* elf32-xtensa.c (elf_xtensa_check_relocs): Check for negative refcount.
[deliverable/binutils-gdb.git] / bfd / elf32-xtensa.c
1 /* Xtensa-specific support for 32-bit ELF.
2 Copyright 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 3 of the
9 License, or (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23
24 #include <stdarg.h>
25 #include <strings.h>
26
27 #include "bfdlink.h"
28 #include "libbfd.h"
29 #include "elf-bfd.h"
30 #include "elf/xtensa.h"
31 #include "xtensa-isa.h"
32 #include "xtensa-config.h"
33
34 #define XTENSA_NO_NOP_REMOVAL 0
35
36 /* Local helper functions. */
37
38 static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
39 static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
40 static bfd_reloc_status_type bfd_elf_xtensa_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42 static bfd_boolean do_fix_for_relocatable_link
43 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
44 static void do_fix_for_final_link
45 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
46
47 /* Local functions to handle Xtensa configurability. */
48
49 static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
50 static bfd_boolean is_direct_call_opcode (xtensa_opcode);
51 static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
52 static xtensa_opcode get_const16_opcode (void);
53 static xtensa_opcode get_l32r_opcode (void);
54 static bfd_vma l32r_offset (bfd_vma, bfd_vma);
55 static int get_relocation_opnd (xtensa_opcode, int);
56 static int get_relocation_slot (int);
57 static xtensa_opcode get_relocation_opcode
58 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
59 static bfd_boolean is_l32r_relocation
60 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
61 static bfd_boolean is_alt_relocation (int);
62 static bfd_boolean is_operand_relocation (int);
63 static bfd_size_type insn_decode_len
64 (bfd_byte *, bfd_size_type, bfd_size_type);
65 static xtensa_opcode insn_decode_opcode
66 (bfd_byte *, bfd_size_type, bfd_size_type, int);
67 static bfd_boolean check_branch_target_aligned
68 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
69 static bfd_boolean check_loop_aligned
70 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
71 static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
72 static bfd_size_type get_asm_simplify_size
73 (bfd_byte *, bfd_size_type, bfd_size_type);
74
75 /* Functions for link-time code simplifications. */
76
77 static bfd_reloc_status_type elf_xtensa_do_asm_simplify
78 (bfd_byte *, bfd_vma, bfd_vma, char **);
79 static bfd_reloc_status_type contract_asm_expansion
80 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
81 static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
82 static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
83
84 /* Access to internal relocations, section contents and symbols. */
85
86 static Elf_Internal_Rela *retrieve_internal_relocs
87 (bfd *, asection *, bfd_boolean);
88 static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
89 static void release_internal_relocs (asection *, Elf_Internal_Rela *);
90 static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
91 static void pin_contents (asection *, bfd_byte *);
92 static void release_contents (asection *, bfd_byte *);
93 static Elf_Internal_Sym *retrieve_local_syms (bfd *);
94
95 /* Miscellaneous utility functions. */
96
97 static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
98 static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
99 static asection *get_elf_r_symndx_section (bfd *, unsigned long);
100 static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
101 (bfd *, unsigned long);
102 static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
103 static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
104 static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
105 static bfd_boolean xtensa_is_property_section (asection *);
106 static bfd_boolean xtensa_is_insntable_section (asection *);
107 static bfd_boolean xtensa_is_littable_section (asection *);
108 static bfd_boolean xtensa_is_proptable_section (asection *);
109 static int internal_reloc_compare (const void *, const void *);
110 static int internal_reloc_matches (const void *, const void *);
111 static asection *xtensa_get_property_section (asection *, const char *);
112 extern asection *xtensa_make_property_section (asection *, const char *);
113 static flagword xtensa_get_property_predef_flags (asection *);
114
115 /* Other functions called directly by the linker. */
116
117 typedef void (*deps_callback_t)
118 (asection *, bfd_vma, asection *, bfd_vma, void *);
119 extern bfd_boolean xtensa_callback_required_dependence
120 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
121
122
123 /* Globally visible flag for choosing size optimization of NOP removal
124 instead of branch-target-aware minimization for NOP removal.
125 When nonzero, narrow all instructions and remove all NOPs possible
126 around longcall expansions. */
127
128 int elf32xtensa_size_opt;
129
130
131 /* The "new_section_hook" is used to set up a per-section
132 "xtensa_relax_info" data structure with additional information used
133 during relaxation. */
134
135 typedef struct xtensa_relax_info_struct xtensa_relax_info;
136
137
138 /* The GNU tools do not easily allow extending interfaces to pass around
139 the pointer to the Xtensa ISA information, so instead we add a global
140 variable here (in BFD) that can be used by any of the tools that need
141 this information. */
142
143 xtensa_isa xtensa_default_isa;
144
145
146 /* When this is true, relocations may have been modified to refer to
147 symbols from other input files. The per-section list of "fix"
148 records needs to be checked when resolving relocations. */
149
150 static bfd_boolean relaxing_section = FALSE;
151
152 /* When this is true, during final links, literals that cannot be
153 coalesced and their relocations may be moved to other sections. */
154
155 int elf32xtensa_no_literal_movement = 1;
156
157 \f
158 static reloc_howto_type elf_howto_table[] =
159 {
160 HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
161 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
162 FALSE, 0, 0, FALSE),
163 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
164 bfd_elf_xtensa_reloc, "R_XTENSA_32",
165 TRUE, 0xffffffff, 0xffffffff, FALSE),
166
167 /* Replace a 32-bit value with a value from the runtime linker (only
168 used by linker-generated stub functions). The r_addend value is
169 special: 1 means to substitute a pointer to the runtime linker's
170 dynamic resolver function; 2 means to substitute the link map for
171 the shared object. */
172 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
173 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
174
175 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
176 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
177 FALSE, 0, 0xffffffff, FALSE),
178 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
179 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
180 FALSE, 0, 0xffffffff, FALSE),
181 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
182 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
183 FALSE, 0, 0xffffffff, FALSE),
184 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
185 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
186 FALSE, 0, 0xffffffff, FALSE),
187
188 EMPTY_HOWTO (7),
189
190 /* Old relocations for backward compatibility. */
191 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
192 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
193 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
194 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
195 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
196 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
197
198 /* Assembly auto-expansion. */
199 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
200 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
201 /* Relax assembly auto-expansion. */
202 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
203 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
204
205 EMPTY_HOWTO (13),
206
207 HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
208 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
209 FALSE, 0, 0xffffffff, TRUE),
210
211 /* GNU extension to record C++ vtable hierarchy. */
212 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
213 NULL, "R_XTENSA_GNU_VTINHERIT",
214 FALSE, 0, 0, FALSE),
215 /* GNU extension to record C++ vtable member usage. */
216 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
217 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
218 FALSE, 0, 0, FALSE),
219
220 /* Relocations for supporting difference of symbols. */
221 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
222 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
223 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
224 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
225 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
226 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
227
228 /* General immediate operand relocations. */
229 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
230 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
231 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
232 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
233 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
234 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
235 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
236 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
237 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
238 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
239 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
240 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
241 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
242 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
243 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
244 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
245 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
246 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
247 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
248 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
249 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
250 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
251 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
252 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
253 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
254 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
255 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
256 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
257 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
258 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
259
260 /* "Alternate" relocations. The meaning of these is opcode-specific. */
261 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
262 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
263 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
264 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
265 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
266 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
267 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
268 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
269 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
270 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
271 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
272 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
273 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
274 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
275 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
276 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
277 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
278 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
279 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
280 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
281 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
282 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
283 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
284 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
285 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
286 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
287 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
288 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
289 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
290 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
291
292 /* TLS relocations. */
293 HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont,
294 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN",
295 FALSE, 0, 0xffffffff, FALSE),
296 HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont,
297 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG",
298 FALSE, 0, 0xffffffff, FALSE),
299 HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
300 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF",
301 FALSE, 0, 0xffffffff, FALSE),
302 HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
303 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF",
304 FALSE, 0, 0xffffffff, FALSE),
305 HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont,
306 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC",
307 FALSE, 0, 0, FALSE),
308 HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont,
309 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG",
310 FALSE, 0, 0, FALSE),
311 HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont,
312 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL",
313 FALSE, 0, 0, FALSE),
314 };
315
316 #if DEBUG_GEN_RELOC
317 #define TRACE(str) \
318 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
319 #else
320 #define TRACE(str)
321 #endif
322
323 static reloc_howto_type *
324 elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
325 bfd_reloc_code_real_type code)
326 {
327 switch (code)
328 {
329 case BFD_RELOC_NONE:
330 TRACE ("BFD_RELOC_NONE");
331 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
332
333 case BFD_RELOC_32:
334 TRACE ("BFD_RELOC_32");
335 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
336
337 case BFD_RELOC_32_PCREL:
338 TRACE ("BFD_RELOC_32_PCREL");
339 return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
340
341 case BFD_RELOC_XTENSA_DIFF8:
342 TRACE ("BFD_RELOC_XTENSA_DIFF8");
343 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
344
345 case BFD_RELOC_XTENSA_DIFF16:
346 TRACE ("BFD_RELOC_XTENSA_DIFF16");
347 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
348
349 case BFD_RELOC_XTENSA_DIFF32:
350 TRACE ("BFD_RELOC_XTENSA_DIFF32");
351 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
352
353 case BFD_RELOC_XTENSA_RTLD:
354 TRACE ("BFD_RELOC_XTENSA_RTLD");
355 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
356
357 case BFD_RELOC_XTENSA_GLOB_DAT:
358 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
359 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
360
361 case BFD_RELOC_XTENSA_JMP_SLOT:
362 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
363 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
364
365 case BFD_RELOC_XTENSA_RELATIVE:
366 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
367 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
368
369 case BFD_RELOC_XTENSA_PLT:
370 TRACE ("BFD_RELOC_XTENSA_PLT");
371 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
372
373 case BFD_RELOC_XTENSA_OP0:
374 TRACE ("BFD_RELOC_XTENSA_OP0");
375 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
376
377 case BFD_RELOC_XTENSA_OP1:
378 TRACE ("BFD_RELOC_XTENSA_OP1");
379 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
380
381 case BFD_RELOC_XTENSA_OP2:
382 TRACE ("BFD_RELOC_XTENSA_OP2");
383 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
384
385 case BFD_RELOC_XTENSA_ASM_EXPAND:
386 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
387 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
388
389 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
390 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
391 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
392
393 case BFD_RELOC_VTABLE_INHERIT:
394 TRACE ("BFD_RELOC_VTABLE_INHERIT");
395 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
396
397 case BFD_RELOC_VTABLE_ENTRY:
398 TRACE ("BFD_RELOC_VTABLE_ENTRY");
399 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
400
401 case BFD_RELOC_XTENSA_TLSDESC_FN:
402 TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN");
403 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ];
404
405 case BFD_RELOC_XTENSA_TLSDESC_ARG:
406 TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG");
407 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ];
408
409 case BFD_RELOC_XTENSA_TLS_DTPOFF:
410 TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF");
411 return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ];
412
413 case BFD_RELOC_XTENSA_TLS_TPOFF:
414 TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF");
415 return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ];
416
417 case BFD_RELOC_XTENSA_TLS_FUNC:
418 TRACE ("BFD_RELOC_XTENSA_TLS_FUNC");
419 return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ];
420
421 case BFD_RELOC_XTENSA_TLS_ARG:
422 TRACE ("BFD_RELOC_XTENSA_TLS_ARG");
423 return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ];
424
425 case BFD_RELOC_XTENSA_TLS_CALL:
426 TRACE ("BFD_RELOC_XTENSA_TLS_CALL");
427 return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ];
428
429 default:
430 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
431 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
432 {
433 unsigned n = (R_XTENSA_SLOT0_OP +
434 (code - BFD_RELOC_XTENSA_SLOT0_OP));
435 return &elf_howto_table[n];
436 }
437
438 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
439 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
440 {
441 unsigned n = (R_XTENSA_SLOT0_ALT +
442 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
443 return &elf_howto_table[n];
444 }
445
446 break;
447 }
448
449 TRACE ("Unknown");
450 return NULL;
451 }
452
453 static reloc_howto_type *
454 elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
455 const char *r_name)
456 {
457 unsigned int i;
458
459 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
460 if (elf_howto_table[i].name != NULL
461 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
462 return &elf_howto_table[i];
463
464 return NULL;
465 }
466
467
468 /* Given an ELF "rela" relocation, find the corresponding howto and record
469 it in the BFD internal arelent representation of the relocation. */
470
471 static void
472 elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
473 arelent *cache_ptr,
474 Elf_Internal_Rela *dst)
475 {
476 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
477
478 BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max);
479 cache_ptr->howto = &elf_howto_table[r_type];
480 }
481
482 \f
483 /* Functions for the Xtensa ELF linker. */
484
485 /* The name of the dynamic interpreter. This is put in the .interp
486 section. */
487
488 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
489
490 /* The size in bytes of an entry in the procedure linkage table.
491 (This does _not_ include the space for the literals associated with
492 the PLT entry.) */
493
494 #define PLT_ENTRY_SIZE 16
495
496 /* For _really_ large PLTs, we may need to alternate between literals
497 and code to keep the literals within the 256K range of the L32R
498 instructions in the code. It's unlikely that anyone would ever need
499 such a big PLT, but an arbitrary limit on the PLT size would be bad.
500 Thus, we split the PLT into chunks. Since there's very little
501 overhead (2 extra literals) for each chunk, the chunk size is kept
502 small so that the code for handling multiple chunks get used and
503 tested regularly. With 254 entries, there are 1K of literals for
504 each chunk, and that seems like a nice round number. */
505
506 #define PLT_ENTRIES_PER_CHUNK 254
507
508 /* PLT entries are actually used as stub functions for lazy symbol
509 resolution. Once the symbol is resolved, the stub function is never
510 invoked. Note: the 32-byte frame size used here cannot be changed
511 without a corresponding change in the runtime linker. */
512
513 static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
514 {
515 0x6c, 0x10, 0x04, /* entry sp, 32 */
516 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
517 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
518 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
519 0x0a, 0x80, 0x00, /* jx a8 */
520 0 /* unused */
521 };
522
523 static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
524 {
525 0x36, 0x41, 0x00, /* entry sp, 32 */
526 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
527 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
528 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
529 0xa0, 0x08, 0x00, /* jx a8 */
530 0 /* unused */
531 };
532
533 /* The size of the thread control block. */
534 #define TCB_SIZE 8
535
536 struct elf_xtensa_link_hash_entry
537 {
538 struct elf_link_hash_entry elf;
539
540 bfd_signed_vma tlsfunc_refcount;
541
542 #define GOT_UNKNOWN 0
543 #define GOT_NORMAL 1
544 #define GOT_TLS_GD 2 /* global or local dynamic */
545 #define GOT_TLS_IE 4 /* initial or local exec */
546 #define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE)
547 unsigned char tls_type;
548 };
549
550 #define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent))
551
552 struct elf_xtensa_obj_tdata
553 {
554 struct elf_obj_tdata root;
555
556 /* tls_type for each local got entry. */
557 char *local_got_tls_type;
558
559 bfd_signed_vma *local_tlsfunc_refcounts;
560 };
561
562 #define elf_xtensa_tdata(abfd) \
563 ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any)
564
565 #define elf_xtensa_local_got_tls_type(abfd) \
566 (elf_xtensa_tdata (abfd)->local_got_tls_type)
567
568 #define elf_xtensa_local_tlsfunc_refcounts(abfd) \
569 (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts)
570
571 #define is_xtensa_elf(bfd) \
572 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
573 && elf_tdata (bfd) != NULL \
574 && elf_object_id (bfd) == XTENSA_ELF_TDATA)
575
576 static bfd_boolean
577 elf_xtensa_mkobject (bfd *abfd)
578 {
579 return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata),
580 XTENSA_ELF_TDATA);
581 }
582
583 /* Xtensa ELF linker hash table. */
584
585 struct elf_xtensa_link_hash_table
586 {
587 struct elf_link_hash_table elf;
588
589 /* Short-cuts to get to dynamic linker sections. */
590 asection *sgot;
591 asection *sgotplt;
592 asection *srelgot;
593 asection *splt;
594 asection *srelplt;
595 asection *sgotloc;
596 asection *spltlittbl;
597
598 /* Total count of PLT relocations seen during check_relocs.
599 The actual PLT code must be split into multiple sections and all
600 the sections have to be created before size_dynamic_sections,
601 where we figure out the exact number of PLT entries that will be
602 needed. It is OK if this count is an overestimate, e.g., some
603 relocations may be removed by GC. */
604 int plt_reloc_count;
605
606 struct elf_xtensa_link_hash_entry *tlsbase;
607 };
608
609 /* Get the Xtensa ELF linker hash table from a link_info structure. */
610
611 #define elf_xtensa_hash_table(p) \
612 ((struct elf_xtensa_link_hash_table *) ((p)->hash))
613
614 /* Create an entry in an Xtensa ELF linker hash table. */
615
616 static struct bfd_hash_entry *
617 elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry,
618 struct bfd_hash_table *table,
619 const char *string)
620 {
621 /* Allocate the structure if it has not already been allocated by a
622 subclass. */
623 if (entry == NULL)
624 {
625 entry = bfd_hash_allocate (table,
626 sizeof (struct elf_xtensa_link_hash_entry));
627 if (entry == NULL)
628 return entry;
629 }
630
631 /* Call the allocation method of the superclass. */
632 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
633 if (entry != NULL)
634 {
635 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry);
636 eh->tlsfunc_refcount = 0;
637 eh->tls_type = GOT_UNKNOWN;
638 }
639
640 return entry;
641 }
642
643 /* Create an Xtensa ELF linker hash table. */
644
645 static struct bfd_link_hash_table *
646 elf_xtensa_link_hash_table_create (bfd *abfd)
647 {
648 struct elf_link_hash_entry *tlsbase;
649 struct elf_xtensa_link_hash_table *ret;
650 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
651
652 ret = bfd_malloc (amt);
653 if (ret == NULL)
654 return NULL;
655
656 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
657 elf_xtensa_link_hash_newfunc,
658 sizeof (struct elf_xtensa_link_hash_entry)))
659 {
660 free (ret);
661 return NULL;
662 }
663
664 ret->sgot = NULL;
665 ret->sgotplt = NULL;
666 ret->srelgot = NULL;
667 ret->splt = NULL;
668 ret->srelplt = NULL;
669 ret->sgotloc = NULL;
670 ret->spltlittbl = NULL;
671
672 ret->plt_reloc_count = 0;
673
674 /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking
675 for it later. */
676 tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_",
677 TRUE, FALSE, FALSE);
678 tlsbase->root.type = bfd_link_hash_new;
679 tlsbase->root.u.undef.abfd = NULL;
680 tlsbase->non_elf = 0;
681 ret->tlsbase = elf_xtensa_hash_entry (tlsbase);
682 ret->tlsbase->tls_type = GOT_UNKNOWN;
683
684 return &ret->elf.root;
685 }
686
687 /* Copy the extra info we tack onto an elf_link_hash_entry. */
688
689 static void
690 elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info,
691 struct elf_link_hash_entry *dir,
692 struct elf_link_hash_entry *ind)
693 {
694 struct elf_xtensa_link_hash_entry *edir, *eind;
695
696 edir = elf_xtensa_hash_entry (dir);
697 eind = elf_xtensa_hash_entry (ind);
698
699 if (ind->root.type == bfd_link_hash_indirect)
700 {
701 edir->tlsfunc_refcount += eind->tlsfunc_refcount;
702 eind->tlsfunc_refcount = 0;
703
704 if (dir->got.refcount <= 0)
705 {
706 edir->tls_type = eind->tls_type;
707 eind->tls_type = GOT_UNKNOWN;
708 }
709 }
710
711 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
712 }
713
714 static inline bfd_boolean
715 elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
716 struct bfd_link_info *info)
717 {
718 /* Check if we should do dynamic things to this symbol. The
719 "ignore_protected" argument need not be set, because Xtensa code
720 does not require special handling of STV_PROTECTED to make function
721 pointer comparisons work properly. The PLT addresses are never
722 used for function pointers. */
723
724 return _bfd_elf_dynamic_symbol_p (h, info, 0);
725 }
726
727 \f
728 static int
729 property_table_compare (const void *ap, const void *bp)
730 {
731 const property_table_entry *a = (const property_table_entry *) ap;
732 const property_table_entry *b = (const property_table_entry *) bp;
733
734 if (a->address == b->address)
735 {
736 if (a->size != b->size)
737 return (a->size - b->size);
738
739 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
740 return ((b->flags & XTENSA_PROP_ALIGN)
741 - (a->flags & XTENSA_PROP_ALIGN));
742
743 if ((a->flags & XTENSA_PROP_ALIGN)
744 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
745 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
746 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
747 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
748
749 if ((a->flags & XTENSA_PROP_UNREACHABLE)
750 != (b->flags & XTENSA_PROP_UNREACHABLE))
751 return ((b->flags & XTENSA_PROP_UNREACHABLE)
752 - (a->flags & XTENSA_PROP_UNREACHABLE));
753
754 return (a->flags - b->flags);
755 }
756
757 return (a->address - b->address);
758 }
759
760
761 static int
762 property_table_matches (const void *ap, const void *bp)
763 {
764 const property_table_entry *a = (const property_table_entry *) ap;
765 const property_table_entry *b = (const property_table_entry *) bp;
766
767 /* Check if one entry overlaps with the other. */
768 if ((b->address >= a->address && b->address < (a->address + a->size))
769 || (a->address >= b->address && a->address < (b->address + b->size)))
770 return 0;
771
772 return (a->address - b->address);
773 }
774
775
776 /* Get the literal table or property table entries for the given
777 section. Sets TABLE_P and returns the number of entries. On
778 error, returns a negative value. */
779
780 static int
781 xtensa_read_table_entries (bfd *abfd,
782 asection *section,
783 property_table_entry **table_p,
784 const char *sec_name,
785 bfd_boolean output_addr)
786 {
787 asection *table_section;
788 bfd_size_type table_size = 0;
789 bfd_byte *table_data;
790 property_table_entry *blocks;
791 int blk, block_count;
792 bfd_size_type num_records;
793 Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
794 bfd_vma section_addr, off;
795 flagword predef_flags;
796 bfd_size_type table_entry_size, section_limit;
797
798 if (!section
799 || !(section->flags & SEC_ALLOC)
800 || (section->flags & SEC_DEBUGGING))
801 {
802 *table_p = NULL;
803 return 0;
804 }
805
806 table_section = xtensa_get_property_section (section, sec_name);
807 if (table_section)
808 table_size = table_section->size;
809
810 if (table_size == 0)
811 {
812 *table_p = NULL;
813 return 0;
814 }
815
816 predef_flags = xtensa_get_property_predef_flags (table_section);
817 table_entry_size = 12;
818 if (predef_flags)
819 table_entry_size -= 4;
820
821 num_records = table_size / table_entry_size;
822 table_data = retrieve_contents (abfd, table_section, TRUE);
823 blocks = (property_table_entry *)
824 bfd_malloc (num_records * sizeof (property_table_entry));
825 block_count = 0;
826
827 if (output_addr)
828 section_addr = section->output_section->vma + section->output_offset;
829 else
830 section_addr = section->vma;
831
832 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
833 if (internal_relocs && !table_section->reloc_done)
834 {
835 qsort (internal_relocs, table_section->reloc_count,
836 sizeof (Elf_Internal_Rela), internal_reloc_compare);
837 irel = internal_relocs;
838 }
839 else
840 irel = NULL;
841
842 section_limit = bfd_get_section_limit (abfd, section);
843 rel_end = internal_relocs + table_section->reloc_count;
844
845 for (off = 0; off < table_size; off += table_entry_size)
846 {
847 bfd_vma address = bfd_get_32 (abfd, table_data + off);
848
849 /* Skip any relocations before the current offset. This should help
850 avoid confusion caused by unexpected relocations for the preceding
851 table entry. */
852 while (irel &&
853 (irel->r_offset < off
854 || (irel->r_offset == off
855 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
856 {
857 irel += 1;
858 if (irel >= rel_end)
859 irel = 0;
860 }
861
862 if (irel && irel->r_offset == off)
863 {
864 bfd_vma sym_off;
865 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
866 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
867
868 if (get_elf_r_symndx_section (abfd, r_symndx) != section)
869 continue;
870
871 sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
872 BFD_ASSERT (sym_off == 0);
873 address += (section_addr + sym_off + irel->r_addend);
874 }
875 else
876 {
877 if (address < section_addr
878 || address >= section_addr + section_limit)
879 continue;
880 }
881
882 blocks[block_count].address = address;
883 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
884 if (predef_flags)
885 blocks[block_count].flags = predef_flags;
886 else
887 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
888 block_count++;
889 }
890
891 release_contents (table_section, table_data);
892 release_internal_relocs (table_section, internal_relocs);
893
894 if (block_count > 0)
895 {
896 /* Now sort them into address order for easy reference. */
897 qsort (blocks, block_count, sizeof (property_table_entry),
898 property_table_compare);
899
900 /* Check that the table contents are valid. Problems may occur,
901 for example, if an unrelocated object file is stripped. */
902 for (blk = 1; blk < block_count; blk++)
903 {
904 /* The only circumstance where two entries may legitimately
905 have the same address is when one of them is a zero-size
906 placeholder to mark a place where fill can be inserted.
907 The zero-size entry should come first. */
908 if (blocks[blk - 1].address == blocks[blk].address &&
909 blocks[blk - 1].size != 0)
910 {
911 (*_bfd_error_handler) (_("%B(%A): invalid property table"),
912 abfd, section);
913 bfd_set_error (bfd_error_bad_value);
914 free (blocks);
915 return -1;
916 }
917 }
918 }
919
920 *table_p = blocks;
921 return block_count;
922 }
923
924
925 static property_table_entry *
926 elf_xtensa_find_property_entry (property_table_entry *property_table,
927 int property_table_size,
928 bfd_vma addr)
929 {
930 property_table_entry entry;
931 property_table_entry *rv;
932
933 if (property_table_size == 0)
934 return NULL;
935
936 entry.address = addr;
937 entry.size = 1;
938 entry.flags = 0;
939
940 rv = bsearch (&entry, property_table, property_table_size,
941 sizeof (property_table_entry), property_table_matches);
942 return rv;
943 }
944
945
946 static bfd_boolean
947 elf_xtensa_in_literal_pool (property_table_entry *lit_table,
948 int lit_table_size,
949 bfd_vma addr)
950 {
951 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
952 return TRUE;
953
954 return FALSE;
955 }
956
957 \f
958 /* Look through the relocs for a section during the first phase, and
959 calculate needed space in the dynamic reloc sections. */
960
961 static bfd_boolean
962 elf_xtensa_check_relocs (bfd *abfd,
963 struct bfd_link_info *info,
964 asection *sec,
965 const Elf_Internal_Rela *relocs)
966 {
967 struct elf_xtensa_link_hash_table *htab;
968 Elf_Internal_Shdr *symtab_hdr;
969 struct elf_link_hash_entry **sym_hashes;
970 const Elf_Internal_Rela *rel;
971 const Elf_Internal_Rela *rel_end;
972
973 if (info->relocatable || (sec->flags & SEC_ALLOC) == 0)
974 return TRUE;
975
976 BFD_ASSERT (is_xtensa_elf (abfd));
977
978 htab = elf_xtensa_hash_table (info);
979 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
980 sym_hashes = elf_sym_hashes (abfd);
981
982 rel_end = relocs + sec->reloc_count;
983 for (rel = relocs; rel < rel_end; rel++)
984 {
985 unsigned int r_type;
986 unsigned long r_symndx;
987 struct elf_link_hash_entry *h = NULL;
988 struct elf_xtensa_link_hash_entry *eh;
989 int tls_type, old_tls_type;
990 bfd_boolean is_got = FALSE;
991 bfd_boolean is_plt = FALSE;
992 bfd_boolean is_tlsfunc = FALSE;
993
994 r_symndx = ELF32_R_SYM (rel->r_info);
995 r_type = ELF32_R_TYPE (rel->r_info);
996
997 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
998 {
999 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1000 abfd, r_symndx);
1001 return FALSE;
1002 }
1003
1004 if (r_symndx >= symtab_hdr->sh_info)
1005 {
1006 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1007 while (h->root.type == bfd_link_hash_indirect
1008 || h->root.type == bfd_link_hash_warning)
1009 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1010 }
1011 eh = elf_xtensa_hash_entry (h);
1012
1013 switch (r_type)
1014 {
1015 case R_XTENSA_TLSDESC_FN:
1016 if (info->shared)
1017 {
1018 tls_type = GOT_TLS_GD;
1019 is_got = TRUE;
1020 is_tlsfunc = TRUE;
1021 }
1022 else
1023 tls_type = GOT_TLS_IE;
1024 break;
1025
1026 case R_XTENSA_TLSDESC_ARG:
1027 if (info->shared)
1028 {
1029 tls_type = GOT_TLS_GD;
1030 is_got = TRUE;
1031 }
1032 else
1033 {
1034 tls_type = GOT_TLS_IE;
1035 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1036 is_got = TRUE;
1037 }
1038 break;
1039
1040 case R_XTENSA_TLS_DTPOFF:
1041 if (info->shared)
1042 tls_type = GOT_TLS_GD;
1043 else
1044 tls_type = GOT_TLS_IE;
1045 break;
1046
1047 case R_XTENSA_TLS_TPOFF:
1048 tls_type = GOT_TLS_IE;
1049 if (info->shared)
1050 info->flags |= DF_STATIC_TLS;
1051 if (info->shared || h)
1052 is_got = TRUE;
1053 break;
1054
1055 case R_XTENSA_32:
1056 tls_type = GOT_NORMAL;
1057 is_got = TRUE;
1058 break;
1059
1060 case R_XTENSA_PLT:
1061 tls_type = GOT_NORMAL;
1062 is_plt = TRUE;
1063 break;
1064
1065 case R_XTENSA_GNU_VTINHERIT:
1066 /* This relocation describes the C++ object vtable hierarchy.
1067 Reconstruct it for later use during GC. */
1068 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1069 return FALSE;
1070 continue;
1071
1072 case R_XTENSA_GNU_VTENTRY:
1073 /* This relocation describes which C++ vtable entries are actually
1074 used. Record for later use during GC. */
1075 BFD_ASSERT (h != NULL);
1076 if (h != NULL
1077 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1078 return FALSE;
1079 continue;
1080
1081 default:
1082 /* Nothing to do for any other relocations. */
1083 continue;
1084 }
1085
1086 if (h)
1087 {
1088 if (is_plt)
1089 {
1090 if (h->plt.refcount <= 0)
1091 {
1092 h->needs_plt = 1;
1093 h->plt.refcount = 1;
1094 }
1095 else
1096 h->plt.refcount += 1;
1097
1098 /* Keep track of the total PLT relocation count even if we
1099 don't yet know whether the dynamic sections will be
1100 created. */
1101 htab->plt_reloc_count += 1;
1102
1103 if (elf_hash_table (info)->dynamic_sections_created)
1104 {
1105 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1106 return FALSE;
1107 }
1108 }
1109 else if (is_got)
1110 {
1111 if (h->got.refcount <= 0)
1112 h->got.refcount = 1;
1113 else
1114 h->got.refcount += 1;
1115 }
1116
1117 if (is_tlsfunc)
1118 eh->tlsfunc_refcount += 1;
1119
1120 old_tls_type = eh->tls_type;
1121 }
1122 else
1123 {
1124 /* Allocate storage the first time. */
1125 if (elf_local_got_refcounts (abfd) == NULL)
1126 {
1127 bfd_size_type size = symtab_hdr->sh_info;
1128 void *mem;
1129
1130 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1131 if (mem == NULL)
1132 return FALSE;
1133 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem;
1134
1135 mem = bfd_zalloc (abfd, size);
1136 if (mem == NULL)
1137 return FALSE;
1138 elf_xtensa_local_got_tls_type (abfd) = (char *) mem;
1139
1140 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1141 if (mem == NULL)
1142 return FALSE;
1143 elf_xtensa_local_tlsfunc_refcounts (abfd)
1144 = (bfd_signed_vma *) mem;
1145 }
1146
1147 /* This is a global offset table entry for a local symbol. */
1148 if (is_got || is_plt)
1149 elf_local_got_refcounts (abfd) [r_symndx] += 1;
1150
1151 if (is_tlsfunc)
1152 elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1;
1153
1154 old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx];
1155 }
1156
1157 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
1158 tls_type |= old_tls_type;
1159 /* If a TLS symbol is accessed using IE at least once,
1160 there is no point to use a dynamic model for it. */
1161 else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1162 && ((old_tls_type & GOT_TLS_GD) == 0
1163 || (tls_type & GOT_TLS_IE) == 0))
1164 {
1165 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD))
1166 tls_type = old_tls_type;
1167 else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD))
1168 tls_type |= old_tls_type;
1169 else
1170 {
1171 (*_bfd_error_handler)
1172 (_("%B: `%s' accessed both as normal and thread local symbol"),
1173 abfd,
1174 h ? h->root.root.string : "<local>");
1175 return FALSE;
1176 }
1177 }
1178
1179 if (old_tls_type != tls_type)
1180 {
1181 if (eh)
1182 eh->tls_type = tls_type;
1183 else
1184 elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type;
1185 }
1186 }
1187
1188 return TRUE;
1189 }
1190
1191
1192 static void
1193 elf_xtensa_make_sym_local (struct bfd_link_info *info,
1194 struct elf_link_hash_entry *h)
1195 {
1196 if (info->shared)
1197 {
1198 if (h->plt.refcount > 0)
1199 {
1200 /* For shared objects, there's no need for PLT entries for local
1201 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
1202 if (h->got.refcount < 0)
1203 h->got.refcount = 0;
1204 h->got.refcount += h->plt.refcount;
1205 h->plt.refcount = 0;
1206 }
1207 }
1208 else
1209 {
1210 /* Don't need any dynamic relocations at all. */
1211 h->plt.refcount = 0;
1212 h->got.refcount = 0;
1213 }
1214 }
1215
1216
1217 static void
1218 elf_xtensa_hide_symbol (struct bfd_link_info *info,
1219 struct elf_link_hash_entry *h,
1220 bfd_boolean force_local)
1221 {
1222 /* For a shared link, move the plt refcount to the got refcount to leave
1223 space for RELATIVE relocs. */
1224 elf_xtensa_make_sym_local (info, h);
1225
1226 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
1227 }
1228
1229
1230 /* Return the section that should be marked against GC for a given
1231 relocation. */
1232
1233 static asection *
1234 elf_xtensa_gc_mark_hook (asection *sec,
1235 struct bfd_link_info *info,
1236 Elf_Internal_Rela *rel,
1237 struct elf_link_hash_entry *h,
1238 Elf_Internal_Sym *sym)
1239 {
1240 /* Property sections are marked "KEEP" in the linker scripts, but they
1241 should not cause other sections to be marked. (This approach relies
1242 on elf_xtensa_discard_info to remove property table entries that
1243 describe discarded sections. Alternatively, it might be more
1244 efficient to avoid using "KEEP" in the linker scripts and instead use
1245 the gc_mark_extra_sections hook to mark only the property sections
1246 that describe marked sections. That alternative does not work well
1247 with the current property table sections, which do not correspond
1248 one-to-one with the sections they describe, but that should be fixed
1249 someday.) */
1250 if (xtensa_is_property_section (sec))
1251 return NULL;
1252
1253 if (h != NULL)
1254 switch (ELF32_R_TYPE (rel->r_info))
1255 {
1256 case R_XTENSA_GNU_VTINHERIT:
1257 case R_XTENSA_GNU_VTENTRY:
1258 return NULL;
1259 }
1260
1261 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1262 }
1263
1264
1265 /* Update the GOT & PLT entry reference counts
1266 for the section being removed. */
1267
1268 static bfd_boolean
1269 elf_xtensa_gc_sweep_hook (bfd *abfd,
1270 struct bfd_link_info *info,
1271 asection *sec,
1272 const Elf_Internal_Rela *relocs)
1273 {
1274 Elf_Internal_Shdr *symtab_hdr;
1275 struct elf_link_hash_entry **sym_hashes;
1276 const Elf_Internal_Rela *rel, *relend;
1277 struct elf_xtensa_link_hash_table *htab;
1278
1279 htab = elf_xtensa_hash_table (info);
1280
1281 if (info->relocatable)
1282 return TRUE;
1283
1284 if ((sec->flags & SEC_ALLOC) == 0)
1285 return TRUE;
1286
1287 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1288 sym_hashes = elf_sym_hashes (abfd);
1289
1290 relend = relocs + sec->reloc_count;
1291 for (rel = relocs; rel < relend; rel++)
1292 {
1293 unsigned long r_symndx;
1294 unsigned int r_type;
1295 struct elf_link_hash_entry *h = NULL;
1296 struct elf_xtensa_link_hash_entry *eh;
1297 bfd_boolean is_got = FALSE;
1298 bfd_boolean is_plt = FALSE;
1299 bfd_boolean is_tlsfunc = FALSE;
1300
1301 r_symndx = ELF32_R_SYM (rel->r_info);
1302 if (r_symndx >= symtab_hdr->sh_info)
1303 {
1304 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1305 while (h->root.type == bfd_link_hash_indirect
1306 || h->root.type == bfd_link_hash_warning)
1307 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1308 }
1309 eh = elf_xtensa_hash_entry (h);
1310
1311 r_type = ELF32_R_TYPE (rel->r_info);
1312 switch (r_type)
1313 {
1314 case R_XTENSA_TLSDESC_FN:
1315 if (info->shared)
1316 {
1317 is_got = TRUE;
1318 is_tlsfunc = TRUE;
1319 }
1320 break;
1321
1322 case R_XTENSA_TLSDESC_ARG:
1323 if (info->shared)
1324 is_got = TRUE;
1325 else
1326 {
1327 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1328 is_got = TRUE;
1329 }
1330 break;
1331
1332 case R_XTENSA_TLS_TPOFF:
1333 if (info->shared || h)
1334 is_got = TRUE;
1335 break;
1336
1337 case R_XTENSA_32:
1338 is_got = TRUE;
1339 break;
1340
1341 case R_XTENSA_PLT:
1342 is_plt = TRUE;
1343 break;
1344
1345 default:
1346 continue;
1347 }
1348
1349 if (h)
1350 {
1351 if (is_plt)
1352 {
1353 if (h->plt.refcount > 0)
1354 h->plt.refcount--;
1355 }
1356 else if (is_got)
1357 {
1358 if (h->got.refcount > 0)
1359 h->got.refcount--;
1360 }
1361 if (is_tlsfunc)
1362 {
1363 if (eh->tlsfunc_refcount > 0)
1364 eh->tlsfunc_refcount--;
1365 }
1366 }
1367 else
1368 {
1369 if (is_got || is_plt)
1370 {
1371 bfd_signed_vma *got_refcount
1372 = &elf_local_got_refcounts (abfd) [r_symndx];
1373 if (*got_refcount > 0)
1374 *got_refcount -= 1;
1375 }
1376 if (is_tlsfunc)
1377 {
1378 bfd_signed_vma *tlsfunc_refcount
1379 = &elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx];
1380 if (*tlsfunc_refcount > 0)
1381 *tlsfunc_refcount -= 1;
1382 }
1383 }
1384 }
1385
1386 return TRUE;
1387 }
1388
1389
1390 /* Create all the dynamic sections. */
1391
1392 static bfd_boolean
1393 elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
1394 {
1395 struct elf_xtensa_link_hash_table *htab;
1396 flagword flags, noalloc_flags;
1397
1398 htab = elf_xtensa_hash_table (info);
1399
1400 /* First do all the standard stuff. */
1401 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1402 return FALSE;
1403 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
1404 htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
1405 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
1406 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
1407
1408 /* Create any extra PLT sections in case check_relocs has already
1409 been called on all the non-dynamic input files. */
1410 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1411 return FALSE;
1412
1413 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1414 | SEC_LINKER_CREATED | SEC_READONLY);
1415 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
1416
1417 /* Mark the ".got.plt" section READONLY. */
1418 if (htab->sgotplt == NULL
1419 || ! bfd_set_section_flags (dynobj, htab->sgotplt, flags))
1420 return FALSE;
1421
1422 /* Create ".rela.got". */
1423 htab->srelgot = bfd_make_section_with_flags (dynobj, ".rela.got", flags);
1424 if (htab->srelgot == NULL
1425 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
1426 return FALSE;
1427
1428 /* Create ".got.loc" (literal tables for use by dynamic linker). */
1429 htab->sgotloc = bfd_make_section_with_flags (dynobj, ".got.loc", flags);
1430 if (htab->sgotloc == NULL
1431 || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
1432 return FALSE;
1433
1434 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
1435 htab->spltlittbl = bfd_make_section_with_flags (dynobj, ".xt.lit.plt",
1436 noalloc_flags);
1437 if (htab->spltlittbl == NULL
1438 || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
1439 return FALSE;
1440
1441 return TRUE;
1442 }
1443
1444
1445 static bfd_boolean
1446 add_extra_plt_sections (struct bfd_link_info *info, int count)
1447 {
1448 bfd *dynobj = elf_hash_table (info)->dynobj;
1449 int chunk;
1450
1451 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1452 ".got.plt" sections. */
1453 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1454 {
1455 char *sname;
1456 flagword flags;
1457 asection *s;
1458
1459 /* Stop when we find a section has already been created. */
1460 if (elf_xtensa_get_plt_section (info, chunk))
1461 break;
1462
1463 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1464 | SEC_LINKER_CREATED | SEC_READONLY);
1465
1466 sname = (char *) bfd_malloc (10);
1467 sprintf (sname, ".plt.%u", chunk);
1468 s = bfd_make_section_with_flags (dynobj, sname, flags | SEC_CODE);
1469 if (s == NULL
1470 || ! bfd_set_section_alignment (dynobj, s, 2))
1471 return FALSE;
1472
1473 sname = (char *) bfd_malloc (14);
1474 sprintf (sname, ".got.plt.%u", chunk);
1475 s = bfd_make_section_with_flags (dynobj, sname, flags);
1476 if (s == NULL
1477 || ! bfd_set_section_alignment (dynobj, s, 2))
1478 return FALSE;
1479 }
1480
1481 return TRUE;
1482 }
1483
1484
1485 /* Adjust a symbol defined by a dynamic object and referenced by a
1486 regular object. The current definition is in some section of the
1487 dynamic object, but we're not including those sections. We have to
1488 change the definition to something the rest of the link can
1489 understand. */
1490
1491 static bfd_boolean
1492 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1493 struct elf_link_hash_entry *h)
1494 {
1495 /* If this is a weak symbol, and there is a real definition, the
1496 processor independent code will have arranged for us to see the
1497 real definition first, and we can just use the same value. */
1498 if (h->u.weakdef)
1499 {
1500 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1501 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1502 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1503 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1504 return TRUE;
1505 }
1506
1507 /* This is a reference to a symbol defined by a dynamic object. The
1508 reference must go through the GOT, so there's no need for COPY relocs,
1509 .dynbss, etc. */
1510
1511 return TRUE;
1512 }
1513
1514
1515 static bfd_boolean
1516 elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
1517 {
1518 struct bfd_link_info *info;
1519 struct elf_xtensa_link_hash_table *htab;
1520 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h);
1521
1522 if (h->root.type == bfd_link_hash_indirect)
1523 return TRUE;
1524
1525 if (h->root.type == bfd_link_hash_warning)
1526 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1527
1528 info = (struct bfd_link_info *) arg;
1529 htab = elf_xtensa_hash_table (info);
1530
1531 /* If we saw any use of an IE model for this symbol, we can then optimize
1532 away GOT entries for any TLSDESC_FN relocs. */
1533 if ((eh->tls_type & GOT_TLS_IE) != 0)
1534 {
1535 BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount);
1536 h->got.refcount -= eh->tlsfunc_refcount;
1537 }
1538
1539 if (! elf_xtensa_dynamic_symbol_p (h, info))
1540 elf_xtensa_make_sym_local (info, h);
1541
1542 if (h->plt.refcount > 0)
1543 htab->srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
1544
1545 if (h->got.refcount > 0)
1546 htab->srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
1547
1548 return TRUE;
1549 }
1550
1551
1552 static void
1553 elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
1554 {
1555 struct elf_xtensa_link_hash_table *htab;
1556 bfd *i;
1557
1558 htab = elf_xtensa_hash_table (info);
1559
1560 for (i = info->input_bfds; i; i = i->link_next)
1561 {
1562 bfd_signed_vma *local_got_refcounts;
1563 bfd_size_type j, cnt;
1564 Elf_Internal_Shdr *symtab_hdr;
1565
1566 local_got_refcounts = elf_local_got_refcounts (i);
1567 if (!local_got_refcounts)
1568 continue;
1569
1570 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1571 cnt = symtab_hdr->sh_info;
1572
1573 for (j = 0; j < cnt; ++j)
1574 {
1575 /* If we saw any use of an IE model for this symbol, we can
1576 then optimize away GOT entries for any TLSDESC_FN relocs. */
1577 if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0)
1578 {
1579 bfd_signed_vma *tlsfunc_refcount
1580 = &elf_xtensa_local_tlsfunc_refcounts (i) [j];
1581 BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount);
1582 local_got_refcounts[j] -= *tlsfunc_refcount;
1583 }
1584
1585 if (local_got_refcounts[j] > 0)
1586 htab->srelgot->size += (local_got_refcounts[j]
1587 * sizeof (Elf32_External_Rela));
1588 }
1589 }
1590 }
1591
1592
1593 /* Set the sizes of the dynamic sections. */
1594
1595 static bfd_boolean
1596 elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1597 struct bfd_link_info *info)
1598 {
1599 struct elf_xtensa_link_hash_table *htab;
1600 bfd *dynobj, *abfd;
1601 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
1602 bfd_boolean relplt, relgot;
1603 int plt_entries, plt_chunks, chunk;
1604
1605 plt_entries = 0;
1606 plt_chunks = 0;
1607
1608 htab = elf_xtensa_hash_table (info);
1609 dynobj = elf_hash_table (info)->dynobj;
1610 if (dynobj == NULL)
1611 abort ();
1612 srelgot = htab->srelgot;
1613 srelplt = htab->srelplt;
1614
1615 if (elf_hash_table (info)->dynamic_sections_created)
1616 {
1617 BFD_ASSERT (htab->srelgot != NULL
1618 && htab->srelplt != NULL
1619 && htab->sgot != NULL
1620 && htab->spltlittbl != NULL
1621 && htab->sgotloc != NULL);
1622
1623 /* Set the contents of the .interp section to the interpreter. */
1624 if (info->executable)
1625 {
1626 s = bfd_get_section_by_name (dynobj, ".interp");
1627 if (s == NULL)
1628 abort ();
1629 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1630 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1631 }
1632
1633 /* Allocate room for one word in ".got". */
1634 htab->sgot->size = 4;
1635
1636 /* Allocate space in ".rela.got" for literals that reference global
1637 symbols and space in ".rela.plt" for literals that have PLT
1638 entries. */
1639 elf_link_hash_traverse (elf_hash_table (info),
1640 elf_xtensa_allocate_dynrelocs,
1641 (void *) info);
1642
1643 /* If we are generating a shared object, we also need space in
1644 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1645 reference local symbols. */
1646 if (info->shared)
1647 elf_xtensa_allocate_local_got_size (info);
1648
1649 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1650 each PLT entry, we need the PLT code plus a 4-byte literal.
