bfd/
[deliverable/binutils-gdb.git] / bfd / elf32-xtensa.c
1 /* Xtensa-specific support for 32-bit ELF.
2 Copyright 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 3 of the
9 License, or (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23
24 #include <stdarg.h>
25 #include <strings.h>
26
27 #include "bfdlink.h"
28 #include "libbfd.h"
29 #include "elf-bfd.h"
30 #include "elf/xtensa.h"
31 #include "xtensa-isa.h"
32 #include "xtensa-config.h"
33
34 #define XTENSA_NO_NOP_REMOVAL 0
35
36 /* Local helper functions. */
37
38 static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
39 static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
40 static bfd_reloc_status_type bfd_elf_xtensa_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42 static bfd_boolean do_fix_for_relocatable_link
43 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
44 static void do_fix_for_final_link
45 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
46
47 /* Local functions to handle Xtensa configurability. */
48
49 static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
50 static bfd_boolean is_direct_call_opcode (xtensa_opcode);
51 static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
52 static xtensa_opcode get_const16_opcode (void);
53 static xtensa_opcode get_l32r_opcode (void);
54 static bfd_vma l32r_offset (bfd_vma, bfd_vma);
55 static int get_relocation_opnd (xtensa_opcode, int);
56 static int get_relocation_slot (int);
57 static xtensa_opcode get_relocation_opcode
58 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
59 static bfd_boolean is_l32r_relocation
60 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
61 static bfd_boolean is_alt_relocation (int);
62 static bfd_boolean is_operand_relocation (int);
63 static bfd_size_type insn_decode_len
64 (bfd_byte *, bfd_size_type, bfd_size_type);
65 static xtensa_opcode insn_decode_opcode
66 (bfd_byte *, bfd_size_type, bfd_size_type, int);
67 static bfd_boolean check_branch_target_aligned
68 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
69 static bfd_boolean check_loop_aligned
70 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
71 static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
72 static bfd_size_type get_asm_simplify_size
73 (bfd_byte *, bfd_size_type, bfd_size_type);
74
75 /* Functions for link-time code simplifications. */
76
77 static bfd_reloc_status_type elf_xtensa_do_asm_simplify
78 (bfd_byte *, bfd_vma, bfd_vma, char **);
79 static bfd_reloc_status_type contract_asm_expansion
80 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
81 static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
82 static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
83
84 /* Access to internal relocations, section contents and symbols. */
85
86 static Elf_Internal_Rela *retrieve_internal_relocs
87 (bfd *, asection *, bfd_boolean);
88 static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
89 static void release_internal_relocs (asection *, Elf_Internal_Rela *);
90 static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
91 static void pin_contents (asection *, bfd_byte *);
92 static void release_contents (asection *, bfd_byte *);
93 static Elf_Internal_Sym *retrieve_local_syms (bfd *);
94
95 /* Miscellaneous utility functions. */
96
97 static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
98 static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
99 static asection *get_elf_r_symndx_section (bfd *, unsigned long);
100 static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
101 (bfd *, unsigned long);
102 static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
103 static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
104 static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
105 static bfd_boolean xtensa_is_property_section (asection *);
106 static bfd_boolean xtensa_is_insntable_section (asection *);
107 static bfd_boolean xtensa_is_littable_section (asection *);
108 static bfd_boolean xtensa_is_proptable_section (asection *);
109 static int internal_reloc_compare (const void *, const void *);
110 static int internal_reloc_matches (const void *, const void *);
111 static asection *xtensa_get_property_section (asection *, const char *);
112 extern asection *xtensa_make_property_section (asection *, const char *);
113 static flagword xtensa_get_property_predef_flags (asection *);
114
115 /* Other functions called directly by the linker. */
116
117 typedef void (*deps_callback_t)
118 (asection *, bfd_vma, asection *, bfd_vma, void *);
119 extern bfd_boolean xtensa_callback_required_dependence
120 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
121
122
123 /* Globally visible flag for choosing size optimization of NOP removal
124 instead of branch-target-aware minimization for NOP removal.
125 When nonzero, narrow all instructions and remove all NOPs possible
126 around longcall expansions. */
127
128 int elf32xtensa_size_opt;
129
130
131 /* The "new_section_hook" is used to set up a per-section
132 "xtensa_relax_info" data structure with additional information used
133 during relaxation. */
134
135 typedef struct xtensa_relax_info_struct xtensa_relax_info;
136
137
138 /* The GNU tools do not easily allow extending interfaces to pass around
139 the pointer to the Xtensa ISA information, so instead we add a global
140 variable here (in BFD) that can be used by any of the tools that need
141 this information. */
142
143 xtensa_isa xtensa_default_isa;
144
145
146 /* When this is true, relocations may have been modified to refer to
147 symbols from other input files. The per-section list of "fix"
148 records needs to be checked when resolving relocations. */
149
150 static bfd_boolean relaxing_section = FALSE;
151
152 /* When this is true, during final links, literals that cannot be
153 coalesced and their relocations may be moved to other sections. */
154
155 int elf32xtensa_no_literal_movement = 1;
156
157 \f
158 static reloc_howto_type elf_howto_table[] =
159 {
160 HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
161 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
162 FALSE, 0, 0, FALSE),
163 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
164 bfd_elf_xtensa_reloc, "R_XTENSA_32",
165 TRUE, 0xffffffff, 0xffffffff, FALSE),
166
167 /* Replace a 32-bit value with a value from the runtime linker (only
168 used by linker-generated stub functions). The r_addend value is
169 special: 1 means to substitute a pointer to the runtime linker's
170 dynamic resolver function; 2 means to substitute the link map for
171 the shared object. */
172 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
173 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
174
175 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
176 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
177 FALSE, 0, 0xffffffff, FALSE),
178 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
179 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
180 FALSE, 0, 0xffffffff, FALSE),
181 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
182 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
183 FALSE, 0, 0xffffffff, FALSE),
184 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
185 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
186 FALSE, 0, 0xffffffff, FALSE),
187
188 EMPTY_HOWTO (7),
189
190 /* Old relocations for backward compatibility. */
191 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
192 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
193 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
194 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
195 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
196 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
197
198 /* Assembly auto-expansion. */
199 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
200 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
201 /* Relax assembly auto-expansion. */
202 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
203 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
204
205 EMPTY_HOWTO (13),
206
207 HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
208 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
209 FALSE, 0, 0xffffffff, TRUE),
210
211 /* GNU extension to record C++ vtable hierarchy. */
212 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
213 NULL, "R_XTENSA_GNU_VTINHERIT",
214 FALSE, 0, 0, FALSE),
215 /* GNU extension to record C++ vtable member usage. */
216 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
217 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
218 FALSE, 0, 0, FALSE),
219
220 /* Relocations for supporting difference of symbols. */
221 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
222 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
223 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
224 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
225 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
226 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
227
228 /* General immediate operand relocations. */
229 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
230 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
231 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
232 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
233 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
234 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
235 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
236 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
237 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
238 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
239 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
240 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
241 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
242 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
243 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
244 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
245 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
246 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
247 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
248 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
249 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
250 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
251 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
252 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
253 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
254 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
255 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
256 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
257 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
258 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
259
260 /* "Alternate" relocations. The meaning of these is opcode-specific. */
261 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
262 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
263 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
264 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
265 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
266 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
267 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
268 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
269 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
270 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
271 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
272 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
273 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
274 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
275 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
276 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
277 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
278 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
279 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
280 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
281 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
282 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
283 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
284 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
285 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
286 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
287 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
288 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
289 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
290 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
291
292 /* TLS relocations. */
293 HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont,
294 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN",
295 FALSE, 0, 0xffffffff, FALSE),
296 HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont,
297 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG",
298 FALSE, 0, 0xffffffff, FALSE),
299 HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
300 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF",
301 FALSE, 0, 0xffffffff, FALSE),
302 HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
303 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF",
304 FALSE, 0, 0xffffffff, FALSE),
305 HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont,
306 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC",
307 FALSE, 0, 0, FALSE),
308 HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont,
309 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG",
310 FALSE, 0, 0, FALSE),
311 HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont,
312 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL",
313 FALSE, 0, 0, FALSE),
314 };
315
316 #if DEBUG_GEN_RELOC
317 #define TRACE(str) \
318 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
319 #else
320 #define TRACE(str)
321 #endif
322
323 static reloc_howto_type *
324 elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
325 bfd_reloc_code_real_type code)
326 {
327 switch (code)
328 {
329 case BFD_RELOC_NONE:
330 TRACE ("BFD_RELOC_NONE");
331 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
332
333 case BFD_RELOC_32:
334 TRACE ("BFD_RELOC_32");
335 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
336
337 case BFD_RELOC_32_PCREL:
338 TRACE ("BFD_RELOC_32_PCREL");
339 return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
340
341 case BFD_RELOC_XTENSA_DIFF8:
342 TRACE ("BFD_RELOC_XTENSA_DIFF8");
343 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
344
345 case BFD_RELOC_XTENSA_DIFF16:
346 TRACE ("BFD_RELOC_XTENSA_DIFF16");
347 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
348
349 case BFD_RELOC_XTENSA_DIFF32:
350 TRACE ("BFD_RELOC_XTENSA_DIFF32");
351 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
352
353 case BFD_RELOC_XTENSA_RTLD:
354 TRACE ("BFD_RELOC_XTENSA_RTLD");
355 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
356
357 case BFD_RELOC_XTENSA_GLOB_DAT:
358 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
359 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
360
361 case BFD_RELOC_XTENSA_JMP_SLOT:
362 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
363 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
364
365 case BFD_RELOC_XTENSA_RELATIVE:
366 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
367 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
368
369 case BFD_RELOC_XTENSA_PLT:
370 TRACE ("BFD_RELOC_XTENSA_PLT");
371 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
372
373 case BFD_RELOC_XTENSA_OP0:
374 TRACE ("BFD_RELOC_XTENSA_OP0");
375 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
376
377 case BFD_RELOC_XTENSA_OP1:
378 TRACE ("BFD_RELOC_XTENSA_OP1");
379 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
380
381 case BFD_RELOC_XTENSA_OP2:
382 TRACE ("BFD_RELOC_XTENSA_OP2");
383 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
384
385 case BFD_RELOC_XTENSA_ASM_EXPAND:
386 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
387 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
388
389 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
390 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
391 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
392
393 case BFD_RELOC_VTABLE_INHERIT:
394 TRACE ("BFD_RELOC_VTABLE_INHERIT");
395 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
396
397 case BFD_RELOC_VTABLE_ENTRY:
398 TRACE ("BFD_RELOC_VTABLE_ENTRY");
399 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
400
401 case BFD_RELOC_XTENSA_TLSDESC_FN:
402 TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN");
403 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ];
404
405 case BFD_RELOC_XTENSA_TLSDESC_ARG:
406 TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG");
407 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ];
408
409 case BFD_RELOC_XTENSA_TLS_DTPOFF:
410 TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF");
411 return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ];
412
413 case BFD_RELOC_XTENSA_TLS_TPOFF:
414 TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF");
415 return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ];
416
417 case BFD_RELOC_XTENSA_TLS_FUNC:
418 TRACE ("BFD_RELOC_XTENSA_TLS_FUNC");
419 return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ];
420
421 case BFD_RELOC_XTENSA_TLS_ARG:
422 TRACE ("BFD_RELOC_XTENSA_TLS_ARG");
423 return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ];
424
425 case BFD_RELOC_XTENSA_TLS_CALL:
426 TRACE ("BFD_RELOC_XTENSA_TLS_CALL");
427 return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ];
428
429 default:
430 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
431 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
432 {
433 unsigned n = (R_XTENSA_SLOT0_OP +
434 (code - BFD_RELOC_XTENSA_SLOT0_OP));
435 return &elf_howto_table[n];
436 }
437
438 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
439 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
440 {
441 unsigned n = (R_XTENSA_SLOT0_ALT +
442 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
443 return &elf_howto_table[n];
444 }
445
446 break;
447 }
448
449 TRACE ("Unknown");
450 return NULL;
451 }
452
453 static reloc_howto_type *
454 elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
455 const char *r_name)
456 {
457 unsigned int i;
458
459 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
460 if (elf_howto_table[i].name != NULL
461 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
462 return &elf_howto_table[i];
463
464 return NULL;
465 }
466
467
468 /* Given an ELF "rela" relocation, find the corresponding howto and record
469 it in the BFD internal arelent representation of the relocation. */
470
471 static void
472 elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
473 arelent *cache_ptr,
474 Elf_Internal_Rela *dst)
475 {
476 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
477
478 BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max);
479 cache_ptr->howto = &elf_howto_table[r_type];
480 }
481
482 \f
483 /* Functions for the Xtensa ELF linker. */
484
485 /* The name of the dynamic interpreter. This is put in the .interp
486 section. */
487
488 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
489
490 /* The size in bytes of an entry in the procedure linkage table.
491 (This does _not_ include the space for the literals associated with
492 the PLT entry.) */
493
494 #define PLT_ENTRY_SIZE 16
495
496 /* For _really_ large PLTs, we may need to alternate between literals
497 and code to keep the literals within the 256K range of the L32R
498 instructions in the code. It's unlikely that anyone would ever need
499 such a big PLT, but an arbitrary limit on the PLT size would be bad.
500 Thus, we split the PLT into chunks. Since there's very little
501 overhead (2 extra literals) for each chunk, the chunk size is kept
502 small so that the code for handling multiple chunks get used and
503 tested regularly. With 254 entries, there are 1K of literals for
504 each chunk, and that seems like a nice round number. */
505
506 #define PLT_ENTRIES_PER_CHUNK 254
507
508 /* PLT entries are actually used as stub functions for lazy symbol
509 resolution. Once the symbol is resolved, the stub function is never
510 invoked. Note: the 32-byte frame size used here cannot be changed
511 without a corresponding change in the runtime linker. */
512
513 static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
514 {
515 0x6c, 0x10, 0x04, /* entry sp, 32 */
516 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
517 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
518 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
519 0x0a, 0x80, 0x00, /* jx a8 */
520 0 /* unused */
521 };
522
523 static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
524 {
525 0x36, 0x41, 0x00, /* entry sp, 32 */
526 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
527 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
528 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
529 0xa0, 0x08, 0x00, /* jx a8 */
530 0 /* unused */
531 };
532
533 /* The size of the thread control block. */
534 #define TCB_SIZE 8
535
536 struct elf_xtensa_link_hash_entry
537 {
538 struct elf_link_hash_entry elf;
539
540 bfd_signed_vma tlsfunc_refcount;
541
542 #define GOT_UNKNOWN 0
543 #define GOT_NORMAL 1
544 #define GOT_TLS_GD 2 /* global or local dynamic */
545 #define GOT_TLS_IE 4 /* initial or local exec */
546 #define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE)
547 unsigned char tls_type;
548 };
549
550 #define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent))
551
552 struct elf_xtensa_obj_tdata
553 {
554 struct elf_obj_tdata root;
555
556 /* tls_type for each local got entry. */
557 char *local_got_tls_type;
558
559 bfd_signed_vma *local_tlsfunc_refcounts;
560 };
561
562 #define elf_xtensa_tdata(abfd) \
563 ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any)
564
565 #define elf_xtensa_local_got_tls_type(abfd) \
566 (elf_xtensa_tdata (abfd)->local_got_tls_type)
567
568 #define elf_xtensa_local_tlsfunc_refcounts(abfd) \
569 (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts)
570
571 #define is_xtensa_elf(bfd) \
572 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
573 && elf_tdata (bfd) != NULL \
574 && elf_object_id (bfd) == XTENSA_ELF_TDATA)
575
576 static bfd_boolean
577 elf_xtensa_mkobject (bfd *abfd)
578 {
579 return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata),
580 XTENSA_ELF_TDATA);
581 }
582
583 /* Xtensa ELF linker hash table. */
584
585 struct elf_xtensa_link_hash_table
586 {
587 struct elf_link_hash_table elf;
588
589 /* Short-cuts to get to dynamic linker sections. */
590 asection *sgot;
591 asection *sgotplt;
592 asection *srelgot;
593 asection *splt;
594 asection *srelplt;
595 asection *sgotloc;
596 asection *spltlittbl;
597
598 /* Total count of PLT relocations seen during check_relocs.
599 The actual PLT code must be split into multiple sections and all
600 the sections have to be created before size_dynamic_sections,
601 where we figure out the exact number of PLT entries that will be
602 needed. It is OK if this count is an overestimate, e.g., some
603 relocations may be removed by GC. */
604 int plt_reloc_count;
605
606 struct elf_xtensa_link_hash_entry *tlsbase;
607 };
608
609 /* Get the Xtensa ELF linker hash table from a link_info structure. */
610
611 #define elf_xtensa_hash_table(p) \
612 ((struct elf_xtensa_link_hash_table *) ((p)->hash))
613
614 /* Create an entry in an Xtensa ELF linker hash table. */
615
616 static struct bfd_hash_entry *
617 elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry,
618 struct bfd_hash_table *table,
619 const char *string)
620 {
621 /* Allocate the structure if it has not already been allocated by a
622 subclass. */
623 if (entry == NULL)
624 {
625 entry = bfd_hash_allocate (table,
626 sizeof (struct elf_xtensa_link_hash_entry));
627 if (entry == NULL)
628 return entry;
629 }
630
631 /* Call the allocation method of the superclass. */
632 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
633 if (entry != NULL)
634 {
635 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry);
636 eh->tlsfunc_refcount = 0;
637 eh->tls_type = GOT_UNKNOWN;
638 }
639
640 return entry;
641 }
642
643 /* Create an Xtensa ELF linker hash table. */
644
645 static struct bfd_link_hash_table *
646 elf_xtensa_link_hash_table_create (bfd *abfd)
647 {
648 struct elf_link_hash_entry *tlsbase;
649 struct elf_xtensa_link_hash_table *ret;
650 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
651
652 ret = bfd_malloc (amt);
653 if (ret == NULL)
654 return NULL;
655
656 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
657 elf_xtensa_link_hash_newfunc,
658 sizeof (struct elf_xtensa_link_hash_entry)))
659 {
660 free (ret);
661 return NULL;
662 }
663
664 ret->sgot = NULL;
665 ret->sgotplt = NULL;
666 ret->srelgot = NULL;
667 ret->splt = NULL;
668 ret->srelplt = NULL;
669 ret->sgotloc = NULL;
670 ret->spltlittbl = NULL;
671
672 ret->plt_reloc_count = 0;
673
674 /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking
675 for it later. */
676 tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_",
677 TRUE, FALSE, FALSE);
678 tlsbase->root.type = bfd_link_hash_new;
679 tlsbase->root.u.undef.abfd = NULL;
680 tlsbase->non_elf = 0;
681 ret->tlsbase = elf_xtensa_hash_entry (tlsbase);
682 ret->tlsbase->tls_type = GOT_UNKNOWN;
683
684 return &ret->elf.root;
685 }
686
687 /* Copy the extra info we tack onto an elf_link_hash_entry. */
688
689 static void
690 elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info,
691 struct elf_link_hash_entry *dir,
692 struct elf_link_hash_entry *ind)
693 {
694 struct elf_xtensa_link_hash_entry *edir, *eind;
695
696 edir = elf_xtensa_hash_entry (dir);
697 eind = elf_xtensa_hash_entry (ind);
698
699 if (ind->root.type == bfd_link_hash_indirect)
700 {
701 edir->tlsfunc_refcount += eind->tlsfunc_refcount;
702 eind->tlsfunc_refcount = 0;
703
704 if (dir->got.refcount <= 0)
705 {
706 edir->tls_type = eind->tls_type;
707 eind->tls_type = GOT_UNKNOWN;
708 }
709 }
710
711 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
712 }
713
714 static inline bfd_boolean
715 elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
716 struct bfd_link_info *info)
717 {
718 /* Check if we should do dynamic things to this symbol. The
719 "ignore_protected" argument need not be set, because Xtensa code
720 does not require special handling of STV_PROTECTED to make function
721 pointer comparisons work properly. The PLT addresses are never
722 used for function pointers. */
723
724 return _bfd_elf_dynamic_symbol_p (h, info, 0);
725 }
726
727 \f
728 static int
729 property_table_compare (const void *ap, const void *bp)
730 {
731 const property_table_entry *a = (const property_table_entry *) ap;
732 const property_table_entry *b = (const property_table_entry *) bp;
733
734 if (a->address == b->address)
735 {
736 if (a->size != b->size)
737 return (a->size - b->size);
738
739 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
740 return ((b->flags & XTENSA_PROP_ALIGN)
741 - (a->flags & XTENSA_PROP_ALIGN));
742
743 if ((a->flags & XTENSA_PROP_ALIGN)
744 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
745 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
746 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
747 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
748
749 if ((a->flags & XTENSA_PROP_UNREACHABLE)
750 != (b->flags & XTENSA_PROP_UNREACHABLE))
751 return ((b->flags & XTENSA_PROP_UNREACHABLE)
752 - (a->flags & XTENSA_PROP_UNREACHABLE));
753
754 return (a->flags - b->flags);
755 }
756
757 return (a->address - b->address);
758 }
759
760
761 static int
762 property_table_matches (const void *ap, const void *bp)
763 {
764 const property_table_entry *a = (const property_table_entry *) ap;
765 const property_table_entry *b = (const property_table_entry *) bp;
766
767 /* Check if one entry overlaps with the other. */
768 if ((b->address >= a->address && b->address < (a->address + a->size))
769 || (a->address >= b->address && a->address < (b->address + b->size)))
770 return 0;
771
772 return (a->address - b->address);
773 }
774
775
776 /* Get the literal table or property table entries for the given
777 section. Sets TABLE_P and returns the number of entries. On
778 error, returns a negative value. */
779
780 static int
781 xtensa_read_table_entries (bfd *abfd,
782 asection *section,
783 property_table_entry **table_p,
784 const char *sec_name,
785 bfd_boolean output_addr)
786 {
787 asection *table_section;
788 bfd_size_type table_size = 0;
789 bfd_byte *table_data;
790 property_table_entry *blocks;
791 int blk, block_count;
792 bfd_size_type num_records;
793 Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
794 bfd_vma section_addr, off;
795 flagword predef_flags;
796 bfd_size_type table_entry_size, section_limit;
797
798 if (!section
799 || !(section->flags & SEC_ALLOC)
800 || (section->flags & SEC_DEBUGGING))
801 {
802 *table_p = NULL;
803 return 0;
804 }
805
806 table_section = xtensa_get_property_section (section, sec_name);
807 if (table_section)
808 table_size = table_section->size;
809
810 if (table_size == 0)
811 {
812 *table_p = NULL;
813 return 0;
814 }
815
816 predef_flags = xtensa_get_property_predef_flags (table_section);
817 table_entry_size = 12;
818 if (predef_flags)
819 table_entry_size -= 4;
820
821 num_records = table_size / table_entry_size;
822 table_data = retrieve_contents (abfd, table_section, TRUE);
823 blocks = (property_table_entry *)
824 bfd_malloc (num_records * sizeof (property_table_entry));
825 block_count = 0;
826
827 if (output_addr)
828 section_addr = section->output_section->vma + section->output_offset;
829 else
830 section_addr = section->vma;
831
832 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
833 if (internal_relocs && !table_section->reloc_done)
834 {
835 qsort (internal_relocs, table_section->reloc_count,
836 sizeof (Elf_Internal_Rela), internal_reloc_compare);
837 irel = internal_relocs;
838 }
839 else
840 irel = NULL;
841
842 section_limit = bfd_get_section_limit (abfd, section);
843 rel_end = internal_relocs + table_section->reloc_count;
844
845 for (off = 0; off < table_size; off += table_entry_size)
846 {
847 bfd_vma address = bfd_get_32 (abfd, table_data + off);
848
849 /* Skip any relocations before the current offset. This should help
850 avoid confusion caused by unexpected relocations for the preceding
851 table entry. */
852 while (irel &&
853 (irel->r_offset < off
854 || (irel->r_offset == off
855 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
856 {
857 irel += 1;
858 if (irel >= rel_end)
859 irel = 0;
860 }
861
862 if (irel && irel->r_offset == off)
863 {
864 bfd_vma sym_off;
865 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
866 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
867
868 if (get_elf_r_symndx_section (abfd, r_symndx) != section)
869 continue;
870
871 sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
872 BFD_ASSERT (sym_off == 0);
873 address += (section_addr + sym_off + irel->r_addend);
874 }
875 else
876 {
877 if (address < section_addr
878 || address >= section_addr + section_limit)
879 continue;
880 }
881
882 blocks[block_count].address = address;
883 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
884 if (predef_flags)
885 blocks[block_count].flags = predef_flags;
886 else
887 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
888 block_count++;
889 }
890
891 release_contents (table_section, table_data);
892 release_internal_relocs (table_section, internal_relocs);
893
894 if (block_count > 0)
895 {
896 /* Now sort them into address order for easy reference. */
897 qsort (blocks, block_count, sizeof (property_table_entry),
898 property_table_compare);
899
900 /* Check that the table contents are valid. Problems may occur,
901 for example, if an unrelocated object file is stripped. */
902 for (blk = 1; blk < block_count; blk++)
903 {
904 /* The only circumstance where two entries may legitimately
905 have the same address is when one of them is a zero-size
906 placeholder to mark a place where fill can be inserted.
907 The zero-size entry should come first. */
908 if (blocks[blk - 1].address == blocks[blk].address &&
909 blocks[blk - 1].size != 0)
910 {
911 (*_bfd_error_handler) (_("%B(%A): invalid property table"),
912 abfd, section);
913 bfd_set_error (bfd_error_bad_value);
914 free (blocks);
915 return -1;
916 }
917 }
918 }
919
920 *table_p = blocks;
921 return block_count;
922 }
923
924
925 static property_table_entry *
926 elf_xtensa_find_property_entry (property_table_entry *property_table,
927 int property_table_size,
928 bfd_vma addr)
929 {
930 property_table_entry entry;
931 property_table_entry *rv;
932
933 if (property_table_size == 0)
934 return NULL;
935
936 entry.address = addr;
937 entry.size = 1;
938 entry.flags = 0;
939
940 rv = bsearch (&entry, property_table, property_table_size,
941 sizeof (property_table_entry), property_table_matches);
942 return rv;
943 }
944
945
946 static bfd_boolean
947 elf_xtensa_in_literal_pool (property_table_entry *lit_table,
948 int lit_table_size,
949 bfd_vma addr)
950 {
951 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
952 return TRUE;
953
954 return FALSE;
955 }
956
957 \f
958 /* Look through the relocs for a section during the first phase, and
959 calculate needed space in the dynamic reloc sections. */
960
961 static bfd_boolean
962 elf_xtensa_check_relocs (bfd *abfd,
963 struct bfd_link_info *info,
964 asection *sec,
965 const Elf_Internal_Rela *relocs)
966 {
967 struct elf_xtensa_link_hash_table *htab;
968 Elf_Internal_Shdr *symtab_hdr;
969 struct elf_link_hash_entry **sym_hashes;
970 const Elf_Internal_Rela *rel;
971 const Elf_Internal_Rela *rel_end;
972
973 if (info->relocatable || (sec->flags & SEC_ALLOC) == 0)
974 return TRUE;
975
976 BFD_ASSERT (is_xtensa_elf (abfd));
977
978 htab = elf_xtensa_hash_table (info);
979 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
980 sym_hashes = elf_sym_hashes (abfd);
981
982 rel_end = relocs + sec->reloc_count;
983 for (rel = relocs; rel < rel_end; rel++)
984 {
985 unsigned int r_type;
986 unsigned long r_symndx;
987 struct elf_link_hash_entry *h = NULL;
988 struct elf_xtensa_link_hash_entry *eh;
989 int tls_type, old_tls_type;
990 bfd_boolean is_got = FALSE;
991 bfd_boolean is_plt = FALSE;
992 bfd_boolean is_tlsfunc = FALSE;
993
994 r_symndx = ELF32_R_SYM (rel->r_info);
995 r_type = ELF32_R_TYPE (rel->r_info);
996
997 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
998 {
999 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1000 abfd, r_symndx);
1001 return FALSE;
1002 }
1003
1004 if (r_symndx >= symtab_hdr->sh_info)
1005 {
1006 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1007 while (h->root.type == bfd_link_hash_indirect
1008 || h->root.type == bfd_link_hash_warning)
1009 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1010 }
1011 eh = elf_xtensa_hash_entry (h);
1012
1013 switch (r_type)
1014 {
1015 case R_XTENSA_TLSDESC_FN:
1016 if (info->shared)
1017 {
1018 tls_type = GOT_TLS_GD;
1019 is_got = TRUE;
1020 is_tlsfunc = TRUE;
1021 }
1022 else
1023 tls_type = GOT_TLS_IE;
1024 break;
1025
1026 case R_XTENSA_TLSDESC_ARG:
1027 if (info->shared)
1028 {
1029 tls_type = GOT_TLS_GD;
1030 is_got = TRUE;
1031 }
1032 else
1033 {
1034 tls_type = GOT_TLS_IE;
1035 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1036 is_got = TRUE;
1037 }
1038 break;
1039
1040 case R_XTENSA_TLS_DTPOFF:
1041 if (info->shared)
1042 tls_type = GOT_TLS_GD;
1043 else
1044 tls_type = GOT_TLS_IE;
1045 break;
1046
1047 case R_XTENSA_TLS_TPOFF:
1048 tls_type = GOT_TLS_IE;
1049 if (info->shared)
1050 info->flags |= DF_STATIC_TLS;
1051 if (info->shared || h)
1052 is_got = TRUE;
1053 break;
1054
1055 case R_XTENSA_32:
1056 tls_type = GOT_NORMAL;
1057 is_got = TRUE;
1058 break;
1059
1060 case R_XTENSA_PLT:
1061 tls_type = GOT_NORMAL;
1062 is_plt = TRUE;
1063 break;
1064
1065 case R_XTENSA_GNU_VTINHERIT:
1066 /* This relocation describes the C++ object vtable hierarchy.
1067 Reconstruct it for later use during GC. */
1068 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1069 return FALSE;
1070 continue;
1071
1072 case R_XTENSA_GNU_VTENTRY:
1073 /* This relocation describes which C++ vtable entries are actually
1074 used. Record for later use during GC. */
1075 BFD_ASSERT (h != NULL);
1076 if (h != NULL
1077 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1078 return FALSE;
1079 continue;
1080
1081 default:
1082 /* Nothing to do for any other relocations. */
1083 continue;
1084 }
1085
1086 if (h)
1087 {
1088 if (is_plt)
1089 {
1090 if (h->plt.refcount <= 0)
1091 {
1092 h->needs_plt = 1;
1093 h->plt.refcount = 1;
1094 }
1095 else
1096 h->plt.refcount += 1;
1097
1098 /* Keep track of the total PLT relocation count even if we
1099 don't yet know whether the dynamic sections will be
1100 created. */
1101 htab->plt_reloc_count += 1;
1102
1103 if (elf_hash_table (info)->dynamic_sections_created)
1104 {
1105 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1106 return FALSE;
1107 }
1108 }
1109 else if (is_got)
1110 {
1111 if (h->got.refcount <= 0)
1112 h->got.refcount = 1;
1113 else
1114 h->got.refcount += 1;
1115 }
1116
1117 if (is_tlsfunc)
1118 eh->tlsfunc_refcount += 1;
1119
1120 old_tls_type = eh->tls_type;
1121 }
1122 else
1123 {
1124 /* Allocate storage the first time. */
1125 if (elf_local_got_refcounts (abfd) == NULL)
1126 {
1127 bfd_size_type size = symtab_hdr->sh_info;
1128 void *mem;
1129
1130 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1131 if (mem == NULL)
1132 return FALSE;
1133 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem;
1134
1135 mem = bfd_zalloc (abfd, size);
1136 if (mem == NULL)
1137 return FALSE;
1138 elf_xtensa_local_got_tls_type (abfd) = (char *) mem;
1139
1140 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1141 if (mem == NULL)
1142 return FALSE;
1143 elf_xtensa_local_tlsfunc_refcounts (abfd)
1144 = (bfd_signed_vma *) mem;
1145 }
1146
1147 /* This is a global offset table entry for a local symbol. */
1148 if (is_got || is_plt)
1149 elf_local_got_refcounts (abfd) [r_symndx] += 1;
1150
1151 if (is_tlsfunc)
1152 elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1;
1153
1154 old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx];
1155 }
1156
1157 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
1158 tls_type |= old_tls_type;
1159 /* If a TLS symbol is accessed using IE at least once,
1160 there is no point to use a dynamic model for it. */
1161 else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1162 && ((old_tls_type & GOT_TLS_GD) == 0
1163 || (tls_type & GOT_TLS_IE) == 0))
1164 {
1165 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD))
1166 tls_type = old_tls_type;
1167 else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD))
1168 tls_type |= old_tls_type;
1169 else
1170 {
1171 (*_bfd_error_handler)
1172 (_("%B: `%s' accessed both as normal and thread local symbol"),
1173 abfd,
1174 h ? h->root.root.string : "<local>");
1175 return FALSE;
1176 }
1177 }
1178
1179 if (old_tls_type != tls_type)
1180 {
1181 if (eh)
1182 eh->tls_type = tls_type;
1183 else
1184 elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type;
1185 }
1186 }
1187
1188 return TRUE;
1189 }
1190
1191
1192 static void
1193 elf_xtensa_make_sym_local (struct bfd_link_info *info,
1194 struct elf_link_hash_entry *h)
1195 {
1196 if (info->shared)
1197 {
1198 if (h->plt.refcount > 0)
1199 {
1200 /* For shared objects, there's no need for PLT entries for local
1201 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
1202 if (h->got.refcount < 0)
1203 h->got.refcount = 0;
1204 h->got.refcount += h->plt.refcount;
1205 h->plt.refcount = 0;
1206 }
1207 }
1208 else
1209 {
1210 /* Don't need any dynamic relocations at all. */
1211 h->plt.refcount = 0;
1212 h->got.refcount = 0;
1213 }
1214 }
1215
1216
1217 static void
1218 elf_xtensa_hide_symbol (struct bfd_link_info *info,
1219 struct elf_link_hash_entry *h,
1220 bfd_boolean force_local)
1221 {
1222 /* For a shared link, move the plt refcount to the got refcount to leave
1223 space for RELATIVE relocs. */
1224 elf_xtensa_make_sym_local (info, h);
1225
1226 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
1227 }
1228
1229
1230 /* Return the section that should be marked against GC for a given
1231 relocation. */
1232
1233 static asection *
1234 elf_xtensa_gc_mark_hook (asection *sec,
1235 struct bfd_link_info *info,
1236 Elf_Internal_Rela *rel,
1237 struct elf_link_hash_entry *h,
1238 Elf_Internal_Sym *sym)
1239 {
1240 /* Property sections are marked "KEEP" in the linker scripts, but they
1241 should not cause other sections to be marked. (This approach relies
1242 on elf_xtensa_discard_info to remove property table entries that
1243 describe discarded sections. Alternatively, it might be more
1244 efficient to avoid using "KEEP" in the linker scripts and instead use
1245 the gc_mark_extra_sections hook to mark only the property sections
1246 that describe marked sections. That alternative does not work well
1247 with the current property table sections, which do not correspond
1248 one-to-one with the sections they describe, but that should be fixed
1249 someday.) */
1250 if (xtensa_is_property_section (sec))
1251 return NULL;
1252
1253 if (h != NULL)
1254 switch (ELF32_R_TYPE (rel->r_info))
1255 {
1256 case R_XTENSA_GNU_VTINHERIT:
1257 case R_XTENSA_GNU_VTENTRY:
1258 return NULL;
1259 }
1260
1261 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1262 }
1263
1264
1265 /* Update the GOT & PLT entry reference counts
1266 for the section being removed. */
1267
1268 static bfd_boolean
1269 elf_xtensa_gc_sweep_hook (bfd *abfd,
1270 struct bfd_link_info *info,
1271 asection *sec,
1272 const Elf_Internal_Rela *relocs)
1273 {
1274 Elf_Internal_Shdr *symtab_hdr;
1275 struct elf_link_hash_entry **sym_hashes;
1276 const Elf_Internal_Rela *rel, *relend;
1277 struct elf_xtensa_link_hash_table *htab;
1278
1279 htab = elf_xtensa_hash_table (info);
1280
1281 if (info->relocatable)
1282 return TRUE;
1283
1284 if ((sec->flags & SEC_ALLOC) == 0)
1285 return TRUE;
1286
1287 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1288 sym_hashes = elf_sym_hashes (abfd);
1289
1290 relend = relocs + sec->reloc_count;
1291 for (rel = relocs; rel < relend; rel++)
1292 {
1293 unsigned long r_symndx;
1294 unsigned int r_type;
1295 struct elf_link_hash_entry *h = NULL;
1296 struct elf_xtensa_link_hash_entry *eh;
1297 bfd_boolean is_got = FALSE;
1298 bfd_boolean is_plt = FALSE;
1299 bfd_boolean is_tlsfunc = FALSE;
1300
1301 r_symndx = ELF32_R_SYM (rel->r_info);
1302 if (r_symndx >= symtab_hdr->sh_info)
1303 {
1304 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1305 while (h->root.type == bfd_link_hash_indirect
1306 || h->root.type == bfd_link_hash_warning)
1307 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1308 }
1309 eh = elf_xtensa_hash_entry (h);
1310
1311 r_type = ELF32_R_TYPE (rel->r_info);
1312 switch (r_type)
1313 {
1314 case R_XTENSA_TLSDESC_FN:
1315 if (info->shared)
1316 {
1317 is_got = TRUE;
1318 is_tlsfunc = TRUE;
1319 }
1320 break;
1321
1322 case R_XTENSA_TLSDESC_ARG:
1323 if (info->shared)
1324 is_got = TRUE;
1325 else
1326 {
1327 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1328 is_got = TRUE;
1329 }
1330 break;
1331
1332 case R_XTENSA_TLS_TPOFF:
1333 if (info->shared || h)
1334 is_got = TRUE;
1335 break;
1336
1337 case R_XTENSA_32:
1338 is_got = TRUE;
1339 break;
1340
1341 case R_XTENSA_PLT:
1342 is_plt = TRUE;
1343 break;
1344
1345 default:
1346 continue;
1347 }
1348
1349 if (h)
1350 {
1351 if (is_plt)
1352 {
1353 if (h->plt.refcount > 0)
1354 h->plt.refcount--;
1355 }
1356 else if (is_got)
1357 {
1358 if (h->got.refcount > 0)
1359 h->got.refcount--;
1360 }
1361 if (is_tlsfunc)
1362 {
1363 if (eh->tlsfunc_refcount > 0)
1364 eh->tlsfunc_refcount--;
1365 }
1366 }
1367 else
1368 {
1369 if (is_got || is_plt)
1370 {
1371 bfd_signed_vma *got_refcount
1372 = &elf_local_got_refcounts (abfd) [r_symndx];
1373 if (*got_refcount > 0)
1374 *got_refcount -= 1;
1375 }
1376 if (is_tlsfunc)
1377 {
1378 bfd_signed_vma *tlsfunc_refcount
1379 = &elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx];
1380 if (*tlsfunc_refcount > 0)
1381 *tlsfunc_refcount -= 1;
1382 }
1383 }
1384 }
1385
1386 return TRUE;
1387 }
1388
1389
1390 /* Create all the dynamic sections. */
1391
1392 static bfd_boolean
1393 elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
1394 {
1395 struct elf_xtensa_link_hash_table *htab;
1396 flagword flags, noalloc_flags;
1397
1398 htab = elf_xtensa_hash_table (info);
1399
1400 /* First do all the standard stuff. */
1401 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1402 return FALSE;
1403 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
1404 htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
1405 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
1406 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
1407
1408 /* Create any extra PLT sections in case check_relocs has already
1409 been called on all the non-dynamic input files. */
1410 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1411 return FALSE;
1412
1413 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1414 | SEC_LINKER_CREATED | SEC_READONLY);
1415 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
1416
1417 /* Mark the ".got.plt" section READONLY. */
1418 if (htab->sgotplt == NULL
1419 || ! bfd_set_section_flags (dynobj, htab->sgotplt, flags))
1420 return FALSE;
1421
1422 /* Create ".rela.got". */
1423 htab->srelgot = bfd_make_section_with_flags (dynobj, ".rela.got", flags);
1424 if (htab->srelgot == NULL
1425 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
1426 return FALSE;
1427
1428 /* Create ".got.loc" (literal tables for use by dynamic linker). */
1429 htab->sgotloc = bfd_make_section_with_flags (dynobj, ".got.loc", flags);
1430 if (htab->sgotloc == NULL
1431 || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
1432 return FALSE;
1433
1434 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
1435 htab->spltlittbl = bfd_make_section_with_flags (dynobj, ".xt.lit.plt",
1436 noalloc_flags);
1437 if (htab->spltlittbl == NULL
1438 || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
1439 return FALSE;
1440
1441 return TRUE;
1442 }
1443
1444
1445 static bfd_boolean
1446 add_extra_plt_sections (struct bfd_link_info *info, int count)
1447 {
1448 bfd *dynobj = elf_hash_table (info)->dynobj;
1449 int chunk;
1450
1451 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1452 ".got.plt" sections. */
1453 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1454 {
1455 char *sname;
1456 flagword flags;
1457 asection *s;
1458
1459 /* Stop when we find a section has already been created. */
1460 if (elf_xtensa_get_plt_section (info, chunk))
1461 break;
1462
1463 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1464 | SEC_LINKER_CREATED | SEC_READONLY);
1465
1466 sname = (char *) bfd_malloc (10);
1467 sprintf (sname, ".plt.%u", chunk);
1468 s = bfd_make_section_with_flags (dynobj, sname, flags | SEC_CODE);
1469 if (s == NULL
1470 || ! bfd_set_section_alignment (dynobj, s, 2))
1471 return FALSE;
1472
1473 sname = (char *) bfd_malloc (14);
1474 sprintf (sname, ".got.plt.%u", chunk);
1475 s = bfd_make_section_with_flags (dynobj, sname, flags);
1476 if (s == NULL
1477 || ! bfd_set_section_alignment (dynobj, s, 2))
1478 return FALSE;
1479 }
1480
1481 return TRUE;
1482 }
1483
1484
1485 /* Adjust a symbol defined by a dynamic object and referenced by a
1486 regular object. The current definition is in some section of the
1487 dynamic object, but we're not including those sections. We have to
1488 change the definition to something the rest of the link can
1489 understand. */
1490
1491 static bfd_boolean
1492 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1493 struct elf_link_hash_entry *h)
1494 {
1495 /* If this is a weak symbol, and there is a real definition, the
1496 processor independent code will have arranged for us to see the
1497 real definition first, and we can just use the same value. */
1498 if (h->u.weakdef)
1499 {
1500 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1501 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1502 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1503 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1504 return TRUE;
1505 }
1506
1507 /* This is a reference to a symbol defined by a dynamic object. The
1508 reference must go through the GOT, so there's no need for COPY relocs,
1509 .dynbss, etc. */
1510
1511 return TRUE;
1512 }
1513
1514
1515 static bfd_boolean
1516 elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
1517 {
1518 struct bfd_link_info *info;
1519 struct elf_xtensa_link_hash_table *htab;
1520 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h);
1521
1522 if (h->root.type == bfd_link_hash_indirect)
1523 return TRUE;
1524
1525 if (h->root.type == bfd_link_hash_warning)
1526 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1527
1528 info = (struct bfd_link_info *) arg;
1529 htab = elf_xtensa_hash_table (info);
1530
1531 /* If we saw any use of an IE model for this symbol, we can then optimize
1532 away GOT entries for any TLSDESC_FN relocs. */
1533 if ((eh->tls_type & GOT_TLS_IE) != 0)
1534 {
1535 BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount);
1536 h->got.refcount -= eh->tlsfunc_refcount;
1537 }
1538
1539 if (! elf_xtensa_dynamic_symbol_p (h, info))
1540 elf_xtensa_make_sym_local (info, h);
1541
1542 if (h->plt.refcount > 0)
1543 htab->srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
1544
1545 if (h->got.refcount > 0)
1546 htab->srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
1547
1548 return TRUE;
1549 }
1550
1551
1552 static void
1553 elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
1554 {
1555 struct elf_xtensa_link_hash_table *htab;
1556 bfd *i;
1557
1558 htab = elf_xtensa_hash_table (info);
1559
1560 for (i = info->input_bfds; i; i = i->link_next)
1561 {
1562 bfd_signed_vma *local_got_refcounts;
1563 bfd_size_type j, cnt;
1564 Elf_Internal_Shdr *symtab_hdr;
1565
1566 local_got_refcounts = elf_local_got_refcounts (i);
1567 if (!local_got_refcounts)
1568 continue;
1569
1570 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1571 cnt = symtab_hdr->sh_info;
1572
1573 for (j = 0; j < cnt; ++j)
1574 {
1575 /* If we saw any use of an IE model for this symbol, we can
1576 then optimize away GOT entries for any TLSDESC_FN relocs. */
1577 if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0)
1578 {
1579 bfd_signed_vma *tlsfunc_refcount
1580 = &elf_xtensa_local_tlsfunc_refcounts (i) [j];
1581 BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount);
1582 local_got_refcounts[j] -= *tlsfunc_refcount;
1583 }
1584
1585 if (local_got_refcounts[j] > 0)
1586 htab->srelgot->size += (local_got_refcounts[j]
1587 * sizeof (Elf32_External_Rela));
1588 }
1589 }
1590 }
1591
1592
1593 /* Set the sizes of the dynamic sections. */
1594
1595 static bfd_boolean
1596 elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1597 struct bfd_link_info *info)
1598 {
1599 struct elf_xtensa_link_hash_table *htab;
1600 bfd *dynobj, *abfd;
1601 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
1602 bfd_boolean relplt, relgot;
1603 int plt_entries, plt_chunks, chunk;
1604
1605 plt_entries = 0;
1606 plt_chunks = 0;
1607
1608 htab = elf_xtensa_hash_table (info);
1609 dynobj = elf_hash_table (info)->dynobj;
1610 if (dynobj == NULL)
1611 abort ();
1612 srelgot = htab->srelgot;
1613 srelplt = htab->srelplt;
1614
1615 if (elf_hash_table (info)->dynamic_sections_created)
1616 {
1617 BFD_ASSERT (htab->srelgot != NULL
1618 && htab->srelplt != NULL
1619 && htab->sgot != NULL
1620 && htab->spltlittbl != NULL
1621 && htab->sgotloc != NULL);
1622
1623 /* Set the contents of the .interp section to the interpreter. */
1624 if (info->executable)
1625 {
1626 s = bfd_get_section_by_name (dynobj, ".interp");
1627 if (s == NULL)
1628 abort ();
1629 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1630 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1631 }
1632
1633 /* Allocate room for one word in ".got". */
1634 htab->sgot->size = 4;
1635
1636 /* Allocate space in ".rela.got" for literals that reference global
1637 symbols and space in ".rela.plt" for literals that have PLT
1638 entries. */
1639 elf_link_hash_traverse (elf_hash_table (info),
1640 elf_xtensa_allocate_dynrelocs,
1641 (void *) info);
1642
1643 /* If we are generating a shared object, we also need space in
1644 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1645 reference local symbols. */
1646 if (info->shared)
1647 elf_xtensa_allocate_local_got_size (info);
1648
1649 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1650 each PLT entry, we need the PLT code plus a 4-byte literal.
