xtensa: bfd: add special case to loop alignment check
[deliverable/binutils-gdb.git] / bfd / elf32-xtensa.c
1 /* Xtensa-specific support for 32-bit ELF.
2 Copyright (C) 2003-2019 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 3 of the
9 License, or (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23
24 #include <stdarg.h>
25 #include <strings.h>
26
27 #include "bfdlink.h"
28 #include "libbfd.h"
29 #include "elf-bfd.h"
30 #include "elf/xtensa.h"
31 #include "splay-tree.h"
32 #include "xtensa-isa.h"
33 #include "xtensa-config.h"
34
35 #define XTENSA_NO_NOP_REMOVAL 0
36
37 /* Local helper functions. */
38
39 static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
40 static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
41 static bfd_reloc_status_type bfd_elf_xtensa_reloc
42 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43 static bfd_boolean do_fix_for_relocatable_link
44 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
45 static void do_fix_for_final_link
46 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
47
48 /* Local functions to handle Xtensa configurability. */
49
50 static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
51 static bfd_boolean is_direct_call_opcode (xtensa_opcode);
52 static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
53 static xtensa_opcode get_const16_opcode (void);
54 static xtensa_opcode get_l32r_opcode (void);
55 static bfd_vma l32r_offset (bfd_vma, bfd_vma);
56 static int get_relocation_opnd (xtensa_opcode, int);
57 static int get_relocation_slot (int);
58 static xtensa_opcode get_relocation_opcode
59 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
60 static bfd_boolean is_l32r_relocation
61 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
62 static bfd_boolean is_alt_relocation (int);
63 static bfd_boolean is_operand_relocation (int);
64 static bfd_size_type insn_decode_len
65 (bfd_byte *, bfd_size_type, bfd_size_type);
66 static int insn_num_slots
67 (bfd_byte *, bfd_size_type, bfd_size_type);
68 static xtensa_opcode insn_decode_opcode
69 (bfd_byte *, bfd_size_type, bfd_size_type, int);
70 static bfd_boolean check_branch_target_aligned
71 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
72 static bfd_boolean check_loop_aligned
73 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
74 static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
75 static bfd_size_type get_asm_simplify_size
76 (bfd_byte *, bfd_size_type, bfd_size_type);
77
78 /* Functions for link-time code simplifications. */
79
80 static bfd_reloc_status_type elf_xtensa_do_asm_simplify
81 (bfd_byte *, bfd_vma, bfd_vma, char **);
82 static bfd_reloc_status_type contract_asm_expansion
83 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
84 static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
85 static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
86
87 /* Access to internal relocations, section contents and symbols. */
88
89 static Elf_Internal_Rela *retrieve_internal_relocs
90 (bfd *, asection *, bfd_boolean);
91 static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
92 static void release_internal_relocs (asection *, Elf_Internal_Rela *);
93 static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
94 static void pin_contents (asection *, bfd_byte *);
95 static void release_contents (asection *, bfd_byte *);
96 static Elf_Internal_Sym *retrieve_local_syms (bfd *);
97
98 /* Miscellaneous utility functions. */
99
100 static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
101 static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
102 static asection *get_elf_r_symndx_section (bfd *, unsigned long);
103 static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
104 (bfd *, unsigned long);
105 static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
106 static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
107 static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
108 static bfd_boolean xtensa_is_property_section (asection *);
109 static bfd_boolean xtensa_is_insntable_section (asection *);
110 static bfd_boolean xtensa_is_littable_section (asection *);
111 static bfd_boolean xtensa_is_proptable_section (asection *);
112 static int internal_reloc_compare (const void *, const void *);
113 static int internal_reloc_matches (const void *, const void *);
114 static asection *xtensa_get_property_section (asection *, const char *);
115 static flagword xtensa_get_property_predef_flags (asection *);
116
117 /* Other functions called directly by the linker. */
118
119 typedef void (*deps_callback_t)
120 (asection *, bfd_vma, asection *, bfd_vma, void *);
121 extern bfd_boolean xtensa_callback_required_dependence
122 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
123
124
125 /* Globally visible flag for choosing size optimization of NOP removal
126 instead of branch-target-aware minimization for NOP removal.
127 When nonzero, narrow all instructions and remove all NOPs possible
128 around longcall expansions. */
129
130 int elf32xtensa_size_opt;
131
132
133 /* The "new_section_hook" is used to set up a per-section
134 "xtensa_relax_info" data structure with additional information used
135 during relaxation. */
136
137 typedef struct xtensa_relax_info_struct xtensa_relax_info;
138
139
140 /* The GNU tools do not easily allow extending interfaces to pass around
141 the pointer to the Xtensa ISA information, so instead we add a global
142 variable here (in BFD) that can be used by any of the tools that need
143 this information. */
144
145 xtensa_isa xtensa_default_isa;
146
147
148 /* When this is true, relocations may have been modified to refer to
149 symbols from other input files. The per-section list of "fix"
150 records needs to be checked when resolving relocations. */
151
152 static bfd_boolean relaxing_section = FALSE;
153
154 /* When this is true, during final links, literals that cannot be
155 coalesced and their relocations may be moved to other sections. */
156
157 int elf32xtensa_no_literal_movement = 1;
158
159 /* Place property records for a section into individual property section
160 with xt.prop. prefix. */
161
162 bfd_boolean elf32xtensa_separate_props = FALSE;
163
164 /* Rename one of the generic section flags to better document how it
165 is used here. */
166 /* Whether relocations have been processed. */
167 #define reloc_done sec_flg0
168 \f
169 static reloc_howto_type elf_howto_table[] =
170 {
171 HOWTO (R_XTENSA_NONE, 0, 3, 0, FALSE, 0, complain_overflow_dont,
172 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
173 FALSE, 0, 0, FALSE),
174 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
175 bfd_elf_xtensa_reloc, "R_XTENSA_32",
176 TRUE, 0xffffffff, 0xffffffff, FALSE),
177
178 /* Replace a 32-bit value with a value from the runtime linker (only
179 used by linker-generated stub functions). The r_addend value is
180 special: 1 means to substitute a pointer to the runtime linker's
181 dynamic resolver function; 2 means to substitute the link map for
182 the shared object. */
183 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
184 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
185
186 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
187 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
188 FALSE, 0, 0xffffffff, FALSE),
189 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
190 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
191 FALSE, 0, 0xffffffff, FALSE),
192 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
193 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
194 FALSE, 0, 0xffffffff, FALSE),
195 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
196 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
197 FALSE, 0, 0xffffffff, FALSE),
198
199 EMPTY_HOWTO (7),
200
201 /* Old relocations for backward compatibility. */
202 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
203 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
204 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
205 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
206 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
207 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
208
209 /* Assembly auto-expansion. */
210 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
211 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
212 /* Relax assembly auto-expansion. */
213 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
214 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
215
216 EMPTY_HOWTO (13),
217
218 HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
219 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
220 FALSE, 0, 0xffffffff, TRUE),
221
222 /* GNU extension to record C++ vtable hierarchy. */
223 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
224 NULL, "R_XTENSA_GNU_VTINHERIT",
225 FALSE, 0, 0, FALSE),
226 /* GNU extension to record C++ vtable member usage. */
227 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
228 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
229 FALSE, 0, 0, FALSE),
230
231 /* Relocations for supporting difference of symbols. */
232 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_signed,
233 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
234 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_signed,
235 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
236 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
237 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
238
239 /* General immediate operand relocations. */
240 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
241 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
242 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
243 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
244 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
245 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
246 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
247 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
248 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
249 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
250 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
251 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
252 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
253 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
254 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
255 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
256 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
257 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
258 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
259 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
260 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
261 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
262 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
263 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
264 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
265 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
266 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
267 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
268 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
269 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
270
271 /* "Alternate" relocations. The meaning of these is opcode-specific. */
272 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
273 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
274 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
275 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
276 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
277 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
278 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
279 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
280 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
281 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
282 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
283 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
284 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
285 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
286 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
287 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
288 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
289 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
290 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
291 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
292 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
293 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
294 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
295 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
296 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
297 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
298 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
299 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
300 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
301 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
302
303 /* TLS relocations. */
304 HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont,
305 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN",
306 FALSE, 0, 0xffffffff, FALSE),
307 HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont,
308 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG",
309 FALSE, 0, 0xffffffff, FALSE),
310 HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
311 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF",
312 FALSE, 0, 0xffffffff, FALSE),
313 HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
314 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF",
315 FALSE, 0, 0xffffffff, FALSE),
316 HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont,
317 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC",
318 FALSE, 0, 0, FALSE),
319 HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont,
320 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG",
321 FALSE, 0, 0, FALSE),
322 HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont,
323 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL",
324 FALSE, 0, 0, FALSE),
325 };
326
327 #if DEBUG_GEN_RELOC
328 #define TRACE(str) \
329 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
330 #else
331 #define TRACE(str)
332 #endif
333
334 static reloc_howto_type *
335 elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
336 bfd_reloc_code_real_type code)
337 {
338 switch (code)
339 {
340 case BFD_RELOC_NONE:
341 TRACE ("BFD_RELOC_NONE");
342 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
343
344 case BFD_RELOC_32:
345 TRACE ("BFD_RELOC_32");
346 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
347
348 case BFD_RELOC_32_PCREL:
349 TRACE ("BFD_RELOC_32_PCREL");
350 return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
351
352 case BFD_RELOC_XTENSA_DIFF8:
353 TRACE ("BFD_RELOC_XTENSA_DIFF8");
354 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
355
356 case BFD_RELOC_XTENSA_DIFF16:
357 TRACE ("BFD_RELOC_XTENSA_DIFF16");
358 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
359
360 case BFD_RELOC_XTENSA_DIFF32:
361 TRACE ("BFD_RELOC_XTENSA_DIFF32");
362 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
363
364 case BFD_RELOC_XTENSA_RTLD:
365 TRACE ("BFD_RELOC_XTENSA_RTLD");
366 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
367
368 case BFD_RELOC_XTENSA_GLOB_DAT:
369 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
370 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
371
372 case BFD_RELOC_XTENSA_JMP_SLOT:
373 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
374 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
375
376 case BFD_RELOC_XTENSA_RELATIVE:
377 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
378 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
379
380 case BFD_RELOC_XTENSA_PLT:
381 TRACE ("BFD_RELOC_XTENSA_PLT");
382 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
383
384 case BFD_RELOC_XTENSA_OP0:
385 TRACE ("BFD_RELOC_XTENSA_OP0");
386 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
387
388 case BFD_RELOC_XTENSA_OP1:
389 TRACE ("BFD_RELOC_XTENSA_OP1");
390 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
391
392 case BFD_RELOC_XTENSA_OP2:
393 TRACE ("BFD_RELOC_XTENSA_OP2");
394 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
395
396 case BFD_RELOC_XTENSA_ASM_EXPAND:
397 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
398 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
399
400 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
401 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
402 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
403
404 case BFD_RELOC_VTABLE_INHERIT:
405 TRACE ("BFD_RELOC_VTABLE_INHERIT");
406 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
407
408 case BFD_RELOC_VTABLE_ENTRY:
409 TRACE ("BFD_RELOC_VTABLE_ENTRY");
410 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
411
412 case BFD_RELOC_XTENSA_TLSDESC_FN:
413 TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN");
414 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ];
415
416 case BFD_RELOC_XTENSA_TLSDESC_ARG:
417 TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG");
418 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ];
419
420 case BFD_RELOC_XTENSA_TLS_DTPOFF:
421 TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF");
422 return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ];
423
424 case BFD_RELOC_XTENSA_TLS_TPOFF:
425 TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF");
426 return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ];
427
428 case BFD_RELOC_XTENSA_TLS_FUNC:
429 TRACE ("BFD_RELOC_XTENSA_TLS_FUNC");
430 return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ];
431
432 case BFD_RELOC_XTENSA_TLS_ARG:
433 TRACE ("BFD_RELOC_XTENSA_TLS_ARG");
434 return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ];
435
436 case BFD_RELOC_XTENSA_TLS_CALL:
437 TRACE ("BFD_RELOC_XTENSA_TLS_CALL");
438 return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ];
439
440 default:
441 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
442 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
443 {
444 unsigned n = (R_XTENSA_SLOT0_OP +
445 (code - BFD_RELOC_XTENSA_SLOT0_OP));
446 return &elf_howto_table[n];
447 }
448
449 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
450 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
451 {
452 unsigned n = (R_XTENSA_SLOT0_ALT +
453 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
454 return &elf_howto_table[n];
455 }
456
457 break;
458 }
459
460 /* xgettext:c-format */
461 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd, (int) code);
462 bfd_set_error (bfd_error_bad_value);
463 TRACE ("Unknown");
464 return NULL;
465 }
466
467 static reloc_howto_type *
468 elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
469 const char *r_name)
470 {
471 unsigned int i;
472
473 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
474 if (elf_howto_table[i].name != NULL
475 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
476 return &elf_howto_table[i];
477
478 return NULL;
479 }
480
481
482 /* Given an ELF "rela" relocation, find the corresponding howto and record
483 it in the BFD internal arelent representation of the relocation. */
484
485 static bfd_boolean
486 elf_xtensa_info_to_howto_rela (bfd *abfd,
487 arelent *cache_ptr,
488 Elf_Internal_Rela *dst)
489 {
490 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
491
492 if (r_type >= (unsigned int) R_XTENSA_max)
493 {
494 /* xgettext:c-format */
495 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
496 abfd, r_type);
497 bfd_set_error (bfd_error_bad_value);
498 return FALSE;
499 }
500 cache_ptr->howto = &elf_howto_table[r_type];
501 return TRUE;
502 }
503
504 \f
505 /* Functions for the Xtensa ELF linker. */
506
507 /* The name of the dynamic interpreter. This is put in the .interp
508 section. */
509
510 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
511
512 /* The size in bytes of an entry in the procedure linkage table.
513 (This does _not_ include the space for the literals associated with
514 the PLT entry.) */
515
516 #define PLT_ENTRY_SIZE 16
517
518 /* For _really_ large PLTs, we may need to alternate between literals
519 and code to keep the literals within the 256K range of the L32R
520 instructions in the code. It's unlikely that anyone would ever need
521 such a big PLT, but an arbitrary limit on the PLT size would be bad.
522 Thus, we split the PLT into chunks. Since there's very little
523 overhead (2 extra literals) for each chunk, the chunk size is kept
524 small so that the code for handling multiple chunks get used and
525 tested regularly. With 254 entries, there are 1K of literals for
526 each chunk, and that seems like a nice round number. */
527
528 #define PLT_ENTRIES_PER_CHUNK 254
529
530 /* PLT entries are actually used as stub functions for lazy symbol
531 resolution. Once the symbol is resolved, the stub function is never
532 invoked. Note: the 32-byte frame size used here cannot be changed
533 without a corresponding change in the runtime linker. */
534
535 static const bfd_byte elf_xtensa_be_plt_entry[][PLT_ENTRY_SIZE] =
536 {
537 {
538 0x6c, 0x10, 0x04, /* entry sp, 32 */
539 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
540 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
541 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
542 0x0a, 0x80, 0x00, /* jx a8 */
543 0 /* unused */
544 },
545 {
546 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
547 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
548 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
549 0x0a, 0x80, 0x00, /* jx a8 */
550 0 /* unused */
551 }
552 };
553
554 static const bfd_byte elf_xtensa_le_plt_entry[][PLT_ENTRY_SIZE] =
555 {
556 {
557 0x36, 0x41, 0x00, /* entry sp, 32 */
558 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
559 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
560 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
561 0xa0, 0x08, 0x00, /* jx a8 */
562 0 /* unused */
563 },
564 {
565 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
566 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
567 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
568 0xa0, 0x08, 0x00, /* jx a8 */
569 0 /* unused */
570 }
571 };
572
573 /* The size of the thread control block. */
574 #define TCB_SIZE 8
575
576 struct elf_xtensa_link_hash_entry
577 {
578 struct elf_link_hash_entry elf;
579
580 bfd_signed_vma tlsfunc_refcount;
581
582 #define GOT_UNKNOWN 0
583 #define GOT_NORMAL 1
584 #define GOT_TLS_GD 2 /* global or local dynamic */
585 #define GOT_TLS_IE 4 /* initial or local exec */
586 #define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE)
587 unsigned char tls_type;
588 };
589
590 #define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent))
591
592 struct elf_xtensa_obj_tdata
593 {
594 struct elf_obj_tdata root;
595
596 /* tls_type for each local got entry. */
597 char *local_got_tls_type;
598
599 bfd_signed_vma *local_tlsfunc_refcounts;
600 };
601
602 #define elf_xtensa_tdata(abfd) \
603 ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any)
604
605 #define elf_xtensa_local_got_tls_type(abfd) \
606 (elf_xtensa_tdata (abfd)->local_got_tls_type)
607
608 #define elf_xtensa_local_tlsfunc_refcounts(abfd) \
609 (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts)
610
611 #define is_xtensa_elf(bfd) \
612 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
613 && elf_tdata (bfd) != NULL \
614 && elf_object_id (bfd) == XTENSA_ELF_DATA)
615
616 static bfd_boolean
617 elf_xtensa_mkobject (bfd *abfd)
618 {
619 return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata),
620 XTENSA_ELF_DATA);
621 }
622
623 /* Xtensa ELF linker hash table. */
624
625 struct elf_xtensa_link_hash_table
626 {
627 struct elf_link_hash_table elf;
628
629 /* Short-cuts to get to dynamic linker sections. */
630 asection *sgotloc;
631 asection *spltlittbl;
632
633 /* Total count of PLT relocations seen during check_relocs.
634 The actual PLT code must be split into multiple sections and all
635 the sections have to be created before size_dynamic_sections,
636 where we figure out the exact number of PLT entries that will be
637 needed. It is OK if this count is an overestimate, e.g., some
638 relocations may be removed by GC. */
639 int plt_reloc_count;
640
641 struct elf_xtensa_link_hash_entry *tlsbase;
642 };
643
644 /* Get the Xtensa ELF linker hash table from a link_info structure. */
645
646 #define elf_xtensa_hash_table(p) \
647 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
648 == XTENSA_ELF_DATA ? ((struct elf_xtensa_link_hash_table *) ((p)->hash)) : NULL)
649
650 /* Create an entry in an Xtensa ELF linker hash table. */
651
652 static struct bfd_hash_entry *
653 elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry,
654 struct bfd_hash_table *table,
655 const char *string)
656 {
657 /* Allocate the structure if it has not already been allocated by a
658 subclass. */
659 if (entry == NULL)
660 {
661 entry = bfd_hash_allocate (table,
662 sizeof (struct elf_xtensa_link_hash_entry));
663 if (entry == NULL)
664 return entry;
665 }
666
667 /* Call the allocation method of the superclass. */
668 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
669 if (entry != NULL)
670 {
671 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry);
672 eh->tlsfunc_refcount = 0;
673 eh->tls_type = GOT_UNKNOWN;
674 }
675
676 return entry;
677 }
678
679 /* Create an Xtensa ELF linker hash table. */
680
681 static struct bfd_link_hash_table *
682 elf_xtensa_link_hash_table_create (bfd *abfd)
683 {
684 struct elf_link_hash_entry *tlsbase;
685 struct elf_xtensa_link_hash_table *ret;
686 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
687
688 ret = bfd_zmalloc (amt);
689 if (ret == NULL)
690 return NULL;
691
692 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
693 elf_xtensa_link_hash_newfunc,
694 sizeof (struct elf_xtensa_link_hash_entry),
695 XTENSA_ELF_DATA))
696 {
697 free (ret);
698 return NULL;
699 }
700
701 /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking
702 for it later. */
703 tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_",
704 TRUE, FALSE, FALSE);
705 tlsbase->root.type = bfd_link_hash_new;
706 tlsbase->root.u.undef.abfd = NULL;
707 tlsbase->non_elf = 0;
708 ret->tlsbase = elf_xtensa_hash_entry (tlsbase);
709 ret->tlsbase->tls_type = GOT_UNKNOWN;
710
711 return &ret->elf.root;
712 }
713
714 /* Copy the extra info we tack onto an elf_link_hash_entry. */
715
716 static void
717 elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info,
718 struct elf_link_hash_entry *dir,
719 struct elf_link_hash_entry *ind)
720 {
721 struct elf_xtensa_link_hash_entry *edir, *eind;
722
723 edir = elf_xtensa_hash_entry (dir);
724 eind = elf_xtensa_hash_entry (ind);
725
726 if (ind->root.type == bfd_link_hash_indirect)
727 {
728 edir->tlsfunc_refcount += eind->tlsfunc_refcount;
729 eind->tlsfunc_refcount = 0;
730
731 if (dir->got.refcount <= 0)
732 {
733 edir->tls_type = eind->tls_type;
734 eind->tls_type = GOT_UNKNOWN;
735 }
736 }
737
738 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
739 }
740
741 static inline bfd_boolean
742 elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
743 struct bfd_link_info *info)
744 {
745 /* Check if we should do dynamic things to this symbol. The
746 "ignore_protected" argument need not be set, because Xtensa code
747 does not require special handling of STV_PROTECTED to make function
748 pointer comparisons work properly. The PLT addresses are never
749 used for function pointers. */
750
751 return _bfd_elf_dynamic_symbol_p (h, info, 0);
752 }
753
754 \f
755 static int
756 property_table_compare (const void *ap, const void *bp)
757 {
758 const property_table_entry *a = (const property_table_entry *) ap;
759 const property_table_entry *b = (const property_table_entry *) bp;
760
761 if (a->address == b->address)
762 {
763 if (a->size != b->size)
764 return (a->size - b->size);
765
766 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
767 return ((b->flags & XTENSA_PROP_ALIGN)
768 - (a->flags & XTENSA_PROP_ALIGN));
769
770 if ((a->flags & XTENSA_PROP_ALIGN)
771 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
772 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
773 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
774 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
775
776 if ((a->flags & XTENSA_PROP_UNREACHABLE)
777 != (b->flags & XTENSA_PROP_UNREACHABLE))
778 return ((b->flags & XTENSA_PROP_UNREACHABLE)
779 - (a->flags & XTENSA_PROP_UNREACHABLE));
780
781 return (a->flags - b->flags);
782 }
783
784 return (a->address - b->address);
785 }
786
787
788 static int
789 property_table_matches (const void *ap, const void *bp)
790 {
791 const property_table_entry *a = (const property_table_entry *) ap;
792 const property_table_entry *b = (const property_table_entry *) bp;
793
794 /* Check if one entry overlaps with the other. */
795 if ((b->address >= a->address && b->address < (a->address + a->size))
796 || (a->address >= b->address && a->address < (b->address + b->size)))
797 return 0;
798
799 return (a->address - b->address);
800 }
801
802
803 /* Get the literal table or property table entries for the given
804 section. Sets TABLE_P and returns the number of entries. On
805 error, returns a negative value. */
806
807 int
808 xtensa_read_table_entries (bfd *abfd,
809 asection *section,
810 property_table_entry **table_p,
811 const char *sec_name,
812 bfd_boolean output_addr)
813 {
814 asection *table_section;
815 bfd_size_type table_size = 0;
816 bfd_byte *table_data;
817 property_table_entry *blocks;
818 int blk, block_count;
819 bfd_size_type num_records;
820 Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
821 bfd_vma section_addr, off;
822 flagword predef_flags;
823 bfd_size_type table_entry_size, section_limit;
824
825 if (!section
826 || !(section->flags & SEC_ALLOC)
827 || (section->flags & SEC_DEBUGGING))
828 {
829 *table_p = NULL;
830 return 0;
831 }
832
833 table_section = xtensa_get_property_section (section, sec_name);
834 if (table_section)
835 table_size = table_section->size;
836
837 if (table_size == 0)
838 {
839 *table_p = NULL;
840 return 0;
841 }
842
843 predef_flags = xtensa_get_property_predef_flags (table_section);
844 table_entry_size = 12;
845 if (predef_flags)
846 table_entry_size -= 4;
847
848 num_records = table_size / table_entry_size;
849 table_data = retrieve_contents (abfd, table_section, TRUE);
850 blocks = (property_table_entry *)
851 bfd_malloc (num_records * sizeof (property_table_entry));
852 block_count = 0;
853
854 if (output_addr)
855 section_addr = section->output_section->vma + section->output_offset;
856 else
857 section_addr = section->vma;
858
859 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
860 if (internal_relocs && !table_section->reloc_done)
861 {
862 qsort (internal_relocs, table_section->reloc_count,
863 sizeof (Elf_Internal_Rela), internal_reloc_compare);
864 irel = internal_relocs;
865 }
866 else
867 irel = NULL;
868
869 section_limit = bfd_get_section_limit (abfd, section);
870 rel_end = internal_relocs + table_section->reloc_count;
871
872 for (off = 0; off < table_size; off += table_entry_size)
873 {
874 bfd_vma address = bfd_get_32 (abfd, table_data + off);
875
876 /* Skip any relocations before the current offset. This should help
877 avoid confusion caused by unexpected relocations for the preceding
878 table entry. */
879 while (irel &&
880 (irel->r_offset < off
881 || (irel->r_offset == off
882 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
883 {
884 irel += 1;
885 if (irel >= rel_end)
886 irel = 0;
887 }
888
889 if (irel && irel->r_offset == off)
890 {
891 bfd_vma sym_off;
892 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
893 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
894
895 if (get_elf_r_symndx_section (abfd, r_symndx) != section)
896 continue;
897
898 sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
899 BFD_ASSERT (sym_off == 0);
900 address += (section_addr + sym_off + irel->r_addend);
901 }
902 else
903 {
904 if (address < section_addr
905 || address >= section_addr + section_limit)
906 continue;
907 }
908
909 blocks[block_count].address = address;
910 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
911 if (predef_flags)
912 blocks[block_count].flags = predef_flags;
913 else
914 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
915 block_count++;
916 }
917
918 release_contents (table_section, table_data);
919 release_internal_relocs (table_section, internal_relocs);
920
921 if (block_count > 0)
922 {
923 /* Now sort them into address order for easy reference. */
924 qsort (blocks, block_count, sizeof (property_table_entry),
925 property_table_compare);
926
927 /* Check that the table contents are valid. Problems may occur,
928 for example, if an unrelocated object file is stripped. */
929 for (blk = 1; blk < block_count; blk++)
930 {
931 /* The only circumstance where two entries may legitimately
932 have the same address is when one of them is a zero-size
933 placeholder to mark a place where fill can be inserted.
934 The zero-size entry should come first. */
935 if (blocks[blk - 1].address == blocks[blk].address &&
936 blocks[blk - 1].size != 0)
937 {
938 /* xgettext:c-format */
939 _bfd_error_handler (_("%pB(%pA): invalid property table"),
940 abfd, section);
941 bfd_set_error (bfd_error_bad_value);
942 free (blocks);
943 return -1;
944 }
945 }
946 }
947
948 *table_p = blocks;
949 return block_count;
950 }
951
952
953 static property_table_entry *
954 elf_xtensa_find_property_entry (property_table_entry *property_table,
955 int property_table_size,
956 bfd_vma addr)
957 {
958 property_table_entry entry;
959 property_table_entry *rv;
960
961 if (property_table_size == 0)
962 return NULL;
963
964 entry.address = addr;
965 entry.size = 1;
966 entry.flags = 0;
967
968 rv = bsearch (&entry, property_table, property_table_size,
969 sizeof (property_table_entry), property_table_matches);
970 return rv;
971 }
972
973
974 static bfd_boolean
975 elf_xtensa_in_literal_pool (property_table_entry *lit_table,
976 int lit_table_size,
977 bfd_vma addr)
978 {
979 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
980 return TRUE;
981
982 return FALSE;
983 }
984
985 \f
986 /* Look through the relocs for a section during the first phase, and
987 calculate needed space in the dynamic reloc sections. */
988
989 static bfd_boolean
990 elf_xtensa_check_relocs (bfd *abfd,
991 struct bfd_link_info *info,
992 asection *sec,
993 const Elf_Internal_Rela *relocs)
994 {
995 struct elf_xtensa_link_hash_table *htab;
996 Elf_Internal_Shdr *symtab_hdr;
997 struct elf_link_hash_entry **sym_hashes;
998 const Elf_Internal_Rela *rel;
999 const Elf_Internal_Rela *rel_end;
1000
1001 if (bfd_link_relocatable (info) || (sec->flags & SEC_ALLOC) == 0)
1002 return TRUE;
1003
1004 BFD_ASSERT (is_xtensa_elf (abfd));
1005
1006 htab = elf_xtensa_hash_table (info);
1007 if (htab == NULL)
1008 return FALSE;
1009
1010 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1011 sym_hashes = elf_sym_hashes (abfd);
1012
1013 rel_end = relocs + sec->reloc_count;
1014 for (rel = relocs; rel < rel_end; rel++)
1015 {
1016 unsigned int r_type;
1017 unsigned r_symndx;
1018 struct elf_link_hash_entry *h = NULL;
1019 struct elf_xtensa_link_hash_entry *eh;
1020 int tls_type, old_tls_type;
1021 bfd_boolean is_got = FALSE;
1022 bfd_boolean is_plt = FALSE;
1023 bfd_boolean is_tlsfunc = FALSE;
1024
1025 r_symndx = ELF32_R_SYM (rel->r_info);
1026 r_type = ELF32_R_TYPE (rel->r_info);
1027
1028 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1029 {
1030 /* xgettext:c-format */
1031 _bfd_error_handler (_("%pB: bad symbol index: %d"),
1032 abfd, r_symndx);
1033 return FALSE;
1034 }
1035
1036 if (r_symndx >= symtab_hdr->sh_info)
1037 {
1038 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1039 while (h->root.type == bfd_link_hash_indirect
1040 || h->root.type == bfd_link_hash_warning)
1041 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1042 }
1043 eh = elf_xtensa_hash_entry (h);
1044
1045 switch (r_type)
1046 {
1047 case R_XTENSA_TLSDESC_FN:
1048 if (bfd_link_pic (info))
1049 {
1050 tls_type = GOT_TLS_GD;
1051 is_got = TRUE;
1052 is_tlsfunc = TRUE;
1053 }
1054 else
1055 tls_type = GOT_TLS_IE;
1056 break;
1057
1058 case R_XTENSA_TLSDESC_ARG:
1059 if (bfd_link_pic (info))
1060 {
1061 tls_type = GOT_TLS_GD;
1062 is_got = TRUE;
1063 }
1064 else
1065 {
1066 tls_type = GOT_TLS_IE;
1067 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1068 is_got = TRUE;
1069 }
1070 break;
1071
1072 case R_XTENSA_TLS_DTPOFF:
1073 if (bfd_link_pic (info))
1074 tls_type = GOT_TLS_GD;
1075 else
1076 tls_type = GOT_TLS_IE;
1077 break;
1078
1079 case R_XTENSA_TLS_TPOFF:
1080 tls_type = GOT_TLS_IE;
1081 if (bfd_link_pic (info))
1082 info->flags |= DF_STATIC_TLS;
1083 if (bfd_link_pic (info) || h)
1084 is_got = TRUE;
1085 break;
1086
1087 case R_XTENSA_32:
1088 tls_type = GOT_NORMAL;
1089 is_got = TRUE;
1090 break;
1091
1092 case R_XTENSA_PLT:
1093 tls_type = GOT_NORMAL;
1094 is_plt = TRUE;
1095 break;
1096
1097 case R_XTENSA_GNU_VTINHERIT:
1098 /* This relocation describes the C++ object vtable hierarchy.
1099 Reconstruct it for later use during GC. */
1100 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1101 return FALSE;
1102 continue;
1103
1104 case R_XTENSA_GNU_VTENTRY:
1105 /* This relocation describes which C++ vtable entries are actually
1106 used. Record for later use during GC. */
1107 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1108 return FALSE;
1109 continue;
1110
1111 default:
1112 /* Nothing to do for any other relocations. */
1113 continue;
1114 }
1115
1116 if (h)
1117 {
1118 if (is_plt)
1119 {
1120 if (h->plt.refcount <= 0)
1121 {
1122 h->needs_plt = 1;
1123 h->plt.refcount = 1;
1124 }
1125 else
1126 h->plt.refcount += 1;
1127
1128 /* Keep track of the total PLT relocation count even if we
1129 don't yet know whether the dynamic sections will be
1130 created. */
1131 htab->plt_reloc_count += 1;
1132
1133 if (elf_hash_table (info)->dynamic_sections_created)
1134 {
1135 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1136 return FALSE;
1137 }
1138 }
1139 else if (is_got)
1140 {
1141 if (h->got.refcount <= 0)
1142 h->got.refcount = 1;
1143 else
1144 h->got.refcount += 1;
1145 }
1146
1147 if (is_tlsfunc)
1148 eh->tlsfunc_refcount += 1;
1149
1150 old_tls_type = eh->tls_type;
1151 }
1152 else
1153 {
1154 /* Allocate storage the first time. */
1155 if (elf_local_got_refcounts (abfd) == NULL)
1156 {
1157 bfd_size_type size = symtab_hdr->sh_info;
1158 void *mem;
1159
1160 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1161 if (mem == NULL)
1162 return FALSE;
1163 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem;
1164
1165 mem = bfd_zalloc (abfd, size);
1166 if (mem == NULL)
1167 return FALSE;
1168 elf_xtensa_local_got_tls_type (abfd) = (char *) mem;
1169
1170 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1171 if (mem == NULL)
1172 return FALSE;
1173 elf_xtensa_local_tlsfunc_refcounts (abfd)
1174 = (bfd_signed_vma *) mem;
1175 }
1176
1177 /* This is a global offset table entry for a local symbol. */
1178 if (is_got || is_plt)
1179 elf_local_got_refcounts (abfd) [r_symndx] += 1;
1180
1181 if (is_tlsfunc)
1182 elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1;
1183
1184 old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx];
1185 }
1186
1187 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
1188 tls_type |= old_tls_type;
1189 /* If a TLS symbol is accessed using IE at least once,
1190 there is no point to use a dynamic model for it. */
1191 else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1192 && ((old_tls_type & GOT_TLS_GD) == 0
1193 || (tls_type & GOT_TLS_IE) == 0))
1194 {
1195 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD))
1196 tls_type = old_tls_type;
1197 else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD))
1198 tls_type |= old_tls_type;
1199 else
1200 {
1201 _bfd_error_handler
1202 /* xgettext:c-format */
1203 (_("%pB: `%s' accessed both as normal and thread local symbol"),
1204 abfd,
1205 h ? h->root.root.string : "<local>");
1206 return FALSE;
1207 }
1208 }
1209
1210 if (old_tls_type != tls_type)
1211 {
1212 if (eh)
1213 eh->tls_type = tls_type;
1214 else
1215 elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type;
1216 }
1217 }
1218
1219 return TRUE;
1220 }
1221
1222
1223 static void
1224 elf_xtensa_make_sym_local (struct bfd_link_info *info,
1225 struct elf_link_hash_entry *h)
1226 {
1227 if (bfd_link_pic (info))
1228 {
1229 if (h->plt.refcount > 0)
1230 {
1231 /* For shared objects, there's no need for PLT entries for local
1232 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
1233 if (h->got.refcount < 0)
1234 h->got.refcount = 0;
1235 h->got.refcount += h->plt.refcount;
1236 h->plt.refcount = 0;
1237 }
1238 }
1239 else
1240 {
1241 /* Don't need any dynamic relocations at all. */
1242 h->plt.refcount = 0;
1243 h->got.refcount = 0;
1244 }
1245 }
1246
1247
1248 static void
1249 elf_xtensa_hide_symbol (struct bfd_link_info *info,
1250 struct elf_link_hash_entry *h,
1251 bfd_boolean force_local)
1252 {
1253 /* For a shared link, move the plt refcount to the got refcount to leave
1254 space for RELATIVE relocs. */
1255 elf_xtensa_make_sym_local (info, h);
1256
1257 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
1258 }
1259
1260
1261 /* Return the section that should be marked against GC for a given
1262 relocation. */
1263
1264 static asection *
1265 elf_xtensa_gc_mark_hook (asection *sec,
1266 struct bfd_link_info *info,
1267 Elf_Internal_Rela *rel,
1268 struct elf_link_hash_entry *h,
1269 Elf_Internal_Sym *sym)
1270 {
1271 /* Property sections are marked "KEEP" in the linker scripts, but they
1272 should not cause other sections to be marked. (This approach relies
1273 on elf_xtensa_discard_info to remove property table entries that
1274 describe discarded sections. Alternatively, it might be more
1275 efficient to avoid using "KEEP" in the linker scripts and instead use
1276 the gc_mark_extra_sections hook to mark only the property sections
1277 that describe marked sections. That alternative does not work well
1278 with the current property table sections, which do not correspond
1279 one-to-one with the sections they describe, but that should be fixed
1280 someday.) */
1281 if (xtensa_is_property_section (sec))
1282 return NULL;
1283
1284 if (h != NULL)
1285 switch (ELF32_R_TYPE (rel->r_info))
1286 {
1287 case R_XTENSA_GNU_VTINHERIT:
1288 case R_XTENSA_GNU_VTENTRY:
1289 return NULL;
1290 }
1291
1292 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1293 }
1294
1295
1296 /* Create all the dynamic sections. */
1297
1298 static bfd_boolean
1299 elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
1300 {
1301 struct elf_xtensa_link_hash_table *htab;
1302 flagword flags, noalloc_flags;
1303
1304 htab = elf_xtensa_hash_table (info);
1305 if (htab == NULL)
1306 return FALSE;
1307
1308 /* First do all the standard stuff. */
1309 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1310 return FALSE;
1311
1312 /* Create any extra PLT sections in case check_relocs has already
1313 been called on all the non-dynamic input files. */
1314 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1315 return FALSE;
1316
1317 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1318 | SEC_LINKER_CREATED | SEC_READONLY);
1319 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
1320
1321 /* Mark the ".got.plt" section READONLY. */
1322 if (htab->elf.sgotplt == NULL
1323 || ! bfd_set_section_flags (dynobj, htab->elf.sgotplt, flags))
1324 return FALSE;
1325
1326 /* Create ".got.loc" (literal tables for use by dynamic linker). */
1327 htab->sgotloc = bfd_make_section_anyway_with_flags (dynobj, ".got.loc",
1328 flags);
1329 if (htab->sgotloc == NULL
1330 || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
1331 return FALSE;
1332
1333 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
1334 htab->spltlittbl = bfd_make_section_anyway_with_flags (dynobj, ".xt.lit.plt",
1335 noalloc_flags);
1336 if (htab->spltlittbl == NULL
1337 || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
1338 return FALSE;
1339
1340 return TRUE;
1341 }
1342
1343
1344 static bfd_boolean
1345 add_extra_plt_sections (struct bfd_link_info *info, int count)
1346 {
1347 bfd *dynobj = elf_hash_table (info)->dynobj;
1348 int chunk;
1349
1350 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1351 ".got.plt" sections. */
1352 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1353 {
1354 char *sname;
1355 flagword flags;
1356 asection *s;
1357
1358 /* Stop when we find a section has already been created. */
1359 if (elf_xtensa_get_plt_section (info, chunk))
1360 break;
1361
1362 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1363 | SEC_LINKER_CREATED | SEC_READONLY);
1364
1365 sname = (char *) bfd_malloc (10);
1366 sprintf (sname, ".plt.%u", chunk);
1367 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags | SEC_CODE);
1368 if (s == NULL
1369 || ! bfd_set_section_alignment (dynobj, s, 2))
1370 return FALSE;
1371
1372 sname = (char *) bfd_malloc (14);
1373 sprintf (sname, ".got.plt.%u", chunk);
1374 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags);
1375 if (s == NULL
1376 || ! bfd_set_section_alignment (dynobj, s, 2))
1377 return FALSE;
1378 }
1379
1380 return TRUE;
1381 }
1382
1383
1384 /* Adjust a symbol defined by a dynamic object and referenced by a
1385 regular object. The current definition is in some section of the
1386 dynamic object, but we're not including those sections. We have to
1387 change the definition to something the rest of the link can
1388 understand. */
1389
1390 static bfd_boolean
1391 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1392 struct elf_link_hash_entry *h)
1393 {
1394 /* If this is a weak symbol, and there is a real definition, the
1395 processor independent code will have arranged for us to see the
1396 real definition first, and we can just use the same value. */
1397 if (h->is_weakalias)
1398 {
1399 struct elf_link_hash_entry *def = weakdef (h);
1400 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
1401 h->root.u.def.section = def->root.u.def.section;
1402 h->root.u.def.value = def->root.u.def.value;
1403 return TRUE;
1404 }
1405
1406 /* This is a reference to a symbol defined by a dynamic object. The
1407 reference must go through the GOT, so there's no need for COPY relocs,
1408 .dynbss, etc. */
1409
1410 return TRUE;
1411 }
1412
1413
1414 static bfd_boolean
1415 elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
1416 {
1417 struct bfd_link_info *info;
1418 struct elf_xtensa_link_hash_table *htab;
1419 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h);
1420
1421 if (h->root.type == bfd_link_hash_indirect)
1422 return TRUE;
1423
1424 info = (struct bfd_link_info *) arg;
1425 htab = elf_xtensa_hash_table (info);
1426 if (htab == NULL)
1427 return FALSE;
1428
1429 /* If we saw any use of an IE model for this symbol, we can then optimize
1430 away GOT entries for any TLSDESC_FN relocs. */
1431 if ((eh->tls_type & GOT_TLS_IE) != 0)
1432 {
1433 BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount);
1434 h->got.refcount -= eh->tlsfunc_refcount;
1435 }
1436
1437 if (! elf_xtensa_dynamic_symbol_p (h, info))
1438 elf_xtensa_make_sym_local (info, h);
1439
1440 if (! elf_xtensa_dynamic_symbol_p (h, info)
1441 && h->root.type == bfd_link_hash_undefweak)
1442 return TRUE;
1443
1444 if (h->plt.refcount > 0)
1445 htab->elf.srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
1446
1447 if (h->got.refcount > 0)
1448 htab->elf.srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
1449
1450 return TRUE;
1451 }
1452
1453
1454 static void
1455 elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
1456 {
1457 struct elf_xtensa_link_hash_table *htab;
1458 bfd *i;
1459
1460 htab = elf_xtensa_hash_table (info);
1461 if (htab == NULL)
1462 return;
1463
1464 for (i = info->input_bfds; i; i = i->link.next)
1465 {
1466 bfd_signed_vma *local_got_refcounts;
1467 bfd_size_type j, cnt;
1468 Elf_Internal_Shdr *symtab_hdr;
1469
1470 local_got_refcounts = elf_local_got_refcounts (i);
1471 if (!local_got_refcounts)
1472 continue;
1473
1474 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1475 cnt = symtab_hdr->sh_info;
1476
1477 for (j = 0; j < cnt; ++j)
1478 {
1479 /* If we saw any use of an IE model for this symbol, we can
1480 then optimize away GOT entries for any TLSDESC_FN relocs. */
1481 if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0)
1482 {
1483 bfd_signed_vma *tlsfunc_refcount
1484 = &elf_xtensa_local_tlsfunc_refcounts (i) [j];
1485 BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount);
1486 local_got_refcounts[j] -= *tlsfunc_refcount;
1487 }
1488
1489 if (local_got_refcounts[j] > 0)
1490 htab->elf.srelgot->size += (local_got_refcounts[j]
1491 * sizeof (Elf32_External_Rela));
1492 }
1493 }
1494 }
1495
1496
1497 /* Set the sizes of the dynamic sections. */
1498
1499 static bfd_boolean
1500 elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1501 struct bfd_link_info *info)
1502 {
1503 struct elf_xtensa_link_hash_table *htab;
1504 bfd *dynobj, *abfd;
1505 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
1506 bfd_boolean relplt, relgot;
1507 int plt_entries, plt_chunks, chunk;
1508
1509 plt_entries = 0;
1510 plt_chunks = 0;
1511
1512 htab = elf_xtensa_hash_table (info);
1513 if (htab == NULL)
1514 return FALSE;
1515
1516 dynobj = elf_hash_table (info)->dynobj;
1517 if (dynobj == NULL)
1518 abort ();
1519 srelgot = htab->elf.srelgot;
1520 srelplt = htab->elf.srelplt;
1521
1522 if (elf_hash_table (info)->dynamic_sections_created)
1523 {
1524 BFD_ASSERT (htab->elf.srelgot != NULL
1525 && htab->elf.srelplt != NULL
1526 && htab->elf.sgot != NULL
1527 && htab->spltlittbl != NULL
1528 && htab->sgotloc != NULL);
1529
1530 /* Set the contents of the .interp section to the interpreter. */
1531 if (bfd_link_executable (info) && !info->nointerp)
1532 {
1533 s = bfd_get_linker_section (dynobj, ".interp");
1534 if (s == NULL)
1535 abort ();
1536 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1537 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1538 }
1539
1540 /* Allocate room for one word in ".got". */
1541 htab->elf.sgot->size = 4;
1542
1543 /* Allocate space in ".rela.got" for literals that reference global
1544 symbols and space in ".rela.plt" for literals that have PLT
1545 entries. */
1546 elf_link_hash_traverse (elf_hash_table (info),
1547 elf_xtensa_allocate_dynrelocs,
1548 (void *) info);
1549
1550 /* If we are generating a shared object, we also need space in
1551 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1552 reference local symbols. */
1553 if (bfd_link_pic (info))
1554 elf_xtensa_allocate_local_got_size (info);
1555
1556 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1557 each PLT entry, we need the PLT code plus a 4-byte literal.
