* elf-bfd.h (enum elf_reloc_type_class): Add reloc_class_ifunc.
[deliverable/binutils-gdb.git] / bfd / elf32-xtensa.c
1 /* Xtensa-specific support for 32-bit ELF.
2 Copyright 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public License as
9 published by the Free Software Foundation; either version 3 of the
10 License, or (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful, but
13 WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24
25 #include <stdarg.h>
26 #include <strings.h>
27
28 #include "bfdlink.h"
29 #include "libbfd.h"
30 #include "elf-bfd.h"
31 #include "elf/xtensa.h"
32 #include "xtensa-isa.h"
33 #include "xtensa-config.h"
34
35 #define XTENSA_NO_NOP_REMOVAL 0
36
37 /* Local helper functions. */
38
39 static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
40 static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
41 static bfd_reloc_status_type bfd_elf_xtensa_reloc
42 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43 static bfd_boolean do_fix_for_relocatable_link
44 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
45 static void do_fix_for_final_link
46 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
47
48 /* Local functions to handle Xtensa configurability. */
49
50 static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
51 static bfd_boolean is_direct_call_opcode (xtensa_opcode);
52 static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
53 static xtensa_opcode get_const16_opcode (void);
54 static xtensa_opcode get_l32r_opcode (void);
55 static bfd_vma l32r_offset (bfd_vma, bfd_vma);
56 static int get_relocation_opnd (xtensa_opcode, int);
57 static int get_relocation_slot (int);
58 static xtensa_opcode get_relocation_opcode
59 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
60 static bfd_boolean is_l32r_relocation
61 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
62 static bfd_boolean is_alt_relocation (int);
63 static bfd_boolean is_operand_relocation (int);
64 static bfd_size_type insn_decode_len
65 (bfd_byte *, bfd_size_type, bfd_size_type);
66 static xtensa_opcode insn_decode_opcode
67 (bfd_byte *, bfd_size_type, bfd_size_type, int);
68 static bfd_boolean check_branch_target_aligned
69 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
70 static bfd_boolean check_loop_aligned
71 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
72 static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
73 static bfd_size_type get_asm_simplify_size
74 (bfd_byte *, bfd_size_type, bfd_size_type);
75
76 /* Functions for link-time code simplifications. */
77
78 static bfd_reloc_status_type elf_xtensa_do_asm_simplify
79 (bfd_byte *, bfd_vma, bfd_vma, char **);
80 static bfd_reloc_status_type contract_asm_expansion
81 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
82 static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
83 static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
84
85 /* Access to internal relocations, section contents and symbols. */
86
87 static Elf_Internal_Rela *retrieve_internal_relocs
88 (bfd *, asection *, bfd_boolean);
89 static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
90 static void release_internal_relocs (asection *, Elf_Internal_Rela *);
91 static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
92 static void pin_contents (asection *, bfd_byte *);
93 static void release_contents (asection *, bfd_byte *);
94 static Elf_Internal_Sym *retrieve_local_syms (bfd *);
95
96 /* Miscellaneous utility functions. */
97
98 static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
99 static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
100 static asection *get_elf_r_symndx_section (bfd *, unsigned long);
101 static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
102 (bfd *, unsigned long);
103 static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
104 static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
105 static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
106 static bfd_boolean xtensa_is_property_section (asection *);
107 static bfd_boolean xtensa_is_insntable_section (asection *);
108 static bfd_boolean xtensa_is_littable_section (asection *);
109 static bfd_boolean xtensa_is_proptable_section (asection *);
110 static int internal_reloc_compare (const void *, const void *);
111 static int internal_reloc_matches (const void *, const void *);
112 static asection *xtensa_get_property_section (asection *, const char *);
113 extern asection *xtensa_make_property_section (asection *, const char *);
114 static flagword xtensa_get_property_predef_flags (asection *);
115
116 /* Other functions called directly by the linker. */
117
118 typedef void (*deps_callback_t)
119 (asection *, bfd_vma, asection *, bfd_vma, void *);
120 extern bfd_boolean xtensa_callback_required_dependence
121 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
122
123
124 /* Globally visible flag for choosing size optimization of NOP removal
125 instead of branch-target-aware minimization for NOP removal.
126 When nonzero, narrow all instructions and remove all NOPs possible
127 around longcall expansions. */
128
129 int elf32xtensa_size_opt;
130
131
132 /* The "new_section_hook" is used to set up a per-section
133 "xtensa_relax_info" data structure with additional information used
134 during relaxation. */
135
136 typedef struct xtensa_relax_info_struct xtensa_relax_info;
137
138
139 /* The GNU tools do not easily allow extending interfaces to pass around
140 the pointer to the Xtensa ISA information, so instead we add a global
141 variable here (in BFD) that can be used by any of the tools that need
142 this information. */
143
144 xtensa_isa xtensa_default_isa;
145
146
147 /* When this is true, relocations may have been modified to refer to
148 symbols from other input files. The per-section list of "fix"
149 records needs to be checked when resolving relocations. */
150
151 static bfd_boolean relaxing_section = FALSE;
152
153 /* When this is true, during final links, literals that cannot be
154 coalesced and their relocations may be moved to other sections. */
155
156 int elf32xtensa_no_literal_movement = 1;
157
158 /* Rename one of the generic section flags to better document how it
159 is used here. */
160 /* Whether relocations have been processed. */
161 #define reloc_done sec_flg0
162 \f
163 static reloc_howto_type elf_howto_table[] =
164 {
165 HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
166 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
167 FALSE, 0, 0, FALSE),
168 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
169 bfd_elf_xtensa_reloc, "R_XTENSA_32",
170 TRUE, 0xffffffff, 0xffffffff, FALSE),
171
172 /* Replace a 32-bit value with a value from the runtime linker (only
173 used by linker-generated stub functions). The r_addend value is
174 special: 1 means to substitute a pointer to the runtime linker's
175 dynamic resolver function; 2 means to substitute the link map for
176 the shared object. */
177 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
178 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
179
180 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
181 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
182 FALSE, 0, 0xffffffff, FALSE),
183 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
184 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
185 FALSE, 0, 0xffffffff, FALSE),
186 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
187 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
188 FALSE, 0, 0xffffffff, FALSE),
189 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
190 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
191 FALSE, 0, 0xffffffff, FALSE),
192
193 EMPTY_HOWTO (7),
194
195 /* Old relocations for backward compatibility. */
196 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
197 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
198 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
199 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
200 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
201 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
202
203 /* Assembly auto-expansion. */
204 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
205 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
206 /* Relax assembly auto-expansion. */
207 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
208 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
209
210 EMPTY_HOWTO (13),
211
212 HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
213 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
214 FALSE, 0, 0xffffffff, TRUE),
215
216 /* GNU extension to record C++ vtable hierarchy. */
217 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
218 NULL, "R_XTENSA_GNU_VTINHERIT",
219 FALSE, 0, 0, FALSE),
220 /* GNU extension to record C++ vtable member usage. */
221 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
222 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
223 FALSE, 0, 0, FALSE),
224
225 /* Relocations for supporting difference of symbols. */
226 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
227 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
228 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
229 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
230 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
231 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
232
233 /* General immediate operand relocations. */
234 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
235 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
236 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
237 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
238 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
239 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
240 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
241 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
242 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
243 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
244 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
245 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
246 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
247 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
248 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
249 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
250 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
251 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
252 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
253 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
254 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
255 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
256 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
257 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
258 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
259 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
260 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
261 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
262 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
263 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
264
265 /* "Alternate" relocations. The meaning of these is opcode-specific. */
266 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
267 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
268 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
269 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
270 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
271 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
272 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
273 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
274 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
275 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
276 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
277 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
278 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
279 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
280 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
281 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
282 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
283 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
284 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
285 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
286 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
287 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
288 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
289 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
290 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
291 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
292 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
293 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
294 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
295 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
296
297 /* TLS relocations. */
298 HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont,
299 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN",
300 FALSE, 0, 0xffffffff, FALSE),
301 HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont,
302 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG",
303 FALSE, 0, 0xffffffff, FALSE),
304 HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
305 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF",
306 FALSE, 0, 0xffffffff, FALSE),
307 HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
308 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF",
309 FALSE, 0, 0xffffffff, FALSE),
310 HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont,
311 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC",
312 FALSE, 0, 0, FALSE),
313 HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont,
314 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG",
315 FALSE, 0, 0, FALSE),
316 HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont,
317 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL",
318 FALSE, 0, 0, FALSE),
319 };
320
321 #if DEBUG_GEN_RELOC
322 #define TRACE(str) \
323 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
324 #else
325 #define TRACE(str)
326 #endif
327
328 static reloc_howto_type *
329 elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
330 bfd_reloc_code_real_type code)
331 {
332 switch (code)
333 {
334 case BFD_RELOC_NONE:
335 TRACE ("BFD_RELOC_NONE");
336 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
337
338 case BFD_RELOC_32:
339 TRACE ("BFD_RELOC_32");
340 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
341
342 case BFD_RELOC_32_PCREL:
343 TRACE ("BFD_RELOC_32_PCREL");
344 return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
345
346 case BFD_RELOC_XTENSA_DIFF8:
347 TRACE ("BFD_RELOC_XTENSA_DIFF8");
348 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
349
350 case BFD_RELOC_XTENSA_DIFF16:
351 TRACE ("BFD_RELOC_XTENSA_DIFF16");
352 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
353
354 case BFD_RELOC_XTENSA_DIFF32:
355 TRACE ("BFD_RELOC_XTENSA_DIFF32");
356 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
357
358 case BFD_RELOC_XTENSA_RTLD:
359 TRACE ("BFD_RELOC_XTENSA_RTLD");
360 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
361
362 case BFD_RELOC_XTENSA_GLOB_DAT:
363 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
364 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
365
366 case BFD_RELOC_XTENSA_JMP_SLOT:
367 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
368 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
369
370 case BFD_RELOC_XTENSA_RELATIVE:
371 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
372 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
373
374 case BFD_RELOC_XTENSA_PLT:
375 TRACE ("BFD_RELOC_XTENSA_PLT");
376 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
377
378 case BFD_RELOC_XTENSA_OP0:
379 TRACE ("BFD_RELOC_XTENSA_OP0");
380 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
381
382 case BFD_RELOC_XTENSA_OP1:
383 TRACE ("BFD_RELOC_XTENSA_OP1");
384 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
385
386 case BFD_RELOC_XTENSA_OP2:
387 TRACE ("BFD_RELOC_XTENSA_OP2");
388 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
389
390 case BFD_RELOC_XTENSA_ASM_EXPAND:
391 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
392 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
393
394 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
395 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
396 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
397
398 case BFD_RELOC_VTABLE_INHERIT:
399 TRACE ("BFD_RELOC_VTABLE_INHERIT");
400 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
401
402 case BFD_RELOC_VTABLE_ENTRY:
403 TRACE ("BFD_RELOC_VTABLE_ENTRY");
404 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
405
406 case BFD_RELOC_XTENSA_TLSDESC_FN:
407 TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN");
408 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ];
409
410 case BFD_RELOC_XTENSA_TLSDESC_ARG:
411 TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG");
412 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ];
413
414 case BFD_RELOC_XTENSA_TLS_DTPOFF:
415 TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF");
416 return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ];
417
418 case BFD_RELOC_XTENSA_TLS_TPOFF:
419 TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF");
420 return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ];
421
422 case BFD_RELOC_XTENSA_TLS_FUNC:
423 TRACE ("BFD_RELOC_XTENSA_TLS_FUNC");
424 return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ];
425
426 case BFD_RELOC_XTENSA_TLS_ARG:
427 TRACE ("BFD_RELOC_XTENSA_TLS_ARG");
428 return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ];
429
430 case BFD_RELOC_XTENSA_TLS_CALL:
431 TRACE ("BFD_RELOC_XTENSA_TLS_CALL");
432 return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ];
433
434 default:
435 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
436 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
437 {
438 unsigned n = (R_XTENSA_SLOT0_OP +
439 (code - BFD_RELOC_XTENSA_SLOT0_OP));
440 return &elf_howto_table[n];
441 }
442
443 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
444 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
445 {
446 unsigned n = (R_XTENSA_SLOT0_ALT +
447 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
448 return &elf_howto_table[n];
449 }
450
451 break;
452 }
453
454 TRACE ("Unknown");
455 return NULL;
456 }
457
458 static reloc_howto_type *
459 elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
460 const char *r_name)
461 {
462 unsigned int i;
463
464 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
465 if (elf_howto_table[i].name != NULL
466 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
467 return &elf_howto_table[i];
468
469 return NULL;
470 }
471
472
473 /* Given an ELF "rela" relocation, find the corresponding howto and record
474 it in the BFD internal arelent representation of the relocation. */
475
476 static void
477 elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
478 arelent *cache_ptr,
479 Elf_Internal_Rela *dst)
480 {
481 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
482
483 BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max);
484 cache_ptr->howto = &elf_howto_table[r_type];
485 }
486
487 \f
488 /* Functions for the Xtensa ELF linker. */
489
490 /* The name of the dynamic interpreter. This is put in the .interp
491 section. */
492
493 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
494
495 /* The size in bytes of an entry in the procedure linkage table.
496 (This does _not_ include the space for the literals associated with
497 the PLT entry.) */
498
499 #define PLT_ENTRY_SIZE 16
500
501 /* For _really_ large PLTs, we may need to alternate between literals
502 and code to keep the literals within the 256K range of the L32R
503 instructions in the code. It's unlikely that anyone would ever need
504 such a big PLT, but an arbitrary limit on the PLT size would be bad.
505 Thus, we split the PLT into chunks. Since there's very little
506 overhead (2 extra literals) for each chunk, the chunk size is kept
507 small so that the code for handling multiple chunks get used and
508 tested regularly. With 254 entries, there are 1K of literals for
509 each chunk, and that seems like a nice round number. */
510
511 #define PLT_ENTRIES_PER_CHUNK 254
512
513 /* PLT entries are actually used as stub functions for lazy symbol
514 resolution. Once the symbol is resolved, the stub function is never
515 invoked. Note: the 32-byte frame size used here cannot be changed
516 without a corresponding change in the runtime linker. */
517
518 static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
519 {
520 0x6c, 0x10, 0x04, /* entry sp, 32 */
521 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
522 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
523 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
524 0x0a, 0x80, 0x00, /* jx a8 */
525 0 /* unused */
526 };
527
528 static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
529 {
530 0x36, 0x41, 0x00, /* entry sp, 32 */
531 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
532 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
533 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
534 0xa0, 0x08, 0x00, /* jx a8 */
535 0 /* unused */
536 };
537
538 /* The size of the thread control block. */
539 #define TCB_SIZE 8
540
541 struct elf_xtensa_link_hash_entry
542 {
543 struct elf_link_hash_entry elf;
544
545 bfd_signed_vma tlsfunc_refcount;
546
547 #define GOT_UNKNOWN 0
548 #define GOT_NORMAL 1
549 #define GOT_TLS_GD 2 /* global or local dynamic */
550 #define GOT_TLS_IE 4 /* initial or local exec */
551 #define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE)
552 unsigned char tls_type;
553 };
554
555 #define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent))
556
557 struct elf_xtensa_obj_tdata
558 {
559 struct elf_obj_tdata root;
560
561 /* tls_type for each local got entry. */
562 char *local_got_tls_type;
563
564 bfd_signed_vma *local_tlsfunc_refcounts;
565 };
566
567 #define elf_xtensa_tdata(abfd) \
568 ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any)
569
570 #define elf_xtensa_local_got_tls_type(abfd) \
571 (elf_xtensa_tdata (abfd)->local_got_tls_type)
572
573 #define elf_xtensa_local_tlsfunc_refcounts(abfd) \
574 (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts)
575
576 #define is_xtensa_elf(bfd) \
577 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
578 && elf_tdata (bfd) != NULL \
579 && elf_object_id (bfd) == XTENSA_ELF_DATA)
580
581 static bfd_boolean
582 elf_xtensa_mkobject (bfd *abfd)
583 {
584 return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata),
585 XTENSA_ELF_DATA);
586 }
587
588 /* Xtensa ELF linker hash table. */
589
590 struct elf_xtensa_link_hash_table
591 {
592 struct elf_link_hash_table elf;
593
594 /* Short-cuts to get to dynamic linker sections. */
595 asection *sgot;
596 asection *sgotplt;
597 asection *srelgot;
598 asection *splt;
599 asection *srelplt;
600 asection *sgotloc;
601 asection *spltlittbl;
602
603 /* Total count of PLT relocations seen during check_relocs.
604 The actual PLT code must be split into multiple sections and all
605 the sections have to be created before size_dynamic_sections,
606 where we figure out the exact number of PLT entries that will be
607 needed. It is OK if this count is an overestimate, e.g., some
608 relocations may be removed by GC. */
609 int plt_reloc_count;
610
611 struct elf_xtensa_link_hash_entry *tlsbase;
612 };
613
614 /* Get the Xtensa ELF linker hash table from a link_info structure. */
615
616 #define elf_xtensa_hash_table(p) \
617 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
618 == XTENSA_ELF_DATA ? ((struct elf_xtensa_link_hash_table *) ((p)->hash)) : NULL)
619
620 /* Create an entry in an Xtensa ELF linker hash table. */
621
622 static struct bfd_hash_entry *
623 elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry,
624 struct bfd_hash_table *table,
625 const char *string)
626 {
627 /* Allocate the structure if it has not already been allocated by a
628 subclass. */
629 if (entry == NULL)
630 {
631 entry = bfd_hash_allocate (table,
632 sizeof (struct elf_xtensa_link_hash_entry));
633 if (entry == NULL)
634 return entry;
635 }
636
637 /* Call the allocation method of the superclass. */
638 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
639 if (entry != NULL)
640 {
641 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry);
642 eh->tlsfunc_refcount = 0;
643 eh->tls_type = GOT_UNKNOWN;
644 }
645
646 return entry;
647 }
648
649 /* Create an Xtensa ELF linker hash table. */
650
651 static struct bfd_link_hash_table *
652 elf_xtensa_link_hash_table_create (bfd *abfd)
653 {
654 struct elf_link_hash_entry *tlsbase;
655 struct elf_xtensa_link_hash_table *ret;
656 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
657
658 ret = bfd_zmalloc (amt);
659 if (ret == NULL)
660 return NULL;
661
662 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
663 elf_xtensa_link_hash_newfunc,
664 sizeof (struct elf_xtensa_link_hash_entry),
665 XTENSA_ELF_DATA))
666 {
667 free (ret);
668 return NULL;
669 }
670
671 /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking
672 for it later. */
673 tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_",
674 TRUE, FALSE, FALSE);
675 tlsbase->root.type = bfd_link_hash_new;
676 tlsbase->root.u.undef.abfd = NULL;
677 tlsbase->non_elf = 0;
678 ret->tlsbase = elf_xtensa_hash_entry (tlsbase);
679 ret->tlsbase->tls_type = GOT_UNKNOWN;
680
681 return &ret->elf.root;
682 }
683
684 /* Copy the extra info we tack onto an elf_link_hash_entry. */
685
686 static void
687 elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info,
688 struct elf_link_hash_entry *dir,
689 struct elf_link_hash_entry *ind)
690 {
691 struct elf_xtensa_link_hash_entry *edir, *eind;
692
693 edir = elf_xtensa_hash_entry (dir);
694 eind = elf_xtensa_hash_entry (ind);
695
696 if (ind->root.type == bfd_link_hash_indirect)
697 {
698 edir->tlsfunc_refcount += eind->tlsfunc_refcount;
699 eind->tlsfunc_refcount = 0;
700
701 if (dir->got.refcount <= 0)
702 {
703 edir->tls_type = eind->tls_type;
704 eind->tls_type = GOT_UNKNOWN;
705 }
706 }
707
708 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
709 }
710
711 static inline bfd_boolean
712 elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
713 struct bfd_link_info *info)
714 {
715 /* Check if we should do dynamic things to this symbol. The
716 "ignore_protected" argument need not be set, because Xtensa code
717 does not require special handling of STV_PROTECTED to make function
718 pointer comparisons work properly. The PLT addresses are never
719 used for function pointers. */
720
721 return _bfd_elf_dynamic_symbol_p (h, info, 0);
722 }
723
724 \f
725 static int
726 property_table_compare (const void *ap, const void *bp)
727 {
728 const property_table_entry *a = (const property_table_entry *) ap;
729 const property_table_entry *b = (const property_table_entry *) bp;
730
731 if (a->address == b->address)
732 {
733 if (a->size != b->size)
734 return (a->size - b->size);
735
736 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
737 return ((b->flags & XTENSA_PROP_ALIGN)
738 - (a->flags & XTENSA_PROP_ALIGN));
739
740 if ((a->flags & XTENSA_PROP_ALIGN)
741 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
742 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
743 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
744 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
745
746 if ((a->flags & XTENSA_PROP_UNREACHABLE)
747 != (b->flags & XTENSA_PROP_UNREACHABLE))
748 return ((b->flags & XTENSA_PROP_UNREACHABLE)
749 - (a->flags & XTENSA_PROP_UNREACHABLE));
750
751 return (a->flags - b->flags);
752 }
753
754 return (a->address - b->address);
755 }
756
757
758 static int
759 property_table_matches (const void *ap, const void *bp)
760 {
761 const property_table_entry *a = (const property_table_entry *) ap;
762 const property_table_entry *b = (const property_table_entry *) bp;
763
764 /* Check if one entry overlaps with the other. */
765 if ((b->address >= a->address && b->address < (a->address + a->size))
766 || (a->address >= b->address && a->address < (b->address + b->size)))
767 return 0;
768
769 return (a->address - b->address);
770 }
771
772
773 /* Get the literal table or property table entries for the given
774 section. Sets TABLE_P and returns the number of entries. On
775 error, returns a negative value. */
776
777 static int
778 xtensa_read_table_entries (bfd *abfd,
779 asection *section,
780 property_table_entry **table_p,
781 const char *sec_name,
782 bfd_boolean output_addr)
783 {
784 asection *table_section;
785 bfd_size_type table_size = 0;
786 bfd_byte *table_data;
787 property_table_entry *blocks;
788 int blk, block_count;
789 bfd_size_type num_records;
790 Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
791 bfd_vma section_addr, off;
792 flagword predef_flags;
793 bfd_size_type table_entry_size, section_limit;
794
795 if (!section
796 || !(section->flags & SEC_ALLOC)
797 || (section->flags & SEC_DEBUGGING))
798 {
799 *table_p = NULL;
800 return 0;
801 }
802
803 table_section = xtensa_get_property_section (section, sec_name);
804 if (table_section)
805 table_size = table_section->size;
806
807 if (table_size == 0)
808 {
809 *table_p = NULL;
810 return 0;
811 }
812
813 predef_flags = xtensa_get_property_predef_flags (table_section);
814 table_entry_size = 12;
815 if (predef_flags)
816 table_entry_size -= 4;
817
818 num_records = table_size / table_entry_size;
819 table_data = retrieve_contents (abfd, table_section, TRUE);
820 blocks = (property_table_entry *)
821 bfd_malloc (num_records * sizeof (property_table_entry));
822 block_count = 0;
823
824 if (output_addr)
825 section_addr = section->output_section->vma + section->output_offset;
826 else
827 section_addr = section->vma;
828
829 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
830 if (internal_relocs && !table_section->reloc_done)
831 {
832 qsort (internal_relocs, table_section->reloc_count,
833 sizeof (Elf_Internal_Rela), internal_reloc_compare);
834 irel = internal_relocs;
835 }
836 else
837 irel = NULL;
838
839 section_limit = bfd_get_section_limit (abfd, section);
840 rel_end = internal_relocs + table_section->reloc_count;
841
842 for (off = 0; off < table_size; off += table_entry_size)
843 {
844 bfd_vma address = bfd_get_32 (abfd, table_data + off);
845
846 /* Skip any relocations before the current offset. This should help
847 avoid confusion caused by unexpected relocations for the preceding
848 table entry. */
849 while (irel &&
850 (irel->r_offset < off
851 || (irel->r_offset == off
852 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
853 {
854 irel += 1;
855 if (irel >= rel_end)
856 irel = 0;
857 }
858
859 if (irel && irel->r_offset == off)
860 {
861 bfd_vma sym_off;
862 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
863 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
864
865 if (get_elf_r_symndx_section (abfd, r_symndx) != section)
866 continue;
867
868 sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
869 BFD_ASSERT (sym_off == 0);
870 address += (section_addr + sym_off + irel->r_addend);
871 }
872 else
873 {
874 if (address < section_addr
875 || address >= section_addr + section_limit)
876 continue;
877 }
878
879 blocks[block_count].address = address;
880 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
881 if (predef_flags)
882 blocks[block_count].flags = predef_flags;
883 else
884 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
885 block_count++;
886 }
887
888 release_contents (table_section, table_data);
889 release_internal_relocs (table_section, internal_relocs);
890
891 if (block_count > 0)
892 {
893 /* Now sort them into address order for easy reference. */
894 qsort (blocks, block_count, sizeof (property_table_entry),
895 property_table_compare);
896
897 /* Check that the table contents are valid. Problems may occur,
898 for example, if an unrelocated object file is stripped. */
899 for (blk = 1; blk < block_count; blk++)
900 {
901 /* The only circumstance where two entries may legitimately
902 have the same address is when one of them is a zero-size
903 placeholder to mark a place where fill can be inserted.
904 The zero-size entry should come first. */
905 if (blocks[blk - 1].address == blocks[blk].address &&
906 blocks[blk - 1].size != 0)
907 {
908 (*_bfd_error_handler) (_("%B(%A): invalid property table"),
909 abfd, section);
910 bfd_set_error (bfd_error_bad_value);
911 free (blocks);
912 return -1;
913 }
914 }
915 }
916
917 *table_p = blocks;
918 return block_count;
919 }
920
921
922 static property_table_entry *
923 elf_xtensa_find_property_entry (property_table_entry *property_table,
924 int property_table_size,
925 bfd_vma addr)
926 {
927 property_table_entry entry;
928 property_table_entry *rv;
929
930 if (property_table_size == 0)
931 return NULL;
932
933 entry.address = addr;
934 entry.size = 1;
935 entry.flags = 0;
936
937 rv = bsearch (&entry, property_table, property_table_size,
938 sizeof (property_table_entry), property_table_matches);
939 return rv;
940 }
941
942
943 static bfd_boolean
944 elf_xtensa_in_literal_pool (property_table_entry *lit_table,
945 int lit_table_size,
946 bfd_vma addr)
947 {
948 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
949 return TRUE;
950
951 return FALSE;
952 }
953
954 \f
955 /* Look through the relocs for a section during the first phase, and
956 calculate needed space in the dynamic reloc sections. */
957
958 static bfd_boolean
959 elf_xtensa_check_relocs (bfd *abfd,
960 struct bfd_link_info *info,
961 asection *sec,
962 const Elf_Internal_Rela *relocs)
963 {
964 struct elf_xtensa_link_hash_table *htab;
965 Elf_Internal_Shdr *symtab_hdr;
966 struct elf_link_hash_entry **sym_hashes;
967 const Elf_Internal_Rela *rel;
968 const Elf_Internal_Rela *rel_end;
969
970 if (info->relocatable || (sec->flags & SEC_ALLOC) == 0)
971 return TRUE;
972
973 BFD_ASSERT (is_xtensa_elf (abfd));
974
975 htab = elf_xtensa_hash_table (info);
976 if (htab == NULL)
977 return FALSE;
978
979 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
980 sym_hashes = elf_sym_hashes (abfd);
981
982 rel_end = relocs + sec->reloc_count;
983 for (rel = relocs; rel < rel_end; rel++)
984 {
985 unsigned int r_type;
986 unsigned long r_symndx;
987 struct elf_link_hash_entry *h = NULL;
988 struct elf_xtensa_link_hash_entry *eh;
989 int tls_type, old_tls_type;
990 bfd_boolean is_got = FALSE;
991 bfd_boolean is_plt = FALSE;
992 bfd_boolean is_tlsfunc = FALSE;
993
994 r_symndx = ELF32_R_SYM (rel->r_info);
995 r_type = ELF32_R_TYPE (rel->r_info);
996
997 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
998 {
999 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1000 abfd, r_symndx);
1001 return FALSE;
1002 }
1003
1004 if (r_symndx >= symtab_hdr->sh_info)
1005 {
1006 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1007 while (h->root.type == bfd_link_hash_indirect
1008 || h->root.type == bfd_link_hash_warning)
1009 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1010 }
1011 eh = elf_xtensa_hash_entry (h);
1012
1013 switch (r_type)
1014 {
1015 case R_XTENSA_TLSDESC_FN:
1016 if (info->shared)
1017 {
1018 tls_type = GOT_TLS_GD;
1019 is_got = TRUE;
1020 is_tlsfunc = TRUE;
1021 }
1022 else
1023 tls_type = GOT_TLS_IE;
1024 break;
1025
1026 case R_XTENSA_TLSDESC_ARG:
1027 if (info->shared)
1028 {
1029 tls_type = GOT_TLS_GD;
1030 is_got = TRUE;
1031 }
1032 else
1033 {
1034 tls_type = GOT_TLS_IE;
1035 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1036 is_got = TRUE;
1037 }
1038 break;
1039
1040 case R_XTENSA_TLS_DTPOFF:
1041 if (info->shared)
1042 tls_type = GOT_TLS_GD;
1043 else
1044 tls_type = GOT_TLS_IE;
1045 break;
1046
1047 case R_XTENSA_TLS_TPOFF:
1048 tls_type = GOT_TLS_IE;
1049 if (info->shared)
1050 info->flags |= DF_STATIC_TLS;
1051 if (info->shared || h)
1052 is_got = TRUE;
1053 break;
1054
1055 case R_XTENSA_32:
1056 tls_type = GOT_NORMAL;
1057 is_got = TRUE;
1058 break;
1059
1060 case R_XTENSA_PLT:
1061 tls_type = GOT_NORMAL;
1062 is_plt = TRUE;
1063 break;
1064
1065 case R_XTENSA_GNU_VTINHERIT:
1066 /* This relocation describes the C++ object vtable hierarchy.
1067 Reconstruct it for later use during GC. */
1068 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1069 return FALSE;
1070 continue;
1071
1072 case R_XTENSA_GNU_VTENTRY:
1073 /* This relocation describes which C++ vtable entries are actually
1074 used. Record for later use during GC. */
1075 BFD_ASSERT (h != NULL);
1076 if (h != NULL
1077 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1078 return FALSE;
1079 continue;
1080
1081 default:
1082 /* Nothing to do for any other relocations. */
1083 continue;
1084 }
1085
1086 if (h)
1087 {
1088 if (is_plt)
1089 {
1090 if (h->plt.refcount <= 0)
1091 {
1092 h->needs_plt = 1;
1093 h->plt.refcount = 1;
1094 }
1095 else
1096 h->plt.refcount += 1;
1097
1098 /* Keep track of the total PLT relocation count even if we
1099 don't yet know whether the dynamic sections will be
1100 created. */
1101 htab->plt_reloc_count += 1;
1102
1103 if (elf_hash_table (info)->dynamic_sections_created)
1104 {
1105 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1106 return FALSE;
1107 }
1108 }
1109 else if (is_got)
1110 {
1111 if (h->got.refcount <= 0)
1112 h->got.refcount = 1;
1113 else
1114 h->got.refcount += 1;
1115 }
1116
1117 if (is_tlsfunc)
1118 eh->tlsfunc_refcount += 1;
1119
1120 old_tls_type = eh->tls_type;
1121 }
1122 else
1123 {
1124 /* Allocate storage the first time. */
1125 if (elf_local_got_refcounts (abfd) == NULL)
1126 {
1127 bfd_size_type size = symtab_hdr->sh_info;
1128 void *mem;
1129
1130 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1131 if (mem == NULL)
1132 return FALSE;
1133 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem;
1134
1135 mem = bfd_zalloc (abfd, size);
1136 if (mem == NULL)
1137 return FALSE;
1138 elf_xtensa_local_got_tls_type (abfd) = (char *) mem;
1139
1140 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1141 if (mem == NULL)
1142 return FALSE;
1143 elf_xtensa_local_tlsfunc_refcounts (abfd)
1144 = (bfd_signed_vma *) mem;
1145 }
1146
1147 /* This is a global offset table entry for a local symbol. */
1148 if (is_got || is_plt)
1149 elf_local_got_refcounts (abfd) [r_symndx] += 1;
1150
1151 if (is_tlsfunc)
1152 elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1;
1153
1154 old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx];
1155 }
1156
1157 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
1158 tls_type |= old_tls_type;
1159 /* If a TLS symbol is accessed using IE at least once,
1160 there is no point to use a dynamic model for it. */
1161 else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1162 && ((old_tls_type & GOT_TLS_GD) == 0
1163 || (tls_type & GOT_TLS_IE) == 0))
1164 {
1165 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD))
1166 tls_type = old_tls_type;
1167 else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD))
1168 tls_type |= old_tls_type;
1169 else
1170 {
1171 (*_bfd_error_handler)
1172 (_("%B: `%s' accessed both as normal and thread local symbol"),
1173 abfd,
1174 h ? h->root.root.string : "<local>");
1175 return FALSE;
1176 }
1177 }
1178
1179 if (old_tls_type != tls_type)
1180 {
1181 if (eh)
1182 eh->tls_type = tls_type;
1183 else
1184 elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type;
1185 }
1186 }
1187
1188 return TRUE;
1189 }
1190
1191
1192 static void
1193 elf_xtensa_make_sym_local (struct bfd_link_info *info,
1194 struct elf_link_hash_entry *h)
1195 {
1196 if (info->shared)
1197 {
1198 if (h->plt.refcount > 0)
1199 {
1200 /* For shared objects, there's no need for PLT entries for local
1201 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
1202 if (h->got.refcount < 0)
1203 h->got.refcount = 0;
1204 h->got.refcount += h->plt.refcount;
1205 h->plt.refcount = 0;
1206 }
1207 }
1208 else
1209 {
1210 /* Don't need any dynamic relocations at all. */
1211 h->plt.refcount = 0;
1212 h->got.refcount = 0;
1213 }
1214 }
1215
1216
1217 static void
1218 elf_xtensa_hide_symbol (struct bfd_link_info *info,
1219 struct elf_link_hash_entry *h,
1220 bfd_boolean force_local)
1221 {
1222 /* For a shared link, move the plt refcount to the got refcount to leave
1223 space for RELATIVE relocs. */
1224 elf_xtensa_make_sym_local (info, h);
1225
1226 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
1227 }
1228
1229
1230 /* Return the section that should be marked against GC for a given
1231 relocation. */
1232
1233 static asection *
1234 elf_xtensa_gc_mark_hook (asection *sec,
1235 struct bfd_link_info *info,
1236 Elf_Internal_Rela *rel,
1237 struct elf_link_hash_entry *h,
1238 Elf_Internal_Sym *sym)
1239 {
1240 /* Property sections are marked "KEEP" in the linker scripts, but they
1241 should not cause other sections to be marked. (This approach relies
1242 on elf_xtensa_discard_info to remove property table entries that
1243 describe discarded sections. Alternatively, it might be more
1244 efficient to avoid using "KEEP" in the linker scripts and instead use
1245 the gc_mark_extra_sections hook to mark only the property sections
1246 that describe marked sections. That alternative does not work well
1247 with the current property table sections, which do not correspond
1248 one-to-one with the sections they describe, but that should be fixed
1249 someday.) */
1250 if (xtensa_is_property_section (sec))
1251 return NULL;
1252
1253 if (h != NULL)
1254 switch (ELF32_R_TYPE (rel->r_info))
1255 {
1256 case R_XTENSA_GNU_VTINHERIT:
1257 case R_XTENSA_GNU_VTENTRY:
1258 return NULL;
1259 }
1260
1261 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1262 }
1263
1264
1265 /* Update the GOT & PLT entry reference counts
1266 for the section being removed. */
1267
1268 static bfd_boolean
1269 elf_xtensa_gc_sweep_hook (bfd *abfd,
1270 struct bfd_link_info *info,
1271 asection *sec,
1272 const Elf_Internal_Rela *relocs)
1273 {
1274 Elf_Internal_Shdr *symtab_hdr;
1275 struct elf_link_hash_entry **sym_hashes;
1276 const Elf_Internal_Rela *rel, *relend;
1277 struct elf_xtensa_link_hash_table *htab;
1278
1279 htab = elf_xtensa_hash_table (info);
1280 if (htab == NULL)
1281 return FALSE;
1282
1283 if (info->relocatable)
1284 return TRUE;
1285
1286 if ((sec->flags & SEC_ALLOC) == 0)
1287 return TRUE;
1288
1289 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1290 sym_hashes = elf_sym_hashes (abfd);
1291
1292 relend = relocs + sec->reloc_count;
1293 for (rel = relocs; rel < relend; rel++)
1294 {
1295 unsigned long r_symndx;
1296 unsigned int r_type;
1297 struct elf_link_hash_entry *h = NULL;
1298 struct elf_xtensa_link_hash_entry *eh;
1299 bfd_boolean is_got = FALSE;
1300 bfd_boolean is_plt = FALSE;
1301 bfd_boolean is_tlsfunc = FALSE;
1302
1303 r_symndx = ELF32_R_SYM (rel->r_info);
1304 if (r_symndx >= symtab_hdr->sh_info)
1305 {
1306 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1307 while (h->root.type == bfd_link_hash_indirect
1308 || h->root.type == bfd_link_hash_warning)
1309 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1310 }
1311 eh = elf_xtensa_hash_entry (h);
1312
1313 r_type = ELF32_R_TYPE (rel->r_info);
1314 switch (r_type)
1315 {
1316 case R_XTENSA_TLSDESC_FN:
1317 if (info->shared)
1318 {
1319 is_got = TRUE;
1320 is_tlsfunc = TRUE;
1321 }
1322 break;
1323
1324 case R_XTENSA_TLSDESC_ARG:
1325 if (info->shared)
1326 is_got = TRUE;
1327 else
1328 {
1329 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1330 is_got = TRUE;
1331 }
1332 break;
1333
1334 case R_XTENSA_TLS_TPOFF:
1335 if (info->shared || h)
1336 is_got = TRUE;
1337 break;
1338
1339 case R_XTENSA_32:
1340 is_got = TRUE;
1341 break;
1342
1343 case R_XTENSA_PLT:
1344 is_plt = TRUE;
1345 break;
1346
1347 default:
1348 continue;
1349 }
1350
1351 if (h)
1352 {
1353 if (is_plt)
1354 {
1355 if (h->plt.refcount > 0)
1356 h->plt.refcount--;
1357 }
1358 else if (is_got)
1359 {
1360 if (h->got.refcount > 0)
1361 h->got.refcount--;
1362 }
1363 if (is_tlsfunc)
1364 {
1365 if (eh->tlsfunc_refcount > 0)
1366 eh->tlsfunc_refcount--;
1367 }
1368 }
1369 else
1370 {
1371 if (is_got || is_plt)
1372 {
1373 bfd_signed_vma *got_refcount
1374 = &elf_local_got_refcounts (abfd) [r_symndx];
1375 if (*got_refcount > 0)
1376 *got_refcount -= 1;
1377 }
1378 if (is_tlsfunc)
1379 {
1380 bfd_signed_vma *tlsfunc_refcount
1381 = &elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx];
1382 if (*tlsfunc_refcount > 0)
1383 *tlsfunc_refcount -= 1;
1384 }
1385 }
1386 }
1387
1388 return TRUE;
1389 }
1390
1391
1392 /* Create all the dynamic sections. */
1393
1394 static bfd_boolean
1395 elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
1396 {
1397 struct elf_xtensa_link_hash_table *htab;
1398 flagword flags, noalloc_flags;
1399
1400 htab = elf_xtensa_hash_table (info);
1401 if (htab == NULL)
1402 return FALSE;
1403
1404 /* First do all the standard stuff. */
1405 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1406 return FALSE;
1407 htab->splt = bfd_get_linker_section (dynobj, ".plt");
1408 htab->srelplt = bfd_get_linker_section (dynobj, ".rela.plt");
1409 htab->sgot = bfd_get_linker_section (dynobj, ".got");
1410 htab->sgotplt = bfd_get_linker_section (dynobj, ".got.plt");
1411 htab->srelgot = bfd_get_linker_section (dynobj, ".rela.got");
1412
1413 /* Create any extra PLT sections in case check_relocs has already
1414 been called on all the non-dynamic input files. */
1415 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1416 return FALSE;
1417
1418 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1419 | SEC_LINKER_CREATED | SEC_READONLY);
1420 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
1421
1422 /* Mark the ".got.plt" section READONLY. */
1423 if (htab->sgotplt == NULL
1424 || ! bfd_set_section_flags (dynobj, htab->sgotplt, flags))
1425 return FALSE;
1426
1427 /* Create ".got.loc" (literal tables for use by dynamic linker). */
1428 htab->sgotloc = bfd_make_section_anyway_with_flags (dynobj, ".got.loc",
1429 flags);
1430 if (htab->sgotloc == NULL
1431 || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
1432 return FALSE;
1433
1434 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
1435 htab->spltlittbl = bfd_make_section_anyway_with_flags (dynobj, ".xt.lit.plt",
1436 noalloc_flags);
1437 if (htab->spltlittbl == NULL
1438 || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
1439 return FALSE;
1440
1441 return TRUE;
1442 }
1443
1444
1445 static bfd_boolean
1446 add_extra_plt_sections (struct bfd_link_info *info, int count)
1447 {
1448 bfd *dynobj = elf_hash_table (info)->dynobj;
1449 int chunk;
1450
1451 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1452 ".got.plt" sections. */
1453 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1454 {
1455 char *sname;
1456 flagword flags;
1457 asection *s;
1458
1459 /* Stop when we find a section has already been created. */
1460 if (elf_xtensa_get_plt_section (info, chunk))
1461 break;
1462
1463 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1464 | SEC_LINKER_CREATED | SEC_READONLY);
1465
1466 sname = (char *) bfd_malloc (10);
1467 sprintf (sname, ".plt.%u", chunk);
1468 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags | SEC_CODE);
1469 if (s == NULL
1470 || ! bfd_set_section_alignment (dynobj, s, 2))
1471 return FALSE;
1472
1473 sname = (char *) bfd_malloc (14);
1474 sprintf (sname, ".got.plt.%u", chunk);
1475 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags);
1476 if (s == NULL
1477 || ! bfd_set_section_alignment (dynobj, s, 2))
1478 return FALSE;
1479 }
1480
1481 return TRUE;
1482 }
1483
1484
1485 /* Adjust a symbol defined by a dynamic object and referenced by a
1486 regular object. The current definition is in some section of the
1487 dynamic object, but we're not including those sections. We have to
1488 change the definition to something the rest of the link can
1489 understand. */
1490
1491 static bfd_boolean
1492 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1493 struct elf_link_hash_entry *h)
1494 {
1495 /* If this is a weak symbol, and there is a real definition, the
1496 processor independent code will have arranged for us to see the
1497 real definition first, and we can just use the same value. */
1498 if (h->u.weakdef)
1499 {
1500 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1501 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1502 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1503 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1504 return TRUE;
1505 }
1506
1507 /* This is a reference to a symbol defined by a dynamic object. The
1508 reference must go through the GOT, so there's no need for COPY relocs,
1509 .dynbss, etc. */
1510
1511 return TRUE;
1512 }
1513
1514
1515 static bfd_boolean
1516 elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
1517 {
1518 struct bfd_link_info *info;
1519 struct elf_xtensa_link_hash_table *htab;
1520 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h);
1521
1522 if (h->root.type == bfd_link_hash_indirect)
1523 return TRUE;
1524
1525 info = (struct bfd_link_info *) arg;
1526 htab = elf_xtensa_hash_table (info);
1527 if (htab == NULL)
1528 return FALSE;
1529
1530 /* If we saw any use of an IE model for this symbol, we can then optimize
1531 away GOT entries for any TLSDESC_FN relocs. */
1532 if ((eh->tls_type & GOT_TLS_IE) != 0)
1533 {
1534 BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount);
1535 h->got.refcount -= eh->tlsfunc_refcount;
1536 }
1537
1538 if (! elf_xtensa_dynamic_symbol_p (h, info))
1539 elf_xtensa_make_sym_local (info, h);
1540
1541 if (h->plt.refcount > 0)
1542 htab->srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
1543
1544 if (h->got.refcount > 0)
1545 htab->srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
1546
1547 return TRUE;
1548 }
1549
1550
1551 static void
1552 elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
1553 {
1554 struct elf_xtensa_link_hash_table *htab;
1555 bfd *i;
1556
1557 htab = elf_xtensa_hash_table (info);
1558 if (htab == NULL)
1559 return;
1560
1561 for (i = info->input_bfds; i; i = i->link_next)
1562 {
1563 bfd_signed_vma *local_got_refcounts;
1564 bfd_size_type j, cnt;
1565 Elf_Internal_Shdr *symtab_hdr;
1566
1567 local_got_refcounts = elf_local_got_refcounts (i);
1568 if (!local_got_refcounts)
1569 continue;
1570
1571 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1572 cnt = symtab_hdr->sh_info;
1573
1574 for (j = 0; j < cnt; ++j)
1575 {
1576 /* If we saw any use of an IE model for this symbol, we can
1577 then optimize away GOT entries for any TLSDESC_FN relocs. */
1578 if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0)
1579 {
1580 bfd_signed_vma *tlsfunc_refcount
1581 = &elf_xtensa_local_tlsfunc_refcounts (i) [j];
1582 BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount);
1583 local_got_refcounts[j] -= *tlsfunc_refcount;
1584 }
1585
1586 if (local_got_refcounts[j] > 0)
1587 htab->srelgot->size += (local_got_refcounts[j]
1588 * sizeof (Elf32_External_Rela));
1589 }
1590 }
1591 }
1592
1593
1594 /* Set the sizes of the dynamic sections. */
1595
1596 static bfd_boolean
1597 elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1598 struct bfd_link_info *info)
1599 {
1600 struct elf_xtensa_link_hash_table *htab;
1601 bfd *dynobj, *abfd;
1602 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
1603 bfd_boolean relplt, relgot;
1604 int plt_entries, plt_chunks, chunk;
1605
1606 plt_entries = 0;
1607 plt_chunks = 0;
1608
1609 htab = elf_xtensa_hash_table (info);
1610 if (htab == NULL)
1611 return FALSE;
1612
1613 dynobj = elf_hash_table (info)->dynobj;
1614 if (dynobj == NULL)
1615 abort ();
1616 srelgot = htab->srelgot;
1617 srelplt = htab->srelplt;
1618
1619 if (elf_hash_table (info)->dynamic_sections_created)
1620 {
1621 BFD_ASSERT (htab->srelgot != NULL
1622 && htab->srelplt != NULL
1623 && htab->sgot != NULL
1624 && htab->spltlittbl != NULL
1625 && htab->sgotloc != NULL);
1626
1627 /* Set the contents of the .interp section to the interpreter. */
1628 if (info->executable)
1629 {
1630 s = bfd_get_linker_section (dynobj, ".interp");
1631 if (s == NULL)
1632 abort ();
1633 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1634 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1635 }
1636
1637 /* Allocate room for one word in ".got". */
1638 htab->sgot->size = 4;
1639
1640 /* Allocate space in ".rela.got" for literals that reference global
1641 symbols and space in ".rela.plt" for literals that have PLT
1642 entries. */
1643 elf_link_hash_traverse (elf_hash_table (info),
1644 elf_xtensa_allocate_dynrelocs,
1645 (void *) info);
1646
1647 /* If we are generating a shared object, we also need space in
1648 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1649 reference local symbols. */
1650 if (info->shared)
1651 elf_xtensa_allocate_local_got_size (info);
1652
1653 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1654 each PLT entry, we need the PLT code plus a 4-byte literal.