1651 For each chunk of ".plt", we also need two more 4-byte
1652 literals, two corresponding entries in ".rela.got", and an
1653 8-byte entry in ".xt.lit.plt". */
1654 spltlittbl = htab->spltlittbl;
1655 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
1656 plt_chunks =
1657 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1658
1659 /* Iterate over all the PLT chunks, including any extra sections
1660 created earlier because the initial count of PLT relocations
1661 was an overestimate. */
1662 for (chunk = 0;
1663 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
1664 chunk++)
1665 {
1666 int chunk_entries;
1667
1668 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1669 BFD_ASSERT (sgotplt != NULL);
1670
1671 if (chunk < plt_chunks - 1)
1672 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1673 else if (chunk == plt_chunks - 1)
1674 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1675 else
1676 chunk_entries = 0;
1677
1678 if (chunk_entries != 0)
1679 {
1680 sgotplt->size = 4 * (chunk_entries + 2);
1681 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1682 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1683 spltlittbl->size += 8;
1684 }
1685 else
1686 {
1687 sgotplt->size = 0;
1688 splt->size = 0;
1689 }
1690 }
1691
1692 /* Allocate space in ".got.loc" to match the total size of all the
1693 literal tables. */
1694 sgotloc = htab->sgotloc;
1695 sgotloc->size = spltlittbl->size;
1696 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1697 {
1698 if (abfd->flags & DYNAMIC)
1699 continue;
1700 for (s = abfd->sections; s != NULL; s = s->next)
1701 {
1702 if (! elf_discarded_section (s)
1703 && xtensa_is_littable_section (s)
1704 && s != spltlittbl)
1705 sgotloc->size += s->size;
1706 }
1707 }
1708 }
1709
1710 /* Allocate memory for dynamic sections. */
1711 relplt = FALSE;
1712 relgot = FALSE;
1713 for (s = dynobj->sections; s != NULL; s = s->next)
1714 {
1715 const char *name;
1716
1717 if ((s->flags & SEC_LINKER_CREATED) == 0)
1718 continue;
1719
1720 /* It's OK to base decisions on the section name, because none
1721 of the dynobj section names depend upon the input files. */
1722 name = bfd_get_section_name (dynobj, s);
1723
1724 if (CONST_STRNEQ (name, ".rela"))
1725 {
1726 if (s->size != 0)
1727 {
1728 if (strcmp (name, ".rela.plt") == 0)
1729 relplt = TRUE;
1730 else if (strcmp (name, ".rela.got") == 0)
1731 relgot = TRUE;
1732
1733 /* We use the reloc_count field as a counter if we need
1734 to copy relocs into the output file. */
1735 s->reloc_count = 0;
1736 }
1737 }
1738 else if (! CONST_STRNEQ (name, ".plt.")
1739 && ! CONST_STRNEQ (name, ".got.plt.")
1740 && strcmp (name, ".got") != 0
1741 && strcmp (name, ".plt") != 0
1742 && strcmp (name, ".got.plt") != 0
1743 && strcmp (name, ".xt.lit.plt") != 0
1744 && strcmp (name, ".got.loc") != 0)
1745 {
1746 /* It's not one of our sections, so don't allocate space. */
1747 continue;
1748 }
1749
1750 if (s->size == 0)
1751 {
1752 /* If we don't need this section, strip it from the output
1753 file. We must create the ".plt*" and ".got.plt*"
1754 sections in create_dynamic_sections and/or check_relocs
1755 based on a conservative estimate of the PLT relocation
1756 count, because the sections must be created before the
1757 linker maps input sections to output sections. The
1758 linker does that before size_dynamic_sections, where we
1759 compute the exact size of the PLT, so there may be more
1760 of these sections than are actually needed. */
1761 s->flags |= SEC_EXCLUDE;
1762 }
1763 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
1764 {
1765 /* Allocate memory for the section contents. */
1766 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1767 if (s->contents == NULL)
1768 return FALSE;
1769 }
1770 }
1771
1772 if (elf_hash_table (info)->dynamic_sections_created)
1773 {
1774 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1775 known until finish_dynamic_sections, but we need to get the relocs
1776 in place before they are sorted. */
1777 for (chunk = 0; chunk < plt_chunks; chunk++)
1778 {
1779 Elf_Internal_Rela irela;
1780 bfd_byte *loc;
1781
1782 irela.r_offset = 0;
1783 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1784 irela.r_addend = 0;
1785
1786 loc = (srelgot->contents
1787 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1788 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1789 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1790 loc + sizeof (Elf32_External_Rela));
1791 srelgot->reloc_count += 2;
1792 }
1793
1794 /* Add some entries to the .dynamic section. We fill in the
1795 values later, in elf_xtensa_finish_dynamic_sections, but we
1796 must add the entries now so that we get the correct size for
1797 the .dynamic section. The DT_DEBUG entry is filled in by the
1798 dynamic linker and used by the debugger. */
1799 #define add_dynamic_entry(TAG, VAL) \
1800 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1801
1802 if (info->executable)
1803 {
1804 if (!add_dynamic_entry (DT_DEBUG, 0))
1805 return FALSE;
1806 }
1807
1808 if (relplt)
1809 {
1810 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1811 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1812 || !add_dynamic_entry (DT_JMPREL, 0))
1813 return FALSE;
1814 }
1815
1816 if (relgot)
1817 {
1818 if (!add_dynamic_entry (DT_RELA, 0)
1819 || !add_dynamic_entry (DT_RELASZ, 0)
1820 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1821 return FALSE;
1822 }
1823
1824 if (!add_dynamic_entry (DT_PLTGOT, 0)
1825 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1826 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1827 return FALSE;
1828 }
1829 #undef add_dynamic_entry
1830
1831 return TRUE;
1832 }
1833
1834 static bfd_boolean
1835 elf_xtensa_always_size_sections (bfd *output_bfd,
1836 struct bfd_link_info *info)
1837 {
1838 struct elf_xtensa_link_hash_table *htab;
1839 asection *tls_sec;
1840
1841 htab = elf_xtensa_hash_table (info);
1842 tls_sec = htab->elf.tls_sec;
1843
1844 if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0)
1845 {
1846 struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf;
1847 struct bfd_link_hash_entry *bh = &tlsbase->root;
1848 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
1849
1850 tlsbase->type = STT_TLS;
1851 if (!(_bfd_generic_link_add_one_symbol
1852 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
1853 tls_sec, 0, NULL, FALSE,
1854 bed->collect, &bh)))
1855 return FALSE;
1856 tlsbase->def_regular = 1;
1857 tlsbase->other = STV_HIDDEN;
1858 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
1859 }
1860
1861 return TRUE;
1862 }
1863
1864 \f
1865 /* Return the base VMA address which should be subtracted from real addresses
1866 when resolving @dtpoff relocation.
1867 This is PT_TLS segment p_vaddr. */
1868
1869 static bfd_vma
1870 dtpoff_base (struct bfd_link_info *info)
1871 {
1872 /* If tls_sec is NULL, we should have signalled an error already. */
1873 if (elf_hash_table (info)->tls_sec == NULL)
1874 return 0;
1875 return elf_hash_table (info)->tls_sec->vma;
1876 }
1877
1878 /* Return the relocation value for @tpoff relocation
1879 if STT_TLS virtual address is ADDRESS. */
1880
1881 static bfd_vma
1882 tpoff (struct bfd_link_info *info, bfd_vma address)
1883 {
1884 struct elf_link_hash_table *htab = elf_hash_table (info);
1885 bfd_vma base;
1886
1887 /* If tls_sec is NULL, we should have signalled an error already. */
1888 if (htab->tls_sec == NULL)
1889 return 0;
1890 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
1891 return address - htab->tls_sec->vma + base;
1892 }
1893
1894 /* Perform the specified relocation. The instruction at (contents + address)
1895 is modified to set one operand to represent the value in "relocation". The
1896 operand position is determined by the relocation type recorded in the
1897 howto. */
1898
1899 #define CALL_SEGMENT_BITS (30)
1900 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
1901
1902 static bfd_reloc_status_type
1903 elf_xtensa_do_reloc (reloc_howto_type *howto,
1904 bfd *abfd,
1905 asection *input_section,
1906 bfd_vma relocation,
1907 bfd_byte *contents,
1908 bfd_vma address,
1909 bfd_boolean is_weak_undef,
1910 char **error_message)
1911 {
1912 xtensa_format fmt;
1913 xtensa_opcode opcode;
1914 xtensa_isa isa = xtensa_default_isa;
1915 static xtensa_insnbuf ibuff = NULL;
1916 static xtensa_insnbuf sbuff = NULL;
1917 bfd_vma self_address;
1918 bfd_size_type input_size;
1919 int opnd, slot;
1920 uint32 newval;
1921
1922 if (!ibuff)
1923 {
1924 ibuff = xtensa_insnbuf_alloc (isa);
1925 sbuff = xtensa_insnbuf_alloc (isa);
1926 }
1927
1928 input_size = bfd_get_section_limit (abfd, input_section);
1929
1930 /* Calculate the PC address for this instruction. */
1931 self_address = (input_section->output_section->vma
1932 + input_section->output_offset
1933 + address);
1934
1935 switch (howto->type)
1936 {
1937 case R_XTENSA_NONE:
1938 case R_XTENSA_DIFF8:
1939 case R_XTENSA_DIFF16:
1940 case R_XTENSA_DIFF32:
1941 case R_XTENSA_TLS_FUNC:
1942 case R_XTENSA_TLS_ARG:
1943 case R_XTENSA_TLS_CALL:
1944 return bfd_reloc_ok;
1945
1946 case R_XTENSA_ASM_EXPAND:
1947 if (!is_weak_undef)
1948 {
1949 /* Check for windowed CALL across a 1GB boundary. */
1950 xtensa_opcode opcode =
1951 get_expanded_call_opcode (contents + address,
1952 input_size - address, 0);
1953 if (is_windowed_call_opcode (opcode))
1954 {
1955 if ((self_address >> CALL_SEGMENT_BITS)
1956 != (relocation >> CALL_SEGMENT_BITS))
1957 {
1958 *error_message = "windowed longcall crosses 1GB boundary; "
1959 "return may fail";
1960 return bfd_reloc_dangerous;
1961 }
1962 }
1963 }
1964 return bfd_reloc_ok;
1965
1966 case R_XTENSA_ASM_SIMPLIFY:
1967 {
1968 /* Convert the L32R/CALLX to CALL. */
1969 bfd_reloc_status_type retval =
1970 elf_xtensa_do_asm_simplify (contents, address, input_size,
1971 error_message);
1972 if (retval != bfd_reloc_ok)
1973 return bfd_reloc_dangerous;
1974
1975 /* The CALL needs to be relocated. Continue below for that part. */
1976 address += 3;
1977 self_address += 3;
1978 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
1979 }
1980 break;
1981
1982 case R_XTENSA_32:
1983 {
1984 bfd_vma x;
1985 x = bfd_get_32 (abfd, contents + address);
1986 x = x + relocation;
1987 bfd_put_32 (abfd, x, contents + address);
1988 }
1989 return bfd_reloc_ok;
1990
1991 case R_XTENSA_32_PCREL:
1992 bfd_put_32 (abfd, relocation - self_address, contents + address);
1993 return bfd_reloc_ok;
1994
1995 case R_XTENSA_PLT:
1996 case R_XTENSA_TLSDESC_FN:
1997 case R_XTENSA_TLSDESC_ARG:
1998 case R_XTENSA_TLS_DTPOFF:
1999 case R_XTENSA_TLS_TPOFF:
2000 bfd_put_32 (abfd, relocation, contents + address);
2001 return bfd_reloc_ok;
2002 }
2003
2004 /* Only instruction slot-specific relocations handled below.... */
2005 slot = get_relocation_slot (howto->type);
2006 if (slot == XTENSA_UNDEFINED)
2007 {
2008 *error_message = "unexpected relocation";
2009 return bfd_reloc_dangerous;
2010 }
2011
2012 /* Read the instruction into a buffer and decode the opcode. */
2013 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
2014 input_size - address);
2015 fmt = xtensa_format_decode (isa, ibuff);
2016 if (fmt == XTENSA_UNDEFINED)
2017 {
2018 *error_message = "cannot decode instruction format";
2019 return bfd_reloc_dangerous;
2020 }
2021
2022 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
2023
2024 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
2025 if (opcode == XTENSA_UNDEFINED)
2026 {
2027 *error_message = "cannot decode instruction opcode";
2028 return bfd_reloc_dangerous;
2029 }
2030
2031 /* Check for opcode-specific "alternate" relocations. */
2032 if (is_alt_relocation (howto->type))
2033 {
2034 if (opcode == get_l32r_opcode ())
2035 {
2036 /* Handle the special-case of non-PC-relative L32R instructions. */
2037 bfd *output_bfd = input_section->output_section->owner;
2038 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
2039 if (!lit4_sec)
2040 {
2041 *error_message = "relocation references missing .lit4 section";
2042 return bfd_reloc_dangerous;
2043 }
2044 self_address = ((lit4_sec->vma & ~0xfff)
2045 + 0x40000 - 3); /* -3 to compensate for do_reloc */
2046 newval = relocation;
2047 opnd = 1;
2048 }
2049 else if (opcode == get_const16_opcode ())
2050 {
2051 /* ALT used for high 16 bits. */
2052 newval = relocation >> 16;
2053 opnd = 1;
2054 }
2055 else
2056 {
2057 /* No other "alternate" relocations currently defined. */
2058 *error_message = "unexpected relocation";
2059 return bfd_reloc_dangerous;
2060 }
2061 }
2062 else /* Not an "alternate" relocation.... */
2063 {
2064 if (opcode == get_const16_opcode ())
2065 {
2066 newval = relocation & 0xffff;
2067 opnd = 1;
2068 }
2069 else
2070 {
2071 /* ...normal PC-relative relocation.... */
2072
2073 /* Determine which operand is being relocated. */
2074 opnd = get_relocation_opnd (opcode, howto->type);
2075 if (opnd == XTENSA_UNDEFINED)
2076 {
2077 *error_message = "unexpected relocation";
2078 return bfd_reloc_dangerous;
2079 }
2080
2081 if (!howto->pc_relative)
2082 {
2083 *error_message = "expected PC-relative relocation";
2084 return bfd_reloc_dangerous;
2085 }
2086
2087 newval = relocation;
2088 }
2089 }
2090
2091 /* Apply the relocation. */
2092 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
2093 || xtensa_operand_encode (isa, opcode, opnd, &newval)
2094 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
2095 sbuff, newval))
2096 {
2097 const char *opname = xtensa_opcode_name (isa, opcode);
2098 const char *msg;
2099
2100 msg = "cannot encode";
2101 if (is_direct_call_opcode (opcode))
2102 {
2103 if ((relocation & 0x3) != 0)
2104 msg = "misaligned call target";
2105 else
2106 msg = "call target out of range";
2107 }
2108 else if (opcode == get_l32r_opcode ())
2109 {
2110 if ((relocation & 0x3) != 0)
2111 msg = "misaligned literal target";
2112 else if (is_alt_relocation (howto->type))
2113 msg = "literal target out of range (too many literals)";
2114 else if (self_address > relocation)
2115 msg = "literal target out of range (try using text-section-literals)";
2116 else
2117 msg = "literal placed after use";
2118 }
2119
2120 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
2121 return bfd_reloc_dangerous;
2122 }
2123
2124 /* Check for calls across 1GB boundaries. */
2125 if (is_direct_call_opcode (opcode)
2126 && is_windowed_call_opcode (opcode))
2127 {
2128 if ((self_address >> CALL_SEGMENT_BITS)
2129 != (relocation >> CALL_SEGMENT_BITS))
2130 {
2131 *error_message =
2132 "windowed call crosses 1GB boundary; return may fail";
2133 return bfd_reloc_dangerous;
2134 }
2135 }
2136
2137 /* Write the modified instruction back out of the buffer. */
2138 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
2139 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
2140 input_size - address);
2141 return bfd_reloc_ok;
2142 }
2143
2144
2145 static char *
2146 vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
2147 {
2148 /* To reduce the size of the memory leak,
2149 we only use a single message buffer. */
2150 static bfd_size_type alloc_size = 0;
2151 static char *message = NULL;
2152 bfd_size_type orig_len, len = 0;
2153 bfd_boolean is_append;
2154
2155 VA_OPEN (ap, arglen);
2156 VA_FIXEDARG (ap, const char *, origmsg);
2157
2158 is_append = (origmsg == message);
2159
2160 orig_len = strlen (origmsg);
2161 len = orig_len + strlen (fmt) + arglen + 20;
2162 if (len > alloc_size)
2163 {
2164 message = (char *) bfd_realloc_or_free (message, len);
2165 alloc_size = len;
2166 }
2167 if (message != NULL)
2168 {
2169 if (!is_append)
2170 memcpy (message, origmsg, orig_len);
2171 vsprintf (message + orig_len, fmt, ap);
2172 }
2173 VA_CLOSE (ap);
2174 return message;
2175 }
2176
2177
2178 /* This function is registered as the "special_function" in the
2179 Xtensa howto for handling simplify operations.
2180 bfd_perform_relocation / bfd_install_relocation use it to
2181 perform (install) the specified relocation. Since this replaces the code
2182 in bfd_perform_relocation, it is basically an Xtensa-specific,
2183 stripped-down version of bfd_perform_relocation. */
2184
2185 static bfd_reloc_status_type
2186 bfd_elf_xtensa_reloc (bfd *abfd,
2187 arelent *reloc_entry,
2188 asymbol *symbol,
2189 void *data,
2190 asection *input_section,
2191 bfd *output_bfd,
2192 char **error_message)
2193 {
2194 bfd_vma relocation;
2195 bfd_reloc_status_type flag;
2196 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2197 bfd_vma output_base = 0;
2198 reloc_howto_type *howto = reloc_entry->howto;
2199 asection *reloc_target_output_section;
2200 bfd_boolean is_weak_undef;
2201
2202 if (!xtensa_default_isa)
2203 xtensa_default_isa = xtensa_isa_init (0, 0);
2204
2205 /* ELF relocs are against symbols. If we are producing relocatable
2206 output, and the reloc is against an external symbol, the resulting
2207 reloc will also be against the same symbol. In such a case, we
2208 don't want to change anything about the way the reloc is handled,
2209 since it will all be done at final link time. This test is similar
2210 to what bfd_elf_generic_reloc does except that it lets relocs with
2211 howto->partial_inplace go through even if the addend is non-zero.
2212 (The real problem is that partial_inplace is set for XTENSA_32
2213 relocs to begin with, but that's a long story and there's little we
2214 can do about it now....) */
2215
2216 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
2217 {
2218 reloc_entry->address += input_section->output_offset;
2219 return bfd_reloc_ok;
2220 }
2221
2222 /* Is the address of the relocation really within the section? */
2223 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2224 return bfd_reloc_outofrange;
2225
2226 /* Work out which section the relocation is targeted at and the
2227 initial relocation command value. */
2228
2229 /* Get symbol value. (Common symbols are special.) */
2230 if (bfd_is_com_section (symbol->section))
2231 relocation = 0;
2232 else
2233 relocation = symbol->value;
2234
2235 reloc_target_output_section = symbol->section->output_section;
2236
2237 /* Convert input-section-relative symbol value to absolute. */
2238 if ((output_bfd && !howto->partial_inplace)
2239 || reloc_target_output_section == NULL)
2240 output_base = 0;
2241 else
2242 output_base = reloc_target_output_section->vma;
2243
2244 relocation += output_base + symbol->section->output_offset;
2245
2246 /* Add in supplied addend. */
2247 relocation += reloc_entry->addend;
2248
2249 /* Here the variable relocation holds the final address of the
2250 symbol we are relocating against, plus any addend. */
2251 if (output_bfd)
2252 {
2253 if (!howto->partial_inplace)
2254 {
2255 /* This is a partial relocation, and we want to apply the relocation
2256 to the reloc entry rather than the raw data. Everything except
2257 relocations against section symbols has already been handled
2258 above. */
2259
2260 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
2261 reloc_entry->addend = relocation;
2262 reloc_entry->address += input_section->output_offset;
2263 return bfd_reloc_ok;
2264 }
2265 else
2266 {
2267 reloc_entry->address += input_section->output_offset;
2268 reloc_entry->addend = 0;
2269 }
2270 }
2271
2272 is_weak_undef = (bfd_is_und_section (symbol->section)
2273 && (symbol->flags & BSF_WEAK) != 0);
2274 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
2275 (bfd_byte *) data, (bfd_vma) octets,
2276 is_weak_undef, error_message);
2277
2278 if (flag == bfd_reloc_dangerous)
2279 {
2280 /* Add the symbol name to the error message. */
2281 if (! *error_message)
2282 *error_message = "";
2283 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
2284 strlen (symbol->name) + 17,
2285 symbol->name,
2286 (unsigned long) reloc_entry->addend);
2287 }
2288
2289 return flag;
2290 }
2291
2292
2293 /* Set up an entry in the procedure linkage table. */
2294
2295 static bfd_vma
2296 elf_xtensa_create_plt_entry (struct bfd_link_info *info,
2297 bfd *output_bfd,
2298 unsigned reloc_index)
2299 {
2300 asection *splt, *sgotplt;
2301 bfd_vma plt_base, got_base;
2302 bfd_vma code_offset, lit_offset;
2303 int chunk;
2304
2305 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
2306 splt = elf_xtensa_get_plt_section (info, chunk);
2307 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
2308 BFD_ASSERT (splt != NULL && sgotplt != NULL);
2309
2310 plt_base = splt->output_section->vma + splt->output_offset;
2311 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
2312
2313 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
2314 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
2315
2316 /* Fill in the literal entry. This is the offset of the dynamic
2317 relocation entry. */
2318 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
2319 sgotplt->contents + lit_offset);
2320
2321 /* Fill in the entry in the procedure linkage table. */
2322 memcpy (splt->contents + code_offset,
2323 (bfd_big_endian (output_bfd)
2324 ? elf_xtensa_be_plt_entry
2325 : elf_xtensa_le_plt_entry),
2326 PLT_ENTRY_SIZE);
2327 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
2328 plt_base + code_offset + 3),
2329 splt->contents + code_offset + 4);
2330 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
2331 plt_base + code_offset + 6),
2332 splt->contents + code_offset + 7);
2333 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
2334 plt_base + code_offset + 9),
2335 splt->contents + code_offset + 10);
2336
2337 return plt_base + code_offset;
2338 }
2339
2340
2341 static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *);
2342
2343 static bfd_boolean
2344 replace_tls_insn (Elf_Internal_Rela *rel,
2345 bfd *abfd,
2346 asection *input_section,
2347 bfd_byte *contents,
2348 bfd_boolean is_ld_model,
2349 char **error_message)
2350 {
2351 static xtensa_insnbuf ibuff = NULL;
2352 static xtensa_insnbuf sbuff = NULL;
2353 xtensa_isa isa = xtensa_default_isa;
2354 xtensa_format fmt;
2355 xtensa_opcode old_op, new_op;
2356 bfd_size_type input_size;
2357 int r_type;
2358 unsigned dest_reg, src_reg;
2359
2360 if (ibuff == NULL)
2361 {
2362 ibuff = xtensa_insnbuf_alloc (isa);
2363 sbuff = xtensa_insnbuf_alloc (isa);
2364 }
2365
2366 input_size = bfd_get_section_limit (abfd, input_section);
2367
2368 /* Read the instruction into a buffer and decode the opcode. */
2369 xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset,
2370 input_size - rel->r_offset);
2371 fmt = xtensa_format_decode (isa, ibuff);
2372 if (fmt == XTENSA_UNDEFINED)
2373 {
2374 *error_message = "cannot decode instruction format";
2375 return FALSE;
2376 }
2377
2378 BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1);
2379 xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff);
2380
2381 old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff);
2382 if (old_op == XTENSA_UNDEFINED)
2383 {
2384 *error_message = "cannot decode instruction opcode";
2385 return FALSE;
2386 }
2387
2388 r_type = ELF32_R_TYPE (rel->r_info);
2389 switch (r_type)
2390 {
2391 case R_XTENSA_TLS_FUNC:
2392 case R_XTENSA_TLS_ARG:
2393 if (old_op != get_l32r_opcode ()
2394 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2395 sbuff, &dest_reg) != 0)
2396 {
2397 *error_message = "cannot extract L32R destination for TLS access";
2398 return FALSE;
2399 }
2400 break;
2401
2402 case R_XTENSA_TLS_CALL:
2403 if (! get_indirect_call_dest_reg (old_op, &dest_reg)
2404 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2405 sbuff, &src_reg) != 0)
2406 {
2407 *error_message = "cannot extract CALLXn operands for TLS access";
2408 return FALSE;
2409 }
2410 break;
2411
2412 default:
2413 abort ();
2414 }
2415
2416 if (is_ld_model)
2417 {
2418 switch (r_type)
2419 {
2420 case R_XTENSA_TLS_FUNC:
2421 case R_XTENSA_TLS_ARG:
2422 /* Change the instruction to a NOP (or "OR a1, a1, a1" for older
2423 versions of Xtensa). */
2424 new_op = xtensa_opcode_lookup (isa, "nop");
2425 if (new_op == XTENSA_UNDEFINED)
2426 {
2427 new_op = xtensa_opcode_lookup (isa, "or");
2428 if (new_op == XTENSA_UNDEFINED
2429 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2430 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2431 sbuff, 1) != 0
2432 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2433 sbuff, 1) != 0
2434 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2435 sbuff, 1) != 0)
2436 {
2437 *error_message = "cannot encode OR for TLS access";
2438 return FALSE;
2439 }
2440 }
2441 else
2442 {
2443 if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0)
2444 {
2445 *error_message = "cannot encode NOP for TLS access";
2446 return FALSE;
2447 }
2448 }
2449 break;
2450
2451 case R_XTENSA_TLS_CALL:
2452 /* Read THREADPTR into the CALLX's return value register. */
2453 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2454 if (new_op == XTENSA_UNDEFINED
2455 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2456 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2457 sbuff, dest_reg + 2) != 0)
2458 {
2459 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2460 return FALSE;
2461 }
2462 break;
2463 }
2464 }
2465 else
2466 {
2467 switch (r_type)
2468 {
2469 case R_XTENSA_TLS_FUNC:
2470 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2471 if (new_op == XTENSA_UNDEFINED
2472 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2473 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2474 sbuff, dest_reg) != 0)
2475 {
2476 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2477 return FALSE;
2478 }
2479 break;
2480
2481 case R_XTENSA_TLS_ARG:
2482 /* Nothing to do. Keep the original L32R instruction. */
2483 return TRUE;
2484
2485 case R_XTENSA_TLS_CALL:
2486 /* Add the CALLX's src register (holding the THREADPTR value)
2487 to the first argument register (holding the offset) and put
2488 the result in the CALLX's return value register. */
2489 new_op = xtensa_opcode_lookup (isa, "add");
2490 if (new_op == XTENSA_UNDEFINED
2491 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2492 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2493 sbuff, dest_reg + 2) != 0
2494 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2495 sbuff, dest_reg + 2) != 0
2496 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2497 sbuff, src_reg) != 0)
2498 {
2499 *error_message = "cannot encode ADD for TLS access";
2500 return FALSE;
2501 }
2502 break;
2503 }
2504 }
2505
2506 xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff);
2507 xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset,
2508 input_size - rel->r_offset);
2509
2510 return TRUE;
2511 }
2512
2513
2514 #define IS_XTENSA_TLS_RELOC(R_TYPE) \
2515 ((R_TYPE) == R_XTENSA_TLSDESC_FN \
2516 || (R_TYPE) == R_XTENSA_TLSDESC_ARG \
2517 || (R_TYPE) == R_XTENSA_TLS_DTPOFF \
2518 || (R_TYPE) == R_XTENSA_TLS_TPOFF \
2519 || (R_TYPE) == R_XTENSA_TLS_FUNC \
2520 || (R_TYPE) == R_XTENSA_TLS_ARG \
2521 || (R_TYPE) == R_XTENSA_TLS_CALL)
2522
2523 /* Relocate an Xtensa ELF section. This is invoked by the linker for
2524 both relocatable and final links. */
2525
2526 static bfd_boolean
2527 elf_xtensa_relocate_section (bfd *output_bfd,
2528 struct bfd_link_info *info,
2529 bfd *input_bfd,
2530 asection *input_section,
2531 bfd_byte *contents,
2532 Elf_Internal_Rela *relocs,
2533 Elf_Internal_Sym *local_syms,
2534 asection **local_sections)
2535 {
2536 struct elf_xtensa_link_hash_table *htab;
2537 Elf_Internal_Shdr *symtab_hdr;
2538 Elf_Internal_Rela *rel;
2539 Elf_Internal_Rela *relend;
2540 struct elf_link_hash_entry **sym_hashes;
2541 property_table_entry *lit_table = 0;
2542 int ltblsize = 0;
2543 char *local_got_tls_types;
2544 char *error_message = NULL;
2545 bfd_size_type input_size;
2546 int tls_type;
2547
2548 if (!xtensa_default_isa)
2549 xtensa_default_isa = xtensa_isa_init (0, 0);
2550
2551 BFD_ASSERT (is_xtensa_elf (input_bfd));
2552
2553 htab = elf_xtensa_hash_table (info);
2554 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2555 sym_hashes = elf_sym_hashes (input_bfd);
2556 local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd);
2557
2558 if (elf_hash_table (info)->dynamic_sections_created)
2559 {
2560 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
2561 &lit_table, XTENSA_LIT_SEC_NAME,
2562 TRUE);
2563 if (ltblsize < 0)
2564 return FALSE;
2565 }
2566
2567 input_size = bfd_get_section_limit (input_bfd, input_section);
2568
2569 rel = relocs;
2570 relend = relocs + input_section->reloc_count;
2571 for (; rel < relend; rel++)
2572 {
2573 int r_type;
2574 reloc_howto_type *howto;
2575 unsigned long r_symndx;
2576 struct elf_link_hash_entry *h;
2577 Elf_Internal_Sym *sym;
2578 char sym_type;
2579 const char *name;
2580 asection *sec;
2581 bfd_vma relocation;
2582 bfd_reloc_status_type r;
2583 bfd_boolean is_weak_undef;
2584 bfd_boolean unresolved_reloc;
2585 bfd_boolean warned;
2586 bfd_boolean dynamic_symbol;
2587
2588 r_type = ELF32_R_TYPE (rel->r_info);
2589 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2590 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2591 continue;
2592
2593 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2594 {
2595 bfd_set_error (bfd_error_bad_value);
2596 return FALSE;
2597 }
2598 howto = &elf_howto_table[r_type];
2599
2600 r_symndx = ELF32_R_SYM (rel->r_info);
2601
2602 h = NULL;
2603 sym = NULL;
2604 sec = NULL;
2605 is_weak_undef = FALSE;
2606 unresolved_reloc = FALSE;
2607 warned = FALSE;
2608
2609 if (howto->partial_inplace && !info->relocatable)
2610 {
2611 /* Because R_XTENSA_32 was made partial_inplace to fix some
2612 problems with DWARF info in partial links, there may be
2613 an addend stored in the contents. Take it out of there
2614 and move it back into the addend field of the reloc. */
2615 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2616 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2617 }
2618
2619 if (r_symndx < symtab_hdr->sh_info)
2620 {
2621 sym = local_syms + r_symndx;
2622 sym_type = ELF32_ST_TYPE (sym->st_info);
2623 sec = local_sections[r_symndx];
2624 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2625 }
2626 else
2627 {
2628 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2629 r_symndx, symtab_hdr, sym_hashes,
2630 h, sec, relocation,
2631 unresolved_reloc, warned);
2632
2633 if (relocation == 0
2634 && !unresolved_reloc
2635 && h->root.type == bfd_link_hash_undefweak)
2636 is_weak_undef = TRUE;
2637
2638 sym_type = h->type;
2639 }
2640
2641 if (sec != NULL && elf_discarded_section (sec))
2642 {
2643 /* For relocs against symbols from removed linkonce sections,
2644 or sections discarded by a linker script, we just want the
2645 section contents zeroed. Avoid any special processing. */
2646 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
2647 rel->r_info = 0;
2648 rel->r_addend = 0;
2649 continue;
2650 }
2651
2652 if (info->relocatable)
2653 {
2654 /* This is a relocatable link.
2655 1) If the reloc is against a section symbol, adjust
2656 according to the output section.
2657 2) If there is a new target for this relocation,
2658 the new target will be in the same output section.
