax_info (sec);
8881 if (!relax_info)
8882 return FALSE;
8883
8884 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8885 sec->vma + rel->r_rel.target_offset);
8886
8887 /* Mark the unused literal so that it will be removed. */
8888 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
8889
8890 text_action_add (&relax_info->action_list,
8891 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8892
8893 /* If the section is 4-byte aligned, do not add fill. */
8894 if (sec->alignment_power > 2)
8895 {
8896 int fill_extra_space;
8897 bfd_vma entry_sec_offset;
8898 text_action *fa;
8899 property_table_entry *the_add_entry;
8900 int removed_diff;
8901
8902 if (entry)
8903 entry_sec_offset = entry->address - sec->vma + entry->size;
8904 else
8905 entry_sec_offset = rel->r_rel.target_offset + 4;
8906
8907 /* If the literal range is at the end of the section,
8908 do not add fill. */
8909 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8910 entry_sec_offset);
8911 fill_extra_space = xtensa_compute_fill_extra_space (the_add_entry);
8912
8913 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8914 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8915 -4, fill_extra_space);
8916 if (fa)
8917 adjust_fill_action (fa, removed_diff);
8918 else
8919 text_action_add (&relax_info->action_list,
8920 ta_fill, sec, entry_sec_offset, removed_diff);
8921 }
8922
8923 /* Zero out the relocation on this literal location. */
8924 if (irel)
8925 {
8926 if (elf_hash_table (link_info)->dynamic_sections_created)
8927 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8928
8929 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8930 pin_internal_relocs (sec, internal_relocs);
8931 }
8932
8933 /* Do not modify "last_loc_is_prev". */
8934 return TRUE;
8935 }
8936
8937
8938 bfd_boolean
8939 identify_literal_placement (bfd *abfd,
8940 asection *sec,
8941 bfd_byte *contents,
8942 struct bfd_link_info *link_info,
8943 value_map_hash_table *values,
8944 bfd_boolean *last_loc_is_prev_p,
8945 Elf_Internal_Rela *irel,
8946 int remaining_src_rels,
8947 source_reloc *rel,
8948 property_table_entry *prop_table,
8949 int ptblsize,
8950 section_cache_t *target_sec_cache,
8951 bfd_boolean is_abs_literal)
8952 {
8953 literal_value val;
8954 value_map *val_map;
8955 xtensa_relax_info *relax_info;
8956 bfd_boolean literal_placed = FALSE;
8957 r_reloc r_rel;
8958 unsigned long value;
8959 bfd_boolean final_static_link;
8960 bfd_size_type sec_size;
8961
8962 relax_info = get_xtensa_relax_info (sec);
8963 if (!relax_info)
8964 return FALSE;
8965
8966 sec_size = bfd_get_section_limit (abfd, sec);
8967
8968 final_static_link =
8969 (!bfd_link_relocatable (link_info)
8970 && !elf_hash_table (link_info)->dynamic_sections_created);
8971
8972 /* The placement algorithm first checks to see if the literal is
8973 already in the value map. If so and the value map is reachable
8974 from all uses, then the literal is moved to that location. If
8975 not, then we identify the last location where a fresh literal was
8976 placed. If the literal can be safely moved there, then we do so.
8977 If not, then we assume that the literal is not to move and leave
8978 the literal where it is, marking it as the last literal
8979 location. */
8980
8981 /* Find the literal value. */
8982 value = 0;
8983 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8984 if (!irel)
8985 {
8986 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
8987 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
8988 }
8989 init_literal_value (&val, &r_rel, value, is_abs_literal);
8990
8991 /* Check if we've seen another literal with the same value that
8992 is in the same output section. */
8993 val_map = value_map_get_cached_value (values, &val, final_static_link);
8994
8995 if (val_map
8996 && (r_reloc_get_section (&val_map->loc)->output_section
8997 == sec->output_section)
8998 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
8999 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
9000 {
9001 /* No change to last_loc_is_prev. */
9002 literal_placed = TRUE;
9003 }
9004
9005 /* For relocatable links, do not try to move literals. To do it
9006 correctly might increase the number of relocations in an input
9007 section making the default relocatable linking fail. */
9008 if (!bfd_link_relocatable (link_info) && !literal_placed
9009 && values->has_last_loc && !(*last_loc_is_prev_p))
9010 {
9011 asection *target_sec = r_reloc_get_section (&values->last_loc);
9012 if (target_sec && target_sec->output_section == sec->output_section)
9013 {
9014 /* Increment the virtual offset. */
9015 r_reloc try_loc = values->last_loc;
9016 try_loc.virtual_offset += 4;
9017
9018 /* There is a last loc that was in the same output section. */
9019 if (relocations_reach (rel, remaining_src_rels, &try_loc)
9020 && move_shared_literal (sec, link_info, rel,
9021 prop_table, ptblsize,
9022 &try_loc, &val, target_sec_cache))
9023 {
9024 values->last_loc.virtual_offset += 4;
9025 literal_placed = TRUE;
9026 if (!val_map)
9027 val_map = add_value_map (values, &val, &try_loc,
9028 final_static_link);
9029 else
9030 val_map->loc = try_loc;
9031 }
9032 }
9033 }
9034
9035 if (!literal_placed)
9036 {
9037 /* Nothing worked, leave the literal alone but update the last loc. */
9038 values->has_last_loc = TRUE;
9039 values->last_loc = rel->r_rel;
9040 if (!val_map)
9041 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
9042 else
9043 val_map->loc = rel->r_rel;
9044 *last_loc_is_prev_p = TRUE;
9045 }
9046
9047 return TRUE;
9048 }
9049
9050
9051 /* Check if the original relocations (presumably on L32R instructions)
9052 identified by reloc[0..N] can be changed to reference the literal
9053 identified by r_rel. If r_rel is out of range for any of the
9054 original relocations, then we don't want to coalesce the original
9055 literal with the one at r_rel. We only check reloc[0..N], where the
9056 offsets are all the same as for reloc[0] (i.e., they're all
9057 referencing the same literal) and where N is also bounded by the
9058 number of remaining entries in the "reloc" array. The "reloc" array
9059 is sorted by target offset so we know all the entries for the same
9060 literal will be contiguous. */
9061
9062 static bfd_boolean
9063 relocations_reach (source_reloc *reloc,
9064 int remaining_relocs,
9065 const r_reloc *r_rel)
9066 {
9067 bfd_vma from_offset, source_address, dest_address;
9068 asection *sec;
9069 int i;
9070
9071 if (!r_reloc_is_defined (r_rel))
9072 return FALSE;
9073
9074 sec = r_reloc_get_section (r_rel);
9075 from_offset = reloc[0].r_rel.target_offset;
9076
9077 for (i = 0; i < remaining_relocs; i++)
9078 {
9079 if (reloc[i].r_rel.target_offset != from_offset)
9080 break;
9081
9082 /* Ignore relocations that have been removed. */
9083 if (reloc[i].is_null)
9084 continue;
9085
9086 /* The original and new output section for these must be the same
9087 in order to coalesce. */
9088 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
9089 != sec->output_section)
9090 return FALSE;
9091
9092 /* Absolute literals in the same output section can always be
9093 combined. */
9094 if (reloc[i].is_abs_literal)
9095 continue;
9096
9097 /* A literal with no PC-relative relocations can be moved anywhere. */
9098 if (reloc[i].opnd != -1)
9099 {
9100 /* Otherwise, check to see that it fits. */
9101 source_address = (reloc[i].source_sec->output_section->vma
9102 + reloc[i].source_sec->output_offset
9103 + reloc[i].r_rel.rela.r_offset);
9104 dest_address = (sec->output_section->vma
9105 + sec->output_offset
9106 + r_rel->target_offset);
9107
9108 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
9109 source_address, dest_address))
9110 return FALSE;
9111 }
9112 }
9113
9114 return TRUE;
9115 }
9116
9117
9118 /* Move a literal to another literal location because it is
9119 the same as the other literal value. */
9120
9121 static bfd_boolean
9122 coalesce_shared_literal (asection *sec,
9123 source_reloc *rel,
9124 property_table_entry *prop_table,
9125 int ptblsize,
9126 value_map *val_map)
9127 {
9128 property_table_entry *entry;
9129 text_action *fa;
9130 property_table_entry *the_add_entry;
9131 int removed_diff;
9132 xtensa_relax_info *relax_info;
9133
9134 relax_info = get_xtensa_relax_info (sec);
9135 if (!relax_info)
9136 return FALSE;
9137
9138 entry = elf_xtensa_find_property_entry
9139 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
9140 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
9141 return TRUE;
9142
9143 /* Mark that the literal will be coalesced. */
9144 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
9145
9146 text_action_add (&relax_info->action_list,
9147 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9148
9149 /* If the section is 4-byte aligned, do not add fill. */
9150 if (sec->alignment_power > 2)
9151 {
9152 int fill_extra_space;
9153 bfd_vma entry_sec_offset;
9154
9155 if (entry)
9156 entry_sec_offset = entry->address - sec->vma + entry->size;
9157 else
9158 entry_sec_offset = rel->r_rel.target_offset + 4;
9159
9160 /* If the literal range is at the end of the section,
9161 do not add fill. */
9162 fill_extra_space = 0;
9163 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9164 entry_sec_offset);
9165 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9166 fill_extra_space = the_add_entry->size;
9167
9168 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9169 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9170 -4, fill_extra_space);
9171 if (fa)
9172 adjust_fill_action (fa, removed_diff);
9173 else
9174 text_action_add (&relax_info->action_list,
9175 ta_fill, sec, entry_sec_offset, removed_diff);
9176 }
9177
9178 return TRUE;
9179 }
9180
9181
9182 /* Move a literal to another location. This may actually increase the
9183 total amount of space used because of alignments so we need to do
9184 this carefully. Also, it may make a branch go out of range. */
9185
9186 static bfd_boolean
9187 move_shared_literal (asection *sec,
9188 struct bfd_link_info *link_info,
9189 source_reloc *rel,