1655 For each chunk of ".plt", we also need two more 4-byte
1656 literals, two corresponding entries in ".rela.got", and an
1657 8-byte entry in ".xt.lit.plt". */
1658 spltlittbl = htab->spltlittbl;
1659 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
1660 plt_chunks =
1661 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1662
1663 /* Iterate over all the PLT chunks, including any extra sections
1664 created earlier because the initial count of PLT relocations
1665 was an overestimate. */
1666 for (chunk = 0;
1667 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
1668 chunk++)
1669 {
1670 int chunk_entries;
1671
1672 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1673 BFD_ASSERT (sgotplt != NULL);
1674
1675 if (chunk < plt_chunks - 1)
1676 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1677 else if (chunk == plt_chunks - 1)
1678 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1679 else
1680 chunk_entries = 0;
1681
1682 if (chunk_entries != 0)
1683 {
1684 sgotplt->size = 4 * (chunk_entries + 2);
1685 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1686 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1687 spltlittbl->size += 8;
1688 }
1689 else
1690 {
1691 sgotplt->size = 0;
1692 splt->size = 0;
1693 }
1694 }
1695
1696 /* Allocate space in ".got.loc" to match the total size of all the
1697 literal tables. */
1698 sgotloc = htab->sgotloc;
1699 sgotloc->size = spltlittbl->size;
1700 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1701 {
1702 if (abfd->flags & DYNAMIC)
1703 continue;
1704 for (s = abfd->sections; s != NULL; s = s->next)
1705 {
1706 if (! discarded_section (s)
1707 && xtensa_is_littable_section (s)
1708 && s != spltlittbl)
1709 sgotloc->size += s->size;
1710 }
1711 }
1712 }
1713
1714 /* Allocate memory for dynamic sections. */
1715 relplt = FALSE;
1716 relgot = FALSE;
1717 for (s = dynobj->sections; s != NULL; s = s->next)
1718 {
1719 const char *name;
1720
1721 if ((s->flags & SEC_LINKER_CREATED) == 0)
1722 continue;
1723
1724 /* It's OK to base decisions on the section name, because none
1725 of the dynobj section names depend upon the input files. */
1726 name = bfd_get_section_name (dynobj, s);
1727
1728 if (CONST_STRNEQ (name, ".rela"))
1729 {
1730 if (s->size != 0)
1731 {
1732 if (strcmp (name, ".rela.plt") == 0)
1733 relplt = TRUE;
1734 else if (strcmp (name, ".rela.got") == 0)
1735 relgot = TRUE;
1736
1737 /* We use the reloc_count field as a counter if we need
1738 to copy relocs into the output file. */
1739 s->reloc_count = 0;
1740 }
1741 }
1742 else if (! CONST_STRNEQ (name, ".plt.")
1743 && ! CONST_STRNEQ (name, ".got.plt.")
1744 && strcmp (name, ".got") != 0
1745 && strcmp (name, ".plt") != 0
1746 && strcmp (name, ".got.plt") != 0
1747 && strcmp (name, ".xt.lit.plt") != 0
1748 && strcmp (name, ".got.loc") != 0)
1749 {
1750 /* It's not one of our sections, so don't allocate space. */
1751 continue;
1752 }
1753
1754 if (s->size == 0)
1755 {
1756 /* If we don't need this section, strip it from the output
1757 file. We must create the ".plt*" and ".got.plt*"
1758 sections in create_dynamic_sections and/or check_relocs
1759 based on a conservative estimate of the PLT relocation
1760 count, because the sections must be created before the
1761 linker maps input sections to output sections. The
1762 linker does that before size_dynamic_sections, where we
1763 compute the exact size of the PLT, so there may be more
1764 of these sections than are actually needed. */
1765 s->flags |= SEC_EXCLUDE;
1766 }
1767 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
1768 {
1769 /* Allocate memory for the section contents. */
1770 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1771 if (s->contents == NULL)
1772 return FALSE;
1773 }
1774 }
1775
1776 if (elf_hash_table (info)->dynamic_sections_created)
1777 {
1778 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1779 known until finish_dynamic_sections, but we need to get the relocs
1780 in place before they are sorted. */
1781 for (chunk = 0; chunk < plt_chunks; chunk++)
1782 {
1783 Elf_Internal_Rela irela;
1784 bfd_byte *loc;
1785
1786 irela.r_offset = 0;
1787 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1788 irela.r_addend = 0;
1789
1790 loc = (srelgot->contents
1791 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1792 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1793 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1794 loc + sizeof (Elf32_External_Rela));
1795 srelgot->reloc_count += 2;
1796 }
1797
1798 /* Add some entries to the .dynamic section. We fill in the
1799 values later, in elf_xtensa_finish_dynamic_sections, but we
1800 must add the entries now so that we get the correct size for
1801 the .dynamic section. The DT_DEBUG entry is filled in by the
1802 dynamic linker and used by the debugger. */
1803 #define add_dynamic_entry(TAG, VAL) \
1804 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1805
1806 if (info->executable)
1807 {
1808 if (!add_dynamic_entry (DT_DEBUG, 0))
1809 return FALSE;
1810 }
1811
1812 if (relplt)
1813 {
1814 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1815 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1816 || !add_dynamic_entry (DT_JMPREL, 0))
1817 return FALSE;
1818 }
1819
1820 if (relgot)
1821 {
1822 if (!add_dynamic_entry (DT_RELA, 0)
1823 || !add_dynamic_entry (DT_RELASZ, 0)
1824 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1825 return FALSE;
1826 }
1827
1828 if (!add_dynamic_entry (DT_PLTGOT, 0)
1829 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1830 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1831 return FALSE;
1832 }
1833 #undef add_dynamic_entry
1834
1835 return TRUE;
1836 }
1837
1838 static bfd_boolean
1839 elf_xtensa_always_size_sections (bfd *output_bfd,
1840 struct bfd_link_info *info)
1841 {
1842 struct elf_xtensa_link_hash_table *htab;
1843 asection *tls_sec;
1844
1845 htab = elf_xtensa_hash_table (info);
1846 if (htab == NULL)
1847 return FALSE;
1848
1849 tls_sec = htab->elf.tls_sec;
1850
1851 if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0)
1852 {
1853 struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf;
1854 struct bfd_link_hash_entry *bh = &tlsbase->root;
1855 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
1856
1857 tlsbase->type = STT_TLS;
1858 if (!(_bfd_generic_link_add_one_symbol
1859 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
1860 tls_sec, 0, NULL, FALSE,
1861 bed->collect, &bh)))
1862 return FALSE;
1863 tlsbase->def_regular = 1;
1864 tlsbase->other = STV_HIDDEN;
1865 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
1866 }
1867
1868 return TRUE;
1869 }
1870
1871 \f
1872 /* Return the base VMA address which should be subtracted from real addresses
1873 when resolving @dtpoff relocation.
1874 This is PT_TLS segment p_vaddr. */
1875
1876 static bfd_vma
1877 dtpoff_base (struct bfd_link_info *info)
1878 {
1879 /* If tls_sec is NULL, we should have signalled an error already. */
1880 if (elf_hash_table (info)->tls_sec == NULL)
1881 return 0;
1882 return elf_hash_table (info)->tls_sec->vma;
1883 }
1884
1885 /* Return the relocation value for @tpoff relocation
1886 if STT_TLS virtual address is ADDRESS. */
1887
1888 static bfd_vma
1889 tpoff (struct bfd_link_info *info, bfd_vma address)
1890 {
1891 struct elf_link_hash_table *htab = elf_hash_table (info);
1892 bfd_vma base;
1893
1894 /* If tls_sec is NULL, we should have signalled an error already. */
1895 if (htab->tls_sec == NULL)
1896 return 0;
1897 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
1898 return address - htab->tls_sec->vma + base;
1899 }
1900
1901 /* Perform the specified relocation. The instruction at (contents + address)
1902 is modified to set one operand to represent the value in "relocation". The
1903 operand position is determined by the relocation type recorded in the
1904 howto. */
1905
1906 #define CALL_SEGMENT_BITS (30)
1907 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
1908
1909 static bfd_reloc_status_type
1910 elf_xtensa_do_reloc (reloc_howto_type *howto,
1911 bfd *abfd,
1912 asection *input_section,
1913 bfd_vma relocation,
1914 bfd_byte *contents,
1915 bfd_vma address,
1916 bfd_boolean is_weak_undef,
1917 char **error_message)
1918 {
1919 xtensa_format fmt;
1920 xtensa_opcode opcode;
1921 xtensa_isa isa = xtensa_default_isa;
1922 static xtensa_insnbuf ibuff = NULL;
1923 static xtensa_insnbuf sbuff = NULL;
1924 bfd_vma self_address;
1925 bfd_size_type input_size;
1926 int opnd, slot;
1927 uint32 newval;
1928
1929 if (!ibuff)
1930 {
1931 ibuff = xtensa_insnbuf_alloc (isa);
1932 sbuff = xtensa_insnbuf_alloc (isa);
1933 }
1934
1935 input_size = bfd_get_section_limit (abfd, input_section);
1936
1937 /* Calculate the PC address for this instruction. */
1938 self_address = (input_section->output_section->vma
1939 + input_section->output_offset
1940 + address);
1941
1942 switch (howto->type)
1943 {
1944 case R_XTENSA_NONE:
1945 case R_XTENSA_DIFF8:
1946 case R_XTENSA_DIFF16:
1947 case R_XTENSA_DIFF32:
1948 case R_XTENSA_TLS_FUNC:
1949 case R_XTENSA_TLS_ARG:
1950 case R_XTENSA_TLS_CALL:
1951 return bfd_reloc_ok;
1952
1953 case R_XTENSA_ASM_EXPAND:
1954 if (!is_weak_undef)
1955 {
1956 /* Check for windowed CALL across a 1GB boundary. */
1957 opcode = get_expanded_call_opcode (contents + address,
1958 input_size - address, 0);
1959 if (is_windowed_call_opcode (opcode))
1960 {
1961 if ((self_address >> CALL_SEGMENT_BITS)
1962 != (relocation >> CALL_SEGMENT_BITS))
1963 {
1964 *error_message = "windowed longcall crosses 1GB boundary; "
1965 "return may fail";
1966 return bfd_reloc_dangerous;
1967 }
1968 }
1969 }
1970 return bfd_reloc_ok;
1971
1972 case R_XTENSA_ASM_SIMPLIFY:
1973 {
1974 /* Convert the L32R/CALLX to CALL. */
1975 bfd_reloc_status_type retval =
1976 elf_xtensa_do_asm_simplify (contents, address, input_size,
1977 error_message);
1978 if (retval != bfd_reloc_ok)
1979 return bfd_reloc_dangerous;
1980
1981 /* The CALL needs to be relocated. Continue below for that part. */
1982 address += 3;
1983 self_address += 3;
1984 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
1985 }
1986 break;
1987
1988 case R_XTENSA_32:
1989 {
1990 bfd_vma x;
1991 x = bfd_get_32 (abfd, contents + address);
1992 x = x + relocation;
1993 bfd_put_32 (abfd, x, contents + address);
1994 }
1995 return bfd_reloc_ok;
1996
1997 case R_XTENSA_32_PCREL:
1998 bfd_put_32 (abfd, relocation - self_address, contents + address);
1999 return bfd_reloc_ok;
2000
2001 case R_XTENSA_PLT:
2002 case R_XTENSA_TLSDESC_FN:
2003 case R_XTENSA_TLSDESC_ARG:
2004 case R_XTENSA_TLS_DTPOFF:
2005 case R_XTENSA_TLS_TPOFF:
2006 bfd_put_32 (abfd, relocation, contents + address);
2007 return bfd_reloc_ok;
2008 }
2009
2010 /* Only instruction slot-specific relocations handled below.... */
2011 slot = get_relocation_slot (howto->type);
2012 if (slot == XTENSA_UNDEFINED)
2013 {
2014 *error_message = "unexpected relocation";
2015 return bfd_reloc_dangerous;
2016 }
2017
2018 /* Read the instruction into a buffer and decode the opcode. */
2019 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
2020 input_size - address);
2021 fmt = xtensa_format_decode (isa, ibuff);
2022 if (fmt == XTENSA_UNDEFINED)
2023 {
2024 *error_message = "cannot decode instruction format";
2025 return bfd_reloc_dangerous;
2026 }
2027
2028 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
2029
2030 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
2031 if (opcode == XTENSA_UNDEFINED)
2032 {
2033 *error_message = "cannot decode instruction opcode";
2034 return bfd_reloc_dangerous;
2035 }
2036
2037 /* Check for opcode-specific "alternate" relocations. */
2038 if (is_alt_relocation (howto->type))
2039 {
2040 if (opcode == get_l32r_opcode ())
2041 {
2042 /* Handle the special-case of non-PC-relative L32R instructions. */
2043 bfd *output_bfd = input_section->output_section->owner;
2044 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
2045 if (!lit4_sec)
2046 {
2047 *error_message = "relocation references missing .lit4 section";
2048 return bfd_reloc_dangerous;
2049 }
2050 self_address = ((lit4_sec->vma & ~0xfff)
2051 + 0x40000 - 3); /* -3 to compensate for do_reloc */
2052 newval = relocation;
2053 opnd = 1;
2054 }
2055 else if (opcode == get_const16_opcode ())
2056 {
2057 /* ALT used for high 16 bits. */
2058 newval = relocation >> 16;
2059 opnd = 1;
2060 }
2061 else
2062 {
2063 /* No other "alternate" relocations currently defined. */
2064 *error_message = "unexpected relocation";
2065 return bfd_reloc_dangerous;
2066 }
2067 }
2068 else /* Not an "alternate" relocation.... */
2069 {
2070 if (opcode == get_const16_opcode ())
2071 {
2072 newval = relocation & 0xffff;
2073 opnd = 1;
2074 }
2075 else
2076 {
2077 /* ...normal PC-relative relocation.... */
2078
2079 /* Determine which operand is being relocated. */
2080 opnd = get_relocation_opnd (opcode, howto->type);
2081 if (opnd == XTENSA_UNDEFINED)
2082 {
2083 *error_message = "unexpected relocation";
2084 return bfd_reloc_dangerous;
2085 }
2086
2087 if (!howto->pc_relative)
2088 {
2089 *error_message = "expected PC-relative relocation";
2090 return bfd_reloc_dangerous;
2091 }
2092
2093 newval = relocation;
2094 }
2095 }
2096
2097 /* Apply the relocation. */
2098 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
2099 || xtensa_operand_encode (isa, opcode, opnd, &newval)
2100 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
2101 sbuff, newval))
2102 {
2103 const char *opname = xtensa_opcode_name (isa, opcode);
2104 const char *msg;
2105
2106 msg = "cannot encode";
2107 if (is_direct_call_opcode (opcode))
2108 {
2109 if ((relocation & 0x3) != 0)
2110 msg = "misaligned call target";
2111 else
2112 msg = "call target out of range";
2113 }
2114 else if (opcode == get_l32r_opcode ())
2115 {
2116 if ((relocation & 0x3) != 0)
2117 msg = "misaligned literal target";
2118 else if (is_alt_relocation (howto->type))
2119 msg = "literal target out of range (too many literals)";
2120 else if (self_address > relocation)
2121 msg = "literal target out of range (try using text-section-literals)";
2122 else
2123 msg = "literal placed after use";
2124 }
2125
2126 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
2127 return bfd_reloc_dangerous;
2128 }
2129
2130 /* Check for calls across 1GB boundaries. */
2131 if (is_direct_call_opcode (opcode)
2132 && is_windowed_call_opcode (opcode))
2133 {
2134 if ((self_address >> CALL_SEGMENT_BITS)
2135 != (relocation >> CALL_SEGMENT_BITS))
2136 {
2137 *error_message =
2138 "windowed call crosses 1GB boundary; return may fail";
2139 return bfd_reloc_dangerous;
2140 }
2141 }
2142
2143 /* Write the modified instruction back out of the buffer. */
2144 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
2145 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
2146 input_size - address);
2147 return bfd_reloc_ok;
2148 }
2149
2150
2151 static char *
2152 vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
2153 {
2154 /* To reduce the size of the memory leak,
2155 we only use a single message buffer. */
2156 static bfd_size_type alloc_size = 0;
2157 static char *message = NULL;
2158 bfd_size_type orig_len, len = 0;
2159 bfd_boolean is_append;
2160
2161 VA_OPEN (ap, arglen);
2162 VA_FIXEDARG (ap, const char *, origmsg);
2163
2164 is_append = (origmsg == message);
2165
2166 orig_len = strlen (origmsg);
2167 len = orig_len + strlen (fmt) + arglen + 20;
2168 if (len > alloc_size)
2169 {
2170 message = (char *) bfd_realloc_or_free (message, len);
2171 alloc_size = len;
2172 }
2173 if (message != NULL)
2174 {
2175 if (!is_append)
2176 memcpy (message, origmsg, orig_len);
2177 vsprintf (message + orig_len, fmt, ap);
2178 }
2179 VA_CLOSE (ap);
2180 return message;
2181 }
2182
2183
2184 /* This function is registered as the "special_function" in the
2185 Xtensa howto for handling simplify operations.
2186 bfd_perform_relocation / bfd_install_relocation use it to
2187 perform (install) the specified relocation. Since this replaces the code
2188 in bfd_perform_relocation, it is basically an Xtensa-specific,
2189 stripped-down version of bfd_perform_relocation. */
2190
2191 static bfd_reloc_status_type
2192 bfd_elf_xtensa_reloc (bfd *abfd,
2193 arelent *reloc_entry,
2194 asymbol *symbol,
2195 void *data,
2196 asection *input_section,
2197 bfd *output_bfd,
2198 char **error_message)
2199 {
2200 bfd_vma relocation;
2201 bfd_reloc_status_type flag;
2202 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2203 bfd_vma output_base = 0;
2204 reloc_howto_type *howto = reloc_entry->howto;
2205 asection *reloc_target_output_section;
2206 bfd_boolean is_weak_undef;
2207
2208 if (!xtensa_default_isa)
2209 xtensa_default_isa = xtensa_isa_init (0, 0);
2210
2211 /* ELF relocs are against symbols. If we are producing relocatable
2212 output, and the reloc is against an external symbol, the resulting
2213 reloc will also be against the same symbol. In such a case, we
2214 don't want to change anything about the way the reloc is handled,
2215 since it will all be done at final link time. This test is similar
2216 to what bfd_elf_generic_reloc does except that it lets relocs with
2217 howto->partial_inplace go through even if the addend is non-zero.
2218 (The real problem is that partial_inplace is set for XTENSA_32
2219 relocs to begin with, but that's a long story and there's little we
2220 can do about it now....) */
2221
2222 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
2223 {
2224 reloc_entry->address += input_section->output_offset;
2225 return bfd_reloc_ok;
2226 }
2227
2228 /* Is the address of the relocation really within the section? */
2229 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2230 return bfd_reloc_outofrange;
2231
2232 /* Work out which section the relocation is targeted at and the
2233 initial relocation command value. */
2234
2235 /* Get symbol value. (Common symbols are special.) */
2236 if (bfd_is_com_section (symbol->section))
2237 relocation = 0;
2238 else
2239 relocation = symbol->value;
2240
2241 reloc_target_output_section = symbol->section->output_section;
2242
2243 /* Convert input-section-relative symbol value to absolute. */
2244 if ((output_bfd && !howto->partial_inplace)
2245 || reloc_target_output_section == NULL)
2246 output_base = 0;
2247 else
2248 output_base = reloc_target_output_section->vma;
2249
2250 relocation += output_base + symbol->section->output_offset;
2251
2252 /* Add in supplied addend. */
2253 relocation += reloc_entry->addend;
2254
2255 /* Here the variable relocation holds the final address of the
2256 symbol we are relocating against, plus any addend. */
2257 if (output_bfd)
2258 {
2259 if (!howto->partial_inplace)
2260 {
2261 /* This is a partial relocation, and we want to apply the relocation
2262 to the reloc entry rather than the raw data. Everything except
2263 relocations against section symbols has already been handled
2264 above. */
2265
2266 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
2267 reloc_entry->addend = relocation;
2268 reloc_entry->address += input_section->output_offset;
2269 return bfd_reloc_ok;
2270 }
2271 else
2272 {
2273 reloc_entry->address += input_section->output_offset;
2274 reloc_entry->addend = 0;
2275 }
2276 }
2277
2278 is_weak_undef = (bfd_is_und_section (symbol->section)
2279 && (symbol->flags & BSF_WEAK) != 0);
2280 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
2281 (bfd_byte *) data, (bfd_vma) octets,
2282 is_weak_undef, error_message);
2283
2284 if (flag == bfd_reloc_dangerous)
2285 {
2286 /* Add the symbol name to the error message. */
2287 if (! *error_message)
2288 *error_message = "";
2289 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
2290 strlen (symbol->name) + 17,
2291 symbol->name,
2292 (unsigned long) reloc_entry->addend);
2293 }
2294
2295 return flag;
2296 }
2297
2298
2299 /* Set up an entry in the procedure linkage table. */
2300
2301 static bfd_vma
2302 elf_xtensa_create_plt_entry (struct bfd_link_info *info,
2303 bfd *output_bfd,
2304 unsigned reloc_index)
2305 {
2306 asection *splt, *sgotplt;
2307 bfd_vma plt_base, got_base;
2308 bfd_vma code_offset, lit_offset;
2309 int chunk;
2310
2311 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
2312 splt = elf_xtensa_get_plt_section (info, chunk);
2313 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
2314 BFD_ASSERT (splt != NULL && sgotplt != NULL);
2315
2316 plt_base = splt->output_section->vma + splt->output_offset;
2317 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
2318
2319 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
2320 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
2321
2322 /* Fill in the literal entry. This is the offset of the dynamic
2323 relocation entry. */
2324 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
2325 sgotplt->contents + lit_offset);
2326
2327 /* Fill in the entry in the procedure linkage table. */
2328 memcpy (splt->contents + code_offset,
2329 (bfd_big_endian (output_bfd)
2330 ? elf_xtensa_be_plt_entry
2331 : elf_xtensa_le_plt_entry),
2332 PLT_ENTRY_SIZE);
2333 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
2334 plt_base + code_offset + 3),
2335 splt->contents + code_offset + 4);
2336 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
2337 plt_base + code_offset + 6),
2338 splt->contents + code_offset + 7);
2339 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
2340 plt_base + code_offset + 9),
2341 splt->contents + code_offset + 10);
2342
2343 return plt_base + code_offset;
2344 }
2345
2346
2347 static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *);
2348
2349 static bfd_boolean
2350 replace_tls_insn (Elf_Internal_Rela *rel,
2351 bfd *abfd,
2352 asection *input_section,
2353 bfd_byte *contents,
2354 bfd_boolean is_ld_model,
2355 char **error_message)
2356 {
2357 static xtensa_insnbuf ibuff = NULL;
2358 static xtensa_insnbuf sbuff = NULL;
2359 xtensa_isa isa = xtensa_default_isa;
2360 xtensa_format fmt;
2361 xtensa_opcode old_op, new_op;
2362 bfd_size_type input_size;
2363 int r_type;
2364 unsigned dest_reg, src_reg;
2365
2366 if (ibuff == NULL)
2367 {
2368 ibuff = xtensa_insnbuf_alloc (isa);
2369 sbuff = xtensa_insnbuf_alloc (isa);
2370 }
2371
2372 input_size = bfd_get_section_limit (abfd, input_section);
2373
2374 /* Read the instruction into a buffer and decode the opcode. */
2375 xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset,
2376 input_size - rel->r_offset);
2377 fmt = xtensa_format_decode (isa, ibuff);
2378 if (fmt == XTENSA_UNDEFINED)
2379 {
2380 *error_message = "cannot decode instruction format";
2381 return FALSE;
2382 }
2383
2384 BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1);
2385 xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff);
2386
2387 old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff);
2388 if (old_op == XTENSA_UNDEFINED)
2389 {
2390 *error_message = "cannot decode instruction opcode";
2391 return FALSE;
2392 }
2393
2394 r_type = ELF32_R_TYPE (rel->r_info);
2395 switch (r_type)
2396 {
2397 case R_XTENSA_TLS_FUNC:
2398 case R_XTENSA_TLS_ARG:
2399 if (old_op != get_l32r_opcode ()
2400 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2401 sbuff, &dest_reg) != 0)
2402 {
2403 *error_message = "cannot extract L32R destination for TLS access";
2404 return FALSE;
2405 }
2406 break;
2407
2408 case R_XTENSA_TLS_CALL:
2409 if (! get_indirect_call_dest_reg (old_op, &dest_reg)
2410 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2411 sbuff, &src_reg) != 0)
2412 {
2413 *error_message = "cannot extract CALLXn operands for TLS access";
2414 return FALSE;
2415 }
2416 break;
2417
2418 default:
2419 abort ();
2420 }
2421
2422 if (is_ld_model)
2423 {
2424 switch (r_type)
2425 {
2426 case R_XTENSA_TLS_FUNC:
2427 case R_XTENSA_TLS_ARG:
2428 /* Change the instruction to a NOP (or "OR a1, a1, a1" for older
2429 versions of Xtensa). */
2430 new_op = xtensa_opcode_lookup (isa, "nop");
2431 if (new_op == XTENSA_UNDEFINED)
2432 {
2433 new_op = xtensa_opcode_lookup (isa, "or");
2434 if (new_op == XTENSA_UNDEFINED
2435 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2436 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2437 sbuff, 1) != 0
2438 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2439 sbuff, 1) != 0
2440 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2441 sbuff, 1) != 0)
2442 {
2443 *error_message = "cannot encode OR for TLS access";
2444 return FALSE;
2445 }
2446 }
2447 else
2448 {
2449 if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0)
2450 {
2451 *error_message = "cannot encode NOP for TLS access";
2452 return FALSE;
2453 }
2454 }
2455 break;
2456
2457 case R_XTENSA_TLS_CALL:
2458 /* Read THREADPTR into the CALLX's return value register. */
2459 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2460 if (new_op == XTENSA_UNDEFINED
2461 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2462 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2463 sbuff, dest_reg + 2) != 0)
2464 {
2465 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2466 return FALSE;
2467 }
2468 break;
2469 }
2470 }
2471 else
2472 {
2473 switch (r_type)
2474 {
2475 case R_XTENSA_TLS_FUNC:
2476 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2477 if (new_op == XTENSA_UNDEFINED
2478 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2479 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2480 sbuff, dest_reg) != 0)
2481 {
2482 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2483 return FALSE;
2484 }
2485 break;
2486
2487 case R_XTENSA_TLS_ARG:
2488 /* Nothing to do. Keep the original L32R instruction. */
2489 return TRUE;
2490
2491 case R_XTENSA_TLS_CALL:
2492 /* Add the CALLX's src register (holding the THREADPTR value)
2493 to the first argument register (holding the offset) and put
2494 the result in the CALLX's return value register. */
2495 new_op = xtensa_opcode_lookup (isa, "add");
2496 if (new_op == XTENSA_UNDEFINED
2497 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2498 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2499 sbuff, dest_reg + 2) != 0
2500 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2501 sbuff, dest_reg + 2) != 0
2502 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2503 sbuff, src_reg) != 0)
2504 {
2505 *error_message = "cannot encode ADD for TLS access";
2506 return FALSE;
2507 }
2508 break;
2509 }
2510 }
2511
2512 xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff);
2513 xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset,
2514 input_size - rel->r_offset);
2515
2516 return TRUE;
2517 }
2518
2519
2520 #define IS_XTENSA_TLS_RELOC(R_TYPE) \
2521 ((R_TYPE) == R_XTENSA_TLSDESC_FN \
2522 || (R_TYPE) == R_XTENSA_TLSDESC_ARG \
2523 || (R_TYPE) == R_XTENSA_TLS_DTPOFF \
2524 || (R_TYPE) == R_XTENSA_TLS_TPOFF \
2525 || (R_TYPE) == R_XTENSA_TLS_FUNC \
2526 || (R_TYPE) == R_XTENSA_TLS_ARG \
2527 || (R_TYPE) == R_XTENSA_TLS_CALL)
2528
2529 /* Relocate an Xtensa ELF section. This is invoked by the linker for
2530 both relocatable and final links. */
2531
2532 static bfd_boolean
2533 elf_xtensa_relocate_section (bfd *output_bfd,
2534 struct bfd_link_info *info,
2535 bfd *input_bfd,
2536 asection *input_section,
2537 bfd_byte *contents,
2538 Elf_Internal_Rela *relocs,
2539 Elf_Internal_Sym *local_syms,
2540 asection **local_sections)
2541 {
2542 struct elf_xtensa_link_hash_table *htab;
2543 Elf_Internal_Shdr *symtab_hdr;
2544 Elf_Internal_Rela *rel;
2545 Elf_Internal_Rela *relend;
2546 struct elf_link_hash_entry **sym_hashes;
2547 property_table_entry *lit_table = 0;
2548 int ltblsize = 0;
2549 char *local_got_tls_types;
2550 char *error_message = NULL;
2551 bfd_size_type input_size;
2552 int tls_type;
2553
2554 if (!xtensa_default_isa)
2555 xtensa_default_isa = xtensa_isa_init (0, 0);
2556
2557 BFD_ASSERT (is_xtensa_elf (input_bfd));
2558
2559 htab = elf_xtensa_hash_table (info);
2560 if (htab == NULL)
2561 return FALSE;
2562
2563 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2564 sym_hashes = elf_sym_hashes (input_bfd);
2565 local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd);
2566
2567 if (elf_hash_table (info)->dynamic_sections_created)
2568 {
2569 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
2570 &lit_table, XTENSA_LIT_SEC_NAME,
2571 TRUE);
2572 if (ltblsize < 0)
2573 return FALSE;
2574 }
2575
2576 input_size = bfd_get_section_limit (input_bfd, input_section);
2577
2578 rel = relocs;
2579 relend = relocs + input_section->reloc_count;
2580 for (; rel < relend; rel++)
2581 {
2582 int r_type;
2583 reloc_howto_type *howto;
2584 unsigned long r_symndx;
2585 struct elf_link_hash_entry *h;
2586 Elf_Internal_Sym *sym;
2587 char sym_type;
2588 const char *name;
2589 asection *sec;
2590 bfd_vma relocation;
2591 bfd_reloc_status_type r;
2592 bfd_boolean is_weak_undef;
2593 bfd_boolean unresolved_reloc;
2594 bfd_boolean warned;
2595 bfd_boolean dynamic_symbol;
2596
2597 r_type = ELF32_R_TYPE (rel->r_info);
2598 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2599 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2600 continue;
2601
2602 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2603 {
2604 bfd_set_error (bfd_error_bad_value);
2605 return FALSE;
2606 }
2607 howto = &elf_howto_table[r_type];
2608
2609 r_symndx = ELF32_R_SYM (rel->r_info);
2610
2611 h = NULL;
2612 sym = NULL;
2613 sec = NULL;
2614 is_weak_undef = FALSE;
2615 unresolved_reloc = FALSE;
2616 warned = FALSE;
2617
2618 if (howto->partial_inplace && !info->relocatable)
2619 {
2620 /* Because R_XTENSA_32 was made partial_inplace to fix some
2621 problems with DWARF info in partial links, there may be
2622 an addend stored in the contents. Take it out of there
2623 and move it back into the addend field of the reloc. */
2624 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2625 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2626 }
2627
2628 if (r_symndx < symtab_hdr->sh_info)
2629 {
2630 sym = local_syms + r_symndx;
2631 sym_type = ELF32_ST_TYPE (sym->st_info);
2632 sec = local_sections[r_symndx];
2633 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2634 }
2635 else
2636 {
2637 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2638 r_symndx, symtab_hdr, sym_hashes,
2639 h, sec, relocation,
2640 unresolved_reloc, warned);
2641
2642 if (relocation == 0
2643 && !unresolved_reloc
2644 && h->root.type == bfd_link_hash_undefweak)
2645 is_weak_undef = TRUE;
2646
2647 sym_type = h->type;
2648 }
2649
2650 if (sec != NULL && discarded_section (sec))
2651 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
2652 rel, 1, relend, howto, 0, contents);
2653
2654 if (info->relocatable)
2655 {
2656 bfd_vma dest_addr;
2657 asection * sym_sec = get_elf_r_symndx_section (input_bfd, r_symndx);
2658
2659 /* This is a relocatable link.
2660 1) If the reloc is against a section symbol, adjust
2661 according to the output section.
2662 2) If there is a new target for this relocation,
2663 the new target will be in the same output section.