2659 We adjust the relocation by the output section
2660 difference. */
2661
2662 if (relaxing_section)
2663 {
2664 /* Check if this references a section in another input file. */
2665 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2666 contents))
2667 return FALSE;
2668 }
2669
2670 if (r_type == R_XTENSA_ASM_SIMPLIFY)
2671 {
2672 char *error_message = NULL;
2673 /* Convert ASM_SIMPLIFY into the simpler relocation
2674 so that they never escape a relaxing link. */
2675 r = contract_asm_expansion (contents, input_size, rel,
2676 &error_message);
2677 if (r != bfd_reloc_ok)
2678 {
2679 if (!((*info->callbacks->reloc_dangerous)
2680 (info, error_message, input_bfd, input_section,
2681 rel->r_offset)))
2682 return FALSE;
2683 }
2684 r_type = ELF32_R_TYPE (rel->r_info);
2685 }
2686
2687 /* This is a relocatable link, so we don't have to change
2688 anything unless the reloc is against a section symbol,
2689 in which case we have to adjust according to where the
2690 section symbol winds up in the output section. */
2691 if (r_symndx < symtab_hdr->sh_info)
2692 {
2693 sym = local_syms + r_symndx;
2694 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2695 {
2696 sec = local_sections[r_symndx];
2697 rel->r_addend += sec->output_offset + sym->st_value;
2698 }
2699 }
2700
2701 /* If there is an addend with a partial_inplace howto,
2702 then move the addend to the contents. This is a hack
2703 to work around problems with DWARF in relocatable links
2704 with some previous version of BFD. Now we can't easily get
2705 rid of the hack without breaking backward compatibility.... */
2706 if (rel->r_addend)
2707 {
2708 howto = &elf_howto_table[r_type];
2709 if (howto->partial_inplace)
2710 {
2711 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2712 rel->r_addend, contents,
2713 rel->r_offset, FALSE,
2714 &error_message);
2715 if (r != bfd_reloc_ok)
2716 {
2717 if (!((*info->callbacks->reloc_dangerous)
2718 (info, error_message, input_bfd, input_section,
2719 rel->r_offset)))
2720 return FALSE;
2721 }
2722 rel->r_addend = 0;
2723 }
2724 }
2725
2726 /* Done with work for relocatable link; continue with next reloc. */
2727 continue;
2728 }
2729
2730 /* This is a final link. */
2731
2732 if (relaxing_section)
2733 {
2734 /* Check if this references a section in another input file. */
2735 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2736 &relocation);
2737 }
2738
2739 /* Sanity check the address. */
2740 if (rel->r_offset >= input_size
2741 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2742 {
2743 (*_bfd_error_handler)
2744 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2745 input_bfd, input_section, rel->r_offset, input_size);
2746 bfd_set_error (bfd_error_bad_value);
2747 return FALSE;
2748 }
2749
2750 if (h != NULL)
2751 name = h->root.root.string;
2752 else
2753 {
2754 name = (bfd_elf_string_from_elf_section
2755 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2756 if (name == NULL || *name == '\0')
2757 name = bfd_section_name (input_bfd, sec);
2758 }
2759
2760 if (r_symndx != 0
2761 && r_type != R_XTENSA_NONE
2762 && (h == NULL
2763 || h->root.type == bfd_link_hash_defined
2764 || h->root.type == bfd_link_hash_defweak)
2765 && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS))
2766 {
2767 (*_bfd_error_handler)
2768 ((sym_type == STT_TLS
2769 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
2770 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
2771 input_bfd,
2772 input_section,
2773 (long) rel->r_offset,
2774 howto->name,
2775 name);
2776 }
2777
2778 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
2779
2780 tls_type = GOT_UNKNOWN;
2781 if (h)
2782 tls_type = elf_xtensa_hash_entry (h)->tls_type;
2783 else if (local_got_tls_types)
2784 tls_type = local_got_tls_types [r_symndx];
2785
2786 switch (r_type)
2787 {
2788 case R_XTENSA_32:
2789 case R_XTENSA_PLT:
2790 if (elf_hash_table (info)->dynamic_sections_created
2791 && (input_section->flags & SEC_ALLOC) != 0
2792 && (dynamic_symbol || info->shared))
2793 {
2794 Elf_Internal_Rela outrel;
2795 bfd_byte *loc;
2796 asection *srel;
2797
2798 if (dynamic_symbol && r_type == R_XTENSA_PLT)
2799 srel = htab->srelplt;
2800 else
2801 srel = htab->srelgot;
2802
2803 BFD_ASSERT (srel != NULL);
2804
2805 outrel.r_offset =
2806 _bfd_elf_section_offset (output_bfd, info,
2807 input_section, rel->r_offset);
2808
2809 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2810 memset (&outrel, 0, sizeof outrel);
2811 else
2812 {
2813 outrel.r_offset += (input_section->output_section->vma
2814 + input_section->output_offset);
2815
2816 /* Complain if the relocation is in a read-only section
2817 and not in a literal pool. */
2818 if ((input_section->flags & SEC_READONLY) != 0
2819 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
2820 outrel.r_offset))
2821 {
2822 error_message =
2823 _("dynamic relocation in read-only section");
2824 if (!((*info->callbacks->reloc_dangerous)
2825 (info, error_message, input_bfd, input_section,
2826 rel->r_offset)))
2827 return FALSE;
2828 }
2829
2830 if (dynamic_symbol)
2831 {
2832 outrel.r_addend = rel->r_addend;
2833 rel->r_addend = 0;
2834
2835 if (r_type == R_XTENSA_32)
2836 {
2837 outrel.r_info =
2838 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2839 relocation = 0;
2840 }
2841 else /* r_type == R_XTENSA_PLT */
2842 {
2843 outrel.r_info =
2844 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2845
2846 /* Create the PLT entry and set the initial
2847 contents of the literal entry to the address of
2848 the PLT entry. */
2849 relocation =
2850 elf_xtensa_create_plt_entry (info, output_bfd,
2851 srel->reloc_count);
2852 }
2853 unresolved_reloc = FALSE;
2854 }
2855 else
2856 {
2857 /* Generate a RELATIVE relocation. */
2858 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2859 outrel.r_addend = 0;
2860 }
2861 }
2862
2863 loc = (srel->contents
2864 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2865 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2866 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2867 <= srel->size);
2868 }
2869 else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
2870 {
2871 /* This should only happen for non-PIC code, which is not
2872 supposed to be used on systems with dynamic linking.
2873 Just ignore these relocations. */
2874 continue;
2875 }
2876 break;
2877
2878 case R_XTENSA_TLS_TPOFF:
2879 /* Switch to LE model for local symbols in an executable. */
2880 if (! info->shared && ! dynamic_symbol)
2881 {
2882 relocation = tpoff (info, relocation);
2883 break;
2884 }
2885 /* fall through */
2886
2887 case R_XTENSA_TLSDESC_FN:
2888 case R_XTENSA_TLSDESC_ARG:
2889 {
2890 if (r_type == R_XTENSA_TLSDESC_FN)
2891 {
2892 if (! info->shared || (tls_type & GOT_TLS_IE) != 0)
2893 r_type = R_XTENSA_NONE;
2894 }
2895 else if (r_type == R_XTENSA_TLSDESC_ARG)
2896 {
2897 if (info->shared)
2898 {
2899 if ((tls_type & GOT_TLS_IE) != 0)
2900 r_type = R_XTENSA_TLS_TPOFF;
2901 }
2902 else
2903 {
2904 r_type = R_XTENSA_TLS_TPOFF;
2905 if (! dynamic_symbol)
2906 {
2907 relocation = tpoff (info, relocation);
2908 break;
2909 }
2910 }
2911 }
2912
2913 if (r_type == R_XTENSA_NONE)
2914 /* Nothing to do here; skip to the next reloc. */
2915 continue;
2916
2917 if (! elf_hash_table (info)->dynamic_sections_created)
2918 {
2919 error_message =
2920 _("TLS relocation invalid without dynamic sections");
2921 if (!((*info->callbacks->reloc_dangerous)
2922 (info, error_message, input_bfd, input_section,
2923 rel->r_offset)))
2924 return FALSE;
2925 }
2926 else
2927 {
2928 Elf_Internal_Rela outrel;
2929 bfd_byte *loc;
2930 asection *srel = htab->srelgot;
2931 int indx;
2932
2933 outrel.r_offset = (input_section->output_section->vma
2934 + input_section->output_offset
2935 + rel->r_offset);
2936
2937 /* Complain if the relocation is in a read-only section
2938 and not in a literal pool. */
2939 if ((input_section->flags & SEC_READONLY) != 0
2940 && ! elf_xtensa_in_literal_pool (lit_table, ltblsize,
2941 outrel.r_offset))
2942 {
2943 error_message =
2944 _("dynamic relocation in read-only section");
2945 if (!((*info->callbacks->reloc_dangerous)
2946 (info, error_message, input_bfd, input_section,
2947 rel->r_offset)))
2948 return FALSE;
2949 }
2950
2951 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2952 if (indx == 0)
2953 outrel.r_addend = relocation - dtpoff_base (info);
2954 else
2955 outrel.r_addend = 0;
2956 rel->r_addend = 0;
2957
2958 outrel.r_info = ELF32_R_INFO (indx, r_type);
2959 relocation = 0;
2960 unresolved_reloc = FALSE;
2961
2962 BFD_ASSERT (srel);
2963 loc = (srel->contents
2964 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2965 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2966 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2967 <= srel->size);
2968 }
2969 }
2970 break;
2971
2972 case R_XTENSA_TLS_DTPOFF:
2973 if (! info->shared)
2974 /* Switch from LD model to LE model. */
2975 relocation = tpoff (info, relocation);
2976 else
2977 relocation -= dtpoff_base (info);
2978 break;
2979
2980 case R_XTENSA_TLS_FUNC:
2981 case R_XTENSA_TLS_ARG:
2982 case R_XTENSA_TLS_CALL:
2983 /* Check if optimizing to IE or LE model. */
2984 if ((tls_type & GOT_TLS_IE) != 0)
2985 {
2986 bfd_boolean is_ld_model =
2987 (h && elf_xtensa_hash_entry (h) == htab->tlsbase);
2988 if (! replace_tls_insn (rel, input_bfd, input_section, contents,
2989 is_ld_model, &error_message))
2990 {
2991 if (!((*info->callbacks->reloc_dangerous)
2992 (info, error_message, input_bfd, input_section,
2993 rel->r_offset)))
2994 return FALSE;
2995 }
2996
2997 if (r_type != R_XTENSA_TLS_ARG || is_ld_model)
2998 {
2999 /* Skip subsequent relocations on the same instruction. */
3000 while (rel + 1 < relend && rel[1].r_offset == rel->r_offset)
3001 rel++;
3002 }
3003 }
3004 continue;
3005
3006 default:
3007 if (elf_hash_table (info)->dynamic_sections_created
3008 && dynamic_symbol && (is_operand_relocation (r_type)
3009 || r_type == R_XTENSA_32_PCREL))
3010 {
3011 error_message =
3012 vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
3013 strlen (name) + 2, name);
3014 if (!((*info->callbacks->reloc_dangerous)
3015 (info, error_message, input_bfd, input_section,
3016 rel->r_offset)))
3017 return FALSE;
3018 continue;
3019 }
3020 break;
3021 }
3022
3023 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3024 because such sections are not SEC_ALLOC and thus ld.so will
3025 not process them. */
3026 if (unresolved_reloc
3027 && !((input_section->flags & SEC_DEBUGGING) != 0
3028 && h->def_dynamic))
3029 {
3030 (*_bfd_error_handler)
3031 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3032 input_bfd,
3033 input_section,
3034 (long) rel->r_offset,
3035 howto->name,
3036 name);
3037 return FALSE;
3038 }
3039
3040 /* TLS optimizations may have changed r_type; update "howto". */
3041 howto = &elf_howto_table[r_type];
3042
3043 /* There's no point in calling bfd_perform_relocation here.
3044 Just go directly to our "special function". */
3045 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
3046 relocation + rel->r_addend,
3047 contents, rel->r_offset, is_weak_undef,
3048 &error_message);
3049
3050 if (r != bfd_reloc_ok && !warned)
3051 {
3052 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
3053 BFD_ASSERT (error_message != NULL);
3054
3055 if (rel->r_addend == 0)
3056 error_message = vsprint_msg (error_message, ": %s",
3057 strlen (name) + 2, name);
3058 else
3059 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
3060 strlen (name) + 22,
3061 name, (int) rel->r_addend);
3062
3063 if (!((*info->callbacks->reloc_dangerous)
3064 (info, error_message, input_bfd, input_section,
3065 rel->r_offset)))
3066 return FALSE;
3067 }
3068 }
3069
3070 if (lit_table)
3071 free (lit_table);
3072
3073 input_section->reloc_done = TRUE;
3074
3075 return TRUE;
3076 }
3077
3078
3079 /* Finish up dynamic symbol handling. There's not much to do here since
3080 the PLT and GOT entries are all set up by relocate_section. */
3081
3082 static bfd_boolean
3083 elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
3084 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3085 struct elf_link_hash_entry *h,
3086 Elf_Internal_Sym *sym)
3087 {
3088 if (h->needs_plt && !h->def_regular)
3089 {
3090 /* Mark the symbol as undefined, rather than as defined in
3091 the .plt section. Leave the value alone. */
3092 sym->st_shndx = SHN_UNDEF;
3093 /* If the symbol is weak, we do need to clear the value.
3094 Otherwise, the PLT entry would provide a definition for
3095 the symbol even if the symbol wasn't defined anywhere,
3096 and so the symbol would never be NULL. */
3097 if (!h->ref_regular_nonweak)
3098 sym->st_value = 0;
3099 }
3100
3101 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3102 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
3103 || h == elf_hash_table (info)->hgot)
3104 sym->st_shndx = SHN_ABS;
3105
3106 return TRUE;
3107 }
3108
3109
3110 /* Combine adjacent literal table entries in the output. Adjacent
3111 entries within each input section may have been removed during
3112 relaxation, but we repeat the process here, even though it's too late
3113 to shrink the output section, because it's important to minimize the
3114 number of literal table entries to reduce the start-up work for the
3115 runtime linker. Returns the number of remaining table entries or -1
3116 on error. */
3117
3118 static int
3119 elf_xtensa_combine_prop_entries (bfd *output_bfd,
3120 asection *sxtlit,
3121 asection *sgotloc)
3122 {
3123 bfd_byte *contents;
3124 property_table_entry *table;
3125 bfd_size_type section_size, sgotloc_size;
3126 bfd_vma offset;
3127 int n, m, num;
3128
3129 section_size = sxtlit->size;
3130 BFD_ASSERT (section_size % 8 == 0);
3131 num = section_size / 8;
3132
3133 sgotloc_size = sgotloc->size;
3134 if (sgotloc_size != section_size)
3135 {
3136 (*_bfd_error_handler)
3137 (_("internal inconsistency in size of .got.loc section"));
3138 return -1;
3139 }
3140
3141 table = bfd_malloc (num * sizeof (property_table_entry));
3142 if (table == 0)
3143 return -1;
3144
3145 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
3146 propagates to the output section, where it doesn't really apply and
3147 where it breaks the following call to bfd_malloc_and_get_section. */
3148 sxtlit->flags &= ~SEC_IN_MEMORY;
3149
3150 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
3151 {
3152 if (contents != 0)
3153 free (contents);
3154 free (table);
3155 return -1;
3156 }
3157
3158 /* There should never be any relocations left at this point, so this
3159 is quite a bit easier than what is done during relaxation. */
3160
3161 /* Copy the raw contents into a property table array and sort it. */
3162 offset = 0;
3163 for (n = 0; n < num; n++)
3164 {
3165 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
3166 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
3167 offset += 8;
3168 }
3169 qsort (table, num, sizeof (property_table_entry), property_table_compare);
3170
3171 for (n = 0; n < num; n++)
3172 {
3173 bfd_boolean remove = FALSE;
3174
3175 if (table[n].size == 0)
3176 remove = TRUE;
3177 else if (n > 0 &&
3178 (table[n-1].address + table[n-1].size == table[n].address))
3179 {
3180 table[n-1].size += table[n].size;
3181 remove = TRUE;
3182 }
3183
3184 if (remove)
3185 {
3186 for (m = n; m < num - 1; m++)
3187 {
3188 table[m].address = table[m+1].address;
3189 table[m].size = table[m+1].size;
3190 }
3191
3192 n--;
3193 num--;
3194 }
3195 }
3196
3197 /* Copy the data back to the raw contents. */
3198 offset = 0;
3199 for (n = 0; n < num; n++)
3200 {
3201 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
3202 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
3203 offset += 8;
3204 }
3205
3206 /* Clear the removed bytes. */
3207 if ((bfd_size_type) (num * 8) < section_size)
3208 memset (&contents[num * 8], 0, section_size - num * 8);
3209
3210 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
3211 section_size))
3212 return -1;
3213
3214 /* Copy the contents to ".got.loc". */
3215 memcpy (sgotloc->contents, contents, section_size);
3216
3217 free (contents);
3218 free (table);
3219 return num;
3220 }
3221
3222
3223 /* Finish up the dynamic sections. */
3224
3225 static bfd_boolean
3226 elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
3227 struct bfd_link_info *info)
3228 {
3229 struct elf_xtensa_link_hash_table *htab;
3230 bfd *dynobj;
3231 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
3232 Elf32_External_Dyn *dyncon, *dynconend;
3233 int num_xtlit_entries = 0;
3234
3235 if (! elf_hash_table (info)->dynamic_sections_created)
3236 return TRUE;
3237
3238 htab = elf_xtensa_hash_table (info);
3239 dynobj = elf_hash_table (info)->dynobj;
3240 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3241 BFD_ASSERT (sdyn != NULL);
3242
3243 /* Set the first entry in the global offset table to the address of
3244 the dynamic section. */
3245 sgot = htab->sgot;
3246 if (sgot)
3247 {
3248 BFD_ASSERT (sgot->size == 4);
3249 if (sdyn == NULL)
3250 bfd_put_32 (output_bfd, 0, sgot->contents);
3251 else
3252 bfd_put_32 (output_bfd,
3253 sdyn->output_section->vma + sdyn->output_offset,
3254 sgot->contents);
3255 }
3256
3257 srelplt = htab->srelplt;
3258 if (srelplt && srelplt->size != 0)
3259 {
3260 asection *sgotplt, *srelgot, *spltlittbl;
3261 int chunk, plt_chunks, plt_entries;
3262 Elf_Internal_Rela irela;
3263 bfd_byte *loc;
3264 unsigned rtld_reloc;
3265
3266 srelgot = htab->srelgot;
3267 spltlittbl = htab->spltlittbl;
3268 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
3269
3270 /* Find the first XTENSA_RTLD relocation. Presumably the rest
3271 of them follow immediately after.... */
3272 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
3273 {
3274 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3275 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3276 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
3277 break;
3278 }
3279 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
3280
3281 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
3282 plt_chunks =
3283 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
3284
3285 for (chunk = 0; chunk < plt_chunks; chunk++)
3286 {
3287 int chunk_entries = 0;
3288
3289 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
3290 BFD_ASSERT (sgotplt != NULL);
3291
3292 /* Emit special RTLD relocations for the first two entries in
3293 each chunk of the .got.plt section. */
3294
3295 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3296 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3297 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3298 irela.r_offset = (sgotplt->output_section->vma
3299 + sgotplt->output_offset);
3300 irela.r_addend = 1; /* tell rtld to set value to resolver function */
3301 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3302 rtld_reloc += 1;
3303 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3304
3305 /* Next literal immediately follows the first. */
3306 loc += sizeof (Elf32_External_Rela);
3307 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3308 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3309 irela.r_offset = (sgotplt->output_section->vma
3310 + sgotplt->output_offset + 4);
3311 /* Tell rtld to set value to object's link map. */
3312 irela.r_addend = 2;
3313 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3314 rtld_reloc += 1;
3315 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3316
3317 /* Fill in the literal table. */
3318 if (chunk < plt_chunks - 1)
3319 chunk_entries = PLT_ENTRIES_PER_CHUNK;
3320 else
3321 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
3322
3323 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
3324 bfd_put_32 (output_bfd,
3325 sgotplt->output_section->vma + sgotplt->output_offset,
3326 spltlittbl->contents + (chunk * 8) + 0);
3327 bfd_put_32 (output_bfd,
3328 8 + (chunk_entries * 4),
3329 spltlittbl->contents + (chunk * 8) + 4);
3330 }
3331
3332 /* All the dynamic relocations have been emitted at this point.
3333 Make sure the relocation sections are the correct size. */
3334 if (srelgot->size != (sizeof (Elf32_External_Rela)
3335 * srelgot->reloc_count)
3336 || srelplt->size != (sizeof (Elf32_External_Rela)
3337 * srelplt->reloc_count))
3338 abort ();
3339
3340 /* The .xt.lit.plt section has just been modified. This must
3341 happen before the code below which combines adjacent literal
3342 table entries, and the .xt.lit.plt contents have to be forced to
3343 the output here. */
3344 if (! bfd_set_section_contents (output_bfd,
3345 spltlittbl->output_section,
3346 spltlittbl->contents,
3347 spltlittbl->output_offset,
3348 spltlittbl->size))
3349 return FALSE;
3350 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
3351 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
3352 }
3353
3354 /* Combine adjacent literal table entries. */
3355 BFD_ASSERT (! info->relocatable);
3356 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
3357 sgotloc = htab->sgotloc;
3358 BFD_ASSERT (sgotloc);
3359 if (sxtlit)
3360 {
3361 num_xtlit_entries =
3362 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
3363 if (num_xtlit_entries < 0)
3364 return FALSE;
3365 }
3366
3367 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3368 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
3369 for (; dyncon < dynconend; dyncon++)
3370 {
3371 Elf_Internal_Dyn dyn;
3372
3373 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3374
3375 switch (dyn.d_tag)
3376 {
3377 default:
3378 break;
3379
3380 case DT_XTENSA_GOT_LOC_SZ:
3381 dyn.d_un.d_val = num_xtlit_entries;
3382 break;
3383
3384 case DT_XTENSA_GOT_LOC_OFF:
3385 dyn.d_un.d_ptr = htab->sgotloc->output_section->vma;
3386 break;
3387
3388 case DT_PLTGOT:
3389 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
3390 break;
3391
3392 case DT_JMPREL:
3393 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
3394 break;
3395
3396 case DT_PLTRELSZ:
3397 dyn.d_un.d_val = htab->srelplt->output_section->size;
3398 break;
3399
3400 case DT_RELASZ:
3401 /* Adjust RELASZ to not include JMPREL. This matches what
3402 glibc expects and what is done for several other ELF
3403 targets (e.g., i386, alpha), but the "correct" behavior
3404 seems to be unresolved. Since the linker script arranges
3405 for .rela.plt to follow all other relocation sections, we
3406 don't have to worry about changing the DT_RELA entry. */
3407 if (htab->srelplt)
3408 dyn.d_un.d_val -= htab->srelplt->output_section->size;
3409 break;
3410 }
3411
3412 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3413 }
3414
3415 return TRUE;
3416 }
3417
3418 \f
3419 /* Functions for dealing with the e_flags field. */
3420
3421 /* Merge backend specific data from an object file to the output
3422 object file when linking. */
3423
3424 static bfd_boolean
3425 elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
3426 {
3427 unsigned out_mach, in_mach;
3428 flagword out_flag, in_flag;
3429
3430 /* Check if we have the same endianess. */
3431 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
3432 return FALSE;
3433
3434 /* Don't even pretend to support mixed-format linking. */
3435 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3436 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3437 return FALSE;
3438
3439 out_flag = elf_elfheader (obfd)->e_flags;
3440 in_flag = elf_elfheader (ibfd)->e_flags;
3441
3442 out_mach = out_flag & EF_XTENSA_MACH;
3443 in_mach = in_flag & EF_XTENSA_MACH;
3444 if (out_mach != in_mach)
3445 {
3446 (*_bfd_error_handler)
3447 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
3448 ibfd, out_mach, in_mach);
3449 bfd_set_error (bfd_error_wrong_format);
3450 return FALSE;
3451 }
3452
3453 if (! elf_flags_init (obfd))
3454 {
3455 elf_flags_init (obfd) = TRUE;
3456 elf_elfheader (obfd)->e_flags = in_flag;
3457
3458 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
3459 && bfd_get_arch_info (obfd)->the_default)
3460 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
3461 bfd_get_mach (ibfd));
3462
3463 return TRUE;
3464 }
3465
3466 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
3467 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
3468
3469 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
3470 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
3471
3472 return TRUE;
3473 }
3474
3475
3476 static bfd_boolean
3477 elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
3478 {
3479 BFD_ASSERT (!elf_flags_init (abfd)
3480 || elf_elfheader (abfd)->e_flags == flags);
3481
3482 elf_elfheader (abfd)->e_flags |= flags;
3483 elf_flags_init (abfd) = TRUE;
3484
3485 return TRUE;
3486 }
3487
3488
3489 static bfd_boolean
3490 elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
3491 {
3492 FILE *f = (FILE *) farg;
3493 flagword e_flags = elf_elfheader (abfd)->e_flags;
3494
3495 fprintf (f, "\nXtensa header:\n");
3496 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
3497 fprintf (f, "\nMachine = Base\n");
3498 else
3499 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
3500
3501 fprintf (f, "Insn tables = %s\n",
3502 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
3503
3504 fprintf (f, "Literal tables = %s\n",
3505 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
3506
3507 return _bfd_elf_print_private_bfd_data (abfd, farg);
3508 }
3509
3510
3511 /* Set the right machine number for an Xtensa ELF file. */
3512
3513 static bfd_boolean
3514 elf_xtensa_object_p (bfd *abfd)
3515 {
3516 int mach;
3517 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
3518
3519 switch (arch)
3520 {
3521 case E_XTENSA_MACH:
3522 mach = bfd_mach_xtensa;
3523 break;
3524 default:
3525 return FALSE;
3526 }
3527
3528 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
3529 return TRUE;
3530 }
3531
3532
3533 /* The final processing done just before writing out an Xtensa ELF object
3534 file. This gets the Xtensa architecture right based on the machine
3535 number. */
3536
3537 static void
3538 elf_xtensa_final_write_processing (bfd *abfd,
3539 bfd_boolean linker ATTRIBUTE_UNUSED)
3540 {
3541 int mach;
3542 unsigned long val;
3543
3544 switch (mach = bfd_get_mach (abfd))
3545 {
3546 case bfd_mach_xtensa:
3547 val = E_XTENSA_MACH;
3548 break;
3549 default:
3550 return;
3551 }
3552
3553 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
3554 elf_elfheader (abfd)->e_flags |= val;
3555 }
3556
3557
3558 static enum elf_reloc_type_class
3559 elf_xtensa_reloc_type_class (const Elf_Internal_Rela *rela)
3560 {
3561 switch ((int) ELF32_R_TYPE (rela->r_info))
3562 {
3563 case R_XTENSA_RELATIVE:
3564 return reloc_class_relative;
3565 case R_XTENSA_JMP_SLOT:
3566 return reloc_class_plt;
3567 default:
3568 return reloc_class_normal;
3569 }
3570 }
3571
3572 \f
3573 static bfd_boolean
3574 elf_xtensa_discard_info_for_section (bfd *abfd,
3575 struct elf_reloc_cookie *cookie,
3576 struct bfd_link_info *info,
3577 asection *sec)
3578 {
3579 bfd_byte *contents;
3580 bfd_vma offset, actual_offset;
3581 bfd_size_type removed_bytes = 0;
3582 bfd_size_type entry_size;
3583
3584 if (sec->output_section
3585 && bfd_is_abs_section (sec->output_section))
3586 return FALSE;
3587
3588 if (xtensa_is_proptable_section (sec))
3589 entry_size = 12;
3590 else
3591 entry_size = 8;
3592
3593 if (sec->size == 0 || sec->size % entry_size != 0)
3594 return FALSE;
3595
3596 contents = retrieve_contents (abfd, sec, info->keep_memory);
3597 if (!contents)
3598 return FALSE;
3599
3600 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
3601 if (!cookie->rels)
3602 {
3603 release_contents (sec, contents);
3604 return FALSE;
3605 }
3606
3607 /* Sort the relocations. They should already be in order when
3608 relaxation is enabled, but it might not be. */
3609 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
3610 internal_reloc_compare);
3611
3612 cookie->rel = cookie->rels;
3613 cookie->relend = cookie->rels + sec->reloc_count;
3614
3615 for (offset = 0; offset < sec->size; offset += entry_size)
3616 {
3617 actual_offset = offset - removed_bytes;
3618
3619 /* The ...symbol_deleted_p function will skip over relocs but it
3620 won't adjust their offsets, so do that here. */
3621 while (cookie->rel < cookie->relend
3622 && cookie->rel->r_offset < offset)
3623 {
3624 cookie->rel->r_offset -= removed_bytes;
3625 cookie->rel++;
3626 }
3627
3628 while (cookie->rel < cookie->relend
3629 && cookie->rel->r_offset == offset)
3630 {
3631 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
3632 {
3633 /* Remove the table entry. (If the reloc type is NONE, then
3634 the entry has already been merged with another and deleted
3635 during relaxation.) */
3636 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
3637 {
3638 /* Shift the contents up. */
3639 if (offset + entry_size < sec->size)
3640 memmove (&contents[actual_offset],
3641 &contents[actual_offset + entry_size],
3642 sec->size - offset - entry_size);
3643 removed_bytes += entry_size;
3644 }
3645
3646 /* Remove this relocation. */
3647 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3648 }
3649
3650 /* Adjust the relocation offset for previous removals. This
3651 should not be done before calling ...symbol_deleted_p
3652 because it might mess up the offset comparisons there.
3653 Make sure the offset doesn't underflow in the case where
3654 the first entry is removed. */
3655 if (cookie->rel->r_offset >= removed_bytes)
3656 cookie->rel->r_offset -= removed_bytes;
3657 else
3658 cookie->rel->r_offset = 0;
3659
3660 cookie->rel++;
3661 }
3662 }
3663
3664 if (removed_bytes != 0)
3665 {
3666 /* Adjust any remaining relocs (shouldn't be any). */
3667 for (; cookie->rel < cookie->relend; cookie->rel++)
3668 {
3669 if (cookie->rel->r_offset >= removed_bytes)
3670 cookie->rel->r_offset -= removed_bytes;
3671 else
3672 cookie->rel->r_offset = 0;
3673 }
3674
3675 /* Clear the removed bytes. */
3676 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
3677
3678 pin_contents (sec, contents);
3679 pin_internal_relocs (sec, cookie->rels);
3680
3681 /* Shrink size. */
3682 if (sec->rawsize == 0)
3683 sec->rawsize = sec->size;
3684 sec->size -= removed_bytes;
3685
3686 if (xtensa_is_littable_section (sec))
3687 {
3688 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
3689 if (sgotloc)
3690 sgotloc->size -= removed_bytes;
3691 }
3692 }
3693 else
3694 {
3695 release_contents (sec, contents);
3696 release_internal_relocs (sec, cookie->rels);
3697 }
3698
3699 return (removed_bytes != 0);
3700 }
3701
3702
3703 static bfd_boolean
3704 elf_xtensa_discard_info (bfd *abfd,
3705 struct elf_reloc_cookie *cookie,
3706 struct bfd_link_info *info)
3707 {
3708 asection *sec;
3709 bfd_boolean changed = FALSE;
3710
3711 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3712 {
3713 if (xtensa_is_property_section (sec))
3714 {
3715 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
3716 changed = TRUE;
3717 }
3718 }
3719
3720 return changed;
3721 }
3722
3723
3724 static bfd_boolean
3725 elf_xtensa_ignore_discarded_relocs (asection *sec)
3726 {
3727 return xtensa_is_property_section (sec);
3728 }
3729
3730
3731 static unsigned int
3732 elf_xtensa_action_discarded (asection *sec)
3733 {
3734 if (strcmp (".xt_except_table", sec->name) == 0)
3735 return 0;
3736
3737 if (strcmp (".xt_except_desc", sec->name) == 0)
3738 return 0;
3739
3740 return _bfd_elf_default_action_discarded (sec);
3741 }
3742
3743 \f
3744 /* Support for core dump NOTE sections. */
3745
3746 static bfd_boolean
3747 elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
3748 {
3749 int offset;
3750 unsigned int size;
3751
3752 /* The size for Xtensa is variable, so don't try to recognize the format
3753 based on the size. Just assume this is GNU/Linux. */
3754
3755 /* pr_cursig */
3756 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
3757
3758 /* pr_pid */
3759 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
3760
3761 /* pr_reg */
3762 offset = 72;
3763 size = note->descsz - offset - 4;
3764
3765 /* Make a ".reg/999" section. */
3766 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
3767 size, note->descpos + offset);
3768 }
3769
3770
3771 static bfd_boolean
3772 elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3773 {
3774 switch (note->descsz)
3775 {
3776 default:
3777 return FALSE;
3778
3779 case 128: /* GNU/Linux elf_prpsinfo */
3780 elf_tdata (abfd)->core_program
3781 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3782 elf_tdata (abfd)->core_command
3783 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3784 }
3785
3786 /* Note that for some reason, a spurious space is tacked
3787 onto the end of the args in some (at least one anyway)
3788 implementations, so strip it off if it exists. */
3789
3790 {
3791 char *command = elf_tdata (abfd)->core_command;
3792 int n = strlen (command);
3793
3794 if (0 < n && command[n - 1] == ' ')
3795 command[n - 1] = '\0';
3796 }
3797
3798 return TRUE;
3799 }
3800
3801 \f
3802 /* Generic Xtensa configurability stuff. */
3803
3804 static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3805 static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3806 static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3807 static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3808 static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3809 static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3810 static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3811 static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3812
3813 static void
3814 init_call_opcodes (void)
3815 {
3816 if (callx0_op == XTENSA_UNDEFINED)
3817 {
3818 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3819 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3820 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3821 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3822 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3823 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3824 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3825 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3826 }
3827 }
3828
3829
3830 static bfd_boolean
3831 is_indirect_call_opcode (xtensa_opcode opcode)
3832 {
3833 init_call_opcodes ();
3834 return (opcode == callx0_op
3835 || opcode == callx4_op
3836 || opcode == callx8_op
3837 || opcode == callx12_op);
3838 }
3839
3840
3841 static bfd_boolean
3842 is_direct_call_opcode (xtensa_opcode opcode)
3843 {
3844 init_call_opcodes ();
3845 return (opcode == call0_op
3846 || opcode == call4_op
3847 || opcode == call8_op
3848 || opcode == call12_op);
3849 }
3850
3851
3852 static bfd_boolean
3853 is_windowed_call_opcode (xtensa_opcode opcode)
3854 {
3855 init_call_opcodes ();
3856 return (opcode == call4_op
3857 || opcode == call8_op
3858 || opcode == call12_op
3859 || opcode == callx4_op
3860 || opcode == callx8_op
3861 || opcode == callx12_op);
3862 }
3863
3864
3865 static bfd_boolean
3866 get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst)
3867 {
3868 unsigned dst = (unsigned) -1;
3869
3870 init_call_opcodes ();
3871 if (opcode == callx0_op)
3872 dst = 0;
3873 else if (opcode == callx4_op)
3874 dst = 4;
3875 else if (opcode == callx8_op)
3876 dst = 8;
3877 else if (opcode == callx12_op)
3878 dst = 12;
3879
3880 if (dst == (unsigned) -1)
3881 return FALSE;
3882
3883 *pdst = dst;
3884 return TRUE;
3885 }
3886
3887
3888 static xtensa_opcode
3889 get_const16_opcode (void)
3890 {
3891 static bfd_boolean done_lookup = FALSE;
3892 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3893 if (!done_lookup)
3894 {
3895 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3896 done_lookup = TRUE;
3897 }
3898 return const16_opcode;
3899 }
3900
3901
3902 static xtensa_opcode
3903 get_l32r_opcode (void)
3904 {
3905 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
3906 static bfd_boolean done_lookup = FALSE;
3907
3908 if (!done_lookup)
3909 {
3910 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
3911 done_lookup = TRUE;
3912 }
3913 return l32r_opcode;
3914 }
3915
3916
3917 static bfd_vma
3918 l32r_offset (bfd_vma addr, bfd_vma pc)
3919 {
3920 bfd_vma offset;
3921
3922 offset = addr - ((pc+3) & -4);
3923 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3924 offset = (signed int) offset >> 2;
3925 BFD_ASSERT ((signed int) offset >> 16 == -1);
3926 return offset;
3927 }
3928
3929
3930 static int
3931 get_relocation_opnd (xtensa_opcode opcode, int r_type)
3932 {
3933 xtensa_isa isa = xtensa_default_isa;
3934 int last_immed, last_opnd, opi;
3935
3936 if (opcode == XTENSA_UNDEFINED)
3937 return XTENSA_UNDEFINED;
3938
3939 /* Find the last visible PC-relative immediate operand for the opcode.
3940 If there are no PC-relative immediates, then choose the last visible
3941 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3942 last_immed = XTENSA_UNDEFINED;
3943 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3944 for (opi = last_opnd - 1; opi >= 0; opi--)
3945 {
3946 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3947 continue;
3948 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3949 {
3950 last_immed = opi;
3951 break;
3952 }
3953 if (last_immed == XTENSA_UNDEFINED
3954 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3955 last_immed = opi;
3956 }
3957 if (last_immed < 0)
3958 return XTENSA_UNDEFINED;
3959
3960 /* If the operand number was specified in an old-style relocation,
3961 check for consistency with the operand computed above. */
3962 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3963 {
3964 int reloc_opnd = r_type - R_XTENSA_OP0;
3965 if (reloc_opnd != last_immed)
3966 return XTENSA_UNDEFINED;
3967 }
3968
3969 return last_immed;
3970 }
3971
3972
3973 int
3974 get_relocation_slot (int r_type)
3975 {
3976 switch (r_type)
3977 {
3978 case R_XTENSA_OP0:
3979 case R_XTENSA_OP1:
3980 case R_XTENSA_OP2:
3981 return 0;
3982
3983 default:
3984 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3985 return r_type - R_XTENSA_SLOT0_OP;
3986 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3987 return r_type - R_XTENSA_SLOT0_ALT;
3988 break;
3989 }
3990
3991 return XTENSA_UNDEFINED;
3992 }
3993
3994
3995 /* Get the opcode for a relocation. */
3996
3997 static xtensa_opcode
3998 get_relocation_opcode (bfd *abfd,
3999 asection *sec,
4000 bfd_byte *contents,
4001 Elf_Internal_Rela *irel)
4002 {
4003 static xtensa_insnbuf ibuff = NULL;
4004 static xtensa_insnbuf sbuff = NULL;
4005 xtensa_isa isa = xtensa_default_isa;
4006 xtensa_format fmt;
4007 int slot;
4008
4009 if (contents == NULL)
4010 return XTENSA_UNDEFINED;
4011
4012 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
4013 return XTENSA_UNDEFINED;
4014
4015 if (ibuff == NULL)
4016 {
4017 ibuff = xtensa_insnbuf_alloc (isa);
4018 sbuff = xtensa_insnbuf_alloc (isa);
4019 }
4020
4021 /* Decode the instruction. */
4022 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
4023 sec->size - irel->r_offset);
4024 fmt = xtensa_format_decode (isa, ibuff);
4025 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
4026 if (slot == XTENSA_UNDEFINED)
4027 return XTENSA_UNDEFINED;
4028 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
4029 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
4030 }
4031
4032
4033 bfd_boolean
4034 is_l32r_relocation (bfd *abfd,
4035 asection *sec,
4036 bfd_byte *contents,
4037 Elf_Internal_Rela *irel)
4038 {
4039 xtensa_opcode opcode;
4040 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
4041 return FALSE;
4042 opcode = get_relocation_opcode (abfd, sec, contents, irel);
4043 return (opcode == get_l32r_opcode ());
4044 }
4045
4046
4047 static bfd_size_type
4048 get_asm_simplify_size (bfd_byte *contents,
4049 bfd_size_type content_len,
4050 bfd_size_type offset)
4051 {
4052 bfd_size_type insnlen, size = 0;
4053
4054 /* Decode the size of the next two instructions. */
4055 insnlen = insn_decode_len (contents, content_len, offset);
4056 if (insnlen == 0)
4057 return 0;
4058
4059 size += insnlen;
4060
4061 insnlen = insn_decode_len (contents, content_len, offset + size);
4062 if (insnlen == 0)
4063 return 0;
4064
4065 size += insnlen;
4066 return size;
4067 }
4068
4069
4070 bfd_boolean
4071 is_alt_relocation (int r_type)
4072 {
4073 return (r_type >= R_XTENSA_SLOT0_ALT
4074 && r_type <= R_XTENSA_SLOT14_ALT);
4075 }
4076
4077
4078 bfd_boolean
4079 is_operand_relocation (int r_type)
4080 {
4081 switch (r_type)
4082 {
4083 case R_XTENSA_OP0:
4084 case R_XTENSA_OP1:
4085 case R_XTENSA_OP2:
4086 return TRUE;
4087
4088 default:
4089 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4090 return TRUE;
4091 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4092 return TRUE;
4093 break;
4094 }
4095
4096 return FALSE;
4097 }
4098
4099
4100 #define MIN_INSN_LENGTH 2
4101
4102 /* Return 0 if it fails to decode. */
4103
4104 bfd_size_type
4105 insn_decode_len (bfd_byte *contents,
4106 bfd_size_type content_len,
4107 bfd_size_type offset)
4108 {
4109 int insn_len;
4110 xtensa_isa isa = xtensa_default_isa;
4111 xtensa_format fmt;
4112 static xtensa_insnbuf ibuff = NULL;
4113
4114 if (offset + MIN_INSN_LENGTH > content_len)
4115 return 0;
4116
4117 if (ibuff == NULL)
4118 ibuff = xtensa_insnbuf_alloc (isa);
4119 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
4120 content_len - offset);
4121 fmt = xtensa_format_decode (isa, ibuff);
4122 if (fmt == XTENSA_UNDEFINED)
4123 return 0;
4124 insn_len = xtensa_format_length (isa, fmt);
4125 if (insn_len == XTENSA_UNDEFINED)
4126 return 0;
4127 return insn_len;
4128 }
4129
4130
4131 /* Decode the opcode for a single slot instruction.
4132 Return 0 if it fails to decode or the instruction is multi-slot. */
4133
4134 xtensa_opcode
4135 insn_decode_opcode (bfd_byte *contents,
4136 bfd_size_type content_len,
4137 bfd_size_type offset,
4138 int slot)
4139 {
4140 xtensa_isa isa = xtensa_default_isa;
4141 xtensa_format fmt;
4142 static xtensa_insnbuf insnbuf = NULL;
4143 static xtensa_insnbuf slotbuf = NULL;
4144
4145 if (offset + MIN_INSN_LENGTH > content_len)
4146 return XTENSA_UNDEFINED;
4147
4148 if (insnbuf == NULL)
4149 {
4150 insnbuf = xtensa_insnbuf_alloc (isa);
4151 slotbuf = xtensa_insnbuf_alloc (isa);
4152 }
4153
4154 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4155 content_len - offset);
4156 fmt = xtensa_format_decode (isa, insnbuf);
4157 if (fmt == XTENSA_UNDEFINED)
4158 return XTENSA_UNDEFINED;
4159
4160 if (slot >= xtensa_format_num_slots (isa, fmt))
4161 return XTENSA_UNDEFINED;
4162
4163 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
4164 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
4165 }
4166
4167
4168 /* The offset is the offset in the contents.