1558 For each chunk of ".plt", we also need two more 4-byte
1559 literals, two corresponding entries in ".rela.got", and an
1560 8-byte entry in ".xt.lit.plt". */
1561 spltlittbl = htab->spltlittbl;
1562 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
1563 plt_chunks =
1564 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1565
1566 /* Iterate over all the PLT chunks, including any extra sections
1567 created earlier because the initial count of PLT relocations
1568 was an overestimate. */
1569 for (chunk = 0;
1570 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
1571 chunk++)
1572 {
1573 int chunk_entries;
1574
1575 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1576 BFD_ASSERT (sgotplt != NULL);
1577
1578 if (chunk < plt_chunks - 1)
1579 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1580 else if (chunk == plt_chunks - 1)
1581 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1582 else
1583 chunk_entries = 0;
1584
1585 if (chunk_entries != 0)
1586 {
1587 sgotplt->size = 4 * (chunk_entries + 2);
1588 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1589 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1590 spltlittbl->size += 8;
1591 }
1592 else
1593 {
1594 sgotplt->size = 0;
1595 splt->size = 0;
1596 }
1597 }
1598
1599 /* Allocate space in ".got.loc" to match the total size of all the
1600 literal tables. */
1601 sgotloc = htab->sgotloc;
1602 sgotloc->size = spltlittbl->size;
1603 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
1604 {
1605 if (abfd->flags & DYNAMIC)
1606 continue;
1607 for (s = abfd->sections; s != NULL; s = s->next)
1608 {
1609 if (! discarded_section (s)
1610 && xtensa_is_littable_section (s)
1611 && s != spltlittbl)
1612 sgotloc->size += s->size;
1613 }
1614 }
1615 }
1616
1617 /* Allocate memory for dynamic sections. */
1618 relplt = FALSE;
1619 relgot = FALSE;
1620 for (s = dynobj->sections; s != NULL; s = s->next)
1621 {
1622 const char *name;
1623
1624 if ((s->flags & SEC_LINKER_CREATED) == 0)
1625 continue;
1626
1627 /* It's OK to base decisions on the section name, because none
1628 of the dynobj section names depend upon the input files. */
1629 name = bfd_get_section_name (dynobj, s);
1630
1631 if (CONST_STRNEQ (name, ".rela"))
1632 {
1633 if (s->size != 0)
1634 {
1635 if (strcmp (name, ".rela.plt") == 0)
1636 relplt = TRUE;
1637 else if (strcmp (name, ".rela.got") == 0)
1638 relgot = TRUE;
1639
1640 /* We use the reloc_count field as a counter if we need
1641 to copy relocs into the output file. */
1642 s->reloc_count = 0;
1643 }
1644 }
1645 else if (! CONST_STRNEQ (name, ".plt.")
1646 && ! CONST_STRNEQ (name, ".got.plt.")
1647 && strcmp (name, ".got") != 0
1648 && strcmp (name, ".plt") != 0
1649 && strcmp (name, ".got.plt") != 0
1650 && strcmp (name, ".xt.lit.plt") != 0
1651 && strcmp (name, ".got.loc") != 0)
1652 {
1653 /* It's not one of our sections, so don't allocate space. */
1654 continue;
1655 }
1656
1657 if (s->size == 0)
1658 {
1659 /* If we don't need this section, strip it from the output
1660 file. We must create the ".plt*" and ".got.plt*"
1661 sections in create_dynamic_sections and/or check_relocs
1662 based on a conservative estimate of the PLT relocation
1663 count, because the sections must be created before the
1664 linker maps input sections to output sections. The
1665 linker does that before size_dynamic_sections, where we
1666 compute the exact size of the PLT, so there may be more
1667 of these sections than are actually needed. */
1668 s->flags |= SEC_EXCLUDE;
1669 }
1670 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
1671 {
1672 /* Allocate memory for the section contents. */
1673 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1674 if (s->contents == NULL)
1675 return FALSE;
1676 }
1677 }
1678
1679 if (elf_hash_table (info)->dynamic_sections_created)
1680 {
1681 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1682 known until finish_dynamic_sections, but we need to get the relocs
1683 in place before they are sorted. */
1684 for (chunk = 0; chunk < plt_chunks; chunk++)
1685 {
1686 Elf_Internal_Rela irela;
1687 bfd_byte *loc;
1688
1689 irela.r_offset = 0;
1690 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1691 irela.r_addend = 0;
1692
1693 loc = (srelgot->contents
1694 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1695 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1696 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1697 loc + sizeof (Elf32_External_Rela));
1698 srelgot->reloc_count += 2;
1699 }
1700
1701 /* Add some entries to the .dynamic section. We fill in the
1702 values later, in elf_xtensa_finish_dynamic_sections, but we
1703 must add the entries now so that we get the correct size for
1704 the .dynamic section. The DT_DEBUG entry is filled in by the
1705 dynamic linker and used by the debugger. */
1706 #define add_dynamic_entry(TAG, VAL) \
1707 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1708
1709 if (bfd_link_executable (info))
1710 {
1711 if (!add_dynamic_entry (DT_DEBUG, 0))
1712 return FALSE;
1713 }
1714
1715 if (relplt)
1716 {
1717 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1718 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1719 || !add_dynamic_entry (DT_JMPREL, 0))
1720 return FALSE;
1721 }
1722
1723 if (relgot)
1724 {
1725 if (!add_dynamic_entry (DT_RELA, 0)
1726 || !add_dynamic_entry (DT_RELASZ, 0)
1727 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1728 return FALSE;
1729 }
1730
1731 if (!add_dynamic_entry (DT_PLTGOT, 0)
1732 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1733 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1734 return FALSE;
1735 }
1736 #undef add_dynamic_entry
1737
1738 return TRUE;
1739 }
1740
1741 static bfd_boolean
1742 elf_xtensa_always_size_sections (bfd *output_bfd,
1743 struct bfd_link_info *info)
1744 {
1745 struct elf_xtensa_link_hash_table *htab;
1746 asection *tls_sec;
1747
1748 htab = elf_xtensa_hash_table (info);
1749 if (htab == NULL)
1750 return FALSE;
1751
1752 tls_sec = htab->elf.tls_sec;
1753
1754 if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0)
1755 {
1756 struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf;
1757 struct bfd_link_hash_entry *bh = &tlsbase->root;
1758 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
1759
1760 tlsbase->type = STT_TLS;
1761 if (!(_bfd_generic_link_add_one_symbol
1762 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
1763 tls_sec, 0, NULL, FALSE,
1764 bed->collect, &bh)))
1765 return FALSE;
1766 tlsbase->def_regular = 1;
1767 tlsbase->other = STV_HIDDEN;
1768 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
1769 }
1770
1771 return TRUE;
1772 }
1773
1774 \f
1775 /* Return the base VMA address which should be subtracted from real addresses
1776 when resolving @dtpoff relocation.
1777 This is PT_TLS segment p_vaddr. */
1778
1779 static bfd_vma
1780 dtpoff_base (struct bfd_link_info *info)
1781 {
1782 /* If tls_sec is NULL, we should have signalled an error already. */
1783 if (elf_hash_table (info)->tls_sec == NULL)
1784 return 0;
1785 return elf_hash_table (info)->tls_sec->vma;
1786 }
1787
1788 /* Return the relocation value for @tpoff relocation
1789 if STT_TLS virtual address is ADDRESS. */
1790
1791 static bfd_vma
1792 tpoff (struct bfd_link_info *info, bfd_vma address)
1793 {
1794 struct elf_link_hash_table *htab = elf_hash_table (info);
1795 bfd_vma base;
1796
1797 /* If tls_sec is NULL, we should have signalled an error already. */
1798 if (htab->tls_sec == NULL)
1799 return 0;
1800 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
1801 return address - htab->tls_sec->vma + base;
1802 }
1803
1804 /* Perform the specified relocation. The instruction at (contents + address)
1805 is modified to set one operand to represent the value in "relocation". The
1806 operand position is determined by the relocation type recorded in the
1807 howto. */
1808
1809 #define CALL_SEGMENT_BITS (30)
1810 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
1811
1812 static bfd_reloc_status_type
1813 elf_xtensa_do_reloc (reloc_howto_type *howto,
1814 bfd *abfd,
1815 asection *input_section,
1816 bfd_vma relocation,
1817 bfd_byte *contents,
1818 bfd_vma address,
1819 bfd_boolean is_weak_undef,
1820 char **error_message)
1821 {
1822 xtensa_format fmt;
1823 xtensa_opcode opcode;
1824 xtensa_isa isa = xtensa_default_isa;
1825 static xtensa_insnbuf ibuff = NULL;
1826 static xtensa_insnbuf sbuff = NULL;
1827 bfd_vma self_address;
1828 bfd_size_type input_size;
1829 int opnd, slot;
1830 uint32 newval;
1831
1832 if (!ibuff)
1833 {
1834 ibuff = xtensa_insnbuf_alloc (isa);
1835 sbuff = xtensa_insnbuf_alloc (isa);
1836 }
1837
1838 input_size = bfd_get_section_limit (abfd, input_section);
1839
1840 /* Calculate the PC address for this instruction. */
1841 self_address = (input_section->output_section->vma
1842 + input_section->output_offset
1843 + address);
1844
1845 switch (howto->type)
1846 {
1847 case R_XTENSA_NONE:
1848 case R_XTENSA_DIFF8:
1849 case R_XTENSA_DIFF16:
1850 case R_XTENSA_DIFF32:
1851 case R_XTENSA_TLS_FUNC:
1852 case R_XTENSA_TLS_ARG:
1853 case R_XTENSA_TLS_CALL:
1854 return bfd_reloc_ok;
1855
1856 case R_XTENSA_ASM_EXPAND:
1857 if (!is_weak_undef)
1858 {
1859 /* Check for windowed CALL across a 1GB boundary. */
1860 opcode = get_expanded_call_opcode (contents + address,
1861 input_size - address, 0);
1862 if (is_windowed_call_opcode (opcode))
1863 {
1864 if ((self_address >> CALL_SEGMENT_BITS)
1865 != (relocation >> CALL_SEGMENT_BITS))
1866 {
1867 *error_message = "windowed longcall crosses 1GB boundary; "
1868 "return may fail";
1869 return bfd_reloc_dangerous;
1870 }
1871 }
1872 }
1873 return bfd_reloc_ok;
1874
1875 case R_XTENSA_ASM_SIMPLIFY:
1876 {
1877 /* Convert the L32R/CALLX to CALL. */
1878 bfd_reloc_status_type retval =
1879 elf_xtensa_do_asm_simplify (contents, address, input_size,
1880 error_message);
1881 if (retval != bfd_reloc_ok)
1882 return bfd_reloc_dangerous;
1883
1884 /* The CALL needs to be relocated. Continue below for that part. */
1885 address += 3;
1886 self_address += 3;
1887 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
1888 }
1889 break;
1890
1891 case R_XTENSA_32:
1892 {
1893 bfd_vma x;
1894 x = bfd_get_32 (abfd, contents + address);
1895 x = x + relocation;
1896 bfd_put_32 (abfd, x, contents + address);
1897 }
1898 return bfd_reloc_ok;
1899
1900 case R_XTENSA_32_PCREL:
1901 bfd_put_32 (abfd, relocation - self_address, contents + address);
1902 return bfd_reloc_ok;
1903
1904 case R_XTENSA_PLT:
1905 case R_XTENSA_TLSDESC_FN:
1906 case R_XTENSA_TLSDESC_ARG:
1907 case R_XTENSA_TLS_DTPOFF:
1908 case R_XTENSA_TLS_TPOFF:
1909 bfd_put_32 (abfd, relocation, contents + address);
1910 return bfd_reloc_ok;
1911 }
1912
1913 /* Only instruction slot-specific relocations handled below.... */
1914 slot = get_relocation_slot (howto->type);
1915 if (slot == XTENSA_UNDEFINED)
1916 {
1917 *error_message = "unexpected relocation";
1918 return bfd_reloc_dangerous;
1919 }
1920
1921 /* Read the instruction into a buffer and decode the opcode. */
1922 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
1923 input_size - address);
1924 fmt = xtensa_format_decode (isa, ibuff);
1925 if (fmt == XTENSA_UNDEFINED)
1926 {
1927 *error_message = "cannot decode instruction format";
1928 return bfd_reloc_dangerous;
1929 }
1930
1931 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
1932
1933 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
1934 if (opcode == XTENSA_UNDEFINED)
1935 {
1936 *error_message = "cannot decode instruction opcode";
1937 return bfd_reloc_dangerous;
1938 }
1939
1940 /* Check for opcode-specific "alternate" relocations. */
1941 if (is_alt_relocation (howto->type))
1942 {
1943 if (opcode == get_l32r_opcode ())
1944 {
1945 /* Handle the special-case of non-PC-relative L32R instructions. */
1946 bfd *output_bfd = input_section->output_section->owner;
1947 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
1948 if (!lit4_sec)
1949 {
1950 *error_message = "relocation references missing .lit4 section";
1951 return bfd_reloc_dangerous;
1952 }
1953 self_address = ((lit4_sec->vma & ~0xfff)
1954 + 0x40000 - 3); /* -3 to compensate for do_reloc */
1955 newval = relocation;
1956 opnd = 1;
1957 }
1958 else if (opcode == get_const16_opcode ())
1959 {
1960 /* ALT used for high 16 bits.
1961 Ignore 32-bit overflow. */
1962 newval = (relocation >> 16) & 0xffff;
1963 opnd = 1;
1964 }
1965 else
1966 {
1967 /* No other "alternate" relocations currently defined. */
1968 *error_message = "unexpected relocation";
1969 return bfd_reloc_dangerous;
1970 }
1971 }
1972 else /* Not an "alternate" relocation.... */
1973 {
1974 if (opcode == get_const16_opcode ())
1975 {
1976 newval = relocation & 0xffff;
1977 opnd = 1;
1978 }
1979 else
1980 {
1981 /* ...normal PC-relative relocation.... */
1982
1983 /* Determine which operand is being relocated. */
1984 opnd = get_relocation_opnd (opcode, howto->type);
1985 if (opnd == XTENSA_UNDEFINED)
1986 {
1987 *error_message = "unexpected relocation";
1988 return bfd_reloc_dangerous;
1989 }
1990
1991 if (!howto->pc_relative)
1992 {
1993 *error_message = "expected PC-relative relocation";
1994 return bfd_reloc_dangerous;
1995 }
1996
1997 newval = relocation;
1998 }
1999 }
2000
2001 /* Apply the relocation. */
2002 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
2003 || xtensa_operand_encode (isa, opcode, opnd, &newval)
2004 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
2005 sbuff, newval))
2006 {
2007 const char *opname = xtensa_opcode_name (isa, opcode);
2008 const char *msg;
2009
2010 msg = "cannot encode";
2011 if (is_direct_call_opcode (opcode))
2012 {
2013 if ((relocation & 0x3) != 0)
2014 msg = "misaligned call target";
2015 else
2016 msg = "call target out of range";
2017 }
2018 else if (opcode == get_l32r_opcode ())
2019 {
2020 if ((relocation & 0x3) != 0)
2021 msg = "misaligned literal target";
2022 else if (is_alt_relocation (howto->type))
2023 msg = "literal target out of range (too many literals)";
2024 else if (self_address > relocation)
2025 msg = "literal target out of range (try using text-section-literals)";
2026 else
2027 msg = "literal placed after use";
2028 }
2029
2030 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
2031 return bfd_reloc_dangerous;
2032 }
2033
2034 /* Check for calls across 1GB boundaries. */
2035 if (is_direct_call_opcode (opcode)
2036 && is_windowed_call_opcode (opcode))
2037 {
2038 if ((self_address >> CALL_SEGMENT_BITS)
2039 != (relocation >> CALL_SEGMENT_BITS))
2040 {
2041 *error_message =
2042 "windowed call crosses 1GB boundary; return may fail";
2043 return bfd_reloc_dangerous;
2044 }
2045 }
2046
2047 /* Write the modified instruction back out of the buffer. */
2048 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
2049 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
2050 input_size - address);
2051 return bfd_reloc_ok;
2052 }
2053
2054
2055 static char *
2056 vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
2057 {
2058 /* To reduce the size of the memory leak,
2059 we only use a single message buffer. */
2060 static bfd_size_type alloc_size = 0;
2061 static char *message = NULL;
2062 bfd_size_type orig_len, len = 0;
2063 bfd_boolean is_append;
2064 va_list ap;
2065
2066 va_start (ap, arglen);
2067
2068 is_append = (origmsg == message);
2069
2070 orig_len = strlen (origmsg);
2071 len = orig_len + strlen (fmt) + arglen + 20;
2072 if (len > alloc_size)
2073 {
2074 message = (char *) bfd_realloc_or_free (message, len);
2075 alloc_size = len;
2076 }
2077 if (message != NULL)
2078 {
2079 if (!is_append)
2080 memcpy (message, origmsg, orig_len);
2081 vsprintf (message + orig_len, fmt, ap);
2082 }
2083 va_end (ap);
2084 return message;
2085 }
2086
2087
2088 /* This function is registered as the "special_function" in the
2089 Xtensa howto for handling simplify operations.
2090 bfd_perform_relocation / bfd_install_relocation use it to
2091 perform (install) the specified relocation. Since this replaces the code
2092 in bfd_perform_relocation, it is basically an Xtensa-specific,
2093 stripped-down version of bfd_perform_relocation. */
2094
2095 static bfd_reloc_status_type
2096 bfd_elf_xtensa_reloc (bfd *abfd,
2097 arelent *reloc_entry,
2098 asymbol *symbol,
2099 void *data,
2100 asection *input_section,
2101 bfd *output_bfd,
2102 char **error_message)
2103 {
2104 bfd_vma relocation;
2105 bfd_reloc_status_type flag;
2106 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2107 bfd_vma output_base = 0;
2108 reloc_howto_type *howto = reloc_entry->howto;
2109 asection *reloc_target_output_section;
2110 bfd_boolean is_weak_undef;
2111
2112 if (!xtensa_default_isa)
2113 xtensa_default_isa = xtensa_isa_init (0, 0);
2114
2115 /* ELF relocs are against symbols. If we are producing relocatable
2116 output, and the reloc is against an external symbol, the resulting
2117 reloc will also be against the same symbol. In such a case, we
2118 don't want to change anything about the way the reloc is handled,
2119 since it will all be done at final link time. This test is similar
2120 to what bfd_elf_generic_reloc does except that it lets relocs with
2121 howto->partial_inplace go through even if the addend is non-zero.
2122 (The real problem is that partial_inplace is set for XTENSA_32
2123 relocs to begin with, but that's a long story and there's little we
2124 can do about it now....) */
2125
2126 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
2127 {
2128 reloc_entry->address += input_section->output_offset;
2129 return bfd_reloc_ok;
2130 }
2131
2132 /* Is the address of the relocation really within the section? */
2133 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2134 return bfd_reloc_outofrange;
2135
2136 /* Work out which section the relocation is targeted at and the
2137 initial relocation command value. */
2138
2139 /* Get symbol value. (Common symbols are special.) */
2140 if (bfd_is_com_section (symbol->section))
2141 relocation = 0;
2142 else
2143 relocation = symbol->value;
2144
2145 reloc_target_output_section = symbol->section->output_section;
2146
2147 /* Convert input-section-relative symbol value to absolute. */
2148 if ((output_bfd && !howto->partial_inplace)
2149 || reloc_target_output_section == NULL)
2150 output_base = 0;
2151 else
2152 output_base = reloc_target_output_section->vma;
2153
2154 relocation += output_base + symbol->section->output_offset;
2155
2156 /* Add in supplied addend. */
2157 relocation += reloc_entry->addend;
2158
2159 /* Here the variable relocation holds the final address of the
2160 symbol we are relocating against, plus any addend. */
2161 if (output_bfd)
2162 {
2163 if (!howto->partial_inplace)
2164 {
2165 /* This is a partial relocation, and we want to apply the relocation
2166 to the reloc entry rather than the raw data. Everything except
2167 relocations against section symbols has already been handled
2168 above. */
2169
2170 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
2171 reloc_entry->addend = relocation;
2172 reloc_entry->address += input_section->output_offset;
2173 return bfd_reloc_ok;
2174 }
2175 else
2176 {
2177 reloc_entry->address += input_section->output_offset;
2178 reloc_entry->addend = 0;
2179 }
2180 }
2181
2182 is_weak_undef = (bfd_is_und_section (symbol->section)
2183 && (symbol->flags & BSF_WEAK) != 0);
2184 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
2185 (bfd_byte *) data, (bfd_vma) octets,
2186 is_weak_undef, error_message);
2187
2188 if (flag == bfd_reloc_dangerous)
2189 {
2190 /* Add the symbol name to the error message. */
2191 if (! *error_message)
2192 *error_message = "";
2193 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
2194 strlen (symbol->name) + 17,
2195 symbol->name,
2196 (unsigned long) reloc_entry->addend);
2197 }
2198
2199 return flag;
2200 }
2201
2202
2203 /* Set up an entry in the procedure linkage table. */
2204
2205 static bfd_vma
2206 elf_xtensa_create_plt_entry (struct bfd_link_info *info,
2207 bfd *output_bfd,
2208 unsigned reloc_index)
2209 {
2210 asection *splt, *sgotplt;
2211 bfd_vma plt_base, got_base;
2212 bfd_vma code_offset, lit_offset, abi_offset;
2213 int chunk;
2214
2215 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
2216 splt = elf_xtensa_get_plt_section (info, chunk);
2217 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
2218 BFD_ASSERT (splt != NULL && sgotplt != NULL);
2219
2220 plt_base = splt->output_section->vma + splt->output_offset;
2221 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
2222
2223 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
2224 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
2225
2226 /* Fill in the literal entry. This is the offset of the dynamic
2227 relocation entry. */
2228 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
2229 sgotplt->contents + lit_offset);
2230
2231 /* Fill in the entry in the procedure linkage table. */
2232 memcpy (splt->contents + code_offset,
2233 (bfd_big_endian (output_bfd)
2234 ? elf_xtensa_be_plt_entry[XSHAL_ABI != XTHAL_ABI_WINDOWED]
2235 : elf_xtensa_le_plt_entry[XSHAL_ABI != XTHAL_ABI_WINDOWED]),
2236 PLT_ENTRY_SIZE);
2237 abi_offset = XSHAL_ABI == XTHAL_ABI_WINDOWED ? 3 : 0;
2238 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
2239 plt_base + code_offset + abi_offset),
2240 splt->contents + code_offset + abi_offset + 1);
2241 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
2242 plt_base + code_offset + abi_offset + 3),
2243 splt->contents + code_offset + abi_offset + 4);
2244 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
2245 plt_base + code_offset + abi_offset + 6),
2246 splt->contents + code_offset + abi_offset + 7);
2247
2248 return plt_base + code_offset;
2249 }
2250
2251
2252 static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *);
2253
2254 static bfd_boolean
2255 replace_tls_insn (Elf_Internal_Rela *rel,
2256 bfd *abfd,
2257 asection *input_section,
2258 bfd_byte *contents,
2259 bfd_boolean is_ld_model,
2260 char **error_message)
2261 {
2262 static xtensa_insnbuf ibuff = NULL;
2263 static xtensa_insnbuf sbuff = NULL;
2264 xtensa_isa isa = xtensa_default_isa;
2265 xtensa_format fmt;
2266 xtensa_opcode old_op, new_op;
2267 bfd_size_type input_size;
2268 int r_type;
2269 unsigned dest_reg, src_reg;
2270
2271 if (ibuff == NULL)
2272 {
2273 ibuff = xtensa_insnbuf_alloc (isa);
2274 sbuff = xtensa_insnbuf_alloc (isa);
2275 }
2276
2277 input_size = bfd_get_section_limit (abfd, input_section);
2278
2279 /* Read the instruction into a buffer and decode the opcode. */
2280 xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset,
2281 input_size - rel->r_offset);
2282 fmt = xtensa_format_decode (isa, ibuff);
2283 if (fmt == XTENSA_UNDEFINED)
2284 {
2285 *error_message = "cannot decode instruction format";
2286 return FALSE;
2287 }
2288
2289 BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1);
2290 xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff);
2291
2292 old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff);
2293 if (old_op == XTENSA_UNDEFINED)
2294 {
2295 *error_message = "cannot decode instruction opcode";
2296 return FALSE;
2297 }
2298
2299 r_type = ELF32_R_TYPE (rel->r_info);
2300 switch (r_type)
2301 {
2302 case R_XTENSA_TLS_FUNC:
2303 case R_XTENSA_TLS_ARG:
2304 if (old_op != get_l32r_opcode ()
2305 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2306 sbuff, &dest_reg) != 0)
2307 {
2308 *error_message = "cannot extract L32R destination for TLS access";
2309 return FALSE;
2310 }
2311 break;
2312
2313 case R_XTENSA_TLS_CALL:
2314 if (! get_indirect_call_dest_reg (old_op, &dest_reg)
2315 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2316 sbuff, &src_reg) != 0)
2317 {
2318 *error_message = "cannot extract CALLXn operands for TLS access";
2319 return FALSE;
2320 }
2321 break;
2322
2323 default:
2324 abort ();
2325 }
2326
2327 if (is_ld_model)
2328 {
2329 switch (r_type)
2330 {
2331 case R_XTENSA_TLS_FUNC:
2332 case R_XTENSA_TLS_ARG:
2333 /* Change the instruction to a NOP (or "OR a1, a1, a1" for older
2334 versions of Xtensa). */
2335 new_op = xtensa_opcode_lookup (isa, "nop");
2336 if (new_op == XTENSA_UNDEFINED)
2337 {
2338 new_op = xtensa_opcode_lookup (isa, "or");
2339 if (new_op == XTENSA_UNDEFINED
2340 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2341 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2342 sbuff, 1) != 0
2343 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2344 sbuff, 1) != 0
2345 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2346 sbuff, 1) != 0)
2347 {
2348 *error_message = "cannot encode OR for TLS access";
2349 return FALSE;
2350 }
2351 }
2352 else
2353 {
2354 if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0)
2355 {
2356 *error_message = "cannot encode NOP for TLS access";
2357 return FALSE;
2358 }
2359 }
2360 break;
2361
2362 case R_XTENSA_TLS_CALL:
2363 /* Read THREADPTR into the CALLX's return value register. */
2364 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2365 if (new_op == XTENSA_UNDEFINED
2366 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2367 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2368 sbuff, dest_reg + 2) != 0)
2369 {
2370 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2371 return FALSE;
2372 }
2373 break;
2374 }
2375 }
2376 else
2377 {
2378 switch (r_type)
2379 {
2380 case R_XTENSA_TLS_FUNC:
2381 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2382 if (new_op == XTENSA_UNDEFINED
2383 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2384 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2385 sbuff, dest_reg) != 0)
2386 {
2387 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2388 return FALSE;
2389 }
2390 break;
2391
2392 case R_XTENSA_TLS_ARG:
2393 /* Nothing to do. Keep the original L32R instruction. */
2394 return TRUE;
2395
2396 case R_XTENSA_TLS_CALL:
2397 /* Add the CALLX's src register (holding the THREADPTR value)
2398 to the first argument register (holding the offset) and put
2399 the result in the CALLX's return value register. */
2400 new_op = xtensa_opcode_lookup (isa, "add");
2401 if (new_op == XTENSA_UNDEFINED
2402 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2403 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2404 sbuff, dest_reg + 2) != 0
2405 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2406 sbuff, dest_reg + 2) != 0
2407 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2408 sbuff, src_reg) != 0)
2409 {
2410 *error_message = "cannot encode ADD for TLS access";
2411 return FALSE;
2412 }
2413 break;
2414 }
2415 }
2416
2417 xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff);
2418 xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset,
2419 input_size - rel->r_offset);
2420
2421 return TRUE;
2422 }
2423
2424
2425 #define IS_XTENSA_TLS_RELOC(R_TYPE) \
2426 ((R_TYPE) == R_XTENSA_TLSDESC_FN \
2427 || (R_TYPE) == R_XTENSA_TLSDESC_ARG \
2428 || (R_TYPE) == R_XTENSA_TLS_DTPOFF \
2429 || (R_TYPE) == R_XTENSA_TLS_TPOFF \
2430 || (R_TYPE) == R_XTENSA_TLS_FUNC \
2431 || (R_TYPE) == R_XTENSA_TLS_ARG \
2432 || (R_TYPE) == R_XTENSA_TLS_CALL)
2433
2434 /* Relocate an Xtensa ELF section. This is invoked by the linker for
2435 both relocatable and final links. */
2436
2437 static bfd_boolean
2438 elf_xtensa_relocate_section (bfd *output_bfd,
2439 struct bfd_link_info *info,
2440 bfd *input_bfd,
2441 asection *input_section,
2442 bfd_byte *contents,
2443 Elf_Internal_Rela *relocs,
2444 Elf_Internal_Sym *local_syms,
2445 asection **local_sections)
2446 {
2447 struct elf_xtensa_link_hash_table *htab;
2448 Elf_Internal_Shdr *symtab_hdr;
2449 Elf_Internal_Rela *rel;
2450 Elf_Internal_Rela *relend;
2451 struct elf_link_hash_entry **sym_hashes;
2452 property_table_entry *lit_table = 0;
2453 int ltblsize = 0;
2454 char *local_got_tls_types;
2455 char *error_message = NULL;
2456 bfd_size_type input_size;
2457 int tls_type;
2458
2459 if (!xtensa_default_isa)
2460 xtensa_default_isa = xtensa_isa_init (0, 0);
2461
2462 if (!is_xtensa_elf (input_bfd))
2463 {
2464 bfd_set_error (bfd_error_wrong_format);
2465 return FALSE;
2466 }
2467
2468 htab = elf_xtensa_hash_table (info);
2469 if (htab == NULL)
2470 return FALSE;
2471
2472 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2473 sym_hashes = elf_sym_hashes (input_bfd);
2474 local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd);
2475
2476 if (elf_hash_table (info)->dynamic_sections_created)
2477 {
2478 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
2479 &lit_table, XTENSA_LIT_SEC_NAME,
2480 TRUE);
2481 if (ltblsize < 0)
2482 return FALSE;
2483 }
2484
2485 input_size = bfd_get_section_limit (input_bfd, input_section);
2486
2487 rel = relocs;
2488 relend = relocs + input_section->reloc_count;
2489 for (; rel < relend; rel++)
2490 {
2491 int r_type;
2492 reloc_howto_type *howto;
2493 unsigned long r_symndx;
2494 struct elf_link_hash_entry *h;
2495 Elf_Internal_Sym *sym;
2496 char sym_type;
2497 const char *name;
2498 asection *sec;
2499 bfd_vma relocation;
2500 bfd_reloc_status_type r;
2501 bfd_boolean is_weak_undef;
2502 bfd_boolean unresolved_reloc;
2503 bfd_boolean warned;
2504 bfd_boolean dynamic_symbol;
2505
2506 r_type = ELF32_R_TYPE (rel->r_info);
2507 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2508 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2509 continue;
2510
2511 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2512 {
2513 bfd_set_error (bfd_error_bad_value);
2514 return FALSE;
2515 }
2516 howto = &elf_howto_table[r_type];
2517
2518 r_symndx = ELF32_R_SYM (rel->r_info);
2519
2520 h = NULL;
2521 sym = NULL;
2522 sec = NULL;
2523 is_weak_undef = FALSE;
2524 unresolved_reloc = FALSE;
2525 warned = FALSE;
2526
2527 if (howto->partial_inplace && !bfd_link_relocatable (info))
2528 {
2529 /* Because R_XTENSA_32 was made partial_inplace to fix some
2530 problems with DWARF info in partial links, there may be
2531 an addend stored in the contents. Take it out of there
2532 and move it back into the addend field of the reloc. */
2533 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2534 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2535 }
2536
2537 if (r_symndx < symtab_hdr->sh_info)
2538 {
2539 sym = local_syms + r_symndx;
2540 sym_type = ELF32_ST_TYPE (sym->st_info);
2541 sec = local_sections[r_symndx];
2542 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2543 }
2544 else
2545 {
2546 bfd_boolean ignored;
2547
2548 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2549 r_symndx, symtab_hdr, sym_hashes,
2550 h, sec, relocation,
2551 unresolved_reloc, warned, ignored);
2552
2553 if (relocation == 0
2554 && !unresolved_reloc
2555 && h->root.type == bfd_link_hash_undefweak)
2556 is_weak_undef = TRUE;
2557
2558 sym_type = h->type;
2559 }
2560
2561 if (sec != NULL && discarded_section (sec))
2562 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
2563 rel, 1, relend, howto, 0, contents);
2564
2565 if (bfd_link_relocatable (info))
2566 {
2567 bfd_vma dest_addr;
2568 asection * sym_sec = get_elf_r_symndx_section (input_bfd, r_symndx);
2569
2570 /* This is a relocatable link.
2571 1) If the reloc is against a section symbol, adjust
2572 according to the output section.
2573 2) If there is a new target for this relocation,
2574 the new target will be in the same output section.
2575 We adjust the relocation by the output section
2576 difference. */
2577
2578 if (relaxing_section)
2579 {
2580 /* Check if this references a section in another input file. */
2581 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2582 contents))
2583 return FALSE;
2584 }
2585
2586 dest_addr = sym_sec->output_section->vma + sym_sec->output_offset
2587 + get_elf_r_symndx_offset (input_bfd, r_symndx) + rel->r_addend;
2588
2589 if (r_type == R_XTENSA_ASM_SIMPLIFY)
2590 {
2591 error_message = NULL;
2592 /* Convert ASM_SIMPLIFY into the simpler relocation
2593 so that they never escape a relaxing link. */
2594 r = contract_asm_expansion (contents, input_size, rel,
2595 &error_message);
2596 if (r != bfd_reloc_ok)
2597 (*info->callbacks->reloc_dangerous)
2598 (info, error_message,
2599 input_bfd, input_section, rel->r_offset);
2600
2601 r_type = ELF32_R_TYPE (rel->r_info);
2602 }
2603
2604 /* This is a relocatable link, so we don't have to change
2605 anything unless the reloc is against a section symbol,
2606 in which case we have to adjust according to where the
2607 section symbol winds up in the output section. */
2608 if (r_symndx < symtab_hdr->sh_info)
2609 {
2610 sym = local_syms + r_symndx;
2611 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2612 {
2613 sec = local_sections[r_symndx];
2614 rel->r_addend += sec->output_offset + sym->st_value;
2615 }
2616 }
2617
2618 /* If there is an addend with a partial_inplace howto,
2619 then move the addend to the contents. This is a hack
2620 to work around problems with DWARF in relocatable links
2621 with some previous version of BFD. Now we can't easily get
2622 rid of the hack without breaking backward compatibility.... */
2623 r = bfd_reloc_ok;
2624 howto = &elf_howto_table[r_type];
2625 if (howto->partial_inplace && rel->r_addend)
2626 {
2627 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2628 rel->r_addend, contents,
2629 rel->r_offset, FALSE,
2630 &error_message);
2631 rel->r_addend = 0;
2632 }
2633 else
2634 {
2635 /* Put the correct bits in the target instruction, even
2636 though the relocation will still be present in the output
2637 file. This makes disassembly clearer, as well as
2638 allowing loadable kernel modules to work without needing
2639 relocations on anything other than calls and l32r's. */
2640
2641 /* If it is not in the same section, there is nothing we can do. */
2642 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP &&
2643 sym_sec->output_section == input_section->output_section)
2644 {
2645 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2646 dest_addr, contents,
2647 rel->r_offset, FALSE,
2648 &error_message);
2649 }
2650 }
2651 if (r != bfd_reloc_ok)
2652 (*info->callbacks->reloc_dangerous)
2653 (info, error_message,
2654 input_bfd, input_section, rel->r_offset);
2655
2656 /* Done with work for relocatable link; continue with next reloc. */
2657 continue;
2658 }
2659
2660 /* This is a final link. */
2661
2662 if (relaxing_section)
2663 {
2664 /* Check if this references a section in another input file. */
2665 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2666 &relocation);
2667 }
2668
2669 /* Sanity check the address. */
2670 if (rel->r_offset >= input_size
2671 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2672 {
2673 _bfd_error_handler
2674 /* xgettext:c-format */
2675 (_("%pB(%pA+%#" PRIx64 "): "
2676 "relocation offset out of range (size=%#" PRIx64 ")"),
2677 input_bfd, input_section, (uint64_t) rel->r_offset,
2678 (uint64_t) input_size);
2679 bfd_set_error (bfd_error_bad_value);
2680 return FALSE;
2681 }
2682
2683 if (h != NULL)
2684 name = h->root.root.string;
2685 else
2686 {
2687 name = (bfd_elf_string_from_elf_section
2688 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2689 if (name == NULL || *name == '\0')
2690 name = bfd_section_name (input_bfd, sec);
2691 }
2692
2693 if (r_symndx != STN_UNDEF
2694 && r_type != R_XTENSA_NONE
2695 && (h == NULL
2696 || h->root.type == bfd_link_hash_defined
2697 || h->root.type == bfd_link_hash_defweak)
2698 && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS))
2699 {
2700 _bfd_error_handler
2701 ((sym_type == STT_TLS
2702 /* xgettext:c-format */
2703 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
2704 /* xgettext:c-format */
2705 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
2706 input_bfd,
2707 input_section,
2708 (uint64_t) rel->r_offset,
2709 howto->name,
2710 name);
2711 }
2712
2713 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
2714
2715 tls_type = GOT_UNKNOWN;
2716 if (h)
2717 tls_type = elf_xtensa_hash_entry (h)->tls_type;
2718 else if (local_got_tls_types)
2719 tls_type = local_got_tls_types [r_symndx];
2720
2721 switch (r_type)
2722 {
2723 case R_XTENSA_32:
2724 case R_XTENSA_PLT:
2725 if (elf_hash_table (info)->dynamic_sections_created
2726 && (input_section->flags & SEC_ALLOC) != 0
2727 && (dynamic_symbol || bfd_link_pic (info)))
2728 {
2729 Elf_Internal_Rela outrel;
2730 bfd_byte *loc;
2731 asection *srel;
2732
2733 if (dynamic_symbol && r_type == R_XTENSA_PLT)
2734 srel = htab->elf.srelplt;
2735 else
2736 srel = htab->elf.srelgot;
2737
2738 BFD_ASSERT (srel != NULL);
2739
2740 outrel.r_offset =
2741 _bfd_elf_section_offset (output_bfd, info,
2742 input_section, rel->r_offset);
2743
2744 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2745 memset (&outrel, 0, sizeof outrel);
2746 else
2747 {
2748 outrel.r_offset += (input_section->output_section->vma
2749 + input_section->output_offset);
2750
2751 /* Complain if the relocation is in a read-only section
2752 and not in a literal pool. */
2753 if ((input_section->flags & SEC_READONLY) != 0
2754 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
2755 outrel.r_offset))
2756 {
2757 error_message =
2758 _("dynamic relocation in read-only section");
2759 (*info->callbacks->reloc_dangerous)
2760 (info, error_message,
2761 input_bfd, input_section, rel->r_offset);
2762 }
2763
2764 if (dynamic_symbol)
2765 {
2766 outrel.r_addend = rel->r_addend;
2767 rel->r_addend = 0;
2768
2769 if (r_type == R_XTENSA_32)
2770 {
2771 outrel.r_info =
2772 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2773 relocation = 0;
2774 }
2775 else /* r_type == R_XTENSA_PLT */
2776 {
2777 outrel.r_info =
2778 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2779
2780 /* Create the PLT entry and set the initial
2781 contents of the literal entry to the address of
2782 the PLT entry. */
2783 relocation =
2784 elf_xtensa_create_plt_entry (info, output_bfd,
2785 srel->reloc_count);
2786 }
2787 unresolved_reloc = FALSE;
2788 }
2789 else if (!is_weak_undef)
2790 {
2791 /* Generate a RELATIVE relocation. */
2792 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2793 outrel.r_addend = 0;
2794 }
2795 else
2796 {
2797 continue;
2798 }
2799 }
2800
2801 loc = (srel->contents
2802 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2803 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2804 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2805 <= srel->size);
2806 }
2807 else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
2808 {
2809 /* This should only happen for non-PIC code, which is not
2810 supposed to be used on systems with dynamic linking.
2811 Just ignore these relocations. */
2812 continue;
2813 }
2814 break;
2815
2816 case R_XTENSA_TLS_TPOFF:
2817 /* Switch to LE model for local symbols in an executable. */
2818 if (! bfd_link_pic (info) && ! dynamic_symbol)
2819 {
2820 relocation = tpoff (info, relocation);
2821 break;
2822 }
2823 /* fall through */
2824
2825 case R_XTENSA_TLSDESC_FN:
2826 case R_XTENSA_TLSDESC_ARG:
2827 {
2828 if (r_type == R_XTENSA_TLSDESC_FN)
2829 {
2830 if (! bfd_link_pic (info) || (tls_type & GOT_TLS_IE) != 0)
2831 r_type = R_XTENSA_NONE;
2832 }
2833 else if (r_type == R_XTENSA_TLSDESC_ARG)
2834 {
2835 if (bfd_link_pic (info))
2836 {
2837 if ((tls_type & GOT_TLS_IE) != 0)
2838 r_type = R_XTENSA_TLS_TPOFF;
2839 }
2840 else
2841 {
2842 r_type = R_XTENSA_TLS_TPOFF;
2843 if (! dynamic_symbol)
2844 {
2845 relocation = tpoff (info, relocation);
2846 break;
2847 }
2848 }
2849 }
2850
2851 if (r_type == R_XTENSA_NONE)
2852 /* Nothing to do here; skip to the next reloc. */
2853 continue;
2854
2855 if (! elf_hash_table (info)->dynamic_sections_created)
2856 {
2857 error_message =
2858 _("TLS relocation invalid without dynamic sections");
2859 (*info->callbacks->reloc_dangerous)
2860 (info, error_message,
2861 input_bfd, input_section, rel->r_offset);
2862 }
2863 else
2864 {
2865 Elf_Internal_Rela outrel;
2866 bfd_byte *loc;
2867 asection *srel = htab->elf.srelgot;
2868 int indx;
2869
2870 outrel.r_offset = (input_section->output_section->vma
2871 + input_section->output_offset
2872 + rel->r_offset);
2873
2874 /* Complain if the relocation is in a read-only section
2875 and not in a literal pool. */
2876 if ((input_section->flags & SEC_READONLY) != 0
2877 && ! elf_xtensa_in_literal_pool (lit_table, ltblsize,
2878 outrel.r_offset))
2879 {
2880 error_message =
2881 _("dynamic relocation in read-only section");
2882 (*info->callbacks->reloc_dangerous)
2883 (info, error_message,
2884 input_bfd, input_section, rel->r_offset);
2885 }
2886
2887 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2888 if (indx == 0)
2889 outrel.r_addend = relocation - dtpoff_base (info);
2890 else
2891 outrel.r_addend = 0;
2892 rel->r_addend = 0;
2893
2894 outrel.r_info = ELF32_R_INFO (indx, r_type);
2895 relocation = 0;
2896 unresolved_reloc = FALSE;
2897
2898 BFD_ASSERT (srel);
2899 loc = (srel->contents
2900 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2901 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2902 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2903 <= srel->size);
2904 }
2905 }
2906 break;
2907
2908 case R_XTENSA_TLS_DTPOFF:
2909 if (! bfd_link_pic (info))
2910 /* Switch from LD model to LE model. */
2911 relocation = tpoff (info, relocation);
2912 else
2913 relocation -= dtpoff_base (info);
2914 break;
2915
2916 case R_XTENSA_TLS_FUNC:
2917 case R_XTENSA_TLS_ARG:
2918 case R_XTENSA_TLS_CALL:
2919 /* Check if optimizing to IE or LE model. */
2920 if ((tls_type & GOT_TLS_IE) != 0)
2921 {
2922 bfd_boolean is_ld_model =
2923 (h && elf_xtensa_hash_entry (h) == htab->tlsbase);
2924 if (! replace_tls_insn (rel, input_bfd, input_section, contents,
2925 is_ld_model, &error_message))
2926 (*info->callbacks->reloc_dangerous)
2927 (info, error_message,
2928 input_bfd, input_section, rel->r_offset);
2929
2930 if (r_type != R_XTENSA_TLS_ARG || is_ld_model)
2931 {
2932 /* Skip subsequent relocations on the same instruction. */
2933 while (rel + 1 < relend && rel[1].r_offset == rel->r_offset)
2934 rel++;
2935 }
2936 }
2937 continue;
2938
2939 default:
2940 if (elf_hash_table (info)->dynamic_sections_created
2941 && dynamic_symbol && (is_operand_relocation (r_type)
2942 || r_type == R_XTENSA_32_PCREL))
2943 {
2944 error_message =
2945 vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
2946 strlen (name) + 2, name);
2947 (*info->callbacks->reloc_dangerous)
2948 (info, error_message, input_bfd, input_section, rel->r_offset);
2949 continue;
2950 }
2951 break;
2952 }
2953
2954 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2955 because such sections are not SEC_ALLOC and thus ld.so will
2956 not process them. */
2957 if (unresolved_reloc
2958 && !((input_section->flags & SEC_DEBUGGING) != 0
2959 && h->def_dynamic)
2960 && _bfd_elf_section_offset (output_bfd, info, input_section,
2961 rel->r_offset) != (bfd_vma) -1)
2962 {
2963 _bfd_error_handler
2964 /* xgettext:c-format */
2965 (_("%pB(%pA+%#" PRIx64 "): "
2966 "unresolvable %s relocation against symbol `%s'"),
2967 input_bfd,
2968 input_section,
2969 (uint64_t) rel->r_offset,
2970 howto->name,
2971 name);
2972 return FALSE;
2973 }
2974
2975 /* TLS optimizations may have changed r_type; update "howto". */
2976 howto = &elf_howto_table[r_type];
2977
2978 /* There's no point in calling bfd_perform_relocation here.