9190 property_table_entry *prop_table,
9191 int ptblsize,
9192 const r_reloc *target_loc,
9193 const literal_value *lit_value,
9194 section_cache_t *target_sec_cache)
9195 {
9196 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
9197 text_action *fa, *target_fa;
9198 int removed_diff;
9199 xtensa_relax_info *relax_info, *target_relax_info;
9200 asection *target_sec;
9201 ebb_t *ebb;
9202 ebb_constraint ebb_table;
9203 bfd_boolean relocs_fit;
9204
9205 /* If this routine always returns FALSE, the literals that cannot be
9206 coalesced will not be moved. */
9207 if (elf32xtensa_no_literal_movement)
9208 return FALSE;
9209
9210 relax_info = get_xtensa_relax_info (sec);
9211 if (!relax_info)
9212 return FALSE;
9213
9214 target_sec = r_reloc_get_section (target_loc);
9215 target_relax_info = get_xtensa_relax_info (target_sec);
9216
9217 /* Literals to undefined sections may not be moved because they
9218 must report an error. */
9219 if (bfd_is_und_section (target_sec))
9220 return FALSE;
9221
9222 src_entry = elf_xtensa_find_property_entry
9223 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
9224
9225 if (!section_cache_section (target_sec_cache, target_sec, link_info))
9226 return FALSE;
9227
9228 target_entry = elf_xtensa_find_property_entry
9229 (target_sec_cache->ptbl, target_sec_cache->pte_count,
9230 target_sec->vma + target_loc->target_offset);
9231
9232 if (!target_entry)
9233 return FALSE;
9234
9235 /* Make sure that we have not broken any branches. */
9236 relocs_fit = FALSE;
9237
9238 init_ebb_constraint (&ebb_table);
9239 ebb = &ebb_table.ebb;
9240 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
9241 target_sec_cache->content_length,
9242 target_sec_cache->ptbl, target_sec_cache->pte_count,
9243 target_sec_cache->relocs, target_sec_cache->reloc_count);
9244
9245 /* Propose to add 4 bytes + worst-case alignment size increase to
9246 destination. */
9247 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
9248 ta_fill, target_loc->target_offset,
9249 -4 - (1 << target_sec->alignment_power), TRUE);
9250
9251 /* Check all of the PC-relative relocations to make sure they still fit. */
9252 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
9253 target_sec_cache->contents,
9254 target_sec_cache->relocs, NULL,
9255 &ebb_table, NULL);
9256
9257 if (!relocs_fit)
9258 return FALSE;
9259
9260 text_action_add_literal (&target_relax_info->action_list,
9261 ta_add_literal, target_loc, lit_value, -4);
9262
9263 if (target_sec->alignment_power > 2 && target_entry != src_entry)
9264 {
9265 /* May need to add or remove some fill to maintain alignment. */
9266 int fill_extra_space;
9267 bfd_vma entry_sec_offset;
9268
9269 entry_sec_offset =
9270 target_entry->address - target_sec->vma + target_entry->size;
9271
9272 /* If the literal range is at the end of the section,
9273 do not add fill. */
9274 fill_extra_space = 0;
9275 the_add_entry =
9276 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
9277 target_sec_cache->pte_count,
9278 entry_sec_offset);
9279 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9280 fill_extra_space = the_add_entry->size;
9281
9282 target_fa = find_fill_action (&target_relax_info->action_list,
9283 target_sec, entry_sec_offset);
9284 removed_diff = compute_removed_action_diff (target_fa, target_sec,
9285 entry_sec_offset, 4,
9286 fill_extra_space);
9287 if (target_fa)
9288 adjust_fill_action (target_fa, removed_diff);
9289 else
9290 text_action_add (&target_relax_info->action_list,
9291 ta_fill, target_sec, entry_sec_offset, removed_diff);
9292 }
9293
9294 /* Mark that the literal will be moved to the new location. */
9295 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
9296
9297 /* Remove the literal. */
9298 text_action_add (&relax_info->action_list,
9299 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9300
9301 /* If the section is 4-byte aligned, do not add fill. */
9302 if (sec->alignment_power > 2 && target_entry != src_entry)
9303 {
9304 int fill_extra_space;
9305 bfd_vma entry_sec_offset;
9306
9307 if (src_entry)
9308 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
9309 else
9310 entry_sec_offset = rel->r_rel.target_offset+4;
9311
9312 /* If the literal range is at the end of the section,
9313 do not add fill. */
9314 fill_extra_space = 0;
9315 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9316 entry_sec_offset);
9317 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9318 fill_extra_space = the_add_entry->size;
9319
9320 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9321 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9322 -4, fill_extra_space);
9323 if (fa)
9324 adjust_fill_action (fa, removed_diff);
9325 else
9326 text_action_add (&relax_info->action_list,
9327 ta_fill, sec, entry_sec_offset, removed_diff);
9328 }
9329
9330 return TRUE;
9331 }
9332
9333 \f
9334 /* Second relaxation pass. */
9335
9336 static int
9337 action_remove_bytes_fn (splay_tree_node node, void *p)
9338 {
9339 bfd_size_type *final_size = p;
9340 text_action *action = (text_action *)node->value;
9341
9342 *final_size -= action->removed_bytes;
9343 return 0;
9344 }
9345
9346 /* Modify all of the relocations to point to the right spot, and if this
9347 is a relaxable section, delete the unwanted literals and fix the
9348 section size. */
9349
9350 bfd_boolean
9351 relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
9352 {
9353 Elf_Internal_Rela *internal_relocs;
9354 xtensa_relax_info *relax_info;
9355 bfd_byte *contents;
9356 bfd_boolean ok = TRUE;
9357 unsigned i;
9358 bfd_boolean rv = FALSE;
9359 bfd_boolean virtual_action;
9360 bfd_size_type sec_size;
9361
9362 sec_size = bfd_get_section_limit (abfd, sec);
9363 relax_info = get_xtensa_relax_info (sec);
9364 BFD_ASSERT (relax_info);
9365
9366 /* First translate any of the fixes that have been added already. */
9367 translate_section_fixes (sec);
9368
9369 /* Handle property sections (e.g., literal tables) specially. */
9370 if (xtensa_is_property_section (sec))
9371 {
9372 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
9373 return relax_property_section (abfd, sec, link_info);
9374 }
9375
9376 internal_relocs = retrieve_internal_relocs (abfd, sec,
9377 link_info->keep_memory);
9378 if (!internal_relocs && !action_list_count (&relax_info->action_list))
9379 return TRUE;
9380
9381 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
9382 if (contents == NULL && sec_size != 0)
9383 {
9384 ok = FALSE;
9385 goto error_return;
9386 }
9387
9388 if (internal_relocs)
9389 {
9390 for (i = 0; i < sec->reloc_count; i++)
9391 {
9392 Elf_Internal_Rela *irel;
9393 xtensa_relax_info *target_relax_info;
9394 bfd_vma source_offset, old_source_offset;
9395 r_reloc r_rel;
9396 unsigned r_type;
9397 asection *target_sec;
9398
9399 /* Locally change the source address.
9400 Translate the target to the new target address.
9401 If it points to this section and has been removed,
9402 NULLify it.
9403 Write it back. */
9404
9405 irel = &internal_relocs[i];
9406 source_offset = irel->r_offset;
9407 old_source_offset = source_offset;
9408
9409 r_type = ELF32_R_TYPE (irel->r_info);
9410 r_reloc_init (&r_rel, abfd, irel, contents,
9411 bfd_get_section_limit (abfd, sec));
9412
9413 /* If this section could have changed then we may need to
9414 change the relocation's offset. */
9415
9416 if (relax_info->is_relaxable_literal_section
9417 || relax_info->is_relaxable_asm_section)
9418 {
9419 pin_internal_relocs (sec, internal_relocs);
9420
9421 if (r_type != R_XTENSA_NONE
9422 && find_removed_literal (&relax_info->removed_list,
9423 irel->r_offset))
9424 {
9425 /* Remove this relocation. */
9426 if (elf_hash_table (link_info)->dynamic_sections_created)
9427 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
9428 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
9429 irel->r_offset = offset_with_removed_text_map
9430 (&relax_info->action_list, irel->r_offset);
9431 continue;
9432 }
9433
9434 if (r_type == R_XTENSA_ASM_SIMPLIFY)
9435 {
9436 text_action *action =
9437 find_insn_action (&relax_info->action_list,
9438 irel->r_offset);
9439 if (action && (action->action == ta_convert_longcall
9440 || action->action == ta_remove_longcall))
9441 {
9442 bfd_reloc_status_type retval;
9443 char *error_message = NULL;
9444
9445 retval = contract_asm_expansion (contents, sec_size,
9446 irel, &error_message);
9447 if (retval != bfd_reloc_ok)
9448 {
9449 (*link_info->callbacks->reloc_dangerous)
9450 (link_info, error_message, abfd, sec,
9451 irel->r_offset);
9452 goto error_return;
9453 }
9454 /* Update the action so that the code that moves
9455 the contents will do the right thing. */
9456 /* ta_remove_longcall and ta_remove_insn actions are
9457 grouped together in the tree as well as
9458 ta_convert_longcall and ta_none, so that changes below
9459 can be done w/o removing and reinserting action into
9460 the tree. */
9461
9462 if (action->action == ta_remove_longcall)
9463 action->action = ta_remove_insn;
9464 else
9465 action->action = ta_none;
9466 /* Refresh the info in the r_rel. */
9467 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
9468 r_type = ELF32_R_TYPE (irel->r_info);
9469 }
9470 }
9471
9472 source_offset = offset_with_removed_text_map
9473 (&relax_info->action_list, irel->r_offset);
9474 irel->r_offset = source_offset;
9475 }
9476
9477 /* If the target section could have changed then
9478 we may need to change the relocation's target offset. */
9479
9480 target_sec = r_reloc_get_section (&r_rel);
9481
9482 /* For a reference to a discarded section from a DWARF section,
9483 i.e., where action_discarded is PRETEND, the symbol will
9484 eventually be modified to refer to the kept section (at least if
9485 the kept and discarded sections are the same size). Anticipate
9486 that here and adjust things accordingly. */
9487 if (! elf_xtensa_ignore_discarded_relocs (sec)
9488 && elf_xtensa_action_discarded (sec) == PRETEND
9489 && sec->sec_info_type != SEC_INFO_TYPE_STABS
9490 && target_sec != NULL
9491 && discarded_section (target_sec))