4169 The address is the address of that offset. */
4170
4171 static bfd_boolean
4172 check_branch_target_aligned (bfd_byte *contents,
4173 bfd_size_type content_length,
4174 bfd_vma offset,
4175 bfd_vma address)
4176 {
4177 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
4178 if (insn_len == 0)
4179 return FALSE;
4180 return check_branch_target_aligned_address (address, insn_len);
4181 }
4182
4183
4184 static bfd_boolean
4185 check_loop_aligned (bfd_byte *contents,
4186 bfd_size_type content_length,
4187 bfd_vma offset,
4188 bfd_vma address)
4189 {
4190 bfd_size_type loop_len, insn_len;
4191 xtensa_opcode opcode;
4192
4193 opcode = insn_decode_opcode (contents, content_length, offset, 0);
4194 if (opcode == XTENSA_UNDEFINED
4195 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
4196 {
4197 BFD_ASSERT (FALSE);
4198 return FALSE;
4199 }
4200
4201 loop_len = insn_decode_len (contents, content_length, offset);
4202 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
4203 if (loop_len == 0 || insn_len == 0)
4204 {
4205 BFD_ASSERT (FALSE);
4206 return FALSE;
4207 }
4208
4209 return check_branch_target_aligned_address (address + loop_len, insn_len);
4210 }
4211
4212
4213 static bfd_boolean
4214 check_branch_target_aligned_address (bfd_vma addr, int len)
4215 {
4216 if (len == 8)
4217 return (addr % 8 == 0);
4218 return ((addr >> 2) == ((addr + len - 1) >> 2));
4219 }
4220
4221 \f
4222 /* Instruction widening and narrowing. */
4223
4224 /* When FLIX is available we need to access certain instructions only
4225 when they are 16-bit or 24-bit instructions. This table caches
4226 information about such instructions by walking through all the
4227 opcodes and finding the smallest single-slot format into which each
4228 can be encoded. */
4229
4230 static xtensa_format *op_single_fmt_table = NULL;
4231
4232
4233 static void
4234 init_op_single_format_table (void)
4235 {
4236 xtensa_isa isa = xtensa_default_isa;
4237 xtensa_insnbuf ibuf;
4238 xtensa_opcode opcode;
4239 xtensa_format fmt;
4240 int num_opcodes;
4241
4242 if (op_single_fmt_table)
4243 return;
4244
4245 ibuf = xtensa_insnbuf_alloc (isa);
4246 num_opcodes = xtensa_isa_num_opcodes (isa);
4247
4248 op_single_fmt_table = (xtensa_format *)
4249 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
4250 for (opcode = 0; opcode < num_opcodes; opcode++)
4251 {
4252 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
4253 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
4254 {
4255 if (xtensa_format_num_slots (isa, fmt) == 1
4256 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
4257 {
4258 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
4259 int fmt_length = xtensa_format_length (isa, fmt);
4260 if (old_fmt == XTENSA_UNDEFINED
4261 || fmt_length < xtensa_format_length (isa, old_fmt))
4262 op_single_fmt_table[opcode] = fmt;
4263 }
4264 }
4265 }
4266 xtensa_insnbuf_free (isa, ibuf);
4267 }
4268
4269
4270 static xtensa_format
4271 get_single_format (xtensa_opcode opcode)
4272 {
4273 init_op_single_format_table ();
4274 return op_single_fmt_table[opcode];
4275 }
4276
4277
4278 /* For the set of narrowable instructions we do NOT include the
4279 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
4280 involved during linker relaxation that may require these to
4281 re-expand in some conditions. Also, the narrowing "or" -> mov.n
4282 requires special case code to ensure it only works when op1 == op2. */
4283
4284 struct string_pair
4285 {
4286 const char *wide;
4287 const char *narrow;
4288 };
4289
4290 struct string_pair narrowable[] =
4291 {
4292 { "add", "add.n" },
4293 { "addi", "addi.n" },
4294 { "addmi", "addi.n" },
4295 { "l32i", "l32i.n" },
4296 { "movi", "movi.n" },
4297 { "ret", "ret.n" },
4298 { "retw", "retw.n" },
4299 { "s32i", "s32i.n" },
4300 { "or", "mov.n" } /* special case only when op1 == op2 */
4301 };
4302
4303 struct string_pair widenable[] =
4304 {
4305 { "add", "add.n" },
4306 { "addi", "addi.n" },
4307 { "addmi", "addi.n" },
4308 { "beqz", "beqz.n" },
4309 { "bnez", "bnez.n" },
4310 { "l32i", "l32i.n" },
4311 { "movi", "movi.n" },
4312 { "ret", "ret.n" },
4313 { "retw", "retw.n" },
4314 { "s32i", "s32i.n" },
4315 { "or", "mov.n" } /* special case only when op1 == op2 */
4316 };
4317
4318
4319 /* Check if an instruction can be "narrowed", i.e., changed from a standard
4320 3-byte instruction to a 2-byte "density" instruction. If it is valid,
4321 return the instruction buffer holding the narrow instruction. Otherwise,
4322 return 0. The set of valid narrowing are specified by a string table
4323 but require some special case operand checks in some cases. */
4324
4325 static xtensa_insnbuf
4326 can_narrow_instruction (xtensa_insnbuf slotbuf,
4327 xtensa_format fmt,
4328 xtensa_opcode opcode)
4329 {
4330 xtensa_isa isa = xtensa_default_isa;
4331 xtensa_format o_fmt;
4332 unsigned opi;
4333
4334 static xtensa_insnbuf o_insnbuf = NULL;
4335 static xtensa_insnbuf o_slotbuf = NULL;
4336
4337 if (o_insnbuf == NULL)
4338 {
4339 o_insnbuf = xtensa_insnbuf_alloc (isa);
4340 o_slotbuf = xtensa_insnbuf_alloc (isa);
4341 }
4342
4343 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
4344 {
4345 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
4346
4347 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
4348 {
4349 uint32 value, newval;
4350 int i, operand_count, o_operand_count;
4351 xtensa_opcode o_opcode;
4352
4353 /* Address does not matter in this case. We might need to
4354 fix it to handle branches/jumps. */
4355 bfd_vma self_address = 0;
4356
4357 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
4358 if (o_opcode == XTENSA_UNDEFINED)
4359 return 0;
4360 o_fmt = get_single_format (o_opcode);
4361 if (o_fmt == XTENSA_UNDEFINED)
4362 return 0;
4363
4364 if (xtensa_format_length (isa, fmt) != 3
4365 || xtensa_format_length (isa, o_fmt) != 2)
4366 return 0;
4367
4368 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4369 operand_count = xtensa_opcode_num_operands (isa, opcode);
4370 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4371
4372 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4373 return 0;
4374
4375 if (!is_or)
4376 {
4377 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4378 return 0;
4379 }
4380 else
4381 {
4382 uint32 rawval0, rawval1, rawval2;
4383
4384 if (o_operand_count + 1 != operand_count
4385 || xtensa_operand_get_field (isa, opcode, 0,
4386 fmt, 0, slotbuf, &rawval0) != 0
4387 || xtensa_operand_get_field (isa, opcode, 1,
4388 fmt, 0, slotbuf, &rawval1) != 0
4389 || xtensa_operand_get_field (isa, opcode, 2,
4390 fmt, 0, slotbuf, &rawval2) != 0
4391 || rawval1 != rawval2
4392 || rawval0 == rawval1 /* it is a nop */)
4393 return 0;
4394 }
4395
4396 for (i = 0; i < o_operand_count; ++i)
4397 {
4398 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
4399 slotbuf, &value)
4400 || xtensa_operand_decode (isa, opcode, i, &value))
4401 return 0;
4402
4403 /* PC-relative branches need adjustment, but
4404 the PC-rel operand will always have a relocation. */
4405 newval = value;
4406 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4407 self_address)
4408 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4409 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4410 o_slotbuf, newval))
4411 return 0;
4412 }
4413
4414 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4415 return 0;
4416
4417 return o_insnbuf;
4418 }
4419 }
4420 return 0;
4421 }
4422
4423
4424 /* Attempt to narrow an instruction. If the narrowing is valid, perform
4425 the action in-place directly into the contents and return TRUE. Otherwise,
4426 the return value is FALSE and the contents are not modified. */
4427
4428 static bfd_boolean
4429 narrow_instruction (bfd_byte *contents,
4430 bfd_size_type content_length,
4431 bfd_size_type offset)
4432 {
4433 xtensa_opcode opcode;
4434 bfd_size_type insn_len;
4435 xtensa_isa isa = xtensa_default_isa;
4436 xtensa_format fmt;
4437 xtensa_insnbuf o_insnbuf;
4438
4439 static xtensa_insnbuf insnbuf = NULL;
4440 static xtensa_insnbuf slotbuf = NULL;
4441
4442 if (insnbuf == NULL)
4443 {
4444 insnbuf = xtensa_insnbuf_alloc (isa);
4445 slotbuf = xtensa_insnbuf_alloc (isa);
4446 }
4447
4448 BFD_ASSERT (offset < content_length);
4449
4450 if (content_length < 2)
4451 return FALSE;
4452
4453 /* We will hand-code a few of these for a little while.
4454 These have all been specified in the assembler aleady. */
4455 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4456 content_length - offset);
4457 fmt = xtensa_format_decode (isa, insnbuf);
4458 if (xtensa_format_num_slots (isa, fmt) != 1)
4459 return FALSE;
4460
4461 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4462 return FALSE;
4463
4464 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4465 if (opcode == XTENSA_UNDEFINED)
4466 return FALSE;
4467 insn_len = xtensa_format_length (isa, fmt);
4468 if (insn_len > content_length)
4469 return FALSE;
4470
4471 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
4472 if (o_insnbuf)
4473 {
4474 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4475 content_length - offset);
4476 return TRUE;
4477 }
4478
4479 return FALSE;
4480 }
4481
4482
4483 /* Check if an instruction can be "widened", i.e., changed from a 2-byte
4484 "density" instruction to a standard 3-byte instruction. If it is valid,
4485 return the instruction buffer holding the wide instruction. Otherwise,
4486 return 0. The set of valid widenings are specified by a string table
4487 but require some special case operand checks in some cases. */
4488
4489 static xtensa_insnbuf
4490 can_widen_instruction (xtensa_insnbuf slotbuf,
4491 xtensa_format fmt,
4492 xtensa_opcode opcode)
4493 {
4494 xtensa_isa isa = xtensa_default_isa;
4495 xtensa_format o_fmt;
4496 unsigned opi;
4497
4498 static xtensa_insnbuf o_insnbuf = NULL;
4499 static xtensa_insnbuf o_slotbuf = NULL;
4500
4501 if (o_insnbuf == NULL)
4502 {
4503 o_insnbuf = xtensa_insnbuf_alloc (isa);
4504 o_slotbuf = xtensa_insnbuf_alloc (isa);
4505 }
4506
4507 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
4508 {
4509 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
4510 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
4511 || strcmp ("bnez", widenable[opi].wide) == 0);
4512
4513 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
4514 {
4515 uint32 value, newval;
4516 int i, operand_count, o_operand_count, check_operand_count;
4517 xtensa_opcode o_opcode;
4518
4519 /* Address does not matter in this case. We might need to fix it
4520 to handle branches/jumps. */
4521 bfd_vma self_address = 0;
4522
4523 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
4524 if (o_opcode == XTENSA_UNDEFINED)
4525 return 0;
4526 o_fmt = get_single_format (o_opcode);
4527 if (o_fmt == XTENSA_UNDEFINED)
4528 return 0;
4529
4530 if (xtensa_format_length (isa, fmt) != 2
4531 || xtensa_format_length (isa, o_fmt) != 3)
4532 return 0;
4533
4534 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4535 operand_count = xtensa_opcode_num_operands (isa, opcode);
4536 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4537 check_operand_count = o_operand_count;
4538
4539 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4540 return 0;
4541
4542 if (!is_or)
4543 {
4544 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4545 return 0;
4546 }
4547 else
4548 {
4549 uint32 rawval0, rawval1;
4550
4551 if (o_operand_count != operand_count + 1
4552 || xtensa_operand_get_field (isa, opcode, 0,
4553 fmt, 0, slotbuf, &rawval0) != 0
4554 || xtensa_operand_get_field (isa, opcode, 1,
4555 fmt, 0, slotbuf, &rawval1) != 0
4556 || rawval0 == rawval1 /* it is a nop */)
4557 return 0;
4558 }
4559 if (is_branch)
4560 check_operand_count--;
4561
4562 for (i = 0; i < check_operand_count; i++)
4563 {
4564 int new_i = i;
4565 if (is_or && i == o_operand_count - 1)
4566 new_i = i - 1;
4567 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
4568 slotbuf, &value)
4569 || xtensa_operand_decode (isa, opcode, new_i, &value))
4570 return 0;
4571
4572 /* PC-relative branches need adjustment, but
4573 the PC-rel operand will always have a relocation. */
4574 newval = value;
4575 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4576 self_address)
4577 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4578 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4579 o_slotbuf, newval))
4580 return 0;
4581 }
4582
4583 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4584 return 0;
4585
4586 return o_insnbuf;
4587 }
4588 }
4589 return 0;
4590 }
4591
4592
4593 /* Attempt to widen an instruction. If the widening is valid, perform
4594 the action in-place directly into the contents and return TRUE. Otherwise,
4595 the return value is FALSE and the contents are not modified. */
4596
4597 static bfd_boolean
4598 widen_instruction (bfd_byte *contents,
4599 bfd_size_type content_length,
4600 bfd_size_type offset)
4601 {
4602 xtensa_opcode opcode;
4603 bfd_size_type insn_len;
4604 xtensa_isa isa = xtensa_default_isa;
4605 xtensa_format fmt;
4606 xtensa_insnbuf o_insnbuf;
4607
4608 static xtensa_insnbuf insnbuf = NULL;
4609 static xtensa_insnbuf slotbuf = NULL;
4610
4611 if (insnbuf == NULL)
4612 {
4613 insnbuf = xtensa_insnbuf_alloc (isa);
4614 slotbuf = xtensa_insnbuf_alloc (isa);
4615 }
4616
4617 BFD_ASSERT (offset < content_length);
4618
4619 if (content_length < 2)
4620 return FALSE;
4621
4622 /* We will hand-code a few of these for a little while.
4623 These have all been specified in the assembler aleady. */
4624 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4625 content_length - offset);
4626 fmt = xtensa_format_decode (isa, insnbuf);
4627 if (xtensa_format_num_slots (isa, fmt) != 1)
4628 return FALSE;
4629
4630 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4631 return FALSE;
4632
4633 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4634 if (opcode == XTENSA_UNDEFINED)
4635 return FALSE;
4636 insn_len = xtensa_format_length (isa, fmt);
4637 if (insn_len > content_length)
4638 return FALSE;
4639
4640 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
4641 if (o_insnbuf)
4642 {
4643 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4644 content_length - offset);
4645 return TRUE;
4646 }
4647 return FALSE;
4648 }
4649
4650 \f
4651 /* Code for transforming CALLs at link-time. */
4652
4653 static bfd_reloc_status_type
4654 elf_xtensa_do_asm_simplify (bfd_byte *contents,
4655 bfd_vma address,
4656 bfd_vma content_length,
4657 char **error_message)
4658 {
4659 static xtensa_insnbuf insnbuf = NULL;
4660 static xtensa_insnbuf slotbuf = NULL;
4661 xtensa_format core_format = XTENSA_UNDEFINED;
4662 xtensa_opcode opcode;
4663 xtensa_opcode direct_call_opcode;
4664 xtensa_isa isa = xtensa_default_isa;
4665 bfd_byte *chbuf = contents + address;
4666 int opn;
4667
4668 if (insnbuf == NULL)
4669 {
4670 insnbuf = xtensa_insnbuf_alloc (isa);
4671 slotbuf = xtensa_insnbuf_alloc (isa);
4672 }
4673
4674 if (content_length < address)
4675 {
4676 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4677 return bfd_reloc_other;
4678 }
4679
4680 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
4681 direct_call_opcode = swap_callx_for_call_opcode (opcode);
4682 if (direct_call_opcode == XTENSA_UNDEFINED)
4683 {
4684 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4685 return bfd_reloc_other;
4686 }
4687
4688 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
4689 core_format = xtensa_format_lookup (isa, "x24");
4690 opcode = xtensa_opcode_lookup (isa, "or");
4691 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
4692 for (opn = 0; opn < 3; opn++)
4693 {
4694 uint32 regno = 1;
4695 xtensa_operand_encode (isa, opcode, opn, &regno);
4696 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
4697 slotbuf, regno);
4698 }
4699 xtensa_format_encode (isa, core_format, insnbuf);
4700 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4701 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
4702
4703 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
4704 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
4705 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
4706
4707 xtensa_format_encode (isa, core_format, insnbuf);
4708 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4709 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
4710 content_length - address - 3);
4711
4712 return bfd_reloc_ok;
4713 }
4714
4715
4716 static bfd_reloc_status_type
4717 contract_asm_expansion (bfd_byte *contents,
4718 bfd_vma content_length,
4719 Elf_Internal_Rela *irel,
4720 char **error_message)
4721 {
4722 bfd_reloc_status_type retval =
4723 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
4724 error_message);
4725
4726 if (retval != bfd_reloc_ok)
4727 return bfd_reloc_dangerous;
4728
4729 /* Update the irel->r_offset field so that the right immediate and
4730 the right instruction are modified during the relocation. */
4731 irel->r_offset += 3;
4732 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
4733 return bfd_reloc_ok;
4734 }
4735
4736
4737 static xtensa_opcode
4738 swap_callx_for_call_opcode (xtensa_opcode opcode)
4739 {
4740 init_call_opcodes ();
4741
4742 if (opcode == callx0_op) return call0_op;
4743 if (opcode == callx4_op) return call4_op;
4744 if (opcode == callx8_op) return call8_op;
4745 if (opcode == callx12_op) return call12_op;
4746
4747 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
4748 return XTENSA_UNDEFINED;
4749 }
4750
4751
4752 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
4753 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
4754 If not, return XTENSA_UNDEFINED. */
4755
4756 #define L32R_TARGET_REG_OPERAND 0
4757 #define CONST16_TARGET_REG_OPERAND 0
4758 #define CALLN_SOURCE_OPERAND 0
4759
4760 static xtensa_opcode
4761 get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
4762 {
4763 static xtensa_insnbuf insnbuf = NULL;
4764 static xtensa_insnbuf slotbuf = NULL;
4765 xtensa_format fmt;
4766 xtensa_opcode opcode;
4767 xtensa_isa isa = xtensa_default_isa;
4768 uint32 regno, const16_regno, call_regno;
4769 int offset = 0;
4770
4771 if (insnbuf == NULL)
4772 {
4773 insnbuf = xtensa_insnbuf_alloc (isa);
4774 slotbuf = xtensa_insnbuf_alloc (isa);
4775 }
4776
4777 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4778 fmt = xtensa_format_decode (isa, insnbuf);
4779 if (fmt == XTENSA_UNDEFINED
4780 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4781 return XTENSA_UNDEFINED;
4782
4783 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4784 if (opcode == XTENSA_UNDEFINED)
4785 return XTENSA_UNDEFINED;
4786
4787 if (opcode == get_l32r_opcode ())
4788 {
4789 if (p_uses_l32r)
4790 *p_uses_l32r = TRUE;
4791 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4792 fmt, 0, slotbuf, &regno)
4793 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4794 &regno))
4795 return XTENSA_UNDEFINED;
4796 }
4797 else if (opcode == get_const16_opcode ())
4798 {
4799 if (p_uses_l32r)
4800 *p_uses_l32r = FALSE;
4801 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4802 fmt, 0, slotbuf, &regno)
4803 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4804 &regno))
4805 return XTENSA_UNDEFINED;
4806
4807 /* Check that the next instruction is also CONST16. */
4808 offset += xtensa_format_length (isa, fmt);
4809 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4810 fmt = xtensa_format_decode (isa, insnbuf);
4811 if (fmt == XTENSA_UNDEFINED
4812 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4813 return XTENSA_UNDEFINED;
4814 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4815 if (opcode != get_const16_opcode ())
4816 return XTENSA_UNDEFINED;
4817
4818 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4819 fmt, 0, slotbuf, &const16_regno)
4820 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4821 &const16_regno)
4822 || const16_regno != regno)
4823 return XTENSA_UNDEFINED;
4824 }
4825 else
4826 return XTENSA_UNDEFINED;
4827
4828 /* Next instruction should be an CALLXn with operand 0 == regno. */
4829 offset += xtensa_format_length (isa, fmt);
4830 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4831 fmt = xtensa_format_decode (isa, insnbuf);
4832 if (fmt == XTENSA_UNDEFINED
4833 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4834 return XTENSA_UNDEFINED;
4835 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4836 if (opcode == XTENSA_UNDEFINED
4837 || !is_indirect_call_opcode (opcode))
4838 return XTENSA_UNDEFINED;
4839
4840 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4841 fmt, 0, slotbuf, &call_regno)
4842 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4843 &call_regno))
4844 return XTENSA_UNDEFINED;
4845
4846 if (call_regno != regno)
4847 return XTENSA_UNDEFINED;
4848
4849 return opcode;
4850 }
4851
4852 \f
4853 /* Data structures used during relaxation. */
4854
4855 /* r_reloc: relocation values. */
4856
4857 /* Through the relaxation process, we need to keep track of the values
4858 that will result from evaluating relocations. The standard ELF
4859 relocation structure is not sufficient for this purpose because we're
4860 operating on multiple input files at once, so we need to know which
4861 input file a relocation refers to. The r_reloc structure thus
4862 records both the input file (bfd) and ELF relocation.
4863
4864 For efficiency, an r_reloc also contains a "target_offset" field to
4865 cache the target-section-relative offset value that is represented by
4866 the relocation.
4867
4868 The r_reloc also contains a virtual offset that allows multiple
4869 inserted literals to be placed at the same "address" with
4870 different offsets. */
4871
4872 typedef struct r_reloc_struct r_reloc;
4873
4874 struct r_reloc_struct
4875 {
4876 bfd *abfd;
4877 Elf_Internal_Rela rela;
4878 bfd_vma target_offset;
4879 bfd_vma virtual_offset;
4880 };
4881
4882
4883 /* The r_reloc structure is included by value in literal_value, but not
4884 every literal_value has an associated relocation -- some are simple
4885 constants. In such cases, we set all the fields in the r_reloc
4886 struct to zero. The r_reloc_is_const function should be used to
4887 detect this case. */
4888
4889 static bfd_boolean
4890 r_reloc_is_const (const r_reloc *r_rel)
4891 {
4892 return (r_rel->abfd == NULL);
4893 }
4894
4895
4896 static bfd_vma
4897 r_reloc_get_target_offset (const r_reloc *r_rel)
4898 {
4899 bfd_vma target_offset;
4900 unsigned long r_symndx;
4901
4902 BFD_ASSERT (!r_reloc_is_const (r_rel));
4903 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4904 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4905 return (target_offset + r_rel->rela.r_addend);
4906 }
4907
4908
4909 static struct elf_link_hash_entry *
4910 r_reloc_get_hash_entry (const r_reloc *r_rel)
4911 {
4912 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4913 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4914 }
4915
4916
4917 static asection *
4918 r_reloc_get_section (const r_reloc *r_rel)
4919 {
4920 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4921 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4922 }
4923
4924
4925 static bfd_boolean
4926 r_reloc_is_defined (const r_reloc *r_rel)
4927 {
4928 asection *sec;
4929 if (r_rel == NULL)
4930 return FALSE;
4931
4932 sec = r_reloc_get_section (r_rel);
4933 if (sec == bfd_abs_section_ptr
4934 || sec == bfd_com_section_ptr
4935 || sec == bfd_und_section_ptr)
4936 return FALSE;
4937 return TRUE;
4938 }
4939
4940
4941 static void
4942 r_reloc_init (r_reloc *r_rel,
4943 bfd *abfd,
4944 Elf_Internal_Rela *irel,
4945 bfd_byte *contents,
4946 bfd_size_type content_length)
4947 {
4948 int r_type;
4949 reloc_howto_type *howto;
4950
4951 if (irel)
4952 {
4953 r_rel->rela = *irel;
4954 r_rel->abfd = abfd;
4955 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4956 r_rel->virtual_offset = 0;
4957 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4958 howto = &elf_howto_table[r_type];
4959 if (howto->partial_inplace)
4960 {
4961 bfd_vma inplace_val;
4962 BFD_ASSERT (r_rel->rela.r_offset < content_length);
4963
4964 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
4965 r_rel->target_offset += inplace_val;
4966 }
4967 }
4968 else
4969 memset (r_rel, 0, sizeof (r_reloc));
4970 }
4971
4972
4973 #if DEBUG
4974
4975 static void
4976 print_r_reloc (FILE *fp, const r_reloc *r_rel)
4977 {
4978 if (r_reloc_is_defined (r_rel))
4979 {
4980 asection *sec = r_reloc_get_section (r_rel);
4981 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
4982 }
4983 else if (r_reloc_get_hash_entry (r_rel))
4984 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
4985 else
4986 fprintf (fp, " ?? + ");
4987
4988 fprintf_vma (fp, r_rel->target_offset);
4989 if (r_rel->virtual_offset)
4990 {
4991 fprintf (fp, " + ");
4992 fprintf_vma (fp, r_rel->virtual_offset);
4993 }
4994
4995 fprintf (fp, ")");
4996 }
4997
4998 #endif /* DEBUG */
4999
5000 \f
5001 /* source_reloc: relocations that reference literals. */
5002
5003 /* To determine whether literals can be coalesced, we need to first
5004 record all the relocations that reference the literals. The
5005 source_reloc structure below is used for this purpose. The
5006 source_reloc entries are kept in a per-literal-section array, sorted
5007 by offset within the literal section (i.e., target offset).
5008
5009 The source_sec and r_rel.rela.r_offset fields identify the source of
5010 the relocation. The r_rel field records the relocation value, i.e.,
5011 the offset of the literal being referenced. The opnd field is needed
5012 to determine the range of the immediate field to which the relocation
5013 applies, so we can determine whether another literal with the same
5014 value is within range. The is_null field is true when the relocation
5015 is being removed (e.g., when an L32R is being removed due to a CALLX
5016 that is converted to a direct CALL). */
5017
5018 typedef struct source_reloc_struct source_reloc;
5019
5020 struct source_reloc_struct
5021 {
5022 asection *source_sec;
5023 r_reloc r_rel;
5024 xtensa_opcode opcode;
5025 int opnd;
5026 bfd_boolean is_null;
5027 bfd_boolean is_abs_literal;
5028 };
5029
5030
5031 static void
5032 init_source_reloc (source_reloc *reloc,
5033 asection *source_sec,
5034 const r_reloc *r_rel,
5035 xtensa_opcode opcode,
5036 int opnd,
5037 bfd_boolean is_abs_literal)
5038 {
5039 reloc->source_sec = source_sec;
5040 reloc->r_rel = *r_rel;
5041 reloc->opcode = opcode;
5042 reloc->opnd = opnd;
5043 reloc->is_null = FALSE;
5044 reloc->is_abs_literal = is_abs_literal;
5045 }
5046
5047
5048 /* Find the source_reloc for a particular source offset and relocation
5049 type. Note that the array is sorted by _target_ offset, so this is
5050 just a linear search. */
5051
5052 static source_reloc *
5053 find_source_reloc (source_reloc *src_relocs,
5054 int src_count,
5055 asection *sec,
5056 Elf_Internal_Rela *irel)
5057 {
5058 int i;
5059
5060 for (i = 0; i < src_count; i++)
5061 {
5062 if (src_relocs[i].source_sec == sec
5063 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
5064 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
5065 == ELF32_R_TYPE (irel->r_info)))
5066 return &src_relocs[i];
5067 }
5068
5069 return NULL;
5070 }
5071
5072
5073 static int
5074 source_reloc_compare (const void *ap, const void *bp)
5075 {
5076 const source_reloc *a = (const source_reloc *) ap;
5077 const source_reloc *b = (const source_reloc *) bp;
5078
5079 if (a->r_rel.target_offset != b->r_rel.target_offset)
5080 return (a->r_rel.target_offset - b->r_rel.target_offset);
5081
5082 /* We don't need to sort on these criteria for correctness,
5083 but enforcing a more strict ordering prevents unstable qsort
5084 from behaving differently with different implementations.
5085 Without the code below we get correct but different results
5086 on Solaris 2.7 and 2.8. We would like to always produce the
5087 same results no matter the host. */
5088
5089 if ((!a->is_null) - (!b->is_null))
5090 return ((!a->is_null) - (!b->is_null));
5091 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
5092 }
5093
5094 \f
5095 /* Literal values and value hash tables. */
5096
5097 /* Literals with the same value can be coalesced. The literal_value
5098 structure records the value of a literal: the "r_rel" field holds the
5099 information from the relocation on the literal (if there is one) and
5100 the "value" field holds the contents of the literal word itself.
5101
5102 The value_map structure records a literal value along with the
5103 location of a literal holding that value. The value_map hash table
5104 is indexed by the literal value, so that we can quickly check if a
5105 particular literal value has been seen before and is thus a candidate
5106 for coalescing. */
5107
5108 typedef struct literal_value_struct literal_value;
5109 typedef struct value_map_struct value_map;
5110 typedef struct value_map_hash_table_struct value_map_hash_table;
5111
5112 struct literal_value_struct
5113 {
5114 r_reloc r_rel;
5115 unsigned long value;
5116 bfd_boolean is_abs_literal;
5117 };
5118
5119 struct value_map_struct
5120 {
5121 literal_value val; /* The literal value. */
5122 r_reloc loc; /* Location of the literal. */
5123 value_map *next;
5124 };
5125
5126 struct value_map_hash_table_struct
5127 {
5128 unsigned bucket_count;
5129 value_map **buckets;
5130 unsigned count;
5131 bfd_boolean has_last_loc;
5132 r_reloc last_loc;
5133 };
5134
5135
5136 static void
5137 init_literal_value (literal_value *lit,
5138 const r_reloc *r_rel,
5139 unsigned long value,
5140 bfd_boolean is_abs_literal)
5141 {
5142 lit->r_rel = *r_rel;
5143 lit->value = value;
5144 lit->is_abs_literal = is_abs_literal;
5145 }
5146
5147
5148 static bfd_boolean
5149 literal_value_equal (const literal_value *src1,
5150 const literal_value *src2,
5151 bfd_boolean final_static_link)
5152 {
5153 struct elf_link_hash_entry *h1, *h2;
5154
5155 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
5156 return FALSE;
5157
5158 if (r_reloc_is_const (&src1->r_rel))
5159 return (src1->value == src2->value);
5160
5161 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
5162 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
5163 return FALSE;
5164
5165 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
5166 return FALSE;
5167
5168 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
5169 return FALSE;
5170
5171 if (src1->value != src2->value)
5172 return FALSE;
5173
5174 /* Now check for the same section (if defined) or the same elf_hash
5175 (if undefined or weak). */
5176 h1 = r_reloc_get_hash_entry (&src1->r_rel);
5177 h2 = r_reloc_get_hash_entry (&src2->r_rel);
5178 if (r_reloc_is_defined (&src1->r_rel)
5179 && (final_static_link
5180 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
5181 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
5182 {
5183 if (r_reloc_get_section (&src1->r_rel)
5184 != r_reloc_get_section (&src2->r_rel))
5185 return FALSE;
5186 }
5187 else
5188 {
5189 /* Require that the hash entries (i.e., symbols) be identical. */
5190 if (h1 != h2 || h1 == 0)
5191 return FALSE;
5192 }
5193
5194 if (src1->is_abs_literal != src2->is_abs_literal)
5195 return FALSE;
5196
5197 return TRUE;
5198 }
5199
5200
5201 /* Must be power of 2. */
5202 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
5203
5204 static value_map_hash_table *
5205 value_map_hash_table_init (void)
5206 {
5207 value_map_hash_table *values;
5208
5209 values = (value_map_hash_table *)
5210 bfd_zmalloc (sizeof (value_map_hash_table));
5211 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
5212 values->count = 0;
5213 values->buckets = (value_map **)
5214 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
5215 if (values->buckets == NULL)
5216 {
5217 free (values);
5218 return NULL;
5219 }
5220 values->has_last_loc = FALSE;
5221
5222 return values;
5223 }
5224
5225
5226 static void
5227 value_map_hash_table_delete (value_map_hash_table *table)
5228 {
5229 free (table->buckets);
5230 free (table);
5231 }
5232
5233
5234 static unsigned
5235 hash_bfd_vma (bfd_vma val)
5236 {
5237 return (val >> 2) + (val >> 10);
5238 }
5239
5240
5241 static unsigned
5242 literal_value_hash (const literal_value *src)
5243 {
5244 unsigned hash_val;
5245
5246 hash_val = hash_bfd_vma (src->value);
5247 if (!r_reloc_is_const (&src->r_rel))
5248 {
5249 void *sec_or_hash;
5250
5251 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
5252 hash_val += hash_bfd_vma (src->r_rel.target_offset);
5253 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
5254
5255 /* Now check for the same section and the same elf_hash. */
5256 if (r_reloc_is_defined (&src->r_rel))
5257 sec_or_hash = r_reloc_get_section (&src->r_rel);
5258 else
5259 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
5260 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
5261 }
5262 return hash_val;
5263 }
5264
5265
5266 /* Check if the specified literal_value has been seen before. */
5267
5268 static value_map *
5269 value_map_get_cached_value (value_map_hash_table *map,
5270 const literal_value *val,
5271 bfd_boolean final_static_link)
5272 {
5273 value_map *map_e;
5274 value_map *bucket;
5275 unsigned idx;
5276
5277 idx = literal_value_hash (val);
5278 idx = idx & (map->bucket_count - 1);
5279 bucket = map->buckets[idx];
5280 for (map_e = bucket; map_e; map_e = map_e->next)
5281 {
5282 if (literal_value_equal (&map_e->val, val, final_static_link))
5283 return map_e;
5284 }
5285 return NULL;
5286 }
5287
5288
5289 /* Record a new literal value. It is illegal to call this if VALUE
5290 already has an entry here. */
5291
5292 static value_map *
5293 add_value_map (value_map_hash_table *map,
5294 const literal_value *val,
5295 const r_reloc *loc,
5296 bfd_boolean final_static_link)
5297 {
5298 value_map **bucket_p;
5299 unsigned idx;
5300
5301 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
5302 if (val_e == NULL)
5303 {
5304 bfd_set_error (bfd_error_no_memory);
5305 return NULL;
5306 }
5307
5308 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
5309 val_e->val = *val;
5310 val_e->loc = *loc;
5311
5312 idx = literal_value_hash (val);
5313 idx = idx & (map->bucket_count - 1);
5314 bucket_p = &map->buckets[idx];
5315
5316 val_e->next = *bucket_p;
5317 *bucket_p = val_e;
5318 map->count++;
5319 /* FIXME: Consider resizing the hash table if we get too many entries. */
5320
5321 return val_e;
5322 }
5323
5324 \f
5325 /* Lists of text actions (ta_) for narrowing, widening, longcall
5326 conversion, space fill, code & literal removal, etc. */
5327
5328 /* The following text actions are generated:
5329
5330 "ta_remove_insn" remove an instruction or instructions
5331 "ta_remove_longcall" convert longcall to call
5332 "ta_convert_longcall" convert longcall to nop/call
5333 "ta_narrow_insn" narrow a wide instruction
5334 "ta_widen" widen a narrow instruction
5335 "ta_fill" add fill or remove fill
5336 removed < 0 is a fill; branches to the fill address will be
5337 changed to address + fill size (e.g., address - removed)
5338 removed >= 0 branches to the fill address will stay unchanged
5339 "ta_remove_literal" remove a literal; this action is
5340 indicated when a literal is removed
5341 or replaced.
5342 "ta_add_literal" insert a new literal; this action is
5343 indicated when a literal has been moved.
5344 It may use a virtual_offset because
5345 multiple literals can be placed at the
5346 same location.
5347
5348 For each of these text actions, we also record the number of bytes
5349 removed by performing the text action. In the case of a "ta_widen"
5350 or a "ta_fill" that adds space, the removed_bytes will be negative. */
5351
5352 typedef struct text_action_struct text_action;
5353 typedef struct text_action_list_struct text_action_list;
5354 typedef enum text_action_enum_t text_action_t;
5355
5356 enum text_action_enum_t
5357 {
5358 ta_none,
5359 ta_remove_insn, /* removed = -size */
5360 ta_remove_longcall, /* removed = -size */
5361 ta_convert_longcall, /* removed = 0 */
5362 ta_narrow_insn, /* removed = -1 */
5363 ta_widen_insn, /* removed = +1 */
5364 ta_fill, /* removed = +size */
5365 ta_remove_literal,
5366 ta_add_literal
5367 };
5368
5369
5370 /* Structure for a text action record. */
5371 struct text_action_struct
5372 {
5373 text_action_t action;
5374 asection *sec; /* Optional */
5375 bfd_vma offset;
5376 bfd_vma virtual_offset; /* Zero except for adding literals. */
5377 int removed_bytes;
5378 literal_value value; /* Only valid when adding literals. */
5379
5380 text_action *next;
5381 };
5382
5383
5384 /* List of all of the actions taken on a text section. */
5385 struct text_action_list_struct
5386 {
5387 text_action *head;
5388 };
5389
5390
5391 static text_action *
5392 find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
5393 {
5394 text_action **m_p;
5395
5396 /* It is not necessary to fill at the end of a section. */
5397 if (sec->size == offset)
5398 return NULL;
5399
5400 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
5401 {
5402 text_action *t = *m_p;
5403 /* When the action is another fill at the same address,
5404 just increase the size. */
5405 if (t->offset == offset && t->action == ta_fill)
5406 return t;
5407 }
5408 return NULL;
5409 }
5410
5411
5412 static int
5413 compute_removed_action_diff (const text_action *ta,
5414 asection *sec,
5415 bfd_vma offset,
5416 int removed,
5417 int removable_space)
5418 {
5419 int new_removed;
5420 int current_removed = 0;
5421
5422 if (ta)
5423 current_removed = ta->removed_bytes;
5424
5425 BFD_ASSERT (ta == NULL || ta->offset == offset);
5426 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
5427
5428 /* It is not necessary to fill at the end of a section. Clean this up. */
5429 if (sec->size == offset)
5430 new_removed = removable_space - 0;
5431 else
5432 {
5433 int space;
5434 int added = -removed - current_removed;
5435 /* Ignore multiples of the section alignment. */
5436 added = ((1 << sec->alignment_power) - 1) & added;
5437 new_removed = (-added);
5438
5439 /* Modify for removable. */
5440 space = removable_space - new_removed;
5441 new_removed = (removable_space
5442 - (((1 << sec->alignment_power) - 1) & space));
5443 }
5444 return (new_removed - current_removed);
5445 }
5446
5447
5448 static void
5449 adjust_fill_action (text_action *ta, int fill_diff)
5450 {
5451 ta->removed_bytes += fill_diff;
5452 }
5453
5454
5455 /* Add a modification action to the text. For the case of adding or
5456 removing space, modify any current fill and assume that
5457 "unreachable_space" bytes can be freely contracted. Note that a
5458 negative removed value is a fill. */
5459
5460 static void
5461 text_action_add (text_action_list *l,
5462 text_action_t action,
5463 asection *sec,
5464 bfd_vma offset,
5465 int removed)
5466 {
5467 text_action **m_p;
5468 text_action *ta;
5469
5470 /* It is not necessary to fill at the end of a section. */
5471 if (action == ta_fill && sec->size == offset)
5472 return;
5473
5474 /* It is not necessary to fill 0 bytes. */
5475 if (action == ta_fill && removed == 0)
5476 return;
5477
5478 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
5479 {
5480 text_action *t = *m_p;
5481
5482 if (action == ta_fill)
5483 {
5484 /* When the action is another fill at the same address,
5485 just increase the size. */
5486 if (t->offset == offset && t->action == ta_fill)
5487 {
5488 t->removed_bytes += removed;
5489 return;
5490 }
5491 /* Fills need to happen before widens so that we don't
5492 insert fill bytes into the instruction stream. */
5493 if (t->offset == offset && t->action == ta_widen_insn)
5494 break;
5495 }
5496 }
5497
5498 /* Create a new record and fill it up. */
5499 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5500 ta->action = action;
5501 ta->sec = sec;
5502 ta->offset = offset;
5503 ta->removed_bytes = removed;
5504 ta->next = (*m_p);
5505 *m_p = ta;
5506 }
5507
5508
5509 static void
5510 text_action_add_literal (text_action_list *l,
5511 text_action_t action,
5512 const r_reloc *loc,
5513 const literal_value *value,
5514 int removed)
5515 {
5516 text_action **m_p;
5517 text_action *ta;
5518 asection *sec = r_reloc_get_section (loc);
5519 bfd_vma offset = loc->target_offset;
5520 bfd_vma virtual_offset = loc->virtual_offset;
5521
5522 BFD_ASSERT (action == ta_add_literal);
5523
5524 for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next)
5525 {
5526 if ((*m_p)->offset > offset
5527 && ((*m_p)->offset != offset
5528 || (*m_p)->virtual_offset > virtual_offset))
5529 break;
5530 }
5531
5532 /* Create a new record and fill it up. */
5533 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5534 ta->action = action;
5535 ta->sec = sec;
5536 ta->offset = offset;
5537 ta->virtual_offset = virtual_offset;
5538 ta->value = *value;
5539 ta->removed_bytes = removed;
5540 ta->next = (*m_p);
5541 *m_p = ta;
5542 }
5543
5544
5545 /* Find the total offset adjustment for the relaxations specified by
5546 text_actions, beginning from a particular starting action. This is
5547 typically used from offset_with_removed_text to search an entire list of
5548 actions, but it may also be called directly when adjusting adjacent offsets
5549 so that each search may begin where the previous one left off. */
5550
5551 static int
5552 removed_by_actions (text_action **p_start_action,
5553 bfd_vma offset,
5554 bfd_boolean before_fill)
5555 {
5556 text_action *r;
5557 int removed = 0;
5558
5559 r = *p_start_action;
5560 while (r)
5561 {
5562 if (r->offset > offset)
5563 break;
5564
5565 if (r->offset == offset
5566 && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
5567 break;
5568
5569 removed += r->removed_bytes;
5570
5571 r = r->next;
5572 }
5573
5574 *p_start_action = r;
5575 return removed;
5576 }
5577
5578
5579 static bfd_vma
5580 offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
5581 {
5582 text_action *r = action_list->head;
5583 return offset - removed_by_actions (&r, offset, FALSE);
5584 }
5585
5586
5587 static unsigned
5588 action_list_count (text_action_list *action_list)
5589 {
5590 text_action *r = action_list->head;
5591 unsigned count = 0;
5592 for (r = action_list->head; r != NULL; r = r->next)
5593 {
5594 count++;
5595 }
5596 return count;
5597 }
5598
5599
5600 /* The find_insn_action routine will only find non-fill actions. */
5601
5602 static text_action *
5603 find_insn_action (text_action_list *action_list, bfd_vma offset)
5604 {
5605 text_action *t;
5606 for (t = action_list->head; t; t = t->next)
5607 {
5608 if (t->offset == offset)
5609 {
5610 switch (t->action)
5611 {
5612 case ta_none:
5613 case ta_fill:
5614 break;
5615 case ta_remove_insn:
5616 case ta_remove_longcall:
5617 case ta_convert_longcall:
5618 case ta_narrow_insn:
5619 case ta_widen_insn:
5620 return t;
5621 case ta_remove_literal:
5622 case ta_add_literal:
5623 BFD_ASSERT (0);
5624 break;
5625 }
5626 }
5627 }
5628 return NULL;
5629 }
5630
5631
5632 #if DEBUG
5633
5634 static void
5635 print_action_list (FILE *fp, text_action_list *action_list)
5636 {
5637 text_action *r;
5638
5639 fprintf (fp, "Text Action\n");
5640 for (r = action_list->head; r != NULL; r = r->next)
5641 {
5642 const char *t = "unknown";
5643 switch (r->action)
5644 {
5645 case ta_remove_insn:
5646 t = "remove_insn"; break;
5647 case ta_remove_longcall:
5648 t = "remove_longcall"; break;
5649 case ta_convert_longcall:
5650 t = "convert_longcall"; break;
5651 case ta_narrow_insn:
5652 t = "narrow_insn"; break;
5653 case ta_widen_insn:
5654 t = "widen_insn"; break;
5655 case ta_fill:
5656 t = "fill"; break;
5657 case ta_none:
5658 t = "none"; break;
5659 case ta_remove_literal:
5660 t = "remove_literal"; break;
5661 case ta_add_literal:
5662 t = "add_literal"; break;
5663 }
5664
5665 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
5666 r->sec->owner->filename,
5667 r->sec->name, r->offset, t, r->removed_bytes);
5668 }
5669 }
5670
5671 #endif /* DEBUG */
5672
5673 \f
5674 /* Lists of literals being coalesced or removed. */
5675
5676 /* In the usual case, the literal identified by "from" is being
5677 coalesced with another literal identified by "to". If the literal is
5678 unused and is being removed altogether, "to.abfd" will be NULL.