2979 Just go directly to our "special function". */
2980 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2981 relocation + rel->r_addend,
2982 contents, rel->r_offset, is_weak_undef,
2983 &error_message);
2984
2985 if (r != bfd_reloc_ok && !warned)
2986 {
2987 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
2988 BFD_ASSERT (error_message != NULL);
2989
2990 if (rel->r_addend == 0)
2991 error_message = vsprint_msg (error_message, ": %s",
2992 strlen (name) + 2, name);
2993 else
2994 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
2995 strlen (name) + 22,
2996 name, (int) rel->r_addend);
2997
2998 (*info->callbacks->reloc_dangerous)
2999 (info, error_message, input_bfd, input_section, rel->r_offset);
3000 }
3001 }
3002
3003 if (lit_table)
3004 free (lit_table);
3005
3006 input_section->reloc_done = TRUE;
3007
3008 return TRUE;
3009 }
3010
3011
3012 /* Finish up dynamic symbol handling. There's not much to do here since
3013 the PLT and GOT entries are all set up by relocate_section. */
3014
3015 static bfd_boolean
3016 elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
3017 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3018 struct elf_link_hash_entry *h,
3019 Elf_Internal_Sym *sym)
3020 {
3021 if (h->needs_plt && !h->def_regular)
3022 {
3023 /* Mark the symbol as undefined, rather than as defined in
3024 the .plt section. Leave the value alone. */
3025 sym->st_shndx = SHN_UNDEF;
3026 /* If the symbol is weak, we do need to clear the value.
3027 Otherwise, the PLT entry would provide a definition for
3028 the symbol even if the symbol wasn't defined anywhere,
3029 and so the symbol would never be NULL. */
3030 if (!h->ref_regular_nonweak)
3031 sym->st_value = 0;
3032 }
3033
3034 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3035 if (h == elf_hash_table (info)->hdynamic
3036 || h == elf_hash_table (info)->hgot)
3037 sym->st_shndx = SHN_ABS;
3038
3039 return TRUE;
3040 }
3041
3042
3043 /* Combine adjacent literal table entries in the output. Adjacent
3044 entries within each input section may have been removed during
3045 relaxation, but we repeat the process here, even though it's too late
3046 to shrink the output section, because it's important to minimize the
3047 number of literal table entries to reduce the start-up work for the
3048 runtime linker. Returns the number of remaining table entries or -1
3049 on error. */
3050
3051 static int
3052 elf_xtensa_combine_prop_entries (bfd *output_bfd,
3053 asection *sxtlit,
3054 asection *sgotloc)
3055 {
3056 bfd_byte *contents;
3057 property_table_entry *table;
3058 bfd_size_type section_size, sgotloc_size;
3059 bfd_vma offset;
3060 int n, m, num;
3061
3062 section_size = sxtlit->size;
3063 BFD_ASSERT (section_size % 8 == 0);
3064 num = section_size / 8;
3065
3066 sgotloc_size = sgotloc->size;
3067 if (sgotloc_size != section_size)
3068 {
3069 _bfd_error_handler
3070 (_("internal inconsistency in size of .got.loc section"));
3071 return -1;
3072 }
3073
3074 table = bfd_malloc (num * sizeof (property_table_entry));
3075 if (table == 0)
3076 return -1;
3077
3078 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
3079 propagates to the output section, where it doesn't really apply and
3080 where it breaks the following call to bfd_malloc_and_get_section. */
3081 sxtlit->flags &= ~SEC_IN_MEMORY;
3082
3083 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
3084 {
3085 if (contents != 0)
3086 free (contents);
3087 free (table);
3088 return -1;
3089 }
3090
3091 /* There should never be any relocations left at this point, so this
3092 is quite a bit easier than what is done during relaxation. */
3093
3094 /* Copy the raw contents into a property table array and sort it. */
3095 offset = 0;
3096 for (n = 0; n < num; n++)
3097 {
3098 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
3099 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
3100 offset += 8;
3101 }
3102 qsort (table, num, sizeof (property_table_entry), property_table_compare);
3103
3104 for (n = 0; n < num; n++)
3105 {
3106 bfd_boolean remove_entry = FALSE;
3107
3108 if (table[n].size == 0)
3109 remove_entry = TRUE;
3110 else if (n > 0
3111 && (table[n-1].address + table[n-1].size == table[n].address))
3112 {
3113 table[n-1].size += table[n].size;
3114 remove_entry = TRUE;
3115 }
3116
3117 if (remove_entry)
3118 {
3119 for (m = n; m < num - 1; m++)
3120 {
3121 table[m].address = table[m+1].address;
3122 table[m].size = table[m+1].size;
3123 }
3124
3125 n--;
3126 num--;
3127 }
3128 }
3129
3130 /* Copy the data back to the raw contents. */
3131 offset = 0;
3132 for (n = 0; n < num; n++)
3133 {
3134 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
3135 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
3136 offset += 8;
3137 }
3138
3139 /* Clear the removed bytes. */
3140 if ((bfd_size_type) (num * 8) < section_size)
3141 memset (&contents[num * 8], 0, section_size - num * 8);
3142
3143 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
3144 section_size))
3145 return -1;
3146
3147 /* Copy the contents to ".got.loc". */
3148 memcpy (sgotloc->contents, contents, section_size);
3149
3150 free (contents);
3151 free (table);
3152 return num;
3153 }
3154
3155
3156 /* Finish up the dynamic sections. */
3157
3158 static bfd_boolean
3159 elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
3160 struct bfd_link_info *info)
3161 {
3162 struct elf_xtensa_link_hash_table *htab;
3163 bfd *dynobj;
3164 asection *sdyn, *srelplt, *srelgot, *sgot, *sxtlit, *sgotloc;
3165 Elf32_External_Dyn *dyncon, *dynconend;
3166 int num_xtlit_entries = 0;
3167
3168 if (! elf_hash_table (info)->dynamic_sections_created)
3169 return TRUE;
3170
3171 htab = elf_xtensa_hash_table (info);
3172 if (htab == NULL)
3173 return FALSE;
3174
3175 dynobj = elf_hash_table (info)->dynobj;
3176 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3177 BFD_ASSERT (sdyn != NULL);
3178
3179 /* Set the first entry in the global offset table to the address of
3180 the dynamic section. */
3181 sgot = htab->elf.sgot;
3182 if (sgot)
3183 {
3184 BFD_ASSERT (sgot->size == 4);
3185 if (sdyn == NULL)
3186 bfd_put_32 (output_bfd, 0, sgot->contents);
3187 else
3188 bfd_put_32 (output_bfd,
3189 sdyn->output_section->vma + sdyn->output_offset,
3190 sgot->contents);
3191 }
3192
3193 srelplt = htab->elf.srelplt;
3194 srelgot = htab->elf.srelgot;
3195 if (srelplt && srelplt->size != 0)
3196 {
3197 asection *sgotplt, *spltlittbl;
3198 int chunk, plt_chunks, plt_entries;
3199 Elf_Internal_Rela irela;
3200 bfd_byte *loc;
3201 unsigned rtld_reloc;
3202
3203 spltlittbl = htab->spltlittbl;
3204 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
3205
3206 /* Find the first XTENSA_RTLD relocation. Presumably the rest
3207 of them follow immediately after.... */
3208 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
3209 {
3210 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3211 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3212 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
3213 break;
3214 }
3215 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
3216
3217 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
3218 plt_chunks =
3219 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
3220
3221 for (chunk = 0; chunk < plt_chunks; chunk++)
3222 {
3223 int chunk_entries = 0;
3224
3225 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
3226 BFD_ASSERT (sgotplt != NULL);
3227
3228 /* Emit special RTLD relocations for the first two entries in
3229 each chunk of the .got.plt section. */
3230
3231 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3232 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3233 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3234 irela.r_offset = (sgotplt->output_section->vma
3235 + sgotplt->output_offset);
3236 irela.r_addend = 1; /* tell rtld to set value to resolver function */
3237 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3238 rtld_reloc += 1;
3239 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3240
3241 /* Next literal immediately follows the first. */
3242 loc += sizeof (Elf32_External_Rela);
3243 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3244 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3245 irela.r_offset = (sgotplt->output_section->vma
3246 + sgotplt->output_offset + 4);
3247 /* Tell rtld to set value to object's link map. */
3248 irela.r_addend = 2;
3249 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3250 rtld_reloc += 1;
3251 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3252
3253 /* Fill in the literal table. */
3254 if (chunk < plt_chunks - 1)
3255 chunk_entries = PLT_ENTRIES_PER_CHUNK;
3256 else
3257 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
3258
3259 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
3260 bfd_put_32 (output_bfd,
3261 sgotplt->output_section->vma + sgotplt->output_offset,
3262 spltlittbl->contents + (chunk * 8) + 0);
3263 bfd_put_32 (output_bfd,
3264 8 + (chunk_entries * 4),
3265 spltlittbl->contents + (chunk * 8) + 4);
3266 }
3267
3268 /* The .xt.lit.plt section has just been modified. This must
3269 happen before the code below which combines adjacent literal
3270 table entries, and the .xt.lit.plt contents have to be forced to
3271 the output here. */
3272 if (! bfd_set_section_contents (output_bfd,
3273 spltlittbl->output_section,
3274 spltlittbl->contents,
3275 spltlittbl->output_offset,
3276 spltlittbl->size))
3277 return FALSE;
3278 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
3279 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
3280 }
3281
3282 /* All the dynamic relocations have been emitted at this point.
3283 Make sure the relocation sections are the correct size. */
3284 if ((srelgot && srelgot->size != (sizeof (Elf32_External_Rela)
3285 * srelgot->reloc_count))
3286 || (srelplt && srelplt->size != (sizeof (Elf32_External_Rela)
3287 * srelplt->reloc_count)))
3288 abort ();
3289
3290 /* Combine adjacent literal table entries. */
3291 BFD_ASSERT (! bfd_link_relocatable (info));
3292 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
3293 sgotloc = htab->sgotloc;
3294 BFD_ASSERT (sgotloc);
3295 if (sxtlit)
3296 {
3297 num_xtlit_entries =
3298 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
3299 if (num_xtlit_entries < 0)
3300 return FALSE;
3301 }
3302
3303 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3304 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
3305 for (; dyncon < dynconend; dyncon++)
3306 {
3307 Elf_Internal_Dyn dyn;
3308
3309 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3310
3311 switch (dyn.d_tag)
3312 {
3313 default:
3314 break;
3315
3316 case DT_XTENSA_GOT_LOC_SZ:
3317 dyn.d_un.d_val = num_xtlit_entries;
3318 break;
3319
3320 case DT_XTENSA_GOT_LOC_OFF:
3321 dyn.d_un.d_ptr = (htab->sgotloc->output_section->vma
3322 + htab->sgotloc->output_offset);
3323 break;
3324
3325 case DT_PLTGOT:
3326 dyn.d_un.d_ptr = (htab->elf.sgot->output_section->vma
3327 + htab->elf.sgot->output_offset);
3328 break;
3329
3330 case DT_JMPREL:
3331 dyn.d_un.d_ptr = (htab->elf.srelplt->output_section->vma
3332 + htab->elf.srelplt->output_offset);
3333 break;
3334
3335 case DT_PLTRELSZ:
3336 dyn.d_un.d_val = htab->elf.srelplt->size;
3337 break;
3338 }
3339
3340 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3341 }
3342
3343 return TRUE;
3344 }
3345
3346 \f
3347 /* Functions for dealing with the e_flags field. */
3348
3349 /* Merge backend specific data from an object file to the output
3350 object file when linking. */
3351
3352 static bfd_boolean
3353 elf_xtensa_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
3354 {
3355 bfd *obfd = info->output_bfd;
3356 unsigned out_mach, in_mach;
3357 flagword out_flag, in_flag;
3358
3359 /* Check if we have the same endianness. */
3360 if (!_bfd_generic_verify_endian_match (ibfd, info))
3361 return FALSE;
3362
3363 /* Don't even pretend to support mixed-format linking. */
3364 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3365 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3366 return FALSE;
3367
3368 out_flag = elf_elfheader (obfd)->e_flags;
3369 in_flag = elf_elfheader (ibfd)->e_flags;
3370
3371 out_mach = out_flag & EF_XTENSA_MACH;
3372 in_mach = in_flag & EF_XTENSA_MACH;
3373 if (out_mach != in_mach)
3374 {
3375 _bfd_error_handler
3376 /* xgettext:c-format */
3377 (_("%pB: incompatible machine type; output is 0x%x; input is 0x%x"),
3378 ibfd, out_mach, in_mach);
3379 bfd_set_error (bfd_error_wrong_format);
3380 return FALSE;
3381 }
3382
3383 if (! elf_flags_init (obfd))
3384 {
3385 elf_flags_init (obfd) = TRUE;
3386 elf_elfheader (obfd)->e_flags = in_flag;
3387
3388 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
3389 && bfd_get_arch_info (obfd)->the_default)
3390 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
3391 bfd_get_mach (ibfd));
3392
3393 return TRUE;
3394 }
3395
3396 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
3397 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
3398
3399 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
3400 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
3401
3402 return TRUE;
3403 }
3404
3405
3406 static bfd_boolean
3407 elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
3408 {
3409 BFD_ASSERT (!elf_flags_init (abfd)
3410 || elf_elfheader (abfd)->e_flags == flags);
3411
3412 elf_elfheader (abfd)->e_flags |= flags;
3413 elf_flags_init (abfd) = TRUE;
3414
3415 return TRUE;
3416 }
3417
3418
3419 static bfd_boolean
3420 elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
3421 {
3422 FILE *f = (FILE *) farg;
3423 flagword e_flags = elf_elfheader (abfd)->e_flags;
3424
3425 fprintf (f, "\nXtensa header:\n");
3426 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
3427 fprintf (f, "\nMachine = Base\n");
3428 else
3429 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
3430
3431 fprintf (f, "Insn tables = %s\n",
3432 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
3433
3434 fprintf (f, "Literal tables = %s\n",
3435 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
3436
3437 return _bfd_elf_print_private_bfd_data (abfd, farg);
3438 }
3439
3440
3441 /* Set the right machine number for an Xtensa ELF file. */
3442
3443 static bfd_boolean
3444 elf_xtensa_object_p (bfd *abfd)
3445 {
3446 int mach;
3447 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
3448
3449 switch (arch)
3450 {
3451 case E_XTENSA_MACH:
3452 mach = bfd_mach_xtensa;
3453 break;
3454 default:
3455 return FALSE;
3456 }
3457
3458 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
3459 return TRUE;
3460 }
3461
3462
3463 /* The final processing done just before writing out an Xtensa ELF object
3464 file. This gets the Xtensa architecture right based on the machine
3465 number. */
3466
3467 static bfd_boolean
3468 elf_xtensa_final_write_processing (bfd *abfd)
3469 {
3470 int mach;
3471 unsigned long val = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
3472
3473 switch (mach = bfd_get_mach (abfd))
3474 {
3475 case bfd_mach_xtensa:
3476 val = E_XTENSA_MACH;
3477 break;
3478 default:
3479 break;
3480 }
3481
3482 elf_elfheader (abfd)->e_flags &= ~EF_XTENSA_MACH;
3483 elf_elfheader (abfd)->e_flags |= val;
3484 return _bfd_elf_final_write_processing (abfd);
3485 }
3486
3487
3488 static enum elf_reloc_type_class
3489 elf_xtensa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
3490 const asection *rel_sec ATTRIBUTE_UNUSED,
3491 const Elf_Internal_Rela *rela)
3492 {
3493 switch ((int) ELF32_R_TYPE (rela->r_info))
3494 {
3495 case R_XTENSA_RELATIVE:
3496 return reloc_class_relative;
3497 case R_XTENSA_JMP_SLOT:
3498 return reloc_class_plt;
3499 default:
3500 return reloc_class_normal;
3501 }
3502 }
3503
3504 \f
3505 static bfd_boolean
3506 elf_xtensa_discard_info_for_section (bfd *abfd,
3507 struct elf_reloc_cookie *cookie,
3508 struct bfd_link_info *info,
3509 asection *sec)
3510 {
3511 bfd_byte *contents;
3512 bfd_vma offset, actual_offset;
3513 bfd_size_type removed_bytes = 0;
3514 bfd_size_type entry_size;
3515
3516 if (sec->output_section
3517 && bfd_is_abs_section (sec->output_section))
3518 return FALSE;
3519
3520 if (xtensa_is_proptable_section (sec))
3521 entry_size = 12;
3522 else
3523 entry_size = 8;
3524
3525 if (sec->size == 0 || sec->size % entry_size != 0)
3526 return FALSE;
3527
3528 contents = retrieve_contents (abfd, sec, info->keep_memory);
3529 if (!contents)
3530 return FALSE;
3531
3532 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
3533 if (!cookie->rels)
3534 {
3535 release_contents (sec, contents);
3536 return FALSE;
3537 }
3538
3539 /* Sort the relocations. They should already be in order when
3540 relaxation is enabled, but it might not be. */
3541 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
3542 internal_reloc_compare);
3543
3544 cookie->rel = cookie->rels;
3545 cookie->relend = cookie->rels + sec->reloc_count;
3546
3547 for (offset = 0; offset < sec->size; offset += entry_size)
3548 {
3549 actual_offset = offset - removed_bytes;
3550
3551 /* The ...symbol_deleted_p function will skip over relocs but it
3552 won't adjust their offsets, so do that here. */
3553 while (cookie->rel < cookie->relend
3554 && cookie->rel->r_offset < offset)
3555 {
3556 cookie->rel->r_offset -= removed_bytes;
3557 cookie->rel++;
3558 }
3559
3560 while (cookie->rel < cookie->relend
3561 && cookie->rel->r_offset == offset)
3562 {
3563 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
3564 {
3565 /* Remove the table entry. (If the reloc type is NONE, then
3566 the entry has already been merged with another and deleted
3567 during relaxation.) */
3568 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
3569 {
3570 /* Shift the contents up. */
3571 if (offset + entry_size < sec->size)
3572 memmove (&contents[actual_offset],
3573 &contents[actual_offset + entry_size],
3574 sec->size - offset - entry_size);
3575 removed_bytes += entry_size;
3576 }
3577
3578 /* Remove this relocation. */
3579 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3580 }
3581
3582 /* Adjust the relocation offset for previous removals. This
3583 should not be done before calling ...symbol_deleted_p
3584 because it might mess up the offset comparisons there.
3585 Make sure the offset doesn't underflow in the case where
3586 the first entry is removed. */
3587 if (cookie->rel->r_offset >= removed_bytes)
3588 cookie->rel->r_offset -= removed_bytes;
3589 else
3590 cookie->rel->r_offset = 0;
3591
3592 cookie->rel++;
3593 }
3594 }
3595
3596 if (removed_bytes != 0)
3597 {
3598 /* Adjust any remaining relocs (shouldn't be any). */
3599 for (; cookie->rel < cookie->relend; cookie->rel++)
3600 {
3601 if (cookie->rel->r_offset >= removed_bytes)
3602 cookie->rel->r_offset -= removed_bytes;
3603 else
3604 cookie->rel->r_offset = 0;
3605 }
3606
3607 /* Clear the removed bytes. */
3608 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
3609
3610 pin_contents (sec, contents);
3611 pin_internal_relocs (sec, cookie->rels);
3612
3613 /* Shrink size. */
3614 if (sec->rawsize == 0)
3615 sec->rawsize = sec->size;
3616 sec->size -= removed_bytes;
3617
3618 if (xtensa_is_littable_section (sec))
3619 {
3620 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
3621 if (sgotloc)
3622 sgotloc->size -= removed_bytes;
3623 }
3624 }
3625 else
3626 {
3627 release_contents (sec, contents);
3628 release_internal_relocs (sec, cookie->rels);
3629 }
3630
3631 return (removed_bytes != 0);
3632 }
3633
3634
3635 static bfd_boolean
3636 elf_xtensa_discard_info (bfd *abfd,
3637 struct elf_reloc_cookie *cookie,
3638 struct bfd_link_info *info)
3639 {
3640 asection *sec;
3641 bfd_boolean changed = FALSE;
3642
3643 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3644 {
3645 if (xtensa_is_property_section (sec))
3646 {
3647 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
3648 changed = TRUE;
3649 }
3650 }
3651
3652 return changed;
3653 }
3654
3655
3656 static bfd_boolean
3657 elf_xtensa_ignore_discarded_relocs (asection *sec)
3658 {
3659 return xtensa_is_property_section (sec);
3660 }
3661
3662
3663 static unsigned int
3664 elf_xtensa_action_discarded (asection *sec)
3665 {
3666 if (strcmp (".xt_except_table", sec->name) == 0)
3667 return 0;
3668
3669 if (strcmp (".xt_except_desc", sec->name) == 0)
3670 return 0;
3671
3672 return _bfd_elf_default_action_discarded (sec);
3673 }
3674
3675 \f
3676 /* Support for core dump NOTE sections. */
3677
3678 static bfd_boolean
3679 elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
3680 {
3681 int offset;
3682 unsigned int size;
3683
3684 /* The size for Xtensa is variable, so don't try to recognize the format
3685 based on the size. Just assume this is GNU/Linux. */
3686
3687 /* pr_cursig */
3688 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
3689
3690 /* pr_pid */
3691 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
3692
3693 /* pr_reg */
3694 offset = 72;
3695 size = note->descsz - offset - 4;
3696
3697 /* Make a ".reg/999" section. */
3698 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
3699 size, note->descpos + offset);
3700 }
3701
3702
3703 static bfd_boolean
3704 elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3705 {
3706 switch (note->descsz)
3707 {
3708 default:
3709 return FALSE;
3710
3711 case 128: /* GNU/Linux elf_prpsinfo */
3712 elf_tdata (abfd)->core->program
3713 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3714 elf_tdata (abfd)->core->command
3715 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3716 }
3717
3718 /* Note that for some reason, a spurious space is tacked
3719 onto the end of the args in some (at least one anyway)
3720 implementations, so strip it off if it exists. */
3721
3722 {
3723 char *command = elf_tdata (abfd)->core->command;
3724 int n = strlen (command);
3725
3726 if (0 < n && command[n - 1] == ' ')
3727 command[n - 1] = '\0';
3728 }
3729
3730 return TRUE;
3731 }
3732
3733 \f
3734 /* Generic Xtensa configurability stuff. */
3735
3736 static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3737 static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3738 static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3739 static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3740 static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3741 static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3742 static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3743 static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3744
3745 static void
3746 init_call_opcodes (void)
3747 {
3748 if (callx0_op == XTENSA_UNDEFINED)
3749 {
3750 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3751 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3752 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3753 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3754 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3755 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3756 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3757 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3758 }
3759 }
3760
3761
3762 static bfd_boolean
3763 is_indirect_call_opcode (xtensa_opcode opcode)
3764 {
3765 init_call_opcodes ();
3766 return (opcode == callx0_op
3767 || opcode == callx4_op
3768 || opcode == callx8_op
3769 || opcode == callx12_op);
3770 }
3771
3772
3773 static bfd_boolean
3774 is_direct_call_opcode (xtensa_opcode opcode)
3775 {
3776 init_call_opcodes ();
3777 return (opcode == call0_op
3778 || opcode == call4_op
3779 || opcode == call8_op
3780 || opcode == call12_op);
3781 }
3782
3783
3784 static bfd_boolean
3785 is_windowed_call_opcode (xtensa_opcode opcode)
3786 {
3787 init_call_opcodes ();
3788 return (opcode == call4_op
3789 || opcode == call8_op
3790 || opcode == call12_op
3791 || opcode == callx4_op
3792 || opcode == callx8_op
3793 || opcode == callx12_op);
3794 }
3795
3796
3797 static bfd_boolean
3798 get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst)
3799 {
3800 unsigned dst = (unsigned) -1;
3801
3802 init_call_opcodes ();
3803 if (opcode == callx0_op)
3804 dst = 0;
3805 else if (opcode == callx4_op)
3806 dst = 4;
3807 else if (opcode == callx8_op)
3808 dst = 8;
3809 else if (opcode == callx12_op)
3810 dst = 12;
3811
3812 if (dst == (unsigned) -1)
3813 return FALSE;
3814
3815 *pdst = dst;
3816 return TRUE;
3817 }
3818
3819
3820 static xtensa_opcode
3821 get_const16_opcode (void)
3822 {
3823 static bfd_boolean done_lookup = FALSE;
3824 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3825 if (!done_lookup)
3826 {
3827 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3828 done_lookup = TRUE;
3829 }
3830 return const16_opcode;
3831 }
3832
3833
3834 static xtensa_opcode
3835 get_l32r_opcode (void)
3836 {
3837 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
3838 static bfd_boolean done_lookup = FALSE;
3839
3840 if (!done_lookup)
3841 {
3842 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
3843 done_lookup = TRUE;
3844 }
3845 return l32r_opcode;
3846 }
3847
3848
3849 static bfd_vma
3850 l32r_offset (bfd_vma addr, bfd_vma pc)
3851 {
3852 bfd_vma offset;
3853
3854 offset = addr - ((pc+3) & -4);
3855 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3856 offset = (signed int) offset >> 2;
3857 BFD_ASSERT ((signed int) offset >> 16 == -1);
3858 return offset;
3859 }
3860
3861
3862 static xtensa_opcode
3863 get_rsr_lend_opcode (void)
3864 {
3865 static xtensa_opcode rsr_lend_opcode = XTENSA_UNDEFINED;
3866 static bfd_boolean done_lookup = FALSE;
3867 if (!done_lookup)
3868 {
3869 rsr_lend_opcode = xtensa_opcode_lookup (xtensa_default_isa, "rsr.lend");
3870 done_lookup = TRUE;
3871 }
3872 return rsr_lend_opcode;
3873 }
3874
3875 static xtensa_opcode
3876 get_wsr_lbeg_opcode (void)
3877 {
3878 static xtensa_opcode wsr_lbeg_opcode = XTENSA_UNDEFINED;
3879 static bfd_boolean done_lookup = FALSE;
3880 if (!done_lookup)
3881 {
3882 wsr_lbeg_opcode = xtensa_opcode_lookup (xtensa_default_isa, "wsr.lbeg");
3883 done_lookup = TRUE;
3884 }
3885 return wsr_lbeg_opcode;
3886 }
3887
3888
3889 static int
3890 get_relocation_opnd (xtensa_opcode opcode, int r_type)
3891 {
3892 xtensa_isa isa = xtensa_default_isa;
3893 int last_immed, last_opnd, opi;
3894
3895 if (opcode == XTENSA_UNDEFINED)
3896 return XTENSA_UNDEFINED;
3897
3898 /* Find the last visible PC-relative immediate operand for the opcode.
3899 If there are no PC-relative immediates, then choose the last visible
3900 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3901 last_immed = XTENSA_UNDEFINED;
3902 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3903 for (opi = last_opnd - 1; opi >= 0; opi--)
3904 {
3905 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3906 continue;
3907 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3908 {
3909 last_immed = opi;
3910 break;
3911 }
3912 if (last_immed == XTENSA_UNDEFINED
3913 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3914 last_immed = opi;
3915 }
3916 if (last_immed < 0)
3917 return XTENSA_UNDEFINED;
3918
3919 /* If the operand number was specified in an old-style relocation,
3920 check for consistency with the operand computed above. */
3921 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3922 {
3923 int reloc_opnd = r_type - R_XTENSA_OP0;
3924 if (reloc_opnd != last_immed)
3925 return XTENSA_UNDEFINED;
3926 }
3927
3928 return last_immed;
3929 }
3930
3931
3932 int
3933 get_relocation_slot (int r_type)
3934 {
3935 switch (r_type)
3936 {
3937 case R_XTENSA_OP0:
3938 case R_XTENSA_OP1:
3939 case R_XTENSA_OP2:
3940 return 0;
3941
3942 default:
3943 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3944 return r_type - R_XTENSA_SLOT0_OP;
3945 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3946 return r_type - R_XTENSA_SLOT0_ALT;
3947 break;
3948 }
3949
3950 return XTENSA_UNDEFINED;
3951 }
3952
3953
3954 /* Get the opcode for a relocation. */
3955
3956 static xtensa_opcode
3957 get_relocation_opcode (bfd *abfd,
3958 asection *sec,
3959 bfd_byte *contents,
3960 Elf_Internal_Rela *irel)
3961 {
3962 static xtensa_insnbuf ibuff = NULL;
3963 static xtensa_insnbuf sbuff = NULL;
3964 xtensa_isa isa = xtensa_default_isa;
3965 xtensa_format fmt;
3966 int slot;
3967
3968 if (contents == NULL)
3969 return XTENSA_UNDEFINED;
3970
3971 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
3972 return XTENSA_UNDEFINED;
3973
3974 if (ibuff == NULL)
3975 {
3976 ibuff = xtensa_insnbuf_alloc (isa);
3977 sbuff = xtensa_insnbuf_alloc (isa);
3978 }
3979
3980 /* Decode the instruction. */
3981 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
3982 sec->size - irel->r_offset);
3983 fmt = xtensa_format_decode (isa, ibuff);
3984 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
3985 if (slot == XTENSA_UNDEFINED)
3986 return XTENSA_UNDEFINED;
3987 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
3988 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
3989 }
3990
3991
3992 bfd_boolean
3993 is_l32r_relocation (bfd *abfd,
3994 asection *sec,
3995 bfd_byte *contents,
3996 Elf_Internal_Rela *irel)
3997 {
3998 xtensa_opcode opcode;
3999 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
4000 return FALSE;
4001 opcode = get_relocation_opcode (abfd, sec, contents, irel);
4002 return (opcode == get_l32r_opcode ());
4003 }
4004
4005
4006 static bfd_size_type
4007 get_asm_simplify_size (bfd_byte *contents,
4008 bfd_size_type content_len,
4009 bfd_size_type offset)
4010 {
4011 bfd_size_type insnlen, size = 0;
4012
4013 /* Decode the size of the next two instructions. */
4014 insnlen = insn_decode_len (contents, content_len, offset);
4015 if (insnlen == 0)
4016 return 0;
4017
4018 size += insnlen;
4019
4020 insnlen = insn_decode_len (contents, content_len, offset + size);
4021 if (insnlen == 0)
4022 return 0;
4023
4024 size += insnlen;
4025 return size;
4026 }
4027
4028
4029 bfd_boolean
4030 is_alt_relocation (int r_type)
4031 {
4032 return (r_type >= R_XTENSA_SLOT0_ALT
4033 && r_type <= R_XTENSA_SLOT14_ALT);
4034 }
4035
4036
4037 bfd_boolean
4038 is_operand_relocation (int r_type)
4039 {
4040 switch (r_type)
4041 {
4042 case R_XTENSA_OP0:
4043 case R_XTENSA_OP1:
4044 case R_XTENSA_OP2:
4045 return TRUE;
4046
4047 default:
4048 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4049 return TRUE;
4050 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4051 return TRUE;
4052 break;
4053 }
4054
4055 return FALSE;
4056 }
4057
4058
4059 #define MIN_INSN_LENGTH 2
4060
4061 /* Return 0 if it fails to decode. */
4062
4063 bfd_size_type
4064 insn_decode_len (bfd_byte *contents,
4065 bfd_size_type content_len,
4066 bfd_size_type offset)
4067 {
4068 int insn_len;
4069 xtensa_isa isa = xtensa_default_isa;
4070 xtensa_format fmt;
4071 static xtensa_insnbuf ibuff = NULL;
4072
4073 if (offset + MIN_INSN_LENGTH > content_len)
4074 return 0;
4075
4076 if (ibuff == NULL)
4077 ibuff = xtensa_insnbuf_alloc (isa);
4078 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
4079 content_len - offset);
4080 fmt = xtensa_format_decode (isa, ibuff);
4081 if (fmt == XTENSA_UNDEFINED)
4082 return 0;
4083 insn_len = xtensa_format_length (isa, fmt);
4084 if (insn_len == XTENSA_UNDEFINED)
4085 return 0;
4086 return insn_len;
4087 }
4088
4089 int
4090 insn_num_slots (bfd_byte *contents,
4091 bfd_size_type content_len,
4092 bfd_size_type offset)
4093 {
4094 xtensa_isa isa = xtensa_default_isa;
4095 xtensa_format fmt;
4096 static xtensa_insnbuf ibuff = NULL;
4097
4098 if (offset + MIN_INSN_LENGTH > content_len)
4099 return XTENSA_UNDEFINED;
4100
4101 if (ibuff == NULL)
4102 ibuff = xtensa_insnbuf_alloc (isa);
4103 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
4104 content_len - offset);
4105 fmt = xtensa_format_decode (isa, ibuff);
4106 if (fmt == XTENSA_UNDEFINED)
4107 return XTENSA_UNDEFINED;
4108 return xtensa_format_num_slots (isa, fmt);
4109 }
4110
4111
4112 /* Decode the opcode for a single slot instruction.
4113 Return 0 if it fails to decode or the instruction is multi-slot. */
4114
4115 xtensa_opcode
4116 insn_decode_opcode (bfd_byte *contents,
4117 bfd_size_type content_len,
4118 bfd_size_type offset,
4119 int slot)
4120 {
4121 xtensa_isa isa = xtensa_default_isa;
4122 xtensa_format fmt;
4123 static xtensa_insnbuf insnbuf = NULL;
4124 static xtensa_insnbuf slotbuf = NULL;
4125
4126 if (offset + MIN_INSN_LENGTH > content_len)
4127 return XTENSA_UNDEFINED;
4128
4129 if (insnbuf == NULL)
4130 {
4131 insnbuf = xtensa_insnbuf_alloc (isa);
4132 slotbuf = xtensa_insnbuf_alloc (isa);
4133 }
4134
4135 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4136 content_len - offset);
4137 fmt = xtensa_format_decode (isa, insnbuf);
4138 if (fmt == XTENSA_UNDEFINED)
4139 return XTENSA_UNDEFINED;
4140
4141 if (slot >= xtensa_format_num_slots (isa, fmt))
4142 return XTENSA_UNDEFINED;
4143
4144 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
4145 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
4146 }
4147
4148
4149 /* The offset is the offset in the contents.
4150 The address is the address of that offset. */
4151
4152 static bfd_boolean
4153 check_branch_target_aligned (bfd_byte *contents,
4154 bfd_size_type content_length,
4155 bfd_vma offset,
4156 bfd_vma address)
4157 {
4158 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
4159 if (insn_len == 0)
4160 return FALSE;
4161 return check_branch_target_aligned_address (address, insn_len);
4162 }
4163
4164
4165 static bfd_boolean
4166 check_loop_aligned (bfd_byte *contents,
4167 bfd_size_type content_length,
4168 bfd_vma offset,
4169 bfd_vma address)
4170 {
4171 bfd_size_type loop_len, insn_len;
4172 xtensa_opcode opcode;
4173
4174 opcode = insn_decode_opcode (contents, content_length, offset, 0);
4175 if (opcode == XTENSA_UNDEFINED
4176 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
4177 {
4178 BFD_ASSERT (FALSE);
4179 return FALSE;
4180 }
4181
4182 loop_len = insn_decode_len (contents, content_length, offset);
4183 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
4184 if (loop_len == 0 || insn_len == 0)
4185 {
4186 BFD_ASSERT (FALSE);
4187 return FALSE;
4188 }
4189
4190 /* If this is relaxed loop, analyze first instruction of the actual loop
4191 body. It must be at offset 27 from the loop instruction address. */
4192 if (insn_len == 3
4193 && insn_num_slots (contents, content_length, offset + loop_len) == 1
4194 && insn_decode_opcode (contents, content_length,
4195 offset + loop_len, 0) == get_rsr_lend_opcode()
4196 && insn_decode_len (contents, content_length, offset + loop_len + 3) == 3
4197 && insn_num_slots (contents, content_length, offset + loop_len + 3) == 1
4198 && insn_decode_opcode (contents, content_length,
4199 offset + loop_len + 3, 0) == get_wsr_lbeg_opcode())
4200 {
4201 loop_len = 27;
4202 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
4203 }
4204 return check_branch_target_aligned_address (address + loop_len, insn_len);
4205 }
4206
4207
4208 static bfd_boolean
4209 check_branch_target_aligned_address (bfd_vma addr, int len)
4210 {
4211 if (len == 8)
4212 return (addr % 8 == 0);
4213 return ((addr >> 2) == ((addr + len - 1) >> 2));
4214 }
4215
4216 \f
4217 /* Instruction widening and narrowing. */
4218
4219 /* When FLIX is available we need to access certain instructions only
4220 when they are 16-bit or 24-bit instructions. This table caches
4221 information about such instructions by walking through all the
4222 opcodes and finding the smallest single-slot format into which each
4223 can be encoded. */
4224
4225 static xtensa_format *op_single_fmt_table = NULL;
4226
4227
4228 static void
4229 init_op_single_format_table (void)
4230 {
4231 xtensa_isa isa = xtensa_default_isa;
4232 xtensa_insnbuf ibuf;
4233 xtensa_opcode opcode;
4234 xtensa_format fmt;
4235 int num_opcodes;
4236
4237 if (op_single_fmt_table)
4238 return;
4239
4240 ibuf = xtensa_insnbuf_alloc (isa);
4241 num_opcodes = xtensa_isa_num_opcodes (isa);
4242
4243 op_single_fmt_table = (xtensa_format *)
4244 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
4245 for (opcode = 0; opcode < num_opcodes; opcode++)
4246 {
4247 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
4248 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
4249 {
4250 if (xtensa_format_num_slots (isa, fmt) == 1
4251 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
4252 {
4253 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
4254 int fmt_length = xtensa_format_length (isa, fmt);
4255 if (old_fmt == XTENSA_UNDEFINED
4256 || fmt_length < xtensa_format_length (isa, old_fmt))
4257 op_single_fmt_table[opcode] = fmt;
4258 }
4259 }
4260 }
4261 xtensa_insnbuf_free (isa, ibuf);
4262 }
4263
4264
4265 static xtensa_format
4266 get_single_format (xtensa_opcode opcode)
4267 {
4268 init_op_single_format_table ();
4269 return op_single_fmt_table[opcode];
4270 }
4271
4272
4273 /* For the set of narrowable instructions we do NOT include the
4274 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
4275 involved during linker relaxation that may require these to
4276 re-expand in some conditions. Also, the narrowing "or" -> mov.n
4277 requires special case code to ensure it only works when op1 == op2. */
4278
4279 struct string_pair
4280 {
4281 const char *wide;
4282 const char *narrow;
4283 };
4284
4285 struct string_pair narrowable[] =
4286 {
4287 { "add", "add.n" },
4288 { "addi", "addi.n" },
4289 { "addmi", "addi.n" },
4290 { "l32i", "l32i.n" },
4291 { "movi", "movi.n" },
4292 { "ret", "ret.n" },
4293 { "retw", "retw.n" },
4294 { "s32i", "s32i.n" },
4295 { "or", "mov.n" } /* special case only when op1 == op2 */
4296 };
4297
4298 struct string_pair widenable[] =
4299 {
4300 { "add", "add.n" },
4301 { "addi", "addi.n" },
4302 { "addmi", "addi.n" },
4303 { "beqz", "beqz.n" },
4304 { "bnez", "bnez.n" },
4305 { "l32i", "l32i.n" },
4306 { "movi", "movi.n" },
4307 { "ret", "ret.n" },
4308 { "retw", "retw.n" },
4309 { "s32i", "s32i.n" },
4310 { "or", "mov.n" } /* special case only when op1 == op2 */
4311 };
4312
4313
4314 /* Check if an instruction can be "narrowed", i.e., changed from a standard
4315 3-byte instruction to a 2-byte "density" instruction. If it is valid,
4316 return the instruction buffer holding the narrow instruction. Otherwise,
4317 return 0. The set of valid narrowing are specified by a string table
4318 but require some special case operand checks in some cases. */
4319
4320 static xtensa_insnbuf
4321 can_narrow_instruction (xtensa_insnbuf slotbuf,
4322 xtensa_format fmt,
4323 xtensa_opcode opcode)
4324 {
4325 xtensa_isa isa = xtensa_default_isa;
4326 xtensa_format o_fmt;
4327 unsigned opi;
4328
4329 static xtensa_insnbuf o_insnbuf = NULL;
4330 static xtensa_insnbuf o_slotbuf = NULL;
4331
4332 if (o_insnbuf == NULL)
4333 {
4334 o_insnbuf = xtensa_insnbuf_alloc (isa);
4335 o_slotbuf = xtensa_insnbuf_alloc (isa);
4336 }
4337
4338 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
4339 {
4340 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
4341
4342 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
4343 {
4344 uint32 value, newval;
4345 int i, operand_count, o_operand_count;
4346 xtensa_opcode o_opcode;
4347
4348 /* Address does not matter in this case. We might need to
4349 fix it to handle branches/jumps. */
4350 bfd_vma self_address = 0;
4351
4352 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
4353 if (o_opcode == XTENSA_UNDEFINED)
4354 return 0;
4355 o_fmt = get_single_format (o_opcode);
4356 if (o_fmt == XTENSA_UNDEFINED)
4357 return 0;
4358
4359 if (xtensa_format_length (isa, fmt) != 3
4360 || xtensa_format_length (isa, o_fmt) != 2)
4361 return 0;
4362
4363 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4364 operand_count = xtensa_opcode_num_operands (isa, opcode);
4365 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4366
4367 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4368 return 0;
4369
4370 if (!is_or)
4371 {
4372 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4373 return 0;
4374 }
4375 else
4376 {
4377 uint32 rawval0, rawval1, rawval2;
4378
4379 if (o_operand_count + 1 != operand_count
4380 || xtensa_operand_get_field (isa, opcode, 0,
4381 fmt, 0, slotbuf, &rawval0) != 0
4382 || xtensa_operand_get_field (isa, opcode, 1,
4383 fmt, 0, slotbuf, &rawval1) != 0
4384 || xtensa_operand_get_field (isa, opcode, 2,
4385 fmt, 0, slotbuf, &rawval2) != 0
4386 || rawval1 != rawval2
4387 || rawval0 == rawval1 /* it is a nop */)
4388 return 0;
4389 }
4390
4391 for (i = 0; i < o_operand_count; ++i)
4392 {
4393 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
4394 slotbuf, &value)
4395 || xtensa_operand_decode (isa, opcode, i, &value))
4396 return 0;
4397
4398 /* PC-relative branches need adjustment, but
4399 the PC-rel operand will always have a relocation. */
4400 newval = value;
4401 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4402 self_address)
4403 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4404 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4405 o_slotbuf, newval))
4406 return 0;
4407 }
4408
4409 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4410 return 0;
4411
4412 return o_insnbuf;
4413 }
4414 }
4415 return 0;
4416 }
4417
4418
4419 /* Attempt to narrow an instruction. If the narrowing is valid, perform
4420 the action in-place directly into the contents and return TRUE. Otherwise,
4421 the return value is FALSE and the contents are not modified. */
4422
4423 static bfd_boolean
4424 narrow_instruction (bfd_byte *contents,
4425 bfd_size_type content_length,
4426 bfd_size_type offset)
4427 {
4428 xtensa_opcode opcode;
4429 bfd_size_type insn_len;
4430 xtensa_isa isa = xtensa_default_isa;
4431 xtensa_format fmt;
4432 xtensa_insnbuf o_insnbuf;
4433
4434 static xtensa_insnbuf insnbuf = NULL;
4435 static xtensa_insnbuf slotbuf = NULL;
4436
4437 if (insnbuf == NULL)
4438 {
4439 insnbuf = xtensa_insnbuf_alloc (isa);
4440 slotbuf = xtensa_insnbuf_alloc (isa);
4441 }
4442
4443 BFD_ASSERT (offset < content_length);
4444
4445 if (content_length < 2)
4446 return FALSE;
4447
4448 /* We will hand-code a few of these for a little while.