1651 For each chunk of ".plt", we also need two more 4-byte
1652 literals, two corresponding entries in ".rela.got", and an
1653 8-byte entry in ".xt.lit.plt". */
1654 spltlittbl = htab->spltlittbl;
1655 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
1656 plt_chunks =
1657 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1658
1659 /* Iterate over all the PLT chunks, including any extra sections
1660 created earlier because the initial count of PLT relocations
1661 was an overestimate. */
1662 for (chunk = 0;
1663 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
1664 chunk++)
1665 {
1666 int chunk_entries;
1667
1668 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1669 BFD_ASSERT (sgotplt != NULL);
1670
1671 if (chunk < plt_chunks - 1)
1672 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1673 else if (chunk == plt_chunks - 1)
1674 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1675 else
1676 chunk_entries = 0;
1677
1678 if (chunk_entries != 0)
1679 {
1680 sgotplt->size = 4 * (chunk_entries + 2);
1681 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1682 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1683 spltlittbl->size += 8;
1684 }
1685 else
1686 {
1687 sgotplt->size = 0;
1688 splt->size = 0;
1689 }
1690 }
1691
1692 /* Allocate space in ".got.loc" to match the total size of all the
1693 literal tables. */
1694 sgotloc = htab->sgotloc;
1695 sgotloc->size = spltlittbl->size;
1696 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1697 {
1698 if (abfd->flags & DYNAMIC)
1699 continue;
1700 for (s = abfd->sections; s != NULL; s = s->next)
1701 {
1702 if (! elf_discarded_section (s)
1703 && xtensa_is_littable_section (s)
1704 && s != spltlittbl)
1705 sgotloc->size += s->size;
1706 }
1707 }
1708 }
1709
1710 /* Allocate memory for dynamic sections. */
1711 relplt = FALSE;
1712 relgot = FALSE;
1713 for (s = dynobj->sections; s != NULL; s = s->next)
1714 {
1715 const char *name;
1716
1717 if ((s->flags & SEC_LINKER_CREATED) == 0)
1718 continue;
1719
1720 /* It's OK to base decisions on the section name, because none
1721 of the dynobj section names depend upon the input files. */
1722 name = bfd_get_section_name (dynobj, s);
1723
1724 if (CONST_STRNEQ (name, ".rela"))
1725 {
1726 if (s->size != 0)
1727 {
1728 if (strcmp (name, ".rela.plt") == 0)
1729 relplt = TRUE;
1730 else if (strcmp (name, ".rela.got") == 0)
1731 relgot = TRUE;
1732
1733 /* We use the reloc_count field as a counter if we need
1734 to copy relocs into the output file. */
1735 s->reloc_count = 0;
1736 }
1737 }
1738 else if (! CONST_STRNEQ (name, ".plt.")
1739 && ! CONST_STRNEQ (name, ".got.plt.")
1740 && strcmp (name, ".got") != 0
1741 && strcmp (name, ".plt") != 0
1742 && strcmp (name, ".got.plt") != 0
1743 && strcmp (name, ".xt.lit.plt") != 0
1744 && strcmp (name, ".got.loc") != 0)
1745 {
1746 /* It's not one of our sections, so don't allocate space. */
1747 continue;
1748 }
1749
1750 if (s->size == 0)
1751 {
1752 /* If we don't need this section, strip it from the output
1753 file. We must create the ".plt*" and ".got.plt*"
1754 sections in create_dynamic_sections and/or check_relocs
1755 based on a conservative estimate of the PLT relocation
1756 count, because the sections must be created before the
1757 linker maps input sections to output sections. The
1758 linker does that before size_dynamic_sections, where we
1759 compute the exact size of the PLT, so there may be more
1760 of these sections than are actually needed. */
1761 s->flags |= SEC_EXCLUDE;
1762 }
1763 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
1764 {
1765 /* Allocate memory for the section contents. */
1766 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1767 if (s->contents == NULL)
1768 return FALSE;
1769 }
1770 }
1771
1772 if (elf_hash_table (info)->dynamic_sections_created)
1773 {
1774 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1775 known until finish_dynamic_sections, but we need to get the relocs
1776 in place before they are sorted. */
1777 for (chunk = 0; chunk < plt_chunks; chunk++)
1778 {
1779 Elf_Internal_Rela irela;
1780 bfd_byte *loc;
1781
1782 irela.r_offset = 0;
1783 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1784 irela.r_addend = 0;
1785
1786 loc = (srelgot->contents
1787 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1788 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1789 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1790 loc + sizeof (Elf32_External_Rela));
1791 srelgot->reloc_count += 2;
1792 }
1793
1794 /* Add some entries to the .dynamic section. We fill in the
1795 values later, in elf_xtensa_finish_dynamic_sections, but we
1796 must add the entries now so that we get the correct size for
1797 the .dynamic section. The DT_DEBUG entry is filled in by the
1798 dynamic linker and used by the debugger. */
1799 #define add_dynamic_entry(TAG, VAL) \
1800 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1801
1802 if (info->executable)
1803 {
1804 if (!add_dynamic_entry (DT_DEBUG, 0))
1805 return FALSE;
1806 }
1807
1808 if (relplt)
1809 {
1810 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1811 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1812 || !add_dynamic_entry (DT_JMPREL, 0))
1813 return FALSE;
1814 }
1815
1816 if (relgot)
1817 {
1818 if (!add_dynamic_entry (DT_RELA, 0)
1819 || !add_dynamic_entry (DT_RELASZ, 0)
1820 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1821 return FALSE;
1822 }
1823
1824 if (!add_dynamic_entry (DT_PLTGOT, 0)
1825 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1826 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1827 return FALSE;
1828 }
1829 #undef add_dynamic_entry
1830
1831 return TRUE;
1832 }
1833
1834 static bfd_boolean
1835 elf_xtensa_always_size_sections (bfd *output_bfd,
1836 struct bfd_link_info *info)
1837 {
1838 struct elf_xtensa_link_hash_table *htab;
1839 asection *tls_sec;
1840
1841 htab = elf_xtensa_hash_table (info);
1842 tls_sec = htab->elf.tls_sec;
1843
1844 if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0)
1845 {
1846 struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf;
1847 struct bfd_link_hash_entry *bh = &tlsbase->root;
1848 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
1849
1850 tlsbase->type = STT_TLS;
1851 if (!(_bfd_generic_link_add_one_symbol
1852 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
1853 tls_sec, 0, NULL, FALSE,
1854 bed->collect, &bh)))
1855 return FALSE;
1856 tlsbase->def_regular = 1;
1857 tlsbase->other = STV_HIDDEN;
1858 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
1859 }
1860
1861 return TRUE;
1862 }
1863
1864 \f
1865 /* Return the base VMA address which should be subtracted from real addresses
1866 when resolving @dtpoff relocation.
1867 This is PT_TLS segment p_vaddr. */
1868
1869 static bfd_vma
1870 dtpoff_base (struct bfd_link_info *info)
1871 {
1872 /* If tls_sec is NULL, we should have signalled an error already. */
1873 if (elf_hash_table (info)->tls_sec == NULL)
1874 return 0;
1875 return elf_hash_table (info)->tls_sec->vma;
1876 }
1877
1878 /* Return the relocation value for @tpoff relocation
1879 if STT_TLS virtual address is ADDRESS. */
1880
1881 static bfd_vma
1882 tpoff (struct bfd_link_info *info, bfd_vma address)
1883 {
1884 struct elf_link_hash_table *htab = elf_hash_table (info);
1885 bfd_vma base;
1886
1887 /* If tls_sec is NULL, we should have signalled an error already. */
1888 if (htab->tls_sec == NULL)
1889 return 0;
1890 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
1891 return address - htab->tls_sec->vma + base;
1892 }
1893
1894 /* Perform the specified relocation. The instruction at (contents + address)
1895 is modified to set one operand to represent the value in "relocation". The
1896 operand position is determined by the relocation type recorded in the
1897 howto. */
1898
1899 #define CALL_SEGMENT_BITS (30)
1900 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
1901
1902 static bfd_reloc_status_type
1903 elf_xtensa_do_reloc (reloc_howto_type *howto,
1904 bfd *abfd,
1905 asection *input_section,
1906 bfd_vma relocation,
1907 bfd_byte *contents,
1908 bfd_vma address,
1909 bfd_boolean is_weak_undef,
1910 char **error_message)
1911 {
1912 xtensa_format fmt;
1913 xtensa_opcode opcode;
1914 xtensa_isa isa = xtensa_default_isa;
1915 static xtensa_insnbuf ibuff = NULL;
1916 static xtensa_insnbuf sbuff = NULL;
1917 bfd_vma self_address;
1918 bfd_size_type input_size;
1919 int opnd, slot;
1920 uint32 newval;
1921
1922 if (!ibuff)
1923 {
1924 ibuff = xtensa_insnbuf_alloc (isa);
1925 sbuff = xtensa_insnbuf_alloc (isa);
1926 }
1927
1928 input_size = bfd_get_section_limit (abfd, input_section);
1929
1930 /* Calculate the PC address for this instruction. */
1931 self_address = (input_section->output_section->vma
1932 + input_section->output_offset
1933 + address);
1934
1935 switch (howto->type)
1936 {
1937 case R_XTENSA_NONE:
1938 case R_XTENSA_DIFF8:
1939 case R_XTENSA_DIFF16:
1940 case R_XTENSA_DIFF32:
1941 case R_XTENSA_TLS_FUNC:
1942 case R_XTENSA_TLS_ARG:
1943 case R_XTENSA_TLS_CALL:
1944 return bfd_reloc_ok;
1945
1946 case R_XTENSA_ASM_EXPAND:
1947 if (!is_weak_undef)
1948 {
1949 /* Check for windowed CALL across a 1GB boundary. */
1950 xtensa_opcode opcode =
1951 get_expanded_call_opcode (contents + address,
1952 input_size - address, 0);
1953 if (is_windowed_call_opcode (opcode))
1954 {
1955 if ((self_address >> CALL_SEGMENT_BITS)
1956 != (relocation >> CALL_SEGMENT_BITS))
1957 {
1958 *error_message = "windowed longcall crosses 1GB boundary; "
1959 "return may fail";
1960 return bfd_reloc_dangerous;
1961 }
1962 }
1963 }
1964 return bfd_reloc_ok;
1965
1966 case R_XTENSA_ASM_SIMPLIFY:
1967 {
1968 /* Convert the L32R/CALLX to CALL. */
1969 bfd_reloc_status_type retval =
1970 elf_xtensa_do_asm_simplify (contents, address, input_size,
1971 error_message);
1972 if (retval != bfd_reloc_ok)
1973 return bfd_reloc_dangerous;
1974
1975 /* The CALL needs to be relocated. Continue below for that part. */
1976 address += 3;
1977 self_address += 3;
1978 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
1979 }
1980 break;
1981
1982 case R_XTENSA_32:
1983 {
1984 bfd_vma x;
1985 x = bfd_get_32 (abfd, contents + address);
1986 x = x + relocation;
1987 bfd_put_32 (abfd, x, contents + address);
1988 }
1989 return bfd_reloc_ok;
1990
1991 case R_XTENSA_32_PCREL:
1992 bfd_put_32 (abfd, relocation - self_address, contents + address);
1993 return bfd_reloc_ok;
1994
1995 case R_XTENSA_PLT:
1996 case R_XTENSA_TLSDESC_FN:
1997 case R_XTENSA_TLSDESC_ARG:
1998 case R_XTENSA_TLS_DTPOFF:
1999 case R_XTENSA_TLS_TPOFF:
2000 bfd_put_32 (abfd, relocation, contents + address);
2001 return bfd_reloc_ok;
2002 }
2003
2004 /* Only instruction slot-specific relocations handled below.... */
2005 slot = get_relocation_slot (howto->type);
2006 if (slot == XTENSA_UNDEFINED)
2007 {
2008 *error_message = "unexpected relocation";
2009 return bfd_reloc_dangerous;
2010 }
2011
2012 /* Read the instruction into a buffer and decode the opcode. */
2013 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
2014 input_size - address);
2015 fmt = xtensa_format_decode (isa, ibuff);
2016 if (fmt == XTENSA_UNDEFINED)
2017 {
2018 *error_message = "cannot decode instruction format";
2019 return bfd_reloc_dangerous;
2020 }
2021
2022 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
2023
2024 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
2025 if (opcode == XTENSA_UNDEFINED)
2026 {
2027 *error_message = "cannot decode instruction opcode";
2028 return bfd_reloc_dangerous;
2029 }
2030
2031 /* Check for opcode-specific "alternate" relocations. */
2032 if (is_alt_relocation (howto->type))
2033 {
2034 if (opcode == get_l32r_opcode ())
2035 {
2036 /* Handle the special-case of non-PC-relative L32R instructions. */
2037 bfd *output_bfd = input_section->output_section->owner;
2038 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
2039 if (!lit4_sec)
2040 {
2041 *error_message = "relocation references missing .lit4 section";
2042 return bfd_reloc_dangerous;
2043 }
2044 self_address = ((lit4_sec->vma & ~0xfff)
2045 + 0x40000 - 3); /* -3 to compensate for do_reloc */
2046 newval = relocation;
2047 opnd = 1;
2048 }
2049 else if (opcode == get_const16_opcode ())
2050 {
2051 /* ALT used for high 16 bits. */
2052 newval = relocation >> 16;
2053 opnd = 1;
2054 }
2055 else
2056 {
2057 /* No other "alternate" relocations currently defined. */
2058 *error_message = "unexpected relocation";
2059 return bfd_reloc_dangerous;
2060 }
2061 }
2062 else /* Not an "alternate" relocation.... */
2063 {
2064 if (opcode == get_const16_opcode ())
2065 {
2066 newval = relocation & 0xffff;
2067 opnd = 1;
2068 }
2069 else
2070 {
2071 /* ...normal PC-relative relocation.... */
2072
2073 /* Determine which operand is being relocated. */
2074 opnd = get_relocation_opnd (opcode, howto->type);
2075 if (opnd == XTENSA_UNDEFINED)
2076 {
2077 *error_message = "unexpected relocation";
2078 return bfd_reloc_dangerous;
2079 }
2080
2081 if (!howto->pc_relative)
2082 {
2083 *error_message = "expected PC-relative relocation";
2084 return bfd_reloc_dangerous;
2085 }
2086
2087 newval = relocation;
2088 }
2089 }
2090
2091 /* Apply the relocation. */
2092 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
2093 || xtensa_operand_encode (isa, opcode, opnd, &newval)
2094 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
2095 sbuff, newval))
2096 {
2097 const char *opname = xtensa_opcode_name (isa, opcode);
2098 const char *msg;
2099
2100 msg = "cannot encode";
2101 if (is_direct_call_opcode (opcode))
2102 {
2103 if ((relocation & 0x3) != 0)
2104 msg = "misaligned call target";
2105 else
2106 msg = "call target out of range";
2107 }
2108 else if (opcode == get_l32r_opcode ())
2109 {
2110 if ((relocation & 0x3) != 0)
2111 msg = "misaligned literal target";
2112 else if (is_alt_relocation (howto->type))
2113 msg = "literal target out of range (too many literals)";
2114 else if (self_address > relocation)
2115 msg = "literal target out of range (try using text-section-literals)";
2116 else
2117 msg = "literal placed after use";
2118 }
2119
2120 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
2121 return bfd_reloc_dangerous;
2122 }
2123
2124 /* Check for calls across 1GB boundaries. */
2125 if (is_direct_call_opcode (opcode)
2126 && is_windowed_call_opcode (opcode))
2127 {
2128 if ((self_address >> CALL_SEGMENT_BITS)
2129 != (relocation >> CALL_SEGMENT_BITS))
2130 {
2131 *error_message =
2132 "windowed call crosses 1GB boundary; return may fail";
2133 return bfd_reloc_dangerous;
2134 }
2135 }
2136
2137 /* Write the modified instruction back out of the buffer. */
2138 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
2139 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
2140 input_size - address);
2141 return bfd_reloc_ok;
2142 }
2143
2144
2145 static char *
2146 vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
2147 {
2148 /* To reduce the size of the memory leak,
2149 we only use a single message buffer. */
2150 static bfd_size_type alloc_size = 0;
2151 static char *message = NULL;
2152 bfd_size_type orig_len, len = 0;
2153 bfd_boolean is_append;
2154
2155 VA_OPEN (ap, arglen);
2156 VA_FIXEDARG (ap, const char *, origmsg);
2157
2158 is_append = (origmsg == message);
2159
2160 orig_len = strlen (origmsg);
2161 len = orig_len + strlen (fmt) + arglen + 20;
2162 if (len > alloc_size)
2163 {
2164 message = (char *) bfd_realloc_or_free (message, len);
2165 alloc_size = len;
2166 }
2167 if (message != NULL)
2168 {
2169 if (!is_append)
2170 memcpy (message, origmsg, orig_len);
2171 vsprintf (message + orig_len, fmt, ap);
2172 }
2173 VA_CLOSE (ap);
2174 return message;
2175 }
2176
2177
2178 /* This function is registered as the "special_function" in the
2179 Xtensa howto for handling simplify operations.
2180 bfd_perform_relocation / bfd_install_relocation use it to
2181 perform (install) the specified relocation. Since this replaces the code
2182 in bfd_perform_relocation, it is basically an Xtensa-specific,
2183 stripped-down version of bfd_perform_relocation. */
2184
2185 static bfd_reloc_status_type
2186 bfd_elf_xtensa_reloc (bfd *abfd,
2187 arelent *reloc_entry,
2188 asymbol *symbol,
2189 void *data,
2190 asection *input_section,
2191 bfd *output_bfd,
2192 char **error_message)
2193 {
2194 bfd_vma relocation;
2195 bfd_reloc_status_type flag;
2196 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2197 bfd_vma output_base = 0;
2198 reloc_howto_type *howto = reloc_entry->howto;
2199 asection *reloc_target_output_section;
2200 bfd_boolean is_weak_undef;
2201
2202 if (!xtensa_default_isa)
2203 xtensa_default_isa = xtensa_isa_init (0, 0);
2204
2205 /* ELF relocs are against symbols. If we are producing relocatable
2206 output, and the reloc is against an external symbol, the resulting
2207 reloc will also be against the same symbol. In such a case, we
2208 don't want to change anything about the way the reloc is handled,
2209 since it will all be done at final link time. This test is similar
2210 to what bfd_elf_generic_reloc does except that it lets relocs with
2211 howto->partial_inplace go through even if the addend is non-zero.
2212 (The real problem is that partial_inplace is set for XTENSA_32
2213 relocs to begin with, but that's a long story and there's little we
2214 can do about it now....) */
2215
2216 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
2217 {
2218 reloc_entry->address += input_section->output_offset;
2219 return bfd_reloc_ok;
2220 }
2221
2222 /* Is the address of the relocation really within the section? */
2223 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2224 return bfd_reloc_outofrange;
2225
2226 /* Work out which section the relocation is targeted at and the
2227 initial relocation command value. */
2228
2229 /* Get symbol value. (Common symbols are special.) */
2230 if (bfd_is_com_section (symbol->section))
2231 relocation = 0;
2232 else
2233 relocation = symbol->value;
2234
2235 reloc_target_output_section = symbol->section->output_section;
2236
2237 /* Convert input-section-relative symbol value to absolute. */
2238 if ((output_bfd && !howto->partial_inplace)
2239 || reloc_target_output_section == NULL)
2240 output_base = 0;
2241 else
2242 output_base = reloc_target_output_section->vma;
2243
2244 relocation += output_base + symbol->section->output_offset;
2245
2246 /* Add in supplied addend. */
2247 relocation += reloc_entry->addend;
2248
2249 /* Here the variable relocation holds the final address of the
2250 symbol we are relocating against, plus any addend. */
2251 if (output_bfd)
2252 {
2253 if (!howto->partial_inplace)
2254 {
2255 /* This is a partial relocation, and we want to apply the relocation
2256 to the reloc entry rather than the raw data. Everything except
2257 relocations against section symbols has already been handled
2258 above. */
2259
2260 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
2261 reloc_entry->addend = relocation;
2262 reloc_entry->address += input_section->output_offset;
2263 return bfd_reloc_ok;
2264 }
2265 else
2266 {
2267 reloc_entry->address += input_section->output_offset;
2268 reloc_entry->addend = 0;
2269 }
2270 }
2271
2272 is_weak_undef = (bfd_is_und_section (symbol->section)
2273 && (symbol->flags & BSF_WEAK) != 0);
2274 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
2275 (bfd_byte *) data, (bfd_vma) octets,
2276 is_weak_undef, error_message);
2277
2278 if (flag == bfd_reloc_dangerous)
2279 {
2280 /* Add the symbol name to the error message. */
2281 if (! *error_message)
2282 *error_message = "";
2283 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
2284 strlen (symbol->name) + 17,
2285 symbol->name,
2286 (unsigned long) reloc_entry->addend);
2287 }
2288
2289 return flag;
2290 }
2291
2292
2293 /* Set up an entry in the procedure linkage table. */
2294
2295 static bfd_vma
2296 elf_xtensa_create_plt_entry (struct bfd_link_info *info,
2297 bfd *output_bfd,
2298 unsigned reloc_index)
2299 {
2300 asection *splt, *sgotplt;
2301 bfd_vma plt_base, got_base;
2302 bfd_vma code_offset, lit_offset;
2303 int chunk;
2304
2305 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
2306 splt = elf_xtensa_get_plt_section (info, chunk);
2307 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
2308 BFD_ASSERT (splt != NULL && sgotplt != NULL);
2309
2310 plt_base = splt->output_section->vma + splt->output_offset;
2311 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
2312
2313 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
2314 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
2315
2316 /* Fill in the literal entry. This is the offset of the dynamic
2317 relocation entry. */
2318 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
2319 sgotplt->contents + lit_offset);
2320
2321 /* Fill in the entry in the procedure linkage table. */
2322 memcpy (splt->contents + code_offset,
2323 (bfd_big_endian (output_bfd)
2324 ? elf_xtensa_be_plt_entry
2325 : elf_xtensa_le_plt_entry),
2326 PLT_ENTRY_SIZE);
2327 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
2328 plt_base + code_offset + 3),
2329 splt->contents + code_offset + 4);
2330 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
2331 plt_base + code_offset + 6),
2332 splt->contents + code_offset + 7);
2333 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
2334 plt_base + code_offset + 9),
2335 splt->contents + code_offset + 10);
2336
2337 return plt_base + code_offset;
2338 }
2339
2340
2341 static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *);
2342
2343 static bfd_boolean
2344 replace_tls_insn (Elf_Internal_Rela *rel,
2345 bfd *abfd,
2346 asection *input_section,
2347 bfd_byte *contents,
2348 bfd_boolean is_ld_model,
2349 char **error_message)
2350 {
2351 static xtensa_insnbuf ibuff = NULL;
2352 static xtensa_insnbuf sbuff = NULL;
2353 xtensa_isa isa = xtensa_default_isa;
2354 xtensa_format fmt;
2355 xtensa_opcode old_op, new_op;
2356 bfd_size_type input_size;
2357 int r_type;
2358 unsigned dest_reg, src_reg;
2359
2360 if (ibuff == NULL)
2361 {
2362 ibuff = xtensa_insnbuf_alloc (isa);
2363 sbuff = xtensa_insnbuf_alloc (isa);
2364 }
2365
2366 input_size = bfd_get_section_limit (abfd, input_section);
2367
2368 /* Read the instruction into a buffer and decode the opcode. */
2369 xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset,
2370 input_size - rel->r_offset);
2371 fmt = xtensa_format_decode (isa, ibuff);
2372 if (fmt == XTENSA_UNDEFINED)
2373 {
2374 *error_message = "cannot decode instruction format";
2375 return FALSE;
2376 }
2377
2378 BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1);
2379 xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff);
2380
2381 old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff);
2382 if (old_op == XTENSA_UNDEFINED)
2383 {
2384 *error_message = "cannot decode instruction opcode";
2385 return FALSE;
2386 }
2387
2388 r_type = ELF32_R_TYPE (rel->r_info);
2389 switch (r_type)
2390 {
2391 case R_XTENSA_TLS_FUNC:
2392 case R_XTENSA_TLS_ARG:
2393 if (old_op != get_l32r_opcode ()
2394 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2395 sbuff, &dest_reg) != 0)
2396 {
2397 *error_message = "cannot extract L32R destination for TLS access";
2398 return FALSE;
2399 }
2400 break;
2401
2402 case R_XTENSA_TLS_CALL:
2403 if (! get_indirect_call_dest_reg (old_op, &dest_reg)
2404 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2405 sbuff, &src_reg) != 0)
2406 {
2407 *error_message = "cannot extract CALLXn operands for TLS access";
2408 return FALSE;
2409 }
2410 break;
2411
2412 default:
2413 abort ();
2414 }
2415
2416 if (is_ld_model)
2417 {
2418 switch (r_type)
2419 {
2420 case R_XTENSA_TLS_FUNC:
2421 case R_XTENSA_TLS_ARG:
2422 /* Change the instruction to a NOP (or "OR a1, a1, a1" for older
2423 versions of Xtensa). */
2424 new_op = xtensa_opcode_lookup (isa, "nop");
2425 if (new_op == XTENSA_UNDEFINED)
2426 {
2427 new_op = xtensa_opcode_lookup (isa, "or");
2428 if (new_op == XTENSA_UNDEFINED
2429 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2430 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2431 sbuff, 1) != 0
2432 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2433 sbuff, 1) != 0
2434 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2435 sbuff, 1) != 0)
2436 {
2437 *error_message = "cannot encode OR for TLS access";
2438 return FALSE;
2439 }
2440 }
2441 else
2442 {
2443 if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0)
2444 {
2445 *error_message = "cannot encode NOP for TLS access";
2446 return FALSE;
2447 }
2448 }
2449 break;
2450
2451 case R_XTENSA_TLS_CALL:
2452 /* Read THREADPTR into the CALLX's return value register. */
2453 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2454 if (new_op == XTENSA_UNDEFINED
2455 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2456 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2457 sbuff, dest_reg + 2) != 0)
2458 {
2459 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2460 return FALSE;
2461 }
2462 break;
2463 }
2464 }
2465 else
2466 {
2467 switch (r_type)
2468 {
2469 case R_XTENSA_TLS_FUNC:
2470 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2471 if (new_op == XTENSA_UNDEFINED
2472 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2473 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2474 sbuff, dest_reg) != 0)
2475 {
2476 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2477 return FALSE;
2478 }
2479 break;
2480
2481 case R_XTENSA_TLS_ARG:
2482 /* Nothing to do. Keep the original L32R instruction. */
2483 return TRUE;
2484
2485 case R_XTENSA_TLS_CALL:
2486 /* Add the CALLX's src register (holding the THREADPTR value)
2487 to the first argument register (holding the offset) and put
2488 the result in the CALLX's return value register. */
2489 new_op = xtensa_opcode_lookup (isa, "add");
2490 if (new_op == XTENSA_UNDEFINED
2491 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2492 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2493 sbuff, dest_reg + 2) != 0
2494 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2495 sbuff, dest_reg + 2) != 0
2496 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2497 sbuff, src_reg) != 0)
2498 {
2499 *error_message = "cannot encode ADD for TLS access";
2500 return FALSE;
2501 }
2502 break;
2503 }
2504 }
2505
2506 xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff);
2507 xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset,
2508 input_size - rel->r_offset);
2509
2510 return TRUE;
2511 }
2512
2513
2514 #define IS_XTENSA_TLS_RELOC(R_TYPE) \
2515 ((R_TYPE) == R_XTENSA_TLSDESC_FN \
2516 || (R_TYPE) == R_XTENSA_TLSDESC_ARG \
2517 || (R_TYPE) == R_XTENSA_TLS_DTPOFF \
2518 || (R_TYPE) == R_XTENSA_TLS_TPOFF \
2519 || (R_TYPE) == R_XTENSA_TLS_FUNC \
2520 || (R_TYPE) == R_XTENSA_TLS_ARG \
2521 || (R_TYPE) == R_XTENSA_TLS_CALL)
2522
2523 /* Relocate an Xtensa ELF section. This is invoked by the linker for
2524 both relocatable and final links. */
2525
2526 static bfd_boolean
2527 elf_xtensa_relocate_section (bfd *output_bfd,
2528 struct bfd_link_info *info,
2529 bfd *input_bfd,
2530 asection *input_section,
2531 bfd_byte *contents,
2532 Elf_Internal_Rela *relocs,
2533 Elf_Internal_Sym *local_syms,
2534 asection **local_sections)
2535 {
2536 struct elf_xtensa_link_hash_table *htab;
2537 Elf_Internal_Shdr *symtab_hdr;
2538 Elf_Internal_Rela *rel;
2539 Elf_Internal_Rela *relend;
2540 struct elf_link_hash_entry **sym_hashes;
2541 property_table_entry *lit_table = 0;
2542 int ltblsize = 0;
2543 char *local_got_tls_types;
2544 char *error_message = NULL;
2545 bfd_size_type input_size;
2546 int tls_type;
2547
2548 if (!xtensa_default_isa)
2549 xtensa_default_isa = xtensa_isa_init (0, 0);
2550
2551 BFD_ASSERT (is_xtensa_elf (input_bfd));
2552
2553 htab = elf_xtensa_hash_table (info);
2554 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2555 sym_hashes = elf_sym_hashes (input_bfd);
2556 local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd);
2557
2558 if (elf_hash_table (info)->dynamic_sections_created)
2559 {
2560 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
2561 &lit_table, XTENSA_LIT_SEC_NAME,
2562 TRUE);
2563 if (ltblsize < 0)
2564 return FALSE;
2565 }
2566
2567 input_size = bfd_get_section_limit (input_bfd, input_section);
2568
2569 rel = relocs;
2570 relend = relocs + input_section->reloc_count;
2571 for (; rel < relend; rel++)
2572 {
2573 int r_type;
2574 reloc_howto_type *howto;
2575 unsigned long r_symndx;
2576 struct elf_link_hash_entry *h;
2577 Elf_Internal_Sym *sym;
2578 char sym_type;
2579 const char *name;
2580 asection *sec;
2581 bfd_vma relocation;
2582 bfd_reloc_status_type r;
2583 bfd_boolean is_weak_undef;
2584 bfd_boolean unresolved_reloc;
2585 bfd_boolean warned;
2586 bfd_boolean dynamic_symbol;
2587
2588 r_type = ELF32_R_TYPE (rel->r_info);
2589 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2590 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2591 continue;
2592
2593 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2594 {
2595 bfd_set_error (bfd_error_bad_value);
2596 return FALSE;
2597 }
2598 howto = &elf_howto_table[r_type];
2599
2600 r_symndx = ELF32_R_SYM (rel->r_info);
2601
2602 h = NULL;
2603 sym = NULL;
2604 sec = NULL;
2605 is_weak_undef = FALSE;
2606 unresolved_reloc = FALSE;
2607 warned = FALSE;
2608
2609 if (howto->partial_inplace && !info->relocatable)
2610 {
2611 /* Because R_XTENSA_32 was made partial_inplace to fix some
2612 problems with DWARF info in partial links, there may be
2613 an addend stored in the contents. Take it out of there
2614 and move it back into the addend field of the reloc. */
2615 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2616 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2617 }
2618
2619 if (r_symndx < symtab_hdr->sh_info)
2620 {
2621 sym = local_syms + r_symndx;
2622 sym_type = ELF32_ST_TYPE (sym->st_info);
2623 sec = local_sections[r_symndx];
2624 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2625 }
2626 else
2627 {
2628 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2629 r_symndx, symtab_hdr, sym_hashes,
2630 h, sec, relocation,
2631 unresolved_reloc, warned);
2632
2633 if (relocation == 0
2634 && !unresolved_reloc
2635 && h->root.type == bfd_link_hash_undefweak)
2636 is_weak_undef = TRUE;
2637
2638 sym_type = h->type;
2639 }
2640
2641 if (sec != NULL && elf_discarded_section (sec))
2642 {
2643 /* For relocs against symbols from removed linkonce sections,
2644 or sections discarded by a linker script, we just want the
2645 section contents zeroed. Avoid any special processing. */
2646 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
2647 rel->r_info = 0;
2648 rel->r_addend = 0;
2649 continue;
2650 }
2651
2652 if (info->relocatable)
2653 {
2654 /* This is a relocatable link.
2655 1) If the reloc is against a section symbol, adjust
2656 according to the output section.
2657 2) If there is a new target for this relocation,
2658 the new target will be in the same output section.