5679 The removed_literal entries are kept on a per-section list, sorted
5680 by the "from" offset field. */
5681
5682 typedef struct removed_literal_struct removed_literal;
5683 typedef struct removed_literal_list_struct removed_literal_list;
5684
5685 struct removed_literal_struct
5686 {
5687 r_reloc from;
5688 r_reloc to;
5689 removed_literal *next;
5690 };
5691
5692 struct removed_literal_list_struct
5693 {
5694 removed_literal *head;
5695 removed_literal *tail;
5696 };
5697
5698
5699 /* Record that the literal at "from" is being removed. If "to" is not
5700 NULL, the "from" literal is being coalesced with the "to" literal. */
5701
5702 static void
5703 add_removed_literal (removed_literal_list *removed_list,
5704 const r_reloc *from,
5705 const r_reloc *to)
5706 {
5707 removed_literal *r, *new_r, *next_r;
5708
5709 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
5710
5711 new_r->from = *from;
5712 if (to)
5713 new_r->to = *to;
5714 else
5715 new_r->to.abfd = NULL;
5716 new_r->next = NULL;
5717
5718 r = removed_list->head;
5719 if (r == NULL)
5720 {
5721 removed_list->head = new_r;
5722 removed_list->tail = new_r;
5723 }
5724 /* Special check for common case of append. */
5725 else if (removed_list->tail->from.target_offset < from->target_offset)
5726 {
5727 removed_list->tail->next = new_r;
5728 removed_list->tail = new_r;
5729 }
5730 else
5731 {
5732 while (r->from.target_offset < from->target_offset && r->next)
5733 {
5734 r = r->next;
5735 }
5736 next_r = r->next;
5737 r->next = new_r;
5738 new_r->next = next_r;
5739 if (next_r == NULL)
5740 removed_list->tail = new_r;
5741 }
5742 }
5743
5744
5745 /* Check if the list of removed literals contains an entry for the
5746 given address. Return the entry if found. */
5747
5748 static removed_literal *
5749 find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
5750 {
5751 removed_literal *r = removed_list->head;
5752 while (r && r->from.target_offset < addr)
5753 r = r->next;
5754 if (r && r->from.target_offset == addr)
5755 return r;
5756 return NULL;
5757 }
5758
5759
5760 #if DEBUG
5761
5762 static void
5763 print_removed_literals (FILE *fp, removed_literal_list *removed_list)
5764 {
5765 removed_literal *r;
5766 r = removed_list->head;
5767 if (r)
5768 fprintf (fp, "Removed Literals\n");
5769 for (; r != NULL; r = r->next)
5770 {
5771 print_r_reloc (fp, &r->from);
5772 fprintf (fp, " => ");
5773 if (r->to.abfd == NULL)
5774 fprintf (fp, "REMOVED");
5775 else
5776 print_r_reloc (fp, &r->to);
5777 fprintf (fp, "\n");
5778 }
5779 }
5780
5781 #endif /* DEBUG */
5782
5783 \f
5784 /* Per-section data for relaxation. */
5785
5786 typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
5787
5788 struct xtensa_relax_info_struct
5789 {
5790 bfd_boolean is_relaxable_literal_section;
5791 bfd_boolean is_relaxable_asm_section;
5792 int visited; /* Number of times visited. */
5793
5794 source_reloc *src_relocs; /* Array[src_count]. */
5795 int src_count;
5796 int src_next; /* Next src_relocs entry to assign. */
5797
5798 removed_literal_list removed_list;
5799 text_action_list action_list;
5800
5801 reloc_bfd_fix *fix_list;
5802 reloc_bfd_fix *fix_array;
5803 unsigned fix_array_count;
5804
5805 /* Support for expanding the reloc array that is stored
5806 in the section structure. If the relocations have been
5807 reallocated, the newly allocated relocations will be referenced
5808 here along with the actual size allocated. The relocation
5809 count will always be found in the section structure. */
5810 Elf_Internal_Rela *allocated_relocs;
5811 unsigned relocs_count;
5812 unsigned allocated_relocs_count;
5813 };
5814
5815 struct elf_xtensa_section_data
5816 {
5817 struct bfd_elf_section_data elf;
5818 xtensa_relax_info relax_info;
5819 };
5820
5821
5822 static bfd_boolean
5823 elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
5824 {
5825 if (!sec->used_by_bfd)
5826 {
5827 struct elf_xtensa_section_data *sdata;
5828 bfd_size_type amt = sizeof (*sdata);
5829
5830 sdata = bfd_zalloc (abfd, amt);
5831 if (sdata == NULL)
5832 return FALSE;
5833 sec->used_by_bfd = sdata;
5834 }
5835
5836 return _bfd_elf_new_section_hook (abfd, sec);
5837 }
5838
5839
5840 static xtensa_relax_info *
5841 get_xtensa_relax_info (asection *sec)
5842 {
5843 struct elf_xtensa_section_data *section_data;
5844
5845 /* No info available if no section or if it is an output section. */
5846 if (!sec || sec == sec->output_section)
5847 return NULL;
5848
5849 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5850 return &section_data->relax_info;
5851 }
5852
5853
5854 static void
5855 init_xtensa_relax_info (asection *sec)
5856 {
5857 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5858
5859 relax_info->is_relaxable_literal_section = FALSE;
5860 relax_info->is_relaxable_asm_section = FALSE;
5861 relax_info->visited = 0;
5862
5863 relax_info->src_relocs = NULL;
5864 relax_info->src_count = 0;
5865 relax_info->src_next = 0;
5866
5867 relax_info->removed_list.head = NULL;
5868 relax_info->removed_list.tail = NULL;
5869
5870 relax_info->action_list.head = NULL;
5871
5872 relax_info->fix_list = NULL;
5873 relax_info->fix_array = NULL;
5874 relax_info->fix_array_count = 0;
5875
5876 relax_info->allocated_relocs = NULL;
5877 relax_info->relocs_count = 0;
5878 relax_info->allocated_relocs_count = 0;
5879 }
5880
5881 \f
5882 /* Coalescing literals may require a relocation to refer to a section in
5883 a different input file, but the standard relocation information
5884 cannot express that. Instead, the reloc_bfd_fix structures are used
5885 to "fix" the relocations that refer to sections in other input files.
5886 These structures are kept on per-section lists. The "src_type" field
5887 records the relocation type in case there are multiple relocations on
5888 the same location. FIXME: This is ugly; an alternative might be to
5889 add new symbols with the "owner" field to some other input file. */
5890
5891 struct reloc_bfd_fix_struct
5892 {
5893 asection *src_sec;
5894 bfd_vma src_offset;
5895 unsigned src_type; /* Relocation type. */
5896
5897 asection *target_sec;
5898 bfd_vma target_offset;
5899 bfd_boolean translated;
5900
5901 reloc_bfd_fix *next;
5902 };
5903
5904
5905 static reloc_bfd_fix *
5906 reloc_bfd_fix_init (asection *src_sec,
5907 bfd_vma src_offset,
5908 unsigned src_type,
5909 asection *target_sec,
5910 bfd_vma target_offset,
5911 bfd_boolean translated)
5912 {
5913 reloc_bfd_fix *fix;
5914
5915 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
5916 fix->src_sec = src_sec;
5917 fix->src_offset = src_offset;
5918 fix->src_type = src_type;
5919 fix->target_sec = target_sec;
5920 fix->target_offset = target_offset;
5921 fix->translated = translated;
5922
5923 return fix;
5924 }
5925
5926
5927 static void
5928 add_fix (asection *src_sec, reloc_bfd_fix *fix)
5929 {
5930 xtensa_relax_info *relax_info;
5931
5932 relax_info = get_xtensa_relax_info (src_sec);
5933 fix->next = relax_info->fix_list;
5934 relax_info->fix_list = fix;
5935 }
5936
5937
5938 static int
5939 fix_compare (const void *ap, const void *bp)
5940 {
5941 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
5942 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
5943
5944 if (a->src_offset != b->src_offset)
5945 return (a->src_offset - b->src_offset);
5946 return (a->src_type - b->src_type);
5947 }
5948
5949
5950 static void
5951 cache_fix_array (asection *sec)
5952 {
5953 unsigned i, count = 0;
5954 reloc_bfd_fix *r;
5955 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5956
5957 if (relax_info == NULL)
5958 return;
5959 if (relax_info->fix_list == NULL)
5960 return;
5961
5962 for (r = relax_info->fix_list; r != NULL; r = r->next)
5963 count++;
5964
5965 relax_info->fix_array =
5966 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
5967 relax_info->fix_array_count = count;
5968
5969 r = relax_info->fix_list;
5970 for (i = 0; i < count; i++, r = r->next)
5971 {
5972 relax_info->fix_array[count - 1 - i] = *r;
5973 relax_info->fix_array[count - 1 - i].next = NULL;
5974 }
5975
5976 qsort (relax_info->fix_array, relax_info->fix_array_count,
5977 sizeof (reloc_bfd_fix), fix_compare);
5978 }
5979
5980
5981 static reloc_bfd_fix *
5982 get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
5983 {
5984 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5985 reloc_bfd_fix *rv;
5986 reloc_bfd_fix key;
5987
5988 if (relax_info == NULL)
5989 return NULL;
5990 if (relax_info->fix_list == NULL)
5991 return NULL;
5992
5993 if (relax_info->fix_array == NULL)
5994 cache_fix_array (sec);
5995
5996 key.src_offset = offset;
5997 key.src_type = type;
5998 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
5999 sizeof (reloc_bfd_fix), fix_compare);
6000 return rv;
6001 }
6002
6003 \f
6004 /* Section caching. */
6005
6006 typedef struct section_cache_struct section_cache_t;
6007
6008 struct section_cache_struct
6009 {
6010 asection *sec;
6011
6012 bfd_byte *contents; /* Cache of the section contents. */
6013 bfd_size_type content_length;
6014
6015 property_table_entry *ptbl; /* Cache of the section property table. */
6016 unsigned pte_count;
6017
6018 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6019 unsigned reloc_count;
6020 };
6021
6022
6023 static void
6024 init_section_cache (section_cache_t *sec_cache)
6025 {
6026 memset (sec_cache, 0, sizeof (*sec_cache));
6027 }
6028
6029
6030 static void
6031 clear_section_cache (section_cache_t *sec_cache)
6032 {
6033 if (sec_cache->sec)
6034 {
6035 release_contents (sec_cache->sec, sec_cache->contents);
6036 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
6037 if (sec_cache->ptbl)
6038 free (sec_cache->ptbl);
6039 memset (sec_cache, 0, sizeof (sec_cache));
6040 }
6041 }
6042
6043
6044 static bfd_boolean
6045 section_cache_section (section_cache_t *sec_cache,
6046 asection *sec,
6047 struct bfd_link_info *link_info)
6048 {
6049 bfd *abfd;
6050 property_table_entry *prop_table = NULL;
6051 int ptblsize = 0;
6052 bfd_byte *contents = NULL;
6053 Elf_Internal_Rela *internal_relocs = NULL;
6054 bfd_size_type sec_size;
6055
6056 if (sec == NULL)
6057 return FALSE;
6058 if (sec == sec_cache->sec)
6059 return TRUE;
6060
6061 abfd = sec->owner;
6062 sec_size = bfd_get_section_limit (abfd, sec);
6063
6064 /* Get the contents. */
6065 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6066 if (contents == NULL && sec_size != 0)
6067 goto err;
6068
6069 /* Get the relocations. */
6070 internal_relocs = retrieve_internal_relocs (abfd, sec,
6071 link_info->keep_memory);
6072
6073 /* Get the entry table. */
6074 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6075 XTENSA_PROP_SEC_NAME, FALSE);
6076 if (ptblsize < 0)
6077 goto err;
6078
6079 /* Fill in the new section cache. */
6080 clear_section_cache (sec_cache);
6081 memset (sec_cache, 0, sizeof (sec_cache));
6082
6083 sec_cache->sec = sec;
6084 sec_cache->contents = contents;
6085 sec_cache->content_length = sec_size;
6086 sec_cache->relocs = internal_relocs;
6087 sec_cache->reloc_count = sec->reloc_count;
6088 sec_cache->pte_count = ptblsize;
6089 sec_cache->ptbl = prop_table;
6090
6091 return TRUE;
6092
6093 err:
6094 release_contents (sec, contents);
6095 release_internal_relocs (sec, internal_relocs);
6096 if (prop_table)
6097 free (prop_table);
6098 return FALSE;
6099 }
6100
6101 \f
6102 /* Extended basic blocks. */
6103
6104 /* An ebb_struct represents an Extended Basic Block. Within this
6105 range, we guarantee that all instructions are decodable, the
6106 property table entries are contiguous, and no property table
6107 specifies a segment that cannot have instructions moved. This
6108 structure contains caches of the contents, property table and
6109 relocations for the specified section for easy use. The range is
6110 specified by ranges of indices for the byte offset, property table
6111 offsets and relocation offsets. These must be consistent. */
6112
6113 typedef struct ebb_struct ebb_t;
6114
6115 struct ebb_struct
6116 {
6117 asection *sec;
6118
6119 bfd_byte *contents; /* Cache of the section contents. */
6120 bfd_size_type content_length;
6121
6122 property_table_entry *ptbl; /* Cache of the section property table. */
6123 unsigned pte_count;
6124
6125 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6126 unsigned reloc_count;
6127
6128 bfd_vma start_offset; /* Offset in section. */
6129 unsigned start_ptbl_idx; /* Offset in the property table. */
6130 unsigned start_reloc_idx; /* Offset in the relocations. */
6131
6132 bfd_vma end_offset;
6133 unsigned end_ptbl_idx;
6134 unsigned end_reloc_idx;
6135
6136 bfd_boolean ends_section; /* Is this the last ebb in a section? */
6137
6138 /* The unreachable property table at the end of this set of blocks;
6139 NULL if the end is not an unreachable block. */
6140 property_table_entry *ends_unreachable;
6141 };
6142
6143
6144 enum ebb_target_enum
6145 {
6146 EBB_NO_ALIGN = 0,
6147 EBB_DESIRE_TGT_ALIGN,
6148 EBB_REQUIRE_TGT_ALIGN,
6149 EBB_REQUIRE_LOOP_ALIGN,
6150 EBB_REQUIRE_ALIGN
6151 };
6152
6153
6154 /* proposed_action_struct is similar to the text_action_struct except
6155 that is represents a potential transformation, not one that will
6156 occur. We build a list of these for an extended basic block
6157 and use them to compute the actual actions desired. We must be
6158 careful that the entire set of actual actions we perform do not
6159 break any relocations that would fit if the actions were not
6160 performed. */
6161
6162 typedef struct proposed_action_struct proposed_action;
6163
6164 struct proposed_action_struct
6165 {
6166 enum ebb_target_enum align_type; /* for the target alignment */
6167 bfd_vma alignment_pow;
6168 text_action_t action;
6169 bfd_vma offset;
6170 int removed_bytes;
6171 bfd_boolean do_action; /* If false, then we will not perform the action. */
6172 };
6173
6174
6175 /* The ebb_constraint_struct keeps a set of proposed actions for an
6176 extended basic block. */
6177
6178 typedef struct ebb_constraint_struct ebb_constraint;
6179
6180 struct ebb_constraint_struct
6181 {
6182 ebb_t ebb;
6183 bfd_boolean start_movable;
6184
6185 /* Bytes of extra space at the beginning if movable. */
6186 int start_extra_space;
6187
6188 enum ebb_target_enum start_align;
6189
6190 bfd_boolean end_movable;
6191
6192 /* Bytes of extra space at the end if movable. */
6193 int end_extra_space;
6194
6195 unsigned action_count;
6196 unsigned action_allocated;
6197
6198 /* Array of proposed actions. */
6199 proposed_action *actions;
6200
6201 /* Action alignments -- one for each proposed action. */
6202 enum ebb_target_enum *action_aligns;
6203 };
6204
6205
6206 static void
6207 init_ebb_constraint (ebb_constraint *c)
6208 {
6209 memset (c, 0, sizeof (ebb_constraint));
6210 }
6211
6212
6213 static void
6214 free_ebb_constraint (ebb_constraint *c)
6215 {
6216 if (c->actions)
6217 free (c->actions);
6218 }
6219
6220
6221 static void
6222 init_ebb (ebb_t *ebb,
6223 asection *sec,
6224 bfd_byte *contents,
6225 bfd_size_type content_length,
6226 property_table_entry *prop_table,
6227 unsigned ptblsize,
6228 Elf_Internal_Rela *internal_relocs,
6229 unsigned reloc_count)
6230 {
6231 memset (ebb, 0, sizeof (ebb_t));
6232 ebb->sec = sec;
6233 ebb->contents = contents;
6234 ebb->content_length = content_length;
6235 ebb->ptbl = prop_table;
6236 ebb->pte_count = ptblsize;
6237 ebb->relocs = internal_relocs;
6238 ebb->reloc_count = reloc_count;
6239 ebb->start_offset = 0;
6240 ebb->end_offset = ebb->content_length - 1;
6241 ebb->start_ptbl_idx = 0;
6242 ebb->end_ptbl_idx = ptblsize;
6243 ebb->start_reloc_idx = 0;
6244 ebb->end_reloc_idx = reloc_count;
6245 }
6246
6247
6248 /* Extend the ebb to all decodable contiguous sections. The algorithm
6249 for building a basic block around an instruction is to push it
6250 forward until we hit the end of a section, an unreachable block or
6251 a block that cannot be transformed. Then we push it backwards
6252 searching for similar conditions. */
6253
6254 static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
6255 static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
6256 static bfd_size_type insn_block_decodable_len
6257 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
6258
6259 static bfd_boolean
6260 extend_ebb_bounds (ebb_t *ebb)
6261 {
6262 if (!extend_ebb_bounds_forward (ebb))
6263 return FALSE;
6264 if (!extend_ebb_bounds_backward (ebb))
6265 return FALSE;
6266 return TRUE;
6267 }
6268
6269
6270 static bfd_boolean
6271 extend_ebb_bounds_forward (ebb_t *ebb)
6272 {
6273 property_table_entry *the_entry, *new_entry;
6274
6275 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6276
6277 /* Stop when (1) we cannot decode an instruction, (2) we are at
6278 the end of the property tables, (3) we hit a non-contiguous property
6279 table entry, (4) we hit a NO_TRANSFORM region. */
6280
6281 while (1)
6282 {
6283 bfd_vma entry_end;
6284 bfd_size_type insn_block_len;
6285
6286 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
6287 insn_block_len =
6288 insn_block_decodable_len (ebb->contents, ebb->content_length,
6289 ebb->end_offset,
6290 entry_end - ebb->end_offset);
6291 if (insn_block_len != (entry_end - ebb->end_offset))
6292 {
6293 (*_bfd_error_handler)
6294 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6295 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6296 return FALSE;
6297 }
6298 ebb->end_offset += insn_block_len;
6299
6300 if (ebb->end_offset == ebb->sec->size)
6301 ebb->ends_section = TRUE;
6302
6303 /* Update the reloc counter. */
6304 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
6305 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
6306 < ebb->end_offset))
6307 {
6308 ebb->end_reloc_idx++;
6309 }
6310
6311 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6312 return TRUE;
6313
6314 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6315 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
6316 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6317 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
6318 break;
6319
6320 if (the_entry->address + the_entry->size != new_entry->address)
6321 break;
6322
6323 the_entry = new_entry;
6324 ebb->end_ptbl_idx++;
6325 }
6326
6327 /* Quick check for an unreachable or end of file just at the end. */
6328 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6329 {
6330 if (ebb->end_offset == ebb->content_length)
6331 ebb->ends_section = TRUE;
6332 }
6333 else
6334 {
6335 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6336 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
6337 && the_entry->address + the_entry->size == new_entry->address)
6338 ebb->ends_unreachable = new_entry;
6339 }
6340
6341 /* Any other ending requires exact alignment. */
6342 return TRUE;
6343 }
6344
6345
6346 static bfd_boolean
6347 extend_ebb_bounds_backward (ebb_t *ebb)
6348 {
6349 property_table_entry *the_entry, *new_entry;
6350
6351 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6352
6353 /* Stop when (1) we cannot decode the instructions in the current entry.
6354 (2) we are at the beginning of the property tables, (3) we hit a
6355 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
6356
6357 while (1)
6358 {
6359 bfd_vma block_begin;
6360 bfd_size_type insn_block_len;
6361
6362 block_begin = the_entry->address - ebb->sec->vma;
6363 insn_block_len =
6364 insn_block_decodable_len (ebb->contents, ebb->content_length,
6365 block_begin,
6366 ebb->start_offset - block_begin);
6367 if (insn_block_len != ebb->start_offset - block_begin)
6368 {
6369 (*_bfd_error_handler)
6370 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6371 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6372 return FALSE;
6373 }
6374 ebb->start_offset -= insn_block_len;
6375
6376 /* Update the reloc counter. */
6377 while (ebb->start_reloc_idx > 0
6378 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
6379 >= ebb->start_offset))
6380 {
6381 ebb->start_reloc_idx--;
6382 }
6383
6384 if (ebb->start_ptbl_idx == 0)
6385 return TRUE;
6386
6387 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
6388 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
6389 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6390 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
6391 return TRUE;
6392 if (new_entry->address + new_entry->size != the_entry->address)
6393 return TRUE;
6394
6395 the_entry = new_entry;
6396 ebb->start_ptbl_idx--;
6397 }
6398 return TRUE;
6399 }
6400
6401
6402 static bfd_size_type
6403 insn_block_decodable_len (bfd_byte *contents,
6404 bfd_size_type content_len,
6405 bfd_vma block_offset,
6406 bfd_size_type block_len)
6407 {
6408 bfd_vma offset = block_offset;
6409
6410 while (offset < block_offset + block_len)
6411 {
6412 bfd_size_type insn_len = 0;
6413
6414 insn_len = insn_decode_len (contents, content_len, offset);
6415 if (insn_len == 0)
6416 return (offset - block_offset);
6417 offset += insn_len;
6418 }
6419 return (offset - block_offset);
6420 }
6421
6422
6423 static void
6424 ebb_propose_action (ebb_constraint *c,
6425 enum ebb_target_enum align_type,
6426 bfd_vma alignment_pow,
6427 text_action_t action,
6428 bfd_vma offset,
6429 int removed_bytes,
6430 bfd_boolean do_action)
6431 {
6432 proposed_action *act;
6433
6434 if (c->action_allocated <= c->action_count)
6435 {
6436 unsigned new_allocated, i;
6437 proposed_action *new_actions;
6438
6439 new_allocated = (c->action_count + 2) * 2;
6440 new_actions = (proposed_action *)
6441 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
6442
6443 for (i = 0; i < c->action_count; i++)
6444 new_actions[i] = c->actions[i];
6445 if (c->actions)
6446 free (c->actions);
6447 c->actions = new_actions;
6448 c->action_allocated = new_allocated;
6449 }
6450
6451 act = &c->actions[c->action_count];
6452 act->align_type = align_type;
6453 act->alignment_pow = alignment_pow;
6454 act->action = action;
6455 act->offset = offset;
6456 act->removed_bytes = removed_bytes;
6457 act->do_action = do_action;
6458
6459 c->action_count++;
6460 }
6461
6462 \f
6463 /* Access to internal relocations, section contents and symbols. */
6464
6465 /* During relaxation, we need to modify relocations, section contents,
6466 and symbol definitions, and we need to keep the original values from
6467 being reloaded from the input files, i.e., we need to "pin" the
6468 modified values in memory. We also want to continue to observe the
6469 setting of the "keep-memory" flag. The following functions wrap the
6470 standard BFD functions to take care of this for us. */
6471
6472 static Elf_Internal_Rela *
6473 retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6474 {
6475 Elf_Internal_Rela *internal_relocs;
6476
6477 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6478 return NULL;
6479
6480 internal_relocs = elf_section_data (sec)->relocs;
6481 if (internal_relocs == NULL)
6482 internal_relocs = (_bfd_elf_link_read_relocs
6483 (abfd, sec, NULL, NULL, keep_memory));
6484 return internal_relocs;
6485 }
6486
6487
6488 static void
6489 pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6490 {
6491 elf_section_data (sec)->relocs = internal_relocs;
6492 }
6493
6494
6495 static void
6496 release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6497 {
6498 if (internal_relocs
6499 && elf_section_data (sec)->relocs != internal_relocs)
6500 free (internal_relocs);
6501 }
6502
6503
6504 static bfd_byte *
6505 retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6506 {
6507 bfd_byte *contents;
6508 bfd_size_type sec_size;
6509
6510 sec_size = bfd_get_section_limit (abfd, sec);
6511 contents = elf_section_data (sec)->this_hdr.contents;
6512
6513 if (contents == NULL && sec_size != 0)
6514 {
6515 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6516 {
6517 if (contents)
6518 free (contents);
6519 return NULL;
6520 }
6521 if (keep_memory)
6522 elf_section_data (sec)->this_hdr.contents = contents;
6523 }
6524 return contents;
6525 }
6526
6527
6528 static void
6529 pin_contents (asection *sec, bfd_byte *contents)
6530 {
6531 elf_section_data (sec)->this_hdr.contents = contents;
6532 }
6533
6534
6535 static void
6536 release_contents (asection *sec, bfd_byte *contents)
6537 {
6538 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
6539 free (contents);
6540 }
6541
6542
6543 static Elf_Internal_Sym *
6544 retrieve_local_syms (bfd *input_bfd)
6545 {
6546 Elf_Internal_Shdr *symtab_hdr;
6547 Elf_Internal_Sym *isymbuf;
6548 size_t locsymcount;
6549
6550 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6551 locsymcount = symtab_hdr->sh_info;
6552
6553 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6554 if (isymbuf == NULL && locsymcount != 0)
6555 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6556 NULL, NULL, NULL);
6557
6558 /* Save the symbols for this input file so they won't be read again. */
6559 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
6560 symtab_hdr->contents = (unsigned char *) isymbuf;
6561
6562 return isymbuf;
6563 }
6564
6565 \f
6566 /* Code for link-time relaxation. */
6567
6568 /* Initialization for relaxation: */
6569 static bfd_boolean analyze_relocations (struct bfd_link_info *);
6570 static bfd_boolean find_relaxable_sections
6571 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
6572 static bfd_boolean collect_source_relocs
6573 (bfd *, asection *, struct bfd_link_info *);
6574 static bfd_boolean is_resolvable_asm_expansion
6575 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
6576 bfd_boolean *);
6577 static Elf_Internal_Rela *find_associated_l32r_irel
6578 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
6579 static bfd_boolean compute_text_actions
6580 (bfd *, asection *, struct bfd_link_info *);
6581 static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
6582 static bfd_boolean compute_ebb_actions (ebb_constraint *);
6583 static bfd_boolean check_section_ebb_pcrels_fit
6584 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *,
6585 const xtensa_opcode *);
6586 static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
6587 static void text_action_add_proposed
6588 (text_action_list *, const ebb_constraint *, asection *);
6589 static int compute_fill_extra_space (property_table_entry *);
6590
6591 /* First pass: */
6592 static bfd_boolean compute_removed_literals
6593 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
6594 static Elf_Internal_Rela *get_irel_at_offset
6595 (asection *, Elf_Internal_Rela *, bfd_vma);
6596 static bfd_boolean is_removable_literal
6597 (const source_reloc *, int, const source_reloc *, int, asection *,
6598 property_table_entry *, int);
6599 static bfd_boolean remove_dead_literal
6600 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
6601 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
6602 static bfd_boolean identify_literal_placement
6603 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
6604 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
6605 source_reloc *, property_table_entry *, int, section_cache_t *,
6606 bfd_boolean);
6607 static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
6608 static bfd_boolean coalesce_shared_literal
6609 (asection *, source_reloc *, property_table_entry *, int, value_map *);
6610 static bfd_boolean move_shared_literal
6611 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
6612 int, const r_reloc *, const literal_value *, section_cache_t *);
6613
6614 /* Second pass: */
6615 static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
6616 static bfd_boolean translate_section_fixes (asection *);
6617 static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
6618 static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
6619 static void shrink_dynamic_reloc_sections
6620 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
6621 static bfd_boolean move_literal
6622 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
6623 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
6624 static bfd_boolean relax_property_section
6625 (bfd *, asection *, struct bfd_link_info *);
6626
6627 /* Third pass: */
6628 static bfd_boolean relax_section_symbols (bfd *, asection *);
6629
6630
6631 static bfd_boolean
6632 elf_xtensa_relax_section (bfd *abfd,
6633 asection *sec,
6634 struct bfd_link_info *link_info,
6635 bfd_boolean *again)
6636 {
6637 static value_map_hash_table *values = NULL;
6638 static bfd_boolean relocations_analyzed = FALSE;
6639 xtensa_relax_info *relax_info;
6640
6641 if (link_info->relocatable)
6642 (*link_info->callbacks->einfo)
6643 (_("%P%F: --relax and -r may not be used together\n"));
6644
6645 if (!relocations_analyzed)
6646 {
6647 /* Do some overall initialization for relaxation. */
6648 values = value_map_hash_table_init ();
6649 if (values == NULL)
6650 return FALSE;
6651 relaxing_section = TRUE;
6652 if (!analyze_relocations (link_info))
6653 return FALSE;
6654 relocations_analyzed = TRUE;
6655 }
6656 *again = FALSE;
6657
6658 /* Don't mess with linker-created sections. */
6659 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6660 return TRUE;
6661
6662 relax_info = get_xtensa_relax_info (sec);
6663 BFD_ASSERT (relax_info != NULL);
6664
6665 switch (relax_info->visited)
6666 {
6667 case 0:
6668 /* Note: It would be nice to fold this pass into
6669 analyze_relocations, but it is important for this step that the
6670 sections be examined in link order. */
6671 if (!compute_removed_literals (abfd, sec, link_info, values))
6672 return FALSE;
6673 *again = TRUE;
6674 break;
6675
6676 case 1:
6677 if (values)
6678 value_map_hash_table_delete (values);
6679 values = NULL;
6680 if (!relax_section (abfd, sec, link_info))
6681 return FALSE;
6682 *again = TRUE;
6683 break;
6684
6685 case 2:
6686 if (!relax_section_symbols (abfd, sec))
6687 return FALSE;
6688 break;
6689 }
6690
6691 relax_info->visited++;
6692 return TRUE;
6693 }
6694
6695 \f
6696 /* Initialization for relaxation. */
6697
6698 /* This function is called once at the start of relaxation. It scans
6699 all the input sections and marks the ones that are relaxable (i.e.,
6700 literal sections with L32R relocations against them), and then
6701 collects source_reloc information for all the relocations against
6702 those relaxable sections. During this process, it also detects
6703 longcalls, i.e., calls relaxed by the assembler into indirect
6704 calls, that can be optimized back into direct calls. Within each
6705 extended basic block (ebb) containing an optimized longcall, it
6706 computes a set of "text actions" that can be performed to remove
6707 the L32R associated with the longcall while optionally preserving
6708 branch target alignments. */
6709
6710 static bfd_boolean
6711 analyze_relocations (struct bfd_link_info *link_info)
6712 {
6713 bfd *abfd;
6714 asection *sec;
6715 bfd_boolean is_relaxable = FALSE;
6716
6717 /* Initialize the per-section relaxation info. */
6718 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6719 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6720 {
6721 init_xtensa_relax_info (sec);
6722 }
6723
6724 /* Mark relaxable sections (and count relocations against each one). */
6725 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6726 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6727 {
6728 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
6729 return FALSE;
6730 }
6731
6732 /* Bail out if there are no relaxable sections. */
6733 if (!is_relaxable)
6734 return TRUE;
6735
6736 /* Allocate space for source_relocs. */
6737 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6738 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6739 {
6740 xtensa_relax_info *relax_info;
6741
6742 relax_info = get_xtensa_relax_info (sec);
6743 if (relax_info->is_relaxable_literal_section
6744 || relax_info->is_relaxable_asm_section)
6745 {
6746 relax_info->src_relocs = (source_reloc *)
6747 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
6748 }
6749 else
6750 relax_info->src_count = 0;
6751 }
6752
6753 /* Collect info on relocations against each relaxable section. */
6754 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6755 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6756 {
6757 if (!collect_source_relocs (abfd, sec, link_info))
6758 return FALSE;
6759 }
6760
6761 /* Compute the text actions. */
6762 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6763 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6764 {
6765 if (!compute_text_actions (abfd, sec, link_info))
6766 return FALSE;
6767 }
6768
6769 return TRUE;
6770 }
6771
6772
6773 /* Find all the sections that might be relaxed. The motivation for
6774 this pass is that collect_source_relocs() needs to record _all_ the
6775 relocations that target each relaxable section. That is expensive
6776 and unnecessary unless the target section is actually going to be
6777 relaxed. This pass identifies all such sections by checking if
6778 they have L32Rs pointing to them. In the process, the total number
6779 of relocations targeting each section is also counted so that we
6780 know how much space to allocate for source_relocs against each
6781 relaxable literal section. */
6782
6783 static bfd_boolean
6784 find_relaxable_sections (bfd *abfd,
6785 asection *sec,
6786 struct bfd_link_info *link_info,
6787 bfd_boolean *is_relaxable_p)
6788 {
6789 Elf_Internal_Rela *internal_relocs;
6790 bfd_byte *contents;
6791 bfd_boolean ok = TRUE;
6792 unsigned i;
6793 xtensa_relax_info *source_relax_info;
6794 bfd_boolean is_l32r_reloc;
6795
6796 internal_relocs = retrieve_internal_relocs (abfd, sec,
6797 link_info->keep_memory);
6798 if (internal_relocs == NULL)
6799 return ok;
6800
6801 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6802 if (contents == NULL && sec->size != 0)
6803 {
6804 ok = FALSE;
6805 goto error_return;
6806 }
6807
6808 source_relax_info = get_xtensa_relax_info (sec);
6809 for (i = 0; i < sec->reloc_count; i++)
6810 {
6811 Elf_Internal_Rela *irel = &internal_relocs[i];
6812 r_reloc r_rel;
6813 asection *target_sec;
6814 xtensa_relax_info *target_relax_info;
6815
6816 /* If this section has not already been marked as "relaxable", and
6817 if it contains any ASM_EXPAND relocations (marking expanded
6818 longcalls) that can be optimized into direct calls, then mark
6819 the section as "relaxable". */
6820 if (source_relax_info
6821 && !source_relax_info->is_relaxable_asm_section
6822 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
6823 {
6824 bfd_boolean is_reachable = FALSE;
6825 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
6826 link_info, &is_reachable)
6827 && is_reachable)
6828 {
6829 source_relax_info->is_relaxable_asm_section = TRUE;
6830 *is_relaxable_p = TRUE;
6831 }
6832 }
6833
6834 r_reloc_init (&r_rel, abfd, irel, contents,
6835 bfd_get_section_limit (abfd, sec));
6836
6837 target_sec = r_reloc_get_section (&r_rel);
6838 target_relax_info = get_xtensa_relax_info (target_sec);
6839 if (!target_relax_info)
6840 continue;
6841
6842 /* Count PC-relative operand relocations against the target section.