2664 We adjust the relocation by the output section
2665 difference. */
2666
2667 if (relaxing_section)
2668 {
2669 /* Check if this references a section in another input file. */
2670 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2671 contents))
2672 return FALSE;
2673 }
2674
2675 dest_addr = sym_sec->output_section->vma + sym_sec->output_offset
2676 + get_elf_r_symndx_offset (input_bfd, r_symndx) + rel->r_addend;
2677
2678 if (r_type == R_XTENSA_ASM_SIMPLIFY)
2679 {
2680 error_message = NULL;
2681 /* Convert ASM_SIMPLIFY into the simpler relocation
2682 so that they never escape a relaxing link. */
2683 r = contract_asm_expansion (contents, input_size, rel,
2684 &error_message);
2685 if (r != bfd_reloc_ok)
2686 {
2687 if (!((*info->callbacks->reloc_dangerous)
2688 (info, error_message, input_bfd, input_section,
2689 rel->r_offset)))
2690 return FALSE;
2691 }
2692 r_type = ELF32_R_TYPE (rel->r_info);
2693 }
2694
2695 /* This is a relocatable link, so we don't have to change
2696 anything unless the reloc is against a section symbol,
2697 in which case we have to adjust according to where the
2698 section symbol winds up in the output section. */
2699 if (r_symndx < symtab_hdr->sh_info)
2700 {
2701 sym = local_syms + r_symndx;
2702 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2703 {
2704 sec = local_sections[r_symndx];
2705 rel->r_addend += sec->output_offset + sym->st_value;
2706 }
2707 }
2708
2709 /* If there is an addend with a partial_inplace howto,
2710 then move the addend to the contents. This is a hack
2711 to work around problems with DWARF in relocatable links
2712 with some previous version of BFD. Now we can't easily get
2713 rid of the hack without breaking backward compatibility.... */
2714 r = bfd_reloc_ok;
2715 howto = &elf_howto_table[r_type];
2716 if (howto->partial_inplace && rel->r_addend)
2717 {
2718 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2719 rel->r_addend, contents,
2720 rel->r_offset, FALSE,
2721 &error_message);
2722 rel->r_addend = 0;
2723 }
2724 else
2725 {
2726 /* Put the correct bits in the target instruction, even
2727 though the relocation will still be present in the output
2728 file. This makes disassembly clearer, as well as
2729 allowing loadable kernel modules to work without needing
2730 relocations on anything other than calls and l32r's. */
2731
2732 /* If it is not in the same section, there is nothing we can do. */
2733 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP &&
2734 sym_sec->output_section == input_section->output_section)
2735 {
2736 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2737 dest_addr, contents,
2738 rel->r_offset, FALSE,
2739 &error_message);
2740 }
2741 }
2742 if (r != bfd_reloc_ok)
2743 {
2744 if (!((*info->callbacks->reloc_dangerous)
2745 (info, error_message, input_bfd, input_section,
2746 rel->r_offset)))
2747 return FALSE;
2748 }
2749
2750 /* Done with work for relocatable link; continue with next reloc. */
2751 continue;
2752 }
2753
2754 /* This is a final link. */
2755
2756 if (relaxing_section)
2757 {
2758 /* Check if this references a section in another input file. */
2759 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2760 &relocation);
2761 }
2762
2763 /* Sanity check the address. */
2764 if (rel->r_offset >= input_size
2765 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2766 {
2767 (*_bfd_error_handler)
2768 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2769 input_bfd, input_section, rel->r_offset, input_size);
2770 bfd_set_error (bfd_error_bad_value);
2771 return FALSE;
2772 }
2773
2774 if (h != NULL)
2775 name = h->root.root.string;
2776 else
2777 {
2778 name = (bfd_elf_string_from_elf_section
2779 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2780 if (name == NULL || *name == '\0')
2781 name = bfd_section_name (input_bfd, sec);
2782 }
2783
2784 if (r_symndx != STN_UNDEF
2785 && r_type != R_XTENSA_NONE
2786 && (h == NULL
2787 || h->root.type == bfd_link_hash_defined
2788 || h->root.type == bfd_link_hash_defweak)
2789 && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS))
2790 {
2791 (*_bfd_error_handler)
2792 ((sym_type == STT_TLS
2793 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
2794 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
2795 input_bfd,
2796 input_section,
2797 (long) rel->r_offset,
2798 howto->name,
2799 name);
2800 }
2801
2802 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
2803
2804 tls_type = GOT_UNKNOWN;
2805 if (h)
2806 tls_type = elf_xtensa_hash_entry (h)->tls_type;
2807 else if (local_got_tls_types)
2808 tls_type = local_got_tls_types [r_symndx];
2809
2810 switch (r_type)
2811 {
2812 case R_XTENSA_32:
2813 case R_XTENSA_PLT:
2814 if (elf_hash_table (info)->dynamic_sections_created
2815 && (input_section->flags & SEC_ALLOC) != 0
2816 && (dynamic_symbol || info->shared))
2817 {
2818 Elf_Internal_Rela outrel;
2819 bfd_byte *loc;
2820 asection *srel;
2821
2822 if (dynamic_symbol && r_type == R_XTENSA_PLT)
2823 srel = htab->srelplt;
2824 else
2825 srel = htab->srelgot;
2826
2827 BFD_ASSERT (srel != NULL);
2828
2829 outrel.r_offset =
2830 _bfd_elf_section_offset (output_bfd, info,
2831 input_section, rel->r_offset);
2832
2833 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2834 memset (&outrel, 0, sizeof outrel);
2835 else
2836 {
2837 outrel.r_offset += (input_section->output_section->vma
2838 + input_section->output_offset);
2839
2840 /* Complain if the relocation is in a read-only section
2841 and not in a literal pool. */
2842 if ((input_section->flags & SEC_READONLY) != 0
2843 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
2844 outrel.r_offset))
2845 {
2846 error_message =
2847 _("dynamic relocation in read-only section");
2848 if (!((*info->callbacks->reloc_dangerous)
2849 (info, error_message, input_bfd, input_section,
2850 rel->r_offset)))
2851 return FALSE;
2852 }
2853
2854 if (dynamic_symbol)
2855 {
2856 outrel.r_addend = rel->r_addend;
2857 rel->r_addend = 0;
2858
2859 if (r_type == R_XTENSA_32)
2860 {
2861 outrel.r_info =
2862 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2863 relocation = 0;
2864 }
2865 else /* r_type == R_XTENSA_PLT */
2866 {
2867 outrel.r_info =
2868 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2869
2870 /* Create the PLT entry and set the initial
2871 contents of the literal entry to the address of
2872 the PLT entry. */
2873 relocation =
2874 elf_xtensa_create_plt_entry (info, output_bfd,
2875 srel->reloc_count);
2876 }
2877 unresolved_reloc = FALSE;
2878 }
2879 else
2880 {
2881 /* Generate a RELATIVE relocation. */
2882 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2883 outrel.r_addend = 0;
2884 }
2885 }
2886
2887 loc = (srel->contents
2888 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2889 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2890 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2891 <= srel->size);
2892 }
2893 else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
2894 {
2895 /* This should only happen for non-PIC code, which is not
2896 supposed to be used on systems with dynamic linking.
2897 Just ignore these relocations. */
2898 continue;
2899 }
2900 break;
2901
2902 case R_XTENSA_TLS_TPOFF:
2903 /* Switch to LE model for local symbols in an executable. */
2904 if (! info->shared && ! dynamic_symbol)
2905 {
2906 relocation = tpoff (info, relocation);
2907 break;
2908 }
2909 /* fall through */
2910
2911 case R_XTENSA_TLSDESC_FN:
2912 case R_XTENSA_TLSDESC_ARG:
2913 {
2914 if (r_type == R_XTENSA_TLSDESC_FN)
2915 {
2916 if (! info->shared || (tls_type & GOT_TLS_IE) != 0)
2917 r_type = R_XTENSA_NONE;
2918 }
2919 else if (r_type == R_XTENSA_TLSDESC_ARG)
2920 {
2921 if (info->shared)
2922 {
2923 if ((tls_type & GOT_TLS_IE) != 0)
2924 r_type = R_XTENSA_TLS_TPOFF;
2925 }
2926 else
2927 {
2928 r_type = R_XTENSA_TLS_TPOFF;
2929 if (! dynamic_symbol)
2930 {
2931 relocation = tpoff (info, relocation);
2932 break;
2933 }
2934 }
2935 }
2936
2937 if (r_type == R_XTENSA_NONE)
2938 /* Nothing to do here; skip to the next reloc. */
2939 continue;
2940
2941 if (! elf_hash_table (info)->dynamic_sections_created)
2942 {
2943 error_message =
2944 _("TLS relocation invalid without dynamic sections");
2945 if (!((*info->callbacks->reloc_dangerous)
2946 (info, error_message, input_bfd, input_section,
2947 rel->r_offset)))
2948 return FALSE;
2949 }
2950 else
2951 {
2952 Elf_Internal_Rela outrel;
2953 bfd_byte *loc;
2954 asection *srel = htab->srelgot;
2955 int indx;
2956
2957 outrel.r_offset = (input_section->output_section->vma
2958 + input_section->output_offset
2959 + rel->r_offset);
2960
2961 /* Complain if the relocation is in a read-only section
2962 and not in a literal pool. */
2963 if ((input_section->flags & SEC_READONLY) != 0
2964 && ! elf_xtensa_in_literal_pool (lit_table, ltblsize,
2965 outrel.r_offset))
2966 {
2967 error_message =
2968 _("dynamic relocation in read-only section");
2969 if (!((*info->callbacks->reloc_dangerous)
2970 (info, error_message, input_bfd, input_section,
2971 rel->r_offset)))
2972 return FALSE;
2973 }
2974
2975 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2976 if (indx == 0)
2977 outrel.r_addend = relocation - dtpoff_base (info);
2978 else
2979 outrel.r_addend = 0;
2980 rel->r_addend = 0;
2981
2982 outrel.r_info = ELF32_R_INFO (indx, r_type);
2983 relocation = 0;
2984 unresolved_reloc = FALSE;
2985
2986 BFD_ASSERT (srel);
2987 loc = (srel->contents
2988 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2989 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2990 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2991 <= srel->size);
2992 }
2993 }
2994 break;
2995
2996 case R_XTENSA_TLS_DTPOFF:
2997 if (! info->shared)
2998 /* Switch from LD model to LE model. */
2999 relocation = tpoff (info, relocation);
3000 else
3001 relocation -= dtpoff_base (info);
3002 break;
3003
3004 case R_XTENSA_TLS_FUNC:
3005 case R_XTENSA_TLS_ARG:
3006 case R_XTENSA_TLS_CALL:
3007 /* Check if optimizing to IE or LE model. */
3008 if ((tls_type & GOT_TLS_IE) != 0)
3009 {
3010 bfd_boolean is_ld_model =
3011 (h && elf_xtensa_hash_entry (h) == htab->tlsbase);
3012 if (! replace_tls_insn (rel, input_bfd, input_section, contents,
3013 is_ld_model, &error_message))
3014 {
3015 if (!((*info->callbacks->reloc_dangerous)
3016 (info, error_message, input_bfd, input_section,
3017 rel->r_offset)))
3018 return FALSE;
3019 }
3020
3021 if (r_type != R_XTENSA_TLS_ARG || is_ld_model)
3022 {
3023 /* Skip subsequent relocations on the same instruction. */
3024 while (rel + 1 < relend && rel[1].r_offset == rel->r_offset)
3025 rel++;
3026 }
3027 }
3028 continue;
3029
3030 default:
3031 if (elf_hash_table (info)->dynamic_sections_created
3032 && dynamic_symbol && (is_operand_relocation (r_type)
3033 || r_type == R_XTENSA_32_PCREL))
3034 {
3035 error_message =
3036 vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
3037 strlen (name) + 2, name);
3038 if (!((*info->callbacks->reloc_dangerous)
3039 (info, error_message, input_bfd, input_section,
3040 rel->r_offset)))
3041 return FALSE;
3042 continue;
3043 }
3044 break;
3045 }
3046
3047 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3048 because such sections are not SEC_ALLOC and thus ld.so will
3049 not process them. */
3050 if (unresolved_reloc
3051 && !((input_section->flags & SEC_DEBUGGING) != 0
3052 && h->def_dynamic)
3053 && _bfd_elf_section_offset (output_bfd, info, input_section,
3054 rel->r_offset) != (bfd_vma) -1)
3055 {
3056 (*_bfd_error_handler)
3057 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3058 input_bfd,
3059 input_section,
3060 (long) rel->r_offset,
3061 howto->name,
3062 name);
3063 return FALSE;
3064 }
3065
3066 /* TLS optimizations may have changed r_type; update "howto". */
3067 howto = &elf_howto_table[r_type];
3068
3069 /* There's no point in calling bfd_perform_relocation here.
3070 Just go directly to our "special function". */
3071 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
3072 relocation + rel->r_addend,
3073 contents, rel->r_offset, is_weak_undef,
3074 &error_message);
3075
3076 if (r != bfd_reloc_ok && !warned)
3077 {
3078 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
3079 BFD_ASSERT (error_message != NULL);
3080
3081 if (rel->r_addend == 0)
3082 error_message = vsprint_msg (error_message, ": %s",
3083 strlen (name) + 2, name);
3084 else
3085 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
3086 strlen (name) + 22,
3087 name, (int) rel->r_addend);
3088
3089 if (!((*info->callbacks->reloc_dangerous)
3090 (info, error_message, input_bfd, input_section,
3091 rel->r_offset)))
3092 return FALSE;
3093 }
3094 }
3095
3096 if (lit_table)
3097 free (lit_table);
3098
3099 input_section->reloc_done = TRUE;
3100
3101 return TRUE;
3102 }
3103
3104
3105 /* Finish up dynamic symbol handling. There's not much to do here since
3106 the PLT and GOT entries are all set up by relocate_section. */
3107
3108 static bfd_boolean
3109 elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
3110 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3111 struct elf_link_hash_entry *h,
3112 Elf_Internal_Sym *sym)
3113 {
3114 if (h->needs_plt && !h->def_regular)
3115 {
3116 /* Mark the symbol as undefined, rather than as defined in
3117 the .plt section. Leave the value alone. */
3118 sym->st_shndx = SHN_UNDEF;
3119 /* If the symbol is weak, we do need to clear the value.
3120 Otherwise, the PLT entry would provide a definition for
3121 the symbol even if the symbol wasn't defined anywhere,
3122 and so the symbol would never be NULL. */
3123 if (!h->ref_regular_nonweak)
3124 sym->st_value = 0;
3125 }
3126
3127 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3128 if (h == elf_hash_table (info)->hdynamic
3129 || h == elf_hash_table (info)->hgot)
3130 sym->st_shndx = SHN_ABS;
3131
3132 return TRUE;
3133 }
3134
3135
3136 /* Combine adjacent literal table entries in the output. Adjacent
3137 entries within each input section may have been removed during
3138 relaxation, but we repeat the process here, even though it's too late
3139 to shrink the output section, because it's important to minimize the
3140 number of literal table entries to reduce the start-up work for the
3141 runtime linker. Returns the number of remaining table entries or -1
3142 on error. */
3143
3144 static int
3145 elf_xtensa_combine_prop_entries (bfd *output_bfd,
3146 asection *sxtlit,
3147 asection *sgotloc)
3148 {
3149 bfd_byte *contents;
3150 property_table_entry *table;
3151 bfd_size_type section_size, sgotloc_size;
3152 bfd_vma offset;
3153 int n, m, num;
3154
3155 section_size = sxtlit->size;
3156 BFD_ASSERT (section_size % 8 == 0);
3157 num = section_size / 8;
3158
3159 sgotloc_size = sgotloc->size;
3160 if (sgotloc_size != section_size)
3161 {
3162 (*_bfd_error_handler)
3163 (_("internal inconsistency in size of .got.loc section"));
3164 return -1;
3165 }
3166
3167 table = bfd_malloc (num * sizeof (property_table_entry));
3168 if (table == 0)
3169 return -1;
3170
3171 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
3172 propagates to the output section, where it doesn't really apply and
3173 where it breaks the following call to bfd_malloc_and_get_section. */
3174 sxtlit->flags &= ~SEC_IN_MEMORY;
3175
3176 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
3177 {
3178 if (contents != 0)
3179 free (contents);
3180 free (table);
3181 return -1;
3182 }
3183
3184 /* There should never be any relocations left at this point, so this
3185 is quite a bit easier than what is done during relaxation. */
3186
3187 /* Copy the raw contents into a property table array and sort it. */
3188 offset = 0;
3189 for (n = 0; n < num; n++)
3190 {
3191 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
3192 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
3193 offset += 8;
3194 }
3195 qsort (table, num, sizeof (property_table_entry), property_table_compare);
3196
3197 for (n = 0; n < num; n++)
3198 {
3199 bfd_boolean remove_entry = FALSE;
3200
3201 if (table[n].size == 0)
3202 remove_entry = TRUE;
3203 else if (n > 0
3204 && (table[n-1].address + table[n-1].size == table[n].address))
3205 {
3206 table[n-1].size += table[n].size;
3207 remove_entry = TRUE;
3208 }
3209
3210 if (remove_entry)
3211 {
3212 for (m = n; m < num - 1; m++)
3213 {
3214 table[m].address = table[m+1].address;
3215 table[m].size = table[m+1].size;
3216 }
3217
3218 n--;
3219 num--;
3220 }
3221 }
3222
3223 /* Copy the data back to the raw contents. */
3224 offset = 0;
3225 for (n = 0; n < num; n++)
3226 {
3227 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
3228 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
3229 offset += 8;
3230 }
3231
3232 /* Clear the removed bytes. */
3233 if ((bfd_size_type) (num * 8) < section_size)
3234 memset (&contents[num * 8], 0, section_size - num * 8);
3235
3236 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
3237 section_size))
3238 return -1;
3239
3240 /* Copy the contents to ".got.loc". */
3241 memcpy (sgotloc->contents, contents, section_size);
3242
3243 free (contents);
3244 free (table);
3245 return num;
3246 }
3247
3248
3249 /* Finish up the dynamic sections. */
3250
3251 static bfd_boolean
3252 elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
3253 struct bfd_link_info *info)
3254 {
3255 struct elf_xtensa_link_hash_table *htab;
3256 bfd *dynobj;
3257 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
3258 Elf32_External_Dyn *dyncon, *dynconend;
3259 int num_xtlit_entries = 0;
3260
3261 if (! elf_hash_table (info)->dynamic_sections_created)
3262 return TRUE;
3263
3264 htab = elf_xtensa_hash_table (info);
3265 if (htab == NULL)
3266 return FALSE;
3267
3268 dynobj = elf_hash_table (info)->dynobj;
3269 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3270 BFD_ASSERT (sdyn != NULL);
3271
3272 /* Set the first entry in the global offset table to the address of
3273 the dynamic section. */
3274 sgot = htab->sgot;
3275 if (sgot)
3276 {
3277 BFD_ASSERT (sgot->size == 4);
3278 if (sdyn == NULL)
3279 bfd_put_32 (output_bfd, 0, sgot->contents);
3280 else
3281 bfd_put_32 (output_bfd,
3282 sdyn->output_section->vma + sdyn->output_offset,
3283 sgot->contents);
3284 }
3285
3286 srelplt = htab->srelplt;
3287 if (srelplt && srelplt->size != 0)
3288 {
3289 asection *sgotplt, *srelgot, *spltlittbl;
3290 int chunk, plt_chunks, plt_entries;
3291 Elf_Internal_Rela irela;
3292 bfd_byte *loc;
3293 unsigned rtld_reloc;
3294
3295 srelgot = htab->srelgot;
3296 spltlittbl = htab->spltlittbl;
3297 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
3298
3299 /* Find the first XTENSA_RTLD relocation. Presumably the rest
3300 of them follow immediately after.... */
3301 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
3302 {
3303 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3304 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3305 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
3306 break;
3307 }
3308 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
3309
3310 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
3311 plt_chunks =
3312 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
3313
3314 for (chunk = 0; chunk < plt_chunks; chunk++)
3315 {
3316 int chunk_entries = 0;
3317
3318 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
3319 BFD_ASSERT (sgotplt != NULL);
3320
3321 /* Emit special RTLD relocations for the first two entries in
3322 each chunk of the .got.plt section. */
3323
3324 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3325 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3326 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3327 irela.r_offset = (sgotplt->output_section->vma
3328 + sgotplt->output_offset);
3329 irela.r_addend = 1; /* tell rtld to set value to resolver function */
3330 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3331 rtld_reloc += 1;
3332 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3333
3334 /* Next literal immediately follows the first. */
3335 loc += sizeof (Elf32_External_Rela);
3336 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3337 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3338 irela.r_offset = (sgotplt->output_section->vma
3339 + sgotplt->output_offset + 4);
3340 /* Tell rtld to set value to object's link map. */
3341 irela.r_addend = 2;
3342 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3343 rtld_reloc += 1;
3344 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3345
3346 /* Fill in the literal table. */
3347 if (chunk < plt_chunks - 1)
3348 chunk_entries = PLT_ENTRIES_PER_CHUNK;
3349 else
3350 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
3351
3352 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
3353 bfd_put_32 (output_bfd,
3354 sgotplt->output_section->vma + sgotplt->output_offset,
3355 spltlittbl->contents + (chunk * 8) + 0);
3356 bfd_put_32 (output_bfd,
3357 8 + (chunk_entries * 4),
3358 spltlittbl->contents + (chunk * 8) + 4);
3359 }
3360
3361 /* All the dynamic relocations have been emitted at this point.
3362 Make sure the relocation sections are the correct size. */
3363 if (srelgot->size != (sizeof (Elf32_External_Rela)
3364 * srelgot->reloc_count)
3365 || srelplt->size != (sizeof (Elf32_External_Rela)
3366 * srelplt->reloc_count))
3367 abort ();
3368
3369 /* The .xt.lit.plt section has just been modified. This must
3370 happen before the code below which combines adjacent literal
3371 table entries, and the .xt.lit.plt contents have to be forced to
3372 the output here. */
3373 if (! bfd_set_section_contents (output_bfd,
3374 spltlittbl->output_section,
3375 spltlittbl->contents,
3376 spltlittbl->output_offset,
3377 spltlittbl->size))
3378 return FALSE;
3379 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
3380 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
3381 }
3382
3383 /* Combine adjacent literal table entries. */
3384 BFD_ASSERT (! info->relocatable);
3385 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
3386 sgotloc = htab->sgotloc;
3387 BFD_ASSERT (sgotloc);
3388 if (sxtlit)
3389 {
3390 num_xtlit_entries =
3391 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
3392 if (num_xtlit_entries < 0)
3393 return FALSE;
3394 }
3395
3396 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3397 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
3398 for (; dyncon < dynconend; dyncon++)
3399 {
3400 Elf_Internal_Dyn dyn;
3401
3402 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3403
3404 switch (dyn.d_tag)
3405 {
3406 default:
3407 break;
3408
3409 case DT_XTENSA_GOT_LOC_SZ:
3410 dyn.d_un.d_val = num_xtlit_entries;
3411 break;
3412
3413 case DT_XTENSA_GOT_LOC_OFF:
3414 dyn.d_un.d_ptr = htab->sgotloc->output_section->vma;
3415 break;
3416
3417 case DT_PLTGOT:
3418 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
3419 break;
3420
3421 case DT_JMPREL:
3422 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
3423 break;
3424
3425 case DT_PLTRELSZ:
3426 dyn.d_un.d_val = htab->srelplt->output_section->size;
3427 break;
3428
3429 case DT_RELASZ:
3430 /* Adjust RELASZ to not include JMPREL. This matches what
3431 glibc expects and what is done for several other ELF
3432 targets (e.g., i386, alpha), but the "correct" behavior
3433 seems to be unresolved. Since the linker script arranges
3434 for .rela.plt to follow all other relocation sections, we
3435 don't have to worry about changing the DT_RELA entry. */
3436 if (htab->srelplt)
3437 dyn.d_un.d_val -= htab->srelplt->output_section->size;
3438 break;
3439 }
3440
3441 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3442 }
3443
3444 return TRUE;
3445 }
3446
3447 \f
3448 /* Functions for dealing with the e_flags field. */
3449
3450 /* Merge backend specific data from an object file to the output
3451 object file when linking. */
3452
3453 static bfd_boolean
3454 elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
3455 {
3456 unsigned out_mach, in_mach;
3457 flagword out_flag, in_flag;
3458
3459 /* Check if we have the same endianness. */
3460 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
3461 return FALSE;
3462
3463 /* Don't even pretend to support mixed-format linking. */
3464 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3465 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3466 return FALSE;
3467
3468 out_flag = elf_elfheader (obfd)->e_flags;
3469 in_flag = elf_elfheader (ibfd)->e_flags;
3470
3471 out_mach = out_flag & EF_XTENSA_MACH;
3472 in_mach = in_flag & EF_XTENSA_MACH;
3473 if (out_mach != in_mach)
3474 {
3475 (*_bfd_error_handler)
3476 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
3477 ibfd, out_mach, in_mach);
3478 bfd_set_error (bfd_error_wrong_format);
3479 return FALSE;
3480 }
3481
3482 if (! elf_flags_init (obfd))
3483 {
3484 elf_flags_init (obfd) = TRUE;
3485 elf_elfheader (obfd)->e_flags = in_flag;
3486
3487 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
3488 && bfd_get_arch_info (obfd)->the_default)
3489 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
3490 bfd_get_mach (ibfd));
3491
3492 return TRUE;
3493 }
3494
3495 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
3496 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
3497
3498 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
3499 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
3500
3501 return TRUE;
3502 }
3503
3504
3505 static bfd_boolean
3506 elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
3507 {
3508 BFD_ASSERT (!elf_flags_init (abfd)
3509 || elf_elfheader (abfd)->e_flags == flags);
3510
3511 elf_elfheader (abfd)->e_flags |= flags;
3512 elf_flags_init (abfd) = TRUE;
3513
3514 return TRUE;
3515 }
3516
3517
3518 static bfd_boolean
3519 elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
3520 {
3521 FILE *f = (FILE *) farg;
3522 flagword e_flags = elf_elfheader (abfd)->e_flags;
3523
3524 fprintf (f, "\nXtensa header:\n");
3525 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
3526 fprintf (f, "\nMachine = Base\n");
3527 else
3528 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
3529
3530 fprintf (f, "Insn tables = %s\n",
3531 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
3532
3533 fprintf (f, "Literal tables = %s\n",
3534 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
3535
3536 return _bfd_elf_print_private_bfd_data (abfd, farg);
3537 }
3538
3539
3540 /* Set the right machine number for an Xtensa ELF file. */
3541
3542 static bfd_boolean
3543 elf_xtensa_object_p (bfd *abfd)
3544 {
3545 int mach;
3546 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
3547
3548 switch (arch)
3549 {
3550 case E_XTENSA_MACH:
3551 mach = bfd_mach_xtensa;
3552 break;
3553 default:
3554 return FALSE;
3555 }
3556
3557 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
3558 return TRUE;
3559 }
3560
3561
3562 /* The final processing done just before writing out an Xtensa ELF object
3563 file. This gets the Xtensa architecture right based on the machine
3564 number. */
3565
3566 static void
3567 elf_xtensa_final_write_processing (bfd *abfd,
3568 bfd_boolean linker ATTRIBUTE_UNUSED)
3569 {
3570 int mach;
3571 unsigned long val;
3572
3573 switch (mach = bfd_get_mach (abfd))
3574 {
3575 case bfd_mach_xtensa:
3576 val = E_XTENSA_MACH;
3577 break;
3578 default:
3579 return;
3580 }
3581
3582 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
3583 elf_elfheader (abfd)->e_flags |= val;
3584 }
3585
3586
3587 static enum elf_reloc_type_class
3588 elf_xtensa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
3589 const asection *rel_sec ATTRIBUTE_UNUSED,
3590 const Elf_Internal_Rela *rela)
3591 {
3592 switch ((int) ELF32_R_TYPE (rela->r_info))
3593 {
3594 case R_XTENSA_RELATIVE:
3595 return reloc_class_relative;
3596 case R_XTENSA_JMP_SLOT:
3597 return reloc_class_plt;
3598 default:
3599 return reloc_class_normal;
3600 }
3601 }
3602
3603 \f
3604 static bfd_boolean
3605 elf_xtensa_discard_info_for_section (bfd *abfd,
3606 struct elf_reloc_cookie *cookie,
3607 struct bfd_link_info *info,
3608 asection *sec)
3609 {
3610 bfd_byte *contents;
3611 bfd_vma offset, actual_offset;
3612 bfd_size_type removed_bytes = 0;
3613 bfd_size_type entry_size;
3614
3615 if (sec->output_section
3616 && bfd_is_abs_section (sec->output_section))
3617 return FALSE;
3618
3619 if (xtensa_is_proptable_section (sec))
3620 entry_size = 12;
3621 else
3622 entry_size = 8;
3623
3624 if (sec->size == 0 || sec->size % entry_size != 0)
3625 return FALSE;
3626
3627 contents = retrieve_contents (abfd, sec, info->keep_memory);
3628 if (!contents)
3629 return FALSE;
3630
3631 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
3632 if (!cookie->rels)
3633 {
3634 release_contents (sec, contents);
3635 return FALSE;
3636 }
3637
3638 /* Sort the relocations. They should already be in order when
3639 relaxation is enabled, but it might not be. */
3640 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
3641 internal_reloc_compare);
3642
3643 cookie->rel = cookie->rels;
3644 cookie->relend = cookie->rels + sec->reloc_count;
3645
3646 for (offset = 0; offset < sec->size; offset += entry_size)
3647 {
3648 actual_offset = offset - removed_bytes;
3649
3650 /* The ...symbol_deleted_p function will skip over relocs but it
3651 won't adjust their offsets, so do that here. */
3652 while (cookie->rel < cookie->relend
3653 && cookie->rel->r_offset < offset)
3654 {
3655 cookie->rel->r_offset -= removed_bytes;
3656 cookie->rel++;
3657 }
3658
3659 while (cookie->rel < cookie->relend
3660 && cookie->rel->r_offset == offset)
3661 {
3662 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
3663 {
3664 /* Remove the table entry. (If the reloc type is NONE, then
3665 the entry has already been merged with another and deleted
3666 during relaxation.) */
3667 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
3668 {
3669 /* Shift the contents up. */
3670 if (offset + entry_size < sec->size)
3671 memmove (&contents[actual_offset],
3672 &contents[actual_offset + entry_size],
3673 sec->size - offset - entry_size);
3674 removed_bytes += entry_size;
3675 }
3676
3677 /* Remove this relocation. */
3678 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3679 }
3680
3681 /* Adjust the relocation offset for previous removals. This
3682 should not be done before calling ...symbol_deleted_p
3683 because it might mess up the offset comparisons there.
3684 Make sure the offset doesn't underflow in the case where
3685 the first entry is removed. */
3686 if (cookie->rel->r_offset >= removed_bytes)
3687 cookie->rel->r_offset -= removed_bytes;
3688 else
3689 cookie->rel->r_offset = 0;
3690
3691 cookie->rel++;
3692 }
3693 }
3694
3695 if (removed_bytes != 0)
3696 {
3697 /* Adjust any remaining relocs (shouldn't be any). */
3698 for (; cookie->rel < cookie->relend; cookie->rel++)
3699 {
3700 if (cookie->rel->r_offset >= removed_bytes)
3701 cookie->rel->r_offset -= removed_bytes;
3702 else
3703 cookie->rel->r_offset = 0;
3704 }
3705
3706 /* Clear the removed bytes. */
3707 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
3708
3709 pin_contents (sec, contents);
3710 pin_internal_relocs (sec, cookie->rels);
3711
3712 /* Shrink size. */
3713 if (sec->rawsize == 0)
3714 sec->rawsize = sec->size;
3715 sec->size -= removed_bytes;
3716
3717 if (xtensa_is_littable_section (sec))
3718 {
3719 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
3720 if (sgotloc)
3721 sgotloc->size -= removed_bytes;
3722 }
3723 }
3724 else
3725 {
3726 release_contents (sec, contents);
3727 release_internal_relocs (sec, cookie->rels);
3728 }
3729
3730 return (removed_bytes != 0);
3731 }
3732
3733
3734 static bfd_boolean
3735 elf_xtensa_discard_info (bfd *abfd,
3736 struct elf_reloc_cookie *cookie,
3737 struct bfd_link_info *info)
3738 {
3739 asection *sec;
3740 bfd_boolean changed = FALSE;
3741
3742 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3743 {
3744 if (xtensa_is_property_section (sec))
3745 {
3746 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
3747 changed = TRUE;
3748 }
3749 }
3750
3751 return changed;
3752 }
3753
3754
3755 static bfd_boolean
3756 elf_xtensa_ignore_discarded_relocs (asection *sec)
3757 {
3758 return xtensa_is_property_section (sec);
3759 }
3760
3761
3762 static unsigned int
3763 elf_xtensa_action_discarded (asection *sec)
3764 {
3765 if (strcmp (".xt_except_table", sec->name) == 0)
3766 return 0;
3767
3768 if (strcmp (".xt_except_desc", sec->name) == 0)
3769 return 0;
3770
3771 return _bfd_elf_default_action_discarded (sec);
3772 }
3773
3774 \f
3775 /* Support for core dump NOTE sections. */
3776
3777 static bfd_boolean
3778 elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
3779 {
3780 int offset;
3781 unsigned int size;
3782
3783 /* The size for Xtensa is variable, so don't try to recognize the format
3784 based on the size. Just assume this is GNU/Linux. */
3785
3786 /* pr_cursig */
3787 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
3788
3789 /* pr_pid */
3790 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
3791
3792 /* pr_reg */
3793 offset = 72;
3794 size = note->descsz - offset - 4;
3795
3796 /* Make a ".reg/999" section. */
3797 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
3798 size, note->descpos + offset);
3799 }
3800
3801
3802 static bfd_boolean
3803 elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3804 {
3805 switch (note->descsz)
3806 {
3807 default:
3808 return FALSE;
3809
3810 case 128: /* GNU/Linux elf_prpsinfo */
3811 elf_tdata (abfd)->core->program
3812 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3813 elf_tdata (abfd)->core->command
3814 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3815 }
3816
3817 /* Note that for some reason, a spurious space is tacked
3818 onto the end of the args in some (at least one anyway)
3819 implementations, so strip it off if it exists. */
3820
3821 {
3822 char *command = elf_tdata (abfd)->core->command;
3823 int n = strlen (command);
3824
3825 if (0 < n && command[n - 1] == ' ')
3826 command[n - 1] = '\0';
3827 }
3828
3829 return TRUE;
3830 }
3831
3832 \f
3833 /* Generic Xtensa configurability stuff. */
3834
3835 static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3836 static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3837 static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3838 static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3839 static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3840 static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3841 static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3842 static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3843
3844 static void
3845 init_call_opcodes (void)
3846 {
3847 if (callx0_op == XTENSA_UNDEFINED)
3848 {
3849 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3850 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3851 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3852 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3853 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3854 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3855 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3856 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3857 }
3858 }
3859
3860
3861 static bfd_boolean
3862 is_indirect_call_opcode (xtensa_opcode opcode)
3863 {
3864 init_call_opcodes ();
3865 return (opcode == callx0_op
3866 || opcode == callx4_op
3867 || opcode == callx8_op
3868 || opcode == callx12_op);
3869 }
3870
3871
3872 static bfd_boolean
3873 is_direct_call_opcode (xtensa_opcode opcode)
3874 {
3875 init_call_opcodes ();
3876 return (opcode == call0_op
3877 || opcode == call4_op
3878 || opcode == call8_op
3879 || opcode == call12_op);
3880 }
3881
3882
3883 static bfd_boolean
3884 is_windowed_call_opcode (xtensa_opcode opcode)
3885 {
3886 init_call_opcodes ();
3887 return (opcode == call4_op
3888 || opcode == call8_op
3889 || opcode == call12_op
3890 || opcode == callx4_op
3891 || opcode == callx8_op
3892 || opcode == callx12_op);
3893 }
3894
3895
3896 static bfd_boolean
3897 get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst)
3898 {
3899 unsigned dst = (unsigned) -1;
3900
3901 init_call_opcodes ();
3902 if (opcode == callx0_op)
3903 dst = 0;
3904 else if (opcode == callx4_op)
3905 dst = 4;
3906 else if (opcode == callx8_op)
3907 dst = 8;
3908 else if (opcode == callx12_op)
3909 dst = 12;
3910
3911 if (dst == (unsigned) -1)
3912 return FALSE;
3913
3914 *pdst = dst;
3915 return TRUE;
3916 }
3917
3918
3919 static xtensa_opcode
3920 get_const16_opcode (void)
3921 {
3922 static bfd_boolean done_lookup = FALSE;
3923 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3924 if (!done_lookup)
3925 {
3926 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3927 done_lookup = TRUE;
3928 }
3929 return const16_opcode;
3930 }
3931
3932
3933 static xtensa_opcode
3934 get_l32r_opcode (void)
3935 {
3936 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
3937 static bfd_boolean done_lookup = FALSE;
3938
3939 if (!done_lookup)
3940 {
3941 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
3942 done_lookup = TRUE;
3943 }
3944 return l32r_opcode;
3945 }
3946
3947
3948 static bfd_vma
3949 l32r_offset (bfd_vma addr, bfd_vma pc)
3950 {
3951 bfd_vma offset;
3952
3953 offset = addr - ((pc+3) & -4);
3954 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3955 offset = (signed int) offset >> 2;
3956 BFD_ASSERT ((signed int) offset >> 16 == -1);
3957 return offset;
3958 }
3959
3960
3961 static int
3962 get_relocation_opnd (xtensa_opcode opcode, int r_type)
3963 {
3964 xtensa_isa isa = xtensa_default_isa;
3965 int last_immed, last_opnd, opi;
3966
3967 if (opcode == XTENSA_UNDEFINED)
3968 return XTENSA_UNDEFINED;
3969
3970 /* Find the last visible PC-relative immediate operand for the opcode.
3971 If there are no PC-relative immediates, then choose the last visible
3972 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3973 last_immed = XTENSA_UNDEFINED;
3974 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3975 for (opi = last_opnd - 1; opi >= 0; opi--)
3976 {
3977 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3978 continue;
3979 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3980 {
3981 last_immed = opi;
3982 break;
3983 }
3984 if (last_immed == XTENSA_UNDEFINED
3985 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3986 last_immed = opi;
3987 }
3988 if (last_immed < 0)
3989 return XTENSA_UNDEFINED;
3990
3991 /* If the operand number was specified in an old-style relocation,
3992 check for consistency with the operand computed above. */
3993 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3994 {
3995 int reloc_opnd = r_type - R_XTENSA_OP0;
3996 if (reloc_opnd != last_immed)
3997 return XTENSA_UNDEFINED;
3998 }
3999
4000 return last_immed;
4001 }
4002
4003
4004 int
4005 get_relocation_slot (int r_type)
4006 {
4007 switch (r_type)
4008 {
4009 case R_XTENSA_OP0:
4010 case R_XTENSA_OP1:
4011 case R_XTENSA_OP2:
4012 return 0;
4013
4014 default:
4015 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4016 return r_type - R_XTENSA_SLOT0_OP;
4017 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4018 return r_type - R_XTENSA_SLOT0_ALT;
4019 break;
4020 }
4021
4022 return XTENSA_UNDEFINED;
4023 }
4024
4025
4026 /* Get the opcode for a relocation. */
4027
4028 static xtensa_opcode
4029 get_relocation_opcode (bfd *abfd,
4030 asection *sec,
4031 bfd_byte *contents,
4032 Elf_Internal_Rela *irel)
4033 {
4034 static xtensa_insnbuf ibuff = NULL;
4035 static xtensa_insnbuf sbuff = NULL;
4036 xtensa_isa isa = xtensa_default_isa;
4037 xtensa_format fmt;
4038 int slot;
4039
4040 if (contents == NULL)
4041 return XTENSA_UNDEFINED;
4042
4043 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
4044 return XTENSA_UNDEFINED;
4045
4046 if (ibuff == NULL)
4047 {
4048 ibuff = xtensa_insnbuf_alloc (isa);
4049 sbuff = xtensa_insnbuf_alloc (isa);
4050 }
4051
4052 /* Decode the instruction. */
4053 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
4054 sec->size - irel->r_offset);
4055 fmt = xtensa_format_decode (isa, ibuff);
4056 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
4057 if (slot == XTENSA_UNDEFINED)
4058 return XTENSA_UNDEFINED;
4059 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
4060 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
4061 }
4062
4063
4064 bfd_boolean
4065 is_l32r_relocation (bfd *abfd,
4066 asection *sec,
4067 bfd_byte *contents,
4068 Elf_Internal_Rela *irel)
4069 {
4070 xtensa_opcode opcode;
4071 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
4072 return FALSE;
4073 opcode = get_relocation_opcode (abfd, sec, contents, irel);
4074 return (opcode == get_l32r_opcode ());
4075 }
4076
4077
4078 static bfd_size_type
4079 get_asm_simplify_size (bfd_byte *contents,
4080 bfd_size_type content_len,
4081 bfd_size_type offset)
4082 {
4083 bfd_size_type insnlen, size = 0;
4084
4085 /* Decode the size of the next two instructions. */
4086 insnlen = insn_decode_len (contents, content_len, offset);
4087 if (insnlen == 0)
4088 return 0;
4089
4090 size += insnlen;
4091
4092 insnlen = insn_decode_len (contents, content_len, offset + size);
4093 if (insnlen == 0)
4094 return 0;
4095
4096 size += insnlen;
4097 return size;
4098 }
4099
4100
4101 bfd_boolean
4102 is_alt_relocation (int r_type)
4103 {
4104 return (r_type >= R_XTENSA_SLOT0_ALT
4105 && r_type <= R_XTENSA_SLOT14_ALT);
4106 }
4107
4108
4109 bfd_boolean
4110 is_operand_relocation (int r_type)
4111 {
4112 switch (r_type)
4113 {
4114 case R_XTENSA_OP0:
4115 case R_XTENSA_OP1:
4116 case R_XTENSA_OP2:
4117 return TRUE;
4118
4119 default:
4120 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4121 return TRUE;
4122 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4123 return TRUE;
4124 break;
4125 }
4126
4127 return FALSE;
4128 }
4129
4130
4131 #define MIN_INSN_LENGTH 2
4132
4133 /* Return 0 if it fails to decode. */
4134
4135 bfd_size_type
4136 insn_decode_len (bfd_byte *contents,
4137 bfd_size_type content_len,
4138 bfd_size_type offset)
4139 {
4140 int insn_len;
4141 xtensa_isa isa = xtensa_default_isa;
4142 xtensa_format fmt;
4143 static xtensa_insnbuf ibuff = NULL;
4144
4145 if (offset + MIN_INSN_LENGTH > content_len)
4146 return 0;
4147
4148 if (ibuff == NULL)
4149 ibuff = xtensa_insnbuf_alloc (isa);
4150 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
4151 content_len - offset);
4152 fmt = xtensa_format_decode (isa, ibuff);
4153 if (fmt == XTENSA_UNDEFINED)
4154 return 0;
4155 insn_len = xtensa_format_length (isa, fmt);
4156 if (insn_len == XTENSA_UNDEFINED)
4157 return 0;
4158 return insn_len;
4159 }
4160
4161
4162 /* Decode the opcode for a single slot instruction.