9492 {
9493 /* It would be natural to call _bfd_elf_check_kept_section
9494 here, but it's not exported from elflink.c. It's also a
9495 fairly expensive check. Adjusting the relocations to the
9496 discarded section is fairly harmless; it will only adjust
9497 some addends and difference values. If it turns out that
9498 _bfd_elf_check_kept_section fails later, it won't matter,
9499 so just compare the section names to find the right group
9500 member. */
9501 asection *kept = target_sec->kept_section;
9502 if (kept != NULL)
9503 {
9504 if ((kept->flags & SEC_GROUP) != 0)
9505 {
9506 asection *first = elf_next_in_group (kept);
9507 asection *s = first;
9508
9509 kept = NULL;
9510 while (s != NULL)
9511 {
9512 if (strcmp (s->name, target_sec->name) == 0)
9513 {
9514 kept = s;
9515 break;
9516 }
9517 s = elf_next_in_group (s);
9518 if (s == first)
9519 break;
9520 }
9521 }
9522 }
9523 if (kept != NULL
9524 && ((target_sec->rawsize != 0
9525 ? target_sec->rawsize : target_sec->size)
9526 == (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9527 target_sec = kept;
9528 }
9529
9530 target_relax_info = get_xtensa_relax_info (target_sec);
9531 if (target_relax_info
9532 && (target_relax_info->is_relaxable_literal_section
9533 || target_relax_info->is_relaxable_asm_section))
9534 {
9535 r_reloc new_reloc;
9536 target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
9537
9538 if (r_type == R_XTENSA_DIFF8
9539 || r_type == R_XTENSA_DIFF16
9540 || r_type == R_XTENSA_DIFF32)
9541 {
9542 bfd_signed_vma diff_value = 0;
9543 bfd_vma new_end_offset, diff_mask = 0;
9544
9545 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
9546 {
9547 (*link_info->callbacks->reloc_dangerous)
9548 (link_info, _("invalid relocation address"),
9549 abfd, sec, old_source_offset);
9550 goto error_return;
9551 }
9552
9553 switch (r_type)
9554 {
9555 case R_XTENSA_DIFF8:
9556 diff_value =
9557 bfd_get_signed_8 (abfd, &contents[old_source_offset]);
9558 break;
9559 case R_XTENSA_DIFF16:
9560 diff_value =
9561 bfd_get_signed_16 (abfd, &contents[old_source_offset]);
9562 break;
9563 case R_XTENSA_DIFF32:
9564 diff_value =
9565 bfd_get_signed_32 (abfd, &contents[old_source_offset]);
9566 break;
9567 }
9568
9569 new_end_offset = offset_with_removed_text_map
9570 (&target_relax_info->action_list,
9571 r_rel.target_offset + diff_value);
9572 diff_value = new_end_offset - new_reloc.target_offset;
9573
9574 switch (r_type)
9575 {
9576 case R_XTENSA_DIFF8:
9577 diff_mask = 0x7f;
9578 bfd_put_signed_8 (abfd, diff_value,
9579 &contents[old_source_offset]);
9580 break;
9581 case R_XTENSA_DIFF16:
9582 diff_mask = 0x7fff;
9583 bfd_put_signed_16 (abfd, diff_value,
9584 &contents[old_source_offset]);
9585 break;
9586 case R_XTENSA_DIFF32:
9587 diff_mask = 0x7fffffff;
9588 bfd_put_signed_32 (abfd, diff_value,
9589 &contents[old_source_offset]);
9590 break;
9591 }
9592
9593 /* Check for overflow. Sign bits must be all zeroes or all ones */
9594 if ((diff_value & ~diff_mask) != 0 &&
9595 (diff_value & ~diff_mask) != (-1 & ~diff_mask))
9596 {
9597 (*link_info->callbacks->reloc_dangerous)
9598 (link_info, _("overflow after relaxation"),
9599 abfd, sec, old_source_offset);
9600 goto error_return;
9601 }
9602
9603 pin_contents (sec, contents);
9604 }
9605
9606 /* If the relocation still references a section in the same
9607 input file, modify the relocation directly instead of
9608 adding a "fix" record. */
9609 if (target_sec->owner == abfd)
9610 {
9611 unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
9612 irel->r_info = ELF32_R_INFO (r_symndx, r_type);
9613 irel->r_addend = new_reloc.rela.r_addend;
9614 pin_internal_relocs (sec, internal_relocs);
9615 }
9616 else
9617 {
9618 bfd_vma addend_displacement;
9619 reloc_bfd_fix *fix;
9620
9621 addend_displacement =
9622 new_reloc.target_offset + new_reloc.virtual_offset;
9623 fix = reloc_bfd_fix_init (sec, source_offset, r_type,
9624 target_sec,
9625 addend_displacement, TRUE);
9626 add_fix (sec, fix);
9627 }
9628 }
9629 }
9630 }
9631
9632 if ((relax_info->is_relaxable_literal_section
9633 || relax_info->is_relaxable_asm_section)
9634 && action_list_count (&relax_info->action_list))
9635 {
9636 /* Walk through the planned actions and build up a table
9637 of move, copy and fill records. Use the move, copy and
9638 fill records to perform the actions once. */
9639
9640 bfd_size_type final_size, copy_size, orig_insn_size;
9641 bfd_byte *scratch = NULL;
9642 bfd_byte *dup_contents = NULL;
9643 bfd_size_type orig_size = sec->size;
9644 bfd_vma orig_dot = 0;
9645 bfd_vma orig_dot_copied = 0; /* Byte copied already from
9646 orig dot in physical memory. */
9647 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
9648 bfd_vma dup_dot = 0;
9649
9650 text_action *action;
9651
9652 final_size = sec->size;
9653
9654 splay_tree_foreach (relax_info->action_list.tree,
9655 action_remove_bytes_fn, &final_size);
9656 scratch = (bfd_byte *) bfd_zmalloc (final_size);
9657 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
9658
9659 /* The dot is the current fill location. */
9660 #if DEBUG
9661 print_action_list (stderr, &relax_info->action_list);
9662 #endif
9663
9664 for (action = action_first (&relax_info->action_list); action;
9665 action = action_next (&relax_info->action_list, action))
9666 {
9667 virtual_action = FALSE;
9668 if (action->offset > orig_dot)
9669 {
9670 orig_dot += orig_dot_copied;
9671 orig_dot_copied = 0;
9672 orig_dot_vo = 0;
9673 /* Out of the virtual world. */
9674 }
9675
9676 if (action->offset > orig_dot)
9677 {
9678 copy_size = action->offset - orig_dot;
9679 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9680 orig_dot += copy_size;
9681 dup_dot += copy_size;
9682 BFD_ASSERT (action->offset == orig_dot);
9683 }
9684 else if (action->offset < orig_dot)
9685 {
9686 if (action->action == ta_fill
9687 && action->offset - action->removed_bytes == orig_dot)
9688 {
9689 /* This is OK because the fill only effects the dup_dot. */
9690 }
9691 else if (action->action == ta_add_literal)
9692 {
9693 /* TBD. Might need to handle this. */
9694 }
9695 }
9696 if (action->offset == orig_dot)
9697 {
9698 if (action->virtual_offset > orig_dot_vo)
9699 {
9700 if (orig_dot_vo == 0)
9701 {
9702 /* Need to copy virtual_offset bytes. Probably four. */
9703 copy_size = action->virtual_offset - orig_dot_vo;
9704 memmove (&dup_contents[dup_dot],
9705 &contents[orig_dot], copy_size);
9706 orig_dot_copied = copy_size;
9707 dup_dot += copy_size;
9708 }
9709 virtual_action = TRUE;
9710 }
9711 else
9712 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
9713 }
9714 switch (action->action)
9715 {
9716 case ta_remove_literal:
9717 case ta_remove_insn:
9718 BFD_ASSERT (action->removed_bytes >= 0);
9719 orig_dot += action->removed_bytes;
9720 break;
9721
9722 case ta_narrow_insn:
9723 orig_insn_size = 3;
9724 copy_size = 2;
9725 memmove (scratch, &contents[orig_dot], orig_insn_size);
9726 BFD_ASSERT (action->removed_bytes == 1);
9727 rv = narrow_instruction (scratch, final_size, 0);
9728 BFD_ASSERT (rv);
9729 memmove (&dup_contents[dup_dot], scratch, copy_size);
9730 orig_dot += orig_insn_size;
9731 dup_dot += copy_size;
9732 break;
9733
9734 case ta_fill:
9735 if (action->removed_bytes >= 0)
9736 orig_dot += action->removed_bytes;
9737 else
9738 {
9739 /* Already zeroed in dup_contents. Just bump the
9740 counters. */
9741 dup_dot += (-action->removed_bytes);
9742 }
9743 break;
9744
9745 case ta_none:
9746 BFD_ASSERT (action->removed_bytes == 0);
9747 break;
9748
9749 case ta_convert_longcall:
9750 case ta_remove_longcall:
9751 /* These will be removed or converted before we get here. */
9752 BFD_ASSERT (0);
9753 break;
9754
9755 case ta_widen_insn:
9756 orig_insn_size = 2;
9757 copy_size = 3;
9758 memmove (scratch, &contents[orig_dot], orig_insn_size);
9759 BFD_ASSERT (action->removed_bytes == -1);
9760 rv = widen_instruction (scratch, final_size, 0);
9761 BFD_ASSERT (rv);
9762 memmove (&dup_contents[dup_dot], scratch, copy_size);
9763 orig_dot += orig_insn_size;
9764 dup_dot += copy_size;
9765 break;
9766
9767 case ta_add_literal:
9768 orig_insn_size = 0;
9769 copy_size = 4;
9770 BFD_ASSERT (action->removed_bytes == -4);
9771 /* TBD -- place the literal value here and insert
9772 into the table. */
9773 memset (&dup_contents[dup_dot], 0, 4);
9774 pin_internal_relocs (sec, internal_relocs);
9775 pin_contents (sec, contents);
9776
9777 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
9778 relax_info, &internal_relocs, &action->value))
9779 goto error_return;
9780
9781 if (virtual_action)
9782 orig_dot_vo += copy_size;
9783
9784 orig_dot += orig_insn_size;
9785 dup_dot += copy_size;
9786 break;
9787
9788 default:
9789 /* Not implemented yet. */
9790 BFD_ASSERT (0);
9791 break;
9792 }
9793
9794 BFD_ASSERT (dup_dot <= final_size);
9795 BFD_ASSERT (orig_dot <= orig_size);
9796 }
9797
9798 orig_dot += orig_dot_copied;
9799 orig_dot_copied = 0;
9800
9801 if (orig_dot != orig_size)
9802 {
9803 copy_size = orig_size - orig_dot;
9804 BFD_ASSERT (orig_size > orig_dot);
9805 BFD_ASSERT (dup_dot + copy_size == final_size);
9806 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9807 orig_dot += copy_size;
9808 dup_dot += copy_size;
9809 }
9810 BFD_ASSERT (orig_size == orig_dot);
9811 BFD_ASSERT (final_size == dup_dot);
9812
9813 /* Move the dup_contents back. */
9814 if (final_size > orig_size)
9815 {
9816 /* Contents need to be reallocated. Swap the dup_contents into
9817 contents. */
9818 sec->contents = dup_contents;
9819 free (contents);
9820 contents = dup_contents;
9821 pin_contents (sec, contents);
9822 }
9823 else
9824 {
9825 BFD_ASSERT (final_size <= orig_size);
9826 memset (contents, 0, orig_size);
9827 memcpy (contents, dup_contents, final_size);
9828 free (dup_contents);
9829 }
9830 free (scratch);
9831 pin_contents (sec, contents);
9832
9833 if (sec->rawsize == 0)
9834 sec->rawsize = sec->size;
9835 sec->size = final_size;
9836 }
9837
9838 error_return:
9839 release_internal_relocs (sec, internal_relocs);