6843 Note: The conditions tested here must match the conditions under
6844 which init_source_reloc is called in collect_source_relocs(). */
6845 is_l32r_reloc = FALSE;
6846 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6847 {
6848 xtensa_opcode opcode =
6849 get_relocation_opcode (abfd, sec, contents, irel);
6850 if (opcode != XTENSA_UNDEFINED)
6851 {
6852 is_l32r_reloc = (opcode == get_l32r_opcode ());
6853 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
6854 || is_l32r_reloc)
6855 target_relax_info->src_count++;
6856 }
6857 }
6858
6859 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
6860 {
6861 /* Mark the target section as relaxable. */
6862 target_relax_info->is_relaxable_literal_section = TRUE;
6863 *is_relaxable_p = TRUE;
6864 }
6865 }
6866
6867 error_return:
6868 release_contents (sec, contents);
6869 release_internal_relocs (sec, internal_relocs);
6870 return ok;
6871 }
6872
6873
6874 /* Record _all_ the relocations that point to relaxable sections, and
6875 get rid of ASM_EXPAND relocs by either converting them to
6876 ASM_SIMPLIFY or by removing them. */
6877
6878 static bfd_boolean
6879 collect_source_relocs (bfd *abfd,
6880 asection *sec,
6881 struct bfd_link_info *link_info)
6882 {
6883 Elf_Internal_Rela *internal_relocs;
6884 bfd_byte *contents;
6885 bfd_boolean ok = TRUE;
6886 unsigned i;
6887 bfd_size_type sec_size;
6888
6889 internal_relocs = retrieve_internal_relocs (abfd, sec,
6890 link_info->keep_memory);
6891 if (internal_relocs == NULL)
6892 return ok;
6893
6894 sec_size = bfd_get_section_limit (abfd, sec);
6895 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6896 if (contents == NULL && sec_size != 0)
6897 {
6898 ok = FALSE;
6899 goto error_return;
6900 }
6901
6902 /* Record relocations against relaxable literal sections. */
6903 for (i = 0; i < sec->reloc_count; i++)
6904 {
6905 Elf_Internal_Rela *irel = &internal_relocs[i];
6906 r_reloc r_rel;
6907 asection *target_sec;
6908 xtensa_relax_info *target_relax_info;
6909
6910 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6911
6912 target_sec = r_reloc_get_section (&r_rel);
6913 target_relax_info = get_xtensa_relax_info (target_sec);
6914
6915 if (target_relax_info
6916 && (target_relax_info->is_relaxable_literal_section
6917 || target_relax_info->is_relaxable_asm_section))
6918 {
6919 xtensa_opcode opcode = XTENSA_UNDEFINED;
6920 int opnd = -1;
6921 bfd_boolean is_abs_literal = FALSE;
6922
6923 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
6924 {
6925 /* None of the current alternate relocs are PC-relative,
6926 and only PC-relative relocs matter here. However, we
6927 still need to record the opcode for literal
6928 coalescing. */
6929 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6930 if (opcode == get_l32r_opcode ())
6931 {
6932 is_abs_literal = TRUE;
6933 opnd = 1;
6934 }
6935 else
6936 opcode = XTENSA_UNDEFINED;
6937 }
6938 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6939 {
6940 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6941 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
6942 }
6943
6944 if (opcode != XTENSA_UNDEFINED)
6945 {
6946 int src_next = target_relax_info->src_next++;
6947 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
6948
6949 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
6950 is_abs_literal);
6951 }
6952 }
6953 }
6954
6955 /* Now get rid of ASM_EXPAND relocations. At this point, the
6956 src_relocs array for the target literal section may still be
6957 incomplete, but it must at least contain the entries for the L32R
6958 relocations associated with ASM_EXPANDs because they were just
6959 added in the preceding loop over the relocations. */
6960
6961 for (i = 0; i < sec->reloc_count; i++)
6962 {
6963 Elf_Internal_Rela *irel = &internal_relocs[i];
6964 bfd_boolean is_reachable;
6965
6966 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
6967 &is_reachable))
6968 continue;
6969
6970 if (is_reachable)
6971 {
6972 Elf_Internal_Rela *l32r_irel;
6973 r_reloc r_rel;
6974 asection *target_sec;
6975 xtensa_relax_info *target_relax_info;
6976
6977 /* Mark the source_reloc for the L32R so that it will be
6978 removed in compute_removed_literals(), along with the
6979 associated literal. */
6980 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
6981 irel, internal_relocs);
6982 if (l32r_irel == NULL)
6983 continue;
6984
6985 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
6986
6987 target_sec = r_reloc_get_section (&r_rel);
6988 target_relax_info = get_xtensa_relax_info (target_sec);
6989
6990 if (target_relax_info
6991 && (target_relax_info->is_relaxable_literal_section
6992 || target_relax_info->is_relaxable_asm_section))
6993 {
6994 source_reloc *s_reloc;
6995
6996 /* Search the source_relocs for the entry corresponding to
6997 the l32r_irel. Note: The src_relocs array is not yet
6998 sorted, but it wouldn't matter anyway because we're
6999 searching by source offset instead of target offset. */
7000 s_reloc = find_source_reloc (target_relax_info->src_relocs,
7001 target_relax_info->src_next,
7002 sec, l32r_irel);
7003 BFD_ASSERT (s_reloc);
7004 s_reloc->is_null = TRUE;
7005 }
7006
7007 /* Convert this reloc to ASM_SIMPLIFY. */
7008 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
7009 R_XTENSA_ASM_SIMPLIFY);
7010 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7011
7012 pin_internal_relocs (sec, internal_relocs);
7013 }
7014 else
7015 {
7016 /* It is resolvable but doesn't reach. We resolve now
7017 by eliminating the relocation -- the call will remain
7018 expanded into L32R/CALLX. */
7019 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7020 pin_internal_relocs (sec, internal_relocs);
7021 }
7022 }
7023
7024 error_return:
7025 release_contents (sec, contents);
7026 release_internal_relocs (sec, internal_relocs);
7027 return ok;
7028 }
7029
7030
7031 /* Return TRUE if the asm expansion can be resolved. Generally it can
7032 be resolved on a final link or when a partial link locates it in the
7033 same section as the target. Set "is_reachable" flag if the target of
7034 the call is within the range of a direct call, given the current VMA
7035 for this section and the target section. */
7036
7037 bfd_boolean
7038 is_resolvable_asm_expansion (bfd *abfd,
7039 asection *sec,
7040 bfd_byte *contents,
7041 Elf_Internal_Rela *irel,
7042 struct bfd_link_info *link_info,
7043 bfd_boolean *is_reachable_p)
7044 {
7045 asection *target_sec;
7046 bfd_vma target_offset;
7047 r_reloc r_rel;
7048 xtensa_opcode opcode, direct_call_opcode;
7049 bfd_vma self_address;
7050 bfd_vma dest_address;
7051 bfd_boolean uses_l32r;
7052 bfd_size_type sec_size;
7053
7054 *is_reachable_p = FALSE;
7055
7056 if (contents == NULL)
7057 return FALSE;
7058
7059 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
7060 return FALSE;
7061
7062 sec_size = bfd_get_section_limit (abfd, sec);
7063 opcode = get_expanded_call_opcode (contents + irel->r_offset,
7064 sec_size - irel->r_offset, &uses_l32r);
7065 /* Optimization of longcalls that use CONST16 is not yet implemented. */
7066 if (!uses_l32r)
7067 return FALSE;
7068
7069 direct_call_opcode = swap_callx_for_call_opcode (opcode);
7070 if (direct_call_opcode == XTENSA_UNDEFINED)
7071 return FALSE;
7072
7073 /* Check and see that the target resolves. */
7074 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7075 if (!r_reloc_is_defined (&r_rel))
7076 return FALSE;
7077
7078 target_sec = r_reloc_get_section (&r_rel);
7079 target_offset = r_rel.target_offset;
7080
7081 /* If the target is in a shared library, then it doesn't reach. This
7082 isn't supposed to come up because the compiler should never generate
7083 non-PIC calls on systems that use shared libraries, but the linker
7084 shouldn't crash regardless. */
7085 if (!target_sec->output_section)
7086 return FALSE;
7087
7088 /* For relocatable sections, we can only simplify when the output
7089 section of the target is the same as the output section of the
7090 source. */
7091 if (link_info->relocatable
7092 && (target_sec->output_section != sec->output_section
7093 || is_reloc_sym_weak (abfd, irel)))
7094 return FALSE;
7095
7096 self_address = (sec->output_section->vma
7097 + sec->output_offset + irel->r_offset + 3);
7098 dest_address = (target_sec->output_section->vma
7099 + target_sec->output_offset + target_offset);
7100
7101 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
7102 self_address, dest_address);
7103
7104 if ((self_address >> CALL_SEGMENT_BITS) !=
7105 (dest_address >> CALL_SEGMENT_BITS))
7106 return FALSE;
7107
7108 return TRUE;
7109 }
7110
7111
7112 static Elf_Internal_Rela *
7113 find_associated_l32r_irel (bfd *abfd,
7114 asection *sec,
7115 bfd_byte *contents,
7116 Elf_Internal_Rela *other_irel,
7117 Elf_Internal_Rela *internal_relocs)
7118 {
7119 unsigned i;
7120
7121 for (i = 0; i < sec->reloc_count; i++)
7122 {
7123 Elf_Internal_Rela *irel = &internal_relocs[i];
7124
7125 if (irel == other_irel)
7126 continue;
7127 if (irel->r_offset != other_irel->r_offset)
7128 continue;
7129 if (is_l32r_relocation (abfd, sec, contents, irel))
7130 return irel;
7131 }
7132
7133 return NULL;
7134 }
7135
7136
7137 static xtensa_opcode *
7138 build_reloc_opcodes (bfd *abfd,
7139 asection *sec,
7140 bfd_byte *contents,
7141 Elf_Internal_Rela *internal_relocs)
7142 {
7143 unsigned i;
7144 xtensa_opcode *reloc_opcodes =
7145 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
7146 for (i = 0; i < sec->reloc_count; i++)
7147 {
7148 Elf_Internal_Rela *irel = &internal_relocs[i];
7149 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
7150 }
7151 return reloc_opcodes;
7152 }
7153
7154
7155 /* The compute_text_actions function will build a list of potential
7156 transformation actions for code in the extended basic block of each
7157 longcall that is optimized to a direct call. From this list we
7158 generate a set of actions to actually perform that optimizes for
7159 space and, if not using size_opt, maintains branch target
7160 alignments.
7161
7162 These actions to be performed are placed on a per-section list.
7163 The actual changes are performed by relax_section() in the second
7164 pass. */
7165
7166 bfd_boolean
7167 compute_text_actions (bfd *abfd,
7168 asection *sec,
7169 struct bfd_link_info *link_info)
7170 {
7171 xtensa_opcode *reloc_opcodes = NULL;
7172 xtensa_relax_info *relax_info;
7173 bfd_byte *contents;
7174 Elf_Internal_Rela *internal_relocs;
7175 bfd_boolean ok = TRUE;
7176 unsigned i;
7177 property_table_entry *prop_table = 0;
7178 int ptblsize = 0;
7179 bfd_size_type sec_size;
7180
7181 relax_info = get_xtensa_relax_info (sec);
7182 BFD_ASSERT (relax_info);
7183 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
7184
7185 /* Do nothing if the section contains no optimized longcalls. */
7186 if (!relax_info->is_relaxable_asm_section)
7187 return ok;
7188
7189 internal_relocs = retrieve_internal_relocs (abfd, sec,
7190 link_info->keep_memory);
7191
7192 if (internal_relocs)
7193 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7194 internal_reloc_compare);
7195
7196 sec_size = bfd_get_section_limit (abfd, sec);
7197 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7198 if (contents == NULL && sec_size != 0)
7199 {
7200 ok = FALSE;
7201 goto error_return;
7202 }
7203
7204 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7205 XTENSA_PROP_SEC_NAME, FALSE);
7206 if (ptblsize < 0)
7207 {
7208 ok = FALSE;
7209 goto error_return;
7210 }
7211
7212 for (i = 0; i < sec->reloc_count; i++)
7213 {
7214 Elf_Internal_Rela *irel = &internal_relocs[i];
7215 bfd_vma r_offset;
7216 property_table_entry *the_entry;
7217 int ptbl_idx;
7218 ebb_t *ebb;
7219 ebb_constraint ebb_table;
7220 bfd_size_type simplify_size;
7221
7222 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
7223 continue;
7224 r_offset = irel->r_offset;
7225
7226 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
7227 if (simplify_size == 0)
7228 {
7229 (*_bfd_error_handler)
7230 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
7231 sec->owner, sec, r_offset);
7232 continue;
7233 }
7234
7235 /* If the instruction table is not around, then don't do this
7236 relaxation. */
7237 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7238 sec->vma + irel->r_offset);
7239 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
7240 {
7241 text_action_add (&relax_info->action_list,
7242 ta_convert_longcall, sec, r_offset,
7243 0);
7244 continue;
7245 }
7246
7247 /* If the next longcall happens to be at the same address as an
7248 unreachable section of size 0, then skip forward. */
7249 ptbl_idx = the_entry - prop_table;
7250 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
7251 && the_entry->size == 0
7252 && ptbl_idx + 1 < ptblsize
7253 && (prop_table[ptbl_idx + 1].address
7254 == prop_table[ptbl_idx].address))
7255 {
7256 ptbl_idx++;
7257 the_entry++;
7258 }
7259
7260 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
7261 /* NO_REORDER is OK */
7262 continue;
7263
7264 init_ebb_constraint (&ebb_table);
7265 ebb = &ebb_table.ebb;
7266 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
7267 internal_relocs, sec->reloc_count);
7268 ebb->start_offset = r_offset + simplify_size;
7269 ebb->end_offset = r_offset + simplify_size;
7270 ebb->start_ptbl_idx = ptbl_idx;
7271 ebb->end_ptbl_idx = ptbl_idx;
7272 ebb->start_reloc_idx = i;
7273 ebb->end_reloc_idx = i;
7274
7275 /* Precompute the opcode for each relocation. */
7276 if (reloc_opcodes == NULL)
7277 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents,
7278 internal_relocs);
7279
7280 if (!extend_ebb_bounds (ebb)
7281 || !compute_ebb_proposed_actions (&ebb_table)
7282 || !compute_ebb_actions (&ebb_table)
7283 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
7284 internal_relocs, &ebb_table,
7285 reloc_opcodes)
7286 || !check_section_ebb_reduces (&ebb_table))
7287 {
7288 /* If anything goes wrong or we get unlucky and something does
7289 not fit, with our plan because of expansion between
7290 critical branches, just convert to a NOP. */
7291
7292 text_action_add (&relax_info->action_list,
7293 ta_convert_longcall, sec, r_offset, 0);
7294 i = ebb_table.ebb.end_reloc_idx;
7295 free_ebb_constraint (&ebb_table);
7296 continue;
7297 }
7298
7299 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
7300
7301 /* Update the index so we do not go looking at the relocations
7302 we have already processed. */
7303 i = ebb_table.ebb.end_reloc_idx;
7304 free_ebb_constraint (&ebb_table);
7305 }
7306
7307 #if DEBUG
7308 if (relax_info->action_list.head)
7309 print_action_list (stderr, &relax_info->action_list);
7310 #endif
7311
7312 error_return:
7313 release_contents (sec, contents);
7314 release_internal_relocs (sec, internal_relocs);
7315 if (prop_table)
7316 free (prop_table);
7317 if (reloc_opcodes)
7318 free (reloc_opcodes);
7319
7320 return ok;
7321 }
7322
7323
7324 /* Do not widen an instruction if it is preceeded by a
7325 loop opcode. It might cause misalignment. */
7326
7327 static bfd_boolean
7328 prev_instr_is_a_loop (bfd_byte *contents,
7329 bfd_size_type content_length,
7330 bfd_size_type offset)
7331 {
7332 xtensa_opcode prev_opcode;
7333
7334 if (offset < 3)
7335 return FALSE;
7336 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
7337 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
7338 }
7339
7340
7341 /* Find all of the possible actions for an extended basic block. */
7342
7343 bfd_boolean
7344 compute_ebb_proposed_actions (ebb_constraint *ebb_table)
7345 {
7346 const ebb_t *ebb = &ebb_table->ebb;
7347 unsigned rel_idx = ebb->start_reloc_idx;
7348 property_table_entry *entry, *start_entry, *end_entry;
7349 bfd_vma offset = 0;
7350 xtensa_isa isa = xtensa_default_isa;
7351 xtensa_format fmt;
7352 static xtensa_insnbuf insnbuf = NULL;
7353 static xtensa_insnbuf slotbuf = NULL;
7354
7355 if (insnbuf == NULL)
7356 {
7357 insnbuf = xtensa_insnbuf_alloc (isa);
7358 slotbuf = xtensa_insnbuf_alloc (isa);
7359 }
7360
7361 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
7362 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
7363
7364 for (entry = start_entry; entry <= end_entry; entry++)
7365 {
7366 bfd_vma start_offset, end_offset;
7367 bfd_size_type insn_len;
7368
7369 start_offset = entry->address - ebb->sec->vma;
7370 end_offset = entry->address + entry->size - ebb->sec->vma;
7371
7372 if (entry == start_entry)
7373 start_offset = ebb->start_offset;
7374 if (entry == end_entry)
7375 end_offset = ebb->end_offset;
7376 offset = start_offset;
7377
7378 if (offset == entry->address - ebb->sec->vma
7379 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
7380 {
7381 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
7382 BFD_ASSERT (offset != end_offset);
7383 if (offset == end_offset)
7384 return FALSE;
7385
7386 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
7387 offset);
7388 if (insn_len == 0)
7389 goto decode_error;
7390
7391 if (check_branch_target_aligned_address (offset, insn_len))
7392 align_type = EBB_REQUIRE_TGT_ALIGN;
7393
7394 ebb_propose_action (ebb_table, align_type, 0,
7395 ta_none, offset, 0, TRUE);
7396 }
7397
7398 while (offset != end_offset)
7399 {
7400 Elf_Internal_Rela *irel;
7401 xtensa_opcode opcode;
7402
7403 while (rel_idx < ebb->end_reloc_idx
7404 && (ebb->relocs[rel_idx].r_offset < offset
7405 || (ebb->relocs[rel_idx].r_offset == offset
7406 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
7407 != R_XTENSA_ASM_SIMPLIFY))))
7408 rel_idx++;
7409
7410 /* Check for longcall. */
7411 irel = &ebb->relocs[rel_idx];
7412 if (irel->r_offset == offset
7413 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
7414 {
7415 bfd_size_type simplify_size;
7416
7417 simplify_size = get_asm_simplify_size (ebb->contents,
7418 ebb->content_length,
7419 irel->r_offset);
7420 if (simplify_size == 0)
7421 goto decode_error;
7422
7423 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7424 ta_convert_longcall, offset, 0, TRUE);
7425
7426 offset += simplify_size;
7427 continue;
7428 }
7429
7430 if (offset + MIN_INSN_LENGTH > ebb->content_length)
7431 goto decode_error;
7432 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
7433 ebb->content_length - offset);
7434 fmt = xtensa_format_decode (isa, insnbuf);
7435 if (fmt == XTENSA_UNDEFINED)
7436 goto decode_error;
7437 insn_len = xtensa_format_length (isa, fmt);
7438 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
7439 goto decode_error;
7440
7441 if (xtensa_format_num_slots (isa, fmt) != 1)
7442 {
7443 offset += insn_len;
7444 continue;
7445 }
7446
7447 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
7448 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
7449 if (opcode == XTENSA_UNDEFINED)
7450 goto decode_error;
7451
7452 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
7453 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
7454 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
7455 {
7456 /* Add an instruction narrow action. */
7457 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7458 ta_narrow_insn, offset, 0, FALSE);
7459 }
7460 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
7461 && can_widen_instruction (slotbuf, fmt, opcode) != 0
7462 && ! prev_instr_is_a_loop (ebb->contents,
7463 ebb->content_length, offset))
7464 {
7465 /* Add an instruction widen action. */
7466 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7467 ta_widen_insn, offset, 0, FALSE);
7468 }
7469 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
7470 {
7471 /* Check for branch targets. */
7472 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
7473 ta_none, offset, 0, TRUE);
7474 }
7475
7476 offset += insn_len;
7477 }
7478 }
7479
7480 if (ebb->ends_unreachable)
7481 {
7482 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7483 ta_fill, ebb->end_offset, 0, TRUE);
7484 }
7485
7486 return TRUE;
7487
7488 decode_error:
7489 (*_bfd_error_handler)
7490 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
7491 ebb->sec->owner, ebb->sec, offset);
7492 return FALSE;
7493 }
7494
7495
7496 /* After all of the information has collected about the
7497 transformations possible in an EBB, compute the appropriate actions
7498 here in compute_ebb_actions. We still must check later to make
7499 sure that the actions do not break any relocations. The algorithm
7500 used here is pretty greedy. Basically, it removes as many no-ops
7501 as possible so that the end of the EBB has the same alignment
7502 characteristics as the original. First, it uses narrowing, then
7503 fill space at the end of the EBB, and finally widenings. If that
7504 does not work, it tries again with one fewer no-op removed. The
7505 optimization will only be performed if all of the branch targets
7506 that were aligned before transformation are also aligned after the
7507 transformation.
7508
7509 When the size_opt flag is set, ignore the branch target alignments,
7510 narrow all wide instructions, and remove all no-ops unless the end
7511 of the EBB prevents it. */
7512
7513 bfd_boolean
7514 compute_ebb_actions (ebb_constraint *ebb_table)
7515 {
7516 unsigned i = 0;
7517 unsigned j;
7518 int removed_bytes = 0;
7519 ebb_t *ebb = &ebb_table->ebb;
7520 unsigned seg_idx_start = 0;
7521 unsigned seg_idx_end = 0;
7522
7523 /* We perform this like the assembler relaxation algorithm: Start by
7524 assuming all instructions are narrow and all no-ops removed; then
7525 walk through.... */
7526
7527 /* For each segment of this that has a solid constraint, check to
7528 see if there are any combinations that will keep the constraint.
7529 If so, use it. */
7530 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
7531 {
7532 bfd_boolean requires_text_end_align = FALSE;
7533 unsigned longcall_count = 0;
7534 unsigned longcall_convert_count = 0;
7535 unsigned narrowable_count = 0;
7536 unsigned narrowable_convert_count = 0;
7537 unsigned widenable_count = 0;
7538 unsigned widenable_convert_count = 0;
7539
7540 proposed_action *action = NULL;
7541 int align = (1 << ebb_table->ebb.sec->alignment_power);
7542
7543 seg_idx_start = seg_idx_end;
7544
7545 for (i = seg_idx_start; i < ebb_table->action_count; i++)
7546 {
7547 action = &ebb_table->actions[i];
7548 if (action->action == ta_convert_longcall)
7549 longcall_count++;
7550 if (action->action == ta_narrow_insn)
7551 narrowable_count++;
7552 if (action->action == ta_widen_insn)
7553 widenable_count++;
7554 if (action->action == ta_fill)
7555 break;
7556 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
7557 break;
7558 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
7559 && !elf32xtensa_size_opt)
7560 break;
7561 }
7562 seg_idx_end = i;
7563
7564 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
7565 requires_text_end_align = TRUE;
7566
7567 if (elf32xtensa_size_opt && !requires_text_end_align
7568 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
7569 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
7570 {
7571 longcall_convert_count = longcall_count;
7572 narrowable_convert_count = narrowable_count;
7573 widenable_convert_count = 0;
7574 }
7575 else
7576 {
7577 /* There is a constraint. Convert the max number of longcalls. */
7578 narrowable_convert_count = 0;
7579 longcall_convert_count = 0;
7580 widenable_convert_count = 0;
7581
7582 for (j = 0; j < longcall_count; j++)
7583 {
7584 int removed = (longcall_count - j) * 3 & (align - 1);
7585 unsigned desire_narrow = (align - removed) & (align - 1);
7586 unsigned desire_widen = removed;
7587 if (desire_narrow <= narrowable_count)
7588 {
7589 narrowable_convert_count = desire_narrow;
7590 narrowable_convert_count +=
7591 (align * ((narrowable_count - narrowable_convert_count)
7592 / align));
7593 longcall_convert_count = (longcall_count - j);
7594 widenable_convert_count = 0;
7595 break;
7596 }
7597 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
7598 {
7599 narrowable_convert_count = 0;
7600 longcall_convert_count = longcall_count - j;
7601 widenable_convert_count = desire_widen;
7602 break;
7603 }
7604 }
7605 }
7606
7607 /* Now the number of conversions are saved. Do them. */
7608 for (i = seg_idx_start; i < seg_idx_end; i++)
7609 {
7610 action = &ebb_table->actions[i];
7611 switch (action->action)
7612 {
7613 case ta_convert_longcall:
7614 if (longcall_convert_count != 0)
7615 {
7616 action->action = ta_remove_longcall;
7617 action->do_action = TRUE;
7618 action->removed_bytes += 3;
7619 longcall_convert_count--;
7620 }
7621 break;
7622 case ta_narrow_insn:
7623 if (narrowable_convert_count != 0)
7624 {
7625 action->do_action = TRUE;
7626 action->removed_bytes += 1;
7627 narrowable_convert_count--;
7628 }
7629 break;
7630 case ta_widen_insn:
7631 if (widenable_convert_count != 0)
7632 {
7633 action->do_action = TRUE;
7634 action->removed_bytes -= 1;
7635 widenable_convert_count--;
7636 }
7637 break;
7638 default:
7639 break;
7640 }
7641 }
7642 }
7643
7644 /* Now we move on to some local opts. Try to remove each of the
7645 remaining longcalls. */
7646
7647 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
7648 {
7649 removed_bytes = 0;
7650 for (i = 0; i < ebb_table->action_count; i++)
7651 {
7652 int old_removed_bytes = removed_bytes;
7653 proposed_action *action = &ebb_table->actions[i];
7654
7655 if (action->do_action && action->action == ta_convert_longcall)
7656 {
7657 bfd_boolean bad_alignment = FALSE;
7658 removed_bytes += 3;
7659 for (j = i + 1; j < ebb_table->action_count; j++)
7660 {
7661 proposed_action *new_action = &ebb_table->actions[j];
7662 bfd_vma offset = new_action->offset;
7663 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
7664 {
7665 if (!check_branch_target_aligned
7666 (ebb_table->ebb.contents,
7667 ebb_table->ebb.content_length,
7668 offset, offset - removed_bytes))
7669 {
7670 bad_alignment = TRUE;
7671 break;
7672 }
7673 }
7674 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
7675 {
7676 if (!check_loop_aligned (ebb_table->ebb.contents,
7677 ebb_table->ebb.content_length,
7678 offset,
7679 offset - removed_bytes))
7680 {
7681 bad_alignment = TRUE;
7682 break;
7683 }
7684 }
7685 if (new_action->action == ta_narrow_insn
7686 && !new_action->do_action
7687 && ebb_table->ebb.sec->alignment_power == 2)
7688 {
7689 /* Narrow an instruction and we are done. */
7690 new_action->do_action = TRUE;
7691 new_action->removed_bytes += 1;
7692 bad_alignment = FALSE;
7693 break;
7694 }
7695 if (new_action->action == ta_widen_insn
7696 && new_action->do_action
7697 && ebb_table->ebb.sec->alignment_power == 2)
7698 {
7699 /* Narrow an instruction and we are done. */
7700 new_action->do_action = FALSE;
7701 new_action->removed_bytes += 1;
7702 bad_alignment = FALSE;
7703 break;
7704 }
7705 if (new_action->do_action)
7706 removed_bytes += new_action->removed_bytes;
7707 }
7708 if (!bad_alignment)
7709 {
7710 action->removed_bytes += 3;
7711 action->action = ta_remove_longcall;
7712 action->do_action = TRUE;
7713 }
7714 }
7715 removed_bytes = old_removed_bytes;
7716 if (action->do_action)
7717 removed_bytes += action->removed_bytes;
7718 }
7719 }
7720
7721 removed_bytes = 0;
7722 for (i = 0; i < ebb_table->action_count; ++i)
7723 {
7724 proposed_action *action = &ebb_table->actions[i];
7725 if (action->do_action)
7726 removed_bytes += action->removed_bytes;
7727 }
7728
7729 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
7730 && ebb->ends_unreachable)
7731 {
7732 proposed_action *action;
7733 int br;
7734 int extra_space;
7735
7736 BFD_ASSERT (ebb_table->action_count != 0);
7737 action = &ebb_table->actions[ebb_table->action_count - 1];
7738 BFD_ASSERT (action->action == ta_fill);
7739 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
7740
7741 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
7742 br = action->removed_bytes + removed_bytes + extra_space;
7743 br = br & ((1 << ebb->sec->alignment_power ) - 1);
7744
7745 action->removed_bytes = extra_space - br;
7746 }
7747 return TRUE;
7748 }
7749
7750
7751 /* The xlate_map is a sorted array of address mappings designed to
7752 answer the offset_with_removed_text() query with a binary search instead
7753 of a linear search through the section's action_list. */
7754
7755 typedef struct xlate_map_entry xlate_map_entry_t;
7756 typedef struct xlate_map xlate_map_t;
7757
7758 struct xlate_map_entry
7759 {
7760 unsigned orig_address;
7761 unsigned new_address;
7762 unsigned size;
7763 };
7764
7765 struct xlate_map
7766 {
7767 unsigned entry_count;
7768 xlate_map_entry_t *entry;
7769 };
7770
7771
7772 static int
7773 xlate_compare (const void *a_v, const void *b_v)
7774 {
7775 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
7776 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
7777 if (a->orig_address < b->orig_address)
7778 return -1;
7779 if (a->orig_address > (b->orig_address + b->size - 1))
7780 return 1;
7781 return 0;
7782 }
7783
7784
7785 static bfd_vma
7786 xlate_offset_with_removed_text (const xlate_map_t *map,
7787 text_action_list *action_list,
7788 bfd_vma offset)
7789 {
7790 xlate_map_entry_t tmp;
7791 void *r;
7792 xlate_map_entry_t *e;
7793
7794 if (map == NULL)
7795 return offset_with_removed_text (action_list, offset);
7796
7797 if (map->entry_count == 0)
7798 return offset;
7799
7800 tmp.orig_address = offset;
7801 tmp.new_address = offset;
7802 tmp.size = 1;
7803
7804 r = bsearch (&offset, map->entry, map->entry_count,
7805 sizeof (xlate_map_entry_t), &xlate_compare);
7806 e = (xlate_map_entry_t *) r;
7807
7808 BFD_ASSERT (e != NULL);
7809 if (e == NULL)
7810 return offset;
7811 return e->new_address - e->orig_address + offset;
7812 }
7813
7814
7815 /* Build a binary searchable offset translation map from a section's
7816 action list. */
7817
7818 static xlate_map_t *
7819 build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
7820 {
7821 xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
7822 text_action_list *action_list = &relax_info->action_list;
7823 unsigned num_actions = 0;
7824 text_action *r;
7825 int removed;
7826 xlate_map_entry_t *current_entry;
7827
7828 if (map == NULL)
7829 return NULL;
7830
7831 num_actions = action_list_count (action_list);
7832 map->entry = (xlate_map_entry_t *)
7833 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
7834 if (map->entry == NULL)
7835 {
7836 free (map);
7837 return NULL;
7838 }
7839 map->entry_count = 0;
7840
7841 removed = 0;
7842 current_entry = &map->entry[0];
7843
7844 current_entry->orig_address = 0;
7845 current_entry->new_address = 0;
7846 current_entry->size = 0;
7847
7848 for (r = action_list->head; r != NULL; r = r->next)
7849 {
7850 unsigned orig_size = 0;
7851 switch (r->action)
7852 {
7853 case ta_none:
7854 case ta_remove_insn:
7855 case ta_convert_longcall:
7856 case ta_remove_literal:
7857 case ta_add_literal:
7858 break;
7859 case ta_remove_longcall:
7860 orig_size = 6;
7861 break;
7862 case ta_narrow_insn:
7863 orig_size = 3;
7864 break;
7865 case ta_widen_insn:
7866 orig_size = 2;
7867 break;
7868 case ta_fill:
7869 break;
7870 }
7871 current_entry->size =
7872 r->offset + orig_size - current_entry->orig_address;
7873 if (current_entry->size != 0)
7874 {
7875 current_entry++;
7876 map->entry_count++;
7877 }
7878 current_entry->orig_address = r->offset + orig_size;
7879 removed += r->removed_bytes;
7880 current_entry->new_address = r->offset + orig_size - removed;
7881 current_entry->size = 0;
7882 }
7883
7884 current_entry->size = (bfd_get_section_limit (sec->owner, sec)
7885 - current_entry->orig_address);
7886 if (current_entry->size != 0)
7887 map->entry_count++;
7888
7889 return map;
7890 }
7891
7892
7893 /* Free an offset translation map. */
7894
7895 static void
7896 free_xlate_map (xlate_map_t *map)
7897 {
7898 if (map && map->entry)
7899 free (map->entry);
7900 if (map)
7901 free (map);
7902 }
7903
7904
7905 /* Use check_section_ebb_pcrels_fit to make sure that all of the
7906 relocations in a section will fit if a proposed set of actions
7907 are performed. */
7908
7909 static bfd_boolean
7910 check_section_ebb_pcrels_fit (bfd *abfd,
7911 asection *sec,
7912 bfd_byte *contents,
7913 Elf_Internal_Rela *internal_relocs,
7914 const ebb_constraint *constraint,
7915 const xtensa_opcode *reloc_opcodes)
7916 {
7917 unsigned i, j;
7918 Elf_Internal_Rela *irel;
7919 xlate_map_t *xmap = NULL;
7920 bfd_boolean ok = TRUE;
7921 xtensa_relax_info *relax_info;
7922
7923 relax_info = get_xtensa_relax_info (sec);
7924
7925 if (relax_info && sec->reloc_count > 100)
7926 {
7927 xmap = build_xlate_map (sec, relax_info);
7928 /* NULL indicates out of memory, but the slow version
7929 can still be used. */
7930 }
7931
7932 for (i = 0; i < sec->reloc_count; i++)
7933 {
7934 r_reloc r_rel;
7935 bfd_vma orig_self_offset, orig_target_offset;
7936 bfd_vma self_offset, target_offset;
7937 int r_type;
7938 reloc_howto_type *howto;
7939 int self_removed_bytes, target_removed_bytes;
7940
7941 irel = &internal_relocs[i];
7942 r_type = ELF32_R_TYPE (irel->r_info);
7943
7944 howto = &elf_howto_table[r_type];
7945 /* We maintain the required invariant: PC-relative relocations
7946 that fit before linking must fit after linking. Thus we only
7947 need to deal with relocations to the same section that are
7948 PC-relative. */
7949 if (r_type == R_XTENSA_ASM_SIMPLIFY
7950 || r_type == R_XTENSA_32_PCREL
7951 || !howto->pc_relative)
7952 continue;
7953
7954 r_reloc_init (&r_rel, abfd, irel, contents,
7955 bfd_get_section_limit (abfd, sec));
7956
7957 if (r_reloc_get_section (&r_rel) != sec)
7958 continue;
7959
7960 orig_self_offset = irel->r_offset;
7961 orig_target_offset = r_rel.target_offset;
7962
7963 self_offset = orig_self_offset;
7964 target_offset = orig_target_offset;
7965
7966 if (relax_info)
7967 {
7968 self_offset =
7969 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7970 orig_self_offset);
7971 target_offset =
7972 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7973 orig_target_offset);
7974 }
7975
7976 self_removed_bytes = 0;
7977 target_removed_bytes = 0;
7978
7979 for (j = 0; j < constraint->action_count; ++j)
7980 {
7981 proposed_action *action = &constraint->actions[j];
7982 bfd_vma offset = action->offset;
7983 int removed_bytes = action->removed_bytes;
7984 if (offset < orig_self_offset
7985 || (offset == orig_self_offset && action->action == ta_fill
7986 && action->removed_bytes < 0))
7987 self_removed_bytes += removed_bytes;
7988 if (offset < orig_target_offset
7989 || (offset == orig_target_offset && action->action == ta_fill
7990 && action->removed_bytes < 0))
7991 target_removed_bytes += removed_bytes;
7992 }
7993 self_offset -= self_removed_bytes;
7994 target_offset -= target_removed_bytes;
7995
7996 /* Try to encode it. Get the operand and check. */
7997 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7998 {
7999 /* None of the current alternate relocs are PC-relative,
8000 and only PC-relative relocs matter here. */
8001 }
8002 else
8003 {
8004 xtensa_opcode opcode;
8005 int opnum;
8006
8007 if (reloc_opcodes)
8008 opcode = reloc_opcodes[i];
8009 else
8010 opcode = get_relocation_opcode (abfd, sec, contents, irel);
8011 if (opcode == XTENSA_UNDEFINED)
8012 {
8013 ok = FALSE;
8014 break;
8015 }
8016
8017 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
8018 if (opnum == XTENSA_UNDEFINED)
8019 {
8020 ok = FALSE;
8021 break;
8022 }
8023
8024 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
8025 {
8026 ok = FALSE;
8027 break;
8028 }
8029 }
8030 }
8031
8032 if (xmap)
8033 free_xlate_map (xmap);
8034
8035 return ok;
8036 }
8037
8038
8039 static bfd_boolean
8040 check_section_ebb_reduces (const ebb_constraint *constraint)
8041 {
8042 int removed = 0;
8043 unsigned i;
8044
8045 for (i = 0; i < constraint->action_count; i++)
8046 {
8047 const proposed_action *action = &constraint->actions[i];
8048 if (action->do_action)
8049 removed += action->removed_bytes;
8050 }
8051 if (removed < 0)
8052 return FALSE;
8053
8054 return TRUE;
8055 }
8056
8057
8058 void
8059 text_action_add_proposed (text_action_list *l,
8060 const ebb_constraint *ebb_table,
8061 asection *sec)
8062 {
8063 unsigned i;
8064
8065 for (i = 0; i < ebb_table->action_count; i++)
8066 {
8067 proposed_action *action = &ebb_table->actions[i];
8068
8069 if (!action->do_action)
8070 continue;
8071 switch (action->action)
8072 {
8073 case ta_remove_insn:
8074 case ta_remove_longcall:
8075 case ta_convert_longcall:
8076 case ta_narrow_insn:
8077 case ta_widen_insn:
8078 case ta_fill:
8079 case ta_remove_literal:
8080 text_action_add (l, action->action, sec, action->offset,
8081 action->removed_bytes);
8082 break;
8083 case ta_none:
8084 break;
8085 default:
8086 BFD_ASSERT (0);
8087 break;
8088 }
8089 }
8090 }
8091
8092
8093 int
8094 compute_fill_extra_space (property_table_entry *entry)
8095 {
8096 int fill_extra_space;
8097
8098 if (!entry)
8099 return 0;
8100
8101 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
8102 return 0;
8103
8104 fill_extra_space = entry->size;
8105 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
8106 {
8107 /* Fill bytes for alignment:
8108 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
8109 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
8110 int nsm = (1 << pow) - 1;
8111 bfd_vma addr = entry->address + entry->size;
8112 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
8113 fill_extra_space += align_fill;
8114 }
8115 return fill_extra_space;
8116 }
8117
8118 \f
8119 /* First relaxation pass. */
8120
8121 /* If the section contains relaxable literals, check each literal to
8122 see if it has the same value as another literal that has already
8123 been seen, either in the current section or a previous one. If so,
8124 add an entry to the per-section list of removed literals. The
8125 actual changes are deferred until the next pass. */
8126
8127 static bfd_boolean
8128 compute_removed_literals (bfd *abfd,
8129 asection *sec,
8130 struct bfd_link_info *link_info,
8131 value_map_hash_table *values)
8132 {
8133 xtensa_relax_info *relax_info;
8134 bfd_byte *contents;
8135 Elf_Internal_Rela *internal_relocs;
8136 source_reloc *src_relocs, *rel;
8137 bfd_boolean ok = TRUE;
8138 property_table_entry *prop_table = NULL;
8139 int ptblsize;
8140 int i, prev_i;
8141 bfd_boolean last_loc_is_prev = FALSE;
8142 bfd_vma last_target_offset = 0;
8143 section_cache_t target_sec_cache;
8144 bfd_size_type sec_size;
8145
8146 init_section_cache (&target_sec_cache);
8147
8148 /* Do nothing if it is not a relaxable literal section. */
8149 relax_info = get_xtensa_relax_info (sec);
8150 BFD_ASSERT (relax_info);
8151 if (!relax_info->is_relaxable_literal_section)
8152 return ok;
8153
8154 internal_relocs = retrieve_internal_relocs (abfd, sec,
8155 link_info->keep_memory);
8156
8157 sec_size = bfd_get_section_limit (abfd, sec);
8158 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8159 if (contents == NULL && sec_size != 0)
8160 {
8161 ok = FALSE;
8162 goto error_return;
8163 }
8164
8165 /* Sort the source_relocs by target offset. */
8166 src_relocs = relax_info->src_relocs;
8167 qsort (src_relocs, relax_info->src_count,
8168 sizeof (source_reloc), source_reloc_compare);
8169 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8170 internal_reloc_compare);
8171
8172 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
8173 XTENSA_PROP_SEC_NAME, FALSE);
8174 if (ptblsize < 0)
8175 {
8176 ok = FALSE;
8177 goto error_return;
8178 }
8179
8180 prev_i = -1;
8181 for (i = 0; i < relax_info->src_count; i++)
8182 {
8183 Elf_Internal_Rela *irel = NULL;
8184
8185 rel = &src_relocs[i];
8186 if (get_l32r_opcode () != rel->opcode)
8187 continue;
8188 irel = get_irel_at_offset (sec, internal_relocs,
8189 rel->r_rel.target_offset);
8190
8191 /* If the relocation on this is not a simple R_XTENSA_32 or
8192 R_XTENSA_PLT then do not consider it. This may happen when
8193 the difference of two symbols is used in a literal. */
8194 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
8195 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
8196 continue;
8197
8198 /* If the target_offset for this relocation is the same as the
8199 previous relocation, then we've already considered whether the
8200 literal can be coalesced. Skip to the next one.... */
8201 if (i != 0 && prev_i != -1
8202 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
8203 continue;
8204 prev_i = i;
8205
8206 if (last_loc_is_prev &&
8207 last_target_offset + 4 != rel->r_rel.target_offset)
8208 last_loc_is_prev = FALSE;
8209
8210 /* Check if the relocation was from an L32R that is being removed
8211 because a CALLX was converted to a direct CALL, and check if
8212 there are no other relocations to the literal. */
8213 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
8214 sec, prop_table, ptblsize))
8215 {
8216 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
8217 irel, rel, prop_table, ptblsize))
8218 {
8219 ok = FALSE;
8220 goto error_return;
8221 }
8222 last_target_offset = rel->r_rel.target_offset;
8223 continue;
8224 }
8225
8226 if (!identify_literal_placement (abfd, sec, contents, link_info,
8227 values,
8228 &last_loc_is_prev, irel,
8229 relax_info->src_count - i, rel,
8230 prop_table, ptblsize,
8231 &target_sec_cache, rel->is_abs_literal))
8232 {
8233 ok = FALSE;
8234 goto error_return;
8235 }
8236 last_target_offset = rel->r_rel.target_offset;
8237 }
8238
8239 #if DEBUG
8240 print_removed_literals (stderr, &relax_info->removed_list);
8241 print_action_list (stderr, &relax_info->action_list);
8242 #endif /* DEBUG */
8243
8244 error_return:
8245 if (prop_table) free (prop_table);
8246 clear_section_cache (&target_sec_cache);
8247
8248 release_contents (sec, contents);
8249 release_internal_relocs (sec, internal_relocs);
8250 return ok;
8251 }
8252
8253
8254 static Elf_Internal_Rela *
8255 get_irel_at_offset (asection *sec,
8256 Elf_Internal_Rela *internal_relocs,
8257 bfd_vma offset)
8258 {
8259 unsigned i;
8260 Elf_Internal_Rela *irel;
8261 unsigned r_type;
8262 Elf_Internal_Rela key;
8263
8264 if (!internal_relocs)
8265 return NULL;
8266
8267 key.r_offset = offset;
8268 irel = bsearch (&key, internal_relocs, sec->reloc_count,
8269 sizeof (Elf_Internal_Rela), internal_reloc_matches);
8270 if (!irel)
8271 return NULL;
8272
8273 /* bsearch does not guarantee which will be returned if there are
8274 multiple matches. We need the first that is not an alignment. */
8275 i = irel - internal_relocs;
8276 while (i > 0)
8277 {
8278 if (internal_relocs[i-1].r_offset != offset)
8279 break;
8280 i--;
8281 }
8282 for ( ; i < sec->reloc_count; i++)
8283 {
8284 irel = &internal_relocs[i];
8285 r_type = ELF32_R_TYPE (irel->r_info);
8286 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
8287 return irel;
8288 }
8289
8290 return NULL;
8291 }
8292
8293
8294 bfd_boolean
8295 is_removable_literal (const source_reloc *rel,
8296 int i,
8297 const source_reloc *src_relocs,
8298 int src_count,
8299 asection *sec,
8300 property_table_entry *prop_table,
8301 int ptblsize)
8302 {
8303 const source_reloc *curr_rel;
8304 property_table_entry *entry;
8305
8306 if (!rel->is_null)
8307 return FALSE;
8308
8309 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8310 sec->vma + rel->r_rel.target_offset);
8311 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8312 return FALSE;
8313
8314 for (++i; i < src_count; ++i)
8315 {
8316 curr_rel = &src_relocs[i];
8317 /* If all others have the same target offset.... */
8318 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
8319 return TRUE;
8320
8321 if (!curr_rel->is_null
8322 && !xtensa_is_property_section (curr_rel->source_sec)
8323 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
8324 return FALSE;
8325 }
8326 return TRUE;
8327 }
8328
8329
8330 bfd_boolean
8331 remove_dead_literal (bfd *abfd,
8332 asection *sec,
8333 struct bfd_link_info *link_info,
8334 Elf_Internal_Rela *internal_relocs,
8335 Elf_Internal_Rela *irel,
8336 source_reloc *rel,
8337 property_table_entry *prop_table,
8338 int ptblsize)
8339 {
8340 property_table_entry *entry;
8341 xtensa_relax_info *relax_info;
8342
8343 relax_info = get_xtensa_relax_info (sec);
8344 if (!relax_info)
8345 return FALSE;
8346
8347 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8348 sec->vma + rel->r_rel.target_offset);
8349
8350 /* Mark the unused literal so that it will be removed. */
8351 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
8352
8353 text_action_add (&relax_info->action_list,
8354 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8355
8356 /* If the section is 4-byte aligned, do not add fill. */
8357 if (sec->alignment_power > 2)
8358 {
8359 int fill_extra_space;
8360 bfd_vma entry_sec_offset;
8361 text_action *fa;
8362 property_table_entry *the_add_entry;
8363 int removed_diff;
8364
8365 if (entry)
8366 entry_sec_offset = entry->address - sec->vma + entry->size;
8367 else
8368 entry_sec_offset = rel->r_rel.target_offset + 4;
8369
8370 /* If the literal range is at the end of the section,
8371 do not add fill. */
8372 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8373 entry_sec_offset);
8374 fill_extra_space = compute_fill_extra_space (the_add_entry);
8375
8376 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8377 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8378 -4, fill_extra_space);
8379 if (fa)
8380 adjust_fill_action (fa, removed_diff);
8381 else
8382 text_action_add (&relax_info->action_list,
8383 ta_fill, sec, entry_sec_offset, removed_diff);
8384 }
8385
8386 /* Zero out the relocation on this literal location. */
8387 if (irel)
8388 {
8389 if (elf_hash_table (link_info)->dynamic_sections_created)
8390 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8391
8392 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8393 pin_internal_relocs (sec, internal_relocs);
8394 }
8395
8396 /* Do not modify "last_loc_is_prev". */
8397 return TRUE;
8398 }
8399
8400
8401 bfd_boolean
8402 identify_literal_placement (bfd *abfd,
8403 asection *sec,
8404 bfd_byte *contents,
8405 struct bfd_link_info *link_info,
8406 value_map_hash_table *values,
8407 bfd_boolean *last_loc_is_prev_p,
8408 Elf_Internal_Rela *irel,
8409 int remaining_src_rels,
8410 source_reloc *rel,
8411 property_table_entry *prop_table,
8412 int ptblsize,
8413 section_cache_t *target_sec_cache,
8414 bfd_boolean is_abs_literal)
8415 {
8416 literal_value val;
8417 value_map *val_map;
8418 xtensa_relax_info *relax_info;
8419 bfd_boolean literal_placed = FALSE;
8420 r_reloc r_rel;
8421 unsigned long value;
8422 bfd_boolean final_static_link;
8423 bfd_size_type sec_size;
8424
8425 relax_info = get_xtensa_relax_info (sec);
8426 if (!relax_info)
8427 return FALSE;
8428
8429 sec_size = bfd_get_section_limit (abfd, sec);
8430
8431 final_static_link =
8432 (!link_info->relocatable
8433 && !elf_hash_table (link_info)->dynamic_sections_created);
8434
8435 /* The placement algorithm first checks to see if the literal is
8436 already in the value map. If so and the value map is reachable
8437 from all uses, then the literal is moved to that location. If
8438 not, then we identify the last location where a fresh literal was
8439 placed. If the literal can be safely moved there, then we do so.