4163 Return 0 if it fails to decode or the instruction is multi-slot. */
4164
4165 xtensa_opcode
4166 insn_decode_opcode (bfd_byte *contents,
4167 bfd_size_type content_len,
4168 bfd_size_type offset,
4169 int slot)
4170 {
4171 xtensa_isa isa = xtensa_default_isa;
4172 xtensa_format fmt;
4173 static xtensa_insnbuf insnbuf = NULL;
4174 static xtensa_insnbuf slotbuf = NULL;
4175
4176 if (offset + MIN_INSN_LENGTH > content_len)
4177 return XTENSA_UNDEFINED;
4178
4179 if (insnbuf == NULL)
4180 {
4181 insnbuf = xtensa_insnbuf_alloc (isa);
4182 slotbuf = xtensa_insnbuf_alloc (isa);
4183 }
4184
4185 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4186 content_len - offset);
4187 fmt = xtensa_format_decode (isa, insnbuf);
4188 if (fmt == XTENSA_UNDEFINED)
4189 return XTENSA_UNDEFINED;
4190
4191 if (slot >= xtensa_format_num_slots (isa, fmt))
4192 return XTENSA_UNDEFINED;
4193
4194 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
4195 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
4196 }
4197
4198
4199 /* The offset is the offset in the contents.
4200 The address is the address of that offset. */
4201
4202 static bfd_boolean
4203 check_branch_target_aligned (bfd_byte *contents,
4204 bfd_size_type content_length,
4205 bfd_vma offset,
4206 bfd_vma address)
4207 {
4208 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
4209 if (insn_len == 0)
4210 return FALSE;
4211 return check_branch_target_aligned_address (address, insn_len);
4212 }
4213
4214
4215 static bfd_boolean
4216 check_loop_aligned (bfd_byte *contents,
4217 bfd_size_type content_length,
4218 bfd_vma offset,
4219 bfd_vma address)
4220 {
4221 bfd_size_type loop_len, insn_len;
4222 xtensa_opcode opcode;
4223
4224 opcode = insn_decode_opcode (contents, content_length, offset, 0);
4225 if (opcode == XTENSA_UNDEFINED
4226 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
4227 {
4228 BFD_ASSERT (FALSE);
4229 return FALSE;
4230 }
4231
4232 loop_len = insn_decode_len (contents, content_length, offset);
4233 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
4234 if (loop_len == 0 || insn_len == 0)
4235 {
4236 BFD_ASSERT (FALSE);
4237 return FALSE;
4238 }
4239
4240 return check_branch_target_aligned_address (address + loop_len, insn_len);
4241 }
4242
4243
4244 static bfd_boolean
4245 check_branch_target_aligned_address (bfd_vma addr, int len)
4246 {
4247 if (len == 8)
4248 return (addr % 8 == 0);
4249 return ((addr >> 2) == ((addr + len - 1) >> 2));
4250 }
4251
4252 \f
4253 /* Instruction widening and narrowing. */
4254
4255 /* When FLIX is available we need to access certain instructions only
4256 when they are 16-bit or 24-bit instructions. This table caches
4257 information about such instructions by walking through all the
4258 opcodes and finding the smallest single-slot format into which each
4259 can be encoded. */
4260
4261 static xtensa_format *op_single_fmt_table = NULL;
4262
4263
4264 static void
4265 init_op_single_format_table (void)
4266 {
4267 xtensa_isa isa = xtensa_default_isa;
4268 xtensa_insnbuf ibuf;
4269 xtensa_opcode opcode;
4270 xtensa_format fmt;
4271 int num_opcodes;
4272
4273 if (op_single_fmt_table)
4274 return;
4275
4276 ibuf = xtensa_insnbuf_alloc (isa);
4277 num_opcodes = xtensa_isa_num_opcodes (isa);
4278
4279 op_single_fmt_table = (xtensa_format *)
4280 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
4281 for (opcode = 0; opcode < num_opcodes; opcode++)
4282 {
4283 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
4284 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
4285 {
4286 if (xtensa_format_num_slots (isa, fmt) == 1
4287 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
4288 {
4289 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
4290 int fmt_length = xtensa_format_length (isa, fmt);
4291 if (old_fmt == XTENSA_UNDEFINED
4292 || fmt_length < xtensa_format_length (isa, old_fmt))
4293 op_single_fmt_table[opcode] = fmt;
4294 }
4295 }
4296 }
4297 xtensa_insnbuf_free (isa, ibuf);
4298 }
4299
4300
4301 static xtensa_format
4302 get_single_format (xtensa_opcode opcode)
4303 {
4304 init_op_single_format_table ();
4305 return op_single_fmt_table[opcode];
4306 }
4307
4308
4309 /* For the set of narrowable instructions we do NOT include the
4310 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
4311 involved during linker relaxation that may require these to
4312 re-expand in some conditions. Also, the narrowing "or" -> mov.n
4313 requires special case code to ensure it only works when op1 == op2. */
4314
4315 struct string_pair
4316 {
4317 const char *wide;
4318 const char *narrow;
4319 };
4320
4321 struct string_pair narrowable[] =
4322 {
4323 { "add", "add.n" },
4324 { "addi", "addi.n" },
4325 { "addmi", "addi.n" },
4326 { "l32i", "l32i.n" },
4327 { "movi", "movi.n" },
4328 { "ret", "ret.n" },
4329 { "retw", "retw.n" },
4330 { "s32i", "s32i.n" },
4331 { "or", "mov.n" } /* special case only when op1 == op2 */
4332 };
4333
4334 struct string_pair widenable[] =
4335 {
4336 { "add", "add.n" },
4337 { "addi", "addi.n" },
4338 { "addmi", "addi.n" },
4339 { "beqz", "beqz.n" },
4340 { "bnez", "bnez.n" },
4341 { "l32i", "l32i.n" },
4342 { "movi", "movi.n" },
4343 { "ret", "ret.n" },
4344 { "retw", "retw.n" },
4345 { "s32i", "s32i.n" },
4346 { "or", "mov.n" } /* special case only when op1 == op2 */
4347 };
4348
4349
4350 /* Check if an instruction can be "narrowed", i.e., changed from a standard
4351 3-byte instruction to a 2-byte "density" instruction. If it is valid,
4352 return the instruction buffer holding the narrow instruction. Otherwise,
4353 return 0. The set of valid narrowing are specified by a string table
4354 but require some special case operand checks in some cases. */
4355
4356 static xtensa_insnbuf
4357 can_narrow_instruction (xtensa_insnbuf slotbuf,
4358 xtensa_format fmt,
4359 xtensa_opcode opcode)
4360 {
4361 xtensa_isa isa = xtensa_default_isa;
4362 xtensa_format o_fmt;
4363 unsigned opi;
4364
4365 static xtensa_insnbuf o_insnbuf = NULL;
4366 static xtensa_insnbuf o_slotbuf = NULL;
4367
4368 if (o_insnbuf == NULL)
4369 {
4370 o_insnbuf = xtensa_insnbuf_alloc (isa);
4371 o_slotbuf = xtensa_insnbuf_alloc (isa);
4372 }
4373
4374 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
4375 {
4376 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
4377
4378 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
4379 {
4380 uint32 value, newval;
4381 int i, operand_count, o_operand_count;
4382 xtensa_opcode o_opcode;
4383
4384 /* Address does not matter in this case. We might need to
4385 fix it to handle branches/jumps. */
4386 bfd_vma self_address = 0;
4387
4388 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
4389 if (o_opcode == XTENSA_UNDEFINED)
4390 return 0;
4391 o_fmt = get_single_format (o_opcode);
4392 if (o_fmt == XTENSA_UNDEFINED)
4393 return 0;
4394
4395 if (xtensa_format_length (isa, fmt) != 3
4396 || xtensa_format_length (isa, o_fmt) != 2)
4397 return 0;
4398
4399 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4400 operand_count = xtensa_opcode_num_operands (isa, opcode);
4401 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4402
4403 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4404 return 0;
4405
4406 if (!is_or)
4407 {
4408 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4409 return 0;
4410 }
4411 else
4412 {
4413 uint32 rawval0, rawval1, rawval2;
4414
4415 if (o_operand_count + 1 != operand_count
4416 || xtensa_operand_get_field (isa, opcode, 0,
4417 fmt, 0, slotbuf, &rawval0) != 0
4418 || xtensa_operand_get_field (isa, opcode, 1,
4419 fmt, 0, slotbuf, &rawval1) != 0
4420 || xtensa_operand_get_field (isa, opcode, 2,
4421 fmt, 0, slotbuf, &rawval2) != 0
4422 || rawval1 != rawval2
4423 || rawval0 == rawval1 /* it is a nop */)
4424 return 0;
4425 }
4426
4427 for (i = 0; i < o_operand_count; ++i)
4428 {
4429 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
4430 slotbuf, &value)
4431 || xtensa_operand_decode (isa, opcode, i, &value))
4432 return 0;
4433
4434 /* PC-relative branches need adjustment, but
4435 the PC-rel operand will always have a relocation. */
4436 newval = value;
4437 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4438 self_address)
4439 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4440 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4441 o_slotbuf, newval))
4442 return 0;
4443 }
4444
4445 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4446 return 0;
4447
4448 return o_insnbuf;
4449 }
4450 }
4451 return 0;
4452 }
4453
4454
4455 /* Attempt to narrow an instruction. If the narrowing is valid, perform
4456 the action in-place directly into the contents and return TRUE. Otherwise,
4457 the return value is FALSE and the contents are not modified. */
4458
4459 static bfd_boolean
4460 narrow_instruction (bfd_byte *contents,
4461 bfd_size_type content_length,
4462 bfd_size_type offset)
4463 {
4464 xtensa_opcode opcode;
4465 bfd_size_type insn_len;
4466 xtensa_isa isa = xtensa_default_isa;
4467 xtensa_format fmt;
4468 xtensa_insnbuf o_insnbuf;
4469
4470 static xtensa_insnbuf insnbuf = NULL;
4471 static xtensa_insnbuf slotbuf = NULL;
4472
4473 if (insnbuf == NULL)
4474 {
4475 insnbuf = xtensa_insnbuf_alloc (isa);
4476 slotbuf = xtensa_insnbuf_alloc (isa);
4477 }
4478
4479 BFD_ASSERT (offset < content_length);
4480
4481 if (content_length < 2)
4482 return FALSE;
4483
4484 /* We will hand-code a few of these for a little while.
4485 These have all been specified in the assembler aleady. */
4486 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4487 content_length - offset);
4488 fmt = xtensa_format_decode (isa, insnbuf);
4489 if (xtensa_format_num_slots (isa, fmt) != 1)
4490 return FALSE;
4491
4492 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4493 return FALSE;
4494
4495 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4496 if (opcode == XTENSA_UNDEFINED)
4497 return FALSE;
4498 insn_len = xtensa_format_length (isa, fmt);
4499 if (insn_len > content_length)
4500 return FALSE;
4501
4502 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
4503 if (o_insnbuf)
4504 {
4505 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4506 content_length - offset);
4507 return TRUE;
4508 }
4509
4510 return FALSE;
4511 }
4512
4513
4514 /* Check if an instruction can be "widened", i.e., changed from a 2-byte
4515 "density" instruction to a standard 3-byte instruction. If it is valid,
4516 return the instruction buffer holding the wide instruction. Otherwise,
4517 return 0. The set of valid widenings are specified by a string table
4518 but require some special case operand checks in some cases. */
4519
4520 static xtensa_insnbuf
4521 can_widen_instruction (xtensa_insnbuf slotbuf,
4522 xtensa_format fmt,
4523 xtensa_opcode opcode)
4524 {
4525 xtensa_isa isa = xtensa_default_isa;
4526 xtensa_format o_fmt;
4527 unsigned opi;
4528
4529 static xtensa_insnbuf o_insnbuf = NULL;
4530 static xtensa_insnbuf o_slotbuf = NULL;
4531
4532 if (o_insnbuf == NULL)
4533 {
4534 o_insnbuf = xtensa_insnbuf_alloc (isa);
4535 o_slotbuf = xtensa_insnbuf_alloc (isa);
4536 }
4537
4538 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
4539 {
4540 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
4541 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
4542 || strcmp ("bnez", widenable[opi].wide) == 0);
4543
4544 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
4545 {
4546 uint32 value, newval;
4547 int i, operand_count, o_operand_count, check_operand_count;
4548 xtensa_opcode o_opcode;
4549
4550 /* Address does not matter in this case. We might need to fix it
4551 to handle branches/jumps. */
4552 bfd_vma self_address = 0;
4553
4554 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
4555 if (o_opcode == XTENSA_UNDEFINED)
4556 return 0;
4557 o_fmt = get_single_format (o_opcode);
4558 if (o_fmt == XTENSA_UNDEFINED)
4559 return 0;
4560
4561 if (xtensa_format_length (isa, fmt) != 2
4562 || xtensa_format_length (isa, o_fmt) != 3)
4563 return 0;
4564
4565 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4566 operand_count = xtensa_opcode_num_operands (isa, opcode);
4567 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4568 check_operand_count = o_operand_count;
4569
4570 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4571 return 0;
4572
4573 if (!is_or)
4574 {
4575 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4576 return 0;
4577 }
4578 else
4579 {
4580 uint32 rawval0, rawval1;
4581
4582 if (o_operand_count != operand_count + 1
4583 || xtensa_operand_get_field (isa, opcode, 0,
4584 fmt, 0, slotbuf, &rawval0) != 0
4585 || xtensa_operand_get_field (isa, opcode, 1,
4586 fmt, 0, slotbuf, &rawval1) != 0
4587 || rawval0 == rawval1 /* it is a nop */)
4588 return 0;
4589 }
4590 if (is_branch)
4591 check_operand_count--;
4592
4593 for (i = 0; i < check_operand_count; i++)
4594 {
4595 int new_i = i;
4596 if (is_or && i == o_operand_count - 1)
4597 new_i = i - 1;
4598 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
4599 slotbuf, &value)
4600 || xtensa_operand_decode (isa, opcode, new_i, &value))
4601 return 0;
4602
4603 /* PC-relative branches need adjustment, but
4604 the PC-rel operand will always have a relocation. */
4605 newval = value;
4606 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4607 self_address)
4608 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4609 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4610 o_slotbuf, newval))
4611 return 0;
4612 }
4613
4614 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4615 return 0;
4616
4617 return o_insnbuf;
4618 }
4619 }
4620 return 0;
4621 }
4622
4623
4624 /* Attempt to widen an instruction. If the widening is valid, perform
4625 the action in-place directly into the contents and return TRUE. Otherwise,
4626 the return value is FALSE and the contents are not modified. */
4627
4628 static bfd_boolean
4629 widen_instruction (bfd_byte *contents,
4630 bfd_size_type content_length,
4631 bfd_size_type offset)
4632 {
4633 xtensa_opcode opcode;
4634 bfd_size_type insn_len;
4635 xtensa_isa isa = xtensa_default_isa;
4636 xtensa_format fmt;
4637 xtensa_insnbuf o_insnbuf;
4638
4639 static xtensa_insnbuf insnbuf = NULL;
4640 static xtensa_insnbuf slotbuf = NULL;
4641
4642 if (insnbuf == NULL)
4643 {
4644 insnbuf = xtensa_insnbuf_alloc (isa);
4645 slotbuf = xtensa_insnbuf_alloc (isa);
4646 }
4647
4648 BFD_ASSERT (offset < content_length);
4649
4650 if (content_length < 2)
4651 return FALSE;
4652
4653 /* We will hand-code a few of these for a little while.
4654 These have all been specified in the assembler aleady. */
4655 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4656 content_length - offset);
4657 fmt = xtensa_format_decode (isa, insnbuf);
4658 if (xtensa_format_num_slots (isa, fmt) != 1)
4659 return FALSE;
4660
4661 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4662 return FALSE;
4663
4664 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4665 if (opcode == XTENSA_UNDEFINED)
4666 return FALSE;
4667 insn_len = xtensa_format_length (isa, fmt);
4668 if (insn_len > content_length)
4669 return FALSE;
4670
4671 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
4672 if (o_insnbuf)
4673 {
4674 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4675 content_length - offset);
4676 return TRUE;
4677 }
4678 return FALSE;
4679 }
4680
4681 \f
4682 /* Code for transforming CALLs at link-time. */
4683
4684 static bfd_reloc_status_type
4685 elf_xtensa_do_asm_simplify (bfd_byte *contents,
4686 bfd_vma address,
4687 bfd_vma content_length,
4688 char **error_message)
4689 {
4690 static xtensa_insnbuf insnbuf = NULL;
4691 static xtensa_insnbuf slotbuf = NULL;
4692 xtensa_format core_format = XTENSA_UNDEFINED;
4693 xtensa_opcode opcode;
4694 xtensa_opcode direct_call_opcode;
4695 xtensa_isa isa = xtensa_default_isa;
4696 bfd_byte *chbuf = contents + address;
4697 int opn;
4698
4699 if (insnbuf == NULL)
4700 {
4701 insnbuf = xtensa_insnbuf_alloc (isa);
4702 slotbuf = xtensa_insnbuf_alloc (isa);
4703 }
4704
4705 if (content_length < address)
4706 {
4707 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4708 return bfd_reloc_other;
4709 }
4710
4711 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
4712 direct_call_opcode = swap_callx_for_call_opcode (opcode);
4713 if (direct_call_opcode == XTENSA_UNDEFINED)
4714 {
4715 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4716 return bfd_reloc_other;
4717 }
4718
4719 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
4720 core_format = xtensa_format_lookup (isa, "x24");
4721 opcode = xtensa_opcode_lookup (isa, "or");
4722 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
4723 for (opn = 0; opn < 3; opn++)
4724 {
4725 uint32 regno = 1;
4726 xtensa_operand_encode (isa, opcode, opn, &regno);
4727 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
4728 slotbuf, regno);
4729 }
4730 xtensa_format_encode (isa, core_format, insnbuf);
4731 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4732 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
4733
4734 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
4735 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
4736 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
4737
4738 xtensa_format_encode (isa, core_format, insnbuf);
4739 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4740 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
4741 content_length - address - 3);
4742
4743 return bfd_reloc_ok;
4744 }
4745
4746
4747 static bfd_reloc_status_type
4748 contract_asm_expansion (bfd_byte *contents,
4749 bfd_vma content_length,
4750 Elf_Internal_Rela *irel,
4751 char **error_message)
4752 {
4753 bfd_reloc_status_type retval =
4754 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
4755 error_message);
4756
4757 if (retval != bfd_reloc_ok)
4758 return bfd_reloc_dangerous;
4759
4760 /* Update the irel->r_offset field so that the right immediate and
4761 the right instruction are modified during the relocation. */
4762 irel->r_offset += 3;
4763 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
4764 return bfd_reloc_ok;
4765 }
4766
4767
4768 static xtensa_opcode
4769 swap_callx_for_call_opcode (xtensa_opcode opcode)
4770 {
4771 init_call_opcodes ();
4772
4773 if (opcode == callx0_op) return call0_op;
4774 if (opcode == callx4_op) return call4_op;
4775 if (opcode == callx8_op) return call8_op;
4776 if (opcode == callx12_op) return call12_op;
4777
4778 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
4779 return XTENSA_UNDEFINED;
4780 }
4781
4782
4783 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
4784 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
4785 If not, return XTENSA_UNDEFINED. */
4786
4787 #define L32R_TARGET_REG_OPERAND 0
4788 #define CONST16_TARGET_REG_OPERAND 0
4789 #define CALLN_SOURCE_OPERAND 0
4790
4791 static xtensa_opcode
4792 get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
4793 {
4794 static xtensa_insnbuf insnbuf = NULL;
4795 static xtensa_insnbuf slotbuf = NULL;
4796 xtensa_format fmt;
4797 xtensa_opcode opcode;
4798 xtensa_isa isa = xtensa_default_isa;
4799 uint32 regno, const16_regno, call_regno;
4800 int offset = 0;
4801
4802 if (insnbuf == NULL)
4803 {
4804 insnbuf = xtensa_insnbuf_alloc (isa);
4805 slotbuf = xtensa_insnbuf_alloc (isa);
4806 }
4807
4808 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4809 fmt = xtensa_format_decode (isa, insnbuf);
4810 if (fmt == XTENSA_UNDEFINED
4811 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4812 return XTENSA_UNDEFINED;
4813
4814 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4815 if (opcode == XTENSA_UNDEFINED)
4816 return XTENSA_UNDEFINED;
4817
4818 if (opcode == get_l32r_opcode ())
4819 {
4820 if (p_uses_l32r)
4821 *p_uses_l32r = TRUE;
4822 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4823 fmt, 0, slotbuf, &regno)
4824 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4825 &regno))
4826 return XTENSA_UNDEFINED;
4827 }
4828 else if (opcode == get_const16_opcode ())
4829 {
4830 if (p_uses_l32r)
4831 *p_uses_l32r = FALSE;
4832 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4833 fmt, 0, slotbuf, &regno)
4834 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4835 &regno))
4836 return XTENSA_UNDEFINED;
4837
4838 /* Check that the next instruction is also CONST16. */
4839 offset += xtensa_format_length (isa, fmt);
4840 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4841 fmt = xtensa_format_decode (isa, insnbuf);
4842 if (fmt == XTENSA_UNDEFINED
4843 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4844 return XTENSA_UNDEFINED;
4845 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4846 if (opcode != get_const16_opcode ())
4847 return XTENSA_UNDEFINED;
4848
4849 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4850 fmt, 0, slotbuf, &const16_regno)
4851 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4852 &const16_regno)
4853 || const16_regno != regno)
4854 return XTENSA_UNDEFINED;
4855 }
4856 else
4857 return XTENSA_UNDEFINED;
4858
4859 /* Next instruction should be an CALLXn with operand 0 == regno. */
4860 offset += xtensa_format_length (isa, fmt);
4861 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4862 fmt = xtensa_format_decode (isa, insnbuf);
4863 if (fmt == XTENSA_UNDEFINED
4864 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4865 return XTENSA_UNDEFINED;
4866 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4867 if (opcode == XTENSA_UNDEFINED
4868 || !is_indirect_call_opcode (opcode))
4869 return XTENSA_UNDEFINED;
4870
4871 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4872 fmt, 0, slotbuf, &call_regno)
4873 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4874 &call_regno))
4875 return XTENSA_UNDEFINED;
4876
4877 if (call_regno != regno)
4878 return XTENSA_UNDEFINED;
4879
4880 return opcode;
4881 }
4882
4883 \f
4884 /* Data structures used during relaxation. */
4885
4886 /* r_reloc: relocation values. */
4887
4888 /* Through the relaxation process, we need to keep track of the values
4889 that will result from evaluating relocations. The standard ELF
4890 relocation structure is not sufficient for this purpose because we're
4891 operating on multiple input files at once, so we need to know which
4892 input file a relocation refers to. The r_reloc structure thus
4893 records both the input file (bfd) and ELF relocation.
4894
4895 For efficiency, an r_reloc also contains a "target_offset" field to
4896 cache the target-section-relative offset value that is represented by
4897 the relocation.
4898
4899 The r_reloc also contains a virtual offset that allows multiple
4900 inserted literals to be placed at the same "address" with
4901 different offsets. */
4902
4903 typedef struct r_reloc_struct r_reloc;
4904
4905 struct r_reloc_struct
4906 {
4907 bfd *abfd;
4908 Elf_Internal_Rela rela;
4909 bfd_vma target_offset;
4910 bfd_vma virtual_offset;
4911 };
4912
4913
4914 /* The r_reloc structure is included by value in literal_value, but not
4915 every literal_value has an associated relocation -- some are simple
4916 constants. In such cases, we set all the fields in the r_reloc
4917 struct to zero. The r_reloc_is_const function should be used to
4918 detect this case. */
4919
4920 static bfd_boolean
4921 r_reloc_is_const (const r_reloc *r_rel)
4922 {
4923 return (r_rel->abfd == NULL);
4924 }
4925
4926
4927 static bfd_vma
4928 r_reloc_get_target_offset (const r_reloc *r_rel)
4929 {
4930 bfd_vma target_offset;
4931 unsigned long r_symndx;
4932
4933 BFD_ASSERT (!r_reloc_is_const (r_rel));
4934 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4935 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4936 return (target_offset + r_rel->rela.r_addend);
4937 }
4938
4939
4940 static struct elf_link_hash_entry *
4941 r_reloc_get_hash_entry (const r_reloc *r_rel)
4942 {
4943 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4944 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4945 }
4946
4947
4948 static asection *
4949 r_reloc_get_section (const r_reloc *r_rel)
4950 {
4951 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4952 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4953 }
4954
4955
4956 static bfd_boolean
4957 r_reloc_is_defined (const r_reloc *r_rel)
4958 {
4959 asection *sec;
4960 if (r_rel == NULL)
4961 return FALSE;
4962
4963 sec = r_reloc_get_section (r_rel);
4964 if (sec == bfd_abs_section_ptr
4965 || sec == bfd_com_section_ptr
4966 || sec == bfd_und_section_ptr)
4967 return FALSE;
4968 return TRUE;
4969 }
4970
4971
4972 static void
4973 r_reloc_init (r_reloc *r_rel,
4974 bfd *abfd,
4975 Elf_Internal_Rela *irel,
4976 bfd_byte *contents,
4977 bfd_size_type content_length)
4978 {
4979 int r_type;
4980 reloc_howto_type *howto;
4981
4982 if (irel)
4983 {
4984 r_rel->rela = *irel;
4985 r_rel->abfd = abfd;
4986 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4987 r_rel->virtual_offset = 0;
4988 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4989 howto = &elf_howto_table[r_type];
4990 if (howto->partial_inplace)
4991 {
4992 bfd_vma inplace_val;
4993 BFD_ASSERT (r_rel->rela.r_offset < content_length);
4994
4995 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
4996 r_rel->target_offset += inplace_val;
4997 }
4998 }
4999 else
5000 memset (r_rel, 0, sizeof (r_reloc));
5001 }
5002
5003
5004 #if DEBUG
5005
5006 static void
5007 print_r_reloc (FILE *fp, const r_reloc *r_rel)
5008 {
5009 if (r_reloc_is_defined (r_rel))
5010 {
5011 asection *sec = r_reloc_get_section (r_rel);
5012 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
5013 }
5014 else if (r_reloc_get_hash_entry (r_rel))
5015 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
5016 else
5017 fprintf (fp, " ?? + ");
5018
5019 fprintf_vma (fp, r_rel->target_offset);
5020 if (r_rel->virtual_offset)
5021 {
5022 fprintf (fp, " + ");
5023 fprintf_vma (fp, r_rel->virtual_offset);
5024 }
5025
5026 fprintf (fp, ")");
5027 }
5028
5029 #endif /* DEBUG */
5030
5031 \f
5032 /* source_reloc: relocations that reference literals. */
5033
5034 /* To determine whether literals can be coalesced, we need to first
5035 record all the relocations that reference the literals. The
5036 source_reloc structure below is used for this purpose. The
5037 source_reloc entries are kept in a per-literal-section array, sorted
5038 by offset within the literal section (i.e., target offset).
5039
5040 The source_sec and r_rel.rela.r_offset fields identify the source of
5041 the relocation. The r_rel field records the relocation value, i.e.,
5042 the offset of the literal being referenced. The opnd field is needed
5043 to determine the range of the immediate field to which the relocation
5044 applies, so we can determine whether another literal with the same
5045 value is within range. The is_null field is true when the relocation
5046 is being removed (e.g., when an L32R is being removed due to a CALLX
5047 that is converted to a direct CALL). */
5048
5049 typedef struct source_reloc_struct source_reloc;
5050
5051 struct source_reloc_struct
5052 {
5053 asection *source_sec;
5054 r_reloc r_rel;
5055 xtensa_opcode opcode;
5056 int opnd;
5057 bfd_boolean is_null;
5058 bfd_boolean is_abs_literal;
5059 };
5060
5061
5062 static void
5063 init_source_reloc (source_reloc *reloc,
5064 asection *source_sec,
5065 const r_reloc *r_rel,
5066 xtensa_opcode opcode,
5067 int opnd,
5068 bfd_boolean is_abs_literal)
5069 {
5070 reloc->source_sec = source_sec;
5071 reloc->r_rel = *r_rel;
5072 reloc->opcode = opcode;
5073 reloc->opnd = opnd;
5074 reloc->is_null = FALSE;
5075 reloc->is_abs_literal = is_abs_literal;
5076 }
5077
5078
5079 /* Find the source_reloc for a particular source offset and relocation
5080 type. Note that the array is sorted by _target_ offset, so this is
5081 just a linear search. */
5082
5083 static source_reloc *
5084 find_source_reloc (source_reloc *src_relocs,
5085 int src_count,
5086 asection *sec,
5087 Elf_Internal_Rela *irel)
5088 {
5089 int i;
5090
5091 for (i = 0; i < src_count; i++)
5092 {
5093 if (src_relocs[i].source_sec == sec
5094 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
5095 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
5096 == ELF32_R_TYPE (irel->r_info)))
5097 return &src_relocs[i];
5098 }
5099
5100 return NULL;
5101 }
5102
5103
5104 static int
5105 source_reloc_compare (const void *ap, const void *bp)
5106 {
5107 const source_reloc *a = (const source_reloc *) ap;
5108 const source_reloc *b = (const source_reloc *) bp;
5109
5110 if (a->r_rel.target_offset != b->r_rel.target_offset)
5111 return (a->r_rel.target_offset - b->r_rel.target_offset);
5112
5113 /* We don't need to sort on these criteria for correctness,
5114 but enforcing a more strict ordering prevents unstable qsort
5115 from behaving differently with different implementations.
5116 Without the code below we get correct but different results
5117 on Solaris 2.7 and 2.8. We would like to always produce the
5118 same results no matter the host. */
5119
5120 if ((!a->is_null) - (!b->is_null))
5121 return ((!a->is_null) - (!b->is_null));
5122 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
5123 }
5124
5125 \f
5126 /* Literal values and value hash tables. */
5127
5128 /* Literals with the same value can be coalesced. The literal_value
5129 structure records the value of a literal: the "r_rel" field holds the
5130 information from the relocation on the literal (if there is one) and
5131 the "value" field holds the contents of the literal word itself.
5132
5133 The value_map structure records a literal value along with the
5134 location of a literal holding that value. The value_map hash table
5135 is indexed by the literal value, so that we can quickly check if a
5136 particular literal value has been seen before and is thus a candidate
5137 for coalescing. */
5138
5139 typedef struct literal_value_struct literal_value;
5140 typedef struct value_map_struct value_map;
5141 typedef struct value_map_hash_table_struct value_map_hash_table;
5142
5143 struct literal_value_struct
5144 {
5145 r_reloc r_rel;
5146 unsigned long value;
5147 bfd_boolean is_abs_literal;
5148 };
5149
5150 struct value_map_struct
5151 {
5152 literal_value val; /* The literal value. */
5153 r_reloc loc; /* Location of the literal. */
5154 value_map *next;
5155 };
5156
5157 struct value_map_hash_table_struct
5158 {
5159 unsigned bucket_count;
5160 value_map **buckets;
5161 unsigned count;
5162 bfd_boolean has_last_loc;
5163 r_reloc last_loc;
5164 };
5165
5166
5167 static void
5168 init_literal_value (literal_value *lit,
5169 const r_reloc *r_rel,
5170 unsigned long value,
5171 bfd_boolean is_abs_literal)
5172 {
5173 lit->r_rel = *r_rel;
5174 lit->value = value;
5175 lit->is_abs_literal = is_abs_literal;
5176 }
5177
5178
5179 static bfd_boolean
5180 literal_value_equal (const literal_value *src1,
5181 const literal_value *src2,
5182 bfd_boolean final_static_link)
5183 {
5184 struct elf_link_hash_entry *h1, *h2;
5185
5186 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
5187 return FALSE;
5188
5189 if (r_reloc_is_const (&src1->r_rel))
5190 return (src1->value == src2->value);
5191
5192 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
5193 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
5194 return FALSE;
5195
5196 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
5197 return FALSE;
5198
5199 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
5200 return FALSE;
5201
5202 if (src1->value != src2->value)
5203 return FALSE;
5204
5205 /* Now check for the same section (if defined) or the same elf_hash
5206 (if undefined or weak). */
5207 h1 = r_reloc_get_hash_entry (&src1->r_rel);
5208 h2 = r_reloc_get_hash_entry (&src2->r_rel);
5209 if (r_reloc_is_defined (&src1->r_rel)
5210 && (final_static_link
5211 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
5212 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
5213 {
5214 if (r_reloc_get_section (&src1->r_rel)
5215 != r_reloc_get_section (&src2->r_rel))
5216 return FALSE;
5217 }
5218 else
5219 {
5220 /* Require that the hash entries (i.e., symbols) be identical. */
5221 if (h1 != h2 || h1 == 0)
5222 return FALSE;
5223 }
5224
5225 if (src1->is_abs_literal != src2->is_abs_literal)
5226 return FALSE;
5227
5228 return TRUE;
5229 }
5230
5231
5232 /* Must be power of 2. */
5233 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
5234
5235 static value_map_hash_table *
5236 value_map_hash_table_init (void)
5237 {
5238 value_map_hash_table *values;
5239
5240 values = (value_map_hash_table *)
5241 bfd_zmalloc (sizeof (value_map_hash_table));
5242 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
5243 values->count = 0;
5244 values->buckets = (value_map **)
5245 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
5246 if (values->buckets == NULL)
5247 {
5248 free (values);
5249 return NULL;
5250 }
5251 values->has_last_loc = FALSE;
5252
5253 return values;
5254 }
5255
5256
5257 static void
5258 value_map_hash_table_delete (value_map_hash_table *table)
5259 {
5260 free (table->buckets);
5261 free (table);
5262 }
5263
5264
5265 static unsigned
5266 hash_bfd_vma (bfd_vma val)
5267 {
5268 return (val >> 2) + (val >> 10);
5269 }
5270
5271
5272 static unsigned
5273 literal_value_hash (const literal_value *src)
5274 {
5275 unsigned hash_val;
5276
5277 hash_val = hash_bfd_vma (src->value);
5278 if (!r_reloc_is_const (&src->r_rel))
5279 {
5280 void *sec_or_hash;
5281
5282 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
5283 hash_val += hash_bfd_vma (src->r_rel.target_offset);
5284 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
5285
5286 /* Now check for the same section and the same elf_hash. */
5287 if (r_reloc_is_defined (&src->r_rel))
5288 sec_or_hash = r_reloc_get_section (&src->r_rel);
5289 else
5290 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
5291 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
5292 }
5293 return hash_val;
5294 }
5295
5296
5297 /* Check if the specified literal_value has been seen before. */
5298
5299 static value_map *
5300 value_map_get_cached_value (value_map_hash_table *map,
5301 const literal_value *val,
5302 bfd_boolean final_static_link)
5303 {
5304 value_map *map_e;
5305 value_map *bucket;
5306 unsigned idx;
5307
5308 idx = literal_value_hash (val);
5309 idx = idx & (map->bucket_count - 1);
5310 bucket = map->buckets[idx];
5311 for (map_e = bucket; map_e; map_e = map_e->next)
5312 {
5313 if (literal_value_equal (&map_e->val, val, final_static_link))
5314 return map_e;
5315 }
5316 return NULL;
5317 }
5318
5319
5320 /* Record a new literal value. It is illegal to call this if VALUE
5321 already has an entry here. */
5322
5323 static value_map *
5324 add_value_map (value_map_hash_table *map,
5325 const literal_value *val,
5326 const r_reloc *loc,
5327 bfd_boolean final_static_link)
5328 {
5329 value_map **bucket_p;
5330 unsigned idx;
5331
5332 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
5333 if (val_e == NULL)
5334 {
5335 bfd_set_error (bfd_error_no_memory);
5336 return NULL;
5337 }
5338
5339 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
5340 val_e->val = *val;
5341 val_e->loc = *loc;
5342
5343 idx = literal_value_hash (val);
5344 idx = idx & (map->bucket_count - 1);
5345 bucket_p = &map->buckets[idx];
5346
5347 val_e->next = *bucket_p;
5348 *bucket_p = val_e;
5349 map->count++;
5350 /* FIXME: Consider resizing the hash table if we get too many entries. */
5351
5352 return val_e;
5353 }
5354
5355 \f
5356 /* Lists of text actions (ta_) for narrowing, widening, longcall
5357 conversion, space fill, code & literal removal, etc. */
5358
5359 /* The following text actions are generated:
5360
5361 "ta_remove_insn" remove an instruction or instructions
5362 "ta_remove_longcall" convert longcall to call
5363 "ta_convert_longcall" convert longcall to nop/call
5364 "ta_narrow_insn" narrow a wide instruction
5365 "ta_widen" widen a narrow instruction
5366 "ta_fill" add fill or remove fill
5367 removed < 0 is a fill; branches to the fill address will be
5368 changed to address + fill size (e.g., address - removed)
5369 removed >= 0 branches to the fill address will stay unchanged
5370 "ta_remove_literal" remove a literal; this action is
5371 indicated when a literal is removed
5372 or replaced.
5373 "ta_add_literal" insert a new literal; this action is
5374 indicated when a literal has been moved.
5375 It may use a virtual_offset because
5376 multiple literals can be placed at the
5377 same location.