9840 release_contents (sec, contents);
9841 return ok;
9842 }
9843
9844
9845 static bfd_boolean
9846 translate_section_fixes (asection *sec)
9847 {
9848 xtensa_relax_info *relax_info;
9849 reloc_bfd_fix *r;
9850
9851 relax_info = get_xtensa_relax_info (sec);
9852 if (!relax_info)
9853 return TRUE;
9854
9855 for (r = relax_info->fix_list; r != NULL; r = r->next)
9856 if (!translate_reloc_bfd_fix (r))
9857 return FALSE;
9858
9859 return TRUE;
9860 }
9861
9862
9863 /* Translate a fix given the mapping in the relax info for the target
9864 section. If it has already been translated, no work is required. */
9865
9866 static bfd_boolean
9867 translate_reloc_bfd_fix (reloc_bfd_fix *fix)
9868 {
9869 reloc_bfd_fix new_fix;
9870 asection *sec;
9871 xtensa_relax_info *relax_info;
9872 removed_literal *removed;
9873 bfd_vma new_offset, target_offset;
9874
9875 if (fix->translated)
9876 return TRUE;
9877
9878 sec = fix->target_sec;
9879 target_offset = fix->target_offset;
9880
9881 relax_info = get_xtensa_relax_info (sec);
9882 if (!relax_info)
9883 {
9884 fix->translated = TRUE;
9885 return TRUE;
9886 }
9887
9888 new_fix = *fix;
9889
9890 /* The fix does not need to be translated if the section cannot change. */
9891 if (!relax_info->is_relaxable_literal_section
9892 && !relax_info->is_relaxable_asm_section)
9893 {
9894 fix->translated = TRUE;
9895 return TRUE;
9896 }
9897
9898 /* If the literal has been moved and this relocation was on an
9899 opcode, then the relocation should move to the new literal
9900 location. Otherwise, the relocation should move within the
9901 section. */
9902
9903 removed = FALSE;
9904 if (is_operand_relocation (fix->src_type))
9905 {
9906 /* Check if the original relocation is against a literal being
9907 removed. */
9908 removed = find_removed_literal (&relax_info->removed_list,
9909 target_offset);
9910 }
9911
9912 if (removed)
9913 {
9914 asection *new_sec;
9915
9916 /* The fact that there is still a relocation to this literal indicates
9917 that the literal is being coalesced, not simply removed. */
9918 BFD_ASSERT (removed->to.abfd != NULL);
9919
9920 /* This was moved to some other address (possibly another section). */
9921 new_sec = r_reloc_get_section (&removed->to);
9922 if (new_sec != sec)
9923 {
9924 sec = new_sec;
9925 relax_info = get_xtensa_relax_info (sec);
9926 if (!relax_info ||
9927 (!relax_info->is_relaxable_literal_section
9928 && !relax_info->is_relaxable_asm_section))
9929 {
9930 target_offset = removed->to.target_offset;
9931 new_fix.target_sec = new_sec;
9932 new_fix.target_offset = target_offset;
9933 new_fix.translated = TRUE;
9934 *fix = new_fix;
9935 return TRUE;
9936 }
9937 }
9938 target_offset = removed->to.target_offset;
9939 new_fix.target_sec = new_sec;
9940 }
9941
9942 /* The target address may have been moved within its section. */
9943 new_offset = offset_with_removed_text (&relax_info->action_list,
9944 target_offset);
9945
9946 new_fix.target_offset = new_offset;
9947 new_fix.target_offset = new_offset;
9948 new_fix.translated = TRUE;
9949 *fix = new_fix;
9950 return TRUE;
9951 }
9952
9953
9954 /* Fix up a relocation to take account of removed literals. */
9955
9956 static asection *
9957 translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
9958 {
9959 xtensa_relax_info *relax_info;
9960 removed_literal *removed;
9961 bfd_vma target_offset, base_offset;
9962
9963 *new_rel = *orig_rel;
9964
9965 if (!r_reloc_is_defined (orig_rel))
9966 return sec ;
9967
9968 relax_info = get_xtensa_relax_info (sec);
9969 BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
9970 || relax_info->is_relaxable_asm_section));
9971
9972 target_offset = orig_rel->target_offset;
9973
9974 removed = FALSE;
9975 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
9976 {
9977 /* Check if the original relocation is against a literal being
9978 removed. */
9979 removed = find_removed_literal (&relax_info->removed_list,
9980 target_offset);
9981 }
9982 if (removed && removed->to.abfd)
9983 {
9984 asection *new_sec;
9985
9986 /* The fact that there is still a relocation to this literal indicates
9987 that the literal is being coalesced, not simply removed. */
9988 BFD_ASSERT (removed->to.abfd != NULL);
9989
9990 /* This was moved to some other address
9991 (possibly in another section). */
9992 *new_rel = removed->to;
9993 new_sec = r_reloc_get_section (new_rel);
9994 if (new_sec != sec)
9995 {
9996 sec = new_sec;
9997 relax_info = get_xtensa_relax_info (sec);
9998 if (!relax_info
9999 || (!relax_info->is_relaxable_literal_section
10000 && !relax_info->is_relaxable_asm_section))
10001 return sec;
10002 }
10003 target_offset = new_rel->target_offset;
10004 }
10005
10006 /* Find the base offset of the reloc symbol, excluding any addend from the
10007 reloc or from the section contents (for a partial_inplace reloc). Then
10008 find the adjusted values of the offsets due to relaxation. The base
10009 offset is needed to determine the change to the reloc's addend; the reloc
10010 addend should not be adjusted due to relaxations located before the base
10011 offset. */
10012
10013 base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
10014 if (base_offset <= target_offset)
10015 {
10016 int base_removed = removed_by_actions_map (&relax_info->action_list,
10017 base_offset, FALSE);
10018 int addend_removed = removed_by_actions_map (&relax_info->action_list,
10019 target_offset, FALSE) -
10020 base_removed;
10021
10022 new_rel->target_offset = target_offset - base_removed - addend_removed;
10023 new_rel->rela.r_addend -= addend_removed;
10024 }
10025 else
10026 {
10027 /* Handle a negative addend. The base offset comes first. */
10028 int tgt_removed = removed_by_actions_map (&relax_info->action_list,
10029 target_offset, FALSE);
10030 int addend_removed = removed_by_actions_map (&relax_info->action_list,
10031 base_offset, FALSE) -
10032 tgt_removed;
10033
10034 new_rel->target_offset = target_offset - tgt_removed;
10035 new_rel->rela.r_addend += addend_removed;
10036 }
10037
10038 return sec;
10039 }
10040
10041
10042 /* For dynamic links, there may be a dynamic relocation for each
10043 literal. The number of dynamic relocations must be computed in
10044 size_dynamic_sections, which occurs before relaxation. When a
10045 literal is removed, this function checks if there is a corresponding
10046 dynamic relocation and shrinks the size of the appropriate dynamic
10047 relocation section accordingly. At this point, the contents of the
10048 dynamic relocation sections have not yet been filled in, so there's
10049 nothing else that needs to be done. */
10050
10051 static void
10052 shrink_dynamic_reloc_sections (struct bfd_link_info *info,
10053 bfd *abfd,
10054 asection *input_section,
10055 Elf_Internal_Rela *rel)
10056 {
10057 struct elf_xtensa_link_hash_table *htab;
10058 Elf_Internal_Shdr *symtab_hdr;
10059 struct elf_link_hash_entry **sym_hashes;
10060 unsigned long r_symndx;
10061 int r_type;
10062 struct elf_link_hash_entry *h;
10063 bfd_boolean dynamic_symbol;
10064
10065 htab = elf_xtensa_hash_table (info);
10066 if (htab == NULL)
10067 return;
10068
10069 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10070 sym_hashes = elf_sym_hashes (abfd);
10071
10072 r_type = ELF32_R_TYPE (rel->r_info);
10073 r_symndx = ELF32_R_SYM (rel->r_info);
10074
10075 if (r_symndx < symtab_hdr->sh_info)
10076 h = NULL;
10077 else
10078 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
10079
10080 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
10081
10082 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
10083 && (input_section->flags & SEC_ALLOC) != 0
10084 && (dynamic_symbol || bfd_link_pic (info))
10085 && (!h || h->root.type != bfd_link_hash_undefweak
10086 || (dynamic_symbol
10087 && (bfd_link_dll (info) || info->export_dynamic))))
10088 {
10089 asection *srel;
10090 bfd_boolean is_plt = FALSE;
10091
10092 if (dynamic_symbol && r_type == R_XTENSA_PLT)
10093 {
10094 srel = htab->elf.srelplt;
10095 is_plt = TRUE;
10096 }
10097 else
10098 srel = htab->elf.srelgot;
10099
10100 /* Reduce size of the .rela.* section by one reloc. */
10101 BFD_ASSERT (srel != NULL);
10102 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
10103 srel->size -= sizeof (Elf32_External_Rela);
10104
10105 if (is_plt)
10106 {
10107 asection *splt, *sgotplt, *srelgot;
10108 int reloc_index, chunk;
10109
10110 /* Find the PLT reloc index of the entry being removed. This
10111 is computed from the size of ".rela.plt". It is needed to
10112 figure out which PLT chunk to resize. Usually "last index
10113 = size - 1" since the index starts at zero, but in this
10114 context, the size has just been decremented so there's no
10115 need to subtract one. */
10116 reloc_index = srel->size / sizeof (Elf32_External_Rela);
10117
10118 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
10119 splt = elf_xtensa_get_plt_section (info, chunk);
10120 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
10121 BFD_ASSERT (splt != NULL && sgotplt != NULL);
10122
10123 /* Check if an entire PLT chunk has just been eliminated. */
10124 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
10125 {
10126 /* The two magic GOT entries for that chunk can go away. */
10127 srelgot = htab->elf.srelgot;
10128 BFD_ASSERT (srelgot != NULL);
10129 srelgot->reloc_count -= 2;
10130 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
10131 sgotplt->size -= 8;
10132
10133 /* There should be only one entry left (and it will be
10134 removed below). */
10135 BFD_ASSERT (sgotplt->size == 4);
10136 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
10137 }
10138
10139 BFD_ASSERT (sgotplt->size >= 4);
10140 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
10141
10142 sgotplt->size -= 4;
10143 splt->size -= PLT_ENTRY_SIZE;
10144 }
10145 }
10146 }
10147
10148
10149 /* Take an r_rel and move it to another section. This usually
10150 requires extending the interal_relocation array and pinning it. If
10151 the original r_rel is from the same BFD, we can complete this here.