4449 These have all been specified in the assembler aleady. */
4450 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4451 content_length - offset);
4452 fmt = xtensa_format_decode (isa, insnbuf);
4453 if (xtensa_format_num_slots (isa, fmt) != 1)
4454 return FALSE;
4455
4456 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4457 return FALSE;
4458
4459 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4460 if (opcode == XTENSA_UNDEFINED)
4461 return FALSE;
4462 insn_len = xtensa_format_length (isa, fmt);
4463 if (insn_len > content_length)
4464 return FALSE;
4465
4466 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
4467 if (o_insnbuf)
4468 {
4469 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4470 content_length - offset);
4471 return TRUE;
4472 }
4473
4474 return FALSE;
4475 }
4476
4477
4478 /* Check if an instruction can be "widened", i.e., changed from a 2-byte
4479 "density" instruction to a standard 3-byte instruction. If it is valid,
4480 return the instruction buffer holding the wide instruction. Otherwise,
4481 return 0. The set of valid widenings are specified by a string table
4482 but require some special case operand checks in some cases. */
4483
4484 static xtensa_insnbuf
4485 can_widen_instruction (xtensa_insnbuf slotbuf,
4486 xtensa_format fmt,
4487 xtensa_opcode opcode)
4488 {
4489 xtensa_isa isa = xtensa_default_isa;
4490 xtensa_format o_fmt;
4491 unsigned opi;
4492
4493 static xtensa_insnbuf o_insnbuf = NULL;
4494 static xtensa_insnbuf o_slotbuf = NULL;
4495
4496 if (o_insnbuf == NULL)
4497 {
4498 o_insnbuf = xtensa_insnbuf_alloc (isa);
4499 o_slotbuf = xtensa_insnbuf_alloc (isa);
4500 }
4501
4502 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
4503 {
4504 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
4505 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
4506 || strcmp ("bnez", widenable[opi].wide) == 0);
4507
4508 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
4509 {
4510 uint32 value, newval;
4511 int i, operand_count, o_operand_count, check_operand_count;
4512 xtensa_opcode o_opcode;
4513
4514 /* Address does not matter in this case. We might need to fix it
4515 to handle branches/jumps. */
4516 bfd_vma self_address = 0;
4517
4518 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
4519 if (o_opcode == XTENSA_UNDEFINED)
4520 return 0;
4521 o_fmt = get_single_format (o_opcode);
4522 if (o_fmt == XTENSA_UNDEFINED)
4523 return 0;
4524
4525 if (xtensa_format_length (isa, fmt) != 2
4526 || xtensa_format_length (isa, o_fmt) != 3)
4527 return 0;
4528
4529 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4530 operand_count = xtensa_opcode_num_operands (isa, opcode);
4531 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4532 check_operand_count = o_operand_count;
4533
4534 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4535 return 0;
4536
4537 if (!is_or)
4538 {
4539 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4540 return 0;
4541 }
4542 else
4543 {
4544 uint32 rawval0, rawval1;
4545
4546 if (o_operand_count != operand_count + 1
4547 || xtensa_operand_get_field (isa, opcode, 0,
4548 fmt, 0, slotbuf, &rawval0) != 0
4549 || xtensa_operand_get_field (isa, opcode, 1,
4550 fmt, 0, slotbuf, &rawval1) != 0
4551 || rawval0 == rawval1 /* it is a nop */)
4552 return 0;
4553 }
4554 if (is_branch)
4555 check_operand_count--;
4556
4557 for (i = 0; i < check_operand_count; i++)
4558 {
4559 int new_i = i;
4560 if (is_or && i == o_operand_count - 1)
4561 new_i = i - 1;
4562 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
4563 slotbuf, &value)
4564 || xtensa_operand_decode (isa, opcode, new_i, &value))
4565 return 0;
4566
4567 /* PC-relative branches need adjustment, but
4568 the PC-rel operand will always have a relocation. */
4569 newval = value;
4570 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4571 self_address)
4572 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4573 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4574 o_slotbuf, newval))
4575 return 0;
4576 }
4577
4578 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4579 return 0;
4580
4581 return o_insnbuf;
4582 }
4583 }
4584 return 0;
4585 }
4586
4587
4588 /* Attempt to widen an instruction. If the widening is valid, perform
4589 the action in-place directly into the contents and return TRUE. Otherwise,
4590 the return value is FALSE and the contents are not modified. */
4591
4592 static bfd_boolean
4593 widen_instruction (bfd_byte *contents,
4594 bfd_size_type content_length,
4595 bfd_size_type offset)
4596 {
4597 xtensa_opcode opcode;
4598 bfd_size_type insn_len;
4599 xtensa_isa isa = xtensa_default_isa;
4600 xtensa_format fmt;
4601 xtensa_insnbuf o_insnbuf;
4602
4603 static xtensa_insnbuf insnbuf = NULL;
4604 static xtensa_insnbuf slotbuf = NULL;
4605
4606 if (insnbuf == NULL)
4607 {
4608 insnbuf = xtensa_insnbuf_alloc (isa);
4609 slotbuf = xtensa_insnbuf_alloc (isa);
4610 }
4611
4612 BFD_ASSERT (offset < content_length);
4613
4614 if (content_length < 2)
4615 return FALSE;
4616
4617 /* We will hand-code a few of these for a little while.
4618 These have all been specified in the assembler aleady. */
4619 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4620 content_length - offset);
4621 fmt = xtensa_format_decode (isa, insnbuf);
4622 if (xtensa_format_num_slots (isa, fmt) != 1)
4623 return FALSE;
4624
4625 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4626 return FALSE;
4627
4628 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4629 if (opcode == XTENSA_UNDEFINED)
4630 return FALSE;
4631 insn_len = xtensa_format_length (isa, fmt);
4632 if (insn_len > content_length)
4633 return FALSE;
4634
4635 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
4636 if (o_insnbuf)
4637 {
4638 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4639 content_length - offset);
4640 return TRUE;
4641 }
4642 return FALSE;
4643 }
4644
4645 \f
4646 /* Code for transforming CALLs at link-time. */
4647
4648 static bfd_reloc_status_type
4649 elf_xtensa_do_asm_simplify (bfd_byte *contents,
4650 bfd_vma address,
4651 bfd_vma content_length,
4652 char **error_message)
4653 {
4654 static xtensa_insnbuf insnbuf = NULL;
4655 static xtensa_insnbuf slotbuf = NULL;
4656 xtensa_format core_format = XTENSA_UNDEFINED;
4657 xtensa_opcode opcode;
4658 xtensa_opcode direct_call_opcode;
4659 xtensa_isa isa = xtensa_default_isa;
4660 bfd_byte *chbuf = contents + address;
4661 int opn;
4662
4663 if (insnbuf == NULL)
4664 {
4665 insnbuf = xtensa_insnbuf_alloc (isa);
4666 slotbuf = xtensa_insnbuf_alloc (isa);
4667 }
4668
4669 if (content_length < address)
4670 {
4671 *error_message = _("attempt to convert L32R/CALLX to CALL failed");
4672 return bfd_reloc_other;
4673 }
4674
4675 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
4676 direct_call_opcode = swap_callx_for_call_opcode (opcode);
4677 if (direct_call_opcode == XTENSA_UNDEFINED)
4678 {
4679 *error_message = _("attempt to convert L32R/CALLX to CALL failed");
4680 return bfd_reloc_other;
4681 }
4682
4683 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
4684 core_format = xtensa_format_lookup (isa, "x24");
4685 opcode = xtensa_opcode_lookup (isa, "or");
4686 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
4687 for (opn = 0; opn < 3; opn++)
4688 {
4689 uint32 regno = 1;
4690 xtensa_operand_encode (isa, opcode, opn, &regno);
4691 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
4692 slotbuf, regno);
4693 }
4694 xtensa_format_encode (isa, core_format, insnbuf);
4695 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4696 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
4697
4698 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
4699 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
4700 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
4701
4702 xtensa_format_encode (isa, core_format, insnbuf);
4703 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4704 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
4705 content_length - address - 3);
4706
4707 return bfd_reloc_ok;
4708 }
4709
4710
4711 static bfd_reloc_status_type
4712 contract_asm_expansion (bfd_byte *contents,
4713 bfd_vma content_length,
4714 Elf_Internal_Rela *irel,
4715 char **error_message)
4716 {
4717 bfd_reloc_status_type retval =
4718 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
4719 error_message);
4720
4721 if (retval != bfd_reloc_ok)
4722 return bfd_reloc_dangerous;
4723
4724 /* Update the irel->r_offset field so that the right immediate and
4725 the right instruction are modified during the relocation. */
4726 irel->r_offset += 3;
4727 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
4728 return bfd_reloc_ok;
4729 }
4730
4731
4732 static xtensa_opcode
4733 swap_callx_for_call_opcode (xtensa_opcode opcode)
4734 {
4735 init_call_opcodes ();
4736
4737 if (opcode == callx0_op) return call0_op;
4738 if (opcode == callx4_op) return call4_op;
4739 if (opcode == callx8_op) return call8_op;
4740 if (opcode == callx12_op) return call12_op;
4741
4742 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
4743 return XTENSA_UNDEFINED;
4744 }
4745
4746
4747 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
4748 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
4749 If not, return XTENSA_UNDEFINED. */
4750
4751 #define L32R_TARGET_REG_OPERAND 0
4752 #define CONST16_TARGET_REG_OPERAND 0
4753 #define CALLN_SOURCE_OPERAND 0
4754
4755 static xtensa_opcode
4756 get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
4757 {
4758 static xtensa_insnbuf insnbuf = NULL;
4759 static xtensa_insnbuf slotbuf = NULL;
4760 xtensa_format fmt;
4761 xtensa_opcode opcode;
4762 xtensa_isa isa = xtensa_default_isa;
4763 uint32 regno, const16_regno, call_regno;
4764 int offset = 0;
4765
4766 if (insnbuf == NULL)
4767 {
4768 insnbuf = xtensa_insnbuf_alloc (isa);
4769 slotbuf = xtensa_insnbuf_alloc (isa);
4770 }
4771
4772 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4773 fmt = xtensa_format_decode (isa, insnbuf);
4774 if (fmt == XTENSA_UNDEFINED
4775 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4776 return XTENSA_UNDEFINED;
4777
4778 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4779 if (opcode == XTENSA_UNDEFINED)
4780 return XTENSA_UNDEFINED;
4781
4782 if (opcode == get_l32r_opcode ())
4783 {
4784 if (p_uses_l32r)
4785 *p_uses_l32r = TRUE;
4786 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4787 fmt, 0, slotbuf, &regno)
4788 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4789 &regno))
4790 return XTENSA_UNDEFINED;
4791 }
4792 else if (opcode == get_const16_opcode ())
4793 {
4794 if (p_uses_l32r)
4795 *p_uses_l32r = FALSE;
4796 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4797 fmt, 0, slotbuf, &regno)
4798 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4799 &regno))
4800 return XTENSA_UNDEFINED;
4801
4802 /* Check that the next instruction is also CONST16. */
4803 offset += xtensa_format_length (isa, fmt);
4804 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4805 fmt = xtensa_format_decode (isa, insnbuf);
4806 if (fmt == XTENSA_UNDEFINED
4807 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4808 return XTENSA_UNDEFINED;
4809 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4810 if (opcode != get_const16_opcode ())
4811 return XTENSA_UNDEFINED;
4812
4813 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4814 fmt, 0, slotbuf, &const16_regno)
4815 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4816 &const16_regno)
4817 || const16_regno != regno)
4818 return XTENSA_UNDEFINED;
4819 }
4820 else
4821 return XTENSA_UNDEFINED;
4822
4823 /* Next instruction should be an CALLXn with operand 0 == regno. */
4824 offset += xtensa_format_length (isa, fmt);
4825 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4826 fmt = xtensa_format_decode (isa, insnbuf);
4827 if (fmt == XTENSA_UNDEFINED
4828 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4829 return XTENSA_UNDEFINED;
4830 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4831 if (opcode == XTENSA_UNDEFINED
4832 || !is_indirect_call_opcode (opcode))
4833 return XTENSA_UNDEFINED;
4834
4835 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4836 fmt, 0, slotbuf, &call_regno)
4837 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4838 &call_regno))
4839 return XTENSA_UNDEFINED;
4840
4841 if (call_regno != regno)
4842 return XTENSA_UNDEFINED;
4843
4844 return opcode;
4845 }
4846
4847 \f
4848 /* Data structures used during relaxation. */
4849
4850 /* r_reloc: relocation values. */
4851
4852 /* Through the relaxation process, we need to keep track of the values
4853 that will result from evaluating relocations. The standard ELF
4854 relocation structure is not sufficient for this purpose because we're
4855 operating on multiple input files at once, so we need to know which
4856 input file a relocation refers to. The r_reloc structure thus
4857 records both the input file (bfd) and ELF relocation.
4858
4859 For efficiency, an r_reloc also contains a "target_offset" field to
4860 cache the target-section-relative offset value that is represented by
4861 the relocation.
4862
4863 The r_reloc also contains a virtual offset that allows multiple
4864 inserted literals to be placed at the same "address" with
4865 different offsets. */
4866
4867 typedef struct r_reloc_struct r_reloc;
4868
4869 struct r_reloc_struct
4870 {
4871 bfd *abfd;
4872 Elf_Internal_Rela rela;
4873 bfd_vma target_offset;
4874 bfd_vma virtual_offset;
4875 };
4876
4877
4878 /* The r_reloc structure is included by value in literal_value, but not
4879 every literal_value has an associated relocation -- some are simple
4880 constants. In such cases, we set all the fields in the r_reloc
4881 struct to zero. The r_reloc_is_const function should be used to
4882 detect this case. */
4883
4884 static bfd_boolean
4885 r_reloc_is_const (const r_reloc *r_rel)
4886 {
4887 return (r_rel->abfd == NULL);
4888 }
4889
4890
4891 static bfd_vma
4892 r_reloc_get_target_offset (const r_reloc *r_rel)
4893 {
4894 bfd_vma target_offset;
4895 unsigned long r_symndx;
4896
4897 BFD_ASSERT (!r_reloc_is_const (r_rel));
4898 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4899 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4900 return (target_offset + r_rel->rela.r_addend);
4901 }
4902
4903
4904 static struct elf_link_hash_entry *
4905 r_reloc_get_hash_entry (const r_reloc *r_rel)
4906 {
4907 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4908 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4909 }
4910
4911
4912 static asection *
4913 r_reloc_get_section (const r_reloc *r_rel)
4914 {
4915 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4916 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4917 }
4918
4919
4920 static bfd_boolean
4921 r_reloc_is_defined (const r_reloc *r_rel)
4922 {
4923 asection *sec;
4924 if (r_rel == NULL)
4925 return FALSE;
4926
4927 sec = r_reloc_get_section (r_rel);
4928 if (sec == bfd_abs_section_ptr
4929 || sec == bfd_com_section_ptr
4930 || sec == bfd_und_section_ptr)
4931 return FALSE;
4932 return TRUE;
4933 }
4934
4935
4936 static void
4937 r_reloc_init (r_reloc *r_rel,
4938 bfd *abfd,
4939 Elf_Internal_Rela *irel,
4940 bfd_byte *contents,
4941 bfd_size_type content_length)
4942 {
4943 int r_type;
4944 reloc_howto_type *howto;
4945
4946 if (irel)
4947 {
4948 r_rel->rela = *irel;
4949 r_rel->abfd = abfd;
4950 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4951 r_rel->virtual_offset = 0;
4952 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4953 howto = &elf_howto_table[r_type];
4954 if (howto->partial_inplace)
4955 {
4956 bfd_vma inplace_val;
4957 BFD_ASSERT (r_rel->rela.r_offset < content_length);
4958
4959 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
4960 r_rel->target_offset += inplace_val;
4961 }
4962 }
4963 else
4964 memset (r_rel, 0, sizeof (r_reloc));
4965 }
4966
4967
4968 #if DEBUG
4969
4970 static void
4971 print_r_reloc (FILE *fp, const r_reloc *r_rel)
4972 {
4973 if (r_reloc_is_defined (r_rel))
4974 {
4975 asection *sec = r_reloc_get_section (r_rel);
4976 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
4977 }
4978 else if (r_reloc_get_hash_entry (r_rel))
4979 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
4980 else
4981 fprintf (fp, " ?? + ");
4982
4983 fprintf_vma (fp, r_rel->target_offset);
4984 if (r_rel->virtual_offset)
4985 {
4986 fprintf (fp, " + ");
4987 fprintf_vma (fp, r_rel->virtual_offset);
4988 }
4989
4990 fprintf (fp, ")");
4991 }
4992
4993 #endif /* DEBUG */
4994
4995 \f
4996 /* source_reloc: relocations that reference literals. */
4997
4998 /* To determine whether literals can be coalesced, we need to first
4999 record all the relocations that reference the literals. The
5000 source_reloc structure below is used for this purpose. The
5001 source_reloc entries are kept in a per-literal-section array, sorted
5002 by offset within the literal section (i.e., target offset).
5003
5004 The source_sec and r_rel.rela.r_offset fields identify the source of
5005 the relocation. The r_rel field records the relocation value, i.e.,
5006 the offset of the literal being referenced. The opnd field is needed
5007 to determine the range of the immediate field to which the relocation
5008 applies, so we can determine whether another literal with the same
5009 value is within range. The is_null field is true when the relocation
5010 is being removed (e.g., when an L32R is being removed due to a CALLX
5011 that is converted to a direct CALL). */
5012
5013 typedef struct source_reloc_struct source_reloc;
5014
5015 struct source_reloc_struct
5016 {
5017 asection *source_sec;
5018 r_reloc r_rel;
5019 xtensa_opcode opcode;
5020 int opnd;
5021 bfd_boolean is_null;
5022 bfd_boolean is_abs_literal;
5023 };
5024
5025
5026 static void
5027 init_source_reloc (source_reloc *reloc,
5028 asection *source_sec,
5029 const r_reloc *r_rel,
5030 xtensa_opcode opcode,
5031 int opnd,
5032 bfd_boolean is_abs_literal)
5033 {
5034 reloc->source_sec = source_sec;
5035 reloc->r_rel = *r_rel;
5036 reloc->opcode = opcode;
5037 reloc->opnd = opnd;
5038 reloc->is_null = FALSE;
5039 reloc->is_abs_literal = is_abs_literal;
5040 }
5041
5042
5043 /* Find the source_reloc for a particular source offset and relocation
5044 type. Note that the array is sorted by _target_ offset, so this is
5045 just a linear search. */
5046
5047 static source_reloc *
5048 find_source_reloc (source_reloc *src_relocs,
5049 int src_count,
5050 asection *sec,
5051 Elf_Internal_Rela *irel)
5052 {
5053 int i;
5054
5055 for (i = 0; i < src_count; i++)
5056 {
5057 if (src_relocs[i].source_sec == sec
5058 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
5059 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
5060 == ELF32_R_TYPE (irel->r_info)))
5061 return &src_relocs[i];
5062 }
5063
5064 return NULL;
5065 }
5066
5067
5068 static int
5069 source_reloc_compare (const void *ap, const void *bp)
5070 {
5071 const source_reloc *a = (const source_reloc *) ap;
5072 const source_reloc *b = (const source_reloc *) bp;
5073
5074 if (a->r_rel.target_offset != b->r_rel.target_offset)
5075 return (a->r_rel.target_offset - b->r_rel.target_offset);
5076
5077 /* We don't need to sort on these criteria for correctness,
5078 but enforcing a more strict ordering prevents unstable qsort
5079 from behaving differently with different implementations.
5080 Without the code below we get correct but different results
5081 on Solaris 2.7 and 2.8. We would like to always produce the
5082 same results no matter the host. */
5083
5084 if ((!a->is_null) - (!b->is_null))
5085 return ((!a->is_null) - (!b->is_null));
5086 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
5087 }
5088
5089 \f
5090 /* Literal values and value hash tables. */
5091
5092 /* Literals with the same value can be coalesced. The literal_value
5093 structure records the value of a literal: the "r_rel" field holds the
5094 information from the relocation on the literal (if there is one) and
5095 the "value" field holds the contents of the literal word itself.
5096
5097 The value_map structure records a literal value along with the
5098 location of a literal holding that value. The value_map hash table
5099 is indexed by the literal value, so that we can quickly check if a
5100 particular literal value has been seen before and is thus a candidate
5101 for coalescing. */
5102
5103 typedef struct literal_value_struct literal_value;
5104 typedef struct value_map_struct value_map;
5105 typedef struct value_map_hash_table_struct value_map_hash_table;
5106
5107 struct literal_value_struct
5108 {
5109 r_reloc r_rel;
5110 unsigned long value;
5111 bfd_boolean is_abs_literal;
5112 };
5113
5114 struct value_map_struct
5115 {
5116 literal_value val; /* The literal value. */
5117 r_reloc loc; /* Location of the literal. */
5118 value_map *next;
5119 };
5120
5121 struct value_map_hash_table_struct
5122 {
5123 unsigned bucket_count;
5124 value_map **buckets;
5125 unsigned count;
5126 bfd_boolean has_last_loc;
5127 r_reloc last_loc;
5128 };
5129
5130
5131 static void
5132 init_literal_value (literal_value *lit,
5133 const r_reloc *r_rel,
5134 unsigned long value,
5135 bfd_boolean is_abs_literal)
5136 {
5137 lit->r_rel = *r_rel;
5138 lit->value = value;
5139 lit->is_abs_literal = is_abs_literal;
5140 }
5141
5142
5143 static bfd_boolean
5144 literal_value_equal (const literal_value *src1,
5145 const literal_value *src2,
5146 bfd_boolean final_static_link)
5147 {
5148 struct elf_link_hash_entry *h1, *h2;
5149
5150 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
5151 return FALSE;
5152
5153 if (r_reloc_is_const (&src1->r_rel))
5154 return (src1->value == src2->value);
5155
5156 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
5157 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
5158 return FALSE;
5159
5160 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
5161 return FALSE;
5162
5163 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
5164 return FALSE;
5165
5166 if (src1->value != src2->value)
5167 return FALSE;
5168
5169 /* Now check for the same section (if defined) or the same elf_hash
5170 (if undefined or weak). */
5171 h1 = r_reloc_get_hash_entry (&src1->r_rel);
5172 h2 = r_reloc_get_hash_entry (&src2->r_rel);
5173 if (r_reloc_is_defined (&src1->r_rel)
5174 && (final_static_link
5175 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
5176 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
5177 {
5178 if (r_reloc_get_section (&src1->r_rel)
5179 != r_reloc_get_section (&src2->r_rel))
5180 return FALSE;
5181 }
5182 else
5183 {
5184 /* Require that the hash entries (i.e., symbols) be identical. */
5185 if (h1 != h2 || h1 == 0)
5186 return FALSE;
5187 }
5188
5189 if (src1->is_abs_literal != src2->is_abs_literal)
5190 return FALSE;
5191
5192 return TRUE;
5193 }
5194
5195
5196 /* Must be power of 2. */
5197 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
5198
5199 static value_map_hash_table *
5200 value_map_hash_table_init (void)
5201 {
5202 value_map_hash_table *values;
5203
5204 values = (value_map_hash_table *)
5205 bfd_zmalloc (sizeof (value_map_hash_table));
5206 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
5207 values->count = 0;
5208 values->buckets = (value_map **)
5209 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
5210 if (values->buckets == NULL)
5211 {
5212 free (values);
5213 return NULL;
5214 }
5215 values->has_last_loc = FALSE;
5216
5217 return values;
5218 }
5219
5220
5221 static void
5222 value_map_hash_table_delete (value_map_hash_table *table)
5223 {
5224 free (table->buckets);
5225 free (table);
5226 }
5227
5228
5229 static unsigned
5230 hash_bfd_vma (bfd_vma val)
5231 {
5232 return (val >> 2) + (val >> 10);
5233 }
5234
5235
5236 static unsigned
5237 literal_value_hash (const literal_value *src)
5238 {
5239 unsigned hash_val;
5240
5241 hash_val = hash_bfd_vma (src->value);
5242 if (!r_reloc_is_const (&src->r_rel))
5243 {
5244 void *sec_or_hash;
5245
5246 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
5247 hash_val += hash_bfd_vma (src->r_rel.target_offset);
5248 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
5249
5250 /* Now check for the same section and the same elf_hash. */
5251 if (r_reloc_is_defined (&src->r_rel))
5252 sec_or_hash = r_reloc_get_section (&src->r_rel);
5253 else
5254 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
5255 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
5256 }
5257 return hash_val;
5258 }
5259
5260
5261 /* Check if the specified literal_value has been seen before. */
5262
5263 static value_map *
5264 value_map_get_cached_value (value_map_hash_table *map,
5265 const literal_value *val,
5266 bfd_boolean final_static_link)
5267 {
5268 value_map *map_e;
5269 value_map *bucket;
5270 unsigned idx;
5271
5272 idx = literal_value_hash (val);
5273 idx = idx & (map->bucket_count - 1);
5274 bucket = map->buckets[idx];
5275 for (map_e = bucket; map_e; map_e = map_e->next)
5276 {
5277 if (literal_value_equal (&map_e->val, val, final_static_link))
5278 return map_e;
5279 }
5280 return NULL;
5281 }
5282
5283
5284 /* Record a new literal value. It is illegal to call this if VALUE
5285 already has an entry here. */
5286
5287 static value_map *
5288 add_value_map (value_map_hash_table *map,
5289 const literal_value *val,
5290 const r_reloc *loc,
5291 bfd_boolean final_static_link)
5292 {
5293 value_map **bucket_p;
5294 unsigned idx;
5295
5296 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
5297 if (val_e == NULL)
5298 {
5299 bfd_set_error (bfd_error_no_memory);
5300 return NULL;
5301 }
5302
5303 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
5304 val_e->val = *val;
5305 val_e->loc = *loc;
5306
5307 idx = literal_value_hash (val);
5308 idx = idx & (map->bucket_count - 1);
5309 bucket_p = &map->buckets[idx];
5310
5311 val_e->next = *bucket_p;
5312 *bucket_p = val_e;
5313 map->count++;
5314 /* FIXME: Consider resizing the hash table if we get too many entries. */
5315
5316 return val_e;
5317 }
5318
5319 \f
5320 /* Lists of text actions (ta_) for narrowing, widening, longcall
5321 conversion, space fill, code & literal removal, etc. */
5322
5323 /* The following text actions are generated:
5324
5325 "ta_remove_insn" remove an instruction or instructions
5326 "ta_remove_longcall" convert longcall to call
5327 "ta_convert_longcall" convert longcall to nop/call
5328 "ta_narrow_insn" narrow a wide instruction
5329 "ta_widen" widen a narrow instruction
5330 "ta_fill" add fill or remove fill
5331 removed < 0 is a fill; branches to the fill address will be
5332 changed to address + fill size (e.g., address - removed)
5333 removed >= 0 branches to the fill address will stay unchanged
5334 "ta_remove_literal" remove a literal; this action is
5335 indicated when a literal is removed
5336 or replaced.
5337 "ta_add_literal" insert a new literal; this action is
5338 indicated when a literal has been moved.
5339 It may use a virtual_offset because
5340 multiple literals can be placed at the
5341 same location.
5342
5343 For each of these text actions, we also record the number of bytes
5344 removed by performing the text action. In the case of a "ta_widen"
5345 or a "ta_fill" that adds space, the removed_bytes will be negative. */
5346
5347 typedef struct text_action_struct text_action;
5348 typedef struct text_action_list_struct text_action_list;
5349 typedef enum text_action_enum_t text_action_t;
5350
5351 enum text_action_enum_t
5352 {
5353 ta_none,
5354 ta_remove_insn, /* removed = -size */
5355 ta_remove_longcall, /* removed = -size */
5356 ta_convert_longcall, /* removed = 0 */
5357 ta_narrow_insn, /* removed = -1 */
5358 ta_widen_insn, /* removed = +1 */
5359 ta_fill, /* removed = +size */
5360 ta_remove_literal,
5361 ta_add_literal
5362 };
5363
5364
5365 /* Structure for a text action record. */
5366 struct text_action_struct
5367 {
5368 text_action_t action;
5369 asection *sec; /* Optional */
5370 bfd_vma offset;
5371 bfd_vma virtual_offset; /* Zero except for adding literals. */
5372 int removed_bytes;
5373 literal_value value; /* Only valid when adding literals. */
5374 };
5375
5376 struct removal_by_action_entry_struct
5377 {
5378 bfd_vma offset;
5379 int removed;
5380 int eq_removed;
5381 int eq_removed_before_fill;
5382 };
5383 typedef struct removal_by_action_entry_struct removal_by_action_entry;
5384
5385 struct removal_by_action_map_struct
5386 {
5387 unsigned n_entries;
5388 removal_by_action_entry *entry;
5389 };
5390 typedef struct removal_by_action_map_struct removal_by_action_map;
5391
5392
5393 /* List of all of the actions taken on a text section. */
5394 struct text_action_list_struct
5395 {
5396 unsigned count;
5397 splay_tree tree;
5398 removal_by_action_map map;
5399 };
5400
5401
5402 static text_action *
5403 find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
5404 {
5405 text_action a;
5406
5407 /* It is not necessary to fill at the end of a section. */
5408 if (sec->size == offset)
5409 return NULL;
5410
5411 a.offset = offset;
5412 a.action = ta_fill;
5413
5414 splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a);
5415 if (node)
5416 return (text_action *)node->value;
5417 return NULL;
5418 }
5419
5420
5421 static int
5422 compute_removed_action_diff (const text_action *ta,
5423 asection *sec,
5424 bfd_vma offset,
5425 int removed,
5426 int removable_space)
5427 {
5428 int new_removed;
5429 int current_removed = 0;
5430
5431 if (ta)
5432 current_removed = ta->removed_bytes;
5433
5434 BFD_ASSERT (ta == NULL || ta->offset == offset);
5435 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
5436
5437 /* It is not necessary to fill at the end of a section. Clean this up. */
5438 if (sec->size == offset)
5439 new_removed = removable_space - 0;
5440 else
5441 {
5442 int space;
5443 int added = -removed - current_removed;
5444 /* Ignore multiples of the section alignment. */
5445 added = ((1 << sec->alignment_power) - 1) & added;
5446 new_removed = (-added);
5447
5448 /* Modify for removable. */
5449 space = removable_space - new_removed;
5450 new_removed = (removable_space
5451 - (((1 << sec->alignment_power) - 1) & space));
5452 }
5453 return (new_removed - current_removed);
5454 }
5455
5456
5457 static void
5458 adjust_fill_action (text_action *ta, int fill_diff)
5459 {
5460 ta->removed_bytes += fill_diff;
5461 }
5462
5463
5464 static int
5465 text_action_compare (splay_tree_key a, splay_tree_key b)
5466 {
5467 text_action *pa = (text_action *)a;
5468 text_action *pb = (text_action *)b;
5469 static const int action_priority[] =
5470 {
5471 [ta_fill] = 0,
5472 [ta_none] = 1,
5473 [ta_convert_longcall] = 2,
5474 [ta_narrow_insn] = 3,
5475 [ta_remove_insn] = 4,
5476 [ta_remove_longcall] = 5,
5477 [ta_remove_literal] = 6,
5478 [ta_widen_insn] = 7,
5479 [ta_add_literal] = 8,
5480 };
5481
5482 if (pa->offset == pb->offset)
5483 {
5484 if (pa->action == pb->action)
5485 return 0;
5486 return action_priority[pa->action] - action_priority[pb->action];
5487 }
5488 else
5489 return pa->offset < pb->offset ? -1 : 1;
5490 }
5491
5492 static text_action *
5493 action_first (text_action_list *action_list)
5494 {
5495 splay_tree_node node = splay_tree_min (action_list->tree);
5496 return node ? (text_action *)node->value : NULL;
5497 }
5498
5499 static text_action *
5500 action_next (text_action_list *action_list, text_action *action)
5501 {
5502 splay_tree_node node = splay_tree_successor (action_list->tree,
5503 (splay_tree_key)action);
5504 return node ? (text_action *)node->value : NULL;
5505 }
5506
5507 /* Add a modification action to the text. For the case of adding or
5508 removing space, modify any current fill and assume that
5509 "unreachable_space" bytes can be freely contracted. Note that a
5510 negative removed value is a fill. */
5511
5512 static void
5513 text_action_add (text_action_list *l,
5514 text_action_t action,
5515 asection *sec,
5516 bfd_vma offset,
5517 int removed)
5518 {
5519 text_action *ta;
5520 text_action a;
5521
5522 /* It is not necessary to fill at the end of a section. */
5523 if (action == ta_fill && sec->size == offset)
5524 return;
5525
5526 /* It is not necessary to fill 0 bytes. */
5527 if (action == ta_fill && removed == 0)
5528 return;
5529
5530 a.action = action;
5531 a.offset = offset;
5532
5533 if (action == ta_fill)
5534 {
5535 splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a);
5536
5537 if (node)
5538 {
5539 ta = (text_action *)node->value;
5540 ta->removed_bytes += removed;
5541 return;
5542 }
5543 }
5544 else
5545 BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)&a) == NULL);
5546
5547 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5548 ta->action = action;
5549 ta->sec = sec;
5550 ta->offset = offset;
5551 ta->removed_bytes = removed;
5552 splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta);
5553 ++l->count;
5554 }
5555
5556
5557 static void
5558 text_action_add_literal (text_action_list *l,
5559 text_action_t action,
5560 const r_reloc *loc,
5561 const literal_value *value,
5562 int removed)
5563 {
5564 text_action *ta;
5565 asection *sec = r_reloc_get_section (loc);
5566 bfd_vma offset = loc->target_offset;
5567 bfd_vma virtual_offset = loc->virtual_offset;
5568
5569 BFD_ASSERT (action == ta_add_literal);
5570
5571 /* Create a new record and fill it up. */
5572 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5573 ta->action = action;
5574 ta->sec = sec;
5575 ta->offset = offset;
5576 ta->virtual_offset = virtual_offset;
5577 ta->value = *value;
5578 ta->removed_bytes = removed;
5579
5580 BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)ta) == NULL);
5581 splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta);
5582 ++l->count;
5583 }
5584
5585
5586 /* Find the total offset adjustment for the relaxations specified by
5587 text_actions, beginning from a particular starting action. This is
5588 typically used from offset_with_removed_text to search an entire list of
5589 actions, but it may also be called directly when adjusting adjacent offsets
5590 so that each search may begin where the previous one left off. */
5591
5592 static int
5593 removed_by_actions (text_action_list *action_list,
5594 text_action **p_start_action,
5595 bfd_vma offset,
5596 bfd_boolean before_fill)
5597 {
5598 text_action *r;
5599 int removed = 0;
5600
5601 r = *p_start_action;
5602 if (r)
5603 {
5604 splay_tree_node node = splay_tree_lookup (action_list->tree,
5605 (splay_tree_key)r);
5606 BFD_ASSERT (node != NULL && r == (text_action *)node->value);
5607 }
5608
5609 while (r)
5610 {
5611 if (r->offset > offset)
5612 break;
5613
5614 if (r->offset == offset
5615 && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
5616 break;
5617
5618 removed += r->removed_bytes;
5619
5620 r = action_next (action_list, r);
5621 }
5622
5623 *p_start_action = r;
5624 return removed;
5625 }
5626
5627
5628 static bfd_vma
5629 offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
5630 {
5631 text_action *r = action_first (action_list);
5632
5633 return offset - removed_by_actions (action_list, &r, offset, FALSE);
5634 }
5635
5636
5637 static unsigned
5638 action_list_count (text_action_list *action_list)
5639 {
5640 return action_list->count;
5641 }
5642
5643 typedef struct map_action_fn_context_struct map_action_fn_context;
5644 struct map_action_fn_context_struct
5645 {
5646 int removed;
5647 removal_by_action_map map;
5648 bfd_boolean eq_complete;
5649 };
5650
5651 static int
5652 map_action_fn (splay_tree_node node, void *p)
5653 {
5654 map_action_fn_context *ctx = p;
5655 text_action *r = (text_action *)node->value;
5656 removal_by_action_entry *ientry = ctx->map.entry + ctx->map.n_entries;
5657
5658 if (ctx->map.n_entries && (ientry - 1)->offset == r->offset)
5659 {
5660 --ientry;
5661 }
5662 else
5663 {
5664 ++ctx->map.n_entries;
5665 ctx->eq_complete = FALSE;
5666 ientry->offset = r->offset;
5667 ientry->eq_removed_before_fill = ctx->removed;
5668 }
5669
5670 if (!ctx->eq_complete)
5671 {
5672 if (r->action != ta_fill || r->removed_bytes >= 0)
5673 {
5674 ientry->eq_removed = ctx->removed;
5675 ctx->eq_complete = TRUE;
5676 }
5677 else
5678 ientry->eq_removed = ctx->removed + r->removed_bytes;
5679 }
5680
5681 ctx->removed += r->removed_bytes;
5682 ientry->removed = ctx->removed;
5683 return 0;
5684 }
5685
5686 static void
5687 map_removal_by_action (text_action_list *action_list)
5688 {
5689 map_action_fn_context ctx;
5690
5691 ctx.removed = 0;
5692 ctx.map.n_entries = 0;
5693 ctx.map.entry = bfd_malloc (action_list_count (action_list) *
5694 sizeof (removal_by_action_entry));
5695 ctx.eq_complete = FALSE;
5696
5697 splay_tree_foreach (action_list->tree, map_action_fn, &ctx);
5698 action_list->map = ctx.map;
5699 }
5700
5701 static int
5702 removed_by_actions_map (text_action_list *action_list, bfd_vma offset,
5703 bfd_boolean before_fill)
5704 {
5705 unsigned a, b;
5706
5707 if (!action_list->map.entry)
5708 map_removal_by_action (action_list);
5709
5710 if (!action_list->map.n_entries)
5711 return 0;
5712
5713 a = 0;
5714 b = action_list->map.n_entries;
5715
5716 while (b - a > 1)
5717 {
5718 unsigned c = (a + b) / 2;
5719
5720 if (action_list->map.entry[c].offset <= offset)
5721 a = c;
5722 else
5723 b = c;
5724 }
5725
5726 if (action_list->map.entry[a].offset < offset)
5727 {
5728 return action_list->map.entry[a].removed;
5729 }
5730 else if (action_list->map.entry[a].offset == offset)
5731 {
5732 return before_fill ?
5733 action_list->map.entry[a].eq_removed_before_fill :
5734 action_list->map.entry[a].eq_removed;
5735 }
5736 else
5737 {
5738 return 0;
5739 }
5740 }
5741
5742 static bfd_vma
5743 offset_with_removed_text_map (text_action_list *action_list, bfd_vma offset)
5744 {
5745 int removed = removed_by_actions_map (action_list, offset, FALSE);
5746 return offset - removed;
5747 }
5748
5749
5750 /* The find_insn_action routine will only find non-fill actions. */
5751
5752 static text_action *
5753 find_insn_action (text_action_list *action_list, bfd_vma offset)
5754 {
5755 static const text_action_t action[] =
5756 {
5757 ta_convert_longcall,
5758 ta_remove_longcall,
5759 ta_widen_insn,
5760 ta_narrow_insn,
5761 ta_remove_insn,
5762 };
5763 text_action a;
5764 unsigned i;
5765
5766 a.offset = offset;
5767 for (i = 0; i < sizeof (action) / sizeof (*action); ++i)
5768 {
5769 splay_tree_node node;
5770
5771 a.action = action[i];
5772 node = splay_tree_lookup (action_list->tree, (splay_tree_key)&a);
5773 if (node)
5774 return (text_action *)node->value;
5775 }
5776 return NULL;
5777 }
5778
5779
5780 #if DEBUG
5781
5782 static void
5783 print_action (FILE *fp, text_action *r)
5784 {
5785 const char *t = "unknown";
5786 switch (r->action)
5787 {
5788 case ta_remove_insn:
5789 t = "remove_insn"; break;
5790 case ta_remove_longcall:
5791 t = "remove_longcall"; break;
5792 case ta_convert_longcall:
5793 t = "convert_longcall"; break;
5794 case ta_narrow_insn:
5795 t = "narrow_insn"; break;
5796 case ta_widen_insn:
5797 t = "widen_insn"; break;
5798 case ta_fill:
5799 t = "fill"; break;
5800 case ta_none:
5801 t = "none"; break;
5802 case ta_remove_literal:
5803 t = "remove_literal"; break;
5804 case ta_add_literal:
5805 t = "add_literal"; break;
5806 }
5807
5808 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
5809 r->sec->owner->filename,
5810 r->sec->name, (unsigned long) r->offset, t, r->removed_bytes);
5811 }
5812
5813 static int
5814 print_action_list_fn (splay_tree_node node, void *p)
5815 {
5816 text_action *r = (text_action *)node->value;
5817
5818 print_action (p, r);
5819 return 0;
5820 }
5821
5822 static void
5823 print_action_list (FILE *fp, text_action_list *action_list)
5824 {
5825 fprintf (fp, "Text Action\n");
5826 splay_tree_foreach (action_list->tree, print_action_list_fn, fp);
5827 }
5828
5829 #endif /* DEBUG */
5830
5831 \f
5832 /* Lists of literals being coalesced or removed. */
5833
5834 /* In the usual case, the literal identified by "from" is being
5835 coalesced with another literal identified by "to". If the literal is
5836 unused and is being removed altogether, "to.abfd" will be NULL.