5378
5379 For each of these text actions, we also record the number of bytes
5380 removed by performing the text action. In the case of a "ta_widen"
5381 or a "ta_fill" that adds space, the removed_bytes will be negative. */
5382
5383 typedef struct text_action_struct text_action;
5384 typedef struct text_action_list_struct text_action_list;
5385 typedef enum text_action_enum_t text_action_t;
5386
5387 enum text_action_enum_t
5388 {
5389 ta_none,
5390 ta_remove_insn, /* removed = -size */
5391 ta_remove_longcall, /* removed = -size */
5392 ta_convert_longcall, /* removed = 0 */
5393 ta_narrow_insn, /* removed = -1 */
5394 ta_widen_insn, /* removed = +1 */
5395 ta_fill, /* removed = +size */
5396 ta_remove_literal,
5397 ta_add_literal
5398 };
5399
5400
5401 /* Structure for a text action record. */
5402 struct text_action_struct
5403 {
5404 text_action_t action;
5405 asection *sec; /* Optional */
5406 bfd_vma offset;
5407 bfd_vma virtual_offset; /* Zero except for adding literals. */
5408 int removed_bytes;
5409 literal_value value; /* Only valid when adding literals. */
5410
5411 text_action *next;
5412 };
5413
5414
5415 /* List of all of the actions taken on a text section. */
5416 struct text_action_list_struct
5417 {
5418 text_action *head;
5419 };
5420
5421
5422 static text_action *
5423 find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
5424 {
5425 text_action **m_p;
5426
5427 /* It is not necessary to fill at the end of a section. */
5428 if (sec->size == offset)
5429 return NULL;
5430
5431 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
5432 {
5433 text_action *t = *m_p;
5434 /* When the action is another fill at the same address,
5435 just increase the size. */
5436 if (t->offset == offset && t->action == ta_fill)
5437 return t;
5438 }
5439 return NULL;
5440 }
5441
5442
5443 static int
5444 compute_removed_action_diff (const text_action *ta,
5445 asection *sec,
5446 bfd_vma offset,
5447 int removed,
5448 int removable_space)
5449 {
5450 int new_removed;
5451 int current_removed = 0;
5452
5453 if (ta)
5454 current_removed = ta->removed_bytes;
5455
5456 BFD_ASSERT (ta == NULL || ta->offset == offset);
5457 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
5458
5459 /* It is not necessary to fill at the end of a section. Clean this up. */
5460 if (sec->size == offset)
5461 new_removed = removable_space - 0;
5462 else
5463 {
5464 int space;
5465 int added = -removed - current_removed;
5466 /* Ignore multiples of the section alignment. */
5467 added = ((1 << sec->alignment_power) - 1) & added;
5468 new_removed = (-added);
5469
5470 /* Modify for removable. */
5471 space = removable_space - new_removed;
5472 new_removed = (removable_space
5473 - (((1 << sec->alignment_power) - 1) & space));
5474 }
5475 return (new_removed - current_removed);
5476 }
5477
5478
5479 static void
5480 adjust_fill_action (text_action *ta, int fill_diff)
5481 {
5482 ta->removed_bytes += fill_diff;
5483 }
5484
5485
5486 /* Add a modification action to the text. For the case of adding or
5487 removing space, modify any current fill and assume that
5488 "unreachable_space" bytes can be freely contracted. Note that a
5489 negative removed value is a fill. */
5490
5491 static void
5492 text_action_add (text_action_list *l,
5493 text_action_t action,
5494 asection *sec,
5495 bfd_vma offset,
5496 int removed)
5497 {
5498 text_action **m_p;
5499 text_action *ta;
5500
5501 /* It is not necessary to fill at the end of a section. */
5502 if (action == ta_fill && sec->size == offset)
5503 return;
5504
5505 /* It is not necessary to fill 0 bytes. */
5506 if (action == ta_fill && removed == 0)
5507 return;
5508
5509 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
5510 {
5511 text_action *t = *m_p;
5512
5513 if (action == ta_fill)
5514 {
5515 /* When the action is another fill at the same address,
5516 just increase the size. */
5517 if (t->offset == offset && t->action == ta_fill)
5518 {
5519 t->removed_bytes += removed;
5520 return;
5521 }
5522 /* Fills need to happen before widens so that we don't
5523 insert fill bytes into the instruction stream. */
5524 if (t->offset == offset && t->action == ta_widen_insn)
5525 break;
5526 }
5527 }
5528
5529 /* Create a new record and fill it up. */
5530 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5531 ta->action = action;
5532 ta->sec = sec;
5533 ta->offset = offset;
5534 ta->removed_bytes = removed;
5535 ta->next = (*m_p);
5536 *m_p = ta;
5537 }
5538
5539
5540 static void
5541 text_action_add_literal (text_action_list *l,
5542 text_action_t action,
5543 const r_reloc *loc,
5544 const literal_value *value,
5545 int removed)
5546 {
5547 text_action **m_p;
5548 text_action *ta;
5549 asection *sec = r_reloc_get_section (loc);
5550 bfd_vma offset = loc->target_offset;
5551 bfd_vma virtual_offset = loc->virtual_offset;
5552
5553 BFD_ASSERT (action == ta_add_literal);
5554
5555 for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next)
5556 {
5557 if ((*m_p)->offset > offset
5558 && ((*m_p)->offset != offset
5559 || (*m_p)->virtual_offset > virtual_offset))
5560 break;
5561 }
5562
5563 /* Create a new record and fill it up. */
5564 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5565 ta->action = action;
5566 ta->sec = sec;
5567 ta->offset = offset;
5568 ta->virtual_offset = virtual_offset;
5569 ta->value = *value;
5570 ta->removed_bytes = removed;
5571 ta->next = (*m_p);
5572 *m_p = ta;
5573 }
5574
5575
5576 /* Find the total offset adjustment for the relaxations specified by
5577 text_actions, beginning from a particular starting action. This is
5578 typically used from offset_with_removed_text to search an entire list of
5579 actions, but it may also be called directly when adjusting adjacent offsets
5580 so that each search may begin where the previous one left off. */
5581
5582 static int
5583 removed_by_actions (text_action **p_start_action,
5584 bfd_vma offset,
5585 bfd_boolean before_fill)
5586 {
5587 text_action *r;
5588 int removed = 0;
5589
5590 r = *p_start_action;
5591 while (r)
5592 {
5593 if (r->offset > offset)
5594 break;
5595
5596 if (r->offset == offset
5597 && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
5598 break;
5599
5600 removed += r->removed_bytes;
5601
5602 r = r->next;
5603 }
5604
5605 *p_start_action = r;
5606 return removed;
5607 }
5608
5609
5610 static bfd_vma
5611 offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
5612 {
5613 text_action *r = action_list->head;
5614 return offset - removed_by_actions (&r, offset, FALSE);
5615 }
5616
5617
5618 static unsigned
5619 action_list_count (text_action_list *action_list)
5620 {
5621 text_action *r = action_list->head;
5622 unsigned count = 0;
5623 for (r = action_list->head; r != NULL; r = r->next)
5624 {
5625 count++;
5626 }
5627 return count;
5628 }
5629
5630
5631 /* The find_insn_action routine will only find non-fill actions. */
5632
5633 static text_action *
5634 find_insn_action (text_action_list *action_list, bfd_vma offset)
5635 {
5636 text_action *t;
5637 for (t = action_list->head; t; t = t->next)
5638 {
5639 if (t->offset == offset)
5640 {
5641 switch (t->action)
5642 {
5643 case ta_none:
5644 case ta_fill:
5645 break;
5646 case ta_remove_insn:
5647 case ta_remove_longcall:
5648 case ta_convert_longcall:
5649 case ta_narrow_insn:
5650 case ta_widen_insn:
5651 return t;
5652 case ta_remove_literal:
5653 case ta_add_literal:
5654 BFD_ASSERT (0);
5655 break;
5656 }
5657 }
5658 }
5659 return NULL;
5660 }
5661
5662
5663 #if DEBUG
5664
5665 static void
5666 print_action_list (FILE *fp, text_action_list *action_list)
5667 {
5668 text_action *r;
5669
5670 fprintf (fp, "Text Action\n");
5671 for (r = action_list->head; r != NULL; r = r->next)
5672 {
5673 const char *t = "unknown";
5674 switch (r->action)
5675 {
5676 case ta_remove_insn:
5677 t = "remove_insn"; break;
5678 case ta_remove_longcall:
5679 t = "remove_longcall"; break;
5680 case ta_convert_longcall:
5681 t = "convert_longcall"; break;
5682 case ta_narrow_insn:
5683 t = "narrow_insn"; break;
5684 case ta_widen_insn:
5685 t = "widen_insn"; break;
5686 case ta_fill:
5687 t = "fill"; break;
5688 case ta_none:
5689 t = "none"; break;
5690 case ta_remove_literal:
5691 t = "remove_literal"; break;
5692 case ta_add_literal:
5693 t = "add_literal"; break;
5694 }
5695
5696 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
5697 r->sec->owner->filename,
5698 r->sec->name, (unsigned long) r->offset, t, r->removed_bytes);
5699 }
5700 }
5701
5702 #endif /* DEBUG */
5703
5704 \f
5705 /* Lists of literals being coalesced or removed. */
5706
5707 /* In the usual case, the literal identified by "from" is being
5708 coalesced with another literal identified by "to". If the literal is
5709 unused and is being removed altogether, "to.abfd" will be NULL.
5710 The removed_literal entries are kept on a per-section list, sorted
5711 by the "from" offset field. */
5712
5713 typedef struct removed_literal_struct removed_literal;
5714 typedef struct removed_literal_list_struct removed_literal_list;
5715
5716 struct removed_literal_struct
5717 {
5718 r_reloc from;
5719 r_reloc to;
5720 removed_literal *next;
5721 };
5722
5723 struct removed_literal_list_struct
5724 {
5725 removed_literal *head;
5726 removed_literal *tail;
5727 };
5728
5729
5730 /* Record that the literal at "from" is being removed. If "to" is not
5731 NULL, the "from" literal is being coalesced with the "to" literal. */
5732
5733 static void
5734 add_removed_literal (removed_literal_list *removed_list,
5735 const r_reloc *from,
5736 const r_reloc *to)
5737 {
5738 removed_literal *r, *new_r, *next_r;
5739
5740 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
5741
5742 new_r->from = *from;
5743 if (to)
5744 new_r->to = *to;
5745 else
5746 new_r->to.abfd = NULL;
5747 new_r->next = NULL;
5748
5749 r = removed_list->head;
5750 if (r == NULL)
5751 {
5752 removed_list->head = new_r;
5753 removed_list->tail = new_r;
5754 }
5755 /* Special check for common case of append. */
5756 else if (removed_list->tail->from.target_offset < from->target_offset)
5757 {
5758 removed_list->tail->next = new_r;
5759 removed_list->tail = new_r;
5760 }
5761 else
5762 {
5763 while (r->from.target_offset < from->target_offset && r->next)
5764 {
5765 r = r->next;
5766 }
5767 next_r = r->next;
5768 r->next = new_r;
5769 new_r->next = next_r;
5770 if (next_r == NULL)
5771 removed_list->tail = new_r;
5772 }
5773 }
5774
5775
5776 /* Check if the list of removed literals contains an entry for the
5777 given address. Return the entry if found. */
5778
5779 static removed_literal *
5780 find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
5781 {
5782 removed_literal *r = removed_list->head;
5783 while (r && r->from.target_offset < addr)
5784 r = r->next;
5785 if (r && r->from.target_offset == addr)
5786 return r;
5787 return NULL;
5788 }
5789
5790
5791 #if DEBUG
5792
5793 static void
5794 print_removed_literals (FILE *fp, removed_literal_list *removed_list)
5795 {
5796 removed_literal *r;
5797 r = removed_list->head;
5798 if (r)
5799 fprintf (fp, "Removed Literals\n");
5800 for (; r != NULL; r = r->next)
5801 {
5802 print_r_reloc (fp, &r->from);
5803 fprintf (fp, " => ");
5804 if (r->to.abfd == NULL)
5805 fprintf (fp, "REMOVED");
5806 else
5807 print_r_reloc (fp, &r->to);
5808 fprintf (fp, "\n");
5809 }
5810 }
5811
5812 #endif /* DEBUG */
5813
5814 \f
5815 /* Per-section data for relaxation. */
5816
5817 typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
5818
5819 struct xtensa_relax_info_struct
5820 {
5821 bfd_boolean is_relaxable_literal_section;
5822 bfd_boolean is_relaxable_asm_section;
5823 int visited; /* Number of times visited. */
5824
5825 source_reloc *src_relocs; /* Array[src_count]. */
5826 int src_count;
5827 int src_next; /* Next src_relocs entry to assign. */
5828
5829 removed_literal_list removed_list;
5830 text_action_list action_list;
5831
5832 reloc_bfd_fix *fix_list;
5833 reloc_bfd_fix *fix_array;
5834 unsigned fix_array_count;
5835
5836 /* Support for expanding the reloc array that is stored
5837 in the section structure. If the relocations have been
5838 reallocated, the newly allocated relocations will be referenced
5839 here along with the actual size allocated. The relocation
5840 count will always be found in the section structure. */
5841 Elf_Internal_Rela *allocated_relocs;
5842 unsigned relocs_count;
5843 unsigned allocated_relocs_count;
5844 };
5845
5846 struct elf_xtensa_section_data
5847 {
5848 struct bfd_elf_section_data elf;
5849 xtensa_relax_info relax_info;
5850 };
5851
5852
5853 static bfd_boolean
5854 elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
5855 {
5856 if (!sec->used_by_bfd)
5857 {
5858 struct elf_xtensa_section_data *sdata;
5859 bfd_size_type amt = sizeof (*sdata);
5860
5861 sdata = bfd_zalloc (abfd, amt);
5862 if (sdata == NULL)
5863 return FALSE;
5864 sec->used_by_bfd = sdata;
5865 }
5866
5867 return _bfd_elf_new_section_hook (abfd, sec);
5868 }
5869
5870
5871 static xtensa_relax_info *
5872 get_xtensa_relax_info (asection *sec)
5873 {
5874 struct elf_xtensa_section_data *section_data;
5875
5876 /* No info available if no section or if it is an output section. */
5877 if (!sec || sec == sec->output_section)
5878 return NULL;
5879
5880 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5881 return &section_data->relax_info;
5882 }
5883
5884
5885 static void
5886 init_xtensa_relax_info (asection *sec)
5887 {
5888 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5889
5890 relax_info->is_relaxable_literal_section = FALSE;
5891 relax_info->is_relaxable_asm_section = FALSE;
5892 relax_info->visited = 0;
5893
5894 relax_info->src_relocs = NULL;
5895 relax_info->src_count = 0;
5896 relax_info->src_next = 0;
5897
5898 relax_info->removed_list.head = NULL;
5899 relax_info->removed_list.tail = NULL;
5900
5901 relax_info->action_list.head = NULL;
5902
5903 relax_info->fix_list = NULL;
5904 relax_info->fix_array = NULL;
5905 relax_info->fix_array_count = 0;
5906
5907 relax_info->allocated_relocs = NULL;
5908 relax_info->relocs_count = 0;
5909 relax_info->allocated_relocs_count = 0;
5910 }
5911
5912 \f
5913 /* Coalescing literals may require a relocation to refer to a section in
5914 a different input file, but the standard relocation information
5915 cannot express that. Instead, the reloc_bfd_fix structures are used
5916 to "fix" the relocations that refer to sections in other input files.
5917 These structures are kept on per-section lists. The "src_type" field
5918 records the relocation type in case there are multiple relocations on
5919 the same location. FIXME: This is ugly; an alternative might be to
5920 add new symbols with the "owner" field to some other input file. */
5921
5922 struct reloc_bfd_fix_struct
5923 {
5924 asection *src_sec;
5925 bfd_vma src_offset;
5926 unsigned src_type; /* Relocation type. */
5927
5928 asection *target_sec;
5929 bfd_vma target_offset;
5930 bfd_boolean translated;
5931
5932 reloc_bfd_fix *next;
5933 };
5934
5935
5936 static reloc_bfd_fix *
5937 reloc_bfd_fix_init (asection *src_sec,
5938 bfd_vma src_offset,
5939 unsigned src_type,
5940 asection *target_sec,
5941 bfd_vma target_offset,
5942 bfd_boolean translated)
5943 {
5944 reloc_bfd_fix *fix;
5945
5946 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
5947 fix->src_sec = src_sec;
5948 fix->src_offset = src_offset;
5949 fix->src_type = src_type;
5950 fix->target_sec = target_sec;
5951 fix->target_offset = target_offset;
5952 fix->translated = translated;
5953
5954 return fix;
5955 }
5956
5957
5958 static void
5959 add_fix (asection *src_sec, reloc_bfd_fix *fix)
5960 {
5961 xtensa_relax_info *relax_info;
5962
5963 relax_info = get_xtensa_relax_info (src_sec);
5964 fix->next = relax_info->fix_list;
5965 relax_info->fix_list = fix;
5966 }
5967
5968
5969 static int
5970 fix_compare (const void *ap, const void *bp)
5971 {
5972 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
5973 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
5974
5975 if (a->src_offset != b->src_offset)
5976 return (a->src_offset - b->src_offset);
5977 return (a->src_type - b->src_type);
5978 }
5979
5980
5981 static void
5982 cache_fix_array (asection *sec)
5983 {
5984 unsigned i, count = 0;
5985 reloc_bfd_fix *r;
5986 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5987
5988 if (relax_info == NULL)
5989 return;
5990 if (relax_info->fix_list == NULL)
5991 return;
5992
5993 for (r = relax_info->fix_list; r != NULL; r = r->next)
5994 count++;
5995
5996 relax_info->fix_array =
5997 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
5998 relax_info->fix_array_count = count;
5999
6000 r = relax_info->fix_list;
6001 for (i = 0; i < count; i++, r = r->next)
6002 {
6003 relax_info->fix_array[count - 1 - i] = *r;
6004 relax_info->fix_array[count - 1 - i].next = NULL;
6005 }
6006
6007 qsort (relax_info->fix_array, relax_info->fix_array_count,
6008 sizeof (reloc_bfd_fix), fix_compare);
6009 }
6010
6011
6012 static reloc_bfd_fix *
6013 get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
6014 {
6015 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6016 reloc_bfd_fix *rv;
6017 reloc_bfd_fix key;
6018
6019 if (relax_info == NULL)
6020 return NULL;
6021 if (relax_info->fix_list == NULL)
6022 return NULL;
6023
6024 if (relax_info->fix_array == NULL)
6025 cache_fix_array (sec);
6026
6027 key.src_offset = offset;
6028 key.src_type = type;
6029 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
6030 sizeof (reloc_bfd_fix), fix_compare);
6031 return rv;
6032 }
6033
6034 \f
6035 /* Section caching. */
6036
6037 typedef struct section_cache_struct section_cache_t;
6038
6039 struct section_cache_struct
6040 {
6041 asection *sec;
6042
6043 bfd_byte *contents; /* Cache of the section contents. */
6044 bfd_size_type content_length;
6045
6046 property_table_entry *ptbl; /* Cache of the section property table. */
6047 unsigned pte_count;
6048
6049 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6050 unsigned reloc_count;
6051 };
6052
6053
6054 static void
6055 init_section_cache (section_cache_t *sec_cache)
6056 {
6057 memset (sec_cache, 0, sizeof (*sec_cache));
6058 }
6059
6060
6061 static void
6062 free_section_cache (section_cache_t *sec_cache)
6063 {
6064 if (sec_cache->sec)
6065 {
6066 release_contents (sec_cache->sec, sec_cache->contents);
6067 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
6068 if (sec_cache->ptbl)
6069 free (sec_cache->ptbl);
6070 }
6071 }
6072
6073
6074 static bfd_boolean
6075 section_cache_section (section_cache_t *sec_cache,
6076 asection *sec,
6077 struct bfd_link_info *link_info)
6078 {
6079 bfd *abfd;
6080 property_table_entry *prop_table = NULL;
6081 int ptblsize = 0;
6082 bfd_byte *contents = NULL;
6083 Elf_Internal_Rela *internal_relocs = NULL;
6084 bfd_size_type sec_size;
6085
6086 if (sec == NULL)
6087 return FALSE;
6088 if (sec == sec_cache->sec)
6089 return TRUE;
6090
6091 abfd = sec->owner;
6092 sec_size = bfd_get_section_limit (abfd, sec);
6093
6094 /* Get the contents. */
6095 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6096 if (contents == NULL && sec_size != 0)
6097 goto err;
6098
6099 /* Get the relocations. */
6100 internal_relocs = retrieve_internal_relocs (abfd, sec,
6101 link_info->keep_memory);
6102
6103 /* Get the entry table. */
6104 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6105 XTENSA_PROP_SEC_NAME, FALSE);
6106 if (ptblsize < 0)
6107 goto err;
6108
6109 /* Fill in the new section cache. */
6110 free_section_cache (sec_cache);
6111 init_section_cache (sec_cache);
6112
6113 sec_cache->sec = sec;
6114 sec_cache->contents = contents;
6115 sec_cache->content_length = sec_size;
6116 sec_cache->relocs = internal_relocs;
6117 sec_cache->reloc_count = sec->reloc_count;
6118 sec_cache->pte_count = ptblsize;
6119 sec_cache->ptbl = prop_table;
6120
6121 return TRUE;
6122
6123 err:
6124 release_contents (sec, contents);
6125 release_internal_relocs (sec, internal_relocs);
6126 if (prop_table)
6127 free (prop_table);
6128 return FALSE;
6129 }
6130
6131 \f
6132 /* Extended basic blocks. */
6133
6134 /* An ebb_struct represents an Extended Basic Block. Within this
6135 range, we guarantee that all instructions are decodable, the
6136 property table entries are contiguous, and no property table
6137 specifies a segment that cannot have instructions moved. This
6138 structure contains caches of the contents, property table and
6139 relocations for the specified section for easy use. The range is
6140 specified by ranges of indices for the byte offset, property table
6141 offsets and relocation offsets. These must be consistent. */
6142
6143 typedef struct ebb_struct ebb_t;
6144
6145 struct ebb_struct
6146 {
6147 asection *sec;
6148
6149 bfd_byte *contents; /* Cache of the section contents. */
6150 bfd_size_type content_length;
6151
6152 property_table_entry *ptbl; /* Cache of the section property table. */
6153 unsigned pte_count;
6154
6155 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6156 unsigned reloc_count;
6157
6158 bfd_vma start_offset; /* Offset in section. */
6159 unsigned start_ptbl_idx; /* Offset in the property table. */
6160 unsigned start_reloc_idx; /* Offset in the relocations. */
6161
6162 bfd_vma end_offset;
6163 unsigned end_ptbl_idx;
6164 unsigned end_reloc_idx;
6165
6166 bfd_boolean ends_section; /* Is this the last ebb in a section? */
6167
6168 /* The unreachable property table at the end of this set of blocks;
6169 NULL if the end is not an unreachable block. */
6170 property_table_entry *ends_unreachable;
6171 };
6172
6173
6174 enum ebb_target_enum
6175 {
6176 EBB_NO_ALIGN = 0,
6177 EBB_DESIRE_TGT_ALIGN,
6178 EBB_REQUIRE_TGT_ALIGN,
6179 EBB_REQUIRE_LOOP_ALIGN,
6180 EBB_REQUIRE_ALIGN
6181 };
6182
6183
6184 /* proposed_action_struct is similar to the text_action_struct except
6185 that is represents a potential transformation, not one that will
6186 occur. We build a list of these for an extended basic block
6187 and use them to compute the actual actions desired. We must be
6188 careful that the entire set of actual actions we perform do not
6189 break any relocations that would fit if the actions were not
6190 performed. */
6191
6192 typedef struct proposed_action_struct proposed_action;
6193
6194 struct proposed_action_struct
6195 {
6196 enum ebb_target_enum align_type; /* for the target alignment */
6197 bfd_vma alignment_pow;
6198 text_action_t action;
6199 bfd_vma offset;
6200 int removed_bytes;
6201 bfd_boolean do_action; /* If false, then we will not perform the action. */
6202 };
6203
6204
6205 /* The ebb_constraint_struct keeps a set of proposed actions for an
6206 extended basic block. */
6207
6208 typedef struct ebb_constraint_struct ebb_constraint;
6209
6210 struct ebb_constraint_struct
6211 {
6212 ebb_t ebb;
6213 bfd_boolean start_movable;
6214
6215 /* Bytes of extra space at the beginning if movable. */
6216 int start_extra_space;
6217
6218 enum ebb_target_enum start_align;
6219
6220 bfd_boolean end_movable;
6221
6222 /* Bytes of extra space at the end if movable. */
6223 int end_extra_space;
6224
6225 unsigned action_count;
6226 unsigned action_allocated;
6227
6228 /* Array of proposed actions. */
6229 proposed_action *actions;
6230
6231 /* Action alignments -- one for each proposed action. */
6232 enum ebb_target_enum *action_aligns;
6233 };
6234
6235
6236 static void
6237 init_ebb_constraint (ebb_constraint *c)
6238 {
6239 memset (c, 0, sizeof (ebb_constraint));
6240 }
6241
6242
6243 static void
6244 free_ebb_constraint (ebb_constraint *c)
6245 {
6246 if (c->actions)
6247 free (c->actions);
6248 }
6249
6250
6251 static void
6252 init_ebb (ebb_t *ebb,
6253 asection *sec,
6254 bfd_byte *contents,
6255 bfd_size_type content_length,
6256 property_table_entry *prop_table,
6257 unsigned ptblsize,
6258 Elf_Internal_Rela *internal_relocs,
6259 unsigned reloc_count)
6260 {
6261 memset (ebb, 0, sizeof (ebb_t));
6262 ebb->sec = sec;
6263 ebb->contents = contents;
6264 ebb->content_length = content_length;
6265 ebb->ptbl = prop_table;
6266 ebb->pte_count = ptblsize;
6267 ebb->relocs = internal_relocs;
6268 ebb->reloc_count = reloc_count;
6269 ebb->start_offset = 0;
6270 ebb->end_offset = ebb->content_length - 1;
6271 ebb->start_ptbl_idx = 0;
6272 ebb->end_ptbl_idx = ptblsize;
6273 ebb->start_reloc_idx = 0;
6274 ebb->end_reloc_idx = reloc_count;
6275 }
6276
6277
6278 /* Extend the ebb to all decodable contiguous sections. The algorithm
6279 for building a basic block around an instruction is to push it
6280 forward until we hit the end of a section, an unreachable block or
6281 a block that cannot be transformed. Then we push it backwards
6282 searching for similar conditions. */
6283
6284 static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
6285 static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
6286 static bfd_size_type insn_block_decodable_len
6287 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
6288
6289 static bfd_boolean
6290 extend_ebb_bounds (ebb_t *ebb)
6291 {
6292 if (!extend_ebb_bounds_forward (ebb))
6293 return FALSE;
6294 if (!extend_ebb_bounds_backward (ebb))
6295 return FALSE;
6296 return TRUE;
6297 }
6298
6299
6300 static bfd_boolean
6301 extend_ebb_bounds_forward (ebb_t *ebb)
6302 {
6303 property_table_entry *the_entry, *new_entry;
6304
6305 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6306
6307 /* Stop when (1) we cannot decode an instruction, (2) we are at
6308 the end of the property tables, (3) we hit a non-contiguous property
6309 table entry, (4) we hit a NO_TRANSFORM region. */
6310
6311 while (1)
6312 {
6313 bfd_vma entry_end;
6314 bfd_size_type insn_block_len;
6315
6316 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
6317 insn_block_len =
6318 insn_block_decodable_len (ebb->contents, ebb->content_length,
6319 ebb->end_offset,
6320 entry_end - ebb->end_offset);
6321 if (insn_block_len != (entry_end - ebb->end_offset))
6322 {
6323 (*_bfd_error_handler)
6324 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6325 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6326 return FALSE;
6327 }
6328 ebb->end_offset += insn_block_len;
6329
6330 if (ebb->end_offset == ebb->sec->size)
6331 ebb->ends_section = TRUE;
6332
6333 /* Update the reloc counter. */
6334 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
6335 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
6336 < ebb->end_offset))
6337 {
6338 ebb->end_reloc_idx++;
6339 }
6340
6341 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6342 return TRUE;
6343
6344 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6345 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
6346 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6347 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
6348 break;
6349
6350 if (the_entry->address + the_entry->size != new_entry->address)
6351 break;
6352
6353 the_entry = new_entry;
6354 ebb->end_ptbl_idx++;
6355 }
6356
6357 /* Quick check for an unreachable or end of file just at the end. */
6358 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6359 {
6360 if (ebb->end_offset == ebb->content_length)
6361 ebb->ends_section = TRUE;
6362 }
6363 else
6364 {
6365 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6366 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
6367 && the_entry->address + the_entry->size == new_entry->address)
6368 ebb->ends_unreachable = new_entry;
6369 }
6370
6371 /* Any other ending requires exact alignment. */
6372 return TRUE;
6373 }
6374
6375
6376 static bfd_boolean
6377 extend_ebb_bounds_backward (ebb_t *ebb)
6378 {
6379 property_table_entry *the_entry, *new_entry;
6380
6381 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6382
6383 /* Stop when (1) we cannot decode the instructions in the current entry.
6384 (2) we are at the beginning of the property tables, (3) we hit a
6385 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
6386
6387 while (1)
6388 {
6389 bfd_vma block_begin;
6390 bfd_size_type insn_block_len;
6391
6392 block_begin = the_entry->address - ebb->sec->vma;
6393 insn_block_len =
6394 insn_block_decodable_len (ebb->contents, ebb->content_length,
6395 block_begin,
6396 ebb->start_offset - block_begin);
6397 if (insn_block_len != ebb->start_offset - block_begin)
6398 {
6399 (*_bfd_error_handler)
6400 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6401 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6402 return FALSE;
6403 }
6404 ebb->start_offset -= insn_block_len;
6405
6406 /* Update the reloc counter. */
6407 while (ebb->start_reloc_idx > 0
6408 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
6409 >= ebb->start_offset))
6410 {
6411 ebb->start_reloc_idx--;
6412 }
6413
6414 if (ebb->start_ptbl_idx == 0)
6415 return TRUE;
6416
6417 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
6418 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
6419 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6420 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
6421 return TRUE;
6422 if (new_entry->address + new_entry->size != the_entry->address)
6423 return TRUE;
6424
6425 the_entry = new_entry;
6426 ebb->start_ptbl_idx--;
6427 }
6428 return TRUE;
6429 }
6430
6431
6432 static bfd_size_type
6433 insn_block_decodable_len (bfd_byte *contents,
6434 bfd_size_type content_len,
6435 bfd_vma block_offset,
6436 bfd_size_type block_len)
6437 {
6438 bfd_vma offset = block_offset;
6439
6440 while (offset < block_offset + block_len)
6441 {
6442 bfd_size_type insn_len = 0;
6443
6444 insn_len = insn_decode_len (contents, content_len, offset);
6445 if (insn_len == 0)
6446 return (offset - block_offset);
6447 offset += insn_len;
6448 }
6449 return (offset - block_offset);
6450 }
6451
6452
6453 static void
6454 ebb_propose_action (ebb_constraint *c,
6455 enum ebb_target_enum align_type,
6456 bfd_vma alignment_pow,
6457 text_action_t action,
6458 bfd_vma offset,
6459 int removed_bytes,
6460 bfd_boolean do_action)
6461 {
6462 proposed_action *act;
6463
6464 if (c->action_allocated <= c->action_count)
6465 {
6466 unsigned new_allocated, i;
6467 proposed_action *new_actions;
6468
6469 new_allocated = (c->action_count + 2) * 2;
6470 new_actions = (proposed_action *)
6471 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
6472
6473 for (i = 0; i < c->action_count; i++)
6474 new_actions[i] = c->actions[i];
6475 if (c->actions)
6476 free (c->actions);
6477 c->actions = new_actions;
6478 c->action_allocated = new_allocated;
6479 }
6480
6481 act = &c->actions[c->action_count];
6482 act->align_type = align_type;
6483 act->alignment_pow = alignment_pow;
6484 act->action = action;
6485 act->offset = offset;
6486 act->removed_bytes = removed_bytes;
6487 act->do_action = do_action;
6488
6489 c->action_count++;
6490 }
6491
6492 \f
6493 /* Access to internal relocations, section contents and symbols. */
6494
6495 /* During relaxation, we need to modify relocations, section contents,
6496 and symbol definitions, and we need to keep the original values from
6497 being reloaded from the input files, i.e., we need to "pin" the
6498 modified values in memory. We also want to continue to observe the
6499 setting of the "keep-memory" flag. The following functions wrap the
6500 standard BFD functions to take care of this for us. */
6501
6502 static Elf_Internal_Rela *
6503 retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6504 {
6505 Elf_Internal_Rela *internal_relocs;
6506
6507 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6508 return NULL;
6509
6510 internal_relocs = elf_section_data (sec)->relocs;
6511 if (internal_relocs == NULL)
6512 internal_relocs = (_bfd_elf_link_read_relocs
6513 (abfd, sec, NULL, NULL, keep_memory));
6514 return internal_relocs;
6515 }
6516
6517
6518 static void
6519 pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6520 {
6521 elf_section_data (sec)->relocs = internal_relocs;
6522 }
6523
6524
6525 static void
6526 release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6527 {
6528 if (internal_relocs
6529 && elf_section_data (sec)->relocs != internal_relocs)
6530 free (internal_relocs);
6531 }
6532
6533
6534 static bfd_byte *
6535 retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6536 {
6537 bfd_byte *contents;
6538 bfd_size_type sec_size;
6539
6540 sec_size = bfd_get_section_limit (abfd, sec);
6541 contents = elf_section_data (sec)->this_hdr.contents;
6542
6543 if (contents == NULL && sec_size != 0)
6544 {
6545 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6546 {
6547 if (contents)
6548 free (contents);
6549 return NULL;
6550 }
6551 if (keep_memory)
6552 elf_section_data (sec)->this_hdr.contents = contents;
6553 }
6554 return contents;
6555 }
6556
6557
6558 static void
6559 pin_contents (asection *sec, bfd_byte *contents)
6560 {
6561 elf_section_data (sec)->this_hdr.contents = contents;
6562 }
6563
6564
6565 static void
6566 release_contents (asection *sec, bfd_byte *contents)
6567 {
6568 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
6569 free (contents);
6570 }
6571
6572
6573 static Elf_Internal_Sym *
6574 retrieve_local_syms (bfd *input_bfd)
6575 {
6576 Elf_Internal_Shdr *symtab_hdr;
6577 Elf_Internal_Sym *isymbuf;
6578 size_t locsymcount;
6579
6580 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6581 locsymcount = symtab_hdr->sh_info;
6582
6583 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6584 if (isymbuf == NULL && locsymcount != 0)
6585 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6586 NULL, NULL, NULL);
6587
6588 /* Save the symbols for this input file so they won't be read again. */
6589 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
6590 symtab_hdr->contents = (unsigned char *) isymbuf;
6591
6592 return isymbuf;
6593 }
6594
6595 \f
6596 /* Code for link-time relaxation. */
6597
6598 /* Initialization for relaxation: */
6599 static bfd_boolean analyze_relocations (struct bfd_link_info *);
6600 static bfd_boolean find_relaxable_sections
6601 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
6602 static bfd_boolean collect_source_relocs
6603 (bfd *, asection *, struct bfd_link_info *);
6604 static bfd_boolean is_resolvable_asm_expansion
6605 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
6606 bfd_boolean *);
6607 static Elf_Internal_Rela *find_associated_l32r_irel
6608 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
6609 static bfd_boolean compute_text_actions
6610 (bfd *, asection *, struct bfd_link_info *);
6611 static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
6612 static bfd_boolean compute_ebb_actions (ebb_constraint *);
6613 static bfd_boolean check_section_ebb_pcrels_fit
6614 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *,
6615 const xtensa_opcode *);
6616 static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
6617 static void text_action_add_proposed
6618 (text_action_list *, const ebb_constraint *, asection *);
6619 static int compute_fill_extra_space (property_table_entry *);
6620
6621 /* First pass: */
6622 static bfd_boolean compute_removed_literals
6623 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
6624 static Elf_Internal_Rela *get_irel_at_offset
6625 (asection *, Elf_Internal_Rela *, bfd_vma);
6626 static bfd_boolean is_removable_literal
6627 (const source_reloc *, int, const source_reloc *, int, asection *,
6628 property_table_entry *, int);
6629 static bfd_boolean remove_dead_literal
6630 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
6631 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
6632 static bfd_boolean identify_literal_placement
6633 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
6634 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
6635 source_reloc *, property_table_entry *, int, section_cache_t *,
6636 bfd_boolean);
6637 static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
6638 static bfd_boolean coalesce_shared_literal
6639 (asection *, source_reloc *, property_table_entry *, int, value_map *);
6640 static bfd_boolean move_shared_literal
6641 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
6642 int, const r_reloc *, const literal_value *, section_cache_t *);
6643
6644 /* Second pass: */
6645 static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
6646 static bfd_boolean translate_section_fixes (asection *);
6647 static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
6648 static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
6649 static void shrink_dynamic_reloc_sections
6650 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
6651 static bfd_boolean move_literal
6652 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
6653 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
6654 static bfd_boolean relax_property_section
6655 (bfd *, asection *, struct bfd_link_info *);
6656
6657 /* Third pass: */
6658 static bfd_boolean relax_section_symbols (bfd *, asection *);
6659
6660
6661 static bfd_boolean
6662 elf_xtensa_relax_section (bfd *abfd,
6663 asection *sec,
6664 struct bfd_link_info *link_info,
6665 bfd_boolean *again)
6666 {
6667 static value_map_hash_table *values = NULL;
6668 static bfd_boolean relocations_analyzed = FALSE;
6669 xtensa_relax_info *relax_info;
6670
6671 if (!relocations_analyzed)
6672 {
6673 /* Do some overall initialization for relaxation. */
6674 values = value_map_hash_table_init ();
6675 if (values == NULL)
6676 return FALSE;
6677 relaxing_section = TRUE;
6678 if (!analyze_relocations (link_info))
6679 return FALSE;
6680 relocations_analyzed = TRUE;
6681 }
6682 *again = FALSE;
6683
6684 /* Don't mess with linker-created sections. */
6685 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6686 return TRUE;
6687
6688 relax_info = get_xtensa_relax_info (sec);
6689 BFD_ASSERT (relax_info != NULL);
6690
6691 switch (relax_info->visited)
6692 {
6693 case 0:
6694 /* Note: It would be nice to fold this pass into
6695 analyze_relocations, but it is important for this step that the
6696 sections be examined in link order. */
6697 if (!compute_removed_literals (abfd, sec, link_info, values))
6698 return FALSE;
6699 *again = TRUE;
6700 break;
6701
6702 case 1:
6703 if (values)
6704 value_map_hash_table_delete (values);
6705 values = NULL;
6706 if (!relax_section (abfd, sec, link_info))
6707 return FALSE;
6708 *again = TRUE;
6709 break;
6710
6711 case 2:
6712 if (!relax_section_symbols (abfd, sec))
6713 return FALSE;
6714 break;
6715 }
6716
6717 relax_info->visited++;
6718 return TRUE;
6719 }
6720
6721 \f
6722 /* Initialization for relaxation. */
6723
6724 /* This function is called once at the start of relaxation. It scans
6725 all the input sections and marks the ones that are relaxable (i.e.,
6726 literal sections with L32R relocations against them), and then
6727 collects source_reloc information for all the relocations against
6728 those relaxable sections. During this process, it also detects
6729 longcalls, i.e., calls relaxed by the assembler into indirect
6730 calls, that can be optimized back into direct calls. Within each
6731 extended basic block (ebb) containing an optimized longcall, it
6732 computes a set of "text actions" that can be performed to remove
6733 the L32R associated with the longcall while optionally preserving
6734 branch target alignments. */
6735
6736 static bfd_boolean
6737 analyze_relocations (struct bfd_link_info *link_info)
6738 {
6739 bfd *abfd;
6740 asection *sec;
6741 bfd_boolean is_relaxable = FALSE;
6742
6743 /* Initialize the per-section relaxation info. */
6744 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6745 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6746 {
6747 init_xtensa_relax_info (sec);
6748 }
6749
6750 /* Mark relaxable sections (and count relocations against each one). */
6751 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6752 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6753 {
6754 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
6755 return FALSE;
6756 }
6757
6758 /* Bail out if there are no relaxable sections. */
6759 if (!is_relaxable)
6760 return TRUE;
6761
6762 /* Allocate space for source_relocs. */
6763 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6764 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6765 {
6766 xtensa_relax_info *relax_info;
6767
6768 relax_info = get_xtensa_relax_info (sec);
6769 if (relax_info->is_relaxable_literal_section
6770 || relax_info->is_relaxable_asm_section)
6771 {
6772 relax_info->src_relocs = (source_reloc *)
6773 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
6774 }
6775 else
6776 relax_info->src_count = 0;
6777 }
6778
6779 /* Collect info on relocations against each relaxable section. */
6780 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6781 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6782 {
6783 if (!collect_source_relocs (abfd, sec, link_info))
6784 return FALSE;
6785 }
6786
6787 /* Compute the text actions. */
6788 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6789 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6790 {
6791 if (!compute_text_actions (abfd, sec, link_info))
6792 return FALSE;
6793 }
6794
6795 return TRUE;
6796 }
6797
6798
6799 /* Find all the sections that might be relaxed. The motivation for
6800 this pass is that collect_source_relocs() needs to record _all_ the
6801 relocations that target each relaxable section. That is expensive
6802 and unnecessary unless the target section is actually going to be
6803 relaxed. This pass identifies all such sections by checking if
6804 they have L32Rs pointing to them. In the process, the total number
6805 of relocations targeting each section is also counted so that we
6806 know how much space to allocate for source_relocs against each
6807 relaxable literal section. */
6808
6809 static bfd_boolean
6810 find_relaxable_sections (bfd *abfd,
6811 asection *sec,
6812 struct bfd_link_info *link_info,
6813 bfd_boolean *is_relaxable_p)
6814 {
6815 Elf_Internal_Rela *internal_relocs;
6816 bfd_byte *contents;
6817 bfd_boolean ok = TRUE;
6818 unsigned i;
6819 xtensa_relax_info *source_relax_info;
6820 bfd_boolean is_l32r_reloc;
6821
6822 internal_relocs = retrieve_internal_relocs (abfd, sec,
6823 link_info->keep_memory);
6824 if (internal_relocs == NULL)
6825 return ok;
6826
6827 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6828 if (contents == NULL && sec->size != 0)
6829 {
6830 ok = FALSE;
6831 goto error_return;
6832 }
6833
6834 source_relax_info = get_xtensa_relax_info (sec);
6835 for (i = 0; i < sec->reloc_count; i++)
6836 {
6837 Elf_Internal_Rela *irel = &internal_relocs[i];
6838 r_reloc r_rel;
6839 asection *target_sec;
6840 xtensa_relax_info *target_relax_info;
6841
6842 /* If this section has not already been marked as "relaxable", and
6843 if it contains any ASM_EXPAND relocations (marking expanded
6844 longcalls) that can be optimized into direct calls, then mark
6845 the section as "relaxable". */
6846 if (source_relax_info
6847 && !source_relax_info->is_relaxable_asm_section
6848 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
6849 {
6850 bfd_boolean is_reachable = FALSE;
6851 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
6852 link_info, &is_reachable)
6853 && is_reachable)
6854 {
6855 source_relax_info->is_relaxable_asm_section = TRUE;
6856 *is_relaxable_p = TRUE;
6857 }
6858 }
6859
6860 r_reloc_init (&r_rel, abfd, irel, contents,
6861 bfd_get_section_limit (abfd, sec));
6862
6863 target_sec = r_reloc_get_section (&r_rel);
6864 target_relax_info = get_xtensa_relax_info (target_sec);
6865 if (!target_relax_info)
6866 continue;
6867
6868 /* Count PC-relative operand relocations against the target section.