10152 Otherwise, we add a fix record to let the final link fix the
10153 appropriate address. Contents and internal relocations for the
10154 section must be pinned after calling this routine. */
10155
10156 static bfd_boolean
10157 move_literal (bfd *abfd,
10158 struct bfd_link_info *link_info,
10159 asection *sec,
10160 bfd_vma offset,
10161 bfd_byte *contents,
10162 xtensa_relax_info *relax_info,
10163 Elf_Internal_Rela **internal_relocs_p,
10164 const literal_value *lit)
10165 {
10166 Elf_Internal_Rela *new_relocs = NULL;
10167 size_t new_relocs_count = 0;
10168 Elf_Internal_Rela this_rela;
10169 const r_reloc *r_rel;
10170
10171 r_rel = &lit->r_rel;
10172 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
10173
10174 if (r_reloc_is_const (r_rel))
10175 bfd_put_32 (abfd, lit->value, contents + offset);
10176 else
10177 {
10178 int r_type;
10179 unsigned i;
10180 reloc_bfd_fix *fix;
10181 unsigned insert_at;
10182
10183 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
10184
10185 /* This is the difficult case. We have to create a fix up. */
10186 this_rela.r_offset = offset;
10187 this_rela.r_info = ELF32_R_INFO (0, r_type);
10188 this_rela.r_addend =
10189 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
10190 bfd_put_32 (abfd, lit->value, contents + offset);
10191
10192 /* Currently, we cannot move relocations during a relocatable link. */
10193 BFD_ASSERT (!bfd_link_relocatable (link_info));
10194 fix = reloc_bfd_fix_init (sec, offset, r_type,
10195 r_reloc_get_section (r_rel),
10196 r_rel->target_offset + r_rel->virtual_offset,
10197 FALSE);
10198 /* We also need to mark that relocations are needed here. */
10199 sec->flags |= SEC_RELOC;
10200
10201 translate_reloc_bfd_fix (fix);
10202 /* This fix has not yet been translated. */
10203 add_fix (sec, fix);
10204
10205 /* Add the relocation. If we have already allocated our own
10206 space for the relocations and we have room for more, then use
10207 it. Otherwise, allocate new space and move the literals. */
10208 insert_at = sec->reloc_count;
10209 for (i = 0; i < sec->reloc_count; ++i)
10210 {
10211 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
10212 {
10213 insert_at = i;
10214 break;
10215 }
10216 }
10217
10218 if (*internal_relocs_p != relax_info->allocated_relocs
10219 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
10220 {
10221 BFD_ASSERT (relax_info->allocated_relocs == NULL
10222 || sec->reloc_count == relax_info->relocs_count);
10223
10224 if (relax_info->allocated_relocs_count == 0)
10225 new_relocs_count = (sec->reloc_count + 2) * 2;
10226 else
10227 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
10228
10229 new_relocs = (Elf_Internal_Rela *)
10230 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
10231 if (!new_relocs)
10232 return FALSE;
10233
10234 /* We could handle this more quickly by finding the split point. */
10235 if (insert_at != 0)
10236 memcpy (new_relocs, *internal_relocs_p,
10237 insert_at * sizeof (Elf_Internal_Rela));
10238
10239 new_relocs[insert_at] = this_rela;
10240
10241 if (insert_at != sec->reloc_count)
10242 memcpy (new_relocs + insert_at + 1,
10243 (*internal_relocs_p) + insert_at,
10244 (sec->reloc_count - insert_at)
10245 * sizeof (Elf_Internal_Rela));
10246
10247 if (*internal_relocs_p != relax_info->allocated_relocs)
10248 {
10249 /* The first time we re-allocate, we can only free the
10250 old relocs if they were allocated with bfd_malloc.
10251 This is not true when keep_memory is in effect. */
10252 if (!link_info->keep_memory)
10253 free (*internal_relocs_p);
10254 }
10255 else
10256 free (*internal_relocs_p);
10257 relax_info->allocated_relocs = new_relocs;
10258 relax_info->allocated_relocs_count = new_relocs_count;
10259 elf_section_data (sec)->relocs = new_relocs;
10260 sec->reloc_count++;
10261 relax_info->relocs_count = sec->reloc_count;
10262 *internal_relocs_p = new_relocs;
10263 }
10264 else
10265 {
10266 if (insert_at != sec->reloc_count)
10267 {
10268 unsigned idx;
10269 for (idx = sec->reloc_count; idx > insert_at; idx--)
10270 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
10271 }
10272 (*internal_relocs_p)[insert_at] = this_rela;
10273 sec->reloc_count++;
10274 if (relax_info->allocated_relocs)
10275 relax_info->relocs_count = sec->reloc_count;
10276 }
10277 }
10278 return TRUE;
10279 }
10280
10281
10282 /* This is similar to relax_section except that when a target is moved,
10283 we shift addresses up. We also need to modify the size. This
10284 algorithm does NOT allow for relocations into the middle of the
10285 property sections. */
10286
10287 static bfd_boolean
10288 relax_property_section (bfd *abfd,
10289 asection *sec,
10290 struct bfd_link_info *link_info)
10291 {
10292 Elf_Internal_Rela *internal_relocs;
10293 bfd_byte *contents;
10294 unsigned i;
10295 bfd_boolean ok = TRUE;
10296 bfd_boolean is_full_prop_section;
10297 size_t last_zfill_target_offset = 0;
10298 asection *last_zfill_target_sec = NULL;
10299 bfd_size_type sec_size;
10300 bfd_size_type entry_size;
10301
10302 sec_size = bfd_get_section_limit (abfd, sec);
10303 internal_relocs = retrieve_internal_relocs (abfd, sec,
10304 link_info->keep_memory);
10305 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
10306 if (contents == NULL && sec_size != 0)
10307 {
10308 ok = FALSE;
10309 goto error_return;
10310 }
10311
10312 is_full_prop_section = xtensa_is_proptable_section (sec);
10313 if (is_full_prop_section)
10314 entry_size = 12;
10315 else
10316 entry_size = 8;
10317
10318 if (internal_relocs)
10319 {
10320 for (i = 0; i < sec->reloc_count; i++)
10321 {
10322 Elf_Internal_Rela *irel;
10323 xtensa_relax_info *target_relax_info;
10324 unsigned r_type;
10325 asection *target_sec;
10326 literal_value val;
10327 bfd_byte *size_p, *flags_p;
10328
10329 /* Locally change the source address.
10330 Translate the target to the new target address.
10331 If it points to this section and has been removed, MOVE IT.
10332 Also, don't forget to modify the associated SIZE at
10333 (offset + 4). */
10334
10335 irel = &internal_relocs[i];
10336 r_type = ELF32_R_TYPE (irel->r_info);
10337 if (r_type == R_XTENSA_NONE)
10338 continue;
10339
10340 /* Find the literal value. */
10341 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
10342 size_p = &contents[irel->r_offset + 4];
10343 flags_p = NULL;
10344 if (is_full_prop_section)
10345 flags_p = &contents[irel->r_offset + 8];
10346 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
10347
10348 target_sec = r_reloc_get_section (&val.r_rel);
10349 target_relax_info = get_xtensa_relax_info (target_sec);
10350
10351 if (target_relax_info
10352 && (target_relax_info->is_relaxable_literal_section
10353 || target_relax_info->is_relaxable_asm_section ))
10354 {
10355 /* Translate the relocation's destination. */
10356 bfd_vma old_offset = val.r_rel.target_offset;
10357 bfd_vma new_offset;
10358 long old_size, new_size;
10359 int removed_by_old_offset =
10360 removed_by_actions_map (&target_relax_info->action_list,
10361 old_offset, FALSE);
10362 new_offset = old_offset - removed_by_old_offset;
10363
10364 /* Assert that we are not out of bounds. */
10365 old_size = bfd_get_32 (abfd, size_p);
10366 new_size = old_size;
10367
10368 if (old_size == 0)
10369 {
10370 /* Only the first zero-sized unreachable entry is
10371 allowed to expand. In this case the new offset
10372 should be the offset before the fill and the new
10373 size is the expansion size. For other zero-sized
10374 entries the resulting size should be zero with an
10375 offset before or after the fill address depending
10376 on whether the expanding unreachable entry
10377 preceeds it. */
10378 if (last_zfill_target_sec == 0
10379 || last_zfill_target_sec != target_sec
10380 || last_zfill_target_offset != old_offset)
10381 {
10382 bfd_vma new_end_offset = new_offset;
10383
10384 /* Recompute the new_offset, but this time don't
10385 include any fill inserted by relaxation. */
10386 removed_by_old_offset =
10387 removed_by_actions_map (&target_relax_info->action_list,
10388 old_offset, TRUE);
10389 new_offset = old_offset - removed_by_old_offset;
10390
10391 /* If it is not unreachable and we have not yet
10392 seen an unreachable at this address, place it
10393 before the fill address. */
10394 if (flags_p && (bfd_get_32 (abfd, flags_p)
10395 & XTENSA_PROP_UNREACHABLE) != 0)
10396 {
10397 new_size = new_end_offset - new_offset;
10398
10399 last_zfill_target_sec = target_sec;
10400 last_zfill_target_offset = old_offset;
10401 }
10402 }
10403 }
10404 else
10405 {
10406 int removed_by_old_offset_size =
10407 removed_by_actions_map (&target_relax_info->action_list,
10408 old_offset + old_size, TRUE);
10409 new_size -= removed_by_old_offset_size - removed_by_old_offset;
10410 }
10411
10412 if (new_size != old_size)
10413 {
10414 bfd_put_32 (abfd, new_size, size_p);
10415 pin_contents (sec, contents);
10416 }
10417
10418 if (new_offset != old_offset)
10419 {
10420 bfd_vma diff = new_offset - old_offset;
10421 irel->r_addend += diff;
10422 pin_internal_relocs (sec, internal_relocs);
10423 }
10424 }
10425 }
10426 }
10427
10428 /* Combine adjacent property table entries. This is also done in
10429 finish_dynamic_sections() but at that point it's too late to
10430 reclaim the space in the output section, so we do this twice. */
10431
10432 if (internal_relocs && (!bfd_link_relocatable (link_info)
10433 || xtensa_is_littable_section (sec)))
10434 {
10435 Elf_Internal_Rela *last_irel = NULL;
10436 Elf_Internal_Rela *irel, *next_rel, *rel_end;
10437 int removed_bytes = 0;
10438 bfd_vma offset;
10439 flagword predef_flags;
10440
10441 predef_flags = xtensa_get_property_predef_flags (sec);
10442
10443 /* Walk over memory and relocations at the same time.