5837 The removed_literal entries are kept on a per-section list, sorted
5838 by the "from" offset field. */
5839
5840 typedef struct removed_literal_struct removed_literal;
5841 typedef struct removed_literal_map_entry_struct removed_literal_map_entry;
5842 typedef struct removed_literal_list_struct removed_literal_list;
5843
5844 struct removed_literal_struct
5845 {
5846 r_reloc from;
5847 r_reloc to;
5848 removed_literal *next;
5849 };
5850
5851 struct removed_literal_map_entry_struct
5852 {
5853 bfd_vma addr;
5854 removed_literal *literal;
5855 };
5856
5857 struct removed_literal_list_struct
5858 {
5859 removed_literal *head;
5860 removed_literal *tail;
5861
5862 unsigned n_map;
5863 removed_literal_map_entry *map;
5864 };
5865
5866
5867 /* Record that the literal at "from" is being removed. If "to" is not
5868 NULL, the "from" literal is being coalesced with the "to" literal. */
5869
5870 static void
5871 add_removed_literal (removed_literal_list *removed_list,
5872 const r_reloc *from,
5873 const r_reloc *to)
5874 {
5875 removed_literal *r, *new_r, *next_r;
5876
5877 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
5878
5879 new_r->from = *from;
5880 if (to)
5881 new_r->to = *to;
5882 else
5883 new_r->to.abfd = NULL;
5884 new_r->next = NULL;
5885
5886 r = removed_list->head;
5887 if (r == NULL)
5888 {
5889 removed_list->head = new_r;
5890 removed_list->tail = new_r;
5891 }
5892 /* Special check for common case of append. */
5893 else if (removed_list->tail->from.target_offset < from->target_offset)
5894 {
5895 removed_list->tail->next = new_r;
5896 removed_list->tail = new_r;
5897 }
5898 else
5899 {
5900 while (r->from.target_offset < from->target_offset && r->next)
5901 {
5902 r = r->next;
5903 }
5904 next_r = r->next;
5905 r->next = new_r;
5906 new_r->next = next_r;
5907 if (next_r == NULL)
5908 removed_list->tail = new_r;
5909 }
5910 }
5911
5912 static void
5913 map_removed_literal (removed_literal_list *removed_list)
5914 {
5915 unsigned n_map = 0;
5916 unsigned i;
5917 removed_literal_map_entry *map = NULL;
5918 removed_literal *r = removed_list->head;
5919
5920 for (i = 0; r; ++i, r = r->next)
5921 {
5922 if (i == n_map)
5923 {
5924 n_map = (n_map * 2) + 2;
5925 map = bfd_realloc (map, n_map * sizeof (*map));
5926 }
5927 map[i].addr = r->from.target_offset;
5928 map[i].literal = r;
5929 }
5930 removed_list->map = map;
5931 removed_list->n_map = i;
5932 }
5933
5934 static int
5935 removed_literal_compare (const void *a, const void *b)
5936 {
5937 const removed_literal_map_entry *pa = a;
5938 const removed_literal_map_entry *pb = b;
5939
5940 if (pa->addr == pb->addr)
5941 return 0;
5942 else
5943 return pa->addr < pb->addr ? -1 : 1;
5944 }
5945
5946 /* Check if the list of removed literals contains an entry for the
5947 given address. Return the entry if found. */
5948
5949 static removed_literal *
5950 find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
5951 {
5952 removed_literal_map_entry *p;
5953 removed_literal *r = NULL;
5954
5955 if (removed_list->map == NULL)
5956 map_removed_literal (removed_list);
5957
5958 p = bsearch (&addr, removed_list->map, removed_list->n_map,
5959 sizeof (*removed_list->map), removed_literal_compare);
5960 if (p)
5961 {
5962 while (p != removed_list->map && (p - 1)->addr == addr)
5963 --p;
5964 r = p->literal;
5965 }
5966 return r;
5967 }
5968
5969
5970 #if DEBUG
5971
5972 static void
5973 print_removed_literals (FILE *fp, removed_literal_list *removed_list)
5974 {
5975 removed_literal *r;
5976 r = removed_list->head;
5977 if (r)
5978 fprintf (fp, "Removed Literals\n");
5979 for (; r != NULL; r = r->next)
5980 {
5981 print_r_reloc (fp, &r->from);
5982 fprintf (fp, " => ");
5983 if (r->to.abfd == NULL)
5984 fprintf (fp, "REMOVED");
5985 else
5986 print_r_reloc (fp, &r->to);
5987 fprintf (fp, "\n");
5988 }
5989 }
5990
5991 #endif /* DEBUG */
5992
5993 \f
5994 /* Per-section data for relaxation. */
5995
5996 typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
5997
5998 struct xtensa_relax_info_struct
5999 {
6000 bfd_boolean is_relaxable_literal_section;
6001 bfd_boolean is_relaxable_asm_section;
6002 int visited; /* Number of times visited. */
6003
6004 source_reloc *src_relocs; /* Array[src_count]. */
6005 int src_count;
6006 int src_next; /* Next src_relocs entry to assign. */
6007
6008 removed_literal_list removed_list;
6009 text_action_list action_list;
6010
6011 reloc_bfd_fix *fix_list;
6012 reloc_bfd_fix *fix_array;
6013 unsigned fix_array_count;
6014
6015 /* Support for expanding the reloc array that is stored
6016 in the section structure. If the relocations have been
6017 reallocated, the newly allocated relocations will be referenced
6018 here along with the actual size allocated. The relocation
6019 count will always be found in the section structure. */
6020 Elf_Internal_Rela *allocated_relocs;
6021 unsigned relocs_count;
6022 unsigned allocated_relocs_count;
6023 };
6024
6025 struct elf_xtensa_section_data
6026 {
6027 struct bfd_elf_section_data elf;
6028 xtensa_relax_info relax_info;
6029 };
6030
6031
6032 static bfd_boolean
6033 elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
6034 {
6035 if (!sec->used_by_bfd)
6036 {
6037 struct elf_xtensa_section_data *sdata;
6038 bfd_size_type amt = sizeof (*sdata);
6039
6040 sdata = bfd_zalloc (abfd, amt);
6041 if (sdata == NULL)
6042 return FALSE;
6043 sec->used_by_bfd = sdata;
6044 }
6045
6046 return _bfd_elf_new_section_hook (abfd, sec);
6047 }
6048
6049
6050 static xtensa_relax_info *
6051 get_xtensa_relax_info (asection *sec)
6052 {
6053 struct elf_xtensa_section_data *section_data;
6054
6055 /* No info available if no section or if it is an output section. */
6056 if (!sec || sec == sec->output_section)
6057 return NULL;
6058
6059 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
6060 return &section_data->relax_info;
6061 }
6062
6063
6064 static void
6065 init_xtensa_relax_info (asection *sec)
6066 {
6067 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6068
6069 relax_info->is_relaxable_literal_section = FALSE;
6070 relax_info->is_relaxable_asm_section = FALSE;
6071 relax_info->visited = 0;
6072
6073 relax_info->src_relocs = NULL;
6074 relax_info->src_count = 0;
6075 relax_info->src_next = 0;
6076
6077 relax_info->removed_list.head = NULL;
6078 relax_info->removed_list.tail = NULL;
6079
6080 relax_info->action_list.tree = splay_tree_new (text_action_compare,
6081 NULL, NULL);
6082 relax_info->action_list.map.n_entries = 0;
6083 relax_info->action_list.map.entry = NULL;
6084
6085 relax_info->fix_list = NULL;
6086 relax_info->fix_array = NULL;
6087 relax_info->fix_array_count = 0;
6088
6089 relax_info->allocated_relocs = NULL;
6090 relax_info->relocs_count = 0;
6091 relax_info->allocated_relocs_count = 0;
6092 }
6093
6094 \f
6095 /* Coalescing literals may require a relocation to refer to a section in
6096 a different input file, but the standard relocation information
6097 cannot express that. Instead, the reloc_bfd_fix structures are used
6098 to "fix" the relocations that refer to sections in other input files.
6099 These structures are kept on per-section lists. The "src_type" field
6100 records the relocation type in case there are multiple relocations on
6101 the same location. FIXME: This is ugly; an alternative might be to
6102 add new symbols with the "owner" field to some other input file. */
6103
6104 struct reloc_bfd_fix_struct
6105 {
6106 asection *src_sec;
6107 bfd_vma src_offset;
6108 unsigned src_type; /* Relocation type. */
6109
6110 asection *target_sec;
6111 bfd_vma target_offset;
6112 bfd_boolean translated;
6113
6114 reloc_bfd_fix *next;
6115 };
6116
6117
6118 static reloc_bfd_fix *
6119 reloc_bfd_fix_init (asection *src_sec,
6120 bfd_vma src_offset,
6121 unsigned src_type,
6122 asection *target_sec,
6123 bfd_vma target_offset,
6124 bfd_boolean translated)
6125 {
6126 reloc_bfd_fix *fix;
6127
6128 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
6129 fix->src_sec = src_sec;
6130 fix->src_offset = src_offset;
6131 fix->src_type = src_type;
6132 fix->target_sec = target_sec;
6133 fix->target_offset = target_offset;
6134 fix->translated = translated;
6135
6136 return fix;
6137 }
6138
6139
6140 static void
6141 add_fix (asection *src_sec, reloc_bfd_fix *fix)
6142 {
6143 xtensa_relax_info *relax_info;
6144
6145 relax_info = get_xtensa_relax_info (src_sec);
6146 fix->next = relax_info->fix_list;
6147 relax_info->fix_list = fix;
6148 }
6149
6150
6151 static int
6152 fix_compare (const void *ap, const void *bp)
6153 {
6154 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
6155 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
6156
6157 if (a->src_offset != b->src_offset)
6158 return (a->src_offset - b->src_offset);
6159 return (a->src_type - b->src_type);
6160 }
6161
6162
6163 static void
6164 cache_fix_array (asection *sec)
6165 {
6166 unsigned i, count = 0;
6167 reloc_bfd_fix *r;
6168 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6169
6170 if (relax_info == NULL)
6171 return;
6172 if (relax_info->fix_list == NULL)
6173 return;
6174
6175 for (r = relax_info->fix_list; r != NULL; r = r->next)
6176 count++;
6177
6178 relax_info->fix_array =
6179 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
6180 relax_info->fix_array_count = count;
6181
6182 r = relax_info->fix_list;
6183 for (i = 0; i < count; i++, r = r->next)
6184 {
6185 relax_info->fix_array[count - 1 - i] = *r;
6186 relax_info->fix_array[count - 1 - i].next = NULL;
6187 }
6188
6189 qsort (relax_info->fix_array, relax_info->fix_array_count,
6190 sizeof (reloc_bfd_fix), fix_compare);
6191 }
6192
6193
6194 static reloc_bfd_fix *
6195 get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
6196 {
6197 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6198 reloc_bfd_fix *rv;
6199 reloc_bfd_fix key;
6200
6201 if (relax_info == NULL)
6202 return NULL;
6203 if (relax_info->fix_list == NULL)
6204 return NULL;
6205
6206 if (relax_info->fix_array == NULL)
6207 cache_fix_array (sec);
6208
6209 key.src_offset = offset;
6210 key.src_type = type;
6211 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
6212 sizeof (reloc_bfd_fix), fix_compare);
6213 return rv;
6214 }
6215
6216 \f
6217 /* Section caching. */
6218
6219 typedef struct section_cache_struct section_cache_t;
6220
6221 struct section_cache_struct
6222 {
6223 asection *sec;
6224
6225 bfd_byte *contents; /* Cache of the section contents. */
6226 bfd_size_type content_length;
6227
6228 property_table_entry *ptbl; /* Cache of the section property table. */
6229 unsigned pte_count;
6230
6231 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6232 unsigned reloc_count;
6233 };
6234
6235
6236 static void
6237 init_section_cache (section_cache_t *sec_cache)
6238 {
6239 memset (sec_cache, 0, sizeof (*sec_cache));
6240 }
6241
6242
6243 static void
6244 free_section_cache (section_cache_t *sec_cache)
6245 {
6246 if (sec_cache->sec)
6247 {
6248 release_contents (sec_cache->sec, sec_cache->contents);
6249 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
6250 if (sec_cache->ptbl)
6251 free (sec_cache->ptbl);
6252 }
6253 }
6254
6255
6256 static bfd_boolean
6257 section_cache_section (section_cache_t *sec_cache,
6258 asection *sec,
6259 struct bfd_link_info *link_info)
6260 {
6261 bfd *abfd;
6262 property_table_entry *prop_table = NULL;
6263 int ptblsize = 0;
6264 bfd_byte *contents = NULL;
6265 Elf_Internal_Rela *internal_relocs = NULL;
6266 bfd_size_type sec_size;
6267
6268 if (sec == NULL)
6269 return FALSE;
6270 if (sec == sec_cache->sec)
6271 return TRUE;
6272
6273 abfd = sec->owner;
6274 sec_size = bfd_get_section_limit (abfd, sec);
6275
6276 /* Get the contents. */
6277 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6278 if (contents == NULL && sec_size != 0)
6279 goto err;
6280
6281 /* Get the relocations. */
6282 internal_relocs = retrieve_internal_relocs (abfd, sec,
6283 link_info->keep_memory);
6284
6285 /* Get the entry table. */
6286 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6287 XTENSA_PROP_SEC_NAME, FALSE);
6288 if (ptblsize < 0)
6289 goto err;
6290
6291 /* Fill in the new section cache. */
6292 free_section_cache (sec_cache);
6293 init_section_cache (sec_cache);
6294
6295 sec_cache->sec = sec;
6296 sec_cache->contents = contents;
6297 sec_cache->content_length = sec_size;
6298 sec_cache->relocs = internal_relocs;
6299 sec_cache->reloc_count = sec->reloc_count;
6300 sec_cache->pte_count = ptblsize;
6301 sec_cache->ptbl = prop_table;
6302
6303 return TRUE;
6304
6305 err:
6306 release_contents (sec, contents);
6307 release_internal_relocs (sec, internal_relocs);
6308 if (prop_table)
6309 free (prop_table);
6310 return FALSE;
6311 }
6312
6313 \f
6314 /* Extended basic blocks. */
6315
6316 /* An ebb_struct represents an Extended Basic Block. Within this
6317 range, we guarantee that all instructions are decodable, the
6318 property table entries are contiguous, and no property table
6319 specifies a segment that cannot have instructions moved. This
6320 structure contains caches of the contents, property table and
6321 relocations for the specified section for easy use. The range is
6322 specified by ranges of indices for the byte offset, property table
6323 offsets and relocation offsets. These must be consistent. */
6324
6325 typedef struct ebb_struct ebb_t;
6326
6327 struct ebb_struct
6328 {
6329 asection *sec;
6330
6331 bfd_byte *contents; /* Cache of the section contents. */
6332 bfd_size_type content_length;
6333
6334 property_table_entry *ptbl; /* Cache of the section property table. */
6335 unsigned pte_count;
6336
6337 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6338 unsigned reloc_count;
6339
6340 bfd_vma start_offset; /* Offset in section. */
6341 unsigned start_ptbl_idx; /* Offset in the property table. */
6342 unsigned start_reloc_idx; /* Offset in the relocations. */
6343
6344 bfd_vma end_offset;
6345 unsigned end_ptbl_idx;
6346 unsigned end_reloc_idx;
6347
6348 bfd_boolean ends_section; /* Is this the last ebb in a section? */
6349
6350 /* The unreachable property table at the end of this set of blocks;
6351 NULL if the end is not an unreachable block. */
6352 property_table_entry *ends_unreachable;
6353 };
6354
6355
6356 enum ebb_target_enum
6357 {
6358 EBB_NO_ALIGN = 0,
6359 EBB_DESIRE_TGT_ALIGN,
6360 EBB_REQUIRE_TGT_ALIGN,
6361 EBB_REQUIRE_LOOP_ALIGN,
6362 EBB_REQUIRE_ALIGN
6363 };
6364
6365
6366 /* proposed_action_struct is similar to the text_action_struct except
6367 that is represents a potential transformation, not one that will
6368 occur. We build a list of these for an extended basic block
6369 and use them to compute the actual actions desired. We must be
6370 careful that the entire set of actual actions we perform do not
6371 break any relocations that would fit if the actions were not
6372 performed. */
6373
6374 typedef struct proposed_action_struct proposed_action;
6375
6376 struct proposed_action_struct
6377 {
6378 enum ebb_target_enum align_type; /* for the target alignment */
6379 bfd_vma alignment_pow;
6380 text_action_t action;
6381 bfd_vma offset;
6382 int removed_bytes;
6383 bfd_boolean do_action; /* If false, then we will not perform the action. */
6384 };
6385
6386
6387 /* The ebb_constraint_struct keeps a set of proposed actions for an
6388 extended basic block. */
6389
6390 typedef struct ebb_constraint_struct ebb_constraint;
6391
6392 struct ebb_constraint_struct
6393 {
6394 ebb_t ebb;
6395 bfd_boolean start_movable;
6396
6397 /* Bytes of extra space at the beginning if movable. */
6398 int start_extra_space;
6399
6400 enum ebb_target_enum start_align;
6401
6402 bfd_boolean end_movable;
6403
6404 /* Bytes of extra space at the end if movable. */
6405 int end_extra_space;
6406
6407 unsigned action_count;
6408 unsigned action_allocated;
6409
6410 /* Array of proposed actions. */
6411 proposed_action *actions;
6412
6413 /* Action alignments -- one for each proposed action. */
6414 enum ebb_target_enum *action_aligns;
6415 };
6416
6417
6418 static void
6419 init_ebb_constraint (ebb_constraint *c)
6420 {
6421 memset (c, 0, sizeof (ebb_constraint));
6422 }
6423
6424
6425 static void
6426 free_ebb_constraint (ebb_constraint *c)
6427 {
6428 if (c->actions)
6429 free (c->actions);
6430 }
6431
6432
6433 static void
6434 init_ebb (ebb_t *ebb,
6435 asection *sec,
6436 bfd_byte *contents,
6437 bfd_size_type content_length,
6438 property_table_entry *prop_table,
6439 unsigned ptblsize,
6440 Elf_Internal_Rela *internal_relocs,
6441 unsigned reloc_count)
6442 {
6443 memset (ebb, 0, sizeof (ebb_t));
6444 ebb->sec = sec;
6445 ebb->contents = contents;
6446 ebb->content_length = content_length;
6447 ebb->ptbl = prop_table;
6448 ebb->pte_count = ptblsize;
6449 ebb->relocs = internal_relocs;
6450 ebb->reloc_count = reloc_count;
6451 ebb->start_offset = 0;
6452 ebb->end_offset = ebb->content_length - 1;
6453 ebb->start_ptbl_idx = 0;
6454 ebb->end_ptbl_idx = ptblsize;
6455 ebb->start_reloc_idx = 0;
6456 ebb->end_reloc_idx = reloc_count;
6457 }
6458
6459
6460 /* Extend the ebb to all decodable contiguous sections. The algorithm
6461 for building a basic block around an instruction is to push it
6462 forward until we hit the end of a section, an unreachable block or
6463 a block that cannot be transformed. Then we push it backwards
6464 searching for similar conditions. */
6465
6466 static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
6467 static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
6468 static bfd_size_type insn_block_decodable_len
6469 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
6470
6471 static bfd_boolean
6472 extend_ebb_bounds (ebb_t *ebb)
6473 {
6474 if (!extend_ebb_bounds_forward (ebb))
6475 return FALSE;
6476 if (!extend_ebb_bounds_backward (ebb))
6477 return FALSE;
6478 return TRUE;
6479 }
6480
6481
6482 static bfd_boolean
6483 extend_ebb_bounds_forward (ebb_t *ebb)
6484 {
6485 property_table_entry *the_entry, *new_entry;
6486
6487 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6488
6489 /* Stop when (1) we cannot decode an instruction, (2) we are at
6490 the end of the property tables, (3) we hit a non-contiguous property
6491 table entry, (4) we hit a NO_TRANSFORM region. */
6492
6493 while (1)
6494 {
6495 bfd_vma entry_end;
6496 bfd_size_type insn_block_len;
6497
6498 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
6499 insn_block_len =
6500 insn_block_decodable_len (ebb->contents, ebb->content_length,
6501 ebb->end_offset,
6502 entry_end - ebb->end_offset);
6503 if (insn_block_len != (entry_end - ebb->end_offset))
6504 {
6505 _bfd_error_handler
6506 /* xgettext:c-format */
6507 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; "
6508 "possible configuration mismatch"),
6509 ebb->sec->owner, ebb->sec,
6510 (uint64_t) (ebb->end_offset + insn_block_len));
6511 return FALSE;
6512 }
6513 ebb->end_offset += insn_block_len;
6514
6515 if (ebb->end_offset == ebb->sec->size)
6516 ebb->ends_section = TRUE;
6517
6518 /* Update the reloc counter. */
6519 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
6520 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
6521 < ebb->end_offset))
6522 {
6523 ebb->end_reloc_idx++;
6524 }
6525
6526 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6527 return TRUE;
6528
6529 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6530 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
6531 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6532 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
6533 break;
6534
6535 if (the_entry->address + the_entry->size != new_entry->address)
6536 break;
6537
6538 the_entry = new_entry;
6539 ebb->end_ptbl_idx++;
6540 }
6541
6542 /* Quick check for an unreachable or end of file just at the end. */
6543 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6544 {
6545 if (ebb->end_offset == ebb->content_length)
6546 ebb->ends_section = TRUE;
6547 }
6548 else
6549 {
6550 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6551 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
6552 && the_entry->address + the_entry->size == new_entry->address)
6553 ebb->ends_unreachable = new_entry;
6554 }
6555
6556 /* Any other ending requires exact alignment. */
6557 return TRUE;
6558 }
6559
6560
6561 static bfd_boolean
6562 extend_ebb_bounds_backward (ebb_t *ebb)
6563 {
6564 property_table_entry *the_entry, *new_entry;
6565
6566 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6567
6568 /* Stop when (1) we cannot decode the instructions in the current entry.
6569 (2) we are at the beginning of the property tables, (3) we hit a
6570 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
6571
6572 while (1)
6573 {
6574 bfd_vma block_begin;
6575 bfd_size_type insn_block_len;
6576
6577 block_begin = the_entry->address - ebb->sec->vma;
6578 insn_block_len =
6579 insn_block_decodable_len (ebb->contents, ebb->content_length,
6580 block_begin,
6581 ebb->start_offset - block_begin);
6582 if (insn_block_len != ebb->start_offset - block_begin)
6583 {
6584 _bfd_error_handler
6585 /* xgettext:c-format */
6586 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; "
6587 "possible configuration mismatch"),
6588 ebb->sec->owner, ebb->sec,
6589 (uint64_t) (ebb->end_offset + insn_block_len));
6590 return FALSE;
6591 }
6592 ebb->start_offset -= insn_block_len;
6593
6594 /* Update the reloc counter. */
6595 while (ebb->start_reloc_idx > 0
6596 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
6597 >= ebb->start_offset))
6598 {
6599 ebb->start_reloc_idx--;
6600 }
6601
6602 if (ebb->start_ptbl_idx == 0)
6603 return TRUE;
6604
6605 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
6606 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
6607 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6608 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
6609 return TRUE;
6610 if (new_entry->address + new_entry->size != the_entry->address)
6611 return TRUE;
6612
6613 the_entry = new_entry;
6614 ebb->start_ptbl_idx--;
6615 }
6616 return TRUE;
6617 }
6618
6619
6620 static bfd_size_type
6621 insn_block_decodable_len (bfd_byte *contents,
6622 bfd_size_type content_len,
6623 bfd_vma block_offset,
6624 bfd_size_type block_len)
6625 {
6626 bfd_vma offset = block_offset;
6627
6628 while (offset < block_offset + block_len)
6629 {
6630 bfd_size_type insn_len = 0;
6631
6632 insn_len = insn_decode_len (contents, content_len, offset);
6633 if (insn_len == 0)
6634 return (offset - block_offset);
6635 offset += insn_len;
6636 }
6637 return (offset - block_offset);
6638 }
6639
6640
6641 static void
6642 ebb_propose_action (ebb_constraint *c,
6643 enum ebb_target_enum align_type,
6644 bfd_vma alignment_pow,
6645 text_action_t action,
6646 bfd_vma offset,
6647 int removed_bytes,
6648 bfd_boolean do_action)
6649 {
6650 proposed_action *act;
6651
6652 if (c->action_allocated <= c->action_count)
6653 {
6654 unsigned new_allocated, i;
6655 proposed_action *new_actions;
6656
6657 new_allocated = (c->action_count + 2) * 2;
6658 new_actions = (proposed_action *)
6659 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
6660
6661 for (i = 0; i < c->action_count; i++)
6662 new_actions[i] = c->actions[i];
6663 if (c->actions)
6664 free (c->actions);
6665 c->actions = new_actions;
6666 c->action_allocated = new_allocated;
6667 }
6668
6669 act = &c->actions[c->action_count];
6670 act->align_type = align_type;
6671 act->alignment_pow = alignment_pow;
6672 act->action = action;
6673 act->offset = offset;
6674 act->removed_bytes = removed_bytes;
6675 act->do_action = do_action;
6676
6677 c->action_count++;
6678 }
6679
6680 \f
6681 /* Access to internal relocations, section contents and symbols. */
6682
6683 /* During relaxation, we need to modify relocations, section contents,
6684 and symbol definitions, and we need to keep the original values from
6685 being reloaded from the input files, i.e., we need to "pin" the
6686 modified values in memory. We also want to continue to observe the
6687 setting of the "keep-memory" flag. The following functions wrap the
6688 standard BFD functions to take care of this for us. */
6689
6690 static Elf_Internal_Rela *
6691 retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6692 {
6693 Elf_Internal_Rela *internal_relocs;
6694
6695 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6696 return NULL;
6697
6698 internal_relocs = elf_section_data (sec)->relocs;
6699 if (internal_relocs == NULL)
6700 internal_relocs = (_bfd_elf_link_read_relocs
6701 (abfd, sec, NULL, NULL, keep_memory));
6702 return internal_relocs;
6703 }
6704
6705
6706 static void
6707 pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6708 {
6709 elf_section_data (sec)->relocs = internal_relocs;
6710 }
6711
6712
6713 static void
6714 release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6715 {
6716 if (internal_relocs
6717 && elf_section_data (sec)->relocs != internal_relocs)
6718 free (internal_relocs);
6719 }
6720
6721
6722 static bfd_byte *
6723 retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6724 {
6725 bfd_byte *contents;
6726 bfd_size_type sec_size;
6727
6728 sec_size = bfd_get_section_limit (abfd, sec);
6729 contents = elf_section_data (sec)->this_hdr.contents;
6730
6731 if (contents == NULL && sec_size != 0)
6732 {
6733 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6734 {
6735 if (contents)
6736 free (contents);
6737 return NULL;
6738 }
6739 if (keep_memory)
6740 elf_section_data (sec)->this_hdr.contents = contents;
6741 }
6742 return contents;
6743 }
6744
6745
6746 static void
6747 pin_contents (asection *sec, bfd_byte *contents)
6748 {
6749 elf_section_data (sec)->this_hdr.contents = contents;
6750 }
6751
6752
6753 static void
6754 release_contents (asection *sec, bfd_byte *contents)
6755 {
6756 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
6757 free (contents);
6758 }
6759
6760
6761 static Elf_Internal_Sym *
6762 retrieve_local_syms (bfd *input_bfd)
6763 {
6764 Elf_Internal_Shdr *symtab_hdr;
6765 Elf_Internal_Sym *isymbuf;
6766 size_t locsymcount;
6767
6768 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6769 locsymcount = symtab_hdr->sh_info;
6770
6771 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6772 if (isymbuf == NULL && locsymcount != 0)
6773 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6774 NULL, NULL, NULL);
6775
6776 /* Save the symbols for this input file so they won't be read again. */
6777 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
6778 symtab_hdr->contents = (unsigned char *) isymbuf;
6779
6780 return isymbuf;
6781 }
6782
6783 \f
6784 /* Code for link-time relaxation. */
6785
6786 /* Initialization for relaxation: */
6787 static bfd_boolean analyze_relocations (struct bfd_link_info *);
6788 static bfd_boolean find_relaxable_sections
6789 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
6790 static bfd_boolean collect_source_relocs
6791 (bfd *, asection *, struct bfd_link_info *);
6792 static bfd_boolean is_resolvable_asm_expansion
6793 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
6794 bfd_boolean *);
6795 static Elf_Internal_Rela *find_associated_l32r_irel
6796 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
6797 static bfd_boolean compute_text_actions
6798 (bfd *, asection *, struct bfd_link_info *);
6799 static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
6800 static bfd_boolean compute_ebb_actions (ebb_constraint *);
6801 typedef struct reloc_range_list_struct reloc_range_list;
6802 static bfd_boolean check_section_ebb_pcrels_fit
6803 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *,
6804 reloc_range_list *, const ebb_constraint *,
6805 const xtensa_opcode *);
6806 static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
6807 static void text_action_add_proposed
6808 (text_action_list *, const ebb_constraint *, asection *);
6809
6810 /* First pass: */
6811 static bfd_boolean compute_removed_literals
6812 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
6813 static Elf_Internal_Rela *get_irel_at_offset
6814 (asection *, Elf_Internal_Rela *, bfd_vma);
6815 static bfd_boolean is_removable_literal
6816 (const source_reloc *, int, const source_reloc *, int, asection *,
6817 property_table_entry *, int);
6818 static bfd_boolean remove_dead_literal
6819 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
6820 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
6821 static bfd_boolean identify_literal_placement
6822 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
6823 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
6824 source_reloc *, property_table_entry *, int, section_cache_t *,
6825 bfd_boolean);
6826 static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
6827 static bfd_boolean coalesce_shared_literal
6828 (asection *, source_reloc *, property_table_entry *, int, value_map *);
6829 static bfd_boolean move_shared_literal
6830 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
6831 int, const r_reloc *, const literal_value *, section_cache_t *);
6832
6833 /* Second pass: */
6834 static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
6835 static bfd_boolean translate_section_fixes (asection *);
6836 static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
6837 static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
6838 static void shrink_dynamic_reloc_sections
6839 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
6840 static bfd_boolean move_literal
6841 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
6842 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
6843 static bfd_boolean relax_property_section
6844 (bfd *, asection *, struct bfd_link_info *);
6845
6846 /* Third pass: */
6847 static bfd_boolean relax_section_symbols (bfd *, asection *);
6848
6849
6850 static bfd_boolean
6851 elf_xtensa_relax_section (bfd *abfd,
6852 asection *sec,
6853 struct bfd_link_info *link_info,
6854 bfd_boolean *again)
6855 {
6856 static value_map_hash_table *values = NULL;
6857 static bfd_boolean relocations_analyzed = FALSE;
6858 xtensa_relax_info *relax_info;
6859
6860 if (!relocations_analyzed)
6861 {
6862 /* Do some overall initialization for relaxation. */
6863 values = value_map_hash_table_init ();
6864 if (values == NULL)
6865 return FALSE;
6866 relaxing_section = TRUE;
6867 if (!analyze_relocations (link_info))
6868 return FALSE;
6869 relocations_analyzed = TRUE;
6870 }
6871 *again = FALSE;
6872
6873 /* Don't mess with linker-created sections. */
6874 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6875 return TRUE;
6876
6877 relax_info = get_xtensa_relax_info (sec);
6878 BFD_ASSERT (relax_info != NULL);
6879
6880 switch (relax_info->visited)
6881 {
6882 case 0:
6883 /* Note: It would be nice to fold this pass into
6884 analyze_relocations, but it is important for this step that the
6885 sections be examined in link order. */
6886 if (!compute_removed_literals (abfd, sec, link_info, values))
6887 return FALSE;
6888 *again = TRUE;
6889 break;
6890
6891 case 1:
6892 if (values)
6893 value_map_hash_table_delete (values);
6894 values = NULL;
6895 if (!relax_section (abfd, sec, link_info))
6896 return FALSE;
6897 *again = TRUE;
6898 break;
6899
6900 case 2:
6901 if (!relax_section_symbols (abfd, sec))
6902 return FALSE;
6903 break;
6904 }
6905
6906 relax_info->visited++;
6907 return TRUE;
6908 }
6909
6910 \f
6911 /* Initialization for relaxation. */
6912
6913 /* This function is called once at the start of relaxation. It scans
6914 all the input sections and marks the ones that are relaxable (i.e.,
6915 literal sections with L32R relocations against them), and then
6916 collects source_reloc information for all the relocations against
6917 those relaxable sections. During this process, it also detects
6918 longcalls, i.e., calls relaxed by the assembler into indirect
6919 calls, that can be optimized back into direct calls. Within each
6920 extended basic block (ebb) containing an optimized longcall, it
6921 computes a set of "text actions" that can be performed to remove
6922 the L32R associated with the longcall while optionally preserving
6923 branch target alignments. */
6924
6925 static bfd_boolean
6926 analyze_relocations (struct bfd_link_info *link_info)
6927 {
6928 bfd *abfd;
6929 asection *sec;
6930 bfd_boolean is_relaxable = FALSE;
6931
6932 /* Initialize the per-section relaxation info. */
6933 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6934 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6935 {
6936 init_xtensa_relax_info (sec);
6937 }
6938
6939 /* Mark relaxable sections (and count relocations against each one). */
6940 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6941 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6942 {
6943 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
6944 return FALSE;
6945 }
6946
6947 /* Bail out if there are no relaxable sections. */
6948 if (!is_relaxable)
6949 return TRUE;
6950
6951 /* Allocate space for source_relocs. */
6952 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6953 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6954 {
6955 xtensa_relax_info *relax_info;
6956
6957 relax_info = get_xtensa_relax_info (sec);
6958 if (relax_info->is_relaxable_literal_section
6959 || relax_info->is_relaxable_asm_section)
6960 {
6961 relax_info->src_relocs = (source_reloc *)
6962 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
6963 }
6964 else
6965 relax_info->src_count = 0;
6966 }
6967
6968 /* Collect info on relocations against each relaxable section. */
6969 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6970 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6971 {
6972 if (!collect_source_relocs (abfd, sec, link_info))
6973 return FALSE;
6974 }
6975
6976 /* Compute the text actions. */
6977 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6978 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6979 {
6980 if (!compute_text_actions (abfd, sec, link_info))
6981 return FALSE;
6982 }
6983
6984 return TRUE;
6985 }
6986
6987
6988 /* Find all the sections that might be relaxed. The motivation for
6989 this pass is that collect_source_relocs() needs to record _all_ the
6990 relocations that target each relaxable section. That is expensive
6991 and unnecessary unless the target section is actually going to be
6992 relaxed. This pass identifies all such sections by checking if
6993 they have L32Rs pointing to them. In the process, the total number
6994 of relocations targeting each section is also counted so that we
6995 know how much space to allocate for source_relocs against each
6996 relaxable literal section. */
6997
6998 static bfd_boolean
6999 find_relaxable_sections (bfd *abfd,
7000 asection *sec,
7001 struct bfd_link_info *link_info,
7002 bfd_boolean *is_relaxable_p)
7003 {
7004 Elf_Internal_Rela *internal_relocs;
7005 bfd_byte *contents;
7006 bfd_boolean ok = TRUE;
7007 unsigned i;
7008 xtensa_relax_info *source_relax_info;
7009 bfd_boolean is_l32r_reloc;
7010
7011 internal_relocs = retrieve_internal_relocs (abfd, sec,
7012 link_info->keep_memory);
7013 if (internal_relocs == NULL)
7014 return ok;
7015
7016 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7017 if (contents == NULL && sec->size != 0)
7018 {
7019 ok = FALSE;
7020 goto error_return;
7021 }
7022
7023 source_relax_info = get_xtensa_relax_info (sec);
7024 for (i = 0; i < sec->reloc_count; i++)
7025 {
7026 Elf_Internal_Rela *irel = &internal_relocs[i];
7027 r_reloc r_rel;
7028 asection *target_sec;
7029 xtensa_relax_info *target_relax_info;
7030
7031 /* If this section has not already been marked as "relaxable", and
7032 if it contains any ASM_EXPAND relocations (marking expanded
7033 longcalls) that can be optimized into direct calls, then mark
7034 the section as "relaxable". */
7035 if (source_relax_info
7036 && !source_relax_info->is_relaxable_asm_section
7037 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
7038 {
7039 bfd_boolean is_reachable = FALSE;
7040 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
7041 link_info, &is_reachable)
7042 && is_reachable)
7043 {
7044 source_relax_info->is_relaxable_asm_section = TRUE;
7045 *is_relaxable_p = TRUE;
7046 }
7047 }
7048
7049 r_reloc_init (&r_rel, abfd, irel, contents,
7050 bfd_get_section_limit (abfd, sec));
7051
7052 target_sec = r_reloc_get_section (&r_rel);
7053 target_relax_info = get_xtensa_relax_info (target_sec);
7054 if (!target_relax_info)
7055 continue;
7056
7057 /* Count PC-relative operand relocations against the target section.
7058 Note: The conditions tested here must match the conditions under
7059 which init_source_reloc is called in collect_source_relocs(). */
7060 is_l32r_reloc = FALSE;
7061 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
7062 {
7063 xtensa_opcode opcode =
7064 get_relocation_opcode (abfd, sec, contents, irel);
7065 if (opcode != XTENSA_UNDEFINED)
7066 {
7067 is_l32r_reloc = (opcode == get_l32r_opcode ());
7068 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
7069 || is_l32r_reloc)
7070 target_relax_info->src_count++;
7071 }
7072 }
7073
7074 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
7075 {
7076 /* Mark the target section as relaxable. */
7077 target_relax_info->is_relaxable_literal_section = TRUE;
7078 *is_relaxable_p = TRUE;
7079 }
7080 }
7081
7082 error_return:
7083 release_contents (sec, contents);
7084 release_internal_relocs (sec, internal_relocs);
7085 return ok;
7086 }
7087
7088
7089 /* Record _all_ the relocations that point to relaxable sections, and
7090 get rid of ASM_EXPAND relocs by either converting them to
7091 ASM_SIMPLIFY or by removing them. */
7092
7093 static bfd_boolean
7094 collect_source_relocs (bfd *abfd,
7095 asection *sec,
7096 struct bfd_link_info *link_info)
7097 {
7098 Elf_Internal_Rela *internal_relocs;
7099 bfd_byte *contents;
7100 bfd_boolean ok = TRUE;
7101 unsigned i;
7102 bfd_size_type sec_size;
7103
7104 internal_relocs = retrieve_internal_relocs (abfd, sec,
7105 link_info->keep_memory);
7106 if (internal_relocs == NULL)
7107 return ok;
7108
7109 sec_size = bfd_get_section_limit (abfd, sec);
7110 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7111 if (contents == NULL && sec_size != 0)
7112 {
7113 ok = FALSE;
7114 goto error_return;
7115 }
7116
7117 /* Record relocations against relaxable literal sections. */
7118 for (i = 0; i < sec->reloc_count; i++)
7119 {
7120 Elf_Internal_Rela *irel = &internal_relocs[i];
7121 r_reloc r_rel;
7122 asection *target_sec;
7123 xtensa_relax_info *target_relax_info;
7124
7125 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7126
7127 target_sec = r_reloc_get_section (&r_rel);
7128 target_relax_info = get_xtensa_relax_info (target_sec);
7129
7130 if (target_relax_info
7131 && (target_relax_info->is_relaxable_literal_section
7132 || target_relax_info->is_relaxable_asm_section))
7133 {
7134 xtensa_opcode opcode = XTENSA_UNDEFINED;
7135 int opnd = -1;
7136 bfd_boolean is_abs_literal = FALSE;
7137
7138 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7139 {
7140 /* None of the current alternate relocs are PC-relative,
7141 and only PC-relative relocs matter here. However, we
7142 still need to record the opcode for literal
7143 coalescing. */
7144 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7145 if (opcode == get_l32r_opcode ())
7146 {
7147 is_abs_literal = TRUE;
7148 opnd = 1;
7149 }
7150 else
7151 opcode = XTENSA_UNDEFINED;
7152 }
7153 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
7154 {
7155 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7156 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7157 }
7158
7159 if (opcode != XTENSA_UNDEFINED)
7160 {
7161 int src_next = target_relax_info->src_next++;
7162 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
7163
7164 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
7165 is_abs_literal);
7166 }
7167 }
7168 }
7169
7170 /* Now get rid of ASM_EXPAND relocations. At this point, the
7171 src_relocs array for the target literal section may still be
7172 incomplete, but it must at least contain the entries for the L32R
7173 relocations associated with ASM_EXPANDs because they were just
7174 added in the preceding loop over the relocations. */
7175
7176 for (i = 0; i < sec->reloc_count; i++)
7177 {
7178 Elf_Internal_Rela *irel = &internal_relocs[i];
7179 bfd_boolean is_reachable;
7180
7181 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
7182 &is_reachable))
7183 continue;
7184
7185 if (is_reachable)
7186 {
7187 Elf_Internal_Rela *l32r_irel;
7188 r_reloc r_rel;
7189 asection *target_sec;
7190 xtensa_relax_info *target_relax_info;
7191
7192 /* Mark the source_reloc for the L32R so that it will be
7193 removed in compute_removed_literals(), along with the
7194 associated literal. */
7195 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
7196 irel, internal_relocs);
7197 if (l32r_irel == NULL)
7198 continue;
7199
7200 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
7201
7202 target_sec = r_reloc_get_section (&r_rel);
7203 target_relax_info = get_xtensa_relax_info (target_sec);
7204
7205 if (target_relax_info
7206 && (target_relax_info->is_relaxable_literal_section
7207 || target_relax_info->is_relaxable_asm_section))
7208 {
7209 source_reloc *s_reloc;
7210
7211 /* Search the source_relocs for the entry corresponding to
7212 the l32r_irel. Note: The src_relocs array is not yet
7213 sorted, but it wouldn't matter anyway because we're
7214 searching by source offset instead of target offset. */
7215 s_reloc = find_source_reloc (target_relax_info->src_relocs,
7216 target_relax_info->src_next,
7217 sec, l32r_irel);
7218 BFD_ASSERT (s_reloc);
7219 s_reloc->is_null = TRUE;
7220 }
7221
7222 /* Convert this reloc to ASM_SIMPLIFY. */
7223 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
7224 R_XTENSA_ASM_SIMPLIFY);
7225 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7226
7227 pin_internal_relocs (sec, internal_relocs);
7228 }
7229 else
7230 {
7231 /* It is resolvable but doesn't reach. We resolve now
7232 by eliminating the relocation -- the call will remain
7233 expanded into L32R/CALLX. */
7234 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7235 pin_internal_relocs (sec, internal_relocs);
7236 }
7237 }
7238
7239 error_return:
7240 release_contents (sec, contents);
7241 release_internal_relocs (sec, internal_relocs);
7242 return ok;
7243 }
7244
7245
7246 /* Return TRUE if the asm expansion can be resolved. Generally it can
7247 be resolved on a final link or when a partial link locates it in the
7248 same section as the target. Set "is_reachable" flag if the target of
7249 the call is within the range of a direct call, given the current VMA
7250 for this section and the target section. */
7251
7252 bfd_boolean
7253 is_resolvable_asm_expansion (bfd *abfd,
7254 asection *sec,
7255 bfd_byte *contents,
7256 Elf_Internal_Rela *irel,
7257 struct bfd_link_info *link_info,
7258 bfd_boolean *is_reachable_p)
7259 {
7260 asection *target_sec;
7261 asection *s;
7262 bfd_vma first_vma;
7263 bfd_vma last_vma;
7264 unsigned int first_align;
7265 unsigned int adjust;
7266 bfd_vma target_offset;
7267 r_reloc r_rel;
7268 xtensa_opcode opcode, direct_call_opcode;
7269 bfd_vma self_address;
7270 bfd_vma dest_address;
7271 bfd_boolean uses_l32r;
7272 bfd_size_type sec_size;
7273
7274 *is_reachable_p = FALSE;
7275
7276 if (contents == NULL)
7277 return FALSE;
7278
7279 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
7280 return FALSE;
7281
7282 sec_size = bfd_get_section_limit (abfd, sec);
7283 opcode = get_expanded_call_opcode (contents + irel->r_offset,
7284 sec_size - irel->r_offset, &uses_l32r);
7285 /* Optimization of longcalls that use CONST16 is not yet implemented. */
7286 if (!uses_l32r)
7287 return FALSE;
7288
7289 direct_call_opcode = swap_callx_for_call_opcode (opcode);
7290 if (direct_call_opcode == XTENSA_UNDEFINED)
7291 return FALSE;
7292
7293 /* Check and see that the target resolves. */
7294 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7295 if (!r_reloc_is_defined (&r_rel))
7296 return FALSE;
7297
7298 target_sec = r_reloc_get_section (&r_rel);
7299 target_offset = r_rel.target_offset;
7300
7301 /* If the target is in a shared library, then it doesn't reach. This
7302 isn't supposed to come up because the compiler should never generate
7303 non-PIC calls on systems that use shared libraries, but the linker
7304 shouldn't crash regardless. */
7305 if (!target_sec->output_section)
7306 return FALSE;
7307
7308 /* For relocatable sections, we can only simplify when the output
7309 section of the target is the same as the output section of the
7310 source. */
7311 if (bfd_link_relocatable (link_info)
7312 && (target_sec->output_section != sec->output_section
7313 || is_reloc_sym_weak (abfd, irel)))
7314 return FALSE;
7315
7316 if (target_sec->output_section != sec->output_section)
7317 {
7318 /* If the two sections are sufficiently far away that relaxation
7319 might take the call out of range, we can't simplify. For
7320 example, a positive displacement call into another memory
7321 could get moved to a lower address due to literal removal,
7322 but the destination won't move, and so the displacment might
7323 get larger.