2659 We adjust the relocation by the output section
2660 difference. */
2661
2662 if (relaxing_section)
2663 {
2664 /* Check if this references a section in another input file. */
2665 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2666 contents))
2667 return FALSE;
2668 }
2669
2670 if (r_type == R_XTENSA_ASM_SIMPLIFY)
2671 {
2672 char *error_message = NULL;
2673 /* Convert ASM_SIMPLIFY into the simpler relocation
2674 so that they never escape a relaxing link. */
2675 r = contract_asm_expansion (contents, input_size, rel,
2676 &error_message);
2677 if (r != bfd_reloc_ok)
2678 {
2679 if (!((*info->callbacks->reloc_dangerous)
2680 (info, error_message, input_bfd, input_section,
2681 rel->r_offset)))
2682 return FALSE;
2683 }
2684 r_type = ELF32_R_TYPE (rel->r_info);
2685 }
2686
2687 /* This is a relocatable link, so we don't have to change
2688 anything unless the reloc is against a section symbol,
2689 in which case we have to adjust according to where the
2690 section symbol winds up in the output section. */
2691 if (r_symndx < symtab_hdr->sh_info)
2692 {
2693 sym = local_syms + r_symndx;
2694 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2695 {
2696 sec = local_sections[r_symndx];
2697 rel->r_addend += sec->output_offset + sym->st_value;
2698 }
2699 }
2700
2701 /* If there is an addend with a partial_inplace howto,
2702 then move the addend to the contents. This is a hack
2703 to work around problems with DWARF in relocatable links
2704 with some previous version of BFD. Now we can't easily get
2705 rid of the hack without breaking backward compatibility.... */
2706 if (rel->r_addend)
2707 {
2708 howto = &elf_howto_table[r_type];
2709 if (howto->partial_inplace)
2710 {
2711 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2712 rel->r_addend, contents,
2713 rel->r_offset, FALSE,
2714 &error_message);
2715 if (r != bfd_reloc_ok)
2716 {
2717 if (!((*info->callbacks->reloc_dangerous)
2718 (info, error_message, input_bfd, input_section,
2719 rel->r_offset)))
2720 return FALSE;
2721 }
2722 rel->r_addend = 0;
2723 }
2724 }
2725
2726 /* Done with work for relocatable link; continue with next reloc. */
2727 continue;
2728 }
2729
2730 /* This is a final link. */
2731
2732 if (relaxing_section)
2733 {
2734 /* Check if this references a section in another input file. */
2735 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2736 &relocation);
2737 }
2738
2739 /* Sanity check the address. */
2740 if (rel->r_offset >= input_size
2741 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2742 {
2743 (*_bfd_error_handler)
2744 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2745 input_bfd, input_section, rel->r_offset, input_size);
2746 bfd_set_error (bfd_error_bad_value);
2747 return FALSE;
2748 }
2749
2750 if (h != NULL)
2751 name = h->root.root.string;
2752 else
2753 {
2754 name = (bfd_elf_string_from_elf_section
2755 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2756 if (name == NULL || *name == '\0')
2757 name = bfd_section_name (input_bfd, sec);
2758 }
2759
2760 if (r_symndx != 0
2761 && r_type != R_XTENSA_NONE
2762 && (h == NULL
2763 || h->root.type == bfd_link_hash_defined
2764 || h->root.type == bfd_link_hash_defweak)
2765 && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS))
2766 {
2767 (*_bfd_error_handler)
2768 ((sym_type == STT_TLS
2769 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
2770 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
2771 input_bfd,
2772 input_section,
2773 (long) rel->r_offset,
2774 howto->name,
2775 name);
2776 }
2777
2778 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
2779
2780 tls_type = GOT_UNKNOWN;
2781 if (h)
2782 tls_type = elf_xtensa_hash_entry (h)->tls_type;
2783 else if (local_got_tls_types)
2784 tls_type = local_got_tls_types [r_symndx];
2785
2786 switch (r_type)
2787 {
2788 case R_XTENSA_32:
2789 case R_XTENSA_PLT:
2790 if (elf_hash_table (info)->dynamic_sections_created
2791 && (input_section->flags & SEC_ALLOC) != 0
2792 && (dynamic_symbol || info->shared))
2793 {
2794 Elf_Internal_Rela outrel;
2795 bfd_byte *loc;
2796 asection *srel;
2797
2798 if (dynamic_symbol && r_type == R_XTENSA_PLT)
2799 srel = htab->srelplt;
2800 else
2801 srel = htab->srelgot;
2802
2803 BFD_ASSERT (srel != NULL);
2804
2805 outrel.r_offset =
2806 _bfd_elf_section_offset (output_bfd, info,
2807 input_section, rel->r_offset);
2808
2809 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2810 memset (&outrel, 0, sizeof outrel);
2811 else
2812 {
2813 outrel.r_offset += (input_section->output_section->vma
2814 + input_section->output_offset);
2815
2816 /* Complain if the relocation is in a read-only section
2817 and not in a literal pool. */
2818 if ((input_section->flags & SEC_READONLY) != 0
2819 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
2820 outrel.r_offset))
2821 {
2822 error_message =
2823 _("dynamic relocation in read-only section");
2824 if (!((*info->callbacks->reloc_dangerous)
2825 (info, error_message, input_bfd, input_section,
2826 rel->r_offset)))
2827 return FALSE;
2828 }
2829
2830 if (dynamic_symbol)
2831 {
2832 outrel.r_addend = rel->r_addend;
2833 rel->r_addend = 0;
2834
2835 if (r_type == R_XTENSA_32)
2836 {
2837 outrel.r_info =
2838 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2839 relocation = 0;
2840 }
2841 else /* r_type == R_XTENSA_PLT */
2842 {
2843 outrel.r_info =
2844 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2845
2846 /* Create the PLT entry and set the initial
2847 contents of the literal entry to the address of
2848 the PLT entry. */
2849 relocation =
2850 elf_xtensa_create_plt_entry (info, output_bfd,
2851 srel->reloc_count);
2852 }
2853 unresolved_reloc = FALSE;
2854 }
2855 else
2856 {
2857 /* Generate a RELATIVE relocation. */
2858 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2859 outrel.r_addend = 0;
2860 }
2861 }
2862
2863 loc = (srel->contents
2864 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2865 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2866 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2867 <= srel->size);
2868 }
2869 else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
2870 {
2871 /* This should only happen for non-PIC code, which is not
2872 supposed to be used on systems with dynamic linking.
2873 Just ignore these relocations. */
2874 continue;
2875 }
2876 break;
2877
2878 case R_XTENSA_TLS_TPOFF:
2879 /* Switch to LE model for local symbols in an executable. */
2880 if (! info->shared && ! dynamic_symbol)
2881 {
2882 relocation = tpoff (info, relocation);
2883 break;
2884 }
2885 /* fall through */
2886
2887 case R_XTENSA_TLSDESC_FN:
2888 case R_XTENSA_TLSDESC_ARG:
2889 {
2890 if (r_type == R_XTENSA_TLSDESC_FN)
2891 {
2892 if (! info->shared || (tls_type & GOT_TLS_IE) != 0)
2893 r_type = R_XTENSA_NONE;
2894 }
2895 else if (r_type == R_XTENSA_TLSDESC_ARG)
2896 {
2897 if (info->shared)
2898 {
2899 if ((tls_type & GOT_TLS_IE) != 0)
2900 r_type = R_XTENSA_TLS_TPOFF;
2901 }
2902 else
2903 {
2904 r_type = R_XTENSA_TLS_TPOFF;
2905 if (! dynamic_symbol)
2906 {
2907 relocation = tpoff (info, relocation);
2908 break;
2909 }
2910 }
2911 }
2912
2913 if (r_type == R_XTENSA_NONE)
2914 /* Nothing to do here; skip to the next reloc. */
2915 continue;
2916
2917 if (! elf_hash_table (info)->dynamic_sections_created)
2918 {
2919 error_message =
2920 _("TLS relocation invalid without dynamic sections");
2921 if (!((*info->callbacks->reloc_dangerous)
2922 (info, error_message, input_bfd, input_section,
2923 rel->r_offset)))
2924 return FALSE;
2925 }
2926 else
2927 {
2928 Elf_Internal_Rela outrel;
2929 bfd_byte *loc;
2930 asection *srel = htab->srelgot;
2931 int indx;
2932
2933 outrel.r_offset = (input_section->output_section->vma
2934 + input_section->output_offset
2935 + rel->r_offset);
2936
2937 /* Complain if the relocation is in a read-only section
2938 and not in a literal pool. */
2939 if ((input_section->flags & SEC_READONLY) != 0
2940 && ! elf_xtensa_in_literal_pool (lit_table, ltblsize,
2941 outrel.r_offset))
2942 {
2943 error_message =
2944 _("dynamic relocation in read-only section");
2945 if (!((*info->callbacks->reloc_dangerous)
2946 (info, error_message, input_bfd, input_section,
2947 rel->r_offset)))
2948 return FALSE;
2949 }
2950
2951 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2952 if (indx == 0)
2953 outrel.r_addend = relocation - dtpoff_base (info);
2954 else
2955 outrel.r_addend = 0;
2956 rel->r_addend = 0;
2957
2958 outrel.r_info = ELF32_R_INFO (indx, r_type);
2959 relocation = 0;
2960 unresolved_reloc = FALSE;
2961
2962 BFD_ASSERT (srel);
2963 loc = (srel->contents
2964 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2965 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2966 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2967 <= srel->size);
2968 }
2969 }
2970 break;
2971
2972 case R_XTENSA_TLS_DTPOFF:
2973 if (! info->shared)
2974 /* Switch from LD model to LE model. */
2975 relocation = tpoff (info, relocation);
2976 else
2977 relocation -= dtpoff_base (info);
2978 break;
2979
2980 case R_XTENSA_TLS_FUNC:
2981 case R_XTENSA_TLS_ARG:
2982 case R_XTENSA_TLS_CALL:
2983 /* Check if optimizing to IE or LE model. */
2984 if ((tls_type & GOT_TLS_IE) != 0)
2985 {
2986 bfd_boolean is_ld_model =
2987 (h && elf_xtensa_hash_entry (h) == htab->tlsbase);
2988 if (! replace_tls_insn (rel, input_bfd, input_section, contents,
2989 is_ld_model, &error_message))
2990 {
2991 if (!((*info->callbacks->reloc_dangerous)
2992 (info, error_message, input_bfd, input_section,
2993 rel->r_offset)))
2994 return FALSE;
2995 }
2996
2997 if (r_type != R_XTENSA_TLS_ARG || is_ld_model)
2998 {
2999 /* Skip subsequent relocations on the same instruction. */
3000 while (rel + 1 < relend && rel[1].r_offset == rel->r_offset)
3001 rel++;
3002 }
3003 }
3004 continue;
3005
3006 default:
3007 if (elf_hash_table (info)->dynamic_sections_created
3008 && dynamic_symbol && (is_operand_relocation (r_type)
3009 || r_type == R_XTENSA_32_PCREL))
3010 {
3011 error_message =
3012 vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
3013 strlen (name) + 2, name);
3014 if (!((*info->callbacks->reloc_dangerous)
3015 (info, error_message, input_bfd, input_section,
3016 rel->r_offset)))
3017 return FALSE;
3018 continue;
3019 }
3020 break;
3021 }
3022
3023 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3024 because such sections are not SEC_ALLOC and thus ld.so will
3025 not process them. */
3026 if (unresolved_reloc
3027 && !((input_section->flags & SEC_DEBUGGING) != 0
3028 && h->def_dynamic))
3029 {
3030 (*_bfd_error_handler)
3031 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3032 input_bfd,
3033 input_section,
3034 (long) rel->r_offset,
3035 howto->name,
3036 name);
3037 return FALSE;
3038 }
3039
3040 /* TLS optimizations may have changed r_type; update "howto". */
3041 howto = &elf_howto_table[r_type];
3042
3043 /* There's no point in calling bfd_perform_relocation here.
3044 Just go directly to our "special function". */
3045 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
3046 relocation + rel->r_addend,
3047 contents, rel->r_offset, is_weak_undef,
3048 &error_message);
3049
3050 if (r != bfd_reloc_ok && !warned)
3051 {
3052 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
3053 BFD_ASSERT (error_message != NULL);
3054
3055 if (rel->r_addend == 0)
3056 error_message = vsprint_msg (error_message, ": %s",
3057 strlen (name) + 2, name);
3058 else
3059 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
3060 strlen (name) + 22,
3061 name, (int) rel->r_addend);
3062
3063 if (!((*info->callbacks->reloc_dangerous)
3064 (info, error_message, input_bfd, input_section,
3065 rel->r_offset)))
3066 return FALSE;
3067 }
3068 }
3069
3070 if (lit_table)
3071 free (lit_table);
3072
3073 input_section->reloc_done = TRUE;
3074
3075 return TRUE;
3076 }
3077
3078
3079 /* Finish up dynamic symbol handling. There's not much to do here since
3080 the PLT and GOT entries are all set up by relocate_section. */
3081
3082 static bfd_boolean
3083 elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
3084 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3085 struct elf_link_hash_entry *h,
3086 Elf_Internal_Sym *sym)
3087 {
3088 if (h->needs_plt && !h->def_regular)
3089 {
3090 /* Mark the symbol as undefined, rather than as defined in
3091 the .plt section. Leave the value alone. */
3092 sym->st_shndx = SHN_UNDEF;
3093 /* If the symbol is weak, we do need to clear the value.
3094 Otherwise, the PLT entry would provide a definition for
3095 the symbol even if the symbol wasn't defined anywhere,
3096 and so the symbol would never be NULL. */
3097 if (!h->ref_regular_nonweak)
3098 sym->st_value = 0;
3099 }
3100
3101 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3102 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
3103 || h == elf_hash_table (info)->hgot)
3104 sym->st_shndx = SHN_ABS;
3105
3106 return TRUE;
3107 }
3108
3109
3110 /* Combine adjacent literal table entries in the output. Adjacent
3111 entries within each input section may have been removed during
3112 relaxation, but we repeat the process here, even though it's too late
3113 to shrink the output section, because it's important to minimize the
3114 number of literal table entries to reduce the start-up work for the
3115 runtime linker. Returns the number of remaining table entries or -1
3116 on error. */
3117
3118 static int
3119 elf_xtensa_combine_prop_entries (bfd *output_bfd,
3120 asection *sxtlit,
3121 asection *sgotloc)
3122 {
3123 bfd_byte *contents;
3124 property_table_entry *table;
3125 bfd_size_type section_size, sgotloc_size;
3126 bfd_vma offset;
3127 int n, m, num;
3128
3129 section_size = sxtlit->size;
3130 BFD_ASSERT (section_size % 8 == 0);
3131 num = section_size / 8;
3132
3133 sgotloc_size = sgotloc->size;
3134 if (sgotloc_size != section_size)
3135 {
3136 (*_bfd_error_handler)
3137 (_("internal inconsistency in size of .got.loc section"));
3138 return -1;
3139 }
3140
3141 table = bfd_malloc (num * sizeof (property_table_entry));
3142 if (table == 0)
3143 return -1;
3144
3145 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
3146 propagates to the output section, where it doesn't really apply and
3147 where it breaks the following call to bfd_malloc_and_get_section. */
3148 sxtlit->flags &= ~SEC_IN_MEMORY;
3149
3150 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
3151 {
3152 if (contents != 0)
3153 free (contents);
3154 free (table);
3155 return -1;
3156 }
3157
3158 /* There should never be any relocations left at this point, so this
3159 is quite a bit easier than what is done during relaxation. */
3160
3161 /* Copy the raw contents into a property table array and sort it. */
3162 offset = 0;
3163 for (n = 0; n < num; n++)
3164 {
3165 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
3166 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
3167 offset += 8;
3168 }
3169 qsort (table, num, sizeof (property_table_entry), property_table_compare);
3170
3171 for (n = 0; n < num; n++)
3172 {
3173 bfd_boolean remove = FALSE;
3174
3175 if (table[n].size == 0)
3176 remove = TRUE;
3177 else if (n > 0 &&
3178 (table[n-1].address + table[n-1].size == table[n].address))
3179 {
3180 table[n-1].size += table[n].size;
3181 remove = TRUE;
3182 }
3183
3184 if (remove)
3185 {
3186 for (m = n; m < num - 1; m++)
3187 {
3188 table[m].address = table[m+1].address;
3189 table[m].size = table[m+1].size;
3190 }
3191
3192 n--;
3193 num--;
3194 }
3195 }
3196
3197 /* Copy the data back to the raw contents. */
3198 offset = 0;
3199 for (n = 0; n < num; n++)
3200 {
3201 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
3202 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
3203 offset += 8;
3204 }
3205
3206 /* Clear the removed bytes. */
3207 if ((bfd_size_type) (num * 8) < section_size)
3208 memset (&contents[num * 8], 0, section_size - num * 8);
3209
3210 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
3211 section_size))
3212 return -1;
3213
3214 /* Copy the contents to ".got.loc". */
3215 memcpy (sgotloc->contents, contents, section_size);
3216
3217 free (contents);
3218 free (table);
3219 return num;
3220 }
3221
3222
3223 /* Finish up the dynamic sections. */
3224
3225 static bfd_boolean
3226 elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
3227 struct bfd_link_info *info)
3228 {
3229 struct elf_xtensa_link_hash_table *htab;
3230 bfd *dynobj;
3231 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
3232 Elf32_External_Dyn *dyncon, *dynconend;
3233 int num_xtlit_entries = 0;
3234
3235 if (! elf_hash_table (info)->dynamic_sections_created)
3236 return TRUE;
3237
3238 htab = elf_xtensa_hash_table (info);
3239 dynobj = elf_hash_table (info)->dynobj;
3240 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3241 BFD_ASSERT (sdyn != NULL);
3242
3243 /* Set the first entry in the global offset table to the address of
3244 the dynamic section. */
3245 sgot = htab->sgot;
3246 if (sgot)
3247 {
3248 BFD_ASSERT (sgot->size == 4);
3249 if (sdyn == NULL)
3250 bfd_put_32 (output_bfd, 0, sgot->contents);
3251 else
3252 bfd_put_32 (output_bfd,
3253 sdyn->output_section->vma + sdyn->output_offset,
3254 sgot->contents);
3255 }
3256
3257 srelplt = htab->srelplt;
3258 if (srelplt && srelplt->size != 0)
3259 {
3260 asection *sgotplt, *srelgot, *spltlittbl;
3261 int chunk, plt_chunks, plt_entries;
3262 Elf_Internal_Rela irela;
3263 bfd_byte *loc;
3264 unsigned rtld_reloc;
3265
3266 srelgot = htab->srelgot;
3267 spltlittbl = htab->spltlittbl;
3268 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
3269
3270 /* Find the first XTENSA_RTLD relocation. Presumably the rest
3271 of them follow immediately after.... */
3272 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
3273 {
3274 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3275 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3276 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
3277 break;
3278 }
3279 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
3280
3281 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
3282 plt_chunks =
3283 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
3284
3285 for (chunk = 0; chunk < plt_chunks; chunk++)
3286 {
3287 int chunk_entries = 0;
3288
3289 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
3290 BFD_ASSERT (sgotplt != NULL);
3291
3292 /* Emit special RTLD relocations for the first two entries in
3293 each chunk of the .got.plt section. */
3294
3295 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3296 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3297 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3298 irela.r_offset = (sgotplt->output_section->vma
3299 + sgotplt->output_offset);
3300 irela.r_addend = 1; /* tell rtld to set value to resolver function */
3301 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3302 rtld_reloc += 1;
3303 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3304
3305 /* Next literal immediately follows the first. */
3306 loc += sizeof (Elf32_External_Rela);
3307 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3308 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3309 irela.r_offset = (sgotplt->output_section->vma
3310 + sgotplt->output_offset + 4);
3311 /* Tell rtld to set value to object's link map. */
3312 irela.r_addend = 2;
3313 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3314 rtld_reloc += 1;
3315 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3316
3317 /* Fill in the literal table. */
3318 if (chunk < plt_chunks - 1)
3319 chunk_entries = PLT_ENTRIES_PER_CHUNK;
3320 else
3321 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
3322
3323 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
3324 bfd_put_32 (output_bfd,
3325 sgotplt->output_section->vma + sgotplt->output_offset,
3326 spltlittbl->contents + (chunk * 8) + 0);
3327 bfd_put_32 (output_bfd,
3328 8 + (chunk_entries * 4),
3329 spltlittbl->contents + (chunk * 8) + 4);
3330 }
3331
3332 /* All the dynamic relocations have been emitted at this point.
3333 Make sure the relocation sections are the correct size. */
3334 if (srelgot->size != (sizeof (Elf32_External_Rela)
3335 * srelgot->reloc_count)
3336 || srelplt->size != (sizeof (Elf32_External_Rela)
3337 * srelplt->reloc_count))
3338 abort ();
3339
3340 /* The .xt.lit.plt section has just been modified. This must
3341 happen before the code below which combines adjacent literal
3342 table entries, and the .xt.lit.plt contents have to be forced to
3343 the output here. */
3344 if (! bfd_set_section_contents (output_bfd,
3345 spltlittbl->output_section,
3346 spltlittbl->contents,
3347 spltlittbl->output_offset,
3348 spltlittbl->size))
3349 return FALSE;
3350 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
3351 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
3352 }
3353
3354 /* Combine adjacent literal table entries. */
3355 BFD_ASSERT (! info->relocatable);
3356 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
3357 sgotloc = htab->sgotloc;
3358 BFD_ASSERT (sgotloc);
3359 if (sxtlit)
3360 {
3361 num_xtlit_entries =
3362 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
3363 if (num_xtlit_entries < 0)
3364 return FALSE;
3365 }
3366
3367 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3368 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
3369 for (; dyncon < dynconend; dyncon++)
3370 {
3371 Elf_Internal_Dyn dyn;
3372
3373 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3374
3375 switch (dyn.d_tag)
3376 {
3377 default:
3378 break;
3379
3380 case DT_XTENSA_GOT_LOC_SZ:
3381 dyn.d_un.d_val = num_xtlit_entries;
3382 break;
3383
3384 case DT_XTENSA_GOT_LOC_OFF:
3385 dyn.d_un.d_ptr = htab->sgotloc->output_section->vma;
3386 break;
3387
3388 case DT_PLTGOT:
3389 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
3390 break;
3391
3392 case DT_JMPREL:
3393 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
3394 break;
3395
3396 case DT_PLTRELSZ:
3397 dyn.d_un.d_val = htab->srelplt->output_section->size;
3398 break;
3399
3400 case DT_RELASZ:
3401 /* Adjust RELASZ to not include JMPREL. This matches what
3402 glibc expects and what is done for several other ELF
3403 targets (e.g., i386, alpha), but the "correct" behavior
3404 seems to be unresolved. Since the linker script arranges
3405 for .rela.plt to follow all other relocation sections, we
3406 don't have to worry about changing the DT_RELA entry. */
3407 if (htab->srelplt)
3408 dyn.d_un.d_val -= htab->srelplt->output_section->size;
3409 break;
3410 }
3411
3412 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3413 }
3414
3415 return TRUE;
3416 }
3417
3418 \f
3419 /* Functions for dealing with the e_flags field. */
3420
3421 /* Merge backend specific data from an object file to the output
3422 object file when linking. */
3423
3424 static bfd_boolean
3425 elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
3426 {
3427 unsigned out_mach, in_mach;
3428 flagword out_flag, in_flag;
3429
3430 /* Check if we have the same endianess. */
3431 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
3432 return FALSE;
3433
3434 /* Don't even pretend to support mixed-format linking. */
3435 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3436 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3437 return FALSE;
3438
3439 out_flag = elf_elfheader (obfd)->e_flags;
3440 in_flag = elf_elfheader (ibfd)->e_flags;
3441
3442 out_mach = out_flag & EF_XTENSA_MACH;
3443 in_mach = in_flag & EF_XTENSA_MACH;
3444 if (out_mach != in_mach)
3445 {
3446 (*_bfd_error_handler)
3447 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
3448 ibfd, out_mach, in_mach);
3449 bfd_set_error (bfd_error_wrong_format);
3450 return FALSE;
3451 }
3452
3453 if (! elf_flags_init (obfd))
3454 {
3455 elf_flags_init (obfd) = TRUE;
3456 elf_elfheader (obfd)->e_flags = in_flag;
3457
3458 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
3459 && bfd_get_arch_info (obfd)->the_default)
3460 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
3461 bfd_get_mach (ibfd));
3462
3463 return TRUE;
3464 }
3465
3466 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
3467 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
3468
3469 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
3470 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
3471
3472 return TRUE;
3473 }
3474
3475
3476 static bfd_boolean
3477 elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
3478 {
3479 BFD_ASSERT (!elf_flags_init (abfd)
3480 || elf_elfheader (abfd)->e_flags == flags);
3481
3482 elf_elfheader (abfd)->e_flags |= flags;
3483 elf_flags_init (abfd) = TRUE;
3484
3485 return TRUE;
3486 }
3487
3488
3489 static bfd_boolean
3490 elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
3491 {
3492 FILE *f = (FILE *) farg;
3493 flagword e_flags = elf_elfheader (abfd)->e_flags;
3494
3495 fprintf (f, "\nXtensa header:\n");
3496 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
3497 fprintf (f, "\nMachine = Base\n");
3498 else
3499 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
3500
3501 fprintf (f, "Insn tables = %s\n",
3502 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
3503
3504 fprintf (f, "Literal tables = %s\n",
3505 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
3506
3507 return _bfd_elf_print_private_bfd_data (abfd, farg);
3508 }
3509
3510
3511 /* Set the right machine number for an Xtensa ELF file. */
3512
3513 static bfd_boolean
3514 elf_xtensa_object_p (bfd *abfd)
3515 {
3516 int mach;
3517 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
3518
3519 switch (arch)
3520 {
3521 case E_XTENSA_MACH:
3522 mach = bfd_mach_xtensa;
3523 break;
3524 default:
3525 return FALSE;
3526 }
3527
3528 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
3529 return TRUE;
3530 }
3531
3532
3533 /* The final processing done just before writing out an Xtensa ELF object
3534 file. This gets the Xtensa architecture right based on the machine
3535 number. */
3536
3537 static void
3538 elf_xtensa_final_write_processing (bfd *abfd,
3539 bfd_boolean linker ATTRIBUTE_UNUSED)
3540 {
3541 int mach;
3542 unsigned long val;
3543
3544 switch (mach = bfd_get_mach (abfd))
3545 {
3546 case bfd_mach_xtensa:
3547 val = E_XTENSA_MACH;
3548 break;
3549 default:
3550 return;
3551 }
3552
3553 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
3554 elf_elfheader (abfd)->e_flags |= val;
3555 }
3556
3557
3558 static enum elf_reloc_type_class
3559 elf_xtensa_reloc_type_class (const Elf_Internal_Rela *rela)
3560 {
3561 switch ((int) ELF32_R_TYPE (rela->r_info))
3562 {
3563 case R_XTENSA_RELATIVE:
3564 return reloc_class_relative;
3565 case R_XTENSA_JMP_SLOT:
3566 return reloc_class_plt;
3567 default:
3568 return reloc_class_normal;
3569 }
3570 }
3571
3572 \f
3573 static bfd_boolean
3574 elf_xtensa_discard_info_for_section (bfd *abfd,
3575 struct elf_reloc_cookie *cookie,
3576 struct bfd_link_info *info,
3577 asection *sec)
3578 {
3579 bfd_byte *contents;
3580 bfd_vma offset, actual_offset;
3581 bfd_size_type removed_bytes = 0;
3582 bfd_size_type entry_size;
3583
3584 if (sec->output_section
3585 && bfd_is_abs_section (sec->output_section))
3586 return FALSE;
3587
3588 if (xtensa_is_proptable_section (sec))
3589 entry_size = 12;
3590 else
3591 entry_size = 8;
3592
3593 if (sec->size == 0 || sec->size % entry_size != 0)
3594 return FALSE;
3595
3596 contents = retrieve_contents (abfd, sec, info->keep_memory);
3597 if (!contents)
3598 return FALSE;
3599
3600 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
3601 if (!cookie->rels)
3602 {
3603 release_contents (sec, contents);
3604 return FALSE;
3605 }
3606
3607 /* Sort the relocations. They should already be in order when
3608 relaxation is enabled, but it might not be. */
3609 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
3610 internal_reloc_compare);
3611
3612 cookie->rel = cookie->rels;
3613 cookie->relend = cookie->rels + sec->reloc_count;
3614
3615 for (offset = 0; offset < sec->size; offset += entry_size)
3616 {
3617 actual_offset = offset - removed_bytes;
3618
3619 /* The ...symbol_deleted_p function will skip over relocs but it
3620 won't adjust their offsets, so do that here. */
3621 while (cookie->rel < cookie->relend
3622 && cookie->rel->r_offset < offset)
3623 {
3624 cookie->rel->r_offset -= removed_bytes;
3625 cookie->rel++;
3626 }
3627
3628 while (cookie->rel < cookie->relend
3629 && cookie->rel->r_offset == offset)
3630 {
3631 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
3632 {
3633 /* Remove the table entry. (If the reloc type is NONE, then
3634 the entry has already been merged with another and deleted
3635 during relaxation.) */
3636 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
3637 {
3638 /* Shift the contents up. */
3639 if (offset + entry_size < sec->size)
3640 memmove (&contents[actual_offset],
3641 &contents[actual_offset + entry_size],
3642 sec->size - offset - entry_size);
3643 removed_bytes += entry_size;
3644 }
3645
3646 /* Remove this relocation. */
3647 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3648 }
3649
3650 /* Adjust the relocation offset for previous removals. This
3651 should not be done before calling ...symbol_deleted_p
3652 because it might mess up the offset comparisons there.
3653 Make sure the offset doesn't underflow in the case where
3654 the first entry is removed. */
3655 if (cookie->rel->r_offset >= removed_bytes)
3656 cookie->rel->r_offset -= removed_bytes;
3657 else
3658 cookie->rel->r_offset = 0;
3659
3660 cookie->rel++;
3661 }
3662 }
3663
3664 if (removed_bytes != 0)
3665 {
3666 /* Adjust any remaining relocs (shouldn't be any). */
3667 for (; cookie->rel < cookie->relend; cookie->rel++)
3668 {
3669 if (cookie->rel->r_offset >= removed_bytes)
3670 cookie->rel->r_offset -= removed_bytes;
3671 else
3672 cookie->rel->r_offset = 0;
3673 }
3674
3675 /* Clear the removed bytes. */
3676 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
3677
3678 pin_contents (sec, contents);
3679 pin_internal_relocs (sec, cookie->rels);
3680
3681 /* Shrink size. */
3682 if (sec->rawsize == 0)
3683 sec->rawsize = sec->size;
3684 sec->size -= removed_bytes;
3685
3686 if (xtensa_is_littable_section (sec))
3687 {
3688 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
3689 if (sgotloc)
3690 sgotloc->size -= removed_bytes;
3691 }
3692 }
3693 else
3694 {
3695 release_contents (sec, contents);
3696 release_internal_relocs (sec, cookie->rels);
3697 }
3698
3699 return (removed_bytes != 0);
3700 }
3701
3702
3703 static bfd_boolean
3704 elf_xtensa_discard_info (bfd *abfd,
3705 struct elf_reloc_cookie *cookie,
3706 struct bfd_link_info *info)
3707 {
3708 asection *sec;
3709 bfd_boolean changed = FALSE;
3710
3711 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3712 {
3713 if (xtensa_is_property_section (sec))
3714 {
3715 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
3716 changed = TRUE;
3717 }
3718 }
3719
3720 return changed;
3721 }
3722
3723
3724 static bfd_boolean
3725 elf_xtensa_ignore_discarded_relocs (asection *sec)
3726 {
3727 return xtensa_is_property_section (sec);
3728 }
3729
3730
3731 static unsigned int
3732 elf_xtensa_action_discarded (asection *sec)
3733 {
3734 if (strcmp (".xt_except_table", sec->name) == 0)
3735 return 0;
3736
3737 if (strcmp (".xt_except_desc", sec->name) == 0)
3738 return 0;
3739
3740 return _bfd_elf_default_action_discarded (sec);
3741 }
3742
3743 \f
3744 /* Support for core dump NOTE sections. */
3745
3746 static bfd_boolean
3747 elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
3748 {
3749 int offset;
3750 unsigned int size;
3751
3752 /* The size for Xtensa is variable, so don't try to recognize the format
3753 based on the size. Just assume this is GNU/Linux. */
3754
3755 /* pr_cursig */
3756 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
3757
3758 /* pr_pid */
3759 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
3760
3761 /* pr_reg */
3762 offset = 72;
3763 size = note->descsz - offset - 4;
3764
3765 /* Make a ".reg/999" section. */
3766 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
3767 size, note->descpos + offset);
3768 }
3769
3770
3771 static bfd_boolean
3772 elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3773 {
3774 switch (note->descsz)
3775 {
3776 default:
3777 return FALSE;
3778
3779 case 128: /* GNU/Linux elf_prpsinfo */
3780 elf_tdata (abfd)->core_program
3781 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3782 elf_tdata (abfd)->core_command
3783 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3784 }
3785
3786 /* Note that for some reason, a spurious space is tacked
3787 onto the end of the args in some (at least one anyway)
3788 implementations, so strip it off if it exists. */
3789
3790 {
3791 char *command = elf_tdata (abfd)->core_command;
3792 int n = strlen (command);
3793
3794 if (0 < n && command[n - 1] == ' ')
3795 command[n - 1] = '\0';
3796 }
3797
3798 return TRUE;
3799 }
3800
3801 \f
3802 /* Generic Xtensa configurability stuff. */
3803
3804 static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3805 static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3806 static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3807 static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3808 static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3809 static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3810 static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3811 static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3812
3813 static void
3814 init_call_opcodes (void)
3815 {
3816 if (callx0_op == XTENSA_UNDEFINED)
3817 {
3818 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3819 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3820 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3821 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3822 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3823 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3824 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3825 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3826 }
3827 }
3828
3829
3830 static bfd_boolean
3831 is_indirect_call_opcode (xtensa_opcode opcode)
3832 {
3833 init_call_opcodes ();
3834 return (opcode == callx0_op
3835 || opcode == callx4_op
3836 || opcode == callx8_op
3837 || opcode == callx12_op);
3838 }
3839
3840
3841 static bfd_boolean
3842 is_direct_call_opcode (xtensa_opcode opcode)
3843 {
3844 init_call_opcodes ();
3845 return (opcode == call0_op
3846 || opcode == call4_op
3847 || opcode == call8_op
3848 || opcode == call12_op);
3849 }
3850
3851
3852 static bfd_boolean
3853 is_windowed_call_opcode (xtensa_opcode opcode)
3854 {
3855 init_call_opcodes ();
3856 return (opcode == call4_op
3857 || opcode == call8_op
3858 || opcode == call12_op
3859 || opcode == callx4_op
3860 || opcode == callx8_op
3861 || opcode == callx12_op);
3862 }
3863
3864
3865 static bfd_boolean
3866 get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst)
3867 {
3868 unsigned dst = (unsigned) -1;
3869
3870 init_call_opcodes ();
3871 if (opcode == callx0_op)
3872 dst = 0;
3873 else if (opcode == callx4_op)
3874 dst = 4;
3875 else if (opcode == callx8_op)
3876 dst = 8;
3877 else if (opcode == callx12_op)
3878 dst = 12;
3879
3880 if (dst == (unsigned) -1)
3881 return FALSE;
3882
3883 *pdst = dst;
3884 return TRUE;
3885 }
3886
3887
3888 static xtensa_opcode
3889 get_const16_opcode (void)
3890 {
3891 static bfd_boolean done_lookup = FALSE;
3892 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3893 if (!done_lookup)
3894 {
3895 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3896 done_lookup = TRUE;
3897 }
3898 return const16_opcode;
3899 }
3900
3901
3902 static xtensa_opcode
3903 get_l32r_opcode (void)
3904 {
3905 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
3906 static bfd_boolean done_lookup = FALSE;
3907
3908 if (!done_lookup)
3909 {
3910 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
3911 done_lookup = TRUE;
3912 }
3913 return l32r_opcode;
3914 }
3915
3916
3917 static bfd_vma
3918 l32r_offset (bfd_vma addr, bfd_vma pc)
3919 {
3920 bfd_vma offset;
3921
3922 offset = addr - ((pc+3) & -4);
3923 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3924 offset = (signed int) offset >> 2;
3925 BFD_ASSERT ((signed int) offset >> 16 == -1);
3926 return offset;
3927 }
3928
3929
3930 static int
3931 get_relocation_opnd (xtensa_opcode opcode, int r_type)
3932 {
3933 xtensa_isa isa = xtensa_default_isa;
3934 int last_immed, last_opnd, opi;
3935
3936 if (opcode == XTENSA_UNDEFINED)
3937 return XTENSA_UNDEFINED;
3938
3939 /* Find the last visible PC-relative immediate operand for the opcode.
3940 If there are no PC-relative immediates, then choose the last visible
3941 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3942 last_immed = XTENSA_UNDEFINED;
3943 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3944 for (opi = last_opnd - 1; opi >= 0; opi--)
3945 {
3946 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3947 continue;
3948 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3949 {
3950 last_immed = opi;
3951 break;
3952 }
3953 if (last_immed == XTENSA_UNDEFINED
3954 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3955 last_immed = opi;
3956 }
3957 if (last_immed < 0)
3958 return XTENSA_UNDEFINED;
3959
3960 /* If the operand number was specified in an old-style relocation,
3961 check for consistency with the operand computed above. */
3962 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3963 {
3964 int reloc_opnd = r_type - R_XTENSA_OP0;
3965 if (reloc_opnd != last_immed)
3966 return XTENSA_UNDEFINED;
3967 }
3968
3969 return last_immed;
3970 }
3971
3972
3973 int
3974 get_relocation_slot (int r_type)
3975 {
3976 switch (r_type)
3977 {
3978 case R_XTENSA_OP0:
3979 case R_XTENSA_OP1:
3980 case R_XTENSA_OP2:
3981 return 0;
3982
3983 default:
3984 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3985 return r_type - R_XTENSA_SLOT0_OP;
3986 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3987 return r_type - R_XTENSA_SLOT0_ALT;
3988 break;
3989 }
3990
3991 return XTENSA_UNDEFINED;
3992 }
3993
3994
3995 /* Get the opcode for a relocation. */
3996
3997 static xtensa_opcode
3998 get_relocation_opcode (bfd *abfd,
3999 asection *sec,
4000 bfd_byte *contents,
4001 Elf_Internal_Rela *irel)
4002 {
4003 static xtensa_insnbuf ibuff = NULL;
4004 static xtensa_insnbuf sbuff = NULL;
4005 xtensa_isa isa = xtensa_default_isa;
4006 xtensa_format fmt;
4007 int slot;
4008
4009 if (contents == NULL)
4010 return XTENSA_UNDEFINED;
4011
4012 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
4013 return XTENSA_UNDEFINED;
4014
4015 if (ibuff == NULL)
4016 {
4017 ibuff = xtensa_insnbuf_alloc (isa);
4018 sbuff = xtensa_insnbuf_alloc (isa);
4019 }
4020
4021 /* Decode the instruction. */
4022 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
4023 sec->size - irel->r_offset);
4024 fmt = xtensa_format_decode (isa, ibuff);
4025 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
4026 if (slot == XTENSA_UNDEFINED)
4027 return XTENSA_UNDEFINED;
4028 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
4029 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
4030 }
4031
4032
4033 bfd_boolean
4034 is_l32r_relocation (bfd *abfd,
4035 asection *sec,
4036 bfd_byte *contents,
4037 Elf_Internal_Rela *irel)
4038 {
4039 xtensa_opcode opcode;
4040 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
4041 return FALSE;
4042 opcode = get_relocation_opcode (abfd, sec, contents, irel);
4043 return (opcode == get_l32r_opcode ());
4044 }
4045
4046
4047 static bfd_size_type
4048 get_asm_simplify_size (bfd_byte *contents,
4049 bfd_size_type content_len,
4050 bfd_size_type offset)
4051 {
4052 bfd_size_type insnlen, size = 0;
4053
4054 /* Decode the size of the next two instructions. */
4055 insnlen = insn_decode_len (contents, content_len, offset);
4056 if (insnlen == 0)
4057 return 0;
4058
4059 size += insnlen;
4060
4061 insnlen = insn_decode_len (contents, content_len, offset + size);
4062 if (insnlen == 0)
4063 return 0;
4064
4065 size += insnlen;
4066 return size;
4067 }
4068
4069
4070 bfd_boolean
4071 is_alt_relocation (int r_type)
4072 {
4073 return (r_type >= R_XTENSA_SLOT0_ALT
4074 && r_type <= R_XTENSA_SLOT14_ALT);
4075 }
4076
4077
4078 bfd_boolean
4079 is_operand_relocation (int r_type)
4080 {
4081 switch (r_type)
4082 {
4083 case R_XTENSA_OP0:
4084 case R_XTENSA_OP1:
4085 case R_XTENSA_OP2:
4086 return TRUE;
4087
4088 default:
4089 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4090 return TRUE;
4091 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4092 return TRUE;
4093 break;
4094 }
4095
4096 return FALSE;
4097 }
4098
4099
4100 #define MIN_INSN_LENGTH 2
4101
4102 /* Return 0 if it fails to decode. */
4103
4104 bfd_size_type
4105 insn_decode_len (bfd_byte *contents,
4106 bfd_size_type content_len,
4107 bfd_size_type offset)
4108 {
4109 int insn_len;
4110 xtensa_isa isa = xtensa_default_isa;
4111 xtensa_format fmt;
4112 static xtensa_insnbuf ibuff = NULL;
4113
4114 if (offset + MIN_INSN_LENGTH > content_len)
4115 return 0;
4116
4117 if (ibuff == NULL)
4118 ibuff = xtensa_insnbuf_alloc (isa);
4119 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
4120 content_len - offset);
4121 fmt = xtensa_format_decode (isa, ibuff);
4122 if (fmt == XTENSA_UNDEFINED)
4123 return 0;
4124 insn_len = xtensa_format_length (isa, fmt);
4125 if (insn_len == XTENSA_UNDEFINED)
4126 return 0;
4127 return insn_len;
4128 }
4129
4130
4131 /* Decode the opcode for a single slot instruction.
4132 Return 0 if it fails to decode or the instruction is multi-slot. */
4133
4134 xtensa_opcode
4135 insn_decode_opcode (bfd_byte *contents,
4136 bfd_size_type content_len,
4137 bfd_size_type offset,
4138 int slot)
4139 {
4140 xtensa_isa isa = xtensa_default_isa;
4141 xtensa_format fmt;
4142 static xtensa_insnbuf insnbuf = NULL;
4143 static xtensa_insnbuf slotbuf = NULL;
4144
4145 if (offset + MIN_INSN_LENGTH > content_len)
4146 return XTENSA_UNDEFINED;
4147
4148 if (insnbuf == NULL)
4149 {
4150 insnbuf = xtensa_insnbuf_alloc (isa);
4151 slotbuf = xtensa_insnbuf_alloc (isa);
4152 }
4153
4154 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4155 content_len - offset);
4156 fmt = xtensa_format_decode (isa, insnbuf);
4157 if (fmt == XTENSA_UNDEFINED)
4158 return XTENSA_UNDEFINED;
4159
4160 if (slot >= xtensa_format_num_slots (isa, fmt))
4161 return XTENSA_UNDEFINED;
4162
4163 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
4164 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
4165 }
4166
4167
4168 /* The offset is the offset in the contents.