10444 This REQUIRES that the internal_relocs be sorted by offset. */
10445 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
10446 internal_reloc_compare);
10447
10448 pin_internal_relocs (sec, internal_relocs);
10449 pin_contents (sec, contents);
10450
10451 next_rel = internal_relocs;
10452 rel_end = internal_relocs + sec->reloc_count;
10453
10454 BFD_ASSERT (sec->size % entry_size == 0);
10455
10456 for (offset = 0; offset < sec->size; offset += entry_size)
10457 {
10458 Elf_Internal_Rela *offset_rel, *extra_rel;
10459 bfd_vma bytes_to_remove, size, actual_offset;
10460 bfd_boolean remove_this_rel;
10461 flagword flags;
10462
10463 /* Find the first relocation for the entry at the current offset.
10464 Adjust the offsets of any extra relocations for the previous
10465 entry. */
10466 offset_rel = NULL;
10467 if (next_rel)
10468 {
10469 for (irel = next_rel; irel < rel_end; irel++)
10470 {
10471 if ((irel->r_offset == offset
10472 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
10473 || irel->r_offset > offset)
10474 {
10475 offset_rel = irel;
10476 break;
10477 }
10478 irel->r_offset -= removed_bytes;
10479 }
10480 }
10481
10482 /* Find the next relocation (if there are any left). */
10483 extra_rel = NULL;
10484 if (offset_rel)
10485 {
10486 for (irel = offset_rel + 1; irel < rel_end; irel++)
10487 {
10488 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
10489 {
10490 extra_rel = irel;
10491 break;
10492 }
10493 }
10494 }
10495
10496 /* Check if there are relocations on the current entry. There
10497 should usually be a relocation on the offset field. If there
10498 are relocations on the size or flags, then we can't optimize
10499 this entry. Also, find the next relocation to examine on the
10500 next iteration. */
10501 if (offset_rel)
10502 {
10503 if (offset_rel->r_offset >= offset + entry_size)
10504 {
10505 next_rel = offset_rel;
10506 /* There are no relocations on the current entry, but we
10507 might still be able to remove it if the size is zero. */
10508 offset_rel = NULL;
10509 }
10510 else if (offset_rel->r_offset > offset
10511 || (extra_rel
10512 && extra_rel->r_offset < offset + entry_size))
10513 {
10514 /* There is a relocation on the size or flags, so we can't
10515 do anything with this entry. Continue with the next. */
10516 next_rel = offset_rel;
10517 continue;
10518 }
10519 else
10520 {
10521 BFD_ASSERT (offset_rel->r_offset == offset);
10522 offset_rel->r_offset -= removed_bytes;
10523 next_rel = offset_rel + 1;
10524 }
10525 }
10526 else
10527 next_rel = NULL;
10528
10529 remove_this_rel = FALSE;
10530 bytes_to_remove = 0;
10531 actual_offset = offset - removed_bytes;
10532 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
10533
10534 if (is_full_prop_section)
10535 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
10536 else
10537 flags = predef_flags;
10538
10539 if (size == 0
10540 && (flags & XTENSA_PROP_ALIGN) == 0
10541 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
10542 {
10543 /* Always remove entries with zero size and no alignment. */
10544 bytes_to_remove = entry_size;
10545 if (offset_rel)
10546 remove_this_rel = TRUE;
10547 }
10548 else if (offset_rel
10549 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
10550 {
10551 if (last_irel)
10552 {
10553 flagword old_flags;
10554 bfd_vma old_size =
10555 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
10556 bfd_vma old_address =
10557 (last_irel->r_addend
10558 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
10559 bfd_vma new_address =
10560 (offset_rel->r_addend
10561 + bfd_get_32 (abfd, &contents[actual_offset]));
10562 if (is_full_prop_section)
10563 old_flags = bfd_get_32
10564 (abfd, &contents[last_irel->r_offset + 8]);
10565 else
10566 old_flags = predef_flags;
10567
10568 if ((ELF32_R_SYM (offset_rel->r_info)
10569 == ELF32_R_SYM (last_irel->r_info))
10570 && old_address + old_size == new_address
10571 && old_flags == flags
10572 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
10573 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
10574 {
10575 /* Fix the old size. */
10576 bfd_put_32 (abfd, old_size + size,
10577 &contents[last_irel->r_offset + 4]);
10578 bytes_to_remove = entry_size;
10579 remove_this_rel = TRUE;
10580 }
10581 else
10582 last_irel = offset_rel;
10583 }
10584 else
10585 last_irel = offset_rel;
10586 }
10587
10588 if (remove_this_rel)
10589 {
10590 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
10591 offset_rel->r_offset = 0;
10592 }
10593
10594 if (bytes_to_remove != 0)
10595 {
10596 removed_bytes += bytes_to_remove;
10597 if (offset + bytes_to_remove < sec->size)
10598 memmove (&contents[actual_offset],
10599 &contents[actual_offset + bytes_to_remove],
10600 sec->size - offset - bytes_to_remove);
10601 }
10602 }
10603
10604 if (removed_bytes)
10605 {
10606 /* Fix up any extra relocations on the last entry. */
10607 for (irel = next_rel; irel < rel_end; irel++)
10608 irel->r_offset -= removed_bytes;
10609
10610 /* Clear the removed bytes. */
10611 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
10612
10613 if (sec->rawsize == 0)
10614 sec->rawsize = sec->size;
10615 sec->size -= removed_bytes;
10616
10617 if (xtensa_is_littable_section (sec))
10618 {
10619 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
10620 if (sgotloc)
10621 sgotloc->size -= removed_bytes;
10622 }
10623 }
10624 }
10625
10626 error_return:
10627 release_internal_relocs (sec, internal_relocs);
10628 release_contents (sec, contents);
10629 return ok;
10630 }
10631
10632 \f
10633 /* Third relaxation pass. */
10634
10635 /* Change symbol values to account for removed literals. */
10636
10637 bfd_boolean
10638 relax_section_symbols (bfd *abfd, asection *sec)
10639 {
10640 xtensa_relax_info *relax_info;
10641 unsigned int sec_shndx;
10642 Elf_Internal_Shdr *symtab_hdr;
10643 Elf_Internal_Sym *isymbuf;
10644 unsigned i, num_syms, num_locals;
10645
10646 relax_info = get_xtensa_relax_info (sec);
10647 BFD_ASSERT (relax_info);
10648
10649 if (!relax_info->is_relaxable_literal_section
10650 && !relax_info->is_relaxable_asm_section)
10651 return TRUE;
10652
10653 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
10654
10655 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10656 isymbuf = retrieve_local_syms (abfd);
10657
10658 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
10659 num_locals = symtab_hdr->sh_info;
10660
10661 /* Adjust the local symbols defined in this section. */
10662 for (i = 0; i < num_locals; i++)
10663 {
10664 Elf_Internal_Sym *isym = &isymbuf[i];
10665
10666 if (isym->st_shndx == sec_shndx)
10667 {
10668 bfd_vma orig_addr = isym->st_value;
10669 int removed = removed_by_actions_map (&relax_info->action_list,
10670 orig_addr, FALSE);
10671
10672 isym->st_value -= removed;
10673 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
10674 isym->st_size -=
10675 removed_by_actions_map (&relax_info->action_list,
10676 orig_addr + isym->st_size, FALSE) -
10677 removed;
10678 }
10679 }
10680
10681 /* Now adjust the global symbols defined in this section. */
10682 for (i = 0; i < (num_syms - num_locals); i++)
10683 {
10684 struct elf_link_hash_entry *sym_hash;
10685
10686 sym_hash = elf_sym_hashes (abfd)[i];
10687
10688 if (sym_hash->root.type == bfd_link_hash_warning)
10689 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
10690
10691 if ((sym_hash->root.type == bfd_link_hash_defined
10692 || sym_hash->root.type == bfd_link_hash_defweak)
10693 && sym_hash->root.u.def.section == sec)
10694 {
10695 bfd_vma orig_addr = sym_hash->root.u.def.value;
10696 int removed = removed_by_actions_map (&relax_info->action_list,
10697 orig_addr, FALSE);
10698
10699 sym_hash->root.u.def.value -= removed;
10700
10701 if (sym_hash->type == STT_FUNC)
10702 sym_hash->size -=
10703 removed_by_actions_map (&relax_info->action_list,
10704 orig_addr + sym_hash->size, FALSE) -
10705 removed;
10706 }
10707 }
10708
10709 return TRUE;
10710 }
10711
10712 \f
10713 /* "Fix" handling functions, called while performing relocations. */
10714
10715 static bfd_boolean
10716 do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
10717 bfd *input_bfd,
10718 asection *input_section,
10719 bfd_byte *contents)
10720 {
10721 r_reloc r_rel;
10722 asection *sec, *old_sec;
10723 bfd_vma old_offset;
10724 int r_type = ELF32_R_TYPE (rel->r_info);
10725 reloc_bfd_fix *fix;
10726
10727 if (r_type == R_XTENSA_NONE)
10728 return TRUE;
10729
10730 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10731 if (!fix)