8440 If not, then we assume that the literal is not to move and leave
8441 the literal where it is, marking it as the last literal
8442 location. */
8443
8444 /* Find the literal value. */
8445 value = 0;
8446 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8447 if (!irel)
8448 {
8449 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
8450 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
8451 }
8452 init_literal_value (&val, &r_rel, value, is_abs_literal);
8453
8454 /* Check if we've seen another literal with the same value that
8455 is in the same output section. */
8456 val_map = value_map_get_cached_value (values, &val, final_static_link);
8457
8458 if (val_map
8459 && (r_reloc_get_section (&val_map->loc)->output_section
8460 == sec->output_section)
8461 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
8462 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
8463 {
8464 /* No change to last_loc_is_prev. */
8465 literal_placed = TRUE;
8466 }
8467
8468 /* For relocatable links, do not try to move literals. To do it
8469 correctly might increase the number of relocations in an input
8470 section making the default relocatable linking fail. */
8471 if (!link_info->relocatable && !literal_placed
8472 && values->has_last_loc && !(*last_loc_is_prev_p))
8473 {
8474 asection *target_sec = r_reloc_get_section (&values->last_loc);
8475 if (target_sec && target_sec->output_section == sec->output_section)
8476 {
8477 /* Increment the virtual offset. */
8478 r_reloc try_loc = values->last_loc;
8479 try_loc.virtual_offset += 4;
8480
8481 /* There is a last loc that was in the same output section. */
8482 if (relocations_reach (rel, remaining_src_rels, &try_loc)
8483 && move_shared_literal (sec, link_info, rel,
8484 prop_table, ptblsize,
8485 &try_loc, &val, target_sec_cache))
8486 {
8487 values->last_loc.virtual_offset += 4;
8488 literal_placed = TRUE;
8489 if (!val_map)
8490 val_map = add_value_map (values, &val, &try_loc,
8491 final_static_link);
8492 else
8493 val_map->loc = try_loc;
8494 }
8495 }
8496 }
8497
8498 if (!literal_placed)
8499 {
8500 /* Nothing worked, leave the literal alone but update the last loc. */
8501 values->has_last_loc = TRUE;
8502 values->last_loc = rel->r_rel;
8503 if (!val_map)
8504 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
8505 else
8506 val_map->loc = rel->r_rel;
8507 *last_loc_is_prev_p = TRUE;
8508 }
8509
8510 return TRUE;
8511 }
8512
8513
8514 /* Check if the original relocations (presumably on L32R instructions)
8515 identified by reloc[0..N] can be changed to reference the literal
8516 identified by r_rel. If r_rel is out of range for any of the
8517 original relocations, then we don't want to coalesce the original
8518 literal with the one at r_rel. We only check reloc[0..N], where the
8519 offsets are all the same as for reloc[0] (i.e., they're all
8520 referencing the same literal) and where N is also bounded by the
8521 number of remaining entries in the "reloc" array. The "reloc" array
8522 is sorted by target offset so we know all the entries for the same
8523 literal will be contiguous. */
8524
8525 static bfd_boolean
8526 relocations_reach (source_reloc *reloc,
8527 int remaining_relocs,
8528 const r_reloc *r_rel)
8529 {
8530 bfd_vma from_offset, source_address, dest_address;
8531 asection *sec;
8532 int i;
8533
8534 if (!r_reloc_is_defined (r_rel))
8535 return FALSE;
8536
8537 sec = r_reloc_get_section (r_rel);
8538 from_offset = reloc[0].r_rel.target_offset;
8539
8540 for (i = 0; i < remaining_relocs; i++)
8541 {
8542 if (reloc[i].r_rel.target_offset != from_offset)
8543 break;
8544
8545 /* Ignore relocations that have been removed. */
8546 if (reloc[i].is_null)
8547 continue;
8548
8549 /* The original and new output section for these must be the same
8550 in order to coalesce. */
8551 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
8552 != sec->output_section)
8553 return FALSE;
8554
8555 /* Absolute literals in the same output section can always be
8556 combined. */
8557 if (reloc[i].is_abs_literal)
8558 continue;
8559
8560 /* A literal with no PC-relative relocations can be moved anywhere. */
8561 if (reloc[i].opnd != -1)
8562 {
8563 /* Otherwise, check to see that it fits. */
8564 source_address = (reloc[i].source_sec->output_section->vma
8565 + reloc[i].source_sec->output_offset
8566 + reloc[i].r_rel.rela.r_offset);
8567 dest_address = (sec->output_section->vma
8568 + sec->output_offset
8569 + r_rel->target_offset);
8570
8571 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
8572 source_address, dest_address))
8573 return FALSE;
8574 }
8575 }
8576
8577 return TRUE;
8578 }
8579
8580
8581 /* Move a literal to another literal location because it is
8582 the same as the other literal value. */
8583
8584 static bfd_boolean
8585 coalesce_shared_literal (asection *sec,
8586 source_reloc *rel,
8587 property_table_entry *prop_table,
8588 int ptblsize,
8589 value_map *val_map)
8590 {
8591 property_table_entry *entry;
8592 text_action *fa;
8593 property_table_entry *the_add_entry;
8594 int removed_diff;
8595 xtensa_relax_info *relax_info;
8596
8597 relax_info = get_xtensa_relax_info (sec);
8598 if (!relax_info)
8599 return FALSE;
8600
8601 entry = elf_xtensa_find_property_entry
8602 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
8603 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8604 return TRUE;
8605
8606 /* Mark that the literal will be coalesced. */
8607 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
8608
8609 text_action_add (&relax_info->action_list,
8610 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8611
8612 /* If the section is 4-byte aligned, do not add fill. */
8613 if (sec->alignment_power > 2)
8614 {
8615 int fill_extra_space;
8616 bfd_vma entry_sec_offset;
8617
8618 if (entry)
8619 entry_sec_offset = entry->address - sec->vma + entry->size;
8620 else
8621 entry_sec_offset = rel->r_rel.target_offset + 4;
8622
8623 /* If the literal range is at the end of the section,
8624 do not add fill. */
8625 fill_extra_space = 0;
8626 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8627 entry_sec_offset);
8628 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8629 fill_extra_space = the_add_entry->size;
8630
8631 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8632 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8633 -4, fill_extra_space);
8634 if (fa)
8635 adjust_fill_action (fa, removed_diff);
8636 else
8637 text_action_add (&relax_info->action_list,
8638 ta_fill, sec, entry_sec_offset, removed_diff);
8639 }
8640
8641 return TRUE;
8642 }
8643
8644
8645 /* Move a literal to another location. This may actually increase the
8646 total amount of space used because of alignments so we need to do
8647 this carefully. Also, it may make a branch go out of range. */
8648
8649 static bfd_boolean
8650 move_shared_literal (asection *sec,
8651 struct bfd_link_info *link_info,
8652 source_reloc *rel,
8653 property_table_entry *prop_table,
8654 int ptblsize,
8655 const r_reloc *target_loc,
8656 const literal_value *lit_value,
8657 section_cache_t *target_sec_cache)
8658 {
8659 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
8660 text_action *fa, *target_fa;
8661 int removed_diff;
8662 xtensa_relax_info *relax_info, *target_relax_info;
8663 asection *target_sec;
8664 ebb_t *ebb;
8665 ebb_constraint ebb_table;
8666 bfd_boolean relocs_fit;
8667
8668 /* If this routine always returns FALSE, the literals that cannot be
8669 coalesced will not be moved. */
8670 if (elf32xtensa_no_literal_movement)
8671 return FALSE;
8672
8673 relax_info = get_xtensa_relax_info (sec);
8674 if (!relax_info)
8675 return FALSE;
8676
8677 target_sec = r_reloc_get_section (target_loc);
8678 target_relax_info = get_xtensa_relax_info (target_sec);
8679
8680 /* Literals to undefined sections may not be moved because they
8681 must report an error. */
8682 if (bfd_is_und_section (target_sec))
8683 return FALSE;
8684
8685 src_entry = elf_xtensa_find_property_entry
8686 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
8687
8688 if (!section_cache_section (target_sec_cache, target_sec, link_info))
8689 return FALSE;
8690
8691 target_entry = elf_xtensa_find_property_entry
8692 (target_sec_cache->ptbl, target_sec_cache->pte_count,
8693 target_sec->vma + target_loc->target_offset);
8694
8695 if (!target_entry)
8696 return FALSE;
8697
8698 /* Make sure that we have not broken any branches. */
8699 relocs_fit = FALSE;
8700
8701 init_ebb_constraint (&ebb_table);
8702 ebb = &ebb_table.ebb;
8703 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
8704 target_sec_cache->content_length,
8705 target_sec_cache->ptbl, target_sec_cache->pte_count,
8706 target_sec_cache->relocs, target_sec_cache->reloc_count);
8707
8708 /* Propose to add 4 bytes + worst-case alignment size increase to
8709 destination. */
8710 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
8711 ta_fill, target_loc->target_offset,
8712 -4 - (1 << target_sec->alignment_power), TRUE);
8713
8714 /* Check all of the PC-relative relocations to make sure they still fit. */
8715 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
8716 target_sec_cache->contents,
8717 target_sec_cache->relocs,
8718 &ebb_table, NULL);
8719
8720 if (!relocs_fit)
8721 return FALSE;
8722
8723 text_action_add_literal (&target_relax_info->action_list,
8724 ta_add_literal, target_loc, lit_value, -4);
8725
8726 if (target_sec->alignment_power > 2 && target_entry != src_entry)
8727 {
8728 /* May need to add or remove some fill to maintain alignment. */
8729 int fill_extra_space;
8730 bfd_vma entry_sec_offset;
8731
8732 entry_sec_offset =
8733 target_entry->address - target_sec->vma + target_entry->size;
8734
8735 /* If the literal range is at the end of the section,
8736 do not add fill. */
8737 fill_extra_space = 0;
8738 the_add_entry =
8739 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
8740 target_sec_cache->pte_count,
8741 entry_sec_offset);
8742 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8743 fill_extra_space = the_add_entry->size;
8744
8745 target_fa = find_fill_action (&target_relax_info->action_list,
8746 target_sec, entry_sec_offset);
8747 removed_diff = compute_removed_action_diff (target_fa, target_sec,
8748 entry_sec_offset, 4,
8749 fill_extra_space);
8750 if (target_fa)
8751 adjust_fill_action (target_fa, removed_diff);
8752 else
8753 text_action_add (&target_relax_info->action_list,
8754 ta_fill, target_sec, entry_sec_offset, removed_diff);
8755 }
8756
8757 /* Mark that the literal will be moved to the new location. */
8758 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
8759
8760 /* Remove the literal. */
8761 text_action_add (&relax_info->action_list,
8762 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8763
8764 /* If the section is 4-byte aligned, do not add fill. */
8765 if (sec->alignment_power > 2 && target_entry != src_entry)
8766 {
8767 int fill_extra_space;
8768 bfd_vma entry_sec_offset;
8769
8770 if (src_entry)
8771 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
8772 else
8773 entry_sec_offset = rel->r_rel.target_offset+4;
8774
8775 /* If the literal range is at the end of the section,
8776 do not add fill. */
8777 fill_extra_space = 0;
8778 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8779 entry_sec_offset);
8780 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8781 fill_extra_space = the_add_entry->size;
8782
8783 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8784 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8785 -4, fill_extra_space);
8786 if (fa)
8787 adjust_fill_action (fa, removed_diff);
8788 else
8789 text_action_add (&relax_info->action_list,
8790 ta_fill, sec, entry_sec_offset, removed_diff);
8791 }
8792
8793 return TRUE;
8794 }
8795
8796 \f
8797 /* Second relaxation pass. */
8798
8799 /* Modify all of the relocations to point to the right spot, and if this
8800 is a relaxable section, delete the unwanted literals and fix the
8801 section size. */
8802
8803 bfd_boolean
8804 relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
8805 {
8806 Elf_Internal_Rela *internal_relocs;
8807 xtensa_relax_info *relax_info;
8808 bfd_byte *contents;
8809 bfd_boolean ok = TRUE;
8810 unsigned i;
8811 bfd_boolean rv = FALSE;
8812 bfd_boolean virtual_action;
8813 bfd_size_type sec_size;
8814
8815 sec_size = bfd_get_section_limit (abfd, sec);
8816 relax_info = get_xtensa_relax_info (sec);
8817 BFD_ASSERT (relax_info);
8818
8819 /* First translate any of the fixes that have been added already. */
8820 translate_section_fixes (sec);
8821
8822 /* Handle property sections (e.g., literal tables) specially. */
8823 if (xtensa_is_property_section (sec))
8824 {
8825 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
8826 return relax_property_section (abfd, sec, link_info);
8827 }
8828
8829 internal_relocs = retrieve_internal_relocs (abfd, sec,
8830 link_info->keep_memory);
8831 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8832 if (contents == NULL && sec_size != 0)
8833 {
8834 ok = FALSE;
8835 goto error_return;
8836 }
8837
8838 if (internal_relocs)
8839 {
8840 for (i = 0; i < sec->reloc_count; i++)
8841 {
8842 Elf_Internal_Rela *irel;
8843 xtensa_relax_info *target_relax_info;
8844 bfd_vma source_offset, old_source_offset;
8845 r_reloc r_rel;
8846 unsigned r_type;
8847 asection *target_sec;
8848
8849 /* Locally change the source address.
8850 Translate the target to the new target address.
8851 If it points to this section and has been removed,
8852 NULLify it.
8853 Write it back. */
8854
8855 irel = &internal_relocs[i];
8856 source_offset = irel->r_offset;
8857 old_source_offset = source_offset;
8858
8859 r_type = ELF32_R_TYPE (irel->r_info);
8860 r_reloc_init (&r_rel, abfd, irel, contents,
8861 bfd_get_section_limit (abfd, sec));
8862
8863 /* If this section could have changed then we may need to
8864 change the relocation's offset. */
8865
8866 if (relax_info->is_relaxable_literal_section
8867 || relax_info->is_relaxable_asm_section)
8868 {
8869 pin_internal_relocs (sec, internal_relocs);
8870
8871 if (r_type != R_XTENSA_NONE
8872 && find_removed_literal (&relax_info->removed_list,
8873 irel->r_offset))
8874 {
8875 /* Remove this relocation. */
8876 if (elf_hash_table (link_info)->dynamic_sections_created)
8877 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8878 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8879 irel->r_offset = offset_with_removed_text
8880 (&relax_info->action_list, irel->r_offset);
8881 continue;
8882 }
8883
8884 if (r_type == R_XTENSA_ASM_SIMPLIFY)
8885 {
8886 text_action *action =
8887 find_insn_action (&relax_info->action_list,
8888 irel->r_offset);
8889 if (action && (action->action == ta_convert_longcall
8890 || action->action == ta_remove_longcall))
8891 {
8892 bfd_reloc_status_type retval;
8893 char *error_message = NULL;
8894
8895 retval = contract_asm_expansion (contents, sec_size,
8896 irel, &error_message);
8897 if (retval != bfd_reloc_ok)
8898 {
8899 (*link_info->callbacks->reloc_dangerous)
8900 (link_info, error_message, abfd, sec,
8901 irel->r_offset);
8902 goto error_return;
8903 }
8904 /* Update the action so that the code that moves
8905 the contents will do the right thing. */
8906 if (action->action == ta_remove_longcall)
8907 action->action = ta_remove_insn;
8908 else
8909 action->action = ta_none;
8910 /* Refresh the info in the r_rel. */
8911 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8912 r_type = ELF32_R_TYPE (irel->r_info);
8913 }
8914 }
8915
8916 source_offset = offset_with_removed_text
8917 (&relax_info->action_list, irel->r_offset);
8918 irel->r_offset = source_offset;
8919 }
8920
8921 /* If the target section could have changed then
8922 we may need to change the relocation's target offset. */
8923
8924 target_sec = r_reloc_get_section (&r_rel);
8925
8926 /* For a reference to a discarded section from a DWARF section,
8927 i.e., where action_discarded is PRETEND, the symbol will
8928 eventually be modified to refer to the kept section (at least if
8929 the kept and discarded sections are the same size). Anticipate
8930 that here and adjust things accordingly. */
8931 if (! elf_xtensa_ignore_discarded_relocs (sec)
8932 && elf_xtensa_action_discarded (sec) == PRETEND
8933 && sec->sec_info_type != ELF_INFO_TYPE_STABS
8934 && target_sec != NULL
8935 && elf_discarded_section (target_sec))
8936 {
8937 /* It would be natural to call _bfd_elf_check_kept_section
8938 here, but it's not exported from elflink.c. It's also a
8939 fairly expensive check. Adjusting the relocations to the
8940 discarded section is fairly harmless; it will only adjust
8941 some addends and difference values. If it turns out that
8942 _bfd_elf_check_kept_section fails later, it won't matter,
8943 so just compare the section names to find the right group
8944 member. */
8945 asection *kept = target_sec->kept_section;
8946 if (kept != NULL)
8947 {
8948 if ((kept->flags & SEC_GROUP) != 0)
8949 {
8950 asection *first = elf_next_in_group (kept);
8951 asection *s = first;
8952
8953 kept = NULL;
8954 while (s != NULL)
8955 {
8956 if (strcmp (s->name, target_sec->name) == 0)
8957 {
8958 kept = s;
8959 break;
8960 }
8961 s = elf_next_in_group (s);
8962 if (s == first)
8963 break;
8964 }
8965 }
8966 }
8967 if (kept != NULL
8968 && ((target_sec->rawsize != 0
8969 ? target_sec->rawsize : target_sec->size)
8970 == (kept->rawsize != 0 ? kept->rawsize : kept->size)))
8971 target_sec = kept;
8972 }
8973
8974 target_relax_info = get_xtensa_relax_info (target_sec);
8975 if (target_relax_info
8976 && (target_relax_info->is_relaxable_literal_section
8977 || target_relax_info->is_relaxable_asm_section))
8978 {
8979 r_reloc new_reloc;
8980 target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
8981
8982 if (r_type == R_XTENSA_DIFF8
8983 || r_type == R_XTENSA_DIFF16
8984 || r_type == R_XTENSA_DIFF32)
8985 {
8986 bfd_vma diff_value = 0, new_end_offset, diff_mask = 0;
8987
8988 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
8989 {
8990 (*link_info->callbacks->reloc_dangerous)
8991 (link_info, _("invalid relocation address"),
8992 abfd, sec, old_source_offset);
8993 goto error_return;
8994 }
8995
8996 switch (r_type)
8997 {
8998 case R_XTENSA_DIFF8:
8999 diff_value =
9000 bfd_get_8 (abfd, &contents[old_source_offset]);
9001 break;
9002 case R_XTENSA_DIFF16:
9003 diff_value =
9004 bfd_get_16 (abfd, &contents[old_source_offset]);
9005 break;
9006 case R_XTENSA_DIFF32:
9007 diff_value =
9008 bfd_get_32 (abfd, &contents[old_source_offset]);
9009 break;
9010 }
9011
9012 new_end_offset = offset_with_removed_text
9013 (&target_relax_info->action_list,
9014 r_rel.target_offset + diff_value);
9015 diff_value = new_end_offset - new_reloc.target_offset;
9016
9017 switch (r_type)
9018 {
9019 case R_XTENSA_DIFF8:
9020 diff_mask = 0xff;
9021 bfd_put_8 (abfd, diff_value,
9022 &contents[old_source_offset]);
9023 break;
9024 case R_XTENSA_DIFF16:
9025 diff_mask = 0xffff;
9026 bfd_put_16 (abfd, diff_value,
9027 &contents[old_source_offset]);
9028 break;
9029 case R_XTENSA_DIFF32:
9030 diff_mask = 0xffffffff;
9031 bfd_put_32 (abfd, diff_value,
9032 &contents[old_source_offset]);
9033 break;
9034 }
9035
9036 /* Check for overflow. */
9037 if ((diff_value & ~diff_mask) != 0)
9038 {
9039 (*link_info->callbacks->reloc_dangerous)
9040 (link_info, _("overflow after relaxation"),
9041 abfd, sec, old_source_offset);
9042 goto error_return;
9043 }
9044
9045 pin_contents (sec, contents);
9046 }
9047
9048 /* If the relocation still references a section in the same
9049 input file, modify the relocation directly instead of
9050 adding a "fix" record. */
9051 if (target_sec->owner == abfd)
9052 {
9053 unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
9054 irel->r_info = ELF32_R_INFO (r_symndx, r_type);
9055 irel->r_addend = new_reloc.rela.r_addend;
9056 pin_internal_relocs (sec, internal_relocs);
9057 }
9058 else
9059 {
9060 bfd_vma addend_displacement;
9061 reloc_bfd_fix *fix;
9062
9063 addend_displacement =
9064 new_reloc.target_offset + new_reloc.virtual_offset;
9065 fix = reloc_bfd_fix_init (sec, source_offset, r_type,
9066 target_sec,
9067 addend_displacement, TRUE);
9068 add_fix (sec, fix);
9069 }
9070 }
9071 }
9072 }
9073
9074 if ((relax_info->is_relaxable_literal_section
9075 || relax_info->is_relaxable_asm_section)
9076 && relax_info->action_list.head)
9077 {
9078 /* Walk through the planned actions and build up a table
9079 of move, copy and fill records. Use the move, copy and
9080 fill records to perform the actions once. */
9081
9082 int removed = 0;
9083 bfd_size_type final_size, copy_size, orig_insn_size;
9084 bfd_byte *scratch = NULL;
9085 bfd_byte *dup_contents = NULL;
9086 bfd_size_type orig_size = sec->size;
9087 bfd_vma orig_dot = 0;
9088 bfd_vma orig_dot_copied = 0; /* Byte copied already from
9089 orig dot in physical memory. */
9090 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
9091 bfd_vma dup_dot = 0;
9092
9093 text_action *action = relax_info->action_list.head;
9094
9095 final_size = sec->size;
9096 for (action = relax_info->action_list.head; action;
9097 action = action->next)
9098 {
9099 final_size -= action->removed_bytes;
9100 }
9101
9102 scratch = (bfd_byte *) bfd_zmalloc (final_size);
9103 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
9104
9105 /* The dot is the current fill location. */
9106 #if DEBUG
9107 print_action_list (stderr, &relax_info->action_list);
9108 #endif
9109
9110 for (action = relax_info->action_list.head; action;
9111 action = action->next)
9112 {
9113 virtual_action = FALSE;
9114 if (action->offset > orig_dot)
9115 {
9116 orig_dot += orig_dot_copied;
9117 orig_dot_copied = 0;
9118 orig_dot_vo = 0;
9119 /* Out of the virtual world. */
9120 }
9121
9122 if (action->offset > orig_dot)
9123 {
9124 copy_size = action->offset - orig_dot;
9125 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9126 orig_dot += copy_size;
9127 dup_dot += copy_size;
9128 BFD_ASSERT (action->offset == orig_dot);
9129 }
9130 else if (action->offset < orig_dot)
9131 {
9132 if (action->action == ta_fill
9133 && action->offset - action->removed_bytes == orig_dot)
9134 {
9135 /* This is OK because the fill only effects the dup_dot. */
9136 }
9137 else if (action->action == ta_add_literal)
9138 {
9139 /* TBD. Might need to handle this. */
9140 }
9141 }
9142 if (action->offset == orig_dot)
9143 {
9144 if (action->virtual_offset > orig_dot_vo)
9145 {
9146 if (orig_dot_vo == 0)
9147 {
9148 /* Need to copy virtual_offset bytes. Probably four. */
9149 copy_size = action->virtual_offset - orig_dot_vo;
9150 memmove (&dup_contents[dup_dot],
9151 &contents[orig_dot], copy_size);
9152 orig_dot_copied = copy_size;
9153 dup_dot += copy_size;
9154 }
9155 virtual_action = TRUE;
9156 }
9157 else
9158 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
9159 }
9160 switch (action->action)
9161 {
9162 case ta_remove_literal:
9163 case ta_remove_insn:
9164 BFD_ASSERT (action->removed_bytes >= 0);
9165 orig_dot += action->removed_bytes;
9166 break;
9167
9168 case ta_narrow_insn:
9169 orig_insn_size = 3;
9170 copy_size = 2;
9171 memmove (scratch, &contents[orig_dot], orig_insn_size);
9172 BFD_ASSERT (action->removed_bytes == 1);
9173 rv = narrow_instruction (scratch, final_size, 0);
9174 BFD_ASSERT (rv);
9175 memmove (&dup_contents[dup_dot], scratch, copy_size);
9176 orig_dot += orig_insn_size;
9177 dup_dot += copy_size;
9178 break;
9179
9180 case ta_fill:
9181 if (action->removed_bytes >= 0)
9182 orig_dot += action->removed_bytes;
9183 else
9184 {
9185 /* Already zeroed in dup_contents. Just bump the
9186 counters. */
9187 dup_dot += (-action->removed_bytes);
9188 }
9189 break;
9190
9191 case ta_none:
9192 BFD_ASSERT (action->removed_bytes == 0);
9193 break;
9194
9195 case ta_convert_longcall:
9196 case ta_remove_longcall:
9197 /* These will be removed or converted before we get here. */
9198 BFD_ASSERT (0);
9199 break;
9200
9201 case ta_widen_insn:
9202 orig_insn_size = 2;
9203 copy_size = 3;
9204 memmove (scratch, &contents[orig_dot], orig_insn_size);
9205 BFD_ASSERT (action->removed_bytes == -1);
9206 rv = widen_instruction (scratch, final_size, 0);
9207 BFD_ASSERT (rv);
9208 memmove (&dup_contents[dup_dot], scratch, copy_size);
9209 orig_dot += orig_insn_size;
9210 dup_dot += copy_size;
9211 break;
9212
9213 case ta_add_literal:
9214 orig_insn_size = 0;
9215 copy_size = 4;
9216 BFD_ASSERT (action->removed_bytes == -4);
9217 /* TBD -- place the literal value here and insert
9218 into the table. */
9219 memset (&dup_contents[dup_dot], 0, 4);
9220 pin_internal_relocs (sec, internal_relocs);
9221 pin_contents (sec, contents);
9222
9223 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
9224 relax_info, &internal_relocs, &action->value))
9225 goto error_return;
9226
9227 if (virtual_action)
9228 orig_dot_vo += copy_size;
9229
9230 orig_dot += orig_insn_size;
9231 dup_dot += copy_size;
9232 break;
9233
9234 default:
9235 /* Not implemented yet. */
9236 BFD_ASSERT (0);
9237 break;
9238 }
9239
9240 removed += action->removed_bytes;
9241 BFD_ASSERT (dup_dot <= final_size);
9242 BFD_ASSERT (orig_dot <= orig_size);
9243 }
9244
9245 orig_dot += orig_dot_copied;
9246 orig_dot_copied = 0;
9247
9248 if (orig_dot != orig_size)
9249 {
9250 copy_size = orig_size - orig_dot;
9251 BFD_ASSERT (orig_size > orig_dot);
9252 BFD_ASSERT (dup_dot + copy_size == final_size);
9253 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9254 orig_dot += copy_size;
9255 dup_dot += copy_size;
9256 }
9257 BFD_ASSERT (orig_size == orig_dot);
9258 BFD_ASSERT (final_size == dup_dot);
9259
9260 /* Move the dup_contents back. */
9261 if (final_size > orig_size)
9262 {
9263 /* Contents need to be reallocated. Swap the dup_contents into
9264 contents. */
9265 sec->contents = dup_contents;
9266 free (contents);
9267 contents = dup_contents;
9268 pin_contents (sec, contents);
9269 }
9270 else
9271 {
9272 BFD_ASSERT (final_size <= orig_size);
9273 memset (contents, 0, orig_size);
9274 memcpy (contents, dup_contents, final_size);
9275 free (dup_contents);
9276 }
9277 free (scratch);
9278 pin_contents (sec, contents);
9279
9280 if (sec->rawsize == 0)
9281 sec->rawsize = sec->size;
9282 sec->size = final_size;
9283 }
9284
9285 error_return:
9286 release_internal_relocs (sec, internal_relocs);
9287 release_contents (sec, contents);
9288 return ok;
9289 }
9290
9291
9292 static bfd_boolean
9293 translate_section_fixes (asection *sec)
9294 {
9295 xtensa_relax_info *relax_info;
9296 reloc_bfd_fix *r;
9297
9298 relax_info = get_xtensa_relax_info (sec);
9299 if (!relax_info)
9300 return TRUE;
9301
9302 for (r = relax_info->fix_list; r != NULL; r = r->next)
9303 if (!translate_reloc_bfd_fix (r))
9304 return FALSE;
9305
9306 return TRUE;
9307 }
9308
9309
9310 /* Translate a fix given the mapping in the relax info for the target
9311 section. If it has already been translated, no work is required. */
9312
9313 static bfd_boolean
9314 translate_reloc_bfd_fix (reloc_bfd_fix *fix)
9315 {
9316 reloc_bfd_fix new_fix;
9317 asection *sec;
9318 xtensa_relax_info *relax_info;
9319 removed_literal *removed;
9320 bfd_vma new_offset, target_offset;
9321
9322 if (fix->translated)
9323 return TRUE;
9324
9325 sec = fix->target_sec;
9326 target_offset = fix->target_offset;
9327
9328 relax_info = get_xtensa_relax_info (sec);
9329 if (!relax_info)
9330 {
9331 fix->translated = TRUE;
9332 return TRUE;
9333 }
9334
9335 new_fix = *fix;
9336
9337 /* The fix does not need to be translated if the section cannot change. */
9338 if (!relax_info->is_relaxable_literal_section
9339 && !relax_info->is_relaxable_asm_section)
9340 {
9341 fix->translated = TRUE;
9342 return TRUE;
9343 }
9344
9345 /* If the literal has been moved and this relocation was on an
9346 opcode, then the relocation should move to the new literal
9347 location. Otherwise, the relocation should move within the
9348 section. */
9349
9350 removed = FALSE;
9351 if (is_operand_relocation (fix->src_type))
9352 {
9353 /* Check if the original relocation is against a literal being
9354 removed. */
9355 removed = find_removed_literal (&relax_info->removed_list,
9356 target_offset);
9357 }
9358
9359 if (removed)
9360 {
9361 asection *new_sec;
9362
9363 /* The fact that there is still a relocation to this literal indicates
9364 that the literal is being coalesced, not simply removed. */
9365 BFD_ASSERT (removed->to.abfd != NULL);
9366
9367 /* This was moved to some other address (possibly another section). */
9368 new_sec = r_reloc_get_section (&removed->to);
9369 if (new_sec != sec)
9370 {
9371 sec = new_sec;
9372 relax_info = get_xtensa_relax_info (sec);
9373 if (!relax_info ||
9374 (!relax_info->is_relaxable_literal_section
9375 && !relax_info->is_relaxable_asm_section))
9376 {
9377 target_offset = removed->to.target_offset;
9378 new_fix.target_sec = new_sec;
9379 new_fix.target_offset = target_offset;
9380 new_fix.translated = TRUE;
9381 *fix = new_fix;
9382 return TRUE;
9383 }
9384 }
9385 target_offset = removed->to.target_offset;
9386 new_fix.target_sec = new_sec;
9387 }
9388
9389 /* The target address may have been moved within its section. */
9390 new_offset = offset_with_removed_text (&relax_info->action_list,
9391 target_offset);
9392
9393 new_fix.target_offset = new_offset;
9394 new_fix.target_offset = new_offset;
9395 new_fix.translated = TRUE;
9396 *fix = new_fix;
9397 return TRUE;
9398 }
9399
9400
9401 /* Fix up a relocation to take account of removed literals. */
9402
9403 static asection *
9404 translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
9405 {
9406 xtensa_relax_info *relax_info;
9407 removed_literal *removed;
9408 bfd_vma target_offset, base_offset;
9409 text_action *act;
9410
9411 *new_rel = *orig_rel;
9412
9413 if (!r_reloc_is_defined (orig_rel))
9414 return sec ;
9415
9416 relax_info = get_xtensa_relax_info (sec);
9417 BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
9418 || relax_info->is_relaxable_asm_section));
9419
9420 target_offset = orig_rel->target_offset;
9421
9422 removed = FALSE;
9423 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
9424 {
9425 /* Check if the original relocation is against a literal being
9426 removed. */
9427 removed = find_removed_literal (&relax_info->removed_list,
9428 target_offset);
9429 }
9430 if (removed && removed->to.abfd)
9431 {
9432 asection *new_sec;
9433
9434 /* The fact that there is still a relocation to this literal indicates
9435 that the literal is being coalesced, not simply removed. */
9436 BFD_ASSERT (removed->to.abfd != NULL);
9437
9438 /* This was moved to some other address
9439 (possibly in another section). */
9440 *new_rel = removed->to;
9441 new_sec = r_reloc_get_section (new_rel);
9442 if (new_sec != sec)
9443 {
9444 sec = new_sec;
9445 relax_info = get_xtensa_relax_info (sec);
9446 if (!relax_info
9447 || (!relax_info->is_relaxable_literal_section
9448 && !relax_info->is_relaxable_asm_section))
9449 return sec;
9450 }
9451 target_offset = new_rel->target_offset;
9452 }
9453
9454 /* Find the base offset of the reloc symbol, excluding any addend from the
9455 reloc or from the section contents (for a partial_inplace reloc). Then
9456 find the adjusted values of the offsets due to relaxation. The base
9457 offset is needed to determine the change to the reloc's addend; the reloc
9458 addend should not be adjusted due to relaxations located before the base
9459 offset. */
9460
9461 base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
9462 act = relax_info->action_list.head;
9463 if (base_offset <= target_offset)
9464 {
9465 int base_removed = removed_by_actions (&act, base_offset, FALSE);
9466 int addend_removed = removed_by_actions (&act, target_offset, FALSE);
9467 new_rel->target_offset = target_offset - base_removed - addend_removed;
9468 new_rel->rela.r_addend -= addend_removed;
9469 }
9470 else
9471 {
9472 /* Handle a negative addend. The base offset comes first. */
9473 int tgt_removed = removed_by_actions (&act, target_offset, FALSE);
9474 int addend_removed = removed_by_actions (&act, base_offset, FALSE);
9475 new_rel->target_offset = target_offset - tgt_removed;
9476 new_rel->rela.r_addend += addend_removed;
9477 }
9478
9479 return sec;
9480 }
9481
9482
9483 /* For dynamic links, there may be a dynamic relocation for each
9484 literal. The number of dynamic relocations must be computed in
9485 size_dynamic_sections, which occurs before relaxation. When a
9486 literal is removed, this function checks if there is a corresponding
9487 dynamic relocation and shrinks the size of the appropriate dynamic
9488 relocation section accordingly. At this point, the contents of the
9489 dynamic relocation sections have not yet been filled in, so there's
9490 nothing else that needs to be done. */
9491
9492 static void
9493 shrink_dynamic_reloc_sections (struct bfd_link_info *info,
9494 bfd *abfd,
9495 asection *input_section,
9496 Elf_Internal_Rela *rel)
9497 {
9498 struct elf_xtensa_link_hash_table *htab;
9499 Elf_Internal_Shdr *symtab_hdr;
9500 struct elf_link_hash_entry **sym_hashes;
9501 unsigned long r_symndx;
9502 int r_type;
9503 struct elf_link_hash_entry *h;
9504 bfd_boolean dynamic_symbol;
9505
9506 htab = elf_xtensa_hash_table (info);
9507 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9508 sym_hashes = elf_sym_hashes (abfd);
9509
9510 r_type = ELF32_R_TYPE (rel->r_info);
9511 r_symndx = ELF32_R_SYM (rel->r_info);
9512
9513 if (r_symndx < symtab_hdr->sh_info)
9514 h = NULL;
9515 else
9516 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
9517
9518 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
9519
9520 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
9521 && (input_section->flags & SEC_ALLOC) != 0
9522 && (dynamic_symbol || info->shared))
9523 {
9524 asection *srel;
9525 bfd_boolean is_plt = FALSE;
9526
9527 if (dynamic_symbol && r_type == R_XTENSA_PLT)
9528 {
9529 srel = htab->srelplt;
9530 is_plt = TRUE;
9531 }
9532 else
9533 srel = htab->srelgot;
9534
9535 /* Reduce size of the .rela.* section by one reloc. */
9536 BFD_ASSERT (srel != NULL);
9537 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
9538 srel->size -= sizeof (Elf32_External_Rela);
9539
9540 if (is_plt)
9541 {
9542 asection *splt, *sgotplt, *srelgot;
9543 int reloc_index, chunk;
9544
9545 /* Find the PLT reloc index of the entry being removed. This
9546 is computed from the size of ".rela.plt". It is needed to
9547 figure out which PLT chunk to resize. Usually "last index
9548 = size - 1" since the index starts at zero, but in this
9549 context, the size has just been decremented so there's no
9550 need to subtract one. */
9551 reloc_index = srel->size / sizeof (Elf32_External_Rela);
9552
9553 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
9554 splt = elf_xtensa_get_plt_section (info, chunk);
9555 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
9556 BFD_ASSERT (splt != NULL && sgotplt != NULL);
9557
9558 /* Check if an entire PLT chunk has just been eliminated. */
9559 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
9560 {
9561 /* The two magic GOT entries for that chunk can go away. */
9562 srelgot = htab->srelgot;
9563 BFD_ASSERT (srelgot != NULL);
9564 srelgot->reloc_count -= 2;
9565 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
9566 sgotplt->size -= 8;
9567
9568 /* There should be only one entry left (and it will be
9569 removed below). */
9570 BFD_ASSERT (sgotplt->size == 4);
9571 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
9572 }
9573
9574 BFD_ASSERT (sgotplt->size >= 4);
9575 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
9576
9577 sgotplt->size -= 4;
9578 splt->size -= PLT_ENTRY_SIZE;
9579 }
9580 }
9581 }
9582
9583
9584 /* Take an r_rel and move it to another section. This usually
9585 requires extending the interal_relocation array and pinning it. If
9586 the original r_rel is from the same BFD, we can complete this here.