4169 The address is the address of that offset. */
4170
4171 static bfd_boolean
4172 check_branch_target_aligned (bfd_byte *contents,
4173 bfd_size_type content_length,
4174 bfd_vma offset,
4175 bfd_vma address)
4176 {
4177 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
4178 if (insn_len == 0)
4179 return FALSE;
4180 return check_branch_target_aligned_address (address, insn_len);
4181 }
4182
4183
4184 static bfd_boolean
4185 check_loop_aligned (bfd_byte *contents,
4186 bfd_size_type content_length,
4187 bfd_vma offset,
4188 bfd_vma address)
4189 {
4190 bfd_size_type loop_len, insn_len;
4191 xtensa_opcode opcode;
4192
4193 opcode = insn_decode_opcode (contents, content_length, offset, 0);
4194 if (opcode == XTENSA_UNDEFINED
4195 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
4196 {
4197 BFD_ASSERT (FALSE);
4198 return FALSE;
4199 }
4200
4201 loop_len = insn_decode_len (contents, content_length, offset);
4202 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
4203 if (loop_len == 0 || insn_len == 0)
4204 {
4205 BFD_ASSERT (FALSE);
4206 return FALSE;
4207 }
4208
4209 return check_branch_target_aligned_address (address + loop_len, insn_len);
4210 }
4211
4212
4213 static bfd_boolean
4214 check_branch_target_aligned_address (bfd_vma addr, int len)
4215 {
4216 if (len == 8)
4217 return (addr % 8 == 0);
4218 return ((addr >> 2) == ((addr + len - 1) >> 2));
4219 }
4220
4221 \f
4222 /* Instruction widening and narrowing. */
4223
4224 /* When FLIX is available we need to access certain instructions only
4225 when they are 16-bit or 24-bit instructions. This table caches
4226 information about such instructions by walking through all the
4227 opcodes and finding the smallest single-slot format into which each
4228 can be encoded. */
4229
4230 static xtensa_format *op_single_fmt_table = NULL;
4231
4232
4233 static void
4234 init_op_single_format_table (void)
4235 {
4236 xtensa_isa isa = xtensa_default_isa;
4237 xtensa_insnbuf ibuf;
4238 xtensa_opcode opcode;
4239 xtensa_format fmt;
4240 int num_opcodes;
4241
4242 if (op_single_fmt_table)
4243 return;
4244
4245 ibuf = xtensa_insnbuf_alloc (isa);
4246 num_opcodes = xtensa_isa_num_opcodes (isa);
4247
4248 op_single_fmt_table = (xtensa_format *)
4249 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
4250 for (opcode = 0; opcode < num_opcodes; opcode++)
4251 {
4252 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
4253 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
4254 {
4255 if (xtensa_format_num_slots (isa, fmt) == 1
4256 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
4257 {
4258 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
4259 int fmt_length = xtensa_format_length (isa, fmt);
4260 if (old_fmt == XTENSA_UNDEFINED
4261 || fmt_length < xtensa_format_length (isa, old_fmt))
4262 op_single_fmt_table[opcode] = fmt;
4263 }
4264 }
4265 }
4266 xtensa_insnbuf_free (isa, ibuf);
4267 }
4268
4269
4270 static xtensa_format
4271 get_single_format (xtensa_opcode opcode)
4272 {
4273 init_op_single_format_table ();
4274 return op_single_fmt_table[opcode];
4275 }
4276
4277
4278 /* For the set of narrowable instructions we do NOT include the
4279 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
4280 involved during linker relaxation that may require these to
4281 re-expand in some conditions. Also, the narrowing "or" -> mov.n
4282 requires special case code to ensure it only works when op1 == op2. */
4283
4284 struct string_pair
4285 {
4286 const char *wide;
4287 const char *narrow;
4288 };
4289
4290 struct string_pair narrowable[] =
4291 {
4292 { "add", "add.n" },
4293 { "addi", "addi.n" },
4294 { "addmi", "addi.n" },
4295 { "l32i", "l32i.n" },
4296 { "movi", "movi.n" },
4297 { "ret", "ret.n" },
4298 { "retw", "retw.n" },
4299 { "s32i", "s32i.n" },
4300 { "or", "mov.n" } /* special case only when op1 == op2 */
4301 };
4302
4303 struct string_pair widenable[] =
4304 {
4305 { "add", "add.n" },
4306 { "addi", "addi.n" },
4307 { "addmi", "addi.n" },
4308 { "beqz", "beqz.n" },
4309 { "bnez", "bnez.n" },
4310 { "l32i", "l32i.n" },
4311 { "movi", "movi.n" },
4312 { "ret", "ret.n" },
4313 { "retw", "retw.n" },
4314 { "s32i", "s32i.n" },
4315 { "or", "mov.n" } /* special case only when op1 == op2 */
4316 };
4317
4318
4319 /* Check if an instruction can be "narrowed", i.e., changed from a standard
4320 3-byte instruction to a 2-byte "density" instruction. If it is valid,
4321 return the instruction buffer holding the narrow instruction. Otherwise,
4322 return 0. The set of valid narrowing are specified by a string table
4323 but require some special case operand checks in some cases. */
4324
4325 static xtensa_insnbuf
4326 can_narrow_instruction (xtensa_insnbuf slotbuf,
4327 xtensa_format fmt,
4328 xtensa_opcode opcode)
4329 {
4330 xtensa_isa isa = xtensa_default_isa;
4331 xtensa_format o_fmt;
4332 unsigned opi;
4333
4334 static xtensa_insnbuf o_insnbuf = NULL;
4335 static xtensa_insnbuf o_slotbuf = NULL;
4336
4337 if (o_insnbuf == NULL)
4338 {
4339 o_insnbuf = xtensa_insnbuf_alloc (isa);
4340 o_slotbuf = xtensa_insnbuf_alloc (isa);
4341 }
4342
4343 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
4344 {
4345 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
4346
4347 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
4348 {
4349 uint32 value, newval;
4350 int i, operand_count, o_operand_count;
4351 xtensa_opcode o_opcode;
4352
4353 /* Address does not matter in this case. We might need to
4354 fix it to handle branches/jumps. */
4355 bfd_vma self_address = 0;
4356
4357 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
4358 if (o_opcode == XTENSA_UNDEFINED)
4359 return 0;
4360 o_fmt = get_single_format (o_opcode);
4361 if (o_fmt == XTENSA_UNDEFINED)
4362 return 0;
4363
4364 if (xtensa_format_length (isa, fmt) != 3
4365 || xtensa_format_length (isa, o_fmt) != 2)
4366 return 0;
4367
4368 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4369 operand_count = xtensa_opcode_num_operands (isa, opcode);
4370 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4371
4372 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4373 return 0;
4374
4375 if (!is_or)
4376 {
4377 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4378 return 0;
4379 }
4380 else
4381 {
4382 uint32 rawval0, rawval1, rawval2;
4383
4384 if (o_operand_count + 1 != operand_count
4385 || xtensa_operand_get_field (isa, opcode, 0,
4386 fmt, 0, slotbuf, &rawval0) != 0
4387 || xtensa_operand_get_field (isa, opcode, 1,
4388 fmt, 0, slotbuf, &rawval1) != 0
4389 || xtensa_operand_get_field (isa, opcode, 2,
4390 fmt, 0, slotbuf, &rawval2) != 0
4391 || rawval1 != rawval2
4392 || rawval0 == rawval1 /* it is a nop */)
4393 return 0;
4394 }
4395
4396 for (i = 0; i < o_operand_count; ++i)
4397 {
4398 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
4399 slotbuf, &value)
4400 || xtensa_operand_decode (isa, opcode, i, &value))
4401 return 0;
4402
4403 /* PC-relative branches need adjustment, but
4404 the PC-rel operand will always have a relocation. */
4405 newval = value;
4406 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4407 self_address)
4408 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4409 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4410 o_slotbuf, newval))
4411 return 0;
4412 }
4413
4414 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4415 return 0;
4416
4417 return o_insnbuf;
4418 }
4419 }
4420 return 0;
4421 }
4422
4423
4424 /* Attempt to narrow an instruction. If the narrowing is valid, perform
4425 the action in-place directly into the contents and return TRUE. Otherwise,
4426 the return value is FALSE and the contents are not modified. */
4427
4428 static bfd_boolean
4429 narrow_instruction (bfd_byte *contents,
4430 bfd_size_type content_length,
4431 bfd_size_type offset)
4432 {
4433 xtensa_opcode opcode;
4434 bfd_size_type insn_len;
4435 xtensa_isa isa = xtensa_default_isa;
4436 xtensa_format fmt;
4437 xtensa_insnbuf o_insnbuf;
4438
4439 static xtensa_insnbuf insnbuf = NULL;
4440 static xtensa_insnbuf slotbuf = NULL;
4441
4442 if (insnbuf == NULL)
4443 {
4444 insnbuf = xtensa_insnbuf_alloc (isa);
4445 slotbuf = xtensa_insnbuf_alloc (isa);
4446 }
4447
4448 BFD_ASSERT (offset < content_length);
4449
4450 if (content_length < 2)
4451 return FALSE;
4452
4453 /* We will hand-code a few of these for a little while.
4454 These have all been specified in the assembler aleady. */
4455 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4456 content_length - offset);
4457 fmt = xtensa_format_decode (isa, insnbuf);
4458 if (xtensa_format_num_slots (isa, fmt) != 1)
4459 return FALSE;
4460
4461 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4462 return FALSE;
4463
4464 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4465 if (opcode == XTENSA_UNDEFINED)
4466 return FALSE;
4467 insn_len = xtensa_format_length (isa, fmt);
4468 if (insn_len > content_length)
4469 return FALSE;
4470
4471 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
4472 if (o_insnbuf)
4473 {
4474 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4475 content_length - offset);
4476 return TRUE;
4477 }
4478
4479 return FALSE;
4480 }
4481
4482
4483 /* Check if an instruction can be "widened", i.e., changed from a 2-byte
4484 "density" instruction to a standard 3-byte instruction. If it is valid,
4485 return the instruction buffer holding the wide instruction. Otherwise,
4486 return 0. The set of valid widenings are specified by a string table
4487 but require some special case operand checks in some cases. */
4488
4489 static xtensa_insnbuf
4490 can_widen_instruction (xtensa_insnbuf slotbuf,
4491 xtensa_format fmt,
4492 xtensa_opcode opcode)
4493 {
4494 xtensa_isa isa = xtensa_default_isa;
4495 xtensa_format o_fmt;
4496 unsigned opi;
4497
4498 static xtensa_insnbuf o_insnbuf = NULL;
4499 static xtensa_insnbuf o_slotbuf = NULL;
4500
4501 if (o_insnbuf == NULL)
4502 {
4503 o_insnbuf = xtensa_insnbuf_alloc (isa);
4504 o_slotbuf = xtensa_insnbuf_alloc (isa);
4505 }
4506
4507 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
4508 {
4509 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
4510 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
4511 || strcmp ("bnez", widenable[opi].wide) == 0);
4512
4513 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
4514 {
4515 uint32 value, newval;
4516 int i, operand_count, o_operand_count, check_operand_count;
4517 xtensa_opcode o_opcode;
4518
4519 /* Address does not matter in this case. We might need to fix it
4520 to handle branches/jumps. */
4521 bfd_vma self_address = 0;
4522
4523 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
4524 if (o_opcode == XTENSA_UNDEFINED)
4525 return 0;
4526 o_fmt = get_single_format (o_opcode);
4527 if (o_fmt == XTENSA_UNDEFINED)
4528 return 0;
4529
4530 if (xtensa_format_length (isa, fmt) != 2
4531 || xtensa_format_length (isa, o_fmt) != 3)
4532 return 0;
4533
4534 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4535 operand_count = xtensa_opcode_num_operands (isa, opcode);
4536 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4537 check_operand_count = o_operand_count;
4538
4539 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4540 return 0;
4541
4542 if (!is_or)
4543 {
4544 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4545 return 0;
4546 }
4547 else
4548 {
4549 uint32 rawval0, rawval1;
4550
4551 if (o_operand_count != operand_count + 1
4552 || xtensa_operand_get_field (isa, opcode, 0,
4553 fmt, 0, slotbuf, &rawval0) != 0
4554 || xtensa_operand_get_field (isa, opcode, 1,
4555 fmt, 0, slotbuf, &rawval1) != 0
4556 || rawval0 == rawval1 /* it is a nop */)
4557 return 0;
4558 }
4559 if (is_branch)
4560 check_operand_count--;
4561
4562 for (i = 0; i < check_operand_count; i++)
4563 {
4564 int new_i = i;
4565 if (is_or && i == o_operand_count - 1)
4566 new_i = i - 1;
4567 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
4568 slotbuf, &value)
4569 || xtensa_operand_decode (isa, opcode, new_i, &value))
4570 return 0;
4571
4572 /* PC-relative branches need adjustment, but
4573 the PC-rel operand will always have a relocation. */
4574 newval = value;
4575 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4576 self_address)
4577 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4578 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4579 o_slotbuf, newval))
4580 return 0;
4581 }
4582
4583 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4584 return 0;
4585
4586 return o_insnbuf;
4587 }
4588 }
4589 return 0;
4590 }
4591
4592
4593 /* Attempt to widen an instruction. If the widening is valid, perform
4594 the action in-place directly into the contents and return TRUE. Otherwise,
4595 the return value is FALSE and the contents are not modified. */
4596
4597 static bfd_boolean
4598 widen_instruction (bfd_byte *contents,
4599 bfd_size_type content_length,
4600 bfd_size_type offset)
4601 {
4602 xtensa_opcode opcode;
4603 bfd_size_type insn_len;
4604 xtensa_isa isa = xtensa_default_isa;
4605 xtensa_format fmt;
4606 xtensa_insnbuf o_insnbuf;
4607
4608 static xtensa_insnbuf insnbuf = NULL;
4609 static xtensa_insnbuf slotbuf = NULL;
4610
4611 if (insnbuf == NULL)
4612 {
4613 insnbuf = xtensa_insnbuf_alloc (isa);
4614 slotbuf = xtensa_insnbuf_alloc (isa);
4615 }
4616
4617 BFD_ASSERT (offset < content_length);
4618
4619 if (content_length < 2)
4620 return FALSE;
4621
4622 /* We will hand-code a few of these for a little while.
4623 These have all been specified in the assembler aleady. */
4624 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4625 content_length - offset);
4626 fmt = xtensa_format_decode (isa, insnbuf);
4627 if (xtensa_format_num_slots (isa, fmt) != 1)
4628 return FALSE;
4629
4630 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4631 return FALSE;
4632
4633 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4634 if (opcode == XTENSA_UNDEFINED)
4635 return FALSE;
4636 insn_len = xtensa_format_length (isa, fmt);
4637 if (insn_len > content_length)
4638 return FALSE;
4639
4640 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
4641 if (o_insnbuf)
4642 {
4643 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4644 content_length - offset);
4645 return TRUE;
4646 }
4647 return FALSE;
4648 }
4649
4650 \f
4651 /* Code for transforming CALLs at link-time. */
4652
4653 static bfd_reloc_status_type
4654 elf_xtensa_do_asm_simplify (bfd_byte *contents,
4655 bfd_vma address,
4656 bfd_vma content_length,
4657 char **error_message)
4658 {
4659 static xtensa_insnbuf insnbuf = NULL;
4660 static xtensa_insnbuf slotbuf = NULL;
4661 xtensa_format core_format = XTENSA_UNDEFINED;
4662 xtensa_opcode opcode;
4663 xtensa_opcode direct_call_opcode;
4664 xtensa_isa isa = xtensa_default_isa;
4665 bfd_byte *chbuf = contents + address;
4666 int opn;
4667
4668 if (insnbuf == NULL)
4669 {
4670 insnbuf = xtensa_insnbuf_alloc (isa);
4671 slotbuf = xtensa_insnbuf_alloc (isa);
4672 }
4673
4674 if (content_length < address)
4675 {
4676 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4677 return bfd_reloc_other;
4678 }
4679
4680 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
4681 direct_call_opcode = swap_callx_for_call_opcode (opcode);
4682 if (direct_call_opcode == XTENSA_UNDEFINED)
4683 {
4684 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4685 return bfd_reloc_other;
4686 }
4687
4688 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
4689 core_format = xtensa_format_lookup (isa, "x24");
4690 opcode = xtensa_opcode_lookup (isa, "or");
4691 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
4692 for (opn = 0; opn < 3; opn++)
4693 {
4694 uint32 regno = 1;
4695 xtensa_operand_encode (isa, opcode, opn, &regno);
4696 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
4697 slotbuf, regno);
4698 }
4699 xtensa_format_encode (isa, core_format, insnbuf);
4700 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4701 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
4702
4703 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
4704 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
4705 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
4706
4707 xtensa_format_encode (isa, core_format, insnbuf);
4708 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4709 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
4710 content_length - address - 3);
4711
4712 return bfd_reloc_ok;
4713 }
4714
4715
4716 static bfd_reloc_status_type
4717 contract_asm_expansion (bfd_byte *contents,
4718 bfd_vma content_length,
4719 Elf_Internal_Rela *irel,
4720 char **error_message)
4721 {
4722 bfd_reloc_status_type retval =
4723 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
4724 error_message);
4725
4726 if (retval != bfd_reloc_ok)
4727 return bfd_reloc_dangerous;
4728
4729 /* Update the irel->r_offset field so that the right immediate and
4730 the right instruction are modified during the relocation. */
4731 irel->r_offset += 3;
4732 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
4733 return bfd_reloc_ok;
4734 }
4735
4736
4737 static xtensa_opcode
4738 swap_callx_for_call_opcode (xtensa_opcode opcode)
4739 {
4740 init_call_opcodes ();
4741
4742 if (opcode == callx0_op) return call0_op;
4743 if (opcode == callx4_op) return call4_op;
4744 if (opcode == callx8_op) return call8_op;
4745 if (opcode == callx12_op) return call12_op;
4746
4747 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
4748 return XTENSA_UNDEFINED;
4749 }
4750
4751
4752 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
4753 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
4754 If not, return XTENSA_UNDEFINED. */
4755
4756 #define L32R_TARGET_REG_OPERAND 0
4757 #define CONST16_TARGET_REG_OPERAND 0
4758 #define CALLN_SOURCE_OPERAND 0
4759
4760 static xtensa_opcode
4761 get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
4762 {
4763 static xtensa_insnbuf insnbuf = NULL;
4764 static xtensa_insnbuf slotbuf = NULL;
4765 xtensa_format fmt;
4766 xtensa_opcode opcode;
4767 xtensa_isa isa = xtensa_default_isa;
4768 uint32 regno, const16_regno, call_regno;
4769 int offset = 0;
4770
4771 if (insnbuf == NULL)
4772 {
4773 insnbuf = xtensa_insnbuf_alloc (isa);
4774 slotbuf = xtensa_insnbuf_alloc (isa);
4775 }
4776
4777 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4778 fmt = xtensa_format_decode (isa, insnbuf);
4779 if (fmt == XTENSA_UNDEFINED
4780 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4781 return XTENSA_UNDEFINED;
4782
4783 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4784 if (opcode == XTENSA_UNDEFINED)
4785 return XTENSA_UNDEFINED;
4786
4787 if (opcode == get_l32r_opcode ())
4788 {
4789 if (p_uses_l32r)
4790 *p_uses_l32r = TRUE;
4791 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4792 fmt, 0, slotbuf, &regno)
4793 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4794 &regno))
4795 return XTENSA_UNDEFINED;
4796 }
4797 else if (opcode == get_const16_opcode ())
4798 {
4799 if (p_uses_l32r)
4800 *p_uses_l32r = FALSE;
4801 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4802 fmt, 0, slotbuf, &regno)
4803 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4804 &regno))
4805 return XTENSA_UNDEFINED;
4806
4807 /* Check that the next instruction is also CONST16. */
4808 offset += xtensa_format_length (isa, fmt);
4809 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4810 fmt = xtensa_format_decode (isa, insnbuf);
4811 if (fmt == XTENSA_UNDEFINED
4812 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4813 return XTENSA_UNDEFINED;
4814 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4815 if (opcode != get_const16_opcode ())
4816 return XTENSA_UNDEFINED;
4817
4818 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4819 fmt, 0, slotbuf, &const16_regno)
4820 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4821 &const16_regno)
4822 || const16_regno != regno)
4823 return XTENSA_UNDEFINED;
4824 }
4825 else
4826 return XTENSA_UNDEFINED;
4827
4828 /* Next instruction should be an CALLXn with operand 0 == regno. */
4829 offset += xtensa_format_length (isa, fmt);
4830 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4831 fmt = xtensa_format_decode (isa, insnbuf);
4832 if (fmt == XTENSA_UNDEFINED
4833 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4834 return XTENSA_UNDEFINED;
4835 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4836 if (opcode == XTENSA_UNDEFINED
4837 || !is_indirect_call_opcode (opcode))
4838 return XTENSA_UNDEFINED;
4839
4840 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4841 fmt, 0, slotbuf, &call_regno)
4842 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4843 &call_regno))
4844 return XTENSA_UNDEFINED;
4845
4846 if (call_regno != regno)
4847 return XTENSA_UNDEFINED;
4848
4849 return opcode;
4850 }
4851
4852 \f
4853 /* Data structures used during relaxation. */
4854
4855 /* r_reloc: relocation values. */
4856
4857 /* Through the relaxation process, we need to keep track of the values
4858 that will result from evaluating relocations. The standard ELF
4859 relocation structure is not sufficient for this purpose because we're
4860 operating on multiple input files at once, so we need to know which
4861 input file a relocation refers to. The r_reloc structure thus
4862 records both the input file (bfd) and ELF relocation.
4863
4864 For efficiency, an r_reloc also contains a "target_offset" field to
4865 cache the target-section-relative offset value that is represented by
4866 the relocation.
4867
4868 The r_reloc also contains a virtual offset that allows multiple
4869 inserted literals to be placed at the same "address" with
4870 different offsets. */
4871
4872 typedef struct r_reloc_struct r_reloc;
4873
4874 struct r_reloc_struct
4875 {
4876 bfd *abfd;
4877 Elf_Internal_Rela rela;
4878 bfd_vma target_offset;
4879 bfd_vma virtual_offset;
4880 };
4881
4882
4883 /* The r_reloc structure is included by value in literal_value, but not
4884 every literal_value has an associated relocation -- some are simple
4885 constants. In such cases, we set all the fields in the r_reloc
4886 struct to zero. The r_reloc_is_const function should be used to
4887 detect this case. */
4888
4889 static bfd_boolean
4890 r_reloc_is_const (const r_reloc *r_rel)
4891 {
4892 return (r_rel->abfd == NULL);
4893 }
4894
4895
4896 static bfd_vma
4897 r_reloc_get_target_offset (const r_reloc *r_rel)
4898 {
4899 bfd_vma target_offset;
4900 unsigned long r_symndx;
4901
4902 BFD_ASSERT (!r_reloc_is_const (r_rel));
4903 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4904 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4905 return (target_offset + r_rel->rela.r_addend);
4906 }
4907
4908
4909 static struct elf_link_hash_entry *
4910 r_reloc_get_hash_entry (const r_reloc *r_rel)
4911 {
4912 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4913 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4914 }
4915
4916
4917 static asection *
4918 r_reloc_get_section (const r_reloc *r_rel)
4919 {
4920 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4921 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4922 }
4923
4924
4925 static bfd_boolean
4926 r_reloc_is_defined (const r_reloc *r_rel)
4927 {
4928 asection *sec;
4929 if (r_rel == NULL)
4930 return FALSE;
4931
4932 sec = r_reloc_get_section (r_rel);
4933 if (sec == bfd_abs_section_ptr
4934 || sec == bfd_com_section_ptr
4935 || sec == bfd_und_section_ptr)
4936 return FALSE;
4937 return TRUE;
4938 }
4939
4940
4941 static void
4942 r_reloc_init (r_reloc *r_rel,
4943 bfd *abfd,
4944 Elf_Internal_Rela *irel,
4945 bfd_byte *contents,
4946 bfd_size_type content_length)
4947 {
4948 int r_type;
4949 reloc_howto_type *howto;
4950
4951 if (irel)
4952 {
4953 r_rel->rela = *irel;
4954 r_rel->abfd = abfd;
4955 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4956 r_rel->virtual_offset = 0;
4957 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4958 howto = &elf_howto_table[r_type];
4959 if (howto->partial_inplace)
4960 {
4961 bfd_vma inplace_val;
4962 BFD_ASSERT (r_rel->rela.r_offset < content_length);
4963
4964 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
4965 r_rel->target_offset += inplace_val;
4966 }
4967 }
4968 else
4969 memset (r_rel, 0, sizeof (r_reloc));
4970 }
4971
4972
4973 #if DEBUG
4974
4975 static void
4976 print_r_reloc (FILE *fp, const r_reloc *r_rel)
4977 {
4978 if (r_reloc_is_defined (r_rel))
4979 {
4980 asection *sec = r_reloc_get_section (r_rel);
4981 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
4982 }
4983 else if (r_reloc_get_hash_entry (r_rel))
4984 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
4985 else
4986 fprintf (fp, " ?? + ");
4987
4988 fprintf_vma (fp, r_rel->target_offset);
4989 if (r_rel->virtual_offset)
4990 {
4991 fprintf (fp, " + ");
4992 fprintf_vma (fp, r_rel->virtual_offset);
4993 }
4994
4995 fprintf (fp, ")");
4996 }
4997
4998 #endif /* DEBUG */
4999
5000 \f
5001 /* source_reloc: relocations that reference literals. */
5002
5003 /* To determine whether literals can be coalesced, we need to first
5004 record all the relocations that reference the literals. The
5005 source_reloc structure below is used for this purpose. The
5006 source_reloc entries are kept in a per-literal-section array, sorted
5007 by offset within the literal section (i.e., target offset).
5008
5009 The source_sec and r_rel.rela.r_offset fields identify the source of
5010 the relocation. The r_rel field records the relocation value, i.e.,
5011 the offset of the literal being referenced. The opnd field is needed
5012 to determine the range of the immediate field to which the relocation
5013 applies, so we can determine whether another literal with the same
5014 value is within range. The is_null field is true when the relocation
5015 is being removed (e.g., when an L32R is being removed due to a CALLX
5016 that is converted to a direct CALL). */
5017
5018 typedef struct source_reloc_struct source_reloc;
5019
5020 struct source_reloc_struct
5021 {
5022 asection *source_sec;
5023 r_reloc r_rel;
5024 xtensa_opcode opcode;
5025 int opnd;
5026 bfd_boolean is_null;
5027 bfd_boolean is_abs_literal;
5028 };
5029
5030
5031 static void
5032 init_source_reloc (source_reloc *reloc,
5033 asection *source_sec,
5034 const r_reloc *r_rel,
5035 xtensa_opcode opcode,
5036 int opnd,
5037 bfd_boolean is_abs_literal)
5038 {
5039 reloc->source_sec = source_sec;
5040 reloc->r_rel = *r_rel;
5041 reloc->opcode = opcode;
5042 reloc->opnd = opnd;
5043 reloc->is_null = FALSE;
5044 reloc->is_abs_literal = is_abs_literal;
5045 }
5046
5047
5048 /* Find the source_reloc for a particular source offset and relocation
5049 type. Note that the array is sorted by _target_ offset, so this is
5050 just a linear search. */
5051
5052 static source_reloc *
5053 find_source_reloc (source_reloc *src_relocs,
5054 int src_count,
5055 asection *sec,
5056 Elf_Internal_Rela *irel)
5057 {
5058 int i;
5059
5060 for (i = 0; i < src_count; i++)
5061 {
5062 if (src_relocs[i].source_sec == sec
5063 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
5064 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
5065 == ELF32_R_TYPE (irel->r_info)))
5066 return &src_relocs[i];
5067 }
5068
5069 return NULL;
5070 }
5071
5072
5073 static int
5074 source_reloc_compare (const void *ap, const void *bp)
5075 {
5076 const source_reloc *a = (const source_reloc *) ap;
5077 const source_reloc *b = (const source_reloc *) bp;
5078
5079 if (a->r_rel.target_offset != b->r_rel.target_offset)
5080 return (a->r_rel.target_offset - b->r_rel.target_offset);
5081
5082 /* We don't need to sort on these criteria for correctness,
5083 but enforcing a more strict ordering prevents unstable qsort
5084 from behaving differently with different implementations.
5085 Without the code below we get correct but different results
5086 on Solaris 2.7 and 2.8. We would like to always produce the
5087 same results no matter the host. */
5088
5089 if ((!a->is_null) - (!b->is_null))
5090 return ((!a->is_null) - (!b->is_null));
5091 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
5092 }
5093
5094 \f
5095 /* Literal values and value hash tables. */
5096
5097 /* Literals with the same value can be coalesced. The literal_value
5098 structure records the value of a literal: the "r_rel" field holds the
5099 information from the relocation on the literal (if there is one) and
5100 the "value" field holds the contents of the literal word itself.
5101
5102 The value_map structure records a literal value along with the
5103 location of a literal holding that value. The value_map hash table
5104 is indexed by the literal value, so that we can quickly check if a
5105 particular literal value has been seen before and is thus a candidate
5106 for coalescing. */
5107
5108 typedef struct literal_value_struct literal_value;
5109 typedef struct value_map_struct value_map;
5110 typedef struct value_map_hash_table_struct value_map_hash_table;
5111
5112 struct literal_value_struct
5113 {
5114 r_reloc r_rel;
5115 unsigned long value;
5116 bfd_boolean is_abs_literal;
5117 };
5118
5119 struct value_map_struct
5120 {
5121 literal_value val; /* The literal value. */
5122 r_reloc loc; /* Location of the literal. */
5123 value_map *next;
5124 };
5125
5126 struct value_map_hash_table_struct
5127 {
5128 unsigned bucket_count;
5129 value_map **buckets;
5130 unsigned count;
5131 bfd_boolean has_last_loc;
5132 r_reloc last_loc;
5133 };
5134
5135
5136 static void
5137 init_literal_value (literal_value *lit,
5138 const r_reloc *r_rel,
5139 unsigned long value,
5140 bfd_boolean is_abs_literal)
5141 {
5142 lit->r_rel = *r_rel;
5143 lit->value = value;
5144 lit->is_abs_literal = is_abs_literal;
5145 }
5146
5147
5148 static bfd_boolean
5149 literal_value_equal (const literal_value *src1,
5150 const literal_value *src2,
5151 bfd_boolean final_static_link)
5152 {
5153 struct elf_link_hash_entry *h1, *h2;
5154
5155 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
5156 return FALSE;
5157
5158 if (r_reloc_is_const (&src1->r_rel))
5159 return (src1->value == src2->value);
5160
5161 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
5162 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
5163 return FALSE;
5164
5165 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
5166 return FALSE;
5167
5168 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
5169 return FALSE;
5170
5171 if (src1->value != src2->value)
5172 return FALSE;
5173
5174 /* Now check for the same section (if defined) or the same elf_hash
5175 (if undefined or weak). */
5176 h1 = r_reloc_get_hash_entry (&src1->r_rel);
5177 h2 = r_reloc_get_hash_entry (&src2->r_rel);
5178 if (r_reloc_is_defined (&src1->r_rel)
5179 && (final_static_link
5180 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
5181 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
5182 {
5183 if (r_reloc_get_section (&src1->r_rel)
5184 != r_reloc_get_section (&src2->r_rel))
5185 return FALSE;
5186 }
5187 else
5188 {
5189 /* Require that the hash entries (i.e., symbols) be identical. */
5190 if (h1 != h2 || h1 == 0)
5191 return FALSE;
5192 }
5193
5194 if (src1->is_abs_literal != src2->is_abs_literal)
5195 return FALSE;
5196
5197 return TRUE;
5198 }
5199
5200
5201 /* Must be power of 2. */
5202 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
5203
5204 static value_map_hash_table *
5205 value_map_hash_table_init (void)
5206 {
5207 value_map_hash_table *values;
5208
5209 values = (value_map_hash_table *)
5210 bfd_zmalloc (sizeof (value_map_hash_table));
5211 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
5212 values->count = 0;
5213 values->buckets = (value_map **)
5214 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
5215 if (values->buckets == NULL)
5216 {
5217 free (values);
5218 return NULL;
5219 }
5220 values->has_last_loc = FALSE;
5221
5222 return values;
5223 }
5224
5225
5226 static void
5227 value_map_hash_table_delete (value_map_hash_table *table)
5228 {
5229 free (table->buckets);
5230 free (table);
5231 }
5232
5233
5234 static unsigned
5235 hash_bfd_vma (bfd_vma val)
5236 {
5237 return (val >> 2) + (val >> 10);
5238 }
5239
5240
5241 static unsigned
5242 literal_value_hash (const literal_value *src)
5243 {
5244 unsigned hash_val;
5245
5246 hash_val = hash_bfd_vma (src->value);
5247 if (!r_reloc_is_const (&src->r_rel))
5248 {
5249 void *sec_or_hash;
5250
5251 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
5252 hash_val += hash_bfd_vma (src->r_rel.target_offset);
5253 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
5254
5255 /* Now check for the same section and the same elf_hash. */
5256 if (r_reloc_is_defined (&src->r_rel))
5257 sec_or_hash = r_reloc_get_section (&src->r_rel);
5258 else
5259 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
5260 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
5261 }
5262 return hash_val;
5263 }
5264
5265
5266 /* Check if the specified literal_value has been seen before. */
5267
5268 static value_map *
5269 value_map_get_cached_value (value_map_hash_table *map,
5270 const literal_value *val,
5271 bfd_boolean final_static_link)
5272 {
5273 value_map *map_e;
5274 value_map *bucket;
5275 unsigned idx;
5276
5277 idx = literal_value_hash (val);
5278 idx = idx & (map->bucket_count - 1);
5279 bucket = map->buckets[idx];
5280 for (map_e = bucket; map_e; map_e = map_e->next)
5281 {
5282 if (literal_value_equal (&map_e->val, val, final_static_link))
5283 return map_e;
5284 }
5285 return NULL;
5286 }
5287
5288
5289 /* Record a new literal value. It is illegal to call this if VALUE
5290 already has an entry here. */
5291
5292 static value_map *
5293 add_value_map (value_map_hash_table *map,
5294 const literal_value *val,
5295 const r_reloc *loc,
5296 bfd_boolean final_static_link)
5297 {
5298 value_map **bucket_p;
5299 unsigned idx;
5300
5301 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
5302 if (val_e == NULL)
5303 {
5304 bfd_set_error (bfd_error_no_memory);
5305 return NULL;
5306 }
5307
5308 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
5309 val_e->val = *val;
5310 val_e->loc = *loc;
5311
5312 idx = literal_value_hash (val);
5313 idx = idx & (map->bucket_count - 1);
5314 bucket_p = &map->buckets[idx];
5315
5316 val_e->next = *bucket_p;
5317 *bucket_p = val_e;
5318 map->count++;
5319 /* FIXME: Consider resizing the hash table if we get too many entries. */
5320
5321 return val_e;
5322 }
5323
5324 \f
5325 /* Lists of text actions (ta_) for narrowing, widening, longcall
5326 conversion, space fill, code & literal removal, etc. */
5327
5328 /* The following text actions are generated:
5329
5330 "ta_remove_insn" remove an instruction or instructions
5331 "ta_remove_longcall" convert longcall to call
5332 "ta_convert_longcall" convert longcall to nop/call
5333 "ta_narrow_insn" narrow a wide instruction
5334 "ta_widen" widen a narrow instruction
5335 "ta_fill" add fill or remove fill
5336 removed < 0 is a fill; branches to the fill address will be
5337 changed to address + fill size (e.g., address - removed)
5338 removed >= 0 branches to the fill address will stay unchanged
5339 "ta_remove_literal" remove a literal; this action is
5340 indicated when a literal is removed
5341 or replaced.
5342 "ta_add_literal" insert a new literal; this action is
5343 indicated when a literal has been moved.
5344 It may use a virtual_offset because
5345 multiple literals can be placed at the
5346 same location.
5347
5348 For each of these text actions, we also record the number of bytes
5349 removed by performing the text action. In the case of a "ta_widen"
5350 or a "ta_fill" that adds space, the removed_bytes will be negative. */
5351
5352 typedef struct text_action_struct text_action;
5353 typedef struct text_action_list_struct text_action_list;
5354 typedef enum text_action_enum_t text_action_t;
5355
5356 enum text_action_enum_t
5357 {
5358 ta_none,
5359 ta_remove_insn, /* removed = -size */
5360 ta_remove_longcall, /* removed = -size */
5361 ta_convert_longcall, /* removed = 0 */
5362 ta_narrow_insn, /* removed = -1 */
5363 ta_widen_insn, /* removed = +1 */
5364 ta_fill, /* removed = +size */
5365 ta_remove_literal,
5366 ta_add_literal
5367 };
5368
5369
5370 /* Structure for a text action record. */
5371 struct text_action_struct
5372 {
5373 text_action_t action;
5374 asection *sec; /* Optional */
5375 bfd_vma offset;
5376 bfd_vma virtual_offset; /* Zero except for adding literals. */
5377 int removed_bytes;
5378 literal_value value; /* Only valid when adding literals. */
5379
5380 text_action *next;
5381 };
5382
5383
5384 /* List of all of the actions taken on a text section. */
5385 struct text_action_list_struct
5386 {
5387 text_action *head;
5388 };
5389
5390
5391 static text_action *
5392 find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
5393 {
5394 text_action **m_p;
5395
5396 /* It is not necessary to fill at the end of a section. */
5397 if (sec->size == offset)
5398 return NULL;
5399
5400 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
5401 {
5402 text_action *t = *m_p;
5403 /* When the action is another fill at the same address,
5404 just increase the size. */
5405 if (t->offset == offset && t->action == ta_fill)
5406 return t;
5407 }
5408 return NULL;
5409 }
5410
5411
5412 static int
5413 compute_removed_action_diff (const text_action *ta,
5414 asection *sec,
5415 bfd_vma offset,
5416 int removed,
5417 int removable_space)
5418 {
5419 int new_removed;
5420 int current_removed = 0;
5421
5422 if (ta)
5423 current_removed = ta->removed_bytes;
5424
5425 BFD_ASSERT (ta == NULL || ta->offset == offset);
5426 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
5427
5428 /* It is not necessary to fill at the end of a section. Clean this up. */
5429 if (sec->size == offset)
5430 new_removed = removable_space - 0;
5431 else
5432 {
5433 int space;
5434 int added = -removed - current_removed;
5435 /* Ignore multiples of the section alignment. */
5436 added = ((1 << sec->alignment_power) - 1) & added;
5437 new_removed = (-added);
5438
5439 /* Modify for removable. */
5440 space = removable_space - new_removed;
5441 new_removed = (removable_space
5442 - (((1 << sec->alignment_power) - 1) & space));
5443 }
5444 return (new_removed - current_removed);
5445 }
5446
5447
5448 static void
5449 adjust_fill_action (text_action *ta, int fill_diff)
5450 {
5451 ta->removed_bytes += fill_diff;
5452 }
5453
5454
5455 /* Add a modification action to the text. For the case of adding or
5456 removing space, modify any current fill and assume that
5457 "unreachable_space" bytes can be freely contracted. Note that a
5458 negative removed value is a fill. */
5459
5460 static void
5461 text_action_add (text_action_list *l,
5462 text_action_t action,
5463 asection *sec,
5464 bfd_vma offset,
5465 int removed)
5466 {
5467 text_action **m_p;
5468 text_action *ta;
5469
5470 /* It is not necessary to fill at the end of a section. */
5471 if (action == ta_fill && sec->size == offset)
5472 return;
5473
5474 /* It is not necessary to fill 0 bytes. */
5475 if (action == ta_fill && removed == 0)
5476 return;
5477
5478 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
5479 {
5480 text_action *t = *m_p;
5481 /* When the action is another fill at the same address,
5482 just increase the size. */
5483 if (t->offset == offset && t->action == ta_fill && action == ta_fill)
5484 {
5485 t->removed_bytes += removed;
5486 return;
5487 }
5488 }
5489
5490 /* Create a new record and fill it up. */
5491 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5492 ta->action = action;
5493 ta->sec = sec;
5494 ta->offset = offset;
5495 ta->removed_bytes = removed;
5496 ta->next = (*m_p);
5497 *m_p = ta;
5498 }
5499
5500
5501 static void
5502 text_action_add_literal (text_action_list *l,
5503 text_action_t action,
5504 const r_reloc *loc,
5505 const literal_value *value,
5506 int removed)
5507 {
5508 text_action **m_p;
5509 text_action *ta;
5510 asection *sec = r_reloc_get_section (loc);
5511 bfd_vma offset = loc->target_offset;
5512 bfd_vma virtual_offset = loc->virtual_offset;
5513
5514 BFD_ASSERT (action == ta_add_literal);
5515
5516 for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next)
5517 {
5518 if ((*m_p)->offset > offset
5519 && ((*m_p)->offset != offset
5520 || (*m_p)->virtual_offset > virtual_offset))
5521 break;
5522 }
5523
5524 /* Create a new record and fill it up. */
5525 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5526 ta->action = action;
5527 ta->sec = sec;
5528 ta->offset = offset;
5529 ta->virtual_offset = virtual_offset;
5530 ta->value = *value;
5531 ta->removed_bytes = removed;
5532 ta->next = (*m_p);
5533 *m_p = ta;
5534 }
5535
5536
5537 /* Find the total offset adjustment for the relaxations specified by
5538 text_actions, beginning from a particular starting action. This is
5539 typically used from offset_with_removed_text to search an entire list of
5540 actions, but it may also be called directly when adjusting adjacent offsets
5541 so that each search may begin where the previous one left off. */
5542
5543 static int
5544 removed_by_actions (text_action **p_start_action,
5545 bfd_vma offset,
5546 bfd_boolean before_fill)
5547 {
5548 text_action *r;
5549 int removed = 0;
5550
5551 r = *p_start_action;
5552 while (r)
5553 {
5554 if (r->offset > offset)
5555 break;
5556
5557 if (r->offset == offset
5558 && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
5559 break;
5560
5561 removed += r->removed_bytes;
5562
5563 r = r->next;
5564 }
5565
5566 *p_start_action = r;
5567 return removed;
5568 }
5569
5570
5571 static bfd_vma
5572 offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
5573 {
5574 text_action *r = action_list->head;
5575 return offset - removed_by_actions (&r, offset, FALSE);
5576 }
5577
5578
5579 static unsigned
5580 action_list_count (text_action_list *action_list)
5581 {
5582 text_action *r = action_list->head;
5583 unsigned count = 0;
5584 for (r = action_list->head; r != NULL; r = r->next)
5585 {
5586 count++;
5587 }
5588 return count;
5589 }
5590
5591
5592 /* The find_insn_action routine will only find non-fill actions. */
5593
5594 static text_action *
5595 find_insn_action (text_action_list *action_list, bfd_vma offset)
5596 {
5597 text_action *t;
5598 for (t = action_list->head; t; t = t->next)
5599 {
5600 if (t->offset == offset)
5601 {
5602 switch (t->action)
5603 {
5604 case ta_none:
5605 case ta_fill:
5606 break;
5607 case ta_remove_insn:
5608 case ta_remove_longcall:
5609 case ta_convert_longcall:
5610 case ta_narrow_insn:
5611 case ta_widen_insn:
5612 return t;
5613 case ta_remove_literal:
5614 case ta_add_literal:
5615 BFD_ASSERT (0);
5616 break;
5617 }
5618 }
5619 }
5620 return NULL;
5621 }
5622
5623
5624 #if DEBUG
5625
5626 static void
5627 print_action_list (FILE *fp, text_action_list *action_list)
5628 {
5629 text_action *r;
5630
5631 fprintf (fp, "Text Action\n");
5632 for (r = action_list->head; r != NULL; r = r->next)
5633 {
5634 const char *t = "unknown";
5635 switch (r->action)
5636 {
5637 case ta_remove_insn:
5638 t = "remove_insn"; break;
5639 case ta_remove_longcall:
5640 t = "remove_longcall"; break;
5641 case ta_convert_longcall:
5642 t = "convert_longcall"; break;
5643 case ta_narrow_insn:
5644 t = "narrow_insn"; break;
5645 case ta_widen_insn:
5646 t = "widen_insn"; break;
5647 case ta_fill:
5648 t = "fill"; break;
5649 case ta_none:
5650 t = "none"; break;
5651 case ta_remove_literal:
5652 t = "remove_literal"; break;
5653 case ta_add_literal:
5654 t = "add_literal"; break;
5655 }
5656
5657 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
5658 r->sec->owner->filename,
5659 r->sec->name, r->offset, t, r->removed_bytes);
5660 }
5661 }
5662
5663 #endif /* DEBUG */
5664
5665 \f
5666 /* Lists of literals being coalesced or removed. */
5667
5668 /* In the usual case, the literal identified by "from" is being
5669 coalesced with another literal identified by "to". If the literal is
5670 unused and is being removed altogether, "to.abfd" will be NULL.