6869 Note: The conditions tested here must match the conditions under
6870 which init_source_reloc is called in collect_source_relocs(). */
6871 is_l32r_reloc = FALSE;
6872 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6873 {
6874 xtensa_opcode opcode =
6875 get_relocation_opcode (abfd, sec, contents, irel);
6876 if (opcode != XTENSA_UNDEFINED)
6877 {
6878 is_l32r_reloc = (opcode == get_l32r_opcode ());
6879 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
6880 || is_l32r_reloc)
6881 target_relax_info->src_count++;
6882 }
6883 }
6884
6885 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
6886 {
6887 /* Mark the target section as relaxable. */
6888 target_relax_info->is_relaxable_literal_section = TRUE;
6889 *is_relaxable_p = TRUE;
6890 }
6891 }
6892
6893 error_return:
6894 release_contents (sec, contents);
6895 release_internal_relocs (sec, internal_relocs);
6896 return ok;
6897 }
6898
6899
6900 /* Record _all_ the relocations that point to relaxable sections, and
6901 get rid of ASM_EXPAND relocs by either converting them to
6902 ASM_SIMPLIFY or by removing them. */
6903
6904 static bfd_boolean
6905 collect_source_relocs (bfd *abfd,
6906 asection *sec,
6907 struct bfd_link_info *link_info)
6908 {
6909 Elf_Internal_Rela *internal_relocs;
6910 bfd_byte *contents;
6911 bfd_boolean ok = TRUE;
6912 unsigned i;
6913 bfd_size_type sec_size;
6914
6915 internal_relocs = retrieve_internal_relocs (abfd, sec,
6916 link_info->keep_memory);
6917 if (internal_relocs == NULL)
6918 return ok;
6919
6920 sec_size = bfd_get_section_limit (abfd, sec);
6921 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6922 if (contents == NULL && sec_size != 0)
6923 {
6924 ok = FALSE;
6925 goto error_return;
6926 }
6927
6928 /* Record relocations against relaxable literal sections. */
6929 for (i = 0; i < sec->reloc_count; i++)
6930 {
6931 Elf_Internal_Rela *irel = &internal_relocs[i];
6932 r_reloc r_rel;
6933 asection *target_sec;
6934 xtensa_relax_info *target_relax_info;
6935
6936 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6937
6938 target_sec = r_reloc_get_section (&r_rel);
6939 target_relax_info = get_xtensa_relax_info (target_sec);
6940
6941 if (target_relax_info
6942 && (target_relax_info->is_relaxable_literal_section
6943 || target_relax_info->is_relaxable_asm_section))
6944 {
6945 xtensa_opcode opcode = XTENSA_UNDEFINED;
6946 int opnd = -1;
6947 bfd_boolean is_abs_literal = FALSE;
6948
6949 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
6950 {
6951 /* None of the current alternate relocs are PC-relative,
6952 and only PC-relative relocs matter here. However, we
6953 still need to record the opcode for literal
6954 coalescing. */
6955 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6956 if (opcode == get_l32r_opcode ())
6957 {
6958 is_abs_literal = TRUE;
6959 opnd = 1;
6960 }
6961 else
6962 opcode = XTENSA_UNDEFINED;
6963 }
6964 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6965 {
6966 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6967 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
6968 }
6969
6970 if (opcode != XTENSA_UNDEFINED)
6971 {
6972 int src_next = target_relax_info->src_next++;
6973 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
6974
6975 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
6976 is_abs_literal);
6977 }
6978 }
6979 }
6980
6981 /* Now get rid of ASM_EXPAND relocations. At this point, the
6982 src_relocs array for the target literal section may still be
6983 incomplete, but it must at least contain the entries for the L32R
6984 relocations associated with ASM_EXPANDs because they were just
6985 added in the preceding loop over the relocations. */
6986
6987 for (i = 0; i < sec->reloc_count; i++)
6988 {
6989 Elf_Internal_Rela *irel = &internal_relocs[i];
6990 bfd_boolean is_reachable;
6991
6992 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
6993 &is_reachable))
6994 continue;
6995
6996 if (is_reachable)
6997 {
6998 Elf_Internal_Rela *l32r_irel;
6999 r_reloc r_rel;
7000 asection *target_sec;
7001 xtensa_relax_info *target_relax_info;
7002
7003 /* Mark the source_reloc for the L32R so that it will be
7004 removed in compute_removed_literals(), along with the
7005 associated literal. */
7006 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
7007 irel, internal_relocs);
7008 if (l32r_irel == NULL)
7009 continue;
7010
7011 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
7012
7013 target_sec = r_reloc_get_section (&r_rel);
7014 target_relax_info = get_xtensa_relax_info (target_sec);
7015
7016 if (target_relax_info
7017 && (target_relax_info->is_relaxable_literal_section
7018 || target_relax_info->is_relaxable_asm_section))
7019 {
7020 source_reloc *s_reloc;
7021
7022 /* Search the source_relocs for the entry corresponding to
7023 the l32r_irel. Note: The src_relocs array is not yet
7024 sorted, but it wouldn't matter anyway because we're
7025 searching by source offset instead of target offset. */
7026 s_reloc = find_source_reloc (target_relax_info->src_relocs,
7027 target_relax_info->src_next,
7028 sec, l32r_irel);
7029 BFD_ASSERT (s_reloc);
7030 s_reloc->is_null = TRUE;
7031 }
7032
7033 /* Convert this reloc to ASM_SIMPLIFY. */
7034 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
7035 R_XTENSA_ASM_SIMPLIFY);
7036 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7037
7038 pin_internal_relocs (sec, internal_relocs);
7039 }
7040 else
7041 {
7042 /* It is resolvable but doesn't reach. We resolve now
7043 by eliminating the relocation -- the call will remain
7044 expanded into L32R/CALLX. */
7045 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7046 pin_internal_relocs (sec, internal_relocs);
7047 }
7048 }
7049
7050 error_return:
7051 release_contents (sec, contents);
7052 release_internal_relocs (sec, internal_relocs);
7053 return ok;
7054 }
7055
7056
7057 /* Return TRUE if the asm expansion can be resolved. Generally it can
7058 be resolved on a final link or when a partial link locates it in the
7059 same section as the target. Set "is_reachable" flag if the target of
7060 the call is within the range of a direct call, given the current VMA
7061 for this section and the target section. */
7062
7063 bfd_boolean
7064 is_resolvable_asm_expansion (bfd *abfd,
7065 asection *sec,
7066 bfd_byte *contents,
7067 Elf_Internal_Rela *irel,
7068 struct bfd_link_info *link_info,
7069 bfd_boolean *is_reachable_p)
7070 {
7071 asection *target_sec;
7072 bfd_vma target_offset;
7073 r_reloc r_rel;
7074 xtensa_opcode opcode, direct_call_opcode;
7075 bfd_vma self_address;
7076 bfd_vma dest_address;
7077 bfd_boolean uses_l32r;
7078 bfd_size_type sec_size;
7079
7080 *is_reachable_p = FALSE;
7081
7082 if (contents == NULL)
7083 return FALSE;
7084
7085 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
7086 return FALSE;
7087
7088 sec_size = bfd_get_section_limit (abfd, sec);
7089 opcode = get_expanded_call_opcode (contents + irel->r_offset,
7090 sec_size - irel->r_offset, &uses_l32r);
7091 /* Optimization of longcalls that use CONST16 is not yet implemented. */
7092 if (!uses_l32r)
7093 return FALSE;
7094
7095 direct_call_opcode = swap_callx_for_call_opcode (opcode);
7096 if (direct_call_opcode == XTENSA_UNDEFINED)
7097 return FALSE;
7098
7099 /* Check and see that the target resolves. */
7100 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7101 if (!r_reloc_is_defined (&r_rel))
7102 return FALSE;
7103
7104 target_sec = r_reloc_get_section (&r_rel);
7105 target_offset = r_rel.target_offset;
7106
7107 /* If the target is in a shared library, then it doesn't reach. This
7108 isn't supposed to come up because the compiler should never generate
7109 non-PIC calls on systems that use shared libraries, but the linker
7110 shouldn't crash regardless. */
7111 if (!target_sec->output_section)
7112 return FALSE;
7113
7114 /* For relocatable sections, we can only simplify when the output
7115 section of the target is the same as the output section of the
7116 source. */
7117 if (link_info->relocatable
7118 && (target_sec->output_section != sec->output_section
7119 || is_reloc_sym_weak (abfd, irel)))
7120 return FALSE;
7121
7122 self_address = (sec->output_section->vma
7123 + sec->output_offset + irel->r_offset + 3);
7124 dest_address = (target_sec->output_section->vma
7125 + target_sec->output_offset + target_offset);
7126
7127 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
7128 self_address, dest_address);
7129
7130 if ((self_address >> CALL_SEGMENT_BITS) !=
7131 (dest_address >> CALL_SEGMENT_BITS))
7132 return FALSE;
7133
7134 return TRUE;
7135 }
7136
7137
7138 static Elf_Internal_Rela *
7139 find_associated_l32r_irel (bfd *abfd,
7140 asection *sec,
7141 bfd_byte *contents,
7142 Elf_Internal_Rela *other_irel,
7143 Elf_Internal_Rela *internal_relocs)
7144 {
7145 unsigned i;
7146
7147 for (i = 0; i < sec->reloc_count; i++)
7148 {
7149 Elf_Internal_Rela *irel = &internal_relocs[i];
7150
7151 if (irel == other_irel)
7152 continue;
7153 if (irel->r_offset != other_irel->r_offset)
7154 continue;
7155 if (is_l32r_relocation (abfd, sec, contents, irel))
7156 return irel;
7157 }
7158
7159 return NULL;
7160 }
7161
7162
7163 static xtensa_opcode *
7164 build_reloc_opcodes (bfd *abfd,
7165 asection *sec,
7166 bfd_byte *contents,
7167 Elf_Internal_Rela *internal_relocs)
7168 {
7169 unsigned i;
7170 xtensa_opcode *reloc_opcodes =
7171 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
7172 for (i = 0; i < sec->reloc_count; i++)
7173 {
7174 Elf_Internal_Rela *irel = &internal_relocs[i];
7175 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
7176 }
7177 return reloc_opcodes;
7178 }
7179
7180
7181 /* The compute_text_actions function will build a list of potential
7182 transformation actions for code in the extended basic block of each
7183 longcall that is optimized to a direct call. From this list we
7184 generate a set of actions to actually perform that optimizes for
7185 space and, if not using size_opt, maintains branch target
7186 alignments.
7187
7188 These actions to be performed are placed on a per-section list.
7189 The actual changes are performed by relax_section() in the second
7190 pass. */
7191
7192 bfd_boolean
7193 compute_text_actions (bfd *abfd,
7194 asection *sec,
7195 struct bfd_link_info *link_info)
7196 {
7197 xtensa_opcode *reloc_opcodes = NULL;
7198 xtensa_relax_info *relax_info;
7199 bfd_byte *contents;
7200 Elf_Internal_Rela *internal_relocs;
7201 bfd_boolean ok = TRUE;
7202 unsigned i;
7203 property_table_entry *prop_table = 0;
7204 int ptblsize = 0;
7205 bfd_size_type sec_size;
7206
7207 relax_info = get_xtensa_relax_info (sec);
7208 BFD_ASSERT (relax_info);
7209 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
7210
7211 /* Do nothing if the section contains no optimized longcalls. */
7212 if (!relax_info->is_relaxable_asm_section)
7213 return ok;
7214
7215 internal_relocs = retrieve_internal_relocs (abfd, sec,
7216 link_info->keep_memory);
7217
7218 if (internal_relocs)
7219 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7220 internal_reloc_compare);
7221
7222 sec_size = bfd_get_section_limit (abfd, sec);
7223 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7224 if (contents == NULL && sec_size != 0)
7225 {
7226 ok = FALSE;
7227 goto error_return;
7228 }
7229
7230 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7231 XTENSA_PROP_SEC_NAME, FALSE);
7232 if (ptblsize < 0)
7233 {
7234 ok = FALSE;
7235 goto error_return;
7236 }
7237
7238 for (i = 0; i < sec->reloc_count; i++)
7239 {
7240 Elf_Internal_Rela *irel = &internal_relocs[i];
7241 bfd_vma r_offset;
7242 property_table_entry *the_entry;
7243 int ptbl_idx;
7244 ebb_t *ebb;
7245 ebb_constraint ebb_table;
7246 bfd_size_type simplify_size;
7247
7248 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
7249 continue;
7250 r_offset = irel->r_offset;
7251
7252 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
7253 if (simplify_size == 0)
7254 {
7255 (*_bfd_error_handler)
7256 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
7257 sec->owner, sec, r_offset);
7258 continue;
7259 }
7260
7261 /* If the instruction table is not around, then don't do this
7262 relaxation. */
7263 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7264 sec->vma + irel->r_offset);
7265 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
7266 {
7267 text_action_add (&relax_info->action_list,
7268 ta_convert_longcall, sec, r_offset,
7269 0);
7270 continue;
7271 }
7272
7273 /* If the next longcall happens to be at the same address as an
7274 unreachable section of size 0, then skip forward. */
7275 ptbl_idx = the_entry - prop_table;
7276 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
7277 && the_entry->size == 0
7278 && ptbl_idx + 1 < ptblsize
7279 && (prop_table[ptbl_idx + 1].address
7280 == prop_table[ptbl_idx].address))
7281 {
7282 ptbl_idx++;
7283 the_entry++;
7284 }
7285
7286 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
7287 /* NO_REORDER is OK */
7288 continue;
7289
7290 init_ebb_constraint (&ebb_table);
7291 ebb = &ebb_table.ebb;
7292 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
7293 internal_relocs, sec->reloc_count);
7294 ebb->start_offset = r_offset + simplify_size;
7295 ebb->end_offset = r_offset + simplify_size;
7296 ebb->start_ptbl_idx = ptbl_idx;
7297 ebb->end_ptbl_idx = ptbl_idx;
7298 ebb->start_reloc_idx = i;
7299 ebb->end_reloc_idx = i;
7300
7301 /* Precompute the opcode for each relocation. */
7302 if (reloc_opcodes == NULL)
7303 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents,
7304 internal_relocs);
7305
7306 if (!extend_ebb_bounds (ebb)
7307 || !compute_ebb_proposed_actions (&ebb_table)
7308 || !compute_ebb_actions (&ebb_table)
7309 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
7310 internal_relocs, &ebb_table,
7311 reloc_opcodes)
7312 || !check_section_ebb_reduces (&ebb_table))
7313 {
7314 /* If anything goes wrong or we get unlucky and something does
7315 not fit, with our plan because of expansion between
7316 critical branches, just convert to a NOP. */
7317
7318 text_action_add (&relax_info->action_list,
7319 ta_convert_longcall, sec, r_offset, 0);
7320 i = ebb_table.ebb.end_reloc_idx;
7321 free_ebb_constraint (&ebb_table);
7322 continue;
7323 }
7324
7325 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
7326
7327 /* Update the index so we do not go looking at the relocations
7328 we have already processed. */
7329 i = ebb_table.ebb.end_reloc_idx;
7330 free_ebb_constraint (&ebb_table);
7331 }
7332
7333 #if DEBUG
7334 if (relax_info->action_list.head)
7335 print_action_list (stderr, &relax_info->action_list);
7336 #endif
7337
7338 error_return:
7339 release_contents (sec, contents);
7340 release_internal_relocs (sec, internal_relocs);
7341 if (prop_table)
7342 free (prop_table);
7343 if (reloc_opcodes)
7344 free (reloc_opcodes);
7345
7346 return ok;
7347 }
7348
7349
7350 /* Do not widen an instruction if it is preceeded by a
7351 loop opcode. It might cause misalignment. */
7352
7353 static bfd_boolean
7354 prev_instr_is_a_loop (bfd_byte *contents,
7355 bfd_size_type content_length,
7356 bfd_size_type offset)
7357 {
7358 xtensa_opcode prev_opcode;
7359
7360 if (offset < 3)
7361 return FALSE;
7362 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
7363 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
7364 }
7365
7366
7367 /* Find all of the possible actions for an extended basic block. */
7368
7369 bfd_boolean
7370 compute_ebb_proposed_actions (ebb_constraint *ebb_table)
7371 {
7372 const ebb_t *ebb = &ebb_table->ebb;
7373 unsigned rel_idx = ebb->start_reloc_idx;
7374 property_table_entry *entry, *start_entry, *end_entry;
7375 bfd_vma offset = 0;
7376 xtensa_isa isa = xtensa_default_isa;
7377 xtensa_format fmt;
7378 static xtensa_insnbuf insnbuf = NULL;
7379 static xtensa_insnbuf slotbuf = NULL;
7380
7381 if (insnbuf == NULL)
7382 {
7383 insnbuf = xtensa_insnbuf_alloc (isa);
7384 slotbuf = xtensa_insnbuf_alloc (isa);
7385 }
7386
7387 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
7388 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
7389
7390 for (entry = start_entry; entry <= end_entry; entry++)
7391 {
7392 bfd_vma start_offset, end_offset;
7393 bfd_size_type insn_len;
7394
7395 start_offset = entry->address - ebb->sec->vma;
7396 end_offset = entry->address + entry->size - ebb->sec->vma;
7397
7398 if (entry == start_entry)
7399 start_offset = ebb->start_offset;
7400 if (entry == end_entry)
7401 end_offset = ebb->end_offset;
7402 offset = start_offset;
7403
7404 if (offset == entry->address - ebb->sec->vma
7405 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
7406 {
7407 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
7408 BFD_ASSERT (offset != end_offset);
7409 if (offset == end_offset)
7410 return FALSE;
7411
7412 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
7413 offset);
7414 if (insn_len == 0)
7415 goto decode_error;
7416
7417 if (check_branch_target_aligned_address (offset, insn_len))
7418 align_type = EBB_REQUIRE_TGT_ALIGN;
7419
7420 ebb_propose_action (ebb_table, align_type, 0,
7421 ta_none, offset, 0, TRUE);
7422 }
7423
7424 while (offset != end_offset)
7425 {
7426 Elf_Internal_Rela *irel;
7427 xtensa_opcode opcode;
7428
7429 while (rel_idx < ebb->end_reloc_idx
7430 && (ebb->relocs[rel_idx].r_offset < offset
7431 || (ebb->relocs[rel_idx].r_offset == offset
7432 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
7433 != R_XTENSA_ASM_SIMPLIFY))))
7434 rel_idx++;
7435
7436 /* Check for longcall. */
7437 irel = &ebb->relocs[rel_idx];
7438 if (irel->r_offset == offset
7439 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
7440 {
7441 bfd_size_type simplify_size;
7442
7443 simplify_size = get_asm_simplify_size (ebb->contents,
7444 ebb->content_length,
7445 irel->r_offset);
7446 if (simplify_size == 0)
7447 goto decode_error;
7448
7449 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7450 ta_convert_longcall, offset, 0, TRUE);
7451
7452 offset += simplify_size;
7453 continue;
7454 }
7455
7456 if (offset + MIN_INSN_LENGTH > ebb->content_length)
7457 goto decode_error;
7458 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
7459 ebb->content_length - offset);
7460 fmt = xtensa_format_decode (isa, insnbuf);
7461 if (fmt == XTENSA_UNDEFINED)
7462 goto decode_error;
7463 insn_len = xtensa_format_length (isa, fmt);
7464 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
7465 goto decode_error;
7466
7467 if (xtensa_format_num_slots (isa, fmt) != 1)
7468 {
7469 offset += insn_len;
7470 continue;
7471 }
7472
7473 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
7474 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
7475 if (opcode == XTENSA_UNDEFINED)
7476 goto decode_error;
7477
7478 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
7479 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
7480 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
7481 {
7482 /* Add an instruction narrow action. */
7483 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7484 ta_narrow_insn, offset, 0, FALSE);
7485 }
7486 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
7487 && can_widen_instruction (slotbuf, fmt, opcode) != 0
7488 && ! prev_instr_is_a_loop (ebb->contents,
7489 ebb->content_length, offset))
7490 {
7491 /* Add an instruction widen action. */
7492 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7493 ta_widen_insn, offset, 0, FALSE);
7494 }
7495 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
7496 {
7497 /* Check for branch targets. */
7498 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
7499 ta_none, offset, 0, TRUE);
7500 }
7501
7502 offset += insn_len;
7503 }
7504 }
7505
7506 if (ebb->ends_unreachable)
7507 {
7508 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7509 ta_fill, ebb->end_offset, 0, TRUE);
7510 }
7511
7512 return TRUE;
7513
7514 decode_error:
7515 (*_bfd_error_handler)
7516 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
7517 ebb->sec->owner, ebb->sec, offset);
7518 return FALSE;
7519 }
7520
7521
7522 /* After all of the information has collected about the
7523 transformations possible in an EBB, compute the appropriate actions
7524 here in compute_ebb_actions. We still must check later to make
7525 sure that the actions do not break any relocations. The algorithm
7526 used here is pretty greedy. Basically, it removes as many no-ops
7527 as possible so that the end of the EBB has the same alignment
7528 characteristics as the original. First, it uses narrowing, then
7529 fill space at the end of the EBB, and finally widenings. If that
7530 does not work, it tries again with one fewer no-op removed. The
7531 optimization will only be performed if all of the branch targets
7532 that were aligned before transformation are also aligned after the
7533 transformation.
7534
7535 When the size_opt flag is set, ignore the branch target alignments,
7536 narrow all wide instructions, and remove all no-ops unless the end
7537 of the EBB prevents it. */
7538
7539 bfd_boolean
7540 compute_ebb_actions (ebb_constraint *ebb_table)
7541 {
7542 unsigned i = 0;
7543 unsigned j;
7544 int removed_bytes = 0;
7545 ebb_t *ebb = &ebb_table->ebb;
7546 unsigned seg_idx_start = 0;
7547 unsigned seg_idx_end = 0;
7548
7549 /* We perform this like the assembler relaxation algorithm: Start by
7550 assuming all instructions are narrow and all no-ops removed; then
7551 walk through.... */
7552
7553 /* For each segment of this that has a solid constraint, check to
7554 see if there are any combinations that will keep the constraint.
7555 If so, use it. */
7556 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
7557 {
7558 bfd_boolean requires_text_end_align = FALSE;
7559 unsigned longcall_count = 0;
7560 unsigned longcall_convert_count = 0;
7561 unsigned narrowable_count = 0;
7562 unsigned narrowable_convert_count = 0;
7563 unsigned widenable_count = 0;
7564 unsigned widenable_convert_count = 0;
7565
7566 proposed_action *action = NULL;
7567 int align = (1 << ebb_table->ebb.sec->alignment_power);
7568
7569 seg_idx_start = seg_idx_end;
7570
7571 for (i = seg_idx_start; i < ebb_table->action_count; i++)
7572 {
7573 action = &ebb_table->actions[i];
7574 if (action->action == ta_convert_longcall)
7575 longcall_count++;
7576 if (action->action == ta_narrow_insn)
7577 narrowable_count++;
7578 if (action->action == ta_widen_insn)
7579 widenable_count++;
7580 if (action->action == ta_fill)
7581 break;
7582 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
7583 break;
7584 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
7585 && !elf32xtensa_size_opt)
7586 break;
7587 }
7588 seg_idx_end = i;
7589
7590 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
7591 requires_text_end_align = TRUE;
7592
7593 if (elf32xtensa_size_opt && !requires_text_end_align
7594 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
7595 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
7596 {
7597 longcall_convert_count = longcall_count;
7598 narrowable_convert_count = narrowable_count;
7599 widenable_convert_count = 0;
7600 }
7601 else
7602 {
7603 /* There is a constraint. Convert the max number of longcalls. */
7604 narrowable_convert_count = 0;
7605 longcall_convert_count = 0;
7606 widenable_convert_count = 0;
7607
7608 for (j = 0; j < longcall_count; j++)
7609 {
7610 int removed = (longcall_count - j) * 3 & (align - 1);
7611 unsigned desire_narrow = (align - removed) & (align - 1);
7612 unsigned desire_widen = removed;
7613 if (desire_narrow <= narrowable_count)
7614 {
7615 narrowable_convert_count = desire_narrow;
7616 narrowable_convert_count +=
7617 (align * ((narrowable_count - narrowable_convert_count)
7618 / align));
7619 longcall_convert_count = (longcall_count - j);
7620 widenable_convert_count = 0;
7621 break;
7622 }
7623 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
7624 {
7625 narrowable_convert_count = 0;
7626 longcall_convert_count = longcall_count - j;
7627 widenable_convert_count = desire_widen;
7628 break;
7629 }
7630 }
7631 }
7632
7633 /* Now the number of conversions are saved. Do them. */
7634 for (i = seg_idx_start; i < seg_idx_end; i++)
7635 {
7636 action = &ebb_table->actions[i];
7637 switch (action->action)
7638 {
7639 case ta_convert_longcall:
7640 if (longcall_convert_count != 0)
7641 {
7642 action->action = ta_remove_longcall;
7643 action->do_action = TRUE;
7644 action->removed_bytes += 3;
7645 longcall_convert_count--;
7646 }
7647 break;
7648 case ta_narrow_insn:
7649 if (narrowable_convert_count != 0)
7650 {
7651 action->do_action = TRUE;
7652 action->removed_bytes += 1;
7653 narrowable_convert_count--;
7654 }
7655 break;
7656 case ta_widen_insn:
7657 if (widenable_convert_count != 0)
7658 {
7659 action->do_action = TRUE;
7660 action->removed_bytes -= 1;
7661 widenable_convert_count--;
7662 }
7663 break;
7664 default:
7665 break;
7666 }
7667 }
7668 }
7669
7670 /* Now we move on to some local opts. Try to remove each of the
7671 remaining longcalls. */
7672
7673 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
7674 {
7675 removed_bytes = 0;
7676 for (i = 0; i < ebb_table->action_count; i++)
7677 {
7678 int old_removed_bytes = removed_bytes;
7679 proposed_action *action = &ebb_table->actions[i];
7680
7681 if (action->do_action && action->action == ta_convert_longcall)
7682 {
7683 bfd_boolean bad_alignment = FALSE;
7684 removed_bytes += 3;
7685 for (j = i + 1; j < ebb_table->action_count; j++)
7686 {
7687 proposed_action *new_action = &ebb_table->actions[j];
7688 bfd_vma offset = new_action->offset;
7689 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
7690 {
7691 if (!check_branch_target_aligned
7692 (ebb_table->ebb.contents,
7693 ebb_table->ebb.content_length,
7694 offset, offset - removed_bytes))
7695 {
7696 bad_alignment = TRUE;
7697 break;
7698 }
7699 }
7700 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
7701 {
7702 if (!check_loop_aligned (ebb_table->ebb.contents,
7703 ebb_table->ebb.content_length,
7704 offset,
7705 offset - removed_bytes))
7706 {
7707 bad_alignment = TRUE;
7708 break;
7709 }
7710 }
7711 if (new_action->action == ta_narrow_insn
7712 && !new_action->do_action
7713 && ebb_table->ebb.sec->alignment_power == 2)
7714 {
7715 /* Narrow an instruction and we are done. */
7716 new_action->do_action = TRUE;
7717 new_action->removed_bytes += 1;
7718 bad_alignment = FALSE;
7719 break;
7720 }
7721 if (new_action->action == ta_widen_insn
7722 && new_action->do_action
7723 && ebb_table->ebb.sec->alignment_power == 2)
7724 {
7725 /* Narrow an instruction and we are done. */
7726 new_action->do_action = FALSE;
7727 new_action->removed_bytes += 1;
7728 bad_alignment = FALSE;
7729 break;
7730 }
7731 if (new_action->do_action)
7732 removed_bytes += new_action->removed_bytes;
7733 }
7734 if (!bad_alignment)
7735 {
7736 action->removed_bytes += 3;
7737 action->action = ta_remove_longcall;
7738 action->do_action = TRUE;
7739 }
7740 }
7741 removed_bytes = old_removed_bytes;
7742 if (action->do_action)
7743 removed_bytes += action->removed_bytes;
7744 }
7745 }
7746
7747 removed_bytes = 0;
7748 for (i = 0; i < ebb_table->action_count; ++i)
7749 {
7750 proposed_action *action = &ebb_table->actions[i];
7751 if (action->do_action)
7752 removed_bytes += action->removed_bytes;
7753 }
7754
7755 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
7756 && ebb->ends_unreachable)
7757 {
7758 proposed_action *action;
7759 int br;
7760 int extra_space;
7761
7762 BFD_ASSERT (ebb_table->action_count != 0);
7763 action = &ebb_table->actions[ebb_table->action_count - 1];
7764 BFD_ASSERT (action->action == ta_fill);
7765 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
7766
7767 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
7768 br = action->removed_bytes + removed_bytes + extra_space;
7769 br = br & ((1 << ebb->sec->alignment_power ) - 1);
7770
7771 action->removed_bytes = extra_space - br;
7772 }
7773 return TRUE;
7774 }
7775
7776
7777 /* The xlate_map is a sorted array of address mappings designed to
7778 answer the offset_with_removed_text() query with a binary search instead
7779 of a linear search through the section's action_list. */
7780
7781 typedef struct xlate_map_entry xlate_map_entry_t;
7782 typedef struct xlate_map xlate_map_t;
7783
7784 struct xlate_map_entry
7785 {
7786 unsigned orig_address;
7787 unsigned new_address;
7788 unsigned size;
7789 };
7790
7791 struct xlate_map
7792 {
7793 unsigned entry_count;
7794 xlate_map_entry_t *entry;
7795 };
7796
7797
7798 static int
7799 xlate_compare (const void *a_v, const void *b_v)
7800 {
7801 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
7802 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
7803 if (a->orig_address < b->orig_address)
7804 return -1;
7805 if (a->orig_address > (b->orig_address + b->size - 1))
7806 return 1;
7807 return 0;
7808 }
7809
7810
7811 static bfd_vma
7812 xlate_offset_with_removed_text (const xlate_map_t *map,
7813 text_action_list *action_list,
7814 bfd_vma offset)
7815 {
7816 void *r;
7817 xlate_map_entry_t *e;
7818
7819 if (map == NULL)
7820 return offset_with_removed_text (action_list, offset);
7821
7822 if (map->entry_count == 0)
7823 return offset;
7824
7825 r = bsearch (&offset, map->entry, map->entry_count,
7826 sizeof (xlate_map_entry_t), &xlate_compare);
7827 e = (xlate_map_entry_t *) r;
7828
7829 BFD_ASSERT (e != NULL);
7830 if (e == NULL)
7831 return offset;
7832 return e->new_address - e->orig_address + offset;
7833 }
7834
7835
7836 /* Build a binary searchable offset translation map from a section's
7837 action list. */
7838
7839 static xlate_map_t *
7840 build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
7841 {
7842 xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
7843 text_action_list *action_list = &relax_info->action_list;
7844 unsigned num_actions = 0;
7845 text_action *r;
7846 int removed;
7847 xlate_map_entry_t *current_entry;
7848
7849 if (map == NULL)
7850 return NULL;
7851
7852 num_actions = action_list_count (action_list);
7853 map->entry = (xlate_map_entry_t *)
7854 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
7855 if (map->entry == NULL)
7856 {
7857 free (map);
7858 return NULL;
7859 }
7860 map->entry_count = 0;
7861
7862 removed = 0;
7863 current_entry = &map->entry[0];
7864
7865 current_entry->orig_address = 0;
7866 current_entry->new_address = 0;
7867 current_entry->size = 0;
7868
7869 for (r = action_list->head; r != NULL; r = r->next)
7870 {
7871 unsigned orig_size = 0;
7872 switch (r->action)
7873 {
7874 case ta_none:
7875 case ta_remove_insn:
7876 case ta_convert_longcall:
7877 case ta_remove_literal:
7878 case ta_add_literal:
7879 break;
7880 case ta_remove_longcall:
7881 orig_size = 6;
7882 break;
7883 case ta_narrow_insn:
7884 orig_size = 3;
7885 break;
7886 case ta_widen_insn:
7887 orig_size = 2;
7888 break;
7889 case ta_fill:
7890 break;
7891 }
7892 current_entry->size =
7893 r->offset + orig_size - current_entry->orig_address;
7894 if (current_entry->size != 0)
7895 {
7896 current_entry++;
7897 map->entry_count++;
7898 }
7899 current_entry->orig_address = r->offset + orig_size;
7900 removed += r->removed_bytes;
7901 current_entry->new_address = r->offset + orig_size - removed;
7902 current_entry->size = 0;
7903 }
7904
7905 current_entry->size = (bfd_get_section_limit (sec->owner, sec)
7906 - current_entry->orig_address);
7907 if (current_entry->size != 0)
7908 map->entry_count++;
7909
7910 return map;
7911 }
7912
7913
7914 /* Free an offset translation map. */
7915
7916 static void
7917 free_xlate_map (xlate_map_t *map)
7918 {
7919 if (map && map->entry)
7920 free (map->entry);
7921 if (map)
7922 free (map);
7923 }
7924
7925
7926 /* Use check_section_ebb_pcrels_fit to make sure that all of the
7927 relocations in a section will fit if a proposed set of actions
7928 are performed. */
7929
7930 static bfd_boolean
7931 check_section_ebb_pcrels_fit (bfd *abfd,
7932 asection *sec,
7933 bfd_byte *contents,
7934 Elf_Internal_Rela *internal_relocs,
7935 const ebb_constraint *constraint,
7936 const xtensa_opcode *reloc_opcodes)
7937 {
7938 unsigned i, j;
7939 Elf_Internal_Rela *irel;
7940 xlate_map_t *xmap = NULL;
7941 bfd_boolean ok = TRUE;
7942 xtensa_relax_info *relax_info;
7943
7944 relax_info = get_xtensa_relax_info (sec);
7945
7946 if (relax_info && sec->reloc_count > 100)
7947 {
7948 xmap = build_xlate_map (sec, relax_info);
7949 /* NULL indicates out of memory, but the slow version
7950 can still be used. */
7951 }
7952
7953 for (i = 0; i < sec->reloc_count; i++)
7954 {
7955 r_reloc r_rel;
7956 bfd_vma orig_self_offset, orig_target_offset;
7957 bfd_vma self_offset, target_offset;
7958 int r_type;
7959 reloc_howto_type *howto;
7960 int self_removed_bytes, target_removed_bytes;
7961
7962 irel = &internal_relocs[i];
7963 r_type = ELF32_R_TYPE (irel->r_info);
7964
7965 howto = &elf_howto_table[r_type];
7966 /* We maintain the required invariant: PC-relative relocations
7967 that fit before linking must fit after linking. Thus we only
7968 need to deal with relocations to the same section that are
7969 PC-relative. */
7970 if (r_type == R_XTENSA_ASM_SIMPLIFY
7971 || r_type == R_XTENSA_32_PCREL
7972 || !howto->pc_relative)
7973 continue;
7974
7975 r_reloc_init (&r_rel, abfd, irel, contents,
7976 bfd_get_section_limit (abfd, sec));
7977
7978 if (r_reloc_get_section (&r_rel) != sec)
7979 continue;
7980
7981 orig_self_offset = irel->r_offset;
7982 orig_target_offset = r_rel.target_offset;
7983
7984 self_offset = orig_self_offset;
7985 target_offset = orig_target_offset;
7986
7987 if (relax_info)
7988 {
7989 self_offset =
7990 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7991 orig_self_offset);
7992 target_offset =
7993 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7994 orig_target_offset);
7995 }
7996
7997 self_removed_bytes = 0;
7998 target_removed_bytes = 0;
7999
8000 for (j = 0; j < constraint->action_count; ++j)
8001 {
8002 proposed_action *action = &constraint->actions[j];
8003 bfd_vma offset = action->offset;
8004 int removed_bytes = action->removed_bytes;
8005 if (offset < orig_self_offset
8006 || (offset == orig_self_offset && action->action == ta_fill
8007 && action->removed_bytes < 0))
8008 self_removed_bytes += removed_bytes;
8009 if (offset < orig_target_offset
8010 || (offset == orig_target_offset && action->action == ta_fill
8011 && action->removed_bytes < 0))
8012 target_removed_bytes += removed_bytes;
8013 }
8014 self_offset -= self_removed_bytes;
8015 target_offset -= target_removed_bytes;
8016
8017 /* Try to encode it. Get the operand and check. */
8018 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
8019 {
8020 /* None of the current alternate relocs are PC-relative,
8021 and only PC-relative relocs matter here. */
8022 }
8023 else
8024 {
8025 xtensa_opcode opcode;
8026 int opnum;
8027
8028 if (reloc_opcodes)
8029 opcode = reloc_opcodes[i];
8030 else
8031 opcode = get_relocation_opcode (abfd, sec, contents, irel);
8032 if (opcode == XTENSA_UNDEFINED)
8033 {
8034 ok = FALSE;
8035 break;
8036 }
8037
8038 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
8039 if (opnum == XTENSA_UNDEFINED)
8040 {
8041 ok = FALSE;
8042 break;
8043 }
8044
8045 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
8046 {
8047 ok = FALSE;
8048 break;
8049 }
8050 }
8051 }
8052
8053 if (xmap)
8054 free_xlate_map (xmap);
8055
8056 return ok;
8057 }
8058
8059
8060 static bfd_boolean
8061 check_section_ebb_reduces (const ebb_constraint *constraint)
8062 {
8063 int removed = 0;
8064 unsigned i;
8065
8066 for (i = 0; i < constraint->action_count; i++)
8067 {
8068 const proposed_action *action = &constraint->actions[i];
8069 if (action->do_action)
8070 removed += action->removed_bytes;
8071 }
8072 if (removed < 0)
8073 return FALSE;
8074
8075 return TRUE;
8076 }
8077
8078
8079 void
8080 text_action_add_proposed (text_action_list *l,
8081 const ebb_constraint *ebb_table,
8082 asection *sec)
8083 {
8084 unsigned i;
8085
8086 for (i = 0; i < ebb_table->action_count; i++)
8087 {
8088 proposed_action *action = &ebb_table->actions[i];
8089
8090 if (!action->do_action)
8091 continue;
8092 switch (action->action)
8093 {
8094 case ta_remove_insn:
8095 case ta_remove_longcall:
8096 case ta_convert_longcall:
8097 case ta_narrow_insn:
8098 case ta_widen_insn:
8099 case ta_fill:
8100 case ta_remove_literal:
8101 text_action_add (l, action->action, sec, action->offset,
8102 action->removed_bytes);
8103 break;
8104 case ta_none:
8105 break;
8106 default:
8107 BFD_ASSERT (0);
8108 break;
8109 }
8110 }
8111 }
8112
8113
8114 int
8115 compute_fill_extra_space (property_table_entry *entry)
8116 {
8117 int fill_extra_space;
8118
8119 if (!entry)
8120 return 0;
8121
8122 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
8123 return 0;
8124
8125 fill_extra_space = entry->size;
8126 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
8127 {
8128 /* Fill bytes for alignment:
8129 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
8130 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
8131 int nsm = (1 << pow) - 1;
8132 bfd_vma addr = entry->address + entry->size;
8133 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
8134 fill_extra_space += align_fill;
8135 }
8136 return fill_extra_space;
8137 }
8138
8139 \f
8140 /* First relaxation pass. */
8141
8142 /* If the section contains relaxable literals, check each literal to
8143 see if it has the same value as another literal that has already
8144 been seen, either in the current section or a previous one. If so,
8145 add an entry to the per-section list of removed literals. The
8146 actual changes are deferred until the next pass. */
8147
8148 static bfd_boolean
8149 compute_removed_literals (bfd *abfd,
8150 asection *sec,
8151 struct bfd_link_info *link_info,
8152 value_map_hash_table *values)
8153 {
8154 xtensa_relax_info *relax_info;
8155 bfd_byte *contents;
8156 Elf_Internal_Rela *internal_relocs;
8157 source_reloc *src_relocs, *rel;
8158 bfd_boolean ok = TRUE;
8159 property_table_entry *prop_table = NULL;
8160 int ptblsize;
8161 int i, prev_i;
8162 bfd_boolean last_loc_is_prev = FALSE;
8163 bfd_vma last_target_offset = 0;
8164 section_cache_t target_sec_cache;
8165 bfd_size_type sec_size;
8166
8167 init_section_cache (&target_sec_cache);
8168
8169 /* Do nothing if it is not a relaxable literal section. */
8170 relax_info = get_xtensa_relax_info (sec);
8171 BFD_ASSERT (relax_info);
8172 if (!relax_info->is_relaxable_literal_section)
8173 return ok;
8174
8175 internal_relocs = retrieve_internal_relocs (abfd, sec,
8176 link_info->keep_memory);
8177
8178 sec_size = bfd_get_section_limit (abfd, sec);
8179 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8180 if (contents == NULL && sec_size != 0)
8181 {
8182 ok = FALSE;
8183 goto error_return;
8184 }
8185
8186 /* Sort the source_relocs by target offset. */
8187 src_relocs = relax_info->src_relocs;
8188 qsort (src_relocs, relax_info->src_count,
8189 sizeof (source_reloc), source_reloc_compare);
8190 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8191 internal_reloc_compare);
8192
8193 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
8194 XTENSA_PROP_SEC_NAME, FALSE);
8195 if (ptblsize < 0)
8196 {
8197 ok = FALSE;
8198 goto error_return;
8199 }
8200
8201 prev_i = -1;
8202 for (i = 0; i < relax_info->src_count; i++)
8203 {
8204 Elf_Internal_Rela *irel = NULL;
8205
8206 rel = &src_relocs[i];
8207 if (get_l32r_opcode () != rel->opcode)
8208 continue;
8209 irel = get_irel_at_offset (sec, internal_relocs,
8210 rel->r_rel.target_offset);
8211
8212 /* If the relocation on this is not a simple R_XTENSA_32 or
8213 R_XTENSA_PLT then do not consider it. This may happen when
8214 the difference of two symbols is used in a literal. */
8215 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
8216 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
8217 continue;
8218
8219 /* If the target_offset for this relocation is the same as the
8220 previous relocation, then we've already considered whether the
8221 literal can be coalesced. Skip to the next one.... */
8222 if (i != 0 && prev_i != -1
8223 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
8224 continue;
8225 prev_i = i;
8226
8227 if (last_loc_is_prev &&
8228 last_target_offset + 4 != rel->r_rel.target_offset)
8229 last_loc_is_prev = FALSE;
8230
8231 /* Check if the relocation was from an L32R that is being removed
8232 because a CALLX was converted to a direct CALL, and check if
8233 there are no other relocations to the literal. */
8234 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
8235 sec, prop_table, ptblsize))
8236 {
8237 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
8238 irel, rel, prop_table, ptblsize))
8239 {
8240 ok = FALSE;
8241 goto error_return;
8242 }
8243 last_target_offset = rel->r_rel.target_offset;
8244 continue;
8245 }
8246
8247 if (!identify_literal_placement (abfd, sec, contents, link_info,
8248 values,
8249 &last_loc_is_prev, irel,
8250 relax_info->src_count - i, rel,
8251 prop_table, ptblsize,
8252 &target_sec_cache, rel->is_abs_literal))
8253 {
8254 ok = FALSE;
8255 goto error_return;
8256 }
8257 last_target_offset = rel->r_rel.target_offset;
8258 }
8259
8260 #if DEBUG
8261 print_removed_literals (stderr, &relax_info->removed_list);
8262 print_action_list (stderr, &relax_info->action_list);
8263 #endif /* DEBUG */
8264
8265 error_return:
8266 if (prop_table)
8267 free (prop_table);
8268 free_section_cache (&target_sec_cache);
8269
8270 release_contents (sec, contents);
8271 release_internal_relocs (sec, internal_relocs);
8272 return ok;
8273 }
8274
8275
8276 static Elf_Internal_Rela *
8277 get_irel_at_offset (asection *sec,
8278 Elf_Internal_Rela *internal_relocs,
8279 bfd_vma offset)
8280 {
8281 unsigned i;
8282 Elf_Internal_Rela *irel;
8283 unsigned r_type;
8284 Elf_Internal_Rela key;
8285
8286 if (!internal_relocs)
8287 return NULL;
8288
8289 key.r_offset = offset;
8290 irel = bsearch (&key, internal_relocs, sec->reloc_count,
8291 sizeof (Elf_Internal_Rela), internal_reloc_matches);
8292 if (!irel)
8293 return NULL;
8294
8295 /* bsearch does not guarantee which will be returned if there are
8296 multiple matches. We need the first that is not an alignment. */
8297 i = irel - internal_relocs;
8298 while (i > 0)
8299 {
8300 if (internal_relocs[i-1].r_offset != offset)
8301 break;
8302 i--;
8303 }
8304 for ( ; i < sec->reloc_count; i++)
8305 {
8306 irel = &internal_relocs[i];
8307 r_type = ELF32_R_TYPE (irel->r_info);
8308 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
8309 return irel;
8310 }
8311
8312 return NULL;
8313 }
8314
8315
8316 bfd_boolean
8317 is_removable_literal (const source_reloc *rel,
8318 int i,
8319 const source_reloc *src_relocs,
8320 int src_count,
8321 asection *sec,
8322 property_table_entry *prop_table,
8323 int ptblsize)
8324 {
8325 const source_reloc *curr_rel;
8326 property_table_entry *entry;
8327
8328 if (!rel->is_null)
8329 return FALSE;
8330
8331 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8332 sec->vma + rel->r_rel.target_offset);
8333 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8334 return FALSE;
8335
8336 for (++i; i < src_count; ++i)
8337 {
8338 curr_rel = &src_relocs[i];
8339 /* If all others have the same target offset.... */
8340 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
8341 return TRUE;
8342
8343 if (!curr_rel->is_null
8344 && !xtensa_is_property_section (curr_rel->source_sec)
8345 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
8346 return FALSE;
8347 }
8348 return TRUE;
8349 }
8350
8351
8352 bfd_boolean
8353 remove_dead_literal (bfd *abfd,
8354 asection *sec,
8355 struct bfd_link_info *link_info,
8356 Elf_Internal_Rela *internal_relocs,
8357 Elf_Internal_Rela *irel,
8358 source_reloc *rel,
8359 property_table_entry *prop_table,
8360 int ptblsize)
8361 {
8362 property_table_entry *entry;
8363 xtensa_relax_info *relax_info;
8364
8365 relax_info = get_xtensa_relax_info (sec);
8366 if (!relax_info)
8367 return FALSE;
8368
8369 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8370 sec->vma + rel->r_rel.target_offset);
8371
8372 /* Mark the unused literal so that it will be removed. */
8373 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
8374
8375 text_action_add (&relax_info->action_list,
8376 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8377
8378 /* If the section is 4-byte aligned, do not add fill. */
8379 if (sec->alignment_power > 2)
8380 {
8381 int fill_extra_space;
8382 bfd_vma entry_sec_offset;
8383 text_action *fa;
8384 property_table_entry *the_add_entry;
8385 int removed_diff;
8386
8387 if (entry)
8388 entry_sec_offset = entry->address - sec->vma + entry->size;
8389 else
8390 entry_sec_offset = rel->r_rel.target_offset + 4;
8391
8392 /* If the literal range is at the end of the section,
8393 do not add fill. */
8394 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8395 entry_sec_offset);
8396 fill_extra_space = compute_fill_extra_space (the_add_entry);
8397
8398 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8399 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8400 -4, fill_extra_space);
8401 if (fa)
8402 adjust_fill_action (fa, removed_diff);
8403 else
8404 text_action_add (&relax_info->action_list,
8405 ta_fill, sec, entry_sec_offset, removed_diff);
8406 }
8407
8408 /* Zero out the relocation on this literal location. */
8409 if (irel)
8410 {
8411 if (elf_hash_table (link_info)->dynamic_sections_created)
8412 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8413
8414 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8415 pin_internal_relocs (sec, internal_relocs);
8416 }
8417
8418 /* Do not modify "last_loc_is_prev". */
8419 return TRUE;
8420 }
8421
8422
8423 bfd_boolean
8424 identify_literal_placement (bfd *abfd,
8425 asection *sec,
8426 bfd_byte *contents,
8427 struct bfd_link_info *link_info,
8428 value_map_hash_table *values,
8429 bfd_boolean *last_loc_is_prev_p,
8430 Elf_Internal_Rela *irel,
8431 int remaining_src_rels,
8432 source_reloc *rel,
8433 property_table_entry *prop_table,
8434 int ptblsize,
8435 section_cache_t *target_sec_cache,
8436 bfd_boolean is_abs_literal)
8437 {
8438 literal_value val;
8439 value_map *val_map;
8440 xtensa_relax_info *relax_info;
8441 bfd_boolean literal_placed = FALSE;
8442 r_reloc r_rel;
8443 unsigned long value;
8444 bfd_boolean final_static_link;
8445 bfd_size_type sec_size;
8446
8447 relax_info = get_xtensa_relax_info (sec);
8448 if (!relax_info)
8449 return FALSE;
8450
8451 sec_size = bfd_get_section_limit (abfd, sec);
8452
8453 final_static_link =
8454 (!link_info->relocatable
8455 && !elf_hash_table (link_info)->dynamic_sections_created);
8456
8457 /* The placement algorithm first checks to see if the literal is
8458 already in the value map. If so and the value map is reachable
8459 from all uses, then the literal is moved to that location. If
8460 not, then we identify the last location where a fresh literal was
8461 placed. If the literal can be safely moved there, then we do so.