7324
7325 If the displacement is negative, assume the destination could
7326 move as far back as the start of the output section. The
7327 self_address will be at least as far into the output section
7328 as it is prior to relaxation.
7329
7330 If the displacement is postive, assume the destination will be in
7331 it's pre-relaxed location (because relaxation only makes sections
7332 smaller). The self_address could go all the way to the beginning
7333 of the output section. */
7334
7335 dest_address = target_sec->output_section->vma;
7336 self_address = sec->output_section->vma;
7337
7338 if (sec->output_section->vma > target_sec->output_section->vma)
7339 self_address += sec->output_offset + irel->r_offset + 3;
7340 else
7341 dest_address += bfd_get_section_limit (abfd, target_sec->output_section);
7342 /* Call targets should be four-byte aligned. */
7343 dest_address = (dest_address + 3) & ~3;
7344 }
7345 else
7346 {
7347
7348 self_address = (sec->output_section->vma
7349 + sec->output_offset + irel->r_offset + 3);
7350 dest_address = (target_sec->output_section->vma
7351 + target_sec->output_offset + target_offset);
7352 }
7353
7354 /* Adjust addresses with alignments for the worst case to see if call insn
7355 can fit. Don't relax l32r + callx to call if the target can be out of
7356 range due to alignment.
7357 Caller and target addresses are highest and lowest address.
7358 Search all sections between caller and target, looking for max alignment.
7359 The adjustment is max alignment bytes. If the alignment at the lowest
7360 address is less than the adjustment, apply the adjustment to highest
7361 address. */
7362
7363 /* Start from lowest address.
7364 Lowest address aligmnet is from input section.
7365 Initial alignment (adjust) is from input section. */
7366 if (dest_address > self_address)
7367 {
7368 s = sec->output_section;
7369 last_vma = dest_address;
7370 first_align = sec->alignment_power;
7371 adjust = target_sec->alignment_power;
7372 }
7373 else
7374 {
7375 s = target_sec->output_section;
7376 last_vma = self_address;
7377 first_align = target_sec->alignment_power;
7378 adjust = sec->alignment_power;
7379 }
7380
7381 first_vma = s->vma;
7382
7383 /* Find the largest alignment in output section list. */
7384 for (; s && s->vma >= first_vma && s->vma <= last_vma ; s = s->next)
7385 {
7386 if (s->alignment_power > adjust)
7387 adjust = s->alignment_power;
7388 }
7389
7390 if (adjust > first_align)
7391 {
7392 /* Alignment may enlarge the range, adjust highest address. */
7393 adjust = 1 << adjust;
7394 if (dest_address > self_address)
7395 {
7396 dest_address += adjust;
7397 }
7398 else
7399 {
7400 self_address += adjust;
7401 }
7402 }
7403
7404 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
7405 self_address, dest_address);
7406
7407 if ((self_address >> CALL_SEGMENT_BITS) !=
7408 (dest_address >> CALL_SEGMENT_BITS))
7409 return FALSE;
7410
7411 return TRUE;
7412 }
7413
7414
7415 static Elf_Internal_Rela *
7416 find_associated_l32r_irel (bfd *abfd,
7417 asection *sec,
7418 bfd_byte *contents,
7419 Elf_Internal_Rela *other_irel,
7420 Elf_Internal_Rela *internal_relocs)
7421 {
7422 unsigned i;
7423
7424 for (i = 0; i < sec->reloc_count; i++)
7425 {
7426 Elf_Internal_Rela *irel = &internal_relocs[i];
7427
7428 if (irel == other_irel)
7429 continue;
7430 if (irel->r_offset != other_irel->r_offset)
7431 continue;
7432 if (is_l32r_relocation (abfd, sec, contents, irel))
7433 return irel;
7434 }
7435
7436 return NULL;
7437 }
7438
7439
7440 static xtensa_opcode *
7441 build_reloc_opcodes (bfd *abfd,
7442 asection *sec,
7443 bfd_byte *contents,
7444 Elf_Internal_Rela *internal_relocs)
7445 {
7446 unsigned i;
7447 xtensa_opcode *reloc_opcodes =
7448 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
7449 for (i = 0; i < sec->reloc_count; i++)
7450 {
7451 Elf_Internal_Rela *irel = &internal_relocs[i];
7452 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
7453 }
7454 return reloc_opcodes;
7455 }
7456
7457 struct reloc_range_struct
7458 {
7459 bfd_vma addr;
7460 bfd_boolean add; /* TRUE if start of a range, FALSE otherwise. */
7461 /* Original irel index in the array of relocations for a section. */
7462 unsigned irel_index;
7463 };
7464 typedef struct reloc_range_struct reloc_range;
7465
7466 typedef struct reloc_range_list_entry_struct reloc_range_list_entry;
7467 struct reloc_range_list_entry_struct
7468 {
7469 reloc_range_list_entry *next;
7470 reloc_range_list_entry *prev;
7471 Elf_Internal_Rela *irel;
7472 xtensa_opcode opcode;
7473 int opnum;
7474 };
7475
7476 struct reloc_range_list_struct
7477 {
7478 /* The rest of the structure is only meaningful when ok is TRUE. */
7479 bfd_boolean ok;
7480
7481 unsigned n_range; /* Number of range markers. */
7482 reloc_range *range; /* Sorted range markers. */
7483
7484 unsigned first; /* Index of a first range element in the list. */
7485 unsigned last; /* One past index of a last range element in the list. */
7486
7487 unsigned n_list; /* Number of list elements. */
7488 reloc_range_list_entry *reloc; /* */
7489 reloc_range_list_entry list_root;
7490 };
7491
7492 static int
7493 reloc_range_compare (const void *a, const void *b)
7494 {
7495 const reloc_range *ra = a;
7496 const reloc_range *rb = b;
7497
7498 if (ra->addr != rb->addr)
7499 return ra->addr < rb->addr ? -1 : 1;
7500 if (ra->add != rb->add)
7501 return ra->add ? -1 : 1;
7502 return 0;
7503 }
7504
7505 static void
7506 build_reloc_ranges (bfd *abfd, asection *sec,
7507 bfd_byte *contents,
7508 Elf_Internal_Rela *internal_relocs,
7509 xtensa_opcode *reloc_opcodes,
7510 reloc_range_list *list)
7511 {
7512 unsigned i;
7513 size_t n = 0;
7514 size_t max_n = 0;
7515 reloc_range *ranges = NULL;
7516 reloc_range_list_entry *reloc =
7517 bfd_malloc (sec->reloc_count * sizeof (*reloc));
7518
7519 memset (list, 0, sizeof (*list));
7520 list->ok = TRUE;
7521
7522 for (i = 0; i < sec->reloc_count; i++)
7523 {
7524 Elf_Internal_Rela *irel = &internal_relocs[i];
7525 int r_type = ELF32_R_TYPE (irel->r_info);
7526 reloc_howto_type *howto = &elf_howto_table[r_type];
7527 r_reloc r_rel;
7528
7529 if (r_type == R_XTENSA_ASM_SIMPLIFY
7530 || r_type == R_XTENSA_32_PCREL
7531 || !howto->pc_relative)
7532 continue;
7533
7534 r_reloc_init (&r_rel, abfd, irel, contents,
7535 bfd_get_section_limit (abfd, sec));
7536
7537 if (r_reloc_get_section (&r_rel) != sec)
7538 continue;
7539
7540 if (n + 2 > max_n)
7541 {
7542 max_n = (max_n + 2) * 2;
7543 ranges = bfd_realloc (ranges, max_n * sizeof (*ranges));
7544 }
7545
7546 ranges[n].addr = irel->r_offset;
7547 ranges[n + 1].addr = r_rel.target_offset;
7548
7549 ranges[n].add = ranges[n].addr < ranges[n + 1].addr;
7550 ranges[n + 1].add = !ranges[n].add;
7551
7552 ranges[n].irel_index = i;
7553 ranges[n + 1].irel_index = i;
7554
7555 n += 2;
7556
7557 reloc[i].irel = irel;
7558
7559 /* Every relocation won't possibly be checked in the optimized version of
7560 check_section_ebb_pcrels_fit, so this needs to be done here. */
7561 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7562 {
7563 /* None of the current alternate relocs are PC-relative,
7564 and only PC-relative relocs matter here. */
7565 }
7566 else
7567 {
7568 xtensa_opcode opcode;
7569 int opnum;
7570
7571 if (reloc_opcodes)
7572 opcode = reloc_opcodes[i];
7573 else
7574 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7575
7576 if (opcode == XTENSA_UNDEFINED)
7577 {
7578 list->ok = FALSE;
7579 break;
7580 }
7581
7582 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7583 if (opnum == XTENSA_UNDEFINED)
7584 {
7585 list->ok = FALSE;
7586 break;
7587 }
7588
7589 /* Record relocation opcode and opnum as we've calculated them
7590 anyway and they won't change. */
7591 reloc[i].opcode = opcode;
7592 reloc[i].opnum = opnum;
7593 }
7594 }
7595
7596 if (list->ok)
7597 {
7598 ranges = bfd_realloc (ranges, n * sizeof (*ranges));
7599 qsort (ranges, n, sizeof (*ranges), reloc_range_compare);
7600
7601 list->n_range = n;
7602 list->range = ranges;
7603 list->reloc = reloc;
7604 list->list_root.prev = &list->list_root;
7605 list->list_root.next = &list->list_root;
7606 }
7607 else
7608 {
7609 free (ranges);
7610 free (reloc);
7611 }
7612 }
7613
7614 static void reloc_range_list_append (reloc_range_list *list,
7615 unsigned irel_index)
7616 {
7617 reloc_range_list_entry *entry = list->reloc + irel_index;
7618
7619 entry->prev = list->list_root.prev;
7620 entry->next = &list->list_root;
7621 entry->prev->next = entry;
7622 entry->next->prev = entry;
7623 ++list->n_list;
7624 }
7625
7626 static void reloc_range_list_remove (reloc_range_list *list,
7627 unsigned irel_index)
7628 {
7629 reloc_range_list_entry *entry = list->reloc + irel_index;
7630
7631 entry->next->prev = entry->prev;
7632 entry->prev->next = entry->next;
7633 --list->n_list;
7634 }
7635
7636 /* Update relocation list object so that it lists all relocations that cross
7637 [first; last] range. Range bounds should not decrease with successive
7638 invocations. */
7639 static void reloc_range_list_update_range (reloc_range_list *list,
7640 bfd_vma first, bfd_vma last)
7641 {
7642 /* This should not happen: EBBs are iterated from lower addresses to higher.
7643 But even if that happens there's no need to break: just flush current list
7644 and start from scratch. */
7645 if ((list->last > 0 && list->range[list->last - 1].addr > last) ||
7646 (list->first > 0 && list->range[list->first - 1].addr >= first))
7647 {
7648 list->first = 0;
7649 list->last = 0;
7650 list->n_list = 0;
7651 list->list_root.next = &list->list_root;
7652 list->list_root.prev = &list->list_root;
7653 fprintf (stderr, "%s: move backwards requested\n", __func__);
7654 }
7655
7656 for (; list->last < list->n_range &&
7657 list->range[list->last].addr <= last; ++list->last)
7658 if (list->range[list->last].add)
7659 reloc_range_list_append (list, list->range[list->last].irel_index);
7660
7661 for (; list->first < list->n_range &&
7662 list->range[list->first].addr < first; ++list->first)
7663 if (!list->range[list->first].add)
7664 reloc_range_list_remove (list, list->range[list->first].irel_index);
7665 }
7666
7667 static void free_reloc_range_list (reloc_range_list *list)
7668 {
7669 free (list->range);
7670 free (list->reloc);
7671 }
7672
7673 /* The compute_text_actions function will build a list of potential
7674 transformation actions for code in the extended basic block of each
7675 longcall that is optimized to a direct call. From this list we
7676 generate a set of actions to actually perform that optimizes for
7677 space and, if not using size_opt, maintains branch target
7678 alignments.
7679
7680 These actions to be performed are placed on a per-section list.
7681 The actual changes are performed by relax_section() in the second
7682 pass. */
7683
7684 bfd_boolean
7685 compute_text_actions (bfd *abfd,
7686 asection *sec,
7687 struct bfd_link_info *link_info)
7688 {
7689 xtensa_opcode *reloc_opcodes = NULL;
7690 xtensa_relax_info *relax_info;
7691 bfd_byte *contents;
7692 Elf_Internal_Rela *internal_relocs;
7693 bfd_boolean ok = TRUE;
7694 unsigned i;
7695 property_table_entry *prop_table = 0;
7696 int ptblsize = 0;
7697 bfd_size_type sec_size;
7698 reloc_range_list relevant_relocs;
7699
7700 relax_info = get_xtensa_relax_info (sec);
7701 BFD_ASSERT (relax_info);
7702 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
7703
7704 /* Do nothing if the section contains no optimized longcalls. */
7705 if (!relax_info->is_relaxable_asm_section)
7706 return ok;
7707
7708 internal_relocs = retrieve_internal_relocs (abfd, sec,
7709 link_info->keep_memory);
7710
7711 if (internal_relocs)
7712 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7713 internal_reloc_compare);
7714
7715 sec_size = bfd_get_section_limit (abfd, sec);
7716 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7717 if (contents == NULL && sec_size != 0)
7718 {
7719 ok = FALSE;
7720 goto error_return;
7721 }
7722
7723 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7724 XTENSA_PROP_SEC_NAME, FALSE);
7725 if (ptblsize < 0)
7726 {
7727 ok = FALSE;
7728 goto error_return;
7729 }
7730
7731 /* Precompute the opcode for each relocation. */
7732 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents, internal_relocs);
7733
7734 build_reloc_ranges (abfd, sec, contents, internal_relocs, reloc_opcodes,
7735 &relevant_relocs);
7736
7737 for (i = 0; i < sec->reloc_count; i++)
7738 {
7739 Elf_Internal_Rela *irel = &internal_relocs[i];
7740 bfd_vma r_offset;
7741 property_table_entry *the_entry;
7742 int ptbl_idx;
7743 ebb_t *ebb;
7744 ebb_constraint ebb_table;
7745 bfd_size_type simplify_size;
7746
7747 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
7748 continue;
7749 r_offset = irel->r_offset;
7750
7751 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
7752 if (simplify_size == 0)
7753 {
7754 _bfd_error_handler
7755 /* xgettext:c-format */
7756 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction for "
7757 "XTENSA_ASM_SIMPLIFY relocation; "
7758 "possible configuration mismatch"),
7759 sec->owner, sec, (uint64_t) r_offset);
7760 continue;
7761 }
7762
7763 /* If the instruction table is not around, then don't do this
7764 relaxation. */
7765 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7766 sec->vma + irel->r_offset);
7767 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
7768 {
7769 text_action_add (&relax_info->action_list,
7770 ta_convert_longcall, sec, r_offset,
7771 0);
7772 continue;
7773 }
7774
7775 /* If the next longcall happens to be at the same address as an
7776 unreachable section of size 0, then skip forward. */
7777 ptbl_idx = the_entry - prop_table;
7778 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
7779 && the_entry->size == 0
7780 && ptbl_idx + 1 < ptblsize
7781 && (prop_table[ptbl_idx + 1].address
7782 == prop_table[ptbl_idx].address))
7783 {
7784 ptbl_idx++;
7785 the_entry++;
7786 }
7787
7788 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
7789 /* NO_REORDER is OK */
7790 continue;
7791
7792 init_ebb_constraint (&ebb_table);
7793 ebb = &ebb_table.ebb;
7794 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
7795 internal_relocs, sec->reloc_count);
7796 ebb->start_offset = r_offset + simplify_size;
7797 ebb->end_offset = r_offset + simplify_size;
7798 ebb->start_ptbl_idx = ptbl_idx;
7799 ebb->end_ptbl_idx = ptbl_idx;
7800 ebb->start_reloc_idx = i;
7801 ebb->end_reloc_idx = i;
7802
7803 if (!extend_ebb_bounds (ebb)
7804 || !compute_ebb_proposed_actions (&ebb_table)
7805 || !compute_ebb_actions (&ebb_table)
7806 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
7807 internal_relocs,
7808 &relevant_relocs,
7809 &ebb_table, reloc_opcodes)
7810 || !check_section_ebb_reduces (&ebb_table))
7811 {
7812 /* If anything goes wrong or we get unlucky and something does
7813 not fit, with our plan because of expansion between
7814 critical branches, just convert to a NOP. */
7815
7816 text_action_add (&relax_info->action_list,
7817 ta_convert_longcall, sec, r_offset, 0);
7818 i = ebb_table.ebb.end_reloc_idx;
7819 free_ebb_constraint (&ebb_table);
7820 continue;
7821 }
7822
7823 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
7824
7825 /* Update the index so we do not go looking at the relocations
7826 we have already processed. */
7827 i = ebb_table.ebb.end_reloc_idx;
7828 free_ebb_constraint (&ebb_table);
7829 }
7830
7831 free_reloc_range_list (&relevant_relocs);
7832
7833 #if DEBUG
7834 if (action_list_count (&relax_info->action_list))
7835 print_action_list (stderr, &relax_info->action_list);
7836 #endif
7837
7838 error_return:
7839 release_contents (sec, contents);
7840 release_internal_relocs (sec, internal_relocs);
7841 if (prop_table)
7842 free (prop_table);
7843 if (reloc_opcodes)
7844 free (reloc_opcodes);
7845
7846 return ok;
7847 }
7848
7849
7850 /* Do not widen an instruction if it is preceeded by a
7851 loop opcode. It might cause misalignment. */
7852
7853 static bfd_boolean
7854 prev_instr_is_a_loop (bfd_byte *contents,
7855 bfd_size_type content_length,
7856 bfd_size_type offset)
7857 {
7858 xtensa_opcode prev_opcode;
7859
7860 if (offset < 3)
7861 return FALSE;
7862 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
7863 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
7864 }
7865
7866
7867 /* Find all of the possible actions for an extended basic block. */
7868
7869 bfd_boolean
7870 compute_ebb_proposed_actions (ebb_constraint *ebb_table)
7871 {
7872 const ebb_t *ebb = &ebb_table->ebb;
7873 unsigned rel_idx = ebb->start_reloc_idx;
7874 property_table_entry *entry, *start_entry, *end_entry;
7875 bfd_vma offset = 0;
7876 xtensa_isa isa = xtensa_default_isa;
7877 xtensa_format fmt;
7878 static xtensa_insnbuf insnbuf = NULL;
7879 static xtensa_insnbuf slotbuf = NULL;
7880
7881 if (insnbuf == NULL)
7882 {
7883 insnbuf = xtensa_insnbuf_alloc (isa);
7884 slotbuf = xtensa_insnbuf_alloc (isa);
7885 }
7886
7887 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
7888 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
7889
7890 for (entry = start_entry; entry <= end_entry; entry++)
7891 {
7892 bfd_vma start_offset, end_offset;
7893 bfd_size_type insn_len;
7894
7895 start_offset = entry->address - ebb->sec->vma;
7896 end_offset = entry->address + entry->size - ebb->sec->vma;
7897
7898 if (entry == start_entry)
7899 start_offset = ebb->start_offset;
7900 if (entry == end_entry)
7901 end_offset = ebb->end_offset;
7902 offset = start_offset;
7903
7904 if (offset == entry->address - ebb->sec->vma
7905 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
7906 {
7907 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
7908 BFD_ASSERT (offset != end_offset);
7909 if (offset == end_offset)
7910 return FALSE;
7911
7912 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
7913 offset);
7914 if (insn_len == 0)
7915 goto decode_error;
7916
7917 if (check_branch_target_aligned_address (offset, insn_len))
7918 align_type = EBB_REQUIRE_TGT_ALIGN;
7919
7920 ebb_propose_action (ebb_table, align_type, 0,
7921 ta_none, offset, 0, TRUE);
7922 }
7923
7924 while (offset != end_offset)
7925 {
7926 Elf_Internal_Rela *irel;
7927 xtensa_opcode opcode;
7928
7929 while (rel_idx < ebb->end_reloc_idx
7930 && (ebb->relocs[rel_idx].r_offset < offset
7931 || (ebb->relocs[rel_idx].r_offset == offset
7932 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
7933 != R_XTENSA_ASM_SIMPLIFY))))
7934 rel_idx++;
7935
7936 /* Check for longcall. */
7937 irel = &ebb->relocs[rel_idx];
7938 if (irel->r_offset == offset
7939 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
7940 {
7941 bfd_size_type simplify_size;
7942
7943 simplify_size = get_asm_simplify_size (ebb->contents,
7944 ebb->content_length,
7945 irel->r_offset);
7946 if (simplify_size == 0)
7947 goto decode_error;
7948
7949 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7950 ta_convert_longcall, offset, 0, TRUE);
7951
7952 offset += simplify_size;
7953 continue;
7954 }
7955
7956 if (offset + MIN_INSN_LENGTH > ebb->content_length)
7957 goto decode_error;
7958 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
7959 ebb->content_length - offset);
7960 fmt = xtensa_format_decode (isa, insnbuf);
7961 if (fmt == XTENSA_UNDEFINED)
7962 goto decode_error;
7963 insn_len = xtensa_format_length (isa, fmt);
7964 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
7965 goto decode_error;
7966
7967 if (xtensa_format_num_slots (isa, fmt) != 1)
7968 {
7969 offset += insn_len;
7970 continue;
7971 }
7972
7973 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
7974 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
7975 if (opcode == XTENSA_UNDEFINED)
7976 goto decode_error;
7977
7978 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
7979 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
7980 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
7981 {
7982 /* Add an instruction narrow action. */
7983 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7984 ta_narrow_insn, offset, 0, FALSE);
7985 }
7986 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
7987 && can_widen_instruction (slotbuf, fmt, opcode) != 0
7988 && ! prev_instr_is_a_loop (ebb->contents,
7989 ebb->content_length, offset))
7990 {
7991 /* Add an instruction widen action. */
7992 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7993 ta_widen_insn, offset, 0, FALSE);
7994 }
7995 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
7996 {
7997 /* Check for branch targets. */
7998 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
7999 ta_none, offset, 0, TRUE);
8000 }
8001
8002 offset += insn_len;
8003 }
8004 }
8005
8006 if (ebb->ends_unreachable)
8007 {
8008 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
8009 ta_fill, ebb->end_offset, 0, TRUE);
8010 }
8011
8012 return TRUE;
8013
8014 decode_error:
8015 _bfd_error_handler
8016 /* xgettext:c-format */
8017 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; "
8018 "possible configuration mismatch"),
8019 ebb->sec->owner, ebb->sec, (uint64_t) offset);
8020 return FALSE;
8021 }
8022
8023
8024 /* After all of the information has collected about the
8025 transformations possible in an EBB, compute the appropriate actions
8026 here in compute_ebb_actions. We still must check later to make
8027 sure that the actions do not break any relocations. The algorithm
8028 used here is pretty greedy. Basically, it removes as many no-ops
8029 as possible so that the end of the EBB has the same alignment
8030 characteristics as the original. First, it uses narrowing, then
8031 fill space at the end of the EBB, and finally widenings. If that
8032 does not work, it tries again with one fewer no-op removed. The
8033 optimization will only be performed if all of the branch targets
8034 that were aligned before transformation are also aligned after the
8035 transformation.
8036
8037 When the size_opt flag is set, ignore the branch target alignments,
8038 narrow all wide instructions, and remove all no-ops unless the end
8039 of the EBB prevents it. */
8040
8041 bfd_boolean
8042 compute_ebb_actions (ebb_constraint *ebb_table)
8043 {
8044 unsigned i = 0;
8045 unsigned j;
8046 int removed_bytes = 0;
8047 ebb_t *ebb = &ebb_table->ebb;
8048 unsigned seg_idx_start = 0;
8049 unsigned seg_idx_end = 0;
8050
8051 /* We perform this like the assembler relaxation algorithm: Start by
8052 assuming all instructions are narrow and all no-ops removed; then
8053 walk through.... */
8054
8055 /* For each segment of this that has a solid constraint, check to
8056 see if there are any combinations that will keep the constraint.
8057 If so, use it. */
8058 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
8059 {
8060 bfd_boolean requires_text_end_align = FALSE;
8061 unsigned longcall_count = 0;
8062 unsigned longcall_convert_count = 0;
8063 unsigned narrowable_count = 0;
8064 unsigned narrowable_convert_count = 0;
8065 unsigned widenable_count = 0;
8066 unsigned widenable_convert_count = 0;
8067
8068 proposed_action *action = NULL;
8069 int align = (1 << ebb_table->ebb.sec->alignment_power);
8070
8071 seg_idx_start = seg_idx_end;
8072
8073 for (i = seg_idx_start; i < ebb_table->action_count; i++)
8074 {
8075 action = &ebb_table->actions[i];
8076 if (action->action == ta_convert_longcall)
8077 longcall_count++;
8078 if (action->action == ta_narrow_insn)
8079 narrowable_count++;
8080 if (action->action == ta_widen_insn)
8081 widenable_count++;
8082 if (action->action == ta_fill)
8083 break;
8084 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
8085 break;
8086 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
8087 && !elf32xtensa_size_opt)
8088 break;
8089 }
8090 seg_idx_end = i;
8091
8092 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
8093 requires_text_end_align = TRUE;
8094
8095 if (elf32xtensa_size_opt && !requires_text_end_align
8096 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
8097 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
8098 {
8099 longcall_convert_count = longcall_count;
8100 narrowable_convert_count = narrowable_count;
8101 widenable_convert_count = 0;
8102 }
8103 else
8104 {
8105 /* There is a constraint. Convert the max number of longcalls. */
8106 narrowable_convert_count = 0;
8107 longcall_convert_count = 0;
8108 widenable_convert_count = 0;
8109
8110 for (j = 0; j < longcall_count; j++)
8111 {
8112 int removed = (longcall_count - j) * 3 & (align - 1);
8113 unsigned desire_narrow = (align - removed) & (align - 1);
8114 unsigned desire_widen = removed;
8115 if (desire_narrow <= narrowable_count)
8116 {
8117 narrowable_convert_count = desire_narrow;
8118 narrowable_convert_count +=
8119 (align * ((narrowable_count - narrowable_convert_count)
8120 / align));
8121 longcall_convert_count = (longcall_count - j);
8122 widenable_convert_count = 0;
8123 break;
8124 }
8125 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
8126 {
8127 narrowable_convert_count = 0;
8128 longcall_convert_count = longcall_count - j;
8129 widenable_convert_count = desire_widen;
8130 break;
8131 }
8132 }
8133 }
8134
8135 /* Now the number of conversions are saved. Do them. */
8136 for (i = seg_idx_start; i < seg_idx_end; i++)
8137 {
8138 action = &ebb_table->actions[i];
8139 switch (action->action)
8140 {
8141 case ta_convert_longcall:
8142 if (longcall_convert_count != 0)
8143 {
8144 action->action = ta_remove_longcall;
8145 action->do_action = TRUE;
8146 action->removed_bytes += 3;
8147 longcall_convert_count--;
8148 }
8149 break;
8150 case ta_narrow_insn:
8151 if (narrowable_convert_count != 0)
8152 {
8153 action->do_action = TRUE;
8154 action->removed_bytes += 1;
8155 narrowable_convert_count--;
8156 }
8157 break;
8158 case ta_widen_insn:
8159 if (widenable_convert_count != 0)
8160 {
8161 action->do_action = TRUE;
8162 action->removed_bytes -= 1;
8163 widenable_convert_count--;
8164 }
8165 break;
8166 default:
8167 break;
8168 }
8169 }
8170 }
8171
8172 /* Now we move on to some local opts. Try to remove each of the
8173 remaining longcalls. */
8174
8175 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
8176 {
8177 removed_bytes = 0;
8178 for (i = 0; i < ebb_table->action_count; i++)
8179 {
8180 int old_removed_bytes = removed_bytes;
8181 proposed_action *action = &ebb_table->actions[i];
8182
8183 if (action->do_action && action->action == ta_convert_longcall)
8184 {
8185 bfd_boolean bad_alignment = FALSE;
8186 removed_bytes += 3;
8187 for (j = i + 1; j < ebb_table->action_count; j++)
8188 {
8189 proposed_action *new_action = &ebb_table->actions[j];
8190 bfd_vma offset = new_action->offset;
8191 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
8192 {
8193 if (!check_branch_target_aligned
8194 (ebb_table->ebb.contents,
8195 ebb_table->ebb.content_length,
8196 offset, offset - removed_bytes))
8197 {
8198 bad_alignment = TRUE;
8199 break;
8200 }
8201 }
8202 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
8203 {
8204 if (!check_loop_aligned (ebb_table->ebb.contents,
8205 ebb_table->ebb.content_length,
8206 offset,
8207 offset - removed_bytes))
8208 {
8209 bad_alignment = TRUE;
8210 break;
8211 }
8212 }
8213 if (new_action->action == ta_narrow_insn
8214 && !new_action->do_action
8215 && ebb_table->ebb.sec->alignment_power == 2)
8216 {
8217 /* Narrow an instruction and we are done. */
8218 new_action->do_action = TRUE;
8219 new_action->removed_bytes += 1;
8220 bad_alignment = FALSE;
8221 break;
8222 }
8223 if (new_action->action == ta_widen_insn
8224 && new_action->do_action
8225 && ebb_table->ebb.sec->alignment_power == 2)
8226 {
8227 /* Narrow an instruction and we are done. */
8228 new_action->do_action = FALSE;
8229 new_action->removed_bytes += 1;
8230 bad_alignment = FALSE;
8231 break;
8232 }
8233 if (new_action->do_action)
8234 removed_bytes += new_action->removed_bytes;
8235 }
8236 if (!bad_alignment)
8237 {
8238 action->removed_bytes += 3;
8239 action->action = ta_remove_longcall;
8240 action->do_action = TRUE;
8241 }
8242 }
8243 removed_bytes = old_removed_bytes;
8244 if (action->do_action)
8245 removed_bytes += action->removed_bytes;
8246 }
8247 }
8248
8249 removed_bytes = 0;
8250 for (i = 0; i < ebb_table->action_count; ++i)
8251 {
8252 proposed_action *action = &ebb_table->actions[i];
8253 if (action->do_action)
8254 removed_bytes += action->removed_bytes;
8255 }
8256
8257 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
8258 && ebb->ends_unreachable)
8259 {
8260 proposed_action *action;
8261 int br;
8262 int extra_space;
8263
8264 BFD_ASSERT (ebb_table->action_count != 0);
8265 action = &ebb_table->actions[ebb_table->action_count - 1];
8266 BFD_ASSERT (action->action == ta_fill);
8267 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
8268
8269 extra_space = xtensa_compute_fill_extra_space (ebb->ends_unreachable);
8270 br = action->removed_bytes + removed_bytes + extra_space;
8271 br = br & ((1 << ebb->sec->alignment_power ) - 1);
8272
8273 action->removed_bytes = extra_space - br;
8274 }
8275 return TRUE;
8276 }
8277
8278
8279 /* The xlate_map is a sorted array of address mappings designed to
8280 answer the offset_with_removed_text() query with a binary search instead
8281 of a linear search through the section's action_list. */
8282
8283 typedef struct xlate_map_entry xlate_map_entry_t;
8284 typedef struct xlate_map xlate_map_t;
8285
8286 struct xlate_map_entry
8287 {
8288 bfd_vma orig_address;
8289 bfd_vma new_address;
8290 unsigned size;
8291 };
8292
8293 struct xlate_map
8294 {
8295 unsigned entry_count;
8296 xlate_map_entry_t *entry;
8297 };
8298
8299
8300 static int
8301 xlate_compare (const void *a_v, const void *b_v)
8302 {
8303 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
8304 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
8305 if (a->orig_address < b->orig_address)
8306 return -1;
8307 if (a->orig_address > (b->orig_address + b->size - 1))
8308 return 1;
8309 return 0;
8310 }
8311
8312
8313 static bfd_vma
8314 xlate_offset_with_removed_text (const xlate_map_t *map,
8315 text_action_list *action_list,
8316 bfd_vma offset)
8317 {
8318 void *r;
8319 xlate_map_entry_t *e;
8320 struct xlate_map_entry se;
8321
8322 if (map == NULL)
8323 return offset_with_removed_text (action_list, offset);
8324
8325 if (map->entry_count == 0)
8326 return offset;
8327
8328 se.orig_address = offset;
8329 r = bsearch (&se, map->entry, map->entry_count,
8330 sizeof (xlate_map_entry_t), &xlate_compare);
8331 e = (xlate_map_entry_t *) r;
8332
8333 /* There could be a jump past the end of the section,
8334 allow it using the last xlate map entry to translate its address. */
8335 if (e == NULL)
8336 {
8337 e = map->entry + map->entry_count - 1;
8338 if (xlate_compare (&se, e) <= 0)
8339 e = NULL;
8340 }
8341 BFD_ASSERT (e != NULL);
8342 if (e == NULL)
8343 return offset;
8344 return e->new_address - e->orig_address + offset;
8345 }
8346
8347 typedef struct xlate_map_context_struct xlate_map_context;
8348 struct xlate_map_context_struct
8349 {
8350 xlate_map_t *map;
8351 xlate_map_entry_t *current_entry;
8352 int removed;
8353 };
8354
8355 static int
8356 xlate_map_fn (splay_tree_node node, void *p)
8357 {
8358 text_action *r = (text_action *)node->value;
8359 xlate_map_context *ctx = p;
8360 unsigned orig_size = 0;
8361
8362 switch (r->action)
8363 {
8364 case ta_none:
8365 case ta_remove_insn:
8366 case ta_convert_longcall:
8367 case ta_remove_literal:
8368 case ta_add_literal:
8369 break;
8370 case ta_remove_longcall:
8371 orig_size = 6;
8372 break;
8373 case ta_narrow_insn:
8374 orig_size = 3;
8375 break;
8376 case ta_widen_insn:
8377 orig_size = 2;
8378 break;
8379 case ta_fill:
8380 break;
8381 }
8382 ctx->current_entry->size =
8383 r->offset + orig_size - ctx->current_entry->orig_address;
8384 if (ctx->current_entry->size != 0)
8385 {
8386 ctx->current_entry++;
8387 ctx->map->entry_count++;
8388 }
8389 ctx->current_entry->orig_address = r->offset + orig_size;
8390 ctx->removed += r->removed_bytes;
8391 ctx->current_entry->new_address = r->offset + orig_size - ctx->removed;
8392 ctx->current_entry->size = 0;
8393 return 0;
8394 }
8395
8396 /* Build a binary searchable offset translation map from a section's
8397 action list. */
8398
8399 static xlate_map_t *
8400 build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
8401 {
8402 text_action_list *action_list = &relax_info->action_list;
8403 unsigned num_actions = 0;
8404 xlate_map_context ctx;
8405
8406 ctx.map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
8407
8408 if (ctx.map == NULL)
8409 return NULL;
8410
8411 num_actions = action_list_count (action_list);
8412 ctx.map->entry = (xlate_map_entry_t *)
8413 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
8414 if (ctx.map->entry == NULL)
8415 {
8416 free (ctx.map);
8417 return NULL;
8418 }
8419 ctx.map->entry_count = 0;
8420
8421 ctx.removed = 0;
8422 ctx.current_entry = &ctx.map->entry[0];
8423
8424 ctx.current_entry->orig_address = 0;
8425 ctx.current_entry->new_address = 0;
8426 ctx.current_entry->size = 0;
8427
8428 splay_tree_foreach (action_list->tree, xlate_map_fn, &ctx);
8429
8430 ctx.current_entry->size = (bfd_get_section_limit (sec->owner, sec)
8431 - ctx.current_entry->orig_address);
8432 if (ctx.current_entry->size != 0)
8433 ctx.map->entry_count++;
8434
8435 return ctx.map;
8436 }
8437
8438
8439 /* Free an offset translation map. */
8440
8441 static void
8442 free_xlate_map (xlate_map_t *map)
8443 {
8444 if (map && map->entry)
8445 free (map->entry);
8446 if (map)
8447 free (map);
8448 }
8449
8450
8451 /* Use check_section_ebb_pcrels_fit to make sure that all of the
8452 relocations in a section will fit if a proposed set of actions
8453 are performed. */
8454
8455 static bfd_boolean
8456 check_section_ebb_pcrels_fit (bfd *abfd,
8457 asection *sec,
8458 bfd_byte *contents,
8459 Elf_Internal_Rela *internal_relocs,
8460 reloc_range_list *relevant_relocs,
8461 const ebb_constraint *constraint,
8462 const xtensa_opcode *reloc_opcodes)
8463 {
8464 unsigned i, j;
8465 unsigned n = sec->reloc_count;
8466 Elf_Internal_Rela *irel;
8467 xlate_map_t *xmap = NULL;
8468 bfd_boolean ok = TRUE;
8469 xtensa_relax_info *relax_info;
8470 reloc_range_list_entry *entry = NULL;
8471
8472 relax_info = get_xtensa_relax_info (sec);
8473
8474 if (relax_info && sec->reloc_count > 100)
8475 {
8476 xmap = build_xlate_map (sec, relax_info);
8477 /* NULL indicates out of memory, but the slow version
8478 can still be used. */
8479 }
8480
8481 if (relevant_relocs && constraint->action_count)
8482 {
8483 if (!relevant_relocs->ok)
8484 {
8485 ok = FALSE;
8486 n = 0;
8487 }
8488 else
8489 {
8490 bfd_vma min_offset, max_offset;
8491 min_offset = max_offset = constraint->actions[0].offset;
8492
8493 for (i = 1; i < constraint->action_count; ++i)
8494 {
8495 proposed_action *action = &constraint->actions[i];
8496 bfd_vma offset = action->offset;
8497
8498 if (offset < min_offset)
8499 min_offset = offset;
8500 if (offset > max_offset)
8501 max_offset = offset;
8502 }
8503 reloc_range_list_update_range (relevant_relocs, min_offset,
8504 max_offset);
8505 n = relevant_relocs->n_list;
8506 entry = &relevant_relocs->list_root;
8507 }
8508 }
8509 else
8510 {
8511 relevant_relocs = NULL;
8512 }
8513
8514 for (i = 0; i < n; i++)
8515 {
8516 r_reloc r_rel;
8517 bfd_vma orig_self_offset, orig_target_offset;
8518 bfd_vma self_offset, target_offset;
8519 int r_type;
8520 reloc_howto_type *howto;
8521 int self_removed_bytes, target_removed_bytes;
8522
8523 if (relevant_relocs)
8524 {
8525 entry = entry->next;
8526 irel = entry->irel;
8527 }
8528 else
8529 {
8530 irel = internal_relocs + i;
8531 }
8532 r_type = ELF32_R_TYPE (irel->r_info);
8533
8534 howto = &elf_howto_table[r_type];
8535 /* We maintain the required invariant: PC-relative relocations
8536 that fit before linking must fit after linking. Thus we only
8537 need to deal with relocations to the same section that are
8538 PC-relative. */
8539 if (r_type == R_XTENSA_ASM_SIMPLIFY
8540 || r_type == R_XTENSA_32_PCREL
8541 || !howto->pc_relative)
8542 continue;
8543
8544 r_reloc_init (&r_rel, abfd, irel, contents,
8545 bfd_get_section_limit (abfd, sec));
8546
8547 if (r_reloc_get_section (&r_rel) != sec)
8548 continue;
8549
8550 orig_self_offset = irel->r_offset;
8551 orig_target_offset = r_rel.target_offset;
8552
8553 self_offset = orig_self_offset;
8554 target_offset = orig_target_offset;
8555
8556 if (relax_info)
8557 {
8558 self_offset =
8559 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8560 orig_self_offset);
8561 target_offset =
8562 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8563 orig_target_offset);
8564 }
8565
8566 self_removed_bytes = 0;
8567 target_removed_bytes = 0;
8568
8569 for (j = 0; j < constraint->action_count; ++j)
8570 {
8571 proposed_action *action = &constraint->actions[j];
8572 bfd_vma offset = action->offset;
8573 int removed_bytes = action->removed_bytes;
8574 if (offset < orig_self_offset
8575 || (offset == orig_self_offset && action->action == ta_fill
8576 && action->removed_bytes < 0))
8577 self_removed_bytes += removed_bytes;
8578 if (offset < orig_target_offset
8579 || (offset == orig_target_offset && action->action == ta_fill
8580 && action->removed_bytes < 0))
8581 target_removed_bytes += removed_bytes;
8582 }
8583 self_offset -= self_removed_bytes;
8584 target_offset -= target_removed_bytes;
8585
8586 /* Try to encode it. Get the operand and check. */
8587 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
8588 {
8589 /* None of the current alternate relocs are PC-relative,
8590 and only PC-relative relocs matter here. */
8591 }
8592 else
8593 {
8594 xtensa_opcode opcode;
8595 int opnum;
8596
8597 if (relevant_relocs)
8598 {
8599 opcode = entry->opcode;
8600 opnum = entry->opnum;
8601 }
8602 else
8603 {
8604 if (reloc_opcodes)
8605 opcode = reloc_opcodes[relevant_relocs ?