5671 The removed_literal entries are kept on a per-section list, sorted
5672 by the "from" offset field. */
5673
5674 typedef struct removed_literal_struct removed_literal;
5675 typedef struct removed_literal_list_struct removed_literal_list;
5676
5677 struct removed_literal_struct
5678 {
5679 r_reloc from;
5680 r_reloc to;
5681 removed_literal *next;
5682 };
5683
5684 struct removed_literal_list_struct
5685 {
5686 removed_literal *head;
5687 removed_literal *tail;
5688 };
5689
5690
5691 /* Record that the literal at "from" is being removed. If "to" is not
5692 NULL, the "from" literal is being coalesced with the "to" literal. */
5693
5694 static void
5695 add_removed_literal (removed_literal_list *removed_list,
5696 const r_reloc *from,
5697 const r_reloc *to)
5698 {
5699 removed_literal *r, *new_r, *next_r;
5700
5701 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
5702
5703 new_r->from = *from;
5704 if (to)
5705 new_r->to = *to;
5706 else
5707 new_r->to.abfd = NULL;
5708 new_r->next = NULL;
5709
5710 r = removed_list->head;
5711 if (r == NULL)
5712 {
5713 removed_list->head = new_r;
5714 removed_list->tail = new_r;
5715 }
5716 /* Special check for common case of append. */
5717 else if (removed_list->tail->from.target_offset < from->target_offset)
5718 {
5719 removed_list->tail->next = new_r;
5720 removed_list->tail = new_r;
5721 }
5722 else
5723 {
5724 while (r->from.target_offset < from->target_offset && r->next)
5725 {
5726 r = r->next;
5727 }
5728 next_r = r->next;
5729 r->next = new_r;
5730 new_r->next = next_r;
5731 if (next_r == NULL)
5732 removed_list->tail = new_r;
5733 }
5734 }
5735
5736
5737 /* Check if the list of removed literals contains an entry for the
5738 given address. Return the entry if found. */
5739
5740 static removed_literal *
5741 find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
5742 {
5743 removed_literal *r = removed_list->head;
5744 while (r && r->from.target_offset < addr)
5745 r = r->next;
5746 if (r && r->from.target_offset == addr)
5747 return r;
5748 return NULL;
5749 }
5750
5751
5752 #if DEBUG
5753
5754 static void
5755 print_removed_literals (FILE *fp, removed_literal_list *removed_list)
5756 {
5757 removed_literal *r;
5758 r = removed_list->head;
5759 if (r)
5760 fprintf (fp, "Removed Literals\n");
5761 for (; r != NULL; r = r->next)
5762 {
5763 print_r_reloc (fp, &r->from);
5764 fprintf (fp, " => ");
5765 if (r->to.abfd == NULL)
5766 fprintf (fp, "REMOVED");
5767 else
5768 print_r_reloc (fp, &r->to);
5769 fprintf (fp, "\n");
5770 }
5771 }
5772
5773 #endif /* DEBUG */
5774
5775 \f
5776 /* Per-section data for relaxation. */
5777
5778 typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
5779
5780 struct xtensa_relax_info_struct
5781 {
5782 bfd_boolean is_relaxable_literal_section;
5783 bfd_boolean is_relaxable_asm_section;
5784 int visited; /* Number of times visited. */
5785
5786 source_reloc *src_relocs; /* Array[src_count]. */
5787 int src_count;
5788 int src_next; /* Next src_relocs entry to assign. */
5789
5790 removed_literal_list removed_list;
5791 text_action_list action_list;
5792
5793 reloc_bfd_fix *fix_list;
5794 reloc_bfd_fix *fix_array;
5795 unsigned fix_array_count;
5796
5797 /* Support for expanding the reloc array that is stored
5798 in the section structure. If the relocations have been
5799 reallocated, the newly allocated relocations will be referenced
5800 here along with the actual size allocated. The relocation
5801 count will always be found in the section structure. */
5802 Elf_Internal_Rela *allocated_relocs;
5803 unsigned relocs_count;
5804 unsigned allocated_relocs_count;
5805 };
5806
5807 struct elf_xtensa_section_data
5808 {
5809 struct bfd_elf_section_data elf;
5810 xtensa_relax_info relax_info;
5811 };
5812
5813
5814 static bfd_boolean
5815 elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
5816 {
5817 if (!sec->used_by_bfd)
5818 {
5819 struct elf_xtensa_section_data *sdata;
5820 bfd_size_type amt = sizeof (*sdata);
5821
5822 sdata = bfd_zalloc (abfd, amt);
5823 if (sdata == NULL)
5824 return FALSE;
5825 sec->used_by_bfd = sdata;
5826 }
5827
5828 return _bfd_elf_new_section_hook (abfd, sec);
5829 }
5830
5831
5832 static xtensa_relax_info *
5833 get_xtensa_relax_info (asection *sec)
5834 {
5835 struct elf_xtensa_section_data *section_data;
5836
5837 /* No info available if no section or if it is an output section. */
5838 if (!sec || sec == sec->output_section)
5839 return NULL;
5840
5841 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5842 return &section_data->relax_info;
5843 }
5844
5845
5846 static void
5847 init_xtensa_relax_info (asection *sec)
5848 {
5849 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5850
5851 relax_info->is_relaxable_literal_section = FALSE;
5852 relax_info->is_relaxable_asm_section = FALSE;
5853 relax_info->visited = 0;
5854
5855 relax_info->src_relocs = NULL;
5856 relax_info->src_count = 0;
5857 relax_info->src_next = 0;
5858
5859 relax_info->removed_list.head = NULL;
5860 relax_info->removed_list.tail = NULL;
5861
5862 relax_info->action_list.head = NULL;
5863
5864 relax_info->fix_list = NULL;
5865 relax_info->fix_array = NULL;
5866 relax_info->fix_array_count = 0;
5867
5868 relax_info->allocated_relocs = NULL;
5869 relax_info->relocs_count = 0;
5870 relax_info->allocated_relocs_count = 0;
5871 }
5872
5873 \f
5874 /* Coalescing literals may require a relocation to refer to a section in
5875 a different input file, but the standard relocation information
5876 cannot express that. Instead, the reloc_bfd_fix structures are used
5877 to "fix" the relocations that refer to sections in other input files.
5878 These structures are kept on per-section lists. The "src_type" field
5879 records the relocation type in case there are multiple relocations on
5880 the same location. FIXME: This is ugly; an alternative might be to
5881 add new symbols with the "owner" field to some other input file. */
5882
5883 struct reloc_bfd_fix_struct
5884 {
5885 asection *src_sec;
5886 bfd_vma src_offset;
5887 unsigned src_type; /* Relocation type. */
5888
5889 asection *target_sec;
5890 bfd_vma target_offset;
5891 bfd_boolean translated;
5892
5893 reloc_bfd_fix *next;
5894 };
5895
5896
5897 static reloc_bfd_fix *
5898 reloc_bfd_fix_init (asection *src_sec,
5899 bfd_vma src_offset,
5900 unsigned src_type,
5901 asection *target_sec,
5902 bfd_vma target_offset,
5903 bfd_boolean translated)
5904 {
5905 reloc_bfd_fix *fix;
5906
5907 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
5908 fix->src_sec = src_sec;
5909 fix->src_offset = src_offset;
5910 fix->src_type = src_type;
5911 fix->target_sec = target_sec;
5912 fix->target_offset = target_offset;
5913 fix->translated = translated;
5914
5915 return fix;
5916 }
5917
5918
5919 static void
5920 add_fix (asection *src_sec, reloc_bfd_fix *fix)
5921 {
5922 xtensa_relax_info *relax_info;
5923
5924 relax_info = get_xtensa_relax_info (src_sec);
5925 fix->next = relax_info->fix_list;
5926 relax_info->fix_list = fix;
5927 }
5928
5929
5930 static int
5931 fix_compare (const void *ap, const void *bp)
5932 {
5933 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
5934 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
5935
5936 if (a->src_offset != b->src_offset)
5937 return (a->src_offset - b->src_offset);
5938 return (a->src_type - b->src_type);
5939 }
5940
5941
5942 static void
5943 cache_fix_array (asection *sec)
5944 {
5945 unsigned i, count = 0;
5946 reloc_bfd_fix *r;
5947 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5948
5949 if (relax_info == NULL)
5950 return;
5951 if (relax_info->fix_list == NULL)
5952 return;
5953
5954 for (r = relax_info->fix_list; r != NULL; r = r->next)
5955 count++;
5956
5957 relax_info->fix_array =
5958 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
5959 relax_info->fix_array_count = count;
5960
5961 r = relax_info->fix_list;
5962 for (i = 0; i < count; i++, r = r->next)
5963 {
5964 relax_info->fix_array[count - 1 - i] = *r;
5965 relax_info->fix_array[count - 1 - i].next = NULL;
5966 }
5967
5968 qsort (relax_info->fix_array, relax_info->fix_array_count,
5969 sizeof (reloc_bfd_fix), fix_compare);
5970 }
5971
5972
5973 static reloc_bfd_fix *
5974 get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
5975 {
5976 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5977 reloc_bfd_fix *rv;
5978 reloc_bfd_fix key;
5979
5980 if (relax_info == NULL)
5981 return NULL;
5982 if (relax_info->fix_list == NULL)
5983 return NULL;
5984
5985 if (relax_info->fix_array == NULL)
5986 cache_fix_array (sec);
5987
5988 key.src_offset = offset;
5989 key.src_type = type;
5990 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
5991 sizeof (reloc_bfd_fix), fix_compare);
5992 return rv;
5993 }
5994
5995 \f
5996 /* Section caching. */
5997
5998 typedef struct section_cache_struct section_cache_t;
5999
6000 struct section_cache_struct
6001 {
6002 asection *sec;
6003
6004 bfd_byte *contents; /* Cache of the section contents. */
6005 bfd_size_type content_length;
6006
6007 property_table_entry *ptbl; /* Cache of the section property table. */
6008 unsigned pte_count;
6009
6010 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6011 unsigned reloc_count;
6012 };
6013
6014
6015 static void
6016 init_section_cache (section_cache_t *sec_cache)
6017 {
6018 memset (sec_cache, 0, sizeof (*sec_cache));
6019 }
6020
6021
6022 static void
6023 clear_section_cache (section_cache_t *sec_cache)
6024 {
6025 if (sec_cache->sec)
6026 {
6027 release_contents (sec_cache->sec, sec_cache->contents);
6028 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
6029 if (sec_cache->ptbl)
6030 free (sec_cache->ptbl);
6031 memset (sec_cache, 0, sizeof (sec_cache));
6032 }
6033 }
6034
6035
6036 static bfd_boolean
6037 section_cache_section (section_cache_t *sec_cache,
6038 asection *sec,
6039 struct bfd_link_info *link_info)
6040 {
6041 bfd *abfd;
6042 property_table_entry *prop_table = NULL;
6043 int ptblsize = 0;
6044 bfd_byte *contents = NULL;
6045 Elf_Internal_Rela *internal_relocs = NULL;
6046 bfd_size_type sec_size;
6047
6048 if (sec == NULL)
6049 return FALSE;
6050 if (sec == sec_cache->sec)
6051 return TRUE;
6052
6053 abfd = sec->owner;
6054 sec_size = bfd_get_section_limit (abfd, sec);
6055
6056 /* Get the contents. */
6057 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6058 if (contents == NULL && sec_size != 0)
6059 goto err;
6060
6061 /* Get the relocations. */
6062 internal_relocs = retrieve_internal_relocs (abfd, sec,
6063 link_info->keep_memory);
6064
6065 /* Get the entry table. */
6066 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6067 XTENSA_PROP_SEC_NAME, FALSE);
6068 if (ptblsize < 0)
6069 goto err;
6070
6071 /* Fill in the new section cache. */
6072 clear_section_cache (sec_cache);
6073 memset (sec_cache, 0, sizeof (sec_cache));
6074
6075 sec_cache->sec = sec;
6076 sec_cache->contents = contents;
6077 sec_cache->content_length = sec_size;
6078 sec_cache->relocs = internal_relocs;
6079 sec_cache->reloc_count = sec->reloc_count;
6080 sec_cache->pte_count = ptblsize;
6081 sec_cache->ptbl = prop_table;
6082
6083 return TRUE;
6084
6085 err:
6086 release_contents (sec, contents);
6087 release_internal_relocs (sec, internal_relocs);
6088 if (prop_table)
6089 free (prop_table);
6090 return FALSE;
6091 }
6092
6093 \f
6094 /* Extended basic blocks. */
6095
6096 /* An ebb_struct represents an Extended Basic Block. Within this
6097 range, we guarantee that all instructions are decodable, the
6098 property table entries are contiguous, and no property table
6099 specifies a segment that cannot have instructions moved. This
6100 structure contains caches of the contents, property table and
6101 relocations for the specified section for easy use. The range is
6102 specified by ranges of indices for the byte offset, property table
6103 offsets and relocation offsets. These must be consistent. */
6104
6105 typedef struct ebb_struct ebb_t;
6106
6107 struct ebb_struct
6108 {
6109 asection *sec;
6110
6111 bfd_byte *contents; /* Cache of the section contents. */
6112 bfd_size_type content_length;
6113
6114 property_table_entry *ptbl; /* Cache of the section property table. */
6115 unsigned pte_count;
6116
6117 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6118 unsigned reloc_count;
6119
6120 bfd_vma start_offset; /* Offset in section. */
6121 unsigned start_ptbl_idx; /* Offset in the property table. */
6122 unsigned start_reloc_idx; /* Offset in the relocations. */
6123
6124 bfd_vma end_offset;
6125 unsigned end_ptbl_idx;
6126 unsigned end_reloc_idx;
6127
6128 bfd_boolean ends_section; /* Is this the last ebb in a section? */
6129
6130 /* The unreachable property table at the end of this set of blocks;
6131 NULL if the end is not an unreachable block. */
6132 property_table_entry *ends_unreachable;
6133 };
6134
6135
6136 enum ebb_target_enum
6137 {
6138 EBB_NO_ALIGN = 0,
6139 EBB_DESIRE_TGT_ALIGN,
6140 EBB_REQUIRE_TGT_ALIGN,
6141 EBB_REQUIRE_LOOP_ALIGN,
6142 EBB_REQUIRE_ALIGN
6143 };
6144
6145
6146 /* proposed_action_struct is similar to the text_action_struct except
6147 that is represents a potential transformation, not one that will
6148 occur. We build a list of these for an extended basic block
6149 and use them to compute the actual actions desired. We must be
6150 careful that the entire set of actual actions we perform do not
6151 break any relocations that would fit if the actions were not
6152 performed. */
6153
6154 typedef struct proposed_action_struct proposed_action;
6155
6156 struct proposed_action_struct
6157 {
6158 enum ebb_target_enum align_type; /* for the target alignment */
6159 bfd_vma alignment_pow;
6160 text_action_t action;
6161 bfd_vma offset;
6162 int removed_bytes;
6163 bfd_boolean do_action; /* If false, then we will not perform the action. */
6164 };
6165
6166
6167 /* The ebb_constraint_struct keeps a set of proposed actions for an
6168 extended basic block. */
6169
6170 typedef struct ebb_constraint_struct ebb_constraint;
6171
6172 struct ebb_constraint_struct
6173 {
6174 ebb_t ebb;
6175 bfd_boolean start_movable;
6176
6177 /* Bytes of extra space at the beginning if movable. */
6178 int start_extra_space;
6179
6180 enum ebb_target_enum start_align;
6181
6182 bfd_boolean end_movable;
6183
6184 /* Bytes of extra space at the end if movable. */
6185 int end_extra_space;
6186
6187 unsigned action_count;
6188 unsigned action_allocated;
6189
6190 /* Array of proposed actions. */
6191 proposed_action *actions;
6192
6193 /* Action alignments -- one for each proposed action. */
6194 enum ebb_target_enum *action_aligns;
6195 };
6196
6197
6198 static void
6199 init_ebb_constraint (ebb_constraint *c)
6200 {
6201 memset (c, 0, sizeof (ebb_constraint));
6202 }
6203
6204
6205 static void
6206 free_ebb_constraint (ebb_constraint *c)
6207 {
6208 if (c->actions)
6209 free (c->actions);
6210 }
6211
6212
6213 static void
6214 init_ebb (ebb_t *ebb,
6215 asection *sec,
6216 bfd_byte *contents,
6217 bfd_size_type content_length,
6218 property_table_entry *prop_table,
6219 unsigned ptblsize,
6220 Elf_Internal_Rela *internal_relocs,
6221 unsigned reloc_count)
6222 {
6223 memset (ebb, 0, sizeof (ebb_t));
6224 ebb->sec = sec;
6225 ebb->contents = contents;
6226 ebb->content_length = content_length;
6227 ebb->ptbl = prop_table;
6228 ebb->pte_count = ptblsize;
6229 ebb->relocs = internal_relocs;
6230 ebb->reloc_count = reloc_count;
6231 ebb->start_offset = 0;
6232 ebb->end_offset = ebb->content_length - 1;
6233 ebb->start_ptbl_idx = 0;
6234 ebb->end_ptbl_idx = ptblsize;
6235 ebb->start_reloc_idx = 0;
6236 ebb->end_reloc_idx = reloc_count;
6237 }
6238
6239
6240 /* Extend the ebb to all decodable contiguous sections. The algorithm
6241 for building a basic block around an instruction is to push it
6242 forward until we hit the end of a section, an unreachable block or
6243 a block that cannot be transformed. Then we push it backwards
6244 searching for similar conditions. */
6245
6246 static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
6247 static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
6248 static bfd_size_type insn_block_decodable_len
6249 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
6250
6251 static bfd_boolean
6252 extend_ebb_bounds (ebb_t *ebb)
6253 {
6254 if (!extend_ebb_bounds_forward (ebb))
6255 return FALSE;
6256 if (!extend_ebb_bounds_backward (ebb))
6257 return FALSE;
6258 return TRUE;
6259 }
6260
6261
6262 static bfd_boolean
6263 extend_ebb_bounds_forward (ebb_t *ebb)
6264 {
6265 property_table_entry *the_entry, *new_entry;
6266
6267 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6268
6269 /* Stop when (1) we cannot decode an instruction, (2) we are at
6270 the end of the property tables, (3) we hit a non-contiguous property
6271 table entry, (4) we hit a NO_TRANSFORM region. */
6272
6273 while (1)
6274 {
6275 bfd_vma entry_end;
6276 bfd_size_type insn_block_len;
6277
6278 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
6279 insn_block_len =
6280 insn_block_decodable_len (ebb->contents, ebb->content_length,
6281 ebb->end_offset,
6282 entry_end - ebb->end_offset);
6283 if (insn_block_len != (entry_end - ebb->end_offset))
6284 {
6285 (*_bfd_error_handler)
6286 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6287 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6288 return FALSE;
6289 }
6290 ebb->end_offset += insn_block_len;
6291
6292 if (ebb->end_offset == ebb->sec->size)
6293 ebb->ends_section = TRUE;
6294
6295 /* Update the reloc counter. */
6296 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
6297 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
6298 < ebb->end_offset))
6299 {
6300 ebb->end_reloc_idx++;
6301 }
6302
6303 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6304 return TRUE;
6305
6306 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6307 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
6308 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6309 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
6310 break;
6311
6312 if (the_entry->address + the_entry->size != new_entry->address)
6313 break;
6314
6315 the_entry = new_entry;
6316 ebb->end_ptbl_idx++;
6317 }
6318
6319 /* Quick check for an unreachable or end of file just at the end. */
6320 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6321 {
6322 if (ebb->end_offset == ebb->content_length)
6323 ebb->ends_section = TRUE;
6324 }
6325 else
6326 {
6327 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6328 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
6329 && the_entry->address + the_entry->size == new_entry->address)
6330 ebb->ends_unreachable = new_entry;
6331 }
6332
6333 /* Any other ending requires exact alignment. */
6334 return TRUE;
6335 }
6336
6337
6338 static bfd_boolean
6339 extend_ebb_bounds_backward (ebb_t *ebb)
6340 {
6341 property_table_entry *the_entry, *new_entry;
6342
6343 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6344
6345 /* Stop when (1) we cannot decode the instructions in the current entry.
6346 (2) we are at the beginning of the property tables, (3) we hit a
6347 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
6348
6349 while (1)
6350 {
6351 bfd_vma block_begin;
6352 bfd_size_type insn_block_len;
6353
6354 block_begin = the_entry->address - ebb->sec->vma;
6355 insn_block_len =
6356 insn_block_decodable_len (ebb->contents, ebb->content_length,
6357 block_begin,
6358 ebb->start_offset - block_begin);
6359 if (insn_block_len != ebb->start_offset - block_begin)
6360 {
6361 (*_bfd_error_handler)
6362 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6363 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6364 return FALSE;
6365 }
6366 ebb->start_offset -= insn_block_len;
6367
6368 /* Update the reloc counter. */
6369 while (ebb->start_reloc_idx > 0
6370 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
6371 >= ebb->start_offset))
6372 {
6373 ebb->start_reloc_idx--;
6374 }
6375
6376 if (ebb->start_ptbl_idx == 0)
6377 return TRUE;
6378
6379 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
6380 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
6381 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6382 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
6383 return TRUE;
6384 if (new_entry->address + new_entry->size != the_entry->address)
6385 return TRUE;
6386
6387 the_entry = new_entry;
6388 ebb->start_ptbl_idx--;
6389 }
6390 return TRUE;
6391 }
6392
6393
6394 static bfd_size_type
6395 insn_block_decodable_len (bfd_byte *contents,
6396 bfd_size_type content_len,
6397 bfd_vma block_offset,
6398 bfd_size_type block_len)
6399 {
6400 bfd_vma offset = block_offset;
6401
6402 while (offset < block_offset + block_len)
6403 {
6404 bfd_size_type insn_len = 0;
6405
6406 insn_len = insn_decode_len (contents, content_len, offset);
6407 if (insn_len == 0)
6408 return (offset - block_offset);
6409 offset += insn_len;
6410 }
6411 return (offset - block_offset);
6412 }
6413
6414
6415 static void
6416 ebb_propose_action (ebb_constraint *c,
6417 enum ebb_target_enum align_type,
6418 bfd_vma alignment_pow,
6419 text_action_t action,
6420 bfd_vma offset,
6421 int removed_bytes,
6422 bfd_boolean do_action)
6423 {
6424 proposed_action *act;
6425
6426 if (c->action_allocated <= c->action_count)
6427 {
6428 unsigned new_allocated, i;
6429 proposed_action *new_actions;
6430
6431 new_allocated = (c->action_count + 2) * 2;
6432 new_actions = (proposed_action *)
6433 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
6434
6435 for (i = 0; i < c->action_count; i++)
6436 new_actions[i] = c->actions[i];
6437 if (c->actions)
6438 free (c->actions);
6439 c->actions = new_actions;
6440 c->action_allocated = new_allocated;
6441 }
6442
6443 act = &c->actions[c->action_count];
6444 act->align_type = align_type;
6445 act->alignment_pow = alignment_pow;
6446 act->action = action;
6447 act->offset = offset;
6448 act->removed_bytes = removed_bytes;
6449 act->do_action = do_action;
6450
6451 c->action_count++;
6452 }
6453
6454 \f
6455 /* Access to internal relocations, section contents and symbols. */
6456
6457 /* During relaxation, we need to modify relocations, section contents,
6458 and symbol definitions, and we need to keep the original values from
6459 being reloaded from the input files, i.e., we need to "pin" the
6460 modified values in memory. We also want to continue to observe the
6461 setting of the "keep-memory" flag. The following functions wrap the
6462 standard BFD functions to take care of this for us. */
6463
6464 static Elf_Internal_Rela *
6465 retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6466 {
6467 Elf_Internal_Rela *internal_relocs;
6468
6469 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6470 return NULL;
6471
6472 internal_relocs = elf_section_data (sec)->relocs;
6473 if (internal_relocs == NULL)
6474 internal_relocs = (_bfd_elf_link_read_relocs
6475 (abfd, sec, NULL, NULL, keep_memory));
6476 return internal_relocs;
6477 }
6478
6479
6480 static void
6481 pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6482 {
6483 elf_section_data (sec)->relocs = internal_relocs;
6484 }
6485
6486
6487 static void
6488 release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6489 {
6490 if (internal_relocs
6491 && elf_section_data (sec)->relocs != internal_relocs)
6492 free (internal_relocs);
6493 }
6494
6495
6496 static bfd_byte *
6497 retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6498 {
6499 bfd_byte *contents;
6500 bfd_size_type sec_size;
6501
6502 sec_size = bfd_get_section_limit (abfd, sec);
6503 contents = elf_section_data (sec)->this_hdr.contents;
6504
6505 if (contents == NULL && sec_size != 0)
6506 {
6507 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6508 {
6509 if (contents)
6510 free (contents);
6511 return NULL;
6512 }
6513 if (keep_memory)
6514 elf_section_data (sec)->this_hdr.contents = contents;
6515 }
6516 return contents;
6517 }
6518
6519
6520 static void
6521 pin_contents (asection *sec, bfd_byte *contents)
6522 {
6523 elf_section_data (sec)->this_hdr.contents = contents;
6524 }
6525
6526
6527 static void
6528 release_contents (asection *sec, bfd_byte *contents)
6529 {
6530 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
6531 free (contents);
6532 }
6533
6534
6535 static Elf_Internal_Sym *
6536 retrieve_local_syms (bfd *input_bfd)
6537 {
6538 Elf_Internal_Shdr *symtab_hdr;
6539 Elf_Internal_Sym *isymbuf;
6540 size_t locsymcount;
6541
6542 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6543 locsymcount = symtab_hdr->sh_info;
6544
6545 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6546 if (isymbuf == NULL && locsymcount != 0)
6547 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6548 NULL, NULL, NULL);
6549
6550 /* Save the symbols for this input file so they won't be read again. */
6551 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
6552 symtab_hdr->contents = (unsigned char *) isymbuf;
6553
6554 return isymbuf;
6555 }
6556
6557 \f
6558 /* Code for link-time relaxation. */
6559
6560 /* Initialization for relaxation: */
6561 static bfd_boolean analyze_relocations (struct bfd_link_info *);
6562 static bfd_boolean find_relaxable_sections
6563 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
6564 static bfd_boolean collect_source_relocs
6565 (bfd *, asection *, struct bfd_link_info *);
6566 static bfd_boolean is_resolvable_asm_expansion
6567 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
6568 bfd_boolean *);
6569 static Elf_Internal_Rela *find_associated_l32r_irel
6570 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
6571 static bfd_boolean compute_text_actions
6572 (bfd *, asection *, struct bfd_link_info *);
6573 static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
6574 static bfd_boolean compute_ebb_actions (ebb_constraint *);
6575 static bfd_boolean check_section_ebb_pcrels_fit
6576 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *,
6577 const xtensa_opcode *);
6578 static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
6579 static void text_action_add_proposed
6580 (text_action_list *, const ebb_constraint *, asection *);
6581 static int compute_fill_extra_space (property_table_entry *);
6582
6583 /* First pass: */
6584 static bfd_boolean compute_removed_literals
6585 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
6586 static Elf_Internal_Rela *get_irel_at_offset
6587 (asection *, Elf_Internal_Rela *, bfd_vma);
6588 static bfd_boolean is_removable_literal
6589 (const source_reloc *, int, const source_reloc *, int, asection *,
6590 property_table_entry *, int);
6591 static bfd_boolean remove_dead_literal
6592 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
6593 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
6594 static bfd_boolean identify_literal_placement
6595 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
6596 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
6597 source_reloc *, property_table_entry *, int, section_cache_t *,
6598 bfd_boolean);
6599 static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
6600 static bfd_boolean coalesce_shared_literal
6601 (asection *, source_reloc *, property_table_entry *, int, value_map *);
6602 static bfd_boolean move_shared_literal
6603 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
6604 int, const r_reloc *, const literal_value *, section_cache_t *);
6605
6606 /* Second pass: */
6607 static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
6608 static bfd_boolean translate_section_fixes (asection *);
6609 static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
6610 static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
6611 static void shrink_dynamic_reloc_sections
6612 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
6613 static bfd_boolean move_literal
6614 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
6615 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
6616 static bfd_boolean relax_property_section
6617 (bfd *, asection *, struct bfd_link_info *);
6618
6619 /* Third pass: */
6620 static bfd_boolean relax_section_symbols (bfd *, asection *);
6621
6622
6623 static bfd_boolean
6624 elf_xtensa_relax_section (bfd *abfd,
6625 asection *sec,
6626 struct bfd_link_info *link_info,
6627 bfd_boolean *again)
6628 {
6629 static value_map_hash_table *values = NULL;
6630 static bfd_boolean relocations_analyzed = FALSE;
6631 xtensa_relax_info *relax_info;
6632
6633 if (!relocations_analyzed)
6634 {
6635 /* Do some overall initialization for relaxation. */
6636 values = value_map_hash_table_init ();
6637 if (values == NULL)
6638 return FALSE;
6639 relaxing_section = TRUE;
6640 if (!analyze_relocations (link_info))
6641 return FALSE;
6642 relocations_analyzed = TRUE;
6643 }
6644 *again = FALSE;
6645
6646 /* Don't mess with linker-created sections. */
6647 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6648 return TRUE;
6649
6650 relax_info = get_xtensa_relax_info (sec);
6651 BFD_ASSERT (relax_info != NULL);
6652
6653 switch (relax_info->visited)
6654 {
6655 case 0:
6656 /* Note: It would be nice to fold this pass into
6657 analyze_relocations, but it is important for this step that the
6658 sections be examined in link order. */
6659 if (!compute_removed_literals (abfd, sec, link_info, values))
6660 return FALSE;
6661 *again = TRUE;
6662 break;
6663
6664 case 1:
6665 if (values)
6666 value_map_hash_table_delete (values);
6667 values = NULL;
6668 if (!relax_section (abfd, sec, link_info))
6669 return FALSE;
6670 *again = TRUE;
6671 break;
6672
6673 case 2:
6674 if (!relax_section_symbols (abfd, sec))
6675 return FALSE;
6676 break;
6677 }
6678
6679 relax_info->visited++;
6680 return TRUE;
6681 }
6682
6683 \f
6684 /* Initialization for relaxation. */
6685
6686 /* This function is called once at the start of relaxation. It scans
6687 all the input sections and marks the ones that are relaxable (i.e.,
6688 literal sections with L32R relocations against them), and then
6689 collects source_reloc information for all the relocations against
6690 those relaxable sections. During this process, it also detects
6691 longcalls, i.e., calls relaxed by the assembler into indirect
6692 calls, that can be optimized back into direct calls. Within each
6693 extended basic block (ebb) containing an optimized longcall, it
6694 computes a set of "text actions" that can be performed to remove
6695 the L32R associated with the longcall while optionally preserving
6696 branch target alignments. */
6697
6698 static bfd_boolean
6699 analyze_relocations (struct bfd_link_info *link_info)
6700 {
6701 bfd *abfd;
6702 asection *sec;
6703 bfd_boolean is_relaxable = FALSE;
6704
6705 /* Initialize the per-section relaxation info. */
6706 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6707 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6708 {
6709 init_xtensa_relax_info (sec);
6710 }
6711
6712 /* Mark relaxable sections (and count relocations against each one). */
6713 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6714 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6715 {
6716 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
6717 return FALSE;
6718 }
6719
6720 /* Bail out if there are no relaxable sections. */
6721 if (!is_relaxable)
6722 return TRUE;
6723
6724 /* Allocate space for source_relocs. */
6725 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6726 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6727 {
6728 xtensa_relax_info *relax_info;
6729
6730 relax_info = get_xtensa_relax_info (sec);
6731 if (relax_info->is_relaxable_literal_section
6732 || relax_info->is_relaxable_asm_section)
6733 {
6734 relax_info->src_relocs = (source_reloc *)
6735 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
6736 }
6737 else
6738 relax_info->src_count = 0;
6739 }
6740
6741 /* Collect info on relocations against each relaxable section. */
6742 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6743 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6744 {
6745 if (!collect_source_relocs (abfd, sec, link_info))
6746 return FALSE;
6747 }
6748
6749 /* Compute the text actions. */
6750 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6751 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6752 {
6753 if (!compute_text_actions (abfd, sec, link_info))
6754 return FALSE;
6755 }
6756
6757 return TRUE;
6758 }
6759
6760
6761 /* Find all the sections that might be relaxed. The motivation for
6762 this pass is that collect_source_relocs() needs to record _all_ the
6763 relocations that target each relaxable section. That is expensive
6764 and unnecessary unless the target section is actually going to be
6765 relaxed. This pass identifies all such sections by checking if
6766 they have L32Rs pointing to them. In the process, the total number
6767 of relocations targeting each section is also counted so that we
6768 know how much space to allocate for source_relocs against each
6769 relaxable literal section. */
6770
6771 static bfd_boolean
6772 find_relaxable_sections (bfd *abfd,
6773 asection *sec,
6774 struct bfd_link_info *link_info,
6775 bfd_boolean *is_relaxable_p)
6776 {
6777 Elf_Internal_Rela *internal_relocs;
6778 bfd_byte *contents;
6779 bfd_boolean ok = TRUE;
6780 unsigned i;
6781 xtensa_relax_info *source_relax_info;
6782 bfd_boolean is_l32r_reloc;
6783
6784 internal_relocs = retrieve_internal_relocs (abfd, sec,
6785 link_info->keep_memory);
6786 if (internal_relocs == NULL)
6787 return ok;
6788
6789 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6790 if (contents == NULL && sec->size != 0)
6791 {
6792 ok = FALSE;
6793 goto error_return;
6794 }
6795
6796 source_relax_info = get_xtensa_relax_info (sec);
6797 for (i = 0; i < sec->reloc_count; i++)
6798 {
6799 Elf_Internal_Rela *irel = &internal_relocs[i];
6800 r_reloc r_rel;
6801 asection *target_sec;
6802 xtensa_relax_info *target_relax_info;
6803
6804 /* If this section has not already been marked as "relaxable", and
6805 if it contains any ASM_EXPAND relocations (marking expanded
6806 longcalls) that can be optimized into direct calls, then mark
6807 the section as "relaxable". */
6808 if (source_relax_info
6809 && !source_relax_info->is_relaxable_asm_section
6810 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
6811 {
6812 bfd_boolean is_reachable = FALSE;
6813 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
6814 link_info, &is_reachable)
6815 && is_reachable)
6816 {
6817 source_relax_info->is_relaxable_asm_section = TRUE;
6818 *is_relaxable_p = TRUE;
6819 }
6820 }
6821
6822 r_reloc_init (&r_rel, abfd, irel, contents,
6823 bfd_get_section_limit (abfd, sec));
6824
6825 target_sec = r_reloc_get_section (&r_rel);
6826 target_relax_info = get_xtensa_relax_info (target_sec);
6827 if (!target_relax_info)
6828 continue;
6829
6830 /* Count PC-relative operand relocations against the target section.