9587 Otherwise, we add a fix record to let the final link fix the
9588 appropriate address. Contents and internal relocations for the
9589 section must be pinned after calling this routine. */
9590
9591 static bfd_boolean
9592 move_literal (bfd *abfd,
9593 struct bfd_link_info *link_info,
9594 asection *sec,
9595 bfd_vma offset,
9596 bfd_byte *contents,
9597 xtensa_relax_info *relax_info,
9598 Elf_Internal_Rela **internal_relocs_p,
9599 const literal_value *lit)
9600 {
9601 Elf_Internal_Rela *new_relocs = NULL;
9602 size_t new_relocs_count = 0;
9603 Elf_Internal_Rela this_rela;
9604 const r_reloc *r_rel;
9605
9606 r_rel = &lit->r_rel;
9607 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
9608
9609 if (r_reloc_is_const (r_rel))
9610 bfd_put_32 (abfd, lit->value, contents + offset);
9611 else
9612 {
9613 int r_type;
9614 unsigned i;
9615 asection *target_sec;
9616 reloc_bfd_fix *fix;
9617 unsigned insert_at;
9618
9619 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
9620 target_sec = r_reloc_get_section (r_rel);
9621
9622 /* This is the difficult case. We have to create a fix up. */
9623 this_rela.r_offset = offset;
9624 this_rela.r_info = ELF32_R_INFO (0, r_type);
9625 this_rela.r_addend =
9626 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
9627 bfd_put_32 (abfd, lit->value, contents + offset);
9628
9629 /* Currently, we cannot move relocations during a relocatable link. */
9630 BFD_ASSERT (!link_info->relocatable);
9631 fix = reloc_bfd_fix_init (sec, offset, r_type,
9632 r_reloc_get_section (r_rel),
9633 r_rel->target_offset + r_rel->virtual_offset,
9634 FALSE);
9635 /* We also need to mark that relocations are needed here. */
9636 sec->flags |= SEC_RELOC;
9637
9638 translate_reloc_bfd_fix (fix);
9639 /* This fix has not yet been translated. */
9640 add_fix (sec, fix);
9641
9642 /* Add the relocation. If we have already allocated our own
9643 space for the relocations and we have room for more, then use
9644 it. Otherwise, allocate new space and move the literals. */
9645 insert_at = sec->reloc_count;
9646 for (i = 0; i < sec->reloc_count; ++i)
9647 {
9648 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
9649 {
9650 insert_at = i;
9651 break;
9652 }
9653 }
9654
9655 if (*internal_relocs_p != relax_info->allocated_relocs
9656 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
9657 {
9658 BFD_ASSERT (relax_info->allocated_relocs == NULL
9659 || sec->reloc_count == relax_info->relocs_count);
9660
9661 if (relax_info->allocated_relocs_count == 0)
9662 new_relocs_count = (sec->reloc_count + 2) * 2;
9663 else
9664 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
9665
9666 new_relocs = (Elf_Internal_Rela *)
9667 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
9668 if (!new_relocs)
9669 return FALSE;
9670
9671 /* We could handle this more quickly by finding the split point. */
9672 if (insert_at != 0)
9673 memcpy (new_relocs, *internal_relocs_p,
9674 insert_at * sizeof (Elf_Internal_Rela));
9675
9676 new_relocs[insert_at] = this_rela;
9677
9678 if (insert_at != sec->reloc_count)
9679 memcpy (new_relocs + insert_at + 1,
9680 (*internal_relocs_p) + insert_at,
9681 (sec->reloc_count - insert_at)
9682 * sizeof (Elf_Internal_Rela));
9683
9684 if (*internal_relocs_p != relax_info->allocated_relocs)
9685 {
9686 /* The first time we re-allocate, we can only free the
9687 old relocs if they were allocated with bfd_malloc.
9688 This is not true when keep_memory is in effect. */
9689 if (!link_info->keep_memory)
9690 free (*internal_relocs_p);
9691 }
9692 else
9693 free (*internal_relocs_p);
9694 relax_info->allocated_relocs = new_relocs;
9695 relax_info->allocated_relocs_count = new_relocs_count;
9696 elf_section_data (sec)->relocs = new_relocs;
9697 sec->reloc_count++;
9698 relax_info->relocs_count = sec->reloc_count;
9699 *internal_relocs_p = new_relocs;
9700 }
9701 else
9702 {
9703 if (insert_at != sec->reloc_count)
9704 {
9705 unsigned idx;
9706 for (idx = sec->reloc_count; idx > insert_at; idx--)
9707 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
9708 }
9709 (*internal_relocs_p)[insert_at] = this_rela;
9710 sec->reloc_count++;
9711 if (relax_info->allocated_relocs)
9712 relax_info->relocs_count = sec->reloc_count;
9713 }
9714 }
9715 return TRUE;
9716 }
9717
9718
9719 /* This is similar to relax_section except that when a target is moved,
9720 we shift addresses up. We also need to modify the size. This
9721 algorithm does NOT allow for relocations into the middle of the
9722 property sections. */
9723
9724 static bfd_boolean
9725 relax_property_section (bfd *abfd,
9726 asection *sec,
9727 struct bfd_link_info *link_info)
9728 {
9729 Elf_Internal_Rela *internal_relocs;
9730 bfd_byte *contents;
9731 unsigned i;
9732 bfd_boolean ok = TRUE;
9733 bfd_boolean is_full_prop_section;
9734 size_t last_zfill_target_offset = 0;
9735 asection *last_zfill_target_sec = NULL;
9736 bfd_size_type sec_size;
9737 bfd_size_type entry_size;
9738
9739 sec_size = bfd_get_section_limit (abfd, sec);
9740 internal_relocs = retrieve_internal_relocs (abfd, sec,
9741 link_info->keep_memory);
9742 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
9743 if (contents == NULL && sec_size != 0)
9744 {
9745 ok = FALSE;
9746 goto error_return;
9747 }
9748
9749 is_full_prop_section = xtensa_is_proptable_section (sec);
9750 if (is_full_prop_section)
9751 entry_size = 12;
9752 else
9753 entry_size = 8;
9754
9755 if (internal_relocs)
9756 {
9757 for (i = 0; i < sec->reloc_count; i++)
9758 {
9759 Elf_Internal_Rela *irel;
9760 xtensa_relax_info *target_relax_info;
9761 unsigned r_type;
9762 asection *target_sec;
9763 literal_value val;
9764 bfd_byte *size_p, *flags_p;
9765
9766 /* Locally change the source address.
9767 Translate the target to the new target address.
9768 If it points to this section and has been removed, MOVE IT.
9769 Also, don't forget to modify the associated SIZE at
9770 (offset + 4). */
9771
9772 irel = &internal_relocs[i];
9773 r_type = ELF32_R_TYPE (irel->r_info);
9774 if (r_type == R_XTENSA_NONE)
9775 continue;
9776
9777 /* Find the literal value. */
9778 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
9779 size_p = &contents[irel->r_offset + 4];
9780 flags_p = NULL;
9781 if (is_full_prop_section)
9782 flags_p = &contents[irel->r_offset + 8];
9783 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
9784
9785 target_sec = r_reloc_get_section (&val.r_rel);
9786 target_relax_info = get_xtensa_relax_info (target_sec);
9787
9788 if (target_relax_info
9789 && (target_relax_info->is_relaxable_literal_section
9790 || target_relax_info->is_relaxable_asm_section ))
9791 {
9792 /* Translate the relocation's destination. */
9793 bfd_vma old_offset = val.r_rel.target_offset;
9794 bfd_vma new_offset;
9795 long old_size, new_size;
9796 text_action *act = target_relax_info->action_list.head;
9797 new_offset = old_offset -
9798 removed_by_actions (&act, old_offset, FALSE);
9799
9800 /* Assert that we are not out of bounds. */
9801 old_size = bfd_get_32 (abfd, size_p);
9802 new_size = old_size;
9803
9804 if (old_size == 0)
9805 {
9806 /* Only the first zero-sized unreachable entry is
9807 allowed to expand. In this case the new offset
9808 should be the offset before the fill and the new
9809 size is the expansion size. For other zero-sized
9810 entries the resulting size should be zero with an
9811 offset before or after the fill address depending
9812 on whether the expanding unreachable entry
9813 preceeds it. */
9814 if (last_zfill_target_sec == 0
9815 || last_zfill_target_sec != target_sec
9816 || last_zfill_target_offset != old_offset)
9817 {
9818 bfd_vma new_end_offset = new_offset;
9819
9820 /* Recompute the new_offset, but this time don't
9821 include any fill inserted by relaxation. */
9822 act = target_relax_info->action_list.head;
9823 new_offset = old_offset -
9824 removed_by_actions (&act, old_offset, TRUE);
9825
9826 /* If it is not unreachable and we have not yet
9827 seen an unreachable at this address, place it
9828 before the fill address. */
9829 if (flags_p && (bfd_get_32 (abfd, flags_p)
9830 & XTENSA_PROP_UNREACHABLE) != 0)
9831 {
9832 new_size = new_end_offset - new_offset;
9833
9834 last_zfill_target_sec = target_sec;
9835 last_zfill_target_offset = old_offset;
9836 }
9837 }
9838 }
9839 else
9840 new_size -=
9841 removed_by_actions (&act, old_offset + old_size, TRUE);
9842
9843 if (new_size != old_size)
9844 {
9845 bfd_put_32 (abfd, new_size, size_p);
9846 pin_contents (sec, contents);
9847 }
9848
9849 if (new_offset != old_offset)
9850 {
9851 bfd_vma diff = new_offset - old_offset;
9852 irel->r_addend += diff;
9853 pin_internal_relocs (sec, internal_relocs);
9854 }
9855 }
9856 }
9857 }
9858
9859 /* Combine adjacent property table entries. This is also done in
9860 finish_dynamic_sections() but at that point it's too late to
9861 reclaim the space in the output section, so we do this twice. */
9862
9863 if (internal_relocs && (!link_info->relocatable
9864 || xtensa_is_littable_section (sec)))
9865 {
9866 Elf_Internal_Rela *last_irel = NULL;
9867 Elf_Internal_Rela *irel, *next_rel, *rel_end;
9868 int removed_bytes = 0;
9869 bfd_vma offset;
9870 flagword predef_flags;
9871
9872 predef_flags = xtensa_get_property_predef_flags (sec);
9873
9874 /* Walk over memory and relocations at the same time.
9875 This REQUIRES that the internal_relocs be sorted by offset. */
9876 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
9877 internal_reloc_compare);
9878
9879 pin_internal_relocs (sec, internal_relocs);
9880 pin_contents (sec, contents);
9881
9882 next_rel = internal_relocs;
9883 rel_end = internal_relocs + sec->reloc_count;
9884
9885 BFD_ASSERT (sec->size % entry_size == 0);
9886
9887 for (offset = 0; offset < sec->size; offset += entry_size)
9888 {
9889 Elf_Internal_Rela *offset_rel, *extra_rel;
9890 bfd_vma bytes_to_remove, size, actual_offset;
9891 bfd_boolean remove_this_rel;
9892 flagword flags;
9893
9894 /* Find the first relocation for the entry at the current offset.
9895 Adjust the offsets of any extra relocations for the previous
9896 entry. */
9897 offset_rel = NULL;
9898 if (next_rel)
9899 {
9900 for (irel = next_rel; irel < rel_end; irel++)
9901 {
9902 if ((irel->r_offset == offset
9903 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9904 || irel->r_offset > offset)
9905 {
9906 offset_rel = irel;
9907 break;
9908 }
9909 irel->r_offset -= removed_bytes;
9910 }
9911 }
9912
9913 /* Find the next relocation (if there are any left). */
9914 extra_rel = NULL;
9915 if (offset_rel)
9916 {
9917 for (irel = offset_rel + 1; irel < rel_end; irel++)
9918 {
9919 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9920 {
9921 extra_rel = irel;
9922 break;
9923 }
9924 }
9925 }
9926
9927 /* Check if there are relocations on the current entry. There
9928 should usually be a relocation on the offset field. If there
9929 are relocations on the size or flags, then we can't optimize
9930 this entry. Also, find the next relocation to examine on the
9931 next iteration. */
9932 if (offset_rel)
9933 {
9934 if (offset_rel->r_offset >= offset + entry_size)
9935 {
9936 next_rel = offset_rel;
9937 /* There are no relocations on the current entry, but we
9938 might still be able to remove it if the size is zero. */
9939 offset_rel = NULL;
9940 }
9941 else if (offset_rel->r_offset > offset
9942 || (extra_rel
9943 && extra_rel->r_offset < offset + entry_size))
9944 {
9945 /* There is a relocation on the size or flags, so we can't
9946 do anything with this entry. Continue with the next. */
9947 next_rel = offset_rel;
9948 continue;
9949 }
9950 else
9951 {
9952 BFD_ASSERT (offset_rel->r_offset == offset);
9953 offset_rel->r_offset -= removed_bytes;
9954 next_rel = offset_rel + 1;
9955 }
9956 }
9957 else
9958 next_rel = NULL;
9959
9960 remove_this_rel = FALSE;
9961 bytes_to_remove = 0;
9962 actual_offset = offset - removed_bytes;
9963 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
9964
9965 if (is_full_prop_section)
9966 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
9967 else
9968 flags = predef_flags;
9969
9970 if (size == 0
9971 && (flags & XTENSA_PROP_ALIGN) == 0
9972 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
9973 {
9974 /* Always remove entries with zero size and no alignment. */
9975 bytes_to_remove = entry_size;
9976 if (offset_rel)
9977 remove_this_rel = TRUE;
9978 }
9979 else if (offset_rel
9980 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
9981 {
9982 if (last_irel)
9983 {
9984 flagword old_flags;
9985 bfd_vma old_size =
9986 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
9987 bfd_vma old_address =
9988 (last_irel->r_addend
9989 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
9990 bfd_vma new_address =
9991 (offset_rel->r_addend
9992 + bfd_get_32 (abfd, &contents[actual_offset]));
9993 if (is_full_prop_section)
9994 old_flags = bfd_get_32
9995 (abfd, &contents[last_irel->r_offset + 8]);
9996 else
9997 old_flags = predef_flags;
9998
9999 if ((ELF32_R_SYM (offset_rel->r_info)
10000 == ELF32_R_SYM (last_irel->r_info))
10001 && old_address + old_size == new_address
10002 && old_flags == flags
10003 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
10004 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
10005 {
10006 /* Fix the old size. */
10007 bfd_put_32 (abfd, old_size + size,
10008 &contents[last_irel->r_offset + 4]);
10009 bytes_to_remove = entry_size;
10010 remove_this_rel = TRUE;
10011 }
10012 else
10013 last_irel = offset_rel;
10014 }
10015 else
10016 last_irel = offset_rel;
10017 }
10018
10019 if (remove_this_rel)
10020 {
10021 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
10022 offset_rel->r_offset = 0;
10023 }
10024
10025 if (bytes_to_remove != 0)
10026 {
10027 removed_bytes += bytes_to_remove;
10028 if (offset + bytes_to_remove < sec->size)
10029 memmove (&contents[actual_offset],
10030 &contents[actual_offset + bytes_to_remove],
10031 sec->size - offset - bytes_to_remove);
10032 }
10033 }
10034
10035 if (removed_bytes)
10036 {
10037 /* Fix up any extra relocations on the last entry. */
10038 for (irel = next_rel; irel < rel_end; irel++)
10039 irel->r_offset -= removed_bytes;
10040
10041 /* Clear the removed bytes. */
10042 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
10043
10044 if (sec->rawsize == 0)
10045 sec->rawsize = sec->size;
10046 sec->size -= removed_bytes;
10047
10048 if (xtensa_is_littable_section (sec))
10049 {
10050 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
10051 if (sgotloc)
10052 sgotloc->size -= removed_bytes;
10053 }
10054 }
10055 }
10056
10057 error_return:
10058 release_internal_relocs (sec, internal_relocs);
10059 release_contents (sec, contents);
10060 return ok;
10061 }
10062
10063 \f
10064 /* Third relaxation pass. */
10065
10066 /* Change symbol values to account for removed literals. */
10067
10068 bfd_boolean
10069 relax_section_symbols (bfd *abfd, asection *sec)
10070 {
10071 xtensa_relax_info *relax_info;
10072 unsigned int sec_shndx;
10073 Elf_Internal_Shdr *symtab_hdr;
10074 Elf_Internal_Sym *isymbuf;
10075 unsigned i, num_syms, num_locals;
10076
10077 relax_info = get_xtensa_relax_info (sec);
10078 BFD_ASSERT (relax_info);
10079
10080 if (!relax_info->is_relaxable_literal_section
10081 && !relax_info->is_relaxable_asm_section)
10082 return TRUE;
10083
10084 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
10085
10086 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10087 isymbuf = retrieve_local_syms (abfd);
10088
10089 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
10090 num_locals = symtab_hdr->sh_info;
10091
10092 /* Adjust the local symbols defined in this section. */
10093 for (i = 0; i < num_locals; i++)
10094 {
10095 Elf_Internal_Sym *isym = &isymbuf[i];
10096
10097 if (isym->st_shndx == sec_shndx)
10098 {
10099 text_action *act = relax_info->action_list.head;
10100 bfd_vma orig_addr = isym->st_value;
10101
10102 isym->st_value -= removed_by_actions (&act, orig_addr, FALSE);
10103
10104 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
10105 isym->st_size -=
10106 removed_by_actions (&act, orig_addr + isym->st_size, FALSE);
10107 }
10108 }
10109
10110 /* Now adjust the global symbols defined in this section. */
10111 for (i = 0; i < (num_syms - num_locals); i++)
10112 {
10113 struct elf_link_hash_entry *sym_hash;
10114
10115 sym_hash = elf_sym_hashes (abfd)[i];
10116
10117 if (sym_hash->root.type == bfd_link_hash_warning)
10118 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
10119
10120 if ((sym_hash->root.type == bfd_link_hash_defined
10121 || sym_hash->root.type == bfd_link_hash_defweak)
10122 && sym_hash->root.u.def.section == sec)
10123 {
10124 text_action *act = relax_info->action_list.head;
10125 bfd_vma orig_addr = sym_hash->root.u.def.value;
10126
10127 sym_hash->root.u.def.value -=
10128 removed_by_actions (&act, orig_addr, FALSE);
10129
10130 if (sym_hash->type == STT_FUNC)
10131 sym_hash->size -=
10132 removed_by_actions (&act, orig_addr + sym_hash->size, FALSE);
10133 }
10134 }
10135
10136 return TRUE;
10137 }
10138
10139 \f
10140 /* "Fix" handling functions, called while performing relocations. */
10141
10142 static bfd_boolean
10143 do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
10144 bfd *input_bfd,
10145 asection *input_section,
10146 bfd_byte *contents)
10147 {
10148 r_reloc r_rel;
10149 asection *sec, *old_sec;
10150 bfd_vma old_offset;
10151 int r_type = ELF32_R_TYPE (rel->r_info);
10152 reloc_bfd_fix *fix;
10153
10154 if (r_type == R_XTENSA_NONE)
10155 return TRUE;
10156
10157 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10158 if (!fix)
10159 return TRUE;
10160
10161 r_reloc_init (&r_rel, input_bfd, rel, contents,
10162 bfd_get_section_limit (input_bfd, input_section));
10163 old_sec = r_reloc_get_section (&r_rel);
10164 old_offset = r_rel.target_offset;
10165
10166 if (!old_sec || !r_reloc_is_defined (&r_rel))
10167 {
10168 if (r_type != R_XTENSA_ASM_EXPAND)
10169 {
10170 (*_bfd_error_handler)
10171 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
10172 input_bfd, input_section, rel->r_offset,
10173 elf_howto_table[r_type].name);
10174 return FALSE;
10175 }
10176 /* Leave it be. Resolution will happen in a later stage. */
10177 }
10178 else
10179 {
10180 sec = fix->target_sec;
10181 rel->r_addend += ((sec->output_offset + fix->target_offset)
10182 - (old_sec->output_offset + old_offset));
10183 }
10184 return TRUE;
10185 }
10186
10187
10188 static void
10189 do_fix_for_final_link (Elf_Internal_Rela *rel,
10190 bfd *input_bfd,
10191 asection *input_section,
10192 bfd_byte *contents,
10193 bfd_vma *relocationp)
10194 {
10195 asection *sec;
10196 int r_type = ELF32_R_TYPE (rel->r_info);
10197 reloc_bfd_fix *fix;
10198 bfd_vma fixup_diff;
10199
10200 if (r_type == R_XTENSA_NONE)
10201 return;
10202
10203 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10204 if (!fix)
10205 return;
10206
10207 sec = fix->target_sec;
10208
10209 fixup_diff = rel->r_addend;
10210 if (elf_howto_table[fix->src_type].partial_inplace)
10211 {
10212 bfd_vma inplace_val;
10213 BFD_ASSERT (fix->src_offset
10214 < bfd_get_section_limit (input_bfd, input_section));
10215 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
10216 fixup_diff += inplace_val;
10217 }
10218
10219 *relocationp = (sec->output_section->vma
10220 + sec->output_offset
10221 + fix->target_offset - fixup_diff);
10222 }
10223
10224 \f
10225 /* Miscellaneous utility functions.... */
10226
10227 static asection *
10228 elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
10229 {
10230 struct elf_xtensa_link_hash_table *htab;
10231 bfd *dynobj;
10232 char plt_name[10];
10233
10234 if (chunk == 0)
10235 {
10236 htab = elf_xtensa_hash_table (info);
10237 return htab->splt;
10238 }
10239
10240 dynobj = elf_hash_table (info)->dynobj;
10241 sprintf (plt_name, ".plt.%u", chunk);
10242 return bfd_get_section_by_name (dynobj, plt_name);
10243 }
10244
10245
10246 static asection *
10247 elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
10248 {
10249 struct elf_xtensa_link_hash_table *htab;
10250 bfd *dynobj;
10251 char got_name[14];
10252
10253 if (chunk == 0)
10254 {
10255 htab = elf_xtensa_hash_table (info);
10256 return htab->sgotplt;
10257 }
10258
10259 dynobj = elf_hash_table (info)->dynobj;
10260 sprintf (got_name, ".got.plt.%u", chunk);
10261 return bfd_get_section_by_name (dynobj, got_name);
10262 }
10263
10264
10265 /* Get the input section for a given symbol index.
10266 If the symbol is:
10267 . a section symbol, return the section;
10268 . a common symbol, return the common section;
10269 . an undefined symbol, return the undefined section;
10270 . an indirect symbol, follow the links;
10271 . an absolute value, return the absolute section. */
10272
10273 static asection *
10274 get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
10275 {
10276 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10277 asection *target_sec = NULL;
10278 if (r_symndx < symtab_hdr->sh_info)
10279 {
10280 Elf_Internal_Sym *isymbuf;
10281 unsigned int section_index;
10282
10283 isymbuf = retrieve_local_syms (abfd);
10284 section_index = isymbuf[r_symndx].st_shndx;
10285
10286 if (section_index == SHN_UNDEF)
10287 target_sec = bfd_und_section_ptr;
10288 else if (section_index == SHN_ABS)
10289 target_sec = bfd_abs_section_ptr;
10290 else if (section_index == SHN_COMMON)
10291 target_sec = bfd_com_section_ptr;
10292 else
10293 target_sec = bfd_section_from_elf_index (abfd, section_index);
10294 }
10295 else
10296 {
10297 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10298 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
10299
10300 while (h->root.type == bfd_link_hash_indirect
10301 || h->root.type == bfd_link_hash_warning)
10302 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10303
10304 switch (h->root.type)
10305 {
10306 case bfd_link_hash_defined:
10307 case bfd_link_hash_defweak:
10308 target_sec = h->root.u.def.section;
10309 break;
10310 case bfd_link_hash_common:
10311 target_sec = bfd_com_section_ptr;
10312 break;
10313 case bfd_link_hash_undefined:
10314 case bfd_link_hash_undefweak:
10315 target_sec = bfd_und_section_ptr;
10316 break;
10317 default: /* New indirect warning. */
10318 target_sec = bfd_und_section_ptr;
10319 break;
10320 }
10321 }
10322 return target_sec;
10323 }
10324
10325
10326 static struct elf_link_hash_entry *
10327 get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
10328 {
10329 unsigned long indx;
10330 struct elf_link_hash_entry *h;
10331 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10332
10333 if (r_symndx < symtab_hdr->sh_info)
10334 return NULL;
10335
10336 indx = r_symndx - symtab_hdr->sh_info;
10337 h = elf_sym_hashes (abfd)[indx];
10338 while (h->root.type == bfd_link_hash_indirect
10339 || h->root.type == bfd_link_hash_warning)
10340 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10341 return h;
10342 }
10343
10344
10345 /* Get the section-relative offset for a symbol number. */
10346
10347 static bfd_vma
10348 get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
10349 {
10350 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10351 bfd_vma offset = 0;
10352
10353 if (r_symndx < symtab_hdr->sh_info)
10354 {
10355 Elf_Internal_Sym *isymbuf;
10356 isymbuf = retrieve_local_syms (abfd);
10357 offset = isymbuf[r_symndx].st_value;
10358 }
10359 else
10360 {
10361 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10362 struct elf_link_hash_entry *h =
10363 elf_sym_hashes (abfd)[indx];
10364
10365 while (h->root.type == bfd_link_hash_indirect
10366 || h->root.type == bfd_link_hash_warning)
10367 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10368 if (h->root.type == bfd_link_hash_defined
10369 || h->root.type == bfd_link_hash_defweak)
10370 offset = h->root.u.def.value;
10371 }
10372 return offset;
10373 }
10374
10375
10376 static bfd_boolean
10377 is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
10378 {
10379 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
10380 struct elf_link_hash_entry *h;
10381
10382 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
10383 if (h && h->root.type == bfd_link_hash_defweak)
10384 return TRUE;
10385 return FALSE;
10386 }
10387
10388
10389 static bfd_boolean
10390 pcrel_reloc_fits (xtensa_opcode opc,
10391 int opnd,
10392 bfd_vma self_address,
10393 bfd_vma dest_address)
10394 {
10395 xtensa_isa isa = xtensa_default_isa;
10396 uint32 valp = dest_address;
10397 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
10398 || xtensa_operand_encode (isa, opc, opnd, &valp))
10399 return FALSE;
10400 return TRUE;
10401 }
10402
10403
10404 static bfd_boolean
10405 xtensa_is_property_section (asection *sec)
10406 {
10407 if (xtensa_is_insntable_section (sec)
10408 || xtensa_is_littable_section (sec)
10409 || xtensa_is_proptable_section (sec))
10410 return TRUE;
10411
10412 return FALSE;
10413 }
10414
10415
10416 static bfd_boolean
10417 xtensa_is_insntable_section (asection *sec)
10418 {
10419 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
10420 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
10421 return TRUE;
10422
10423 return FALSE;
10424 }
10425
10426
10427 static bfd_boolean
10428 xtensa_is_littable_section (asection *sec)
10429 {
10430 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
10431 || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
10432 return TRUE;
10433
10434 return FALSE;
10435 }
10436
10437
10438 static bfd_boolean
10439 xtensa_is_proptable_section (asection *sec)
10440 {
10441 if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
10442 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
10443 return TRUE;
10444
10445 return FALSE;
10446 }
10447
10448
10449 static int
10450 internal_reloc_compare (const void *ap, const void *bp)
10451 {
10452 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
10453 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
10454
10455 if (a->r_offset != b->r_offset)
10456 return (a->r_offset - b->r_offset);
10457
10458 /* We don't need to sort on these criteria for correctness,
10459 but enforcing a more strict ordering prevents unstable qsort
10460 from behaving differently with different implementations.
10461 Without the code below we get correct but different results
10462 on Solaris 2.7 and 2.8. We would like to always produce the
10463 same results no matter the host. */
10464
10465 if (a->r_info != b->r_info)
10466 return (a->r_info - b->r_info);
10467
10468 return (a->r_addend - b->r_addend);
10469 }
10470
10471
10472 static int
10473 internal_reloc_matches (const void *ap, const void *bp)
10474 {
10475 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
10476 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
10477
10478 /* Check if one entry overlaps with the other; this shouldn't happen
10479 except when searching for a match. */
10480 return (a->r_offset - b->r_offset);
10481 }
10482
10483
10484 /* Predicate function used to look up a section in a particular group. */
10485
10486 static bfd_boolean
10487 match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
10488 {
10489 const char *gname = inf;
10490 const char *group_name = elf_group_name (sec);
10491
10492 return (group_name == gname
10493 || (group_name != NULL
10494 && gname != NULL
10495 && strcmp (group_name, gname) == 0));
10496 }
10497
10498
10499 static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
10500
10501 static char *
10502 xtensa_property_section_name (asection *sec, const char *base_name)
10503 {
10504 const char *suffix, *group_name;
10505 char *prop_sec_name;
10506
10507 group_name = elf_group_name (sec);
10508 if (group_name)
10509 {
10510 suffix = strrchr (sec->name, '.');
10511 if (suffix == sec->name)
10512 suffix = 0;
10513 prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1
10514 + (suffix ? strlen (suffix) : 0));
10515 strcpy (prop_sec_name, base_name);
10516 if (suffix)
10517 strcat (prop_sec_name, suffix);
10518 }
10519 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
10520 {
10521 char *linkonce_kind = 0;
10522
10523 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
10524 linkonce_kind = "x.";
10525 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
10526 linkonce_kind = "p.";
10527 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
10528 linkonce_kind = "prop.";
10529 else
10530 abort ();
10531
10532 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
10533 + strlen (linkonce_kind) + 1);
10534 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
10535 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
10536
10537 suffix = sec->name + linkonce_len;
10538 /* For backward compatibility, replace "t." instead of inserting
10539 the new linkonce_kind (but not for "prop" sections). */
10540 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
10541 suffix += 2;
10542 strcat (prop_sec_name + linkonce_len, suffix);
10543 }
10544 else
10545 prop_sec_name = strdup (base_name);
10546
10547 return prop_sec_name;
10548 }
10549
10550
10551 static asection *
10552 xtensa_get_property_section (asection *sec, const char *base_name)
10553 {
10554 char *prop_sec_name;
10555 asection *prop_sec;
10556
10557 prop_sec_name = xtensa_property_section_name (sec, base_name);
10558 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
10559 match_section_group,
10560 (void *) elf_group_name (sec));
10561 free (prop_sec_name);
10562 return prop_sec;
10563 }
10564
10565
10566 asection *
10567 xtensa_make_property_section (asection *sec, const char *base_name)
10568 {
10569 char *prop_sec_name;
10570 asection *prop_sec;
10571
10572 /* Check if the section already exists. */
10573 prop_sec_name = xtensa_property_section_name (sec, base_name);
10574 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
10575 match_section_group,
10576 (void *) elf_group_name (sec));
10577 /* If not, create it. */
10578 if (! prop_sec)
10579 {
10580 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
10581 flags |= (bfd_get_section_flags (sec->owner, sec)
10582 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
10583
10584 prop_sec = bfd_make_section_anyway_with_flags
10585 (sec->owner, strdup (prop_sec_name), flags);
10586 if (! prop_sec)
10587 return 0;
10588
10589 elf_group_name (prop_sec) = elf_group_name (sec);
10590 }
10591
10592 free (prop_sec_name);
10593 return prop_sec;
10594 }
10595
10596
10597 flagword
10598 xtensa_get_property_predef_flags (asection *sec)
10599 {
10600 if (xtensa_is_insntable_section (sec))
10601 return (XTENSA_PROP_INSN
10602 | XTENSA_PROP_NO_TRANSFORM
10603 | XTENSA_PROP_INSN_NO_REORDER);
10604
10605 if (xtensa_is_littable_section (sec))
10606 return (XTENSA_PROP_LITERAL
10607 | XTENSA_PROP_NO_TRANSFORM
10608 | XTENSA_PROP_INSN_NO_REORDER);
10609
10610 return 0;
10611 }
10612
10613 \f
10614 /* Other functions called directly by the linker. */
10615
10616 bfd_boolean
10617 xtensa_callback_required_dependence (bfd *abfd,
10618 asection *sec,
10619 struct bfd_link_info *link_info,
10620 deps_callback_t callback,
10621 void *closure)
10622 {
10623 Elf_Internal_Rela *internal_relocs;
10624 bfd_byte *contents;
10625 unsigned i;
10626 bfd_boolean ok = TRUE;
10627 bfd_size_type sec_size;
10628
10629 sec_size = bfd_get_section_limit (abfd, sec);
10630
10631 /* ".plt*" sections have no explicit relocations but they contain L32R
10632 instructions that reference the corresponding ".got.plt*" sections. */
10633 if ((sec->flags & SEC_LINKER_CREATED) != 0
10634 && CONST_STRNEQ (sec->name, ".plt"))
10635 {
10636 asection *sgotplt;
10637
10638 /* Find the corresponding ".got.plt*" section. */
10639 if (sec->name[4] == '\0')
10640 sgotplt = bfd_get_section_by_name (sec->owner, ".got.plt");
10641 else
10642 {
10643 char got_name[14];
10644 int chunk = 0;
10645
10646 BFD_ASSERT (sec->name[4] == '.');
10647 chunk = strtol (&sec->name[5], NULL, 10);
10648
10649 sprintf (got_name, ".got.plt.%u", chunk);
10650 sgotplt = bfd_get_section_by_name (sec->owner, got_name);
10651 }
10652 BFD_ASSERT (sgotplt);
10653
10654 /* Assume worst-case offsets: L32R at the very end of the ".plt"
10655 section referencing a literal at the very beginning of
10656 ".got.plt". This is very close to the real dependence, anyway. */
10657 (*callback) (sec, sec_size, sgotplt, 0, closure);
10658 }
10659
10660 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
10661 when building uclibc, which runs "ld -b binary /dev/null". */
10662 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
10663 return ok;
10664
10665 internal_relocs = retrieve_internal_relocs (abfd, sec,
10666 link_info->keep_memory);
10667 if (internal_relocs == NULL
10668 || sec->reloc_count == 0)
10669 return ok;
10670
10671 /* Cache the contents for the duration of this scan. */
10672 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
10673 if (contents == NULL && sec_size != 0)
10674 {
10675 ok = FALSE;
10676 goto error_return;
10677 }
10678
10679 if (!xtensa_default_isa)
10680 xtensa_default_isa = xtensa_isa_init (0, 0);
10681
10682 for (i = 0; i < sec->reloc_count; i++)
10683 {
10684 Elf_Internal_Rela *irel = &internal_relocs[i];
10685 if (is_l32r_relocation (abfd, sec, contents, irel))
10686 {
10687 r_reloc l32r_rel;
10688 asection *target_sec;
10689 bfd_vma target_offset;
10690
10691 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
10692 target_sec = NULL;
10693 target_offset = 0;
10694 /* L32Rs must be local to the input file. */
10695 if (r_reloc_is_defined (&l32r_rel))
10696 {
10697 target_sec = r_reloc_get_section (&l32r_rel);
10698 target_offset = l32r_rel.target_offset;
10699 }
10700 (*callback) (sec, irel->r_offset, target_sec, target_offset,
10701 closure);
10702 }
10703 }
10704
10705 error_return:
10706 release_internal_relocs (sec, internal_relocs);
10707 release_contents (sec, contents);
10708 return ok;
10709 }
10710
10711 /* The default literal sections should always be marked as "code" (i.e.,
10712 SHF_EXECINSTR). This is particularly important for the Linux kernel
10713 module loader so that the literals are not placed after the text. */
10714 static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
10715 {
10716 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
10717 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
10718 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
10719 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
10720 { NULL, 0, 0, 0, 0 }
10721 };
10722 \f
10723 #ifndef ELF_ARCH
10724 #define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec
10725 #define TARGET_LITTLE_NAME "elf32-xtensa-le"
10726 #define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec
10727 #define TARGET_BIG_NAME "elf32-xtensa-be"
10728 #define ELF_ARCH bfd_arch_xtensa
10729
10730 #define ELF_MACHINE_CODE EM_XTENSA
10731 #define ELF_MACHINE_ALT1 EM_XTENSA_OLD
10732
10733 #if XCHAL_HAVE_MMU
10734 #define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
10735 #else /* !XCHAL_HAVE_MMU */
10736 #define ELF_MAXPAGESIZE 1
10737 #endif /* !XCHAL_HAVE_MMU */
10738 #endif /* ELF_ARCH */
10739
10740 #define elf_backend_can_gc_sections 1
10741 #define elf_backend_can_refcount 1
10742 #define elf_backend_plt_readonly 1
10743 #define elf_backend_got_header_size 4
10744 #define elf_backend_want_dynbss 0
10745 #define elf_backend_want_got_plt 1
10746
10747 #define elf_info_to_howto elf_xtensa_info_to_howto_rela
10748
10749 #define bfd_elf32_mkobject elf_xtensa_mkobject
10750
10751 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
10752 #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
10753 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
10754 #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
10755 #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
10756 #define bfd_elf32_bfd_reloc_name_lookup \
10757 elf_xtensa_reloc_name_lookup
10758 #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
10759 #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
10760
10761 #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
10762 #define elf_backend_check_relocs elf_xtensa_check_relocs
10763 #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
10764 #define elf_backend_discard_info elf_xtensa_discard_info
10765 #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
10766 #define elf_backend_final_write_processing elf_xtensa_final_write_processing
10767 #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
10768 #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
10769 #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
10770 #define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
10771 #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
10772 #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
10773 #define elf_backend_hide_symbol elf_xtensa_hide_symbol
10774 #define elf_backend_object_p elf_xtensa_object_p
10775 #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
10776 #define elf_backend_relocate_section elf_xtensa_relocate_section
10777 #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
10778 #define elf_backend_always_size_sections elf_xtensa_always_size_sections
10779 #define elf_backend_omit_section_dynsym \
10780 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
10781 #define elf_backend_special_sections elf_xtensa_special_sections
10782 #define elf_backend_action_discarded elf_xtensa_action_discarded
10783 #define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol
10784
10785 #include "elf32-target.h"
This page took 0.271937 seconds and 5 git commands to generate.