8606 (unsigned)(entry - relevant_relocs->reloc) : i];
8607 else
8608 opcode = get_relocation_opcode (abfd, sec, contents, irel);
8609 if (opcode == XTENSA_UNDEFINED)
8610 {
8611 ok = FALSE;
8612 break;
8613 }
8614
8615 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
8616 if (opnum == XTENSA_UNDEFINED)
8617 {
8618 ok = FALSE;
8619 break;
8620 }
8621 }
8622
8623 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
8624 {
8625 ok = FALSE;
8626 break;
8627 }
8628 }
8629 }
8630
8631 if (xmap)
8632 free_xlate_map (xmap);
8633
8634 return ok;
8635 }
8636
8637
8638 static bfd_boolean
8639 check_section_ebb_reduces (const ebb_constraint *constraint)
8640 {
8641 int removed = 0;
8642 unsigned i;
8643
8644 for (i = 0; i < constraint->action_count; i++)
8645 {
8646 const proposed_action *action = &constraint->actions[i];
8647 if (action->do_action)
8648 removed += action->removed_bytes;
8649 }
8650 if (removed < 0)
8651 return FALSE;
8652
8653 return TRUE;
8654 }
8655
8656
8657 void
8658 text_action_add_proposed (text_action_list *l,
8659 const ebb_constraint *ebb_table,
8660 asection *sec)
8661 {
8662 unsigned i;
8663
8664 for (i = 0; i < ebb_table->action_count; i++)
8665 {
8666 proposed_action *action = &ebb_table->actions[i];
8667
8668 if (!action->do_action)
8669 continue;
8670 switch (action->action)
8671 {
8672 case ta_remove_insn:
8673 case ta_remove_longcall:
8674 case ta_convert_longcall:
8675 case ta_narrow_insn:
8676 case ta_widen_insn:
8677 case ta_fill:
8678 case ta_remove_literal:
8679 text_action_add (l, action->action, sec, action->offset,
8680 action->removed_bytes);
8681 break;
8682 case ta_none:
8683 break;
8684 default:
8685 BFD_ASSERT (0);
8686 break;
8687 }
8688 }
8689 }
8690
8691
8692 int
8693 xtensa_compute_fill_extra_space (property_table_entry *entry)
8694 {
8695 int fill_extra_space;
8696
8697 if (!entry)
8698 return 0;
8699
8700 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
8701 return 0;
8702
8703 fill_extra_space = entry->size;
8704 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
8705 {
8706 /* Fill bytes for alignment:
8707 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
8708 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
8709 int nsm = (1 << pow) - 1;
8710 bfd_vma addr = entry->address + entry->size;
8711 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
8712 fill_extra_space += align_fill;
8713 }
8714 return fill_extra_space;
8715 }
8716
8717 \f
8718 /* First relaxation pass. */
8719
8720 /* If the section contains relaxable literals, check each literal to
8721 see if it has the same value as another literal that has already
8722 been seen, either in the current section or a previous one. If so,
8723 add an entry to the per-section list of removed literals. The
8724 actual changes are deferred until the next pass. */
8725
8726 static bfd_boolean
8727 compute_removed_literals (bfd *abfd,
8728 asection *sec,
8729 struct bfd_link_info *link_info,
8730 value_map_hash_table *values)
8731 {
8732 xtensa_relax_info *relax_info;
8733 bfd_byte *contents;
8734 Elf_Internal_Rela *internal_relocs;
8735 source_reloc *src_relocs, *rel;
8736 bfd_boolean ok = TRUE;
8737 property_table_entry *prop_table = NULL;
8738 int ptblsize;
8739 int i, prev_i;
8740 bfd_boolean last_loc_is_prev = FALSE;
8741 bfd_vma last_target_offset = 0;
8742 section_cache_t target_sec_cache;
8743 bfd_size_type sec_size;
8744
8745 init_section_cache (&target_sec_cache);
8746
8747 /* Do nothing if it is not a relaxable literal section. */
8748 relax_info = get_xtensa_relax_info (sec);
8749 BFD_ASSERT (relax_info);
8750 if (!relax_info->is_relaxable_literal_section)
8751 return ok;
8752
8753 internal_relocs = retrieve_internal_relocs (abfd, sec,
8754 link_info->keep_memory);
8755
8756 sec_size = bfd_get_section_limit (abfd, sec);
8757 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8758 if (contents == NULL && sec_size != 0)
8759 {
8760 ok = FALSE;
8761 goto error_return;
8762 }
8763
8764 /* Sort the source_relocs by target offset. */
8765 src_relocs = relax_info->src_relocs;
8766 qsort (src_relocs, relax_info->src_count,
8767 sizeof (source_reloc), source_reloc_compare);
8768 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8769 internal_reloc_compare);
8770
8771 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
8772 XTENSA_PROP_SEC_NAME, FALSE);
8773 if (ptblsize < 0)
8774 {
8775 ok = FALSE;
8776 goto error_return;
8777 }
8778
8779 prev_i = -1;
8780 for (i = 0; i < relax_info->src_count; i++)
8781 {
8782 Elf_Internal_Rela *irel = NULL;
8783
8784 rel = &src_relocs[i];
8785 if (get_l32r_opcode () != rel->opcode)
8786 continue;
8787 irel = get_irel_at_offset (sec, internal_relocs,
8788 rel->r_rel.target_offset);
8789
8790 /* If the relocation on this is not a simple R_XTENSA_32 or
8791 R_XTENSA_PLT then do not consider it. This may happen when
8792 the difference of two symbols is used in a literal. */
8793 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
8794 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
8795 continue;
8796
8797 /* If the target_offset for this relocation is the same as the
8798 previous relocation, then we've already considered whether the
8799 literal can be coalesced. Skip to the next one.... */
8800 if (i != 0 && prev_i != -1
8801 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
8802 continue;
8803 prev_i = i;
8804
8805 if (last_loc_is_prev &&
8806 last_target_offset + 4 != rel->r_rel.target_offset)
8807 last_loc_is_prev = FALSE;
8808
8809 /* Check if the relocation was from an L32R that is being removed
8810 because a CALLX was converted to a direct CALL, and check if
8811 there are no other relocations to the literal. */
8812 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
8813 sec, prop_table, ptblsize))
8814 {
8815 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
8816 irel, rel, prop_table, ptblsize))
8817 {
8818 ok = FALSE;
8819 goto error_return;
8820 }
8821 last_target_offset = rel->r_rel.target_offset;
8822 continue;
8823 }
8824
8825 if (!identify_literal_placement (abfd, sec, contents, link_info,
8826 values,
8827 &last_loc_is_prev, irel,
8828 relax_info->src_count - i, rel,
8829 prop_table, ptblsize,
8830 &target_sec_cache, rel->is_abs_literal))
8831 {
8832 ok = FALSE;
8833 goto error_return;
8834 }
8835 last_target_offset = rel->r_rel.target_offset;
8836 }
8837
8838 #if DEBUG
8839 print_removed_literals (stderr, &relax_info->removed_list);
8840 print_action_list (stderr, &relax_info->action_list);
8841 #endif /* DEBUG */
8842
8843 error_return:
8844 if (prop_table)
8845 free (prop_table);
8846 free_section_cache (&target_sec_cache);
8847
8848 release_contents (sec, contents);
8849 release_internal_relocs (sec, internal_relocs);
8850 return ok;
8851 }
8852
8853
8854 static Elf_Internal_Rela *
8855 get_irel_at_offset (asection *sec,
8856 Elf_Internal_Rela *internal_relocs,
8857 bfd_vma offset)
8858 {
8859 unsigned i;
8860 Elf_Internal_Rela *irel;
8861 unsigned r_type;
8862 Elf_Internal_Rela key;
8863
8864 if (!internal_relocs)
8865 return NULL;
8866
8867 key.r_offset = offset;
8868 irel = bsearch (&key, internal_relocs, sec->reloc_count,
8869 sizeof (Elf_Internal_Rela), internal_reloc_matches);
8870 if (!irel)
8871 return NULL;
8872
8873 /* bsearch does not guarantee which will be returned if there are
8874 multiple matches. We need the first that is not an alignment. */
8875 i = irel - internal_relocs;
8876 while (i > 0)
8877 {
8878 if (internal_relocs[i-1].r_offset != offset)
8879 break;
8880 i--;
8881 }
8882 for ( ; i < sec->reloc_count; i++)
8883 {
8884 irel = &internal_relocs[i];
8885 r_type = ELF32_R_TYPE (irel->r_info);
8886 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
8887 return irel;
8888 }
8889
8890 return NULL;
8891 }
8892
8893
8894 bfd_boolean
8895 is_removable_literal (const source_reloc *rel,
8896 int i,
8897 const source_reloc *src_relocs,
8898 int src_count,
8899 asection *sec,
8900 property_table_entry *prop_table,
8901 int ptblsize)
8902 {
8903 const source_reloc *curr_rel;
8904 property_table_entry *entry;
8905
8906 if (!rel->is_null)
8907 return FALSE;
8908
8909 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8910 sec->vma + rel->r_rel.target_offset);
8911 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8912 return FALSE;
8913
8914 for (++i; i < src_count; ++i)
8915 {
8916 curr_rel = &src_relocs[i];
8917 /* If all others have the same target offset.... */
8918 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
8919 return TRUE;
8920
8921 if (!curr_rel->is_null
8922 && !xtensa_is_property_section (curr_rel->source_sec)
8923 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
8924 return FALSE;
8925 }
8926 return TRUE;
8927 }
8928
8929
8930 bfd_boolean
8931 remove_dead_literal (bfd *abfd,
8932 asection *sec,
8933 struct bfd_link_info *link_info,
8934 Elf_Internal_Rela *internal_relocs,
8935 Elf_Internal_Rela *irel,
8936 source_reloc *rel,
8937 property_table_entry *prop_table,
8938 int ptblsize)
8939 {
8940 property_table_entry *entry;
8941 xtensa_relax_info *relax_info;
8942
8943 relax_info = get_xtensa_relax_info (sec);
8944 if (!relax_info)
8945 return FALSE;
8946
8947 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8948 sec->vma + rel->r_rel.target_offset);
8949
8950 /* Mark the unused literal so that it will be removed. */
8951 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
8952
8953 text_action_add (&relax_info->action_list,
8954 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8955
8956 /* If the section is 4-byte aligned, do not add fill. */
8957 if (sec->alignment_power > 2)
8958 {
8959 int fill_extra_space;
8960 bfd_vma entry_sec_offset;
8961 text_action *fa;
8962 property_table_entry *the_add_entry;
8963 int removed_diff;
8964
8965 if (entry)
8966 entry_sec_offset = entry->address - sec->vma + entry->size;
8967 else
8968 entry_sec_offset = rel->r_rel.target_offset + 4;
8969
8970 /* If the literal range is at the end of the section,
8971 do not add fill. */
8972 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8973 entry_sec_offset);
8974 fill_extra_space = xtensa_compute_fill_extra_space (the_add_entry);
8975
8976 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8977 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8978 -4, fill_extra_space);
8979 if (fa)
8980 adjust_fill_action (fa, removed_diff);
8981 else
8982 text_action_add (&relax_info->action_list,
8983 ta_fill, sec, entry_sec_offset, removed_diff);
8984 }
8985
8986 /* Zero out the relocation on this literal location. */
8987 if (irel)
8988 {
8989 if (elf_hash_table (link_info)->dynamic_sections_created)
8990 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8991
8992 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8993 pin_internal_relocs (sec, internal_relocs);
8994 }
8995
8996 /* Do not modify "last_loc_is_prev". */
8997 return TRUE;
8998 }
8999
9000
9001 bfd_boolean
9002 identify_literal_placement (bfd *abfd,
9003 asection *sec,
9004 bfd_byte *contents,
9005 struct bfd_link_info *link_info,
9006 value_map_hash_table *values,
9007 bfd_boolean *last_loc_is_prev_p,
9008 Elf_Internal_Rela *irel,
9009 int remaining_src_rels,
9010 source_reloc *rel,
9011 property_table_entry *prop_table,
9012 int ptblsize,
9013 section_cache_t *target_sec_cache,
9014 bfd_boolean is_abs_literal)
9015 {
9016 literal_value val;
9017 value_map *val_map;
9018 xtensa_relax_info *relax_info;
9019 bfd_boolean literal_placed = FALSE;
9020 r_reloc r_rel;
9021 unsigned long value;
9022 bfd_boolean final_static_link;
9023 bfd_size_type sec_size;
9024
9025 relax_info = get_xtensa_relax_info (sec);
9026 if (!relax_info)
9027 return FALSE;
9028
9029 sec_size = bfd_get_section_limit (abfd, sec);
9030
9031 final_static_link =
9032 (!bfd_link_relocatable (link_info)
9033 && !elf_hash_table (link_info)->dynamic_sections_created);
9034
9035 /* The placement algorithm first checks to see if the literal is
9036 already in the value map. If so and the value map is reachable
9037 from all uses, then the literal is moved to that location. If
9038 not, then we identify the last location where a fresh literal was
9039 placed. If the literal can be safely moved there, then we do so.
9040 If not, then we assume that the literal is not to move and leave
9041 the literal where it is, marking it as the last literal
9042 location. */
9043
9044 /* Find the literal value. */
9045 value = 0;
9046 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
9047 if (!irel)
9048 {
9049 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
9050 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
9051 }
9052 init_literal_value (&val, &r_rel, value, is_abs_literal);
9053
9054 /* Check if we've seen another literal with the same value that
9055 is in the same output section. */
9056 val_map = value_map_get_cached_value (values, &val, final_static_link);
9057
9058 if (val_map
9059 && (r_reloc_get_section (&val_map->loc)->output_section
9060 == sec->output_section)
9061 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
9062 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
9063 {
9064 /* No change to last_loc_is_prev. */
9065 literal_placed = TRUE;
9066 }
9067
9068 /* For relocatable links, do not try to move literals. To do it
9069 correctly might increase the number of relocations in an input
9070 section making the default relocatable linking fail. */
9071 if (!bfd_link_relocatable (link_info) && !literal_placed
9072 && values->has_last_loc && !(*last_loc_is_prev_p))
9073 {
9074 asection *target_sec = r_reloc_get_section (&values->last_loc);
9075 if (target_sec && target_sec->output_section == sec->output_section)
9076 {
9077 /* Increment the virtual offset. */
9078 r_reloc try_loc = values->last_loc;
9079 try_loc.virtual_offset += 4;
9080
9081 /* There is a last loc that was in the same output section. */
9082 if (relocations_reach (rel, remaining_src_rels, &try_loc)
9083 && move_shared_literal (sec, link_info, rel,
9084 prop_table, ptblsize,
9085 &try_loc, &val, target_sec_cache))
9086 {
9087 values->last_loc.virtual_offset += 4;
9088 literal_placed = TRUE;
9089 if (!val_map)
9090 val_map = add_value_map (values, &val, &try_loc,
9091 final_static_link);
9092 else
9093 val_map->loc = try_loc;
9094 }
9095 }
9096 }
9097
9098 if (!literal_placed)
9099 {
9100 /* Nothing worked, leave the literal alone but update the last loc. */
9101 values->has_last_loc = TRUE;
9102 values->last_loc = rel->r_rel;
9103 if (!val_map)
9104 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
9105 else
9106 val_map->loc = rel->r_rel;
9107 *last_loc_is_prev_p = TRUE;
9108 }
9109
9110 return TRUE;
9111 }
9112
9113
9114 /* Check if the original relocations (presumably on L32R instructions)
9115 identified by reloc[0..N] can be changed to reference the literal
9116 identified by r_rel. If r_rel is out of range for any of the
9117 original relocations, then we don't want to coalesce the original
9118 literal with the one at r_rel. We only check reloc[0..N], where the
9119 offsets are all the same as for reloc[0] (i.e., they're all
9120 referencing the same literal) and where N is also bounded by the
9121 number of remaining entries in the "reloc" array. The "reloc" array
9122 is sorted by target offset so we know all the entries for the same
9123 literal will be contiguous. */
9124
9125 static bfd_boolean
9126 relocations_reach (source_reloc *reloc,
9127 int remaining_relocs,
9128 const r_reloc *r_rel)
9129 {
9130 bfd_vma from_offset, source_address, dest_address;
9131 asection *sec;
9132 int i;
9133
9134 if (!r_reloc_is_defined (r_rel))
9135 return FALSE;
9136
9137 sec = r_reloc_get_section (r_rel);
9138 from_offset = reloc[0].r_rel.target_offset;
9139
9140 for (i = 0; i < remaining_relocs; i++)
9141 {
9142 if (reloc[i].r_rel.target_offset != from_offset)
9143 break;
9144
9145 /* Ignore relocations that have been removed. */
9146 if (reloc[i].is_null)
9147 continue;
9148
9149 /* The original and new output section for these must be the same
9150 in order to coalesce. */
9151 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
9152 != sec->output_section)
9153 return FALSE;
9154
9155 /* Absolute literals in the same output section can always be
9156 combined. */
9157 if (reloc[i].is_abs_literal)
9158 continue;
9159
9160 /* A literal with no PC-relative relocations can be moved anywhere. */
9161 if (reloc[i].opnd != -1)
9162 {
9163 /* Otherwise, check to see that it fits. */
9164 source_address = (reloc[i].source_sec->output_section->vma
9165 + reloc[i].source_sec->output_offset
9166 + reloc[i].r_rel.rela.r_offset);
9167 dest_address = (sec->output_section->vma
9168 + sec->output_offset
9169 + r_rel->target_offset);
9170
9171 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
9172 source_address, dest_address))
9173 return FALSE;
9174 }
9175 }
9176
9177 return TRUE;
9178 }
9179
9180
9181 /* Move a literal to another literal location because it is
9182 the same as the other literal value. */
9183
9184 static bfd_boolean
9185 coalesce_shared_literal (asection *sec,
9186 source_reloc *rel,
9187 property_table_entry *prop_table,
9188 int ptblsize,
9189 value_map *val_map)
9190 {
9191 property_table_entry *entry;
9192 text_action *fa;
9193 property_table_entry *the_add_entry;
9194 int removed_diff;
9195 xtensa_relax_info *relax_info;
9196
9197 relax_info = get_xtensa_relax_info (sec);
9198 if (!relax_info)
9199 return FALSE;
9200
9201 entry = elf_xtensa_find_property_entry
9202 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
9203 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
9204 return TRUE;
9205
9206 /* Mark that the literal will be coalesced. */
9207 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
9208
9209 text_action_add (&relax_info->action_list,
9210 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9211
9212 /* If the section is 4-byte aligned, do not add fill. */
9213 if (sec->alignment_power > 2)
9214 {
9215 int fill_extra_space;
9216 bfd_vma entry_sec_offset;
9217
9218 if (entry)
9219 entry_sec_offset = entry->address - sec->vma + entry->size;
9220 else
9221 entry_sec_offset = rel->r_rel.target_offset + 4;
9222
9223 /* If the literal range is at the end of the section,
9224 do not add fill. */
9225 fill_extra_space = 0;
9226 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9227 entry_sec_offset);
9228 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9229 fill_extra_space = the_add_entry->size;
9230
9231 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9232 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9233 -4, fill_extra_space);
9234 if (fa)
9235 adjust_fill_action (fa, removed_diff);
9236 else
9237 text_action_add (&relax_info->action_list,
9238 ta_fill, sec, entry_sec_offset, removed_diff);
9239 }
9240
9241 return TRUE;
9242 }
9243
9244
9245 /* Move a literal to another location. This may actually increase the
9246 total amount of space used because of alignments so we need to do
9247 this carefully. Also, it may make a branch go out of range. */
9248
9249 static bfd_boolean
9250 move_shared_literal (asection *sec,
9251 struct bfd_link_info *link_info,
9252 source_reloc *rel,
9253 property_table_entry *prop_table,
9254 int ptblsize,
9255 const r_reloc *target_loc,
9256 const literal_value *lit_value,
9257 section_cache_t *target_sec_cache)
9258 {
9259 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
9260 text_action *fa, *target_fa;
9261 int removed_diff;
9262 xtensa_relax_info *relax_info, *target_relax_info;
9263 asection *target_sec;
9264 ebb_t *ebb;
9265 ebb_constraint ebb_table;
9266 bfd_boolean relocs_fit;
9267
9268 /* If this routine always returns FALSE, the literals that cannot be
9269 coalesced will not be moved. */
9270 if (elf32xtensa_no_literal_movement)
9271 return FALSE;
9272
9273 relax_info = get_xtensa_relax_info (sec);
9274 if (!relax_info)
9275 return FALSE;
9276
9277 target_sec = r_reloc_get_section (target_loc);
9278 target_relax_info = get_xtensa_relax_info (target_sec);
9279
9280 /* Literals to undefined sections may not be moved because they
9281 must report an error. */
9282 if (bfd_is_und_section (target_sec))
9283 return FALSE;
9284
9285 src_entry = elf_xtensa_find_property_entry
9286 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
9287
9288 if (!section_cache_section (target_sec_cache, target_sec, link_info))
9289 return FALSE;
9290
9291 target_entry = elf_xtensa_find_property_entry
9292 (target_sec_cache->ptbl, target_sec_cache->pte_count,
9293 target_sec->vma + target_loc->target_offset);
9294
9295 if (!target_entry)
9296 return FALSE;
9297
9298 /* Make sure that we have not broken any branches. */
9299 relocs_fit = FALSE;
9300
9301 init_ebb_constraint (&ebb_table);
9302 ebb = &ebb_table.ebb;
9303 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
9304 target_sec_cache->content_length,
9305 target_sec_cache->ptbl, target_sec_cache->pte_count,
9306 target_sec_cache->relocs, target_sec_cache->reloc_count);
9307
9308 /* Propose to add 4 bytes + worst-case alignment size increase to
9309 destination. */
9310 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
9311 ta_fill, target_loc->target_offset,
9312 -4 - (1 << target_sec->alignment_power), TRUE);
9313
9314 /* Check all of the PC-relative relocations to make sure they still fit. */
9315 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
9316 target_sec_cache->contents,
9317 target_sec_cache->relocs, NULL,
9318 &ebb_table, NULL);
9319
9320 if (!relocs_fit)
9321 return FALSE;
9322
9323 text_action_add_literal (&target_relax_info->action_list,
9324 ta_add_literal, target_loc, lit_value, -4);
9325
9326 if (target_sec->alignment_power > 2 && target_entry != src_entry)
9327 {
9328 /* May need to add or remove some fill to maintain alignment. */
9329 int fill_extra_space;
9330 bfd_vma entry_sec_offset;
9331
9332 entry_sec_offset =
9333 target_entry->address - target_sec->vma + target_entry->size;
9334
9335 /* If the literal range is at the end of the section,
9336 do not add fill. */
9337 fill_extra_space = 0;
9338 the_add_entry =
9339 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
9340 target_sec_cache->pte_count,
9341 entry_sec_offset);
9342 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9343 fill_extra_space = the_add_entry->size;
9344
9345 target_fa = find_fill_action (&target_relax_info->action_list,
9346 target_sec, entry_sec_offset);
9347 removed_diff = compute_removed_action_diff (target_fa, target_sec,
9348 entry_sec_offset, 4,
9349 fill_extra_space);
9350 if (target_fa)
9351 adjust_fill_action (target_fa, removed_diff);
9352 else
9353 text_action_add (&target_relax_info->action_list,
9354 ta_fill, target_sec, entry_sec_offset, removed_diff);
9355 }
9356
9357 /* Mark that the literal will be moved to the new location. */
9358 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
9359
9360 /* Remove the literal. */
9361 text_action_add (&relax_info->action_list,
9362 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9363
9364 /* If the section is 4-byte aligned, do not add fill. */
9365 if (sec->alignment_power > 2 && target_entry != src_entry)
9366 {
9367 int fill_extra_space;
9368 bfd_vma entry_sec_offset;
9369
9370 if (src_entry)
9371 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
9372 else
9373 entry_sec_offset = rel->r_rel.target_offset+4;
9374
9375 /* If the literal range is at the end of the section,
9376 do not add fill. */
9377 fill_extra_space = 0;
9378 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9379 entry_sec_offset);
9380 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9381 fill_extra_space = the_add_entry->size;
9382
9383 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9384 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9385 -4, fill_extra_space);
9386 if (fa)
9387 adjust_fill_action (fa, removed_diff);
9388 else
9389 text_action_add (&relax_info->action_list,
9390 ta_fill, sec, entry_sec_offset, removed_diff);
9391 }
9392
9393 return TRUE;
9394 }
9395
9396 \f
9397 /* Second relaxation pass. */
9398
9399 static int
9400 action_remove_bytes_fn (splay_tree_node node, void *p)
9401 {
9402 bfd_size_type *final_size = p;
9403 text_action *action = (text_action *)node->value;
9404
9405 *final_size -= action->removed_bytes;
9406 return 0;
9407 }
9408
9409 /* Modify all of the relocations to point to the right spot, and if this
9410 is a relaxable section, delete the unwanted literals and fix the
9411 section size. */
9412
9413 bfd_boolean
9414 relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
9415 {
9416 Elf_Internal_Rela *internal_relocs;
9417 xtensa_relax_info *relax_info;
9418 bfd_byte *contents;
9419 bfd_boolean ok = TRUE;
9420 unsigned i;
9421 bfd_boolean rv = FALSE;
9422 bfd_boolean virtual_action;
9423 bfd_size_type sec_size;
9424
9425 sec_size = bfd_get_section_limit (abfd, sec);
9426 relax_info = get_xtensa_relax_info (sec);
9427 BFD_ASSERT (relax_info);
9428
9429 /* First translate any of the fixes that have been added already. */
9430 translate_section_fixes (sec);
9431
9432 /* Handle property sections (e.g., literal tables) specially. */
9433 if (xtensa_is_property_section (sec))
9434 {
9435 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
9436 return relax_property_section (abfd, sec, link_info);
9437 }
9438
9439 internal_relocs = retrieve_internal_relocs (abfd, sec,
9440 link_info->keep_memory);
9441 if (!internal_relocs && !action_list_count (&relax_info->action_list))
9442 return TRUE;
9443
9444 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
9445 if (contents == NULL && sec_size != 0)
9446 {
9447 ok = FALSE;
9448 goto error_return;
9449 }
9450
9451 if (internal_relocs)
9452 {
9453 for (i = 0; i < sec->reloc_count; i++)
9454 {
9455 Elf_Internal_Rela *irel;
9456 xtensa_relax_info *target_relax_info;
9457 bfd_vma source_offset, old_source_offset;
9458 r_reloc r_rel;
9459 unsigned r_type;
9460 asection *target_sec;
9461
9462 /* Locally change the source address.
9463 Translate the target to the new target address.
9464 If it points to this section and has been removed,
9465 NULLify it.
9466 Write it back. */
9467
9468 irel = &internal_relocs[i];
9469 source_offset = irel->r_offset;
9470 old_source_offset = source_offset;
9471
9472 r_type = ELF32_R_TYPE (irel->r_info);
9473 r_reloc_init (&r_rel, abfd, irel, contents,
9474 bfd_get_section_limit (abfd, sec));
9475
9476 /* If this section could have changed then we may need to
9477 change the relocation's offset. */
9478
9479 if (relax_info->is_relaxable_literal_section
9480 || relax_info->is_relaxable_asm_section)
9481 {
9482 pin_internal_relocs (sec, internal_relocs);
9483
9484 if (r_type != R_XTENSA_NONE
9485 && find_removed_literal (&relax_info->removed_list,
9486 irel->r_offset))
9487 {
9488 /* Remove this relocation. */
9489 if (elf_hash_table (link_info)->dynamic_sections_created)
9490 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
9491 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
9492 irel->r_offset = offset_with_removed_text_map
9493 (&relax_info->action_list, irel->r_offset);
9494 continue;
9495 }
9496
9497 if (r_type == R_XTENSA_ASM_SIMPLIFY)
9498 {
9499 text_action *action =
9500 find_insn_action (&relax_info->action_list,
9501 irel->r_offset);
9502 if (action && (action->action == ta_convert_longcall
9503 || action->action == ta_remove_longcall))
9504 {
9505 bfd_reloc_status_type retval;
9506 char *error_message = NULL;
9507
9508 retval = contract_asm_expansion (contents, sec_size,
9509 irel, &error_message);
9510 if (retval != bfd_reloc_ok)
9511 {
9512 (*link_info->callbacks->reloc_dangerous)
9513 (link_info, error_message, abfd, sec,
9514 irel->r_offset);
9515 goto error_return;
9516 }
9517 /* Update the action so that the code that moves
9518 the contents will do the right thing. */
9519 /* ta_remove_longcall and ta_remove_insn actions are
9520 grouped together in the tree as well as
9521 ta_convert_longcall and ta_none, so that changes below
9522 can be done w/o removing and reinserting action into
9523 the tree. */
9524
9525 if (action->action == ta_remove_longcall)
9526 action->action = ta_remove_insn;
9527 else
9528 action->action = ta_none;
9529 /* Refresh the info in the r_rel. */
9530 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
9531 r_type = ELF32_R_TYPE (irel->r_info);
9532 }
9533 }
9534
9535 source_offset = offset_with_removed_text_map
9536 (&relax_info->action_list, irel->r_offset);
9537 irel->r_offset = source_offset;
9538 }
9539
9540 /* If the target section could have changed then
9541 we may need to change the relocation's target offset. */
9542
9543 target_sec = r_reloc_get_section (&r_rel);
9544
9545 /* For a reference to a discarded section from a DWARF section,
9546 i.e., where action_discarded is PRETEND, the symbol will
9547 eventually be modified to refer to the kept section (at least if
9548 the kept and discarded sections are the same size). Anticipate
9549 that here and adjust things accordingly. */
9550 if (! elf_xtensa_ignore_discarded_relocs (sec)
9551 && elf_xtensa_action_discarded (sec) == PRETEND
9552 && sec->sec_info_type != SEC_INFO_TYPE_STABS
9553 && target_sec != NULL
9554 && discarded_section (target_sec))
9555 {
9556 /* It would be natural to call _bfd_elf_check_kept_section
9557 here, but it's not exported from elflink.c. It's also a
9558 fairly expensive check. Adjusting the relocations to the
9559 discarded section is fairly harmless; it will only adjust
9560 some addends and difference values. If it turns out that
9561 _bfd_elf_check_kept_section fails later, it won't matter,
9562 so just compare the section names to find the right group
9563 member. */
9564 asection *kept = target_sec->kept_section;
9565 if (kept != NULL)
9566 {
9567 if ((kept->flags & SEC_GROUP) != 0)
9568 {
9569 asection *first = elf_next_in_group (kept);
9570 asection *s = first;
9571
9572 kept = NULL;
9573 while (s != NULL)
9574 {
9575 if (strcmp (s->name, target_sec->name) == 0)
9576 {
9577 kept = s;
9578 break;
9579 }
9580 s = elf_next_in_group (s);
9581 if (s == first)
9582 break;
9583 }
9584 }
9585 }
9586 if (kept != NULL
9587 && ((target_sec->rawsize != 0
9588 ? target_sec->rawsize : target_sec->size)
9589 == (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9590 target_sec = kept;
9591 }
9592
9593 target_relax_info = get_xtensa_relax_info (target_sec);
9594 if (target_relax_info
9595 && (target_relax_info->is_relaxable_literal_section
9596 || target_relax_info->is_relaxable_asm_section))
9597 {
9598 r_reloc new_reloc;
9599 target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
9600
9601 if (r_type == R_XTENSA_DIFF8
9602 || r_type == R_XTENSA_DIFF16
9603 || r_type == R_XTENSA_DIFF32)
9604 {
9605 bfd_signed_vma diff_value = 0;
9606 bfd_vma new_end_offset, diff_mask = 0;
9607
9608 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
9609 {
9610 (*link_info->callbacks->reloc_dangerous)
9611 (link_info, _("invalid relocation address"),
9612 abfd, sec, old_source_offset);
9613 goto error_return;
9614 }
9615
9616 switch (r_type)
9617 {
9618 case R_XTENSA_DIFF8:
9619 diff_value =
9620 bfd_get_signed_8 (abfd, &contents[old_source_offset]);
9621 break;
9622 case R_XTENSA_DIFF16:
9623 diff_value =
9624 bfd_get_signed_16 (abfd, &contents[old_source_offset]);
9625 break;
9626 case R_XTENSA_DIFF32:
9627 diff_value =
9628 bfd_get_signed_32 (abfd, &contents[old_source_offset]);
9629 break;
9630 }
9631
9632 new_end_offset = offset_with_removed_text_map
9633 (&target_relax_info->action_list,
9634 r_rel.target_offset + diff_value);
9635 diff_value = new_end_offset - new_reloc.target_offset;
9636
9637 switch (r_type)
9638 {
9639 case R_XTENSA_DIFF8:
9640 diff_mask = 0x7f;
9641 bfd_put_signed_8 (abfd, diff_value,
9642 &contents[old_source_offset]);
9643 break;
9644 case R_XTENSA_DIFF16:
9645 diff_mask = 0x7fff;
9646 bfd_put_signed_16 (abfd, diff_value,
9647 &contents[old_source_offset]);
9648 break;
9649 case R_XTENSA_DIFF32:
9650 diff_mask = 0x7fffffff;
9651 bfd_put_signed_32 (abfd, diff_value,
9652 &contents[old_source_offset]);
9653 break;
9654 }
9655
9656 /* Check for overflow. Sign bits must be all zeroes or all ones */
9657 if ((diff_value & ~diff_mask) != 0 &&
9658 (diff_value & ~diff_mask) != (-1 & ~diff_mask))
9659 {
9660 (*link_info->callbacks->reloc_dangerous)
9661 (link_info, _("overflow after relaxation"),
9662 abfd, sec, old_source_offset);
9663 goto error_return;
9664 }
9665
9666 pin_contents (sec, contents);
9667 }
9668
9669 /* If the relocation still references a section in the same
9670 input file, modify the relocation directly instead of
9671 adding a "fix" record. */
9672 if (target_sec->owner == abfd)
9673 {
9674 unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
9675 irel->r_info = ELF32_R_INFO (r_symndx, r_type);
9676 irel->r_addend = new_reloc.rela.r_addend;
9677 pin_internal_relocs (sec, internal_relocs);
9678 }
9679 else
9680 {
9681 bfd_vma addend_displacement;
9682 reloc_bfd_fix *fix;
9683
9684 addend_displacement =
9685 new_reloc.target_offset + new_reloc.virtual_offset;
9686 fix = reloc_bfd_fix_init (sec, source_offset, r_type,
9687 target_sec,
9688 addend_displacement, TRUE);
9689 add_fix (sec, fix);
9690 }
9691 }
9692 }
9693 }
9694
9695 if ((relax_info->is_relaxable_literal_section
9696 || relax_info->is_relaxable_asm_section)
9697 && action_list_count (&relax_info->action_list))
9698 {
9699 /* Walk through the planned actions and build up a table
9700 of move, copy and fill records. Use the move, copy and
9701 fill records to perform the actions once. */
9702
9703 bfd_size_type final_size, copy_size, orig_insn_size;
9704 bfd_byte *scratch = NULL;
9705 bfd_byte *dup_contents = NULL;
9706 bfd_size_type orig_size = sec->size;
9707 bfd_vma orig_dot = 0;
9708 bfd_vma orig_dot_copied = 0; /* Byte copied already from
9709 orig dot in physical memory. */
9710 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
9711 bfd_vma dup_dot = 0;
9712
9713 text_action *action;
9714
9715 final_size = sec->size;
9716
9717 splay_tree_foreach (relax_info->action_list.tree,
9718 action_remove_bytes_fn, &final_size);
9719 scratch = (bfd_byte *) bfd_zmalloc (final_size);
9720 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
9721
9722 /* The dot is the current fill location. */
9723 #if DEBUG
9724 print_action_list (stderr, &relax_info->action_list);
9725 #endif
9726
9727 for (action = action_first (&relax_info->action_list); action;
9728 action = action_next (&relax_info->action_list, action))
9729 {
9730 virtual_action = FALSE;
9731 if (action->offset > orig_dot)
9732 {
9733 orig_dot += orig_dot_copied;
9734 orig_dot_copied = 0;
9735 orig_dot_vo = 0;
9736 /* Out of the virtual world. */
9737 }
9738
9739 if (action->offset > orig_dot)
9740 {
9741 copy_size = action->offset - orig_dot;
9742 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9743 orig_dot += copy_size;
9744 dup_dot += copy_size;
9745 BFD_ASSERT (action->offset == orig_dot);
9746 }
9747 else if (action->offset < orig_dot)
9748 {
9749 if (action->action == ta_fill
9750 && action->offset - action->removed_bytes == orig_dot)
9751 {
9752 /* This is OK because the fill only effects the dup_dot. */
9753 }
9754 else if (action->action == ta_add_literal)
9755 {
9756 /* TBD. Might need to handle this. */
9757 }
9758 }
9759 if (action->offset == orig_dot)
9760 {
9761 if (action->virtual_offset > orig_dot_vo)
9762 {
9763 if (orig_dot_vo == 0)
9764 {
9765 /* Need to copy virtual_offset bytes. Probably four. */
9766 copy_size = action->virtual_offset - orig_dot_vo;
9767 memmove (&dup_contents[dup_dot],
9768 &contents[orig_dot], copy_size);
9769 orig_dot_copied = copy_size;
9770 dup_dot += copy_size;
9771 }
9772 virtual_action = TRUE;
9773 }
9774 else
9775 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
9776 }
9777 switch (action->action)
9778 {
9779 case ta_remove_literal:
9780 case ta_remove_insn:
9781 BFD_ASSERT (action->removed_bytes >= 0);
9782 orig_dot += action->removed_bytes;
9783 break;
9784
9785 case ta_narrow_insn:
9786 orig_insn_size = 3;
9787 copy_size = 2;
9788 memmove (scratch, &contents[orig_dot], orig_insn_size);
9789 BFD_ASSERT (action->removed_bytes == 1);
9790 rv = narrow_instruction (scratch, final_size, 0);
9791 BFD_ASSERT (rv);
9792 memmove (&dup_contents[dup_dot], scratch, copy_size);
9793 orig_dot += orig_insn_size;
9794 dup_dot += copy_size;
9795 break;
9796
9797 case ta_fill:
9798 if (action->removed_bytes >= 0)
9799 orig_dot += action->removed_bytes;
9800 else
9801 {
9802 /* Already zeroed in dup_contents. Just bump the
9803 counters. */
9804 dup_dot += (-action->removed_bytes);
9805 }
9806 break;
9807
9808 case ta_none:
9809 BFD_ASSERT (action->removed_bytes == 0);
9810 break;
9811
9812 case ta_convert_longcall:
9813 case ta_remove_longcall:
9814 /* These will be removed or converted before we get here. */
9815 BFD_ASSERT (0);
9816 break;
9817
9818 case ta_widen_insn:
9819 orig_insn_size = 2;
9820 copy_size = 3;
9821 memmove (scratch, &contents[orig_dot], orig_insn_size);
9822 BFD_ASSERT (action->removed_bytes == -1);
9823 rv = widen_instruction (scratch, final_size, 0);
9824 BFD_ASSERT (rv);
9825 memmove (&dup_contents[dup_dot], scratch, copy_size);
9826 orig_dot += orig_insn_size;
9827 dup_dot += copy_size;
9828 break;
9829
9830 case ta_add_literal:
9831 orig_insn_size = 0;
9832 copy_size = 4;
9833 BFD_ASSERT (action->removed_bytes == -4);
9834 /* TBD -- place the literal value here and insert
9835 into the table. */
9836 memset (&dup_contents[dup_dot], 0, 4);
9837 pin_internal_relocs (sec, internal_relocs);
9838 pin_contents (sec, contents);
9839
9840 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
9841 relax_info, &internal_relocs, &action->value))
9842 goto error_return;
9843
9844 if (virtual_action)
9845 orig_dot_vo += copy_size;
9846
9847 orig_dot += orig_insn_size;
9848 dup_dot += copy_size;
9849 break;
9850
9851 default:
9852 /* Not implemented yet. */
9853 BFD_ASSERT (0);
9854 break;
9855 }
9856
9857 BFD_ASSERT (dup_dot <= final_size);
9858 BFD_ASSERT (orig_dot <= orig_size);
9859 }
9860
9861 orig_dot += orig_dot_copied;
9862 orig_dot_copied = 0;
9863
9864 if (orig_dot != orig_size)
9865 {
9866 copy_size = orig_size - orig_dot;
9867 BFD_ASSERT (orig_size > orig_dot);
9868 BFD_ASSERT (dup_dot + copy_size == final_size);
9869 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9870 orig_dot += copy_size;
9871 dup_dot += copy_size;
9872 }
9873 BFD_ASSERT (orig_size == orig_dot);
9874 BFD_ASSERT (final_size == dup_dot);
9875
9876 /* Move the dup_contents back. */
9877 if (final_size > orig_size)
9878 {
9879 /* Contents need to be reallocated. Swap the dup_contents into
9880 contents. */
9881 sec->contents = dup_contents;
9882 free (contents);
9883 contents = dup_contents;
9884 pin_contents (sec, contents);
9885 }
9886 else
9887 {
9888 BFD_ASSERT (final_size <= orig_size);
9889 memset (contents, 0, orig_size);
9890 memcpy (contents, dup_contents, final_size);
9891 free (dup_contents);
9892 }
9893 free (scratch);
9894 pin_contents (sec, contents);
9895
9896 if (sec->rawsize == 0)
9897 sec->rawsize = sec->size;
9898 sec->size = final_size;
9899 }
9900
9901 error_return:
9902 release_internal_relocs (sec, internal_relocs);
9903 release_contents (sec, contents);
9904 return ok;
9905 }
9906
9907
9908 static bfd_boolean
9909 translate_section_fixes (asection *sec)
9910 {
9911 xtensa_relax_info *relax_info;
9912 reloc_bfd_fix *r;
9913
9914 relax_info = get_xtensa_relax_info (sec);
9915 if (!relax_info)
9916 return TRUE;
9917
9918 for (r = relax_info->fix_list; r != NULL; r = r->next)
9919 if (!translate_reloc_bfd_fix (r))
9920 return FALSE;
9921
9922 return TRUE;
9923 }
9924
9925
9926 /* Translate a fix given the mapping in the relax info for the target
9927 section. If it has already been translated, no work is required. */
9928
9929 static bfd_boolean
9930 translate_reloc_bfd_fix (reloc_bfd_fix *fix)
9931 {
9932 reloc_bfd_fix new_fix;
9933 asection *sec;
9934 xtensa_relax_info *relax_info;
9935 removed_literal *removed;
9936 bfd_vma new_offset, target_offset;
9937
9938 if (fix->translated)
9939 return TRUE;
9940
9941 sec = fix->target_sec;
9942 target_offset = fix->target_offset;
9943
9944 relax_info = get_xtensa_relax_info (sec);
9945 if (!relax_info)
9946 {
9947 fix->translated = TRUE;
9948 return TRUE;
9949 }
9950
9951 new_fix = *fix;
9952
9953 /* The fix does not need to be translated if the section cannot change. */
9954 if (!relax_info->is_relaxable_literal_section
9955 && !relax_info->is_relaxable_asm_section)
9956 {
9957 fix->translated = TRUE;
9958 return TRUE;
9959 }
9960
9961 /* If the literal has been moved and this relocation was on an
9962 opcode, then the relocation should move to the new literal
9963 location. Otherwise, the relocation should move within the
9964 section. */
9965
9966 removed = FALSE;
9967 if (is_operand_relocation (fix->src_type))
9968 {
9969 /* Check if the original relocation is against a literal being
9970 removed. */
9971 removed = find_removed_literal (&relax_info->removed_list,
9972 target_offset);
9973 }
9974
9975 if (removed)
9976 {
9977 asection *new_sec;
9978
9979 /* The fact that there is still a relocation to this literal indicates
9980 that the literal is being coalesced, not simply removed. */
9981 BFD_ASSERT (removed->to.abfd != NULL);
9982
9983 /* This was moved to some other address (possibly another section). */
9984 new_sec = r_reloc_get_section (&removed->to);
9985 if (new_sec != sec)
9986 {
9987 sec = new_sec;
9988 relax_info = get_xtensa_relax_info (sec);
9989 if (!relax_info ||
9990 (!relax_info->is_relaxable_literal_section
9991 && !relax_info->is_relaxable_asm_section))
9992 {
9993 target_offset = removed->to.target_offset;
9994 new_fix.target_sec = new_sec;
9995 new_fix.target_offset = target_offset;
9996 new_fix.translated = TRUE;
9997 *fix = new_fix;
9998 return TRUE;
9999 }
10000 }
10001 target_offset = removed->to.target_offset;
10002 new_fix.target_sec = new_sec;
10003 }
10004
10005 /* The target address may have been moved within its section. */
10006 new_offset = offset_with_removed_text (&relax_info->action_list,
10007 target_offset);
10008
10009 new_fix.target_offset = new_offset;
10010 new_fix.target_offset = new_offset;
10011 new_fix.translated = TRUE;
10012 *fix = new_fix;
10013 return TRUE;
10014 }
10015
10016
10017 /* Fix up a relocation to take account of removed literals. */
10018
10019 static asection *
10020 translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
10021 {
10022 xtensa_relax_info *relax_info;
10023 removed_literal *removed;
10024 bfd_vma target_offset, base_offset;
10025
10026 *new_rel = *orig_rel;
10027
10028 if (!r_reloc_is_defined (orig_rel))
10029 return sec ;
10030
10031 relax_info = get_xtensa_relax_info (sec);
10032 BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
10033 || relax_info->is_relaxable_asm_section));
10034
10035 target_offset = orig_rel->target_offset;
10036
10037 removed = FALSE;
10038 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
10039 {
10040 /* Check if the original relocation is against a literal being
10041 removed. */
10042 removed = find_removed_literal (&relax_info->removed_list,
10043 target_offset);
10044 }
10045 if (removed && removed->to.abfd)
10046 {
10047 asection *new_sec;
10048
10049 /* The fact that there is still a relocation to this literal indicates
10050 that the literal is being coalesced, not simply removed. */
10051 BFD_ASSERT (removed->to.abfd != NULL);
10052
10053 /* This was moved to some other address
10054 (possibly in another section). */
10055 *new_rel = removed->to;
10056 new_sec = r_reloc_get_section (new_rel);
10057 if (new_sec != sec)
10058 {
10059 sec = new_sec;
10060 relax_info = get_xtensa_relax_info (sec);
10061 if (!relax_info
10062 || (!relax_info->is_relaxable_literal_section
10063 && !relax_info->is_relaxable_asm_section))
10064 return sec;
10065 }
10066 target_offset = new_rel->target_offset;
10067 }
10068
10069 /* Find the base offset of the reloc symbol, excluding any addend from the
10070 reloc or from the section contents (for a partial_inplace reloc). Then
10071 find the adjusted values of the offsets due to relaxation. The base
10072 offset is needed to determine the change to the reloc's addend; the reloc
10073 addend should not be adjusted due to relaxations located before the base
10074 offset. */
10075
10076 base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
10077 if (base_offset <= target_offset)
10078 {
10079 int base_removed = removed_by_actions_map (&relax_info->action_list,
10080 base_offset, FALSE);
10081 int addend_removed = removed_by_actions_map (&relax_info->action_list,
10082 target_offset, FALSE) -
10083 base_removed;
10084
10085 new_rel->target_offset = target_offset - base_removed - addend_removed;
10086 new_rel->rela.r_addend -= addend_removed;
10087 }
10088 else
10089 {
10090 /* Handle a negative addend. The base offset comes first. */
10091 int tgt_removed = removed_by_actions_map (&relax_info->action_list,
10092 target_offset, FALSE);
10093 int addend_removed = removed_by_actions_map (&relax_info->action_list,
10094 base_offset, FALSE) -
10095 tgt_removed;
10096
10097 new_rel->target_offset = target_offset - tgt_removed;
10098 new_rel->rela.r_addend += addend_removed;
10099 }
10100
10101 return sec;
10102 }
10103
10104
10105 /* For dynamic links, there may be a dynamic relocation for each
10106 literal. The number of dynamic relocations must be computed in
10107 size_dynamic_sections, which occurs before relaxation. When a
10108 literal is removed, this function checks if there is a corresponding
10109 dynamic relocation and shrinks the size of the appropriate dynamic
10110 relocation section accordingly. At this point, the contents of the
10111 dynamic relocation sections have not yet been filled in, so there's
10112 nothing else that needs to be done. */
10113
10114 static void
10115 shrink_dynamic_reloc_sections (struct bfd_link_info *info,
10116 bfd *abfd,
10117 asection *input_section,
10118 Elf_Internal_Rela *rel)
10119 {
10120 struct elf_xtensa_link_hash_table *htab;
10121 Elf_Internal_Shdr *symtab_hdr;
10122 struct elf_link_hash_entry **sym_hashes;
10123 unsigned long r_symndx;
10124 int r_type;
10125 struct elf_link_hash_entry *h;
10126 bfd_boolean dynamic_symbol;
10127
10128 htab = elf_xtensa_hash_table (info);
10129 if (htab == NULL)
10130 return;
10131
10132 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10133 sym_hashes = elf_sym_hashes (abfd);
10134
10135 r_type = ELF32_R_TYPE (rel->r_info);
10136 r_symndx = ELF32_R_SYM (rel->r_info);
10137
10138 if (r_symndx < symtab_hdr->sh_info)
10139 h = NULL;
10140 else
10141 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
10142
10143 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
10144
10145 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
10146 && (input_section->flags & SEC_ALLOC) != 0
10147 && (dynamic_symbol || bfd_link_pic (info))
10148 && (!h || h->root.type != bfd_link_hash_undefweak
10149 || (dynamic_symbol
10150 && (bfd_link_dll (info) || info->export_dynamic))))
10151 {
10152 asection *srel;
10153 bfd_boolean is_plt = FALSE;
10154
10155 if (dynamic_symbol && r_type == R_XTENSA_PLT)
10156 {
10157 srel = htab->elf.srelplt;
10158 is_plt = TRUE;
10159 }
10160 else
10161 srel = htab->elf.srelgot;
10162
10163 /* Reduce size of the .rela.* section by one reloc. */
10164 BFD_ASSERT (srel != NULL);
10165 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
10166 srel->size -= sizeof (Elf32_External_Rela);
10167
10168 if (is_plt)
10169 {
10170 asection *splt, *sgotplt, *srelgot;
10171 int reloc_index, chunk;
10172
10173 /* Find the PLT reloc index of the entry being removed. This
10174 is computed from the size of ".rela.plt". It is needed to
10175 figure out which PLT chunk to resize. Usually "last index
10176 = size - 1" since the index starts at zero, but in this
10177 context, the size has just been decremented so there's no
10178 need to subtract one. */
10179 reloc_index = srel->size / sizeof (Elf32_External_Rela);
10180
10181 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
10182 splt = elf_xtensa_get_plt_section (info, chunk);
10183 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
10184 BFD_ASSERT (splt != NULL && sgotplt != NULL);
10185
10186 /* Check if an entire PLT chunk has just been eliminated. */
10187 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
10188 {
10189 /* The two magic GOT entries for that chunk can go away. */
10190 srelgot = htab->elf.srelgot;
10191 BFD_ASSERT (srelgot != NULL);
10192 srelgot->reloc_count -= 2;
10193 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
10194 sgotplt->size -= 8;
10195
10196 /* There should be only one entry left (and it will be
10197 removed below). */
10198 BFD_ASSERT (sgotplt->size == 4);
10199 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
10200 }
10201
10202 BFD_ASSERT (sgotplt->size >= 4);
10203 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
10204
10205 sgotplt->size -= 4;
10206 splt->size -= PLT_ENTRY_SIZE;
10207 }
10208 }
10209 }
10210
10211
10212 /* Take an r_rel and move it to another section. This usually
10213 requires extending the interal_relocation array and pinning it. If
10214 the original r_rel is from the same BFD, we can complete this here.