6831 Note: The conditions tested here must match the conditions under
6832 which init_source_reloc is called in collect_source_relocs(). */
6833 is_l32r_reloc = FALSE;
6834 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6835 {
6836 xtensa_opcode opcode =
6837 get_relocation_opcode (abfd, sec, contents, irel);
6838 if (opcode != XTENSA_UNDEFINED)
6839 {
6840 is_l32r_reloc = (opcode == get_l32r_opcode ());
6841 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
6842 || is_l32r_reloc)
6843 target_relax_info->src_count++;
6844 }
6845 }
6846
6847 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
6848 {
6849 /* Mark the target section as relaxable. */
6850 target_relax_info->is_relaxable_literal_section = TRUE;
6851 *is_relaxable_p = TRUE;
6852 }
6853 }
6854
6855 error_return:
6856 release_contents (sec, contents);
6857 release_internal_relocs (sec, internal_relocs);
6858 return ok;
6859 }
6860
6861
6862 /* Record _all_ the relocations that point to relaxable sections, and
6863 get rid of ASM_EXPAND relocs by either converting them to
6864 ASM_SIMPLIFY or by removing them. */
6865
6866 static bfd_boolean
6867 collect_source_relocs (bfd *abfd,
6868 asection *sec,
6869 struct bfd_link_info *link_info)
6870 {
6871 Elf_Internal_Rela *internal_relocs;
6872 bfd_byte *contents;
6873 bfd_boolean ok = TRUE;
6874 unsigned i;
6875 bfd_size_type sec_size;
6876
6877 internal_relocs = retrieve_internal_relocs (abfd, sec,
6878 link_info->keep_memory);
6879 if (internal_relocs == NULL)
6880 return ok;
6881
6882 sec_size = bfd_get_section_limit (abfd, sec);
6883 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6884 if (contents == NULL && sec_size != 0)
6885 {
6886 ok = FALSE;
6887 goto error_return;
6888 }
6889
6890 /* Record relocations against relaxable literal sections. */
6891 for (i = 0; i < sec->reloc_count; i++)
6892 {
6893 Elf_Internal_Rela *irel = &internal_relocs[i];
6894 r_reloc r_rel;
6895 asection *target_sec;
6896 xtensa_relax_info *target_relax_info;
6897
6898 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6899
6900 target_sec = r_reloc_get_section (&r_rel);
6901 target_relax_info = get_xtensa_relax_info (target_sec);
6902
6903 if (target_relax_info
6904 && (target_relax_info->is_relaxable_literal_section
6905 || target_relax_info->is_relaxable_asm_section))
6906 {
6907 xtensa_opcode opcode = XTENSA_UNDEFINED;
6908 int opnd = -1;
6909 bfd_boolean is_abs_literal = FALSE;
6910
6911 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
6912 {
6913 /* None of the current alternate relocs are PC-relative,
6914 and only PC-relative relocs matter here. However, we
6915 still need to record the opcode for literal
6916 coalescing. */
6917 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6918 if (opcode == get_l32r_opcode ())
6919 {
6920 is_abs_literal = TRUE;
6921 opnd = 1;
6922 }
6923 else
6924 opcode = XTENSA_UNDEFINED;
6925 }
6926 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6927 {
6928 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6929 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
6930 }
6931
6932 if (opcode != XTENSA_UNDEFINED)
6933 {
6934 int src_next = target_relax_info->src_next++;
6935 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
6936
6937 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
6938 is_abs_literal);
6939 }
6940 }
6941 }
6942
6943 /* Now get rid of ASM_EXPAND relocations. At this point, the
6944 src_relocs array for the target literal section may still be
6945 incomplete, but it must at least contain the entries for the L32R
6946 relocations associated with ASM_EXPANDs because they were just
6947 added in the preceding loop over the relocations. */
6948
6949 for (i = 0; i < sec->reloc_count; i++)
6950 {
6951 Elf_Internal_Rela *irel = &internal_relocs[i];
6952 bfd_boolean is_reachable;
6953
6954 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
6955 &is_reachable))
6956 continue;
6957
6958 if (is_reachable)
6959 {
6960 Elf_Internal_Rela *l32r_irel;
6961 r_reloc r_rel;
6962 asection *target_sec;
6963 xtensa_relax_info *target_relax_info;
6964
6965 /* Mark the source_reloc for the L32R so that it will be
6966 removed in compute_removed_literals(), along with the
6967 associated literal. */
6968 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
6969 irel, internal_relocs);
6970 if (l32r_irel == NULL)
6971 continue;
6972
6973 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
6974
6975 target_sec = r_reloc_get_section (&r_rel);
6976 target_relax_info = get_xtensa_relax_info (target_sec);
6977
6978 if (target_relax_info
6979 && (target_relax_info->is_relaxable_literal_section
6980 || target_relax_info->is_relaxable_asm_section))
6981 {
6982 source_reloc *s_reloc;
6983
6984 /* Search the source_relocs for the entry corresponding to
6985 the l32r_irel. Note: The src_relocs array is not yet
6986 sorted, but it wouldn't matter anyway because we're
6987 searching by source offset instead of target offset. */
6988 s_reloc = find_source_reloc (target_relax_info->src_relocs,
6989 target_relax_info->src_next,
6990 sec, l32r_irel);
6991 BFD_ASSERT (s_reloc);
6992 s_reloc->is_null = TRUE;
6993 }
6994
6995 /* Convert this reloc to ASM_SIMPLIFY. */
6996 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
6997 R_XTENSA_ASM_SIMPLIFY);
6998 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6999
7000 pin_internal_relocs (sec, internal_relocs);
7001 }
7002 else
7003 {
7004 /* It is resolvable but doesn't reach. We resolve now
7005 by eliminating the relocation -- the call will remain
7006 expanded into L32R/CALLX. */
7007 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7008 pin_internal_relocs (sec, internal_relocs);
7009 }
7010 }
7011
7012 error_return:
7013 release_contents (sec, contents);
7014 release_internal_relocs (sec, internal_relocs);
7015 return ok;
7016 }
7017
7018
7019 /* Return TRUE if the asm expansion can be resolved. Generally it can
7020 be resolved on a final link or when a partial link locates it in the
7021 same section as the target. Set "is_reachable" flag if the target of
7022 the call is within the range of a direct call, given the current VMA
7023 for this section and the target section. */
7024
7025 bfd_boolean
7026 is_resolvable_asm_expansion (bfd *abfd,
7027 asection *sec,
7028 bfd_byte *contents,
7029 Elf_Internal_Rela *irel,
7030 struct bfd_link_info *link_info,
7031 bfd_boolean *is_reachable_p)
7032 {
7033 asection *target_sec;
7034 bfd_vma target_offset;
7035 r_reloc r_rel;
7036 xtensa_opcode opcode, direct_call_opcode;
7037 bfd_vma self_address;
7038 bfd_vma dest_address;
7039 bfd_boolean uses_l32r;
7040 bfd_size_type sec_size;
7041
7042 *is_reachable_p = FALSE;
7043
7044 if (contents == NULL)
7045 return FALSE;
7046
7047 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
7048 return FALSE;
7049
7050 sec_size = bfd_get_section_limit (abfd, sec);
7051 opcode = get_expanded_call_opcode (contents + irel->r_offset,
7052 sec_size - irel->r_offset, &uses_l32r);
7053 /* Optimization of longcalls that use CONST16 is not yet implemented. */
7054 if (!uses_l32r)
7055 return FALSE;
7056
7057 direct_call_opcode = swap_callx_for_call_opcode (opcode);
7058 if (direct_call_opcode == XTENSA_UNDEFINED)
7059 return FALSE;
7060
7061 /* Check and see that the target resolves. */
7062 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7063 if (!r_reloc_is_defined (&r_rel))
7064 return FALSE;
7065
7066 target_sec = r_reloc_get_section (&r_rel);
7067 target_offset = r_rel.target_offset;
7068
7069 /* If the target is in a shared library, then it doesn't reach. This
7070 isn't supposed to come up because the compiler should never generate
7071 non-PIC calls on systems that use shared libraries, but the linker
7072 shouldn't crash regardless. */
7073 if (!target_sec->output_section)
7074 return FALSE;
7075
7076 /* For relocatable sections, we can only simplify when the output
7077 section of the target is the same as the output section of the
7078 source. */
7079 if (link_info->relocatable
7080 && (target_sec->output_section != sec->output_section
7081 || is_reloc_sym_weak (abfd, irel)))
7082 return FALSE;
7083
7084 self_address = (sec->output_section->vma
7085 + sec->output_offset + irel->r_offset + 3);
7086 dest_address = (target_sec->output_section->vma
7087 + target_sec->output_offset + target_offset);
7088
7089 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
7090 self_address, dest_address);
7091
7092 if ((self_address >> CALL_SEGMENT_BITS) !=
7093 (dest_address >> CALL_SEGMENT_BITS))
7094 return FALSE;
7095
7096 return TRUE;
7097 }
7098
7099
7100 static Elf_Internal_Rela *
7101 find_associated_l32r_irel (bfd *abfd,
7102 asection *sec,
7103 bfd_byte *contents,
7104 Elf_Internal_Rela *other_irel,
7105 Elf_Internal_Rela *internal_relocs)
7106 {
7107 unsigned i;
7108
7109 for (i = 0; i < sec->reloc_count; i++)
7110 {
7111 Elf_Internal_Rela *irel = &internal_relocs[i];
7112
7113 if (irel == other_irel)
7114 continue;
7115 if (irel->r_offset != other_irel->r_offset)
7116 continue;
7117 if (is_l32r_relocation (abfd, sec, contents, irel))
7118 return irel;
7119 }
7120
7121 return NULL;
7122 }
7123
7124
7125 static xtensa_opcode *
7126 build_reloc_opcodes (bfd *abfd,
7127 asection *sec,
7128 bfd_byte *contents,
7129 Elf_Internal_Rela *internal_relocs)
7130 {
7131 unsigned i;
7132 xtensa_opcode *reloc_opcodes =
7133 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
7134 for (i = 0; i < sec->reloc_count; i++)
7135 {
7136 Elf_Internal_Rela *irel = &internal_relocs[i];
7137 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
7138 }
7139 return reloc_opcodes;
7140 }
7141
7142
7143 /* The compute_text_actions function will build a list of potential
7144 transformation actions for code in the extended basic block of each
7145 longcall that is optimized to a direct call. From this list we
7146 generate a set of actions to actually perform that optimizes for
7147 space and, if not using size_opt, maintains branch target
7148 alignments.
7149
7150 These actions to be performed are placed on a per-section list.
7151 The actual changes are performed by relax_section() in the second
7152 pass. */
7153
7154 bfd_boolean
7155 compute_text_actions (bfd *abfd,
7156 asection *sec,
7157 struct bfd_link_info *link_info)
7158 {
7159 xtensa_opcode *reloc_opcodes = NULL;
7160 xtensa_relax_info *relax_info;
7161 bfd_byte *contents;
7162 Elf_Internal_Rela *internal_relocs;
7163 bfd_boolean ok = TRUE;
7164 unsigned i;
7165 property_table_entry *prop_table = 0;
7166 int ptblsize = 0;
7167 bfd_size_type sec_size;
7168
7169 relax_info = get_xtensa_relax_info (sec);
7170 BFD_ASSERT (relax_info);
7171 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
7172
7173 /* Do nothing if the section contains no optimized longcalls. */
7174 if (!relax_info->is_relaxable_asm_section)
7175 return ok;
7176
7177 internal_relocs = retrieve_internal_relocs (abfd, sec,
7178 link_info->keep_memory);
7179
7180 if (internal_relocs)
7181 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7182 internal_reloc_compare);
7183
7184 sec_size = bfd_get_section_limit (abfd, sec);
7185 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7186 if (contents == NULL && sec_size != 0)
7187 {
7188 ok = FALSE;
7189 goto error_return;
7190 }
7191
7192 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7193 XTENSA_PROP_SEC_NAME, FALSE);
7194 if (ptblsize < 0)
7195 {
7196 ok = FALSE;
7197 goto error_return;
7198 }
7199
7200 for (i = 0; i < sec->reloc_count; i++)
7201 {
7202 Elf_Internal_Rela *irel = &internal_relocs[i];
7203 bfd_vma r_offset;
7204 property_table_entry *the_entry;
7205 int ptbl_idx;
7206 ebb_t *ebb;
7207 ebb_constraint ebb_table;
7208 bfd_size_type simplify_size;
7209
7210 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
7211 continue;
7212 r_offset = irel->r_offset;
7213
7214 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
7215 if (simplify_size == 0)
7216 {
7217 (*_bfd_error_handler)
7218 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
7219 sec->owner, sec, r_offset);
7220 continue;
7221 }
7222
7223 /* If the instruction table is not around, then don't do this
7224 relaxation. */
7225 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7226 sec->vma + irel->r_offset);
7227 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
7228 {
7229 text_action_add (&relax_info->action_list,
7230 ta_convert_longcall, sec, r_offset,
7231 0);
7232 continue;
7233 }
7234
7235 /* If the next longcall happens to be at the same address as an
7236 unreachable section of size 0, then skip forward. */
7237 ptbl_idx = the_entry - prop_table;
7238 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
7239 && the_entry->size == 0
7240 && ptbl_idx + 1 < ptblsize
7241 && (prop_table[ptbl_idx + 1].address
7242 == prop_table[ptbl_idx].address))
7243 {
7244 ptbl_idx++;
7245 the_entry++;
7246 }
7247
7248 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
7249 /* NO_REORDER is OK */
7250 continue;
7251
7252 init_ebb_constraint (&ebb_table);
7253 ebb = &ebb_table.ebb;
7254 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
7255 internal_relocs, sec->reloc_count);
7256 ebb->start_offset = r_offset + simplify_size;
7257 ebb->end_offset = r_offset + simplify_size;
7258 ebb->start_ptbl_idx = ptbl_idx;
7259 ebb->end_ptbl_idx = ptbl_idx;
7260 ebb->start_reloc_idx = i;
7261 ebb->end_reloc_idx = i;
7262
7263 /* Precompute the opcode for each relocation. */
7264 if (reloc_opcodes == NULL)
7265 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents,
7266 internal_relocs);
7267
7268 if (!extend_ebb_bounds (ebb)
7269 || !compute_ebb_proposed_actions (&ebb_table)
7270 || !compute_ebb_actions (&ebb_table)
7271 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
7272 internal_relocs, &ebb_table,
7273 reloc_opcodes)
7274 || !check_section_ebb_reduces (&ebb_table))
7275 {
7276 /* If anything goes wrong or we get unlucky and something does
7277 not fit, with our plan because of expansion between
7278 critical branches, just convert to a NOP. */
7279
7280 text_action_add (&relax_info->action_list,
7281 ta_convert_longcall, sec, r_offset, 0);
7282 i = ebb_table.ebb.end_reloc_idx;
7283 free_ebb_constraint (&ebb_table);
7284 continue;
7285 }
7286
7287 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
7288
7289 /* Update the index so we do not go looking at the relocations
7290 we have already processed. */
7291 i = ebb_table.ebb.end_reloc_idx;
7292 free_ebb_constraint (&ebb_table);
7293 }
7294
7295 #if DEBUG
7296 if (relax_info->action_list.head)
7297 print_action_list (stderr, &relax_info->action_list);
7298 #endif
7299
7300 error_return:
7301 release_contents (sec, contents);
7302 release_internal_relocs (sec, internal_relocs);
7303 if (prop_table)
7304 free (prop_table);
7305 if (reloc_opcodes)
7306 free (reloc_opcodes);
7307
7308 return ok;
7309 }
7310
7311
7312 /* Do not widen an instruction if it is preceeded by a
7313 loop opcode. It might cause misalignment. */
7314
7315 static bfd_boolean
7316 prev_instr_is_a_loop (bfd_byte *contents,
7317 bfd_size_type content_length,
7318 bfd_size_type offset)
7319 {
7320 xtensa_opcode prev_opcode;
7321
7322 if (offset < 3)
7323 return FALSE;
7324 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
7325 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
7326 }
7327
7328
7329 /* Find all of the possible actions for an extended basic block. */
7330
7331 bfd_boolean
7332 compute_ebb_proposed_actions (ebb_constraint *ebb_table)
7333 {
7334 const ebb_t *ebb = &ebb_table->ebb;
7335 unsigned rel_idx = ebb->start_reloc_idx;
7336 property_table_entry *entry, *start_entry, *end_entry;
7337 bfd_vma offset = 0;
7338 xtensa_isa isa = xtensa_default_isa;
7339 xtensa_format fmt;
7340 static xtensa_insnbuf insnbuf = NULL;
7341 static xtensa_insnbuf slotbuf = NULL;
7342
7343 if (insnbuf == NULL)
7344 {
7345 insnbuf = xtensa_insnbuf_alloc (isa);
7346 slotbuf = xtensa_insnbuf_alloc (isa);
7347 }
7348
7349 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
7350 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
7351
7352 for (entry = start_entry; entry <= end_entry; entry++)
7353 {
7354 bfd_vma start_offset, end_offset;
7355 bfd_size_type insn_len;
7356
7357 start_offset = entry->address - ebb->sec->vma;
7358 end_offset = entry->address + entry->size - ebb->sec->vma;
7359
7360 if (entry == start_entry)
7361 start_offset = ebb->start_offset;
7362 if (entry == end_entry)
7363 end_offset = ebb->end_offset;
7364 offset = start_offset;
7365
7366 if (offset == entry->address - ebb->sec->vma
7367 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
7368 {
7369 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
7370 BFD_ASSERT (offset != end_offset);
7371 if (offset == end_offset)
7372 return FALSE;
7373
7374 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
7375 offset);
7376 if (insn_len == 0)
7377 goto decode_error;
7378
7379 if (check_branch_target_aligned_address (offset, insn_len))
7380 align_type = EBB_REQUIRE_TGT_ALIGN;
7381
7382 ebb_propose_action (ebb_table, align_type, 0,
7383 ta_none, offset, 0, TRUE);
7384 }
7385
7386 while (offset != end_offset)
7387 {
7388 Elf_Internal_Rela *irel;
7389 xtensa_opcode opcode;
7390
7391 while (rel_idx < ebb->end_reloc_idx
7392 && (ebb->relocs[rel_idx].r_offset < offset
7393 || (ebb->relocs[rel_idx].r_offset == offset
7394 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
7395 != R_XTENSA_ASM_SIMPLIFY))))
7396 rel_idx++;
7397
7398 /* Check for longcall. */
7399 irel = &ebb->relocs[rel_idx];
7400 if (irel->r_offset == offset
7401 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
7402 {
7403 bfd_size_type simplify_size;
7404
7405 simplify_size = get_asm_simplify_size (ebb->contents,
7406 ebb->content_length,
7407 irel->r_offset);
7408 if (simplify_size == 0)
7409 goto decode_error;
7410
7411 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7412 ta_convert_longcall, offset, 0, TRUE);
7413
7414 offset += simplify_size;
7415 continue;
7416 }
7417
7418 if (offset + MIN_INSN_LENGTH > ebb->content_length)
7419 goto decode_error;
7420 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
7421 ebb->content_length - offset);
7422 fmt = xtensa_format_decode (isa, insnbuf);
7423 if (fmt == XTENSA_UNDEFINED)
7424 goto decode_error;
7425 insn_len = xtensa_format_length (isa, fmt);
7426 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
7427 goto decode_error;
7428
7429 if (xtensa_format_num_slots (isa, fmt) != 1)
7430 {
7431 offset += insn_len;
7432 continue;
7433 }
7434
7435 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
7436 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
7437 if (opcode == XTENSA_UNDEFINED)
7438 goto decode_error;
7439
7440 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
7441 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
7442 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
7443 {
7444 /* Add an instruction narrow action. */
7445 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7446 ta_narrow_insn, offset, 0, FALSE);
7447 }
7448 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
7449 && can_widen_instruction (slotbuf, fmt, opcode) != 0
7450 && ! prev_instr_is_a_loop (ebb->contents,
7451 ebb->content_length, offset))
7452 {
7453 /* Add an instruction widen action. */
7454 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7455 ta_widen_insn, offset, 0, FALSE);
7456 }
7457 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
7458 {
7459 /* Check for branch targets. */
7460 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
7461 ta_none, offset, 0, TRUE);
7462 }
7463
7464 offset += insn_len;
7465 }
7466 }
7467
7468 if (ebb->ends_unreachable)
7469 {
7470 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7471 ta_fill, ebb->end_offset, 0, TRUE);
7472 }
7473
7474 return TRUE;
7475
7476 decode_error:
7477 (*_bfd_error_handler)
7478 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
7479 ebb->sec->owner, ebb->sec, offset);
7480 return FALSE;
7481 }
7482
7483
7484 /* After all of the information has collected about the
7485 transformations possible in an EBB, compute the appropriate actions
7486 here in compute_ebb_actions. We still must check later to make
7487 sure that the actions do not break any relocations. The algorithm
7488 used here is pretty greedy. Basically, it removes as many no-ops
7489 as possible so that the end of the EBB has the same alignment
7490 characteristics as the original. First, it uses narrowing, then
7491 fill space at the end of the EBB, and finally widenings. If that
7492 does not work, it tries again with one fewer no-op removed. The
7493 optimization will only be performed if all of the branch targets
7494 that were aligned before transformation are also aligned after the
7495 transformation.
7496
7497 When the size_opt flag is set, ignore the branch target alignments,
7498 narrow all wide instructions, and remove all no-ops unless the end
7499 of the EBB prevents it. */
7500
7501 bfd_boolean
7502 compute_ebb_actions (ebb_constraint *ebb_table)
7503 {
7504 unsigned i = 0;
7505 unsigned j;
7506 int removed_bytes = 0;
7507 ebb_t *ebb = &ebb_table->ebb;
7508 unsigned seg_idx_start = 0;
7509 unsigned seg_idx_end = 0;
7510
7511 /* We perform this like the assembler relaxation algorithm: Start by
7512 assuming all instructions are narrow and all no-ops removed; then
7513 walk through.... */
7514
7515 /* For each segment of this that has a solid constraint, check to
7516 see if there are any combinations that will keep the constraint.
7517 If so, use it. */
7518 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
7519 {
7520 bfd_boolean requires_text_end_align = FALSE;
7521 unsigned longcall_count = 0;
7522 unsigned longcall_convert_count = 0;
7523 unsigned narrowable_count = 0;
7524 unsigned narrowable_convert_count = 0;
7525 unsigned widenable_count = 0;
7526 unsigned widenable_convert_count = 0;
7527
7528 proposed_action *action = NULL;
7529 int align = (1 << ebb_table->ebb.sec->alignment_power);
7530
7531 seg_idx_start = seg_idx_end;
7532
7533 for (i = seg_idx_start; i < ebb_table->action_count; i++)
7534 {
7535 action = &ebb_table->actions[i];
7536 if (action->action == ta_convert_longcall)
7537 longcall_count++;
7538 if (action->action == ta_narrow_insn)
7539 narrowable_count++;
7540 if (action->action == ta_widen_insn)
7541 widenable_count++;
7542 if (action->action == ta_fill)
7543 break;
7544 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
7545 break;
7546 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
7547 && !elf32xtensa_size_opt)
7548 break;
7549 }
7550 seg_idx_end = i;
7551
7552 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
7553 requires_text_end_align = TRUE;
7554
7555 if (elf32xtensa_size_opt && !requires_text_end_align
7556 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
7557 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
7558 {
7559 longcall_convert_count = longcall_count;
7560 narrowable_convert_count = narrowable_count;
7561 widenable_convert_count = 0;
7562 }
7563 else
7564 {
7565 /* There is a constraint. Convert the max number of longcalls. */
7566 narrowable_convert_count = 0;
7567 longcall_convert_count = 0;
7568 widenable_convert_count = 0;
7569
7570 for (j = 0; j < longcall_count; j++)
7571 {
7572 int removed = (longcall_count - j) * 3 & (align - 1);
7573 unsigned desire_narrow = (align - removed) & (align - 1);
7574 unsigned desire_widen = removed;
7575 if (desire_narrow <= narrowable_count)
7576 {
7577 narrowable_convert_count = desire_narrow;
7578 narrowable_convert_count +=
7579 (align * ((narrowable_count - narrowable_convert_count)
7580 / align));
7581 longcall_convert_count = (longcall_count - j);
7582 widenable_convert_count = 0;
7583 break;
7584 }
7585 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
7586 {
7587 narrowable_convert_count = 0;
7588 longcall_convert_count = longcall_count - j;
7589 widenable_convert_count = desire_widen;
7590 break;
7591 }
7592 }
7593 }
7594
7595 /* Now the number of conversions are saved. Do them. */
7596 for (i = seg_idx_start; i < seg_idx_end; i++)
7597 {
7598 action = &ebb_table->actions[i];
7599 switch (action->action)
7600 {
7601 case ta_convert_longcall:
7602 if (longcall_convert_count != 0)
7603 {
7604 action->action = ta_remove_longcall;
7605 action->do_action = TRUE;
7606 action->removed_bytes += 3;
7607 longcall_convert_count--;
7608 }
7609 break;
7610 case ta_narrow_insn:
7611 if (narrowable_convert_count != 0)
7612 {
7613 action->do_action = TRUE;
7614 action->removed_bytes += 1;
7615 narrowable_convert_count--;
7616 }
7617 break;
7618 case ta_widen_insn:
7619 if (widenable_convert_count != 0)
7620 {
7621 action->do_action = TRUE;
7622 action->removed_bytes -= 1;
7623 widenable_convert_count--;
7624 }
7625 break;
7626 default:
7627 break;
7628 }
7629 }
7630 }
7631
7632 /* Now we move on to some local opts. Try to remove each of the
7633 remaining longcalls. */
7634
7635 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
7636 {
7637 removed_bytes = 0;
7638 for (i = 0; i < ebb_table->action_count; i++)
7639 {
7640 int old_removed_bytes = removed_bytes;
7641 proposed_action *action = &ebb_table->actions[i];
7642
7643 if (action->do_action && action->action == ta_convert_longcall)
7644 {
7645 bfd_boolean bad_alignment = FALSE;
7646 removed_bytes += 3;
7647 for (j = i + 1; j < ebb_table->action_count; j++)
7648 {
7649 proposed_action *new_action = &ebb_table->actions[j];
7650 bfd_vma offset = new_action->offset;
7651 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
7652 {
7653 if (!check_branch_target_aligned
7654 (ebb_table->ebb.contents,
7655 ebb_table->ebb.content_length,
7656 offset, offset - removed_bytes))
7657 {
7658 bad_alignment = TRUE;
7659 break;
7660 }
7661 }
7662 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
7663 {
7664 if (!check_loop_aligned (ebb_table->ebb.contents,
7665 ebb_table->ebb.content_length,
7666 offset,
7667 offset - removed_bytes))
7668 {
7669 bad_alignment = TRUE;
7670 break;
7671 }
7672 }
7673 if (new_action->action == ta_narrow_insn
7674 && !new_action->do_action
7675 && ebb_table->ebb.sec->alignment_power == 2)
7676 {
7677 /* Narrow an instruction and we are done. */
7678 new_action->do_action = TRUE;
7679 new_action->removed_bytes += 1;
7680 bad_alignment = FALSE;
7681 break;
7682 }
7683 if (new_action->action == ta_widen_insn
7684 && new_action->do_action
7685 && ebb_table->ebb.sec->alignment_power == 2)
7686 {
7687 /* Narrow an instruction and we are done. */
7688 new_action->do_action = FALSE;
7689 new_action->removed_bytes += 1;
7690 bad_alignment = FALSE;
7691 break;
7692 }
7693 if (new_action->do_action)
7694 removed_bytes += new_action->removed_bytes;
7695 }
7696 if (!bad_alignment)
7697 {
7698 action->removed_bytes += 3;
7699 action->action = ta_remove_longcall;
7700 action->do_action = TRUE;
7701 }
7702 }
7703 removed_bytes = old_removed_bytes;
7704 if (action->do_action)
7705 removed_bytes += action->removed_bytes;
7706 }
7707 }
7708
7709 removed_bytes = 0;
7710 for (i = 0; i < ebb_table->action_count; ++i)
7711 {
7712 proposed_action *action = &ebb_table->actions[i];
7713 if (action->do_action)
7714 removed_bytes += action->removed_bytes;
7715 }
7716
7717 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
7718 && ebb->ends_unreachable)
7719 {
7720 proposed_action *action;
7721 int br;
7722 int extra_space;
7723
7724 BFD_ASSERT (ebb_table->action_count != 0);
7725 action = &ebb_table->actions[ebb_table->action_count - 1];
7726 BFD_ASSERT (action->action == ta_fill);
7727 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
7728
7729 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
7730 br = action->removed_bytes + removed_bytes + extra_space;
7731 br = br & ((1 << ebb->sec->alignment_power ) - 1);
7732
7733 action->removed_bytes = extra_space - br;
7734 }
7735 return TRUE;
7736 }
7737
7738
7739 /* The xlate_map is a sorted array of address mappings designed to
7740 answer the offset_with_removed_text() query with a binary search instead
7741 of a linear search through the section's action_list. */
7742
7743 typedef struct xlate_map_entry xlate_map_entry_t;
7744 typedef struct xlate_map xlate_map_t;
7745
7746 struct xlate_map_entry
7747 {
7748 unsigned orig_address;
7749 unsigned new_address;
7750 unsigned size;
7751 };
7752
7753 struct xlate_map
7754 {
7755 unsigned entry_count;
7756 xlate_map_entry_t *entry;
7757 };
7758
7759
7760 static int
7761 xlate_compare (const void *a_v, const void *b_v)
7762 {
7763 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
7764 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
7765 if (a->orig_address < b->orig_address)
7766 return -1;
7767 if (a->orig_address > (b->orig_address + b->size - 1))
7768 return 1;
7769 return 0;
7770 }
7771
7772
7773 static bfd_vma
7774 xlate_offset_with_removed_text (const xlate_map_t *map,
7775 text_action_list *action_list,
7776 bfd_vma offset)
7777 {
7778 xlate_map_entry_t tmp;
7779 void *r;
7780 xlate_map_entry_t *e;
7781
7782 if (map == NULL)
7783 return offset_with_removed_text (action_list, offset);
7784
7785 if (map->entry_count == 0)
7786 return offset;
7787
7788 tmp.orig_address = offset;
7789 tmp.new_address = offset;
7790 tmp.size = 1;
7791
7792 r = bsearch (&offset, map->entry, map->entry_count,
7793 sizeof (xlate_map_entry_t), &xlate_compare);
7794 e = (xlate_map_entry_t *) r;
7795
7796 BFD_ASSERT (e != NULL);
7797 if (e == NULL)
7798 return offset;
7799 return e->new_address - e->orig_address + offset;
7800 }
7801
7802
7803 /* Build a binary searchable offset translation map from a section's
7804 action list. */
7805
7806 static xlate_map_t *
7807 build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
7808 {
7809 xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
7810 text_action_list *action_list = &relax_info->action_list;
7811 unsigned num_actions = 0;
7812 text_action *r;
7813 int removed;
7814 xlate_map_entry_t *current_entry;
7815
7816 if (map == NULL)
7817 return NULL;
7818
7819 num_actions = action_list_count (action_list);
7820 map->entry = (xlate_map_entry_t *)
7821 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
7822 if (map->entry == NULL)
7823 {
7824 free (map);
7825 return NULL;
7826 }
7827 map->entry_count = 0;
7828
7829 removed = 0;
7830 current_entry = &map->entry[0];
7831
7832 current_entry->orig_address = 0;
7833 current_entry->new_address = 0;
7834 current_entry->size = 0;
7835
7836 for (r = action_list->head; r != NULL; r = r->next)
7837 {
7838 unsigned orig_size = 0;
7839 switch (r->action)
7840 {
7841 case ta_none:
7842 case ta_remove_insn:
7843 case ta_convert_longcall:
7844 case ta_remove_literal:
7845 case ta_add_literal:
7846 break;
7847 case ta_remove_longcall:
7848 orig_size = 6;
7849 break;
7850 case ta_narrow_insn:
7851 orig_size = 3;
7852 break;
7853 case ta_widen_insn:
7854 orig_size = 2;
7855 break;
7856 case ta_fill:
7857 break;
7858 }
7859 current_entry->size =
7860 r->offset + orig_size - current_entry->orig_address;
7861 if (current_entry->size != 0)
7862 {
7863 current_entry++;
7864 map->entry_count++;
7865 }
7866 current_entry->orig_address = r->offset + orig_size;
7867 removed += r->removed_bytes;
7868 current_entry->new_address = r->offset + orig_size - removed;
7869 current_entry->size = 0;
7870 }
7871
7872 current_entry->size = (bfd_get_section_limit (sec->owner, sec)
7873 - current_entry->orig_address);
7874 if (current_entry->size != 0)
7875 map->entry_count++;
7876
7877 return map;
7878 }
7879
7880
7881 /* Free an offset translation map. */
7882
7883 static void
7884 free_xlate_map (xlate_map_t *map)
7885 {
7886 if (map && map->entry)
7887 free (map->entry);
7888 if (map)
7889 free (map);
7890 }
7891
7892
7893 /* Use check_section_ebb_pcrels_fit to make sure that all of the
7894 relocations in a section will fit if a proposed set of actions
7895 are performed. */
7896
7897 static bfd_boolean
7898 check_section_ebb_pcrels_fit (bfd *abfd,
7899 asection *sec,
7900 bfd_byte *contents,
7901 Elf_Internal_Rela *internal_relocs,
7902 const ebb_constraint *constraint,
7903 const xtensa_opcode *reloc_opcodes)
7904 {
7905 unsigned i, j;
7906 Elf_Internal_Rela *irel;
7907 xlate_map_t *xmap = NULL;
7908 bfd_boolean ok = TRUE;
7909 xtensa_relax_info *relax_info;
7910
7911 relax_info = get_xtensa_relax_info (sec);
7912
7913 if (relax_info && sec->reloc_count > 100)
7914 {
7915 xmap = build_xlate_map (sec, relax_info);
7916 /* NULL indicates out of memory, but the slow version
7917 can still be used. */
7918 }
7919
7920 for (i = 0; i < sec->reloc_count; i++)
7921 {
7922 r_reloc r_rel;
7923 bfd_vma orig_self_offset, orig_target_offset;
7924 bfd_vma self_offset, target_offset;
7925 int r_type;
7926 reloc_howto_type *howto;
7927 int self_removed_bytes, target_removed_bytes;
7928
7929 irel = &internal_relocs[i];
7930 r_type = ELF32_R_TYPE (irel->r_info);
7931
7932 howto = &elf_howto_table[r_type];
7933 /* We maintain the required invariant: PC-relative relocations
7934 that fit before linking must fit after linking. Thus we only
7935 need to deal with relocations to the same section that are
7936 PC-relative. */
7937 if (r_type == R_XTENSA_ASM_SIMPLIFY
7938 || r_type == R_XTENSA_32_PCREL
7939 || !howto->pc_relative)
7940 continue;
7941
7942 r_reloc_init (&r_rel, abfd, irel, contents,
7943 bfd_get_section_limit (abfd, sec));
7944
7945 if (r_reloc_get_section (&r_rel) != sec)
7946 continue;
7947
7948 orig_self_offset = irel->r_offset;
7949 orig_target_offset = r_rel.target_offset;
7950
7951 self_offset = orig_self_offset;
7952 target_offset = orig_target_offset;
7953
7954 if (relax_info)
7955 {
7956 self_offset =
7957 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7958 orig_self_offset);
7959 target_offset =
7960 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7961 orig_target_offset);
7962 }
7963
7964 self_removed_bytes = 0;
7965 target_removed_bytes = 0;
7966
7967 for (j = 0; j < constraint->action_count; ++j)
7968 {
7969 proposed_action *action = &constraint->actions[j];
7970 bfd_vma offset = action->offset;
7971 int removed_bytes = action->removed_bytes;
7972 if (offset < orig_self_offset
7973 || (offset == orig_self_offset && action->action == ta_fill
7974 && action->removed_bytes < 0))
7975 self_removed_bytes += removed_bytes;
7976 if (offset < orig_target_offset
7977 || (offset == orig_target_offset && action->action == ta_fill
7978 && action->removed_bytes < 0))
7979 target_removed_bytes += removed_bytes;
7980 }
7981 self_offset -= self_removed_bytes;
7982 target_offset -= target_removed_bytes;
7983
7984 /* Try to encode it. Get the operand and check. */
7985 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7986 {
7987 /* None of the current alternate relocs are PC-relative,
7988 and only PC-relative relocs matter here. */
7989 }
7990 else
7991 {
7992 xtensa_opcode opcode;
7993 int opnum;
7994
7995 if (reloc_opcodes)
7996 opcode = reloc_opcodes[i];
7997 else
7998 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7999 if (opcode == XTENSA_UNDEFINED)
8000 {
8001 ok = FALSE;
8002 break;
8003 }
8004
8005 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
8006 if (opnum == XTENSA_UNDEFINED)
8007 {
8008 ok = FALSE;
8009 break;
8010 }
8011
8012 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
8013 {
8014 ok = FALSE;
8015 break;
8016 }
8017 }
8018 }
8019
8020 if (xmap)
8021 free_xlate_map (xmap);
8022
8023 return ok;
8024 }
8025
8026
8027 static bfd_boolean
8028 check_section_ebb_reduces (const ebb_constraint *constraint)
8029 {
8030 int removed = 0;
8031 unsigned i;
8032
8033 for (i = 0; i < constraint->action_count; i++)
8034 {
8035 const proposed_action *action = &constraint->actions[i];
8036 if (action->do_action)
8037 removed += action->removed_bytes;
8038 }
8039 if (removed < 0)
8040 return FALSE;
8041
8042 return TRUE;
8043 }
8044
8045
8046 void
8047 text_action_add_proposed (text_action_list *l,
8048 const ebb_constraint *ebb_table,
8049 asection *sec)
8050 {
8051 unsigned i;
8052
8053 for (i = 0; i < ebb_table->action_count; i++)
8054 {
8055 proposed_action *action = &ebb_table->actions[i];
8056
8057 if (!action->do_action)
8058 continue;
8059 switch (action->action)
8060 {
8061 case ta_remove_insn:
8062 case ta_remove_longcall:
8063 case ta_convert_longcall:
8064 case ta_narrow_insn:
8065 case ta_widen_insn:
8066 case ta_fill:
8067 case ta_remove_literal:
8068 text_action_add (l, action->action, sec, action->offset,
8069 action->removed_bytes);
8070 break;
8071 case ta_none:
8072 break;
8073 default:
8074 BFD_ASSERT (0);
8075 break;
8076 }
8077 }
8078 }
8079
8080
8081 int
8082 compute_fill_extra_space (property_table_entry *entry)
8083 {
8084 int fill_extra_space;
8085
8086 if (!entry)
8087 return 0;
8088
8089 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
8090 return 0;
8091
8092 fill_extra_space = entry->size;
8093 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
8094 {
8095 /* Fill bytes for alignment:
8096 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
8097 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
8098 int nsm = (1 << pow) - 1;
8099 bfd_vma addr = entry->address + entry->size;
8100 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
8101 fill_extra_space += align_fill;
8102 }
8103 return fill_extra_space;
8104 }
8105
8106 \f
8107 /* First relaxation pass. */
8108
8109 /* If the section contains relaxable literals, check each literal to
8110 see if it has the same value as another literal that has already
8111 been seen, either in the current section or a previous one. If so,
8112 add an entry to the per-section list of removed literals. The
8113 actual changes are deferred until the next pass. */
8114
8115 static bfd_boolean
8116 compute_removed_literals (bfd *abfd,
8117 asection *sec,
8118 struct bfd_link_info *link_info,
8119 value_map_hash_table *values)
8120 {
8121 xtensa_relax_info *relax_info;
8122 bfd_byte *contents;
8123 Elf_Internal_Rela *internal_relocs;
8124 source_reloc *src_relocs, *rel;
8125 bfd_boolean ok = TRUE;
8126 property_table_entry *prop_table = NULL;
8127 int ptblsize;
8128 int i, prev_i;
8129 bfd_boolean last_loc_is_prev = FALSE;
8130 bfd_vma last_target_offset = 0;
8131 section_cache_t target_sec_cache;
8132 bfd_size_type sec_size;
8133
8134 init_section_cache (&target_sec_cache);
8135
8136 /* Do nothing if it is not a relaxable literal section. */
8137 relax_info = get_xtensa_relax_info (sec);
8138 BFD_ASSERT (relax_info);
8139 if (!relax_info->is_relaxable_literal_section)
8140 return ok;
8141
8142 internal_relocs = retrieve_internal_relocs (abfd, sec,
8143 link_info->keep_memory);
8144
8145 sec_size = bfd_get_section_limit (abfd, sec);
8146 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8147 if (contents == NULL && sec_size != 0)
8148 {
8149 ok = FALSE;
8150 goto error_return;
8151 }
8152
8153 /* Sort the source_relocs by target offset. */
8154 src_relocs = relax_info->src_relocs;
8155 qsort (src_relocs, relax_info->src_count,
8156 sizeof (source_reloc), source_reloc_compare);
8157 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8158 internal_reloc_compare);
8159
8160 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
8161 XTENSA_PROP_SEC_NAME, FALSE);
8162 if (ptblsize < 0)
8163 {
8164 ok = FALSE;
8165 goto error_return;
8166 }
8167
8168 prev_i = -1;
8169 for (i = 0; i < relax_info->src_count; i++)
8170 {
8171 Elf_Internal_Rela *irel = NULL;
8172
8173 rel = &src_relocs[i];
8174 if (get_l32r_opcode () != rel->opcode)
8175 continue;
8176 irel = get_irel_at_offset (sec, internal_relocs,
8177 rel->r_rel.target_offset);
8178
8179 /* If the relocation on this is not a simple R_XTENSA_32 or
8180 R_XTENSA_PLT then do not consider it. This may happen when
8181 the difference of two symbols is used in a literal. */
8182 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
8183 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
8184 continue;
8185
8186 /* If the target_offset for this relocation is the same as the
8187 previous relocation, then we've already considered whether the
8188 literal can be coalesced. Skip to the next one.... */
8189 if (i != 0 && prev_i != -1
8190 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
8191 continue;
8192 prev_i = i;
8193
8194 if (last_loc_is_prev &&
8195 last_target_offset + 4 != rel->r_rel.target_offset)
8196 last_loc_is_prev = FALSE;
8197
8198 /* Check if the relocation was from an L32R that is being removed
8199 because a CALLX was converted to a direct CALL, and check if
8200 there are no other relocations to the literal. */
8201 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
8202 sec, prop_table, ptblsize))
8203 {
8204 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
8205 irel, rel, prop_table, ptblsize))
8206 {
8207 ok = FALSE;
8208 goto error_return;
8209 }
8210 last_target_offset = rel->r_rel.target_offset;
8211 continue;
8212 }
8213
8214 if (!identify_literal_placement (abfd, sec, contents, link_info,
8215 values,
8216 &last_loc_is_prev, irel,
8217 relax_info->src_count - i, rel,
8218 prop_table, ptblsize,
8219 &target_sec_cache, rel->is_abs_literal))
8220 {
8221 ok = FALSE;
8222 goto error_return;
8223 }
8224 last_target_offset = rel->r_rel.target_offset;
8225 }
8226
8227 #if DEBUG
8228 print_removed_literals (stderr, &relax_info->removed_list);
8229 print_action_list (stderr, &relax_info->action_list);
8230 #endif /* DEBUG */
8231
8232 error_return:
8233 if (prop_table) free (prop_table);
8234 clear_section_cache (&target_sec_cache);
8235
8236 release_contents (sec, contents);
8237 release_internal_relocs (sec, internal_relocs);
8238 return ok;
8239 }
8240
8241
8242 static Elf_Internal_Rela *
8243 get_irel_at_offset (asection *sec,
8244 Elf_Internal_Rela *internal_relocs,
8245 bfd_vma offset)
8246 {
8247 unsigned i;
8248 Elf_Internal_Rela *irel;
8249 unsigned r_type;
8250 Elf_Internal_Rela key;
8251
8252 if (!internal_relocs)
8253 return NULL;
8254
8255 key.r_offset = offset;
8256 irel = bsearch (&key, internal_relocs, sec->reloc_count,
8257 sizeof (Elf_Internal_Rela), internal_reloc_matches);
8258 if (!irel)
8259 return NULL;
8260
8261 /* bsearch does not guarantee which will be returned if there are
8262 multiple matches. We need the first that is not an alignment. */
8263 i = irel - internal_relocs;
8264 while (i > 0)
8265 {
8266 if (internal_relocs[i-1].r_offset != offset)
8267 break;
8268 i--;
8269 }
8270 for ( ; i < sec->reloc_count; i++)
8271 {
8272 irel = &internal_relocs[i];
8273 r_type = ELF32_R_TYPE (irel->r_info);
8274 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
8275 return irel;
8276 }
8277
8278 return NULL;
8279 }
8280
8281
8282 bfd_boolean
8283 is_removable_literal (const source_reloc *rel,
8284 int i,
8285 const source_reloc *src_relocs,
8286 int src_count,
8287 asection *sec,
8288 property_table_entry *prop_table,
8289 int ptblsize)
8290 {
8291 const source_reloc *curr_rel;
8292 property_table_entry *entry;
8293
8294 if (!rel->is_null)
8295 return FALSE;
8296
8297 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8298 sec->vma + rel->r_rel.target_offset);
8299 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8300 return FALSE;
8301
8302 for (++i; i < src_count; ++i)
8303 {
8304 curr_rel = &src_relocs[i];
8305 /* If all others have the same target offset.... */
8306 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
8307 return TRUE;
8308
8309 if (!curr_rel->is_null
8310 && !xtensa_is_property_section (curr_rel->source_sec)
8311 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
8312 return FALSE;
8313 }
8314 return TRUE;
8315 }
8316
8317
8318 bfd_boolean
8319 remove_dead_literal (bfd *abfd,
8320 asection *sec,
8321 struct bfd_link_info *link_info,
8322 Elf_Internal_Rela *internal_relocs,
8323 Elf_Internal_Rela *irel,
8324 source_reloc *rel,
8325 property_table_entry *prop_table,
8326 int ptblsize)
8327 {
8328 property_table_entry *entry;
8329 xtensa_relax_info *relax_info;
8330
8331 relax_info = get_xtensa_relax_info (sec);
8332 if (!relax_info)
8333 return FALSE;
8334
8335 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8336 sec->vma + rel->r_rel.target_offset);
8337
8338 /* Mark the unused literal so that it will be removed. */
8339 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
8340
8341 text_action_add (&relax_info->action_list,
8342 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8343
8344 /* If the section is 4-byte aligned, do not add fill. */
8345 if (sec->alignment_power > 2)
8346 {
8347 int fill_extra_space;
8348 bfd_vma entry_sec_offset;
8349 text_action *fa;
8350 property_table_entry *the_add_entry;
8351 int removed_diff;
8352
8353 if (entry)
8354 entry_sec_offset = entry->address - sec->vma + entry->size;
8355 else
8356 entry_sec_offset = rel->r_rel.target_offset + 4;
8357
8358 /* If the literal range is at the end of the section,
8359 do not add fill. */
8360 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8361 entry_sec_offset);
8362 fill_extra_space = compute_fill_extra_space (the_add_entry);
8363
8364 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8365 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8366 -4, fill_extra_space);
8367 if (fa)
8368 adjust_fill_action (fa, removed_diff);
8369 else
8370 text_action_add (&relax_info->action_list,
8371 ta_fill, sec, entry_sec_offset, removed_diff);
8372 }
8373
8374 /* Zero out the relocation on this literal location. */
8375 if (irel)
8376 {
8377 if (elf_hash_table (link_info)->dynamic_sections_created)
8378 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8379
8380 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8381 pin_internal_relocs (sec, internal_relocs);
8382 }
8383
8384 /* Do not modify "last_loc_is_prev". */
8385 return TRUE;
8386 }
8387
8388
8389 bfd_boolean
8390 identify_literal_placement (bfd *abfd,
8391 asection *sec,
8392 bfd_byte *contents,
8393 struct bfd_link_info *link_info,
8394 value_map_hash_table *values,
8395 bfd_boolean *last_loc_is_prev_p,
8396 Elf_Internal_Rela *irel,
8397 int remaining_src_rels,
8398 source_reloc *rel,
8399 property_table_entry *prop_table,
8400 int ptblsize,
8401 section_cache_t *target_sec_cache,
8402 bfd_boolean is_abs_literal)
8403 {
8404 literal_value val;
8405 value_map *val_map;
8406 xtensa_relax_info *relax_info;
8407 bfd_boolean literal_placed = FALSE;
8408 r_reloc r_rel;
8409 unsigned long value;
8410 bfd_boolean final_static_link;
8411 bfd_size_type sec_size;
8412
8413 relax_info = get_xtensa_relax_info (sec);
8414 if (!relax_info)
8415 return FALSE;
8416
8417 sec_size = bfd_get_section_limit (abfd, sec);
8418
8419 final_static_link =
8420 (!link_info->relocatable
8421 && !elf_hash_table (link_info)->dynamic_sections_created);
8422
8423 /* The placement algorithm first checks to see if the literal is
8424 already in the value map. If so and the value map is reachable
8425 from all uses, then the literal is moved to that location. If
8426 not, then we identify the last location where a fresh literal was
8427 placed. If the literal can be safely moved there, then we do so.