8462 If not, then we assume that the literal is not to move and leave
8463 the literal where it is, marking it as the last literal
8464 location. */
8465
8466 /* Find the literal value. */
8467 value = 0;
8468 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8469 if (!irel)
8470 {
8471 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
8472 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
8473 }
8474 init_literal_value (&val, &r_rel, value, is_abs_literal);
8475
8476 /* Check if we've seen another literal with the same value that
8477 is in the same output section. */
8478 val_map = value_map_get_cached_value (values, &val, final_static_link);
8479
8480 if (val_map
8481 && (r_reloc_get_section (&val_map->loc)->output_section
8482 == sec->output_section)
8483 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
8484 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
8485 {
8486 /* No change to last_loc_is_prev. */
8487 literal_placed = TRUE;
8488 }
8489
8490 /* For relocatable links, do not try to move literals. To do it
8491 correctly might increase the number of relocations in an input
8492 section making the default relocatable linking fail. */
8493 if (!link_info->relocatable && !literal_placed
8494 && values->has_last_loc && !(*last_loc_is_prev_p))
8495 {
8496 asection *target_sec = r_reloc_get_section (&values->last_loc);
8497 if (target_sec && target_sec->output_section == sec->output_section)
8498 {
8499 /* Increment the virtual offset. */
8500 r_reloc try_loc = values->last_loc;
8501 try_loc.virtual_offset += 4;
8502
8503 /* There is a last loc that was in the same output section. */
8504 if (relocations_reach (rel, remaining_src_rels, &try_loc)
8505 && move_shared_literal (sec, link_info, rel,
8506 prop_table, ptblsize,
8507 &try_loc, &val, target_sec_cache))
8508 {
8509 values->last_loc.virtual_offset += 4;
8510 literal_placed = TRUE;
8511 if (!val_map)
8512 val_map = add_value_map (values, &val, &try_loc,
8513 final_static_link);
8514 else
8515 val_map->loc = try_loc;
8516 }
8517 }
8518 }
8519
8520 if (!literal_placed)
8521 {
8522 /* Nothing worked, leave the literal alone but update the last loc. */
8523 values->has_last_loc = TRUE;
8524 values->last_loc = rel->r_rel;
8525 if (!val_map)
8526 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
8527 else
8528 val_map->loc = rel->r_rel;
8529 *last_loc_is_prev_p = TRUE;
8530 }
8531
8532 return TRUE;
8533 }
8534
8535
8536 /* Check if the original relocations (presumably on L32R instructions)
8537 identified by reloc[0..N] can be changed to reference the literal
8538 identified by r_rel. If r_rel is out of range for any of the
8539 original relocations, then we don't want to coalesce the original
8540 literal with the one at r_rel. We only check reloc[0..N], where the
8541 offsets are all the same as for reloc[0] (i.e., they're all
8542 referencing the same literal) and where N is also bounded by the
8543 number of remaining entries in the "reloc" array. The "reloc" array
8544 is sorted by target offset so we know all the entries for the same
8545 literal will be contiguous. */
8546
8547 static bfd_boolean
8548 relocations_reach (source_reloc *reloc,
8549 int remaining_relocs,
8550 const r_reloc *r_rel)
8551 {
8552 bfd_vma from_offset, source_address, dest_address;
8553 asection *sec;
8554 int i;
8555
8556 if (!r_reloc_is_defined (r_rel))
8557 return FALSE;
8558
8559 sec = r_reloc_get_section (r_rel);
8560 from_offset = reloc[0].r_rel.target_offset;
8561
8562 for (i = 0; i < remaining_relocs; i++)
8563 {
8564 if (reloc[i].r_rel.target_offset != from_offset)
8565 break;
8566
8567 /* Ignore relocations that have been removed. */
8568 if (reloc[i].is_null)
8569 continue;
8570
8571 /* The original and new output section for these must be the same
8572 in order to coalesce. */
8573 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
8574 != sec->output_section)
8575 return FALSE;
8576
8577 /* Absolute literals in the same output section can always be
8578 combined. */
8579 if (reloc[i].is_abs_literal)
8580 continue;
8581
8582 /* A literal with no PC-relative relocations can be moved anywhere. */
8583 if (reloc[i].opnd != -1)
8584 {
8585 /* Otherwise, check to see that it fits. */
8586 source_address = (reloc[i].source_sec->output_section->vma
8587 + reloc[i].source_sec->output_offset
8588 + reloc[i].r_rel.rela.r_offset);
8589 dest_address = (sec->output_section->vma
8590 + sec->output_offset
8591 + r_rel->target_offset);
8592
8593 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
8594 source_address, dest_address))
8595 return FALSE;
8596 }
8597 }
8598
8599 return TRUE;
8600 }
8601
8602
8603 /* Move a literal to another literal location because it is
8604 the same as the other literal value. */
8605
8606 static bfd_boolean
8607 coalesce_shared_literal (asection *sec,
8608 source_reloc *rel,
8609 property_table_entry *prop_table,
8610 int ptblsize,
8611 value_map *val_map)
8612 {
8613 property_table_entry *entry;
8614 text_action *fa;
8615 property_table_entry *the_add_entry;
8616 int removed_diff;
8617 xtensa_relax_info *relax_info;
8618
8619 relax_info = get_xtensa_relax_info (sec);
8620 if (!relax_info)
8621 return FALSE;
8622
8623 entry = elf_xtensa_find_property_entry
8624 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
8625 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8626 return TRUE;
8627
8628 /* Mark that the literal will be coalesced. */
8629 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
8630
8631 text_action_add (&relax_info->action_list,
8632 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8633
8634 /* If the section is 4-byte aligned, do not add fill. */
8635 if (sec->alignment_power > 2)
8636 {
8637 int fill_extra_space;
8638 bfd_vma entry_sec_offset;
8639
8640 if (entry)
8641 entry_sec_offset = entry->address - sec->vma + entry->size;
8642 else
8643 entry_sec_offset = rel->r_rel.target_offset + 4;
8644
8645 /* If the literal range is at the end of the section,
8646 do not add fill. */
8647 fill_extra_space = 0;
8648 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8649 entry_sec_offset);
8650 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8651 fill_extra_space = the_add_entry->size;
8652
8653 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8654 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8655 -4, fill_extra_space);
8656 if (fa)
8657 adjust_fill_action (fa, removed_diff);
8658 else
8659 text_action_add (&relax_info->action_list,
8660 ta_fill, sec, entry_sec_offset, removed_diff);
8661 }
8662
8663 return TRUE;
8664 }
8665
8666
8667 /* Move a literal to another location. This may actually increase the
8668 total amount of space used because of alignments so we need to do
8669 this carefully. Also, it may make a branch go out of range. */
8670
8671 static bfd_boolean
8672 move_shared_literal (asection *sec,
8673 struct bfd_link_info *link_info,
8674 source_reloc *rel,
8675 property_table_entry *prop_table,
8676 int ptblsize,
8677 const r_reloc *target_loc,
8678 const literal_value *lit_value,
8679 section_cache_t *target_sec_cache)
8680 {
8681 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
8682 text_action *fa, *target_fa;
8683 int removed_diff;
8684 xtensa_relax_info *relax_info, *target_relax_info;
8685 asection *target_sec;
8686 ebb_t *ebb;
8687 ebb_constraint ebb_table;
8688 bfd_boolean relocs_fit;
8689
8690 /* If this routine always returns FALSE, the literals that cannot be
8691 coalesced will not be moved. */
8692 if (elf32xtensa_no_literal_movement)
8693 return FALSE;
8694
8695 relax_info = get_xtensa_relax_info (sec);
8696 if (!relax_info)
8697 return FALSE;
8698
8699 target_sec = r_reloc_get_section (target_loc);
8700 target_relax_info = get_xtensa_relax_info (target_sec);
8701
8702 /* Literals to undefined sections may not be moved because they
8703 must report an error. */
8704 if (bfd_is_und_section (target_sec))
8705 return FALSE;
8706
8707 src_entry = elf_xtensa_find_property_entry
8708 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
8709
8710 if (!section_cache_section (target_sec_cache, target_sec, link_info))
8711 return FALSE;
8712
8713 target_entry = elf_xtensa_find_property_entry
8714 (target_sec_cache->ptbl, target_sec_cache->pte_count,
8715 target_sec->vma + target_loc->target_offset);
8716
8717 if (!target_entry)
8718 return FALSE;
8719
8720 /* Make sure that we have not broken any branches. */
8721 relocs_fit = FALSE;
8722
8723 init_ebb_constraint (&ebb_table);
8724 ebb = &ebb_table.ebb;
8725 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
8726 target_sec_cache->content_length,
8727 target_sec_cache->ptbl, target_sec_cache->pte_count,
8728 target_sec_cache->relocs, target_sec_cache->reloc_count);
8729
8730 /* Propose to add 4 bytes + worst-case alignment size increase to
8731 destination. */
8732 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
8733 ta_fill, target_loc->target_offset,
8734 -4 - (1 << target_sec->alignment_power), TRUE);
8735
8736 /* Check all of the PC-relative relocations to make sure they still fit. */
8737 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
8738 target_sec_cache->contents,
8739 target_sec_cache->relocs,
8740 &ebb_table, NULL);
8741
8742 if (!relocs_fit)
8743 return FALSE;
8744
8745 text_action_add_literal (&target_relax_info->action_list,
8746 ta_add_literal, target_loc, lit_value, -4);
8747
8748 if (target_sec->alignment_power > 2 && target_entry != src_entry)
8749 {
8750 /* May need to add or remove some fill to maintain alignment. */
8751 int fill_extra_space;
8752 bfd_vma entry_sec_offset;
8753
8754 entry_sec_offset =
8755 target_entry->address - target_sec->vma + target_entry->size;
8756
8757 /* If the literal range is at the end of the section,
8758 do not add fill. */
8759 fill_extra_space = 0;
8760 the_add_entry =
8761 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
8762 target_sec_cache->pte_count,
8763 entry_sec_offset);
8764 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8765 fill_extra_space = the_add_entry->size;
8766
8767 target_fa = find_fill_action (&target_relax_info->action_list,
8768 target_sec, entry_sec_offset);
8769 removed_diff = compute_removed_action_diff (target_fa, target_sec,
8770 entry_sec_offset, 4,
8771 fill_extra_space);
8772 if (target_fa)
8773 adjust_fill_action (target_fa, removed_diff);
8774 else
8775 text_action_add (&target_relax_info->action_list,
8776 ta_fill, target_sec, entry_sec_offset, removed_diff);
8777 }
8778
8779 /* Mark that the literal will be moved to the new location. */
8780 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
8781
8782 /* Remove the literal. */
8783 text_action_add (&relax_info->action_list,
8784 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8785
8786 /* If the section is 4-byte aligned, do not add fill. */
8787 if (sec->alignment_power > 2 && target_entry != src_entry)
8788 {
8789 int fill_extra_space;
8790 bfd_vma entry_sec_offset;
8791
8792 if (src_entry)
8793 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
8794 else
8795 entry_sec_offset = rel->r_rel.target_offset+4;
8796
8797 /* If the literal range is at the end of the section,
8798 do not add fill. */
8799 fill_extra_space = 0;
8800 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8801 entry_sec_offset);
8802 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8803 fill_extra_space = the_add_entry->size;
8804
8805 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8806 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8807 -4, fill_extra_space);
8808 if (fa)
8809 adjust_fill_action (fa, removed_diff);
8810 else
8811 text_action_add (&relax_info->action_list,
8812 ta_fill, sec, entry_sec_offset, removed_diff);
8813 }
8814
8815 return TRUE;
8816 }
8817
8818 \f
8819 /* Second relaxation pass. */
8820
8821 /* Modify all of the relocations to point to the right spot, and if this
8822 is a relaxable section, delete the unwanted literals and fix the
8823 section size. */
8824
8825 bfd_boolean
8826 relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
8827 {
8828 Elf_Internal_Rela *internal_relocs;
8829 xtensa_relax_info *relax_info;
8830 bfd_byte *contents;
8831 bfd_boolean ok = TRUE;
8832 unsigned i;
8833 bfd_boolean rv = FALSE;
8834 bfd_boolean virtual_action;
8835 bfd_size_type sec_size;
8836
8837 sec_size = bfd_get_section_limit (abfd, sec);
8838 relax_info = get_xtensa_relax_info (sec);
8839 BFD_ASSERT (relax_info);
8840
8841 /* First translate any of the fixes that have been added already. */
8842 translate_section_fixes (sec);
8843
8844 /* Handle property sections (e.g., literal tables) specially. */
8845 if (xtensa_is_property_section (sec))
8846 {
8847 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
8848 return relax_property_section (abfd, sec, link_info);
8849 }
8850
8851 internal_relocs = retrieve_internal_relocs (abfd, sec,
8852 link_info->keep_memory);
8853 if (!internal_relocs && !relax_info->action_list.head)
8854 return TRUE;
8855
8856 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8857 if (contents == NULL && sec_size != 0)
8858 {
8859 ok = FALSE;
8860 goto error_return;
8861 }
8862
8863 if (internal_relocs)
8864 {
8865 for (i = 0; i < sec->reloc_count; i++)
8866 {
8867 Elf_Internal_Rela *irel;
8868 xtensa_relax_info *target_relax_info;
8869 bfd_vma source_offset, old_source_offset;
8870 r_reloc r_rel;
8871 unsigned r_type;
8872 asection *target_sec;
8873
8874 /* Locally change the source address.
8875 Translate the target to the new target address.
8876 If it points to this section and has been removed,
8877 NULLify it.
8878 Write it back. */
8879
8880 irel = &internal_relocs[i];
8881 source_offset = irel->r_offset;
8882 old_source_offset = source_offset;
8883
8884 r_type = ELF32_R_TYPE (irel->r_info);
8885 r_reloc_init (&r_rel, abfd, irel, contents,
8886 bfd_get_section_limit (abfd, sec));
8887
8888 /* If this section could have changed then we may need to
8889 change the relocation's offset. */
8890
8891 if (relax_info->is_relaxable_literal_section
8892 || relax_info->is_relaxable_asm_section)
8893 {
8894 pin_internal_relocs (sec, internal_relocs);
8895
8896 if (r_type != R_XTENSA_NONE
8897 && find_removed_literal (&relax_info->removed_list,
8898 irel->r_offset))
8899 {
8900 /* Remove this relocation. */
8901 if (elf_hash_table (link_info)->dynamic_sections_created)
8902 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8903 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8904 irel->r_offset = offset_with_removed_text
8905 (&relax_info->action_list, irel->r_offset);
8906 continue;
8907 }
8908
8909 if (r_type == R_XTENSA_ASM_SIMPLIFY)
8910 {
8911 text_action *action =
8912 find_insn_action (&relax_info->action_list,
8913 irel->r_offset);
8914 if (action && (action->action == ta_convert_longcall
8915 || action->action == ta_remove_longcall))
8916 {
8917 bfd_reloc_status_type retval;
8918 char *error_message = NULL;
8919
8920 retval = contract_asm_expansion (contents, sec_size,
8921 irel, &error_message);
8922 if (retval != bfd_reloc_ok)
8923 {
8924 (*link_info->callbacks->reloc_dangerous)
8925 (link_info, error_message, abfd, sec,
8926 irel->r_offset);
8927 goto error_return;
8928 }
8929 /* Update the action so that the code that moves
8930 the contents will do the right thing. */
8931 if (action->action == ta_remove_longcall)
8932 action->action = ta_remove_insn;
8933 else
8934 action->action = ta_none;
8935 /* Refresh the info in the r_rel. */
8936 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8937 r_type = ELF32_R_TYPE (irel->r_info);
8938 }
8939 }
8940
8941 source_offset = offset_with_removed_text
8942 (&relax_info->action_list, irel->r_offset);
8943 irel->r_offset = source_offset;
8944 }
8945
8946 /* If the target section could have changed then
8947 we may need to change the relocation's target offset. */
8948
8949 target_sec = r_reloc_get_section (&r_rel);
8950
8951 /* For a reference to a discarded section from a DWARF section,
8952 i.e., where action_discarded is PRETEND, the symbol will
8953 eventually be modified to refer to the kept section (at least if
8954 the kept and discarded sections are the same size). Anticipate
8955 that here and adjust things accordingly. */
8956 if (! elf_xtensa_ignore_discarded_relocs (sec)
8957 && elf_xtensa_action_discarded (sec) == PRETEND
8958 && sec->sec_info_type != SEC_INFO_TYPE_STABS
8959 && target_sec != NULL
8960 && discarded_section (target_sec))
8961 {
8962 /* It would be natural to call _bfd_elf_check_kept_section
8963 here, but it's not exported from elflink.c. It's also a
8964 fairly expensive check. Adjusting the relocations to the
8965 discarded section is fairly harmless; it will only adjust
8966 some addends and difference values. If it turns out that
8967 _bfd_elf_check_kept_section fails later, it won't matter,
8968 so just compare the section names to find the right group
8969 member. */
8970 asection *kept = target_sec->kept_section;
8971 if (kept != NULL)
8972 {
8973 if ((kept->flags & SEC_GROUP) != 0)
8974 {
8975 asection *first = elf_next_in_group (kept);
8976 asection *s = first;
8977
8978 kept = NULL;
8979 while (s != NULL)
8980 {
8981 if (strcmp (s->name, target_sec->name) == 0)
8982 {
8983 kept = s;
8984 break;
8985 }
8986 s = elf_next_in_group (s);
8987 if (s == first)
8988 break;
8989 }
8990 }
8991 }
8992 if (kept != NULL
8993 && ((target_sec->rawsize != 0
8994 ? target_sec->rawsize : target_sec->size)
8995 == (kept->rawsize != 0 ? kept->rawsize : kept->size)))
8996 target_sec = kept;
8997 }
8998
8999 target_relax_info = get_xtensa_relax_info (target_sec);
9000 if (target_relax_info
9001 && (target_relax_info->is_relaxable_literal_section
9002 || target_relax_info->is_relaxable_asm_section))
9003 {
9004 r_reloc new_reloc;
9005 target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
9006
9007 if (r_type == R_XTENSA_DIFF8
9008 || r_type == R_XTENSA_DIFF16
9009 || r_type == R_XTENSA_DIFF32)
9010 {
9011 bfd_vma diff_value = 0, new_end_offset, diff_mask = 0;
9012
9013 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
9014 {
9015 (*link_info->callbacks->reloc_dangerous)
9016 (link_info, _("invalid relocation address"),
9017 abfd, sec, old_source_offset);
9018 goto error_return;
9019 }
9020
9021 switch (r_type)
9022 {
9023 case R_XTENSA_DIFF8:
9024 diff_value =
9025 bfd_get_8 (abfd, &contents[old_source_offset]);
9026 break;
9027 case R_XTENSA_DIFF16:
9028 diff_value =
9029 bfd_get_16 (abfd, &contents[old_source_offset]);
9030 break;
9031 case R_XTENSA_DIFF32:
9032 diff_value =
9033 bfd_get_32 (abfd, &contents[old_source_offset]);
9034 break;
9035 }
9036
9037 new_end_offset = offset_with_removed_text
9038 (&target_relax_info->action_list,
9039 r_rel.target_offset + diff_value);
9040 diff_value = new_end_offset - new_reloc.target_offset;
9041
9042 switch (r_type)
9043 {
9044 case R_XTENSA_DIFF8:
9045 diff_mask = 0xff;
9046 bfd_put_8 (abfd, diff_value,
9047 &contents[old_source_offset]);
9048 break;
9049 case R_XTENSA_DIFF16:
9050 diff_mask = 0xffff;
9051 bfd_put_16 (abfd, diff_value,
9052 &contents[old_source_offset]);
9053 break;
9054 case R_XTENSA_DIFF32:
9055 diff_mask = 0xffffffff;
9056 bfd_put_32 (abfd, diff_value,
9057 &contents[old_source_offset]);
9058 break;
9059 }
9060
9061 /* Check for overflow. */
9062 if ((diff_value & ~diff_mask) != 0)
9063 {
9064 (*link_info->callbacks->reloc_dangerous)
9065 (link_info, _("overflow after relaxation"),
9066 abfd, sec, old_source_offset);
9067 goto error_return;
9068 }
9069
9070 pin_contents (sec, contents);
9071 }
9072
9073 /* If the relocation still references a section in the same
9074 input file, modify the relocation directly instead of
9075 adding a "fix" record. */
9076 if (target_sec->owner == abfd)
9077 {
9078 unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
9079 irel->r_info = ELF32_R_INFO (r_symndx, r_type);
9080 irel->r_addend = new_reloc.rela.r_addend;
9081 pin_internal_relocs (sec, internal_relocs);
9082 }
9083 else
9084 {
9085 bfd_vma addend_displacement;
9086 reloc_bfd_fix *fix;
9087
9088 addend_displacement =
9089 new_reloc.target_offset + new_reloc.virtual_offset;
9090 fix = reloc_bfd_fix_init (sec, source_offset, r_type,
9091 target_sec,
9092 addend_displacement, TRUE);
9093 add_fix (sec, fix);
9094 }
9095 }
9096 }
9097 }
9098
9099 if ((relax_info->is_relaxable_literal_section
9100 || relax_info->is_relaxable_asm_section)
9101 && relax_info->action_list.head)
9102 {
9103 /* Walk through the planned actions and build up a table
9104 of move, copy and fill records. Use the move, copy and
9105 fill records to perform the actions once. */
9106
9107 int removed = 0;
9108 bfd_size_type final_size, copy_size, orig_insn_size;
9109 bfd_byte *scratch = NULL;
9110 bfd_byte *dup_contents = NULL;
9111 bfd_size_type orig_size = sec->size;
9112 bfd_vma orig_dot = 0;
9113 bfd_vma orig_dot_copied = 0; /* Byte copied already from
9114 orig dot in physical memory. */
9115 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
9116 bfd_vma dup_dot = 0;
9117
9118 text_action *action = relax_info->action_list.head;
9119
9120 final_size = sec->size;
9121 for (action = relax_info->action_list.head; action;
9122 action = action->next)
9123 {
9124 final_size -= action->removed_bytes;
9125 }
9126
9127 scratch = (bfd_byte *) bfd_zmalloc (final_size);
9128 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
9129
9130 /* The dot is the current fill location. */
9131 #if DEBUG
9132 print_action_list (stderr, &relax_info->action_list);
9133 #endif
9134
9135 for (action = relax_info->action_list.head; action;
9136 action = action->next)
9137 {
9138 virtual_action = FALSE;
9139 if (action->offset > orig_dot)
9140 {
9141 orig_dot += orig_dot_copied;
9142 orig_dot_copied = 0;
9143 orig_dot_vo = 0;
9144 /* Out of the virtual world. */
9145 }
9146
9147 if (action->offset > orig_dot)
9148 {
9149 copy_size = action->offset - orig_dot;
9150 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9151 orig_dot += copy_size;
9152 dup_dot += copy_size;
9153 BFD_ASSERT (action->offset == orig_dot);
9154 }
9155 else if (action->offset < orig_dot)
9156 {
9157 if (action->action == ta_fill
9158 && action->offset - action->removed_bytes == orig_dot)
9159 {
9160 /* This is OK because the fill only effects the dup_dot. */
9161 }
9162 else if (action->action == ta_add_literal)
9163 {
9164 /* TBD. Might need to handle this. */
9165 }
9166 }
9167 if (action->offset == orig_dot)
9168 {
9169 if (action->virtual_offset > orig_dot_vo)
9170 {
9171 if (orig_dot_vo == 0)
9172 {
9173 /* Need to copy virtual_offset bytes. Probably four. */
9174 copy_size = action->virtual_offset - orig_dot_vo;
9175 memmove (&dup_contents[dup_dot],
9176 &contents[orig_dot], copy_size);
9177 orig_dot_copied = copy_size;
9178 dup_dot += copy_size;
9179 }
9180 virtual_action = TRUE;
9181 }
9182 else
9183 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
9184 }
9185 switch (action->action)
9186 {
9187 case ta_remove_literal:
9188 case ta_remove_insn:
9189 BFD_ASSERT (action->removed_bytes >= 0);
9190 orig_dot += action->removed_bytes;
9191 break;
9192
9193 case ta_narrow_insn:
9194 orig_insn_size = 3;
9195 copy_size = 2;
9196 memmove (scratch, &contents[orig_dot], orig_insn_size);
9197 BFD_ASSERT (action->removed_bytes == 1);
9198 rv = narrow_instruction (scratch, final_size, 0);
9199 BFD_ASSERT (rv);
9200 memmove (&dup_contents[dup_dot], scratch, copy_size);
9201 orig_dot += orig_insn_size;
9202 dup_dot += copy_size;
9203 break;
9204
9205 case ta_fill:
9206 if (action->removed_bytes >= 0)
9207 orig_dot += action->removed_bytes;
9208 else
9209 {
9210 /* Already zeroed in dup_contents. Just bump the
9211 counters. */
9212 dup_dot += (-action->removed_bytes);
9213 }
9214 break;
9215
9216 case ta_none:
9217 BFD_ASSERT (action->removed_bytes == 0);
9218 break;
9219
9220 case ta_convert_longcall:
9221 case ta_remove_longcall:
9222 /* These will be removed or converted before we get here. */
9223 BFD_ASSERT (0);
9224 break;
9225
9226 case ta_widen_insn:
9227 orig_insn_size = 2;
9228 copy_size = 3;
9229 memmove (scratch, &contents[orig_dot], orig_insn_size);
9230 BFD_ASSERT (action->removed_bytes == -1);
9231 rv = widen_instruction (scratch, final_size, 0);
9232 BFD_ASSERT (rv);
9233 memmove (&dup_contents[dup_dot], scratch, copy_size);
9234 orig_dot += orig_insn_size;
9235 dup_dot += copy_size;
9236 break;
9237
9238 case ta_add_literal:
9239 orig_insn_size = 0;
9240 copy_size = 4;
9241 BFD_ASSERT (action->removed_bytes == -4);
9242 /* TBD -- place the literal value here and insert
9243 into the table. */
9244 memset (&dup_contents[dup_dot], 0, 4);
9245 pin_internal_relocs (sec, internal_relocs);
9246 pin_contents (sec, contents);
9247
9248 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
9249 relax_info, &internal_relocs, &action->value))
9250 goto error_return;
9251
9252 if (virtual_action)
9253 orig_dot_vo += copy_size;
9254
9255 orig_dot += orig_insn_size;
9256 dup_dot += copy_size;
9257 break;
9258
9259 default:
9260 /* Not implemented yet. */
9261 BFD_ASSERT (0);
9262 break;
9263 }
9264
9265 removed += action->removed_bytes;
9266 BFD_ASSERT (dup_dot <= final_size);
9267 BFD_ASSERT (orig_dot <= orig_size);
9268 }
9269
9270 orig_dot += orig_dot_copied;
9271 orig_dot_copied = 0;
9272
9273 if (orig_dot != orig_size)
9274 {
9275 copy_size = orig_size - orig_dot;
9276 BFD_ASSERT (orig_size > orig_dot);
9277 BFD_ASSERT (dup_dot + copy_size == final_size);
9278 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9279 orig_dot += copy_size;
9280 dup_dot += copy_size;
9281 }
9282 BFD_ASSERT (orig_size == orig_dot);
9283 BFD_ASSERT (final_size == dup_dot);
9284
9285 /* Move the dup_contents back. */
9286 if (final_size > orig_size)
9287 {
9288 /* Contents need to be reallocated. Swap the dup_contents into
9289 contents. */
9290 sec->contents = dup_contents;
9291 free (contents);
9292 contents = dup_contents;
9293 pin_contents (sec, contents);
9294 }
9295 else
9296 {
9297 BFD_ASSERT (final_size <= orig_size);
9298 memset (contents, 0, orig_size);
9299 memcpy (contents, dup_contents, final_size);
9300 free (dup_contents);
9301 }
9302 free (scratch);
9303 pin_contents (sec, contents);
9304
9305 if (sec->rawsize == 0)
9306 sec->rawsize = sec->size;
9307 sec->size = final_size;
9308 }
9309
9310 error_return:
9311 release_internal_relocs (sec, internal_relocs);
9312 release_contents (sec, contents);
9313 return ok;
9314 }
9315
9316
9317 static bfd_boolean
9318 translate_section_fixes (asection *sec)
9319 {
9320 xtensa_relax_info *relax_info;
9321 reloc_bfd_fix *r;
9322
9323 relax_info = get_xtensa_relax_info (sec);
9324 if (!relax_info)
9325 return TRUE;
9326
9327 for (r = relax_info->fix_list; r != NULL; r = r->next)
9328 if (!translate_reloc_bfd_fix (r))
9329 return FALSE;
9330
9331 return TRUE;
9332 }
9333
9334
9335 /* Translate a fix given the mapping in the relax info for the target
9336 section. If it has already been translated, no work is required. */
9337
9338 static bfd_boolean
9339 translate_reloc_bfd_fix (reloc_bfd_fix *fix)
9340 {
9341 reloc_bfd_fix new_fix;
9342 asection *sec;
9343 xtensa_relax_info *relax_info;
9344 removed_literal *removed;
9345 bfd_vma new_offset, target_offset;
9346
9347 if (fix->translated)
9348 return TRUE;
9349
9350 sec = fix->target_sec;
9351 target_offset = fix->target_offset;
9352
9353 relax_info = get_xtensa_relax_info (sec);
9354 if (!relax_info)
9355 {
9356 fix->translated = TRUE;
9357 return TRUE;
9358 }
9359
9360 new_fix = *fix;
9361
9362 /* The fix does not need to be translated if the section cannot change. */
9363 if (!relax_info->is_relaxable_literal_section
9364 && !relax_info->is_relaxable_asm_section)
9365 {
9366 fix->translated = TRUE;
9367 return TRUE;
9368 }
9369
9370 /* If the literal has been moved and this relocation was on an
9371 opcode, then the relocation should move to the new literal
9372 location. Otherwise, the relocation should move within the
9373 section. */
9374
9375 removed = FALSE;
9376 if (is_operand_relocation (fix->src_type))
9377 {
9378 /* Check if the original relocation is against a literal being
9379 removed. */
9380 removed = find_removed_literal (&relax_info->removed_list,
9381 target_offset);
9382 }
9383
9384 if (removed)
9385 {
9386 asection *new_sec;
9387
9388 /* The fact that there is still a relocation to this literal indicates
9389 that the literal is being coalesced, not simply removed. */
9390 BFD_ASSERT (removed->to.abfd != NULL);
9391
9392 /* This was moved to some other address (possibly another section). */
9393 new_sec = r_reloc_get_section (&removed->to);
9394 if (new_sec != sec)
9395 {
9396 sec = new_sec;
9397 relax_info = get_xtensa_relax_info (sec);
9398 if (!relax_info ||
9399 (!relax_info->is_relaxable_literal_section
9400 && !relax_info->is_relaxable_asm_section))
9401 {
9402 target_offset = removed->to.target_offset;
9403 new_fix.target_sec = new_sec;
9404 new_fix.target_offset = target_offset;
9405 new_fix.translated = TRUE;
9406 *fix = new_fix;
9407 return TRUE;
9408 }
9409 }
9410 target_offset = removed->to.target_offset;
9411 new_fix.target_sec = new_sec;
9412 }
9413
9414 /* The target address may have been moved within its section. */
9415 new_offset = offset_with_removed_text (&relax_info->action_list,
9416 target_offset);
9417
9418 new_fix.target_offset = new_offset;
9419 new_fix.target_offset = new_offset;
9420 new_fix.translated = TRUE;
9421 *fix = new_fix;
9422 return TRUE;
9423 }
9424
9425
9426 /* Fix up a relocation to take account of removed literals. */
9427
9428 static asection *
9429 translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
9430 {
9431 xtensa_relax_info *relax_info;
9432 removed_literal *removed;
9433 bfd_vma target_offset, base_offset;
9434 text_action *act;
9435
9436 *new_rel = *orig_rel;
9437
9438 if (!r_reloc_is_defined (orig_rel))
9439 return sec ;
9440
9441 relax_info = get_xtensa_relax_info (sec);
9442 BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
9443 || relax_info->is_relaxable_asm_section));
9444
9445 target_offset = orig_rel->target_offset;
9446
9447 removed = FALSE;
9448 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
9449 {
9450 /* Check if the original relocation is against a literal being
9451 removed. */
9452 removed = find_removed_literal (&relax_info->removed_list,
9453 target_offset);
9454 }
9455 if (removed && removed->to.abfd)
9456 {
9457 asection *new_sec;
9458
9459 /* The fact that there is still a relocation to this literal indicates
9460 that the literal is being coalesced, not simply removed. */
9461 BFD_ASSERT (removed->to.abfd != NULL);
9462
9463 /* This was moved to some other address
9464 (possibly in another section). */
9465 *new_rel = removed->to;
9466 new_sec = r_reloc_get_section (new_rel);
9467 if (new_sec != sec)
9468 {
9469 sec = new_sec;
9470 relax_info = get_xtensa_relax_info (sec);
9471 if (!relax_info
9472 || (!relax_info->is_relaxable_literal_section
9473 && !relax_info->is_relaxable_asm_section))
9474 return sec;
9475 }
9476 target_offset = new_rel->target_offset;
9477 }
9478
9479 /* Find the base offset of the reloc symbol, excluding any addend from the
9480 reloc or from the section contents (for a partial_inplace reloc). Then
9481 find the adjusted values of the offsets due to relaxation. The base
9482 offset is needed to determine the change to the reloc's addend; the reloc
9483 addend should not be adjusted due to relaxations located before the base
9484 offset. */
9485
9486 base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
9487 act = relax_info->action_list.head;
9488 if (base_offset <= target_offset)
9489 {
9490 int base_removed = removed_by_actions (&act, base_offset, FALSE);
9491 int addend_removed = removed_by_actions (&act, target_offset, FALSE);
9492 new_rel->target_offset = target_offset - base_removed - addend_removed;
9493 new_rel->rela.r_addend -= addend_removed;
9494 }
9495 else
9496 {
9497 /* Handle a negative addend. The base offset comes first. */
9498 int tgt_removed = removed_by_actions (&act, target_offset, FALSE);
9499 int addend_removed = removed_by_actions (&act, base_offset, FALSE);
9500 new_rel->target_offset = target_offset - tgt_removed;
9501 new_rel->rela.r_addend += addend_removed;
9502 }
9503
9504 return sec;
9505 }
9506
9507
9508 /* For dynamic links, there may be a dynamic relocation for each
9509 literal. The number of dynamic relocations must be computed in
9510 size_dynamic_sections, which occurs before relaxation. When a
9511 literal is removed, this function checks if there is a corresponding
9512 dynamic relocation and shrinks the size of the appropriate dynamic
9513 relocation section accordingly. At this point, the contents of the
9514 dynamic relocation sections have not yet been filled in, so there's
9515 nothing else that needs to be done. */
9516
9517 static void
9518 shrink_dynamic_reloc_sections (struct bfd_link_info *info,
9519 bfd *abfd,
9520 asection *input_section,
9521 Elf_Internal_Rela *rel)
9522 {
9523 struct elf_xtensa_link_hash_table *htab;
9524 Elf_Internal_Shdr *symtab_hdr;
9525 struct elf_link_hash_entry **sym_hashes;
9526 unsigned long r_symndx;
9527 int r_type;
9528 struct elf_link_hash_entry *h;
9529 bfd_boolean dynamic_symbol;
9530
9531 htab = elf_xtensa_hash_table (info);
9532 if (htab == NULL)
9533 return;
9534
9535 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9536 sym_hashes = elf_sym_hashes (abfd);
9537
9538 r_type = ELF32_R_TYPE (rel->r_info);
9539 r_symndx = ELF32_R_SYM (rel->r_info);
9540
9541 if (r_symndx < symtab_hdr->sh_info)
9542 h = NULL;
9543 else
9544 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
9545
9546 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
9547
9548 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
9549 && (input_section->flags & SEC_ALLOC) != 0
9550 && (dynamic_symbol || info->shared))
9551 {
9552 asection *srel;
9553 bfd_boolean is_plt = FALSE;
9554
9555 if (dynamic_symbol && r_type == R_XTENSA_PLT)
9556 {
9557 srel = htab->srelplt;
9558 is_plt = TRUE;
9559 }
9560 else
9561 srel = htab->srelgot;
9562
9563 /* Reduce size of the .rela.* section by one reloc. */
9564 BFD_ASSERT (srel != NULL);
9565 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
9566 srel->size -= sizeof (Elf32_External_Rela);
9567
9568 if (is_plt)
9569 {
9570 asection *splt, *sgotplt, *srelgot;
9571 int reloc_index, chunk;
9572
9573 /* Find the PLT reloc index of the entry being removed. This
9574 is computed from the size of ".rela.plt". It is needed to
9575 figure out which PLT chunk to resize. Usually "last index
9576 = size - 1" since the index starts at zero, but in this
9577 context, the size has just been decremented so there's no
9578 need to subtract one. */
9579 reloc_index = srel->size / sizeof (Elf32_External_Rela);
9580
9581 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
9582 splt = elf_xtensa_get_plt_section (info, chunk);
9583 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
9584 BFD_ASSERT (splt != NULL && sgotplt != NULL);
9585
9586 /* Check if an entire PLT chunk has just been eliminated. */
9587 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
9588 {
9589 /* The two magic GOT entries for that chunk can go away. */
9590 srelgot = htab->srelgot;
9591 BFD_ASSERT (srelgot != NULL);
9592 srelgot->reloc_count -= 2;
9593 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
9594 sgotplt->size -= 8;
9595
9596 /* There should be only one entry left (and it will be
9597 removed below). */
9598 BFD_ASSERT (sgotplt->size == 4);
9599 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
9600 }
9601
9602 BFD_ASSERT (sgotplt->size >= 4);
9603 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
9604
9605 sgotplt->size -= 4;
9606 splt->size -= PLT_ENTRY_SIZE;
9607 }
9608 }
9609 }
9610
9611
9612 /* Take an r_rel and move it to another section. This usually
9613 requires extending the interal_relocation array and pinning it. If
9614 the original r_rel is from the same BFD, we can complete this here.