10732 return TRUE;
10733
10734 r_reloc_init (&r_rel, input_bfd, rel, contents,
10735 bfd_get_section_limit (input_bfd, input_section));
10736 old_sec = r_reloc_get_section (&r_rel);
10737 old_offset = r_rel.target_offset;
10738
10739 if (!old_sec || !r_reloc_is_defined (&r_rel))
10740 {
10741 if (r_type != R_XTENSA_ASM_EXPAND)
10742 {
10743 _bfd_error_handler
10744 /* xgettext:c-format */
10745 (_("%pB(%pA+%#" PRIx64 "): unexpected fix for %s relocation"),
10746 input_bfd, input_section, (uint64_t) rel->r_offset,
10747 elf_howto_table[r_type].name);
10748 return FALSE;
10749 }
10750 /* Leave it be. Resolution will happen in a later stage. */
10751 }
10752 else
10753 {
10754 sec = fix->target_sec;
10755 rel->r_addend += ((sec->output_offset + fix->target_offset)
10756 - (old_sec->output_offset + old_offset));
10757 }
10758 return TRUE;
10759 }
10760
10761
10762 static void
10763 do_fix_for_final_link (Elf_Internal_Rela *rel,
10764 bfd *input_bfd,
10765 asection *input_section,
10766 bfd_byte *contents,
10767 bfd_vma *relocationp)
10768 {
10769 asection *sec;
10770 int r_type = ELF32_R_TYPE (rel->r_info);
10771 reloc_bfd_fix *fix;
10772 bfd_vma fixup_diff;
10773
10774 if (r_type == R_XTENSA_NONE)
10775 return;
10776
10777 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10778 if (!fix)
10779 return;
10780
10781 sec = fix->target_sec;
10782
10783 fixup_diff = rel->r_addend;
10784 if (elf_howto_table[fix->src_type].partial_inplace)
10785 {
10786 bfd_vma inplace_val;
10787 BFD_ASSERT (fix->src_offset
10788 < bfd_get_section_limit (input_bfd, input_section));
10789 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
10790 fixup_diff += inplace_val;
10791 }
10792
10793 *relocationp = (sec->output_section->vma
10794 + sec->output_offset
10795 + fix->target_offset - fixup_diff);
10796 }
10797
10798 \f
10799 /* Miscellaneous utility functions.... */
10800
10801 static asection *
10802 elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
10803 {
10804 bfd *dynobj;
10805 char plt_name[17];
10806
10807 if (chunk == 0)
10808 return elf_hash_table (info)->splt;
10809
10810 dynobj = elf_hash_table (info)->dynobj;
10811 sprintf (plt_name, ".plt.%u", chunk);
10812 return bfd_get_linker_section (dynobj, plt_name);
10813 }
10814
10815
10816 static asection *
10817 elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
10818 {
10819 bfd *dynobj;
10820 char got_name[21];
10821
10822 if (chunk == 0)
10823 return elf_hash_table (info)->sgotplt;
10824
10825 dynobj = elf_hash_table (info)->dynobj;
10826 sprintf (got_name, ".got.plt.%u", chunk);
10827 return bfd_get_linker_section (dynobj, got_name);
10828 }
10829
10830
10831 /* Get the input section for a given symbol index.
10832 If the symbol is:
10833 . a section symbol, return the section;
10834 . a common symbol, return the common section;
10835 . an undefined symbol, return the undefined section;
10836 . an indirect symbol, follow the links;
10837 . an absolute value, return the absolute section. */
10838
10839 static asection *
10840 get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
10841 {
10842 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10843 asection *target_sec = NULL;
10844 if (r_symndx < symtab_hdr->sh_info)
10845 {
10846 Elf_Internal_Sym *isymbuf;
10847 unsigned int section_index;
10848
10849 isymbuf = retrieve_local_syms (abfd);
10850 section_index = isymbuf[r_symndx].st_shndx;
10851
10852 if (section_index == SHN_UNDEF)
10853 target_sec = bfd_und_section_ptr;
10854 else if (section_index == SHN_ABS)
10855 target_sec = bfd_abs_section_ptr;
10856 else if (section_index == SHN_COMMON)
10857 target_sec = bfd_com_section_ptr;
10858 else
10859 target_sec = bfd_section_from_elf_index (abfd, section_index);
10860 }
10861 else
10862 {
10863 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10864 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
10865
10866 while (h->root.type == bfd_link_hash_indirect
10867 || h->root.type == bfd_link_hash_warning)
10868 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10869
10870 switch (h->root.type)
10871 {
10872 case bfd_link_hash_defined:
10873 case bfd_link_hash_defweak:
10874 target_sec = h->root.u.def.section;
10875 break;
10876 case bfd_link_hash_common:
10877 target_sec = bfd_com_section_ptr;
10878 break;
10879 case bfd_link_hash_undefined:
10880 case bfd_link_hash_undefweak:
10881 target_sec = bfd_und_section_ptr;
10882 break;
10883 default: /* New indirect warning. */
10884 target_sec = bfd_und_section_ptr;
10885 break;
10886 }
10887 }
10888 return target_sec;
10889 }
10890
10891
10892 static struct elf_link_hash_entry *
10893 get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
10894 {
10895 unsigned long indx;
10896 struct elf_link_hash_entry *h;
10897 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10898
10899 if (r_symndx < symtab_hdr->sh_info)
10900 return NULL;
10901
10902 indx = r_symndx - symtab_hdr->sh_info;
10903 h = elf_sym_hashes (abfd)[indx];
10904 while (h->root.type == bfd_link_hash_indirect
10905 || h->root.type == bfd_link_hash_warning)
10906 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10907 return h;
10908 }
10909
10910
10911 /* Get the section-relative offset for a symbol number. */
10912
10913 static bfd_vma
10914 get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
10915 {
10916 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10917 bfd_vma offset = 0;
10918
10919 if (r_symndx < symtab_hdr->sh_info)
10920 {
10921 Elf_Internal_Sym *isymbuf;
10922 isymbuf = retrieve_local_syms (abfd);
10923 offset = isymbuf[r_symndx].st_value;
10924 }
10925 else
10926 {
10927 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10928 struct elf_link_hash_entry *h =
10929 elf_sym_hashes (abfd)[indx];
10930
10931 while (h->root.type == bfd_link_hash_indirect
10932 || h->root.type == bfd_link_hash_warning)
10933 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10934 if (h->root.type == bfd_link_hash_defined
10935 || h->root.type == bfd_link_hash_defweak)
10936 offset = h->root.u.def.value;
10937 }
10938 return offset;
10939 }
10940
10941
10942 static bfd_boolean
10943 is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
10944 {
10945 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
10946 struct elf_link_hash_entry *h;
10947
10948 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
10949 if (h && h->root.type == bfd_link_hash_defweak)
10950 return TRUE;
10951 return FALSE;
10952 }
10953
10954
10955 static bfd_boolean
10956 pcrel_reloc_fits (xtensa_opcode opc,
10957 int opnd,
10958 bfd_vma self_address,
10959 bfd_vma dest_address)
10960 {
10961 xtensa_isa isa = xtensa_default_isa;
10962 uint32 valp = dest_address;
10963 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
10964 || xtensa_operand_encode (isa, opc, opnd, &valp))
10965 return FALSE;
10966 return TRUE;
10967 }
10968
10969
10970 static bfd_boolean
10971 xtensa_is_property_section (asection *sec)
10972 {
10973 if (xtensa_is_insntable_section (sec)
10974 || xtensa_is_littable_section (sec)
10975 || xtensa_is_proptable_section (sec))
10976 return TRUE;
10977
10978 return FALSE;
10979 }
10980
10981
10982 static bfd_boolean
10983 xtensa_is_insntable_section (asection *sec)
10984 {
10985 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
10986 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
10987 return TRUE;
10988
10989 return FALSE;
10990 }
10991
10992
10993 static bfd_boolean
10994 xtensa_is_littable_section (asection *sec)
10995 {
10996 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
10997 || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
10998 return TRUE;
10999
11000 return FALSE;
11001 }
11002
11003
11004 static bfd_boolean
11005 xtensa_is_proptable_section (asection *sec)
11006 {
11007 if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
11008 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
11009 return TRUE;
11010
11011 return FALSE;
11012 }
11013
11014
11015 static int
11016 internal_reloc_compare (const void *ap, const void *bp)
11017 {
11018 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
11019 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
11020
11021 if (a->r_offset != b->r_offset)
11022 return (a->r_offset - b->r_offset);
11023
11024 /* We don't need to sort on these criteria for correctness,
11025 but enforcing a more strict ordering prevents unstable qsort
11026 from behaving differently with different implementations.