8428 If not, then we assume that the literal is not to move and leave
8429 the literal where it is, marking it as the last literal
8430 location. */
8431
8432 /* Find the literal value. */
8433 value = 0;
8434 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8435 if (!irel)
8436 {
8437 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
8438 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
8439 }
8440 init_literal_value (&val, &r_rel, value, is_abs_literal);
8441
8442 /* Check if we've seen another literal with the same value that
8443 is in the same output section. */
8444 val_map = value_map_get_cached_value (values, &val, final_static_link);
8445
8446 if (val_map
8447 && (r_reloc_get_section (&val_map->loc)->output_section
8448 == sec->output_section)
8449 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
8450 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
8451 {
8452 /* No change to last_loc_is_prev. */
8453 literal_placed = TRUE;
8454 }
8455
8456 /* For relocatable links, do not try to move literals. To do it
8457 correctly might increase the number of relocations in an input
8458 section making the default relocatable linking fail. */
8459 if (!link_info->relocatable && !literal_placed
8460 && values->has_last_loc && !(*last_loc_is_prev_p))
8461 {
8462 asection *target_sec = r_reloc_get_section (&values->last_loc);
8463 if (target_sec && target_sec->output_section == sec->output_section)
8464 {
8465 /* Increment the virtual offset. */
8466 r_reloc try_loc = values->last_loc;
8467 try_loc.virtual_offset += 4;
8468
8469 /* There is a last loc that was in the same output section. */
8470 if (relocations_reach (rel, remaining_src_rels, &try_loc)
8471 && move_shared_literal (sec, link_info, rel,
8472 prop_table, ptblsize,
8473 &try_loc, &val, target_sec_cache))
8474 {
8475 values->last_loc.virtual_offset += 4;
8476 literal_placed = TRUE;
8477 if (!val_map)
8478 val_map = add_value_map (values, &val, &try_loc,
8479 final_static_link);
8480 else
8481 val_map->loc = try_loc;
8482 }
8483 }
8484 }
8485
8486 if (!literal_placed)
8487 {
8488 /* Nothing worked, leave the literal alone but update the last loc. */
8489 values->has_last_loc = TRUE;
8490 values->last_loc = rel->r_rel;
8491 if (!val_map)
8492 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
8493 else
8494 val_map->loc = rel->r_rel;
8495 *last_loc_is_prev_p = TRUE;
8496 }
8497
8498 return TRUE;
8499 }
8500
8501
8502 /* Check if the original relocations (presumably on L32R instructions)
8503 identified by reloc[0..N] can be changed to reference the literal
8504 identified by r_rel. If r_rel is out of range for any of the
8505 original relocations, then we don't want to coalesce the original
8506 literal with the one at r_rel. We only check reloc[0..N], where the
8507 offsets are all the same as for reloc[0] (i.e., they're all
8508 referencing the same literal) and where N is also bounded by the
8509 number of remaining entries in the "reloc" array. The "reloc" array
8510 is sorted by target offset so we know all the entries for the same
8511 literal will be contiguous. */
8512
8513 static bfd_boolean
8514 relocations_reach (source_reloc *reloc,
8515 int remaining_relocs,
8516 const r_reloc *r_rel)
8517 {
8518 bfd_vma from_offset, source_address, dest_address;
8519 asection *sec;
8520 int i;
8521
8522 if (!r_reloc_is_defined (r_rel))
8523 return FALSE;
8524
8525 sec = r_reloc_get_section (r_rel);
8526 from_offset = reloc[0].r_rel.target_offset;
8527
8528 for (i = 0; i < remaining_relocs; i++)
8529 {
8530 if (reloc[i].r_rel.target_offset != from_offset)
8531 break;
8532
8533 /* Ignore relocations that have been removed. */
8534 if (reloc[i].is_null)
8535 continue;
8536
8537 /* The original and new output section for these must be the same
8538 in order to coalesce. */
8539 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
8540 != sec->output_section)
8541 return FALSE;
8542
8543 /* Absolute literals in the same output section can always be
8544 combined. */
8545 if (reloc[i].is_abs_literal)
8546 continue;
8547
8548 /* A literal with no PC-relative relocations can be moved anywhere. */
8549 if (reloc[i].opnd != -1)
8550 {
8551 /* Otherwise, check to see that it fits. */
8552 source_address = (reloc[i].source_sec->output_section->vma
8553 + reloc[i].source_sec->output_offset
8554 + reloc[i].r_rel.rela.r_offset);
8555 dest_address = (sec->output_section->vma
8556 + sec->output_offset
8557 + r_rel->target_offset);
8558
8559 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
8560 source_address, dest_address))
8561 return FALSE;
8562 }
8563 }
8564
8565 return TRUE;
8566 }
8567
8568
8569 /* Move a literal to another literal location because it is
8570 the same as the other literal value. */
8571
8572 static bfd_boolean
8573 coalesce_shared_literal (asection *sec,
8574 source_reloc *rel,
8575 property_table_entry *prop_table,
8576 int ptblsize,
8577 value_map *val_map)
8578 {
8579 property_table_entry *entry;
8580 text_action *fa;
8581 property_table_entry *the_add_entry;
8582 int removed_diff;
8583 xtensa_relax_info *relax_info;
8584
8585 relax_info = get_xtensa_relax_info (sec);
8586 if (!relax_info)
8587 return FALSE;
8588
8589 entry = elf_xtensa_find_property_entry
8590 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
8591 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8592 return TRUE;
8593
8594 /* Mark that the literal will be coalesced. */
8595 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
8596
8597 text_action_add (&relax_info->action_list,
8598 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8599
8600 /* If the section is 4-byte aligned, do not add fill. */
8601 if (sec->alignment_power > 2)
8602 {
8603 int fill_extra_space;
8604 bfd_vma entry_sec_offset;
8605
8606 if (entry)
8607 entry_sec_offset = entry->address - sec->vma + entry->size;
8608 else
8609 entry_sec_offset = rel->r_rel.target_offset + 4;
8610
8611 /* If the literal range is at the end of the section,
8612 do not add fill. */
8613 fill_extra_space = 0;
8614 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8615 entry_sec_offset);
8616 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8617 fill_extra_space = the_add_entry->size;
8618
8619 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8620 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8621 -4, fill_extra_space);
8622 if (fa)
8623 adjust_fill_action (fa, removed_diff);
8624 else
8625 text_action_add (&relax_info->action_list,
8626 ta_fill, sec, entry_sec_offset, removed_diff);
8627 }
8628
8629 return TRUE;
8630 }
8631
8632
8633 /* Move a literal to another location. This may actually increase the
8634 total amount of space used because of alignments so we need to do
8635 this carefully. Also, it may make a branch go out of range. */
8636
8637 static bfd_boolean
8638 move_shared_literal (asection *sec,
8639 struct bfd_link_info *link_info,
8640 source_reloc *rel,
8641 property_table_entry *prop_table,
8642 int ptblsize,
8643 const r_reloc *target_loc,
8644 const literal_value *lit_value,
8645 section_cache_t *target_sec_cache)
8646 {
8647 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
8648 text_action *fa, *target_fa;
8649 int removed_diff;
8650 xtensa_relax_info *relax_info, *target_relax_info;
8651 asection *target_sec;
8652 ebb_t *ebb;
8653 ebb_constraint ebb_table;
8654 bfd_boolean relocs_fit;
8655
8656 /* If this routine always returns FALSE, the literals that cannot be
8657 coalesced will not be moved. */
8658 if (elf32xtensa_no_literal_movement)
8659 return FALSE;
8660
8661 relax_info = get_xtensa_relax_info (sec);
8662 if (!relax_info)
8663 return FALSE;
8664
8665 target_sec = r_reloc_get_section (target_loc);
8666 target_relax_info = get_xtensa_relax_info (target_sec);
8667
8668 /* Literals to undefined sections may not be moved because they
8669 must report an error. */
8670 if (bfd_is_und_section (target_sec))
8671 return FALSE;
8672
8673 src_entry = elf_xtensa_find_property_entry
8674 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
8675
8676 if (!section_cache_section (target_sec_cache, target_sec, link_info))
8677 return FALSE;
8678
8679 target_entry = elf_xtensa_find_property_entry
8680 (target_sec_cache->ptbl, target_sec_cache->pte_count,
8681 target_sec->vma + target_loc->target_offset);
8682
8683 if (!target_entry)
8684 return FALSE;
8685
8686 /* Make sure that we have not broken any branches. */
8687 relocs_fit = FALSE;
8688
8689 init_ebb_constraint (&ebb_table);
8690 ebb = &ebb_table.ebb;
8691 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
8692 target_sec_cache->content_length,
8693 target_sec_cache->ptbl, target_sec_cache->pte_count,
8694 target_sec_cache->relocs, target_sec_cache->reloc_count);
8695
8696 /* Propose to add 4 bytes + worst-case alignment size increase to
8697 destination. */
8698 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
8699 ta_fill, target_loc->target_offset,
8700 -4 - (1 << target_sec->alignment_power), TRUE);
8701
8702 /* Check all of the PC-relative relocations to make sure they still fit. */
8703 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
8704 target_sec_cache->contents,
8705 target_sec_cache->relocs,
8706 &ebb_table, NULL);
8707
8708 if (!relocs_fit)
8709 return FALSE;
8710
8711 text_action_add_literal (&target_relax_info->action_list,
8712 ta_add_literal, target_loc, lit_value, -4);
8713
8714 if (target_sec->alignment_power > 2 && target_entry != src_entry)
8715 {
8716 /* May need to add or remove some fill to maintain alignment. */
8717 int fill_extra_space;
8718 bfd_vma entry_sec_offset;
8719
8720 entry_sec_offset =
8721 target_entry->address - target_sec->vma + target_entry->size;
8722
8723 /* If the literal range is at the end of the section,
8724 do not add fill. */
8725 fill_extra_space = 0;
8726 the_add_entry =
8727 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
8728 target_sec_cache->pte_count,
8729 entry_sec_offset);
8730 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8731 fill_extra_space = the_add_entry->size;
8732
8733 target_fa = find_fill_action (&target_relax_info->action_list,
8734 target_sec, entry_sec_offset);
8735 removed_diff = compute_removed_action_diff (target_fa, target_sec,
8736 entry_sec_offset, 4,
8737 fill_extra_space);
8738 if (target_fa)
8739 adjust_fill_action (target_fa, removed_diff);
8740 else
8741 text_action_add (&target_relax_info->action_list,
8742 ta_fill, target_sec, entry_sec_offset, removed_diff);
8743 }
8744
8745 /* Mark that the literal will be moved to the new location. */
8746 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
8747
8748 /* Remove the literal. */
8749 text_action_add (&relax_info->action_list,
8750 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8751
8752 /* If the section is 4-byte aligned, do not add fill. */
8753 if (sec->alignment_power > 2 && target_entry != src_entry)
8754 {
8755 int fill_extra_space;
8756 bfd_vma entry_sec_offset;
8757
8758 if (src_entry)
8759 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
8760 else
8761 entry_sec_offset = rel->r_rel.target_offset+4;
8762
8763 /* If the literal range is at the end of the section,
8764 do not add fill. */
8765 fill_extra_space = 0;
8766 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8767 entry_sec_offset);
8768 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8769 fill_extra_space = the_add_entry->size;
8770
8771 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8772 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8773 -4, fill_extra_space);
8774 if (fa)
8775 adjust_fill_action (fa, removed_diff);
8776 else
8777 text_action_add (&relax_info->action_list,
8778 ta_fill, sec, entry_sec_offset, removed_diff);
8779 }
8780
8781 return TRUE;
8782 }
8783
8784 \f
8785 /* Second relaxation pass. */
8786
8787 /* Modify all of the relocations to point to the right spot, and if this
8788 is a relaxable section, delete the unwanted literals and fix the
8789 section size. */
8790
8791 bfd_boolean
8792 relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
8793 {
8794 Elf_Internal_Rela *internal_relocs;
8795 xtensa_relax_info *relax_info;
8796 bfd_byte *contents;
8797 bfd_boolean ok = TRUE;
8798 unsigned i;
8799 bfd_boolean rv = FALSE;
8800 bfd_boolean virtual_action;
8801 bfd_size_type sec_size;
8802
8803 sec_size = bfd_get_section_limit (abfd, sec);
8804 relax_info = get_xtensa_relax_info (sec);
8805 BFD_ASSERT (relax_info);
8806
8807 /* First translate any of the fixes that have been added already. */
8808 translate_section_fixes (sec);
8809
8810 /* Handle property sections (e.g., literal tables) specially. */
8811 if (xtensa_is_property_section (sec))
8812 {
8813 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
8814 return relax_property_section (abfd, sec, link_info);
8815 }
8816
8817 internal_relocs = retrieve_internal_relocs (abfd, sec,
8818 link_info->keep_memory);
8819 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8820 if (contents == NULL && sec_size != 0)
8821 {
8822 ok = FALSE;
8823 goto error_return;
8824 }
8825
8826 if (internal_relocs)
8827 {
8828 for (i = 0; i < sec->reloc_count; i++)
8829 {
8830 Elf_Internal_Rela *irel;
8831 xtensa_relax_info *target_relax_info;
8832 bfd_vma source_offset, old_source_offset;
8833 r_reloc r_rel;
8834 unsigned r_type;
8835 asection *target_sec;
8836
8837 /* Locally change the source address.
8838 Translate the target to the new target address.
8839 If it points to this section and has been removed,
8840 NULLify it.
8841 Write it back. */
8842
8843 irel = &internal_relocs[i];
8844 source_offset = irel->r_offset;
8845 old_source_offset = source_offset;
8846
8847 r_type = ELF32_R_TYPE (irel->r_info);
8848 r_reloc_init (&r_rel, abfd, irel, contents,
8849 bfd_get_section_limit (abfd, sec));
8850
8851 /* If this section could have changed then we may need to
8852 change the relocation's offset. */
8853
8854 if (relax_info->is_relaxable_literal_section
8855 || relax_info->is_relaxable_asm_section)
8856 {
8857 pin_internal_relocs (sec, internal_relocs);
8858
8859 if (r_type != R_XTENSA_NONE
8860 && find_removed_literal (&relax_info->removed_list,
8861 irel->r_offset))
8862 {
8863 /* Remove this relocation. */
8864 if (elf_hash_table (link_info)->dynamic_sections_created)
8865 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8866 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8867 irel->r_offset = offset_with_removed_text
8868 (&relax_info->action_list, irel->r_offset);
8869 continue;
8870 }
8871
8872 if (r_type == R_XTENSA_ASM_SIMPLIFY)
8873 {
8874 text_action *action =
8875 find_insn_action (&relax_info->action_list,
8876 irel->r_offset);
8877 if (action && (action->action == ta_convert_longcall
8878 || action->action == ta_remove_longcall))
8879 {
8880 bfd_reloc_status_type retval;
8881 char *error_message = NULL;
8882
8883 retval = contract_asm_expansion (contents, sec_size,
8884 irel, &error_message);
8885 if (retval != bfd_reloc_ok)
8886 {
8887 (*link_info->callbacks->reloc_dangerous)
8888 (link_info, error_message, abfd, sec,
8889 irel->r_offset);
8890 goto error_return;
8891 }
8892 /* Update the action so that the code that moves
8893 the contents will do the right thing. */
8894 if (action->action == ta_remove_longcall)
8895 action->action = ta_remove_insn;
8896 else
8897 action->action = ta_none;
8898 /* Refresh the info in the r_rel. */
8899 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8900 r_type = ELF32_R_TYPE (irel->r_info);
8901 }
8902 }
8903
8904 source_offset = offset_with_removed_text
8905 (&relax_info->action_list, irel->r_offset);
8906 irel->r_offset = source_offset;
8907 }
8908
8909 /* If the target section could have changed then
8910 we may need to change the relocation's target offset. */
8911
8912 target_sec = r_reloc_get_section (&r_rel);
8913
8914 /* For a reference to a discarded section from a DWARF section,
8915 i.e., where action_discarded is PRETEND, the symbol will
8916 eventually be modified to refer to the kept section (at least if
8917 the kept and discarded sections are the same size). Anticipate
8918 that here and adjust things accordingly. */
8919 if (! elf_xtensa_ignore_discarded_relocs (sec)
8920 && elf_xtensa_action_discarded (sec) == PRETEND
8921 && sec->sec_info_type != ELF_INFO_TYPE_STABS
8922 && target_sec != NULL
8923 && elf_discarded_section (target_sec))
8924 {
8925 /* It would be natural to call _bfd_elf_check_kept_section
8926 here, but it's not exported from elflink.c. It's also a
8927 fairly expensive check. Adjusting the relocations to the
8928 discarded section is fairly harmless; it will only adjust
8929 some addends and difference values. If it turns out that
8930 _bfd_elf_check_kept_section fails later, it won't matter,
8931 so just compare the section names to find the right group
8932 member. */
8933 asection *kept = target_sec->kept_section;
8934 if (kept != NULL)
8935 {
8936 if ((kept->flags & SEC_GROUP) != 0)
8937 {
8938 asection *first = elf_next_in_group (kept);
8939 asection *s = first;
8940
8941 kept = NULL;
8942 while (s != NULL)
8943 {
8944 if (strcmp (s->name, target_sec->name) == 0)
8945 {
8946 kept = s;
8947 break;
8948 }
8949 s = elf_next_in_group (s);
8950 if (s == first)
8951 break;
8952 }
8953 }
8954 }
8955 if (kept != NULL
8956 && ((target_sec->rawsize != 0
8957 ? target_sec->rawsize : target_sec->size)
8958 == (kept->rawsize != 0 ? kept->rawsize : kept->size)))
8959 target_sec = kept;
8960 }
8961
8962 target_relax_info = get_xtensa_relax_info (target_sec);
8963 if (target_relax_info
8964 && (target_relax_info->is_relaxable_literal_section
8965 || target_relax_info->is_relaxable_asm_section))
8966 {
8967 r_reloc new_reloc;
8968 target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
8969
8970 if (r_type == R_XTENSA_DIFF8
8971 || r_type == R_XTENSA_DIFF16
8972 || r_type == R_XTENSA_DIFF32)
8973 {
8974 bfd_vma diff_value = 0, new_end_offset, diff_mask = 0;
8975
8976 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
8977 {
8978 (*link_info->callbacks->reloc_dangerous)
8979 (link_info, _("invalid relocation address"),
8980 abfd, sec, old_source_offset);
8981 goto error_return;
8982 }
8983
8984 switch (r_type)
8985 {
8986 case R_XTENSA_DIFF8:
8987 diff_value =
8988 bfd_get_8 (abfd, &contents[old_source_offset]);
8989 break;
8990 case R_XTENSA_DIFF16:
8991 diff_value =
8992 bfd_get_16 (abfd, &contents[old_source_offset]);
8993 break;
8994 case R_XTENSA_DIFF32:
8995 diff_value =
8996 bfd_get_32 (abfd, &contents[old_source_offset]);
8997 break;
8998 }
8999
9000 new_end_offset = offset_with_removed_text
9001 (&target_relax_info->action_list,
9002 r_rel.target_offset + diff_value);
9003 diff_value = new_end_offset - new_reloc.target_offset;
9004
9005 switch (r_type)
9006 {
9007 case R_XTENSA_DIFF8:
9008 diff_mask = 0xff;
9009 bfd_put_8 (abfd, diff_value,
9010 &contents[old_source_offset]);
9011 break;
9012 case R_XTENSA_DIFF16:
9013 diff_mask = 0xffff;
9014 bfd_put_16 (abfd, diff_value,
9015 &contents[old_source_offset]);
9016 break;
9017 case R_XTENSA_DIFF32:
9018 diff_mask = 0xffffffff;
9019 bfd_put_32 (abfd, diff_value,
9020 &contents[old_source_offset]);
9021 break;
9022 }
9023
9024 /* Check for overflow. */
9025 if ((diff_value & ~diff_mask) != 0)
9026 {
9027 (*link_info->callbacks->reloc_dangerous)
9028 (link_info, _("overflow after relaxation"),
9029 abfd, sec, old_source_offset);
9030 goto error_return;
9031 }
9032
9033 pin_contents (sec, contents);
9034 }
9035
9036 /* If the relocation still references a section in the same
9037 input file, modify the relocation directly instead of
9038 adding a "fix" record. */
9039 if (target_sec->owner == abfd)
9040 {
9041 unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
9042 irel->r_info = ELF32_R_INFO (r_symndx, r_type);
9043 irel->r_addend = new_reloc.rela.r_addend;
9044 pin_internal_relocs (sec, internal_relocs);
9045 }
9046 else
9047 {
9048 bfd_vma addend_displacement;
9049 reloc_bfd_fix *fix;
9050
9051 addend_displacement =
9052 new_reloc.target_offset + new_reloc.virtual_offset;
9053 fix = reloc_bfd_fix_init (sec, source_offset, r_type,
9054 target_sec,
9055 addend_displacement, TRUE);
9056 add_fix (sec, fix);
9057 }
9058 }
9059 }
9060 }
9061
9062 if ((relax_info->is_relaxable_literal_section
9063 || relax_info->is_relaxable_asm_section)
9064 && relax_info->action_list.head)
9065 {
9066 /* Walk through the planned actions and build up a table
9067 of move, copy and fill records. Use the move, copy and
9068 fill records to perform the actions once. */
9069
9070 int removed = 0;
9071 bfd_size_type final_size, copy_size, orig_insn_size;
9072 bfd_byte *scratch = NULL;
9073 bfd_byte *dup_contents = NULL;
9074 bfd_size_type orig_size = sec->size;
9075 bfd_vma orig_dot = 0;
9076 bfd_vma orig_dot_copied = 0; /* Byte copied already from
9077 orig dot in physical memory. */
9078 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
9079 bfd_vma dup_dot = 0;
9080
9081 text_action *action = relax_info->action_list.head;
9082
9083 final_size = sec->size;
9084 for (action = relax_info->action_list.head; action;
9085 action = action->next)
9086 {
9087 final_size -= action->removed_bytes;
9088 }
9089
9090 scratch = (bfd_byte *) bfd_zmalloc (final_size);
9091 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
9092
9093 /* The dot is the current fill location. */
9094 #if DEBUG
9095 print_action_list (stderr, &relax_info->action_list);
9096 #endif
9097
9098 for (action = relax_info->action_list.head; action;
9099 action = action->next)
9100 {
9101 virtual_action = FALSE;
9102 if (action->offset > orig_dot)
9103 {
9104 orig_dot += orig_dot_copied;
9105 orig_dot_copied = 0;
9106 orig_dot_vo = 0;
9107 /* Out of the virtual world. */
9108 }
9109
9110 if (action->offset > orig_dot)
9111 {
9112 copy_size = action->offset - orig_dot;
9113 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9114 orig_dot += copy_size;
9115 dup_dot += copy_size;
9116 BFD_ASSERT (action->offset == orig_dot);
9117 }
9118 else if (action->offset < orig_dot)
9119 {
9120 if (action->action == ta_fill
9121 && action->offset - action->removed_bytes == orig_dot)
9122 {
9123 /* This is OK because the fill only effects the dup_dot. */
9124 }
9125 else if (action->action == ta_add_literal)
9126 {
9127 /* TBD. Might need to handle this. */
9128 }
9129 }
9130 if (action->offset == orig_dot)
9131 {
9132 if (action->virtual_offset > orig_dot_vo)
9133 {
9134 if (orig_dot_vo == 0)
9135 {
9136 /* Need to copy virtual_offset bytes. Probably four. */
9137 copy_size = action->virtual_offset - orig_dot_vo;
9138 memmove (&dup_contents[dup_dot],
9139 &contents[orig_dot], copy_size);
9140 orig_dot_copied = copy_size;
9141 dup_dot += copy_size;
9142 }
9143 virtual_action = TRUE;
9144 }
9145 else
9146 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
9147 }
9148 switch (action->action)
9149 {
9150 case ta_remove_literal:
9151 case ta_remove_insn:
9152 BFD_ASSERT (action->removed_bytes >= 0);
9153 orig_dot += action->removed_bytes;
9154 break;
9155
9156 case ta_narrow_insn:
9157 orig_insn_size = 3;
9158 copy_size = 2;
9159 memmove (scratch, &contents[orig_dot], orig_insn_size);
9160 BFD_ASSERT (action->removed_bytes == 1);
9161 rv = narrow_instruction (scratch, final_size, 0);
9162 BFD_ASSERT (rv);
9163 memmove (&dup_contents[dup_dot], scratch, copy_size);
9164 orig_dot += orig_insn_size;
9165 dup_dot += copy_size;
9166 break;
9167
9168 case ta_fill:
9169 if (action->removed_bytes >= 0)
9170 orig_dot += action->removed_bytes;
9171 else
9172 {
9173 /* Already zeroed in dup_contents. Just bump the
9174 counters. */
9175 dup_dot += (-action->removed_bytes);
9176 }
9177 break;
9178
9179 case ta_none:
9180 BFD_ASSERT (action->removed_bytes == 0);
9181 break;
9182
9183 case ta_convert_longcall:
9184 case ta_remove_longcall:
9185 /* These will be removed or converted before we get here. */
9186 BFD_ASSERT (0);
9187 break;
9188
9189 case ta_widen_insn:
9190 orig_insn_size = 2;
9191 copy_size = 3;
9192 memmove (scratch, &contents[orig_dot], orig_insn_size);
9193 BFD_ASSERT (action->removed_bytes == -1);
9194 rv = widen_instruction (scratch, final_size, 0);
9195 BFD_ASSERT (rv);
9196 memmove (&dup_contents[dup_dot], scratch, copy_size);
9197 orig_dot += orig_insn_size;
9198 dup_dot += copy_size;
9199 break;
9200
9201 case ta_add_literal:
9202 orig_insn_size = 0;
9203 copy_size = 4;
9204 BFD_ASSERT (action->removed_bytes == -4);
9205 /* TBD -- place the literal value here and insert
9206 into the table. */
9207 memset (&dup_contents[dup_dot], 0, 4);
9208 pin_internal_relocs (sec, internal_relocs);
9209 pin_contents (sec, contents);
9210
9211 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
9212 relax_info, &internal_relocs, &action->value))
9213 goto error_return;
9214
9215 if (virtual_action)
9216 orig_dot_vo += copy_size;
9217
9218 orig_dot += orig_insn_size;
9219 dup_dot += copy_size;
9220 break;
9221
9222 default:
9223 /* Not implemented yet. */
9224 BFD_ASSERT (0);
9225 break;
9226 }
9227
9228 removed += action->removed_bytes;
9229 BFD_ASSERT (dup_dot <= final_size);
9230 BFD_ASSERT (orig_dot <= orig_size);
9231 }
9232
9233 orig_dot += orig_dot_copied;
9234 orig_dot_copied = 0;
9235
9236 if (orig_dot != orig_size)
9237 {
9238 copy_size = orig_size - orig_dot;
9239 BFD_ASSERT (orig_size > orig_dot);
9240 BFD_ASSERT (dup_dot + copy_size == final_size);
9241 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9242 orig_dot += copy_size;
9243 dup_dot += copy_size;
9244 }
9245 BFD_ASSERT (orig_size == orig_dot);
9246 BFD_ASSERT (final_size == dup_dot);
9247
9248 /* Move the dup_contents back. */
9249 if (final_size > orig_size)
9250 {
9251 /* Contents need to be reallocated. Swap the dup_contents into
9252 contents. */
9253 sec->contents = dup_contents;
9254 free (contents);
9255 contents = dup_contents;
9256 pin_contents (sec, contents);
9257 }
9258 else
9259 {
9260 BFD_ASSERT (final_size <= orig_size);
9261 memset (contents, 0, orig_size);
9262 memcpy (contents, dup_contents, final_size);
9263 free (dup_contents);
9264 }
9265 free (scratch);
9266 pin_contents (sec, contents);
9267
9268 if (sec->rawsize == 0)
9269 sec->rawsize = sec->size;
9270 sec->size = final_size;
9271 }
9272
9273 error_return:
9274 release_internal_relocs (sec, internal_relocs);
9275 release_contents (sec, contents);
9276 return ok;
9277 }
9278
9279
9280 static bfd_boolean
9281 translate_section_fixes (asection *sec)
9282 {
9283 xtensa_relax_info *relax_info;
9284 reloc_bfd_fix *r;
9285
9286 relax_info = get_xtensa_relax_info (sec);
9287 if (!relax_info)
9288 return TRUE;
9289
9290 for (r = relax_info->fix_list; r != NULL; r = r->next)
9291 if (!translate_reloc_bfd_fix (r))
9292 return FALSE;
9293
9294 return TRUE;
9295 }
9296
9297
9298 /* Translate a fix given the mapping in the relax info for the target
9299 section. If it has already been translated, no work is required. */
9300
9301 static bfd_boolean
9302 translate_reloc_bfd_fix (reloc_bfd_fix *fix)
9303 {
9304 reloc_bfd_fix new_fix;
9305 asection *sec;
9306 xtensa_relax_info *relax_info;
9307 removed_literal *removed;
9308 bfd_vma new_offset, target_offset;
9309
9310 if (fix->translated)
9311 return TRUE;
9312
9313 sec = fix->target_sec;
9314 target_offset = fix->target_offset;
9315
9316 relax_info = get_xtensa_relax_info (sec);
9317 if (!relax_info)
9318 {
9319 fix->translated = TRUE;
9320 return TRUE;
9321 }
9322
9323 new_fix = *fix;
9324
9325 /* The fix does not need to be translated if the section cannot change. */
9326 if (!relax_info->is_relaxable_literal_section
9327 && !relax_info->is_relaxable_asm_section)
9328 {
9329 fix->translated = TRUE;
9330 return TRUE;
9331 }
9332
9333 /* If the literal has been moved and this relocation was on an
9334 opcode, then the relocation should move to the new literal
9335 location. Otherwise, the relocation should move within the
9336 section. */
9337
9338 removed = FALSE;
9339 if (is_operand_relocation (fix->src_type))
9340 {
9341 /* Check if the original relocation is against a literal being
9342 removed. */
9343 removed = find_removed_literal (&relax_info->removed_list,
9344 target_offset);
9345 }
9346
9347 if (removed)
9348 {
9349 asection *new_sec;
9350
9351 /* The fact that there is still a relocation to this literal indicates
9352 that the literal is being coalesced, not simply removed. */
9353 BFD_ASSERT (removed->to.abfd != NULL);
9354
9355 /* This was moved to some other address (possibly another section). */
9356 new_sec = r_reloc_get_section (&removed->to);
9357 if (new_sec != sec)
9358 {
9359 sec = new_sec;
9360 relax_info = get_xtensa_relax_info (sec);
9361 if (!relax_info ||
9362 (!relax_info->is_relaxable_literal_section
9363 && !relax_info->is_relaxable_asm_section))
9364 {
9365 target_offset = removed->to.target_offset;
9366 new_fix.target_sec = new_sec;
9367 new_fix.target_offset = target_offset;
9368 new_fix.translated = TRUE;
9369 *fix = new_fix;
9370 return TRUE;
9371 }
9372 }
9373 target_offset = removed->to.target_offset;
9374 new_fix.target_sec = new_sec;
9375 }
9376
9377 /* The target address may have been moved within its section. */
9378 new_offset = offset_with_removed_text (&relax_info->action_list,
9379 target_offset);
9380
9381 new_fix.target_offset = new_offset;
9382 new_fix.target_offset = new_offset;
9383 new_fix.translated = TRUE;
9384 *fix = new_fix;
9385 return TRUE;
9386 }
9387
9388
9389 /* Fix up a relocation to take account of removed literals. */
9390
9391 static asection *
9392 translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
9393 {
9394 xtensa_relax_info *relax_info;
9395 removed_literal *removed;
9396 bfd_vma target_offset, base_offset;
9397 text_action *act;
9398
9399 *new_rel = *orig_rel;
9400
9401 if (!r_reloc_is_defined (orig_rel))
9402 return sec ;
9403
9404 relax_info = get_xtensa_relax_info (sec);
9405 BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
9406 || relax_info->is_relaxable_asm_section));
9407
9408 target_offset = orig_rel->target_offset;
9409
9410 removed = FALSE;
9411 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
9412 {
9413 /* Check if the original relocation is against a literal being
9414 removed. */
9415 removed = find_removed_literal (&relax_info->removed_list,
9416 target_offset);
9417 }
9418 if (removed && removed->to.abfd)
9419 {
9420 asection *new_sec;
9421
9422 /* The fact that there is still a relocation to this literal indicates
9423 that the literal is being coalesced, not simply removed. */
9424 BFD_ASSERT (removed->to.abfd != NULL);
9425
9426 /* This was moved to some other address
9427 (possibly in another section). */
9428 *new_rel = removed->to;
9429 new_sec = r_reloc_get_section (new_rel);
9430 if (new_sec != sec)
9431 {
9432 sec = new_sec;
9433 relax_info = get_xtensa_relax_info (sec);
9434 if (!relax_info
9435 || (!relax_info->is_relaxable_literal_section
9436 && !relax_info->is_relaxable_asm_section))
9437 return sec;
9438 }
9439 target_offset = new_rel->target_offset;
9440 }
9441
9442 /* Find the base offset of the reloc symbol, excluding any addend from the
9443 reloc or from the section contents (for a partial_inplace reloc). Then
9444 find the adjusted values of the offsets due to relaxation. The base
9445 offset is needed to determine the change to the reloc's addend; the reloc
9446 addend should not be adjusted due to relaxations located before the base
9447 offset. */
9448
9449 base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
9450 act = relax_info->action_list.head;
9451 if (base_offset <= target_offset)
9452 {
9453 int base_removed = removed_by_actions (&act, base_offset, FALSE);
9454 int addend_removed = removed_by_actions (&act, target_offset, FALSE);
9455 new_rel->target_offset = target_offset - base_removed - addend_removed;
9456 new_rel->rela.r_addend -= addend_removed;
9457 }
9458 else
9459 {
9460 /* Handle a negative addend. The base offset comes first. */
9461 int tgt_removed = removed_by_actions (&act, target_offset, FALSE);
9462 int addend_removed = removed_by_actions (&act, base_offset, FALSE);
9463 new_rel->target_offset = target_offset - tgt_removed;
9464 new_rel->rela.r_addend += addend_removed;
9465 }
9466
9467 return sec;
9468 }
9469
9470
9471 /* For dynamic links, there may be a dynamic relocation for each
9472 literal. The number of dynamic relocations must be computed in
9473 size_dynamic_sections, which occurs before relaxation. When a
9474 literal is removed, this function checks if there is a corresponding
9475 dynamic relocation and shrinks the size of the appropriate dynamic
9476 relocation section accordingly. At this point, the contents of the
9477 dynamic relocation sections have not yet been filled in, so there's
9478 nothing else that needs to be done. */
9479
9480 static void
9481 shrink_dynamic_reloc_sections (struct bfd_link_info *info,
9482 bfd *abfd,
9483 asection *input_section,
9484 Elf_Internal_Rela *rel)
9485 {
9486 struct elf_xtensa_link_hash_table *htab;
9487 Elf_Internal_Shdr *symtab_hdr;
9488 struct elf_link_hash_entry **sym_hashes;
9489 unsigned long r_symndx;
9490 int r_type;
9491 struct elf_link_hash_entry *h;
9492 bfd_boolean dynamic_symbol;
9493
9494 htab = elf_xtensa_hash_table (info);
9495 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9496 sym_hashes = elf_sym_hashes (abfd);
9497
9498 r_type = ELF32_R_TYPE (rel->r_info);
9499 r_symndx = ELF32_R_SYM (rel->r_info);
9500
9501 if (r_symndx < symtab_hdr->sh_info)
9502 h = NULL;
9503 else
9504 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
9505
9506 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
9507
9508 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
9509 && (input_section->flags & SEC_ALLOC) != 0
9510 && (dynamic_symbol || info->shared))
9511 {
9512 asection *srel;
9513 bfd_boolean is_plt = FALSE;
9514
9515 if (dynamic_symbol && r_type == R_XTENSA_PLT)
9516 {
9517 srel = htab->srelplt;
9518 is_plt = TRUE;
9519 }
9520 else
9521 srel = htab->srelgot;
9522
9523 /* Reduce size of the .rela.* section by one reloc. */
9524 BFD_ASSERT (srel != NULL);
9525 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
9526 srel->size -= sizeof (Elf32_External_Rela);
9527
9528 if (is_plt)
9529 {
9530 asection *splt, *sgotplt, *srelgot;
9531 int reloc_index, chunk;
9532
9533 /* Find the PLT reloc index of the entry being removed. This
9534 is computed from the size of ".rela.plt". It is needed to
9535 figure out which PLT chunk to resize. Usually "last index
9536 = size - 1" since the index starts at zero, but in this
9537 context, the size has just been decremented so there's no
9538 need to subtract one. */
9539 reloc_index = srel->size / sizeof (Elf32_External_Rela);
9540
9541 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
9542 splt = elf_xtensa_get_plt_section (info, chunk);
9543 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
9544 BFD_ASSERT (splt != NULL && sgotplt != NULL);
9545
9546 /* Check if an entire PLT chunk has just been eliminated. */
9547 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
9548 {
9549 /* The two magic GOT entries for that chunk can go away. */
9550 srelgot = htab->srelgot;
9551 BFD_ASSERT (srelgot != NULL);
9552 srelgot->reloc_count -= 2;
9553 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
9554 sgotplt->size -= 8;
9555
9556 /* There should be only one entry left (and it will be
9557 removed below). */
9558 BFD_ASSERT (sgotplt->size == 4);
9559 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
9560 }
9561
9562 BFD_ASSERT (sgotplt->size >= 4);
9563 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
9564
9565 sgotplt->size -= 4;
9566 splt->size -= PLT_ENTRY_SIZE;
9567 }
9568 }
9569 }
9570
9571
9572 /* Take an r_rel and move it to another section. This usually
9573 requires extending the interal_relocation array and pinning it. If
9574 the original r_rel is from the same BFD, we can complete this here.