9615 Otherwise, we add a fix record to let the final link fix the
9616 appropriate address. Contents and internal relocations for the
9617 section must be pinned after calling this routine. */
9618
9619 static bfd_boolean
9620 move_literal (bfd *abfd,
9621 struct bfd_link_info *link_info,
9622 asection *sec,
9623 bfd_vma offset,
9624 bfd_byte *contents,
9625 xtensa_relax_info *relax_info,
9626 Elf_Internal_Rela **internal_relocs_p,
9627 const literal_value *lit)
9628 {
9629 Elf_Internal_Rela *new_relocs = NULL;
9630 size_t new_relocs_count = 0;
9631 Elf_Internal_Rela this_rela;
9632 const r_reloc *r_rel;
9633
9634 r_rel = &lit->r_rel;
9635 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
9636
9637 if (r_reloc_is_const (r_rel))
9638 bfd_put_32 (abfd, lit->value, contents + offset);
9639 else
9640 {
9641 int r_type;
9642 unsigned i;
9643 reloc_bfd_fix *fix;
9644 unsigned insert_at;
9645
9646 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
9647
9648 /* This is the difficult case. We have to create a fix up. */
9649 this_rela.r_offset = offset;
9650 this_rela.r_info = ELF32_R_INFO (0, r_type);
9651 this_rela.r_addend =
9652 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
9653 bfd_put_32 (abfd, lit->value, contents + offset);
9654
9655 /* Currently, we cannot move relocations during a relocatable link. */
9656 BFD_ASSERT (!link_info->relocatable);
9657 fix = reloc_bfd_fix_init (sec, offset, r_type,
9658 r_reloc_get_section (r_rel),
9659 r_rel->target_offset + r_rel->virtual_offset,
9660 FALSE);
9661 /* We also need to mark that relocations are needed here. */
9662 sec->flags |= SEC_RELOC;
9663
9664 translate_reloc_bfd_fix (fix);
9665 /* This fix has not yet been translated. */
9666 add_fix (sec, fix);
9667
9668 /* Add the relocation. If we have already allocated our own
9669 space for the relocations and we have room for more, then use
9670 it. Otherwise, allocate new space and move the literals. */
9671 insert_at = sec->reloc_count;
9672 for (i = 0; i < sec->reloc_count; ++i)
9673 {
9674 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
9675 {
9676 insert_at = i;
9677 break;
9678 }
9679 }
9680
9681 if (*internal_relocs_p != relax_info->allocated_relocs
9682 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
9683 {
9684 BFD_ASSERT (relax_info->allocated_relocs == NULL
9685 || sec->reloc_count == relax_info->relocs_count);
9686
9687 if (relax_info->allocated_relocs_count == 0)
9688 new_relocs_count = (sec->reloc_count + 2) * 2;
9689 else
9690 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
9691
9692 new_relocs = (Elf_Internal_Rela *)
9693 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
9694 if (!new_relocs)
9695 return FALSE;
9696
9697 /* We could handle this more quickly by finding the split point. */
9698 if (insert_at != 0)
9699 memcpy (new_relocs, *internal_relocs_p,
9700 insert_at * sizeof (Elf_Internal_Rela));
9701
9702 new_relocs[insert_at] = this_rela;
9703
9704 if (insert_at != sec->reloc_count)
9705 memcpy (new_relocs + insert_at + 1,
9706 (*internal_relocs_p) + insert_at,
9707 (sec->reloc_count - insert_at)
9708 * sizeof (Elf_Internal_Rela));
9709
9710 if (*internal_relocs_p != relax_info->allocated_relocs)
9711 {
9712 /* The first time we re-allocate, we can only free the
9713 old relocs if they were allocated with bfd_malloc.
9714 This is not true when keep_memory is in effect. */
9715 if (!link_info->keep_memory)
9716 free (*internal_relocs_p);
9717 }
9718 else
9719 free (*internal_relocs_p);
9720 relax_info->allocated_relocs = new_relocs;
9721 relax_info->allocated_relocs_count = new_relocs_count;
9722 elf_section_data (sec)->relocs = new_relocs;
9723 sec->reloc_count++;
9724 relax_info->relocs_count = sec->reloc_count;
9725 *internal_relocs_p = new_relocs;
9726 }
9727 else
9728 {
9729 if (insert_at != sec->reloc_count)
9730 {
9731 unsigned idx;
9732 for (idx = sec->reloc_count; idx > insert_at; idx--)
9733 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
9734 }
9735 (*internal_relocs_p)[insert_at] = this_rela;
9736 sec->reloc_count++;
9737 if (relax_info->allocated_relocs)
9738 relax_info->relocs_count = sec->reloc_count;
9739 }
9740 }
9741 return TRUE;
9742 }
9743
9744
9745 /* This is similar to relax_section except that when a target is moved,
9746 we shift addresses up. We also need to modify the size. This
9747 algorithm does NOT allow for relocations into the middle of the
9748 property sections. */
9749
9750 static bfd_boolean
9751 relax_property_section (bfd *abfd,
9752 asection *sec,
9753 struct bfd_link_info *link_info)
9754 {
9755 Elf_Internal_Rela *internal_relocs;
9756 bfd_byte *contents;
9757 unsigned i;
9758 bfd_boolean ok = TRUE;
9759 bfd_boolean is_full_prop_section;
9760 size_t last_zfill_target_offset = 0;
9761 asection *last_zfill_target_sec = NULL;
9762 bfd_size_type sec_size;
9763 bfd_size_type entry_size;
9764
9765 sec_size = bfd_get_section_limit (abfd, sec);
9766 internal_relocs = retrieve_internal_relocs (abfd, sec,
9767 link_info->keep_memory);
9768 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
9769 if (contents == NULL && sec_size != 0)
9770 {
9771 ok = FALSE;
9772 goto error_return;
9773 }
9774
9775 is_full_prop_section = xtensa_is_proptable_section (sec);
9776 if (is_full_prop_section)
9777 entry_size = 12;
9778 else
9779 entry_size = 8;
9780
9781 if (internal_relocs)
9782 {
9783 for (i = 0; i < sec->reloc_count; i++)
9784 {
9785 Elf_Internal_Rela *irel;
9786 xtensa_relax_info *target_relax_info;
9787 unsigned r_type;
9788 asection *target_sec;
9789 literal_value val;
9790 bfd_byte *size_p, *flags_p;
9791
9792 /* Locally change the source address.
9793 Translate the target to the new target address.
9794 If it points to this section and has been removed, MOVE IT.
9795 Also, don't forget to modify the associated SIZE at
9796 (offset + 4). */
9797
9798 irel = &internal_relocs[i];
9799 r_type = ELF32_R_TYPE (irel->r_info);
9800 if (r_type == R_XTENSA_NONE)
9801 continue;
9802
9803 /* Find the literal value. */
9804 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
9805 size_p = &contents[irel->r_offset + 4];
9806 flags_p = NULL;
9807 if (is_full_prop_section)
9808 flags_p = &contents[irel->r_offset + 8];
9809 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
9810
9811 target_sec = r_reloc_get_section (&val.r_rel);
9812 target_relax_info = get_xtensa_relax_info (target_sec);
9813
9814 if (target_relax_info
9815 && (target_relax_info->is_relaxable_literal_section
9816 || target_relax_info->is_relaxable_asm_section ))
9817 {
9818 /* Translate the relocation's destination. */
9819 bfd_vma old_offset = val.r_rel.target_offset;
9820 bfd_vma new_offset;
9821 long old_size, new_size;
9822 text_action *act = target_relax_info->action_list.head;
9823 new_offset = old_offset -
9824 removed_by_actions (&act, old_offset, FALSE);
9825
9826 /* Assert that we are not out of bounds. */
9827 old_size = bfd_get_32 (abfd, size_p);
9828 new_size = old_size;
9829
9830 if (old_size == 0)
9831 {
9832 /* Only the first zero-sized unreachable entry is
9833 allowed to expand. In this case the new offset
9834 should be the offset before the fill and the new
9835 size is the expansion size. For other zero-sized
9836 entries the resulting size should be zero with an
9837 offset before or after the fill address depending
9838 on whether the expanding unreachable entry
9839 preceeds it. */
9840 if (last_zfill_target_sec == 0
9841 || last_zfill_target_sec != target_sec
9842 || last_zfill_target_offset != old_offset)
9843 {
9844 bfd_vma new_end_offset = new_offset;
9845
9846 /* Recompute the new_offset, but this time don't
9847 include any fill inserted by relaxation. */
9848 act = target_relax_info->action_list.head;
9849 new_offset = old_offset -
9850 removed_by_actions (&act, old_offset, TRUE);
9851
9852 /* If it is not unreachable and we have not yet
9853 seen an unreachable at this address, place it
9854 before the fill address. */
9855 if (flags_p && (bfd_get_32 (abfd, flags_p)
9856 & XTENSA_PROP_UNREACHABLE) != 0)
9857 {
9858 new_size = new_end_offset - new_offset;
9859
9860 last_zfill_target_sec = target_sec;
9861 last_zfill_target_offset = old_offset;
9862 }
9863 }
9864 }
9865 else
9866 new_size -=
9867 removed_by_actions (&act, old_offset + old_size, TRUE);
9868
9869 if (new_size != old_size)
9870 {
9871 bfd_put_32 (abfd, new_size, size_p);
9872 pin_contents (sec, contents);
9873 }
9874
9875 if (new_offset != old_offset)
9876 {
9877 bfd_vma diff = new_offset - old_offset;
9878 irel->r_addend += diff;
9879 pin_internal_relocs (sec, internal_relocs);
9880 }
9881 }
9882 }
9883 }
9884
9885 /* Combine adjacent property table entries. This is also done in
9886 finish_dynamic_sections() but at that point it's too late to
9887 reclaim the space in the output section, so we do this twice. */
9888
9889 if (internal_relocs && (!link_info->relocatable
9890 || xtensa_is_littable_section (sec)))
9891 {
9892 Elf_Internal_Rela *last_irel = NULL;
9893 Elf_Internal_Rela *irel, *next_rel, *rel_end;
9894 int removed_bytes = 0;
9895 bfd_vma offset;
9896 flagword predef_flags;
9897
9898 predef_flags = xtensa_get_property_predef_flags (sec);
9899
9900 /* Walk over memory and relocations at the same time.
9901 This REQUIRES that the internal_relocs be sorted by offset. */
9902 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
9903 internal_reloc_compare);
9904
9905 pin_internal_relocs (sec, internal_relocs);
9906 pin_contents (sec, contents);
9907
9908 next_rel = internal_relocs;
9909 rel_end = internal_relocs + sec->reloc_count;
9910
9911 BFD_ASSERT (sec->size % entry_size == 0);
9912
9913 for (offset = 0; offset < sec->size; offset += entry_size)
9914 {
9915 Elf_Internal_Rela *offset_rel, *extra_rel;
9916 bfd_vma bytes_to_remove, size, actual_offset;
9917 bfd_boolean remove_this_rel;
9918 flagword flags;
9919
9920 /* Find the first relocation for the entry at the current offset.
9921 Adjust the offsets of any extra relocations for the previous
9922 entry. */
9923 offset_rel = NULL;
9924 if (next_rel)
9925 {
9926 for (irel = next_rel; irel < rel_end; irel++)
9927 {
9928 if ((irel->r_offset == offset
9929 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9930 || irel->r_offset > offset)
9931 {
9932 offset_rel = irel;
9933 break;
9934 }
9935 irel->r_offset -= removed_bytes;
9936 }
9937 }
9938
9939 /* Find the next relocation (if there are any left). */
9940 extra_rel = NULL;
9941 if (offset_rel)
9942 {
9943 for (irel = offset_rel + 1; irel < rel_end; irel++)
9944 {
9945 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9946 {
9947 extra_rel = irel;
9948 break;
9949 }
9950 }
9951 }
9952
9953 /* Check if there are relocations on the current entry. There
9954 should usually be a relocation on the offset field. If there
9955 are relocations on the size or flags, then we can't optimize
9956 this entry. Also, find the next relocation to examine on the
9957 next iteration. */
9958 if (offset_rel)
9959 {
9960 if (offset_rel->r_offset >= offset + entry_size)
9961 {
9962 next_rel = offset_rel;
9963 /* There are no relocations on the current entry, but we
9964 might still be able to remove it if the size is zero. */
9965 offset_rel = NULL;
9966 }
9967 else if (offset_rel->r_offset > offset
9968 || (extra_rel
9969 && extra_rel->r_offset < offset + entry_size))
9970 {
9971 /* There is a relocation on the size or flags, so we can't
9972 do anything with this entry. Continue with the next. */
9973 next_rel = offset_rel;
9974 continue;
9975 }
9976 else
9977 {
9978 BFD_ASSERT (offset_rel->r_offset == offset);
9979 offset_rel->r_offset -= removed_bytes;
9980 next_rel = offset_rel + 1;
9981 }
9982 }
9983 else
9984 next_rel = NULL;
9985
9986 remove_this_rel = FALSE;
9987 bytes_to_remove = 0;
9988 actual_offset = offset - removed_bytes;
9989 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
9990
9991 if (is_full_prop_section)
9992 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
9993 else
9994 flags = predef_flags;
9995
9996 if (size == 0
9997 && (flags & XTENSA_PROP_ALIGN) == 0
9998 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
9999 {
10000 /* Always remove entries with zero size and no alignment. */
10001 bytes_to_remove = entry_size;
10002 if (offset_rel)
10003 remove_this_rel = TRUE;
10004 }
10005 else if (offset_rel
10006 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
10007 {
10008 if (last_irel)
10009 {
10010 flagword old_flags;
10011 bfd_vma old_size =
10012 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
10013 bfd_vma old_address =
10014 (last_irel->r_addend
10015 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
10016 bfd_vma new_address =
10017 (offset_rel->r_addend
10018 + bfd_get_32 (abfd, &contents[actual_offset]));
10019 if (is_full_prop_section)
10020 old_flags = bfd_get_32
10021 (abfd, &contents[last_irel->r_offset + 8]);
10022 else
10023 old_flags = predef_flags;
10024
10025 if ((ELF32_R_SYM (offset_rel->r_info)
10026 == ELF32_R_SYM (last_irel->r_info))
10027 && old_address + old_size == new_address
10028 && old_flags == flags
10029 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
10030 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
10031 {
10032 /* Fix the old size. */
10033 bfd_put_32 (abfd, old_size + size,
10034 &contents[last_irel->r_offset + 4]);
10035 bytes_to_remove = entry_size;
10036 remove_this_rel = TRUE;
10037 }
10038 else
10039 last_irel = offset_rel;
10040 }
10041 else
10042 last_irel = offset_rel;
10043 }
10044
10045 if (remove_this_rel)
10046 {
10047 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
10048 offset_rel->r_offset = 0;
10049 }
10050
10051 if (bytes_to_remove != 0)
10052 {
10053 removed_bytes += bytes_to_remove;
10054 if (offset + bytes_to_remove < sec->size)
10055 memmove (&contents[actual_offset],
10056 &contents[actual_offset + bytes_to_remove],
10057 sec->size - offset - bytes_to_remove);
10058 }
10059 }
10060
10061 if (removed_bytes)
10062 {
10063 /* Fix up any extra relocations on the last entry. */
10064 for (irel = next_rel; irel < rel_end; irel++)
10065 irel->r_offset -= removed_bytes;
10066
10067 /* Clear the removed bytes. */
10068 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
10069
10070 if (sec->rawsize == 0)
10071 sec->rawsize = sec->size;
10072 sec->size -= removed_bytes;
10073
10074 if (xtensa_is_littable_section (sec))
10075 {
10076 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
10077 if (sgotloc)
10078 sgotloc->size -= removed_bytes;
10079 }
10080 }
10081 }
10082
10083 error_return:
10084 release_internal_relocs (sec, internal_relocs);
10085 release_contents (sec, contents);
10086 return ok;
10087 }
10088
10089 \f
10090 /* Third relaxation pass. */
10091
10092 /* Change symbol values to account for removed literals. */
10093
10094 bfd_boolean
10095 relax_section_symbols (bfd *abfd, asection *sec)
10096 {
10097 xtensa_relax_info *relax_info;
10098 unsigned int sec_shndx;
10099 Elf_Internal_Shdr *symtab_hdr;
10100 Elf_Internal_Sym *isymbuf;
10101 unsigned i, num_syms, num_locals;
10102
10103 relax_info = get_xtensa_relax_info (sec);
10104 BFD_ASSERT (relax_info);
10105
10106 if (!relax_info->is_relaxable_literal_section
10107 && !relax_info->is_relaxable_asm_section)
10108 return TRUE;
10109
10110 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
10111
10112 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10113 isymbuf = retrieve_local_syms (abfd);
10114
10115 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
10116 num_locals = symtab_hdr->sh_info;
10117
10118 /* Adjust the local symbols defined in this section. */
10119 for (i = 0; i < num_locals; i++)
10120 {
10121 Elf_Internal_Sym *isym = &isymbuf[i];
10122
10123 if (isym->st_shndx == sec_shndx)
10124 {
10125 text_action *act = relax_info->action_list.head;
10126 bfd_vma orig_addr = isym->st_value;
10127
10128 isym->st_value -= removed_by_actions (&act, orig_addr, FALSE);
10129
10130 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
10131 isym->st_size -=
10132 removed_by_actions (&act, orig_addr + isym->st_size, FALSE);
10133 }
10134 }
10135
10136 /* Now adjust the global symbols defined in this section. */
10137 for (i = 0; i < (num_syms - num_locals); i++)
10138 {
10139 struct elf_link_hash_entry *sym_hash;
10140
10141 sym_hash = elf_sym_hashes (abfd)[i];
10142
10143 if (sym_hash->root.type == bfd_link_hash_warning)
10144 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
10145
10146 if ((sym_hash->root.type == bfd_link_hash_defined
10147 || sym_hash->root.type == bfd_link_hash_defweak)
10148 && sym_hash->root.u.def.section == sec)
10149 {
10150 text_action *act = relax_info->action_list.head;
10151 bfd_vma orig_addr = sym_hash->root.u.def.value;
10152
10153 sym_hash->root.u.def.value -=
10154 removed_by_actions (&act, orig_addr, FALSE);
10155
10156 if (sym_hash->type == STT_FUNC)
10157 sym_hash->size -=
10158 removed_by_actions (&act, orig_addr + sym_hash->size, FALSE);
10159 }
10160 }
10161
10162 return TRUE;
10163 }
10164
10165 \f
10166 /* "Fix" handling functions, called while performing relocations. */
10167
10168 static bfd_boolean
10169 do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
10170 bfd *input_bfd,
10171 asection *input_section,
10172 bfd_byte *contents)
10173 {
10174 r_reloc r_rel;
10175 asection *sec, *old_sec;
10176 bfd_vma old_offset;
10177 int r_type = ELF32_R_TYPE (rel->r_info);
10178 reloc_bfd_fix *fix;
10179
10180 if (r_type == R_XTENSA_NONE)
10181 return TRUE;
10182
10183 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10184 if (!fix)
10185 return TRUE;
10186
10187 r_reloc_init (&r_rel, input_bfd, rel, contents,
10188 bfd_get_section_limit (input_bfd, input_section));
10189 old_sec = r_reloc_get_section (&r_rel);
10190 old_offset = r_rel.target_offset;
10191
10192 if (!old_sec || !r_reloc_is_defined (&r_rel))
10193 {
10194 if (r_type != R_XTENSA_ASM_EXPAND)
10195 {
10196 (*_bfd_error_handler)
10197 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
10198 input_bfd, input_section, rel->r_offset,
10199 elf_howto_table[r_type].name);
10200 return FALSE;
10201 }
10202 /* Leave it be. Resolution will happen in a later stage. */
10203 }
10204 else
10205 {
10206 sec = fix->target_sec;
10207 rel->r_addend += ((sec->output_offset + fix->target_offset)
10208 - (old_sec->output_offset + old_offset));
10209 }
10210 return TRUE;
10211 }
10212
10213
10214 static void
10215 do_fix_for_final_link (Elf_Internal_Rela *rel,
10216 bfd *input_bfd,
10217 asection *input_section,
10218 bfd_byte *contents,
10219 bfd_vma *relocationp)
10220 {
10221 asection *sec;
10222 int r_type = ELF32_R_TYPE (rel->r_info);
10223 reloc_bfd_fix *fix;
10224 bfd_vma fixup_diff;
10225
10226 if (r_type == R_XTENSA_NONE)
10227 return;
10228
10229 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10230 if (!fix)
10231 return;
10232
10233 sec = fix->target_sec;
10234
10235 fixup_diff = rel->r_addend;
10236 if (elf_howto_table[fix->src_type].partial_inplace)
10237 {
10238 bfd_vma inplace_val;
10239 BFD_ASSERT (fix->src_offset
10240 < bfd_get_section_limit (input_bfd, input_section));
10241 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
10242 fixup_diff += inplace_val;
10243 }
10244
10245 *relocationp = (sec->output_section->vma
10246 + sec->output_offset
10247 + fix->target_offset - fixup_diff);
10248 }
10249
10250 \f
10251 /* Miscellaneous utility functions.... */
10252
10253 static asection *
10254 elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
10255 {
10256 struct elf_xtensa_link_hash_table *htab;
10257 bfd *dynobj;
10258 char plt_name[10];
10259
10260 if (chunk == 0)
10261 {
10262 htab = elf_xtensa_hash_table (info);
10263 if (htab == NULL)
10264 return NULL;
10265
10266 return htab->splt;
10267 }
10268
10269 dynobj = elf_hash_table (info)->dynobj;
10270 sprintf (plt_name, ".plt.%u", chunk);
10271 return bfd_get_linker_section (dynobj, plt_name);
10272 }
10273
10274
10275 static asection *
10276 elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
10277 {
10278 struct elf_xtensa_link_hash_table *htab;
10279 bfd *dynobj;
10280 char got_name[14];
10281
10282 if (chunk == 0)
10283 {
10284 htab = elf_xtensa_hash_table (info);
10285 if (htab == NULL)
10286 return NULL;
10287 return htab->sgotplt;
10288 }
10289
10290 dynobj = elf_hash_table (info)->dynobj;
10291 sprintf (got_name, ".got.plt.%u", chunk);
10292 return bfd_get_linker_section (dynobj, got_name);
10293 }
10294
10295
10296 /* Get the input section for a given symbol index.
10297 If the symbol is:
10298 . a section symbol, return the section;
10299 . a common symbol, return the common section;
10300 . an undefined symbol, return the undefined section;
10301 . an indirect symbol, follow the links;
10302 . an absolute value, return the absolute section. */
10303
10304 static asection *
10305 get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
10306 {
10307 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10308 asection *target_sec = NULL;
10309 if (r_symndx < symtab_hdr->sh_info)
10310 {
10311 Elf_Internal_Sym *isymbuf;
10312 unsigned int section_index;
10313
10314 isymbuf = retrieve_local_syms (abfd);
10315 section_index = isymbuf[r_symndx].st_shndx;
10316
10317 if (section_index == SHN_UNDEF)
10318 target_sec = bfd_und_section_ptr;
10319 else if (section_index == SHN_ABS)
10320 target_sec = bfd_abs_section_ptr;
10321 else if (section_index == SHN_COMMON)
10322 target_sec = bfd_com_section_ptr;
10323 else
10324 target_sec = bfd_section_from_elf_index (abfd, section_index);
10325 }
10326 else
10327 {
10328 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10329 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
10330
10331 while (h->root.type == bfd_link_hash_indirect
10332 || h->root.type == bfd_link_hash_warning)
10333 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10334
10335 switch (h->root.type)
10336 {
10337 case bfd_link_hash_defined:
10338 case bfd_link_hash_defweak:
10339 target_sec = h->root.u.def.section;
10340 break;
10341 case bfd_link_hash_common:
10342 target_sec = bfd_com_section_ptr;
10343 break;
10344 case bfd_link_hash_undefined:
10345 case bfd_link_hash_undefweak:
10346 target_sec = bfd_und_section_ptr;
10347 break;
10348 default: /* New indirect warning. */
10349 target_sec = bfd_und_section_ptr;
10350 break;
10351 }
10352 }
10353 return target_sec;
10354 }
10355
10356
10357 static struct elf_link_hash_entry *
10358 get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
10359 {
10360 unsigned long indx;
10361 struct elf_link_hash_entry *h;
10362 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10363
10364 if (r_symndx < symtab_hdr->sh_info)
10365 return NULL;
10366
10367 indx = r_symndx - symtab_hdr->sh_info;
10368 h = elf_sym_hashes (abfd)[indx];
10369 while (h->root.type == bfd_link_hash_indirect
10370 || h->root.type == bfd_link_hash_warning)
10371 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10372 return h;
10373 }
10374
10375
10376 /* Get the section-relative offset for a symbol number. */
10377
10378 static bfd_vma
10379 get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
10380 {
10381 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10382 bfd_vma offset = 0;
10383
10384 if (r_symndx < symtab_hdr->sh_info)
10385 {
10386 Elf_Internal_Sym *isymbuf;
10387 isymbuf = retrieve_local_syms (abfd);
10388 offset = isymbuf[r_symndx].st_value;
10389 }
10390 else
10391 {
10392 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10393 struct elf_link_hash_entry *h =
10394 elf_sym_hashes (abfd)[indx];
10395
10396 while (h->root.type == bfd_link_hash_indirect
10397 || h->root.type == bfd_link_hash_warning)
10398 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10399 if (h->root.type == bfd_link_hash_defined
10400 || h->root.type == bfd_link_hash_defweak)
10401 offset = h->root.u.def.value;
10402 }
10403 return offset;
10404 }
10405
10406
10407 static bfd_boolean
10408 is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
10409 {
10410 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
10411 struct elf_link_hash_entry *h;
10412
10413 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
10414 if (h && h->root.type == bfd_link_hash_defweak)
10415 return TRUE;
10416 return FALSE;
10417 }
10418
10419
10420 static bfd_boolean
10421 pcrel_reloc_fits (xtensa_opcode opc,
10422 int opnd,
10423 bfd_vma self_address,
10424 bfd_vma dest_address)
10425 {
10426 xtensa_isa isa = xtensa_default_isa;
10427 uint32 valp = dest_address;
10428 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
10429 || xtensa_operand_encode (isa, opc, opnd, &valp))
10430 return FALSE;
10431 return TRUE;
10432 }
10433
10434
10435 static bfd_boolean
10436 xtensa_is_property_section (asection *sec)
10437 {
10438 if (xtensa_is_insntable_section (sec)
10439 || xtensa_is_littable_section (sec)
10440 || xtensa_is_proptable_section (sec))
10441 return TRUE;
10442
10443 return FALSE;
10444 }
10445
10446
10447 static bfd_boolean
10448 xtensa_is_insntable_section (asection *sec)
10449 {
10450 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
10451 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
10452 return TRUE;
10453
10454 return FALSE;
10455 }
10456
10457
10458 static bfd_boolean
10459 xtensa_is_littable_section (asection *sec)
10460 {
10461 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
10462 || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
10463 return TRUE;
10464
10465 return FALSE;
10466 }
10467
10468
10469 static bfd_boolean
10470 xtensa_is_proptable_section (asection *sec)
10471 {
10472 if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
10473 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
10474 return TRUE;
10475
10476 return FALSE;
10477 }
10478
10479
10480 static int
10481 internal_reloc_compare (const void *ap, const void *bp)
10482 {
10483 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
10484 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
10485
10486 if (a->r_offset != b->r_offset)
10487 return (a->r_offset - b->r_offset);
10488
10489 /* We don't need to sort on these criteria for correctness,
10490 but enforcing a more strict ordering prevents unstable qsort
10491 from behaving differently with different implementations.
10492 Without the code below we get correct but different results
10493 on Solaris 2.7 and 2.8. We would like to always produce the
10494 same results no matter the host. */
10495
10496 if (a->r_info != b->r_info)
10497 return (a->r_info - b->r_info);
10498
10499 return (a->r_addend - b->r_addend);
10500 }
10501
10502
10503 static int
10504 internal_reloc_matches (const void *ap, const void *bp)
10505 {
10506 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
10507 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
10508
10509 /* Check if one entry overlaps with the other; this shouldn't happen
10510 except when searching for a match. */
10511 return (a->r_offset - b->r_offset);
10512 }
10513
10514
10515 /* Predicate function used to look up a section in a particular group. */
10516
10517 static bfd_boolean
10518 match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
10519 {
10520 const char *gname = inf;
10521 const char *group_name = elf_group_name (sec);
10522
10523 return (group_name == gname
10524 || (group_name != NULL
10525 && gname != NULL
10526 && strcmp (group_name, gname) == 0));
10527 }
10528
10529
10530 static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
10531
10532 static char *
10533 xtensa_property_section_name (asection *sec, const char *base_name)
10534 {
10535 const char *suffix, *group_name;
10536 char *prop_sec_name;
10537
10538 group_name = elf_group_name (sec);
10539 if (group_name)
10540 {
10541 suffix = strrchr (sec->name, '.');
10542 if (suffix == sec->name)
10543 suffix = 0;
10544 prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1
10545 + (suffix ? strlen (suffix) : 0));
10546 strcpy (prop_sec_name, base_name);
10547 if (suffix)
10548 strcat (prop_sec_name, suffix);
10549 }
10550 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
10551 {
10552 char *linkonce_kind = 0;
10553
10554 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
10555 linkonce_kind = "x.";
10556 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
10557 linkonce_kind = "p.";
10558 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
10559 linkonce_kind = "prop.";
10560 else
10561 abort ();
10562
10563 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
10564 + strlen (linkonce_kind) + 1);
10565 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
10566 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
10567
10568 suffix = sec->name + linkonce_len;
10569 /* For backward compatibility, replace "t." instead of inserting
10570 the new linkonce_kind (but not for "prop" sections). */
10571 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
10572 suffix += 2;
10573 strcat (prop_sec_name + linkonce_len, suffix);
10574 }
10575 else
10576 prop_sec_name = strdup (base_name);
10577
10578 return prop_sec_name;
10579 }
10580
10581
10582 static asection *
10583 xtensa_get_property_section (asection *sec, const char *base_name)
10584 {
10585 char *prop_sec_name;
10586 asection *prop_sec;
10587
10588 prop_sec_name = xtensa_property_section_name (sec, base_name);
10589 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
10590 match_section_group,
10591 (void *) elf_group_name (sec));
10592 free (prop_sec_name);
10593 return prop_sec;
10594 }
10595
10596
10597 asection *
10598 xtensa_make_property_section (asection *sec, const char *base_name)
10599 {
10600 char *prop_sec_name;
10601 asection *prop_sec;
10602
10603 /* Check if the section already exists. */
10604 prop_sec_name = xtensa_property_section_name (sec, base_name);
10605 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
10606 match_section_group,
10607 (void *) elf_group_name (sec));
10608 /* If not, create it. */
10609 if (! prop_sec)
10610 {
10611 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
10612 flags |= (bfd_get_section_flags (sec->owner, sec)
10613 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
10614
10615 prop_sec = bfd_make_section_anyway_with_flags
10616 (sec->owner, strdup (prop_sec_name), flags);
10617 if (! prop_sec)
10618 return 0;
10619
10620 elf_group_name (prop_sec) = elf_group_name (sec);
10621 }
10622
10623 free (prop_sec_name);
10624 return prop_sec;
10625 }
10626
10627
10628 flagword
10629 xtensa_get_property_predef_flags (asection *sec)
10630 {
10631 if (xtensa_is_insntable_section (sec))
10632 return (XTENSA_PROP_INSN
10633 | XTENSA_PROP_NO_TRANSFORM
10634 | XTENSA_PROP_INSN_NO_REORDER);
10635
10636 if (xtensa_is_littable_section (sec))
10637 return (XTENSA_PROP_LITERAL
10638 | XTENSA_PROP_NO_TRANSFORM
10639 | XTENSA_PROP_INSN_NO_REORDER);
10640
10641 return 0;
10642 }
10643
10644 \f
10645 /* Other functions called directly by the linker. */
10646
10647 bfd_boolean
10648 xtensa_callback_required_dependence (bfd *abfd,
10649 asection *sec,
10650 struct bfd_link_info *link_info,
10651 deps_callback_t callback,
10652 void *closure)
10653 {
10654 Elf_Internal_Rela *internal_relocs;
10655 bfd_byte *contents;
10656 unsigned i;
10657 bfd_boolean ok = TRUE;
10658 bfd_size_type sec_size;
10659
10660 sec_size = bfd_get_section_limit (abfd, sec);
10661
10662 /* ".plt*" sections have no explicit relocations but they contain L32R
10663 instructions that reference the corresponding ".got.plt*" sections. */
10664 if ((sec->flags & SEC_LINKER_CREATED) != 0
10665 && CONST_STRNEQ (sec->name, ".plt"))
10666 {
10667 asection *sgotplt;
10668
10669 /* Find the corresponding ".got.plt*" section. */
10670 if (sec->name[4] == '\0')
10671 sgotplt = bfd_get_linker_section (sec->owner, ".got.plt");
10672 else
10673 {
10674 char got_name[14];
10675 int chunk = 0;
10676
10677 BFD_ASSERT (sec->name[4] == '.');
10678 chunk = strtol (&sec->name[5], NULL, 10);
10679
10680 sprintf (got_name, ".got.plt.%u", chunk);
10681 sgotplt = bfd_get_linker_section (sec->owner, got_name);
10682 }
10683 BFD_ASSERT (sgotplt);
10684
10685 /* Assume worst-case offsets: L32R at the very end of the ".plt"
10686 section referencing a literal at the very beginning of
10687 ".got.plt". This is very close to the real dependence, anyway. */
10688 (*callback) (sec, sec_size, sgotplt, 0, closure);
10689 }
10690
10691 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
10692 when building uclibc, which runs "ld -b binary /dev/null". */
10693 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
10694 return ok;
10695
10696 internal_relocs = retrieve_internal_relocs (abfd, sec,
10697 link_info->keep_memory);
10698 if (internal_relocs == NULL
10699 || sec->reloc_count == 0)
10700 return ok;
10701
10702 /* Cache the contents for the duration of this scan. */
10703 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
10704 if (contents == NULL && sec_size != 0)
10705 {
10706 ok = FALSE;
10707 goto error_return;
10708 }
10709
10710 if (!xtensa_default_isa)
10711 xtensa_default_isa = xtensa_isa_init (0, 0);
10712
10713 for (i = 0; i < sec->reloc_count; i++)
10714 {
10715 Elf_Internal_Rela *irel = &internal_relocs[i];
10716 if (is_l32r_relocation (abfd, sec, contents, irel))
10717 {
10718 r_reloc l32r_rel;
10719 asection *target_sec;
10720 bfd_vma target_offset;
10721
10722 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
10723 target_sec = NULL;
10724 target_offset = 0;
10725 /* L32Rs must be local to the input file. */
10726 if (r_reloc_is_defined (&l32r_rel))
10727 {
10728 target_sec = r_reloc_get_section (&l32r_rel);
10729 target_offset = l32r_rel.target_offset;
10730 }
10731 (*callback) (sec, irel->r_offset, target_sec, target_offset,
10732 closure);
10733 }
10734 }
10735
10736 error_return:
10737 release_internal_relocs (sec, internal_relocs);
10738 release_contents (sec, contents);
10739 return ok;
10740 }
10741
10742 /* The default literal sections should always be marked as "code" (i.e.,
10743 SHF_EXECINSTR). This is particularly important for the Linux kernel
10744 module loader so that the literals are not placed after the text. */
10745 static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
10746 {
10747 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
10748 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
10749 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
10750 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
10751 { NULL, 0, 0, 0, 0 }
10752 };
10753 \f
10754 #define ELF_TARGET_ID XTENSA_ELF_DATA
10755 #ifndef ELF_ARCH
10756 #define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec
10757 #define TARGET_LITTLE_NAME "elf32-xtensa-le"
10758 #define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec
10759 #define TARGET_BIG_NAME "elf32-xtensa-be"
10760 #define ELF_ARCH bfd_arch_xtensa
10761
10762 #define ELF_MACHINE_CODE EM_XTENSA
10763 #define ELF_MACHINE_ALT1 EM_XTENSA_OLD
10764
10765 #if XCHAL_HAVE_MMU
10766 #define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
10767 #else /* !XCHAL_HAVE_MMU */
10768 #define ELF_MAXPAGESIZE 1
10769 #endif /* !XCHAL_HAVE_MMU */
10770 #endif /* ELF_ARCH */
10771
10772 #define elf_backend_can_gc_sections 1
10773 #define elf_backend_can_refcount 1
10774 #define elf_backend_plt_readonly 1
10775 #define elf_backend_got_header_size 4
10776 #define elf_backend_want_dynbss 0
10777 #define elf_backend_want_got_plt 1
10778
10779 #define elf_info_to_howto elf_xtensa_info_to_howto_rela
10780
10781 #define bfd_elf32_mkobject elf_xtensa_mkobject
10782
10783 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
10784 #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
10785 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
10786 #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
10787 #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
10788 #define bfd_elf32_bfd_reloc_name_lookup \
10789 elf_xtensa_reloc_name_lookup
10790 #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
10791 #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
10792
10793 #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
10794 #define elf_backend_check_relocs elf_xtensa_check_relocs
10795 #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
10796 #define elf_backend_discard_info elf_xtensa_discard_info
10797 #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
10798 #define elf_backend_final_write_processing elf_xtensa_final_write_processing
10799 #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
10800 #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
10801 #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
10802 #define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
10803 #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
10804 #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
10805 #define elf_backend_hide_symbol elf_xtensa_hide_symbol
10806 #define elf_backend_object_p elf_xtensa_object_p
10807 #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
10808 #define elf_backend_relocate_section elf_xtensa_relocate_section
10809 #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
10810 #define elf_backend_always_size_sections elf_xtensa_always_size_sections
10811 #define elf_backend_omit_section_dynsym \
10812 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
10813 #define elf_backend_special_sections elf_xtensa_special_sections
10814 #define elf_backend_action_discarded elf_xtensa_action_discarded
10815 #define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol
10816
10817 #include "elf32-target.h"
This page took 0.272754 seconds and 5 git commands to generate.