11027 Without the code below we get correct but different results
11028 on Solaris 2.7 and 2.8. We would like to always produce the
11029 same results no matter the host. */
11030
11031 if (a->r_info != b->r_info)
11032 return (a->r_info - b->r_info);
11033
11034 return (a->r_addend - b->r_addend);
11035 }
11036
11037
11038 static int
11039 internal_reloc_matches (const void *ap, const void *bp)
11040 {
11041 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
11042 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
11043
11044 /* Check if one entry overlaps with the other; this shouldn't happen
11045 except when searching for a match. */
11046 return (a->r_offset - b->r_offset);
11047 }
11048
11049
11050 /* Predicate function used to look up a section in a particular group. */
11051
11052 static bfd_boolean
11053 match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
11054 {
11055 const char *gname = inf;
11056 const char *group_name = elf_group_name (sec);
11057
11058 return (group_name == gname
11059 || (group_name != NULL
11060 && gname != NULL
11061 && strcmp (group_name, gname) == 0));
11062 }
11063
11064
11065 static char *
11066 xtensa_add_names (const char *base, const char *suffix)
11067 {
11068 if (suffix)
11069 {
11070 size_t base_len = strlen (base);
11071 size_t suffix_len = strlen (suffix);
11072 char *str = bfd_malloc (base_len + suffix_len + 1);
11073
11074 memcpy (str, base, base_len);
11075 memcpy (str + base_len, suffix, suffix_len + 1);
11076 return str;
11077 }
11078 else
11079 {
11080 return strdup (base);
11081 }
11082 }
11083
11084 static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
11085
11086 static char *
11087 xtensa_property_section_name (asection *sec, const char *base_name,
11088 bfd_boolean separate_sections)
11089 {
11090 const char *suffix, *group_name;
11091 char *prop_sec_name;
11092
11093 group_name = elf_group_name (sec);
11094 if (group_name)
11095 {
11096 suffix = strrchr (sec->name, '.');
11097 if (suffix == sec->name)
11098 suffix = 0;
11099 prop_sec_name = xtensa_add_names (base_name, suffix);
11100 }
11101 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
11102 {
11103 char *linkonce_kind = 0;
11104
11105 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
11106 linkonce_kind = "x.";
11107 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
11108 linkonce_kind = "p.";
11109 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
11110 linkonce_kind = "prop.";
11111 else
11112 abort ();
11113
11114 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
11115 + strlen (linkonce_kind) + 1);
11116 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
11117 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
11118
11119 suffix = sec->name + linkonce_len;
11120 /* For backward compatibility, replace "t." instead of inserting
11121 the new linkonce_kind (but not for "prop" sections). */
11122 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
11123 suffix += 2;
11124 strcat (prop_sec_name + linkonce_len, suffix);
11125 }
11126 else
11127 {
11128 prop_sec_name = xtensa_add_names (base_name,
11129 separate_sections ? sec->name : NULL);
11130 }
11131
11132 return prop_sec_name;
11133 }
11134
11135
11136 static asection *
11137 xtensa_get_separate_property_section (asection *sec, const char *base_name,
11138 bfd_boolean separate_section)
11139 {
11140 char *prop_sec_name;
11141 asection *prop_sec;
11142
11143 prop_sec_name = xtensa_property_section_name (sec, base_name,
11144 separate_section);
11145 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
11146 match_section_group,
11147 (void *) elf_group_name (sec));
11148 free (prop_sec_name);
11149 return prop_sec;
11150 }
11151
11152 static asection *
11153 xtensa_get_property_section (asection *sec, const char *base_name)
11154 {
11155 asection *prop_sec;
11156
11157 /* Try individual property section first. */
11158 prop_sec = xtensa_get_separate_property_section (sec, base_name, TRUE);
11159
11160 /* Refer to a common property section if individual is not present. */
11161 if (!prop_sec)
11162 prop_sec = xtensa_get_separate_property_section (sec, base_name, FALSE);
11163
11164 return prop_sec;
11165 }
11166
11167
11168 asection *
11169 xtensa_make_property_section (asection *sec, const char *base_name)
11170 {
11171 char *prop_sec_name;
11172 asection *prop_sec;
11173
11174 /* Check if the section already exists. */
11175 prop_sec_name = xtensa_property_section_name (sec, base_name,
11176 elf32xtensa_separate_props);
11177 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
11178 match_section_group,
11179 (void *) elf_group_name (sec));
11180 /* If not, create it. */
11181 if (! prop_sec)
11182 {
11183 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
11184 flags |= (bfd_get_section_flags (sec->owner, sec)
11185 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
11186
11187 prop_sec = bfd_make_section_anyway_with_flags
11188 (sec->owner, strdup (prop_sec_name), flags);
11189 if (! prop_sec)
11190 return 0;
11191
11192 elf_group_name (prop_sec) = elf_group_name (sec);
11193 }
11194
11195 free (prop_sec_name);
11196 return prop_sec;
11197 }
11198
11199
11200 flagword
11201 xtensa_get_property_predef_flags (asection *sec)
11202 {
11203 if (xtensa_is_insntable_section (sec))
11204 return (XTENSA_PROP_INSN
11205 | XTENSA_PROP_NO_TRANSFORM
11206 | XTENSA_PROP_INSN_NO_REORDER);
11207
11208 if (xtensa_is_littable_section (sec))
11209 return (XTENSA_PROP_LITERAL
11210 | XTENSA_PROP_NO_TRANSFORM
11211 | XTENSA_PROP_INSN_NO_REORDER);
11212
11213 return 0;
11214 }
11215
11216 \f
11217 /* Other functions called directly by the linker. */
11218
11219 bfd_boolean
11220 xtensa_callback_required_dependence (bfd *abfd,
11221 asection *sec,
11222 struct bfd_link_info *link_info,
11223 deps_callback_t callback,
11224 void *closure)
11225 {
11226 Elf_Internal_Rela *internal_relocs;
11227 bfd_byte *contents;
11228 unsigned i;
11229 bfd_boolean ok = TRUE;
11230 bfd_size_type sec_size;
11231
11232 sec_size = bfd_get_section_limit (abfd, sec);
11233
11234 /* ".plt*" sections have no explicit relocations but they contain L32R
11235 instructions that reference the corresponding ".got.plt*" sections. */
11236 if ((sec->flags & SEC_LINKER_CREATED) != 0
11237 && CONST_STRNEQ (sec->name, ".plt"))
11238 {
11239 asection *sgotplt;
11240
11241 /* Find the corresponding ".got.plt*" section. */
11242 if (sec->name[4] == '\0')
11243 sgotplt = elf_hash_table (link_info)->sgotplt;
11244 else
11245 {
11246 char got_name[14];
11247 int chunk = 0;
11248
11249 BFD_ASSERT (sec->name[4] == '.');
11250 chunk = strtol (&sec->name[5], NULL, 10);
11251
11252 sprintf (got_name, ".got.plt.%u", chunk);
11253 sgotplt = bfd_get_linker_section (sec->owner, got_name);
11254 }
11255 BFD_ASSERT (sgotplt);
11256
11257 /* Assume worst-case offsets: L32R at the very end of the ".plt"
11258 section referencing a literal at the very beginning of
11259 ".got.plt". This is very close to the real dependence, anyway. */
11260 (*callback) (sec, sec_size, sgotplt, 0, closure);
11261 }
11262
11263 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
11264 when building uclibc, which runs "ld -b binary /dev/null". */
11265 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
11266 return ok;
11267
11268 internal_relocs = retrieve_internal_relocs (abfd, sec,
11269 link_info->keep_memory);
11270 if (internal_relocs == NULL
11271 || sec->reloc_count == 0)
11272 return ok;
11273
11274 /* Cache the contents for the duration of this scan. */
11275 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
11276 if (contents == NULL && sec_size != 0)
11277 {
11278 ok = FALSE;
11279 goto error_return;
11280 }
11281
11282 if (!xtensa_default_isa)
11283 xtensa_default_isa = xtensa_isa_init (0, 0);
11284
11285 for (i = 0; i < sec->reloc_count; i++)
11286 {
11287 Elf_Internal_Rela *irel = &internal_relocs[i];
11288 if (is_l32r_relocation (abfd, sec, contents, irel))
11289 {
11290 r_reloc l32r_rel;
11291 asection *target_sec;
11292 bfd_vma target_offset;
11293
11294 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
11295 target_sec = NULL;
11296 target_offset = 0;
11297 /* L32Rs must be local to the input file. */
11298 if (r_reloc_is_defined (&l32r_rel))
11299 {
11300 target_sec = r_reloc_get_section (&l32r_rel);
11301 target_offset = l32r_rel.target_offset;
11302 }
11303 (*callback) (sec, irel->r_offset, target_sec, target_offset,
11304 closure);
11305 }
11306 }
11307
11308 error_return:
11309 release_internal_relocs (sec, internal_relocs);
11310 release_contents (sec, contents);
11311 return ok;
11312 }
11313
11314 /* The default literal sections should always be marked as "code" (i.e.,
11315 SHF_EXECINSTR). This is particularly important for the Linux kernel
11316 module loader so that the literals are not placed after the text. */
11317 static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
11318 {
11319 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11320 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11321 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11322 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
11323 { NULL, 0, 0, 0, 0 }
11324 };
11325 \f
11326 #define ELF_TARGET_ID XTENSA_ELF_DATA
11327 #ifndef ELF_ARCH
11328 #define TARGET_LITTLE_SYM xtensa_elf32_le_vec
11329 #define TARGET_LITTLE_NAME "elf32-xtensa-le"
11330 #define TARGET_BIG_SYM xtensa_elf32_be_vec
11331 #define TARGET_BIG_NAME "elf32-xtensa-be"
11332 #define ELF_ARCH bfd_arch_xtensa
11333
11334 #define ELF_MACHINE_CODE EM_XTENSA
11335 #define ELF_MACHINE_ALT1 EM_XTENSA_OLD
11336
11337 #define ELF_MAXPAGESIZE 0x1000
11338 #endif /* ELF_ARCH */
11339
11340 #define elf_backend_can_gc_sections 1
11341 #define elf_backend_can_refcount 1
11342 #define elf_backend_plt_readonly 1
11343 #define elf_backend_got_header_size 4
11344 #define elf_backend_want_dynbss 0
11345 #define elf_backend_want_got_plt 1
11346 #define elf_backend_dtrel_excludes_plt 1
11347
11348 #define elf_info_to_howto elf_xtensa_info_to_howto_rela
11349
11350 #define bfd_elf32_mkobject elf_xtensa_mkobject
11351
11352 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
11353 #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
11354 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
11355 #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
11356 #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
11357 #define bfd_elf32_bfd_reloc_name_lookup \
11358 elf_xtensa_reloc_name_lookup
11359 #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
11360 #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
11361
11362 #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
11363 #define elf_backend_check_relocs elf_xtensa_check_relocs
11364 #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
11365 #define elf_backend_discard_info elf_xtensa_discard_info
11366 #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
11367 #define elf_backend_final_write_processing elf_xtensa_final_write_processing
11368 #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
11369 #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
11370 #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
11371 #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
11372 #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
11373 #define elf_backend_hide_symbol elf_xtensa_hide_symbol
11374 #define elf_backend_object_p elf_xtensa_object_p
11375 #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
11376 #define elf_backend_relocate_section elf_xtensa_relocate_section
11377 #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
11378 #define elf_backend_always_size_sections elf_xtensa_always_size_sections
11379 #define elf_backend_omit_section_dynsym _bfd_elf_omit_section_dynsym_all
11380 #define elf_backend_special_sections elf_xtensa_special_sections
11381 #define elf_backend_action_discarded elf_xtensa_action_discarded
11382 #define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol
11383
11384 #include "elf32-target.h"
This page took 0.344993 seconds and 5 git commands to generate.