9575 Otherwise, we add a fix record to let the final link fix the
9576 appropriate address. Contents and internal relocations for the
9577 section must be pinned after calling this routine. */
9578
9579 static bfd_boolean
9580 move_literal (bfd *abfd,
9581 struct bfd_link_info *link_info,
9582 asection *sec,
9583 bfd_vma offset,
9584 bfd_byte *contents,
9585 xtensa_relax_info *relax_info,
9586 Elf_Internal_Rela **internal_relocs_p,
9587 const literal_value *lit)
9588 {
9589 Elf_Internal_Rela *new_relocs = NULL;
9590 size_t new_relocs_count = 0;
9591 Elf_Internal_Rela this_rela;
9592 const r_reloc *r_rel;
9593
9594 r_rel = &lit->r_rel;
9595 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
9596
9597 if (r_reloc_is_const (r_rel))
9598 bfd_put_32 (abfd, lit->value, contents + offset);
9599 else
9600 {
9601 int r_type;
9602 unsigned i;
9603 asection *target_sec;
9604 reloc_bfd_fix *fix;
9605 unsigned insert_at;
9606
9607 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
9608 target_sec = r_reloc_get_section (r_rel);
9609
9610 /* This is the difficult case. We have to create a fix up. */
9611 this_rela.r_offset = offset;
9612 this_rela.r_info = ELF32_R_INFO (0, r_type);
9613 this_rela.r_addend =
9614 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
9615 bfd_put_32 (abfd, lit->value, contents + offset);
9616
9617 /* Currently, we cannot move relocations during a relocatable link. */
9618 BFD_ASSERT (!link_info->relocatable);
9619 fix = reloc_bfd_fix_init (sec, offset, r_type,
9620 r_reloc_get_section (r_rel),
9621 r_rel->target_offset + r_rel->virtual_offset,
9622 FALSE);
9623 /* We also need to mark that relocations are needed here. */
9624 sec->flags |= SEC_RELOC;
9625
9626 translate_reloc_bfd_fix (fix);
9627 /* This fix has not yet been translated. */
9628 add_fix (sec, fix);
9629
9630 /* Add the relocation. If we have already allocated our own
9631 space for the relocations and we have room for more, then use
9632 it. Otherwise, allocate new space and move the literals. */
9633 insert_at = sec->reloc_count;
9634 for (i = 0; i < sec->reloc_count; ++i)
9635 {
9636 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
9637 {
9638 insert_at = i;
9639 break;
9640 }
9641 }
9642
9643 if (*internal_relocs_p != relax_info->allocated_relocs
9644 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
9645 {
9646 BFD_ASSERT (relax_info->allocated_relocs == NULL
9647 || sec->reloc_count == relax_info->relocs_count);
9648
9649 if (relax_info->allocated_relocs_count == 0)
9650 new_relocs_count = (sec->reloc_count + 2) * 2;
9651 else
9652 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
9653
9654 new_relocs = (Elf_Internal_Rela *)
9655 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
9656 if (!new_relocs)
9657 return FALSE;
9658
9659 /* We could handle this more quickly by finding the split point. */
9660 if (insert_at != 0)
9661 memcpy (new_relocs, *internal_relocs_p,
9662 insert_at * sizeof (Elf_Internal_Rela));
9663
9664 new_relocs[insert_at] = this_rela;
9665
9666 if (insert_at != sec->reloc_count)
9667 memcpy (new_relocs + insert_at + 1,
9668 (*internal_relocs_p) + insert_at,
9669 (sec->reloc_count - insert_at)
9670 * sizeof (Elf_Internal_Rela));
9671
9672 if (*internal_relocs_p != relax_info->allocated_relocs)
9673 {
9674 /* The first time we re-allocate, we can only free the
9675 old relocs if they were allocated with bfd_malloc.
9676 This is not true when keep_memory is in effect. */
9677 if (!link_info->keep_memory)
9678 free (*internal_relocs_p);
9679 }
9680 else
9681 free (*internal_relocs_p);
9682 relax_info->allocated_relocs = new_relocs;
9683 relax_info->allocated_relocs_count = new_relocs_count;
9684 elf_section_data (sec)->relocs = new_relocs;
9685 sec->reloc_count++;
9686 relax_info->relocs_count = sec->reloc_count;
9687 *internal_relocs_p = new_relocs;
9688 }
9689 else
9690 {
9691 if (insert_at != sec->reloc_count)
9692 {
9693 unsigned idx;
9694 for (idx = sec->reloc_count; idx > insert_at; idx--)
9695 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
9696 }
9697 (*internal_relocs_p)[insert_at] = this_rela;
9698 sec->reloc_count++;
9699 if (relax_info->allocated_relocs)
9700 relax_info->relocs_count = sec->reloc_count;
9701 }
9702 }
9703 return TRUE;
9704 }
9705
9706
9707 /* This is similar to relax_section except that when a target is moved,
9708 we shift addresses up. We also need to modify the size. This
9709 algorithm does NOT allow for relocations into the middle of the
9710 property sections. */
9711
9712 static bfd_boolean
9713 relax_property_section (bfd *abfd,
9714 asection *sec,
9715 struct bfd_link_info *link_info)
9716 {
9717 Elf_Internal_Rela *internal_relocs;
9718 bfd_byte *contents;
9719 unsigned i;
9720 bfd_boolean ok = TRUE;
9721 bfd_boolean is_full_prop_section;
9722 size_t last_zfill_target_offset = 0;
9723 asection *last_zfill_target_sec = NULL;
9724 bfd_size_type sec_size;
9725 bfd_size_type entry_size;
9726
9727 sec_size = bfd_get_section_limit (abfd, sec);
9728 internal_relocs = retrieve_internal_relocs (abfd, sec,
9729 link_info->keep_memory);
9730 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
9731 if (contents == NULL && sec_size != 0)
9732 {
9733 ok = FALSE;
9734 goto error_return;
9735 }
9736
9737 is_full_prop_section = xtensa_is_proptable_section (sec);
9738 if (is_full_prop_section)
9739 entry_size = 12;
9740 else
9741 entry_size = 8;
9742
9743 if (internal_relocs)
9744 {
9745 for (i = 0; i < sec->reloc_count; i++)
9746 {
9747 Elf_Internal_Rela *irel;
9748 xtensa_relax_info *target_relax_info;
9749 unsigned r_type;
9750 asection *target_sec;
9751 literal_value val;
9752 bfd_byte *size_p, *flags_p;
9753
9754 /* Locally change the source address.
9755 Translate the target to the new target address.
9756 If it points to this section and has been removed, MOVE IT.
9757 Also, don't forget to modify the associated SIZE at
9758 (offset + 4). */
9759
9760 irel = &internal_relocs[i];
9761 r_type = ELF32_R_TYPE (irel->r_info);
9762 if (r_type == R_XTENSA_NONE)
9763 continue;
9764
9765 /* Find the literal value. */
9766 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
9767 size_p = &contents[irel->r_offset + 4];
9768 flags_p = NULL;
9769 if (is_full_prop_section)
9770 flags_p = &contents[irel->r_offset + 8];
9771 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
9772
9773 target_sec = r_reloc_get_section (&val.r_rel);
9774 target_relax_info = get_xtensa_relax_info (target_sec);
9775
9776 if (target_relax_info
9777 && (target_relax_info->is_relaxable_literal_section
9778 || target_relax_info->is_relaxable_asm_section ))
9779 {
9780 /* Translate the relocation's destination. */
9781 bfd_vma old_offset = val.r_rel.target_offset;
9782 bfd_vma new_offset;
9783 long old_size, new_size;
9784 text_action *act = target_relax_info->action_list.head;
9785 new_offset = old_offset -
9786 removed_by_actions (&act, old_offset, FALSE);
9787
9788 /* Assert that we are not out of bounds. */
9789 old_size = bfd_get_32 (abfd, size_p);
9790 new_size = old_size;
9791
9792 if (old_size == 0)
9793 {
9794 /* Only the first zero-sized unreachable entry is
9795 allowed to expand. In this case the new offset
9796 should be the offset before the fill and the new
9797 size is the expansion size. For other zero-sized
9798 entries the resulting size should be zero with an
9799 offset before or after the fill address depending
9800 on whether the expanding unreachable entry
9801 preceeds it. */
9802 if (last_zfill_target_sec == 0
9803 || last_zfill_target_sec != target_sec
9804 || last_zfill_target_offset != old_offset)
9805 {
9806 bfd_vma new_end_offset = new_offset;
9807
9808 /* Recompute the new_offset, but this time don't
9809 include any fill inserted by relaxation. */
9810 act = target_relax_info->action_list.head;
9811 new_offset = old_offset -
9812 removed_by_actions (&act, old_offset, TRUE);
9813
9814 /* If it is not unreachable and we have not yet
9815 seen an unreachable at this address, place it
9816 before the fill address. */
9817 if (flags_p && (bfd_get_32 (abfd, flags_p)
9818 & XTENSA_PROP_UNREACHABLE) != 0)
9819 {
9820 new_size = new_end_offset - new_offset;
9821
9822 last_zfill_target_sec = target_sec;
9823 last_zfill_target_offset = old_offset;
9824 }
9825 }
9826 }
9827 else
9828 new_size -=
9829 removed_by_actions (&act, old_offset + old_size, TRUE);
9830
9831 if (new_size != old_size)
9832 {
9833 bfd_put_32 (abfd, new_size, size_p);
9834 pin_contents (sec, contents);
9835 }
9836
9837 if (new_offset != old_offset)
9838 {
9839 bfd_vma diff = new_offset - old_offset;
9840 irel->r_addend += diff;
9841 pin_internal_relocs (sec, internal_relocs);
9842 }
9843 }
9844 }
9845 }
9846
9847 /* Combine adjacent property table entries. This is also done in
9848 finish_dynamic_sections() but at that point it's too late to
9849 reclaim the space in the output section, so we do this twice. */
9850
9851 if (internal_relocs && (!link_info->relocatable
9852 || xtensa_is_littable_section (sec)))
9853 {
9854 Elf_Internal_Rela *last_irel = NULL;
9855 Elf_Internal_Rela *irel, *next_rel, *rel_end;
9856 int removed_bytes = 0;
9857 bfd_vma offset;
9858 flagword predef_flags;
9859
9860 predef_flags = xtensa_get_property_predef_flags (sec);
9861
9862 /* Walk over memory and relocations at the same time.
9863 This REQUIRES that the internal_relocs be sorted by offset. */
9864 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
9865 internal_reloc_compare);
9866
9867 pin_internal_relocs (sec, internal_relocs);
9868 pin_contents (sec, contents);
9869
9870 next_rel = internal_relocs;
9871 rel_end = internal_relocs + sec->reloc_count;
9872
9873 BFD_ASSERT (sec->size % entry_size == 0);
9874
9875 for (offset = 0; offset < sec->size; offset += entry_size)
9876 {
9877 Elf_Internal_Rela *offset_rel, *extra_rel;
9878 bfd_vma bytes_to_remove, size, actual_offset;
9879 bfd_boolean remove_this_rel;
9880 flagword flags;
9881
9882 /* Find the first relocation for the entry at the current offset.
9883 Adjust the offsets of any extra relocations for the previous
9884 entry. */
9885 offset_rel = NULL;
9886 if (next_rel)
9887 {
9888 for (irel = next_rel; irel < rel_end; irel++)
9889 {
9890 if ((irel->r_offset == offset
9891 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9892 || irel->r_offset > offset)
9893 {
9894 offset_rel = irel;
9895 break;
9896 }
9897 irel->r_offset -= removed_bytes;
9898 }
9899 }
9900
9901 /* Find the next relocation (if there are any left). */
9902 extra_rel = NULL;
9903 if (offset_rel)
9904 {
9905 for (irel = offset_rel + 1; irel < rel_end; irel++)
9906 {
9907 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9908 {
9909 extra_rel = irel;
9910 break;
9911 }
9912 }
9913 }
9914
9915 /* Check if there are relocations on the current entry. There
9916 should usually be a relocation on the offset field. If there
9917 are relocations on the size or flags, then we can't optimize
9918 this entry. Also, find the next relocation to examine on the
9919 next iteration. */
9920 if (offset_rel)
9921 {
9922 if (offset_rel->r_offset >= offset + entry_size)
9923 {
9924 next_rel = offset_rel;
9925 /* There are no relocations on the current entry, but we
9926 might still be able to remove it if the size is zero. */
9927 offset_rel = NULL;
9928 }
9929 else if (offset_rel->r_offset > offset
9930 || (extra_rel
9931 && extra_rel->r_offset < offset + entry_size))
9932 {
9933 /* There is a relocation on the size or flags, so we can't
9934 do anything with this entry. Continue with the next. */
9935 next_rel = offset_rel;
9936 continue;
9937 }
9938 else
9939 {
9940 BFD_ASSERT (offset_rel->r_offset == offset);
9941 offset_rel->r_offset -= removed_bytes;
9942 next_rel = offset_rel + 1;
9943 }
9944 }
9945 else
9946 next_rel = NULL;
9947
9948 remove_this_rel = FALSE;
9949 bytes_to_remove = 0;
9950 actual_offset = offset - removed_bytes;
9951 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
9952
9953 if (is_full_prop_section)
9954 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
9955 else
9956 flags = predef_flags;
9957
9958 if (size == 0
9959 && (flags & XTENSA_PROP_ALIGN) == 0
9960 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
9961 {
9962 /* Always remove entries with zero size and no alignment. */
9963 bytes_to_remove = entry_size;
9964 if (offset_rel)
9965 remove_this_rel = TRUE;
9966 }
9967 else if (offset_rel
9968 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
9969 {
9970 if (last_irel)
9971 {
9972 flagword old_flags;
9973 bfd_vma old_size =
9974 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
9975 bfd_vma old_address =
9976 (last_irel->r_addend
9977 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
9978 bfd_vma new_address =
9979 (offset_rel->r_addend
9980 + bfd_get_32 (abfd, &contents[actual_offset]));
9981 if (is_full_prop_section)
9982 old_flags = bfd_get_32
9983 (abfd, &contents[last_irel->r_offset + 8]);
9984 else
9985 old_flags = predef_flags;
9986
9987 if ((ELF32_R_SYM (offset_rel->r_info)
9988 == ELF32_R_SYM (last_irel->r_info))
9989 && old_address + old_size == new_address
9990 && old_flags == flags
9991 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
9992 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
9993 {
9994 /* Fix the old size. */
9995 bfd_put_32 (abfd, old_size + size,
9996 &contents[last_irel->r_offset + 4]);
9997 bytes_to_remove = entry_size;
9998 remove_this_rel = TRUE;
9999 }
10000 else
10001 last_irel = offset_rel;
10002 }
10003 else
10004 last_irel = offset_rel;
10005 }
10006
10007 if (remove_this_rel)
10008 {
10009 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
10010 /* In case this is the last entry, move the relocation offset
10011 to the previous entry, if there is one. */
10012 if (offset_rel->r_offset >= bytes_to_remove)
10013 offset_rel->r_offset -= bytes_to_remove;
10014 else
10015 offset_rel->r_offset = 0;
10016 }
10017
10018 if (bytes_to_remove != 0)
10019 {
10020 removed_bytes += bytes_to_remove;
10021 if (offset + bytes_to_remove < sec->size)
10022 memmove (&contents[actual_offset],
10023 &contents[actual_offset + bytes_to_remove],
10024 sec->size - offset - bytes_to_remove);
10025 }
10026 }
10027
10028 if (removed_bytes)
10029 {
10030 /* Fix up any extra relocations on the last entry. */
10031 for (irel = next_rel; irel < rel_end; irel++)
10032 irel->r_offset -= removed_bytes;
10033
10034 /* Clear the removed bytes. */
10035 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
10036
10037 if (sec->rawsize == 0)
10038 sec->rawsize = sec->size;
10039 sec->size -= removed_bytes;
10040
10041 if (xtensa_is_littable_section (sec))
10042 {
10043 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
10044 if (sgotloc)
10045 sgotloc->size -= removed_bytes;
10046 }
10047 }
10048 }
10049
10050 error_return:
10051 release_internal_relocs (sec, internal_relocs);
10052 release_contents (sec, contents);
10053 return ok;
10054 }
10055
10056 \f
10057 /* Third relaxation pass. */
10058
10059 /* Change symbol values to account for removed literals. */
10060
10061 bfd_boolean
10062 relax_section_symbols (bfd *abfd, asection *sec)
10063 {
10064 xtensa_relax_info *relax_info;
10065 unsigned int sec_shndx;
10066 Elf_Internal_Shdr *symtab_hdr;
10067 Elf_Internal_Sym *isymbuf;
10068 unsigned i, num_syms, num_locals;
10069
10070 relax_info = get_xtensa_relax_info (sec);
10071 BFD_ASSERT (relax_info);
10072
10073 if (!relax_info->is_relaxable_literal_section
10074 && !relax_info->is_relaxable_asm_section)
10075 return TRUE;
10076
10077 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
10078
10079 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10080 isymbuf = retrieve_local_syms (abfd);
10081
10082 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
10083 num_locals = symtab_hdr->sh_info;
10084
10085 /* Adjust the local symbols defined in this section. */
10086 for (i = 0; i < num_locals; i++)
10087 {
10088 Elf_Internal_Sym *isym = &isymbuf[i];
10089
10090 if (isym->st_shndx == sec_shndx)
10091 {
10092 text_action *act = relax_info->action_list.head;
10093 bfd_vma orig_addr = isym->st_value;
10094
10095 isym->st_value -= removed_by_actions (&act, orig_addr, FALSE);
10096
10097 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
10098 isym->st_size -=
10099 removed_by_actions (&act, orig_addr + isym->st_size, FALSE);
10100 }
10101 }
10102
10103 /* Now adjust the global symbols defined in this section. */
10104 for (i = 0; i < (num_syms - num_locals); i++)
10105 {
10106 struct elf_link_hash_entry *sym_hash;
10107
10108 sym_hash = elf_sym_hashes (abfd)[i];
10109
10110 if (sym_hash->root.type == bfd_link_hash_warning)
10111 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
10112
10113 if ((sym_hash->root.type == bfd_link_hash_defined
10114 || sym_hash->root.type == bfd_link_hash_defweak)
10115 && sym_hash->root.u.def.section == sec)
10116 {
10117 text_action *act = relax_info->action_list.head;
10118 bfd_vma orig_addr = sym_hash->root.u.def.value;
10119
10120 sym_hash->root.u.def.value -=
10121 removed_by_actions (&act, orig_addr, FALSE);
10122
10123 if (sym_hash->type == STT_FUNC)
10124 sym_hash->size -=
10125 removed_by_actions (&act, orig_addr + sym_hash->size, FALSE);
10126 }
10127 }
10128
10129 return TRUE;
10130 }
10131
10132 \f
10133 /* "Fix" handling functions, called while performing relocations. */
10134
10135 static bfd_boolean
10136 do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
10137 bfd *input_bfd,
10138 asection *input_section,
10139 bfd_byte *contents)
10140 {
10141 r_reloc r_rel;
10142 asection *sec, *old_sec;
10143 bfd_vma old_offset;
10144 int r_type = ELF32_R_TYPE (rel->r_info);
10145 reloc_bfd_fix *fix;
10146
10147 if (r_type == R_XTENSA_NONE)
10148 return TRUE;
10149
10150 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10151 if (!fix)
10152 return TRUE;
10153
10154 r_reloc_init (&r_rel, input_bfd, rel, contents,
10155 bfd_get_section_limit (input_bfd, input_section));
10156 old_sec = r_reloc_get_section (&r_rel);
10157 old_offset = r_rel.target_offset;
10158
10159 if (!old_sec || !r_reloc_is_defined (&r_rel))
10160 {
10161 if (r_type != R_XTENSA_ASM_EXPAND)
10162 {
10163 (*_bfd_error_handler)
10164 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
10165 input_bfd, input_section, rel->r_offset,
10166 elf_howto_table[r_type].name);
10167 return FALSE;
10168 }
10169 /* Leave it be. Resolution will happen in a later stage. */
10170 }
10171 else
10172 {
10173 sec = fix->target_sec;
10174 rel->r_addend += ((sec->output_offset + fix->target_offset)
10175 - (old_sec->output_offset + old_offset));
10176 }
10177 return TRUE;
10178 }
10179
10180
10181 static void
10182 do_fix_for_final_link (Elf_Internal_Rela *rel,
10183 bfd *input_bfd,
10184 asection *input_section,
10185 bfd_byte *contents,
10186 bfd_vma *relocationp)
10187 {
10188 asection *sec;
10189 int r_type = ELF32_R_TYPE (rel->r_info);
10190 reloc_bfd_fix *fix;
10191 bfd_vma fixup_diff;
10192
10193 if (r_type == R_XTENSA_NONE)
10194 return;
10195
10196 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10197 if (!fix)
10198 return;
10199
10200 sec = fix->target_sec;
10201
10202 fixup_diff = rel->r_addend;
10203 if (elf_howto_table[fix->src_type].partial_inplace)
10204 {
10205 bfd_vma inplace_val;
10206 BFD_ASSERT (fix->src_offset
10207 < bfd_get_section_limit (input_bfd, input_section));
10208 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
10209 fixup_diff += inplace_val;
10210 }
10211
10212 *relocationp = (sec->output_section->vma
10213 + sec->output_offset
10214 + fix->target_offset - fixup_diff);
10215 }
10216
10217 \f
10218 /* Miscellaneous utility functions.... */
10219
10220 static asection *
10221 elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
10222 {
10223 struct elf_xtensa_link_hash_table *htab;
10224 bfd *dynobj;
10225 char plt_name[10];
10226
10227 if (chunk == 0)
10228 {
10229 htab = elf_xtensa_hash_table (info);
10230 return htab->splt;
10231 }
10232
10233 dynobj = elf_hash_table (info)->dynobj;
10234 sprintf (plt_name, ".plt.%u", chunk);
10235 return bfd_get_section_by_name (dynobj, plt_name);
10236 }
10237
10238
10239 static asection *
10240 elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
10241 {
10242 struct elf_xtensa_link_hash_table *htab;
10243 bfd *dynobj;
10244 char got_name[14];
10245
10246 if (chunk == 0)
10247 {
10248 htab = elf_xtensa_hash_table (info);
10249 return htab->sgotplt;
10250 }
10251
10252 dynobj = elf_hash_table (info)->dynobj;
10253 sprintf (got_name, ".got.plt.%u", chunk);
10254 return bfd_get_section_by_name (dynobj, got_name);
10255 }
10256
10257
10258 /* Get the input section for a given symbol index.
10259 If the symbol is:
10260 . a section symbol, return the section;
10261 . a common symbol, return the common section;
10262 . an undefined symbol, return the undefined section;
10263 . an indirect symbol, follow the links;
10264 . an absolute value, return the absolute section. */
10265
10266 static asection *
10267 get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
10268 {
10269 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10270 asection *target_sec = NULL;
10271 if (r_symndx < symtab_hdr->sh_info)
10272 {
10273 Elf_Internal_Sym *isymbuf;
10274 unsigned int section_index;
10275
10276 isymbuf = retrieve_local_syms (abfd);
10277 section_index = isymbuf[r_symndx].st_shndx;
10278
10279 if (section_index == SHN_UNDEF)
10280 target_sec = bfd_und_section_ptr;
10281 else if (section_index == SHN_ABS)
10282 target_sec = bfd_abs_section_ptr;
10283 else if (section_index == SHN_COMMON)
10284 target_sec = bfd_com_section_ptr;
10285 else
10286 target_sec = bfd_section_from_elf_index (abfd, section_index);
10287 }
10288 else
10289 {
10290 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10291 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
10292
10293 while (h->root.type == bfd_link_hash_indirect
10294 || h->root.type == bfd_link_hash_warning)
10295 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10296
10297 switch (h->root.type)
10298 {
10299 case bfd_link_hash_defined:
10300 case bfd_link_hash_defweak:
10301 target_sec = h->root.u.def.section;
10302 break;
10303 case bfd_link_hash_common:
10304 target_sec = bfd_com_section_ptr;
10305 break;
10306 case bfd_link_hash_undefined:
10307 case bfd_link_hash_undefweak:
10308 target_sec = bfd_und_section_ptr;
10309 break;
10310 default: /* New indirect warning. */
10311 target_sec = bfd_und_section_ptr;
10312 break;
10313 }
10314 }
10315 return target_sec;
10316 }
10317
10318
10319 static struct elf_link_hash_entry *
10320 get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
10321 {
10322 unsigned long indx;
10323 struct elf_link_hash_entry *h;
10324 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10325
10326 if (r_symndx < symtab_hdr->sh_info)
10327 return NULL;
10328
10329 indx = r_symndx - symtab_hdr->sh_info;
10330 h = elf_sym_hashes (abfd)[indx];
10331 while (h->root.type == bfd_link_hash_indirect
10332 || h->root.type == bfd_link_hash_warning)
10333 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10334 return h;
10335 }
10336
10337
10338 /* Get the section-relative offset for a symbol number. */
10339
10340 static bfd_vma
10341 get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
10342 {
10343 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10344 bfd_vma offset = 0;
10345
10346 if (r_symndx < symtab_hdr->sh_info)
10347 {
10348 Elf_Internal_Sym *isymbuf;
10349 isymbuf = retrieve_local_syms (abfd);
10350 offset = isymbuf[r_symndx].st_value;
10351 }
10352 else
10353 {
10354 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10355 struct elf_link_hash_entry *h =
10356 elf_sym_hashes (abfd)[indx];
10357
10358 while (h->root.type == bfd_link_hash_indirect
10359 || h->root.type == bfd_link_hash_warning)
10360 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10361 if (h->root.type == bfd_link_hash_defined
10362 || h->root.type == bfd_link_hash_defweak)
10363 offset = h->root.u.def.value;
10364 }
10365 return offset;
10366 }
10367
10368
10369 static bfd_boolean
10370 is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
10371 {
10372 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
10373 struct elf_link_hash_entry *h;
10374
10375 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
10376 if (h && h->root.type == bfd_link_hash_defweak)
10377 return TRUE;
10378 return FALSE;
10379 }
10380
10381
10382 static bfd_boolean
10383 pcrel_reloc_fits (xtensa_opcode opc,
10384 int opnd,
10385 bfd_vma self_address,
10386 bfd_vma dest_address)
10387 {
10388 xtensa_isa isa = xtensa_default_isa;
10389 uint32 valp = dest_address;
10390 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
10391 || xtensa_operand_encode (isa, opc, opnd, &valp))
10392 return FALSE;
10393 return TRUE;
10394 }
10395
10396
10397 static bfd_boolean
10398 xtensa_is_property_section (asection *sec)
10399 {
10400 if (xtensa_is_insntable_section (sec)
10401 || xtensa_is_littable_section (sec)
10402 || xtensa_is_proptable_section (sec))
10403 return TRUE;
10404
10405 return FALSE;
10406 }
10407
10408
10409 static bfd_boolean
10410 xtensa_is_insntable_section (asection *sec)
10411 {
10412 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
10413 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
10414 return TRUE;
10415
10416 return FALSE;
10417 }
10418
10419
10420 static bfd_boolean
10421 xtensa_is_littable_section (asection *sec)
10422 {
10423 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
10424 || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
10425 return TRUE;
10426
10427 return FALSE;
10428 }
10429
10430
10431 static bfd_boolean
10432 xtensa_is_proptable_section (asection *sec)
10433 {
10434 if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
10435 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
10436 return TRUE;
10437
10438 return FALSE;
10439 }
10440
10441
10442 static int
10443 internal_reloc_compare (const void *ap, const void *bp)
10444 {
10445 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
10446 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
10447
10448 if (a->r_offset != b->r_offset)
10449 return (a->r_offset - b->r_offset);
10450
10451 /* We don't need to sort on these criteria for correctness,
10452 but enforcing a more strict ordering prevents unstable qsort
10453 from behaving differently with different implementations.
10454 Without the code below we get correct but different results
10455 on Solaris 2.7 and 2.8. We would like to always produce the
10456 same results no matter the host. */
10457
10458 if (a->r_info != b->r_info)
10459 return (a->r_info - b->r_info);
10460
10461 return (a->r_addend - b->r_addend);
10462 }
10463
10464
10465 static int
10466 internal_reloc_matches (const void *ap, const void *bp)
10467 {
10468 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
10469 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
10470
10471 /* Check if one entry overlaps with the other; this shouldn't happen
10472 except when searching for a match. */
10473 return (a->r_offset - b->r_offset);
10474 }
10475
10476
10477 /* Predicate function used to look up a section in a particular group. */
10478
10479 static bfd_boolean
10480 match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
10481 {
10482 const char *gname = inf;
10483 const char *group_name = elf_group_name (sec);
10484
10485 return (group_name == gname
10486 || (group_name != NULL
10487 && gname != NULL
10488 && strcmp (group_name, gname) == 0));
10489 }
10490
10491
10492 static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
10493
10494 static char *
10495 xtensa_property_section_name (asection *sec, const char *base_name)
10496 {
10497 const char *suffix, *group_name;
10498 char *prop_sec_name;
10499
10500 group_name = elf_group_name (sec);
10501 if (group_name)
10502 {
10503 suffix = strrchr (sec->name, '.');
10504 if (suffix == sec->name)
10505 suffix = 0;
10506 prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1
10507 + (suffix ? strlen (suffix) : 0));
10508 strcpy (prop_sec_name, base_name);
10509 if (suffix)
10510 strcat (prop_sec_name, suffix);
10511 }
10512 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
10513 {
10514 char *linkonce_kind = 0;
10515
10516 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
10517 linkonce_kind = "x.";
10518 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
10519 linkonce_kind = "p.";
10520 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
10521 linkonce_kind = "prop.";
10522 else
10523 abort ();
10524
10525 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
10526 + strlen (linkonce_kind) + 1);
10527 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
10528 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
10529
10530 suffix = sec->name + linkonce_len;
10531 /* For backward compatibility, replace "t." instead of inserting
10532 the new linkonce_kind (but not for "prop" sections). */
10533 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
10534 suffix += 2;
10535 strcat (prop_sec_name + linkonce_len, suffix);
10536 }
10537 else
10538 prop_sec_name = strdup (base_name);
10539
10540 return prop_sec_name;
10541 }
10542
10543
10544 static asection *
10545 xtensa_get_property_section (asection *sec, const char *base_name)
10546 {
10547 char *prop_sec_name;
10548 asection *prop_sec;
10549
10550 prop_sec_name = xtensa_property_section_name (sec, base_name);
10551 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
10552 match_section_group,
10553 (void *) elf_group_name (sec));
10554 free (prop_sec_name);
10555 return prop_sec;
10556 }
10557
10558
10559 asection *
10560 xtensa_make_property_section (asection *sec, const char *base_name)
10561 {
10562 char *prop_sec_name;
10563 asection *prop_sec;
10564
10565 /* Check if the section already exists. */
10566 prop_sec_name = xtensa_property_section_name (sec, base_name);
10567 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
10568 match_section_group,
10569 (void *) elf_group_name (sec));
10570 /* If not, create it. */
10571 if (! prop_sec)
10572 {
10573 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
10574 flags |= (bfd_get_section_flags (sec->owner, sec)
10575 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
10576
10577 prop_sec = bfd_make_section_anyway_with_flags
10578 (sec->owner, strdup (prop_sec_name), flags);
10579 if (! prop_sec)
10580 return 0;
10581
10582 elf_group_name (prop_sec) = elf_group_name (sec);
10583 }
10584
10585 free (prop_sec_name);
10586 return prop_sec;
10587 }
10588
10589
10590 flagword
10591 xtensa_get_property_predef_flags (asection *sec)
10592 {
10593 if (xtensa_is_insntable_section (sec))
10594 return (XTENSA_PROP_INSN
10595 | XTENSA_PROP_NO_TRANSFORM
10596 | XTENSA_PROP_INSN_NO_REORDER);
10597
10598 if (xtensa_is_littable_section (sec))
10599 return (XTENSA_PROP_LITERAL
10600 | XTENSA_PROP_NO_TRANSFORM
10601 | XTENSA_PROP_INSN_NO_REORDER);
10602
10603 return 0;
10604 }
10605
10606 \f
10607 /* Other functions called directly by the linker. */
10608
10609 bfd_boolean
10610 xtensa_callback_required_dependence (bfd *abfd,
10611 asection *sec,
10612 struct bfd_link_info *link_info,
10613 deps_callback_t callback,
10614 void *closure)
10615 {
10616 Elf_Internal_Rela *internal_relocs;
10617 bfd_byte *contents;
10618 unsigned i;
10619 bfd_boolean ok = TRUE;
10620 bfd_size_type sec_size;
10621
10622 sec_size = bfd_get_section_limit (abfd, sec);
10623
10624 /* ".plt*" sections have no explicit relocations but they contain L32R
10625 instructions that reference the corresponding ".got.plt*" sections. */
10626 if ((sec->flags & SEC_LINKER_CREATED) != 0
10627 && CONST_STRNEQ (sec->name, ".plt"))
10628 {
10629 asection *sgotplt;
10630
10631 /* Find the corresponding ".got.plt*" section. */
10632 if (sec->name[4] == '\0')
10633 sgotplt = bfd_get_section_by_name (sec->owner, ".got.plt");
10634 else
10635 {
10636 char got_name[14];
10637 int chunk = 0;
10638
10639 BFD_ASSERT (sec->name[4] == '.');
10640 chunk = strtol (&sec->name[5], NULL, 10);
10641
10642 sprintf (got_name, ".got.plt.%u", chunk);
10643 sgotplt = bfd_get_section_by_name (sec->owner, got_name);
10644 }
10645 BFD_ASSERT (sgotplt);
10646
10647 /* Assume worst-case offsets: L32R at the very end of the ".plt"
10648 section referencing a literal at the very beginning of
10649 ".got.plt". This is very close to the real dependence, anyway. */
10650 (*callback) (sec, sec_size, sgotplt, 0, closure);
10651 }
10652
10653 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
10654 when building uclibc, which runs "ld -b binary /dev/null". */
10655 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
10656 return ok;
10657
10658 internal_relocs = retrieve_internal_relocs (abfd, sec,
10659 link_info->keep_memory);
10660 if (internal_relocs == NULL
10661 || sec->reloc_count == 0)
10662 return ok;
10663
10664 /* Cache the contents for the duration of this scan. */
10665 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
10666 if (contents == NULL && sec_size != 0)
10667 {
10668 ok = FALSE;
10669 goto error_return;
10670 }
10671
10672 if (!xtensa_default_isa)
10673 xtensa_default_isa = xtensa_isa_init (0, 0);
10674
10675 for (i = 0; i < sec->reloc_count; i++)
10676 {
10677 Elf_Internal_Rela *irel = &internal_relocs[i];
10678 if (is_l32r_relocation (abfd, sec, contents, irel))
10679 {
10680 r_reloc l32r_rel;
10681 asection *target_sec;
10682 bfd_vma target_offset;
10683
10684 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
10685 target_sec = NULL;
10686 target_offset = 0;
10687 /* L32Rs must be local to the input file. */
10688 if (r_reloc_is_defined (&l32r_rel))
10689 {
10690 target_sec = r_reloc_get_section (&l32r_rel);
10691 target_offset = l32r_rel.target_offset;
10692 }
10693 (*callback) (sec, irel->r_offset, target_sec, target_offset,
10694 closure);
10695 }
10696 }
10697
10698 error_return:
10699 release_internal_relocs (sec, internal_relocs);
10700 release_contents (sec, contents);
10701 return ok;
10702 }
10703
10704 /* The default literal sections should always be marked as "code" (i.e.,
10705 SHF_EXECINSTR). This is particularly important for the Linux kernel
10706 module loader so that the literals are not placed after the text. */
10707 static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
10708 {
10709 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
10710 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
10711 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
10712 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
10713 { NULL, 0, 0, 0, 0 }
10714 };
10715 \f
10716 #ifndef ELF_ARCH
10717 #define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec
10718 #define TARGET_LITTLE_NAME "elf32-xtensa-le"
10719 #define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec
10720 #define TARGET_BIG_NAME "elf32-xtensa-be"
10721 #define ELF_ARCH bfd_arch_xtensa
10722
10723 #define ELF_MACHINE_CODE EM_XTENSA
10724 #define ELF_MACHINE_ALT1 EM_XTENSA_OLD
10725
10726 #if XCHAL_HAVE_MMU
10727 #define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
10728 #else /* !XCHAL_HAVE_MMU */
10729 #define ELF_MAXPAGESIZE 1
10730 #endif /* !XCHAL_HAVE_MMU */
10731 #endif /* ELF_ARCH */
10732
10733 #define elf_backend_can_gc_sections 1
10734 #define elf_backend_can_refcount 1
10735 #define elf_backend_plt_readonly 1
10736 #define elf_backend_got_header_size 4
10737 #define elf_backend_want_dynbss 0
10738 #define elf_backend_want_got_plt 1
10739
10740 #define elf_info_to_howto elf_xtensa_info_to_howto_rela
10741
10742 #define bfd_elf32_mkobject elf_xtensa_mkobject
10743
10744 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
10745 #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
10746 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
10747 #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
10748 #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
10749 #define bfd_elf32_bfd_reloc_name_lookup \
10750 elf_xtensa_reloc_name_lookup
10751 #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
10752 #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
10753
10754 #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
10755 #define elf_backend_check_relocs elf_xtensa_check_relocs
10756 #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
10757 #define elf_backend_discard_info elf_xtensa_discard_info
10758 #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
10759 #define elf_backend_final_write_processing elf_xtensa_final_write_processing
10760 #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
10761 #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
10762 #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
10763 #define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
10764 #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
10765 #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
10766 #define elf_backend_hide_symbol elf_xtensa_hide_symbol
10767 #define elf_backend_object_p elf_xtensa_object_p
10768 #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
10769 #define elf_backend_relocate_section elf_xtensa_relocate_section
10770 #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
10771 #define elf_backend_always_size_sections elf_xtensa_always_size_sections
10772 #define elf_backend_omit_section_dynsym \
10773 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
10774 #define elf_backend_special_sections elf_xtensa_special_sections
10775 #define elf_backend_action_discarded elf_xtensa_action_discarded
10776 #define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol
10777
10778 #include "elf32-target.h"
This page took 0.259949 seconds and 5 git commands to generate.