10215 Otherwise, we add a fix record to let the final link fix the
10216 appropriate address. Contents and internal relocations for the
10217 section must be pinned after calling this routine. */
10218
10219 static bfd_boolean
10220 move_literal (bfd *abfd,
10221 struct bfd_link_info *link_info,
10222 asection *sec,
10223 bfd_vma offset,
10224 bfd_byte *contents,
10225 xtensa_relax_info *relax_info,
10226 Elf_Internal_Rela **internal_relocs_p,
10227 const literal_value *lit)
10228 {
10229 Elf_Internal_Rela *new_relocs = NULL;
10230 size_t new_relocs_count = 0;
10231 Elf_Internal_Rela this_rela;
10232 const r_reloc *r_rel;
10233
10234 r_rel = &lit->r_rel;
10235 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
10236
10237 if (r_reloc_is_const (r_rel))
10238 bfd_put_32 (abfd, lit->value, contents + offset);
10239 else
10240 {
10241 int r_type;
10242 unsigned i;
10243 reloc_bfd_fix *fix;
10244 unsigned insert_at;
10245
10246 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
10247
10248 /* This is the difficult case. We have to create a fix up. */
10249 this_rela.r_offset = offset;
10250 this_rela.r_info = ELF32_R_INFO (0, r_type);
10251 this_rela.r_addend =
10252 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
10253 bfd_put_32 (abfd, lit->value, contents + offset);
10254
10255 /* Currently, we cannot move relocations during a relocatable link. */
10256 BFD_ASSERT (!bfd_link_relocatable (link_info));
10257 fix = reloc_bfd_fix_init (sec, offset, r_type,
10258 r_reloc_get_section (r_rel),
10259 r_rel->target_offset + r_rel->virtual_offset,
10260 FALSE);
10261 /* We also need to mark that relocations are needed here. */
10262 sec->flags |= SEC_RELOC;
10263
10264 translate_reloc_bfd_fix (fix);
10265 /* This fix has not yet been translated. */
10266 add_fix (sec, fix);
10267
10268 /* Add the relocation. If we have already allocated our own
10269 space for the relocations and we have room for more, then use
10270 it. Otherwise, allocate new space and move the literals. */
10271 insert_at = sec->reloc_count;
10272 for (i = 0; i < sec->reloc_count; ++i)
10273 {
10274 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
10275 {
10276 insert_at = i;
10277 break;
10278 }
10279 }
10280
10281 if (*internal_relocs_p != relax_info->allocated_relocs
10282 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
10283 {
10284 BFD_ASSERT (relax_info->allocated_relocs == NULL
10285 || sec->reloc_count == relax_info->relocs_count);
10286
10287 if (relax_info->allocated_relocs_count == 0)
10288 new_relocs_count = (sec->reloc_count + 2) * 2;
10289 else
10290 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
10291
10292 new_relocs = (Elf_Internal_Rela *)
10293 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
10294 if (!new_relocs)
10295 return FALSE;
10296
10297 /* We could handle this more quickly by finding the split point. */
10298 if (insert_at != 0)
10299 memcpy (new_relocs, *internal_relocs_p,
10300 insert_at * sizeof (Elf_Internal_Rela));
10301
10302 new_relocs[insert_at] = this_rela;
10303
10304 if (insert_at != sec->reloc_count)
10305 memcpy (new_relocs + insert_at + 1,
10306 (*internal_relocs_p) + insert_at,
10307 (sec->reloc_count - insert_at)
10308 * sizeof (Elf_Internal_Rela));
10309
10310 if (*internal_relocs_p != relax_info->allocated_relocs)
10311 {
10312 /* The first time we re-allocate, we can only free the
10313 old relocs if they were allocated with bfd_malloc.
10314 This is not true when keep_memory is in effect. */
10315 if (!link_info->keep_memory)
10316 free (*internal_relocs_p);
10317 }
10318 else
10319 free (*internal_relocs_p);
10320 relax_info->allocated_relocs = new_relocs;
10321 relax_info->allocated_relocs_count = new_relocs_count;
10322 elf_section_data (sec)->relocs = new_relocs;
10323 sec->reloc_count++;
10324 relax_info->relocs_count = sec->reloc_count;
10325 *internal_relocs_p = new_relocs;
10326 }
10327 else
10328 {
10329 if (insert_at != sec->reloc_count)
10330 {
10331 unsigned idx;
10332 for (idx = sec->reloc_count; idx > insert_at; idx--)
10333 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
10334 }
10335 (*internal_relocs_p)[insert_at] = this_rela;
10336 sec->reloc_count++;
10337 if (relax_info->allocated_relocs)
10338 relax_info->relocs_count = sec->reloc_count;
10339 }
10340 }
10341 return TRUE;
10342 }
10343
10344
10345 /* This is similar to relax_section except that when a target is moved,
10346 we shift addresses up. We also need to modify the size. This
10347 algorithm does NOT allow for relocations into the middle of the
10348 property sections. */
10349
10350 static bfd_boolean
10351 relax_property_section (bfd *abfd,
10352 asection *sec,
10353 struct bfd_link_info *link_info)
10354 {
10355 Elf_Internal_Rela *internal_relocs;
10356 bfd_byte *contents;
10357 unsigned i;
10358 bfd_boolean ok = TRUE;
10359 bfd_boolean is_full_prop_section;
10360 size_t last_zfill_target_offset = 0;
10361 asection *last_zfill_target_sec = NULL;
10362 bfd_size_type sec_size;
10363 bfd_size_type entry_size;
10364
10365 sec_size = bfd_get_section_limit (abfd, sec);
10366 internal_relocs = retrieve_internal_relocs (abfd, sec,
10367 link_info->keep_memory);
10368 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
10369 if (contents == NULL && sec_size != 0)
10370 {
10371 ok = FALSE;
10372 goto error_return;
10373 }
10374
10375 is_full_prop_section = xtensa_is_proptable_section (sec);
10376 if (is_full_prop_section)
10377 entry_size = 12;
10378 else
10379 entry_size = 8;
10380
10381 if (internal_relocs)
10382 {
10383 for (i = 0; i < sec->reloc_count; i++)
10384 {
10385 Elf_Internal_Rela *irel;
10386 xtensa_relax_info *target_relax_info;
10387 unsigned r_type;
10388 asection *target_sec;
10389 literal_value val;
10390 bfd_byte *size_p, *flags_p;
10391
10392 /* Locally change the source address.
10393 Translate the target to the new target address.
10394 If it points to this section and has been removed, MOVE IT.
10395 Also, don't forget to modify the associated SIZE at
10396 (offset + 4). */
10397
10398 irel = &internal_relocs[i];
10399 r_type = ELF32_R_TYPE (irel->r_info);
10400 if (r_type == R_XTENSA_NONE)
10401 continue;
10402
10403 /* Find the literal value. */
10404 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
10405 size_p = &contents[irel->r_offset + 4];
10406 flags_p = NULL;
10407 if (is_full_prop_section)
10408 flags_p = &contents[irel->r_offset + 8];
10409 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
10410
10411 target_sec = r_reloc_get_section (&val.r_rel);
10412 target_relax_info = get_xtensa_relax_info (target_sec);
10413
10414 if (target_relax_info
10415 && (target_relax_info->is_relaxable_literal_section
10416 || target_relax_info->is_relaxable_asm_section ))
10417 {
10418 /* Translate the relocation's destination. */
10419 bfd_vma old_offset = val.r_rel.target_offset;
10420 bfd_vma new_offset;
10421 long old_size, new_size;
10422 int removed_by_old_offset =
10423 removed_by_actions_map (&target_relax_info->action_list,
10424 old_offset, FALSE);
10425 new_offset = old_offset - removed_by_old_offset;
10426
10427 /* Assert that we are not out of bounds. */
10428 old_size = bfd_get_32 (abfd, size_p);
10429 new_size = old_size;
10430
10431 if (old_size == 0)
10432 {
10433 /* Only the first zero-sized unreachable entry is
10434 allowed to expand. In this case the new offset
10435 should be the offset before the fill and the new
10436 size is the expansion size. For other zero-sized
10437 entries the resulting size should be zero with an
10438 offset before or after the fill address depending
10439 on whether the expanding unreachable entry
10440 preceeds it. */
10441 if (last_zfill_target_sec == 0
10442 || last_zfill_target_sec != target_sec
10443 || last_zfill_target_offset != old_offset)
10444 {
10445 bfd_vma new_end_offset = new_offset;
10446
10447 /* Recompute the new_offset, but this time don't
10448 include any fill inserted by relaxation. */
10449 removed_by_old_offset =
10450 removed_by_actions_map (&target_relax_info->action_list,
10451 old_offset, TRUE);
10452 new_offset = old_offset - removed_by_old_offset;
10453
10454 /* If it is not unreachable and we have not yet
10455 seen an unreachable at this address, place it
10456 before the fill address. */
10457 if (flags_p && (bfd_get_32 (abfd, flags_p)
10458 & XTENSA_PROP_UNREACHABLE) != 0)
10459 {
10460 new_size = new_end_offset - new_offset;
10461
10462 last_zfill_target_sec = target_sec;
10463 last_zfill_target_offset = old_offset;
10464 }
10465 }
10466 }
10467 else
10468 {
10469 int removed_by_old_offset_size =
10470 removed_by_actions_map (&target_relax_info->action_list,
10471 old_offset + old_size, TRUE);
10472 new_size -= removed_by_old_offset_size - removed_by_old_offset;
10473 }
10474
10475 if (new_size != old_size)
10476 {
10477 bfd_put_32 (abfd, new_size, size_p);
10478 pin_contents (sec, contents);
10479 }
10480
10481 if (new_offset != old_offset)
10482 {
10483 bfd_vma diff = new_offset - old_offset;
10484 irel->r_addend += diff;
10485 pin_internal_relocs (sec, internal_relocs);
10486 }
10487 }
10488 }
10489 }
10490
10491 /* Combine adjacent property table entries. This is also done in
10492 finish_dynamic_sections() but at that point it's too late to
10493 reclaim the space in the output section, so we do this twice. */
10494
10495 if (internal_relocs && (!bfd_link_relocatable (link_info)
10496 || xtensa_is_littable_section (sec)))
10497 {
10498 Elf_Internal_Rela *last_irel = NULL;
10499 Elf_Internal_Rela *irel, *next_rel, *rel_end;
10500 int removed_bytes = 0;
10501 bfd_vma offset;
10502 flagword predef_flags;
10503
10504 predef_flags = xtensa_get_property_predef_flags (sec);
10505
10506 /* Walk over memory and relocations at the same time.
10507 This REQUIRES that the internal_relocs be sorted by offset. */
10508 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
10509 internal_reloc_compare);
10510
10511 pin_internal_relocs (sec, internal_relocs);
10512 pin_contents (sec, contents);
10513
10514 next_rel = internal_relocs;
10515 rel_end = internal_relocs + sec->reloc_count;
10516
10517 BFD_ASSERT (sec->size % entry_size == 0);
10518
10519 for (offset = 0; offset < sec->size; offset += entry_size)
10520 {
10521 Elf_Internal_Rela *offset_rel, *extra_rel;
10522 bfd_vma bytes_to_remove, size, actual_offset;
10523 bfd_boolean remove_this_rel;
10524 flagword flags;
10525
10526 /* Find the first relocation for the entry at the current offset.
10527 Adjust the offsets of any extra relocations for the previous
10528 entry. */
10529 offset_rel = NULL;
10530 if (next_rel)
10531 {
10532 for (irel = next_rel; irel < rel_end; irel++)
10533 {
10534 if ((irel->r_offset == offset
10535 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
10536 || irel->r_offset > offset)
10537 {
10538 offset_rel = irel;
10539 break;
10540 }
10541 irel->r_offset -= removed_bytes;
10542 }
10543 }
10544
10545 /* Find the next relocation (if there are any left). */
10546 extra_rel = NULL;
10547 if (offset_rel)
10548 {
10549 for (irel = offset_rel + 1; irel < rel_end; irel++)
10550 {
10551 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
10552 {
10553 extra_rel = irel;
10554 break;
10555 }
10556 }
10557 }
10558
10559 /* Check if there are relocations on the current entry. There
10560 should usually be a relocation on the offset field. If there
10561 are relocations on the size or flags, then we can't optimize
10562 this entry. Also, find the next relocation to examine on the
10563 next iteration. */
10564 if (offset_rel)
10565 {
10566 if (offset_rel->r_offset >= offset + entry_size)
10567 {
10568 next_rel = offset_rel;
10569 /* There are no relocations on the current entry, but we
10570 might still be able to remove it if the size is zero. */
10571 offset_rel = NULL;
10572 }
10573 else if (offset_rel->r_offset > offset
10574 || (extra_rel
10575 && extra_rel->r_offset < offset + entry_size))
10576 {
10577 /* There is a relocation on the size or flags, so we can't
10578 do anything with this entry. Continue with the next. */
10579 next_rel = offset_rel;
10580 continue;
10581 }
10582 else
10583 {
10584 BFD_ASSERT (offset_rel->r_offset == offset);
10585 offset_rel->r_offset -= removed_bytes;
10586 next_rel = offset_rel + 1;
10587 }
10588 }
10589 else
10590 next_rel = NULL;
10591
10592 remove_this_rel = FALSE;
10593 bytes_to_remove = 0;
10594 actual_offset = offset - removed_bytes;
10595 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
10596
10597 if (is_full_prop_section)
10598 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
10599 else
10600 flags = predef_flags;
10601
10602 if (size == 0
10603 && (flags & XTENSA_PROP_ALIGN) == 0
10604 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
10605 {
10606 /* Always remove entries with zero size and no alignment. */
10607 bytes_to_remove = entry_size;
10608 if (offset_rel)
10609 remove_this_rel = TRUE;
10610 }
10611 else if (offset_rel
10612 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
10613 {
10614 if (last_irel)
10615 {
10616 flagword old_flags;
10617 bfd_vma old_size =
10618 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
10619 bfd_vma old_address =
10620 (last_irel->r_addend
10621 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
10622 bfd_vma new_address =
10623 (offset_rel->r_addend
10624 + bfd_get_32 (abfd, &contents[actual_offset]));
10625 if (is_full_prop_section)
10626 old_flags = bfd_get_32
10627 (abfd, &contents[last_irel->r_offset + 8]);
10628 else
10629 old_flags = predef_flags;
10630
10631 if ((ELF32_R_SYM (offset_rel->r_info)
10632 == ELF32_R_SYM (last_irel->r_info))
10633 && old_address + old_size == new_address
10634 && old_flags == flags
10635 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
10636 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
10637 {
10638 /* Fix the old size. */
10639 bfd_put_32 (abfd, old_size + size,
10640 &contents[last_irel->r_offset + 4]);
10641 bytes_to_remove = entry_size;
10642 remove_this_rel = TRUE;
10643 }
10644 else
10645 last_irel = offset_rel;
10646 }
10647 else
10648 last_irel = offset_rel;
10649 }
10650
10651 if (remove_this_rel)
10652 {
10653 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
10654 offset_rel->r_offset = 0;
10655 }
10656
10657 if (bytes_to_remove != 0)
10658 {
10659 removed_bytes += bytes_to_remove;
10660 if (offset + bytes_to_remove < sec->size)
10661 memmove (&contents[actual_offset],
10662 &contents[actual_offset + bytes_to_remove],
10663 sec->size - offset - bytes_to_remove);
10664 }
10665 }
10666
10667 if (removed_bytes)
10668 {
10669 /* Fix up any extra relocations on the last entry. */
10670 for (irel = next_rel; irel < rel_end; irel++)
10671 irel->r_offset -= removed_bytes;
10672
10673 /* Clear the removed bytes. */
10674 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
10675
10676 if (sec->rawsize == 0)
10677 sec->rawsize = sec->size;
10678 sec->size -= removed_bytes;
10679
10680 if (xtensa_is_littable_section (sec))
10681 {
10682 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
10683 if (sgotloc)
10684 sgotloc->size -= removed_bytes;
10685 }
10686 }
10687 }
10688
10689 error_return:
10690 release_internal_relocs (sec, internal_relocs);
10691 release_contents (sec, contents);
10692 return ok;
10693 }
10694
10695 \f
10696 /* Third relaxation pass. */
10697
10698 /* Change symbol values to account for removed literals. */
10699
10700 bfd_boolean
10701 relax_section_symbols (bfd *abfd, asection *sec)
10702 {
10703 xtensa_relax_info *relax_info;
10704 unsigned int sec_shndx;
10705 Elf_Internal_Shdr *symtab_hdr;
10706 Elf_Internal_Sym *isymbuf;
10707 unsigned i, num_syms, num_locals;
10708
10709 relax_info = get_xtensa_relax_info (sec);
10710 BFD_ASSERT (relax_info);
10711
10712 if (!relax_info->is_relaxable_literal_section
10713 && !relax_info->is_relaxable_asm_section)
10714 return TRUE;
10715
10716 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
10717
10718 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10719 isymbuf = retrieve_local_syms (abfd);
10720
10721 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
10722 num_locals = symtab_hdr->sh_info;
10723
10724 /* Adjust the local symbols defined in this section. */
10725 for (i = 0; i < num_locals; i++)
10726 {
10727 Elf_Internal_Sym *isym = &isymbuf[i];
10728
10729 if (isym->st_shndx == sec_shndx)
10730 {
10731 bfd_vma orig_addr = isym->st_value;
10732 int removed = removed_by_actions_map (&relax_info->action_list,
10733 orig_addr, FALSE);
10734
10735 isym->st_value -= removed;
10736 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
10737 isym->st_size -=
10738 removed_by_actions_map (&relax_info->action_list,
10739 orig_addr + isym->st_size, FALSE) -
10740 removed;
10741 }
10742 }
10743
10744 /* Now adjust the global symbols defined in this section. */
10745 for (i = 0; i < (num_syms - num_locals); i++)
10746 {
10747 struct elf_link_hash_entry *sym_hash;
10748
10749 sym_hash = elf_sym_hashes (abfd)[i];
10750
10751 if (sym_hash->root.type == bfd_link_hash_warning)
10752 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
10753
10754 if ((sym_hash->root.type == bfd_link_hash_defined
10755 || sym_hash->root.type == bfd_link_hash_defweak)
10756 && sym_hash->root.u.def.section == sec)
10757 {
10758 bfd_vma orig_addr = sym_hash->root.u.def.value;
10759 int removed = removed_by_actions_map (&relax_info->action_list,
10760 orig_addr, FALSE);
10761
10762 sym_hash->root.u.def.value -= removed;
10763
10764 if (sym_hash->type == STT_FUNC)
10765 sym_hash->size -=
10766 removed_by_actions_map (&relax_info->action_list,
10767 orig_addr + sym_hash->size, FALSE) -
10768 removed;
10769 }
10770 }
10771
10772 return TRUE;
10773 }
10774
10775 \f
10776 /* "Fix" handling functions, called while performing relocations. */
10777
10778 static bfd_boolean
10779 do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
10780 bfd *input_bfd,
10781 asection *input_section,
10782 bfd_byte *contents)
10783 {
10784 r_reloc r_rel;
10785 asection *sec, *old_sec;
10786 bfd_vma old_offset;
10787 int r_type = ELF32_R_TYPE (rel->r_info);
10788 reloc_bfd_fix *fix;
10789
10790 if (r_type == R_XTENSA_NONE)
10791 return TRUE;
10792
10793 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10794 if (!fix)
10795 return TRUE;
10796
10797 r_reloc_init (&r_rel, input_bfd, rel, contents,
10798 bfd_get_section_limit (input_bfd, input_section));
10799 old_sec = r_reloc_get_section (&r_rel);
10800 old_offset = r_rel.target_offset;
10801
10802 if (!old_sec || !r_reloc_is_defined (&r_rel))
10803 {
10804 if (r_type != R_XTENSA_ASM_EXPAND)
10805 {
10806 _bfd_error_handler
10807 /* xgettext:c-format */
10808 (_("%pB(%pA+%#" PRIx64 "): unexpected fix for %s relocation"),
10809 input_bfd, input_section, (uint64_t) rel->r_offset,
10810 elf_howto_table[r_type].name);
10811 return FALSE;
10812 }
10813 /* Leave it be. Resolution will happen in a later stage. */
10814 }
10815 else
10816 {
10817 sec = fix->target_sec;
10818 rel->r_addend += ((sec->output_offset + fix->target_offset)
10819 - (old_sec->output_offset + old_offset));
10820 }
10821 return TRUE;
10822 }
10823
10824
10825 static void
10826 do_fix_for_final_link (Elf_Internal_Rela *rel,
10827 bfd *input_bfd,
10828 asection *input_section,
10829 bfd_byte *contents,
10830 bfd_vma *relocationp)
10831 {
10832 asection *sec;
10833 int r_type = ELF32_R_TYPE (rel->r_info);
10834 reloc_bfd_fix *fix;
10835 bfd_vma fixup_diff;
10836
10837 if (r_type == R_XTENSA_NONE)
10838 return;
10839
10840 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10841 if (!fix)
10842 return;
10843
10844 sec = fix->target_sec;
10845
10846 fixup_diff = rel->r_addend;
10847 if (elf_howto_table[fix->src_type].partial_inplace)
10848 {
10849 bfd_vma inplace_val;
10850 BFD_ASSERT (fix->src_offset
10851 < bfd_get_section_limit (input_bfd, input_section));
10852 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
10853 fixup_diff += inplace_val;
10854 }
10855
10856 *relocationp = (sec->output_section->vma
10857 + sec->output_offset
10858 + fix->target_offset - fixup_diff);
10859 }
10860
10861 \f
10862 /* Miscellaneous utility functions.... */
10863
10864 static asection *
10865 elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
10866 {
10867 bfd *dynobj;
10868 char plt_name[17];
10869
10870 if (chunk == 0)
10871 return elf_hash_table (info)->splt;
10872
10873 dynobj = elf_hash_table (info)->dynobj;
10874 sprintf (plt_name, ".plt.%u", chunk);
10875 return bfd_get_linker_section (dynobj, plt_name);
10876 }
10877
10878
10879 static asection *
10880 elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
10881 {
10882 bfd *dynobj;
10883 char got_name[21];
10884
10885 if (chunk == 0)
10886 return elf_hash_table (info)->sgotplt;
10887
10888 dynobj = elf_hash_table (info)->dynobj;
10889 sprintf (got_name, ".got.plt.%u", chunk);
10890 return bfd_get_linker_section (dynobj, got_name);
10891 }
10892
10893
10894 /* Get the input section for a given symbol index.
10895 If the symbol is:
10896 . a section symbol, return the section;
10897 . a common symbol, return the common section;
10898 . an undefined symbol, return the undefined section;
10899 . an indirect symbol, follow the links;
10900 . an absolute value, return the absolute section. */
10901
10902 static asection *
10903 get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
10904 {
10905 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10906 asection *target_sec = NULL;
10907 if (r_symndx < symtab_hdr->sh_info)
10908 {
10909 Elf_Internal_Sym *isymbuf;
10910 unsigned int section_index;
10911
10912 isymbuf = retrieve_local_syms (abfd);
10913 section_index = isymbuf[r_symndx].st_shndx;
10914
10915 if (section_index == SHN_UNDEF)
10916 target_sec = bfd_und_section_ptr;
10917 else if (section_index == SHN_ABS)
10918 target_sec = bfd_abs_section_ptr;
10919 else if (section_index == SHN_COMMON)
10920 target_sec = bfd_com_section_ptr;
10921 else
10922 target_sec = bfd_section_from_elf_index (abfd, section_index);
10923 }
10924 else
10925 {
10926 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10927 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
10928
10929 while (h->root.type == bfd_link_hash_indirect
10930 || h->root.type == bfd_link_hash_warning)
10931 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10932
10933 switch (h->root.type)
10934 {
10935 case bfd_link_hash_defined:
10936 case bfd_link_hash_defweak:
10937 target_sec = h->root.u.def.section;
10938 break;
10939 case bfd_link_hash_common:
10940 target_sec = bfd_com_section_ptr;
10941 break;
10942 case bfd_link_hash_undefined:
10943 case bfd_link_hash_undefweak:
10944 target_sec = bfd_und_section_ptr;
10945 break;
10946 default: /* New indirect warning. */
10947 target_sec = bfd_und_section_ptr;
10948 break;
10949 }
10950 }
10951 return target_sec;
10952 }
10953
10954
10955 static struct elf_link_hash_entry *
10956 get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
10957 {
10958 unsigned long indx;
10959 struct elf_link_hash_entry *h;
10960 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10961
10962 if (r_symndx < symtab_hdr->sh_info)
10963 return NULL;
10964
10965 indx = r_symndx - symtab_hdr->sh_info;
10966 h = elf_sym_hashes (abfd)[indx];
10967 while (h->root.type == bfd_link_hash_indirect
10968 || h->root.type == bfd_link_hash_warning)
10969 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10970 return h;
10971 }
10972
10973
10974 /* Get the section-relative offset for a symbol number. */
10975
10976 static bfd_vma
10977 get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
10978 {
10979 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10980 bfd_vma offset = 0;
10981
10982 if (r_symndx < symtab_hdr->sh_info)
10983 {
10984 Elf_Internal_Sym *isymbuf;
10985 isymbuf = retrieve_local_syms (abfd);
10986 offset = isymbuf[r_symndx].st_value;
10987 }
10988 else
10989 {
10990 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10991 struct elf_link_hash_entry *h =
10992 elf_sym_hashes (abfd)[indx];
10993
10994 while (h->root.type == bfd_link_hash_indirect
10995 || h->root.type == bfd_link_hash_warning)
10996 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10997 if (h->root.type == bfd_link_hash_defined
10998 || h->root.type == bfd_link_hash_defweak)
10999 offset = h->root.u.def.value;
11000 }
11001 return offset;
11002 }
11003
11004
11005 static bfd_boolean
11006 is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
11007 {
11008 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
11009 struct elf_link_hash_entry *h;
11010
11011 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
11012 if (h && h->root.type == bfd_link_hash_defweak)
11013 return TRUE;
11014 return FALSE;
11015 }
11016
11017
11018 static bfd_boolean
11019 pcrel_reloc_fits (xtensa_opcode opc,
11020 int opnd,
11021 bfd_vma self_address,
11022 bfd_vma dest_address)
11023 {
11024 xtensa_isa isa = xtensa_default_isa;
11025 uint32 valp = dest_address;
11026 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
11027 || xtensa_operand_encode (isa, opc, opnd, &valp))
11028 return FALSE;
11029 return TRUE;
11030 }
11031
11032
11033 static bfd_boolean
11034 xtensa_is_property_section (asection *sec)
11035 {
11036 if (xtensa_is_insntable_section (sec)
11037 || xtensa_is_littable_section (sec)
11038 || xtensa_is_proptable_section (sec))
11039 return TRUE;
11040
11041 return FALSE;
11042 }
11043
11044
11045 static bfd_boolean
11046 xtensa_is_insntable_section (asection *sec)
11047 {
11048 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
11049 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
11050 return TRUE;
11051
11052 return FALSE;
11053 }
11054
11055
11056 static bfd_boolean
11057 xtensa_is_littable_section (asection *sec)
11058 {
11059 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
11060 || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
11061 return TRUE;
11062
11063 return FALSE;
11064 }
11065
11066
11067 static bfd_boolean
11068 xtensa_is_proptable_section (asection *sec)
11069 {
11070 if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
11071 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
11072 return TRUE;
11073
11074 return FALSE;
11075 }
11076
11077
11078 static int
11079 internal_reloc_compare (const void *ap, const void *bp)
11080 {
11081 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
11082 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
11083
11084 if (a->r_offset != b->r_offset)
11085 return (a->r_offset - b->r_offset);
11086
11087 /* We don't need to sort on these criteria for correctness,
11088 but enforcing a more strict ordering prevents unstable qsort
11089 from behaving differently with different implementations.
11090 Without the code below we get correct but different results
11091 on Solaris 2.7 and 2.8. We would like to always produce the
11092 same results no matter the host. */
11093
11094 if (a->r_info != b->r_info)
11095 return (a->r_info - b->r_info);
11096
11097 return (a->r_addend - b->r_addend);
11098 }
11099
11100
11101 static int
11102 internal_reloc_matches (const void *ap, const void *bp)
11103 {
11104 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
11105 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
11106
11107 /* Check if one entry overlaps with the other; this shouldn't happen
11108 except when searching for a match. */
11109 return (a->r_offset - b->r_offset);
11110 }
11111
11112
11113 /* Predicate function used to look up a section in a particular group. */
11114
11115 static bfd_boolean
11116 match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
11117 {
11118 const char *gname = inf;
11119 const char *group_name = elf_group_name (sec);
11120
11121 return (group_name == gname
11122 || (group_name != NULL
11123 && gname != NULL
11124 && strcmp (group_name, gname) == 0));
11125 }
11126
11127
11128 static char *
11129 xtensa_add_names (const char *base, const char *suffix)
11130 {
11131 if (suffix)
11132 {
11133 size_t base_len = strlen (base);
11134 size_t suffix_len = strlen (suffix);
11135 char *str = bfd_malloc (base_len + suffix_len + 1);
11136
11137 memcpy (str, base, base_len);
11138 memcpy (str + base_len, suffix, suffix_len + 1);
11139 return str;
11140 }
11141 else
11142 {
11143 return strdup (base);
11144 }
11145 }
11146
11147 static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
11148
11149 static char *
11150 xtensa_property_section_name (asection *sec, const char *base_name,
11151 bfd_boolean separate_sections)
11152 {
11153 const char *suffix, *group_name;
11154 char *prop_sec_name;
11155
11156 group_name = elf_group_name (sec);
11157 if (group_name)
11158 {
11159 suffix = strrchr (sec->name, '.');
11160 if (suffix == sec->name)
11161 suffix = 0;
11162 prop_sec_name = xtensa_add_names (base_name, suffix);
11163 }
11164 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
11165 {
11166 char *linkonce_kind = 0;
11167
11168 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
11169 linkonce_kind = "x.";
11170 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
11171 linkonce_kind = "p.";
11172 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
11173 linkonce_kind = "prop.";
11174 else
11175 abort ();
11176
11177 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
11178 + strlen (linkonce_kind) + 1);
11179 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
11180 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
11181
11182 suffix = sec->name + linkonce_len;
11183 /* For backward compatibility, replace "t." instead of inserting
11184 the new linkonce_kind (but not for "prop" sections). */
11185 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
11186 suffix += 2;
11187 strcat (prop_sec_name + linkonce_len, suffix);
11188 }
11189 else
11190 {
11191 prop_sec_name = xtensa_add_names (base_name,
11192 separate_sections ? sec->name : NULL);
11193 }
11194
11195 return prop_sec_name;
11196 }
11197
11198
11199 static asection *
11200 xtensa_get_separate_property_section (asection *sec, const char *base_name,
11201 bfd_boolean separate_section)
11202 {
11203 char *prop_sec_name;
11204 asection *prop_sec;
11205
11206 prop_sec_name = xtensa_property_section_name (sec, base_name,
11207 separate_section);
11208 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
11209 match_section_group,
11210 (void *) elf_group_name (sec));
11211 free (prop_sec_name);
11212 return prop_sec;
11213 }
11214
11215 static asection *
11216 xtensa_get_property_section (asection *sec, const char *base_name)
11217 {
11218 asection *prop_sec;
11219
11220 /* Try individual property section first. */
11221 prop_sec = xtensa_get_separate_property_section (sec, base_name, TRUE);
11222
11223 /* Refer to a common property section if individual is not present. */
11224 if (!prop_sec)
11225 prop_sec = xtensa_get_separate_property_section (sec, base_name, FALSE);
11226
11227 return prop_sec;
11228 }
11229
11230
11231 asection *
11232 xtensa_make_property_section (asection *sec, const char *base_name)
11233 {
11234 char *prop_sec_name;
11235 asection *prop_sec;
11236
11237 /* Check if the section already exists. */
11238 prop_sec_name = xtensa_property_section_name (sec, base_name,
11239 elf32xtensa_separate_props);
11240 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
11241 match_section_group,
11242 (void *) elf_group_name (sec));
11243 /* If not, create it. */
11244 if (! prop_sec)
11245 {
11246 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
11247 flags |= (bfd_get_section_flags (sec->owner, sec)
11248 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
11249
11250 prop_sec = bfd_make_section_anyway_with_flags
11251 (sec->owner, strdup (prop_sec_name), flags);
11252 if (! prop_sec)
11253 return 0;
11254
11255 elf_group_name (prop_sec) = elf_group_name (sec);
11256 }
11257
11258 free (prop_sec_name);
11259 return prop_sec;
11260 }
11261
11262
11263 flagword
11264 xtensa_get_property_predef_flags (asection *sec)
11265 {
11266 if (xtensa_is_insntable_section (sec))
11267 return (XTENSA_PROP_INSN
11268 | XTENSA_PROP_NO_TRANSFORM
11269 | XTENSA_PROP_INSN_NO_REORDER);
11270
11271 if (xtensa_is_littable_section (sec))
11272 return (XTENSA_PROP_LITERAL
11273 | XTENSA_PROP_NO_TRANSFORM
11274 | XTENSA_PROP_INSN_NO_REORDER);
11275
11276 return 0;
11277 }
11278
11279 \f
11280 /* Other functions called directly by the linker. */
11281
11282 bfd_boolean
11283 xtensa_callback_required_dependence (bfd *abfd,
11284 asection *sec,
11285 struct bfd_link_info *link_info,
11286 deps_callback_t callback,
11287 void *closure)
11288 {
11289 Elf_Internal_Rela *internal_relocs;
11290 bfd_byte *contents;
11291 unsigned i;
11292 bfd_boolean ok = TRUE;
11293 bfd_size_type sec_size;
11294
11295 sec_size = bfd_get_section_limit (abfd, sec);
11296
11297 /* ".plt*" sections have no explicit relocations but they contain L32R
11298 instructions that reference the corresponding ".got.plt*" sections. */
11299 if ((sec->flags & SEC_LINKER_CREATED) != 0
11300 && CONST_STRNEQ (sec->name, ".plt"))
11301 {
11302 asection *sgotplt;
11303
11304 /* Find the corresponding ".got.plt*" section. */
11305 if (sec->name[4] == '\0')
11306 sgotplt = elf_hash_table (link_info)->sgotplt;
11307 else
11308 {
11309 char got_name[14];
11310 int chunk = 0;
11311
11312 BFD_ASSERT (sec->name[4] == '.');
11313 chunk = strtol (&sec->name[5], NULL, 10);
11314
11315 sprintf (got_name, ".got.plt.%u", chunk);
11316 sgotplt = bfd_get_linker_section (sec->owner, got_name);
11317 }
11318 BFD_ASSERT (sgotplt);
11319
11320 /* Assume worst-case offsets: L32R at the very end of the ".plt"
11321 section referencing a literal at the very beginning of
11322 ".got.plt". This is very close to the real dependence, anyway. */
11323 (*callback) (sec, sec_size, sgotplt, 0, closure);
11324 }
11325
11326 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
11327 when building uclibc, which runs "ld -b binary /dev/null". */
11328 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
11329 return ok;
11330
11331 internal_relocs = retrieve_internal_relocs (abfd, sec,
11332 link_info->keep_memory);
11333 if (internal_relocs == NULL
11334 || sec->reloc_count == 0)
11335 return ok;
11336
11337 /* Cache the contents for the duration of this scan. */
11338 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
11339 if (contents == NULL && sec_size != 0)
11340 {
11341 ok = FALSE;
11342 goto error_return;
11343 }
11344
11345 if (!xtensa_default_isa)
11346 xtensa_default_isa = xtensa_isa_init (0, 0);
11347
11348 for (i = 0; i < sec->reloc_count; i++)
11349 {
11350 Elf_Internal_Rela *irel = &internal_relocs[i];
11351 if (is_l32r_relocation (abfd, sec, contents, irel))
11352 {
11353 r_reloc l32r_rel;
11354 asection *target_sec;
11355 bfd_vma target_offset;
11356
11357 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
11358 target_sec = NULL;
11359 target_offset = 0;
11360 /* L32Rs must be local to the input file. */
11361 if (r_reloc_is_defined (&l32r_rel))
11362 {
11363 target_sec = r_reloc_get_section (&l32r_rel);
11364 target_offset = l32r_rel.target_offset;
11365 }
11366 (*callback) (sec, irel->r_offset, target_sec, target_offset,
11367 closure);
11368 }
11369 }
11370
11371 error_return:
11372 release_internal_relocs (sec, internal_relocs);
11373 release_contents (sec, contents);
11374 return ok;
11375 }
11376
11377 /* The default literal sections should always be marked as "code" (i.e.,
11378 SHF_EXECINSTR). This is particularly important for the Linux kernel
11379 module loader so that the literals are not placed after the text. */
11380 static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
11381 {
11382 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11383 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11384 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11385 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
11386 { NULL, 0, 0, 0, 0 }
11387 };
11388 \f
11389 #define ELF_TARGET_ID XTENSA_ELF_DATA
11390 #ifndef ELF_ARCH
11391 #define TARGET_LITTLE_SYM xtensa_elf32_le_vec
11392 #define TARGET_LITTLE_NAME "elf32-xtensa-le"
11393 #define TARGET_BIG_SYM xtensa_elf32_be_vec
11394 #define TARGET_BIG_NAME "elf32-xtensa-be"
11395 #define ELF_ARCH bfd_arch_xtensa
11396
11397 #define ELF_MACHINE_CODE EM_XTENSA
11398 #define ELF_MACHINE_ALT1 EM_XTENSA_OLD
11399
11400 #define ELF_MAXPAGESIZE 0x1000
11401 #endif /* ELF_ARCH */
11402
11403 #define elf_backend_can_gc_sections 1
11404 #define elf_backend_can_refcount 1
11405 #define elf_backend_plt_readonly 1
11406 #define elf_backend_got_header_size 4
11407 #define elf_backend_want_dynbss 0
11408 #define elf_backend_want_got_plt 1
11409 #define elf_backend_dtrel_excludes_plt 1
11410
11411 #define elf_info_to_howto elf_xtensa_info_to_howto_rela
11412
11413 #define bfd_elf32_mkobject elf_xtensa_mkobject
11414
11415 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
11416 #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
11417 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
11418 #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
11419 #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
11420 #define bfd_elf32_bfd_reloc_name_lookup \
11421 elf_xtensa_reloc_name_lookup
11422 #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
11423 #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
11424
11425 #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
11426 #define elf_backend_check_relocs elf_xtensa_check_relocs
11427 #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
11428 #define elf_backend_discard_info elf_xtensa_discard_info
11429 #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
11430 #define elf_backend_final_write_processing elf_xtensa_final_write_processing
11431 #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
11432 #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
11433 #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
11434 #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
11435 #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
11436 #define elf_backend_hide_symbol elf_xtensa_hide_symbol
11437 #define elf_backend_object_p elf_xtensa_object_p
11438 #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
11439 #define elf_backend_relocate_section elf_xtensa_relocate_section
11440 #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
11441 #define elf_backend_always_size_sections elf_xtensa_always_size_sections
11442 #define elf_backend_omit_section_dynsym _bfd_elf_omit_section_dynsym_all
11443 #define elf_backend_special_sections elf_xtensa_special_sections
11444 #define elf_backend_action_discarded elf_xtensa_action_discarded
11445 #define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol
11446
11447 #include "elf32-target.h"
This page took 0.257255 seconds and 5 git commands to generate.